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Introduction

Mesoscopic physics, especially the description of nanometer-sized systems, is one of

the most promising fields for the development of future technology. Besides showing

new and rich physics in fundamental research, mesoscopic systems exhibit a vast

potential for fascinating applications in very different domains, some of them being

already available as commercial products. Typical systems under investigation are

quantum wires, i.e., one-dimensional quantum systems with only very few conduc-

tion channels, and quantum dots, which are roughly speaking laterally restricted

quantum wires leading effectively to zero-dimensional systems with only discrete

energy states. These nanoscale devices carry a few to a few thousand electrons

being confined on them and behave like artificial atoms.

One of the most challenging and in many respects prototypical systems in meso-

scopic physics are carbon nanotubes which were discovered in 1991. Carbon nan-

otubes are tubular nanoscale objects which can be thought of as graphite sheets

wrapped onto a cylinder. Due to their intriguing electronic and mechanical proper-

ties, they continue to attract an increasing amount of attention. Besides single-wall

nanotubes which consist of only one graphite shell, there also exist multi-wall nan-

otubes consisting of a few concentrically arranged graphite shells.

Due to the one-dimensional nature of their electronic conduction bands near

the Fermi energy, metallic single-wall nanotubes constitute a nearly perfect realiza-

tion of 1D quantum wires. In particular, because of this reduced dimensionality,

electron-electron correlations invalidate the usual Fermi liquid picture leading to

a Luttinger liquid phase. This is the generic phase for 1D metals and has been

observed experimentally in the suppression of the tunneling density of states, or

in interaction-dependent power-law behavior of transport properties. While single-

wall nanotubes are ballistic with elastic mean free paths up to several microns, the

detailed behavior of multi-wall nanotubes is not yet completely understood. Thus,

lately much effort, including this work, has been devoted to studying the electronic

properties of multi-wall nanotubes, especially with focus on disorder induced effects.

Since real materials always enclose impurities, dislocations, or more general forms

of disorder, this generally implies to go beyond usual paradigms that have been used

successfully for pure systems. To strengthen the usefulness of carbon nanotubes, the

understanding of the influence of defects in nanostructures deserves particular at-

tention since at such very small scale, any disruptions of local order may affect
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dramatically the physical response of the nanodevice. For the implementation to ef-

ficient technological devices, one needs to seriously understand, control, and possibly

confine the magnitude of these inherent quantum fluctuations, induced by disorder

or magnetic field.

Therefore, we present a theory for the van Hove singularity in the tunneling den-

sity of states of disordered multi-wall nanotubes. However, this problem is also of

great importance for other multi-channel quantum wires. We answer the question:

How is the van Hove singularity modified by the presence of disorder? This question

is crucial for the interpretation of several key experiments on multi-wall nanotubes.

A typical experimental setup to check our predictions would be, e.g., a scanning tun-

neling spectroscopy measurement, which can directly probe the tunneling density of

states. By using diagrammatic perturbation theory within a non-crossing approx-

imation which is valid over a wide parameter region, we obtain closed analytical

expressions governing the disorder-induced broadening and shift of van Hove singu-

larities as new subbands are opened. This problem is highly non-trivial because the

(lowest-order) Born approximation breaks down close to the van Hove singularity.

Interestingly, the boundary tunneling density of states shows drastically altered be-

havior compared to the bulk case, even in the clean limit. The typical 1/
√
E − En

dependence of the van Hove singularity turns into a non-analyticity with
√
E − En

behavior close to the boundary, where En is the threshold energy.

Quantum dots have been successfully realized, e.g., in semiconductor heterostruc-

tures or by using carbon nanotubes. One great advantage compared to real atoms is

that their properties can be tuned and controlled in experiments making it possible

to study, e.g., transport through a quantum dot via attached leads. Within Coulomb

blockade theory, transport only occurs for selected values of the gate voltage capac-

itively coupled to the dot, resulting in a sequence of equidistant conductance peaks

(Coulomb peaks) corresponding to the addition of single electrons. This opens the

possibility of building a transistor operating at the level of single electrons and being

on that score the ultimate limit of a transistor at all.

Quantum dots also provide a fascinating device to study another interesting and

important effect, appearing when the topmost level of the dot is occupied by a

single electron only. The resulting situation corresponds to a magnetic impurity in

a sea of conduction electrons giving rise to the Kondo effect, which has received an

enormous amount of attention over the years. Kondo’s original work over thirty-five

years ago was intended to explain the anomalous resistivity observed in magnetic

alloys. However, in quantum dots the Kondo effect allows for resonant transmission

through the island, as observed in recent experiments.

In most treatments of the Kondo effect (and resonant tunneling) in quantum

dots, the leads are taken to be Fermi liquids and interactions in the leads are ig-

nored. This is sufficient if the leads are 2D or 3D electron gases, where interactions

affect the low-energy properties only perturbatively. In contrast, in 1D arbitrarily

weak interactions completely modify the ground state and the low-energy excita-
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tions are described by a Luttinger liquid rather than a Fermi liquid. The drastic

consequence is that, e.g., in a repulsively interacting Luttinger liquid with a sin-

gle impurity, transport is completely blocked at very low temperatures. However,

adding a second impurity profoundly changes the whole situation since then, even

perfect transmissions can be achieved (resonant tunneling).

The problem of resonant tunneling in a Luttinger liquid was first studied a decade

ago, but has recently attracted renewed and widespread attention by theorists. This

is primarily caused by novel exciting experimental realizations of double-barrier

structures in interacting 1D quantum wires as, e.g., single-wall nanotubes with two

intramolecular buckles induced by an atomic force microscope. The buckles act as

tunneling barriers and thereby create a well-defined island (quantum dot) with a

length of a few tens of nanometers. Transport measurements revealed oscillations

in the conductance through the island as a function of the gate voltage which are

believed to correspond to the addition of single electrons to the dot, and to be a

result of the Coulomb blockade. The whole device has been reported to behave as

single electron transistor, up to room temperature.

However, the reported unconventional behavior of the conductance measured in

this experiment could not be understood within existing theories. As a result, many

new and also contradictory results appeared in the literature leading to a recent

controversy. Therefore, we try to clarify this situation by carefully reconsidering the

problem of transport through a Luttinger liquid with two impurities of arbitrary

strength. As this problem is not integrable, exact solutions covering a wide param-

eter range of interest are out of reach, in marked contrast to the situation of only a

single impurity. We present analytical results for the resonance condition as well as

a detailed quantum Monte Carlo study of the conductance in such a system. These

numerically exact results allow to investigate the line shape of the resonance as well

as the behavior of the peak height and width. We will pay particular attention to

how the barrier strength influences the physical mechanisms of transport through

the double-barrier. This question is related to the breakdown of Coulomb blockade

at strong transmission. The validity of our Monte Carlo approach is demonstrated

for the non-interacting case by comparing numerical results to the exact solution

for arbitrary barrier height. We identify the regime of coherent resonant tunneling

where the line shape shows universal scaling behavior, i.e., rescaled resonance curves

for different temperature collapse onto a single master curve. In this regime, the

line width shows power-law behavior on temperature with the exponent depending

on the interaction strength in the system. We could also identify the regime of

correlated sequential tunneling thereby resolving the recent controversy mentioned

above. With spin, we identify resonant tunneling peaks, but no Kondo effect can be

found in this setup.

The entire work is organized as follows. The first chapter gives a brief intro-

duction to carbon nanotubes including some remarks on relevant experimental tech-

niques like scanning tunneling microscopy. Chapter 2 provides the theoretical frame-
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work for describing disordered multi-wall nanotubes as needed for studying van Hove

singularities in the tunneling density of states of such systems which is done in detail

in the third chapter. Then, after introducing the Luttinger liquid description for

single-wall nanotubes in Chapter 4, we give a summary of earlier results on resonant

tunneling and Kondo effect in quantum dots in Chapter 5. There, we also review

recent experimental results that are in close context to our theory for transport

through a nanotube quantum dot presented in Chapter 6. Finally, we conclude in

the summary. Some calculations which would be too tedious for the main text are

provided in several appendices for the interested reader.



Chapter 1

Carbon nanotubes

In this chapter we will review the physical properties of carbon nanotubes. We start

by describing growth processes, the crystallographic structure, and the electronic

properties. Subsequent, we discuss differences between the two existing classes of

nanotubes (single- and multi-wall). Because of its importance as an experimental

tool for visualizing as well as manipulating and spectroscopically probing atomic

structures, we also briefly describe the scanning tunneling microscopy technique.

We close the chapter by giving an outlook on some challenging applications.

1.1 Growth and purification

Carbon nanotubes (NTs) were discovered in 1991 by Iijima [1] (for a recent review,

e.g., see [2]). He observed tubular features in electron microscopy images of fullerene

soot produced in an arc discharge which were identified as fullerene tubes consisting

of multiple shells, in which many tubes were arranged in a coaxial fashion. Such

tubes were called multi-wall nanotubes (MWNTs). In 1993, Iijima’s group, as well

as others, found that the use of transition-metal catalysts leads to NTs with only

a single shell [3]. Accordingly, they were called single-wall nanotubes (SWNTs).

Because of their simple and well-defined structure, SWNTs serve as model systems

both for theoretical calculations as well as for key experiments. As an example, in

Fig. 1.1 we show an atomic force microscopy image of a SWNT.

In 1995, Smalley and co-workers found a laser ablation technique that could

produce SWNTs at yields of up to 80% instead of the few percent yields of earlier

experiments [5]. Later, it has been shown that high yields of NTs can also be

obtained with the arc discharge method [6]. A recent development is the use of

chemical vapor deposition, in which NTs are grown by decomposing an organic gas

over a substrate covered with metal catalyst particles. Either MWNTs or SWNTs

can be grown with this technique (see especially [7] and references therein).

The first step in the study of NTs is technological, their purification. Purification

steps may consist of controlled oxidation, chemical treatment, filtration and other
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Figure 1.1: Atomic force microscopy image of a carbon nanotube on top of a Si/SiO2

substrate with two 15 nm thick Pt electrodes. The tube has a diameter of ∼ 1 nm,

and is identified as an individual SWNT. (Taken from [4].)

procedures. The first purification method consisted of burning the raw soot in air

which resulted in a relatively pure NT soot, but with damaged tube walls and tips,

and with a loss of about 99 weight percent of the material. More advanced methods

build on a special filtration technique using a water/surfactant solution to extract

the tubes from the suspension. Further purification can be accomplished by size-

selection through controlled flocculation and after a final separation, yields as high

as 90% in weight are obtained without any damage to the tubes [7].

High resolution transmission electron microscopy provides valuable information

about the NT quality prepared by different synthesis methods. In the arc discharge

and related methods, NTs are produced in an inert gas atmosphere from graphite at

such high local temperature that the carbon evaporates and subsequently forms the

NT. The resulting tubes are mainly straight and exhibit a rather flawless structure

in transmission electron microscopy images. The NTs grown by the arc discharge

method have generally the best structures, presumably due to the high temperature

of the synthesis process [7].

As already mentioned, a MWNT is composed of a set of coaxially arranged

SWNTs of different radii. The distance between nearest-neighbor shells corresponds,

within good approximation, to the van der Waals distance between adjacent carbon

sheets in graphite which is ≈ 3.4 Å. The outer diameter of NTs depends on the

growth process. For SWNTs, one has typically a radius of R ≈ 0.5 to 1 nm while

for MWNTs, the outermost shell radius is R ≈ 5 to 20 nm. For arc discharge grown

MWNTs, R is typically of order 10 nm, but can attain values exceeding 100 nm for

some chemical vapor deposition grown MWNTs. Transmission electron microscopy

has shown that these large diameter tubes contain a considerable amount of defects.
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Figure 1.2: Honeycomb lattice of graphene with the basis consisting of two atoms

(A,B) and with the primitive Bravais translation vectors ~a1 and ~a2. The C-C nearest-

neighbor distance d ≈ 1.42 Å determines the lattice constant a =
√

3d ≈ 2.46 Å.

Indicated are also the wrapping directions for zigzag and armchair NTs.

Typical lengths of NTs are up to 1 mm. Because of their small radius and

the large aspect ratio > 104 (length-to-diameter ratio), they provide an important

system for studying one-dimensional (1D) physics, both theoretically and experi-

mentally. Thereby, main advantages are their high chemical stability as well as

their extraordinary mechanical properties. Most important for our study are, how-

ever, the remarkable electronic properties of carbon NTs on which we will mainly

focus in the remainder.

1.2 Crystallographic structure

A SWNT can be constructed from a slice of graphene (that is a single planar layer of

the honeycomb lattice of graphite, see Fig. 1.2) rolled into a seamless cylinder, i.e.,

with all carbon atoms covalently bound to three neighbor carbons by sp2 molecular
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orbitals. The mapping of the graphene sheet onto the cylindrical surface can be

specified by a single superlattice translation vector ~T which defines an elementary

orbit around the waist of the cylinder, therefore connecting two crystallographically

equivalent sites on the two-dimensional (2D) graphene sheet. In the absence of

disclinations, the superlattice vector ~T is an element of the original graphene lattice.

The wrapping is conventionally indexed by two integers 0 ≤ s ≤ r such that ~T =

r~a1 + s~a2, where ~a1 = a(1, 0) and ~a2 = a(1/2,
√

3/2) are the primitive Bravais

translation vectors of the honeycomb lattice of length a =
√

3d ≈ 2.46 Å (a is called

lattice constant), with the C-C nearest-neighbor distance d (see Fig. 1.2). Together

with the basis of the honeycomb lattice that consists of two atoms, the vectors ~a1

and ~a2 span the complete lattice.

According to the construction, the arrangement of carbon atoms on the tube

surface is determined by the integer indices r and s resulting in a so-called (r, s)

NT. Vectors (r, 0) denote zigzag tubes while vectors (r, r) denote armchair tubes (see

Figures 1.2 and 1.3). These two cases with especially high symmetry correspond to

the limiting cases of a general chiral tube specified by all other vectors (r, s) with

s 6= 0, r.

Equivalently to the two integers r and s, one can specify the NT in terms

of the tube radius R = |~T |/2π = a
√
r2 + s2 + rs/2π and the chiral angle θ =

tan−1[
√

3s/(s + 2r)], which is the angle between ~a1 and ~T and therefore measures

the torsion of the lattice with respect to (r, 0). Because of the sixfold symmetry

of the honeycomb lattice, several different integers (r, s) will give rise to equivalent

NTs. To define each tube once and once only, we have to restrict the chiral angle

to 0◦ ≤ θ ≤ 30◦ which is equivalent to the restriction 0 ≤ s ≤ r made before.

1.3 Electronic properties

An interesting point is that MWNTs allow us to study the transition from the single

molecule (SWNT) to the macroscopic crystal (graphite). Accordingly, they are in-

between the 1D (SWNT) and 2D (planar graphene) limit. The question that arises

is whether their electronic properties are closer to that of graphite or do MWNTs

rather behave as a set of independent SWNTs? It is thus useful to briefly highlight

the electronic properties of the two reference systems, graphite and ideal SWNTs.

Starting with graphite, we will first review the band structure of a graphene

sheet. It is convenient to transform to the reciprocal lattice1 which, for a periodic

lattice, corresponds to the “momentum space”. The Wigner-Seitz unit cell2 for the

1Remember that the product of a lattice vector ~r and a vector ~G of the reciprocal lattice is just

~r · ~G = 2πn, with integer n.
2For a certain lattice structure there exist several possible unit cells, all having of course the

same (minimal) volume. The Wigner-Seitz unit cell now is constructed by connecting a lattice

point with straight lines to all possible neighbor points. The smallest volume generated by the

perpendicular bisectors of the bonding lines is then called Wigner-Seitz unit cell.
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Figure 1.3: SWNTs with different chiralities and possible caps at each end: (a)

shows a (r, r) armchair NT which corresponds to a chiral angle θ = 30◦, (b) shows

a (r, 0) zigzag NT with θ = 0◦, and (c) shows the general case of a chiral tube with

0◦ < θ < 30◦. The tubes shown in the figure correspond to (r, s) values of (a) (5,5),

(b) (9,0), and (c) (10,5). (From [8].)

reciprocal lattice is called the first Brillouin zone and has, for the honeycomb lattice,

the form of a hexagon (see Fig. 1.4). As already mentioned, the carbon atoms in

a graphene sheet are covalently bound by sp2 molecular orbitals and the fourth

valence electron, an atomic pz-state, hybridizes with all other pz-orbitals to form a

delocalized π-band. The band structure of a graphene sheet was calculated already

in 1947 by Wallace using the nearest-neighbor tight binding approximation on a

honeycomb lattice [9]. The corresponding Hamiltonian can easily be diagonalized,

H = t
∑

<i,j>

c†icj + h.c. ,

with the creation operator c†i for a π-electron on lattice site i and the hopping

matrix element t ≈ 2.5 eV (given by the nearest-neighbor C-C overlap integral).

The resulting dispersion relation is straightforward to derive (see also [10]),

E(~k) = ±t
{

1 + 4 cos2

(
kxa

2

)
+ 4 cos

(
kxa

2

)
cos

(√
3kya

2

)}1/2

.
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(0,0) KK’

Figure 1.4: Wigner-Seitz unit cell for the reciprocal lattice (first Brillouin zone)

of the honeycomb lattice. Only the corner points exhibit a gapless band structure,

i.e., the Fermi surface is collapsed to isolated points, with only two of them being

independent (K,K ′). Each set of points ◦ and × represents equivalent points since

they differ only by reciprocal lattice vectors.

From such a calculation it is now seen that the bonding π-band (valence band, “−”)

is always energetically below the antibonding π∗-band (conduction band, “+”) for all

wavevectors, except at the corner points of the first Brillouin zone, where the band

splitting is zero by symmetry of the honeycomb lattice. Accordingly, an isolated

graphene sheet is a semimetal, whose 2D band structure near the Fermi surface

consists of six conical energy surfaces in the first Brillouin zone, with the Fermi

energy EF residing at a critical point in the 2D π-electron spectrum (see Fig. 1.5).

Theoretically, all bonding states will be filled up to the corner points, which coincide

with EF . Hence, the Fermi surface of undoped graphene consists only of six isolated

points, the vertices of the six cones. But there exist only two distinct Fermi points,

namely the K and K ′ points of the first Brillouin zone at ~K = (±4π/3a, 0),3 the

remaining points can be mapped onto these two via a reciprocal lattice vector. Up

to high energies E ≈ 1 eV one can linearize the dispersion relation around the Fermi

points, E(~q) = ±h̄vF |~q | with ~q = ~k − ~K and the Fermi velocity vF =
√

3at/2h̄ ≈
8 × 105 m/s.

Next, we will turn to the other reference compound, that is a perfect SWNT.

When the graphene sheet is wrapped into cylindrical form, the periodic bound-

ary condition around the NT circumference causes quantization of the transverse

wavevector component. Along the tube, the electrons are not confined. More pre-

cisely, the π-electron eigenstates ψ(~r) have to satisfy the condition ψ(~r+ ~T ) = ψ(~r)

leading to the requirement that all allowed wavevectors ~k have to fulfill ~T ·~k = 2πn,

with integer n. From this requirement we can also find a condition for the NT to

be metallic, namely we have to require that the Fermi vector ~K itself is an allowed

wavevector (otherwise there would be a gap in the spectrum), leading to 2r+s = 3n,

which is a necessary condition for a (r, s) tube to be metallic. As we see, armchair

NTs should always be metallic while most other tubes are semiconducting. Thus,

the conductive properties of NTs depend drastically on the chirality of the hexago-

3Obviously, cos(2π/3) = −0.5 and hence, the K points are gapless, E( ~K) = 0.
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Figure 1.5: Dispersion relation of the π- (lower half) and π∗-band (upper half) of a

2D planar graphene sheet. The energy is measured relative to the Fermi energy of

undoped graphene. As one can clearly see, the upper and lower band touch at the six

corner points of the first Brillouin zone which has a hexagonal structure.

nal carbon lattice along the tube. A slight change in the winding of the hexagons

along the tube can transform the NT from a metal into a large-gap semiconductor

where the gap is of the order of 1 eV and scales inversely with the tube radius,

Egap = 2h̄vF/3R. Since r and s should be statistically independent, one assumes

that approximately two-thirds of the tubes are semiconducting and one-third are

metallic, which is also supported by the experimental findings.

One should mention that also in many nominally metallic tubes like, e.g., the

(6, 0) zigzag NT, a minigap appears at the band center. This is due to the intrinsic

tube curvature which reduces the overlap of nearest-neighbor π-orbitals resulting in

a shift of ~K such that the allowed 1D subband no longer passes through it, and

hence, a small gap opens. Such gaps have been observed experimentally, have a

size of a few tens of meV, and scale as 1/R2 [11]. However, in armchair NTs such

secondary gaps cannot appear due to the high symmetry of the tube lattice and

therefore, armchair NTs are indeed always metallic.

The 1D band structure can easily be constructed using the 2D band structure

of graphene. Let us denote the wavevector along the tube direction by k and the

transverse component by k⊥, where the allowed k⊥ are spaced by 1/R. Because of

this quantization of circumferential modes, the tube’s electronic states do not form

one wide electronic energy band but instead split into 1D subbands with band onsets

at different energies (see Fig. 1.6). Each k⊥ within the first Brillouin zone gives rise

to a 1D subband and hence, a set of subbands Ek⊥
(k) is obtained which are often

referred to as transverse modes in analogy with the modes of an electromagnetic

waveguide. A large-diameter tube will have many (occupied) subbands, while a
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Figure 1.6: Dispersion relation for the 1D electronic energy bands of a metallic

(left) and a semiconducting (right) NT. While in the metallic case there is a non-

zero density of states (DOS) at the Fermi level, in the semiconducting case there is

a band gap leading to a vanishing DOS in the vicinity of EF (undoped case).

small-diameter tube has only a few of them. For SWNTs, subbands are widely

separated in energy on the scale of 1 eV, much larger than the room temperature

thermal energy of about 1/40 eV.

In semiconducting NTs, there are no electron states at the Fermi level while in

metallic NTs, two of the 1D subbands cross the Fermi energy. They are constructed

out of the six energy cones of graphene which collapse into two independent 1D con-

duction channels since at each case three of the cones are equivalent. The current

through metallic SWNTs is therefore predicted to be carried by only this pair of sub-

bands. Taking into account the spin degeneracy of the electrons, metallic SWNTs

have altogether four independent conduction channels. The number N of indepen-

dent conduction channels determines the conductance G of a ballistic (i.e., without

backscattering) 1D system adiabatically connected to external leads according to

the Landauer conductance formula, G = NG0, where G0 = e2/h ≈ [25.8 kΩ]−1 is

the conductance quantum. SWNTs are thus predicted to be prototype 1D quantum

wires.

To summarize, depending on the specific realization (i.e., the chiral angle), a NT

may be a true 1D metal with a non-vanishing density of states (DOS) at the Fermi

energy or a semiconductor with a gap (see Fig. 1.6) [12, 13]. This is in marked

contrast to the 2D graphene sheet which is a zero-gap semiconductor (semimetal).

We want to close this section by commenting on a subtle fact concerning 1D

metallic wires. In 1930, Peierls showed that 1D metallic wires are essentially un-

stable and will turn semiconducting [14]. That is what happens, for example, to

polyacetylene and other so-called conducting polymers, which have gaps of a few
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eV. NTs are an exception to this general rule. Because of their tubular structure,

the energy change of setting up a Peierls distortion is very unfavorable. The fact

that NTs can be metallic at the level of a single molecule is therefore unique.

1.4 Differences between single- and multi-wall

nanotubes

Radius and energy scale

Neglecting the inner shells of a MWNT for the moment (inter-shell tunneling is

largely suppressed for a number of reasons [15]), the main difference between a

SWNT and a MWNT is the outer diameter of the graphene cylinder. SWNTs have

typical diameters of ≈ 1 to 2 nm while MWNTs normally have diameters in the

range of 10 to 40 nm. This one order of magnitude difference in diameter relates

into an order of magnitude difference in energy scale. For a semiconducting MWNT,

tight binding calculations predicted a gap of order 0.1 eV for a 10 nm diameter tube,

whereas for a SWNT the gap is of order 1 eV. This scale is also roughly valid for

the energy separation between the first conduction and valence subbands above and

below the Fermi level for metallic tubes.

Magnetotransport

With regard to electrical measurements in magnetic fields, orbital effects cannot be

studied in SWNTs because extremely high magnetic fields would be required. In

contrast, a magnetic field of 12 T is enough to induce a magnetic flux of φ0/2 in a

MWNT with an outer diameter of 15 nm (φ0 = h/e is the flux quantum). There-

fore, valuable information can be obtained from magnetotransport experiments on

MWNTs.

Recently, Bachtold et al. [16] reported magnetoresistance measurements on indi-

vidual MWNTs showing the typical fingerprints of diffusive behavior. On applying

a magnetic field parallel to the tube axis the resistance decreases as a consequence

of weak localization (see Sec. 2.1). For the specific geometry of a cylinder, the

weak localization contribution is periodic because of the interference of closed elec-

tron trajectories that encircle the cylinder once. Due to the Aharonov-Bohm effect

[17], the phase difference ∆ϕ between each such trajectory and the time-reversed

counter-propagating trajectory is solely determined by the magnetic flux φ enclosed,

∆ϕ = 4πφ/φ0. Consequently, the electrical resistance has an oscillating contribu-

tion with period φ0/2 (Al’tshuler-Aronov-Spivak effect [18]). Similar oscillations

were also observed for thin hollow cylinders [19].

The measured resistance oscillations were found to be in good agreement with

Al’tshuler-Aronov-Spivak theory if the current is assumed to flow only through the

outermost cylinder of the MWNT. Therefore, this experiment leads to the conclusion
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that the inner shells of a MWNT do not contribute to transport and that the electric

current can be assumed to flow in the outermost (metallic) graphene tube only,4 at

least at low temperatures, and hence, experiments on MWNTs also address a single

shell.

Inner shell effects

For MWNTs, one may have to take a weak hybridization of electron states from

neighboring tubes into account. Since MWNTs are composed of coaxial cylindri-

cal layers, each with different radii and also different helicities, the adjacent layers

are generally non-commensurate, and, as a consequence, the electronic coupling

between the layers is decreased relative to graphite and hybridization is therefore

expected to be small [20]. Notice however, that the presence of inner shells is one

of the main differences between MWNTs and SWNTs since they cause a screening

of the electron-electron interaction [21]. In addition, the energy landscape of the

incommensurate inner shells acts as a quasiperiodic ionic potential on outermost-

shell electrons. The effect of such a potential is known to be very similar to a

(Gaussian white noise) random potential (see also Sec. 2.3). As a consequence,

disorder-dominated behavior can be important even in impurity-free MWNTs.

Intrinsic resistance

By scanning the tip of an atomic force microscope above a NT device using it as

a local voltmeter, Bachtold et al. separately measured the intrinsic resistance and

contact resistances of SWNTs and MWNTs [22]. They showed for the first time

that in metallic SWNTs the measured resistance is exclusively due to the contact

resistance (there is no measurable intrinsic resistance) thereby demonstrating un-

ambiguously that transport in metallic SWNTs is ballistic over a length of > 1µm,

even at room temperature. In contrast, in MWNTs the voltage drops uniformly (lin-

ear) along the tube length with no significant drop at the contacts which indicates

that MWNTs behave as diffusive conductors with a well-defined resistance per unit

length, R/L ∼ 10 kΩ/µm. Hence, the important observation is that SWNTs are

ballistic while MWNTs are rather diffusive than ballistic (as already expected from

the magnetotransport experiment). What remains to be determined is the source

of backscattering in MWNTs which at present is not (definitely) known.

Doping

Since diffusive transport requires that the number of subbands N � 1, one can ask

the question why MWNTs are doped to such a degree that N � 1? By using a new

gating technique (electro-chemical gating), Krüger et al. have recently shown that

4Presumably, this is a consequence of the way in which the NTs are contacted. Since the

electrodes are evaporated over the MWNT, they contact the outermost tube preferentially.
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MWNTs are indeed hole doped, most likely induced by the adsorption of water [23].

The number of 1D modes is 6= 2, but rather 10 to 20. Therefore, MWNTs are not

single mode, but rather few mode quasi-1D quantum wires. Whether they are 1D

or 2D diffusive is another question.

Mean free path

Therefore, the estimation of the electron mean free path l in NTs is relevant for

determining which is the most likely transport regime (ballistic versus diffusive),

and further tells us whether or not the conductance should be quantized. While

some experiments have observed conductance quantization [24], others suggest, in

contrast, rather short mean free paths [16]. Reported elastic mean free paths for

MWNTs are in the range l ≈ 5 to 100 nm (whereas metallic SWNTs can have l

of the order of microns), but by intentionally damaging the tubes, e.g., by fast ion

bombarding, any level of disorder may be realized experimentally.

For l � 2πR, we have the situation of 1D ballistic transport (as observed in

SWNTs) as long as l > L, where L is the tube length, and 1D diffusive transport

for l < L, whereas 2D diffusive behavior is obtained for l � 2πR. The regime of

1D diffusive transport is characterized by a diffusive motion of the electrons along

the tube whereas the motion around the circumference is ballistic. Therefore, this

regime is also called quasi-ballistic.

1.5 Scanning tunneling microscopy/spectroscopy

The rapid advances in nanoscale science were only made possible by new materials

(e.g., carbon NTs) and the development of a special microscope which enabled the

individual atom of a surface to be visualized for the first time.

Invented by Binnig and Rohrer in 1981, the scanning tunneling microscope

(STM) is based on electron tunneling [25]. Using piezodrivers, one can position

the STM’s conducting tip to within a few angstroms of the surface of a conduct-

ing (metal, semiconductor or superconductor) substrate. At such close distances,

the wavefunctions of both will overlap. Consequently, if a bias voltage is applied

between the tip and the substrate, electrons from the tip have a finite probability

of tunneling across the vacuum space to the sample, resulting in a measurable cur-

rent. This tunneling current can be calculated using perturbation theory (Fermi’s

golden rule) and is found to be proportional to the local DOS of the surface at the

Fermi level, taken at the position of the tip [26]. An example of an STM image of a

SWNT is shown in Fig. 1.7. Besides providing extremely high resolution images of

the substrate surface, the STM can also be used to fabricate and spectroscopically

probe atomic-scale structures.

The most promising present technique for carrying out sensitive measurements

of the electronic properties of individual NTs is scanning tunneling spectroscopy
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Figure 1.7: This STM image was recorded in the constant-current mode and it re-

solves the atomic structure of a SWNT. The tube axis is indicated with a solid black

arrow. A portion of a 2D graphene layer is overlaid to highlight the atomic structure.

(This image is taken from [12].)

(STS). With this technique, it is further possible to carry out both STS and STM

measurements at the same location on the same tube. Since the STM has the power

to obtain atomically resolved images of the tube’s hexagon lattice, it is possible to

measure the tube diameter as well as the chiral angle concurrently with the STS

spectrum and thus, to correlate the electronic structure with the chiral structure of

the tube. In this way the theoretical predictions have been experimentally confirmed

[12, 13, 27, 28]. Further, STS at low temperatures (T < 10 K) allows for an energy

resolution in the range of meV and therefore, the combination of STM and STS

makes it also possible to directly image the lateral distribution of energy-selected

electronic states [29].

The vacuum barrier between the STM tip and the sample forms a convenient

junction for STS as it allows tunnel currents at large bias voltages. In STS, scanning

and feedback are switched off (i.e., the position of the STM tip is fixed above a single

NT), and the tunneling current I between tip and NT is recorded as a function of

the bias voltage V applied to the sample. The differential conductance dI/dV

can then be considered to be proportional to the tunneling density of states5 of

the tube examined. On semiconductors, the normalized differential conductance

(dI/dV )/(I/V ) has been argued to give a better representation of the tunneling

density of states than the direct derivative dI/dV , partly because the normalization

accounts for the voltage dependence of the tunnel barrier at high bias (for details

see [30]).

5This is the DOS at a certain position x and hence, in general, a function of energy and space

coordinates (see Chapter 3).
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The great possibilities of STM in the fabrication and manipulation of nano- and

even atomic-scale structures have been impressively demonstrated by the creation

of so-called quantum corrals [30]. There, single atoms are arranged on a substrate

in order to form, e.g., a circle or ellipse which can be used to directly demonstrate

the wave character of particles. Concerning NTs, one can use the STM to induce,

e.g., a buckle (that would effectively act as an impurity for electron transport) in

a single tube or to arrange several tubes on a substrate in order to form a certain

electronic circuit.

Besides the STM there exists another important scanning probe microscope,

namely the atomic force microscope. There, the probing tip is attached to a fine

cantilever and as the sample is scanned, the deflection of the cantilever is measured.

From these data the surface of the sample can be reconstructed. The great advantage

of the atomic force microscope is that also non-conductive materials can be studied.

Clearly, one can also use an atomic force microscope to manipulate and arrange NTs

on a substrate.

1.6 Applications

There exist many challenging applications of carbon NTs in very different fields

(for a general survey see [7]), some of them being already available as commercial

products. What is so special about carbon NTs? The answer lies in their unique

physical properties, structural and electronic. For example, NTs have a small specific

weight and a record-high elastic modulus (NTs can, e.g., be used to design new

composite materials being much more stable than steel and having at the same

time a smaller specific weight). They are predicted to be by far the strongest fibers

that can be made. Additionally, when a tube is bent, it does not directly fracture

like most materials but buckles like a drinking straw. When the bending strain is

released, the tube straightens out again. Such remarkable mechanical properties are

relevant to a broad range of potential applications. Proposals span a wide spectrum,

from molecular electronics to hydrogen storage, bulletproof vests and even artificial

muscles.

NTs have been successfully used as field emission devices [31] for flat panel dis-

plays [32]. Due to the small radius of the tube, high local fields can be produced

when applying a potential between a NT-coated surface and an anode, which causes

electrons to tunnel from the tube tip into the vacuum. The use of NTs further re-

moves the need for ultrahigh vacuum in these devices and saves energy because NTs

field emit at room temperature, no heating is required. Even x-ray and microwave

generators are possible [33]. The compact geometry of NT-based x-ray sources sug-

gests their possible use for medical imaging, possibly even for x-ray endoscopes.
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Due to their capillary properties, NTs are (controversially) discussed for hydrogen

storage, e.g., for fuel cells that power electric vehicles or laptop computers (see [34]

and references therein).

Further, NTs are discussed as future components for building up molecular elec-

tronic devices. Dramatic recent advances have fueled speculation that NTs will be

useful for down-sizing electronic circuit dimensions. One can imagine to construct

complete electronic circuits from interconnected NTs. Because the electronic prop-

erties depend on helicity, it should be possible to produce a diode, e.g., by grafting a

metallic NT to a semiconducting one. Such a device has already been demonstrated.

Also a field effect transistor with only one SWNT as active element [35] and even

a single electron transistor have been demonstrated to work, importantly at room

temperature. IBM expects that NT electronics will be realized in about a decade.6

Another interesting application is the use of NTs as tips for STMs (or atomic

force microscopes). Ever since the discovery of STM, the tip has been a black box.

NT tips offer a number of advantages. NTs are chemically inert and mechanically

robust, they have a large aspect ratio, and the tip end is, in principle, well defined.

Furthermore, they are crash-proof: pressing the NT tip onto a surface will buckle

the tube rather than induce tip damage. Subsequent withdrawal will relieve the

buckle and recover the original tip.

We want to close this introductory chapter by quoting Richard Smalley: “These

nanotubes are so beautiful that they must be useful for something.”

6New York Times, 20 May 2002



Chapter 2

Disordered multi-wall nanotubes

We begin this chapter by pointing out the influence of the spatial dimension on

the behavior of disordered systems. Then, after deriving the low-energy theory

for the electronic states in MWNTs, we discuss the various disorder mechanisms

that are possible in such systems. Finally, we briefly summarize some concepts of

diagrammatic perturbation theory which will be the basic tool used in Chapter 3.

2.1 Disorder and dimensionality

Since MWNTs are somewhere in-between 1D and 2D systems, we briefly want to

comment on the different influence of disorder in systems with different spatial

dimension. Consider a model of non-interacting electrons scattered by a random

potential due to disorder (Anderson localization problem). If the disorder is weak,

then on a short length scale the wavefunction will look like a plane wave, but on a

long length scale it will be scattered by the random potential. The multiply scattered

wave is expected to have an amplitude everywhere in the sample, just as a plane

wave does, and is referred to as an extended state. Anderson pointed out [36] that if

the disorder is made progressively stronger, one should expect a qualitative change

in the nature of the wavefunction, namely that in the limit of very strong disorder

the wavefunction decays exponentially from some point in space on the scale of the

localization length (localized state). Physically, this is expected to happen when the

mean free path becomes comparable to the wavelength. The interesting question

is, what happens for intermediate disorder and does this general picture hold in all

dimensions?

Actually, it is easier to establish the existence of localized states than that of

extended ones. For example, in 1D it can be shown rigorously that all states are

localized, no matter how weak the disorder [37]. On the other hand, the existence

or non-existence of an extended state in 2D has been a point of contention for many

years (see, e.g., [38]). The scaling theory of localization tries to solve the problem

by considering the behavior of the dimensionless conductance g as a function of the
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system size L. The scaling function β(g) = d(ln g)/d(lnL) then allows one to discuss

and understand the different influence of the spatial dimension. In 3D, the system

can scale to an Ohm’s-law conductor (β(g) = 1) as well as to an insulator with

localized states (β(g) < 0). The critical point β(g) = 0 is an unstable fixed point.

However, the same analysis carried out for 2D and 1D systems suggests that there

is no such critical point. Instead, β(g) < 0 (2D) and < −1 (1D) always. Therefore,

at large enough length scales, only localized behavior is possible and hence, there

are no truly extended states. In 1D, one crosses over into the localized regime more

rapidly than in 2D.

Additionally, in diffusive 2D (and 3D) systems there exists the phenomenon of

weak localization [39] if the length of a phase-coherent conductor is much less than

the localization length. If we consider (quantum-mechanically) the probability for

an electron to return to its starting point, then we have to take into account the in-

terference between closed Feynman paths and their time-reversed paths. Due to the

prerequisite of phase-coherence this interference is constructive (in zero magnetic

field) leading to a doubling of the return probability compared to the classical diffu-

sion. This so-called enhanced backscattering increases the resistivity and therefore

reduces the conductance. This effect, that the average quantum-mechanical conduc-

tance is smaller than the classical Drude result, is known as weak localization effect.

A unique signature of weak localization is that it can be destroyed by a magnetic

field because of the broken time reversal symmetry. The interference terms then

cancel out due to the accumulation of a Peierls phase in the wavefunction result-

ing in an anomalous magnetoconductance, i.e., a negative magnetoresistance. The

Peierls phase is given by

ϕP =
e

h̄

∮
~A · d~r = 2π

φ

φ0
,

where the integral is over a closed loop leading to the phase difference ∆ϕ = 2ϕP .

2.2 Low-energy theory for multi-wall nanotubes

In order to derive the low-energy theory for MWNTs we start from the dispersion

relation of graphene. In the vicinity of the K points, the energy bands in graphene

are highly linear and, to a very good approximation, given by

E(~k) = ±h̄vF |~k − ~K| ,
with the Fermi velocity vF = 8 × 105 m/s. This linear dispersion relation holds for

energies E < D ≈ 1 eV and is fully equivalent to the light cone in a relativistic

theory.

Since the basis of the honeycomb lattice contains two atoms, there are two sub-

lattices p = ±. As a consequence, there are two degenerate Bloch states,

ϕpα(~r) =
1√
2πR

exp[−iα ~K · ~r] ,
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at each Fermi point α = ± corresponding to the two K points. Here, ~r = (x, y)

lives on the sublattice p under consideration, and we have already anticipated the

correct normalization for NTs. The Bloch functions are defined separately on each

sublattice such that they vanish on the other. One can then expand the electron

operator for spin σ = ± in terms of these Bloch functions,

Ψσ(~r) =
∑

pα

ϕpα(~r)ψpασ(~r) , (2.1)

thereby introducing the two-component spinor ψ, where the two components reflect

the sublattice degree of freedom. In addition to its physical spin and momentum,

the π-electron carries an internal pseudo-spin index p, labeling the sublattice state,

and an iso-spin index α, labeling the two independent Dirac spectra derived from

the K and K ′ points of the first Brillouin zone.

Expanding the π-electron Hamiltonian around either of the two Fermi points,

and linearizing in spatial derivatives, one finds that the low-energy electronic states

of a clean graphene sheet are described by a massless 2D Dirac Hamiltonian [40],

H = −ih̄vF

∑

pp′ασ

∫
d~r ψ†

pασ(~r)(~σ · ~∇)pp′ψp′ασ(~r) , (2.2)

where the 2 × 2 Pauli matrices ~σ = (σx, σy) act in the sublattice space.

In order to describe propagating π-electrons on the tube, one has to map (2.2)

onto a curved surface which is done by enforcing periodic boundary conditions

around, say, the y-direction, the tube pointing along the x-direction. The action

of the resulting system can then be interpreted as the action of an equivalent quan-

tum problem in (1 + 1) dimensions, (x, y) → (x, τ), with y playing the role of

imaginary time τ . Under this correspondence, the circumference of the outermost

shell maps to the “temperature” of the quantum system,

β−1 = kBTeff =
h̄vF

2πR
, (2.3)

while, however, the physical temperature of the system is still zero. In order to

simplify notation, we set h̄ = vF = 1 from now on except for final results.

In the absence of disorder, the electrons on the outermost shell of a MWNT are

then described by the Dirac Hamiltonian

H0 =
1

β

∑

n

∫
dk

2π
ψ†(~k)(~σ · ~k +Mσy)ψ(~k) , (2.4)

with ~k = (k, ωn). The “Matsubara frequencies” ωn = k⊥ = 2πn/β, with integer

n, arise due to the finite radius, see Eq. (2.3), and reflect quantized transverse

momentum. The effects of the tubule size, shape and symmetry can be included

through an effective vector potential [15].

Albeit the mass M is zero for a 2D graphene sheet, it can be non-zero for NTs

due to chirality effects or an applied magnetic field. In general, a flux Φ (in units
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of the flux quantum φ0 = h/e) gives rise to a mass M = 2πΦ/β. Chirality effects

in a (r, s) tube cause a flux Φ1 = −(2r + s)/3 [15] while a magnetic field B applied

parallel to the tube axis causes an additional flux Φ2 = B/B0, with B0 = h/πR2e.

For a tube with R = 10 nm we have B0 = 13.2 T. Since the total flux is given by the

sum of the two contributions, it is clear that chirality effects can always be absorbed

by the appropriate adjustment of B, and therefore we consider only Φ2. Since the

mass term in Eq. (2.4) couples in the same way as k⊥, we can replace

ωn → ωn + 2πΦ2/β = (n +B/B0)/R (2.5)

in Eq. (2.4) in order to include the mass term. The magnetic flux Φ2 through the NT

therefore gives rise to an Aharonov-Bohm phase modifying the boundary condition

of the transverse wavevector. Since n is integer, it is clear that for integer Φ2, the

accumulated phase due to the magnetic field can be absorbed into the definition of

the azimuthal quantum number n and the system remains unaffected. In particular,

there exists an azimuthal state n = −Φ2 for which the mass term vanishes, and the

electronic spectrum is gapless.

2.3 Disorder mechanisms

Real materials always enclose impurities, dislocations, or more general forms of dis-

order which generally imply to go beyond usual paradigms that have been used

successfully for clean systems. To strengthen the usefulness of carbon NTs, the

understanding of the influence of defects in nanostructures deserves particular at-

tention since at such small scales, any disruptions of local order may dramatically

affect the physical response of the nanodevice. For the implementation of efficient

technological devices, one needs to understand, control, and possibly confine the

magnitude of these inherent quantum fluctuations, induced by disorder or magnetic

field.

2.3.1 General remarks

There are various sources for impurities possible in NTs: structural imperfections

like substitutional atoms, charge defects in the substrate, twists, or topological de-

fects. To cover all these effects in a microscopic model, for an effective low-energy

theory, three types of randomness should be considered: a random vector potential

(or gauge field) ~A as well as two different types of random scalar potentials Ṽ and

V . The corresponding Hamiltonians are given by

HA =
∫
d~r ψ†(~r)~σ · ~A(~r)ψ(~r) , (2.6)

HṼ =
∫
d~r Ṽ (~r)ψ†(~r)σzψ(~r) , (2.7)

HV =
∫
d~r V (~r)ψ†(~r)ψ(~r) , (2.8)
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where the fields ~A, Ṽ , and V are random in space but constant in time (“quenched

disorder”). Thus, they mix up the momenta but not the frequencies. Further, the

three random fields are assumed to have zero mean, 〈O(~r)〉 = 0, and a Gaussian

white noise distribution for the fluctuations, 〈O(~r)O(~r ′)〉 = ∆Oδ(~r− ~r ′), where ∆O

is the disorder strength1 for the field O corresponding to ~A, Ṽ , and V , respectively.

The assumption of delta-correlation is equivalent to assuming that the individual

scatterers are point-like and hence isotropic.

Focusing on disorder contributions of the inner-shell potentials, we can expand

these fields in terms of reciprocal lattice vectors ~G of the inner shells. Note that these

are different from the ones of the outermost shell, since inner shells have different

radii and chiralities. In particular, to obtain sizeable scattering between the two K

points, the Fourier component of these random fields at ~G = 2 ~K should be finite.

As 2 ~K is normally not an allowed reciprocal lattice vector on inner shells, scattering

between the two distinct K points is expected to be drastically suppressed. From

this observation, we then restrict ourselves to the single-K-point problem. Let us

now comment on the physical significance of the three disorder terms.

2.3.2 Topological disorder and random vector potential

Topological defects are dislocations (kinks) that locally change the superlattice vec-

tor ~T by replacing one of the hexagons in the graphene network by a pentagon

or heptagon. Pentagons, e.g., can be viewed as disclinations in the lattice, and,

when circling one such defect, the two sublattices in the honeycomb structure are

exchanged (see Fig. 2.1), as well as the fermion flavors. The scheme to incorporate

this change in a continuum description was discussed in [41] and shown to be de-

scribed by means of a non-Abelian gauge field, which rotates the spinors describing

the electrons in flavor space. The vector potential is that of a vortex at the position

of the defect, and the flux is ±π/2. Thus, a random distribution of topological

defects can be described by a (non-Abelian) random gauge field.

A random vector potential can also be caused by indirect hopping between

nearest-neighbor sites on the honeycomb lattice via real or virtual states provided

by the inner-shell ionic potential. Since hopping connects different sublattices, the

resulting modulation of the hopping matrix element leads to the random gauge field.

The nature of the electronic states derived from the 2D Dirac equation in the

presence of a gauge field with Gaussian randomness has received a great deal of at-

tention, as it also describes the effects of disorder in integer quantum Hall transitions

or d-wave superconductors [42, 43]. Concerning the NTs, we have to investigate the

influence of a random vector potential on a system controlled by the Dirac Hamil-

tonian (2.4).

1For not too high energies, the disorder strength can be considered to be constant.
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Figure 2.1: Formation of a pentagonal ring in the honeycomb lattice where the two

sublattices are represented by the filled and unfilled circles. The points a, b, c, . . . have

to be identified with the points a′, b′, c′ . . .. The defect can be seen as a disclination,

defined by the dashed lines.

2.3.3 Random chemical potential

Both HṼ and HV correspond to a random chemical potential. They arise from direct

impurity potential scattering processes that are diagonal in sublattice space. The

potential Ṽ is short-ranged and resolves the sublattice structure while V is long-

ranged and therefore does not distinguish between different sublattices. Using the

standard replica trick to average over disorder, the two kinds of potential scattering

can be mapped onto each other with the correspondence ∆Ṽ ↔ −∆V [42]. Here,

we focus only on HV since the Ṽ term is, technically speaking, irrelevant under a

renormalization group procedure. In particular, when the MWNT is intrinsically

damaged by fast ion bombarding, the dominant disorder mechanism is expected to

be due to standard potential scattering HV [7, 10].

2.4 Diagrammatic perturbation theory

In this section we will briefly discuss the basics of diagrammatic perturbation theory

as far as it is necessary to understand the computations in Chapter 3. For further

details, the reader is referred to the literature, see for example [44]. We will consider

only a non-interacting system.
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Figure 2.2: Diagrammatic representation of the perturbation series for the Greens

function in Eq. (2.9).

2.4.1 Perturbation expansion for the Greens function

The diagrammatic perturbation theory provides an elegant analytical method for

computing ensemble averages. In the presence of a scattering potential U we can

expand the Greens function in a perturbation series,

G(~k′, ~k) = δ~k′~kG0(~k) +G0(~k
′)U(~q)G0(~k)

+G0(~k
′)U(~q1)G0(~k + ~q2)U(~q2)G0(~k) + . . . , (2.9)

where G0 is the Greens function of the clean system and the matrix elements of

the scattering potential depend only on the difference between the wavevectors,

U(~q) ≡ U(~k′ − ~k) = U(~k′, ~k). This perturbation series can be depicted as shown in

Fig. 2.2, noting that the wavevectors must add up to satisfy the relations

~k ′ = ~k or ~k ′ = ~k + ~q or ~k ′ = ~k + ~q1 + ~q2 ,

which is nothing else but momentum conservation.

What is special about this perturbation series is that only momentum is trans-

ferred but there is no transfer of energy and hence, no need to consider time. The

energy is just a parameter. A crucial point is that in contrast to interacting systems,

in non-interacting disordered systems there appear no loops in the Greens function.

2.4.2 Ensemble-averaging

The Greens function is different for each individual phase-coherent unit of the whole

system since the scattering potential is different. The ensemble-average is calculated

by averaging over all the phase-coherent units assuming appropriate statistical prop-

erties for the random scattering potential. In particular we will assume that the

scattering potential has zero mean and is delta-correlated (Gaussian white noise),

〈U(~r)〉 = 0 and 〈U(~r)U(~r ′)〉 = ∆δ(~r − ~r ′) ,
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Figure 2.3: Ensemble-averaging results in tying together the scattering lines in pairs.

For diagrams with two scattering lines there is only one possibility as depicted in (a).

For diagrams with four scattering lines the resulting three possibilities are shown in

(b). The first diagram is reducible and separates into two first order diagrams while

the second (crossed) and third (rainbow) diagram are irreducible.

i.e., the individual scatterers are point-like and hence isotropic. In momentum rep-

resentation this corresponds to

〈U(~q)〉 = 0 and 〈U(~q)U(~q ′)〉 = ∆δ~q,−~q ′ . (2.10)

We can then calculate the ensemble-averaged Greens function simply by ensemble-

averaging the perturbation series term by term. Using the statistical property (2.10),

the second term of Eq. (2.9) averages to zero, 〈G0(~k
′)U(~q)G0(~k)〉 = 0, while the third

term averages to a non-zero value only if ~q2 = −~q1,

〈G0(~k
′)U(~q1)G0(~k + ~q2)U(~q2)G0(~k)〉 = ∆G0(~k)G0(~k − ~q1)G0(~k) .

Diagrammatically, we can represent the effect of averaging by connecting together

the scattering lines in pairs as shown in Fig. 2.3. Each such closed scattering line
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+ + + ...

Figure 2.4: Examples of diagrams included in the self energy. Shown are the first

(Born approximation) and second order diagrams.

contributes a factor of ∆ to the diagram. Any diagram with one or more free

scattering lines that is not connected to another diagram vanishes on ensemble-

averaging.

2.4.3 Self energy

It is useful to define a self energy function Σ as the sum of all diagrams of the

type shown in Fig. 2.4. Then, any diagram contributing to the ensemble-averaged

Greens function can be represented by sandwiching self energy diagrams between

free propagators G0. This allows us to express the Greens function in the form

〈G〉 = G0 +G0ΣG0 +G0ΣG0ΣG0 + . . . ,

which is a geometric series and can be summed leading to 〈G〉 = G0(1 − ΣG0)
−1

which is equivalent to 〈G〉−1 = G−1
0 −Σ, known as the Dyson equation. In order to

avoid double counting, one has to sum only over irreducible diagrams, i.e., diagrams

which cannot be divided into two sub-diagrams joined only by a single G0 line (see

Fig. 2.3).

It is easy to see that as a result of ensemble-averaging all the off-diagonal elements

of the Greens function vanish, so that we have

〈G(~k,~k′)〉 = δ~k,~k′G(~k) .

In general, the self energy function has both real and imaginary parts. The

physical meaning of the self energy is that the scattering shifts the energy eigenvalues

via the real part of Σ, while the imaginary part of Σ causes the Greens function to

decay with time. So, in general, the poles of the Greens function in the complex

plane determine the excitation energy as well as the lifetime of the quasi-particle

excitations.
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Chapter 3

Van Hove singularities in

disordered multi-wall nanotubes

We now present a theory for the van Hove singularities in the tunneling density of

states of disordered multi-channel quantum wires, with particular focus on MWNTs.

We answer the question: How is the van Hove singularity modified by the presence of

disorder? This question is of importance for the interpretation of many experiments

on MWNTs.

We start by pointing out the general relevance of van Hove singularities and also

comment on experimental results that are in close context to our studies. After these

introductory remarks we discuss the relevant assumptions we made in our model.

Then, after discussing the case of a clean tube, we analyze the disordered case in

detail. Finally, we close by giving some conclusions. Some of the results presented

in this chapter have been published in [45].

3.1 Introduction

3.1.1 Van Hove singularities

Because of its relevance for the understanding and interpretation of spectroscopy

data of NTs, we now discuss van Hove singularities (VHS’s). VHS’s in the thermo-

dynamic density of states (DOS) have been predicted in 1953 [46] and were observed

in many experiments since then. The DOS for a d-dimensional system with disper-

sion relation E(~k) is by definition

ν(E) =
∫ d~k

(2π)d
δ(E − E(~k)) ,

and can be rewritten as a surface integral over E(~k) = E = const,

ν(E) =
∫

dS

(2π)d

1

|∇~kE(~k)|
.
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The quantity in the denominator is basically the group velocity. Due to symmetries

in a crystal, the group velocity may vanish at certain momenta which, of course, can

happen in all dimensions. In 1D or 2D systems, however, this results in a divergent

integrand (as a manifestation of confined states).

Van Hove pointed out that the existence of such saddle-points in the dispersion

relation E(~k), far from being accidental, are necessarily implied by the periodic

structure of the lattice. According to a general theorem of M. Morse [47], any func-

tion of more than one independent variable which, as E(~k), is periodic in all its

variables has at least a certain number of saddle points. This number is determined

by topological considerations and depends only on the number of independent vari-

ables. It is this mathematical fact which accounts for the occurance of singularities

in the DOS of 1D and 2D systems. In three dimensions, the corresponding di-

vergencies are integrable, typically leading to a finite DOS. Since we are primarily

interested in NTs, we will, in the subsequent sections, focus only on the 1D limit,

where the VHS in a clean system diverges like 1/
√
E − En when approaching the

threshold En from above. Therefore, VHS’s appear as sharp features in the DOS, at

energies where the bottom or top of 1D subbands are located, reflecting the onset

of new active subbands (Fig. 3.1).

Similar VHS’s exist for the tunneling density of states (TDOS) measured at some

location x along the system,

ν(E, x) =
Re

πh̄

∫ ∞

0
dt eiEt/h̄〈ψ(x, t)ψ†(x, 0)〉 , (3.1)

where ψ(x, t) is the electron field operator and the brackets denote a quantum ex-

pectation value. The TDOS is easily accessible experimentally via the conductance

through a weak link or a tunnel junction. More typically, it is measured by means

of STS on which we already commented in Sec. 1.5. Corresponding experimental

results on NTs will be discussed in the next section.

In general, one has to carefully distinguish between the DOS and the TDOS.

While the DOS is a thermodynamic property of the system, the TDOS is a local

property and therefore depends on the position. In the “bulk” limit, the DOS and

the (possibly coarse-grained) TDOS are expected to lead to identical results, but

near a boundary they can strongly differ.

3.1.2 Experimental results

One-dimensional VHS’s are important for determining many solid state properties

of NTs, such as optical absorption, resonant Raman spectroscopy, and the spec-

tra observed by tunneling measurements on which we will focus exclusively in our

discussion below.

The observation of VHS’s in recent STS experiments on SWNTs on a metal-

lic substrate represents a direct proof for the 1D band structure [12, 13, 27, 28].
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Figure 3.1: Dispersion relation E(~k) (left) and DOS ν(E) (right) for a metallic

(top) and a semiconducting (bottom) NT. The sharp peaks in the DOS correspond

to VHS’s at the onset of new subbands as is indicated by the dashed line.

By moving the STM tip along the length of a NT, sharp deviations in the I − V

characteristics could be observed and related to theoretically predicted electronic

properties, in particular the 1/
√
E − En behavior of VHS’s in ballistic 1D wires, see

Fig. 3.2. With regard to MWNTs, we then need to understand how VHS’s develop

in the presence of and with increasing amounts of disorder.

In other tunneling spectroscopy experiments the differential conductance was

measured also on a single MWNT [48], see Fig. 3.3. There is a substantial DOS at

the Fermi energy (V = 0) indicating that the NT is metallic. The almost symmetric

peak structure (corresponding to VHS’s) is caused by the additional 1D subbands

in the valence (V < 0) and conduction (V > 0) band with threshold energies of

order ≈ 50 meV. The distance between the two first-order subbands is found to be

∆E ≈ 0.12 eV which predicts a diameter of 19 nm in good agreement with the

measured diameter of 17 nm.
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Figure 3.2: Normalized differential (tunneling) conductance (dI/dV )/(I/V ) (which

is a measure for the TDOS) versus bias voltage for a semiconducting SWNT. The

asymmetric peaks correspond to VHS’s at the onset of 1D energy bands of the NT.

The left inset displays the raw dI/dV data, and the right inset the calculated TDOS

for a (16,0) tube. The experimental peaks have a finite height and are broadened,

which could be attributed to hybridization between the wavefunctions of the tube and

the gold substrate. However, the overall shape of the experimental peaks still resem-

bles that predicted by theory. (From [13].)

The spectrum in Fig. 3.3 agrees remarkably well with the STS measurements

for SWNTs (Fig. 3.2) but the broadening of the VHS’s observed in MWNTs has

probably a different origin than in SWNTs since MWNTs are not ballistic. The

observation of VHS’s demonstrates that the mean free path l cannot be much shorter

than the NT circumference since for l � 2πR, all 1D band structure features would

be expected to be washed out. Therefore, all the observed results can be consistent

only if the mean free path is of the order of the circumference; not much larger,

but also not much smaller. Transport in MWNTs has therefore to be characterized

as quasi-ballistic. Hence, for typical MWNTs with l ≈ 2πR, the characteristic

subband features of the DOS should still be present, albeit considerably broadened

and possibly shifted.
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Figure 3.3: Differential (tunneling) conductance dI/dV (which is a measure for

the TDOS) measured on a single MWNT using a high-ohmic contact (300 kΩ) at

T = 4.2 K. δE denotes the sharpness of the the observed VHS. Positive (negative)

voltages correspond to empty (occupied) NT states. (Taken from [48].)

Thus, for the interpretation of the measured spectrum it would be useful to know

how VHS’s are influenced by the presence of disorder, which is investigated in detail

in Sec. 3.5. This question is clearly also of relevance to other quasi-1D quantum

wires, such as long chain molecules.

3.2 Formulation of the problem

We consider a MWNT and assume that the electron-electron interaction is screened

off by working on a metallic substrate which is typical for the experimental setup

of STS measurements. For that reason, we can safely neglect interactions and treat

only the non-interacting problem. Then, spin only contributes trivial factors of two

and is ignored henceforth. In particular, it will not affect the TDOS apart from

the overall prefactor of two. Additionally, disorder-induced scattering between the

two distinct K points should be largely suppressed for reasons given in Sec. 2.3.1,

and we thus consider only one K point. It should be stressed that in typical STS

experiments, only the TDOS of the outermost shell is probed and hence, we assume

in the following an effective single-shell model where inner shells only give rise to

a disorder potential for electrons on the outermost shell. We are then left with the

problem of determining the TDOS for (one species of) non-interacting disordered

Dirac fermions on a cylinder. As we show below, an approximate yet accurate

analytical solution to this problem can be given.
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The corresponding problem on the plane is related to other applications, e.g.,

disordered d-wave superconductors or quantum Hall transitions, and has been ad-

dressed before by many authors [41, 42, 43, 49, 50]. However, the techniques used

in these papers do not allow to directly address the question of relevance here, since

they appear to be restricted to the true 2D limit.

In addition to the bulk case, we also address the boundary TDOS arising when

one tunnels into the end of a MWNT. In reality, the end TDOS could of course be

quite complex due to the formation of bound states. A few lattice spacings away

from the end, however, we expect that the situation can be described by a continuum

model, where bound state effects are negligible. Surprisingly, the presence of a

boundary implies a drastic change in the TDOS despite the absence of electron-

electron interactions, namely a strong suppression of the energy-dependent TDOS

close to the boundary even in the absence of disorder, as will be shown below.

To make progress, we will now introduce an appropriate representation of the

TDOS using the Greens function formalism. In terms of an Euclidean coherent-state

path integral approach (we assume T = 0), the generating functional for the Greens

function (partition function) is given by

Z =
∫
Dψ†(ω,~k)Dψ(ω,~k) exp[S0] =

∏

ω

Zω ,

where the action S0 corresponds to the Dirac Hamiltonian (2.4),

S0 =
1

β

∑

n

∫
dω

2π

dk

2π
ψ†(ω,~k)(iω − ~σ · ~k)ψ(ω,~k) .

Note that Z factorizes in ω even in the presence of a static disorder potential, as

long as electron-electron interactions can be disregarded1 [42, 43]. Hence, for a

computation of the TDOS (this expression follows directly from Eq. (3.1)),

ν(E, x) = −Im

π
Trσ〈ψ†(~r)ψ(~r)〉|iω→E+i0+ , (3.2)

where the trace is over “spin-coordinates” in sublattice space, only the mode at a

given frequency ω needs to be considered, and all other frequencies decouple. Then

ω is simply a parameter of the theory, and the relevant action is

Sω =
1

β

∑

n

∫
dk

2π
ψ†(~k)(iω − ~σ · ~k)ψ(~k) . (3.3)

Introducing the Greens function G(E,~k, x) via

〈ψ†(~r)ψ(~r)〉|iω→E+i0+ = Tr~kG(E,~k, x) , (3.4)

1This is clear since when there are no genuine interactions between the fermions we can describe

them in terms of exact energy eigenstates in the random potential.
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the TDOS (3.2) reads

ν(E, x) = −Im

π
Tr~k,σG(E,~k, x) , (3.5)

where the trace over momentum is defined by

Tr~k =
∑

n

∫ ∞

−∞

dk

2π
.

Prefactors in the Greens function are always chosen in order to recover the correct

1D normalization for the clean TDOS in the single-channel limit. Further, due to the

symmetry of the TDOS, ν(−E) = ν(E), within our model, we consider only E > 0.

In all figures shown below, we take R = 10 nm, which is typical for arc discharge

grown tubes, but qualitatively similar findings were obtained for other R as well,

and the general equations are of course valid for any R. The subband spacing (which

gives the distance between two neighboring VHS’s), used as an intrinsic energy scale

of the system, is then D = h̄vF/R ≈ 53 meV.

3.3 Clean case

To be able to calculate both bulk and boundary TDOS, we study a semi-infinite

(x ≥ 0) tube, assuming a hard-wall potential at the boundary x = 0. This leads to

the expansion

ψ(x, τ) =
1

β

∑

n

∫ ∞

0

dk

π
sin(kx)eiωnτψ(k, ωn) ,

and together with the action (3.3) we readily find

〈ψ†(~r)ψ(~r)〉 =
∑

n

∫ ∞

0

dk

2π

4 sin2(kx)

iω − ~σ · ~k
,

where we have already anticipated the correct 1D normalization. Hence, according

to (3.4), the Greens function for energy E > 0 is defined as

G0(E,~k, x) =
2 sin2(kx)

E − ~σ · ~k + i0+
. (3.6)

It order to compute the TDOS (3.5), we explicitely write down the Greens function

(3.6) as a matrix in 2 × 2 sublattice space,

G0(E,~k, x) =
2 sin2(kx)

(E + i0+)2 − ~k2

(
E + i0+ k − iEn

k + iEn E + i0+

)
.

Tracing over sublattice coordinates we have

TrσG0(E,~k, x) =
4E sin2(kx)

E2 − k2 − E2
n + i0+

, (3.7)
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which can be written in a more convenient way using the Cauchy identity

1

x + i0+
=

P
x
− iπδ(x) , (3.8)

where P denotes the Cauchy principal value. Further, the appearing δ-function can

be decomposed into

δ(E2 − k2 − E2
n) =

Θ(E2 − E2
n)

2
√
E2 − E2

n

[
δ(k −

√
E2 − E2

n) + δ(k +
√
E2 − E2

n)
]
.

Using these ingredients together with (3.5) we see that the principal value term

of (3.7) does not contribute to the imaginary part and hence, we simply have to

integrate over δ-functions,

ν(E, x)

ν1D
= E

∑

n

∫ ∞

−∞
dk sin2(kx)

Θ(E2 − E2
n)

√
E2 − E2

n

[
δ(k −

√
E2 − E2

n) + δ(k +
√
E2 − E2

n)
]
.

The final result then reads (since h̄ = vF = 1 we have ωn = En = nD)

ν(E, x)

ν1D
= 2E

∞∑

n=−∞

sin2(x
√
E2 − E2

n)
√
E2 − E2

n

Θ(E2 − E2
n) , (3.9)

where Θ is the Heaviside step function.2 Throughout the paper, we use ν1D =

1/πh̄vF as natural unit for the TDOS (without spin and K point degeneracy). As

one can see from Eqs. (3.9) and (2.5), the system can be gapped in the presence

of a magnetic field B parallel to the tube axis. The gap varies as a function of B,

and the pattern is periodic with period B0 where the system becomes gapless again.

Since the summation also includes negative values of n, the magnetic field causes a

doubling of the VHS’s (see Eq. (2.5) and Fig. 3.4).

3.3.1 Bulk limit

Letting x → ∞, with sin2(x
√
E2 − E2

n) → 1/2, we obtain the bulk TDOS which is

equal to the thermodynamic DOS (see also Ref. [51]),

ν0(E)

ν1D
= E

∑

n

Θ(E2 − E2
n)

√
E2 − E2

n

. (3.10)

In the absence of a gap, the bulk TDOS approaches a constant and finite value for

E → 0, since then only n = 0 is possible. Clearly, the typical 1/
√
E − En VHS’s of

1D systems appear at the onset of new subbands, E = En, see Fig. 3.4. We also want

to mention that within the linear ~k-approximation for the energy dispersion relation

of graphene, the energy positions of the VHS’s do not depend on the chirality but

only on the diameter of the tube.

2Result (3.9) can be readily checked from the dispersion relation for Dirac fermions, E(~k) =√
k2 + ω2

n, by using the alternative Greens function Ḡ0(E,~k, x) = 2 sin2(kx)

E−E(~k)+i0+
instead of Eq. (3.6).
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Figure 3.4: Bulk TDOS of a clean tube. Without magnetic field the system is gapless

and the bulk TDOS is finite for E → 0 (solid curve). VHS’s appear at the onset of

new subbands. With magnetic field (B = 3 T), the system is gapped and the VHS’s

are doubled (dashed curve). The shift associated with the doubling of the VHS’s is

linear in B, see Eq. (2.5).

3.3.2 Boundary limit

Near the boundary, however, we obtain a completely different picture than predicted

by the standard VHS of the thermodynamic DOS. Expanding the sine in Eq. (3.9),

sin2(x
√
E2 − E2

n) → x2(E2 − E2
n), leads to the boundary TDOS

νend(E, x)

ν1D
= 2x2E

∑

n

Θ(E2 − E2
n)
√
E2 − E2

n . (3.11)

For E < D and B = 0, this predicts ν(E) ∼ E2 and hence, a vanishing TDOS for

E → 0 in contrast to the finite boundary TDOS of a doped tube. This behavior can

be traced back to the linear dispersion relation of Dirac fermions. More interestingly,

the typical 1D VHS of the bulk TDOS is drastically altered close to the boundary.

Instead of a divergence, the only sign of the opening of new subbands is a non-

analyticity at the threshold energy En, with a square-root energy dependence of the

boundary TDOS above the threshold, see Fig. 3.5. Nevertheless, the phenomenon of

an altered energy dependence of the boundary compared to the bulk TDOS close to

a given VHS is quite general. The exponent governing the energy dependence of the

TDOS above the threshold changes by one if we go from the bulk to the boundary

limit, for both Dirac and Schrödinger fermions. In the limit E → 0 (i.e., for E < D),
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Figure 3.5: The boundary TDOS of a clean tube exhibits a square-root non-analyticity

instead of a divergence at the onset of new subbands, and vanishes ∼ E2 for E → 0.

Here, the scale is arbitrary since it depends on the precise distance to the boundary.

however, there is a difference. For Dirac fermions, the exponent changes by two,

whereas for Schrödinger fermions, the exponent still changes only by one (see Table

3.1).3

Looking at the boundary TDOS on a larger energy scale we find another inter-

esting property. The non-analyticities then become less important and the sum in

(3.11) can be replaced by an integral,

ν(E) ∼ E
∫ E

−E
dε

√
E2 − ε2 ∼ E3 ,

which leads to a cubic behavior of the TDOS, in contrast to the quadratic one for

small energies. When we take into account the band cutoff, n ≤ N , that is naturally

given from the band structure, then the above relation holds for E < ND. For larger

energies, the boundary TDOS again approaches a quadratic behavior in the limit

E → ∞.

The spatial crossover scale x∗ between bulk and boundary behavior of the TDOS

depends on energy. Focusing on E close to but above a given threshold En, this

scale is

x∗ ≈ h̄vF√
E2 − E2

n

.

3Using the Greens function Ḡ0 = 2 sin2(kx)

E−E(~k)+i0+
with the dispersion relation for Schrödinger

fermions, E(~k) = k2/2m + En, one finds for the TDOS ν(E, x) ∝
∑

n

sin2(x
√

E−En)√
E−En

Θ(E − En).
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bulk end

Dirac ∼ 1/
√
E − En ∼

√
E − En

Schrödinger ∼ 1/
√
E − En ∼

√
E − En

E → 0

Dirac const. ∼ E2

Schrödinger ∼ 1/
√
E ∼

√
E

Table 3.1: Energy dependence of the bulk/boundary TDOS for Dirac and Schrödinger

fermions in the vicinity of a VHS (above the threshold En) and in the limit E → 0.

At T = 0, the bulk limit is reached for x� x∗, and the boundary limit for x� x∗.

Because of the energy dependence of x∗, one could effectively use E to tune from

the bulk to the boundary limit for a given position x. For finite temperatures T , if

the thermal scale xT = h̄vF/kBT is smaller than x∗, one should replace x∗ by xT .

3.4 Disordered case: theory

In this section, we compute the TDOS of a disordered MWNT using diagrammatic

perturbation theory [44]. We will consider only the effects of static disorder as intro-

duced in Sec. 2.3. Showing that the Born approximation breaks down close to the

VHS, we have to sum the whole perturbation series. Within a non-crossing approx-

imation (NCA) this can be done by using a self-consistent resummation technique

leading to Eq. (3.18) which is the central result of this section. Using this result, we

give an a posteriori justification for the NCA.

3.4.1 General remarks

It is known that disorder often has a profound influence on transport properties

but only weakly affects the TDOS. The latter is no longer true, however, if the

TDOS of the clean system vanishes linearly, ν(E) ∼ E, as is the case for 2D Dirac

fermions, e.g., for a graphite sheet or a 2D d-wave superconductor [42, 43]. In

the latter case, the standard procedure of averaging over disorder is complicated

by the appearance of logarithmic singularities in the perturbative expansion of the

single-electron self energy. The lowest-order Born approximation, see Fig. 3.6, is

then given by Σ(1)(E) ∼ E lnE [43]. The second-order rainbow diagram, which is

obtained by first-order renormalization of the internal electron line, contains an even

stronger singularity, Σ(2)(E) ∼ E ln2E. The diagram with crossing impurity lines

corresponds to a vertex renormalization in the Born self energy diagram, leading

to the same singularity as the rainbow diagram. In fact, logarithmic singularities

appear in all orders of perturbation theory, including crossed diagrams. Therefore,

in the 2D case, crossed diagrams must be treated on the same footing as the rainbow
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Figure 3.6: First (a) and second (b,c) order self energy diagrams after disorder

averaging. The straight line represents the bare propagator G0, while the semi-circle

line represents the disorder potential scattering. In the vector model, each vertex

contributes an additional factor σµ, where one has to sum over µ = x, y. Compared

to the crossed diagram c), the rainbow diagrams a) and b) have no dependence upon

external momentum ~k0.

ones. In addition, in the single-channel 1D limit, it is also well known that crossed

diagrams may be important. Since MWNTs are in-between the 1D and 2D limit, a

careful study of the influence of crossed diagrams is mandatory.

As we will show in this section, the situation for MWNTs is quite different

from the one in 2D as described above. First, there are no logarithmic singularities

appearing in the self energy expansion. Second, a further simplification is provided

by the fact that crossed diagrams are suppressed compared to the rainbow ones over

a wide parameter and energy range of practical interest. Therefore, we are entitled

to compute the TDOS within NCA. For simplicity, we focus on the bulk case here

and, instead of Eq. (3.6), we then have

G0(E,~k) =
1

E − ~σ · ~k + i0+
. (3.12)

3.4.2 Born approximation

We start by looking at the self energy to lowest order in the disorder strength (Born

approximation). Considering standard potential scattering (2.8), a scalar model

emerges and the impurity averaging procedure gives [44]

Σ
(1)
V (E) = ∆V Tr~k,σG0(E,~k) . (3.13)

This expression exactly corresponds to the diagram (a) in Fig. 3.6. The semi-circle

line contributes a factor ∆V and a closed line means that one has to trace over the

internal degrees of freedom, i.e., the sublattice index and the momentum. If one

remembers that the straight line represents the bare propagator G0, Eq. (3.13) can

readily be written down. The corresponding expressions for higher-order terms are
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found in exactly the same way. Using Eq. (3.12) and the Cauchy identity (3.8),

one observes that the principal parts value vanishes,
∫∞
−∞ dk P/(E2 −E2

n − k2) = 0,

resulting in

Σ
(1)
V (E) = −iπ∆V ν0(E) , (3.14)

with ν0(E) given in Eq. (3.10). Hence, in first order, the self energy is purely

imaginary.

If we instead consider the gauge field disorder (2.6), we have to deal with a vector

model, leading to additional factors σµ at each vertex,

Σ
(1)
A (E) = ∆ATr~k,σ

∑

µ=x,y

σµG0(E,~k)σµ .

It is easily checked that

∑

µ=x,y

σµG0(E,~k)σµ =
2E

E2 − k2 − E2
n + i0+

1 ,

where 1 denotes the 2 × 2 identity matrix and hence, comparing with Eq. (3.7) we

see that

2TrσG0(E,~k) = Trσ

∑

µ=x,y

σµG0(E,~k)σµ .

Therefore, the result for the lowest-order self energy diagram in the vector model is

just the same as for standard potential scattering besides an overall factor of two due

to the “spin” degree of freedom as well as an additional factor due to the different

disorder strength,

Σ
(1)
A (E) = 2

∆A

∆V

Σ
(1)
V (E) .

If we restrict ourselves to rainbow diagrams for the moment, the Nth-order self

energy diagram for the scalar model is simply given by

Σ
(N)
V (E) = ∆N

V Tr{~ki},σG
2
0(E,

~k1) . . . G
2
0(E,

~kN−1)G0(E,~kN) .

As one can see, the r.h.s. factorizes completely and using G2
0(E,

~k) = −∂EG0(E,~k),

we arrive at

Σ
(N)
V (E) = Σ

(1)
V (E)(−∂EΣ

(1)
V (E))N−1 . (3.15)

Apart from the overall factor of two, the same result is again found for the vector

model. Within NCA, the special type of disorder is therefore not important. How-

ever, it could well be that crossed diagrams are important for the vector model,

while we can establish the validity of NCA only for the scalar model (standard po-

tential scattering). Since the latter is expected to represent the dominant disorder

mechanism in MWNTs, we shall focus on the scalar model in what follows. Then,

a single dimensionless parameter ∆ serves as a measure for the disorder strength,

∆ =
∆VR

h̄2v2
F

.
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Next, we address the breakdown of the Born approximation in the vicinity of

a VHS. If we look at the second-order rainbow diagram in Fig. 3.6, which from

Eqs. (3.14) and (3.15) is given by

Σ(2)(E) = (π∆V )2ν0(E)∂Eν0(E) ,

we see that the Born approximation must break down close to a VHS since
∣∣∣∣∣
Σ(2)(E)

Σ(1)(E)

∣∣∣∣∣ = π∆V ∂Eν0(E) .

The r.h.s. diverges for E approaching the threshold En from above. We therefore

must address also higher-order contributions to the self energy.

3.4.3 Resummation of the perturbation series

For the moment, we shall assume that one can neglect all crossed diagrams so that

we can then treat the problem within NCA. The justification for this will be given

a posteriori in the next section. But even within NCA, since the perturbation

expansion is asymptotic, we have to arrange the order of summation in a physically

meaningful way to avoid familiar but unphysical divergencies and inconsistencies.

This would also be important for analyzing diagrams beyond NCA, see Ref. [44].

To this end, we follow the self-consistent iterative approach proposed by Lee [52]

to calculate the TDOS of the disordered system. Within this approach, the self

energy ΣN including all contributions up to Nth order (N ≥ 1) is

ΣN (E) = ∆V Tr~k,σGN−1(E,~k) , (3.16)

with the corresponding Dyson equation

G−1
N (E,~k) = G−1

0 (E,~k) − ΣN (E) . (3.17)

This form is then used to calculate the self energy ΣN+1. In each order, an average

over disorder is performed, and the resulting Greens function is then employed to

calculate the next order. In the limit N → ∞, this procedure converges and leads

to the equation

Σ(E) = ∆V Tr~k,σG(E,~k) = ∆V Tr~k,σ

1

G−1
0 (E,~k) − Σ(E)

, (3.18)

which has to be solved self-consistently for the self energy.

The intuitive and physically appealing form of this result gives further support

to this resummation approach. Additionally, in Appendix A we explicitly check

that the diagrams up to fourth order are correctly contained in Eq. (3.18). From

the analysis there, one can indeed expect that all higher-order terms will also be

reproduced correctly. The TDOS then follows directly from Eqs. (3.5) and (3.18),

ν(E) = − Im

π∆V

Σ(E) . (3.19)
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Importantly, following our analysis, it is not possible to simply assume an energy-

independent mean free path for all energies. Since the disorder-averaged Greens

function satisfies the Dyson equation, we have an energy-dependent mean free time

τ(E) defined by −ImΣ(E) = h̄/2τ(E), and therefore an energy-dependent mean

free path l(E) = vF τ(E).

3.4.4 Relevance of crossed diagrams

Next, we address the role of crossed diagrams. From the procedure outlined above,

let us assume that we have constructed a proper Greens function which includes the

effects of all non-crossed diagrams. We now check that the effect of the simplest

crossed diagram is small compared to the one of the corresponding rainbow diagram

in this order. For computational simplicity, we consider Schrödinger fermions, with

the same conclusions expected also for Dirac fermions, especially in the vicinity of

the VHS, where the Born approximation breaks down. The lowest-order crossed

diagram is then given by

Σ(2)
c (E,~k0) = ∆2

V Tr~k,~k ′Ḡ(E,~k)Ḡ(E,~k + ~k ′)Ḡ(E,~k0 + ~k ′) , (3.20)

where ~k0 is the external momentum, and the Greens function

Ḡ(E,~k) =
1

E − E(~k) − Σ(E)
(3.21)

includes the effects of all non-crossed diagrams via Σ(E). The dispersion relation is

E(~k) = ~k2/2m since we consider Schrödinger fermions here.

The dominant contribution to Eq. (3.20) comes from momenta with |~k| ≈ |~k0| ≈
|~k + ~k′| ≈ |~k0 + ~k′| = E/vF . Therefore, only k′ ≈ 0 and n′ = 0 give an appreciable

contribution to the crossed self energy term Σ(2)
c .4 Accordingly, we can neglect terms

proportional to k′2, and a careful analysis of the pole structure leads to

Σ(2)
c (E,~k0) ≈ i∆2

V

m

k0
Tr~kḠ(E,~k)

Θ(−k0k) sgn(k0)

[E − E(~k0) − Σ(E)]k/k0 − [E − E(~k) − Σ(E)]
.

(3.22)

To estimate the contribution of Σ(2)
c to the TDOS, one has to add external propaga-

tors Ḡ(~k0). In the presence of these external poles, the self energy can be estimated

from Eq. (3.22) as

Σ(2)
c (E,~k0) ≈

i∆V

2vF

∂EΣ(E) . (3.23)

The steps leading to Eqs. (3.22) and (3.23) are explained in Appendix B.

4There is a small contribution from ~k′ = −2~k0, but due to its small phase space, k′ ≈ 0 is much

more important.
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If we compare Eq. (3.23) to the corresponding second-order rainbow diagram,

Σ(2)(E) = Σ(E)(−∂EΣ(E)), we have
∣∣∣∣∣∣
Σ(2)

c (E,~k0)

Σ(2)(E)

∣∣∣∣∣∣
≈ ∆V

2vF |Σ(E)| ≤
1

2ν(E)/ν1D
. (3.24)

Unless there is a gap for small energy, this ratio is always smaller than 1/2. This

is, however, a conservative estimate since here we have neglected the real part ΣR

of the self energy, Σ(E) = ΣR(E) − iπ∆V ν(E), see Eq. (3.19). Incorporating it

would simply decrease the ratio (3.24). Obviously, for high energies, i.e., high order

n of the VHS, this NCA approach should become exact. But even for the lowest-

order VHS it is still expected to be quite accurate in the vicinity of the VHS. We

therefore conclude that our NCA-type treatment is highly accurate in describing

disorder effects for the VHS in MWNTs. At this point it should be stressed that in

the true 2D limit, our arguments leading to Eq. (3.24) are not valid, and therefore

no contradiction to Refs. [41, 42, 43, 49, 50] arises.

3.5 Disordered case: results

We now deduce a formula that is appropriate for numerical evaluation. In order

to obtain both the bulk and boundary limit, we have to go back to the general

(x-dependent) problem. For simplicity we suppress the functional dependencies of

the self energy on E and x but keep in mind that we actually have Σ = Σ(E, x).

Inserting (3.6) into (3.18) we then have

Σ = 2∆V Tr~k,σ

sin2 kx

E − ~σ · ~k − Σ
.

Performing the trace in sublattice space, we are left with an integral,

Σ =
2∆V

π

∑

n

∫ ∞

−∞
dk

(E − Σ) sin2 kx

(E − Σ)2 − E2
n − k2

,

which can easily be done by means of contour integration in the complex plane.

The two poles are k1,2 = ±
√

(E − Σ)2 − E2
n and, depending on the sign of E − ΣR,

these poles reside in different half-planes. For sgn(E − ΣR) = +1 we have k1 in the

upper and k2 in the lower half-plane, whereas for sgn(E − ΣR) = −1 the situation

is reversed. Since the sine-function is not bounded in the complex plane we write

sin2 kx = 1/2 − (exp[2ikx] + exp[−2ikx])/4 and, closing the contour in either the

upper or lower half-plane, the result is

Σ = −i∆D
∑

n

(E − Σ) sgn(E − ΣR)
√

(E − Σ)2 − E2
n

×

1 − exp


2i sgn(E − ΣR)

x

R

√
(E − Σ)2 − E2

n

D




 , (3.25)
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where ∆ is the dimensionless disorder strength as introduced before. This equation

can now be solved numerically and once we know the self energy we can compute

the TDOS from Eq. (3.19).

3.5.1 Bulk limit

We start by discussing the results in the bulk limit, x→ ∞, where the exponential

function in (3.25) vanishes,

Σ = −i∆D
∑

n

(E − Σ) sgn(E − ΣR)
√

(E − Σ)2 − E2
n

. (3.26)

According to Eq. (3.19), the TDOS then reads

νbulk(E)

ν1D

= Re
∑

n

(E − Σ(E)) sgn(E − ΣR(E))
√

(E − Σ(E))2 − E2
n

, (3.27)

where we restored all functional dependencies for clarity. The result (3.10) for the

clean case is, of course, recovered in the limit ∆ → 0. For ∆ > 0, the finite imaginary

part of Σ(E) in the denominator of (3.27) causes a broadening of the VHS, whereas

the real part causes a shift of the peaks in energy. Equations (3.26) and (3.27)

can be used to fit experimental data for the TDOS of MWNTs. Assuming that

R is known, since ∆ is the only fit parameter, the disorder strength can then be

determined directly from the TDOS which would provide precious information on

the level of disorder in the system.

For the numerical evaluation of Eq. (3.26), a cutoff for the summation over n

has to be specified. Such a cutoff for the band index n is naturally given from the

band structure. For instance, for armchair NTs, the number of subbands would be

limited to 2N = 8πR/
√

3a [53]. For R = 10 nm, N ≈ 295, and in the figures below,

we use this cutoff such that n ∈ [−295, 295]. The results are, however, not very

sensitive to the precise choice of this cutoff.

Figure 3.7 shows the strong broadening of the VHS due to the disorder. In

addition, the position of the VHS is shifted to smaller energies with increasing ∆.

This shift grows linearly with ∆, and the relative shift, compared to the position of

the VHS in the clean system, can easily be up to 20%, depending on the disorder

strength (note that the relative shift is independent of R). Since the radius of NTs

is often determined from the relative positions of the VHS, this observation suggests

that such interpretations need to be taken with some caution. The disorder-induced

shift has to be taken into account to obtain correct results. With increasing order

n of the VHS, the relative shift becomes, however, systematically smaller.

For sufficiently strong disorder, the peaks can even disappear completely above

a certain energy threshold E∗(∆). This is clear since the VHS, resulting from the

opening of new subbands due to transverse momentum quantization, is destroyed
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Figure 3.7: Bulk TDOS of a disordered tube in the absence of a magnetic field

for different values of the disorder strength ∆. The broadening of the VHS’s with

increasing ∆ is clearly visible, as well as their shift towards smaller energies.
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Figure 3.8: Same setup as in Fig. 3.7 but for a wider energy range and stronger

disorder. One clearly can trace the tendency of the VHS’s to vanish with increasing

∆ and E as well as the formation of a power law above a certain threshold (see also

Fig. 3.10).
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once motion around the circumference becomes diffusive. This threshold energy

decreases with increasing ∆ (see Fig. 3.8).

In Fig. 3.9 we compare the TDOS and the corresponding mean free path. Using

(3.19), the mean free path can be expressed in terms of the TDOS,

l(E) =
R

2∆

ν1D

ν(E)
.

Importantly, the mean free path cannot be assumed to be simply a constant, but

depends on energy. As one can estimate from Fig. 3.9, the VHS’s are disappearing

when l(E) ≤ R. Hence, since many experiments on MWNTs suggest that l is

of order of the circumference of the tube, the characteristic subband features of

the TDOS should still be present, albeit considerably broadened and shifted (see

Fig. 3.3).

In the region where no VHS’s are present, i.e., above the threshold E∗(∆), the

TDOS behaves like a power law5 with disorder-dependent exponent α = α(∆) ≈
1 − 5∆ ≤ 1,

ν(E) ∼ Eα ,

which holds remarkably well for ∆ ≤ 0.05, see Fig. 3.10. Note that energies here

are absolute (not relative to EF ), and therefore this power law is unrelated to the

findings of Refs. [48, 54, 55]. For E < E∗(∆), there are deviations from the power

law and the TDOS approaches a finite value for E → 0. We also want to note that

this power law has a different origin than the one found in the 2D case that rests

upon the inclusion of crossed diagrams [43].

Next, we consider a fixed disorder strength ∆ and vary the strength of a magnetic

field applied parallel to the tube axis, see Fig. 3.11. Again, there is a doubling of the

peaks corresponding to the VHS’s, and the shift of the positions varies periodically

with the magnetic field. The gap generated by the magnetic field survives even

in the presence of disorder, but due to the disorder-dependent shift of the VHS’s

towards smaller energies, it gets partially filled with states and is therefore smaller

compared to the clean case. However, magnetic field effects are essentially not (or

only weakly) affected by disorder.

5In principle one would replace the sum by an integral,
∑N

n=−N
→ R

∫ Λ

−Λ
dε with Λ = ND,

to derive the power law analytically. This is, however, not so easily done since the functional

dependencies in the resulting self-consistency equation for the self energy, that one has to solve,

are quite nasty. Unfortunately, any helpful approximation destroys the desired result and hence,

we cannot give an analytical expression for α(∆).
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Figure 3.9: Bulk TDOS (top) for two different disorder strengths and the corre-

sponding mean free path l(E) (bottom). Comparing both figures one can estimate

the value of l(E) where the VHS’s disappear. One can see that approximately for

l(E) ≤ R = 10 nm, all van Hove peaks vanish as is indicated by the dotted line,

which is a guide to the eye only, and for ∆ = 0.04 leads to l(E) ≈ 7.8 nm.
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Figure 3.10: Bulk TDOS (dashed line) for ∆ = 0.03 and the corresponding power

law fit (solid line) according to ν ∼ Eα, with α ≈ 0.85. The energy threshold, above

which the power law is valid, can roughly be estimated to be E∗ ≈ 230 meV. Below,

there are deviations from the power law behavior that increase in the limit E → 0.

Both α and E∗, of course, depend on ∆.
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Figure 3.11: Bulk TDOS for ∆ = 0.01 and different values of the magnetic field B.

The curves corresponding to different B are shifted vertically by the same amount

for better visibility. The lowest curve corresponds to B = 0, and B is increased in

steps of ∆B = 2.2 T. Notice the opening and closing of a gap with variation of B,

and the periodicity in B with period B0 = 13.2 T for R = 10 nm.
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Figure 3.12: Boundary TDOS for different values of the disorder strength ∆ in the

absence of a magnetic field. Disorder causes an increase of the TDOS that grows

with increasing ∆, as well as a shift of the van Hove non-analyticities to smaller

energies. For all curves in this plot, x/R = 10−3.

3.5.2 Boundary limit

Finally, we briefly turn to the boundary limit, x → 0. Expanding the exponential

function in (3.25) up to second order in x/R we have

Σ = −4N∆
x

R
(E − Σ) (3.28)

−2i∆
(
x

R

)2∑

n

E − Σ

D
sgn(E − ΣR)

√
(E − Σ)2 − E2

n ,

leading to the boundary TDOS (with restored functional dependencies)

νend(E, x)

ν1D
=

2

1 − 4N∆x/R

(
x

R

)2

(3.29)

× Re
∑

n

E − Σ(E, x)

D2
sgn(E − ΣR(E, x))

√
(E − Σ(E, x))2 − E2

n .

These relations are appropriate as long as x/R � 1/4N∆ and obviously, ∆ → 0

gives the correct limit (3.11). Compared to the clean case, the disordered bound-

ary TDOS is increased and the increase grows with larger disorder strength (see

Fig. 3.12). The positions of the van Hove non-analyticities at the opening of new

subbands are shifted to smaller energies while their form is not significantly changed
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by the disorder but approximately retains a square-root energy dependence above

the threshold. Compared to the bulk case, the shift in the boundary case is much

smaller.

The quadratic behavior of νend in the regime 0 < E < D remains unchanged

by the disorder as well as the cubic behavior on the larger scale 0 � E � ND.

The presence of disorder basically leads to a prefactor that enhances the boundary

TDOS. In the presence of a magnetic field one observes essentially the same as in

the bulk case, i.e., a doubling of the non-analyticities and the periodic opening and

closing of a gap.

3.6 Comparison with experiments

It is difficult to quantitatively compare our results with currently available experi-

mental data. But one can check for qualitative agreement. The reported differential

tunneling conductance in [48] (see Fig. 3.3) exhibits broadened (and possibly shifted)

VHS’s. The radius estimated from the distance between the two first-order subbands

deviates from the directly measured one by ≈ 10%. This deviation could result from

the disorder-dependent shift as predicted by our theory. Therefore, both findings

are consistent with our results. However, to surely attribute these effects to disor-

der one would need more data exhibiting stronger deviations in order to rule out

measurement uncertainties.

Hence, it would be necessary to measure the differential conductance up to higher

energies, i.e., higher orders of the VHS. Further, specific disorder variation, e.g., by

fast ion bombarding, would be helpful to check the predictions made by our model.

Especially, it would be interesting whether one can see the predicted power law for

large disorder strength.

Periodically shifted conductance peaks in a parallel magnetic field were observed,

e.g., in [54]. Although a detailed comparison with our results has not yet been done,

a systematic investigation focusing on only the lowest VHS could easily reveal the

doubling as well as the periodicity, depending on the tube radius.

STS measurements in the boundary limit were carried out for both SWNTs [28]

and MWNTs [56]. Sharp resonances in the tunneling conductance were observed

at the last few nm at the end of the NTs. However, these resonances were identi-

fied as localized states corresponding to a particular cap structure, i.e., a specific

arrangement of pentagons (topological defects) at the end.

Several lattice spacings away from the tube end, where our model is supposed

to be accurate, the situation is different. There, the subband edges fade out and no

VHS’s (divergencies) were found in the tunneling spectrum [27, 28, 56], as is hinted

at by our calculation. However, to unambiguously observe the predicted square-root

non-analyticities seems to be difficult and, to the best of our knowledge, has not yet

been done. But again, our results are in qualitative agreement with the experiments.
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3.7 Conclusions

In this chapter, we have calculated the TDOS of disordered multichannel quantum

wires, with special emphasis on MWNTs. In the present theory, electron-electron

interactions are supposed to be screened off by a metallic substrate or a close-by gate.

Focusing on potential scattering disorder, within a non-crossing approximation, a

self-consistent non-perturbative summation of all diagrams for the self energy yields

an analytical result for the disorder-broadened VHS’s in such a system. For given

radius of the MWNT, our result involves only one parameter (the disorder strength

∆), which should allow for a detailed comparison to STS experiments on MWNTs.

We also stress that it is in general not possible to define an energy-independent

mean free path for all energies.

Remarkably, the standard Born approximation breaks down in the vicinity of

a VHS, and one has to include higher-order diagrams for the self energy. We have

demonstrated that this problem can be approximately yet accurately solved by com-

bining a non-crossing approximation with an iterative self-consistent summation of

all remaining diagrams. The theory can then be applied to the energy dependence

of the TDOS, and reveals remarkable differences in the bulk and boundary limits.

These effects could be observed experimentally using available technology.

In the bulk limit, we predict broadened VHS’s that are shifted to smaller energies

compared to the clean case. For high energies (above a certain threshold), the

TDOS behaves as a power law in energy, with a disorder-dependent exponent. In

the boundary limit, VHS’s appear only as non-analyticities at the opening of new

subbands, with a square-root energy dependence of the TDOS above the threshold.

This behavior is basically unchanged in the disordered case, but we observed a shift

of the non-analyticities to smaller energies and a disorder-dependent increase of the

TDOS.



Chapter 4

Luttinger liquid theory

In this chapter we first motivate the Luttinger liquid picture by describing the Fermi

liquid theory and its breakdown in 1D. We argue that bosonization is a powerful tool

for describing interacting 1D metals and therefore explain its basic properties for

a spinless system. Afterwards, we generalize the method to the more complicated

case of a SWNT.

4.1 Motivation

The fundament of the theoretical description of metals in more than 1D is the Fermi

liquid theory (FLT) which accounts for the behavior of the conduction electrons in

conventional metallic systems. The central assumption of FLT is that the low-

energy excited states of the interacting electron gas can be classified in the same

way as a reference non-interacting electron gas which leads to the central concept

of quasi-particles [57]. Conceptually, a quasi-particle excitation is generated from

free electrons by adiabatically switching on the electron-electron interaction1 after

preparing a system state with, say, one electron in an excited state above the ground

state Fermi sea. The quasi-particles are in one-to-one correspondence with the bare

electrons (holes) and, specifically, obey Fermi-Dirac statistics and carry the same

quantum numbers as ordinary electrons (holes). Thus, the free Fermi gas is the

solvable model on which FLT is built.

The electron-electron interaction has three main effects: (i) it renormalizes the

dynamical properties of the quasi-particles such as their effective mass; (ii) it gives

them a finite lifetime diverging, however, as τ ∼ (E−EF )−2 as the Fermi surface is

approached; (iii) it introduces new collective modes. The existence of quasi-particles

formally shows up through a finite jump of the momentum distribution function at

the Fermi surface, corresponding to a finite residue of the quasi-particle pole in the

Greens function. FLT is approximate but not perturbative and well understood.

1This should, but need not, work when interactions are repulsive, not too strong, and at low

energies.
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It becomes an asymptotically exact solution of a given many-body problem for low

energies and small wavevectors (E → EF , |~k| → kF , T → 0).

FLT is equivalent to the assumption that the Greens function

G(k, ω) =
1

G−1
0 − Σ(k, ω)

,

with the self energy Σ containing all the many-body effects, possesses a single pole

of residue zk close to the Fermi surface (zk is also called quasi-particle weight and

gives the magnitude of the jump of the momentum distribution function of the bare

particles at the Fermi surface). The breakdown of FLT in 1D is signaled by the ap-

pearance of multiple poles or vanishing zk.
2 Accordingly, in 1D metals there are no

fermionic quasi-particles, and it turns out that only particle-hole excitations deter-

mine the dynamics of an excited state. Unlike in 3D, the corresponding excitation

spectrum in 1D has a wide region of forbidden states at low energy and finite mo-

mentum, and shrinks to a one-parameter form ω ≈ vq in the limit ω, q → 0. This

implies that the particle-hole excitations (respectively collective charge and spin fluc-

tuations constructed by appropriate linear combinations) form stable, particle-like

elementary excitations of the system which are described by an effective harmonic

oscillator Hamiltonian and obey bosonic commutation rules. These charge and spin

fluctuations are also dispersing with different velocities (in the interacting case)

which means that an incoming electron seems to fall apart into separate elementary

charge and spin excitations which then spatially separate with time (spin-charge sep-

aration). The correlations between the excitations are anomalous and show up as

interaction dependent non-universal power laws in many physical quantities where

those of ordinary metals are characterized by universal (interaction independent)

powers. The reasons for these peculiar properties are found in the very special

Fermi surface topology of 1D fermions, i.e., in a 1D chain, one has simply two Fermi

points ±kF .

All these properties mentioned above are generic for 1D fermion systems and

particular prominent in a 1D model of interacting fermions with strictly linear dis-

persion relation proposed by Tomonaga [58] and Luttinger [59] and solved exactly

by Mattis and Lieb [60]. The resulting non-Fermi liquid state is commonly called

Luttinger liquid (LL), a name coined by Haldane [61]. The LL is best understood

as an effective theory for the low-energy excitations of a 1D metal (with gapless

charge and spin excitations) or, in other words, for interacting 1D electron systems

(provided they remain gapless). The elementary bosonic modes, together with op-

erators changing the particle number in the system, can be used to construct the

2Since in 1D for a single branch with linear dispersion, momentum conservation automatically

implies energy conservation, the phase space for an electron to relax by creating an electron-

hole excitation is less constrained compared to, e.g., 3D. This leads to a divergent rate for such

scattering processes which drives the electron spectral weight to zero, even for weak interactions.

Accordingly, FLT breaks down in such systems for arbitrarily weak interactions.
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Fermi liquid Luttinger liquid

• describes fermions in 3D • describes fermions in 1D

• elementary excitations are fermionic

quasi-particles

• elementary excitations are of bosonic

nature → spin-charge separation

• correlation functions for interacting

and non-interacting system are quali-

tatively the same

• correlation functions are power laws

with (non-universal) interaction-depen-

dent exponents

• energy independent TDOS • TDOS strongly suppressed for

E → EF

Table 4.1: Comparison of some important Fermi and Luttinger liquid features.

entire low-energy sector of the Hilbert space. Finally, bosonization allows, through

an operator identity representing a fermion operator in terms of charge and spin

bosons, to calculate all correlation functions of the LL, so that one has direct access

to all physical properties of interest. When the electron dispersion is approximated

by a linear law, the resulting model can be solved exactly in the presence of electron-

electron interactions which enters the theory as a single dimensionless parameter.

To summarize, a LL is characterized by three important properties. First, its el-

ementary excitations are not fermionic quasi-particles but bosonic collective modes.

The absence of quasi-particles is visible explicitly in the single-particle spectral func-

tion. Second, fermion operators acquire anomalous dimensions implying that all

correlation functions of a LL exhibit power-law behavior with exponents depending

on the interaction strength and are therefore non-universal. Hence, in order to prove

LL theory, it is not sufficient that one or more particular experiments show power-

law correlations. In addition, the power-law exponents they measure must yield

consistent values for the interaction strength. The third point is the spin-charge

separation explained above which is due to the Hamiltonian describing the system

being a sum of a charge and spin part, each describing harmonic oscillators. Both

anomalous dimensions and spin-charge separation are sufficient conditions for the

breakdown of a quasi-particle picture for interacting 1D electron systems. Some of

the main differences between FLT and LL theory are summarized in Table 4.1.

The LL concept provides a paradigm for non-Fermi liquid physics and may

have some relevance also for higher-dimensional systems, e.g., in relation to high-

temperature superconductivity. The range of validity of the LL model is usually set

by E � D, where D is the electronic band width and E is the relevant energy scale,

namely either the thermal scale kBT or the applied voltage eV . Most measurements,

in fact, only probe correlations on energy scales small compared to the Fermi energy

so that indeed only the low-energy sector of a given model is of importance. More-

over, only at low energies we can hope to excite only a few degrees of freedom, for

which a meaningful comparison to theoretical predictions can be attempted. The
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to-date perhaps cleanest experimental observations of LL behavior were established

in transport experiments for SWNTs [62, 63].

4.2 Bosonization

Now, we want to substantiate the concepts discussed in the previous section. For

simplicity, we here only consider the spinless case and later generalize the formulas

we need. Again, we set h̄ = 1.

Bosonization of a fermionic system is possible in 1D since the low-energy exci-

tations can be completely described in terms of collective charge and spin density

oscillations. In the model studied by Tomonaga and Luttinger, a special disper-

sion relation was assumed, where one linearizes around the two Fermi points ±kF

present in 1D, E(k) = vF (±k− kF ). At sufficiently low energy scales, such a proce-

dure should clearly be possible. Accordingly, the bosonization approach is usually

appropriate for low temperatures, where only excitations near the Fermi surface are

relevant. In fact, in SWNTs, as already mentioned, the dispersion relation is highly

linear anyways. Thus, we have to consider three types of particles. Right-movers

(R) have momenta k ≈ kF and velocity vF while left-movers (L) have momenta

k ≈ −kF and velocity −vF . The third type of particles are inert electrons deep in

the Fermi sea which play no role in the low energy physics (see Fig. 4.1). To avoid

(various) mathematical subtleties due to the infinite Dirac sea, we always assume a

finite band cutoff.

One can now equivalently express the non-interacting problem in terms of col-

lective plasmon (density wave) excitations. Technically, in the “bosonization” lan-

guage [64], for the simplest case of a spinless single-channel system, these bosonic

excitations can be expressed in terms of a (bosonic) displacement field θ(x) and its

canonical momentum Π(x) (i.e., [θ(x),Π(x′)]− = iδ(x− x′)),

H =
vF

2

∫
dx
{
Π2(x) + [∂xθ(x)]

2
}
,

such that the density fluctuations are ρ(x) = ∂xθ(x)/
√
π. Electron-electron interac-

tions then describe a bilinear coupling of these density fluctuations,

HU =
1

2π

∫
dx dx′ ∂xθ(x)U(x − x′)∂x′θ(x′) ,

and therefore the full interacting problem can be written as a free theory in the

displacement field,

HLL =
vF

2

∫
dx

{
Π2(x) +

1

g2
[∂xθ(x)]

2

}
. (4.1)

This is the so-called Luttinger liquid Hamiltonian. In the long-wavelength limit,

one can approximate the Fourier transform Ũ(k) of the 1D interaction potential by
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Figure 4.1: Dispersion relation of the Tomonaga-Luttinger model with infinite Dirac

sea and the Fermi sea filled up to the Fermi energy EF . One can also see the two

branches of the right- and left-movers.

a constant U0 = Ũ(0) − Ũ(2kF ),3 and the dimensionless interaction parameter g in

Eq. (4.1) is given then by

g =
1

√
1 + U0/πvF

.

We have 0 < g ≤ 1 for repulsive interactions, with small g meaning strong in-

teractions, while g > 1 for attractive interactions. The limit g = 1 describes the

non-interacting Fermi gas (not a Fermi liquid), and the limit g → 0 leads to a

classical Wigner crystal. Since the model (4.1) is equivalent to a set of harmonic

oscillators4 it can be solved exactly. This is the great advantage of the Bose repre-

sentation, that also the interacting system is described by a free theory where the

only effect of the interaction is to renormalize the Fermi velocity, vF → vF/g. In

contrast, in the Fermi representation the interaction leads to quartic terms in the

Fermi operators which makes it in general quite difficult to handle.

The Holy Grail of bosonization is that the (fermionic) creation operator for a

right- or left-moving electron (r = R/L = ±) can equivalently be expressed in

terms of the bosonic phase fields θ(x) and φ(x) =
∫ x dx′ Π(x′) by means of the

3Equivalently one can assume a point interaction, U(x−x′) = U0δ(x−x′), which directly gives

Ũ(k) = U0. Of course, this is a mathematical trick since a true δ-function would have no effect.
4Using Π(x) = ∂xφ(x) and the commutation relations (4.3) for θ and φ it is easy to obtain the

equations of motion from (4.1), ∂2
t θ = v2∂2

xθ with v = vF /g (and similarly for φ). Therefore, HLL

describes a wave propagating at velocity v.
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“bosonization identity” (for details see, e.g., [64]),

ψr(x) '
1√
2πa

exp
[
irkFx + i

√
π {φ(x) + rθ(x)}

]
, (4.2)

where a ≈ 1/kF is a lattice constant.5 The phase fields itself fulfill the algebra

[θ(x), θ(x′)]− = [φ(x), φ(x′)]− = 0 ,

[θ(x), φ(x′)]− =
i

2
sgn(x− x′) . (4.3)

4.3 Luttinger liquid theory for single-wall

nanotubes

The generic band structure of a metallic SWNT is shown in Fig. 4.2. Up to energy

scales E < D ≈ 1 eV, the dispersion relation around the Fermi points is, to a very

good approximation, linear. If the x-axis is taken along the tube direction and the

circumferential variable is 0 < y < 2πR, quantization of transverse motion then

allows for a contribution ∝ exp[iny/R] to the wavefunction. However, excitation

of angular momentum states other than n = 0 costs a huge energy of order D. In

an effective low-energy theory, assuming that the SWNT is not excessively doped,

we may thus omit all transport bands except n = 0. Evidently, the SWNT forms

a 1D quantum wire with only two transport bands intersecting the Fermi energy.

In contrast to conventional systems like semiconductor quantum wires, LL effects

in SWNTs are not restricted to the meV range but may even be seen at room

temperature since the approximation of linearizing the dispersion relation is here

provided by nature in an essentially exact way.

In the same way as done in Sec. 2.2 one can expand the electron operator for spin

σ = ± in terms of the Bloch functions living on the two sublattices, see Eq. (2.1), but

with the difference that due to the restriction n = 0 this expansion now introduces

slowly varying 1D fermion operators ψpασ that depend only on the x-coordinate,

Ψσ(x, y) =
∑

pα

ϕpα(x, y)ψpασ(x) .

Neglecting Coulomb interactions for the moment, the 2D massless Dirac Hamiltonian

(2.2) describing the effective low-energy theory for graphene reduces to

H = −vF

∑

pασ

p
∫
dxψ†

pασ(x)∂xψ−pασ(x) .

5To be more precise, one would have to add “Klein factors” in (4.2). These are non-Hermitian

operators that increase the total particle number in one of the branches by one and are necessary

since the boson fields all conserve the total particle number. They also ensure proper anticom-

mutation between right- and left-going operators. In the thermodynamic limit L → ∞, where L

is the system length, this is, however, of minor importance since a change in the particle number

represents a shift of kF by a quantity of order 1/L.
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Figure 4.2: Schematic band structure of a metallic SWNT. A right- and left-moving

branch (r = ±) is found near each of the two Fermi points k = αkF with α = ±,

corresponding to K and K ′, respectively. Right- and left-movers arise as linear

combinations of the sublattices p = ±. The Fermi energy (dashed line) is shifted

away from neutrality by doping and/or external gates.

Switching from sublattice description (p = ±) to the right-/left-movers (r = ±),

which are linear combinations of the sublattice states,

ψpασ =
∑

r

Uprψrασ with Upr =
1√
2

(
1 i

1 −i

)
,

implies two copies of massless 1D Dirac Hamiltonians for each spin direction,6

H = −ivF

∑

rασ

r
∫
dxψ†

rασ(x)∂xψrασ(x) . (4.4)

In this representation, a bosonization formula generalizing Eq. (4.2) applies [66],

now with four bosonic phase fields θa(x) and their canonical momenta Πa(x) =

∂xφa(x), with flavor index a = c+, c−, s+, s−,

ψrασ ' 1√
2πa

exp
[
ikFαx+ i

√
π

2
(φc+ + rθc+

+ αφc− + rαθc− + σφs+ + rσθs+ + ασφs− + rασθs−)
]
.

The four channels correspond to the total (+) and relative (−) charge (c) and spin

(s) channel, respectively. They are obtained from combining charge and spin degrees

6Therefore, a perfectly contacted and clean SWNT has four conducting channels and is hence

expected to have the quantized conductance G = 4e2/h. Due to the difficulty of fabricating

sufficiently good contacts this value has not been experimentally observed so far. However, in

recent experiments conductance values very close to this theoretical prediction were obtained [65].
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of freedom as well as symmetric and antisymmetric linear combinations of the two

Fermi points. The algebra now reads

[θa(x), φa′(x′)]− =
i

2
δaa′sgn(x− x′) ,

while all other commutators vanish.

When including the electron-electron interaction and at sufficiently high temper-

atures (above the gap temperature of T ≈ 0.1 mK) where it is justified to neglect

non-linearities associated with the forward and backward scattering coupling con-

stants [67], the bosonized expression of the Hamiltonian reads,

H =
vF

2

∑

a

∫
dx

{
Π2

a +
1

g2
a

(∂xθa)
2

}
,

and hence, SWNTs constitute a realization of a LL with an additional flavor index.7

The dimensionless interaction strength for the different channels is

gc+ =

{
1 +

8e2

πκh̄vF
ln
(

L

2πR

)}−1/2

≤ 1 ,

κ is the dielectric constant, while for all other channels, ga6=c+ = 1. Since the

dependence on L and R is only logarithmically, basically all SWNTs studied at the

moment are characterized by typically gc+ = 0.2 to 0.3 [62, 63]. Hence, a SWNT

constitutes a strongly correlated system and one can expect that the electronic

properties thus differ from what is expected by FLT. The plasmon velocities of the

four modes are va = vF/ga, and hence the charged (c+) mode propagates with

significantly higher velocity than the three neutral modes which are unaffected by

the interaction.

A power-law suppression ν(ε) ∼ εα of the TDOS in the limit ε → 0 is expected

for a strongly correlated electron gas described by LL theory, where the energy ε is

measured relative to the Fermi level [68]. When we assume f transport channels,

the exponent α governing the scaling is depending on the geometry, i.e., whether

one tunnels into the bulk or into the end of the system. Setting α = η− 1 one finds,

ηend =
1

f

(
1

g
+ f − 1

)
, (4.5)

ηbulk =
1

f

{
1

2

(
g +

1

g

)
+ f − 1

}
,

where g is the interaction constant in the charged mode. Hence, for a SWNT we

would have

αend =
1

4

(
1

gc+
− 1

)
. (4.6)

7For NTs doped away from half-filling, umklapp-processes suffer a momentum mismatch at

the Fermi surface, thereby becoming ineffective. The validity of the Luttinger model is then only

limited by the exponentially small backscattering scale [66].
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Similar anomalies have recently been observed by Bockrath et al. for SWNTs [63].

Their measurement and analysis provide the first demonstration for LL behavior in

carbon NTs due to long-range Coulomb interactions.8 The ratio of the exponents

αend/αbulk > 2 is interaction dependent and reflects the fact that for tunneling into

the end of the system there is only one direction for the electron to escape while for

tunneling into the bulk there are two. Further, it is clear that the exponents add up

for a certain tunneling geometry, e.g., when the tunneling is from the end of one NT

into the end of another NT then the TDOS will be governed by αend−end = 2αend.

As we will see in the next chapter, electron-electron interactions strongly modify

the low-energy excitations in a quantum wire leading to striking predictions for the

transport in the presence of one or several impurities.

8Also for MWNTs one observes a strong suppression of tunneling into the tube but with different

origin than for SWNTs. In recent experiments on intrinsically (hole-) doped MWNTs (where

EF ≈ 0.5 eV), Bachtold et al. have shown that the tunneling conductance vanishes as a power

law in temperature and in bias voltage [54]. A proper theoretical explanation for this behavior

was given in [55]. It was shown that this zero-bias anomaly in the TDOS of doped MWNTs can

be explained in terms of electron-electron interactions in conjunction with diffusive motion, which

effectively leads to a very efficient Coulomb blockade for tunneling into the MWNT. Due to the

strong interactions, this power law can be thought of as a non-perturbative Al’tshuler-Aronov

anomaly. It was also shown that the presence of a boundary implies a universal doubling of the

boundary exponent, αend = 2αbulk, which holds only in the diffusive limit.
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Chapter 5

Resonant tunneling and Kondo

effect

After discussing basic properties of quantum dots, especially the phenomenon of

Coulomb blockade, we turn to the general problem of tunneling through such a de-

vice. In this context we briefly describe the Kondo effect as well as the relevant

tunneling mechanisms. Subsequent to these introductory remarks we review the

theory of resonant tunneling through a double-barrier structure (forming a quan-

tum dot) in a LL. Due to exciting recent experimental results this problem attracted

renewed attention by theorists and, due to partly conflicting results, led to a con-

troversial discussion in the literature. We discuss the results for both spinless and

spinful fermions thereby focusing, for simplicity, on symmetric barriers only.

5.1 Introduction

5.1.1 Quantum dots - artificial atoms

Quantum dots (QDots) are nanometer-scale structures, where one confines a few to a

few thousand electrons, e.g., in 2D electron gases in semiconductor heterostructures

by means of suitable gates or in NTs by strong bends acting as local barriers. Due

to the confinement, QDots have discrete energy levels and in many respects they

are like artificial atoms. The great advantage of QDots compared to real atoms is,

however, the ease with which its properties can be tuned. Especially the number

of electrons in a QDot can be precisely controlled and varied during an experiment.

The general setup is depicted in Fig. 5.1.

In contrast to real atoms, one can study transport through a QDot via attached

leads. For temperatures and bias voltages that are low compared to the charging

energy Ec = e2/2C, i.e., the energy required to add an electron to the island (C is

the capacitance of the dot), electric transport through the device is blocked due to
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Figure 5.1: General setup of a quantum dot (left). The number of electrons sitting

on the dot can be controlled by adjusting both the gate voltage Vg and the bias voltage

Vb. The right picture shows a semiconductor quantum dot where the confinement of

the electrons in a 2D electron gas is provided by suitable gates on top of the sample.

quantized charge tunneling (Coulomb blockade) [69]. A voltage Vg applied to the

back gate (capacitively, Cg, coupled to the QDot) can then have a pronounced effect

on the device conductance since transport through the dot is restored when Vg is

tuned to special values, where N and N + 1 electron-states are degenerate and an

electron can be added with no cost of energy (“charge degeneracy”). To illustrate

this we consider an isolated QDot, with a certain charge −Ne, coupled by tunneling

barriers to external leads. The preferred charge due to Vg is then CgVg and hence,

Ec = (Ne− CgVg)
2/2C, see Fig. 5.2.

Therefore, upon changing the gate voltage, a gap in the differential conductance

opens and closes in a periodic manner which gives rise to a pattern of periodic

conductance peaks at zero bias, Vb = 0 (see Fig. 5.3). These peaks occur when

the energy change due to the tunneling of one electron onto or out of the QDot

equals the Fermi energy of the leads. Thus, both bias and gate voltage can be

used to modulate the conductance leading to diamond-shaped regions where the

conductance is suppressed (Coulomb diamonds, see Fig. 5.4). Within each diamond,

the number of electrons on the QDot is fixed, and new electrons are added one by

one to the island upon increasing Vg (single electron tunneling).

Applications of QDots include, e.g., single electron transistors that control cur-

rents at the level of a single electron and have been proposed as a future alternative

to conventional Si electronic components. However, most of them operate at cryo-

genic temperatures, which strongly limits their practical application. A device which

operates at room temperature can be built of a carbon NT [71]. Generally, a single

electron transistor consists of a conducting island connected by tunnel barriers to

two metallic leads. At low enough energies when Coulomb blockade becomes oper-

ative, conduction (at a single electron level) can be controlled by tuning the voltage

on a close-by gate, rendering this three-terminal device a transistor.
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Figure 5.2: Charging energy as a function of gate voltage. The number of electrons

N on the island is indicated as well as the transitions (charge degeneracy points) at

gate voltages corresponding to half-integer N .

N N+1

G
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Figure 5.3: Conductance as a function of gate voltage (i.e. number of electrons on

the island). Peaks occur at half-integer values of N .

Figure 5.4: Greyscale plot of the differential conductance dI/dV through a SWNT

QDot with Au source and drain contacts, and a substrate gate contact (T = 75 mK).

Dark/light areas correspond to low/high conductance while E,O indicate an even or

odd number of electrons on the dot. The dashed lines outline the odd Coulomb

diamonds and are a guide to the eye only. Horizontal features such as those labelled

P and Q could suggest higher-order processes involving two levels. (From [70].)
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5.1.2 Kondo effect

Arising in the prototypical case from the interaction between the magnetic moment

of a localized impurity and delocalized electrons in a metallic host, the Kondo effect1

has been used to explain the enhanced low-temperature scattering from magnetic

impurities in metals [72], but also occurs in transport through QDots.

The simplest model of a magnetic impurity was introduced by Anderson in 1961

and has only one electron level (also for small QDots it has come to be the “canonical

model”). The Hamiltonian, including the coupling to the leads, is

Hdot = ε0
∑

s

d†sds + Ecd
†
↑d↑d

†
↓d↓ + t

[(
ψ†

1s + ψ†
2s

)
ds + h.c.

]
,

where ψ†
is creates an electron with spin s in lead i while d†s creates an electron

with spin s on the dot. The energy level of the dot is denoted by ε0 (we assume

ε0 = −Ec/2 and kBT � Ec) and the tunneling matrix element between the leads

and the dot by t. The electron can tunnel from the impurity and escape provided

its energy lies above the Fermi level, otherwise it remains trapped. In this picture,

the defect has spin 1/2 and its z-component is fixed either to spin up or spin down.

However, so-called exchange processes can take place that effectively flip the

spin of the impurity from spin up to spin down, or vice versa, while simultaneously

creating a spin excitation in the Fermi sea. This spin exchange qualitatively changes

the energy spectrum of the system. When many such processes are taken together,

one finds that a new state, known as the Kondo resonance, is generated with exactly

the same energy as the Fermi level. Such a resonance is very effective in scattering

electrons with energies close to the Fermi energy. Since the same electrons are

responsible for the low-temperature conductivity, the strong scattering contributes

greatly to the resistance.

When a small system with a well defined number of electrons (like a QDot) is

connected to electrodes, Kondo physics can also strongly affect the low-temperature

electronic properties of the device [73]. When the number of electrons, N , confined

on the island is odd we have a localized spin (S = 1/2) between large electron

seas in the leads. In this situation, second-order (spin-flipping) processes can occur.

Similar processes, which change the total spin on the island , add up coherently to

form a correlated many-electron-state in which electrons in the two leads are strongly

coupled, allowing current to flow even under blockade conditions if T � TK, where

TK is the Kondo temperature. When N is even, however, there is no equivalent

process and thus no current (“even-odd asymmetry”). Accordingly, a localized half-

integer spin on a QDot acts as a magnetic impurity leading to the Kondo effect which

1Traditionally, Kondo effect means the increase of the resistance as the temperature is lowered

below a certain threshold (Kondo temperature). Although this behavior does not involve a phase

transition, the Kondo temperature completely determines the low-temperature electronic prop-

erties of the material. Note that usually a lower temperature implies a lower resistance due to

reduced thermal scattering, and the resistance saturates below about 10 K due to static defects,

or vanishes below the critical temperature in the case of a superconductor.
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now increases the conductance (instead of the resistance) at low temperatures, and

is even able to make the dot completely transparent (unitary limit). In other words,

the Kondo effect produces the opposite behavior in a QDot compared to that of a

bulk metal.

Where does this difference originate from? In a real metal, electron states are

described by plane waves and scattering from impurities mixes waves with different

momenta. The corresponding momentum transfer increases the resistance. In a

QDot, all electrons have to travel through the island. The Kondo resonance now

makes it easier for states belonging to the two opposite electrodes to mix. This

mixing is responsible for the increase of the conductance.

Kondo physics in carbon NTs has been demonstrated experimentally by Nygard

et al. [70] who considered a 1D QDot formed by a metallic SWNT with 3D metal

(gold) reservoirs. This allowed for the observation of Kondo resonances for very

large electron numbers on the dot, and approaching the unitary limit.

5.1.3 Tunneling mechanisms

We will now comment on the relevant tunneling mechanisms and the resulting conse-

quences. Sequential tunneling (ST) or, to be more precise, incoherent resonant tun-

neling with independent tunneling events from the leads onto the island and from the

island into the other lead, occurs via an unoccupied level within the energy window

between µL and µR, which are the chemical potentials of the left and right lead. The

number of electrons on the dot changes according to N → N + 1 → N → N + 1 . . ..

To give an analogy, this would correspond to two one-photon processes in optics.

In coherent resonant tunneling (CRT) the electron coherently tunnels from one lead

through a quantum state on the island to the other lead. Hence, in this case the

island should be regarded as a single impurity.

At low temperatures (kBT � Ec), the conductance through a QDot in the

Coulomb blockade valley is exponentially suppressed. This results from the fact that

the process of electron transport through the dot involves a real transition to the

state in which the charge on the island differs by e from the thermodynamically most

favorable value (sequential tunneling). Going beyond the lowest order perturbation

theory allows one to consider processes in which states of the dot with a “wrong”

charge participate in the tunneling process as virtual states.

Cotunneling (CT) is a second order process with only virtual occupation of an

energy level on the dot and gives the leading contribution to the activationless

transport. Such a process cannot be separated into two steps and would correspond

to a two-photon process in optics. In the inelastic CT mechanism, an electron

tunnels from the lead into one of the vacant single-particle levels on the dot, while an

electron occupying some other level tunnels out of the dot, see Fig. 5.5. As a result,

transfer of charge e across the island is accompanied by a simultaneous creation of

an electron-hole pair on the dot. Inelastic CT wins versus ST at low temperatures.
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Figure 5.5: Inelastic (left) and elastic (middle) cotunneling as well as spin-flip co-

tunneling leading to the Kondo resonance (right).

Contrarily, in the elastic CT process, no electron-hole pairs are excited and the

electron tunnels via the same level. In other words, occupation numbers of the

energy levels on the dot in the initial and final states of the CT process are exactly

the same. At low temperatures, elastic CT is the more important process compared

to the inelastic one.

The Kondo effect comes from elastic CT in all orders via the topmost occupied

state of the QDot. This state is special since if the number of electrons on the dot

is odd, this level is filled by a single electron only and is spin-degenerate. Therefore,

the ground state of the QDot is characterized not only by the occupation of the

energy levels, but also by the dot’s spin. This opens the possibility of a CT process

in which the transfer of an electron between the leads is accompanied by a flip of

the electron’s spin with simultaneous flip of the spin of the island (spin-flip CT

process, see Fig. 5.5). The amplitude of such a process, calculated in fourth order

in the tunneling matrix element, diverges logarithmically when the energy E of an

incoming electron approaches the Fermi energy. Since E ∼ T , this singularity in the

transmission amplitude translates into a dramatic enhancement of the conductance

across the island at low temperatures, approaching the unitary limit for T → 0.

5.2 Resonant tunneling in a Luttinger liquid

The problem of resonant tunneling through a double-barrier structure in a LL was

first studied a decade ago [37, 74, 75], but has recently attracted renewed and

widespread attention by theorists [76-83]. This is primarily caused by novel excit-

ing experimental realizations of double-barrier structures in interacting 1D quantum

wires presumably described by LL theory. After reviewing the theoretical results we

briefly describe the (not yet completely understood) experimental situation, also as

a motivation for our own work presented in the next chapter.

5.2.1 Single-barrier problem

We first want to recall the situation of an infinite LL with a single impurity where

the difference to a Fermi liquid already becomes dramatic. According to Landauer’s
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theory the conductance of a single-channel wire with a barrier is given by G = |t|2G0,

where |t|2 is the transmission probability through the barrier and G0 = e2/h. This

result holds even at finite temperatures, assuming the transmission probability is

independent of energy, as is often the case for barriers that are sufficiently above or

below the Fermi energy. In 1D, interactions play a crucial role in that they form

charge density correlations which are easily pinned by even the smallest barrier,

resulting in zero transmission and, hence, a vanishing conductance at zero temper-

ature. At finite temperatures the correlation length is finite and the conductance

decreases as a power law of temperature. To understand the line of reasoning we

want to explain the situation in a bit more detail and therefore consider a repulsively

interacting LL with a single barrier.

We first assume a weak impurity at, say, x = 0. In this limit, the barrier itself

can be treated as a small perturbation. Integrating out all degrees of freedom away

from x = 0 leads to an effective action. The resulting problem can be solved by

using renormalization group theory, and the corresponding flow equation shows that

at very low temperatures the backscattering becomes very strong. This implies that

at T = 0 even a very small barrier will be impenetrable (scales to infinity), and

effectively breaks the system into two decoupled parts. Hence, the conductance

should vanish.

In the opposite limit of a large barrier, the perturbative calculation sketched

above provides no direct way to treat the problem and hence, the starting point is

different. Now, one has to consider a system consisting of two semi-infinite wires

coupled by a weak tunneling barrier. This situation can appropriately be described

by a tunneling Hamiltonian, and tunneling from one part to the other can be con-

sidered as a perturbation. Applying the same steps as before, one finds that the

hopping term scales to zero (i.e., the tunneling perturbation is irrelevant) and thus,

the conductance again should vanish.

Using Fermi’s golden rule, one can express the current through the impurity in

terms of the boundary TDOS. At zero temperature and for repulsive interaction,

the linear conductance is strictly zero which reflects the suppressed TDOS in a LL.

When g = 1, a linear I−V curve is predicted, consistent with expectations for non-

interacting electrons which are partially transmitted through the barrier. At finite

temperature a power-law behavior for the conductance is predicted, G ∼ T
2
g
−2.

5.2.2 Double-barrier problem

Is resonant tunneling through a double-barrier structure possible when the system

under consideration is an interacting LL? Since even an arbitrarily weak single im-

purity causes the zero-temperature conductance to vanish, one might have been in-

clined to guess that a series arrangement of two barriers could only further enhance

the backscattering, so that resonances are simply not present at T = 0. However,

this is not the case and perfect resonances are possible in a (repulsively interacting)
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LL incident on a double-barrier structure (in striking contrast to the single-impurity

case) but with completely different behavior compared to the standard Fermi liquid

case. We note that, as the double-impurity problem in a LL is not integrable, exact

solutions covering a wide parameter range of interest for this transport problem are

out of reach, in marked contrast to the situation for a single impurity [84].

For simplicity, we focus exclusively on the case of symmetric barriers. Although

this case does not seem to be very realistic since any randomness in the barriers

and/or nanowire would cause asymmetry, the experimentally reported asymmetry

is not very large [71], and the resulting effect can be expected to be small and

negligible.

Fermi liquid case

The conductance due to incoherent resonant tunneling of a particle between two

Fermi liquid leads is easily calculated using the Landauer formula,

GFL

G0
=
∫
dE

(
− df

dE

)
|t(E)|2 ,

where |t(E)|2 has a Lorentzian line shape centered around the resonant energy ε0,

|t(E)|2 =
Γ2

(E − ε0)2 + Γ2
,

and f(E) is the Fermi function. When T � Γ (we put kB = 1) one finds that [85]

GFL

G0

=
πΓ

4T

1

cosh2[ε/2T ]
, (5.1)

where ε = ε0−µ is the energetic distance from the peak and µ the chemical potential

in the leads. The main outcome of this analysis is the line shape of the resonance

being the derivative of the Fermi function, its full width at half maximum has a

linear dependence on T , and the area under the peak (or the peak height multiplied

by T ) is proportional to Γ and should be independent of temperature.

Luttinger liquid: spinless case

We now consider the situation of two impurities creating an island between two

semi-infinite LL leads in the case of repulsively interacting spinless fermions. Start-

ing from the weak-barrier (strong-tunneling) limit2 it was shown [37] that for sym-

metric barriers, resonances with perfect transmission can be achieved by fine-tuning

a single parameter, e.g., the gate voltage controlling the number N of electrons on

the island.3 These resonance peaks can be observed at half-integer N and become

2This starting point is appropriate for describing coherent transport at low temperatures.
3For attractive interactions, the barriers become irrelevant, there are no resonances and one

recovers the full LL conductance without fine-tuning.
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infinitely sharp as T → 0 which is in striking contrast to the non-interacting case

where the line width becomes temperature independent for T → 0. Thus, the in-

teractions suppress all off-resonance conductance, and the conductance exactly at

the resonance crucially depends on the interaction strength g. In particular, for

1/4 < g < 1 one recovers the full LL conductance while for g < 1/4 zero con-

ductance is obtained4 (CRT regime, see [37, 74]). In the regime 1/4 < g < 1/2 a

Kosterlitz-Thouless transition should occur, with the result that for weak barriers

there should still be a resonance, while for strong barriers a resonance is only found

for g > 1/2.

For g > 1/4, the 2kF -backscattering term V (1) (all other terms are irrelevant)

increases under renormalization according to dV (1)/dl = λV (1), where l is the renor-

malization group flow parameter and λ = 1 − g > 0. One expects (see [37]) the

conductance for small T and ε (the energetic distance from the peak) to be de-

scribed by a universal scaling function,

G(T, ε)/G0 = fg(X) with X = cε/T 1−g , (5.2)

where c is a non-universal dimensionful constant. Accordingly, rescaled resonance

curves for different temperatures should collapse onto a single universal master curve.

For X � 1 (high temperatures), one finds from a perturbative calculation that

fg(X) = 1 −X2 + O(X4) , with X2 ∼ T 2g−2 ,

while for X � 1 (low temperatures), one has

fg(X) ≈ X−2/g ∼ T
2
g
−2 ,

see [37]. The scaling arguments leading to this result can be backed up by an exact

non-perturbative calculation (via refermionization) for g = 1/2. Moreover, the line

shape is predicted to be non-Lorentzian. As a result of (5.2), at low temperatures

the resonance width should scale as w ∼ T 1−g.

In 1998, Furusaki [76] has treated the incoherent resonant tunneling regime (con-

ventional ST), taking into account CT contributions that are important away from

the resonance peak. The incoherent regime allows for a master equation approach,

whose validity requires at the least (i) that the barriers are strong (i.e. weak tunnel-

ing where G � G0), and (ii) that temperature T is sufficiently high. Remarkably,

4For g > 1/4 only the 2kF -backscattering term is relevant and fine-tuning this term to zero

then corresponds to tuning to a resonance. For g < 1/4 also the 4kF -backscattering term becomes

relevant and usually destroys the resonance. Higher-order backscattering terms have systematically

increasing scaling dimensions and are therefore less relevant. A simple explanation of the infinite

sharpness of the resonance can be given as follows. An electron in a localized state between two

barriers in a LL is unable to decay at T = 0 since the TDOS into the leads vanishes. Hence, the

electron remains localized forever, with an infinite lifetime. At finite temperature, the TDOS into

a LL is non-zero away from the Fermi energy and thus, the electron will be able to decay resulting

in a thermally broadened resonance peak.
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for sufficiently strong interactions, g < 1/2, the approach works down to zero tem-

perature provided condition (i) is met. However, for g ≥ 1/2, it breaks down below

a temperature T ∗ determined by the barrier strength, where a crossover to coher-

ent resonant tunneling occurs since then the tunneling rates through the left and

right barrier grow with decreasing temperature. Then, the line shape approaches

the universal form predicted in [37]. In the incoherent regime, the line width w of

the resonance peak has a linear temperature dependence, w ∼ T , while the peak

conductance Gmax ∼ T αend−1.

Experimentally more relevant is the shape of the peak as a control parameter (e.g.

the gate voltage) is tuned through the resonance. In the presence of interactions,

the tails of the resonance line are expected to be strongly suppressed compared to

the non-interacting case. For LL leads, the line shape in the incoherent regime is

[76] (we put h̄ = kB = 1)

Gseq

G0

=
Γ0(πT/D)αend

4 Γ[1/g]T cosh[ε/2T ]

∣∣∣∣∣Γ
[

1

2g
+ i

ε

2πT

]∣∣∣∣∣

2

, (5.3)

where Γ[x] denotes the Gamma function, ε is the energetic distance from the peak,

D the electronic band width, and Γ0 the hybridization matrix element between leads

and the dot. This obviously differs from conventional Fermi liquid predictions, see

Eq. (5.1), albeit the difference is not drastic. With the charging energy Ec = πvF/g
2d

for a dot of length d, the quantity ε is related to δN = N − 1/2 via ε = EcδN .

Furthermore, for a barrier of strength V , with a dimensionless g-dependent constant

cg, the hybridization is Γ0 = cgD(πV/D)−2g [86].

The line shape in Eq. (5.3) is very close to the Fermi liquid case (5.1) and

evidently characterized by a linear temperature dependence of the line width. In

the tails of a peak, the conductance vanishes exponentially. For not too strong

barriers, CT then takes over, with the leading term given by [76]

Gcot

G0

=
cΓ2[1/g]

2Γ[2/g]

Γ2
0

(|ε| + 2πT )2

(
πT

D

)2αend

, (5.4)

where c is a dimensionless constant of order unity. Deviations from the w ∼ T

behavior directly indicate violations of the incoherent ST mechanism, either due to

CRT, CT, or because one is outside the strong barrier limit.

Very recent work [82, 83] approached the problem by considering weak electron-

electron interactions, g = 1 − κ, with κ � 1. Then, one does not have to rely

on bosonization methods, where technical problems arise for intermediate barrier

heights. Generalizing earlier work on the single-barrier limit [87], in Ref. [82] a

renormalization method is used to solve the problem in the limit of weak tunneling,

however, with partly conflicting results. In [83] the problem is treated using a

fermionic renormalization group method. The advantage of this method is that it

allows one to treat weak as well as strong barriers on an equal footing. However,

the underlying idea of treating resonant tunneling as elastic scattering process is
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possible only to lowest order in κ, as electrons are no longer good quasi-particles

[83]. Within this limited range of applicability, however, their analysis appears to

confirm the standard ST picture of resonant tunneling [37, 74, 76] for strong barriers.

In addition, Ref. [83] predicts that for weak barriers at sufficiently low temperatures,

a sharp Lorentzian resonance peak with Gmax = G0 is possible, whose line width

vanishes as a power law. This resonance is predicted to remain perfect down to

T = 0.

A recently proposed new tunneling mechanism, correlated ST [71, 81], which is

in contradiction to the incoherent ST picture and therefore led to a controversial

discussion in the literature, will be discussed in the next section together with the

relevant experimental data.

Luttinger liquid: spinful case

Most of the above picture can be carried over to the case of spinful fermions [76].

However, including spin, there can arise important differences. If the charge on

the island is odd, there will be a spin degeneracy as for a local magnetic moment.

However, the Kondo effect in a QDot connected to LL leads has been argued to

be strongly suppressed [76] except possibly in the coherent low-temperature regime

with weak barriers [37]. For a QDot connected to Fermi liquid leads, the logarithmic

increase of the conductance with decreasing temperature, reaching the unitary limit

for T → 0, reflects the marginal relevance (in the renormalization group sense)

of virtual tunneling. The reason for the suppression in the LL case can be seen

in Eq. (5.4). Thinking of the Kondo problem as elastic CT in all orders of Γ0,

we see that it should not be present because CT is an irrelevant process at low

temperatures,5 Gcot ∝ T 2αend.

For spinful fermions, assuming SU(2) spin invariance, we define g via the relation

g−1 = (g−1
c + 1)/2 [74], where gc is the usual LL parameter in the charge channel,

see also (4.5). For SWNTs we would have g−1 = (g−1
c+ + 3)/4, instead.

5.2.3 Experimental results

Auslaender et al. [88] have measured the low temperature conductance of a one-

dimensional island embedded in a single mode quantum wire. The quantum wire

was fabricated using the cleaved edge overgrowth technique and the tunneling was

through a single state of the island. Their results show that the resonance line shape

can be fitted by (5.1) while the intrinsic line width decreases in a power-law fashion

as the temperature is reduced. Their results were claimed to be in quantitative

agreement with Furusaki’s theory of incoherent resonant tunneling in a LL [76].

5Only for g = 1/2 there exists an analog of the Kondo effect [76]. Then, one can show [37]

that on resonance the tunneling is marginally relevant leading to a logarithmic increase of the

conductance with decreasing temperature when higher-order terms are included.
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On the other hand, Postma et al. [71] have probed transport through a double

barrier artificially created in a metallic SWNT (see Fig. 5.6). In metallic NTs,

strong bends have been shown to act as nanometer-sized tunnel barriers for electron

transport [89], and such NT devices have been fabricated with different island lengths

ranging between 20 and 50 nm.

When both bias and gate voltage are tuned, Coulomb diamonds demonstrating

Coulomb blockade (i.e., single electron tunneling) are observed. If we consider the

temperature dependence of a single conductance peak (Vb = 0), the experimental

data shows that the peak height Gmax and the peak width w both decrease with

decreasing temperature (Fig. 5.7). A quantitative analysis reveals a power-law be-

havior for the conductance maximum at low temperatures, Gmax ∼ T 0.68, whereas

the resonance width follows a linear temperature dependence, w ∼ T . Notice that

the conductance is predicted to vanish in the limit T → 0.

These experimental results have been interpreted in terms of correlated ST [71,

81], since the standard picture of incoherent resonant tunneling [76] is inconsis-

tent with the observed temperature dependence of the conductance peak height.

Thorwart et al. [81] showed, using a master equation approach in the limit of weak

tunneling where one can use the instanton approximation, that higher-order tunnel-

ing processes in combination with correlations among tunneling events on and off

the island dominate the behavior of G for high temperatures. For thermal lengths

larger than the width of the 1D dot, these correlations should invalidate the con-

ventional ST picture leading to a linear temperature dependence of the resonance

width, w ∼ T , and a power-law temperature dependence of the conductance maxi-

mum, Gmax ∼ T αend−end−1. Now, the scaling is governed by αend−end = 2αend, which

is typical for tunneling between the ends of two LLs.6 However, this mechanism has

been questioned by a number of authors [82, 83], but without offering a consistent

explanation of the experimental data.

Finally, in this context also other experiments on SWNTs are of interest, where

Fabry-Perot type oscillations in the conductance of a double-barrier structure with

nearly transparent barriers were observed [65, 90, 91, 92]. Remarkably, it is experi-

mentally possible to tune the barrier strength via additional gate voltages from weak

to strong barriers, and to observe the corresponding crossover from Fabry-Perot type

oscillatory behavior to ST (Coulomb blockade) peaks [92].

6In a coherent tunneling event, the island can be seen as a single impurity and hence, the

tunneling occurs between the ends of two LLs. This is a reasonable assumption, since the thermal

length LT = h̄vF /kBT = 70 nm at 300 K is larger than the distance between the two barriers in

the experiment [71] at all temperatures.
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Figure 5.6: Fabrication of the NT device using an atomic force microscope. (A) NT

between Au electrodes on top of a Si/SiO2 substrate (bar = 200 nm). The tip is

pressed down onto the substrate and moved along the path indicated by the arrow.

(B) NT after creation of a buckle. A second dragging action is performed as indicated

by the arrow. (C) Double-buckle NT device. (D) Enlarged image of the double-buckle

device (bar = 20 nm). (Taken from [71].)
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Figure 5.7: Left: zero-bias conductance versus gate voltage for a single conductance

peak. The numbers above the curves indicate the temperature in Kelvin, respectively.

Solid lines show fits to Eq. (5.1). (From [71].) Right: quantitative analysis of

the measured data. G∗ denotes the integrated conductance. Solid lines represent

the theoretical prediction for gc+ = 0.23, dashed lines correspond to the power laws

(notice the double-logarithmic scale). The left inset shows single conductance peaks

while the right inset shows the peak width versus temperature. (From [81].)
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Chapter 6

Nanotube quantum dot

In this chapter the resonant tunneling through a double-barrier structure in a SWNT

is studied. The motivation for this work was given in the last chapter where we

reviewed recent experimental results and the resulting controversial discussion of

resonant tunneling in a LL.

First, we present a general theoretical model for a LL with two impurities con-

taining the limit of spinless fermions as well as the spinful case and the SWNT. We

derive the effective action by integrating out the bulk degrees of freedom away from

the location of the two tunneling barriers. Within this model we then determine the

resonance condition analytically in both the weak- and strong-barrier limit by means

of a cumulant expansion and a symmetry consideration, respectively. Further, in

order to obtain the full line shape of the resonance for arbitrary single-barrier trans-

mission, we develop a real-time (Keldysh) quantum Monte Carlo (QMC) approach.

An alternative would be to use standard Euclidean-time QMC simulations, and then

use analytic continuation techniques to extract the conductance. In Ref. [93], the

latter approach was chosen for the single-barrier problem, where the analytic con-

tinuation was performed using Padé approximants. We have also tried this for the

double-barrier problem, but found it to be completely uncontrolled and unreliable.

This is not too surprising as the analytic continuation of numerical data is math-

ematically ill-defined and known to work only in fortunate cases. In contrast, the

Keldysh QMC simulation suffers from the well-known sign problem due to quantum

interference of different real-time paths [94]. This poses a problem to simulations

at very low temperatures, but nevertheless allows us to study a wide parameter

regime of interest in a perfectly well-controlled way. The single-barrier problem was

studied successfully by this technique before [95, 96], and the present work repre-

sents the generalization to the more challenging double-barrier case. Note that in the

single-barrier problem, it has been possible to reach the asymptotic low-temperature

regime [95].

Below, we will pay particular attention to how the barrier strength influences

the physical mechanisms of transport through the double barrier, having in mind

the actual experimental setup of Ref. [92]. To keep the number of free parameters
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manageable, we shall present results for the linear conductance only for symmetric

barriers and temperatures well below the single-particle spacing on the dot. Thereby

we also focus on the most interesting and controversial regime. While it is possible

to use our approach also for finite interaction range, we only consider the standard

case of an effective short-range interaction.

The validity of our method is demonstrated for the non-interacting case by com-

paring numerical results to the exact solution (for arbitrary barrier height) which

can be obtained via refermionization. We identify the coherent resonant tunneling

regime where the line shape shows universal scaling behavior. The line width is

found to have a power-law temperature dependence in accordance with theoretical

predictions. Further, we identify the regime of correlated sequential tunneling but

do not find any evidence for the incoherent sequential tunneling regime which re-

solves the controversy described in the previous chapter. With spin, we identify

resonant tunneling peaks, but no Kondo effect can be found in this setup.

6.1 Theoretical model

To keep our following discussion as general as possible we will consider an infinite

LL with f = 1, 2, 4 flavors, and a = 1, . . . , f corresponding to the different channels

which are LLs with interaction parameters ga (g1 < 1 while ga6=1 = 1) and velocities

va = vF/ga. The case f = 1 describes a spinless LL while f = 2 describes the

spinful case and f = 4 corresponds to a SWNT. Throughout the whole chapter we

set h̄ = 1.

We consider a SWNT dot formed by two barriers modeled by short-ranged

scattering potentials V± centered at x = ±d/2, i.e., V (x) =
∑

p=± Vpδ(x − pd/2).

This gives rise to the contribution HV =
∫
dxV (x)ρ(x) to the Hamiltonian, where

ρ(x) = ψ†(x)ψ(x). Ignoring electron-electron umklapp- and backscattering pro-

cesses, the Euclidean action in terms of the bosonic phase fields θa(x, τ) reads

S =
1

2βvF

∑

a,n

∫ dk

2π

(
ω2

n + v2
ak

2
)
|θ̃a(k, ωn)|2 + Simp[q] , (6.1)

where β = 1/kBT is the inverse temperature and the Matsubara frequencies are

ωn = 2πn/β. The impurity part is given by [66]

Simp[q] =
∑

p=±
Vp

∫ β

0
dτ

{
∏

a

cos

[
qap(τ) +

pπ

f
N (0)

a

]
+ δf4

∏

a

sin

[
qap(τ) +

pπ

f
N (0)

a

]}
,

(6.2)

where we have used the substitution

qap(τ) =

√
4π

f
θa(pd/2, τ) (6.3)

for later convenience. Additionally, we made use of the Fourier conventions
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θ(x, τ) =
1

β

∑

n

∫
dk

2π
θ̃(k, ωn)e

iωnτ+ikx ,

θ̃(k, ωn) =
∫
dx
∫ β

0
dτθ(x, τ)e−iωnτ−ikx = θ̃∗(−k,−ωn) .

The external “charges” N (0)
a are given by

N (0)
a =

√
f

π

∫ d/2

−d/2
dx〈∂xθa〉 ,

where 〈. . .〉 denotes a quantum average with respect to S, and their physical meaning

will be discussed later.

To make progress, we integrate out the bulk modes θa(x) away from the location

x = ±d/2 of the two tunneling barriers. Since the corresponding Hamiltonian is

quadratic, this trace can be performed exactly and is done by introducing Lagrange

multipliers to enforce (6.3). Additionally, we introduce new fields according to

Qa(τ) =
√
f/4π {θa(d/2, τ) + θa(−d/2, τ)} ,

Na(τ) =
√
f/π {θa(d/2, τ) − θa(−d/2, τ)} , (6.4)

so that

θa(pd/2, τ) =

√
π

f

{
Qa(τ) +

p

2
Na(τ)

}
. (6.5)

The physical interpretation of these fields is that the average phase Qa corresponds

to “charge” of type a being transferred across the double barrier and is therefore

related to the current Ia through the two barriers, Ia = (ie/2)(dQa/dτ), while the

phase difference Na corresponds to “charge” of type a sitting on the island. We will

consider only the equilibrium situation here, and we allow for

〈Na(τ)〉 ≡ N (0)
a =

|∆Ea|
∆ε

6= 0 ,

due to external gates or a magnetic field for a = c+, s+, respectively, and ∆ε =

πvF/fd is the level spacing. Therefore, by tuning the gate voltage we can adjust

N
(0)
c+ via |∆Ec+| = |EF |, and by tuning the magnetic field B we can vary N

(0)
s+ via

|∆Es+| = geµBB, where ge denotes the Landé-factor and µB the Bohr magneton. In

contrast, N
(0)
c− is not tunable but actually very small1 so that we can put N

(0)
c− = 0,

and N
(0)
s− = 0 always. Since for laboratory magnetic fields N

(0)
s+ is always very small,

we mainly focus on N
(0)
s+ = 0.

After doing all the algebra (see Appendix C) we finally end up with the effective

action

Seff [Qa, Na] =
∑

a,n6=0

π|ωn|
2fβga

{
4|Q̃a(ωn)|2

1 + e−|ωn|/ωa
+

|Ña(ωn)|2
1 − e−|ωn|/ωa

}
+
∫ β

0
dτVeff [Qa(τ), Na(τ)] ,

(6.6)

1This term reflects KK ′ symmetry breaking and is important for very large barriers only.
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where we have introduced ωa = va/d. In order to prevent unphysical ultraviolet

divergences, the Matsubara frequencies are restricted by |ωn| ≤ ωc, where ωc denotes

a suitable UV cutoff. Further, we have included the zero-mode n = 0 into the

impurity part, rendering Vimp into the effective potential

Veff [Qa, Na] = Vimp[Qa, Na] +
1

2

∑

a

EaδN
2
a , (6.7)

where δNa = Na −N (0)
a and Ea = πvF/fdg

2
a is the charging energy (a = c+) or the

level spacing (a = c−, s+, s−), respectively. Obviously, the field Na has a mass gap

while Qa remains massless. The impurity potential has the general form

Vimp[Qa, Na] =
∑

p

Vp

{
∏

a

cos

[
2π

f

(
Qa +

p

2
Na

)]
+ δf4

∏

a

sin

[
2π

f

(
Qa +

p

2
Na

)]}
.

(6.8)

Note that the sine term is only present in the f = 4 case.

6.2 Resonance condition

The next step is to determine the resonance condition for a system described by

the effective model (6.6). This can be done analytically in both the weak- and

strong-barrier limit. The central result of this section is summarized in Table 6.1.

6.2.1 Weak-barrier limit

First, we consider the weak-barrier limit where Vp � EF . Since Na has a mass

gap, one can safely integrate out all fields {Na} under a cumulant expansion for the

effective potential of the field Qa [74]. For simplicity, we only consider the symmetric

case, V+ = V− = V .

The first order term of the cumulant expansion (which corresponds to 2kF -

backscattering) is given by V (1) = 〈Vimp〉N , where 〈. . .〉N denotes the quantum

average over the fields {Na}, with the final result (see Appendix D)

V (1) =
V

2f−1
exp

[
− π2

2f 2

∑

a

〈δN2
a 〉N

]
∑

{σa}=±
cos

[
2π

f

∑

a

σaQa

]

× cos

[
π

f

∑

a

σaN
(0)
a

](
1 + δf4

∏

a

σa

)
. (6.9)

A resonance in the conductance requires V (1) = 0, since otherwise this term would

grow under a renormalization group transformation leading to a vanishing conduc-

tance at T = 0. Assuming 1 + δf4
∏

a σa 6= 0, the condition for a resonance reads

∑

a

σaN
(0)
a =

f

2
(2n+ 1) , (6.10)
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with n being an arbitrary integer number. For f = 1, Eq. (6.10) implies resonances

at N (0) = half-integer, while for f = 2 we have

N (0)
c = n + n′ + 1 = even/odd integer,

N (0)
s = n− n′ = odd/even integer.

In the case of a SWNT (f = 4), we have to take into account that N (0)
a = 0 for

a = c−, s−, and therefore condition (6.10) results in

N
(0)
c+ = 2(n+ n′) + 2 ,

N
(0)
s+ = 2(n− n′) .

In the absence of a magnetic field (since then also N (0)
s , N

(0)
s+ = 0), a simple formula

summarizes the resonance condition for different f ,

N
(0)
1 =

f

2
(2n+ 1) , (6.11)

where N
(0)
1 corresponds to the (total) charge channel.

The next step is to check the stability of such a resonance specified by the

condition (6.10). Suppose we have tuned the 2kF -backscattering term (6.9) to zero,

then the transmission will depend on whether the next-to-leading terms are relevant

or not (higher-order terms in the cumulant expansion systematically become less

relevant). Accordingly, we have to analyze the stability under perturbations that

are generated in second order of the cumulant expansion (corresponding to 4kF -

backscattering),

V (2) =
1

2

(
〈V 2

imp〉N − 〈Vimp〉2N
)
.

The result is also derived in Appendix D and reads

V (2) =
V 2

22f+1

∑

p,p′,{σa,σ′
a}=±

∏

a

exp

[
i
2π

f
(σa + σ′

a)Qa

]
exp

[
i
π

f
(pσa + p′σ′

a)N
(0)
a

]

×
(

exp

[
− π2

2f 2
(pσa + p′σ′

a)
2〈δN2

a 〉N
]
− exp

[
−π

2

f 2
〈δN2

a 〉N
])

×
(

1 + δf4

∏

a

σa

)(
1 + δf4

∏

a

σ′
a

)
. (6.12)

In general, V (2) does not vanish, even on resonance. We now assume that
∏

a

σa 6= −1 and
∏

a

σ′
a 6= −1 , (6.13)

which, of course, is only important for the case f = 4. To see whether the resonance

is stable or not one has to determine the most relevant perturbation generated by

V (2). Therefore, we consider the operator

Ô =
∏

a

exp

[
i
2π

f
(σa + σ′

a)Qa

]
,
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which has the scaling dimension2 (see Appendix D)

∆ =
2

f

∑

a

(1 + σaσ
′
a)ga , (6.14)

and becomes relevant for ∆ < 1. In the spinless case, f = 1, Eq. (6.14) yields

∆ = 2(1 + σσ′)g = 4g ,

since only σ = σ′ = ±1 is possible, and hence, V (2) becomes relevant for g < 1/4 or,

in other words, the resonance remains stable for all g > 1/4. For f = 2, we have

∆ = (1 + σcσ
′
c)gc + (1 + σsσ

′
s) = 2gc ,

since only σc = σ′
c = ±1 and σs = −σ′

s has to be considered (the case σs = σ′
s is

irrelevant, ∆ > 1). Accordingly, the resonance remains stable for all gc > 1/2. In

the case of a SWNT (f = 4) the scaling dimension is

∆ =
1

2

{
(1 + σc+σ

′
c+)gc+ + σs+σ

′
s+ + σc−σ

′
c− + σs−σ

′
s− + 3

}
.

The (probably expected) result ∆ = gc+ is prevented by (6.13) and hence, one has

at least ∆ = gc+ + 1 > 1. Therefore, V (2) is always irrelevant in this case. This

remarkable and surprising result is solely due to the presence of the sine term in

the impurity potential (6.8). As a consequence, in SWNTs the resonance remains

stable for all values of the interaction strength while for f 6= 4 the resonance is only

stable for g1 > f/4. Thus, the general stability criterion then reads

g1 >
f

4
(δf1 + δf2) . (6.15)

The main results of this section are again summarized in Table 6.1.

6.2.2 Strong-barrier limit

Since the cumulant expansion only works in the weak-barrier limit we need also

to check what happens in the opposite case when the barriers are very strong and

hence, tunneling is weak. We anticipate that in this limit the physics associated

with the Coulomb blockade should become operative. Provided the capacitance of

the dot is small, the charge on the island will be fixed, and the charging energy

represents a large energy barrier to add another electron. Transmission through the

2Operators whose influence grows on large scales (small momenta) are called relevant. The

problem of relevancy of perturbations can be formulated and solved in a general form. Therefore,

we introduce the scaling dimension ∆, that is given by 〈Ô(~r)Ô†(~r ′)〉 ∼ |~r − ~r ′|−2∆. Then, the

following theorem holds: A local perturbation with scaling dimension ∆ (and zero conformal spin)

is relevant if ∆ < 1 and irrelevant if ∆ > 1. The case ∆ = 1 is called marginal and needs further

investigation to decide whether the perturbation needs to be taken into account or not.
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f resonance condition stability criterion

1 N (0) = n+ 1
2

g > 1
4

2 N (0)
c = 2n+ 1 gc >

1
2

4 N
(0)
c+ = 4n+ 2 stable ∀ gc+

Table 6.1: Resonance condition and stability criterion for the different cases f =

1, 2, 4 in the absence of a magnetic field.

dot will thereby be strongly suppressed until the gate voltage is adjusted to a point

where the energy cost to add another electron vanishes.

Now, we expect resonances when tunneling events connect different minima of

the effective potential [37]. Assuming that we start in a minimum, the hopping

process then has to be a symmetry transformation of Veff . Therefore, we consider

the general transformation of the variables Na and Qa,

Na → 2N (0)
a −Na ,

Qa → Qa + ζa , (6.16)

which transforms the effective potential (6.7) into (again V+ = V− = V )

Veff → V
∑

p

{
∏

a

cos

[
2π

f

(
Qa +

p

2
Na

)
+

2π

f

(
ζa − pN (0)

a

)]

+ δf4

∏

a

sin

[
2π

f

(
Qa +

p

2
Na

)
+

2π

f

(
ζa − pN (0)

a

)]}
+

1

2

∑

a

Ea

(
Na −N (0)

a

)2
,

(note that p → −p has no influence). If we, for the moment, only consider the

transformation of Qa, we see that there exists a general symmetry of Veff when

f = 1 : ζ = 0 ,

f = 2 : ζa = 0, 1 ∀ a ,
f = 4 : ζa = 0, 1, 2, 3 ∀ a ,

ζa = 0, 2 (each 2 times) ,

ζa = 1, 3 (each 2 times) .

This general symmetry, however, does not give rise to a resonance. But when N (0)
a

is tuned to a special value, there can be an additional symmetry present. As we will

see, the presence of this extra symmetry precisely corresponds to the condition for

resonance.

Demanding invariance of Veff under the full transformation (6.16) then leads to

the condition

ζa + pN (0)
a = λp

a mod f ,
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where λp
a is an integer number that can be assumed as λp

a = 0, . . . , f − 1, without

loss of generality. Due to the structure of Veff there exists an additional restriction

for λp
a depending on f ,

f = 1 : λp = 0 ,

f = 2 : λp
a = 0, 1 ∀ a ,

f = 4 : λp
a = even, odd ∀ a . (6.17)

In principle, there are three possibilities for λp
a to be composed:

(1) λp
a = 2ηp

a ∀ a (6.18)

⇒ ζa = η̂+
a mod f , N (0)

a = η̂−a ,

(2) λp
a = 2ηp

a + 1 ∀ a (6.19)

⇒ ζa = (η̂+
a + 1) mod f , N (0)

a = η̂−a ,

(3) λp
a = 2ηp

a + δp− ∀ a (6.20)

⇒ ζa =
(
η̂+

a +
1

2

)
mod f , N (0)

a = η̂−a +
1

2
,

with integer η’s and η̂p
a = η+

a + pη−a .

For f = 1, only (6.20) corresponds to a non-trivial symmetry leading to

N (0) = n +
1

2
, ζ =

1

2
,

with integer n. Here, a possible magnetic field has, of course, no influence. For

f = 2, there are several non-trivial additional symmetries possible (see Table 6.2).

The absence of a magnetic field, leading to N (0)
s = 0, further selects only one of

these possibilities,

N (0)
c = 2n+ 1 with ζc = 1 , ζs = 0 or ζc = 0 , ζs = 1 .

In [37], this resonance was assigned to a sort of Kondo effect since the transformation

with ζc = 1, ζs = 0 was interpreted as tunneling of an electron from the left to the

right lead in combination with a spin flip of the electron and the dot while ζc = 0,

ζs = 1 should correspond to a process where an electron in one lead flips its spin and

that of the island. However, as argued in [76], a true Kondo effect (corresponding

to elastic CT in all orders) is not possible since CT is irrelevant. As we will show in

Sec. 6.4, resonances at odd integer values of N (0)
c correspond to resonant tunneling

peaks, but no Kondo effect can be found in this setup. For B 6= 0, resonances can

(in principle) also occur at N (0)
c = even or N (0)

c = half-integer. However, since then

also a precise tuning of N (0)
s to special values is necessary and in general requires

very high magnetic fields, B = 0 is more important. For f = 4, the additional

non-trivial symmetries are listed in Table 6.3. For B = 0, the only surviving one is

N
(0)
c+ = 4n+ 2 with ζc+ = 0 , ζa6=1 = 2 or ζc+ = 1 , ζa6=1 = −1 .
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ζ N (0) λ+ λ−

η̂+ = 2n (6.18) 0 2n 0 0

(6.19) 1 2n 1 1

(6.20) 1
2

2n + 1
2

1 0

η̂+ = 2n+ 1 (6.18) 1 2n + 1 0 0

(6.19) 0 2n + 1 1 1

(6.20) −1
2

2n− 1
2

1 0

ζa = ±1
2
∀ a N (0)

a = 2n± 1
2
∀ a

ζc = 1
2
, ζs = −1

2
N (0)

c = 2n+ 1
2
, N (0)

s = 2n− 1
2

(ζc, ζs) = (1, 0), (0, 1) N (0)
c = 2n+ 1 , N (0)

s = 2n

Table 6.2: Possible symmetries for f = 2 can be combined from the first table (the

index a is suppressed). Non-trivial additional symmetries taking into account (6.17)

are listed below (corresponding conditions with c↔ s are also possible).

ζ N (0) λ+ λ−

η̂+ = 4n (6.18) 0 4n + 2 2 2

(6.19) 1 4n + 2 3 3

(6.20) 1
2

4n− 3
2

3 2

η̂+ = 4n+ 1 (6.18) 1 4n− 1 0 2

(6.19) 2 4n− 1 1 3

(6.20) 3
2

4n− 1
2

1 2

η̂+ = 4n+ 2 (6.18) 2 4n 2 2

(6.19) −1 4n 3 3

(6.20) −3
2

4n + 1
2

3 2

η̂+ = 4n+ 3 (6.18) −1 4n + 1 0 2

(6.19) 0 4n + 1 1 3

(6.20) −1
2

4n + 3
2

1 2

ζc+,s+ = 1 , ζc−,s− = 2 N
(0)
c+,s+ = 4n+ 3

(ζc+, ζs+, ζc−,s−) = (1,−1, 2), (2, 0,−1) N
(0)
c+ = 4n+ 3 , N

(0)
s+ = 4n+ 1

(ζc+, ζs+, ζc−,s−) = (2, 0, 2), (−1, 1,−1) N
(0)
c+ = 4n , N

(0)
s+ = 4n+ 2

Table 6.3: Possible symmetries for f = 4 can be combined from the first table (the

index a is suppressed). Non-trivial additional symmetries taking into account (6.17)

are listed below (corresponding conditions with c+ ↔ s+ are also possible).
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t1 tP+1
t’

θ

θ ’

Figure 6.1: Keldysh contour C with the field θ living on the forward branch, and θ ′

on the backward branch.

In the presence of a magnetic field, resonances are (in principle) possible for all

integer values of N
(0)
c+ , however, one would expect no “half-integer resonances”.

Thus, in the absence of a magnetic field, where we effectively have N
(0)
a6=1 = 0, the

only non-trivial condition for an extra symmetry is

N
(0)
1 =

f

2
(2n+ 1) ,

which coincides with the resonance condition (6.11) obtained from the cumulant

expansion in the weak-barrier limit.

6.3 Functional integral approach

In this section we develop a real-time (Keldysh) functional integral approach that

allows for the numerically exact computation of the conductance at finite temper-

ature and possibly finite voltage through the quantum dot. For simplicity, we only

consider f = 1, 2 (charge and possibly spin). To formulate the QMC algorithm, we

use the linear combinations introduced in (6.4). The quadratic part of the Euclidean

action, after integrating out the boson-field degrees of freedom away from x = ±d/2,

is then

SE =
∑

a,ωn

π|ωn|
2fgaβ

{
4|Q̃a(ωn)|2

1 + exp[−|ωn|/ωa]
+

|Ña(ωn)|2
1 − exp[−|ωn|/ωa]

}
, (6.21)

see also (6.6). We will now develop a QMC scheme for the conductance similar to

Ref. [95].

Consider the discretized Keldysh contour C running from t = 0 to tmax and back

to zero,3 see Fig. 6.1. We keep tmax finite and define the time spacing by ∆t = tmax/P

with Trotter number P . At times tj = (j− 1)∆t for j = 1, . . . , P , we have the fields

3The actual idea of Keldysh-formalism is that the system under consideration is in a well defined

equilibrium state at t = −∞. Then, one propagates the system in time up to the point t = +∞ (the

contour runs infinitesimally above the real axis) thereby adiabatically switching on the interaction

and other physical influences. Afterwards, one propagates back to t = −∞ (the contour now runs

infinitesimally below the real axis). Thus, all influences besides the interaction cancel since the

contour is passed through in both directions leading to the opposite sign.
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Qaj, Naj living on the forward branch, and Q′
aj, N

′
aj on the backward branch. Note

that the unknown initial state is unimportant since we only need the QMC result

for t→ ∞ which, of course, is independent of the initial state.

The impurity contribution to the action (where the weight in the real-time func-

tional integral is exp[iS]) is found from (6.5), (6.8) with Simp = −∑P
j=1 ∆t{Vimp(j)−

V ′
imp(j)},

Simp = −
∑

p=±
∆tVp

P∑

j=1

{
∏

a

cos

[√
4π

f
θaj(pd/2)

]
−
∏

a

cos

[√
4π

f
θ′aj(pd/2)

]}
.

To do the QMC, it is convenient to switch to the Coulomb gas picture by expanding

the impurity propagator for sufficiently small ∆tVp. Following Ref. [95], we choose

a second-order propagator (so the short-time propagator is correct up to third-

order corrections in ∆tVp). With Coulomb gas charges σajp (σ′
ajp), that live on the

forward (backward) branch of C and can take values 0,±1,±2, the expansion reads

(see Appendix E for details)

eiSimp =
∑

{σ,σ′}=0,±1,±2




∏

j,p

G(f)
p (σajp)G

∗(f)
p (σ′

ajp)



 (6.22)

× exp


−i2π

f

∑

a,j,p

{
σajp

(
Qaj +

p

2
Naj

)
− σ′

ajp

(
Q′

aj +
p

2
N ′

aj

)}
 .

From there we can easily read off the explicit form of the propagators G(f)
p (σ). It

is most convenient to switch at this stage to half-integer or integer “quasi-classical”

charges ηajp = (σajp + σ′
ajp)/2, and integer “quantum” charges ξajp = σajp − σ′

ajp.

Since |σ|, |σ′| ≤ 2, we have (for both signs) to ensure |ηajp ± 1
2
ξajp| ≤ 2, and, in

addition, these numbers must be integer, i.e., one cannot choose η freely for given

ξ and vice versa. In order to have the product GG∗ in the Coulomb gas expansion

(6.22) valid up to order (∆tVp)
2, one must have |ξajp| ≤ 2 and

|ηajp +
1

2
ξajp| + |ηajp −

1

2
ξajp| ≤ 2 ,

(this statement is non-trivial but can easily be checked explicitly). The respective

non-zero entries of the “Greens function”

G̃(f)
p (ξa, ηa) = G(f)

p (ξa + ηa/2)G∗(f)
p (ξa − ηa/2) (6.23)

are shown in Tables 6.4 and 6.5 for f = 1 and f = 2, respectively. Because of the IR

divergence in the Qa-action (6.21), only configurations subject to electroneutrality

in the form
P∑

j=1

∑

p=±
ξajp = 0 (6.24)

for arbitrary a do contribute to the partition function.
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ξ η G̃(1)
p

0 0 1 − 2α2
p

0 ±1 α2
p

1 ±1/2 ∓iαp

−1 ±1/2 ±iαp

±2 ±1 −α2
p/2

±2 ∓1 −α2
p/2

±2 0 α2
p

Table 6.4: Non-zero entries of the Greens function (6.23) for the spinless case

f = 1. We use αp = ∆tVp/2.

We now need to address the coupling to external voltages. First, the coupling

to a gate voltage favors an “external charge” N (0) on the dot in the a = 1 channel.

This can be introduced by letting N1 → N1 +N (0) on both branches of the Keldysh

contour. Using Eq. (6.22), this leads to a factor

Agate = exp



− iπN
(0)

f

P∑

j=1

∑

p=±
pξ1jp





in the real-time partition function. Second, the applied bias voltage Vb can be

introduced by noting that Q1 is just the charge transferred across the dot. This

amounts to shifting Q1 on both branches according to

Q1(t) → Q1(t) +
feVb

2π
(t− t0) ,

with some arbitrary reference time t0 that drops out finally due to electroneutrality

(6.24) . This shift definitely works in the weak-barrier limit, as is clear from Ref. [97].

However, up to the usual prefactor discussion of factors of gc due to the influence

of attached reservoirs, it also works in the opposite limit of strong barriers, as

is explained in the appendix of Ref. [37]. We then expect that this prescription

really works throughout the whole parameter space, albeit possibly prefactors in

the strong-barrier limit could be wrong. Using again Eq. (6.22) this leads to the

factor

Abias = exp


−i∆teVb

P∑

j=1

j
∑

p=±
ξ1jp




in the partition function. With the above shift in Q1, the current-voltage character-

istics can be obtained from

I(Vb) = (fe2/h)Vb + e〈Q̇1〉 .
While our QMC method can obtain the full non-linear conductance, we focus ex-

clusively on the linear conductance,

G

fe2/h
= 1 − lim

t→∞
∂tIB(t) . (6.25)
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ξ1 ξ2 η1 η2 G̃(2)
p

0 0 0 0 1 − 4α2
p

0 0 ±1 ±1 α2
p

±1 ±1 ∓1/2 ∓1/2 iαp

±1 ∓1 ∓1/2 ±1/2 iαp

±1 ±1 ±1/2 ±1/2 −iαp

±1 ∓1 ±1/2 ∓1/2 −iαp

±2 ±2 0 0 α2
p

±2 ∓2 0 0 α2
p

±2 0 ±1 0 −α2
p

±2 0 ∓1 0 −α2
p

±2 0 0 ±1 α2
p

±2 0 0 ∓1 α2
p

0 ±2 ±1 0 α2
p

0 ±2 ∓1 0 α2
p

0 ±2 0 ±1 −α2
p

0 ±2 0 ∓1 −α2
p

Table 6.5: Non-zero entries of the Greens function (6.23) for the spinful case f = 2.

Here we use αp = ∆tVp/4.

We thus have to compute IB(t) at sufficiently long times, where the time derivative

can be obtained easily by numerical differentiation of the expectation value

IB(tj) = −2π

f
∂Vb

〈
Q1j +Q′

1j

2

〉
= 〈ÎB(tj)〉 . (6.26)

From Eq. (6.22) it is apparent that we can extract the expectation value (6.26) by

considering

∑

p

∂

∂ξ1jp
exp



−iπ
f

∑

a,k,p′
ξakp′

{
Qak +Q′

ak +
p′

2
(Nak +N ′

ak)

}



= −2πi

f
(Q1j +Q′

1j) exp[. . .] ,

such that we get IB from the formal correspondence

ÎB(tj) = ∂Vb

1

2i

∑

p=±

∂

∂ξ1jp
.

The ξ-derivative does not act on ξ’s in the Greens function G̃ nor on the bias factors

Abias and Agate, but only on terms coming from the expansion (6.22). Alterna-

tively, one can develop a generating functional approach that leads to the same final
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answers. Expanding Abias to lowest order in Vb finally gives

IB(tk) =
1

Z

∑

{ξ,η}
exp



−iπN
(0)

f

∑

j,p

pξ1jp








∏

j,p

G̃(f)
p (ξajp, ηajp)



Ak(ξ, η) ,

with

Ak(ξ, η) = −1

2



∑

j′,p′
j ′ξ1j′p′



∑

p′

∂

∂ξ1kp′

〈
exp


−iπ

f

∑

a,j,p

(6.27)

×
{
ξajp

(
Qaj +Q′

aj +
p

2
(Naj +N ′

aj)
)

+ ηajp

(
Qaj −Q′

aj +
p

2
(Naj −N ′

aj)
)}]〉

.

It then only remains to compute the above average which is over the Gaussian

Qa, Na degrees of freedom (see Appendix E). This is an equilibrium average which

is most conveniently done in Euclidean time using SE in Eq. (6.21), supplemented by

analytic continuation to real time (which here is unproblematic since done exactly).

The result can be put into the standard framework of dissipative quantum mechanics

[86] by defining spectral densities

J±,a(ω) =
πgaω

f
(1 ± cos[ω/ωa]) e

−ω/ωc .

Associated correlation functions are (λ = ±)

Lλ
a(t) =

1

π

∫ ∞

0
dω

Jλ,a(ω)

ω2

cosh[ω(β/2− it)] − δλ,+ cosh[ωβ/2]

sinh[ωβ/2]
,

where the subtraction of the t = 0 part for λ = + reflects the IR divergence leading

to electroneutrality (6.24). The resulting contribution to the action, the so-called

“influence functional” S ′ = iΦ [86], is then in discretized notation given by

Φ =
∑

a,p,p′

P∑

j=1

j∑

k=1

{
ξajp

(
S+

ajk + pp′S−
ajk

)
ξakp′ + 2iξajp

(
R+

ajk + pp′R−
ajk

)
ηakp′

}
, (6.28)

with matrices for k < j given by

Sλ
ajk = Re

[
Lλ

a([j − k]∆t)
]
,

Rλ
ajk = Im

[
Lλ

a([j − k]∆t)
]
,

and diagonal elements [98] (see Appendix E)

Rλ
ajj = − 1

π

∫ ∞

0
dω

Jλ,a(ω)

ω2

1 − sin[ω∆t]/ω∆t

ω∆t

,

Sλ
ajj =

1

π

∫ ∞

0
dω

Jλ,a(ω)

ω2
coth[ωβ/2]

{
1 − cos[ω∆t]

(ω∆t)2
− 1

2
δλ,+

}
.

Note that the influence functional (6.28) then has the real part

Φ′ =
1

2

∑

a,p,p′

∑

j,k

ξajpξakp′

{
S+

ajk + pp′S−
ajk

}
, (6.29)
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ξ G(1)
p (ξ, z) G′(1)

p (ξ, z)

0 1 − 2α2
p(1 − cos z) −2α2

p sin z

±1 ±2αp sin[z/2] ±αp cos[z/2]

±2 α2
p(1 − cos z) α2

p sin z

Table 6.6: Greens function (6.31) for the spinless case f = 1. Listed is also the

derivative G′ = ∂zG needed later on. We use αp = ∆tVp/2.

ξ1 ξ2 G(2)
p (ξ1, ξ2, z1, z2) G′(2)

p (ξ1, ξ2, z1, z2)

0 0 1 − 4α2
p(1 − cos z1 cos z2) −4α2

p sin z1 cos z2

±1 ±1 ±2αp sin[(z1 + z2)/2] ±αp cos[(z1 + z2)/2]

±1 ∓1 ±2αp sin[(z1 − z2)/2] ±αp cos[(z1 − z2)/2]

0 ±2 2α2
p(cos z1 − cos z2) −2α2

p sin z1
±2 0 −2α2

p(cos z1 − cos z2) 2α2
p sin z1

±2 ±2 α2
p(1 − cos[z1 + z2]) α2

p sin[z1 + z2]

±2 ∓2 α2
p(1 − cos[z1 − z2]) α2

p sin[z1 − z2]

Table 6.7: Greens function (6.31) for the spinful case f = 2 (only nonzero entries

are shown). We use αp = ∆tVp/4. The derivative is with respect to z1, G
′ = ∂z1G.

where we redefine the diagonal elements S−
ajj → 2S−

ajj, and define the elements for

j < k symmetrically (we do this only in the real part). The imaginary part of Φ

can be written as −i∑a,k,p zakp(ξa)ηakp, with auxiliary variables

zakp(ξa) = −2
∑

j≥k

∑

p′
ξajp′

{
R+

ajk + pp′R−
ajk

}
. (6.30)

Since the η’s only appear linearly (and otherwise only in G̃), we can now perform

the trace over all η-variables analytically. This leads to effective Greens functions

G(f)
p (ξajp, zajp) =

∑

{η}
G̃(f)

p (ξajp, ηajp) exp

[
i
∑

a

zajpηajp

]
, (6.31)

where the sum goes over the possible values of ηajp for a given ξ-configuration.

Carrying out the summation leads to Tables 6.6 and 6.7 for f = 1 and f = 2,

respectively.

Since the integrand in the partition function is invariant under the change ξ → −ξ
for all charges, the gate voltage factor can be written as a cosine. We can then

perform the formal ξ-derivative in Eq. (6.27) and obtain

IB(tk) =
1

Z

∑

{ξ}
Ak(ξ) cos



πN (0)
∑

j,p

pξ1jp

f



 exp[−Φ′]
∏

j,p

G(f)
p (ξajp, zajp) , (6.32)
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where the normalization is obtained for Ak → 1, the ξ’s are subject to electroneu-

trality (6.24), Φ′ is specified in Eq. (6.29), and the z’s in Eq. (6.30). The Ak follow

from Eq. (6.27)

Ak = −1

2



∑

j′,p′
j ′ξ1j′p′




−2

∑

j,p

S+
1jkξ1jp +

∑

j,p,p′

∂z1jp

∂ξ1kp′

G′(f)
p (ξajp, zajp)

G
(f)
p (ξajp, zajp)


 .

With Eq. (6.30), we get for j ≤ k (otherwise zero):

∑

p′

∂z1jp

∂ξ1kp′
= −4R+

1kj ,

and hence the final form

Ak = ∆t



∑

j′,p′
j ′ξ1j′p′





∑

j,p

S+
1jkξ1jp + 2

∑

j≤k,p

R+
1kj

G′(f)
p (ξajp, zajp)

G
(f)
p (ξajp, zajp)


 .

This is a real-valued quantity, as are all the other quantities appearing in Eq. (6.32).

Remarkably, although we are dealing with a real-time sign problem, it effectively

looks just like a fermion one.

6.4 Non-interacting case

We now discuss resonant tunneling for a 1D non-interacting electron gas correspond-

ing to g = 1 in the LL picture. This special case is very convenient since it allows

for an exact solution via refermionization, where gate and bias voltages are coupled

in exactly as in the previous section. The analytical result obtained here will then

serve as a precise check to be passed by our QMC approach. For simplicity, we

will only consider symmetric barriers while our QMC method can also handle the

asymmetric case.

For g = 1 and spinless fermions, the time-dependent Hamiltonian equivalent to

the action studied in the last section is (see also (4.1))

H(t) =
vF

2

∫
dx

{
Π2 + (∂xθ)

2
}

+ V
∑

p=±
cos

[
pπN (0) +

√
4πθ(pd/2, t) + eVbt

]
.

(6.33)

The current is then

I =
e2

h
Vb +

e√
π
〈∂tθ(x, t)〉 , (6.34)

where x is arbitrary and t→ ∞. Below we evaluate the current at x→ ∞. Using

λ = πV/ωc (6.35)

as dimensionless barrier strength parameter (ωc is the UV cutoff), we can refermion-
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ize the Hamiltonian (6.33) using fermion operators for right- and left-movers (r = ±)

according to (4.2). The refermionized Hamiltonian is then

H(t) = −ivF

∑

r=±
r
∫
dx ψ†

r∂xψr + vFλ
∑

p,r=±
ψ†

r(pd/2)ψ−r(pd/2)eir(pπN(0)+eVbt)

(see also (4.4)) leading to the equations of motion

(
1

vF
∂t ± ∂x

)
ψ†
±(x, t) = iλ

∑

p=±
δ(x− pd/2)e∓i(pπN(0)+eVbt)ψ†

∓(x, t) .

Away from x = ±d/2, the solutions are simply plane waves, which are connected

via standard jump conditions (details of the following computation are given in

Appendix F). Using the ansatz

ψ†
r(x, t) =

∫
dk

2π
e−ivF kt+irkx ×






a†rk , x < −d/2
b†rk , |x| < d/2

c†rk , x > d/2

(6.36)

these conditions read
(

b†+,k

b†−,k−eVb/vF

)
= Ta→b

(
a†+,k

a†−,k−eVb/vF

)
(6.37)

with the transfer matrix

Ta→b =
1

4 − λ2

(
4 + λ2 i4λei(πN(0)+kd−eVbd/2vF )

−i4λe−i(πN(0)+kd−eVbd/2vF ) 4 + λ2

)
, (6.38)

and a similar transfer matrix Tb→c where the only change is the sign in the argument

of the exponential function. Then, we can express the c’s in terms of the a’s using

Ta→c = Tb→cTa→b. Finally, the current follows from translating Eq. (6.34) into the

fermionic picture,

I =
e2

h
Vb −

evF

h

∫
dk
{
〈c†+kc+k〉 − 〈c†−kc−k〉

}
. (6.39)

Expressing c+k in terms of a+k and c−k, and using

〈a†+ka+k〉 = 〈c†−kc−k〉 = f(vFk) =
1

evF kβ + 1
, (6.40)

it is a straightforward matter to obtain the linear conductance in closed form for

g = 1, arbitrary temperature, and arbitrary barrier height (6.35). The result is with

w(λ) =
(4 − λ2)2

8λ(4 + λ2)
(6.41)

and the derivative of the Fermi function, −df/dE = β/4 cosh2[Eβ/2], given by
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G(N (0), β)

G0
=
∫ ∞

−∞
dE

(
− df

dE

)
w2

cos2[π(N (0) + E/∆ε)] + w2
, (6.42)

where ∆ε = πvF/d and G0 = e2/h (see Fig. 6.2). We stress that this solution

is valid for arbitrary barrier height λ as long as βωc � 1; otherwise bosonization

and refermionization are only approximations. Furthermore, for the spin-1/2 case

(f = 2), withG now measured in units ofG0 = 2e2/h, the solution (6.42) also applies

with the changes N (0) → N (0)/2 and λ→ λ/2. From Eq. (6.42) we observe that the

resonance is always located at half-integer values of N (0)/f , where the conductance

is periodic in N (0) with period f (we put 0 ≤ N (0) ≤ f). This shows that the f = 2

peaks at odd integer N (0) as predicted in previous sections and observed in the QMC

data below just correspond to standard resonant tunneling peaks since there is no

Kondo effect in the non-interacting limit.

The infinite-barrier limit is reached already for λ = 2, see Eq. (6.41), where the

associated phase shift is in the unitary limit and further increase of λ would lead

to unphysical predictions. In that limit, w(λ) → 0 and the conductance indeed

vanishes for all N (0) as it should. The exact formula (6.42) with (6.41) captures also

the weak-barrier limit. For T = 0, Eq. (6.42) simply yields

G(N (0))

G0

=
1

1 + (cos[πN (0)]/w)2
. (6.43)

For weak barriers (w � 1), the dimensionless conductance then has the broad line

shape G(N (0))/G0 = 1 − (cos[πN (0)]/w)2, where it is meaningless to speak of a line

width. For strong barriers, Eq. (6.43) leads to the standard Breit-Wigner Lorentzian

line shape for the resonance peak, with line width w∆ε/π.

Since the line shape in both the strong- and weak-barrier limits can be charac-

terized by the single parameter w, we also compare our QMC data for g < 1 below

to Eq. (6.43), taking w = wg(β) as fit parameter.

6.5 Quantum Monte Carlo

We first want to give a brief introduction to Monte Carlo (MC) methods by summa-

rizing the basics of this technique. In the next step, we explain in detail our quantum

Monte Carlo (QMC) algorithm used to compute the conductance according to the

results of Sec. 6.3, and demonstrate its applicability by comparing the numerical re-

sults for g = 1 to the exact solution (6.42). In the remainder of this section, we then

present the results for spinless and spinful interacting fermions as well as a detailed

discussion where we draw connections to the models and experiments described in

Sec. 5.2.
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Figure 6.2: Conductance peak according to (6.42) for different temperatures, barrier

strength λ = π/10, and ∆ε = π/2 (we put ωc = 1). As one can see, the zero-

temperature limit is already approximately reached for β = 40.

6.5.1 Basics

A long sequence of random numbers constitutes the backbone of any MC simula-

tion [99]. The MC technique is a powerful numerical technique to solve problems

involving high-dimensional integrals and derives its name from a game very popular

in Monaco. The children get together at the beach and throw pebbles at random

on a square which has a circle inscribed in it. From the fraction of the pebbles that

fall inside the circle, one can estimate the value of π (rejection technique, i.e., from

a set of random numbers discard those that do not follow the desired distribution).

A typical problem arising in physics is to compute expressions like

〈F 〉 =

∑
C F (C) exp[−βE(C)]
∑

C exp[−βE(C)]
, (6.44)

which denote the expectation value of an observable F and the summation is over

all configurations C of the configuration space. In general the configuration space is

very large, much too large that one could do the summation explicitly.4 But, most

of the configurations typically give a vanishing contribution to the expectation value

due to their small weight. MC technique now assumes that the expectation value

can be approximated by evaluating F on a suitable set of independent “typical”

4As an example consider the Ising model on a 103 lattice, i.e., a cubic lattice with 10 sites in

each direction. This model has 21000 ≈ 10300 configurations which is much more than even the

fastest computer could have done in the age of the universe so far.
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configurations {C1, . . . , CN} and taking the mean afterwards,

〈F 〉 ≈ 1

N

N∑

i=1

F (Ci) .

The probability of the configuration Ci to be part of this set should be proportional

to the corresponding Boltzmann weight exp[−βE(Ci)]. Notice that the value of π

in the children’s game can be computed only because the area of the basic square

is known. Otherwise, one is reduced to computing ratios of the kind (6.44).

The goal is now to construct a stochastic process, more precisely a Markov pro-

cess,5 whose stationary density coincides with a given density. For a physical system

with Hamiltonian H this density is just given by

ρ =
1

Z
e−βH ,

where Z denotes the partition function. One can show that this Markov process is

realized when using transition rates P (a → b) satisfying the condition of detailed

balance,

P (a→ b)ρ(a) = P (b→ a)ρ(b) ,

which is a sufficient though not necessary condition. Detailed balance is always

fulfilled when using, e.g., the ansatz introduced by Metropolis et al. [100]

P (a→ b)dt =

{
e−β∆H : ∆H ≥ 0

1 : otherwise
= min(1, e−β∆H) = min

(
1,
ρ(b)

ρ(a)

)
.

Hence, rejections are the basic method by which MC enforces the correct density.

If the jump leads to a smaller energy (∆H < 0), b is always accepted. If b has a

larger energy, the acceptance of this state for the instant t+dt becomes increasingly

improbable the larger the energy difference is. The principle of ergodicity,

P (a→ . . .→ b) > 0 ∀ a, b

in combination with detailed balance insures that the simulation will converge to

the correct probability density. Notice, that MC converges (probably) slowly, but

surely (if implemented correctly)!

In order to simulate this stochastic process, computational effort can be drasti-

cally reduced by the fact [101] that the two steps

• check whether there should be a jump at all

• if yes, decide into which state

can be replaced by

• choose a possible state b

• check whether to jump into this state.

5That is a process with no “long-time-memory”, i.e., the conditional probability depends only

on the last point of the Markov chain, P (xn ≤ x|xn−1, . . . , x0) = P (xn ≤ x|xn−1).
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Figure 6.3: MC moves of the kind (6.45) generate “kinks” at certain points in the

configuration space.

6.5.2 Simulation

Now, we aim to compute the current IB(tk) according to (6.32). The QMC simu-

lation then proceeds by generating a Metropolis trajectory according to the weight

W (ξ) defined as

W (ξ) =

∣∣∣∣∣∣
cos


πN (0)

∑

j,p

pξ1jp

f


 exp[−Φ′]

∏

j,p

G(f)
p (ξajp, zajp)

∣∣∣∣∣∣
,

with s = ±1 denoting the sign of this expression. The MC averaging is done using

IB(tk) =
〈sIk〉
〈s〉 .

The sign problem manifests itself in a small average sign 〈s〉 for low temperatures

and long real times tmax. Since for intermediate-to-high temperatures, the regime

IB(t) ∝ t is reached quite fast, it is still possible to cover a large region of the relevant

parameter space before the sign problem becomes overwhelming. The average sign

in the data reported below was always larger than 10−3. Note that one can obtain

the full time-dependent function IB(tk) in one MC run.6

The simplest MC moves that keep ergodicity are moves of 2f (randomly picked)

“spins”, see Fig. 6.3, according to

ξajp → ξ′ajp = ξajp + ∆a ,

ξakp′ → ξ′akp′ = ξakp′ − ∆a , (6.45)

with |∆a| = 1 and (j, p) 6= (k, p′). Obviously, electroneutrality (6.24) is preserved

by (6.45). Since these (“kink” generating) moves cost a huge energy they are quite

rare, i.e., the corresponding acceptance ratio is very small. Nevertheless, they are

important and necessary to ensure ergodicity.

6We point out that there is a rather subtle exclusion problem with the above formulation,

completely analogous to the single-barrier scheme [95]. Fortunately, the resolution to this problem

is possible in an identical manner as in Ref. [95], and we refer the reader to this work for details.
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Figure 6.4: MC moves of the kind (6.46) exchange neighboring “spins” and therefore

move the “kinks” in configuration space.

The second move that has to be considered is the “kink” moving one. Again, 2f

randomly picked “spins” are changed (to keep electroneutrality),

ξajp → ξ′ajp = ξajp + ∆̄a = ξakp′ ,

ξakp′ → ξ′akp′ = ξakp′ − ∆̄a = ξajp , (6.46)

with |∆̄a| = ξakp′ − ξajp and k = j + 1. Hence, neighboring “spins” are exchanged

which is always possible (see Fig. 6.4).

In the remainder, we specialize to symmetric barriers, V+ = V− = V , and consider

temperatures well below the single-particle level spacing, β−1 � ∆ε. The QMC

approach will now be used to extract numerically exact data for the conductance of

a double-barrier structure in a Luttinger liquid.

We now proceed to demonstrate that our QMC approach indeed reproduces

(6.42), where g = 1 represents the most difficult case from a numerical point of

view. Since the simulation method passes this check, where the sign problem is

most pronounced, it can be trusted in as a reliable and accurate tool for g < 1.

In Fig. 6.5, we show the output of characteristic QMC simulations for IB(t) in the

conductance valley (N (0) = 0) at g = 1. For sufficiently long times, this function

has a well-defined linear slope which determines the conductance G(N (0), β) via

Eq. (6.25). We use a linear regression fit to obtain the slope and corresponding

error bars. But one has to be careful, since the data can appear to be quite linear,

however, at a certain t∗ there is a bend and the slope changes. In this case it is

necessary to check whether this bend has a physical origin or is just artificial, e.g.,

due to violations of ergodicity. Practically, when the bend occurs at t∗ also for

altered parameters tmax and P , we attribute a physical meaning to it. Otherwise,

when only the last few points (independent of the special parameters) deviate from

the linear behavior, we believe it to be an artificial effect.

Typically, at least 106 MC samples were accumulated to obtain IB(t) for a given

parameter set. Trotter convergence was reached for discretizations ∆tV ≤ 0.1. On

a Xeon processor (2 GHz), our code performs at an average speed of about 105

samples per hour (for P = 40 time steps and f = 1). Error bars in the conductance



6.5 Quantum Monte Carlo 99

0 10 20 30 40
t/∆t

0

5

10

I B
(t

)

Figure 6.5: QMC data for the time-dependent function IB(t) (see text) for g = 1,

N (0) = 0, β = 40, ∆ε = π/2, with V = 0.05 (solid curve), V = 0.1 (dashed curve)

and V = 0.2 (dotted curve). Energies are in units of ωc = 1.

G(N (0), β) refer to both standard stochastic MC errors and to errors from fitting

the long-time behavior by a linear slope.

We have extensively checked the QMC algorithm for g = 1 versus Eq. (6.42)

at various temperatures and V , and found rather good agreement. Results for the

conductance of spinless non-interacting electrons are shown in Fig. 6.6. Within error

bars, the exact result (6.42) is indeed accurately reproduced. We note that βωc = 40

is already close to the T = 0 limit where Eq. (6.43) applies, see Fig. 6.2. In a similar

way, the validity of our approach has been established for f = 2.

6.5.3 Results for spinless interacting fermions

We now move on to explore the case of interacting fermions, g < 1, starting with the

spinless case. We shall first discuss the limit of strong single-barrier transmission

(small V ), where Coulomb blockade and resonant tunneling are expected to be

largely washed out. Then, we address the opposite limit with large barriers and

rather weak tunneling. Finally, we briefly discuss the intermediate case.

General findings can be summarized as follows. With decreasing temperature

the line width decreases and the valley conductance gets strongly suppressed. With

increasing barrier strength V or stronger interaction (smaller g), these effects are

further enhanced. For large level spacing on the dot (∆ε � kBTmax), we are al-

ways in the coherent resonant tunneling (CRT) regime. For smaller level spacing

(∆ε >∼ kBTmax), we observe the correlated sequential tunneling (ST) regime as well

as the crossover to CRT. From now on, all energies will be measured in units of

ωc = 1. Data for N (0) > 1/2 are obtained by symmetry from results for N (0) < 1/2.
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Figure 6.6: Linear conductance in units of G0 = e2/h versus N (0) for spinless

fermions with g = 1, ∆ε = π/2, and β = 40. Single-barrier transmissions are

(i) V = 0.05 (QMC data: circles, Eq. (6.42): solid curve), (ii) V = 0.1 (QMC

data: squares, Eq. (6.42): dashed curve), and (iii) V = 0.2 (QMC data: diamonds,

Eq. (6.42): dotted curve). Again, ωc = 1 and data for N (0) > 1/2 are obtained by

symmetry from results for N (0) < 1/2.

Strong single-barrier transmission

Let us start with the case of small barrier height, taking V = 0.05. Representative

QMC data for G(N (0), β) at β = 40 and different g are shown in Fig. 6.7. All

conductance peak line shapes G(N (0)) found in the temperature regime β ≤ 80

can be fitted quite well by the g = 1 form (6.43) once the line shape parameter

w = wg(β) is taken as a fit parameter, see Figs. 6.7 and 6.8. The temperature

dependence of w as extracted from fits to QMC data shows power-law behavior,

w0.6 ∼ T 0.72 for g = 0.6, and w0.3 ∼ T 0.84 for g = 0.3, see Fig. 6.8. Hence, with

increasing interaction strength (smaller g), we find a renormalization of w to smaller

values, corresponding to effectively stronger single barriers. This renormalization is

in accordance with general expectations [37]. For β > 80, the line shape changes

quantitatively and cannot any longer be fitted to (6.43). Then, the functional form

is better described by

G(N (0))

G0
=

1

cosh2[(N (0) − 1/2)/w∗
g(β)]

, (6.47)

which is similar to the Fermi liquid result (5.1). Near the peak, the line shape now

is wider while the valley conductance is strongly suppressed. We checked for g = 0.6

and 80 ≤ β ≤ 200 that w∗ again shows power-law behavior, w∗
0.6 ∼ T 0.63, with

roughly the same exponent as found for higher temperatures.
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Figure 6.7: Linear conductance versus N (0) for various g, V = 0.05, ∆ε = π/2, and

β = 40. The best fit to Eq. (6.43) with w as only fit parameter gives the respective

curves, see also Fig. 6.8. Data shown are for (i) g = 1 (QMC: circles, Eq. (6.42):

solid curve), (ii) g = 0.6 (QMC: squares, fit: dashed curve), (iii) g = 0.3 (QMC:

diamonds, fit: dotted curve).
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Figure 6.8: Temperature dependence of the line shape fit parameter wg(β) for the

parameters in Fig. 6.7. The dashed line shows a power-law fit for g = 0.6 (squares),

w0.6 ∼ β−0.72, while the dotted line corresponds to g = 0.3 (diamonds), w0.3 ∼ β−0.84.

Each data point here contains the information of a full line shape obtained by QMC.

(Note the log-log scale of the plot.)
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Figure 6.9: Rescaled (according to (6.48)) QMC data for V = 0.05, ∆ε = π/2, and

different temperatures (left: g = 0.3, right: g = 0.6). Within numerical accuracy,

the data indeed collapse onto a single master curve. Only for the tails (conductance

valley) there are deviations.

When we rescale our QMC data for the line shape according to

N (0) → X(β) =
(
N (0) − 1

2

)
β1−g , (6.48)

see Eq. (5.2), all data points collapse onto a single universal master curve as expected

for the CRT regime [37], see Fig. 6.9. As one can see, the tails, especially for high

temperature and weak interaction, are too “fat” and lie above the master curve,

which is given by the lower envelope function of the data. The observed power-law

temperature dependence of w is, within the numerical accuracy of our data, also in

accordance with the predicted behavior w ∼ T 1−g.

We stress that the line shape is in general not Lorentzian but very well described

by Eq. (6.43) or (6.47) with a renormalized w that has only a weak temperature

dependence. The resonances become quite pronounced for strong interactions (small

g). This sharpening of the peaks can be interpreted as the onset of Coulomb block-

ade. Despite the presence of strong quantum fluctuations of the charge on the dot,

Coulomb blockade is still operative. It is obvious from Eq. (6.43) that in order

to theoretically obtain such conductance peaks, it is necessary to perform a non-

perturbative (in V ) analysis, as is done here in a numerical way.

The line shape (6.43) closely resembles experimental results for strong-transmission

(Fabry-Perot) Coulomb blockade oscillations in NTs [65, 92]. We therefore term this

regime of very small barriers and/or high temperatures the Fabry-Perot regime. For

g < 1, such Fabry-Perot oscillations include (strongly fluctuating) Coulomb blockade

effects that are responsible for the narrowing of the resonance peak as temperature

is lowered.
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Figure 6.10: Linear conductance versus N (0) for V = 0.2, taking g = 1 (circles),

g = 0.6 (squares), and g = 0.3 (diamonds). Again, ∆ε = π/2 and β = 40. The solid

line corresponds to the exact result (6.42) while the dashed line represents a fit for

g = 0.6 to Eq. (6.47). The corresponding fit for g = 0.3 deviates only slightly from

the one for g = 0.6 and is therefore not shown. While the data for g = 0.6 is quite

well described by (6.47), for g = 0.3 the fit is not very good.

At still lower temperatures, deviations from the Fabry-Perot line shape (6.43)

can be seen. However, data can then be collapsed onto a universal curve, and the

universal line shapes observed in this regime can be identified as CRT peaks [37].

Although resonant tunneling peaks are expected to survive only for g > 1/2, at least

for strong barriers [76], we observe a perfectly pronounced resonance peak at g = 0.3.

This finding is actually in accordance with renormalization group arguments for

weak scatterers, and shows that the picture of CRT in a LL is actually very robust,

covering also the low-temperature strong-transmission limit. Only for very weak

barriers or high T , this picture is replaced by the Fabry-Perot regime discussed

above.

Weak single-barrier transmission

The usual incoherent ST regime [76] should be realized for high barriers and es-

sentially all temperatures for g < 1/2. Corresponding QMC data for G(N (0), β)

at β = 40 and V = 0.2 are shown in Fig. 6.10. A quantitative comparison to the

sequential regime described by Eq. (5.3) is, however, not possible. Unfortunately, a

further increase of V or decrease of T is getting appreciably more difficult due to a

severe sign problem in the real-time QMC procedure.
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Figure 6.11: Peak conductance versus temperature for g = 0.6, V = 0.2, and

∆ε = π/20. Notice the double-logarithmic scale of the plot. For high temperatures

(corresponding QMC data: circles) one can observe deviations from the power-law

behavior found in the correlated ST regime for intermediate T (solid line). The cor-

responding fit (incorporating QMC data denoted by squares) is to Gmax ∼ T 1/3, see

(6.49). For lower T (CRT regime), the increase of G is in accordance with (6.50),

Gmax ∼ T−0.8 (dashed curve), taking into account the diamond shaped data points.

The data shown here is in complete accordance with both theoretical predictions and

experimental results, see also Fig. 5.7.

For a larger dot (i.e. smaller level spacing ∆ε), we find the situation depicted

in Fig. 6.11 where we show the behavior of the peak conductance Gmax with tem-

perature. Our findings are in accordance with both the theoretical predictions by

Thorwart et al. [81] and the experimental results by Postma et al. [71], see also

Fig. 5.7. Clearly visible is the regime of correlated ST with a power-law dependence

of the peak conductance on temperature,

Gmax ∼ T η with η = 2αend − 1 =
2

g
− 3 , (6.49)

and hence, η = 1/3 for g = 0.6 (incoherent ST predicts η = −1/3). For smaller

temperature, there is a crossover to the CRT regime where the conductance again

increases approaching the unitary limit for T → 0. This increase is described by

Gmax ∼ T 2g−2 , (6.50)

see [74]. The latter power law can easily be understood from the cumulant expansion

of the effective scattering potential in the weak backscattering limit, see Sec. 6.2.1.
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Figure 6.12: Linear conductance versus N (0) for V = 0.1, ∆ε = π/2, and β = 40.

Shown are QMC data for g = 1 (circles, solid line: Eq. (6.42)), g = 0.6 (squares),

and g = 0.3 (diamonds). The dashed and dotted lines represent the corresponding

fits to (6.47).

Then, the island consisting of two impurities effectively corresponds to only a sin-

gle impurity, and the second order term of the expansion, governing the leading

behavior, readily leads to (6.50).

Intermediate transmission

Finally, we briefly discuss the case of intermediate transmission, taking V = 0.1.

Corresponding QMC results for β = 40 are shown in Fig. 6.12, again for g = 0.3 and

g = 0.6. Instead of being described by (6.43) as for V = 0.05, the line shape can

now be fitted by (6.47). However, for lower temperature, the line shape also starts

to deviate also from (6.47).

6.5.4 Results for the spinful case

Finally, we briefly consider the case of spinful interacting fermions, see Fig. 6.13.

From the general resonance condition (6.11) we now expect peaks at N (0) = odd-

integer values, in the absence of a magnetic field. This is indeed observed in the

numerical data, and from the exact solution for gc = 1 we expect these peaks to

correspond to resonant tunneling peaks. Qualitatively, the resonance line shapes

show the same behavior as in the spinless case, and therefore we show only data for

V = 0.2 which now corresponds to intermediate transmission. Rescaling our QMC
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Figure 6.13: Linear conductance versus N (0) (spinful case) for V = 0.2, β = 40, and

∆ε = π/2. Circles correspond to QMC data for gc = 1 while squares and diamonds

correspond to gc = 0.6 and gc = 0.3, respectively. The solid line represents the exact

solution according to (6.42) while the dashed and dotted lines show a fit to (6.43)

and (6.47), respectively. The fits are only shown for gc = 0.6 since the corresponding

curves for gc = 0.3 deviate only slightly.

data according to (6.48) with the changes necessary for the spinful case,

N (0) → X(β) =
(
N (0) − 1

)
β

1−gc
1+gc ,

we again observe that the data collapse onto a single universal master curve (not

shown), giving evidence for the CRT regime. Again, the line width scales as a

power law in temperature with the exponent being in accordance with theoretical

predictions [37], w ∼ T (1−gc)/(1+gc). However, we did not find any sign of a Kondo

effect in this setup.

6.5.5 Discussion

The strong-transmission regime is of direct experimental relevance [63, 65, 90, 92].

In particular, in Ref. [65], the Coulomb blockade oscillations of the conductance

through a strongly contacted NT dot were observed (with normal metal leads).

As a characteristic feature, pronounced dips in G(N (0)) were found, which were

interpreted as Fabry-Perot interference pattern within a Landauer-Büttiker picture

of non-interacting electrons. To consistently explain the data, however, a rather



6.6 Conclusions 107

complicated fine-tuning of scattering processes involving the K point degeneracy

in NTs seems necessary [65]. In our QMC calculations for strong transmission,

we have never observed sharp conductance dips, neither for spinless nor for spinful

fermions. Such dips are probably related to special impurity scattering processes

[65] not contained in our model. However, our results closely resemble experimental

data for strong-transmission resonances in NTs obtained by Park et al. [92].

In [37] the CRT regime was discussed, and a universal scaling behavior for the

resonance curves with a power-law temperature dependence of the line width was

predicted. This regime should be realized at low temperatures for g > 1/4 in the

case of spinless fermions and not too strong barriers, or for g > 1/2 in both the

strong-barrier limit for spinless fermions and the spinful case. As we showed, our

QMC results are in good accordance with these predictions.

Let us now discuss our results in the light of the controversy described in the

previous chapter. The incoherent ST regime [76] should be realized in the strong-

barrier limit for not too low temperature. For g < 1/2 (spinless case), it should hold

even down to T = 0, i.e., CRT should break down in this case. The predicted line

shapes are rather sharp in this regime and the peak conductance should behave like

Gmax ∼ T αend−1. However, our QMC results do not give evidence for this scenario.

The correlated ST regime predicted in [81] is in accordance with the experimental

results of [71]. Here, in contrast to the incoherent ST regime, a certain class of (but

not all) diverging diagrams, i.e. the ones that cannot be divided into sub-diagrams

(as assumed in the incoherent regime) due to correlations among the tunneling

events on and off the dot, are included. There are no predictions for the line shape,

but the peak conductance should show completely different behavior compared to

the incoherent ST case, namely Gmax ∼ T 2αend−1. This temperature dependence is

exactly what we found in our QMC data in the corresponding temperature regime

where this mechanism should be operative.

Therefore, our findings are in agreement with the experimental results and also

lend support to the correlated ST picture, but not to the incoherent ST regime.

This indicates that corrections beyond the conventional incoherent ST mechanism

are crucial in order to understand the experimental results of Ref. [71] and resolves

the corresponding controversy. Compared to the theoretical model of [81], which

relies on certain approximations, our analysis is more reliable since it is numerically

exact.

6.6 Conclusions

We investigated resonant tunneling through a double-barrier structure in a SWNT.

We presented a general theoretical model for a LL with two impurities containing

the limit of spinless fermions as well as the spinful case and the SWNT. Within

an effective model where the bulk degrees of freedom away from the location of
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the two tunneling barriers have been integrated out, we determined the resonance

condition analytically in both the weak- and strong-barrier limit by means of a

cumulant expansion and a symmetry consideration, respectively. Further, we found

a criterion for the stability of such resonances, depending on the interaction strength

in the system.

In order to obtain the full line shape of the resonance for arbitrary single-barrier

transmission, we developed a real-time (Keldysh) QMC approach on the basis of the

Coulomb gas expansion for the propagator governing the dynamics of the system.

Usually, a real-time QMC procedure suffers from a severe sign problem making

it very difficult to obtain accurate data. However, in our approach we averaged

over the classical fluctuations analytically, and only the quantum fluctuations are

sampled by the QMC algorithm. This circumstance keeps the sign problem under

control over a wide parameter range of interest. In particular, we paid attention to

how the barrier strength influences the physical mechanisms of transport through

the double barrier. To keep the number of free parameters manageable, we focused

on the linear conductance for symmetric barriers, which is the most interesting and

controversial regime.

The validity of our method was demonstrated for the non-interacting case by

comparing numerical results to the exact solution (for arbitrary barrier height) which

can be obtained via refermionization. We identified the regime of CRT where the

line shape shows universal scaling behavior. When we rescaled our QMC data for

different temperature, the single resonance curves indeed collapsed onto a universal

master curve. We also found a power-law temperature dependence for the line

width, with the exponents being in good agreement with theoretical predictions for

this regime. Further, we identified the regime of correlated ST thereby resolving the

recent controversy about this mechanism since we did not find any evidence for the

incoherent ST regime. We could even observe the crossover from correlated ST to

CRT. With spin, we identified resonant tunneling peaks, but no Kondo effect could

be found in this setup.



Summary

Finally, we want to give a brief summary of the main results of our work which can

be divided into two major parts. The first one addressed the behavior of van Hove

singularities in the tunneling density of states of disordered multi-wall nanotubes.

Having in mind the set-up of a typical scanning tunneling spectroscopy experiment

for probing the tunneling density of states, we can assume that electron-electron in-

teractions are screened off by a metallic substrate or a close-by gate and can therefore

safely be neglected. In our discussion of the relevant disorder mechanisms we argued

that scattering by a random scalar potential should be most important from an ex-

perimental point of view. In our model, the scattering potential is assumed to be

random in space but constant in time, to have zero mean and a Gaussian white noise

distribution for the fluctuations which corresponds to the assumption of point-like

and isotropic scatterers. The resulting low-energy theory describing non-interacting

disordered Dirac fermions on a cylinder is then solved within diagrammatic pertur-

bation theory using standard Greens function formalism.

Since the breakdown of the Born approximation in the vicinity of a van Hove

singularity makes the inclusion of all higher-order diagrams for the self energy

mandatory, this problem is highly non-trivial. Focussing on potential scattering

disorder, we have shown that a non-crossing approximation in combination with a

self-consistent non-perturbative resummation of all diagrams for the self energy al-

lows for an approximate but yet accurate solution of the problem which is valid over

a wide parameter range. As a result, we obtained a closed analytical expression for

the energy-dependent tunneling density of states which, for given radius of the nan-

otube, involves only one parameter, the disorder strength. The numerical solution of

this expression then reveals remarkable differences between the bulk and boundary

limits. While in the boundary limit van Hove singularities appear as square-root

non-analyticities at the opening of new subbands with an only weak dependence on

disorder, the bulk limit shows strongly broadened peaks that are shifted to smaller

energies compared to the clean case. Further, above a certain disorder-dependent

energy threshold, the bulk tunneling density of states behaves as a power law in

energy, with an exponent depending on the disorder strength. From our results it is

also apparent that it is in general not possible to define an energy-independent mean

free path for all energies. We found our results to be in good qualitative agreement

with experimental data, however, using available experimental technology it should

be possible to unambiguously observe and test our predictions.
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In the second part of our work, we investigated electronic transport through a

quantum dot formed by two intramolecular buckles in a single-wall nanotube. This

problem is equivalent to the one of resonant tunneling through a double-barrier

structure in a Luttinger liquid which, in contrast to the single-impurity problem, is

not integrable.

Within an effective model where the bulk degrees of freedom away from the

location of the two tunneling barriers have been integrated out, we analytically

determined the resonance condition, including a stability criterion depending on the

interaction strength, both for the weak- and strong-barrier limit. Then, in order

to obtain the full line shape of the resonance, a functional integral approach based

on the Coulomb gas expansion for the propagator was developed. This procedure

allows for a numerically exact (real-time) quantum Monte Carlo computation of the

conductance through such a device. The line shape in the non-interacting limit was

obtained analytically via refermionization and served as a test for the numerical

results. In particular, we paid attention to how the barrier strength influences the

physical transport mechanism through the device. For simplicity, we focused on the

linear conductance considering only symmetric barriers at temperatures well below

the level spacing on the dot which is also the most interesting and controversial

regime.

We identified the regime of coherent resonant tunneling where the line shape

shows universal scaling behavior, i.e., rescaled resonance curves for different tem-

perature collapse onto a single master curve. In this regime, the line width shows

power-law behavior on temperature with the exponent depending on the interaction

strength in the system. We could also identify the regime of correlated sequen-

tial tunneling but did not find any evidence for the incoherent sequential tunnel-

ing regime. With our results, we resolve a recent controversy about this tunneling

regime. Further, we also observed the crossover from correlated sequential tunneling

to coherent resonant tunneling. With spin, we identified resonant tunneling peaks,

but no Kondo effect could be found in this setup.



Appendix A

Iterative resummation approach

Now, we want to show explicitly that up to fourth order, our iterative approach

of resumming the perturbation series contains the same diagrams with the correct

combinatorial prefactors as the original perturbation series. In principle, one can

check this, of course, for all orders, but the calculation is very tedious, already in

the fifth order. However, from our analysis we are confident that all higher-order

terms are also reproduced correctly. To avoid lengthy expressions, we will use the

following abbreviation,

TrG0 ≡ Tr~k,σG0(E,~k) .

To find the diagrams contributing to the self energy, we have to remember the

definition as explained in Sec. 2.4. If we are interested in the diagrams up to fourth

order in ∆V , we simply have to consider all propagators with up to eight scattering

lines (only the ones with an even number of scattering lines will contribute). Since

ensemble-averaging results in tying together scattering lines in pairs (we will only

consider the non-crossing diagrams) we just have to draw pictures with all possible

combinations. Per definition, only the irreducible diagrams contribute to the self

energy, and the result of this procedure is shown in Fig. A.1. It is easy to write

down the corresponding expressions in terms of the free propagator G0,

Σ4 = ∆V TrG0 + ∆2
V TrG2

0TrG0 + ∆3
V (TrG2

0)
2TrG0 + ∆3

V TrG3
0(TrG0)

2

+ ∆4
V (TrG2

0)
3TrG0 + ∆4

V TrG2
0TrG3

0(TrG0)
2

+ ∆4
V TrG3

0TrG2
0(TrG0)

2 + ∆4
V TrG3

0TrG2
0(TrG0)

2

+ ∆4
V TrG4

0(TrG0)
3 , (A.1)

which is done in the same order as the diagrams appear in the figure. Here, with

Σ4 we denote the sum of all self energy diagrams up to fourth order in ∆V . As

one can see, the sixth, seventh, and eighth diagram correspond to the same term in

the perturbation series. Accordingly, we can replace these three diagrams by one of

them with a combinatorial prefactor of three.
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Figure A.1: Self energy diagrams up to fourth order in ∆V .

Now, we turn to the iterative approach used in Sec. 3.4. From Eqs. (3.16) and

(3.17) we find

ΣN = ∆V Tr
1

G−1
0 − ∆V TrGN−2

,

which can be expanded in ∆V ,

ΣN =
N∑

j=1

∆j
V TrGj

0 (TrGN−2)
j−1 . (A.2)

To be consistent, ΣN should not contain diagrams that are higher than Nth order

in ∆V . Therefore, we also have to expand GN−2 up to (N − 2)th order,

GN−2 =
1

G−1
0 − ∆V TrGN−3

=
N−2∑

k=0

∆k
VG

k+1
0 (TrGN−3)

k + . . . .

This formula has to be iterated N−3 times, until it only contains the free propagator

G0,

GN−2 =
N−2∑

k1=0

∆k1
V G

k1+1
0




N−3∑

k2=0

∆k2
V TrGk2+1

0

(
. . . (A.3)

. . .





1∑

kN−2=0

∆
kN−2

V TrG
kN−2+1
0 (TrG0)

kN−2





kN−3

. . .




k2



k1

+ . . . .
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Note that not all possible terms in (A.3) have to be considered since there is the

additional constraint
N−2∑

i=1

ki ≤ N − 2 ,

that ensures the consistency with respect to the order in ∆V .

Now, we apply the general formulas (A.2) and (A.3) to the special case of N = 4.

From Eq. (A.2) we obtain

Σ4 = ∆V TrG0 + ∆2
V TrG2

0TrG2 + ∆3
V TrG3

0(TrG2)
2 + ∆4

V TrG4
0(TrG2)

3 , (A.4)

where we have to replace G2 by its expansion due to Eq. (A.3),

G2 =
2∑

k=0

∆k
VG

k+1
0

(
1∑

l=0

∆l
V TrGl+1

0 (TrG0)
l

)k

+ . . . .

Therefore, we explicitly have

TrG2 = TrG0 + ∆V TrG2
0TrG0 + ∆2

V (TrG2
0)

2TrG0 + ∆2
V TrG3

0(TrG0)
2 + . . . ,

which has to be inserted into (A.4). To be consistent in the order of ∆V , we only

need to consider

(TrG4)
2 = (TrG0)

2 + 2∆V TrG2
0(TrG0)

2 + . . . ,

and

(TrG4)
3 = (TrG0)

3 + . . . .

Finally, we have

Σ4 = ∆V TrG0

+ ∆2
V TrG2

0TrG0 + ∆3
V (TrG2

0)
2TrG0 + ∆4

V (TrG2
0)

3TrG0 + ∆4
V TrG2

0TrG3
0(TrG0)

2

+ ∆3
V TrG3

0(TrG0)
2 + 2∆4

V TrG3
0TrG2

0(TrG0)
2

+ ∆4
V TrG4

0(TrG0)
3 , (A.5)

which is exactly the same as Eq. (A.1).
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Appendix B

Non-crossing approximation

In this appendix we will explain in detail how to obtain the results (3.22) and (3.23)

which are essential for the justification of the NCA. For the case of Schrödinger

fermions we define En = ω2
n/2m, and hence, the dispersion relation reads E(~k) =

k2/2m + En. Using this and inserting the Greens function (3.21) in Eq. (3.20) we

have

Σ(2)
c (E,~k0) = ∆2

V

∑

n,n′

∫ dk

2π

dk′

2π

{
1

E − En − Σ(E) − k2/2m

× 1

E − En+n′ − Σ(E) − (k + k′)2/2m

1

E − En0+n′ − Σ(E) − (k0 + k′)2/2m

}
.

Now, we see that the dominant contribution comes from momenta with |~k| ≈ |~k0| ≈
|~k + ~k′| ≈ |~k0 + ~k′| = E/vF and therefore, only k′ ≈ 0 and n′ = 0 survives.

Accordingly, we neglect terms ∼ k′2 and keep only n′ = 0,

Σ(2)
c (E,~k0) ≈

(
∆V

2π

)2∑

n

∫
dk

1

E − En − Σ(E) − k2/2m
(B.1)

×
∫
dk′

1

E − E(~k) − Σ(E) − kk′/m

1

E − E(~k0) − Σ(E) − k0k′/m︸ ︷︷ ︸
=I

.

The integral I is now written as

I =
∫
dk′

m/k

k′ − m
k

(
E − E(~k) − Σ(E)

) m/k0

k′ − m
k0

(
E − E(~k0) − Σ(E)

) ,

and can be done by contour integration. Depending on the sign of k and k0, both

poles are in the same or in different half-planes. When both poles are in the same

half-plane (k and k0 have the same sign), then the integral vanishes. This can

be accomplished by a factor Θ(−k0k) in the result. In doing so we can assume,

without loss of generality, that k and k0 have different signs. We then close the

contour in the upper half-plane and, as one can easily check, when we have k0 < 0
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instead of k0 > 0 the result only changes its sign. This can be taken into account

by a factor sgn(k0) in the final result. Thus, we can assume that k0 > 0 and

k < 0. Since ImΣ(E) = −π∆V ν(E) < 0, see Eq. (3.19), we pick up the pole at

k′ = m(E − E(~k0) − Σ(E))/k0 and therefore, the final result is

I = 2πimΘ(−k0k)sgn(k0)
1

k
(
E − E(~k0) − Σ(E)

)
− k0

(
E − E(~k) − Σ(E)

) ,

(B.2)

which, after inserting it in (B.1), precisely gives Eq. (3.22).

Since we want to estimate the contribution δν of Σ(2)
c to the TDOS we have to

add external propagators Ḡ(~k0). Due to the external pole we then have E−E(~k0)−
Σ(E) ≈ 0 and hence, inserting (B.2) in (B.1) we have

Σ(2)
c (E,~k0) ≈ −i∆

2
V

2π

m

k0
sgn(k0)

∑

n

∫
dk

Θ(−k0k)

E − E(~k) − Σ(E)

≈ i
∆2

V

2π

m

|k0|︸︷︷︸
≈1/vF

∑

n

∂E

∫
dkḠ(E,~k)Θ(−k0k) .

Since δν depends only on |k0| we can assume, without loss of generality, that k0 > 0.

Then, ∫ ∞

−∞
dkΘ(−kk0) =

∫ 0

−∞
dk =

1

2

∫ ∞

−∞
dk ,

where the last equality holds since Ḡ(E,~k) = Ḡ(E, |k|, ωn). Finally, we end up with

Σ(2)
c (E,~k0) ≈ i

∆V

2vF
∂E ∆V Tr~kḠ(E,~k)
︸ ︷︷ ︸

=Σ(E)

=
i∆V

2vF
∂EΣ(E) ,

which is exactly Eq. (3.23).
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Effective action

We now explicitly integrate out the bulk modes θa(x) in the action (6.1) away from

the location x = ±d/2 of the two tunneling barriers which can be done exactly by

introducing Lagrange multipliers λap(τ) to enforce (6.3), i.e., we have to add a term

SLagr = i
∑

a,p

∫ β

0
dτλap(τ)

{
qap(τ) −

√
4π

f
θa(pd/2, τ)

}
(C.1)

to the action (6.1). The next step is to solve the resulting Euler-Lagrange equations,

(∂2
τ + v2

a∂
2
x)θa(x, τ) = −ivF

√
4π

f

∑

p

λap(τ)δ(x− pd/2) ,

which is easily done in Fourier space leading to

θ̃a(k, ωn) = ivF

√
4π

f

∑

p

λ̃ap(ωn)
e−ipkd/2

ω2
n + v2

ak
2
. (C.2)

In order to eliminate the Lagrange multipliers we have to minimize the total action

S + SLagr. Therefore, we introduce the boson propagators1

Fa(x, ωn) =
vF

2

∫ ∞

−∞
dk

eikx

ω2
n + v2

ak
2

=
πga

2|ωn|
e−|xωn|/va .

Taking the action S + SLagr as given by (6.1) and (C.1), using Eqs. (6.3) and (C.2)

then gives

S = − 2

βf

∑

a,n,p,p′
λ̃ap(ωn)λ̃∗ap′(ωn)Fa([p− p′]d/2, ωn)

+
2πi

βf

∑

a,n,p

λ̃ap(−ωn)
{
Q̃a(ωn) +

p

2
Ña(ωn)

}
+ Simp . (C.3)

1The integrand has two poles, k = ±i|ωn|/va, and the integration can be done by closing the

contour, e.g., in the upper half-plane.
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Integration over Lagrange multipliers amounts to solving

2πi

βf

{
Q̃a(ωn) +

p

2
Ña(ωn)

}
− 4

βf

∑

p′
Fa([p− p′]d/2, ωn)λ̃ap′(ωn) = 0 .

Equivalently, this can be written in matrix form and the solution is readily obtained,

(
λ̃a+

λ̃a−

)
(ωn) =

iπ

2Fa(ωn)

1

1 − e−2|ωn|/ωa

×
(

1 e−|ωn|/ωa

−e−|ωn|/ωa 1

)(
Q̃a(ωn) + Ña(ωn)/2

Q̃a(ωn) − Ña(ωn)/2

)
,

where we have introduced ωa = va/d. Inserting this result in (C.3) gives, after

several but simple algebraic manipulations, the effective action (6.6),

Seff [Qa, Na] =
∑

a,n6=0

π|ωn|
2fβga

{
4|Q̃a(ωn)|2

1 + e−|ωn|/ωa
+

|Ña(ωn)|2
1 − e−|ωn|/ωa

}
+
∫ β

0
dτVeff [Qa(τ), Na(τ)] .
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Cumulant expansion

Now, we explicitly compute the first and second order of the cumulant expansion

of (6.8) for symmetric barriers as well as the scaling dimension of the operators

generated in second order of the expansion.

First order

We start with considering the first order, V (1) = 〈Vimp〉N , and write the sine and

cosine terms of Vimp as exponential functions,

V (1) = V
∑

p

〈
∏

a





1

2

∑

{σa}=±
exp

[
iσa

2π

f

(
Qa +

p

2
Na

)]


+ δf4

∏

a





1

2i

∑

{σa}=±
σa exp

[
iσa

2π

f

(
Qa +

p

2
Na

)]


〉

N

.

Using δf4
∏

a
1
i

= 1 and Na = N (0)
a + δNa we have

V (1) =
V

2f−1
exp

[
− π2

2f 2

∑

a

〈δN2
a 〉N

]
∑

{σa}=±
exp

[
i
2π

f

∑

a

σaQa

]

× cos

[
π

f

∑

a

σaN
(0)
a

](
1 + δf4

∏

a

σa

)
. (D.1)

When we use
∑

{σa}=±
exp

[
∑

a

σaQa

]
=

∑

{σa}=±

{
cos

[
∑

a

σaQa

]
+ i sin

[
∑

a

σaQa

]}

=
∑

{σa}=±
cos

[
∑

a

σaQa

]
,

which holds since sin(−x) = − sin(x), we readily obtain Eq. (6.9),

V (1) =
V

2f−1
exp

[
− π2

2f 2

∑

a

〈δN2
a 〉N

]
∑

{σa}=±
cos

[
2π

f

∑

a

σaQa

]

× cos

[
π

f

∑

a

σaN
(0)
a

](
1 + δf4

∏

a

σa

)
.
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Second order

In order to compute the second order,

V (2) =
1

2

(
〈V 2

imp〉N − 〈Vimp〉2N
)
,

we first look at 〈V 2
imp〉N . Again, we use exponential functions instead of the trigono-

metric ones and obtain

〈V 2
imp〉N =

V 2

22f

∑

p,p′,{σa,σ′
a}

∏

a

exp

[
i
2π

f
(σa + σ′

a)Qa

]
exp

[
i
π

f
(pσa + p′σ′

a)N
(0)
a

]

× exp

[
− π2

2f 2
(pσa + p′σ′

a)
2〈δN2

a 〉N
](

1 + δf4

∏

a

σa

)(
1 + δf4

∏

a

σ′
a

)
.

The other term, 〈Vimp〉2N , is simply the square of the first order term (D.1),

〈Vimp〉2N =
V 2

22f

∑

p,p′,{σa,σ′
a}

∏

a

exp

[
i
2π

f
(σa + σ′

a)Qa

]
exp

[
i
π

f
(pσa + p′σ′

a)N
(0)
a

]

× exp

[
−π

2

f 2
〈δN2

a 〉N
](

1 + δf4

∏

a

σa

)(
1 + δf4

∏

a

σ′
a

)
.

Together, we then have

V (2) =
V 2

22f+1

∑

p,p′,{σa,σ′
a}

∏

a

exp

[
i
2π

f
(σa + σ′

a)Qa

]
exp

[
i
π

f
(pσa + p′σ′

a)N
(0)
a

]

×
(

exp

[
− π2

2f 2
(pσa + p′σ′

a)
2〈δN2

a 〉N
]
− exp

[
−π

2

f 2
〈δN2

a 〉N
])

×
(

1 + δf4

∏

a

σa

)(
1 + δf4

∏

a

σ′
a

)
,

which is precisely Eq. (6.12).

Scaling dimension

In order to determine the relevancy of the operators generated in the second order of

the cumulant expansion, we have to compute the scaling dimension of the operator

Ô =
∏

a

exp

[
i
2π

f
(σa + σ′

a)Qa

]
. (D.2)

Therefore, we first look at 〈Qa(τ)Qa(0)〉, where the expectation value has to be

taken with respect to the (Gaussian) action

S ′[Qa] =
∑

a,n6=0

π|ωn|
2fβga

4|Q̃a(ωn)|2
1 + e−|ωn|/ωa

.
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One can immediately read off

〈Q̃a(ωn)Q̃∗
a(ωn′)〉 =

βfga

4π|ωn|
(
1 + e−|ωn|/ωa

)
δnn′ ,

which has to be Fourier-transformed to give

〈Qa(τ)Qa(0)〉 =
1

β

∑

n

fga

4π|ωn|
(
1 + e−|ωn|/ωa

)
eiωnτ .

The dominant contribution comes from small frequencies and hence, taking the

continuum limit,
∑

n → β
2π

∫
dω, gives

〈Qa(τ)Qa(0)〉 =
fga

2π2
ln |τ | . (D.3)

Therefore,

〈Ô(τ)Ô(0)〉 (D.2)∼ exp

[
−4π2

f 2

∑

a

(σa + σ′
a)

2〈Qa(τ)Qa(0)〉
]

(D.3)∼ exp

[
− 2

f

∑

a

(σa + σ′
a)

2ga ln |τ |
]
,

and we can simply read off the scaling dimension (6.14),

∆ =
1

f

∑

a

(σa + σ′
a)

2ga =
2

f

∑

a

(1 + σaσ
′
a)ga ,

where the last equality holds since σa, σ
′
a = ±1.
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Appendix E

Coulomb gas path integral

In this appendix, we provide various intermediate steps of the computation done in

Sec. 6.3. In particular, these are the Coulomb gas expansion, the Gaussian average

over Qa, Na degrees of freedom, and the computation of the diagonal matrix elements

for the influence functional.

Coulomb gas expansion

Starting from

exp[iSimp] =
∏

j,p

exp

[
−i∆tVp

{
∏

a

cos

[√
4π

f
θaj(pd/2)

]
−
∏

a

cos

[√
4π

f
θ′aj(pd/2)

]}]
,

we first consider only one term and write the cosine in terms of exponential functions,

exp[iγjp] ≡ exp

[
−i∆tVp

∏

a

cos

[√
4π

f
θaj(pd/2)

]]

=
∞∑

ν=0

1

ν!


−i∆tVp

∏

a

1

2

∑

σajp=±
eiσajp

√
4π/fθaj(pd/2)




ν

,

where we have introduced so-called “Coulomb charges” σajp. Expanding up to sec-

ond order in ∆tVp gives

exp[iγjp] = 1 − i∆tVp

2f

∏

a

∑

σajp=±
eiσajp

√
4π/fθaj(pd/2)

− 1

2

(
∆tVp

2f

)2∏

a


2 +

∑

σajp=±2

eiσajp

√
4π/fθaj(pd/2)


+ . . .

=
∑

σajp=0,±1,±2

G(f)
p (σajp) exp

[
i
∑

a

σajp

√
4π

f
θaj(pd/2)

]
, (E.1)

since (
∑

s=± e
isx)2 = ei2x + e−i2x + 2 = 2 +

∑
s=±2 e

isx. In the last step we have

introduced Greens functions G(f)
p which can be directly read off.
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For f = 1 we have

exp[iγjp] = 1 −
(

∆tVp

2

)2

− i∆tVp

2

∑

σjp=±
eiσjp

√
4πθj(pd/2)

− 1

2

(
∆tVp

2

)2 ∑

σjp=±2

eiσjp

√
4πθj(pd/2) ,

while for f = 2,

exp[iγjp] = 1 − i∆tVp

4

∑

σ1jp ,σ2jp=±
ei

√
2π[σ1jpθ1j(pd/2)+σ2jpθ2j(pd/2)]

− 1

2

(
∆tVp

4

)2

2 +

∑

σ1jp=±2

eiσ1jp

√
2πθ1j(pd/2)




2 +

∑

σ2jp=±2

eiσ2jp

√
2πθ2j(pd/2)


 .

In order to obtain Eq. (6.22) we simply have to consider eiγjpe−iγ′

jp and use (E.1),

eiSimp =
∏

j,p

eiγjpe−iγ′

jp

=
∑

{σ,σ′}=0,±1,±2




∏

j,p

G(f)
p (σajp)G

∗(f)
p (σ′

ajp)





× exp


−i

√
4π

f

∑

a,j,p

{
σajpθaj(pd/2) − σ′

ajpθ
′
aj(pd/2)

}

 ,

which reads in Q,N -representation, see Eq. (6.4),

eiSimp =
∑

{σ,σ′}=0,±1,±2



∏

j,p

G(f)
p (σajp)G

∗(f)
p (σ′

ajp)




× exp


−i2π

f

∑

a,j,p

{
σajp

(
Qaj +

p

2
Naj

)
− σ′

ajp

(
Q′

aj +
p

2
N ′

aj

)}
 .

Gaussian average

The average in Eq. (6.27) is over the Gaussian Qa, Na degrees of freedom and, since

it is an equilibrium average, is most conveniently done in Euclidean time using SE

in Eq. (6.21), supplemented by analytic continuation to real time.

In continuous notation, this average is in real time (z runs along the Keldysh

contour)

F =

〈
exp

[
− 2πi

f∆t

∑

a,p

∫

C
dzσap(z)

{
Qa(z) +

p

2
Na(z)

}]〉
,

and analytic continuation gives

FE =

〈
exp

[
− 2π

f∆t

∑

a,p

∫
dτσap(τ)

{
Qa(τ) +

p

2
Na(τ)

}]〉

SE

.
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The Gaussian integral is done easily, and the stationary fields {Q̃, Ñ} are given by

Q̃a(ωn) =
ga

2|ωn|∆t

(
1 + e−|ωn|/ωa

)∑

p

σ̃ap(ωn) ,

Ña(ωn) =
ga

|ωn|∆t

(
1 − e−|ωn|/ωa

)∑

p

pσ̃ap(ωn) .

Hence, up to an irrelevant normalization,

FE = exp

[
∑

a,ωn

πga

2βf∆2
t

{
1 + e−|ωn|/ωa

|ωn|
|
∑

p

σ̃ap(ωn)|2 +
1 − e−|ωn|/ωa

|ωn|
|
∑

p

pσ̃ap(ωn)|2
}]

,

with σ̃(ωn) =
∑P

j=1 e
−iωnτjσ(τj). Writing FE = exp[ΦE] and returning to the time

representation, we have

ΦE =
1

∆2
t

∑

a

∫ β

0
dτ
∫ τ

0
dτ ′

∑

p,p′
σap(τ)σap′(τ

′)
{
k+

a (τ − τ ′) + pp′k−a (τ − τ ′)
}
,

with kernels (see Ref. [86] page 58)

k±a (τ) =
πga

fβ

∑

ωn

1 ± e−|ωn|/ωa

|ωn|
eiωnτ .

Using the free boson thermal Greens function,

Dω(τ) =
1

β

∑

ωn

2ω

ω2
n + ω2

eiωnτ =
cosh[ω(β/2 − τ)]

sinh[ωβ/2]
,

and noticing that

π
1 ± e−|ωn|/ωa

|ωn|
=
∫ ∞

−∞
dω

1 ± e−iω/ωa

ω2
n + ω2

= 2
∫ ∞

0
dω

1 ± cos[ω/ωa]

ω2
n + ω2

,

one can write

k±a (τ) =
1

π

∫ ∞

0
dω

J±,a(ω)

ω2
Dω(τ) ,

with spectral densities

J±,a(ω) =
πgaω

f
(1 ± cos[ω/ωa]) e

−ω/ωc .

Analytic continuation is now completely analogous to the standard quantum dissi-

pation case, the only exception is in the absence of “counterterms” related to the

“potential renormalization” parameters. Following Ref. [86] (page 103), this leads

to F = exp[−Φ] with

Φ =
1

∆2
t

∑

a

∫

C
dz
∫

z′<z
dz′

∑

p,p′
σap(z)σap′(z

′)
{
L+

a (z − z′) + pp′L−
a (z − z′)

}
.
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The real-time kernels are (λ = ±)

Lλ
a(t) =

1

π

∫ ∞

0
dω

Jλ,a(ω)

ω2

cosh[ω(β/2− it)] − δλ,+ cosh[ωβ/2]

sinh[ωβ/2]
. (E.2)

The subtraction of the t = 0 part for λ = + reflects the IR divergence leading to

electroneutrality (6.24). Note that the sign change in the exponent upon analytical

continuation is completely in accordance with Ref. [86]. The influence functional Φ

written in terms of η, ξ is then

Φ =
1

∆2
t

∑

a

∫ tmax

0
dt
∫ t

0
dt′
∑

p,p′

{
ξap(t)ξap′(t

′)Re
[
L+

a (t− t′) + pp′L−
a (t− t′)

]

+ 2iξap(t)ηap′(t
′)Im

[
L+

a (t− t′) + pp′L−
a (t− t′)

]}
.

The final step is then to go back to the discretized picture. This leads to

Φ =
∑

a,p,p′

P∑

j=1

j∑

k=1

{
ξajp

(
S+

ajk + pp′S−
ajk

)
ξakp′ + 2iξajp

(
R+

ajk + pp′R−
ajk

)
ηakp′

}
,

with matrices for k < j given by

Sλ
ajk = Re

[
Lλ

a([j − k]∆t)
]
,

Rλ
ajk = Im

[
Lλ

a([j − k]∆t)
]
.

For the diagonal element, one needs to be more careful (see next section).

Diagonal matrix elements

From the derivation given in the appendix of Ref. [98], the complex-valued matrix

element Lλ
ajj is given as

Lλ
ajj =

1

∆2
t

∫ ∆t

0
dt
∫ t

0
dt′Lλ

a(t
′) = Sλ

ajj + iRλ
ajj . (E.3)

We first consider

cosh[x+ iy] − δλ,+ cosh x

sinh x
=

ex

2 sinh x
eiy +

e−x

2 sinh x
e−iy − δλ,+ coth x ,

and therefore,

Im

[
cosh[x + iy] − δλ,+ cosh x

sinh x

]
= sin y

(
ex

2 sinh x
− e−x

2 sinh x

)

︸ ︷︷ ︸
=1

= sin y , (E.4)

and similar

Re

[
cosh[x+ iy] − δλ,+ cosh x

sinh x

]
= cos y

(
ex

2 sinh x
+

e−x

2 sinh x

)
− δλ,+ coth x

= (cos y − δλ,+) coth x . (E.5)
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Inserting (E.2) in (E.3) together with (E.4) gives

Rλ
ajj =

−1

π∆2
t

∫ ∞

0
dω

Jλ,a(ω)

ω2

∫ ∆t

0
dt
∫ t

0
dt′ sinωt′

= − 1

π

∫ ∞

0
dω

Jλ,a(ω)

ω2

1 − sin[ω∆t]/ω∆t

ω∆t
,

while doing the same steps with (E.5) we have

Sλ
ajj =

1

π∆2
t

∫ ∞

0
dω

Jλ,a(ω)

ω2

∫ ∆t

0
dt
∫ t

0
dt′(cosωt′ − δλ,+) coth[ωβ/2]

=
1

π

∫ ∞

0
dω

Jλ,a(ω)

ω2
coth[ωh̄β/2]

{
1 − cos[ω∆t]

(ω∆t)2
− 1

2
δλ,+

}
.
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Appendix F

Refermionization for g = 1

Here, we give the details of the computation leading to Eq. (6.42). The jump

conditions, which are obtained in the standard way by considering the integral of

the equations of motion over a small interval around the impurity, read

ψ†
r(pd/2+ ε)−ψ†

r(pd/2− ε) =
iλr

2

{
ψ†
−r(pd/2 + ε) + ψ†

−r(pd/2 − ε)
}
e−ir(pπN(0)+eVbt) .

(F.1)

Using the ansatz (6.36) with (F.1) and Fourier-transforming the resulting equation

with respect to t gives for p = −1

b†rk − a†rk =
iλr

2
eir(kd+πN(0))−ieVbd/2vF

(
b†−r,k−reVb/vF

+ a†−r,k−reVb/vF

)
, (F.2)

and for p = +1

c†rk − b†rk =
iλr

2
e−ir(kd+πN(0))+ieVbd/2vF

(
c†−r,k−reVb/vF

+ b†−r,k−reVb/vF

)
. (F.3)

From (F.2) one finds

b†+,k =
iλ

4
ei(kd+πN(0)−eVbd/2vF )

{(
1 +

4

λ2

)
b†−,k−eVb/vF

+
(
1 − 4

λ2

)
a†−,k−eVb/vF

}
,

and

b†−,k−eVb/vF
= − iλ

4
e−i(kd+πN(0)−eVbd/2vF )

(
b†+,k + a†+,k

)
+ a†−,k−eVb/vF

.

Combining these two equations, one can express the b’s in terms of a’s,

b†+,k =
4 + λ2

4 − λ2
a†+,k + i

4λ

4 − λ2
ei(kd+πN(0)−eVbd/2vF )a†−,k−eVb/vF

,

b†−,k−eVb/vF
=

4 + λ2

4 − λ2
a†−,k−eVb/vF

− i
4λ

4 − λ2
e−i(kd+πN(0)−eVbd/2vF )a†+,k ,

which is equivalent to Eq. (6.37) with the transfer matrix (6.38). The transfer matrix

Tb→c is found in exactly the same way. Multiplying the two matrices then results in

Ta→c =
1

(4 − λ2)2

(
A B

B∗ A∗

)
,
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with

|A|2 = (4 − λ2)4 + |B|2 , (F.4)

|B|2 = (8λ)2(4 + λ2)2 cos2

[
kd+ πN (0) − eVbd

vF

]
, (F.5)

and hence, one easily finds

c†+,k =
1

(4 − λ2)2

|A|2 − |B|2
A∗ a†+,k +

B

A∗ c
†
−,k−eVb/vF

.

Using (6.40) one has

〈c†+,kc+,k〉 =
1

(4 − λ2)4

(|A|2 − |B|2)2

|A|2 f(vFk) +
|B|2
|A|2 f(vFk − eVb) ,

and can then compute the current (6.39),

I =
e2

h
Vb−evF

∫
dk

2π

{
1

(4 − λ2)4

(|A|2 − |B|2)2

|A|2 f(vFk) +
|B|2
|A|2 f(vFk − eVb) − f(vFk)

}
.

Finally, the linear conductance is found by deriving with respect to the bias voltage,

G =
dI

dVb


Vb=0

.

From (F.4) and (F.5) one directly sees that

1

(4 − λ2)4

(|A|2 − |B|2)2

|A|2 =
w2

cos2
[
kd+ πN (0) − eVbd

vF

]
+ w2

,

and

|B|2
|A|2 =

cos2
[
kd+ πN (0) − eVbd

vF

]

cos2
[
kd+ πN (0) − eVbd

vF

]
+ w2

,

with w defined in (6.41), and thus, it is obvious that only the term proportional

to ∂Vb
f(vFk − eVb) contributes to the conductance. After a change of variables one

readily arrives at the final result (6.42).
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