Molekulare Evolution der C₄-Phospho*enol*pyruvat-Carboxylase in den Gattungen *Flaveria* (Asteraceae) und *Alternanthera* (Amaranthaceae)

Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich–Heine Universität Düsseldorf

> vorgelegt von Udo Gowik aus Oberhausen

> > Düsseldorf 2002

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Berichterstatter: Prof. Dr. Peter Westhoff
 Berichterstatter: Prof. Dr. Hans Bünemann

Tag der mündlichen Prüfung: 23.01.2003

Abkürzungen

(SI-Einheiten und die Abkürzungen der chemischen Elemente sind nicht aufgeführt)

Aminosäuren :

Ein Buchstaben Code	Drei Buchstaben Code	Bezeichnung
А	Ala	Alanin
С	Cys	Cystein
D	Asp	Asparaginsäure
E	Glu	Glutaminsäure
F	Phe	Phenylalanin
G	Gly	Glycin
Н	His	Histidin
Ι	Ile	Isoleucin
Κ	Lys	Lysin
L	Leu	Leucin
Μ	Met	Methionin
Ν	Asn	Asparagin
Р	Pro	Prolin
Q	Gln	Glutamin
R	Arg	Arginin
S	Ser	Serin
Т	Thr	Threonin
V	Val	Valin
W	Trp	Tryptophan
Y	Tyr	Tyrosin

Basen der Nukleinsäuren :

А	Adenin
С	Cytosin
G	Guanin
Т	Thymin
U	Uracil

Grad Celsius
Basenpaare
Carboxy-
crassulacean acid metabolism
komplementäre DNA
Curie
Kohlenstoffdioxid
deoxyribonucleic acid
2'-Desoxynukleosid-5'-Triphosphat

DTE	Dithioerythrit
DTT	Dithiothreitol
EC	enzyme comission
EDTA	Ethylendiamintetraessigsäure
G-6-P	D-Glukose-6-Phosphat
GUS	β-Glucuronidase
h	Stunde
IPTG	β-D-Isopropylthiogalactosid
Κ	Michaelis-Menten-Konstante
kb	Kilobasen
kDa	Kilodalton
1	Liter
М	Molar
MAR	matrix attachment region
ME	Malatenzym
min	Minute
MOPS	Morpholinopropansulfonsäure
MU	4-Methyliumbelliferon
MUG	β-Methyl-Umbelliferyl-β-D-Glucuronid
mRNA	messenger RNA
N-	Amino-
NADH	Nicotinsäureamidadenindinukleotid
NADPH	Nicotinsäureamidadenindinukleotidphosphat
OAA	Oxalacetat
p.A.	pro analysi
PCR	Polymerasekettenreaktion
PEP	Phospho <i>enol</i> pyruvat
PPDK	Pyruvat-Orthophosphat-Dikinase
RNA	ribonucleic acid
RubisCO	Ribulosebisphosphat-Carboxylase
SAR	scaffold attachment region
SDS	Natriumdodecylsulfat
Tris	Tris-(hydroxymethyl)-aminomethan
U	Unit (Enzymeinheit in μ mol/min)
Upm	Umdrehungen pro Minute
V	Volt
v/v	Volumen pro Volumen
w/v	Gewicht pro Volumen
X-Gluc	$5\text{-}Bromo\text{-}4\text{-}Chloro\text{-}3\text{-}Indolyl\text{-}\beta\text{-}D\text{-}Glucuronid$

Inhalt

ABKURZUNGEN	I
INHALT	
1. EINLEITUNG	1
1.1. Die C ₄ -Photosynthese	1
1.2. Die Physiologie der C ₄ -Photosynthese	2
1.3. Die Evolution der C_4 -Photosynthese	4
1.4. Die Phospho <i>enol</i> pyruvat-Carboxylase	6
1.5. Die cis-regulatorischen Elemente der ppcA-Gene aus Flaveria trinervia (C_4) und	
Flaveria pringlei (C3)	9
1.6. Ziele dieser Arbeit	
2. MATERIAL UND METHODEN	14
2.1. Material	
2.1.1. Chemikalien und Materialien	14
2.1.2. Für Klonierungen verwendete Oligonukleotidprimer	
2.1.3. Enzyme	
2.1.4. Reagenziensätze zur Modifizierung und Prozessierung von Nukleinsäuren	
2.1.5. Bakterienstämme	
	16
2.1.6. Klonierungs- und Tranformationsvektoren	
2.1.6. Klonierungs- und Tranformationsvektoren 2.1.7. Pflanzenmaterial	
2.1.6. Klonierungs- und Tranformationsvektoren2.1.7. Pflanzenmaterial2.2. Methoden	
 2.1.6. Klonierungs- und Tranformationsvektoren	

2.2.6. Hybridisierung membrangebundener Nukleinsäuren mit radioaktiv markierten	
DNA-Sonden	19
2.2.7. Herstellung und Sichtung von cDNA-Büchereien	20
2.2.8 Transformation von Flaveria bidentis	22
2.2.9. Transformation von Flaveria mit der "floral Dip"-Methode	
2.2.10. Schnelle PCR-Analyse individueller Pflanzen	25
2.2.11. Analyse der GUS-Aktivität in transgenen Flaveria-Pflanzen	25
2.2.12. Isolierung genomischer DNA-Abschnitte mit der "Genome Walker"-Methode	
2.2.13. Aufreinigung rekombinanter PEP-Carboxylasen und Messung der kinetischen	
Eigenschaften	
2.2.14. DNA-Sequenzierung	30
2.2.15. Computerprogramme und Datenbanken	30
3. ERGEBNISSE	32
3.1. Lokalisierung der <i>cis</i> -regulatorischen Sequenzen im distalen Bereich des <i>ppcA</i> -Promot	tors
aus Flaveria trinervia	
3.1.1. Die Promotor-Reportergen-Fusionen ppcA-Ft-PR-C4-DR-a, ppcA-Ft-PR-C4-DR-b und	1
ppcA-Ft-PR-C4-DR-c	33
3.1.2. Die Promotor-Reportergen-Fusionen ppcA-Ft-PR-C4-DR-a/b und	
ppcA-Ft-PR-C4-DR-a/b*4	39
3.2. Die <i>ppcA</i> -Promotoren aus C ₃ /C ₄ -intermediären <i>Flaveria</i> -Spezies	44
3.2.1. Die PEP-Carboxylase Transkriptspiegel in den Blättern von C_3/C_4 -intermediären	
Flaveria-Spezies	44
3.2.2. Isolierung von <i>ppcA</i> -Promotoren aus verschiedenen <i>Flaveria</i> -Spezies	45
3.2.3. Phylogenie der PEP-Carboxylase-Gene in der Gattung <i>Flaveria</i>	49
3.3. Die Transformation von <i>Flaveria</i> mit der "floral Dip"- Methode	51
3.3.1. Transformation von <i>Flaveria bidentis</i> mit der "floral Dip"-Methode	52
3.3.2. Transformation von <i>Flaveria trinervia</i> mit der "floral Dip"-Methode	53
3.3.3. Das Konstrukt ppcA-Ft-PR-C4-DR-a verhält sich in F. trinervia genauso wie in F. bide	entis 57
3.4. Die Phosphoenolpyruvat-Carboxylasen in der Gattung Alternanthera	59
3.4.1. Isolierung einer PEP-Carboxylase aus der C_3/C_4 intermediären Pflanze	
Alternanthera tenella	59
3.4.2. Vergleich der Enzymparameter	62
3.4.3. Die Anzahl der PEP-Carboxylase-Gene und Genklassen in Alternanthera	

4. DISKUSSION	67
4.1. Die Promotoren der <i>ppcA</i> -Gene der Gattung <i>Flaveria</i> als Zielscheibe der Evolution	67
4.1.1. Das Mesophyllspezifitätselement MSE-1 im ppcA1-Promotor aus F. trinervia	67
4.1.2. Mögliche C ₄ -Determinanten in den proximalen <i>ppcA</i> -Promotorbereichen	71
4.1.3 Ein Modell für die Funktion des <i>ppcA</i> -Promotors aus <i>F. trinervia</i>	74
4.2. Die Transformation von <i>Flaveria</i> mit der "floral Dip"-Methode	75
4.3. Die Evolution der PEP-Carboxylase in der Gattung Alternanthera	77
4.3.1. Struktur und enzymatische Eigenschaften der ppcA-PEP-Carboxylasen in Alternanthera	78
4.2.2. Existiert eine PEP-Carboxylase mit C_3/C_4 -intermediären Eigenschaften in	
Alternanthera tenella?	80
4.2.3. Evolution der PEP-Carboxylase-Genfamilie in Alternanthera	81
5. ZUSAMMENFASSUNG	83
6. LITERATUR	84
7. ANHANG	96
7.1. Sequenz der ppcA-cDNA aus Alternanthera tenella	96
7.2. Sequenzen der 5´-flankierenden Bereiche von <i>ppcA</i> -Genen aus <i>Flaveria</i>	97

1. Einleitung

1.1. Die C₄-Photosynthese

Die Kohlenstofffixierung in photosynthetischen Organismen wird von dem Enzym Ribulose-1,5-bisphosphat-Carboxylase/Oxygenase (RubisCO) katalysiert. Die RubisCO katalysiert die Carboxylierung von Ribulose-1,5-bisphosphat. Das entstehende Produkt 2-Carboxy-3-ketoarabinitol-1,5-bisphosphat ist instabil und zerfällt zu zwei Molekülen 3-Phosphoglycerat (Andrews & Lorimer 1987). Dieses erste stabile Zwischenprodukt der Reaktion besteht aus drei Kohlenstoffatomen, daher wird diese Art der Kohlenstofffixierung auch als C3-Photosynthese bezeichnet. Die RubisCO katalysiert nicht nur die Carboxylierung von Ribulose-1,5-bisphosphat sondern, als Nebenreaktion, auch die Oxygenierung dieses Moleküls. Diese Oxygenierung führt zu einer Reaktionsfolge, die als Photorespiration bezeichnet wird (Lorimer 1981; Ogren 1984). Die Photorespiration verbraucht nicht nur Energie, sondern führt auch zu einem Nettoverlust von CO₂ für die Pflanze. Dadurch kann die Effizienz der C₃-Photosynthese in höheren Pflanzen um mehr als 40 % vermindert werden (Sharkey et al. 1988; Ehleringer et al. 1991; Brown, R.H. & Byrd 1993). Die Oxygenase-Aktivität der RubisCO ist dadurch zu erklären, dass sie sich sehr früh in der Evolution des Lebens vor mehr als 3 Milliarden Jahren (Hayes 1994) entwickelte. Zu dieser Zeit war der CO₂-Gehalt der Atmosphäre wesentlich höher als heute und die O₂-Konzentration sehr gering, daher spielte die Oxygenase-Reaktion keine Rolle. Als der CO2-Gehalt im Laufe der Zeit ab- und die O₂-Konzentration zunahmen, war es offensichtlich nicht mehr möglich, die Eigenschaften der RubisCO für diese Bedingungen zu optimieren. Es war ebenfalls nicht möglich, die RubisCO durch eine andere Carboxylase zu ersetzten, da dies bedeutet hätte, alle nachfolgenden Reaktionen, die zur Regeneration des CO₂-Akzeptors notwendig sind, ebenfalls neu zu erfinden (Sage 1999). Daher haben sich andere Wege entwickelt, das Problem der Oxygenase-Aktivität der RubisCO und damit der Photorespiration zu vermindern. Einer der erfolgreichsten dieser alternativen Wege ist die C₄-Photosynthese.

Bei der C_4 -Photosynthese handelt es sich um eine Erweiterung der C_3 -Photosynthese, die nur bei Angiospermen vorkommt. Sie trägt diesen Namen, da das erste stabile Produkt der CO_2 -Fixierung Oxalacetat, eine Dicarbonsäure mit einem Grundgerüst aus vier C-Atomen, ist. C_4 und C_3 -Pflanzen unterscheiden sich in Blattanatomie, Biochemie und Ultrastruktur der Chloroplasten. Die Blätter von C_4 -Pflanzen sind in zwei Kompartimente mit deutlich unterschiedlichen Funktionen geteilt. Die Leitbündel sind von ein bis zwei Schichten Bündelscheidenzellen umgeben, die wiederum von einem Kranz aus Mesophyllzellen umgeben sind (Brown, W.V. 1975). Dieser Blattaufbau wird auch als Kranzanatomie bezeichnet (Haberland 1904). Die Primärfixierung von CO_2 findet in den Mesophyllzellen statt. Die Fixierungsprodukte, organische Säuren mit vier C-Atomen, werden in die Bündelscheidenzellen transportiert. Dort wird das fixierte CO_2 mittels decarboxylierender Enzyme freigesetzt. In diesem Kompartiment befinden sich die RubisCO und die anderen Enzyme des Calvin-Zyklus. Das freigesetzte CO_2 wird von diesen endgültig fixiert. Beim C₄-Zyklus handelt es sich somit um einen CO_2 -Konzentrierungsmechanismus, durch den das CO_2/O_2 Verhältnis am Wirkort der RubisCO optimiert und die Phtorespiration unterdrückt wird. Er ermöglicht den C₄-Pflanzen hohe Nettophotosyntheseraten an trockenen, stark besonnten Standorten und verschafft ihnen so Vorteile gegenüber C₃-Pflanzen (Hatch 1992).

1.2. Die Physiologie der C₄-Photosynthese

Man unterscheidet je nach Typ des decarboxylierenden Enzyms drei Formen der C₄-Photosynthese, den NADP-Malatenzym-Typ, den NAD-Malatenzym-Typ und den PEP-Carboxykinase-Typ. Bei allen drei Typen wird die Primärfixierung des CO₂ in den Mesophyllzellen von dem Enzym Phospho*enol*pyruvat-Carboxylase (PEP-Carboxylase) katalysiert, wobei das eigentliche Substrat der PEP-Carboxylase HCO₃⁻ ist. Dieses wird von dem Enzym Carboanhydrase bereitgestellt, welches eine hohe Aktivität in den Mesophyllzellen von C₄-Pflanzen aufweist. Das bei der Carboxylierung von Phospho*enol*pyruvat (PEP) entstehende Oxalacetat wird entweder zu Malat reduziert oder zu Aspartat transaminiert und in die Bündelscheidenzellen transportiert. Dort wird CO₂ von einem der oben genannten decarboxylierenden Enzyme freigesetzt und im Calvin-Zyklus refixiert. Das bei der CO₂-Freisetzung gebildete Pyruvat wird in die Mesophyllzellen zurücktransportiert, wobei z.T. Alanin als Transportmetabolit dient. Dort wird PEP mittels des Enzyms Pyruvat-Orthophosphat-Dikinase regeneriert. Bei Pflanzen des PEP-Carboxykinase-Typs wird bei der Decarboxylierung Phospho*enol*pyruvat gebildet, welches in die Mesophyllzellen zurückwandert (Hatch 1987; Kanai & Edwards 1999). Eine schematische Darstellung des C₄-Zyklus zeigt Abbildung 1.1.

Dieser Zyklus bietet der Pflanze verschiedene Vorteile. Die CO_2 -Fixierung durch die Rubis-CO findet ausschließlich in den Bündelscheidenzellen statt. Hier ist die CO_2 -Konzentration durch den vorgeschalteten C₄-Zyklus mit 2000 μ l/l deutlich erhöht gegenüber anderen Blattgeweben mit ca. 130 μ l/l (Ehleringer et al. 1991). Dadurch wird die Oxygenase-Reaktion der RubisCO und damit die Energie verbrauchende und Effizienz mindernde Photorespiration nahezu vollständig verhindert. Die effizientere CO_2 -Nutzung ermöglicht es den C_4 -Pflanzen auch, bei weitgehend geschlossenen Stomata noch Nettophotosynthese zu betreiben. Daher weisen C_4 -Pflanzen einen deutlich niedrigeren Wasserverbrauch auf als C_3 -Pflanzen und sind infolgedessen an trockenen und warmen Standorten im Vorteil (Long 1999).

Durch die sättigende Konzentration von CO_2 am Wirkort der RubisCO können hohe Photosyntheseraten mit weniger Molekülen RubisCO erreicht werden, als in C₃-Pflanzen erforderlich sind. Da die RubisCO die Hauptfraktion der Chloroplastenproteine darstellt und die C₄-Pflanzen weniger von diesem Enzym synthetisieren müssen, ermöglicht dies den C₄-Pflanzen eine effizientere Stickstoffnutzung (Ehleringer & Monson 1993; Long 1999).

Für die Funktion des C_4 -Zyklus ist die strikte Kompartimentierung der beteiligten Enzyme essentiell. PEP-Carboxylase darf nur in den Mesophyllzellen aktiv sein, die decarboxylierenden Enzyme, die RubisCO und die Enzyme des Calvin-Zyklus dagegen nur in den Bündelscheidenzellen (Hatch 1987; Monson 1999).

Abbildung 1.1.: Schematische Darstellung der Reaktionen der C₄-Photosynthese. CA: Carboanhydrase; GAA: Glutamat-Aspartat-Aminotransferase; MDH: NADP-Malat-Dehydrogenase, ME: NADP-Malat-Enzym; PEP-Carboxylase: Phospho*enol*pyruvat-Carboxylase; PEP: Phospho*enol*pyruvat; PPDK: Pyruvat-Phosphat-Dikinase; RuBP: Ribulose-1,5-bisphosphat

1.3. Die Evolution der C₄-Photosynthese

Erste Befunde für das Auftreten der C₄-Photosynthese liegen aus der Zeit des Miozän, der Zeit vor ca. 10-15 Mio. Jahren, vor. Die ältesten fossilen Belege für C₄-Pflanzen haben ein Alter von 12,5 Mio. Jahren (Cerling 1999). Die großflächige Verbreitung der C₄-Pflanzen fand dagegen erst vor 6 bis 8 Mio. Jahren statt (Cerling et al. 1993; 1997). In dieser Zeit ist auch die CO₂-Konzentration der Atmosphäre stark abgesunken. Dieses Absinken der CO₂-Konzentration wird durch die Festlegung des pflanzlich fixierten CO₂ als Kohle oder Erdöl und die Silikat-Verwitterung erklärt (Ehleringer & Monson 1993). Die erniedrigten CO₂-Konzentrationen begünstigten wahrscheinlich die Evolution der C₄-Photosynthese (Ehleringer et al. 1991; Bowes 1993).

Die C₄-Photosynthese hat sich während der Angiospermen-Evolution mehrfach unabhängig, also polyphyletisch, entwickelt. C₄-Pflanzen findet man in 18 verschiedenen Familien des Pflanzenreiches (Sage et al. 1999). Dies deutet darauf hin, dass die Entwicklung von der C₃- zur C₄-Photosynthese relativ einfach war (Ehleringer et al. 1997). Unterstützt wird diese These dadurch, dass alle an der C₄-Photosynthese beteiligten Enzyme wie PEP-Carboxylase, PPDK und Malatenzym auch in C₃-Pflanzen und nichtphotosynthetischen Geweben von C₄-Pflanzen ubiquitär vorkommen. Sie haben also, neben der Beteiligung an der C₄-Photosynthese, noch weitere Aufgaben im pflanzlichen Stoffwechsel.

Bei der Entwicklung der C₄-Photosynthese mussten sich die Expressionsmuster der Gene dieser C₄-Enzyme und die kinetischen Eigenschaften der von ihnen kodierten Proteine verändert haben (Ku et al. 1996; Monson 1999). Die C₄-Gene werden deutlich stärker exprimiert als die C₃-Gene (Monson 1999). Sie werden außerdem strikt kompartimentspezifisch exprimiert. Dies ist nötig, um das Funktionieren des C₄-Zyklus zu gewährleisten (Hatch 1987). Die C₄-Enzyme weisen teilweise andere kinetische und regulatorische Eigenschaften auf als die C₃-Isozyme, was unter anderem für die PEP-Carboxylase gezeigt werden konnte (Ting & Osmond 1973b; Bauwe & Chollet 1986; Svensson et al. 1997). Neben den Veränderungen in den Genen der C₄-Enzyme waren weitere Veränderungen für die Etablierung der C₄-Photosynthese notwendig. Zur Entwicklung der typischen Kranzanatomie war es notwendig, die Bündelscheidenzellen zu vergrößern. Diese Zellen sind zwar in C₃-Pflanzen vorhanden, aber sie sind in der Regel kleiner als in C₄-Pflanzen, nicht photosynthetisch aktiv und enthalten nur sehr wenig Zellorganellen. Weitere Modifikationen betrafen den inter- und intrazellulären Metabolittransport (Kanai & Edwards 1999) sowie die Regulation von Enzymen, die an der weiteren Verwertung von Photosyntheseprodukten beteiligt sind (Leegood & Walker 1999).

Abbildung 1.2.: Ein Modell für die schrittweise Evolution der C₄-Photosynthese über C3/C4intermediäre Zwischenformen nach Monson (Monson 1989). BS: Bündelscheidenzellen

Eine Möglichkeit, diese Veränderungen nachzuvollziehen, bieten C₃/C₄-intermediäre Pflanzen. Es sind 27 Arten aus 5 verschiedenen Familien bekannt, die eine C₃/C₄-intermediäre Form der Photosynthese aufweisen. Diese Pflanzen zeigen im Vergleich mit C₃- und C₄-Pflanzen intermediäre anatomische und physiologische Eigenschaften. Beispiele für Gattungen mit C₃/C₄intermediären Pflanzen sind Flaveria, Atriplex, Moricandia, Parthenium, Panicum und Alternanthera. Man vermutet, dass diese Pflanzen Zwischenformen in der Entwicklung von einer reinen C₃- zu einer reinen C₄-Photosynthese sind (Edwards, G.E. & Ku 1987; Monson & Moore 1989). Die Analyse dieser verschieden weit in Richtung C₄-Photosynthese entwickelten Zwischenformen führt zu folgendem Modell für die schrittweise Evolution der C4-Photosynthese. Der erste Schritt war offensichtlich die Kompartimentierung der an der Photorespiration beteiligten Enzyme, insbesondere der Glycin-Decarboxylase, welche die Freisetzung von CO₂ im Photorespirationsweg katalysiert, in den Bündelscheidenzellen. Parallel dazu erhöhte sich die Anzahl der an der Photorespiration beteiligten Organellen (Mitochondrien und Peroxisomen) in den Bündelscheidenzellen. Dieser Schritt führte dazu, dass CO₂ im Inneren der Blätter freigesetzt wurde und verbesserte damit die Möglichkeit, dass dieses freigesetzte CO₂ von der Pflanze refixiert wurde, bevor es aus dem Blatt diffundierte (Devi et al. 1995). Die Möglichkeit zur Refixierung des photorespiratorischen CO₂ wurde durch den zweiten Schritt, die Erhöhung der PEP-Carboxylase-Spiegel in den Blättern, weiter verbessert. Der nächste Schritt war die Erhöhung der Spiegel der anderen C₄-Enzyme, um die von der PEP-Carboxylase erzeugten Produkte effektiver umsetzen zu können und PEP als Substrat der PEP-Carboxylase zu regenerieren. Der letzte Schritt war schließlich die zunehmende Kompartimentierung der C₄-Enzyme in Mesophyll- und Bündelscheidenzellen. Dieser Schritt führte zum Übergang von einem CO₂-Wiederverwertungszu einem CO₂-Konzentierungsmechanismus (Monson 1989). Abbildung 1.2. zeigt schematisch diesen evolutionären Ablauf.

1.4. Die Phosphoenolpyruvat-Carboxylase

Das Eingangsenzym der C₄-Photosynthese ist die Phospho*enol*pyruvat-Carboxylase. Bei der PEP-Carboxylase (EC 4.1.1.31) handelt es sich um ein Protein mit einem Molekulargewicht von ca. 100 kDa. Es besteht je nach Herkunft aus 800 bis über 1000 Aminosäuren (*E. coli*-PEP-Carboxylase: 883 Aminosäuren, *Anabaena variabilis*-PEP-Carboxylase: 1025 Aminosäuren; (Lepiniec et al. 1994)). Die aktive Form ist in der Regel ein Homotetramer. Das Enzym wurde im Jahre 1953 entdeckt (Bandurski & Greiner 1953) und katalysiert die β-Carboxylierung von Phospho*enol*pyruvat. Edukte dieser Reaktion sind PEP und Hydrogencarbonat, die Produkte sind Oxalacetat und Orthophosphat. Dabei sind Magnesiumionen als Cofaktor nötig. Die Reaktion ist mit einem ΔG^0 -Wert von -29 kJ/mol stark exergon und daher in der Regel irreversibel (Vennesland et al. 1954). Das Enzym kommt bei allen bis jetzt daraufhin untersuchten Landpflanzen, Algen und Prokaryoten vor. Es konnte noch nicht in Tieren oder Pilzen nachgewiesen werden und scheint dort zu fehlen (Lepiniec et al. 1994).

Neben der CO₂-Fixierung bei der C₄-Photosynthese besitzt die PEP-Carboxylase eine Reihe andere Funktionen in nicht photosynthetischen Geweben. Sie ist beteiligt an anaplerotischen Reaktionen des Citrat-Zyklus, welcher die Grundgerüste für Aminosäure- und Porphyrin-Synthese zur Verfügung stellt. Sie stellt Substrate für die symbiotische Stickstofffixierung und die Assimilation von Ammonium-Ionen zur Verfügung. Sie hat weitere Funktionen bei der Regulation von Spaltöffnungsbewegung, intrazellulärem pH, Ionengleichgewicht und der Refixierung von respiratorischem CO₂ (Rajagopalan et al. 1994). In höheren Pflanzen konnten verschiedene Isozyme nachgewiesen werden (Ting & Osmond 1973a; Toh et al. 1994). Dabei kann man zwischen den photosynthetischen PEP-Carboxylasen, die an C₄- und CAM-Photosynthese beteiligt sind, und den nicht-photosynthetischen Isoformen unterscheiden. Die nicht-photosynthetischen PEP-Carboxylasen finden sich in den Blättern von C₃-Pflanzen, in etiolierten Blättern von C₄-Pflanzen, in Wurzeln und in Wurzelknöllchen.

Die Aktivität der PEP-Carboxylase ist vielfach reguliert. Hierbei ist die Wirkung von Metaboliten zu beachten, die als Aktivator oder Inhibitor wirken können (Rajagopalan et al. 1994; Chollet et al. 1996). So wirkt L-Malat als Inhibitor des Enzyms. Da es bei der Reduktion von Oxalacetat entsteht, kann man L-Malat als "feedback-Inhibitor" bezeichnen. Zuckerphosphate aus dem reduktiven Pentosephosphat-Zyklus, wie Glukose-6-Phosphat oder Triosephosphate, wirken als allosterische Aktivatoren. Bei pflanzlichen PEP-Carboxylasen ist die Phosphorylierung eines N-terminalen Serin-Restes ein weiteres Kontrollelement (Jiao & Chollet 1991; Bakrim et al. 1993). Die C₄-PEP-Carboxylase werden im Licht phosphoryliert, wodurch sich ihre Empfindlichkeit gegenüber Aktivatoren und Inhibitoren ändert (Duff & Chollet 1995). Außerdem spielen pH-Wert, Ionenstärke und Temperatur eine Rolle (Rajagopalan et al. 1994).

In allen bis jetzt untersuchten Pflanzen liegt eine kleine PEP-Carboxylase-Genfamilie mit drei Genklassen vor (Hermans & Westhoff 1990; Cretin et al. 1991; Ernst & Westhoff 1996; Dong et al. 1998). Diese Genklassen können jeweils durch ein oder mehrere Gene in den Pflanzen repräsentiert sein. Die von den unterschiedlichen Mitgliedern dieser Genfamilien gebildeten Enzyme zeigen jeweils unterschiedliche Expressionsmuster und unterschiedliche kinetische Eigenschaften (Harpster & Taylor 1986; Hermanns & Westhoff 1990; Schäffner & Sheen 1992; Lepiniec et al. 1993; Chollet et al. 1996).

Die an der C₄-Photosynthese beteiligten PEP-Carboxylasen unterscheiden sich in ihren kinetischen und regulatorischen Eigenschaften von den anderen PEP-Carboxylasen. Die K_m-Werte für PEP sind bei den C₄-Enzymen deutlich höher als bei C₃-Enzymen (Ting & Osmond 1973b; Bauwe & Chollet 1986). Dies zeigt zum Beispiel ein Vergleich der orthologen ppcA-PEP-Carboxylasen aus der C₃-Pflanze Flaveria pringlei und der C₄-Pflanze F. trinervia. Obwohl die Aminosäuresequenzen zu 94% übereinstimmen, unterscheidet sich der K_m-Wert für PEP um das Zehnfache, außerdem ist das C4-Enzym empfindlicher gegenüber dem Aktivator Glukose-6-Phosphat (Svensson et al. 1997). Es sind bis jetzt nur wenige molekulare Ursachen für diese Unterscheide bekannt. Durch den Vergleich verschiedenster PEP-Carboxylase-Sequenzen konnte nur eine C₄-spezifische Aminosäure ermittelt werden. In allen bisher untersuchten C₄-Enzymen existiert ein C-terminales Serin (Position 774 im F. trinervia-ppcA-Enzym; (Poetsch et al. 1991)), während sich in allen C₃- und auch CAM-PEP-Carboxylasen an dieser Stelle ein Alanin-Rest befindet. Die Relevanz dieses Aminosäureaustausches für die kinetischen Eigenschaften des Enzyms konnte experimentell gezeigt werden (Bläsing et al. 2000). Ein Austausch dieser Aminosäure führte jeweils zu drastischen Veränderungen des K_m-Werts für PEP. Die unterschiedliche Empfindlichkeit gegenüber dem Aktivator Glukose-6-Phosphat konnte für die ppcA-Enzyme aus F. pringlei (C₃) und F. trinervia (C₄) einer 141 Aminosäure langen Region im N-Terminus (Aminosäuren 296 bis 437) der Enzyme zugeordnet werden (Engelmann et al. 2002). Die enzymatischen Eigenschaften und die evolutionären Veränderungen der C₄-PEP- Carboxylasen sind besonders gut in der dikotylen Gattung *Flaveria* und in den monokotylen Arten Mais und *Sorghum bicolor* untersucht. Um zu überprüfen, ob die in der Gattung *Flaveria* festgestellten Veränderungen der C₄-PEP-Carboxylase typisch für die Entwicklung der C₄-Photosynthese in dikotylen Gattungen sind, bietet es sich an die in *Flaveria* gewonnen Erkenntnisse in einer zweiten dikotylen Gattung zu überprüfen. Hierbei ist die Gattung *Alternanthera* (Amaranthaceae) besonders geeignet, da sich in dieser Gattung neben eng verwandten C₃- und C₄-Pflanzen auch C₃/C₄-intermediäre Arten finden. Es konnten bereits PEP-Carboxylase-cDNAs aus der C₄-Pflanze *Alternanthera pungens* und der C₃-Pflanze *A. sessilis* isoliert werden (Gowik 1999).

Auch die Expressionsmuster der C₄-PEP-Carboxylase-Gene unterscheidet sich deutlich von denen der C₃-Gene. Die C₄-Gene zeigen eine hohe Expression in den Mesophyllzellen der Blätter und praktisch keine Expression in anderen Pflanzenorganen oder Zelltypen (Sheen & Bogorad 1987; Hermans & Westhoff 1990; Stockhaus et al. 1997). Die anderen PEP-Carboxylase-Isogene zeigen unterschiedliche Expressionsmuster und werden je nach Funktion in Wurzeln, Spross oder Blatt auf niedrigem bis mittlerem Niveau exprimiert. Bei Expression im Blatt beobachtet man keinerlei Mesophyll-Spezifität. Diese Veränderungen der Expressionseigenschaften der PEP-Carboxylase-Gene sind im Wesentlichen auf Veränderungen der cis-regulatorischen Elemente dieser Gene zurückzuführen. Experimente, bei denen die Eigenschaften der Promotoren der C₄-PEP-Carboxylase-Gene aus Flaveria trinervia und Mais in transgenen Reis- und Tabak-Pflanzen untersucht wurden, ergaben, dass die C4-spezifischen Eigenschaften der Promotoren in den C₃-Pflanzen weitgehend erhalten blieben (Matsuoka et al. 1994; Stockhaus et al. 1994). Das bedeutet, dass die für die C4-spezifische Expression der Gene benötigten trans-regulatorischen Faktoren bereits in C3-Pflanzen vorhanden sind. Cis-regulatorische Elemente sind oft ein Angriffspunkt von evolutionären Modifikationen, durch die die Expressionsmuster der unterschiedlichsten Proteine verändert werden. Die Mitglieder einer Genfamilie erhalten ihre unterschiedlichen Funktionen oft mehr durch die Modifikation ihrer Expression als durch Veränderung ihrer kodierenden Bereiche (Wilson et al. 1977; Goldstein et al. 1982; Kettler & Whitt 1986; Dickinson 1988; Thorpe et al. 1993; Li & Noll 1994a; 1994b; Doebley & Lukens 1998). Hierbei könnte der modulare Aufbau eukaryotischer Promotoren aus verschiedenen cisregulatorischen Elementen eine Erklärung für ihre schnelle Veränderbarkeit sein. Die Veränderungen in der Expression einzelner Gene können dabei durchaus große Auswirkungen auf den gesamten Organismus haben, wie sich am Beispiel der Expression des teosinte-branched-1-Gens in den Zea mays Unterarten Mais und Teosinte zeigt (Doebley et al. 1995).

Um die Veränderungen in den *cis*-regulatorischen Elementen von PEP-Carboxylase-Genen im Verlauf der C₄-Evolution auf der molekularen Ebene zu analysieren, bietet sich die Gattung *Flaveria* (Asteraceae) an. In dieser Gattung existieren neben nahe verwandten C₃- und C₄-Arten auch eine Vielzahl von C₃/C₄-intermediären Arten, die in der C₄-Evolution unterschiedlich weit fortgeschritten sind (Powell 1978; Ku et al. 1991). Dieses ermöglicht die vergleichende Untersuchung von mehreren homologen Genen aus nahe verwandten Arten, die abgestuft unterschiedliche Expressionseigenschaften zeigen sollten. Darüber hinaus ist für die C₄-Pflanze *Flaveria bidentis* eine Methode zur Erzeugung transgener Pflanzen etabliert. So kann die Analyse der Expression der verschiedenen *Flaveria*-PEP-Carboxylase-Gene in einer nahe verwandten C₄-Pflanze durchgeführt werden.

1.5. Die cis-regulatorischen Elemente der ppcA-Gene aus Flaveria trinervia (C₄) und Flaveria pringlei (C₃)

Flaveria trinervia ist eine C₄-Pflanze des NADP-Malatenzym-Typs und gehört zu der selben Untergruppe der Gattung Flaveria wie die C3-Pflanze Flaveria pringlei (Powell 1978). Beide Pflanzen sind also nahe miteinander verwandt. In beiden Pflanzen konnte eine kleine PEP-Carboxylase-Gen-Familie mit drei Klassen, ppcA bis ppcC, nachgewiesen werden (Hermans & Westhoff 1990). Die an der C₄-Photosynthese beteiligten PEP-Carboxylasen werden in F. trinervia von den ppcA-Genen kodiert. Es hat sich gezeigt, dass die Gene einer Genklasse aus der einen Art eine höhere Ähnlichkeit zu den Genen derselben Genklasse aus der anderen Art aufweisen, als zu den Genen anderer Genklassen derselben Art. Man kann also davon ausgehen, dass diese Genklassen bereits in der letzten gemeinsamen Vorläuferart dieser beiden Spezies existierten, dass es sich also um evolutionär orthologe Gene handelt (Westhoff et al. 1997). Bei dieser Vorläuferart hat es sich wie bei F. pringlei um eine C₃-Pflanze gehandelt. Da die ppcA-Gene bei der Entwicklung von F. pringlei aus dieser Vorläuferart wahrscheinlich keinen Funktionswechsel erfahren haben, kann man erwarten, dass sich die Gene aus diesen beiden Arten sehr ähnlich sind. Durch den Vergleich der F. trinervia- und der F. pringlei-Gene sollte man daher die Veränderungen bestimmen können, die nötig waren, um aus einem C3-Gen ein C4-Gen zu machen.

Hermanns und Westhoff isolierten jeweils ein *ppcA*-Gen aus *F. trinervia* und *F. pringlei* (Hermans & Westhoff 1990). Die 5'-flankierenden Bereiche beider Gene, die als *ppcA1*-Gene bezeichnet wurden, weisen in einem Bereich bis über 2 kb vor dem Translationsstartpunkt eine hohe Ähnlichkeit zueinander auf (Hermans & Westhoff 1992). Zwischen Regionen, die keine signifikante Sequenzähnlichkeit zeigen, finden sich immer wieder Bereiche von bis zu mehreren

10

100 bp, in denen die Sequenzübereinstimmungen sehr hoch sind (Abbildung 1.3.). Eine sehr hohe Übereinstimmung weisen die proximal zum Translationsstartpunkt gelegen Bereiche bis Position -531 im F. trinervia-Gen und -566 im F. pringlei-Gen auf (Positionsangaben sind auf den Translationsstartpunkt bezogen). Bei beiden Genen findet sich in diesem proximalen Promotorbereich ein Intron (-209 bis -40 bei F. trinervia und -212 bis -33 bei F. pringlei). Stockhaus et al. konnten mittels Reportergen-Experimenten in transgenen F. bidentis-Pflanzen (C_4) nachweisen, dass der 2188 bp lange 5'-flankierende Bereich des F. trinervia-ppcA-Gens eine starke Expression ausschließlich in den Mesophyllzellen der Blätter, also eine C₄-spezifische Expression, bewirkt. Der 2584 bp lange 5'-flankierende Bereich des ppcA-Gens aus F. pringlei bewirkte eine wesentlich niedrigere Expression in Blättern, die hauptsächlich im Gefäßsystem zu finden war. Die Expression im Spross war etwas höher als im Blatt und in der Wurzel zeigte der Promotor nahezu keine Aktivität (Stockhaus et al. 1997). Dass diese unterschiedlichen Aktivitäten der Promotoren durch unterschiedliche cis-regulatorische Elemente begründet sind, zeigt sich auch darin, dass beide Promotoren ein ähnliches Expressionsmuster auch in der C₃-Pflanze Tabak zeigen, wobei die Zellspezifität des C₃-Promotors aufgrund der sehr niedrigen Aktivität nicht bestimmt werden konnte (Stockhaus et al. 1994).

Abbildung 1.3.: Funktionelles und evolutionäres Modell des C_4 -*ppcA*-Promotor aus *F. trinervia*. Regionen mit mehr als 60 % Sequenzidentität zum C_3 -*ppcA*-Promotor aus *F. pringlei* sind durch die dunkle Farbe markiert. Die Größe und die Lage der bis jetzt bekannten, für die C_4 -spezifische Aktivität wichtigen Regionen werden durch die Balken angegeben.

Mittels Funktionsverlust- und Funktionsgewinn-Experimenten konnte gezeigt werden, dass zwei Bereiche des *ppcA*-Promotors aus *F. trinervia*, der proximale Promotorbereich von -570bis -1 und ein distaler Bereich von -2141 bis -1566, für die C₄-spezifische Aktivität ausreichend sind (Burscheidt 1998) (Abbildung 1.4.). Der proximale Promotorbereich allein wies sowohl in der C₃-Pflanze Tabak als auch in der C₄-Pflanze *F. bidentis* eine sehr niedrige Aktivität in allen Organen auf (Stockhaus et al. 1994; Burscheidt 1998). Die Zellspezifität der Aktivität dieses proximalen Bereichs konnte aufgrund der sehr niedrigen Aktivität nicht bestimmt werden. Es ergab sich außerdem, dass der distale Bereich in beiden Orientierungen mit dem proximalen Bereich verbunden werden kann, ohne dass sich die Aktivität dieses unvollständigen Promotors wesentlich verändert. Wenn der distale Bereich umgekehrt zur ursprünglichen Orientierung angeordnet ist, zeigt sich eine etwas höhere Aktivität. In diesem distalen Bereich fällt ein ATreiches Element auf. Eine computergestützte Analyse nach Benham (Benham et al. 1997) und *in vitro*-Bindungsstudien mit Proteinen der Kernmatrix ergaben, dass es sich dabei um ein SAR-Element handelt (persönliche Mitteilung J. Stockhaus). Solche SAR- (scaffold attachment region) oder auch MAR- (matrix attachment region) Elemente sind Verankerungspunkte der DNA an der Kernmatrix. Sie werden oft in der Nähe von besonders stark exprimierten Genen gefunden und sind häufig mit *cis*-regulatorischen Elementen vergesellschaftet (Mirkovitch et al. 1987).

Um die Funktion des distalen Bereichs näher zu charakterisieren, wurden chimäre Promotoren untersucht, bei denen der distale Bereich zum einen mit dem 46 bp Fragment des 35S-Minimalpromotors, und zum anderen mit einem großen Bereich (-1853 bis -1) des ppcA-Promotors aus der C3-Pflanze F. pringlei fusioniert wurde. Der chimäre Promotor aus dem distalem Bereich des C₄-Promotors und dem 35S-Promotor zeigt eine sehr geringe Aktivität in allen Organen. Zellspezifitäten konnten aufgrund der niedrigen Aktivitäten nicht untersucht werden (Burscheidt 1998). Der chimäre Promotor aus C4-distalem Bereich und dem langen proximalen Fragment des C₃-Promotors aus F. pringlei wies die gleiche, verhältnismäßig niedrige Aktivität und dieselbe Organspezifität auf wie das lange proximale Promotor-Fragment aus F. pringlei allein. Es ergab sich aber eine deutliche Veränderung der Zellspezifität in den Blättern. Während das proximale Promotor-Fragment aus F. pringlei allein die höchste Aktivität im Gefäßsystem und den Bündelscheidenzellen aufwies, also das gleiche Aktivitätsmuster wie der vollständige C₃-ppcA-Promotor aus F. pringlei, zeigt der chimäre Promotor eine deutlich erhöhte Aktivität in den Mesophyllzellen und eine sehr geringe Aktivität in den Bündelscheidenzellen (Burscheidt 1998). Durch das Einbringen des distalen Bereichs des C₄-ppcA-Promotors lässt sich also die Zellspezifität des C₃-ppcA-Promotors nahezu umkehren (Abbildung 1.4).

Aus den geschilderten Experimenten lässt sich folgern, dass weder der distale noch der proximale Promotor-Bereich allein in der Lage sind, die C_4 -spezifische, also die hohe und mesophyllspezifische, Expression des *ppcA*-Gens aus *F. trinervia* zu bewirken. Eine mesophyllspezifische Genexpression ergibt sich nur, wenn der distale Bereich des C_4 -*ppcA*-Gens mit dem proximalen Bereich eines *Flaveria-ppcA*-Promotors verknüpft ist. Mit dem proximalen Bereich des C_3 -Promotors zeigt sich die C_4 -typische Zellspezifität in den Blättern. Die gesamten C_4 -spezifischen Eigenschaften, also auch die hohe Aktivität und die Organspezifität zeigen sich nur, wenn der proximale und der distale Bereich des C_4 -*ppcA*-Promotors aus *Flaveria trinervia* zusammenwirken. Daraus lässt sich schließen, dass es in diesen beiden Bereichen des ppcA-Promotors Veränderungen gegeben haben muss, die das für die korrekte Funktion des ppcA-PEP-Carboxylase-Gens in der C₄-Photosynthese nötige Expressionsmuster bewirken.

a) Konstrukte

c) ppcA-M-Fp

b) ppcA-Ft-PR-C4-DR

d) ppcA-M-Fp-C4-DR

Abbildung 1.4.: Die Bedeutung des distalen Promotor-Bereichs für die Zellspezifität des C4-ppcA-Promotors aus F. trinervia. a: Übersicht der verwendeten Reportergen-Konstrukte. b: Der proximale und der distale Bereich des C₄-ppcA-Promotors bewirken zusammen eine strikt mesophyllspezifische Reportergen-Aktivität. c: Der proximale Bereich des C3-ppcA-Promotors aus F. pringlei zeigt Aktivität in allen Blatt-Geweben. Die höchste Aktivität liegt im Bereich der Leitbündel und der Bündelscheiden. d: Der chimäre Promotor aus proximalem C3-Bereich und distalem C4-Bereich zeigt die stärkste Aktivität in den Mesophyllzellen. (Die Bilder stammen aus der Doktorarbeit von Janet Burscheidt (Burscheidt 1998).)

1.6. Ziele dieser Arbeit

Ziel der vorliegenden Arbeit war es die molekularen Mechanismen zu untersuchen, die zu der Umwandlung von C_3 -Genen in C_4 -Gene geführt haben. Dazu wurden die folgenden Problemstellungen bearbeitet:

1. Welche *cis*-regulatorischen Faktoren sind für die C_4 -spezifische Expression der *ppcA*-PEP-Carboxylase-Gene in der Gattung *Flaveria* verantwortlich?

Hierzu sollte der, von Janet Burscheidt beschriebene, distale Bereich des *ppcA*-Promotors aus der C₄-Pflanze *Flaveria trinervia* weiter analysiert werden. Der beschriebene Bereich umfasst 575 bp. Mittels weiteren Reportergen-Experimenten in transgenen *Flaveria*-Pflanzen sollten die *cis*-regulatorischen Elemente in diesem Promotorbereich, welche für die mesophyllspezifische Expression des *ppcA*-Promotors verantwortlich sind, näher eingegrenzt und, wenn möglich, molekular identifiziert werden. Parallel dazu sollten *ppcA*-Promotor-Sequenzen aus anderen *Flaveria*-Arten mit C₃-, C₄-, oder C₃/C₄-intermediärer Photosynthese isoliert werden. Eine vergleichende Analyse dieser Sequenzen sollte Erkenntnisse über die Veränderungen in diesem Promotor im Verlauf der C₄-Evolution bringen. Hierbei waren die Sequenzen im distalen Promotorbereich, der für die Zellspezifität des C₄-Promotors aus *F. trinervia* verantwortlich ist, von besonderem Interesse.

2. Die Transformation von *Flaveria bidentis* nach dem Protokoll von Chitty et al. (Chitty et al. 1994) ist sehr zeit- und arbeitsaufwändig. Hinzu kommt, dass diese Methode ein hohes Maß an Erfahrung vom Experimentator fordert. Es wurde daher versucht *Flaveria bidentis* und *Flaveria trinervia* mit der experimentell viel weniger aufwändigen "floral Dip"-Methode zu transformieren, welche sich für *Arabidopsis thaliana* bewährt hat.

3. Die im Rahmen einer Diplomarbeit (Gowik 1999) begonnene Analyse der PEP-Carboxylase-Genfamilie in der dikotylen Gattung *Alternanthera* (Amaranthaceae) sollte weitergeführt werden. Während der Diplomarbeit konnten PEP-Carboxylase-cDNAs aus der C₄-Pflanze *Alternanthera pungens* und der C₃-Pflanze *Alternanthera sessilis* isoliert werden. Jetzt sollte noch eine PEP-Carboxylase cDNA aus der C₃/C₄-intermediären Pflanze *Alternanthera tenella* isoliert werden. Die drei cDNAs sollten benutzt werden, um rekombinantes Protein zu produzieren und die kinetischen Eigenschaften der PEP-Carboxylasen vergleichend zu untersuchen. Außerdem sollte aufgeklärt werden, wie viele Mitglieder die PEP-Carboxylase-Genfamilie in den drei betrachteten Arten umfasst und ob die untersuchten cDNAs von Genen kodiert werden, die zu der selben Klasse dieser Genfamilie gehören.

2. Material und Methoden

2.1. Material

2.1.1. Chemikalien und Materialien

Alle verwendeten Chemikalien waren von p.a.-Qualität und wurden von folgenden Firmen bezogen: Baker (Deventer, Niederlande), Biomol (Frankfurt), Janssen (Beerse, Belgien), Merck (Darmstadt), Riedel de Haen (Seelze), Roth (Karlsruhe), Serva (Heidelberg), Sigma-Aldrich (München).

Hybond N- und Hybond N⁺-Nylonmembranen sowie radioaktives α -³²P-dATP stammten von der Firma Amersham Pharmacia Biotech (Freiburg). Die verwendete Protran-Nitrocellulose-Membran lieferte die Fa. Schleicher und Schüll (Dassel). Es wurden Röntgenfilme der Firmen CEA (Strängas, Schweden) und Eastman Kodak GmbH (Rochester, USA) verwendet. Die Agarose für die Gelelektrophorese wurde von der Firma. Gibco BRL (Eggenstein) hergestellt. Nukleinsäuren wurden mit Produkten der Firmen Qiagen (Hilden) und Genomed (Bad Oeynhausen) gereinigt. Oligonukleotidprimer wurden von den Firmen Gibco BRL (Eggenstein), Invitrogen (Carlsbad) oder Metabion (Martinsried) bezogen.

Medien und Reagenzien für die Bakterien- und Phagenanzucht

Agar-Agar	Serva (Heidelberg)
Bactotrypton	Gibco BRL (Eggenstein)
NZ-Amin	Difco (Detroit, USA)
Hefe-Extrakt	Gibco BRL (Eggenstein)
Isopropyl-1-thio-β-D-galactopyranosid (IPTG)	Roth (Karlsruhe)
5-Bromo-4-chloro-3-indolyl-β-D-galactopyranosid (X-Gal)	Serva (Heidelberg)
Ampicillin	Serva (Heidelberg)
Kanamycin	Sigma (München)

Chemikalien für die Pflanzenkultur und Transformation

Bacto-Difco-Agar	Difco (Detroit, USA)
Benzaminopurin	Sigma (München)
Beta-Bactyl	Smith Kline Beecham (München)
Claforan	Hoechst (Frankfurt)
Gelrite	Roth (Karlsruhe)

Glufosinat (BASTA)	Aventis/Bayer Crop Sience (Monheim)
Gibberellinsäure	Sigma (München)
Kanamycin	Sigma (München)
Murashige & Skoog-Medium	Serva (Heidelberg)
Naphtylessigsäure	Sigma (München)
Nicotinsäure	Merck (Darmstadt)
Pyridoxindichlorid	Merck (Darmstadt)
Saccharose	Sigma (München)
Thiamindichlorid	Merck (Darmstadt)
Substrate für Glucuronidase-Enzymtests	
4-Methyliumbelliferon (MU)	Sigma (München)
4-Methyliumbelliferonglucuronid (MUG)	Sigma (München)

Biosynth (Staad, Schweiz)

2.1.2. Für Klonierungen verwendete Oligonukleotidprimer

5-Bromo-4-chloro-3-indolyl-β-D-glucuronid (X-Gluc)

Primer Name	Sequenz
FtDEa5´	GGG <u>AAGCTT</u> AGAACATGAAAAAAGGACTCACCAGG
FtDEa3´	GGG <u>TCTAGA</u> TTGTTTGTTTTAGTGAGTAAG
FtDEb5	GGG <u>AAGCTT</u> GTGAATTTATGAGAGCTGTAC
FtDEb3 ⁻	GGG <u>TCTAGAG</u> TACTTAATTTCCATTTCTC
FtDEc5	GGG <u>AAGCTT</u> TGTGTGTGTGAATATGTTGC
FtDEc3	GGG <u>TCTAGA</u> TACATACTTTCCAAATTCATAG
FtDEa3´-Xho	GGG <u>CTCGAG</u> TTGTTT GTTTTAGTGAGTAAG
FtDEb5´-Sal	GGG <u>GTCGAC</u> GTGAATTTATGAGAGCTGTAC
GUS-51	GTTGGGGTTTCTACAGGACG
bar-5´	GTCTGCACCATCGTCAACCA
bar-3'	CATATCCGAGCGCCTCGTGCATG

Tabelle 2.1.: Liste der Oligonukleotidprimer, die für die Klonierung und Überprüfung der Reportergenkonstrukte benutzt wurden.

2.1.3. Enzyme

Restriktionsendonukleasen und passende Reaktionspuffer wurden von den Firmen Roche Diagnostics/Boehringer (Mannheim) und MBI Fermentas (Vilnius, Litauen) bezogen. PCR- Reaktionen wurden mit dem "Advantage cDNA Polymerase Mix" der Firma Clontech (Palo Alto, USA) oder einer von Oliver Bläsing und mir im Labor gereinigten Taq-Polymerase durchgeführt. Superscript II Reverse Transkriptase stammte von der Firma Gibco BRL (Eggenstein), T4-DNA-Ligase von der Firma Roche Diagnostics/Boehringer (Mannheim).

2.1.4. Reagenziensätze zur Modifizierung und Prozessierung von Nukleinsäuren

Megaprime DNA Labelling Kit	Amersham Pharmacia Biotech (Freiburg)
SMART cDNA Libary Construction Kit	Clontech (Palo Alto, USA)
TOPO TA Cloning Kit	Invitrogen (Carlsbad)
Universal Genome Walker Kit	Clontech (Palo Alto, USA)
ZAP-cDNA Gigapack III Gold Cloning Kit	Stratagene (La Jolla, USA)

2.1.5. Bakterienstämme

Escherichia Coli Stämme:

DH5a	supE44, Δ lacU169 (Φ 80 lacZ Δ M15), hsdR17 (rk ⁻ , mk ⁺), recA1, endA1gyrA9	
	thi-1, relA1 (Bethesda Research Laboratories, 1986)	
XL1-Blue	endA1, hsdR17 (rk ⁻ , mk ⁺), supE44, thi-1, λ -, recA1, gyrA96, relA1 (lac ⁻) [F ⁻ ,	
	proAB, lacIq, ZAM15, Tn10 (tetR)] (Stratagene, La Jolla, USA)	
SOLR	(McrA ⁻) Δ (mcrCB-hsdSMR-mrr) 171 sbcC, recB, recJ, uvrC, umuC, Tn5	
	(KanR) lac gyrA96, relA1, thi-1, endA1, λR , [F', proAB, lacIq, Z $\Delta M15$], Su ⁻	
	(Stratagene, La Jolla, USA)	
PCR 1 :	F-, recA1, arg, leu, thr, thi, rpsL, ppc2 (Sabe et al. 1984)	
Agrobakterium	tumefaciens Stämme:	

AGL1 EHA101, recA::bla, pTIBo542 Δ T, Mop⁺, Cb^R (Hood et al. 1986; Lazo et al. 1991)

2.1.6. Klonierungs- und Tranformationsvektoren

pBluescript II SK	Stratagene (La Jolla, USA)
pBluescript II KS	Stratagene (La Jolla, USA)
pCR2.1-TOPO	Invitrogen (Carlsbad)
pTrc 99A	Amersham Pharmacia (Freiburg)
pBI121	Clontech (Palo Alto, USA)
pCB302	(Xiang et al. 1999)

2.1.7. Pflanzenmaterial

Die verschiedenen, verwendeten *Flaveria*-Spezies wurden im Gewächshaus der Heinrich-Heine Universität Düsseldorf angezogen. Das Saatgut stammte aus der Züchtung des Botanischen Gartens der HHU Düsseldorf. Samen von Wildtyppopulationen von *Alternanthera sessilis*, *Alternanthera tenella* und *Alternanthera pungens* wurden von Prof. A.S. Raghavendra (University of Hyderabad, Indien) zur Verfügung gestellt. Die Anzucht der Pflanzen erfolgte ebenfalls im Gewächshaus der HHU Düsseldorf.

Für Nukleinsäureisolationen wurde Blattmaterial von etwa 2 Monate alten Pflanzen geerntet. Die Blattspreiten wurden direkt in flüssigem Stickstoff schockgefroren und bis zum Gebrauch bei –80°C gelagert.

2.2. Methoden

2.2.1. Allgemeine Methoden

Allgemeine molekularbiologische Methoden wie Fällung, Restriktion, Ligation, Dephosphorylierung und Phosphorylierung von DNA sowie die Transformation und Anzucht von Bakterien wurden nach Standardvorschriften (Sambrook et al. 1989) durchgeführt. Plasmid-DNA wurde normalerweise durch Koch-Lyse (Holmes & Quigley 1981) isoliert. Hochreine Plasmid-DNA für Sequenzierungen wurde mittels des "QIAprep Kits" (Qiagen, Hilden) oder den Jetstar Säulen der Firma Genomed (Bad Oeynhausen) gereinigt. Für die Reinigung von DNA-Fragmenten aus Agarosegelen oder PCR-Reaktionen wurde der "QIAquick Gel Extraction Kit" bzw. der "QIAquick PCR Purification Kit" der Firma Qiagen (Hilden) verwendet. Für die analytische und präparative Trennung von Nukleinsäuren wurden TBE-Agarosegele (1 x TBE: 90 mM Tris; 90 mM Borsäure; 1 mM EDTA; pH 8,3) mit einem Agarosegehalt zwischen 0,8 und 3,5 Prozent eingesetzt. Wenn nötig wurden Lösungen und Medien durch Autoklavieren (121°C, 20 min) oder Filtrieren mit Spritzenvorsatzfiltern (0,22 µm Porengröße) sterilisiert. Plastikgeräte wurden autoklaviert, Glasgeräte bei 180°C für 5-6 Stunden hitzesterilisiert.

2.2.2. Isolierung von Nukleinsäuren aus Pflanzen

Isolierung von Gesamt-RNA und Poly-A⁺-RNA

40 bis 50 g Blattmaterial wurden in flüssigem N_2 gemörsert und anschließend in 160 ml Homogenisationsmedium (0,33 M Sorbitol; 0,2 M Tris HCl; 0,3 M NaCl; 10 mM EDTA; 10 mM EGTA; 2 % (w/v) SDS; 10 mM DTE; 10 mM DIECA; pH 9) und 80 ml Phenol (pH 8) ca. 15 min gerührt. Nach Zugabe von 80 ml Chloroform und Zentrifugation wurde die wässrige Phase abgenommen und erneut mit Phenol/Chloroform extrahiert. Es folgte eine weitere Extraktion mit 160 ml Chloroform. Die wässrige Phase wurde mit 1/20 Volumen 4 M Na-Acetat und einem Volumen Isopropanol versetzt. Die Nukleinsäuren wurden über Nacht bei -20°C gefällt. Die gefällten Nukleinsäuren wurden nach Zentrifugation (20 min bei 5000 Upm im SS34 Rotor) in Tris-Borat-EDTA-Puffer (80 mM Tris-Borat; 10 mM EDTA; pH 8) gelöst. Anschließend wurde die RNA durch Zugabe von 1/3 Volumen LiCl bei 4°C über Nacht gefällt. Die LiCl-Fällung wurde wiederholt und die getrocknete RNA, nach Waschen mit 70 % Ethanol, in 2 ml sterilem Wasser gelöst. Diese Methode ist einer Vorschrift von Westhoff et al. (Westhoff et al. 1991) entlehnt.

Poly-A⁺-RNA wurde mittels des "Oligotex-Kits" der Firma Qiagen isoliert. Die Isolierung im Batch-Verfahren wurde gemäß den Angaben des Herstellers durchgeführt (Kuribaysashi et al. 1988). Es wurden jeweils 1 mg Gesamt-RNA eingesetzt. Um die Reinheit der Poly-A⁺-RNA zu erhöhen, wurde die Aufreinigung einmal wiederholt.

Isolierung von genomischer DNA

Genomische DNA wurde aus den Überständen der LiCl-Fällungen der entsprechenden RNA-Präparationen isoliert. Die DNA wurde mit einem Volumen Isopropanol bei 4°C für mehrere Stunden gefällt. Die fädig ausfallende DNA wurde mit Hilfe einer Pipettenspitze aus der Lösung gefischt, mit 70% Ethanol gewaschen und in sterilem H₂O gelöst. Nach einer Inkubation mit RNaseA folgten eine Phenol/Chloroform-Extraktion und eine erneute Fällung der DNA mit Isopropanol. Nach dem Waschen mit 70 % Ethanol wurde die DNA getrocknet, in sterilem H₂O gelöst und bei 4°C gelagert. Zum Teil wurde genomische DNA auch mit dem "DNeasy Plant Kit" der Firma Qiagen (Hilden) nach Angaben des Herstellers isoliert.

2.2.3. Radioaktive Markierung von DNA-Hybridisierungssonden

DNA Fragmente wurden mit der Methode des Zufalls-Priming (Feinberg & Vogelstein 1983) radioaktiv markiert. Hierzu wurde das "Megaprime-DNA-labelling-System" der Firma Amersham Pharmacia Biotech (Freiburg) benutzt. Es wurden jeweils 25 ng Sonden-DNA und 15 μ Ci α^{32} P-dATP pro Reaktion eingesetzt. Die Reaktion wurde nach Angaben des Herstellers durchgeführt. Der Einbau des radioaktiven α^{32} P-dATP wurde im Szintillationszähler kontrolliert. Die Sonden wurden nur verwendet, wenn mehr als ein Drittel des eingesetzten α^{32} P-dATP eingebaut worden war.

2.2.4. Southern-Analyse von genomischer DNA

3-5 μg genomische DNA wurden mit den entsprechenden Restriktionsendonukleasen behandelt und in einem 0,8 % Agarosegel aufgetrennt. Das Gel wurde für 2 x 15 min in Denaturierungslösung (0,4 M NaOH; 0,6 M NaCl) geschwenkt. Der Transfer der DNA Fragmente auf Hybond N⁺-Nylonmembran erfolgte durch Saugströmung (Southern 1975) mit Phosphatpuffer (25 mM Na-Phosphat; pH 6,5). Die Membranen wurden getrocknet und die DNA mittels UV-Licht (300 Jm⁻²; UV-Crosslinker; Amersham Pharmacia, Freiburg) an den Membranen fixiert. Der Nachweis von membrangebundenen DNA-Fragmenten erfolgte durch Hybridisierung mit radioaktiv markierten DNA-Sonden und anschließende Autoradiographie.

2.2.5 Northern-Analyse von RNA

Bis zu 10 μg RNA wurden vor der Elektrophorese in folgendem Ansatz denaturiert: 4 μl RNA; 4 μl deionisiertes Glyoxal; 9,5 μl DMSO; 2,5 μl 10 x MOPS Puffer (200 mM MOPS; 50 mM Na-Acetat; 10 mM Na₂ EDTA; pH 7,0). Dieser Ansatz wurde für 45 min bei 50°C inkubiert (McMaster & Carmichael 1977). Anschließend wurden 5 μl Probenpuffer (90 % (v/v) deionisiertes Formamid; 0,01 % (w/v) Bromphenolblau; 0,01 % (w/v) Xylencyanol; 10 mM Na₂ EDTA) zugegeben. Die Elektrophorese wurde auf einem 1 % Agarosegel (300 ml) in MOPS-Puffer (20 mM MOPS; 5 mM Na-Acetat; 1 mM Na₂ EDTA; pH 7,0) ca. 5 h bei 100 V durchgeführt. Der Transfer der RNA auf Hybond N-Nylonmembranen erfolgte durch Saugströmung mit 20 x SSC-Puffer (3 M NaCl; 330 mM Natriumcitrat; pH 7,0) (Thomas 1980). Die RNA wurde mittels UV-Licht (300Jm⁻²; UV-Crosslinker; Amersham Pharmacia, Freiburg) an den Membranen fixiert (Khandjian 1986).

2.2.6. Hybridisierung membrangebundener Nukleinsäuren mit radioaktiv markierten DNA-Sonden

Der Nachweis membrangebundener Nukleinsäuren erfolgte nach Church und Gilbert (Church & Gilbert 1984). Die Membranen wurden in Röhren bei der vorgesehenen Hybridisierungstemperatur mit 50 ml Hybridisierungslösung (250 mM Na₂HPO₄; 7 % SDS (w/v); 2,5 mM EDTA; pH 7,2) mindestens 1 h vorhybridisiert. Anschließend wurde diese Lösung entfernt und durch 5 ml frische Hybridisierungslösung ersetzt. Dieser wurde dann die radioaktiv markierte und frisch denaturierte DNA Sonde zugesetzt. Die Hybridisierung erfolgte über Nacht im Hybridisierungsofen. Die Temperatur betrug bei DNA Sonden mit hoher Sequenzübereinstimmung 64°C und bei Sonden mit niedriger Sequenzübereinstimmung 60°C. Überschüssige Sondenlösung und unspezifisch an der Membran gebundene Sonde wurde durch mehrfache Waschung bei Hybridisierungstemperatur entfernt. Die Salzkonzentrationen der Waschlösungen wurden dabei fortlaufend erniedrigt (1.Waschung: 1 x SSC; 1 % SDS; 2. und 3. Waschung: 0,5 x SSC; 1 % SDS; 4. und 5. Waschung: 0,1 x SSC; 0,5 % SDS). Die Filter wurden feucht in Haushaltsfolie verpackt und auf Röntgenfilmen (Kodak X-omat AR 5 oder Wicor-X RP, Blue sensitive) unter Verwendung einer Verstärkerfolie (Cronex Quanta III, Du Pont Instruments, Bad Homberg) bei -70°C exponiert.

2.2.7. Herstellung und Sichtung von cDNA-Büchereien

Herstellung von größenfraktionierten cDNA-Büchereien

Die Synthese der cDNA erfolgte mit dem "ZAP cDNA Synthesis Kit" der Fa. Stratagene weitgehend nach Angaben des Herstellers (Stratagene 1995). Eine Abweichung zum Stratagene-Protokoll ergab sich bei der Größenfraktionierung der cDNAs. Sie wurde in folgender Weise durchgeführt:

Die doppelsträngige cDNA wurde mit Phenol/Chloroform extrahiert, über Nacht gefällt (1/10 Volumen 3 M Na-Acetat; 1 Volumen Isopropanol; -20°C) und in 10 μ l H₂O rückgelöst. Die gesamten 10 μ l wurden auf einem Agarosegel aufgetrennt. Unter UV-Licht wurden die cDNAs in drei Klassen, 0,5-2 kb, 2-6 kb und größer 6 kb unterteilt. Die cDNA wurde mittels des QIAEx Kits der Firma Qiagen nach Angaben des Herstellers aus dem Gel eluiert. Die eluierte cDNA wurde mit Phenol/Chloroform behandelt und über Nacht gefällt (1/10 Volumen 3 M Na-Acetat; 1 Volumen Isopropanol; -20°C) und in 12 μ l H₂O gelöst. Anschließend wurden die cDNAs nach Angaben des Herstellers mit den λ ZAP II-Vektorarmen ligiert. Die concatemere DNA wurde mittels des Verpackungsextrakt Gigapack III (Fa. Stratagene) nach Angaben des Herstellers in Phagenhüllen verpackt. Danach wurden 500 μ l SM-Medium (5,8 g NaCl; 2 g MgSO₄ * 7H₂O; 50 ml 1 M Tris HCl; 5 ml 2 % Gelatine; H₂O ad 1000 ml; pH 7,5) zugegeben. Die cDNA-Bücherei wurde mit 20 μ l Chloroform extrahiert, um überschüssige Phagenproteine zu entfernen.

Ausplattierung und Amplifizierung der Phagen-cDNA-Büchereien

Zur Amplifizierung und Sichtung wurden die Phagen in folgender Weise ausplattiert: Auf Agar-Platten (20 x 35 cm; 400 ml NZY Agar (5 g NaCl; 2 g MgSO₄ * 7H₂O; 5 g Hefe Extrakt; 10 g NZ Amin; 15 g Agar; H₂O ad 1000 ml; pH 7,5)) wurden 2 ml XL1-Blue MRF[•], OD₆₀₀= 0,5, die mit jeweils 100000 bis 150000 Phagen für die Amplifizierung, und mit 50000 Phagen für die Sichtung infiziert, und in 40 ml NZY Top Agar (5 g NaCl; 2 g MgSO₄ * 7H₂O; 5 g Hefe Extrakt; 10 g NZ Amin; 0,7 % Agarose; H₂O ad 1000 ml; pH 7,5) aufgenommen waren, verteilt. Die Platten wurden 8 h bei 37°C inkubiert.

Für die Amplifizierung wurden die Phagen anschließend mit 40 ml SM-Medium bei 4°C für 8 h unter Schütteln eluiert. Die Phagenbank wurde mit Chloroform extrahiert, um Bakterien und Agar-Reste zu entfernen.

Die für die Transfektion verwendeten Bakterien wurden auf folgende Art vorbereitet: 50 ml LB-Medium (10 g NaCl; 10 g Trypton; 5 g Hefe Extrakt; H₂O ad 1000 ml; pH 7,5) mit 10 mM MgSO₄ und 0,2 % Maltose wurden mit einer Einzelkolonie XL1-Blue MRF^{\prime} angeimpft, über Nacht bei 28°C und anschließend 4-5 h bei 37°C inkubiert, bis die Zellen zu einer OD₆₀₀ von 1 gewachsen waren. Die Bakterien wurden durch Zentrifugation pelletiert und in 25 ml 10 mM MgSO₄ aufgenommen. Vor der Infektion mit den Phagen wurden die Zellen mit 10 mM MgSO₄ auf eine OD₆₀₀ von 0,5 verdünnt.

Sichtung der Phagen-cDNA-Büchereien

Die Sichtung der cDNA Banken und die Isolierung von Klonen erfolgten nach der Methode von Benton und Davies (Benton & Davies 1977). Die Phagen wurden für die Primärsichtung wie oben beschrieben ausplattiert. Nach Wachstum der Phagen über Nacht bei 37°C und Abkühlen der Platten auf 4°C wurden passend zugeschnittene Nitrocellulosefilter (Fa. Schleicher und Schüll) luftblasenfrei 1 min auf die Platten gelegt. Die Filter wurden im Anschluss zunächst 1 min in Denaturierungslösung (0,5 M NaOH; 1,5 M NaCl) inkubiert, um die gebundene DNA zu denaturieren. Anschließend wurden die Filter in Neutralisierungslösung (0,5 M Tris/HCl; 3 M NaCl; pH 7,4) 5 min neutralisiert. Danach wurden die Filter noch 15 min in Waschlösung (2 x SSC) getränkt. Die getrockneten Filter wurden dann 2 h bei 80°C gebacken, um die gebundene DNA zu fixieren. Die Filter konnten jetzt mit radioaktiv markierten DNA-Sonden hybridisiert werden. Durch den Vergleich mit den nach Autoradiographie geschwärzten Röntgenfilmen konnten die Bereiche aus den Phagenplatten ausgestochen werden, die Phagen enthielten, in Welche die gewünschte Sequenz kloniert war. Die so ausgestochenen Plaques wurden in 1 ml SM Medium mit 20 µl Chloroform überführt.

Diese Phagensuspension wurde, entsprechend verdünnt, für die Replattierung (Sekundärsichtung) eingesetzt. Die Replattierung und Detektion der positiven Phagen verlief analog zur Primärsichtung, allerdings wurde die Plattierung auf Petrischalen mit 200 µl Bakteriensuspension und 1,8 ml NZY Top Agarose durchgeführt. Es wurden so wenig Phagen eingesetzt, dass sich deutlich abgegrenzte Plaques bildeten.

Um die Zahl der Sekundärsichtungen zu begrenzen, wurde die Größe und Vollständigkeit der nach der Primärsichtung erhaltenen Phagenklone mittels der Polymerase-Kettenreaktion (PCR) (Saiki et al. 1988) überprüft. Die Primer wurden hierbei so gewählt, dass die Länge der erhaltenen PCR-Produkte Aufschluss über die Vollständigkeit der ausgewählten Phagenklone lieferte. Es wurden 5 μl der nach der Primärsichtung erhaltenen Phagensuspension in eine PCR-Reaktion eingesetzt. Der Reaktionsansatz enthielt 1 x Reaktionspuffer (20 mM Tris/HCl; 50 mM KCl; 1,5 mM MgCl₂; 0,1 % Triton X-100; pH 8,9), je 200 μM dNTP, je 0,5 μM Primer und 1U Taq-Polymerase. Die Reaktionssequenz bestand aus einem Denaturierungsschritt (94°C/5min), fünf Vorzyklen (94°C/1min, 50°C/30sek, 72°C/1min) 30 Hauptzyklen (94°C/1min, 55°C/30sek, 72°C/1min) und einer abschließenden Verlängerung (72°C/5min). Die Reaktionen wurden mit einem PE 9700 Thermocycler der Firma Perkin Elmer durchgeführt.

In vivo-Exzision und Charakterisierung von cDNA Klonen

Die *in vivo*-Exzision der Klone wurde gemäß der Vorschrift des Herstellers (Stratagene 1995) durchgeführt. Bei diesem Prozess werden die λ -Phagen zunächst in Phagmide umgewandelt, die *E. coli*-Zellen des Stammes SOLR infizieren können. In diesen Zellen werden die Phagmide in das Plasmid pBS-SK umgewandelt.

Zur Charakterisierung der Klone wurde die Plasmid-DNA aus den SOLR-Zellen isoliert. Es wurden Restriktionsanalysen und Southern-Hybridisierungen durchgeführt. Aussichtsreiche Klone wurden sequenziert.

2.2.8 Transformation von Flaveria bidentis

Transformation von Agrobacterium tumefaciens

Elektrokompetente *Agrobacterium tumefaciens*-Bakterien, des Stammes AGL1 (Lazo et al. 1991), wurden mittels Elektroporation (Elektroporationsapparatur Electro Cell Manipulator 600 der Firma BTX; San Diego, USA) transformiert. Die Herstellung der kompetenten Zellen und die Transformation erfolgten gemäß den Empfehlungen des Herstellers für *Agrobacterium tumefaciens*. Um sicher zu gehen, dass die transformierten Konstrukte vollständig in den transformierten Bakterien vorlagen, wurden die entsprechenden Plasmide aus den Agrobakterien isoliert und mittels Restriktionsanalysen überprüft. Die Plasmide wurden nach einer abgewandelten Vorschrift von Birnboim und Doly (Birnboim & Doly 1979) isoliert. Die Zellen aus 2 ml Kultur wurden in 100 μl Lösung 1 (25 mM Tris/HCl; 10 mM EDTA; 1 % Glycerin; pH 8,0) mit 4 mg/ml Lysozym resuspendiert und 10 min bei Raumtemperatur inkubiert. Nach der Zugabe von 200 μl Lösung 2 (0,2 M NaOH; 1 % SDS) folgte eine weitere Inkubation bei Raumtemperatur für 10 min. Es wurden 150 μl Lösung 3 (3 M Kaliumacetat; 5 M Essigsäure) zugegeben, dann wurde die Mischung mindestens 20 min bei –20°C eingefroren. Anschließend wurde die aus den

Bakterien freigesetzte Plasmid-DNA mit Phenol/Chlroform extrahiert, mit einem Volumen Isopropanol gefällt und in 25 μ l H₂O zurückgelöst.

Medien für die Pflanzenanzucht und Transformation

MS-Medium (Murashige & Skoog 1962):

1,65 g/l NH₄NO₃; 1,9 g/l KNO₃; 0,44 g/l CaCl₂ * 2H₂O; 0,37 g/l MgSO₄ * 7H₂O; 0,17 g/l KH₂PO₄; 21,5 mg/l FeNaEDTA; 0,415 mg/l KI; 3,1 mg/l H₃BO₃; 11,15 mg/l MnSO₄ * 4H₂O; 4,3 mg/l ZnSO₄ * 7H₂O; 0.125 mg/l Na₂MoO₄ * 2H₂O; 0,0125 mg/l CuSO₄ * 5H₂O; 0,0125 mg/l CoCl₂ * $6H_2O$

B5-Medium (Gamborg et al. 1986):1 mg/l Nicotinsäure; 1 mg/l Pyridoxalphosphat; 10 mg/l Thiamin; 100 mg/l Myo-Inositol

Die folgenden Medien enthielten Salze gemäß dem MS- und Vitamine gemäß dem B5-Medium.

GM (Keimungsmedium): 30 g/l Saccharose; pH 5,8; Agar

CRM (Callus Regeneration Medium):

30 g/l Saccharose; 1 g/l MES; 4,3 mg/l Kinetin; 20 mg/l Adenin; 1 mg/l IAA; 200 mg/l Betabactyl; 200 mg/l Kanamycin; pH 5,8; Agar

SPM 1:

30 g/l Saccharose; 0,5 mg/l Kinetin; 5 mg/l Adenin; 0,05 mg/l IAA; 0,05 mg/l GA₃; 0,5 mg/ml PP 333; 200 mg/l Betabactyl; 100 mg/l Kanamycin; pH 6,0; Gelrite

SPM 2:

30 g/l Saccharose; 0,05 mg/l Kinetin; 0,05 mg/l IAA; 0,05 mg/l GA₃; 0,2 mg/ml PP 333; 200 mg/l Betabactyl; 50 mg/l Kanamycin; pH 6,0; Gelrite

SPM 3:

30 g/l Saccharose; 200 mg/l Betabactyl; pH 6,0; Gelrite

Pflanzenanzucht

Flaveria bidentis-Samen aus dem Gewächshaus der HHU Düsseldorf wurden sterilisiert (1 min 70% Ethanol, 20 min 5 % Dimamin, mehrfach waschen mit sterilem H₂O) und anschließend

Transformation von Flaveria bidentis und Regeneration transgener Pflanzen

Flaveria bidentis wurde nach der von Chitty et al. (Chitty et al. 1994) beschriebenen Methode transformiert. Die ca. 5 mm langen Hypokotyle von 6 bis 7 Tagen alten Keimlingen wurden ausgeschnitten und 10 min in einer Agrobakteriensuspension (OD₆₀₀ 0,6 - 0,8) inkubiert. Sprosse waren auf einigen Hypokotylen nach drei Wochen Inkubation auf CRM-Medium zu erkennen. Die Sprosse wurden im Anschluss 7 Tage auf SPM 1- Medium und 5 bis 10 Tage auf SPM 2-Medium kultiviert. Beide Medien enthielten abweichend von der Vorschrift von Chitty et al. noch Kanamycin, um den Anteil von nicht transgenen regenerierten Sprossen zu senken. Die Pflanzen wurden dann auf SPM 3-Medium übertragen und über Stecklinge vermehrt. Zur Durchführung von Experimenten und Gewinnung von Saatgut wurden die Pflanzen von SPM 3-Medium auf Erde transferiert und im Gewächshaus der HHU Düsseldorf angezogen. Alle von mir im Rahmen dieser Arbeit untersuchten transgenen *Flaveria bidentis*-Pflanzen wurden von Ute Schlue oder Maria Koczor hergestellt.

2.2.9. Transformation von Flaveria mit der "floral Dip"-Methode

Es wurde versucht, *Flaveria trinervia* und *Flaveria bidentis* mit der so genannten "floral Dip"-Methode zu transformieren. Dabei wurde nach der Vorschrift von Bent und Clough (Clough & Bent 1998) vorgegangen, die sich für *Arabidopsis thaliana* bewährt hat. Die Pflanzen wurden im Gewächshaus der HHU Düsseldorf bis zur Blüte angezogen und dann für die Versuche verwendet. Pro Versuch wurden bis zu 100 Pflanzen eingesetzt. Es wurde der *Agrobacterium tumefaciens*-Stamm AGL1 verwendet, als binäre Vektoren kamen die Plasmide pBI121 und pCB302 zum Einsatz.

Die Bakterien wurden in 3 Liter YEB-Medium (0,5 % (w/v) Casamino Acids; 0,1 % (w/v) Hefe-Extrakt; 0,5 % (w/v) Fleisch-Extrakt; 0,5 % (w/v) Saccharose; 2mM MgSO₄; pH 7,2) bis zu einer OD₆₀₀ von 0,8 bis 1 angezogen. Die Zellen wurden durch Zentrifugation pelletiert und in 3 Liter 5 % Saccharoselösung mit 0,05 % Silwet L-77, einem milden Detergenz, resuspendiert und in ein 5 Liter Becherglas gefüllt. In diese Agrobakteriensuspension wurden jetzt blühende *F*. *trinervia* und *F. bidentis* Pflanzen getaucht. *F. trinervia* und kleinere *F. bidentis* Pflanzen (bis ca. 50 cm) wurden vollständig in der Agrobakteriensuspension untergetaucht. Bei größeren *F. bidentis* Pflanzen (50-120 cm) war dies nicht möglich, daher wurden die blütentragenden Seitensprosse einzeln in die Agrobakteriensuspension getaucht. Die Pflanzen wurden anschließend

über Nacht mit Plastikfolie abgedeckt. Am nächsten Morgen wurde die Folie entfernt und die Pflanzen zur Samenbildung und Samenreifung weiter im Gewächshaus kultiviert.

Nach der Samenreife wurden die Samen geerntet, gesäubert und ausgesät. Die Selektionsmethode, mit der transgene Pflanzen selektiert wurden, richtete sich nach dem verwendeten Transformationsvektor. Der pBI121 Vektor vermittelt eine Resistenz gegen das Antibiotikum Kanamycin, das pCB302 Plasmid vermittelt eine Resistenz gegen das Herbizid Glufosinat (Handelsname BASTA). Bei den Experimenten mit dem Plasmid pBI121 wurden die Samen sterilisiert und auf GM-Medium mit 100 µg/ml Kanamycin angezogen. Bei den Experimenten mit dem pCB302 Plasmid wurden die Samen auf Erde (Floraton 1) ausgebracht. Die Samen wurden mit dem Fungizid Previcur N (Aventis/Bayer Crop Sience, Monheim) nach Angaben des Herstellers behandelt und zum Keimen 4 Tage in einem geschlossenen Glaskasten belassen. Nach der Keimung wurden die Keimlinge im Gewächshaus angezogen und einmal pro Woche mit einer 100 mg/l BASTA-Lösung eingesprüht.

Von Pflanzen, welche die Selektion überlebten, wurde genomische DNA isoliert, welche mittels PCR auf die Anwesenheit des Transgens untersucht wurde.

2.2.10. Schnelle PCR-Analyse individueller Pflanzen

Um schnell beurteilen zu können, ob eine Pflanze transgen war, wurde genomische DNA im Minimaßstab nach dem Protokoll von Edwards (Edwards, K. et al. 1991) isoliert. Etwa 0,5 - 1 cm² Blattmaterial wurde mittels eines motorgetriebenen Pistills in einem 1,5 ml Reaktionsgefäß aufgeschlossen und mit 400 µl Extraktionspuffer (200 mM Tris/HCl; 250 mM NaCl; 25 mM EDTA; 0,5 % SDS; pH 7,5) vermischt. Die festen Bestandteile wurden mittels Zentrifugation abgetrennt und die DNA aus dem Überstand durch Zugabe von einem Volumen Isopropanol gefällt. Die DNA wurde in 100 µl TE Puffer gelöst. Für PCR-Reaktionen wurde 1 µl dieser DNA eingesetzt.

2.2.11. Analyse der GUS-Aktivität in transgenen Flaveria-Pflanzen

Quantitative Analyse

Die GUS-Enzymaktivität wurde nach der von Kosugi (Kosugi et al. 1990) modifizierten Vorschrift von Jefferson (Jefferson et al. 1987) bestimmt. Etwa 300 mg Pflanzenmaterial wurde in Alufolie gewickelt, in flüssigem Stickstoff gefroren und mit einem Hammer zertrümmert. Das Pflanzenpulver wurde in ein 1,5 ml Reaktionsgefäß überführt, mit 300 µl Extraktionspuffer (50 mM NaPO₄; 10 mM EDTA; 10 mM β -Mercaptoethanol; 0,1 % (v/v) Na Lauryl Sarkosinat; 0,1 % (v/v) Triton X-100; 20 % (v/v) Methanol; pH 7,0) versetzt und mit einem motorgetriebenen Pistil aufgeschlossen. Die unlöslichen Bestandteile wurden durch Zentrifugation (10 min; 13000 Upm; 4°C) abgetrennt und der Proteingehalt des Überstandes nach der Methode von Bradford (Bradford 1976) bestimmt.

Pro Enzymassay wurden 10 μg Protein eingesetzt. Die entsprechende Menge Proteinextrakt wurde mit Extraktionspuffer auf 20 μl aufgefüllt und mit 200 μl auf 37°C vorgewärmtem GUS-Reaktionsmedium (50 mM NaPO₄; 10 mM EDTA; 10 mM β-Mercaptoethanol; 0,1 % (v/v) Na Lauryl Sarkosinat; 0,1 % (v/v) Triton X-100; 20 % (v/v) Methanol; 1 mM 4-Methylumbelliferylβ-D-Glucuronid (MUG); pH 7,0) versetzt. Der Ansatz wurde bei 37°C im Wasserbad inkubiert. In definierten Abständen wurde dem Ansatz ein Aliquot von jeweils 40 μl entnommen und mit 460 μl Stopppuffer (0,2 M Na₂CO₃) vermischt. Die gestoppten Proben wurden bis zur Messung der Fluoreszenz im Dunkeln aufbewahrt. Die Messung der Fluoreszenz erfolgte im Versa-Fluor-Fluorimeter der Firma Biorad bei 455 nm, die Wellenlänge des Anregungslichtes betrug 355 nm. Die 4-Methylumbelliferyl (MU) Konzentration wurde durch Vergleich mit einer MU-Eichreihe (0,1-2 μM MU) bestimmt. Die GUS-Aktivität wurde aus der zeitlichen Zunahme der MU-Konzentration bestimmt und auf die eingesetzte Proteinmenge bezogen.

Histochemische Analyse

Die histochemische Analyse wurde ebenfalls nach der Methode von Jefferson (Jefferson et al. 1987) durchgeführt. Von Blättern wurden manuell Querschnitte mit einer Rasierklinge angefertigt. Diese möglichst dünnen Schnitte (idealerweise eine bis wenige Zelllagen) wurden in Reaktionspuffer (0,1 mM Na₂PO₄; 10 mM EDTA; 0,1 % (v/v) Triton X-100; 0,05 % 5-Bromo-4-Chloro-3-indoyl- β -D-Glucuronid; pH 7) überführt und bei 37°C wenige Minuten bis 48 Stunden inkubiert. Zum Abstoppen der Reaktion wurde das Reaktionsmedium entfernt und die Schnitte mit Wasser gewaschen. Anschließend wurde mehrfach mit 70 % Ethanol gewaschen um das Chlorophyll aus den Blattquerschnitten zu entfernen. Die Schnitte wurden mittels eines Axiophot Mikroskops der Firma Zeiss betrachtet und mit einer DP50 Mikroskopkamera der Firma Olympus fotografiert.

2.2.12. Isolierung genomischer DNA-Abschnitte mit der "Genome Walker"-Methode

Genomische DNA-Abschnitte aus verschiedenen *Alternanthera-* und *Flaveria-*Spezies wurden mittels der "Genome Walker"-Methode isoliert. Dabei wurde der "Universal Genome Walker Kit" der Firma Clontech (Palo Alto, USA) weitgehend nach den Angaben des Herstellers verwendet. Diese Methode, eine Abwandlung der Vectorette-PCR (Siebert et al. 1995), erlaubt es, DNA-Bereiche mit unbekannter Sequenz, die benachbart zu bereits bekannten DNA-Sequenzen sind, mittels PCR zu amplifizieren.

Abbildung 2.1.: Schematische Darstellung des Prinzips der "Genome Walker" Methode. AP: Adaptorprimer; GSP: genspezifische Primer Die Abbildung wurde dem Handbuch des "Universal Genome Walker Kits" der Firma Clontech (Palo Alto, USA) entnommen.

Hierzu wird die genomische DNA mit Restriktionsendonukleasen, die glatte DNA-Enden erzeugen, geschnitten. Anschließend wird ein Adaptor an die glatten DNA-Enden ligiert. Nun kann ein DNA-Abschnitt mittels PCR amplifiziert werden, indem man Primer benutzt, die auf der einen Seite spezifisch die Sequenz des Adaptors binden, den Adaptorprimer (AP), und auf der anderen Seite spezifische Sequenzen im bereits bekannten, benachbarten DNA-Abschnitt erkennen, genspezifische Primer (GSP). Abbildung 2.1. soll dies veranschaulichen.

Um zu gewährleisten, dass nur die von dem AP/GSP-Primerpaar definierte DNA amplifiziert wird, besitzt der Adaptor eine besondere Struktur, die in Abbildung 2.2. gezeigt ist. Der Adaptor weist ein 5'-überhängendes Ende auf und eine Aminogruppe am 3'-Ende des Adaptors verhin-

dert ein Auffüllen dieses überhängenden Endes durch die Taq-Polymerase. Die Erkennungssequenzen für die Adaptorprimer liegen im Bereich dieses überhängenden Endes, sind also im Adaptor selbst nicht vorhanden. Sie werden erst dann erzeugt, wenn der entsprechende DNA-Strang, ausgehend vom Gen-spezifischen-Primer, synthetisiert wird. Die PCR-Reaktion wird als verschachtelte PCR mit einem äußeren und einem inneren Primerpaar durchgeführt um die Spezifität der Reaktion zu erhöhen.

Die Abweichungen zur Clontech-Vorschrift betrafen im Wesentlichen die verwendete PCR-Polymerase. Anstatt des empfohlenen "Advantage Genomic PCR Mix" der Firma Clontech wurde der "Advantage cDNA Polymerase Mix" der gleichen Firma verwendet. Außerdem wurden die empfohlenen Mengenangaben der Ligationsansätze halbiert. Die empfohlenen PCR-Programme wurden um einen anfänglichen Denaturierungsschritt (94°C/15sec) erweitert. Die PCR-Reaktionen wurden mit einem PE 9700 Thermocycler der Firma Perkin Elmer in der 9600-Einstellung durchgeführt.

Abbildung 2.2.: Schematische Darstellung des "Genome Walker"-Adaptors. Die Abbildung wurde dem Handbuch des "Universal Genome Walker Kits" der Firma Clontech (Palo Alto, USA) entnommen.

Im Rahmen dieser Arbeit wurden 5´-flankierende Bereiche von Phospho*enol*pyruvat-Carboxylase-Genen aus verschiedenen *Flaveria*-Arten und 3´-flankierende Bereiche von Phospho*enol*pyruvat-Carboxylase-Genen aus verschiedenen *Alternanthera*-Arten isoliert. Die dazu verwendeten genspezifischen Primer sind in Tabelle 2.1. aufgeführt.

Primer Name	Sequenz
brGW1	CGATCGATGCTAATTTCTCCCATTCTTG
puGW1	CGATCGATGCTAATTTCTCAATTCCTG
br/puGW2	CATACTCAATAAAGCTTGTCATCCTCAGAA
brGW3	ACACCTAATGCATGCAGCGAGATGTGTG
brGW4	CAAACACATTAGTTAAATGGGTGAGTGT
puGW3	TGGCGTAAATTTAGTTCGAAAACGAGT
puGW4	CGCGTCGACTGTACTTTATCATATCGCATA
vGW1	CGAATCGATGCTAATTTCTCCACATTCCGG
vGW2	TCATACTCAACAAGCTTATCATCCTCAGAA
vGW3	TAAGTCARTCTATGACTCGCGCGTTGTG
vGW4	CGCGTCGACGTAAAAACATTGAAGCCACAY
altGW1	TCTTGACCATGAAGGGTATTGC
altGW2	CCTGGTATGCAGAACACTGG

Tabelle 2.2.: Liste der in dieser Arbeit für "Genome Walker"-Experimente verwendeten Primer. Alle Sequenzen sind in 5′-3′-Orientierung angegeben. R: A oder G; Y: C oder T

2.2.13. Aufreinigung rekombinanter PEP-Carboxylasen und Messung der kinetischen Eigenschaften

Die aus verschiedenen *Alternanthera*-Arten isolierten PEP-Carboxylase cDNAs wurden benutzt, um rekombinantes Protein für Kinetikuntersuchungen in *E. coli* herzustellen. Dazu wurden sie in den Expressionsvektor pTrc99A (Fa. Pharmacia, Freiburg) kloniert. Hierzu wurde die Region um die ATG-Startcodons der PEP-Carboxylase-Leseraster unter Beibehaltung der Aminosäuresequenz in eine *NcoI*-Schnittstelle umgewandelt. Diese Umwandlung geschah mittels einer PCR-Reaktion mit einem Mutagenese-Primer. Hierbei kamen die Primer AsppcExp (5'-AGATCTAGA<u>CCATGG</u>CAACAGTGAAGTTGG-3') und ApppcExp (5'-AGATCTAGA<u>C-CATGG</u>CAACAGTGAAGGTGG-3') zum Einsatz. Als zweiter Primer wurde Apppc3 (5'-GTCCTTTCATATTCGGCAGC-3') verwendet, dessen Erkennungssequenz in allen cDNA-Klonen identisch ist und eine *SphI*-Schnittstelle einschließt. Bei dieser Reaktion wurde ein 200 bp langes DNA-Fragment amplifiziert, das den 5'-Bereich der kodierenden Region der jeweiligen cDNA umfasst. Diese Fragmente wurden mit den Enzymen *NcoI* und *SphI* geschnitten und über Gelelektrophorese mit anschließender Elution der Fragmente gereinigt. Die ursprünglichen Plasmide wurden im präparativen Maßstab mit den Enzymen *SphI* und *KpnI* verdaut. Die hierbei entstehenden Fragmente von 3 kb Länge, die den gesamten 3'-Bereich der cDNA-Klone umfas-
sen, wurden ebenfalls über Gelelektrophorese und Elution gereinigt. Die jeweils zusammenpassenden Fragmente wurden dann in einer Tripel-Ligation in den mit *NcoI* und *KpnI* geschnittenen Vektor kloniert. Bei der Ligation wurden die DNA-Fragmente, Insert 1 (*NcoI* bis *SphI*), Insert 2 (*SphI* bis *KpnI*) und pTrc99A, jeweils in einem molaren Verhältnis von 2 zu 2 zu 1 eingesetzt. Die Ligation erfolgte bei 14°C über Nacht durch das Enzym T4-DNA-Ligase (Boehringer, Mannheim) in einem Reaktionsvolumen von 10 μl.

Die Herstellung rekombinanter PEP-Carboxylasen in dem *E. coli*-Stamm PCR-1, die Aufreinigung der Proteine und die Messung der Substratsättigungskinetiken wurden durchgeführt wie von Svensson (Svensson et al. 1997) für PEP-Carboxylasen aus *Flaveria* beschrieben. Die Reinigung der Enzyme und die Messung der kinetischen Eigenschaften wurden von Sascha Engelmann durchgeführt.

2.2.14. DNA-Sequenzierung

Die Sequenzierung von Plasmid-DNA erfolgte nach dem Prinzip von Sanger (Sanger et al. 1977) mit Hilfe des "T7 Sequencing Kit" der Firma Pharmacia Biotech (Freiburg) nach Angaben des Herstellers. Pro Sequenzreaktion wurden 1-2 μ g Plasmid-DNA, 2 pmol Oligonukleotidprimer und 10 μ Ci radioaktives α^{32} P-dATP eingesetzt. Die Sequenzreaktionen wurden auf 4 bzw. 6 % igen Polyacrylamidgelen in Sequenzierapparaturen der Fa. Gibco BRL (Modell S2) (Eggenstein) aufgetrennt. Die Elektrophorese erfolgte unter denaturierenden Bedingungen (45 - 50°C; 8 M Harnstoff im Gel) bei 1800 bis 2000V. Anschließend wurden die Gele in 10 % Essigsäure fixiert und getrocknet. Es folgte eine Exposition mit Wicor-X RP Röntgenfilm über Nacht. Später wurden DNA-Sequenzierungen von den Firmen AGOWA GmbH (Berlin) und MWG Biotech (Ebersberg) durchgeführt.

2.2.15. Computerprogramme und Datenbanken

Protein- und DNA-Sequenzanalysen wurden mit dem Programm MacMolly Tetra (Version 2.0, SoftGene GmbH) (Schöneberg et al. 1994) durchgeführt. Protein- und DNA-Sequenzvergleiche wurden mit dem Programm Clustal X 1.8 (Thompson et al. 1997) vorgenommen. Phylogenetische Stammbäume wurden mit den Programmen PAUP 3.01 (Swofford 1989) und PAUP 4.0 b 10 berechnet. Die grafische Darstellung der Stammbäume erfolgte mit dem Programm Tree View (Page 1996). Datenbanksuchen in der GenBank-Datenbank wurden mittels des Programms Advanced BLAST (Altschul et al. 1997) durchgeführt. Die GUS-Assays wurden mit dem Programm Kaleidagraph (Synergy Software, Reading, USA) ausgewertet und grafisch aufbereitet. Die isolierten Promotorsequenzen wurden mittels der Datenbanken PLACE (Higo et al. 1999) PlantCARE (Lescot et al. 2002) und TRANSFAC (Wingender et al. 2000) nach bekannten *cis*-regulatorischen Elementen durchsucht. Die Internetadressen der Verwendeten Datenbanken sind in Tabelle 2.3. angegeben.

Datenbank	Internetadresse
BLAST	http://www.ncbi.nlm.nih.gov:80/BLAST/
PLACE	http://www.dna.affrc.go.jp/htdocs/PLACE/
PlantCARE	http://oberon.rug.ac.be:8080/PlantCARE/index.html
TRANSFAC	http://transfac.gbf.de/TRANSFAC/index.html

 Tabelle 2.3.: Internetadressen der verwendeten Datenbanken.

3. Ergebnisse

3.1. Lokalisierung der *cis*-regulatorischen Sequenzen im distalen Bereich des *ppcA*-Promotors aus *Flaveria trinervia*

Ausgangspunkt der Untersuchungen war der von J. Burscheidt (1998) erhobene Befund, dass der distale Bereich des *ppcA1*-Promotors aus *F. trinervia* (-2141 bis -1566, bezogen auf den Translationsstart) für die mesophyllspezifische Expression des Gens verantwortlich ist. Zur Lokalisierung der *cis*-regulatorischen Sequenzen in diesem 575 bp langen Promotorabschnitt, die dieses Expressionsverhalten bewirken, wurde ein *in planta*-Ansatz gewählt. Dazu wurde eine Reihe von Reportergenkonstrukten hergestellt und in *Flaveria bidentis* transformiert. Anschließend wurde die Aktivität der Reportergene in diesen transgenen Pflanzen analysiert. Zunächst wurde der distale Bereich in drei sich überlappende Teile (a, b und c) geteilt.

Abbildung 3.1.: Sequenz und Lage der distalen C_4 -Region im Promotor des *ppcA1*-Gens aus *F*. *trinervia*. Die Positionsangaben beziehen sich auf den Translationsstart.

Die drei Teile wurden jeweils mit dem proximalen Promotorbereich (-570 bis -1) fusioniert. Die Fusion mit dem proximalen Bereich des C_4 -ppcA-Promotors erfolgte, da sich gezeigt hatte, dass nur proximaler und distaler Promotorbereich zusammen eine C_4 -spezifische Genexpression bewirken (Burscheidt 1998). Durch die Fusion mit dem proximalen Promotorbereich sollte sichergestellt werden, dass alle für die Expression notwendigen, nicht im distalen Bereich gelegenen, *cis*-regulatorischen Elemente in den Reportergenkonstrukten vorhanden waren.

3.1.1. Die Promotor-Reportergen-Fusionen ppcA-Ft-PR-C4-DR-a, ppcA-Ft-PR-C4-DR-b und ppcA-Ft-PR-C4-DR-c

3.1.1.1. Herstellung der Konstrukte

Ausgangspunkt für die Herstellung der Konstrukte war das Konstrukt ppcA-Ft-PR-C4-DR(+) welches freundlicherweise von Monika Streubel zur Verfügung gestellt wurde. In diesem Konstrukt ist der distale Bereich (-2141 bis -1566) des *F. trinervia-ppcA*-Promotors direkt mit dem proximalen Bereich (-570 bis -1) fusioniert. Dieser Promotor lag in dem Pflanzentransformationvektor pBI121 (Fa. Clontech) vor und war direkt vor das GUS-Reportergen, welches mit dem nos Terminator verbunden war, kloniert.

Abbildung 3.2.: Unterteilung der Region Elements Ft-C₄-DR in die drei überlappenden Teile a, b und c und Aufbau der Reportergenkonstrukte ppcA-Ft-PR-C₄-DR-a, ppcA-Ft-PR-C₄-DR-b und ppcA-Ft-PR-C₄-

DR-c. Die Positionsangaben beziehen sich auf den Translationsstart des ursprünglichen *ppcA*-Gens aus *F*. *trinervia*.

Die drei Teilstücke a, b und c des distalen Elements (a: -2141 bis -1940; b: -1981 bis -1668; c: -1713 bis -1566) wurden mittels PCR hergestellt (Abbildung 3.2). Durch die verwendeten Oligonukleotidprimer (a: FtDEa5´, FtDEa3´ b: FtDEb5´, FtDEb3´ c: FtDEc5´, FtDEc3´) wurden *HindIII*- (5´-Primer) bzw. *XbaI*-Schnitstellen (3´-Primer) zur direktionalen Klonierung eingefügt. Die distale Region wurde mittels der Restriktionsendonukleasen *HindIII* und *XbaI* aus dem ppcA-Ft-PR-C4-DR(+)-Konstrukt ausgeschnitten und durch den mit *HindIII* und *XbaI* geschnittenen Bereich a, b oder c ersetzt (Abbildung 3.2.). Die Konstrukte wurden durch Sequenzierung überprüft und für die Transformation von *F. bidentis* eingesetzt.

3.1.1.2. Analyse der Reportergenaktivität in transgenen F. bidentis

Die in Abschnitt 3.1.1.1. beschriebenen Konstrukte wurden zur Analyse in *Flaveria bidentis* transformiert. Es konnten 11 Pflanzen mit dem ppcA-Ft-PR-C4-DR-a Konstrukt, 7 Pflanzen mit dem ppcA-Ft-PR-C4-DR-b Konstrukt und 8 Pflanzen mit dem ppcA-Ft-PR-C4-DR-c Konstrukt hergestellt und untersucht werden. Mittels PCR wurde bestätigt, dass es sich um transgene Pflanzen handelt und dass das gewünschte Konstrukt im Genom der Pflanzen vorhanden war. Für die quantitativen GUS-Bestimmungen wurde jeweils das fünfte expandierte Blatt, von der Sproßspitze gezählt, benutzt, da Stockhaus et al. (1997) in diesen Blättern die höchste Aktivität des C_4 -ppcA-Promotors festgestellt hatten. Es wurden nur die primären Transformanden untersucht. Die Messungen wurden einmal wiederholt und die Werte für die einzelnen Pflanzen wurden gemittelt. Die Ergebnisse sind in Tabelle 3.1. und Abbildung 3.3. dargestellt.

Da die Werte für die einzelnen Konstrukte stark schwanken, wurde für die grafische Darstellung darauf verzichtet, Mittelwerte zu bilden. Stattdessen wurden die Einzelwerte und der Median angegeben. Die starken Schwankungen sind durch unterschiedliche Integrationsorte der Konstrukte im Genom und durch die unterschiedliche Anzahl von Transgenen, die im Genom der individuellen Pflanzen integriert sind, zu erklären (Hobbs et al. 1990; 1993).

Pflanze	nmol MU/mg	Pflanze	nmol MU/mg	Pflanze	nmol MU/mg
	Protein*min		Protein*min		Protein*min
a2	0,32	b1	0,01	c 1	0,0008
a3	4,22	b2	3,03	c2	0,08
a4	4,30	b3	2,41	c3	0,14
a5	0,07	b4	1,23	c4	1,07
a6	5,25	b5	0,03	c5	0,4
a7	0,06	b6	6,07	c6	8,38
a9	0,04	b7	4,79	c7	0,09
a12	4,69			c8	0,27
a14	0,01				
a16	9,02				
a25	8,02				
Median	4,22	Median	2,41	Median	0,21

Tabelle 3.1.: GUS-Aktivität in den Blattextrakten transgener *F. bidentis*-Pflanzen mit den Konstrukten ppcA-Ft-PR-C₄-DR-a, ppcA-Ft-PR-C₄-DR-b und ppcA-Ft-PR-C₄-DR-c. Die angegebenen Werte sind Mittelwerte aus zwei unabhängigen Messungen. Die Aktivitäten sind in nmol MU/mg Protein*min angegeben.

Die Aktivitäten der Konstrukte ppcA-Ft-PR-C4-DR-a, ppcA-Ft-PR-C4-DR-b und ppcA-Ft-PR-C4-DR-c sind im Mittel deutlich niedriger als die mittlere Aktivität des kompletten ppcA-L-Ft-Promotors (76 nmol MU/mg Protein*min (Stockhaus et al. 1997)) oder des ppcA-Ft-PR-C4-DR(+)-Reportergen-Konstrukts (25 nmol MU/mg Protein*min (Burscheidt 1998)). Die Aktivität des ppcA-Ft-PR-C4-DR-c-Konstrukts liegt in der gleichen Größenordnung wie die Aktivität es proximalen Promotorbereichs ppcA-Ft-PR alleine (0,28 nmol MU/mg Protein*min (Burscheidt 1998)). Die beiden Konstrukte ppcA-Ft-PR-C4-DR-a und ppcA-Ft-PR-C4-DR-b zeigen aber eine deutlich höhere mittlere Aktivität als das ppcA-Ft-PR-Konstrukt.

Die Aktivitäten des ppcA-Ft-PR-C4-DR-a- und des ppcA-Ft-PR-C4-DR-b-Konstrukts waren hoch genug, um eine histochemische Analyse der GUS-Aktivität zu ermöglichen (Abbildung 3.4).

Abbildung 3.3.: GUS-Aktivität in den Blattextrakten transgener *F. bidentis*-Pflanzen mit den Konstrukten ppcA-Ft-PR-C4-DR-a, ppcA-Ft-PR-C4-DR-b und ppcA-Ft-PR-C4-DR-c. Die Aktivitäten sind in nmol MU/mg Protein*min angegeben. Die rote Linie zeigt die Lage des Median an. Mit "N=" ist die Anzahl der analysierten Pflanzen angegeben. wt = Wildtyp

Die Konstrukte ppcA-Ft-PR-C4-DR-a und ppcA-Ft-PR-C4-DR-b zeigen beide eine mesophyllspezifische Expression. Sie verhalten sich in diesem Punkt somit wie das ppcA-Ft-PR-C4-DR(+)-Konstrukt. Obwohl beide Konstrukte im Mittel eine niedrigere Aktivität aufweisen als das ppcA-Ft-PR-C4-DR(+)-Konstrukt, ist die Zellspezifität also vergleichbar.

Die Daten lassen den Schluss zu, dass sowohl das a- als auch das b-Fragment der distalen Region des *ppcA*-Promotors aus *F. trinervia cis*-regulatorische Sequenzen enthält, die die mesophyllspezifische Aktivität des Promotors bewirken.

Abbildung 3.4.: *In situ* Aktivität der Konstrukte ppcA-Ft-PR-C4-DR-a und ppcA-Ft-PR-C4-DR-b in Blattquerschnitten transgener *F. bidentis*-Pflanzen. Die Inkubation im X-Gluc-Reaktionspuffer erfolgte für ca. 6 Stunden im Fall des ppcA-Ft-PR-C4-DR-a-Konstrukts und für ca. 18 Stunden im Fall des ppcA-Ft-PR-C4-DR-b-Konstrukts.

Das Konstrukt ppcA-Ft-PR-C4-DR-c verhält sich grundlegend anders. In den meisten Pflanzen mit diesem Konstrukt lässt sich die GUS-Aktivität nicht histologisch nachweisen (Abbildung 3.5.a). Dies stimmt mit dem Verhalten des ppcA-Ft-PR-Konstruktes überein. In der einzigen Pflanze (c6), die eine vergleichsweise hohe GUS-Aktivität zeigte, war die Aktivität nicht auf die Mesophyllzellen beschränkt, sondern alle Zellen des Blattes exprimierten das Reportergen mehr oder weniger stark. Selbst einige Epidermiszellen zeigten eine deutliche GUS-Färbung (Abbildung 3.5.b). Eine Aktivität in der Epidermis war bisher für keinen *Flaveria-ppcA*-Promotor beobachtet werden, weder für den C₄-Promotor aus *F. trinervia* noch für den C₃-Promotor aus *F. pringlei*. Bei dieser Pflanze handelt es sich damit offensichtlich um ein Transformationsartefakt, wie es entstehen kann, wenn das Transgen unter die Kontrolle eines benachbarten Promotors gerät. Die Daten lassen damit den Schluss zu, dass das c-Fragment keine Mesophyllspezifitätsdeterminanten aufweist.

Abbildung 3.5.: In situ Aktivität des Konstrukts ppcA-Ft-PR-C4-DR-c in Blattquerschnitten transgener *F. bidentis*-Pflanzen. a): Blattquerschnitt der Pflanze c3. Diese Pflanze ist repräsentativ für die meisten untersuchten Pflanzen mit dem ppcA-Ft-PR-C₄-DR-c-Konstrukt. b: Blattquerschnitt der Pflanze c6. Diese Pflanze zeigt im Vergleich mit den anderen ppcA-Ft-PR-C4-DR-c-Pflanzen eine deutlich höhere GUS-Aktivität. Die Inkubation im X-Gluc-Reaktionspuffer erfolgte für ca. 48 Stunden im Fall der Pflanze c3 und für ca.12 Stunden im Fall der Pflanze c6.

Stockhaus et al. (1997) hatten festgestellt, dass der *ppcA*-L-Ft-Promotor die höchste Aktivität in voll entwickelten Blättern zeigt (Stockhaus et al. 1997). Sie fanden die höchste Aktivität im, von der Sproßspitze gezählt, fünften und sechsten vollständig expandierten Blatt. Mittels der Konstrukte ppcA-Ft-PR-C4-DR-a, ppcA-Ft-PR-C4-DR-b und ppcA-Ft-PR-C4-DR-c sollte dieser Effekt überprüft werden. Es sollte untersucht werden, ob die *cis*-regulatorischen Sequenzen, die für die vom Entwicklungszustand des Blattes abhängige Aktivität des C₄-*ppcA*-Promotors verantwortlich sind, in einem der drei Fragmente des distalen Elements oder eher im proximalen Promotorbereich lokalisiert sind. Dazu wurde die GUS-Aktivität in den dritten, vierten und fünften Blättern der transgenen Pflanzen mit den ppcA-Ft-PR-C4-DR-a-, ppcA-Ft-PR-C4-DR-bund ppcA-Ft-PR-C4-DR-c-Konstrukten bestimmt.

Abbildung 3.6. zeigt die Ergebnisse dieser Messungen. Da diese Messungen zu einem relativ frühen Zeitpunkt durchgeführt wurden, konnten nicht alle, im Verlauf dieser Arbeit hergestellten transgenen Pflanzen berücksichtigt werden. Die höchsten GUS-Aktivitäten zeigten sich bei allen drei Konstrukten jeweils in den fünften Blättern. Die GUS-Aktivität in den vierten Blättern war jeweils deutlich niedriger und die dritten Blätter wiesen die jeweils niedrigste Aktivität auf. Das Verhalten aller drei Reportergenkonstrukten entsprach in diesem Punkt dem Verhalten des vollständigen *F. trinervia-ppcA*-Promotors. Dies lässt den Schluss zu, dass die von der Blattentwicklung abhängige Aktivitätsänderung des Promotors hauptsächlich von *cis*-regulatorischen Sequenzen im proximalen Promotorbereich verursacht wird.

Abbildung 3.6.: GUS-Aktivität in den Blattextrakten transgener *F. bidentis*-Pflanzen mit den Konstrukten ppcA-Ft-PR-C4-DR-a, ppcA-Ft-PR-C4-DR-b und ppcA-Ft-PR-C4-DR-c. Es wurden jeweils die dritten, vierten und fünften expandierten Blätter, gezählt von der Sproßspitze, gemessen. Die gemessenen Werte für die einzelnen Pflanzen wurden jeweils gemittelt. Die Aktivitäten sind in nmol MU/mg Protein*min angegeben. Mit "N=" ist die Anzahl der analysierten Pflanzen angegeben. wt = Wildtyp

3.1.2. Die Promotor-Reportergen-Fusionen ppcA-Ft-PR-C4-DR-a/b und ppcA-Ft-PR-C4-DR-a/b*4

Da sowohl das ppcA-Ft-PR-C4-DR-a als auch das ppcA-Ft-PR-C4-DR-b-Konstrukt eine mesophyllspezifische Aktivität zeigten, war davon auszugehen, dass beide Konstrukte die für die mesophyllspezifische Expression notwendigen *cis*-regulatorischen Sequenzen enthalten. Mittels Sequenzanalysen konnten keine plausiblen Kandidaten für derartige Sequenzen identifiziert werden, die in beiden Promotorbereichen vorkommen. Das a- und b-Fragment überlappten jedoch um 41 bp. Es wäre daher denkbar, dass die gesuchten *cis*-regulatorischen Sequenzen Teil dieses überlappenden Bereiches sind. Um dies zu überprüfen wurden weitere Reportergenkonstrukte hergestellt und analysiert, die neben dem proximalen Promotorbereich nur diesen a/büberlappenden Bereich von -1981 bis -1940 (bezogen auf den Translationsstart des vollständigen *ppcA*-Gens) enthielten. Ein Konstrukt (ppcA-Ft-PR-C4-DR-a/b) enthielt nur den a/büberlappenden Bereich, ein zweites Konstrukt (ppcA-Ft-PR-C4-DR-a/b*4) enthielt diesen Bereich in vierfacher tandemartiger Wiederholung.

3.1.2.1. Herstellung der Konstrukte

Ausgangspunkt für die Herstellung der Konstrukte war wieder das ppcA-Ft-PR-C₄-DR(+)-Konstrukt. Der a/b-überlappende Bereich wurde mittels PCR amplifiziert. Die dazu verwendeten Oligonukleotidprimer FtDEb5' und FtDEa3' enthielten *HindIII*- (5'-Primer) bzw. *XbaI*-Schnitstellen (3'-Primer). Die distale Region wurde mittels der Restriktionsendonukleasen *HindIII* und *XbaI* aus dem ppcA-Ft-PR-C₄-DR(+)-Konstrukt ausgeschnitten und durch den *HindIII* und *XbaI* geschnittenen a/b-überlappenden Bereich ersetzt (Abbildung 3.7.).

Abbildung 3.7.: Die Reportergenkonstrukte ppcA-Ft-PR-C4-DR-a und ppcA-Ft-PR-C4-DR-a/b*4

Um die vierfache Wiederholung des a/b-überlappenden Bereiches zu erzeugen, wurde der a/büberlappende Bereich ebenfalls mittels PCR amplifiziert. Die verwendeten Oligonukleotidprimer FtDEb5´-Sal und FtDEa3´-Xho enthielten jetzt aber *SalI*- und *XhoI*-Schnittstellen. Diese Schnittstellen sind ligationskompatibel, das heißt *SalI* geschnittene DNA konnte mit *XhoI* geschnittener DNA ligiert werden. Die bei dieser Ligation entstandenen Produkte konnten aber weder mit *SalI* noch mit *XhoI* wieder geschnitten werden. Die PCR-Produkte wurden mit *XhoI* und *SalI* geschnitten und anschließend ligiert. Dann wurde das Gemisch wieder mit *XhoI* und *SalI* geschnitten. Das Ergebnis war nun ein Gemisch aus DNA-Fragmenten, die aus verschieden vielen Tandem-Wiederholungen des a/b-überlappenden Bereiches zusammengesetzt waren. Dieses Gemisch diente als Vorlage für eine PCR mit den Oligonukleotidprimern FtDEb5' und FtDEa3'. Das DNA Fragment, das aus einer vierfachen Wiederholung des a/b-überlappenden Bereiches bestand, wurde mittels Gelelektrophorese gereinigt, mit *XbaI* und *HindIII* geschnitten und benutzt, um die vollständige distale Region in dem Konstrukt ppcA-Ft-PR-C4-DR(+) zu ersetzten. Die Klonierungen wurden durch Sequenzierung überprüft. Einen Überblick über diese Reportergenkonstrukte zeigt Abbildung 3.7.

3.1.2.2. Analyse der Reportergenaktivität in transgenen F. bidentis

Die in Abschnitt 3.1.2.1. beschriebenen Konstrukte wurden zur Analyse in *Flaveria bidentis* transformiert. Es konnten neun Pflanzen mit dem ppcA-Ft-PR-C4-DR-a/b- und sechs Pflanzen mit dem ppcA-Ft-PR-C4-DR-a/b*4-Konstrukt hergestellt und analysiert werden. Die Integration der Reportergenkonstrukte in das Genom der untersuchten Pflanzen wurde mit PCR-Analysen bestätigt. Die GUS-Aktivitäten in den fünften expandierten Blättern der einzelnen transgenen Pflanzen sind in Tabelle 3.2. und Abbildung 3.8. dargestellt.

Pflanze	nmol MU / mg Protein * min	Pflanze	nmol MU / mg Protein * min
a/b-1	1,29	a/b*4-1	0,36
a/b-2	0,45	a/b*4-2	1,66
a/b-3	8,49	a/b*4-3	0,002
a/b-4	0,18	a/b*4-4	5,75
a/b-5	0,86	a/b*4-5	9,93
a/b-6	1,73	a/b*4-6	0,23
a/b-7	0,75		
a/b-8	2,68		
a/b-9	1,92		
Median	1,28	Median	1,01

Tabelle 3.2.: GUS-Aktivität in den Blattextrakten transgener *F. bidentis*-Pflanzen mit den Konstrukten ppcA-Ft-PR-C₄-DR-a/b und ppcA-Ft-PR-C₄-DR-a/b*4. Die Aktivitäten sind in nmol MU / mg Prote-in*min angegeben.

Die mittleren GUS-Aktivitäten der Konstrukte ppcA-Ft-PR-C4-DR-a/b und ppcA-Ft-PR-C4-DR-a/b*4 waren niedriger als die mittleren Aktivitäten der ppcA-Ft-PR-C4-DR-a- und ppcA-Ft-PR-C4-DR-b-Konstrukte, aber deutlich höher als die Aktivität des ppcA-Ft-PR-C4-DR-c-Konstrukts und damit natürlich ebenfalls höher als die Aktivität des proximalen Promotorbereiches allein. Die Aktivität des ppcA-Ft-PR-C4-DR-a/b*4-Konstrukts ist etwas niedriger als die mittlere Aktivität des ppcA-Ft-PR-C4-DR-a/b-Konstrukts. Andererseits zeigt die Pflanze a/b*4-5 die höchste Reportergenaktivität, die bei einer, für diese Arbeit analysierten, transgenen Pflanze gemessen wurde.

Abbildung 3.8.: GUS-Aktivität in den Blattextrakten transgener *F. bidentis*-Pflanzen mit den Konstrukten ppcA-Ft-PR-C4-DR-a/b und ppcA-Ft-PR-C4-DR-a/b*4. Zum Vergleich sind auch die GUS-Aktivitäten der Konstrukte ppcA-Ft-PR-C4-DR-a, ppcA-Ft-PR-C4-DR-b und ppcA-Ft-PR-C4-DR-c aufgetragen. Die Aktivitäten sind in nmol MU/mg Protein*min angegeben. Die rote Linie zeigt die Lage des Median an. "N=" bezeichnet die Anzahl der analysierten Pflanzen angegeben. wt = Wildtyp

Bei mehreren Pflanzen mit dem Konstrukt ppcA-Ft-PR-C4-DR-a/b war eine histologische Analyse möglich. Die Pflanzen zeigten eine mesophyllspezifische Expression des Reportergens (Abbildung 3.9). Auch bei einigen Pflanzen mit dem Konstrukt ppcA-Ft-PR-C4-DR-a/b*4 konnte eine histologische Untersuchung durchgeführt werden. Auch dieses Konstrukt zeigte eine Reportergen-Expression, die auf die Mesophyllzellen beschränkt war (Abbildung 3.9). Die Ak-tivität der Konstrukte ppcA-Ft-PR-C4-DR-a/b und ppcA-Ft-PR-C4-DR-a/b*4 ist also mesophyllspezifisch. In diesem Punkt verhalten sich die Konstrukte genau so wie die Konstrukte ppcA-Ft-PR-C4-DR-a, ppcA-Ft-PR-C4-DR-b, ppcA-Ft-PR-C4-DR(+) oder ppcA-L-Ft. Man kann also davon ausgehen, dass der a/b-überlappende Bereich, also der Promotorbereich von - 1981 bis –1941, *cis*-regulatorische Elemente enthält, die, im Zusammenspiel mit dem proximalen Promotorbereich, für eine mesophyllspezifitätselement 1 (MSE-1) bezeichnet.

Abbildung 3.9.: In situ Aktivität der Konstrukte ppcA-Ft-PR-C4-DR-a/b und ppcA-Ft-PR-C4-DR-a/b*4 in Blattquerschnitten transgener *F. bidentis*-Pflanzen. a): Blattquerschnitt der Pflanze a/b-3. b): Blattquerschnitte der Pflanze a/b*4-4. Die Inkubation im X-Gluc-Reaktionspuffer erfolgte für ca. 12 Stunden im Fall der Pflanze a/b-3 und für ca. 6 Stunden im Fall der Pflanze a/b*4-4.

3.2. Die *ppcA*-Promotoren aus C₃/C₄-intermediären *Flaveria*-Spezies

Um weiteren Aufschluss über die für die C₄-spezifische Expression der C₄-*ppcA*-Gene funktionell wichtigen Bereiche und deren Veränderung im Verlauf der C₄-Evolution zu gewinnen, wurden *ppcA*-Promotoren aus C₃/C₄-intermediären *Flaveria*-Arten isoliert. Zusätzlich wurden auch die *ppcA*-Promotor-Sequenzen einer weiteren C₃- und einer weiteren C₄-Pflanze analysiert. Durch die Bestimmung der PEP-Carboxylase-Transkriptspiegel in den Blättern verschiedener *Flaveria*-Arten wurden geeignete Kandidaten ausgewählt, die eine C₃/C₄-intermediäre Expression der PEP-Carboxylase-Gene zeigen. Aus diesen Arten wurden dann die *ppcA*-Promotoren mittels der Vectorette-Methode isoliert, um durch Sequenzvergleiche Bereiche zu identifizieren, die in allen oder den meisten untersuchten *Flaveria-ppcA*-Promotoren konserviert sind.

3.2.1. Die PEP-Carboxylase Transkriptspiegel in den Blättern von C_3/C_4 -intermediären *Flaveria*-Spezies

Um *Flaveria*-Arten zu identifizieren, die eine C_3/C_4 -intermediäre Expression der PEP-Carboxylase-Gene aufweisen wurden die PEP-Carboxylase-mRNA-Spiegel in den Blättern verschiedener *Flaveria*-Arten mittels Northern-Hybridisierung verglichen. Dazu wurde Gesamt-RNA aus Blättern von verschiedenen C_{3^-} , C_3/C_{4^-} intermediären, C_4 -ähnlichen und C_4 -*Flaveria*-Arten eingesetzt. Die Ergebnisse der Northern-Hybridisierung sind in Abbildung 3.10. dargestellt. Die angegebenen Photosynthesetypen und die Einteilung der untersuchten *Flaveria*-Arten in diese Kategorien beruhen auf physiologischen und biochemischen Untersuchungen (Monson et al. 1986; Ku et al. 1991). Die gemessenen PEP-Carboxylase-Transkriptspiegel passten sehr gut zu der Einteilung, die aufgrund mit physiologischer und biochemischer Methoden erfolgte. Die C_3 -Pflanzen zeigten eine vergleichsweise niedrige PEP-Carboxylase-Expression in den Blättern. Die C_3/C_4 -intermediären Arten wiesen eine PEP-Carboxylase-Expression auf, die zwischen der Expression in C_3^- und C_4 -Pflanzen lagen. Sie zeigten also auch in Bezug auf die Expression der PEP-Carboxylase ein intermediäres Verhalten. Die PEP-Carboxylase-Expression in den beiden untersuchten C_4 -ähnlichen Pflanzen war vergleichsweise hoch und auf dem gleichen Niveau wie die Expression in den untersuchten C_4 -Pflanzen F. *trinervia* und *F. bidentis*.

Abbildung 3.10.: *ppcA*-Transkriptspiegel in den Blättern verschiedener *Flaveria*-Arten. Die Northern-Analyse wurde mit 10 µg Gesamt-RNA aus Blattmaterial verschiedener *Flaveria*-Arten durchgeführt. Als Sonde diente ein *PvuI-XhoI*-Fragment der *ppcA*-cDNA von *F. pringlei* (Svensson et al. 1997). Die Einteilung der *Flaveria*-Arten in die verschiedenen Photosynthesetypen erfolgte nach physiologischen und biochemischen Untersuchungen (Ku et al. 1991). (In Zusammenarbeit mit Oliver Bläsing)

3.2.2. Isolierung von ppcA-Promotoren aus verschiedenen Flaveria-Spezies

Die 5'- flankierenden Bereiche von *ppcA*-Genen der C_3/C_4 -intermediären Arten *F. vaginata*, *F. brownii*, *F. anomala* und *F. pubescens* wurden mittels Vectorette-PCR isoliert. Zusätzlich wurden zum Vergleich noch die *ppcA*-Promotoren aus der C₃-Pflanze *F. cronquistii* und der C₄-Pflanze *F. bidentis* isoliert. Wenn Sequenzinformationen vorlagen, wie im Fall von *F. vaginata*, *F. brownii* und *F. pubescens*, wurden die genspezifischen Oligonukleotidprimer so gewählt, dass sie Sequenzen im ersten Exon der entsprechenden *ppcA*-Gene erkennen. Bei *F. anomala*, *F. bidentis* und *F. cronquistii* waren keine Sequenzinformationen vorhanden. Da die *ppcA*-Gene in der Gattung *Flaveria* sehr konserviert sind, konnten bei diesen Arten die Primer verwendet werden, die für das *F. vaginata-ppcA*-Gen konstruiert worden waren. Wenn das isolierte Promotor-Fragment zu kurz war und ein weiteres Fragment isoliert werden musste, standen Sequenzinformationen zu Herstellung sequenzspezifischer Oligonukleotidprimer zur Verfügung. Abbildung 3.11. zeigt beispielhaft die Isolierung des 5'-flankierenden Bereichs des *ppcA*-Gens aus *F. pubescens*. Kloniert und sequenziert wurden die dominanten Produkte nach der PCR mit den inneren Oligonukleotidprimern aus der *EcoRV*-Bücherei (Abbildung 3.11. C) und aus der *DraI*-Bücherei (Abbildung 3.11. E).

Einen Überblick über alle isolierten *ppcA*-Promotoren und die Größe der isolierten Fragmente gibt Tabelle 3.3. Die vollständigen Sequenzen finden sich im Anhang.

Abbildung 3.11.: Isolierung des *ppcA*-Promotors aus *F. pubescens* mit der "Genome-Walker"-Methode. A: DNA nach Ligation der Adaptoren; B+C: Isolierung des ersten Promotorfragments; B: PCR mit den äußeren Primern ap1 und puGW1; C: PCR mit den inneren Primern ap2 und br/puGW2; D+E: Isolierung des zweiten Promotorfragments; D: PCR mit den äußeren Primern ap1 und puGW3; E: PCR mit den inneren Primern ap2 und puGW4. Bei der Isolierung des ersten Promotorfragments wurde als Kontrolle (K) der 5'-flankierende Bereich des "tissue-type plasminogen activator" Gens tPA (Degen et al. 1986) aus menschlicher DNA amplifiziert.

Name	Pflanze	Größe in bp
ppcA-L-Fa	Flaveria anomala	1959
ppcA-L-Fb-I	Flaveria bidentis	2016
ppcA-L-Fb-II	Flaveria bidentis	1736
ppcA-L-Fbr	Flaveria brownii	3138
ppcA-L-Fc	Flaveria cronquistii	1461
ppcA-L-Fpu	Flaveria pubescens	3300
ppcA-L-Fv-I	Flaveria vaginata	2960
ppcA-L-Fv-II	Flaveria vaginata	2276

Tabelle 3.3.: Die isolierten Flaveria-ppcA-Promotoren und die Größe der isolierten Fragmente in bp.

Alle DNA-Fragmente konnten durch Sequenzvergleiche mit den *ppcA*-Promotoren aus *F. trinervia* und *F. pringlei* als 5'-flankierende Bereiche von *ppcA*-Genen identifiziert werden. Bei dem Versuch mit der *F. vaginata*-DNA wurden mit den gleichen Oligonukleotidprimern zwei Promotorfragmente amplifiziert, die deutliche Sequenzunterschiede zeigen. Auch aus dem Genom von *F. bidentis* wurde ein zweites DNA-Fragment isoliert werden. Dieses 1736 bp lange Fragment scheint aber Teil eines Pseudogens zu sein. Die ersten 500 bp, die eine hohe Ähnlichkeit zu den proximalen Bereichen anderer *ppcA*-Gene aufweisen, sind dupliziert und bilden eine Tandem-Wiederholung. Die anderen Teile dieses DNA-Fragments aus *F. bidentis* zeigen keine Ähnlichkeit zu anderen *ppcA*-Genen.

Ein schematischer Vergleich der isolierten Promotor-Fragmente, auch mit den *ppcA*-Promotoren aus *F. trinervia* und *F. pringlei*, ist in Abbildung 3.12 dargestellt. Man erkennt, dass die proximalen Bereiche aller Promotoren einander sehr ähnlich sind. Die geringste Sequenzidentität in diesem Bereich beträgt 64 %. Diese besteht zwischen den proximalen Promotorbereichen aus *F. trinervia* und *F. cronquistii*. Auch die Position und Größe des in diesem Bereich gelegenen Introns ist bei allen Promotoren konserviert. Es sind außerdem eine Reihe weiterer Sequenzbereiche zu erkennen, die in den meisten Promotoren vorkommen. Nur der Promotor aus *F. anomala* und der Promotor ppcA-L-Fv-II zeigen ausschließlich im proximalen Bereich Ähnlichkeiten zu den anderen *ppcA*-Promotoren. Sehr ähnlich sind sich dagegen die Promotoren aus *F. brownii* und *F. pubescens*. Es finden sich über 85 % identische Nukleotide in den beiden Sequenzen. Etwa 1,7 kb der proximalen Abschnitte dieser beiden Promotoren zeigen eine hohe Ähnlichkeit (über 60 % identische Nukleotide) zu den meisten übrigen Promotoren. Ihre distalen

Abbildung 3.12.: (vorherige Seite) Schematischer Vergleich der 5'- flankierenden Bereiche der *ppcA*-Gene aus *F. trinervia*, *F. bidentis*, *F. vaginata*, *F. brownii*, *F. pubescens*, *F. anomala*, *F. cronquistii und F. pringlei*. Bereiche mit hoher Ähnlichkeit (Sequenzidentität größer 60 %) zu Sequenzen in anderen Promotoren sind farbig gekennzeichnet. Die sich entsprechenden Bereiche sind durch farbige Balken verbunden. Die Position der C₄-cis-Regionen im *F. trinervia*-Promotor ist gekennzeichnet.

Bereiche zeigen zwar eine hohe Ähnlichkeit zu einander, aber nicht zu einem der anderen Promotoren.

In Reportergenexperimenten hatte sich gezeigt, dass 41 bp im distalen Bereich des ppcA-Promotors von F. trinervia die Mesophyll-Spezifität des Promotors bewirken. Sequenzen mit hoher Ähnlichkeit zu diesem F. trinervia-Promotor-Abschnitt finden sich in den Promotoren aus F. bidentis, F. pringlei und dem Promotor ppcA-L-Fv-I. Orthologe Sequenzen finden sich nicht in den Promotoren ppcA-L-Fa, ppcA-L-Fbr, ppcA-L-Fc, ppcA-L-Fpu und ppcA-L-Fv-II. Dafür bieten sich zwei Erklärungen an. Die ursprünglichen Sequenzen könnten zum einen durch besonders große Insertionen unterbrochen sein. Es wäre dann möglich, dass sich die konservierten distalen ppcA-Sequenzen 5'-seitig des isolierten und analysierten Bereichs befinden. Dies ist wahrscheinlich beim Promotor ppcA-L-Fc der Fall, da aus F. cronquistii nur ein vergleichsweise kurzes Promotorfragment isoliert werden konnte. Im Fall der anderen isolierten Promotorfragmente wäre es auch möglich, dass die isolierten Sequenzen zu ppcA-Genen gehören, die nichts mit der photosynthetischen Funktion der PEP-Carboxylase in C₄- und C₃/C₄-intermediären Pflanzen zu tun haben. Es ist bekannt, dass mehr als ein ppcA-Gen in Pflanzen der Gattung Flaveria vorliegt (Hermans & Westhoff 1990; 1992; Poetsch et al. 1991). Wenn die Gene, deren 5'flankierenden Bereiche isoliert wurden, keine Funktion für die Photosynthese haben, könnten sie funktionslos geworden sein. In diesem Fall ist es möglich, dass sich die 5'-flankierenden Regionen drastisch verändert haben, ohne dass es zu negativen Folgen für die betroffenen Pflanzen gekommen ist. In diesem Fall stellt sich allerdings die Frage, warum die proximalen Bereiche der 5'-flankierenden Regionen dieser Gene so stark konserviert sind.

3.2.3. Phylogenie der PEP-Carboxylase-Gene in der Gattung Flaveria

Da die proximalen 5'-flankierenden Sequenzen der *ppcA*-Gene ein so hohes Maß an Ähnlichkeit aufweisen, bot es sich an, sie für eine phylogenetische Analyse zu benutzen. Das Ergebnis dieser Analyse zeigt Abbildung 3.13. Die 5'-flankierenden Sequenzen der *ppcA*-Gene weisen eine größere Ähnlichkeit zueinander auf, als zu den 5'-flankierenden Sequenzen der *F. pringlei*und *F. trinervia-ppcB*- und *ppcC*-Gene. Das heißt, dass die *ppcA*-, *ppcB*- und *ppcC*-Gene bereits im letzten gemeinsamen Vorfahren der hier untersuchten Pflanzen existierten. Unerwartet war, dass die Sequenzen aus *F. pringlei* und *F. cronquistii* eine größere Ahnlichkeit zu den Sequenzen aus *F. brownii* und *F. pubescens* aufweisen, als zu den Sequenzen aus *F. anomala*, *F. bidentis*, *F. trinervia* und *F. vaginata*. Nach Powell lassen sich in der Gattung *Fla-veria* zwei phylogenetische Gruppen unterscheiden, die Gruppe mit 5 bis 6 Phyllarien und die Gruppe mit 3 bis 4 Phyllarien (Powell 1978). Fast alle hier untersuchten Arten gehören zu der 3 bis 4 Phyllarien-Gruppe, nur *F. brownii* und *F. pubescens* gehören zu der 5 bis 6 Phyllarien-Gruppe. Es wäre zu erwarten, dass die Sequenzen von Pflanzen die zur selben Gruppe gehören eine größere Ähnlichkeit zueinander aufweisen als zu Sequenzen von Pflanzen die zu einer anderen Gruppe gehören. Dies wird auch bei der Analyse anderer Gene bestätigt. Ein Beispiel sind die NADP-abhängigen Malatenzyme. Bei einem Vergleich der 3'-untranslatierten Regionen dieser Gene aus verschiedenen *Flaveria* Spezies ergab sich ein deutlicher Unterschied zwischen den Sequenzen aus Arten der 3-4 Phyllarien-Gruppe und Sequenzen aus Arten der 5-6 Phyllarien-Gruppe (Lai et al. 2002b).

Abbildung 3.13.: Verwandtschaftsanalyse der *ppcA*-PEP-Carboxylase-Gene aus *F. trinervia*, *F. bidentis*, *F. vaginata*, *F. brownii*, *F. pubescens*, *F. anomala*, *F. cronquistii und F. pringlei*. Zur Analyse wurden jeweils 530 bp des proximalen 5'-flankierenden Bereichs benutzt. Die Berechnung erfolgte mit dem Programm PAUP (Version 4b10; Standardeinstellungen) nach der "Neighbour-joining" Methode. Es wurden 1000 "Bootstrap"-Wiederholungen durchgeführt. Die "Bootstrap"-Werte sind angegeben. Die Länge der Äste entspricht der Anzahl von Substitutionen pro Nukleotid.

Schon bei phylogenetischen Analysen der *ppcA*-Proteinsequenzen aus *F. pringlei*, *F. trinervia*, *F. brownii* und *F. pubescens* hatte sich ergeben, dass das *F. pringlei*-Protein eine größere Ähnlichkeit zu den Proteinen aus *F. brownii* und *F. pubescens* als zu dem Protein aus *F. trinervia* aufweist (Bläsing 2001). Dies legt den Schluss nahe, dass im Laufe der Evolution der C₄-Photosynthese die *ppcA*-Gene aus C₄- und C₃/C₄-intermediären Pflanzen der 3-4 Phyllarien-Gruppe unter einem erhöhten Selektionsdruck standen, der zu den relativ deutlichen Veränderungen gegenüber den *ppcA*-Genen aus den C₃-Pflanzen dieser Gruppe geführt haben. Die *ppcA*-Gene von Pflanzen aus der 5-6 Phyllarien-Gruppe standen offensichtlich nicht unter einem so hohen Selektionsdruck und gleichen daher noch mehr den ursprünglichen C₃-Genen. Dies würde bedeuten, dass der aufgrund der *ppcA*-Sequenzen berechnete Stammbaum nicht die korrekte Phylogenie der Gattung *Flaveria* wiedergibt.

3.3. Die Transformation von Flaveria mit der "floral Dip"- Methode

Flaveria bidentis kann mit der von Chitty et al. (1994) beschriebenen Methode transformiert werden (Chitty et al. 1994). Diese Methode beruht darauf, Hypokotyle von sechs bis sieben Tage alten Keimlingen in eine Agrobakteriensuspension zu tauchen. Anschließend werden die Hypokotyle unter selektiven Bedingungen kultiviert, bis sich Kalli und dann Sprosse bilden. Aus diesen transgenen Sprossen lassen sich dann ganze Pflanzen regenerieren. Diese Methode hat verschiedene Nachteile. Es sind viele Gewebekultur-Schritte notwendig, wodurch die Methode sehr arbeitsaufwändig ist. Die Methode erfordert viel Erfahrung seitens des Experimentators, wobei der kritische Schritt anscheinend das Schneiden der Hypokotyle ist. Die Keimblätter und die Wurzel müssen an einer bestimmten Stelle abgetrennt werden, um eine erfolgreiche Transformation zu gewährleisten. Die Effizienz dieser Transformationsmethode ist äußerst gering. Chitty et al. (1994) berichten von einer Transformationseffizienz zwischen 0,01 und 5 %. Nach eigenen Erfahrungen ist die Transformationseffizienz durchschnittlich 0,1 % (persönliche Mitteilung J. Burscheidt und U. Schlue). Dies bedeutet, dass pro transgener Pflanze im Durchschnitt 1000 Hypokotyle geschnitten werden müssen.

Es sollte daher versucht werden, *Flaveria* mit einer weniger aufwändigen Methode zu transformieren. Für *Arabidopsis thaliana* sind verschiedene Methoden zur *in planta* Transformation beschrieben. Hierbei werden Samen, Keimlinge oder adulte, blühende Pflanzen durch Anlegen eines Vakuums mit einer Agrobakteriensuspension infiltriert. Dabei werden auch Zellen reproduktiver Gewebe oder deren Vorläuferzellen von den Agrobakterien transformiert. Die Pflanzen werden zur Samenreife gebracht und die Samen unter selektiven Bedingungen angezogen. Mehr als ein Prozent dieser Samen und der so angezogenen Pflanzen sind transgen (Feldmann & Marks 1987; Bechtold et al. 1993; Chang et al. 1994; Bechtold & Pelletier 1998). Es ist auch möglich, blühende Pflanzen, ohne Vakuum aber unter Zugabe von Detergenzien, mit Agrobakteriensuspension zu infizieren. Auch hierbei sind ca. 1 % der später geernteten Samen transgen (Clough & Bent 1998). Durch Kreuzungsexperimente konnte gezeigt werden, dass diese Transformationsmethoden zur Transformation der weiblichen reproduktiven Gewebe und der Eizellen der *Arabidopsis*-Pflanzen führen (Ye et al. 1999; Bechtold et al. 2000; Desfeux et al. 2000). Bis jetzt waren *in planta* Transformationsmethoden außer bei *Arabidopsis thaliana* nur bei *Medicago truncatula* erfolgreich (Bent 2000; Trieu et al. 2000). Dabei kann man davon ausgehen, dass die *in planta* Transformation wegen ihrer methodischen Einfachheit schon für viele Pflanzenarten ausprobiert wurden.

Versuche, *Flaveria bidentis* mittels Vakuum-Infiltration zu transformieren, schlugen fehl. Die behandelten Pflanzen überlebten die Prozedur nicht oder bildeten nach der Behandlung keine oder nur sehr wenige Samen (persönliche Mitteilung Ute Schlue und Jörg Stockhaus). Daher sollte versucht werden, *Flaveria bidentis* mit der so genannten "floral Dip"-Methode nach Clough und Bent (1998) zu transformieren, bei der die blühenden Pflanzen ohne Vakuum in eine Agrobakteriensuspension getaucht werden. Diese Methode wird, aufgrund ihrer Einfachheit heute routinemäßig für die Transformation von *A. thaliana* eingesetzt. Da wir uns intensiv mit Genen aus der Pflanze *Flaveria trinervia* beschäftigen, sollte außerdem versucht werden, *F. trinervia* mit der "floral Dip"-Methode zu transformieren. Versuche, *F. trinervia* mit der Methode von Chitty et al. zu transformieren, führten bis jetzt zu keinem Erfolg (persönliche Mitteilung Ute Schlue). *F. trinervia* hat in Bezug auf die "floral Dip"-Methode darüber hinaus den Vorteil, wesentlich kleiner als *F. bidentis* zu sein. Blühende *F. trinervia* haben eine Größe von ca. 40 - 60 cm, blühende *F. bidentis* Pflanzen sind in der Regel größer als 1 m und können über 2 m erreichen.

3.3.1. Transformation von Flaveria bidentis mit der "floral Dip"-Methode

Bei vier unabhängigen Versuchen wurden insgesamt 153 *F. bidentis*-Pflanzen behandelt. Bei 56 Pflanzen kam das Konstrukt ppcA-Ft-PR-C4-PR-a und bei 97 Pflanzen das Konstrukt ppcA-Ft-PR-C4-PR-c zum Einsatz. Beide Konstrukte lagen in dem Transformationsvektor pBI121 (Firma Clontech) vor. Die Versuche wurden durchgeführt wie von Clough und Bent für *A. thaliana* beschrieben. Kleinere *F. bidentis* Pflanzen (50 bis 60 cm) wurden vollständig in die Agrobakteriensuspension getaucht, bei größeren Pflanzen (bis 150 cm) wurden die Blüten tragenden Sprossteile in die Suspension getaucht. Wenn dies nicht möglich war, wurden die Blüten mit der Suspension benetzt.

Von den 153 Pflanzen konnten etwa 80000 Samen geerntet werden. Dies entspricht durchschnittlich ca. 520 Samen pro Pflanze. Das ist etwa die normale Anzahl von Samen, die von *F*. *bidentis* produziert wird. Die sterilisierten Samen wurden unter sterilen Bedingungen auf GM-Medium mit 100 µg/ml Kanamycin angezogen. In Vorversuchen hatte sich gezeigt, dass sich bei dieser Kanamycinkonzentration nicht-transgene Pflanzen deutlich schlechter entwickeln als transgene. Dies macht sich besonders durch eine gestörte Entwicklung der Wurzel bemerkbar. Alle Keimlinge verhielten sich unter den Selektionsbedingungen mehr oder weniger wie nicht transformierte Pflanzen. Von den etwa 80000 Keimlingen wurden stichprobenartig 20, die am kräftigsten aussahen, mittels PCR untersucht. Dabei kamen Oligonukleotidprimer zum Einsatz, die spezifisch die Konstrukte ppcA-Ft-PR-C4-PR-a und ppcA-Ft-PR-C4-PR-c erkennen. In keiner der Pflanzen konnte das Transgen nachgewiesen werden. *Flaveria bidentis* konnte also nicht mit der "floral Dip"-Methode transformiert werden. Wenn man allerdings die nachfolgenden Ergebnisse betrachtet, die die gleichen Versuche mit *F. trinervia* ergaben (Abschnitt 3.3.2.), ist nicht auszuschließen, dass *F. bidentis* mit der "floral Dip"-Methode transformiert werden kann.

Um dies zu überprüfen, wären mehr Transformationsexperimente mit F. bidentis nötig.

3.3.2. Transformation von Flaveria trinervia mit der "floral Dip"-Methode

Bei insgesamt 10 Versuchen wurden 678 Pflanzen behandelt. Bei 290 Pflanzen wurde das Konstrukt ppcA-Ft-PR-C4-PR-a im pBI121 Vektor (Firma Clontech), bei 34 Pflanzen das Konstrukt ppcA-Ft-PR-C4-PR-c im pBI121 Vektor und bei 354 Pflanzen der leere pCB302 Vektor (Xiang et al. 1999) verwendet. Dieser Vektor verleiht transformierten Pflanzen eine Resistenz gegen das Herbizid Glufosinat.

Nachdem bei den ersten Versuchen transgene Pflanzen entstanden waren, wurde der Entwicklungszustand der Blüten der behandelten Pflanzen stärker beachtet. Bei der Transformation von *A. thaliana* hatte sich gezeigt, dass der Zustand der Blüten einen großen Einfluss auf die Transformationseffizienz hat. Es wurden Pflanzen mit weit aufgeblühten Blüten, knospigen Blüten oder Pflanzen mit aufgeblühter Mittelblüte aber knospigen Blüten an den Seitensprossen verwendet. Eine Übersicht über die Versuche gibt Tabelle 3.4.

Versuch	Konstrukt/Vektor	Anzahl der	Zustand der Blüten	Anzahl	Anzahl
		Pflanzen		der Samen	transgener
					Phanzen
1	ppcA-Ft-PR-C4-PR-a/pBI121	21	nicht bestimmt	4300	2
2	ppcA-Ft-PR-C4-PR-c/pBI121	34	nicht bestimmt	42300	0
3	ppcA-Ft-PR-C4-PR-a/pBI121	82	nicht bestimmt	13200	0
4	ppcA-Ft-PR-C4-PR-a/pBI121	54	nicht bestimmt	81100	0
5	ppcA-Ft-PR-C4-PR-a/pBI121	134	nicht bestimmt	90200	1
6	pCB302	39	weit aufgeblüht	20000	0
7	pCB302	52	knospig	38000	4
8	pCB302	82	teilweise aufgeblüht	55000	1
9	pCB302	80	teilweise aufgeblüht	2000	0
10	pCB302	101	teilweise aufgeblüht	53000	1

Tabelle 3.4.: Tabellarische Übersicht der Transformationsversuche mit *Flaveria trinervia*. Die Samen wurden unter selektiven Bedingungen angezogen. Samen von Pflanzen, die mit dem pBI121-Vektor transformiert wurden, wurden auf kanamycinhaltigem (100 μ g/ml) GM-Medium ausgebracht. Samen von Pflanzen, die mit dem pCB302-Vektor transformiert wurden, wurden auf Erde ausgesät und, nach der Keimung, einmal wöchentlich mit Glufosinat (100 mg/l) besprüht. Mit teilweise Aufgeblüht ist gemeint, dass die Mittelblüte aufgeblüht war, während an den Seitensprossen noch knospige Blüten zu finden waren.

Abbildung 3.14.: Beispiel für die Selektion mit Glufosinat. a und b zeigen F. trinervia Aussaaten etwa eine Woche nach der Keimung (Versuch 10) c und d zeigen vergleichbare Aussaaten (Versuch 8) etwa

fünf Wochen nach der Keimung also nach fünf Glufosinat-Behandlungen. Die überlebende Pflanze stellte sich später als transgen heraus.

Bei den Versuchen 1 und 5 wurden zwei bzw. eine Pflanze erzeugt, die resistent gegen Kanamycin waren. Bei den Versuchen 7, 8, und 10 zeigten sich jeweils mehrere Pflanzen, die die Selektion mit Glufosinat über mehrere Wochen überlebten. Ein Beispiel für die Ergebnisse der Selektion mit Glufosinat zeigt Abbildung 3.14.

Abbildung 3.15.: PCR-Analysen von *F. trinervia*-Pflanzen, die die Kanamycin bzw. Glufosinat Selektion überlebt haben. a: Pflanzen aus Versuchen mit dem Vektor pBi121; Die PCR mit den Primern FTDE5'a und GUS5' umfasste 35 Zyklen bei einer Primer-Anlagerungstemperatur von 50°C. b: Pflanzen aus Versuchen mit dem Vektor pCB302; Die PCR mit den Primern bar5'and bar3' umfasste 35 Zyklen bei einer Primer-Anlagerungstemperatur von 55°C.

Bei den Pflanzen, die die Selektion überlebten, wurde mittels PCR überprüft, ob das Transgen im Genom integriert war. Die Ergebnisse dieser PCR-Experimente zeigt Abbildung 3.15. Es stellte sich heraus, dass zwei Pflanzen aus Versuch 1, eine Pflanze aus Versuch 2, vier Pflanzen aus Versuch 7, eine Pflanze aus Versuch 8 und eine Pflanze aus Versuch 10 transgen waren. Bei zehn Versuchen konnten also in fünf Versuchen transgene Pflanzen erzeugt werden. Bei insgesamt über 399000 ausgesäten Samen wurden 9 transgene Pflanzen gefunden. Dies entspricht einer Transformationseffizienz von 0,002 %. Damit ist die Transformationseffizienz etwa fünfhundertmal niedriger als für *A. thaliana*.

Bei zwei der zehn Versuche wurden mehr als eine transgene Pflanze erzeugt. Um zu überprüfen, ob diese Pflanzen durch unabhängige Transformationsereignisse transformiert wurden, wurden Southern-Analysen mit der genomischen DNA dieser Pflanzen durchgeführt. Dazu wurde die DNA jeweils mit den Restriktionsendonukleasen *EcoRI*, *HindIII* und *XbaI* geschnitten. Als Sonden kamen das vollständige GUS-Gen und ein 400 bp PCR-Fragment des Bar-Gens zum Einsatz. Die Ergebnisse der Southern-Analyse sind in Abbildung 3.16. zu sehen.

Abbildung 3.16.: Southern-Analysen von transgenen Pflanzen, die mit der "floral Dip"-Methode transformiert waren. Es wurden jeweils 3 µg DNA aufgetragen. Die Hybridisierung erfolgte bei 60°C. Als Hybridisierungssonden diente das vollständige GUS-Gen (a) und ein 400bp PCR-Fragment des Bar-Gens (b). E: DNA mit *EcoRI* geschnitten; H: DNA mit *HindIII* geschnitten; X: DNA mit *XbaI* geschnitten; a: Pflanzen aus Versuch 1; b: Pflanzen aus Versuch 7

Es ist klar zu erkennen, dass die in einem Versuch transformierten Pflanzen jeweils unterschiedliche Hybridisierungsmuster aufwiesen. Die transgenen Pflanzen waren also jeweils das Produkt von unabhängigen Transformationsereignissen. Die Kopienzahl der Transgene im Genom war unterschiedlich. In den Pflanzen tria1, tria2 und PCB5 war jeweils eine Kopie ins Genom integriert. Bei der Pflanze PCB2 waren es zwei, bei der Pflanze PCB3 vier bis sechs und bei der Pflanze PCB6 waren es sieben Kopien.

3.3.3. Das Konstrukt ppcA-Ft-PR-C4-DR-a verhält sich in *F. trinervia* genauso wie in *F. bidentis*

Da das Konstrukt ppcA-Ft-PR-C4-DR-a jetzt sowohl in *F. trinervia* als auch in *F. bidentis* vorlag, sollte das Verhalten des Konstrukts in beiden *Flaveria*-Arten verglichen werden. Tabelle 3.5. zeigt die GUS-Aktivitäten der drei *F. trinervia*-Pflanzen, die mit dem ppcA-Ft-PR-C4-DR-a-Konstrukt transformiert waren. Einen Vergleich der GUS-Aktivitäten des ppcA-Ft-PR-C4-DR-a-Konstrukts in *F. trinervia* und *F. bidentis* zeigt Abbildung 3.17. Die mittleren Aktivitäten des Konstrukts waren in beiden *Flaveria*-Arten fast gleich groß (*F. bidentis* Median: 4,22 nmol MU/mg Protein* min; *F. trinervia* Median: 3,94 nmol MU/mg Protein* min).

Pflanze	nmol MU / mg Protein*min
trial	0,31
tria2	4,23
tria3	3,94

Tabelle 3.5.: GUS-Aktivität in den Blattextrakten transgener *F. trinervia* Pflanzen mit dem Konstrukt ppcA-Ft-PR-C4-DR-a. Die angegebenen Werte sind Mittelwerte aus zwei unabhängigen Messungen. Die Aktivitäten sind in nmol MU/mg Protein*min angegeben.

Die GUS-Aktivitäten in den Pflanzen tria2 und tria3 waren hoch genug um sie auch histologisch nachweisen zu können. Abbildung 3.18. zeigt die GUS-Aktivität in den Blättern dieser beiden Pflanzen. Auch in *F. trinervia* zeigt das ppcA-Ft-PR-C4-DR-a-Konstrukt eine mesophyllspezifische Expression. Es verhält sich also in *F. trinervia* genauso wie in *F. bidentis*. Die mittleren GUS-Aktivitäten sind nahezu gleich hoch und die Aktivität ist in beiden Pflanzen auf die Mesophyllzellen beschränkt.

Abbildung 3.17.: Vergleich der GUS-Aktivität in den Blattextrakten transgener *F. bidentis-* und *F. trinervia-*Pflanzen mit dem Konstrukt ppcA-Ft-PR-C4-DR-a. Die Aktivitäten sind in nmol MU / mg Protein*min angegeben. Die rote Linie zeigt die Lage des Median an. Mit "N=" ist die Anzahl der analysierten Pflanzen angegeben. wt = Wildtyp

Abbildung 3.18.: In situ Aktivität der Konstrukts ppcA-Ft-PR-C4-DR-a in Blattquerschnitten transgener F. trinervia-Pflanzen. Die Inkubation im X-Gluc-Reaktionspuffer erfolgte für ca. 12 Stunden. a: Blattquerschnitt der Pflanze tria2; b: Blattquerschnitt der Pflanze tria3

3.4. Die Phosphoenolpyruvat-Carboxylasen in der Gattung Alternanthera

Es ist sehr viel über die Veränderungen der Phospho*enol*pyruvat-Carboxylase im Laufe der C_4 -Evolution in der Gattung *Flaveria* (Asteraceae) bekannt. Um darüber entscheiden zu können ob diese Veränderungen typisch für die Evolution der C_4 -Photosynthese in dikotylen Pflanzen sind, wurde eine weitere dikotyle Gattung untersucht, in der sich die C_4 -Photosynthese unabhängig entwickelt hat. Hierzu war die Gattung *Alternanthera* (Amaranthaceae) gut geeignet. In dieser Gattung kommen neben C_3 - und C_4 - auch C_3/C_4 -intermediäre Arten vor. Die C_4 -Pflanzen der Gattung *Alternanthera* gehören zum NAD-Malatenzym-Typ der C_4 -Photosynthese. Da die C_4 -Pflanzen der Gattung *Flaveria* zum NADP-Malatenzym-Typ gehören kann man davon ausgehen, dass sich die C_4 -Evolution in beiden Gattungen unabhängig voneinander vollzogen hat.

Bei früheren Arbeiten (Gowik 1999) wurden PEP-Carboxylase-cDNAs aus der C₃-Pflanze *Alternanthera sessilis* und der C₄-Pflanze *Alternanthera pungens* isoliert. Beide cDNAs kodieren ein Protein mit 966 Aminosäuren. Die abgeleiteten Proteinsequenzen zeigen eine hohe Übereinstimmung mit 93 % identischen Aminosäureresten.

Um die Analyse der PEP-Carboxylasen aus *Alternanthera* zu vervollständigen, sollte auch eine PEP-Carboxylase-cDNA aus der C_3/C_4 -intermediären Art *Alternanthera tenella* isoliert werden. Die cDNAs wurden verwendet, um rekombinantes Protein zu produzieren und die kinetischen Eigenschaften der Enzyme zu untersuchen. Außerdem sollte die PEP-Carboxylase-Genfamilie weiter untersucht werden. Hierbei sollte festgestellt werden wie viele Genklassen es gibt und ob die isolierten cDNAs zu derselben Genklasse gehören.

3.4.1. Isolierung einer PEP-Carboxylase aus der C_3/C_4 intermediären Pflanze *Alternanthera tenella*

Die cDNA-Bücherei aus Blatt-RNA von *A. tenella* wurde nach Standardmethoden hergestellt. Für die Durchmusterung der Bücherei kam ein 1191 bp 5'-Fragment einer Volllängen-PEP-Carboxylase-cDNA aus *A. sessilis* als Sonde zum Einsatz. 84 positive Phagenklone wurden mittels PCR analysiert, um die Größe der klonierten cDNAs abzuschätzen. Fünf Klone wurden von beiden Enden ansequenziert um festzustellen ob es sich um vollständige cDNAs handelt. Ein vollständiger PEP-Carboxylase-cDNA-Klon wurde vollständig sequenziert und AtenppcA genannt. Durch Vergleiche mit anderen bekannten PEP-Carboxylase-Sequenzen wurde bestätigt, dass es sich wirklich um eine PEP-Carboxylase-cDNA handelt. Der sequenzierte cDNA-Klon hatte eine Länge von 3283 bp und enthielt ein großes offenes Leseraster von 2898 bp, das sich in ein Protein mit 966 Aminosäuren übersetzen ließ. Der 5'-untranslatierte Bereich hatte eine Länge von 142 bp und der 3'-untranslatierte Bereich eine Länge von 340 bp Abbildung 3.19. gibt eine schematische Übersicht über den cDNA-Klon AtenppcA.

Abbildung 3.19.: Restriktionskarte des cDNA-Klons AtenppcA. Der Protein kodierende Bereich (grauer Block) und die Restriktionsschnittstellen der cDNA wurden anhand der Sequenzinformation abgeleitet. Die Lage des als Sonde verwendeten Bereichs der *ppcA*-cDNA aus *A. sessilis* ist durch einen schwarzen Balken gekennzeichnet.

Der PEP-Carboxylase-cDNA-Klon aus *A. tenella* zeigt eine sehr große Ähnlichkeit zu den PEP-Carboxylasen aus *A. pungens* und *A. sessilis*. Insbesondere die kodierenden Bereiche sind sehr ähnlich. Die abgeleiteten Aminosäuresequenzen der PEP-Carboxylasen aus *A. sessilis* und *A. tenella* stimmen zu 97 % überein. Die Übereinstimmung der Proteinsequenzen aus *A. pungens* und *A. tenella* beträgt dagegen nur 94 %. Einen Vergleich der Proteinsequenzen der drei PEP-Carboxylasen aus *A. tenella*, *A. sessilis* und *A. pungens* zeigt Abbildung 3.20.

Auf Nukleinsäureebene ist die kodierende Sequenz von *A. tenella* zu 95 % identisch zu den Sequenzen von *A. pungens* und *A. sessilis*. Die Ähnlichkeiten im 3'-nicht translatierten Bereich der cDNAs sind geringer. Hier beträgt die Identität zwischen *A. tenella* und *A. pungens* 69 % und die Identität zwischen *A. tenella* und *A. sessilis* 55 %.

Die Sequenz des A. tenella-ppcA-Proteins enthält alle bis jetzt bekannten, konservierten und wahrscheinlich funktionell wichtigen Sequenzmotive, die auch in allen anderen pflanzlichen PEP-Carboxylasen zu finden sind. Die Aminosäure 775 ist ein Alanin. Alle bis jetzt bekannten C_4 -PEP-Carboxylasen zeigen an dieser Stelle ein Serin, alle anderen ein Alanin. Es konnte bewiesen werden, dass dieser Aminosäureaustausch große Auswirkungen auf die kinetischen Eigenschaften des Enzyms hat. Es ist also anzunehmen, dass die kinetischen Eigenschaften des AtenppcA-Enzyms eher denen eines nicht-photosynthetischen Enzyms gleichen werden. In *Flaveria* zeigte sich, dass neben dem carboxyterminalen Serin (Position 774 in *Flaveria*-ppcA-Enzymen) die eher aminoterminale Region von Aminosäure 296 bis 437 für die C_4 -spezifischen Eigenschaften des Enzyms wichtig ist (Engelmann et al. 2002). Die drei *Alternanthera*-Proteine

unterscheiden sich in dem entsprechenden Bereich (Aminosäure 297 bis 438) in 8 Aminosäuren, wobei das *A. tenella*-Enzym weitgehend dem C_3 -Enzym aus *A. sessilis* gleicht.

		1 Ser Phosphorylierung 20	40	60	80
Ap At As	C4 C3/C4 C3	MATVKVEKMA <mark>S</mark> IDAQLRLLAPGKVSED MATVKLEKLASIDAQLRLLAPRKVSED MATVKLEKLT <mark>S</mark> IDAQLRLLAPRKVSED ***** ** **********	DKLVEYDALLLDRFLESLDSLHGPG DKLVEYDALLLDRFLDILDSLHGPD DKLVEYDALLLDRFLDILDSLHGSD ************************************	IRETVQELYEHAAEYER IRETVQELYEHAAEYER IRETVQELYEHAAEYER ****************	TRDTKKLEELG TRDTKKLEELG TRDTKKLEELG ******
Ap At As	C4 C3/C3 C3	NMITSLDAGDSIVVTKSFSHM <mark>LNLSNL</mark> NMITGLDAGDSIVVTKSFSHMLNLSNL NMITGLDAGDSIVVTKSFSHM <u>LNLSNL</u>	AEEVQIAYRKRTKKTKKGDFADESS AEEVQIAYRRRTKKTKKGDFADESS AEEVQIAYRRRTKKTKKGDFADESS ********** ******************	AITESDIEETFRRLVVD AITESDIEETFRRLVVD AITESDIEETLRRLVVD *********	LKKSPQEIFDT LNKSPEEVFDT LNKSPEEVFAT * *** * * *
Ap At As	C4 C3/C4 C3	OAA-Bildung LKNQTVDLVITAHPTQSVRRSLLQKHG LKNQTVDLVIITAHPTQSVRRSLLQKHG LKNQTVDLVI <u>TAHP</u> TQSVRRSLLQKHG ********	RIRDCLTQLYAKDITPDDKQELDEA RIRDCLTQLYAKDITPDDKQELDEA RIRDCLTQLYAKDITPDDKQELDEA *************************	LQRE IQAAFRTDE IRRA LQRE IQAAFRTDE IRRT LQRE IQAAFRTDE IRRT ******	QPTPQDEMRAG QPTPQDEMRAG QPTPQDEMRAG *****
Ap At As	C4 C3/C4 C3	MSYIIETIWKGVPKFLRRVDTALKNIG MSYFHETIWKGVPKFLRRVDTALKNIG MSYFHETIWKGVPKFLRRVDTALKNIG *** ******	INERVPYNAPLIRFSS <mark>WMGGDRDGN</mark> INERVPYNAPLIQFSSWMGGDRDGN INERVPYNAPLIQFSS <u>WMGGDRDGN</u> ***********	PRVTPEVIRDVCLLARM PRVTPEVIRDVCLLARM <u>PRVTPEVI</u> RDVCLLARM *****	MAANMYFSQIQ MAANMYFSQIE MAANMYFSQIE *********
Ap At As	C4 C3/C4	DLMFELSMWRCNDELRARAHEIHQHSK DLMFELSMWRCNDELRARAHEIHQYSK DLMFELSMWRCNDELRARAHEIHQYSK *******************************	TDAKHYIEFWKRIPPSEPYRVILGE TDAKHYIEFWKRIPPNEPYRVILGE SDAKHYIEFWKRIPPNEPYRVILGE ************	VRDKLYSTREHALQLLS VRDKLYSTREHACQLLS VRDKLYSTREHARQLLS ************	NGVSNIPEEAT NGVSDVPEEAT NGASDVPEEAT ** * *****
Ap At As	C4 C3/C4 C3	FTHVDQFLEPLELCYRSLCACGDRPIA FTHVDQFLEPLELCYRSLCACGDRPIA FTHVDQFLEPLELCYRSLCACGDRPIA	DGSLLD <mark>FMRQVSTFGLSLVRLDIRQ</mark> DGSLLDFMRQVSTFGLSLVRLDIRQ DGSLLD <u>FMROVSTFGLSLVRLDIRO</u>	ESDRHTDVMDAITKHLG ESDRHTDVMDAITKHLG ESDRHTDVLDAITKHLG ********	IGSYRAWSEEK IGSYRDWSEEK IGSYRDWSEEK ***** *****
Ap At As	C4 C3/C4 C3	RQEW <mark>LLSEI</mark> RGKRPLFGPDLPKTEEIA RQEWLLSEIRGKRPLFGPDLPKTEEIA RQEWL <u>LSEI</u> RGKRPLFGPDLPKTEEIA ********	DVLGAFHVIAEIPSDSFGAY <mark>TISM</mark> A DVLDTFHVISELPSDSFGAYIISMA DVLDTFHVISELPSDSFGAY <u>IISM</u> A *** **** * *************	TAP <mark>SDVLAVELLQR</mark> ECG TAPSDVLAVELLQRECR TAP <u>SDVLAVELLQR</u> ECR *********	VKDPLRVVPLF VKDPLRVVPLF VKDPLRVV <u>PLF</u> ******
Ap At As	C4 C3/C4 C3	EKLADIENAPASVTRLFSIDWYRNRIN EKLADIESAPAALTRLFSIDWYRNRID EKLADIEAAPASLTRLFSIDWYKNRIN ******* *** ********* ***	GKQE <mark>VMIGYSDSGKDAG</mark> RLSAAWQL GKQEVMIGYSDSGKDAGRLSAAWQL GKQE <u>VMIGYSDSGKDAG</u> RLSAAWQL *******	YKAQEELIKIAKEFGVK YKVQEELIKVAKEFGVK YKVQEELIKVAKEFGVK ** ****** ******	PEP-Bindung LTNFHGRGGTV LTNFHGRGGTV LTNFHGRGGTV ********
Ap At As	C4 C3/C4 C3	GRGGGPTHLAILAQPPGTINGSLRVTV GRGGPTHLAILAQPPDTIHGSLRVTV <u>GRGGGPTHLA</u> ILAQPPDTIHGSLRVTV ***********************************	QGEVIEQSFGEEHLCFRTLQRYTAA QGEVIEQSFGEEHLCFRTLQRYTAA <u>QGEVI</u> EQSFGEEHLCFRTL <u>QRYTAA</u> ******	TTEHGMHPPSSPKPEWR TIEHGMHPPSSPKPEWR TIEHGMHPPSSPKPEWR ************************************	ALLDEMAAVAT ALLDEMAVVAT ALLDEMAVVAT ****** ***
Ap At As	C4 C3/C4 C3	KEYRSVVFREPRFVEYFRRATPELEYG KEYRSVVFHEPRFVEYFRLATPELEYG KEYRSVVFHEPRFVEYFRLATPELEYG ******** *********	RMN <mark>IGSRPAKH</mark> KPSGGIES <mark>LRAIPW</mark> RMNIGSRPSKHKPSGGIESLRAIPW RMN <u>IGSRPSKH</u> KPSGGIES <u>LRAIPW</u> *******	IFSWTQTRFHLPVWLGF IFAWTQTRFHLPVWLGF IFAWTQTRFHLPVWLGF ************************************	GPAFKHVIEKD GAAFKHVLEKD GAAFKHVIEKD * ***** ***
Ap At As	C4 C3/C4 C3	KGNLTMLKEMYNQ <mark>WSFR</mark> RVTIDLLEMV IRNLTMLKEMYNQWSFFRVTIDLLEMV IRNLTMLKEMYNQ <u>WSFF</u> RVTIDLLEMV *********	FAKGDPKIAALYDKLLVSEDLKPFG FAKGDPGIAALYDNLLVSEELKPFG FAKGDPGIAALYDNLLVSEELKPFG ****** ****** *****	EHLRKSYEETQQLLLEV EHLRKSYEETKQLLLEV EHLRKSYEETKQFLLEV ********* * ****	AGHKDILDADP AGHKDLLDADP AGHRDLLDADP *** * *****
Ap At As	C4 C3/C4 C3	YLKQRLRLRDPYITTLNVFQAYTLKRI YLKQRLRLRDPYITTLNVCQAYTLKRI YLKQRLRLRDPYITTLNVCQAYTLKRI *****************	RDPNFHVTAGPHLSKEIMDSNSPAA RDPNFHVTERPHLSKEIMDSNSPAA RDPNFHVTVRPPLSKDIMDPDSPAA ******** * *** *** ***	ELVKLNLTSEYPPGLED ELVKLNPTSEYPPGLED ELVKLNPTSEYPPGLED ****** ********	TLILTMKGIAA TIILTMKGIAA TLI <u>LTMKGIAA</u> * *********
Ap At As	C4 C3/C4 C3	GLQNTG GMQNTG <u>GMQNTG</u> * ****			

Abbildung 3.20.: Vergleich der Aminosäuresequenzen der drei *ppcA*-PEP-Carboxylasen aus *A. pungens* (Ap), *A. tenella* (At) und *A. sessilis* (As). Identische Aminosäuren in allen drei Proteinen sind durch Sternchen markiert. Sequenzbereiche mit einer funktionellen Bedeutung sind grau hinterlegt. Sequenzbereiche, denen in den *Flaveria*-Proteinen eine Bedeutung für die C₄-spezifischen Eigenschaften der Enzyme zugeordnet werden konnten, sind durch schwarze Balken gekennzeichnet.

3.4.2. Vergleich der Enzymparameter

Um die Sequenzvergleiche der PEP-Carboxylasen aus *Alternanthera* bewerten zu können, mussten die kinetischen Eigenschaften der Enzyme bestimmt werden. Es musste geklärt werden ob das Enzym aus C₄-Pflanze *A. pungens* die typischen kinetischen Eigenschaften von C₄-PEP-Carboxylasen aufweist und ob das Enzym aus der C₃/C₄-intermediären Pflanze *A. tenella* C₃/C₄intermediäre Eigenschaften zeigt. Typische Eigenschaften von C₄-PEP-Carboxylasen sind eine hohe Bindekonstante für das Substrat PEP und eine hohe Aktivierbarkeit durch Glucose-6-Phosphat.

Die aus A. pungens, A. tenella und A. sessilis isolierten cDNAs wurden eingesetzt, um rekombinante Proteine im E. coli-Stamm PCR1 zu produzieren. Die gereinigten Enzyme wurden benutzt um Sättigungskinetiken für das Substrat PEP in An- und Abwesenheit des Aktivators Glucose-6-Phosphat zu messen. Diese Daten wurden genutzt, um die Substratbindekonstanten ($K_{0.5}$ -PEP) und die Aktivierbarkeit der Enzyme zu bestimmen.

Da die Enzyme teilweise ein kooperatives Verhalten zeigten, hätte die Berechnung der Enzymparameter mit der Michaelis-Menten-Gleichung zu falschen Ergebnissen geführt. Daher wurde der $K_{0,5}$ -PEP Wert mit der, um den Hill-Koeffzienten (h) modifizierten, Michaelis-Menten-Gleichung bestimmt. Der Hill-Koeffizient stellt ein Maß für die vom Substrat PEP abhängige, Kooperativität des Enzyms dar. Alle Messungen wurden bei pH 8 durchgeführt. Die Ergebnisse dieser Experimente zeigt Tabelle 3.6. Da es sich um rekombinante Proteine aus *E. coli* handelte, ist davon auszugehen, dass die Enzyme nicht phosphoryliert waren. Die Reinigung der Enzyme und die Messungen der kinetischen Eigenschaften wurden freundlicherweise von Sascha Engelmann durchgeführt.

Enzym	K _{0,5} (PEP)		Hill-Koeffizient h		Aktivierung
	-Glc6P	+Glc6P	-Glc6P	+Glc6P	
	μΜ				
ApppcA C ₄	157	20	1,6	0,9	7,8-fach
AtenppcA C ₃ /C ₄	42	25	0,8	0,8	1,7-fach
AsppcA C ₃	36	13	0,9	1,1	2,7-fach

Tabelle 3.6.: Enzymatische Parameter der *ppcA*-PEP-Carboxylasen aus *A. pungens*, *A. tenella* und *A. sessilis.* Zur Aktivierung der Enzyme wurden 5 mM Glukose-6-Phosphat verwendet.

Das Enzym aus der C₄-Pflanze zeigte die höchste Substratbindekonstante und wurde auch am stärksten durch Glukose-6-Phosphat beeinflusst. Die Substratbindekonstante sank bei Zugabe

von Glukose-6-Phosphat nahezu um den Faktor 8. Der hohe Wert für $K_{0,5}$ -PEP und die starke Aktivierbarkeit sind typisch für C₄-PEP-Carboxylasen. Die anderen beiden Enzyme wiesen dagegen Eigenschaften auf, die typisch für nicht-photosynthetische PEP-Carboxylasen sind. Die $K_{0,5}$ -PEP Werte waren niedrig und der Aktivator Glukose-6-Phosphat hatte einen deutlich geringeren Einfluss als bei dem C₄-Enzym. Nur das nichtaktivierte C₄-Enzym zeigte ein stark allosterisches Verhalten in Form einer substratabhängigen positiven Kooperativität, die durch den hohen Hill-Koeffizienten (h=1,6) zum Ausdruck kommt. Das kooperative Verhalten verschwand bei der Aktivierung des Enzyms (h=0,9).

3.4.3. Die Anzahl der PEP-Carboxylase-Gene und Genklassen in Alternanthera

Um einen ersten Eindruck über die Zahl der *ppcA*-Gene und der Gene anderer PEP-Carboxylase-Klassen in *Alternanthera* zu erhalten wurden Southern-Analysen durchgeführt. Dazu wurden jeweils 5 µg genomische DNA von *A. pungens*, *A. tenella* und *A. sessilis* mit den Restriktionsendonukleasen *EcoRI*, *HindIII*, *PstI* und *XbaI* geschnitten. Es kamen verschiedene Hybridisierungssonden zum Einsatz. Die DNA einer Pflanze wurde zum einen mit der vollständigen, aus dieser Pflanze isolierten cDNA hybridisiert. Mit dieser Sonde sollten alle vorhandenen PEP-Carboxylase-Gene erkannt werden. Zum anderen wurde die DNA einer Pflanze mit dem 3'-untranslatierten Bereich der aus dieser Pflanze isolierten cDNA hybridisiert. So sollten nur PEP-Carboxylase-Gene erkannt werden, die zu derselben Klasse gehören wie die Gene, die die isolierten cDNAs kodieren. Die Ergebnisse dieser Southern-Analyse zeigt Abbildung 3.21.

Abbildung 3.21.: Southern-Analyse der DNA von *A. pungens, A. tenella* und *A. sessilis*. Jeweils 5 µg DNA wurde mit den Restriktionsendonukleasen *EcoRI* (E), *HindIII* (H), *XbaI* (X) oder *PstI* (P) geschnitten. Es wurden folgende Sonden verwendet: A: 3'-untranslatierter Bereich der asppcA-cDNA; B: vollständige asppcA-cDNA; C: 3'-untranslatierter Bereich der atenppcA-cDNA; D: vollständige atenppcA-cDNA; E: 3'-untranslatierter Bereich der apppcA-cDNA; F: vollständige apppcA-cDNA

Die Hybridisierung der A. sessilis-DNA mit der ppcA-spezifischen 3'-Sonde ergab ein sehr einfaches Hybridisierungsmuster. In allen Spuren zeigte sich nur ein Signal. Dies deutet darauf hin, dass in A. sessilis nur ein ppcA-Gen existiert. Bei der Hybridisierung mit der vollständigen cDNA ergab sich ein komplizierteres Muster. Dies bedeutet, dass im Genom von A. sessilis, neben dem ppcA-Gen, wenigstens noch ein weiteres PEP-Carboxylase-Gen vorliegt. Bei A. tenella und A. pungens zeigte sich schon bei der Hybridisierung mit der ppcA-spezifischen 3'-Sonde ein komplexes Muster. Dies deutet auf das Vorhandensein mehrerer ppcA-Gene im Genom dieser beiden Pflanzen hin. Bei der Hybridisierung mit der vollständigen cDNA ergaben sich bei beiden Pflanzen zusätzliche Banden. Daraus kann geschlossen werden, dass es in beiden Pflanzen neben den ppcA-Gene weitere PEP-Carboxylase-Gene gibt.

Um zu klären, ob die isolierten cDNAs von orthologen Genen kodiert werden, wurden mittels der "Genome-Walker"-Methode 3'-untranslatierte Bereiche von PEP-Carboxylase-Genen aus den Genomen von A. pungens und A. sessilis isoliert. Die dazu verwendeten genspezifischen Oligonukleotidprimer altGW1 und altGW2 waren so gewählt, dass sie an Sequenzen im 3'-Ende des kodierenden Bereiches der PEP-Carboxylase-Gene binden. Dieser Bereich entspricht dem letzten Exon in den bis jetzt bekannten pflanzlichen PEP-Carboxylase-Genen. Da dieser Bereich in allen PEP-Carboxylasen sehr konserviert ist, konnte davon ausgegangen werden, dass sich 3'untranslatierte Bereiche von allen in A. pungens und A. sessilis vorkommenden PEP-Carboxylase-Genen auf diese Weise isolieren lassen. Die durch die "Genome-Walker"-Methode erhaltenen DNA-Fragmente wurden kloniert und sequenziert. Aus dem Genom von A. sessilis konnten acht und aus dem Genom von A. pungens sieben Fragmente isoliert und kloniert werden. Die Sequenzanalyse ergab, dass zwei A. sessilis Sequenzen jeweils dreimal und eine A. sessilis Sequenz zweimal aus unterschiedlichen "Genome Walker"-Büchereien isoliert wurden. Aus A. pungens wurden drei Sequenzen doppelt und eine Sequenz einmal isoliert. Für einen Sequenzvergleich der so isolierten A. sessilis und A. pungens Sequenzen wurden nur die nicht identischen Sequenzen verwendet. Da die Stoppcodons der PEP-Carboxylase-Leseraster Teil des verwendeten genspezifischen Oligonukleotidprimer altGW2 waren, finden sich diese nicht in den Sequenzen. Außerdem wurden in diesen Sequenzvergleich noch die 3'-untranslatierten Bereiche der isolierten PEP-Carboxylase cDNAs aus A. pungens, A. tenella und A. sessilis einbezogen (Abbildung 3.22.).

	20	40	60	80	100
as1 ascDNA ap2	TGTTGG	TTAGACTTCTT TTAATTTAGACTTCTT CACTATATCTGAGCTTTCCA	GCTGCTCTCATTTGT GCTGCTCTCATTTGT ACTGGTGCAGTAGACTAGT	TGAACATTCTTTGTTTAAGTT TGAACATTCTTTGTTTAAGTT IGTTGCACCCTTGTTTTAAGTT	CGCTTTAGCG CGCTTTAGCG CACTTCTG-G
ateDNA ap1 apcDNA	TTAAGTGAGACTAGTTGCACCCATGTTGG	CACCGTATTTTAGCTTGCCA GACTATATTTGAGTTTGCCA AACTATATTTGAGTTTGCCA	ACTGGTGAAGTAGACTAGT ACTGGTGAAGTAGAGTAGT ACTGGTGAAGTAGAGTAG	rgttgcaccettgttttaagtt rgttgcaccettgttttaagtt rgttgcaccettgttttaagtt	CACTTCTG-G CACTCCTG-G CACTCCTG-G
ap3	TCGC	TACTGCATTCAAACACAC	GTTGTTTTAAGT-CGCATT. GTTGTTTTATG	ACTATTGGGAATTG	GGATGATTA- GGATGATTA-
as3 ap4	TGTTTTAGT GTTTATC	TCTCAATGTTCAT-TTTCAC TCTTGAAGTTCATCTTTCCT	TGTATTCTGATTCGTCCAGO TGTATTTCCATTCAGCCAGO	CTAATTATTTATGCTGGAGCTC CTCATAATTCGTGCTGGAGTTT	GAGTGTTGCC GATTGTTGTC
as1	GCCTT-ATTTGACAGCGTGATGGTTCCCG	AACTA-CTCTTCCCGTCG	CCAAAAATGGCCGAGGG	GAGGCAATGGGGGGATGCTTG	CAGT-ACGGT
ap2	GCGTA-ATCGGACTGCCTGATGGTCCTCA	AACTC-CGCTTGACCACTTC	CCAGTGCTCAGAAAGGG	AGGAGGAAGTGAGGGGTGTTTG	TAGTTATGTT
atcDNA	GCCAA-ATCGGACTGCCTGATGGTTTTCA	AACTC-TGCTTGACCACTTC	CCAGTGCTCAGAAAGGGA	AGGAGGAAGTGAGGGGCTCTTG	TAGTTATGTT
apl	GCCAA-ATTGGATTGCCTGATGATTCTCA	AACTC-CGCTTGACCGCTTT	CCATTATCTATATTA	CTTGTT	AAATTATGTG
apcDNA ag2	GCCAA-ATTGGATTGCCTGATGATTCTCA	CATTO-CGCTTGACCGCTTT CATTA-CTCTGT-CCACTGC			CACT_ACTOTO
ap3	GCAGA-ACTCCACTGCATGATGGT-CTAG	CATTT-CTATGC-CCAGTAG	CCAAAAGAAGAGA	AGATTTTGTGAAATATTTG	TATT-GCTGT
as3	GCGTCCTTCTTAGCTAC	AACTAATTCCAGACTAAACT	TTGCTGTTGTATTTTTGTT	ATTGGATGCTATTCTGTATACT	CTGATACTCG
ap4	TCATTGAGCAAACTTCCTAGCTACTTA	AACTTTCTTGATTAAACC	GTACTGCTGTATTACTA	ATCGACTACTATCCTGCATGCT	TGGCAGTGAT
as1	ATTTATAT-TTCTTAG-TATGTTTTGTTC	TGGATATCTTGTTTCGT-TT.	AGATCGCCATGTTGGAAGG	GGTTGGGTGCCTTTTGTATTA	GAGAACAACT
ascDNA	ATTTATAT-TTCTTAG-TATGTTTTGTTC	TGGATATCTTGTTTCGT-TT.	AGATCGCCATGTTGGAAGG	GGTTGGCTGCCTTTTGTATTA	GAGAACAACT
ap2	ATTTATATATTACTTG-TTTTTTTTTTTCC	TGGAAATCTGGTTTGTTATC	TGCTCTGAATAGCGGACGGA	ATTGGATGCCTTTTGTACTA	AAGAACAGTT
atcDNA	ATTTATATTACTTG-TTTATTTCCT		AGCTTTGAATAGCTGACGGA	ATTGGATGCCTTTTGTACTA	AAGAACAGTT
apr		TGGAAAICIGGIIIGIIAII.	AGCITICAATAGIAGACGGA		A-GAACAATT A-GAACAATT
as2	ATTGATAT-TACCTGGTTTGTTTTTCC	TTCAAT-TT	AGCTCGCCAAGTAGAGAGGG	GGGTGGTTGCCTTTTCCACAA	AAGAACAGTT
ap3	ATTAGTATTACTTTGTTTTGTT-	TGTGAT-TT.	AGCTCTCCAAGTAAGGCGGG	GAATGGGTTGTCTTTTCTACTA	AAGAACAGCT
as3	ATTGTAATAGCATTTTGCATATCATATCA	TAAAATGCAAT-CG	ATAATTTAATAAATT-TTGO	CAATATGTTTATTTTCCTACTA	T-GAATTCTC
ap4	GTTTTTATACCTGTTACTATTCCATAAGA	ATGGCATCTA-TA	ATAATTTAATAAAATATTGO	CATTATGTTTATTTTCCCTCTA	T-GAACTTAA
as1	TGTGCTTACTAAAAACTCAATGTTGT	ATCTT-ACTCGTGTAATGA-			
ascDNA	TGTGCTTACTAAAAACTCAATGTTGT	ATCTT-ACTCGTGTAATGAA	CTAATGAGTATATATTTTG:	FGTTTTCTTGAGCA	
ap2	GATGCTTATTAAAATTCAGTGTTGT	TTTTT-A			
atedNA					
apcDNA	CATGUTTATTAAATAAAATTCAGTGTTTT CATGUTTATTAAATAAAATTCAGTGTTTT	TACTT-GIGIAATTAGGATT			
as2		TACTT-GTATGTTTTCGGTT	 		
ap3	CTTCTTAAACTTTGCTGTATTAT	TACTTAGTATAACCAAGTTT	TTTGCTTGTTTTTTTTTTTTCC	TTGAGATTGTATCAGA	
as3	AAAACATACGGGTCATTATACAAGTTA	TGTTGCATCTTCACT			
ap4	TGTTTCTACTATAAAAGAAAACATTAT	TCTCGAGTCTT			

Abbildung 3.22.: Vergleich der 3'- untranslatierten Bereiche der *ppcA*-PEP-Carboxylase-cDNAs aus *A. pungens* (apcDNA), *A. tenella* (atcDNA)und *A. sessilis* (ascDNA) mit Sequenzen, die mittels der "Genome-Walker"-Methode aus *A. pungens* (ap1-ap4) und *A. sessilis* (as1-as3) isoliert wurden und 3'flankierenden Bereichen von PEP-Carboxylase-Genen repräsentieren sollten. Der Vergleich wurde mit dem Programm Clustal X (Version 1.8, Standardeinstellungen) berechnet. Für den Vergleich wurden von allen Sequenzen jeweils 300 bp verwendet. Zur besseren Übersicht ist eines der Sequenzpaare grau hinterlegt.

Es ist zu erkennen, dass jeweils zwei oder mehr Sequenzen, die mittels der "Genome Walker"-Methode aus unterschiedlichen Pflanzen isoliert wurden, Ähnlichkeiten zueinander aufweisen. Die 3'-untranslatierten Bereiche der *Alternanthera*-cDNAs zeigen recht große Ähnlichkeit zueinander und zu je einer Sequenz aus *A. pungens* und *A. sessilis*. Diese Sequenzen waren die Grundlage für Berechnung eines phylogenetischen Stammbaums der *Alternanthera*-PEP-Carboxylasen, der in Abbildung 3.23. dargestellt ist.

Es gibt drei Gruppen von PEP-Carboxylasen in *Alternanthera*. Jede dieser Gruppen enthält sowohl *A. pungens* als auch *A. sessilis* Gene. Man kann also davon ausgehen, dass die PEP-Carboxylase-Genfamilie in *Alternanthera* aus drei Genklassen besteht. Dies entspricht den Erwartungen, da bei allen bis jetzt untersuchten Pflanzen drei PEP-Carboxylase-Genklassen gefunden wurden. Da alle Klassen sowohl Gene von *A. pungens* als auch Gene von *A. sessilis* enthalten, ist davon auszugehen, dass diese Klassen bereits in der letzten gemeinsamen Vorläuferart dieser beiden Arten vorlagen.

Abbildung 3.23.: Phylogenetischer Stammbaum der PEP-Carboxylasen aus Alternanthera. Die Grundlage für die Berechnung waren die mittels der "Genome-Walker"-Methode isolierten 3'-flankierenden Bereiche der PEP-Carboxylase-Gene und die 3'-untranslatierten Bereiche der PEP-Carboxylase-cDNAs aus A. pungens, A. tenella und A. sessilis. Die Berechnung wurde mit dem Programm PAUP (Version 4.0 b10, Standardeinstellungen) nach der Distanz-Methode durchgeführt. Es wurden 1000 "Bootstrap"-Wiederholungen durchgeführt, die "Bootstrap"-Werte sind angegeben. Die Länge der Äste entspricht der Anzahl von Substitutionen pro Nukleotid. Der 3'-untranslatierte Bereich des ppcA1-Gens aus Flaveria trinervia diente als Referenz.

Die *ppcA*-Klasse untergliedert sich in drei Unterklassen. Eine dieser Unterklassen enthält die *A. sessilis-ppcA*-PEP-Carboxylase, die von einem singulären Gen kodiert zu werden scheint. Die anderen beiden Unterklassen, die untereinander eine größere Ähnlichkeit aufweisen als zu der *A. sessilis-ppcA*-Klasse, bestehen aus den *A. pungens*-PEP-Carboxylasen und der *A. tenella*-PEP-Carboxylase. Dies deutet auf das Vorliegen von zwei *ppcA*-Genen in *A. pungens* (C₄) hin, die untereinander eine größere Ähnlichkeit zeigen als zum *A. sessilis* (C₃) *ppcA*-Gen. Auch das *A. tenella* (C₃/C₄) *ppcA*-Gen zeigt größere Ähnlichkeit zu den *A. pungens*-Genen als zu dem *A. sessilis*-Gen. Die anderen beiden ppc-Genklassen scheinen sowohl in *A. pungens* als auch in *A. sessilis* durch Einzelgene repräsentiert zu sein. Alle untersuchten cDNAs gehören zu derselben Gen-Klasse.!Die!sie!kodierenden!Gene!sind!alsolortholog.

4. Diskussion

4.1. Die Promotoren der *ppcA*-Gene der Gattung *Flaveria* als Zielscheibe der Evolution

Eukaryotische Promotoren bestehen häufig aus verschiedenen regulatorischen Sequenzen die zusammen die Eigenschaften des Promotors bestimmen (Doebley & Lukens 1998). In pflanzlichen Genen können regulatorische Elemente weit entfernt vor dem Transkriptionsstartpunkt, nahe beim Transkriptionsstartpunkt, aber auch im transkribierten Bereich oder im 5'- oder 3'- flankierenden Bereich des Gens liegen. Die an diese regulatorischen Elemente bindenden Proteine können die Transkription des Gens durch verschiedene Mechanismen beeinflussen. Denkbar sind direkte Interaktionen mit der Transkriptionmaschinerie, die aus der RNA-Polymerase und allgemeinen Transkriptionsfaktoren besteht. Aber auch indirekte Wirkungen durch die Veränderung der Chromatinstruktur sind möglich. Hierbei spielen Interaktionen der DNA mit der Kernmatrix über SAR- oder MAR-Elemente (Spiker & William 1996; Holmes-Davis & Comai 1998), ATP abhängige Chromatinremodellierungskomplexe (Kadonaga 1998; Travers 1999), die Acetylierung und Deacetylierung von Histonen (Grunstein 1997) und die DNA-Methylierung (Ng & Bird 1999) eine Rolle.

Cis-regulatorische Elemente sind einer der Hauptangriffspunkt der Evolution. Durch Veränderung oder Neukombination dieser Elemente kann die Expression eines Gens schnell verändert werden, wodurch der betroffene Organismus neue Eigenschaften erwirbt. Der kodierende Bereich des Gens bleibt dabei oft weitgehend unverändert (Doebley & Lukens 1998).

Im *ppcA*-Promotor aus der C₄-Pflanze *F. trinervia* konnten zwei Bereiche identifiziert werden, die für die C₄-typische, also starke und mesophyllspezifische Expression des *ppcA*-Gens verantwortlich sind. Ein proximaler (-570 bis +1) und ein distaler Bereich (-2141 bis -1566) müssen zusammenwirken, um eine C₄-spezifische Expression des Gens zu erreichen (Burscheidt 1998).

4.1.1. Das Mesophyllspezifitätselement MSE-1 im ppcA1-Promotor aus F. trinervia

Im distalen Bereich des *ppcA*-Promotors von *F. trinervia* konnte mittels Reportergenfusionsexperimenten ein 41 bp Segment (-1981 bis -1940) identifiziert werden, welches zusammen mit dem proximalen Promotorbereich für die mesophyllspezifische Genexpression verantwortlich ist und als MSE-1 bezeichnet wurde. Diese 41 bp enthalten also *cis*-regulatorische Elemente, die eine mesophyllspezifische Genexpression bewirken. Dabei war zu beobachten, dass die Reportergenkonstrukte ppcA-Ft-PR-C4-DR-a, ppcA-Ft-PR-C4-DR-b, ppcA-Ft-PR-C4-DR-a/b und ppcA-Ft-PR-C4-DR-a/b*4, die dieses Promotorsegment enthalten, alle eine deutlich geringere mittlere Aktivität zeigen als die Konstrukte ppcA-Ft-PR-C4-DR(+) und ppcA-Ft-PR-C4-DR(-), die den vollständigen distalen Bereich (-2141 bis -1566) enthalten. Dafür bieten sich zwei Erklärungen an.

Es könnte sein, dass der Abstand zwischen den verschiedenen *cis*-regulatorischen Elementen im proximalen und distalen Promotorbereich einen entscheidenden Einfluss auf die Expressionshöhe hat. Es wurde häufiger beobachtet, dass die Wirkung von *cis*-regulatorischen Sequenzen durch die Entfernung von Abstandhaltersequenzen abgeschwächt werden (Tjian & Maniatis 1994; Rippe et al. 1995). Einen Hinweis, dass dies auch bei dem *F. trinervia-ppcA*-Promotor von Bedeutung sein könnte, liefern die Konstrukte ppcA-Ft-PR-C4-DR(+) und ppcA-Ft-PR-C4-DR(-). Das ppcA-Ft-PR-C4-DR(+)-Konstrukt zeigt eine deutlich niedrigere Aktivität als das ppcA-Ft-PR-C4-DR(-)-Konstrukt. Dies könnte durch die veränderten Abstände der regulatorischen Elemente im distalen Bereich zu den regulatorischen Elementen im proximalen Bereich erklärt werden (Burscheidt 1998).

Eine andere Erklärung wäre die Existenz von weiteren *cis*-regulatorischen Elementen im distalen Promotorbereich neben dem identifizierten MSE-1. Dabei kann es sich nicht um ein einzelnes Element handeln, das im a- oder b-Abschnitt des distalen Bereichs liegt (a: -2141 bis -1940; b: -1981 bis -1668), da die Aktivität der Konstrukte ppcA-Ft-PR-C4-DR-a und ppcA-Ft-PR-C4-DR-b sonst höher sein müsste. Denkbar wären mehrere Elemente in den Abschnitten a und b, die miteinander wechselwirken müssen, um eine hohe Expression zu erreichen. Ein Kandidat hierfür wäre das SAR-Element, dass Teil des b-Abschnitts des distalen Bereichs ist. Es wäre auch denkbar, dass sich ein regulatorisches Element im c-Abschnitt (-1713 bis -1566) des distalen Bereichs befindet. Dieses Element hätte allein keinen Einfluss auf die Expression des Gens, könnte aber im Zusammenspiel mit Elementen in dem identifizierten 41 bp Segment die Expression des Gens steigern. Um diese Fragen entscheiden zu können, sind weitere Reportergenexperimente nötig. So könnten zum Beispiel neutrale Sequenzen als Abstandhalter in die Reportergenkonstrukte eingefügt werden. Auch weitere Deletionskonstrukte, bei denen Teile des a- und des b-Abschnitts des distalen Bereichs des distalen Bereichs des distalen Bereichs befindet. Bereichs entfernt werden, könnten weiteren Aufschluss bringen.

Abbildung 4.1. zeigt die Sequenz 41 bp Segment MSE-1. Die eingezeichneten *cis*regulatorischen Elemente wurden bei der Durchsuchung von Datenbanken gefunden. Dabei ist aber nicht klar, ob eines oder mehrere dieser Elemente eine Bedeutung für die mesophyllspezifische Expression des *F. trinervia-ppcA*-Promotors haben. Auch die bisher bekannten Funktionen dieser Elemente geben keinen klaren Aufschluss über ihre Bedeutung für die Expression des *ppcA*-Gens. Das GCN4-Motiv wird in Hefe in vielen Promotoren gefunden und von GCN4, einem bZIP-Transkriptionsfaktor, erkannt, der die Transkription der betroffenen Gene in der Regel steigert (Arndt & Fink 1986). In Pflanzen ist dieses *cis*-regulatorische Motiv oft, zusammen mit anderen Elementen wie auch dem AACA-Motiv, an der endospermspezifischen Genexpression beteiligt (Wu et al. 2000).

Abbildung 4.1.: MSE-1-Sequenz: Bekannte *cis*-regulatorische Elemente sind markiert. Es ist jeweils der Organismus angegeben, in dem das *cis*-regulatorische Element identifiziert wurde. Die hier eingezeichneten *cis*-regulatorische Elemente wurden bei Datenbanksuchen in den Datenbanken PLACE, PlantCARE und TRANSFAC gefunden.

Die Pit-1a-Erkennungssequenz findet sich im Promotor des Gens für das menschliche Wachstumshormon, der zugehörige Transkriptionsfaktor, ein POU-Protein, wurde in der Ratte identifiziert (Lefevre et al. 1987). Die TR-Box spielt eine Rolle bei der Zelldifferenzierung in Hefe. Sie interagiert dabei mit zwei HMG-Box-Proteinen (Kjaerulff et al. 1997). Das GTGA-Motiv wurde im Promotor eines Gens gefunden, welches in Pollen der Tabak-Pflanze exprimiert wird (Rogers et al. 2001). Das GAG-Motiv wird als Teil eines lichtregulatorischen Elements in Spinat beschrieben. Es wurde im Promotor der RubisCO-Aktivase gefunden (Arguello-Astorga & Herrera-Estrella 1996).

Durch einen Vergleich der MSE-1-Sequenz mit den entsprechenden Sequenzen aus den *ppcA*-Promotoren aus *F. pringlei*, *F. vaginata* und *F. bidentis* können die *cis*-regulatorischen Elemente in diesem DNA-Segment weiter eingegrenzt werden. *F. bidentis* ist wie *F. trinervia* eine C₄-Pflanze. Die *ppcA*-Expression in dieser Pflanze sollte also auch mesophyllspezifisch sein. Auch bei der C₄-ähnlichen Pflanze *F. vaginata* kann man eine mesophyllspezifische Expression erwarten. *In situ* Hybridisierungen haben gezeigt, dass die PEP-Carboxylase-Expression in der C₄ähnlichen Art *F. palmeri* mesophyllspezifisch ist (Koprivova et al. 2001). Selbst bei der weniger weit entwickelten C_3/C_4 -intermediären Art *F. anomala* ist die PEP-Carboxylase bevorzugt in Mesophyllzellen exprimiert (Koprivova et al. 2001). *F. pringlei* ist dagegen eine C_3 -Pflanze und die *ppcA*-Expression ist in dieser Art nicht mesophyllspezifisch (Stockhaus et al. 1997). Man kann also davon ausgehen, einen gemeinsamen Mechanismus vorausgesetzt, dass die *cis*regulatorischen Elemente, die die Mesophyll-Spezifität bewirken, in den Sequenzen von *F. trinervia*, *F. bidentis* und *F. vaginata* zu finden sind, aber in der Sequenz von *F. pringlei* fehlen. Einen Vergleich der orthologen Sequenzen zeigt Abbildung 4.2. Es fällt auf, dass nur ein Bereich dieser Sequenzen in *F. trinervia*, *F. bidentis* und *F. vaginata* übereinstimmt, aber in der *F. pringlei* Sequenz abweicht. Es handelt sich dabei um eine Deletion von vier bp (CACT) in der *F. pringlei* Sequenz.

Abbildung 4.2.: Sequenzvergleich des Bereichs von -1981 bis -1940 des *F. trinervia-ppcA*-Promotors mit orthologen Sequenzen aus den *ppcA*-Promotoren aus *F. bidentis*, *F. vaginata* und *F. pringlei*.. Identische Nukleotide sind durch (*) gekennzeichnet. Der grüne Balken kennzeichnet eine 4 bp Insertion in den Sequenzen der C₄- und C₄-ähnlichen Pflanzen.

Man kann also vermuten, dass die Insertion dieser vier Basenpaare zur mesophyllspezifischen Aktivität des *ppcA*-Promotors führt. Dies sollte durch weitere Reportergenexperimente geklärt werden. Dazu müssten zum einen die vier bp (CACT) im Konstrukt ppcA-Ft-C4-PR-a/b deletiert werden. Zum anderen sollte in diesem Konstrukt das MSE-1 durch die orthologe Sequenz aus *F*. *pringlei* ersetzt werden, in welche zuvor die vier bp inseriert worden sind.

Durch die Insertion der vier Basenpaare wird das GCN4-Motiv gebildet. Es sind verschiedene pflanzliche Transkriptionsfaktoren des bZIP-Typs bekannt, die an dieses DNA-Motiv binden. bZIP-Proteine kommen in allen Eukaryonten vor. Sie bestehen aus einer basischen DNA-Bindedomäne und einer Protein-Dimerisierungsdomäne die als Leucin-Zipper bezeichnet wird. Im Genom von *A. thaliana* konnten über 70 Gene erkannt werden, die bZIP-Proteine kodieren (Jakoby et al. 2002). In Pflanzen sind bZIP-Transkriptionsfaktoren unter anderem an der Photomorphogenese, an der Pathogen- und Stressabwehr, an der Gibberellinsynthese und an der Abscisinsäure vermittelten Genexpression beteiligt (Jakoby et al. 2002). Ein Beispiel für ein bZIP-Protein, das an das GCN4-Motiv bindet, ist das Opaque 2-Protein aus Mais (Neto et al. 1995; Yunes et al. 1998). Das GCN4-Motiv wurde aber auch in anderen Pflanzen wie Reis und *Hor*- *deum vulgare* gefunden (Muller & Knudsen 1993; Onodera et al. 2001). Dabei wurde festgestellt, dass es zusammen mit anderen *cis*-regulatorischen Elementen an der spezifischen Expression von Genen in Endospermzellen verantwortlich ist. Für das Gen des Samenspeicherproteins GluB-1 aus Reis konnte gezeigt werden, dass neben dem GCN4-Motiv noch das AACA-Motiv, das ACGT-Motiv und die Prolamin-Box für eine hohe endospermspezifische Expression nötig sind (Wu et al. 2000). Interessanterweise finden sich mehrere Kopien des AACA-Motivs in den distalen Bereichen der *ppcA*-Promotoren von *F. trinervia*, *F. bidentis*, *F. vaginata* und *F. pringlei*, wobei eine der Kopien innerhalb des MSE-1-Segments aus dem *F. trinervia*-Promotor und in den entsprechenden Sequenzen aus den anderen *Flaveria*-Promotoren liegt. Es wäre durchaus denkbar, dass beide Motive zusammen mit anderen *cis*-regulatorischen Elementen andere Zellspezifitäten bewirken. Im Fall der C₄-*ppcA*-Gene könnten diese anderen *cis*regulatorischen Elemente Teil des proximalen Promotorbereichs sein und zusammen mit dem AACA- und dem GCN4-Motiv eine mesophyllspezifische Expression des Gens hervorrufen.

Es ist natürlich auch möglich, dass durch die Insertion der vier Basenpaare ein bisher unbekanntes *cis*-regulatorisches Element gebildet wird. Zum Beispiel konnte bei der Suche nach *trans*-regulatorischen Proteinen, die mit dem distalen Promotorbereich des *F. trinervia-ppcA*-Gens interagieren, unter anderem ein Protein isoliert werden, dass eine hohe Ähnlichkeit zum *Arabidopsis*-Protein FAR1 zeigt. FAR1 spielt eine wichtige Rolle bei der Phytochrom A abhängigen Signaltransduktion (Hudson et al. 1999; Wang & Deng 2002). Bis jetzt konnte nicht gezeigt werden, dass FAR1 direkt an DNA bindet (Hudson et al. 1999), aber im Hefe-Einhybrid-System zeigte das FAR1-ähnliche Protein eine starke Interaktion mit dem a- und dem b-Abschnitt des distalen Promotorbereichs (Akyildiz 2002). Da die Expression der C₄-PEP-Carboxylase-Gene, wie auch der anderen C₄-Gene, unter anderem durch Licht kontrolliert wird (Sheen 1999), ist hier ein Zusammenhang durchaus möglich. Allerdings müssen das FAR1ähnliche Protein und andere mit Hilfe des Hefe-Einhybrid-Systems isolierte Proteine noch weiter untersucht werden um sichere Aussagen zu erlauben.

4.1.2. Mögliche C₄-Determinanten in den proximalen ppcA-Promotorbereichen

Einen großen Einfluss auf die Expression der *Flaveria-ppcA*-Gene haben die proximalen Promotorbereiche. Abbildung 4.3. zeigt einen Vergleich dieser proximalen 5'-flankierenden Bereiche der *ppcA*-Gene aus *F. trinervia*, *F. bidentis*, *F. vaginata*, *F. anomala*, *F. brownii*, *F. pubescens*, *F. cronquistii* und *F. pringlei*. Für diesen Vergleich wurde jeweils der Sequenzbereich von +1 bis -530 verwendet (bezogen auf den Translationsstart). Es ist leicht zu erkennen, dass die Sequenzen eine sehr hohe Ähnlichkeit zueinander aufweisen (64 % oder mehr identische

Nukleotide).

F.t F.b F. $v2$ F. $v1$ F.a F.br F.p F.c F.p	TACTAATTG-TTTTTTAATTTACAAA AATTGTTTTTTTAATTTACAAA TACTAATTG-TTTTTTAATTTACAAA TACTAATG-TTTTTTAATTTACAAA GCTTAATACTAGCTTTTTTTAATTGACAAA ATTAGTTGCGTTAGTTATGTTTTCCTTTCAAAA TAGTTTTCTGATTCACAAT ACAAA	A-CTCTCAACAAATGATTAG A-CTCTCAACGAATGATTAG A-CTCTCAACGAATGATTAG A-CTCTCAACGAATGATTAG A-CTCTCAACGAATGATTAG A-CTCTCAACGAATGATTAG A-AAAAAAAAAAAAAG A-CTCTAAACGAATGATTAG AGTTCTCAACGAATGATTAG AATGATTAG ** * **	TTGGGTTAGTTATTCATAG- TTGGGTTAGTTATGCATAG- TTGGGTTAGTTATGCATAG- TTGCGTTAGTTATGCATAC- TTGCGTTAGTTATGCATAC- TTGCGTTAGTTATGCATAC- TTGCGTTGTTATGCATAC- TTGCGTTTGTTATGCAAC- TTGCGTTTGTTATGCAAAC-	GAAAGCGGACGACGACGATGTCGTTATAAT GAAAGCGGACGACGACATGTCGTTATAAT GAAAGCGGACGACGATGTCGTTATTAT GAAAGCGGACGACGACGATGTCGTTATTAT GAAAGCGGACGACGATCATGTCGTTATTAT GAAAGCGGACGATCATGTCGTTATTAT GAAAGCGGACGACGATCATGTCGTTATTAT GAAAGCGGACGACGATCATGTCGTTATTAT *** ******* ******* **
	<u>_</u> P	-BOX		
F.t	TAAAAAAATATCAAAAGAGTAAACAA <mark>A-</mark>	AAAGGAAAAAGACTAATTAT:	ГТАБАТААТААТААТА——–1	CCACAAAAATATTCGAATTCTTCAATC
F.b	TAAAAAAATATCAAAAGAGTAAACAA <mark>A-</mark>	AAAGGAAAAAGACTGATTAT:	ΓΑΑΤΑΤΑΑΤΑΑΤΑΑΤΑΑΤΑΙ	CCACAAAAATATTCGAATTCTTCAATC
F.v2	ТАААААААТАТСААААGAGTAAACAAА-	AGAGGAAAAAGACTGATTAT	ΓΑΑΤΑΤΑΑΤΑΑΤΑΑΤΑΑΤΑ1	CCACAAAAATATTCGAATGCTTCAAGC
F.v1	TAAAAAAATATCAAAAGAGTAAACAAA-	AGAGGAAAAAGACTAATTAT	ΓΑΑΤΑΤΑΑΤΑΑΤΑΑΤΑΑΤΑΑ	CCACAAAAATATTCGAATGCTTCAATC
F.a	ТАААААААА-ТАТСААААGAGGAAACAAAT	AGAGGAAAAAGACTGATTGT	ΓΑΑΤΤΤΤΑΤΑΤΑΑΤΑΤΑΤ	тсасаааататтссаатааттсатсс
F.br		AGAGGAAAAAGACTGATTAT		ССАСАААААТАТТССААТААТТСААСС
F DU			TA A TTA A TA A TA A TA A TA A TA A TA	
r.pu				
r.c		AGAAGIAAAAGACIGAIIAI		
г.•р	ΤΑΑΤΤΑΑΑΑΑΑΑΑΑΤΑΟΤΑΑΑΑGAGTAAAAAAΤ-	AGAAGAAAAAGACTGATTATO	AATTTAATAATAATA1	ССАСАААААТАТТССААТААТТТАА-С
	*** ***** ** * *** ***	* * * ******* *** *	* * ******** *	* ************ *** ** * *
F.t	CTGAGTTTGCTCTGTGGATGAGTTTCTGTAT	CATTGATACTTGATACC	IGTAATTCACACACCTCATA	A-TCTCATACTTCATCTATA
F.b	CTGAGTTTGCTCTGTGGATGAGCAACTGTAT	CGTTGATACTTGATACC	IGTAACTCACACACCTCATA	A-TCTCATACTTCATCTATA
F.v2	CTAAGTTTGCTCTGTGGATGAGTTTCTGTAT	CGGTGATACTTGATACC	IGTAACTCACACACCTCATA	A-TCTCATACTTCATCTATA
F.v1	CAGAGTTTGCTCTGTGGATGAGTTTCTGTAT	GGTTGATACTTGATACC	TGTAACTCACACATCTCATA	-ТСТСАТАСТТСАТСТАТА
F.a	CTGAGTTTGCCCCTTTGTGGATGAGTTTCTGTAA	TOTOTATOGTTGATCCC	ГСТААСТСАСАСАСТТСАТА	-ТСТСА-АСТТСАТСТАТА
Fhr				
E DU				
r.pu		GGIIGAIACIIGIAAAIAAI.		
F.C		CGTTGATACCTG	TAACTCACACAGTTCATA	
г•р	CTGAGTTTGCTATTTGTGGATGAGTTTCTGTAT	CGTTGATACCTG	TAACTCACACAGITCTTA	A-ACTCATACTTCATCTATA
	* ****** * ********* *****	** * **	* ** * ** **	* *** * *********
	T-Box			
F.t	AATACCCAATTCATTTTGCTCAAAGT	CTCAACACTGAGCATACCCA	A	TATTCAGGTGATCTAATTTA
F.b	AATACCCAATTCATTTTGCTCAAAGT	CTCAACATTGAGCATACCCA	A	TATTCAGGTGATCTAATTTA
F.v2	AATACCCAATTCATTTTGCTCAAAGT	CTCAACATTGAGCATACCCA	A	TATTCAGGTGATCTAATTTA
F.v1	AATACCCAATTCATTTTGCTCAAAGT	CTCAACACTGAGCATACCCA	A	TATTCAGGTGATCTAATTTA
F.a	AATACCCATTCCCCAATTCATTTTGCTCAAAGT	CTCAACACTGAGCATACCCA	A	TATTCAGGTGATCTAATTGA
F.br	AATACCCAATCCCCAATTCATTTTGCTTCAAGT	CTCAACACTGAGCATAACCA	A	TATTCAGGTGATCTAATTGA
F.pu	AATACCCAATCCCCAATTCATTTTGCTTAAAGT	CTCAACACTGAGCATAACCA	A	TATTCAGGTGATCTAATTGA
F.C	AATACTCAATCCCTAATTCATTTTGTTTAGAGT	CTCAACAGTGAGCATACCAA	CATCTCAATTTCATCATCTT	CTTCCACTATTCAGGTGATCTGATTGA
F.p	AATACTCAATCCCCAATTCGTTTTGTTTAGAGT	CTCAACACTGAGCATACCCA	FATCTCAATTTCATCATCT	CTTCCACTATTCAGGTGATCTGATTGA
1	**** ** * ** **** * ***	****** ******* *		******
	RY-Repeat		_	
F.t.	ACGTTTGCATGAGTATTTCTTAATAAAATTTA	TGTTGGGTTTACAGTATCTA	TTGGGTGGATTTCTTAAACO	GAT-TGTGGTTTGAΤΤΑΑΤΑΑΑΑΑ
F.b	ACATTTGCATGAGTATTTTCTTAATAAAATTTC	TATTGGGTTTACAGTATCTA	TTGGGTGGATTTCTTATACO	GAT-TGTGGTTTCATTAATAAATA
F. v2	ACATTTCCATCACTATTTCTTCTTAATAAAATTTC	TGTTGGGTTTACAGTATCTA	TTGGGTGGATTTCTTTACC	
F.v1	ATGTTTGCATGAGTATTTCCTAATAAAATTTT	ͲΑͲͲϾϾϾͲͲͲΑϹΑΑͲΑͲϹͲΑ	PTGGGTGGATTTCTTATACC	GAT-TGTGGTTTGAΤΤΑΑΤΑΑΑΑΑ
Fa		TGTTGGGTTTTACAGTATCAA	PTGGATGGATTTCT_ATACG	
Fbr		TGTTGGGTTTTACAGTATCAA		
F DU		TGTTGGGTTTACAGTATCAA		
F.pu			TIGGAIGGAIIICIIAIACC	
F.C			TIGGAIGGAIIICIIGIACC	
r•p	ACATTIACATAACTATIGCTIAAT=====TIA	1011000111ACAGIAICIA.	1100A100A111C1101ACC	
F.C	ATCTTAATGAGAAGTTTGTGATAATATGCTGAA	ATGGGTTGTTT		STTGGAGGGGAATTAAGTATTAAGCAAG
F.D	ATCTTAATCAGAAGTTTTGTGATAATATGCTAAA	ATAGGTTGTTT	-TTATGTTAATTTTTCAGGG	GTTGGAGGGGAATTAAGTATTAAGCAAG
F.V2	ATCTTAATCAGAAGTTTGTGATAATATGCTAAA	ATGGGTTGTTT	-TTGTGTTAATTTTTCAGGG	GTTGGAGGGGAATTAAGTATTAAGCAAG
F. VI	ATCTTAATCAGAAGTTTTGTGATAATA	ATGGGTTGTTT	-TTGTGTTAATTTTTCAGGG	GTTGGAGGGGAATTAAGTATTAAGCAAG
r.a	ATCTTAATCAGAAGTTTTGTGATAATCTGCTGAA	ATGGGTTGTTT	-TTGTGTTGAATTTTTTAGGG	GTTGGAGGAGAATTAAGCAAG
F.br	-TCTCGACGAGAAGTTTTGTGATAATATGCTGAA	ATGGGTTGTTT	-TTGTGTTGATTTTTCAGGG	STTGGAGGGGAATTAAGCAAG
F.pu	CTCGACGAGAAGTT TGTGATAATA TGCTGAA	ATGGGTTGTTT	-TTGTGTTGATTTTTCAGGG	GTTGGAGGGGAATTAAGCAAG
F.C	CTCTCGATCAGAAGTTTGTGATAATCTGCTGAA	ATGGGTTGTTT	-TTGTGTTAATTTTTCAGGG	GTTGGAGGGGAATTAAGCAAG
F•p	GTCTCGATCAGAAGTTTGTGATAATCTGGTGAA	ATGGGTTGTTTGTGGGTTGTT	I''I''I'GTGTTAATTTTTCAGGG	STTGGAGGGGAATTAAGCAAG
	** * ********************************	** ******	** **** * **** ****	******* ************************
F.t	GGTGTGAGTAATG			
F.b	GGTGTGAGTA <u>ATG</u>			
F.v2	GGTGTGAGTCATG			
F.vl	GGTGTGAGTAATG			
F.a	GGTGTGAGTAATG			
F.br	GGTGTGAGTAATG			
F 2011	CCTCTCTCTCTCTTTTTTTTTTTTTTTTTTTTTTTTTTT			

F.c GGTGTGTGTGTAATG F.p TGTGTGTGTGTAATG

Abbildung 4.3.: Vergleich der proximalen 5'-flankierenden Bereiche der *ppcA*-Gene aus *F. trinervia*, *F. bidentis*, *F. vaginata*, *F. brownii*, *F. pubescens*, *F. anomala*, *F. cronquistii und F. pringlei*. Der Vergleich wurde mit dem Programm Clustal X (Version 1.8; Standardeinstellung) berechnet. Die Lage der Introns im 5'-untranslatiereten Bereich ist durch einen grauen Kasten gekennzeichnet. Bekannte *cis*-regulatorische Elemente sind farbig gekennzeichnet. Es sind nur *cis*-regulatorische Elemente gekennzeichnet. Bereiche, die in beiden C₄-Promotoren, aber nicht in den C₃-Promotoren vorkommen. Identische Nukleotide sind durch (*) gekennzeichnet. Bereiche, die sich in den C₃- und C₄-Promotoren deutlich unterscheiden, sind durch grüne Balken markiert.

Aus der Arbeit von Janet Burscheidt ist bekannt, dass dieser proximale Promotorbereich mit für die C₄-spezifische Aktivität des *F. trinervia* Promotors verantwortlich ist und dass die starke Expression des Gens in Blättern durch *cis*-regulatorische Elemente in diesem Promotorbereich bewirkt wird. Es hat sich herausgestellt, dass die Expressionshöhe der PEP-Carboxylase in den Blättern der untersuchten *Flaveria*-Arten abgestuft ist, hohe Expression in C₄- und C₄-ähnlichen Arten, niedrige Expression in C₃-Arten und eine intermediäre Expression in den C₃/C₄intermediären Arten. Man könnte daher erwarten, Sequenzbereiche zu finden, die ebenfalls abgestufte Unterschiede zwischen C₄-, C₃/C₄-intermediären und C₃-Arten zeigen. Derartige Sequenzabschnitte sind allerdings nicht zu finden. Daher wurde nach bekannten *cis*-regulatorischen Elementen gesucht, die in den C₄- und C₃/C₄-intermediären Sequenzen vorkommen, nicht aber in den Sequenzen aus den C₃-Pflanzen. Es wurden nur sehr wenige derartige *cis*-regulatorischer Sequenzen gefunden (Abbildung 4.3.). Die Bedeutung der meisten dieser Elemente für die Expression der *ppcA*-Gene ist nicht klar.

Die P-Box ist an der Gibberellin gesteuerten Genexpression in Reis beteiligt (Kim et al. 1992). Die T-Box wurde im Promotor der B-Untereinheit der Glycerinaldehyd-3-Phosphat Dehydrogenase aus A. thaliana entdeckt und ist dort für die Licht abhängige Expression verantwortlich (Chan et al. 2001). Der "RY-Repeat" ist Teil eines Motivs, das als RY/G-Box bezeichnet wird. Dieses Motiv ist an der Abscisinsäure abhängigen Genexpression in den Samen von Brassica napus beteiligt (Ezcurra et al. 1999; 2000). Das GT-1-Motiv wird von dem Transkriptionsfaktor GT-1 erkannt. Diese Bindestelle fehlt nur in den Promotoren aus F. anomala, F. cronquistii und F. pringlei. Das Motiv wurde im rbcS-Promotor der Erbse entdeckt, ist an der Licht gesteuerten Expression beteiligt (Villain et al. 1996) und könnte daher auch für die PEP-Carboxylase-Expression von Bedeutung sein. Dem widerspricht das Fehlen dieses Motivs im F. anomala-Promotor, da auch F. anomala einen hohen PEP-Carboxylase-Transkriptspiegel zeigt. Allerdings unterscheidet sich der distale Teil des isolierten F. anomala-Promotors stark von den anderen ppcA-Promotoren. Da in allen untersuchten Flaveria-Arten, auch in F. anomala, mehr als ein ppcA-Gen gefunden wurden (Hermans & Westhoff 1990; 1992) ist es denkbar, dass hier der Promotor eines niedrig exprimierten ppcA-Gens isoliert wurde und dass ein anderes ppcA-Gen in F. anomala für den hohen PEP-Carboxylase-Transkriptspiegel verantwortlich ist. Das ZF-HD-Motiv wurde von Andrea Windhövel als Bindestelle für ein Zinkfinger-Homöoboxprotein vorgeschlagen (Windhövel 1999; Windhövel et al. 2001). Dieser Transkriptionsfaktor interagiert spezifisch mit dem proximalen Bereich des ppcA-Promotors aus F. trinervia, aber nicht mit dem Promotor des ppcA-Gens aus F. pringlei (Windhövel et al. 2001). Dieses Sequenzmotiv ist in den Promotoren der C₄-Pflanzen F. trinervia und F. bidentis, der C₄-

ähnlichen Pflanze *F. vaginata* und der C_3/C_4 -intermediären Pflanze *F. anomala* konserviert. Die Sequenz findet sich aber nicht im Promotor der C_4 -ähnlichen Pflanze *F. brownii*, die ja ebenfalls eine sehr hohe PEP-Carboxylase Expression in den Blättern zeigt.

Es konnte somit keine klare Korrelation zwischen dem Auftreten bestimmter Sequenzmotive in den proximalen Promotorbereichen und der Expressionshöhe der entsprechenden Promotoren gefunden werden. Es ist daher wahrscheinlich, dass mehrere *cis*-regulatorische Elemente im proximalen Promotorbereich zusammenwirken müssen, um eine C_4 -spezifische hohe Expression des *ppcA*-Gen zu gewährleisten. In diesem Fall müssten sich im Verlauf der C_4 -Evolution mehrere Veränderungen im proximalen Bereich des *ppcA*-Promotors ereignet haben.

4.1.3 Ein Modell für die Funktion des ppcA-Promotors aus F. trinervia

Abbildung 4.4. zeigt ein Modell für den *ppcA*-Promotor aus *F. trinervia*. Um seine C_{4} spezifischen Eigenschaften zu erreichen, musste es mehrere Veränderungen gegenüber dem ursprünglichen C_{3} -Promotor geben. Eine Veränderung war wahrscheinlich die Insertion von vier
Basenpaaren im Sequenzabschnitt von -1981 bis –1940, also im Mesophyllspezifitätselement 1,
die wohl eine neue Bindestelle für einen Transkriptionsfaktor bildet und so Ursache für die mesophyllspezifische Expression des Gens ist. Vermutlich hat es weitere Veränderungen im a- und
b- oder im c-Abschnitt des distalen Bereichs gegeben. Auch im proximalen Promotorbereich
muss es zu Veränderungen gekommen sein. Mögliche Kandidaten sind hier die Bindstellen für
ein Zinkfinger-Homöoboxprotein und das GT-1-Motiv.

Abbildung 4.4.: Ein Modell für den *ppcA*-Promotor aus *F. trinervia*. Sequenzbereiche und mögliche *cis*-regulatorische Elemente die eine Bedeutung für die C_4 -spezifische Expression des Gens haben sind gekennzeichnet.

Die Identifizierung möglicher *cis*-regulatorischer Elemente durch Sequenzvergleiche ist natürlich nur dann sinnvoll und möglich wenn die Expression aller betrachten *Flaveria-ppcA*-Gene durch dieselben Mechanismen gesteuert wird, wenn also zum Beispiel die gleichen Transkriptionsfaktoren beteiligt sind. Dies scheint zum Beispiel bei den Genen der NADP-abhängigen-Malatenzyme aus *F. trinervia* und *F. bidentis* nicht der Fall zu sein. Bei dem *F. bidentis*-Gen sind für eine C₄-spezifische Expression sowohl der 5'-flankierenden Bereich als auch Teile des 3'-untranslatierten Bereichs notwendig (Marshall et al. 1997; Ali & Taylor 2001). Beim *F. trinervia*-Gen ist bereits der 5'-flankierende Bereich für eine C₄-spezifische Expression ausreichend (Lai et al. 2002a; 2002b). Es ist aber sehr wahrscheinlich, dass die Expression der *Flaveria*-PEP-Carboxylase-Gene über die gleichen Mechanismen gesteuert wird. Reportergenexperimente haben gezeigt, dass die nötigen *trans*-regulatorischen Faktoren offenbar schon in der C₃-Pflanze Tabak vorhanden sind (Stockhaus et al. 1994). Auch verhält sich das Reportergenkonstrukt ppcA-Ft-PR-C4-DR-a in *F. trinervia* genauso wie in *F. bidentis*.

4.2. Die Transformation von Flaveria mit der "floral Dip"-Methode

Flaveria bidentis wird im Allgemeinen nach der Methode von Chitty et al. transformiert (Chitty et al. 1994). Diese Methode ist sehr aufwändig und verlangt eine große Erfahrung des Experimentators. Es sollte daher versucht werden, *F. bidentis* mit *in planta* Transformationsmethoden zu transformieren. Da sich bei früheren Versuchen gezeigt hatte, dass die Vakuuminfiltration blühender *Flaveria*-Pflanzen nicht praktikabel ist (persönliche Mitteilung U. Schlue und J. Stockhaus), wurde die "floral Dip"-Methode nach Clough und Bent angewendet (Clough & Bent 1998). Diese Methode hat sich für *Arabidopsis thaliana* bewährt und ist für die Transformation dieser Pflanze inzwischen die Methode der Wahl (Hansen & Wright 1999; Bent 2000). Leider funktionieren die *in plant*a Transformationsmethoden bis jetzt nur bei *A. thaliana* und *Medicago truncatula* aber nicht bei anderen Pflanzen transformiert Methoden Dis 2000).

Da in unserem Institut Gene der Art *F. trinervia* intensiv untersucht werden, sollte versucht werden, mit der "floral Dip"-Methode auch *F. trinervia* zu transformieren. Die Transformation von *F. trinervia* mit der Methode von Chitty et al. oder mit anderen konventionellen Methoden wie der von Horsch (Horsch et al. 1985) ist bis jetzt nicht gelungen (persönliche Mitteilung U. Schlue).

Bei Versuchen mit 153 *F. bidentis*-Pflanzen wurden über 80000 Samen geerntet und untersucht. Dabei konnten keine transgenen Pflanzen gefunden werden. Bei den Versuchen mit *F. trinervia* wurden bei zehn Versuchen insgesamt 679 Pflanzen behandelt und etwa 399000 Samen geerntet und untersucht. Dabei konnten neun transgene Pflanzen isoliert werden, die bei fünf unabhängigen Versuchen erzeugt wurden. Es konnte gezeigt werden, dass transgene Pflanzen die bei einem Versuch transformiert wurden, das Transgen jeweils durch unabhängige Transformationsereignisse aufgenommen haben. Es ist somit zum ersten Mal gelungen, transgene *F. trinervia*-Pflanzen zu erzeugen. *F. trinervia* konnte mit dieser Methode mit den binären Pflanzentransformationsvektoren pBI121 und pCB302 transformiert werden. Die Methode scheint also nicht auf bestimmte Vektoren beschränkt zu sein. Die Selektion mit dem Kanamycin- oder dem Basta-Resistenzgen stellten kein größeres Problem dar, wobei die Selektion mit dem Basta-Resistenzgen effizienter und bequemer war, da sie keine Gewebekultur-Arbeiten benötigt.

Die Transformationseffizienz ist mit ca. 0,002% sehr gering und etwa fünfhundertmal niedriger als bei *A. thaliana*. Bei *M. truncatula* wurden sogar noch höhere Transformationsraten zwischen 2,9 und 76 % erreicht. Allerdings waren hier die Transformationen in einem Experiment zum größten Teil nicht unabhängig, viele Transformanden waren das Produkt desselben T-DNA Integrationsereignisses (Trieu et al. 2000). Wenn nur unabhängige Transformationsereignisse gezählt werden, ergibt sich nach den Daten von Trieu et al. eine Transformationsrate von 2,4 bis 17,5 %.

Die Transformationseffizienz für F. trinervia lässt sich sicherlich noch steigern. Mögliche Angriffspunkte wären hier der verwendete Agrobakterium-Stamm, die Agrobakteriendichte in der "Dip"-Lösung, die Wachstumsbedingungen der Agrobakterien oder die verwendete Detergenzkonzentration. Die meisten dieser Parameter wurden bei Versuchen mit A. thaliana variiert, ohne die Transformationseffizienz deutlich zu beeinflussen (Clough & Bent 1998). Aber bei Flaveria könnten sich durchaus positive Effekt zeigen. Vielversprechender scheint es aber zu sein, den Zeitpunkt zu optimieren zu dem die blühenden Pflanzen mit der Agrobakterienlösung behandelt werden. Die Agrobakterien scheinen die weiblichen Keimzellen transformieren zu müssen damit es zu einer erfolgreichen Transformation kommt (Desfeux et al. 2000), sie müssen daher die Samenanlagen erreichen. Dies ist in Arabidopsis nur bis etwa drei Tage vor der Blütenentfaltung möglich (Bent 2000). Arabidopsis wird daher nur erfolgreich transformiert, wenn die Agrobakterienbehandlung vier bis sechs Tage vor der Blütenentfaltung durchgeführt wird. In Flaveria ist wenig über die Blütenentwicklung bekannt. Es scheint jedoch lohnend zu sein, verschiedene Entwicklungsstadien auszuprobieren. Bei den bisher durchgeführten Experimenten zeigte sich bereits eine gewisse Tendenz. Es konnten nur transgene Pflanzen erzeugt werden, wenn die behandelten Pflanzen eine große Anzahl von knospigen Blüten aufwiesen. Allerdings sind noch weitere Experimente notwendig, um dies zu bestätigen.

77

Aufgrund der beobachteten niedrigen Transformationseffizienz ist es nicht auszuschließen, dass die Versuche zur Transformation von *F. bidentis* zu früh beendet wurden. Es wären weitere Versuche nötig um auszuschließen, dass *F. bidentis* mit der "floral Dip"-Methode zu transformieren ist. Nach den Erfahrungen mit der Transformation von *F. trinervia* lässt sich sagen, dass die Transformation von *F. bidentis* mit der "floral Dip"-Methode gegenüber der Methode von Chitty et al. einen Fortschritt darstellen würde. Die Zeit, die man braucht, um mit beiden Methoden transgene Pflanzen herzustellen, ist mit 8 bis 12 Monaten vergleichbar. Der Arbeitsaufwand ist aber bei der "floral Dip"-Methode wesentlich geringer, insbesondere dann, wenn man eine Selektion mit dem Herbizid Glufosinat durchführen, und so auf Gewebekultur-Arbeiten verzichten kann. Außerdem verlangt die "floral Dip"-Methode vom Experimentator keine besondere Erfahrung. Zu bedenken ist allerdings, dass *Flaveria* wesentlich größer ist als *Arabidopsis*. Daher ist der Platzbedarf in einem S1-Gewächshaus für die Durchführung von "floral Dip"-Experimenten mit *Flaveria* vergleichsweise hoch.

4.3. Die Evolution der PEP-Carboxylase in der Gattung Alternanthera

Die Veränderungen in PEP-Carboxylase-Genen im Zuge der C4-Evolution sind am besten in der dikotylen Gattung Flaveria und in den monokotylen Arten Mais und Sorghum bicolor untersucht. Um zu überprüfen, ob die Erkenntnisse, die in der Gattung Flaveria (Asteraceae) über die Evolution der PEP-Carboxylase gewonnen werden konnten, für andere dikotyle Gattungen, in denen sich die C₄-Photosynthese unabhängig entwickelt hat, zu verallgemeinern sind, wurde begonnen, die PEP-Carboxylase-Evolution in der Gattung Alternanthera (Amaranthaceae) zu analysieren. Flaveria-C₄-Pflanzen gehören zum NADP-Malatenzym-Typ, während sich in der Gattung Alternanthera nur C₄-Pflanzen des NAD-Malatenzym-Typs finden. Man kann also davon ausgehen, dass sich die C₄-Photosynthese in den beiden Gattungen unabhängig voneinander entwickelte. Dies zeigt sich auch bei Vergleichen der Flaveria und Alternanthera-PEP-Carboxylase-Sequenzen mit Sequenzen anderer pflanzlicher PEP-Carboxylasen. Bei diesen Vergleichen gruppieren die C4-PEP-Carboxylasen aus den beiden Gattungen nicht zusammen, sondern mit den anderen PEP-Carboxylasen aus der jeweiligen Gattung (Gowik 1999; Bläsing 2001). Es wurden PEP-Carboxylase cDNAs aus der C₄-Pflanze A. pungens, aus der C₃/C₄intermediären Pflanze A. tenella und aus der C₃-Pflanze A. sessilis isoliert und vergleichend analysiert. Um mehr über die PEP-Carboxylase-Genfamilie und deren Evolution zu erfahren wurden die 3'-flankierenden Bereiche von PEP-Carboxylase-Genen aus A. pungens und A. sessilis isoliert und für phylogenetische Analysen benutzt.

4.3.1. Struktur und enzymatische Eigenschaften der *ppcA*-PEP-Carboxylasen in *Alter*nanthera

Die aus den isolierten cDNAs aus A. *pungens*, A. *tenella* und A. *sessilis* abgeleiteten Proteinsequenzen weisen alle Sequenzmotive auf, die typisch für pflanzliche PEP-Carboxylasen sind. Aufgrund der großen Sequenzähnlichkeit (95% im kodierenden Bereich) wurden die drei cDNAs der gleichen Genklasse zugeordnet, die als *ppcA*-Klasse bezeichnet wurde. Dies scheint gerechtfertigt, da auch die PEP-Carboxylasen einer Genklasse in *Flaveria* vergleichbare Ähnlichkeiten im kodierenden Bereich zeigen (*ppcA F. trinervia / ppcA F. pringlei* Übereinstimmung: 95%).

Die cDNAs wurden benutzt, um rekombinantes Protein zu erzeugen und die kinetischen Eigenschaften der *Alternanthera*-PEP-Carboxylasen zu untersuchen. Die Proteine aus *A. tenella* und *A. sessilis* haben sehr ähnliche kinetische Eigenschaften. Sie verhalten sich beide wie nichtphotosynthetische PEP-Carboxylasen. Dies zeigt sich durch eine vergleichsweise niedrige Bindekonstante für das Substrat PEP und eine nur geringe Beeinflussbarkeit durch den Aktivator Glukose-6-Phosphat. Das Protein aus *A. pungens* verhält sich hingegen wie eine typische photosynthetische C₄-PEP-Carboxylase. Der K_{0.5}-Wert für PEP ist vergleichsweise hoch und durch Glukose-6-Phosphat lässt sich das Enzym stark aktivieren. Die Substratbindekonstante für PEP ist zwar verglichen mit der *ppcA*-PEP-Carboxylase aus *F. trinervia* etwas geringer, 157 μ M gegenüber 278 μ M (Bläsing et al. 2000), aber sie ist deutlich höher als bei nichtphotosynthetischen PEP-Carboxylasen aus C₃-Arten (*A. sessilis-ppcA*: 36 μ M; *F. pringlei-ppcA*: 29 μ M (Bläsing et al. 2000)). Die Aktivierung durch Glukose-6-Phosphat ist dagegen größer als bei dem *F. trinervia*-Enzym. Der K_{0.5}-Wert für PEP wird in Gegenwart von Glucose-6-Phosphat auf ein Achtel des ursprünglichen Wertes gesenkt. Das *F. trinervia*-Enzym wird durch Glucose-6-Phosphat nur fünffach aktiviert (Bläsing et al. 2000).

Für die *Flaveria-ppcA*-PEP-Carboxylasen konnte gezeigt werden, dass es zwei Determinanten gibt, die hauptsächlich für die C₄-typischen kinetischen Eigenschaften der photosynthetischen Enzyme verantwortlich sind. Zum einen ist dies die Aminosäure 774 und zum anderen die Aminosäuren 296 bis 437 (Bläsing et al. 2000; Engelmann et al. 2002). Aminosäure 774 ist Teil eines konservierten Elements in allen PEP-Carboxylasen. In der C₄-PEP-Carboxylase aus *F. trinervia* ist Aminosäure 774 ein Serin. In der Sequenz der C₃-PEP-Carboxylase aus *F. pringlei* findet sich an dieser Stelle an Alanin. Hierbei scheint es sich um den einzigen allgemeinen C₄-spezifischen Aminosäureaustausch zu handeln. Alle bis jetzt bekannten C₄-PEP-Carboxylasen weisen an dieser Position ein Serin auf, alle anderen ein Alanin. Dieser Aminosäureaustausch bewirkt den deutlich veränderten K_{0.5}-Wert für das Substrat PEP. Die Sequenz der C₄-PEP-Carboxylase aus

A. pungens zeigt an der equivalenten Position (Aminosäure 775) ein Serin. Bei den PEP-Carboxylasen aus A. tenella und A. sessilis, die C_3 -typische kinetische Eigenschaften aufweisen, ist Aminosäure 775 ein Alanin. Die hier untersuchten Alternanthera-PEP-Carboxylasen zeigen also auch den C_4 -spezifischen Alanin-Serin-Austausch im C-Terminus des Enzyms. Dies ist ein weiterer Beleg für die Hypothese, dass dieser Aminosäureaustausch für die Entwicklung der C_4 spezifischen Enzymeigenschaften zwingend ist.

Abbildung 4.5.: Vergleich der Aminosäuren 297 bis 438 der *ppcA*-PEP-Carboxylasen aus *A. pungens* und *A. sessilis* mit den Aminosäuren 296 bis 437 der *ppcA*-PEP-Carboxylasen aus *F. trinervia* und *F. pringlei*. Identische Aminosäuren sind durch Sternchen gekennzeichnet. Unterschiede zwischen den *Flaveria*-Sequenzen sind grau, zwischen den *Alternanthera*-Sequenzen gelb hinterlegt. Die Positionen der Helices sind aus der dreidimensionalen Struktur der *E. coli*-PEP-Carboxylase abgeleitet (Kai et al. 1999). Der grüne Balken markiert einen Bereich, der nur in pflanzlichen PEP-Carboxylasen und nicht im *E. coli* Enzym vorkommt.

In der eher aminoterminalen Region von Aminosäure 296 bis 437 unterscheiden sich die *Fla-veria*-Enzyme in 13 Aminosäuren. Die Unterschiede in diesem Bereich bewirken die unterschiedliche Empfindlichkeit der Enzyme gegenüber dem Aktivator Glucose-6-Phosphat (Engelmann et al. 2002). Die Enzyme aus *A. pungens* und *A. sessilis* unterscheiden sich in diesem Bereich (es sind hier die Aminosäuren 297 bis 438) in 8 Positionen. Einen Sequenzvergleich dieser Enzymregion aus den *ppcA*-PEP-Carboxylasen aus *A. pungens*, *A. sessilis*, *F. trinervia* und *F. pringlei* stellt Abbildung 4.5. dar.

Leider zeigen die *Alternanthera*- und die *Flaveria*-Enzyme in diesem Bereich eine relativ geringe Ähnlichkeit. Die Sequenz-Identität beträgt hier etwa 70 %, während die Sequenz-Identität zwischen den gesamten *Flaveria*- und *Alternanthera*-Proteinen bei über 80 % liegt. Durch den

80

Vergleich der beiden Paare von sehr ähnlichen C_3 - und C_4 -PEP-Carboxylasen konnten in dieser Enzymregion keine C_4 -spezifischen Aminosäuren identifiziert werden. Es gibt zwar drei Positionen, 347/348, 362/363 und 391/392, in denen in beiden Enzympaaren ein Aminosäureaustausch stattgefunden hat, aber in diesen Positionen zeigen sich in allen vier Enzymen jeweils unterschiedliche Aminosäuren. Auch zeigen die ausgetauschten Aminosäuren nicht die gleichen physikalischen Eigenschaften. Engelmann et al. (2002) hielten das gehäufte Auftreten von Aminosäureaustauschen rund um die Helix 13 für auffällig und bedeutsam. In den *Flaveria*-Enzymen liegen 8 der 13 Aminosäure-Substitutionen vor, hinter oder im C-terminalen Teil dieser Helix. Auch in den *Alternanthera*-Enzymen finden sich in diesem Bereich vier der acht Austausche, einer vor, zwei hinter und einer in der Helix 13. Es lassen sich also in diesem Enzymbereich, der erwiesenermaßen entscheidend zu den C_4 -typischen kinetischen Eigenschaften beiträgt, keine C_4 -spezifischen Aminosäuren finden. Die veränderte Empfindlichkeit der C_4 -Enzyme gegenüber Glukose-6-phosphat sind also in *Flaveria* und *Alternanthera* auf unterschiedliche Weise realisiert worden.

4.2.2. Existiert eine PEP-Carboxylase mit C_3/C_4 -intermediären Eigenschaften in Alternanthera tenella?

Die ppcA-PEP-Carboxylase AtenppcA aus der C₃/C₄-intermediären Art A. tenella hat keine C_3/C_4 -intermediären Eigenschaften. Die kinetischen Eigenschaften dieses Enzyms sind typisch für nicht-photosynthetische PEP-Carboxylasen. Auch die Sequenz der A.!tenella-PEP-Carboxylase zeigt eine größere Ähnlichkeit zur Sequenz der PEP-Carboxylase aus der C₃-Pflanze A. sessilis als zu der Sequenz der C₄-PEP-Carboxylase aus A. pungens. Da festgestellt wurde, dass es wahrscheinlich mehr als ein ppcA-Gen in A. tenella gibt, stellt sich die Frage, ob ein anderes *ppcA*-Gen aus *A. tenella* C_3/C_4 -intermediäre Eigenschaften zeigt. Chinthapalli et al. isolierten ein PEP-Carboxylase-Enzym aus Blättern von A. tenella, welches einen deutlich höheren $K_{0.5}$ -Wert für PEP aufwies als die PEP-Carboxylase aus A. sessilis (Chinthapalli et al. 2000). Allerdings wurden für diese Arbeit die PEP-Carboxylasen nicht vollständig gereinigt. Es ist also nicht auszuschließen, dass noch andere Pflanzenproteine vorhanden waren, die die Messungen der kinetischen Eigenschaften beeinflusst haben. Dafür spricht auch, dass der PEP-Carboxylase-Transkriptspiegel in den Blättern von A. tenella auf C₃-Niveau ist (Gowik 1999). In der Gattung Flaveria hat sich gezeigt, dass sich veränderte kinetische Eigenschaften und erhöhte Expression der PEP-Carboxylase-Gene offenbar parallel entwickelten. So weist die eher C_3 -artige C_3/C_4 intermediäre Pflanze Flaveria pubescens, verglichen mit C₃-Pflanzen der Gattung Flaveria, eine deutlich erhöhte PEP-Carboxylase-Expression in den Blättern auf. Die aus dieser Pflanze isolierte *ppcA*-PEP-Carboxylase hat C_3/C_4 -intermediäre Eigenschaften (Engelmann 2001). In früheren Arbeiten (Rajendrudu et al. 1986; Devi et al. 1995) wurde gezeigt, dass *A. tenella* einen niedrigen CO₂-Kompensationspunkt, der zwischen den CO₂-Kompensationspunkten reiner C₃- und reiner C₄-Pflanzen liegt, ausschließlich durch eine Verlagerung der Glycin-Decarboxylase-Aktivität in die Bündelscheidenzellen erreicht. Dies wird allgemein als erster Schritt bei der Entwicklung der C₄-Photosynthese angesehen (Monson 1999). Es ist also eher unwahrscheinlich, dass *A. tenella* über eine PEP-Carboxylase mit C₃/C₄-intermediären Eigenschaften verfügt.

4.2.3. Evolution der PEP-Carboxylase-Genfamilie in Alternanthera

In A. sessilis und A. pungens konnten jeweils drei PEP-Carboxylase-Genklassen nachgewiesen werden, die durch die Isolierung und Sequenzierung der 3'-flankierenden Regionen der entsprechenden Gene identifiziert wurden. Dabei zeigen die Sequenzen der Gene einer Genklasse, die aber aus unterschiedlichen Arten stammten, eine höhere Ähnlichkeit zueinander, als die Sequenzen von Genen, die aus einer Art aber aus unterschiedlichen Klassen stammten. Dies bedeutet, dass die drei Genklassen bereits im letzten gemeinsamen Vorfahren von A. pungens und A. sessilis existierten. In A. pungens konnten zwei unterschiedliche Sequenzen für die ppcA-Klasse isoliert werden, die eine höhere Ähnlichkeit zueinander aufweisen als zu der 3'untranslatierten Region des ppcA-Gens aus A. sessilis. Aus A. sessilis konnte nur eine ppcA-Sequenz isoliert werden. Dies deutet daraufhin, dass die ppcA-Genklasse in A. sessilis durch ein Einzelgen, in A. pungens aber durch mindestens zwei Isogene repräsentiert ist. Dies stimmt gut mit den Ergebnissen der genomischen Southern-Analyse überein. Auch hier zeigte sich, dass es sich bei dem ppcA-Gen in A. sessilis um ein Einzelgen handelt, während im Genom von A. pungens mehr als ein ppcA-Gen existiert. Die Southern-Analyse bestätigte außerdem die Existenz weiterer PEP-Carboxylase-Gene neben den ppcA-Genen. Dies war zu erwarten, da bei allen bis jetzt untersuchten Pflanzen drei PEP-Carboxylase-Genklassen gefunden wurden (Cretin et al. 1991; Hermans & Westhoff 1992; Dong et al. 1998). In A. tenella konnten durch die Southern-Analyse, wie in A. pungens, mehrere ppcA-Gene und außerdem weitere PEP-Carboxylase-Gene nachgewiesen werden. Ein Vergleich der 3'-untranslatierten Bereiche der untersuchten PEP-Carboxylase cDNAs aus A. pungens, A. tenella und A. sessilis mit den andern 3'-flankierenden Regionen von PEP-Carboxylase-Genen aus A. sessilis und A. pungens ergab, dass die untersuchten cDNAs alle von Genen der ppcA-Klasse kodiert werden, also ortholog sind. Der 3'untranslatierte Bereich der A. tenella-cDNA zeigt ein größere Ähnlichkeit zu den entsprechenden Sequenzen der A. pungens-Gene als zu dem entsprechenden Bereich des A. sessilis-Gens.

Abbildung 4.6.: Ein Modell für die phylogenetische Entwicklung der PEP-Carboxylase-Genfamilie in der Gattung Alternanthera. C₄-*ppcA*-Gene sind fett gedruckt.

Die vorhandenen Daten sprechen für das folgende evolutionäre Szenario: Die drei Genklassen waren bereits im letzten gemeinsamen Vorfahren aller drei Alternanthera-Arten vorhanden. Im Zuge der Evolution spaltete sich die Linie, die zur Entstehung der Art A. sessilis führte, von der Linie, die zur Entstehung der Arten A. pungens und A. tenella führte, ab. In einer Vorläuferart von A. pungens und A. tenella kam es zu einer Duplikation des ppcA-Gens. Eines oder beide ppcA-Gene wurden dann in der C₄-Pflanze A. pungens an die Bedürfnisse des C₄-Stoffwechsels angepasst. Die ppcA-Gene in A. tenella behielten dagegen ihre ursprüngliche C₃-Funktionalität. Ein Modell für diesen evolutionären Ablauf zeigt Abbildung 4.6. Dieser Ablauf entspricht der phylogenetischen Entwicklung der ppcA-Genfamilie in der Gattung Flaveria. Auch in Flaveria waren in den letzten gemeinsamen Vorfahren der heute existierenden Arten drei PEP-Carboxylase-Genklassen vorhanden. Im Verlauf der Entwicklung der C4-Photosynthese wurden das ppcA-Gen an die Bedürfnisse dieses Stoffwechselwegs angepasst (Bläsing et al. 2002). Die im Alternanthera-System gewonnen Erkenntnisse stimmen also weitgehend mit dem überein, was über die PEP-Carboxylase-Evolution in der Gattung Flaveria bekannt ist. Es wäre jetzt natürlich noch interessant, die Veränderungen der cis-regulatorischen Elemente der Alternanthera-PEP-Carboxylase-Gene zu untersuchen, um zu überprüfen ob es auch hier Parallelen zur Entwicklung!in!Flaveria!gibt.

5. Zusammenfassung

 C_4 -Pflanzen haben sich aus C_3 -Pflanzen entwickelt. Im Verlauf der Evolution zur C_4 -Photosynthese wurden die kinetischen Eigenschaften der beteiligten Enzyme und die Expressionsmuster der sie kodierenden Gene verändert. Eines der Schlüsselenzyme der C_4 -Photosynthese ist die Phospho*enol*pyruvat-Carboxylase. Die Expression der PEP-Carboxylase-Gene ist in den Blättern von C_4 -Pflanzen deutlich höher als in den Blättern von C_3 -Pflanzen und auf die Mesophyllzellen beschränkt. Diese strikte Kompartimentierung ist für die effiziente Funktion der C_4 -Photosyntehese entscheidend. Typisch für die C_4 -PEP-Carboxylasen ist eine, verglichen mit nicht-photosynthetischen PEP-Carboxylasen, erhöhte Bindekonstante für das Substrat PEP und eine erhöhte Empfindlichkeit gegenüber dem Aktivator Glucose-6-Phosphat.

Im Rahmen dieser Arbeit wurden die molekularen Veränderungen untersucht, die zu den C_4 typischen Eigenschaften der C_4 -PEP-Carboxylasen in den Gattungen *Flaveria* und *Alternanthera* geführt haben. In beiden Gattungen existieren neben C_3 - auch C_4 - und C_3/C_4 -intermediäre Pflanzen, daher war eine vergleichende Analyse von orthologen Genen aus Pflanzen mit unterschiedlichen photosynthetischen Eigenschaften möglich.

Im distalen Bereich der 5'-flankierenden Region des C₄-PEP-Carboxylase-Gens aus *Flaveria trinervia* (C₄) konnte ein 41bp-Fragment identifiziert werden, dass für die mesophyllspezifische Expression des Gens verantwortlich ist. Ein Vergleich dieses Bereichs mit den entsprechenden Bereichen aus den orthologen PEP-Carboxylase-Genen aus *F. bidentis* (C₄), *F. vaginata* (C₄ähnlich) und *F. pringlei* (C₃) ergab, dass sich in den Promotoren aus den C₄- und C₄-ähnlichen Pflanzen eine Insertion von vier Basenpaaren findet, die im C₃-Gen aus *F. pringlei* fehlt. Durch diese Insertion wird damit wahrscheinlich ein *cis*-regulatorisches Element gebildet, das für die mesophyllspezifische Expression der C₄-PEP-Carboxylase-Gene in *Flaveria* verantwortlich ist.

Bei Versuchen die "floral Dip"-Methode zur Transformation von *F. bidentis* und *F. trinervia* zu etablieren konnten keine transgenen *F. bidentis* wohl aber transgene *F. trinervia*-Pflanzen hergestellt werden. Es ist somit zum ersten Mal gelungen *F. trinervia* zu transformieren.

Durch die Analyse von rekombinanten PEP-Carboxylase-Proteinen aus Alternanthera pungens (C₄), A. tenella (C₃/C₄) und A. sessilis (C₃) konnte die Bedeutung eines Alanin zu Serin Austauschs, in der C-terminalen Region des Enzyms, für die C₄-typischen PEP-Carboxylase-Eigenschaften bestätigt werden. Durch weitere Untersuchungen konnte die Existenz einer PEP-Carboxylase-Genfamilie mit drei Genklassen in Alternanthera nachgewiesen werden. Es stellte sich außerdem heraus, dass die untersuchten PEP-Carboxylase-Proteine von Genen der gleichen Genklasse, also orthologen Genen, kodiert werden.

6. Literatur

Akyildiz, M. (2002). Isolierung *trans*-regulatorischer Faktoren des C4-Phospho*enol*pyruvat-Carboxylase-Gens aus *Flaveria trinervia*. Diplomarbeit Heinrich-Heine Universität Düsseldorf

Ali, S. and Taylor, W. C. (2001). Quantitative regulation of the *Flaveria Me1* gene is controlled by the 3'-untranslated region and sequences near the amino terminus. Plant Molecular Biology 46: 251-261.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J. H., Zhang, Z., Miller, W. and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389-3402.

Andrews, C. J. and Lorimer, G. H. (1987). Rubisco: Structure, mechanisms and prospects for improvement. The Biochemistry of plants, Aufl 10: Photosynthesis. M. D. Hatch and N. K. Boardman. San Diego, Academic Press: 131-218.

Arguello-Astorga, G. R. and Herrera-Estrella, L. R. (1996). Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction. Plant Physiol 112(3): 1151-66.

Arndt, K. and Fink, G. R. (1986). GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5' TGACTC 3' sequences. Proc Natl Acad Sci U S A 83(22): 8516-20.

Bakrim, N., Prioul, J.-L., Deleens, E., Rocher, J.-P., Arrio-Dupont, M., Vidal, J., Gadal, P. and Chollet, R. (1993). Regulatory phosphorylation of C_4 phospho*enol*pyruvate carboxylase. A cardinal event influencing the photosynthesis rate in *Sorghum* and maize. Plant Physiology 101: 891-897.

Bandurski, R. S. and Greiner, C. M. (1953). The enzymatic synthesis of oxaloacetate from phosphoryl-enolpyruvate and carbon dioxide. J Biol Chem 204: 781-786.

Bauwe, H. and Chollet, R. (1986). Kinetic properties of phosphoenolpyruvate carboxylase from C_3 , C_4 , and C_3 - C_4 intermediate species of *Flaveria* (Asteraceae). Plant Physiology 82: 695-699.

Bechtold, N., Ellis, J. and Pelletier, G. (1993). *In planta Agrobacterium* mediated gene transfer by infiltration of adult *Arabidopsis thaliana* plants. Comptes Rendus de 1*AcadÄmie des Sciences Serie III-Science de la vie-Life Sciences 316: 1194-1199.

Bechtold, N., Jaudeau, B., Jolivet, S., Maba, B., Vezon, D., Voisin, R. and Pelletier, G. (2000). The maternal chromosome set is the target of the T-DNA in the *in planta* transformation of *Arabidopsis thaliana*. Genetics 155: 1875-1887.

Bechtold, N. and Pelletier, G. (1998). In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82: 259-66.

Benham, C., Kohwi-Shigematsu, T. and Bode, J. (1997). Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions. J Mol Biol 274(2): 181-96.

Bent, A. F. (2000). Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiology 124: 1540-1547.

Benton, W. D. and Davies, R. W. (1977). Screening lambda gt recombinant clones by hybridization to single plaques in situ. Science 196: 180-182.

Birnboim, H. C. and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7(6): 1513-23.

Bläsing, O. E. (2001). Evolution der enzymatischen und regulatorischen Eigenschaften der C4-Phosphoenolpyruvat-Carboxylase im Genus *Flaveria*. Doktorarbeit Heinrich-Heine Universität Düsseldorf

Bläsing, O. E., Ernst, K., Streubel, M., Westhoff, P. and Svensson, P. (2002). The non-photosynthetic phosphoenolpyruvate carboxylases of the C4 dicot Flaveria trinervia - implications for the evolution of C4 photosynthesis. Planta 215(3): 448-56.

Bläsing, O. E., Westhoff, P. and Svensson, P. (2000). Evolution of C4 phosphoenolpyruvate carboxylase in *Flaveria*, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J Biol Chem 275: 27917-27923.

Bowes, G. (1993). Facing the inevitable: Plants and increasing atmospheric CO₂. Annu Rev Plant Physiol Plant Mol Biol 44: 309-332.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.

Brown, R. H. and Byrd, G. T. (1993). Estimation of bundle sheath cell conductance in C_4 species and O_2 insensitivity of photosynthesis. Plant Physiology 103: 1183-1188.

Brown, W. V. (1975). Variations in anatomy, associations, and origins of Kranz tissue. Amer.J.Bot. 62: 395-402.

Burscheidt, J. (1998). *Cis*-regulatorische Determinanten für mesophyll- und bündelscheidenspezifische Genexpression in C4-Spezies der Gattung *Flaveria* - Die Promotoren der Phosphoenolpyruvat-Carboxylase und der Glycin-Decarboxylase. Doktorarbeit Heinrich-Heine Universität Düsseldorf

Cerling, T. E. (1999). Paleorecords of C4 plants and ecosystems. C4 Plant Biology. R. F. Sage and R. K. Monson. San Diego, Academic Press: 445-469.

Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V. and Ehleringer, J. R. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153-158.

Cerling, T. E., Wang, Y. and Quade, J. (1993). Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361: 344-345.

Chan, C. S., Guo, L. and Shih, M. C. (2001). Promoter analysis of the nuclear gene encoding the chloroplast glyceraldehyde-3-phosphate dehydrogenase B subunit of Arabidopsis thaliana. Plant Mol Biol 46(2): 131-41.

Chang, S. S., Park, S. K., Kim, B. C., Kang, B. J., Kim, D. U. and Nam, H. G. (1994). Stable genetic transformation of *Arabidopsis thaliana* by *Agrobacterium* inoculation *in planta*. Plant Journal 5: 551-558.

Chinthapalli, B., Raghavan, C., Bläsing, O. E., Westhoff, P. and Raghavendra, A. S. (2000). Phosphoenolpyruvate carboxylase purified fron leaves of C3, C4, and C3-C4 intermediate species of Alternanthera: Properties at limiting and saturating bicarbonate. Photosynthetica 38(3): 415-419.

Chitty, J. A., Furbank, R. T., Marshall, J. S., Chen, Z. and Taylor, W. C. (1994). Genetic transformation of the C_4 plant, *Flaveria bidentis*. Plant Journal 6: 949-956.

Chollet, R., Vidal, J. and O'Leary, M. H. (1996). Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 273-298.

Church, G. M. and Gilbert, W. (1984). Genomic sequencing. Proc Natl Acad Sci USA 81: 1991-1995.

Clough, S. J. and Bent, A. F. (1998). Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. Plant Journal 16: 735-743.

Cretin, C., Santi, S., Keryer, E., Lepiniec, L., Tagu, D., Vidal, J. and Gadal, P. (1991). The phosphoenolpyruvate carboxylase gene family of Sorghum: promoter structures, amino acid sequences and expression of genes. Gene 99(1): 87-94.

Degen, S. J., Rajput, B. and Reich, E. (1986). The human tissue plasminogen activator gene. J Biol Chem 261(15): 6972-85.

Desfeux, C., Clough, S. J. and Bent, A. F. (2000). Female reproductive tissues are the primary target of *Agrobacterium*-mediated transformation by the Arabidopsis floral-dip method. Plant Physiology 123: 895-904.

Devi, M. T., Rajagopalan, A. V. and Raghavendra, A. S. (1995). Predominant localization of mitochondria enriched with glycine-decarboxylating enzymes in bundle sheath cells of *Alternanthera tenella*, a C_3 - C_4 intermediate species. Plant Cell and Environment 18: 589-594.

Dickinson, W. J. (1988). On the architecture of regulatory systems: evolutionary insights and implications. Bioessays 8(6): 204-8.

Doebley, J. and Lukens, L. (1998). Transcriptional regulators and the evolution of plant form. Plant Cell 10: 1075-1082.

Doebley, J., Stec, A. and Gustus, C. (1995). *teosinte branched1* and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 141: 333-346.

Dong LY, M. T., Kawamura T, Hata S, Izui K (1998). Cloning, expression, and characterization of a root-form phosphoenolpyruvate carboxylase from Zea mays: comparison with the C4-form enzyme. Plant Cell Physiol 39(8): 865-73.

Duff, S. M. G. and Chollet, R. (1995). In vivo regulation of wheat-leaf phospho*enol*pyruvate carboxylase by reversible phosphorylation. Plant Physiology 107: 775-782.

Edwards, G. E. and Ku, M. S. B. (1987). Biochemistry of C_3 - C_4 intermediates. The Biochemistry of Plants, Vol. 10. M. D. Hatch and N. K. Boardman. New York, Academic Press, Inc.: 275-325.

Edwards, K., Johnstone, C. and Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19(6): 1349.

Ehleringer, J. R., Cerling, T. E. and Helliker, B. R. (1997). C_4 photosynthesis, atmospheric CO_2 , and climate. Oecologia 112: 285-299.

Ehleringer, J. R. and Monson, R. K. (1993). Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24: 411-439.

Ehleringer, J. R., Sage, R. F., Flanagan, L. B. and Pearcy, R. W. (1991). Climate change and the evolution of C_4 photosynthesis. Trends Ecol Evol 6: 95-99.

Engelmann, S. (2001). Biochemie der C4-Phosphoenolpyruvat-Carboxylase und ihrer C3- und C3-C4-Isoformen im Formenkreis *Flaveria*. Diplomarbeit Heinrich-Heine Universität Düsseldorf

Engelmann, S., Bläsing, O. E., Westhoff, P. and Svensson, P. (2002). Serine 774 and amino acids 296 to 437 comprise the major C4 determinants of the C4 phosphoenolpyruvate carboxylase of Flaveria trinervia. FEBS Letters 524(1-3): 1-4.

Ernst, K. and Westhoff, P. (1996). The phosphoenolpyruvate carboxylase (*ppc*) gene family of *Flaveria trinervia* (C_4) and *F. pringlei* (C_3): molecular characterization and expression analysis of the *ppcB* and *ppcC* genes. Plant Molecular Biology 34: 427-443.

Ezcurra, I., Ellerstrom, M., Wycliffe, P., Stalberg, K. and Rask, L. (1999). Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40(4): 699-709.

Ezcurra, I., Wycliffe, P., Nehlin, L., Ellerstrom, M. and Rask, L. (2000). Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J 24(1): 57-66.

Feinberg, A. P. and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132: 6-13.

Feldmann, K. A. and Marks, M. D. (1987). *Agrobacterium*-mediated transformation of germinating seeds of *Arabidopsis thaliana*: a non-tissue culture approach. Molecular & General Genetics 208: 1-9.

Goldstein, D. J., Rogers, C. and Harris, H. (1982). Evolution of alkaline phosphatases in primates. Proc Natl Acad Sci U S A 79(3): 879-83.

Gowik, U. (1999). Molekularbiologische Untersuchungen zur Phosphoenolpyruvat-Carboxylase in C4-,C3/C4- und C3-Spezies der Gattung Alternanthera. Diplomarbeit Heinrich-Heine Universität Düsseldorf

Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389: 349-352.

Haberland, G. F. (1904). Physiologische Pflanzenanatomie. Leipzig, Wilhelm Engelmann.

Hansen, G. and Wright, M. S. (1999). Recent advances in the transformation of plants. Trends Plant Sci 4: 226-231.

Harpster, M. H. and Taylor, W. C. (1986). Maize phosphoenolpyruvate carboxylase. Cloning and characterization of mRNAs encoding isozymic forms. J Biol Chem 261: 6132-6136.

Hatch, M. D. (1987). C_4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta 895: 81-106.

Hatch, M. D. (1992). C_4 photosynthesis: An unlikely process full of surprises. Plant and Cell Physiology 33: 333-342.

Hayes, J. M. (1994). Global metanothophy at the Archean-Proterozoic transition. Early Life on earth. S. Bengston. New York, Columbia University Press: 220-236.

Hermans, J. and Westhoff, P. (1990). Analysis of expression and evolutionary relationships of phosphoenolpyruvate carboxylase genes in *Flaveria trinervia* (C_4) and *F. pringlei* (C_3). Molecular & General Genetics 224: 459-468.

Hermans, J. and Westhoff, P. (1992). Homologous genes for the C_4 isoform of phosphoenolpyruvate carboxylase in a C_{3^-} and a $C_{4^-}Flaveria$ species. Molecular & General Genetics 234: 275-284.

Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1): 297-300.

Hobbs, S. L. A., Kpodar, P. and DeLong, C. M. O. (1990). The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Molecular Biology 15: 851-864.

Hobbs, S. L. A., Warkentin, T. D. and DeLong, C. M. O. (1993). Transgene copy number can be positively or negatively associated with transgene expression. Plant Molecular Biology 21: 17-26.

Holmes, D. S. and Quigley, M. (1981). A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 114: 193-197.

Holmes-Davis, R. and Comai, L. (1998). Nuclear matrix attachment regions and plant gene expression. Trends Plant Sci 3: 91-97.

Hood, E., Helmer, G. L., Fraley, R. T. and Chilton, M.-D. (1986). The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. Journal of Bacteriology 168: 1291-1301.

Horsch, R. B., Fry, F. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G. and Fraley, R. T. (1985). A simple and general method for transferring genes into plants. Science 227: 1229-1231.

Hudson, M., Ringli, C., Boylan, M. T. and Quail, P. H. (1999). The *FAR1* locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes & Development 13: 2017-2027.

Jakoby, M., Weisshaar, B., DrogeLaser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T. and Parcy, F. (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3): 106-111.

Jefferson, R. A., Kavanagh, T. A. and Bevan, M. W. (1987). GUS fusions: β -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6: 3901-3907.

Jiao, J. and Chollet, R. (1991). Posttranslational regulation of phospho*enol*pyruvate carboxylase in C_4 and Crassulacean acid metabolism plants. Plant Physiology 95: 981-985.

Kadonaga, J. T. (1998). Eukaryotic transcription: An interlaced network of transcription factors and chromatin-modifying machines. Cell 92: 307-313.

Kai, Y., Matsumura, H., Inoue, T., Terada, K., Nagara, Y., Yoshinaga, T., Kihara, A., Tsumura, K. and Izui, K. (1999). Three-dimensional structure of phosph*oenol*pyruvate carboxylase: A proposed mechanism for allosteric inhibition. Proc Natl Acad Sci USA 96: 823-828.

Kanai, R. and Edwards, G. E. (1999). The biochemistry of C4 photosynthesis. C4 Plant Biology. R. F. Sage and R. K. Monson. San Diego, Academic Press: 49-87.

Kettler, M. K. and Whitt, G. S. (1986). An apparent progressive and recurrent evolutionary restriction in tissue expression of a gene, the lactate dehydrogenase-C gene, within a family of bony fish (Salmoniformes: Umbridae). J Mol Evol 23(2): 95-107.

Khandjian, E. W. (1986). UV crosslinking of RNA to nylon membranes enhances hybridization signals. Molecular Biology Reporter 11: 107-115.

Kim, J. K., Cao, J. and Wu, R. (1992). Regulation and interaction of multiple protein factors with the proximal promoter regions of a rice high pI alpha-amylase gene. Mol Gen Genet 232(3): 383-93.

Kjaerulff, S., Dooijes, D., Clevers, H. and Nielsen, O. (1997). Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S.pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites. EMBO J 16(13): 4021-33.

Koprivova, A., Melzer, M., vonBallmoos, P., Mandel, T., Brunold, C. and Kopriva, S. (2001). Assimilatory sulfate reduction in C-3, C-3-C-4, and C-4 species of Flaveria. Plant Physiol 127(2): 543-550.

Kosugi, S., Ohashi, Y., Nakajima, K. and Arai, Y. (1990). An improved assay for β -glucuronidase in transformed cells: Methanol almost completely suppresses a putative endogenous β -glucuronidase activity. Plant Sci. 70: 133-140.

Ku, M. S. B., Kano-Murakami, Y. and Matsuoka, M. (1996). Evolution and expression of C_4 photosynthesis genes. Plant Physiology 111: 949-957.

Ku, M. S. B., Wu, J., Dai, Z., Scott, R. A., Chu, C. and Edwards, G. E. (1991). Photosynthetic and photorespiratory characteristics of *Flaveria* species. Plant Physiology 96: 518-528.

Kuribaysashi, K., Hikata, M., Hiraoka, O., Miyamato, C. and Furuichi, Y. (1988). A rapid and efficient purification of poly(A)-mRNA by oligo(dT)30-latex. Nucleic Acids Research Symposium Series(19): 61-64.

Lai, L. B., Tausta, S. L. and Nelson, T. M. (2002a). Differential regulation of transcripts encoding cytosolic NADP-malic enzyme in C3 and C4 Flaveria species. Plant Physiol 128(1): 140-149.

Lai, L. B., Wang, L. and Nelson, T. M. (2002b). Distinct but conserved functions for two chloroplastic NADP-malic enzyme isoforms in C-3 and C-4 Flaveria species. Plant Physiol 128(1): 125-139.

Lazo, G. R., Stein, P. A. and Ludwig, R. A. (1991). A DNA transformation-competent *Arabidopsis* genomic library in *Agrobacterium*. BioTechnology 9: 963-967.

Leegood, R. C. and Walker, R. P. (1999). Regulation of the C4 pathway. C4 Plant Biology. R. F. Sage and R. K. Monson. San Diego, Academic Press: 89-131.

Lefevre, C., Imagawa, M., Dana, S., Grindlay, J., Bodner, M. and Karin, M. (1987). Tissuespecific expression of the human growth hormone gene is conferred in part by the binding of a specific trans-acting factor. Embo J 6(4): 971-81.

Lepiniec, L., Keryer, E., Philippe, H., Gadal, P. and Crétin, C. (1993). *Sorghum* phosphoenolpyruvate carboxylase gene family: Structure, function and molecular evolution. Plant Molecular Biology 21: 487-502.

Lepiniec, L., Vidal, J., Chollet, R., Gadal, P. and Crétin, C. (1994). Phosphoenolpyruvate-carboxylase: Structure, regulation and evolution. Plant Sci. 99: 111-124.

Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P. and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1): 325-7.

Li, X. and Noll, M. (1994a). Compatibility between enhancers and promoters determines the transcriptional specificity of gooseberry and gooseberry neuro in the Drosophila embryo. Embo J 13(2): 400-6.

Li, X. and Noll, M. (1994b). Evolution of distinct developmental functions of three Drosophila genes by acquisition of different cis-regulatory regions. Nature 367(6458): 83-7.

Long, S. P. (1999). Environmental responses. C4 Plant Biology. R. F. Sage and R. K. Monson. San Diego, Academic Press: 215-249.

Lorimer, G. H. (1981). The carboxylation and oxygenation of ribulose1,5-bisphosphate: The primary events in photosynthesis and photoresporation. Annu Rev Plant Physiol 32: 349-383.

Marshall, J. S., Stubbs, J. D., Chitty, J. A., Surin, B. and Taylor, W. C. (1997). Expression of the C_4 *Me1* gene from *Flaveria bidentis* requires an interaction between 5' and 3' sequences. Plant Cell 9: 1515-1525.

Matsuoka, M., Kyozuka, J., Shimamoto, K. and Kano-Murakami, Y. (1994). The promoters of two carboxylases in a C_4 plant (maize) direct cell-specific, light-regulated expression in a C_3 plant (rice). Plant Journal 6: 311-319.

McMaster, G. K. and Carmichael, G. G. (1977). Analysis of single and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci USA 74: 4835-4838.

Mirkovitch, J., Gasser, S. M. and Laemmli, U. K. (1987). Relation of chromosome structure and gene expression. Philosophical Transactions of the Royal Society of London Series B - Biological Sciences B 317: 563-574.

Monson, R. K. (1989). On the evolutionary pathways resulting in C4 photosynthesis and Crassulacean acid metabolism. Adv Ecol Res 19: 57-110.

Monson, R. K. (1999). The origins of C4 genes and evolutionary pattern in the C4 metabolic phenotype. C4 Plant Biology. R. F. Sage and R. K. Monson. San Diego, Academic Press: 377-410.

Monson, R. K. and Moore, B. d. (1989). On the significance of C_3 - C_4 intermediate photosynthesis to the evolution of C_4 photosynthesis. Plant Cell and Environment 12: 689-699.

Monson, R. K., Moore, B. d., Ku, M. S. B. and Edwards, G. E. (1986). Co-function of C_3 - and C_4 -photosynthetic pathways in C_3 , C_4 and C_3 - C_4 intermediate *Flaveria* species. Planta 168: 493-502.

Muller, M. and Knudsen, S. (1993). The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J 4(2): 343-55.

Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.

Neto, G. C., Yunes, J. A., Da Silva, M. J., Vettore, A. L., Arruda, P. and Leite, A. (1995). The involvement of Opaque 2 on β -prolamin gene regulation in maize and *Coix* suggests a more general role for this transcriptional activator. Plant Molecular Biology 27: 1015-1029.

Ng, H. H. and Bird, A. (1999). DNA methylation and chromatin modification. Current Opinion in Genetics and Development 9: 158-163.

Ogren, W. L. (1984). Photorespiration: pathways, regulation, and modification. Annu Rev Plant Physiol 35: 415-442.

Onodera, Y., Suzuki, A., Wu, C. Y., Washida, H. and Takaiwa, F. (2001). A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif. J Biol Chem 276: 14139-14152.

Page, R. D. (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in Biosciences 12: 357-358.

Poetsch, W., Hermans, J. and Westhoff, P. (1991). Multiple cDNAs of phosphoenolpyruvate carboxylase in the C_4 dicot *Flaveria trinervia*. FEBS Letters 292: 133-136.

Powell, A. M. (1978). Systematics of *Flaveria* (Flaveriinae-Asteraceae). Annals of the Missouri Botanical Garden 65: 590-636.

Rajagopalan, A. V., Devi, M. T. and Raghavendra, A. S. (1994). Molecular biology of C_4 phospho*enol*pyruvate carboxylase: Structure, regulation and genetic engineering. Photosynthesis Research 39: 115-135.

Rajendrudu, G., Prasad, J. S. R. and Das, V. S. R. (1986). C3-C4 intermediate species in Alternanthera (Amaranthaceae). Leaf anatomy, CO2 compensation point, net CO2 exchange and activities of photosynthetic enzymes. Plant Physiology 80: 409-414.

Rippe, K., von Hippel, P. H. and Langowski, J. (1995). Action at a distance: DNA-looping and initiation of transcription. Trends Biochem Sci 20: 500-506.

Rogers, H. J., Bate, N., Combe, J., Sullivan, J., Sweetman, J., Swan, C., Lonsdale, D. M. and Twell, D. (2001). Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10.PG - 577-85. Plant Mol Biol 45(5): 577-85.

Sabe, N., Miwa, T., Kodaki, T., Izui, K., Hiraga, S. and Katzuki, H. (1984). Molecular cloning of the phosphoenolpyruvate carboxylase gene, *ppc*, of *Escherichia coli*. Gene 31: 279-283.

Sage, R. F. (1999). Why C4 Photosynthesis? C4 Plant Biology. R. F. Sage and R. K. Monson. San Diego, Academic Press: 5-15.

Sage, R. F., Li, M. and Monson, R. K. (1999). The taxonomic distribution of C4 photosynthesis. C4 Plant Biology. R. F. Sage and R. K. Monson. San Diego, Academic Press: 551-584.

Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.

Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, Cold Spring Harbor Laboratory Press.

Sanger, F., Nicklen, S. and Caulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463-5467.

Schäffner, A. R. and Sheen, J. (1992). Maize C_4 photosynthesis involves differential regulation of phosphoenolpyruvate carboxylase genes. Plant Journal 2: 221-232.

Schöneberg, U., Vahrson, W., Priedemuth, U. and Wittig, B. (1994). Analysis and interpretation of DNA and protein sequences using Mac Molly Tetra. Bielefeld, KAROI-Verlag Bornemann.

Sharkey, T. D., Kobza, J., Seemann, J. R. and Brown, R. H. (1988). Reduced cytosolic fructose-1,6-bisphosphatase activity leads to loss of O2 sensitivity in a Flaveria linearis mutant. Plant Physiology 86: 667-671.

Sheen, J. (1999). C₄ gene expression. Annu Rev Plant Physiol Plant Mol Biol 50: 187-217.

Sheen, J. Y. and Bogorad, L. (1987). Differential expression of C_4 pathway genes in mesophyll and bundle sheath cells of greening maize leaves. J Biol Chem 262: 11726-11730.

Siebert, P. D., Chenchik, A., Kellogg, D., Lukyanov, K. and Lukyanov, S. (1995). An improved PCR method for walking in uncloned genomic PCR. Nucleic Acids Res 23(6): 1087-1088.

Southern, E. (1975). Detection of specific sequences among DNA-fragments separated by gel electrophoresis. Journal of Molecular Biology 98: 503-517.

Spiker, S. and William, F. (1996). Nuclear matrix attachment regions and transgene expression in plants. Plant Physiology 110: 15-21.

Stockhaus, J., Poetsch, W., Steinmüller, K. and Westhoff, P. (1994). Evolution of the C_4 phosphoenolpyruvate carboxylase promoter of the C_4 dicot *Flaveria trinervia*: an expression analysis in the C_3 plant tobacco. Molecular & General Genetics 245: 286-293.

Stockhaus, J., Schlue, U., Koczor, M., Chitty, J. A., Taylor, W. C. and Westhoff, P. (1997). The promoter of the gene encoding the C_4 form of phosphoenolpyruvate carboxylase directs mesophyll specific expression in transgenic C_4 *Flaveria* spp. Plant Cell 9: 479-489.

Svensson, P., Bläsing, O. E. and Westhoff, P. (1997). Evolution of the enzymatic characteristics of C_4 phosphoenolpyruvate carboxylase: a comparison of the orthologous ppcA phosphoenolpyruvate carboxylases of *Flaveria trinervia* (C_4) and *F. pringlei* (C_3). European Journal of Biochemistry 246: 452-460.

Swofford, D. L. (1989). PAUP: Phylogenetic Analysis Using Parsimony, version 3.0. Champaign, Illinois, Illinois Natural History Survey.

Thomas, P. S. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77: 5201-5205.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876-4882.

Thorpe, P. A., Loye, J., Rote, C. A. and Dickinson, W. J. (1993). Evolution of regulatory genes and patterns: relationships to evolutionary rates and to metabolic functions. J Mol Evol 37(6): 590-9.

Ting, I. P. and Osmond, C. B. (1973a). Multiple forms of plant phosphoenolpyruvate carboxylase associated with different metabolic pathways. Plant Physiology 51: 448-453.

Ting, I. P. and Osmond, C. B. (1973b). Photosynthetic phosphoenolpyruvate carboxylase. Characteristics of allozymes from leaves of C_3 and C_4 plants. Plant Physiology 51: 439-447.

Tjian, R. and Maniatis, T. (1994). Transcriptional activation: A complex puzzle with few easy pieces. Cell 77: 5-8.

Toh, H., Kawamura, T. and Izui, K. (1994). Molecular evolution of phospho*enol*pyruvate carboxylase. Plant Cell and Environment 17: 31-43.

Travers, A. (1999). An engine for nucleosome remodeling. Cell 96(3): 311-4.

Trieu, A. T., Burleigh, S. H., Kardailsky, I. V., Maldonado-Mendoza, I. E., Versaw, W. K., Blaylock, L. A., Shin, H. S., Chiou, T. J., Katagi, H., Dewbre, G. R., Weigel, D. and Harrison, M. J. (2000). Transformation of *Medicago truncatula* via infiltration of seedlings or flowering plants with *Agrobacterium*. Plant Journal 22: 531-541.

Vennesland, B., Tchen, T. T. and Loewus, F. A. (1954). Mechanism of enzymatic carbon dioxide fixation into oxaloacettate. J. Ann. Chem. Soc. 76: 3358-3359.

Villain, P., Mache, R. and Zhou, D. X. (1996). The mechanism of GT element-mediated cell type-specific transcriptional control. J Biol Chem 271(51): 32593-8.

Wang, H. Y. and Deng, X. W. (2002). Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. Embo J 21(6): 1339-1349.

Westhoff, P., Offermann-Steinhard, K., Höfer, M., Eskins, K., Oswald, A. and Streubel, M. (1991). Differential accumulation of plastid transcripts encoding photosystem II components in the mesophyll and bundle-sheath cells of monocotyledonous NADP-malic enzyme-type C_4 plants. Planta 184: 377-388.

Westhoff, P., Svensson, P., Ernst, K., Bläsing, O. E., Burscheidt, J. and Stockhaus, J. (1997). Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus *Flaveria*. Australian Journal of Plant Physiology 24: 429-436.

Wilson, A. C., Carlson, S. S. and White, T. J. (1977). Biochemical evolution. Annu Rev Biochem 46: 573-639.

Windhövel, A. (1999). *Trans*-regulatorische Faktoren des C4-Phosphoenolpyruvat-Carboxylase-Gens aus *Flaveria trinervia*. Doktorarbeit Heinrich-Heine Universität Düsseldorf

Windhövel, A., Hein, I., Dabrowa, R. and Stockhaus, J. (2001). Characterization of a novel class of plant homeodomain proteins that bind to the C_4 phospho*enol*pyruvate carboxylase gene of *Flaveria trinervia*. Plant Molecular Biology 45: 201-214.

Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Meinhardt, T., Pruss, M., Reuter, I. and Schacherer, F. (2000). TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28(1): 316-9.

Wu, C. Y., Washida, H., Onodera, Y., Harada, K. and Takaiwa, F. (2000). Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal *cis*-element requirements for endosperm-specific gene expression. Plant Journal 23: 415-421.

Xiang, C. B., Han, P., Lutziger, I., Wang, K. and Oliver, D. J. (1999). A mini binary vector series for plant transformation. Plant Molecular Biology 40: 711-717.

Ye, G. N., Stone, D., Pang, S. Z., Creely, W., Gonzalez, K. and Hinchee, M. (1999). Arabidopsis ovule is the target for *Agrobacterium in planta* vacuum infiltration transformation. Plant Journal 19: 249-257.

Yunes, J. A., Vettore, A. L., Da Silva, M. J., Leite, A. and Arruda, P. (1998). Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor. Plant Cell 10: 1941-1955.

7. Anhang

7.1. Sequenz der ppcA-cDNA aus Alternanthera tenella

Sequenz des ppcA-cDNA Klons A.t.7 aus *A. tenella*. Start- und Stopcodon der proteinkodierenden Sequenz sind fett gedruckt. Die Klonierungsschnittstellen sind unterstrichen.

		EcoRI				
		GAATTC	GGCACGAGAA	CCCACTTTTT	CATGACCCCC	-106
АТТААСТААА!	GTTACAATCT!	TTTTCCACTA!	TATTCTAGAA!	CCAAATAGAT!	АААААТАТАС	
TATATAATAG!	TAGAAGAATT!	TGAGTGCATT!	ATAATAATTT!	TAAGGG ATG G!	CAACAGTGAA	14
GTTGGAGAAA	TTGGCATCAA	TAGATGCACA	ATTGAGATTA	TTAGCACCAA	GAAAAGTATC	
AGAAGATGAT	AAGCTTGTTG	AGTATGATGC	TTTATTACTT	GATCGTTTTC	TTGATATTCT	134
TGACTCCTTA	CATGGCCCTG	ATATTCGTGA	AACGGTCCAA	GAACTATATG	AGCATGCTGC	
CGAATATGAA	AGGACTCGTG	ACACTAAGAA	GTTGGAGGAG	CTAGGAAACA	TGATAACTGG	254
GGAGATTCTA!	TTGTGGTCAC!	AAAGTCTTTC!	TCCCACATGC!	TTAATCTTTC!	CAATCTTGCC	
AGATTGCTTA!	CCGAAGGAGG!	АССААААААА!	CCAAGAAAGG!	GGATTTTGCT!	GATGAGAGTT	374
CCGCAATTAC!	TGAGTCAGAT!	ATTGAAGAGA!	CTTTCAGAAG!	GCTTGTGGTG!	GATTTGAATA	
AATCCCCTGA!	AGAAGTATTT!	GATACCCTGA!	AAAACCAGAC!	AGTGGACTTG!	GTTCTTACAG	494
CTCATCCTAC	TCAGTCTGTT	CGTAGATCTT	TGCTTCAGAA	ACACGGGAGG	ATAAGAGATT	
GTTTGACCCA	ATTGTATGCC	AAAGATATAA	CCCCTGATGA	TAAGCAGGAG	CTTGATGAAG	614
CTCTCCAAAG	AGAGATCCAA	GCTGCATTTC	GTACTGATGA	AATCAGGAGG	ACTCAGCCAA	
CTCCACAGGA	TGAGATGAGG	GCAGGAATGA	GCTACTTTCA	TGAGACAATT	TGGAAAGGTG	734
TTCCGAAATT	TTTAAGACGT	GTGGATACAG	CATTGAAGAA	CATTGGGATC	AATGAGCGTG	
TTCCCTATAA	TGCCCCTCTC	ATTCAGTTCT	CATCTTGGAT	GGGTGGTGAT	CGAGATGGAA	854
ATCCAAGAGT	AACACCAGAA	GTTACAAGAG	ATGTTTGCTT	ATTGGCTAGA	ATGATGGCTG	
CAAATATGTA	TTTTTTCTCAA	ATAGAGGACC	TCATGTTTGA	GCTCTCCATG	TGGAGATGCA	974
ATGATGAACT	TCGTGCTCGC	GCTCATGAGA	ТАСАТСААТА	TTCGAAGACA	GATGCCAAAC	
ACTATATTGA	ATTCTGGAAA	CGAATTCCTC	CTAACGAGCC	ATATCGAGTT	ATTCTTGGTG	1094
AGGTGAGGGA	CAAACTGTAT	AGTACACGTG	AACATGCTTG	TCAATTATTG	TCAAACGGGG	
TCTCTGATGT	TCCTGAAGAG	GCAACCTTCA	CCCATGTTGA	TCAGTTTCTG	GAGCCTCTTG	1214
AGCTATGCTA	CAGATCGCTT	TGTGCTTGTG	GTGATCGACC	CATTGCTGAT	GGAAGTCTTC	
TTGATTTTAT	GCGTCAAGTT	TCTACTTTTG	GGCTTTCTCT	TGTAAGGCTT	GACATTAGGC	1334
AAGAATCAGA	TAGGCACACT	GACGTAATGG	ATGCCATTAC	CAAGCATCTT	GGCATTGGAT	
CATATCGTGA	CTGGTCAGAG	GAGAAGAGGC	AAGAGTGGCT	GTTGTCCGAA	CTTAGGGGCA	1454
AACGTCCATT	GTTTGGGCCT	GATCTCCCCA	AGACTGAAGA	AATTGCCGAT	GTTTTGGACA	
CTTTCCATGT	AATTTCAGAA	CTTCCATCTG	ATAGCTTTGG	TGCTTACATT	ATCTCCATGG	1574
CTACTGCACC	ATCTGACGTG	CTTGCTGTTG	AGCTCCTCCA	ACGTGAATGT	CGTGTTAAGG	
ATCCTTTAAG	GGTTGTTCCT	CTGTTTGAGA	AACTTGCTGA	CTTAGAGTCT	GCTCCTGCTG	1694
CCCTCACTCG	CCTCTTCTCC	ATTGATTGGT	ACAGGAATAG	GATTGATGGG	AAGCAAGAAG	
TCATGATTGG	ATACTCTGAT	TCTGGTAAGG	ATGCAGGTCG	TCTTTCAGCT	GCTTGGCAGT	1814
TGTACAAAGT	TCAGGAGGAG	CTGATAAAAG	TAGCCAAGGA	ATTTGGGGTG	AAGCTTACCA	
TGTTTCATGG	GCGTGGAGGA	ACTGTAGGAA	GAGGAGGGGG	TCCCACTCAT	CTTGCCATCT	1934
TGGCTCAGCC	ACCAGATACA	ATTCATGGAT	CTCTTCGGGT	TACTGTACAA	GGTGAGGTGA	
TTGAGCAATC	CTTTGGAGAG	GAGCACTTGT	GTTTCAGGAC	ACTGCAGAGG	TACACAGCAG	2054
CTACACTTGA	GCATGGAATG	CACCCACCTA	GCTCTCCCAA	GCCAGAGTGG	CGTGCTCTTC	
TGGATGAGAT	GGCTGTTGTT	GCTACCAAGG	AATATCGCTC	TGTTGTTTTC	CATGAGCCAC	2174
GCTTTGTTGA	ATACTTCCGC	CTTGCAACGC	CAGAGTTGGA	ATATGGACGG	ATGAATATTG	
GAAGTCGTCC	TTCAAAGAGA	AAACCAAGTG	GGGGGATTGA	ATCTTTGCGT	GCAATCCCGT	2294
GGATATTTGC	ATGGACTCAA	ACAAGGTTCC	ATCTACCAGT	GTGGCTTGGG	TTTGGAGCAG	
CTTTCAAACA	TGTTCTTGAG	AAGGACATAC	GGAATCTTAC	AATGCTTAAG	GAGATGTACA	2414
ATCAATGGTC	CTTTTTCAGG	GTGACTATTG	ACTTGCTTGA	AATGGTTTTC	GCAAAGGGTG	
ACCCTGGAAT	TGCTGCGTTA	TATGATAACC	TTCTTGTTTC	AGAAGAATTA	AAGCCTTTTG	2534
GGGAACACTT	GAGGAAATCT	TATGAAGAAA	CTAAGCAACT	TCTCTTAGAG	GTTGCTGGAC	
ATAAGGACCT	GTTGGATGCA	GACCCTTATT	TGAAACAGAG	ACTCAGACTA	CGTGATCCAT	2654
ACATCACTAC	CCTTAATGTC	TGTCAAGCAT	ATACCCTGAA	GCGTATTCGT	GATCCCAACT	
TCCATGTAAC	TGAGAGGCCC	CACTTATCCA	AAGAGATAAT	GGACTCGAAC	AGCCCAGCTG	2774
CAGAGCTTGT	GAAGCTTAAT	CCTACAAGCG	AGTATCCTCC	TGGCCTCGAA	GACACCATTA	
TCTTGACCAT	GAAGGGTATT	GCAGCTGGTA	TGCAGAACAC	TGGT TAA GTG	AGACTAGTTG	2894
CACCCATGTT	GGCACCGTAT	TTTAGCTTGC	CAACTGGTGA	AGTGAGACTA	GTTGTTGCAC	

7.2. Sequenzen der 5´-flankierenden Bereiche von ppcA-Genen aus Flaveria

Die jeweiligen Startcodons sind fett gedruckt.

ppcA-L-Fa

-1897	AATATATCGC	TTTATTGTAT	CGTTGCTAAC	AAAATTACAT	TTTTTTCACAT	CCTTCCCGTA
	TTTGTACTTT	TGCGTCGTGG	AAATTATTTA	ACTAATTATC	TATATGTATT	АСАТАААТТА
-1777	TTACAACTTA	TTCTAAATTT	ACCCCAATAC	TTTTTTTTAC	GGCTTTAGGA	AATCTTTAGT
	TATAAAATTT	TTTTATATTT	CACATATACT	CAACTTTGAT	ATTTCACTTT	ACACTTTACA
-1657	GCGTGTGGCT	CGGAACGTGC	GTTAACACGT	AATTTTACGA	TTTCGGTCTG	TTGTTTTACG
	ACTTAGTTAT	TGATAGATTG	CAAGCGCGGG	GGCCCCGTCA	CTCGTTTAAC	TCAATGTTTC
-1537	CTTTTCGGTT	TTTATGTCTA	CTTCAACGTT	CTCGTGCGTG	TTTTATGTTT	TATTTTAACA
	TGTGGTTATG	GGATGGTCCC	TAAATTACAT	CTTTATAGAG	TTTTGTTATT	TGATTTATTT
-1417	CCAATATTTT	AATATAGTCC	AAAATCTGTG	CTTATAATTT	GGATTTGGTC	TTAAAATTTT
	TTAAATATGG	GNTAGTGATG	TTAGTTAACT	CCTAGGTCTG	ATAGATGGTC	TTTCTCTTTC
-1297	AACTATTGTC	TTATCATTNA	ACTATTTAAT	GCATTAGCCA	CATTTTACTC	TGAAAATTAG
	TTTTTATTTT	AAATTTTTTA	TTATTTTCA	TTCTATACTN	TTATTGAAAA	TTATTTTTAT
-1177	TAAATACACA	AAGTATGTTT	TTATTTAATA	AATAAGATTA	TTTTATTATT	ATTTTGATAA
	CGTCACTTTT	GTTTTTTAAC	AAAATGTTTG	ACATGTTTTT	CTTGTTAAAA	ААТАААААА
-1057	TCTAATTTTT	TGTTTGGTTT	TTTTTTAAAC	TTTTTAAACT	САААААТАТ	TATGCGACAT
	TAACGTTTAT	CTTAGTTTTT	CAAACAAATT	CATCTTTTCT	ATTTTTAAAA	TTAACCTTTC
-937	GGTTTAAAAA	CTACTATAAA	TAAAAGAAGA	AACGTCCTTA	TTCAGTTTTA	АААААААСАА
	TTTCTTAATT	AAGAAGAAGT	TCACATTTAA	AAATTATAAA	TGGTTTAAAA	ACCCGCATAT
-817	ATAAAATGAA	AAAGATTATA	TTTATAATAA	ААТАААСАТА	TGTATTAAAT	TTTTTTATTTA
	ATCACTAACT	TAAATTTAAC	ATTATTTTGA	AAGTAAAATA	TAATCCTTAC	ATTATATTGA
-697	CTATATTCAC	ACATTAGGGA	GATAACTATA	ATTGATAAAA	AGTAGGGACC	GAACTAACAG
	ACCATCCGTG	AATCATAGGG	ATTTTAACCA	CAAATCCAAA	CTTTAAGGAC	AATTTTAAAA
-577	GACAATACAC	AATTGTCGAT	TTGCGGTGTT	TACGAGTTTT	TTCTTTATAA	TAATTTACTC
	TAATACTAGC	ACTTGAGGCT	CCCCGGTATA	TAGTTTTATG	TTAAGTGACA	AATATTGATA
-457	GCATACGAAA	CGTTAGTTAT	TGATTAGTTG	TCTCAACGAA	TTGACAAAAC	TTTTTTTTAA
	ATAGAGGAAA	GAGGAAACAA	AATATCAAAA	TATTAAAAAA	ATGTCGTTAT	GCGGACGATA
-337	TCATCCCTGA	TTCCAATAAT	САСАААААТА	TAATAATATT	GTTAATTTTA	AAGACTGATT
	ACTCACACAC	GATCCCTGTA	CTGTATCGTT	TTTCTGTAAT	TGTGGATGAG	GTTTGCCCTT
-217	CAAAGTCTCA	TCATTTTGCT	ATTCCCCAAT	ATAAATACCC	AACTTCATCT	TTCATATCTC
	TATTTGCTTA	TTTGCATGAG	TAATTGAACA	TCAGGTGATC	TACCCAATAT	ACACTGAGCA
-97	GATTTAATTA	TACGGATTGC	TGGATTTCTA	ATCAATTGGA	GGTTTACAGT	ATTTCTGTTG
	GTGTTGAATT	GGTTGTTTTT	TGCTGAAATG	TGTGATAATC	ATCAGAAGTT	ATGAATCTTA
3			GTGAGTA ATG	AAGCAAGGGT	GAGGAGAATT	TTTAGGGTTG

ppcA-L-Fb-I

ATCATGTGAA	TTTATGAAAA	AATTAAATTG	GAAAGAGGAA	ATCAAAAACA	AAATTGGATC	
TTTCATATCA	CGAAAAGGCA	GGAGTTCTTG	CCACTTGACC	AAGGAGTGTT	CGTAGAGCCG	-1896
TACTTACTCA	СТААААСААА	CAAAAAACAA	ACAAACAAAA	ATCTGAAACA	AACAAATTCT	
TCCATAAAAG	ATGGATCGAA	CATTTTCTTT	TTGTCATGAT	ACATAATTAC	ATATACATAT	-1776
TTGTGTGTGG	GAATAATTGC	ATATATATTG	AGAAATGGAA	AATAAGTACA	ATGCTATTCT	
CTGTACATAA	AGGCGTTAAC	GGATCAATTT	TGCGTGTTAA	AGACCAAATC	TGATACAACA	-1656
TTGAAGATTT	TCTATGAATT	TGGAAAGTAT	GCATACACAA	AAAAATTATT	AAAGACCAAA	
TCTGATACAA	CATTGAAGAT	TTTTTATGAA	TTTGGAAAGT	ATGCATACAC	AAAAATTATA	-1536
TAAGAGATGT	AACTGAAGAT	TTTTTGTCAC	CAAGAAATCA	AATACCTATA	AAATAATTGC	
ACTTGTTACG	AAAGATAATT	TGTTTATTTA	TATATTAACG	TTTTACATAA	AATACCTAGT	-1416
AAGTTTGATT	TTTAAAATAA	AATTACCCCT	AAATTTATCC	AGAATAACCA	GGTGAACTCA	
GAAACACATC	ATACTGACTT	TACACTCAAC	AATTTAGGTA	AGTGTGTTTG	TGATACGACC	-1296
СТАТТТСТТА	TTATTTAAAA	ATTCACAAAT	CTAGTTGTAT	GCATTAGGTT	TGAGATAGCC	

CGAGAAAATT	TTATGGGAGG	GTTGTATGTC	CAGAAATTTA	TGATCATATA	GGTTTTGTTT	-1176
TTTTGTTTTG	TTTTTTTTTT	TGTTTTATTG	GTTTTTTTG	TTTTTTTTGT	TTTGCTTTGT	
TTTGTTTTTT	TGTTTTTGCT	TTTGCGTGTA	TGTGTGTGAG	TGTGTGTGTG	AGAGCTAGTG	-1056
AGGGTACCAC	CGATAAAAAT	GCCACTAAAA	TCGATATTGA	ATATAACGAC	CTTTGCTAGA	
ANAGAATTAA	GNATTTATGA	GTACATACTT	TTGAAGGCTT	TTTCGTATTT	AATTCTTCGT	-936
GGGTTTAAAA	АСАТАААТТА	TATATTACAC	CCCAATGATT	CTAAATTTTT	ACAACTTAAT	
CCTTGCAATT	TTTTATTTC	AACTTTGATC	CCATATACTT	TTTATATTTT	ATAAAATTTT	-816
TATTTTACTT	TTCACTCTAA	ATTTTACGAG	TCAACACGCG	GCAACGTGCG	CGTGTGGCTT	
CAATGTTTTT	ACACATATTT	TTCCATTTGA	TGGCCCCGTC	TCAACGCACG	AGTCATAAAT	-696
TGACTTAGCT	ATTATTATTT	TTTTTTATTAA	TATTTTACGT	TTCTCATGTG	TGATTCAACG	
TTTTTTATAAA	TAATTGTCAT	ATTGATTTAT	TTTTTTGTTG	TACTTTATAA	TACGAGTCTT	-576
TCCGGTGTTA	ATGATCGATG	ATGTTAAATA	ACATCGTTTT	AATACTAATT	GTTTTTTAA	
TTTACAAAAC	TCTCAACGAA	TGATTAGTTG	GGTTAGTTAT	GCATAGGAAA	GCGGACGAAC	-456
ATGTCGTTAT	AATTAAAAAA	ATATCAAAAG	AGTAAACAAA	AAAGGAAAAA	GACTGATTAT	
ТААТАТААТА	ATAATAATAT	CCACAAAAAT	ATTCGAATTC	TTCAATCCTG	AGTTTGCTCT	-336
GTGGATGAGC	AACTGTATCG	TTGATACTTG	ATACCTGTAA	CTCACACACC	TCATATCTCA	
TACTTCATCT	ATAAATACCC	AATTCATTTT	GCTCAAAGTC	TCAACATTGA	GCATACCCAA	-216
TATTCAGGTG	ATCTAATTTA	ACATTTGCAT	GAGTATTTTC	TTAATAAAAT	TTCTATTGGG	
TTTACAGTAT	CTATTGGGTG	GATTTCTTAT	ACGGATTGTG	GTTTCATTAA	TAAATAATCT	-96
TAATCAGAAG	TTTGTGATAA	TATGCTAAAA	TAGGTTGTTT	TTATGTTAAT	TTTTCAGGGT	
TGGAGGGGAA	TTAAGTATTA	AGCAAGGGTG	TGAGTA ATG			3

ppcA-L-Fb-II

ATCATCCAGT	GGAACAATCA	TACCTTCATC	CGCTAAACAC	TTCCTCAGAT	GAGATACATT	-1676
GAATGTCGTG	TGAATTCCAC	TTAACTCATC	TGGTAAATAT	CGTCAATAGG	CCACCTCTCC	
AACTCGTGAA	ACGATTCGGA	AAGGCCCTAT	ATACCTTGGG	TTCAACTTGC	CCCGCTTCCT	-1556
GAATCTGATA	ATACCCTTAC	AAGGTGAGAC	GTTCAACATA	ACCTGGTCAC	CCACCCCGAA	
CTCAATTGGT	CTGCGTCGTT	TATCAGCATA	CGACTTCTGT	TTATCTTTGG	CTACCTTCAT	-1436
GAAGGCCTTG	ATCTTTCCAA	GATTCTCAGT	CGTAGCCTCG	ATTAGCTCGA	CGCCCCTAA	
CTCCTTCTGA	CCAATATCAC	CCCCACACAC	GGGTGTTCGA	CATCTCCTAC	CGTATAGCAT	-1316
CTCATAAGGG	GGCATTCCAA	TGCTGGCATG	ATAGCTGTTG	TTATATGACA	ACTTAGCTAA	
TGGTATTATT	TTTTTTTATTA	ATATTTTACG	TTTCTCATGC	GTGATTCAAC	GTTTTTATGC	-1196
ATAATTTTCA	TGTTGATTTA	TTTATTTTG	TTGTACTTTA	TAATGCGAGT	CTTTCCGGTG	
TTAATGGTCG	ATGATGTTAA	ATGACTTTGT	TTGAATACTA	ATTGTTTTTT	AATTTACAAA	-1076
ACTCTCAACA	AATGATTAGT	TGGGTTAGTT	ATGCATAGGA	AAGCGGATGA	GCATGTCATT	
ATTATTAAAA	ATATTTCAAA	AGAGTAAACA	AAAGAGGAAA	AAGACTAATT	ATTAATATAA	-956
TAATAATAAT	ATCCACAAAA	ATATTCGAAT	GCTTCAATCC	AGAGTTTGCT	CTGTGGATGA	
GTTTCTGTTT	CATTGATACT	TGATACCTGT	AACTCACACA	CCTCATATCT	CATACTTCAT	-836
CTATAAATAC	CCAATTCATT	TTGCTCAAAG	TCTCAACACT	GAGCATACCC	AATATTCAGG	
TGATCTAATT	TAATGTTTGC	ATGAGTATTT	TCTTAATATA	ATTTCTATTG	GGTTTACAAT	-716
ATCTATTGGA	TGGATTTCTT	ATACGGATTG	TGGTTTGATT	ААТАААААТ	CTTAATCAAA	
ATTTTGTGAT	AATATGCTGA	AATGGGTTGT	TTTTGTATCA	AGTTTTCAGG	GTTGGAGGGG	-596
AATTAAGTAT	TAAGCAAGGG	TGTGAGTAAT	GGCTAACCGG	AATGTGGAGA	AATTAGCATC	
GATTCGAAGG	GCGAATCTGC	AGATATCCAT	CACACTGGCG	GCCGCTCGAG	CATGCATCTA	-476
GAGGGCCCAA	TTCGCCGAGC	ATGTCATTAT	TATTAAAAAT	ATTTCAAAAG	AGTAAACAAA	
AGAGGAAAAA	GACTAATTAT	TAATATAATA	ATAATAATAT	CCACAAAAAT	ATTCGAATGC	-356
TTCAATCCAG	AGTTTGCTCT	GTGGATGAGT	TTCTGTTTCA	TTGATACTTG	ATACCTGTAA	
CTCACACACC	TCATATCTCA	TACTTCATCT	ATAAATACCC	AATTCATTTT	GCTCAAAGTC	-236
TCAACACTGA	GCATACCCAA	TATTCAGGTG	ATCTAATTTA	ATGTTTGCAT	GAGTATTTTC	
TTAATATAAT	TTCTATTGGG	TTTACAATAT	CTATTGGATG	GATTTCTTAT	ACGGATTGTG	-116
GTTTGATTAA	ТАААААТСТ	TAATCAAAAT	TTTGTGATAA	TATGCTGAAA	TGGGTTGTTT	
TTGTATCAAG	TTTTCAGGGT	TGGAGGGGAA	TTAAGTATTA	AGCAAGGGTG	TGAGTA ATG	3

ppcA-L-Fbr

ACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGTAAGAAAATGAAACATTTTAGGGTT-3078TTTAATGTAAACTAGGTTTGGCGCCGCGCGTTGCCGCGGATATGCGAGTTTTAACGTAACCGTAAACCAAAATCAAAATCAAAATGAAGGTTTGAAATCACAAAATCAGCAAAAATACACAAAAGTAAAAACACCAAAACCCCAAATCCATAAAACACTAGAACATGTAGAACACAAAAACTAAAATTAAAGCCCAACACCATACATAAAACCAAAAGCCGCAAGAAGCC-2838GACACAGTTCAAAATAGAAAACCAGCGAATATCAAAGCCCGAAAAAGCCAAACAAAAAG

GAAAACTCAA	ACCTTAATAG	TGAGAATCGT	CAGTGTATCG	ATAGCGGAAG	AAAGAAAGCA	-2718
GGAACCCGGA	GAAAGACAAC	ACCAACGAAC	CCTATAAACG	AACATAATCG	AAACACACAT	2500
CAAAGACACG	TGTCCAGACA				ACCTCGAACC	-2598
	ACAAATCCTA			TATTAATAGG	AATAGATAAT	2470
	GAAAAAATAA	AATTCATGCA		TTGATTGTGC	AAGATGACTT	-24/8
TACATTATGT	CACTTGTTAG	ATAATAATAA	GCTAGCTTTA		TTTGTGACGG	2250
	GACGTAATAG	GGTATAGATT	ATAATCGACC	TTAATCGTTC	САААСТАААТ	-2358
TTACGTCGAA	ACATAGAGAA	ACTTAAATTG	ATACCTTTTA	ATACATGACT	СТТСТСАААА	0000
CACATTTATG	TCAAAATGTT	GAGCAAACCA	AAACATACAT	AAAAAAGCAC	ACGCGGCGGT	-2238
GCCGTATGCG	ATATGATAAA	GTACATGTTA	CAAAAGCACC	TGACTCGTTT	TCGAACTAAA	0110
TTTATGCTAA	AACGTATTTA	TACCGTTAAA	TGAAATGTAT	TATATTTGAC	CCAATTTTCA	-2118
AACTAAATTT	AAGTCGAAAC	ATATACACCG	TCGAATGAAA	CGTATTATAT	TTTACCCGGC	
GCATAAATTT	ACGTCGAGAC	ATATTTATAC	CGTCAAATGG	ACGTATTATA	TTTGAATCGA	-1998
CCCATTCTCC	CACACAAGTA	AAAGATTTCT	ТСААССААТА	ААСАААТАСА	ATAAAAGATA	
AAAATAATTG	TTTATTTAGT	TTCTAAATAA	ATATAGAAAT	TTAAAAGACT	TAGTGGCCAA	-1878
AGTTGAAGAA	ACCATAGAAT	AGGGCTAAAA	AGAAAAATAT	TAAAAAGTGT	TGTGGCCAAA	
ATTAAAGATA	CCATAGAATA	GGGCTAAAAA	CATATATAAT	TAAAAGTTTT	GTGGCTAAAA	-1758
TTGAAAGAAA	CCAAACTCTT	CAATTCATTT	CATTTGGTTT	ΑΤΤΑΑΤΑΤΤΑ	TGCAACTACA	
ACGGTATTCT	CTGTACATAG	AGGTATTAAC	GGGTCAAATT	TGCGTGTTAA	AGATCAAATC	-1638
TGATACGACC	TTGAAGATTT	TCTATTAATT	AGGAAAGTAT	GCATATACAA	AAATTATGTA	
AGAGATGAAA	ATGACTTGTG	TGTTGATTTT	TTTATCACCA	AGAAATCAAA	TACCTGTAAA	-1518
ATAATTGCAC	GTGTTACGGA	AGATGATTTG	TTTATTCATG	TTTAAACTTT	ТТАСАТАААА	
ТАССТААТАА	GTTTGATAAT	TAAAGTAAAA	ТААСТСТТАА	ААТТТААСТА	GAATAACCAG	-1398
GTGAACTCAT	GAACATATAG	TATTGATTTT	ACACTCACCC	ΑΤΤΤΑΑСΤΑΑ	GTGTGTTTGT	
GATACGACCC	TGTTTTGTAT	TATGTCAAAA	GTTCACACAT	CTCGCTGCAT	GCATTAGGTG	-1278
TGAGAGAGCC	CGAGAAAATT	TTATGGGAGG	GTTGTATGTC	CGGAAACTTT	ATGATCATAT	
ATGAAAAACC	ATAGATTAAA	AACCACTGAA	ATCGATATTT	GAATATAAAA	CCTTTGGTAG	-1158
AAGAGAATTA	AGTATTTATG	ACTATATATT	TTTGAAGGCT	TTCTGGTATT	TTTCACATAA	
AATTACATCG	TTGCTAACTT	TATTGTATAA	TATATCGCAA	ATAAATTATA	TATATTACTA	-1038
ATTATTAAAT	TCTTTATGCT	TTATGGTTTG	TGCTTTAATC	TTTAGTGGGT	TTAGGATTTT	
TTTTACACCC	CAATACTTCT	AAATTTTTAC	AACTTAAAAC	TTACAATTTT	TTATTTTCAA	-918
CTTTGACCAC	ATATACTTTT	TATATTTTAT	AAAATTTTCA	TTTTACGTTT	CAGTCTAAAT	
TTTACGAGTT	AACACGTCGA	AACGTGCGCG	TGTGGATTCA	ATGTTTTTAC	GCATTTTTTT	-798
CCCGTTTAAC	GGCCCCGTCA	CAACGCGCAG	GTCATAGACT	GACTTGGTTA	TTATTTTAA	
TATTTTACAT	TTCTCGTGCG	TGGTTCAACG	TTTTTATATC	TACTTTTTAG	GTTGGTTTAT	-678
TTTTTTGTAA	TTCTTTATAA	TACTGGTCTT	TCCTGTGTTA	ATTGTCGACG	ACAGTAATGC	
AATATTGATG	TTTAATGACA	TGGTTTTATG	TCCCGCCATA	ACTTGAGGCT	TAAAACTAGT	-558
AGTTTTCTGA	TTCACAAAAC	TCTAAACGAA	TGATTAGTTG	CGTTAGTTAT	GTTTTCCTTT	
СААААААААА	AAAAAAGTTG	CGTTAGTTAT	GCATACGAAA	GCGGACGATC	ATGTCGTTAT	-438
ТАТТАААААА	АААТАТСААА	AGAATAAAAC	ATAGAGGAAA	AAGACTGATT	ΑΤΤΑΑΤΤΤΑΑ	
TAATAATATC	САСАААААТА	TTCCAATAAT	TCAACCCTGA	GTTTGCTCTT	TGTGGATGAG	-318
TCTGTATGGT	TGATACTTGT	AACTCACACA	CTTCATACCT	CATAGTCTCA	TACTTCATCT	
ATAAATACCC	AATCCCCAAT	TCATTTTGCT	TCAAGTCTCA	ACACTGAGCA	ТААССААТАТ	-198
TCAGGTGATC	TAATTGAACA	TTTGCATGAG	TATTTGCTTA	ATTTCTGTTG	GGTTTACAGT	
ATCAATTGGA	TGGATTTCTT	ATACGGTTTG	TGGTTTGATT	AATGAATCTC	GACGAGAAGT	-78
ТТСТСАТААТ	ATGCTGAAAT	GGGTTGTTT	TGTGTTGATT	TTTCAGGGTT	GGAGGGGAAT	
TAAGCAAGGG	ТСТСАСТА АТ	G	1010110111	111011000011	CONCOCULI	3
110100101000	101011011	-				0
ppcA-L-Fc						
ААААТААААТ	ААСТСТТААА	ATTTAACCAA	AATAACCAGA	TGAACTCATG	AACACATCAT	-1400
АСТААСТСТА	CACTTACCCA	TTTAGCTAAG	CGTGTTTGTG	ATTCGACCCT	ATGTCGTATT	
GTGTCAAAAA	TTCACACATC	TAGCTATATG	CATTAGGTGT	GAGAGAAGCC	TGAAAAATTT	-1280
TATGGGAGGG	TTTTATATCC	GGAATTTTTA	TGATCATATA	GTTTTCATTT	GTGCCTATAA	
GAGCTAGTGA	GGTTACGATA	GATAAAAAAC	CACTGAAATC	AATAAATGAA	TATAAGACCT	-1160
TTGGTAGAAG	AGAATTAAGT	ATTTATGACT	ACATACTTTT	GAAGGCTTTC	TCGTATTTTT	
CACAGAGAAT	TACATCGTTG	CTAATTTTAT	TGTATAATAT	CCCACATAAA	TTATATATAT	-1040
TATTAATTAT	CAACCTCTTT	ATTCTTTATG	GTTTGTACTT	TAAGTTTTAC	TGGGTTGTAT	

TCACTTTTAG GTATTTTTTT AACCTCAATA CCTTTACAATC TTTTACAATT TAACCCGTAT

AATTTTTCAT TTTCAATTTT GGTCCAATAT ACTTTTATC TTTTACATAT TTTTCGTTTT ACATTTCGGT CTAAATTTTA CGAGTTAACA CACCGCAACG TGCGCGTGTG GTTTCAATGT

TTTTATGCAT ATTTTTTCCT GTTTTACGGC CCCGTCACAA TGCGCGTGTC ATAGATTGAC

-920

-800

TTAGTTATTA	TTTTTAATAT	TTTACATTTC	ACGTGCGTGG	TTCAACGTTT	TTACGTCTAA	-680
TTTCTGTTCG	GTTTATTTTT	TTCATTGTTT	TTTATAATAC	GAGTTTTTCC	GGTGTTGATA	
GTCGTTGACA	GTTGTGTGAT	ATTAGTGCTA	CTTGACATGA	TTTTATGCCC	CCGTCGTAAC	-560
GCGGGAGGCT	TAAGACTAGT	TTTCTAATTC	ACAAAAGTTC	TCAACGAATG	ATTAGTTGCG	
TTTGTTATGC	ACTGCGAAAG	CGGACGCTCA	TGTCGTTATT	АТТАААААА	TACTAAGAGT	-440
AAAAAATAGA	AGTAAAAGAC	TGATTATCAA	TTTAATAATA	ATATCCACAA	AAATATTCCA	
ATAATTCAAC	CCTGAGTTTG	CTATTTGTGG	ATGAGTTTCT	GTATCGTTGA	TACCTGTAAC	-320
TCACACAGTT	CATAACTCAT	ACTTCATCTA	ТАААТАСТСА	ATCCCTAATT	CATTTTGTTT	
AGAGTCTCAA	CAGTGAGCAT	ACCAACATCT	CAATTTCATC	ATCTTCTTCC	ACTATTCAGG	-200
TGATCTGATT	GAACATTTAC	ATAACTATTT	GCTTAATTTA	TGTTGGGTTT	ACAGTATCTA	
TTGGATGGAT	TTCTTGTACC	GTTATATGGT	TTGTGGTTCG	ATTATGGCTC	TCGATCAGAA	-80
GTTTGTGATA	ATCTGCTGAA	ATGGGTTGTT	TTTGTGTTAA	TTTTTCAGGG	TTGGAGGGGA	
ATTAAGCAAG	GGTGTGTGTA	ATG				3
ppcA-L-Fpu						
АААААТТААС	ACCTAAATCC	TTGAATCTTA	TAGGACGTAT	ATTTCCATTT	TGAACGAAAT	
TTACACTGAA	ATGTGAAAAA	AACAATAAGT	GTTTCATGAC	AATATGTTTG	AAATTTCGTA	-8180
AAATGTAAAT	TTTTATTATT	TATAGGAGTA	АААСАААААТ	ATCTTGAATG	TGTAAAAATA	
CAAATGCATC	TATATATGGT	ATAGATCGTA	AGTTAACTAA	ACTTGGGGAA	GAAAATGAAA	-3060
CATTTTAGGG	TTTTTAATGT	AAACTAGGTT	TTGGCGCCAC	GCGTTGTCGC	GGATATACGG	
GTTTTAACGT	ААСССТАААС	СААААТСААА	ATCAAAATGA	AGGTTTGAAA	ССАСААААТС	-2940
AGCAAAATAC	АСААААGTAA	AAACACCAAA	АССССАААТС	CATAACACAC	TAGAACACTT	
GAACACAAAA	ΑΑΤΑΑΑΤΤΑΑ	AGCCCAACAT	САТАСАТААА	ACAAACGAAA	ATCAAAGCCG	-2820
CAAGAAGGCG	ACACAGTCCA	АААТАGАААА	ССААСБААТА	TCAAAGCCCC	GAAAAGCGCA	
AACAAAAGGA	AAACCCAAAC	CTTAATAGCG	AGAATCGTCA	GTGTATCGAT	AGCGGAAGAA	-2700
AGAAAGCAGG	AACCCGGAGA	AAGACAACAC	CAACGAACCC	TATAAACGAA	CATAATCGAA	2,00
ACACACATCA	AAGACACGTG	TCCAGACACC	AAAACTCACC	AAAAAAACCC	CACCCCCAAA	-2580
ССТСАААССА	ACACCCAAAA	САААТССТАТ	AAAACACACA	CACAAAAAAA	ΑΓΑΑΤΑΤΤΑΑ	2000
тассаатата				GGCATTGCAA	Сттстасатт	-2460
CTCCATCATC				ATTAACCTACC	TTTTACCCCCCC	-2400
CCCCTTTCCC	GTCCCATCAT	ACACCNCCTA			САССТТАТТ	2340
		CCAAACATAC				-2340
				CCCAAACAT		2220
ACACITICIC	MAAACACATI MCCMCMCCCM				CACCECACEC	-2220
COMMERCENT	TGGTGTCGTA	TGCGATATGA			CACCIGACIC	2100
MCACCCAAM			A A C A M A M A M A		GIAIIAIAII	-2100
AGACCCAATT		ATTTAAGTCG	AAACATATAT	ACCGTCGAAT	GAAACGTATT	1000
ATATTTACC	CGGCGCATAA	ATTTACATCG	AGACATATIT	ATACCGTCAA	ATGGACGTAT	-1980
TATATTGAA	TCGACTCATT	GTCCCACACA	ACTAAAAGAT	TTCTTCAACC	AATAAACAAA	1000
	AATAAAAATA	GTTGTTTTT	TAGTTTCTAA	ATAAAAATAT	AAATTTAAAA	-1800
GACTTAGTGG	CCAAAGTTGA	AGAAACCATA	GAATAGGGCT	AAAAACTAAA	ATATTAAAAA	1740
GTGTTGTGGC	CAAAA'I''I'AAA	GATACCATAG	AATAGGGCTA	AAAACATATA	'I'AA'I''I'AAAAG	-1740
TTTTGTGGGCT	AAAATTGAAA	GAAACCAAAC	TCTTCAATTC	ATTTCATTNG	GTTTATTAAT	
ATTATGCAAC	TACAACGGTA	TTCTCTGTAC	ATAGAGGCAT	TAACGGGTCA	AATTTGCGTG	-1620
TTAAAGATCA	AATCTGATAC	GACCTTGAAG	ATTTTCTATG	AATTTGGAAA	GTATGCATAT	
АСАААААТТА	TGTAAGAGAT	GAAAATGACT	TGTGTGTTGA	TTTTTTTTATC	ACCAAGAAAT	-1500
CAAATACCTG	TAAAATAATT	GCACGTGTTA	CGGAAGATGA	TTTGTTTATT	CATGTTTAAA	
CTTTTTACAT	ААААТАССТА	ATAAGTTTGA	TATTTAAAGT	AAAATAACTC	TTAAAATTTA	-1380
ACTAGAATAA	CCAGGTGAAC	TCATGCCCAC	ATCGTACTGA	TTTTACACTC	ACCCATTTAG	
CTAAGTGTGT	TTGTGATACG	ACCCTGTTTC	GTATTATGTC	AAAAGTTCAC	ACATCTCGTT	-1260
GTATGCATTA	GGTATGAGAG	AGCCAGAGAA	AATTTTATGG	GAGGGTTGTA	TGTCCNGAAA	
CTTTATGATC	ATATATGAAA	AACCATAGAT	TAAAAACCAC	TAAAATCGAT	ATTTGAATAT	-1140
AAGACCTTTG	GTAGAAGAGA	ATTAAGTATT	TATGACTATA	TATTTTTGAA	GGCTTTCTGG	
TATTTTTCAC	ATAAAATTAC	ATCGTTGCTA	ACTTTATTGT	ATAATATATC	GTAAATAAAT	-1020
TATATATATT	ACTAATTATT	AAATTCTTTA	TGCTTTATGG	TTTGTACTTT	AATCTTTAGT	
GGGTTTAGGA	TTTTTTTACA	CCCCAATACT	AAATTTTTAC	AACTTAAAAC	ATACAATTTT	-900
TTCATTTTTA	ACTTTGATCA	CATATACTTT	TTATATTTTA	TAAAATTTTC	ATTTTACGTT	
TCAGTCTAAA	TTTTACGAGT	TAACACGCCG	GAACGTGCGC	GTGTGGCTTC	AATGTTTTTA	-780
CGCATTTTTC	TCCGTTTAAC	GGCCCCGTCA	CAACGCGCAG	GTCATAGACT	GACTTAGTTA	
TTATTTTTAA	TATTTTACAT	TTCTCGTGCG	TGATTCACCG	TTTTTATGTC	TACTTTTCAG	-660
ATTGGTTTAT	TTTTTTTGTT	ATTCTTTATA	ATACAGGTCT	TTTCTGTGCT	AATTGTCGAT	
GACAGTAATA	CAATATTAAT	GTTTAATGGC	ATGGTTTTAT	ATCCCGCCGT	AACTTGAGGC	-540
TTAAAACTAG	TAGTTTTCTG	ATTCACAATA	CTCTAAACGA	ATGATTAGTT	GCGTTAGTTA	

TGCATACGAA	CGCGGACGAT	GATGTCGTTA	TTATTAAAAA	AAATATCAAA	AGAGTAAAAA	-420
ATAGAGGAAA	AAGACTGATT	ATTAATTTAA	TAATAATATC	САСАААААТА	TTCCAATAAT	
TCAACCCTGA	GTTTGCTCTT	TGTGGATGAG	TTTCTGTATG	GTTGATACTT	GTAAATAATT	-300
CAAACTCACA	CACTTCATAT	CTCATAGTCT	CATACTTCAT	CTATAAATAC	CCAATCCCCA	
ATTCATTTTG	CTTAAAGTCT	CAACACTGAG	CATAACCAAT	ATTCAGGTGA	TCTAATTGAA	-180
CATTTGCATG	AGTATTTGCT	TAATTTCTGT	TGGGTTTACA	GTATCAATTG	GATGGATTTC	
TTATACGGTT	TGTGGTTTGA	TTAATGAATC	TCGACGAGAA	GTTTGTGATA	ATATGCTGAA	-60
ΔͲႺႺႺͲͲႺͲͲ	ͲͲͲႺͲႺͲͲႺϪ	TTTTTCAGGG	TTGGAGGGGA	ATTAAGCAAG	GGTGTGAGTA	
ATG	11101011011	111110/000	1100/10000/1		001010/00/01	3
AIG						5
nno A. I. Ev. I						
ppcA-L-FV-I						
ΔͲϹΔͲႺͲႺΔΔ	ͲͲͲϪͲႺልልልል	ΔርͲͲႺͲႺΔΔΔ	ΔΔΔͲͲΔΔΔͲͲ	GGAAAGAGGA	латсалалас	
	СтттСататс	ACGAAGAGGC		СССАСТТСАС	Саассастст	-2830
	CTITCAIAIC		ACAAAAAACA	AAAACAAAAA		-2039
	GIACIIACIC	ACTAAAACAA				2710
ACAAATTCTC	CCATAAAAGA	TGGATCGAAC	ATTTTTTT	TGTCATGATA		-2/19
TATACATATG	TGTGTGTGGGG	AATAATTGCA	TATATATIGA	GAAATGGAAA	TTAAGTACAA	0500
TGCTGTTAGG	ATCAGTGATT	TAAGTTTGAT	TAATAAGAGA	GTATTGCAGC	GGAA'I''I''I'GAA	-2599
CAATGAATTA	GACAATTCGC	AAGAACACAA	TTGATATTCA	ATGTAAAAGT	AAACGGTTAT	
AGAGAGAGTG	AGAATTCTGC	AAAAGAAATA	TTTCATTCAT	ATGCTTTCGT	GGTGGCTAAA	-2479
ATATCACACA	TTACAACTAG	GTCAACATCC	CTTATATAGG	AGATGTGAGG	TNTGCTGATG	
TCACTTGATA	GTGACATCTA	ACAGAATTAT	TTAAACTACT	GAAAATATGC	AAACTACTGA	-2359
CAATGTTCTC	AACTACTGAT	TACATCTCAG	AGAATGCTAA	GTACAAAAAA	САТААААСТА	
CTGAACTACA	ACTACTGAAA	CTATAACTAC	TGAAAAGTAA	ATTACAAGTA	CTGAAAGGAA	-2239
ACCATCACAA	CTACTGAAGT	TGATAACTTC	AGCTGTTGCG	ACAACTACTG	AAGTTGATAA	
CTTCAGCTGT	TGTGACAACT	ACTGAAGTTG	ATAACTTCAG	CTGTTGTGAC	AACTACTGAT	-2119
CACTTTGGTC	TTCAGTCTTT	GTCTTTAGTC	TTTGTTCTTC	AGACTTTTAC	TTTCAGACTT	
TGTCTTCAGC	TGATAGCTTC	AGACTTTGTC	TTCAGTTCTT	TACTTTCAGA	CTTTGTCTTC	-1999
AGCTGATAGC	TTCAGACCTT	GTCTTCAGTT	CTTTACTTTT	AGACTTTGTC	TTTAGTAGAA	
GTCTTCAGTT	СТТGТСТТСА	GACTTTGTCT	TCAGACCTTG	TAATCAGCTG	ATGTTTTCAG	-1879
СТСТТСТСАТ	СттСттСАСС	AGTTGCAATG	TCTGTGGGGAC	ͲͲϪĠϪĠĠͲͲͲ	ТТСТСАТСАС	
ССТСАТТССТ	TCTTTTCCTC				CTTA ACCCAT	_1750
CAATTOGI		СЛЛАТСТСАТ			GAATTCGAAA	-1755
CHAIIIIGCA			ACAACAIIGA	AGAIIICIAI		1620
GIAIGCAIAC			AATCIGATAC	AACATTGAAG	ATTTTTATG	-1039
AATTTGGAAA	GTATGCATAC		TGTAAGAGAT	GIGAACIIGA	AGATTTTTT	1 5 1 0
GTCACCAAGA	AATCAAATAC	СТАТАААТА	ATTGCACTTG		TGATTIGTT	-1519
ATTTATATAT	TAACGTTTTA	CATAAAATAC	CTGGTAAGTT	GGATTITITAA	AATAAAATTA	1000
CCCTTAAATT	TATCCAGAAT	AACCAGGTGA	ACTCAAAAAC	ACATCATACT	GACTTTACAC	-1399
TCAACAATTT	AGGTAAATGT	GTTTGTGATA	CGACCCTATT	TCTTATTATT	TAAAAATTCA	
CAAATCTAGT	TCTATGCATT	AGGTTTGAGA	TAGCCCGAGA	AAATTTTATG	GGAGGGTTGT	-1279
ATGTCTAGAA	ACTTTATGAT	CATATAGGTT	TTGTTTTTTT	GTTTTGTTTT	GTTTTTTTGT	
TTTGTTTTTT	GTTTTATTGT	TTTTTTTGTT	TTTTTTTTTG	TTTTGTTTTG	TTTTGTTTTG	-1159
TTTTGTTTTG	TTTTGTTTTG	TTTTGTTTTG	TTTTGTTTTG	TTTTGTTTTG	TTTTGTTTTG	
TTTTTTTTG	TTTTTTTGTT	TTTGTTTTTG	TGTGTGTGTA	TGAGAGCTAG	TGAGGGTACC	-1039
ACCGATAAAA	ATGTCACTGA	AATTGATATT	GAATATAACG	ACCTTTGCTA	GAAGAGAATT	
AAGTATTTAT	GAGTACATAC	TTTTGAAGGC	TTTCTCGTAT	TCAATCTTTC	GTGGGTAAAA	-919
АСАТАААТТА	TATATTACAC	CCCAATGATT	CTAAATTTTT	ACAACTTAAT	CCTTACAATT	
TTTCATTTTC	AACTTTGATC	CCATATATTT	TTTATATTTT	ATTAATTTTT	TTTACTTTTT	-799
AGTCTAAATT	TTACGAGTTA	ACACGCGGCA	ATGTGCGCGT	GTGGCTTCAA	TGTTTTTACA	
CATATTTTTC	CATTTGACGG	CCCCATCACA	ACGCGCGAGT	CATAGATTGA	CTTAGCTATT	-679
АТТАТТТТСТ	ТАТТААТАТТ	TTACATTTTT	CATGCGTGAT	TCAACGTTTT	TATGCATAAT	
ͲͲͲϹϪͲϪͲͲϚ	 	ͲͲͲϾͲͲϾͲϪϹ	ጥጥጥልጥልስጥልሮ	GAGTCTTTCC	GGTGTTAATG	-559
АТССАТСАТС	ТТААСТААСА	тсстттаат	ΔርͲΔΔͲͲႺͲͲ	ͲͲͲͲΔΔͲͲͲΔ	СААААСТСТС	005
ALCONTONIO					ССТТАТТАТТ	130
AACGAAIGAI		AGIIAIGCAI	CAAAAGCGG	CAUMADUAA		-439
				TOTALIANT		210
						-319
	TIGATACCIG		ACCTCATATC			100
CCCAATTCAT		GICICAACAT	TGAGCATACC	CAATATTCAG	GIGATUTAAT	-199
TTAACATTTG	CATGAGTATT	TTCTTAATAA	AATTTCTGTT	GGGTTTTACAG	TATCTATTGG	
GTGGATTTCT	TTTACGGATT	GTGGTTTTGAT	TAATAAAAA	TCTTAATCAG	AAGTTTGTGA	-79
TAATATGCTA	AAA'IGGGTTG	TTTTTTGTGTT	AATTTTCAG	GGTTGGAGGG	GAATTAAGTA	-
TTAAGCAAGG	GTGTGAGTC A	TG				3
ppcA-L-Fv-II

ATCATCATCG	TCTCCGTTGC	AAAGTTGCAT	AAGAGGTTTG	TGGTTTTATG	ATGATGCGTG	
TTGGTTTGGA	TTAAGGTGTG	ATTAATTAAG	TAAACGTAAG	TGGTTACATC	TTAATTACGT	-2155
GGTGGATTTT	TTTACGGNTA	TTTAAGGTAA	TATTAGGCGT	ATGTGGATGA	GATGAGATTA	
ATTATCTAAC	GATTATTATA	CCTTAGTCTT	GCATAAAAAG	GTTTTTACAA	GTTATTGATC	-2035
ACCTTTTTAC	AAGTTAGTGC	TAACAAATTT	AATGAATCCA	ATTTTTTGCA	GAGGAATCCT	
TGATCAAAAG	TGTCAATGGC	TTCAAACAAT	GTCCCCTTGG	AGATCTCTGT	AATTGTAAGT	-1915
AATTTATTTT	AATTACTAAA	AAAAGAACAT	TTGTGACAAT	AAAAACAATG	GTAAATATTA	
TTTGCCACCA	CTTTTAGTGG	АААСТАААТТ	TGTCCCAACT	ACCTTTTGCG	ACCAGAATAT	-1795
ATTGCTACCA	AATTTAACGT	TGGAATTTGA	CCCATTCATT	ATTGAAATGG	AAAGCGTGAT	
CATTAGAGAA	CTTAAAAGTA	ААААСТАТАА	CTGTGACGAT	TTGTGTATAA	GCCTGTTAGA	-1675
ACATTCATAA	AAAGTTTTTT	ATCTGTATTC	ATATAATTAC	ATTAAAAATT	ACTATATTTT	
TTTTCTTTTT	TTTAATTAAA	TAATATTTTT	TATACACTTA	TCATTATTTT	TTTCTCTTTT	-1555
TTCTATTCAC	AACCATTATA	AAAAATATTT	AAAAAGTTAT	AAGGATTAAA	CAGTTTTTCT	
TCAAATATAC	CAATCCACAA	TAACATTTTC	TCTCTCATTC	GATTACAACC	ACTCAAAATC	-1435
ATTCCATATA	ATATACCAAA	CACACTTCAC	TATAAATACT	CTTAATAAGA	TACCAAGTAT	
ATTAAATGAG	AGGTTGATAT	ACCATCAAAA	CTATTTGATA	TGTATTTATT	TGATATGTAT	-1315
GACTTTTAAA	ACACATGGTA	AACATATACA	CTATTAAGTT	TAGCGTTTTT	CATGGTGTTA	
CATGTTAAAA	AAACATTTAA	AAATACTTAT	TTTTGCTAAT	AAAAGGTCCA	AGAAAGTGAT	-1195
ATTTTACTAT	GATTTTTAGC	ATATTTATAT	ACGTTTTGTA	CATCTTAAAA	GTAAAAGTGG	
AGCAAAATTT	TATTGTTTCA	AAACATATTC	AGCAATAATA	AAAAGGTTTT	TCAGATTTAT	-1075
ATATTTCAAA	TATTTTTTA	GCAACACGTG	AATATAAAGT	AGATAAGTGA	AATTATATAC	
TATATATAAT	ACTAATTACC	AAGTGGATTA	TGCATTATGC	GTTGTACCCA	AGATTTAGTG	-955
GGATTGTACG	CATTTTTTTT	GTTTTTATTT	TATTTTATTA	CTTTTAACCC	TAATAATTTT	
ACATTTTCTA	TAATTTAACC	CTTACAATTC	CACTTTCAAC	TTTGGTTATC	TATACTTTTG	-835
ATTTTTTACA	ACGTTTTCAG	TTTACGTTTT	GGTTTAAATT	TTACGAGCTC	ACACGCCTTA	
ATGTGCGCAT	GTGGCTTCAA	TGTTTTTACG	TCGACGCATA	TTTTTTCCATT	TGAAGGCCCC	-715
GTCACAACGC	GCGAGTCATA	GACTGACTTA	GCTATTATTT	TTGTTATTAA	TATATTACGT	
TTCTCATGCG	TGATTTAACA	TTTTTATGCA	TAATTTTCAT	GTTGATTTAT	TTTTTTGTTG	-595
TACTTTATAA	TGCGAGTCTT	TCCGGTGTTA	ATGGTCAATG	ATGTTAAATG	ACATCATTTT	
AATACTAATT	GTTTTTTAAT	TTACAAAACT	CCCAACGAAT	GATTAGTTGG	GTTAGTTATG	-475
CATAGGAAAG	CGGACGAGCA	TGTCGTTATT	ATTAAAAAAA	TATCAAAAGA	GTAAACAAAA	
GAGGAAAAAG	ACTAATTATT	AATATAATAA	TAATAATATC	САСАААААТА	TTCGAATGCT	-355
TCAATCCAGA	GTTTGCTCTG	TGGATGAGTT	TCTGTATGGT	TGATACTTGA	TACCTGTAAC	
TCACACATCT	CATATCTCAT	ACTTCATCTA	TAAATACCCA	ATTCATTTTG	CTCAAAGTCT	-235
CAACACTGAG	CATACCCAAT	ATTCAGGTGA	TCTAATTTAA	TGTTTGCATG	AGTATTTTCC	
TAATAAAATT	TTTATTGGGT	TTACAATATC	TATTGGGTGG	ATTTCTTATA	CGGATTGTGG	-115
TTTGATTAAT	AAAAATCTT	AATCAGAAGT	TTGTGATAAT	ATGCTGAAAT	GGGTTGTTTT	
TGTGTTAATT	TTTCAGGGTT	GGAGGGGAAT	TAAGTATTAA	GCAAGGGTGT	GAGTA ATG	3

Mein Dank gilt.....

.... Prof. Dr. Peter Westhoff für die Betreuung dieser Arbeit, die vielen interessanten und hilfreichen Diskussionen und die Erkenntnis, dass man auch Wein trinken kann

....Prof. Dr. Hans Bünemann für die Übernahme des Koreferates

....Oliver Bläsing für die Hilfe am Anfang und für die Einweihung in viele Mac-Geheimnisse

....Sascha Engelmann für die Reinigung und Messung der Enzyme und eine lustige Zeit

....Ute Schlue und Maria Kozcor für die vielen transgenen Flaveria-Pflanzen. Ute Schlue verlor

(im Gegensatz zu mir) auch im ersten schwierigen Jahr nicht den Mut und die gute Laune.

....Andrea Windhövel für viele Diskussionen und das kritische Lesen dieser Arbeit

....Karin Ernst für viele Tipps und Tricks

....Bernhard Stein für langjährige Gesellschaft bei Studium, Arbeit und beim Konsum von Tabakerzeugnissen

....der Mannschaft des Dachgewächshauses, insbesondere den Herren Rogmann und Baum, für ihre Hilfe und die gute Pflege meiner Pflanzen

....allen jetzigen und ehemaligen Mitarbeitern der Botanik IV für Hilfsbereitschaft, Ratschläge, Diskussionen, gute Laune, Spaß und eine schöne Zeit

....den Mitgliedern des Graduiertenkollegs "Molekulare Physiologie – Stoff- und Energieumwandlung" für viele lehrreiche aber auch lustige Nachmittage und Wochenenden

....allen Freunden jenseits der Biologie ohne die diese Zeit schwieriger gewesen wäre

....meiner Familie, insbesondere meiner Mutter, ohne deren langjährige Unterstützung Studium und diese Arbeit nicht möglich gewesen wäre

Hiermit versichere ich, die vorliegende Arbeit selbstständig und ausschließlich unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

Düsseldorf, den 8.12.2002