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Abstract

In this work I study a single mesoscopic colloidal particle immersed in a
solution of long, flexible, and free non-adsorbing polymer chains. For entropic
reasons the chains avoid the space close to the surface of the particle which

leads to a depletion layer around the particle.

For a spherical particle I investigate the solvation free energy and the
polymer density depletion profiles and discuss the corresponding crossover
functions which interpolate between the limits of small and large particle to
polymer size ratio and of dilute and semi-dilute embedding polymer solu-
tions. In a first step, a mean-field approach is used which reveals qualitative
features. An important relation between the pressure exerted by the poly-
mers onto the particle surface and the local monomer density close to the
surface is also obeyed in mean-field theory. In a second step, a ‘renorma-
lized mean-field (or tree) approximation’ is used to estimate the solvation
free energy of the spherical particle. This employs the renormalization group
and leads to scaling functions and power laws with the correct exponents for
polymers in a good solvent. For large particle to polymer size ratio the de-
pendence on the inter-chain overlap of the surface tension and the coefficient
of spontaneous curvature in a small curvature expansion is calculated. The
behavior of the polymer induced surface tension compares well with results
that have been obtained from simulations by Louis et al. The crossover of the
solvation free energy from large to small size ratio is obtained in the dilute

and the semi-dilute limit. For small particle radius the solvation free energy



is proportional to the unperturbed monomer density but independent of the

inter-chain overlap.

In order to study the effect of anisotropy, a particle of ellipsoidal shape
is investigated in a solution of ideal polymer chains. The depletion layer is

anisotropic and most pronounced in regions of weak surface curvature.

An exact analytical expression is obtained for the center of mass density
profile of free ideal polymer chains in a half space bounded by a hard planar
wall. Contrary to the power law behaviors of the monomer density profile
and the density profile of chain ends or midpoints, the center of mass profile

tends to zero in an exponential fashion on approaching the wall.
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Chapter 1

Introduction

There is an effective interaction between colloidal particles in a solvent which
contains non-adsorbing free polymer chains. It was first found by Asakura
and Oosawa [1] nearly 50 years ago. Since the chains avoid the space between
two close particles, the unbalanced polymer pressure from outside pushes the
two particles towards each other. This depletion interaction is believed to
be important for a variety of interesting colloids such as casein micelles [2],
red blood cells [3], and globular proteins [4]. It is an example of what is
termed ‘macromolecular crowding’ in the biophysical chemistry literature
[6, 6]. Thus there has been much interest in calculating or approximating

the depletion interaction between colloids in the last years [7]-[15].

The depletion of long flexible polymers near the surface of a colloidal
particle is an entropic effect. Immersing a particle into a solution of non-
adsorbing polymers reduces the available number of configurations. This
leads to a depletion layer around the particle which can be described by means

of the bulk normalized polymer density profile M or the (bulk normalized)



CHAPTER 1. INTRODUCTION

density of chain ends £. Since there is work needed to displace the polymers
from the volume of the particle and from the depletion layer, it costs free
energy to immerse the particle into the polymer solution. This free energy
cost F' as well as M and £ depends in a crucial way on the ratio of the
particle and chain sizes and on the degree of overlap between the chains, i.e.,
on whether the polymer solution is dilute or semi-dilute. The simplest system
for studying both effects is a single spherical particle or a single cylindrical
rod with radius R embedded in a monodisperse solution of free non-adsorbing
polymer chains. This system includes also the case of a polymer solution in
presence of a planar wall which can be considered as a particle with infinite

radius.

In this work I study the depletion density profiles around a spherical
or cylindrical particle and the free energy cost to immerse the particle for
arbitrary overlap and size ratio. The overlap between chains may be charac-
terized by n/n*, where n is the number density of chains in the bulk and n*

is the density at the onset of overlap [16], and the size ratio by

p=R/R, . (1.1)

Here d R?2 is the mean square end-to-end distance of a single polymer chain
in dilute solution without particles, and d denotes the spatial dimension. For
semi-dilute solutions, where the overlap between chains is very large, the
chains form a kind of mesh. The typical polymer length scale in this case is

the mesh size or screening length £ [16, 17, 18|.

Fig. 1.1 shows various limits of a single spherical or cylindrical particle in
a polymer solution. The four corners are related to the cases of a planar wall

in a dilute or semi-dilute solution (lower and upper left corner) and of a small

8
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Figure 1.1: Various limits of a single spherical particle or a single cylindrical
rod in a solution of non-adsorbing polymers. The sphere or rod becomes a
planar wall for vanishing R,/R (i.e. for points on the vertical axis), and
becomes a ‘small’ sphere or a ‘thin’ rod with a radius much smaller than
the characteristic polymer lengths (such as the root mean square end-to-
end distance o R, in the dilute solution or the mesh-size £ in the semi-dilute
solution) as R, /R becomes large with the inter-chain overlap n/n* kept fixed.
The following limits are shown: planar wall in a dilute solution (lower left
corner), planar wall in a semi-dilute solution (upper left corner), small sphere
or a thin rod in a dilute solution (lower right corner), and small sphere or a

thin rod in a semi-dilute solution (upper right corner). 9



CHAPTER 1. INTRODUCTION

sphere or a thin rod in a dilute or semi-dilute solution (lower and upper right
corner), respectively. The behavior is quite different in these different limits.
For example in the semi-dilute limit » > n* the bulk-normalized polymer
density profile My near a planar wall reaches its bulk value 1 for distances
z from the wall which are of the order of the screening length £. In the
dilute limit n < n* the corresponding ‘healing length’ for M, is [16, 19] of
the order of the end-to-end distance «x R, introduced below Eq. (1.1). For
spheres or infinitely long rods with small radius R < &, R, corresponding to
the right margin of Fig. 1.1, the healing length of M is of the order of R. For
distances r from the center of the small sphere (or r; from the axis of the thin
cylinder) which are much smaller than £ or R, the normalized profile Mq
is independent of the overlap and of £, R, and only depends [20, 21, 22, 23|
on /R (or 7. /R). Also the free energy cost F' shows qualitative differences

[24, 7, 25, 26] in the various limits in Fig. 1.1.

An important relation between the two basic physical quantities M and
F which applies for arbitrary size ratio and overlap is the so-called density-
pressure identity. See Refs. [27, 28, 23] and Appendix A. For example, for a
cylinder of infinite length A — oo it relates the polymer pressure

4

1
S 1.2

>

on the surface of the cylinder with surface area S, A to the behavior M?(r)

of the normalized polymer density profile M(r ) near the surface via

nRLYY M@ (r) _pg.P

(ro—R)V¥ ksT (13)

Here S| = 27R (or S, = 4wR?) is the circumference of the circle (or the

10



surface area of the sphere) of radius R of the cross-section perpendicular to
the axis of the cylinder in three (or four') dimensions, r, is the distance
of r from the axis, v is the Flory exponent [16, 17, 18] and B is a universal
amplitude [28, 29]. The denominator (7, —R)'/” on the left-hand side cancels
the 7,-dependence of M®) and both sides in Eq. (1.3) only depend on
R,R,, and n. Although the density-pressure identity involves the density
at distances r; — R from the surface that are small compared to R and the
mesoscopic polymer lengths, these distances are in the scaling regime and
still much larger than microscopic lengths such as the monomer size. The
identity is free of microscopic parameters and no proportionality factors have

been omitted.

Keeping both the size ratio and the degree of inter-chain overlap arbitrary
one has to resort to approximations. One approximation that I will use in
this work is the mean-field approximation that determines the leading order
results € \, 0 for a polymer embedding space of dimension d = 4 — €. For
illustration I recall some known analytical mean-field results valid for some
of the limiting cases in Fig. (1.1) for an infinitely long cylinder (rod) in four

dimensions:

(i) For smallradius R (p — 0) the normalized density profile and the free
energy cost per unit axis length \ are given by [21, 22]

R 2
M = (1——) . R,r <Ry, € (1.4)
T,
and
F
= 2 2 1.
T TR R (1.5)

!The special interest in the spatial dimension four will be explained in Chapter 2.

11
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These expressions apply for arbitrary overlap n/n*.

(ii) In the mean-field approximation a dilute polymer solution (n/n* — 0)
corresponds to a solution of ideal chains without excluded volume interaction
between monomers. In this case the bulk-normalized density profile and the

free energy cost per unit axis length A for arbitrary size ratio p are given by

[24, 22

R , R? ,
M(r) =1 -8 —i%erfc(y) + 4 — i"erfc(2y) , (1.6)

where i%erfc is the second iterated complementary error function [30],

TJ__R
= 1.7
V=R, (1.7)
and
F 2 2
=2 2 (1 Ul Zp+ = 2) ) 1.
oA ™mRR, (1+ \/Wp-i— 3P (1.8)

The profile (1.6) and the free energy cost (1.8) satisfy the density-pressure

identity and reduce, for p — 0, to the thin cylinder expressions in (i).

Analytical mean-field results for large radius (planar wall) are also avail-
able in the semi-dilute limit [16, 27| and will be mentioned in Sec. 3.1.4. No
analytical mean-field results seem to be known for the dilute - semi-dilute
crossover in the planar wall limit (vertical axis in Fig. 1.1) and for the

crossover in size ratio in the semi-dilute limit (horizontal line for large n/n*).

This work is organized as follows. In Chapter 2 I present the model and
the methods that will be used in Chapter 3 to calculate scaling functions in

the mean-field approximation. Although the leading order results for d — 4

12



lead to estimates for scaling functions in d = 3 with only moderate quanti-
tative success, they are useful due to several reasons. First of all most of the
qualitative features in d near 4 presumably persist down to d = 3. Secondly
they demonstrate in a transparent way fundamental properties, such as the
density-pressure identity (1.3) or the small radius expansion [22, 7], which
should apply along the whole route. Furthermore it is possible to improve
the mean-field results via the so called renormalized tree approximation [18]
which will be introduced in Chapter 4 below. This theory works directly in

three dimensions and gives at least semi-quantitative results.

A particle of ellipsoidal shape is considered in Chapter 5 in order to study
the effect of anisotropy. Both cases of an elongated and a flattened ellipsoid
of revolution are considered. In the limit that the smaller axis goes to zero,
this geometry includes the cases of an infinitely thin needle and of a circular
disk. Because of the lower symmetry the ellipsoidal case is more complicated

and I consider only dilute solutions of ideal chains.

Another interesting result for ideal chains is presented in Chapter 6, in
which I derive the center of mass distribution of an ideal polymer chain near
a planar wall. Since fixing the center of mass close to the wall restricts the
polymer configurations much more than fixing an end or the midpoint, there

are qualitative differences in the corresponding density profiles.

In Chapter 7 all results will be summarized. Some technical details are
relegated to Appendices A-D. Parts of Chapters 1-4 have been published in
Ref. [31] and parts of Chapter 6 in Ref. [32].

13
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Chapter 2

Model and Methods

A dilute or semi-dilute solution of long flexible polymer chains displays uni-
versal behavior which is independent of most details and depends on only
a few qualitative properties, such as the presence of the excluded volume

interaction between monomers in a good solvent.

The simplest example for universality is the Gaussian form of the distance
distribution between endpoints of a long chain without excluded volume in-
teraction. This applies for arbitrary short range interactions along the chain

and is ensured by the central limit theorem.

The universal properties [16, 17, 18, 19] of long flexible polymers in a
good solvent that interact with an embedded non-adsorbing mesoscopic col-
loidal particle can be calculated from a simple model in which each polymer
molecule is represented by a ‘spring and bead’ chain. This means that the
polymer molecule is replaced by a sequence of elastic springs connecting
point-like beads. The beads are excluded from the space occupied by the

particle. Beads of the same chain or of different chains repel each other at

15



CHAPTER 2. MODEL AND METHODS

microscopic distances. Despite the simplicity of the model the conformational
statistics of the polymers for arbitrary size ratio and overlap is quite complex,
and one has to resort to approximations. The approximation used in Chapter
3 is called the self-consistent mean-field approximation and goes also under
the names of the random-phase or tree approximation [16, 18]. On replacing
the excluded volume interaction by a configuration-independent external po-
tential acting on each chain-monomer, the mean-field approximation reduces
the many-chain problem to the problem of one ideal chain in a potential to

be determined self-consistently.

The spatial dimension four is something special for polymer systems.
The reason is that for d 4 two chains or two parts of one chain rarely
cross. This is consistent with the Hausdorff-dimension two for an ideal,
random walk like chain [17]. Thus for d 4 dilute polymers behave like
ideal chains, and the dilute - semi-dilute crossover takes place at a very large
geometrical inter-chain overlap for which a chain interacts with many other
chains and for which mean-field theory applies. Thus the mean-field results
of Chapter 3 give quantitative approximations only close to four dimensions.
In Sec. 2.5 I introduce briefly the polymer magnet analogy which states
that the partition function of the polymer chains is connected with the order
parameter correlation function in a Ginzburg-Landau field theory. In the last
two sections of this chapter I consider expansions for the cases of very small

or large particles.

16



2.1. THE 'SPRING AND BEAD’ MODEL

2.1 The ’spring and bead’ model

For introducing the model I first consider the case of the pure polymer so-
lution without imbedded particles. The macromolecule is replaced by a
sequence of segments and its configuration is given by the position of all
segment endpoints. The chain connectedness is incorporated by a harmonic
potential that couples two consecutive segments. Therefore each segment can
be viewed as an elastic spring. These springs connect point-like beads, and
all beads repel each other via a delta-function repulsion. If one introduces
the set of segment endpoints of A/ chains, each consisting of N segments, in

the form

m 1 1 2 2 N N
Y = 10, i@ ) @)

the probability to find the system in a specific configuration is given by

N
{r(-m)} _ 1 1I ﬁ P(r(-m) r(.m)) .
pr; zn 1 i oY1

15=1

I [1-beda™ 2], (2.2)

(mj,m'j")

where the function P denotes the normalized Gaussian

P(r,r') = (4nl2)~% elr—=)" /(4% (2.3)

The product in the second line of Eq. (2.2) extends over all pairs of segments
and the prime over the product sign indicates that after multiplying out only
terms are kept in which each segment coordinate occurs at most once. The

microscopic length [ is an effective segment size, d is the space dimension,

17



CHAPTER 2. MODEL AND METHODS

and the interaction constant b models the effective strength of the repulsion.
For ideal chains b equals zero and the configurational weight is just given by

the Gaussians in Eq. (2.2). The partition function ZW) is defined as

(2.4)

N N

2™ = [ a)..ae(” I[ T] Pa™, 2 -
u m=1j=1
!
I [r-ssaf™ -] . (2.5)
(mj.m i)

(2.6)

Here the integration over all segment coordinates has to be carried out over

the volume U of the system.

For the case of an imbedded particle (see Fig. 2.1) U equals the outer
space of the particle and the configurational weight of Eq. (2.2) is set to zero
if any of the segment endpoints is in the volume occupied by the particle.
Formally this can be achieved by introducing a potential which is infinity

inside the particle and zero in the space outside the particle.

For later use I introduce the partition function for an ¢deal chain in an

external 'potential’ W with the two ends fixed at r = ry and r' = ry. This

is given by
=W N
Zé,l}(ra rl) = /udrl"-drN—l H P(rjarj—l) .
j=1
N . .
i=1 2
with L = N2

Of most interest is the continuum limit

18



2.1. THE 'SPRING AND BEAD’ MODEL

LE
A

Tz

Figure 2.1: An illustration of the ’spring and bead’ model. Point like beads
are connected by springs, the bead-bead interaction and the bead-particle

interaction are pure excluded volume interactions.

ZWI(L,r,x'") = lim Z??ﬂ(r r') (2.8)

of the partition function which is determined by a generalized diffusion equa-
tion [19, 16]
9 (W] ! !
6—L—A,.—|-W(r) Z%(L,r,x')y =0 for r,r' el (2.9)
with the ‘initial condition’
ZWI(L =0,r,r') = 6(r—1') . (2.10)
Of course the model is very simple and neglects all microscopic details of the

polymer chains, but this is justified by the experimentally verified concept of

universality.

19



CHAPTER 2. MODEL AND METHODS

2.2 Self-consistent mean-field theory

As mentioned above the idea of the self-consistent mean-field theory is to
describe the many-chain problem as the problem of one ideal chain in an
external potential. Due to the contact interaction in Eq. (2.2) the exter-
nal potential is proportional to the bulk normalized monomer density profile

M(r). This is defined as

M(r) = (p(r))/nN, (2.11)

where

N
pr) = Y Y 5™ —r) (2.12)

m=1j=0

is the monomer density operator and n/N is the monomer density in the bulk.
The way to handle this problem is presented by De Gennes in Reference [16]
and will be sketched briefly here. In the second subsection I introduce the
method of auxiliary fields and follow the procedure of Ref. [18] to derive the
mean-field expression for the free energy cost of immersing a particle into the

polymer solution.

2.2.1 Self-consistent potential

For the determination of the density profile M(r) in presence of a particle
one starts an iteration procedure by associating to a certain ’starting profile’

an external potential

V() = 1?bNnM(r) = (S/L) M(r) . (2.13)

20



2.2. SELF-CONSISTENT MEAN-FIELD THEORY

Here

b
S =bN*n = l—4L2n . (2.14)
The potential in Eq. (2.13) is proportional to the local monomer density

and to the strength of the excluded volume interaction b. The factor [=2 is

necessary due to the definition in Eq. (2.7). The meaning of L derives from

1
L= 57@2 : (2.15)

where Rpr = d R2 is the mean square end-to-end distance of a single, ideal
chain with N segments. The quantity S occurs also in the mean-field expres-
sions for the screening length ¢ and the density correlation length &p. The
screening length describes the small p behavior ~ (1 + p?¢% + ...)! of the
spatial Fourier transform of the polymer density bulk correlation function in
the semi-dilute limit. Here the limit of small p is taken after the semi-dilute

limit so that R;! < p. In the mean-field approximation £ is given by

L R,
£ = \/; =5 (2.16)

While £ is the relevant polymer length scale in the semi-dilute limit, the
correlation length &p is a good quantity marking the dilute - semi-dilute
crossover. It is defined as the square root of the second moment of the den-

sity correlation function divided by the zeroth moment and is in mean-field

[ d
§p = mRz- (2.17)

21
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Although the mean-field theory does not give a quantitative description and
leads to wrong exponents for a polymer solution in three dimensions, we shall
see in Chapter 3 that it explains interesting qualitative effects of an immersed
particle. In this case the meaning of the quantity S is best defined by means
of the ratio correlation length to isolated chain size via Eq. (2.17). Although
I will address S frequently as the ’inter-chain overlap’, it is proportional to

the geometrical overlap

s = (Ry)%n (2.18)

with R, from Eq. (2.15) only in d = 4.

In the following I need the partition function ZIV!(L/,r) of an ideal chain
in the potential ¥V with only one end fixed at r and with a polymerization
index N’ = L'/I? smaller than N. This follows from Eq. (2.8) by integration

over the free end as

ZV(Lr) = / dr' 2L x,v) | (2.19)

where L and W have to be replaced by L' and V. Thus ZVI(L';r) satisfies

the diffusion-type equation

( = A V(r)) ZV(L'r) = 0 for reld (2.20)

with
ZV(L'=0,r) =1 (2.21)

and the boundary condition
ZVI(L' rs) = 0 (2.22)

22



2.2. SELF-CONSISTENT MEAN-FIELD THEORY

for any point rg on the particle surface. The new bulk-normalized polymer
density profile in the iteration procedure is that of ideal chains in the external

potential V and is given by [16]

L
M) = g [Ca M 2L - )

Note that for r far from the particle or wall, Z¥I(L',r) approaches the r-
independent value e ®N'" o that M(r) approaches 1. Now one reinserts
this new profile into Eq. (2.13) and restarts the procedure to derive again a
new profile for the local concentration. By further iterating this procedure
until convergence is reached one arrives at a final density profile which is
then self-consistent. Besides the segment density this procedure yields also

the bulk normalized density of chain ends £(r) given by

E(r) = SZM(L,1). (2.24)

2.2.2 Mean-field expression for the free energy and the

method of auxiliary fields

Immersing a single hard colloidal particle in a bath of non-adsorbing poly-
mer chains costs free energy because this immersion reduces the number of
possible chain configurations. In order to derive the mean-field expression
for the free energy cost F' of immersing the particle it is advantageous to use

the grand canonical partition function

23



CHAPTER 2. MODEL AND METHODS

© 1
Ze=1+ Y ATCNZW) (2.25)
N=1 :

in the presence of the particle, where

ohn/(k5T)

is the chain fugacity, and p, is the chemical potential of the chains. Pro-
ceeding as in Ref. [18] one formally rewrites the excluded volume interaction

from Eq. (2.2) as

! m m' b m m'
1I [1 — bdd(rg ) _ rg-, ))] —  exp (—5 SN 5d(r§- ) _ rg-, )))

j’m jl,ml

= exp (-% / drﬁ2(r)> (2.27)

with the monomer density operator p(r) introduced in Eq. (2.12). Now one
can decouple the chains by linearizing the interaction term by means of a

fluctuating field ¢ yielding

exp (—%/drﬁ%r)) = /D[gp] exp (—%b/drgoz(r) — i/drﬁ(r)gp(r))
(2.28)

Inserting this into Eqgs. (2.4) and (2.25) and using Egs. (2.7) and (2.8) one

finally arrives at

25 = / D[yle=51 (2.29)

where the new "action” is given by S[y¢] = Alip/l?] with

24



2.2. SELF-CONSISTENT MEAN-FIELD THEORY

AW] = /u dr’ (—g ZW(L, v') — é—ZW2(r')) : (2.30)
and where W = ip/I? has the meaning of a potential field. Here I consider
a large but finite volume /. The mean-field approximation is obtained on
replacing the functional integration over ¢ or W by taking the extremum of
A with respect to W. If the extremum occurs at W =V, this yields

14

6.A —LVbuik
0= ( M(r))wzv = G LM(r) — S V() (2.31)

The chain fugacity is related to the chain density via the bulk relation

d F d N I
o= g = (e e+ vk
— dvbulk _LY l4
= (e LVbune __ ( ) (Ce bulk [, — VYo
d¢ b
= (e DVoun (2.32)

where the last step results from the extremum condition in Eq. (2.31) with
M(r) and V(r) replaced by their bulk values 1 and Vyyy, respectively. Sub-
stituting Eq. (2.32) into Eq. (2.31) shows that

M(r) (2.33)

i.e. the potential field at the extremum is identical with the mean field (2.13),

and

LVoux = S . (2.34)

25
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The grand-canonical polymer free energy per kg7 in mean-field approxima-

tion is given by

Fe = A]V] . (2.35)

The first term on the right hand side of Eq. (2.30), which due to Eq. (2.24)
is a spatial integration over the end-density, can also be expressed as an in-

tegration over the density profile M, since due to the chain structure [16]

/ dr' ZVV(L, ') = / dr ZV\(L", ) ZVN(L — L",r) (2.36)

for arbitrary L"” < L. Thus the free energy in Eq. (2.35) is determined by
only the density profile

Fo=—n [ de[M(x) + S5 M) (2.37)

and the free energy cost of immersing the particle has the form

kBT - fG - -7:G|with0ut particle

= VkB—T—i-n/dr{l— —[1—/\42( . (2.39)

Here V is the volume occupied by the particle, and the integral extends over
the volume outside the particle. II is the osmotic pressure that in the mean-

field approximation takes the Flory-Huggins form

/(ksT) = n(1 + S/2) . (2.39)
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Note that the M-dependent terms in the integrand of Eq. (2.38) have the
form of the bulk-pressure in Eq. (2.39), with the polymer density in the bulk
n replaced by the local density nM(r). While the first term on the right
hand side of Eq. (2.38) is the work needed to displace the polymers from the
volume occupied by the particle, the remaining terms describe the formation

of a depletion layer around the particle.

2.3 Basic ideas of the renormalization group

and the epsilon expansion

The bead and spring model still has a definite microstructure, because it de-
pends on the definition of a segment given by N and [ and on the interaction
strength b. Since one is interested in universal properties, a change in the
definition of [ and therefore of N and b should lead to the same macroscopic
physics. This implies that there should exist a mapping I, N,b — I', N', ¥’
which leaves macroscopic observables invariant. The existence of such a
mapping is the basic idea of the renormalization group (R.G.) theory. For
infinitely long chains one can apply this mapping repeatedly and thus get a
sequence b; of interaction constants. Now power laws, scaling, and universal-
ity follow if one makes the crucial assumption that this sequence converges,
i.e., that there exists a fixed point bpp for the interaction constant. By con-
structing explicitly a R.G. mapping this assumption is verified. Here one
finds [18] the necessity of a parameter that can make this fixed point value
brp arbitrarily small. The only parameter that can be used for that purpose
is € = 4 — d, and therefore one has to introduce an expansion in powers of

€. In leading order in € one finds a fixed point value
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bpp = 2m2el? (2.40)

of b which is consistent with the fact that the excluded volume interaction is

negligible above four dimensions.

The quantity S in Eq. (2.14) that measures the inter-chain overlap is
then given by

S - 6534 = — . (2.41)

Here

nt = (4,) ! = (6%273;)_1 (2.42)

is a convenient quantity marking the crossover between dilute (n < n*) and
semi-dilute (n > n*) behavior. A, is the second virial coefficient which oc-
curs in the density expansion for the osmotic pressure

kBLT =n+ %A2 n’+ .. (2.43)
and which takes the value Ay = bpp N? for € — 0. The expression (2.40) for
brp is consistent with the leading term €/8 in the e-expansion of the universal
amplitude ratio ¥* = Ay/(v/27R;)? which is known as the ’interpenetration
ratio’. As pointed out above, in 4 — ¢ dimensional space with small € two
polymer chains rarely cross and the chain density in the crossover region
(n ~ n*), where the contribution quadratic in the density to the osmotic
pressure is of the same order of magnitude as the linear term, corresponds

to a very large geometrical overlap sl(f) in Eq. (2.18) of order 1/e.

28
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2.4 Generalized cylinder

The closed system of Egs. (2.20)-(2.23) determining M(r) and Eq. (2.38)
for F' apply to arbitrary particle shapes. For a sphere or an infinitely long
cylinder, M(r) and ZVI(I/,r) only depend on the distance r from the center

of the sphere or on the distance r; from the axis of the cylinder.

To analyze both situations in one step, Hanke et al. [22, 7] introduced
the concept of a ‘generalized cylinder’ with an ‘axis’ of d; dimensions and
with the remaining d — d| = d, dimensions perpendicular to the axis. The
outer space of the generalized cylinder is determined by distances r; from
the axis larger than its ‘radius’ R. For d = 0 the generalized cylinder be-
comes a sphere. For d; =1 and d = 3 it is a cylinder of radius R , and for
d| = 2, d = 3 it is a plate of thickness 2R in three dimensions. Below we

shall consider a generalized cylinder in d = 4 — € dimensions with

d=1-¢ , d =3 (2.44)

which tends for € N\, 0 to a cylinder in d = 4 dimensions and for € /1 to a

sphere in d = 3 dimensions.

2.5 Polymer magnet analogy

The Laplace transform of the partition function ZI%(L,r, r') of an ideal chain

with ends fixed at r and r’ is given by

Gs(t;r,r') = /oo dLe * ZO(L;r,v'; R) = LZOY(L;r, ¢ ; R) (2.45)
0
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and satisfies an Ornstein-Zernike type equation

(A, + 1) Gs(t;r, ') = 6(r — 1), (2.46)

where G vanishes on the surface S of the particle. De Gennes [33] made the

extremely useful observation that this Laplace transform can be identified as

Gs(t;r,r’) = C(r,1'), (2.47)

where C is a two point correlation function

C(r,r') =< ¢(r)o(x') > (2.48)

in a Ginzburg-Landau type field theory with a fluctuating order-parameter
field ¢. The Ginzburg-Landau Hamiltonian H, for the Gaussian field theory

is given by
Hy = % [ dr ((Veb () +t6°(r)) (2.49)
For later use I introduce the Gaussian susceptibility
Ot ) = / dr' Gs(t;r,r') . (2.50)
It satisfies the equation

(=A; + )X () =1 (2.51)

and the Dirichlet boundary condition x[°(¢;r) — 0 for r approaching the
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2.5. POLYMER MAGNET ANALOGY

particle surface. Far away from the particle the susceptibility reaches its

bulk limit

lim ¥ (t; 1) = % (2.52)

T—00

The equations (2.46) and (2.51) can be generalized in an obvious way to the
case where an external potential is present. The differential equation for the

susceptibility for example then takes the form

(=Ar +t+ V(@) xM(t;r) = 1. (2.53)

From xM(t;r) one can calculate the end density and the monomer density

via the inverse Laplace transforms

dt
Sl V) = oS Lt V(4.
E(r) e’ L xM(t;r) = e /72m,e XUt ), (2.54)
Vs [ 9t 1 g, )2
M(r) = 7¢ L2m,e (x (t,r)) , (2.55)

where the integration path +y is parallel to the imaginary axis and to the right

of all singularities of the integrand.

There are several advantages of introducing the Laplace transform of the
partition function. In fact for the explicit calculation of the solution of the
closed system of Egs. (2.20)-(2.23) which is explained in more detail in Ap-
pendix C one solves Eq. (2.53) which in contrast to the diffusion-like partial
differential equation (2.20) with L and r derivatives is a differential equa-
tion with only r derivatives and then uses the inverse Laplace transform of

Egs. (2.54) and (2.55) to get £(r) and M(r). Another advantage is that one
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CHAPTER 2. MODEL AND METHODS

can use tools of the field theory like the small radius expansion [34, 35| to
get results for the polymer problem. The small radius expansion resembles
the short distance expansion and will be the topic of the next subsection.
Also the derivation of the density-pressure identity in Appendix A uses the

polymer-magnet analogy.

2.6 Small radius expansion

For a spherical particle with a radius R which is small compared to the char-
acteristic polymer lengths R, &, and to the distance from the surface r;, — R
one can replace the Boltzmann weight e s that describes the presence of

the particle in the corresponding field theory by a series of point operators [34]

e Hs

P +zjj i0;(r=0) (2.56)

Here A; are non-fluctuating amplitudes and O; are fluctuating operators.
Since the particle enforces a Dirichlet boundary condition which does not
break the ¢ — —¢ symmetry, the leading operator O is the energy density
~ ¢?%, corresponding to the monomer density in the polymer system. For
a thin generalized cylinder embedded in a polymer solution this reasoning
leads in mean-field approximation to a reduction factor in the Boltzmann

weight for chain configurations with the form

chl[rp,j] -1 - Aid(dL) RdL_2 RZ /dI‘H @(I‘L = O,I‘”) . (257)
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Here
N 1 N
O(r) = I'L,r|| 21 ZO(S )5d”( - I'||) (2.58)

is the configuration dependent density of chains at the point r and Ajg(d, =
3) equals [22, 29, 7] 2w. The free energy cost per unit axis length is then
simply given by the unperturbed average of the perturbation in Eq. (2.57),
i.e. by Eq. (1.5). For the bulk normalized monomer density one gets

M) = (O@s,m))/n
& 1 - 27RR2 / dr'; (O 1, 1)) ©(0,')))e.buric / 1
_ 2 d3p ipr D(pZL)
- 1- 27rR’R,z/(27T)3e R

In the last step the tree expression of the bulk density correlation function
[18] has been inserted. The subscript ¢ on the average in the second line

stands for cumulant and D is the Debye function

D(z) = 2(e*—1+ux)/z* . (2.60)

2.7 Small curvature expansion

For the opposite limit of very large particle radius R, where large means
large compared to the polymer size R, one expects [36, 7] a small-curvature

expansion of the Helfrich type
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F=VI+ [dSo + kKp + .| (2.61)

for the free energy of immersion F. Here

d

|
—

1

Ky = —
R;

(2.62)

N =

2

Il
—

is proportional to the local mean surface-curvature where R; are the principal
radii of curvature. The coefficients o and k, which denote the surface tension
and the coeflicient of spontaneous curvature, respectively, are independent

of the shape of the weakly curved surface.

For the generalized cylinder Eq. (2.61) reduces to

dL—lli
5T

F
—ZVJ_H-FSJ_I:O'-F

7 (2.63)

which is an expansion in powers of 1/R. In the limit 1/R — 0 where the
generalized cylinder becomes a planar wall one finds from a comparison with

the mean-field expression in Eq. (2.38) the form

o = nkyT /0 ” dz (1 ~ Mou(2) + 2[1 - Mgw(z)]) (2.64)

of the surface tension o, where z denotes the distance from the planar surface.

Besides the expansion for the free energy cost there is an expansion in
powers of 1/R also for the density profile. In the dilute and semi-dilute limit
one can derive analytical expressions for the next to leading order contribu-
tions, i.e. the corrections for the well known planar wall functions. These

will be presented in Secs. 3.1.4 and 3.2.2 below.
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Chapter 3

Mean-field results

In this chapter I will present some mean-field results for the situation of
a generalized cylinder embedded in a solution of free non-adsorbing poly-
mers in d = 4 — € dimensions. Choosing a generalized cylinder as in Eq.
(2.44) the mean-field results become quantitative for a cylinder in d 4 and
give at least qualitative estimates for an embedded sphere in d = 3. Here
the meaning of the quantity S derives from the length ratio {p/R, in Eq.
(2.17). Moreover the mean-field results serve as an input for the renormal-
ized tree approximation which leads to semi-quantitative results for a sphere
in three dimensions and will be discussed in Chapter 4. For the general-
ized cylinder the mean-field partition function ZV(L',r) = ZM (L' x|, 1)
in Eq. (2.19) factors into two functions Z|[|v](L’,r||) =1 and Z[LV}(L’,TL) =
[ZPI(L/, x)]
the iteration procedure in Egs. (2.20) - (2.23) shows that in the mean-field

| where the latter is independent of rj and dj. Applying

d—d, ,|r|=r

approximation also the functions V(r) and M(r), for given R, L, and S, only

depend on 7, and d; .
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CHAPTER 3. MEAN-FIELD RESULTS

3.1 Density profiles

On using route (2.44) one finds that the scaling function mg of the density
profile

(3.1)

M(r) = md(”—R R ")

R, 'R, n*

to leading order in d " 4 equals the corresponding mean-field scaling function
for a sphere in three dimensions. This is due to the independence of the
mean-field scaling function of r| and d. Examples of density profiles are

shown in Figs. 3.1 and 3.2. In Fig. 3.1 the size ratio p is kept fixed to

T T T
1- B - ~—:'_"_:_—._==w—-—-—-—_—-
L ,"/. /”,’ N
7 -
. ’/. ///
08| S , _
/ // .
/ /,’
S 06 Ly _
/ ’
’
L roy i
Y ,/ — S8=0

04— :.' I./ /, i8S —1 ]

: v/ . _
i /7 S= b

g0 e S=15
021~ 7 n
- .'././ .
o

O 1 I 1 I 1

0 1 2 3
(rp — R)/R,

Figure 3.1: Bulk-normalized density profiles M for a sphere of size ratio
R/R, = 1 versus the scaled distance (r; — R)/R, from the surface for

various values of the inter-chain overlap S.
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3.1. DENSITY PROFILES

1. Close to the surface the density profile increases quadratically with the
distance from the surface which is consistent with the mean-field exponent
1/v = 2, compare Eq. (1.3). The amplitude of the quadratic term increases
with increasing inter-chain overlap & and this steeper increase of the density
near the surface leads to a smaller depletion layer. This is consistent with
the fact that the thickness of the depletion layer in the semi-dilute limit is of
the order of the screening length which is much smaller than the end-to-end

distance in the dilute limit.

The dependence of the density on the size ratio is shown in Fig. 3.2,

1 e
I . _ /.—/':, |
K R - ///
P ‘/
N 7 /
L Vg // i
... /./ //
061 . iy -
E | v // |
; oy
04l .y
N2 R/R, = 0.1
2 R/R, = ]
P / ——~ R/R, =10
208y —— R/R, =100 .
o,
. i
e \ \ \
ok
0 05 1 15 2
(rp — R)/R,

Figure 3.2: Bulk-normalized density profiles M for finite overlap & = 1
versus the scaled distance (r; — R)/R, from the wall for various values of

the size ratio p.
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where S is constant. The decrease of the size ratio leads to a smaller deple-
tion zone due to the fact that a long chain can coil around a small sphere
so that the loss of entropy is smaller. For distances R < r; < R,, & away
from the surface of a thin cylinder or a small sphere one gets an analytical
expression for the density profile. In this limit the Debye function in the
small radius expansion in Eq. (2.59) can be expanded for large argument.
Thus the density profile of a thin cylinder in four dimensions in this region
is given by

&p ipr, 2

(2m)3 p*L

= 1-2R/r, |, (3.2)

M(ry)) — 1-— 271'R’R2/

independent of the overlap, consistent with Eq. (1.4).

3.1.1 Point of Inflection

A good measure for the thickness of the depletion layer is the position of the
point of inflection in the density profiles. Fig. 3.3 shows the scaled distance
&r/Re = ((r1)r — R)/R, of the point of inflection from the surface of the
cylinder versus the size ratio p = R/R, for various values of the overlap
S. For R < R, all the curves merge to approach the overlap-independent
value {1 — R/2, corresponding to the point of inflection in Eq. (1.4). In the
opposite limit R > R, the point of inflection reaches the planar wall value
§§pw) which should be of the order of the bulk density correlation length &p
that is defined as the square root of the second moment of the bulk density

correlation function and that in mean-field approximation is given by Eq.
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107

R/R.

Figure 3.3: Scaled distance £;/R, of the point of inflection of the density
profile from the surface of a cylinder versus the size ratio p = R/R;, for

various values of the inter-chain overlap S.

08 . . : : . : . :

06 0.45¢p/Ra i

ocoo §§pw)/72$

Figure 3.4: Scaled distance §§pw) /R from the planar wall of the point of
inflection of the density profile versus the inter-chain overlap S (circles).
The overlap-dependence of the bulk density correlation length &£p with an

adjusted prefactor is shown for comparison (full line).
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(2.17). In Fig. 3.4 it is shown that the overlap dependence of the point of

inflection in the density profile for the planar wall agrees very well indeed

with that of the bulk density correlation length.

3.1.2 Non-monotonic behavior

Looking at the density profiles at a finite value of the inter-chain overlap
S on a finer scale, one finds that the bulk value 1 is approached in a non-
monotonic oscillatory way. Similar behavior was found for the density profile

in presence of a planar wall by van der Gucht et al. [38] using a lattice-walk

1.002 . — | .

1.001

- .

My
[N
I

0.999

0.998 . i
1

Figure 3.5: Non-monotonic behavior of the density profiles near a planar

wall. Note the enlarged scale of the vertical axis.
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model for polymers and by Bolhuis et al. [15] with computer simulations for
polymers in a good solvent. The mean-field theory yields this non-monotonic
behavior for arbitrary values of the size ratio p = R/R,. Fig. 3.5 shows the
density profile near a planar wall where the effect is most pronounced for
different values of the overlap and with an enlarged scale on the vertical axis.
The scaled distance zmax/R; of the first maximum from the wall decreases
monotonically for increasing overlap as is shown in Fig. 3.6. However the
decrease is much slower than that of either £}" /R, or {p/R,. This is also
in qualitative agreement with the behavior reported in Refs. [38, 15]. It is
interesting that the position of the first maximum does not depend on the

size ratio. Thus Fig. 3.6 applies for arbitrary size ratio if z,., is replaced by

(TJ_)max - R.

Zmax/ Ra

0.5 —

0 25 50 75

Figure 3.6: Scaled distance zmax/R, of the maximum of the density profile

from the planar wall versus the inter-chain overlap S.

In contrast to the position, the height of the first maximum depends apart
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1.002

1.0015

1.001

M(r1)max — R)

1.0005

0 5 10 15 20

Figure 3.7: Height of the maximum in the density profile near a cylindrical
rod versus the inter-chain overlap S, for various values of the size ratio p =

R/R,.

from the inter-chain overlap also on the size ratio. Fig. 3.7 indicates that for
a given p the height shows a maximum at & ~ 5, independent of the value
of p. Additionally one can see that the height decreases with decreasing p
but it persists down to very small values of p. For this case the maximum
can be explained via the small radius expansion in Eq. (2.59) as a minimum
in the bulk density correlation function. Fig. 3.8 shows the density profile
for a size ratio p = 0.01 obtained by the numerical method described in Sec.
2.2 (circles) in comparison to the density profile calculated from Eq. (2.59)
which is shown by the full line.
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1.00001 T T T
S b
R/R, =0.01
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(rL— R)/Rq

Figure 3.8: Density profile with a maximum for a cylinder with R < R,
(circles). The maximum is well reproduced (full line) by the minimum in the
bulk density correlation function on using the small radius expansion (see

Egs. (2.59) and (2.60)).

3.1.3 Small overlap

In order to derive an expansion for the density profile in powers of the inter-
chain overlap S it is convenient to use the grand canonical ensemble. The

density profile of free non-adsorbing polymers is given by

nM(ri) = (O(r))
oo N 5
- % szjl 5\7 (_ SW(r) ZC(N)[W])W_O ' (3:3)
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Here Z(SN ) is the connected part of the partition function of A chains with
monomer-monomer interaction in the tree approximation. From Egs. (2.32)
and (2.34) it follows that the chain fugacity is given in terms of the chain
density by

¢ =ne’ . (3.4)

Since S is proportional to n the expansion of the density profile up to first

order in § is given by

M(ry) = % l(1+8)(—%(r)z§”[m) +82b§V2(— 5)/\(75(r) 3,52’[”’])(] -)
3.5

While the first term on the right hand side of Eq. (3.5) is the monomer den-

sity of ideal chains multiplied by (1 + &) [19], the second term follows from

Figure 3.9: One of the four diagrams contributing to Z(?. The other three
diagrams emerge by placing the r-insertion on the three other possible posi-

tions.
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the diagrammatic representation in Fig. 3.9. Since the three other diagrams

with the r-insertion to the right of position ¢ in line 1 or to the left and

right of position 7' in line 2, respectively, yield exactly the same contribution,

[
dW(r)

MU (r)

W]'is given by four times the diagram in Fig. 3.9. This yields

& ( 0 (2)[W}>
z
2L3 \oW(r) “°

= /dr“ dr — / dL'ZO(L — ;¢ @) 2101 e @)se (e — £ ?) .

: / AL, Z9(L — Ly; ) / dLyZ9(Ly — Lo; ™, 1) Z(Ly: r)
0

= / dr) MO M)y .

/ AL ZO(L — Ly; 1! / ALy Z9(Ly — Lo; ™, 1) 20 (Ly; ).
(3.6)

Thus one has the expansion

M(x) = M(r) + 8 [MOU(r) - MU(r)] (3.7)

with M(r) given by Eq. (1.6). M satisfies the identity

/T e {M[l](r) _ [M[O](r)]z}

r, >R

L
dr, {M["](r)% /0 dL, 7L — Ly;v) Ly Z9(Ly;r) — [M["](r)]2}

1 L
- / dr; { MO(r)= / dL (2L, — L) Z9(L — Ly;v) Z9(L,: )
r; >R L2 0

(3.8)
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Here Eq. (2.36) was used in the first step and Eq. (2.23) in the second
step. The last line follows from introducing in the second contribution of
2L, — L = Ly — (L — L) the variable L — L, instead of L as the integration

variable.

3.1.4 Semi-dilute limit

To derive the mean-field density profile for a generalized cylinder of large
radius R in the semi-dilute limit & — oo one can use the ‘ground-state dom-

inance’ [16] to see that the L'-dependence in

Zp(r) = e US/Ty(r) (3.9)

factors, i.e. v is independent of L', and Eq. (2.23) leads to

M(r) = *(r) . (3.10)

Substituting (3.9) into the diffusion-type equation (2.20) and using Egs.
(2.13) and (3.10) yields the differential equation for

S A = —U() + ) (3.11)

where the characteristic length /L/S in Eq. (3.11) is proportional to the
screening length £ defined in Eq. (2.16). ¢ has to fulfill the boundary condi-
tion that it vanishes at the particle surface and the normalization condition

that it reaches its bulk value 1 far away from the particle. The solution of
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Eq. (3.11) for the case of a planar wall is given by [16]

Ypw(z) = tanhz (3.12)

with
o r, — R
T= o (3.13)

For a generalized cylinder of large radius R >> £ one has the expansion
Y(r) = Ypw(z) + 69(2) (3.14)

with 61 = O(%). Inserting this expansion into Eq. (3.11) leads to the linear

inhomogeneous equation

2 \ 2% d
=492 = -2d, -1)— 1
(G0 +2-60h )60(@) = = 2 (=D st (315)
for 7). Since 9, fulfills already the boundary conditions for ¢, §3(x) has to
vanish in both limits # — 0 and £ — co. The solution of Eq. (3.15) showing

this behavior is given by

2
FH(e) = = (d - 1) U() (3.16)
where
113 =z 2 3 3 1
U(r) = ~ |= “tanhzr — = — —e ¥*| . 3.17
(1;) 6 L2 cosh?z cosh’z + 2 anie 2 2e ( )

Thus the density profile around a generalized cylinder of large radius with

d, = 3 is given by

TJ__R
2€

)+8% tanh(

T‘J_—R
2¢

TJ__R
2€

M(r) = tanh?( ) ( )+O((€/R)?). (3.18)

47



CHAPTER 3. MEAN-FIELD RESULTS

Close to the surface one can expand Eq. (3.18) in powers of z = (r, —R)/(2£).
This yields

M—>x21+%§(dL—1) : (3.19)

For the limit of small particle radius (R < ) one has the small radius
expansion in Eq.(2.59). In the semi-dilute limit £ < R, the interesting re-
gion is R < r;,£ < R,;. In this case an expansion of the Debye function in
Eq. (2.59) for large argument yields

2/L
p*+ &7

R
= 1-2 - e T/é (3.20)

&dp
M(ry)) — 1- 27TRR§/(27£3 e'PrL

For r;, < &, this result reduces to the overlap independent result in Eq.
(3.2). Fig. 3.10 shows the mean field density profile around a thin cylinder
for large overlap near four dimensions. It provides a qualitative estimate for
the density profile around a small sphere (p = 0.01) in a semi-dilute solution
in three dimensions. The value & = 25 that leads to the simple relation
R:&:R,=1:10: 100 seems to be large enough to lead to a behavior as
expected in the semi-dilute limit. For comparison the limiting values of Eqs.
(1.4) and (3.20) close to the surface and far away from the surface are also

shown.

In both limits of either large or small radius one can see explicitly the
expected scaling behavior in the semi-dilute limit

M(r) = m (%

R
R’ E) (3.21)
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Figure 3.10: Density profile around a thin gen. cylinder in a semi-dilute
solution. The full curve shows numerical data for p = 0.01 and § = 25 which
interpolate smoothly between the limiting behaviors (1.4) and (3.20) which

are also shown.

which follows directly from Eq. (3.11).

3.1.5 Density of chain ends

The density of chain ends £(r) is given by Eq. (2.24). In contrast to the
segment density M(r) it increases linearly close to the surface. Fig. 3.11

shows examples of end densities near a planar wall as a function of the
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scaled distance from the wall for various values of the inter-chain overlap S.
Also the end density profile is non-monotonic for finite values of S as can
be seen in the inset, where the scale of the vertical axis is enlarged. The
first maximum is even more than fifty percent larger than for the monomer

density in Fig. 3.5.
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Figure 3.11: Bulk-normalized density of chain ends &, near a planar wall
versus the scaled distance z/R, from the surface for various values of the
inter-chain overlap §. The inset shows the same figure with an enlarged

scale of the vertical axis.
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3.2. FREE ENERGY COST

3.2 Free energy cost

Determining the free energy cost for immersing an infinitely long cylinder
from Eq. (2.38) would lead to a divergence. Therefore one has to consider a

generalized cylinder with an “axis” of large but finite extent or ‘volume’

Vi = v(A/2,4)) (3.22)

which is characterized by a large radius A\/2. Here

o(\/2,0) =9 | Vet Z 2 T4 a2 (3.23)

is the volume of a sphere with radius \/2, and Q4 = 27%2/T(d/2) is the sur-
face area of a sphere with radius 1, in d dimensions. In the cases of interest

one finds

‘/”:/\,1 for d||=1,0 . (324)

3.2.1 Full scaling function

Now one can calculate the free energy cost per unit axis volume from Eq.
(2.38) by replacing V' by the cross-sectional volume V| = v(R,d,) and the
integration [ dr by an integration [ dr, over that part of the ‘plane’ 7| =0

perpendicular to the axis which is outside the particle:

Fo FfVi: Vo Vis [de— [drn,ri>R (3.25)
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CHAPTER 3. MEAN-FIELD RESULTS

Making A so large that end effects can be neglected the independence of the
mean-field profile M(r) on d is transmitted via Eqgs. (2.38), (3.25) to the
free energy cost per unit axis volume. Thus in the mean-field approximation
F/V) only depends on d, and is independent of dj [22, 7]. For the case of
the special choice of d, and d|| in Egs. (2.44) one finds again that the scaling

function fy given by

fi(m ) (3.26)

in leading order d " 4 equals the corresponding mean-field scaling function
for a sphere in three dimensions. Here the prefactor follows from dimensional
reasons. One should note that the scaling forms for the density profile and the
free energy cost given by Egs. (3.1) and (3.26) also hold for d < 4, provided
the leading order expressions for R, from (2.15) and for n* from (2.42) are
replaced by Rgg(d)/v/d, with Reg(d) the end-to-end distance of an isolated
self-avoiding chain, and by the reciprocal virial coefficient (Az(d))™" of self-
and mutually avoiding chains in d < 4. However, the scaling functions m
and f for d < 4 are different from the mean-field scaling functions. Fig.
3.12 shows numerical results for the scaling function f, versus the size ratio
p = R/R,, for various values of the overlap variable § = n/n*. Note the
limits f; — 27p for small size ratio independent of S as predicted by the
4n

small radius expansion in Sec. 2.6 and fy = T p*(14 S/2) for large size ratio

as predicted by the small curvature expansion in Sec. 2.7.
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F/(ViR;nksT)

10 10 10

Figure 3.12: Scaled solvation free energy F/(V|R3nkgT) versus size ratio
p = R/R, for various values of the inter-chain overlap §. Shown is the scaling
function f4 (Eq. (3.26)) for a cylinder of infinite length Vjj = A = coind =4
dimensions. This also furnishes a qualitative estimate of the corresponding

scaling function f3 for a sphere (Vj, = 1) in d = 3 dimensions.

3.2.2 Small overlap and large particle radius

The leading S-dependence for small overlap can be obtained from the small
overlap expansion for the density profile in Eq. (3.7). Since M® and M!!
satisfy the identity (3.8) the free energy is given by

LAYl

kT = n{VJ_+

dr [1 - MU (r)]}

r; >R

+ gn {VL + dr [1 - M[O](r)]2} + 0(8%) . (3.27)

r, >R
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CHAPTER 3. MEAN-FIELD RESULTS

In the rest of this subsection I consider only the case of large particle
radius R > R, where one can obtain an analytical expression for the first
order contribution. The density profile around a generalized cylinder with
d, = 3 for ideal chains in the dilute limit is given by Eq. (1.6). Expanding

the prefactors of the iterated error functions in powers of (r, — R)/R leads to

MO (x) & ML R

w(rL —R) + SMO(r, —R) (3.28)

with

Mg)v]v(m — R) = 1-8i%erfc(y) + 4i%rfc(2y)

SMUU(r, — R) = 8iZerfc(y) — 8ilerfc(2y) (3.29)

and y given by Eq. (1.7). Inserting these equations into Eq. (3.27) one

obtains for the integral in the first order contribution in the overlap

[ i -

:47r/oodz(R+z)2{[1—M[°]

0 pw

(2] - 255MO(z) + 225 M° (z)Mg?vL(z)}

=47 R? /Ooo dz [8 iZerfc(z/(V2R,)) — 4i2erfc(\/§z/'Rw)}2

+87R /Ooo dz z [32 iZerfc(z/(V2R,)) iZerfc(v/22/R,) — 16 [izerfc(\@z/Rz)]2]

= 8T R’R, g)\1+87rR’R2)\2 3.30
T e

where the abbreviations

12¢/2
A = 58 _12v2 0.333 | (3.31)
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1 1 7
Ay = 3 [19 - = (17 + 35 arctan(2))] = 0.047 (3.32)
™

were used. Substituting Eq. (3.30) into Eq. (3.27) one gets

FIVi o _ 1+\ﬁ oLl
ArnR3kgT 3 7Tp 2/)
1 2
+S {6 + \/;/\1;0_1 + Xap 2 + 0(0_3)}

+0(8?). (3.33)

3.2.3 Semi-dilute limit

There is no analytical mean-field expression for the free energy cost to im-
merse a spherical or cylindrical particle with arbitrary radius into a semi-
dilute polymer solution. Thus I have calculated the free energy cost from
Eq. (2.38) up to S = 64 to get at least an approximation. For § — oo Eq.
(2.38) reduces to

F S S 9
RaTV, n§VL + nE/er [1— M*(r)]

2mnRR2f(R/€) (3.34)

Il

For small particle radius R < &, i.e. small argument, the function f has to

approach 1 according to Eq. (1.5). In the opposite limit R > £ one can use
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'1IIIIIII| 1 IIIIIIII 1 IIIIIIII 1 | I I

10
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3

Figure 3.13: Scaling function f = F/(2rV|RR2nkgT) of the solvation free
energy in the semi-dilute limit versus the ratio R/£. The dots show the large
particle limit from Eq. (3.36), the dashed line the small particle limit from
Eq. (1.5).

the small curvature expansion for the density profile from Eq. (3.18) and the

definition of the screening length ¢ from Eq. (2.16) to find

i 1R? R
Fo E?+2g/0 dy[1 — tanh*(y)]

+2 /0  dy{y[l — tanh?(y)] — 4tank®(y)¥(y)}.  (3.35)

Evaluating the integrals yields
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3.2. FREE ENERGY COST

- 1 2 2
flz) — E332+§alc-+—§(41n2—1) , forz— o0. (3.36)

Fig. 3.13 shows the numerically obtained mean-field scaling function
f = F/(2nV|RR2nkgT). There are only very small corrections in f if S is
changed, so that the assumption to be close to the semi-dilute limit seems
reasonable. The limits for small and large particle radius are also shown
as the dashed and dotted line, respectively. It is remarkable that the large

particle limit describes the function very well for R > &.

3.2.4 Surface tension

The volume term in the small curvature expansion for the free energy in Eq.
(2.63) is well understood since the osmotic pressure of a polymer solution is
known quantitatively as a function of the chain overlap (see Ref. [18] or Eq.
(4.51) below). The depletion effect enters in the next terms in Eq. (2.63).

The leading term contains the surface tension o with a scaling form

ag

which follows from Eq. (2.64). In the limit of small overlap one obtains from

a comparison of Egs. (3.33) and (2.63) the expansion

o _ 2 2
T Rz\/;[l—i—)\lS—kO(S )| - (3.38)

In the semi-dilute limit the behavior of the surface tension follows from Eqgs.
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(3.36), (3.34) and (2.63) as

g
’l’lkBT

2
- Rs g\/g , for § = oo . (3.39)

Fig. 3.14 shows the scaling function ¢(S) for arbitrary S, which is
obtained numerically from Egs. (2.20)-(2.23) and (2.64). It interpolates
smoothly between the limits of Egs. (3.38) and (3.39).

0 10 20 30 40 50

Figure 3.14: Scaling function g(S) of the surface tension o = kgTnR,g in
the mean-field approximation (Eq. (3.37)). The dotted and dashed lines
show the asymptotic behavior for small and large S, respectively, see Egs.

(3.38) and (3.39).
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3.2. FREE ENERGY COST

3.2.5 Coefficient of spontaneous curvature

For the coefficient k of spontaneous curvature there is no closed formula like
Eq. (2.64) for the surface tension. Due to dimensional reasons the scaling

form of k is given by

F_ R
g = nRINS) (3.40)

Like in the case of the surface tension the expansion for small overlap follows

0.6 T T T T T

0.58

0.54 =

0.52

Figure 3.15: Scaling function h(S) of the coefficient k = kgTnR2h of the
spontaneous curvature in the mean-field approximation (Egs. (2.63) and
(3.40)). The dotted and dashed lines show the asymptotic behavior for small
and large S, respectively, see Egs. (3.41) and (3.42).
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from Egs. (2.63) and (3.33) as

K
nkBT

- R (% S+ 0(52)) . (3.41)

In the semi-dilute limit Eqs. (2.63), (3.36) and (3.34) give

K
nkBT

1
— Ri§(4ln2— 1) , for § — oo . (3.42)

Fig. 3.15 shows the numerically obtained scaling function hA(S) for arbitrary

S and the asymptotic expressions for small and large inter-chain overlap.

3.3 Density-pressure identity

The pressure exerted by the polymers onto a given surface element of an
embedded mesoscopic particle is proportional to the local monomer density
nRYY M®)(r) = nRYY M(r, \( R) near the surface element [27, 28]. Here
the limit (r, N\, R) has to be taken in the scaling regime, which means that
the distance from the particle surface is still large compared to microscopic
length scales like the segment size [ but much smaller than R and R,. The
factor of proportionality involves a universal constant B. In the mean-field

approximation one has

1/v=2,B=2 . (3.43)

For the generalized cylinder the pressure p acts on a surface S with area
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3.3. DENSITY-PRESSURE IDENTITY

SV and with the surface-normal perpendicular to the axis. Thus the iden-

tity (1.3) reads

r.—R\? p
as =2 44
me(r) = 2(“=) =En (3.44)
with
1 d F
= —— — — 4
P =5 darV, (345)
Here
SL = RdJ‘_l QdJ_ (346)

equals 47 R? for the case of a cylinder of type (2.44) in which d;, = 3. The
validity of the density-pressure identity within the mean-field approximation

is shown in Appendix A.

Fig. 3.16 shows numerical results for p/(nkgT) as a function of the size
ratio R/R, for various values of the overlap S. The pressure increases with
increasing S and decreases with increasing p = R/R, which is in agreement

with the behavior of the density near the surface in Figs. (3.1) and (3.2).

The limiting values for the pressure in the case of small particles (R <
R., &) and large particles R > R, follow via Eq. (3.45) from the limiting
values of the free energy cost. Explicitly they are given by

1 d

— (2 T RR?
P D dR( mnkg R’R,z)
RZ

and
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Figure 3.16: Scaled polymer-pressure p/(nkgT') on the surface of a cylindrical
rod in d = 4 dimensions as a function of the size ratio p = R/R, for various
values of the overlap §. This result also furnishes a qualitative estimate of

the pressure on the surface of a spherical particle in d = 3 dimensions.

1 d /4
p — —(—”R3H+4wR2[a+f]>

47R? dR \ 3 R
(o2 K

Using the last equation, the density pressure identity yields a prediction

for the density profile close to the surface of a large particle, given by
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3.3. DENSITY-PRESSURE IDENTITY

M(TJ_ \‘ R) = M(as)(’l‘J_)

(B LS L R
= 2( R ) [1+2+(dL 1)Rg(8)+

Gl 1)2(‘” ), (%)Qh(S) + ] . (3.49)

where g and h are the scaling functions for the surface tension and the co-

12

Figure 3.17: Density-pressure identity for a planar wall (see Eq. (3.49) with
r, — R = z finite and R = o0o). The amplitude M*R2/(22?) of the
density profile M = M., (circles) reproduces the scaled osmotic pressure

II/(nkgT) =1+ S/2 (full line) very well.
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efficient of spontaneous curvature introduced in Egs. (3.37) and (3.40), re-
spectively. Note that in the semi-dilute limit where S — oo, this expression
reduces to the result in Eq. (3.19). Figs. 3.17 and 3.18 show that the numer-
ically determined profile M for a cylinder of type (2.44) withd, =3,d 4

and a large radius R does indeed fulfill the density-pressure identity (3.44).

0 10 20 30 40 50

Figure 3.18: Contribution of the surface tension to the density-pressure iden-
tity for a weakly curved surface of a cylinder (see Eq. (3.49) with d;, = 3).
The limit limp/z, o0 52 [HL _ <1+§)] taken from the density profile
near the surface M(®) is well approximated by the value for R/R, = 100

(circles) and reproduces the scaling function g(S) of the surface tension (full

line).
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3.4 Number of missing chains

On inserting a particle into a solution of free non-adsorbing polymers one
decreases the number of polymer chains due to the smaller volume accessible
for the chains and due to the depletion effect. The decrease (JN') of the
number (N') of chains in the solution is thus a simple quantity to describe
the depletion effect quantitatively. Here I consider the polymers in contact
with a large reservoir as described by the grand canonical ensemble with a
chain fugacity . The relationship between the chain fugacity ¢ and the bulk
density n is given in Eq. (2.32) and leads to

<_6N >/ W| = <N ‘without particle — N ‘with particle)/ Vﬁ

d FJV
d¢ kgT

— n (VL + dr.[1 - M(u)]) . (3.50)

r1 >R

While the first term dominates for R > R, one finds in the limit R < R,

from the small radius expansion for the density profile in Eq. (2.59)

= [ el = M)

d’p D(p’L)
9 2 / / ipry
= ARy | L a1 SDGPL)

1
= 2nRR; ——. 51
TN R””l (3.51)

In contrast to the free energy cost in Eq. (1.5) and the pressure in Eq.
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(3.47), the number of missing chains is not independent of the inter-chain
overlap in the small radius limit. Fig. 3.19 shows the numerical results for
the scaled number of missing chains. The result shown is for a cylinder in
d = 4 dimensions with axis length Vj, = A, but it gives also a qualitative

estimate for the case of a spherical particle in d = 3 in which V) = 1.

2)

3
S
=
N
A
=
T
v e -

CT T e S=15

077 == AnRY(3RY)
| |
10° 10" 10° 10"
R/R,

Figure 3.19: Scaled number of missing chains (—6N)/(VjnR32) versus size
ratio p = R/R, for various values of the inter-chain overlap S. Note the
crossover from the result 2mp/(1+S) for small p (Eq. (3.51)) to the overlap-

independent behavior ¥ p® for large p.
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Chapter 4

Renormalized tree
approximation in three

dimensions

As pointed out before, in three dimensions the mean-field results of Sec. 3
give only qualitative dependencies of various scaling functions on the size
ratio and the inter-chain overlap. The aim of this section is to obtain semi-
quantitative results, i.e. scaling functions with the correct power law expo-
nents in three dimensions, by means of the field theoretic renormalization
group (R.G.) [18]. In this theory the microstructure (cutoff) dependence of
all properly normalized observables, which are infinitely many, can be ab-
sorbed into only three renormalization factors that reparameterize the the-
ory. Apart from negligible corrections the renormalized, i.e. reparameterized,
observables are independent of the microstructure. The reparameterization

involves an arbitrary inverse length scale u. Varying u for fixed bare pa-
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rameters leads to flow equations for the renormalized observables. These
display an infrared stable fixed point for the renormalized excluded volume
interaction and can be used to map the ”critical” polymer system with L,
large and n,.L, small onto a ”noncritical” one [18, 19] for which the loop
expansion makes sense and where mean-field theory applies approximately.
There is some freedom in choosing the renormalization factors and the con-
comitant renormalization scheme. Actually the most convenient version of
the field theoretic renormalization group is based on a mass shifted bare
theory without cutoff which is finite for d < 4 and develops pole terms for
d — 4. Here renormalization proceeds by absorbing the pole terms into the

renormalization factors.

In this chapter I derive the renormalized tree approximation for the free
energy cost of immersing a spherical particle into a solution of non-adsorbing
polymer chains with excluded volume interaction in d = 3. For simplicity I
discuss only the three special cases where the free energy cost depends only
on two of the three length scales R, R,, and £ in the system. These cases

correspond to the left, top, and bottom margin of Fig. 1.1.

4.1 Renormalization of the free energy

As explained above, one has to express the basic variables b, N, n, and R in

terms of renormalized variables u,, L., n,, and R,. The renormalized vari-
ables are introduced via the relations

b1t = (4m)?u Zyu, /3 , (4.1)

Ni? = %L,/ Z; , (4.2)
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n = un, (4.3)

R=u"'R,, (4.4)

where u, as stated above, is some arbitrary inverse length scale taking care
of the spatial dimensions, and Z,,, Z; are renormalization factors which elim-
inate the microstructure dependence. These factors are independent of the
chain length and can be defined via a Taylor series expansion in powers of

Uy

For the renormalization of the free energy cost for immersing a spherical
particle into a solution of polymers with excluded volume interaction it is
advantageous to use the grand canonical description. The grand canonical
partition function Z¢ in presence of the particle was introduced in Eq. (2.25),
and via the linked cluster theorem [18] the grand canonical free energy per

kgT is given by

Fr= —Inll+ il NZ(N)} = — — NZC(N) , 4.5
¢ n{ /\/2:1'/\/’!C /\/2:1'/\/’!C (45)

where again the subscript ¢ stands for the connected part of the partition
function ZW). Since ZW) can be viewed essentially as an N-fold inverse
Laplace transform of a correlation function of 2A/ order parameter fields ¢,

the renormalization of ZC(N ) is given by the relation

N
ZW) = (et Zyzu~")" 20D (4.6)

Eq. (4.6) applies for both situations, in presence and in absence of the par-
ticle. Here Z, is another renormalization factor occurring in the renormal-

ization of the order parameter field ¢. The ¢.-shift and the renormalization
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factor Z; arise from the Laplace transform in Eq. (2.45), since the reparame-

terization of ¢ is given by

t—t, = u’Zt, . (4.7)

The chain fugacity ¢ was defined in Eq. (2.26), and if one now defines

G = Wl 2,7, (4.8)

then one has

NZW) = Nzl (4.9)

and the microstructure dependence is eliminated. In order to obtain the
renormalized grand canonical free energy as a function of n,, L., R,, and
U, one has to know the relation between (, and n,. Renormalizing the bulk
relation n = —( dicfg /U with the same steps as above yields
—-d oo N
n, = “7%:1 Ajf\% zZW. (4.10)
Inverting this relation and substituting the result into Eq. (4.5) one finally

arrives at

Feo(n, L, R,b,U) = Fgr(ny, Lp, Ry, up, Up®) (4.11)

with U the normalization volume. Thus the free energy cost for immersing

the particle is simply given by

— = L 4.12
o = Pl Lo Ry, (4.12)

where F = fG,r - fG,r

without particle 11 the thermodynamic limit ¢/ — oo.
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In order to derive the renormalization group equation, one has to per-
form a simultaneous variation Dy, Du,, DL,, Dn,, DR, of the renormalized
quantities, keeping the bare quantities, i.e. the left hand sides of Egs. (4.1)-
(4.4), fixed. Then DF vanishes and one obtains

0 = [(Du,)dy, + (DL,)dy, + (DR)dg, + (Dn,)dy.] F(ny, Ly, Ry, uy) -
(4.13)

Introducing the functions

Vi(ur) = +— , (4.14)

the renormalization group equation follows from Eq. (4.13) in the form

0 = [Bu(ur)0u, + V:(u,)LyOr, + RO, — dnyOn,] F(np, Ly, Ry uy) . (4.15)

Changing the inverse length scale u — e *u, Eq. (4.15) implies

F(nr, Ly, Bryuy) = F(r(N), Le(N), B (), (V) (4.16)

with flowing parameters #,, L,, R,, and 7, which are determined by the

characteristic equations

d_ i i
aur()‘) = —Bu(a.(A)) , u.(0) =1u,, (4.17)
%m) = 9@ (N)L() , L(0) =L, (4.18)
d - _ _
SR =~k , R(0)=E,, (4.19)
d_ _ _
SN =dr (), 7 (0) =, (4.20)
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Egs. (4.16)-(4.20) can be verified by showing that -%F(#,, L,, R, %,) van-
ishes due to the validity of Eq. (4.15) with arguments u,, L., R,, and n,
replaced by 4,, L,, R,, and A,. The flow equations (4.17)-(4.20) will be used
below to map the ’critical’ polymer system of interest onto a noncritical one.
In the asymptotic critical region, where L, — oo, L,n, — 0, and R, — o0,
the mapping parameter A\ in Eq. (4.16) tends to infinity. In this case the

solutions of the characteristic equations (characteristics) are given by

Up — UpFp , (4.21)

L, — L,(\) = Dy(u,) Lye ™" | (4.22)
ny — fp(\) = npe® (4.23)

R, — R.(\) = Re™. (4.24)

Here Dy, follows from the solution of Eq. (4.18) in the limit A — oo which is

given by

L) = L,,exp{— /OAd,\'ﬂt(a,«(X))}

- faxp{— /0 N[ (a, () —ﬂt(u,,,FP)]} Loe ™" . (4.25)

/

~"

=Dy,

In the second line ¥;(u, pp) = 1/v was used.
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4.2 Polymer length scales

In this section I derive the renormalized tree expression for the typical poly-
mer length scales that are given by the projected end-to-end distance R,
in the dilute and by the screening length ¢ in the semi-dilute limit. The
corresponding renormalization group and flow equations hold also for these
quantities. The end-to-end distance in a dilute polymer solution is a func-
tion of only L, and u,. Since R, is a renormalized quantity, it follows from

dimensional reasons and from Eqs. (4.21), (4.22) that

R2 = w2 X(Ly,u,) = p 2 X(L,, urrp) - (4.26)

For the noncritical state the function X can be approximated by its tree or

mean-field expression
X(I_/Taur,FP) ~ Xtree(f/raur,FP) = 2Er . (427)

For the screening length in the semi-dilute limit that depends on L,, u,,

and n, the R.G. mapping is given by
62 = 'u—2 y(Lra Ny, ur) = /-‘L_2 62)‘ y(I_/ra 'ﬁra ur,FP) . (428)

The tree expression that is given by & = L/(2S) includes the inter-chain
overlap S. This is expressed in renormalized variables via the reparameteri-

zation in Egs. (4.1)-(4.3) as
S = bNn = (4m)¥2u Zu%,u_‘*Lth_z i,

= (47)%? % 12n, 2,272 . (4.29)
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Thus
S=al, n,, (4.30)

since in the noncritical region I apply the tree approximation with the Z-

factors put equal to 1. In Eq. (4.30) I introduced the abbreviation

1
a = 5(47r)3/2u* = 8.11 (4.31)

with the fixed-point value u,pp = %u* and u* = 0.364 in d = 3 dimensions,
given in Eq. (13.4) of Ref. [18]. Thus the renormalized tree approximation

for the screening length in the semi-dilute limit is given by

1

I_Jr Ny U ~ ree I_/ra_ra r = = . 4.32
y( y T U,FP) Vs ( n U,FP) %L, 1, ( )

4.3 Choice of the noncritical manifold

Now the question arises how one should choose the value of A and thus the
noncritical manifold. The idea is that p~'e* should be of the order of the
smallest of the three mesoscopic length scales R,, &, and R in the system.

Actually the manifold is chosen so that [18, 39]

Po _ = Ry
I + (an, L, + 2 L, (4.33)

T

where py, (o, and Ry are constants of order 1. This relation smoothly in-

terpolates between the different limits where one of the length scales R,
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¢, and R is much smaller than the others. In this case the value A has to
be chosen in such a way that the smallest of the renormalized length scales
L,, 1/(aL,#,), and R, of the system is of order 1. For example in a dilute
polymer solution without particle one has L, = py. Thus Eq. (4.22) leads to
e* = (DL, /py)?, and Egs. (4.26) and (4.27) lead to the relation

(kR2)* = po ™ (DLLy)™ . (4.34)

N | =

In the semi-dilute limit & — oo without particle A is chosen such that
an,L, = 1/¢. Here Eqs. (4.22) and (4.23) lead in d = 3 dimensions to
e* = (aDpL,n,()~"/®=1). The relation for £ obtained from Eqs. (4.28) and

(4.32) is thus

2 (u€)* = o (aDpLyn,Go) /G0 (4.35)

Combining Eqgs. (4.34) and (4.35), it follows that

2 apoCo
/(3v-1)
Co ( 0o )1 1 2v/(3v—1)
= X RL/Y , 4.36
2 (apOCO)ZV ( 9 ) ( )

where in the last step the relation between R, and R, from Eq. (4.44)
below was used. Eq. (4.36) relates the screening length in the semi-dilute
limit to the monomer density which is proportional to ’R}/ Yn. Inserting the
values (4.58), (4.61), (4.31) for py, (o, a one finds for the universal amplitude
&2 - (RY/*n)?/Gv=1) in the present renormalized tree approximation the value

0.0148. The more precise one loop result 0.0098 which follows from Egs.
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(15.14), (15.15) and (19.32) of Ref. [18] is by only about 34 % smaller. Note
that £2 in Ref. [18] has to be identified with 3£2.

In the next sections the renormalized tree approximation for the free en-
ergy cost is derived in the special cases where one of the three terms on the
left hand side of Eq. (4.33) is much smaller than the two others so that it

drops out of the relation.

4.4 Large spheres

In the case that the radius of the imbedded sphere R is much larger than the

typical polymer lengths R, £ the relation (4.33) simplifies to

n 4 an L, =1 . (4.37)

Here the left hand side is basically the inverse square of the dimensionless
renormalized density correlation length, see Eq. (2.17), and interpolates
between L, = O(1) in the dilute limit and L, /(an,L?) = L,/S = O(1) in the
semi-dilute limit, i.e. the length scale is set by the end-to-end distance and

the screening length, respectively.

In section 2.7 I presented the Helfrich expansion for large spheres. It
includes as leading contributions the osmotic pressure, the surface tension
and the coefficient of spontaneous curvature which are all independent of R.

From the flow equations (4.16)-(4.24) it follows that

nkBT =1 —+ P(nT,LTaUT) =1 =+ P(ﬁT’ETaur,FP) , (438)
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o

nkBT = /1:71 Q(nr; LT’ ur) = 'U,i]' e)\ Q(’ﬁ,r, ‘ZT) uT,FP) y (439)
k — _ _ —
nkBT = U 2 T(n'r; Lr, ur) = U 2 ez)\ T(nr, LT, ’UJT’FP) . (440)

Now one again can approximate the functions P, @, T for the noncritical

state by their tree-expressions

- - 1 -
P(ﬁry Lryur,FP) ~ Ptree(ﬁraLr7ur,FP) = iaLzﬁr ) (441)
Q(ﬁra Era ur,FP) ~ Qtree ('ﬁra f/ra ur,FP) - (21_/7')1/2 g(aizﬁr) ) (442)
T('ﬁ/r, Lr, 'U/r,FP) ~ ﬂree(ﬁra Era ur,FP) = Z-ZT h(aizﬁr) ) (443)

where the functions g and h are the mean-field scaling functions from Eq.
(3.37) and Fig. 3.14 and from Eq. (3.40) and Fig. 3.15. One expects from
scaling arguments that the scaling functions I1/(nkgT), o/(nkgTR,), and
k/(nkgTR2) in d = 3 depend only on the geometrical overlap

s = RS ~ n(R,/V2)® = s /2v2 . (4.44)

Here it was used that in three dimensions the mean square radius of gyration
R? = 3R}, is equal to R2/2, to a very good approximation [17]. To get
the scaling functions in the renormalized tree approximation for d = 3 one
has to express the renormalized inter-chain overlap S in Eq. (4.30) and the
quantity u~*e*L/2/R, from the prefactors in Eqs. (4.38)-(4.40) in terms of

the usual geometrical overlap s. For that purpose it is advantageous to use

the first term in Eq. (4.37)

= (4.45)

bu|g

<
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as an intermediate variable [18] v. Note that A drops out of the combination

(1—0) /0™ = aGopy ™ ny (DL = aGopo * "n(Re /v . (4.46)

In the last step Eqs. (4.34) and (4.3) have been used. Inserting now d = 3
and Eq. (4.44) one finds the relation

(1—v) /o™ = alopy s (4.47)

between s and v which can be inverted numerically to yield v = v(s). From

Eq. (4.37) and the definition (4.45) of v it follows directly that

= 1
al2n, — %(5 _ 1) . (4.48)
Together with
_ 2
oL, = “»° (4.49)
v

which follows from Eq. (4.45) one has obtained the functions P, @, and T
in Eqgs. (4.41)-(4.43). For the surface tension in (4.39) and the coefficient of

spontaneous curvature in (4.40) one still needs

D.L,

) = v @) R, (4.50)
Po

pltet = (v

where Eqgs. (4.45), (4.22) and Eq. (4.34) have been used. Combining now

all the results one finally arrives at

II 1 pp/1
=1 ——|--1 4.51
nkBT + 2 C() (’U ) ’ ( )
om0
T Rzv g Av , (4.52)
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and

nk’;T — R2y¥ 1h(’£;’ (1 - 1)) (4.53)

In the case of small and large overlap one can invert Eq. (4.47) analytically

to yield

I 1+ Eap(l)/zs, s—0 (454)
wkgT L oo { aos 1/(3v-1) o .
2 ¢o ptl)/2 )

for the osmotic pressure,

o [(1 + [apo/ A — aCOp_l/ ( %)]s), s—0
— = 1/2 1-y (4.55)
T - alos 3v—1
. HONGONE 50

for the surface tension, and

(14 [2ap5/* X2 — alopo * (20 = 1)]s), 5 — 0
(4ln2-1), s — 00

K

k. 4.56
nkgTRZ (4.56)

for the coefficient of spontaneous curvature. Here the abbreviations A;, Ao

from Eqgs. (3.31), (3.32) were used. The exponents 3, 3%, and —2=

have the property that II/kgT, o/kgT, and k/kgT in the limit of strong
overlap only depend on the monomer density, i.e. only on the combination

nRL/”, and are proportional to £73, €72, and £, respectively.

The values of the two constants py and (y follow from comparing Eq.
(4.54) with known amplitude ratios of the osmotic pressure [18]. For p one

uses the fact that the interpenetration ratio, defined by
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Ay

e — (4.57)
(47 )372R3

Pr =
is a universal number, determined experimentally as ¥* =~ 0.245. Here A, is
the second virial coefficient of the osmotic pressure, see Eq. (2.43). Compar-
ing with the small s behavior of Eq. (4.54) yields

= @(1/1*)2 = 1.81 . (4.58)

Po
a2

The other constant (, follows from another known universal ratio given

by [18]

— (T o=LIB( 1Y /(Tim «—1D ~
Asojz = (sll)nolos [P(s)] )/(lg%s P(s)) ~ 1.098 , (4.59)
where P(s) = —1 4 I1/(nkgT) is a scaling function of the osmotic pressure.

Taking the limits from Eq. (4.54) one gets

_ 3v—3/2 —
0/21 3v 0o /2 ~2—3v

0
— 1.008 | 4.60
(@/2) v (4.60)
and thus
o= — 0 _ —134. (4.61)

= 1.0081/(v—2) 2

Fig. 4.1 shows the surface tension which follows from Eqs. (4.52) and (4.47).

The limiting behavior for small and large overlap is numerically given by

g

TR, (0.798[1 +2.920 5] , (5.0345)*°*), s — (0, 00) . (4.62)
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o/(nkgR.;)

0 1 I 1 I 1
0 0.5 1 15 2

s =nR}
Figure 4.1: Scaling function of the surface tension in the renormalized tree
approximation (Egs. (4.52), (4.47)). The quantity s is the geometrical over-
lap in Eq. (4.44). The dotted and dashed lines show the asymptotic behavior

for small and large s, respectively (compare Eq. (4.62)).

In Eq. (4.62) the leading contribution in the dilute limit equals the result
for ideal chains. Actually in an e-expansion one finds a small correction
0.798 — 0.798 (1—0.051¢) due to monomer-monomer repulsion [7]. The value
5.034 of the universal amplitude in the semi-dilute limit is not too far from the
extrapolation 6.203 to three dimensions of the leading contribution 4+/272¢/9
in the e-expansion. The leading contribution near four dimensions follows
from inserting the fixed point value (2.14) into the mean field expression

(3.39) in the semi-dilute limit and using R, = v2R,.
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Recently Louis et al. [41] used a combination of Monte Carlo simulations
and scaling theories to calculate the surface tension. Fig. 4.2 shows a compar-
ison between their result (solid line with open squares) and the present result
from Fig. 4.1 (dashed line). There is good agreement between both curves.
Only for large geometrical overlap there is a slight deviation. But neverthe-
less in this region the renormalized tree approximation is much closer to the

simulation result than the leading contribution of the epsilon-expansion [41].

(6]
T
1

= II,I{/;T/R,N)

9

/
a //" (

Figure 4.2: The surface tension devided by its value for ideal chains. The
dashed line is the present result from the renormalized tree approximation
as given by Fig. 4.1, the solid line with open squares is from Ref. [41] where
this figure is taken from. Note the differences to Fig. 4.1 in the axes labels.
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s = n'R,g

Figure 4.3: Scaling function of the coefficient of spontaneous curvature in
the renormalized tree approximation (Eqs. (4.53), (4.47)). The dotted and
dashed lines show the asymptotic behavior for small and large geometrical

overlap s, respectively (compare Eq. (4.63)).

Fig. 4.3 shows the coeflicient of spontaneous curvature which follows from
Egs. (4.53) and (4.47). In this case the limiting behavior for small and large

overlap is given by

" —0.230
iz (08[1—04025], (79615)7°%) 1, s = (0, 00) .(4:63)

The mean-field result (Fig. 3.15) and the result from the renormalized tree

approximation (Fig. 4.3) for the coefficient of spontaneous curvature are
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dv=1) for

qualitatively different. Note that the overlap dependence s—(*—1/(
s — 00 leads to a constant in the mean-field approximation (with v = 1/2),
while it leads to a power law decay in the renormalized tree approximation
(with v = 0.588). Also the small overlap behavior is different since the sign

of the linear contribution is different. The value 0.5 for s = 0 is an ideal

chain result which is corrected in the e-expansion by a factor 1 — 0.131e [7].

4.5 Free energy in the dilute limit

If the polymer solution is dilute, the second term in Eq. (4.33) vanishes, and
thus the condition for the uncritical manifold becomes

Ermel (4.64)

The renormalized expression for the free energy cost F/(kgT) is given by
Eq. (4.12), and the function F for the noncritical state in Eq. (4.16) can be

approximated by the tree result

-7:(777'7'; Lra Rr; ur,FP) ~ f-tree ('ﬁr; Lr; Rr; ur,FP)

I

2L
R2

_. (2 2 |2L L
2r7, RS | = + 24/ =4 55 + 55
T, R, (3+ N\ + 7

compare Eq. (1.8). Since 7,R> = nR3, one has only to determine 2L,/R?

) - (as5)

as a function of R and R,. For that purpose I use the same intermediate
variable v = py/L, as in the section before, but now the relation independent

of \is
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(1—v)/v™ = Ry/R? py* (DLL,)* = Ho R—i (4.66)
0 r 0 T 2p0 R2 9 .

where Eq. (4.34) was used in the last step. From this equation one gets
v = v(Rg/R). The ratio in Eq. (4.65) can be expressed in terms of v as

2L,  2p, (1 )
— = — (——1 4.67
Rz R() v ( )

which can be inserted into Eq. (4.65) to yield the full result. In the limit of

small spheres which is equivalent with v — 0 an inversion of Eq. (4.66) yields

Ry, R?
—2u 0 )
N — —= 4.68
and thus
F 2,00)1_% 3-1 5y
— 2 —— R~V Rz 4.69
ksT g (RO " (4.69)

for R < R,. Eq. (4.69) displays the well known power law behavior of the
free energy cost for chains with excluded volume interaction. The amplitude
can be fitted to the amplitude in Ref. [7] that is calculated within an e-

expansion. This leads to

3.62 0.15
) , (4.70)

A =982 =2 (—
9.8 T o

where the values v = 0.588 and py = 1.81 have been inserted. Calculating

Ry from this condition, one finds

Ry =0.18. (4.71)
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In the opposite limit of large spheres, i.e. v — 1, it is interesting to consider
the leading and the next to leading order term in an expansion in powers of

R./R. Setting

TR Y TR (*.72)
Egs. (4.66) and (4.67) lead to
= y(1+9))"7? = y+ (v —1/2)y* + O(y°) (4.73)
which yields
y~z— (v—1/2)z* + O(z°) (4.74)
or reexpressed in the original variables
2}{%‘ = 7; (1 ~-1/25 " o 7;) +0 ((R./R)") . (4.75)

Substituting this result into Eq. (4.65), one finds for the free energy cost in
the dilute limit

F 1 [2R, 1R2 |2
4 3L 2y 2 20, 1/9) 2 4.76
—kBT—) TnR (3+ 71'R+2R2 7'('( /)20R3+ ) ( )

for R > R,. While the first three terms in Eq. (4.76) reproduce just the
mean-field expressions and could have been calculated also from the results
in Sec. 4.5 in the limit s — 0, the R.G. flow generates another term in the
free energy that is independent of R and corresponds to a combination of
bending rigidities. This behavior should be compared with the e-expansion

results in Ref. [7]. The corrections from the e-expansion for the second and
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third term are given in the previous section and are of the order of a few per-
cent. The bending rigidity term that occurs only for chains with excluded
volume interaction is given by [7]

K

—— ~ —0.0141 3 4.
T 0.0141enR; (4.77)

in the e-expansion. In three dimensions, where € is equal to 1, this has to
be compared with the last term of Eq. (4.76). Note that both contributions
have the same sign. They would be equal for a value Ry = 0.73. This value
is four times larger than the value in Eq. (4.71), estimated from the fit to the
small sphere amplitude. Since the parameter Ry determines the region where
R becomes the shortest length scale in the system, one should calculate it
in the small sphere limit. Therefore I choose R, from the small sphere fit in

Eq. (4.71).

Fig. 4.4 shows the scaling function for the free energy cost in the dilute
limit, obtained in renormalized tree approximation. Note that this scaling
function is defined in a different way than the one in Fig. 3.12 and that it
is shown as a function of 1/p. The limits for small and large particles are

represented very well.

4.6 Free energy in the semi-dilute limit

In contrast to the dilute limit, there is no analytical mean-field result for
the free energy cost in the semi-dilute limit. To proceed I have numerically

calculated the free energy up to & = 64, where the ratio R,/£ in mean-field
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10 10 10 10 10

Figure 4.4: Scaling function for the free energy cost to immerse a spherical
particle into a dilute polymer solution in the renormalized tree approximation
versus the inverse size ratio 1/p. The dotted and dashed line give the limits

of large and small particles.

approximation is equal to 16. Thus one is at least in a region where R, > ¢
holds approximately. Right in the semi-dilute limit the noncritical manifold

is chosen such that

Ry
ﬁ:

T

Gan, L, + 1, (4.78)

compare Eq. (4.33). The free energy cost in the noncritical state can be

approximated by the tree expression which is given by
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'7:(771‘3 L,-, R'ra ur,FP) ~ f'tree(ﬁra I_/ra Rra ur,FP)

= 4na,R.L, f(R\/2an,L,) (4.79)

with the numerically obtained scaling function f , compare Eq. (3.34) and
Fig. 3.13. Like in the two sections before an intermediate variable is intro-

duced. This time I choose

R
w = R—;’ : (4.80)
The combination
v— 3v—1
(1— w)* w (BN _ (G R
w3v—1 = (GCOnrDLLr) R_O = 2R0? (481)

is independent of A and yields w = w(R/£). In the last step Eq. (4.35) was
used. The combinations of renormalized variables that occur in Eq. (4.79)

follow from Egs. (4.78) and (4.80) as

n.R.L, = —— 4.82
aG  Vw ( )
and
_ - 2Ry /1
Bor/2a7, L, = (/220 (— _ 1) . 4.83
Co w ( )

In the limit of small spheres R < & which is equivalent with w — 1 the
scaling function f reaches the value 1, see Fig. 3.13, and thus the free energy

cost is given by the prefactor in Eq. (4.79) with the result
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VR,

F _
— — 4mn.R,.L, = 4

T s o (1—w)
\/R_() Co (3v—1)/(2v) R 3—1/v
v an s (2—Ro) (E) , (4.84)

where Eq. (4.81) has been used in the last step. In previous works, see e.g.
Ref. [7], it was pointed out that the free energy cost for small spheres should
be independent of the overlap and only a function of the bulk monomer
density nN ~ nRL/¥. At first sight the right hand side does not look like the
result for the dilute limit given by Eq. (4.69). Nevertheless both expressions
are the same. Substituting Eq. (4.36) into Eq. (4.84) one gets the same
overlap independent result (4.69) as in the dilute limit.

For large spheres R > &, w goes to zero and the argument (4.83) of the
scaling function equals R/€. The prefactor (4.82) in this limit is given by

1 R

Ann.R,L, = dm———— .
av/2G &

(4.85)

Since the mean-field scaling function is for large arguments given by f(z) ~

1

ﬁx2, compare Eq. (3.36), one obtains for the large sphere limit the expression

F T R?

BT SeviE © (4.86)

which is consistent with the small curvature expansion in Eq. (2.61) and the
semi-dilute limit of the osmotic pressure from Eq. (4.54), if Eq. (4.36) is
used. The scaling function for the free energy cost in the semi-dilute limit

is shown in Fig. 4.5. In contrast to Figs. 3.12 and 4.4 there is no trivial
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n-dependence, i.e. no prefactor proportional to n. The free energy depends

on the monomer density only via the screening length &.

10 T T T T T 1717 T T T T T 1717 T T T T T TT7T T T T

10'1 "I“.I IIIIIIIO 1 1 IIIIIIIl 1 1 IIIIIII 1 1 1
10 10 10

R/¢

Figure 4.5: The free energy cost to immerse a spherical particle into a semi-
dilute polymer solution in the renormalized tree approximation versus R/¢.
The dotted and dashed line give the limits of small and large particles, re-

spectively.
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Chapter 5

Ellipsoidal particle

The aim of this chapter is to study ellipsoids as an example of anisotropic par-
ticles. For simplicity only ellipsoids of revolution are considered which arise
by rotating an ellipse around its major or minor axis. Again one has to solve
the differential equation for the ’susceptibility’ x which is the Laplace trans-
form of the end density, compare section 2.5, but now for the outer space Ug
of the ellipsoid. Because of the lower symmetry even the mean-field problem
is not an effective one-dimensional one. Therefore it is much more compli-
cated than the problem of the generalized cylinder, and only ideal chains
are considered. Nevertheless this is the first step towards an understanding
of anisotropic particles in a dilute polymer solution. The boundary value

problem that has to be solved takes the form

(—A+t)x(t;r) = 1 ,for rely (5.1)

x(t;rs) = 0 , for every surface point rg ,

where for simplicity I omitted the superscript [0]. The best way to handle
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this problem mathematically is to introduce spheroidal coordinates and to
calculate the quantities of interest from the Green’s function of the wave
equation. It is possible to check the results in special cases, where the shape
of the ellipsoid is close to a sphere, a cylinder, or a plate. For small particles
an anisotropic version of the ’small-radius expansion’ is tested and found to

work.

5.1 Spheroidal coordinates

The prolate and oblate spheroidal coordinates are the appropriate coordi-
nates for an ellipsoid of revolution, where the axis of revolution is the major
or minor axis, respectively, of the two-dimensional ellipse. The introduction

of the coordinates follows Ref. [45].

The relation between the prolate spheroidal coordinates, shown in Fig.

5.1, and the Cartesian coordinates is given by

o= L 10— )E ~ 1) ose, y=T[0—n)E ~ 1)t sing, 2= e
(5.2)

with
—1<n<1, 1<€<o00, 0<¢<2r. (5.3)

Here the z-axis is taken as the axis of revolution. The surface £ = constant >
1 is an elongated (prolate) ellipsoid of revolution with the major and minor

axis lengths

%2 = f€ 2= fife2—1. (5.4)
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S 1= cos /6

’

4
, nm=cosw/4

n = cosw/3
sy
Il
(S
s Z--- =0
n= —cosm/3
\\
\\
\ 7= —cosw/4
\\
Il p=—1 ‘*n=—cosw/6

Figure 5.1: The prolate spheroidal coordinates. The vertical axis is the axis

of revolution.

The degenerate surface £ = 1 is an infinitely thin needle which extends along
the z-axis from z = —f/2 to z = f/2. The surface |n| = constant < 1is a
hyperboloid of revolution. The cases n = 0 and |n| = 1 yield the xy-plane and
the part of the z-axis with |z| > f/2, respectively. ¢ denotes the azimuthal
angle, and because of the cylindrical symmetry x(¢;r) should not depend on
¢. The oblate spheroidal coordinates, illustrated in Fig. 5.2, are related to

the cartesian coordinates by

Ha—m) @+ 10t sing, 2= Lne

2
(5.5)

N[~

z=2[(1=m)(€+1)]7 cosg, y=
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;- 1=cos7/6

’ n=cosm/d
’

Y n=-cosm/3

\.
/ ! \ n=-cosm/d

1 !n:_l \
n=-cosw/6

Figure 5.2: The oblate spheroidal coordinates. Again the vertical axis is the

axis of revolution.

with
-1<n<1, 0<€<o00, 0< ¢ <27, (5.6)

and again the z-axis is the axis of revolution. Here the surface £ = constant >

0 is a flattened (oblate) ellipsoid of revolution with major and minor axis

%2 = fi/e2+1, 2= fE€. (5.7)

The limiting case £ = 0 represents a circular disk in the xy-plane of radius

a = f/2 while the surface |n| =1 is the z-axis.

Both the prolate and oblate spheroidal coordinate systems are systems
of orthogonal curvilinear coordinates and in each case the coordinates 1, &, ¢

form a right-handed system.
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There are some limits where the ellipsoid reduces to a geometry of higher
symmetry. First of all in the limit f — 0 with R = %f kept fixed the ellipsoid
becomes a sphere with radius R. For an elongated ellipsoid of revolution the
case b = £,/€2—T1 fixed and f — oo describes a cylinder of infinite length
with radius b. For the flattened ellipsoid the case b = %5 fixed and f —
leads to a plate of thickness 2b. As mentioned above, in the prolate case
the limit & \, 1 with arbitrary f leads to a 'needle’ of length f placed on
the z-axis, while the case £ \, 0 with arbitrary f in the oblate case gives a

circular disk of radius f/2 in the xy-plane.

5.2 The differential equation
In both the prolate and oblate spheroidal coordinates is the wave equation

(A+K)yp =0 (5.8)

separable. Thus solutions to Eq. (5.8) may be obtained in the form of the
so called Lamé products [45]

d)m;n = Sm;n (Ca n)Rm;n (C, g) exp(:l:z'mgb) (59)
for the prolate case and

Ymin = m;n(_icaU)Rm;n(_icaioe}(p(iim¢) (5.10)

for the oblate case, where
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¢ = %fk. (5.11)

Due to the cylindrical symmetry of x only solutions independent of ¢ are of
interest, which means that only Lamé products with m = 0 can contribute.
Then the differential equations for the angle function S, := Sp,, and the

radial function R, := Ry, are given by

d 2 d 2,2
and
d 2 d 2¢2 o

The separation constants A, := A,, are the same in both equations and de-
pend only on c. The equations for the oblate case can be obtained by the

transformation
£E—1i, , ¢c— —ic , (5.14)

compare Eq. (5.10). Thus I derive the solution only for prolate ellipsoids.
The solution for the oblate case follows then by the transformation in Eq.
(5.14). For each of the two differential equations (5.12) and (5.13) there exist
two independent solutions called the angle or radial functions of the first and
second kind. Here we need only angle functions of the first kind because
the functions of the second kind diverge in the outer space of the ellipsoid
at » = +1. The angle functions of the first kind can be represented by an

infinite sum over Legendre polynomials

Salcm) = 3 A (e)Py(n) | (5.15)

r=0,1
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5.2. THE DIFFERENTIAL EQUATION

where here and in the sequel the prime over the summation sign indicates
that the summation is over only even values of r if n is even, and over only
odd values of r if n is odd. The coefficients d;’ follow from a recursion formula
given in Appendix C, and the c-dependence is a dependence on c2. Thus they

are real also in the oblate case.

For the radial part one requires functions both of the first and of the
second kind which can be represented by infinite sums over spherical Bessel

or Neumann functions, respectively:

RO = — S i ()gn(ct) (5.16)
S dn(e)m
r=0,1
R@(c,€) = + i i (c)ny(cE) - (5.17)
—0,1

An important linear combination of both that will be used to write down
the solution in the simplest form is the so called radial function of the third

kind, given by
R®(c,€) = RW(c, &) +i RP (¢, €). (5.18)

From this set of functions one can construct the Green’s function of the

wave equation that satisfies

(A+k)G(r,r') = —6(r — 1) (5.19)

and the boundary condition
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G(r,r') = 0 for £ = & or & = & (5.20)

i.e. for r or r’ on the surface of the ellipsoidal particle with major axis 2ag

and minor axis 2by. It is given by [45]

G(n, & ¢;1', €, ¢') % > N ) MO~ S i (€,0) Smin (€, ) -
m=0n=m m;n
( R{),(c, &) )
R (c,&)RE), (c,&") — m}%(?’ (¢, ORY) (c,8), €£<¢
3 (5.21)
, R{), (¢, &) ,
\ Wn(c, €YRE), (c, &) — m3(3 W, ERE) (c,€), €£>¢,

where

Nop(c) = 2 f: '(r + 2m)l(dm)?
o1 (2r +2m + 1)r!

r=

(5.22)

is a normalization factor.

5.3 End density

From the Green’s function, given by Eq.(5.21), one can directly calculate the
solution of Eq. (5.1) by setting k — i/t and integrating the function G with

respect to the unprimed variables. This leads to
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5.3. END DENSITY

x(t;r) = /er(I‘ar'”k:i\/E
2w 1 00
- /0 d¢L dn/@ dEfA(E —n)G(n, &, 631, €, ¢)

_ 1 ., 2d3'(iv/tf) R (iv/if,€)
= t{1 ,X%sz( \/_f)Sm( ivtf,n) é?’(z\/if,go)}' (5.23)

After the integration there remain only terms with m = 0 and even values of
n. These are independent of ¢ and even in 7 in agreement with the symmetry
requirements of x. In the limit r — oo which corresponds to & — oo the
function x reaches its r-independent bulk value 1/¢ because RS) (ivVtf, )
vanishes exponentially, compare Eq. (C.10). Details of the integration can

be found in Appendix C.

By inverting the Laplace transform one gets the end density !
E(r) = — / dt "y (t: ) (5.24)
2mi ' '

Results for the end density as a function of the distance r from the center
of the ellipsoid in the prolate and oblate case for various values of 7 are
shown in Figs. 5.3 and 5.4. The major and minor halfaxes have been chosen
as ap = 2V L = 2R, and by = VL = Ry with R, the radius of gyration
of the polymer. As expected the depletion zone increases with decreasing
curvature. However, the different end density profiles do not cross, and thus
the end density at a certain distance r > a( from the ellipsoid is an increasing
(decreasing) function of 7 in the prolate (oblate) case if one varies 7 from zero

to one. For small ellipsoids this can be seen directly from the small ellipsoid

!Compare Eq. (2.54) for S = 0.
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Figure 5.3: Density of chain ends versus the scaled distance from the center

of a prolate ellipsoid. The halfaxes are given by ag = 2v/L and by = v/L.

1 T == T
| ///<;;f/:.%f;,f‘. =" |
o e
08 ///7/‘./.‘ .
.8 — s ]
///./'./s“.‘
- RV 7
// ./ /’b .
0.6 S -
- S n = cos 0)
= /
5 f S ——— n=cos(nf6) -
04} S == n=cos(nr/4) |
// '/ ;o —— n:cos(ﬂ-/:;)
L / i
2 = cos (7/2
e = cos (r/2)
L / B _|
0.2 /! .
A
B /2 A B b
/ ; 3
0 p oy \ !
1 2 3 4 5
r
VL

Figure 5.4: Density of chain ends versus the scaled distance from the center of

an oblate ellipsoid. Again the halfaxes are given by ag = 2v/L and by = v/L.
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expansion which is discussed in Sec. 5.4 below. Note that the depletion near
the oblate ellipsoid is larger than near the prolate ellipsoid. This can be
understood, since for given major and minor axis the volume and the surface

area of an oblate ellipsoid are larger than those of a prolate ellipsoid.

In Figs. 5.3 and 5.4 the length of the major and minor axis of the ellipsoid
were kept fixed, while the ’angle’ n was varied. Now one is also interested in
analyzing the dependence of the end density on the interfocal distance f. In
order to compare with known results from an embedded sphere, cylinder or
plate, I consider only the end density along (perpendicular to) the z-axis in
the oblate (prolate) case. The length of the minor axis is fixed to 2by = R,

and the interfocal distance f varies from small to large values.

In the limit f \, 0 the sum in Eq. (5.23) reduces to a single term because
the coefficients d2! in this case equal the Kronecker-delta dy;, see Appendix
C for details. Also the sums in the definition of the angular function S,
and the radial functions R®) reduce to the first terms with r = 0, while the

normalization factor Ny; becomes 2. Therefore one obtains in the sphere-limit

1 {1 _ Go(ivVEfE) + ino(ivEfE) }
t Jo(iVtfo) + ino(ivEf&)

1 {1_ §o_sinh (V£§) — cosh (v£f¢) }
¢ ¢ sinh (v/£f&) — cosh (VEf&)

5 1 {1 _ b0 —vitr—to) } (5.25)

x(t;r)

t r

which indeed is the well known expression for a sphere of radius by imbedded

in a solution of ideal chains [22, 7].

The limit of an infinitely long cylinder results from a prolate ellipsoid
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CHAPTER 5. ELLIPSOIDAL PARTICLE

by fixing the length of the short halfaxis by and letting f go to infinity. It
follows from Eq.(1) in chapter 3.91 of Ref. [46] that the corresponding limit
of the radial function is apart from some prefactor a Hankel function of order
zero, independent of the index 2I, and therefore it can be taken out of the

summation to yield

. 1 & HV (ivif Ve —T1)| & 242 Z
X(t’ ) - n {1 [Hél) Z\/%f\/fgi—l)} Z Nzl( )521( \/_fa )

- i VSR

{1 ffc{&(ﬂ))} | (520

o~ | =

Here p = /22 + y? is the distance from the z-axis. In the last step of Eq.
(5.26) the relation

i 243! (iv/tf)

> NliVE) SO Sa(iVif,n) =1 (5.27)

for arbitrary n was used that follows from Eq. (5.3.9) of reference [45] 2.
The last line in Eq. (5.26) is indeed the result for a solution of ideal chains

around a cylinder of radius by in three dimensions [22, 7].

In the oblate case the limit f — oo with fixed by, = 550 leads to a plate,
bounded by the two planar walls z = +by. In this case the radial function
becomes an exponential function, compare Eq. (7) in chapter 3.91 of Ref.
[46], which again can be taken out of the sum. As expected, the limit is the

well known result of the susceptibility in the presence of a planar wall. For

2To derive the relation in Eq. (5.26) one has to take the limit c¢ — oo in Eq. (5.3.9)

of reference [45].
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Figure 5.5: Density of chain ends near a prolate ellipsoid versus the scaled

interfocal distance. The minor axis is given by 2by = v/L and the major axis

by 2ap = VL{/1+ (f2/L). The values f/v/L = 0 and f/+/L = cc give the

results for a sphere and an infinitely long cylinder, respectively.

example for z > by

1 L+ &8 vipe =, 2d3 ,
. s 2 01— §—¢o) 220 (1) 1
X(t’ 1‘) n { 14+ gze ;} Ny ( ) Szl(l\/if, )

S e 2 v,
¢ ~ Nzl 21\? ’

o~

(5.28)

where ( = z — by is the distance from the wall at z = by.
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Figure 5.6: Density of chain ends near an oblate ellipsoid versus the scaled

interfocal distance. The minor axis is given by 2by = v/L and the major axis
by 2a9 = VL1/1 + f2/L. The values f/v/L = 0 and f/v/L = oo give the

results for a sphere and a plate, respectively.

Figures 5.5 and 5.6 show how the end densities for different ellipses in-
terpolate between the different limits. The limits also serve as a check of the

numerical accuracy.

5.4 Small ellipsoids

In this section I discuss two different methods to get simple analytical ex-

pressions for the density of chain ends. The method in the first subsection
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is an extension of the small radius expansion, introduced in Sec. 2.6. This
method works well if the axes of the ellipsoid are small compared to the
polymer length R, and to the distance r from the center of the ellipsoid. In
the second subsection I show results for the limit L — oo which should be

applicable if the condition ag, by, < R, holds.

5.4.1 Operator expansion

In the case of an ellipsoid the anisotropy has to be taken into account. Thus
the series of the right hand side of Eq. (2.56) now includes also anisotropic
operators. The leading anisotropic operators are given by (8,¢)? and ¢(82¢).
The susceptibility x(¢;r) in the leading isotropic order is given by

Xio(tit) = [t < )8 [1+ 416%(0)] >
= [+ 24,Goy(t57,0)]

g TV
dnr |7

1+2A4
; + 244

(5.29)

where the bulk expressions for ¥ and G5 were inserted. The amplitude A;
depends only on the size and shape of the ellipsoid and is therefore a function
of f and &,. It can be obtained by expanding the Green’s function in Eq.
(5.21) for 7,7’ > f and by comparing with the operator expansion. This
yields

(5.30)

107



CHAPTER 5. ELLIPSOIDAL PARTICLE

in the prolate and oblate case, respectively, where

1. z+1

@olz) = élnm—l

(5.31)

is a Legendre function of the second kind. The leading anisotropic contribu-

tion is
Xani(t50) = [ ' < $()8(x') [Ax(0.6(0))* + AsB(024(0)] >v . (5.32)

Using Wick’s theorem and Eqs. (2.47), (2.48), (2.50) the first addend be-

comes

24,0, < / dr'g(r')(0) >b 8, < H(r)p(0) >y

1
= A5(0,Gs(t;r, 0))(82;;) =0. (5.33)
The second addend includes two terms, namely

482 < [ dr'o(x)9(0) >v) < B(x)8(0) >

1
= AsGs(t;r, 0)(6%) =0 (5.34)
and

Ay < [ a9)8(0) >y (22 < 60)8(0) >1) = A5(@Gs(tm,0)7

PRBAPNERY I (5.35)
= COS — — .
Samrd " Viot)
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where ¢ denotes the angle between the vector r and the z-axis, and all
isotropic contributions were neglected. The amplitude As follows from the

same expansion as A; and is given by

27 f3 27 f3
Azprol = ————~ , Asop = ——————— . 5.36
Siprel 3Qo(&o) 300! 3Qo(i o) (5.36)
Applying the inverse Laplace transform to xjs, and xan yields the small el-

lipsoid result for the end density near a small prolate ellipsoid

. 1

Eésé)(r) = 1-— m{erfc(y)

gami(y) = L P oo |2+ 3 2e 3erf 5.37
sE(r) = —mr—gcos (2y° + 3y) Jr + 3erfc(y)| (5.37)

r

with y = 5 T Here it can be seen directly that for a fixed value of r the end

density is a decreasing function of cos .

Figure 5.7 shows a comparison of the analytical small ellipsoid expres-
sion (circles) with the full numerical result from Eq. (5.23) (full line) for the
leading anisotropic contribution £38i(r) = Esp(¥ = 7/2,1) — Esg(¥ = 0,1).
There is a good agreement between the two curves as long as the distance

from the surface is not too small.

5.4.2 Infinitely long chains

In the limit of infinitely long chains the end density follows directly from the

Laplace equation
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Figure 5.7: Leading anisotropic contribution to the density of chain ends
near a small prolate ellipsoid with ao/v/L = 0.05, by/v/L = 0.03 versus the
scaled distance from the center (full line). This is compared with the small

ellipsoid expression of Eq. (5.37) (circles).

—NAE€y(r) =0 (5.38)
with the boundary conditions
ot =rs) =0, Eu(r—00) =1 . (5.39)

Here rg denotes again a point on the surface. The solution of the Laplace

equation with these boundary conditions is given by

Qo(7€)
Qo(io)

Qul®)
Qol&)

Exo(r) = 1 Exolr) =1 — (5.40)
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for the prolate and oblate case, respectively, where Qg is the Legendre func-
tion, defined in Eq. (5.31). As an example I want to study the case of a
small circular disk. As mentioned above, this is obtained in the limit & — 0
from an oblate ellipsoid. In the case r, f < R,, where the radius R = f/2 of
the disk and the distance from the disk are much smaller than the polymer
length, the limit L — oo should be applicable. Then the density of chain

ends perpendicular to and in the plane of the small circular disk are given by

0.8 —

0.6 ]

E L n=1— 4
W

0.4 <=0 —

02 —

1 1 I 1 I 1 I 1
C() 1 2 3 4 5

r/f

Figure 5.8: Density of chain ends near a small circular disk for f/ VL =0.01
(full line). Note that the distance from the center is scaled with the diameter

f of the disk. The circles give the analytical expression from Eq. (5.41).
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9 arctan (?) ,n=1
Escd(r) = — (541)
7 2
arctan (?) -1 ,n=0.

Fig. 5.8 shows the excellent agreement of the numerically obtained density

of chain ends with this prediction in the case f/v/L = 0.01.

5.5 Free energy cost

The free energy cost for immersing an ellipsoidal particle in a solution of
ideal polymers depends of course on the volume of the particle but also on
the shape that means on the eccentricity e = f/(2a) = m . In order
to study the dependence on the latter, I keep the volume of the ellipsoid fixed
and calculate the free energy cost as a function of the eccentricity. Fig. 5.9
shows the results for both a prolate and an oblate ellipsoid of a volume
V = (4r/ 3)723. It is remarkable that the free energy cost is very close to
that of a sphere with radius R = R, as long as the eccentricity is smaller
than 0.8. For ellipsoids with e — 1 which is equivalent with b/a — 0 the free
energy diverges. This is due to the fact that the surface area of the ellipsoid
becomes infinitely large. Since for a plate the depletion layer is larger than
for a cylinder, the free energy cost of immersing an oblate ellipsoid (full line)

is larger than that for a prolate ellipsoid (dots) of the same volume.
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Figure 5.9: Free energy cost for immersing an ellipsoidal particle with the
volume V' = (47/3)R} into a solution of ideal polymer chains versus the
eccentricity of the ellipsoid. The full line is for an oblate ellipsoid, the dotted

line for a prolate one.
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Chapter 6

Center of mass distribution of a
polymer chain near a planar

wall

In the previous sections different density profiles were given for various ge-
ometries and for different values of the inter-chain overlap. Besides the den-
sity of all the chain segments M and the density of chain ends £, the density
of the center of mass of a polymer chain is also of great interest. However,
this is much harder to evaluate, and it has been pointed out by Bolhuis,
Louis, Hansen, and Meijer [15] that even for ideal, random walk like poly-
mers and the simplest boundary of a planar wall no analytic expression was
yet available for the center of mass density profile. In this chapter I show
that this gap can be filled and that one can analytically calculate the bulk-
normalized center of mass density profile of free ideal polymer chains in a

half space bounded by a hard planar wall.
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To derive the profile I consider a single ideal chain of N segments in the
halfspace bounded by a planar wall at z = 0. Then the bulk normalized

center of mass density profile is given by

Con(r) = Co(2) = /0 ~ dzo... /0 " don [ P(z5,%-1)0(em = ). (6.)

Here
2y—1 1 2
P(za,2zB) = (4nl*)"2 exp{—ﬁ(zA — 2B) } , (6.2)
and z.n = ;—V:o z;j/N is the component perpendicular to the wall of the

center of mass of the chain with z; the distance from the wall of segment j.

It is advantageous to introduce a Laplace transform

1 [e7e]
prnd _qu
(¢, L) = \/Z/O dze Cow (2)

2 :Nt20 =~
—12qiN7%0

dZ() / dzNe ZE/I;}(Z(),ZN) (63)
0 b

1 /00
V'L Jo
with respect to the distance z. Here

0o ) N
ZE:II,](Z(),ZN) = /0 dZ]_/O dZN—l H P(Zj,zj—l) .
j=1

- exp {—l2 i w (%) } (6.4)

Jj=1

is the partition function for an ideal chain in the external potential W as
defined in Sec. 2.1. In the present case W(z) = gz has the structure of a
gravitational field with a strength proportional to the Laplace conjugate q.

The continuous chain limit [ — 0 leads to the representation

116



1 o] 00
L :—/ d /d ZWI(L; 20, 6.5
ra D) = = [ da [ don 2(Liz0, ) (6:5)

with the continuous chain partition function ZIW!(L; 2’| z) that satisfies the

differential equation (compare Sec. 2.2)

9 6 Wlrrr

with the ‘initial condition’

ZWI(L' =0,7,2) = 6( — 2) (6.7)

and the boundary condition

ZWNL,2',2) =0, for z=0 or 2/ =0. (6.8)

Since the chain is trapped by the hard wall and the gravitational field, this
problem has only bound states, and the solution of Eq. (6.6) is given by

ZWIL, 2, 2) = Y e LB (2) Yu(2) , (6.9)
where the discrete set of eigenfunctions v,, and eigenvalues E,, satisfies

(03 — g2 + En)n(2) =0 , ¢a(0) =0 (6.10)

and the orthonormality condition that [;° dZ v, (2) ¢¥m(Z) equals one for n =

m and zero otherwise. The solution of (6.10) is given by [30]

Yn(z) = const, - Ai(q*3z — |an|) , (6.11)
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where a,, denotes the n’th zero of the Airy function Ai. The eigenvalues are
given by E, = ¢*/®|a,|, and the constant follows from the orthonormality

condition as

1/6 1/6

q _ 4 _
VI de A (e — [a,])  Al'(an)

const, = (6.12)

In the last step the differential equation for the Airy function was used, and
the prime in Ai’ denotes a derivative. Inserting 1), into Eq. (6.9) and the
resulting Z"! into Eq. (6.5) yields the result

(L) = [ dCe ¥ Culz) = Q7Y Lo @ % Byla,|,  (613)
0 n
where QQ = qL% and ¢ = z/VL=z/ R4. The coefficients B,, are given by

B, = [/w dYAi(Y)r/{\an\ [Ai’(an)]z} : (6.14)

Inverting the Laplace transform in Eq. (6.13) leads to

Colz) = L7 {r(q, L)} = rl{ > B, |an|Q—1/3e—Q2/3|an|}

n=1,2,..
_ > 3 d _n2/3
= L B, (———e @ |””)
{Z 74Q
= gz > BoLH{em @il (6.15)
n=1,2,..

The inverse Laplace transform in the last line can be found in Reference [44]

and is given by
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1028, 3 4 |a,*| 0, 1/2
£ {e Q”'n'}:\ﬁzlag;g ﬁ‘ 2‘ . (6.16)
m o, 1/3, 2/3

where G is Meijer’s G-function. In Appendix D it is shown that this G-

function can be converted into modified Bessel functions, yielding

Cow (2) = 3V3 fj By, X, e [Ky 5(X) + Kays(X,)] (6.17)

27 n=1.2,..

with the distance z from the wall contained in

_ 2 3 2
Xo = o ol / ¢ (6.18)

As expected, Cpy(2) only depends on the ratio ( = z/R,.

For z/R, > 1 the main contribution to the sum in (6.17) comes from

n > 1. In this case one has [30]

B, —2/(3n) and X, — é(m/gf , (6.19)

and the sum can be replaced by an integral. Performing the integration, one

finds that Cpy(2) approaches 1, as expected.

For z/R, < 1 the first term in the sum in (6.17) dominates and

1 1 4 |ay|?
Cpu(2) — ﬁBl|a1|3/2Zexp(—ﬁ‘a§J>
— 2.85%exp(—1.89/§2) : (6.20)
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pwWw

S 05

Figure 6.1: Normalized center of mass density profile for ideal polymer chains
near a hard wall as given by Eq. (6.17) (full line). The dotted line shows the
contribution from the ‘ground state’ n = 1 in (6.17) and the line of dashes

shows the asymptotic expression given in Eq. (6.20).

The behavior of the center of mass density profile (6.17) for arbitrary
z/Ry is shown as the full line in Fig. 6.1. The good agreement with the
corresponding simulation result in Ref. [15] shows that the simulation indeed

probes the universal scaling region.

For ¢ — 0 the center of mass density profile Eq. (6.20) drops to zero
much more rapidly than profiles for the monomer density or the density
of the chain endpoints as can be seen in Fig. 6.2. These display power

laws [15, 19] proportional to ¢? or ¢ rather than the exponential behavior
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Figure 6.2: Comparison between the profiles of the normalized center of mass
density (full line), the density of chain ends (dotted line) and the segment
density (dashed line) for ideal polymer chains near a hard wall. Note that

the area between the different curves and the axis y = 1 is always the same.

in (6.20). For ¢ < 1 the corresponding repulsive free energy of interaction
0Fm(z) = —kpT In[Cpy(2)] between the polymer center of mass and the
wall is of the power law type o (72, while the interaction between a fixed
end dF,,q or a fixed midpoint § Fiu;q of the polymer and the wall is of the
much softer logarithmic type o< In(1/¢). The qualitative difference in entropy
loss is obvious, since fixing the center of mass close to the wall restricts the
polymer configurations much more than fixing an end point or averaging over

all segments. For z.m, = 0 for example only configurations with z; = 0 for all
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j can contribute.

Note the close similarity of Eq. (6.20) with the ratio 87 ?exp(—n*RZ/D?)
of the partition function of a chain between two walls a small distance D apart
and averaged over the position of its fixed end to the partition function with
fixed end in the bulk [1]. This is consistent with the expectation that chain
configurations contributing to a center of mass distance z < R, from a single
wall resemble the configurations of a chain trapped between two walls with
a distance D of the order of z !. Guided by this analogy one would expect
for a single chain with excluded volume interactions between monomers [40]
that the exponential behavior in the center of mass distribution p(2)/ppux

for z/R, < 1 is of the form exp(—const/¢/*) with v the Flory exponent.

What can also be seen in Fig. 6.2 is that the center of mass density profile
reaches its bulk value much faster than the other density profiles. This is
clear from a formal point of view, since the polymer induced surface tension
of the wall which essentially is the integral over the polymer density must not
depend on the special choice of the density. Integrating out the last degree
of freedom should always yield the same value independent of whether this
last degree of freedom is the position of one chain end, any chain segment or

the center of mass. In fact one finds for ideal chains the relation

/Ooodz(l—Mpw(z)) - /0°°dz(1—5pw(z))

o0 2
- dz (1 = Cyu(2)) = —R 6.21
[ ds=Cule) = =Ry (621
and the surface tension is given by (2//7)pR,. Here p = nkgT is the

pressure of ideal chains in the dilute solution.

1The exponential contributions coincide if D = 2.3z.
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Chapter 7

Conclusions

In this thesis I have studied the solvation free energy and the polymer den-
sity depletion profile of a single mesoscopic colloidal particle immersed in a
solution of free non-adsorbing polymer chains. For cylindrical and spherical
particles the main goal was to give a global description valid for arbitrary
values of the particle to polymer size ratio p = R/R, and of the inter-
chain overlap. It is interesting to see how the qualitatively different behavior
evolves in the limits of small and large size ratio and of a dilute and a semi-
dilute polymer solution. For ellipsoidal particles with an axis of rotational
symmetry only a dilute solution of ideal polymers was considered. This is a
first step towards an understanding of anisotropic colloids in dilute polymer
solutions. Since the length of the axes of the ellipsoid was also arbitrary one
can study in particular the solvation free energy and the depletion profiles of

a thin needle or a circular disk.

Many of the results have been obtained within a mean-field description of

the polymer solution, see Eqs. (2.20)-(2.23) and (2.38). While this is quan-
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titatively correct only near four dimensions, most of the qualitative features
persist down to three dimensions. The mean-field approximation is a con-
sistent theory, which obeys exact relationships such as the density-pressure
relation (see Eqgs. (1.3) and (3.44)) and identities which follow from the small
radius expansion (see Sec. 2.6). The mean-field results from Chapter 3 ob-
tained for a cylindrical particle in four dimensions can be used to describe
the qualitative features of a spherical particle in three dimensions. More
quantitative results in three dimensions were obtained for the free energy
cost to immerse the spherical particle into the polymer solution by means of

a ‘renormalized tree approximation’ (see Ch. 4).

Here I summarize briefly the main results. In the first section of Ch. 31
calculated scaling functions for the density profile M. Close to the surface
the density increases quadratically in accordance with the density-pressure
relation in mean-field approximation, see Eq. (3.44). Far away from the
surface the profile reaches its bulk value 1. In between it shows a point
of inflection. The scaled distance £;/R, of the point of inflection from the
surface increases with increasing size ratio and decreases with increasing over-
lap. For R > R, this decrease with increasing overlap is comparable with
the decrease of the density correlation length £p. In the opposite limit of
small radius R < R,,&p the scaled distance is of the order of R/R,, i.e.

independent of the overlap.

For finite values of the inter-chain overlap S there is a maximum in the
density profile M (see Fig. 3.7). This maximum persists down to small size
ratio R <« R,, where it can be explained via the small radius expansion
as a minimum in the bulk density correlation function. The scaled distance

of the maximum from the surface is independent of the size ratio and a
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decreasing function of the overlap. In the dilute and the semi-dilute limit
the maximum vanishes. For small particle radius the density in a semi-dilute
solution crosses over from the overlap independent power law behavior for
R,r, < £ given in Eq. (1.4) to an exponential decay towards the bulk value
for R < ry,&, see Eq. (3.20).

Besides the scaling functions for the density profiles also the mean-field
scaling functions for the free energy of immersion of a particle and for the
pressure which the polymers exert on the particle were calculated. The nu-
merical mean-field results interpolate smoothly between the analytical results
for small and large size ratio p. For increasing p the pressure decreases, due
to an entropically driven decrease in the polymer density near a particle of
increasing size. The results for small p are independent of the inter-chain
overlap S, compare Fig. 3.16. In contrast to that, the scaling function for
the decrease of the number of chains (—dN') on immersing a particle shows
the opposite behavior. It is independent of the overlap for large size ratio,

but it depends on S for particles with small radius, see Eq. (3.51).

The density-pressure identity within the mean-field approximation has
been derived in Appendix A and holds for arbitrary size ratio and arbitrary
overlap. Thus it can serve as a check of the accuracy of our numerical pro-

cedure.

In the Helfrich expansion (2.63) for a weakly curved particle surface the
scaling functions for the overlap dependence of the surface tension ¢ and
of the coefficient x of spontaneous curvature were evaluated both in the
mean field and renormalized tree approaches. In the case of ¢ the mean-
field result agrees qualitatively with the renormalized tree result. However,

there are qualitative differences in the case of k. In particular the scaling law
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k/(NRY) o s~@~D/(@=1) in the semi-dilute limit [which guarantees that &
only depends on the combination nR}v/ v of the segment density| leads to an
s-independent behavior in the mean-field approximation (with » = 1/2) and
to a power law decay in the overlap s in the renormalized tree approximation
(with v = 0.588). The renormalized tree result for o agrees well with the
result by Louis et al. [41] which was obtained by a combination of simulations

and scaling theory.

The renormalized tree approximation was also used to obtain the solva-
tion free energy in the dilute and semi-dilute limit, see Secs. 4.5 and 4.6.
The scaling function in the dilute limit depends only on the size ratio R/R,
and interpolates between the well known limits of large and small size ratio
which are determined by the bulk osmotic pressure and by Eq. (4.69), re-
spectively. In the semi-dilute limit the free energy cost per kg7 is a function
of the ratio R/ and depends on the density only via the screening length
€. Together with the overlap independent result (4.69) for small particle
radius the present renormalized tree results provide a consistent and semi-
quantitative description of the free energy cost along the four ’margins’ of
Fig. 1.1. The scaling functions along the two vertical lines ’large particle
radius’ and ’small particle radius’ and along the two horizontal lines ’dilute
solutions’ and ’semi-dilute solutions’ fit together in the four corners of Fig.
1.1, where they lead to power laws with the correct exponents in three spatial

dimensions.

For the case of an ellipsoidal particle immersed in a dilute solution of
ideal chains I calculated in Ch. 5 the density of chain ends. The depletion
layer around the particle increases with decreasing curvature. Near an oblate

particle the depletion is larger than near a prolate particle with the same
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major and minor axes. Varying the interfocal distance and keeping the small
axis fixed, the ellipsoid interpolates smoothly between a sphere and a cylinder
(prolate ellipsoid) or a sphere and a plate (oblate ellipsoid), respectively. For
small ellipsoids one can derive analytical expressions for the end density from
an anisotropic version of the small radius expansion [34, 35| and from the
infinitely long chain limit. Both predictions are in good agreement with the

numerical results.

In order to study the effect of anisotropy for the free energy cost for
immersing an ellipsoidal particle into a dilute solution of ideal polymer chains,
I calculated the scaling function of the free energy cost as a function of the
eccentricity for fixed volume. It turned out that the free energy cost increases
monotonically with increasing eccentricity. The increase is slightly larger for

oblate ellipsoids than for prolate ones.

In Ch. 6 I derived analytically the center of mass density profile Cyy, for a
dilute solution of ideal chains in presence of a wall. Cp,, shows qualitative dif-
ferences to the monomer or end density. Very close to the wall the monomer
or end density drop to zero with a power law, while the center of mass density
vanishes exponentially. The much larger entropy loss is obvious, since fixing
the center of mass close to the wall restricts the polymer configurations much

more than fixing e.g. an endpoint.
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Appendix A

Derivation of the

density-pressure identity

A.1 Pressure on a sphere from a single ideal

chain

For simplicity I consider first the case of a single spherical particle immersed
in a solution of ideal polymers. All properties follow from the correlation
function Gg(t;ra,rp) of the corresponding Ginzburg-Landau model defined
in Eq. (2.45) of Section 2.5. Consider now a particle with a surface S’ which
deviates slightly from the spherical surface S. S’ is obtained by shifting
each surface point rg of S by a small amount 7(Qs) towards the center of
S. Here Qg is the solid angle of the surface point rg. For the particular
cases 71({2s) = const or n(Qs) x cosdg, the surface S’ is also spherical, but,

compared to S, its radius is decreased (R’ = R — n) or its center is shifted
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along the polar axis. To first order in the small deviation 7, the correlation
function Gg for the deformed surface S’ is related to correlation functions

for the non-deformed spherical surface S via

Go(tawn) = Gs(tixaes) + [ ASn(s) {5(@ndlrs))” - 6(ra) $es) bs
(A1)

Here 0, is a derivative perpendicular to S, and

{%(3n¢(rs))2  J(ra) ¢(rp) }s = {0nd(rs) ¢(ra)}s {0.¢(rs) d(rn)}ts
(A.2)

due to Wick’s theorem. Obviously G in (A.1) satisfies the Ornstein-Zernike
type equation (2.46) for arbitrary points ra, rp off the surface. As is shown

below,

Gs(t;ra,vp) = [ra— (B —n(24))][{0¢(ra) d(rp)}s  (A3)

as r4 approaches the surface and rp is off the surface. Thus G vanishes at

the deformed surface S’.

To derive (A.3) one has to use the explicit form of G5, which for a sphere

in d dimensions is given by [22, 7]

o0

Gs(t;ra, ) = {d(ra)d(rn)}s = S W W) Gi(t;ra,r;R) . (A4)

1=0
Here a = (d — 2)/2, ¥ is the angle between r4 and rg, and

W = 21?71 T(a) (I + a) C!* (cos?) (A.5)
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where Cl(a) are Gegenbauer polynomials, and

él = (rers)™ Ka+l(\/i7'>) (Ia+l(\/£7"<) - % Ka+l(\/i7"<)) )
(A.6)

where r. = min(rs,rg), r~ = max(ra,rg) and I, K are modified Bessel

functions. This implies

{(Gng(rs)) d(ra)}s = li_’im‘“)(mst*-a 2% Kosi(Vtra) | Kan(VER)
- (A.7)

Eq. (A.3) now follows since (A.7) for 74 — R becomes a —function in the

solid angle, i.e.

lim B [ d0 5(05) {(Bad(rs) $ra)ks = f(R4)  (AS)
for arbitrary smooth test functions f. While {(0,¢(rs)) #(ra)}s vanishes
because of the Dirichlet condition if r4 approaches a point on the surface S

which is different from rg, the Dirichlet condition is broken for r4 — rg by

the operator 0,¢(rg).

With the help of Eq. (A.1) one can express the change in free energy of

a polymer with two fixed ends on deforming the particle surface

Fs — Fg . ,C_lGSl . p(S)

in terms of the local polymer pressure p(S) which acts on a surface element dS

of the non-deformed spherical surface S. Here again £ ! denotes the inverse
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of the Laplace transform in Eq. (2.45). Since the two ends are fixed at r4, rp,

p(S) _ p(rs;ra,rs)  L7H{5(0nd(rs))? - ¢(ra) 6(rp) }s

kgT kT B L p(rs) ¢(rs)}s (A.10)
If only one end is fixed at r4 and the other end is free,
P(S) _ plrsira) _ L7H30n0(r5)) - $(ra) [drsdlrn)}s ) 1))

kT ksT B L7 d(ra) [drp o(rp)}s

A simple explicit result follows for a long chain with one end fixed at ry
outside the sphere. In this case R, r4 < R,, the Bessel functions in Eq.
(A.7) can be expanded for small argument, and one finds

p(rs;ra) _ (d—2)T(d/2) (ra/R)?-1 1
kgT 27d/2 1—(R/ra)?2 |rgy —rgld

(A.12)

In d = 3 the derivative of the polymer free energy with respect to the radius

of the sphere is given by

p(rs;ry) 1
= A1l
/dS kgT r4— R ( 3)

and the repulsive force between the fixed point and the sphere by

p(rs;ra) R/r4
rs,r = A.14
/dScosﬁ s®A o rA_R ( )
Both results are consistent with the free energy cost
Fs R
— = -1 (1 — —) A.15
kBT & TA ( )

of introducing the spherical obstacle S.
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The pressure in Egs. (A.10) and (A.11) is related to the density of poly-
mer material near the surface point rg. For example for an ideal chain with

two ends fixed at r4 and rp, the fraction of monomers

I(r = i é(r—r;)d (A.16)

in a volume element dr is related to the partition function Z"! of a chain

subject to an external potential W by [19]

R2 0

Ra 19 :—(712[W} Lira, ;R) . AT
> 000 = (s W2 L es B) ()
Here ZMW! satisfies the diffusion-like equation (2.9) with L’,r,V replaced by

L,r4,W. The derivative of ZM! is related by

) 1
_ W, . R ) — LU0 $%(r)- A18
(Fyy 2™ s waxns B)) = L7 56°0)-6000) 6(e5) I (A18)
to the Ginzburg-Landau correlation function with ¢? inserted. When r ap-
proaches the surface rg of the spherical particle,

Lo = (- Ry

; (0. 9(x5))” (A.19)

l\DIl—l

and Eq. (A.10) leads to the density-pressure relation

(r—R)? p(rs;ra,rp)
R ksT

<’l9(1‘ — 1'5) >A,B — 2 (A20)

For later use I record the relation

d
_EZ[O](Lé ry,Tp; R) = /dS (_

W(L; ra,r5; R) /(r—R)2)
(A.21)
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which follows from (A.1) with an angular-independent 7 = —dR and from
Egs. (A.18) and (A.19).

The relations (A.1), (A.3), (A.8)-(A.11) and (A.21) can be generalized in
an obvious way to other surfaces S such as cylinders or ellipsoids. In partic-
ular, Eq. (A.21) applies to a cylinder of radius R and infinite length if r is

replaced by the distance r; of point r from the axis of the cylinder.

A.2 Density-pressure identity for mutually re-
pelling chains in the mean-field approxi-
mation

To derive (1.3) it is convenient to use the grand canonical ensemble. The

derivative of the free energy for a cylinder in Eq. (3.16) is given by

2 ZW) ) A.22
IR e / (A.22)

LED_ ety

dR kgT = NI
and the density profile of free polymers by Eq. (3.3). There is an obvious
correspondence between tree diagrams of Eq. (A.22) shown in Fig. A.1 and
tree diagrams (with r-insertions) of Eq. (3.3). Using Eq. (A.21) for each
ideal polymer line in Eq. (A.22) generates all the corresponding diagrams
of Eq. (3.3), with prefactors such that Eq. (1.3) holds in the form of Eq.
(3.44).
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A.2. DENSITY-PRESSURE IDENTITY FOR REPELLING CHAINS

TS
1d X
NdR
TS
1d
YR | X | + 3 other terms
—— ——

Figure A.1: Diagrammatic representation of the derivative of the free en-
ergy cost with respect to the radius of the cylindrical particle (Egs. (A.21),
(A.22)). Each diagram has its counterpart in the fugacity expansion (3.3) of

the polymer density near the surface.
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Appendix B

Solution of self-consistent

equations

In order to solve the system of equations (2.20)-(2.23), one uses the Laplace

transform of the partition function Z!V!(L,r) introduced in Section 2.5

Wit ) =£2M(0L,1). (B.1)

If one now introduces the dimensionless quantities

p=r VL, T=Lt+8 (B.2)

and

then Egs. (2.20) and (2.21) lead to

—RUP) ~ T ) + [+ VD) %2(9) = 1 (B.4)
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with
V() =S[-1+M(ry)] . (B.5)

According to Eq. (2.23),
= [ —eX2(p B.
M(rL) L 5s € X2 (P) (B.6)

where the integration path 7 is parallel to the imaginary axis and to the
right of all singularities of the integrand. For the explicit calculation of the
inverse Laplace transform one can use Cauchy’s integral theorem to deform

the integration path as indicated in Fig. B.1.

The integrations over the large quarter circles (2, 76) vanish if the ra-
dius goes to infinity and on making the angle « arbitrarily small, one remains
with an integration of the imaginary part of X2 along the negative real axis
(73, 75) and an integration along the small circle around the origin (y4). The

boundary condition (2.22) now reads

X-(p— R/VL) =0 | (B.7)

and the bulk limit is given by

lim -(7) = (B.5)

p—00

Since the density profile reaches its bulk value 1 at a distance of a few
times the correlation length, one can assume that the range of the potential
8V is finite, i.e. there exists a g with 6V(5) = 0 for p > fo. Thus, in the

range p > po the relevant linear differential equation is
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Figure B.1: Deformation of the integration path. «; is the original path, an
integration along 7, and g vanishes if the large radius goes to infinity. For
a — 0 the integration over 73 and <5 is an integration along the negative real

axis.

—%1(5) — ‘”ﬁ‘ L)+ () =1 (B.9)

with the boundary condition (B.8), whereas in the range g, = R/vVL < p <

Po one has to solve numerically the initial value problems

~g4(0) — PS5 + [+ V()] 0 (7) = 1

9-(ps) =0, g:(ps) =0 (B.10)

and
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) - 4 p_ Lkt (7) + 1+ 89(5)] he(5) = 0

he(Bs) =0, h(ps) = 1. (B.11)

The solution to Eq. (B.4) is given by

Xr(ﬁ) = <g‘r(ﬁ) + Clhr(ﬁ) ) % + cZﬁaKa(ﬁ\/F)>

for (R/VL<p<po, po<p) (B.12)

where o = (d; —2)/2 and K, is a modified Bessel function. The constants c;

and ¢, are calculated from the continuity condition of %, and X. at g = py.

Thus, after choosing a starting potential ! §V, (p), one calculates, with the
steps described above, a solution %2, which by means of Egs. (B.6) and (B.5)
yields a new potential §V;(5). Solving the problem (B.4)-(B.8) again with
8V(p) replaced by §V,(5) and following the same steps leads to a potential
6V,(p) and so on. The sequence §V;(5) then converges to the self-consistent
potential 6V(5), which yields the monomer density M(r, ) directly from Eq.
(B.5).

Tn practise 6V, (p) was always chosen to be zero so that the solution X is the well

known analytical result for the dilute limit
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Appendix C

Susceptibility for the ellipsoid

problem

Here the integration of the Green’s function that leads to the susceptibility
in Eq. (5.23) is shown in detail. Starting point is the relation

xtr) = [Tdo [ an [~ aer€ - )G g i ghe) . (C)
where for G one has to insert Eq. (5.21). The integration over the angle
variable ¢ leads to a factor 27,0, as expected from the symmetry require-
ments. Therefore the sum over m reduces to the one addend with m = 0,

and one gets

xex) = ik [ dn [ aere - o) io—s (e, m)Snle, 1)
RV (c,§)RP(c,¢") - MC 5°)R (e, )R (c, &), €< &
Rn (¢, &) (c2)
R (C 0) ]
RN (c, &YRB)(c, —n 223 RO (¢, &)RB) (¢ i
(6, &R (c, &) — A9 ) e, ) R®(c, &), €> ¢
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The integration over n can also be carried out independently yielding

!

/ dn (€% —n*) ﬁ?ci /Zdnﬁz—nﬂfﬂn)

r=0,1

0 1
Zﬂﬂ@/«m&ﬂwﬁamm n =2l
1
Z dgijrll /1 dn (52 - 772)P2r+1(77) ,nm=20+1
2 4
0 ,n=20+1.

(C.3)

To simplify the integration over £ one needs the recursion formula for the

coeflicients d} that is given by [45]

(r+2)(r+1)c? 2r(r+1)—-1

(2r + 3)(2r + 502 F lr(r =M+ ¢ | @
(%Tgigil)lﬂdzo. (C.4)
For r = 0 this leads to
12—50 dy(c) + (%c2 — An(€)) di(c) =0 . (C.5)

Inserting this result into Eq. (C.3) gives for the 7-integration the result

2d3(c)
2

/_ 11 dn (€% — 1%)Sn(c,n) = (262 — An(€)) 0o (C.6)

so that only even values of n survive. For the sphere limit in Eq. (5.25) I
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need also the behavior of the coefficients for f — 0. This is equivalent with

¢ — 0, and in this limit the recursion formula reduces to

0 = [r(r+1)—X(0)]d(0)

= [r(r+1) —n(n+1)]d"(0) . (C.7)

The ¢ — 0 result A\,(0) = n(n + 1) is taken from Reference [45]. From the
last line it follows that d?(0) = const - d,,, and from the normalization of the

coefficients it follows that const = 1.

The remaining £-integration decomposes into two parts. One gets for

E<¢

R7(11) (C, 50)

RY(c, &)
) ¢

(RO - WR@(Q 0)| 9

C’ 60) " Eo

/. e (€~ () [Rgn(c, RD(c, ') —

E R )R )

— R9(e,£) [(52 0%

and for £ > ¢’

7 de @€ = auie | R e )R )——ﬁ%ﬁigji";&@(c, L
n » S0
' R(l)(c, 50) ' ) l d ‘|00
=_— [ RW _ n A1 50/ p(3) 2 _ 1)=—_R®) C.
(o) - Do) @ - ngroeo] 9

where the differential equation for R, (Eq. (5.13)) was used. From Eq.
(4.1.17) in reference [45] one knows that

icé
R (e.6) 5 -

- (C.10)
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Thus, for ¢ = iv/tf R®(c, &) vanishes exponentially, and the insertion of
the upper bound in Eq. (C.9) yields no contribution. Inserting the other
boundaries and combining Egs. (C.2), (C.6), (C.8), (C.9) gives

2k f3 i g (c) Sule,n')
1=0 Nzl(C) RS) (C, 60)

X(t’ I‘) = - 2

AR [ite” 1) (R e 00 (3 6)) — (38 8)) B (cr80) + ]
— (@R (0.6)) (€ - 1) (B (e )Ry (e.€) — Ry (. ) B3 (e,€) }, (C11)

where I used Eq. (5.18) and the Wronskian

1

@ 1)

RO(c,€) ( d

@) _ p® d
) - me (

%ﬁ“@8>

Applying again the same tools one gets

1 & 2d2!(c) Szl(c, n)
i) = Z o Na(c) R (Ca &o

) {RY)(c,&) — Ry (c,€)}, (C.13)

and by using Eq. (5.27) and setting k = 44/t one finally arrives at

oy = L) 245GV R (ivf,€)
x(tr) = t{l 125 Noy(iv/tf) Sulivtl, ) 21 (Z\/_f,fo)} - (G
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Appendix D

Transformation of the Meijer

function

In the derivation of the center of mass density profile near a planar wall in
Chapter 6 occurs a Meijer G-function. Since this is no standard function one
is interested to express it in terms of more well known functions if possible.
In this appendix I show how this can be done in the present case. Inserting

the definition of the Meijer function, given in Ref. [43] one finds

G’g’g(x 0, 1/2 ):1/ F<§+S)F(§+s)x_5ds
Lio

0, 1/3, 2/3 2 T (3+s)

1 / Li+s+2+4s)T(2+s)T(3+5)
Liw

= omi Its T(%+s) v
11 T(3+s)T(2+s) T(2+s)T(3+5)] _,
_E%/Li00 I‘(%+s) + F(g—i—s) z *ds
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1 T(1+t)T(-1+¢t) T(2+t)T(-2+¢)
5 / +

276 JLios r (% + t) r (% + t)

S R S|
x +Gp |7 : (D.1)
1/3, —1/3 2/3, —2/3

L;., denotes a way in the complex plane parallel to the imaginary axis and to

x trdt

NN

2,0
G712

’

(SRS

the right of all singularities of the integrand, and in the fourth step I substi-
tuted s+ 1 by ¢. Again from Ref. [43] one can find that the Meijer functions

in the last expression are directly related to the modified Bessel function via

e (w 2 _a) = %e_” K 3) (D2)

a,

which leads directly to the result used in Eq. (6.17)

ol o) e ben@) () - 09
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