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Abstract

We examine the conformations and effective interaction potentials for two classes of star-
branched polymeric materials. The work consists essentially of two parts: the investigation
of the interaction potential between two polyelectrolyte stars (PE-stars), and between an
uncharged star polymer and a hard colloidal particle of varying curvature. While in the
latter case we can take use of wide knowledge of pure star polymers in terms of their confor-
mations, in the case of PE-stars we have to develop a convenient theoretical model to study
conformational properties of an isolated PE-star. We observe a strong “trapping”-effect
of the inhomogeneously distributed counterions within the PE-star, as well as significant
counterion condensation along the chains, which are almost fully stretched. We use these
one-star results, also confirmed by monomer-resolved Molecular Dynamics computer sim-
ulations with explicit consideration of counterions, for an extension of the theory to the
two-star case. Based on variational free energy calculations we compute, in addition to
conformational properties, the effective interaction potential between two PE-stars. In this
context, we have to account for the strongly inhomogeneous charge distribution of PE-stars,
and the possibility of counterion condensation. As a result, we obtain a non-linear ultra-soft
repulsion between two PE-stars, induced mainly by the entropic contribution of the coun-
terions. We compare these theoretical results with data obtained from Molecular Dynamics
simulations of two stars for a wide range of parameter combinations, including the addition
of salt. We also propose an analytical expression for the effective pair potential between two
PE-stars for all distances and physical parameters: a combination of a power-law repulsion
at close separations and a Yukawa decay at larger distances. In the case of star-polymer-
colloid mixture, we start with a consideration of a star polymer at a hard wall and expand
the model to that of a star polymer at a spherical colloid, considering a wide range of size
ratios between the two. The mean force acting on the star has been compared with results
from Molecular Dynamics simulations. As in pure star polymer solutions for low arm num-
bers, we obtain again two parts for the effective interaction between a star and a wall or
a sphere: a logarithmic repulsion at close separations, and a Gaussian decay at distances
beyond overlap. In both cases, for PE-stars as well as for a star-polymer-colloid mixture,
we obtain very good agreement between theory and simulation, enabling future work on the
systems considered, concerning the structural and phase properties of many-body systems
consisting of such macromolecules.






Zusammenfassung

Die vorliegende Arbeit befafit sich mit der Bestimmung der effektiven Wechselwirkung in
komplexen Systemen, verdeutlicht an zwei Beispielen aus der aktuellen Forschung auf dem
Gebiet der weichen Materie. Zum einen berechnen wir das effektive Wechselwirkungspo-
tential zwischen zwei sternformigen Polyelektrolyten (PE-Sterne), zum anderen bestimmen
wir dieselbe Grofle zwischen einem ungeladenen Sternpolymer und einem harten kolloida-
len Teilchen. Wihrend letzteres, autbauend auf Erkenntnissen detaillierter theoretischer und
experimenteller Untersuchungen, analysiert werden kann, sind wir im Fall von PE-Sternen,
aufgrund unzureichend vorhandener Ergebnisse auf diesem Gebiet, gezwungen ein theore-
tisches Modell zu entwickeln, um zunéchst genauere Einsichten iiber ihre Konformation zu
erhalten. Mithilfe von Molekular Dynamik Simulationen eines isolierten PE-Sterns mit ex-
pliziter Beriicksichtigung der Gegenionen, ist es moglich Theorie- und Simulationsergebnisse
direkt miteinander zu vergleichen. Wir beobachten eine inhomogene Gegenionenverteilung
im Bereich des Inneren des Sterns, sowie eine deutliche Gegenionenkondensation entlang
der fast vollig gestreckten Ketten. Auf diesen Erkenntnissen der Ein-Stern-Studie basierend,
erweitern wir das Ein-Stern-Modell auf ein Zwei-Sterne-Modell um die effektive Wechselwir-
kung zu bestimmen. In diesem Zusammenhang beriicksichtigen wir die stark inhomogene
Ladungsverteilung der Sterne, sowie die Moglichkeit der Gegenionenkondensation; die Be-
handlung dieser Aspekte stellt ein Novum bei der Untersuchung dieser Systeme dar. Mit
Hilfe der Variation der freien Energie wird das effektive Wechselwirkungspotential zwischen
zwei PE-Sternen gewonnen und mit Daten aus unseren Molekur Dynamik Simulationen ver-
glichen. Als Ergebnis beobachten wir ein nichtlineares, extrem weiches Abstossungspotential
zwischen den Sternen, hauptséchlich verursacht durch die Gegenionenentropie. Diese Voraus-
sage stimmt sehr gut iiberein mit unseren Simulationsdaten, und zwar fiir eine weite Auswahl
von Parameterkombinationen, wobei die Betrachtung eines salzhaltigen Systems eingeschlos-
sen ist. Zudem geben wir einen aus zwei Anteilen bestehenden analytischen Ausdruck fiir das
effektive Paarpotential zwischen zwei PE-Sternen an: ein extrem weiches Potenzgesetz fiir
kleine Abstéinde, und ein Yukawa-Abfall fiir Abstéinde jenseits der Uberlappung der Sterne.
Die Abstoflung ist zwar auf absoluter Skala gréfler gegeniiber neutralen Sternen, sie fillt je-
doch “weicher” ab. Im Falle der Sternpolymer-Kolloid Mischung berechnen wir zunéichst die
mittlere Kraft, die ein Stern in der Nihe einer harten Wand erfihrt. Anschlieend erweitern
wir das Modell auf ein Sternpolymer an einem sphérischen Kolloidteilchen. In beiden Féllen
ist das Ergebnis fiir die Paarwechselwirkung #nhlich der der Wechselwirkung zweier Stern-
polymere kleiner Armzahl: ein ultra-weiches logarithmisches Wechselwirkungspotential fiir
kleine Abstinde, und ein Gauss’scher Abfall jenseits der Uberlappung. In beiden in dieser



Arbeit vorgestellten Féllen, sowohl fiir Polyelektrolytsterne, als auch fiir die Sternpolymer-
Kolloid-Mischung, erhalten wir eine sehr gute Ubereinstimmung zwischen Theorie und Si-
mulation. Wir er6ffnen mit der Angabe eines analytischen Ausdrucks fiir die effektive Wech-
selwirkung die Moglichkeit fiir kiinftige Untersuchungen, wie beispielsweise das Studium des
Phasenverhaltens oder der strukturellen Eigenschaften dieser Makromolekiile.
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Chapter 1

Introduction

The concept of effective interaction is one of the most important tools in statistical physics.
Especially for the study of complex fluids the knowledge of the effective interaction between
the involved particles opens a gate for further investigations. To understand this one should
be aware on the characteristics of complex fluids and the problems which arise in studying
those systems.

Complex fluids are, in contrast to so-called simple fluids, multicomponent systems. The
involved particles can disperse in size and in other physical quantities like charges. Geo-
metrical asymmetries itself increase the complexity due to ensuing different length and time
scales, on which the system has to be considered. Consider for example charged colloids
in a salted solution, there are at least three different length scales: the microscale of the
solvent, the nanoscale of the counter- and coions, some typical electrostatic quantities like
the Debye length on nanoscale as well, and finally the size of the colloidal particle itself
on mesoscale (Inm-1pm). In addition all mentioned particles have different timescales as
well, since, e.g., their diffusion times differ in similar orders of magnitudes as the associated
length scales. In computer simulations, like in Molecular Dynamics (MD) or Monte Carlo
(MC) simulations, one has to deal with timesteps, typically in femtosecond scale, in order to
regard the movement of the smallest particles in the convenient way. For investigations of
large-scale phenomena of the colloidal particle over times of milliseconds, even special tech-
niques like multiple-timestep methods [1, 2], cannot effort the required simulation expenses.
It is therefore desireable and beneficial to develop a method which can bridge the ensuing
length and time scales in order to enable a systematic study of large-scale phenomena, like
structural correlations or the phase behavior of the complex fluid.

The basic idea of the mentioned concept of effective interaction is to “trace” out the
microscopic degrees of freedom of all particles except of the particle we are interested for.
In the above mentioned example we integrate out the degrees of freedom of the solvent
molecules, the counter- and coions, in order to obtain a so-called effective interaction between
the colloidal particles only. This effective interaction include in contrast to the “bare”
interactions of the colloids all interaction components of the smaller particles implicitely.
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For example, in the so-called Asakura Oosawa (AQO) model of a colloid-polymer mixture [3],
where colloids are hard spheres, i.e. their “bare” interaction is infinite at contact and zero
elsewhere, further hard-core interactions between the polymers and the colloids, but no
interaction at all between polymers, the so-called depletion effect occurs. By tracing out
the degrees of freedom of the polymers one obtains the effective interaction between the
colloids. In fact one coarse-graine the system in this way. The colloids even acquire an
attractive contribution in their effective interaction potential. The knowledge of the effective
interaction between the colloids enables then a structural analysis of the colloidal system,
i.e. one investigate the system on mesoscopic lengthscales. In this way, one bridge existing
lengthscales of the polymers to the lengthscale of the colloids.

Another example of complex fluids are polymer solutions themselves. They are complex
and provide a multicomponent system in nature, even though the solvent is considered
to be “only” a “smeared” background. Polymers have an internal conformation, formed
by chains of so-called monomers. Here, the microscopic degrees of freedom, the monomer
coordinates and momenta, result from the monomers, which are themselves the constituent
of the colloidal particle, the polymer. Hence, a formulation of the effective interaction
between the polymers requires the knowledge of the conformation of the polymer. Polymers
with globule shapes may have different interaction potentials than coil-shaped polymers.
The different polymer phases appears due to their behavior in solution. This leads to the
question of the flexibility of the chain, which determines the polymer conformation, and
finally the effective interaction between the polymers. The above mentioned AO model
treats the polymers as non-interacting particles, but this is not always true. In fact, one
obtains a Gaussian interaction potential [4], based on a conformational analysis of isolated
chains. On the other side, polymers show also an ultra-soft logarithmic potential at close
separations for self-avoiding chains, i.e. in good solvents [5]. It is also important to know
which parameters influence the flexibility of the chain, and therefore the conformation. Two
examples for such parameters are the solvent quality and, eventually charges in the case of
charged polymers, so-called polyelectrolytes (PEs).

In this work we consider a special architecture of polymeric systems, so-called star-
branched polymers. In contrast to linear polymers, which are studied extensively [6, 7, 8,
9, 10] just in the past years star polymers have been subject of wide interest in soft matter
physics, (for a review see e.g. [11]). Star polymers are systems of linear polymers that are
grafted at a common microscopic core. By tuning the arm number or the functionality, f,
they build an important link between linear polymers (f = 1,2) and steric-stabilized colloids
(f > 1), as depicted in Fig. 1. Star polymer solutions find applications as stabilization
components in colloidal systems, due to their steric repulsion against the van der Waals
attraction acting between the star polymer cores, at which the chains are grafted. They
are also applied as viscoelastic fluid in oil industry. But even in basic research they are of
large interest. Star polymers have been studied by theoretical methods [12, 5], experiments
[13, 14, 15, 16, 17] and computer modeling [18, 19, 20, 21, 22, 23], concerning their static



f=1,2 f>>1

Figure 1.1: Tllustration of a star polymer (in the middle) providing a link between
linear polymers (left sketch) and steric stabilized colloids (right sketch). The sizes
are denoted by the radius of gyration R, or the diameter o.(Courtesy of Martin Wat-
zlawek.)

properties as well as in relation to their dynamical properties [24, 25, 26]. They belong
to the class of ultra-soft interacting particles [27, 28, 29, 30] and provide a comprehensive
phase behavior with exotic crystal symmetries [31, 32]. Due to their internal structure they
constitute a challenge in formulation of an effective interaction potential. With the help of
scaling theory [12, 5] it was possible to develop an effective interaction [27, 28] and to take
it as a starting quantity for further investigations like their phase behavior [31, 32, 33].

In contrast to pure star polymer solutions (in the sense that there are no other colloidal
particles in the solution), mixtures of star polymers with truly hard colloids have only been
investigated quite recently. In realistic systems star polymers often occur in a mixture
with colloidal particles. Again, a theoretical prediction of the phase behavior of this binary
mixture is enabled by constructing an effective interaction between the involved particles
[34, 35, 36]; the development of the effective interaction between star polymers and colloidal
particles is part of this work.

A further and more challenging star-like system are polyelectrolyte stars (PE-stars), i.e.,
star polymers containing monomers along the chains, which dissociate so-called counterions
into the solution; the whole system is electrical neutral. The challenge consists of the fact
that those systems establish a link between soft matter systems with internal structure on
one side, and an electrostatic system with strongly inhomogeneous charge distribution on the
other. The coupling of statistical mechanics and electrostatics results in some interesting
effects, like the so-called counterion (Manning-)condensation [37], where the electrostatic
attraction between the counterions and the oppositely charged monomers wins against its
competitive counterion entropy. This kind of effect and the variation of the additional
parameter “charge” lead to interesting conformational phase behaviors of the star, expected
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to range from fully stretched chains up to collapsed globules. A rich phase diagram has been
proposed by Schiessel et al. in the case of linear polyelectrolyte solutions [38]. A similar
behavior for stars can be expected.

Analogously to neutral star polymers, PE-stars provides a link between linear PEs (f =
1,2) and charged colloids, (f > 1), according to Fig. 1. Since the charge offers an additional
tuning parameter PE-star solution can be more efficient in terms of their stability against
coagulation than “usual” steric- or charged stabilized colloids. Moreover, star-branched PEs
can be viewed as a combination of steric- and charged stabilized colloidal particles. It can
be expected that not only the repulsion between PE-stars is higher, than for example the
DLVO repulsion between charged colloids [39, 40], also their strength can be tuned by more
parameters like by the functionality f, by the charge fraction along the chains, as well as by
the salt concentration.

In contrast to neutral star polymers, their charged counterparts have not been understood
in full detail. An experimental investigation requires a convenient sample, which is relativly
difficult to prepare chemically. In addition one has to take account of the counterions,
which can disturb a bare observation of the stars only. Recently there have been carried
out some X-ray scattering of a dilute PE-star solution [41]. Similar objects like colloidal
polyelectolyte brushes, are also subject of recent research interest in this field [42, 43, 44].
From the theoretical point of view there have been studies of the internal structure of isolated
PE-stars [45, 46, 47, 48]. Pincus considered two of such stars but could only give somewhat
qualitative predictions for the effective interaction between PE-stars [49]. He proposed
that the counterions, which guarantee the neutrality of the whole system, are playing the
major role for the interaction potential, and he predicted a constant force between the stars.
Since there have not exist computer simulations or experimental studies on this matter, this
prediction could not been verified yet.

The difficulty for a detailed study of PE-stars arises again from the ensuing different
length scales: there are the microscopic length scales, like the monomer- and counterion
diameter, the extension size of the star, and there are also charge-induced length scales. Al-
though in the neutral stars the first two length scales also exist, their treatment was enabled
by tracing out the microscopic degrees of freedom of the monomers, whereas in the charged
case this is not possible anymore, due to ensuing long-ranged Coulomb interactions. The
associated length scales, like the Debye screening length, cannot be handled straightforward.
Scaling concepts, as used for neutral systems, are not convenient methods for calculating
conformational properties quantitatively. Hence, it is not surprising that much more difficul-
ties exist for the calculation of an effective interaction and conventional scaling concepts fail.
Therefore the gate for further theoretical investigation of large scale phenomena in PE-star
solutions remained closed.

In addition computer simulation of PE-stars are missing, since they require large com-
putational effort, resulting in a long CPU time. Although the simulation of linear PEs has
progressed in the past years [50, 51, 52] there is a lack of results in the case of star-branched



PEs. In this work we present both a theory and a simulation study of star-branched PEs,
enabling a straightforward comparison between both methods.

The work starts with Chapter 2 as a prelimenary part of the main subjects. Chapter 2
begins with a short review of some common terms in polymer theory. The main focus lies
in the description of the reasons for the flexibility of polymer chains, and their influencing
parameters, like the solvent quality and the charge effect. In this context we stress the
reason for conformational properties of star-like systems, considered in Chapter 3. Another
important part of Chapter 2 concerns the effective interaction. Following Ref. [53] we give a
formal statistical mechanical justification for the concept of the effective interaction. We also
show the link between theory and computer simulation relating to the measurement of the
interaction potential in computer simulations, which is quite relevant for verifying theoretical
predictions. The mentioned link between theory and simulation is a very important aspect
for all studied systems in this work for which we compare theoretical models with simulation
results.

The main focus of the work lies in Chapter 3, where the study of PE-stars in terms of
their theoretical treatment and of their computer modeling is presented. Both methods are
applied on an isolated PE-star, and on two stars. The results were published recently [54, 55]
and are shown in this work. The Chapter is shared in two parts. In the first Section an
isolated PE-star is considered in a Wigner-Seitz cell, based on an idea of Klein Wolterink
et al. [48]. However, our theoretical model has to be distinguished from the model of Klein
Wolterink et al. in terms of two main features: first, we consider an inhomogeneous charge
distribution within the star; second, we distinguish three counterion states, one of this states
counts for condensed counterions. Both features provide a novum in the calculation of PE-
stars, and have not been taken into account in previous works [45, 46, 47, 48, 49], although
they are crucial for the development of the effective interaction potential. A variational free
energy calculation were done in order to obtain values for the radius of the star, and for the
numbers of the counterions in their three states. A comparison with results for this confor-
mational properties obtained from monomer-resolved Molecular Dynamics simulations with
explicit counterion consideration shows a very good agreement, for the salt-free case as well
as in the added salt case. In the second part of Chapter 3 we expand the one-star model
to a two star model. Here, two stars are considered at separation D and all free energy
contributions contain a D-dependence. The free energy calculation yield a interaction po-
tential for the stars. The main result is that the interaction potential is essentially induced
by the counterion entropy, and only indirectly by the electrostatic repulsion of the chains,
as was already predicted qualitatively by Pincus [49]. However, the repulsive force is not
constant, as he proposed; moreover, it is a non-linear decay, softer concerning its curvature
than in the case of neutral star polymers [27], but larger in its absolute value, depending
on the charge fraction. The theoretical results are compared with simulation data with
excellent agreement, also for the case of added salt. We also present an analytical expres-
sion for the interaction potential for all distances and parameter combinations, in order to
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give stimulation for further experimental investigations and large scale studies of PE-star
solutions.

Chapter 4 deals with the calculation of the effective interaction between a neutral star
polymer and a colloidal particle, as was published recently in Refs. [35, 56]. The procedure
starts with a calculation of the osmotic pressure of a star at a hard wall, based on an
idea of Pincus [49]. The next step is the modification of the theoretical model of a star
close to a spherical colloid. The resulting effective forces are verified and confirmed by
monomer-resolved Molecular Dynamics simulation data. Furthermore, a modified version of
the star-star potential which is valid for very low arm numbers, f < 10 is presented. The
proposed analytical expression for the effective interaction potential between the star and a
colloid has been used as a input quantity in liquid state theory [57] in order to calculate the
phase behavior of a star polymer colloid mixture [34, 36, 56].

The two last mentioned Chapters are self-contained and at the beginning and at the end
of each Chapter a short introduction and a summary, respectively, to the topic dealt are
given. After a conclusion and an outlook of the work in Chapter 5 three Appendices follow.
In Appendix A the effect of triplet interaction in star polymer solutions is shortly presented,
based on Ref. [30]. It is an example for many-body contributions mentioned in Section 2.2,
and justifies the use of the pair potential approximation for the considered star-like systems,
since it has only minor contributions to the total force. The other Appendices deal with
some technical information: in Appendix B about the Lekner method for the treatment of
long-ranged Coulomb forces in computer simulations [58]. In Appendix C some technical
details for the calculation of the electrostatic potential of two fused spheres are presented.
The results are used for the calculations of two PE-stars in Section 3.2.



Chapter 2

Conformations of Flexible Polymers
and their Effective Interactions

As a preparation for the later investigations into star-like systems, a short overview of some
important terms within polymer theory is given in this chapter. The main focus lies in the
consideration of static properties of flexible polymers. The analysis of the conformation of
polymer systems is important for the understanding of the physical behavior of polymers.
A detailed study of the conformation is often a prerequisite for the formulation of a theory
that can bridge the gap between a microscopic and a macroscopic description of polymeric
matter.

One way of predicting macroscopic properties such as phase behavior is to put forward an
effective interaction potential between colloidal particles like star polymers. Knowledge of
the form of effective interaction potential allows it to be used as an input quantity in liquid
integral equation theory and/or computer simulations in order to calculate structure factors
of colloidal systems. Therefore, effective interaction provides an important link between
theory, computer simulation and experiment.

In this chapter we adopt a similar procedure to that of Refs. [59] and [53]. We begin
with a description of the conformation of linear polymer chains and the parameters that are
responsible for their flexibility and consequently for the conformations of the chains. The
second part of the chapter is largely based on Ref. [53] and provides a statistical mechanical
derivation of the effective interaction in a multi-component system. It is shown that the
concept of the effective interaction can be defined exactly within the framework of statisti-
cal mechanics. Furthermore, it is presented how the effective interaction potential can be
measured in computer simulations.

2.1 Conformations of polymers

One of the first questions concerns the reason of the flexibility of a single polymer chain.
To answer this, one should proceed with a microscopic view at the spatial layout or the

7
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Figure 2.1: Schematic picture of a polymer chain, consisting of methylene groups.
The bond angle # between two neighbored chain segments is also depicted.

instantaneous configuration of a chain molecule.

In Fig. 2.1 we sketch a typical configuration of a chain molecule, in this case consisting
of methylene groups CH,. Although the bond length a between the methylene groups as
well as the bond angle 6 are fixed, there still remain degrees of freedom available to the
overall configuration of the chain. This freedom manifests itself in rotating two neighbored
monomers around their bond axis without affecting ¢ and #. The mentioned rotations
around the bonds are important for the flexibility of the chain and affect the configuration
of the polymer. The spatial structure of a polymer chain is given by the positions of the
chain segments called monomers, which consist of a group of atoms. We will see later in
this Section that one can define an effective monomer, which allows them full freedom of
rotation, not only around the bond.

First we want to define two quantities describing the extension of a polymer. We consider
the bond vectors I; between the chain segment ¢ — 1 and ¢, ¢ > 1,2,..., N with N as the
degree of polymerization . These bond vectors define the so called end-to-end vector

L=>1, (2.1)

whereas the absolute value of L gives information about the extension of the polymer:

N N
P=L-L=) L= 1+2 Y 1Ll (2.2)
=1

ij=1 1<i<j<N

In general, we can define the distance between two monomers M; and M; as

J
L= L+ > il (2.3)

i'=i+1 i<i! <j'<j

Similar to the end-to-end vector L, the radius of gyration s is another quantity that
provides a measure of the spatial extension of the chain as well. s is defined as the mean
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squared value of the distance vectors s;,7 =0,1,2,..., N of the monomer positions and the
position of the polymer’s center of mass.

1

2 2
= 2. 2.4
TN+ ;S’ (2.4)

Because of L;; = s; — s; one obtains
e=_L1 ¥ o (25)
(N+1)2 £ ij :
0<i<j<N

Actually, one needs the mean values of the quantities because one measures in experi-
ments usually the quantities of a huge number of configurations.
This leads to the definition

R, =(L*)=Na*+2) (li-1;) (2.6)

1<j

for the average squared end-to-end distance, and to

R, (ﬁ):ﬁ > (L) (2.7)

0<i<j<N

for the average squared radius of gyration. The brackets (...) denote the average of all
configurations in the undisturbed case, i.e. without external forces acting on the polymers.

Both quantities calculated in Egs. (2.6) and (2.7) are very important, since they are
measurable in experiments as well as in computer simulations, and allow a straightforward
comparison with theoretical predictions.

The task of the theory is to model the polymeric system in a convenient way. There
are some simple chain models that describe the behavior of a chain, and which enable a
calculation of (2.6) and (2.7) [9, 59, 53]. Those models seem to be somewhat simplified,
nevertheless they offer a concrete basis for comparisons with real chains in order to obtain
some qualitative results.

As already mentioned above, it should be noted that the flexibility of the chains has
its microscopic origin at the existence of various choices every monomer has to orient itself
with respect to the preceding one in the chain sequence. Though these possible orienta-
tions are not all equally favorable energetically, thermal fluctuations constantly change the
instantaneous orientations of successive monomers, thus giving rise to the flexibility of the
chain. There are different parameters that influence the flexibility of a polymer chain and
thereby the extension of the polymer. For such cases one has to find a convenient model.
One of the important parameters is the solvent quality. Due to internal effective interactions
between the monomers themselves as well as with the solvent, the solvent quality influence
the polymer conformation indirectly, as we will see in Section 2.1.2.
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2.1.1 Ideal and real chain models

Before we cater to the solvent quality in more detail we come back to the chain segments, the
so called monomers. A monomer consist in general of one or more molecules and has in fact,
depending on the number of molecules, direct influence to the size of the monomer. This
size could be in the same order of magnitude of the persistence length [,. The persistence
length is defined through the correlation function between the bond vectors I;. Usually,
the bond vectors of linear polymers loose already at short distances their correlation and
the correlation function (3, ;1; - I;) can be described by an exponential decay [8], where
the correlation function has the value 1 at zero separation. The persistence length is now
defined by the length at which the correlation function has decayed on the value of e~!.
The physical meaning of this definition is that the correlation between a particular bond I;
and another bond [; at distances L;; > ), is essentially lost. It is reasonable to group all
molecules within the radius /, from molecule M; as one particle called “monomer” or “Kuhn
segment” .

It is reasonable to treat monomers in such a way, especially for very long chains. It
enables us to consider the system on a larger length scale, thereby reaching the mesoscopic
regime, where atomistic or quantum mechanical properties become irrelevant. Furthermore it
enables to simulate polymeric system within a manageable cost of calculation and CPU time,
and even in a sufficient accuracy, of course depending on what quantities one is interested
for. In most cases typical quantities, like the radius of gyration, are calculated sufficiently
accurate.

The simplest picture of a flexible chain is the so-called ideal or Gaussian chain, where
a model of the chain is provided by the random walk (RW). Here we assume that every
bond vector I; is undisturbed in his motion by all other bond vectors. In this way the inner
product Z;-1; in Eq. (2.6) is uniformly distributed in the interval [—a?, a?] and its expectation
value vanishes. It should be noted that this deviates from the discussion about the flexibility
mentioned in the beginning of the Section according to the condition of fixed bond lengths
and bond angles. This condition is not necessary anymore within the picture of a polymer
chain consisting of monomers.

We obtain in the Gaussian (RW) model for the expectation value of the end-to-end
distance in Eq. (2.6) a scaling behavior

R =R, = aN'/? (2.8)

The scaling exponent vy = 1/2 suggest the name Gaussian chain. The name of ideal
chain stems from the fact that this model allows overlapping of the monomers: they do not
‘feel’ each other. In order to calculate the free energy associated with ideal chains the central
limit theorem is useful [53].

Since the bond vectors are independent the end-to-end distance R follow a normal dis-
tribution. This implies that the quantity Wy(R), where Wy(R)dR denotes the total number
of ideal chains with end-to-end distance lying between R and R + dR, has the Gaussian
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Figure 2.2: A self-avoiding polymer chain. The repulsion between the polymer
segments A and B is denoted by the dotted line. Although their distance along the

chain is much bigger than [, A and B are correlated due to their repulsion. (Courtesy
of Christos N. Likos.)

form [9, 10]

Wo(R) ~ R? exp (— 31 ) (2.9)
2Na?

The prefactor R? on the right hand side of Eq. (2.9) above arises from geometrical
reasons while the exponent corresponds to the Boltzmann factor in the partition function
of the chain. This leads to an elastic free energy Fj of the ideal chain, which is entropic in
nature, and reads as [7]
3kpTR?

2Na?
F(0) is an unimportant constant while the last term can be identified as an elastic spring
with the spring constant 3kgT/Na?.

Related to the scaling behavior for the end-to-end distance in Eq. (2.8), it should be
emphasized that real chains show a larger extension due to the prohibited overlapping of
the monomers, hence yielding a different scaling exponent v > 1y = 1/2. In contrast to the
ideal chains, the real chains follow a so-called self-avoiding walk. The microscopic reason for

Fy = F(0) + (2.10)

the self avoidance lies in the steric repulsion between the monomers, which is short-ranged
in nature but nevertheless induces a long-range effect for the whole chain, irrespectively of
the persistence length /. Since the chains are very long, monomers from different sequences
can approach each other and their repulsion enforces a correlation in their positions, as Fig.
2.2 illustrates.

In order to describe the self-avoiding effect in a manageable manner, Edwards used an
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ansatz for the so-called excluded volume interaction, approximated by a J-function [10, 60,
61]
Vmm (T4, 7j) = vokgTd(r; — 7;). (2.11)

Here, r; denotes the position of the ith monomer along the chain and v, is the so-called
excluded volume parameter. A quantitative analysis of the excluded volume effects was first
proposed by Flory [6]. The free energy of a self-avoiding polymer chain is taken to be given
by the sum of the elastic free energy of Eq. (2.10) and an interaction free energy Fi,(R) due
to the excluded volume effects. Assuming a uniform distribution of monomers within the
coil of radius R, and neglecting correlations, we obtain an estimation for Fj,(R) from Eq.
(2.11) [10, 7]
N2

Fo == vohT o . (2.12)
Adding both contributions to the free energy Fg(R) in Eq. (2.10) and Fi(R) in Eq. (2.12),
and minimizing the resulting total free energy with respect to R, yielding the size R* of the
chain

R* = (vpa®)/PN3/5 ~ N3/5, (2.13)

The scaling exponent v = 3/5 is the so-called Flory exponent. Despite this simple
formulation the exponent is in excellent agreement with the “exact” value v = 0.588, which
is calculated through renormalization-group methods [62] and computer simulations [63].
Note that the above value for v are results valid in three dimensions.

In both the ideal and self-avoiding chain, the number of the monomers N and the radius
of the polymer coils are connected by scaling laws of the form R(N) ~ N” where v is 1/2
and 3/5 for the Gaussian chain and for the self-avoiding chain, respectively. The scaling
law R(N) ~ NV is universal in the sense that it holds irrespectively of the chemical blocks
of the polymer. Finally, we remark that these scaling laws remain valid when the end-to-
end distance of the chain is replaced by another characteristic length which measures the
macroscopic size of the chain, such as the radius of gyration R, in Eq. (2.7), as long R, > a,
or an equivalent mesoscopic length fulfill this condition.

2.1.2 The solvent effect

Since the polymers are always found in solution they are under the influence of the solvent.
In what follows, we present for the sake of simplicity a lattice model, to account for the
solvent effect and introduce the notion of solvent quality [9]. This model is depicted in Fig.
2.3.

If the polymers have a high affinity to the solvent molecules, the polymers are easy
solutable and the chain extends with respect to the ideal state. In this case there are good
solvent conditions for the polymer. In the reverse case there are poor solvent conditions and
the polymers contract. This behavior, extension and contraction, points to a correlation
between the excluded volume effect and the polymer interaction with the solvent.
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Figure 2.3: A lattice model of a chain in a solvent. The monomers are denoted by the
black circles and the solvent molecules by the white ones. For the case of simplicity,
these two species are taken to have the same size.(Courtesy of Christos N. Likos.)

To investigate this behavior,we distinguish the interaction energy between monomers
among each other ep,, the monomers and the solvent molecules €ps, and the solvent
molecules among each other ei. We define the energy loss associated with bringing two
polymer segments close to each other,

1
Ae = §(emm + €ss) — Ems- (2.14)

Referring to Eq. (2.12) for the interaction contribution to the free energy, Fi,; has to be
modified, which was done by mean-field calculation [9]. The result is a different excluded
volume parameter vy:

vo = v(T) = vo(1 — 2x). (2.15)
Here, x is a parameter defined as
zAe
= — 2.16
X= (2.16)

with z being the coordination number of the lattice, see Fig. 2.3. As can be seen in Eq. (2.15),
the excluded volume parameter v(T') is temperature-dependent. The origin of the nearest-
neighbor interaction modeled by the parameters €,, (4,7 =m,s) is usually the dispersion
force between the molecules, and is in general attractive. These van-der-Waals attractions
correspond to a proportionality between €,, and the products of the atomic polarizabilities
Qpy Oy 1.6, €mm = ka2, 65 = ka2 and ens = kamas, with some positive proportionality
constant k. Substituting these expressions into the definition of the quantity Ae, Eq. (2.14),
we obtain

Ae = E(am — )% >0, (2.17)

which implies, through Eq. (2.16), that x > 0 as well. The effect of the solvent is, in general,
to decrease the bare excluded volume parameter and to bring the segments closer to each
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other. Whether this only effects the constant of proportionality in the Flory scaling law
(2.13) R* ~ N3/5 or changes the exponent itself, depends on the magnitude of y. The latter
can be externally controlled by the temperature. We examine three distinct cases below.

e (ood solvent: This corresponds to the case (1 —2y) > 0 and occurs physically for high
temperatures. According to Eq. (2.15), in this case the renormalized excluded volume
parameter v(7") remains positive. The size of the chain still scales according to Flory’s
law R* ~ N3/® and the interaction between the monomers can effectively described as
purely repulsive. In the high-temperature regime, kg7 > Ae, the solvent effects are
in fact completely suppressed, the temperature plays no role and this solvent is called
athermal.

e Poor solvent: This corresponds to the case (1 — 2x) < 0 and occurs at sufficiently
low temperature 7. The excluded volume parameter becomes negative and the chain
collapses into a compact coil, thus following a scaling law with a different exponent
R* ~ N3 The monomers minimize the interface with the solvent and their interac-
tion among each other has effectively an attractive part.

e O-solvent: This corresponds to the intermediate case (1 —2yx) = 0, where the excluded
volume interaction vanishes. The chain behaves macroscopically as ideal, following the
scaling law of a Gaussian chain R* ~ N'/2. The particular value of the temperature
when this occurs, is called the ©-temperature and is given, according to Eq. (2.16), by
the expression

22A€e
To = )

In rising the temperature from values corresponding to a poor solvent to those corresponding

(2.18)

to a good solvent the chain undergoes a so-called coil-to-globule transition, which has been
observed experimentally [64]. Hence, the solvent quality has a strong effect on the flexibility
of a chain. We will see as next that another parameter, the charge on chain sites, influences
the flexibility of a chain even in a stronger way than the solvent.

2.1.3 The charge effect

Polymers that carry charges on some of their sites are called polyelectrolytes [49]. Along the
polymer chain there are ionizable groups which dissociate counterions into the solution. The
charges along the chain are in most cases of the same sign. Polymers carrying charges of
both signs either are called polyampholites [65].

In contrast to the neutral polymers, the electrostatic interaction is dominating in compar-
ison to the excluded volume interaction. In the simplest case of screened Coulomb interaction
by homogeneous distributed charges, the interaction can be described by the Debye-Hiickel
(DH) potential Vpy [65]

Vou(r) ~ M~ (2.19)

r
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The range of this interaction is determined by the Debye length Ap which is correlated with
the salt concentration® p, in the solution and/or the ionic strength I through the relation
1/Ap ~ \/ps ~ VI [65]. Therewith a new relevant length scale shows up in addition to the
previously mentioned lengths, and can be as large as the whole chain or longer. Because
of this additional length, a simple estimation of the exponent v is not possible anymore.
In the case of fully screened Coulomb potential, e.g. caused by a high salt concentration
ps, the case of the self avoiding chain is achieved. In the opposite case, the charges feel
the undisturbed Coulomb potential and repel each other, leading to stretched chains. This
stretching effect manifests itself in the radius of gyration

_ (lae)?a*\'"”
R_( T N, (2.20)

where ¢ denotes the mean number of elementary charges e per site (multivalence case: ¢ > 1).
In contrast to the neutral polymers (see Eqgs. (2.8) and (2.13)) , the chain size is linearly
dependent on the degree of polymerization N (v = 1). However, the relation (2.20) has not
been confirmed neither by simulations nor by experiments. The reason is that the counterions
which are in the solution as well, cause a charge screening. Under certain circumstances,
they can even condense on the chain and can decrease the effective charge which leads to a
contraction effects of the chain. This phenomenon is called Manning condensation [37, 66].

A further length scale, which was described in previous Sections, is the persistence length
lp. In contrast to neutral polymers the persistence length is not anymore in the order of
magnitude of the bond length a. Because of the stretching effect the persistence length is
much larger than the bond length and can even be larger than the whole chain.

In general, one assumes, that the persistence length [, consists of an intrinsic part (given
by the structure of the chemical segments) [y and an electrostatic part [, resulting from the
charges, in an additive way: [, = lp + [l [67, 68]. The theoretical predictions for the relation
between [, and A\p with I, ~ A}, are contradictory for the value of the exponent y, which
are between y = 1 and y = 2. Even computer simulations give values between y = 0.5 and
y = 2. Hence, the concept of the persistence length within a Debye-Hiickel theory for such
systems is doubtful.

The reason for this lies on the assumption of weak variations in the counterion density and
neglected fluctuation effects. That is why the Debye-Hiickel theory cannot describe the above
mentioned Manning condensation either. This effect appears because of the competition of
the translational entropy of the counterions and their electrostatic attraction with the chain.

A first adequate model is the infinite, charged rod (a stiff polyelectrolyte) with a line
charge density p = e/a, with a charge separation a along the rod. For the behavior of the
counterions, there is an argument of Onsager?: by increasing the cylinder volume for the
counterions around the rod with radius r; to a larger radius 79 it yields for the electrostatic

!Nearly all real polyelectrolyte systems are found in salted solutions.
2Private communication to G.S. Manning (see Ref. 13 in [37])
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contribution to the free energy of the counterions

Tl
Fy ~ 2kgT "2 In <9> , (2.21)
a 1
and for the entropic part
Fs ~ 2kpTIn (’"—2) . (2.22)
T

Iz = €?/(ekgT) is the Bjerrum length and is a scale for the strength of the electrostatic
interaction, and e denotes the dielectrical constant. At the so-called critical Manning value
Ig/a = 1 both contributions are equal. For [g/a > 1 the electrostatic dominates, and the
counterions condense along the chains, i.e. they are localized within a cylinder around the
chain. While for the opposite case lg/a < 1, the so-called Alexander criteria, the counterions
are more or less ‘free’ in the whole space.

Although this arguments are contended, especially for flexible polyelectrolytes, we will
see in the next chapter that this theory, applied on star-shaped polyelectrolytes, is quite
reasonable. We will compare theoretical predictions for such systems with computer simula-
tions in which we consider the full Coulomb potential, resulting from discrete ions along the
chain and explicit simulated counterions. With this model we are able to sample the large
scope of validity for the Onsager theory.

In order to clarify the flexibility of the chains we discuss Fig. 2.4, in which a diagram
of states of a dilute solution of polyelectrolyte chains is shown. The phase diagram is cal-
culated using scaling arguments and is determined by two parameters, the excluded volume
parameter v and the Bjerrum length Iy [38]. It shows the conformation of single chains, if
one vary the solvent quality, and the electrostatic coupling by varying the temperature. The
systems are modeled using the blob picture. Due to the charges one has in addition to the
thermal blobs [7], the so-called electrostatic blobs.

A detailed review about linear polyelectrolytes regarding their theoretical as well as
experimental investigations can be found in Ref. [65].
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Figure 2.4: Phase diagram of a dilute solution of linear polyelectrolytes. The diagram is taken
from Ref. [38], where different symbols were used (here: b ~ (a®/v)'/?, f = a charge fraction, k is
a constant). Each regime (I-XI), defined by different equations according to v and lg corresponds
to a certain conformation of the single chain, as depicted in the according regime. Quantitatively
the different states are given by the scaling relations for the chain sizes L. At high temperatures
in the regimes I-ITI, corresponding to small Bjerrum length /g, the chains are unperturbed by the
electrostatics. While in the regimes I-VI all counterions are released, in regimes VII-XI they are
condensed (schematically depicted as dots). In the ©-regimes I, IV, VII, and X the Gaussian behavior
is valid within electrostatic blobs (see also text). In the regimes II, V, VIII, and XTI (good solvent
conditions) the blobs are swollen, whereas in regimes III, VI, and IX (poor solvent conditions) the
blobs are collapsed. By courtesy of H. Schiessel.
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2.1.4 Experimental methods

To build up a link with experiments we describe shortly some common methods in investi-
gations of polymer solutions. The most often used methods are small-angle light-, neutron-,
or X-ray-scattering experiments, SALS, SANS or SAXS, respectively. In the latter cases
the transmitted momenta are small, i.e., the associated wavelength is large. The atomistic
details are not resolved and one can observe the global structure of the polymers. The scat-
tered intensity of the wave from a incident radiation of wavelength A at a certain scattering
angle 6 is given by [69, 11, 70]

Q) = / () pl(r — 1) exp(iQ - #)drdr, (2.23)

where @ = 4msin(f/2)/) is the scattering vector and p(r) denotes the spatial distribution
of scattering density in dependence of the position vector 7. When scattering from a very
dilute solution is performed, I(Q) ~ P(Q) [11], the so-called form factor of the object, which
contains information about its molecular weight, size and mass distribution. Indeed, in the
limit of () — 0, the probe is too coarse to detect anything else but the number of scatterers
in the sample and hence it delivers information about the average density or, equivalently,
the molecular weight of the polymer. At larger scattering vectors, @) ~ R;l the polymers
can be viewed as diffuse, spherical objects of size R4, and hence information about the radius
of gyration R, is gained.

The form factor can also be measured in a standard simulation. For a system of point
masses, P(Q) can be given as a sum over all monomers of the polymer
N

P@Q) = 37 2D (expliQ- (ri— ) (2.24)

_ ! <Zexp[lQ i) > (2.25)

=1
Informations for structural correlations are obtained by the static structure factor S(Q),
which measures the density-dependent center-to-center correlations of the polymers [57].
Assuming, that the form factor P(Q) of labeled polymers is density independent, I(Q) can
be related to S(Q):

1(Q) = N,P(Q)S(Q). (2.26)

Here, N, denotes the total number of scattering centers. Obviously, Ny can be connected to
the polymer volume fraction ® and the weight-averaged molar polymer volume Vj of the
labeled scattering centers by N, = Vi®. For vanishing polymer density p, only single poly-
mer behavior is measured due to vanishing inter-polymer correlations. Thus, P(Q) can be
determined by extrapolation of the measured scattering intensities /(@) to vanishing density.
This procedure enable the extraction of the structure factor in further measurements.
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Since the structure factor is one of the important quantities in describing structural cor-
relations in polymer solutions, it gives rise to formulate a theory which is able to predict the
effective interaction of the particles in a microscopic model. If one can propose an expres-
sion for an effective interaction between two colloidal particles, one can use the interaction
potential in liquid state theories [57, 71] in order to calculate structure factors S(Q) of those
particles. In this way a microscopic model can predict macroscopic properties of the system.
The role of the effective interaction will be discussed in more detail in the next Section. The
above described procedure was already applied on star polymer solutions [27].

2.2 The concept of the effective interaction

In the last Section we saw that the polymeric systems have different types of particles like
the polymers, the solvent particles, the counterions and the salt ions. In fact it is a multi-
component system, which is called ‘complex fluids” considered at mesoscopic lengthscales.
In performing experiments with soft matter systems one usually focusses the attention on
the static and dynamical properties of the large particles only (e.g. the polymers are the
large particles, whereas the solvent and salt particles are small), i.e., one looks at the system
at length scales where only the larger particles are visible and the rest plays the role of a
background. The scattering profiles have to be then interpreted by means of an effective
interaction between the considered large particles, which indirectly includes all the effects of
the remaining constituents.

From the theoretical point of view, the large number and the large asymmetries between
the species comprising the complex fluid, render a full theoretical treatment of the statistical-
mechanical system as a mixture practically impossible. The introduction of an effective
interaction and the ensuing reduction to a one-component system simplifies the theoretical
approach considerably. The last argument is also crucial for simulation modeling of complex
systems. The concept of the effective interaction reduces the CPU time significantly.

We note that the consideration of the effective interaction of only the large particles is
due to the interest of their properties only. It depends always on the quantities of a certain
particle type (like their pair-correlation function) which we are interested for in order to
justify the “neglect” of the other particles in the system. Nevertheless, we will show in the
next Subsections that the concept of the effective interaction is exact, as far as all many-body
terms are considered. The derivations that are to be presented follow the ideas of Ref. [53].

2.2.1 The effective Hamiltonian

We start with the full description of a multicomponent system and reduce it to a one-
component system by tracing out all the degrees of freedom but the ones we are interested
in.

For the sake of simplicity we consider a classical system, i.e., the considered length
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scales, in the order of typical interparticle distances a of all components, are larger than the
de Broglie wavelength A, associated to a component o (o = 1,2,...v) of a v-component
system, although the following approach is applicable for quantum-mechanical systems as
well. A, is defined as

B2

A, = — 2.2
@ 2rmoksT’ (2.27)

where h denotes Planck’s constant, and is much smaller than the typical interparticle distance
a in the many body system.

In order to simplify the development of an effective Hamiltonian we focus now on two
types of particles only (v = 2) without loss of generality. We consider two kinds of particles,
“large” ones (o = 1), and “small” ones (o = 2). The goal is to eliminate the small particles
from the picture.

Let us assume that the system contains N; large particles at positions R;(t) (i =

2,...Ny), and N, small particles at positions r;(t) (j = 1,2,...NNs), at time ¢ in a macro-
scopic volume €2 at the temperature 7. The corresponding partial number densities of the
two components are p; o = Np2/. Accordingly the momenta of the particles are denoted
by the sets { P;} and {p;}. The two-component Hamiltonian # consists of three terms:

H =Hi + Ha + Hio, (2.28)

where H,p5 contains the interaction between the species o and species § only. If we assume
that the interactions are pairwise additive and radially symmetric, the three terms in Eq.
(2.28) read as

N1 N1 N1
Hip = Z v (|R; — Ry), (2.29)
i=1 i=1 j=i+1
p2 Nz N»
Z — +Z Z v (i — 74]) (2.30)
i=1 j=i+1
and
N1 Ny
Hix =) vio(|Ri — 7). (2.31)
i=1 j=1

In Egs. (2.29)-(2.31) above, M and m denote the masses of the large and small particles,
respectively, and v,p(r) are the potential energy between the particles of species a and
[ at the center-to-center separation r. To facilitate the presentation, we introduce some
shorthand notations

N1

Vu({R}) = ZZvn [Ri — R), (2:32)

1= 1] i+1

Vo ({7}) Z Z v (|7 — 75)) (2.33)

=1 j=i+1
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and
Ni Ny

Vie({R}, {r}) =)D via(|Ri — 7)) (2.34)

i=1 j=1
where {R} and {r} are shorthands for (R;, Ry,...Ry,) and (71,71, ...7y,), respectively.
We now turn our attention to the statistics and choose for this purpose a canonical
ensemble to trace out the degrees of freedom of the small particles. The double trace over
any quantity O that depends on all coordinates and momenta, is defined in this ensemble as

h~ 3N h 3N2

A / P / dp™ / dRr™ / drO({P}, {p}, {R}, {r}), (235)

where Tr, denotes the multiple integral over the positions and momenta of all degrees of
freedom of particles of species a (o = 1,2), the prefactor A 3" /(N,!) being included. The
canonical partition function Q(Ny, N1,€Q,T) is the double trace over the Boltzmann factor
exp(—fH), and using the definitions (2.28) and (2.27):

TI'1 TI'2 [O]

3Ny 3N3
Q(NI:NlaQaT) = hN - /dPNl/de2/dRN1/drN2 Hii+Hoo+Hio
p!
. (QAT?
- Nl! N2! =2, N, T), (2.36)
where 3 = 1/(kgT). In Eq. (2.35) the shorthand [dR™ has been used for

J[...[dRidR;,...dRy, and analogously for the {r}-coordinates and the momenta. In
Eq. (2.36) we carried out the integration over the momenta and we defined the configura-
tional part of the partition function, Z(Ny, N1, 2, T), which reads as

1 / ARN e fVit((RY)

QN

1 / drre AVR(ED Vi (RLGD] (9,37
2

Z(NlaNanT) QN

By integrating out the degrees of freedom of the small particles, and keeping simultaneously
the positions Ry, Ry, ... Ry, fixed, we obtain a partial partition function Q2({R}) as

A73N2

— 12 N2 o =B[Vor({r})+Vi2({R},{r})]

Q(RY = S [are
(859

= O ) (239)

with the partial configurational part Zy({R}). For the sake of brevity we dropped the
dependence of quantities on Ny, No, QT from the argument list. The physical meaning
of the quantity Q2({R}) is now clear: it represents the partition function of the small
particles in an external field generated by the large particles, whose positions are held fixed
at Ry, Ry, ... Ry,. A comparison between Eqgs. (2.38) and (2.36) shows that the partition
function of the system can also be expressed as

Q = Tri[e PR Q. ({R))]. (2.39)
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At this point we are now in the position to define the effective Hamiltonian Heg, which
depends on the momenta and on coordinates of the large particles only:

Her = H11 — kT In Q2 ({R}). (2.40)
An equivalent definition is
exp(—BHer) = Tra[exp(—SH)], (2.41)

which brings forward the fact that H.s is a mixture between the pure Hamiltonian and a
free energy of the small particles in the instantaneous environment of the large ones, hence,
reduced the original problem to a simpler one.

We now can continue with the usual way in the statistical mechanics in order to get mea-
surable quantities and calculate the expectation value (O) of any observable O({P},{R})
whose value depends on the momenta and coordinates of the large particles only. We start
with the Hamiltonian of the original system, tracing out the degrees of freedom of the sub-
system 2 first and end up with the expression of the average in the effective system:

Tr, Try[O({ P}, {R}) exp(—SH)]
Try Tro[exp(—FH)]

Tr1 [O({ P}, {R}) Try[exp(—H)]]
Ty [Tro[exp(—6H)]]

Tr, [O{ P}, {R}) exp(—BHen)]
Tri[exp(—BHer)]

The last line follows by the definition of Eq. (2.41). As far as the properties of the large
particles are concerned, the description in terms of the effective Hamiltonian is completely

©) =

(2.42)

equivalent to the original one and no information has been lost.

2.2.2 The effective interaction potential

Although the definition of the effective Hamiltonian in Eq. (2.40) is exact so far, it is in
practice only in few special cases possible to trace out the small degrees of freedom exactly.
Therefore one has to use approximate schemes, in order to come up with a reasonable and
manageable expression for this quantity.

Having in mind that we are interested in the effective interaction of the big particles in
our considered system, we have at first to look into some of the characteristic features of
Heg in order to analyze the structure of the effective Hamiltonian.

We use Eq. (2.29) to decompose Eq. (2.40) in the following terms

Ny P2 N1 Ny
Hesr = ij[-l-z > on(|Ri — Ryl)
1 i=1 j=i+1

+ V({R}; Ny, Ny, Q,T) + kpTQps[In(peA®) — 1] (2.43)
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with
. 1
V{R}; Ny, Ny, Q, T) = —kBTln{m / drN2eﬁ[Vm({r}HVw({R}v{f}ﬂ}
= —kgTInZy({R}). (2.44)

The last term in Eq. (2.43) is the ideal gas contribution from the kinetic degrees of freedom
of the second component, Fig), while V contains all the non-trivial contributions arising
from the interactions of the small particles.

Now we follow a procedure developed by Dijkstra et al. by expanding the term In Z,({ R})
in the following way [72, 73, 74]:

—kgTIn Z,({R}) = Vo + Vi + Vo + Vs + ...,

where
‘70 = Qﬁo(plaanT)a (245)
N
o= S a(RY g T) (2.16)
i;ll .
Vo= > > w(Ri—Ryl;p,p,T), (2.47)
i=1 j=it1

Nl N1 N1
Vs = > > > (R — Ry|,|R; — Ryl,|Rx — Rils p1, 2, T), (2.48)
i=1 j=i+1 k=j+1
(2.49)

and so on. The functions 9, represent m-body effective interactions between the particles.
The fact that all terms depend in addition to the coordinates of the large particles (except
of the first term) on thermodynamic variables (densities and temperature) as well, allows us
to “tune” the effective interaction by controlling some external parameters.

The extensitivity of the term V, follows from the requirement of extensitivity of the total
free energy. This term and the kinetic contribution of the second component in Eq. (2.43)
constitute the so-called volume terms Fj of the effective Hamiltonian:

Fy = kgTQpo[In(poA®) — 1] + Qi (p1, p2, T)
= QfO(pl; P2, T) (250)

Moreover, the term V; represents a sum of one-body potentials. However, the original
problem has full translational symmetry which is apparently violated by this term. We
conclude that it has to vanish:

Vi =0.
The remaining terms are sums of pair-, triplet- and higher-order interactions. Their series is
usually truncated at second order, thus yielding a system interacting effectively in terms of
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pair potentials only. This constitutes the pair-potential approximation. There is very little
evidence of a breakdown of the pair-potential approximation [75], though many-order effects
may be “hidden” in parameters of the effective potential [76]. In general, problems with
the pair-potential picture are to be expected at very high concentrations of macroparticles
only. We will show in Appendix A that exactly this happens for star polymer systems at
high concentration and we will see the deviation of the interaction potential regarding triplet
forces from the pair-potential approximation.

The choice to trace out the small particles in favor of the larger ones could have been
reversed, because nothing in the formalism prevents us from tracing out the larger particles.
However, from the stage, where the approximation comes into the game, it should be phys-
ically clear that the pair-potential approximation is a very poor one for the small particles
in the presence of the large ones.

Gathering now the results for Eqgs. (2.43)-(2.50) we find that in the pair-potential approz-
imation the effective Hamiltonian reads as

Ny 2 N1 M

P?
Heog = Z 2]\;[ + Z Z Ver (| Ri — R;|; p1, p2, T) + Qfo(p1, p2, T), (2.51)

i=1 i=1 j=i+1

where the effective interaction potential Vog is given by
Ve (75 p1, p2, T) = v11(7) + Da(7; p1, 2, T),

i.e., it is a sum of direct interactions and those influenced by the smaller particles. In the
above definition we used the notation for the large particle separation r = |R; — R;|. We
further note that in contrast to the “usual”, truly microscopic Hamiltonians, the effective
Hamiltonian consists not only of a kinetic and a potential part, but also of the volume term
Qfo(pr, p2,T).

It is one of the important tasks of this work to derive effective interactions for star-shaped
polymer systems and to compare the theoretical results with computer simulations, or, if
available, with experiments. We will see in the next Subsection how the effective potential
can be measured.

2.2.3 The measurement of the effective Hamiltonian

Up to this point we have introduced the effective Hamiltonian as a theoretical concept which
facilitates the analysis of complex fluids, by reducing the original, many-component problem
to an effective one-component one. The task for the theorist is now to find a reasonable
approximation for the effective potential. The validity of such approximations has to be
tested, before it can be used for the next step in calculating thermodynamical properties
like structural correlations for the effective one-component system. The mentioned test can
be done by experiment or by computer simulations.

There are experimental methods by which the force between two colloidal particles can
be measured using a surface force apparatus (SFA) [77, 78, 79] or atomic force microscopy
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(AFM) [80]. A different technique used is total internal reflection microscopy (TIRM) [81,
82, 83, 84], which can measure the effective interaction directly [85]. However, in all these
methods, one measures the effective potential only [86]. They do not offer the possibility to
measure the volume term Q fy(p1, p2,T).

A different approach to test a theoretical prediction for the effective potential are com-
puter “experiments”, like Monte-Carlo (MC) or Molecular Dynamics (MD) simulations [2, 1].
As can be seen from Eq. (2.40), the effective Hamiltonian is the sum of the direct Hamilto-
nian H; and the free energy of the small degrees of freedom in the external field of the large
particles. It is a well-known fact that in a standard simulation only averages of operators can
be calculated [2, 1]; the calculation of a partition function, such as Q2({R}), requires the
use of special techniques, such as thermodynamic integration [86]. Hence, a straightforward
simulation cannot yield the effective Hamiltonian directly. Instead, one resorts to the calcu-
lation of other quantities: In a MC simulation one can calculate the second virial coefficient
of the system, which contains the effective pair potential in the Boltzmann factor. Or one
calculate the pair-correlation function g(r) and obtain from the relation g(r) = e #% the
effective pair potential. A different, straightforward way is the calculation of the force F;
acting on the macroparticle i [86, 28], instead of the potential:

F, = —VRiHeff({R}). (2.52)
Using Eq. (2.43) and (2.44) we find

F, = Z[—VRiU11(|Rz‘—Rj|)]

J#i
Y T 1) le—BIVo({E)+Via (1R}, {x})]
= Y -VRuu(lR — Ri)+ (-VR Va{R},{r}) | (2.53)
J#i

which shows that the effective force is the sum of the direct force and the average over
the small degrees of freedom of the forces exerted from the small particles to the large
one, denoted by (...),. MD simulations are suitable for calculations of statistical averages.
The force can be measured in a straightforward way and can be compared with theoretical
expressions for the effective potentials. Once more, the volume terms cannot be measured
in this way; their gradient with respect to any coordinate vanishes identically.

The expression in Eq. (2.53) is very important for the further considerations, because
it justifies the comparison of simulation results for the effective force with the theoretical
predictions. This method has already been applied for star polymers [28] and in this work
it is also applied for star-shaped polyelectrolytes, as will see in the next chapter.



Chapter 3

Star-shaped Polyelectrolytes

Polyelectrolytes (PEs) are polymer chains carrying ionizable groups along their backbone.
Upon solution into a polar (aqueous) solvent, these groups dissociate into the solvent, leaving
behind a charged polymer in coexistence with its dissolved counterions. The problem of the
structure of PE-solutions is a challenging one from the theoretical point of view, because it
combines the complexities of polymer physics, chain connectivity and self-avoidance, and of
the long-range Coulomb interaction between the charged monomers. At the same time, there
exists vivid interest on these molecules, due to their numerous biological and technological
applications. Typical PE-biomolecules are DNA and proteins; sulfonated polystyrene and
polyacrylic acid, the key ingredient in diapers, are some of the most common commercially
used polyelectrolytes. The structure of PE solutions, the conformational properties of the
constituent macromolecules in the same, as well as the questions of counterion condensation
and chain collapse have been the subject of many recent investigations [87, 88, 38, 89, 90,
91, 92, 93, 94, 95| employing a variety of theoretical and computational approaches. [96]

When polyelectrolytes are grafted on surfaces they form a polyelectrolyte-brush. Con-
siderable progress towards a theoretical understanding of the properties of planar brushes
has been made through the use of scaling theory, self-consistent field (SCF) calculations,
and computer simulations. [97, 98, 99, 100, 101] Much less is known about spherical PE-
brushes. These result by grafting PE’s of contour length L on spherical colloidal particles of
radius b. In the limit L > b, one obtains the star-branched polyelectrolytes or simply PE-
stars. These are systems of great physical and practical importance: grafting of PE chains on
colloidal particles dissolved in polar solvents greatly enhances their stability against floccula-
tion; [102, 42] PE brushes are models of block copolymer micelles formed by hydrophobically
modified PEs in aqueous solutions; [48] and they have considerable potential in industrial
applications due to the increased need for water-supported systems. [103, 104] Pincus was
the first to present a theory on the interactions of PE-stars, based on scaling ideas. [102]
The two fundamental ingredients in Pincus’ approach are the retraction of the chains of the
stars as they approach each other (no interdigitation) and the domination of the force acting
between them by the entropic contribution of the trapped counterions. PE-stars that have
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the property of absorbing most of the counterions are called osmotic. [47] Based on these
assumptions, Pincus predicted that the force between two PE-stars should be independent of
their separation. Borisov et al. put forward a scaling theory, together with SCF calculations
to study the conformations of isolated PE stars. [47, 48, 46|

In a recent Letter, [54] we proposed an analytical theory for the conformations and inter-
actions of PE-stars and compared its predictions with the results from Molecular Dynamics
computer simulations. In this Chapter, we give a detailed account of the theoretical model,
which is valid for both isolated and interacting stars, and present more extensive comparisons
with simulations for both salt-free and salt-containing solutions. We have investigated the
sizes, conformations and interactions of PE-stars for high charging fractions a@ > 1/6. We
find a stretching of the chains and significant counterion condensation. For the force between
two stars, our results are quantitatively different than the early predictions of Ref. [102], in
that we find the force to be dependent on the star-star separations. Qualitatively, however,
we confirm Pincus’ prediction, [102] stating that the interaction is dominated by the entropic
effects of the counterions and not by the electrostatic contribution. Simple, analytical ex-
pressions for the effective interactions between PE-stars for given arm numbers and charging
fractions are also put forward.

The rest of the Chapter is organized as follows: in Section 3.1 we examine the confor-
mations of isolated stars, and in particular: in Section 3.1.1 we introduce the simulation
model, in Section 3.1.2 we discuss the obtain density profiles from simulations, which are
used as input to the theory presented in Section 3.1.3. The conformations of PE-stars with
added salt are discussed in Section 3.1.4. In Section 3.2 we turn our attention to the effective
interactions between two PE-stars. The theory is presented in Section 3.2.1, and the results
and comparisons to simulations in Section 3.2.2 for the salt-free case and in Section 3.2.3
for the case of added salt. In Section 3.3 we summarize and conclude the Chapter. As the
theoretical model involves the calculation of electrostatic potentials for unusual geometries,
we present this technical part in the Appendix C.

3.1 Dilute solutions: sizes and conformations of
isolated polyelectrolyte-stars

In a very dilute solution of PE-stars, the interactions between the macromolecular aggre-
gates are very weak. Therefore, in scattering experiments the total scattering intensity gives
information about the form factor of the star, i.e., about the size, shape, and density distri-
butions of the monomers around the star center. [69] In this Section, we present the results of
MD simulations and theory regarding the density profiles, sizes and counterion distributions
of isolated stars.
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3.1.1 The simulation model

We begin with the description of the simulation model, valid for both a single star poly-
electrolyte and two star polyelectrolytes. We performed monomer-resolved Molecular Dy-
namics (MD) simulations using the model of Kremer et al. for single polyelectrolyte chains.
[61, 18, 20] In our considerations we have f chains with N monomers per chain, all chains
coupled at a common core, whose size Ry is much smaller than the extension of the star-
shaped macromolecule. The introduction of the core is necessary to accommodate the chains
close to the center, where the monomer density is high.

The polyelectrolyte chains are modeled as bead-spring chains of Lennard-Jones (LJ)
particles. The idea of this method was first applied on neutral linear polymers and on a
single star polymer. [18, 20] For good solvent conditions, a shifted LJ potential is used to
describe the purely repulsive excluded volume interaction between all N f monomers:

V) = d e [ = (5) 4 3] forr <240, 6
LJ - -
0 for r > 24/607y ;.

Here, r is the distance of the interacting beads, oy; is the microscopic length scale of the
beads and £1,; sets the energy scale. In accordance with previous work, [28] we have chosen
for the temperature 7' = 1.2¢1,;/kp, where kg is the Boltzmann constant.

The connectivity of the bonded monomers is assured by a finite extension nonlinear
elastic (FENE) potential:

—LkreNE (&)QIH 1-— (L)Q for r < Ry;
Vreng(r) = 2 LI Ro - (3.2)
o0 for r > Ry,

where kpgng denotes the spring constant and is set to kggng = 7.0cpj;. This interaction
diverges at r = Ry, which determines the maximal relative displacement of two neighboring
beads, as can be seen from the plot in Fig. 3.1. The energy er; is the same as in Eq. (3.1),
whereas for the length scale Ry we have chosen the value Ry = 2.0 oy;.

The interactions between the monomers and the central particle mentioned above are
modeled as follows. All monomers have a repulsive interaction Vi (r) of the truncated and
shifted Lennard-Jones type with the central particle,

00 for r < Rg;

Vis(r) = { Viy(r — Rq) forr > Ry, (3:3)

whereas the innermost monomers in the chain experience an additional attractive potential
Vigeng (1) of the FENE type with this chain, namely

00 for r < Ry;

. _ 4
Vs (7) { Vemne(r — Ra) for r > Rq. .
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Figure 3.1: Potential energy between two bonded monomers. The energy consists
of the repulsive Lennard-Jones term and a FENE contribution, Egs. (3.1) and (3.2),
respectively. The maximum distance between the bonded monomers is r = Ry = 20p5.

Each chain is charged by a fraction « in a periodical manner: every 1/« bead carries a
monovalent charge. For reasons of electroneutrality, the same amount of monovalent charges
as the charged monomers, namely the N, = af N released counterions, are included in the
simulation box. They are able to freely move in the box, thereby they are simulated explicitly.
The snapshot shown in Fig. 3.2 illustrates the different kinds of particles in the system.

The full Coulomb interaction Vgou(r) between all charged units (monomer ions and
counterions) has finally to be taken into account, see also the energy plot for charged particles
in Fig. 3.3: \

Veou(ri;) = BHE = pyp11n 19 (3.5)
€r ij T ij

where g; = +1 for the charged monomers and the counterions, respectively. The Bjerrum
length [y is defined as the length at which the electrostatic energy equals the thermal energy:

62

= 3.6
CkBT’ ( )

Is
where e is the unit charge of the interacting particles, and € the permittivity of the solvent.
For water in room temperature one obtains Iy = 7.1A. Unless explicitly mentioned, no salt is
added. The solvent is only taken into account via the dielectric background e. The Bjerrum
length is fixed to lg = 3.00p;. This is a realistic value for typical polyelectrolytes, such
as the hydrophobic sodium poly(styrene-co-styrene sulfonate) (NaPSS) or the hydrophilic
poly(acrylamide- co-sodium-2-acrylamido-2-methylpropane-sulfonate). [105] The long-ranged
Coulomb forces are calculated via the Lekner method [58]. The details of the methods are
presented in App. B.
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Figure 3.2: Snapshot of a star-branched polyelectrolyte with f = 10, N = 50 and
a = 1/3. The bright gray balls are the neutral monomers, the dark spheres along
the chains indicate the charged monomers (every third ball). The counterions are the
small, dark spheres around the star.

The single polyelectrolyte star was simulated in a cubic box with a typical edge length
of Ly, = 9001,; with periodic boundary conditions, emulating a dilute PE-star solution. The
box size was varied as well, in order to investigate the influence of the long-ranged Coulomb
forces and of the density on the single-star conformations.

The core of the star was located at the box center and remained fixed during the sim-
ulation run. The time step was typically At = 0.0027 with 7 = \/mo? /ey being the
associated time unit and m the monomer mass. The counterions were taken to have the
same mass and size as the charged monomers.

After a long equilibration time (150000 — 200000 time steps), different static quanti-
ties were calculated during simulation runs lasting between 500 000 — 1 300000 time steps,
namely the center-to-end distances R and the density profiles of the monomers, the monomer
ions, and the counterions that are trapped within the star due to the attractive Coulomb
interaction between them and the monomer ions. Simulations were carried out for a variety
of arm numbers f (f = 5, 10, 18, 30, 40, 50) and charge fractions a (o = 1/6, 1/4, 1/3),
allowing us to make systematic predictions for the f- and a-dependencies of all theoretical
parameters. In addition, we investigated the chain length dependence by varying the degree
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Figure 3.3: Potential energy between nonbonded charged particles (monomer ions
and counterions). The energy consists of the repulsive Lennard-Jones term and the
Coulomb interaction, Eqs. (3.1) and (3.5), respectively. The Lennard-Jones potential
ensures that two opposite charged particles cannot fuse; the system is stable against
implosion. However, due to the minimum in the energy counterion condensation is
possible.

of polymerization N of the chains. The values N = 50, 100, 150, and 200 were considered.

3.1.2 The density profile

Let Cmon(T), Ceharge(”) and Ceounter(r) be the expectation values of the one-particle densities
of the monomers, charged monomers and counterions as functions of the distance from the
star center r, respectively. We measured all three quantities during the simulation run and
investigated primarily their f- and a-dependence. In addition, we measured the fraction
of trapped counterions that were condensed along the rods, by surrounding every charged
monomer with a fictitious sphere of radius /g and monitoring the number of counterions
inside all spheres.

We focus here on the density profiles. As seen in Fig. 3.4, the monomers show a scaling
behavior of their profile, a feature qualitatively similar to neutral star polymers [28, 12].
Quantitatively, however, the scaling exponent is different: in the neutral-star case, one
obtains ¢(r) ~ r~%/3 [12, 18, 20] in the charged-star case we obtain a power-law c(r) ~ =%,
i.e., the chains are much more stretched. To demonstrate this point, we show in Fig. 3.5
snapshots of a charged and a neutral star; the stretching of the chains of the charged star is
manifest.

The fully rod-like chain limit yields a monomer profile scaling as [46, 47] c(r) ~ r=2

and
hence a slope —2 in a double-logarithmic plot. This rod-like behavior has been experimen-
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Figure 3.4: Double-logarithmic plot of the density profile of monomers, monomer
ions, and counterions, for a star with f = 10, N = 50 and « = 1/3. The slope of
the scaling regime is also shown. Its value, v = —1.8 indicates the stretching of the
chains.

tally observed in neutron scattering studies of block copolymer micelles. [106] Because of
small lateral fluctuations of the chains, [92, 93] the fully rod-like limit is not reached here
and the slope v = —1.8 is obtained. Nevertheless, the value indicates an almost complete
stretching of the chains. The counterion density profile shows the same scaling as that of
the monomers. This is a manifestation of the tendency of the counterions to achieve local
charge neutrality, a feature also seen in simulations of planar polyelectrolyte brushes. [100]
However, the counterions, in contrast to the monomers, are not bounded and therefore they
add a high entropic contribution to the free energy of the system. This is a relevant point
because many investigations on these systems are based on homogeneous distributions of the
counterions within PE-stars polyelectrolytes. [46, 47, 45, 48] As we will see in Section 3.2, the
inhomogeneous behavior of the counterions play a crucial role for the effective interaction
between two polyelectrolyte stars.

3.1.3 Theory of isolated polyelectrolyte-stars

In the theoretical investigations, we employ a mean-field, Flory-type approach for the anal-
ysis of the large-scale properties of polyelectrolyte stars, which is akin to that of Ref. [48].
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Figure 3.5: Snapshots of a polyelectrolyte star (left picture, & = 1/3) and a neutral
star polymer (right picture, @ = 0) each with f = 10 arms and N = 50 monomers per
arm. The stretching of the chains in the case of the charged star, in contrast to the
neutral star, can be clearly seen.

We consider a star in a dilute solution of density py, = Ng/V containing Ng PE-stars in
the macroscopic volume V. We define accordingly the ‘Wigner-Seitz radius’ (or ‘ion-sphere
radius’) Ry = (47mps;/3)~'/3. The star is envisioned as a sphere of radius R enclosed in a cell
of radius Ry > R; all counterions are restricted to move inside this cell. Fig. 3.6 illustrates
the situation and is helpful for the further considerations.

Particular attention has to be paid to the Manning-condensation of counterions on the
rod-like chains. [90, 91, 37, 67, 107] The condensation takes place when the dimensionless
parameter £ = IgNa/R exceeds unity. [37] This condition is satisfied for all our parameter
combinations, see Tables 3.1-3.3. Thus, in the model, the N, counterions are partitioned
into three different states: N; condensed counterions within f tubes around the branches
of the star: these are confined to move in quasi one-dimensional cylindrical domains. N,
trapped counterions inside the star: these are allowed to explore the whole interior of the
star. Finally, N3 free counterions that move into the bulk of the solution and in the model
they are located in the region R < r < Ry,. This approach is similar to the three-state
model of Kramarenko et al., [108] employed for polyelectrolyte microgel particles. To specify
the available volumes to the condensed and trapped counterions, we introduce tubes of
length R and radius /g surrounding each rod, and treat all counterions contained in these
tubes as condensed. Thus, the interior volume V(R) = 4w R3/3 of the star is divided as
V(R) = Vi + Vo + fro?;R with Vi = fr(l3 — 0?;)R being the total volume of the hollow
tubes, available to the condensed counterions, and V5 the volume remaining available to the
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Figure 3.6: A sketch of a polyelectrolyte-star in its spherical Wigner-Seitz cell. For
demonstration, five chains (solid lines) are assumed to be fully stretched and are
surrounded by cylinders (dashed lines) where the condensed counterions are located.
For further explanations, see text.

N, trapped counterions inside. Moreover, let V3 = 47 (R3, — R?)/3 be the volume of the
spherical shell for the free counterions, and p;(r), i = 1,2,3, the number densities of the
three counterion types. Clearly, the number of free counterions Nj is equal to the number
of the uncompensated charges of the star @*/e. We emphasize that all counterions are
indistinguishable particles and have been treated in this way in all considerations to follow.
Particle exchanges between the three possible states constantly take place and the numbers
N;, v+ = 1,2,3 are simply expectation values and not prescribed occupation numbers of
counterions that have been ‘marked’ to belong to one state or the other.

The equilibrium values for R and N; are determined through minimization of a variational
free energy which we write as

3
F(R,{N:i}) =Un+Uo+ Fu+ Fn+ Y _ S;, (3.7)
i=1
where Uy and U, are electrostatic contributions, Fy and Fp; elastic and self-avoidance contri-
butions from the chains and S; entropic contributions from the counterions, to be described
in detail in what follows.
The term Uy is the Hartree-type, mean-field electrostatic energy of the whole star:

%:%//&mwﬂ¥ﬁi (3.8)

=]
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Figure 3.7: A sketch of a chain segment for the case « = 1/3, showing monomers
(dashed-lined hollow spheres), charged monomers (bright gray spheres) and a coun-
terion (dark gray sphere). The tube radius is /g from the central line, indicating the
stretched behavior of the chain. The neutral monomers can deviate from the central
line, whereas the charged monomers are situated along this line. The counterion is
assumed to be placed between two charged monomers with a distance z,, to them.

with the local charge density o(r) to be defined below. The only relevant correlations
arise between the condensed counterions and the charges on the chains because the aver-
age density of the trapped counterions is very low. Hence, the correlation energy U, stems
from the attractions between the rods and the condensed counterions contained in the as-
sociated tubes. To estimate the average rod—condensed counterion separation z,,, we take
= (1/2)\/1%4 + y2,, where y,, = R/(Na) is the distance between two sequential charged
monomers along the chain, obtaining for the correlation energy resulting from N; condensed
counterions:
U = I8N
kT~ zn,

(3.9)

Fig. 3.7 illustrates the chosen value for z,, resulting from geometrical considerations. The
term Fy is the elastic contribution of the chains, written as

F,  3fR?

kgT 2N’ (310)

and is a Gaussian approximation of the conformational entropy of the arms of the star. For
the non-electrostatic contribution of the chains Fy, arising through their self-avoidance, we
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employ the Flory-type expression

FF] _ 3U(fN)2
kT ~ 87R3

(3.11)

with the excluded volume parameter v. As usual for the case of good-solvent conditions,
triplet-monomer contributions have been omitted. Finally, the terms S; are ideal entropic
contributions of the form

S; = kBT/ d®r pi(r) In p;(r), (3.12)

7

with p;(r) = N;/V; being the number densities of the counterions in the three possible states.

We discuss now the mean-field electrostatic and the entropic terms in more detail. The
calculation of the mean-field electrostatic energy Uy, Eq. (3.8), can be rewritten with the
introduction of the electrostatic potential ®(r) in the form:

€ (T) ? 2
U de 1
H = 2/0 dr ( - ) T, (3 3)

in spherical coordinates. Using Poisson’s equation, the electrostatic field (d®(r)/dr) is given

by
d®(r) 4dmwe [T 2
- = | dr'r?e(r 3.14
o) / ) (3.14)

with the charge distribution p(r). Since the chains are modeled as being fully stretched, the
density distributions inside the stars fall off as ~ =2 from the center but are uniform outside
the star. We note that this is different from the approach of Ref. [48], where uniform densities
inside and outside the star were employed. Though we obtained reasonable results for the
isolated star using such trial profiles, the nonuniform ones are of paramount importance for
obtaining agreement with simulation results regarding the effective interaction, as we will
discuss shortly. Accordingly, we write

Q(’I") _ @(R B T) _ G(T B R)@(RW - T) (3 15)

Q* A Rr? 7 ’ .
with the net charge Q* = |e|(N. — N; — Ny) = |e| N3 and the Heaviside step function O(z).

Inserting Eq. (3.15) into Eq. (3.14), and integrating the result of (d®(r)/dr) in Eq. (3.13),

yield for the electrostatic energy

Us Nig. (R
= 9 3.16
kT~ 2R (RW> ’ (3.16)

where the function 9¥(zx) is given by

5—9z + 53 — b
5(1 — )2

I(z) =1+ (3.17)

In order to calculate the entropic contributions of the counterions in Eq. (3.12), we need
to specify the number densities p;(r). We model the condensed counterions as having a
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uniform distribution inside the tubes, an assumption supported by simulation results on
single PE-chains having typical values of the ratios alg/op; considered here. [90] Thus,
p1(r) = N1 /V; inside the tubes and zero otherwise. Since the trapped counterions follow the
profile of the charged monomers, we take po(r) = C'r~?0O(R — r), with the proportionality
constant C' determined through the normalization condition

/V d®rpy(r) = Na. (3.18)

Finally, we assume a uniform distribution of the free counterions within the cell R < r <
Ry and take p3(r) = ©(r — R)O(Rw — r)N3/V3. Referring to py, we note that the volume
which is available for the ‘free’ counterions inside the star is reduced by the tubes around
the chains. We therefore introduce a representative sphere of radius R’ having the same
volume V5 as that available to the Ny counterions and calculate the prefactor C' of p, using
the normalization condition (3.18):

N
C= PR (3.19)
The reduced radius R’ is determined by the equation
4 4
?”R?’ — iR = ?WR’?’ =V, (3.20)
yielding
3 ] 271/3
R'=R|1-f (%) (3.21)

Carrying out the integrations in Eq. (3.12), we obtain the following expressions for the
entropic contributions of the counterions in their three different states:

St [ (N,

So [ Ny

—2 = Ny |1 1 2
kT 2™ (47TR'3> N ] ’ (3:23)
S3 [ N3

—— = Ny|In| ———1]-—-1]. .24
kT ’ _n<V:o,—V(R)> } (3:24)

The Flory-term in Eq. (3.11) takes into account, in a mean-field fashion, the loss of
entropy of the chains due to the short-range, steric repulsions of the monomers, through the
effective, excluded-volume parameter v. The value of this parameter for stiff PEs has been
the topic of extensive discussion in the literature. [67, 98, 102] If the chains were neutral, then
a good estimate for v term would be the volume of the monomer bead, v 2 ¢3;. The presence
of the condensed counterions, though, introduces monomer pairs along the backbones of the
chains, whose effective diameter is op,ir > or;. Since the condensed counterions are to be
found in typical distances /g from the chain backbone, we thereby set op.i = Iz = 3015 and
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=~ 300¢;. This is the value that we employed in all our theoretical
analyses. It is also in agreement with the ‘screened electrostatic’ estimate v = Igx2a? of
Ref. [48], with k = 1/3Nslg/R3, for typical values of «, Ny and R read off from Table 3.1.

The values R and N; (i = 1,2,3) are found by minimization of the free energy, i.e.,
through the equations

(39”(12}%{%})){]” _ (39”(1;}\2%}))&{%}2'# = 0.

obtain thereby v = o3,

(3.25)

The results read as

RS = gc{ ZBNQ{ (R/RW)—%W(R/RW)}

+ 3R [1\@( QWﬂQ Al ]

+ MR 1— L 423]+ ZU}; (3.26)
Ny o= (N,— Ny) [1+37‘fexp< 2—2—2)]_1, (3.29)

where 9'(z) = d/dz. These three equations determine the star size R, the uncompensated
charge @* = Njsle| inside R and the number of condensed counterions N; as functions of
the functionality f, the degree of polymerization NV, the bare charge N, = af N, and the
Wigner-Seitz cell radius Ry,. All quantities acquire an explicit dens1ty—dependence through
Ry, a usual situation for charged systems, familiar from the statistical mechanics of charged-
stabilized colloids as well. [109] We calculated these quantities for different parameters and
compared the results with the simulation data; the comparison is shown in Tables 3.1 and
3.2.

Referring to Table 3.1, in which the degree of polymerization is fixed to N = 50, we see
that the radii values from theory and simulation are in very good agreement for all parameter
combinations considered. Moreover, the radius is practically f-independent, a manifestation
of the fact that the chains are stretched. This is one of the features that distinguish PE-
stars from neutral ones, for which the scaling R ~ f/°N3/® holds. [28, 12] As far as the
total number of trapped counterions N;, = N; + Ny and N; of condensed counterions are
concerned, the following remarks can be made: both are overestimated in the theory, by
an amount depending on the charging fraction «. This overestimation can be explained
by the fact that we assumed a complete stretching of the chains (rod-like configuration),
which results into a stronger electrostatic attraction than the true one, in which lateral
chain fluctuations are present. The same mechanism is responsible for the overestimation
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fl al Q@ (Rlow)'  (Rlow)* | Nw)*  (Nw)| (N)* (V)
5 |1/3| 80 26.8 26.1 47 57 27 25
10 [ 1/6 | 80 23.4 23.7 42 59 22 38
10 | 1/4 | 120 25.3 25.2 77 97 46 61
10 | 1/3 | 160 27.4 26.9 110 134 72 81
18 | 1/6 | 144 24.2 25.8 91 121 60 90
18 | 1/4 | 216 26.6 26.9 156 190 107 141
18 | 1/3 | 288 28.3 28.1 217 260 159 190
30| 1/4 | 360 27.2 28.8 278 332 213 272
30| 1/3 | 480 28.6 29.7 384 449 309 366
40 | 1/3 | 640 29.2 30.9 531 607 392 517
50 | 1/3 | 800 29.8 32.0 668 763 514 670

Table 3.1: Comparison of conformational properties between simulation and theory
for different arm numbers f. The chain length is fixed to N = 50, and the cell radius
is Rw = 55.83 oy, except for f =40 (Ry = 62.04 0r5), and f = 50 (Ry = 74.44 01;).

N Q| (R/ows)®  (R/ou)*| (Nw)*  (Nw)| (N)* (W)
50 160 274 26.9 110 134 72 81
100 | 330 57.3 54.0 236 269 96 103
150 | 500 84.2 78.8 382 420 131 133
200 | 660 106.7 100.4 553 572 169 162

Table 3.2: Comparison of the conformational properties obtained from simulation
and theory for different chain lengths N. Here the arm number is fixed to f = 10,
the charge fraction is o ~ 1/3, and the cell radius is Ry = 55.83 01,5 for N = 50 and
Ry = 136.48 o5 for all other chain lengths.

of N;. This claim is corroborated by the remark that the largest discrepancies occur for
the smallest charge fraction, « = 1/6, where the assumption of stretched chains is most
questionable. On the other hand, the ratio of condensed to absorbed counterions appears to
be almost constant, ~ 70% for all combinations considered, both in theory and simulation.
With our present, minimal assumptions, we find that the theory captures quantitatively all
features of the star conformations. It reproduces the tendency of the PE-stars to increase the
fraction Ni,/N, of absorbed counterions as f and/or « increase, in line with the predictions
of scaling theory in the ‘osmotic star’ regime. [46, 47]

In Table 3.2 we show the results obtained for fixed arm-number f = 10 and varying
N. First, we observe a linear scaling of the star radius, R ~ N, confirming the overall
stretched-chain configuration. Once again, theory and simulation are in very good agreement
regarding the radius values. In order to achieve good agreement for the number of condensed
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counterions, we had to gradually increase the value of the tube radius, though. As the
chain length increases, so does the absolute value of the transverse chain fluctuations, [92]
although the size of their relative fluctuations must remain bounded, so that the overall chain
configuration is still stretched. This means that the range in which our model rod-like chains
can capture counterions and condense them effectively increases. In order to estimate this
enhanced range, we fixed the ratio u of tube radius to chain length (the relative fluctuation)
to its value for N = 50, i.e., u = lg/R(N = 50) =2 10%. Thereafter, we determined the tube
radius Ryype through the relation Ryype(N) = pR(N) ~ pN. This change of the tube radius
affects the number of condensed counterions /N; but has otherwise only a minor effect on the
other two quantities, R and Nj,.

Finally, we apply on our described model the aspect of the stability against implosion
and explosion of the ensuing ions due to their Coulombic attractions and repulsions, respec-
tively. The issue of stability is non-trivial, which has to be regarded carefully in all systems
containing particles with a 1/r-interaction potential [110]. The simulation model is clearly
stable against implosion due to the Lennard-Jones terms in the inter-particle potential in
the model, see Eq. (3.1) and Fig. 3.1. In the theoretical model implosion is avoided by
the osmotic contribution to the free energy of the PE-star in Eq. (3.11) which is related
to the radius with ~ R~3. If the star becomes smaller due to electrostatic attractions the
term (3.11) increase and avoid an implosion of the star. The stability against explosion is
guaranteed since the system is in both models, in the theoretical as well as in the simulation
model, contained in a Wigner-Seitz cell ensuring charge neutrality of the system.

3.1.4 An isolated star with added salt

The theory can also be extended to the case of added salt by the addition of entropic terms
for the counter- and co-ions. With the addition of N, salt molecules, the solution contains
N negatively charged co-ions and N; positively charged salt counterions, yielding a total
number of N, + N, counterions in the system. The counter- and co-ions are separated into
those absorbed in the interior of the star, N:f, and those outside: N, = N,+ N, — N;} and
Nyt = Ns— N... The entropic terms of Egs. (3.23) and (3.24) are now modified through the
replacements Ny — N, + N;_ — N; and N3 — 2N, + N, — (N;} + N.,). With these changes,
the theory for the salt-free case can now be carried over to the case of added salt, whereby
one additional degree of freedom appears, namely the distribution of co-ions between the
interior and the exterior of the star. With these modifications, the procedure remains the
same and the conformational properties are determined by the requirement of minimization
of the variational free energy, namely:
OF(R,Nt,N._,N,) OF(R,N} N_,Ni) OF(R,N; N_,N;)

in’ % Vin» — in’” "in’ — in> ~ Tin? = 0. 3.29
OR ONZ ON; (3.29)

The variational theory yields N, = 0 for all cases we considered, i.e., the prediction is
that there are no co-ions penetrating the star. We have performed simulations for the salted
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fl1 @ Nyjemol/lt]| (Rfowy)®  (R/owy)® | (Ni)*  (Nw)® | (V) (V1)
5 | 80 250 0.036 22.1 22.2 73 73 40 22
5 | 80 600 0.088 20.7 19.4 87 76 44 29
10 | 160 | 250 0.036 24.0 25.0 138 150 81 60
10 | 160 | 600 0.088 22.7 22.8 156 154 90 69
10 | 160 | 750 0.109 22.3 22.2 162 155 95 71
10 | 160 | 1000 0.146 21.9 21.3 173 156 98 74

Table 3.3: Comparison of the conformational properties between simulation and
theory for two different chain numbers f and different salt concentrations c;. The
charge fraction is fixed to @ ~ 1/3, and the cell radius is Ry = 55.83 0.

case as well, finding, in full agreement with theory, that the addition of salt results into
an almost complete neutralization of the PE-star with increasing salt concentration c;, to
a shrinking of its radius and to an exclusion of all co-ions from the star interior. In Table
3.3, we summarize the results obtained for different salt concentrations ¢; = Ns/V (R ).
First we note that the radius of the stars decreases with increasing salt concentration. This
is caused by the increased osmotic pressure of the salt ions outside the star, which are
in fact mostly co-ions. At the high salt concentration limit the neutral star case can be
expected. The cases in which N;, > N, seen only in the simulation results, are caused by
the penetration of a small number of co-ions (< 5% of their total number) into the star
interior. The theory, on the other hand, predicts that no co-ions penetrate into the star.
However, in view of the fact that in simulations only a tiny fraction of co-ions are found
inside the star, this discrepancy appears to be insignificant. Theory and simulation are in
agreement in predicting that essentially all co-ions remain free in the exterior of the star.

3.2 Concentrated solutions: effective interactions
between star-branched polyelectrolytes

In concentrated solutions, the interactions between PE-stars become important: they deter-
mine the correlations between the star centers, the intensity profiles obtained in scattering
experiments and the ensuing macroscopic behavior of the solution. In order to analyze these
effective interactions between the star centers theoretically, we take advantage of the facts
obtained from the analysis of an isolated star. The Coulomb-interaction, the Flory contribu-
tion of the chains, and the entropy of the counterions are the physical mechanisms giving rise
to the star-star interactions and hence they are the ingredients of a variational free energy
for the two stars held at a distance D from one another. At the same time, all contributions
to the free energy of a pair of stars acquire now an explicit D-dependence, which gives rise
to the effective interaction Vg (D), to be defined below.
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3.2.1 Theory

The effective interaction Veg (D) between two PE-stars, kept at center-to-center distance D,
results after taking a canonical trace over all but the star-centers degrees of freedom and is
defined as

Vet (D) = F2(D) — F(00), (3.30)

where Fy(z) is the Helmholtz free energy of two PE-stars at center-to-center separation
z. [53] For the theoretical investigations of the force at overlapping distances D < 2R, we
first take into consideration that, when two PE-stars overlap, the chains of each star retract,
a feature already conjectured by Pincus [102] and also confirmed in all simulations that
we carried out. Hence, we model the two stars as ‘fused spheres’, each carrying the cloud
of its untrapped counterions around it, as shown in Fig. 3.8. The chains remain otherwise
stretched, hence a ~ =2 falloff of the density profile from each star center remains. However,
due to the retraction of the chains, the two profiles from each center do not overlap. Rather,
each profile is sharply cut off as soon as the distance from the corresponding center reaches
the bisecting plane located at a distance D/2 from the centers.

The variational free energy Fo(D) is written as in Eq. (3.7). Since the terms U,, I and
Fy) remain unaffected by D, Veg(D) contains only the electrostatic Uy (D) and the entropic
contributions S;(D), i = 1,2, 3:

3

Vg(D) = Uy (D) + Z Si(D) = in Fo(D; R, {N;}). (3.31)

We first investigate the electrostatic part Ug(D) in more detail. It is convenient to
separate the total charge density o(7) into two contributions, g;,(7) in the interior of the fused
spheres (Vi,) and oy (7) in the eight-shaped region outside (Vyu). 0out(7) is homogeneous
and equal to —Q*/V,y. We choose a spherical polar coordinate system with its origin the
center of the lower star (see Fig. 3.8). Setting 7y = rcosf and w = 0 — 6, we write

oim(r) = Ale|[P(r) + P(D — )] (3.32)
with the shape function:
P(r) = %2 [O(R—7)0(w)+0O(D/2 —1)0(—w)], (3.33)
where the normalization factor
A= Q{4rR[1 + cosfy(1 —In cos )]} * (3.34)

guarantees that [, d*ron(r) = Q"
We rewrite Eq. (3.8), expressing Uy (D) by using the electrostatic potential ®(r) as

]' 3 3
Uu(D) = o [ /V 0 (1) + () ou(r) + /V (@) + () Qout('r)( , |
3.35
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Zk

Figure 3.8: A sketch of two polyelectrolyte-stars of radius R each, held at center-to-
center separation ID. The dark fused spheres denote the stars and have a total volume
Vin. The light eight-shaped hollow region with volume V,,; denotes the region in which
the free counterions can move.

where @, (r) (o = in, out), is the contribution of the charge density o, () to the electrostatic
potential at an arbitrary point r in space. The calculation of ®;,(r) is rather technical and
is shown in Appendix C.1; that of @y (r) in Appendix C.2. Unlike the single-star cases,
an analytical solution is not anymore feasible and therefore numerical computations are
necessary in order to determine the electrostatic energy. On dimensional grounds, Uy (D)
has the form

Un(D) 2 (R_W D>

ksT R R’R
72\ D Rw D Rw D
= RB [hinin (E) +2hinfout (?W’ E) +hout70ut (fwa E):| ’ (336)

where Z = Q*/|e| is the total number of uncompensated charges of both spheres and
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Figure 3.9: The three terms contributing to the electrostatic energy of two PE-
stars, according to Eq. (3.36), as functions of the center-to-center separation D for
Ry =165R.

ho—g(Rw/R,D/R) (a, f = in, out) are dimensionless functions arising from the integra-
tions of the products ®,(7)gs(r) in Eq. (3.35). Note that the first term, hi,_in, has no
Ry/-dependence. The various contribution of the terms at Ry = 1.65 R are shown in Fig.
3.9. The strongest D-dependence arises from the integration of the term ®;, (7)o, (7). The
other terms are weaker, both in their energy scale and in their D-dependence.

We proceed with the calculation of the entropic terms S;(D), (i = 1,2, 3), which include
the D-dependent volumes of integration and their corresponding profiles p;(r). In particular,
p1(r) is uniform within the 2f tubes and zero otherwise. The trapped counterion density
p2(r) has the form py(r) = B[P(r) + P(D — r)], with the shape function P(r) given
by Eq. (3.33). The constant B is determined by the condition f;, d*r ps(r) = Na, where
Va(D) = Viu(D) — Vi (here Vi = 2fnl3 R), and reads as

Ny

PR Z @)+

(3.37)

Finally, ps(r) = N3/Vou(D). Accordingly, we obtain the entropic contributions of the
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counterions in the three different states using Eq. (3.12) as:

T N““(m[u;%f—m(%»])
gy () e () e
é%::Ngm s 1 (3.40)

3 2 - )
[ (B0 5 )
where V; = V5 — 2 fmoi;R. The last term of Sy results from the fact that the available

volume for the trapped counterions is reduced by the tubes around the chains. We therefore
introduce two smaller fused spheres with radius R’ < R that fulfill the condition

Vin(R, D) — 2fml3R = Vin(R', D), (3.41)

3/ D 1/ D)\?
1+ = -
2 \ 2R 2 \ 2R

R’ is obtained by solving Eq. (3.41) together with Eq. (3.42) and it depends additionally on
D.

We emphasize that the dominant D-dependence of the two-star free energy [Eq. (3.31)]
arises from the terms Uy (D) and Sy(D). The former is shown in Fig. 3.9 and the latter in Fig.
3.10. Three remarks are of order here: first, the number of trapped counterions Ny = N;,— N,

with

1
%@UD=§H3 (3.42)

sets the overall scale of the term Sy(D) Therefore the role of the N; condensed counterions
becomes important in ‘renormalizing’ the effective interaction, as we will explain shortly.
Second, both Uy (D) and Sy(D) are non-linear functions of D, implying that the resulting
effective force F'(D) = —dV,g(D)/dD is is not constant. This finding is at odds with the
the situation in curved polyelectrolyte brushes, resulting from grafting PE-chains on a solid
particle of radius b. By employing scaling arguments for the trapped counterions, Pincus
predicted that in the regime R > D >> b the force of two porcupines is D-independent. [102]
Finally, we comment on the fact that Sy(D) in Fig. 3.10 shows a maximum for a small but
nonzero value of the separation, D = 0.1 R. This is an artifact of the model for the density
distributions, in which we assumed a ~ r~2-dependence of the profiles for all r. In reality,
the monomer- and counterion-densities do not diverge at » = 0 due to the hard cores
of the particles. Hence, at small separations, strong steric repulsions between the locally
dense macromolecular aggregates will cause the entropy Ss(D) to increase monotonically as
D — 0. Neither in the simulations nor in the theory, however, did we examine the effective
interaction at such small separations, hence this artifact does not influence the comparisons
that are to follow.
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Figure 3.10: Entropic contribution of trapped counterions (here Ny = 100) vs. star-
star-separation D.

The effective potential Veg(D) is obtained by adding up the terms S;(D) and Uy (D),
according to Eq. (3.31) and minimizing the free energy Fo(D; R, {N;}) with respect to R
and the N;’s for every separation D < 2R. We can simplify the problem by first taking into
consideration that the star extent R is unaffected by D. Indeed, the chains are already almost
completely stretched and, as confirmed during our simulation runs, R remains constant and
equal to its value for the isolated star. Since the N;’s are related through N; + Ny +
N3 = N, = constant, only two variational parameters remain, say N; and N,. In the
simulations we have found that the number of condensed counterions remains, to a very
good approximation, constant for all overlapping separations D < 2R, and undergoes a
rather abrupt change at the crossover distance D = 2R. Hence, we have chosen not to
determine N; through the variational calculation, but rather to treat it as a fit parameter,
held constant for all D, and chosen so as to give optimal agreement with simulation results.
It would be desirable to obtain this result through the full minimization; however such an
attempt leads to significantly worse results than the procedure described above. On the
other hand, the treatment of the net charge as a fit parameter is not at all unusual for
charged systems and, in the realm of charge-stabilized colloidal suspensions, it is an oft-used
approach known as charge renormalization. [109, 111, 112] Therefore, Fo(D,; R, {N;}) is
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only minimized with respect to Ny:

0F 5(D; N») —
(871\/'2) o, (3.43)
yielding
R D In* (57)
v - R, D 2R 3.44
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with R’ obtained by solving Eq. (3.42). The minimizing values of Ny(D) are set into Uy (D)
and S;(D) and enable the calculation of the effective interaction potential Vg (D) from Eq.
(3.31).

3.2.2 Results for the effective interaction

The theoretical model for the effective interaction has been tested against results of MD
simulations of two star-branched polyelectrolytes. In a MD-simulation, the mean force at
the center of the stars can be measured. [28, 53] For this purpose, the simulation model
of an isolated star, presented in Section 3.1.1, is expanded to two stars. The microscopic
interaction potentials and parameters are those presented in Section 3.1.1. The centers of
the two stars were placed along the body-diagonal of the cubic simulation box with periodic
boundary conditions and the mean force acting at the center of the stars was measured [28].
The effect of the periodic images can be neglected. Only for large distances D at which the
periodic images of the stars are closer to their original, the force can deviate from the ‘true’
value, within usual computational accuracy. We checked this effect by simulating the same
system without periodic images in a box with hard walls. The walls are located sufficiently
far (L, = 120...22001;) from the stars avoiding finite size effects. The comparison of the
forces with the corresponding forces resulting from the Lekner calculations shows deviations
between both methods in the order of about 15% which decays with smaller star distance D.
Hence, the chosen box size of 901, are sufficiently large to neglect periodic image induced
forces for our purposes on one side, and saving computational memory (RAM) space on the
other side (see App. B).

Typically 120000 time steps are used for equilibration and up to 500000 steps were
simulated to gather statistics. For deep overlaps of the stars within their radii, the periodic
images of the stars have negligible effects on the effective force. We have also checked
that the image charges have only a minor effect in the measured forces at bare overlaps.
In Fig. 3.11, snapshots of two PE-stars at different separations D are shown, in order to
illustrate the procedure and the typical conformation of the stars when they are close to one
another. It is clear that the chains of each star retract from the region of overlap, i.e., there
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Figure 3.11: Simulation snapshots of two polyelectrolyte-stars at small center-to-
center separation D (left picture) and at a larger separation (right picture). The chain
length is N = 50 and the arm number f = 10.

is no interdigitation from different stars. This in the physical situation that motivates our
theoretical modeling of the stars as ‘chopped spheres’ (see Section 3.2.1 and Appendix C.1)
and it has also been employed in the scaling theory of Pincus. [102]

Consider, then, two PE-stars, ¢ = 1,2, separated by a distance D. The mean force
F;(D) acting at the center of the i-th star has two contributions, arising by the core-bonded
monomers and all other non-bonded monomers acting on the core. Under these circum-
stances, the effective force F;(D) acting on the i-th star center is given as a canonical
average:

Fi(D) = (~V g, (S Vis(Ire = Ral) + XL, VeI — Ri))) ), (3.46)

where in the first sum the repulsive interactions of the core with all 2f N monomers in the
system are considered according to Eq. (3.3) , whereas the second sum only accounts for the
attractive interactions with the f innermost monomers of the chains attached to the i-th
center according to Eq. (3.4). Due to symmetry, F1(D) = —Fy(D). In what follows, we
consider thus the magnitude F/(D) = |F5(D)| of the effective force, related to the effective
interaction through [53] F/(D) = —dVeg(D)/dD.

The parameter combinations for which we performed simulations are summarized in
Table 3.4. The results, compared with the theoretical predictions of Section 3.2.1, are shown
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Flal Q]| (RyR) | N | ¢ C
5 |1/3] 80 | 0.01 | 105 | 0.47 | 0.0542
10 |1/6| 80 | 0.05 | 80 |0.43 | 0.0456
10 | 1/4 | 120 | 0.05 | 147 | 0.45 | 0.0343
10 | 1/3]160 | 0.04 | 218 | 0.52 | 0.0265
18 | 1/6 | 144 | 0.06 | 160 | 0.50 | 0.0238
18 | 1/4 216 | 0.05 | 275 | 0.56 | 0.0183
18 | 1/3 288 | 0.05 | 400 | 0.59 | 0.0149
30 | 1/4 360 | 0.08 | 450 | 0.63 | 0.0114

Table 3.4: The parameters used in the simulations of two PE-stars. The degree of
polymerization is N = 50 for all entries. Ry is the core size, scaled on the radius R
obtained from Table 3.1. In the last two columns, we show in addition the parameter
values for the force fit of Eq. (3.47).

in Fig. 3.12. As can be seen, there is very good agreement between theory and simulation, for
all parameter combinations considered. The number of condensed counterions, Vi, lies for
all curves between twice the value calculated for a star with f arms and the value for a star
with 2f arms, which formally obtains at zero separation between the two macromolecules.
The only exception is the case with f = 5; however, for such a low arm number, the
assumption of chain retraction, and the associated cut of the density profile at the bisecting
plane, are probably not valid. Nevertheless, good agreement with the simulation results is
obtained with the choice N; = 105. The shape of the force is determined almost entirely
by the entropic term S5 and the electrostatic contribution Uy plays only a minor role,
as the PE-stars are almost electroneutral. This is in full agreement with the predictions
of Ref. [102]. The magnitude of the force is mainly determined by the amount of mobile
counterions Ny = N, — Vi inside, hence the amount of condensed counterions plays a decisive
role. Moreover, a homogeneous charge- and density-distribution inside the star leads to the
erroneous prediction that the force is almost constant, hence the ~ 1/r? profiles are crucial
in reproducing the shape of the force vs. distance curves.

In order to cast the effective interaction into a manageable form that should facilitate the
theoretical analysis of experimental scattering data, we derive below a simple and accurate
fit of the force data, which is shown in Fig. 3.13. The fit is given by

() -0i(w)

with 0.4 < ¢ < 0.63, and a positive constant C. For the latter, we further introduce the
ansatz:

F(D)
kT

= C(f,N,) : (3.47)

C(f,Ne) = CfN.. (3.48)
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The precise values for ¢ and C' depend on f and N, (or «) and are listed in the last two
columns of Table 3.4. The exponent ( remains always smaller than the value Cieutral = 1,
which obtains for neutral star polymers [28, 113] (F' ~ D~!). For neutral stars, a weakly
diverging logarithmic effective interaction results [113, 27|, whereas in this case the effective
interaction does not diverge at the origin.

Further, the interaction beyond overlap must be determined. For this purpose, we assume
that the charged monomers of one star interact with the charged monomers of the other
star via a screened potential of the Yukawa form, the screening caused by the counterions
surrounding the stars. Integrating these Yukawa segments on both stars, leads to a Yukawa-
type tail for the effective interaction between stars at large separations as well. This is
in line with the theory of effective interactions for charged colloids [109] as well as with
recent results from linear-response theory applied to polyelectrolyte-stars. [114] Matching
the expression valid for D < 2R, Eq. (3.47), with the expression

F(D) x ———2 2 (3.49)

F(D . D¢ _ 2 (D\I=¢ .
2R ( ) — Cch g R) 5_(121-2) oR\2 for D < 2R’ (350)
ksT =(1 1+ kD) (22)"exp[—x(D — 2R)] for D > 2R,

where k = 4/p3lg is the inverse Debye screening length. Therefore, the full interaction
potential Vg (D), is obtained by integration of Eq. (3.50) and reads as:

—C —<
Ver(D) _ iy, § T 1= )] + st ()" 1] + s for D < 21 3 51)
kT 3(1+2kR)™" (22) exp[—£(D — 2R)] for D > 2R.

The last expression can be used in attempting to describe theoretically scattering profiles
from concentrated PE-star solutions. [42, 104, 41] The effective interaction is manifestly
density-dependent through the inverse Debye length k. For the purpose of fitting experi-
mental data, C and ¢ can be used as fit parameters, however the constraint 0 < ¢ < 1 should
always be respected.

Representative curves for the effective interaction of Eq. (3.51) are shown in Fig. 3.14(a).
As can be seen from Eq. (3.51), the potential between polyelectrolyte-stars has the property
of being bounded, i.e., its value at zero separation between the stars is finite. This is, of course,
an idealization stemming from the fact that we assumed, in the theoretical modeling, that
the central particle on which the chains are anchored has vanishing extent. Although in
reality the effective interaction will diverge at full overlaps, the range of this divergence will
be very small, typically of the order of a few Angstrom. On the other hand, the range of
the interaction derived above is that of the corona radius of the stars, which can be very
large, up to several microns for long chains. Hence, for a vast range of star concentrations,
the macromolecules will feel only the effects of the ultra-soft interaction of Eq. (3.51) and a
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theoretical analysis on the basis of the latter will be fully sufficient in capturing the physics
of the correlations in the system. In this respect, the effective interaction between PE-stars
belongs to a new class of potentials that have attracted considerable attention recently,
the so-called mean-field potentials. [53, 115, 116, 117, 118, 119, 120, 121, 122, 123] Physical
systems whose constituent particles interact by means of such a bounded or a slowly diverging
interaction, are called mean-field fluids. [53, 120, 123] Typical phenomena associated with
mean-field fluids are an anomalous structure factor in the fluid phase, [115, 31| reentrant
melting and exotic crystal structures in the solid phase, [115, 32, 124, 125] as well as the
property that at high concentrations in the uniform phase the direct correlation function
of the system is, to an excellent approximation, equal to —Veg(r)/(kgT) —Veg(r)/(ksT).
[115, 116, 119, 117, 118, 120]. Polymer chains, [117, 118] dendrimers, [119], as well as
neutral star polymers [123] are systems that have been shown to belong to this new class.
Polyelectrolyte-stars are the new member of the family.

It is pertinent to compare the effective interaction of Eq. (3.51), valid for charged star-
polymers, with the known interaction for neutral stars. [27] The latter features an ultra-soft,
logarithmic divergence for overlapping stars and a Yukawa-decay for nonoverlapping ones,
hence it has some qualitative similarities with the interaction of PE-stars, and reads as: [27]

~In (&) + 1 +VF/2)™ for D < 2R;
(T+F/2)7" (32) exp [—%} for D > 2R.

%ﬁ(D) _ Efs/z

kgT 18

(3.52)

The comparison is shown in Fig. 3.14(b). Despite the potential of Eq. (3.52) diverges at
the origin and that of Eq. (3.51) does not, the latter represents nevertheless much stronger
repulsions at strongly overlapping configurations than the former. Although the interaction
between neutral stars formally takes over at some small separation D, due to its diver-
gence, the ultra-soft character of the latter renders this crossover value very small. Hence,
polyelectrolyte-stars repel each other at overlapping separations much more strongly than
their neutral counterparts. This implies that stabilization of colloidal particles against the
van der Waals attraction can be achieved more efficiently by grafting of polyelectrolytes than
by grafting of neutral polymer chains.
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Figure 3.12: Theoretical results (lines) in comparison with simulation results (sym-
bols) of the effective forces |F(D)| for different parameter combinations f,« and Nj.
The chain length is fixed at N = 50. Since the theoretical model has no core, in
contrast to the simulation model, the simulation data have to be displaced by the core
diameter 2R,.
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Figure 3.13: Fit (lines) of the simulation data (symbols) for the effective force be-
tween two PE-stars, according to Eq. (3.47).
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Figure 3.14: (a) The effective interaction potential Veg(D) obtained from Eq. (3.51)
for various f- and a-values. (b) A comparison between the effective interactions be-
tween charged stars (thick lines) and those for neutral stars (thin lines, obtained from
Eq. (3.52)), having the same arm-number and size as the charged ones.
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Figure 3.15: The D-dependence of the entropic contribution of the counterions and
the co-ions outside the stars for the case of added salt. The parameters are f = 10,
a=1/3, N, = 320, with Ny = 250 added salt molecules. The Wigner-Seitz radius is
Ry =55.83 0.

3.2.3 Interacting stars in the presence of added salt

In this Section we turn our attention to the effective interaction in the presence of added
salt. As discussed in Section 3.1.4, the co-ions of the added salt remain outside the star,
whereas in the salt-free case only a very small fraction of counterions can be found there. In
addition, the salt counterions just supplement a small fraction to neutralize the star, hence
they are also predominantly to be found in the star exterior. Therefore, we obtain in the
case of added salt a drastically increased entropic contribution S3 from the outside region,
in comparison to the salt-free case. The available volume V,,; to the counter- and co-ions
outside the star and its dependence on the star-star separation D plays now an important
role in diminishing the magnitude of the effective force between to PE-stars. Indeed, Vit
increases with decreasing distances between the stars D). As the volume available to the
counter- and co-ions increases with decreasing D, their entropy also grows. The dependence
of the term S3(D) on D is shown in Fig. 3.15.

Since we have a large number of particles in the outside region, this entropy increase is
significant and contributes to a measurable effective attraction to the total potential between
the stars. Alternatively, one can think of the two overlapping stars in Fig. 3.8 as being hit
by a large number of counterions mostly from the outside, a situation that results into
an unbalanced force pushing the two stars closer to one another. This is the well-known
‘depletion mechanism’, [53] familiar from the classical case of colloid-polymer mixtures, [126]
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in which the small polymer induces an attraction between the large, hard colloids. An
important quantitative difference in the case at hand, though, is that the large stars are
not hard but penetrable. Thus, the depletion attraction is superimposed on the repulsion
caused by the trapped counterions and the total effect need not be a net attraction. Instead,
a reduced repulsion between the polyelectrolyte-stars results.

The theoretical analysis of the effective interaction in the case of added salt follows the
same lines presented in Section 3.2.1 above. Similarly to the single-star case, we have to
make the formal substitution N3 = N, — Ny, — N, + 2N, — N;;, when N,-salt molecules
are present. Now the D-dependence of the volume V,,; (D) becomes crucial in comparing
with simulation results, since the size L, of the simulation box remains constant and Vu (D)
grows as D diminishes. Referring to Fig. 3.8, we see that the D-dependent Wigner-Seitz
radius Ry (D) can be determined by solving the equation:

L} = Vou(D) + Vaa(D). (3.53)
Solving this geometrical problem yields

(41)1/3 Ly for D = 0;

gr[cosh (%) — %] for D >0,

Rw(D) = { (3.54)

where ) is given by

¥ =In [w VR 1] , (3.55)

24 (Ly\*
=14+=(2) . 3.56
w +7T<D) (3.56)

with

The theoretical results obtained with these modifications are shown in Fig. 3.16, and
compared with simulations. Both data sets correspond to a salt concentration of ¢, =
0.036 mol/lt. It can be seen indeed that the magnitude of the force is roughly halved in
comparison with the salt-free cases of Fig. 3.12. The osmotic pressure from the outer ions
has the effect of reducing the strength of the star-star-interaction for overlapping stars. For
nonoverlapping stars, the same effect appears, for the well-understood reason of enhanced
screening, causing an increase of the inverse Debye screening length « in Eq. (3.51).

3.3 Summary and concluding remarks

We have analyzed the conformations, sizes, counterion distributions and effective interactions
between osmotic polyelectrolyte-stars. The main findings of this work are (i) a stretching
of the arms of the stars; (ii) a strong absorption of counterions in the star interior and con-
densation along the rod-like chains; (iii) an entropically-dominated, soft effective repulsion
between PE-stars, being caused mainly by the trapped counterions; and (iv) a reduction of
the strength of the repulsion in the presence of added salt.
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Figure 3.16: Theoretical (lines) and simulation (points) results for the force between
two stars in the presence of added salt. The degree of polymerization of the chains
is N = 50, the charging fraction @ = 1/3 and for N, = 250 salt molecules in the
simulation box, corresponding to a salt concentration c; = 0.036 M.

The crossover of the effective interaction from a power-law form at overlaps to a Yukawa
form beyond overlaps is akin to the case of neutral star polymers. Hence, it is to be expected
that the anomalous structure factors found there [31] will also be seen in the case of charged
stars if the concentration of the solution exceeds its overlap value. On similar grounds, an
unusual phase diagram for PE-stars is also to be expected, [32] displaying exotic crystals and
reentrant melting. The phase diagram will be much richer in this case, due to the addition
of two more possible degrees of freedom: the charging fraction o and the salt concentration.
Additional questions that should be addressed in future investigations include the effects of
polydispersity [33] and many-body forces [30] in polyelectrolyte-star solutions. The latter
are expected to play a minor role at reasonable concentrations, though, because the entropy
argument suggests they will become important only at densities for which three PE-stars
have a triplet overlap within their coronae, and higher. Finally, further work should be done
to study spherical PE-brushes [42, 44] having a nonvanishing hard colloidal particle in the
middle of the aggregate and a corresponding core-shell structure.



Chapter 4

Effective Interaction between Star
Polymers and Colloids

Typical soft matter systems, such as polymers and colloids, almost always occur in the form
of mixtures. It is the central goal of soft matter physics to offer insights into the generic
phase behavior of such systems that does not depend on the detailed chemical structure of
their constituents. In this respect, the study of mixtures of hard colloidal particles and non-
adsorbing polymer chains has received a great deal of recent attention, both experimentally
[127, 128, 129] and theoretically [129, 126, 130, 131]. The earliest theoretical approach to the
study of colloid-polymer mixture dates back to the work of Asakura and Oosawa [3, 132],
and Vrij [133], who modeled polymer chains as penetrable spheres. These models pertain
mostly to Gaussian, i.e., ideal chains and are semi-quantitative. More systematic approaches
have appeared in the recent years, in which self-avoiding chains are modeled and effective
interactions among them are derived by means of simulations [117] or theory [131]. The gain
from adopting such an alternative view is twofold: on the one hand, one has the possibility
of looking at the same problem from a different angle; on the other hand, tracing out the
monomers reduces the complexity of the problem by a factor N, the degree of polymerisation
of the chains [134].

A physical system where the colloidal approach finds an intuitive and natural applica-
tion is that of star polymers [11]. These macromolecular entities are similar to the described
polyelectrolyte stars in Chapter 3 with the difference that star polymers does not carry
charges. Star polymers are synthesized by covalently attaching f polymeric chains on a
common center. In this way, hybrid particles between polymers and colloids can be con-
structed, which naturally bridge the gap between these two common states of soft matter.
The number of arms f, also known as functionality of the stars, allows us to go from free
chains (f = 1,2) to stiff, spherical particles (f > 1). Effective interactions between star
polymers in good [27] and ©-solvents [135] have been recently derived and the validity of the
former has been confirmed through extensive comparisons with experiments [27, 136, 17]
and simulations [28, 137]. Extensions to polydisperse stars [33] as well as to many-body

o7
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forces in dense star polymer solutions [30] have also been recently carried out.

In this Chapter, we wish to carry these considerations one step further by looking at
a two-component system of star polymers in good solvent conditions and hard, spherical,
colloidal particles. Though the star-star interaction is readily available and the colloids
can be modeled as hard spheres, the effective cross interaction between star polymers and
colloids is still missing. It is the purpose of this Chapter to present theoretical and simulation
results and to furnish analytic expressions for the force and/or the effective interaction
acting between a star polymer and a spherical, colloidal particle for a large range of size
ratios between the two. The theoretical approach is inspired by the earlier considerations
of Pincus [49] regarding the force acting between a star and a flat wall but are made more
precise here and they are also extended to include the effects of curvature. The rest of this
Chapter is organized as follows: in Section 4.1 we present the general theoretical approach,
both for flat and curved surfaces and derive analytic expressions for the star-colloid force
which include a handful of undetermined parameters. In Section 4.2 we compare those with
the results of monomer-resolved Molecular Dynamics simulations and determine the free
parameters in order to achieve agreement between theory and simulation results. In Section
4.3 we present a modified version of the star-star potential which is valid for very low arm
numbers, f < 10, and in Section 4.4 we summarize and conclude the presented Chapter.

4.1 Theory

Let us first define the system under consideration and its relevant parameters. We consider
a collection of star polymers with functionality f and hard, spherical colloidal particles, the
interaction between the latter species being modeled through the hard sphere (HS) potential.
By considering two isolated members of each species, i.e., one star and one colloid, our goal
is to derive the effective interaction between the two. The colloids have a radius R., which
is a well-defined length scale.

The stars, on the other hand, are soft, hairy balls without a sharply defined boundary
and this leads to some freedom in defining length scales characterizing their spatial extent.
The experimentally measurable length scale that naturally arises from small-angle neutron-
or X-ray-scattering experiments (SANS or SAXS) is the radius of gyration R, of the stars
and the associated diameter of gyration o, = 2R,. For the theoretical investigations on
the subject, however, another length scale turns out to be more convenient, namely the so-
called corona radius R of the star or the associated corona diameter o, = 2R,. The corona
radius arises naturally in the blob model for the conformation of isolated stars, introduced
by Daoud and Cotton [12]. According to the Daoud-Cotton picture, the bulk of the interior
of a star in good solvent conditions (and for sufficiently long arm chains), consists of a region
in which the monomer density profile c¢(s) follows a power-law as a function of the distance
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s from the star center, namely:
—4/3
c(s) ~ a3 (f) o3 f23, (4.1)
a

with the monomer length a, the excluded volume parameter v and the reduced excluded
volume parameter ¥ = v/a®. Outside this scaling region, there exists a diffuse layer of
almost freely fluctuating rest chains, in which the scaling behaviour of the monomer profile
is not any more valid. We define the corona radius R of the star as the distance from the
center up to which the scaling behaviour of the monomer density given by Eq. (4.1) above
holds true. In what follows, we define the size ratio ¢ between the stars and the colloids as:

q= = (4.2)

In addition, the interior of the star forms a semidilute polymer solution in which scaling
theory [7] predicts that the osmotic pressure II scales with the concentration c as II(c) ~ ¢¥/*.
Combining the latter with Eq. (4.1) above, we obtain for the radial dependence of the osmotic
pressure of the star within the scaling regime the relation:

II(s) ~ kpT f3%s73 (s < Ry). (4.3)

No relation for the osmotic pressure II(s) for the diffuse region s > Ry is known to date.
It is indeed one of the central points of this work to introduce an accurate ansatz for the
latter, one that will allow us also to derive closed formulas for the effective force between a
star and a hard object. This is the subject we examine below.

4.1.1 A star polymer and a flat wall

We begin by examining the simplest case, in which a star center is brought within a distance
z from a hard, flat wall, as depicted in Fig. 4.1. Going back an idea put forward some ten
years ago by Pincus [49], we can calculate the force Fy,(z) acting between the polymer and
the wall by integrating the normal component of the osmotic pressure II(s) along the area
of contact between the star and the wall. In the geometry shown in Fig. 4.1, this takes the

form:
y=00

Fiw(2) = 27r/ I1(s) cos ¥ ydy. (4.4)

=0

Using z = s cos ¥ and y = z tand we can transform Eq. (4.4) into:
Fo(2) = 272 / T1(s)ds. (4.5)

Eq. (4.5) above implies immediately that, if the functional form for the force Fy(2) were to
be known, then the corresponding functional form for the osmotic pressure I1(z) could be

obtained through:
d [ Fuw(2)
I1 —-— | . 4.6
@ -1 (2 (1.6
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Figure 4.1: Star polymer (black-shadowed particle) interacting with a flat wall. The
star polymer consists of a inner core region, where the scaling behaviour is dominant,
whereas the outer regime is shadowed and indicates the exponential decay of the
osmotic pressure.

To this end, we now refer to known, exact results regarding the force acting between a
flat wall and a single, ideal chain whose one end is held at a distance z from a flat wall [138].
There, it has been established that the force Fs(‘}vd)(z) is given by the relation:

, 0 z
Fi(2) = ksT_1n [erf (Z)} , (4.7)
where erf(z) = 2//7 [} e " dt denotes the error function and L is some length scale of
the order of the radius of gyration of the polymer. Carrying out the derivative and setting
erf(x) 22 1 for z > 1, we obtain a Gaussian form for the chain-wall force at large separations:

kT _2

F{9(2) 7¢ Lz (z>L). (4.8)

SwW
We now imagine a star composed of ideal chains. As the latter do not interact with each
other (“ghost chains”) the result of Eq. (4.8) holds for the star as well. Going now to self-
avoiding chains, we assert that, as the main effect giving rise to the star-wall force is the
volume which the wall excludes to the chains, rather than the excluded volume interactions
between the chains themselves, a relation of the form (4.8) must also hold for the force
Fyw(2) between a wall and a real star, but with the length scale L replaced by the radius
of gyration or the corona radius of the latter and with an additional, f-dependent prefactor
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for taking into account the stretching effects of the f grafted polymeric chains. From Egs.
(4.6) and (4.8) it now follows that

kgT (1 2 _s?

The full expression for II(s) now follows by combining Eq. (4.3), valid for s < Rg, with
Eq. (4.9), valid for s > L = R;, and matching them at s = R;. The local osmotic pressure
II(s) is the interior of a star polymer, as a function of the distance s from its center has
hence the functional form:

573 for s < Rg;

4.10
(& +267) e (1) (410)

I(s) = Af3?kgT
(%) b for s > Rq,

where A and x = L' are free parameters; it is to be expected that x = O(R, "), as we will
verify shortly. On the other hand, £ must be chosen to guarantee that I1(s) is continuous at

s = Ry, resulting into the value:

1

= 4.11
¢ 1+ 2k2R? ( )

Eq. (4.10) above concerns the radial distribution of the osmotic pressure of an isolated
star. The question therefore arises, whether this functional form for the osmotic pressure
can be used in order to calculate the force between a star and a flat wall also in situations
where the star-wall separation is smaller than the radius of gyration of the star, in which case
it is intuitively expected that the presence of the wall will seriously disturb the monomer
distribution around the center and hence also the osmotic pressure. In fact, it is to be
expected the osmotic pressure is a function of both the star-wall separation z and the radial
distance s, whereas in what follows we are going to be using Eq. (4.5) together with Eq.
(4.10), in which II(s) has no z-dependence itself. However, it turns out that this is an
excellent approximation. On the one hand, it is physically plausible for large star-wall
separations, where the presence of the wall has little effect on the segment density profile
around the star center and the ensuing osmotic pressure profile. On the other hand, also
at very small star-wall separations, the scaling form II(s) ~ s~ continues to be valid. To
corroborate this claim, we proceed with some arguments to this effect.

First, we refer once more to known, exact results concerning the radial distribution of the
pressure on a hard wall arising from an ideal chain grafted on it [139], a situation similar to
holding one end of a chain at a distance very close to the wall surface. The pressure ITiq(s)
reads as [139]:

1 1 2+ a? 2+ a®
Hid(s) = % (32 n a,2)3/2 (1 + ) exp [— :| y (412)
g

with the segment length a, indicating that in the regime a < s < R, indeed the scaling
Hid(S) ~ 573 holds.
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Figure 4.2: Snapshot of a simulation showing a star polymer interacting with a flat
wall, at a small center-to-surface distance. The mirror-reflected image of the star, on
the right, helps demonstrate that the configuration is similar to that of an isolated
star with twice as many arms.

Second, we can employ a scaling argument, asserting that, on dimensional grounds, the
osmotic pressure exerted by a star on a nearby flat wall and held at a distance z from it, must
be of the form I1(s, z) = kpTR;° h(s/ Ry, 2/ Ry), With some scaling function h(z,y); univer-
sality arguments dictate that the segment length a should not appear in the dimensional
analysis and hence s, z and R, are the only relevant length scales for this problem. Now, for
small star-wall separations, z < R,, we replace the second argument of this function by zero.
Moreover, we assert that, as the dominant contribution to the osmotic pressure for distances
s < Ry comes from the first few monomers along the chains colliding with the wall, the
degree of polymerisation N of the chains should be irrelevant if the chains are long. Hence,
all R,-dependence of the pressure should drop out, with the implication h(z,0) ~ 2~ for
r < 1 and hence II(s) ~ s~ in this regime.

Third, we point out that bringing a star with f arms at a small distance to a flat wall,
creates a conformation which is very similar to one of an isolated star with 2 f-arms, as shown
in Fig. 4.2. Hence, it is not surprising that at small star-wall separations, one recovers for
the radial dependence osmotic pressure the scaling laws pertinent to an isolated star.

Finally, by inserting Eq. (4.10) into Eq. (4.5) and carrying out the integration, we find
that for small star-wall distances, z < R, the force scales as Fyy(2) ~ (kgT)/z, thus giving
rise to a logarithmic effective star-wall potential Vi, (2) ~ —kpT In(z/Rs). The latter is
indeed in full agreement with predictions from scaling arguments arising in polymer theory
[49, 5, 113]. This is a universal result, in the sense that it also holds for single chains, be it
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real or ideal, as it can also be read off from the exact result, Eq. (4.7), using the property
erf(x) ~ x for x — 0. Thus, the proposed functional form for the osmotic pressure, Eq.
(4.10), combined with Eq. (4.5) for the calculation of the effective force, has the following
remarkable property: it yields the correct result both at small and at large star-wall distances
and therefore appears to be a reliable analytical tool for the calculation of the effective force
at all star-wall distances. At the same time, it contains two free parameters, A and &
which allow some fine tuning when the predictions of the theory are to be compared with
simulation results, as we will do below. Yet, we emphasize that this freedom is not unlimited:
on physical grounds, £ must be of the order of R, Land A must be a number of order unity
for all functionalities f, as the dominant, f3/2-dependence of the osmotic pressure prefactor
has been already explicitly taken into account in Eq. (4.10).

We are now in a position to write down the full expression for the star-wall force, by
using Eqs. (4.5) and (4.10). The result reads as:

(4.13)

kT

R Fy(2) _ A3 % + RLS(Q{;“ —-1) for z < Rg;
2¢ exp|—k*(2* — R%)] for z > R;.

Note the dominant, ~ 1/z-dependence for z — 0. Accordingly, the effective interaction
potential V,(z) between a star and a flat, hard wall held at a center-to-surface distance z
from each other reads as:

—In(Z) — (22 —1 _ 1 f < Rq;
V() = a2 ~2) = g = DE =)k oz (4.14)
Cerfe(kz)/erfe(kRs) for z > R,
with the inverse temperature 8 = (kgT) ™", the additional constant
(= % erfe(kRg) 'R (4.15)

and the complementary error function erfc(x) = 1 — erf(z). This completes our theoretical
analysis of the star polymer-wall force and the ensuing effective interaction potential. The
comparison with simulation data and the determination of the free parameters in the theory
will be discussed in Section 4.2. We now proceed with the calculation of the effective force
between a star and a spherical hard particle, where effects of the colloid curvature become
important.

4.1.2 A star polymer and a spherical colloid

We apply the same idea as for the case of the hard wall: the effective force acting at the
center of the objects is obtained by integrating the osmotic pressure exerted by the polymer
on the surface of the colloid. In Fig. 4.3, the geometrical situation is displayed: within the
corona radius of the star polymer Ry = 05/2, the osmotic pressure is determined by scaling
laws; the outer regime is shadowed and signifies the Gaussian decay of the osmotic pressure.
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Figure 4.3: Star polymer (black-shadowed particle) interacting with a colloidal par-
ticle (grey sphere). The dark and shadowed regions of the star have the same meaning
as in Fig. 4.1.

At center-to-surface distance z (center-to-center distance r = z 4+ R.), the integration of the
osmotic pressure is carried out over the contact surface between star and colloid. Taking
into account the symmetry of the problem, e.g., its independence of the azimuthal angle, we
obtain the force Fy.(z) between the star and the colloid as:

amax
Fi.(z) = 27er/0 dé sin A TI(s) cos v, (4.16)

where ¥ and 6 are polar angles emanating from the center of the star polymer and the colloid,
respectively. The variables 1 and € can be eliminated in favor of the variable s, which denotes
the distance between the center of the star and an arbitrary point on the surface of the colloid.
This elimination is achieved by taking into consideration the geometrical relations (see Fig.
4.3):

s sind = R.sin f (4.17)
and
s cosV + R.cos = R, + z. (4.18)

Egs. (4.16), (4.17) and (4.18) yield for the star-colloid effective force the transformed integral:

() — R ; / T s [(2 4 R = B2 + 7] TI(s) (4.19)

(z+ R.
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The maximum integration distance, sp.,, depends geometrically on 6,,,,, as well as on the
distance z of the star polymer to the surface of the colloid and on R.. The relation reads as

Smax = \/[z + R.(1 — cos me)]2 + (R sin Oppax)?

1
= ;\/[qz + Ry (1 — €08 Omay)]* + (Rpg Sin Oy ) 2. (4.20)

By introducing Eq. (4.10) into Eq. (4.19), an analytic expression for the effective force
follows, which reads as

F(z)  Af*R,
k‘BT N (Z + RC)2

In(%) + Va(Ry) for z < Ry;  (4.21)
[(z + Re)? = R2] U1 (2) + Pa(2) for z > Rs.

Here, the functions ¥, (z) and Wy(z) are given by:

f 2R2 | 1 2.2
U, (2) = SRz | Lomme _ K5 4.22
1($) Rse Xe Smaxe ’ ( )
and
Uy(z) = %e“QRg [ﬁ [erf (KSmax) — erf (kx)] + xe % — smaxe"zsﬁ’a"} , (4.23)
s K

where & is given by Eq. (4.11). Note that, for small distances, both regimes of the osmotic
pressure contribute to the integral, whereas for larger distances, z > Rs, only the Gaussian
decay does so. Due to the additional dependence of sy, on the distance z, [see Eq. (4.20)],
an analytical expression for the effective potential Vi.(z), analogous to Eq. (4.14) for the
flat-wall case, is not possible here.

Some remarks regarding Fy.(z) are necessary. First, for small separations z, the force
scales as Fy.(z) ~ (kgT)/z, the same behaviour found for the flat-wall case. Once more, we
obtain the universal result mentioned above, which has been shown to be also valid for an
ideal chain whose one end is held at a distance z from the surface of a hard sphere. Indeed,
for this case the force is given by the exact relation [140]:

: 0 R z
(d)(,) = — ¢ d
FiY(2) kBTaZ In [1 (Z n Rc) erfc (Lﬂ , (4.24)

with L being a length scale of order R,. Eq. (4.24) above, yields F9) (2) ~ (kgT)/z for
z — 0.
Second, let us consider the limit of small size ratios ¢ = Rg/R.. As can be seen from

Eq. (4.20), the upper integration limit spyax scales as R,/q, whereas the decay parameter x

1

is of the order Rg_l. Hence, kSmax ~ ¢~ ", with the implication that for small enough ¢’s, the

argument Ksmay in the error function and in the Gaussian in Egs. (4.22) and (4.23) can be
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replaced by infinity. As we will shortly see, this is an excellent approximation up to ¢ < 0.3,
as both erf(z) and exp(—2?) approach their asymptotic values for z — oo rapidly. Then,
the implicit z-dependence of the force Fy.(z) through spya, drops out and a z-integration of
the latter can be analytically carried out to obtain an effective star polymer-colloid potential
V.2°(z) which reads as [34]:

2

e\ [-In(E) -G -DE-3)+( forz <Ry
Vools) — A2 ( R ) m) (e 2 4.25
e) / z+ R, {(jerfc(mz)/erfc(fcRs) for z > R, (4.25)

with the constant ¢ given by Eq. (4.15). Clearly, in the limit R, — oo (¢ — 0), corresponding
to a flat wall, Eq. (4.25) reduces to the previously derived result, Eq. (4.14). It is a remarkable
feature that all effects of curvature are taken into account by the simple geometrical prefactor
R./(z + R.), for sufficiently small size ratios ¢. In this respect, the above result bears close
similarity to the well-known Derjaguin approximation [141].

4.2 Simulation

4.2.1 The simulation model

In order to check the theoretical prediction of the forces at hard objects, we performed a
monomer-resolved Molecular Dynamics (MD) simulation and calculated the mean force at
the center of the star polymer to compare the data with theory. The model is based on the
ideas of simulation methods applied on linear polymers and on a single star [18, 20]. The
details are already presented in Sec. 3.1.1. Different parameters are used for the FENE
potential (3.2): krppnxg = 30.0er,; and Ry = 1.501,;. The monomers are bonded closer to each
other. However, except of the missing charges the model remains essentially the same as in
the case of the polyelectrolytes.

In addition all monomers interact with the colloid or with the wall via a hard potential.
We note that exactly this simulation model for star polymers was already used by Grest et
al. in their simulations of linear and star polymers in good solvent conditions [18, 20].

The timestep is typically At = 0.002t* with t* = y/mo?;/e being the associated time unit
and m the monomer mass. After a long equilibration time (500000 MD steps), the mean
force at the core of the star whose center is held at the position R and its dependence on
the arm number f separations, is calculated as the expectation value over all instantaneous
forces acting on the star core, as already described in Sec. 3.1.1:

m) - (-

fN f
Z V(v — RJ) + Z Viene (T — R|)] > ) (4.26)

k=1 =1

where the first sum is carried over all f N monomers of the star and the second only over the f
innermost monomers of its chains. The direct force between the central particle and the wall
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did not need to be considered, as the center-to-surface distance was always kept at values
where this force was vanishingly small. Note that choosing the origin of the coordinate
system on the surface of the colloidal particle or wall, at the point of nearest separation
between the star center and this surface, and also the z-axis in the direction connecting this
origin with the star center, we immediately obtain R = |R| = z.

We have carried out simulations for a variety of arm numbers f and size ratios ¢, allowing
us to make systematic predictions for the f- and g-dependencies of all theoretical parameters.
In attempting to compare the simulation results with the theoretical predictions, one last
obstacle must be removed: in theory, the fundamental length scale characterizing the star
is the corona radius Rs. The latter, however, is not directly measurable in a simulation in
which, instead, we can only assess to the radius of gyration R,. Yet, we have previously
found that the ratio between the two remains fixed for all considered arm numbers f, having
the value Ry/R, ~ 0.66 [28]. We now proceed with the presentation of our MD results.

4.2.2 Star-wall and star-colloid interactions

We consider at first a star polymer near a hard wall. The theoretical prediction of the effective
interaction force is given in Eq. (4.13). First, we consider the limit of small separations, z —
0, which allows us on the one hand to test the theoretical prediction Fy,(z) = kgTAf3/?/z
there and on the other hand to fix the value of the prefactor A, which is expected to have
in general a weak f-dependence. For this prefactor, some semi-quantitative theoretical
predictions already exist: For f = 1,2 the prefactor may be calculated from the bulk and
the ordinary surface critical exponents v,y and v°,7¢ of the n-vector model. For n = 0 this
results in A(f = 1) = (y—19)/v and 23/2A(f = 2) = (y—~°)/v = 1/v [142, 143]. Numerical
values for the exponents are known from renormalization group theory and simulation [144,
145] and yield A(f = 1) ~ 0.83 and A(f = 2) ~ 0.60. On the other hand, for very large
functionalities, f > 1, one can make an analogy between a star at distance z from a wall and
two star polymers whose centers are kept at distance r = 2z from each other [49]. Indeed,
for very large f, the conformations assumed by two stars brought close to each other is
one in which the chains of each star retract to the half-space where the center of the star
lies, a situation very similar to the star-wall case. Then, one can make the approximation
Fyw(2) = F(22), where Fy denotes the star-star force. For the latter, it is known [27] that
it has the form:

Falr) = 2 (- 0) (127)

implying for the coefficient A the asymptotic behaviour:

5
lim A(f) = Ay = — 2 0.14. 4.28
fm A) 36 (4.28)
Since there is no theory concerning the values of A in the intermediate regime of f, A is

used as fit parameter. Its value can be obtained by plotting the inverse force 1/ F,(z) against
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Figure 4.4: Reciprocal effective force between a star polymer and a hard flat wall
plotted against the distance z between the star center to the surface of the wall for
small z-values. The dependence F(z) ~ 1/z is confirmed by the simulation results
(symbols). The prefactor of the potential depends on f and manifests itself in the
different slopes of the reciprocal forces. The inserted plot shows the divergence of the
force at the distance z = Ry, which is subtracted from z in the outset of the plot, to
achieve divergence of the force in the origin.

z for small separations z to the hard wall. The results are shown in Fig. 4.4. Looking first
at the inset, we see that, as for the earlier case of star-star interactions [28], the reciprocal
force curves do not go through the origin, as a result of the finite core size, Ry. Once this
is subtracted, though, straight lines passing through the origin are obtained, verifying in
this way the 1/z-behaviour of the force and the associated logarithmic dependence of the
effective potential at small separations. The values for A(f) can be immediately read off
from the slope of the curves and they are summarized in Table 4.1. There and in Fig. 4.5
we see that A is indeed a decreasing function of f but the asymptotic value A, = 5/36 is
still not achieved at arm numbers as high as f = 100.

The decay parameter x is fixed by looking at the force at larger separations and the
obtained are also summarized in Table 4.1 and shown in Fig. 4.5. As expected, & is of the
order R, 1 as witnessed by the fact that the product kR is of order unity. A monotonic
increase of kKo, with the arm number f is observed, consistent with the view that for large f
stars form compact objects with an increasingly small diffuse layer beyond their coronae [27].

With parameters A and « once and for all fixed from the star-wall case, we now turn our
attention to the interaction of a star polymer at a hard sphere of finite radius R., equivalently
size ratios ¢ # 0. Here, the force is given by the full expressions of Egs. (4.21), (4.22) and
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f Rq/R, A KR,
2 0.006 0.46 0.58
5 0.018 0.35 0.68
10 0.06 0.30 0.74
15 0.12 0.28 0.76
18 0.09 0.27 0.77
30 0.12 0.24 0.83
40 0.152 0.24 0.85
50 0.152 0.23 0.86
80 0.273 0.22 0.88
100 0.303 0.22 0.89

Table 4.1: The fit parameters arising from the comparison between theory and sim-
ulation for the star-wall and star-colloid interaction. The values of Ry shown here are
not exactly the same as the input core size; they are just in the same order of mag-
nitude, deviating only slightly from the real input value. They are still corresponding
to microscopic length, and are thus irrelevant at length scales r ~ o5. A is the overall
prefactor and k the inverse Gaussian decay length, both used in Eqgs. (4.21) and (4.25).
os = 2Rs = 0.66 04 denotes the corona diameter of the stars, as measured during the
simulation.

(4.23); for small enough size ratios ¢, the approximation ksmax — 00 gives rise to a simplified
expression for the force and to the analytical formula, Eq. (4.25) for the effective star-colloid
potential. Our purpose is twofold: to test the validity of these simplified expressions as a
function of ¢ and also to find an economical way to parameterize Sn., as a function of ¢
for those values of the size ratio for which the approximation xKsma.x — 00 turns out to be
unsatisfactory.

We show representative results for fixed arm number f = 18 and varying ¢ in Fig. 4.6;
results for different f-values are similar. It can be seen that the simplified result arising from
allowing Smax — 00 yields excellent results up to size ratios ¢ < 0.3, see Figs. 4.6(a) and
(b). However, above this value, the approximation of integrating the osmotic pressure up to
infinitely large distances breaks down, as it produces effective forces that are larger than the
simulation results, especially at distances z of order of the radius of gyration R,. These are
the dashed lines shown in Figs. 4.6(c)-(e). The overestimation of the force is not surprising:
as can be seen from Fig. 4.3 and Eq. (4.19), we are integrating a positive quantity beyond
the physically allowed limits and this will inadvertently enhance the resulting force. Hence,
we have to impose a finite upper limit sy, for size ratios ¢ > 0.3 in order to truncate the
contribution of the Gaussian tail in the integral of the osmotic pressure in Eq. (4.19).

In Fig. 4.7 a typical snapshot of a star polymer at a colloid illustrates the situation. One
can see that the main contribution of the osmotic pressure results from in the inner region of
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Figure 4.5: The prefactor of A and the decay parameter x of Eq. (4.13) plotted
against the functionality f. The value of A = 5/36 ~ 0.14 for f > 1 is not reached
but the simulation data tend to this value very slowly. x shows a monotonic increase
with arm number f.

the star. The outer region of the chains only interact weakly with the sphere. The question
now is how the value of s, must be chosen. As can be seen from Eq. (4.20), this quantity
is dependent on, R, z and 6nay. (The latter depending on ¢ means that 6, and ¢ should
not be treated as independent quantities.) It would be indeed most inconvenient if for every
combination of these we would have to choose a different upper integration limit. Hence,
we have attempted to transfer all dependence of s, onto the maximum integration angle
Omax- We found that this is indeed possible and, in fact, the angle 6,,..(¢) has a very weak
g-dependence: starting with a value O, ~ 45° at ¢ = 0.3, we find that it then quickly
saturates into the value 0, =~ 30° for all ¢ 2 0.35. In this way, we are able to obtain the
corrected curves denoted by the solid lines in Figs. 4.6(c)-(e), showing excellent agreement
with the simulation results.

We finally turn our attention to the f-dependence of the forces for a fixed value of the
size ratio, ¢ = 0.33. In Fig. 4.8 we show the simulation results compared with theory for
a wide range of arm numbers, 5 < f < 50. For the theoretical fits, the values of A and &
from Table 4.1 were used, whereas the value of the maximum integration angle was kept
fixed at 0, = 30° for all f-values. The agreement between theory and simulation is very
satisfactory.

Thus, our conclusions for the star polymer-colloid interaction read as follows: the general,
analytical expression for the force between the two is given by Eqgs. (4.21), (4.22) and (4.23),
supplemented by Eq. (4.20) in which the angle 6,,,, has to be chosen as discussed above for
g 2 0.3. An analytical formula for the effective interaction potential Vi.(z) is not possible for
such size ratios. Rather, the results for the effective force have to be integrated numerically
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in order to obtain Vi.(z). For size ratios ¢ < 0.3 on the other hand, the approximation
Smax — 00 in Egs. (4.21), (4.22) and (4.23) for the effective force can be made, thereby
also allowing us to derive a simple, accurate, and analytic form for the interaction potential
between a star polymer and a colloid, given by Eq. (4.25). These results form the basis of
the statistical-mechanical treatment of star polymer-colloid mixtures in terms of standard
liquid-state theories; the availability of analytical results for the pair interactions greatly
facilitates the latter. A many-body theory of star polymer-colloid mixtures was put forward
recently by Dzubiella et al. [34], who employed the above-mentioned effective interactions
in order to study the fluid-fluid separation (demixing transition) in such systems. The very
good agreement with experimental results obtained in that work offers further corroboration
of the validity of the interactions presented here.

As the ultimate goal of the derivation of the interactions we present here is precisely
to allow theoretical investigations of star polymer-colloid mixtures, we present in the next
Section a short account of a revision of the star-star interactions for the case of very low
arm numbers. In this way, mixtures containing stars with arbitrary arm numbers, ranging
from free chains (f = 1,2) to the “colloidal limit” of f > 1 can be studied in full generality.
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Figure 4.6: Comparison between simulation (symbols) and theoretical (lines) results
for the effective force between a star polymer and a colloidal particle for different size
ratios ¢, as a function of the center-to-surface separation z. The arm number here is
f = 18. The solid lines in (a) and (b) are derived from Eq. (4.21) for spax — 00. In
(c)-(e) the curves derived by means of this approximation are shown dashed and they
increasingly deviate from the simulation results as ¢ grows. Thereby, a finite upper
integration limit has to be introduced (see the text), producing the curves denoted by
the solid lines in (c)-(e) and bringing about excellent agreement with simulation.
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Figure 4.7: Snapshot of a typical configuration of a star polymer with f = 18 arms
near a colloidal sphere with ¢ = 0.75. One should notice that predominantly the
inner region of the star interacts with the hard sphere, yielding the main contribution
of the inner core regime to the osmotic pressure of a region, determined by 6., =~
30°. Thereby, the upper integration limit sy, in Eq. (4.19) is limited, see also the
geometrical aspects of Eq. (4.20) and Fig. 4.3.
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Figure 4.8: The effective force between a star polymer and a colloid for different arm
numbers f and ¢ = 0.33 plotted against z, the distance of the star center to the surface
of the colloid. The lines are the theoretical and the symbols the simulation results.
For clarity, the data have been shifted upwards by constants: f =10:1, f =18 : 2,
f=30:3, f=40:4, f =50:5.
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4.3 Revised star-star interaction for small arm num-
bers

The effective interaction between two stars in a good solvent was recently derived by
theoretical scaling arguments and verified by neutron scattering and molecular simula-
tion [27, 136, 17, 28], leading thereafter to the phase diagram of the system [32, 31]. The
pair potential was modeled by an ultra-soft interaction which is logarithmic for an inner
core and shows a Yukawa-type exponential decay at larger distances [27, 32|, as we already
presented in Eq. (3.52):

r 1 .
Vis(r) = 2 Ty () + vy for 7 < o (4.29)
18 1:%/2 exp(—%(r —o0g)) forr > o,

However, the theoretical approach giving rise to Eq. (4.29) does not hold for arm numbers
f <10, because the Daoud-Cotton model of a star [12], on which the Yukawa decay rests, is
not valid for small f. In these cases, the interaction has to a shorter-ranged decay for r > o.
The shortcomings of the blob model can be made evident if one considers the extreme limit
f =1, corresponding to free chains. There, the geometrical blob picture and the associated
“cone approximation” [19] break down. It is therefore instructive to consider known results
about the effective interactions between free chains in order to obtain some insight for the
case at hand.

Most of the work done on chain-chain interactions concerns the effective potential between
the centers of mass of the chains [117, 134, 146, 147, 148]. Theoretical approaches considering
two chains [148], simulations of two chains [146, 147], as well as recent, state-of-the-art
simulations of many-chain systems [117, 134] all reach the conclusion that the effective center-
of-mass to center-of-mass interaction has a Gaussian form with its range set by the radius
of gyration of the chains. Here, we are interested in a slightly different interaction, namely
that between the end-monomer of one chain and the end-monomer of the other. However,
at distances of the order of R, or larger, whether the centers of mass or the end-monomers
choice of the two chains are held fixed should not make much difference. Therefore, we
assume a Gaussian decay of the star-star potential for small f-values and center-to-center
distances larger than o,. We emphasize that only the large distance decay of the interaction
is affected; its form at close approaches has to remain logarithmic [113]. Accordingly, we
propose the following star-star pair potential for arm numbers f < 10, replacing the Yukawa
by a Gaussian decay:

5 —In(L) + 59— for r < oy;
Vis(r) = —kpTf¥25 ) e, - (4.30)
18 5753 €xp (=7%(r* = 02)) for r > o,

where 7(f) is a free parameter of the order of 1/R, and is obtained by fitting to computer
simulation results, see Fig. 4.9. For f = 2 we obtain the value 7 = 1.03 which, together
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Figure 4.9: Effective force between two star polymers plotted against the center-to-
center distance r for arm numbers f = 2 and f = 6. The simulation data (symbols)
coincide with the logarithmic-Gauss expression (solid lines) of Eq. (4.30). In the
inset, the outer distance region is enlarged in order to clearly show the validity of the
Gaussian decay in this f-regime (solid line), whereas the Yukawa form (dashed line)
produces poor agreement there.

with the potential in Eq. (4.30) above yields for the second virial coefficient of polymer
solutions the value By/ Rg = 5.59, in agreement with the estimate 5.5 < By/ Rg < 5.9 from
renormalization group and simulations [134]. For f = 5 we find 7 = 1.12, which leads to
By/R} = 11.48, in accordance with Monte Carlo simulation results [149, 29].

The very good agreement between the logarithmic-Gauss-potential of Eq. (4.30) and the
simulation data for f < 10 can be seen in Fig. 4.9. In the inset of this Figure, it can also be
seen that the Yukawa decay is way too slow there. Hence, the potential of Eq. (4.29), has a
longer range than the true interaction for small f, a property that explains the discrepancies
between the simulated and theoretical second virial coefficients based on this potential, which
have been reported by Rubio and Freire [29] in their numerical study of low-functionality
stars. At the same time, with increasing f, the roles of the Gaussian- and Yukawa-decays
are reversed: in Fig. 4.10, we show simulation and theory results for f = 10. The original,
logarithmic-Yukawa potential brings about better agreement now, as already established by
earlier studies on stars with high arm numbers [28, 27, 136]. To summarize, we propose
two analytic expressions for the effective star-star potential, valid in complementary regimes
of the functionality f. The first one concerns the regime f < 10 with the validity of the
logarithmic-Gauss-potential of Eq. (4.30) being established; in the second regime, f > 10,
the logarithmic-Yukawa-potential of Eq. (4.29) holds. We remark that the ultimative decay
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Figure 4.10: Effective force between two star polymers plotted against the center-
to-center distance r for arm number f = 10. In contrast to Fig. 4.9, here the Yukawa
form (solid line) gives an accurate description of the decay of the interaction at large
separations, whereas the Gaussian form (dashed line) does not.

of the effective interaction for very long distances is still Gaussian even for very large f, but
this is not relevant for By as it occurs for much larger distances than the corona diameter.

4.4 Summary and concluding remarks

In summary, we have presented analytic results for the force between a colloid and a star
polymer in a good solvent, accompanied with an analytic expression for the corresponding
pair potential which is valid for size ratios ¢ < 0.3. The validity of these expressions was
established by direct comparison with Molecular Dynamics simulations. It should be noted
that our theoretical approach is in principle generalizable to arbitrary geometrical shapes
for the hard particle, thus opening up the possibility for studying effective forces between
stars and hard ellipsoids, platelets etc. Further, a revised form for the star-star interaction
for small functionalities has been presented, while at the same time the logarithmic-Yukawa
form of this interaction remains valid for functionalities f 2 10.

The practical advantage of the present results is that they greatly facilitate the study
of structural and thermodynamic properties of concentrated star polymer-colloid mixtures;
a first attempt towards this has already been undertaken [34]. In this work, we limited
ourselves to the case where the star is smaller than the colloid, i.e., ¢ < 1. The study of
the inverse case may be possible by applying the ideas presented here, however additional
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complications arise through the possibility of the star to “surround” the smaller, colloidal
particle, in which case one part of the arms acts to bring about a repulsion with the colloid
and another causes an effective attraction between the two. Furthermore, a pair potential
picture for the many-body system become more and more questionable for larger ¢ as effective
many-body forces [30] will play a more dominant role in this case.



Chapter 5

Conclusions and Outlook

In this work we presented two examples for the calculation of the effective interaction po-
tential: between two PE-stars and between a star polymer and a colloidal particle. Both
cases are examples for mesoscopic particles with internal structure. A knowledge of confor-
mational properties like the size of the star or their monomer density profiles, is prerequisite
for a creation of a convenient theoretical two-particle model which enables a calculation of
the effective interaction. In turn, the knowledge of the effective interaction potential yields
the possibility to investigate large scale phenomena, like the phase behavior of the according
solutions. Structural studies are more convenient to compare theoretical predictions with
experiments.

In the case of neutral star polymers, for which conformational properties are already
known [12, 5, 20], the obtained results could be used in our interaction calculations, whereas
in the case of PE-stars conformational informations were absent, and we had to create an
own model of an isolated PE-star in order to obtain informations about its conformation.

Therefore, and to be familiar with some common terms in polymer theory, in Chapter
2 we illuminated the conformational aspect in more detail, and especially in terms of the
reasons for the flexibility of polymer chains. Accordingly, we presented also some relevant
parameters, which directly or indirectly influence the flexibility: in this context we investi-
gated solvent and charge effects for the chain flexibility. The second part of this Chapter
dealt with a statistical mechanics consideration of the effective interaction potential as a
justification for their application in star-like systems. Following Ref. [53], we derived the
pair-potential approximation from the exact expression of the effective Hamiltonian. The
pair-potential approximation is especially valid for particles in dilute solutions. However,
even for small distances it is a convenient approximation, as we showed for neutral star
polymers in Appendix A, where triplet interactions are compared with the pair potential.
In Section 2.2 we described the measurement of the effective interaction forces in MD sim-
ulations, since we use the link between theory and simulation for comparison purposes. We
point out that all presented theoretical calculations in this work are verified by simulation
results.
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After this preliminary part the main subject of the work is presented in Chapter 3. It
treats the considerations of PE-stars, the isolated as well as two stars. In contrast to neutral
star polymers, we could not use cognitions about conformational properties of PE-stars. All
known publications on this matter (see e.g. [45, 46, 47]), except of that of Klein Wolterink
et al. [48] did not fit with our simulation results. Here, we note that simulations of PE-stars
are presented at first in recent articles [54, 55]. Although our theoretical model is based on
the idea of Klein Wolterink et al., their model is not convenient for the treatment of two
PE-stars. We summarize the main features of our model, which have to be distinguished
from all known conventional theoretical models of PE-stars:

e we took into account for the inhomogeneous behavior (= r=2) of the density profile
for the monomers and the counterions resulting from our computer simulations. This
is in clear contrast to all other theories on this matter, where homogeneous charge
distributions have been assumed [45, 46, 47, 48, 49].

e We distinguish three different regimes for the counterions with different density distri-
butions: homogeneously distributed outside the star, inhomogeneously inside the star,
and homogeneously distributed within hollow tubes around the PE-chains (condensed
counterions).

e The determination of the radius of the star as well as for the numbers of counterions
in their three different states by simultaneous minimization of the free energy.

All calculated quantities in the latter point show very good agreement with results obtained
from monomer-resolved MD simulations regarding the counterions explicitly. We observed
that almost all counterions (80-90%) are ‘trapped’ within the star and a significant amount
of counterions are condensed along the almost fully stretched chains. We also considered
the case of added salt and obtained similar agreements of theory and computer simulations.
We note at this point that almost all coions remain outside the star, as predicted by theory
and confirmed by simulations.

By expansion of the one-star model to a two star model we calculated the free energy
difference between the free energy of two isolated stars and the free energy of two stars at
distance D. The arising D-dependence in the free energy contributions occur mainly in the
electrostatic part and especially in the entropic part of the counterions. We conclude that
the electrostatic influence is much weaker, in odd with eventual intuitive expectations, but
in line with Pincus’ prediction, that the counterion entropy plays the major role for the
effective interaction potential between PE-stars [49]. Nevertheless, electrostatics effects a
large number of trapped counterions within the star, thus influencing the entropy enormously.
In contrast to Pincus prediction, that the force is constant, we obtain a non-linear decay of
the force. The curvature is weaker than in the effective potential between neutral stars [27,
28], but the force has a larger scale with a strong parametrical charge fraction dependence.
The scale and curvature also depend on the salt concentration. The ensuing repulsive forces
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decrease with adding salt. It should be emphasized that not the screening effect is responsible
for the stronger curvature, and for the weaker scale of the force. It is rather a depletion effect
of the ions (counter- and co-ions) outside the stars, which induce a decrease in the repulsive
force between the stars. In order to offer a simple formula for the effective interaction
potential we suggest an analytical expression, obtained by a fit with our simulation results.
The expression is shared into two parts which are matched at D = 2R: a power-law potential
at close separations D < 2R, and a Yukawa function that can be expected for larger distances
beyond overlap D > 2R.

We hope to give stimulation for further experimental investigations on PE-star solutions.
Furthermore, with a proposition of an effective interaction between the stars, we linked a
microscopical consideration with a macroscopical treatment of the system by bridging the
ensuing length scales. The only remained length scale is the radius of the PE-star R, in
this sense we coarse-grained the system. It should now be possible to use our expression as
an input quantity in liquid state theories [57] or simulations for further studies of PE-star
solutions for different densities. This procedure of a systematic investigation of structural
correlations has been already realized for the case of neutral star polymers [31, 32]. We
already mentioned further possible future studies in PE-star solutions in Section 3.3; never-
theless we should repeat our suggestion of the study of spherical PE-brushes [42, 44] having
a nonvanishing hard colloidal particle in the middle of the aggregate and a corresponding
core-shell structure. Especially the possibility of comparing a modified theory, related to
spherical PE-brushes, with experiments is enticing.

Principal interest in the field of star-like polyelectrolytes rests upon the combination of
electrostatics and statistical mechanics, which is manifested in the competition of entropic
and electrostatic effects. A final remark relating to PE-stars concern the inhomogeneity
of charge distributions, that is often neglected in many charged polymeric systems. The
presented system shows that the inhomogeneous charge distribution induce a curvature of
the effective interaction potential. In the case of homogeneous distributions the interaction
potential would decay linearly [49]. We stress that possible charge inhomogeneities should
be regarded in future works.

The calculation of an effective interaction between a star polymer and a colloid presented
in Chapter 4 is important for investigations in star-polymer-colloid mixtures. Our calculation
of the effective force acting on a star polymer at a hard wall are based on an idea by Pincus
[49] who determined the osmotic pressure of the monomers at the wall. From this quantity
the force acting on the star can be derived, and an analytical expression were obtained,
which showed excellent agreement with monomer resolved MD simulations. We expanded
the model on curved spherical objects, in order to obtain the effective interaction potential
between a star polymer and a colloid. As in the hard wall case theoretical calculations yield
very good agreement with simulation data for a large scope of star-colloid size ratios ¢ < 1,
according to smaller stars than colloids. Further, a revised form for the star-star interaction
for small functionalities has been presented, while at the same time the logarithmic-Yukawa
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form of this interaction remains valid for functionalities f 2 10. The presented results
greatly facilitate the study of structural and thermodynamic properties of concentrated
star polymer-colloid mixtures [34, 56, 36]. As a future work, the case of ¢ > 1, at which
the star is larger than the colloid can be investigated. However, it can be expected that
this situation is more complicated, since the arms are able to “surround” the colloid, and
attractive contributions in the effective potential can be expected.

We hope to have enabled and stimulated further work in all of the presented subjects.
Especially PE-star solutions offer a large field for further future studies.
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AFM
AO
CPU
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DLVO
FEFT
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Atomic Force Microscopy
Asakura-Oosawa (model)

Central Processing Unit (time)
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Fast Fourier Transformation

Monte Carlo (simulation)

Molecular Dynamics (simulation)
Polyelectrolyte
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Random Access Memory (space)
Random Walk (model)

Small-Angle Light Scattering
Small-Angle Neutron Scattering
Small-Angle X-Ray Scattering
Self-Consistent Field (calculation)
Surface Force Apparatus

Total Internal Reflection Microscopy
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Appendix A

Triplet interactions in star polymer
solutions

In the following we want to give an example for many-body forces which we mentioned
in Section 2.2.2. Here we restrict our consideration in the analysis of the effective triplet
interactions between the centers of star polymers in a good solvent. In fact, we intend to
calculate the expression of Eq. (2.48) for star polymers.

In general, while the pair interactions are the central focus and the typical input of any
many-body theory, much less is known about triplet and higher-order many body interac-
tions. For rare gases, the Axilrod-Teller triplet interaction [150] has been found to become
relevant in order to describe high-precision measurements of the structure factor [151]. For
charged colloids, the effective triplet forces are generated by nonlinear counterion screening.
This was investigated by theory and simulations [152]. For star polymer solutions in a good
solvent such studies are missing. In all three cases, the effective triplet forces originate from
formally integrating out microscopic degrees of freedom, as is shown in Section 2.2.2. For
rare gases, these are the fluctuations of the outer-shell electrons while for charged colloids
the classical counterions play the role of additional microscopic degrees of freedom.

Usually one starts from an effective pair potential which is valid for large particle sep-
aration. The range of this effective pair potential involves a certain length scale ¢ which is
the decay length of the van-der-Waals attraction, the Debye-Hiickel screening length or the
diameter of gyration 2R, for rare gases, charged colloids, and star polymers, respectively.
Triplet forces, i.e. three star forces, not forces between monomers, become relevant with
respect to the pairwise forces if the typical separations between the particles are smaller
than this typical length scale /. This implies a triple overlap of particle coronae drawn as
spheres of diameter ¢ around the particle centers. The triple overlap volume is an estimate
for the magnitude of the triplet forces. Hence a three-particle configuration on an equilateral
triangle is the configuration where triplet effects should be most pronounced.

This Appendix is organized as follows: In the next Section A.1 we briefly present theo-
retical predictions resulting from scaling theory. A detailed description of the theory can be
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Figure A.1: Three star polymers at mutual distance r. The cores of the stars (with
radius R,) are located at the corners of an equilateral triangle. The distance from the
center is R. The mean radius of gyration of a single star is R,.

found in Ref. [30]. Afterwards we compare the theoretical predictions with results obtained
from Molecular Dynamics simulations.

A.1 Theoretical predictions for three stars

We consider a symmetric situation in which the three cores of the polymer stars are located
on the corners of an equilateral triangle (see Fig. A.1). The distance between the cores is r
while their distance to the center of the triangle is R. We assume that the radius of gyration
R, of the star polymers is much larger than their mutual distance R, > r.

Let us specify the result for the symmetric situation of three equivalent stars, each
consisting of arm numbers f; = f, = f3 = f. Coming back to the effective pair potential of
star polymers, presented in Eq. (3.52), we should notice the nature of the interaction part
for close distances. The inner part has a logarithmic form with a prefactor o =1 S f3/2
and stems from scaling theory [5].

In the case of three stars only the prefactor of the logarithm G)Sc?})f changes due to a dif-
ferent scaling exponent of the according partition function. The three-star contact exponent
@;?})f can be written as

@ 3/7-35

3/2
fof 23/2 _ 218f/ : (A'l)

An effective potential of the system of the three stars at small distance R from the center
may then be defined by
3)eff 3
Viiy" (R) = —ksTOF) In(R/Ry). (A.2)

We now derive the corresponding three body force underlying this effective potential. Note
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that the absolute value of the force is the same for all three stars. The relation of the
potential to the force on the core of one star is then

3
(3)eff (3)eff _ j : O D 3)
=1

The final result for the total force on each of the stars that includes any three body forces
is therefore

F{).(R) = —ksTO),/(3R). (A.4)

If one starts instead from a sum of two body forces, then one star experiences the sum of the
two forces calculated for the star-star interaction. With the given geometry of the equilateral
triangle this is easily calculated to give

Fﬁ)f(r) = \f12@§c2}/r12 + f13®§c2f)/7“13| = —kBT(‘)ng)/R . (A5)

Here, 7 = 115 = 713 = Rv/3 denote the distance between two of the stars, while the Ti; are
the unit vectors along the edges of the triangle (see Fig A.1). The relative deviation from
the pair potential picture is then given by

3) @) 3) @)

AP Fpyy(r) — Fppy(r) O — 305,
(2) (2) 2)
Fits Fypp(r) 305,

(A.6)

Using the cone approximation for the contact exponent [153] we finally obtain for the relative
deviation caused by triplet forces alone

AF 3323
F}f?f =Sy~ —0.11. (A7)

This result is independent of the number of arms and valid in the full region that is described
by the logarithmic potential. The results are in good agreement with results derived from

the perturbation expansion of polymer field theory [154, 155, 156] checking the relation Eq.
(A.7).

A.2 Comparison with simulation results

Molecular dynamics (MD) simulations were performed using exactly the model that we
already described in Section 3.1.1 but modified for three neutral star polymers. In fact,
all in Section 3.1.1 described potentials between the monomers are valid, except of the
Coulomb charges. In the FENE potential we used for the parameters kppng = 30.0€p; and
Ry = 1.501;3. We note that this model had been originally proposed to study single star
polymers [18, 20]. In this model the configuration of star polymer i = 1,2, 3 is given by the

coordinates 7" of the N monomers m = 1,...,N of the f chains j = 1,..., f and the

position of its core r((f).



86 A. TRIPLET INTERACTIONS IN STAR POLYMER SOLUTIONS

Figure A.2: Snapshot of the simulation of three stars with f = 5 arms each with
N = 100 monomers. The cores are located at the corners of the equilateral triangle that
is depicted in the center. The monomers that belong to the same star are represented
by balls of the same color: either black, dark gray, or light gray.

The three cores of the stars were placed at the corners of an equilateral triangle, see
again Fig. A.1 where also the core radius R, is shown. A typical snapshot of the three star
simulation is displayed in Fig. A.2 for a functionality of f = 5 and N = 100 monomers per
chain. The force on the star core was averaged during the MD simulation for a number of
edge lengths r of the triangle varying in the range between the diameter of the two cores
2R, and the diameter of gyration 2R, of a single star polymer. We have produced data for
f =3,5,10,18,30. For the smaller functionalities (f = 3,5,10) the number of monomers
per chain was N = 100 while for f = 10, 18,30 a number N = 50 was chosen. Note that the
total system comprises between 900 — 4500 mutually interacting particles. As equilibration is
slow and the statistical average converges slowly, the simulation becomes increasingly time-
consuming beyond such system sizes. As for reference data, we have also produced data for
a two stars situation according to the calculations in Ref. [28].

Results of the computer simulation are compared to the theory in Figs. A.3a and A.3b.
The reduced averaged force on a single star is shown versus the reduced triangle length for
different arm numbers. As a reference case, also the corresponding results in a pair potential
picture are shown, both within theory and simulation. For technical reasons we kept a small
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Figure A.3: a) Comparison of the force F' measured in the three star MD with that
calculated from a corresponding two star MD simulation for f = 3 and f = 10 with
N = 100. Also the results predicted by the theory are plotted as a continuous line
(only pair forces) and a broken line (including triplet forces). b) Same as Fig. 3a but
for f =18 and f = 30 with N = 50.

core radius Ry in the simulation, which is roughly 10% of the radius of gyration of the
whole star. In the theory, on the other hand, the core size was zero. Hence, to compare
properly [28], a shift r — 2R, has to be performed. The values for R4 are listed in Table 4.1.

As expected, in both theory and simulation, the triplet forces become relevant only within
the coronae. A comparison with pure pairwise forces leads to the first important observation
that the triplet force is smaller, i.e. the pure triplet contribution is attractive. (Note that one
has to multiply the pure two-star force by a factor of v/3 for simple geometrical reasons.)
The relative magnitude of the triplet term, however, is small. A quantitative comparison
with theory and simulation leads to good overall agreement. The triplet contribution itself,
however, is subjected to larger statistical errors of the simulation. Hence we resorted to
a different strategy to check the theory by plotting the inverse force versus distance. If
the theory is correct the simulation data should fall on a straight line both for the pure
pairwise and the full triplet case. The slope should then give the theoretical prefactor of the
logarithmic potential. The advantage of this consideration is that the slope bears a smaller
statistical error as more data points are included. Such a comparison is shown in Fig. A.4
for f = 10. The first consequence is that the simulation data indeed fall on a straight line
confirming the theory. In fact this is true for all other parameter combinations considered
in the simulations. The slope is higher for the triplet and lower for the pair case, both in

theory and simulation. The actual values in Fig. A.4 are in the same order of magnitude
but a bit different.

In order to check this in more detail, we have extracted the slope for all simulation data.
The result is summarized in Figure 5 where the relative differences of the slopes between the
pair and triplet cases are plotted versus the arm number f. The theory predicts a constant
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Figure A.4: Comparison of the inverse force 1/F measured in the three star MD
with that calculated from a corresponding two star MD simulation for f = 10 with
N = 50. The linear fits for the pair forces (small dashed line) and the full three body
force (dash-dotted line) are shown together with the respective results predicted by
the theory which are depicted by a continuous line (only pair forces) and a broken line

(including triplet forces).

value of 0.11, see Eq. (A.5). The simulation data scatter a lot in the range between 0.05
and 0.15 due to the large statistical error but the theoretical value falls reasonably within
the data. Consequently, the triplet contributions are found to be attractive and small even
for nearly touching cores where the triplet overlap of the coronae is substantial.

A.3 Conclusions

In conclusion, we have calculated, by theory and computer simulations, the triplet interaction
between star polymer centers in a good solvent positioned on the corners of an equilateral
triangle. The triplet part was found to be attractive but only about 11% of the pairwise
repulsion. Our calculations justify earlier investigations [32] where the pair potential frame-
work was used even slightly above the star overlap concentration.

We finish with a couple of remarks: First, the scaling theory can also be performed for
any triplet configurations beyond the equilateral triangle studied in this Appendix. Second,
arbitrary higher-order many body forces can be investigated assuming a cluster of M stars.
Such a calculation is given [30]. As a result, the deviations from the pair potential picture
increase with the number M and even diverge for M — oo. This implies that the pair
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Figure A.5: The slopes of the linear fits to the data as shown in Fig. 4 were extracted
from the simulation data for f = 3,5,10,18,30 and N = 50,100 to calculate the
relative deviation AF/F ﬁ)f induced by the triplet forces. The line at 0.11 corresponds
to the analytic result.

potential picture breaks down for very high concentrations. This is expected as for high
concentration a star polymer solution is mainly a semi-dilute solution of linear chains where
it is irrelevant at which center they are attached to [113]. As far as further simulational
work is concerned, there are many open problems left. Apart from the investigation for
arbitrary triplet configurations and their extensions to an arbitrary number of stars, the
most challenging problem is a full “ab initio” simulation of many stars including many-body
forces from the very beginning. This is in analogy to Car-Parrinello simulations [157] which
were also applied to colloidal suspensions [158]. A first attempt has been done [159], but
certainly more work is needed here. Another (a bit less demanding) task is to study stars
on a periodic solid lattice with periodic boundary conditions and extract the many body
interactions from there.

It would be interesting to study the relevance of triplet forces for star polymers in a poor
solvent near the ©-point [135]. It can, however, be expected that the triplet forces here are
even less important than for a good solvent as the effective interaction becomes stiffer in a
poor solvent. Furthermore, the effect of polydispersity in the arm number which has been
briefly touched in our scaling theory treatment should be extended since this is important
to describe real experimental samples.



Appendix B

The Lekner method

The calculation of the Coulomb energy of an infinite periodic system is an important part of
the numerical work in many applications. These systems are usually obtained by considering
N charges in a central box and all their periodic images. The problem of simulating the
movement of this charges is called N-body problem. Computing the forces among a set of
N bodies can be done in a straightforward way by computing all N? pairwise interactions.
There are various algorithms to increase the efficiency of the simulation regarding the CPU-
time. However, all these algorithms are efficient under certain conditions. Before introducing
the so-called Lekner method we first present shortly some of the most common methods:

An important class of the mentioned algorithms are the tree-based methods, which use
a tree data structure to hierarchically group the bodies (or particles) into clusters, that is,
groups of bodies that are fairly close to each other (see, e.g. [160, 161]). Those methods
can calculate the forces between N particles in time proportional to O(N log N) or even
O(N). A detailed introduction into this methods is given by Hockney and Eastwood [162].
However, tree-based methods take use of physical approximations like multipoles which are
accurate for a sufficient number of particles (> 10 000).

For lower numbers of particles N < 10000 different algorithms are more accurate by
summing the Coulomb forces between all particles. One of the main problems is the ac-
celeration of the slow convergence of the occuring sums. The most common method to
handle the convergence in a convenient way was proposed by Ewald [163, 164]. The basic
idea is to split the sum of Coulomb interactions into two parts: a short-ranged contribution
and a long-ranged contribution which accounts for the interaction between a certain par-
ticle and all other particles beyond a defined cutoff distance inclusive the periodic images.
The long-ranged part is calculated via Fourier-transformation which leads to a fast variant
of the Ewald summation, the particle-mesh Ewald (PME) algorithm [165] which uses the
Fast Fourier transformation. These methods scale also up to O(N log N) with a sufficient
accuracy. However, the mentioned scaling can be achieved only if the system is essentially
homogeneous distributed. The cutoff radius at which the short- and the long- ranged contri-
butions are split, a strongly inhomogeneous system scales with N? even by using the above
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methods, if almost all particles are concentrated in a certain region which size is in the order
of the cutoff radius.

Since the simulated PE-stars contains strongly inhomogeneous distributed charges we
have to use an NZ-scaling algorithm. Rather than the Ewald summation we use the so-
called Lekner summation of the Coulomb sum [58]. Lekner rederived some of the identities
which are in essence contained in the pioneering work by Madelung [166] who calculated
the Coulomb sum. Lekner accelerated the convergence of the Coulomb sum without using
accuracy. This is achieved with less terms than in the Ewald summation, and it avoids the
introduction of a cutoff radius with a reasonable value. We now present the basic feature
of the Lekner method [58, 167], which were used in all our simulations of PE-stars. The
method was previously applied in [168, 169].

For an assembly of N ions in a central cubic cell of dimension L, the Coulomb force
FEC) exerted onto particle ¢ by particle 7, and by all repetitions of particles j in the periodic
system, is

. . ”"4 —_— r .
F, = 4% yo o ioh (B.1)
ri — 5[?
all cells
where ¢; is the charge of the ith particle and € denotes the permittivity of the dielectric
medium.

Because of the z,y, z symmetry it is sufficient to consider only one component of the

force. For the xz-component we obtain

R S P S o

Ily,m;n=—o00

where we used the reduced components {L = x; —x;, nL = y; —y; and (L = z; — z; with the
condition ||, |n], |¢] < 1. The last sum can be transformed in three mathematical steps:

1. Euler transformation:

- 1 /oo —1,—at
r V== dtt” e ™, B.3
0 Jo (B.3)

with the I'-function I'(v);

2. Poisson-Jacobi identity:

() ‘ 0 12
Y e = \/? 3 e cos(2ri€); (B.4)

l=— [=—

3. modified Bessel function of zero order

L odt
Ko(2riml) = /0 Lot (B.5)
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If we use in step 2 the partial derivation of the Poisson-Jacobi identity with respect to & we
rewrite Eq. (B.2).

Fyp = 87r‘6]fg Y isin@rle) Y K, (27r [(n+m)? + (¢ +n)?]" 2) . (B.6)
=1 m,n=—0o0

In the first sum we took use of the point-symmetry of the sin-function.

For pair of particles not aligned parallel to z-axis the convergence of the sum in Eq. (B.6)
is fast. Thus an evaluation of just 20 terms in the sum is enough to get a part-per-million
accuracy: m,n = —2,...,2, 1 = 1,...lyay, With L., = 2(n> + ¢?)~/2 [58].

The convergence becomes worse if simultaneously [nL| < ¢ and [(L| < 6 (6 = opy < L)
for the case m = n = 0. The number of terms needed in the sum for a desired accuracy
increases rapidly with increasing §. If the particles are aligned parallel to the z-axis such
that |n| + |¢| = 0, the sum in (B.6) diverges with m = n = 0. For this particular case Fj,
is [170]

_ 445 = .
F, = 87T6L2;lsm(7rl§)

X i [KO (27rl

m=—0o0

g + mD + (—1)' K, (m

g +m— %sign(fL)D] . (B.7)

We finally summarize the different cases:
e case 1: |¢|L, |n|L,|C|L > § — Lekner summation using Eq. (B.6).
e case 2: |€|L > 6, |n|L,|(|L <6 — Lekner summation using Eq. (B.7).

e case 3: [¢|L,|n|L,|C|L <6 — full Coulomb force between both particles only, without
their periodic images.

The Lekner forces (B.6) and (B.7) were calculated on a lattice in the beginning of the
simulation. The grid distance b was chosen as b ~ 0.1501;. The forces were tabulated
inducing a large memory space usage (RAM-space > 60 Mbyte, depending on the size of
the simulation box). Although there are some methods enabling the save of RAM space by
dynamical variation of the grid distance during the simulation, we renounced these methods
in order to save CPU time.



Appendix C

Calculation of the electrostatic
potential for a chopped sphere

In this Appendix we present the technical details for the calculation of the electrostatic
potential of the two fused spheres of radius R, each carrying a charge @), and having a charge
density o(7’) that decays as (r') 2 with the distance 7’ from its center and is abruptly cut
off at the mid-plane, as given by Eqgs. (3.32) and (3.34). In other words, we show the steps
for the calculation of the electrostatic potential ®,(r) of Eq. (3.35).

C.1 Calculation of the electrostatic potential ®;,

The electrostatic potential ®(r) due to the charge density po(r) in a dielectric medium of
permittivity € is given by

o(r) = é/ or)_ o (C.1)

' — |
In order to calculate the integral above, we now take the two inner fused spheres shown in
Fig. 3.8 and introduce infinitesimally thin discs of thickness dz’ that are perpendicular to
the z-axis and cover the whole pattern, as shown in Fig. C.1. There, we show for clarity
only one of the two fused spheres, cut in the mid-plane, which we call a ‘chopped sphere’
and which can be figured as a succession of discs, each carrying an elementary charge d@.
It is a straightforward calculation to show that this elementary charge is given by

_ (B L /
@ = 2R In ( c) 1+ cos by [1 — In(cos 00)]dz ’ (€2)

i.e., it depends on the geometry through cosfly = D/(2R) as well as on the position of the
disc-center C' along the z-axis. As shown in Fig. C.1, ¢ is the distance (OC) between the
disc center and the center of the chopped sphere, which is taken to be the origin of the
coordinate axes. With C' = (2',y/, z') we have therefore

c= |7, (C.3)
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y4

Figure C.1: A sketch of the chopped sphere showing the geometry of the problem and
demonstrating the procedure used for the calculation of the electrostatic potentials.

whereas the radius a of the disc is given by
a= VR - 2% (C4)

The elementary contribution of the disc to the electrostatic potential at the point P,
d®gisc(7; 2'), depends parametrically on the disc-center location z'. Its calculation follows
from further decomposing the disc into concentric rings of radius & centered at C', making
use of the known results for the electrostatic potential of a charged ring [171, 172], and
integrating thereafter from £ = 0 to £ = a. Note that, due to the inhomogeneous, o (1) =2
dependence of the charge density inside the sphere, we are now dealing with discs that have
inhomogeneous charge densities as function of £ themselves, and which vary as oc (£2+¢?)7L.
The integration over the rings can be nevertheless carried out analytically.

We employ cylindrical coordinates and also introduce the vector s connecting the disc
center with the observation point P, see Fig. C.1. We have, evidently, r = (p, ¢, z) and s =
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(p, ¢, z—2"), with the distance from the z-axis p and the azimuthal angle ¢. Due to azimuthal
symmetry, it holds d®gis.(7, 2') = dPgisc(p, 2; 2'). It is convenient as an intermediate step to
express the sought-for potential in a shifted system of axes, whose origin lies at the center C'
of the disc, and in which the potential is expressed by another function d®’, i.e., we write:

dq)disc(p: 2 Z’) = dq)l(p, 2 ZI; zl)a = d‘II(S: X ZI)' (05)

Here, s is the magnitude of the vector s and x is the angle between s and the z-axis. The
coordinates s and x are related to the original ones through:

s = P+ (z—2)% (C.6)

z—2
PPt (z =) (0

The function dW¥(s, x; 2’) can be obtained analytically through the integration over rings

cOoS X

mentioned above. The result reads as follows.

o d¥(s,x;2") for s <aq;
d¥(s, x; ) _{ d¥. (s, x;2") for s > a. (C8)
The term dW¥_ (s, x; 2') is given by:
2dQ 1 &
) = = 3" Py ()P A(3;2) + By(s; 2/ .
d¥ (s, x; ) STl + (a)0F ¢ kz_% ok (0) Pox (cos x) [Ak(s;2") + Be(s;2')],  (C.9)

where Pp,(z) is the Legendre polynomial of order m,

= ()G (] RSO e

Jj=1

and
o) = () o o () - ()] S G257 [0 -0 T}

The term d¥s (z, s) is given by:
2dQ 1
eln[l + (a/c)?] ¢

X f:ng(O)ng(cosx) (g)%ﬂ {Zk: (_;;ﬂk (%) K + (_;)k In [1 + (%)2] } :

k=0 j=1

d¥. (s, x;7") =

(C.12)

The electrostatic potential caused by the single chopped sphere, ®ghop () at point P can
be obtained by a z’-integration

Z'=D/2 2’=D/2
4>chop(r)=/’ . dédisc(p,z;z’)=/,_ . d¥ (s(p, z;2"), x(p, 2, 2'); 2') - (C.13)
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Figure C.2: The electrostatic potential ®;,(r) for two inhomogeneously charged,
chopped fused spheres of radius R, plotted as a function of z along paths of fixed
distance p from the z-axis. (a) Center-to-center distance D = R; (b) D = R/2. The
curves are shown in the cylindrical coordinates introduced in Fig. C.1. The centers
of the spheres are located at the z-positions for which the upper curves have sharp
peaks.

Due to symmetry, the total electrostatic potential ®;,(r) caused by both fused spheres at the
observation point P is given as

<I>in("") = (I)chop(r) + (I)chop(D - T‘), (014)

where D = De,. In Fig. C.2, we show representative results for ®;,(r) obtained with this
procedure.

The integral in Eq. (C.13) cannot be carried out analytically and one has to resort to
a simple, one-dimensional numerical integration. In performing this integral by using Egs.
(C.8) - (C.12) together with Eqs. (C.2) - (C.7), all k- and j-sums appearing there must be
made manifestly convergent, i.e., the sums have to be expressed in terms of a variable z < 1
raised to positive powers. For this purpose, it is necessary, depending on whether s < ¢ or
s > ¢, to make expansions of the logarithmic and/or the inverse tangent functions in Egs.
(C.10) and (C.11). The expressions suitable for the numerical integration are given below
for completeness and convenience.

Casel: s<c<aors<a<ec.
2dQ 1
~eln[l+ (a/c)?] ¢

AW (5, ;) S Pok(0) Par(cos x) [Ci(s: 2) + Dils; #) + Bils: 2)

(C.15)
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where
Ci(s;2') = :i # (92(]'_19)—1; (C.16)
Dy(s;2') = (Z)Qk (—1)* [tan_1 (%) —tan™! (g)} : (C.17)
S R Ol

Case II: ¢ < s < a.

d¥_ (s, x;2") = 6111[12_3%/0)2] % io:PQk (0) Por(cos x) [Fk(z,8) + Gr(z,s) + Hi(z,s)],
where 1
Fe(s;2') = (S)Qkﬂ #ln [1 + (§>2} ; (C.20)
) = SO c
Hils?) = i SO ) ). ©22)
Case III: a < s < c.
! Q
dv. (s, x; 2') gln[lQ—S(a/c)z] % |
X ;PQk(O)PQk(COS X) -;1 7(_1);;“1 (%)2j (Z)Q(jk)l.
Case IV:c < a < s.
d¥. (s, x;2) = 81n[12—fz/c)2] % io:PQk(O)ng(cos X)Lk (s52") + Ji(s; 2)], (C.23)
where
L(s; z') _ z_: (_2] (g)m—j)ﬂ (g)w ; (C.24)
Ju(s:2) = (_Zl)k In [1 + (%)2} (§>2k+1 | (C.25)

Case V:a < ¢ < s. Here, d¥U. (s, x;2') can be taken directly from Eq. (C.12), as all
parameters appearing in the sums are smaller than unity.
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C.2 Calculation of the electrostatic potential ®,;

In order to calculate the electrostatic potential @, (7), caused by the hollow fused spheres of
the free counterions that reside in the volume V,,; (see Fig. 3.8), we employ the superposition
principle. Thereby, the aforementioned hollow region of uniform charge density gou(7) is
apprehended as the superposition of two fused spheres of radius Ry, with charge density
Oout (1) and of two smaller fused spheres, of radius R, with charge density —gou(7). In
this way, the problem is reduced to the calculation of the electrostatic potential of two
fused spheres with uniform charge density. The geometrical setup as well as the method
of calculation are identical to those presented in Appendix C.1. Thereby, the electrostatic
potential d®gis () is still given by expressions of the form (C.5)-(C.8), however Egs. (C.2),
(C.9) and (C.12) have to be replaced by their counterparts valid for homogeneous charge
distributions. The corresponding expressions for spheres of radius R are given below.

3 2\ | 2n R 3/D\ 1(DY’
dQ—”Q*(RQ—Z){ “5(@)‘5(%)

3
d¥ (s, x;2') = 2de ZPZk(O)PZk(COS X) {2 S (Z) B 2k1_ 1 (2)%] )

} dz, (C.26)

a (k+1)(2k —1)
(C.27)
and o
d¥. (s, x;2') = QSSQ ; PZk(gz]fj’i(f;)s X) (%) i (C.28)

The substitution R — Ry, yields the corresponding ones for the fused spheres of radius Ry .
Note that the term in the curly brackets in Eq. (C.26) is the volume of the chopped sphere.
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