Wachstum metallischer und oxidischer Mehrschichtsysteme
(Fe, Co, Fe-Oxid, Ga-Oxid)
auf Cu(110)- und CoGa(001)-Oberflächen

- Eine LEED, TEAS und AES-Studie

Inaugural-Dissertation

zur
Erlangung des Doktorgrades der
Mathematisch-Naturwissenschaftlichen Fakultät
der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Christian Pflitsch

aus Gummersbach

Oktober 2001
Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent:
Prof. Dr. René Franchy

Koreferent:
Prof. Dr. Andreas Otto

Tag der mündlichen Prüfung:
07.01.2002
Inhaltsverzeichnis

1 Einleitung .. 5

2 Meßmethoden .. 9
 2.1 Heliumstreuung-TEAS ... 10
 2.1.1 Helium-Materiewellen ... 11
 2.1.2 Analyse zweidimensionaler Strukturen 12
 2.1.3 Beugung an gestuften Oberflächen - Morphologie, Ranzigkeit und Wachstum 14
 2.1.4 Der Debye-Waller Effekt 18
 2.2 Beugung niedereenergetischer Elektronen - LEED 20
 2.3 Auger-Elektronen-Spektroskopie - AES 22
 2.3.1 Auger-Prozeß und Meßverfahren 22
 2.3.2 Abschätzung der Schichtdicke 24

3 Experimentelles ... 27
 3.1 Meßapparatur ... 27
 3.2 Substrate - Struktur, Präparation, Eigenschaften 30
 3.2.1 Cu(110) ... 30
 3.2.2 CoGa(001) ... 31
 3.3 Eichung der Verdampferöfen 36
 3.3.1 Der Kobaltöfen ... 37
 3.3.2 Der Eisenofen ... 38

4 Wachstum von Fe auf Cu(110) 41
 4.1 Temperaturstabilität der Eisenfilme 43
 4.2 Wachstum von Fe auf Cu(110) bei Raumtemperatur 46
 4.2.1 Deposition von Fe bei 310 K 46
 4.2.2 Inselbildung ... 47
 4.2.3 Diskussion ... 50
 4.3 Manipulation der Oberflächenmorphologie 52
 4.3.1 Wachstum von Fe auf Cu(110) bei 130 K 52
4.3.2 Anlassen des Systems Fe/Cu(110) auf 240 K 55
4.3.3 Anlassen des Systems Fe/Cu(110) auf 350 K 58
4.3.4 Diskussion .. 67

5 Präparation geordneter Eisenoxide auf Cu(110) 69
5.1 Oxidation von γ-Fe auf Cu(110) bei tiefen Temperaturen 70
5.2 Anlassen des Systems Fe-Oxid/Cu(110) 72
5.2.1 Chemische Umwandlung des Eisenoxids 72
5.2.2 Strukturelle Ordnung des Eisenoxids 77
5.3 Diskussion und Zusammenfassung 82

6 Wachstum von Fe und Co auf Fe₂O₃/Cu(110) 87
6.1 Fe/Fe₂O₃-Multischichten auf Cu(110) 88
6.1.1 Fe-Wachstum auf Fe₂O₃/Cu(110) bei 130 K 88
6.1.2 Anlassen von Fe/Fe₂O₃/Cu(110) 90
6.1.3 Oberflächenstruktur von Fe/Fe₂O₃/Cu(110) 94
6.1.4 Diskussion und Zusammenfassung 98
6.2 Co/Fe₂O₃-Multischichten auf Cu(110) 99
6.2.1 Co-Wachstum auf Fe₂O₃/Cu(110) bei 130 K 99
6.2.2 Anlassen von Co/Fe₂O₃/Cu(110) 101
6.2.3 Oberflächenstruktur von Co/Fe₂O₃/Cu(110) 104
6.2.4 Diskussion und Zusammenfassung 109

7 Oxidation von CoGa(001) - Bildung von Ga₂O₃ 111
7.1 Temperaturstabilität der Oxidfilme 112
7.2 Oxidation von CoGa(001) bei Raumtemperatur 113
7.3 Anlassen des ungeordneten Ga₂O₃ 114
7.4 Oxidation von CoGa(001) bei hohen Temperaturen 118
7.5 Diskussion und Zusammenfassung 122

8 Wachstum von Fe auf CoGa(001) 123
8.1 Temperaturstabilität von Fe auf CoGa(001) 124
8.2 Fe-Wachstum bei verschiedenen Temperaturen 127
8.2.1 Wachstum von Fe auf CoGa(001) bei 310 und 370 K .. 130
8.2.2 Wachstum von Fe auf CoGa(001) bei 550 K 131
8.3 Diskussion und Zusammenfassung 136

9 Zusammenfassung ... 141

A Die verwendeten Materialien - eine Übersicht 145
A.1 Eisen .. 145
A.1.1 α-Fe-Oberflächen: α-Fe(001), c(2 x 2)-α-Fe(001) 146
A.1.2 γ-Fe-Oberflächen: γ-Fe(110), γ-Fe(111), γ-Fe(1 1 \(\overline{1} \)) \ldots 148
A.2 Kobalt \ldots \}
Kapitel 1

Einleitung

Kapitel 1: Einleitung

Die Entdeckung des GMR-Effektes stimuliert die Untersuchung einer ähnlichen starken Abhängigkeit der elektrischen Leitfähigkeit bei Tunnelkontakten („Tunnelmagnetowiderstandseffekt“ oder „Tunneling Magneto Resistance“, TMR). TMN-Strukturen bestehen im einfachsten Fall aus zwei ferromagnetischen Metallschichten, die durch eine isolierende Zwischenschicht (Tunnelbarriere) getrennt sind. Ist die Zwischenschicht dünn genug, so können Elektronen diese aufgrund des quantenmechanischen Tunneleffektes überwinden und es kann ein Strom durch den Tunnelkontakt fließen. Dabei hängt der Tunnelstrom von der Magnetisierung der einzelnen Schichten ab (antiparallele oder parallele Ausrichtung) [17]. Die Tunnelbarriere besteht gewöhnlich aus dünnten Oxidschichten.

Die Anwendungsfelder dünner Oxidschichten reicht von der Mikroelektronik über die heterogene Katalyse, die Korrosion und die Sensorik bis hin zu diversen Anwendungen in der Materialwissenschaft. In der heterogenen Katalyse sind sie die wichtigsten Trägermaterialien. Für die neuere Anwendung in Tunnelkontakten werden dünne Oxidschichten gewöhnlich durch das Aufbringen von, im allgemeinen, Aluminium auf ein geeignetes Substrat und anschließende Oxidation in einem reaktiven Plasma hergestellt. In den vergangenen Jahren
wurde gefunden, daß extrem dünne Oxidschichten auf intermetallischen Legierungsoberflächen wie z.B. NiAl oder CoGa wachsen [18–20]. Dabei reagiert adsorbierter Sauerstoff mit an die Oberfläche segregierten Ga- oder Al-Atomen. Bei Raumtemperatur bilden sich dünne amorphe Oxidschichten, die sich durch Anlassen auf höhere Temperaturen ordnen.

Die vorliegende Arbeit gliedert sich in neun Kapitel. Die Grundlagen der verwendeten Meßmethoden werden im zweiten Kapitel erörtert. Insbesondere wird dabei auf die Methode der Streuung thermischer Heliumatome eingegangen.

Das dritte Kapitel behandelt die verwendete Meßapparatur sowie die benutzten Substrate (Cu(110) und CoGa(001)). Es wird auch auf die verwendeten Verdampferöfen und deren Eichung eingegangen. Im vierten Kapitel wird das Wachstum dünner Eisenfilme auf der Cu(110)-Oberfläche vorgestellt. Dabei werden nicht nur die Temperaturstabilität der Eisenfilme und das Wachstum bei Raumtemperatur behandelt; vorgestellt wird auch, wie sich ein bei 130 K aufgedampfter Film während des Anlassens verhält. Es zeigt sich, daß auf diese Weise ein geordneter, glatter Eisenfilm auf dem Cu(110) präpariert werden kann. Das fünfte Kapitel beschäftigt sich mit der Herstellung von geordneten Eisenoxidfilmen auf Cu(110). Im sechsten Kapitel wird auf die Präparation von Eisen- und Kobaltfilmen auf diesen geordneten Eisenoxidfilmen eingegangen. Dabei stehen auch hier wieder die thermische Stabilität der Filme sowie deren Ordnung im Vordergrund des Interesses. Kapitel sieben und acht schließlich behandeln die Messungen an einem CoGa(001)-Einkristall. Vorgestellt werden hier die Oxidation von CoGa(001), untersucht mittels Heliumstreuung, sowie das Wachstum dünner Eisenfilme auf diesem Substrat.
Kapitel 2

Die Meßmethoden
-eine theoretische Einführung

Abbildung 2.1: Dispersionsrelation von Photonen, Elektronen, Neutronen und Heliumatomen als Funktion der Energie [29]

2.1 Streuung thermischer Heliumatome

Bei der Streuung thermischer Heliumatome (thermal energy atom scattering, TEAS) wird ein Gasstrahl aus Heliumatomen an der zu analysierenden Probenoberfläche gestreut (siehe Abb.2.2). Aus der Intensität der elastisch gestreuten Heliumatome als Funktion des Streuwinkels lassen sich die Struktur und die Morphologie der Oberfläche bestimmen. Dabei muß unterschieden werden, ob die einfallenden Heliumatome auf die „glatte“ Kristalloberfläche (Bahnen I in Fig.2.2) oder auf eine Defektstelle im Kristallgitter, wie z.B. ein Adatom, ein adsorbiertes Molekül oder eine Stufenkante, treffen (Bahn II in Fig.2.2). Im ersten Fall werden die Heliumatome am periodischen Potential des Kristallgitters \textit{kohärent} gestreut. Es bildet sich ein Interferenzbild der streuenden Oberfläche. In der Nähe einer Defektstelle dagegen ist das Potential des streuenden Kristallgitters verzerrt. Dadurch werden Heliumatome, die in unmittelbarer Nähe einer solchen Verzerrung auftreffen, \textit{diffus} in den Raum gestreut. Dieser Bereich \(\Sigma \) der Oberfläche, der sog. diffuse Streuquerschnitt, trägt nicht zur Intensität eines Beugungsreflexes des Interferenzbildes bei. Lediglich der Untergrund des gesamten Beugungsspektrums wird durch diese diffuse Streuung erhöht.
2.1 Heliumstreuung-TEAS

Abbildung 2.2: Schematische Darstellung eines He-Streufperiments: Kohärenste (I) und Diffuse (II) Streuung an der Kristalloberfläche mit Defekten

2.1.1 Helium-Materiewellen

Jedes Teilchen besitzt Welleneigenschaften, d.h. die Aufenthaltswahrscheinlichkeit eines Teilchens am Ort \(\vec{r} \) zum Zeitpunkt \(t \), sprich die Intensität \(I(\vec{r},t) \), lässt sich durch eine Wellenfunktion \(\psi(\vec{r},t) \) beschreiben. Es gilt:

\[
I = |\psi(\vec{r},t)|^2
\]

(2.1)

Der Wellenvektor \(\vec{k} \) dieser Materiewelle, bzw. die Wellenlänge \(\lambda = \frac{2\pi}{|\vec{k}|} \) entspricht nach der De Broglie-Relation:

\[
\vec{k} = \frac{\vec{p}}{\hbar}
\]

(2.2)

Dabei ist \(\vec{p} \) der Impuls der Heliumatome und \(\hbar \) die Plancksche Konstante. Teilchen mit den hier benutzten Energien können in nichtrelativistischer Weise beschrieben werden. Durch Einsetzen von Gleichung 2.2 in die Formel für die kinetische Energie \((E = \frac{m_He v^2}{2} = \frac{p^2}{2m}) \) läßt sich die Wellenlänge der Heliumatome bestimmen. Man erhält:

\[
|\vec{k}| = \sqrt{\frac{2m_{He}E}{\hbar^2}} \approx \frac{2\pi}{4.540} \sqrt{E[meV]} \cdot \left[\frac{1}{\text{Å}} \right] \left(= \frac{2\pi}{\lambda} \right)
\]

(2.3)

Dabei bezeichnet \(m_{He} \) die Masse der Heliumatome. Die kinetische Energie des einfallenden Primärstrahls wird durch die thermische Energie der Heliumatome, d.h. von deren Temperatur bestimmt. Bei der hier verwendeten Meßapparatur kann durch Variation der Temperatur der Düsenstrahlquelle (70 bis 450 K) eine Heliumstrahlenergie von 14 bis 98 meV erzeugt werden (siehe auch Gleichung 3.1 in Abschnitt 3.1). Die diesen Energien entsprechenden Wellenlängen \(\lambda \) der Heliumatome berechnen sich mittels Gleichung 2.3 zu 0.5 bis 1.2 Å.
2.1.2 Analyse zweidimensionaler Strukturen

Aus dem Interferenzbild, welches durch die kohärente Streuung der Heliumatome an der Kristalloberfläche entsteht, läßt sich die Struktur der Oberfläche ermitteln. Für die Analyse zweidimensionaler Strukturen reicht es oftmals aus, sich auf die geometrische Streutheorie zu beschränken, d.h. die Struktur wird allein aus der Position der Beugungsreflexe im reziproken Raum bestimmt. Abb. 2.3 zeigt schematisch die Streugeometrie eines Heliumbeugungsexperiments. Entscheidender Parameter ist der Impulsübertrag, bzw. der Wellenvektorübertrag \(\Delta \vec{q} = \vec{k}_a - \vec{k}_e \), von einfallender und ausfallender Welle.

![Diagramm zur Analyse zweidimensionaler Strukturen](image)

Abbildung 2.3: Schematische Darstellung der Streugeometrie eines Heliumbeugungsexperiments: Der in Richtung \(\vec{k}_e \) einfallende Heliumstrahl wird in Richtung \(\vec{k}_a \) gestreut.

Durch die periodische Anordnung der Oberflächenatome bildet das Helium-Oberflächen-Wechselwirkungspotential für die Heliumatome ein natürliches Beugungsgitter. Um bei einfallendem Strahl des Wellenvektors \(\vec{k}_e \) einen Beugungsreflex in Richtung \(\vec{k}_a \) zu erhalten, muß für den Wellenvektorübertrag \(\Delta \vec{q} = \vec{k}_a - \vec{k}_e \) die Laue-Bedingung in zwei Dimensionen erfüllt sein [30–32]:

\[
\vec{q}_{||} := \vec{k}_{a,||} - \vec{k}_{e,||} = \vec{G}^{2D} \quad \text{mit} \quad |\vec{k}_e| = |\vec{k}_a| \quad (2.4)
\]

Dabei ist \(\vec{q}_{||} \) der Wellenvektorübertrag parallel zur Oberfläche, welcher sich aus der Differenz der Wellenvektorkomponenten \(\vec{k}_{a,||} \) und \(\vec{k}_{e,||} \) von einfallender und ausfallender Welle parallel zur Oberfläche zusammensetzt. \(\vec{G}^{2D} \) ist ein zweidimensionaler reziproker Gittervektor der Oberfläche. Er steht zum
2.1 Heliumstreueung-TEAS

Gittervektor \vec{R}^{2D} des realen Gitters in folgender Beziehung:

$$\vec{G}^{2D} = k\vec{a}_1^* + l\vec{a}_2^* \quad \text{mit} \quad \vec{a}_i \cdot \vec{a}_j^* = 2\pi\delta_{ij} \quad (2.5)$$

Dabei bilden die linken Gleichungen zwei Linearkombinationen $(k, l, n, m \in \mathbb{N})$ aus den Basisvektoren \vec{a}_i des realen und \vec{a}_i^* des reziproken Gitters, welche mittels der rechten Gleichung miteinander verknüpft sind. Die reziproken Basisvektoren erhält man aus den Basisvektoren im Realraum durch folgende Beziehung [31]:

$$\vec{a}_1^* = 2\pi \frac{\vec{n} \times \vec{a}_1}{|\vec{a}_1 \times \vec{a}_2|} ; \quad \vec{a}_2^* = 2\pi \frac{\vec{n} \times \vec{a}_1}{|\vec{a}_1 \times \vec{a}_2|} ; \quad |\vec{a}_i^*| = \frac{2\pi}{|\vec{a}_i|} \cdot \sin \frac{\pi}{2} (\vec{a}_i \cdot \vec{a}_j) \quad (2.6)$$

Dabei ist \vec{n} der Normalenvektor der Oberfläche und $i \in (1, 2)$.

Gemessen wird in der vorliegenden Arbeit der Streuwinkel ϑ des gestreuten Heliumstrahls. Die Meßgeometrie ist so angeordnet, daß Einfallswinkel ϑ_e und Ausfallswinkel ϑ_a stets einen rechten Winkel bilden ($\vartheta_a + \vartheta_e = 90^\circ$). Zudem wird nur die elastische Streuung betrachtet, welche sich dadurch auszeichnet, daß sich die Wellenlänge des Heliumstrahls durch den Streuprozeß nicht ändert ($|\vec{k}_e| = |\vec{k}_a|$). Für diese Bedingungen ergibt sich für den Wellenvektorübertrag $q_{//}$ parallel zur Oberfläche (siehe auch Abb.2.3):

$$q_{//} := |\vec{q}_{//}| = |\vec{k}_{a,//}} - |\vec{k}_{e,//}}|$$

$$= |\vec{k}_a| \sin \vartheta_a - |\vec{k}_e| \sin \vartheta_e$$

$$= |\vec{k}_e| \sqrt{2} \sin (\vartheta_e - 45^\circ) \quad (2.7)$$

Die Analyse der Oberflächenstruktur läuft nun wie folgt ab: Gemessen werden die Positionen bzw. die Streuwinkel ϑ_e, bei denen das Beugungsbild Intensitätsmaxima aufweist. Mit Hilfe von Gleichung 2.7 können dann aus den Streuwinkeln der Beugungsmaxima die zugehörigen Beträge der Wellenvektorüberträge $q_{//}$ berechnet werden. Diese entsprechen nach Gleichung 2.4 direkt einem reziproken Gittervektor der Oberfläche. Aus einer genügenden Anzahl gefundenen Beugungsreflexe läßt sich also das reziproke Gitter bestimmen und damit über Gleichung 2.6 das reale Gitter der Oberfläche konstruieren.
2.1.3 Beugung an gestuften Oberflächen - Morphologie, Rauhigkeit und Wachstum

Abbildung 2.4: Heliumstreueung an zwei Terrassen der Größe A_1 und A_2 [Flächeneinheiten], welche durch eine Höhe h voneinander getrennt sind: (a) Draufsicht auf die Terrassen; (b) Schnitt entlang der gepunkteten Linie in (a).

Abb. 2.4 beschreibt schematisch den Streuprozess an einer Oberfläche bestehend aus zwei Terrassen, welche durch eine Stufe der Höhe h voneinander getrennt sind. Dabei zeigt Abb. 2.4(a) eine Draufsicht auf die Oberfläche, während in Abb. 2.4(b) ein Schnitt längs der gepunkteten Linie aus Abb. 2.4(a) dargestellt ist. Die untere Terrasse hat eine Fläche von A_1 Flächeneinheiten, die Fläche der oberen Terrasse beträgt A_2 Flächeneinheiten.
2.1 Heliumstreuung-TEAS

Terrassen beeinflussen den Streuprozeß im wesentlichen durch zwei Effekte. Zum einen verzerren die Stufenkanten der Terrassen das Potential des streuenden Kristallgitters. Dadurch werden Heliumatome, die in unmittelbarer Nähe einer solchen Verzerrung auftreffen, diffus in den Raum gestreut. Dieser diffus streuende Bereich Σ der Oberfläche (siehe Abb. 2.4(a)) trägt nicht zur Intensität eines Interferenzbildes bei, sondern erhöht lediglich den diffusen Untergrund des Beugungsspektrums. Erzeugt wird das Interferenzbild von den kohären ten Terrassenflächen \hat{A}_j. In Abb. 2.4(a) sind dies z.B. die Flächen $\hat{A}_1 + \hat{A}_2 = A_1 + A_2 - \Sigma$. Im allgemeinen haben Terrassen aber auch noch einen weiteren Effekt. Durch den Höhenunterschied zwischen benachbarten Terrassen kommt es zu Interferenzeffekten: Wenn sich zwei kohärente Streu er nicht auf dem gleichen Höhen niveau befinden, also durch eine Höhe h getrennt sind (siehe auch Abb. 2.4(b)), so kommt es zu einem zusätzlichen Phasenunterschied ϕ. Diese Phasendifferenz errechnet sich aus dem Produkt des Wellenvektorübertrags q_{\perp} senkrecht zur Probenerfläche (siehe auch Abb. 2.3) und des Höhenunterschiedes h der Terrassen:

$$\phi = q_{\perp} \cdot h = k_e h (\cos \vartheta_e + \cos \vartheta_a)$$

Für den Fall der gespiegelten Streuung ($\vartheta_e = \vartheta_a = 45^\circ$) vereinfacht sich diese Gleichung zu:

$$\phi = k_e h \sqrt{2}$$

Hier kann nun zwischen zwei Fällen unterschieden werden. Für $\phi = 2n\pi$ ($n \in N$) erhält man konstruktive Interferenz (Intensitätsmaximum, in-Phase), für halbzahliges n hingegen destruktive Interferenz (Intensitätsminimum, anti-phase) der an den durch den Höhenunterschied h getrennten Niveaus gestreuten Heliumwelle. Es ergeben sich somit zwei Spezialfälle für die Analyse eines Heliumbeugungsspektrums von gestuften Oberflächen, je nachdem ob die an benachbarten Terrassen gestreuten He-Atome konstruktiv oder destruktiv interferieren.

In-Phase Streuung - Oberflächenrauhigkeit

Im Fall der *konstruktiven* Interferenz hat die Terrassenhöhe keinen Einfluß auf die Intensität des Beugungsbildes. Die Intensität wird ausschließlich durch die kohärent streuende Gesamtfläche ($\sum_j \hat{A}_j$) bestimmt, und zwar läßt sich die Intensität wie folgt beschreiben [33, 34]:

$$\frac{I_{\text{in-Phase}}}{I_0} = \left(\sum_j \hat{A}_j \right)^2$$

Dabei sind \hat{A}_j die kohärent streuenden Anteile der Terrassenflächen, und I/I_0 ist das Verhältnis der gespiegelten Heliumintensität zur gespiegelten Intensität der reinen Probe.
Kapitel 2: Meßmethoden

Durch Einsetzen der Definition \(\Sigma_j \tilde{A}_j = \sum_j A_j - \Sigma \) der kohärent streuenden Terrassenoberflächen in Gleichung 2.10 und durch Verwendung der Normierung \((\sum_j A_j = 1) \) läßt sich die Intensität als

\[
\frac{I_{\text{in-Phase}}}{I_0} = (1 - \Sigma)^2
\]

(2.11)

beschreiben. Schreibt man den diffusen Streuquerschnitt \(\Sigma \) der Terrassenstufen als das Produkt \((\Sigma = DS) \) aus einem diffus streuenden Bereich \(D \) (siehe auch Abb. 2.4 (b)) und der Stufenkantendichte \(S \), wobei \(S \) in [Stufenlänge/Einheitsfläche] angegeben wird, so erhält man für die gespiegelte Heliumintensität unter in-Phase Bedingung folgenden Ausdruck [33]:

\[
\frac{I_{\text{in-Phase}}}{I_0} = (1 - DS)^2
\]

(2.12)

Die in-Phase Intensität wird also im wesentlichen durch die Dichte von Defekten (bzw. durch die Dichte von Stufenkanten) bestimmt. Umgekehrt bedeutet dies, daß die Messungen der gespiegelten in-Phase Heliumintensität wichtige Informationen über die Defektdichte einer Oberfläche liefern. Um den Wachstumsprozeß eines Films zu untersuchen, ist sie nur bedingt geeignet. Zwar wird auch die in-Phase Intensität durch das Wachstum eines Films beeinflußt. (Das Wachstum verändert die Defektstellendichte.) Dieser Effekt ist aber nicht so ausgeprägt, wie der Einfluß von Wachstumsprozessen auf die nachfolgend beschriebene anti-Phase Heliumintensität.

Anti-Phase Streuung

- Charakterisierung des epitaktischen Wachstums

Im Fall der destruktiven Interferenz zwischen kohärent streuenden Terrassenoberflächen heben sich die an benachbarten Terrassen in Spiegelrichtung gestreuten Heliumpartialwellen auf. Im Fall gleich großer Terrassen löschen sich die Intensitäten sogar vollständig aus. Trotzdem läßt sich die gespiegelte Heliumintensität \(\frac{I}{I_0} \) wieder allgemein als proportional zum Quadrat der Summe aus den kohärent streuenden Flächen darstellen. Im Gegensatz zur in-Phase Streuung treten jedoch auch negative Summanden auf. Die Intensität unter anti-Phase Streuung läßt sich wie folgt beschreiben [33, 34]:

\[
\frac{I_{\text{anti-Phase}}}{I_0} = \left(\sum_j ((-1)^j \tilde{A}_j) \right)^2
\]

(2.13)

Dabei beschreibt \(\tilde{A}_j \) auch hier den kohärent streuenden Anteil der Terrassenoberflächen.
2.1 Heliumstreuung-TEAS

Da der diffuse Streuquerschnitt \(\Sigma \) (siehe Abb. 2.4 (a)) bei großen Inseln in hinreichend guter Näherung in zwei gleich große Teile \(\frac{\Sigma}{2} \) zerfällt, wovon der eine Teil auf der Terrasse \(A_1 \) und der andere Teil auf der Terrasse \(A_2 \) liegt, und da sich diese zwei Flächen \(\frac{\Sigma}{2} \) bei anti-Phase Bedingung gegenseitig aufheben, kann in Gleichung 2.13 der Wert \(\sum_j \tilde{A}_j \) durch \(\sum_j A_j \) ersetzt werden. Die Intensität läßt sich somit durch

\[
\frac{I_{\text{anti-Phase}}}{I_0} \approx \left(\sum_j ((-1)^j A_j) \right)^2
\]

(2.14)

beschreiben. Es ist leicht einzusehen, daß diese Gleichung abhängig von der Verteilung der Terrassen-Größen \(A_j \) ist. Folglich wird die gespiegelte Heliumintensität durch das Wachstums einer Oberfläche beeinflußt. Im Gegensatz zur in-Phase Streuung, bei der lediglich die durch das Wachstum bedingte Veränderung der Defektdichte detektiert wird, kann mit gespiegelten Heliumstreuung unter anti-Phase Bedingung die Lagenverteilung untersucht werden. Im Spezialfall einer niedrigen Defektdichte (zu erkennen aus dem Vergleich zwischen in-Phase und anti-Phase-Intensität: \(I_{\text{anti-Phase}} \ll I_{\text{in-Phase}} \)), läßt sich zwischen zwei Wachstumsprozessen unterscheiden: „Frank-van der Merwe“- [31, 34] und kinetisch bedingtes 3D-Wachstum [34].

Beim kinetisch bedingten 3D-Wachstum wird angenommen, daß jedes Adsorbatatom an der Auftreffstelle verharrt. Jeglicher Massentransport innerhalb und zwischen den Schichten wird vernachlässigt. In diesem Fall gehorcht die Terrassen-Größe einer Poisson-Verteilung \(A_j = \frac{\Theta_j}{\bar{r}} e^{-\theta} \) mit \(j = 0, 1, ..., N \), wodurch sich Gleichung 2.14 wie folgt vereinfacht [33–35]:

\[
\frac{I_{\text{anti-Phase}}}{I_0} = e^{-\Theta}
\]

(2.15)

Dabei ist \(\Theta \) die Bedeckung des Adsorbates auf der Oberfläche, gemessen in Monolagen. (Für \(\Theta = 1 \) befinden genau so viele Adsorbatatome auf der Oberfläche, wie die Oberfläche selbst hat.) Die gespiegelte Heliumintensität fällt also im Falle des kinetisch bedingten 3D-Wachstums exponentiell ab, mit einem Exponenten von \(-\Theta \) (Abb. 2.5(a)).

Beim idealen zweidimensionalen Lagenwachstum (Frank-van der Merwe) wird das Wachstum der n-ten Lage erst vollendet, bevor das Wachstum in der (n+1)-ten Lage einsetzt. Dieser Wachstumsmodus führt zu einer sich periodisch mit der Bedeckung ändernden Oberflächenmorphologie: Jeweils nach Deposition einer vollen Monolage befindet sich die Oberfläche wieder im glatten Ausgangszustand. Für die gespiegelte Heliumintensität ergibt sich nach Gleichung 2.14 für Bedeckungen \((\Theta \leq 1) \) [35]:

\[
\frac{I_{\text{anti-Phase}}}{I_0} = (A_1 - A_2)^2 = (1 - \Theta - \Theta)^2 = (1 - 2\Theta)^2
\]

(2.16)
Abbildung 2.5: Gespiegelte Heliumintensität (anti-Phase) für (a) kinetisch bedingtes 3D-Wachstum und (b) Lagenwachstum (Franck-van der Merwe)

Bei der Bedeckung ($\theta = 1$) ist der Ausgangspunkt des Wachstums wieder erreicht. Für höhere Bedeckung wiederholt sich der Vorgang periodisch. Folglich oszilliert die gespiegelte Heliumintensität beim idealen zweidimensionalen Wachstum, gemessen unter anti-Phase Bedingung, mit der Periode von einer Monolage (Abb. 2.5(b)).

Abschließend bleibt zu bemerken, daß das Franck-van der Merwe Wachstum ebenfalls zu einer oszillierenden Defektdichte führt, weshalb man auch unter in-Phase Bedingung Oszillationen in der gespiegelten Heliumintensität beobachten kann. Allerdings ist die Amplitude dieser Oszillationen viel kleiner als im Falle der anti-Phase-Intensität.

2.1.4 Der Debye-Waller Effekt

$$I(T) = I(T = 0) e^{-2W(T)} \quad (2.17)$$

mit

$$2W(T) = \left\langle \left(\Delta \vec{k} \cdot \vec{u}(t, T)\right)^2 \right\rangle \quad (2.18)$$

gut beschreiben [41].
2.1 Heliumstreuung-TEAS

Die Klammerung $\langle \ldots \rangle$ bezeichnet das zeitliche Mittel und $\bar{u}(t, T)$ die momentane Auslenkung der Oberflächenatome zum Zeitpunkt t bei einer Oberflächen-temperatur T. Für spiegelnde Streuung gilt $\Delta \bar{k} = (0, 0, q_z)$, man erhält also:

$$ 2W(T) = q_z^2 \left\langle u_z(t, T)^2 \right\rangle $$

(2.19)

Das mittlere Quadrat $\left\langle u_z(t, T)^2 \right\rangle$ der Auslenkung senkrecht zur Oberfläche läßt sich im Rahmen des Debye-Modells der Gitterschwingungen berechnen [40]:

$$ \left\langle u_z(t, T)^2 \right\rangle = \frac{3\hbar^2}{m_S k_B T_D} T $$

(2.20)

Die Größe m_S ist hierbei die Masse der streuenden Atome, k_B die Boltzmannkonstante und T_D die Debyetemperatur des betreffenden Kristalls. Da an der Oberfläche im Verhältnis zum Festkörper weniger Bindungen vorliegen, kann die mit einer ausschließlich oberflächenempfindlichen Methode die Streuung thermischer Heliumatome gemessene Debyetemperatur nicht gleich dem Festkörperwert sein: Anstatt T_D mißt man hier die effektive Oberflächen-Debyetemperatur $T_{D, eff}$. Aus der Anzahl der fehlenden Bindungen läßt sich grob die Beziehung

$$ T_{D, eff} \approx \frac{2}{3} T_D $$

(2.21)

abschätzen, welche z.B. für die Elektronenstreuung mit zufriedenstehender Genauigkeit erfüllt wird. Für die Atomstreuung gilt Gleichung 2.20 jedoch nur näherungsweise: Die Heliumatome erfahren die Verschiebung $\bar{u}(t, T)$ eines Oberflächenatoms nämlich in Form einer Veränderung des Helium-Oberflächen-Wechselwirkungspotentials, das auch von der Verschiebung der benachbarten Oberflächenatome beeinflußt werden kann (ARMAND-Effekt) [42]. Daher kann es zu deutlichen Abweichungen von der Regel in Gleichung 2.21 kommen.

Die in der vorliegenden Arbeit mittels Gleichungen 2.17 bis 2.21 gemachten Berechnungen zum Debye-Waller-Effekt (Abbildungen 4.8, 5.4, 6.3 (d), 6.8 und 7.4) entsprechen daher nur groben Abschätzungen. Für die in der vorliegenden Arbeit verwendeten Abschätzungen wurden folgende effektiven Debye-Temperaturen $T_{D, eff}$ verwendet:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kobalt</td>
<td>445</td>
<td>300</td>
<td>6.8</td>
</tr>
<tr>
<td>Eisen</td>
<td>467</td>
<td>310</td>
<td>4.8, 6.3 (d)</td>
</tr>
<tr>
<td>FeO$_2$O$_3$</td>
<td>660</td>
<td>440</td>
<td>5.4</td>
</tr>
<tr>
<td>GoO$_2$O$_3$</td>
<td>730</td>
<td>490</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Debye-Temperaturen verschiedener Materialien, entnommen aus Referenzen [35], [43] und [44]
2.2 Beugung niedenergetischer Elektronen - LEED

Ein weiteres Verfahren zur Analyse von Oberflächenstrukturen ist die Beugung niedenergetischer Elektronen (Low Energy Electron Diffraction, LEED). Hierbei wird ein monoenergetischer Elektronenstrahl unter senkrechtem Einfall auf die Probe gerichtet und die gebeugten Elektronen werden auf einem Fluoreszenzschirm sichtbar gemacht. Gewöhnlich beträgt die Energie der verwendeten Elektronen etwa 10 bis 400 eV. Ihre Wellenlänge errechnet sich nach der de Broglie Relation zu (vgl. Gl. 2.3):

\[|\vec{k}| = \sqrt{\frac{2m_e E}{h^2}} \approx 0.512 \sqrt{E [\text{eV}]} \quad \left[\frac{1}{\lambda} \right] \quad \left(= \frac{2\pi}{\lambda} \right) \tag{2.22} \]

wobei \(m_e \) die Ruhemasse der Elektronen bedeutet. Für die hier verwendeten Energien (10 bis 400 eV) ergibt sich so eine Wellenlänge \(\lambda \) von etwa 0.61 bis 3.88 Å, was im Bereich interatomarer Abstände liegt. Die Probenoberfläche wirkt daher als Beugungsgitter für die Elektronen.

Für eine mathematische Beschreibung der Beugung niedenergetischer Elektronen („geometrische LEED-Theorie“) können die schon von der Röntgenbeugung bekannten Lauegleichungen herangezogen werden. Da es sich hier um eine zweidimensionale Beugung an der Probenoberfläche handelt, kommen nur zwei Lauegleichungen zur Anwendung:

\[\vec{a}_i (\vec{k}_a - \vec{k}_e) = \vec{a}_i \vec{q} = 2\pi n_i \quad n_i = 1, 2 \tag{2.23} \]

Hierin bezeichnen \(\vec{a}_i \) die primitiven Translationen des Oberflächengitters, \(\vec{k}_e \) und \(\vec{k}_a \) die Wellenvektoren von einfallenden und gebeugten Elektronen, \(\vec{q} \) den Streuvektor und \(n_i \) ganze Zahlen.

Das reziproke Gitter wird definiert durch

\[\vec{a}_i \cdot \vec{a}_j = 2\pi \delta_{ij} \quad i, j = 1, 2 \quad \delta_{ij} : \text{Kroneckersymbol} \tag{2.24} \]

wobei \(\vec{a}_j \) die Basisvektoren des reziproken Oberflächengitters

\[\vec{G}^{2D} = k \vec{a}_1^* + l \vec{a}_2^* \quad (k, l : \text{ganze Zahlen}) \tag{2.25} \]

bezeichnen (siehe auch Gl. 2.5 und 2.6).
2.2 Beugung niederenergetischer Elektronen - LEED

Für die parallele Komponente des Streuvektors \mathbf{q}_\parallel ergibt sich als Lösung der Lauegleichungen (Gl. 2.4):

\[\mathbf{q}_\parallel = \mathbf{k}_{a,\parallel} - \mathbf{k}_{e,\parallel} = \mathbf{G}^{2D} \]

Ein Beugungsreflex tritt also dann auf, wenn die zur Oberfläche parallele Komponente des Streuvektors einem reziproken Oberflächengittervektor (\mathbf{G}^{2D}) entspricht. (Dies ist die sog. Laue-Bedingung in zwei Dimensionen.) Das von den gebeugten Elektronen erzeugte Interferenzmuster entspricht folglich der Transformation der Translationssymmetrie der Oberflächenstruktur in den reziproken Raum. Die Rücktransformation ergibt die Periodizität im Realraum. Die Auswertung von LEED-Bildern liefert demnach die Basisvektoren \mathbf{a}_1 und \mathbf{a}_2 der Oberflächenheitzelle.

Abb.2.6 beschreibt schematisch ein hier verwendetes LEED-Experiment [29], bei welchem ein monochromatischer Elektronenstrahl unter senkrechtem Einfall auf die Probe gerichtet wird. Ist die Laue-Bedingung in 2 Dimensionen erfüllt, so werden die Elektronen in Richtung des Ausfallswinkels ϑ_a gebeugt. Die Elektronen treffen auf einen Fluoreszenzschirm und erzeugen am Auftreffpunkt einen Leuchtpunkt. Gewöhnlich wird das entstandene Beugungsmuster einfach aus der in Abb. 2.6 dargestellten Beobachtungsrichtung fotografiert.

Abbildung 2.6: Schematische Darstellung eines LEED-Experiments
Obwohl es sich bei LEED und TEAS in beiden Fällen um Streumethoden handelt, unterscheiden sich beide in einigen fundamentalen Punkten, die nicht nur den unterschiedlichen Versuchsaufbau betreffen. So dringen Elektronen einige zehn Angström tief in die Probe ein (siehe auch Kap. 2.3.2), während die Heliumatome außerhalb der Oberfläche am Potential der äußeren Kristallatome gestreut werden. LEED ist daher nicht so oberflächensensitiv wie TEAS. Es können auch unerwünschte Interferenzen zwischen den Atomlagen auftreten, was sich des öfteren durch das „Verschwinden“ einzelner Beugungsriffe bei bestimmten Energien bemerkbar macht. Andererseits besitzt TEAS auch Nachteile gegenüber LEED: Aufgrund des großen Streuquerschnitts Σ der meisten Defektstellen (Adsorbatatome, Stufenkanten, etc.) [45] werden die Heliumatome schon bei geringer Defektstellenrichtung überwiegend diffus gestreut, wodurch möglicherweise kein TEAS-Spektrum mehr messbar ist. LEED Bilder hingegen sind noch gut sichtbar. LEED liefert zudem in kurzer Zeit eine zweidimensionale Ansicht der Oberfläche im reziproken Raum. Fazit: Oftmals müssen beide Methoden kombiniert werden, um zu einem vollständigen Bild der Oberfläche zu gelangen.

2.3 Auger-Elektronen-Spektroskopie - AES

2.3.1 Auger-Prozeß und Meßverfahren

2.3 Auger-Elektronen-Spektroskopie - AES

Abbildung 2.7: Schematische Darstellung eines Standard AES-Versuchsaufbaus, bestehend aus einer Elektronenkanone innerhalb eines Zylinderspiegelanalyzers (CMA).

In einer ersten Näherung ergibt sich die charakteristische Augerelektronenergie zu:

\[E_{ABC} = E_A - E_B - E_C \quad (2.26) \]

Bei genauerer Betrachtung muß ein Korrekturterm auf der rechten Seite hinzugefügt werden, um veränderte Bindungsenergien für das ionisierte Atom im Vergleich zum neutralen Atom zu berücksichtigen. Der Augerübergang wird entsprechend der beteiligten Schalen als ABC-Übergang (z.B. KLL-Übergang) bezeichnet. In der vorliegenden Arbeit erfolgt die Messung der Energieverteilung \(N(E) \) der von der Probe emittierten Elektronen mit Hilfe eines Zylinderspiegelanalyzers (Cylindrical Mirror Analyzer, CMA). Ein solcher Versuchsaufbau ist schematisch in Abb. 2.7 dargestellt. Bei diesem Versuchsaufbau wird der primäre Elektronenstrahl (hier 3 keV) senkrecht auf die Probe geschossen. Dabei liegt die Elektronenkanone innerhalb des Zylinderspiegelanalyzers. Die von der Probe emittierten Augerelektronen, welche in den CMA eintreten werden von einer zylindrischen Elektrode auf den Elektronendetektor fokussiert. Dabei werden nur solche Elektronen auf den Detektor fokussiert, die unter dem Winkel \(\varphi = 42^\circ \) in den CMA eintreten und die die angelegter Spannung \(U \) die entsprechende Passenergie besitzen. Durch Messung der Elektronenintensität \(N \) bei gleichzeitigem Durchfahren der Spannung \(U \) läßt sich so die Energieverteilung \(N(E) \) der von der Probe emittierten Augerelektronen bestimmen. Die Energieverteilung \(N(E) \) enthält kleine, einem hohen

2.3.2 Abschätzung der Schichtdicke

Der durchlaufene Weg von Elektronen durch eine Substanz ist abhängig von deren kinetischer Energie. Dies gilt auch für den Austrittsweg von Augerelektronen. Je größer die Energie der Auger-Elektronen, desto weiter ist der Weg, den sie vom Ort ihrer Entstehung in Richtung Oberfläche zurücklegen können. Folglich werden umso tiefer gelegene Auger-Prozesse detektiert, je größer die Energie der beobachteten Auger-Elektronen ist. Die Auger-Elektronen der hier betrachteten Prozesse besitzen Energien zwischen 30 und 1100 eV, ihre mittlere freie Weglänge liegt zwischen 5 und 20 \(\text{Å}\) (siehe Abb.2.8).

Die Abschwächung der Auger-Intensität eines Substrats durch einen aufgedampften Film ist abhängig von der Schichtdicke \(d\) des Films und der mittleren freien Weglänge \(\lambda\) der beobachteten Auger-Elektronen. Sie läßt sich wie folgt beschreiben:

\[
\frac{I_F}{I_F^\infty} = 1 - e^{-\frac{d}{\lambda}} \quad (2.27)
\]

\[
\frac{I_S}{I_S^0} = e^{-\frac{d}{\lambda}} \quad (2.28)
\]

Dabei ist \(I_F\) die Auger-Intensität der Deckschicht bzw. des aufgedampften Films. \(I_S\) ist die Intensität des Substrats. \(\hat{d}\) ist die effektive Dicke der Deckschicht, \(\lambda\) bezeichnet die mittlere freie Weglänge. \(I_F^\infty\) entspricht der Intensität des reinen Films (vollständige Abschwächung des Substrates) und \(I_S^0\) der Intensität des reinen Substrats.

Zu beachten ist, daß bei einem CMA nur solche Elektronen auf den Elektronendetektor fokussiert werden, die unter dem Winkel \(\varphi = 42^\circ\) (Fokus des CMA) in den CMA eintreten. Der von diesen Elektronen durchlaufene Weg durch die Probe ist größer als der Weg, der bei senkrechtem Austritt durchlaufen
Abbildung 2.8: Mittlere freie Weglänge λ von Elektronen als Funktion der Energie [47]

würde. Folglich ist auch die effektive Dicke \tilde{d} der Deckschicht, welche die Abschwächung des Auger-Signals bestimmt, größer als die Dicke d des Films. Es gilt:

$$\tilde{d} = \frac{d}{\cos 42^\circ} \quad (2.29)$$

Durch Einsetzen von Gleichung 2.29 in Gleichung 2.27 und 2.28 ergibt sich für die AES-Intensität des Films bzw. des Substrats als Funktion der Schichtdicke d:

$$\frac{I_e}{I_{e0}} = 1 - e^{-\frac{d}{\lambda \cos 45^\circ}} \quad (2.30)$$

$$\frac{I_s}{I_{s0}} = e^{-\frac{d}{\lambda \cos 45^\circ}} \quad (2.31)$$
Die mittlere freie Weglänge λ der Elektronen variiert im Energiebereich von 5 bis 3000 eV zwischen 5 und 25 Å (siehe Abb. 2.8). Nach einer empirischen Formel von Seah et al. lässt sich λ wie folgt abschätzen [48]:

\begin{align*}
\lambda &= \frac{538a}{E^2} + 0.41a\frac{3}{2}E^{\frac{1}{2}} \\
\lambda &= \frac{2170a}{E^2} + 0.72a\frac{3}{2}E^{\frac{1}{2}}
\end{align*}

(2.32) (2.33)

Gleichung 2.32 gilt für Elemente (hier: Fe, Co, Cu). Gleichung 2.33 gilt für anorganische Verbindungen (hier: Oxide). Die Energie E der Elektronen wird in eV angegeben, a ist das (Atomvolumen)$\frac{1}{3}$ [=(Volumen der Einheitszelle geteilt durch die Anzahl der Atome der Einheitszelle)$\frac{1}{3}$]. a wird ebenso wie λ in „nm“ angegeben.
Kapitel 3

Experimentelles

3.1 Die Messapparatur

Abb. 3.1 zeigt schematisch den Aufbau der verwendeten Messapparatur, welche aus der Kombination eines TEAS-, eines LEED- und eines AES-Experimentes besteht. Die Messapparatur besteht im wesentlichen aus drei separaten Einheiten: der Streukammer, der Düsenkammer und der Detektorkammer [35,49–52]. Hauptelement ist die zentrale Streukammer (gestrichelter Zylinder in Abb. 3.1). In ihrem Inneren befindet sich die Probe unter Ultrahochvakuumbedingungen. Sie kann bis etwa 1200 K geheizt oder auf ca. 70 K abgekühlt werden. Der Druck des Restgases in der Kämmer beträgt etwa $5 \cdot 10^{-11}$ bis $1 \cdot 10^{-10}$ mbar. Die Probe ist so justiert, daß sich ihre Oberflächennormale bei TEAS-Messungen in der Helium-Streuebene bewegt. Sie ist beweglich montiert, d.h. sie kann sowohl um ihre Längsachse senkrecht zur Streukammer (Polarwinkel ϑ) als auch um ihre Flächennormale (Azimut φ) gedreht werden. Eine weitere, hier allerdings nicht eingezeichnete Bewegungsmöglichkeit ist das Herauskippen der Flächennormale aus der Heliumstreuenebene. Dies dient nur zu Justagezwecken. Zudem kann die Probe vertikal angehoben und gesenkt sowie an fast jeden beliebigen Punkt in der Nähe der Zylinderwand der Streukammer gebracht werden. Dies geschieht zum Zwecke von LEED und AES-Messungen. Dazu wird die Probe senkrecht vor das jeweilige Meßsystem gefahren, so daß sich Meßgeometrien, wie in Abb. 2.6 und Abb. 2.7 dargestellt, ergeben. Für TEAS-Messungen ist die Probe so, wie in Abb. 3.1 gezeigt, positioniert und nur ϑ und φ werden verstell.

An der Streukammer sind zudem eine Ionenkanone, sowie zwei Verdampferöfen für Eisen und Cobalt angebracht. Mit Hilfe der Öfen können dünne Metallfilme auf die Probenoberfläche gedampft werden und mit der Ionenkanone können diese Filme durch Argon-Ionen-Beschuß wieder abgetragen.
Abbildung 3.1: Schematischer Aufbau der Meßapparatur: TEAS, LEED und AES

werden. Diese Geräte befinden sich, wie eingezeichnet, in einer Ebene senkrecht zur Helium-Streuebene, welche den Düsenstrahl schneidet. In Bezug auf die Helium-Streuebene zielt der Eisenofen unter -17.5°, der Co-Ofen unter 17.5° und die Ionenkanone unter 35° auf die Probe. Für alle Bedampfungs- und Ionenbeschlußexperimente befanden sich die Proben in spiegelnder Streu-geometrie ($\vartheta_a = \vartheta_c = 45^\circ$). Dabei war der Azimut φ stets so eingestellt, daß im Falle der Cu(110)-Experimente die Cu-[001]-Richtung und im Falle der CoGa(001)-Experimente die CoGa-[100]-Richtung in der Streuebene lag.

Zur Durchführung der TEAS-Experimente wird in der Düsenkammer ein He- liumstrahl erzeugt, welcher nach erfolgter Streuung in der Detektorkammer detektiert wird. Dabei bilden Detektor- und Helium-Düsenachse einen rechten Winkel, d.h. es gilt stets: $\vartheta_c + \vartheta_a = 90^\circ$. Die Düsenkammer besteht aus drei differentiell gepumpten Einzelkammern. In der ersten befindet sich die Helium-Düse. Durch sie strömmt reinstes Helium unter hohem Druck (hier: 300 bar) in die erste Kammer. Anschließend wird der Heliumstrahl durch drei Abschüssler (Skimmer) kollimiert, bis schließlich ein Strahl mit ca. 2 mm Durchmesser in
3.1 Meßapparatur

der Streukammer auf die Probe trifft. Die Heliumdüse kann geheizt oder durch flüssiges Helium bzw. flüssigen Stickstoff gekühlt werden, so daß sich eine kontinuierlich einstellbare Temperatur von 70 bis 450 K auf den Heliumstrahl überträgt. Diese bestimmt die Energie und damit auch die Wellenlänge des Heliumstrahls (siehe auch Abschn. 2.1.1). In der vorliegenden Arbeit wurde die Energie durch elastische Streuung an einem Cu(110)-Substrat geeicht. Diese Eichung ergab für den hier verwendeten Heliumstrahl folgende empirische Gleichung:

\[E[\text{meV}] = -1.27 + 0.220 T_D[K] \] (3.1)

Dabei ist \(T_D \) die Temperatur der Düse, gemessen in Kelvin. Der Druck des Gases (hier: 300 bar) bestimmt die Intensität des Strahls und beeinflußt seine Energieverteilung. Der hier verwendete Heliumstrahl hat bei 18 meV einen Teilchenfluß von ca. \(3 \cdot 10^{19} \text{He-Atome s}^{-1} \) [53, 54]. Die Energieauflösung \(\Delta E/E \) ist besser als 2 %.

Während eines TEAS-Experimentes erhöht sich der Heliumpartiakdruck in der Streukammer auf ca. \(1 \cdot 10^{-9} \) mbar. Der an der Probe gestreute Helium-Strahl tritt durch eine Blende in die Detektorkammer [51,52,55] ein. Hier werden die Heliumatome mit Hilfe eines Ionisationsdetektors, dessen Aufbau und Funktionsweise detailliert in Ref. [56] beschrieben sind, detektiert. Die Heliumintensität kann sowohl winkelaufgelöst als auch energieaufgelöst gemessen werden. Die Energieauflösung wird dadurch erreicht, daß man den Strahl zunächst mit Hilfe einer rotierenden Lochscheibe („Chopper“ [56]) in einzelne Abschnitte unterschiedlich großer Länge zerhackt und die Heliumatome danach bis zum Nachweis durch den Detektor eine definierte Flugstrecke (hier 985 mm) passieren läßt. Mit Hilfe einer pseudostatischen Flugzeitberechnung und der bekannten Flugdistanz zwischen Chopper und Detektor läßt sich die Energieverteilung der gestreuten Heliumatome bestimmen [57–59]. Solch energieaufgelöste Messungen wurden in der vorliegenden Arbeit allerdings nicht durchgeführt. Im Detektor werden die Heliumatome ionisiert, wodurch sie beim Auftreffen auf ein Channeltron einzelne Spannungsimpulse erzeugen [55]. Diese werden gezählt und als Intensität in [Impulse/Sekunde] ausgegeben. Die vom Detektor gemessene Intensität \(I_g \) muß um die Totzeit \(t_d \) des Detektors gemäß

\[I_w = \frac{I_g}{1 - t_d I_g} \] (3.2)

korrigiert werden, um die wahre Intensität \(I_w \) zu erhalten. Alle in dieser Arbeit aufgeführten Intensitäten wurden auf diese Weise um die in Ref. [49] angegebene Totzeit von 0.7 \(\mu s \) korrigiert.
Abbildung 3.2: Die Cu(110)-Oberfläche: (a) Orientierung im Kupfer-Einkristall, (b) Draufsicht, (c) LEED-Aufnahme (71 eV)

3.2 Die Substrate - Struktur, Präparation und experimentelle Charakterisierung

3.2.1 Cu(110)

Kupfer kristallisiert mit einer kubisch flächenzentrierten Struktur (face centered cubic, fcc). Die Gitterkonstante a_{Cu}, gemessen bei 18 °C, beträgt 3.61 Å [43,60]. Abb. 3.2 zeigt die Anordnung der Cu(110)-Fläche im Kristall (a), sowie eine Draufsicht auf die Fläche (b). Die Einheitszelle der Cu(110)-Oberfläche ist rechteckig. Die Kantenlänge beträgt 3.61 Å in [001]-Richtung und 2.55 Å ($= \frac{1}{2} \cdot \sqrt{2} \cdot 3.61 Å$) in [110]-Richtung. Der Abstand zur nächsten Lage beträgt 1.275 Å. Die Einheitszelle des reziproken Gitters ist ebenfalls rechteckig, wobei sich die Kantenlängen nach Gleichung 2.5 zu 1.74 Å$^{-1}$ ([001]-Richtung) und 2.46 Å$^{-1}$ ([110]-Richtung) errechnen.

Abb.3.2(c) zeigt die Struktur der Cu(110)-Oberfläche in Form eines LEED-Beugungsbildes, aufgenommen bei einer Primärenergie von 71 eV. Die erwartete rechteckige Struktur ist leicht zu erkennen. Abb.3.3 zeigt zwei Heliumbeugungsspektren derselben Oberfläche in [001]- und [110]-Richtung, welche bei einer Temperatur von 100 K aufgenommen wurden. Nur in [001]-Richtung sind Beugungsreflexe höherer Ordnung zu erkennen. Dies liegt an der stark anisotropen Korrelation der Cu(110)-Oberfläche. In der [110]-Richtung ist die Korrelation so gering, daß als Folge die $(0, \pm 1)$-Reflexe im Untergrund des Helium-Spektrums verschwinden. Die Oberfläche des Kristalls ist sehr gut geordnet. Aus der Halbwertsbreite (HWB) des $(0,0)$-Beugungsreflexes ($\Delta q \approx 0.05 Å^{-1}$ in beide Richtungen) läßt sich eine kohärente streuende Fläche von etwa 125 Å durchschnittlicher Breite abschätzen ($2\pi / \Delta q$). Dabei wurde die instrumentelle Verbreiterung durch die TEAS-Apparatur nicht berücksichtigt.
Abbildung 3.3: Heliumbeugungsspektren der reinen Cu(110)-Oberfläche in [001]- und [110]-Richtung, aufgenommen bei 100 K (He-Strahlenergie: 24 meV). Die Heliumintensität ist normiert auf die gespiegelte Intensität der reinen Fläche.

Wenn man die instrumentelle Verbreiterung berücksichtigen würde \((\Delta q = (\Delta q_{TEAS}^2 + \Delta q_{\text{prob}}^2)^{\frac{1}{2}}\), wobei \(\Delta q\) die gemessene HWB, \(\Delta q_{TEAS}\), die intrinsische HWB der Probe und \(\Delta q_{TEAS}\), die Verbreiterung durch die TEAS-Apparatur bedeutet), erhält man für die kohärent streuenden Flächen einen höheren Wert. Im Falle von Kupfer muß zudem eine weitere Verbreiterung, die durch die Mosaikstruktur entsteht, berücksichtigt werden. Somit stellt 125 Å einen unteren Wert der kohärent streuenden Flächen dar.

Vor jedem Experiment wurde die Probe im Ultrahochvakuum gereinigt. Dazu wurde sie bei Raumtemperatur mit Argon-Ionen (800 eV) beschossen und anschließend mehrere Minuten bei 850 K angelassen, damit sich die Kristallstruktur reorganisiert. Dies wurde so lange wiederholt, bis keine Fremdatome mehr durch AES nachgewiesen werden konnten. Obwohl mit zunehmender Anzahl der Reinigungszyklen theoretisch eine Zunahme von Versetzungen an der Kristalloberfläche zu erwarten ist, wurde während der gesamten Messungen keine merkliche Verbreiterung der gespiegelten Heliumintensität festgestellt. Folglich war der verwendete Kristall für alle Messungen von gleichbleibend guter Qualität.

3.2.2 CoGa(001)

Struktur bei Raumtemperatur

Bei dem für diese Arbeit verwendeten Kobalt/Gallium-Einkristall handelt es sich um eine Legierung, die je zur Hälfte aus Kobaltatomen und Galliumatomen besteht. Diese intermetallische Verbindung kristallisiert in einer Cäsiumchlorid-Struktur, d.h. in einer kubisch raumzentrierten Struktur.
Abbildung 3.4: Die CoGa(001)-Oberfläche: (a) Orientierung im CoGa-Einkristall (CsCl-Struktur), (b) Draufsicht auf die Oberfläche im Ortsraum (schwarze Atome: (001)-Fläche, hellgraue Atome: c(4 x 2)-Rekonstruktion), (c) LEED-Aufnahme (79 eV) der c(4 x 2) rekonstruierten Oberfläche

(body centered cubic, Abk.: bcc), bei welcher sich jeweils 4 Atome des einen Elementes auf den Ecken des Würfels und ein Atom des zweiten Elements im Zentrum befinden (Abb. 3.4(a)). Die Gitterkonstante von CoGa beträgt 2.88 A [61]. Demzufolge sollte die (001)-Oberfläche (schraffiert dargestellt in Abb. 3.4(a)) eine quadratische Struktur mit Kantenlängen von 2.88 A aufweisen. Tatsächlich liegt die Oberfläche aber nicht in dieser unrekonstruierten, quadratischen Struktur vor, sondern sie rekonstruiert. Das heißt, die äußerste Atommage weicht von der Struktur des Kristalls ab. Bei CoGa(001) liegt überwiegend eine c(4 x 2)-Rekonstruktion vor. STM-Messungen [19] deuten auf eine Struktur, wie in Abb. 3.4(b) dargestellt, hin, wobei in [100]-Richtung jedes zweite Oberflächenatom fehlt, und in [010]-Richtung sogar nur jedes vierte Atom vorhanden ist. Zudem existieren zwei Domänen, welche um jeweils 90 Grad gegeneinander gedreht sind. Abb. 3.4(b) zeigt eine Draufsicht auf die CoGa(001)-Oberfläche im Ortsraum, wobei hellgraue Kugeln die Atome der
3.2 Substrate - Struktur, Präparation, Eigenschaften

Abbildung 3.5: Heliumbeugungsspektren der c(4x2)-rekonstruierten CoGa(001)- Oberfläche in [100]-, [010]- und [120]-Richtung (He-Energie 24.4 meV). Die Spektren sind normiert auf die Intensität des (0,0)-Reflexes, wobei das Spektrum der [010]-Richtung um einen Faktor 2000 auf der y-Achse verschoben wurde.

Die äußeren Lage (c(4 x 2)-Rekonstruktion) darstellen; schwarze Kugeln symbolisieren die darunter liegende Kristallschicht mit (001)-Orientierung. Neben der c(4 x 2)-Rekonstruktion kann in seltenen Fällen eine ($\sqrt{3} \times \sqrt{3}$)R26.6°-Rekonstruktion auftreten [19], was in der vorliegenden Arbeit auch beobachtet wurde.

Abb. 3.4(c) zeigt eine LEED-Aufnahme der c(4 x 2)-rekonstruierten Oberfläche und eine schematische Illustration derselben. Dabei stammen die durch Kreuze symbolisierten Reflexe von der Oberflächenstruktur der ersten Domäne in Abb. 3.4(b). Die Struktur der zweiten Domäne erzeugt Beugungsreflexe, welche in Abb. 3.4(c) durch offene Kreise dargestellt sind. Die Positionen, bei denen die Reflexe der beiden Domänen zusammenfallen, entsprechen den Stellen, wo das Beugungsmuster der unrekonstruierten CoGa(001)-Oberfläche erwartet würde. Diese Stellen sind in der Skizze durch schwarze Punkte markiert. Die Heliumbeugungsspektren (Abb.: 3.5), aufgenommen in [100]-, [010]- und [120]-Richtung, zeigen ebenfalls die erwarteten Beugungsreflexe der c(4 x 2)-rekonstruierten Oberfläche. Im Gegensatz zu Kupfer sind alle Reflexe sichtbar. Die Spektren in [100]- und [010]-Richtung sind im Rahmen der Meßgenauigkeit gleich.
Die Oberfläche des CoGa-Einkristalls ist atomar glatt. Aus der Halbwertsbreite des gespiegelten Helium-Reflexes Δq von etwa 0.02 Å$^{-1}$ läßt sich die mittlere Terrassenbreite abschätzen. Sie beträgt etwa 300 Å ($\approx 2\pi/0.02\,\text{Å}$). (Dabei wurde die instrumentelle Verbreiterung durch die TEAS-Apparatur nicht berücksichtigt. Das heißt, daß die kohärent streuende Fläche eigentlich etwas größer ist, 300 Å also nur einen unteren Wert darstellt (siehe auch Abschnitt 3.2.1.).) Die Stufenhöhe der Terrassen wurde bereits mittels Raster- Tunnelmikroskopie ermittelt [19, 20]. Benachbarte Terrassen sind durch eine Stufenhöhe von ca. 2.9 Å getrennt [19,20,26], was eindeutig dafür spricht, daß es sich um doppelt-atomare Stufen handelt. Nimmt man an, daß die Struktur der Oberfläche so wie in Abb. 3.4 (b) aussieht, so impliziert dieses Ergebnis, daß die Oberfläche hauptsächlich aus jeweils einem Element besteht. Entweder befindet sich Kobalt oder Gallium in der äußersten Atomlage.

Temperaturabhängigkeit der CoGa(001)-Oberfläche

Um die Temperaturabhängigkeit der Oberfläche zu untersuchen, wurden sowohl TEAS- als auch AES-Messungen durchgeführt [26]. Abb. 3.6 zeigt 16 Heliumbeugungsspektren der CoGa(001)-Oberfläche, aufgenommen für 8 verschiedene Temperaturen zwischen 300 und 900 K. Dabei sind nur die Spektren gezeigt, welche in [010]-Richtung und [120]-Richtung gemessen wurden. Die Spektren in [100]-Richtung sind nahezu identisch zu den Spektren der [010]-Richtung.

Bis zu einer Temperatur von etwa 500 K weisen die Spektren eine Beugungsstruktur auf, welche für eine c(4 x 2)-CoGa(110)-Oberfläche erwartet wird: Deutlich zu erkennen sind in [010]-Richtung die $(0,\pm 1)$- und $(0,\pm \frac{1}{2})$-Reflexe, sowie in [120]-Richtung die Reflexe bei $\pm (\frac{1}{2},1)$ und $\pm (\frac{1}{4},\frac{1}{2})$. Für niedrige Temperaturen, unterhalb 400 K, sind zudem weitere Reflexe in den Spektren der [120]-Richtung sichtbar (markiert durch Pfeile in Abb. 3.6), welche auf die Koexistenz einer $(\sqrt{5} \times \sqrt{5})$-Rekonstruktion hindeuten. Ab etwa 500 K ändern sich die Spektren mit steigender Temperatur: Die $(0,\pm 1/2)$-Reflexe in [010]-Richtung sowie die $\pm (1/2,1)$-Reflexe in [120]-Richtung sind nach Anlassen der Probe auf 600 K verschwunden. Übrig bleiben nur die $(0,\pm 1)$- ([010]-Richtung) und $\pm (1/4,1/2)$-Reflexe ([120]-Richtung) der c(4 x 2) rekonstruierten CoGa(001)-Oberfläche. Man kann diese Veränderung durch den Verlust der langreichweitigen Ordnung der c(4 x 2) rekonstruierten Oberfläche erklären, wodurch sich deren Beugungsreflexe verbreitern, bzw. sogar zum Teil verschwinden. Die kurzreichweitige Ordnung der c(4 x 2)-Rekonstruktion scheint bis etwa 700 K erhalten zu bleiben, was durch die Existenz der breiten $\pm (\frac{1}{4},\frac{1}{2})$-Reflexe ([120]-Richtung) belegt wird. Nach Anlassen auf Temperaturen über 850 K verschwinden sämtliche Beugungsreflexe bis auf den $(0,0)$-Reflex. Letzterer bleibt auch über 900 K noch sichtbar, wobei sich die Halbwertsbreite nur unwesentlich geändert hat. Die Oberfläche bleibt gut geordnet.
Abbildung 3.6: Heliumbeugungsspektren der CoGa(001)-Oberfläche, aufgenommen bei Temperaturen zwischen 320 und 900 K. Die Spektren wurden in [001]-Richtung und [120]-Richtung gemessen. Die Energie der verwendeten Helium-Atome betrug 24.4 meV. Die Bezeichnung der Beugungsreflexe bezieht sich auf die erwarteten Positionen der (001)-Oberfläche ($a_{CoGa}^* = \frac{2\pi}{0.288 \text{Å}^{-1}}$). Pfeile markieren die Reflexe der ($\sqrt{5} \times \sqrt{5}$)-Rekonstruktion.

Abbildung 3.7: AES-Messungen von CoGa(001), durchgeführt während des Anlassens von 300 auf 1050 K. Dargestellt ist das Intensitätsverhältnis der AES-Übergänge von Co (775 eV) und Ga (1070 eV) als Funktion der Temperatur. Der Verlauf der Messdaten wird durch die gestrichelte Linie angedeutet.

3.3 Eichung der Verdampferöfen

Beide Metalle, Kobalt und Eisen, wurden mittels eines Stabverdampfers auf die Probe gedampft. Dabei wird ein Stab, bestehend aus Eisen (Reinheit 99.9985 % [62]), bzw. Kobalt (Reinheit 99.9975 % [62]), durch Elektronenbeschluß geheizt und so zum Verdampfen gebracht. Während aller Bedampfungs-
experimente wurden die Öfen mit jeweils denselben Parametern (Ionenstrom, Kathodenstrom, etc.) betrieben, d.h. die Verdampfungsrate war für alle Eisenexperimente konstant, ebenso für alle Kobaltexperimente. Die zugehörigen Aufdampfraten zu den hier verwendeten Parametern wurden anhand der folgenden TEAS- und AES-Messungen ermittelt. Die aufgedampfte Metallmenge beim jeweiligen Experiment bestimmt sich dann aus dem Produkt dieser Aufdampfraten und der Aufdampfzeit.

Abbildung 3.8: Gespiegelte Heliumintensität ($q_{//} = 0$) während des Aufdampfens von Co (a) und Fe (b) auf die sauerstoffbedeckte O(2 x 1)-Cu(110)-Oberfläche. Die Messungen wurden unter anti-Phase Bedingung ($E_H=14.6$ meV) bei einer Probentemperatur von 350 K (Co), bzw. 310 K (Fe), durchgeführt.

3.3.1 Der Kobaltofen

Die Kalibrierung des Kobaltofens erfolgte mittels TEAS auf der sauerstoffbedeckten Cu(110)-Fläche. Auf der vollständig bedeckten O(2 x 1)Cu(110)-Oberfläche wächst Kobalt lagenweise auf, wobei der Sauerstoff als sog. „Surfactant“ fungiert [35, 63, 64]. Folglich sind in der gespiegelten Heliumintensität unter anti-Phase Bedingung periodische Oszillationen mit einer Periode von einer Monolage sichtbar (siehe auch Abschn. 2.1.3).

Zunächst wurde eine O(2 x 1)Cu(110)-Oberfläche präpariert [35, 65]. Dazu wurde die Cu(110)-Fläche bei 350 K in einer Sauerstoffatmosphäre ($p_{O_2} \approx 1 \cdot 10^{-7}$mbar) begast. Die angebotene Sauerstoffmenge betrug ca. 25L (1 Langmuir = $1 \cdot 10^{-6}$Torr x 1s). Durch Anlassen der Probe für 120 s auf 540 K bei noch bestehendem Sauerstoffdruck ordnet sich der chemisorbierte Sauerstoff zu einer (2 x 1)-Oberflächenstruktur. Die so erreichte maximale Sauerverstofferdeckung beträgt $\theta = 0.5$. Abb. 3.8(a) zeigt die gespiegelte Heliumin-
tensität, aufgenommen unter anti-Phase Bedingung während des Wachstums von Kobalt auf der vollständig mit Sauerstoff bedeckten Cu(110)-Oberfläche. Ab einer Bedampfungszeit von etwa 450 s sind periodische Oszillationen sichtbar. Der mittlere Abstand dieser Oszillationen beträgt 85 s. Folglich dampft der Co-Ofen in 85 s eine Monolage auf, die Aufdampfrate beträgt also 0,71 ML Co/min. Alle Kobalt-Bedampfungsexperimente wurden mit dieser Aufdampfrate durchgeführt.

3.3.2 Der Eisenofen

Aus experimentellen Gründen sind die Aufdampfraten des Eisens auf dem Cu(110)-Kristall und dem CoGa(001)-Kristall verschieden. Im Fall der Experimente auf Cu(110) wurde der Eisenofen mittels Heliumstreuung und mittels Auger-Elektronen-Spektroskopie kalibriert. Abb. 3.8(b) zeigt die gespiegelte Heliumstreuung während des Wachstums von Eisen auf der vollbedeckten O(2 x 1)-Cu(110)-Oberfläche. Im Gegensatz zum Wachstum von Kobalt (Abb. 3.8(a)) weist die gespiegelte Heliumintensität im Fall des Eisenwachstums keine periodischen Oszillationen auf. Eisen wächst hier also nicht lagenweise auf. Die gespiegelte Intensität zeigt lediglich eine einzige „Oszillation“, welche nach einer Bedampfungszeit von 108 s auftritt. Trotzdem läßt sich diese einzelne Oszillation sehr gut reproduzieren. Sie wurde daher als Referenzpunkt benutzt, d.h. die Zeit von 108 s wurde als Aufdampfzeit einer Monolage angenommen (Aufdampfrate 0,56 ML γ-Fe/min). Alle hier gezeigten Eisenschichtdicken auf dem Cu(110)-Substrat beziehen sich auf diese Annahme.

Abbildung 3.9: Verhalten der AES Intensitäten von (a) Cu(61 und 920 eV) und (b) Fe(47 und 703 eV) während des Wachstums von Eisen auf der Cu(110)-Oberfläche bei 130 K. Dabei sind die Auger-Intensitäten auf ihren Ausgangswert I_0 (Cu), bzw. auf ihren Endwert I_∞ (Fe) normiert.
3.3 Eichung der Verdampferöfen

Sie wird, wie im folgenden gezeigt, durch AES-Messungen im Rahmen einer Meßgenauigkeit von etwa 25% unterstützt. Dazu wurde Eisen bei 130 K schrittweise auf die reine Cu(110)-Fläche aufgedampft, wobei nach jeder Aufla.mpftetappe ein AES-Spektrum aufgenommen wurde. Abb. 3.9(a) zeigt den Verlauf der AES-Intensitäten \(I \) des 61 eV und des 920 eV Kupfer-Auger-Übergangs als Funktion der Bedampfungsdauer \(t \). Dabei sind die Intensitäten auf den Wert \(I_0 \) der AES-Intensität der reinen Kupferfläche normiert. Abb.3.9(b) zeigt den Verlauf der AES-Intensitäten \(I \) des 47 eV und des 703 eV Eisen Auger-Übergangs, wobei hier \(1 - I/I_\infty \) als Funktion von \(t \) aufgetragen ist (mit \(I_\infty = \) AES-Intensität des reinen Eisens). Alle gezeigten Kurvenverläufe lassen sich durch exponentielle Funktionen fitten:

\[
\frac{I}{I_0} = e^{-t/\tau} \quad \text{(3.3)} \\
1 - \frac{I}{I_\infty} = e^{-t/\tau} \quad \text{(3.4)}
\]

Für den vereinfachten Fall des zweidimensionalen Wachstums wird ein solcher exponentieller Kurvenverlauf auch theoretisch erwartet (siehe auch Gleichungen 2.30 und 2.31 in Abschn. 2.3.2). Aus dem Vergleich der exponentiellen Fits (Gleichungen 3.4 und 3.3) mit dem theoretisch erwarteten Kurvenverlauf (Gleichungen 2.30 und 2.31) läßt sich die Aufdampfrate \(R \) mit dem Fitparameter \(\tau \) wie folgt verknüpfen:

\[
R = \frac{\lambda \cos 42^\circ}{\tau} \quad \text{(3.5)}
\]

Dabei ist \(\lambda \) die mittlere freie Weglänge und \(42^\circ \) der Einfallswinkel der Elektronen in das CMA. Die Ergebnisse dieser Fits, die Fitparameter \(\tau \), sind in Tabelle 3.1 aufgelistet.

<table>
<thead>
<tr>
<th>AES-Übergänge</th>
<th>47 eV</th>
<th>61 eV</th>
<th>703 eV</th>
<th>920 eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda) [\AA]</td>
<td>3.59</td>
<td>3.79</td>
<td>11.76</td>
<td>13.45</td>
</tr>
<tr>
<td>(\tau) [s]</td>
<td>247</td>
<td>337</td>
<td>407</td>
<td>620</td>
</tr>
<tr>
<td>(R) [\AA \cdot s^{-1}]</td>
<td>10.8 \cdot 10^{-3}</td>
<td>8.3 \cdot 10^{-3}</td>
<td>21.5 \cdot 10^{-3}</td>
<td>16.1 \cdot 10^{-3}</td>
</tr>
<tr>
<td>(R^{-1}) [s \cdot (ML)^{-1}]</td>
<td>118</td>
<td>153</td>
<td>59</td>
<td>79</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Aufdampfraten \(R \) der AES-Daten von Fig.3.9(a) und (b).
Ebenso sind in Tabelle 3.1 die nach der Formel von Seah et al. berechneten Werte von \(\lambda \) (Gleichung 2.32), sowie die aus Gleichung 3.5 ermittelten Werte für \(R \), aufgeführt. Dabei ist die Aufdampfrate \(R \) in \(A \cdot s^{-1} \) und ihr Kehrwert \(R^{-1} \) in \(s \cdot (ML)^{-1} \) angegeben. Die Werte für \(R^{-1} \) schwanken um \((102 \pm 24) s \cdot (ML)^{-1} \) und unterstützen somit das Ergebnis der TEAS-Eichung von \(108 s \cdot (ML)^{-1} \).

Im Falle des Wachstums von Eisen auf der CoGa(001)-Oberfläche wurde die Aufdampfrate allein aus TEAS-Messungen bestimmt. Erfreulicherweise zeigen sich in der gespiegelten Heliumintensität periodische Oszillationen, was auf ein lagenweises Wachstum des Eisens auf der CoGa(001)-Oberfläche hindeutet (Abb. 8.3 in Abschnitt 8.2). Die Periode dieser Oszillationen beträgt etwa 67 s, d.h. der Eisenofen dampfte bei diesen Experimenten mit einer Aufdampfrate von \(67 s \cdot (ML)^{-1} \) bzw. 0.9 ML(\(\alpha \)-Fe(001))/min.
Kapitel 4

Wachstum dünner Eisenfilme auf Cu(110)

Das Wachstum von Eisen auf den niedrig indizierten Flächen des Kupfers wurde bereits ausführlich untersucht. Beobachtet wurde bei Raumtemperatur das Wachstum eines γ-Fe Films, also einer fcc-Struktur von Eisen, welche eigentlich erst bei 1190 K stabil ist. Es bilden sich verschiedene Modifikationen, welche sowohl von der Filmdicke, als auch von der Orientierung des Substrats abhängen [66–76]:

Auf der Cu(100)-Oberfläche bilden sich während des Wachstums von Eisen zunächst zwei γ-Fe Phasen, bevor es mit steigender Filmdicke zu einer strukturellen Phasentransformation in eine bcc α-Fe Phase kommt [67–69, 71, 72, 77]. Bis etwa 3-4 ML Schichtdicke wird eine leicht verzerrte fcc, oder fct (tetragonal elongierte fcc) Phase [73, 78, 79] mit rauer Oberfläche [67, 68, 71, 72, 77] gefunden, welche sich ab einer Bedeckung von 4 ML ändert. Der untere Teil des Films relaxiert zu einer unverzerrten fcc Struktur, während sich die Oberfläche glättet [67, 68, 72, 77]. Ab Bedeckungen von 10-14 ML schließlich transformiert der Film in eine bcc α-Fe Struktur. Die Oberfläche wird erneut rau und kein weiteres Lagenwachstum wird mehr beobachtet. Bei Raumtemperatur werden keine Hinweise für die Segregation von Cu oder die Vermischung von Fe mit Cu gefunden. Segregation von Cu beginnt erst ab einer Temperatur von etwa 400 K [68, 70, 80–82].

Auf der Cu(111)-Oberfläche wird nur eine einzige γ-Fe Phase gefunden, bevor der Film ab einer Schichtdicke von etwa 3 ML in eine bcc α-Fe Phase transformiert [70, 75, 83, 84]. Der γ-Fe Film ist relativ glatt, was sich sowohl aus Rastertunnelmikroskopie (Scanning Tunneling Microscopy, STM) [75, 85], als auch aus LEED-Messungen ergibt [83]. Lagenwachstum wurde jedoch nicht gefunden. Tatsächlich wird mit STM ein Doppellagenwachstum [85] und die
Kapitel 4: Wachstum von Fe auf Cu(110)

Entstehung von 1 ML tiefen Löchern im Cu-Substrat beobachtet [85, 86]. Die Phasentransformation von der fcc in die bcc Struktur bei einer Bedeckung von etwa 3 ML wurde deutlich mit LEED [75, 83, 87], STM [75], Photoelektronenspektroskopie (X-ray photoelectron spectroscopy, XPS) [70] und magneto-optischen Kerr-Messungen (MAGneto-optic Kerr effect, MOKE) [83, 84] beobachtet. Die Rauhigkeit des α-Fe Films steigt mit zunehmender Fe-Bedeckung signifikant an [83].

Auf der Cu(110)-Oberfläche ist das Wachstum von Eisen viel weniger verstanden als auf den zwei anderen niedrig indizierten Kupfer-Oberflächen. Hauptgrund dafür liegt in der ziemlich ungeordneten, rauen Oberfläche der Eisenfilme. Diese führt in Beugungsmessungen schon bei geringsten Bedeckungen zu einem rasch ansteigenden, diffusen Untergrund und damit zu einem schnellen Verschwinden der Beugungsreflexe [70, 83, 88]. Trotzdem ist bekannt: Eisen wächst zumindest bis etwa 15 ML als γ-Fe auf [70, 83, 87–89]. Nach der Deposition von nur 1 ML Eisen wurden Fe-Inseln mit bereits 3 Atomlagen beobachtet [87]. Einige Autoren finden Belege für die Facettierung der Oberfläche [83], andere berichten über die Entstehung einer (6 x 1)-Überstruktur nach Anlassen auf 470 K. Für das Wachstum von Eisen auf Cu(110) wird eine viel größere Konzentration an Kupferatomen an der Oberfläche gefunden, als dies bei den anderen zwei Cu-Oberflächen der Fall ist. Dies liegt wahrscheinlich jedoch nicht an einer Segregation von Cu bei Raumtemperatur [70] (siehe Abschnitt 4.1), sondern an der Inselstruktur des Eisens und den damit verbundenen freigebliebenen Cu-Substratflächen (siehe Abschnitt 4.2).

Ein ähnliches Verhalten wurde für das Wachstum von Kobalt auf Cu(110) gefunden. Für dieses System konnte durch Vorbelegung des Cu(110)-Substrates mit Sauerstoff ein lagenweises Wachstum induziert werden [35, 63, 64, 90]. Sauerstoff wirkt in diesem Fall als sog. „Surfactant“. Auch in der vorliegenden Arbeit wurde versucht, das Wachstum von Eisen durch Vorbelegung der Cu(110)-Oberfläche mit Sauerstoff zu beeinflussen. Allerdings kann mit TEAS kein lagenweises Wachstum auf der O(2 x 1)-Cu(110)-Oberfläche beobachtet werden (siehe Abb. 3.8 (b) in Abschnitt 3.3). Folglich führt Sauerstoff zumindest auf der atomaren Skala der TEAS-Messungen zu keiner nennenswerten Verbesserung der Fe-Oberfläche. Trotzdem gelingt es, einen wohlgeordneten, atomar glatten γ-Fe Film auf Cu(110) aufzuwachsen: Eisen wird dazu bei tieferen Temperaturen (100–130 K) aufgedampft und angelassen. Nach Anlassen auf 240 K ordnet sich Eisenfilm zu einer atomar glatten γ-Fe Struktur. Es ist somit möglich, auch auf der Cu(110)-Oberfläche wohlgeordnete Eisenfilme zu präparieren.
4.1 Temperaturstabilität der Eisenfilme

- Cu-Segregation und Vermischung von Fe mit Cu

Bevor das Wachstum von Eisen bei Raumtemperatur analysiert wird, muß zunächst geklärt werden, ob die Eisenfilme bei Raumtemperatur überhaupt thermisch stabil sind. Die Temperaturstabilität dünner Eisenfilme auf Cu(110) wurde mittels AES untersucht [21]. Abb. 4.1 zeigt ein AES-Spektrum einer 9 ML (in Bezug auf γ-Fe(110)) dicken Eisenschicht, aufgedampft bei 310 K. Deutlich zu erkennen sind die Auger-Übergänge des metallischen Eisens bei 47 und 703 eV, sowie die Auger-Übergänge des Kupfers bei 61 und 920 eV. Prinzipiell läßt sich die Frage der Vermischung von Cu und Fe bei Raumtemperatur schon aus den AES-Intensitäten dieses einzelnen Spektrums abschätzen. In der Tat entsprechen die in Abb. 4.1 gezeigten AES-Intensitäten in etwa den nach Gleichung 2.30 und 2.31 erwarteten Werten für einen 9 ML dicken Fe-Film. Dann schließen Eisen bei Raumtemperatur noch stabil auf dem Cu-Substrat verweilen. Um allerdings geringe Vermischungen bzw. die Segregation von Kupfer auf den Eisenfilm auszuschließen, ist die Auswertung eines einigen AES-Spektrums aufgrund der beschränkten Reproduzierbarkeit der Aufdampfrate des Eisenofens (± 25%) nicht ausreichend. Es wurde daher folgende Messung konzipiert, mit welcher sich nicht nur die Frage der Segregation bei Raumtemperatur klären läßt, sondern auch der genaue Temperaturbereich

Abbildung 4.1: AES-Spektrum von 9 ML γ-Fe, aufgedampft auf Cu(110) bei 310 K.
von Vermischung und Segregation festgestellt werden kann. Eisen wurde bei
niedrigen Temperaturen (100 K) auf dem Cu(110)-Substrat aufgedampft
und mit einer Heizrata von 4 K/min auf etwa 900 K angelassen. Während des Anlas-
sens wurde die chemische Zusammensetzung der Oberfläche kontinuierlich mitt-
tels AES analysiert. Aus jeweils zwei vergleichbaren AES-Intensitäten des Eis-
ens und des Kupfers wurden die Intensitätsverhältnisse \(I_{Fe}(47eV)/I_{Cu}(61eV) \)
und \(I_{Fe}(703eV)/I_{Cu}(920eV) \) gebildet. Dabei sind mit „vergleichbaren“ AES-
Übergängen jeweils solche gemeint, die von Auger Prozessen aus vergleich-
bar tiefen Regionen stammen (siehe dazu auch die Werte der mittleren freien
Weglänge \(\lambda \) von Elektronen; Tabelle 3.1). Abb.4.2 zeigt zwei dieser Experi-
mente für einen 5.5 ML dicken und einen 1 ML dicken \(\gamma \)-Fe Film.

Die AES-Messungen auf dem 5.5 ML dicken Fe-Film auf Cu(110)(Abb. 4.2(a))
zeigen einen nahezu konstanten Verlauf der Intensitätsverhältnisse bis etwa
490 K. Dies deutet auf einen thermisch stabilen Film hin, d.h. unterhalb
490 K findet keine Vermischung von Eisen und Kupfer statt. Oberhalb
490 K sinken beide Intensitätsverhältnisse, sowohl die hochenergetischen
I(703 eV)/I(920 eV) als auch die niedenergetischen I(47 eV)/I(61 eV), voll-
ständig ab. Dabei fallen die niedenergetischen Intensitätsverhältnisse wesent-
lich schneller, nahezu exponentiell, während das Verhältnis der hochenergeti-
schen AES-Intensitäten langsamer, fast linear, abnimmt. Eisen wird also noch
aus tiefen Schichten detektiert, wenn die Oberfläche bereits mit Kupfer be-
deckt ist. Folglich segre giert Kupfer oberhalb 490 K an die Oberfläche, und
fast gleichzeitig diffundiert Eisen in den Kupferkristall hinein. Desorption von
Fe ist unwahrscheinlich.

Obwohl diese Messungen den Schluß nahelegen, daß Kupfer unterhalb 490 K
nicht an die Oberfläche segre giert, mag man argumentieren, daß die Dicke des
Eisenfilms (5.5 ML) ein solches Szenario verhindert. Um diese Möglichkeit aus-
zuschließen, wurde ein ähnliches Experiment an einem 1 ML dicken Fe-Film
durchgeführt (Abb. 4.2 (b)), also an einem Film, der die Oberfläche noch nicht
vollständig bedeckt (siehe Abschnitt 4.2). Aufgrund der schlechten Statistik
des 703 eV Fe Auger-Übergangs ist hier nur das Verhältnis der niedener-
getischen AES-Intensitäten (47/61 eV) aufgeführt. Wie man in Abb. 4.2(b)
leicht erkennt, ist der Verlauf des niedenergetischen Intensitätsverhältnisses
nahezu identisch zum Verlauf von \(I_{Fe}(47 4V)/I_{Cu}(61 eV) \) in Fig.(a). Auch im
Fall des 1 ML dicken Eisenfilms auf Cu(110) läßt sich also klar erkennen, daß
Segregation von Cu und/oder Vermischung von Fe und Cu erst bei etwa 500 K
beginnen. Konsequenterweise kann daraus gefolgt werden, daß keine Ver-
mischung von Fe und Cu unterhalb 500 K stattfindet, sowohl bei dickeren als
auch bei ultradünnen Filmen (<1 ML).
Abbildung 4.2: AES-Messungen an (a) 5.5 ML und (b) 1 ML γ-Fe, aufgedampft auf Cu(110) bei 100 K, während des Anlassens auf 900 K (4 K/min). Aufgetragen sind dabei die Intensitätsverhältnisse \(I(47 \text{ eV})/I(61 \text{ eV}) \) und \(I(703 \text{ eV})/I(920 \text{ eV}) \) der Auger-Übergänge von Eisen/Kupfer als Funktion der Probentemperatur. Beide Intensitätsverhältnisse sind auf ihren Ausgangswert (-1) normiert. Die durchgezogenen und gestrichelten Linien markieren den Verlauf der Messdaten.
4.2 Wachstum von Fe auf Cu(110) bei Raumtemperatur

4.2.1 Deposition von Fe bei 310 K

Dünne Eisenfilme wurden bei Raumtemperatur bis zu einer Schichtdicke von insgesamt 14 ML (in Bezug auf \(\gamma \)-Fe(110)) auf dem Cu(110)-Substrat aufgedampft. Dabei wurde der Wachstumsprozeß mit Hilfe der gespiegelten Helium-Intensität \((q_x=0) \) unter konstruktiver (in-Phase) und unter destruktiver (anti-Phase) Interferenz von benachbarten Terrassen beobachtet und charakterisiert [21]. Zur Erzeugung konstruktiver Interferenzbedingungen wurde eine Heliumenergie von 24 meV verwendet. Im Falle der destruktiven Interferenz betrug die Energie der verwendeten Heliumatome 14.6 meV. Abb.4.3 zeigt die gespiegelte Heliumintensität als Funktion der Fe-Bedeckung \(\theta \), aufgenommen während des Wachstums bei 310 K. Für lagenweises Wachstum von Eisen werden in der gespiegelten Heliumintensität (unter anti-Phase Bedingung) periodische Oszillationen mit einer Periode von 1 ML erwartet. Im Fall des kinetisch bedingten 3D-Wachstums sollte die anti-Phase Intensität exponentiell mit einem Exponent von \((-\theta)\) abfallen (siehe Abschn. 2.1.3).

Wie in Abb. 4.3 zu sehen ist, wird jedoch ein Verhalten beobachtet, welches sich völlig vom lagenweisen Wachstum unterscheidet, aber auch nicht einfach durch ein kinetisch bedingtes 3D-Wachstum beschrieben werden kann. Die gespiegelte He-Intensität, gemessen unter anti-Phase Bedingung, ist bis zu einer Bedeckung von etwa 2.5 ML viel kleiner als die unter in-Phase Bedingung gemessene Intensität. Sie fällt bis zu einer Bedeckung von 0.5 ML exponentiell ab, wobei der Exponent dieses Abfalls im Rahmen der Meßgenauigkeit dem Wert entspricht, welcher für ein kinetisch bedingtes 3D-Wachstum erwartet wird. Folglich läßt sich das Wachstum in diesem Bereich \((<0.5ML)\) durch die in Abschnitt 2.1.3 beschriebene Poissonverteilung der Eisenterrassen beschreiben. Für Bedeckungen zwischen 0.5 und 1 ML fällt die anti-Phase Intensität schneller als \(exp(-4\cdot\theta)\). Folglich weicht das Wachstum vom kinetisch bedingten 3-D-Wachstum ab, und zwar bilden sich steilere Inseln mit einer erhöhten Stufenkantendichte. Zu höheren Bedeckungen hin ist für beide Kurven, in- und anti-Phase, eine asymmetrische Oszillation sichtbar, welche nicht durch lagenweises Wachstum erklärt werden kann. Das Minimum der gespiegelten He-Intensität wird im Fall der anti-Phase Messung bei der Bedeckung \(\theta = 1.5 \) ML beobachtet und im Falle der in-Phase Messung bei der Bedeckung \(\theta = 2.5 \) ML. Bei Bedeckungen > 2.5ML fallen beide Kurven im Rahmen der Meßgenauigkeit zusammen. Sie erreichen bei etwa \(\theta = 5.5 \) ML ein Maximum und fallen dann erneut ab. Ab einer Bedeckung von etwa 11 ML verschwinden beide Intensitäten im diffusen Untergrund des Spektrums.
4.2 Wachstum von Fe auf Cu(110) bei Raumtemperatur

Abbildung 4.3: Gespiegelte Heliumintensität \(I(q = 0) \) als Funktion des Wachstums von Fe auf Cu(110) bei 310 K, aufgenommen unter in-Phase (He-Energie: 24.4 meV) und anti-Phase Streu- und Bedingung (He-Energie: 14.6 meV). Die Heliumintensität ist normiert auf die gespiegelte Intensität \(I_0 \) der reinen Substratoberfläche. Die eingefügte Darstellung stellt die anti-Phase Intensität für Bedeckungen zwischen 0 und 1.5 ML vergrößert dar. Die durchgezogene Gerade beschreibt den idealen exponentiellen Abfall.

Es sei hier bemerkt, daß ein ähnliches Verhalten der gespiegelten Heliumintensität für das Wachstum von Co auf Cu(110) gefunden wurde [35, 63, 90]. Prinzipiell kann ein solcher Kurvenverlauf durch ein dreidimensionales Inselwachstum mit einhergehender Koaleszenz der gebildeten Inseln beschrieben werden: Durch Koaleszenz verschmelzen die Inseln, werden als Folge flacher, und produzieren so aufgrund der abnehmenden Stufenkantendichte weniger diffuse Streuung. Dies sorgt für einen Anstieg der Heliumintensität und führt damit zur Ausbildung eines breiten Maximums, ähnlich dem in Abb. 4.3 beobachteten. Um allerdings zu einem detaillierten Modell des Wachstums zu gelangen, welches die Daten in Abb. 4.3 präzise beschreibt (Abschn. 4.2.3), muß zuvor die Frage der Inselbildung geklärt werden. Dies geschieht im folgenden Abschnitt.

4.2.2 Inselbildung

Um das in Abschnitt 4.2.1 beobachtete dreidimensionale Inselwachstum genauer zu erklären, wurde die Struktur der Oberfläche während des Wachstums mittels Helium-Beugungsmessungen analysiert [21]. Abb. 4.4 zeigt zehn Helium-Beugungsspektren einer Cu(110)-Oberfläche, bedampft mit 0, 1, 2, 5.5 und 10 ML Fe bei 310 K. Die Spektren wurden unter in-Phase Bedingung...
(24.4 meV) aufgenommen. Die Intensitäten sind auf die gespiegelte Intensität der Substratoberfläche normiert. Auf der reinen Cu(110)-Oberfläche können nur Beugungsreflexe in der [001]-Richtung beobachtet werden. In [1\bar{T}0]-Richtung ist die Korrelation der Oberfläche zu gering um Beugungsreflexe zu erzeugen, bzw. deren Intensität fällt zu gering aus. Mit zunehmender Eisen-Bedeckung verringern sich die Beugungsreflexe nullter Ordnung (gespiegelte Reflexe) sowie die Beugungsreflexe 1. Ordnung der [001]-Richtung. Dabei verringern sich letztere in etwa mit derselben Rate wie die gespiegelten Reflexe, allerdings nur bis zu einer Bedeckung von ca. 1 ML Eisen. Ab einer Bedeckung von 2 ML sind die Beugungsreflexe 1. Ordnung um einen Faktor 3 stärker reduziert; sie können kaum noch vom diffusen Untergrund unterschieden werden. Zusätzlich entstehen am Fuße der gespiegelten Helium-Reflexe während der ersten 2 ML breite „Schultern“ (markiert durch Pfeile in Abb. 4.4). Diese Schultern deuten auf die Entstehung dreidimensionaler Inselstrukturen hin. Aus ihrer Position im reziproken Raum, etwa 0.2 Å⁻¹, läßt sich der mittlere Abstand zwischen den Inseln abschätzen. Er beträgt ca. 30 Å (≈ 2π/q||). Die stark verbreiterten, aber dennoch gut sichtbaren Beugungsreflexe nullter Ordnung deuten auf das noch Vorhandensein von Terrassen hin, welche ungestört von den umgebenden Stufen kohärent streuen. Mit zunehmender Bedeckung verschwindet die Schultern wieder. Nach einer Bedeckung von 5.5 ML sind keine Schultern mehr sichtbar. Dafür ist die Halbwertsbreite der Beugungsreflexe nullter Ordnung vergrößert, und zwar ist sie in der [1\bar{T}0]-Richtung etwas mehr vergrößert als in der [001]-Richtung. Folglich sind die dreidimensionalen Strukturen auf der Oberfläche leicht anisotrop. Nach 10 ML Bedeckung mit Eisen haben die gespiegelten Reflexe weiter abgenommen, und in [001]-Richtung sind die Schultern wieder erschienen, jetzt ein wenig verbreitert. Dies deutet auf eine etwas verkleinerte Inselstruktur hin.

Beim Vergleich zwischen Abb. 4.3 und Abb. 4.4 fällt auf, daß in Abb. 4.4 kein Anstieg des gespiegelten Refleks zwischen 2 und 5.5 ML zu erkennen ist. Grund dafür ist die Tatsache, daß diese Messungen schrittweise durchgeführt wurden, d.h. zwischen jeder Heliumbeugungsmessung liegt eine Zeitspanne von ca. 2400 s. In Abb. 4.3 hingegen wurde die Messung kontinuierlich, mit der in Abschnitt 3.3.2 beschriebenen Aufdampfrate von 108 s/ML, durchgeführt. Bis zur Bedeckung mit 5 ML Fe vergingen hier nur etwa 540 s. Schon daraus läßt sich folgern, daß sich die Oberflächenmorphologie mit der Zeit verändert; und zwar streut die Oberfläche zunehmend diffus. In der Tat nimmt die gespiegelte Heliumintensität nahezu exponentiell mit der Zeit ab, wie am Beispiel einer 7 ML dicken Fe-Schicht auf Cu(110), gezeigt in Abb.4.5, leicht zu erkennen ist. Durch Versuche mit adsorbierinem Wasserstoff konnte eine Kontamination der Oberfläche durch Restgasatome (hauptsächlich Wasserstoff) als Ursache für den Intensitätsabfall ausgeschlossen werden. Vielmehr scheint hier die zeitliche
Abbildung 4.4: Heliumbeugungsspektren einer Cu(110)-Oberfläche, bedeckt mit 0, 1, 2, 5.5 und 10 ML Fe, welches bei 310 K aufgedampft wurde. Die Messungen wurden mit einer He-Energie von 24.4 meV (in-Phase-Bedingung) in [001]- und [1\bar{1}0]-Richtung durchgeführt. Die Intensitäten sind normiert auf die gespiegelte Intensität I_0 der reinen Substratoberfläche. Die Pfeile markieren die Entstehung breiter „Schultern“ an den „Füßen“ der Beugungsreflexe nullter Ordnung, welche auf die Existenz von Inselstrukturen hindeuten.
Kapitel 4: Wachstum von Fe auf Cu(110)

Abbildung 4.5: Abfall der normierten gespiegelten Heliumintensität als Funktion der Zeit, gemessen bei 310 K an einem 7 ML dicken γ-Fe Film auf Cu(110). Die gespiegelte Intensität wurde dabei unter in-Phase Bedingung (24.4 meV) in [001]-Richtung gemessen.

Koaleszenz von Inseln zu einer facettierten, diffus streuenden Fe-Oberfläche der Grund für die zeitliche Abnahme der gespiegelten Helium-Intensität zu sein. In Abschnitt 4.3.3 wird nämlich beobachtet, daß der thermisch stabile Zustand des Eisenfilms bei Raumtemperatur eine facettierte, rauhe Oberfläche ist. Daher ist es wahrscheinlich, daß der bei 310 K aufgedampfte Eisenfilm nach einiger Zeit in diesen Zustand übergeht, die Oberfläche also im Laufe der Zeit immer mehr facettiert.

4.2.3 Diskussion

Die Experimente in Abschnitt 4.2.1 und 4.2.2 deuten auf ein dreidimensionales Wachstum von Eisen hin, welches die Bildung großer lateraler Eiseninseln zur Folge hat. Um die gezeigten Meßdaten im Detail zu erklären, reicht allerdings kein ideales 3D-Wachstum aus, vielmehr handelt es sich um ein Stranski-Krastanov Wachstum. Im folgenden Abschnitt wird ein Modell, basierend auf dem Stranski-Krastanov Wachstum, vorgeschlagen, welches in der Lage ist, die Meßergebnisse zu erklären. Das Schema dieses Modells ist in Abb.4.6 illustriert.

Bis zur Bedeckung von ca. 0.5 ML wächst Eisen ideal dreidimensional auf (Fig. 4.6(a)). Es bildet sich eine Poissonverteilung für die Bedeckung aus. Die gespiegelte Heliumintensität fällt exponentiell (\(\approx \exp(-4\theta) \)) ab (Abb. 4.3), ebenso wie die Beugungsreflexe erster Ordnung. Es entstehen Eiseninseln, welche in den Beugungsspektren (Abb. 4.4) „Schultern“ neben der nullten Ordnung hervor-
Abbildung 4.6: Modell des Fe-Wachstums auf Cu(110) bei Raumtemperatur (Die Pfeile symbolisieren auftreffende Fe-Atome): (a) ideales 3D-Wachstum (Poissonverteilung); (b) Abweichung von der Poissonverteilung aufgrund von Interlagendiffusion; (c-d) Koaleszenz von Inseln führt zur Abnahme der Stufenatome (flachere Inseln); (e) Fe-Deposition auf den Inseln macht die Oberfläche rauher; (f) Relaxation der Inseln als Funktion der Zeit (in eine facettierte Struktur) macht die Oberfläche rauher.

Man beachte, daß die Oberfläche in eine rauhe, facettierte Oberfläche übergeht, wenn ihr genügend Zeit zum Ausheilen gegeben wird. Ursache dafür ist die Tatsache, daß eine rauhe, facettierte Oberfläche der thermodynamische Gleichgewichtszustand des Fe-Filmes ist (siehe auch Abschnitt 4.3.3). Dieser...
Vorgang, bei welchem sich wieder steilere Inseln bilden, ist in Fig. 4.6(f) dargestellt. Steilere Inseln bedeuten aber eine erhöhte Stufenkantendichte; die ge- spiegelte Heliumintensität nimmt daher im Laufe der Zeit ab (Abb. 4.5). Es ist natürlich nicht auszuschließen, daß dieser Prozeß auch die Lage des Maximums in Abb. 4.3 beeinflußt. Aufgrund der großen Zeitskala des Ausheilprozesses, im Vergleich zur schnellen Aufdampfrate, ist dieser Effekt jedoch nicht sehr groß.

4.3 Gezielte Manipulation der Oberflächenmorphologie

In der vorliegenden Arbeit wurde versucht, einen glatten, gut geordneten Eisenvfilm auf Cu(110) zu präparieren. In einem ersten Versuch wurde Eisen auf der mit Sauerstoff vorbelegten Cu(110)-Oberfläche deponiert, in der Hoffnung, durch die Sauerstoffvorbelegung ein ähnliches Verhalten wie beim Wachstum von Co auf Cu(110) zu erzielen, bei welchem der Sauerstoff („Surfactant“) ein lagenweises Wachstum induziert [35, 63, 64, 90]. Es wurde beobachtet, daß Eisen auf der mit Sauerstoff vorbelegten Cu(110) bei 310 K nicht lagenweise aufwächst und sich auch keine glatten Fe-Filme bilden (siehe Abb. 3.8 (b), Abschn. 3.3). In einem zweiten Versuch wurde Eisen bei tiefen Temperaturen (130 K) aufgedampft und anschließend angelassen [22]. Wie im folgenden Abschnitt gezeigt wird, ordnet sich der Film zu einem heteroepitaktischen γ-Fe Film. Er ist strukturell identisch zum Kupfer-Substrat und besitzt eine glatte Oberfläche.

4.3.1 Wachstum von Fe auf Cu(110) bei 130 K

Das Wachstum von Eisen auf Cu(110) bei 130 K wurde mittels TEAS analysiert. Abb. 4.7 zeigt die gespiegelte Heliumintensität während des Wachstums bei 130 und 310 K. Beide Kurven wurden unter in-Phase Bedingung aufgenommen, d.h. die Energie der Heliumatome betrug 24.4 meV. Die Intensitäten sind auf ihren jeweiligen Ausgangswert, also auf die Intensität des reinen Substrates, normiert. In beiden Fällen sinkt die gespiegelte Intensität zunächst nahezu exponentiell, wobei die bei 130 K aufgenommene Kurve wesentlich schneller abfällt. Sie bleibt bis zu einer Bedeckung von ca. 1.5 ML deutlich unter der normierten Heliumintensität, gemessen bei 310 K. Bei Eisenbedeckungen ab etwa 1.2 ML (130 K) bzw. ab 2.5 ML (310 K) bildet sich ein Minimum aus. Anschließend steigt die Intensität zu größeren Depositionsmengen hin erneut an.
Abbildung 4.7: Gespiegelte Heliumintensität $I(q=0)$, aufgenommen während des Wachstums von Eisen auf Cu(110) bei 130 K (durchgezogene Linie) und 310 K (gestrichelte Linie). Die Messungen fanden unter in-Phase Bedingungen statt ($E_{He}=24.4$ meV). Die Intensitäten sind auf die gespiegelte Intensität I_0 von Cu(110) normiert.

Im Fall des Wachstums bei 310 K wurde ein solcher Kurvenverlauf durch Inselwachstum und anschließende Koaleszenz der Inseln interpretiert (Abschn. 4.2). Dabei wird der Beginn der Koaleszenz, und damit die Position des Minimums in der gespiegelten Heliumintensität, durch die Form der Inseln bestimmt. Wird nun dieselbe Interpretation auf die bei 130 K aufgezeichnete Kurve angewendet, so liegt der Schluss nahe, daß beim Wachstum bei 130 K eine andere Inselform entsteht. Wahrscheinlich handelt es sich um lateral kleinere Eiseln. Solche Inseln wachsen nämlich nicht so hoch wie große Inseln, so daß die Benetzung des Substrates bei gleicher Depositionsmenge von Eisen größer ist. Somit erfolgt die Koaleszenz der Inseln eher; das Minimum in der Heliumintensität tritt schon bei geringeren Bedeckungen auf. Auch die Stufenkantendichte ist bei kleineren Inseln größer, weshalb die Heliumintensität schon vor Erreichen des Minimums schneller abfällt als beim Raumtemperaturwachstum von Eisen.

Im Anschluß an die Deposition von 5 ML Eisen bei 130 K wurde der so entstandene rauhe Eisenfilm angelassen. Die Heizrte betrug 20 K/min. Abb. 4.8 zeigt die gespiegelte Heliumintensität während des Anlaßprozesses. Sie wurde unter in-Phase Bedingung (24.4 meV) aufgenommen und ist auf den Wert
Kapitel 4: Wachstum von Fe auf Cu(110)

Abbildung 4.8: Gespiegelte Heliumintensität $I(q_{//}=0)$ während des Anlassens eines 5 ML Fe-Films auf Cu(110) von 130 auf 370 K. Die Intensität ist normiert auf die Intensität I_0 des Cu(110)-Substrates bei 250 K. Sie wurde unter in-Phase Bedingung aufgenommen. Die gestrichelt Linie markiert den Intensitätsabfall, der durch den Debye-Waller Effekt erwartet wird (siehe dazu auch Abschnitt 2.1.4).

Während des Heizens wird bis 250 K zunächst ein Anstieg der gespiegelten Heliumintensität beobachtet. Dies deutet auf eine Glättung der Oberfläche hin (siehe auch Abschn. 2.1.3). Bei ca. 250 K erreicht die Intensität ein Maximum. Es ist schwierig, eine quantitative Aussage über die absolute Rauhigkeit des Eisenfilms zu machen, da hier keine γ-Fe(110)-Referenzfläche zur Verfügung stand. Qualitativ läßt sich jedoch folgern, daß die Oberfläche des beobachteten Eisenfilms einigermaßen glatt ist, denn die Intensität erreicht bei 250 K etwa die Hälfte der Intensität einer reinen Cu(110)-Einkristall-Oberfläche. Durch Einsetzen der Heliumintensität des Eisenfilms bei 250 K ($I/I_0 \approx 0.5$) in Gleichung 2.12 läßt sich die Stufenkantendichte S in Bezug auf die reine Substratoberfläche abschätzen. (Dabei wird angenommen, daß die Debye-Waller-Abschwächung von Cu und Fe bei 250 K ungefähr gleich sind.) Unter der zusätzlichen Annahme, daß die Eisenstufen eine für Stufenkanten typische diffus streuende Breite D von ca. $12 \text{ Å}^2/A$ besitzen [33, 45, 91], ergibt sich für S ein Wert von $0.024 \text{ Å}/\text{Å}^2$. Der Wert $1/S$, welcher der durchschnittlichen Terrassenbreite des γ-Fe-Films entspricht, beträgt demnach etwa 40 Å.
4.3 Manipulation der Oberflächenmorphologie

Abbildung 4.9: LEED-Bild von 5 ML Fe, aufgedampft auf Cu(110) bei 130 K und angelassen auf 240 K (20 K/min) (a), sowie LEED-Bild der reinen Cu(110)-Oberfläche (b). Beide Bilder wurden mit einer Primärenergie der Elektronen von 135 eV bei einer Temperatur von 100 K aufgenommen.

4.3.2 Anlassen des Systems Fe/Cu(110) auf 240 K-
Präparation eines atomar glatten γ-Fe Films

Abb. 4.9(a) zeigt eine LEED-Aufnahme des 5 ML dicken Eisenfilms, aufgedampft bei 130 K und angelassen auf 240 K. Die Heizraten betrug 20 K/min. Zum Vergleich ist eine LEED-Aufnahme der reinen Cu(110)-Oberfläche abgebildet (Abb. 4.9 (b)). Beide Bilder wurden bei einer Temperatur von 100 K
aufgenommen. Dabei betrug die Energie der verwendeten Primärelektronen 135 eV. Wie sich leicht erkennen läßt, sind sich beide LEED-Bilder sehr ähnlich. Die Beugungsreflexe in Abb. 4.9(a) liegen auf derselben Position wie in Abb. 4.9(b) und sind auch einigermaßen scharf. Förmlich ist der angelassene Eisenfilm gut geordnet und hat im Rahmen der Meßgenauigkeit dieselbe Struktur wie das Cu(110)-Substrat: Es liegt somit ein γ-Fe Film (fcc-Struktur) mit (110) orientierter Oberfläche vor (siehe auch Abschnitt A.1.2).

An derselben Oberfläche wurden auch Helium-Beugungsmessungen durchgeführt. Abb. 4.10 zeigt drei Beugungsspektren, aufgenommen in [001]- und [1\bar{T}0]-Richtung. Die Messungen in Abb. 4.10(a) und (c) wurden an einem 5 ML dicken Eisenfilm durchgeführt, welcher bei 130 K aufgedampft und anschließend auf 240 K (a) bzw. auf 350 K (c) angelassen wurde. Dabei betrug die Heizraten 20 K/min. Beide Spektren wurden bei einer Temperatur von 130 K aufgenommen. Zum Vergleich ist auch ein Helium-Beugungsspektrum der reinen Cu(110)-Oberfläche abgebildet (Abb. 4.10(b)), welches bei Raumtemperatur aufgenommen wurde. Die Energie der verwendeten Heliumatome betrug in allen drei Fällen 24.4 meV, d.h. die Heliumatome wurden an benachbarten Terrassen unter in-Phase Bedingung gesteuert. Die Intensität ist in allen Spektren normiert auf die Intensität einer reinen Cu(110)-Oberfläche in [001]-Richtung.

Die Heliumbeugungsspektren des auf 240 K angelassenen Eisenfilms (Abb. 4.10(a)) ergeben eine gute Übereinstimmung mit dem zuvor gezeigten LEED-Bild dieser Oberfläche. Die Beugungsreflexe erster Ordnung befinden sich auf den Positionen, die für einen γ-Fe(110)-Film erwartet werden: \(q// = \pm 1.74 \text{Å}^{-1} \) in [001]-Richtung und \(q// = \pm 2.46 \text{Å}^{-1} \) in [1\bar{T}0]-Richtung. Sie bestätigen damit die Existenz eines fcc-γ-Fe Films auf dem Cu(110)-Substrat. Allerdings sind die Intensitäten der Beugungsreflexe in Abb. 4.10(a) völlig verschieden von denen der Cu(110)-Oberfläche: In [001]-Richtung wird nur ein Beugungsreflex erster Ordnung beobachtet, und zudem hebt sich dieser nur sehr wenig vom Untergrund des Spektrums hervor. Seine Intensität beträgt weniger als 1 % der Intensität des vergleichbaren Cu(110)-Reflexes. Auf der Cu(110)-Oberfläche werden in [1\bar{T}0]-Richtung keine Beugungsreflexe beobachtet. Diese sind dafür auf dem Eisenfilm sichtbar. Ihre Intensität ist in etwa so groß wie die Intensität des Beugungsreflexes, beobachtet in [001]-Richtung. Die Ursache für die verschiedenen Intensitäten der Beugungsreflexe liegt in der unterschiedlichen Korrugation der Oberflächen. Cu(110) besitzt eine stark anisotrope Korrugation. Sie ist in [001]-Richtung erheblich größer als in [1\bar{T}0]-Richtung, wodurch die Beugungsreflexe in [001]-Richtung sehr groß und in [1\bar{T}0]-Richtung verschwindend klein sind. Dagegen besitzt der Eisenfilm offenbar eine in beiden Richtungen kleine Korrugation, was zu kleinen Intensitäten der Beugungsreflexe führt. Die Korrugation scheint in beide Richtungen isotrop zu sein, da die Reflexe in beiden Richtungen nahezu gleich groß sind. Obgleich die Beugungsreflexe des Eisenfilms klein sind, sagt dies nichts über die Rauhigkeit
4.3 Manipulation der Oberflächenmorphologie

Abbildung 4.10: Helium-Beugungsspektren, aufgenommen in [001]- und [110]-Richtung, von 5 ML Fe auf Cu(110), aufgedampft bei 130 K und angelassen auf 240 K (a) bzw. auf 350 K (c). Die Heizraten betrugen 20 K/min. Die Spektren wurden bei einer Temperatur von 130 K aufgenommen. (b) zeigt ein Referenzspektrum der reinen Cu(110)-Oberfläche, aufgenommen bei Raumtemperatur. Die Energie der verwendeten Heliumatome betrug 24.4 meV (in-Phase). Die Intensität ist normiert auf die Intensität einer reinen Cu(110)-Oberfläche in [001]-Richtung. Die Linien markieren die Position der Beugungsreflexe erster Ordnung von Cu(110). Die Pfeile in (c) markieren die vermutlichen Reflexe der Facetten.

der Oberfläche aus. Vielmehr deuten die schmalen, sehr hohen Beugungsreflexe nullter Ordnung (Abb. 4.10(a)) auf große, gut geordnete Eisenterrassen hin. Die Halbwertsbreite Δq der gespiegeltten Beugungsreflexe, welche in beide Richtungen etwa $0.034 \, \text{Å}^{-1}$ beträgt, weist auf die Existenz kohärent streuender Flächen mit einer durchschnittlichen Breite l von ca. 185 Å in beide Richtun-
gen hin ($l \approx 2\pi/\Delta q$). (Dabei wurde die instrumentelle Verbreiterung durch die TEAS-Apparatur nicht berücksichtigt. Das heißt, daß die kohärent streuende Fläche eigentlich etwas größer ist, 185 Å, also nur einen unteren Wert darstellt (siehe auch Abschnitt 3.2.1.). Auch dies ist ein Hinweis für die gute Qualität der Oberfläche.

4.3.3 Anlassen des Systems Fe/Cu(110) auf 350 K-Facettierung

Nach Anlassen des Eisenfilms auf 350 K ändern sich die beobachteten Heliumbeugungsspektren erneut (Abb. 4.10(c)). Die Intensität des gespiegelten Reflexes ist etwa 4 mal kleiner als die gespiegelte Heliumintensität bei 240 K (siehe auch Abb. 4.8). Die Halbwertsbreite bleibt allerdings während des Anlassens auf 350 K nahezu gleich (Abb. 4.10(c)), was darauf hindeutet, daß die Ordnung der Oberfläche und die durchschnittliche Größe der kohärent streuenden Flächen erhalten bleibt. Auch die Intensitäten der Beugungsreflexe erster Ordnung in [001]-Richtung bleiben in etwa gleich. Sie treten allerdings stärker aus dem verringerten Untergrund des Spektrums hervor. In [1\bar{1}0]-Richtung verschwinden die Beugungsreflexe erster Ordnung. Der Hauptunterschied zwischen den Beugungsspektren des auf 350 K und des auf 240 K angelassenen Films liegt jedoch in dem Auftreten zusätzlicher Beugungsreflexe bei ca. $q_{\parallel} = \pm 3\text{Å}^{-1}$ in [001]-Richtung und einem stark verbreiterten Fuß des (0,0)-Reflexes in dieser Richtung. Wahrscheinlich liegen zwei Beugungsreflexe bei etwa $q_{\parallel} = \pm 1\text{Å}^{-1}$ im Untergrund des gespiegelten Reflexes verborgen. Diese zusätzlichen Reflexe bei $\pm 1\text{Å}^{-1}$ und $\pm 3\text{Å}^{-1}$ (markiert durch Pfeile in Abb. 4.10(c)) deuten auf das Vorhandensein einer zweiten Struktur hin. Sie passen im Rahmen der Messgenauigkeit zu der im folgenden beschriebenen Facettierung der Oberfläche. Um die Reflexe jedoch zu einer detaillierten Strukturanalyse heranzuziehen [92], sind sie viel zu breit. Ihre Position läßt sich dadurch nur ungenau bestimmen; eine detaillierte Auswertung ist unmöglich. Deshalb wurden an der auf 350 K angelassenen Eisenoberfläche umfangreiche LEED-Untersuchungen durchgeführt.

Die Abbildungen 4.11 und 4.12 zeigen 10 LEED-Bilder des Eisenfilms auf Cu(110) nach Anlassen auf 350 K. Die Bilder wurden bei einer Temperatur von 100 K aufgenommen. Dabei wurden Primärelektronen mit 10 verschiedenen Energien verwendet. Die Bilder in Abb. 4.11 und 4.12 sind alphabetisch mit zunehmender Primärenergie geordnet: (a) 111 eV, (b) 117 eV, (c) 128 eV, (d) 136 eV, (e) 146 eV, (f) 156 eV, (g) 165 eV, (h) 180 eV, (i) 201 eV und (j) 225 eV. Neben den LEED-Aufnahmen ist jeweils eine Skizze derselben abgebildet, in welcher die verschiedenartigen Beugungsreflexe getrennt eingezeichnet sind. Die Bewegungsrichtung der Reflexe mit zunehmender Energie ist durch Pfeile markiert.
Abbildung 4.11: LEED-Bilder eines 5 ML dicken Fe-Films, aufgedämpft auf Cu(110) bei 130 K und angelassen auf 350 K (20 K/min). Die Primärenergie der verwendeten Elektronen betrug (a) 111 eV, (b) 117 eV, (c) 128 eV und (d) 136 eV. Gefüllte Kreise entsprechen den Reflexen der (110)-Oberfläche, die anderen Reflexe (offene Kreise) stammen von Facetten. Große Kreise markieren eine Koinzidenz von Reflexen beider Gruppen.
Kapitel 4: Wachstum von Fe auf Cu(110)
4.3 Manipulation der Oberflächenmorphologie

Abbildung 4.12: LEED-Bilder eines 5 ML dicken Fe-Films, aufgedampft auf Cu(110) bei 130 K und abgekühlt auf 350 K (20 K/min). Die Primärenergie der verwendeten Elektronen betrug (e) 146 eV, (f) 156 eV, (g) 165 eV, (h) 180 eV, (i) 201 eV und (j) 225 eV. Gefüllte Kreise entsprechen den Reflexen der (110)-Oberfläche, die anderen Reflexe (offene Kreise) stammen von Facetten. Große Kreise markieren eine Koinzidenz von Reflexen beider Gruppen.

Die Beugungsreflexe in Abb. 4.11 und 4.12 können in zwei Gruppen unterteilt werden. Die eine Gruppe, dargestellt durch gefüllte Kreise, entspricht den erwarteten Reflexen einer Fe(110)-Oberfläche, bzw. einer dazu identischen Cu(110)-Oberfläche. Sie konnte eindeutig durch den Vergleich mit Referenzbildern, aufgenommen an reinem Cu(110), identifiziert werden. Neben diesen Fe(110)-Reflexen existiert eine weitere Gruppe von Reflexen. Diese Gruppe, dargestellt durch offene Kreise, bewegt sich nicht wie die Fe(110)-Reflexe mit zunehmender Energie radial auf den Mittelpunkt des LEED-Bildes zu, also in Richtung des (0,0)-Reflexes. Vielmehr wandern diese Reflexe zwischen den Fe(110)-Reflexen: eine Hälfte bewegt sich in [001]-Richtung, die andere symmetrisch dazu in [00\overline{1}]-Richtung (siehe Pfeile in Abb. 4.11 und 4.12). Bei bestimmten Energien schneiden sie die Fe(110)-Reflexe (Koinzidenz beider Sorten, dargestellt durch große, gefüllte Kreise).
Solch ein Verhalten der Beugungsreflexe kann durch die Existenz zweier symmetrischer Facetten auf der (110)-Oberfläche erklärt werden. Dieses Szenario ist schematisch in Fig. 4.13 anhand einer Ewald-Konstruktion [29, 30, 93, 94] illustriert. Die Oberfläche der Probe besteht aus der (110)-Fläche, sowie aus zwei Facetten A und B, welche um einen Winkel \(\varphi \) bzw. \(\varphi' = -\varphi \), gegen die (110)-Fläche verkippt sind (Abb. 4.13(a)). Abb. 4.13(b) zeigt eine Seitenansicht auf die (110)-Fläche sowie auf die Facetten im reziproken Raum. Die Oberfläche und die Stöße der Facette A sind durch gepunktete Linien, die der Facette B durch gestrichelte Linien und die der (110)-Fläche mit durchgezogenen Linien markiert. Bei einer bestimmten Elektronenergie \(E_1 \), bzw. einem Wellenvektor \(\vec{k}_1 \), schneidet die Ewald-Kugel mit Radius \(|\vec{k}_1| \) gleichzeitig jeweils einen Stab der Facetten A und B, sowie den (0,0)-Stab der (110)-Oberfläche. Als Folge entsteht ein Beugungsreflex in \(\vec{k}_1 \)-Richtung (Koinzidenz). Wird nun die Elektronenergie auf einen Wert \(E_2 \) vergrößert, so schneidet die dazu gehörige Ewald-Kugel mit Radius \(|\vec{k}_2| \) die Stöße der Facetten A und B, sowie den (0,0)-Stab der (110)-Oberfläche an drei verschiedenen Stellen. Es entstehen drei Beugungsreflexe, je einer in die \(\vec{k}_2 \)-Richtung (=\(\vec{k}_1 \)-Richtung), sowie in die \(\vec{k}_1^\parallel \) und \(\vec{k}_2^\parallel \)-Richtung. Mit anderen Worten, der (0,0)-Reflex splittet mit zunehmender Energie symmetrisch in drei Beugungsreflexe auf, wovon einer auf dem (0,0)-Stab verharrt und die beiden anderen sich in entgegengesetzter Richtung entlang der [001]-Achse entfernen. Es ist leicht einzusehen, daß dieses Szenario nicht nur für den (0,0)-Reflex gilt, sondern auf jeden beliebigen Beugungsreflex der (110)-Oberfläche angewendet werden kann. Damit lassen sich sämtliche LEED-Bilder in Abb. 4.11 und 4.12 erklären.

Im vorliegenden Fall wurden die Koinzidenzpunkte aus dem Schnittpunkt der Ewald-Kugel mit den Stößen der (110)-Fläche berechnet. Dies ist hier an einem Beispiel demonstriert: Bei einer Elektronenergie von 146 eV fallen zum Beispiel der (-1,0)-Stab \(k_{[001]} = -1.74 \text{Å}^{-1} \), \(k_{[1\overline{1}0]} = 0 \text{Å}^{-1} \)) und der (+1,0)-Stab \(k_{[001]} = 1.74 \text{Å}^{-1} \), \(k_{[1\overline{1}0]} = 0 \text{Å}^{-1} \)) mit den Facettenreflexen zusammen (siehe Abb. 4.12(e)). Einsetzen der Koordinaten dieser beiden Stöße in die Ewald-Kugel (mit Energie \(E=146 \text{ eV} \)) liefert die jeweils zugehörigen Schnittpunkte zwischen Stab und Ewald-Kugel.
4.3 Manipulation der Oberflächenmorphologie

a) Ortsraum

Abbildung 4.13: Darstellung der (110)-Oberfläche, sowie zwei dazu um Winkel φ, bzw. $\varphi' = -\varphi$, verkippte Facetten A und B, im Ortsraum (a) und im reziproken Raum (b). Dabei illustriert (b) schematisch die Aufspaltung eines Beugungsreflexes (hier: (0,0)-Reflex) anhand der Ewald-Konstruktion. Es handelt sich um einen Schnitt durch die dreidimensionale Ewald-Kugel entlang der Schnittebene ($k_{[001]}, k_{[\overline{1}0]} = 0 \text{Å}^{-1}, k_{[110]}$).
Kapitel 4: Wachstum von Fe auf Cu(110)

Die Gleichung der Ewald-Kugel lautet:

\[k_{[001]}^2 + k_{[\bar{1}10]}^2 + (k_{[110]} - r_e)^2 = r_e^2 \quad \text{mit} \quad r_e = \sqrt{\frac{2m_e E}{\hbar^2}} \quad (4.1) \]

Dabei ist \(r_e \) der Radius der Ewald-Kugel, welcher sich aus Energie \(E \) und Masse \(m_e \) der Elektronen berechnet. Damit ergibt sich im obigen Beispiel für die noch fehlende Koordinate des Schnittpunktes, \(k_{[110]} \), durch Einsetzen von \(k_{[001]} = \pm 1.74 \text{\AA}^{-1} \), \(k_{[\bar{1}10]} = 0 \text{\AA}^{-1} \) und \(E=146 \text{\,eV} \) in Gleichung 4.1 ein Wert von \(12.2 \text{\,\text{\AA}^{-1}} \). Die aus Abb. 4.11 (e) bestimmten Schnittpunkte zwischen \((\pm 1,0)\)-Stab und Ewald-Kugel lauten also \((1.74 \text{\,\text{\AA}^{-1}}, 0 \text{\,\text{\AA}^{-1}}, 12.2 \text{\,\text{\AA}^{-1}})\) und \((-1.74 \text{\,\text{\AA}^{-1}}, 0 \text{\,\text{\AA}^{-1}}, 12.2 \text{\,\text{\AA}^{-1}})\). Diese Punkte liegen auf den Stäben der Facetten. Analog wurden aus allen LEED-Bildern in Abb. 4.11 und 4.12 sämtliche Koinzidenzpunkte bestimmt, welche ebenfalls auf den Stäben der Facetten liegen. Sie sind in Tabelle 4.1 aufgelistet und in Abb. 4.14 (a) und (b) abgebildet.

Aufgrund der Tatsache, daß sich die Beugungsreflexe der Facetten in [001]-Richtung, und nur in dieser Richtung, bewegen, kann geschlossen werden, daß die Facetten-Stäbe in Ebenen liegen, welche senkrecht zur (110)-Oberfläche und parallel zur [001]-Richtung orientiert sind. Diese Ebenen laufen durch die Punkte \(k_{[\bar{1}10]} = 0 \text{\,\text{\AA}^{-1}} \) und \(k_{[110]} = \pm 2.46 \text{\,\text{\AA}^{-1}} \). Ihre Lage im dreidimensionalen reziproken Raum ist in Abb. 4.14(c) eingezeichnet. Dabei illustrieren die Schraffierungen die mögliche Lage der Facetten-Stäbe. Die Abbildungen 4.14 (a) und (b) zeigen eine vergrößerte Draufsicht auf diese Ebenen. In Abb. 4.14 (a) handelt es sich um die Ebene, welche durch \(k_{[\bar{1}10]} = 0 \text{\,\text{\AA}^{-1}} \) verläuft und Abb. 4.14 (b) zeigt diejenige, welche durch \(k_{[110]} = -2.46 \text{\,\text{\AA}^{-1}} \) und \(k_{[\bar{1}10]} = 2.46 \text{\,\text{\AA}^{-1}} \) verläuft.

In beiden Ebenen (Abb. 4.14(a) und (b)) sind die Koinzidenzpunkte aus Tabelle 4.1 eingezeichnet. Durch diese Punkte läßt sich jeweils ein äquidistantes Gitter anpassen, welches optimal auf den Koinzidenzpunkten liegt (gestrichelte Linien in Abb. 4.14(a) und (b)). Es handelt sich hierbei um die gesuchten Stäbe der Facetten. In Abb.(a) hat dieses Gitter einen Gitterabstand \(a \) von \((2.86 \pm 0.20) \text{\,\text{\AA}}^{-1}\) und ist um einen Winkel \(\varphi = (35.5^\circ \pm 2^\circ) \) gegen die Oberflächennormale der (110)-Oberfläche verkippt. Der Abstand \(a \) vom Ursprung des reziproken Raumes zum ersten Facettenstab beträgt \(2.82 \text{\,\text{\AA}^{-1}} \). In Abb. (b) beträgt der Gitterabstand \(a \) \((2.86 \pm 0.20) \text{\,\text{\AA}^{-1}} \). Das Gitter ist um \(\varphi = (35.5^\circ \pm 2^\circ) \) gegen die Oberflächennormale der (110)-Fläche verkippt und hat einen Abstand \(a \) = 4.23\,\text{\AA}^{-1} \) zum Ursprung des Koordinatensystems. An dieser Stelle sei bemerkt, daß ein zweites Gitter spiegelsymmetrisch zum abgebildeten Gitter eingezeichnet werden könnte. Dieses wäre dann um einen Winkel \(\varphi = 35.5 \) gegen die (110)-Fläche verkippt, hätte aber ansonsten dieselben Maße wie das eingezeichnete Gitter. Aus Gründen der Übersicht wurde auf die Darstellung dieser zweiten, spiegelsymmetrischen Facette verzichtet.
Abbildung 4.14: Der reziproke Raum der facettierten Oberfläche: (c) Zentrale dreidimensionale Darstellung in \(k_{[001]} \), \(k_{[1\overline{1}0]} \) und \(k_{[110]} \)-Richtung. Dabei liegen die Koinzidenzpunkte (schwarze Punkte) und die Stäbe der Facetten (gestrichelte Linien) innerhalb Ebenen, welche senkrecht auf der (110)-Oberfläche stehen und parallel zur [001]-Richtung durch \(k_{[1\overline{1}0]} = 0 \, \text{Å}^{-1} \) (Abb.(a)), bzw. durch \(k_{[1\overline{1}0]} = \pm 2.46 \, \text{Å}^{-1} \) (Abb.(b)) verlaufen. Abb. (d) zeigt eine Draufsicht auf die Facetten-Oberfläche ((111)-Fläche) entlang der Facettenstäbe.
Kapitel 4: Wachstum von Fe auf Cu(110)

<table>
<thead>
<tr>
<th>Abb.</th>
<th>(k_{[001]}) (x,1.74,\text{Å}^{-1})</th>
<th>(k_{[1\overline{1}0]}) (x,2.46,\text{Å}^{-1})</th>
<th>E [eV]</th>
<th>(r_e) [Å(^{-1})]</th>
<th>(k_{[1\overline{1}0]}) [Å(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11(a)</td>
<td>±1</td>
<td>±1</td>
<td>111</td>
<td>5.4</td>
<td>9.9</td>
</tr>
<tr>
<td>4.11(b)</td>
<td>±2</td>
<td>0</td>
<td>117</td>
<td>5.6</td>
<td>9.9</td>
</tr>
<tr>
<td>4.12(e)</td>
<td>±1</td>
<td>0</td>
<td>146</td>
<td>6.2</td>
<td>12.1</td>
</tr>
<tr>
<td>4.12(f)</td>
<td>0</td>
<td>±1</td>
<td>156</td>
<td>6.4</td>
<td>11.9</td>
</tr>
<tr>
<td>4.12(h)</td>
<td>±2</td>
<td>±1</td>
<td>180</td>
<td>6.9</td>
<td>12.3</td>
</tr>
<tr>
<td>4.12(j)</td>
<td>±1</td>
<td>±1</td>
<td>225</td>
<td>7.7</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Tabelle 4.1: Ergebnisse der Ewald-Konstruktion: Koinzidenzpunkte \((k_{[001]}, k_{[1\overline{1}0]}, k_{[1\overline{1}0]})\) im reziproken Raum liegen auf den Facettenstäben.

Bereits der gefunden Winkel von 35.5°(±2°) (Abb. 4.14(a) und 4.14(b)) zwischen den Facetten-Stäben und der (110)-Fläche läßt vermuten, daß es sich bei der beobachteten Facettenoberfläche um die (111)-Fläche handelt. In einem fcc-Kristall befindet sich zwischen der (111)-Fläche und der (110)-Fläche immer ein Winkel von 35.26°. Mit Hilfe der gefundenen Parameter \(g_a = 2.86\,\text{Å}^{-1}\), \(g_b = 2.86\,\text{Å}^{-1}\), \(d_a = 2.82\,\text{Å}^{-1}\) und \(d_b = 4.23\,\text{Å}^{-1}\) läßt sich sogar ein „LEED-Bild“ der Facettenoberfläche konstruieren: Abb. 4.14(d) zeigt eine Draufsicht auf die Facettenoberfläche, betrachtet unter einem Winkel von 35.5°, also parallel zu den Facettenstäben. (Die Blickrichtung, unter dem diese Betrachtung geschieht, ist in Abb. 4.14(a-c) durch ein „Auge“ symbolisiert.) Der Betrachter in Abb. 4.14(d) sieht die Facettenstäbe als Punkte. Diese Punkte haben in [1\overline{1}0]-Richtung einen Abstand von 2.46\,\text{Å}^{-1} und in [1\overline{1}2]-Richtung einen Abstand 2.86\,\text{Å}^{-1} (= \(g_a = g_b\)). Ihr Abstand zur \(x\)-Achse beträgt 2.82\,\text{Å}^{-1} (= \(d_a\)) und 4.23\,\text{Å}^{-1} (= \(d_b\)). Föglich sieht der Betrachter ein Beugungsbild einer hexagonalen Struktur mit Gitterkonstanten von etwa 2.86\,\text{Å}^{-1}. Die zugehörige Struktur im Ortsraum ist ebenfalls hexagonal, allerdings gegenüber dem reziproken Raum um 30° verdreht, und hat eine Gitterkonstante von ca. 2.54\,\text{Å} \((2\pi/(2.86 \cdot \sin 60°))\) [siehe auch Gleichung 2.6]. Dies entspricht den Daten der (111)-Oberfläche eines fcc-Kristalls, welche unter Verwendung der Gitterkonstanten von γ-Fe \((a_{Fe} = 3.64\,\text{Å})\) berechnet werden (siehe auch Abschn. A.1.2).
Abschließend läßt sich also bemerken, daß der atomar glatte γ-Fe Film auf-
rauht, nachdem er über 250 K angelassen wurde. Es bilden sich (111)- und
(11\bar{1})-Facetten. Die kohärent streuende Oberfläche der Facetten ist so groß,
daß sowohl in LEED-Aufnahmen (Abb. 4.11 und 4.12) als auch in Helium-
Beugungsspektren (Abb. 4.10 (c)) Beugungssalreflexe dieser Oberfläche entsteh-
en. Die hier beobachtete Facettierung der γ-Fe-Oberfläche ist in guter Über-
einstimmung mit Referenz [83], in welcher die Bildung von (111)-Facetten nach
Deposition eines 1 ML dicken Fe-Films auf Cu(110) bei Raumtemperatur be-
obachtet wurde.

4.3.4 Diskussion

Viele (110)-Oberflächen von fcc-Kristallen besitzen im thermodynamischen
Gleichgewicht die Tendenz zur Bildung einer facettierten Oberfläche. Zum Bei-
spiel fehlen der Au(110)- und der Pt(110)-Oberfläche jede zweite Atomreihe in
[1\bar{1}0]-Richtung, wodurch (111)-Microfacetten entstehen [95,96]. Es lassen sich
auch Oberflächen präparieren, bei denen jede dritte Atomreihe fehlt [97,98].
Auf der Ir(110)-Oberfläche wurde die Existenz großer (331)-Facetten beob-
achtet [95,99]. Andere (110)-Oberflächen wiederum zeigen keine Facettenbil-
dung, so z.B. die reine Ni-, Ag- und Pd-(110)-Oberfläche sowie die saubere
Cu(110)-Oberfläche, obgleich Adsorbate auf diesen Oberflächen wieder zu Re-
konstruktionen führen können. Im Fall der Chemisorption von Sauerstoff auf
Cu(110) [65] oder auf Ni(110) [100] liegt z.B. eine Oberfläche vor, bei der jede
zweite Atomreihe in (110)-Richtung fehlt.

Die hier beobachtete Facettierung der fcc Fe(110)-Oberfläche auf Cu(110) stellt
daher kein außergewöhnliches Ereignis dar. Möglicherweise ist sie eine typi-
sche Materialieigenschaft der γ-Fe(Oberfläche. Andererseits könnte der
Grund für ihr Auftreten auch in dem heteroepitaktischen Wachstum von Fe
auf dem Cu(110)-Substrat begründet liegen. So ist beispielsweise denkbar, daß
die größere freie Energie des γ-Fe (2939 mJ/m2 [101]) gegenüber der freien Energie
des Cu (1934 mJ/m2 [101]) zu einem Wachstum mit Facettenbildung führt.

Die in der vorliegenden Arbeit beobachtete Facettierung von Fe auf Cu(110)
dürfte der Grund dafür sein, warum Eisen bei Raumtemperatur im Gegen-
satz zum Wachstum auf den anderen Cu-Oberflächen solch rauhe Oberflächen
bildet. Umgekehrt kann man daraus folgern, daß es möglich ist, einen ato-
mar glatten γ-Fe Film zu präparieren, wenn diese Facettierung ausreichend
unterdrückt wird. Wie im vorigen Abschnitt gezeigt wurde, ist dies bei tie-
fen Temperaturen der Fall. Aufdampfen bei 130 K führt zunächst zur Bildung
einer ungeordneten, rauen Oberfläche. Durch Anlassen ordnet sich der Eisen-
film mit steigender Temperatur. Es bildet sich eine fcc γ-Fe(110) Oberfläche
Kapitel 4: Wachstum von Fe auf Cu(110)

mit identischer Struktur zum Cu-Substrat aus. Nach Anlassen auf 250 K (20 K/min) erreicht der Film seine maximale Ordnung; die Oberfläche ist atomär glatt. Die durchschnittliche Breite der kohärent streuenden Flächen beträgt mindestens 185 Å.

Als Fazit läßt sich daraus schließen, daß es möglich ist, bei tiefen Temperaturen einen atomar glatten γ-Fe-Film auf Cu(110) zu präparieren. Dieser Film läßt sich bei Temperaturen unterhalb 200 K, möglicherweise auch noch darüber, lange genug konservieren, um z.B. einen weiteren Film darauf aufzudampfen.
Kapitel 5

Präparation geordneter Eisenoxide auf Cu(110)

Die Präparation von Eisenoxid auf Kupfer wurde auf den verschiedenen Oberflächen des Kupfers bereits untersucht. Auf der Cu(100)-Oberfläche wächst ein glatter γ-Fe Film bis zu einer Schichtdicke Θ von etwa 20 Å auf [68]. Oxidation dieses Films bei Raumtemperatur führt zur Ausbildung eines ungeordneten Oxides. Einige Autoren beobachten mittels LEED und AES die Bildung eines schlecht geordneten Fe_2O_3-Films [106], andere hingegen finden bei Raumtemperatur überhaupt keine Ordnung des Fe-Oxides. Sie finden dafür einen geordneten Fe-Oxidfilm nach Oxidation bei einer Temperatur von 810 K, welche sie mittels LEED als $Fe_{1-x}O$ ($\Theta < 2 ML$) und als Fe_3O_4 ($\Theta > 2 ML$) interpretieren [107, 108].

Auf der Cu(111)-Fläche kann ein glatter Eisenfilm nur bis zu einer Schichtdicke von etwa 4 ML (8 Å) präpariert werden [70, 75, 85]. Oxidation dieser Schicht führt zur Ausbildung eines ungeordneten Oxides [109]. Mittels AES können die gebildeten Oxide als Fe_2O_3 ($\Theta < 2.5$ ML) bzw. als Fe_3O_4 ($\Theta > 2.5$ ML)
identifiziert werden. Zudem wurde gefunden, daß nur Fe-Filme mit Bedeckungen < 1.5 ML vollständig oxidieren. Bei dickeren Filmen bleibt eine nichtoxidierte Eisenschicht unter dem Oxid zurück. Ab Fe-Filmdicken Θ > 5 ML erreicht die Oxidschicht ihre maximal mögliche Dicke. Sie beträgt etwa 10 Å [109]. Auf Cu(110) wurde bislang kein atomar glatter γ-Fe Film präpariert. Es wurde daher nur die Oxidation der bei Raumtemperatur aufgewachsenen, rauen Eisenfilme untersucht, welche ein ungeordnetes Oxid bilden [110]. Nach Anlassen eines 1 ML dicken, oxidierten Fe-Films auf Temperaturen von 710 und 830 K findet man eine geordnete Oberfläche [111]. Die Verschiebung der Fe 2\textit{p}_3/2-Linie im XPS-Spektrum (X-ray photoelectron spectroscopy) deutet im Fall des Anlassens auf 710 K auf die Existenz eines Fe\textsubscript{2}O\textsubscript{3} oder Fe\textsubscript{3}O\textsubscript{4} hin, während die Verschiebung nach Anlassen des Oxids auf 830 K eher einem FeO entspricht [111].

In der vorliegenden Arbeit ist es gelungen, einen atomar glatten γ-Fe Film auf Cu(110) aufzuwachsen (siehe Abschnitt 4.3). Die folgenden Kapitel beschreiben die Oxidation dieses 5 ML dicken Fe-Films. Dabei wird nicht nur auf die Oxidation bei tiefen Temperaturen eingegangen, sondern auch versucht, die Oberflächenstruktur durch Anlassen der Probe zu beeinflussen. Insbesondere stehen hierbei die Struktur, die Oberflächenmorphologie sowie die thermische Stabilität des Oxides im Mittelpunkt des Interesses. Aus den Verschiebungen der AES-Übergänge wird versucht, Rückschlüsse auf die chemische Zusammensetzung des Oxides zu ziehen.

5.1 Oxidation von γ-Fe auf Cu(110) bei tiefen Temperaturen

Zunächst wurde auf der Cu(110)-Oberfläche ein 5 ML dicker γ-Fe Film präpariert. Dazu wurde Eisen bei 130 K aufgedampft, anschließend auf 240 K angelassen und erneut auf 130 K abgekühlt. Der auf diese Weise entstandene Fe-Film ist atomar glatt und besitzt dieselbe Struktur wie das Cu-Substrat (siehe auch Abschn. 4.3.2). Da er in dieser Form nur bei tiefen Temperaturen stabil ist, mußte die Oxidation auch bei tiefen Temperaturen erfolgen. Der Film wurde daher bei 130 K einer Sauerstoffatmosphäre von ca. 9.5 · 10-8 mbar ausgesetzt. Abb. 5.1 (a) zeigt den Verlauf der gespiegelten Heliumintensität als Funktion der Begasung mit Sauerstoff. Sie ist auf den Wert \(I_o\) der reinen Eisenoberfläche bei 130 K normiert. Wie man in Abb. 5.1 (a) leicht erkennt, fällt die gespiegelte Heliumintensität bis zu einer Begasung mit etwa 7 L Sauerstoff rapide ab und verschwindet danach im Untergrund des Spektrums. Mit zunehmender Begasung wird die Oberfläche also ungeordnet.
5.1 Oxidation von γ-Fe auf Cu(110) bei tiefen Temperaturen

Abbildung 5.1: Oxidation eines 5 ML dicken γ-Fe Film bei 130 K: (a) Geradlinige Heliumintensität $I(q=0)$ während der Begasung mit Sauerstoff. Sie wurde mit einer Heliumenergie von 24.4 meV aufgenommen und ist auf die Intensität I_0 des reinen Fe-Films bei 130 K normiert. (b) AES-Spektren, aufgenommen vor (Kurve (i)) und nach (Kurve (ii)) der Begasung mit 25 L O_2.

Um die chemische Zusammensetzung des gebildeten Oxides zu bestimmen, wurden AES-Messungen durchgeführt [23]. Abb. 5.1 (b) zeigt zwei AES-Spektren, aufgenommen vor und nach der Oxidation des Eisens. Der untersuchte Energiebereich betrug dabei 30 bis 70 eV. Kurve (i) in Abb. 5.1 (b) wurde auf dem 5 ML dicken γ-Fe auf Cu(110) gemessen. Man erkennt deutlich den Auger-Übergang des metallischen Kupfers bei 61 eV sowie den Auger-Übergang des metallischen Eisens bei 47 eV. Nach Begasung mit 25 L O_2 wurde das Spektrum (ii) in Abb. 5.1 (b) aufgenommen. Es hat sich gegenüber dem Spektrum des reinen Fe-Films erheblich verändert. Die Intensität des Auger-Übergangs des metallischen Kupfers ist kleiner, was sich aber durch die zugehörige Abschirmung der dickeren Schicht (jetzt: Fe-Oxid) erklären läßt. Hinzu kommt, daß der Auger-Übergang des metallischen Eisens nahezu verschwindet. Dafür haben sich bei 43 und 52 eV zwei neue Übergänge gebildet, also an Stellen, welche charakteristisch für die Existenz eines Fe$^{3+}$ sind. Durch Vergleich mit in der Literatur bekannten Spektren kann Spektrum (ii) eindeutig als das eines Fe_2O_3-Films auf Cu(110) interpretiert werden [112,113]. Durch Oxidation bei 130 K entsteht also Fe_2O_3. Nach der Begasung mit 25 L O_2 können weder LEED-Bilder noch Helium-Beugungsspektren beobachtet werden. Der entstandene Oxidfilm ist ungeordnet.
5.2 Anlassen des Systems Fe-Oxid/Cu(110)

5.2.1 Chemische Umwandlung des Eisenoxids

Abb. 5.2 zeigt vier verschiedene AES-Spektren, welche bei unterschiedlichen Temperaturen aufgenommen wurden. Spektrum (a) wurde bei 130 K, d.h. unmittelbar nach Oxidation des 5 ML dicken γ-Fe Filmes, gemessen. Es zeigt das bereits bekannte Spektrum eines Fe₃O₅ auf Cu(110). Anschließend wurde der Film anlassen. Bis zu einer Temperatur von etwa 550 K bleiben die Spektren nahezu gleich. Erst ab 550 K kommt es zu allmählichen Änderungen. Abb. 5.2 (b) zeigt ein Spektrum nach Anlassen der Probe auf 645 K. Der deutlich sichtbare AES-Übergang des Kupfers (61 eV) ist nahezu unverändert. Kupfer wird also noch immer durch eine etwa identisch dicke Schicht abgeschirmt, oder anders ausgedrückt, der Eisenoxidfilm verweilt immer noch vollständig auf der Cu-Oberfläche. Daneben dominieren zwar noch immer die typischen Auger-Übergänge für Fe₃O₅ (Minimum bei 43 und 52 eV), allerdings tritt zusätzlich ein schwacher AES-Übergang bei ca. 47 eV hervor. Dieser kann entweder durch das Vorhandensein metallischen Eisens erklärt werden, er könnte aber auch auf die Existenz von Fe²⁺ (FeO oder Fe₃O₄) hindeuten. Für Fe²⁺ wird ein Minimum bei 46.5 eV erwartet [113], was sich im Rahmen der Meßgenauigkeit nicht vom metallischen Fe (47 eV) unterscheidet läßt.

Nach Anlassen auf noch höhere Temperaturen ändert sich das Spektrum erneut: Bei 1020 K wird das Spektrum in Abb. 5.2 (c) beobachtet. Die Minima, charakteristisch für Fe und Fe-Oxid, sind verschwunden. Übrig bleibt nur ein schwach ausgeprägtes Maximum bei 39 eV. Die Intensität des AES-Übergangs von Kupfer bei 61 eV ist angewachsen auf fast die gleiche Intensität wie die einer reinen Cu-Oberfläche. Ein ähnliches Spektrum wurde von Ruby und Mitarbeitern für sehr dünne Fe-Oxid Filme auf Cu beobachtet (< 1.2 Å) [109]. Sie schlagen vor, daß es sich hierbei um ein ultradünnnes Fe₃O₅ handeln könnte. Dies beruht jedoch keineswegs auf einer gesicherten Erkenntnis sondern nur auf einer Vermutung. Im Gegenteil, die hier gezeigte, bei 550 K einsetzende Reduktion von Fe₃O₅, läßt eher vermuten, daß es sich bei 1020 K um einen
Abbildung 5.2: AES-Spektren, aufgenommen während des Anlassens eines mit 25 L O$_2$ oxidierten γ-Fe(5 ML)/Cu(110)-Films auf 130 K (a), 645 K (b), 1020 K (c) und 1120 K (d).

dünnen FeO- oder Fe$_3$O$_4$-Film handelt (siehe auch Abschnitt 5.3). Die Existenz von FeO bei 1020 K wird durch XPS-Messungen von Yagasaki et al. unterstützt. Sie beobachteten einen dünnen FeO-Film, nachdem sie einen bei Raumtemperatur oxidierten, 1 ML dicken Fe-Film auf Cu(110) auf 830 K angelassen haben [111].

Nach Anlassen der Probe auf 1120 K wird das Spektrum in Abb. 5.2 (d) beobachtet. Eisen und Eisenoxid sind vollständig verschwunden. Kurve (d) zeigt das Spektrum einer reinen Cu-Fläche.
Um die Stabilität des Fe-Oxides detaillierter zu untersuchen, wurde der oxidierte Eisenfilm von 130 auf 1120 K angelassen (Heizrate 4 K/min) und kontinuierlich mittels AES analysiert. Abb. 5.3 zeigt den Verlauf der Intensitäten ausgewählter AES-Übergänge als Funktion der Probentemperatur. In Abb. 5.3(a) ist der Verlauf der Intensität des 513 eV AES-Übergangs von Sauerstoff abgebildet. Die Intensität wurde aus der Differenz der AES-Signals bei 507 eV und bei 513 eV gebildet. Die zwei anderen Kurven zeigen den Verlauf der AES-Intensität von Eisen \((I_{600 \text{ eV}} - I_{703 \text{ eV}}; \text{Abb. 5.3(b)})\) und von \(Fe^{3+} (I_{477 \text{ eV}} - I_{522 \text{ eV}}; \text{Abb. 5.3(c)})\). Dabei ist der 703 eV AES-Übergang charakteristisch für das gesamte Eisen unabhängig von seiner Oxidationsstufe.

Die Menge an Sauerstoff im Eisenfilm ist bis zu einer Temperatur von etwa 700 K konstant (Abb. 5.3(a)). Ab 700 K verringert sich das AES-Signal. Nach Anlassen auf 950 K sind etwa 60-70 % des Sauerstoffs desorbiert. Von da an ist der restliche Anteil stabil bis etwa 1100 K. Oberhalb 1100 K desorbiert auch er vollständig. Das AES-Signal des Sauerstoffs verschwindet. Das Signal des 703 eV AES-Übergangs, charakteristisch für die Gesamtmenge an Eisen, ist ebenfalls bis zu 700 K konstant (Abb. 5.3(b)), was dafür spricht, daß auch das gesamte Eisen bis zu dieser Temperatur vollständig an der Cu-Oberfläche verweilt. Oberhalb 700 K nimmt das AES-Signal des Eisens ab. Vermutlich diffundiert Eisen allmählich in den Cu-Kristall hinein. Das AES-Signal, charakteristisch für \(Fe_2O_3\), ist nur bis etwa 550 K konstant (Abb. 5.3(c)). Oberhalb dieser Temperatur fällt es ab, bleibt aber noch bis etwa 800 K vorhanden. Die Abnahme von \(Fe_2O_3\) beginnt also etwa 150 K unterhalb der Temperatur, bei der Fe und Fe-Oxid von der Oberfläche diffundieren, bzw. dissozieren und desorbiert.

Eine mögliche Erklärung für dieses Verhalten der AES-Intensitäten könnte die Existenz eines dünnen, verborgenen metallischen Eisenfilms unter dem \(Fe_2O_3\) sein. Messungen von Ruby und Mitarbeitern [109], welche allerdings auf \(Fe/Cu(100)\) und \(Fe/Cu(111)\) durchgeführt wurden, haben gezeigt, daß auch schon sehr dünne \(\gamma\)-Fe Filme nicht vollständig durchoxidieren. Ein solches Szenario ist schematisch in Abb. 5.3 illustriert. Bei 130 K, d.h. unmittelbar nach der Oxidation, besteht der Film aus einem \(Fe_2O_3\) und einem darunter verborgenen dünnen metallischen Fe-Film. Ist der Fe-Film hinreichend dünn und wird er einigermaßen durch das Oxid abgeschirmt, so läßt sich erklären, warum bei 47 eV kein AES-Übergang beobachtet wird (Abb. 5.2(a)). Bis etwa 550 K bleibt diese Struktur chemisch stabil. Alle AES-Intensitäten bleiben konstant (Abb. 5.3(a-c)). Ab 550 K oxidiert der verborgene Fe-Film zu FeO und/oder \(Fe_3O_4\), wobei \(Fe_2O_3\) reduziert wird. Dadurch nimmt die Intensität des AES-Signals von \(Fe_2O_3\) ab (Abb. 5.3(c)), die Gesamtmenge an Fe und Sauerstoff bleibt jedoch auf der Cu-Oberfläche konstant.
Abbildung 5.3: AES-Intensitäten, aufgenommen während des Anlassens eines mit 25 L O₂ oxidierten γ-Fe(5 ML)/Cu(110) Films von 130 auf 1020 K. Dabei zeigt die Abbildung den Verlauf der Spitze-zu-Spitze Intensitäten ΔI der AES-Übergänge von (a) Sauerstoff (I₅₀⁵eV − I₅₁³eV), (b) Fe (I₆₉⁶eV − I₇⁰³eV) und (c) Fe³⁺ (I₄₇eV − I₅₂eV) als Funktion der Proben temperatur. Die Heizrate betrug 4 K/min. Die Intensitäten sind normiert auf ihren Ausgangswert, unmittelbar nach der Oxidation bei 130 K. Der untere Teil der Abbildung zeigt die den Temperaturbereichen zugeordneten Modelle der Schichtstruktur von Eisenoxid auf Cu(110).
Bis etwa 800 K bleibt noch Fe₂O₃ vorhanden, möglicherweise nur in den obersten Lagen der Probe. Ab etwa 700 K setzt auch Desorption und/oder Diffusion von Eisen und Sauerstoff ein, die AES-Intensitäten nehmen ab (Abb.5.3(a) und(b)). Der gesamte Film wird dünner, bis schließlich ab etwa 950 K nur noch ein sehr dünner Fe-Oxid-Film übrig bleibt. Dieser Film, welcher aufgrund seiner Strukturanalyse (Abschn. 5.3) aus dünnem FeO besteht, ist bis ca. 1100 K stabil. Darüber verschwindet auch er. Das Fe-Oxid desorbiert vollständig.

Während des Anlassens wurde auch die Morphologie der Oberfläche mittels TEAS untersucht. Abb.5.4 zeigt die gespiegelte Heliumintensität während des Anlassens eines mit 25 L O₂ oxidierten γ-Fe (5ML)/Cu(110) Films von 130 auf 1020 K. Die benutzte He-Energie betrug 24.4 meV. Die Probe wurde kontinuierlich mit 20 K/min geheizt. Aus experimentellen Gründen war es nicht möglich, dieselbe Heizrate wie in den AES-Messungen zu verwenden, weil es bei niedrigeren Heizraten zu einer im zeitlichen Meßverlauf nicht mehr kompensierbaren mechanischen „Verbiegung“ des Manipulators und damit zu einem Auswandern des (0,0)-Reflexes aus der Streuebene kommt. Andererseits benötigten die AES-Messungen viel Zeit, um einer einigermaßen guten Statistik zu genügen, weshalb man die Heizrate von 4 K/min in diesem Fall nicht überschreiten dürfte.

Abbildung 5.4: Gespiegelte Heliumintensität während des Anlassens eines mit 25 L O₂ oxidierten γ-Fe(5 ML)/Cu(110) Films von 130 auf 1100 K. Die Heliumenergie betrug 24.4 meV (in-Phase), die Heizraten 20 K/min. Die Intensität ist normiert auf die Intensität des amorphen Fe₂O₃/Cu(110) unmittelbar nach der Oxidation bei 130 K. Die gestrichelte Linie markiert den Intensitätsabfall, der durch den Debye-Waller Effekt erwartet wird (siehe dazu Abschnitt 2.1.4).
5.2 Anlassen des Systems Fe-Oxid/Cu(110)

In Abb. 5.4 steigt die gespiegelte Heliumintensität ab einer Temperatur von etwa 400 K an. Die Oberfläche des Oxides ordnet sich. Bei ca. 550 K bildet sich ein Maximum aus, anschließend fällt die Intensität ab. Dieser Abfall kann zum einen durch den Debye-Waller Effekt (gestrichelte Linie in Abb. 5.4) erklärt werden. Zum anderen ist nicht auszuschließen, daß die beobachtete strukturelle Änderung der Oberfläche zwischen 700 und 1000 K einen Einfluß auf die gespiegelte Intensität hat (siehe auch Abschnitt 5.2.2). Aufgrund der nachfolgend beschriebenen Strukturanalysen steht jedoch eindeutig fest: Die Oberfläche ist auch oberhalb 550 K geordnet.

5.2.2 Strukturelle Ordnung des Eisenoxids

Um die Struktur der gebildeten Oxide, Phase (I) und Phase (II), zu untersuchen, wurden Helium-Beugungsmessungen und LEED-Untersuchungen durchgeführt. Abb. 5.5 (b) zeigt eine LEED-Aufnahme, aufgenommen nach Oxidation eines γ-Fe(5 ML)/Cu(110)-Films bei 130 K (25 L O_2) und anschließendem Anlassen auf 720 K (20 K/min). Nach Anlassen auf 720 K sollte ein geordnetes Oxid der Phase (I) an der Oberfläche vorliegen, obgleich in den unteren Schichten schon eine Umwandlung in Fe_2O_3 stattgefunden hat. Die Aufnahme wurde nach unmittelbarem Abkühlen der Probe auf 100 K durchgeführt. Die Energie der verwendeten Primärelektronen betrug 141 eV. Zum Vergleich ist eine LEED-Aufnahme der reinen Fe(110)/Cu(110)-Oberfläche in Abb. (a) abgebildet, welche ebenfalls bei 100 K mit einer Elektronenenergie von 141 eV gemessen wurde. Die Beugungsreflexe dieser Oberfläche sind zusammen mit den Beugungsreflexen des Oxides in Abb. (c) schematisch illustriert. Dabei bezeichnen offene Kreise die Reflexe der (110)-Oberfläche und schwarze Punkte die Reflexe des Oxides.
Abbildung 5.5: LEED-Aufnahmen eines \(\gamma \)-Fe(5 ML)/Cu(110) Films (a) vor und (b) nach Oxidation bei 130 K (25 L \(\mathrm{O}_2 \)) und anschließendem Anlassen auf 720 K (20 K/min). Die LEED-Aufnahmen wurden bei einer Temperatur von 100 K gemessen. Die Primärenergie der Elektronen betrug 141 eV. Abb. (c) zeigt schematisch die Kombination von LEED-Reflexen aus (a) und (b), wobei offene Kreise von den Reflexen der (110)-Oberfläche und schwarze Punkte von der oxidierten Oberfläche stammen.

Die Beugungsreflexe des Oxides zeigen im LEED-Bild (Abb. 5.5 (b) und (c)) eine hexagonale Struktur. Sie sind jedoch in [1\(\overline{1} \)0]-Richtung zu Linien verbreitert. Bei näherer Betrachtung erkennt man, daß diese Linien in [1\(\overline{1} \)0]-Richtung aus mehreren Einzelreflexen (in Abb. 5.5 (c) dargestellt durch jeweils drei schwarze Punkte pro Linie) bestehen. Wie eigentlich erst durch die nachfolgend beschriebenen Heliumbeugungsmessungen klar wird, bilden diese Einzelreflexe (schwarze Punkte in Abb. 5.5 (c)) eine Überstruktur. Man kann das LEED-Bild als ein Beugungsbild dieser Überstruktur interpretieren, deren Intensität durch eine hexagonale Einhüllende moduliert wird. Die Gitterkonstante der Überstruktur wurde aus den Abständen der LEED-Reflexe, d.h. aus den Abständen der schwarzen Punkte zueinander, abgeschätzt: Man kann sie als ein Vielfaches der Gitterkonstanten von Cu(110) interpretieren. Die Beugungsreflexe in Abb. 5.5(b) und (c) lassen sich somit durch eine (\(n \times 6 \))-Überstruktur zum Cu-Substrat erklären, wobei \(n \) mindestens 10 beträgt.

Mit Helium-Beugungsmessungen kann die Struktur besser aufgelöst werden. Abb. 5.6 zeigt eine Helium-Beugungsmessung als Funktion des Wellenvektorübertrags parallel zur Oberfläche in [1\(\overline{1} \)0]-Richtung (a) und [001]-Richtung (b). Das bereits in den LEED-Bildern vermutete Übergitter ist hier deutlich erkennbar. In [1\(\overline{1} \)0]-Richtung (Abb. 5.6(a)) können die im LEED-Bild sichtbaren, langgezogenen Linien (1.6\(A^{-1} \) \(\leq \left| q_{//} \right| \leq 3.0\, A^{-1} \)) in einzelne Reflexe aufgelöst werden. Die Positionen dieser Reflexe lassen sich durch ein äquidistantes Gitter mit einer Gitterkonstanten von 0.117 \(A^{-1} \) beschreiben. Ein solches Gitter ist
Abb. 5.6: Helium-Beugungsspektren eines \(\gamma \)-Fe(5 ML)/Cu(110) Films nach Oxidation mit 25 L \(O_2 \) und anschließendem Anlassen auf 720 K (20 K/min) in (a) [1\(T_0 \)]-Richtung und (b) [001]-Richtung. Die Energie der verwendeten He-Atome betrug 24.4 meV. Die Messungen wurden bei 100 K durchgeführt. Die Distanz \(\Delta q \) zwischen den eingezeichneten Linien beträgt im Ortsraum \(q = 21 \cdot 0.5\sqrt{2}a_{Cu} = 53.61 \AA \) ([1\(T_0 \)]-Richtung) und \(q = 6 \cdot a_{Cu} = 21.66 \AA \) ([001]-Richtung).

In Abb. 5.6(a) eingezeichnet. Die reziproke Gitterkonstante von 0.117 \(\AA^{-1} \) entspricht im Ortsraum einer Gitterkonstanten von 53.61 \(\AA \), d.h. dem 21-fachen der Gitterkonstante von Cu(110) (2.55 \(\AA \)) in dieser Richtung. Auch in [001]-Richtung sind eine Vielzahl von Beugungsreflexen sichtbar (Abb. 5.6(b)). Sie können im reziproken Raum durch ein Gitter mit einer Gitterkonstanten von 0.290 \(\AA^{-1} \) beschrieben werden, was im Ortsraum einem Gitter mit der 6-fachen Gitterkonstanten des Cu-Substrates entspricht \((2\pi/0.29A = 21.66A = 6 \times 3.61\AA) \). Ein solches Gitter ist in Abb. 5.6(b) eingezeichnet. Folglich zeigt das Oxid der Phase (I), welches im vorigen Abschnitt als \(Fe_2O_3 \) identifiziert wurde, eine (21 x 6)-Überstruktur zum Cu(110)-Substrat. Da diese Überstruktur nicht nur andeutungsweise mit LEED sondern insbesondere mit TEAS beobachtet wird, und da das TEAS-Beugungsbild durch Beugung der Heliumatome außerhalb der Oberfläche (am Potential der äußern Kristallatome) entsteht, muß die Oberfläche selbst diese Überstruktur aufweisen. Ein Modell der Oberfläche wird in Abschnitt 5.3 vorgestellt.
Abbildung 5.7: LEED-Aufnahmen eines γ-Fe(5 ML)/Cu(110) Films (a) vor und (b) nach Oxidation bei 130 K (25 L O$_2$) und anschließendem Anlassen auf 1020 K (20 K/min). Die LEED-Bilder wurden bei einer Temperatur von 100 K mit einer Primärenergie der Elektronen von 71 eV aufgenommen. Abb. (c) zeigt schematisch die Kombination der LEED-Reflexe aus (a) und (b), wobei offene Kreise von Reflexen der (110)-Oberfläche und gefüllte Punkte von der oxidierten Oberfläche stammen. Abb. (d) zeigt eine LEED-Aufnahme der oxidierten Oberfläche, aufgenommen mit einer zu Abb. 5.5 vergleichbaren Elektronenenergie von 136 eV.

Um die Hochtemperaturphase des Oxides (Phase (II)) zu untersuchen, wurde die Probe nach der Oxidation auf eine Temperatur von 1020 K angelassen. Abb. 5.7 (b) zeigt ein LEED-Bild dieser Oberfläche, gemessen bei 100 K mit einer Elektronenenergie von 71 eV. Zum Vergleich ist das LEED-Bild der reinen γ-Fe(110)-Oberfläche auf Cu(110) in Abb. 5.7 (a) abgebildet. In Abb. 5.7 (c) sind beide Bilder in einer schematischen Illustration vereint, wobei offene Kreise den Positionen der Reflexe der (110)-Oberfläche entsprechen und alle anderen Reflexe vom Oxid stammen. In Abb. 5.7(d) wird ein LEED-Bild des Phase (II)-Oxides gezeigt, welches mit einer zu Bild 5.5 vergleichbaren Energie von 136 eV aufgenommen wurde.

Die LEED-Bilder in Abb. 5.7(b) und (d) können in Analogie zur Interpretation des Phase (I)-Oxides als das Resultat einer Überstruktur auf der (110)-Oberfläche interpretiert werden. Ihre Reflexpositionen (Abstände zwischen den grauen und schwarzen Punkten in Abb. 5.7 (c)) deuten dabei auf eine (n x 8)-
Abbildung 5.8: Helium-Beugungsspektrum eines \(\gamma \)-Fe(5 ML)/Cu(110) Films nach Oxidation mit 25 L \(O_2 \) und anschließendem Anlassen auf 1020 K (20 K/min) in (a) [1\(\bar{T} \)0]-Richtung und (b) [001]-Richtung. Die Energie der verwendeten He-Atome betrug 24.4 meV. Die Messungen wurden bei 100 K durchgeführt. Die Distanz \(\Delta q \) zwischen den eingezeichneten Linien beträgt im Ortsraum \(q = 19 \cdot 0.5 \sqrt{2} a_{Cu} = 48.50 \AA \) ([1\(\bar{T} \)0]-Richtung) und \(g = 8 \cdot a_{Cu} = 28.88 \AA \) ([001]-Richtung).

Überstruktur hin, wobei n etwa 20 entspricht. Die Helium-Beugungsspektren dieser Oberfläche sind in Abb. 5.8 dargestellt. Die Positionen der Reflexe lassen sich wie im Falle des Phase (I)-Oxides durch ein äquidistantes Gitter darstellen: Es paßt eine (19 x 8)-Überstruktur in Bezug auf die Cu(110)-Fläche, allerdings ist auch eine (17 x 8)-Überstruktur nicht auszuschließen. Ein Gitter, passend zu einer (19 x 8)-Überstruktur, ist in Abb. 5.8 eingezeichnet.

Die Reproduzierbarkeit der Helium-Beugungsspektren des Phase (II)-Oxides war nicht immer gewährleistet. Obwohl mehrere Phase (II)-Oxide in gleicher Weise präpariert wurden, zeigten die zu verschiedenen Zeiten hergestellten Oberflächen unterschiedliche Strukturen. Neben den Spektren in Abb. 5.8 wurden z.B. auch Spektren, wie in Abb. 6.4 (Kurven (5)) und Abb. 6.11 (a und b) dargestellt, beobachtet. Diese Spektren beschreiben allerdings alle in etwa die gleiche Überstruktur. Nur fuhlen mitunter in einem Spektrum einige der erwarteten Reflexe, sie sind dagegen in einem anderen wiederum sichtbar. Sind Reflexe sichtbar, so entsprechen ihre Positionen immer der (19 x 8)- bzw. der (17 x 8)-Überstruktur. Eine mögliche Erklärung für dieses Phänomen könnte
Kapitel 5: Präparation geordneter Eisenoxide auf Cu(110)

sein, daß sich nicht nur eine einzige Struktur auf der Oberfläche bildet, sondern daß möglicherweise eine Mischung aus leicht modifizierten Strukturen entsteht, nachdem die Probe auf 1020 K angelassen wird.
Zum Schluß sei bemerkt, daß beide Oxide, Phase (I) und Phase (II), sehr gut geordnet sind. Zwar ist die Intensität des gespiegelten Reflexes nicht so hoch wie im Fall des glatten Fe-Films oder gar der Cu(110)-Fläche. (Sie beträgt für beide Oxide gerade mal ca. 1% der Intensität der reinen Cu(110)-Oberfläche.) Dennoch weist die Halbwertsbreite der gespiegelten Reflexe ($\Delta q_{\text{f}} \approx 0.04 \text{Å}^{-1}$) auf kohärent streuende Terrassenflächen mit einer durchschnittlichen Breite von etwa 160 Å hin ($2\pi / \Delta q$). (Dabei wurde die instrumentelle Verbreiterung durch die TEAS-Apparatur nicht berücksichtigt. Das heißt, daß die kohärent streuende Fläche eigentlich etwas größer ist, 160 Å also nur einen unteren Wert darstellt.) Die vergleichsweise geringe Intensität des gespiegelten Reflexes liegt wahrscheinlich nicht in der diffusen Streuung begründet, sondern in der Vielzahl der Beugungsreflexe, deren Intensitäten natürlich dem (0,0)-Reflex fehlen.

5.3 Diskussion und Zusammenfassung

Die vorgestellten Experimente haben gezeigt, daß auf Cu(110) ein wohlgeordneter Eisenoxidfilm mit atomar glatter Oberfläche präpariert werden kann. Zuerst wird ein γ-Fe(110)-Film präpariert. Dieser Film wird bei 130 K oxidiert. Es bildet sich ein ungeordnetes Fe_2O_3, wobei ein verbleibender ultradünner, vergrabener Fe-Film unter dem Fe_2O_3 nicht ausgeschlossen werden kann. Durch Anlassen ordnet sich das Fe_2O_3 ab einer Temperatur von ca. 400 K, aber mit der hier verwendeten Heizrate (20 K/min) mußte der Film auf mindestens 550-600 K erhitzt werden, um die Ordnung zu optimieren. In etwa derselben Temperaturbereich beginnt bereits die schrittweise Reduktion des Fe_2O_3, vermutlich durch den verborgenen Fe-Film an der Grenzfläche zwischen den beiden Filmen. Ein Einfluß auf die Oberflächenstruktur wird dabei bis etwa 720 K nicht beobachtet, vorausgesetzt die Heizrate ist hoch (20 K/min) und der Film wird sofort nach Erreichen dieser Temperatur abgekühlt. Oberhalb 700 K wird zusätzlich zu der schrittweisen Reduktion des Fe_2O_3 ein allmähliches Verschwinden des Oxides von der Oberfläche beobachtet. Zwischen 950 und 1100 K existiert eine weitere stabile Oxid-Phase auf dem Cu-Substrat. Wahrscheinlich setzt sich die bei 550 K einsetzende Reduktion des Fe_2O_3 fort, und bei 1020 K liegt schließlich ein FeO vor. Die LEED-Bilder dieses Phase (II)-Oxides (Abb. 5.7 (b) und (d)) stimmen qualitativ mit LEED-Bildern von Yagasaki et al. [111] überein, welche nach Anlassen eines bei Raumtemperatur oxidierten Fe(1 ML)/Cu(110)-Films auf 830 K beobachtet wurden. Das dabei entstandene Oxid wurde von den Autoren mittels XPS als FeO identifiziert.
5.3 Diskussion und Zusammenfassung

Abb. 5.9 (a) zeigt ein Modell der Oberflächenstruktur der Oxid-Phase (I), welches die gefundenen Meßdaten erklärt. Es zeigt eine Illustration der Oberfläche in stark vereinfachter Form. Die Sauerstoffatome (schwarze Punkte) sind so eingezeichnet, daß sie eine nahezu hexagonale Einheitszelle bilden. Für Fe₃O₅ erwartet man zwischen ihnen einen Abstand von 2.92 Å. Bei FeO sollte der Abstand 3.04 Å und bei Fe₃O₄ 2.97 Å betragen [111, 114–116] (siehe auch Abschn. A.3). Dabei weiß man aus dem LEED-Bild (Abb. 5.5(b)) ungefähr wie

(a) Phase (I)-Oxid

(b) Phase (II)-Oxid

• Cu-Atome
• O-Atome des Oxides

Abbildung 5.9: Strukturvorschläge für das Phase (I)-Oxid (a) und das Phase (II)-Oxid (b). Dabei entsteht aus der Koexistenz der hexagonalen Oxidgitter (schwarze Punkte) mit den Gittern des Cu(110)-Substrates (offene Kreise) eine (a) (21 x 6)- bzw. (b) (19 x 8)-Überstruktur in Bezug auf die Cu(110)-Fläche.
Kapitel 5: Präparation geordneter Eisenoxide auf Cu(110)

diese Hexagone positioniert sind, nämlich mit der Verbindungs linie zwischen
zwei Ecken nahezu parallel zur Cu[001]-Richtung (Verdrehung des reziproken
Hexagons aus Abb. 5.5 (b) um 90°; Vergleiche dazu auch Abb. A.2 (e) und
(f)). Eine Verdrehung gegen diese Achse kann nur minimal sein, da im LEED-
Bild nichts davon beobachtet wird. Die genaue Gitterkonstante des Oxides
läßt sich allerdings weder aus dem LEED-Bild noch aus den TEAS-Messungen
bestimmen, da die hexagonale „Einhüllende“ viel zu breite Reflexe aufweist.
Aus den AES-Messungen weiß man jedoch, daß es sich bei der Oxid-Phase (I)
um ein \(Fe_2O_3 \) handelt (siehe Abschn. 5.2.1). Die Gitterkonstanten sollte folglich
in der Nähe von 2,92 \(\AA \) liegen. Die Sauerstoffhexagone sind nun so auf dem
Cu-Substrat positioniert, daß sich in Cu-[\(1\overline{1}0 \)]-Richtung genauso einund-
zwanzigste Kupferatom und in Cu-[001]-Richtung jedes sechste Kupferatom
exakt unter einem Sauerstoffatom befindet. Dadurch entsteht eine Korrugation
der Oberfläche mit einer Gitterkonstanten von 21 x \(a_{\text{Cu}[110]} = 21 \times 2.55 \ \AA \)
= 53.61 \(\AA \) in Cu-[\(1\overline{1}0 \)]-Richtung und 6 x \(a_{\text{Cu}[001]} = 6 \times 3.61 \ \AA \) = 21.66 \(\AA \) in [001]-
Richtung. Es ergibt sich eine (21 x 6)-Überstruktur zur Cu(110)-Fläche. Bei
dieser Anordnung können die Sauerstoffhexagone nicht exakt auf die Cu-Fläche
passen. Sie passen exakt, wenn man annimmt, daß sie leicht verdreht und
zudem leicht verzerrt sind. Sie müssen z.B. 4,6° gegen die Cu[\(1\overline{1}0 \)]-Richtung
und 6,7° gegen die Cu[001]-Richtung verdreht vorliegen. Dann entsprechen die
Gitterkonstanten 2,96 und 2,88 \(\AA \), stimmen also bis auf 0,7 % bzw. 2 % mit
dem erwarteten Literaturwert (2,92 \(\AA \)) überein. Eine solche Konfiguration der
Sauerstoffatome ist in Abb. 5.9 (a) eingezeichnet. Auch passen würde ein um
7,7° gegenüber der Cu[\(1\overline{1}0 \)]-Richtung verdrehtes, leicht verzerrtes Gitter. In
 diesem Fall würden die Abstände zwischen den Sauerstoffatomen 2,91 \(\AA \) und
3,09 \(\AA \) betragen.

Nach Anlassen der Probe auf 1020 K wird mit LEED und TEAS eine
(n x 8)-Überstruktur beobachtet, wobei n entweder 17 oder 19 ist. Wird n=19
angenommen (eingezeichnet in Abb. 5.9 (b)), können die Beugungsbilder in
Abb. 5.7 und 5.8 durch Koinzidenz eines hexagonalen Sauerstoffgitters mit ei-
 nem Cu(110)-Gitter erklärt werden, wobei das Sauerstoffgitter um 3,6° gegen
die Cu[\(1\overline{1}0 \)]-Richtung und um 5,3° gegen die Cu[001]-Richtung verdreht ist.
Die Gitterkonstante des Sauerstoffgitters beträgt dann, nahezu parallel zur
[001]-Richtung, 3,04 \(\AA \) und in den anderen Richtungen 3,05 und 3,13 \(\AA \). Sie
paßt also gut zu einem \(FeO \) (3,04 \(\AA \)). Unter der Annahme n=17 würde sich
ein um 4° ([\(1\overline{1}0 \)]-Richtung) und 8,1° ([001]-Richtung) verdrehtes hexagonales
Sauerstoffgitter ergeben. Die Abstände zwischen den Sauerstoffatomen würden
dann 3,03, 3,06 und 3,14 \(\AA \) betragen. Auch sie sprächen also für die Existenz
eines \(FeO \).
5.3 Diskussion und Zusammenfassung

Abschließend bleibt zu bemerken, daß die Modelle lediglich eine mögliche Erklärung der Meßdaten liefern. Sie wurden durch Ausprobieren verschiedener Koinkidenzmöglichkeiten gefunden. Es ist daher nicht auszuschließen, daß auch weitere Modelle die Oberflächenstruktur erklären könnten. Bei der Oxid-Phase (I) scheint es sich jedoch tatsächlich um ein Fe_2O_3 zu handeln. Nicht nur das Strukturmodell spricht dafür, sondern auch das AES-Spektrum dieses Oxides weist die für Fe_2O_3 charakteristischen AES-Übergänge bei 43 und 52 eV auf (siehe Abschn. 5.2.1). Das AES-Spektrum der Oxid-Phase (II) kann nicht eindeutig als charakteristisches Spektrum eines FeO-Films interpretiert werden. Möglicherweise liegt das an der geringen Dicke des Oxidfilms. Daher kann keinesfalls mit eindeutiger Sicherheit angenommen werden, daß es sich bei der Oxid-Phase (II) um ein FeO handelt. Um die Zusammensetzung der Phase (II) Oxides eindeutig festzulegen, wären z.B. XPS-Messungen oder EELS-Messungen notwendig, zwei Methoden, die in der vorliegenden Arbeit nicht zur Verfügung standen.
Kapitel 6

Wachstum von Fe und Co auf Fe$_2$O$_3$/Cu(110)

Die in der vorliegenden Arbeit präparierten, atomar glatten Fe$_2$O$_3$-Schichten auf Cu(110) bilden ein hervorragendes Modellsystem für die Studie von M/Fe$_2$O$_3$-Multischichten, wobei mit M ferromagnetische Metallschichten, wie z.B. Fe oder Co, gemeint sind. Aufgrund der niedrigen Rauhigkeit der hier präparierten Fe$_2$O$_3$-Schicht kann erwartet werden, daß die Grenzfläche zwischen der Metallschicht und dem Fe$_2$O$_3$ auch glatt ist. Aus dem gleichen Grund sollte es möglich sein, geordnete Metallfilme aufzuwachsen. Dieser Umstand und die Tatsache, daß hier extrem dünne Filme untersucht werden, läßt hoffen, strukturelle Veränderungen an den Grenzflächen zwischen den Schichten (Interdiffusion einzelner Elemente zwischen den Schichten, Legierungsbildung, usw.) bereits im Anfangsstadium zu erkennen. Die folgenden Untersuchungen beschäftigen sich insbesondere mit der thermischen Stabilität dünner Fe/Fe$_2$O$_3$- und Co/Fe$_2$O$_3$-Doppelschichten. Dabei wird die Vermischung der Schichten mittels AES untersucht. LEED und TEAS dienen zur Charakterisierung der Oberflächenmorphologie.
6.1 Fe/Fe$_2$O$_3$-Multischichten auf Cu(110)

In der Literatur wurde bislang nur ein mäßiges Interesse an der Untersuchung heteroepitaktischer, dünner Fe/Fe$_2$O$_3$-Multischichten gezeigt. Verschiedene Arbeiten beschäftigen sich zwar mit den Eigenschaften von Fe/Fe$_2$O$_3$-Doppellagen, eine detaillierte Untersuchung der thermischen Stabilität ist hier aber nicht zu finden [117, 118]. Allerdings beobachteten Ichikawa und Mitarbeiter für ein Fe/Fe-Oxid Multischichtsystem, bestehend aus über 800 Doppelschichten Fe (≈ 46 Å) und Fe-O (≈ 4 Å), welche durch „dc magnetron sputtering“ auf TiMgNiO aufgebracht wurden, eine thermische Stabilität der Multilagenstruktur bis etwa 570 K [119].

In den folgenden Abschnitten 6.1.1 bis 6.2.3 wird über Experimente, durchgeführt an einem ultradünnen Fe-Film (4.5 ML α-Fe(001)) auf Fe$_2$O$_3$/Cu(110), berichtet. Die Präparation dieses Doppelschichtsystems basiert auf der Präparation eines epitaktischen Fe$_2$O$_3$ auf Cu(110) (siehe Abschnitt 5): Zunächst wurden bei 130 K 5 ML Eisen auf dem Cu(110)-Substrat deponiert, anschließend auf 240 K angelassen (20 K/min), und erneut auf 130 K abgekühlt. Der so entstandene, atomar glatte γ-Fe(110)-Film wurde bei 130 K oxidiert (25 L O$_2$) und nachfolgend auf 720 K angelassen (20 K/min). Es entsteht ein wohlgeordneter Fe$_2$O$_3$/Cu(110)-Film mit atomar glatter Oberfläche.

6.1.1 Fe-Wachstum auf Fe$_2$O$_3$/Cu(110) bei 130 K

Um die chemische Zusammensetzung des Schichtsystems unmittelbar vor und nach der Deposition von Eisen zu analysieren, wurden AES-Messungen durchgeführt [24]. Abb. 6.1 (b) zeigt 3 AES-Spektren, aufgenommen in einem Energiebereich von 30 bis 70 eV. Spektrum (i) in Abb. 6.1 (b) wurde unmittelbar nach der Präparation des 5 ML dicken γ-Fe(110) Films auf Cu(110) aufgenom-
6.1 Fe/Fe$_2$O$_3$-Multischichten auf Cu(110)

Abbildung 6.1: Fe-Wachstum auf Fe$_2$O$_3$/Cu(110) bei 130 K untersucht mittels TEAS und AES. Abb. (a) zeigt die gespiegelte Heliumintensität ($E_{He} = 24.4\, meV$) als Funktion der Fe-Bedampfungsmenge J, bzw. als Funktion der Bedeckung Θ. Die Intensität ist normiert auf die Intensität einer rei- nen Fe$_2$O$_3$/Cu(110)-Fläche. Abb. (b) zeigt AES-Spektren von (i) reinem Fe (55 Atome/nm2) auf Cu(110), (ii) Fe$_2$O$_3$/Cu(110) und (iii) Fe (55 Atome/nm2) auf Fe$_2$O$_3$/Cu(110).

Die beiden Spektren (i) und (ii), aufgenommen unmittelbar vor und nach der Präparation des Fe$_2$O$_3$, wurden bereits in Abschnitt 5.1 beschrieben: Die rei- ne Fe/Cu(110)-Fläche zeigt die typischen AES-Übergänge des metallischen Fe und Cu bei 47 bzw. 61 eV (Abb. 6.1 (b), Spektrum (i)). Nach Präparation des Fe$_2$O$_3$ verschwindet der AES-Übergang des metallischen Fe, dafür tauchten bei 43 und 52 eV zwei Minima auf, welche auf die Existenz von Fe$^{3+}$ (Fe$_2$O$_3$) hinweisen (Abb. 6.1(b), Spektrum (ii)). Zudem ist der AES-Übergang des Cu aufgrund der erhöhten Abschirmung durch das Fe-Oxid reduziert. Nach Fe-Deposition bei 130 K verändern sich die Spektren erneut (Abb. 6.1(b), Spektrum (iii)). Der AES-Übergang des Cu bei 61 eV ist aufgrund der dicken Deckschicht von Fe$_2$O$_3$ und Fe vollständig verschwunden. Bei 52 eV ist immer noch der AES-Übergang des Fe$^{3+}$ sichtbar, jedoch ein wenig verkleinert. Der
Hauptunterschied von Spektrum (iii) gegenüber Spektrum (ii) besteht jedoch in dem erneuten Auftauchen des metallischen Fe-AES-Übergangs bei 47 eV, was bedeutet, daß ein metallischer Fe Film die Oberfläche bedeckt. Die Intensität dieses Übergangs ist um einen Faktor 2 kleiner als die vergleichbare Intensität des reinen Fe/Cu(110)-AES-Spektrums bei 47 eV (Spektrum (i)), obwohl in beiden Fällen jeweils die gleiche Menge an Fe aufgedampft wurde (55 Fe-Atome/nm²). Eine mögliche Ursache könnte in einer bereits stattgefun denen Vermischung von Fe und Fe-Oxid an der Grenzfläche bei 130 K liegen. Wir der nächste Abschnitt zeigt, finden sich eindeutige Hinweise für eine solche Vermischung (vermutlich eine Redoxreaktion zwischen Fe und Fe₂O₃) bei Temperaturen zwischen 130 und 200 K.

6.1.2 Anlassen von Fe/Fe₂O₃/Cu(110)

Nach Deposition von Eisen bei 130 K (55 Fe-Atome/nm², bzw. 4.5 ML α-Fe(001)) wurde die Probe auf 1170 K geheizt (Heizrate 4 K/min). Dabei wurde die chemische Zusammensetzung der Oberfläche kontinuierlich mittels AES analysiert [24]. Abb. 6.2 zeigt 5 Spektren, aufgenommen bei 130 K (a) und nach Anlassen des Films auf 370 (b), 590 (c), 800 (d) und 1120 K (e). In Spektrum (a) spiegelt sich die schon im vorigen Abschnitt beschriebene Doppellagenstruktur von Fe auf Fe₂O₃ wieder: Es treten zwei AES-Übergänge bei 47 eV, charakteristisch für metallisches Eisen, und bei 52 eV, charakteristisch für Fe³⁺ (Fe₂O₃), auf. An der Grenzfläche liegt möglicherweise schon ein FeO oder ein Fe₃O₄ vor. Der in diesem Fall erwartete AES-Übergang von Fe²⁺ (FeO, Fe₃O₄) bei 46.5 eV ist nicht vom 47 eV Übergang des Fe zu unterscheiden. Der AES-Übergang des Kupfers (61 eV) ist aufgrund der vollständigen Abschirmung von Fe und Fe-Oxid nicht sichtbar.

Während des Anlassens können zwei Temperaturbereiche unterschieden werden. Bei Temperaturen unterhalb 600 K (Abb. 6.2 (a-c)) nimmt der AES-Übergang des metallischen Eisens (47 eV) mit steigender Temperatur stetig ab. Die Fe-Deckschicht wird dünner. Der AES-Übergang des Fe³⁺ (52 eV) bleibt dagegen nahezu konstant, eine geringfügige Abnahme könnte aber auch leicht durch den nahegelegenen Fe-Übergang bei 47 eV verdeckt sein. Kupfer diffundiert bis 600 K noch nicht an die Oberfläche, d.h. Fe und Fe-Oxid verweilen bis 600 K noch vollständig auf dem Kupfer-Substrat. Die beobachtete Abnahme der Fe-Deckschicht läßt sich daher nur durch eine Vermischung (Redoxreaktion) von Fe und Fe₂O₃ erklären.

Bei höheren Temperaturen (600K < T < 1170K) werden weitere Verände rungen der AES-Spektren beobachtet. Der AES-Übergang des Kupfers steigt stark an. Daraus kann man schließen, daß Fe (Diffusion) und Fe-Oxid (Dis-
Abbildung 6.2: AES-Spekren von 4,5 ML α-Fe (55 Atome/nm²) deponiert auf \(\text{Fe}_2\text{O}_3/\text{Cu}(110) \) bei 130 K, gemessen bei 130 K (a) und nach Anlassen auf 370 K (b), 590 K (c), 800 K (d) und 1120 K (e). Die Heizrate betrug 4 K/min. Der rechte Teil der Abbildung zeigt die den jeweiligen Temperaturbereichen zugeordneten Modelle der Schichtsysteme.

Kapitel 6: Wachstum von Fe und Co auf Fe$_2$O$_3$/Cu(110)

Spektren in Abb. 6.2 (d) und (e) entsprechen ziemlich gut dem in Abschnitt 5.2 beobachteten Spektrum eines ultradünnen Phase (II)-Oxids (siehe Abb. 5.2 (c)). Anschließend bildet sich bei Temperaturen überhalb 600 K wieder das Phase (II)-Oxid, bei dem es sich wahrscheinlich um ein ultradünnnes FeO handelt.

Abb. 6.3 (a) und (c) zeigen eine detaillierte Darstellung der AES-Intensitäten von Eisen (47 eV) und von Kupfer (61 eV) während des Anlassens der Probe von 130 auf 1100 K. Daneben ist auch der Verlauf der Intensität des 513 eV Sauerstoff-AES-Übergangs als Funktion der Proben temperatur aufgetragen (Abb. 6.3 (b)). Man beachte, daβ es sich hier um Spitze-zu-Spitze Intensitäten handelt. Die Intensität des 47 eV AES-Übergangs wird aus der Differenz des Maximums (39 eV) und des Minimums (47 eV) im AES-Spektrum gebildet (I (39 eV) -I(47 eV)). Als Konsequenz wird dieser Wert bei Temperaturen T > 600 K nicht Null, obwohl wahrscheinlich sätzliches metallisches Fe verschwunden ist. Ursache dafür ist die Existenz des Maximums bei 39 eV, welches immer bei Anwesenheit von Eisen (Fe, Fe$^{2+}$ und Fe$^{3+}$) beobachtet wird. Die Intensitäten in Abb. 6.3 (a) und (c) (Fe und Cu) sind auf ihren Endwert bei 1100 K normiert. Die Intensität des Sauerstoffs wurde auf das beobachtete Maximum bei 550 K normiert.

Der größte Effekt während des Anlassens liegt bei niedrigen Temperaturen (130K < T < 600K) in der kontinuierlichen Änderung der chemischen Zusammensetzung der Fe/Fe$_2$O$_3$ Doppelschicht: Die Intensität des 47 eV AES-Übergangs des metallischen Fe nimmt nahezu linear um einen Faktor 3 ab (Abb. 6.3 (a)). Die AES-Intensität des Sauerstoffs (Abb. 6.3 (b)) steigt dagegen an. Allerdings beträgt der Anstieg nur einen Faktor ≈ 1.4 und der Kurvenverlauf ist nicht linear. Bis etwa 350 K nimmt die AES-Intensität von Sauerstoff nur geringfügig zu und steigt zwischen 350 und 600 K auf ihren maximalen Wert bei 600 K an. Die AES-Intensität des Kupfers (Abb. 6.3 (c)) bleibt bis 600 K konstant. Folglich verweilen Fe und Fe-Oxid vollständig auf dem Cu-Substrat.

Ein solches Verhalten der AES-Übergänge kann durch eine stetige „Vermischung“ der Fe- und Fe$_2$O$_3$-Schicht, beginnend bereits bei 130 K, erklärt werden. Wahrscheinlich handelt es sich bei dieser „Vermischung“ um eine Redoxreaktion zwischen Fe und Fe$_2$O$_3$. Sie ist zwischen 130 und 350 K zunächst nur auf die unmittelbare Grenzschicht zwischen den Filmen beschränkt, denn eine nennenswerte Diffusion von Sauerstoff in Richtung Oberfläche wird in diesem Temperaturbereich nicht beobachtet. Oberhalb 350 K kommt es vermehrt zur Sauerstoffdiffusion in Richtung Oberfläche (Anstieg des AES-Signals von Sauerstoff zwischen 350 und 600 K, Abb. 6.3(b)), wobei die Sauerstoffatome zunehmend weniger abgeschirmt werden. Der Fe-Film wird schrittweise durch den aufsteigenden Sauerstoff oxidiert. Bei 600 K findet die Redoxreaktion
6.1 Fe/Fe₂O₃-Multischichten auf Cu(110)

zwischen Fe und Fe_2O_3 ihr Ende, vermutlich ist kein metallisches Fe mehr vorhanden. Das AES-Signal des Sauerstoffs erreicht sein Maximum, das AES-Signal des Eisens sein Minimum. Dabei wird letzteres nicht Null, da der Wert des Maximums bei 39 eV (siehe auch Abb. 6.2 (d) und (e)) in den Wert der 47eV-AES-Intensität mit einfließt.

Oberhalb 600 K verschwindet die Fe/Fe_2O_3-Doppelschicht, welche eigentlich schon ein mehr oder weniger homogener Fe_2O_3-Film zu sein scheint, allmählich von der Oberfläche. Der Sauerstoff desorbiiert größtenteils (Abnahme des 513 eV AES-Signals oberhalb 600 K; Abb. 6.3(b)). Übrig bleibt nur der schon in Abschnitt 5.2 beobachtete ultradünne Fe-Oxid-Film (Phase (II) Oxid).

Während des Anlassens wurde auch die Oberflächenmorphologie untersucht. Dazu wurde der bei 130 K aufgedampfte Fe-Film angelaufen und während des Heizens kontinuierlich mittels TEAS analysiert. Abb. 6.3 (d) zeigt die ge- spiegelte Heliumintensität als Funktion der Probentemperatur, aufgenommen mit einer Heliumenergie von 24.4 meV. Die Heizrate weicht aus experimentellen Gründen wieder um einen Faktor 5 von der Heizrate der AES-Messungen (4 K/min) ab. Sie betrug im Falle der TEAS-Messung 20 K/min.

Wie in Abb. 6.3 (d) zu erkennen ist, fällt die Intensität bei niedrigen Temperaturen ($130K < T < 350K$) leicht ab. Vermutlich handelt es sich hierbei um den Debye-Waller Effekt. Die Oberfläche bleibt bis etwa 350 K ungeordnet. Es können keine geordneten LEED-Bilder oder TEAS-Spektren beobachtet werden. Zwischen 350 und 600 K steigt die Intensität deutlich an. Die Oberfläche ordnet sich. Bei Temperaturen oberhalb 600 K fällt die Intensität erneut ab. Dieser Abfall kann zum Teil durch die Debye-Waller Abschwächung erklärt werden (gestrichelte Linie in Abb. 6.3 (d)). Wahrscheinlich hat aber auch die bei diesen Temperaturen stattfindende strukturelle Umordnung der Oberfläche einen Einfluß auf den Kurvenverlauf ($T > 600K$).

6.1.3 Oberflächenstruktur von Fe/Fe$_2$O$_3$/Cu(110)

Die Struktur der $Fe/Fe_2O_3/Cu(110)$-Oberfläche wurde mit LEED und TEAS untersucht, nachdem sie auf 530, 730 und 1020 K angelassen wurde [24]. Dabei betrug die Heizrate 20 K/min. Die LEED-Messungen wurden bei 100 K, die TEAS-Messungen bei 130 K durchgeführt, um die Debye-Waller-Abschwächung der Reflexe so gering wie möglich zu halten. Abb. 6.4 zeigt Heliumbeugungsspektren, aufgenommen in Cu-[001]-Richtung (a) und Cu-[110]-Richtung (b).
6.1 Fe/Fe₂O₃-Multischichten auf Cu(110)

Abbildung 6.4: TEAS-Spektren in Cu-[001]-Richtung (a) und Cu-[110]-Richtung (b) von Fe₂O₃/Cu(110) (Kurven (1)) und von Fe/Fe₂O₃/Cu(110) nach Anlassen auf 165 K (Kurven (2)), 530 K (Kurven (3)), 730 K (Kurven (4) und 1020 K (Kurven (5)). Die He-Energie betrug 24.4 meV. Die Spektren wurden bei 130 K gemessen.

Dabei stammen die Spektren von Fe₂O₃/Cu(110) (Kurven (1)) und von Fe/Fe₂O₃/Cu(110) nach Anlassen auf 165 K (Kurven (2)), 530 K (Kurven (3)), 730 K (Kurven (4)) und 1020 K (Kurven (5)). Dieselben Oberflächen wurden auch mit LEED untersucht. Abb.6.5 (a) zeigt ein LEED-Bild von reinem Fe₂O₃/Cu(110). In Abb. 6.5 (b) und (c) sind Aufnahmen der Fe/Fe₂O₃/Cu(110)-Fläche nach Anlassen auf 530 (b) bzw. 730 K (c) abgebildet. Als Vergleich dazu zeigt Abb. 6.5 (d) eine LEED-Aufnahme des ultradünnen Phase (II)-Oxides.
Abbildung 6.5: LEED-Bilder von $Fe_2O_3/Cu(110)$ (a) und von $Fe/Fe_2O_3/Cu(110)$ nach Anlassen auf 530 K (b) und 730 K (c). Zum Vergleich ist eine LEED-Aufnahme des Phase (II)-Oxides (d) abgebildet. Die LEED-Bilder wurden bei 100 K mit einer Elektronenergie von 71 eV aufgenommen. Das LEED-Bild nach Anlassen von $Fe/Fe_2O_3/Cu(110)$ auf 1020 K (nicht abgebildet) ist identisch zum LEED-Bild nach Anlassen der Probe auf 730 K (c).

Die Heliumspektren in Abb. 6.4 (a) und (b), Kurven (1), und die LEED-Bilder in Abb. 6.5 (a) sind charakteristisch für $Fe_2O_3/Cu(110)$. Sie wurden bereits in Abschnitt 5.2 diskutiert und dienen hier nur als unmittelbarer Vergleich zu den Messungen an $Fe/Fe_2O_3/Cu(110)$. Nach Deposition von 4.5 ML α-Fe auf $Fe_2O_3/Cu(110)$ und anschließendem Anlassen auf 165 K werden keine Heliumbeugungsspektren beobachtet (Abb. 6.4 (a) und (b), Kurven (2)). Ebenso konnten bis etwa 400 K keine geordneten LEED-Bilder beobachtet werden. Die Oberfläche ist bei diesen Temperaturen ungeordnet.

Nach Anlassen auf Temperaturen oberhalb 400 K ordnet sich die Oberfläche. Die Kurven (3) in Abb. 6.4 (a) und (b) zeigen Heliumbeugungsspektren nach Anlassen der Probe auf 530 K. In Cu-[001]-Richtung werden breite Beugungsre-
6.1 Fe/Fe$_2$O$_3$-Multischichten auf Cu(110)

flexe bei $q_{//} = 0$ und $± (2.18±0.03)\,\text{Å}^{-1}$ beobachtet (Abb. 6.4(a), Kurve (3)). In Cu-[1T0]-Richtung finden sich Beugungsreflexe bei $-4.47±0.05$, $-2.22±0.05$, $0±0.01$, $2.19±0.03$ und $4.42±0.05\,\text{Å}^{-1}$ (Abb. 6.4(b), Kurve (3)). Alle Reflexe passen sehr gut zu den Beugungsreflexen erster und zweiter Ordnung, welche für eine bcc α-Fe(001)-Oberfläche erwartet werden (siehe dazu auch Abschnitt A.1.1). Aus den Positionen der Reflexe läßt sich eine Gitterkonstante $a^* = 2.20±0.02\,\text{Å}^{-1}$ im reziproken Raum bestimmen, welche im Ortsraum einer Gitterkonstanten a von $2.86±0.03\,\text{Å}$ entspricht. Für die (001)-Oberfläche von bcc α-Fe wird eine Gitterkonstante von $2.87\,\text{Å}$ erwartet [43, 60]. Die gemessene Gitterkonstante stimmt also sehr gut mit dem Literaturwert überein. Neben der Struktur kann mittels TEAS auch die Ordnung der Oberfläche charakterisiert werden. Die Halbwertsbreite des $(0,0)$-Reflexes Δq beträgt $\approx 0.05\,\text{Å}^{-1}$ in beide Richtungen. Aus ihr läßt sich die mittlere Breite der kohärent streuenden Terrassenoberflächen abschätzen. Sie hat einen Wert von etwa $120\,\text{Å}$ ($\approx 2\pi/\Delta q$). (Dabei wurde die instrumentelle Verbreiterung durch die TEAS-Apparatur nicht berücksichtigt. Das heißt, daß die kohärent streuende Fläche eigentlich etwas größer ist, $120\,\text{Å}$ also nur einen unteren Wert darstellt (siehe auch Abschnitt 3.2.1.).)

Die LEED-Bilder dieser Oberfläche stimmen ebenfalls mit der Existenz einer α-Fe(001)-Oberfläche überein. Das LEED-Bild in (Abb. 6.5(b)), aufgenommen nach Anlassen von Fe/Fe$_2$O$_3$/Cu(110) auf 530 K, zeigt ein quadratisches Beugungsmuster. Durch Vergleich der Reflexpositionen mit der Referenzaufnahme einer Cu(110)-Oberfläche läßt sich eine Gitterkonstante von $2.19±0.03\,\text{Å}^{-1}$ abschätzen. Im Ortsraum ergibt sich folglich eine Gitterkonstante von $2.87±0.04\,\text{Å}$, welche sehr gut der Gitterkonstanten von α-Fe(001) entspricht.

Bei genauer Betrachtung des LEED-Bildes in Abb. 6.5 (b) und der Heliumbeugungsspektren (Kurven (3) in 6.4 (a) und (b)) stellt man fest, daß neben den Beugungsreflexen der α-Fe(001)-Oberfläche noch weitere Reflexe existieren. Im LEED-Bild sind diese Reflexe viel zu schwach um analysiert zu werden, dafür sind sie in den Heliumbeugungsspektren eindeutig sichtbar: Die Beugungsreflexe mittlerer und erster Ordnung der α-Fe(001)-Oberfläche sind insbesondere in Cu-[1T0]-Richtung an ihren „Füßen“ stark verbreitert (Abb. 6.4(b), Kurve (3)). Es läßt sich erahnen, daß an diesen Stellen weitere Reflexe „versteckt“ sind. Verfolgt man die Positionen der zusätzlichen Beugungsreflexe zu höheren Temperaturen (entlang den gestrichelten Linien in Abb. 6.4(b)), so stellt man fest, daß die in den Kurven (3) beobachteten Anomalien zu Reflexpositionen der Hochtemperatur-Multi-Schichten (Kurven (4) und (5)) passen. Man kann daraus schließen, daß die bei 730 K beobachtete Umwandlung der Struktur bereits bei 530 K einsetzt.
Nach Anlassen der Probe auf 730 K kommt es zu einer Änderung der Heliumbeugungsspektren: Es treten mehrere neue Reflexe auf (Abb. 6.4(a) und (b), Kurven (4)). Nach Anlassen auf 1020 K bleiben die Reflexpositionen nahezu gleich (Kurven (5)), die Beugungsreflexe werden jedoch schärfer, und es können einige zusätzliche Reflexe beobachtet werden. Folglich setzt sich die nach Anlassen auf 730 K beobachtete strukturelle Umwandlung der Oberfläche bei weiterem Anlassen fort. Nach Anlassen auf 1020 K hat die Oberfläche die gleiche Struktur wie bei 730 K, allerdings besser ausgeprägt. Die LEED-Bilder, welche nach Anlassen auf 730 und 1020 K aufgenommen wurden, bestätigen dieses Szenario: Nach Anlassen der Probe auf 1020 K sind die beobachteten LEED-Bilder sogar identisch zum LEED-Bild der Probe, aufgenommen nach Anlassen auf 730 K. Es werden Beugungsmuster, wie in Abb. 6.5 (c) dargestellt, beobachtet. Die Struktur, welche sich nach Anlassen der Probe auf Temperaturen zwischen 730 K und 1020 K bildet, und deren Umwandlung bereits bei 530 K einsetzen beginnt, kann eindeutig mit LEED identifiziert werden: Das LEED-Beugungsbild, aufgenommen nach Anlassen der Probe auf 730-1020 K (Abb. 6.5(c)), entspricht dem LEED Bild des Phase (II)-Oxides (Abb. 6.5(d)), aufgenommen nach Anlassen von $Fe_2O_3/Cu(110)$ auf 1020 K (siehe auch Abschn. 5.2). Folglich bildet sich dieses ultradünnne Phase (II)-Oxid auch nach Anlassen von $Fe/Fe_2O_3/Cu(110)$.

Die Helium-Beugungsmessungen bestätigen dieses Szenario. Die Heliumspektrum in Abb. 6.4 (a) und (b) (Kurven (4) und (5)) sind zwar nicht identisch mit den Spektren des Phase (II)-Oxides in Abb. 5.8 (a) und (b), sie lassen sich aber durch eine (19 x 8)-Überstruktur beschreiben. In der Tat waren die Spektren des Phase (II)-Oxides auch nicht immer reproduzierbar, sondern sie konnten auch Formen annehmen, wie sie in Abb. 6.4(a) und (b), bzw. in Abb. 6.11 (a) und (b), dargestellt sind. Ursache dafür könnte sein, daß das Phase (II)-Oxid in einer Mischung aus leicht unterschiedlichen Modifikationen vorliegt.

6.1.4 Diskussion und Zusammenfassung

Untersucht wurden die Oberflächenmorphologie und die thermische Stabilität dünner Fe/Fe_2O_3-Doppelschichten auf Cu(110). Die Oberfläche, welche sich nach Deposition von Fe bei 130 K bildet, ist zunächst ungeordnet. Nach Anlassen auf Temperaturen oberhalb 400 K ordnet sie sich. Bis zu Temperaturen von 530 K wird eine wohlgeordnete bcc-α-Fe(001)-Oberfläche beobachtet.

Bereits bei 130 K finden sich Andeutungen für eine Redoxreaktion zwischen Fe- und der Fe_2O_3-Schicht, welche bis 350 K vermutlich auf die Grenzfläche beschränkt bleibt. In der Tat legt die Beobachtung eines Fe-Films auf der Probeoberfläche bei Temperaturen von 530 K die Vermutung nahe, daß bis etwa
350 K die Doppelschicht-Struktur noch thermisch stabil ist. Oder anders ausgedrückt, fände bereits bei Temperaturen unterhalb 350 K eine totale Oxidation von Fe durch den Sauerstoff des Fe$_2$O$_3$ statt, so wäre es unwahrscheinlich bei Temperaturen von 530 K noch eines Eisen auf der Oberfläche vorzufinden.

6.2 Co/Fe$_2$O$_3$-Multischichten auf Cu(110)

Die Verwendung magnetischer Schichten aus Kobalt ist mindestens ebenso interessant wie die Verwendung von Eisen als magnetische Schicht für Schichtsysteme, basierend auf Fe$_2$O$_3$. Dabei spielt auch hier die thermische Stabilität der Multilagenstruktur eine wichtige Rolle. In Bezug auf mögliche Anwendungen in magnetoelektronischen Bauelementen ist es wichtig, daß diese Schichten zumindest bei Raumtemperatur noch in einer Mehrlagenstruktur vorliegen. Im folgenden Abschnitt wird daher die thermische Stabilität eines Co/Fe$_2$O$_3$-Doppelschichtsystems untersucht: Bei tiefen Temperaturen wird ein dünner Kobaltfilm auf Fe$_2$O$_3$/Cu(110) präpariert und anschließend auf über 1100 K angelassen. Dabei wird die chemische Zusammensetzung der Oberfläche kontinuierlich mittels AES analysiert. Außerdem wird die Morphologie der Oberfläche detailliert untersucht, wobei TEAS und LEED zum Einsatz kommen.

6.2.1 Co-Wachstum auf Fe$_2$O$_3$/Cu(110) bei 130 K

Als Basissystem für die Untersuchung von Co/Fe$_2$O$_3$-Doppelschichten dient erneut das in Kapitel 5 beschriebene Fe$_2$O$_3$/Cu(110)-Schichtsystem. Vor dem Aufdampfen von Co wurde daher zunächst ein atomar glattes Fe$_2$O$_3$ auf
Abbildung 6.6: Co-Wachstum auf $Fe_2O_3/Cu(110)$ bei 130 K untersucht mittels TEAS und AES. Abb. (a) zeigt die gespiegelte Heliumintensität ($E_{He} = 24.4 meV$) als Funktion der Fe-Bedampfungsmenge J bzw. als Funktion der Bedeckung Θ. Die Intensität ist normiert auf die Intensität einer reinen $Fe_2O_3/Cu(110)$-Fläche. Abb. (b) zeigt AES-Spektren von $Fe_2O_3/Cu(110)$ (I) vor und (II) nach der Deposition von Co (85 Atome/nm²) auf dem $Fe_2O_3/Cu(110)$-Substrat.

Cu(110) präpariert: Kupfer wurde bei 130 K mit 5 ML γ-Fe bedampft, anschließend auf 240 K angelassen (20 K/min), erneut auf 130 K abgekühlt und bei dieser Temperatur mit 25 L O_2 oxidiert. Das entstandene Oxid wurde auf 720 K angelassen (20 K/min) und sofort auf 130 K abgekühlt. Auf dem dadurch erzeugten wohlgeordneten $Fe_2O_3/Cu(110)$ wurde bei 130 K Kobalt deponiert. Abb. 6.6(a) zeigt die gespiegelte Heliumintensität, aufgenommen während des Depositionsvorgangs. Sie ist auf die Intensität I_0 zu Beginn des Wachstumsprozesses normiert, also auf die Intensität des reinen $Fe_2O_3/Cu(110)$ bei 130 K. Die Heliumenergie betrug 24.4 meV. Von Beginn an fällt die gespiegelte Heliumintensität während des Wachstums von Co rapide ab und steigt dann ab einer Bedeckung von 2 ML Co leicht an. Bis etwa 20 Co-Atome/nm² kann eine Exponentialfunktion an den Kurvenverlauf angepaßt werden. Darüberhinaus bleibt die Intensität auf niedrigem Niveau. Trotz des leichten Anstiegs der Intensität ab 2 ML bleibt die Oberfläche über den gesamten Bedeckungsbereich ungeordnet. Nach Bedeckung mit 85 Co-Atome/nm² (7.5 ML fcc-Co(110)) konnten keine Helium-Beugungsspektren oder LEED-Bilder von geordneten Oberflächen beobachtet werden.
6.2 Co/Fe₂O₃-Multischichten auf Cu(110)

6.2.2 Anlassen von Co/Fe₂O₃/Cu(110)

Abb.6.7 zeigt die AES-Intensitäten von Kobalt (a), Sauerstoff (b), Eisen (c) und Kupfer (d) während des Anlassens eines Co (85 Atome/nm²)/Fe₂O₃-Films auf Cu(110). Die Probe wurde bei 130 K präpariert und kontinuierlich auf 1100 K angeheizt. Die Heizraten betrug 4 K/min. Lenkt man seine Aufmerksamkeit zunächst auf die Grenzfläche zwischen dem Cu-Substrat und der Co/Fe₂O₃-Doppelschicht, so fällt sofort auf, daß das AES-Signal von Kupfer bis zu einer Temperatur von etwa 600 K konstant bleibt (Abb. 6.7(d)). Kupfer verweilt folglich bis zu dieser Temperatur unter den Co/Fe₂O₃ Schichten, oder anders gesagt, Co und Fe₂O₃ bleiben bis 600 K stabil auf dem Substrat. Oberhalb 600 K steigt die AES-Intensität des Kupfers an, es diffundiert an die Oberfläche. Die Grenzfläche zwischen dem Co und dem Fe₂O₃ ist allerdings nur bis etwa 400 K stabil. Bis zu dieser Temperatur sind die AES-Intensitäten von
Abbildung 6.7: AES-Messungen, aufgenommen während des Anlassens von \(Co/Fe_2O_3/Cu(110) \) von 130 auf 1050 K. Gezeigt werden der Verlauf der Spitze-zu-Spitze Intensitäten der AES-Übergänge von (a) Kobalt (I(768 eV)-I(775 eV)), (b) Sauerstoff (I(507 eV)-I(513 eV)), (c) Eisen (I(696 eV)-I(703 eV)) und (d) Kupfer (I(914 eV)-I(920 eV)). Die Heizrate betrug 4 K/min. Der untere Teil der Abbildung zeigt die den jeweiligen Temperaturbereichen zugeordneten Modelle der Schichtsysteme.
6.2 Co/Fe$_2$O$_3$-Multischichten auf Cu(110) 103

Kobalt, Eisen und Sauerstoff konstant (Abb.: 6.7 (a-c)). Es gibt keine Hinweise für eine Vermischung der Schichten unterhalb 400 K. Steigt die Temperatur jedoch über 400 K an, so kommt es zu einem Anstieg der AES-Intensität von Sauerstoff und Eisen (Abb.6.7(b) und (c)) und gleichzeitig zu einem Abfall der AES-Intensität von Kobalt (Abb. 6.7 (a)). Dieses Verhalten kann als eine schrittweise Diffusion des Co in die Fe$_2$O$_3$-Schicht gewertet werden. Da diese Vermischung an der Grenzfläche beginnt, bildet sich ab 400 K wahrscheinlich eine (Fe$_2$O$_3$ + Co)-Zwischenschicht, die mit zunehmender Temperatur immer dicker wird. Bei 600 K steigen die AES-Signale von Eisen und Sauerstoff nicht weiter an. Die Vermischung erreicht ihr Maximum, vermutlich eine vollständige Vermischung beider Filme. Ab 600 K nimmt das Kobaltsignal weiter ab und kann bei 900 K nicht mehr detektiert werden. Möglicherweise diffundiert Kobalt oberhalb 600 K in den Cu-Kristall. Gleichzeitig verschwindet ein Teil des Eisenoxids von der Oberfläche, die AES-Signale von Eisen und Sauerstoff nehmen oberhalb 600 K deutlich ab. Wie im Falle von Fe$_2$O$_3$ bzw. Fe/Fe$_2$O$_3$ auf Cu(110) (siehe Abschn. 5.2 und 6.1.2) bleibt allerdings bis etwa 1100 K ein nicht vernachlässigbarer Rest an Eisen und Sauerstoff auf der Probenoberfläche. Vermutlich handelt es sich wieder um ein ultradünnes FeO bzw. um das Phase (II)-Oxid.

Die Oberflächenmorphologie wurde während des Anlassens durch Messung der gespiegelten Heliumintensität verfolgt. Dazu wurde bei 130 K Kobalt (85 Atome/nm2, 7.5 ML fcc-Co(110)) auf Fe$_2$O$_3$/Cu(110) deponiert und anschließend auf 1020 K angelassen. Die Heizrage betrug 20 K/min, ist also um einen Faktor 5 größer als bei den entsprechenden AES-Messungen. Abb. 6.8 zeigt die gespiegelte Heliumintensität als Funktion der Proben temperatur. Wie leicht zu erkennen ist, steigt die gespiegelte Heliumintensität ab einer Temperatur von 160 K leicht an, bleibt aber bis etwa 300 K auf niedrigem Niveau. Die Oberfläche bleibt bis zu dieser Temperatur ungeordnet. Nach Anlassen auf Temperaturen oberhalb 300 K steigt die Intensität an. Die Oberfläche ordnet sich. Sie erreicht ihre maximale Ordnung bei etwa 450 K, zu erkennen an der beobachteten Maximum in der gespiegelten Heliumintensität. Damit ist die Oberfläche auch schon in dem Temperaturbereich sehr gut geordnet, bei welchem die Co/Fe$_2$O$_3$ Doppelschicht-Struktur noch thermisch stabil ist ($T < 400 K$). Die Präparation einer thermisch stabilen Co/Fe$_2$O$_3$-Doppelschicht mit geordneter Co-Oberfläche ist also verhältnismäßig einfach zu realisieren. Anlassen der Probe auf 400 K genügt. Nach Heizen oberhalb 450 K fällt die Heliumintensität in Abb. 6.8 rapide ab. Vermutlich liegt das zum großen Teil an der Umordnung der Oberfläche in ein Fe$_2$O$_3$ (siehe Abschn. 6.2.3), die Debye-Waller-Abschwächung (gestrichelt eingezeichnet in Abb. 6.8) trägt jedoch sicherlich auch dazu bei. Oberhalb 450 K bleibt die Oberfläche geordnet, wie aus nachfolgenden Strukturanalytik eindeutig entnommen werden kann.
Abbildung 6.8: Gespiegelte Heliumintensität $I(q_{||}=0)$ während des Anlassens von Co (85 Atome/nm², bzw. 7.5 ML fcc-Co(110)) auf Fe_2O_3/Cu(110). Die Heliumenergie betrug 24.4 meV, die Heizrate 20 K/min. Die Intensität ist normiert auf die gespiegelte Intensität I_0 bei $T=130$ K. Die gestrichelte Linie markiert den Intensitätsabfall, der durch den Debye-Waller Effekt erwartet wird (siehe dazu Abschn. 2.1.4).

Bei 730 K tritt ein weiteres, diesmal jedoch sehr flaches Maximum auf. Wahr- scheinlich liegt auch dies an der strukturellen Umwandlung der Probe bei hohen Temperaturen.

6.2.3 Oberflächenstruktur von Co/Fe_2O_3/Cu(110)

Die Oberflächenstruktur wurde während des Anlassens mit TEAS und LEED untersucht [25]. Dazu wurde Kobalt (85 Atome/nm², bzw. 7.5 ML fcc-Co(110)) bei 130 K auf dem Fe_2O_3/Cu(110) deponiert und anschließend ange lassen. Abb. 6.9 zeigt TEAS-Spektren und LEED-Bilder, welche nach Anlassen auf eine Temperatur von 440 K beobachtet wurden. Die TEAS-Messungen in Abb. 6.9 (a) zeigen zwei Helium-Beugungsspektren, welche in Cu-[001]- und in Cu-[1T0]-Richtung aufgenommen wurden. In Cu-[1T0]-Richtung treten Beugungs Reflexe bei $q_{||}=0$ und bei $q_{||}=-4.99, -2.46, -1.74, -0.82, 0.83, 1.75 (\pm 0.04) \AA^{-1}$ auf. Außerdem konnten bei etwa 2.45 und 4.95 Å⁻¹ Reflexe versteckt liegen. Diese sind jedoch zu schwach um deutlich vom Untergrund unterschieden zu werden. Ein Teil dieser Reflexe, gemessen in Cu-[1T0]-Richtung, nämlich diejenigen bei $q_{||}=0$, -0.82, 0.83, -2.46 und -4.99 Å⁻¹ (markiert in Abb. 6.9(a) durch durchgezogene Linien) können als Beugungsreflexe nullter, erster, dritter und sechster Ordnung eines reziproken Gitters mit einer Gitterkonstanten von 0.83 Å⁻¹ (Mittelwert über alle 5 Reflexe) interpretiert werden. Im Ortsraum entspricht dies einer Gitterkonstanten von 7.57 Å (= $\frac{2\pi}{0.83}$ Å). Die
Abbildung 6.9: Struktur von Co (85 Atome/nm², bzw. 7.5 ML fcc-Co(110)) deponiert auf Fe₂O₃/Cu(110) (130 K) nach Anlassen auf 440 K (20 K/min). Die TEAS-Messungen in Cu-[110]- und Cu[001]-Richtung (a) wurden nach sofortigem Abkühlen der Probe auf 130 K durchgeführt. Die He-Energie betrug 24.4 meV. Beide Spektren sind auf den (0,0)-Reflex in [110]-Richtung normiert, wobei unteres Spektrum um einen Faktor 1/30 verschoben ist. Die LEED-Messung (b) erfolgte nach Abkühlen der Probe auf 100 K. Die Energie der verwendeten Elektronen betrug 67 eV. Abb. (c) zeigt eine Skizze der LEED-Aufnahme aus (b).
läßt sich durch ein Vielfaches der Gitterkonstanten von Co(110) darstellen: $7.57\, \text{Å} = 3 \times 2.52\, \text{Å} \approx 3 \times a_{\text{Co}[-1\overline{1}0]}$. In der Cu-[001]-Richtung treten Reflexe bei $q_{//} = 0$ und $\pm 1.77(\pm 0.01)\, \text{Å}^{-1}$ auf. Diese können als Beugungsreflexe nullter und erster Ordnung interpretiert werden. Sie entsprechen im Ortsraum einem Gitterabstand von $3.55\, \text{Å} \approx a_{\text{Co}[-\overline{1}01]} = \frac{2\pi}{1.77}\, \text{Å}$. Folglich kann dieser Teil der Beugungsreflexe in Abb. 6.9(a) durch die Existenz einer (3 x 1) rekonstruierten Co(110)-Oberfläche interpretiert werden (siehe dazu auch Abschn. A.2.1). Nicht vereinbaren mit dieser Interpretation lassen sich die bei $q_{//} = -1.74$ und $1.75(\pm 0.04)\, \text{Å}^{-1}$ in Cu-[1\overline{1}0]-Richtung beobachteten Beugungsreflexe. Sie entsprechen nählich nicht den Beugungsreflexen zweiter Ordnung, welche für ein reziprokes Gitter mit einer Gitterkonstanten von $0.83\, \text{Å}^{-1}$ erwartet werden, und welche bei $q_{//} = 1.66\, \text{Å}^{-1}$ liegen sollten. Die beobachteten Beugungsreflexe liegen vielmehr auf nahezu dergleichen Position wie die Beugungsreflexe in Cu-[001]-Richtung. Sie lassen sich deshalb eher durch ein quadratisches Gitter mit einer Gitterkonstanten von etwa $1.76\, \text{Å}^{-1}$ im reziproken Raum (markiert durch gestrichelte Linien in Abb. 6.9(a)) erklären. Sie entsprechen daher im Ortsraum einem quadratischen Gitter mit einer Gitterkonstanten von $3.57\, \text{Å} (\frac{2\pi}{1.76}\, \text{Å})$, und deuten somit auf die Existenz einer c(2 x 2)-rekonstruierten Co(001)-Oberfläche (siehe dazu auch Abschn. A.2.1) hin. Die TEAS-Spektren zeigen also die Koexistenz von zwei Strukturen, eine (3 x 1)-Rekonstruktion von fcc-Co(110) und eine c(2 x 2)-Rekonstruktion von fcc-Co(001). Zudem kann aus der Halbwertsbreite des gespiegelten Reflexes ($\approx 0.03\, \text{Å}^{-1}$) die durchschnittliche Breite der kohärent streuenden Domänen auf etwa 209 \text{Å} abgeschätzt werden. (Dabei wurde die instrumentelle Verbreiterung durch die TEAS-Apparatur nicht berücksichtigt. Das heißt, daß die kohärent streuende Fläche eigentlich etwas größer ist.) Die Oberfläche des Kobalt-Films ist also ziemlich glatt.

Die LEED-Aufnahme dieser Oberfläche, aufgenommen nach Anlassen von Co/Fe$_2$O$_3$/Cu(110) auf 440 K (Abb. 6.9 (b) und (c)) stimmt mit dieser Interpretation überein. Zum einen ist in Abb. 6.9 (b) ein rechteckiges Beugungsmuster sichtbar (dargestellt in Abb. 6.9 (c) durch schwarze Punkte). Ein Vergleich mit der Referenzaufnahme von reinem Cu(110) zeigt, daß diese Reflexe nahezu identisch mit den Cu(110)-Reflexen sind. Diese Reflexe könnten also von einer (110)-Oberfläche eines fcc Kobalts mit nahezu identischer Gitterkonstanten zu der des Kupfers stammen. In der Tat liegen die erwarteten Gitterkonstanzen des fcc Kobalts und des Kupfers nur knapp 2% auseinander (Co: 3.54 Å, Cu: 3.61 Å [43, 60]). Es wäre aber auch möglich, und darauf deuten die TEAS-Messungen hin, daß die Co(110)-Oberfläche nicht rekonstruiert, sondern in einer (3 x 1)-Rekonstruktion vorliegt. In diesem Fall entsprechen die Beugungsreflexe (schwarze Punkte in Abb. 6.9(c)) den Beugungsreflexen erster Ordnung in [001]-Richtung und den Beugungsreflexen dritter Ordnung in
6.2 Co/Fe$_2$O$_3$-Multischichten auf Cu(110)

[110]-Richtung. Für den Fall der (3 x 1)-Rekonstruktion wäre der Beugungsreflex erster Ordnung in [110]-Richtung nicht sichtbar und der Beugungsreflex zweiter Ordnung wäre unter Umständen durch die nachfolgend beschriebenen c(2 x 2)-Reflexe verdeckt. Neben den Cu(110)-Reflexen (schwarze Punkte in Abb. 6.9 (c)) treten noch weitere Reflexe auf. Diese Reflexe (offene Kreise in Abb. 6.9 (c)) bilden zusammen mit einem Teil der Co(110)-Reflexe ein quadratisches Beugungsgitter. Die Gitterkonstante entspricht dabei im Ortsraum etwa 3.61 Å. Diese Reflexe lassen sich daher gut durch die Existenz einer c(2 x 2)-rekonstruierten fcc-Co(001)-Oberfläche beschreiben. Abschließend läßt sich also bemerken, daß auch das LEED-Bild in Abb. 6.9 (b) auf die Existenz zweier Domänen hindeutet, nämlich auf eine fcc-Co(110)-Oberfläche (bzw. eine (3 x 1)-rekonstruierte fcc-Co(110)-Oberfläche) und eine c(2 x 2)-rekonstruierte fcc-Co(001)-Oberfläche (siehe dazu auch Abschn. A.2.1).

Nach Anlassen der Probe auf 700 K ändert sich die Struktur der Oberfläche drastisch. Allerdings sind die nach Anlassen auf 700 K entstandenen Helium-Beugungsspektren sehr ähnlich zu Spektren der reinen Fe$_2$O$_3$/Cu(110)-Oberfläche. Abb. 6.10(a) und (b) zeigen jeweils ein Spektrum von Co/Fe$_2$O$_3$/Cu(110) nach Anlassen auf 700 K zusammen mit den entsprechenden Spektren von Fe$_2$O$_3$/Cu(110). Dabei werden in Abb. (a) Spektren, aufgenommen in [001]-Richtung, und in Abb. (b) Spektren, aufgenommen in [110]-Richtung, vorgestellt. In der [001]-Richtung sind sämtliche Beugungsreflexe des Fe$_2$O$_3$-Spektrums, bis auf den Reflex bei $q_{||} = 0.55\,\text{Å}^{-1}$, auch im Spektrum des Co/Fe$_2$O$_3$ vorhanden (Abb. 6.10(a)). Auch in der [110]-Richtung gleichen sich beide Spektren sehr (Abb. 6.10 (b)): Auf beiden Oberflächen sind in der näheren Umgebung von $q_{||} = 0.4\,\text{Å}^{-1}$ und $q_{||} = \pm 2.4\,\text{Å}^{-1}$ breite „Ketten“ einzelner Beugungsreflexe sichtbar, welche nahezu exakt auf identischen Positionen liegen. Einziger Unterschied in den Spektren in Abb.6.10 (b) sind zusätzliche Reflexe im Spektrum der Co/Fe$_2$O$_3$-Doppelschicht, welche bei $q_{||} = \pm 1.24\,\text{Å}^{-1}$ und $\pm 3.73\,\text{Å}^{-1}$ beobachtet werden und welche im Fe$_2$O$_3$-Spektrum nicht vorhanden sind. Die Positionen dieser Reflexe sind durch gestrichelte Linien in Abb. 6.10 (b) gekennzeichnet. Sie können als Beugungsreflexe erster und dritter Ordnung eines reziproken Gitters mit einer Gitterkonstanten von 1.24 Å$^{-1}$ betrachtet werden, welches im Ortsraum einem Abstand von 5.06 Å $\approx 2 \cdot a_{Co-[110]}$ entspricht. Die Struktur läßt sich damit als das Ergebnis einer (2 x 1)-rekonstruierten fcc-Co(110)-Oberfläche interpretieren. Folglich ist der Co/Fe$_2$O$_3$-Film nach Anlassen auf 700 K noch nicht vollständig vermischt. Es fallen sich einzelne Domänen von Fe$_2$O$_3$ und auch von fcc-Co(110) auf der Oberfläche.

Mit LEED wird für Co/Fe$_2$O$_3$/Cu(110) nach Anlassen auf 700 K (Abb. 6.10(d)) nahezu das gleiche Beugungsbild gefunden wie für Fe$_2$O$_3$/Cu(110) (Abb. 6.10 (c)). Möglicherweise sind die fcc-Co(110)-Domänen im LEED-Bild (Abb. 6.10 (d)) nicht zu beobachten, wahrscheinlicher ist jedoch, daß die Reflexe nur viel zu schwach sind, um im LEED-Bild deutlich sichtbar aufgelöst zu werden.
Abbildung 6.10: Struktur von Co (85 Atome/nm², bzw. 7.5 ML fcc-Co(110)) deponiert auf Fe₂O₃/Cu(110) (130 K) nach Anlassen auf 700 K (20 K/min). Die Struktur wurde mittels TEAS in [001]- (a) und [110]-Richtung (b) untersucht. Zum Vergleich wurde jeweils ein Spektrum der reinen Fe₂O₃/Cu(110)-Oberfläche eingezeichnet. Die Heliumenergie betrug 24.4 meV. Die Spektren sind normiert auf den (0,0)-Reflex von Fe₂O₃/Cu(110) in [001]-Richtung. (c) zeigt eine LEED-Aufnahme von Fe₂O₃/Cu(110), (d) eine LEED-Aufnahme von Co/Fe₂O₃/Cu(110) nach Anlassen auf 700 K. Die verwendete Elektronenenergie betrug 67 eV.

Nach Anlassen des Systems Co/Fe₂O₃/Cu(110) auf Temperaturen von etwa 1000 K ändert sich die Struktur der Oberfläche erneut, und zwar kommt es auch in diesem Fall zu der Bildung eines ultradünnen FeO auf Cu(110). In der Tat entsprechen die Helium-Beugungsspektren von Co/Fe₂O₃/Cu(110) nach Anlassen auf 1020 K (Abb. 6.11 (a) und (b)) den Helium-Beugungsspektren des Phase (II)-Oxides, welche nach Anlassen von Fe₂O₃/Cu(110) auf 1020 K beobachtet wurden (siehe Abschnitt 5.2). Ebenso zeigen das LEED-Bild von Co/Fe₂O₃/Cu(110) nach Anlassen auf 1020 K (Abb. 6.11 (d)) und das LEED-Bild des Phase (II)-Oxides (FeO, Abb. 6.11 (c)) nahezu identische Beugungsmuster.
6.2 Co/Fe$_2$O$_3$-Multischichten auf Cu(110)

Abbildung 6.11: Struktur von Co (85 Atome/nm2, bzw. 7.5 ML fcc-Co(110)) deponiert auf Fe$_2$O$_3$/Cu(110) (130 K) nach Anlassen auf 1020 K (20 K/min). Die Struktur wurde mittels TEAS in [001]-Richtung (a) und [110]-Richtung (b) untersucht. Zum Vergleich wurde jeweils ein Spektrum der reinen FeO/Cu(110)-Oberfläche (Phase II - Oxid, Abschn. 5.2) eingezeichnet. Die Heliumenergie betrug 24.4 meV. Die Spekten sind normiert auf den (0,0)-Reflex von FeO/Cu(110) in [001]-Richtung. (c) zeigt eine LEED-Aufnahme von FeO/Cu(110), (d) eine LEED-Aufnahme von Co/Fe$_2$O$_3$/Cu(110) nach Anlassen auf 1020 K. Die verwendete Elektronenenergie betrug 67 eV.

6.2.4 Diskussion und Zusammenfassung

In diesem Abschnitt wurde gezeigt, daß es gelungen ist, einen epitaktischen, wohlgeordneten Kobaltfilm auf Fe$_2$O$_3$/Cu(110) zu präparieren. Dazu wurde Kobalt bei 130 K deponiert und auf 440 K angelassen: Es bildet sich eine fcc-Co-Schicht, die pseudomorph zum Cu-Substrat ist. Die (110)-Oberfläche dieser Schicht ist (3 x 1)-rekonstruiert. Zusätzlich werden einige fcc-Co(001)-Domänen beobachtet, bei welchen die [100]-Richtung parallel zur Cu-[001]-verläuft. Die Oberfläche dieser Domänen ist c(2 x 2)-rekonstruiert.
Eine ähnliche Oberflächenstruktur dünner Kobaltfilme wurde bereits auf verschiedenen Substraten gefunden. So zeigt Co/O(2 x 1)-Cu(110) eine (3 x 1)-rekonstruierte Oberfläche, allerdings nur dann, wenn ein Teil des Sauerstoffs auf der Oberfläche „schwimmt“ [35, 63, 64]. Wird der aufschwimmende Sauerstoff durch Absaugen mit atomarem Wasserstoff entfernt, so zeigt die Oberfläche die Struktur von Co(110). Auch eine c(2 x 2)-Rekonstruktion von fcc-Co(001) wurde bereits beobachtet: Wird Kobalt auf mit Kohlenstoff kontaminiertem W(110) [120, 121] oder auf mit Kohlenstoff kontaminiertem Cu(110) [122] deponiert, so entsteht eine c(2 x 2)-rekonstruierte Co(001)-Oberfläche.

Die $\text{Co}/\text{Fe}_2\text{O}_3$-Doppelschicht auf Cu(110) ist in ihrer Multilagenstruktur bis etwa 400 K stabil. Es wurden keine Anzeichen für eine Vermischung von Co und Fe_2O_3 gefunden. Oberhalb 400 K setzt eine Vermischung der $\text{Co}/\text{Fe}_2\text{O}_3$-Doppelschicht ein. Vermutlich beginnt sie an der Grenzfläche und breitet sich mit steigender Temperatur zunehmend auf die beiden Filme aus. Oberhalb 600 K scheint die Vermischung ihr Maximum, eine vollständige Durchmischung beider Schichten, erreicht zu haben. Nach Anlassen auf 700 K (20 K/min) werden sowohl Kobalt-Domänen ((2 x 1)-fcc-Co(110)-Oberfläche) als auch Fe_2O_3-Domänen an der Oberfläche beobachtet. Allerdings setzt bereits nach Anlassen auf 600 K (4 K/min) auch eine Abnahme von Co und Fe_2O_3 ein. Kupfer diffundiert an die Oberfläche. Nach Anlassen auf 1000 K ist der Kobaltfilm vollständig verschwunden. Übrig bleibt nur ein ultradünner FeO-Film.

Abschließend sei hier bemerkt, daß in dem Temperaturbereich, wo sich die Kobaltschicht ordnet ($350 < T < 450 K$), keine bzw. nur eine ganz langsame Mischung der Multilagenstruktur abläuft. Es ist also relativ einfach, wohlgeordnete, epitaktische $\text{Co}/\text{Fe}_2\text{O}_3$-Doppelschichten zu präparieren. Zudem liegt die obere Grenze des Temperaturbereichs, in welchem die Doppelschichten stabil sind ($T < 400 K$), deutlich über Raumtemperatur. $\text{Co}/\text{Fe}_2\text{O}_3$-Schichten sind daher aus „struktureller Sicht“ für technische Anwendungen besser geeignet als $\text{Fe}/\text{Fe}_2\text{O}_3$-Doppelschichten, welche thermisch weniger stabil sind.
Kapitel 7

Oxidation von CoGa(001) - Bildung von Ga$_2$O$_3$

Dünne Oxide repräsentieren eine Gruppe interessanter Materialien. Sie finden eine Reihe von Anwendungen, welche von der chemischen Katalyse (Modellkatalysator) bis hin zur Anwendung in der Mikroelektronik reichen. Eine Besonderheit bei der Untersuchung dünner Oxidschichten bildet die Oxidation intermetallischer Legierungen, wie z.B. die Oxidation von CoGa. Sie zeichnet sich dadurch aus, daß Gallium an die Oberfläche segri giert und dort ein ultradünnes, gut geordnetes Ga-Oxid formt. In der vorliegenden Arbeit wurde die Oxidation einer CoGa(001)-Oberfläche untersucht, also einer Legierung, die je zu 50 % aus Kobalt und Gallium besteht (siehe auch Abschnitt 3.2.2). Es entsteht Ga$_2$O$_3$. Prinzipiell kann das Ga$_2$O$_3$ verschiedene Modifikationen annehmen. Die wichtigsten sind das α-Ga$_2$O$_3$ und das β-Ga$_2$O$_3$. Das metastabile α-Ga$_2$O$_3$ besitzt eine hexagonale Konund-Struktur mit Gitterkonstanten $a = 4.98\,\text{Å}$ und $c = 13.43\,\text{Å}$ [115]. Das β-Ga$_2$O$_3$ ist isomorph zu β-Al$_2$O$_3$. Die Gitterkonstanten von β-Ga$_2$O$_3$ betragen $a = 3.04\,\text{Å}$, $b = 5.80\,\text{Å}$, $c = 12.23\,\text{Å}$ und $\beta = 103.7^\circ$ [123,124] (siehe auch Abschnitt A.4).

Ausführliche Studien der CoGa-Oberflächen und des Ga-Oxids wurden bereits mittels LEED, AES, STM und EELS (Elektronenenergieverlustspektroskopie, engl. Electron Energy Loss Spectroscopy) durchgeführt [125-127]. Dabei wurde beobachtet, daß die Oxidation von CoGa(001) bei Raumtemperatur zur Bildung eines amorphen Ga-Oxides führt, welches sich nach Anlassen auf 700 K in ein geordnetes β-Ga$_2$O$_3$ umformt [125,126,128]: STM-Messungen zeigen, daß Adsorption von Sauerstoff bei Raumtemperatur zur Bildung von „Oxid-Clustern“ führt, deren Anzahl mit zunehmender Sauerstoffmenge stetig zunimmt und welche bei Sättigung die Oberfläche vollständig bedecken [19,20,125,126]. Im EEL-Spektrum dieser Oberfläche werden Verluste bei Wellenzahlen von 400 und 690 cm^{-1} beobachtet. Dies deutet auf die Existenz eines
amorphen Galliumoxid hin [125, 126]. Nach Anlassen auf 700 K zeigen LEED und STM eine (2 x 1)-Struktur der Oberfläche [126, 128]. Das EEL-Spektrum dieser Oberfläche ist charakteristisch für $G_{s2}O_{3}$ [19, 125, 126]. Nach Anlassen der nur teilweise oxidierten CoGa(001)-Oberfläche auf eine Temperatur von 700 K ordnen sich die „Oxid-Cluster“ zu rechteckigen Inseln. Dabei hängt die Größe der Inseln von der Zeit ab, die dem System zum Ausheilen gegeben wird [19]. Wird die CoGa(001)-Oberfläche direkt bei einer Temperatur von 700 K oxidiert, so bildet sich eine geordnete $\beta-G_{s2}O_{3}$-Oberfläche. Die maximale Dicke dieser Oxidschicht beträgt ca. (9 ± 4) Å [27], was ungefähr der Höhe der Einheitszelle des Oxids entspricht.

Im folgenden Abschnitt wird die Oxidation von CoGa erstmalig mittels Heliumumstreuung untersucht. Studiert werden die Oxidation bei Raumtemperatur und das Anlassen des gebildeten Oxids auf höhere Temperaturen. Untersucht wird zusätzlich die Oxidation bei hohen Temperaturen. Hier zeigt sich, daß die bisher verwendete Temperatur von 700 K zwar zu sehr gut geordneten Oxiden führt, die Temperatur aber noch nicht optimal ist. Oxidation bei noch höheren Temperaturen, bis hin zu 900 K, liefert eine besser geordnete Oberfläche.

7.1 Temperaturstabilität der Oxidfilme
- Desorption von $G_{s2}O_{3}$

Bevor der Einfluß der Temperatur auf die Struktur und die Oberflächenmorphologie des Oxides untersucht werden kann, muß zunächst geklärt werden, bis zu welcher Temperatur die Ga-Oxidfilme thermisch stabil auf dem CoGa(001)-Substrat existieren. Um ihre Temperaturstabilität zu untersuchen, bzw. um die Temperatur zu finden, bei der $G_{s2}O_{3}$ von der Oberfläche verschwindet, wurde folgendes Experiment durchgeführt [27]: Zunächst wurde CoGa(001) bei 300 K oxidiert und zwar mit 400 L Sauerstoff. Der dabei verwendete Sauerstoffdruck betrug 0,2·10⁻⁷ mbar. Es bildet sich ein ungeordnetes $G_{s2}O_{3}$ (siehe auch Abschnitt 7.2). Anschließend wurde der entstandene Oxidfilm auf eine Temperatur von 1000 K angelassen (Heizrate 20 K/min) und dabei kontinuierlich mittels AES analysiert.

Abb. 7.1 zeigt den dabei gemessenen Verlauf des Intensitätsverhältnisses der AES-Übergänge von Sauerstoff (511 eV) und Cobalt (775 eV) als Funktion der Probenatemperatur. Bis zu einer Temperatur von etwa 850 K ist das Intensitätsverhältnis konstant. Der Ga-Oxidfilm verweilt in diesem Temperaturbereich thermisch stabil auf dem CoGa-Substrat. Ab ca. 850 K beginnt das Ga-Oxid von der Oberfläche zu verschwinden, wahrscheinlich dissoziiert es und desorbiert von der Oberfläche. Als Folge nimmt das AES-Signal von Sauerstoff ab,
7.2 Oxidation von CoGa(001) bei Raumtemperatur

7.2 Oxidation von CoGa(001) bei Raumtemperatur

Abb. 7.2 zeigt das Verhalten der CoGa(001)-Oberfläche während der Adsorption von Sauerstoff bei Raumtemperatur. Dabei wurde die Probe mittels AES (Abb. 7.2 (a)) und TEAS (Abb. 7.2 (b)) untersucht [27]. Die Intensität des AES-Übergangs von Sauerstoff (511 eV) steigt mit zunehmender Sauerstoffmenge zunächst drastisch an (Abb. 7.2 (a)). Nach Zugabe von etwa 40 L geht das Signal in einen Sättigungspegel über, woraus gefolgert werden kann, daß die Dicke der gebildeten Oxidschicht nicht weiter zunimmt. Die maximale Schichtdicke des Oxides beträgt ca. (9 ± 4) Å [27], entspricht also in etwa der Höhe einer Einheitszelle des β-Ga₂O₃ (siehe auch Abschn. A.4).
Abbildung 7.2: Adsorption von Sauerstoff auf CoGa(001) bei Raumtemperatur.
Abb. (a) zeigt den Verlauf der AES-Intensität von Sauerstoff (511 eV), Abb.
(b) das Verhalten der gespiegelten He-Intensität als Funktion der angebotenen
Sauerstoffmenge. Dabei ist die Sauerstoffmenge in Langmuir angegeben. Die
AES-Intensität ist normiert auf ihren Wert, der bei Sättigung mit Sauerstoff
erreicht wird. Die gespiegelte He-Intensität ist normiert auf die Intensität der
reinen CoGa(001)-Oberfläche. Die TEAS-Messung wurde mit einer He-Energie
von 24.4 meV durchgeführt. Der Sauerstoffdruck betrug $0.2 \cdot 10^{-7}$ mbar.

Die Morphologie der Oberfläche wurde während der Oxidation mittels TEAS
charakterisiert. Abb. 7.2 (b) zeigt die gespiegelte He-Intensität während der
Zugabe von Sauerstoff bei Raumtemperatur. Sie fällt zu Beginn nahezu exponen
tiell ab, nimmt dann aber bei etwa 3 L ein Minimum an und steigt bei
weiterer Sauerstoffzugabe noch einmal leicht an. Bei etwa 7 L bildet sich ein
sehr flaches Maximum aus. Ein ähnliches Verhalten der gespiegelten Helium
intensität wurde bereits für das Wachstum dünner Eisenfilme auf Kupfer be
obachtet (Abb. 4.3 in Abschn. 4.2). In diesem Fall konnte die Ausbildung
eines Maximums in der gespiegelten Heliumintensität durch Koaleszenz von
Eiseninseln erklärt werden (siehe auch Abschn. 4.2). Auf CoGa(001) wurde
die Bildung von Oxid-Clustern während der Oxidation bei Raumtemperatur
beobachtet [128]. Es ist daher wahrscheinlich, daß das in Abb. 7.2 (b) beob
achtete Maximum in der gespiegelten Heliumintensität auf die Koaleszenz der
Oxid-Cluster zurückzuführen ist.

7.3 Anlassen des ungeordneten Ga_2O_3

Das nach Sättigung mit Sauerstoff entstandene Oxid ist ungeordnet. Es können
weder LEED-Bilder noch TEAS-Spektren beobachtet werden. Nach Anlassen
auf 700 K beobachtet man mit LEED eine (2 x 1)-Struktur in zwei Domänen,
chungen fand man die Gitterkonstante der (2 x 1)-Elementarzelle zu $a = 2.9$ Å
und $b = 5.8$ Å. Daraus konnte Schmitz [128] schließen, daß es sich nach Anlas-
7.3 Anlassen des ungeordneten \(\text{Ga}_2\text{O}_3 \)

Abbildung 7.3: Helium-Beugungsspektren in [120]-Richtung von CoGa(001) (oberes Spektrum), \(\beta-\text{Ga}_2\text{O}_3/\text{CoGa}(001) \), präpariert bei 300 K mit 450 L \(\text{O}_2 \) (unteres Spektrum) und angesetzt auf 700 K (mittleres Spektrum). Die Spek- tren wurden bei einer Temperatur von 300 K gemessen. Die He-Energie betrug 24.4 meV. Der linke Teil der Abbildung zeigt die den Spektren zugeordneten Modelle der Schichtstruktur von \(\text{Ga}_2\text{O}_3 \) auf CoGa(001).

Diese Ergebnisse konnten mit TEAS bestätigt werden: Abb. 7.3 zeigt TEAS-Spektren der bei Raumtemperatur oxidierten CoGa(001)-Oberfläche (450 L \(\text{O}_2 \)) vor (unteres Spektrum) und nach Anlassen auf 700 K (mittleres Spektrum). Zudem ist ein Spektrum der der reinen CoGa(001)-Fläche eingezeichnet (obere Spektrum). Sie wurden in [120]-Richtung gemessen, in welcher man die c(4 x 2)-Rekonstruktion der reinen CoGa(001)-Oberfläche sehr genau durch das Auftreten der \(\pm(\frac{3}{2},\frac{1}{2}) \)-Reflexe (siehe auch Abb. 3.4 in Abschn. 3.2.2) beobachten kann. Das untere Spektrum in Abb. 7.3 zeigt keine Beugungsreflexe. Das Ga-Oxid ist bei 300 K ungeordnet. Nach Anlassen auf 700 K (mittleres Spektrum in Abb. 7.3) treten die für \(\beta-\text{Ga}_2\text{O}_3 \) typischen \(\pm(\frac{1}{2},1) \)-Reflexe auf, allerdings sind auch die für eine c(4 x 2)-CoGa(001) erwarteten \(\pm(\frac{1}{2},\frac{1}{2}) \)-Reflexe sichtbar. Folglich kann dieses Spektrum als das Ergebnis einer Überlagerung des CoGa(001)- und des \(\beta-\text{Ga}_2\text{O}_3 \)-Spektrens interpretiert werden. Neben den geordneten \(\beta-\text{Ga}_2\text{O}_3 \) sind also noch unbedeckte Bereiche des CoGa-Substrates vorhanden. Diese Bereiche erzeugen die \(\pm(\frac{1}{2},\frac{1}{2}) \)-Reflexe.
Abbildung 7.4: Gespiegelte He-Intensität aufgenommen während des Anlassens einer mit 400 Loxidierten CoGa(001)-Oberfläche (bei 300 K) von 300 auf 1100 K. Die Heizraten betrug 40 K/min, die Energie der verwendeten He-Atome 24.4 meV. Die gestrichelte Linie markiert den Intensitätsabfall, der durch den Debye-Waller Effekt erwartet wird (siehe dazu auch Abschn. 2.1.4).

Urn den Ordnungsprozeß während des bei Raumtemperatur gebildeten Oxides zu analysieren, wurden TEAS-Messungen durchgeführt: Abb. 7.4 zeigt die gespiegelte He-Intensität, aufgenommen während des Anlassens einer CoGa(001)-Oberfläche, welche zuvor bei 300 K mit 400 Loxidiert wurde (pO2 = 0.2 · 10−7 mbar). Die Heizraten betrug 40 K/min.

Wie man in Abb. 7.4 leicht erkennt, bleibt die Oberfläche bis etwa 500 K ungeordnet. Die gespiegelte Heliumintensität ist dementsprechend niedrig. Oberhalb 500 K beginnt die Intensität anzusteigen. Die Oberfläche ordnet sich. Es bildet sich ein geordnetes Oxid. Allerdings ist dieser Ordnungsprozeß erst ab einer Temperatur von etwa 600 K so schnell, daß ein deutscher Anstieg der He-Intensität beobachtet werden kann. Bei 750 K schließlich erreicht die Intensität ihr Maximum und fällt zu höheren Temperaturen wieder ab. Trotzdem bleibt die Oberfläche des Oxids auch oberhalb 750 K noch geordnet, denn auch bei diesen Temperaturen können noch scharfe Beugungsspektren mit LEED und TEAS beobachtet werden. Der beobachtete Abfall der gespiegelten He-Intensität oberhalb 750 K kann zumindest zum Teil durch den Debye-Waller Effekt erklärt werden (gestrichelte Linie in Abb. 7.4). Bei ca. 850 K zeigt die Intensität einen plötzlichen Abfall (Pfeil in Abb. 7.4), was aber auf die bei dieser Temperatur stattfindende Desorption von Sauerstoff zurückzuführen ist (siehe auch Abschnitt 7.1).
Abb. 7.5 zeigt den Ausheilprozeß des Oxids als Funktion der Zeit. Dazu wurde CoGa(001) bei 300 K mit 400 L Sauerstoff oxidiert ($p_{O_2} \approx 0.2 \cdot 10^{-7}$ mbar) und anschließend unverzüglich mit maximaler Heizrate auf 620, 700 und 800 K angelassen. Der daraufhin einsetzende zeitliche Anstieg der gespiegelten He-Intensität, welcher durch den Ausheilprozeß verursacht wird, ist in Abb. 7.5 eingezeichnet. Wie man in dieser Abbildung leicht erkennt, ordnet sich das $Ga_2O_3/CoGa(001)$ bei allen drei Temperaturen, also auch bereits bei einer Temperatur von 620 K. Die Heliumintensität steigt in allen drei Fällen mit der Zeit an. Dabei ist der Anstieg umso schneller, je höher die verwendete Ausheiltemperatur ist. Nach einer Zeit von 25 min (1500 s) wird unter Benutzung einer Ausheiltemperatur von 700 K eine um einen Faktor 100 höhere Heliumintensität beobachtet als bei Verwendung einer Ausheiltemperatur von 620 K. Bei Verwendung einer Ausheiltemperatur von 800 K ist die gespiegelte Heliumintensität nach 25 min sogar um einen Faktor 200 größer. Folglich ist die Oberfläche nach 25 min umso besser geordnet, je höher die verwendete Temperatur ist, bei welcher der Ausheilprozeß stattfindet. In allen drei Fällen kann auch nach 25 min noch kein asymptotisches Verhalten der Kurven gefunden werden. Die Intensität steigt sogar bei 800 K nach 25 min noch stetig an, was bedeutet, daß der Film noch nicht vollständig geordnet ist.
7.4 Oxidation von CoGa(001) bei hohen Temperaturen

Die Resultate der Oxidation bei hohen Temperaturen [28] unterscheiden sich von denen der Oxidation bei Raumtemperatur mit anschließendem Anlassen auf hohe Temperaturen [27]. Wie in den folgenden Experimenten dargestellt wird, führt die isotherme Oxidation bei 800 K zur Bildung eines geordneten β-Ga$_2$O$_3$-Films, welcher die Oberfläche vollständig bedeckt. Abb. 7.6 zeigt Helium-Beugungsspektren der reinen und der oxidierten CoGa(001)-Oberfläche, welche in [120]-Richtung aufgenommen wurden: Das untere Spektrum wurde nach Oxidation der CoGa(001)-Oberfläche bei 800 K aufgenommen (80 L O$_2$), das obere stammt von der reinen Substrateoberfläche. Die Probe wurde in einer Sauerstoffatmosphäre von 0.2×10^{-7} mbar oxidiert.

Die Struktur der entstandenen β-Ga$_2$O$_3$/CoGa(001)-Oberfläche kann durch vier Domänen mit rechteckigen Einheitszellen (Gitterkonstante 2.88 A und 2.88 A) beschrieben werden, welche um je 90° gegeneinander gedreht sind. Die einzelnen Einheitszellen weisen eine (2 x 1)-Periodizität in Bezug auf die unrekonstruierte CoGa(001)-Oberfläche auf (siehe auch Abschn. A.4). Nach Oxidation der CoGa(001)-Oberfläche bei 800 K wird diese Struktur, und zwar nur diese, mit Heliumstreuung deutlich beobachtet (unteres Spektrum in Abb. 7.6): Das Beugungsspektrum in [120]-Richtung zeigt die erwarteten $\pm (1,1)$-Reflexe der β-Ga$_2$O$_3$/CoGa(001)-Oberfläche. Im Gegensatz zum Spektrum der bei 300 K oxidierten und auf 700 K angelassenen Probe (Abb. 7.3, mittleres Spektrum) sind im unteren Spektrum von Abb. 7.6 keine $\pm (1,1)$-Reflexe sichtbar, welche im Falle einer c(4 x 2)-rekonstruierten CoGa(001)-Oberfläche auf die Oberfläche aus Abb. 7.6 bedeckt. Die isotherme Oxidation bei hohen Temperaturen unterscheidet sich aber nicht nur in der erhöhten Bedeckung des Substrates mit Ga$_2$O$_3$. Wie in den folgenden Experimenten gezeigt wird, kann durch direkte Oxidation bei hohen Temperaturen auch eine bessere Ordnung der Oxidschicht erzielt werden. Die Anlaßexperimente in Abschnitt 7.3 deuten darauf hin, daß die Sauerstoffumsetzung umso besser ordnet, je höher die verwendete Temperatur (Anlaßtemperatur oder Oxidationstemperatur) ist. Die obere Grenze dieser Temperatur wird durch die einsetzende Desorption von Sauerstoff bei etwa 850 K bestimmt (siehe auch Abschn. 7.1). Trotzdem ist es möglich, auch bei 900 K noch eine Ga-Oxidschicht zu präparieren. Dazu muß ein erhöhter Sauerstoffpartialdruck verwendet werden. Abb. 7.7 (a) zeigt die Intensität des AES-Übergangs von Sauerstoff (511 eV) während der Oxidation bei einer Temperatur von 900 K. Dabei ist hier der Sättigungswert der Intensität als Funktion des während
7.4 Oxidation von CoGa(001) bei hohen Temperaturen

der Oxidation verwendeten Sauerstoffpartialdruckes aufgetragen. Man erkennt leicht: Bis zu einem Druck von etwa 0.7 \(\cdot 10^{-7} \) mbar ist das AES-Signal von Sauerstoff null. Die Desorption von Sauerstoff läuft bei diesen Drücken und bei dieser Temperatur (900 K) schneller ab, als die Geschwindigkeit, mit der neues Oxid gebildet wird. In einem Druckbereich zwischen 0.7 \(\cdot 10^{-7} \) und 2 \(\cdot 10^{-7} \) mbar steigt das AES-Signal von Sauerstoff an und erreicht bei noch höheren Drücken einen Sättigungswert. Folglich ist die Neubildung von Ga-Oxid bei Drücken oberhalb 2 \(\cdot 10^{-7} \) mbar schneller als der Zerfall desselben. Es ist somit möglich, auch bei Temperaturen von 900 K eine Ga-Oxidschicht zu präparieren. Stellt man den Sauerstoffzufuß während der Oxidation bei 900 K wieder ab, so verschwindet das AES-Signal von Sauerstoff. Wahrscheinlich zerfällt das Ga₂O₃ und Sauerstoff desorbiert von der Oberfläche.

Abb. 7.7 (b) zeigt den Verlauf der AES-Intensität von Sauerstoff (511 eV) während der isothermen Oxidation von CoGa(001) bei 600, 700, 800 und 900 K. Um die Statistik der Messdaten zu verbessern wurde der Kurvenverlauf gefittet. Die AES-Daten lassen sich gut durch eine Exponentialfunktion \((I_{AES}/I_{AES(max)} = 1 - \exp(-c \cdot x)) \) beschreiben. Hierbei ist c eine Konstante und x die Sauerstoffmenge. Abb. 7.7 (b) zeigt das Ergebnis dieser Fits als Funktion
Abbildung 7.7: AES-Intensität von Sauerstoff (511 eV), aufgenommen während der isothermen Oxidation von CoGa(001) bei 900 K unter Verwendung verschiedener Sauerstoffpartialdrücke (a). Abb. (b) zeigt die Intensität desselben AES-Übergangs während der isothermen Oxidation bei 600, 700, 800 und 900 K als Funktion der angebotenen Sauerstoffmenge. Der Sauerstoffpartialdruck betrug hierbei $0.2 \cdot 10^{-7}$ mbar (600 K-800 K), bzw. $5 \cdot 10^{-7}$ mbar (900 K). Die Intensitäten sind normiert auf den Sättigungswert bei 38 L O_2.

der angebotenen Sauerstoffmenge. Die Oxidation bei 600, 700 und 800 K wurde mit einem Sauerstoffpartialdruck von $0.2 \cdot 10^{-7}$ mbar durchgeführt. Während der Oxidation bei 900 K wurde ein Sauerstoffdruck von $5 \cdot 10^{-7}$ mbar verwendet, also ein Druck, der nach Abb. 7.7 (a) zur Ausbildung eines Ga-Oxides führt. Wie man in Abb. 7.7 (b) leicht erkennt, ist der Kurvenverlauf der AES-Intensität für alle vier verwendeten Oxidationstemperaturen im Rahmen der Meßgenauigkeit nahezu gleich. Folglich handelt es sich in allen vier Fällen um einen ähnlichen Oxidationsprozeß.

Um die Ordnung der Oberfläche bzw. deren Morphologie zu analysieren, wurden Heliumbeugungs Messungen durchgeführt. Nach Oxidation bei 600, 700, 800 und 900 K zeigen die Heliumbeugungsspektren eine Beugungsstruktur mit scharfen Beugungsreflexen. Die Positionen der Reflexe entsprechen der erwarteten β-Ga_2O_3-Struktur (siehe auch Abschn. A.4): In [120]-Richtung wird in allen vier Fällen ein Spektrum beobachtet, welches dem in Abb. 7.6 (unteres Spektrum) ähnelt. Dabei hängen die Intensität und die Halbwertsbreite der Beugungsreflexe von der Temperatur ab, bei welcher die Probe oxidiert wurde. Abb. 7.8 zeigt Intensität und Halbwertsbreite der Beugungsreflexe des β-Ga_2O_3/CoGa(001)-Spektrums ([120]-Richtung) als Funktion der verwendeten Oxidationstemperatur. Dabei wurden die verwendeten Heliumbeugungsmessungen nach maximalem Ausheizen der Probe (charakterisiert durch maximale Intensität der Beugungsreflexe) und anschließendem Abkühlen.
7.4 Oxidation von CoGa(001) bei hohen Temperaturen

Abbildung 7.8: Intensität (a) und Halbwertsbreite (b) der Beugungsreflexe von β-Ga$_2$O$_3$/CoGa(001) nach Oxidation von CoGa(001) bei 600, 700, 800 und 900 K. Dabei zeigen die Bilder die Werte des gespiegelten Reflexes ((0,0)-Reflex), sowie die Mittelwerte aus $(\frac{1}{2},1)$- und $(\frac{1}{2},-1)$-Reflex. Die Oxidation bei Temperaturen bis 800 K wurde mit einem Sauerstoffdruck von $0.2 \cdot 10^{-7}$ mbar durchgeführt. Für die Oxidation bei 900 K wurde ein Sauerstoffdruck von $5 \cdot 10^{-7}$ mbar verwendet. Die Helium-Beugungsmessungen wurden nach maximalem Ausheilen der Probe (charakterisiert durch maximale Intensität der Beugungsreflexe) und anschließendem Abkühlen auf 300 K durchgeführt. Die Oxidation bei Temperaturen bis 800 K wurde mit einem Sauerstoffdruck von $0.2 \cdot 10^{-7}$ mbar durchgeführt. Für die Oxidation bei 900 K wurde ein Sauerstoffdruck von $5 \cdot 10^{-7}$ mbar verwendet.

Wie man in Abb. 7.8 (a) leicht erkennt, ist die Intensität der Beugungsreflexe umso größer, je höher die verwendeten Oxidationstemperaturen sind. Im Rahmen der Meßgenauigkeit kann ein linearer Anstieg der Intensität des (0,0)-Reflexes und der mittlere Intensität des $(\frac{1}{2},1)$-Reflexes (Mittelwert aus $(\frac{1}{2},1)$- und $(\frac{1}{2},-1)$-Reflex) mit zunehmender Oxidationstemperatur beobachtet werden. Folglich wird die Qualität der Oberfläche, d.h. der Grad der Ordnung, verbessert, wenn die Oxidationstemperatur erhöht wird. Die beobachteten Halbwertsbreiten der Beugungsreflexe (Abb. 7.8 (b)) stimmen mit dieser Interpretation überein: Sowohl die $(\frac{1}{2},1)$-Beugungsreflexe als auch der gespiegelte Reflex werden mit zunehmender Oxidationstemperatur immer schärfer; die Halbwertsbreiten dieser Reflexe nehmen ab. Ga-Oxide, die bei höheren Temperaturen präpariert wurden, besitzen also lateral größere, kohärente Streuende Domänen. Die Oberfläche ist glatter und besser geordnet. Zur Zeit werden an Ga$_2$O$_3$/CoGa(001) STM-Untersuchungen durchgeführt. Diese bestätigen den mit der Heliumstreuung gefundenen Effekt [129].
7.5 Diskussion und Zusammenfassung

Nach Anlassen (auf 800 K) der bei Raumtemperatur oxidierten CoGa(001)-Oberfläche werden noch Beugungsstrukturen beobachtet, welche von der reinen Substratoberfläche stammen. Oxidation bei Raumtemperatur und anschließenden Anlassen der Probe führen also zur Ausbildung einer Oxidschicht, welche die Oberfläche nicht vollständig bedeckt. Ein β-Ga$_2$O$_3$-Film, welcher die Oberfläche vollständig bedeckt, wird nach Oxidation der CoGa(001)-Oberfläche bei Temperaturen zwischen 600 und 850 K beobachtet. Dabei gilt auch hier: Je höher man die verwendete Oxidationstemperatur wählt, umso besser ordnet sich der Film. Durch Verwendung eines erhöhten Sauerstoffdruckes ($p > 2 \cdot 10^{-7}$ mbar) kann sogar bei Temperaturen von 900 K ein geordneter β-Ga$_2$O$_3$-Film präpariert werden, obwohl diese Temperatur etwa 50 K über der Desorptions-temperatur von Sauerstoff auf CoGa(001) liegt. Wahrscheinlich verläuft die Neubildung des Oxides bei diesen hohen Sauerstoffdrücken schneller ab als der Zerfall desselben. Allerdings muß der bei 900 K entstandene Oxidfilm noch innerhalb der erhöhten Sauerstoffatmosphäre wieder unter 850 K abgekühlt werden, um einen Zerfall zu vermeiden. Der bei 900 K entstandene β-Ga$_2$O$_3$-Film ist am besten geordnet und besitzt die glatteste Oberfläche.
Kapitel 8

Wachstum von Fe auf CoGa(001)

In der vorliegenden Arbeit wurde nicht nur die Oxidation der CoGa(001)-Oberfläche untersucht. Es wurde auch das Wachstum dünner Eisenfilme auf dieser Fläche analysiert. Im Falle des Eisenwachstums auf Cu(110) zeigte sich (siehe Abschnitt 4), daß das Substrat die aufwachsende Filmstruktur extrem beeinflussen kann: Die Cu(110)-Oberfläche zwingt den Eisenfilm in eine fcc-Struktur (γ-Fe), also in eine Kristallstruktur, welche Eisen im Festkörper eigentlich nur bei hohen Temperaturen oberhalb 1070 K annimmt. Grund dafür ist wahrscheinlich die gute Übereinstimmung der Gitterkonstanten von γ-Fe (3.64 Å [43, 60]) und Cu (3.61 Å [43, 60]). Bei Raumtemperatur kristallisiert Eisen im Festkörper in einer bcc-Struktur (α-Fe). Die Gitterkonstante der bcc-Einheitszelle beträgt 2.87 Å (siehe auch Abschnitt A.1).

Im Fall des Wachstums von Fe auf CoGa(001) sind die Voraussetzungen völlig verschieden: Die Gitterkonstante von bcc-Fe entspricht nahezu perfekt der Gitterkonstanten des CoGa-Substrates (2.88 Å [61]). Man kann daher erwarten, daß der Eisenfilm isomorph zum CoGa-Substrat aufwächst, also eine bcc-Struktur annimmt. Wie im folgenden Abschnitt gezeigt wird, trifft dies auch zu. Die nahezu perfekte Übereinstimmung beider Gitterkonstanten führt sogar zu einem außergewöhnlich gut wachsenden Schichtsystem. Eisen bleibt bis zu großen Schichtdicken isomorph zum CoGa-Substrat, wobei sich atomar glatte Oberflächen bilden. Zudem wächst Eisen lagenweise auf. Dadurch kann die aufgewachsene Schichtdicke mit TEAS sehr präzise bestimmt werden. Wachstum, Struktur und Oberflächenmorphologie der Filme wurden wieder mit LEED und TEAS analysiert. AES diente zur Bestimmung der chemischen Zusammensetzung der Oberfläche.
8.1 Temperaturstabilität von Fe auf CoGa(001)

8.1 Temperaturstabilität von Fe auf CoGa(001)

![Graph](image)

Abbildung 8.1: AES-Spektren von 7 ML α-Fe(001) (85 Fe-Atome/nm²) auf CoGa(001): Spektrum (I) wurde unmittelbar nach Aufdampfen des Fe-Filmes bei 310 K aufgenommen. Die Spektren (II)-(IV) stammen von Fe/CoGa(001) nach Anlassen auf 650, 810 und 890 K. Gestrichelte Linien markieren die AES-Übergänge von Fe (47 eV), Co (52 und 775 eV) und Ga (55 und 1070 eV).

8.2 Fe-Wachstum bei verschiedenen Temperaturen

und Gallium an (Kurven (b) und (c) in Abb. 8.2), was sich aber leicht durch die verringerte Abschirmung von Kobalt und Gallium durch die verkleinerte Menge an Eisen erklären läßt. Oberhalb 850 K ist das AES-Signal von Eisen vollständig verschwunden. Der Eisenfilm ist vollständig in das Substrat hineindiffundiert.

8.2 Wachstum von Fe auf CoGa(001) bei verschiedenen Temperaturen

Abb. 8.3 zeigt die gespiegelte Heliumintensität, aufgenommen während des Wachstums bei 310, 370 und 550 K. Die Bedampfungsrate betrug 0.9 ML-α-Fe(001)/min ($\approx 67 \, s/ML$). Die Intensität ist in allen drei Fällen normiert auf die gespiegelte Heliumintensität der reinen CoGa(001)-Oberfläche, gemessen bei der jeweilig verwendeten Auflamptemperatur. Alle drei Kurven sind als Funktion der Eisenbedeckung Θ dargestellt, wobei Θ sowohl in Monolagen α-Fe(001) als auch in Fe-Atome/nm2 angegeben ist. Die Energie der verwendeten He-Atome betrug 24.4 meV, was einem Wellenvektorbetrag $|\vec{k}|$ von 6.84 \AA^{-1} entspricht (siehe auch Gleichung 2.3). Nimmt man an, daß zwei Monolagen α-Fe(001) durch eine Höhe $h = \frac{2.87}{2} \approx 1.44\AA$ getrennt sind, so liefert Einsetzen von h und $|\vec{k}|$ in Gleichung 2.9 eine Phasenverschiebung ϕ von 13.9 rad in Bezug auf die Streuung der Heliumatome zwischen zwei benachbarten α-Fe(001)-Terrassen. Diese Zahl läßt sich weder durch ein ungerades noch ein gerades Vielfaches von π beschreiben. Die Messungen wurden also mit einer Phasenverschiebung durchgeführt, die zwischen exakter anti-Phase- und exakter in-Phase-Bedingung liegt.

Bei Betrachtung von Abb. 8.3 fällt sofort auf, daß die gespiegelte Heliumintensität in allen drei Fällen periodisch oszilliert. Sie erreicht in allen drei Kurven recht hohe Werte, was auf die Existenz gut geordneter Eisenfilme hindeutet. Während des Wachstums bei Raumtemperatur (durchgezogene Kurve in Abb. 8.3 (a)) wird nach dem Auftreten der vierten Oszillation eine gespiegelte Heliumintensität beobachtet, die etwa dem 1.6-fachen der Intensität einer
Abbildung 8.3: Gespiegelte Heliumintensität aufgenommen während des Wachstums von Fe auf CoGa(001) bei 310 K (durchgezogene Kurve in Abb. (a), 370 K (gepunktete Kurve in Abb. (a)) und 550 K (Abb. (b)). Die Bedampfungsrate betrug 0.9 ML-\(\alpha\)-Fe(001)/min (\(\approx 67 \text{ s/ML}\). Die Kurven sind als Funktion der Eisenbedeckung \(\Theta\) aufgetragen. Dabei ist \(\Theta\) sowohl in Monolagen \(\alpha\)-Fe(001) als auch in Fe-Atome/nm\(^2\) angegeben. Die gespiegelte He-Intensität ist für alle Kurven auf die Intensität von CoGa bei der jeweiligen Temperatur normiert. Die Energie der verwendeten He-Atome betrug 24.4 meV. Die senkrechten, gestrichelten Linien entsprechen Bedeckungen von \(\frac{1}{4}\), \(\frac{1}{2}\), \(\frac{3}{4}\), ... ML \(\alpha\)-Fe(001).
8.2 Fe-Wachstum bei verschiedenen Temperaturen

Die Wachstumstemperatur hat aber nicht nur einen Einfluß auf die maximale Intensität des (0,0)-Reflexes. Auch die Positionen in Abb. 8.3 (a) und (b), bei welchen Oszillationen auftreten, variieren mit der Temperatur. Tabelle 8.1 zeigt eine Aufstellung der Oszillationen für die drei verschiedenen Wachstumtemperaturen. Dabei sind hier jeweils die Positionen der Oszillationsmaxima als Funktion der aufgedampften Eisenmenge (ML α-Fe(001)) aufgetragen.

<table>
<thead>
<tr>
<th>Oszillation Nr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oszillations-</td>
<td>310 K</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>maximum (ML α-Fe(001))</td>
<td>370 K</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>550 K</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabelle 8.1: Positionen der Oszillationsmaxima aus Abb. 8.3, welche sich in der gespiegelten He-Intensität während des Wachstums von Fe auf CoGa(001) bei 310, 370 und 550 K bilden.
8.2.1 Wachstum von Fe auf CoGa(001) bei 310 K und 370 K

Das Wachstum von Eisen bei 310 und 370 K (Abb. 8.3 (a)) verläuft sehr ähnlich. In beiden Fällen oszilliert die gespiegelte Intensität periodisch, was auf lagenweises Wachstum hindeutet. Zwar ist die gespiegelte Heliumintensität während des Wachstums bei 370 K etwas größer als bei 310 K, die Oszillationen treten jedoch in beiden Fällen bei ungefähr denselben Eisenbedeckungen auf. Folglich bildet die Oberfläche während des Wachstums bei 310 und 370 K die gleiche Strukturfolge, nur ist die Struktur bei 370 K etwas besser geordnet.

Es ist wahrscheinlich, daß der Eisenfilm in derselben Struktur wie die unrekonstruierte CoGa(001)-Substratoberfläche aufwächst, denn CoGa(001) und α-Fe(001) sind strukturell nahezu identisch (siehe auch Abschn. 3.2.2 und A.1.1). Mit Hilfe dieser Annahme kann die in Abb. 8.3 (a) beobachtete Oszillationsfolge als Funktion der Eisenbedeckung wie folgt interpretiert werden: Das Maximum der ersten Oszillation tritt bei einer Eisenbedeckung von ca. $\frac{1}{4}$ ML α-Fe(001) (3 Fe-Atome/nm²) auf. Erklärt werden kann dieses Verhalten dadurch, daß die erste $\frac{1}{4}$ ML Eisen in die äußere Atomlage der c(4 x 2)-Rekonstruktion von CoGa(001) (siehe auch Abschn. 8.3) eingebaut wird. Erst danach beginnt der Film lagenweise aufzuwachsen: Die zweite Oszillation in Abb. 8.3 (a) tritt nach Bedampfung mit einer Eisenmenge von $1\frac{1}{4}$ ML auf; die dritte folgt bei Bedeckung mit $2\frac{1}{4}$ ML und die vierte nach einer Bedeckung mit $3\frac{1}{4}$ ML α-Fe(001) (siehe auch Tabelle 8.1). Zwischen dem Auftreten der ersten und vierten Oszillation befindet sich also jeweils eine Differenz von genau einer Monolage α-Fe(001) pro Oszillation. Folglich kann das Wachstum des Eisenfilms in diesem Bereich durch ein lagenweises Wachstum (Frank-van der Merwe) beschrieben werden, bei welchem die n-te Monolage zunächst vollständig gefüllt wird, bevor die (n+1)-te Schicht (n=1,2,3) aufwächst. Bei weiterer Zugabe von Eisen ändert sich die Oszillationsfolge. Das fünfte, sechste, siebte und achte Maximum wird nach Zugabe von jeweils zwei Monolagen α-Fe(001) beobachtet (siehe Tabelle 8.1). Man kann daraus folgern, daß der Eisenfilm oberhalb Bedeckungen mit $3\frac{1}{4}$ ML α-Fe in Doppellagen aufwächst.
8.2 Fe-Wachstum bei verschiedenen Temperaturen

8.2.2 Wachstum von Fe auf CoGa(001) bei 550 K

Wachstumsprozeß

Das Wachstum bei 550 K (Abb. 8.3 (b)) weicht vom Wachstum bei 310 K bzw. 370 K ab. Zum einen ist die Heliumintensität viel größer. Die Oberfläche des Eisenfilms ist folglich besser geordnet. Zum anderen treten die beobachteten Oszillationsmaxima in einer anderen Folge auf: Das erste Oszillationsmaximum, welches in Abb. 8.3 (b) bei $2 \frac{1}{4}$ ML zu beobachten ist, ist nicht sehr gut ausgeprägt. Es hebt sich nur schwach aus der linken Flanke der zweiten Oszillation hervor. Nach Auftreten der zweiten Oszillation folgen die weiteren Maxima (3 bis 9) sukzessive nach jeweils einer Bedeckung mit einer Monolage α-Fe(001) (siehe auch Tabelle 8.1). Folglich beginnt der Eisenfilm auch im Falle des Wachstums bei 550 K zunächst mit dem Auffüllen der c(4 x 2)-Struktur von CoGa(001) und wächst danach lagenweise auf. Dabei ist allerdings bei einer Bedeckung mit $1 \frac{1}{4}$ ML keine Oszillation sichtbar. (Möglichwerweise beginnt der Film mit dem Wachstum einer Doppellage.)

Wie man bei näherer Betrachtung von Abb. 8.4 erkennt, verhält sich das etappenweise Wachstum von Fe auf CoGa(001) nur zum Teil ähnlich zum kontinuierlichen Wachstum (Abb. 8.3 (b)). Den ersten Ansatz eines Oszillationsmaximums erkennt man in Abb. 8.4 bei einer Bedeckung von $2 \frac{1}{4}$ ML α-Fe(001). Danach folgt jede weitere Oszillation bei jeder weiteren Bedeckung mit einer Monolage α-Fe(001). Folglich wächst der Film auch in diesem Experiment lagenweise (in Monolen) auf. Allerdings gibt es auch Unterschiede zwischen dem kontinuierlichen und dem etappenweisen Wachstum von Fe bei 550 K: Nach jeder Unterbrechung des Bedampfungsprozesses steigt die Intensität mit der Zeit an. Der Eisenfilm heilt also jedesmal noch aus, nachdem die Eisenbedampfung abgestellt wurde. Dabei bildet sich immer wieder eine gut geordnete Oberfläche. Selbst nach Bedeckung mit 20 ML Eisen steigt die Intensität noch auf etwa die zwanzigfache Heliumintensität einer reinen CoGa(001)-Einkristalloberfläche an (Abb. 8.4). Die Oberfläche wird aber nicht nur immer wieder gut geordnet, das TEAS-Signal fängt auch jedesmal erneut
Abbildung 8.4: Gespiegelte Heliumintensität aufgenommen während des Wachstums von Fe auf CoGa(001) bei 550 K. Die Bedampfungsrate betrug 0.9 ML-α-Fe(001)/min (67 s/ML). Die Bedampfung wurde nach Bedeckung mit 3, 4, 6, 9, 14, 19 und 45 Monolagen α-Fe(001) für jeweils zwei Stunden unterbrochen. In dieser Zeit wurden die Strukturuntersuchungen durchgeführt, welche in Abb. 8.6 abgebildet sind.

An zu ossillonieren. Es war somit möglich, einen isomorphen Eisenfilm bis zu sehr hohen Schichtdicken (hier 30 ML) in lagenweisen Wachstum auf dem CoGa-Einkristall aufzubringen und dabei TEAS-Oszillationen zu beobachten. Auch nach einer Bedeckung mit 45 ML α-Fe steigt die Intensität wieder an (markiert durch einen Punkt in Abb. 8.4). Es ist also noch kein Ende dieses periodischen Wachstum-Ausheil-Prozesses abzusehen. Wahrscheinlich kann dieser bei etappenweisen Wachstum beobachtete (Frank-van der Merwe)-Mechanismus noch bis zu sehr viel höheren Schichtdicken durchgeführt werden. Die maximale Schichtdicke, bis zu der Eisen bei diesem Verfahren lagenweise und isomorph zum Substrat aufwächst, wurde noch nicht ermittelt. Aus zeitlichen Gründen und da der Film wegen anderer Experimente wieder vom Substrat entfernt werden mußte, wurden die hier vorgestellten Experimente bei einer Eisenschichtdicke von 45 ML abgebrochen.
Abbildung 8.5: LEED-Bilder von α-Fe(001) auf CoGa(001), aufgedampft bei 550 K. Das linke Bild stammt von einem 6 ML dicken Eisenfilm, das rechte von einem 15 ML dicken Film. Für Eisenfilmldicken (< 7 ML) sind die Beugungsmuster identisch. Sie entsprechen dem linken Bild. Auch für Schichtdicken innerhalb 7 ML < θ < 45 ML werden identische Beugungsmuster beobachtet (rechtes Bild). Die Energie der verwendeten Elektronen betrug 93 eV. Der untere Teil der Abbildung zeigt die den entsprechenden Bedeckungen zugeordneten Skizzen der darüberliegenden LEED-Bilder.

Struktur der Oberfläche

Die Struktur wurde während des Wachstums bei 550 K mit LEED und TEAS untersucht. Abb. 8.5 zeigt ein typisches LEED-Bild, welches für Eisenbedeckungen < 7 ML α-Fe(001) beobachtet wird (linkes Bild). Das hier gezeigte Bild wurde bei einer Schichtdicke von 6 ML aufgenommen. Oberhalb einer Eisen-
bedeckung von 7 ML ändern sich die LEED-Bilder. Das rechte Bild in Abb. 8.5 stammt von einer 15 ML dicken Eisenschicht auf CoGa. Es repräsentiert sämtliche LEED-Beugungsmuster, die für Schichtdicken zwischen 7 und 45 ML beobachtet werden.

Dünne Eisenschichten (< 7 ML) zeigen im LEED-Bild (linkes Bild in Abb. 8.5) ein quadratisches Beugungsmuster. Durch Vergleich des Bildes mit einer Referenzaufnahme der reinen CoGa(001)-Oberfläche konnte die Gitterkonstante dieser Struktur ermittelt werden: Sie beträgt \(a^* = 2.19 \text{\AA}^{-1} \) im reziproken Raum, was im Ortsraum einer Gitterkonstanten \(a \) von 2.87 \(\text{\AA} \) entspricht.

Das beobachtete Beugungsmuster entspricht also hervorragend dem erwarteten Beugungsbild einer \(\alpha\)-Fe(001)-Oberfläche (bcc-Eisen). Diese besitzt eine quadratische Einheitszelle mit einer Gitterkonstanten von 2.866 \(\text{\AA} \) im Ortsraum [43, 60] (siehe auch Abschn. A.1.1). Bei Bedeckungen oberhalb 7 ML \(\alpha\)-Fe(001) ändern sich die LEED-Bilder. Es treten zusätzliche Beugungsreflexe auf (siehe Abb. 8.5, rechtes Bild). Dabei befinden sich diese zusätzlichen Reflexe in der Mitte der quadratischen Einheitszellen, welche für Bedeckungen (< 7ML) beobachtet werden. Das Beugungsmuster dickerer Eisenfilme (dicker als 7 ML) zeigt also eine quadratische Struktur, welche gegenüber der \(\alpha\)-Fe(001)-Struktur um 45° verdreht ist. Die Gitterkonstante dieser Struktur beträgt 1.55\(\text{\AA}^{-1} \) im reziproken Raum, was \(\approx \frac{1}{2} \sqrt{2} a_{\alpha-Fe}^* \) entspricht. Damit hat das beobachtete Beugungsmuster dieselbe Struktur, welche man für eine \(c(2 \times 2) \)-Rekonstruktion von \(\alpha\)-Fe(001) erwartet. Folglich kommt es bei Eisenbedeckungen > 7 ML \(\alpha\)-Fe(001) zu einer Änderung der Oberflächenstruktur, in dem Sinne, daß sich auf der \(\alpha\)-Fe(001)-Fläche eine geordnete \(c(2 \times 2) \)-Rekonstruktion ausbildet.

TEAS-Messungen bestätigen diese strukturelle Umwandlung der Oberfläche. Abb. 8.6 zeigt Helium-Beugungsspektren, aufgenommen nach Bedampfung der CoGa(001)-Oberfläche mit 3, 4, 6, 9, 14, 19 und 45 Monolagen \(\alpha\)-Fe(001) bei 550 K. Die Helium-Beugungsmessungen wurden in CoGa-[010]- (Abb. 8.6 (a)) und CoGa-[110]-Richtung (Abb. 8.6 (b)) durchgeführt. Zur besseren Orientierung ist eine LEED-Skizze von \(c(2 \times 2)\alpha\)-Fe(001) beigefügt (Abb. 8.6 (c)), in welcher die Messrichtungen eingezeichnet sind. Die Energie der verwendeten He-Atome betrug 24.4 meV. Die zugehörigen Bedampfungsvorgänge, welche jeweils unmittelbar vor den Beugungsmessungen stattfanden, sind in Abb. 8.4 dargestellt.

Bis zu Schichtdicken von etwa 4 ML \(\alpha\)-Fe(001) sind nur in den Helium-Beugungsspektren der [010]-Richtung scharfe Reflexe sichtbar (Abb. 8.6 (a)). Diese Reflexe entsprechen dem \(\pm (0, 1) \)-Beugungsrelexen erster Ordnung von \(\alpha\)-Fe(001). In [110]-Richtung (Abb. 8.6 (b)) sind keine Reflexe sichtbar, bzw. die \(\pm (\frac{1}{2}, \frac{1}{2}) \)-Reflexe sind extrem flach und stark verbreitert. Möglicherweise ist ein großer Teil der Oberfläche bei diesen Bedeckungen unrekonstruiert. Eine
weitere Möglichkeit ist aber auch, daß die c(2 x 2)-Rekonstruktion bereits bei diesen Bedeckungen zumindest zum Teil vorhanden ist, jedoch nur sehr ungeordnet. Ab Schichtdicken von etwa 6 ML Eisen ändern sich die Spektren: Die Intensität der ±(0,1)-Reflexe in [010]-Richtung nimmt mit zunehmender Fe-Bedeckung zu (Abb. 8.6 (a)). Der wesentliche Unterschied zu den Spektren der dünnen Fe-Filme auf CoGa(001) (θ ≤ 4 ML), besteht jedoch in dem Erscheinen der ±(1, 0)-Reflexe in den Spektren der [110]-Richtung (Abb. 8.6 (b)). Diese ±(1, 0)-Reflexe, welche erstmalig ab Schichtdicken von 6 ML α-Fe(001) auftreten, weisen eindeutig auf die Entstehung einer geordneten c(2 x 2)-α-Fe(001)-Oberfläche hin. Sie bestätigen damit die bereits in den LEED-Bildern gefundenene Oberflächentransformation aus der unrekonstruierten Oberfläche (oder z.T. ungeordneten c(2 x 2)-rekonstruierten-Oberfläche) in eine geordnete c(2 x 2)-Rekonstruktion ab Schichtdicken von etwa 6-7 ML Eisen. Die ±(1, 0)-Reflexe werden zwischen 6 und 19 ML α-Fe(001) immer schärfer und ihre Intensität steigt an. Die c(2 x 2)-Rekonstruktion bildet sich mit steigender Schichtdicke zunehmend aus. Bei Eisenfilmen von ca. 19 ML Dicke ändern sich die Reflexe nicht mehr. Die Oberfläche hat sich bestmöglich geordnet. Die Spektren deuten auf die Existenz einer gut geordneten, atomär glatten c(2 x 2)-α-Fe(001)-Oberfläche hin.

8.3 Diskussion und Zusammenfassung

Untersucht wurden die thermische Stabilität und das Wachstum dünner Eisenfilme auf einem CoGa-Einkristall. Eisenfilme auf CoGa(001) sind bis zu Temperaturen von etwa 650 K thermisch stabil. Oberhalb 650 K kommt es zu einer Diffusion von Eisen in den Kristall hinein. Im gesamten Temperaturbereich überhalb Raumtemperatur bis hin zur Grenze der thermischen Stabilität wächst Eisen lagenweise auf. Mit Heliumstreuung kann ein oszillierendes Verhalten der gespiegelten Intensität während des Wachstums beobachtet werden, was die periodische Bildung der einzelnen Monolagen widerspiegelt.

Während des Wachstums bei 310 und 370 K wurde lagenweises Wachstum bis hin zu Schichtdicken von 3¼ ML α-Fe(001) beobachtet. Ab 3¼ ML wächst Fe in Doppellagen auf. Dabei beginnt das lagenweise Wachstum erst dann, nachdem bereits ¼ ML Eisen auf dem CoGa(001)-Substrat deponiert wurde. Folglich sind die in Abb. 8.3 (a) gezeigten Oszillationen alle um eine viertel Monolage auf der x-Achse verschoben (siehe auch Tabelle 8.1). Erklärt werden kann dieses Verhalten durch die Tatsache, daß der Wachstumsprozeß auf der c(4 x 2)-rekonstruierten CoGa(001)-Oberfläche startet. Es wird zunächst eine viertel Monolage Eisen in die c(4 x 2)-Rekonstruktion der äußersten Lage des CoGa(001) eingebaut, bevor das lagenweise Wachstum von Eisen beginnt.
8.3 Diskussion und Zusammenfassung

<table>
<thead>
<tr>
<th></th>
<th>a) Bedeckung [ML]:</th>
<th>b) Bedeckung [ML]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td> (\frac{1}{4}) X</td>
<td> (\frac{3}{4}) X</td>
</tr>
<tr>
<td>(ii)</td>
<td> (\frac{1}{4}) X + (\frac{1}{4}) Fe</td>
<td> (\frac{3}{4}) X + (\frac{1}{4}) Fe</td>
</tr>
<tr>
<td>(iii)</td>
<td> (\frac{1}{4}) X + (\frac{3}{4}) Fe</td>
<td> (\frac{3}{4}) X + (\frac{3}{4}) Fe</td>
</tr>
<tr>
<td>(iv)</td>
<td> (\frac{1}{4}) X + 1 (\frac{1}{4}) Fe</td>
<td> (\frac{3}{4}) X + 1 (\frac{1}{4}) Fe</td>
</tr>
</tbody>
</table>

X (Co oder Ga): ☐ Fe: ☐ \(\frac{1}{4} \) X + \(\frac{3}{4} \) Fe): ☐ \(\frac{3}{4} \) X + \(\frac{1}{4} \) Fe): ☐

Abbildung 8.7: Modelle des Wachstums von Eisen auf der c(4x2)-rekonstruierten CoGa(001)-Oberfläche, welche zu 1/4 (a) und welche zu 3/4 (b) mit Co bzw. Ga-Atomen in der äußersten Lage belegt ist.

Hierbei gibt es mindestens zwei Möglichkeiten, wie dieser Einbau von Eisen in die c(4x2)-Rekonstruktion interpretiert werden kann. Diese zwei Möglichkeiten und ihr Einfluß auf den Wachstumsprozeß sind schematisch in Abb. 8.7 illustriert.

Die erste Interpretation des Wachstumsprozesses (dargestellt in Abb. 8.7 (a)) basiert auf der Annahme, daß die c(4x2)-Rekonstruktion von CoGa(001) so wie in Abb. 3.4 (b) (Abschn. 3.2.2) dargestellt aussieht, also \(\frac{1}{2} \) der Oberflächenplätze mit Co- bzw. Ga-Atomen besetzt sind. Eine solche Substratoberfläche ist schematisch in Abb. 8.7 (a) (i) illustriert. Durch Zugabe von Fe wird die Oberfläche zunächst glatter, wodurch ihre Reflektivität zunimmt und als Folge die Heliumintensität ansteigt. Nach Zugabe einer vierten Monolage Fe tritt in Abb. 8.3 (a) das erste Oszillationsmaximum auf. Bei dieser Bedeckung ist die CoGa(001)-Oberfläche zur Hälfte mit Fe- und Co-Atomen (oder Ga-Atomen) besetzt (Abb. 8.7 (a), Fig. (ii)). Nimmt man ferner an, daß an dieser Stelle das lagenweise Wachstum einsetzt, die hinzukommenden Fe-Atome also nicht nur weiterhin die erste Lage auffüllen, sondern gleichzeitig auch schon in der zweiten Lage eine neue Schicht bilden, so läßt sich erklären, warum die Heliumintensität wieder abnimmt. Dies kann nämlich durch Interferenzeffekte zwischen der zweiten und der ersten Lage gedeutet werden. Wenn die äußerste Lage bei diesem Wachstumsprozeß dabei stets nur halb gefüllt wird, ist nach Zugabe einer \(\frac{3}{4} \) Monolage Fe (Abb. 8.7 (a) (iii)) genau der Zustand erreicht, bei
welchem der Interferenzeffekt maximal wird und in der gespiegelten Heilumin-
tensität ein Minimum auftritt. Nach Zugabe einer weiteren halben Monolage
Fe, also nach Deposition von insgesamt $\frac{1}{2}$ Monolagen Fe ist der Ausgangs-
zustand einer halbgefüllten Oberfläche wieder erreicht (Abb. 8.7 (a) (iv)) und
der lagenweise Wachstumsprozeß beginnt von neuem.

Die zweite Möglichkeit zur Interpretation des Wachstumsprozesses und damit
des Kurvenverlaufs in Abb. 8.3 (a) basiert auf der Annahme, daß die $c(4\times 2)$-
Rekonstruktion der reinen CoGa(001)-Oberfläche nicht so wie in Abb. 3.4 (b)
(Abschn. 3.2.2) dargestellt aussieht, sondern eine Struktur besitzt, in der $\frac{1}{4}$
Monolage Co oder Ga fehlen. Eine solche Oberfläche ist in Abb. 8.7 (b) (i) illu-
striert. Nimmt man an, daß das Fe-Wachstum auf dieser Oberfläche startet, so
tritt das erste Oszillationsmaximum der gespiegelten Heiluminintensität in Abb.
8.3 (a) auf (nach Zugabe von $\frac{1}{2}$ ML α-Fe(001)), wenn die Leerstellen in der
$c(4\times 2)$-Struktur von CoGa(001) vollständig gefüllt sind (Abb. 8.7 (b) (ii)).
Danach wächst der Fe-Film bis zu $3\frac{1}{4}$ ML α-Fe(001) lagenweise auf, wobei die
n-te Schicht zunächst vollständig gefüllt wird, bevor das Wachstum auf der
(n+1)-ten Schicht beginnt. Ein solcher Wachstumsprozeß ist für das Wachstum
der zweiten Lage in Abb. 8.7 (b) (iii) und (iv) illustriert. Bei diesem Modell
wird angenommen, daß die Oberfläche bei Auftreten der Oszillationsmaxima
stets vollständig bedeckt und damit rekonstruiert ist. Nach Bedeckung mit
$3\frac{1}{4}$ ML wächst Fe in Doppellagen auf.

Bei 550 K beobachtet man ein anderes Verhalten als bei 310 und 370 K: Os-
zillationen mit einer Periode von einer Monolage können hier erst nach der
Deposition von $2\frac{1}{4}$ ML Fe beobachtet werden (Abb. 8.3 (b)). Folglich be-
ginnt das Eisen bei dieser Temperatur zunächst mit dem Wachstum einer
Doppellage und erst danach setzt lagenweises Wachstum ein. Für das Wachstum
der Fe auf CoGa(001) bei 550 K wurden auch Strukturstudien durchgeführt. Diese zeigen, daß die Oberfläche des Eisenfilms (α-Fe(001)) ab
Schichtdicken von etwa 7 ML eine $c(2\times 2)$-Rekonstruktion aufweist. Dünnere
Schichten (< 7 ML) besitzen eine überwiegend unrekonstruierte Oberfläche.

Abb. 8.4 zeigt die gespiegelte Heiluminintensität, aufgenommen während des
etappenweisen Wachstums von Fe auf CoGa(001) bei 550 K. Es wurde festge-
stellt, daß sich die Struktur des Eisenfilm nach jeder Unterbrechung des Auf-
dampfprozesses als Funktion der Zeit ordnet. Zudem wächst Fe bei jeder erneu-
ten Bedampfung lagenweise auf dem zuvor préparierten Film auf, wenn man
diesen genügend Zeit zum Ausheilen gegeben hat. Durch etappenweises Auf-
dampfen von jeweils wenigen Schichten gefolgt von anschließendem Ausheilen
derselben, konnte ein lagenweises Wachstum bis zu sehr hohen Schichtdicken
induziert werden. TEAS-Oszillationen wurden so bis zu 30 ML beobachtet. Ein
Ende diese Wachstum-Ausheil-Prozesse war aber auch nach Bedeckungen mit
8.3 Diskussion und Zusammenfassung

45 ML Fe noch nicht zu finden. Wahrscheinlich kann man durch etappenwei- ses Aufdampfen noch zu sehr viel dickeren Schichten gelangen, die lagenweise aufwachsen. Aus experimentellen und zeitlichen Gründen wurden aber keine dickeren Eisenfilme als 45 ML untersucht.

Abschließend sei bemerkt, daß die entstandenen Eisenfilme im gesamten Tem- peraturbereich (300 K < T < 650 K) gut geordnet sind. Die gespiegelte Heliumintensität erreicht Werte, die bei 310 K etwa dem 1.6-fachen und bei 370 K dem 2.4-fachen der Intensität einer reinen CoGa(001)-Oberfläche entsprechen. Bei 550 K werden sogar Intensitäten mit mehr als der zwanzigfachen Intensität von CoGa(001) erzielt. Folglich werden die Eisenfilme umso besser geordnet, je höher die verwendete Aufdampftemperatur ist. Allerdings besteht bei hohen Temperaturen auch die Gefahr einer Vermischung von Eisen und CoGa, und zwar umso mehr, je näher man der Grenztemperatur der thermischen Stabilität der Filme bei 650 K kommt.
Kapitel 9

Zusammenfassung

Auf einem Kupfer-Einkristall(Cu(110)-Oberfläche) wurden das Wachstum dünner Eisenfilme sowie die Präparation wohlgeordneter Eisenoxydfilme untersucht. Außerdem wurde die Präparation dünner Doppelschichten bestehend aus Fe/Fe_2O_3 und Co/Fe_2O_3 auf Cu(110) studiert, sowie deren thermisches Verhalten analysiert. Ferner wurde die Oxidation einer intermetallischen Legierung bestehend aus 50 % Kobalt und 50 % Gallium untersucht: Auf der CoGa(001)-Oberfläche bildet sich durch Adsorption von Sauerstoff und der dadurch induzierten Segregation von Gallium ein ultradünnes, wohlgeordnetes Ga_2O_3. Auf demselben Substrat, CoGa(001), wurde Eisen aufgedampft. Eisen wächst hier lagenweise auf, es entsteht ein gut geordneter α-Fe-Film mit einer zum Substrat isomorphen Struktur.

Fe auf Cu(110)

Wachstumsprozeß beobachtet werden, welcher sich durch die Bildung von Eisenseln und deren anschließende Koaleszenz interpretieren läßt. Einen atomaren glatten Eisenfilm auf Cu(110) erhält man durch Aufdampfen von Eisen bei tiefen Temperaturen und anschließendes Anlassen des Films: Dazu wurde bei 130 K ein 5 ML (in Bezug auf γ-Fe(110)) dicker Eisenfilm auf Cu(110) aufgedampft, welcher zunächst ungeordnet ist. Durch Anlassen auf höhere Temperaturen ordnet er sich. Nach Anlassen auf 240 K (20 K/min) wird ein zum Substrat isomorpher γ-Fe-Film mit atomar glatter (110)-Oberfläche beobachtet. Dieser Film ist nicht stabil. Nach Anlassen auf Temperaturen oberhalb 240 K kommt es zur Bildung von (110)-Terrassen, (111)-Facetten sowie (11T)-Facetten. Diese Facettenbildung setzt bereits bei 240 K ein. Sie kann allerdings vermieden werden, wenn der Film sofort wieder abgekühlt wird. Abkühlen auf Temperaturen unterhalb 200 K reicht aus, um die atomar glatte γ-Fe(110)-Oberfläche über mehrere Stunden hinweg zu konservieren.

In der vorliegenden Arbeit wurde auch die Temperaturstabilität dünner Eisenfilme auf Cu(110) untersucht. Eisen verweilt bis etwa 540 K thermisch stabil auf dem Kupfer-Substrat. Bei höheren Temperaturen diffundiert Eisen in den Kupfer-Kristall hinein.

Eisenoxid auf Cu(110)

Untersucht wurde die Oxidation des zuvor präparierten atomar glatten γ-Fe-Films auf Cu(110). Da der glatte γ-Fe(110)-Film nur bei tiefen Temperaturen stabil ist, mußte auch die Oxidation bei tiefen Temperaturen erfolgen. Der Eisenfilm wurde bei 130 K oxidiert. Nach Zugabe von 25 L O$_2$ entsteht ein ungeordneter Fe$_2$O$_3$-Film auf dem Cu-Substrat. Es kann allerdings nicht ausgeschlossen werden, daß der Eisenfilm unvollständig oxidiert, daß also ein ultradünn Fe-Film unter dem Oxid verborgen bleibt. Nach Anlassen auf höhere Temperaturen ordnet sich der Fe$_2$O$_3$-Film, und zwar bereits nach Anlassen auf ca. 400 K. Mit der hier verwendeten Heizrate von 20 K/min muß die Probe allerdings bis auf mindestens 550 bis 600 K geheizt werden, um die Ordnung zu optimieren. In etwa demselben Temperaturbereich beginnt die schrittweise Reduktion des Fe$_2$O$_3$, vermutlich durch den zwischen Fe$_2$O$_3$ und Cu verborgenen Fe-Film. Ein Einfluß auf die Oberflächenstruktur wird dabei bis etwa 720 K nicht beobachtet. Oberhalb 700 K kommt es zusätzlich zu einem Zerfall des Oxides. Übrig bleibt nur eine weitere Oxidphase, welche zwischen 900 und 1100 K thermisch stabil ist. Vermutlich handelt es sich hierbei um ein ultradünnnes FeO.
Fe/Fe$_2$O$_3$- und Co/Fe$_2$O$_3$-Doppelschichten auf Cu(110)

Auf dem zuvor präparierten, geordneten Fe$_2$O$_3$/Cu(110) wurde bei 130 K ein 4.5 ML (in Bezug auf α-Fe(001)) dicker Eisenfilm aufgedampft. Dieser Film ist zunächst ungeordnet. Er ordnet sich nach Anlassen auf Temperaturen oberhalb 400 K. Nach Anlassen auf 530 K kann eine wohlgeordnete α-Fe(001)-Oberfläche beobachtet werden. Allerdings findet bei diesen Temperaturen schon eine Vermischung (Redoxreaktion) zwischen der Fe- und der Fe$_2$O$_3$-Schicht statt. Erste Anzeichen für eine solche Reaktion finden sich bereits bei 130 K, wahrscheinlich ist sie jedoch bis ca. 350 K auf die Grenzfläche zwischen dem Fe und dem Fe$_2$O$_3$ beschränkt. Oberhalb 350 K kommt es zu einer deutlich messbaren Diffusion von Sauerstoff in Richtung Oberfläche. Es ist also nur möglich, einen gut geordneten Eisenfilm auf Fe$_2$O$_3$/Cu(110) zu präparieren (Anlassen auf 530 K), wenn dabei eine Redoxreaktion zwischen dem Fe und dem Fe$_2$O$_3$ in Kauf genommen wird. Im Gegensatz dazu ist es gelungen einen wohlgeordneten, epitaktischen Kobalt-Film auf Fe$_2$O$_3$/Cu(110) aufzubringen, der zudem thermisch stabil ist: Aufdämpfen von Kobalt (7.5 ML fcc-Co(110)) auf Fe$_2$O$_3$/Cu(110) bei 130 K fährt zwar auch zunächst zur Ausbildung eines ungeordneten Kobaltfilms. Nach Anlassen auf Temperaturen oberhalb 300 K beginnt sich der Film jedoch zu ordnen. Vermischung von Kobalt und Fe$_2$O$_3$ findet aber erst oberhalb 400 K statt. Es ist also relativ einfach, einen wohlgeordneten, thermisch stabilen Kobaltfilm zu präparieren: Anlassen auf Temperaturen zwischen 300 und 400 K genügt.

CoGa(001) und Ga$_2$O$_3$/CoGa(001)

Erstmals wurde in dieser Arbeit die reine CoGa(001)-Oberfläche mit Heliumstreueung untersucht: Auch TEAS zeigt bei Raumtemperatur die erwarteten Reflexe einer c(4 x 2)-rekonstruierten CoGa(001)-Oberfläche. Zudem finden sich in verschiedenen Messungen Anzeichen für die Koexistenz einer ($\sqrt{3} \times \sqrt{3}$)-Rekonstruktion. Nach Anlassen auf Temperaturen oberhalb 500 K verschwinden im Heliumbeugungsbild einzelne Reflexe der c(4 x 2)-Rekonstruktion. Es ist nicht ganz geklärt, wie dies zu interpretieren ist. Möglicherweise verschwindet die c(4 x 2)-Rekonstruktion schrittweise bei hohen Temperaturen, zumindest aber verliert sie ihre langreichweitige Ordnung. Mit AES konnte eine Anreicherung der Oberfläche mit Kobalt bei Temperaturen oberhalb 850 K festgestellt werden.

Untersucht wurde auch die Oxidation der CoGa(001)-Oberfläche. Bei Raumtemperatur bildet sich ein ungeordnetes Ga-Oxid. Dieses Oxid ist bis etwa 850 K thermisch stabil. Darüber dissoziert es und Sauerstoff desorbiert. Nach Anlassen der bei Raumtemperatur oxidierten Oberfläche auf Temperaturen ober-
Kapitel 9: Zusammenfassung

halb 600 K beginnt sich das Oxid zu ordnen. Dabei ist die Oberfläche umso besser geordnet, je höher die verwendete Anlaßtemperatur ist. Allerdings ist die Oberfläche des CoGa(001) bei diesem Verfahren, Oxidation bei Raumtemperatur und anschließendes Anlassen der Probe, nicht vollständig mit β-Ga$_2$O$_3$ bedeckt. Einen geordneten Oxidfilm, der das Substrat vollständig bedeckt, erhält man bei direkter Oxidation bei hohen Temperaturen ($600K < T < 900K$).
Dabei gilt auch hier: Je höher die verwendete Oxidationstemperatur ist, umso besser ist das Oxid geordnet. Bei diesem Verfahren kann die CoGa(001)-Oberfläche auch bei Temperaturen von 900 K, also oberhalb der Zerfallstemperatur (850 K) des Oxids, oxidiert werden. Allerdings muß dabei ein erhöhter Sauerstoffdruck von mindestens $2 \cdot 10^{-7}$ mbar verwendet und das entstandene Oxid in der Sauerstoffatmosphäre auf unter 850 K abgekühlt werden.

Fe auf CoGa(001)

Untersucht wurde auch das Wachstum dünner Eisenfilme auf einem CoGa(001)-Substrat. Dünne Eisenfilme auf CoGa(001) sind bis etwa 650 K thermisch stabil. Oberhalb 650 K verschwindet Eisen von der Oberfläche, wahrscheinlich diffundiert es in den CoGa-Kristall hinein. Während des Wachstums bei 310, 370 und 550 K wurden mit Heliumstreuung periodische Oszillationen beobachtet, welche auf lagenweises Wachstum hindeuten. (Dabei beginnt das Wachstum bei 310 und 370 K lagenweise und geht ab $3\frac{1}{2}$ ML Fe in ein Doppellagenwachstum über, während bei 550 K zunächst die Bildung einer Doppellage und erst ab $2\frac{1}{2}$ ML Fe ein lagenweises Wachstum beobachtet wird.) Bei allen drei Temperaturen, 310, 370 und 550 K, entstehen geordnete Filme mit atomar glatten Oberflächen. Es deutet sich aber an, daß sich die Oberfläche der Filme umso besser ordnet, je höher die verwendete Aufdampfatemperatur ist. Mit der hier verwendeten Aufdampfgeschwindigkeit (≈ 1 min/ML) befand sich die Oberfläche während des Wachstumsvergangs nicht im thermodynamischen Gleichgewicht. Wurde der Aufdampfvergäng gestoppt, so ordnete sich die Oberfläche jedesmal als Funktion der Zeit. Während des Wachstums bei 550 K wurde dieser Effekt ausgenutzt, um dickere Schichten in lagenweisem Wachstum zu präparieren. Durch etappenweises Aufdampfen, d.h. unter Verwendung von Pausen, in welchen dem Film Gelegenheit zur Ausheilung gegeben wurde, konnte ein 30 ML dicker Eisenfilm in lagenweisem Wachstum auf dem CoGa(001) aufgebracht werden. Möglicherweise können mit diesem Verfahren noch viel dickere, geordnete Fe-Filme präpariert werden.

Bei den bei 550 K aufgedampften Eisenfilmen handelt es sich um α-Fe mit einer zum Substrat isomorphen Struktur. Bei dünnen Eisenfilmen ($< 7 ML$) wurde die Existenz einer unrekonstruierten α-Fe(001) Oberfläche beobachtet. Filme mit Schichtdicken > 7ML weisen eine c(2 x 2)-rekonstruierte α-Fe(001) Oberfläche auf.
Anhang A

Die verwendeten Materialien - eine Übersicht über Struktur und Eigenschaften

Der folgende Abschnitt liefert einen kurzen Überblick über die verwendeten Materialien. Die benutzten Substrate wurden bereits in Abschnitt 3.2 diskutiert. Vorgestellt werden hier deshalb nur die Eigenschaften der aufgedampften Filme. Der folgende Abschnitt stellt die wichtigsten physikalischen Eigenschaften der aufgedampften Filme vor. Dabei wird sowohl auf die allgemein bekannte Festkörperstruktur der Filme als auch speziell auf einige der beobachteten Oberflächen eingegangen.

A.1 Eisen

Im Festkörper kristallisiert Eisen in vier Phasen: α-Fe, γ-Fe, δ-Fe und ε-Fe. Bei Raumtemperatur liegt Eisen gewöhnlich in der α-Fe-Phase vor. Es handelt sich hierbei um eine kubisch raumzentrierte Struktur. Die Gitterkonstante beträgt 2.866 Å [43, 60]. Ein Modell der Einheitszelle von α-Fe ist in Abb. A.1 dargestellt. In seltenen Fällen kann Eisen bei Raumtemperatur und hohem Druck auch in einer hexagonalen Struktur vorkommen [60]. Diese ε-Fe-Phase wurde in der vorliegenden Arbeit jedoch nicht beobachtet, weswegen auch nicht weiter auf sie eingegangen wird. Das normalerweise bei Raumtemperatur vorliegende α-Fe ist nur bis etwa 910 °C stabil. Bei höheren Temperaturen kommt es zu einem strukturellen Phasenübergang: α-Fe geht in eine fcc-Struktur über, das sog. γ-Fe (Abb. A.2). Die Gitterkonstante von γ-Fe beträgt 3.64 Å [43, 60]. Auch γ-Fe ist nicht bis zum Schmelzpunkt thermisch stabil. Ab etwa 1390 °C verwandelt sich die fcc-Struktur von γ-Eisen zurück in eine kubisch raumzen-
trierte Struktur, jetzt allerdings mit einer Gitterkonstanten von 2,93 Å [43,60]. Diese Phase von Fe wird δ-Fe genannt. Auch sie wurde in der vorliegenden Arbeit nicht beobachtet. Ab 1535 °C schließlich schmilzt Eisen. Tabelle 3.1 zeigt noch einmal eine Zusammenfassung der wichtigsten Kristallstrukturdaten von Eisen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Struktur</th>
<th>Gitterkonstante (Å)</th>
<th>Dichte (g·cm⁻³)</th>
<th>thermisch stabiler Temperaturbereich (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Fe</td>
<td>bcc</td>
<td>2.8662 (T=20°)</td>
<td>7.86</td>
<td>< 910</td>
</tr>
<tr>
<td>γ-Fe</td>
<td>fcc</td>
<td>3.6460 (T=916°)</td>
<td>7.648</td>
<td>910 < T < 1390</td>
</tr>
<tr>
<td>δ-Fe</td>
<td>bcc</td>
<td>2.9322 (T=1394°)</td>
<td>7.355</td>
<td>1390</td>
</tr>
<tr>
<td>Schmelzpunkt</td>
<td></td>
<td></td>
<td></td>
<td>1535</td>
</tr>
</tbody>
</table>

Tabelle A.1: Kristallstrukturdaten von Eisen nach Landolt-Börnstein [60]

A.1.1 α-Fe-Oberflächen: α-Fe(001), c(2 x 2)-α-Fe(001)

Beobachtet wurde in der vorliegenden Arbeit die Existenz von α-Fe und γ-Fe. Sowohl auf Fe₂O₃/Cu(110) (Abschn. 6.1) als auch auf CoGa(001)(Abschn. 8) bilden sich bei Bedampfung mit Eisen wohlgemeinte α-Fe-Filme. In beiden Fällen kann eine (001)-Oberfläche beobachtet werden. Abb. A.1 (a) zeigt ein Strukturmodell des bcc-Eisenfilms. Dabei ist die (001)-Fläche grau schraffiert eingezeichnet. Die linke Seite von Abb. A.1 (b) liefert eine Draufsicht auf die α-Fe(001)-Oberfläche im Ortsraum. Rechts daneben ist die Struktur im reziproken Raum abgebildet. In beiden Räumen handelt es sich um ein quadratisches Gitter. Die Gitterkonstanten im Ortsraum beträgt ≈ 2.87Å, was im reziproken Raum einer Gitterkonstanten von ≈ 2.19Å⁻¹ (2π/a₂, Å⁻¹) entspricht. Auf CoGa(001) kann neben der (001)-Oberfläche auch eine c(2 x 2)-Rekonstruktion von α-Fe(001) beobachtet werden. Diese tritt bei Eisenfilmen mit Schichtdicken größer ≈7 ML auf. Eine mögliche Struktur der c(2 x 2) rekonstruierten Oberfläche ist in Abb. A.1 (c) eingezeichnet. Sie entspricht im Ortsraum einem α-Fe(001)-Gitter, bei welchem in [100]- und in [001]-Richtung jedes zweite Atom fehlt. Zusätzlich ist der Platz des Zentralatoms in der Mitte der Einheitszelle besetzt (linkes Bild in Abb. A.1 (c)). Die Oberfläche ist also nicht vollständig mit Fe-Atomen gefüllt. In Bezug auf die α-Fe(001)-Oberfläche fehlt die Hälfte der Atome. Im reziproken Raum ergibt sich für die c(2 x 2)-α-Fe(001)-Oberfläche eine Beugungsstruktur, wie sie im rechten Bild von Abb. A.1 (c) eingezeichnet ist.
Abbildung A.1: Struktur von bcc α-Eisen (a). Die grau schraffierte Fläche markiert die (001)-Fläche. Abb. (b) zeigt eine Draufsicht auf die α-Fe(001)-Oberfläche im Ortsraum und reziproken Raum. In der vorliegenden Arbeit wird auch die c(2 x 2)-Rekonstruktion von α-Fe(001) beobachtet, bei welcher die Oberfläche nur zur Hälfte bedeckt ist (c).
A.1.2 \(\gamma\)-Fe-Oberflächen: \(\gamma\)-Fe(110), \(\gamma\)-Fe(111), \(\gamma\)-Fe(11\bar{1})

Auf Cu(110) wird nach Bedampfung der Oberfläche mit Eisen ein fcc \(\gamma\)-Eisenfilm gefunden (siehe Abschn. 4). Der atomar glatte Eisenfilm, welcher nach Bedampfung der Cu(110)-Oberfläche und anschließendem Anlassen auf 240 K beobachtet wird, besitzt eine (110)-Oberfläche. Abb. A.2 (a) zeigt ein Strukturmodell von \(\gamma\)-Fe, bei dem die (110)-Fläche schraffiert eingezeichnet wurde. Eine Draufsicht auf die (110)-Fläche im Ortsraum ist in Abb. A.2 (b) eingezeichnet. Die Einheitszelle dieser Oberfläche besitzt eine rechteckige Struktur mit Kantenlängen von 3.64 \(\AA\) ([001]-Richtung) und 2.57 \(\AA\) ([1\bar{1}0]-Richtung). Auch im reziproken Raum weist das Beugungsmuster der \(\gamma\)-Fe(110)-Oberfläche eine rechteckige Einheitszelle auf (Abb. A.2 (c)). Die Kantenlängen betragen hier in [001]-Richtung \(\approx 1.73 \frac{\pi}{A^{-1}} (\frac{2\pi}{3.64} A^{-1})\) und in [1\bar{1}0]-Richtung \(\approx 2.44 A^{-1}\). Neben der (110)-Oberfläche von \(\gamma\)-Fe wird auf Cu(110) unter bestimmten Bedingungen auch die Existenz von Facetten beobachtet. Bei den Facettenoberflächen handelt es sich um die (111)- und die (11\bar{1})-Fläche von fcc \(\gamma\)-Fe. Abb. A.2 (d) zeigt die Struktur von \(\gamma\)-Fe mit eingezeichneter (11\bar{1})-Fläche (schraffiert). Aus Gründen der Übersicht wurde hier auf die Markierung der (111)-Fläche verzichtet. Sie ergibt sich durch Spiegelung der (11\bar{1})-Fläche an der (110)-Fläche. Die Draufsichten auf die (11\bar{1})- und die (111)-Fläche sind jedoch identisch. Eine solche Ansicht ist in Abb. A.2 (e) abgebildet. Im Ortsraum besitzt die (111)-Fläche (sowie die (11\bar{1})-Fläche) eine hexagonale Struktur, welche sich aus gleichseitigen Dreiecken mit einer Kantenlänge von \(\approx 2.57 A\) zusammensetzt. Im reziproken Raum ergibt sich ein reziprokes Gitter, welches ebenfalls eine hexagonale Struktur aufweist und deren Kantenlänge \(\approx 2.82 \frac{\pi}{A^{-1}} (\frac{2\pi}{2.57} A^{-1})\) beträgt. Das reziproke Gitter der \(\gamma\)-Fe(111)-Oberfläche ((11\bar{1})-Oberfläche) ist in Abb. A.2 (f) abgebildet.
\(\gamma\text{-Fe: } a_{\gamma\text{-Fe}} = 3.64 \, \text{Å} \); \(a_{\gamma\text{-Fe}}^* = 1.73 \, \text{Å}^{-1} \)

Abbildung A.2: Struktur von fcc \(\gamma \)-Eisen. Grau schraffiert eingezeichnet sind die (110)- (a) und die (11\(\overline{1} \))-Oberfläche (d). Dabei ist letztere strukturell identisch zur (111)-Fläche. Abb. (b) zeigt eine Draufsicht auf die \(\gamma \text{-Fe}(110) \)-Oberfläche im Ortsraum. Eine Draufsicht auf die \(\gamma \text{-Fe}(11\overline{1}) \), bzw. \(\gamma \text{-Fe}(111) \)-Oberfläche ist in Abb. (e) dargestellt. Abb. (c) und (f) zeigen diese Flächen im reziproken Raum.
A.2 Kobalt

In der Literatur findet man für Kobalt zwei mögliche Strukturen, welche im Festkörper vorkommen können. Verschiedene Autoren weisen auf die Existenz einer kubisch flächenzentrierten Struktur (fcc) und einer hexagonalen Struktur (hcp) hin [43, 60, 116, 130]. Die Gitterkonstante der fcc-Struktur beträgt 3.544 Å, die hexagonale Struktur hat Gitterkonstanten $a=2.507$ Å und $c=4.069$ Å [60]. Nach Landoldt-Börnstein ist die hexagonale Struktur stabil unterhalb 400 °C, während man die fcc-Struktur bei Temperaturen oberhalb 400 °C vorfindet. Allerdings wurde die Gitterkonstante von fcc-Co bei Raumtemperatur (18 °C) gemessen und zwar an einer Pulverprobe nach Abschrecken von 520 oder 550 °C. Andere Autoren geben neben der gemessenen Gitterkonstanten ebenfalls Raumtemperatur an [43]. Der Schmelzpunkt von Kobalt liegt bei 1492 °C [60]. Tabelle A.2 zeigt die Strukturdaten von Co, entnommen aus Referenz [60]:

<table>
<thead>
<tr>
<th>Name</th>
<th>Struktur</th>
<th>Gitterkonstante (Å)</th>
<th>Dichte ($g \cdot cm^{-3}$)</th>
<th>thermisch stabiler Temperaturbereich °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>fcc</td>
<td>3.544 ($T=18$ °C)</td>
<td>8.793</td>
<td>> 400</td>
</tr>
<tr>
<td>Co</td>
<td>hcp</td>
<td>$a=2.507$</td>
<td>8.9</td>
<td>< 400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>($c=4.069$) ($T=18$ °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmelzpunkt</td>
<td></td>
<td></td>
<td></td>
<td>1492</td>
</tr>
</tbody>
</table>

Tabelle A.2: Kristallstrukturdaten von Kobalt nach Landoldt-Börnstein [60]

(*) Pulverprobe, gemessen nach Abschrecken von 520 oder 550 °C

A.2.1 fcc-Co-Oberflächen:
$c(2 \times 2)$-fcc-Co$(001); (3 \times 1)$-fcc-Co(110)

Beobachtet werden in der vorliegenden Arbeit nur Beugungsbilder, die sich durch die Existenz eines fcc-Kobaltfilms interpretieren lassen (siehe auch Abschn. 6.2). Hinweise auf einen hexagonal strukturierten Kobaltfilm werden nicht gefunden. Daher beschränkt sich der folgende Abschnitt auf die Beschreibung der fcc-Struktur von Kobalt. Auf $\text{Co}/\text{Fe}_2\text{O}_3/\text{Cu}(001)$ wird eine Struktur beobachtet, die sich durch eine Mischung einer (3×1)-fcc-Co(110)-Oberfläche und einer $c(2 \times 2)$-fcc-Co(001)-Oberfläche erklären läßt.

Die (3×1)-fcc-Co(110)-Oberfläche läßt sich wie folgt beschreiben; dabei wird zunächst auf die unrekonstruierte fcc-Co(110)-Oberfläche eingegangen: Die An-
(3 x 1)-fcc-Co(110)-Oberfläche

Abbildung A.3: Struktur der (3 x 1)-rekonstruierten fcc-Co(110)-Oberfläche. Die Gitterkonstante von fcc-Co beträgt $a_{fcc-Co} \approx 3.54\,\text{Å}$ im Ortsraum und $a_{110}^{*} \approx 1.77\,\text{Å}^{-1}$ im reziproken Raum ($\frac{2\pi}{3.54\,\text{Å}}\,\text{Å}^{-1}$).

Die Ordnung einer (110)-Fläche in einem fcc-Kristall, sowie die Draufsicht auf eine solche (110)-Fläche im Ortsraum und reziproken Raum wurden bereits mehrfach abgebildet (siehe z.B. Abb. A.2 (a-c)). Die fcc-Co(110)-Fläche sieht im Prinzip genau aus. Lediglich die Gitterkonstante von fcc-Co ist verschieden zu Abb. A.2 (a-c). Die Gitterkonstante von Kobalt beträgt im Ortsraum $a_{fcc-Co} \approx 3.54\,\text{Å}$ im reziproken Raum ergibt sich eine Gitterkonstante $a_{110}^{*} \approx 1.77\,\text{Å}^{-1}$ ($\frac{2\pi}{3.54\,\text{Å}}\,\text{Å}^{-1}$). Die (3 x 1)-Rekonstruktion von fcc-Co(110) unterscheidet sich von der unrekonstruierten Oberfläche durch eine fehlende Anzahl von Oberflächenatomen. Eine mögliche Struktur der (3 x 1)-Rekonstruktion von Co(110) ist in Abb. A.3 dargestellt: In Bezug auf die unrekonstruierte fcc-Co(110)-Oberfläche ist bei der (3 x 1)-Rekonstruktion nur jedes dritte Atom in [110]-Richtung vorhanden. In [001]-Richtung dagegen ist die Oberfläche vollständig besetzt. Folglich besteht die (3 x 1)-fcc-Co(110) Oberfläche aus „Atomketten“ entlang der [001]-Richtung, die in [110]-Richtung einen Abstand von $3a_{110} = 3 \frac{1}{\sqrt{2}} a_{fcc-Co}$ besitzen. Im reziproken Raum ergibt sich für die (3 x 1)-fcc-Co(110)-Oberfläche ein rechteckiges Gitter mit Kantenlängen von $0.84\,\text{Å}^{-1}$ ($\frac{1}{\sqrt{2}} a_{110}^{*} \approx 0.84\,\text{Å}^{-1}$) in [110]-Richtung und $1.77\,\text{Å}$ ($= a_{110}^{*}$) in [001]-Richtung.
Abbildung A.4: Struktur von fcc-Kobalt mit eingezeichneter (001)-Oberfläche (grau schraffiert) (a). Abb. (b) zeigt eine Draufsicht auf die fcc-Co(001)-Oberfläche im Ortsraum, sowie im reziproken Raum. Beobachtet wurde in der vorliegenden Arbeit die c(2 x 2)-Rekonstruktion von fcc-Co(001) (siehe auch Abschn. 6.2). Diese Oberfläche ist in Abb. (c) dargestellt.
Die c(2 x 2)-fcc-Co(001)-Oberfläche basiert auf der (001)-Fläche von fcc-Kobalt. Die Lage der (001)-Fläche im fcc-Kristall ist in Abb. A.4 (a) eingezeichnet (scharf). Abb. A.4 (b) zeigt eine Draufsicht auf die fcc-Co(001)-Fläche im Ortsraum und reziproken Raum. Sie besitzt in beiden Räumen eine quadratische Einheitszelle, deren Kanten entlang der [\(\{100\}\) und [\(\{110\}\)-Richtung verlaufen. Die Gitterkonstante beträgt im Ortsraum 2.50 Å (\(\frac{a_{\text{fcc-Co(001)}}}{\sqrt{2}}\)) und im reziproken Raum 2.51 Å\(^{-1}\) (\(\frac{a_{\text{fcc-Co}}}{\sqrt{2}}\)). Eine mögliche Struktur der c(2 x 2)-Rekonstruktion von fcc-Co(001) ist in Abb. A.4 (c) eingezeichnet: Sie besitzt sowohl im Ortsraum als auch im reziproken Raum eine quadratische Einheitszelle. Diesmal verlaufen die Kanten der Quadrate jedoch entlang der [\(\{100\}\)- und [\(\{010\}\]-Richtung. Die Gitterkonstante beträgt im Ortsraum 3.54 Å (= \(a_{\text{fcc-Co}}\)) und im reziproken Raum 1.77 Å\(^{-1}\) (= \(a_{\text{fcc-Co}}\)).

A.3 Eisenoxide

<table>
<thead>
<tr>
<th>Name</th>
<th>Struktur</th>
<th>Gitterkonstante (Å)</th>
<th>Dichte ((g \cdot cm^{-3}))</th>
<th>Schmelzpunkt °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wüstit, (FeO)</td>
<td>NaCl-Typ</td>
<td>4.3125</td>
<td></td>
<td>1377</td>
</tr>
</tbody>
</table>
| Haematit, \(\alpha-Fe_2O_3\) | Korund-Typ, isomorph zu \(\alpha-Al_2O_3\) | a=5.0340
c=13.752
c/a=2.732
(T=20 °C) | | 1570 |
| Magnetit, \(Fe_3O_4\) | Spinell-Typ, isomorph zu \(MgAl_2O_4\) | a=8.3940
(T=22 °C)
(T=20 °C) | 5.128 | 1527 |

Tabelle A.3: Kristallstrukturdaten von Eisenoxid nach Landolt-Börnstein [60]
A.3.1 Wüstit - Fe$_{1-x}$O (x ≈ 0)

Struktur im Festkörper

Das Wüstit (Fe$_{1-x}$O) kristallisiert in einer NaCl-Struktur, also in einer Struktur, die aus zwei ineinander verschachtelten fcc-Kristallen besteht. Eine schematische Skizze der NaCl-Struktur ist in Abb. A.5 abgebildet. Die Gitterkonstante von Fe$_{1-x}$O hängt nach Referenz [115] von der exakten Stöchiometrie des Kristalls ab. Für leicht unterschiedliche Stöchiometrien in der Nähe von (x≈0) werden verschiedene Gitterkonstanten angegeben, die sich allerdings nur geringfügig unterscheiden. Im Fall x=0, d.h. für FeO, beträgt die Gitterkonstante 4.3125 Å. Der Schmelzpunkt eines solchen Einkristalls ist mit 1377 °C angegeben [115].

Wüstit (FeO)

NaCl-Struktur

(111)-Oberfläche

(außerste Atomlage)

Abbildung A.5: Struktur von Wüstit (FeO): Wüstit kristallisiert in einer NaCl-Struktur (linkes Bild, entnommen aus Ref. [133]). Die Gitterkonstante a$_{FeO}$ beträgt 4.31 Å [115]. Föglich handelt es sich bei der äußersten Atomlage der (111)-Oberfläche um eine hexagonale Struktur (rechtes Bild). Die Kan tenlänge dieser Hexagone beträgt 3.04 Å ($\frac{1}{\sqrt{2}}a_{FeO}$). Die äußerste Atomlage von FeO(111) kann theoretisch aus Eisenatomen oder aus Sauerstoff bestehen.
A.3 Eisenoxide

Die FeO(111)-Oberfläche

In der vorliegenden Arbeit werden Beugungsbilder beobachtet, die auf die Existenz hexagonal strukturiertes Eisenoxid-Oberflächen hindeuten (siehe auch Abschn. 5.2.2). Solche Oberflächen sind daher von besonderem Interesse. Auch Wüstit besitzt eine hexagonal strukturierte Oberfläche: die (111)-Fläche. Das rechte Bild in Abb. A.5 illustriert schematisch die (111)-Oberfläche von FeO. Dabei ist aus Gründen der Übersicht nur die äußere Atomlage abgebildet, welche sowohl aus Eisenatomen, als auch aus Sauerstoff bestehen kann. Die Kantenlänge der Hexagone beträgt 3.05 Å.

A.3.2 Haematit - (α-Fe₂O₃)

Struktur im Festkörper

Die \(\alpha-Fe_2O_3(0001)\)-Oberfläche

Die (0001)-Oberfläche von Haematit weist eine hexagonale Struktur auf. Daher ist sie für die Auswertung der beobachteten Eisenoxide (siehe Abschnitt 5.2.2) von besonderem Interesse. Abb. A.7 (a) zeigt eine Draufsicht auf die \(\alpha-Al_2O_3\)- (\(\alpha-Fe_2O_3\))(0001)-Oberfläche. Abb. A.7 (b) liefert einen „räumlichen“ Eindruck über die Tiefe der einzelnen Lagen: Sie zeigt eine Seitenansicht der (0001)-Fläche, wobei der Blickwinkel entlang der \([10\overline{1}0]\)-Richtung verläuft. Die oberste Lage von \(\alpha-Al_2O_3(0001)\) (\(\alpha-Fe_2O_3(0001)\)) besteht aus Al-Atomen (Fe-Atomen), welche hexagonal angeordnet sind. Darunter befinden sich die Sauerstoffatome (2. und 5. Lage), welche ebenfalls hexagonal angeordnet sind.
Zwischen der 2. und der 5. Lage aus Sauerstoff befinden sich zwei Lagen Al (Fe), wiederum in hexagonaler Anordnung. Der Abstand zwischen den Al-Atomen (Fe-Atomen) innerhalb einer Lage ist verschieden zum Innerlagenabstand der Sauerstoffatome. Der Abstand zwischen den Sauerstoffatomen (Kantenlänge der Hexagone) beträgt für α-Fe$_2$O$_3$(0001) 2.906 Å [114].

α-Al$_2$O$_3$(0001)-Oberfläche
(bzw. α-Fe$_2$O$_3$(0001))

(a) Draufsicht

(b) Seitenansicht aus [10\bar{1}0]-Richtung

Abbildung A.7: Struktur von α-Al$_2$O$_3$(0001) (bzw. α-Fe$_2$O$_3$(0001)). Abb. (a) zeigt eine Draufsicht auf die (0001)-Oberfläche. In Abb. (b) ist eine Seitenansicht dieser Oberfläche (Blickwinkel entlang der [10\bar{1}0]-Richtung) dargestellt. Diese liefert einen Überblick über die Tiefe der einzelnen Schichten aus Abb. (a). Die Abbildungen wurden aus Referenz [135] entnommen.
A.3.3 Magnetit - Fe₃O₄

Magnetit (Fe₃O₄) kristallisiert in einer „Spinell-Struktur“, d.h. in einer Struktur, die isomorph zu MgAl₂O₄ ist [115]. Abb. A.8 zeigt die Spinell-Struktur von MgAl₂O₄ [136, 137]. Die Skizze wurde aus Referenz [137] entnommen. Die Einheitszelle dieser Struktur ist wie folgt aufgebaut: Die Sauerstoffionen sind in einer fcc-Struktur angeordnet. Dabei bilden die Einheitszellen der fcc-Struktur jeweils eine „Unterzelle“ der Einheitszelle von MgAl₂O₄. Innerhalb dieser fcc-Unterzellen befinden sich die Kationen (Mg²⁺ und Al³⁺), und zwar sind sie so, wie in Abb A.8 (a) eingezeichnet, angeordnet. Sie besetzen jeweils oktaedrische bzw. tetraedrische Lücken. Wie man in Abb. A.8 (a) erkennt, bilden sich zwei verschiedene fcc-Unterzellen. Diese sind mit „T“ und „O“ gekennzeichnet. Ordnet man jeweils vier „T-Unterzellen“ und vier „O-Unterzellen“ gemäß der Skizze in Abb. A.8 (b) an, so erhält man die Einheitszelle von MgAl₂O₄, bzw. Fe₃O₄. Die Gitterkonstante von Fe₃O₄ beträgt a₉Fe₃O₄ = 8.3940 Å [115]. Folglich beträgt die Gitterkonstante einer fcc-Unterzelle $\tilde{a} = 4.1970 $ Å ($\frac{1}{2}a_{Fe₃O₄}$).

MgAl_2O_4: • Mg²⁺ ○ Al³⁺ ○ O²⁻
Fe_3O_4: (Fe) (Fe) (O)
A.4 Galliumoxid - (\(\beta\)-Ga\(_2\)O\(_3\))

Wie im vorigen Abschnitt bereits erwähnt wurde sind die hexagonal strukturierten Oberflächen der Eisenoxide von besonderem Interesse. Auch Fe\(_3\)O\(_4\) besitzt eine Fläche, in welcher die Sauerstoffatome eine hexagonale Struktur bilden. Da die Sauerstoffatome in einer fcc-Struktur angeordnet sind, ist die (111)-Fläche wie bei jeder fcc-Struktur hexagonal strukturiert (siehe z.B. auch Abb. A.2 (d-f)). Die Kantenlänge der Hexagone, d.h. die Abstände der Sauerstoffatome in der Fe\(_3\)O\(_4\)(111)-Oberfläche beträgt 2.968 Å (\(\frac{1}{2}\sqrt{3}a = \frac{1}{4}\sqrt{2}a_{Fe3O4}\)).

A.4 Galliumoxid - (\(\beta\)-Ga\(_2\)O\(_3\))

Abbildung A.9 zeigt ein Strukturmodell von \(\beta\)-Ga\(_2\)O\(_3\) auf CoGa(001), welches aus Referenz [19] entnommen wurde. Abgebildet ist hier das CoGa-Substrat (\(CsCl\)-Struktur, siehe auch Abschnitt 3.2.2). Darüber befindet sich eine Schicht aus \(\beta\)-Ga\(_2\)O\(_3\). Dabei ist das Oxid wie folgt strukturiert: Die Sauerstoffatome sind in einem fcc-Gitter angeordnet. Die Struktur ähneln daher ein wenig der Struktur von Fe\(_3\)O\(_4\). Im Gegensatz zur Spinellstruktur des Fe\(_3\)O\(_4\) sind die oktaedrischen und tetraedrischen Lücken aber gleich häufig besetzt [19]. Zudem ist die Einheitszelle von \(\beta\)-Ga\(_2\)O\(_3\) monoklin. Die Gitterparameter von \(\beta\)-Ga\(_2\)O\(_3\) betragen a=3.04 Å, b=5.80 Å, c=12.23 Å und \(\beta=103.7^\circ\) [19,123,124].

besteht aus je einem Rechteck mit Kantenlängen \(a_1 = 2.88 \text{ Å} \) und \(a_2 = 2a_1 = 5.76 \text{ Å} \). Im reziproken Raum erhält man ebenfalls eine \((2 \times 1)\)-Struktur in zwei Domänen, welche um 90° gegeneinander gedreht sind (Abb. A.10 (b)). Dabei bezeichnen die schwarzen Punkte in Abb. A.10 (b) die Reflexe, welche für eine ideale unrekonstruierte Oberfläche erwartet würden. Die Zusatzreflexe, entstanden durch die Rekonstruktion der Oberfläche, werden durch offene Kreise dargestellt.

β-Ga_2O_3(001)

(a) Ortsraum

![Diagramm des Ortsraums von β-Ga_2O_3(001)](attachment:diagramm_ortsraum.png)

Domäne 1	Domäne 2
\(a_1 \) | \(a_1 \)
\(a_2 = 2a_1 \) | \(a_2 = 2a_1 \)

(b) reziprokr Raum

![Diagramm des reziproken Raums von β-Ga_2O_3(001)](attachment:diagramm_reziprokr Raum.png)

Abbildung A.10: Struktur der \(\beta-Ga_2O_3(001) \)-Oberfläche. Die Einheitszelle der \(\beta-Ga_2O_3(001) \)-Oberfläche (schraffiert in Abb. (a)) ist rechteckig mit Kantenlängen \(a_1 = 2.88 \text{ Å} \) und \(a_2 = 2a_1 = 5.76 \text{ Å} \). Im Ortsraum (a) existieren zwei Domänen, die um 90° gegeneinander gedreht sind. Dadurch entsteht im reziproken Raum ebenfalls eine \((2 \times 1)\)-Struktur in zwei um 90° zueinander gedrehten Domänen (b).
Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

[135] M. Gautier-Soyer, Des surfaces aux couches nanométriques d’oxydes (Habilitationsschrift, Université de Paris Sud Centre d’Orsay, 1999).

Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. René Franchy für die Vergabe des interessanten Themas und die Betreuung dieser Arbeit.

Herrn Prof. Dr. Harald Ibach danke ich für die Möglichkeit, an seinem Institut, dem Institut für Schichten und Grenzflächen 3 (ehemals: Institut für Grenzflächenforschung und Vakuumphysik) des Forschungszentrums Jülich, diese Doktorarbeit anzufertigen zu dürfen.

Ich danke Herrn Prof. Dr. Andreas Otto für die Übernahme des Zweitgutachtens meiner Dissertation.

Weiterhin danke ich den Herren Dr. Rudolf David und Dr. Laurens Verheij für die fachliche Betreuung und die Durchsicht des Manuskripts.

Bei Herrn Dr. Feng-Ming Pan bedanke ich mich für die hervorragende Zusammenarbeit während der Experimente mit dem CoGa-Einkristall.

Als sehr angenehm empfand ich das ausgesprochen gute Arbeitsklima, für das ich mich bei allen Mitarbeitern des Instituts herzlich bedanke.