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Phase behavior of columnar DNA assemblies,

Physical Review Letters 89, 018303 (2002).

H. M. Harreis, C. N. Likos and H. Löwen
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Abstract

In this thesis we present recent results obtained for four different soft condensed matter

systems, each of which is discussed in a self-contained chapter. In the first chapter columnar

DNA assemblies are investigated. The interaction between two stiff parallel DNA molecules

is discussed using linear Debye-Hückel screening theory with and without including the di-

electric jump at the DNA surface, taking into account the helical symmetry of DNA. The

interaction depends on the interaxial separation of two DNA molecules, their azimuthal ori-

entation, as well as on the amount and distribution of counterions adsorbed on the DNA

surface. The optimal azimuthal angle is a function of the interaxial separation, which leads

to azimuthal frustrations in an aggregate. On the basis of the pair potential, the positional

and orientational order in columnar B-DNA assemblies in solution is investigated. Phase

diagrams are calculated using lattice sums supplemented with the entropic contributions

of the counterions in solution. A variety of positionally and azimuthally ordered phases

and bundling transitions, strongly depending on the counterion adsorption patterns, is pre-

dicted. In the second chapter the equilibrium structure of colloidal particles adsorbed on

stripe-patterned substrates is calculated as a function of the stripe width and separation

as well as for different interparticle interactions. Due to a competition of length scales, a

wealth of stable decoration lattices occurs such as triangular, quadratic, rhombic, kite-like

and sheared honeycomb lattices, triangular slices as well as triangle superlattices. This is of

relevance for constructing templates that enforce crystal growth of unusual solid structures.

The third chapter is devoted to sedimentation density profiles of star polymer solutions as

example of colloidal systems in sedimentation equilibrium which exhibit reentrant melting

in their bulk phase diagram. Phase transitions between a fluid and a fluid with an interca-

lated solid are observed below a critical gravitational strength. Characteristics of the two

fluid-solid interfaces in the density profiles occurring in Monte Carlo (MC) simulations are

in agreement with scaling laws put forth in the framework of a phenomenological theory.

Furthermore we detect density oscillations at the fluid-gas interface at high altitudes for high

gravitational fields, which are verified with density functional theory and should be observ-

able in surface scattering experiments. The fourth chapter presents work on the question

whether dendrimers can be viewed as compact colloids. The specific system considered are

dendrimers of fourth generation (G4). By employing monomer-resolved MC simulations, the

conformations, density distributions, correlation functions and the form factor of G4 model

dendrimers are analyzed. We find that these objects are hybrids between polymer chains

and compact colloids, with the fluctuations of the monomers correlated at length scales of

the order of the bond length but practically uncorrelated for lengths exceeding this scale.

We discuss the implications of this finding on the possibility of regarding dendrimers as ‘soft

colloids’, on the detection of these fluctuations in scattering experiments and on the inversion

of intensity profiles obtained in small-angle neutron scattering (SANS) measurements.





Zusammenfassung

Die vorliegende Arbeit untersucht vier verschiedene Systeme aus dem Gebiet der weichen

Materie, welche in eigenständigen Kapiteln vorgestellt werden. Das erste Kapitel beschäftigt

sich mit kolumnaren DNA Aggregaten. Die Wechselwirkung zwischen zwei parallelen, stei-

fen DNA Molekülen wird mithilfe der linearen Debye-Hückel Abschirmtheorie sowohl unter

Berücksichtigung als auch unter Vernachlässigung des dielektrischen Sprunges an der DNA

Oberfläche diskutiert. Die Wechselwirkung hängt vom Abstand, von der azimuthalen Orien-

tierung der DNA Moleküle, als auch von der Anzahl und Verteilung der kondensierten Gege-

nionen ab. Der optimale azimuthale Winkel ist eine Funktion des interaxialen Abstandes der

DNA Moleküle, was zu azimuthalen Frustrationen im DNA Aggregat führt. Auf der Basis des

Potentials wird die Positions- und Orientierungsordnung der kolumnaren B-DNA Aggregate

mithilfe von Gittersummen und den entropischen Beiträgen der in Lösung befindlichen Gege-

nionen untersucht. Die Theorie sagt eine Vielzahl an verschiedenen, geordneten Gitter- und

Orientierungsphasen sowie stark von der Lokalisierung der adsorbierten Gegenionen abhängi-

ge Bündelübergänge der DNA voraus. Das zweite Kapitel untersucht die Dekorationsgitter

von Kolloiden auf in Streifen strukturierten Substraten als Funktion der Streifenbreite und

des Streifenabstandes, als auch für verschiedene Teilchenwechselwirkungen. Durch den Wett-

streit verschiedener Längenskalen bilden sich verschiedene stabile Dekorationsgitter, wie

Dreiecks-, Quadrat-, rhombische, Drachen-, verscherte Honigwabengitter, Dreieckstreifen-

und Dreieck-Supergitter aus. Im dritten Kapitel werden Sedimentationsdichteprofile von

Sternpolymeren als Repräsentant von Systemen mit wiedereintretendem Schmelzen im Bulk-

Phasendiagramm behandelt. Unterhalb einer kritischen Gravitation tritt ein, zwischen zwei

flüssigen Regionen befindlicher kristalliner Bereich auf. Eigenschaften der zwei flüssig-fest

Grenzflächen in den Dichteprofilen der Monte-Carlo Simulationen sind in Übereinstimmung

mit Skalengesetzen, die im Rahmen einer phänomenologischen Theorie berechnet wurden.

Des weiteren treten im Falle starker Gravitation an der flüssig-gas Grenzfläche in großer

Höhe Dichteoszillationen auf, welche mit Dichtefunktionaltheorie reproduzierbar sind und

in Oberflächenstreu-Experimenten nachweisbar sein sollten. Im vierten Kapitel wird am

Beispiel von vierte Generation (G4) Dendrimeren die Frage untersucht, ob Dendrimere als

kompakte Kolloide betrachtet werden können. Vermittels Monomer-aufgelöster Monte-Carlo

Simulationen werden die Konformationen, Dichterverteilungen, Korrelationsfunktionen und

der Form-Faktor dieser G4 Modell-Dendrimere berechnet. Die Analyse zeigt, dass diese Mo-

leküle Hybride zwischen Polymer-Ketten und kompakten Kolloiden darstellen, wobei die

Monomer-Fluktuationen nur auf Längenskalen der Bindungslänge korreliert, für größere

Abstände aber praktisch unkorreliert sind. Wir diskutieren die gewonnenen Erkenntnisse

im Hinblick auf die Möglichkeit, Dendrimere als ‘weiche’ Kolloide zu betrachten als auch

hinsichtlich der Inversion von Kleinwinkel-Neutronenstreungs Dichteprofilen.
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Introduction

The range of topics dealt with in this thesis is rather broad and, seemingly, no link relating

the different issues discussed can be discerned. There are, however, embracing concepts

crosslinking the four subject areas contained in the present work. The most obvious and

most unspecific common feature is the fact that all systems pertain to equilibrium situa-

tions. It is always assumed that the systems at hand have had enough time to pass through

a dynamical phase to be in a well equilibrated situation. A more specific, albeit still very

general characteristic linking the four topics, is the fact that they all belong to the field

of soft condensed matter physics. Soft condensed matter physics [1, 2, 3, 4] is a field of

physics set in between the classic disciplines of condensed matter physics and the physics

of the fluid state. By definition, according to the International Union of Pure and Applied

Chemistry (IUPAC), soft matter systems consist of supramolecular entities, which, in at

least one spatial dimension, fall in the range of 1 nm to 1 µm. These mesoscopically sized

particles, termed colloids, are typically dispersed in a solvent whose constituents’ size is

found to be on the atomic dimension, so that in most cases it can be approximatively de-

scribed as continuum. Often, a typical soft matter system’s composition is complemented by

further particle types with sizes in between the macroscopic and the mesoscopic scale, e.g.,

ions or smaller supramolecular aggregates. Soft matter systems are synonymously referred

to as colloidal suspensions, colloidal dispersions or complex fluids, engendering emphasis

on different aspects of the substance. Owing to the broad definition, a great number of

different materials is included, stemming from different areas of research and application.

In fact, linear polymers, micelles of surfactants, microemulsions, more elaborately architec-

tured polymeric macromolecules such as dendrimers or star polymers, membranes, as well as

biological macromolecules all belong to the family of soft matter systems. Correspondingly,

soft matter is found in a vast range of technical, food technological, pharmaceutical and

biological applications, including paint, ink, detergents, adhesives, drilling fluids, lubricants,

self-assembling ‘intelligent’ novel materials, milk, mayonnaise, blood, urine, viruses, drug

delivery into cells, trans-cell-membrane transport, protein crystallization and DNA recogni-

tion [5, 6]. A distinctive characteristic of soft matter materials as compared to their atomic

or molecular counterparts is their strikingly low shear modulus. The shear modulus scales

with the typical energy involved and the inverse volume of the elementary crystal unit cell,

it thus turns out to be 9–12 orders lower in soft matter systems than in atomic or molecular

crystals, hence the name soft matter. One of the features that has to a major degree stim-
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2 INTRODUCTION

ulated the interest in soft matter research is the fact that the interactions between colloidal

particles can, in a wide range, be tailored according to the individual needs. While in an

atomic or molecular condensed matter system the interactions are essentially dictated by

the electronic structure, the interaction potential between colloidal particles can be almost

chosen at will, ranging from short ranged attractions to long ranged repulsions. Generally

speaking, external perturbations typically show effects on length and time scales of the par-

ticle structures. Since the length scales in soft matter are found in the mesoscopic regime,

real-space analysis of physical phenomena becomes a viable tool, building a direct bridge be-

tween computer simulations and experiment. This is another strong support for research in

soft matter physics, allowing for a very direct check of physical models. Furthermore insights

gained for soft matter systems can often be directly transferred to ‘hard’ condensed matter.

Additionally, many phenomena occurring in soft matter are independent of the molecular

details and therefore offer universal understanding of physical problems. Soft matter systems

are thus predetermined to be an ideal model system for experimentalists and theorists alike.

Nonetheless, as we already noted above, one never has to go far to be back in the real world:

the systems investigated in this thesis have direct relevance in the biotechnological industry,

such as DNA for gene therapy purposes and dendrimers as carriers for drug delivery, as

well as in nanotechnological applications, as applies to the colloidal adsorption on patterned

substrates, which is relevant for developing photonic crystals and can also be of importance

for the assembly of other devices on the nanoscale.

The intriguing challenge in soft matter physics is to understand and/or predict the macro-

scopic behavior from the microscopic interactions. Since a colloidal dispersion is separated

by some orders of magnitude in length scales from the microscopic level, it is a non-feasible

task with present methods and devices to carry out such a calculation building on ‘ab initio’

methods. In order to assess, e.g., the phase behavior of a given soft matter system with

mesoscopic constituents as a function of the densities of the species involved, one therefore

has to come up with methods which help to bridge the length scale gap from the micro-

scopic interactions to the macroscopic phase behavior. The most convenient approach is to

build two bridges: first to step over from the microscopic realm to the mesoscopic regime

and then to employ a second step to reach the macroscopic world. A very powerful con-

cept for building the first bridge is the concept of the effective interaction [7] between the

mesoscopic constituents. It is derived by integrating out the microscopic degrees of freedom

and yields an interaction working on the level of the mesoscopically sized particles only, yet

incorporating the effects due to the presence of the microscopic constituents. The effective

interaction being known, statistical mechanical methods can be applied to determine the col-

lective behavior of the assembly of the mesoscopic particles, thus attaining the macroscopic

scale.

In this thesis different foci lie on the investigation of the different systems. They can be

grouped according to two aspects: the first being the study of macroscopic behavior, the

second being the study of phenomena on the mesoscopic scale. The systems presented in
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chapter 1 (columnar DNA assemblies), chapter 2 (colloids on stripe-patterned substrates)

and chapter 3 (star polymers under gravitation) fall into the first category. In the case of

DNA, we take advantage of the two length-scale bridges, first calculating the pair interaction

between two DNA molecules in order to then explore the resulting macroscopic behavior of

a DNA assembly. The effective interaction could be calculated by assuming linear screening

by the counterions, which eliminates the microscopic degrees of freedom and by knowing the

internal structure of the mesoscopic constituents, the DNA molecules, from experimental

structural data. As for the colloidal adsorption on patterned substrates, the internal struc-

ture of the colloids is the simplest possible: they are modeled as hard spheres. This allows

for stepping in at the mesoscopic level and for bridging over to the collective phenomena of

the many particle problem. The star polymers are treated in the same way: for our purposes

here, we start at the mesoscopic description only. This, however, is only possible, since we

can take advantage of previous work [8, 9] having elucidated the structure of one isolated

star polymer and having established the effective star polymer interactions by integrating

out the microscopic degrees of freedom. This level of knowledge has not yet been attained

for dendrimers, which gives the reason for the second category to be represented by the

dendrimer study of chapter 4. There, we stop rather than start at the mesoscopic level: the

interest is on the structural properties of one such molecule and its distinctive features alone

(One may however note that this is nothing but investigating the collective behavior of the

monomers as statistical ensemble). As we discuss in the outlook in Chapter 5, the final goal

remains to build the second path bridging over to the effective interaction of two dendrimers

to eventually be able to calculate dendrimer phase diagrams.

For the first category, in which we investigate the macroscopic behavior of the soft matter

systems, a further point of view under which these substances can be considered is which

mechanism is responsible for inducing the macroscopic order evidenced in all these systems.

For the DNA, the answer lies in the internal structure: Due to the helical symmetry of the

DNA phosphate backbone, a particular macroscopic order is yielded. As for the colloids on

stripe-patterned substrates as well as the star polymers, the driving force for macroscopic

ordering is rather an external potential which is applied. In the case of the colloids on

the patterned substrate, this external potential is the patterned substrate itself: It imposes

packing and energetical constraints to which the system has to react. The star polymers are

exposed to the influence of the external gravitational potential, inducing a density gradient,

which, in turn, gives rise to crystalline order in some parts of the star polymer solution.

Moreover, in addition to the different questions pursued in the investigations of the var-

ious problems, the soft matter systems in this thesis appear in quite different realizations:

the DNA treated in chapter 1 is a polyelectrolyte (PE) molecule, a complex helical polymeric

molecule with charged monomers as building blocks. In chapter 2 we consider ‘hard’ col-

loids, modeled as hard spheres (HS), which are experimentally realized as, e.g. polystyrene,

poly (methylmethacrylate) (PMMA) or silica spheres. The spherical shape of the particles

very much simplifies their study since they exhibit the highest degree of symmetry possi-
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Figure 1: Schematic illustration of the systems under consideration in the present

thesis, together with methods employed and mechanisms inducing macroscopic order.

ble, implying that the interparticle interactions solely depend on the interparticle distance.

Chapters 3 and 4 deal with an intermediate case in which the molecules, star polymers or

dendrimers, respectively, do not display spherical symmetry in each instantaneous configu-

ration, yet, on average can be described as spherically symmetric entities. In both cases,

the supermolecular aggregates (dendrimers and star polymers) are polymerized from a high

number of monomers, which, in our modeling are described by Lennard-Jones (LJ) particles

(in the case of the star polymers, however, this level is not included in the present work,

since, as noted above, we hereby rely on previous calculations).

A further system of classification on a more specific level is provided by discriminating

the investigations according to the methods employed. The first class to mention are ground

state calculations for the DNA assemblies as well as for the colloidal adsorption on stripe-

patterned substrates. In both cases thermal fluctuations are neglected since the interaction

energies govern the game, rendering the neglect of the thermal energies a sensible approxi-

mation, thereby guaranteeing that T = 0 lattice sum calculations provide the representative

thermodynamic state. The second class is comprised of the dendrimer and the star poly-

mers study. Here, Monte Carlo simulations (MC) are employed to sample the configuration

space of the ensemble, which in principle provide an exact solution to the statistical physics

problem [10, 11].

The above considerations concerning the interrelation of the topics contained in the

present thesis are schematically summarized in Fig. 1.
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The outline of the thesis is as follows. In chapter 1 we report on phase behavior of

columnar DNA assemblies. Chapter 2 is devoted to the adsorption structures colloids form

on stripe-patterned substrates. In the following two chapters, Monte Carlo simulations are

applied to the density profiles of star polymers exposed to a gravitational field (chapter 3)

and to the equilibrium properties of an isolated dendrimer (chapter 4). Each chapter of

the thesis is self-contained, preceded by a short introduction to the problem dealt with and

ended by a conclusion. Chapter 5 gives a brief summary of the main accomplishments and

discusses possible extensions of this work for future attention.



Chapter 1

Phase Behavior of Columnar DNA

Assemblies

Relatively short fragments of deoxyribonucleic acid (DNA), with lengths ranging from one to

about 100 persistence lengths Lp, where Lp = 500 Å, form columnar assemblies in salt solu-

tion, with all DNA molecules aligned in parallel. DNA being a helical molecule, two degrees

of freedom govern the behavior of such assemblies: The torsional as well as the translational

degree of freedom. The aim of this chapter is first to elucidate the pair interaction present

between DNA molecules in the state of parallel alignment. The second aim is to predict the

translational and orientational structures that appear in a columnar assembly as a function

of the relevant parameters. These are the DNA packing fraction, the salt concentration in

the aggregate as well as the sort and amount of counterions present in the solution.

1.1 Introduction

Many biological systems contain densely packed DNA assemblies, as, for example viral phage

heads and sperm. For the proper functioning of these biological systems, including humans,

it is of extreme importance that the mechanisms carrying out the packaging of DNA in the

cell work in a robust manner, since, for example, it is believed that DNA packing in chro-

matin plays an important role in gene regulation [12]. In light of the rapidly growing field

of gene therapy it is of great interest to understand the mechanisms actually responsible

in living organisms for condensing DNA into densely packaged assemblies. The first step

to this end is a model of DNA which is able to capture its most significant characteristics,

with the second step consisting of devising a theory for DNA assemblies. In the last few

years, many efforts have been made on the theoretical side to understand the interaction of

two DNA molecules and DNA condensation [13, 14, 15, 16, 17, 18, 19, 20, 21]. The matter

is complicated by the fact that due to its chemical structure DNA is a helical molecule,

rendering solutions for the DNA-DNA interaction considerably complicated. Moreover, the

overall electroneutrality condition dictates that counterions be present in the solution, and

6



1.1. Introduction 7

the latter screen the electrostatic repulsion between the DNA-rods. Only far from their axes

can DNA molecules be apprehended as uniformly charged cylinders: this is the simplest

approximation possible in an investigation of the DNA-DNA interaction and one that ne-

glects the helical symmetry completely, see, e.g., [13, 22, 23, 24, 25, 26, 27, 28, 29, 30] and

references therein. It has to be expected that such an approximation works well for distances

much larger than the scale of the helical symmetry of the DNA molecule, R � H, where

H ≈ 3.4 nm is the DNA pitch length. This approach amounts to calculating the interaction of

two homogeneously charged cylinders, whereby the continuously smeared charges along the

cylinders create an electrostatic repulsion of two DNA molecules (exponentially screened by

the electrolyte). Indeed, predictions for force-distance curves on the grounds of a traditional

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory for homogeneously charged cylinders

turned out to be accurate for separations larger than several nanometers, while significant

deviations in the biologically more relevant range of smaller separations [14] emerged. It can

be concluded that apart from investigations where only the far-field behavior is of impor-

tance, it is crucial to consider the helical symmetry of DNA molecules, since the interaction

potential in the relevant regime of intermediate distances is dramatically changed by the

presence of a highly inhomogeneous charge distribution. An additional effect is provided by

the fact that DNA is a polyelectrolyte molecule: in an aqueous solution, its cations dissolve

into the solution, leaving behind a negatively charged DNA phosphate backbone. A major

fraction of the cations condenses in the Bjerrum layer [29] around the molecular surface.

With cations specifically adsorbing onto the DNA surface present in the solution, however,

the scenario changes: the DNA molecules can be fully neutralized [31, 32, 33] or even over-

charged [34]. The interaction potential is thus additionally influenced by the amount and

type of counterions present in the solution.

In order to condense DNA in an aggregate, either osmotic stress [35] or counterions

specifically adsorbing on DNA have to be applied as condensing agents [5]. The latter can

be, e.g., salts with Mn2+, Cd2+, spermidin, protamine or cobalt hexammine [5] cations, which

are known to preferentially adsorb in the DNA grooves [36, 37, 38, 39]. The sensitivity to

the type of counterion for DNA aggregation [5] is manifest in the fact that other counterions,

such as, e.g., Ca2+ or Mg2+, which are known to exhibit a high affinity to phosphates and

thus predominantly adsorb on the strands, do not induce DNA aggregation. A model should

thus incorporate/reproduce these subtle effects and be able to explain the mesomorphism [40]

of DNA aggregates stemming from the presence of different types of counterions.

Once the interaction of DNA molecules is derived by means of some theory, one can turn

to the next step and calculate the properties of DNA assemblies. The structural organization

and properties of such condensates in vivo are largely unknown but has been, in the last

several years, under investigation in in vitro experiments, [41, 42, 43, 44, 45, 46, 47, 48].

Simple model systems able to predict the spatial as well as the orientational structure of

these condensates are highly desirable for a better elucidation of the mechanisms occurring

in vivo. Previous work has shown [49] that it is a reasonable approximation/simplification to
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focus on columnar assemblies, neglecting possible tilting effects, as we will explain later. Most

of the work relied on approximating DNA as homogeneously charged rods [13, 15, 16, 17, 19].

Only when taking into account, however, the helicity of DNA molecules, a relevant feature

for the properties of such a columnar DNA assembly emerges: a non-trivial interplay between

the torsional and translational degrees of freedom.

A mean-field calculation of this problem was presented in [50], while the full statistical

mechanical problem of columnar DNA assemblies was recently solved in [51] using a pair

potential for the DNA-DNA interaction devised in [14]. The motivation for the present

chapter is two-fold: First, we give more details and background for the calculations already

published in [51]. In this work, it was found that the dependence of the optimal azimuthal

orientation angle of two DNA molecules on their interaxial separation gives rise to azimuthal

frustrations in an aggregate, thereby inducing phase transitions between different ordered

orientational structures. Furthermore, depending on the type and amount of counterions

condensed on the DNA surface, strong attractions were found, resulting in DNA bundling

transitions. More importantly, the second motivation for the present work is to discuss the

effect of discretized charges along the DNA strands and the effect of the dielectric jump

at the DNA surface on the phase behavior. We find that although the phase boundaries

shift quantitatively, especially at high densities, the global topology of the phase diagrams

remains unaffected. This gives evidence for the fact that the topology of the phase diagram

itself is generic, i.e. will be stable also with respect to further changes in the interaction,

including, e.g., hydration forces that are sometimes modeled through a distance-dependent

dielectric constant ε(~r) [52].

The rest of the chapter is organized as follows: In Sec. 4.3.1 we present the way DNA

molecules are modeled in the present work. Sec. 1.3 is devoted to a discussion of the pair

interaction potential of DNA molecules and its dependence on different approximations, i.e.,

continuous line charge distributions or neglect of the dielectric jump. In Sec. 4.2 the theory

for columnar DNA assemblies is explained and used to calculate the phase diagrams. We

summarize and conclude in Sec. 4.5.

1.2 The Model

DNA is a helical bio-molecule with two charged phosphate strands helically winding around

a core region consisting of nucleotide base-pairs. The two strands are not symmetrically

distributed around the molecules core region, but rather are separated by an azimuthal angle

of 2φ̃s ≈ 0.8 π, see Fig. 1.1 for an illustration. Under physiological conditions, DNA is present

in the B-DNA conformation, a right-handed helical molecule [53]. In B-DNA, there are

N = 10 nucleotides per helical turn with a helical pitch length of H ≈ 34 Å. Each nucleotide

contains a negatively charged phosphate group, giving rise to a total charge of q = −10 e per

helical pitch, which translates into a surface charge density of σ = 16.8 µC/cm2. To model

the interaction, we envision the molecules as long, rigid cylinders with a hard-core radius
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of a = 9 Å. Strictly speaking, this approximation is only appropriate for DNA fragments of

contour lengths up to the persistence length Lp, which is typically found to be 500Å−1000Å

(depending on the ionic strength) [54]. Samples of parallel packed arrays have however

been prepared for contour lengths of up to 100 Lp [35, 55]. In our model the phosphate

backbone is accounted for by continuous helical line charges located on the surface of the

DNA hardcore cylinder. We also calculated pair interactions for discrete charge patterns on

the DNA surface, as we will discuss in detail later. Each DNA duplex furthermore carries a

compensating positive charge stemming from the adsorbed counterions, which are modeled

in the same way as the phosphate backbone as continuous line charges. The degree of charge

compensation will be referred to as 0 < θ < 1, while the fractions of condensed counterions

in the minor and major grooves, and on the two strands, are accounted for by f1, f2, and

f3 respectively, where f1 + f2 + f3 = 1 holds. The non-adsorbed, mobile counterions in

solution screen the Coulomb interactions between the helices, causing at large separations

an exponential decay of the latter with the Debye screening length κ−1.

In our model, we study formally the two extreme cases of dielectric constants ε1 and

ε in the DNA core and in the solvent, respectively. The first case is that we assume no

dielectric jump at all, ε/ε1 = 1, while the other limit is ε/ε1 = ∞. In the first case, it is

more convenient to formulate the interaction in terms of a Yukawa-segment model, while

the second case has been elaborated in a practical form by Kornyshev and Leikin [18]. The

motivation to study different ε/ε1 is to check effects of the discontinuity formally. In reality

one would expect ε/ε1 ≈ ∞ since the dielectric constant of bulk water is very high. Close to

the DNA surfaces, however, it is not at all clear whether the effect of a dielectric discontinuity

as described by macroscopic electrostatics is justified. More realistic dielectric effects were

taken into account by a space-dependent dielectric constant ε(~r) [56]. One could surmise that

if the resulting interaction and phase behavior is similar for the two limiting cases ε/ε1 = 1

and ε/ε1 = ∞ actually dielectric effects on this molecular scale are not very important at all.

This in turn gives evidence for at least qualitative stability of our results under application

of more realistic interactions stemming from more refined molecular calculations.

The main characteristics of the model DNA molecules are illustrated in Fig. 1.1. For

clarity, possible condensed counterion strands have been omitted in the illustration. The

azimuthal orientation of molecule i is referred to by its azimuthal angle φi, which is defined

in the following way. A plane (gray-shaded in Fig. 1.1) perpendicular to the parallel axes

of the two DNA molecules hits the dark colored 5′ − 3′ strand [57] of each molecule at the

point indicated by the vector originating from molecule’s i axis, which we may formally call

‘spin’. The angle φi formed by this vector and some arbitrary reference direction on the

plane, taken, for clarity to be the vector connecting the two molecules’ axes is the azimuthal

orientation angle of molecule i. We assume that the DNA molecules are parallel, as depicted

in Fig. 1.1, which is justified by reasons given in Sec. 4.2. If we furthermore assume the

molecules to be infinitely long and their charge distributions to be described by helical line

charges as illustrated in Fig. 1.1, their mutual state can be described by two parameters:
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Figure 1.1: Illustration of two model DNA molecules at an interaxial separation R.

The molecules are assumed to be rigid, long cylinders of radius a with a helical pitch

length of H ≈ 34 Å. In between the two DNA helices a major and a minor groove

are formed, due to the asymmetry in the azimuthal angle between the two helices,

2φs ≈ 0.8. See text and Fig. 1.2 for an explanation of the angles φ1 and φ2.

their interaxial separation R as well as their mutual azimuthal orientation, φ = φ1 − φ2.

The problem thus reduces to an effective two dimensional problem of ‘XY-spins’ interacting

via a potential U(R, φ). We further illustrate this point in Fig. 1.2, which depicts the gray-

shaded plane included in Fig. 1.1 in more detail. It has to be noted that the problem may

only be viewed as effectively spatially two-dimensional under the assumption of continuous

line charges. For discrete charge patterns, the orientations φ1 and φ2 both enter the pair

potential. Let us assume discrete charges to illustrate the validity of this statement. The

two molecules shall be separated by a vector R, as shown in Fig. 1.2, with molecule 1 at an

angle φ1 and molecule 2 at an angle φ2 relative to R in a given plane P that perpendicularly

cuts the molecular axes. The points where the 5′ − 3′ strands of molecules 1 and 2 hit the

plane P shall be denoted by p1 and p2, respectively. Both in p1 and p2 discrete charges

are located as is the case in Fig. 1.2. Were the interaction only to depend on the mutual

azimuthal orientation, φ = φ1−φ2, a configuration with both molecules turned by ∆φ should

yield the same interaction. Obviously, after turning both molecules the 5′ − 3′ strands will

hit P in new locations pn
1 and pn

2 . This means altered charge distances in the contribution

of plane P to the total DNA-DNA interaction. Since the total interaction is the sum of the

contributions of all charges (planes), the interaction might still be conserved if another plane

along the molecule contributed the same value after the rotation as P did before the rotation
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Figure 1.2: A plane perpendicular to the parallel axes of two DNA molecules sep-

arated by vector R hits the DNA strands denoted by the white circles with a minus

inside; 2φ̃s is the azimuthal width of the minor groove. The vectors joining the axes

with the points where the 5′ − 3′ strand [57] hits the plane may be formally called

‘spins’. The angle φ between the two ‘spins’ characterizes mutual azimuthal orientation

of the molecules.

and vice versa. The only plane capable to switch configuration with P through a rotation

by ∆φ is a plane P ′ shifted by ∆z = H ∆φ/2π relative to P along the molecular axes. The

5′ − 3′ strands will then cut through P ′ in p′
1 = p1 and p′

2 = p2. With a discrete charge

pattern, however, charges will only be located in p′
1 and p′

2 if ∆z is commensurate with

the rise of the charge pattern along the molecular axes, or in other words, if ∆φ = n 2π/N

holds, with n ∈ N and N the number of DNA charges per helical pitch and strand. If on

the other hand, continuous line charges are used, the original plane P and P ′ are equivalent

without any further condition and contribute the same amount to the interaction. The only

requirement to be met is that the molecules be at least one helical pitch long, so that the

existence of P ′ is guaranteed. The mutual azimuthal angle φ can, for continuous line charges

under the additional condition of infinitely long molecules, equivalently be thought of as a

relative vertical shift z = Hφ/2π of the two molecules. We will come back to a more detailed

discussion on discrete charge patterns versus continuous line charges at a later point in Sec.

1.3.

1.3 The Pair Potential

As already sketched in the Introduction of Sec. 4.1, the pair potential will be considered

under different assumptions concerning dielectric jump and charge distributions. The ap-

proach is, on a general level, based on the linear screening theory picture, yielding a Yukawa

like, screened Coulomb interaction for any pair of charges on the two molecules [58, 59, 60].

We will first resort to considering the case of no dielectric jump and refer to this situation

as the Yukawa-Segment-Model potential. The Yukawa-Segment idea has been tested against

micro-ion resolved simulations in [61, 62] and has been used for calculating dynamical cor-

relations in Tobacco-Mosaic Virus suspensions and phase diagram calculations of the latter

in [63] and [64] respectively. Here, the Yukawa-segment approach furthermore allows for

testing the influence of a discrete charge pattern as opposed to continuous line charges. The
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second case includes the dielectric jump at the DNA surface, yet necessitates continuous line

charges. We will refer to it in the following as Kornyshev-Leikin Potential.

1.3.1 Yukawa-Segment-Model Potential

The canonical starting point for the Yukawa-segment-model is to exactly mimic the discrete

number of charges present in real DNA molecules. The second generic case, opposed to

the former, is to assume the charge distributions to be continuous line charges. Although

the first approach might, at first sight, seem superior to the latter, it has to be kept in

mind that the ‘real’ charge distribution will definitely be not point like, but rather smeared

on the whole phosphate group, two of which are closely neighbored, so that a modulated

continuous line charge distribution should be the most realistic way of modeling the DNA

charge distribution. Such an approach, however, requires an input from quantum chemical

calculations and is therefore beyond the scope of the present study. We will now first

illustrate the general approach to the calculation of the pair potential and then come back

to a discussion of the differences between the discrete and the continuous charge distribution

version.

We assume linear screening to act between any two charge elements qi and qj on the

continuous helical line charges of the DNA molecules, yielding a Yukawa interaction [58, 59,

60],

V (r) =
qiqj

εr
exp(−κr). (1.1)

Here, κ = λ−1
D is the inverse Debye screening length and ε = 81 is the dielectric constant of

the solvent (water). In order to access the total pair interaction of two DNA molecules, we

have to integrate along each pair of interacting helical line charges (strands) (or sum in the

case of discrete charge patterns).

Let molecule 1 be at the origin of the coordinate system and molecule 2 at R = R x,

see Fig. 1.2. In its most general form, a helix, parametrized by its helical angle ϕ, fur-

thermore depends on a set {P} of additional parameters. This set of parameters {P} =

(a, λ, (rx, ry), ∆ϕ) consists of the helix radius a, the helical rise λ = H/2π, the position

(rx, ry) of the helix axis in the x− y-plane and the angular offset ∆ϕ of the helix, indicating

where the helix starts to rise from the x − y-plane. Making use of the special conditions

present in our case, namely that we only consider molecules residing on the x-axis and that

all helices exhibit the same radius as well as the same helical rise, {P} can be reduced to

only consist of rx and ∆ϕ, {P} = (rx, ∆ϕ). The corresponding helix parametrization for

one single helix reads as

H(ϕ; {P}) = (2a cos ϕ − rx, 2a sin ϕ, λ(ϕ − ∆ϕ)). (1.2)

The angular offset ∆ϕ is set to φ1 for the ‘first’ strand on the first molecule. Thereby the

angular offsets of all other strands involved are uniquely determined by the DNA geometry,

e.g., the second DNA phosphate strand on molecule 1 has ∆ϕ = 2φ̃s + φ1, the counterion
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strand in the minor groove is characterized by ∆ϕ = φ̃s + φ1 and the counterion strand in

the major groove has ∆ϕ = π − φ̃s + φ1 as angular offset. The charge strands on molecule

2 follow the same logic, except that their respective offsets have a term of φ2 instead of φ1,

since the rotation of molecule 2 has to be accounted for, see again Fig. 1.2 for an illustration.

The interaction between one strand on molecule 1 and another strand on molecule 2 is given

by

U1,2(R, φ) =

∫

d3r d3r′ dϕ1dϕ2 V
(

|r− r′|
)

δ
(

r − H(ϕ1; {P}1)
)

δ
(

r′ − H(ϕ2; {P}2)
)

,

(1.3)

which is a diverging quantity, since the integral in Eq. (1.3) includes the two infinitely long

strands. What we are interested in for our purpose is the interaction that segments of a

given length L experience. As the Yukawa type interaction between all charge segments

decays exponentially and since, due to the periodicity, all helical pitches are the same, we

may to this end, proceed in the following way. On molecule 1 one pitch length H serves as

integration interval, whereas on molecule 2 we integrate from −∞ to ∞. Practically, due

to the exponential decay in the potential, convergence of the integral is obtained after a

maximum of 10 pitch lengths H has been integrated. The result is the interaction energy of

one pitch on strand 1 with the total length of molecule 2. Multiplication of this quantity with

the number of pitches L/H to be taken into account for a length L yields the interaction of

a segment of length L on strand 1 with a segment of length L on strand 2, whereby endpoint

effects are ignored via the integration from −∞ to ∞.

The total interaction of a segment of length L on molecule 1 with one on molecule 2 then

is the sum over the interactions of all strands on molecule 1 with all strands on molecule 2,

including the DNA phosphate strands as well as the condensed counterion strands:

U(R, φ) =
∑

i6=j

Ui,j(R, φ), (1.4)

where the symbolic notation above implicitly assumes i to be taken from the set of all

strands on molecule 1 and j correspondingly from molecule 2. Inserting the Yukawa-segment

interaction, Eq. (1.1) in Eq. 1.4 and carrying out the r and r′ integrations in Eq. (1.3),

together with the above consideration on the integration intervals, yields the expression

U(R, φ) =
L

H

∑

i6=j

∫ 2π

0

∫ ∞

−∞
dϕ1dϕ2

fifj(θNe)2

ε
∣

∣H(ϕ1; {P}i) − H(ϕ2; {P}j)
∣

∣

exp
(

−κ
∣

∣H(ϕ1; {P}i) − H(ϕ2; {P}j)
∣

∣

)

.

(1.5)

Here and in Eq. (1.4), the index i is taken from the set i ∈ {s(1)
1 , s

(1)
2 , c

(1)
1 , c

(1)
2 } and j covers

j ∈ {s(2)
1 , s

(2)
2 , c

(2)
1 , c

(2)
2 }, while {P}i shows the dependence of the given strand on the specific



14 1. PHASE BEHAVIOR OF COLUMNAR DNA ASSEMBLIES

geometrical parameters determining its parametrization. By s
(l)
k the k-th phosphate strand

on the l-th molecule is denoted, while c
(l)
k describes the corresponding counterion strand. In

s
(l)
k the counterion strands which are condensed on the phosphate strands are included, since

they only trivially renormalize the charge carried by the phosphate strands. This enters into

the charge fraction parameters fi and fj in the following way:

f (1),(2)
s1,s2

= (1 − f3) (1.6)

f (1),(2)
c1 = f1 (1.7)

f (1),(2)
c2

= f2, (1.8)

where f1, f2, and f3 are the fractions of counterions condensed in the minor and major

grooves, and on the two strands, respectively, satisfying f1 + f2 + f3 = 1.

The differences of a discrete charge potential to a continuous line charge potential can

be estimated by tuning the number of charges per pitch length, N . As we discussed in Sec.

4.3.1, for discrete charges the interaction does depend on both molecules’ orientations φ1

and φ2 and not only on the difference φ = φ1 −φ2 as it is the case for continuous line charge

distributions. For discrete charge patterns, this opens up two different routes: The first and

simpler is to set φ1 = 0 and look at U(R, φ1 = 0, φ2), while the second and more refined one

is to vary φ1 and φ2 to then consider U(R, φ) at φ = φ′
1 − φ′

2, where φ′
1 and φ′

2 have been

obtained as energetically optimal combination for a given mutual azimuthal orientation φ of

the two DNA molecules.

The first approach is taken in Fig. 1.3, where the pair interaction per persistence length

Lp, U(R, φ1 = 0, φ2), is displayed as a function of the azimuthal orientation angle φ2 with

φ1 = 0 fixed, at two fixed interaxial separations, R = 2.1 nm and R = 2.5 nm, for N = 10

and N = 20 charges, as well as for a continuous line charge. The counterion condensation

parameters are f1 = 0.3, f2 = 0.7 and f3 = 0. It can be seen that already for N = 20

the obtained potential curve is indistinguishable from that for the continuous line charge

potential at both interaxial separations. For N = 10 charges on the other hand, deviations

exist predominantly for R = 2.1 nm, but have decreased to a minuscule level for R = 2.5 nm.

A more detailed structure of the pair potential as a function of the azimuthal orientation

is apparent for the smaller separation. The differences mainly pertain to the region around

the maximum and the two minima. The position of the global minimum, however, the

most important parameter for the behavior in an assembly, is practically unchanged. This

assertion is only based on the observation of the potential at two fixed interaxial separations.

Its main point however is sustained by the data shown in the inset of Fig. 1.4, where we

show the optimal azimuthal orientation angle φ2,opt, again at f1 = 0 fixed, as a function

of the DNA-DNA interaxial separation R. The corresponding potential is shown in the

main graph of Fig. 1.4. The detailed behavior of the optimal azimuthal alignment angle

is different for N = 10 charges from that for N = 20 charges and continuous line charges,

whereas the latter are indistinguishable from one another. The key points for the behavior

in an aggregate, however, remain unchanged for all cases: First the optimal angle is nonzero
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Figure 1.3: Yukawa-segment pair potential per length Lp as a function of the az-

imuthal orientation angle φ2 with φ1 = 0 fixed, at interaxial separations R = 2.1 nm

and R = 2.5 nm, for θ = 0.9 and f1 = 0.3, f2 = 0.7, f3 = 0. At both interaxial separa-

tions the potential is displayed for N = 10, N = 20 charges as well as for continuous

line charges.

for all interaxial separations smaller than R∗ ≈ 30Å and second for very small intersurface

separations the optimal angle is approximately 0.42 π.

The second approach to discrete charge patterns is to calculate the interaction for all

combinations of φ1 and φ2 and then to minimize the obtained potential energy on curves of

constant φ = φ1 − φ2. This is the more realistic version of the approach shown above, yet it

is still an approximation for an aggregate since there optimized combinations of φ1 and φ2

for a given φ will not be possible with respect to all neighbors of a given DNA molecule. In

Fig. 1.5 we compare this approach for N = 10 discrete charges at an interaxial separation

R = 2.1 nm with the one presented above and with the continuous line charge version.

We again have θ = 0.9, f1 = 0.3, f2 = 0.7 and f3 = 0 for the counterion condensation

parameters. The resulting potential curve is the lowest in energy as one should expect from

the procedure applied. The structure is close to the one induced by continuous line charge

distributions and the minima are found at exactly the same loci as when keeping φ1 fixed

at φ1 = 0, they are thus practically at the same positions as for the continuous line charge

version. Again, from the analysis of one single interaxial separation we thus conjecture that

the overall behavior of the pair potential will not present significant deviations from the

reference continuous charge case. This statement is confirmed by analyzing the inset of Fig.

1.6, where we show the optimal azimuthal angles as a function of the interaxial separation

R for the three different approaches to the charge distributions. Again, the dependence of

the optimal azimuthal angle on the interaxial distance is very similar for the three cases

studied, which will induce similar angular frustration behavior in an assembly. In detail,

the optimal angle curve is closer to the one for a continuous charge distribution in the case
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Figure 1.4: Yukawa-segment pair potential per length Lp as a function of the inter-

axial separation R of two DNA molecules, at the optimal angle φ2,opt(R), depicted for

N = 10, N = 20 charges as well as for continuous line charges. The dependence of

the optimal angle on the interaxial separation R is shown in the inset.

where both angles φ1 and φ2 are free to rotate and the energetically optimal combination

yielding the desired mutual azimuthal orientation φ = f1 − φ2 is chosen, as compared to

the case where φ1 is set to zero. As far as the behavior of the pair interaction at optimal

azimuthal angle, shown in the main graph of Fig. 1.6, is concerned, both discrete charge

versions fall on the same line, which shows a deviating course from the continuous version’s

behavior in the close-interaxial separation regime, while it approaches the continuous case’s

curve fast for larger R and both lines agree for R > 25 Å. We repeated the analysis of Figs.

1.5 and 1.6 for N = 20 charges. Here, no difference to the continuous charge distribution

results could be discerned.

We can thus conclude that first the behavior of a DNA assembly will most probably not

qualitatively differ for a discrete charge model with the real DNA charge number N = 10

and a continuous line charge model. The results will however, in a quantitative manner

depend on the underlying pair potential, especially for high concentrations, since, in Figs.

1.4 and 1.6 we found that for very close intersurface separations the pair interactions differed

for a discrete and a continuous charge pattern on the DNA surface. Second, since already

for N = 20 the results are indistinguishable from the ones for continuous line charges,

we can furthermore surmise that a modulated continuous line charge distribution, as briefly

discussed above to be the most realistic model, would not significantly differ even on the level

of the pair potential. According to this reasoning, we will henceforth focus on continuous

line charges, thereby avoiding the problem that for discrete charge patterns the potential

depends on both molecules’ azimuthal orientations φ1 and φ2 which significantly complicates

matter for the strict analysis of an assembly.

Let us now investigate the effect of different amounts and types of counterions adsorbed

on the DNA molecular surface. The type of counterion is herein modeled by the ratio of
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Figure 1.5: Yukawa-segment pair potential per length Lp as a function of the az-

imuthal orientation angle φ (solid line, continuous line charge distribution), as a func-

tion of φ = φ1 − φ2 with the optimal combination of φ1 and φ2 as described in the

text (dashed line, N = 10 discrete charges) and as function of φ2 with φ1 = 0 fixed

(dotted line, N = 10 discrete charges). All interactions are at an interaxial separation

R = 2.1 nm, for θ = 0.9 and f1 = 0.3, f2 = 0.7, f3 = 0.

adsorbed charges in the minor and major grooves, as well as on the strands to the DNA

phosphate backbone charge. We restrict our analysis to the most relevant cases: We will

investigate θ = 0.9 (meaning that 90% of the DNA charge is compensated by adsorbed

counterions) with counterions adsorbing predominantly in the major groove, represented by

charge fractions f1 = 0.3, f2 = 0.7 and f3 = 0, as well as with counterions exhibiting a high

affinity to phosphates and thus condensing on the strands: f1 = 0, f2 = 0 and f3 = 1. A

charge compensation value of θ = 0.9 is known to be typical for DNA condensation [18, 5].

Furthermore we calculate the potential for θ = 0.7, which is a lower bound still occurring in

DNA aggregation phenomena. Here, we also assume f1 = 0.3, f2 = 0.7 and f3 = 0. In Fig.

1.7 the potential is displayed as a function of the azimuthal angle φ for two fixed interaxial

separations, R = 2.5 nm and R = 3.0 nm, for f1 = 0.3, f2 = 0.7, f3 = 0 and θ = 0.9

and q = 0.7. For both amounts of adsorbed counterions, the potential curves qualitatively

agree. Due to the higher degree of charge compensation, however, the θ = 0.9 potential

values are smaller. In a subsequent step we minimize the potential with respect to the

azimuthal alignment angle φ, obtaining U(R, φopt). The result is displayed in Fig. 1.8. Both

potentials being induced by situations where the majority of counterions condenses in the

major groove, are strongly attractive, with the one for θ = 0.9 exceeding the one for θ = 0.7.

The potential stemming from a situation with all counterions condensed on strands, on the

other hand is purely repulsive.

What is the origin of this qualitative difference? The mechanism can be thought of as a

‘zipper’ [18]. Having a high charge compensation in the major groove creates a big charge
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Figure 1.6: Yukawa-segment pair potential per length Lp as a function of the interax-

ial separation R of two DNA molecules, at the optimal azimuthal orientation angle φopt

(solid line, continuous line charge distribution), at the optimal angle φopt = (φ1−φ2)opt

with the optimal combination of φ1 and φ2, as described in the text (dashed line,

N = 10 discrete charges) and as function of φ2 with φ1 = 0 fixed (dotted line, N = 10

discrete charges). All interactions are counterion condensation parameters θ = 0.9

and f1 = 0.3, f2 = 0.7, f3 = 0. The dependence of the optimal angle on the interaxial

separation R is shown in the inset.

separation: A negative helical line charge is located at the phosphate backbone position,

a positive helical line charge rests in the adjacent major groove. With two opposing DNA

molecules appropriately oriented, this allows for positive and negative charges to directly

face each other as complementary parts in a zipper, creating a strong attraction between

the two molecules. If counterion condensation solely occurs on strands, this mechanism is

absent, creating a purely repulsive potential, as seen in Fig. 1.8 in the case of θ = 0.9, f1 = 0,

f2 = 0, f3 = 1. In any case, the potential quickly decays towards zero for increasing interaxial

separations so that in an assembly the dominant contributions to the total potential energy

will stem from the nearest neighbors. The optimal angle, as a function of the interaxial

separation, plotted in the inset of Fig. 1.8, is practically unaffected by this mechanism:

In all three cases displayed, the optimal angle is non-zero for interaxial separations smaller

than R∗ ≈ 28.25Å and zero else. Furthermore, a very similar increase from zero at R∗ to

φopt(R = 0) ≈ 0.47 π is observed in all cases.

Let us finally remark that the Yukawa-segment model has the advantage of being very

general and flexible. Any linearized field theory necessarily ends up with an effective Yukawa-

type interaction. If hydration effects are included within a field theoretical description, the

leading term for the effective interaction has again a Yukawa form. The electrostatic effects

are well described even at strong coupling provided the charges and screening lengths are

suitably renormalized as recently demonstrated in micro-ion resolved computer simulations

of two parallel DNA strands [20].
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Figure 1.7: Yukawa-segment pair potential for two segments of length Lp as a function

of the mutual azimuthal orientation angle φ of two DNA molecules, at fixed interaxial

separations as indicated in the legend, for θ = 0.9. θ = 0.7, and f1 = 0.3, f2 = 0.7,

f3 = 0 were used for the fractions of condensed counterions in the minor and major

groove and on the strands, at different interaxial separations as indicated in the legend.

1.3.2 Kornyshev-Leikin Potential

The Kornyshev-Leikin approach rewrites the result of linear screening theory in terms of

a ‘helical Fourier expansion’ (ε1 � ε) [14, 49, 65]. The pair interaction potential per unit

length features a hard-core repulsion for interaxial separations R ≤ 2a and for R > 2a reads

as:

u(R,φ)
u0

=
∞

∑

n=−∞

[

f1θ + (−1)nf2θ − (1 − f3θ) cos(nφ̃s)
]2

× (−1)n cos(ng∆z)K0(κnR) − Ωn,n(κnR, κna)

(κn/κ)2[K ′
n(κna)]2

, (1.9)

The total interaction U(R, φ) per segment of length L is simply U(R, φ) = L u(R, φ). In

Eq. (1.9) ∆z denotes a vertical displacement, equivalent to the azimuthal alignment angle

φ = (2π/H)∆z. Furthermore, u0 = 8πσ2/εκ2 (≈ 2.9 kBT/Å at physiological ionic strength),

and κn =
√

κ2 + n2g2. The function Ωn,m(x, y) is given by

Ωn,m(x, y) =
∞

∑

j=−∞

[

Kn−j(x)Kj−m(y)
I ′
j(y)

K ′
j(y)

]

, (1.10)

with the modified Bessel functions Kn(x) and Ij(y). The primes denote derivatives. As can

be seen, the dependence of the pair potential on the mutual orientation angle φ is affected

by the distributions fi, i = 1, 2, 3 of the condensed counterions [18]. The dependence on the

interaxial separation R is exponential. Keeping only the n = 0-term in the sum of Eq. (1.9)
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Figure 1.8: Yukawa-segment pair potential for two segments of length Lp as a function

of the interaxial separation R of two DNA molecules, at the optimal angle φopt(R),

depicted for different values of the counterion condensation parameter and for different

counterion adsorption patterns. The dependence of the optimal angle on the interaxial

separation R is shown in the inset.

yields a pair potential of homogeneously charged cylinders, depending on R only. Summing

up to |n| = 2 results in the approximation u(R, φ) ∼= C(R) − A(R) cos φ + B(R) cos2 φ.

Already at this level does the interaction potential u(R, φ) show a peculiar dependence on the

mutual azimuthal orientation angle, being a remarkable effect of DNA double strandedness,

as discussed above in Sec. 1.3.1. Here, A(R), B(R), C(R) > 0 depend on the parameters of

DNA structure as well as on the distribution of adsorbed ions, and A(R) > B(R) at large

interaxial separations R. This potential has two symmetric azimuthal minima at φ̂± 6= 0

for distances smaller than a critical one at which A(R) = 2B(R), and one minimum at

φ̂ = 0 for larger R. It thus already captures, to quite a good degree, the essential features

of the full interaction potential as observed in the previous section in the framework of the

Yukawa-Segment model.

Let us now investigate the full potential. Due to rapid convergence of the sum in Eq.

(1.9), truncation after the |n| = 5 terms suffices for the evaluation of the fully converged

pair interaction potential. In Fig. 1.9 we show the KL-potential U(R, φopt) at optimized

azimuthal alignment angle, φopt, as plotted for the YS-case in Fig. 1.8. It can be seen that

the results are very similar to the ones discussed above for the YS potential. Counterion

condensation on strands (f1 = 0, f2 = 0 and f3 = 1) gives rise to an exclusively repulsive

potential, whereas condensation of a majority of the counterions in the major groove (f1 =

0.3, f2 = 0.7 and f3 = 0) results, at both charge compensations θ = 0.7 and θ = 0.9,

in an attractive pair interaction. Differences in the KL approach to the YS approach can

however also be inferred from a comparison of Fig. 1.9 and Fig. 1.8. These refer to the

behavior at small intersurface separations. In the case of the YS model, the interaction

decays monotonically to the ‘contact value’ at R = 20 Å. Here, for the KL potential,
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Figure 1.9: Kornyshev-Leikin pair potential as a function of the interaxial separation

R of two DNA molecules, at the optimal angle φopt(R), depicted for different values

of the counterion condensation parameter and for different counterion adsorption pat-

terns. The dependence of the optimal angle on the interaxial separation R is shown

in the inset.

however, the potential drops to its minimum value close to surface contact, but then rises

again upon further approach. Furthermore a quantitative difference can be seen for θ = 0.7

and f1 = 0.3, f2 = 0.7, f3 = 0, since in the KL case the attraction for this combination of

parameters is much weaker than it was found to be for the YS model. Both observations can

be attributed to the fact that in the KL case the dielectric jump is taken into account with

ε/ε1 = ∞, where ε is the dielectric constant of the solvent (water) and ε1 is the dielectric

constant of the DNA core. This allows for image charges at the DNA surface, bringing about

a short-ranged repulsive part in the interaction, as evidenced in the potential curves in Fig.

1.9. Nonetheless this short-range repulsion does not affect the behavior of the optimal angle

as a function of the interaxial separation as compared to the one found in the YS case. We

show the corresponding data in the inset of Fig. 1.9. The same functional form as for the

YS potential is obtained, except for the fact that RKL
∗ ≈ 29.5 Å is found to be slightly larger

than RYS
∗ ≈ 28.25 Å in the YS case.

We now have two realizations of the linear Debye-Hückel potential for the DNA inter-

action at hand stemming from different levels of modeling realized in the Debye-Hückel

framework, which show differences with respect to the short-range behavior. In the follow-

ing section we will present a theory to investigate the statistical properties of a columnar

DNA assembly. We will thereby rely on the two YS and KL potentials as discussed above.

The interesting question to be pursued apart from the main objective, being the general

properties of such assemblies, is, if and how the differences in the pair potentials affect the

behavior of the assembly.
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1.4 A Theory for DNA assemblies

In the previous sections we showed that under the assumption of continuous line charges

and infinitely long, rigid, parallel DNA molecules, the pair interaction potential U(R, φ) of

two DNA molecules only depends on the interaxial separation R and the mutual azimuthal

orientation angle, φ. The problem of statistical properties of columnar aggregates of long

rigid DNA molecules may thus be mapped on a 2d-problem of particles that we may formally

refer to as ‘XY-spins’, interacting via this unusual potential U(R, φ), (see Fig. 1.2), [14]. We

repeat from Sec. 1.3.1 and 1.3.2 that the dominant contributions to the potential U(R, φ)

arise from the nearest neighbor interactions, as the R-dependent parts of the potential expo-

nentially decrease with R. Before going into more detail on the theory for DNA assemblies

we can, on the basis of the knowledge of the pair potential, already surmise a general trend

in the behavior: We know that the potential has two symmetric azimuthal minima at φ̂± 6= 0

for distances smaller than a critical one and one minimum at φ̂ = 0 for larger R. While the

φ̂ = 0-case is compatible with any lattice, φ̂ 6= 0 results into frustrations of positional and

orientational order [66]. Due to the ‘R − φ coupling’ in the interaction potential, one may

expect peculiar positional and orientational structures in the aggregate, a feature known as

the mesomorphism of DNA assemblies [40]. Carrying the formal analogy to spin systems fur-

ther, we may refer to the orientational structure in the assembly also as ‘spin’ or ‘magnetic’

structures.

1.4.1 Lattice Sums

For all cases studied in this chapter, the pair interaction U(R, φ) is greater than kBT , so that

the energy needed to destroy the translational or orientational order in an assembly must be

more than several kBT at room temperature. Hence focusing on the ground state-analysis

of the basic structures of the assembly provides the representative thermodynamic states.

This reasoning is further sustained by evidence from polymer crystallization, stating that

upon compression the effective persistence length of polymers increases, bringing them into

columnar alignment at high packing fractions [67, 68]. Since, as we already argued above,

the problem is effectively two-dimensional, we consider the five two-dimensional Bravais

lattices, i.e., the hexagonal (HEX ), square (SQ), rectangular (REC ), rhombic (RHO) and

oblique (OBL) lattices in order to assess the representative thermodynamic states. As for

the exploration of the ordered spin structures, we are, in principle, facing infinitely many

degrees of freedom: Every DNA molecule in the lattice has a continuous spectrum of possible

orientations. We can, however, make use of a pair potential property that we noted in Sec.

1.3, namely that the pair interaction drops exponentially as a function of the interaxial

separation R. Assuming that its range would solely encompass interactions contained in

a fundamental unit cell (elementary plaquette), the approach could be much simplified in

the following way. We restrict our analysis to finding the minimal energy state of this

fundamental unit cell alone. This is achieved by minimizing the energy of the plaquette
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Figure 1.10: A schematic view of generating candidate ordered spin phases of the

system. (a): for the HEX -lattice; (b): for the REC - and SQ-lattices; (c) and (d): for

the RHO- and OBL-lattices.

with respect to all spin angles residing on the elementary plaquette. Since no interactions

beyond unit cells are assumed to be present, periodical repetition of this ‘minimized’ unit

cell along the lattice directions guarantees to give the ground state of the whole lattice. Due

to the exponential decay of the R-dependent factors in the pair interaction potential this

already presents an amazingly good approximation for our purposes. Since strictly speaking

the range of the potential may extend beyond nearest neighbor interactions in some cases,

we adopt a perturbation approach in the following way: The whole lattice is generated by

periodical repetition of the elementary plaquette structure, involving two or three degrees of

freedom depending on the lattice type under exploration, but interactions of higher-order-

neighbors are nonetheless included in the calculation of the lattice sums.

The algorithms employed for generating the ordered spin structures on the whole lat-

tice building on the fundamental unit cell differ depending on the lattice type. They are

schematically illustrated in Fig. 1.10. One of the spins in the elementary plaquette is chosen

as reference (φ = 0). This leaves two degrees of freedom (φ1, φ2) in the case of the HEX

lattice and three degrees of freedom (φ1, φ2, φ3) for the REC - and SQ-lattices. The HEX

lattice can be build up by periodically reflecting the unit cell across its edges, as is shown in

Fig. 1.10(a). The same holds for the REC lattice with three free orientations per plaquette,

see Fig. 1.10(b). In the case of the RHO- and OBL-lattice, however, employing the same

procedure as for the REC -lattice with three free spin angles per plaquette does not produce

identical plaquettes: Due to the fact that the geometrical symmetry of the unit cell is broken

(a short and a long diagonal exist), mirror reflections across the edges generate different pla-

quettes on the whole lattice. The lattice may nonetheless be filled with identical plaquettes

by employing two algorithms which are depicted in Fig. 1.10(c) and 1.10(d). In the first,

spins of orientation φ1 and φ2 are placed along the edges, while the third free orientation

angle is chosen to be φ3 = φ2 −φ1. The whole lattice is then populated by successive mirror

reflections making safe that pairs of spins across all diagonals have the same relative angle
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of φ2 − φ1.

The second algorithm is illustrated in Fig. 1.10(d). Again, spin angles of values φ1 and

φ2 are chosen along the edges, while φ3 is assigned a value of φ1 + φ2. The lattice is then

build up by increasing the angular value by φ2 along the oblique direction and by φ1 along

the horizontal lattice direction. The resulting lattice exhibits unit cells in which all pairs of

spins across short diagonals have an angle difference of φ1−φ2, whereas pairs of spins across

long diagonals are separated by an angular difference of φ1 + φ2.

Lattice sums are then calculated and a minimization of the lattice energy with respect to

the orientational degrees of freedom {φi}, the geometrical degrees of freedom, being the size

ratios b/c for the REC -lattice and/or the geometrical angle ω for RHO- and OBL-lattices,

see Fig. 1.10, is carried out. The result of the minimization procedure is the optimized

lattice-sum energy, UX(Φ, ρ), where X stands for the lattice type and Φ = (φ1, φ2, . . . , φN)

denotes the configuration of the N spins in the system.

Three examples of lattice sums for fixed DNA density πρa2 and fixed salt concentration

ns at a charge compensation θ = 0.9 and f1 = 0, f2 = 0, f3 = 1 are displayed in Figs.

1.11(a) through(c). They depict the total energy stemming from the lattice sum as contour

plots as a function of φ1 and φ2 They are representative of three different phases emerging

for these parameters. The meaning of the three phases will be explained in detail in Sec.

1.5. It can be clearly discerned from the contour plots that a certain symmetry prevails in

the aggregate with respect to φ1 and φ2 whereby the symmetry axis is the line φ1 = φ2.

The location of the minima evolves from φ1 = 0.21, φ2 = 0.42 (Fig. 1.11(a)) via φ1 = 0.46,

φ2 = 0.46 (Fig. 1.11(b)) to φ1 = 1/3, φ2 = 2/3 (Fig. 1.11(c)), whereby lattice sums at

correspondingly symmetric angles are found to have equally low values.

The 2d DNA-concentration ρ is varied within 0 ≤ ρa2 ≤ 1/(2
√

3), the upper limit being

the close-packed configuration in a HEX -lattice. We vary the salt concentration ns in the

assembly within 0.0001mol/l ≤ ns ≤ 3mol/l, including strongly deionized situations and

physiological salt concentrations. For the lower limit of the 2d DNA concentration the

following remark is in order. The molecules remain parallel down to density ρa2 ≈ 0.1,

corresponding to interaxial separations R ≈ 34 Å, at which the cholesteric phase (CP)

appears [43, 45, 69, 55]. A theory of the CP is beyond the scope of this work, thus we

draw our phase diagrams down to ρa2 = 0, with the reminder that for large interaxial

separations the CP is stable. Although the CP is not included in the present theory, we

have, for low 2d DNA-concentration, to take into consideration the low-density 2d-fluid. We

achieve this by the following scheme: For every screening parameter κ which is associated

with a given phase point (ρ, ns), we map the interaction potential for φ = 0, given by Eq.

(1.5) or (1.9), respectively, onto an effective hard-disc interaction potential, making use of the

Barker-Henderson rule [70], providing us with the effective hardcore diameter d(κ). Using

the known result (π/4)ρmd(κ)2 = 0.691 for the melting density ρm of hard-disc systems [71],

the melting line can be estimated.



1.4. A Theory for DNA assemblies 25

0 0.5 1 1.5 2

0

0.5

1

1.5

2

(a) (b)
0 0.5 1 1.5 2

0

0.5

1

1.5

2

(c)
0 0.5 1 1.5 2

0

0.5

1

1.5

2

Figure 1.11: Lines of constant energy as stemming from lattice sum calculations of

DNA-salt mixtures for the KL model as a function of the azimuthal angles φ1 and φ2,

with θ = 0.9 and f1 = f2 = 0, f3 = 1. Pink color indicates low energies while red

encodes high energy values. The lattice here is HEX . (a) πρa2 = 0.44, ns = 0.2 mol/l

(b) πρa2 = 0.60, ns = 0.2 mol/l (c) πρa2 = 0.75, ns = 1.7 mol/l.

1.4.2 Volume and kinetic energy terms

To access the full thermodynamics of the DNA solution-salt mixture, we have to add the

contributions to the free energy stemming from the counter- and co-ions, with numbers

N± and concentrations c±, respectively. In a simplified picture, they can be thought of

as the entropic, ideal-gas-like contributions of the free, non-condensed counterions (kinetic

energy terms) and the interaction of the DNA-macroions with their associated double-layer

of salt-microions. These degrees of freedom contribute an extensive term, independent of

particle coordinates and momenta, to the free energy of the system, with terminology footing

on the volume terms’ extensivity. Although the volume terms lack the dependence on the

current phase point of the system, they still represent an important contribution to the total

free energy of the system, as they constitute a nontrivial, non-vanishing density-dependent

term in the Hamiltonian. They are of importance in a wide number of multi-component

systems, i.e. Ashcroft and Stroud [72] noted their influence on mixtures with quantum and

classical components, Rowlinson [73] pointed out their relevance in general terms, Grimson

and coworkers [74, 75] analyzed their influence on charged colloids and they were calculated

by Graf and Löwen [76] for charge-stabilized colloidal suspensions, see also van Roij [77]
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and Denton [78, 79]. For charged cylindrical molecules Graf and Löwen calculated the

contributions from volume and kinetic energy terms to be [64],

Fc = F 0
+ + F 0

− + Fcoh, (1.11)

where F 0
± = N± kBT

[

ln(c±Λ3
±) − 1

]

are the ideal-gas contributions (with Λ± being the

thermal de Broglie wavelengths of the counter- and co-ions) and

Fcoh = −1

2

[

2Na(Ze)2κ

εLp(1 + κa)
+

kBT V (c+ − c−)2

c+ + c−

]

, (1.12)

is a cohesive term. In Eq. (1.12), e is the electron charge, Z|e| = 2πaLpσ(1 − θ) is the

uncompensated DNA-charge, c+ = Zρ/Lp +ns and c− = ns. Finally, V is the volume of the

system and κ =
√

4π(Zρ/Lp + 2ns)e2/(εkBT ) for monovalent salt ions.

The total Helmholtz free energy for a given lattice type X is then given as the sum of

the lattice sum of the DNA assembly, UX, and the volume and kinetic energy terms of the

salt solution, Fc: F = UX + Fc.

1.5 The phase diagram

We now apply the considerations of the previous section to the calculation of the phase

diagrams of columnar DNA assemblies. Let us focus on the YS model for the moment and

then turn our attention to the KL model. The first choice of parameters we investigate

corresponds to the adsorbed counterions being exclusively condensed on strands, i.e, f1 =

f2 = 0 and f3 = 1. In this case the DNA-DNA interaction is purely repulsive, see, e.g., Figs.

1.8 and 1.9. Correspondingly, we find the system to crystallize into the HEX lattice at all

DNA-densities. Hexagonal lattice structures are evidenced in sperm nuclei and a number

of bacteriophages [45] and were also observed in vitro [80, 81, 82]. Adding to the repulsive

R dependent interaction, the effect of the nontrivial R-φ-coupling is present, giving rise to

a large variety of orientational (‘spin’, ‘magnetic’) structures to occur due to the azimuthal

frustration of the system. The orientational structures are schematically shown in Fig. 1.12

and the phase diagram of the DNA-salt mixture is plotted in Fig. 1.13. Four different

orientational phases can be discerned. The FM -phase is stable at low DNA-concentrations.

It is ferromagnetic: all DNA-molecules have the same azimuthal orientation. The AFP phase

has a three-state antiferromagnetic Potts [83] type of ordering, with 1/3 of the spins pointing

in a reference direction φ = 0, 1/3 in the angle φ0 and 1/3 in the angle 2φ0, where φ0 grows

with DNA concentration. The phase denoted AFI displays antiferromagnetic-Ising ordering,

with half of the DNA-molecules having one azimuthal orientation on one of the sublattices

and a different on the other. Finally, the AFH -phase has the orientational ordering of

the two-dimensional antiferromagnetic Heisenberg model, with spins residing in the three

sublattices of the hexagonal lattice having mutual orientational angles of 120 o to one another.

The AFH phase is thus a special case of the AFP phase. The transition between the FM and
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Figure 1.12: The four stable ‘magnetic’ phases. The arrows indicate the azimuthal

orientations of DNA molecules. The acronyms, using magnetic terminology, stand for

ferromagnetic (FM ), antiferromagnetic Ising (AFI ), antiferromagnetic Potts (AFP),

and antiferromagnetic Heisenberg (AFH ).

AFP phases is second-order but the AFP → AFI and AFI → AFH transitions are first order

with very narrow density gaps [76]. As can be seen, for the average intermolecular separations

occurring in the FM phase, the optimal azimuthal angle between the molecules is zero. The

nontrivial phases arise at higher densities of the aggregates, as a result of the frustrated

character of the φ-dependence of the pair potential. Similar mesophases were found recently

within the framework of a phenomenological Landau theory [50]. Representative lattice sums

for the AFP , AFI and AFH phases are shown in Fig. 1.11. Including the 2d fluid estimate

into the calculation, parts of the phase diagram at lower 2d DNA densities get preempted

by the 2d fluid, as is shown in Fig. 1.14(a).

Changing the type of counterions present in the solution to counterions with a preference

to adsorb into the major groove, i.e. choosing f1 = 0.3, f2 = 0.7 and f3 = 0, drastically

changes the picture. As we showed in Sec. 1.3, the counterion condensation in grooves

provides a ‘zipper’ mechanism, leading to an attraction between the DNA-molecules, since

the positively charged sections of one molecule can approach the negatively charged sections

of the other through an appropriate mutual orientation. This attraction leads to non-convex

parts in the Helmholtz free energy F (ρ, ns), causing an instability in this regime, as non-

convexity means, via P = −∂F/∂V , regions of negative pressure in the system. Performing

a double tangent construction removes the non-convex parts in the free-energy curve and

thereby yields broad phase-coexistence tielines between dense DNA-aggregates and DNA-

free solutions, connecting coexisting (ρ, ns) state points. See Appendix A for a more detailed

discussion. The occurrence of a broad phase-coexistence regime can be seen in Fig. 1.14(b)

for the case f1 = 0.3, f2 = 0.7 and f3 = 0 for θ = 0.7. The oblique tielines result from the

requirement that the electrolyte chemical potentials be equal at both coexisting phases, as

is explained in more detail in Sec. A. In the one-phase region, a rhombic phase with an

AFI orientational structure shows up for the density regime directly adjacent to the phase
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Figure 1.13: Phase diagram of DNA-salt mixtures for the YS model as a function of

the DNA packing fraction πρa2 and salt concentration ns in the aggregate: θ = 0.9,

f1 = f2 = 0, f3 = 1, the lattice here is HEX . Dashed lines denote second-order

magnetic transitions, solid lines first-order ones.

coexistence line and a HEX crystal with AFP ‘magnetic’ ordering appears at very high

DNA-concentrations. One might have a priori conjectured that a SQ-phase with orthogonal

magnetic order would win the game at high concentrations in the solely attractive YS case,

since the angular part of the interaction favors ≈ π/2 angular ordering for small separations

and would thus be non-frustrated on a SQ lattice, see Fig. 1.15. It has to be kept in mind

however, that although one has, for a given packing fraction, four neighbors closer in a

SQ lattice than in a RHO or HEX lattice at the same packing fraction, which is favorable

without repulsions, in a HEX lattice there are six neighbors at a slightly larger distance.

The same effect is present in a RHO lattice although there the symmetry is broken with

four nearest and four next-nearest neighbors as in the SQ lattice, but with another nearest

neighbor distance to next-nearest neighbor distance ratio, which turns out to favor the RHO

lattice with the potential curve that we have in the YS case. Increasing θ to 0.9 does

not qualitatively affect the phase diagram. The DNA-aggregate coexistence with DNA-free

solutions turns out to be slightly broader, due to stronger attractions prevailing in the pair

potential. The results are depicted in Fig. 1.14(c). We thus observe a significant qualitative

difference in the macroscopic behavior of DNA columnar assemblies depending on the type of

adsorbed counterions. If they solely adsorb on strands, i.e. f1 = f2 = 0 and f3 = 1, all phase

transitions occur in the azimuthal variables. With counterions condensed in grooves, a DNA

bundling transition into a high DNA density rhombic phase takes place. The crossover from

one topology (no DNA bundling) to the other (DNA bundling) can be estimated by holding

f1 = 0.3 fixed and increasing f2 at the cost of f3. For a charge compensation parameter θ

of e.g. θ = 0.7 it is found to occur at (f2, f3) = (0.63, 0.07). Here, all phase diagrams are

plotted as a function of the electrolyte concentration in the aggregate. Taking into account

the Donnan equilibrium [84], the phase diagrams, recalculated as a function of the salt in

the reservoir, are qualitatively the same as the ones shown.
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Figure 1.14: Phase diagrams of DNA-salt mixtures for the YS model as a function

of the DNA packing fraction πρa2 and salt concentration ns in the aggregate: (a)

θ = 0.9, f3 = 1, the lattice here is HEX . (b) θ = 0.7, f1 = 0.3, f2 = 0.7; (c) θ = 0.9,

f1 = 0.3, f2 = 0.7. Dashed lines denote second-order magnetic transitions, solid lines

first-order ones. The geometrical transitions between different lattices in (b) and (c)

are 2nd order; the straight lines are tielines between coexisting phases.

The same procedure is now applied to the KL pair potential. Again, we first investigate

θ = 0.9 and f1 = f2 = 0 and f3 = 1. The phase diagram is shown in Fig. 1.16(a).

It is apparently very similar to the corresponding phase diagram of the YS model. The

orientational structures found are the same as in the latter case and even the loci of the

phase transitions are practically unchanged, except for the AFI → AFH transition, which

occurs for lower ρ and ns values. The 2d fluid regime is smaller, being sign of the fact that

the KL pair potential is steeper, i.e., stronger repulsive than the YS pair potential due to

the image charge effect included in the KL model. Switching to counterion condensation in

grooves, i.e. f1 = 0.3, f2 = 0.7, f3 = 0, again broad phase coexistence regions of a high-

density DNA aggregate with a DNA free salt solution are observed, see Figs. 1.16(b) and (c).

For the case of the lower of the two charge compensation parameters investigated, θ = 0.7,

the high-density DNA assembly does not coexist with a DNA-free salt solution at all salt

concentrations ns, but rather coexists with a low-density HEX crystal with an imprinted

FM orientational structure in the low salt concentration regime. This is, in this respect,

qualitatively different from the corresponding phase diagram found in the case of the YS

interaction. It is due to the much less attractive KL pair potential, as can be seen from a

comparison of the curves for θ = 0.7 in Figs. 1.8 and 1.9. Due to the same reason the phase

coexistence region turns out to be narrower for θ = 0.7 than it is for θ = 0.9, see again Figs.

1.16(b) and (c). The same statement holds for a comparison of the KL phase diagrams with

the YS phase diagrams. While in both cases the high-density DNA assembly exhibits a RHO

lattice with AFI orientational order and then a transition to a HEX crystal complemented

by an AFP ‘magnetic’ structure, the phase coexistence region is significantly broader in the

latter case. This behavior can be traced back to the pair potential in the same manner as

above: The YS interaction has a stronger attractive part and lacks the repulsive branch for

close-intersurface separations, see Figs. 1.8 and 1.9, the bundling transition induced by the
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Figure 1.15: A possible SQ phase with orthogonal ‘magnetic’ ordering.

strong ’zipper’ attractions will thus favor smaller interaxial separations between the bundled

DNA molecules.

1.6 Summary and concluding remarks

Summarizing, we calculated the phase diagrams for columnar DNA assemblies, building on

different levels of approximation in the pair interaction potential. We found that details of

the interaction as manifest by the two potentials used for calculating the phase diagrams are

not destroying the topology of the phase diagrams. The resulting phase diagrams showed

significant agreement for the case of repulsive interactions, induced by counterion conden-

sation on strands. For counterion condensation in the grooves, yielding strongly attractive

interactions, the phase diagrams qualitatively agreed for the high charge compensation value,

θ = 0.9, whereas for a lower charge compensation of θ = 0.7, an additional low-density HEX

DNA phase was present in the KL model phase diagram which was absent in the YS case.

In conclusion we could put forward qualitatively robust predictions for the features and

phase diagrams of columnar DNA assemblies. An experimental verification of the predic-

tions of the theory would be highly desirable. Such a task however poses severe problems

since the reliable experimental data available up to date pertain to highly concentrated

phases [85, 86, 87], corresponding to small interaxial separations of the DNA molecules. In

this regime the number of the basic assumptions inherent to the form of the pair potential

may be questioned. The Debye-Bjerrum approximation becomes inadequate, as well as the

independence of solvent dielectric constant on the aggregate density is questionable at high

aggregate densities. Furthermore effects of nonlocal polarizability, and, more important, hy-

dration effects come into play. The increase of experimental resolution in X-ray diffraction

could open the way for the study of less dense aggregates. Particularly challenging is the

predicted specific effect of cation adsorption on the phase diagram. Since the adsorption
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Figure 1.16: Phase diagrams of DNA-salt mixtures for the KL model as a function

of the DNA packing fraction πρa2 and salt concentration ns in the aggregate: (a)

θ = 0.9, f3 = 1, the lattice here is HEX . (b) θ = 0.7, f1 = 0.3, f2 = 0.7; (c) θ = 0.9,

f1 = 0.3, f2 = 0.7. Dashed lines denote second-order magnetic transitions, solid lines

first-order ones. The geometrical transitions between different lattices in (b) and (c)

are 2nd order; the straight lines are tielines between coexisting phases.

isotherms and the distributions of the adsorbed ions are poorly known, one should concen-

trate here on qualitative effects, i.e., the (dis)appearance of mesophases triggered by different

DNA condensing counterions.

While in this work we focused on DNA as representative for helical (bio)molecules, the

approach presented is, in general not at all restricted to DNA alone, rather can all types

of molecules bearing helical charge patterns, such as RNA, collagen, guanosine, viral parti-

cles (e.g. tobacco mosaic virus), polysaccharide helices and alpha-helical domains of many

proteins as well as microtubules be treated within the same framework. Furthermore the

formalism used here is not restricted to columnar assemblies, rather may it be applied to

other systems, such as bundles of α-helices, which form domains in many proteins, interac-

tions between transmembrane α-helices and DNA-DNA interaction in nucleosomes, where

only locally a parallel alignment of helical charge patterns may be assumed.

In the next chapter we will apply a similar concept, namely ground state calculations, to

the issue of colloidal decoration lattices on patterned substrates. The solution will, however,

be rendered more simple with respect to the pair potential: we will employ hard-sphere like

colloids with a spherically symmetric potential. The macroscopic order, induced in DNA

assemblies by means of the molecules’ helicity, can, due to the high degree of symmetry in

the colloids not be generated by their internal structure, but will rather be a result of an

external potential: the patterned substrate.



Chapter 2

Decoration lattices of colloids

adsorbed on stripe-patterned

substrates

All real world systems, except for the universe as a whole, are limited in space and are,

depending on the relative system size to a lesser or higher degree non-bulk systems. For

one thing, this complicates matter considerably, since physicists have good reason to prefer

the study of bulk behavior. On the other hand, external influence on the system in the

form of confining geometries can open up routes to completely new effects. In the realm of

nanotechnology and self-assembly, influences from the confining substrate are essential. By

employing appropriately patterned substrates, chemical, as well as nucleation and adsorption

processes can be controlled. In this chapter we investigate the adsorption of model colloids

on stripe-patterned substrates. We focus on the equilibrium ground state structures and find

that by tuning the model parameters, different complex colloid structures on the substrate

can be induced.

2.1 Introduction

Recent advances in microfabrication have allowed to prepare chemically or topographically

patterned substrates in a controlled way by using e.g. lithographic printing or other etching

techniques [88, 89]. There is a profound influence of such a substrate pattern on wetting [90,

91, 92, 93, 94, 95, 96, 97], on adsorption of soft matter [98, 99] and biological macromolecules

[100, 101], on crystal nucleation [102] and on bulk phase transitions such as freezing [103, 104]

and fluid-fluid phase separation [105]. Patterned substrates have also been used in so-called

microfluidics in order to control chemical reactions on a micro- or nano-scale [106, 107].

For this purpose, one-dimensional channels are considered that carry the reacting material.

These channels can either be attractive stripes or topographical groves.

In this chapter we study the adsorption of colloidal particles on a sticky periodic stripe-

32
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like pattern. Our motivation to do so is first coming from experiments where decorations were

obtained by adsorbing colloidal spheres on a patterned substrate mask [108, 109, 110, 98, 111,

112, 113, 114, 115, 116], or in an external laser field [117], for a recent review see [118]. Such

a decorated substrate may be offered as a template to other mobile colloidal particle in order

to nucleate further colloidal crystalline sheets and to grow “exotic” colloidal bulk crystals

[119, 120, 103]. The colloidal particles can both be sterically stabilized [121] or charge-

stabilized. In the former case, the pattern can be prepared by a different chemical coating

while in the latter the surface pattern is dictated by the inhomogeneous surface charge density

[122, 123, 100]. Another experimental system to observe structure formation near interfaces

are magnetic bubble arrays with periodic line pinning [124]. While much experience has

been accumulated in how to prepare the substrate in order to realize a prescribed mask, a

more systematic theoretical understanding of possible decoration structures as induced by

an underlying sticky periodic pattern is missing. In this chapter we investigate this problem

for a periodic stripe pattern within a simple model calculation including both attractive and

repulsive effective interparticle interactions. In equilibrium, we discover a wealth of possible

stable decoration lattices. Hence although the substrate pattern is relatively simple, the

decoration can be fascinatingly complex so that a wide range of decoration structures can

be generated in a controlled and simple way. Even for a single stripe, periodic decoration

structures as buckled alternating superlattices with a unit cell involving a large triangle

of particles and finite slices of a triangular bulk lattice may become stable. For a periodic

stripe-pattern, there are even more stable decoration lattices, involving triangular, quadratic,

rhombic, kite-like and sheared honeycomb lattices.

The chapter is organized as follows: We describe the model in Sec.4.3.1 and outline our

theory in Sec.4.2. Results are presented in Sec.4.3.2, and we conclude in Sec.4.5.

2.2 The Model

We consider a periodically stripe-patterned smooth surface, shown schematically in Fig.2.1.

The width of the sticky stripes is d, while the distance between neighboring stripes is b,

so that the structure is periodic in a direction perpendicular to the stripes with periodicity

length b+d. This patterned surface is exposed to a suspension of spherical colloidal particles

with hard-core diameter σ aggregating onto the pattern. An aggregated sphere exhibits a

point contact with the substrate gaining a potential energy −ε < 0, provided the contact

point is inside a sticky stripe. We assume strongly attractive substrates, such that ε is much

larger than the thermal energy kBT . Aggregation on the inter-stripe regions is neglected.

Aggregation occurs from a dilute bulk solution of colloids. Here, we do not discuss the

dynamics of aggregation or deposition [125], but rather focus on the equilibrium structure

present after relaxation of the adsorption process. Typical pair potentials V (r) as a function

of separation distance r between colloids have an inner hard core and a short-ranged tail.

By addition of non-adsorbing polymers or salt ions to the bulk solution, both attractive or
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d
b

σ

Figure 2.1: Model of hard spheres of diameter σ on an attractive stripe pattern

(dark gray) of width d and inter-stripe distance b. The sphere centers (crosses) are

constrained to lie inside the stripes.

repulsive tails can be realized [126]. For simplicity, we use a square-well/square-shoulder

potential

V (r) =















∞ for r < σ

v0 for σ ≤ r < σ(1 + δ)

0 else

(2.1)

with a small positive (reduced) range δ. Depending on the sign of v0, the tail is either

repulsive (v0 > 0) or attractive (v0 < 0). Thermodynamics of this system in bulk has been

studied in detail, see e.g. [127, 128, 129, 130] and references therein. Here, we expose the

model to an inhomogeneous surface, and restrict ourselves to zero temperature, i.e. to the

classical ground state [131]. Let A be the area of the surface, N be the number of adsorbed

particles, ρ = N/A denote the (two-dimensional) number density, and η = πρσ2/4 the

corresponding area fraction. The whole system is characterized by four reduced parameters,

namely the reduced width d/σ of the attractive stripe, the reduced interstripe width b/σ, the

range of the potential δ, and the ratio v0/ε of colloid-colloid to substrate-colloid interaction.

2.3 Theory

For zero temperature the energetically most favorable configurations of the adsorbate will

be attained. Technically, we need to minimize the total potential energy U per area A. One

may decompose u ≡ U/A = u1 + u2, where u1 stems from substrate-particle attraction, and

u2 from particle-particle interactions. These contributions are

u1 = −ερ, (2.2)

u2 = A−1

N
∑

i=1

N
∑

j=i+1

V (|~r(i) − ~r(j)|), (2.3)
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where ~r(i) denote (two-dimensional) particle positions on the surface. It will prove useful

to rewrite u2 in terms of the kissing numbers k(i) (of particle i), that equal the number of

touching spheres (i.e. |~r(i) − ~r(j)| = σ) for particle i. If we assume absence of hard core

overlap, and all particle separations r being either at contact (r = σ), or outside the range

of interaction (r > σ(1 + δ)), we can write

u2 =
v0

2A

N
∑

i=1

ki ≡ v0ρk/2, (2.4)

where k = N−1
∑N

i=1 k(i) is the (over system) averaged kissing number. Note that u1 favors

optimal packing of spheres, while u2 couples to the number of sphere contacts. Decisive for

phase behavior is the competition between optimization of packing and kissing, where the

ratio v0/ε is a control parameter. In practice, we start with different candidate lattices for the

colloids, calculate u for each one in order to find the optimal lattice that minimizes u. The

choice of candidates is motivated by mathematical packing and includes rhombic, square, tri-

angular, kite and other structures involving superlattices. We disregard the disordered fluid

phase, as temperature is zero. We have not considered non-periodic structures as quasicrys-

tals [132], that are expected to be unfavorable for a one-component colloidal system, but

could become relevant for binary and ternary mixtures. A similar zero-temperature calcula-

tion on structured substrates can be found in Ref. [131], for quadratic substrate patterns and

Lennard Jones interparticle interactions. We further remark that similar crystalline lattice

structures were obtained in Ref. [133] for a different physical system, namely flux lattices in

layered superconductors. In contrast to the short-range interactions employed in the present

study, the interaction between flux lines is long-ranged.

2.4 Results

2.4.1 Single stripe

For b/σ > 1+ δ, the spheres adsorbed on neighboring stripes are decoupled and the problem

reduces to that of adsorption onto a single stripe. For simplicity, we let δ → 0 and v0 ≤ 0,

so that we deal with sticky hard spheres. Geometrical considerations as well as numerically

checking other structures let us restrict the actually realized candidates to two n-layered

crystals, namely i) triangular lattices (n∆), and ii) supertriangle structures (nS), see Fig.2.2

for illustrations. n∆ is a portion of the triangular (bulk) lattice. The nS crystal consists of

a buckled superlattice of alternating close-packed triangles.

The relevant properties of both candidates are the following. For n close-packed layers

on a stripe of width d, we find

ρ∆ =
n

dσ
, (2.5)

ρS =
n(n + 1)

dσ[(n − 1) + 2 cosα]
, (2.6)
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1∆ 1S




2∆




∆2 3∆
2S

α
+

+

Figure 2.2: Crystal structures n∆ and nS of hard spheres sticking to a single stripe

of width d for n = 1, 2, 3. The stripe width d increases from left to right. α ∈ [0, π/3)

is the mismatch angle between adjacent supertriangles. Spheres building equilateral

(super)triangles are shaded to guide the eye. For larger d the sequence continues in

an analogous way.

where α ∈ [0, π/3) is the mismatch angle between adjacent supertriangles, see Fig.2.2. For

close-packed states, α is related to d via

α(d) = arcsin(d −
√

3(n − 1)/2). (2.7)

Note that for α = 0 (no mismatch), n∆ coincides with nS, and trivially ρ∆ = ρS . These

configurations define the close-packed area fraction ηcp plotted in Fig.2.3 a) as a function of

stripe width d. For the average kissing number, we obtain via counting of sphere contacts
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Figure 2.3: Relevant densities for close-packed hard spheres of diameter σ on a stripe

of width d as a function of d/σ for n∆ (symbols) and nS (lines) structures, as well as

for the bulk triangular lattice (dashed lines). a) Area packing fraction η. b) Kissing

number density per area, ρσ2k/2.

k∆ = 6 − 4

n
, (2.8)

kS = 6 − 8

n + 1
. (2.9)

Although in the limit α → 0 the structures themselves become identical, kS does not ap-

proach k∆ smoothly, but jumps at α = 0. Relevant for the potential energy (Eq.2.4) is not

the kissing number alone, but ρk/2, that is plotted in Fig.2.3b as a function of stripe width

d.

In the limit v0 → −∞, maximal kissing per area determines the equilibrium structure,

as the dominant contribution ρk/2 (Eq.2.4) to the energy u is to be maximized. Quite

surprisingly, in each interval n
√

3σ/2 < d < (n + 1)
√

3σ/2, a transition n∆ → nS exists,

that is located at d/σ = (n − 1)
√

3/2 +
√

1 − [(2 − n−1)/(3 − 2n−1)]2, where large k and

low ρ in n∆ are outperformed by low k and high ρ in nS. Note that as n → ∞, the

transition persists, and the relative phase transition point d/σ − (n − 1)
√

3/2 approaches
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√
5/3 = 0.7454.

Putting things together, we can turn to the full energetically driven phase diagram for

arbitrary |v0/ε|. Asking first how additional layers n → n + 1 jump in, we find the simple

answer: A transition nS → (n + 1)∆ is located at d = n(
√

3/2)σ, independent of v0/ε. The

n∆ → nS transition is less trivial. We obtain

d = (n − 1)(
√

3/2)σ + σ

√

1 −
[

(ε/v0) − 2 + n−1

(ε/v0) − 3 + 2n−1

]2

. (2.10)

In the limiting cases, for v0/ε = 0, we recover the close-packing structure of discs between

lines, and for v0/ε → −∞ the structure with maximal number of kisses. Eq. (2.10) interpo-

lates smoothly between these limits.

The resulting phase diagram is shown in Fig.2.4 as a function of d and exp(v0/ε). We
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Figure 2.4: Phase diagram for sticky hard spheres adsorbed on a single sticky stripe

as a function of reduced stripe width d/σ, and the (exponentiated) ratio v0/ε of inter-

particle versus substrate potential. Lines are phase boundaries between n∆ and nS
structures. The 1∆ phase is a vertical line at d/σ = 0.

restrict ourselves to n ≤ 4; the succession of nS and n∆ continues for larger d. In the limit of

broad stripes (d → ∞) and infinitely many layers (n → ∞), we consider d− (n−1)(
√

3/2)σ,

that maps d/σ onto the [0, 1] interval, and obtain the universal (n-independent) result

d − (n − 1)(
√

3/2)σ → σ

√

5 − 2(ε/v0)

[(ε/v0) − 3]2
. (2.11)

Narrow stripes with 0 < d < (
√

3/2)σ constitute a special case, because of dominance of a

single phase 1S (1∆ is squeezed to a vertical line at d = 0.) The reason for this behavior is

that 1∆ and 1S possess equal kissing numbers. This is in contrast to n > 1, where k∆ > kS.

Two remarks are in order: First, the supertriangular phases nS are the two-dimensional

analoga of three-dimensional prism phases [134] found for hard spheres confined between

parallel hard plates. A similar cascade of phases has been found there, although this is
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interrupted by other additional phases such as a rhombic structure [135, 136]. Second, in

contrast to the bulk problem [137, 138], we are not aware of a strict mathematical proof for

close-packed configurations, nor of any other numerical investigation of the packing problem

of discs between lines. Other confining geometries such as the square [139, 140, 141], triangles

[142, 143] and the circle [144, 145, 146] have been treated in a rigorous way.

2.4.2 Coupled Stripes

For b/σ < 1 + δ, particles on adjacent stripes interact. We limit ourselves to the hard

sphere case, δ = 0, and hence deal with a packing problem. To break possible degeneracy

of close-packed states, we consider v0/ε → 0−, favoring sphere contacts.

Triangular Lattice

We focus on the close-packed triangular lattice, of which is known that there is no denser

structure in bulk. If we succeed to identify patterns that are compatible (all lattice sites

lie on sticky stripes) with the triangular lattice, we have proved that there is no denser

decoration lattice. The task is to determine the (b, d) regimes in that the triangular lattice

is geometrically possible. Let the lattice sites of a triangular lattice be

~A(j, k) = j~a1 + k~a2, j, k = 0,±1,±2, . . . , (2.12)

where ~a1 = (σ, 0),~a2 = (σ/2,
√

3σ/2) are basis vectors. In the following, we imagine the

lattice to be fixed on the surface and attempt to determine those stripe patterns that are

compatible with the particle lattice. For given b, d, the pattern is determined by the orienta-

tion along the stripes. This orientation may be expressed as ~A(j, k)/| ~A(j, k)|, with suitably

chosen values for j, k. In order to find stripe patterns that fit the lattice, we calculate the

distance ξ(j, k) between adjacent lattice lines (the analoga to lattice planes in 3d), that are

parallel to ~A(j, k)/| ~A(j, k)|. To this end, we introduce a vector ~B(j, k), that is orthogonal

to ~A(j, k)/| ~A(j, k)|, as
~B(j, k) = −(j + 2k)~a1 + (2j + k)~a2. (2.13)

Projection of (−1/k)~a1 onto ~B gives the lattice line distance

ξ(j, k) = −~a1 · ~B

k| ~B|
=

√
3σ/2

√

j2 + jk + k2
. (2.14)

Upon varying j and k, the argument j2+jk+k2 generates a (seemingly irregular when sorted)

sequence of integer numbers, namely 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43,

48, 49, . . . . Expression (2.14) gives the lattice line distance for an orientation of lattice lines

(parallel to the stripes) defined by j, k. Assuming that b+ d and the lattice structure ξ(j, k)

have the same periodicity, a triangular lattice fits, whenever the stripe width d (with the
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Figure 2.5: Regions of stability of the triangular lattice (lines). a) m, l kept constant

(as indicated), and j, k varied. a) i, j kept constant (as indicated), and m, l varied. c)

full range of j, k, m, l (relevant for the scale of the plot).

stripe orientation given by ~A(j, k)/| ~A(j, k)|) and the interstripe distance b have periodicity

ξ(j, k), j, k ∈ Z,

b + d = ξ(j, k). (2.15)

This introduces a linear relationship between stripe width d and interstripe distance b. In

the b, d-plane, lines joining (ξ, 0) and (0, ξ) indicate regions where the triangular lattice fits

the stripe pattern. For smaller values of ξ, these lines get increasingly dense and finally
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converge into the origin.

c) d)

a) b)

e) f)

Figure 2.6: Crystal structures for d/σ <
√

3/2. a) Alternating rhombic for d = 0 and√
3/2 < b/σ < 1; in b)-d) the situation is shown for 0 < d/σ <

√
3/2 for decreasing

values of the inter-stripe width b/σ: b) 1S structures on decoupled stripes giving rise

to kite-structures in a periodic stripe arrangement; c) honeycomb (1HC); d) sheared

honeycomb (sheared 1HC); e) and f): squeezed 1HC for b/σ = 1, with d/σ < 0.5 and

d/σ > 0.5 respectively. Solid lines indicate unit cells.

The assumption of b + d-periodicity is not mandatory. Rather we could let the structure

be periodic after m lattice spacings ξ(j, k), and after l stripe spacings (b + d). This relation

reads

b + d =
m

l
ξ(j, k), (2.16)

where m and l must be indivisible integers, in order to avoid redundancies. The periodicity

brings about a set of inequalities to be satisfied, expressing the condition that no sphere

may lie outside a stripe,

iξ(j, k) ≤ j(b + d) ∨ iξ(j, k) ≥ j(b + d) + b, (2.17)
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that is to be fulfilled for all i, j. Solving this leads to the relation

(m − 1)b ≤ d. (2.18)

If we assume equality and use Eq.(2.16), we can solve for the minimal stripe width dmin and

a)

c)

b)

d)

Figure 2.7: Crystal structures for infinitely thin stripes d/σ = 0 and decreasing

values of b/σ: a) hexagonal lattice (b/σ =
√

3/2); b) centered rectangular (0.5 <

b/σ <
√

3/2); c) hexagonal lattice (b/σ = 0.5); d) centered rectangular (b/σ < 0.5).

simultaneous maximal interstripe distance bmax. These are

bmax =
1

l
ξ(j, k), (2.19)

dmin =
(m − 1)

l
ξ(j, k), (2.20)

and fulfill the relation

(m − 1)bmax = dmin. (2.21)

Hence the triangular regimes are lines from (0, ξ) to (bmax, dmin). The above case (lines from

(0, ξ) to (ξ, 0)) is recovered for m = l = 1. For each combination of m and l we thus get

a one-dimensional regime, where the triangular lattice fits. Variation of j and k, at fixed

m and l, then gives additional lines, shifted on the d-axis with their length being reduced.

This is illustrated in Fig. 2.5 a), where j and k are varied with m = 1 and l = 1 fixed (solid



2.4. Results 43

lines) as well as m = 4 and l = 4 fixed (dashed lines). The shift of the lines is according to

Eq.(2.21), their upper endpoints lying on a line defined by Eq.(2.20), whose slope changes

with m. In Fig.2.5 b), the lattice line distances ξ(j, k) are fixed via j = 0, k = 1 (solid

lines), j = 0, k = 2 (dotted lines) and j = 1, k = 2 (dash-dotted lines), while m and l are

varied. Fig.2.5 b) illustrates that (j, k) for a given combination of (m, l) determine the height

and position of one line, with other combinations of (m, l) produce replicas that are shifted

on the d-axis. Fig.2.5 c) covers the full range (relevant for the scale of the plot) of values

j, k, m, l. Note how the lines get denser for b → 0, and ultimately approach stripe-free bulk

packing. Although we cannot prove that the triangular lattice does not fit any other parts

in the phase diagram, we find that quite likely.

c) d)

a) b)

Figure 2.8: Crystal structures for
√

3/2 ≤ d/σ <
√

3 and b/σ ≤ 1: a) 2∆-Square

hybrid; b) sheared 2∆-Square hybrid; c) 2-honeycomb structure (2HC); d) sheared 2-

honeycomb (sheared 2HC). Spheres building equilateral triangles are shaded to guide

the eye. Solid lines indicate unit cells.

The geometrical features of the regimes are visually quite striking, and may be unex-

pected from the outset. It is however known, that competition of length scales may induce

fractal structures [147]. One simple tool to analyze these is box-counting [148]. In a two

dimensional situation, one covers the structure under consideration with a rectangular mesh

with mesh width W , and counts the number B of boxes that touch (or are completely inside)

the structure. This is performed successive times on smaller length scales W . For a fractal,

a scaling law B ∝ W−γ holds, where the dimension γ is not an integer. We have carried out
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such an analysis, and could confirm quite well power law scaling with a non-integer exponent.

A precise determination of γ, however, turned out to be subtle. We have restricted ourselves

to a physically reasonable lower cutoff W > 10−3σ. For m = l = 1, we obtain a γ = 1.5.

Superimposing “fence” patterns by varying m, l over a broad range of values changes the

dimension to γ = 1.6. Such an increase seems reasonable, as apparently, the structure gets

denser. We leave a more thorough investigation to possible future research.
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Figure 2.9: Phase Diagram of attractive hard spheres in a periodic arrangement of

sticky stripes with stripe width d and inter-stripe separation b. Dashed lines indicate

two-phase coexistence. Various crystals are stable, as displayed in Figs. 2.6-2.8.

More General Cases

We will approach the general case by considering interacting stripes that are itself densely

packed. Results are known for b/σ > 1, periodic arrangement of the stripes will however

give rise to special lattices. For b/σ = 1, the spheres from different stripes can touch and

the stable phase is determined by the equilibrium structure on the stripes, together with the

degeneracy breaking condition v0/ε → 0−. We thus get quadratic ordering in the interstripe

region. A pure quadratic lattice is stable only in one point: b/σ = d and d = 0. For lower

b and d = 0 it gets distorted to a lattice of alternating rhombi, as illustrated in Fig. 2.6

a). For d <
√

3σ/2 the situation is sketched in Figs. 2.6 b)-d) for decreasing values of b.

Fig. 2.6 b) shows 1S structures on decoupled stripes forming kite-structures in a periodic
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stripe arrangement. The kite structure of Fig. 2.6 b), however, is degenerated with respect

to an arbitrary relative shift of two single stripe patterns. Upon approach and coupling of

the stripes a honeycomb (HC) in Fig. 2.6 c), and eventually a sheared honeycomb (sHC),

shown in Fig. 2.6 d), emerge. For still smaller b, we expect another alternating rhombic

phase, as shown in Fig.2.6 a), but with finite d > 0, to be stable.

For infinitely thin stripes, the situation for decreasing inter-stripe distances b is sketched

in Fig. 2.7. A sequence of triangular lattices and centered rectangular lattices arises. Similar

structures were observed in recent experiments [116, 120].

For large d >
√

3σ/2, a squeezed honeycomb structure (Fig.2.8a) that can also be sheared

(Fig.2.8b) appears. More complex crystal unit cells involving two supertriangular honeycomb

structures, both sheared (Fig.2.8c) and unsheared (Fig.2.8d) occur for even larger d.

The resulting phase diagram of possible decoration lattices as a function of b/σ and d/σ

is depicted in Fig.2.9. While for b/σ > 1 supertriangles are stable (compare Fig.2.4), a

cascade of sheared honeycomb phases consisting of supertriangles occurs for b/σ < 1 and

increasing d. Along coexistence lines (dashed lines in Fig.2.9), these sheared supertriangle

honeycomb phases degenerate into different special cases: square lattice (d/σ = 0, b/σ = 0),

unsheared honeycomb, squeezed honeycomb (see Fig.2.6 e) and f)) and alternating rhombic.

We combine the main results of this investigation with the regions of stability of the

undistorted triangular lattice (Sec.2.4.2), and display the whole phase diagram of possible

decoration lattices as a function of b/σ and d/σ in Fig.2.10. The states between the lines

of stability of the triangular lattice are unexplored in our study. We leave those to future

work.

Figs.2.9, 2.10 prove that even though our model is relatively simple, competition of

different length scales leads to quite different stable decoration lattice structures. On the

basis of Figs.2.9, 2.10 one can tailor the attractive stripe pattern in order to produce a

given decoration lattice. This is of direct importance for further crystal growth on top of the

decoration lattice used as a template. One can expect [103] that quite exotic bulk crystalline

structures can be aggregated on top of such a template [119]. This is of relevance for the

construction of optical band-gap materials like photonic crystals [149].

2.5 Conclusion

In conclusion, we have systematically investigated and predicted decoration lattices com-

posed of colloidal particles adsorbed on an attractive stripe-patterned substrate. Our results

show, that due to a competition of various length scales, a wealth of different decoration

lattices can be stable. This knowledge can be exploited to generate exotic lattice structures

by a tailored surface pattern that could be of relevance for fabricating photonic crystals

grown on such templates. Our work can be extended into several directions: first, other

periodic patterns such as alternating triangular or chessboard patterns can be studied where

even more complicated decoration lattices are expected. Second, the effect of finite tem-
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Figure 2.10: Phase Diagram of attractive hard spheres in a periodic arrangement of

sticky stripes with stripe width d and inter-stripe separation b. Solid lines indicate

triangular regimes, dashed lines indicate two-phase coexistence.

perature and longer-ranged and more realistic particle-particle and particle-wall interaction

should be investigated. Still we think that the main possibility of decoration lattices will

be very similar to the results obtained for the more simplistic interactions. Also the non-

equilibrium problem of particle deposition can produce even much richer non-equilibrium

fractal and random-closed packing structures [150, 151, 152, 153] that have not been con-

sidered in the present equilibrium study. Finally, proving rigorously the different structures

to be close-packed should be an interesting problem in mathematical geometry.

In the two chapters to follow, we will now turn to a different method of investigation:

Instead of calculating the T = 0 ground states of the systems under observation, we will

take fluctuations into account as well. This will be done via Monte-Carlo simulations, first

applied to a solution of star polymers in a gravitational field, then to an isolated dendrimer.

Although the method of investigation changes, the next chapter is still linked to the present

one by the fact that an external potential is essential for the formation of macroscopic order

in the system, the external potential being the patterned substrate in the current chapter, and

the gravitational potential in the upcoming chapter.



Chapter 3

Sedimentation profiles of systems

with reentrant melting behavior

In bulk, star polymers are representative of a class of systems exhibiting reentrant melting

behavior: Upon increasing the number density of particles in the solution, the system first

undergoes a freezing transition, but then, upon further density increase, reenters the fluid

regime. Submitted to gravitation, systems with reentrant melting in the bulk phase diagram

display the same feature, now as a function of the height in the gravitational field: Going

down in height, the system, being fluid at high elevations, first freezes and then melts again

for even lower heights. This chapter is devoted to Monte Carlo simulations of star polymers

in a gravitational field as model system for particles showing bulk reentrant melting. The

simulation study is supplemented with scaling laws derived on the basis of a phenomenological

theory as well as density functional theory.

3.1 Introduction

Colloidal particles in a suspension under gravitational influence show spatial inhomogeneities

due to the symmetry breaking induced by the gravitational field. The problem of sedimen-

tation of particles in the presence of gravity has been of long scientific interest. The simplest

approximation is the one of non-interacting particles, valid in the limit of dilute solutions.

This approach leads to an exponential sedimentation density profile, which was observed by

Perrin for a calculation of Boltzmann’s constant in 1910 [154]. Taking into account particle

interactions at higher concentrations will yield corrections to the exponential density profile.

For very small gravitational strength, a local-density-approximation (LDA) of density func-

tional theory (DFT) is justified [155, 156]. In this case, there is a one-to-one correspondence

between the sedimentation density profile and the isothermal equation of state. This fact

was exploited to extract the hard sphere equation of state experimentally by investigating

sterically stabilized colloids [157]. Furthermore, within the LDA, a change in the height

z corresponds to a local change of the chemical potential µ of the bulk system. This im-

47
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plies that, in the limit of small gravity, the phase behavior becomes visible as a function

of height z, a feature which was also been exploited to estimate the hard sphere freezing

transition [157]. Surprisingly, comparison with Monte-Carlo (MC) simulations show that the

LDA is even reliable for relatively strong inhomogeneities or gravitational strengths [155].

This was further confirmed by comparing LDA against the exactly soluble hard rod model

in one spatial dimension. While the LDA yields a monotonic decaying density profile ρ(z),

a layering shows up near the hard wall of the container bottom. Even crystallization can be

induced by the bottom wall [158]. As shown recently [159], details of this surface-induced

crystallization may be significantly influenced by a periodic wall pattern. Indeed, pure col-

loidal crystals can be grown from sedimentation on a patterned substrate [160, 161, 162]. In

this case the gravitational field acts as an external force enforcing and accelerating heteroge-

neous nucleation and growth. Other fascinating phenomena in a gravitational field relevant

for colloidal suspensions are phase transitions such as wetting [163], surface melting [164],

as well as dynamical effects as shock like fronts [165], metastable phase formation [166],

long-range velocity correlations [167], stratification [168], and crystal growth [169].

While the equilibrium sedimentation of hard sphere suspensions is well-understood [155,

158, 157, 170, 171], charged suspensions are much more subtle as they reveal an apparent

mass which is smaller than the bare mass at least for intermediate heights [157, 172, 173, 174].

In this chapter, we study a third kind of effective interaction between colloids, namely a very

soft core as realized for star polymer solutions [175]. The qualitative new feature of those

solutions as compared to the traditional hard-sphere and Yukawa interactions is that their

phase diagram exhibits a reentrant melting behavior for increasing density [176]. In fact,

our analysis holds for any system with a reentrant melting behavior but we will mainly

focus explicitly on star polymers. Star polymers consist of f linear polymer arms attached

to a central common core. The complete bulk phase diagram for star polymers in a good

solvent was calculated in [176] and exhibits several unusual solid lattices as well as reentrant

melting. As will be discussed in detail in the following sections, due to the reentrant melting

behavior, unusual density profiles, featuring interesting effects, arise and a wealth of scaling

laws can be established.

The chapter is organized as follows: In Sec. 3.2 results of computer simulations of a system

of star polymers, interacting by means of an ultrasoft pair potential [8] are presented. In

Sec. 3.3, we present a phenomenological theory giving account of the sedimentation profiles

observed in the computer simulations. Scaling laws are put forth. Also in Sec. 3.3, density

functional theory in a simplified hybrid weighted density approximation (HWDA) is used

to reproduce density oscillations at the fluid-gas interface found in the simulation data.

Concluding remarks are contained in Sec. 3.4.
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3.2 Computer Simulation

We performed canonical MC computer simulations keeping particle number N , volume V ,

and temperature T constant. We used a simulation box with squared periodic boundary

conditions in x, y-direction and semi-infinite geometry in z-direction where the particles

were confined only by the gravitational field for z > 0. The bottom wall at z = 0 was hard

and interacting with the star polymers by means of an effective star polymer-wall potential

which is derived from the effective star polymer-hard sphere interaction in the limit of a

sphere with zero curvature. The calculation was performed in [177]. It is of the following

form:

βVsw(z) = Λf 3/2

×















∞ z < 0

ξ2 − ln(2z
σ

) − (4z2

σ2 − 1)(ξ1 − 1
2
) z < σ

2

ξ2(1 − erf(2κz))/(1 − erf(κσ)) else.

(3.1)

With z we denote the distance from the center of one star polymer to the surface of the

flat wall. σ defines the so-called corona diameter of a star polymer, which is related to

its diameter of gyration σg through σ ' 0.66σg, see [177]. The constants are Λ = 0.24,

κσ = 0.84, ξ1 = 1/(1 + 2κ2σ2), ξ2 =
√

πξ1
κσ

exp(κ2σ2)(1 − erf(κσ)) and the inverse thermal

energy β = 1/kBT . We emphasize that the range of the star-wall interaction is of the order

of one or two corona diameters, so that the behavior of the sedimentation profiles for larger

distances is not influenced. The star polymer pair potential is ultrasoft and is described by

the following equation [8]:

βVss(r) =
5

18
f 3/2

{

− ln( r
σ
) + 1

1+
√

f/2
r < σ

σ/r

1+
√

f/2
exp(−

√
f

2σ
(r − σ)) else,

(3.2)

with center-to-center distance r. Both interactions are purely entropic, hence they scale

linearly with temperature. Previous work [176] showed that a system of star polymers inter-

acting by means of the potential (3.2) possess a very rich and interesting bulk phase diagram,

see Fig. 3.1, exhibiting reentrant melting and reentrant freezing transitions for arm numbers

fc . f . 54, with the critical arm number fc = 34. As we will discuss in more detail

below, it is the reentrant melting that makes this type of system appropriate for the analysis

presented in this article. The suspending liquid is assumed to be incompressible. Further-

more we treat the solvent to be continuous, neglecting possible effects of the discreteness

of the solvent particles. Given the size of the colloidal particles under observation, the star

polymers, this is a reasonable assumption. In the simulation, the initial configuration of the

system was chosen to be a body-centered cubic (bcc) solid to facilitate equilibration. Its lat-

tice constant a was determined from a bulk system with a packing fraction η = π
6
ρσ3 ' 0.5
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lying in the bcc-regime in the bulk phase diagram, see Fig. 3.1. The lateral box-dimensions

were chosen to be multiples of the lattice constant a.
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Figure 3.1: Bulk phase diagram of star polymers interacting with potential (3.2),

calculated in [176]. Arm number f is plotted versus packing fraction η. The squares

indicate the phase boundaries; solid lines are guide to the eye. The black cross denotes

the point with critical arm number fc ' 34 and corresponding density ηc ' 0.43. The

system is always fluid for arm numbers smaller than the critical arm number fc and

shows reentrant melting behavior for arm numbers fc < f . 54. The arrow indicates

a path through the phase diagram that is equivalent with a change in the altitude z

within the LDA for small α. The four observed solid phases are body-centered cubic

(bcc), face-centered cubic (fcc), body-centered orthogonal (bco), and diamond (diam.).

The total number of particles was then fixed by prescribing a certain value of the ther-

modynamic variable τ , giving the number density per unit surface. The density profile ρ(z)

is normalized as

τ =

∫ ∞

0

ρ(z)dz. (3.3)

τσ2 is the number of particles piled up over the area σ2 of the bottom wall. Typical system

sizes were N = 2000 particles and the Monte Carlo runs were extended over NMC ≈ 500 000

cycles, each cycle comprising one trial move for each of the N particles. Besides the afore-

mentioned thermodynamic variable τ , two further parameters characterize the state of the

system: First, the arm number f of the star polymers, being the number of polymer chains

grafted on the central core. Second, the dimensionless gravitational strength (or Peclet

number)

α =
mgσ

kBT
, (3.4)

which describes the ratio of the potential energy gain to the thermal energy kBT for a

particle of mass m, displaced by σ in height in an external field with acceleration g. The
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three parameters f , τ and α were varied over a broad range of values. The particles were

moved by employing the standard Metropolis algorithm.
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Figure 3.2: Sedimentation profiles of star polymers for an arm number f = 39 and

a density τσ2 = 48.87. The gravitational strength α is decreased from (a) to (f) with

(a) α = 30.0, (b) α = 17.0, (c) α = 16.0, (d) α = 8.0, (e) α = 6.0 and (f) α = 4.0.

In plots (c) - (f) the order parameter Ψ4 is also shown (dashed line) using the same

y-scale as the profiles. In (a) and (b) a straight line whose equation is derived within

the LDA [see Eq. (3.12)] is superimposed on the plots (dotted line).

In Fig. 3.2 we show results for different gravitational strengths α, while τσ2 = 48.87 and
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f = 39 are fixed. The f = 39 star polymer system displays reentrant melting in the fluid →
bcc → fluid sequence, as seen along the arrow in Fig. 3.1. The gravitational field forces the

local density σ3ρ(z) to take values that scan the range from σ3ρ(z) = 0 up to high values,

σ3ρ(z) ∼= 3. Thus, the local density ‘crosses through’ the range of the phase diagram where

the system displays a bulk bcc phase. It it intuitively expected that the system will then

feature a solid regime (for intermediate densities) intercalated between two fluid regimes, at

low and high densities. We have found that this is indeed what happens but provided that

the gravitational strength does not exceed a critical value α∗, as we discuss below.

Let us start from the case where no solid phase appears. For α > α∗ [Figs. 3.2(a) and (b)],

we obtain density profiles ρ(z) that show three distinct features: First, there is layering on

the wall due to packing effects, typically extending over several layers. As z increases a fluid

regime with density decaying as a linear function of altitude z can be distinguished. At some

height (z ' 25σ in (a)) the density rapidly decays to zero. At this strong inhomogeneity

oscillations in density with wavelength σ can be distinguished in the sedimentation profile,

which is smooth elsewhere in the linear regime. The linear dependence of the density profile

on z, can be understood in terms of a local density functional mean-field theory, as will be

shown in Sec. 3.3.2; the corresponding results from this theory are shown in Figs. 3.2(a) and

(b) with dotted lines. The density oscillations observed in the simulations were reproducible

in the framework of density functional theory using a simplified form of the HWDA, as will

be discussed in further detail in Sec. 3.3.3.

By lowering the gravitational strength α further, a critical strength α∗ in the range

16.0 < α∗ < 17.0 is discovered. Below α∗ the density profiles qualitatively change and

exhibit a new feature. Strong density oscillations appear, a clear indication for a crystalline

phase. They extend over 10 to 20 star diameters, equivalent to several crystalline layers.

The length of the crystal grows, as α decreases. A typical simulation snapshot is shown in

Fig. 3.3 next to the corresponding equilibrium density profile. Here, the well-ordered crystal

phase in the middle of the simulation box (20σ . z . 30σ) is clearly visible.

As an additional check for crystalline order, we calculate the local order parameter, Ψ4,

that checks for fourfold symmetry in two dimensions around a given particle. It is defined

by

Ψ4(z) =

∣

∣

∣

∣

∣

〈

1

4Nl

Nl
∑

j=1

∑

<k>

e4iφjk

〉
∣

∣

∣

∣

∣

, (3.5)

where the k-sum includes the four nearest neighbors of the given particle and the j-sum

extends over Nl particles in the corresponding layer. A layer is defined by a slab of thickness

δ ' 0.2 a, centered around the given particle at elevation z, which is motivated by the

‘Lindemann melting rule’, assuming a maximum particle displacement of approximately

10% around the equilibrium position in a possible crystal regime. The angular brackets

indicate a canonical ensemble average. φjk is the polar angle of the interparticle distance

vector with respect to a fixed reference frame. For ideal fourfold symmetry, i.e., for a particle

contained in a bcc-solid layer, Ψ4 = 1. Due to thermal motion, small defects of the perfect
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crystalline symmetry arise and usually values of Ψ4 > 0.8 [159] are taken to be conclusive

evidence for a crystalline phase with fourfold-in-layer-symmetry. As can be seen in Figs.

3.2(c)-(f) our simulation data do indeed show values up to Ψ4 ≈ 0.95 in the region of the

density profile ρ(z) which we already identified to be solid due to the pronounced density

oscillations.

Comparing the interval of the packing fraction in which crystallization occurs to the

bulk phase diagram in Fig. 3.1, we may thus conclude that the intercalated solid regime is

a manifestation of the reentrant melting in the bulk phase diagram, mapped onto the z-axis

in a system under gravitational influence. The absence of freezing for strong gravitational

fields (α > α∗) can now be at least qualitatively understood: for high values of α, the density

profiles grow too fast as z approaches the wall, so that the mapping onto the z-axis results

into a domain which is too narrow to sustain crystalline order. In fact, as we will show in

detail in Sec. 3.3.2, a minimal, nonvanishing thickness of the crystalline layer is necessary so

that the latter can be stably ‘nested’ between the two fluid phases.
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Figure 3.3: Snapshot from MC simulation (right) shown with the corresponding

equilibrium density profile (left). The star polymers are rendered as spheres with

diameter σ. The parameters are: f = 39, α = 5.0, τσ2 = 42.1.
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3.3 Theory

3.3.1 Density Functional Theory in Local Density Approximation

(LDA)

In order to predict scaling relations characterizing crystallization in sedimentation profiles

of star polymer solution we apply density functional theory within the framework of the

local density approximation (LDA). The latter is a reliable theoretical tool in cases where

the density profile of the system varies slowly with z, so that it can be considered as staying

essentially constant at length scales set by the microscopic natural length of the system (σ

in this case). As can be seen in Figs. 3.2(a) and (b), this is indeed the case if we discard the

strong oscillations close to the wall (the layering effect). As the range of these oscillations

is much shorter than the range of the density profile itself, the bulk of the free energy of the

system resides in the smooth “ramp-like” part of the density profile and the use of the LDA

is justified. Accordingly, we will omit the star-wall potential from our considerations in this

subsection and consider only the effects of the external gravitational field Φext(z) = mgz.

We work in the grand canonical ensemble and introduce the chemical potential µ and

a variational grand potential per unit area, Σ̃(T, µ; [ρ(z)]) which is a functional of the den-

sity profile. Introducing the ideal and excess per unit area contributions to the intrinsic

Helmholtz free energy of the system, Fid[ρ(z)] and Fex[ρ(z)] respectively, we find that in the

LDA, the expression for Σ̃(T, µ; [ρ(z)]) reads as:

Σ̃(T, µ, [ρ(z)]) = Fid[ρ(z)] + Fex[ρ(z)]

+

∫

dzΦext(z)ρ(z) − µ

∫

dzρ(z)

= kBT

∫ ∞

0

dzρ(z)
[

ln(ρ(z)λ3) − 1
]

+

∫ ∞

0

dz [f(ρ(z)) + (mgz − µ)ρ(z)] ,

(3.6)

where λ =
√

h2/2πmkBT is the thermal de Broglie wavelength and f(ρ(z)) is the Helmholtz

free energy per unit volume of the bulk fluid. The minimization of Σ̃ with respect to ρ(z)

yields the equilibrium profile ρ0(z); the value of the functional at equilibrium, Σ̃(T, µ, [ρ0(z)])

is then the Gibbs free energy per unit area, Σ(T, µ) of the system. Setting δΣ̃(T, µ, [ρ(z)])

/δρ(z)|ρ0(z) = 0 in Eq. (3.6), leads to:

kBT ln(ρ0(z)σ3) + f ′(ρ0(z)) = µ′ − mgz, (3.7)

where f ′(x) denotes the derivative of f(x) and µ′ = µ − 3 ln(λ/σ) is a shifted chemical

potential.

Due to the ultrasoft character of the logarithmic-Yukawa star-star interaction Vss(r), the

star polymer system belongs to the class of mean-field fluids [178, 179, 180, 181, 182], for
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which the excess free energy density is a quadratic function of ρ, namely:

f(ρ) ∼= ρ2

2
4π

∫ ∞

0

dr r2Vss(r) =:
V̂ss(0)ρ2

2
, (3.8)

with the Fourier transform V̂ss(k) of the pair potential. This property is valid for high

density fluids provided their pair potential V (r) is only slowly diverging at the origin and

decays fast enough to zero as r → ∞, so that it is integrable. For the more restrictive

case of a nondiverging potential at r = 0, the stronger condition c(r) = −βV (r) holds

approximately [179, 180, 181, 182], with c(r) denoting the direct correlation function of the

fluid [70]. This gives again rise to Eq. (3.8) above through the compressibility equation of

state [70].

Using the dimensionless variables x ≡ z/σ, ρ̄(x) ≡ ρ(z)σ3, B ≡ βV̂ss(0)/σ3 and µ̄ ≡ βµ′

and introducing Eq. (3.8) into Eq. (3.7), we obtain the equilibrium profile through the

equation:

ln(ρ̄0(x)) + Bρ̄0(x) = µ̄ − αx. (3.9)

For star functionality f = 39 we obtain B ∼= 250 and, for f = 32, B ∼= 204 [see Eq. (3.2)].

Hence, the second term in the lhs of Eq. (3.9) above dominates over the logarithmic term for

densities ρ̄(x) & 0.10. As almost the entire simulation density profile fulfills this condition,

we finally omit the logarithmic term from Eq. (3.9) above and obtain thereby a linear density

profile:

ρ̄0(x) =















0 for x < 0,
µ̄−αx

B
for 0 < x < µ̄/α,

0 for µ̄/α < x.

(3.10)

The chemical potential µ̄ is now determined through the normalization condition
∫ µ̄/α

0
dxρ̄0(x) = τσ2 ≡ τ̄ , yielding:

µ̄ =
√

2αBτ̄ , (3.11)

and from Eq. (3.10) the final expression for the density profile:

ρ̄0(x) =



















0 for x < 0,
√

2ατ̄
B

− α
B
x for 0 < x <

√

2Bτ̄
α

,

0 for
√

2Bτ̄
α

< x.

(3.12)

The prediction (3.12) is compared against the MC simulation results in Figs. 3.2(a)

and (b); theory and simulation are in excellent agreement. This linear dependence of the

density profile on z is the first scaling prediction we make for such systems. Moreover, by

introducing Eq. (3.10) into Eq. (3.6), and once more ignoring the logarithmic term, we find

that the Gibbs free energy per unit area Σ(T, µ) is a power-law of the chemical potential,

namely:

βσ2Σ(T, µ̄) = − µ̄3

6αB
. (3.13)
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Accordingly, the Helmholtz free energy per unit area, βσ2F (T, τ̄) = βσ2Σ(T, µ̄) + µ̄τ̄ obeys

the scaling law:

βσ2F (T, τ̄) =
2

3

√
2αB τ̄ 3/2. (3.14)

The thermodynamic relation µ̄ = ∂(βσ2F )/∂τ̄ returns Eq. (3.11).

We now examine whether the density oscillations occurring at high z-elevations, which

are clearly visible in Figs. 3.2(a), (b), can be obtained in the framework of the full LDA, with

the logarithmic term included, Eq. (3.9). Though the latter is an implicit equation for ρ̄(x),

we do not need to solve it in order to answer the question at hand. The key observation is

that Eq. (3.9) delivers an explicit functional form for the inverse function:

x(ρ̄) = −α−1(ln ρ̄ + Bρ̄ − µ̄). (3.15)

If the LDA profile displayed oscillations, then ρ̄(x) would go through various maxima and

minima and there should be several points xm where the derivative ρ̄′(xm) would vanish,

with the implication that the derivative of the inverse function, x′(ρ̄m), would diverge at the

corresponding density values ρ̄m. From Eq. (3.15) above, we obtain x′(ρ̄) = −α−1(ρ̄−1+B) <

0 for all 0 < ρ̄ < ∞. The only divergence of x′(ρ̄) occurs for the trivial limit ρ̄ → 0

and corresponds to the exponential decay ρ̄(x) ∝ e−αx, valid for high elevations. The

LDA is incapable to reproduce this effect, a feat that, in fact, could have been anticipated:

these oscillations occur at length scales σ, whereas the LDA is applicable when the spatial

inhomogeneity of the profile has a characteristic length much larger than the latter. In Sec.

3.3.3, we resort to a more powerful density functional approximation in order to reproduce

this feature of the density profile.

3.3.2 Phenomenological Landau Theory

If one focuses close to the reentrant melting transition point, a phenomenological Landau-

like approach can be adopted to explore further scaling predictions for the crystallization

transition. We study the situation sketched in Fig. 3.4 of a crystalline sheet of width l

intervening between two fluid parts of the sedimentation profile. Let us define the excess

grand canonical free energy per unit area, Σex(l), in such a situation with respect to a

situation where no crystallization takes place. This quantity is given by:

Σex(l) = Σ(l) − Σ(l = 0), (3.16)

with Σ(l) being the grand canonical free energy per unit area when a solid of thickness l is

present. Evidently, Σ(l = 0) is the quantity given by Eq. (3.13) above.

The excess grand canonical free energy Σex per unit area comprises of three parts:

1. The equilibrium surface tensions γ1 and γ2: These describe the additional free energy

cost in creating the two solid-fluid interfaces at z = z1 and z = z2.
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Figure 3.4: Sketch of the situation in which an intervening solid of width l is nested

between two fluids under the influence of a gravitational field.

2. A thermodynamic contribution which essentially depends on the arm number. If f > fc

this contribution favors a solid sheet.

3. A free energy penalty due to an elastic distortion of the solid in the external field.

Hence:

Σex = γ1 + γ2 + ΣTD + Σelast. (3.17)

We point out that such a separation into interfacial and bulk terms is only possible when

the thickness of the intervening solid sheet is large enough, so that the latter can be treated

as a bulk solid. Though this requirement is evidently satisfied for small values of α, the

validity of our predictions is not limited to a � 1 values only; indeed, depending on the

functionality f , α values of order as large as 10 can lead to intercalating solids comprising

of as many as 20 crystalline sheets, and hence justifying their treatment as bulk phases. Let

us discuss the different contributions in more detail:

The surface tension will mainly control the relative orientation of the solid with respect

to the z-direction. One expects that a close-packed surface of the bcc-solid (i.e. a (100)

orientation) will have smallest surface tension and will hence be the realized orientation. In

fact, this is what we found in our simulation data presented in Figures 3.2 and 3.3. For

hard-sphere fcc-solids the interfacial fluid-solid free energy has been calculated recently in

equilibrium by computer simulation [183]. Its order of magnitude is

γi ≈
kBT

σ2
, (i = 1, 2), (3.18)

where σ is a microscopic length scale.

The thermodynamic contribution could be calculated within the LDA with f(ρ, T ) taken

from liquid state theories for the fluid and solid cell theory for the crystal. Here, we will

simply focus on a Landau-type theory close to the reentrant melting point characterized
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by a critical star number density ρc = 6
πσ3 ηc and the critical arm number fc, see Fig. 3.1.

Performing a Landau expansion and dropping the temperature dependence one gets

fs(ρ) = fs(ρc) + As(fc − f)

+f ′
s(ρc)(ρ − ρc)

+
1

2
f ′′

s (ρc)(ρ − ρc)
2 + . . . . (3.19)

Here, fs(ρ) is the free energy per unit volume of the solid phase and As is a constant governing

the first leading term in an expansion around f = fc. Likewise in the fluid phase one has

ff(ρ) = ff(ρc) + Af(fc − f)

+f ′
f (ρc)(ρ − ρc)

+
1

2
f ′′

f (ρc)(ρ − ρc)
2 + . . . , (3.20)

with fs(ρc) = ff(ρc), f ′
s(ρc) = f ′

f (ρc), but f ′′
s (ρc) > f ′′

f (ρc) in general. Performing the

inversion of f(ρ) in order to get the density profile leads to a piecewise linear profile for

the averaged density with two density jumps at z = z1 and z = z2, as determined by the

Maxwell construction, see Fig. 3.4.

ρ(z) =

{

µ−f ′

s(ρc)−mgz
f ′′

s (ρc)
+ ρc for z1 < z < z2

µ−f ′

f
(ρc)−mgz

f ′′

f
(ρc)

+ ρc else.
(3.21)

Consequently, by inserting this into the free energy function one gets

ΣTD = −a(f − fc)l +

(

1

f ′′
f (ρc)

− 1

f ′′
s (ρc)

)

m2g2l3

12
. (3.22)

Note that a > 0 in order to stabilize the solid for f > fc.

Third, the elastic part can be calculated by continuum elastic distortion theory of the

solid. For a different situation of a solid in an external field this has been formulated by

Gittes and Schick [184]. Following these ideas, we assume a z-independent lateral strain ε‖
but consider a z-dependent vertical strain ε⊥. By symmetry, ε‖ has to be zero for the crystal

being stable at z = z0, i.e., for the crystal at the reentrant melting point. Elasticity theory

predicts for Σelast

Σelast '
1

2

∫ l
2

− l
2

dz Cε2
⊥(z), (3.23)

where C > 0 is related to the elastic constants of the solid. As

ε⊥ ∝ ρ − ρc ∝ mgz, (3.24)

we obtain

Σelast = C ′l3m2g2, (3.25)
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with another constant C ′. Eq. (3.25) has a similar form as the second term of Eq. (3.22).

In summary, the total grand canonical excess free energy is

Σex(l) = −a(f − fc)l + bα2l3 + γ1 + γ2, (3.26)

where a, b > 0. Moreover we will use γ = γ1 +γ2 from now on. A first order phase transition

takes place if the minimum of Σex with respect to l yields Σex = 0.

This determines the following resulting scaling relations:

1. The realized crystalline thickness l as obtained by minimizing Σex with respect to l for

fixed α and f scales as

l ∝
√

f − fc

α
. (3.27)

2. The phase transition to a crystalline sheet is first order. It happens beyond a critical

α-dependent arm number fcrit where

fcrit − fc ∝ γ2/3α2/3, (3.28)

with a scaling exponent of 2
3
.

3. The width l0 corresponding to the transition scales as

l0 ∝ γ1/3α−2/3 ∝ γ

f − fc

. (3.29)

The analysis presented here is general, the scaling predictions derived are valid for any reen-

trant melting behavior in equilibrium (e.g., laser-induced freezing [185, 186] or polydisperse

systems [187]). Furthermore all these relations can, in principle, be checked by simulation.

Relations (3.28) and (3.29), however, require high computational efforts. In order to check

on scaling relation (3.27), we measured the crystal length l in MC simulations varying α

or f , while keeping the density τ fixed. The crystal length is determined by the range ∆z,

where the order parameter Ψ4(z) has values larger than 0.8. The results are plotted in Fig.

3.5, showing excellent agreement with the scaling predictions.

3.3.3 Weighted Density Approximation of the Density Functional

In order to verify the density oscillations close to the fluid-gas interface of the sedimentation

profiles for large values of α, we apply a simplified form of the HWDA (hybrid weighted

density approximation). The full HWDA was constructed by Leidl and Wagner in [188].

Given an external field Φext(z) the free energy is a unique functional of the density profile

ρ(z). Thus, the excess free energy per unit surface in the HWDA framework is given by

Fexc[ρ] =

∫ ∞

0

ρ(z)f0(ρ(z))dz, (3.30)
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Figure 3.5: Verification of the scaling behavior theoretically predicted in Sec. 3.3.2 in

Eq. (3.27), calculated by MC simulations. In (a) the crystal length l is plotted versus√
f − fc, keeping α = 6.0 fixed. In (b), l is plotted versus 1/α for a fixed arm number

f = 39. The dashed lines are linear fits to the simulation results (circles).

where f0(ρ) denotes the excess free energy per particle of a homogeneous liquid of density

ρ. The weighted density ρ(z) follows from a convolution with the weighting function ω(r; ρ)

ρ(z) =

∫

ρ(z′)ω(|r− r′|; ρ̂)dr′ (3.31)

with a global density ρ̂. The weighting function ω(r; ρ) is fixed by a simple quadratic equation

in Fourier space [188]:

2f ′
0(ρ0)ω̃(k; ρ0) + ρ0f

′′
0 (ρ0)ω̃

2(k; ρ0)

= −β−1c̃(2)(k; ρ0) (3.32)

The primes denote differentiations with respect to the density ρ and c̃(2)(k; ρ0) is the Fourier

transform of the direct correlation function of the homogeneous fluid. A unique solution of
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ω̃(k; ρ0) is determined by the normalization ω̃(k = 0; ρ0) = 1, also ensuring the compress-

ibility rule to be satisfied. We have solved the homogeneous problem with Ornstein-Zernike

fluid integral equations using the Rogers-Young closure [189]. Resulting correlation func-

tions and structure factors are in very good agreement with MC simulations of the bulk

system [178]. In difference to the complete HWDA, where the global density ρ̂ is chosen to

be a functional of ρ(z), we keep ρ̂ fixed. This simplification is sufficient to verify the observed

oscillations, accompanied by the advantage that the numerical effort is enormously reduced.

Best agreement with simulation results could be achieved when choosing the global density

ρ̂ to be of the order of the averaged density near the bottom wall z = 0. The tails of the

density profiles are nearly unaffected by the choice of ρ̂. A similar approach is used in the

SWDA [190] for an inhomogeneous fluid in contact with a bulk fluid of density ρb; there ρ̂

was chosen to be ρb.

Applying the usual Euler-Lagrange minimization for the Helmholtz free energy per unit

area F [ρ] with chemical potential µ

δF
δρ(z)

= µ − Φext(z), (3.33)

and using Φext(z) = Vsw(z) + αz/βσ, we obtain for the density profile ρ(z)

ρ(z) =















ξ exp{c(1)(z; [ρ]) − αz/σ − βVsw(z)} z > 0

0 else.

(3.34)

The fugacity ξ is determined by the normalization condition ξ = τ/
∫ ∞
0

dz exp{c(1)(z; [ρ]) −
αz/σ − βVsw(z)}. c(1)(z; [ρ]) is the one-particle correlation function:

−β−1c(1)(z; [ρ]) =
δFex[ρ]

δρ(z)
(3.35)

= f0(ρ(z))

+

∫

dz′ρ(z′)f ′
0(ρ(z′))ω(|z − z′|; ρ̂).

Equation (3.34) was solved for the profile by standard iterative techniques, see, e.g., Ref.

[191]. The results for an arm number f = 32, τσ2 = 21.8 and three different values of

α are shown in Fig. 3.6 together with MC simulation data. The global density ρ̂ for all

three profiles is fixed at ρ̂σ3 = 1.8. The DFT results are in very good agreement with the

simulation profiles. In particular, the interface oscillations with wavelength σ also occur in

the DFT. For α = 10.0, the lowest α that is shown, the profile is nearly indistinguishable

from MC data far from the wall, while for increased α, α = 20.0 and α = 30.0 the interface

oscillations are underestimated in our DFT approach.

These oscillations are not a specific feature of the star polymers; we have also performed

MC simulations using a repulsive Yukawa interaction of the form

V (r) ∝ exp(−κr)/r, (3.36)
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Figure 3.6: Density profiles ρ(z)σ3 for three different values of α = 10.0, 20.0, 30.0

and fixed arm number f = 32 and fixed density τσ2 = 21.8 calculated with DFT

(solid curves) compared to MC simulation results (dashed curves). The slope of the

curves increases with increasing α. The inset shows the bare DFT results for a better

identification of the interface oscillations.

corresponding to the part of the star polymer pair potential (3.2) valid for distances r ≥ σ.

Here exactly the same behavior could be found at the tails of the density profiles. For hard

sphere systems, on the other hand, no such density oscillations are present. This surprising

fact might be attributed to the long ranged tail in the interaction potential.

3.4 Conclusions

Concluding, we have presented results for systems exhibiting reentrant melting in the bulk

phase diagram, under gravitational influence. It was shown that a phase transition occurs

when the gravitational strength α is varied: Below a critical α∗(f, τ), intercalated crystal-

lization occurs in the sedimentation profiles of the observed star-polymer solutions, whereas

for α > α∗(f, τ) we find monotonic sedimentation profiles ρ(z). In MC computer simulations

scaling relations for the crystallization, predicted in the framework of a phenomenological

theory, valid for all systems exhibiting reentrant melting in the bulk phase diagram, could

be verified. Using density functional theory, density oscillations at the fluid-gas boundary,

observed in the MC simulations, could be reproduced.

In principle, our results can be verified in surface-sensitive scattering experiments or real-

space imaging methods for colloidal suspensions. Unlike non-monotonicities on the liquid
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side of the gas-liquid equilibrium interface (see e.g. [192]), the density oscillations on top

of the sedimentation profile are not affected by capillary wave fluctuations and may thus

be verified in real samples. The intervening solid sheet should be signaled by a Bragg-like

peak in surface reflection measurements. The strength of the gravitational parameter α can

be tuned either by centrifugation or by grafting long polymer chains on massive colloidal

particles, thus creating star-like micelles, whose phase diagram is identical to that of star

polymers but which possess a much larger mass than the latter.

In the following chapter we will employ the same method, Monte-Carlo simulations, to

calculate the properties characterizing the structure of a single fourth generation dendrimer.

We will thus not be dealing with the properties of an ensemble of mesoscopic particles any

more, but rather step down one scale to elucidate the internal structure of one mesoscopic

particle, which will lay the foundations for future work on the interactions and eventually

the macroscopic ensemble properties of dendrimers.



Chapter 4

Can dendrimers be viewed as

compact colloids? A simulation study

of the fluctuations of a dendrimer of

fourth generation

Dendrimers are polymeric macromolecules with a special, tree-like architecture. Another

class of polymeric systems, star polymers, which are build up in a star-like architecture with

f polymer chains attached to a common core, are known to have the interesting feature that

by tuning their arm number f , they interpolate between hard colloidal and soft polymeric

behavior. Two observables characterize this change of behavior: The intrinsic fluctuations

decrease and the pair interaction gets ‘steeper’. Dendrimers too are known as hybrid model

systems between soft polymer systems and hard colloids. Intuitively it is clear that the col-

loidal behavior can be amplified by increasing the generation number or by decreasing the

length of the spacers within the dendrons. For dendrimers of a given generation number,

however, the question is where the hybrid is to be found, towards which side of the colloid-

polymer balance it is pending. To answer this question, we report in this chapter on work

in which we resorted to Monte Carlo simulations of an isolated dendrimer, recording ob-

servables such as the radius of gyration, the radial density profile, the form factor and the

monomer-monomer pair distribution function, as well as the fluctuations of the last two

quantities. We start out with general considerations on the theory of form factors of col-

loidal macromolecular aggregates and then turn our attention to the analysis of the Monte

Carlo simulation results in the light of the theoretical statements.

4.1 Introduction

Dendrimers are synthetic macromolecules with a tree-like architecture [193, 194, 195, 196,

197]. The recent advances in developing well-controlled chemical techniques allow for the

65
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synthesis of well-characterized branched macromolecules with a prescribed number of branch-

ing bonds b at every connection point and generation number g. In Fig. 4.1 we show a scheme

of a dendrimer with b = 3 and g = 4, which is conventionally termed G4-dendrimer. Den-

drimers have attracted a lot of attention in the last few years, for a variety of reasons.

First, their peculiar architecture establishes them as hybrid model systems between polymer

chains and hard colloids, in terms of both the sphericity and compactness of their confor-

mations and of the softness of their effective interactions. [198, 199, 200] This property,

together with the possibility of tuning their conformations by changing b and g render them

into macromolecules of fundamental interest for the soft matter scientists. Second, on the

practical level, the possibility to influence the equilibrium monomer density distributions of

dendrimers by controlling the pH or salinity of the aqueous solvent and to ‘switch’ thereby

from ‘dense shell’ to ‘dense core’ configurations [201, 202] has established them as candidate

carrier molecules for drug delivery. [203] The complexation of dendrimers with DNA macro-

molecules and the possibility of using them in order to engineer gene transfer is another

exciting aspect that has attracted quite some attention recently. [204] Associated with the

theoretical and simulational studies of dendrimers are small-angle experiments (employing

either x-rays or neutrons) that provide information on the shape of isolated dendrimers in

dilute solutions and the correlations between the same in concentrated ones.

In this work, we focus our attention on G4-dendrimers without charged groups, cor-

responding either to non-polar solvents or to aqueous ones in high pH-conditions. Despite

original claims that these macromolecules assume typical configurations with a density profile

that grows from the origin to their periphery [205] (the so-called ‘dense-shell model’), a num-

ber of experimental, [206, 207, 208] simulational, [209, 210, 211, 212, 213, 214, 215, 216, 217]

and theoretical studies [218] have demonstrated that the opposite is true: due to thermal

fluctuations of the monomer groups, which are quite familiar from polymer science, a con-

siderable degree of back-folding results and the density of the macromolecule is higher in

the center than at the end (the ‘dense-core model’). Hence, the apparent dense-shell picture

seen in Fig. 4.1 is misleading if one interprets it literally: the chemical unities are not located

at the positions shown in that drawing but they fluctuate and are allowed to explore the

inner parts of the molecule as well.

Strong experimental evidence for this fact rests on small-angle neutron scattering (SANS)

data that show a density profile that has a Gaussian shape in q-space. [200, 219] Treating

then the dendrimers as compact objects, in which the monomer degrees of freedom are only

very weakly fluctuating around their equilibrium positions in an uncorrelated manner, one

obtains the density distribution as the inverse Fourier transform of the square root of the

scattering intensity I(q) (form factor), as we explain in detail below. The latter being

given by a Gaussian function, it follows that the density distribution also has a Gaussian

form. Though intuitively appealing, this procedure suffers from an inconsistency, in that the

fluctuations of the monomers, which are responsible for the back-folding of the arms in the

first place, are left out of the picture in the inversion of the SANS-data.
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In this chapter, we report on monomer-resolved Monte Carlo (MC) simulations of a

G4-dendrimer. Our work serves a double purpose: on the one hand, we propose a specific

microscopic model of a dendrimer and we demonstrate by direct comparison with experi-

mental data that, with the suitable choice of a single length scale, the measured scattering

factor of the molecules can be very accurately reproduced. Thus, it represents a step in the

microscopic modeling of these highly interesting macromolecules. On the other hand, based

on the fact of this accurate description, we then put into test the validity of the inversion

procedure mentioned in the preceding paragraph by examining in detail the correlations

of the fluctuations of the monomers of a G4-dendrimer. A wealth of relevant quantities

pertinent to the molecules have been calculated and compared to experimental data. The

main finding of our analysis is that the monomer fluctuations are correlated at length scales

that are typically not reachable by SANS-techniques, i.e., of the order of the monomer (or

Kuhn) length. For the q-ranges accessible to SANS-experiments, excellent agreement be-

tween simulation and experiment is obtained and it is explicitly shown that the dense-core

model maintains its validity.

The rest of the chapter is organized as follows: In Section 4.2 we present some basic facts

about scattering from colloidal particles, implications of the possible internal fluctuations of

the latter on the connection between form factors and density profiles, and the relation to

experimental results. In Section 4.3, we describe our employed model for the dendrimer and

the simulation method, and we present our results. In Section 4.4 we discuss these results

in connection with previously employed mean-field-like approximations for dendrimers and

with obtained experimental results. Finally, in Section 4.5 we summarize and conclude.

4.2 The form factor of colloidal macromolecular aggre-

gates

The so-called scattering factor S(q) provides information about the spatial correlations of a

system of interacting particles. [220] It comprises an extremely useful quantity for investi-

gations of the spatial correlations in fluids, simple and complex, and also in inhomogeneous

phases, such as crystalline solids. One of the great advantages of S(q) is that it can be on

the one hand calculated theoretically, once the interparticle interactions are known, and on

the other it is precisely the quantity measured in performing elastic scattering experiments

using various probes, such as x-rays, neutrons or light. In this context, q is the scattering

wavevector, equal to the difference between the wavevector of the outgoing radiation, qout,

and that of the incoming radiation, qin, i.e., q = qout − qin.

Let us consider, then, a collection of N atoms with spatial coordinates {r1(t), r2(t), . . . , rN(t)},
where we explicitly denote the time-dependence of the, generally fluctuating, particle coor-

dinates. At this point, we make no differentiation as to whether these are the N monomers

of a polymer, the N scattering units of a rigid colloid, or simply N atoms of a simple fluid or

solid: the discussion is quite general. The one-particle density operator ρ̂(x) of the system
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Figure 4.1: Scheme of the chemical structure of a dendrimer of fourth generation.

This picture provides a demonstration of the chemistry and architecture of the den-

drimer only and does not represent a true typical configuration of the monomer groups

of the molecule in solution.

is defined as usual through the relation:

ρ̂(x) =
N

∑

i=1

δ(x − ri(t)), (4.1)

and the one-particle density ρ(x) as the ensemble average of ρ̂(x) in equilibrium:

ρ(x) = 〈ρ̂(x)〉. (4.2)

A further useful quantity is the partially integrated density-density autocorrelation func-

tion G(r) of the assembly, defined as [221]

G(r) =
1

N

∫

d3r′〈ρ̂(r + r′)ρ̂(r′)〉

=
1

N

〈

N
∑

i=1

N
∑

j=1

∫

d3r′δ(r + r′ − ri)δ(r
′ − rj)

〉

=
1

N

〈

N
∑

i=1

N
∑

j=1

δ(r − rij)

〉

, (4.3)

where rij = ri−rj and we have used Eq. (4.1). Thus, G(r) is proportional to the probability

of finding a pair of particles with their coordinates separated by the vector r. Note that r is
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a free vector, i.e., it is not associated with any particular coordinate system. It is also usual

to separate the contributions in the double sum of Eq. (4.3) above from the terms with i = j

and to write

G(r) = δ(r) +
1

N

〈

N
∑

i=1

N
∑

j 6=i

δ(r − rij)

〉

. (4.4)

When applied to an isotropic fluid, for example, the second term in the rhs above turns into

ρg(r), with the average density ρ of the fluid and the well-known radial distribution function

g(r). The whole function depends then only on the magnitude r ≡ |r| of the separation

vector. [221]

Let us now introduce the Fourier transform (FT) of the one-particle density operator of

Eq. (4.1), ρ̂q, given by

ρ̂q =

∫

d3x ρ̂(x) exp(−iq · x) =

N
∑

i=1

exp(−iq · ri), (4.5)

and its expectation value ρ̃(q) through

ρ̃(q) = 〈ρ̂q〉. (4.6)

The scattering factor S(q) can be defined as the FT of the correlation function G(r):

S(q) =

∫

d3rG(r) exp(−iq · r), (4.7)

and use of Eqs. (4.3) and (4.5) leads to the equivalent expression: [222]

S(q) =
1

N
〈ρ̂qρ̂−q〉 =

1

N

〈

ρ̂qρ̂
∗
q

〉

, (4.8)

with the asterisk denoting the complex conjugate. Alternatively, using Eq. (4.4), we obtain

S(q) = 1 +
1

N

〈

N
∑

i=1

N
∑

j 6=i

exp[−iq · (ri − rj)]

〉

. (4.9)

Two well-known examples are provided by scattering from simple, isotropic fluids and perfect

crystalline solids. In the former case, the scattering factor S(q) as defined above depends

only on q ≡ |q| and is related to the well-known structure factor S(q) of the fluid through

S(q) = (2π)3ρδ(q) + S(q). (4.10)

In the latter case, the result follows that S(q) is a sum of delta spikes at the vectors of the

reciprocal lattice (Bragg scattering).

We now turn our attention to solutions of complex molecules, i.e., macromolecular aggre-

gates of mesoscopic dimensions, such as colloids or polymers. When scattering from a dilute
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solution of the same, the contribution to the scattering factor arising from interactions be-

tween the whole macromolecules can be ignored. Thus, the scattering experiment provides

information about the spatial correlations between the constituent atoms (scattering cen-

ters) of the macromolecule, i.e., about the internal correlations in the colloidal aggregate. It

is common to call the scattering factor S(q) associated with a single macromolecular object

form factor [222, 223] and in what follows we denote it as F (q).

We consider, then, a single mesoscopic particle consisting of N atoms that scatter as

point particles. Since only the differences rij of the position vectors appear in Eqs. (4.3) and

(4.7), it is immaterial where the origin of the coordinates is positioned. Therefore, as we let

the molecule diffuse into the solution (as it happens in real experiments) we can measure for

every position and conformation the distances ri, rj from the instantaneous center of mass of

the dendrimer. This is convenient since it allows us immediately also to measure the density

distribution around the center of mass, so this is the technique adopted in our simulations.

Moreover, since in calculating G(r) or F (q) thermodynamic averages over all conformations

are involved, (including averaging over all rotations), these two functions become dependent

solely on r and q, respectively: even if the instantaneous conformations of the macromolecule

strongly depart from sphericity, the process of averaging restores spherical symmetry. This

holds also in particular for the density distribution around the center of mass of the particle,

Eq. (4.2), when all distances are measured with respect to this point.

As is clear from Eq. (4.7), the form factor F (q) delivers information about pair corre-

lations between the atoms. In some special cases, though, this information can be directly

linked to the density distributions ρ(r) around some ‘pinning center’ (emerging through a

pinning potential that depends only on the distance of the particles to this central point) or

the density around the center of mass, as we demonstrate below.

The first example is the case in which all particles are connected to a common center

but they are otherwise independent from each other, i.e., there is no coupling between ri

and rj for i 6= j in the Hamiltonian of the system. Then, the expectation value in Eq. (4.9)

factorizes into (setting now S(q) → F (q)):

F (q) = 1 +
1

N

〈

N
∑

i=1

exp(−iq · ri)

〉 〈

N
∑

j 6=i

exp(iq · rj)

〉

∼= 1 +
1

N
ρ̃(q)ρ̃(−q)

= 1 +
1

N
ρ̃2(q), (4.11)

where, in the second line, we assumed that N � 1 so that the exclusion j 6= i has minimal

effects on calculating the function ρ̃(−q) and in the third line we used the spherical symmetry

of ρ(r) around the pinning center in order to obtain ρ̃(−q) = ρ̃(q).

The second example pertains to ‘rigid mesoscopic particles’. [223] With this term, we

mean that the position vectors {r1(t), r2(t), . . . , rN(t)} of the individual atoms fluctuate very

weakly around their average positions and the latter can be taken as frozen degrees of freedom
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in an excellent approximation. In this case, performing the averages 〈. . .〉 in the various

equations above is practically equivalent to calculating the sums or the integrals for this

one, frozen configuration. Typical such particles are colloidal silica or PMMA hard spheres,

or core-shell particles that can be treated as compact, rigid objects. To simplify things, we

assume that the atoms are positioned in a configuration that possesses inversion symmetry

around the particle’s center of mass. By taking into consideration the weak fluctuations

and/or by performing a coarse-graining procedure on length scales of a few Angstrom, we

can thereby describe the object by a spherically symmetric one-particle density ρ(r) around

its center of mass. The suitable starting point is relation (4.8) together with Eq. (4.5).

The coordinates of the scattering centers, ri, can now be considered as discrete sampling

points that have been selected in order to approximate an integral by the sum given on the

right-hand side of Eq. (4.5). Calling this integral J(q), we have thus

J(q) ≈
N

∑

i=1

exp(−iq · ri). (4.12)

Approximating the integral by the sum above is justified as long as the integrand varies

slowly on the scale of ∆r, where ∆r is the typical spacing between two neighboring points

on the discrete grid {rk}, k = 1, 2, . . . , N . In this dense-point limit, the centrosymmetric

distribution of the set {rk} implies that the sum will approximately depend only on the

magnitude q of the wavevector. Dropping then the ensemble averages, as discussed above,

and using Eq. (4.8), we obtain for the form factor the expression

F (q) =
1

N
J2(q), (4.13)

under the condition q · ∆r � 1.

We examine now the connection of J(q) with ρ(r). If the coarse-grained density ρ(r) is

uniform within a sphere of radius R, then the points {rk}, k = 1, 2, . . . , N are uniformly

distributed within this domain and the integral that the sum approximates is simply

J(q) =
3N

4πR3

∫

d3r Θ(R − r) exp(−iq · r)

= ρ̃(q), (4.14)

with the Heaviside step function Θ(x). Eqs. (4.13) and (4.14) give then rise to the well-

known form factor of hard spheres in the Rayleigh-Gans-Debye limit. [224] If now the density

ρ(r) has a smooth r-dependence, then the set of coordinates {rk}, k = 1, 2, . . . , N will be

nonuniformly distributed and they can be thought of as random variables drawn from a

probability density pr(r) ∝ ρ(r). Then, it is straightforward to show, by performing a

change of variables and their distributions, that [11]

J(q) =

∫

d3r ρ(r) exp(−iq · r)

=
4π

q

∫ ∞

0

dr rρ(r) sin(qr) = ρ̃(q). (4.15)
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Thus, for arbitrary density distributions ρ(r) of spherosymmetric rigid objects, the result is

obtained

F (q) =
1

N
ρ̃2(q), (4.16)

allowing us to relate the form factor to the square of the Fourier transform of the density

distribution around the center of mass of the colloid. Associated with this equation is a

relation between G(r) and ρ(r) that reads as

G(r) =
1

N
[ρ ⊗ ρ](r), (4.17)

with [ρ ⊗ ρ](r) denoting the autoconvolution of the density ρ(r). We emphasize, however,

that relation (4.16) holds as long as q ·∆r � 1 is satisfied, so that approximating a sum by

an integral is justified. For high enough values of q, the form factor must tend to unity, as

is clear from Eq. (4.9), whereas F (q) given by Eq. (4.16) above tends to zero as q → ∞.

4.3 Monte Carlo Simulations of an Isolated Dendrimer

From Eqs. (4.11) and (4.16), it is clear that the form factor can be utilized to obtain directly

information about the density distributions only at two specific limiting cases: either when

the correlations between the fluctuations of the particles vanish [Eq. (4.11)] or when the

fluctuations themselves are very weak in the first place [Eq. (4.16)]. Though the second case

is quite common when dealing with compact, ‘hard’ particles, things change in the case of

‘polymeric colloids’ that consist of polymer chains synthesized carefully in order to produce

various architectures.

Polymer chains are a relevant example: the form factor of ideal (Gaussian) polymers is

known to be given by the form [225] F (q) = NfD(q2R2
g), with the Debye function fD(z) =

2 (z − 1 + e−z) /z2. In this case of strongly fluctuating monomers, relation (4.17) does not

hold and hence a back transformation of F (q) in real space only yields G(r); it does not

deliver information about ρ(r). Increasing the ‘stiffness’ of the polymeric colloid can be

achieved by constructing a star polymer [198, 220] through anchoring of f chains on a

common center. Star polymers are indeed hybrids between polymers and colloids. There, one

distinguishes two mesoscopic length scales, the diameter of the outermost blob ξmax and the

radius of gyration Rg. For separations ξmax . r . Rg, a star polymer with large functionality

f appears compact and a relation of the form (4.17) approximately holds. [220] However,

for r < ξmax, one encounters the typical pair correlations akin to those of isolated polymer

chains, leading to the linear chain-like scaling G(r) ∼ r1/ν−3, with the Flory exponent

ν ∼= 0.6 that characterizes self-avoiding random walks. Similar considerations have been put

forward for the case of block copolymer micelles. [226] Therefore, the deviation of the pair

correlation function from the ‘rigid particle form’, Eq. (4.17) can be used as a diagnostic

tool for measuring the strength of the correlated fluctuations. Alternatively, the deviations

of F (q) from the form (4.16) provide an indication for the length scales at which these

fluctuations are correlated.
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Dendrimers represent a novel type of hybrid particles between soft polymers and hard col-

loids. Their effective interaction can be tuned by controlling the generation number and the

length of the spacers within the dendrons. It is at the same time directly influenced by the

monomer density distribution around the dendrimer’s center. Therefore, it is important on

the one hand to develop reliable microscopic models describing the isolated dendrimer’s con-

formations and on the other hand to establish quantitative measures for the degree in which

these conformations differ from those of rigid objects. This point is of central importance for

a clear understanding of the information to be gained from scattering experiments. [206, 207]

We investigated these questions by means of Monte Carlo simulations and we present our

model below.

4.3.1 The Model and Simulation Details

To mimic the dendrimer whose chemical structure is schematically depicted in Fig. 4.1,

our model-molecule has the same topology as the one shown there, whereby, however, the

atomic groups are replaced by spherical beads that build up the dendrimers’ dendrons. The

beads represent thereby ‘effective monomers’ consisting of all units within one Kuhn segment

grouped together. As we do not introduce any intrinsic stiffness in the model in the form of

orientational bias of the interaction, the identification of the bead with the Kuhn segment is

justified. To model the steric, excluded-volume interactions between Kuhn segments in good

solvent conditions, we introduce a purely repulsive Lennard-Jones like potential, V0(r), acting

between all beads, where r denotes the separation between the bead centers. The interaction

V0(r) is obtained by truncating the Lennard-Jones potential VLJ(r) at the minimum position

rmin = 21/6σLJ and shifting it by the constant VLJ(rmin) to get V0(rmin) = 0:

V0(r) =

{

4ε
[

(σLJ

r
)12 − (σLJ

r
)6 + 0.25

]

; r ≤ 21/6σLJ

0; r > 21/6σLJ.
(4.18)

The energy scale is set by ε, the length scale by the Lennard-Jones diameter σLJ of the beads.

In addition to the repulsion present for all monomers, neighboring (connected) monomers

along one dendron interact via the attractive finite-nonlinear-extensible-elastic (FENE) po-

tential, [227] Vch(r), which reads as

Vch(r) =







−15ε( R0

σLJ

)2 ln
[

1 − ( r
R0

)2
]

; r ≤ R0

∞; r > R0.
(4.19)

The location of divergence in the FENE potential, R0, determines the maximum bond length

between two monomers and was fixed to the standard literature value of R0 = 1.5σLJ. The

total potential, V (r) = V0(r) + Vch(r) then has a minimum at r∗ = 0.97σLJ, see Fig. 4.2.

This way, it is guaranteed that occurrence of ‘ghost chains’ in the Monte Carlo moves is

avoided. Finally, the temperature of the system is fixed at T = 1.2ε/kB. The microscopic

identification of σLJ will then follow from comparison with experimental data.
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Figure 4.2: The total potential V (r) = V0(r) + Vch(r) acting between two adjacent

beads of the dendrimer.

Canonical Monte-Carlo (MC) simulation techniques, making use of the Metropolis al-

gorithm were employed in the present work. Typically, NMC = 1 × 107 MC cycles were

simulated, with one MC cycle being comprised of one trial move for each of the N particles.

Of the NMC steps, 20% were used for equilibration. In the remaining MC cycles, 4 × 105

configurations were used to calculate statistical averages of the radial density distribution

ρ(r) of the dendrimer around its center of mass, the pair distribution function G(r), the

form factor F (q), as well as its radius of gyration Rg.

4.3.2 Results

In order to assess the isolated dendrimer’s equilibrium properties, we first record the radial

density distribution function of the dendrimer’s monomers with respect to the dendrimer’s

center of mass, rCM, being defined as

ρ(r) =

〈

N
∑

i=1

δ(r− ri)

〉

, (4.20)

with N being the number of monomers. Here, r and ri are measured with respect to the den-

drimer center of mass, (r, ri) = (r′−rCM, r′i−rCM), where (r′, r′i) are the position vectors with

respect to a fixed coordinate system and rCM = (1/N)
∑N

i=1 r′i. As we expect the dendrimer

to be spherically symmetric on average, it is justified to work with the spherosymmetric

density distribution as introduced above. Moreover, in order to make a further connection

with recently obtained, accurate SANS-results on end-monomer distributions, we also mea-

sured the quantities ρg4(r), Gg4(r) and Fg4(q) pertaining to particles of the last generation

only, employing obvious notation. This result can therefore be directly compared to recent

experimental data pertaining to the distribution of endgroups in a dendrimer. [208]
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Figure 4.3: Simulation snapshot of a fourth generation dendrimer. The monomer

beads are rendered as spheres of diameter σLJ.

In Fig. 4.3 we show a snapshot of a fourth generation dendrimer from the MC simulation.

It can be seen that there the deviations from sphericity are small and, in any case, much less

pronounced than those seen in linear polymer chains with the same degree of polymerization

N . Due to the choice of the interparticle potentials causing a stiff minimum at separations

r∗ = 0.97σLJ between adjacent beads, the latter attain configurations that are practically

indistinguishable from those of tangent hard spheres of diameter σ = r∗. It can be seen that

the connectivity of the monomers produces a compact object with a dense core; there is no

sign of a dense shell configuration of the dendrimer in any of the typical snapshots we looked

at.

The simulation results for the density ρ(r) are shown in Fig. 4.4 and corroborate the

dense core picture: the general trend is that the profile is decreasing as one moves away

from the center. There is a pronounced peak at about r/σLJ = 0.4, originating from the two

beads comprising the zeroth generation of the dendrimer. Since the beads are practically

indistinguishable in their behavior from tangent hard spheres of diameter r∗ ∼= σLJ, the ideal

position of the center of mass would be in the midpoint between the zeroth-generation bond

and this would produce a peak in ρ(r) at r/σLJ = 0.5. The fact that this peak is located at

the smaller value 0.4 is a clear indication that the center of mass of the dendrimer wanders

around significantly, and that it often comes closer to the center of one the two beads of

the zeroth generation. There is an alternative explanation regarding the position of this

peak, namely: the zeroth generation bond length is shrunk due to the osmotic pressure

exercised by the higher-generation monomers surrounding the zeroth-generation. However,

this was ruled out by performing Monte Carlo simulations employing a different microscopic

model: the beads were modeled as true hard spheres of diameter σ, connected by threads

of maximum extension εσ, with ε = 0.05, 0.1. Very similar results were obtained for the

density profile and thus the shrinking scenario can be ruled out since hard spheres cannot be
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Figure 4.4: The radial density distribution with respect to the center of mass, ρ(r),

shown as a function of r/σLJ, measured by including all monomers (full line), and by

solely taking the last generation’s monomers into account (dotted line).

found in separations smaller than their diameter. On the other hand, the strong similarity

of the results obtained using the two different microscopic models leads to the conclusion

that the details of the short-range steric repulsions do not matter: as in the case of linear

polymer chains, the excluded volume effect dictates the main physics of the conformations

of the macromolecules. A detailed account of the results from the bead-thread model for

various generation numbers will be presented elsewhere. [228]

At larger distances, the second and third shell of the dendrimer are resolved as well, their

peaks being, however, much less pronounced and indicating that the fluctuations of higher

generations become broader. As a matter of fact, one can roughly discern a ‘plateau’ at the

density profile, located between σLJ and 2σLJ. The extent of this ‘flat’ region grows as one

increases the maximum generation number. Dendrimers represent a model polymeric system

that features constant density profiles, ρr ∼ r0, within a certain region, and this characteristic

can be compared to the ∼ r−4/3-behavior of the density that one obtains for star polymers,

for example. [220] It can be nicely seen how the architecture of the macromolecule that

combines star-like elements but supplemented by a high degree of branching, affects the

monomer distribution around the center. Finally, we note that the shape of our measured

density profile is in agreement with the results of previous simulational studies employing

a variety of microscopic models. [201, 202, 214, 215, 216, 217] The strength of the ordering

oscillations close to the molecule’s center depends, however, on the specific model used and

in particular on the length of the spacer connecting adjacent monomers in relation to the

diameter of the latter.

At distances r/σLJ & 2, the structure is lost and a smooth decay of ρ(r) to zero is

observed. The whole behavior of ρ(r) is indicative of increasing fluctuations for monomers

with higher generation number, which is further sustained by the broad density distribution
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Figure 4.5: The pair distribution function of the monomers, calculated for all

monomers (full line) and for the monomers of the last generation only (dotted line).

of the outermost generation, shown in Fig. 4.4 as the dotted line. The ρg4(r)-profile is

in agreement with recent SANS-results on the endpoint distribution of fourth-generation

dendrimers, obtained by using suitably labeled macromolecules. [208]

We now have a tool at hand to bridge the gap to experimental length scales and to give

a microscopic meaning to the model parameter σLJ. This is provided via the dendrimer’s

radius of gyration, that can be measured both in the simulation and in SANS. Its definition

reads as

Rg =

√

√

√

√

1

N

〈

N
∑

i=1

(ri − rCM)2

〉

. (4.21)

In the simulation, we obtain the value Rg = R̄gσLJ, with R̄g = 2.518. Experimentally,

this corresponds to the so-called ‘radius of gyration at infinite contrast’, Rg,∞, which has

been obtained for the molecules at hand by performing a series of careful experiments at

different contrasts; [200, 219] the so-determined gyration radius is Rg,∞ = 1.489 nm. The

simulation model reproduces, then, the real molecule’s radius of gyration with the choice

σLJ = Rg,∞/R̄g = 0.591 nm. This result compares favorably to the bond lengths calculated

based on the chemical structure of the molecule under experimental observation. For a

typical bond length a ≈ 1.5 Å and a Kuhn length `K of three to four monomer lengths,

`K
∼= 6 Å is obtained that agrees very well with the above-determined value of σLJ and thus

further supports the interpretation of the latter as the length of a Kuhn segment of the

polymer.

Additional information about the internal structure of the dendrimer can be obtained

from the pair distribution function G(r), defined in Eq. (4.4) and depending only on r due

to the restoring of spherical symmetry after averaging over all conformers. To this end, we

measured the average number of pairs being separated by r and normalized the histograms

appropriately [10] in order to obtain G(r). We omit in what follows the trivial δ-function
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contribution and display in Fig. 4.5 only the second term in the rhs of Eq. (4.4). The

results further illustrate the statements made above based on the knowledge of the radial

density distribution. The highly pronounced peak at r ∼= 0.97σLJ, the equilibrium distance

of the Lennard-Jones–FENE potential, arises mainly from the strong correlations between

directly connected beads. A considerably less pronounced structure is also seen at r . 2 σLJ,

stemming from the second neighbors, which are however much more weakly correlated than

the first ones. For higher r-values, these correlations are washed out and result in a smoothly

decaying curve. As can be expected, the pair distribution function which is restricted to the

monomers being members of the outermost (fourth) generation, is also peaked at the typical

nearest neighbor distance. The relative height of the peak is much smaller, pointing at the

fact that on average the monomers this far out fluctuate the strongest, resulting from the

facts that (i) their movement is less restricted due to a reduced number of neighbors and (ii)

beads of the last generation lack any direct connections among them.

We further measured the form factor F (q) of the molecule by performing the averages

given in its definition, Eq. (4.9), ‘on the fly’ during the simulation. A comparison with the

Fourier transformed G(r) yielded identical results, thus providing an independent check of

the validity of the procedure. The simulation yields F (q) as a function of the dimensionless

variable qσLJ and the identification σLJ = 0.591 nm obtained above through the radius

of gyration, allows us to express F (q) in physical units and permits a comparison with

experimental data. In the experiment, the total scattering intensity IS(q) is obtained, which

is normalized at q = 0 as IS(0) = V 2
p , with Vp = 9.818 nm3 being the volume of the dendrimer

molecule. [200] Thus, we furthermore rescale the ordinate to satisfy this condition for the

simulation data as well. The result is shown in Fig. 4.6. Clearly, there is excellent agreement

between the MC-simulation results and the SANS-data. Only in the range 1.5 nm−1 . q .

2 nm−1 do small deviations exist, but they are within the error bars. We can thus be confident

that the model at hand does indeed capture the characteristics of the real dendrimers.

4.4 Discussion

We now wish to put into test the degree in which the form factor of the fourth-generation

dendrimer can be approximated by Eqs. (4.11) or (4.16). Apart from the constant term

of unity that corresponds to incoherent scattering, these are both expressions pertaining to

molecules with uncorrelated fluctuations between the monomers or to very weak fluctuations

in the first place. Adopting these expressions also for molecules in which correlations are

present amounts to a Mean-Field Approximation (MFA) of their conformations: here one

replaces G(r) by the autoconvolution of ρ(r).

In Fig. 4.7, we show the comparison of the form factor F (q) with the MFA-expression

(1/N)ρ̃2(q). It can be seen that in the small q-range the MFA is very good, with deviations

only showing up for qσLJ & 1. It has to be kept in mind, however, that the limiting behavior

of the two functions is different, since F (q) → 1 for q → ∞, whereas (1/N)ρ̃2(q) → 0



4.4. Discussion 79

0 1 2 3
q [nm

-1
]

0

0.2

0.4

0.6

0.8

1

10
-2

I S
(q

) 
[n

m
6 ]

SANS
MC sim.

Figure 4.6: Form factor F (q), as determined in the simulation (full line), displayed

together with the form factor as determined in SANS experiments (circles). The

rescaling procedure for the simulation data is explained in detail in the text.

for q → ∞. Nonetheless on this level we can, from this data, conclude that the inherent

approximation as discussed above, is very good and thus surmise that the dendrimer does

not exhibit exceedingly large correlated fluctuations. On the other hand, it is clear that the

question at hand should be further pursued, in particular with respect to first where the

fluctuations are the most pronounced in the molecule and second what their absolute value,

irrespective of the degree of correlation is.

In Fig. 4.8 we show the form factor in comparison to the MFA in more detail for high

values of the scattering wavevector. To make the comparison easier, we have now subtracted

the value 1 from the simulation data and we show thus only the coherent part, Fcoh(q) =

F (q)−1. Here, significant deviations can be seen, in the sense that F (q) displays oscillations

stemming from the short-range correlations between the particles, whereas the quantity

(1/N)ρ̃2(q) is devoid of any structure. There is, however, no reason to expect that the MFA

should be valid in this q-domain since here qσLJ exceeds unity and the condition q · ∆r is

not satisfied any more. Moreover, the typical wavelength of the oscillations of F (q) seen in

Fig. 4.8 demonstrates that the fluctuations are correlated on the scale of the Kuhn length.

We are thus dealing with oscillatory structure in q-space that becomes visible at scattering

wavevectors above, roughly, q = 2.5 − 3.0 nm−1, and which cannot be easily resolved in the

small-angle scattering experiments.

As an additional diagnostic tool for the deviations of the dendrimer from a rigid config-

uration, we measured the variance of the Fourier-transform of the density operator, ∆ρ̃(q),

defined as

∆ρ̃(q) =
√

〈

ρ̂2
q

〉

− 〈ρ̂q〉2 =
√

ρ̃2(q) − ρ̃2(q), (4.22)
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where

ρ̃2(q) ≡
〈

ρ̂2
q

〉

=

〈

N
∑

i=1

N
∑

j=1

exp[−iq · (ri + rj)]

〉

. (4.23)

If marked, correlated fluctuations occur in the molecule, we expect significant differences in

these two observables to show up. The result is shown in Fig. 4.9. As can be seen, ρ̃2(q)

and ρ̃2(q) are practically indistinguishable. We may thus put forward the notion that the

dendrimer does not, in its behavior regarding fluctuations, differ significantly from that of a

spherically symmetric object whose constituents show uncorrelated fluctuations. Although

this might sound counter-intuitive at first sight, there is good grounds for such a notion, since

the density profile indicates that the dendrimer is very dense in its inner part. Here, only

small fluctuations, showing up for very high q, should occur. As we could already further

surmise from the density profile, the fluctuations are the strongest in the outer shell. Here,

however, they are the least correlated, since the monomers in the outermost generation are

the least connected, with only one bond per particle, inducing only weak correlations.

Recently, a mean-field type theory for the effective interactions between G4-dendrimers

has been proposed. [199, 200] It is based on the inversion of SANS-scattering profiles in the

spirit of Eq. (4.16), in which the form factor F (q) is used to obtain directly the density profile

ρ(r). This is akin to self-consistent field theories of dendrimers in which each monomer finds

itself in the mean-field caused by all other monomers. [218] Self-consistent field approaches

also result into smooth density profiles and into a loss of correlations in the shape of the

scattering profiles. [218, 229] Since the measured form factor of G4-dendrimers is excellently

fitted by a Gaussian function in the measured regime, Eq. (4.16) leads also to a Gaus-

sian density profile. A second ingredient of the theory is the introduction of a Flory-type

monomer-monomer interaction vmm(r1 − r1) = kBTv0δ(r1 − r2), with the excluded-volume
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Figure 4.8: The coherent form factor Fcoh(q) = F (q) − 1, compared with its mean-

field approximation, Eq. (4.16) at high values of the scattering wavevector.

parameter v0. Under the assumption that the dendrimers maintain their undisturbed shape

even in interacting situations, the above procedure leads then to a Gaussian effective in-

teraction between G4-dendrimers that has been shown to provide an excellent theoretical

description of the scattering profiles from dendrimer solutions below the overlap concen-

tration, [200] with the choice v0 = 0.076 nm−1. In comparing the measured density profile

shown in Fig. 4.4 with the mean-field prediction of a Gaussian shape, it appears that the

latter is not particularly accurate; all ordering effects in the inner region of the molecule are

lost. Nevertheless, the remarkable success of the Gaussian effective interaction in conjunction

with the present accurate data calls for an explanation.

To this end, we have to remember that in the Flory-view of polymers, every monomer

is ‘chopped down’ to a continuous distribution of matter that interacts by means of the

δ-interaction mentioned above, pretty much as discrete charge matter is replaced by a con-

tinuous charge distribution in some circumstances. Thus, we proceed by considering every

bead in our model as a uniform distribution of monomeric matter and introduce thereby the

density of ‘effective monomers’ inside the bead:

ρb(r) =
3

4πR3
Θ(R − r), (4.24)

where R = σLJ/2 is the radius of the bead and r is the distance from its center. Accordingly,

the distribution of effective monomers around the dendrimer’s center of mass, ρm(r) is given

by the convolution

ρm(r) = [ρ ⊗ ρb](r). (4.25)

In Fig. 4.10, we compare the density ρm(r) with the Gaussian distribution obtained by the

inversion of the scattering data in the mean-field approach of Ref. [200]; the two are still

considerably different from one another. However, the effective interaction Veff(R) between

the dendrimers is proportional to a second convolution, namely the autoconvolution of the
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effective monomer density, i.e.,

Veff(R) = kBTv0[ρm ⊗ ρm](R). (4.26)

In Fig. 4.11, we show the final comparison between the effective interaction obtained by

the mean-field theory of Ref. [200] and the one obtained by employing the coarse-grained

monomer density ρm(r) of Eq. (4.25) above. It can be seen that the two are very similar to

one another and practically identical at separations between 3 and 4 nm. Since the theory

of Ref. [200] was put forward for dendrimers below their overlap concentration, such that

the macromolecules slightly overlap only on their periphery, it is clear that the two effective

interactions will yield identical results for the structure factor there. Thus, the mean-field

approach is once more justified, not only for the conformations of dendrimers but for the

effective interactions between the same as well.

4.5 Conclusions and Outlook

In conclusion, we have investigated the structural properties of an isolated fourth generation

dendrimer. We calculated the density profile, which could confirm that the dendrimer is a

dense object in its inner regions. By measuring the form factor F (q) of the single dendrimer

and a comparison to experimental data, an excellent agreement of simulation and experiment

was found. By comparing F (q) to the squared Fourier transform of the density distribution

ρ̃2(q), it was shown that the dendrimer is, on average, a spherically symmetric object whose

constituents do not show large correlated fluctuations. This was further underlined by com-

paring 〈ρ̂q〉2 with
〈

ρ̂2
q

〉

. The fluctuations present in a dendritic molecule as investigated in

the present study occur for q & 2.5 − 3.0 nm−1. With the structural properties of a single
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Figure 4.11: Comparison of the effective interaction obtained by Eq. (4.26) of the

text by employing the density profile ρm(r) of Eq. (4.25) (solid line) with the mean-

field result based on a Gaussian profile (dotted line). For completeness, we note that

the dotted line is obtained from Eq. (18) of Ref. [200], with N = 62 monomers and

v0 = 0.076 nm−1. This value of v0 has also been used to produce the solid curve,

according to Eq. (4.26) of the text.

dendrimer of the fourth generation having been investigated, we can now turn our attention

to two related questions: first, the systematic dependence of the quantities characterizing

dendrimer conformations on the maximum generation number g and the further evolution of

the dendrimers towards the compact colloid limit. [228] Second, the question of dendrimer-

dendrimer interaction: it will be of major interest whether for small overlaps the Gaussian
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interaction picture will be confirmed and to which extent it will be modified for more sig-

nificant overlaps between the two dendritic architectures. To answer these questions, we

will resort to Molecular Dynamics simulations of dendrimers of the same kind as presented

here. A careful check with theoretical predictions for the dendrimer-dendrimer interaction

will then become possible.

In the following, last chapter we will summarize the results presented in the preceding

chapters and we will discuss possible future extensions of the present work.



Chapter 5

Summary and Outlook

Summarizing, we have investigated aspects of four different soft matter systems, using meth-

ods of statistical physics. In chapter 1 we treated DNA molecules in a columnar assembly.

We were able to calculate the pair interaction potential of two DNA molecules in a parallel

state as found in columnar assemblies. To achieve this, we adopted the Debye-Hückel (DH)

linear screening picture, inducing a Yukawa- or DLVO-type potential for the interaction of

all infinitesimal charge elements. The so-obtained DNA pair potential U(R, φ), depending

on the interaxial separation R as well as the mutual azimuthal orientation angle φ was com-

pared to an analytical solution [14] of the DNA pair potential problem, obtained by solving

the linearized Poisson-Boltzmann (PB) equation under explicit incorporation of the helical

charge patterns. Good qualitative agreement between the two potentials was found. Build-

ing on the two pair potentials we calculated the lattice-structural as well as the orientational

phase behavior of a DNA columnar assembly, making use of lattice sums together with the

entropic contributions of the mixture’s constituents. In the case of counterion condensation

on strands a purely repulsive interaction was found to give rise to a HEX lattice, on which,

due to frustrations of the angular part of the interaction, orientational phase transitions by

variation of the relevant parameters, DNA packing fraction πρa2 and salt concentration ns

were detected. Switching to a different type of counterions which do not exhibit specific

interactions with the phospates located on the DNA backbone induces counterion conden-

sation to occur to a major part in the major groove. This, as a consequence, leads to strong

attractions between the DNA molecules, giving rise to DNA bundling in the assembly. We

thus find broad coexistence regions between DNA-free salt solutions and high density DNA

phases. This behavior is qualitatively robust with respect to a change in the charge com-

pensation. The phase diagrams agree well on a qualitative level for the YS and the KL

model case. There is a number of simplifications included in the present theory. Although

there is conclusive evidence that the level of complexity thereby attained suffices to yield

the essential features and predictions for columnar DNA assemblies, put in other words,

that we have devised a minimal model, it poses nonetheless a great challenge to extend the

model’s complexity further and to then compare the results to the one presented in this
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thesis. We will briefly discuss a few possible extensions in the following, in increasing order

of importance. Neglected in this work are effects of hydration forces, steric interactions,

hydrogen bonds and ordered water molecules around the DNA cores as well as, on the level

of the aggregate, many body effects. These would presumably change the current picture the

least, so that it would probably be sensible to rather consider a type of modeling which goes

further in the description of the counterions than the present one. There is good grounds,

however, to believe that this would not have a dramatic effect, since Molecular Dynamics

(MD) simulations in the framework of the primitive model (PM) yielded similar pair interac-

tion potential curves as the present work if appropriate charge renormalizations were carried

out. In a second step one might try to investigate possible edge effects, since here, the DNA

molecules were assumed to be infinitely long. In experiments, however, because of the short

length of real DNA fragments, edge effects could have an influence, possibly diminishing

the importance of the helical structure of DNA which is essential in the analysis presented

here. Finite molecules would also have to be used in the model if, in a subsequent and the

most interesting step, which most probably brings in qualitatively new features, tilts of the

DNA molecules with respect to one another were to be included. Although only relevant

for interaxial separations R > 34Å, the occurrence of the cholesteric phase (CP) is a very

interesting issue, which is of importance in experiments [45, 55, 43, 69].

In chapter 2 we calculated the ground state adsorption patterns colloids form on surfaces

which exhibit a stripe-structure. We resorted to ground state calculations, whereby the

colloid-colloid interaction was hard-sphere like and the attractive colloid-substrate interac-

tion was modeled by a square-well interaction with the well-depth as free parameter. The

other parameter entering the phase behavior was the stripe-width and the inter-stripe sepa-

ration. We found that depending on these two variables, various complex decoration lattices

form on the patterned substrate. Interesting extensions are possible in several directions:

One might first perform the same calculations for other substrate patterns. Subsequently

the potentials involved could be rendered more complex and finite temperature effects might

be incorporated. Finally non-equilibrium effects in the adsorption process and pattern for-

mation would present a notable challenge.

Finally, chapter 3 was devoted to a study of star polymers in a gravitational field. Star

polymers where chosen as representative of the class of systems exhibiting reentrant melting

behavior in the bulk phase diagram. We could confirm the surmise, namely that the reentrant

melting behavior which is present as a function of the density gets mapped onto the height

z in the gravitational field, giving rise to a crystal sheet intercalated in a low density fluid at

high and a high density fluid at lower elevations. Furthermore it was found that this effect

only appears below a critical gravitational strength. Above this critical value, monotonic

density profiles are obtained.

In the investigation of the properties of an isolated dendrimer, presented in chapter

4 it was found that the dendrimer is, in its inner regions, a dense object. It can, to a

certain extent, be regarded as a compact colloid. This is due to the fact that the correlated
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fluctuations of its constituent monomers are remarkably small. The calculated form factor

was in very good agreement with experimental results. In a subsequent step, we will turn

our attention to the dendrimer-dendrimer interaction in the framework of the same model.

Furthermore, the systematic dependence of the averaged properties being characteristic of

the dendrimer conformations will be calculated as a function of the dendrimer generation g,

whereby a further evolution towards the compact colloid behavior with increasing dendrimer

generation number is conjectured.

For every theoretical work a high distinction is a favorable agreement with experiments

in the best case or at least a comparison with experiment at all. For the dendrimers, an

experimental verification of the theoretical results was already possible in parts. As for the

other projects, the current state of comparison is less satisfactory: The pair potential of star

polymers has experimentally been, in good parts, confirmed by structure factor measure-

ments, the bulk phase diagram is, however, not easily accessible. Also sedimentation profiles

are not yet available but can in principle be obtained by employing strong centrifugation

or by creating star-like micelles (by grafting long polymer chains on big colloidal particles)

with an identical phase behavior to the one of star polymers, their advantage, however be-

ing their much larger mass. Colloidal adsorption on patterned substrates is a very active

area of experimental research, which has become a major interest since the uprise of viable

real-space analysis tools. From these experiments there is good grounds to believe that the

theoretical predictions are at least in the ballpark of what can be expected experimentally.

The least degree of comparison to experiments exists in the case of the phase behavior

of columnar DNA assemblies: Although some characteristics derived on the basis of the

KL pair potential agree very well with the corresponding ones calculated on the basis of

experimental evidence, the only possibility to compare the predictions of the theory and

real-life columnar DNA assemblies is the fact that in both cases hexagonal HEX lattices

are observed. Verification of the different lattice structures, least to say of the imprinted

orientational structures is beyond the scope of present experimental techniques. It can be

hoped however, that with the advent of higher resolution X-ray diffraction techniques a

comparison of the predicted phase behavior to experimental data would become possible to

maybe accomplish every researcher’s dream: to see theory and experiment in agreement.
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Appendix

This appendix gives information on technical issues concerning this work. Appendix A deals

with the problem of finding phase coexistence regions in two-component mixtures, applied to

the issue of a DNA-salt solution.

89



Appendix A

ON DETERMINING PHASE

COEXISTENCE REGIONS

The problem to be solved is the phase behavior of a two component system, with, in our

case, one component being DNA, the other being salt with numbers N1 and N2 respectively.

The number of counterions is directly coupled to N2 (as the salt co- and counterions are to

each other) via the condition of global charge neutrality. Assume the Helmholtz free energy

F (N1, N2, V, T ) to be known. Statistical Mechanics and thermodynamics state that the free

energy shall be convex for the system to be stable. The route to achieve this in simple one

component systems is the so-called double tangent construction whereby the non-convex

parts are ‘bridged’ by a tangent onto the two points NA and NB where the concave parts

of the free-energy curve start. These two points are the delimiting loci of phase coexistence

between phase A at NA and phase B present at NB . The conditions to be fulfilled for stability

and which are, by construction properly incorporated in the double tangent construction are

first: equality of pressure, P A = P B and equality of chemical potentials, µA = µB in the two

phases. Generalizing this for a two-component system, a corresponding ‘two-component’

double tangent construction has to satisfy the following conditions: µA
1 = µB

1 , µA
2 = µB

2 and

P A = P B. The second of these three conditions can automatically be fulfilled by operating

on µ2 = const curves only.

It is thereby convenient to carry out a Legendre transformation to the semigrand potential

Y (N1, µ2, V, T ) = F (N1, N2, V, T )−µ2N2 [230]. It is understood that by keeping µ2 fixed N2

becomes a function of N1. We will henceforth omit the arguments V and T for simplicity.

Consider now

µ1 ≡
∂F

∂N1

∣

∣

∣

∣

N2

=
∂Y

∂N1

∣

∣

∣

∣

µ2

+
∂Y

∂µ2

∣

∣

∣

∣

N1

∂µ2

∂N1

∣

∣

∣

∣

N2

+
∂µ2

∂N1

∣

∣

∣

∣

N2

N2. (A.1)

Since ∂Y/∂µ2|N1
= −N2 according to the definition of Y as Legendre transform of F above,
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Figure A.1: Semigrand potential per unit volume y(ρ, µs) as a function of reduced

DNA density and salt chemical potential, for the KL model and parameters θ = 0.9,

f1 = 0.3, f2 = 0.7, f3 = 0.

the last two terms cancel and we obtain:

µ1 =
∂Y

∂N1

∣

∣

∣

∣

µ2

. (A.2)

In an analogous way we obtain

P = − ∂Y

∂V

∣

∣

∣

∣

N1,µ2

. (A.3)

Introducing now the semigrand potential density y(n1, µ2) = V −1Y (N1, µ2, V ) with n1 =

V −1N1 it is straightforward to show that

µ1 =
∂y

∂n1

(A.4)

P = n1
∂y

∂n1

− y, (A.5)

demonstrating that µA
1 = µB

1 and P A = P B is guaranteed by performing a common tangent

construction on the y–versus–n1 curves. In applying the above considerations to the present

case, we have the salt chemical potential µs ≡ µ2 and the DNA density ρ ≡ n1. In Fig.

A.1 the semigrand potential surface y(ρ, µs) for the KL model is shown as a function of

DNA density ρ and salt chemical potential µs, for a charge compensation of θ = 0.9. The

counterion parameters are f1 = 0.3, f2 = 0.7, f3 = 0. One can clearly discern the non-

convex parts which lead to phase coexistence. The double tangent construction is performed

on the curve displayed in Fig. A.2, as indicated by the dashed line. It shows the semigrand

potential y(ρ, µs = const) as a function of DNA density ρ at constant salt chemical potential,

µs = const. Due to the broad non-convex part, the broad phase coexistence region emerges in

91



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

πρa
2

 -150.0

 -100.0

 -50.0

 0.0

 50.0

 100.0

 150.0

 200.0

 250.0

 300.0

 350.0

y(
ρ,

µ s) 
/ k

B
T

ro
om

Figure A.2: Semigrand potential per unit volume y(ρ, µs) on a line of constant DNA

chemical potential for the KL model as a function of the reduced DNA density and

for parameters θ = 0.9, f1 = 0.3, f2 = 0.7, f3 = 0. Also shown (dashed line) is the

common tangent connecting the coexisting phase points.

the phase diagrams. The oblique tielines are obtained by calculating the salt concentrations

nA
s and nB

s at the coexisting DNA densities ρA and ρB.
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[103] M. Heni and H. Löwen, Phys. Rev. Lett. 85, 3668 (2000).
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[159] M. Heni and H. Löwen, Phys. Rev. Lett. 85, 3668 (2000).

[160] A. van Blaaderen, R. Ruel, and P. Wiltzius, Nature 385, 321 (1997).

[161] A. van Blaaderen, Colloid Polym. Sci. 104, 59 (1997).

[162] A. van Blaaderen and P. Wiltzius, Adv. Mater. 9, 833 (1997).

[163] P. G. de Gennes, J. Physique (Paris) 42, L377 (1981).
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(2001), vol. 213 of Top. Curr. Chem.
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