Entwicklung eines rekombinanten Ganzzellsystems--
Klonierung, Coexpression und Mutagenese der Phenylalanin-Dehydrogenase
aus *Rhodococcus* sp. M4 und des malic enzymes aus *E.coli* K12

Inaugural-Dissertation
zur Erlangung des Doktorgrades der
Mathematisch-Naturwissenschaftlichen Fakultät
der Heinrich-Heine-Universität

vorgelegt von
Shukrallah Na’ammieh
aus Düsseldorf

Jülich 2002

Die Arbeit wurde von Degussa AG und Minerva Stiftung der Max-Planck-Gesellschaft zur Förderung der Wissenschaften gefördert.
Einleitung ... 1
1.1 B E D E U T U N G V O N E N Z Y M E N .. 1
1.2 E N Z Y M E I N D E R I N D U S T R I E .. 2
1.3.1 Malic enzyme aus E. coli K12 .. 8
1.3.2 L-Phenylalanin-Synthese unter Coenzymregeneration .. 8
1.3.3 Expression rekombinanter Proteine .. 9
1.4 P R O T E I N - D E S I G N ... 11
1.4.1 Gezielte Mutagenese ... 11
1.4.2 Zufalls mutagenese .. 13
1.5 H O C H Z E L L D I C H T E - F E R M E N T AT I O N (H Z D) .. 14
2 Problemstellung und Zielsetzung .. 15
3 Material .. 17
4 Methoden ... 20
4.1 M O L E K U L A R B I O L O G I E .. 20
4.1.1 Isolierung der genomischen DNA .. 20
4.1.2 Auftrennung von DNA-Fragmenten über Elektrophorese .. 21
4.1.3 Ethanolfällung .. 21
4.1.4 Polymerase Ketten Reaktion [PCR] .. 22
4.1.5 Berechnen der Schmelztemperatur der Primer ... 23
4.1.6 Isolierung von DNA-Fragmenten aus Agarosegelen ... 23
4.1.7 Dephosphorylierung linearisierter Plasmid-DNA ... 24
4.1.8 Ligation .. 24
4.1.9 Herstellung kompetenter Bakterienzellen ... 25
4.1.10 Transformation ... 26
4.1.11 Schnellisolierung von Plasmid-DNA aus E.coli (modifiziert nach Birnbaum und Doly) 26
4.1.12 Plasmidisolierung [Biorad] .. 27
4.1.13 Plasmidisolierung [Qiagen] .. 27
4.1.14 Restriktion .. 28
4.1.15 Sequenzierung ... 28
4.1.16 Gezielte Mutagenese ... 28
4.1.17 Zufallsmutagenese .. 29
4.1.18 Sättigungsmutagenese .. 31
4.2 B I O C H E M I S C H E M E T H O D E N .. 32
4.2.1 Zellaufschluß und Rohextraktgewinnung .. 32
4.2.2 Aktivitätstest für die Phenylalanin Dehydrogenase .. 33
4.2.3 Screening und Aktivitätstest in Titerplatten .. 34
4.2.4 Aktivitätstest für das NAD-abhängige malic enzyme .. 35
4.2.5 Gekoppelte enzymatische Synthese .. 35
4.2.6 Bestimmung des L-Phenylalanin mittels HPLC .. 35
4.2.7 Bestimmung der Acetatkonzentration ... 36
4.2.8 Ganzzell Biotransformation .. 36
4.2.9 Proteinaufreinigung .. 36
4.2.10 Proteinbestimmung nach Bradford ... 37
4.2.11 Entsalzen von Proteinlösungen .. 37
4.2.12 Konzentrierung von Proteinlösungen .. 37
4.2.13 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE) ... 38
4.2.14 Färbung .. 39
4.3 M I K R O B I O L O G I S C H E M E T H O D E N ... 40
4.3.1 Verwendete Organismen ... 40
4.3.2 Anzuchtbedingungen und Medien ... 40
4.3.3 Plattenkulturen ... 41
4.3.4 Schüttelkolbenkulturen ... 41
4.3.5 Konservieren von mikrobiologischen Stämmen .. 41
4.3.6 Fermentation der rekombinannten PhedH in Hochdichte Medium (HZD) 41
4.3.7 Bestimmung der optischen Dichte ... 44
5 Ergebnisse ... 45
5.1 K L O N I R U N G D E R P H E N Y L A L A N I N D E H Y D R O G E N A S E (P H E D H) .. 45
5.1.1 Präparation genomischer DNA .. 45
5.1.2 Klonierung des PhedH-Gens mittels PCR ... 46
5.1.3 Klonierung des PhedH Gens in den pUC-18 ... 47
5.1.4 Sequenzierung des phedh-Gens ... 49
5.1.5 Expression des recPheDH-Gens in *E. coli* ... 50
5.1.5.1 Klonierung der PheDH im Expressionsvektor PET16b ... 50
5.1.5.2 Expression der PheDH im PET-System .. 52
5.1.5.3 Klonierung des PheDH-Gens in pKK223-3 .. 53
5.1.5.4 Expression der recPheDH im pKK223-3 ... 56
5.1.6 Optimierung der Induktionstrainparameter ... 57
5.1.7 Reinigung der recPheDH aus *E. coli* JM105 .. 60
5.1.8 Substratspektrum und *K*₅₀-Werte ... 62
5.1.9 Temperaturstabilität ... 63
5.1.10 Temperatur optimum .. 64
5.1.11 pH-Optimum ... 64
5.2 Hochzeildichte Fermentation (HZD) ... 66
5.2.1 Zuführung von Nährstoffen, Nebenproduktbildung und Wachstum 66
5.2.2 Bestimmung des Induktionszeitpunkts ... 68
5.3 Klonierung des Malic Enzymes .. 70
5.3.1 Präparation genomischer DNA ... 70
5.3.2 Genisolierung und Klonierung des malic enzymes im recPhe-pKK-223-3 70
5.4 Konstruktion eines Expressionsvektors mit heterologer Expression 75
5.4.1 Coexpression der PheDH und des malic enzymes .. 77
5.4.2 Optimierung der Aktivität ... 78
5.4.3 *K*₅₀-Wertbestimmung .. 81
5.4.4 Gekoppelte L-Phenylalanin Synthese unter Regeneration des Coenzymes NADH .. 81
5.5 Ganzzellumlsetzung ... 85
5.6 Gezielte Mutagenese .. 87
5.6.1 Mutation des Lysin 66 .. 88
5.6.2 Sequenzierung der K66I .. 94
5.6.3 Expression der PheDH-Mutante K66I ... 94
5.6.4 Herstellung weiterer Muteine ... 96
5.6.5 Mutation von Lysin 66 zu Arginin und Lysin 78 zu Isoleucin 97
5.6.6 PCR der K66R Muteine und deren Klonierung ... 98
5.6.7 Aktivitätsnachweis des PheDH-Muteins K66R und K78I 99
5.7 Zufallsmutagenese .. 101
5.8 Entwicklung eines Farbstestes als Screeningsmethode 102
5.8.1 K66R –Muteine .. 104
5.8.2 Biochemische Charakterisierung des K66R-8-Muteins 107
5.8.3 Synthese von Phenyllactat mit dem Mutein K66R-8 109
5.8.4 Austausch K66I ... 112
6 Diskussion .. 114
7 Zusammenfassung ... 127
8 Literaturverzeichnis .. 131
Tabellenverzeichnis

Tabelle 1: Industriell genutzte Enzyme, ihr Ursprungsorganismus, aus dem sie isoliert werden und mögliche Verwendungszwecke

Tabelle 2: PCR-Zyklen

Tabelle 3: PCR Protokoll zur Amplifizierung des PheDH-Gens. Variiert wurde die Konzentration der Template-DNA

Tabelle 4: Ligationsansatz zur Klonierung der PheDH im pUC18-Vektor

Tabelle 5: Expressionsresultate der rekombinanten E.coli Stämme. Die Aktivitäten wurden im Rohextrakt „30 %iger Aufschluss“ gemessen

Tabelle 6: Zusammenfassung der Reinigung der recPheDH aus E.coli-Rohextrakt

Tabelle 7: Untersuchte Substrate der Rec-PheDH

Tabelle 8: Kinetische Parameter für die Rec-PheDH

Tabelle 9: PCR Protokoll zur Amplifizierung des malic enzymes aus dem rekombinanten pUC18-Plasmid. Variiert wurden die Konzentrationen der Template-DNA

Tabelle 10: Aktivitätsbestimmung der exprimierten Enzyme in einem 10 L. Fermenter mit LB-Medium als batch-Fermentation

Tabelle 11: Aktivitätsvergleich in Abhängigkeit des Aufschlusspuffers

Tabelle 12: Proteinbestimmung beider exprimierten Enzymen, PheDH und malic enzyme, nach Variation der Aufschlusszeit. Die Zellen wurden nach einer 60-, 30-sekundigen Behandlung zwischenzeitlich 30Sekunden abgekühlt

Tabelle 13: Aufreinigung des rekombinanten malic enzymes

Tabelle 14: Vergleich der PheDH- bzw. der malic enzyme-Aktivität in verschiedenen Reaktionspuffern. Die Aktivitäten sind in Prozent vom Optimalen zu sehen

Tabelle 15: Möglichkeiten zur Substratumsetzung nach einer Mutagenese. Durch den Austausch des Lysins in Isoleucin (neutrale Aminosäure) könnte die Methylgruppe des Ketons akzeptiert werden und somit das Keton zum Amin umsetzen. Es wird eine direkte Hydrierung der Ketonösäure zur Hydroxysäure bei einer Mutagenese des Lysin 66 in Arginin erwartet

Tabelle 16: Zusammenfassung der hergestellten Mutanten und deren neue Eigenschaften. (O) getestet aber keine Aktivität, (-) nicht getestet. Die Restaktivität bezieht sich auf der rec-PheDH

Tabelle 17: Km-Werte des Muteins K66R-8. Untersucht wurde Phenylpyruvat sowohl bei einer reaktiven Aminierung als auch bei einer Reduktion ohne Ammoniumionen

Tabelle 18: Vergleich der Reaktionsmechanismen verschiedener Muteine. Die 3 Mutationen wurden einzeln rückgängig mutiert. Die drei Mutationen sind als Kombination für die neue Eigenschaft der PheDH verantwortlich. Die Substitution der einzelnen Mutationen in die ursprünglichen Codons der PheDH führte zum Verlust der LDH-Aktivität
Abbildungsverzeichnis

Abbildung 30: Zu- und Abnahme der Plasmidkopienzahl bei Induktion 5 h nach Beginn der Glucosezuführung

Abbildung 31: Neue PCR-Strategie zur Amplifikation des malic enzymes. Es wurde ein Einzelstrang amplifiziert, der als Template für eine zweite PCR dient

Abbildung 32: DNA-Sequenz des malic enzymes aus *E. coli* K12

Abbildung 33: Proteinsequenz des malic enzymes aus *E. coli* K12 abgeleitet von der DNA-Sequenz

Abbildung 34: Alignment der Aminosäuresequenz verschiedener malic enzymes. NADP- *Salmonella enterica subsp. enterica serovar Typhi* (Parkhill et al., 2001), Mdh *Pasteurella multocida* (May et al., 2001), NADP-*Brucella melitensis* (DelVecchio et al., 2002), NADP-*E.coli* (Blattner et al., 1997)

Abbildung 35: Konstruktion des Plasmids für eine heterologe Expression zur L-Phe Synthese mittels Ganzzellumsetzung

Abbildung 36: PCR-Ausbeute des malic enzyme-Gens bei verschiedenen Konzentrationen an Template-DNA (rec-pUC18)

Abbildung 37: Vektorkarte des rec-pKK-223-3 PheDH-Malic. Malic enzyme wurde 3’ zur PheDH an der Pst1- und HindIII-Schnittstelle mit eigener Ribosomenbindungsstelle kloniert

Abbildung 38: Stabilitätsbestimmung der PheDH bzw. des malic enzymes nach verschiedenen Aufschlusszeiten mittels Ultraschalls. Die Zellen wurden nach einer 60-, 30-sekundigen Behandlung zwischenzeitlich 30 Sekunden abgekühlt

Abbildung 40: Temperaturoptimum. Die Messungen wurden bei pH 8,5 und in 0,1M Hepes-Puffer durchgeführt

Abbildung 41: HPLC-Analytik zur Nachweis von in situ Regenerationsystems gildeten L-Phenylalanin

Abbildung 42: Bildungsinhibitor für L-Phe. Die Bildung von L-Phe wurde in situ durchgeführt

Abbildung 43: Produktkontrolle nach einer 5 stündigen Umsetzung mit ganzen rekombinanten *E. coli* Zellen

Abbildung 44: Ganzzellumsetzung zur Produktion von L-Phe. Die Bestimmung von L-Phe erfolgte mittels HPLC

Abbildung 45: Reaktionsmechanismus der reductiven Aminierung von Phenylalanin mittels PheDH

Abbildung 46: Schema der Mutagenese mittels PCR nach der Methode der „overlapping extension“. Auftaucht wird das Lysin66 gegen Isoleucin

Abbildung 47: Klonierungsstrategie zur Einführung der Mutation PheDHK66L. Im ersten Schritt wurden zwei Fragmente amplifiiziert, die die gleiche Mutation tragen; beim zweiten Schritt hybridisierten sie zum ganzen Gen. Somit konnte das amplifizierte Gen in den Expressionsvektor ligiert werden

Abbildung 48: Agarosegelanalyse der PCR zur K66L-Mutation. Spur 1: kb-Leiter; Spur 2 unspezifische Amplifikation der Teilfragmente; Spur 3 und 4 sind gewünschte Amplifikate nach einer Optimierung der PCR-Rundschritte mit einer Größe von ca. 200 bp bzw. 900 bp

Abbildung 49: Sauberes PCR-Produkt nach der Fusion der beiden Fragmente (Abbildung 48; Bahn 3+4) mit einer Größe von 1.1 kb

Abbildung 50: Gensequenz des K66L-Muteins

Abbildung 52: Reaktionsmechanismus der reduktiven Aminierung von Phenylaceton

Abbildung 53: Klonierungsstrategie der PheDH-Mutanten am Beispiel der PheDH-K66R. Das ganze rekombinante Plasmid wird mittels Mutagenese-Primer amplifiiziert und in *E.coli*-Zellen transformiert

Abbildung 54: Reaktionsmechanismus zur Umsetzung der Ketosäure Phenylpyruvat zur Hydroxysäure Phenyllactat

Abbildung 55: Reaktionschema zum Verlauf der Farbreakt

Abbildung 56: Farbreakt auf Agarplatten mit ganzen Zellen. Die gelben Zellen enthalten PheDH-Aktivität

Abbildung 57: Bestimmung der Aktivität der K66R-Muteine. Gezeigt werden einige Muteine mit den restlichen Aktivitäten im Vergleich zur Wt-PheDH. Bei zwei Muteinen (Mutein 2 und 8) konnte der natürliche Reaktionsmechanismus verändert und somit neue Eigenschaften erzielt werden

Abbildung 58: Aminosäuresequenz des Mutein K66R-8 im Vergleich zur PheDH-AS-Sequenz. 3 Mutationen K66R, T208A, E225D sind in diesem Mutein für die neue Aktivität verantwortlich

Abbildung 54: Wasserstoffbindungen sind grün dargestellt

Abbildung 60: Das aktive Zentrum der PheDH und der Effekt des Lysin66 durch den Austausch in Arginin. (A) Wechselwirkung zwischen Lysin66 und der Carboxylgruppe des Substrates, (B) Arginin wird anders orientiert und geht keine Wechselwirkung mit der Carboxylgruppe des Substrates ein

Wasserstoffbindungen sind grün dargestellt
Abbildungsverzeichnis

Abbildung 61: Reaktionsschema des K66R-8-Muteins .. 107
Abbildung 62: pH-Optimum des Muteins K66R-8 im Vergleich zur Wildtyp-PheDH. Der Aktivitätstest (Reduktion des Phenylpyruvat ohne Ammoniumionen) wurde bei verschiedenen pH-Werten zwischen pH 5 und pH 10 gemessen .. 108
Abbildung 63: Temperaturoptimum des K66R-8-Muteins im Vergleich zur Wildtyp-PheDH. Die Ansätze enthielten Tris/HCl Puffer (100 mM pH 8.0 + Phenylpyruvat und NADH) wurden auf den jeweiligen Meßtemperaturen (25-50°C) in der Küvette temperiert und gemessen .. 109
Abbildung 64a: GC-Chromatogramm des Syntheseansatzes der K66R-8 nach zweistündiger Inkubation. Eingesetzt wurden 30 mM Phenylpyruvat, 100 mM HEPES-Puffer, 100 mM Formiat, 2 mM NAD\(^+\), 2 mM MgCl\(_2\), 20 U K66R-8 und 30 U Formiat Dehydrogenase .. 110
Abbildung 65: Einfluss der Mutationen K66R, T208A und E225D, auf die Enantioselektivität der Reduktion von Phenylpyruvat (30 mM) in Abhängigkeit von der Zeit ... 111
Abbildung 66: Produktnachweis nach einer 9 stündigen Umsetzung mit dem Mutein K66I. Zur Regenerierung des Coenzymes NADH wurden 40 U Formiat Dehydrogenase eingesetzt. Die reduktive Aminierung erfolgte mit (NH\(_4\))\(_2\)SO\(_4\) und 30 mM Phenylpyruvat als Substrat. (L-Phe = 23 min; der Peak bei 29 min ist nicht identifiziert) ... 113
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ALF</td>
<td>Automated Laser Fluorescent Sequencer</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumine</td>
</tr>
<tr>
<td>C-Quelle</td>
<td>Kohlenstoffsquelle</td>
</tr>
<tr>
<td>CTAB</td>
<td>N-cetyl-N,N,N-trimethylammonium Bromid</td>
</tr>
<tr>
<td>C-Terminus</td>
<td>Carboxy-Terminus</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DEAE</td>
<td>Diethylaminoethyl</td>
</tr>
<tr>
<td>dATP</td>
<td>Desoxyadenosintriphosphat</td>
</tr>
<tr>
<td>dCTP</td>
<td>Desoxycytidintriphosphat</td>
</tr>
<tr>
<td>dGTP</td>
<td>Desoxyguanosintriphosphat</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleotidtriphosphat</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>FDH</td>
<td>Formiatdehydrogenase</td>
</tr>
<tr>
<td>FF</td>
<td>Fast Flow</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>IB-L-C</td>
<td>N-Iobutyryl-L-Cystein</td>
</tr>
<tr>
<td>IEF</td>
<td>Isoelektrische Fokussierung</td>
</tr>
<tr>
<td>IEP</td>
<td>Isoelektrischer Punkt</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropylthiogalactosid</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>Kpi</td>
<td>Kaliumphosphatpuffer</td>
</tr>
<tr>
<td>K_m</td>
<td>Michaelis-Menten Konstante</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
</tbody>
</table>
mM Millimolar
MOPS 3-N-Morpholino-propansulfonsäure
NAD Nicotinamidadenindinukleotid (oxidierte Form)
NADH Nicotinamidadenindinucleotid (reduzierte Form)
N-Terminus Amino-Terminus
OD optische Dichte
OPA o-Phtaldialdehyd
PAA Polyacrylamid
PAGE Polyacrylamidgelelektrophorese
PCR Polymerase chain reaction
PEG Polyethylenglycol
PheDH Phenylalanin Dehydrogenase
Rec-PheDH rekombinante wt-PheDH
SDS Natriumlaurylsulfat
TBE Tris-Borsäure-EDTA Puffer
TE Tris-EDTA-Puffer
TEA Triethanolamin
TEMED N,N,N,N-Tetramethylethyldiamin
Tris N-Tris-(hydroxymethyl)-aminomethan
U Unit (Enzymeinheit)
Upm Umdrehung pro Minute
UV Ultraviolett
V_{max} maximale Reaktionsgeschwindigkeit
v/v Volumenanteil pro Volumenanteil
w/v Gewichtsanteil pro Volumenanteil
w/w Gewichtsanteil pro Gewichtsanteil
WT Wildtyp
1 Einleitung

1.1 Bedeutung von Enzymen

So besitzen Enzyme eine hohe Chemo- und Regioselektivität, die Voraussetzungen für die Steuerung der komplexen Vorgänge in einer Zelle sind. Enzyme beschleunigen Reaktionen um Faktoren von wenigstens einer Million. Ohne sie würden die meisten Reaktionen in biologischen Systemen nicht in wahrnehmbarem Umfang ablaufen.

1.2 Enzyme in der Industrie

Wegen der strengen Umweltauflagen für die chemische Industrie suchen die Groß-Industrien, aber auch mittelständige Betriebe nach umweltfreundlichen Methoden. Dadurch entwickeln sich biotechnologische Verfahren rasch und es werden immer mehr Enzyme in der Industrie eingesetzt.

Die Pharmaindustrie hat enorme Aufwendungen in die Herstellung enantiomerenreiner Wirkstoffe gesteckt, um pharmakologisch wirksame Substanzen in der geforderten Reinheit zu erhalten. Mittlerweile wird die Forderung nach enantiomerenreinen Wirkstoffen auch für die Entwicklung neuer Agrochemikalien intensiv geprüft (Ernst&Young, 1998). Zu erwarten ist, dass dieses Qualitätskriterium eingehalten werden muss, sobald der Stand der Technik dies zulässt.

Industriell genutzte Enzyme sind z.B. die bei der Fruchtsaftklärung verwendeten Pektinasen oder die als enzymatische Wirkstoffkomponenten in Waschmitteln und in der Textilverarbeitung zum Einsatz kommenden Lipasen, Proteasen, und Cellulasen (Tabelle 1) (Jaag, 1968).

<table>
<thead>
<tr>
<th>Enzym</th>
<th>Isoliert aus</th>
<th>Nutzung bei</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Amylase</td>
<td>Bacillus subtilis, Aspergillus niger</td>
<td>Stärkeprodukte, Textilverarbeitung,</td>
</tr>
<tr>
<td></td>
<td>Aspergillus oryzae</td>
<td>Brotherstellung, Fruchtsäfte, Sirup,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gemüsesäfte</td>
</tr>
<tr>
<td>Bromelain</td>
<td>Ananas comosus</td>
<td>Fruchtsaftklärung,</td>
</tr>
<tr>
<td></td>
<td>Ananas bracteatus</td>
<td>Fleischzartmacher</td>
</tr>
<tr>
<td>Cellulasen</td>
<td>Aspergillus niger</td>
<td>Glucoseherstellung,</td>
</tr>
<tr>
<td></td>
<td>Trichoderma reesei</td>
<td>Papierverarbeitung</td>
</tr>
<tr>
<td>Glucose-Isomerase</td>
<td>Streptomyces spec</td>
<td>Herstellung von Zuckersirup</td>
</tr>
<tr>
<td></td>
<td>Bacillus coagulans</td>
<td></td>
</tr>
<tr>
<td>Glucose-Oxidase</td>
<td>Aspergillus niger</td>
<td>Antioxidans</td>
</tr>
</tbody>
</table>

Einleitung

(Carrea et al., 1996). Da Coenzyme kostenintensiv sind, wenn sie in äquimolaren Mengen in der enzymatischen Synthese im industriellen Maßstab eingesetzt werden, wurden eine Reihe von Verfahren entwickelt, die Coenzyme in situ zu regenerieren (Kometani et al., 1994; Leonida et al., 1998). Dabei stellen enzymatische Verfahren die effizienteste Methode zur Coenzymregenerierung dar.

Am Beispiel der Synthese von enantiomerenreinen Aminosäuren durch die enzymatische reduktive Aminierung prochiraler \(\alpha \)-Ketosäuren werden Aminosäure Dehydrogenasen wie die Leucin Dehydrogenase (LeuDH) aus *Bacillus* sp. (Bommarius & Drauz, 1994; Bommarius et al., 1995; Wichmann et al., 1981) und die Phenylalanin Dehydrogenase (PheDH) aus *Rhodococcus* sp. M4 mit Erfolg eingesetzt (Hummel et al., 1987).

Eine Vielzahl neuer aliphatischer und aromatischer \(\alpha \)-Aminösäurederivate, kann aufgrund der breiten Substratspektren der LeuDH und der PheDH mit hoher Enantioselektivität hergestellt werden (Krix et al., 1997). Erfolgreich wurde die NAD-abhängige Leucin Dehydrogenase aus *Bacillus* sp. für die Synthese optisch aktiver Aminosäuren mit ungewöhnlichen Resten wie (S)-tert.-Leucin eingesetzt (Bommarius et al., 1995). Das meist breite Substratspektrum dieser für die chemische Synthese einsetzbaren Enzyme wirkt sich vorteilhaft aus, da meistens die Enzyme für mehr als ein Substrat verwendbar sein sollten.

Das bei Dehydrogenasen notwendige Coenzym beeinträchtigt die Synthese nicht, da NAD\(^+\) über einen längeren Zeitraum stabil (Janssen et al., 1987; Oppenheimer & Kaplan, 1974; Wong & Whitesides, 1981) und durch die Regenerierung mit Formiat kostengünstig einsetzbar ist.
1.3 Die Phenylalanin Dehydrogenase aus *Rhodococcus* sp. M4

Die Phenylalanin Dehydrogenase (PheDH) aus *Rhodococcus* sp. M4 katalysiert die oxidative Desaminierung von L-Phenylalanin zum Phenylpyruvat und Ammonium, dabei wird das Coenzym NAD\(^+\) zum NADH reduziert (Abbildung 1) (Hummel *et al.*, 1987).

Abbildung 1: Reaktionsschema der Phenylalanin Dehydrogenase.

Einleitung

pyruvats erfolgt über die Bildung von Iminophenylpyruvat, das in einem weiteren Schritt zu L-Phenylalanin reduziert wird.

Abbildung 2: Reaktionsmechanismus zur Aminierung von Ketosäuren und die dabei beteiligten Aminosäuren in der NAD-abhängigen Phenylalanin Dehydrogenase.
Die Kristallisation und Aufklärung der PheDH aus *Rhodococcus* sp. M4 wurde durch Vanhooke et al. (Vanhooke et al., 1999) ermöglicht. Basierend auf den Daten der dreidimensionalen Struktur konnte die PheDH mittels 3D-Programm (Swiss PDB Viewer) modelliert werden (Abbildung 3). Hervorgehoben sind die Aminosäure Lysin an Position 66 im aktiven Zentrum, die Lage des Substrates Phenylpyruvat und das Coenzym NAD$^+$.

Zur Veranschaulichung sind die beteiligten Aminosäuren im aktiven Zentrum mit den Wasserstoffbindungen zum Substrat und Coenzym (NAD) in Abbildung 4 dargestellt.

Abbildung 4: Die beteiligten Aminosäuren im aktiven Zentrum der PheDH. Die Aminosäure Lysin 66 ist die Bindungsstelle zur Carboxylgruppe im Phenylpyruvat
1.3.1 Malic enzyme aus *E. coli* K12

Das in dieser Arbeit klonierte NAD abhängige *E. coli* K12 malic enzyme zeigt Ähnlichkeit im Molekulargewicht (50 kDa) zum malic enzyme aus *Bacillus stearothermophilus* (Kobayashi et al., 1989) aber einen Unterschied zum NADP-abhängigen malic enzyme aus *E. coli* (62 kDa) (Nakamura et al., 1986).

1.3.2 L-Phenylalanin-Synthese unter Coenzymregeneration

1.3.3 Expression rekombinanter Proteine

Solche Meisterleistungen beruhten auf Erfolgen in allen Bereichen der Molekularbiologie, unter anderem der Oligonucleotidsynthese, der Isolierung der DNA-spaltenden und verknüpfenden Enzyme, der Charakterisierung bakterieller Plasmide und der Erforschung der Genexpression.

Einleitung

Bakterienzellen sind einfache Systeme mit kurzer Generationszeit, hoher Ausbeute und niedrigen Kosten. Die Zellen, insbesondere von *B. subtilis*, lassen sich induzieren und schleusen das Produkt in das Kulturmedium aus, was die Reinigung des Proteins außerordentlich vereinfacht. Allerdings haben prokaryotische Zellen auch einige Nachteile. Manche Proteine werden zwar extrem stark exprimiert (sie können mehr als 20 % der Masse aller Bakterienproteine ausmachen), aber oft falten sie sich nicht korrekt, und bilden dann unlösliche Einschlusskörper (inclusion bodies) (Hibino et al., 1994). Diese Proteine kann man zwar durch Extraktion gewinnen, sie sind allerdings in aller Regel biologisch inaktiv. Kleine Proteine lassen sich unter Umständen in ihre aktive Form überführen (Babbitt et al., 1990; Huang et al., 1993), bei großen Produkten ist das jedoch normalerweise nicht möglich. Ein zweites Problem ist, dass Fremdproteine für Bakterien manchmal toxisch sind wie z.B. Aminosäure-Oxidasen, sodass Kulturen, die das Protein herstellen, nicht in hoher Dichte wachsen können. Diese Schwierigkeit lässt sich oft durch einen induzierbaren Promotor umgehen. Wenn die Kultur dicht gewachsen ist, schaltet man den Promotor an, der daraufhin mit der Transkription des Gens für das toxische Fremdprotein beginnt.
Drittens fehlen den Bakterien jene Enzyme, die Proteine in Eukaryotenzellen nach der Translation modifizieren, indem sie ihnen beispielsweise Phosphatgruppen oder Zuckerreste anhängen. Derartige chemische Modifikationen sind häufig notwendig, damit die Proteine Aktivität zeigen. Eine Möglichkeit zur posttranslationalen Modifikation besteht darin, die modifizierenden eukaryotischen Enzyme zu reinigen und mit ihnen bakteriell exprimierte Proteine nachträglich abzuwandeln.

1.4 Protein-Design

1.4.1 Gezielte Mutagenese

Die Nutzung von Mikroorganismen und der daraus gewonnenen Enzyme erhalten neue Aspekte durch die Gentechnik, mit denen sowohl neue Produkte herstellbar werden, als auch erhebliche Verbesserungen in Ausbeute und Qualität bei konventionellen Produkten zu erwarten sind.

Mittels NMR-Techniken und Röntgenstrukturanalyse wurde die Ermittlung der dreidimensionalen Struktur eines Proteins ermöglicht, und durch den Einsatz von Computertechnik gezielt Veränderungen vorgenommen.

Die Überlegung, dass durch die Senkung der Entfaltungsentropie mittels ausgewählter Aminosäurensubstitutionen die Konformation des T4-Lysozyms stabilisiert werden kann, haben Mathews et al. (Matthews et al., 1987) durch die Erzeugung einer Doppelmutante nachgewiesen und somit die Thermostabilität dieses Proteins erhöht. In einer folgenden Arbeit wurde durch die Einführung von zwei Disulfidbrücken an definierten Stellen im Lysozym, das heißt Austausch von vier Aminosäuren, die strukturell günstig für eine Ausbildung lagen, die Thermostabilität von 41°C auf 58°C erhöht, wobei das neu entstandene Enzym die volle Aktivität besaß (Matsumura et al., 1989).

Vacca et al. (Vacca et al., 1995) konnten durch den Austausch von Tryptophan 140 gegen Histidin mittels gezielter Mutagenese die Reaktions- bzw. Substratspezifität der Aspartataminotransferase verändern. Dadurch kann Alanin siebenmal schneller als durch das Wildtypenzym racemisieren, während die Aktivität des Muteins gegenüber Alanin sechsfach abnahm.

Die benötigte exakte Aufklärung der Struktur eines Enzyms ist ein Nachteil der gezielten Mutagenese, da sich die Strukturen bekannter Proteine nicht auf andere mit ähnlichen Sequenzmotiven übertragen lassen.
1.4.2 Zufallsmutagenese

Die gerichtete Evolution als erfolgreiches Konzept zeigen die folgenden Beispiele:

- p-NB-Esterase: 3 Mutationen / höhere Aktivität in org. Lösungsmittel (Moore et al., 1997)
- Subtilisin E: 8 Mutationen / 1000 x höhere Halbwertszeit bei 65°C (Zhao et al., 1998)
Die Zufallsmutagenese hat folgende Vorteile:

1. keine Strukturinformation nötig
2. schnellerer Optimierungsprozeß
3. mehrere unspezifische Mutationen/Generationen sind möglich

1.5 Hochzelldichte-Fermentation (HZD)
Um die durch kontinuierliche Zuführung ein oder mehrerer Nährstoffe während der Fermentation auftretende Katabolit-Repression und Anreicherung toxischer Substanzen vermeiden zu können, erfolgt die Kultivierung rekombinanter Mikroorganismen in der Regel mittels der fed-batch-Technologie.

CO₂-Konzentration: Verminderte Wachstumsrate sowie die Bildung metabolischer Nebenprodukte können bei CO₂-Partialdrücke oberhalb 0,3 atm beobachtet werden (Pan et al., 1987).

Fermenter-Durchmischung: Bei mangelhafter Durchmischung großer Fermenter sind Zellen, die sich nahe der Nährstoff-Injektionsstelle befinden, erhöhten Nährstoffkonzentration ausgesetzt, während an anderen Stellen Nährstoffmangel herrschen kann. Sowohl der Mangel als auch der Überschuss bewirken eine Verringerung der Zellausbeute (Neubauer *et al.*, 1995).

2 Problemstellung und Zielsetzung

Interaktionen zwischen den Aminosäurenresten im aktiven Zentrum der PheDH zum Substrat bestimmt. Mit Hilfe der Kristallisationsdaten der PheDH wird die PheDH modelliert und ein Proteindesign durchgeführt.

Für die Erweiterung des Substratspektrums werden Mutationen in der PheDH mit Hilfe verschiedener Methoden eingeführt, um somit die Konstruktion einer neuen Amin-Dehydrogenase für die Herstellung von aromatischen Aminen aus aromatischen Ketonen zu erreichen.
3 Material

Geräte

Analytik-Apparaturen
Gaschromatograph Shimadzu
HBLC-System Gynkotek (Germering)
GC-9A Shimadzu (Düsseldorf)
NMR-ARX500 Bruker
Robocycler Stratagene

Bildverarbeitung
Eagle Eye II, Videosystem Stratagene (Heidelberg)
Fraktionssammler Frac 100 (Pharmacia)

Disintegration
Schwingkugelmühle (Retsch)
Disintegrator S IMA
Ultraschallgerät Branson

Dialyse und Ultrafiltration
Ultrafiltrationskammer 8050, 8010 Amicon

Fermentation
20 L-Bioreaktor Biostat Braun
Contifuge 300 MD Heraeus Christ

Elektrophorese
Gel elektrophorese GNA 100 Pharmacia (Freiburg)
Gel elektrophorese Horizon 11.14 Life Technologies (Eggenstein)
Prep Cell Biorad

Küvetten
Mikroküvetten (50 µl), Quarzglas Hellma (Mühlheim/Baden)
Halbmikroküvetten (1 ml), optisches Glas Hellma (Mühlheim/Baden)
Fluoreszenzhalbmikroküvetten (1 ml), Quarzglas Hellma (Mühlheim/Baden)

Photometer
UV/Vis-Spektralphotometer 16 A Shimadzu (Duisburg)
UV/Vis-Spektralphotometer DU 650 Beckmann (Düsseldorf)
Fluoreszenzphotometer LS 50 B Perkin Elmer (Düsseldorf)
Zentrifugen

Eppendorf-Zentrifuge 5415 C
Eppendorf (Hamburg)

Kühlzentrifuge Sorvall RC-5B
Du Pont Instruments (Bad Homburg)

Vacuumzentrifuge
(Univapo 150 H)

+Kühlfalle
(Unicryo MC1L)

Chemikalien

Alle nicht aufgeführten Chemikalien für Lösungen und Puffer waren mindestens von analytischer Qualität (p.a.) und wurden in der Regel von Fluka, Sigma, Roth oder Merck bezogen.

Nährmedienbestandteile waren von Merck oder Difco, die Coenzyme von Bts.

Acetonitril
Applied biosystems (Weiterstadt)

EDTA
Pharmacia (Freiburg)

Acrylamid
Biorad (München)

Bis-Acrylamid
Biorad (München)

APS
Biorad (München)

Nucleotide/Nucleinsäuren

dATP, dGTP, dTTP, dCTP
Pharmacia (Freiburg)

DNA-Molekulargewichtsmarker:

A. DNA-Marker IV
[Boehringer]

B. DNA-Marker VI
[Boehringer]

C. DNA-Marker VII
[Boehringer]

D. DNA-Leiter
[Gibco]
Enzyme

BamHI, NcoI StuI, EcoRI, HindIII, pStI, NdeI, SmaI
Biolabs

RNaseA
Roth (Karlsruhe)

Taq-DNA-Polymerase (10 U/µl)
Finnzyme

Ligase
Roche

Alkalische Phosphatase
Promega (Heidelberg)

Mikroorganismen

E. coli BL21
[hsdS gal (?cI857 ind1Sam7 nin5 lacUV5)]

E. coli DH5?

E. coli HB101
[supE44 hsdS20 (rB- mB-) recA13 ara-14 proA2 lacY1 galK2
 rpsL20 xyl-5 mtl-1]

E. coli JM105
[subE endA sbcB15 hsdR4 rpsL (strβ) thi ? (lac-proAB)
 F(traD36proAB+ lacF° lac? ZM15)]

E. coli JM109
[recA1 sup E44 endA1 hsdR17 gyrA96 relA1 thi ? (lac-proAB
 F'(traD36proAB+ lacF° lacZ? M15)]

E. coli XL1-Blue
[supE44 hsdR17 recA1 endA1 gyrA46 thi relA1 lac F'[proAB+ lacI
 lacZ? M15 Tn10 (tetβ)]

Vektoren

pKK223-3
[4,584 kb, ColE1-Replicon, P_tac, Amp^R]

pTRC99a
[4,176 kb, ColE1-Replicon, P_ire, lacI^q, Amp^K]

pUC18
[2,686 kb, ColE1-Replicon, lacZ', lacI, Amp^K]

pET-16b
[5,711 kb, His.Tag, T7, Amp]

Kits für die Molekularbiologie

Sure clone Kit
Pharmacia

Plasmid Präparation
Qiagen

DNA Extraktion
Qiagen

Auto Read Sequencing Kit
Pharmacia

Rapid DNA Ligation Kit
Roche
4 Methoden

4.1 Molekularbiologie

4.1.1 Isolierung der genomischen DNA

Sowohl die genomische DNA von *Rhodococcus* sp. M4 für die Isolierung der Phenylalanin Dehydrogenase als auch die des *E. coli* K12 für malic enzyme, wurden nach van Soolingen *et al.* isoliert (van Soolingen *et al.*, 1991). Dafür wurden Kulturen mit einer einzelnen Kolonie angeimpft und bei 30°C und 120 rpm bis zu einer optischen Dichte OD_{600} ca. 0.7 wachsen gelassen.

Die Kultur wurde für 30 min bei 80°C erhitzt und dann abzentrifugiert. Das Pellet wurde in 10 ml TE-Puffer resuspendiert. Nach dem Resuspendieren wurden die Zellen mit 0.5 ml Lysozym (10 mg/ml) behandelt, und für 30 min bei 37°C inkubiert.

1.5 ml 10 %iges SDS und 120 µl Protease K (10 mg/ml) wurden zugefügt und für 10 min bei 65°C inkubiert. Durch diese Behandlung konnten die Proteine denaturiert und ausgelaufen werden. Um die restlichen Proteine und Lipide zu fällen, wurde die Lösung mit 1 ml 5 M NaCl und 1.5 ml N-Cetyl-N,N,N-trimethylammonium Bromid/NaCl, (4.1 g NaCl, 10 g N-cetyl-N,N,N-trimethylammonium Bromid in 100 ml H$_2$O), versetzt. Der ganze Ansatz wurde gut vermischt und für 20 min bei 65°C inkubiert.

Die DNA wurde durch ein äquivalentes Volumen von CHCl$_3$ / Isoamyl Alkohol (24:1) nach Zentrifugation extrahiert. Der Vorgang wurde zweimal durchgeführt, um die DNA vollständig zu isolieren.

Die DNA aus der wässrigen Phase konnte durch 0.6 Vol. Isopropanol bei -20°C für 30 min gefällt werden. Danach wurde sie abzentrifugiert und das erhaltene DNA-Pellet mit 2 ml 70%igem kalten Ethanol gewaschen.

Da Ethanol spätere Reaktionen inhibieren könnte, wurde die DNA durch Zentrifugation im Vakuum (vacuum speed univapo) getrocknet.

Zum Nachweis der Reinheit der DNA können zwei Methoden eingesetzt werden:

1. Absorption bei 260 und 280 nm

2. durch Gelelektrophorese (0.5 % Agarose)
4.1.2 Auftrennung von DNA-Fragmenten über Elektrophorese

Die Agarose wurde durch Aufkochen in der gewünschten Konzentration (0,8-1,2 %) in 1×TBE-Puffer gelöst und nach dem Abkühlen auf ca. 60°C mit 1/20000 Volumen an Ethidiumbromid (10 mg/ml) versetzt und in horizontale Kammern gegossen. Die Proben wurden vor dem Auftragen mit 1/6 Volumen Probenpuffer gemischt. Die Elektrophorese erfolgte in einer mit 1×TBE-Puffer gefüllten Kammer. Die Ethidiumbromidfluoreszenz wurde im UV-Durchlicht (312 nm) mit dem Videosystem „Eagle Eye II“ (Stratagene) aufgezeichnet.

6X Probenpuffer: 30 % Glycerin, 0,25 % Bromphenolblau

TBE-Puffer: 90 mM Tris-HCL, 90 mM Borsäure, 2 mM EDTA, pH8,2

Als Größenstandard für die DNA-Gelelektrophorese wurde die kB-Leiter der Fa. Gibco benutzt.

10X TBE-Puffer:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>121.12 g</td>
</tr>
<tr>
<td>Borsäure</td>
<td>51.32 g</td>
</tr>
<tr>
<td>EDTA</td>
<td>3.72 g</td>
</tr>
</tbody>
</table>

Probenvorbereitung:

Die zu trennende DNA-Lösung wurde mit einfach DNA-Probenpuffer [Endkonzentration] pH 8.0 versetzt.

DNA-Probenpuffer [6fach]:

6×TBE; 50 % (v/v) Glycerin; 0,25 % (w/v) Bromphenolblau

4.1.3 Ethanolfällung

Zur Konzentrierung und Reinigung von DNA-Lösungen wurden diese mit 2 Vol. Ethanol und 1/10 Vol. 3 M Natriumacetat, pH 4,8 versetzt, 30 min. bei −20°C inkubiert und 20 min. bei 4°C und 13000 rpm abzentrifugiert. Die sedimentierte DNA wurde zweimal mit 70 % Ethanol (v/v) gewaschen, in einer Vakuumzentrifuge getrocknet und in Aq. bidest oder TE-Puffer, pH8.0 (50 mM Tris-HCl, 50 mM EDTA) resuspendiert.
4.1.4 Polymerase Ketten Reaktion [PCR]

Der Reaktionsansatz aus:

- 10 mM Tris pH 8.3
- 50 mM KCl
- 1.5 mM MgCl₂
- jeweils 200 μM dATP, dCTP, dTTP, dGTP
- 20-40 pmol jedes Oligonucleotid-Primers
- 2.5 U Taq-Polymerase pro 100 μl Ansatz
- 10 ng Plasmid-DNA als PCR-Template

Die PCR Amplifikation wurde auf einem automatischen DNA-Thermal-Cycler (Robocycler, Fa. Stratagene) nach folgendem Programm durchgeführt.

- 5 min Denaturierung bei 94°C (zu Anfang des Programms 1x)
- 1.2 min Annealingsschritt, in dem die Primer an das Template binden
- 1.5 min Extension (Verlängerung der Primer durch die Taq-Polymerase) bei 72°C [Temperaturvariabel].
- 1 min Denaturierung bei 95°C
- Zyklisches Wiederholen der letzten drei Schritte (25-30x)
- 5 min Extension (nach Abschluß der PCR, um eine vollständige Verlängerung eventuell vorher abgebrochener DNA-Produkte zu gewährleisten)
4.1.5 Berechnen der Schmelztemperatur der Primer

Die Schmelztemperatur \(T_m \) der Primer wurde nach Thein und Wallace (Thein & Wallace, 1988) abgeschätzt:

\[
T_m[^{\circ}C] = 2 \times (\text{Basenzahl} \, A+T) + 3 \times (\text{Basenzahl} \, G+C)
\]

Diese Bezeichnung gilt für Primerlängen >24 bp.

Für Primerlängen >14 bp gilt [MWG-Biotech]:

\[
T_m[^{\circ}C] = 69.3°C + 0.41 \times (\text{GC-Gehalt} \, [%]) - \frac{650}{\text{Primerlänge}}
\]

Annealingstemperatur \(T_a[^{\circ}C] = T_m + 3°C \)

4.1.6 Isolierung von DNA-Fragmenten aus Agarosegelen

4.1.7 Dephosphorylierung linearisierter Plasmid-DNA

4.1.8 Ligation

Nach vorschriftmäßiger Reaktion mit Klenowenzym und Phosphonucleotidkinase (zur Auffüllung und Phosphorylierung der PCR-Enden) wurden die Fragmente von den Proteinen mittels Agarosegel aufgereinigt.

Genfragment 1-16 µl [50-200 ng]
Klenow-Fragment 1 µl
10 x Puffer 2 µl
Polynucleotidkinase 1 µl

Der Ansatz wurde 30 min bei 37°C inkubiert, dann ein äquivalentes Volumen an Phenol-Chloroform zugegeben, intensiv vermischt [Vortex] und zur Phasentrennung bei 13000 rpm 2 min abzentrifugiert. Die obere Phase wurde abgenommen und auf ein Agarosegel aufgetragen. Das Genfragment wurde aus dem Gel isoliert. Anschließend wurde eine Ligation der glatten Enden durchgeführt.

Ligation nach „sure clone kit Pharmacia“

Genfragment 50-200 ng
pUC18 Vektor 50 ng
2 x Ligationspuffer 10 ng
DTT 1 µl
Das Reaktionsgemisch wurde für 4 h bei 16°C inkubiert und dann kompetente *E. coli* Zellen [verschiedene Stämme] mit dem ligierten Plasmid transformiert.

Ligation nach “rapid ligation kit Roche”

<table>
<thead>
<tr>
<th>Reaktionspartner</th>
<th>Volumen</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genfragment</td>
<td>6 µl</td>
<td>(200 ng)</td>
</tr>
<tr>
<td>Plasmid (geschnitten)</td>
<td>2 µl</td>
<td>(50 ng)</td>
</tr>
<tr>
<td>Dilution Puffer (keine Herstellerangaben)</td>
<td>2 µl</td>
<td></td>
</tr>
<tr>
<td>Ligation Puffer (keine Herstellerangaben)</td>
<td>10 µl</td>
<td></td>
</tr>
<tr>
<td>T4-Ligase</td>
<td>1 µl</td>
<td></td>
</tr>
</tbody>
</table>

Das Reaktionsgemisch wurde für 5 min bei Raumtemperatur inkubiert und dann kompetente *E. coli* Zellen [verschiedene Stämme] mit dem ligierten Plasmid transformiert.

4.1.9 Herstellung kompetenter Bakterienzellen

Die Herstellung kompetenter *E. coli* XL1 Blue und JM 105 sowie HB101 erfolgte nach der Methode von Hanahan (Hanahan, 1983). Die Lagerung erfolgte bei –80°C.

Aus dem konservierten *E. coli* Stamm, wurden 5 ml LB-Medium 5 % angeimpt und über Nacht wachsen gelassen. 200 µl davon werden in 300 ml LB-Medium überimpft, das dann bis zu einer OD550 0.5 bei 37°C inkubiert wird. Die Kultur wird dann in eine SS34-Zentrifugenbecher überführt, 15 min auf Eis gekühlt und dann bei 4°C abzentrifugiert. (5000 rpm, 10 min.).

Die Zellen werden mit einer Lösung von 100 mM RbCl, 50 mM MnCl₂, 30 mM Kalium-Acetat pH 5.8, 10 mM CaCl₂, 15 % (v/v) Glycerin resuspendiert und erneut für 1h auf Eis gestellt. Anschließend werden die Zellen nochmals abzentrifugiert und in einer Lösung von 10 mM MOPS pH 7.0, 10 mM RbCl, 15 mM CaCl₂, 15 % (v/v) Glycerin aufgenommen und 15 min auf Eis inkubiert. Diese Zellsuspension wird dann in Aliquots von 100 µl schockgefroren (flüssiger Stickstoff) und bei -80°C aufbewahrt.
4.1.10 Transformation

Die Standardtransformation wurde nach dem Protokoll von Hanahan (Hanahan, 1983) durchgeführt. Hierzu wurden 100-200 µl kompetenter \textit{E. coli}–Zellen auf Eis aufgetaut und 40 ng DNA aus dem Ligationsansatz zugegeben. Die Plasmidzellsuspension wurde 30 min auf Eis gekühlt und anschließend für 90 sec auf 42°C erwärmt und sofort wieder auf Eis gekühlt. Nach Zugabe von 300 µl LB-Medium wurden die Zellen zur Regeneration etwa 45 min bei 37°C inkubiert. Anschließend wurden 200 µl dieser Kultur auf einer Antibiotikahaltigen LB-Platte ausgestrichen und über Nacht bei 37°C inkubiert.

4.1.11 Schnellisolierung von Plasmid-DNA aus \textit{E. coli} (modifiziert nach Birnboim und Doly)

Für die Schnellisolierung von Plasmiden werden die Zellen einem osmotischen Schock ausgesetzt und die Proteine danach ausgefällt, wobei die Zellen mit osmotischen Lösungen behandelt werden, die zum Platzen der Zellen führen (Birnboim & Doly, 1979).

1.5 ml einer Übernachtkultur werden abzentrifugiert und mit 100 µl Lsg. A + 100 µg/ml RNase sowie 200 µl Lsg. B versetzt (für 5 ml ÜN-Kultur werden alle Mengen bis zur Isopropanol-Fällung vervierfacht). Der Ansatz wird dann 5 min auf Eis gelegt, gefolgt von 150 µl Lsg. C. Nach der Zugabe von Lsg. C wird der Ansatz wieder auf Eis für 15 min inkubiert und anschließend für 10 min bei 13000 rpm abzentrifugiert.

Der Überstand (400 µl) wird mit 260 µl Isopropanol versetzt und bei -20°C für 30 min absetzen gelassen. Danach wird der Ansatz für 5 min bei 13000 rpm abzentrifugiert und 2x mit 70%igem kaltem Ethanol gewaschen. Über der Speedvacuumzentrifuge werden die Plasmide getrocknet und in 50 µl TE-Puffer resuspendiert und bei -20°C aufbewahrt.

\begin{center}
\textbf{Lsg. A:} \\
50 mM Glucose \\
10 mM EDTA \\
2.5 mM Tris pH 8.0
\end{center}

\begin{center}
\textbf{Lsg. B:} \\
0.2 M NaOH \\
1 % SDS
\end{center}

\begin{center}
\textbf{Lsg. C:} \\
3 M NaAC pH 8.0 (mit HCl titriert)
\end{center}
4.1.12 Plasmidisolierung [Biorad]
Die Zellen wurden dann abzentrifugiert (5 min bei 13000 rpm).
Der Bodensatz wurde wieder entfernt und die Plasmid-DNA mit 56°C heißem deionisiertem H₂O durch Zentrifugation für 30 sek. eluiert.
Die Plasmid-DNA wurde bei -20°C aufbewahrt.

4.1.13 Plasmidisolierung [Qiagen]
Um die Plasmide aus den Bakterienzellen zu isolieren, wurde der Plasmid-Präparations-Kit der Fa. Qiagen verwendet. Dieser beruht auf dem Prinzip der alkalischen Lyse in Verbindung mit einer Anionenaustauschchromatographie. Zur Vermeidung der Kopräzipitation störender Salze wurde die anschließende Isopropanol- Fällung bei Raumtemperatur durchgeführt und auch das 2 malige Ethanolwaschen (70 %) erfolgte bei Raumtemperatur. Nach der Trocknung in der Speed-Vac wurde das erhaltene Pellet in 10 µl 1 mM Tris, pH 8.0 aufgenommen. Die genaue Konzentration wurde mittels Restriktion eines 1µl Aliquots gelektrophoretisch bestimmt.
4.1.14 Restriktion
Analytische Restriktionen erfolgten in einem Volumen von 30 µl, préparative in einem Volumen von 50 µl. Die für die einzelnen Restriktionsenzyme nötigen Puffer-Konzentrationen folgten den Herstellerempfehlungen. Die DNA-Menge für den préparativen Verdau lag in einem Bereich von 3-4 µg/Ansatz. Die Vektoren wurden noch zusätzlich 1 h mit 5 Units alkalischer Phosphatase bei 37°C inkubiert, um die 5'-Phosphatgruppe zu entfernen und so die Religation des Vektors zu verhindern.

4.1.15 Sequenzierung

4.1.16 Gezielte Mutagenese
Vorteil dieser Methode ist, dass weder auf das Vorhandensein einer Restriktionsschnittstelle geachtet werden muss, noch das gesamte Plasmid amplifiziert wird. Das Prinzip der PCR-Mutagenese ist in Abbildung 7 dargestellt.
4.1.17 Zufallsmutagenese

Für die Herstellung verbesserter Enzymvarianten existieren zwei Strategien:

1. **Asexuelle Evolution** (Kuchner & Arnold, 1997), dabei wird durch zufällige Mutagenese, die möglichst auf das für das gewünschte Protein codierende Ausgangsgen beschränkt wird, eine Enzymbibliothek hergestellt und anschließend auf verbesserte Eigenschaften durchmustert. Die in der ersten Generation gefundenen besten Enzyme können in folgenden Mutationsrunden optimiert werden. Dies setzt jedoch eine weitere Verbesserung der Varianten der ersten Generation durch Einführung neuer und Deletion sich als negativ erweisender Mutationen voraus.

(PCR). Nachteilig sind die nicht immer gegebenen Verfügbarkeiten homologer Gene, die Kontrolle des DNase-Verdaus zur Herstellung von Bruchstücken optimaler Größe und Probleme mit der Ligationseffizienz bei der PCR (Bornscheuer et al., 1998).

Die wohl wichtigste Methode zur asexuellen Evolution ist die Fehlerhafte Polymerasekettenreaktion (error-prone PCR) (Rice et al., 1992).

Durch Einstellung nicht-optimaler Reaktionsbedingungen in der PCR kann die Fehlerhäufigkeit der Polymerase gesteigert werden.

Die Einflußgrößen in der „error prone PCR“ sind:

- Fehlerrate der Taq- Polymerase
- Konzentration der Taq-Polymerase
- molare Verhältnisse der Desoxynukleotide
- Konzentration der Ziel- DNA (Template)
- PCR- Zyklenzahl
- \([\text{MgCl}_2]\)
- \([\text{MnCl}_2]\)
Die Vorgehensweise der asexuellen Evolution ist in beschrieben.

\begin{center}
\begin{tikzpicture}
 \node[align=center] (zielgen) {Zielgen};
 \node[align=center, below of=zielgen] (diversitaet) {Erzeugen von Diversität durch Zufallsmutagenese};
 \node[align=center, below of=diversitaet] (screening) {Screening der „random library“};
 \node[align=center, below of=screening] (gene) {Gene selektierter Klone};
 \node[align=center, below of=gene] (varianten) {Neue Varianten durch in vitro Rekombination};
 \node[align=center, below of=varianten] (screening_library) {Screening der „library“};\end{tikzpicture}
\end{center}

Abbildung 8: Vorgehensweise der Zufallsmutagenese

4.1.18 Sättigungsmutagenese

Der ausgewählte Aminosäurerest wird gegen mögliche andere Aminosäuren ausgetauscht, dafür werden die Mutageneseprimer so synthetisiert, dass theoretisch alle Triplettkombinationen möglich sind (Derbyshire et al., 1986).

PCR-Protokoll:
10 mM Tris pH 8.3
50 mM KCl
1.5 mM MgCl₂
jeweils 200 µM dATP, dCTP, dTTP, dGTP
20-40 pmol jedes Mutagenese-Primers
2.5 U Polymerase-pfu – Stratagene pro 100 µl Ansatz
20 ng Plasmid-DNA als PCR-Template

Die PCR-Amplifikation wurde auf einen automatischen DNA-Thermal-Cycler (Robocycler, Fa Stratagene) nach folgendem Programm durchgeführt.

3 min Denaturierung bei 94°C (zu Anfang des Programms 1x)
1 min Annealingsschritt, in dem die Primer an das Template binden.
Extension bei 72°C (Zeit hängt von der Größe des Plasmids ab. 1 min/ kb)
1 min Denaturierung bei 95°C
Zyklisches Wiederholen der letzten drei Schritte (25x)
6 min Extension (nach Abschluß der PCR)

4.2 Biochemische Methoden
4.2.1 Zellaufschluß und Rohextraktgewinnung

Da das Protein in kleinen Mengen für den qualitativen Nachweis gebraucht wurde, wurden die Zellen durch eine Schwingkugelmühle aufgeschlossen [Retsch]. Dafür wurde ein Verhältnis von Zellen zum Aufschlußpuffer [0.1 M Kpi pH 7.0, 1 mM MgCl₂, 10 Tropfen Ucolup/L] von 1:3 eingesetzt, und 1,2 g Glasperlen (0.3 ?) pro 600 µl dieser Lösung zugegeben.

Die Eppendorfgefäße wurden in die Schwingkugelmühlenzylinder gestellt und dann die Zellen in der Schwingkugelmühle für 10 min. disintegriert. Anschließend wurden die Proben 5 min. auf Eis abgekühlt und danach 3 min. bei 13000 rpm abzentrifugiert.

Der Überstand wurde abpipettiert. Der Aufschluß wurde ein zweites Mal wiederholt, indem die Aufschlußpuffer auf die Eppendorfgefäße verteilt und die restlichen, nicht aufgeschlossenen Zellen durch die Schwingkugelmühle disintegriert worden sind.

Um die große Zahl an Mutanten schnell und effektiv zu überprüfen, wurden die Kolonien in kleinem Maßstab (1,2 ml) angezüchtet und mit der unten geschilderten Methode aufgeschlossen.

Die Transformanten der Zufallsmutagenese wurden einzeln mit Zahnstochern abgepickt und in 150 µl LB-amp angeimpft. Das Wachstum der Vorkultur erfolgte über Nacht. 50 µl aus dieser Vorkultur wurden in 1,2 ml LB-amp als Hauptkultur angeimpft und nach einem
Wachstum von etwa 5 h (OD$_{600}$ 0,7) wurden die Kulturen mit 1 mM IPTG induziert, um die Expression zu starten.

Die Zellen werden nach dem folgenden Protokoll geerntet:
- **1,2 ml Kultur abzentrifugieren**
- **600 µl Überstand wegwerfen und den Rest resuspendieren**
- **50 µl Lysis-Puffer dazu und noch mal resuspendieren**
- **30-45' bei 37°C schütteln**
- **Aus dem Ansatz der lysierten Zellen werden 50µl zur photometrischen Messung benötigt**

Lysis-Puffer:

0,2 % Triton X-100 10 ml
20 mM EDTA 40 ml
200 mM Kpi-Puffer 50 ml pH 7.0

4.2.2 Aktivitätstest für die Phenylalanin Dehydrogenase

Die Bestimmung der enzymatischen rekombinanten PheDH erfolgte mittels photometrischer Tests anhand der Extinktionsabnahme bei 340 nm. Dies basiert auf dem Verbrauch von NADH im Zuge der Umsetzung der Ketosäure Phenylpyruvat (Hummel et al., 1987)

\[
\text{Phenylpyruvat} + \text{NADH} + \text{NH}_4^+ \rightarrow \text{L-Phe} + \text{NAD}^+ + \text{H}_2\text{O}
\]

Die Extinktionsabnahme bei 340nm wurde über 1min verfolgt. Die Berechnung der Aktivität als U/ml (U entspricht 1 µmol Substratumsatz/min) erfolgte über das Lambert-Beersche Gesetz. Der Aktivitätstest wurde bei 30°C und bei pH 8.5 durchgeführt.

Der Testansatz setzte sich wie folgt zusammen:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris/HCl</td>
<td>0.1 M</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>0,15 M</td>
</tr>
<tr>
<td>Phenylpyruvat</td>
<td>3 mM</td>
</tr>
<tr>
<td>NADH</td>
<td>0.3 mM</td>
</tr>
</tbody>
</table>

Die Reaktion wurde durch Zugabe von 10 µl Enzym gestartet.
4.2.3 Screening und Aktivitätstest in Titerplatten

Die Aktivitätsbestimmung der hergestellten Mutante in Bezug auf Phenylaceton bzw.
Phenylpyruvat wurde photometrisch in Titerplatten durchgeführt.

Dafür wurden Mutanten durch eine schnelle Methode isoliert (4.2.1) und auf Aktivität
überprüft.

Reaktionsansatz:

120 µl Substratansatz
50 µl Rohextrakt
Messung bei 340 nm

Substratansatz:

100 mM \((\text{NH}_4)_2\text{SO}_4\)
100 mM (Tris-Puffer) pH-Wert 8.5
3 mM Phenylpyruvat bzw. Phenylaceton
0,3 mM NADH

Für die Reaktion wurden 120 µl davon verwendet und mit 50 µl Rohextrakt gestartet.
4.2.4 Aktivitätstest für das NAD-abhängige malic enzyme

HEPES pH 7.5 0.1 M
L-Malat 2 mM
NAD$^+$ 0.5 mM
Enzym (Rohextrakt) 10 µl

4.2.5 Gekoppelte enzymatische Synthese

Das Reaktionsmedium für die kontinuierliche Produktion des L-Phenylalanin wurde folgendermaßen zusamenpipettiert:

0.1 M (NH$_4$)$_2$SO$_4$
0.1 M Hepes (pH 8.0)
30 mM Phenylpyruvat
60 mM Malat
2 mM MgCl$_2$
1.5 g/l BSA
2 mM NAD$^+$

Das gesamte Volumen des Reaktionsmediums beträgt 10 ml und wurde mit 50 U PheDH und 70 U malic enzyme gestartet. Die L-Phenylalaninkonzentration wurde zu unterschiedlichen Reaktionszeiten mittels HPLC bestimmt.

4.2.6 Bestimmung des L-Phenylalanin mittels HPLC

Die Derivatisierung der Proben für die HPLC-Analytik wurde wie folgt durchgeführt:

OPA/IBLC oder IBDC: 260 mM IBLC oder IBDC + 170 mM OPA werden in Na-Borat-Puffer (0.1 M, pH 10,5) gelöst.

Na-Borat-Puffer: 0,1 M Na$_2$B$_4$O$_7$ ·10 H$_2$O in Wasser gelöst und mit NaOH auf pH 10,5 eingestellt.
4.2.7 Bestimmung der Acetatkonzentration

Die Bestimmung der Acetatkonzentration in Fermenterlösungen erfolgte über HPLC auf einer Aminex HPX 87 H Säule (Biorad) mit einem Fluß von 0,5 ml/min unter Verwendung von 0,2N Schwefelsäure als Laufmittel. Das Injektionsvolumen betrug 100 µl und die Temperatur 40°C, die Detektion erfolgte bei einer Wellenlänge von 215nm. Die absoluten Acetat-konzentrationen der Proben, aus denen die Biomasse durch Zentrifugation abgetrennt worden war, wurden anhand einer Eichung mittels Acetatlösung ermittelt.

4.2.8 Ganzzell Biotransformation

In 200 ml Reaktionsansatz wurden 1 g rekombinante Zellen für die Produktion von L-Phenylalanin verwendet.

Reaktionsansatz für L-Phenylalanin-Synthese:

\[
\begin{align*}
0,1 \text{ M} & \quad (\text{NH}_4)_2\text{SO}_4 \\
0,1 \text{ M} & \quad \text{HEPES-Puffer pH8.5} \\
0,1 \text{ M} & \quad \text{Malat} \\
2 \text{ mM} & \quad \text{MgCl}_2 \\
2 \text{ mM} & \quad \text{NAD}^+ \\
40 \text{ mM} & \quad \text{Phenylpyruvat}
\end{align*}
\]

Die Synthese erfolgte bei 30°C unter langsamen Rühren. Für kleinere Ansätze wurden die Zellmengen entsprechend abgewogen.

4.2.9 Proteinaufreinigung

Das durch den Aufschluß erhaltene Rohextrakt wurde auf eine DEAE-Sepharose-FF Säule (Volumen 7.1 ml, Fluß 1 ml/min.) aufgetragen. Die Säule wurde vorher mit 5 fachem Säulenvolumen eines 0.1 M Kpi-Puffers (8.94 g K₂HPO₄ + 0.21 g KH₂PO₄) gespült. Anschließend wurde die Konzentration von NaCl über einen linearen Gradienten bis auf 100 % zum Eluieren erhöht.

4.2.10 Proteinbestimmung nach Bradford

100 mg Coomassie Brilliant Blue G-250 wurden mit 50 ml Ethanol versetzt und über Nacht gerührt. Danach erfolgte die Zugabe von 100 ml 85 %iger Phosphorsäure, und anschließend wurde die Lösung auf 1 L mit Wasser aufgefüllt. Die fertige Lösung wurde einige Zeit gerührt, anschließend filtriert und unter Lichtabschluß aufbewahrt.

Testansatz:

<table>
<thead>
<tr>
<th>900 µl</th>
<th>Bradfordreagenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 µl</td>
<td>Proteinlösung</td>
</tr>
</tbody>
</table>

Die Proben wurden 5 min. bei Raumtemperatur inkubiert und anschließend bei 595 nm gemessen.

4.2.11 Entsalzen von Proteinlösungen

4.2.12 Konzentrierung von Proteinlösungen

4.2.13 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)

Verwendete Stammlösungen:

<table>
<thead>
<tr>
<th>Trennpuffer</th>
<th>1.5 M Tris/HCl pH 8.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammelgelpuffer</td>
<td>0.5 M Tris/HCl pH 6.8</td>
</tr>
<tr>
<td>SDS</td>
<td>10 % (w/v)</td>
</tr>
<tr>
<td>Glycerin</td>
<td>85 % (w/v)</td>
</tr>
<tr>
<td>APS</td>
<td>10 % (w/v)</td>
</tr>
</tbody>
</table>

Sammelgelzusammensetzung:

<table>
<thead>
<tr>
<th>Sammelgelpuffer</th>
<th>0.125 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid</td>
<td>5 %</td>
</tr>
<tr>
<td>SDS</td>
<td>0.10 % (w/v)</td>
</tr>
<tr>
<td>APS</td>
<td>0.02 % (w/v)</td>
</tr>
<tr>
<td>TEMED</td>
<td>0.25 % (w/v)</td>
</tr>
</tbody>
</table>

Elektrophoresepuffer pH 8.0

<table>
<thead>
<tr>
<th>Tris</th>
<th>0.025 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerin</td>
<td>0.192 M</td>
</tr>
<tr>
<td>SDS</td>
<td>0.1 % (w/v)</td>
</tr>
</tbody>
</table>
Probenpuffer:
- Glycerin 10 % (v/v)
- SDS 2 % (w/v)
- Tris/HCl pH 6.8 0.063 M
- Bromphenolblau 0.1 % (w/v)
- -Mercaptoethanol 10 % (v/v)

Um eine Denaturierung zu erreichen, wurden die Proben mit 20 µl Probenpuffer versetzt und 4 min bei 95°C aufgekocht. Anschließend wurden die Proben auf Eis abgekühlt.

4.2.14 Färbung

Silberfärbung von Proteinen (Blum et al., 1987):
Das Gel wurde in eine Fixierlösung überführt und unter ständigem Schütteln (3x30 min.) fixiert. Nach der Fixierung wurde das Gel 10 min mit 20 % (v/v) Ethanol inkubiert und direkt 10 min mit Millipore Wasser gewaschen. Nach dem Waschen wurde das Gel silbergefärbt. Um das Gel zu färben und sichtbar zu machen, wurde es für 1min in der Sensitivierungs-lösung (0.02 % (w/v) Natriumthiosulfat x H₂O) geschüttelt, dann kurz mit Wasser gespült und anschließend 20-30 min in der Färbelösung [2 % (v/v) AgNO₃, 750 µl/L (v/v) 37 % HCHO] inkubiert. Nach Ende der Inkubation wurde das Gel wieder kurz mit Wasser gespült und dann entwickelt [6 % (w/v) Na₂CO₃, 500 µl/l (v/v) 37 % HCHO, 0.0005 % (w/v) Natriumsulfat x H₂O].
Die Fixierreaktion wurde abgestoppt, sobald die Banden sichtbar waren.

Fixierlösung
- 40 %(v/v) Ethanol, vergällt (Methylethylketon)
- 10 %(v/v) Essigsäure konz.

Coomassie Färbung:

Färbelösung 0.1 % Coomassie blue R-250 (w/v)
- 40 % Ethanol, vergällt [Methylethylketon] (v/v)
- 10 % Essigsäure (v/v)

Entfärbener
- 40 % Ethanol, vergällt [Methylethylketon] (v/v)
- 10 % Essigsäure (v/v)
Nach erfolgter Elektrophorese wurde das Gel für 20 min in der Färbelösung inkubiert und anschließend die Banden mit Hilfe des Entfärbers [mehrmals wechseln] unter Schütteln sichtbar gemacht. Um einen klaren Hintergrund zu erzielen, konnte das Gel nach Einsatz des Entfärbers über Nacht in 0.5 M NaCl oder Wasser inkubiert werden.

4.3 Mikrobiologische Methoden

4.3.1 Verwendete Organismen
In der vorliegenden Arbeit wurde mit dem Stamm *Rhodococcus* sp. M4, sowie mit *E.coli* XL1-blue, *E.coli* k12, HB101, JM105, SG13009, UT5600 und BL21 gearbeitet.

4.3.2 Anzuchtbedingungen und Medien

Rhodococcus sp. M4
Für den *Rhodococcus* sp. M4 wurde das M4-Medium (Hummel *et al*., 1987) nach folgender Zusammensetzung verwendet:

\[
\begin{align*}
\text{KH}_2\text{PO}_4 & \quad 4 \text{ g} \\
\text{L-Phenylalanin} & \quad 10 \text{ g} \\
\text{Hefeextrakt} & \quad 1 \text{ g} \\
\text{HVK} & \quad 2 \text{ ml} \\
\text{Thiamin/HCl (nach dem Autoklavieren)} & \quad 200 \mu\text{g} \\
\end{align*}
\]

Der pH-Wert des Mediums wurde auf 7.5 mit NaOH eingestellt. Als Vorkultur wurden 200ml dieses Mediums mit einer einzelnen Kolonie des *Rhodococcus* sp. M4 angeimpft. Die Zellen wurden für 48h bis zur stationären Phase unter aeroben Bedingungen (Kolben mit Schikanen) bei 120 rpm und 30°C kultiviert. Davon wurde die Hauptkultur 5 %ig angeimpft und unter gleichen Bedingungen kultiviert.

E. coli
Für den *E. coli* wurde das LB-Medium (Luria-Bertani) nach folgender Zusammensetzung verwendet:

\[
\begin{align*}
\text{Bacto-Trypton} & \quad 1 \% \\
\text{Bacto-Yeast Extrakt} & \quad 0.5 \% \\
\text{NaCl} & \quad 0.5 \% \quad \text{pH 7.5}
\end{align*}
\]
Für feste Nährböden wurde 1.5 % Bactoagar (Difco) zugesetzt. Der Selektionsdruck wurde durch Zugabe von Ampicillin (100 µg/ml) nach dem Autoklavieren eingestellt. Die Anzucht von *E. coli* erfolgte bei 37°C als Schüttelkultur in den entsprechenden Medien. Vorkulturen wurden in Reagenzgläsern, größere Kulturen in Schüttelkolben mit Schikanen inkubiert.

4.3.3 Plattenkulturen
Die Inkubation fester Medien erfolgte aerob bei 37°C, bis Einzelkolonien erkennbar waren. Bewachsene Platten wurden bis zu vier Wochen bei 4°C gelagert.

4.3.4 Schüttelkolbenkulturen
Flüssigmedien wurden mit Einzelkolonien, Glycerin-Stocks oder 0,1-10 Vol.-% anderer Flüssigkulturen beimpft und auf einem Rundschüttelgerät mit einer Frequenz von 110-160 rpm bei geeigneter Temperatur inkubiert.

4.3.5 Konservieren von mikrobiologischen Stämmen
Von allen Stämmen wurden 1 ml einer stationären Kultur mit 5 % DMSO [steril] versetzt und in entsprechenden, sterilen Kryoröhrchen (Nunc) bei -80°C konserviert.

4.3.6 Fermentation der rekombinanten PheDH in Hochdichte Medium (HZD)
5 L bzw. 20 L HZD-Medium wurden mit 1 % exponentiell wachsender HZD$_{amp}$ Flüssigkultur beimpft und bei 37°C inkubiert. Rührerdrehzahl und Sauerstoffeintrag wurden so angepasst, dass ein Sauerstoffpartialdruck von 20 % nicht unterschritten wurde. Die maximalen Werte betrugen 800 rpm Rührerdrehzahl und 5 L·min$^{-1}$ Lufteintrag. Bei Bedarf wurde ein Überdruck von bis zu 1 bar angelegt. Die Einstellung des pH-Werts auf 7.0 erfolgte unter Verwendung von 25 %igem Ammoniakwasser und 1 N Phosphorsäure. Sobald die vorgelegte C-Quelle erschöpft war, wurde Feedlösung computergesteuert zugesetzt. Die Induktion der Expression erfolgte innerhalb der Feedphase durch IPTG. War der Sauerstoffpartialdruck irreversibel unter 20 % gesunken, wurde die Fermentation abgebrochen.
Batch-Medium-Zusammensetzung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Lösung</th>
<th>Substanz</th>
<th>Endkonz. (g/l)</th>
<th>V End (ml)</th>
<th>Konz.- Faktor (ml)</th>
<th>V Stamm (g)</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HZD-Grundlsg. pH= 6,9</td>
<td>NH₄Cl</td>
<td>0,2</td>
<td>10000</td>
<td>10</td>
<td>1000</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(NH₄)₂SO₄</td>
<td>2</td>
<td>10000</td>
<td>10</td>
<td>1000</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KH₂PO₄</td>
<td>13</td>
<td>10000</td>
<td>10</td>
<td>1000</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K₂HPO₄</td>
<td>10</td>
<td>10000</td>
<td>10</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaH₂PO₄·H₂O</td>
<td>6</td>
<td>10000</td>
<td>10</td>
<td>1000</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Glucose-Lsg.</td>
<td>Glucose-1H₂O</td>
<td>6</td>
<td>10000</td>
<td>80</td>
<td>125</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>MgSO₄-Lsg.</td>
<td>MgSO₄·7H₂O</td>
<td>1</td>
<td>10000</td>
<td>200</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Hefeextrakt-Lsg.</td>
<td>Hefeextrakt</td>
<td>3</td>
<td>10000</td>
<td>100</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Na₂-EDTA-Lsg.</td>
<td>Na₂-EDTA</td>
<td>0,0084</td>
<td>10000</td>
<td>5000</td>
<td>2</td>
<td>0,084</td>
</tr>
<tr>
<td>6</td>
<td>Vitamin-Lsg. 428 DSM</td>
<td>Riboflavin(Vit. B2)</td>
<td>0,005</td>
<td>10000</td>
<td>200</td>
<td>50</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thiamin-HCl(Vit.B1)</td>
<td>0,05</td>
<td>10000</td>
<td>200</td>
<td>50</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nicotinsäure</td>
<td>0,0025</td>
<td>10000</td>
<td>200</td>
<td>50</td>
<td>0,025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PyridoxinHCl(VitB6)</td>
<td>0,0025</td>
<td>10000</td>
<td>200</td>
<td>50</td>
<td>0,025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca-Panthotenat</td>
<td>0,0025</td>
<td>10000</td>
<td>200</td>
<td>50</td>
<td>0,025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biotin</td>
<td>0,000005</td>
<td>10000</td>
<td>200</td>
<td>50</td>
<td>0,00005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folsäure</td>
<td>0,00001</td>
<td>10000</td>
<td>200</td>
<td>50</td>
<td>0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyanocobalamin(B12)</td>
<td>0,00005</td>
<td>10000</td>
<td>200</td>
<td>50</td>
<td>0,0005</td>
</tr>
<tr>
<td>7</td>
<td>Spurenelemente-Lsg.</td>
<td>CaCl₂·2H₂O</td>
<td>0,04</td>
<td>10000</td>
<td>250</td>
<td>40</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZnSO₄·7H₂O</td>
<td>0,002</td>
<td>10000</td>
<td>250</td>
<td>40</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CuCl₂·2H₂O</td>
<td>0,001</td>
<td>10000</td>
<td>250</td>
<td>40</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MnSO₄·1H₂O</td>
<td>0,01</td>
<td>10000</td>
<td>250</td>
<td>40</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CoCl₂·6H₂O</td>
<td>0,007</td>
<td>10000</td>
<td>250</td>
<td>40</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂BO₃</td>
<td>0,0005</td>
<td>10000</td>
<td>250</td>
<td>40</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AlCl₃·6H₂O</td>
<td>0,01</td>
<td>10000</td>
<td>250</td>
<td>40</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na₂MoO₄·2H₂O</td>
<td>0,002</td>
<td>10000</td>
<td>250</td>
<td>40</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FeSO₄·7H₂O</td>
<td>0,04</td>
<td>10000</td>
<td>250</td>
<td>40</td>
<td>0,4</td>
</tr>
<tr>
<td>8</td>
<td>Thiamin-Lsg.</td>
<td>Thiamin-HCl(Vit.B1)</td>
<td>0,1</td>
<td>10000</td>
<td>2000</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Ampicillin-Lsg.</td>
<td>Ampicillin</td>
<td>0,1</td>
<td>10000</td>
<td>2000</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>IPTG-Lsg.</td>
<td>IPTG</td>
<td>0,119145</td>
<td>10000</td>
<td>1000</td>
<td>10</td>
<td>1,191</td>
</tr>
</tbody>
</table>
Fed-Batch-Medium- Zusammensetzung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Lösung</th>
<th>Substanz</th>
<th>Endkonz. (g/l)</th>
<th>V End (ml)</th>
<th>Konz. V Stamm faktor (ml)</th>
<th>m (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HZD-Grundlsg.</td>
<td>Stammlsg von Batch</td>
<td>4000</td>
<td>10</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Glucose-Lsg.</td>
<td>Glucose</td>
<td>600</td>
<td>4000</td>
<td>1,28</td>
<td>3124</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2400</td>
</tr>
<tr>
<td>3</td>
<td>MgSO₄-Lsg.</td>
<td>Stammlsg von Batch</td>
<td>12</td>
<td>4000</td>
<td>16,6666</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>Hefeextrakt-Lsg.</td>
<td>Stammlsg von Batch</td>
<td>18</td>
<td>4000</td>
<td>16,6666</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>Vitaminlsg428DSM</td>
<td>Stammlsg von Batch</td>
<td>4000</td>
<td>200</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Spurenelemente-Lsg.</td>
<td>Stammlsg von Batch</td>
<td>4000</td>
<td>250</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Thiamin-Lsg.</td>
<td>Thiamin-HCl (Vit.B1)</td>
<td>1</td>
<td>4000</td>
<td>40</td>
<td>4</td>
</tr>
</tbody>
</table>

Batch-Medium: Im Fermenter

- HZD-Grundlsg. 1000 ml
- Glucose-Lsg. 125 ml
- MgSO₄-Lsg. 50 ml
- Hefeextrakt-Lsg. 100 ml
- Na₂-EDTA-Lsg. 1 ml
- Vitamin-Lsg. 428 (DSM) 50 ml
- Spurenelemente-Lsg. 40 ml
- Thiamin-Lsg. 5 ml
- Ampicillin-Lsg. 5 ml
- IPTG-Lsg. 10 ml
- Antischaum 4 ml
- Inokulum 100 ml
- ad Aqua dest 8510 ml

Fed-Batch-Medium: Im Fermenter

- HZD-Grundlsg. 400 ml
- Glucose-Lsg. 3044 ml
- MgSO₄-Lsg. 240 ml
- Hefeextrakt-Lsg. 240 ml
- Vitamin-Lsg. 428 (DSM) 20 ml
Spurenelemente-Lsg. 16 ml
Thiamin-Lsg. 40 ml

Gesamt 4000 ml

Die rekombinaten Zellen wurden bei einer OD₆₀₀ von 60 mit 1 mM IPTG induziert. Unter Sauerstoff- sowie pH-Regulation sind die Zellen bis zu einer OD₆₀₀ von 170 gewachsen.

4.3.7 Bestimmung der optischen Dichte

5 Ergebnisse

5.1 Klonierung der Phenylalanin Dehydrogenase (PheDH)

5.1.1 Präparation genomischer DNA

Die Reinheit sowie die Ausbeute der DNA wurde durch ein 0.5 \%iges Agarose Gel mit Ethidiumbromid überprüft. Aus Abbildung 10 geht hervor, dass die nach dieser Methode préparierte genomische DNA hochmolekular und intakt war.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{genom_dna_electrophoresis.png}
\caption{genomische DNA aus \textit{Rhodococcus} sp. M4 nach Elektrophorese im 0.5 \%igem Agarosegel.}
\end{figure}
5.1.2 Klonierung des PheDH-Gens mittels PCR

Die benötigten Primer für die 5'- und 3'-Enden des zu klonierenden phedh-Gens wurden aus der veröffentlichten DNA-Sequenz (Brunhuber et al., 1994) abgeleitet.

5'Primer (5’Phe-for)
5’ ATG AGT ATC GAC AGC GCA CTG AAC

3’Primer (5’Phe-rev)
5’ CTA CTA GGC AGT CGC TGT CGT TGT

An den 3’Primer wurden hinter die letzte Aminosäure des C-Terminus 2 Stopcodons angefügt, um eine effiziente Termination der Transkription zu gewährleisten.

Tabelle 2: PCR-Zyklen

<table>
<thead>
<tr>
<th>Zyklusschritt</th>
<th>Zeit [min]</th>
<th>Temperatur [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annealing</td>
<td>2</td>
<td>65</td>
</tr>
<tr>
<td>Polymerisation</td>
<td>1.5</td>
<td>72</td>
</tr>
<tr>
<td>Denaturierung der Stränge</td>
<td>2</td>
<td>94</td>
</tr>
</tbody>
</table>

Tabelle 3: PCR Protokoll zur Amplifizierung des PheDH-Gens. Variiert wurde die Konzentration der Template-DNA.

<table>
<thead>
<tr>
<th>Template DNA</th>
<th>5’-ende</th>
<th>3’-ende</th>
<th>dNTP</th>
<th>Puffer</th>
<th>Taq-Polymerase</th>
<th>DMSO</th>
<th>H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ng/µl</td>
<td>1 µl</td>
<td>1 µl</td>
<td>2 µl</td>
<td>10 µl</td>
<td>1 µl</td>
<td>3</td>
<td>81 µl</td>
</tr>
<tr>
<td>70 ng/µl</td>
<td>1 µl</td>
<td>1 µl</td>
<td>2 µl</td>
<td>10 µl</td>
<td>1 µl</td>
<td>3</td>
<td>81 µl</td>
</tr>
<tr>
<td>30 ng/µl</td>
<td>1 µl</td>
<td>1 µl</td>
<td>2 µl</td>
<td>10 µl</td>
<td>1 µl</td>
<td>3</td>
<td>81 µl</td>
</tr>
</tbody>
</table>

Durch die Verwendung der obengenannten Primer (5’Phe-for und 5’Phe-rev), die aus der N-terminalen bzw. C-terminalen Sequenz abgeleitet wurden, konnte ein spezifisches 1.1 kb-Fragment bei einer Annealing-Temperatur von 65°C amplifiziert werden (Abbildung 11). Um eventuelle Fehler, die bei Verwendung der Taq-Polymerase auftreten können zu minimieren,
wurde zur Klonierung des PheDH-Gens in der PCR eine DNA-Polymerase mit ‚proof reading’-Funktion (high fidelity®- Polymerase) (Roche), Fehlerrate 1.3×10^{-6} verwendet.

Abbildung 11: Ergebnis der PCR Reaktionen, die Abbildung zeigt ein Fragment mit einer Größe von etwa 1100 bp, als Marker wurde die Gibco KB-Leiter verwendet. Von den PCR-Ansätze wurden 7 µl auf ein 0.8 % Agarosegel aufgetragen, 1-3 entsprechen den Ansätzen in Tabelle 2.

5.1.3 Klonierung des PheDH Gens in den pUC-18

Das phedh- Gen wurde in die „multiple cloning site“ des pUC18-Vektors über glatte Enden an der Smal- Restriktionsschnittstelle (CCCGGG) kloniert. Das Verhältnis zwischen Vektor und Insert lag bei 1:3. Für eine erfolgreiche Ligation wurden 200 ng DNA eingesetzt.

Der Vektor wurde an der Smal -Schnittstelle geschnitten und um eine Religation des linearen Plasmids zu verhindern, wurden die 5'-Phosphatgruppen abgespalten. Die Dephosphorylierung wurde durch alkalische Phosphatase (SAP, Shrimp Alkaline Phosphatase) durchgeführt, und in die Ligation eingesetzt (Abbildung 12).
Abbildung 12: Vektorkarte des pUC18-PheDH

Der Vektor enthält folgende Strukturelemente:

- ein regulierbares Promotor/Operator Element bestehend aus dem tac-Promotor und einer lac Operon Sequenz lac Z', die das Gen für die β-Galactosidase komplementiert
- ein Gen für die β-Lactamase, die dem plasmidenthaltenden Stamm Ampicillinresistenz gewährt
- eine multiple cloning site, die das Einklonieren von Fremd-DNA [hier PheDH] erlaubt
- den Replikationsursprung ori

Tabelle 4: Ligationsansatz zur Klonierung der PheDH im pUC18-Vektor

<table>
<thead>
<tr>
<th>Genfragment</th>
<th>50-200 ng</th>
<th>10 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC18-Vektor</td>
<td></td>
<td>50 ng</td>
</tr>
<tr>
<td>2X Ligationspuffer</td>
<td></td>
<td>10 µl</td>
</tr>
<tr>
<td>DTT</td>
<td></td>
<td>1 µl</td>
</tr>
<tr>
<td>T4-Ligase</td>
<td></td>
<td>1 µl</td>
</tr>
<tr>
<td>H2O</td>
<td></td>
<td>ad 20</td>
</tr>
</tbody>
</table>

Das PCR-Fragment wurde 5'-phosphoryliert und der 3‘ Überhang mittels Klenow-Fragment ergänzt, so dass glatte Enden entstanden. Nach Reinigung der DNA aus dem Enzymansatz
wurde eine Ligation durchgeführt und in kompetente \textit{E. coli} XL1 Blue Zellen transformiert. Nach Ausplattierung auf einer LB\textsubscript{amp} Agarplatte wurden ca. 150 Kolonien erhalten.

5.1.4 Sequenzierung des \textit{phedh}-Gens

Von den durch die Transformation erhaltenen Kolonien wurden exemplarisch 20 Kolonien ausgewählt und über Nacht in 5ml LB\textsubscript{amp} Medium inkubiert. Aus der hochgewachsenen Kultur wurde eine Schnellisolierung der Plasmid-DNA durchgeführt. Mit der isolierten Plasmid-DNA wurde eine Restriktionsanalyse mit SacI und BamHI durchgeführt, die auf einem 0.8\% Agarosegel elektrophoretisch aufgetrennt wurde.

Die Sequenz der PheDH aus \textit{Rhodococcus} sp. M4 ist in Abbildung 13 dargestellt.

\begin{verbatim}
ATGAGTATCGACAGCAGCACTGAATGGACGGTCACTCGGATTCGACCGGAGGACGGGGAAATGACGGTCACCCAGATCCTCGGACTTGAG
GCCTGAGACGGGGAAATGACGGTCACCCGAGTACTCAGAGTACTCAGAGTACTCAGAGTACTCAGAGTACTCAGAGTACTCAGAGT
ACTGCCTAGTAA
\end{verbatim}

5.1.5 Expression des recPheDH-Gens in *E.coli*

5.1.5.1 Klonierung der PheDH im Expressionsvektor PET16b

Der pET16b-Vektor enthält neben einem starken Promotor einen His-Tag upstream der MCS. Durch die Klonierung der *PheDH* über die Schnittstellen NdeI/BamHI wird der His-Tag am 3’-Ende des Gens angefügt, sodass die exprimierte *PheDH* einen His-Tag am N-Terminus besitzt. Dafür wurden folgende Primer für eine PCR konstruiert:

5’-For NdeI-Schnittstelle
CGGCCATATGAGTATCGACAGCGCACTG

5’-Rev BamHI-Schnittstelle
GCGGATCCCTACTAGGCAGTCGCTGTC

Mit den konstruierten Primern wurde das Insert aus dem rec-pUC18 amplifiziert und in die Expressionsvektoren pET-16b und pET-11a an der NdeI/BamHI ligiert. Die Strategie zur Expression der PheDH ist in Abbildung 14 dargestellt.
Ergebnisse

Abbildung 14: Fließschema zur Klonierung des recPheDH-Gens in die Expressionsvektoren PET11a oder PET 16b

Nach der Vermehrung der rekombinanten Vektoren (pET-16b und pET-11a) im BL21-Stamm wurde eine Schnellisolierung des Plasmids durchgeführt und dieses mit NdeI/BamHI zum Nachweis des PheDH-Gens verdaut. Das Ergebnis ist in Abbildung 15 dargestellt.

5.1.5.2 Expression der PheDH im PET-System

Die Induktion der rekombinanten Stämme erfolgte bei einer OD$_{600}$ sowohl mit 0.5 als auch 1.5 mM IPTG bei 37°C. Das SDS-Gel (Abbildung 16) zeigte eine breite Bande bei 39 kDa, die der PheDH entspricht. Es wurde aber keine Enzymaktivität nachgewiesen. Eine Analyse des exprimierten Proteins auf einem SDS-Gel (12.5 %ig) zeigte die Bildung von Einschlusskörpern (inclusion bodies).

Um die Bildung von inclusion bodies zu minimieren, wurde das *PheDH*-Gen in weitere Plasmide ohne His-Tag (pTRC99a, pBtac, pKK223-3) kloniert. Auch die Klonierung in diese Vektoren führte zu inclusion bodies. Die Induktion der rekombinanten Zellen durch niedrigere IPTG-Konzentrationen bzw. die Anzucht bei erniedrigten Temperaturen (bis 25°C) konnte dieses Problem nicht lösen. Ein weiterer Ansatzpunkt war die Manipulation auf genetischer Ebene. Inclusion bodies könnten durch eine schwächere Transkription bzw. Translation verhindert oder zumindest minimiert werden. Diesem Gedanken folgend wurde die *PheDH* einerseits in einen anderen Expressionsvektor mit schwächerem Promotor
umkloniert. Andererseits wurde der Abstand zwischen dem Startcodon und der Ribosomenbindungsstelle variiert.

5.1.5.3 Klonierung des PheDH-Gens in pkk223-3

Die optimale Expression eines Enzyms erreicht man normalerweise, wenn das Startcodon des dazugehörigen Gens zwischen 7 und 9 bp von der Ribosomenbindungsstelle entfernt ist (Esipov et al., 1999; Tedin et al., 1997). Diese Klonierungsstrategie wurde für die PheDH in dieser Arbeit auch mit mehreren Vektoren, pTRC99A, pET16b, pET11a und pBtac, durchgeführt. Die Klonierungen führten in allen Fällen zu einer starken Expression des Proteins, das aber, wie oben dargestellt, in unlöslicher Form (inclusion bodies) vorlag. Unlösliche Proteine können durch eine zu schnelle Expression gebildet werden, die den Proteinen nicht genügend Zeit und Raum zur Faltung lässt. Für die Vermeidung der Bildung von unlöslchen Proteinen wurden physikalische bzw. biochemische Methoden (Temperatur, Induktion, Schüttelgeschwindigkeit) (Shin et al., 1997; Xu et al., 1994; Yang et al., 1997) während des Wachstums variiert. Dafür wurden die rekombinanten Zellen bei 25°C bzw. 30°C inkubiert sowie eine Inkubation bei einer Schüttelgeschwindigkeit von 80 rpm, die eindeutig niedriger liegt als üblicherweise mit 140 rpm, durchgeführt. Durch diese Parameter konnte das Wachstum negativ beeinflusst werden, das aber nicht zur Vermeidung der „inclusion bodies“ führte. Eine Induktion mit verschiedenen IPTG- Konzentrationen (0,1mM-1,5 mM) erzielte ebenso keine positiven Ergebnisse.

Wie bereits oben angedeutet kann durch entsprechende Manipulation auf genetischer Ebene eine schwächere Transkription bzw. Translation erreicht werden, was zu einer langsameren und schwächeren Expression führt. Diesen bleibt dann genügend Zeit und Raum zur Faltung und man erhält zwar weniger, dafür aber aktives Enzym. Um dies zu erreichen, erfolgte die Klonierung an der SmaI-Schnittstelle im Expressionsvektor pKK223-3 mit einer „nicht optimalen“ Entfernung von 14 bp des Startcodons zur Ribosomenbindungsstelle. Dadurch ist die Translation schwächer mit dem bereits oben erklärten Effekt. Zusätzlich dazu besitzt das verwendete Plasmid pKK223-3 einen schwächeren Promotor als beispielsweise die oben verwendeten pET Systeme, was zu einer weiteren Abschwächung der Expression führt. In Abbildung 17 ist die Vektorkarte dargestellt.
Abbildung 17: Vektorkarte des pKK-223-3recPheDH. Das PheDH-Gen wurde an der SmaI-Schnittstelle im Expressionsvektor pKK-223-3 mit einem Abstand zur Ribosomenbindungsstelle von 14bp ligiert.

Der Vektor enthält folgende Strukturelemente:
- ein regulierbares Promotor/Operator Element bestehend aus dem tac-Promotor. Dadurch kann die Expression über IPTG, das den Repressor des lac-Operons inaktiviert, induziert werden.
- abwärts der Klonierungsstelle den rrnB Transkriptionsterminator, der das Ende der Transkription signalisiert
- eine „multiple cloning site“ für die Insertion von Fremd-DNA (hier rec-PheDH), dadurch wird das lacZ-Gen inaktiviert und eine blau-weiß-Selektion rekombinanter Klone ermöglicht
- den Replikationsursprung [Ori] und das Gen für die ß-Lactamase, die die Ampicillinresistenz bereitstellt
- die lacZ Ribosomenbindungsstelle
Um die Klonierung des PheDH-Gens an einer „nicht optimalen“ Entfernung des Startcodons zur ribosomalen Bindungsstelle durchführen zu können, wurde das recPheDH-Gen in die „multiple cloning site“ des pKK223-3 Expressionsvektors über glatte Schnittstellen an der SmaI Restriktionsschnittstelle [CCCGGG] ligiert. Dabei wurde zunächst der Vektor mit dem Restriktionsenzym SmaI geschnitten und anschließend mit einer alkalischen Phosphatase inkubiert, um eine 5’-Dephosphorylierung zu erreichen. Das amplifizierte recPheDH-Gen wurde mit dem Klenow-Fragment aufgefüllt und mittels Agarosegelsauftrennung gereinigt. Die benötigten Primer für die 5’- und 3’-Enden sind:

5’Primer (5’Phe-for)
5’ ATG AGT ATC GAC AGC GCA CTG AAC

3’Primer (5’Phe-rev)
5’ CTA CTA GGC AGT CGC TGT CGT TGT

Einige der Transformanden wurden über Nacht in 5 ml LBamp inkubiert, und aus der hochgewachsenen Kultur Plasmid-DNA isoliert. Mit den durch Schnellisolierung gewonnenen Plasmiden wurde eine Restriktionsanalyse mit EcoRI durchgeführt. 5 µL des Ansatzes wurden auf einem Agarosegel (0,8 %) elektrophoretisch aufgetrennt (Abbildung 18).

In der „multiple cloning site“ des pKK223-3-Vektor befindet sich vor der SmaI-Schnittstelle, über die die PheDH kloniert wurde, eine EcoRI-Schnittstelle. Da sich im Gen an Position 821 ebenfalls eine EcoRI-Schnittstelle befindet, führt ein Verdau mit EcoRI zu einem Fragment von etwa 830 bp.

5.1.5.4 Expression der recPheDH im pKK223-3

5.1.6 Optimierung der Induktionsparameter

Zur Optimierung der Expression der recPheDH in E. coli wurden neben der Auswahl eines geeigneten Vektor-Wirt-Systems die Induktionsparameter variiert, um eine effiziente Proteinexpression zu erzielen.

Einerseits wurde die Induktorkonzentration zwischen 0 und 3 mM IPTG (β-D-Isopropylthiogalaktosid) bei einem konstanten Induktionszeitpunkt (OD₆₀₀ = 0.6) variiert (Abbildung 19). Die Untersuchung führte zu dem Ergebnis, dass mit einer IPTG-Konzentration zwischen 0.7 mM und 1.2 mM eine optimale Expression zu erzielen war. In der Kontrollexpression ohne IPTG-Induktion konnte nur geringe PheDH-Aktivität (35 U/ml) im Rohextrakt nachgewiesen werden. Folglich unterdrückte der lac I-Repressor die Expression des PheDH-Gens im nichtinduzierten Zustand fast vollständig. Dies ist von Vorteil, da die Expression des Fremdproteins eine Belastung des Zellstoffwechsels bedeutet und zu einer erheblich geringeren Zellausbeute führt.
Abbildung 19: Variation der IPTG-Konzentration bei der Induktion von pkk-223-3-PheDH/ JM105. Die Kulturen wurden mit verschiedenen IPTG-Konzentrationen zwischen 0 und 3 mM induziert. Die spezifische Aktivität wurde im Rohextrakt gemessen.

Bei der Betrachtung des Verlaufs der OD\textsubscript{600nm} im untersuchten Zeitraum fällt auf, dass in der Kultur, die zum Zeitpunkt der Inokulation mit 1 mM IPTG induziert worden ist, nur eine geringe Zunahme der OD\textsubscript{600nm} zu betrachten war (Abbildung 20). Hingegen zeigt die Kontrollkultur ohne IPTG eine deutliche Zunahme der Zelldichte.

Eine Variation des Induktionszeitpunktes für die Erzielung der maximalen Induktion wurde durchgeführt (Abbildung 21). Aus Abbildung 21 ist zu entnehmen, dass die maximale Induktion des pKK223-3-PheDH im \textit{E. coli} JM105 3 ½ h von der Inokulation erzielt werden konnte. Dieser Zeitpunkt entspricht einer OD\textsubscript{600} von 0,5-0,55, d.h. die Zellen befanden sich während der IPTG- Zugabe am Anfang der logarithmischen Wachstumsphase.

Abbildung 20: Wachstumsverhalten für \textit{E. coli} nach der Induktion
5.1.7 Reinigung der recPheDH aus E. coli JM105

Die Reinigung der recPheDH aus E. coli-Rohextrakten erfolgte in Anlehnung an das Reinigungsprotokoll der PheDH aus Rhodococcus sp. M4 (Hummel et al., 1987). Zunächst wurden die Bakterienzellen durch Disintegration mit Glasperlen aufgeschlossen. Im Anschluß daran erfolgte ein zusätzlicher Reinigungsschritt zu den Literaturangaben durch eine Hitzedenaturierung der Begleitproteine in Gegenwart von 5 % (w/v) L-Phenylalanin und Entfernung des L-Phenylalanin mittels Gelfiltrationschromatographie. Die nach dieser Methode präparierte recPheDH-Fraktion konnte über Anionenaustauschchromatographie an DEAE-Sepharose FF bis zur Homogenität gereinigt werden. Abbildung 22 (Bahn 1+2) zeigt die Auftrennung der gereinigten recPheDH in einem SDS-Polyacrylamidgel nach Silberfärbung.
Abbildung 22: SDS-PAGE (12.5 %, Silberfärbung) zur Überprüfung der Reinheit der recPheDH nach DEAE-Sepharose FF–Chromatographiegel. 1 Marker, 2+3 recPheDH nach DEAE-Sepharose FF, 4 Rohextrakt aus *E. coli*.

Mit dem vorliegenden Reinigungsprotokoll (Tabelle 6) konnte die recPheDH bis zur Homogenität gereinigt werden. Im Gegensatz zur Reinigung der PheDH aus *Rhodococcus* sp. M4 (Hummel *et al.*, 1987) und PheDH aus *Rhodococcus maris* K-18 (Misono *et al.*, 1989), die 3 bzw. 8 Schritte erfordert, waren bei der Reinigung der rec-PheDH nur zwei Schritte nötig.

Tabelle 6: Zusammenfassung der Reinigung der recPheDH aus *E. coli*-Rohextrakt

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohextrakt</td>
<td>2000</td>
<td>8</td>
<td>250</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Hitzedenaturierung + Sephadex G25</td>
<td>2300</td>
<td>6.6</td>
<td>348</td>
<td>86</td>
<td>1.4</td>
</tr>
<tr>
<td>DEAE-Sepharose FF</td>
<td>121</td>
<td>0,16</td>
<td>756</td>
<td>58</td>
<td>3</td>
</tr>
<tr>
<td>Aufkonzentrierung (Centriprep 10)</td>
<td>4500</td>
<td>7</td>
<td>690</td>
<td>51</td>
<td>3</td>
</tr>
</tbody>
</table>
5.1.8 Substratspektrum und K_M-Werte

Die Phenylalanin Dehydrogenase katalysiert die oxidative Desaminierung von L-Phenylalanin und mehrerer anderer L-Aminosäuren und die reduktive Aminierung von Phenylpyruvat und P-Hydroxophenylpyruvat. Das Enzym benötigt NAD$^+$ als natürliches Coenzym. Verschiedene Aminosäuren und 2-Ketosäuren sind als Substrate für die Wildtyp-PheDH vom *Rhodococcus* sp. M4 bekannt (Tabelle 7) (Hummel et al., 1987). In dieser Arbeit wurden die biochemischen Eigenschaften (Tabelle 8) der Wildtyp-PheDH mit der Rec-PheDH verglichen und eine 100 %ige Ähnlichkeit festgestellt. Das bedeutet, dass beide Enzyme identische Eigenschaften besitzen.

Tabelle 7: Untersuchte Substrate der Rec-PheDH.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>V_{max}</th>
<th>K_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylpyruvat</td>
<td>100</td>
<td>1.6×10^{-4}</td>
</tr>
<tr>
<td>p-Hydroxyphenylpyruvat</td>
<td>5</td>
<td>2.3×10^{-3}</td>
</tr>
<tr>
<td>Indolpyruvat</td>
<td>3</td>
<td>7.9×10^{-3}</td>
</tr>
<tr>
<td>2-Keto-4-methylmercaptobutyrat</td>
<td>33</td>
<td>2.1×10^{-3}</td>
</tr>
</tbody>
</table>

A: Reduktive Aminierung: Der Wert des V_{max} ist relativ zum Phenylpyruvat als 100

<table>
<thead>
<tr>
<th>Substrat</th>
<th>V_{max}</th>
<th>K_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Phenylalanin</td>
<td>100</td>
<td>7.2×10^{-4}</td>
</tr>
<tr>
<td>L-Tyrosin</td>
<td>12</td>
<td>3.4×10^{-3}</td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>2</td>
<td>1.7×10^{-2}</td>
</tr>
<tr>
<td>L-Methionin</td>
<td>4</td>
<td>4.8×10^{-4}</td>
</tr>
</tbody>
</table>

B: Oxidative Desaminierung: Der Wert des V_{max} ist relativ zum L-Phe

Tabelle 8: Kinetische Parameter für die Rec-PheDH

<table>
<thead>
<tr>
<th>Reduktive Aminierung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K_M (PPy)</td>
<td>0.13 mM</td>
</tr>
<tr>
<td>K_I (PPy)</td>
<td>7.34 mM</td>
</tr>
<tr>
<td>K_I (Phe)</td>
<td>2.96 mM</td>
</tr>
<tr>
<td>K_M (NADH)</td>
<td>0.13 mM</td>
</tr>
<tr>
<td>K_I (NAD$^+$)</td>
<td>1.27 mM</td>
</tr>
<tr>
<td>K_M (NH4$^+$)</td>
<td>387 mM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oxidative Desaminierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_M (PPy)</td>
</tr>
<tr>
<td>K_I (PPy)</td>
</tr>
<tr>
<td>K_I (Phe)</td>
</tr>
<tr>
<td>K_M (NADH)</td>
</tr>
<tr>
<td>K_I (NAD$^+$)</td>
</tr>
<tr>
<td>K_M (NH4$^+$)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

5.1.9 Temperaturstabilität

Es wurde eine Desaktivierungskinetik zur Ermittlung der Temperaturstabilität durchgeführt. Die Proben wurden bei Temperaturen zwischen 20 und 50°C inkubiert und in bestimmten Zeitintervallen (1 h, 2½ h, und 36 h) zur Bestimmung der Restaktivität Aliquots entnommen. In Abbildung 23 ist die Bestimmung der Aktivität nach 36 h bei verschiedenen Temperaturen dargestellt.

Abbildung 23: Temperaturstabilität der rec-PheDH im Vergleich zur WT-PheDH im Rohextrakt.

Nach 36 h konnten bei 37°C noch 90 % Restaktivität der rec-PheDH gemessen werden. Im Vergleich dazu wurden nur noch 56 % Restaktivität bei einer 36 stündigen Inkubation der rec-PheDH bei 50°C ermittelt. Die Wildtyp-PheDH zeigte nach 36h bei 30°C nur noch etwa 50 % Restaktivität.
5.1.10 Temperaturoptimum

Die Reaktionstemperatur wurde direkt in der Küvette gemessen. Die Ansätze wurden auf die jeweiligen Messtemperaturen (20-50°C) temperiert, anschließend das Enzym hinzugegeben und die Anfangsreaktionsgeschwindigkeit gemessen.

Abbildung 24: Temperaturoptimum der recPheDH im Vergleich zur WT-PheDH, Enzym-Präparate aus dem Rohextrakt JM105. 100 % bei der rec-PheDH entsprechen 270 U/mg, und im WT-PheDH 24 U/mg.

Die optimale Temperatur sowohl für die rec-PheDH als auch für WT-PheDH liegt bei 50°C, die Enzymtests und Synthesereaktionen wurden jedoch aus Stabilitätsgründen bei 30°C durchgeführt.

5.1.11 pH-Optimum

Die meisten Enzyme zeigen bei einem charakteristischen pH-Wert ihre maximale Aktivität, oberhalb und unterhalb dieses Wertes nimmt die Aktivität ab.

Abbildung 25: pH-Optimum der rec-PheDH für die reduktive Aminierung. 100 % bei der rec-PheDH entsprechen 190 U/mg, und im WT-PheDH 16 U/mg. Die Messung wurde bei 30°C durchgeführt.
5.2 Hochzelldichte Fermentation (HZD)

5.2.1 Zuführung von Nährstoffen, Nebenproduktbildung und Wachstum

Der als konservierte 1 ml Kultur bei –80°C gelagerte rekombinante Stamm *E. coli* JM 105 wurde als Vorkultur in 400 ml LB amp-Medium bei 37°C 18 h inkubiert. Damit wurde ein 10L Fermenter (Hochzelldichte Medium) 4 %ig angeimpft.

Beide Möglichkeiten der Nährstoff-Zuführung wurden hinsichtlich ihrer Wirkung auf Wachstumsrate, erreichbare End-Zelldichte und Acetatbildung des PheDH-Produktionsstammes *E. coli* JM105 (rec-pKK-223-3-PheDH) untersucht. Die Ergebnisse sind in den Abbildung 26 und 27 dargestellt.

Abbildung 26: Wachstumsverhalten und Acetatbildung durch *E. coli* JM105 [rec-pKK-223-3-PheDH] bei linearer Erhöhung der Glucosezufuhr in HZD-Medium mit Hefeextraktzusatz bei 30°C. Die Acetatbildung wurde mittels HPLC bestimmt.

Nach Literaturangaben von Riesenberg (Riesenberg, 1991) und Fieschko (Fieschko, 1989) erfolgt die Bildung wachstumsinhibierender Nebenprodukte wie Acetat in komplexen Medien, bei Wachstumsraten oberhalb von 0,2 h⁻¹ (Riesenberg et al., 1991) und in definierten Medien bei Wachstumsraten oberhalb von 0,35h⁻¹. Mit abnehmender spezifischer Wachstumsrate steigt die Expression des rekombinanten Proteins (Fieschko, 1989). Daher war für die Kultivierung des Expressionsstammes JM105 eine spezifische Wachstumsrate von 0,2 h⁻¹ angebracht.
5.2.2 Bestimmung des Induktionszeitpunkts

Abbildung 28 zeigt den Einfluss des Induktionszeitpunkts auf die Systemproduktivität. Dies wurde mittels zweier Experimente abgeschätzt, die die Zunahme der Volumenaktivität an PheDH und die Plasmidkopienzahl nach Induktion am Anfang bzw. in der Mitte der Fütterungsphase bestimmten. Die Ergebnisse wiesen daraufhin, dass ähnlich zu Versuchen in Schüttelkultur eine signifikante Abhängigkeit der recPheDH-Expression vom Induktionszeitpunkt besteht.

Abbildung 28: Entwicklung der PheDH-Volumenaktivität in Abhängigkeit vom Induktionszeitpunkt während der Zufütterungsphase.

Die Entwicklung der Plasmidkopienzahl, erkennbar an der Zunahme der Plasmidmenge aus Präparationen gleicher Zellkonzentration wurde im Agarosegel überprüft (Abbildung 29).
Abbildung 29: 0.8 %iges Agarosegel zum Nachweis der Konzentrationszunahme an rec-pKK-223-3 bei Induktion 1h nach Beginn der Glucose-Zuführung während der Fermentation.

Aus Abbildung 29 ist die Erhöhung der Plasmidkopienzahl zu entnehmen. Eine Abnahme der Menge an Plasmiden war bei einer Induktion in der Mitte der Zufütterungsphase Abbildung 30 zu beobachten.

Abbildung 30: Zu- und Abnahme der Plasmidkopienzahl bei Induktion 5h nach Beginn der Glucosezuführung.
5.3 Klonierung des malic enzymes

5.3.1 Präparation genomischer DNA

Das malic enzyme-Gen wurde mittels PCR mit genomischer DNA als Template amplifiziert. Die genomische DNA aus *E. coli* K12 wurde durch enzymatische Vorbehandlung der Zellwand mit Lysozym und Fällung der Proteine mit CTAB gewonnen. Die Reinheit der DNA wurde durch ein 0.5 % Agarose Gel überprüft. Die préparierte genomische DNA war hochmolekular und intakt.

Das DNA-Pellet wurde in TE-Puffer bei 4°C aufbewahrt.

5.3.2 Genisolierung und Klonierung des malic enzymes im recPhe-pKK-223-3

Für die Amplifikation des malic enzymes aus der genomischen DNA des *E. coli* K12, wurde der 5′-Forward-Primer aus der bekannten N-Terminus-Sequenz abgeleitet (Mahajan *et al.*, 1990; Stols & Donnelly, 1997). Da der C-Terminus des NAD-abhängigen malic enzymes aus *E. coli* K12 (zum Zeitpunkt der Durchführung dieser Arbeiten) nicht veröffentlicht war, wurde mit Hilfe des 5′-Forward Primers ein Einzelstrang amplifiziert, und die genomische DNA, die als Template im PCR-Ansatz vorlag, mit dem Restriktionsenzym DpnI verdaut. Somit konnte der Einzelstrang erhalten und gewonnen werden, das dann für eine zweite PCR verwendet werden konnte. Da die Taq-Polymerase ca. ein Kb pro Minute amplifiziert, wurde eine Elongationszeit im PCR-Zyklus von 1,7 min gewählt. Somit konnte ein ca. 1,6-1,8 Kb großer Einzelstrang, der der Größe des malic enzymes entspricht, amplifiziert werden. In einer zweiten PCR wurden drei Ansätze vorbereitet, bei denen als Primer sowohl der 5′-Forward-Primer als auch je ein 5′-Reverse-Primer (siehe unten) Verwendung fanden.

1: 5′-Forward: N′-Malic-pst
5′ CTGCAGAGCCCAGGGATGGATATTC 3′

2: 5′-Reverse A
TTATTATTATTATTA

3: 5′-Reverse B
CTACTACTACTACTA

4: 5′-Reverse C
TCATCATCATCATCA
Konzentration jeweils 100 pmol/µl
Die Primer für den C-Terminus wurden aus den Stopcodons abgeleitet. Da das Stopcodon des malic enzymes zum Zeitpunkt der Klonierung nicht bekannt war, wurden 3 verschiedene Primer, denen die 3 Stopcodons entsprechen, konstruiert (2-4). Mit einer Kombinationen aus dem bekannten 5'-Forward-Primer (1) und je einem Reverse-Primer (5'-ReverseA-C) wurden 3 PCR-Ansätze durchgeführt (Abbildung 31).

Abbildung 31: Neue PCR-Strategie zur Amplifikation des malic enzymes. Es wurde ein Einzelstrang amplifiziert, der als Template für eine zweite PCR dient.
Da das Triplett für die Stopcodons mehrmals im Gen vorkommt, wurden durch diese Methode bei der Amplifikation des Einzelstranges entsprechend mehrere Fragmente amplifiziert. Aufgrund der bekannten Größe des malic enzyme-Gens konnte ein Fragment aus dem Gel isoliert und für die Ligation eingesetzt werden. Die restlichen Banden sind Teilfragmente vom malic enzyme.

Mit dieser vollkommen neuen Methode konnte ein doppelsträngiges Fragment amplifiziert werden, das dann an der SmaI-Schnittstelle im pUC18 blunt ends ligiert und sequenziert wurde.

Abbildung 32: DNA-Sequenz des malic enzymes aus *E. coli* K12.

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADP_Salmonella</td>
<td>MDEQLKQSLADPHEFPVKIQVSPTKPLATQRDLALASYPGVAAPCLEIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADP_Ecoli</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mdh_Pasteurella</td>
<td>MDAQLRQAALDFHEFPQKIEVTPTKSLATQRDLALASYPGVAVPCLEIQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAD_Brucella</td>
<td>MTKKPSSTSSDFEAALFFHRYPKGLQIEQATKPLGNQRDLALASYPGVAVPCLAIH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAD_Ecoli</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADP_Salmonella</td>
<td>KDPLAAYKTYARGNLVAVSNGLAGKPVMEGKVLFKKFGAIDVFIEV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADP_Ecoli</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mdh_Pasteurella</td>
<td>ADPAASYRTSRGVLNALTALVNGLGAKPVMEGKVLFKKFGAVNFDEIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAD_Brucella</td>
<td>DDPAATAEYRGNLVAVSNGLGLGNKLASKPVMEGKVLFKKFGAKIDVFDEIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAD_Ecoli</td>
<td>KGSASMEERRNFNLGLLPP----EVETIEEQERAQHYQERFKEIDKHIYRNI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADP_Salmonella</td>
<td>DELDPDKFINVAALFETFGGINLEDIKAPECFYIEQKLRERMNIPVFPVIDQHGTAAIST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADP_Ecoli</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mdh_Pasteurella</td>
<td>DERDPDKLVIAEELPFTFGGINLEDIKAPECFYIEQKLRERMKVIPFPVIDQHGTAAISA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAD_Brucella</td>
<td>DAHEINRIVVSASELEPTFSGGINLEDIKAPECFEEVEEQRLERMRNIPVFPVIDQHGTAAIVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAD_Ecoli</td>
<td>QDTNETLFLYRLVNHLDEMMPVIYTPVGAACERSEIYRRSGVPFISHYNHNMMDILQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abbildung 34: Alignment der Aminosäuresequenz verschiedener malic enzymes. NADP-Salmonella enterica subsp. enterica serovar Typhi (Parkhill et al., 2001), Mdh Pasteurella multocida (May et al., 2001), NAD-Brucella melitensis (DelVecchio et al., 2002), NAD-E.coli (Blattner et al., 1997).

5.4 Konstruktion eines Expressionsvektors mit heterologer Expression

![Abbildung 35: Konstruktion des Plasmids für eine heterologe Expression zur L-Phe Synthese mittels Ganzzellumsetzung.](image-url)
Ergebnisse

5’-Forward: N’-Malic-pst
5’ CTGCAGAGCCAGGGATGGATATTCAAAAA 3’
Konzentration 100 pmol/µl

5’-Reverse: C’-Malic-Hin
5’ AAGCTTTTAGATGGAGGTACGGCGGTAGTC 3’
Konzentration 100 pmol/µl

In Tabelle 9 sind die Konzentrationen aufgeführt, die für die Isolierung des malic enzyme-Gens erforderlich sind.

Tabelle 9: PCR Protokoll zur Amplifizierung des malic enzymes aus dem rekombinanten pUC18-Plasmid. Variiert wurden die Konzentrationen der Template-DNA.

<table>
<thead>
<tr>
<th>Template DNA</th>
<th>N’-Malic-pst Prim 1</th>
<th>C’-Malic-Hin Prim 2</th>
<th>dNTP</th>
<th>Puffer</th>
<th>Taq-Polymerase</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>recpUC18</td>
<td>1 µl</td>
<td>1 µl</td>
<td>2 µl</td>
<td>10 µl</td>
<td>1 µl</td>
<td>83 µl</td>
</tr>
<tr>
<td>50ng/µl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25ng/µl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10ng/µl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ein Zyklus besteht aus:
Denaturierungsschritt: 94°C
Annealingschritt: 59°C
Amplifizierungsschritt: 72°C

Abbildung 36: PCR-Ausbeute des malic enzyme-Gens bei verschiedenen Konzentrationen an Template-DNA (rec-pUC18).

5.4.1 Coexpression der PheDH und des malic enzymes

Von den positiven Klonen wurden einige zur Expression ausgewählt. Eine Einzelkolonie der jeweiligen Klone wurde in 5 ml LB_{amp}–Medium überimpft, und nach Erreichen von OD₅₈₀ = 0,6 mit 1 mM IPTG induziert. Die Induktion erfolgte über Nacht und die geernteten Zellen wurden mit Ultraschall aufgeschlossen.
Der rekombinante Stamm HB101 zeigt eine malic enzyme-Aktivität von 100 U/ml und ebenso eine PheDH-Aktivität von 130 U/ml. Die Aktivität beider Enzyme im rekombinanten Stamm JM 105 ist eindeutig höher und liegt bei ~600 U/ml für malic enzyme und ~1200 U/ml für die PheDH.

Die beiden rekombinanten Stämme wurden im 10 L Fermenter kultiviert und die Aktivität beider Enzyme bestimmt.

Tabelle 10: Aktivitätsbestimmung der exprimierten Enzyme in einem 10 L Fermenter mit LB-Medium als batch-Fermentation.

<table>
<thead>
<tr>
<th>Aktivität PheDH</th>
<th>Aktivität malic enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U/ml)</td>
<td>(U/mg)</td>
</tr>
<tr>
<td>E. coli HB101</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>33</td>
</tr>
<tr>
<td>E. coli JM105</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>118</td>
</tr>
</tbody>
</table>

Aus den Daten der Expression (Tabelle 10) ist zu entnehmen, dass der E. coli Stamm JM 105 deutlich bessere Aktivität für beide Enzyme zeigt, daher wurden alle weiteren Versuche mit diesem Stamm durchgeführt.

Die Qualität der Expression hängt unter anderem vom Alter der kompetenten Zellen ab, die dafür eingesetzt werden. Ebenso spielt die Behandlung in der Herstellung von kompetenten Zellen eine große Rolle bei der Expression. Beide kompetente Stämme, sowohl JM 105 als auch HB 101, wurden gleichzeitig hergestellt. Daher sind Fehler, die auf o.g. Faktoren zurückzuführen sind, ausgeschlossen.

5.4.2 Optimierung der Aktivität

Um die maximale Aktivität der erhaltenen Rohextrakte ausschöpfen zu können, wurden mehrere Parameter untersucht und variiert.

Optimierung des Aufschlusspuffers

1 g Zellen JM105 wurde in 0,1 M Tris- bzw. 0,1 M Kpi-Puffer mit/ohne BSA (1,5 g/l) 30 %ig aufgeschlossen. Der Aufschluss erfolgte mit Ultraschall bei 70 cont. Cycles. Zusätzlich zu den Puffern wurden 1,5 g/l BSA zur Stabilisierung der Enzyme zugegeben.

Tabelle 11: Aktivitätsvergleich in Abhängigkeit des Aufschlusspuffers

<table>
<thead>
<tr>
<th></th>
<th>0,1M Tris - BSA</th>
<th>0,1M Tris + BSA</th>
<th>0,1M Kpi - BSA</th>
<th>0,1M Kpi + BSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PheDH</td>
<td>520 U/ml</td>
<td>610 U/ml</td>
<td>730 U/ml</td>
<td>1100 U/ml</td>
</tr>
<tr>
<td>malic enzyme</td>
<td>430 U/ml</td>
<td>720 U/ml</td>
<td>320 U/ml</td>
<td>610 U/ml</td>
</tr>
</tbody>
</table>

Der Zusatz an BSA führte in beiden Fällen zu einer Steigerung der Aktivität. Ebenso beeinflusste der Aufschluss-Puffer die Aktivitäten. Hierbei war zu beobachten, dass der geeignete Aufschluss-Puffer für die einzelnen Enzyme verschieden war. Der Kpi-Puffer war für die PheDH besser geeignet als für das malic enzyme, da aber die Aktivitätsabnahme des malic enzymes im Kpi-Puffer relativ gering war, wurden die rekombinanten Zellen nach der heterologen Expression weiterhin in diesem Puffer aufgeschlossen.

Aufschlussdauer zur Untersuchung der Stabilität

Ebenso wurde die Aufschlussdauer überprüft und der kritische Punkt zur Stabilität der Enzyme während dieses Vorganges bestimmt. Aus den Daten in Abbildung 38 ist die optimale Aufschlussdauer zu entnehmen.

Für diesen Versuch wurde folgende Suspension verwendet:
1 g rekombinante Zellen (JM105)
3 ml Kpi-Puffer 0,1 M

Bei längerer Behandlung der Zellen mit Ultraschall nimmt die Aktivität der PheDH drastisch ab, wogegen die Aktivität des malic enzymes erhalten bleibt. Die idealen Aufschlussbedingungen für einen 25 %igen Aufschluß von 1 g rekombinantem *E. coli* JM105 sind daher 4 x 30 s Ultraschallbehandlung mit zwischentelich 3 x 30s Abkühlung im Eisbad.

Bei längeren Behandlungen mit Ultraschall wird die Probe erhitzt, was zu einer Denaturierung der Enzyme führen kann. Die Proteinmenge wurde bei diesem Versuch bestimmt und ist aus Tabelle 12 zu entnehmen.
Tabelle 12: Proteinbestimmung beider exprimierten Enzymen, PheDH und malic enzyme, nach Variation der Aufschlusszeit. Die Zellen wurden nach einer 60-, 30-sekundigen Behandlung zwischenzeitlich 30Sekunden abgekühlt.

<table>
<thead>
<tr>
<th></th>
<th>60sec x 2</th>
<th></th>
<th>30sec x 4</th>
<th></th>
<th>30sec x 8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PheDH</td>
<td>30</td>
<td>105</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>malic enzyme</td>
<td>20</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bei einer Reinigung des malic enzymes bis zur Homogenität konnte eine spezifische Aktivität von 466 U/mg erreicht werden. Die Reinigungsschritte sind in Tabelle 13 zusammengefasst.

Tabelle 13: Aufreinigung des rekombinanten malic enzymes

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Volumen(ml)</th>
<th>Aktivität(U)</th>
<th>Protein(mg)</th>
<th>Spez.Aktivität(u/mg)</th>
<th>Ausbeute(%)</th>
<th>Faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrazentrifugation</td>
<td>0.6</td>
<td>820</td>
<td>13</td>
<td>63</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Hydroxyapatit</td>
<td>9</td>
<td>470</td>
<td>5</td>
<td>94</td>
<td>57</td>
<td>1.49</td>
</tr>
<tr>
<td>Q-Sepharose</td>
<td>7</td>
<td>496</td>
<td>2.1</td>
<td>236</td>
<td>60</td>
<td>3.74</td>
</tr>
<tr>
<td>Phenylsepharose</td>
<td>1.9</td>
<td>280</td>
<td>0.6</td>
<td>466</td>
<td>34</td>
<td>7.39</td>
</tr>
</tbody>
</table>

5.4.3 Km-Wertbestimmung

Für das Substrat und das Coenzym des malic enzymes wurden die \(K_M \)-Werte bestimmt. Die \(K_M \)-Werte wurden an homogenen oder partiell gereinigten rec-malic enzyme Proben bestimmt.

L-Malat: 0,29 mM
NAD+: 0,14 mM

5.4.4 Gekoppelte L-Phenylalanin Synthese unter Regeneration des Coenzymes NADH

Wichtige Faktoren für eine gekoppelte Reaktion sind das pH-Optimum sowie die Temperaturstabilität der beiden Enzymen. Zusätzlich zu der Stabilität der Enzyme spielen weitere Faktoren wie z.B. der Einfluss der verschiedenen Substrate auf die Enzyme eine Rolle.

Ein zweiter Faktor für die gekoppelte Enzymreaktion ist die geeignete Temperatur (Abbildung 40), bei der beide Enzyme für längere Zeit stabil erhalten bleiben. Daher wurde ein weiterer Versuch zur Bestimmung des Temperaturoptimums durchgeführt.

Abbildung 40: Temperaturoptimum. Die Messungen wurden bei pH 8,5 und in 0,1M HEPES-Puffer durchgeführt.

Wie aus Abbildung 40 zu entnehmen ist, liegt das Temperaturoptimum beider Enzyme bei 50°C. Bei 30°C beträgt die gemessene Aktivität nur 60 % davon.

Das malic enzyme ist für längere Zeit bei 45°C stabil. Da die PheDH aber bei diesem Temperaturwert instabil wird (Abbildung 23), wurden die Synthesen bei 30°C durchgeführt, damit die Stabilität beider Enzyme sowie des Coenzymms über längere Zeit gewährleistet werden konnte.

Enzyme erreichen ihre optimale Aktivität im jeweils geeigneten Puffer. Beide Enzyme wurden mit zwei verschiedenen Puffern in je einem Reaktionsansatz getestet (Tabelle 14).
Tabelle 14: Vergleich der PheDH- bzw. der malic enzyme-Aktivität in verschiedenen Reaktionspuffern. Die Aktivitäten sind in Prozent vom Optimalen zu sehen.

<table>
<thead>
<tr>
<th></th>
<th>0,1M HEPES-Puffer (pH 8.0)</th>
<th>0,1M Tris-Puffer (pH 8.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PheDH</td>
<td>84 %</td>
<td>100 %</td>
</tr>
<tr>
<td>malic enz.</td>
<td>100 %</td>
<td>42 %</td>
</tr>
</tbody>
</table>

Da die Aktivität der PheDH in HEPES-Puffer nicht erheblich abnimmt, wurde die gekoppelte Enzymreaktion in diesem Puffer durchgeführt.

Eingesetzt wurden 30 mM Phenylpyruvat, 100 mM Ammoniumsulfat, 100 mM HEPES-Puffer, 70 mM L-Malat, 2 mM NAD⁺, 2 mM Mg²⁺, 25U PheDH (partiell gereinigt) und 30U malic enzyme. Die Proben werden mittels HPLC analysiert (Abbildung 41).

Abbildung 41: HPLC-Analytik zur Nachweis von in situ Regenerationsystems gebildeten L-Phenylalanin.

Die Synthese wurde über mehrere Stunden verfolgt (Abbildung 42). Nach 4 h waren ca. 50 % des eingesetzten Substrates Phenylpyruvat zu L-Phenylalanin umgesetzt.
5.5 Ganzzellumsetzung

Ein wesentlicher Vorteil der Ganzzellumsetzung liegt darin, dass auf die Präparation, möglicherweise Reinigung der Enzyme sowie den Zusatz an freiem Coenzym verzichtet werden kann. Als neue Parameter, die bei ganzen Zellen berücksichtigt werden müssen, kommen jetzt allerdings Transportprozesse durch die Zellmembran hinzu. Ein weiterer zu beachtender Faktor im Vergleich zur Verwendung isolierter Enzyme betrifft die Metabolisierung von Substraten.

Als Standard-Ansatz für die Ganzzellumsetzung wurde folgendes Medium verwendet:

- 0.1 M HEPES-Puffer (pH 8.0)
- 40 mM Phenylpyruvat
- 0.1 M L-Malat
- 0.1 M Ammoniumsulfat
- 2 mM MgCl₂

Die Umsetzung erfolgte bei 30°C und mit 1g rekombinantem E.coli-Zellen. Das gebildete Phenylalanin wurde mittels HPLC nachgewiesen (Abbildung 43).
Abbildung 43: Produkt Nachweis nach einer 5 stündigen Umsetzung mit ganzen rekombinanten E. coli Zellen.

Die Bildung von L-Phe durch rekombinante E.coli -Zellen wurde über 20 h verfolgt und die Ausbeute bestimmt (Abbildung 44).

Abbildung 44: Ganzzellumsetzung zur Produktion von L-Phe. Die Bestimmung von L-Phe erfolgte mittels HPLC.
Eine Metabolisierung des entstandenen Produktes L-Phe konnte nach 20h Inkubation nicht nachgewiesen werden.

5.6 Gezielte Mutagenese

Im Rahmen der Dissertation sollten weiterhin PheDH-Mutanten erzeugt werden, die ein deutlich verändertes Substratspektrum als das der PheDH aufweisen. Als Ausgangsgen für eine Mutagenese zur Amin- bzw. Lactat-Dehydrogenase wurde das Phenylalanin Dehydrogenase-Gen aus den folgenden Gründen ausgewählt:

- Gen ist verfügbar
- Gutes Expressionssystem verfügbar
- Enzym zeigt eine hohe Aktivität (>2000 U/ml, 250 U/mg)
- Raumstruktur bekannt
- Breites Substratspektrum
- Ergebnisse übertragbar auf LeuDH, AlaDH, GluDH

In Abbildung 45 ist der Reaktionsmechanismus der PheDH katalysierten reaktiven Aminierung von Phenylpyruvat dargestellt.

Abbildung 45: Reaktionsmechanismus der reduktiven Aminierung von Phenylalanin mittels PheDH.

Für die Durchführung einer gezielten Mutagenese wurde die räumliche Struktur der PheDH mittels Computereinsatz modelliert und die Position des Substrates bestimmt (Abbildung 3). Ziel ist die Erweiterung des Substratspektrums durch den Austausch von Lysin 66 durch weitere Aminosäuren, die sowohl in Größe, Hydrophobizität als auch Ladung variieren.

Durch eine gezielte Mutagenese von Lysin 66 gegen Isoleucin bzw. Arginin sowie Lysin 78 gegen Isoleucin wurde versucht, der Phenylalanin Dehydrogenase neue Aktivitäten auf weitere Substrate (Tabelle 15) zu verleihen. Die Lysinreste an Position 66 und 78 sind im
aktiven Kanal der PheDH lokalisiert. Interessant ist dieses, da Lysin 66 die Bindungsstelle für die Carboxylgruppe und Lysin 78 für die Ketogruppe im Substrat sind (Vanhoeke et al., 1999). Für die Umsetzung ähnlicher Substrate, welche aber eine Methylgruppe anstatt Carboxylgruppe besitzen, könnte der Austausch des basischen Lysins gegen eine neutrale Aminosäure wie z.B. Isoleucin zum Erfolg führen.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keton = Substrat</td>
<td>Amin</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduktive Aminierung des Phenylacetons</td>
<td></td>
</tr>
<tr>
<td>Ketosäure = Substrat</td>
<td>Hydroxysäure</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduktion der Ketosäure Phenylpyruvat</td>
<td></td>
</tr>
</tbody>
</table>

5.6.1 Mutation des Lysin 66
Um eine veränderte Phenylalanin Dehydrogenase herstellen zu können, musste die Sequenz auf DNA-Ebene verändert werden. Die gezielte Mutagenese erfolgte nach dem Prinzip der überlappenden PCR (Ho et al., 1989). Hierbei wurden Primer verwendet, die zwei DNA-Fragmente mit überlappenden Enden erzeugten. In einer zweiten PCR hybridisierten diese Fragmente, wobei das überlappende 3'-Ende jedes Stranges als Primer für die Synthese des Gegenstranges diente (Abbildung 46). Die Mutationen, die in die Oligonucleotid-Primer eingeführt wurden, fanden sich zu 100 % im Produkt wieder. Das resultierende Fusionsprodukt wurde durch weitere PCR mit den „äußereren“ Primern, die den gesamten Bereich einschließen, amplifiziert.
Abbildung 46: Schema zur Mutagenese mittels PCR nach der Methode der „overlapping extension“, ausgetauscht wurde das Lysin 66 gegen Isoleucin.

Mittels dieser Technologie wurde die Aminosäure Lysin 66 gegen Isoleucin ausgetauscht. Das erhaltene mutierte DNA-Fragment wurde „blunt ends“ in den pKK-223-3 an der SmaI-Schnittstelle kloniert (Abbildung 47). Die Auswahl dieses Plasmids und die Klonierung an der SmaI- Schnittstelle, die etwa 13 bp von der Ribosomenbindungsstelle entfernt ist, wurde zur Vermeidung von inclusion bodies gewählt, da bei Klonierungen der Phenylalanin-Dehydrogenase in anderen Plasmiden solche aufgetreten sind (5.1.5.3).
Abbildung 47: Klonierungsstrategie zur Einführung der Mutation PheDHK66I. Im ersten Schritt wurden zwei Fragmente amplifiziert, die die gleiche Mutation tragen; beim zweiten Schritt hybridisierten sie zum ganzen Gen. Somit konnte das amplifizierte Gen in den Expressionsvektor ligiert werden.
Auswahl der Primer

Die ausgesuchten Codons wurden hinsichtlich dieses Kriteriums, wie oft dieses Codon in der Wt-PheDH genutzt wird, überprüft.

Für den Austausch von Lysin in Isoleucin wurde das Codon ATT unter Berücksichtigung der Codon-Usage von E. coli verwendet.

Mutagenese-Primer

P1′: GCT CAC TGC CAT AAT CAA CGT CAT CGC CCC
P2: GGG GCG ATG ACG TTG ATT ATG GCA GTG AGC

Äußere Primer

P1: ATC AAG GGG TAC ATC ATG AGT ATC GAC AGC
P2′: TTA CTA GGC AGT CGC TGT CGT TGT CGA GGC

Bei der Herstellung der beiden Teilfragmente der PheDH, die die gewünschten Mutationen tragen, bestand der Reaktionsansatz aus:

10 mM Tris pH 8.3
50 mM KCl
1.5 mM MgCl₂
jeweils 200 µM dATP, dCTP, dTTP, dGTP
20-40 pmol jedes Oligonucleotid-Primers
2.5 U Taq-Polymerase pro 100 µl Ansatz
10 ng Plasmid-DNA als PCR-Template (pKK-223-PheDH)

Die PCR Amplifikation wurde auf einem automatischen DNA-Thermal-Cycler (Robocycler, Fa. Stratagene) nach folgendem Programm durchgeführt:

- 3 min Denaturierung bei 94°C (zu Anfang des Programms)
- 1 min Denaturierung bei 94°C
- 1 min Annealing der Primer bei 65°C
- 1 min Extension (Verlängerung der Primer durch die Taq-Polymerase) bei 72°C
- Zyklisches Wiederholen der letzten drei Schritte (25 x)
- 5 min Extension (nach Abschluss der Zyklen, um eine vollständige Verlängerung eventuell vorher abgebrochener DNA-Produkte zu gewährleisten)

Nach der PCR wurden die erhaltenen Fragmente gelektrophoretisch aufgetrennt und isoliert (Abbildung 48). Die zweite PCR zur Überlappung der Fragmente enthielt equimolare Mengen beider Fragmente, wobei von dem kürzeren ca. 60 ng eingesetzt wurden (die Menge des größeren Fragmentes wurde dementsprechend berechnet). Die Annealing- Temperatur richtete sich nach der Schmelztemperatur der resultierenden Überlappungsregion. Somit konnte ein großes Fragment von 1,1 kb amplifiziert werden (Abbildung 49).

Zur Einführung der Mutationen wurde nicht das ganze PheDH-Gen (1068 bp) amplifiziert, sondern nur ca. 891 bp bzw. 213 bp große Fragmente und dann hybridisiert und amplifiziert.
Ergebnisse

Abbildung 49: Sauberes PCR-Produkt nach der Fusion der beiden Fragmente (Abbildung 48; Bahn 3+4) mit einer Größe von 1.1 kb.

Die nach der zweiten PCR erhaltenen DNA-Fragmente, die die Mutation K66I enthalten sollten, wurden in den Smal geschnittenen pUC18 bzw. pKK223-3 kloniert und vollständig sequenziert.
Ergebnisse

Die rekombinanten Klone wurden mittels Restriktionsanalyse auf das Vorhandensein und die richtige Orientierung des Inserts geprüft. Mit einem positiven Klon wurde anschließend der Expressionsstamm JM105 transformiert und das PheDH-Mutein exprimiert.

5.6.2 Sequenzierung der K66I

Das neu konstruierte Mutein wurde sequenziert und den Austausch des Lysin 66 zu Isoleucin bestimmt.

Abbildung 50: Gensequenz des K66I-Muteins.

5.6.3 Expression der PheDH-Mutante K66I

Da E. coli JM-105 sich als geeigneter Stamm für die Expression der PheDH erwiesen hat, wurde das neu hergestellte PheDH-Mutein „pKK-223-K66I“ in diesen Stamm transformiert und zur Expression eingesetzt. Die Anzucht erfolgte in 250 ml LB-amp, induziert wurde mit 1mM IPTG bei einer OD$_{590}$ von 0,6. Der Aktivitätstest dieses Muteins erfolgte sowohl mit Phenylpyruvat (um die Restaktivität der PheDH zu überprüfen) als auch für die gewünschte Aktivität mit Phenylaceton als Substrat.

Erwartungsgemäß besitzt das Mutein keine Aktivität mehr gegenüber Phenylpyruvat als Substrat. Da die Bindungsstelle Lysin 66 im aktiven Zentrum der PheDH zur Carboxylgruppe
des Phenylpyruvats (Abbildung 51a) durch eine Aminosäure mit neutraler Seitenkette „Isoleucin“ ausgetauscht (Abbildung 51b) wurde, verlor die PheDH die Aktivität auf reduktive Aminierung des Phenylpyruvats.

Abbildung 52: Reaktionsmechanismus der reduktiven Aminierung von Phenylacetan.
Eine Aktivität bezüglich des Phenylacetons konnte nicht nachgewiesen werden. Durch diesen Austausch konnte zwar die Ladung der Bindungsstelle zum Substrat verändert werden, aber für die Akzeptanz eines neuen Substrates, könnten neben der Mutagenese von Lysin 66 noch weitere Aminosäureaustausche notwendig sein. Da die räumliche Struktur ähnlicher Amin Dehydrogenasen wie die der gewünschten nicht bekannt sind, war es nicht möglich die weitere Optimierung durch gezielten Aminosäureaustausch durchzuführen. Das Mutein K66I trägt die gewünschte Mutation (5.6.2), trotzdem konnte keine Aktivität bezüglich Phenylaceton festgestellt werden. Dies könnte konformationsbedingt sein, was zu der Überlegung führte, die Sequenz dieses Muteins ungezielt mittels Zufallsmutagenese (directed evolution) zu verändern. Daher wurde dieses Mutein als Template benutzt und für die weitere Optimierung eingesetzt.

5.6.4 Herstellung weiterer Muteine
Aufgrund der Überlegung, basische Aminosäuren durch neutrale auszutauschen, um eine Aminosäure Dehydrogenase in eine Amin Dehydrogenase umzuwandeln (zu diesem Zeitpunkt war die Kristallstruktur noch unbekannt), wurden die Muteine R210I bzw. R140I hergestellt.

Bei der Expression der Mutante R210I konnte kein aktives Protein nachgewiesen werden. Da Arginin bei dem benutzten pH-Wert eine positive Ladung aufweist und dadurch Interaktionen mit anderen Aminosäuren hervorruft, kann ein Abstoßungseffekt bei Austausch gegen eine neutrale Aminosäure (Isoleucin) auftreten.

Es wurde eine verminderte PheDH-Aktivität (83 % der ursprünglichen PheDH-Aktivität gegen Phenylpyruvat) bei dem exprimierten Protein der Mutante R140I beobachtet. Durch diesen Austausch konnte die Proteinfaltung verlangsamt und dadurch ein proteolytischer Abbau begünstigt werden. Vereinfacht: Das Mutein ist für Proteasen angreifbarer. Die gewünschte Amin Dehydrogenase Aktivität gegenüber Phenylaceton war nicht nachzuweisen.

Das Mutein PheDH-R210I zeigt keine Aktivität, weder die ursprüngliche PheDH Aktivität noch eine neue Amin Dehydrogenase Aktivität. Obwohl Arginin 210 nicht im aktiven Zentrum beteiligt ist, führt eine Deletion bzw. Substitution zum Verlust der PheDH-Aktivität.
5.6.5 Mutation von Lysin 66 zu Arginin und Lysin 78 zu Isoleucin

Dieser Fall einer direkten Reduktion der Ketogruppe ist bei Lactat-Dehydrogenasen zu beobachten. Um einen ähnlichen Mechanismus wie bei der Lactat-Dehydrogenase und damit eine Reduktion der Ketogruppe des Phenylpyruvats durch die PheDH zu erreichen, wurden die Bindungsstellen zum Substrat beider Enzymen verglichen. In der Lactat Dehydrogenase ist Arginin für die Bindung der Carboxylgruppe verantwortlich (Luyten et al., 1989), wogegen in der PheDH wie bei allen Aminosäure-Dehydrogenasen Lysin diesen Part übernimmt.

Es besteht eine Ähnlichkeit in der PheDH zur LDH in Bezug auf die Bindung zur Carboxylgruppe bzw. Ketogruppe des Substrates. Sowohl in der LDH als auch in der PheDH sind die beteiligten Aminosäuren basisch. Da nach Luyten et al. der Austausch der basischen Aminosäure (Bindungsstelle für die Carboxylgruppe im Substrat) keinen Einfluss auf die Orientierung brachte, wurde in dieser Arbeit ebenso die Bindung zur Ketogruppe untersucht. Durch die Mutation des Lysin 78 gegen Isoleucin könnte obiger Abstand verringert und die Umorientierung des Substrates verhindert werden, so das eine Hydrierung der Ketogruppe stattfinden könnte.
5.6.6 PCR der K66R-Mutanten und deren Klonierung

Zur Klonierung der PheDH Mutante K66R wurde das gesamte Ursprungsplasmid (pKK-223-3-PheDH-Gen; Abbildung 53) mittels PCR amplifiziert (Deng & Nickoloff, 1992).

Abbildung 53: Klonierungsstrategie der PheDH-Mutanten am Beispiel der PheDH-K66R. Das ganze rekombinante Plasmid wird mittels Mutagenese-Primer amplifiziert und in E.coli-Zellen transformiert.
Beide Primer beinhalten die gewünschte Mutation.

P1: GCT CAC TGC CAT **TCT** CAA CGT CAT CGC CCC
P2: GGG GCG ATG ACG TTG **AGA** ATG GCA GTG AGC

Im Anschluß an die PCR wird die parentale Template-DNA mit dem Restriktionsenzym *DpnI* abgebaut. *DpnI* erkennt ausschließlich methylierte DNA. Die verbliebene mutierte DNA wird in kompetente *E. coli* X11 Blue bzw. JM105 transformiert, wobei eventuelle Einzelstrangbrüche vom bakteriellen Reparatursystem behoben werden. Der Anteil mutierter Plasmide ist ~80 % (Stratagene).

Positive Klone wurden sequenziert und ein fehlerfreies mutiertes Plasmid zur Expression eingesetzt.

5.6.7 Aktivitätsnachweis des PheDH-Muteins K66R und K78I

Die Muteine PheDH-K66R und K78I wurden in 200 ml Maßstab kultiviert und die Expression erfolgte ausschließlich in *E. coli* JM105. Während die Expression der rec-PheDH (*pKK223-3-PheDH*) in *E. coli* JM105 zu einem Anteil von ca. 13 % PheDH des löslichen Gesamtproteins führte, beträgt der Anteil der PheDH-K66R nur 10 % und der K78I etwa 4 % des löslichen Zellproteins.

Das natürliche Substrat der wt-PheDH ist Phenylpyruvat, das mit Zusatz von Ammoniumionen durch eine reduktive Aminierung zum Phenylalanin umgesetzt wird. Bei der Aktivitätsbestimmung des Muteins PheDH-K66R bzw. K78I wurde neben der reduktiven Aminierung auch ein Parallelversuch ohne Ammoniumzusatz durchgeführt, um zu prüfen, ob eine direkte Reduktion stattfinden kann, was auf einen Reaktionsmechanismus analog der Lactat Dehydrogenase hinweisen würde.

![Reaktionsmechanismus](image)

Abbildung 54: Reaktionsmechanismus zur Umsetzung der Ketosäure Phenylpyruvat zur Hydroxsäure Phenyllactat.

gezielte Mutagenese, konnte nicht erreicht werden. Das basische Lysin wurde zwar durch die Mutagenese durch die basische Aminosäure Arginin ausgetauscht, dies hat aber nicht zu einem geänderten Reaktionsablauf (Reduktion statt reaktiver Aminierung) geführt.
Durch den Austausch der basischen Aminosäure Lysin gegen eine neutrale Aminosäure im Mutein K78I, ist die ursprüngliche PheDH- Aktivität verloren gegangen. Die gewünschte Aktivität mit einem direkten Hydridtransfer konnte ebenso durch diesen Austausch nicht erreicht werden.

Tabelle 16: Zusammenfassung der hergestellten Mutanten und deren neue Eigenschaften. (O) getestet aber keine Aktivität, (-) nicht getestet. Die Restaktivität bezieht sich auf der rec-PheDH.

<table>
<thead>
<tr>
<th>Mutante</th>
<th>Reduktive Aminierung Phenylpyruvat</th>
<th>Reduktion Phenylpyruvat</th>
<th>Reduktion Phenylacetan</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 78 I</td>
<td>O</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>K 66 R</td>
<td>90 % Restaktivität</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>K 66 I</td>
<td>O</td>
<td>-</td>
<td>O</td>
</tr>
<tr>
<td>R 210 I</td>
<td>O</td>
<td>-</td>
<td>O</td>
</tr>
<tr>
<td>R 140 I</td>
<td>83 % Restaktivität</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
5.7 Zufallsmutagenese

Die error-prone PCR-Methode für die Zufallsmutagenese wurde für die Erzeugung der Mutanten verwendet. Dafür wurde das folgende PCR-Protokoll verwendet:

10 µl 10x Mutagenese Puffer inkl. MgCl₂
10 µl 10x Mutagenese-dNTP-mix
0-10 µl 5 mM MnCl₂ (0-0.5 mM Endkonz.)
2 fmol Template-DNA (ca. 7.5 ng eines 5.7 kb Plasmid)
je 40 pmol upstream and downstream primer
1µl Taq- Polymerase
ad 100µl Millipor- A-dest

Mit Mineralöl überschichten

Mutagenese Puffer:

70 mM MgCl₂
500 mM KCl
100 mM Tris-HCl, pH 8.3 bei 25°C
0,1 % (W/V) Gelatine

Mutagenese dNTP-mix (10x):

2 mM dGTP
2 mM dATP
10 mM dTTP
10 mM dCTP

Mit der Optimierung des PCR-Protokolls und dem Einsatz bestimmter Konzentrationen an dNTPs bzw. MnCl₂ konnten 2-4 Mutationen eingeführt werden. Falsche Konzentrationen an MgCl₂ führten bei der PheDH-Amplifikation aufgrund des GC-Gehaltes zu unkontrollierter Zahl an Mutationen.
Es wurden etwa 12.000 Kolonien aus der Zufallsmutagenese sowohl gegen Phenylacetone als auch Phenylpyruvat getestet. Die Aktivität gegen Phenylpyruvat wurde sowohl bezüglich reaktiver Aminierung (mit (NH₄)₂SO₄) als auch bezüglich einfacher Reduktion ohne (NH₄)₂SO₄ überprüft. Aufgrund der hohen Zahl an erzeugten Muteinen wurde ein schneller Farbtest zum Screening der Klone entwickelt.

5.8 Entwicklung eines Farbtests als Screeningsmethode

NAD⁺ bzw. NADP⁺-abhängige Enzyme sind durch diese Methode nachweisbar.

Substrat (L-Phenylalanin) 20 mM
INT (oder TNBT) 25 mg
PES 2 mg/100ml Puffer
TEA pH 7.0 50 mM
Abbildung 55: Reaktionsschema zum Verlauf des Farbtests.

Zum Auffinden der gewünschten Mutanten wurde Phenylalanin als Donor zur Reduktion des Coenzyms NAD⁺ eingesetzt. Da die in dieser Arbeit hergestellten Mutanten unter anderem auf Amin-Dehydrogenase Aktivität überprüft werden sollten, konnte diese Methode nicht eingesetzt werden, da das einzusetzende Substrat Phenylpropylamin nicht kommerziell erhältlich und die Synthese dieses Substrates nicht etabliert ist.

Die Screeningsmethode wurde für den Nachweis der K66R-Mutanten mit Phenyllactat und L-Phenylalanin als Substrate verwendet.
5.8.1 K66R–Muteine

Etwa 20.000 durch die Zufallsmutagenese hergestellten Kolonien wurden untersucht und ca.75% der Kolonien zeigten Expression einer aktiven PheDH. Die neuen Muteine behielten haben die PheDH-Aktivität und zwei Muteine davon zeigten zusätzlich die gewünschte Aktivität auf Reduktion von Phenylpyruvat. Die neuen positiven Muteine wurden auf die Reduktion des Phenylpyruvats ohne Ammoniumionen überprüft, wodurch eine Hydroxysäure als Produkt entsteht. Einige positiv gescreenten Muteine sind in Abbildung 57 dargestellt.

Basierend auf den Daten der dreidimensionalen Struktur der PheDH wurden die neuen Mutationen mittels 3D-Programm (Swiss PDB Viewer) modelliert. Abbildung 59 verdeutlicht die Lage der ausgetauschten Aminosäuren in der PheDH.

5.8.2 Biochemische Charakterisierung des K66R-8-Muteins

Das neuhergestellten Mutein, das die drei o.g. Mutationen trägt, zeigt eine neue Aktivität von 13 U/ml gegen Phenylpyruvat, das zu Phenyllactat reduziert wird.

\[
\begin{align*}
\text{Phenylpyruvat} &+ \text{NADH} &\xrightarrow{\text{Mutein K66R}} &\text{Phenyllactat} + \text{NAD}^+
\end{align*}
\]

Abbildung 61: Reaktionsschema des K66R-8-Muteins.

Ergebnisse

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Km (mM) (WT-PheDH)</th>
<th>Km (mM) (K66R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylpyruvat (reductive Aminierung)</td>
<td>0.13</td>
<td>0.17</td>
</tr>
<tr>
<td>Phenylalanin (oxidative Desaminierung)</td>
<td>0.87</td>
<td>0.7</td>
</tr>
<tr>
<td>Phenylpyruvat (Reduktion zum Phenyllactat)</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Es wurde ebenso überprüft, ob die neuen Mutationen in der PheDH Einfluss auf die Temperatur- bzw. pH-Optima haben. Daher wurde der Aktivitätstest bei verschiedenen pH-Werten von 5-10 (Abbildung 62) und Temperaturen zwischen 20 und 50°C (Abbildung 63) durchgeführt. Dabei wurde ein Tris/HCl Puffer (100 mM) im Bereich von pH-Wert 7-10 mit NaOH bzw. HCl eingestellt. Für niedrige pH-Werte wurde der Puffer Glycyl-Glycin (100 mM) benutzt, da er eine größere Pufferkapazität besitzt.

5.8.3 Synthese von Phenyllactat mit dem Mutein K66R-8

Mit den eingeführten 3 Mutationen wurde der Reaktionsmechanismus geändert, das Substratspektrum der PheDH erweitert und somit ein ähnlicher Mechanismus wie der der Lactat-Dehydrogenase, also eine Reduktion des Eduktes ohne Zusatz von Ammoniumionen erreicht. Für den Nachweis des gebildeten Produktes wurde eine Synthese mit gekoppelter Enzymreaktion unter Regeneration des Coenzmys mit Formiat-Dehydrogenase durchgeführt. Eingesetzt wurden 30 mM Phenylpyruvat, 100 mM HEPES-Puffer, 100 mM Formiat, 2 mM NAD⁺, 2 mM Mg²⁺, 20U K66R-8 und 30U Formiat Dehydrogenase.

Das durch das Mutein K66R-8, das die 3 Mutationen K66R, T208A und E225D trägt, gebildete Produkt Phenyllactat wurde mittels GC-Analyse nachgewiesen.

Abbildung 64a: GC-Chromatogramm des Syntheseansatzes der K66R-8 nach zweistündiger Inkubation. Eingesetzt wurden 30 mM Phenylpyruvat, 100 mM HEPES-Puffer, 100 mM Formiat, 2 mM NAD⁺, 2 mM MgCl₂, 20 U K66R-8 und 30 U Formiat Dehydrogenase.

Abbildung 64b: GC-Chromatogramm des Syntheseansatzes der K66R-8 nach 13 h Inkubation.

Abbildung 65: Einfluss der Mutationen K66R, T208A und E225D, auf die Enantioselektivität der Reduktion von Phenylpyruvat (30 mM) in Abhängigkeit von der Zeit.

Die Ergebnisse deuten auf eine Racemase. Um dies nachzuweisen wurde als Substrat 30mM L-Phenyllactat mit Rohextrakten aus sowohl E. coli JM105 als auch Mutein K6R-8 eingesetzt und die Reaktion über 20 h verfolgt. Dabei konnte keine Racemisierung des L-Phenyllactat zum D-Phenyllactat beobachtet werden.

Aufgrund der Ergebnisse bei der Umsetzung mit dem neuen Mutein K66R-8 und der schlechten Enantioselektivität wurden die 3 Mutationen genauer untersucht und eine gezielte Rückmutagenese durchgeführt. Dabei wurden die 3 Mutationen rückgängig gemacht und deren Einfluss auf Enantioselektivität und das Substratspektrums untersucht. In Tabelle 18 werden die verschiedenen Muteine verglichen und deren Einfluss auf die Aktivität erläutert.

<table>
<thead>
<tr>
<th>Mutein</th>
<th>PheDH-Aktivität (U/mg)</th>
<th>Phenyllactat-DH-Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>R66K, T208A, E225D</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>K66R, A208T, E225D</td>
<td>63</td>
<td>-</td>
</tr>
<tr>
<td>K66R, T206A, D225E</td>
<td>82</td>
<td>-</td>
</tr>
</tbody>
</table>
Aus Tabelle 18 ist zu entnehmen, dass die drei Mutationen im Mutein K66R-8 als Kombination für die neue Aktivität der PheDH verantwortlich sind. Die Substitution der einzelnen Mutationen zu den ursprünglichen Codons der PheDH führte zum Verlust der LDH-Aktivität.

5.8.4 Austausch K66I

Neben der Mutante K66R ist eine weitere durch gezielte Mutagenese erzeugt worden, bei der das Lysin 66 gegen Isoleucin (K66I) ausgetauscht worden ist. Auch dieses Mutein ist als Template für eine Reihe ungerichteter Mutationen verwendet worden.

Etwa 60 % der Muteine aus der zweiten Enzymvariantenbank, die mit der wt-PheDH als Template hergestellt wurden, zeigten PheDH-Aktivität. Die Einführung der Mutationen in das PheDH-Gen hat keinen Einfluss auf die Enantioselektivität. Bei der Umsetzung von Phenylpyruvat (Abbildung 66) war der ee-Wert von dem der PheDH nicht zu unterscheiden und lag bei >99 %.
Abbildung 66: Produktnachweis nach einer 9 stündigen Umsetzung mit dem Mutein K66I. Zur Regenerierung des Coenzmys NADH wurden 40 U Formiat Dehydrogenase eingesetzt. Die reduktive Aminierung erfolgte mit \((\text{NH}_4)_2\text{SO}_4\) und 30 mM Phenylpyruvat als Substrat. (L-Phe = 23 min; der Peak bei 29 min ist nicht identifiziert).

In allen untersuchten Muteinen waren keine neuen Aktivitäten bezüglich der Umsetzung von Phenylaceton nachweisbar. Diese neukonstruierte Enzymbank wird in weiteren Arbeiten auf neue Eigenschaften und neue Umsetzungen von gewünschten Substraten Verwendung finden.
6 Diskussion

Klonierung und Expression der PheDH aus *Rhodococcus* sp. M4

Das Gen der Phenylalanin Dehydrogenase aus *Rhodococcus* sp. M4 (Hummel et al., 1987) ist wie die meisten Gene in Organismen der Actinomyces- Familie (Corynebacteria, Mycobacteria, und Nocardia) (Watts et al., 2001) hoch GC-reich (Anteil: 65 %). Das führte zur Bildung von Sekundärstrukturen (Choi et al., 1999), was die Amplifizierung des PheDH-Gens mittels PCR erschwert. Durch Zugabe von DMSO (3%) und die Variation der Annealingstemperatur konnten Amplifikate gewonnen und kloniert werden. Die Klonierung führte anfänglich zur Bildung von „inclusion bodies“ (Hibino et al., 1994). Der Versuch zur Vermeidung dieses Problems mittels Klonierungen in verschiedenen Vektoren, pTRC99a, pET16b, pET11a, führte nicht zur Expression eines aktiven Proteins. Das exprimierte Protein wurde mittels SDS-Gel-Elektrophorese als „inclusion bodies“ analysiert. Nach Literaturangaben könnten unlösslichen Proteine durch physikalische bzw. biochemische Methoden (Temperatur, Induktion, Schüttelgeschwindigkeit) (Shin et al., 1997; Xu et al., 1994; Yang et al., 1997; Zhang et al., 1995) entfaltet werden, was aber bei der exprimierten PheDH nicht zu positiven Ergebnissen führte.

Da die Klonierung nach dieser Strategie zu inclusion bodies geführt hat, wurde die PheDH an der SmaI-Schnittstelle im Expressionsvektor pKK223-3 mit einer „nicht optimalen“ Entfernung von 14 bp des Startcodons zur Ribosomenbindungsstelle kloniert. Aufgrund dieses Abstandes konnte eine schwächere Translation erreicht werden, was zu einer langsameren und schwächeren Expression führte. Dem gebildeten Enzym bleibt dann genug Zeit und Raum zur Faltung und man erhält zwar weniger, dafür aber aktives Enzym. Zusätzlich dazu besitzt das verwendete Plasmid pKK223-3 einen schwächeren Promotor als beispielsweise die oben verwendeten pET-Systeme, was zu einer weiteren Abschwächung der Expression führt. Durch die Auswahl eines geeigneten Expressionsstammes *E. coli* JM105 konnte die Aktivität mit dem gleichen Plasmidkonstrukt auf das 3-fache im Vergleich zum *E.coli* -HB101 erhöht werden.
Die Charakterisierung zeigt eine stabile rekombinante PheDH, die nach 36 h bei 30°C noch etwa 95 % Restaktivität besitzt. Eine Denaturierung erfolgt erst bei höhere Temperaturen von 50°C. Nach 36 h konnten bei 37°C noch 90 % Restaktivität der rec-PheDH gemessen werden. Im Vergleich dazu zeigte die Wildtyp-PheDH nach 36 h bei 30°C nur noch etwa 50 % Restaktivität. Da die Sequenz der Wt-PheDH und die der rec-PheDH gleich sind, kann eine falsche Faltung des Proteins ausgeschlossen werden. Die schlechte Stabilität der PheDH im Wildtyp beruht wahrscheinlich auf vorhandenen Proteasen, die das Enzym nach Aufschluss der Zellen abbauen (De Mot et al., 1998). Durch die Expression der PheDH aus Rhodococcus sp. M4 in E. coli-JM105 und somit der Vermeidung von PheDH-spezifischen Proteasen, konnte die Stabilität des Enzyms erhöht werden.

Die optimale Temperatur für eine Enzymreaktion liegt sowohl für die rec-PheDH als auch für WT-PheDH bei 50 °C, die Enzymtests und Synthesereaktionen wurden jedoch aus Stabilitätsgründen bei 30 °C durchgeführt.

In einer ersten Arbeit, in der das Vorkommen der PheDH Rhodococcus sp. M4 beschrieben wurde, ist eine partielle Reinigung für dieses Enzym bereits veröffentlicht worden (Hummel et al., 1987). Die Reinigung der recPheDH aus E. coli-Rohextrakten erfolgte in Anlehnung an dieses Protokoll. Für die Reinigung bis zur Homogenität konnte allerdings ein zusätzlicher Reinigungsschritt zu den Literaturangaben durch eine Hitzedenaturierung der Begleitproteine in Gegenwart von 5 % (w/v) L-Phenylalanin eingefügt werden. Die Entfernung des L-Phenylalanins wurde mittels Gelfiltrationschromatographie durchgeführt.

Optimierung und Fermentation der PheDH

Neben der Auswahl eines geeigneten Vektor-Wirt-Systems wurden weitere Optimierungen, wie Induktionsparameter, variiert, um eine effiziente Proteinexpression zu erzielen. Einerseits wurde die Induktorkonzentration zwischen 0 und 3 mM IPTG (β-D-Isopropylthiogalaktosid) bei einem konstanten Induktionszeitpunkt (OD_{600}= 0.6) variiert. Die Untersuchung führte zu dem Ergebnis, dass mit einer IPTG-Konzentration von 0.7 mM eine optimale Expression zu erzielen war. In der Kontrollexpression ohne IPTG-Induktion konnte nur geringe PheDH-Aktivität (35 U/ml) im Rohextrakt nachgewiesen werden. Folglich unterdrückte der lac I-Repressor die Expression des PheDH-Gens im nicht induzierten Zustand fast vollständig (van den Bogaard et al., 2000). Dies ist von Vorteil, da die Expression des Fremdproteins eine Belastung des Zellstoffwechsels bedeutet und zu einer erheblich geringeren Zellausbeute
führt. Eine hohe Konzentration an IPTG kann das Wachstum der Zellen hemmen (Rhee et al., 1997).

Andererseits wurde der Zeitpunkt der Induktion nach Inokulation variiert, wobei alle Kulturen mit 1 mM IPTG induziert worden sind. Die Zellen wurden 24 h nach Inokulation geerntet und die spezifischen Aktivitäten in den zellfreien Rohextrakten bestimmt. Es zeigt sich, dass der Zeitpunkt der Induktion einen großen Einfluss auf das Wachstum der Zellen hat. Der Einfluss des Induktionszeitpunkts auf die Systemproduktivität wurde mittels zweier Experimente abgeschätzt, die die Zunahme der Volumenaktivität an PheDH nach Induktion am Anfang bzw. in der Mitte der Fütterungsphase bestimmten. Die Ergebnisse, die in Abbildung 21 dargestellt sind, wiesen daraufhin, dass, ähnlich zu Versuchen in Schüttelkultur, eine signifikante Abhängigkeit der recPheDH-Expression vom Induktionszeitpunkt besteht. Eine zu frühe Induktion kann die Zellen unter Stressfaktoren setzen, was zu einer Störung des Expressionsapparats führen kann (Donovan et al., 2000). Eine Induktion in der stationären Phase, in der die Wachstums- und Sterberate gleich sind, kann nicht zu einer produktiven Expression führen.

Nach Riesenberg (Riesenberg, 1991) und Fieschko (Fieschko, 1989) erfolgt die Bildung von wachstumsinhibierender Nebenprodukte wie Acetat in komplexen Medien bei Wachstumsraten oberhalb von 0,2 h⁻¹ (Riesenberg et al., 1991) und in definierten Medien bei Wachstumsrate oberhalb von 0,35 h⁻¹. Mit abnehmender spezifischer Wachstumsrate steigt die Expression des rekombinannten Proteins (Fieschko, 1989). Da in dieser Arbeit die Kultivierung in komplexen Medien erfolgte, war für die Kultivierung des Expressionsstammes JM105 eine spezifische Wachstumsrate von 0,2 h⁻¹ angebracht.

Die Untersuchungen in dieser Arbeit zeigten, dass Acetat bei linearer Zuführung der C-Quelle ständig gebildet wurde und im Gegensatz hierzu kein Acetat bei exponentieller Zuführung nachweisbar war. Daher wurden weitere Experimente mit exponentieller Zuführung durchgeführt.

In der HZD-Fermentation wird zwar eine hohe Biomasse erzielt, dies wurde aber durch eine geringe spezifische Aktivität erkauft. Durch die Zugabe von Vitaminen, Spurenelementen und optimiertem Medium mit Nährstoffen können die Zellen schnell wachsen und eine hohe optische Dichte erreichen. Somit werden die Zellen aber unter Stress gesetzt, so dass die Expression nicht ideal verläuft, was sich auf die spezifische Aktivität niederschlägt.

Bei einer ersten Fermentation der PheDH im Batch war die spezifische Aktivität geringer als bei der Anzucht im Kolben. Der Grund für die schwächere Aktivität lag möglicherweise im späten Erntezeitpunkt, da die Lyse der Zellen zur Desaktivierung der Enzyme führen kann. Erwartet war eine bessere Aktivität als im Kolben aufgrund der besseren Sauerstoffversorgung sowie der pH-Regulierung.

Coexpression der PheDH und des malic enzymes

Für die Klonierung des malic enzymes 3’ zur PheDH an der PstI- und HindIII-Schnittstelle war eine eigene Ribosomenbindungsstelle notwendig, da am C-Terminus der PheDH ein Stopcodon angehängt war. Somit konnte eine Expression beider Enzyme gleichzeitig
Diskussion

erfolgen. Interessant wäre, aus den zwei Enzymen (PheDH / malic enzyme) ein Fusionsprotein herzustellen. Dies kann durch die Deletion des Stopcodons am C-Terminus der PheDH sowie der Ribosomenbindungsstelle vor dem malic enzyme erreicht werden. Eine katalysierte Reaktion der PheDH kann theoretisch erfolgen, da das aktive Zentrum nicht am C-Terminus der PheDH liegt (Vanhook

et al., 1999). Somit kann sowohl die Umsetzung des Substrates als auch die Regeneration des Coenzymes im gleichen fusionierten Protein erfolgen. Da keine Kristallstruktur vom malic enzyme aus E. coli K12 vorliegt und noch nicht bekannt ist, wo das aktive Zentrum sich befindet, wäre eine erfolgreiche Umsetzung durch ein Fusionsprotein nur hypothetisch. Fraglich ist dabei auch, mit welcher Struktur die beiden Enzyme als Fusionsprotein exprimiert werden.

Die Aktivität beider rekombinanten Enzyme im E. coli- Stamm JM 105 ist höher als im HB101 und liegt bei 300 U/ml für malic enzyme und 400 U/ml für die PheDH. Die Aktivität des malic enzymes in diesem Konstrukt mit einer exprimierten PheDH ist eindeutig niedriger als ein homolog exprimiertes malic enzyme allein. Es liegt daran, dass der Haushalt an Aminosäuren während der Translation auf mehrere Enzymen verteilt ist, sodass in dem Fall weniger Enzymmenge hergestellt wird als wenn die Aminosäuren einem exprimierten Enzym allein zur Verfügung ständen.

Ganzzell-Umsetzung

Als neue Parameter, die bei ganzen Zellen berücksichtigt werden müssen, kommen jetzt allerdings Transportprozesse durch die Zellmembran hinzu (Andersen et al., 2001; Sanden et al., 2002). Ein Versuch zur Immobilisierung der Zellen mit CTAB, um sie durchlässig zu machen, führte nicht zu Steigerung des Umsatzes. Das liegt daran, dass eine Aufnahme des Substrates Phenylpyruvat ohne Immobilisierung der Zellwand möglich war. Die Überlegung, dass die Substrate Phenylpyruvat und Phenylalanin als C-Quelle metabolisiert werden könnten, hat sich nicht bestätigt. Es konnten zwar nach der Umsetzung nur 90% des erwarteten Produktes L-Phenylalanin festgestellt werden, das ist aber nicht unbedingt auf Metabolisierung zurückzuführen ist. Ursache könnten die Reaktionsbedingungen sein, da die Reaktion im Batch Ansatz durchgeführt wurde und das Produkt nicht der Reaktion entzogen worden ist.

Eine weitere Überlegung war, dass L-Malat über eine E. coli eigene Malat-Dehydrogenase metabolisiert wird. Aus diesem Grund wurde L-Malat im Überschuss zugegeben und somit dieses Problem vermieden. Im Vergleich zur Umsetzung mit isolierten Enzymen war es allerdings wahrscheinlich, dass Pyruvat, das durch die Umsetzung von L-Malat für die NADH

Regenerierung entsteht, als leicht verwertbare C-Verbindung in den Primärstoffwechsel einfließt und nicht mehr als störendes Nebenprodukt, wie bei der Verwendung isolierter Enzyme vorliegt. Bei *E. coli* und anderen Bakterien wird Pyruvat durch Phosphoenolpyruvat-Synthetase direkt phosphoryliert und fließt somit in den Stoffwechsel der Zellen ein (Geerse et al., 1989).

\[
\text{Pyruvat} + \text{ATP} + \text{H}_2\text{O} \xrightarrow{\text{PEP-Synthetase}} \text{Phosphoenolpyruvat} + \text{AMP} + \text{P}_i
\]

Der Vorteil der Formiat Dehydrogenase, die sich bis dato für die Regenerierung des Coenzymes NADH *in situ* durchgesetzt hat, liegt darin, dass bei der Regeneration durch Formiat nur CO\(_2\) und keine weiteren Nebenprodukte entstehen (Schütte et al., 1976). Da aber in dieser Arbeit nachgewiesen wurde, dass das malic enzyme ein durchaus erfolgreiches System darstellt und im Ganzellsystem keine Nebenprodukte das gewünschte Produkt verunreinigen, könnten solche in dieser Arbeit entwickelten Konstrukte technisch und wirtschaftlich interessanter sein. Dazu kommt der wirtschaftliche Faktor, da L-Malat im Vergleich zum Na-Formiat vergleichbar kostengünstig ist. Ein weiterer wesentlicher Vorteil der Ganzzellumsetzung liegt darin, dass auf die Präparation, möglicherweise Reinigung der Enzyme sowie den Zusatz an freiem Coenzym verzichtet werden kann.

Für eine gekoppelte Reaktion zweier Enzyme wurden bestimmte Parameter für die Stabilität der beiden Enzymen untersucht, um optimale Verhältnisse zu schaffen. Wichtige Faktoren sind das pH-Optimum sowie die Temperaturstabilität der beiden Enzyme. Zusätzlich zu der Stabilität der Enzyme spielen weitere Faktoren, wie z.B. der Einfluss der verschiedenen Substrate auf die Enzyme eine Rolle (Brunhuber et al., 2000; Solovjeva & Kochetov, 1999).

Die PheDH könnte durch Malat inhibiert werden bzw. malic enzyme durch das Phenylpyruvat. In Bezug auf diese Coexpression der Phenylalanin Dehydrogenase aus *Rhodococcus* sp. M4 und des malic enzymes aus *E. coli* konnte keine Inhibierung festgestellt werden. Vor der Übertragung dieser Technik auf weitere Enzyme sollte aber eine Untersuchung bezüglich der Inhibierung durchgeführt werden.

Es wurde für einen wirtschaftlichen Einsatz der Ganzzell-Umsetzung untersucht, ob das malic enzyme durch D- Malat inhibiert wird. Eine Inhibierung war nicht festzustellen, daher ist es von wirtschaftlicher Bedeutung, das kostengünstigere racemische D,L- Malat für die Regenerierung des Coenzymes einzusetzen.
Bei einer in situ Regenerierung führte der Zusatz an BSA zu einer Steigerung der Aktivität. Ebenso beeinflusste der Aufschluß-Puffer die Aktivitäten. Hierbei war zu beobachten, dass der geeignete Aufschluß-Puffer für die einzelnen Enzyme unterschiedlich war. Der Kpi-Puffer war für die PheDH besser geeignet als für das malic enzyme, da aber die Aktivitätsabnahme des malic enzyme im Kpi-Puffer nicht drastisch war, wurden die rekombinanten Zellen nach der heterologen Expression weiterhin im Kpi-Puffer aufgeschlossen.

Dieses Konstrukt mit dem malic enzyme als Regenerationssystem eröffnet neue Möglichkeiten für Coexpressionen mit weiteren Dehydrogenasen und damit Ganzzell-Umsetzungen von verschiedenen Substraten.

Entwicklung einer Screeningsmethode

Diese neue Screeningsmethode ist zum Screening von Dehydrogenasen soweit optimiert und somit eine schnelle und effektive Methode.
Mutagenese

Die Klonierung der PheDH aus *Rhodococcus* sp. M4 war die Voraussetzung für die gezielte- bzw. Zufallsmutagenese, um neue Enzymvarianten für die Herstellung von Aminen und Hydroxysäuren zu konstruieren.

Keine Expression konnte bei der Mutante R210I festgestellt werden. Ein Grund dafür könnte die Ladung des Arginins sein. Da Arginin bei dem benutzten pH-Wert eine positive Ladung aufweist und dadurch Interaktionen mit anderen Aminosäuren hervorruft, kann ein Abstoßungseffekt bei Austausch gegen eine neutrale Aminosäure (Isoleucin) auftreten. Das Mutein PheDH-R210I hat durch diesen Austausch die ursprüngliche Aktivität der PheDH verloren, zeigt aber keine neue Amin Dehydrogenase- Aktivität.

Zu diesem Zeitpunkt wurde die Strukturaufklärung der PheDH durch Vanhooke (Vanhooke *et al.*, 1999) durchgeführt und die am aktiven Zentrum beteiligten Aminosäuren bestimmt.
Anhand der 3D-Struktur-Daten konnte das Enzym mittels Computereinsatz modelliert und die Mutationen simuliert werden.

Die Durchführung der einzelnen Substitutionen erfolgte nach dem Prinzip der überlappenden PCR „overlap extension“ (Ho et al., 1989). Dafür wurde das in dieser Arbeit klonierte PheDH-Gen als Template verwendet. Die Ausbeute der Hybride mittels dieser Technologie war anfänglich sehr gering. Es ist aus dem Literatur (Ho et al., 1989) zu entnehmen, dass man equimolare Mengen beider Fragmente einzusetzen hat, was aber in allen Fällen zu niedriger Ausbeute geführt hat. Das liegt daran, dass dadurch vier Fusionen entstehen können, wobei nur eine gewünscht ist. Daher erfolgte die Optimierung dieser Methode durch die Amplifikation der zur Hybridisierung gewünschten Einzelstränge aus den jeweiligen beiden Fragmenten, die dann in einer weiteren PCR eingesetzt wurden. Somit konnte die Ausbeute auf das 3 fache gesteigert werden.

Im Gegensatz zur Expression der rec-PheDH betrug der Anteil des Muteins K66R nur 10 % und der K78I etwa 4 % des löslichen Zellproteins, wobei bei der rec-PheDH etwa 13 % des löslichen Gesamtproteins nachzuweisen waren. Ein Grund dafür könnte eine schlechte, durch die Mutagenese verursachte, Proteinfaltung sein.

geführt. Das deutet darauf hin, dass noch weitere Aminosäuren an dem gewünschten Mechanismus beteiligt sind und ebenso substituiert werden müssen.

Durch den Austausch der basischen Aminosäure Lysin gegen eine neutrale Aminosäure im Mutein K78I, ist die ursprüngliche PheDH- Aktivität verloren gegangen, da Isoleucin keine Wechselwirkung mit der Ketogruppe des Phenylpyruvats mehr eingehen und somit die reduktive Aminierung nicht mehr stattfinden kann. Ähnliche Mutation wurde durch Sekimoto et al. (Sekimoto et al., 1994) bei der Leucin Dehydrogenase aus Bacillus stearothermophilus durchgeführt, wo Lysin 68 im aktiven Zentrum der LeuDH gegen Alanin bzw. Arginin ausgetauscht wurde. Dadurch verlor die LeuDH ihre Aktivität aufgrund fehlender Bindung zum Coenzym.

Trotz der erzielten Vermeidung der Wechselwirkung zwischen der Ketogruppe des Substrates und der Aminosäure und des dadurch bei der PheDH vorhandenen Abstands zwischen dem C4 des Nicotinamidrings und C2 des Phenylpyruvats, konnte der gewünschte Reaktionsmechanismus und der direkte Hydridtransfer nicht erzielt werden. In diesem Fall spielen nicht nur die Ladung und die Größe der Aminosäuren für neue Umsetzungen eine Rolle, sondern auch die räumliche Struktur der PheDH, die wahrscheinlich durch Substitution einzelner Aminosäuren für eine Erweiterung des Substratspektrums nicht stark genug beeinflusst werden konnte. Da die räumliche Struktur ähnlicher Amin Dehydrogenasen, wie die gewünschte nicht bekannt ist, war es nicht möglich, eine Optimierung durch einen gezielten Aminosäuraustausch durchzuführen.

Enzymbank für weitere Screenings zu verwenden und nach Muteinen für neue Umsetzungen zu suchen.

Die Kombination aus zwei verschiedenen Methoden, sowohl der gezielten als auch der ungezielten Mutagenese, zeigte sich aber als Erfolgskonzept beim K66R-Template, und führte zu der gewünschten Aktivität. Das neu hergestellte Mutein trägt zwei Mutationen T208A, E225D zusätzlich zum K66R und setzt Phenylpyruvat zum Phenyllactat um.

Aufgrund der Ergebnisse bei der Umsetzung mit diesem neuen Mutein (K66R-8) und der schlechten Enantioselektivität wurden die drei Mutationen genauer untersucht und mittels gezielter Mutagenese einzeln zurück mutiert zu den ursprünglichen Codons der PheDH, um festzustellen, welche der o.g. drei Mutationen für die Enantioselektivität bzw. für die Erweiterung des Substratspektrums verantwortlich ist. Die Substitution der einzelnen Mutationen gegen die ursprünglichen Codons der PheDH führte zum Verlust der neuen LDH-Aktivität. Aufgrund dessen, sind die drei Mutationen in diesem Mutein (K66R-8) zusammen als Kombination für die neue Aktivität der PheDH verantwortlich.

Nach Rosssmann et al. besteht die nukleotidbindende Domäne selbst aus zwei gleichartigen Abschnitten, die sich im Verlauf der Evolution aus einem gemeinsamen Vorfahr entwickelt.

Dass die rückgängige Substitution der Mutation Asparaginsäure 225 zum Verlust der neuen Aktivität geführt hat, war nicht zu erklären, da die Position 225 nicht an einer Wechselwirkung zum Coenzym bzw. zu benachbarten Aminosäuren oder auch zum Substrat beteiligt ist.

7 Zusammenfassung

In der vorliegenden Arbeit wurden zwei NAD-abhängige Enzyme, Phenylalanin Dehydrogenase (PheDH) aus Rhodococcus sp M4 und das malic enzyme aus E. coli K12 im gleichen Expressionsvektor kloniert und deren Coexpression durchgeführt. Eine weitere Zielsetzung dieser Arbeit war die Mutagenese der Phenylalanin Dehydrogenase, die sowohl mittels Protein Design als auch durch Zufallsmutagenese (“directed evolution”) durchgeführt wurde. Die Mutagenese diente zur Erweiterung des Substratspektrums der PheDH und um Einblicke in deren Reaktionsmechanismus sowie Aufschluss über die Struktur – Funktionsbeziehungen dieses Enzyms zu gewinnen.

Durch die Entwicklung einer neuen Klonierungsstrategie konnte das malic enzyme erfolgreich amplifiziert, 3’ zur PheDH an der PstI- und HindIII- Schnittstelle kloniert und eine Coexpression beider Enzyme ermöglicht werden. Mithilfe des bekannten N-Terminus des malic enzymes konnten Einzelstränge amplifiziert und in weiteren PCR-Ansätze komplementär verlängert werden.

Der Vorteil der Formiat Dehydrogenase, die sich bis dato für die Regenerierung des Coenzymes NADH in situ durchgesetzt hat, liegt darin, dass bei der Regeneration durch Formiat nur CO₂ und keine weiteren Nebenprodukte entstehen. Da aber in dieser Arbeit nachgewiesen wurde, dass das malic enzyme ein durchaus erfolgreiches System darstellt und im Ganzzellsystem keine Nebenprodukte das gewünschte Produkt verunreinigen, könnten solche in dieser Arbeit entwickelten Konstrukte technisch und wirtschaftlich interessanter sein. Das L-Malat ist im Vergleich zum Na-Formiat vergleichbar kostengünstig. Ein weiterer wesentlicher Vorteil der Ganzzellumsetzung liegt darin, dass auf die Präparation, möglicherweise Reinigung der Enzyme sowie den Zusatz an freiem Coenzym verzichtet werden kann.

Die Kombination aus zwei verschiedenen Methoden, sowohl der gezielten als auch der ungezielten Mutagenese, zeigte sich an diesem Beispiel als Erfolgskonzept und kann bei zukünftigen Arbeiten in Betracht gezogen werden.
DNA-Sequenz der Phenylalanin Dehydrogenase aus *Rhodococcus sp. M4*

1 ATGAGTATCG ACAGCGCACT GAACCTGGGAC GGGGAAATGA CGGTCACCAG ATTCGACCAG
61 GAGACTGGTG CCCATTTGCT CATTCGACTC GATTCGACCC AACTCGGACC GGCGGCGGA
121 GCCACCAAGAG CGCGCAGTGA CCACAGCTTG GGGCCAGCCC TCACCGACGC CGGCAAAATTG
181 CGCGGCGGGA TGAGCTTGGAA GATTGCCAGTG AGCAACCTTT CGATGCGGCGG GGGCAAATCC
241 GTATTCGCGC TTCCTGGGCC CGGTCACTCGG ATCGATTCGCA GCAGTGCGGG GCGCATCTTC
301 CGAAATTCCCG CGGGAACATG CGACAACTTGG TCCGGCAACT AACTGGCACC CACGACGCCTC
361 AACACCAATT CCACAGCACT TGGAATCTCTG AAGCAGCAGTA CCGAGTTGAG GTTCCGAGCG
421 TCGGTGAGAC CGGCGCGCGG GGGGCTGGACG GGTTCACCTG GCATTGGCAG GGCGGCGGAG
481 CGGTGAAGGC GCACAACTCGG GCGTTGCACTG ATGGGCGGCGG CTCATCCAGC CGGACGAGGC
541 GTCCAGAGAC TGGGGGACAT CGGAGATGCT TAGGCATCCC TGCCCGCGCGA AGGCGGGCAG
601 CAACCTCTGGCC GCGAGCGACT GAGTCGACGC GTCGGGCTTC GGTGGCCGAG AGGCGGGCCAG
661 AACTGCTGCTT GGTGGGCTTC GCCAGCTTGG TCGGCTGGTG GGTGCCTTCG GCGGCGGCGG
721 TGGGGCAGCT TGCCAGCTCT GACAGCTCGG GGGGCGGCGG TGGCCGCCGA AGCGGGTGCG
781 GCCGCCAACA AGGCGTGGCG GCGACGCTGC GGTGGCGCGG TGCACCGGCG ATGCGCGGAAAG
841 CTTGACGTCT CGGAGCTCGG GCAGAGCCGC GCCGGTGCCT GCCACCTCTG AGGCCGGGAG
901 GTTCTGGTTC CTGCCTGGTCG GTGGGCTGCCA GAACGCGGAT GTTACGATCC GTGACACCGG
961 AATCGGGCGG CGCAGCTCGG GCAGCTCCGG GCGGCGCGGG CGACGAGGC CGCCGGACTG
1021 CTCGCTGGAC GCGGCGCGCG GAGGCTCCTCA CAGCGACAGC GACGTGCGCTA GTAG
DNA-Sequenz des malic enzymes aus *E.coli* K12

1 ATGGATATTC AAAAAAGAGT GAGTGACATG GAACCAAAAA CAAAAAACA GCGTTCGCTT
61 TATATCCCTT AGCTGCCCCC GTATCTCGCT GAAATTCCCGT GTTATGAAT AAGCCAGTGC
121 TTAAGCATGG AAGAACCGAG TACTTCTAAC TCTCGGGGTT TACTGCCGCA AGTGGTGGAA
181 ACCACAGGAG AACAGCGCTG AGGATATATG TATATCCCTT ACGCTGGCCC TGTACTGCTG GAATTTCCGT TGTTGAATAA AGGCAGTGCC
241 GACAAACACA TCTACCTCGC TAACATCCAG GACACTAAGC AAAAACTTTT CTATACCCCTT
301 GATTCAACAT CTATCGATGT GATGATGCCCT GAAATTCCGG TATACCTCTAC TATACCAGAAC
361 TGTGAGCGTT TTTTCTAGAT ATCTGCAAAAC GATGCGCTAC AAGACAGTAA CAAACCTAAG
421 CGGCCAATTA TGGACGATAC TCTGCAAAAC AAAAAAAAAA AAAAAAAAA AAAAACAAAAA
481 GTGACGTGACGTGACGCTG AAGAACCGAG TACTTCTAAC TCTCGGGGTT TACTGCCGCA AGTGGTGGAA
541 CCGATCGGTA AACTGCGGCT ATATACCGCC TGTGGCTGGC TAAGCCCGGA GTATACCTCTT
601 CCGGTGGTGGC TGATGTCGCA CGCAGGCTGC AACAACGCTG GCCAGACGTG CTGTTGCAGT TTGAAGACTT TGCTCAAAAA
661 GGGCGGCTTC ATCCCGGGCT CACTGAGCTG GGTATCGGAA AAAAAATTTT ATATATGAGG
721 CAGGCTGTGA AAGAACCGAG TACTTCTAAC TCTCGGGGTT TACTGCCGCA AGTGGTGGAA
781 AATGCGATGC TTTTCTAGAT ATCTGCAAAAC AAAAAAAAAA AAAAAAAAA AAAAACAAAAA
841 CCGCGGCGGCT AGGCTGCTAC AGGATGATTC ACCATTGGTG CTGAACGGCG AAGGTATGGT ACTGCCGGAA
901 CTGGATATAC TTTTCTAGAT ATCTGCAAAAC AAAAAAAAAA AAAAAAAAA AAAAACAAAAA
961 GAAATGACTG GCTGGCTGGC TAAGCCCGGA GTATACCTCTT
1021 GTTTTGATGG TTTTCTAGAT ATCTGCAAAAC AAAAAAAAAA AAAAAAAAA AAAAACAAAAA
1081 CAGACAAAGG CCGTGGCCAC AAAAAATTTT ATATATGAGG
1141 CTGTCGCTGC TTTTCTAGAT ATCTGCAAAAC AAAAAAAAAA AAAAAAAAA AAAAACAAAAA
1201 CAGACCGGAG CCGTGGCCAC AAAAAATTTT ATATATGAGG
1261 ATCGTCGCTG CCGTGGCCAC AAAAAATTTT ATATATGAGG
1321 GCCCGGCTTC ATCCCGGGCT CACTGAGCTG GGTATCGGAA AAAAAATTTT ATATATGAGG
1381 AAACGTTTATG CCGTGGCCAC AAAAAATTTT ATATATGAGG
1441 CTGGATATAC TTTTCTAGAT ATCTGCAAAAC AAAAAAAAAA AAAAAAAAA AAAAACAAAAA
1501 GAAATGACTG GCTGGCTGGC TAAGCCCGGA GTATACCTCTT
1561 CTGGAAGATA TGGACGATAC TCTGCTCGGG CAGGGCGGGA TTTTCTAGAT ATCTGCAAAAC AAAAAAAAAA AAAAAAAAA AAAAACAAAAA
1621 CAGCAGGCTG CCGTGGCCAC AAAAAATTTT ATATATGAGG
1681 TTTTCTAGAT ATCTGCAAAAC AAAAAAAAAA AAAAAAAAA AAAAACAAAAA

Anhang
8 Literaturverzeichnis

An dieser Stelle möchte ich mich bei allen recht herzlich bedanken, die durch Rat und Tat zum Gelingen dieser Arbeit beigetragen haben, insbesondere danke ich

Herrn Priv.-Doz. Dr. Werner Hummel für die Überlassung des Themas, seine vielfältigen konstruktiven Anregungen, seine stete Diskussionsbereitschaft und für die kritische Durchsicht der Arbeit,

Herrn Prof. Dr. Cornelis P. Hollenberg für die Übernahme des Korreferats,

Frau Prof. Dr. M.-R. Kula für die Möglichkeit, diese Dissertation am Institut für Enzymtechnologie durchführen zu können und für die sehr guten Arbeitsbedingungen an ihrem Institut,

Herrn Dipl. Chem. Frank Schneider für die kritische Durchsicht der Arbeit,

allen Mitgliedern meiner Arbeitsgruppe und allen anderen Mitarbeiterinnen und Mitarbeitern des Instituts, die mir mit fachlichen Ratschlägen zur Seite standen.