
A Model Checker for CSPM

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Marc Fontaine

Düsseldorf, Juli 2011

aus dem Institut für Informatik der Heinrich-Heine Universität Düsseldorf

gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Michael Leuschel
Koreferent: Prof. Dr. Heike Wehrheim

Tag der mündlichen Prüfung: 6. Oktober 2011

Abstract

This thesis presents a new tool for the animation and model checking of
CSPM . CSPM is the machine readable syntax for Hoare’s Communicating Se-
quential Processes. It is a specification language used by several formal methods
tools, for example FDR and ProB.

The main contribution of the thesis is the detailed and comprehensive dis-
cussion of a new CSPM tool. The most important design goals for my CSPM

tool are correctness, modularity and reusability. I describe how the design goals
are reflected in the source code and explain the basic design decisions that were
taken. I also compare the features and performance of the new tool with ProB
and FDR and I present some benchmarks for a multi-core version of my tool.

This thesis is also a case study for the use of the Haskell programming
language for the implementation of a formal methods tool. I explain how Haskell
has influenced the design and how Haskell helps to achieve the design goals of
my software. The presented software can serve as a reference implementation
of the CSPM semantics and as a building block for future CSPM tools.

Kurzreferat

Diese Arbeit präsentiert ein neues Softwarewerkzeug zur Animation und zum
Modelchecking von CSPM . CSPM ist eine Spezifikationssprache, aus dem Bere-
ich der formalen Methoden, die von mehreren Werkzeugen unterstützt wird, z.B.
FDR und ProB. Sie basiert auf der Prozessalgebra kommunizierender sequen-
zieller Prozesse (engl. communicating sequential processes, CSP) von C.A.R.
Hoare.

Der Hauptbeitrag der Arbeit ist die detaillierte und umfassende Beschrei-
bung eines neuen Werkzeugs für CSPM . Die wichtigsten Designziele meines
Werkzeugs sind Korrektheit, Modularität und Wiederverwendbarkeit. Ich be-
schreibe die Umsetzung der Designziele im Quellcode und erkläre die grund-
sätzlichen Designentscheidungen, die getroffen wurden. Außerdem vergleiche
ich die Eigenschaften und die Leistungsfähigkeit meines neuen Werkzeugs mit
ProB und FDR und zeige mehrere Laufzeitmessungen für eine Parallelrechn-
erversion meines Programms.

Diese Arbeit ist auch eine Fallstudie über die Verwendung von Haskell als
Programmiersprache für Werkzeuge im Bereich der formalen Methoden. Ich
beschreibe wie Haskell das Design meiner Software beeinflusst hat und wie
Haskell dazu beiträgt, die Designziele zu erreichen. Die erstellte Software kann
als eine Referenzimplementierung für die CSPM Semantik und als Baustein für
zukünftige CSPM Werkzeuge dienen.

Vorwort

Die vorliegende Dissertationsschrift entstand zwischen Februar 2010 und Juli
2011. Meine Zeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für Soft-
waretechnik und Programmiersprachen begann Mitte 2005 und circa Mitte 2006
kam ich zum ersten Mal mit CSP, dem späteren Thema meiner Doktorarbeit, in
Kontakt. Ich danke allen, die in dieser Zeit dazu beigetragen haben, dass diese
Doktorarbeit erfolgreich beendet wurde.

Insbesondere danke ich Herrn Prof. Dr. Michael Leuschel für seine fre-
undliche, großzügige und geduldige Unterstützung. Ohne die finanzielle Ab-
sicherung als wissenschaftlicher Mitarbeiter wäre diese Doktorarbeit nicht möglich
gewesen.

Speziell danke ich Herrn Janus Tomaschewski für seine große Hilfbereitschaft,
die ich bei verschiedenen Gelegenheiten in Anspruch genommen habe. Herrn
Ivaylo Dobrikov danke ich für die Zusammenarbeit in Rahmen seiner Masterar-
beit.

Des Weitern danke ich Jens Bendisposto, Daniel Plagge, Michael Jastram,
Carl Friedrich Bolz und allen Mitarbeitern und Mitarbeiterinnen des Lehrstuhls
für Softwaretechnik und Programmiersprachen und des Fachbereiches Infor-
matik Heinrich-Heine-Universität für die freundliche Zusammenarbeit.

Eine große Motivation für mich war die Kooperation über den Lehrstuhl
hinaus. Ich bedanke mich bei allen, die meine Software ausprobiert, getestet
und Rückmeldungen dazu gegeben haben. In dem Zusammenhang möchte ich
Moritz Kleine, Diego Oliveira, Marc Dragon, Philip Armstrong, Edward Turner
und Robert Colvin nennen.

Contents

1 Introduction 9
1.1 Introduction . 9
1.2 Outline . 10

2 CSP 12
2.1 Informal Introduction to CSP . 12
2.2 Semantics . 15

2.2.1 Algebraic Semantics . 15
2.2.2 Denotational Semantics 15
2.2.3 Operational Semantics and Firing Rules 16

2.3 Extensions of Core CSP . 18
2.3.1 Multi-field Events and Data 19
2.3.2 Event Patterns . 19
2.3.3 Data Processing . 20
2.3.4 Mixing Input and Output Fields 20
2.3.5 Parametrised Processes 20
2.3.6 Complete Functional Process Definition 21

2.4 Formal Definition of CSPM . 21

3 Software Architecture of the CSPM Tool 22
3.1 The Haskell Programming Language 22
3.2 Architecture Overview . 23
3.3 Source Code Included in the Thesis 25

3.3.1 Hints for Understanding the Code 26
3.3.2 Type Families . 28

3.4 Role of Haskell . 29
3.5 Haskell Critique . 29

4 Modeling of the CSP Core Language in Haskell 32
4.1 Overview . 32

4.1.1 Modeling of Processes . 32
4.1.2 Modeling of Events . 34
4.1.3 Example of the Modeling of Processes 35

4.2 Implementation of the Operational Semantics 36
4.2.1 Section Outline . 36
4.2.2 Advantages of Explicit Proof Trees 37
4.2.3 Modeling of Proof Trees 38
4.2.4 Generation of Proof Trees for τ and X 42

5

4.2.5 Naïve Generation of Proof Trees for Regular Transitions . 46
4.3 Constraint-Based Generation of Proof Trees 49

4.3.1 Generating the Initial Proof Tree Skeletons 52
4.3.2 Constraint Propagation 54
4.3.3 Fixing a Field Value in the Proof Tree Skeleton 55
4.3.4 Converting a Proof Tree Skeleton to a Proof Tree 56
4.3.5 The Main Loop . 56
4.3.6 Modeling Multi-field Events 58
4.3.7 Event Sets for Multi-field Events 59
4.3.8 Critique . 60

4.4 Testing the Implemented Semantics with QuickCheck 61
4.4.1 Proof Tree Verifier as a Specification of the Proof Tree

Generator . 62
4.4.2 Equality of the Naïve Proof Tree Generator and the Constraint-

based Proof Tree Generator 64
4.4.3 Code Coverage Analysis 65
4.4.4 Mock Implementations . 65
4.4.5 QuickCheck Conclusion 65

4.5 Summary . 66

5 Interpreter for the Functional Sub-language of CSPM 67
5.1 Overview . 67

5.1.1 External Interface of the Interpreter 68
5.2 Design Decisions for the Interpreter 68

5.2.1 FDR Compatibility . 68
5.2.2 Model Checking and Equality 69
5.2.3 Interpreter and Denotational Semantics 70
5.2.4 Environment vs. HOAS 70
5.2.5 CSPM Laziness . 71
5.2.6 Using Haskell Laziness and Knot-Tying 72
5.2.7 Lambda-lifting . 72
5.2.8 Pure Interpreter . 73
5.2.9 Representing CSPM Values 73

5.3 Implementation . 74
5.3.1 The eval Function . 75
5.3.2 Declarations . 76
5.3.3 The Pattern Matcher . 79
5.3.4 AST Preprocessing . 83
5.3.5 Renaming . 83
5.3.6 Instances for the Core Language 83
5.3.7 Built-in Data Types of CSPM 84

5.4 Equality and Hashing . 86
5.5 Pure Functional Performance . 89
5.6 A CSPM -to-Haskell Compiler . 91
5.7 Conclusion . 93

6

6 Parser 95
6.1 Remarks on the CSPM Syntax 96

6.1.1 Informal Syntax Definition 96
6.1.2 Mixing Built-ins and Core Syntax 96
6.1.3 Mixing Type Checking and Parsing 97
6.1.4 Strange Syntax . 98
6.1.5 Operator Precedences . 98
6.1.6 Constructor and Channel Names 98

6.2 The AST Data Types . 99
6.2.1 Source Locations and Node Labels 99
6.2.2 Identifier . 100
6.2.3 Additional Constraints on Abstract Syntax Trees 100
6.2.4 Expressions . 101
6.2.5 Declarations . 101
6.2.6 Patterns . 104
6.2.7 SYB . 104

6.3 The Combinator Parser . 106
6.3.1 Pros and Cons of parsec 107
6.3.2 Code Examples . 108
6.3.3 Parser Performance . 109

6.4 Other Functionality Provided by the Front-End Package 110
6.4.1 Renaming . 110
6.4.2 Interface to ProB . 111

6.5 Conclusion . 111

7 Exploiting Multi-Core Parallelism 113
7.1 Parallel Breadth First LTS Computation 113
7.2 Parallel Benchmarks . 117

7.2.1 Interpretation of the Results 119
7.3 Critique on Semi-explicit Parallelism 122
7.4 Conclusion . 122

8 Integrated Tool 123
8.1 Command Line Tool . 123
8.2 Installation of the Tools . 124
8.3 Black-Box Testing . 125
8.4 Know Limitations . 127

8.4.1 Recursive Data Types . 127
8.4.2 Dot Tuples . 128
8.4.3 Slow Link Parallel and Renaming Operations 129

8.5 Comparing CSPM Tools . 130
8.5.1 Comparison by Aspects 130
8.5.2 Advertised Features of the Tools 134
8.5.3 The CSPM Tools Seen as a Black Box 134
8.5.4 Benchmarks . 136

8.6 Other CSP Software and Related Work 137

7

9 Future Work 139
9.1 Short-term . 139
9.2 Medium-term . 139
9.3 Retiring CSPM . 142
9.4 Case Study: B-method . 142
9.5 GUI Tool . 142

10 Summary 144
10.1 Implementation . 144
10.2 Haskell . 144
10.3 Criticism of CSPM and FDR . 145
10.4 Meta Critique . 146

A Implemented Firing Rules 148
A.0.1 Normal Transitions . 149
A.0.2 X Transitions . 156
A.0.3 τ Transitions . 159

B Source Code Listings 168
B.1 CSP Core Language . 168

B.1.1 Processes . 168
B.1.2 ProcessWrapper . 169
B.1.3 Events . 171
B.1.4 Fields . 172
B.1.5 Firing Rules . 173
B.1.6 Proof Tree Verifier . 176
B.1.7 Naive Proof Tree Generation 182
B.1.8 Proof Tree Generation with Constraints 186
B.1.9 Eval Function . 196
B.1.10 Abstract Syntax Tree . 207
B.1.11 Quickcheck . 213

C Listings of Benchmarks, Test Cases and Examples 218
C.1 Pure Functional Benchmarks . 218
C.2 Other examples . 221

C.2.1 Simplistic Parser . 221
C.3 CSPM Testcases . 223

C.3.1 Primes . 223
C.3.2 Mutual Recursive Let . 224
C.3.3 A Specification of the Hanoi Puzzle 224
C.3.4 A Model of a Level Crossing Gate 226
C.3.5 A Specification of a Scheduler 233
C.3.6 A Specification of a Bank System 234

8

Chapter 1

Introduction

1.1 Introduction
"I conclude that there are two ways of constructing a software design: One way
is to make it so simple that there are obviously no deficiencies, and the other
way is to make it so complicated that there are no obvious deficiencies. The first
method is far more difficult." [22]

The main subject of this thesis is the software design and the implemen-
tation of an interpreter for CSPM . CSPM , i.e. machine readable CSP, is one
incarnation of Communicating Sequential Processes, a formalism devised by
C.A.R. Hoare to deal with the complexity of concurrent systems. The design of
correct concurrent computer systems is a difficult and interesting problem and
at the same time concurrent computer systems are becoming more and more
ubiquitous.

In CSP concurrent systems are modeled as processes, which communicate by
synchronizing on events. CSP is a process algebra—a mathematical formalism—
which makes it possible to define processes and to reason about the behavior
of processes in a precise mathematical manner. CSP also makes it possible to
mechanically check interesting properties of processes like, for example, deadlock
freedom or safety properties.

Generally, CSP belongs to the so-called formal methods, a branch of com-
puter science that investigates the use of mathematical methods for the design
and analysis of software and hardware systems. The goal of formal methods is
a provable correct system.

A CSP specification is the definition of a process using the CSP formalism.
Several software tools, so-called model checkers and refinement checkers, have
been developed for analyzing and checking CSP specifications. Among them
are FDR[20], ProB[33] and ProBE[19].

The above three are similar in that they are based on a particular variant
of CSP called machine readable CSP (abbreviated as CSPM). CSPM is widely
accepted in the CSP community (c.f. Section 8.6) and it is the de-facto standard
for machine readable CSP specifications. The model checker, described in this
thesis, uses CSPM as input language.

Unfortunately, CSPM exhibits many complexities which are often completely

9

unrelated to the original formalism as it was proposed by Hoare. For example
CSPM includes an ad-hoc definition of a functional programming language. One
of the challenges of this thesis is to deal with the complexities of CSPM in a
clear, structured manner.

Currently, the CSP community uses the exiting tools as black boxes. One
goal of this thesis is to design an understandable implementation which can help
to narrow the gap between CSPM users and CSPM tool implementers. Another
motivation is that having multiple compatible CSPM tools helps to improve the
overall confidence in the formalism.

This thesis is also a case study for the use of the Haskell programming
language for writing a formal methods tool. For an objective case study, it is
crucial that different approaches really solve exactly the same problem. Here,
this means that a top priority of my work was to be compatible with existing
tools.

Contributions

The main contributions of my work are:

• A new CSPM animator and model checker that improves upon FDR and
ProB.

• A structured, documented and reusable implementation.

• A critical review of the CSPM formalism and existing tools.

• A real world case study for the use of the Haskell programming language.

1.2 Outline
The rest of the thesis is structured as follows:

Chapter 2 contains a short introduction to CSP and CSPM . I informally
explain the underlying ideas of CSP and the extensions of the CSP core language
that are included in CSPM . I also define what we consider as the CSP core
language in this thesis.

Chapter 3 makes some remarks about the Haskell programming language
and the role of Haskell in this thesis.

Chapters 4, 5 and 6 are a detailed description of the implementation. The
structure of these chapters follows the module-structure of the program. Chap-
ter 4 describes the implementation of the core language, Chapter 5 the func-
tional sub-language of CSPM and Chapter 6 the front-end, i.e. the parser and
the syntax tree for CSPM .

Chapter 7 describes a simple extension of my model checker, which allows
a speeding up of computations using parallel processing and modern multi-core
hardware. It also contains some preliminary benchmarks for speed-ups that
were measured for existing specifications from the literature.

Chapter 8 contains a comparison of the different CSPM tools. It also con-
tains some small sections that do not deserve an individual chapter, like the
description of the command line interface, installation instructions for my tool,
etc. Finally, I have a future-work section (Chapter 9) and a summary (Chapter
10).

10

The most important part of the appendices is probably (Appendix A) which
contains a complete listing of the implemented firing rules. The appendix also
contains the source code listings of the benchmark CSPM specifications and
source code listings of the most important Haskell modules of my CSPM tool.

11

Chapter 2

CSP

2.1 Informal Introduction to CSP
This section contains a small informal introduction to Communicating Sequen-
tial Processes. I focus on those aspects of CSP that are relevant for this work.
For a comprehensive discussion of CSP and the underlying theories, see for
example [52, 54, 21].

CSP is a formalism for the specification and analysis of concurrent systems.
Systems are defined in terms of processes and events. CSP is also a process
algebra, where processes are defined using equations and process operators.
STOP is the most primitive process, which never performs any event and does
not take part in any synchronization.

Prefix

The prefix operation, written as “→” is the most basic operation for building
more complex processes. For example

P = a → STOP

defines the process which can perform the event a and after that behaves exactly
like the STOP process. Q = a → b → STOP first performs a then b and
after that becomes STOP. The left hand side of the “→” operation is always
an event and the right hand side is a process. To save parentheses, it is a
convention that “→” is right associative, i.e. Q = a → b → STOP is read as
Q = a → (b → STOP). Process definitions can be recursive. The process

R = a → b → R

first performs event a then event b and then behaves exactly as R. In fact, R can
perform an infinite sequence of events a, b, a, b, · · ·. A sequence of events is also
called a trace. Traces use an angle-brackets notation, e.g. ⟨a, b, c⟩. The notation
traces(P) is used for the set of all traces of process P . By definition, traces(P)
is prefix-closed, i.e. if traces(P) contains ⟨a, b, c⟩ it also contains ⟨a, b⟩, ⟨a⟩ and
⟨⟩.

12

Interleaving

Besides the prefix operation, which combines an event and a process, CSP uses a
number of operations which combine two or more processes. For example several
processes can operate independently of each other in an interleaving mode. The
operator-symbol for interleaving is “|||”. The process

P = (a → b → STOP) ||| (c → d → STOP)

can perform the following set of traces:

{⟨a, b, c, d⟩, ⟨a, c, b, d⟩, ⟨a, c, d, b⟩, ⟨c, d, a, b⟩, ⟨c, a, b, d⟩, ⟨c, a, d, b⟩, . . .}

For simplicity, only the traces of length four, i.e. the maximal length traces, are
shown.

Synchronization

The parallel composition operator, written as “∥”, enforces synchronization be-
tween several processes. For example in the definition

P = Q ∥ R

Q = a → b → STOP

R = a → c → STOP

P is a synchronized combination of Q and R. The combined process Q ∥ R can
only perform the single event a. Events are instantaneous and the synchronized
sub-processes Q and R perform the event a at the same moment in time. After
that the system becomes equivalent to P ′ = (b → STOP) ∥ (c → STOP) and
since the events b and c are distinct, they do not synchronize and P ′ cannot
perform any more events.

The model of communication of CSP is also known as hand-shake synchro-
nization. An event can only occur if all involved processes are willing to perform
it immediately. There are no buffers or transmission delays built into CSP and
there is no distinction between sender and receiver. An event can synchronize
an arbitrary number of processes.

Choice

Another important concept of CSP is choice. CSP contains two operators for
modeling a choice between a number of possible alternatives, namely external
choice (✷) and internal choice (⊓). For example the process

P = (a → b → STOP) ⊓ (c → d → STOP)

can chose non-deterministically between either performing trace ⟨a, b⟩ or trace
⟨c, d⟩. External choice is sometimes also called angelic choice, while internal
choice can be seen and as daemonic choice. A precise semantics of external
choice and internal choice is given later.

13

Sequential Composition

The process P = Q ; R first behaves like process Q and after successful termina-
tion of Q it behaves like R. To signal successful termination the new primitive
process SKIP is used. For example the process

P = (a → b → SKIP) ; (c → d → STOP)

can perform the trace ⟨a, b, c, d⟩.

Abstraction

Finally, CSP provides a mechanism for abstracting the behavior of a process
by hiding its internal implementation. The hiding operator is written as “\”.
The left-hand side of “\” must be of type process and the right-hand side ar-
gument of “\” is the set of hidden events. The hidden events of a process are
not visible outside the hiding construct and do not take part in any external
synchronizations. For example the process

P = (a → b → c → d → STOP) \ {a, c}

has the trace ⟨b, d⟩.

Variants of CSP

These are the most basic and most agreed on building blocks for modeling
processes in CSP. However, there is no canonical and fixed definition of the core
CSP algebra; instead, there are some possible alternatives on what to consider
part of core CSP.

For example interleaving and parallel composition can be seen as a special
case of the other operator called alphabetized parallel (x∥y) [52]. Another al-
ternative is to define process operations that work on sets of processes instead
of binary operations. For example the binary internal choice can be seen as a
special case of a generalized internal choice. The binary operation would then
be defined as P ⊓ Q == ⊓{P, Q}. Roscoe [52] defines several other useful
operations like interrupt, timeout and renaming.

CSP is a flexible formalism for modeling and analyzing complex concurrent
systems. There has been a lot of research on applications of CSP, on the ex-
pressiveness of CSP, on how to apply CSP to model real world problems and
on extensions of the CSP method (c.f. Section 8.6). To successfully apply CSP,
it is necessary to have a good intuition about the CSP concepts; it takes some
time to build this intuition and to get familiar with the syntax and the meaning
of the various process operators.

On the other hand, the subject of this thesis is the implementation of a tool
for CSPM . My experience is that an intuition about CSP does not help much
for tool development. Instead of using intuition, I strictly focus on the formal
semantics of CSP. In other words, I do not try to explain the difference between
the timeout-operator and the interrupt-operator, etc. in this thesis; instead I
take the operational semantics of CSP from Roscoe and implement it as-is.

14

2.2 Semantics
To use CSP in a rigorous and mathematical manner, it is necessary to define a
formal semantics. This section sketches the three main alternatives:

• An algebraic semantics

• A denotational semantics

• An operational semantics

Roscoe gives detailed definitions of these three semantics and argues that they
all define the same thing. My CSPM tool implements the operational semantics.
Therefore, the underlying ideas of the operational semantics are explained in a
little more detail. The complete implemented operational semantics is listed in
Appendix A. The sections about the algebraic semantics and the denotational
semantics may be skipped.

2.2.1 Algebraic Semantics
The algebraic semantics of CSP consists of a set of equations which are consid-
ered the axioms of CSP. By rewriting equations and terms with the help of the
axioms, new interesting theorems can be found. The algebraic semantics of CSP
can also be used to prove that two processes are equivalent. If two processes
can be rewritten according to the axioms and theorems to become syntactically
equal, then they must also be semantically equal.

This list gives a flavour of some typical CSP axioms:

P ✷ P = P

P ✷ Q = Q ✷ P

(P ✷ Q) ✷ R = P ✷ (Q ✷ R)
STOP ✷ P = P

P ⊓ P = P

P ⊓ Q = Q ⊓ P

(P ⊓ Q) ⊓ R = P ⊓ (Q ⊓ R)
a → (P ⊓ Q) = (a → P) ⊓ (a → Q)

P ||| Q = Q ||| P

(P ||| Q) ||| R = P ||| (Q ||| R)
P ||| (Q ⊓ R) = (P ||| Q) ⊓ (P ||| R)

As in other algebras, there are axioms about associativity, commutativity and
idem-potency of the operators and all kinds of distribution rules. The algebraic
semantics is actually the reason why CSP is called a process algebra.

2.2.2 Denotational Semantics
This section sketches some ideas of denotational semantics for CSP. The deno-
tational semantics is not immediately relevant for the rest of this thesis and this
section can be safely skipped.

15

A denotational semantics for CSP can be roughly seen as a function S[[.]]
which maps a syntactical description of a process to a mathematical model of
the process behavior. The mathematical model could, for example, be the set
of all traces which a process can perform.

Requirements for the denotational function S[[.]] are that it should be con-
sistent with the operational and algebraic semantics and it should be defined as
a recursion on the syntactical structure of the process. In other words, it should
be possible to define S[[P ⊕ Q]] with the help of S[[P]] and S[[Q]] for all pro-
cess operations ⊕. The denotational semantics of recursive process definitions
is usually defined as a suitable fixed-point of the denotational function. Roscoe
describes two possible semantics in full detail. One uses the traces model the
other uses the divergences-failures model.

2.2.3 Operational Semantics and Firing Rules
The operational view of a CSP process is a labeled transition system (LTS).
The nodes of the LTS are labeled with process expressions and the transitions
are labeled with events. For every state of the system, the LTS lists all possible
transitions, i.e. all possible events that the system can perform in the state and
the corresponding successor states. An LTS is very similar to a non-deterministic
finite automaton, with the exception that an LTS may consist of an infinite
number of states.

Given the initial state and the transition relation, it is straightforward to
explore an LTS in breadth first or depth first manner and to perform different
kinds of model checking. The operational semantics of CSP defines the transi-
tion relation of the LTS with the help of rules, which are called firing rules or
inference rules.

Inference Rules

The general form of an inference rule is:

Premise1, · · · ,Premisen

Conclusion
(Side Condition)

An inference rule can have zero premises, in which case it is called an axiom.
To prove some conclusion with the help of a inference rule, one has to check the
side condition and also recursively prove all premises. Proofs are often laid out
in the form of a proof tree. For example consider the following rule

x ≤ y, y ≤ z

x ≤ z

and the tree axioms

2 ≤ 3 3 ≤ 4 4 ≤ 1
One can prove that 2 ≤ 1 with the following proof tree:

2 ≤ 3 3 ≤ 4
2 ≤ 4 4 ≤ 1

2 ≤ 1

16

Unless stated otherwise, inference rules work purely syntactically. This
means that they do not take any interpretation of the syntax into account.
In the example, “≤”,1,2,3 and 4 are just symbols with no inherent meaning.
2 ≤ 1 is a valid conclusion for the given axioms. Side conditions can be used to
express additional non-syntactical properties and constraints. For example,

x < y
(The value of x is less then the value of y)

is an inference rule with a side condition. Inference rules can contain place
holders (e.g. x, y, z), which get substituted with concrete syntax in the proof
tree.

In CSP, inference rules are used to prove that a certain transition is possible.
In the inference rules P, P ′, Q,.. are place holders for processes expressions and
e is a place holder for an event. P

e−→ P ′ is the the transition from P to P ′

while performing event e. For example, this is the inference rule1 for the prefix
operation:

(e → P) e−→ P

This rule is an axiom. One rule for the ’∥’ operator is:

P
e−→ P ′ Q

e−→ Q′

P ∥ Q
e−→ P ′ ∥ Q′

With these two rules one can prove that process (a → STOP) ∥ (a → STOP)
can perform event a and then becomes process STOP ∥ STOP. This is the
corresponding proof tree:

(a → STOP) a−→ STOP (a → STOP) a−→ STOP
(a → STOP) ∥ (a → STOP) a−→ STOP ∥ STOP

τ Rules

The operational semantics describes a CSP process as an LTS. In other words,
the process is characterized with the transitions it can make. Up to now, tran-
sitions were always of the form P

e−→ P ′ (P performs event e and becomes P ′),
i.e, they always involved an event e. It turns out however, that some processes
are best described with transitions which do not involve an event. For example
the process P ⊓ Q can non-deterministically choose between performing the
transitions (P ⊓ Q) ❀ P and (P ⊓ Q) ❀ Q.

Instead of inventing a new transition symbol like “❀”, standard CSP liter-
ature uses the following trick: One simply introduces a pseudo-event, called τ .
Transitions which do not perform a regular event use the notation P

τ−→ P ′.
The transition is called a τ transition. For example the inference rules for “⊓”
are:

(P ⊓ Q) τ−→ P (P ⊓ Q) τ−→ Q

The τ event allows a unified notation for transitions that perform an event and
transitions that do not.

1 This is a simplified rule ignoring event patterns and binding identifiers.

17

X Rules

A similar trick is used for the termination of a processes. The transition that
happens when a process terminates is called a X-transition.2 For process ter-
mination, it is also useful to introduce a pseudo-process Ω, which designates a
process which has just terminated. With X and Ω, the two most important
firing rules for termination can be written as:

SKIP X−→ Ω

P
X−→ Ω

P ; Q
τ−→ Q

The set of all events of a specification is called the alphabet Σ. ΣX,τ = Σ∪{τ,X}
is the set containing all regular events plus the special τ and X event. With
the help of τ and X all conclusions and premises of the CSP inference rules
are syntactically of the form P

x−→ P ′ with x ∈ ΣX,τ . This allows a unified
treatment of the different variants of transitions.

Nevertheless, I keep a clean separation between the firing rules for τ tran-
sitions, X-transitions and regular transitions, because for my implementation,
it was also beneficial to implement them separately. Appendix A contains the
complete list of inference rules that have been implemented.

Non-Determinism and Search

My CSPM tool uses the inference rules to search for possible transitions of a
process. In other words, it searches for proof trees with the conclusion P

e−→ P ′

for a fixed and known process P , but the event e and P ′ are unknown. It is
possible that there are several alternatives of matching firing rules which can be
used to build a proof tree. In this case the tool tries all alternatives.

In general, finding a proof tree for a set of firing rules and a given con-
clusion can be an expensive computation. In the operational semantics, non-
determinism can be modeled by simply having multiple firing rules which can
be used alternatively. When a set of firing rules contains multiple rules that
can be applied alternatively, one has to perform some kind of search to compute
the proof trees. Firing rules are a succinct method for specifying an operational
semantics. On the other hand, the involved non-determinism can make a firing
rule semantics difficult to implement efficiently.

2.3 Extensions of Core CSP
Section 2.1 describes the basic ideas and concepts of CSP. I call this basic form
of the formalism core CSP or the CSP core language. Unfortunately, it turns out
that core CSP is often not expressive enough for specifying real world systems.

This section sketches some extensions that are used to make CSP more
expressive. These extensions are all included in CSPM and the FDR tool. I
will freely refer to the combination of core CSP with the various extensions as
CSPM although, strictly speaking, CSPM only stands for the machine readable
syntax of CSP.

2X-transition is pronounced as tick-transition.

18

The presentation makes a strict separation between core CSP and the exten-
sions. This approach differs from the standard CSP textbooks [52, 54, 21] which
first liberally introduce extended versions of CSP and later explain why these
extensions are not relevant for the formal treatment of the core CSP semantics.

I put a stronger focus on the separation between the core CSP and the exten-
sions because I found that this separation helped me to structure my program.
It is a design decision of where exactly to draw line between core CSP and the
extensions but I think that the chosen split works well. The separation between
core CSP and extension corresponds to the split between Chapter 4 and Chapter
5. See those chapters for more details.

The following list of extensions is further split up into separate sub-sections.
This further split-up is not directly reflected in the module structure of my
program, but it is rather how one could, ad hoc, break up CSPM into separate
aspects.

2.3.1 Multi-field Events and Data
Core CSP has no means to manipulate data or events. In core CSP, events are
just abstract members of the set Σ and can only be used in prefix operations and
for hiding etc. For real world applications, it is convenient to allow structured
events which can carry data, for example an elevator might use the alphabet:

Σ = {action.floor | action ∈ {openDoor,pressButton}, f loor ∈ {1, 2, 3}}

The events of the elevator are pairs (2-tuples) of an action and a floor, e.g.
openDoor.1, openDoor.2 and pressButton.1. The action describes what happens
and the floor is some attached data. In general n-tuples of any size n can be
used as events. The parts of a tuple are called event fields in this thesis. In
CSPM the fields of an event are joined together with the dot-operator.

A convention is that the first field of an event is called the channel. The
channels of the elevator are pressButton and openDoor. CSPM requires explicit
channel declarations, which ensures that Σ is well defined and enumerable. The
event closure operation is a CSPM notation for subsets of Σ. Event closures are
written as {|...|}. The event closure of a channel is the set of all events from
Σ, where the first event field equals the channel. As Σ is enumerable, so are
event closures.

2.3.2 Event Patterns
Event patterns allow access to the fields of an event in prefix operations. For
example the process

P = pressButton?x → Q

can communicate the events pressButton.1,pressButton.2 and pressButton.3.
The event pattern “pressButton?x” binds a new identifier x which can be used in
the right-hand side of the prefix operation. For example a process which always
opens a door on the floor where a button has been pressed can be specified as:

P = pressButton?x → openDoor!x → P

The syntax “?pattern” is used for an event pattern (input field) and the syn-
tax “!field” is used to stress that a field is an output field. The only importance

19

of input fields is to bind a value to an identifier. There is no distinction between
input and output fields concerning synchronization. In other words, several in-
put fields, several output fields or any combination of input and output fields
may synchronize.

The extended firing rule for the prefix operation with event patterns is de-
fined in Appendix A Rule R-1. The semantics of the prefix operation with
pattern binding can be defined similar to the β-reduction step of the lambda
calculus [52]. During the prefix step, free occurrences of the identifier, which is
bound in the pattern, get substituted with the matched value.

2.3.3 Data Processing
Another logical extension is to allow event fields to be computed by arbitrary
functions. For example the elevator could, for some reason, open the door in
the next floor above, or it could use some arbitrary function doorFun to compute
which door to open:

P = pressButton?x → openDoor!(x + 1) → P

P = pressButton?x → openDoor!doorFun(x) → P

2.3.4 Mixing Input and Output Fields
In CSP there is no distinction between events that receive data and events that
send data and therefore it is also possible to mix input and output event fields
in one prefix operation. For example an adder can be defined as:

Adder = add?a?b!(a + b) → Adder

Although the prefix in the definition of Adder contains two pattern matches
(which bind a and b) and the computation of an arithmetic expressions (a + b),
the events that the Adder-process communicates are still atomic. The events
should be seen as just 4-tuples (e.g. add.3.4.7) with no indication of input or
output fields.

2.3.5 Parametrised Processes
A system composed of many similar processes can conveniently be specified
using parametrised process definition. For example a server running several
identical services on port 80, 8080 and 8888 could be specified as:

Server = Service(80) ||| Service(8080) ||| Service(8888)

To make it even more clear that the server is built of identical services, the
replicated version of ||| should be used.

Server = |||
x∈{80,8080,8888}

Service(x)

The CSPM syntax for replicated operations is:

Server = | | |x:{80,8080,8888}:Service(x)

20

2.3.6 Complete Functional Process Definition
In CSPM , there is no distinction between processing of data, i.e functions on
events, and functions that work on processes, like parametrized processes. In-
stead CSPM extends CSP with a full higher order functional programming lan-
guage where processes and events are first class citizens.

In other words, processes and events can be arguments of functions as well
as the return value of a function. For example, a process can be specified as:
P(x) = if x == 0 then STOP else out.x → P(x-1)
Main = P(10)

2.4 Formal Definition of CSPM

The description of CSPM so far was very informal. Note that the presented ex-
tensions of the CSP core language are non-trivial. They add new possibilities for
divergences and new side conditions on valid specifications. For a specification
language for safety critical system, the following ingredients are desirable:

• A formal definition of the syntax of CSPM .

• A formal semantics covering core CSP and the extensions.

• A type system for the functional language included in CSPM .

• The side conditions that are not covered by the syntax and the type sys-
tem.

In his PhD thesis [53] Scattergood provides these definitions to some extent.
He provides a reference implementation and he also describes the CSPM parser,
which is used in the FDR tool. However, there is gap between the formal
definitions of Scattergood and what is actually implemented. For example, new
syntax and new process operations have been recently added to FDR which are
not covered by Scattergood and there is no formal proof that FDR is a correct
implementation of the Scattergood semantics.

FDR is widely used and accepted as the de-facto standard CSPM tool and
the current state is that the semantics of CSPM is implicitly defined by the
reference implementation (namely the FDR tool). One goal of this thesis is to
explore the edge cases of FDR and clarify CSPM by implementing the CSPM

semantics in Haskell. The hope is that a Haskell program can help to fill in the
gap between a pen-and-paper semantics like that of Scattergood and a black-box
implementation like FDR.

Compared to a pen-and-paper semantics, a Haskell program has the advan-
tage that it is executable and testable. It is easy to test that an executable
semantics does not miss important pieces and behaves as one expects. One
just has to run the program with interesting specifications and check the result.
Compared to a black box like FDR, the hope is that a Haskell program can, at
least to some extent, work as a declarative semantics.

To solve the discrepancies for good, one would have to define a formal se-
mantics for CSPM , write a CSPM tool and mechanically prove that the tool is
indeed an implementation of the formal semantics. Unfortunately, this rigorous
use of formal methods is beyond the scope of this thesis.

21

Chapter 3

Software Architecture of
the CSPM Tool

3.1 The Haskell Programming Language
The web page www.haskell.org promotes Haskell as follows:
"Haskell is an advanced purely functional programming language. An open
source product of more than twenty years of cutting edge research, it allows
rapid development of robust, concise, correct software. With strong support for
integration with other languages, built-in concurrency and parallelism, debug-
gers, profilers, rich libraries and an active community, Haskell makes it easier
to produce flexible, maintainable high-quality software. "

For this work the following features are important:
• Haskell supports algebraic data types (ATD) and pattern matching. ADTs
and pattern matching are handy for all kinds of symbolic computations
like parsers, syntax trees, compilers, theorem provers, etc.

• Haskell is a concise and expressive programming language.

• Haskell is purely functional, statically typed and there exists a semi-formal
definition of the Haskell semantics. Those features help to reason about
the correctness of Haskell programs. There are also tools which connect
Haskell and theorem provers to generate formally verified programs.

• Haskell is a full featured general purpose programming language. A com-
piler (GHC) and a variety of libraries, for example parser generators, GUI
tool kits, advanced data structures, etc. are available as open source.

• There is an active Haskell community. Useful infrastructure like building
tools, profilers, etc. have been developed as community projects.

• GHC has built-in support for concurrency and parallelism. Parallel model
checking is an interesting subject of research.

• The Glasgow Haskell compiler is highly optimizing. In special cases C-like
performance is possible. My experience with the memory consumption of
my CSPM tool was also overall positive.

22

www.haskell.org

The CSPM project is a good test case for the use of the Haskell program-
ming language in the domain of formal methods tools. Implementing a CSPM

interpreter is a clearly defined problem. The reference implementation (FDR)
is implemented in C++ and a ProB-CSP extension has been implemented in
SICStus-Prolog.

Haskell References

The definite reference for the Haskell programming language is the Haskell Re-
port. The first version of the report defined a standard called Haskell-98 [48]
while the second and latest version (Haskell 2010 Language Report [38]) basi-
cally consists of Haskell-98 plus some well established extensions.

The Haskell report is written in semi-formal style and is not suited for learn-
ing Haskell. Fortunately, there are several good Haskell tutorials online, for
example Learn-you-a-haskell [36] and the Real World Haskell book
[46]. I therefore do not try to come up with a new Haskell tutorial as part of
this thesis.

The presented implementation uses some extensions of the Glasgow Haskell
Compiler which go beyond the Haskell 2010 Language Report. Documentation
for GHC can be found on the web-page www.haskell.org/ghc. Generally a
good starting point for looking up Haskell-related information online is www.
haskell.org.

3.2 Architecture Overview
I try to achieve some generally undisputed design goals. For example, the
software should:

• have a modular design

• be easy to understand

• be amenable to testing

• consist of reusable components

• have good performance

Commonly agreed-on rules for good functional program design are:

• Use pure functions.

• Use total functions.

• Use small functions.

• Use strong types.

• Favor combinators (map, fold) over direct recursion.

• Favor statically checked properties (enforced by the type checker) over
run-time case switches.

I also follow the concept that software architecture consists of the set of design
decisions and try to explicitly state what the underlying design decisions of my
software are.

23

www.haskell.org/ghc
www.haskell.org
www.haskell.org

Figure 3.1: Component Structure

Component Structure

Figure 3.1 shows the dependency graph of of the CSPM tool components. The
term module is sometimes used as a synonym for component, which should not
be confused with a Haskell module. The components in this section basically
correspond to Haskell packages. Each Haskell package itself may consist of
several Haskell modules. It follows a brief overview of all components:

CoreLanguage models the core concepts of CSP, i.e. processes, events, event
sets and process operations. It consists almost entirely of data type, type class,
type family definitions and some small wrapper functions. CoreLanguage pro-
vides the interfaces but not the implementations.

FiringRules 1 and FiringRules 2 are two alternative implementations of the
firing rule semantics of CSP, they only depend on CoreLanguage. The implemen-
tation of the firing rule semantics and the core language are described in Chapter
4.

Interpreter and Compiler are two alternative implementations for the func-
tional sub-language of CSPM . The interpreter is described in Chapter 5 while
the compiler was the subject of Ivaylo Dobrikov’s master thesis [12].

Both the Interpreter and Compiler depend on the Frontend which is de-
scribed in Chapter 6. Frontend contains the CSPM parser and the definition
of the syntax tree. Finally Main contains the main function which glues all the
components together (see Chapter 8 for more details).

One design goal was to keep a strong separation between the core CSP con-
cepts and the functional sub-language of CSPM . The functional sub-language
depends on CoreLanguage but not the other way around; at the same time the
firing rule semantics is independent of the functional sub-language.

CoreLanguage is the central interface between core CSP and the functional
sub-language. An explicitly defined interface makes it possible to have sev-
eral alternative implementations of the firing rule semantics and the functional
sub-language, which can be used in any combination and which can be tested
independently. Concerning CoreLanguage, I think that there is some truth in the

24

philosophy that the interface is more important than the implementation.
The interfaces of the components consist of the exported algebraic data

types, type classes and the exported functions. All components except Main
contain only pure functions (with some small exceptions). Most of the exported
functions are also total, which means that the functions are easy to use and
have a simple interface.

The result of a pure function is completely determined by the function ar-
guments. One just has to call a function and it will always return the correct
result. The type signatures tell what kind of arguments a function accepts and
the type checker makes sure that a function can only be called with correct
arguments. This makes it easy to reuse functions.

Most functions will not throw exceptions except in the case of internal errors
of the implementation. Exceptions are only handled in Main.

Chapters 4, 5 and 6 can be read independently. In Chapter 6, only the
definition of the abstract syntax tree is relevant for the other chapters, not the
implementation of the parser itself.

Similarly, the interpreter can be seen as a black box which computes the
function:

evalModule :: AST.Module INT → Env

In other words, the interpreter takes the abstract syntax tree of a module as
input and computes the environment that is declared in the module. Most of
the interpreter chapter can be understood independently of the other chapters.

Listings of the most important Haskell modules of each component are shown
in the Appendix. Note that the development of the CSP tool is still going on
and the source code in this document may be not identical with the the latest
version of the packages in the Hackage online repository.

3.3 Source Code Included in the Thesis
This thesis contains relatively much Haskell source code. I have included source
code for several reasons:

• The Haskell code is the most precise specification of what my program
does.

• A piece of code is, hopefully, also a readable documentation of what the
program does.

• Sometimes I want to show that an idea can be concisely expressed with a
piece of source code.

• To argue whether a program is correct, one has to see the source code.

To read and understand the source code included in this document, it is nec-
essary to have a basic proficiency in Haskell. On the other hand, to just get a
feeling of how, for example, the firing rules relate to the implemented Haskell
code, it may be possible to look at the source code and just guess what it means.

A reader with good proficiency in a functional programming language like
ML, OCaml or F# will find it easier to read the Haskell source code. On the

25

other hand Haskell is relatively different to imperative programming languages
like C, Java or Python.

The source code of the CSPM tool [14] is also browsable online on the Hack-
age package repository (hackage.haskell.org). The important interfaces are doc-
umented using the haddock documentation tool, which is somewhat similar
to Javadoc. I did not use UML or similar approaches. UML seems to be
best suited for modeling object-oriented software designs and Haskell is not an
object-oriented programming language.

3.3.1 Hints for Understanding the Code
Here are some unsorted hints for understanding the Haskell code for readers
who have never heard of Haskell before. These hints are not meant as a Haskell
tutorial.

Haskell is not OOP

Haskell is not object-oriented programming.1 Haskell emphasizes immutable
values and pure functions, i.e. function without side effects. One should not
pay too much attention to Haskell type classes. Type classes are somehow
related to the classes of object-oriented programming, but in the end they are
something different.

Types are the Key

The type signatures are a good documentation of the data flow of a program.
The first step in understanding a function is understanding the types of the
function arguments and the return type.

Algebraic Data Types and Case Switches

Algebraic data types and functions in Haskell roughly replace objects and meth-
ods in OOP. The constructors of an ADT replace sub-typing and inheritance.
Functions that work on an ADT are often structured as a big case switch, which
covers exactly the constructors of the ADT. Instead of dispatching to different
methods of different objects, Haskell uses an explicit case switch.

In Haskell, a function covers all alternatives to provide some functional-
ity, whereas in OOP, alternatives are modeled with sub-typing. In OOP, each
method definition only provides the functionality for its subtype. If a Haskell
function has an argument type of some ADT it makes sense to first understand
the ADT and then the function.

Recursion

Recursive ADTs are often processed with structural recursive functions, i.e. the
recursion follows the structure of the ADT. Mutually recursive functions are
used for mutually recursive ADTs.

1Object-oriented programming is a very broad concept. It is possible to use concepts from
OOP in Haskell, but OOP is not the underlying philosophy of Haskell and Haskell is not
typically advertised as an OOP language.

26

Combinators and Operator Symbols

Haskell has only a small core syntax with few keywords and special purpose
symbols.2 On the other hand, the standard libraries define a huge number
of combinators and operator symbols, for example fmap, filter, mplus, $, »=,
etc. Sometimes special purpose libraries define additional operator symbols
or redefine operators (<*>, <|>, <$>, etc.). I have tried to write easy-to-read
code, but reading Haskell is a also matter of practice. The author himself is
still practicing and sometimes finds it difficult to read code which other people
consider clear and easy to read. A very useful resource for looking up unknown
functions and operators is http://haskell.org/hoogle.

Monads

There are two reasons why I do not want to include a monad tutorial in this the-
sis. First, there are several good monad tutorials available online3 and second, in
my opinion, the best approach for learning monads is to use them. Yet another
monad tutorial would not be helpful. A good reference for monads and related
concepts in Haskell is [64]. To understand the presented source code only a
very basic knowledge of monads is needed. The main applications of monads in
my CSPM tool are to model input/output, state, partial functions/exceptions,
non-determinism, passing of an environment and a monadic parser.

A filter is a nice example4 of the abstractions provided by monads. The
non-monadic filter function has type:

filter :: (a → Bool) → [a] → [a]

The arguments of filter are a predicate and a list and it returns the sub-list
containing all elements for which the predicate holds. For example:

Prelude> filter even [1,2,3,4,7,10]
[2,4,10]

The monadic version of a filter is:

filterM :: Monad m ⇒ (a → m Bool) → [a] → m [a]

filterM does roughly the same thing as filter except that it also provides the
aspect of whatever monad m is used. The type of the monad m that is used
for the predicate determines the type of the result. If the predicate involves
input/output (m ≡ IO) then filterM will also perform input/output and if the
predicate is a partial function (m ≡ Maybe) then the filter will also be a partial
function.

fileExist :: FilePath → IO Bool
onlyFiles :: [FilePath] → IO [FilePath]
onlyFiles = filterM fileExist

One can also use filterM with the list monad for non-determinism and define
the function subseq. subseq uses a predicate which ignores its argument and
non-deterministically returns False or True.

2see http://www.haskell.org/haskellwiki/Keywords
3 http://www.haskell.org/haskellwiki/Monad_tutorials_timeline lists about 33

monad tutorials.
4Thanks to Ivaylo Dobrikov for reminding me of this example.

27

http://haskell.org/hoogle
http://www.haskell.org/haskellwiki/Keywords
http://www.haskell.org/haskellwiki/Monad_tutorials_timeline

subseq :: [b] → [[b]]
subseq = filterM (const [False,True])

subseq computes the sub-sequences of a list. Below follows a complete interac-
tion with ghci, the REPL interface of GHC.
Prelude> import Control.Monad
Prelude Control.Monad> let subseq = filterM (const [False, True])
Prelude Control.Monad> subseq [1,2,3]
[[],[3],[2],[2,3],[1],[1,3],[1,2],[1,2,3]]

One abstraction for non-determinism in Haskell is the type class MonadPlus. (For
more advanced abstractions see [27, 13]). The MonadPlus type class is defined
as:
class Monad m ⇒ MonadPlus m where

mzero :: m a
mplus :: m a → m a → m a

mzero is a failed computation and mplus represents an alternative. The list
instance of MonadPlus is defined as:
instance MonadPlus [] where

mzero = []
mplus = (++)

subseq2 is a function which works with any instance of MonadPlus:
subseq2 :: MonadPlus m ⇒ [b] → m [b]
subseq2 = filterM (const (return False ‘mplus‘ return True))

3.3.2 Type Families
The presented approach for modularizing the project makes heavy use of a rela-
tively new extension of the Haskell type system called type families. Informally
speaking, type families make it, to some extent, possible to define functions that
work on types instead of data.

The Haskell-Wiki [8] introduction to type families is:
Indexed type families, or type families for short, are a Haskell exten-
sion supporting ad hoc overloading of data types. Type families are
parametric types that can be assigned specialized representations
based on the type parameters they are instantiated with. They are
the data type analogue of type classes: families are used to define
overloaded data in the same way that classes are used to define over-
loaded functions. Type families are useful for generic programming,
for creating highly parametrised library interfaces, and for creating
interfaces with enhanced static information, much like dependent
types.

Type families are an extension to the Haskell-2010 standard. Good references
for type families are [45, 8], which address readers who are familiar with Haskell-
2010.

Type families are only used for the interfaces between the building blocks
of the project, i.e. the core language package and the functional sub-language
package. The internal design of the packages is independent of type families
and the packages themselves can be understood without type families.

28

Example

Suppose one wants to use some abstract data type TF for which one wants
to allow several alternative implementations. This can be achieved with the
following code:
type family TF i
type instance TF Int = Bool
type instance TF Integer = String
type instance TF Char = Bool

Type families are open, i.e. the lines of the above code can be spread over
separate modules. TF is a mapping from index types to implementation types.
In pseudo code it can be written as a function that works on types:
TF(Int)=Bool
TF(Integer)=String
TF(Char)=Bool

It is a function because every index type can be assigned at most one imple-
mentation type, however this function does not need to be injective. (TF(Int)
and TF(Char) both have the implementation type Bool). This means that it is
in general not possible to determine the value of x from TF(x). A consequence is
that values of type TF(x) can only be manipulated if the type of x is determined
by the context.

I come back to the subject with a critique of type families in Section 3.5.

3.4 Role of Haskell
Choosing Haskell as implementation language for the CSPM tool is the sin-
gle most important design decision of the project. The experience with the
presented implementation shows that Haskell is well suited for the task and fur-
thermore Haskell provides additional benefits which are often difficult to achieve
with other languages. For example, Haskell helps to write correct programs, it
helps to keep software small and declarative and also makes it easier to profit
from multi-core parallelism.

This thesis has three aspects.

• I present my work on CSPM and a new CSPM tool.

• I present a case study for the use of the Haskell programming language.

• I work towards a reusable and understandable formal methods tool for
CSPM as an alternative to black box implementations.

I think that Haskell can help to build reusable and understandable software.
Therefore Haskell plays a central role in this thesis.

3.5 Haskell Critique
This sections informally, lists some points of critique against Haskell and the
presented software design. The critique is related to my experiences during the
work on the CSPM project, therefore it may make sense to read this section
after the actual description of the implementation.

29

Modularization and Type Classes

A considerable effort was put into the modularization of the project. For ex-
ample, I have separated the interface definitions from the implementations by
using type classes and I have split the project into several packages. Compared
to a monolithic implementation, this means that extra code has to be written
and it also means that the functions have more complex types. For example in a
monolithic implementation, one could define the following function to compare
two CSP events for equality:
eventEq_monolithic :: Event → Event → Bool
eventEq_monolithic = . . .

For the modularized version, which allows alternative implementations of Event,
I define a type family and a class:
type family Event i
class BE i where eventEq :: i → Event i → Event i → Bool

and separate implementations:
data INT
type Event = [Field]
type instance Core.Event INT = Event
instance BE INT where eventEq _ty = . . .

The first argument of eventEq is a phantom argument. Its only purpose is to give
Haskell additional information about the types. It may be possible to circumvent
the use of this phantom argument—which has other drawbacks, however.

The modularization of the CSPM project was one of the hardest problems of
this work. Haskell’s type classes are powerful, but they also belong to the more
advanced features of the language. I would not claim to have fully understood
type classes. Personally, I found them much more difficult than for example
monads. Also, Haskell provides several alternative concepts for modularization
and it is difficult to understand the design space and the pros and cons of the
different approaches.

Of course the modularization overhead in the implementation is also related
to the fact that the interfaces of the modules are statically typed. The modu-
larization overhead could be reduced by giving up on static typing. Dynamic
languages follow the philosophy that the trade-offs are in general against static
typing. However my experience in the CSPM project was that the benefits of
static typing are much more important than the drawbacks. Section 8.5 com-
pares the size of the source code of my Haskell implementation with the size of
a CSPM tool that is implemented in Prolog. This comparison shows that the
Haskell source code is still concise, in spite of some overhead for modularization
and static typing.

To summarize, I think that improving the current design with respect to
modularization is an interesting subject of further research. The current design
has some drawbacks, like the use of phantom-type arguments; on the other hand
it is tested and works in practice.

Cutting Edge Research

Haskell extensions are a subject of cutting edge research. The Glasgow Haskell
Compiler supports many extensions which go beyond the Haskell-2010 standard.

30

Extensions provide interesting features and can make Haskell more expressive.
On the other hand, most of the extensions are restricted to GHC. The docu-
mentation of the extensions often only consists of research papers and is often
difficult to understand.

Many extensions target the type system. If a program does not type-check,
it could be that the programmer has not fully understood the extension, that
there is some restriction in the type checker, or it could also be a plain bug
in the compiler. At least, a program which does not type-check also does not
compile and can therefore not contain run-time errors.

One of the extensions I use is type families. Although the type-family-based
design works, it also has its drawbacks. In particular, the combination of type
families, type classes and phantom types is complicated. It may be possible to
improve the design, but this is future work and beyond the scope of this thesis.

Programming in the Large

Programming in the large in Haskell is difficult and requires learning new pat-
terns and designs. Most Haskell tutorials only teach the language itself. There
is a big gap between understanding the programming language and designing
large Haskell programs. Haskell is a very expressive language, however that
means that there are also many alternative ways to solve a problem and there
many possibilities of choosing a bad design.

31

Chapter 4

Modeling of the CSP Core
Language in Haskell

4.1 Overview
This section describes how I model the CSP core language. The CSP core
language comprises processes and events but omits data processing and the
functional sub-language of CSPM . This chapter also describes how I model the
firing rules that define the CSP operational semantics and proof trees which are
built with the help of these firing rules.

Furthermore, I present two implementations of the actual operational se-
mantics. The first implementation is based on a straightforward enumeration
of events and consists of very succinct code while the second uses a constraint-
based approach, which can improve the performance for some CSP specifications
but which is also more elaborate.

One objective of my design was modularity. I wanted to keep the modeling of
the core language well separated from other aspects of the CSPM specification
language and in particular I wanted to make it possible to use the core language
module with several different implementations of the functional sub-language. I
also wanted to make it possible to test the implemented operational CSP seman-
tic or at least to give some evidence for the correctness of the implementation.

Chapter Outline

The rest of Section 4.1 describes how I model the core concepts of CSP, namely
processes and events. Section 4.2 explains my implementation of proof trees,
the proof tree verifier and a naïve proof tree generator. Section 4.3 discusses an
alternate, more complicated proof tree generator and Section 4.4 is dedicated
to testing and the correctness of the code. The sections should be read in the
above order. Section 4.3 is relatively technical and may be skipped.

4.1.1 Modeling of Processes
Processes are modeled as the algebraic data type Process (Listing 4.1).

32

Listing 4.1: The Process data type
data Process i

= Prefix (Prefix i)
| ExternalChoice (Process i) (Process i)
| InternalChoice (Process i) (Process i)
| Interleave (Process i) (Process i)
| Interrupt (Process i) (Process i)
| Timeout (Process i) (Process i)
| Sharing (Process i) (EventSet i) (Process i)
| AParallel (EventSet i) (EventSet i) (Process i) (Process i)
| RepAParallel [(EventSet i,Process i)]
| Seq (Process i) (Process i)
| Hide (EventSet i) (Process i)
| Stop
| Skip
| Omega
| Chaos (EventSet i)
| AProcess Int
| SwitchedOff (ExtProcess i)
| Renaming (RenamingRelation i) (Process i)
| LinkParallel (RenamingRelation i) (Process i) (Process i)

Process contains a constructor for each CSP core operation, constructors for
the primitive processes STOP, SKIP and some special constructors like e.g Omega.
For performance reasons, binary alphabetized parallel operation and replicated
(n-ary) alphabetized parallel operation are represented with two separate con-
structors (AParallel and RepAParallel). For the other replicated operations I
use a simple translation to a nested binary operation. AProcess is only used for
testing.

The module also defines two type families Prefix, ExtProcess and a type
class BL 1 (see Listing 4.2).

The type families and the type class only declare an interface for which a user
of the core language package has to provide the instantiation. One example for
a user of the core language is the functional sub-language of CSPM (see Chapter
5).

Listing 4.2: The type class BL

type family Prefix i
type family ExtProcess i

class (BE i) ⇒ BL i where
prefixNext :: Prefix i → Event i → Maybe (Process i)
switchOn :: ExtProcess i → Process i

The type definitions in this module already indicate how the core language
and the functional sub-language work together. Lets first explain the interplay
of SwitchedOff, switchOn and ExtProcess. The constructor SwitchedOff is used
to model processes that have not been evaluated yet, for example the right-hand
side of a sequential composition P ; Q. The constructor SwitchedOff contains
data of type ExtProcess i. A user of the core language package has to instantiate

1 BL stands for base language. In the presented implementation, this is the functional
sub-language of CSPM but it could be something else.

33

the type family ExtProcess with a data type suitable for storing switched-off
processes. The function

switchOn :: ExtProcess i → Process i

is used to switch on the process, i.e. to convert from ExtProcess i to Process
i.

Prefix operations are modeled similarly to switched-off processes. The user
of the core language module has to define its instance of the data family Prefix
and instantiate the function prefixNext.

The core language uses the function prefixNext to perform events. prefix-
Next takes as arguments a prefix expression and an event and computes the
representation of the new process, which is the result of the prefix performing
the event. The new process is wrapped in a Maybe data type to make it possible
to indicate that the process cannot perform the event (in which case prefixNext
just returns Nothing).

The interface of the CSP core language is pure and all the involved data
types are immutable. Class BE (BE stands for base event) is a super class of BL,
which means that the functional sub-language also has to provide an instance
of BE. BE is described in the next section. The Process data type is defined in
module Process. The full source code is shown in Appendix B.1.1. The wrapper
for replicated operations is defined in module ProcessWrapper (Appendix B.1.2).

Technical Remarks about Type Families

The types in this module are polymorphic with a type variable i. Techni-
cally speaking, Process is a type constructors of kind * -> * and Prefix and
ExtProcess are type-indexed type families (See 3.3.2). Informally speaking, the
type variable i makes it possible to use the core language package with more
than one implementation of the functional sub-language. In the source code the
process type often appears as Process i, but for brevity I sometimes omit the
i and just write Process.

4.1.2 Modeling of Events
Module Event (Appendix B.1.3 / Listing 4.3) defines the interface of the core lan-
guage package for atomic events. It defines three type families Event, EventSet
and RenamingRelation and the class BE with basic functions that work on these
types.

Listing 4.3: Type class BE
type family Event i
type family EventSet i
type family RenamingRelation i

class BE i where
eventEq :: i → Event i → Event i → Bool
member :: i → Event i → EventSet i → Bool
intersection :: i → EventSet i → EventSet i → EventSet i
difference :: i → EventSet i → EventSet i → EventSet i
union :: i → EventSet i → EventSet i → EventSet i
null :: i → EventSet i → Bool

34

singleton :: i → Event i → EventSet i
insert :: i → Event i → EventSet i → EventSet i
delete :: i → Event i → EventSet i → EventSet i
eventSetToList :: i → EventSet i → [Event i]
allEvents :: i → EventSet i
isInRenaming :: i → RenamingRelation i → Event i → Event i → Bool
imageRenaming :: i → RenamingRelation i → Event i → [Event i]
preImageRenaming :: i → RenamingRelation i → Event i → [Event i]
isInRenamingDomain :: i → Event i → RenamingRelation i → Bool
isInRenamingRange :: i → Event i → RenamingRelation i → Bool
getRenamingDomain :: i → RenamingRelation i → [Event i]
getRenamingRange :: i → RenamingRelation i → [Event i]
renamingFromList :: i → [(Event i, Event i)] → RenamingRelation i
renamingToList :: i → RenamingRelation i → [(Event i, Event i)]
singleEventToClosureSet :: i → Event i → EventSet i

In CSPM , it is possible to define channels with additional data fields; however
this module treats events as atomic, i.e. it hides the fact that an event may
consist of several data fields. Section 4.3.6 describes a separate class BF, which
also models the internal structure of events and allows to use data fields.

Note that the first argument of all functions in this module, the argument
of type i, is used as a phantom-type argument. Its only purpose is to give the
Haskell type checker additional information. Callers can simply pass undefined
as first argument and instance-functions of class BE must ignore this argument.

undefined, also written as ⊥, is a bit like a NULL-pointer in C. Any attempt
to “dereference” undefined causes a run-time exception. undefined is even more
restrictive than NULL because it is (in pure code) not even possible to test if
a value is equal to undefined.

4.1.3 Example of the Modeling of Processes
Let’s consider the following process in CSPM syntax:

((cin!10→P2) [{ |cin,cout |} | | { |chan3 |}] (chan2→P3)); P4

The core language view of the process is the following tree:

Process�

Seq

�

AParallel
� {|cin,cout|}

� {|chan3|}

�
Prefix
� cin!10->P2

�
Prefix
� chan->P3

�
SwitchedOff
� P4

The relevant part of the process data type (Listing 4.1) is:

data Process i

35

= Prefix (Prefix i)
| AParallel (EventSet i) (EventSet i) (Process i) (Process i)
| Seq (Process i) (Process i)
| SwitchedOff (ExtProcess i)
. . .

The core language module does not enforce any fixed implementation for:
{|cin,cout|} , {|chan3|} , cin!10->P2 , chan2-> P3 and P4 .
The core language point of view is that these parts are represented using the
type families EventSet i, Prefix i and ExtProcess i. Furthermore, these parts
are only accessed via the interfaces defined in the type classes BE and BL (Listing
4.3 and Listing 4.2).

4.2 Implementation of the Operational Seman-
tics

4.2.1 Section Outline
The previous section describes the data types and type classes which model pro-
cesses and events. This section describes an implementation of the operational
semantics of CSP based on the definitions of the previous section.

Basically, the operational semantics of CSP is defined by a set of firing rules,
as described in Chapter 2. Firing rules are a concise, high level description of
an operational semantics. They work as building blocks for proof trees, which
show that a process can perform some transition. Given the firing rules and
a proof tree, it is easy to check that a process can perform the corresponding
transition. On the other hand, firing rules are implicitly non-deterministic and
constructing a proof tree is in general much harder than verifying it (assuming
that N . NP).

This section describes an algorithm for constructing proof trees. The section
is structured as follows: I first discuss the advantages of explicit proof trees and
describe how I model them as a data structure. The presented data structure
has some nice properties, for example it allows for a concise representation
and some kind of built-in correctness (c.f. Section 4.2.2, Section 4.2.3). Along
with this data structure I describe a concise function for verifying proof trees
with respect to the firing rules. After that, I come to the core of the problem
and describe a function which actually computes the proof trees (Section 4.2.4,
Section 4.2.5)

In my tool, the operational semantics is used to perform model checking.
More precisely, it is used to perform a breadth first search on the labeled tran-
sition system of the process. The model checker starts with an initial process,
follows the transition relation in forward direction and checks all encountered
processes for some property.

In this setting, the actual proof tree for a transition is not needed. It would,
in principle, be sufficient to implement the operational semantics as a function
nextState :: Process →[(Event,Process)] that computes all possible transi-
tions for a process. However, there are several reasons (c.f. 4.2.2) why it is still
beneficial to compute explicit proof trees and therefore I split the computation
of the transition relation into one function that computes the proof trees and
one that extracts an actual transition from a proof tree.

36

The function for computing the proof trees has the type:
computeTransitions :: BL i ⇒ Sigma i → Process i → [Rule i]

The two arguments of computeTransitions are the set Σ of all possible events
and a process. computeTransitions computes a list of proof trees of possible
transitions of that process. The data type Rule i is used to store a proof tree.2

The following function is used to examine proof trees:
viewRule :: BL i ⇒ Rule i → (Process i, TTE i, Process i)
viewRule r = case viewRuleMaybe r of

Nothing → error "viewRule : internal error malformed Rule"
Just v → v

This function verifies a proof tree and constructs an explicit representation of
the transition that is actually proved. TTE is just a sum-type for τ , X and
regular events. In other words, the return type (Process i, TTE i, Process i)
is a triple which simply encodes transitions (P e−→ P ′).

The algorithms are constructed such that viewRule is always called with valid
proof trees. If viewRule is ever called with a bad proof, there must be an error
in the implementation and viewRule throws an exception in this case. viewRule
is just a simple wrapper for viewRuleMaybe, which does the real work and which
is described in Section 4.2.3.

4.2.2 Advantages of Explicit Proof Trees
Computing explicit proof trees has several advantages. First of all, it greatly
helps to improve the confidence in the implementation. In particular, one can
use QuickCheck [61] to randomly generate proof trees and automatically check
properties of viewRule and computeTransitions. I describe this approach in
detail in Section 4.4.

In general, proof trees are very useful for debugging. They can be used to
give the user of the tool useful feedback about his specification. The proof tree
immediately shows why a transition is possible, which is often not obvious with
complicated specifications.

Finally, explicit proof trees have generally helped me to structure my im-
plementation and they helped me to keep an overview of what firing rules have
actually been implemented. Every firing rule has to be implemented in three
places: in the Rule data type, in viewRule and in computeTransitions. The Rule
data type clues the different parts together and viewRule is in some sense a
test procedure for computeTransitions. It makes sense to first define the data
constructor for a rule; after that, define the proof tree verifier for the rule and
finally extend the proof tree generator.

The fact that one implements the same concept three times adds some re-
dundancies. However, these redundancies do not add additional bugs. On the
contrary, the proof tree verifier works like an assertion and the redundancy helps
to catch errors.

Overall, the implementation is still far from being an elegant functional pearl.
But, the presented architecture is not my first shot at CSP. An earlier attempt,
which basically tried to compute the nextState function directly, worked to
some extent but quickly became incomprehensible. In particular the earlier

2 The misleading name Rule for the type of proof trees is used for historical reasons.

37

implementation was difficult to test and debug, which is exactly one issue that
is addressed by using explicit proof trees.

Furthermore the run-time overhead for using explicit proof trees is small and
I think that it is possible to apply a deforestation technique to the presented
implementation and remove the overhead of explicit proof trees—if this should
every be necessary.

It is interesting to compare the presented implementation with other designs.
For example, there is often an elegant way to translate firing rules to Prolog
clauses. In this approach, there is a one-to-one correspondence between a proof
tree and a Prolog SDL derivation. The drawback is that the SDL tree is managed
by the Prolog run-time system and there is no direct way to recover the proof
tree from inside the Prolog program. Indirect methods like meta-programming
can be used, however. The CSPM implementation of ProB [33] is Prolog based.
Chapter 8.5 compares my implementation with ProB.

4.2.3 Modeling of Proof Trees
To show that a particular transition is consistent with the operational semantics
one has to build the corresponding proof tree. The proof trees of interest are
all similar in structure. The conclusion and the premises are always transitions
of the form P

e−→ P ′, the premises are always proofed with a recursive proof
tree and some firing rules might involve additional side conditions.

To verify a proof tree one has to check that the side conditions hold and also
to ensure that the tree is "syntactically correct". With "syntactically correct",
I mean that the tree is really constructed with valid instantiations of the firing
rules. The identifiers in the firing rules work like logic variables. For example,
if a firing rule contains two occurrences of P then both occurrences of P must
be substituted with same syntactical expression in the proof tree.

I model proof trees as a Haskell data structure such that the proof trees are
syntactically correct by construction, or in other words, such that it is impossible
to construct syntactically invalid proof trees.

The idea can be explained with the help of an example. Let’s consider the
following proof tree:

(e → Proc1) e−→ Proc1 (e → Proc2) e−→ Proc2
((e → Proc1) A∥B (e → Proc2)) e−→ Proc1 A∥B Proc2

e ∈ A ∧ e ∈ B

The tree is built with one application of the firing rule for parallel composi-
tion (R-13)

P
e−→ P ′ Q

e−→ Q′

(P X∥Y Q) e−→ (P ′
X∥Y Q′)

e ∈ X ∧ e ∈ Y

and two application of the rule for prefix (R-1).

(e → P) e−→ P

One can immediately see that the proof tree contains many occurrences of iden-
tical syntactical expressions (Proc1 and Proc2 each appear four times).

38

The simple idea is to store each expression that is part of a proof tree only
once. Furthermore, the conclusion is mostly built of syntactical parts of the
premises. Since each premise comes with its own proof tree, most of the syn-
tactical parts of the conclusion also occur in the the proof trees of the premises.
This means that one only has to store the event sets X and Y and the sub-proof
trees for the two premises in the tree node for a parallel composition firing rule.

The data structure for the proof trees is constructed such that the missing
parts of each inference step can be computed with a simple recursive traversal
of the proof tree. At the same time, this traversal validates the proof tree.

The concrete code for the proof tree verifier for inference rule R-13 (alpha-
betized parallel) and R-1 (prefix operation) is the following:

Listing 4.4: Proof Tree Verifier
1 viewRuleEvent :: forall i. BL i
2 ⇒ RuleEvent i → Maybe (Process i, Event i, Process i)
3 viewRuleEvent rule = case rule of
4 AParallelBoth c1 c2 pp qq → do
5 (p, e2, p’) ← viewRuleEvent pp
6 (q, e1, q’) ← viewRuleEvent qq
7 guard $ eventEq ty e1 e2
8 in_Closure e1 c1
9 in_Closure e1 c2

10 return (AParallel c1 c2 p q, e1, AParallel c1 c2 p’ q’)
11 HPrefix e p → do
12 p’ ← prefixNext p e
13 return (Prefix p, e, p’)

viewRuleEvent validates a proof tree and (if valid) at the same time reconstructs
the conclusion. AParallelBoth is the data constructor which stores a proof tree
node for rule (R-13).

In detail, viewRuleEvent does the following:

Line 4 The pattern match for the alphabetized parallel rule binds c1 to the left
closure set, c2 to the right closure set, pp to the left sub-proof tree and qq
to the right sub-proof tree.

Lines 5,6 It reconstructs the two premises of the rule by recursively calling
viewRuleEvent on the sub-proof trees (which also validates the sub-proofs).
The premises are P

e2−→ P ′ and Q
e1−→ Q′ (encoded as (p, e2, p’) and

(q, e1, q’)).

Line 7 It checks that the event-part of both premises is equal (e1 == e2).

Lines 8,9 It checks that the event is in both synchronisation sets (e1 ∈ c1 and
e1 ∈ c2).

Line 10 It returns the conclusion, i.e. the encoding of the transition.
(AParallel c1 c2 p q, e1, AParallel c1 c2 p’ q’)

≡ (P c1∥c2 Q) e1−→ (P ′
c1∥c2 Q′)

Note that viewRuleEvent is defined in terms of the Maybe monad. It can either
return the transition of the proof tree or signal an invalid proof tree by returning

39

Nothing. Informally, in the Maybe monad, every line of a do-block corresponds to
the check, whether the line has returned Nothing. In this case the hole do-block
evaluates to Nothing. viewRuleEvent is structured as a big case switch over all
firing rules. The above example only shows the cases for AParallelBoth and
HPrefix.

RuleEvent is the data type which stores proof trees. It is implemented in
module Rules (B.1.5). AParallelBoth is the constructor that is used for the
alphabetized parallel firing rule. AParallelBoth has four fields: the left event
closure set, the right event closure set, the left sub-proof tree and the right
sub-proof tree. Here is the code for RuleEvent (showing only the constructors
for rule R-1 and rule R-13):

data RuleEvent i =
| · · ·
| HPrefix (Event i) (Prefix i)
| AParallelBoth (EventSet i) (EventSet i) (RuleEvent i) (RuleEvent i)
| · · ·

Example using CSPM Syntax

Here is a slightly more elaborated example using CSPM syntax. As described
in Section 4.1.1, the core language module and the proof tree verifier use an
abstract view for those aspects that are handled by the functional sub-language
of CSPM .

Those parts are printed in boxes and I simply repeat the concrete syntax
CSPM in the box . The example process in CSPM syntax is:

(c?x→P(x)) [s1 | |s2] (c!3→ Q)

s1, s2 are some event closure sets and we are again looking at a transition via
the rules R-1 and R-13 (c.f. Appendix A). In particular the process should
perform event c.3 and become:

P(3) [s1 | |s2] Q

The proof tree for this transition is:

c?x->P(x)
c.3
−→ P(3) c!3->Q

c.3
−→ Q

(c?x->P(x) s1 ∥ s2 c!3->Q)
c.3
−→ P(3) s1 ∥ s2 Q

c.3 ∈ s1,s2

Apart from the structure itself, the proof tree consists entirely of boxes of com-
ponents that are implemented by the functional sub-language. It can also be
seen that the proof tree contains many identical boxes. The Haskell represen-
tation of this proof tree is:

40

proof tree:�

AParallelBoth
� s1
� s2

�premise 1 -

HPrefix
� c.3

� c?x->P(x)

�premise 2 -

HPrefix
� c.3
� c!3->Q

In the Haskell representation every box is only stored once. The Haskell proof
tree only stores the information about the premises and the side conditions. The
conclusion of the proof tree is not stored explicitly. Instead, it is reconstructed
on the fly, at the same time as when the proof tree is verified with viewRuleEvent.

Note that the proof tree for the prefix operation only stores the prefix ex-
pression c?x->P(x) and the actual event c.3 . The computation of the result
of the prefix operation, i.e. performing the pattern match for c?x and binding
x to 3, is carried out by prefixNext (Line 12 Listing 4.4). The implementation
of prefixNext is provided by the functional sub-language.

Similarly the side conditions c.3∈s1 and c.3∈s2 can be checked via the
abstract function member from class BE (Listing 4.3). in closure (Line 8,9 Listing
4.4) is just a small wrapper for member. Since the two premises of AParallelBoth
return two completely unrelated transitions, one also has to check that the
events from both transitions are equal (Line 7 Listing 4.4).

The proof tree verifier, the Rule data type and the firing rules all express the
same semantics. It may be helpful to look at Appendix A, which lists all firing
rules and the corresponding proof tree verifiers.

The same approach works for all firing rules of CSP, since they are all similar
in structure. The data type RuleEvent is used for firing rules with regular events.
X-rules and τ -rules are represented with the data types RuleTick and RuleTau
respectively. To verify X-and τ -rules, I use the following two functions:
viewRuleTau :: BL i ⇒ RuleTau i → Maybe (Process i, Process i)
viewRuleTick :: BL i ⇒ RuleTick i → Maybe (Process i)

Note that the conclusion of a τ -rule is always a transition with a τ event.
Therefore there is no need to return an explicit event and viewRuleTau only
returns a pair of two processes. Similarly, the conclusion of a X-rule is always
in the form P

X−→ Ω and it is sufficient to return P . For every rule, it is statically
known if the premises are normal transitions, X- or τ - transitions.

The proof tree verifier is implemented in module Verifier (Listing in Ap-
pendix B.1.6). The code of the verifier is mostly self-explanatory, the only
non-trivial rule is replicated alphabetized parallel. Altogether, I have imple-
mented 24 regular firing rules, 32 τ -rules and 12 X-rules. Appendix A contains
a table with all implemented inference rules.

To summarise, the presented approach allows for a compact representation
of proof trees and, at the same time, guarantees that all proof trees are syntac-
tically correct with respect to the firing rules. The proof tree verifier validates

41

the side conditions and extracts the conclusion of the proof tree, i.e. the repre-
sentation of the transition P

e−→ P ′. This can be done with a single traversal
of the proof tree.

With the presented scheme, the Haskell implementation of a proof tree ver-
ifier for a firing rule becomes a merely syntactical translation of the firing rule.
The proof tree verifier and the latex code for the firing rules have been writ-
ten by hand, but in principle it would be possible to mechanically generate
one representation from the other. The next sections explain an approach for
generating proof trees.

4.2.4 Generation of Proof Trees for τ and X

This section describes the functions for generating τ and X proof trees. Both
functions are implemented in module EnumerateEvents (B.1.7). Since τ and X
rules are pure syntactic rules without side conditions on events, it is relatively
easy to generate the proof trees.

Example

I will explain the generation of τ proof trees for the example of an alphabetized
parallel process Proc = P pc∥qc Q. This process is encoded as:
AParallel pc qc p q

The following code generates the τ -rules for an alphabetizes parallel process.

Listing 4.5: Generator for τ proof trees for alphabetized parallel
1 tauTransitions :: forall i. BL i ⇒ Process i → Search (RuleTau i)
2 tauTransitions proc = case proc of
3 AParallel pc qc p q
4 → (AParallelTauL pc qc <$> tauTransitions p <∗> pure q)
5 ‘mplus‘ (AParallelTauR pc qc p <$> tauTransitions q)
6 ‘mplus‘ (AParallelTickL pc qc <$> tickTransitions p <∗> pure q)
7 ‘mplus‘ (AParallelTickR pc qc p <$> tickTransitions q)

The above code can be read as follows: One makes a case switch on the structure
of the process (Line 2). Lines 3 to 7 show the part that covers the alphabetized
parallel operation. Other process operations are not shown.

The process can perform four different kinds of τ transitions defined by the
following firing rules: R-56, R-57, R-58 and R-59. The corresponding construc-
tors in the RuleTau data type are AParallelTauL, AParallelTauR, AParallelTickL
and AParallelTickR. The proof trees for those firing rules are generated in Lines
4 to 7. The alternatives are joined with mplus.

For example, rule R-56 handles the propagation of a τ -event of P :

P
τ−→ P ′

P X∥Y Q
τ−→ P ′

X∥Y Q

This rule is implemented with the following expression (Line 4):
AParallelTauL pc qc <$> tauTransitions p <∗> pure q

Basically this means that one obtains a proof tree with this rule by applying
the constructor AParallelTauL to four arguments:

42

1. pc ≡ the closure set pc

2. qc ≡ the closure set qc

3. tauTransitions p ≡ all possible τ -transition of P

4. pure q ≡ the single process Q

I use <$>, <*> and pure from the Applicative class and mplus from the
MonadPlus class.3 mplus models a non-deterministic choice between two alterna-
tives. The Applicative class is a super class of Monad. In the presented code,
<$>, <*> and mplus work a little bit like a mathematical cross-product.

I will not explain in detail what the MonadPlus class and the Applicative
class are. A good overview of these concepts can be found in [64]. I hope
that it is possible to get an intuition about how the above code works without
understanding all the details.

Technically, the presented functions are defined in terms of a type con-
structor Search that determines the monad which actually implements the non-
determinism (Line 1). Currently I use the Search monad from the tree-monad
package [13]. It would also be possible to use the Logic monad [27] from the
logict package or the plain old list nmonad.
type Search a = [a]

The choice of the monad can have some impact on the performance and it
also determines whether the implementation uses backtracking or breadth first
search and whether one can use parallel search strategies.

Translation to List Comprehensions

The code from Listing 4.5 works with any instance of MonadPlus, i.e. with any
underlying implementation of non-determinism. Using mplus,<$> and <*> is the
idiomatic Haskell implementation of the function.

However, the recent releases of GHC support an extension which allows one
to also reuse the syntax of list comprehensions with any monad.4 With this
extension Listing 4.5 can be rewritten to list comprehensions which may be
more readable.

Listing 4.6: Generator for τ proof trees with list comprehensions
tauTransitions proc = case proc of

AParallel pc qc p q
→ [AParallelTauL pc qc h q | h ← tauTransitions p]

++ [AParallelTauR pc qc p h | h ← tauTransitions q]
++ [AParallelTickL pc qc h q | h ← tickTransitions p]
++ [AParallelTickR pc qc p h | h ← tickTransitions q]

where (++) = mplus

The function ++, which by default appends two lists, can also be redefined to be
more generic. Listing 4.6 behaves exactly like Listing 4.5 and, in the case of the
plain old list monad, it also behaves exactly like plain old list comprehensions.

3Later, I will also use mzero, which stands for a failed computation, or in other words a
computation with zero alternatives.

4This is a recent extension. It was not used or not available at the time of writing most of
the presented code.

43

Complete Code

For reference, this is the complete code for the construction of τ proof trees:

tauTransitions :: forall i. BL i ⇒ Process i → Search (RuleTau i)
tauTransitions proc = case proc of

SwitchedOff p → tauTransitions $ switchOn p
Prefix {} → mzero
ExternalChoice p q
→ (ExtChoiceTauL <$> tauTransitions p <∗> pure q)
‘mplus‘ (ExtChoiceTauR p <$> tauTransitions q)

InternalChoice p q
→ (return $ InternalChoiceL p q)
‘mplus‘ (return $ InternalChoiceR p q)

Interleave p q
→ (InterleaveTauL <$> tauTransitions p <∗> pure q)
‘mplus‘ (InterleaveTauR p <$> tauTransitions q)
‘mplus‘ (InterleaveTickL <$> tickTransitions p <∗> pure q)
‘mplus‘ (InterleaveTickR p <$> tickTransitions q)

Interrupt p q
→ (InterruptTauL <$> tauTransitions p <∗> pure q)
‘mplus‘ (InterruptTauR p <$> tauTransitions q)

Timeout p q
→ (TimeoutTauR <$> tauTransitions p <∗> pure q)
‘mplus‘ (return $ TimeoutOccurs p q)

Sharing p c q
→ (ShareTauL c <$> tauTransitions p <∗> pure q)
‘mplus‘ (ShareTauR c p <$> tauTransitions q)
‘mplus‘ (ShareTickL c <$> tickTransitions p <∗> pure q)
‘mplus‘ (ShareTickR c p <$> tickTransitions q)

AParallel pc qc p q
→ (AParallelTauL pc qc <$> tauTransitions p <∗> pure q)
‘mplus‘ (AParallelTauR pc qc p <$> tauTransitions q)
‘mplus‘ (AParallelTickL pc qc <$> tickTransitions p <∗> pure q)
‘mplus‘ (AParallelTickR pc qc p <$> tickTransitions q)

Seq p q
→ (SeqTau <$> tauTransitions p <∗> pure q)

‘mplus‘ (SeqTick <$> tickTransitions p <∗> pure q)
Hide hidden p → (do

e ← anyEvent ty hidden
rule ← buildRuleEvent e p
return $ Hidden hidden rule)

‘mplus‘ (HideTau hidden <$> tauTransitions p)
Stop → mzero
Skip → mzero
Omega → mzero
AProcess _n → mzero
RepAParallel l → mzero -- TODO ! tau for replicated AParallel
Renaming rel p → RenamingTau rel <$> tauTransitions p
Chaos c → return $ ChaosStop c
LinkParallel rel p q
→ (LinkTauL rel <$> tauTransitions p <∗> pure q)

‘mplus‘ (LinkTauR rel p <$> tauTransitions q)
‘mplus‘ (LinkTickL rel <$> tickTransitions p <∗> pure q)
‘mplus‘ (LinkTickR rel p <$> tickTransitions q)

44

‘mplus‘ mkLinkedRules rel p q
where

ty = (undefined :: i)

For most of the CSP operations, this code boils down to listing the corresponding
firing rules and making the recursive calls.

The special cases are hiding and linked parallel composition (Rule R-37 and
Rule R-68). Both hiding and linked parallel composition can turn a regular
event into a τ event. Therefore, they both rely on calling the proof generators
for regular events (buildRuleEvent which is described later). Currently, the
function for linked parallel compositions does a naïve brute-force enumeration,
which might represent an opportunity for future optimizations.

mkLinkedRules :: forall i. BL i
⇒ RenamingRelation i
→ Process i
→ Process i
→ Search (RuleTau i)

mkLinkedRules rel p q = do
(e1, r1) ← rules1
(e2, r2) ← rules2
guard $ isInRenaming ty rel e1 e2
return $ LinkLinked rel r1 r2
where

rules1 :: Search (Event i, RuleEvent i)
rules1 = rules (getRenamingDomain ty rel) p
rules2 = rules (getRenamingRange ty rel) q
rules :: [Event i] → Process i → Search (Event i, RuleEvent i)
rules s proc = do

e ← s
r ← buildRuleEvent e proc
return (e,r)

ty = (undefined :: i)

X-Rules

The code for X-rules follows the same scheme:

1 tickTransitions :: BL i ⇒ Process i → Search (RuleTick i)
2 tickTransitions proc = case proc of
3 SwitchedOff p → tickTransitions $ switchOn p
4 Prefix {} → mzero
5 ExternalChoice p q
6 → (ExtChoiceTickL <$> tickTransitions p <∗> pure q)
7 ‘mplus‘ (ExtChoiceTickR p <$> tickTransitions q)
8 InternalChoice _p _q → mzero
9 Interleave Omega Omega → return $ InterleaveOmega

10 Interleave _ _ → mzero
11 Interrupt p q → InterruptTick <$> tickTransitions p <∗> pure q
12 Timeout p q → TimeoutTick <$> tickTransitions p <∗> pure q
13 Sharing Omega c Omega → return $ ShareOmega c
14 Sharing _ _ _ → mzero
15 AParallel c1 c2 Omega Omega → return $ AParallelOmega c1 c2
16 AParallel _ _ _ _ → mzero

45

17 Seq _p _q → mzero
18 Hide c p → HiddenTick c <$> tickTransitions p
19 Stop → mzero
20 Skip → return SkipTick
21 Omega → mzero
22 AProcess _n → mzero
23 RepAParallel l → if all (isOmega ◦ snd) l
24 then return $ RepAParallelOmega $ map fst l
25 else mzero
26 Renaming rel p → RenamingTick rel <$> tickTransitions p
27 Chaos _ → mzero
28 LinkParallel rel Omega Omega → return $ LinkParallelTick rel
29 LinkParallel _ _ _ → mzero

The special case is the introduction of the X-event (Rule R-25) in Line 20. Most
CSP operations do not propagate X-events.5 Instead they use a synchronized
form of termination (See rules R-29, R-30, R-31, R-32 and R-36). To implement
this concisely, I use two pattern matches for this process operation (see line 9/10,
line 13/14 and line 15/16. For all other operations there is exactly one case per
operation in the case–of switch.

4.2.5 Naïve Generation of Proof Trees for Regular Tran-
sitions

This section describes a naïve approach for generating the proof trees for reg-
ular events. In the previous sections, I have explained how to generate τ - and
X-proof trees. The difference with regular transitions is that proof trees for
regular transitions can contain additional side conditions on the event of the
transition. A naïve approach is, to iterate over all elements of Σ and to com-
pute the transitions for each event in Σ in turn.

In other words, the problem of generating all proof trees of a process is
reduced to the problem of generating the proof trees of a process for a fixed
event. With a fixed event, it is easy to check the side conditions at the same
time when generating the proof trees. In CSPM , channels must be explicitly
declared and the set Σ of all events is always fixed. Therefore, it is always
possible to enumerate Σ and to consider one event after the other. Of course,
this approach may be inefficient, depending on the size of Σ and the exact
structure of the process. I will address this problem in Section 4.3.

Iterating over all events is done in function eventTransitions.

eventTransitions :: forall i.
BL i

⇒ Sigma i
→ Process i
→ Search (RuleEvent i)

eventTransitions sigma p = do
e ← anyEvent ty sigma
buildRuleEvent e p
where

ty = (undefined :: i)

5An exception is external choice (R-33 and R-34).

46

anyEvent :: forall i. BL i ⇒ i → EventSet i → Search (Event i)
anyEvent ty sigma

= anyOf $ eventSetToList ty sigma

eventTransitions has two arguments: Σ and the given process. The func-
tion eventTransitions simply calls buildRuleEvent for each event in turn and
passes this event as the first argument. buildRuleEvent does the actual work.
The functions event-Transitions and enumRuleEvent are implemented in module
EnumerateEvents (B.1.7).

The function buildRuleEvent generates the proof trees for a process and for
one fixed event. It is structured similarly to tickTransitions and tauTransitions
from the previous section. The function non-deterministically computes the
rules for a CSP operation and recursively calls the proof tree generator for the
premises. I abbreviate the recursive call to buildRuleEvent with rp (line 59).

1 buildRuleEvent :: forall i. BL i
2 ⇒ Event i
3 → Process i
4 → Search (RuleEvent i)
5 buildRuleEvent event proc = case proc of
6 SwitchedOff p → rp $ switchOn p
7 Prefix p → case (prefixNext p event :: Maybe (Process i)) of
8 Nothing → mzero
9 Just _ → return $ HPrefix event p

10 ExternalChoice p q
11 → (ExtChoiceL <$> rp p <∗> pure q)
12 ‘mplus‘ (ExtChoiceR p <$> rp q)
13 InternalChoice _ _ → mzero
14 Interleave p q
15 → (InterleaveL <$> rp p <∗> pure q)
16 ‘mplus‘ (InterleaveR p <$> rp q)
17 Interrupt p q → (NoInterrupt <$> rp p <∗> pure q)
18 ‘mplus‘ (InterruptOccurs p <$> rp q)
19 Timeout p q → TimeoutNo <$> rp p <∗> pure q
20 Sharing p c q → if member ty event c
21 then Shared c <$> rp p <∗> rp q
22 else (NotShareL c <$> rp p <∗> pure q)
23 ‘mplus‘ (NotShareR c p <$> rp q)
24 Seq p q → SeqNormal <$> rp p <∗> pure q
25 AParallel x y p q → case (member ty event x, member ty event y) of
26 (True, True) → AParallelBoth x y <$> rp p <∗> rp q
27 (True, False) → AParallelL x y <$> rp p <∗> pure q
28 (False, True) → AParallelR x y p <$> rp q
29 (False,False) → mzero
30 RepAParallel l → buildRuleRepAParallel event l
31 Hide c p → if member ty event c
32 then mzero
33 else NotHidden c <$> rp p
34 Stop → mzero
35 Skip → mzero
36 Omega → mzero
37 AProcess _n → mzero
38 Renaming rel p → (do
39 e2 ← anyEvent ty (allEvents ty)

47

40 guard $ isInRenaming ty rel e2 event
41 rule ← buildRuleEvent e2 p
42 return $ Rename rel event rule
43)
44 ‘mplus‘ (do
45 guard $ not $ isInRenamingDomain ty event rel
46 RenameNotInDomain rel <$> rp p
47)
48 Chaos c → if member ty event c
49 then return $ ChaosEvent c event
50 else mzero
51 LinkParallel rel p q → (do
52 guard $ not $ isInRenamingDomain ty event rel
53 LinkEventL rel <$> rp p <∗> pure q
54) ‘mplus‘ (do
55 guard $ not $ isInRenamingRange ty event rel
56 LinkEventR rel p <$> rp q
57)
58 where
59 rp = buildRuleEvent event
60 ty = (undefined :: i)

Side Conditions

To make sure that only correct proof trees are generated, one also has to check
the side conditions for some rules. For example, the rules for alphabetized
parallel (R-13, R-11 and R-12) have the side conditions that the event must
be in one of the two synchronization sets (or in both). Since buildRuleEvent is
always called with a fixed event, checking the side conditions is easy. See for
example lines 25 to 29. Side conditions are built with functions from the class BL
for example member, isInRenaming, isInRenamingDomain and isInRenamingRange.

For prefix operations I call the function prefixNext which is implemented
in the functional sub-language (lines 7 to 9). prefixNext checks whether an
event synchronizes with a prefix operation and, if so, it directly computes a
representation of the successor process.

The Renaming Operation

A special case is the implementation of renaming (R-18). The side condition
for renaming is that the external visible event is in a renaming relation with the
event inside the renaming operation. CSPM supports relational renaming which
means that, in principle, renaming can introduce additional non-determinism.
Even if the external visible event is fixed, there can be several alternatives for
the internal event of the renaming operation. For simplicity, internal events are
generated by brute-force enumeration. In detail the function does the following:

Line 39 It generates an arbitray event e2. This is a full enumeration of Σ.

Line 40 It checks that (e2, event) is a member of the renaming relation.

Line 41 It recursively generates the premise using e2.

48

Additionally, one has to cover the case that the external visible event is not in
the domain of the renaming relation (lines 44 to 47).

The fact that I use brute-force enumeration of events inside the renaming
operation can be fatal for the performance of the proof tree generator. The
naïve proof tree generator also performs a brute-force enumeration of Σ; however
this enumeration is an outer loop which is independent from the structure of
the process under consideration. On the other hand, the implementation of
the renaming operation enumerates Σ and then recurses on the process inside
the renaming operation. This means that nested renaming operations cause
a nested enumeration. In other words, if a specification contains a renaming
operation, which itself contains a nested renaming operation, the slowdown will
be |Σ|2. If renamings are nested three times the slowdown will be |Σ|3.

4.3 Constraint-Based Generation of Proof Trees
In the previous section, I have described a relatively straightforward way to
generate the proof trees for X and τ transitions and a naïve approach for enu-
merating regular transitions. This approach was based on enumerating the
complete set Σ.

However, iterating over Σ can be relatively inefficient, in particular if the set
Σ is big and the number of events that actually occur is small. M. Leuschel [34]
shows examples of such specifications and describes how constraint program-
ming and Prolog can be used to avoid the enumeration of Σ in first place. The
algorithm, that is presented in this section has been inspired by the constraint-
based Prolog approach.

The algorithm is based on four ideas:

1. It processes the fields of an event from left to right.

2. It uses a data type for abstract event fields.

3. It uses a data type for proof tree skeletons, i.e. proof trees with partial
information.

4. It performs an abstract interpretation of proof tree skeletons to compute
new information about the event.

I will first describe the main ideas and try to give an intuition of how my
constraint-based algorithm works and after that I will describe the actual im-
plementation on source code level.

Idea 1: Process the fields from left to right

The advantage of processing event fields from left to right is that one can deal
with one field after the other. It is not necessary to enumerate the complete
set Σ—in the worst case, one only has to enumerate all possibilities for one
event field. Another reason for this heuristic is that the first field of an event
is always the channel. Often CSPM specifications are structured such that the
synchronization conditions can be decided by only looking at the channel.

Although events are by definition atomic, there are several reasons why an
implementation might process the fields from left to right. One of them is the

49

scoping rule for input fields. In CSPM , an input field binds an identifier that is
in scope in all the following event fields. For example, ch?x?y!x+y->P first binds
identifier x then identifier y and then outputs x+y on the channel. Information
is always propagated from left to right.6

The intuition behind my approach is that a prefix operation with a multi-
field event has some similarities with an nested single-field prefix operation.
For example c.1.3 → STOP is a little bit like c → (1 → (3 → STOP)). The
main difference is that c.1.3 is atomic while c → (1 → (3 → STOP)) performs
three separate events. The left-to-right order is a heuristic which computes a
super-set of all possible events. Every atomic event can be split into the smaller
steps which perform one event field after the other, but not every sequence of
small steps also corresponds to a valid atomic event. Therefore, an extra step
is needed to check the atomicity constraint.

Idea 2: Abstract event fields

The interface between the core language and the underlying functional program-
ming language uses an abstract view of event fields. I use the following data
type for abstract event fields:
data PrefixFieldView i

= FieldOut (Field i)
| FieldIn
| FieldGuard (FieldSet i)

There are only three cases for an event field:
FieldOut The field is an output field which communicates one fixed value.

FieldIn The field is an unconstrained input field.

FieldGuard The field is an input field, where the value is restricted to a set of
alternatives.

The implementation of the core language does not distinguish between, for ex-
ample, c?x!y ∗ 2 and c?y!z. Everything related to variable names and binding
values to variables is handled by the functional sub-language.

The interface between the core language and the functional sub-language
consists of two functions:

1. The core language can ask for the current event field and the functional
sub-language returns a value of PrefixFieldView i.

2. The core language can tell the functional sub-language a value, which it
has determined for the current field.

There is an implicit pointer for event fields and there is always exactly one
current field at the time.7 Telling the value of an event field automatically
advances the current-field-pointer to the next position.

In parallel to my work on CSPM , the enumerator-iteratee idiom [7, 26] be-
came popular in Haskell. My approach is very similar an enumerator-iteratee.

6 Another justification for the left-to-right order is the infamous generic buffer feature that
is implemented in FDR [34].

7 Unfortunately, one aspect of the implementation could be a little confusing. It sometimes
uses identifiers that contain the word "next" where what is actually meant is the current field.
The current field is always the next field that will get a fixed field value.

50

Idea 3: Proof tree skeletons

The implementation uses a data structure which I call proof tree skeleton. The
structure of proof tree skeletons is almost identical to the structure of regular
proof trees, except that the events in a proof tree skeleton are only partially
determined.

I will explain proof tree skeletons with an example. Suppose one wants to
compute the transitions of the following process:

(c!1!2 → P) ∥
{|c|}

(c?x!2 ∗ x → Q)

A proof tree for event c!1!2, using inference rules R-13 and R-1, is:

(c!1!2 → P) c!1!2−→ P ′ (c?x!2 ∗ x → Q) c!1!2−→ Q′

((c!1!2 → P) ∥
{|c|}

(c?x!2 ∗ x → Q)) c!1!2−→ (P ′ ∥
{|c|}

Q′)
c!1!2 ∈ {|c|}

My algorithm generates several proof tree skeletons with partial information.
These proof tree skeletons could be depicted as:

(␣ → P) ␣−→ P ′ (␣ → Q) ␣−→ Q′

((␣ → P) ∥
{|c|}

(␣ → Q)) ␣−→ (P ′ ∥
{|c|}

Q′)
␣ ∈ {|c|}

(c.␣ → P) c.␣−→ P ′ (c.␣ → Q) c.␣−→ Q′

((c.␣ → P) ∥
{|c|}

(c.␣ → Q)) c.␣−→ (P ′ ∥
{|c|}

Q′)
c.␣ ∈ {|c|}

(c.1.␣ → P) c.1.␣−→ P ′ (c.1.␣ → Q) c.1.␣−→ Q′

((c.1.␣ → P) ∥
{|c|}

(c.1.␣ → Q)) c.1.␣−→ (P ′ ∥
{|c|}

Q′)
c.1.␣ ∈ {|c|}

The algorithm starts by generating the proof tree skeletons which contains no
information about the events and then derives more and more concrete skeletons.
In each iteration it determines the value for one extra event field. If there are
several valid values for the next event field it branches non-deterministically. If
there is no possible next field, the proof tree skeleton is abandoned.

There is an important invariant for proof tree skeletons. A proof tree skeleton
is related to exactly one partial event. For example, it cannot happen that a
proof tree skeleton contains c.␣ and c.1.␣ at the same time.

The data type for proof tree skeletons is almost identical to the data type for
regular proof trees that was described in Section 4.2.3. The information about
the partial events is not explicitly stored in the proof tree skeletons—it is only
implicit.

Idea 4: Abstract interpretation of proof tree skeletons

To determine the value of the next data field, I use a technique that has some
similarities with abstract interpretation. The abstract interpretation/constraint

51

propagation consist of a simple recursive traversal of the proof tree skeleton. The
algorithm maintains an abstract field value, which is just the set of all possible
event fields.

For each node in the proof tree, the side conditions of the firing rule are used
to constrain the abstract field value. Basically this means that the algorithm
computes the intersection of the current set of possible field values and the set
of values that are consistent with the side conditions.

Constraint Propagation and Closure Sets

Most of the side conditions are of the form e ∈ {|x|}, i.e. the side condition is
that an event is an element of an event closure set. To use this form of side
conditions for constraint propagation, one has to implement closure sets such
that they also work with partially defined events.

The idea is that I replace the simple membership test e ∈ {|x|} with the
functions viewClosureState and viewClosureFields, which can return more in-
formation than just True or False. In particular, viewClosureState returns a
value of type:

data ClosureView = InClosure | NotInClosure | MaybeInClosure

and viewClosureFields returns the set of possible current field values which are
consistent with the current closure set.

The current field values and the current closure set depend on the partial
event, which has already been fixed. The partial event is only implicitly known
when calling viewClosureState and viewClosureFields.

The efficiency of the constraint-based approach crucially depends on how
accurate viewClosureState and viewClosureFields work. For example, view-
ClosureState may always return MaybeInClosure but the search space will only
be restricted if it returns the more precise values InClosure or NotInClosure.

The constraint-based/propagation algorithm requires an extended interface
between the CSP core language and the underlying function programming lan-
guage. This interface is defined in module Field (B.1.4). It will be described in
Section 4.3.6 and Section 4.3.7.

There are some extra steps that need to be done when gluing everything
together. For example, if the constraint propagation finally yields a set of possi-
ble alternatives, these alternatives have to be enumerated. After the last event
field has been fixed, one has to double-check that the complete event, i.e. the
concatenation of all event fields, is also valid with the side conditions.

This section has informally explained the underlying ideas of the algorithm.
The next sections describe the source code for this algorithm in detail.

4.3.1 Generating the Initial Proof Tree Skeletons
The function for generating the initial proof tree skeletons is called rulePattern.
It is similar to the function for generating the X and τ rules. rulePattern
is just a big case switch over all process operations. For every operation, it
returns the firing rules that are relevant and the sub-trees for the premises are
built by recursively calling rulePattern (the recursive call is abbreviated as rp).
The initial proof tree skeletons contain no information about the event of the

52

transition. Therefore, rulePattern does not have to deal with the events or side
conditions of the firing rules.

The data type for proof tree skeletons is called RuleField. It is declared
in module FieldConstraintsSearch (B.1.8) and closely resembles the type for
regular proof trees (RuleEvent). The constructor names in RuleField are the
same as those of RuleEvent except they are prefixed with the letter F. The
main difference is that skeletons contain ClosureState and PrefixState instead
of EventSet and Prefix. The data types ClosureState and PrefixState store
information about the event fields that have been processed. They have to be
initialized by calling prefixStateInit and initClosure.

rulePattern :: forall i.
BF i ⇒ Event.EventSet i → Process i → Search (RuleField i)

rulePattern events proc = case proc of
SwitchedOff p → rp $ switchOn p
Prefix p → return $ FPrefix $ prefixStateInit ty p
ExternalChoice p q
→ joinRepExtChoiceParts (initRepExtChoicePart events p)

(initRepExtChoicePart events q)
InternalChoice _p _q → mzero
Interleave p q
→ (FInterleaveL <$> rp p <∗> pure q)
‘mplus‘ (FInterleaveR p <$> rp q)

Interrupt p q → (FNoInterrupt <$> rp p <∗> pure q)
‘mplus‘ (FInterrupt p <$> rp q)

Timeout p q → FTimeout <$> rp p <∗> pure q
Sharing p c q
→ (FShared (initClosure c) <$> rp p <∗> rp q)
‘mplus‘ (FNotShareL (initClosure c) <$> rp p <∗> pure q)
‘mplus‘ (FNotShareR (initClosure c) p <$> rp q)

AParallel pc qc p q
→ (FAParallelL (initClosure pc) (initClosure qc)

<$> rp p <∗> pure q)
‘mplus‘ (FAParallelR (initClosure pc) (initClosure qc)

<$> pure p <∗> rp q)
‘mplus‘ (FAParallelBoth (initClosure pc) (initClosure qc)

<$> rp p <∗> rp q)
Seq p q → FSeqNormal <$> rp p <∗> pure q
Hide c p → FNotHidden (initClosure c) <$> rp p
Stop → mzero
Skip → mzero
Omega → mzero
AProcess _n → mzero
RepAParallel l → return $ FRepAParallel $ initRepAParallel l
Renaming rel p → return $ FRenaming rel p
Chaos c → return $ FChaos $ initClosure c
LinkParallel rel p q
→ (FLinkEventL rel <$> rp p <∗> pure q)

‘mplus‘ (FLinkEventR rel p <$> rp q)

where
ty = (undefined :: i)
initClosure = closureStateInit ty
rp = rulePattern events

53

4.3.2 Constraint Propagation
The recursive traversal, which carries out the constraint propagation for fields,
is implemented in function probField. It uses the Monad PropM which maintains
a state of type FieldSet (the abstract field value) and allows an early failure via
the underlying Maybe.
type PropM i a = StateT (FieldSet i) Maybe a

The function is a big case switch on the constructors of RuleField. The full
function has about 80 lines (see FieldConstraintsSearch Appendix B.1.8). I will
only discuss the cases for prefix and alphabetised parallel since these are the
most interesting rules.

1 propField :: forall i. BF i ⇒ RuleField i → PropM i ()
2 propField rule = case rule of
3 FPrefix p → case viewPrefixState ty p of
4 FieldOut f → fixField f
5 FieldIn → return ()
6 FieldGuard g → restrictField $ λe → intersection ty e g
7 FAParallelL c1 c2 r _ → case (closureState c1,closureState c2) of
8 (NotInClosure,_) → impossibleRule
9 (_,InClosure) → impossibleRule

10 _ → do
11 restrictField $ λe → intersection ty e (closureFields c1)
12 propField r
13 FAParallelR c1 c2 _ r → case (closureState c1,closureState c2) of
14 (_,NotInClosure) → impossibleRule
15 (InClosure,_) → impossibleRule
16 _ → do
17 restrictField $ λe → intersection ty e (closureFields c2)
18 propField r
19 FAParallelBoth c1 c2 r1 r2 → case (closureState c1,closureState c2) of
20 (NotInClosure,_) → impossibleRule
21 (_,NotInClosure) → impossibleRule
22 _ → do
23 restrictField $ λe → intersection ty e (closureFields c1)
24 restrictField $ λe → intersection ty e (closureFields c2)
25 propField r1
26 propField r2

For FPrefix (line 3), the functions makes a case distinction on the current
event field. The field can be either an output field, an input field or a guarded
input.

FieldOut/Line 4 The value of the field is immediately known.

FieldIn/Line 5 One cannot gain any information.

FieldGuarded/Line 6 The set of possible events is restricted according to
the guard.

The next cases are for alphabetized parallel operations (P X∥Y Q). FAParallelL
(line 7) is for an operation where only P has performed an event (R-11) and
FAParallelR (line 13) is the analog case where only Q has taken part in the event
(R-12). FAParallelBoth is for transitions where P and Q synchronize (R-13).

In detail, the function case for FAParallelBoth does the following:

54

Line 19 It checks whether the event fields that have been processed so far are
still consistent with the closure sets X and Y . There are three possible
cases.

Lines 20,21 / Case one and two If the event is not an element of any of the
synchronization sets X or Y , one can abandon the proof skeleton.

Lines 22 to 26 / Case three Otherwise, the proof skeleton is still possible.

Lines 23 to 24 In this case information from the synchronization sets X and
Y is propagated.

Lines 25,26 After that, the function recursively traverses on the sub-trees.

probField uses the following helper definitions:

restrictField :: (FieldSet i → FieldSet i) → PropM i ()
restrictField fkt = do

possible ← get
let restricted = fkt possible
if Field.null ty restricted

then impossibleRule
else put restricted

fixField :: Field i → PropM i ()
fixField e = do

possible ← get
if member ty e possible

then put $ singleton ty e
else impossibleRule

impossibleRule :: PropM i ()
impossibleRule = mzero
closureState :: ClosureState i → ClosureView
closureState = viewClosureState ty
closureFields :: ClosureState i → FieldSet i
closureFields = viewClosureFields ty
ty = (undefined :: i)

An interesting observation is that all functions have return type m (). In
other words, this is a degenerated use-case of a monad. A news group article8

suggests that in this case, it is better to use the Monoid idiom. However, I have
not yet investigated if this makes further optimizations possible.

4.3.3 Fixing a Field Value in the Proof Tree Skeleton
The function nextField fixes a field value in the proof tree skeleton.

nextField :: forall i. BF i
⇒ RuleField i
→ Field i
→ Search (RuleField i)

8Unfortunately, the exact reference was lost.

55

It is basically a recursive traversal of the tree which calls prefixStateNext and
closureStateNext on all values of type PrefixState and ClosureState. This
also advances the implicit current event-field-pointer, which PrefixState and
ClosureState refer to.

4.3.4 Converting a Proof Tree Skeleton to a Proof Tree
After the values for all event fields are fixed, I convert the proof tree skeleton
to a regular proof tree. This is done with function lastField.

lastField :: forall i. BF i
⇒ RuleField i
→ Event.Event i
→ Search (RuleEvent i)

The second argument of lastField is a multi-field event, which is the concate-
nation of all event fields that have been computed before. In the previous steps,
the atomicity of events was not taken into account; instead, the side conditions
have only been checked field-wise. As a consequence these steps actually com-
pute a super-set of all possible transitions. To fix this, lastField checks the side
conditions again, on the event level, and it filters out any illegal transitions.

4.3.5 The Main Loop
This section describes the clue code that calls the constraint-based proof tree
generator. In particular, it describes the inner loop that iterates over the fields
of a prefix operation. I describe the functions, more or less, in a top-down
manner. The functions are all defined in terms of the monad Search a, which
handles enumeration and non-deterministic choice.

The external interface to the proof tree generator is the function computeAll-
Rules, which just calls the generators forX, τ and regular transitions and returns
the union of the results (lines 5 to 8). For regular transitions, computeAllRules
calls computeNext (line 5).

1 computeAllRules :: forall i. BF i
2 ⇒ Event.EventSet i
3 → Process i
4 → [Rule i]
5 computeAllRules events p
6 = (liftM EventRule $ computeNext events p)
7 ‘mplus‘ (liftM TickRule $ buildRuleTick p)
8 ‘mplus‘ (liftM TauRule $ buildRuleTau p)
9

10 computeNext ::
11 BF i ⇒ Event.EventSet i → Process i → Search (RuleEvent i)
12 computeNext events proc = liftM snd $ computeNextE events proc
13
14 computeNextE :: BF i
15 ⇒ Event.EventSet i
16 → Process i
17 → Search (Event.Event i, RuleEvent i)
18 computeNextE events proc = rulePattern events proc »= runFields events

56

computeNext is just a small wrapper for computeNextE that throws away the event.
computeNextE first calls rulePattern to generate the skeletons and then passes
these to runFields (line 18). It returns a combination of proof trees and the
corresponding transitions.

1 runFields :: forall i. BF i ⇒
2 Event.EventSet i → RuleField i → Search (Event.Event i, RuleEvent i)
3 runFields events r = do
4 let baseEvents = closureStateInit ty events
5 (chan,next) ← enumField (viewClosureFields ty baseEvents) r
6 (e,final) ← loopFields
7 (closureStateNext ty baseEvents chan)
8 [chan]
9 next

10 (channelLen ty chan -1)
11 let event = joinFields ty $ reverse e
12 rule ← lastField final event
13 return (event,rule)
14 where ty = (undefined :: i)

The function runFields has three main tasks:

Line 5 It computes the first field of the event by calling enumField. In CSPM ,
the first field must always be a channel identifier. The channel is needed
to compute the number of channel fields (line 10).

Lines 6 to 10 It calls loopFields to determine the rest of the event. It passes
the number of fields in the event as an argument.

Line 12 After the last field has been fixed, it calls lastField to convert the
proof tree skeleton to a regular proof tree.

runFields also has to do some plumbing with the event set Σ which is converted
to a ClosureState with closureStateInit (line 4) and used to compute the initial
set of field values for the constraint propagation (viewClosureFields, line 5).

1 loopFields :: forall i. BF i ⇒
2 ClosureState i
3 → [Field i]
4 → RuleField i
5 → Int
6 → Search ([Field i], RuleField i)
7 loopFields _ eventAcc rule 0 = return (eventAcc, rule)
8 loopFields closureState eventAcc rule n = do
9 (f,next) ← enumField (viewClosureFields ty closureState) rule

10 loopFields
11 (closureStateNext ty closureState f)
12 (f:eventAcc)
13 next
14 (n-1)
15 where ty = (undefined :: i)

The arguments of loopFiled are:

Line 2 & Line 11 The closureState which represents Σ.

Line 3 & Line 12 An accumulator for the fields computed so far.

57

Line 4 & Line 13 The proof tree skeleton.

Line 5 & Line 14 The number of fields that are left to go.

loopFields is a simple tail-recursive loop:

Line 7 The loop runs until no fields are left.

Line 9 The body of the loop computes the next field by calling enumField.

Lines 10 to 14 The function recursively calls loopFields for the next field.

The first argument of enumField is the set of possible event fields, which is
used as the initial value for the constraint propagation. It is computed with
(viewClosureFields ty closureState) (line 9). The type ClosureState is used
to represent event closure sets. The algorithm starts with a representation of
Σ. The function runFields computes the value for the channel and restricts
the ClosureState with that information (line 7 of runFields). In the function
loopFields f is used to restrict the ClosureState further after the field value f
has been determined (line 11).

enumField :: forall i. BF i
⇒ FieldSet i
→ RuleField i
→ Search (Field i, RuleField i)

enumField top r = case execStateT (propField r) top of
Just s → do

f ← fieldSetToList ty s
nr ← nextField r f
return (f ,nr)

Nothing → mzero
where ty = (undefined :: i)

enumField is the driver for probField and nextField. It executes the constraint
propagation for the current proof tree skeleton, and iterates over the returned
set of possible field values. For every possible value it calls nextField.

4.3.6 Modeling Multi-field Events
In CSPM , it is possible to define channels that contain data fields, for example
channel c:{1..10}.{1..10}. This section describes how I support events with
data fields. Technically, the functions of this section belong to the type class
BF, which is a sub-class of BL. It is defined in module Field (B.1.4).

I use the following functions to process the events of a field from left to right.

prefixStateInit :: i→Prefix i→PrefixState i
prefixStateNext :: i→PrefixState i→Field i→Maybe (PrefixState i)
prefixStateFinalize :: i→PrefixState i→Maybe (Prefix i)
viewPrefixState :: i→PrefixState i→PrefixFieldView i

The order in which these functions get called follows a simple protocol.
prefixStateInit is always called first. This function converts a Prefix to a
PrefixState. Next, viewPrefixState is called to examine the first event field.
viewPrefixState returns a value of type PrefixFieldView i to characterize the
current event field.

58

data PrefixFieldView i
= FieldOut (Field i)
| FieldIn
| FieldGuard (FieldSet i)

Once the value of a field has been determined, prefixStateNext is called to
proceed to the next field. One argument of prefixStateNext is the value of the
field. This enables further processing of the value in the functional sub-language,
in particular prefixStateNext checks if the value does synchronize and returns
Nothing if it does not.

This sequence of viewPrefixState followed by prefixStateNext is repeated for
each event field. viewPrefixState always returns information about the current
event field and prefixStateNext advances to the next event field. After the last
field has been processed, prefixStateFinalize is called to convert PrefixState
back to Prefix.

The functional sub-language which implements these functions also defines
the data structure PrefixState to maintain information about the intermediate
state of a prefix.

4.3.7 Event Sets for Multi-field Events
The side conditions that have to be checked in the firing rules always test
whether an event is an element of an event closure set. These tests can only
succeed or fail. However, to generate the proof trees with the constraint-based
approach, I need more possibilities to manipulate and query closure sets. For
this purpose, the class BF defines the following function :

closureStateInit :: i → EventSet i → ClosureState i
closureStateNext :: i → ClosureState i → Field i → ClosureState i
closureRestore :: i → ClosureState i → EventSet i
viewClosureState :: i → ClosureState i → ClosureView
viewClosureFields :: i → ClosureState i → FieldSet i
seenPrefixInClosure :: i → ClosureState i → Bool

data ClosureView
= InClosure
| NotInClosure
| MaybeInClosure
deriving (Show,Eq,Ord)

The type ClosureState is used to store an event closure set plus additional
information about a fixed prefix of the fields of an event. viewClosureState
queries a closure set while stepping through the event fields. In case the query
returns InClosure, this means that any completion of the partial event seen
so far is for sure in the event closure set. NotInClosure means that it is not
possible to complete the fields seen so far to an event that is member of the
closure set. If neither InClosure nor NotInClosure is valid, viewClosureState
returns MaybeInClosure.

The functions closureStateInit, closureStateNext and closureRestore are
used to step through an event closure set similar to the protocol described for
prefix fields. viewClosureFields computes the projection of a ClosureState to
the next undefined field, with respect to the part of the event, that has already
been determined.

59

The interpreter implements event closure sets with a trie-like data set. As the
algorithm processes the event fields from left to right the trie will be traversed
from the root to the nodes.

Finally, the class BF defines the following functions that are used manipulate
fields and sets of fields.

fieldEq :: i → Field i → Field i → Bool
member :: i → Field i → FieldSet i → Bool
intersection :: i → FieldSet i → FieldSet i → FieldSet i
difference :: i → FieldSet i → FieldSet i → FieldSet i
union :: i → FieldSet i → FieldSet i → FieldSet i
null :: i → FieldSet i → Bool
singleton :: i → Field i → FieldSet i
insert :: i → Field i → FieldSet i → FieldSet i
delete :: i → Field i → FieldSet i → FieldSet i
fieldSetToList :: i → FieldSet i → [Field i]
fieldSetFromList :: i → [Field i] → FieldSet i

joinFields :: i → [Field i] → Event i
splitFields :: i → Event i → [Field i]
channelLen :: i → Field i → Int

4.3.8 Critique
The constraint based-approach, which has been described in this section, was
designed with one particular use-case in mind, namely to deal with large sets
of Σ and complicated synchronizations. It is unclear if this special use-case
justifies the efforts. Furthermore, the data structures, which where used for the
underlying functional sub-language, do not completely avoid the enumeration
of Σ yet and some specifications that should actually be fast are still slow.

Overall, the described approach seems to be convoluted and inefficient. To
compute only one event, the algorithm needs to pass over the proof tree skeletons
many times. An update of a proof tree skeleton effectively computes a new ver-
sion, which means that the functions cause a high load on the garbage collector.
I had to define four separate functions that deal with proof tree skeletons.

1. rulePattern (Section 4.3.1) to generate the proof tree skeleton.

2. probField (Section 4.3.2) for constraint propagation.

3. nextField (Section 4.3.3) to move to the next field.

4. lastField (Section 4.3.4) to convert the skeleton to a regular proof tree.

In principle, each supported firing rule has to be covered in each of the four
functions. Plumbing together all the functions is cumbersome and finally the
data flow is still relatively fixed compared to, for example, the Prolog imple-
mentation. An underlying idea of constraint programming is that the data flow
should be as flexible as possible, whereas in the presented approach information
is only propagated from a field on the left to field on the right.

The overall complexity of the implementation is relatively high compared
to other parts of my CSPM animator. Most functions are relatively cleanly
structured as one big case switch and one recursive traversal of a recursive

60

data structure, but still there is also need for glue code. The complete module
(FieldConstraintsSearch, B.1.8) is one of the biggest modules of the project
with 592 lines of code.

Positive Critique

Implementing the described algorithm was interesting. I have gained experience
and developed new ideas for other approaches. Replacing this algorithm with
something better is interesting future work. It is surprising that although there
are obvious inefficiencies, my implementation is never-the-less often faster than
ProB (See Section 8.5.4).

My experience with Haskell was overall positive. The presented approach is
complicated, but at least it was possible to keep the implementation concise.
Most functions of the implementation consist of a big case switch over all sup-
ported firing rules. Often the case definition for one rule only consists of one line
of code. Monads and higher order combinators where very useful in expressing
non-trivial concepts, like for example non-determinism.

The code is complicated, but the complexity is hopefully still manageable.
My personal experience was that I did not have to spend too much time on
prolonged debugging sessions. Explicit proof trees and pure functions turned
out to be helpful concepts for the implementation of the constraint-based proof
tree generator.

4.4 Testing the Implemented Semantics
with QuickCheck

In the previous sections, I have described two Haskell implementations. A
naïve enumeration-based implementation and a constraint-based approach that
uses several optimizations, e.g. to deal efficiently with multi-field events. The
constraint-based approach is relatively complex and it is it is far from obvious
if it is equivalent to the firing rules.

A standard technique to improve the confidence in an implementation is
testing, typically in the form of unit tests or regression tests. This kind of
testing has the drawback that one usually only tests for those cases which the
programmer has thought of beforehand, and for those bugs that have already
shown up. Manually writing exhaustive test cases for symbolic computations,
like an CSPM animator, is difficult.

I have therefore decided to use an alternative approach which is known to
Haskell community as QuickCheck [61]. The basic idea of QuickCheck is to test
abstract properties on a set of automatically generated test cases.

For example, one could test that the reverse function is its own inverse with
the following property:

prob_rev :: String → Bool
prob_rev x = (reverse $ reverse x) == x

To run the tests, one has to pass the property to the function

quickCheck :: Testable prop ⇒ prop → IO ().

61

A property can be any instance of type class Testable. For my application the
following two instances are most important:
1) Boolean values are testable.
2) If one know hows to generate arbitrary arguments, then one can test functions
that return testable values. In Haskell syntax:
(Arbitrary a, Show a, Testable prop) ⇒ Testable (a → prop)

Arbitrary is the class of types for which one can generate arbitrary values.
A nice application is to use QuickCheck for refinement checking. For exam-

ple, one can check that an efficient sorting algorithm returns the same results as
an alternative, less efficient but simpler algorithm with the following property:
prop_sort :: [Integer] → Bool
prop_sort l = mergeSort l == bubbleSort l

QuickCheck tests are not a formal proof. A test is only as good as the
generated test cases. One approach to improve the confidence in the tests is to
combine QuickCheck with a code coverage tool.

I use QuickCheck to test the completeness and soundness of my proof tree
generator and also to test the equivalence of the naïve proof tree generator
and the constraint base proof tree verifier. My implementation passes all those
tests.

4.4.1 Proof Tree Verifier as a Specification of the Proof
Tree Generator

In Section 4.2.3, I have described a proof tree verifier which tests that a proof
tree is consistent with the firing rules. An important property of the proof tree
verifier is that it is derived by a simple syntactic translation from the firing rules
to Haskell syntax. I will therefore assume that the proof tree verifier is a valid
implementation of the firing rules. In other words, I will use the source code of
the proof tree verifier as a formal specification of the firing rules.

Under the assumption that the proof tree verifier is correct, QuickCheck can
be used to gain confidence in the correctness of the proof tree generators. I use
QuickCheck to show the following properties:

Soundness The proof tree generator returns only valid proof trees.

Completeness The proof tree generator returns all possible proof trees.

Checking Soundness

Semi-formally, if generateProofTrees is the function that generates a set of
proof trees and realProofTrees is the real set of valid proof trees, then sound-
ness can be expressed as:

∀ P.generateProofTrees(P) ⊆ realProofTrees(P)

To check for soundness it is in principle sufficient to generate random pro-
cesses and check that the generated proof trees are correct. In other words, one
just has to run the proof tree verifier on the output of the proof tree generator.

However, there is one catch. Just generating arbitrary processes will result
in very poor code coverage. For example, the chance that a randomly generated

62

process can perform a transition, involving a synchronised transition of several
sub-processes is very low.

As a solution I use the following trick. I use an indirect method for generating
the processes, that serve as test cases. Instead of arbitrary processes, I generate
arbitrary proof trees. A proof tree justifies a transition P

e−→ P ′. I use the
function viewProcBefore to extract the process P from the proof tree and if
everything is correct, P is guaranteed to have at least one interesting transition
(namely P

e−→ P ′).
Here are examples of the concrete QuickCheck properties:

sound_EnumRuleTick :: CSP1 i ⇒ RuleTick i → Bool
sound_EnumRuleTick r

= all (checkRule proc ◦ TickRule) $ EnumNext.tickTransitions proc
where proc = viewProcBefore $ TickRule r

sound_EnumRuleTau :: CSP1 i ⇒ RuleTau i → Bool
sound_EnumRuleTau r

= all (checkRule proc ◦ TauRule) $ EnumNext.tauTransitions proc
where proc = viewProcBefore $ TauRule r

sound_EnumRuleEvent :: forall i. CSP1 i ⇒ RuleEvent i → Bool
sound_EnumRuleEvent r

= all (checkRule proc ◦ EventRule)
$ EnumNext.eventTransitions sigma proc

where
proc = viewProcBefore $ EventRule r
sigma = allEvents (undefined :: i)

checkRule :: CSP1 i ⇒ Process i → Rule i → Bool
checkRule proc r

= case viewRuleMaybe r of
Nothing → False
Just (p,_,_) → p == proc

I use separate properties to check τ , X and regular transitions. The above
properties check the naïve proof tree generator. The properties for checking
the constraint-based proof tree generator look similar. Note that since the
processes that are used for testing are generated indirectly via arbitrary proof
trees, deadlock processes are not tested. This is not a principle restriction and
could be fixed easily.

Checking Completeness

Completeness means that my proof tree generator finds all possible proof trees.
Semi-formally:

∀ P.realProofTrees(P) ⊆ generateProofTrees(P)

Just given that the proof tree verifier is correct, it is not clear how to check
that property directly. It can, however, be checked indirectly. My approach is
similar to one used for checking soundness. Instead of starting with an arbitrary
process, I start with an arbitrary proof tree r. I extract the process P from the
transition P

e−→ P ′ that is justified by the proof tree and then compute the set

63

s of all possible proof trees for P . The proof tree generator is complete if for
any proof tree r, r ∈ s. Semi-formally, I test the property:

∀ r.(r ∈ generateProofTrees(P)) where P ≡ extract(r)

This is the source code of some properties for checking completeness:
complete_enumTauRules :: CSP1 i ⇒ RuleTau i → Bool
complete_enumTauRules r

= r ‘List.elem‘ (EnumNext.tauTransitions $ viewProcBefore $ TauRule r)

complete_enumEventRules :: forall i. CSP1 i ⇒ RuleEvent i → Bool
complete_enumEventRules r

= r ‘List.elem‘ (EnumNext.eventTransitions sigma
$ viewProcBefore $ EventRule r)

where sigma = allEvents (undefined :: i)

Again, there are three separate properties for X, τ and regular transitions and
again I only show the tests for the naive proof tree generator. The tests for the
constraint-based generator looks similar.

4.4.2 Equality of the Naïve Proof Tree Generator and the
Constraint-based Proof Tree Generator

In the previous sections, I have described how I check the soundness and com-
pleteness of the proof tree generators, assuming that the proof tree verifier is a
valid implementation of the CSP firing rules.

An additional property one would like to check is that the naïve proof tree
generator and the constraint-based proof tree generator always compute the
same result. These are the corresponding QuickCheck properties:
computeNext_eq_EnumRuleEvent :: forall i. CSP2 i ⇒ RuleEvent i → Bool
computeNext_eq_EnumRuleEvent rule = ruleSet1 == ruleSet2

where
ruleSet1 = Set.fromList $ FieldNext.eventTransitions sigma proc
ruleSet2 = Set.fromList $ EnumNext.eventTransitions sigma proc
proc = viewProcBefore $ EventRule rule
sigma = allEvents (undefined :: i)

fieldTau :: forall i. CSP2 i ⇒ RuleTau i → Bool
fieldTau rule = ruleSet1 == ruleSet2

where
ruleSet1 = Set.fromList $ EnumNext.tauTransitions proc
ruleSet2 = Set.fromList $ FieldNext.tauTransitions proc
proc = viewProcBefore $ TauRule rule

fieldTick :: forall i. CSP2 i ⇒ RuleTau i → Bool
fieldTick rule = ruleSet1 == ruleSet2

where
ruleSet1 = Set.fromList $ EnumNext.tickTransitions proc
ruleSet2 = Set.fromList $ FieldNext.tickTransitions proc
proc = viewProcBefore $ TauRule rule

Again, theses properties use a detour and generate the test case via an arbitrary
proof tree.

64

4.4.3 Code Coverage Analysis
QuickCheck must be able to automatically generate test cases. For the presented
approach, this means that one has to implement generators for arbitrary proof
trees, processes and several other data types. The quality of the QuickCheck
test crucially depends on the quality of the test case generator.

To convince oneself that a test case generator works well, one can use Quick-
Check together with a tool for code coverage analysis. I use hpc (Haskell program
coverage [9]), the code coverage tool which is included in the Glasgow Haskell
Compiler.

4.4.4 Mock Implementations
The CSP core language package relies on an external implementation of some
functionality. The intended architecture is that this functionality is provided by
the implementation of the functional sub-language of CSPM . In the previous
section, I have used the term functional sub-language when referring to this
external functionality.

However, other ways to implement the external interfaces of the core lan-
guage package are also possible. In particular for testing, it was useful to define
two alternatives which I call Mock1 and Mock2.

Mock1 only implements the classes BE and BL, but not BF. In other words, Mock1
does not support multi-field events and can only be used with the naïve proof
tree generator. Mock2 additionally provides BF, i.e. the functions for manipulat-
ing multi-field event. Therefore Mock2 can be be used with the naïve proof tree
generator and also the constraint-based proof tree generator.

There are three main reasons why I use the mock implementations for testing:

1. Technically the functional sub-language package depends on the core lan-
guage package but not the other way around. Therefore, the test code in-
side the core language package cannot rely on the functional sub-language.

2. The mock implementations are small and, hopefully, do not add extra
errors. It makes sense to only test one unit at a time.

3. The mock implementations support the generation of arbitrary events,
processes, and event sets. This would be more cumbersome when using
concrete CSPM syntax.

It would be reasonable to also randomly generate test cases in CSPM syntax
and to use these for integration tests of the core language package together with
the CSPM functional sub-language. This remains as future work.

4.4.5 QuickCheck Conclusion
My experience with QuickCheck was positive overall. Whenever a property
failed to check, there was also a bug or inconsistency in the code that was
tested. With QuickCheck, it was possible to check exactly those properties of
the implementation that are essential. The QuickCheck properties themselves
have a clean and concise implementation in Haskell, and it was not necessary
to code any special cases or exceptions in the properties themselves.

65

QuickCheck is based on randomized testing, which means that it could, in
principle, just miss a test case which uncovers a bug. However, this has not yet
happened in my application. During the development, I did not encounter any
bug in the implementation which is in the scope of the QuickCheck properties
that I have tested and that was missed because of an unlucky random generator.
The current implementation passes all QuickCheck tests.

It must be noted that testability was one of the main design goals of the
implementation. This design goal shows up all over the code. For example,
testability is the main reason why I use an explicit representation of the proof
trees and a separate proof tree verifier. Putting the focus on testability is one
lesson that I learned from earlier, more ad hoc, prototype implementations.

Apart from the fact that the code was generally designed to be testable, the
extra effort for using the QuickCheck library was very moderate. I just had
to implement the instances for the Arbitrary type class and write down the
QuickCheck properties.

4.5 Summary
This chapter has described how I model the CSP core language and the firing
rules semantics of CSP in Haskell. I have explained how I model processes and
events and I have also discussed the advantages of explicit proof trees.

Explicit proof trees help to test and debug the implementation of the firing
rules semantics and they help to structure and document the source code. I
have described the Haskell implementation of CSP proof trees and the proof
tree verifier. An important feature of the proof tree verifier is that it is easy to
understand and that it is a direct syntactic translation of the actual firing rules.

The proof tree generator is the function that applies the firing rules in a
forward direction, i.e. it computes all possible transitions of a given process. I
have described two alternatives for a proof tree generator. The naïve proof tree
generator which is concise and straightforward and a constraint-based proof tree
generator. The constraint-based proof tree generator is relatively involved and
there remains an opportunity for future work. Nevertheless, it works reasonably
well.

Finally, I have argued that the presented code is correct. Several measures
have been taken to ensure the correctness of the code. One is that the software
was designed for testability right from the beginning, for example by using
explicit proof trees and a small separate proof tree verifier. Another is that
I make heavy use of QuickCheck. I have described how interesting properties,
like the soundness and completeness of the proof tree generators, can be checked
with QuickCheck.

66

Chapter 5

Interpreter for the
Functional Sub-language of
CSPM

5.1 Overview
This section describes the implementation of the functional sub-language of
CSPM . The functional sub-language covers everything related to data process-
ing and expression evaluation. Among other things, the following features are
implemented by the functional sub-language:

• Declaration and evaluation of functions.

• Declaration of data types and channels.

• Declaration of parametrised processes.

• Built-in functions for lists and sets.

• Computing the value of event fields.

• Pattern matching and input fields.

Everything related to the firing rule semantics of the CSP core language,
e.g. process operations like interleaving, parallel composition, process synchro-
nization and computing the possible transitions of a process, is not part of the
functional sub-language. The implementation of these CSP core language fea-
tures is described in Chapter 4.

For brevity, I will just use the term interpreter in this section when referring
to the interpreter for the function sub-language. I use the term core for features
related to the CSP core semantics as described in Chapter 4.

The interpreter depends on the data type declarations for the CSPM ab-
stract syntax tree which are defined in the parser package. However, for the
displayed pieced of source code only small parts of the AST data type are rel-
evant. Therefore this chapter can be read before the Chapter 6. A complete
description of the AST is available in Section 6.2.

67

This chapter assumes some basic knowledge about functional programming
and the interpretation of functional programming languages. A good reference
for this subject is the book “The Implementation of Functional Programming
Languages” [49].

Chapter Outline

Section 5.2 contains an overview of the design alternatives and the final design
of the interpreter. Section 5.3 describes the most important parts of the inter-
preter source code. Section 5.4 is dedicated to the implementation of equality
for CSPM . Finally, Section 5.5 lists some benchmarks that compare my inter-
preter with other tools and Section 5.6 gives an outlook on a CSPM -to-Haskell
compiler.

Section 5.2 and Section 5.4 are perhaps the most important parts of this
chapter. They describe a tested and implemented design and can serve as a
cookbook for anybody who is interested in writing a CSPM interpreter. The
design is more important than the real source code. Translating the presented
design to source code is straightforward.

5.1.1 External Interface of the Interpreter

The external API of the interpreter is simple. The interpreter defines the func-
tion :

evalModule :: Module INT → Env

evalModule is called with the abstract syntax tree of a CSPM specification
(Module INT) and it returns the top level environment that is defined in the
specification. To get the value of an identifier, one just has to look up the
identifier in the environment.

5.2 Design Decisions for the Interpreter
I will first discuss some design decisions and requirements for the interpreter
before describing the actual code.

5.2.1 FDR Compatibility

The basis of all other considerations is the requirement that the presented CSPM

tool has to be compatible with FDR. FDR compatibility was demanded by an
external partner who was involved in the project and it is also important for
acceptance of the tool in the CSP community.

The compatibility requirement causes many problems and complications and
there are good arguments for giving up on compatibility and designing a new tool
from scratch. On the other hand, compatibility makes it possible to compare
this project with existing tools and it makes this project a good case study for
the use of Haskell.

68

5.2.2 Model Checking and Equality
An important requirement for the interpreter is that it supports model checking.
Model checking requires two features that are not typically present in an inter-
preter, namely: branching off alternative computations and detecting whether
a computation has looped to a state that has been visited before.

There are several frameworks which implement ideas from CSP, for example
JCSP [59] and CHP [4]. The problem is that in the case of non-determinism,
these frameworks only allow the control flow to follow one possible trace. Also
these frameworks do not allow one to detect that a system has looped back to
a previous state. Therefore they are not suitable for model checking and my
project does not build on one of these frameworks.

I use Haskell as the implementation language. Haskell is a pure functional
programming language with immutable data structures. Therefore, branching
is easy. To move from one state to the next I use the function :
prefixStateNext :: i → PrefixState i → Field i → Maybe (PrefixState i)

Whenever this function is called, it computes a new state. The old state is
immutable and one can simply call prefixStateNext several times with different
Field arguments to follow alternative branches.

Detecting loops is greatly facilitated by the fact that state is explicit in a
pure functional implementation. A process is an expression which can contain
free variables, and the state of the process is uniquely determined by the binding
for those values. In principle a loop can be detected by simply comparing the
current state with all previously visited states.

However, there is one catch. The state of the interpreter is explicit, but I
still have to make sure that I can determine when states are equal. This implies
two restrictions on the state data type:

1. State must not contain lambda terms.

2. State must not contain infinite or cyclic data structures.

Both restrictions rule out some standard techniques for implementing inter-
preters in a functional language and both restrictions are relevant for my inter-
preter.

I will not use a formal definition for the equality of processes in this thesis.
For model checking, it is sufficient to detect enough "equality" such that the
computation of the transition system terminates. It is always a safe approx-
imation if any two processes compare as not equal. This approximation does
not compromise the soundness of model checking. On the other hand, a poor
implementation of the quality check for processes can lead to a blow-up in the
state space that has to be explored. Failure to detect "enough equality" can also
lead to non-termination.

Process equality is not a prominent concept in the theory of CSP. Instead,
processes are characterized using refinement properties, full abstraction proper-
ties and algebraic laws. Nevertheless, a model checker has to internally imple-
ment some kind of process equality. Although the documentation of FDR does
not directly address the problem of process equality, the issue is by no means
hidden from the user, it only appears in another context.

The FDR solution to the problem is that there are strict side conditions on
what specifications are allowed. For example, FDR does only allow a limited

69

form of recursion and all specifications must be built around a finite skeleton of
process operations. If a specification is not consistent with these side conditions
FDR simply does not terminate. ProB and my new tool lift some of the
side conditions on specifications, with the trade-off that equality becomes more
difficult.

The related problem of detecting structural sharing is well known in the
Haskell community [18]. In retrospect, the requirement to compare states for
equality has had impact on almost all design decisions for the interpreter.

Bounded model checking is a variant of model checking which does not require
detecting loops in the state space. The idea of bounded model checking is to
simply expand the state space for a fixed number of steps k. The crux of
bounded model checking is, of course, that the right value for k is often not
known in advance. Therefore, bounded model checking is not an option for my
project.

5.2.3 Interpreter and Denotational Semantics
The two most important styles of semantics for a programming language are the
operational semantics and the denotational semantics. I have decided to base the
interpreter for the functional sub-language of CSPM on a denotational seman-
tics. A denotational semantics defines a function (the denotation) which maps
the input to a mathematical model. The denotation should be compositional,
which means that the denotation of a compound structure can be computed
with the denotations of the structural parts. For more info on denotational and
operational semantics see Wikipedia.

The denotation function of the denotational semantics directly corresponds
to the eval function of my interpreter:

eval :: LExp → EM Value

eval maps expressions of CSPM to the Haskell representations of CSPM values.
We explain eval in more detail in Section 5.3.1.

5.2.4 Environment vs. HOAS
There are two main techniques for implementing function calls (β-reduction)
when writing an interpreter (for a functional language) in functional language.

The first one uses an explicit environment that stores the values of all vari-
ables that are in scope. Whenever one evaluates an expression, the current
environment has to be available. Evaluating a variable means looking up its
value in the environment and in order to call a function or to create a closure,
a new environment has to be constructed. In the simplest case the environment
can be implemented as a list of variable-value pairs.

The second technique is called higher order abstract syntax (HOAS). Func-
tions in the interpreted language are represented as functions in the abstract
syntax tree and a function call in the interpreted language is implemented as a
function call in the host language. The idea here is to reuse the mechanism of
the host language for β-reduction to implement β-reduction in the interpreted
language. Since the host language often has highly optimized β-reductions, an
interpreter using HOAS can be a lot faster than an interpreter using an explicit

70

environment [3]. A similar design alternative is known in the Prolog commu-
nity as ground vs non-ground interpreter. ProB uses a non-ground interpreter
which, very roughly, corresponds to the HOAS approach.

Although HOAS interpreters are attractive, I have chosen to implement the
CSPM interpreter using explicit environments. The main reason is the require-
ment from Section 5.2.2, namely that I want to use the interpreter for model
checking. Explicit environments make it much easier to examine the state of
the interpreter and to detect loops than HOAS. For the same reason, I use
environment-expression pairs instead of the built-in Haskell closures for the im-
plementation of CSPM closures. My intuition is that for model checking, the
speed advantages of HOAS for β-reduction are more than outweighed by the
more complex loop detection. Another consideration is that explicit environ-
ments may be more space efficient. However, I have no empiric data for this.

5.2.5 CSPM Laziness
The two most important evaluation strategies for functional programming lan-
guages are call-by-value and call-by-need. Languages like Haskell favor call-by-
need because, among other advantages, call-by-need has the best termination
properties. In other words, a program that terminates with a call-by-value strat-
egy is guaranteed to also terminate with a call-by-need strategy, but not vice
versa. Call-by-need is also called laziness. The opposite of laziness is strictness.

It is guaranteed that all terminating evaluations yield the same result, in-
dependently of the evaluation order.1 However, this is also the crux of laziness.
Two functions can compute the same result for almost all inputs, with the ex-
ception that for some input, the more lazy function terminates while the more
strict function goes into an infinite loop. For example a more lazy function
might be able to deal with infinite lists, while a more strict function might not.
Still, the more strict function is by no means incorrect.

The moral of the story is that laziness is a difficult problem. Even in Haskell,
the best known lazy functional programming language, laziness is a feature of a
particular Haskell implementation and not part of the official language definition
[38].2

According to Roscoe ([52] page 495) CSPM is a lazy functional programming
language. On the other hand, I’m not aware of any “real-world specifications”3

that deeply rely on laziness as it is possible in Haskell programs. The use of
laziness in CSPM seems to be restricted to the CSPM examples that have been
explicitly written to demonstrate laziness. As laziness is rarely used in CSPM ,
it is unclear how robust the available CSPM tools are in that respect.

Laziness vs Infinite Lists

Infinite lists are a feature, that can be implemented via laziness. In [52] on page
501, there is the following example for the infinite list of prime numbers (C.3.1):
primes =

let

1For the exact formulation of the confluence of the λ-calculus see: Church-Rosser-Theorem.
2 Nevertheless, there is a strong consensus in the Haskell community about what kind of

laziness one can expect from a Haskell implementation.
3For example specifications that have been published in a paper.

71

factors(n) = < m | m ← <2..n-1>, n%m == 0 >
is_prime(n) = null(factors(n))

within < n | n ← <2..>, is_prime(n) >

My implementation provides some level of general laziness in the spirit of Haskell.
The primes example works as expected, but I do not want to give any guarantees
for the kind of laziness a specification can rely on. ProB can deal with infinite
lists, but only if the list has a simple representation as an open integer interval
or if some other hard-coded heuristics apply. In general, infinite lists are just a
feature that can be implemented via laziness, but infinite lists are not the same
as a lazy evaluation strategy.

One should make a strict distinction between laziness and the fact that some
parts of a process expression are only evaluated on demand. For example, in
a sequential composition P ; Q, Q is only evaluated after P has terminated.
Roscoe uses the term that Q is switched off. My CSPM tool implements this
feature by explicitly tagging switched-off parts of a process. This makes sure
that switched-off processes are, indeed, only evaluated as needed.

5.2.6 Using Haskell Laziness and Knot-Tying
There are two or three places in the interpreter where I use Haskell laziness
in a non-trivial way. In particular, I use a technique called knot tying [10] to
implement multiple recursive declaration. This is described in detail in Section
5.3.2.

Knot tying can be used to create cyclic data structures. A drawback of
cyclic data structures is that functions which handle these data structures must
take special precautions to avoid non-termination. This also applies to the
environment of my CSPM interpreter, which is cyclic. The environment contains
information about bound functions and the data structure that implements the
function itself contains a back-reference to the environment.

An alternative for knot tying and cyclic data structures would have been to
use explicit references and updates. However this would have lead to an impure
interpreter which has many disadvantages; altogether, the knot tying approach
seems to be preferable.

5.2.7 Lambda-lifting
A standard technique for the implementation of a functional programming lan-
guage is called lambda-lifting ([49] page 220). An alternative design of the
interpreter relying on lambda-lifting would have been possible, but this would
have also affected other aspects of my design. Taking all considerations into
account, a design without lambda-lifting seemed favorable.

Also, a full implementation of lambda-lifting is not trivial. ProB uses
a non-ground Prolog representation of functions. This design requires a pre-
compilation step, which rewrites the CSPM specification and which is related
to lambda-lifting. Unfortunately, the ProB version of lambda-lifting has the
problem that it can rewrite a function with linear complexity to a function with
exponential complexity.

Here is an example:

f(0) = 1

72

f(x) = let a = f (x-1) within a + a

f has linear complexity, however the pre-compilation step of ProB internally
translates f to a Prolog representation which roughly corresponds to:

f_prolog(0) = 1
f_prolog(x) = a(x) + a(x)
a(x)= f_prolog(x-1)

The function f prolog has exponential complexity.

5.2.8 Pure Interpreter
The heart of my interpreter is the eval function, which computes the denota-
tional semantics of CSPM . A very fundamental design decision is whether to
make eval pure or not. A pure eval function can only compute values and a com-
putation cannot have any side effects. Features, that are typically implemented
as side effects, are for example: tracing an evaluation, single step execution,
profiling, etc. With a pure eval function, these features are not possible per se.

An advantage of purity is that a pure interpreter can have a simple inter-
face. eval is just a function which returns a value and there are absolutely
no preconditions on how or when this function can be called. As Section 5.2.2
explains, this has advantages when the interpreter is used for model checking
applications. Another argument in favor of purity is that the CSPM language
is itself pure (with the exception of the print statement).

The final decision was to write the eval as a pure function. After all,
this does not even rule out features like tracing or profiling. If really needed,
these features could still be added with unsafePerformIO. unsafePerformIO is a
back door in Haskell which allows one to turn any pure function into a proce-
dure which performs side effects. unsafePerformIO is currently not used in the
CSPM interpreter and it generally should be avoided because improper use of
unsafePerformIO can cause bugs which are hard to track. On the other hand,
unsafePerformIO is acceptable for benign side effects like tracing, profiling or
debugging.4

5.2.9 Representing CSPM Values
The FDR tool implements a dynamically typed language (c.f. [34]). Defining
a static type system for CSPM , that is consistent with FDR, is difficult. As a
consequence, I also use dynamic typing in my interpreter, or, more precisely, I
implement a dynamically typed language. Although this has several disadvan-
tages, for example performance penalties, it is a pragmatic and tested approach.
The ProB tool uses similar techniques (presumably FDR also).

For the implementation, this means that I define one big sum-type for all
CSPM values:

data Value =
VInt Integer
| VBool Bool
| VList [Value]

4 Technically eval is written in monadic style. It may also be possible to support tracing,
etc by using for example the IO monad.

73

| VTuple [Value]
| VDotTuple [Value]
| VSet (Set Value)
| VClosure ClosureSet
| VFun FunClosure
| VProcess Process
| VChannel Channel
| VUnit
| VAllInts
| VAllSequents (Set Value)
| VConstructor Constructor
| VDataType [Constructor]
| VNameType [FieldSet]
| VPartialApplied FunClosure [Value]
deriving (Ord,Eq)

This is also called a boxed or tagged representation of values.
There are some possible alternatives for the exact structure of the Value data

type, for example special representations could be added for infinite lists. In
the end, the exact structure of the Value data type is not critical because it is
easy to add conversions between the alternative representations of a value.

For example, sets and closure sets have two separate representations in the
type Value, namely VSet and VClosure. On the other hand CSPM does not make
a strict distinction between sets and closure sets. Therefore, all functions that
work on generic CSPM sets evaluate their arguments by calling setFromValueM.
setFromValueM converts different representations of sets to an unboxed Haskell
set on the fly.

setFromValueM :: Value → Maybe (Set Value)
setFromValueM v = case v of

VSet l → Just l
VClosure c → Just $ closureToSet c
VDataType l → Just $ Set.fromList $ map VConstructor l
_ → Nothing

This design is flexible. When I came across one specification which also uses
set operations on CSPM data types, it was easy to extend setFromValueM with a
conversion from VDataType (i.e. the representation of CSPM data types) to sets.
It is also possible to overload CSPM operation, i.e. to use several alternative
Haskell functions that work on the alternative representations of the values.

It is interesting to speculate about the internal implementation of FDR.
A possible object-oriented design, would be to define a super class Value and a
subclass of Value for every possible representation. The analog to setFromValueM
would then be to overwrite a method toSet in all subclasses of Value that can
be converted to a set.

5.3 Implementation
This section describes the most important parts of the source code of my in-
terpreter. The complete code is available via Hackage [14] in the package
CSPM-Interpreter. The relevant version is 0.5.1.0.

74

5.3.1 The eval Function
The eval function has type:
eval :: LExp → EM Value

It takes an expression of type LExp5 and computes the value of the expression
inside monad EM. EM is a simple reader monad which carries around the environ-
ment, and the environment is implemented as IntMaps which hold the values of
bound variables.
The definitions are as follows:
newtype EM x = EM { unEM ::Reader Env x }

deriving (Monad,MonadReader Env)

type Bindings = IntMap Value
data Env = Env {

argBindings :: Bindings
,letBindings :: Bindings
,letDigests :: IntMap Digest
}

The eval function uses a big case switch with exactly one case for each
constructor in the data type Exp6. The complete listing is shown in Appendix
B.1.9. Here is a stripped down version with some exemplary cases:

1 eval :: LExp → EM Value
2 eval expr = case unLabel expr of
3 Var v → lookupIdent v
4 IntExp i → return $ VInt i
5 Ifte cond t e → do
6 c ← evalBool cond
7 if c then eval t else eval e
8 Stop → return $ VProcess $ Core.stop
9 AndExp a b → do

10 av ← evalBool a
11 if av then eval b else return $ VBool False
12 ProcSharing s a b
13 → liftM3 Core.sharing
14 (switchedOffProc a)
15 (evalClosureExp s)
16 (switchedOffProc b)
17 »= return ◦ VProcess

The displayed cases are:

(Var v) A variable expression causes a look-up of the identifier in the environ-
ment.

(IntExp i) An integer constant.

(Ifte cond t e) The CSPM if-then-else construct.

(Stop) The STOP process calls a definition from the core language package.
5 type LExp = Labeled Exp. Labeled expressions are expressions which contain infor-

mation about source locations (c.f Chapter 6).
6 The Exp data type is discussed in detail in Section 6.2.4.

75

(AndExp a b) The Boolean and-function with shortcut semantics.

(ProcSharing s a b) CSP sharing A ∥
s

B evaluates its arguments and

calls sharing from the core language.

The eval function uses several helper functions which often recursively call back
eval. For example the following function is used to dynamically check at run-
time that an expression is of type Bool and return its value.

evalBool :: LExp → EM Bool
evalBool e = do

v ← eval e
case v of

VBool b → return b
_ → throwTypingError "expecting type Bool"

(Just $ srcLoc e) $ Just v

The function throws an exception in case of a type error.
CSPM has a rich expression language and accordingly eval is the largest

function of the interpreter. Nevertheless, the Haskell implementation of eval
is compact and has a clean structure. The translation from the denotational
semantics of CSPM to the Haskell eval function is straightforward.

5.3.2 Declarations
In CSPM , local names can be declared inside let expressions.
For example:

f(0) = 1
f(x) = let

b = a + a
a = f(x-1)
c = b + b

within c + c

The main idea of local names is some kind of reuse. Instead of “f(x-1)” one can
just write “a”, but of course one definitely also expects that a is not evaluated
more than once. In other words, lets are used to introduce explicit sharing of
intermediate results.

The general syntax for let is

let
declaration_1
declaration_2
· · ·
declaration_n

within expression

where each declaration can be either a pattern match 7 or a function declaration.
All bindings that are introduced in the left-hand-side of a declaration are

visible in all right-hand-sides (and of course in the expression) and bindings
can be mutually recursive. Here is a small example of a mutually recursive let
(the complete source code is in Appendix C.3.2):

7The simplest form of a pattern match is just a variable as in c = b + b

76

Listing 5.1: CSPM mutually recursive let

list = let
o = <1,2> ^ z
z = <0,2> ^ o

within <3> ^ o

This declaration defines a list which starts with a 3 and infinitely repeats the
sequence <1,2,0,2>

In spite of let being a relatively simple syntactic from, it is not trivial to
implement this, for example, in an imperative language. Fortunately, there is a
well known technique that simplifies the implementation of let. I deeply rely
on the fact that I implement the interpreter in a functional language, strictly
speaking, I just reuse Haskell’s let to implement the CSPM -let.

There are three main requirements for the implementation of let in the
CSPM interpreter:

• It must respect sharing, i.e. it must not evaluate expressions more than
once.

• It must be declarative, i.e. it must not update references or manipulate
state.

• It should work well with cyclic declarations like infinite lists.

All the requirements can be achieved by using knot tying [10]. Knot tying
is a design pattern for combining mutual recursion and lazy evaluation. Knot
tying can provide elegant declarative solutions for problems with complicated
non-trivial data flow. It can, for example, be used to implement memorisation.
Listing 5.1 is an example for knot tying in CSPM .

In my interpreter, I use knot tying as follows:

1 type DeclM x = ReaderT (Digest,Env) (State (Bindings, IntMap Digest)) x
2
3 processDeclList :: Digest → Env → [LDecl] → Env
4 processDeclList digest oldEnv decls =
5 let
6 (newBinds,newDigests)
7 = execState action’ (getLetBindings oldEnv, letDigests oldEnv)
8 action :: DeclM ()
9 action = mapM_ processDecl decls

10 action’ = runReaderT action (digest,newEnv)
11 newEnv = oldEnv { letBindings = newBinds, letDigests = newDigests}
12 in newEnv
13
14 processDecl :: LDecl → DeclM ()

The function processDeclList takes a digest 8, the old environment and a list of
declarations as input and computes the new environment. The new environment
is the extension of the old environment with the declarations. processDeclList
works by calling processDecl for each declaration in turn (mapM processDecl
decls line 9).

The knot or cycle in the data flow is the following:
8Digests are explained in Section 5.4

77

Lines 6,7 newBinds and newDigests depend on action’.

Line 10 action’ depends on newEnv.

Line 11 newEnv depends on newBinds and newDigests.

This works because the newEnv data structure is constructed lazily. The envi-
ronment maps identifiers to values but the values are computed only as much
as needed. To add a new name-value pair to the environment it not necessary
to scrutinise the value.

processDecl is declared in terms of Monad DeclM. DeclM (line 1) is a reader
transformer of a state monad. In other words, processDecl can read a digest and
an environment and it can modify a state which consists of (Bindings, IntMap
Digest). processDecl produces no result apart from the side effects, i.e. the
updates to the state. processDecl adds the new bindings to the environment,
but it does not compute the values.

The view from inside Haskell is that the environment is an immutable data
structure which maps names to values. On the machine code level, of course
something different happens. A value is represented by a reference to a delayed
computation. When the interpreter scrutinises a value—for example, when it
checks if a Boolean is True or False—the delayed computation is executed and
the value is stored. After that, the reference points to the value instead of the
delayed computation and the value is computed once at most.

However, these updates are unobservable from inside the Haskell program.
The implementation of laziness in Haskell is hidden from the programmer. For
the implementation of the CSPM interpreter, I can rely on the abstraction that
the environment behaves like an immutable data structure. If the same CSPM

function is called with the same environment, it will compute the same result.
This is a consequence of referential transparency.

The advantage of the presented approach is that the actual knot is tied in
a single Haskell let-expression in line 5 to line 12. These 7 lines are where "the
magic" happens. The rest of the code is mostly unaffected by the knot. Other
parts of my CSPM tool can rely on the strong abstraction that the interpreter
behaves like a pure function.

The same approach that has been described for let is also used for top-level
declarations. Top-level declarations of a CSPM specification are just a special
case of a let.

Drawbacks

On one hand, it is nice that knot tying hides the treatment of lets and CSPM -
laziness from the rest of the implementation. On the other hand, this also means
that parts of the execution of the interpreter become implicit. In particular, the
interpreter does not control when exactly an expression gets evaluated. This
also means that the interpreter cannot detect if a cyclic let-expression in CSPM

does not terminate. It is impossible to detect non-termination in general, but
nevertheless it may still be possible to dynamically detect some cases of non-
termination.

As I map a CSPM let-expression to a Haskell let-expression, I completely
rely on the properties of the Haskell let. The CSPM -expression

78

let
a=a+1

within a

yields a loop-exception with my interpreter.9 This is a correct behavior, but
the loop is not detected by my interpreter but by the Haskell run-time sys-
tem. Haskell does not guarantee that any loop can be detected. It is possible
that the CSPM interpreter does not detect the loop when compiled for another
architecture or with other compiler flags.

It may be possible to detect some problematic cases with a careful static
analysis of the CSPM specification, but this does not solve the problem in
general.

5.3.3 The Pattern Matcher
There are three different parts of the CSPM language that use pattern matching:

1. Declarations.

2. Function definitions with multiple cases.

3. Input fields in prefix operations.

The syntax for patterns loosely resembles the syntax of expressions. There are
pattern for constants, tuples, dot-tuples, lists and sets and, just as expressions,
pattern can be arbitrarily nested.

Append Patterns

A special feature of CSPM is the append pattern (̂). The -̂operator, which
appends two lists when used in an expression, deconstructs lists inside a pattern.
The append pattern allows matching lists from both ends. For example the
declarations:

<h1> ^ rest = <1,2,3,4>
init ^ <l1> = <1,2,3,4>
<h2> ^ body ^ <l2> = <1,2,3,4>

contain the following matches:
pattern match
h1 1
rest <2,3,4>
init <1,2,3>
l1 4
h2 1
body <2,3>
l2 4

The general syntax for an append pattern is pat1 p̂at2^. . . p̂atn, where the
sub-patterns pati are again patterns that match a list. A sub-pattern pati can
either match a fixed length list, for example <x> or a variable length list like

9On my Linux machine.

79

init, rest and body. A valid append pattern may contain at most one sub-
pattern which can match a variable-length list. For example the pattern prefix
^ suffix is not a valid pattern.

I know of no mainstream functional programming language with built-in
support for append patterns. Usually, functional languages only allow one to
match lists from the head, which can be implemented in constant time. It is
not easy to provide an efficient implementation for append patterns. Given the
rare use of append patterns and the effort of the implementation, it might have
been better to leave them out of the CSPM language. Still, they had to be
implemented in my CSPM interpreter to remain compatible.

Selectors

To simplify the pattern matcher, particular in the presence of append patterns,
the interpreter does not work directly with the AST for patterns as it is returned
by the parser. Instead, patterns are statically analysed and rewritten to a flat
array of linear selectors.

Selectors are represented with the following data type:

data Selector
= IntSel Integer
| TrueSel
| FalseSel
| SelectThis
| ConstrSel UniqueIdent
| DotSel Int Selector
| SingleSetSel Selector
| EmptySetSel
| TupleLengthSel Int Selector
| TupleIthSel Int Selector
| ListLengthSel Int Selector
| ListIthSel Int Selector
| HeadSel Selector
| HeadNSel Int Selector
| PrefixSel Int Int Selector
| TailSel Selector
| SliceSel Int Int Selector
| SuffixSel Int Int Selector

A selector describes how to check that a part of a pattern matches a value and
how to extract the part of the value that is bound to an identifier. They also
describe parts of patterns that match constants. The selectors for lists are the
following:

80

SelectThis Select the current part of the list.
HeadSel Select the head of the list.
HeadNSel n Select the first n elements.
PrefixSel o l Select the first l elements of the list after dropping o

elements.
TailSel Selects the tail of the list.
SliceSel l r Select a variable length part of a list by dropping l

elements from the left end and r elements from the
right end.

SuffixSel offset
len

The dual of PrefixSel. Counting from the right end
of the list.

ListLengthSel Check the length of a list.
ListIthSel i Select the ith element of the list.

Example

<a>̂ <1>̂ rest

is translated to the following three selectors:
HeadSel SelectThis
PrefixSel 1 1 (ListLengthSel 1 (ListIthSel 0 (IntSel 1)))
SliceSel 2 0 SelectThis

The first selector computes the part of the value bound to a, the second verifies
the 1 on the second position of the list and the third computes rest. The
SeclectThis selector simply matches the complete value.
Code Example

The function match :: Value -> Selector -> Maybe Value is an interpreter for
the selector data type. It takes a value and a selector as input and if the selector
matches, it returns the part of the value that is matched. Here are some excerpts
from match:

1 match :: Value → Selector → Maybe Value
2 match (VInt a) (IntSel b) = if a==b then return VUnit else failedMatch
3 match v (IntSel _) = typeError "expecting Int" v
4
5 match (VBool True) TrueSel = return VUnit
6 match (VBool False) TrueSel = failedMatch
7 match v TrueSel = typeError "expecting Bool" v
8
9 match (VBool True) FalseSel = failedMatch

10 match (VBool False) FalseSel = return VUnit
11 match v FalseSel = typeError "expecting Bool" v
12
13 match x SelectThis = return x
14
15 match (VTuple b) (TupleIthSel i next) = match (b !! i) next
16 match v (TupleIthSel _ n) = typeError "expecting tuple" v

Lines 2,3 Match an integer constant

Lines 5-11 Match Boolean constant

81

Line 13 Match a anything, bind a variable

Line 15 Match the ith element of a tuple and recursively call match on the
tuple element.

The pattern matcher can easily be extended for dynamic typing features of
CSPM . For example, the line:

match (VInt 0) FalseSel = return VUnit

would allow the integer 0 to match a Boolean false.

Interface of the Pattern Matcher

The following functions are the external interface of the pattern matcher:

tryMatchStrict :: Bindings → LPattern → Value → Maybe Bindings
tryMatchLazy :: Bindings → LPattern → Value → Bindings

tryMatchStrict is used for matches that may fail, i.e. for a function case or
a prefix input field. If a function case does not match, the interpreter tries the
next case and if a prefix input field does not match, the process simply does not
synchronize. Both cases can occur during normal execution of a specification
and the interpreter must be able to detect this from inside the eval function.
tryMatchStrict therefore returns Maybe Bindings.

tryMatchLazy is used for the declarations inside a let. A match failure in a
declaration is a error in the CSPM script and the interpreter throws an exception
in that case.

Restrictions of the Pattern Matcher

I want to add some comments about the presented matcher. First, the matcher
is not optimal for nested pattern, because the path to sub-patterns has to be
traversed several times. Also, the data type for selectors contains some redun-
dancies, for example HeadSel is a special case of HeadNSel and the compiled
selectors could also be optimised.

In retrospect, I think it might be better to implement a pattern matcher
which works without pre-compiling the patterns to selectors; however I have
not tried to implement this.

As the pattern matcher is an important building block of the interpreter,
I just wanted to sketch one possible implementation for a pattern matcher in
this thesis. The most important feature of the interpreter (concerning pattern
matching) is that the interface to the pattern matcher consists only of two
functions:

tryMatchStrict :: Bindings → LPattern → Value → Maybe Bindings
tryMatchLazy :: Bindings → LPattern → Value → Bindings

This means that it is easy to replace the current pattern matcher with a different
implementation.

82

5.3.4 AST Preprocessing
The abstract syntax tree, which is returned by the parser, has to pass several
preprocessing steps before it can be passed to the interpreter. The interpreter
only works if the following three preprocessing steps have been applied:
renaming see Section 5.3.5
free names analysis see Section 5.4
compiling patterns to selectors see Section 5.3.3

The preprocessings have to be applied in the above order.

5.3.5 Renaming
One preprocessing step for the AST is renaming. During renaming, each iden-
tifier is tagged with a unique ID. In addition, renaming determines for every
using occurrence of an identifier the place where it has been bound. In the AST,
identifiers are represented with the data types:

data Ident
= Ident {unIdent :: String}
| UIdent {unUIdent :: UniqueIdent}
deriving (Show,Eq,Ord,Typeable, Data)

data UniqueIdent = UniqueIdent
{
uniqueIdentId :: Int

,bindingSide :: NodeId
,bindingLoc :: SrcLoc
,idType :: IDType
,realName :: String
,newName :: String
,prologMode :: PrologMode
,bindType :: BindType
} deriving (Show,Eq,Ord,Typeable, Data)

Before renaming, all identifiers are of variant Ident and after renaming all iden-
tifier are of variant UIdent. uniqueIdentId is a unique 32 Bit integer ID for each
variable. I use the unique ID as index for the variables in the environment.

5.3.6 Instances for the Core Language
The interpreter defines data types for processes, events, event sets, etc. To
connect the interpreter to the core language module it necessary to make some
of the interpreter data types an instance of the type classes and type families
that are defined by the core language. These instance declarations enable the
core language modules to use the interpreter types when computing the firing
rules semantics of a CSPM process.

The interpreter uses the empty data type INT as type index and phantom
type for all instances that belong to the interpreter.

data INT

In module CSPM.Interpreter.Types the following type family instances are de-
fined:

83

type instance Core.Event INT = Event
type instance Core.EventSet INT = ClosureSet
type instance Core.RenamingRelation INT = RenamingRelation
type instance Core.ClosureState INT = ClosureState
type instance Core.Field INT = Field
type instance Core.FieldSet INT = FieldSet
type instance Core.ExtProcess INT = SwitchedOffProc
type instance Core.Prefix INT = PrefixState
type instance Core.PrefixState INT = GenericBufferPrefix

The type instance declaration

type instance Core.Event INT = Event

has following semantics: Type Event from module Core with index INT is mapped
to the type Event in the interpreter. The identifier Event is used in the core lan-
guage package and the interpreter package. Technically, both uses of Event
define completely independent types. The same identifier is used in the two
packages because those types model the same concept. The type instance dec-
laration glues both types together. Finally, when the compiler links the core
language package and the interpreter package to an executable binary program,
there is only one memory layout of the data structure Event.

The types of the core modules are indexed. This makes it possible to use the
core modules with several alternative implementations of the underlying data
types (see also Section 3.3.2). For example, the interpreter uses the type index
INT and the compiler uses the type index IVO.

The module CSPM.Interpreter.CoreInstances also contains instance decla-
rations for the classes BL, BE and BF. The instance declarations basically collect
the functions defined in the interpreter package together with some glue code.
Please consult the source distribution for the actual code.

The implementation of the CSP core language works with an abstract process
type. A process computed by the interpreter can be passed directly to the core
language module. There are no direct callbacks from core the language module
to the interpreter and the implementation of the core semantics does not depend
on the interpreter, i.e. it does not include or import any interpreter modules.

Callbacks are only done via the class mechanism. The core modules define
an interface which consists of several classes and type families. The interpreter
depends on the interface definitions and implements the required instances for
the classes and type families.

5.3.7 Built-in Data Types of CSPM

As the reference implementation (FDR) is basically untyped, there are several
possibilities of what the basic data types of CSPM are. For example, closure
sets (expressions built with {|..|}) could either have a special internal repre-
sentation or they could simply be implemented as regular sets.

The Value data type (Section 5.2.9) lists the types that are fundamental in
my interpreter. The most important ones are:

• Sets

• Lists

84

• Closure sets

• Dot tuples

I have implemented the primitive operations for these types which forms some
kind of CSPM run-time system. This run-time system is part of the interpreter
package, but, in fact, it is useful independent of the interpreter. For example,
it has been used for a CSPM -compiler, which has been implemented as part of
Ivaylo Dobrikov’s masters thesis [12].

The run-time system for sets, lists, and dot tuples is very simple. CSPM sets
directly use the Set type of the Haskell containers package. The only interesting
data structure is the one used for closure sets.

Closure Sets

CSPM uses the syntax {| x1, .., xn |} for the so-called closure operation (see
[52] page 507). The closure operation is a convenient way for building event
sets without explicitly enumerating a large number events. Closure sets are
best explained with an example. Let’s consider the following definitions:

channel ca: {1,2,3}.{1,2,3}
channel cb: {1,2,3}.{1,2,3}
channel a : {8,9}
s = { |a, ca.1, ca.2.2, cb.2 |}

Then s is the following set:

{a.8, a.9, ca.1.1, ca.1.2, ca.1.3, ca.2.2, cb.2.1, cb.2.2, cb.2.3}

Informally, if c1 and c2 are two channels then {|c1, c2|} is the set of all
possible communications on the channels and the closure set of {|c.x|} is the
set of all possible communications on channel c that start with prefix c.x.

Closure sets play an important role in the interface between the interpreter
and the core semantics. The sets that appear as part of the core language inter-
face are all closure sets and, in particular, the constraint based implementation
of the core semantics (Section 4.3) makes heavy use of closure sets.

The core language uses the following (simplified) interface to event closure
sets.

closureStateNext :: ClosureSet → Field → ClosureSet
viewClosureFields :: ClosureSet → Set Field

closureStateNext computes the projection of the closure set on the first field:
closureStateNext(c, f) = {e|f.e ∈ c}
viewClosureFields returns all possible first fields in a closure set:
viewClosureF ields(c) = {f | ∃ r : f.r ∈ c}
These two functions suggest a trie like representation of closure sets.

The current implementation uses a trie data structure; however, it is not
complete in the sense that some optimisations have not yet been implemented.
For example, channels are typically defined for a range of values, like channel
c:{1..1000}.{1..1000}. This channel has 1 million possible events. I use the
short cut that I first enumerate all events of the channel and then convert this
explicit set to the compact symbolic representation. Of course this is bad for
performance and should be avoided.

85

5.4 Equality and Hashing
This section describes how I implement equality for the CSPM data types. An
implementation of equality is needed to detect loops in the transition system
during model checking. It is also necessary to address the problem of equality,
because the equality operator == (and orderings < , >) are part of the functional
sub-language of CSPM itself.

Equality also shows up implicitly, when CSPM values are inserted into sets.
Since a set cannot contain duplicate values, one needs to be able to compare the
elements of a set for equality (and since my implementation uses binary trees
to represent sets I also need an ordering relation for set elements).

The definition of a CSPM process can make full use of the functional sub-
language of CSPM . In other words, a process can be defined as P(x) where x
can be any CSPM value. For model checking, it is important to detect if P(x)
is equal to P(y) and therefore it is also necessary to detect if x == y. As x and
y can be any CSPM value it is in principle necessary to implement an equality
relation that works for all CSPM values.

Haskell has a clean solution for equality. The Haskell equality operator (==)
is a function of the type class Eq. The type system enforces that == can only be
applied if the type is an instance of type class Eq. It is good practice to define
only those instances which have a “reasonable” implementation. Unfortunately,
CSPM is not as clean as Haskell. CSPM is a dynamically typed language and
equality can be used with any types. Furthermore equality is an ad hoc built-in
of CSPM .

My implementation of equality for CSPM is a compromise between accuracy
and computability. The implementation guarantees, that if two values compare
as equal, they are equal in the sense of Leibniz equality. The opposite does not
hold (because the opposite is not computable anyway).

The main idea is that I implement equality via (cryptographic) hash values.
One can summarise this idea as:

1 class Hash a where
2 hash :: a → MD5Digest
3
4 instance Hash MyType ⇒ Eq MyType where
5 a == b = hash a == hash b
6 instance Hash MyType ⇒ Ord MyType where
7 compare a b = compare (hash a) (hash b)

Lines 1,2 One defines the class Hash for types that have a hash-value.

Lines 4,5 If a type has a hash value, it is also in type class Eq. One simply
compares the hash-values.

Lines 6,7 The ordering of values is determined by the ordering of their hashes.

All that remains to be done is the definition of the hash functions for the
data types of the functional sub-language.

I distinguish two kinds of values. Simple values are constants, sets, lists,
tuples, etc. The hash of a simple value can be computed by structural recursion.
For example, to hash a list I simply compute the hash values of all elements
of the list and then mix all hash values together. Additionally, I have to mix

86

in tags for the actual type of the value to distinguish, for example, between
<1,2,3> and {1,2,3}.

Complex values are function closures, processes and the values of let-bound
names. The hash value of a complex value is computed with the unique ID of
the AST that is used to define the value plus a hash of all values of the free
names that occur in the expression.

For example consider the following function definitions:

f(x) = c∗x
g(x) = c∗x

The hash value of the function closure f is computed with the hash value of
c and a hash value of the AST node that represents f(x)=c*x. This is also
an example of an approximation. Since f and g are defined with two different
ASTs (at two different source locations) f and g have two different hash values,
although they are semantically equivalent.

There are subtle interactions between let expressions and hash computation.
I treat values that get bound in a let expression similar to function closures.
As free variables of a let-bound value, I use all free variables of all right hand
sides of the let block. This is a simple approximation, which also works for
complex, mutually recursive let declarations. For example:

let
a = c1 + b
b = c2

within

The hash value of a is computed with the AST node of a = c1 + b and the hash
value of c1 and the hash value of c2.

This is not a very accurate approximation. For example, a possible opti-
misation is to split up recursive lets into the smallest strongly connected com-
pounds. Although there are possibilities for further improvements, the current
implementation performs well in “real-world” benchmarks.

To speed up hashing, some types memorize their hash value. For example:

data FunClosure = FunClosure {
getFunCases :: [AST.FunCase]

,getFunEnv :: Env
,getFunArgNum :: Int
,getFunId :: Digest
}

instance Eq FunClosure where
a == b = getFunId a == getFunId b

instance Ord FunClosure where
compare a b = compare (getFunId a) (getFunId b)

The hash value of a function closure is computed only once and then stored in
the getFunId field.

Sometimes, the set of free variables of an expression is needed to compute
the hash values. The set of free variables of those expressions is computed in a
preprocessing step and added as an annotation to the AST.

87

Correctness of Hash-based Equality

Strictly speaking, implementing equality via hash values is not correct. If the
interpreter happens to compare two values for which there is a hash collision,
it will compute a false result. To justify my hash-based implementation, one
should compare two probabilities:

1. The chance for a hash collision.

2. The chance that the interpreter does not compute the right result for some
other reason.

The chance of hash collisions can be roughly estimated according to the
birthday problem [60]. It is a function of the number of bits used for the hash
value and the number of hash values that are computed. For example, let’s
assume we use a truly random 128-bit hash function and compute around 1011

hash values. Then the probability of at least one hash collision is between 10−15

and 10−18.
During the time that we compute our 1011 hash values something else can

happen. For example:

• Estimates for a bit flip in RAM vary between one bit per hour per gigabyte
and one bit per century.

• Vendors of SATA hard drives claim a mean time between failures (MTBF)
of about 600,000 hours (approx. 70 years).

• We hit a bug in the implementation.

• Earth gets hit by a large meteor.

The current implementation uses a 128-bit MD5 hash function. MD5 was
used because a pure Haskell implementation of MD5 was readily available. I
estimate that the computation of hash values costs less then 15% of the running
time depending on the specification. This estimate is based on the slowdown I
experienced when I replaced a fast 64-bit hash with 128-bit MD5.

The Haskell implementation of MD5 was chosen for convenience. I think that
replacing the Haskell MD5 implementation with a highly optimized implemen-
tation of SHA512 would result in approximately the same overall performance of
the interpreter. In other words, it is straightforward to improve the confidence
of hash-based equality by using a better hash function, at very moderate costs.

Conclusion

Concerning the use of hash functions, I come to to following conclusions:

• Using hash functions is not 100% correct.

• Using MD5 works well in practice.

• For high assurance a 512-bit cryptographic hash function should be used.

88

5.5 Pure Functional Performance
This section contains some benchmarks for the interpreter of the functional sub-
language of CSPM . These benchmarks are only meant to give a rough estimate
of the performance of the interpreter.

The idea of CSPM is to specify a system in terms of processes and process
operations while the functional sub-language should only be auxiliary. Sec-
tion 8.5.4 contains several benchmarks using "real-world" specifications from
the literature, which cover both the functional sub-language and the CSP core
semantic. Nevertheless, it is interesting to benchmark the pure functional per-
formance of CSPM because it can easily be compared with, for example, the
functional programming language Haskell.

cspm CSPM-Interpreter-0.4.2.0 & mtl-1.1.1.1 compiled with ghc-7.0.1
FDR 2.82
ProB probcli 1.3.2-beta10 (5054)
Python 2.6.5
Comp CSPM-Compiler-0.0.1.1 plus ghc-6.12.3
GHC Haskell ghc-6.12.3

Figure 5.1: Tool Versions Used in the Benchmarks

Benchmarks

Table 5.2 shows the measured running times. The benchmarks were run on a
2.66 GHz Intel Core2 Duo CPU using a Linux operating system. The relevant
versions of the programs and tools are listed in Table 5.1. The listed running
times of my interpreter, ProB, Python and Haskell (GHC) are the times that
are reported by the program itself. These running times do not include start-
up times, parsing and preprocessing. The FDR times are measured with the
UNIX ’time’ command, i.e they include a small overhead for starting the FDR
interpreter and parsing the specification. The times reported for the compiler
are the running times of the compiled binary, excluding the times for the CSPM -
to-Haskell and the Haskell-to-binary compilation. The compiler is described in
Section 5.6.

Some of the benchmarks do not have a one-to-one translation to Python, for
example Python does not support pattern matching. The Python times shown
for fib1/fib2 and smc/smc2 actually refer to identical Python functions. The
run-times for smc and smc2 for Python and Haskell are the times for running 1000
instances of the benchmark divided by 1000. I have used the default settings
for garbage collection for all programs.

Discussion

Among the selected tools, only the Haskell-based implementations are able to
compute the value of ack(5,0). Python either crashes with "RuntimeError:
maximum recursion depth exceeded" or after manually increasing the recursion
limit with "sys.setrecursionlimit(70000)" it crashes with a segmentation fault.
This crash has been confirmed with four different operation systems/ architec-

89

Absolute running times in seconds
cspm FDR ProB Python Comp GHC

fib1 22.1 43.3 475 8 2.5 0.56
fib2 20.5 41.2 234 8 2.7 0.63
ack 37000 error no res error 352 70
smc 0.06 0.08 50.8 0.00489 0.0036 0.0012
smc2 0.06 0.13 95.6 0.00489 0.0042 0.0013
ithPrime 11.0 73.9 error – 2.5 1.2

Relative speed-ups and slow-downs normalizes to the interpreter
cspm FDR ProB Python Comp GHC

slower slower faster faster faster
fib1 1 1.9 21 2.8 8.8 39
fib2 1 2.0 11 2.6 7.6 33
ack 1 error no res. error 105 529
smc 1 1.3 847 12.3 16.7 50
smc2 1 2.2 1593 12.3 14.3 46
ithPrime 1 6.6 error – 4.4 9

Relative slow-downs normalizes to GHC
cspm FDR ProB Python Comp GHC

fib1 39 77 848 14 4.5 1
fib2 33 65.4 371 12.7 4.3 1
ack 539 error no res. error 5.0 1
smc 50 66.7 42333 4 3 1
smc2 46 100 73538 3.8 3.2 1
ithPrime 9 61.6 error – 2.1 1

Benchmarks
Argument Description

fib1 35 Fibonacci function using if-then-else
fib2 35 Fibonacci function using pattern matching
ack (5,0) Ackermann function
smc 10000 sum (map square [0..n]) using pattern matching
smc2 10000 sum (map square [0..n]) using if-then-else
ithPrime 3000 compute the ith prime number

Figure 5.2: Benchmarks for the functional performance of the implementations.

90

tures. FDR also crashed with a segmentation fault and Prob produces a
"Resource error: insufficient memory" error.

FDR is the only tool which uses 32-bit integers instead of exact integer
arithmetic. This means that in the smc benchmark an overflow occurs and
FDR computes a false result.10

The benchmarks are far from being exhaustive. This is problematic, since
the running times show a great variation and a small change in the benchmark
can have a big impact on the running time. For example fib1 and fib2 are
basically the same function. The only difference is that fib1 uses if-then-else,
while fib2 is defined via pattern matching. Yet fib1 is two times slower than
fib2 in ProB. The same effect shows up with smc and smc2. In Haskell itself,
pattern matching and if-then-else have roughly the same performance.

The smc2 benchmarks seems to contain some ProB performance killers. For
this benchmark ProB is 1600 times slower than my interpreter and 74,000 times
slower than the native Haskell implementation. Similarly, the ack benchmark
contains a performance killer for cspm. Here, my interpreter is about ten times
slower compared to the other benchmarks. It is likely that there are more CSPM

language features which are a performance killer for one tool or the other, but
which have not been tested.

Normalizing the running times to the native Haskell implementation shows
that cspm is about 30 to 50 times slower and the FDR tool is about 60 to 100
times slower than Haskell. The CSPM -to-Haskell compiler adds an overhead
between a factor of 2 and 5. Haskell shows a relatively poor performance on the
ithPrime benchmark.

Conclusion

The benchmarks support the following rough estimates for the performance of
my interpreter for pure functional benchmarks.

• The interpretation overhead compared to a direct use of Haskell is approx-
imately a factor of 40.

• The interpreter is roughly 2 times faster than FDR.

• The interpreter is roughly an order of magnitude faster than ProB.

• There is a large variance in the performance of the tools, especially in the
presence of "performance killers".

The source code of the benchmarks is in Appendix C.1.

5.6 A CSPM-to-Haskell Compiler
The Master thesis of Dobrikov describes a compiler from CSPM to Haskell [12].11

CSPM is a pure functional programming language and, at first sight, trans-
lating CSPM to Haskell seems straightforward. Indeed, as far as I know, an
earlier version of FDR was based on a translation from CSPM to ML.

10The FDR manual clearly states that FDR uses 32-bit integers and declares that this is a
feature and not a bug.

11 The master thesis was carried out as part of the CSPM project of the author.

91

However FDR, which is the de facto reference implementation of CSPM , has
evolved over many years and today the language contains many particularities.
This means that, although it is easy to translate small functions from CSPM

syntax to Haskell, it is rather difficult to implement a CSPM -to-Haskell compiler
which works with off-the-shelf CSPM specifications.

The compiler presented by Dobrikov is systematically derived from the in-
terpreter presented in this thesis, following an approach called staged interpre-
tation. The compiler is based on the following ideas:

Replace the eval function with a compile function.

The eval function is systematically replaced with a compile function. The
compile function performs exactly the same dispatch on the AST as the eval
function, but instead of returning a CSPM value the compile function returns
the Haskell expression which computes the value. A function call causes a re-
cursion in the eval function when executed by the interpreter. The execution
of a function call is replaced with the Haskell code for calling a function.

This approach is related to staged interpretation and partial evaluation.
Ideally, these techniques can be used to mechanically derive a compiler from an
interpreter. The compiler presented by Dobrikov had still been implemented
manually.

Replace CSPM variables with Haskell variables.

The CSPM interpreter maintains its own environment, which stores the values
of all variables that are in scope. In the compiled code, each CSPM variable cor-
responds to exactly one Haskell variable and the explicit environment managed
by the interpreter is replaced with the native Haskell mechanism for variable
binding.

Keep dynamic typing and the boxed representation of values.

The CSPM compiler uses the same data model as the interpreter. All CSPM

values are mapped to one big sum type and the CSPM built-in functions dy-
namically check that their arguments are of the right type at run-time. In other
words, the compiler uses a boxed representation of values.

Reuse the implementation of CSPM core semantics.

The CSPM compiler reuses the implementation of the CSPM core semantics pre-
sented in Chapter 4. This means that tracing CSPM processes and computing
the LTS of a process work out of the box.

Preliminary results

The compiler is interesting for several reasons:

• It provides an alternative implementation of the functional sub-language of
CSPM and demonstrates the reusage of the implementation of the CSPM

core semantic.

• It can reduce the interpretation overhead of the interpreter.

92

• It can be a step towards retiring CSPM and replacing it with a Haskell-
based EDSL.

Section 5.5 contains some preliminary benchmarks of the pure functional per-
formance of CSPM specifications which have been compiled to Haskell. With
the current version of the compiler, the dynamic typing of CSPM adds an over-
head of approximately a factor of three compared to a native implementation
of the same function in Haskell. I think that it might be possible to completely
eliminate this overhead in many cases. One possible approach is to use an
approximate type inference for CSPM and to generate code for dynamic type
checks only for those parts of the specification for which one cannot infer a static
type.

5.7 Conclusion
In this chapter, I have described an implementation of an interpreter for the
functional sub-language of CSPM . Besides the CSPM parser and the imple-
mentation of the firing rule semantics of CSP, the interpreter is one of the main
building blocks of a CSPM animator and model checker.

I have listed some design alternatives and provided arguments for the main
design decisions that were take for the interpreter. The main design decisions
are:

• Implement a pure interpreter which does not perform side effects.

• Use dynamic typing and a single sum type for CSPM values.

• Use an explicit environment, do not use HOAS or “non-ground” represen-
tations.

• Implement CSPM -lets via Haskell-lets and knot tying.

• Implement equality via hash values.

I have also shown some exemplary parts of the interpreter source code. The
full source code is online in the central repository for cabal packages (Hackage)
in package CSPM-Interpreter.

Section 5.5 contains some preliminary benchmarks for the performance of
the interpreter. I compare the performance with ProB, FDR, native Haskell
and a new CSPM -to-Haskell compiler. The benchmarks show that the inter-
preter competes well against ProB and FDR. It is approximately one order
of magnitude faster than ProB and about two times faster that FDR. Still,
the interpretation overhead of the interpreter is approximately a factor of 30
compared to native Haskell (GHC).

The benchmarks also show that the performance of my interpreter as well
as the performance of ProB is not as predictable as the performance of an
industrial strength Haskell compiler. Small syntactic changes, which generally
have very little impact on the performance of native Haskell, can drastically
change the performance of my interpreter or the performance of ProB. An
example is replacing pattern matching with if-then-else.

The CSPM tools are more likely to suffer from "performance killers" than
an industrial strength functional programming language. This is not really

93

surprising, given the fact that my interpreter as well as the CSPM -part of ProB
have a very low number of active developers and only a moderate number of
users.

Finally, this section contains an outlook of a CSPM -to-Haskell compiler that
was developed by Ivaylo Dobrikov as part of his master thesis. The compiler
reuses the implementation from Chapter 4 and has the same interface as the
interpreter. In principle, it can replace the interpreter as building block of a
CSPM tool. This compiler is still in early development and it is not yet as
robust as the interpreter, but it already performs well in the benchmarks.

94

Chapter 6

Parser

This chapter describes the lexer and parser that serve as front-end of my CSPM

tool. The front-end takes a string, containing a CSPM specification, as input
and computes the corresponding abstract syntax tree. The package containing
the front-end is available online at Hackage, the central repository for cabal
packages, as CSPM-Frontend.

The interface of the parser contains several functions for lexing and parsing.
A good starting point for testing the front-end is the function

parseFile :: FilePath → IO ModuleFromParser

from module Language.CSPM.Frontend. The module Language.CSPM.AST contains
the definition of the data types that are used for the abstract syntax tree. The
AST of a complete module has type ModuleFromParser.

I follow the guideline that the parser should be as close as possible to the
"real syntax" of CSPM . I have not tried to simplify or "improve" the syntax of
CSPM . Instead, I tried to mimic the original parser as closely as possible to
ensure a maximal compatibility between our tool and FDR.

This chapter starts with some general remarks about the CSPM syntax
(Section 6.1). After that I describe the structure of the AST (Section 6.2) and
finally, I discuss some aspects of the parser implementation and present some
benchmarks of the parser performance. The parser is well separated from the
rest of the CSPM tool. The only important interface of the front-end is the
AST, which is used by the interpreter in Chapter 5.

The parser is the oldest module of my CSPM project. Work on the parser
started in 2006 and the basic structure of the AST has not changed since the be-
ginning of 2007. Indeed, when my project started, the actual goal of the project
was just to develop a CSPM parser which can be integrated in the ProB tool.
The parser has been part of ProB for several years now and my thesis super-
visor Michael Leuschel has helped greatly in testing parser. Recently, Ivaylo
Dobrikov started to contribute to the parser by testing and also by working on
the parser source code. Therefore it makes sense to speak of our parser in this
section.

95

6.1 Remarks on the CSPM Syntax
Machine readable CSP (≡ CSPM) is the input syntax of the FDR tool. FDR
is widely used in the CSP community and accepted as the de-facto standard
for CSP tools. For researchers who just use FDR as a black box, this has the
advantage that it is easy to compare and exchange CSPM specifications.

From the point of view of a tool developer, however, there are some aspects
of the CSPM syntax that I do not like. The rest of this section lists my personal
most important points of critique. The developers of FDR might disagree with
some (or all) of these points and I admit that they are debatable.

6.1.1 Informal Syntax Definition
The available documentation of the CSPM syntax for the FDR tool is informal
and incomplete. It may be adequate for users of the FDR tool but it definitely
was insufficient for writing a CSPM parser. Reverse engineering existing specifi-
cations and testing syntax variants with the FDR tool gave much more insights
than the existing FDR documentation.

On the other hand, this means that I did apply an implicit closed world
assumption. In other words, our parser cannot support syntax which is neither
documented nor used in the available examples. It has happened several times
that I learned about an new piece of syntax, only because I came across some
specification which happens to use this syntax.

Taking FDR as de-facto standard is also problematic for tool developers,
because the actual FDR syntax changes from time to time. For example, in the
latest FDR version, new built-in operations have been added.

6.1.2 Mixing Built-ins and Core Syntax
The FDR documentation mixes the core syntax of CSPM with other functions
that are built into the FDR tool. In other functional programming languages,
there is a clean distinction between the syntax of the language and parts of the
language which are not syntax. For example, the Haskell syntax defines the set
of keywords of the language and functions like lengths, head or tail are just
regular functions, which are imported from a Prelude module.

It was only by coincidence and a discussion with an FDR developer that I
became aware of the fact that, under the hood, FDR uses a similar approach as
Haskell. Parts of the CSPM programming language are syntax and other parts
come from an implicitly imported Prelude. However, there is no hint on this in
the documentation and I still do not know exactly what is syntax and what is
part of the CSPM -Prelude.

There are subtle differences between built-in syntax and other functions. For
example, one of the latest extensions of FDR is the new Proc data type. In FDR,
Proc is a new predefined identifier which can be redefined in a specification. In
our parser however, Proc is a built-in keyword which cannot be redefined.1

As a side note, here is another example which is related to this: In FDR,
true and false are predefined, but so too are True and False. However, they
are not the same.

1 This has been fixed in the latest version of our parser.

96

f(x) = if x then 2 else 3

f1(True) = 2
f1(False) = 3

f2(true) = 2
f2(false) = 3

f and f2 can return the value 2 or 3 but f1 always returns 2, because True and
False are just regular identifiers in CSPM . They are predefined as:

True = true
False = false

In a pattern match true only matches the boolean value true, while the pattern
True matches anything and rebinds the identifier True.2

6.1.3 Mixing Type Checking and Parsing

The FDR parser performs some kind of built-in type checking [53]. For example,
the expression true and 1 is rejected by the parser. To implement this, the
grammar of the parser contains different non-terminal symbols for the different
types of expressions, namely for Boolean expressions, arithmetic expressions,
process expressions, etc.

This has two disadvantages: First, the grammar immediately becomes am-
biguous because all variant sub-expressions contain the case of a variable. For
example in the declaration d = x, x could be a Boolean expression consisting
of just a variable, it could as well be an arithmetic expression or an expression
of any other type. Scattergood has to use an awk-script which removes these
ambiguities and which generated the actual grammar that is fed into the parser
generator (bison in that case).

The second and more serious disadvantage is that it highly complicates the
parser. Typically, functional programming languages use one non-terminal expr
for expressions and all binary infix operators are of the form expr op expr.
To add a new infix operator, one just has to define the precedence and the
fixity of the operator, i.e. whether it is right associative, left associative or
non-associative. This has the advantage that it is possible to deal with the
precedences and fixities in a systematic way. Operators can be added without
changing the syntax or the parser.

The Scattergood parser works differently, however. Since it uses different
non-terminals for different types of expressions, it is no longer easy to assign
precedences to the infix operations. The parser becomes so involved that the
only possible description of the CSPM syntax is indeed the implementation of
the parser itself.

In my opinion, using the parser for type checking is also a bad idea, because
this does by no means make up for a proper type checker. The parser only
catches the most obvious type errors anyway.

2 In Haskell, True and true are also something different, but this is trivial and every
Haskell programmer knows about this. The Haskell behavior is exactly the opposite of the
FDR behavior.

97

6.1.4 Strange Syntax
CSP had been in use as a mathematical notation for some time when work on
CSPM started and this, again, was long before Unicode became popular. CSPM

was designed to look similar to the CSP notation that was used in literature
and on the blackboard.

Maybe this is the reason why CSPM uses [] for ✷, and this again might
be the reason why [and] are not used for lists (as in most other functional
languages). Instead lists are written as <1,2,3>. This is problematic, since <
and > are also used for the greater-than and less-than relation.

From the point of view of a Haskell programmer, another strange feature of
CSPM syntax is that parentheses are part of function application. A function
which takes two arguments can be defined in curried form, for a tuple and in a
third variant which does not exit in Haskell. CSPM syntax:

f(x)(y) = . . . -- curried form
f((x,y)) = . . . -- tuple form
f(x,y) = . . . -- CSPM specific third variant

Haskell syntax:

f x y = . . . -- curried form
f (x,y) = . . . -- tuple form

It is unclear why a third variant has been added to CSPM .

6.1.5 Operator Precedences
The CSPM syntax uses many prefix and infix operators with specific precedences
and fixities. It is doubtful that there are many users who are able to correctly
remember the precedences and decide where parenthesis are necessary or not.
Complex precedences are also problematic, because all terms, that are built
with processes and process operations, are valid specifications regardless of the
precedences. There is no type error if the user misunderstands the precedences of
process operators—the specification just behaves different. I think it would have
been better to make the process operators non-associative, such that parenthesis
become mandatory.

6.1.6 Constructor and Channel Names
In CSPM , constructors and channel names are fundamentally different from
variable names. A similar distinction exists, for example in Haskell. But in
Haskell, this distinction is clearly visible, since all constructor names must start
with an upper-case letter. On the other hand, there is no such rule for CSPM .
In CSPM , data constructors, variables and channel names can start with lower-
case letters as well as upper-case letters. This can lead to hard to find bugs.

For example, let’s consider the following declaration:

P = in?val → out!val → P

The obvious interpretation of this declaration is that val is a locally-bound
variable, but this interpretation is not generally true. A counter example is the
specification:

98

channel in,out : {1..10}

P = in?val → out!val → P

channel val

The channel definition channel val defines a new constant val which means that
the identifier val can no longer be used as a variable name.

FDR accepts the above example without any warning, but the process P
does, most likely, not behave as intended.3 Note that there can be many lines
of code between the definition of channel val and the use of val.

It is easy to break existing specifications by adding a new channel declara-
tion. The problem is, that there seem to be locally scoped variables in CSPM

but, in fact, there are not. A channel or data type declaration can interfere
with any seemingly local variable. If one wants to add a channel declaration
or if one wants to combine several specifications one has to check the complete
specification for bad side effects.

6.2 The AST Data Types
This section describes the data types which represent the abstract syntax tree
of CSPM specifications. The complete definitions of all types can be found in
module Language.CSPM.AST in Appendix B.1.10.

In general, there are design trade-offs between making a syntax tree more
abstract or closer to the concrete syntax. For example, the logical and operation
of CSPM could be represented abstractly as a binary function, or it could be
explicitly built into the data type of the abstract syntax tree as a special case.
The advantage of the abstract representation is that and is indeed semantically
a binary function. On the other hand the explicit representation is closer to the
syntax because and is syntactically a special built-in of CSPM . Another example
are parentheses. Semantically, parenthesis are superfluous in the abstract syntax
tree. However, it is still beneficial to represent them explicitly.

One design decision was that the parser should return an abstract syntax
tree that is close to the concrete syntax. In other words, constructs like the
CSPM -and and parentheses are represented explicitly. One motivation for this
design decision was that the parser is also used for refactoring tools and for the
CSPM slicer [35]. A drawback of this design is that some of the particularities
of the CSPM syntax are also present in the AST.

6.2.1 Source Locations and Node Labels
Almost all parts of the AST carry information about source locations. I annotate
source locations to an AST node by wrapping it with the data type Labeled:

data Labeled t = Labeled {
nodeId :: NodeId

,srcLoc :: SrcLoc
,unLabel :: t
} deriving (Typeable, Data,Show)

3The type checker that is available from FSE can catch this error.

99

For convenience, I define several type aliases for labeled nodes, for example

type LIdent = Labeled Ident
type LExp = Labeled Exp
type LPattern = Labeled Pattern
type LDecl = Labeled Decl

By convention, labeled nodes have a type name prefixed with a L.
A lot of effort was put into making the source locations accurate. I follow

the rule that the source location of an AST node is always the part of the source
code that has been parsed to produce the node. For example, the source span of
if x == 0 then 7 else 8 covers the if, although if itself is a token and tokens
are not themselves represented in the AST.

The following interface can be used to access source locations:

type SrcLine = Int
type SrcCol = Int
type SrcOffset = Int

getStartLine :: SrcLoc → SrcLine
getStartCol :: SrcLoc → SrcCol
getStartOffset :: SrcLoc → SrcOffset
getEndLine :: SrcLoc → SrcLine
getEndCol :: SrcLoc → SrcCol
getEndOffset :: SrcLoc → SrcOffset

Currently source locations do not include the file name of the specification,
which means that they are useless if a specification uses the include feature of
CSPM .

6.2.2 Identifier
I use two variants of identifiers in the AST:

data Ident
= Ident {unIdent :: String}
| UIdent {unUIdent :: UniqueIdent}

Ident is a simple string, while UIdent stores additional information about the
identifier. The parser always returns the first variant. To convert the AST to
the second variant, a renaming operation is used.

6.2.3 Additional Constraints on Abstract Syntax Trees
The AST, that is returned by the parser, is passed through several transforma-
tions (renaming, free-names analysis) before it is suitable for the interpreter.
One design consideration is whether to use separate data types for the interme-
diate representations or not.4

My decision was to use only one data type for all intermediate steps. This
approach is simpler but it has the drawback that the type system provides
fewer guarantees for the AST. In other words, not all type-correct ASTs are

4There are also fancier alternatives like open recursions and type-level fixed points [55].
However, it is unclear whether these techniques are practicable in real-world applications.

100

valid. There are additional constraints on valid ASTs that are not enforced by
the Haskell type system.

For example an identifier has two possible representations Ident and UIdent
(see Section 6.2.2). An AST may only be passed to the renaming transformation
if all identifiers in the AST are of variant Ident. Otherwise, the renaming
transformation will throw a runtime exception. Similarly, the interpreter only
works with an AST if all identifiers are of variant UIdent. These constraints are
not enforced by the type system. See also Section 5.3.4. Investigating a more
rigorous design is left as future work.

Total functions help to build clear application interfaces because the type
of the function arguments exactly defines all permissible input values. Unfortu-
nately, for the reasons described in this section, the functions of the front-end
module are not total. The user of the module should be aware of the additional
constraints on valid ASTs.

6.2.4 Expressions
The expression data type (Exp) is the biggest type with 43 constructors. It
depends on several other types, for example the type for patterns (Pat), and it
is mutually recursive with the type for declarations (Decl). Table 6.1 and Table
6.2 list the constructors and a piece of concrete CSPM syntax that produces
the corresponding AST node. The constructors can be used to "grep" in source
code and find all relevant parts of the parser and interpreter that deal with the
specific syntactic construct.

The Exp data type contains several constructors which do not appear in the
ASTs that are returned by the parser. These constructors can appear in syntax
trees that are returned by AST transformations. For example, there is an AST
transformation which adds information about free names to the abstract syntax
tree. This transformation replaces every PrefixExp-node with a PrefixI-node.
The parser itself does not generate PrefixI nodes (c.f Section 6.2.3, Section
6.2.2). All infix operations (+,*,[],etc.) are subsumed by the Fun2 node type.

6.2.5 Declarations
The data type Decl (Table 6.3) represents CSPM declarations. The parser makes
a distinction between top level CSPM declarations and local declarations with
let-within. Inside a let-within construct, the parser accepts only function
declarations (FunBind) and declarations via pattern match (PatBind), but not
channel, data type and name type declarations, which can only appear at the top
level. The AST uses the same type Decl for both top level CSPM declarations
and local declarations.

Functions are a special case because they have two alternative representa-
tions in the AST. When a function is defined via pattern matching for several
cases, like, for example:

fkt(1) = 1
fkt(x) = x+1

each function case is recognized by the parser as a separate declaration, i.e. a
separate AST node. This is the first representation. In the renaming phase, this
representation is translated to the second representation by merging consecutive

101

Constructor Example Description
Var x a variable
IntExp 10 an integer constant
SetExp {1,2,x|x <-{2,3} } a set, possibly a set

comprehension
ListExp <1,2,x|x <-<2,3» a list, possibly a list

comprehension
ClosureComprehension {|x,y| x <- c.1 |} event closure compre-

hension
Let let x=1 within x+x let expression
Ifte if a then b else c if-then-else expression
CallFunction myfun (3,4)(7) function call (not for

built-ins)
CallBuiltIn null(x) call a built-in function
Lambda (\x@x*x)(10) lambda expression
Stop STOP STOP-process
Skip SKIP SKIP-process
CTrue true Boolean constant
CFalse false Boolean constant
Events Events a special set that

represents all possible
events

BoolSet Bool the set {true,false}
IntSet Int the set of all integers
TupleExp (1,2) a tuple
Parens (3+4) an expression in paren-

thesis
AndExp a and b Boolean and-operation
OrExp a or b Boolean or-operation
NotExp not(true) logic negation
NegExp -x arithmetic negation

Figure 6.1: CSPM expressions

102

Constructor Example Description
Fun1 #<1..10> unary prefix operation

for length of list
Fun2 3+4 a binary infix opera-

tion
DotTuple 1.2.3 a dot tuple
Closure {|c1,c2,c3|} a simple closure opera-

tion
ProcSharing P[|c|]Q sharing
ProcAParallel P[a||b]Q alphabetized parallel
ProcLinkParallel P[c1 <-> c2]Q linked parallel
ProcRenaming P[[a<-b]] renaming
ProcRepSequence ;x:s @ P(x) replicated sequential

composition
ProcRepInternalChoice |~|x:s @ P(x) replicated internal

choice
ProcRepExternalChoice []x:s @ P(x) replicated external

choice
ProcRepInterleave |||x:s @ P(x) replicated interleaving
ProcRepAParallel || x:s @ [a] P(x) replicated alphabet-

ized parallel
ProcRepLinkParallel [l<->r]x:s@P(x) replicated linked paral-

lel
ProcRepSharing [|a|] x:s @ P(x) replicated sharing
PrefixExp c -> P prefix operation
PrefixI not generated by the

parser
LetI not generated by the

parser
LambdaI not generated by the

parser
ExprWithFreeNames not generated by the

parser

Figure 6.2: CSPM expressions (cont.)

103

patterns of the same function into one AST node. It is important to destinguish
both representations, as both use the constructor FunBind LIdent [FunCase] for
the AST node.

Constructor Example Description
PatBind (fst,snd)=(1,<1..10>) declaration via pattern

match
FunBind f(x)=x*x declaration of a func-

tion
Assert assert P [FD= Q an assertion
Transparent transparent f1,f2 declare transparent

functions
SubType subtype C=R|B subtype declaration
DataType datatype C = R|G|B data type declaration
NameType nametype V = 1..9 name type declaration
Channel channel c1,c2 channel declaration
Print print 4+2 a print statement

Figure 6.3: CSPM declarations

6.2.6 Patterns
Pattern matches can appear in CSPM in several contexts:

• In function declarations.

• In local declaration with let-within.

• In input and guarded-input prefix operations.

• In lambdas and replicated operations.

• In comprenensions.

All thoses contexts use the same data type Pat. Table 6.4 lists the constructors
of the Pat data type.

6.2.7 SYB
The following class instances are derived for all data types of the AST:
Show, Eq, Ord, Typeable and Data.
The Typeable and Data instances are needed for the SYB framework.

SYB (Scrap-Your-Boilerplate) [30] is a Haskell framework that helps to im-
plement succinct AST transformations. For example, the following function
removes all occurrences of explicit parentheses (nodes with constructor Parens)
from the AST:
removeParens :: Data a ⇒ a → a
removeParens ast

= everywhere (mkT patchExp) ast
where

patchExp :: LExp → LExp

104

Constructor Example Description
IntPat fib(1)=1 an integer constant

pattern
TruePat f(true,true)=1 match Boolean true
FalsePat f(false,false)=1 match Boolean false
WildCard fun()=true wildcard pattern;

match everything
ConstrPat fun(Red)=1 match a constructor
Also x@@(f,s) match two patterns in

parallel
Append <h> ˆ b ˆ <l> list decomposition
DotPat c?(a.b.c)->P dot-tuple pattern
SingleSetPat f({x})= set decomposition
EmptySetPat f({})= match an empty set
ListEnumPat f(<a,b,c>)= match a fixed-length

list
TuplePat f((a,b,c)) match a tuple
VarPat f(x)=x*x match everything and

bind a variable
Selectors no syntax only used by pattern

compiler
Selector no syntax only used by pattern

compiler

Figure 6.4: CSPM patterns

105

patchExp x = case unLabel x of
Parens e → e
_ → x

To delete all information about source locations, or more precisely to set all
source location information to SrcLoc.NoLocation, the following function can be
used:

removeSourceLocations :: Data a ⇒ a → a
removeSourceLocations ast

= everywhere (mkT patchLabel) ast
where

patchLabel :: SrcLoc.SrcLoc → SrcLoc.SrcLoc
patchLabel _ = SrcLoc.NoLocation

SYB provides the combinators everywhere and mkT. The combinator every-
where applies a transformation on all nodes of a tree in bottom-up order.

removeParens works with all types that are an instance of the type class
Data. The type class Data provides a reflection of the structure of a type. Data
is a subclass of Typeable. The Typeable type class makes it possible to write
functions that dispatch on the type of a value. The combinator mkT turns a
regular function into a generic transformation. For example, the function mkT
patchExp calls patchExp if the argument is of type LExp and behaves as the
identity function otherwise.

The Haskell term for techniques like SYB is generic programming.5 Overall,
generic programming is a technique for writing flexible data transformations
in Haskell. Generic programming combines expressivity with statically-checked
type safety.

Strictly speaking, generic programming in Haskell solves a problem which
does not exist in dynamically typed languages. For example, similar data
transformations can be written in Prolog with the help of the ’=..’/2 and
the functor/3 predicate. On the other hand, Prolog uses untyped Prolog-terms
instead of algebraic data types which means that Prolog provides no type safety
at all.

My personal experience was that SYB is a powerful tool and that it works
well in practice. On the other hand, SYB is still a heavy-weight approach under
the hood. Therefore, I only show the code examples above and do not go into de-
tails. The technical report “Libraries for Generic Programming in Haskell” [25]
compares SYB and several other generic programming frameworks for Haskell
and contains a good survey on Haskell generic programming. The paper “Scrap
your boilerplate: a practical design pattern for generic programming” [30] is a
good reference for SYB.

6.3 The Combinator Parser
The two main characteristics of combinator parsers in Haskell are:

1. The parser is specified in Haskell syntax; there is no need for special
purpose syntax for the parser specification.

5 Generic programming in Haskell has nothing to do with Java generics.

106

2. Parsers are regular Haskell values and, as such, they are first class citizens.
In other words, parsers can appear as arguments of functions, as return
type of functions, and they can be stored in data types like lists.

Combinators are just regular functions which are used to build bigger parsers
out of smaller parsers. Table 6.5 lists some combinators that are typically used
in combinator parsers. Appendix C.2.1 contains a simplistic combinator parser
for a Pascal-like language.

Combinator Description
»=,» concatenation
<|> biased choice
many replication, (⋆)-operator
char primitive parser for one character
string primitive parser for one string
eof recognize end of file

Figure 6.5: Some combinators

There are several similar combinator parsers available for Haskell. Some of
them are called monadic parser combinators, while others promote an applica-
tive style of parsers. The term combinator parser really only implies that the
parser is specified with the help of combinators (i.e. functions). It does not say
anything about the internal implementation of the parser—for example, it can
be top down, bottom up or a mix of top down and bottom up.

The CSPM front-end uses the parsec combinator parser [31], which was state
of the art when the development of the parser started in 2006. Although there
is quite a variety of combinator parsers available for Haskell, most of them are
very similar to parsec.

6.3.1 Pros and Cons of parsec

This section lists some of the advantages and disadvantages of parsec style
parsers. Note that the term combinator parser is also used for radically different
implementations [16] which are not covered by the following discussion.

The advantages of parsec parsers are:

• There is no need for a special syntax for the parser specification.

• There is no need to run a parser generator when compiling the parser.

• The parser is thoroughly type checked.

• The parser is flexible. There is no restriction to LALR or any special class
of grammar.

Possible disadvantages are:

• The parser is not as declarative as the grammar of a parser generator.

• The syntax definition is Haskell code, it cannot easily be translated to a
bison grammar, for example.

107

• The parser is implicitly never ambiguous.

• There are no performance guarantees for the parser.

To some extent the disadvantages are just the other side of the advantages.
With parsec, it is easy to include any Haskell code in the parser. This means
that the parser is flexible. It is not restricted to LALR grammars or any other
class of grammars. The accepted language does not even have to be context free.
On the other hand, this means that there are no general performance guarantees
for the parser and that it is not generally possible to translate a parsec-parser
to a bison-grammar.

The decision to use parsec for the implementation of the CSPM parser was
not based on technical reasons.6 In retrospect, it turned out that parsec worked
well. In particular, parsec allows for an incremental style of development. It
was possible to start with the basic syntax of CSPM and add more complex
features later.

6.3.2 Code Examples
This section contains some excerpts of the actual parser code. All sub-parsers
are of type PT a where a is the return type of the parser. The parser maintains an
internal state of type PState which stores the last token, a counter for node-IDs
and flags that are needed to deal with > and < tokens.
type PT a= GenParser Token PState a
data PState
= PState {

lastTok :: Token
,gtCounter :: Int
,gtMode :: GtMode
,nodeIdSupply :: NodeId
} deriving Show

I define a new combinator withLoc, which takes a parser for an unlabeled AST-
node and returns a parser for the corresponding labeled node.
withLoc :: PT a → PT (Labeled a)
withLoc a = do

s ← getNextPos
av ← a
e ← getLastPos
mkLabeledNode (mkSrcSpan s e) av

These are the parsers for let-expressions and if-then-else-expressions:
letExp :: PT LExp
letExp = withLoc $ do

token T_let
decl ← parseDeclList
token T_within
exp ← parseExp
return $ Let decl exp

6 Basically, I had already used a traditional parser generator before. When the CSPM

project started, I was just starting to learn Haskell and wanted to use a "haskellish" parser.
parsec happened to be en vogue at that time.

108

ifteExp :: PT LExp
ifteExp = withLoc $ do

token T_if
cond ← parseExp
token T_then
thenExp ← parseExp
token T_else
elseExp ← parseExp
return $ Ifte cond thenExp elseExp

6.3.3 Parser Performance
A draw back of the parsec package is that there are no general theoretic guar-
antees for the performance. Features such as infinite look-ahead and non-
deterministic choice make parsec a powerful parser framework, but easy-going
use of these features can yield parsers with very bad (i.e. exponential) complex-
ity. Its the responsibility of the parser programmer to ensure that his parsec-
parser meets the complexity requirements.

Parser Performance
Specification Size LOC Tokens Time Speed

kb ms Tokens/s
abp.csp 12 373 795 20 approx. 40000
Andrew.csp 11 394 3221 110 approx. 30000
crossing.csp 13 360 1416 30 approx. 50000
roscoe chapter4.csp 6 181 602 20 approx. 30000
roscoe section2-1.csp 5 141 483 20 approx. 25000
mangle.csp 13 80 2848 90 approx. 30000
scheduler0 1.csp 31 1121 3362 70 approx. 50000
SetTests.refcheck.csp 566 8575 60611 1680 approx. 40000

Figure 6.6: Parser performance

Our parser was tested with about 400 real-world CSPM specifications. Apart
from this, the parser has also been in use as the CSPM front-end of the ProB
tool for about three years. The tests show that our parser works reasonably
well in practice. Table 6.3.3 shows some benchmarks. The parsing speed is
approximately 35,000 tokens per second.

The main applications of the parser are hand-written specifications which
are typically not not much bigger than 10kb. I have not made any attempt
whatsoever to speed-up the parser. Nevertheless, the parser also works reason-
ably well with large, machine generated specifications like scheduler0 1.csp and
SetTests.refcheck.csp.

Still, empirical results are no guarantee that the parser will always behave
well. For example, in the course of writing the parser benchmarks, a bug was
discovered (and fixed) which causes an exponential running time of one test
case. The bug only showed up in this particular test case, namely mangel.csp
and had been undiscovered for some while. mangle.csp is a machine-generated
specification which contains deeply nested, full parenthesized expressions. Be-

109

fore the bug-fix, mangle.csp had a parsing time of 23 seconds. After the fix, the
parsing time was reduced to 90 ms.

My conclusion is that parsec is a powerful tool for writing parsers and I
think that it was the right choice for reverse engineering the CSPM parser. On
the other hand, it is problematic that there are no performance guarantees for
the parser.

6.4 Other Functionality Provided by the Front-
End Package

The CSPM-Frontend package contains some further functionality, which is unre-
lated to parsing but which has been put in the package for convenience.

6.4.1 Renaming
To simplify the handling of variables, I use a renaming step which computes a
unique ID for each variable. For example the CSPM expression
λx@ (x + (λx@x ∗ x)(x))

contains two distinct uses of variable x. It gets renamed to:
λi1@(i1 + (λi2@ i2 ∗ i2)(i1))

I have implemented the renaming function as a top down traversal of the
syntax tree. The function maintains as state the information about the envi-
ronment, i.e. which variable names are in scope. It searches for two interesting
variants of nodes: nodes that bind new names and nodes that use a bound
name.

Whenever the function reaches a node which binds a new name, it generates
a new unique ID and adds a corresponding record to the environment. When it
reaches a used occurrence of a variable name it checks that the name is bound
and remembers information about the use-site. The renaming function checks
for two kinds of errors: uses of unbound variables and illegal redefinitions of
variables within a pattern (for example fun(x,x)=x+x).

A module can be renamed by calling the function:
renameModule ::

ModuleFromParser
→ Either RenameError (ModuleFromRenaming, RenameInfo)

renameModule either returns the renamed module (ModuleFromRenaming) and the
information that was gathered during the renaming (RenameInfo) or RenameError
in case of an error.
type AstAnnotation x = IntMap x
type Bindings = Map String UniqueIdent

type UniqueName = Int

data RenameInfo = RenameInfo
{

nameSupply :: UniqueName
,localBindings :: Bindings

110

,visible :: Bindings
,identDefinition :: AstAnnotation UniqueIdent
,identUse :: AstAnnotation UniqueIdent
,usedNames :: Set String
,prologMode :: PrologMode
,bindType :: BindType

} deriving Show

type RM x = StateT RState (Either RenameError) x
rnModule :: LModule → RM ()

The actual work is done in several mutually recursive functions which dispatch
on all alternatives of the AST data type. These functions are defined in terms
of monad RM. The function rnModule is the entry point of the actual traversal.

Renaming also takes care of the scoping rules for channel names and data
constructor names. As explained in Section 6.1.6, the occurrence of a name
like x in f(x)=... has a different semantics, depending on whether a channel
declaration for x is in scope or not. This cannot be detected by the parser and
therefore the parser always parses names in pattern as variable bindings, i.e.
AST nodes of variant VarPat LIdent. The renaming function checks whether
a name is indeed a channel name and if so it rewrites the corresponding AST
nodes to ConstrPat LIdent.

6.4.2 Interface to ProB
The package CSPM-Frontend is also the CSPM front-end of the ProB model
checker. ProB reads the AST of a CSPM specification in form of a set of
Prolog clauses. The current Prolog encoding requires that renaming has been
applied on the AST and the encoding also requires some coarse information
about used variable names. This information is also gathered by the renaming
function.

In particular, the following additional information is computed for identifiers:

data IDType
= VarID | ChannelID | NameTypeID | FunID Int
| ConstrID String | DataTypeID | TransparentID
| BuiltInID

data BindType = LetBound | NotLetBound

data PrologMode = PrologGround | PrologVariable

6.5 Conclusion
This section describes the CSPM front-end of my CSPM tool. The source code
for the front-end can be found on Hackage in package CSPM-Frontend.

The section starts with some remarks about the CSPM syntax. The CSPM

syntax contains several doubtful features that make it needlessly difficult to
parse. Nevertheless, an important requirement for our parser is that it has to
be as compatible as possible with the front-end of the FDR tool. In other
words, I decided to accept the CSPM syntax as it is and did not try to change

111

the syntax. Another challenge, was that many details of the CSPM syntax could
only be determined by a trial-and-error method. The existing documentation
of the FDR tool turned out to be insufficient.

After the introductory remarks I describe the data structure for abstract
syntax trees for CSPM . The AST is the most important external interface of
the front-end. It is implemented as a set of mutually recursive data types. I
show tables which list the constructors of the AST types, a corresponding piece
of concrete CSPM syntax and a small description of the syntax for expressions
(Exp), declarations (Decl) and patterns (Pat). Appendix B.1.10 contains a com-
plete listing of the definitions for the AST data types.

Finally, I discuss some aspects of the parser source code. The actual parser
is implemented as a combinator parser, based on the parsec package. This
approach allows for an incremental and flexible development of the parser. On
the other hand there are no general performance guarantees for parsec parsers.
I list some benchmarks with real-world examples which show that our parser
works well in practice.

The overall goal is to implement a reusable and practicable parser using a
state of the art parser library. A requirement for the parser library was that
it should have the flexibility to deal with surprises in the CSPM syntax that
were not known a priori. It turns out that the parsec library meets these
requirements.

Parsers and parser generators are a topic of very active research. Other
Haskell libraries for parsing are, for example: Happy [37], the PEG parsers [15]
and the parsers described by D. Swierstra [58].

112

Chapter 7

Exploiting Multi-Core
Parallelism

This chapter presents an experiment on the question of if it is possible to speed
up my CSPM tools with the help of multi-core parallelism and how difficult it
is. The result of the experiment is very promising.

I have implemented a prototype of a parallel CSPM model checker which is
is up to a factor of 5.5 times faster than the corresponding single core version.
At the same time, the complete implementation of the model checker consists
of a single module of approx. 50 lines of code and makes up only a tiny fraction
of the CSPM project. Given this little effort the speed-up is very reasonable. I
will describe the implementation and provide benchmarks.

Model checking often involves exhaustively searching the state space of a
specification. In principle, model checking is a promising candidate for paral-
lelization [40]. At the same time, Haskell (GHC) has good support for multi-core
parallelism and, therefore, it was obvious to try to exploit this feature.

Haskell features several different approaches to parallelism and concurrency.
Among them are explicit threads, locks, transactional memory, data parallel
processing and so-called semi-explicit parallelism [39]. This experiment is based
on semi-explicit parallelism, which has been available in GHC for some time. I
discuss semi-explicit parallelism in Section 7.3.

Just recently, the monad-par library—a new, monad based abstraction for
parallelism in Haskell—has been proposed [56]. Repeating the experiment with
the monad-par library is interesting future work.

7.1 Parallel Breadth First LTS Computation
Chapter 4 describes an algorithm for computing all possible transitions of a CSP
process, i.e. the operational semantics of CSPM . Given the transition relation
and the start process, it is straightforward to exhaustively search the state
space of a specification, for example with a depth first traversal or a breadth
first traversal or some combination of both.

In this section, I present a function which computes the possible transitions of
a set of states in parallel. I want to make a clear distinction between the parallel
computation of the transitions of a single state and the parallel computation of

113

the transitions of a set of states. The parallel computation of the transitions of
a single state may be possible, but we have not tried this.

Pseudo Code

The textbook version of BFS maintains a queue of graph nodes that need to be
visited. The main loop of textbook BFS consists of the following steps:

Step 1 Initialize the queue with the start node.

Step 2 Take a node n from the queue.

Step 3 Compute the successor nodes of n.

Step 4 Add those successor nodes that need to be visited to the queue.

Step 5 If the queue is not empty jump to Step 2.

Textbook BFS processes one node after the other. The difference between the
textbook version of the algorithm and my parallelized breadth first search is that
the parallelized algorithm proceeds in waves instead of using a queue. A wave
is just a set of nodes that is processed in parallel. The following imperative
pseudo-code gives a rough intuition parallelized BFS that was implemented.
The algorithm consists of the following steps:

Step 1 Start with a wave that consists of just the initial node.

Step 2 If the current wave is empty the search is finished.

Step 3 Otherwise, compute the successor nodes of all nodes in the current wave
in parallel.

Step 4 Examine all successor nodes in parallel and filter out old nodes that have
been visited before.

Step 5 Jump to Step 2 and iterate with the new wave of nodes that needs to be
visited.

This pseudo code gives an intuition of the algorithm but it does not describe
the true operational semantics of my implementation. The following section
describes the source code of my implementation as is, and I will discuss the
tensions between the source code and the operational semantics in Section 7.3.

Source Code

1 mkLtsPar :: Sigma INT → Process INT → LTS
2 mkLtsPar events process
3 = wave [mkLtsNode process] Map.empty
4 where
5 wave :: [LtsNode] → LTS → LTS
6 wave [] lts = lts
7 wave w lts = wave (Set.toList uniqueProcesses) newLts
8 where
9 processNext = . . .

10 transitions = . . .
11 uniqueProcesses = . . .
12 newLts = . . .

114

The wave function processes the list of new LTS nodes which need to be visited
and maintains as state the current LTS. If there are no new nodes, wave is done
and it returns the current LTS (line 6). Otherwise, it recursively calls wave
on the new LTS (line 7). mkLtsPar is a wrapper which calls wave with a list
containing only the start-process and an empty LTS (line 3). The type LtsNode
is just a regular process extended with a digest.

data LtsNode
= LtsNode {

nodeDigest :: !Interpreter.Digest
,nodeProcess :: Interpreter.Process
}

mkLtsNode :: Interpreter.Process → LtsNode
mkLtsNode p = LtsNode {

nodeDigest = hash p
,nodeProcess = p }

I use the digest for fast equality and ordering on LtsNodes (c.f. Section 5.4).

instance Ord LtsNode where compare = comparing nodeDigest
instance Eq LtsNode where (==) = on (==) nodeDigest

An LTS is just a Map from LtsNodes to a list of transitions:1

type LTS = Map LtsNode [Rule INT]

Fast equality and ordering on LtsNodes is important in speeding-up the oper-
ations on the LTS. The LTS uses the data type Map which is implemented as a
binary tree.

The function wave refers to uniqueProcesses and newLts which are local dec-
larations. Note that w and lts are in scope of the where-part. I describe the
local declarations in bottom-up order.

1 processNext :: LtsNode → (LtsNode, [Rule INT], [LtsNode])
2 processNext p = (p, rules, map (mkLtsNode ◦ viewProcAfter) rules)
3 where rules = computeTransitions events $ nodeProcess p
4
5 transitions = map processNext w
6
7 newLts = List.foldl’ insertTransition lts transitions
8 where
9 insertTransition :: LTS → (LtsNode, [Rule INT], [LtsNode]) → LTS

10 insertTransition l (p, rules, _) = Map.insert p rules l
11
12 uniqueProcesses = List.foldl’ insertProcess Set.empty processes
13 where
14 insertProcess :: Set LtsNode → LtsNode → Set LtsNode
15 insertProcess s p = if Map.member p newLts
16 then s
17 else p ‘Set.insert‘ s
18 processes = concatMap (λ(_,_,r) → r) transitions

1 More precisely, Rule INT is the transition plus the corresponding proof tree.

115

processNext lines 1 to 3 is a helper function which computes the transitions
of one process. It returns the original process, the list of full proof trees,
and the list containing just the new processes.

transitions line 5 collects all transitions of the current wave. It calls process-
Next for all new nodes.

newLts lines 7 to 10 The new LTS is computed by adding all transitions to
the current LTS with a foldl’.2

uniqueProcesses line 12-18 is the set of new processes that have been discov-
ered in this wave and that have to be explored in the next wave. It is a set,
i.e. it contains no duplicates and before I add a process to the set, I check
if it is an old process (line 15). uniqueProcesses can also be computed
with a simple foldl’.

Annotations for Parallelism

transitions is a Haskell list which is lazy by default. In other words, the default
strategy of Haskell is to compute the list lazily (on demand) one element after
the other.

To exploit parallelism the list elements should be computed in parallel on
all available cores. Also the list elements should not be computed on demand
one after the other; instead the complete list should be computed right away.

To achieve this I change the definition of transitions to:

!transitions = parRules $ map processNext w

parRules ::
[(LtsNode, [Rule INT], [LtsNode])]

→ [(LtsNode, [Rule INT], [LtsNode])]
parRules = withStrategy $

parList $ evalTuple3 r0 (parList rwhnf) (parList rwhnf)

Semantically, parRules is equivalent to the identity function. It takes a value and
returns exactly that value. The purpose of parRules is not to define a function
which computes a new value, it is to tell the runtime system to compute its
argument with a different reduction strategy. The default reduction strategy of
Haskell corresponds to the normal order reduction of the Lambda calculus. I
replace it with another strategy which exploits possible parallelism.

The parallel strategy is defined as:

parList $ evalTuple3 r0 (parList rwhnf) (parList rwhnf)

The structure of the strategy follows the type of transitions.

transitions :: [(LtsNode, [Rule INT], [LtsNode])]

transitions is a list of 3-tuples where two of the 3-tuple elements are themselves
lists. The strategy says that the outer list is computed in parallel, the 3-tuples
are computed with the strategies r0 and (parList rwhnf), which means that
inner lists are again computed in parallel. withStrategy is the function which

2foldl’ is the strict version of foldl. However, this is misleading because Map.insert
is still lazy.

116

applies a strategy to a value. parList, seqTriple, r0 and rwhnf are defined in
module Control.Parallel.Strategies in package parallel.

Local definitions inside a where clause are by default also evaluated lazily
in Haskell. This means that by default, the evaluation of transitions would
be delayed even before the Haskell runtime system reaches the strategy annota-
tion. To avoid this, I add an additional strictness annotation (the exclamation
mark !) to the definition of transitions. This strictness annotation ensures
that the evaluation of transitions starts right when the right-hand-side of the
corresponding clause of the wave function gets evaluated. I also add strictness
annotations to the other local definitions of wave.

This approach is called semi-explicit parallelism in Haskell. One advantage
of semi-explicit parallelism is that it is a light-weight approach. For example,
I do not have to deal with any synchronization, locks, etc. Another advantage
is that it does not add any non-determinism. Annotating an expression with a
strategy is guaranteed to not change the value of the expression. In particular
the parallel version of transitions will return the list elements in the same order
as the non-parallel version.

Using threads, locks, message passing or similar techniques often introduces
non-determinism because the result of a computation can become dependent
on the exact timing of the events. Non-deterministic computations are difficult
to debug. On the other hand, adding strategy annotations to a program is
relatively safe. In the worst case the parallel version of the program might
take longer than the original or have some memory leaks. It is guaranteed that
program will not compute a false result because of a strategy annotation. For
a critique of semi-explicit parallelism see [56] and Section 7.3.

7.2 Parallel Benchmarks

I start with some remarks before showing diagrams of the measured running
times.

Objectiveness

The CSPM specifications, which are the input of my model checker, are in
essence programs themselves. Section 5.5 contains examples that small changes
in the specifications can cause big differences in the measured running times.3
This problem is not specific to my program but it is in general more difficult to
measure the average performance of a symbolic computation like an interpreter
or a model checker than the performance of an algorithm like QuickSort, which
works on bulk data. It is difficult for the single core performance but, even more
so, for the multi-core performance.

The purpose of the benchmarks is to show that using multi-core parallel
Haskell for model checking is interesting and that speed-ups are possible in
reality. I do not claim that the presented model checker is already perfectly
parallelized.

3 "The only statistics you can trust are those you falsified yourself."–Winston Churchill

117

Selection of the Test Cases

The presented parallel BFS works best for specifications which have a sufficient
number of branches in the state space. One cannot expect much speed-up for
a state space which consists just of a single thread of states which have to be
visited one after the other. The regression tests that I use for my model checker4

often test just one special feature of CSPM and often have a degenerated, single
threaded-state space.

Other specifications are unsuitable because they only run for a view milli-
seconds, which means that the measurements can easily jitter. In the end
I settled down to the following specifications: hanoi.csp, crossing.csp and
scheduler.csp. I use the exact versions of the specifications that have been
published in the literature, so in some sense these specifications are "real-world"
specifications.

GHC Version

Multi-core parallelism and Haskell is a very active subject of research and there
has been significant progress in this area recently [39]. Therefore, I have used
the latest version of the GHC compiler that was available at the time of running
the benchmarks (ghc-7.0.0.20101021 a release candidate for ghc-7.1).

Overhead of Multi-threading

GHC allows one to compile and link a program with two different runtime
systems: a multi-threaded runtime system and a non-threaded runtime system.
Using the the multi-threaded runtime system generally causes some overhead
compared to the non-threaded runtime system. Appart from this, there can be
an extra and disproportional slow-down when using the multi-threaded Haskell
runtime system running on only a single CPU core.

The consequence is that, some experiments show speed-ups greater than n
when using n CPU cores and taking the multi-threaded runtime system and one
CPU core as reference. For example the hanoi-9 benchmark takes 379 seconds
using a single core but only 171 seconds using two cores, which would represent
a speed up of 2.3.

Speed-ups greater than the number of CPUs are certainly counter-intuitive.
To avoid this I take the non-threaded runtime system as reference for all relative
speed-ups. For the hanoi-9 benchmark the non-threaded running-time is approx.
250 seconds which gives a speed-up of approx. 1.46 when using two cores (see
Figure 7.2).

Compiler Options and Garbage Collection

I have used the following compiler options for the benchmarks:
-O2 -funbox-strict-fields. These options are commonly used to give fast exe-
cutables precedence over fast compile times. I did not use any runtime options
for the garbage collection and I did not set a predetermined heap size. The
benchmarks start with a small heap size and dynamically allocate memory as
needed.

4I reuse the test suite of ProB.

118

Hardware

The tests were run on the Intel-Manycore-Testing-Lab, an initiative of Intel
which provides Academia free access to state-of-the-art multi-core hardware.
At the time of writing, the Manycore-Lab featured multi-core computers with
32 CPU cores based on 2.27GHz Intel Xeon CPUs. The computers are installed
with a 64-bit Linux operating system and have 256 GB RAM. (All benchmarks
run with less than 1GB RAM).

Figure 7.1: Multi-Core Speed-Up: hanoi.csp (9 disks)

Benchmarks

For each specification I measured a total of 5 ∗ (32 + 1 + 1) = 170 test runs. The
multi-threaded Haskell version was tested using between one and 32 CPU cores
and for reference I also tested the single-threaded Haskell version and ProB
(Version 1.3.2-final (5718)). I recorded 5 running times for each configuration.
The running times for ProB and Haskell are the times reported by the tool
itself and do not include start-up, parsing and preprocessing.

The diagrams (Figure 7.2, Figure 7.1, Figure 7.3, Figure 7.4) show the speed-
ups, i.e. the reciprocal running times normalized to the running time of the
single-threaded Haskell version. For graphical reasons the non-threaded Haskell
times and the ProB times are marked at 8 cores but these times are independent
of the number of cores. On the right y-axis the absolute running times for 1,2,4,8
and 16 cores are marked.

7.2.1 Interpretation of the Results
The diagrams are roughly consistent with Amdahl’s law [1].

119

Figure 7.2: Multi-Core Speed-Up: hanoi.csp (8 disks)

Figure 7.3: Multi-Core Speed-Up: crossing.csp

120

Figure 7.4: Multi-Core Speed-Up: scheduler.csp

Amdahl’s law states that if P is the proportion of a program that
can be made parallel (i.e. benefit from parallelization), and (1 − P)
is the proportion that cannot be parallelized (remains serial), then
the maximum speed-up that can be achieved by using N processors
is:5

1
1 − P + P

N

The portion P of the program that can be parallelized with the presented ap-
proach and for the presented test cases is approximately 85% (speed-up=5.5, 16
CPU cores). The approach works well for typical, up-to-date PCs which have 8
to 12 CPU cores, but it does not scale beyond 16 cores.

There is an interesting difference between the diagrams. The diagrams
for the Hanoi benchmarks show much less variation in the running time for
higher numbers of processor cores than the diagrams for scheduler.csp and
crossing.csp. One possible explanation for the difference is that the state space
of the the Hanoi specification has a regular shape. This may be the reason why
actual computations may also process more regularly.

Semi-explicit parallelism only guaranties that the result of a computation is
deterministic. The exact scheduling of which CPU core computes which state of
the specification is, in general, still non-deterministic and some of the schedules
may be better that others. The threadscope tool http://research.microsoft.
com/en-us/projects/threadscope/ can be used to investigate this further—
which is left as possible future work.

5Quote from Wikipedia: Amdahl’s law

121

http://research.microsoft.com/en-us/projects/threadscope/
http://research.microsoft.com/en-us/projects/threadscope/

7.3 Critique on Semi-explicit Parallelism
The big advantage of semi-explicit parallelism is that it is completely safe to
use. Adding strategy annotations for parallelism is guaranteed to not change the
result of a function. On the other hand, the author must admit that tweaking
the source code for maximal parallel performance can resemble black magic.

In the paper “A monad for deterministic parallelism", Simon Marlow, Ryan
Newton and Simon Peyton Jones summarize the problems with semi-explicit
parallelism as follows [56]:

For many years we have advocated the use of the par and pseq op-
erations as the basis for general-purpose deterministic parallelism
in Haskell (. . .). However, a combination of practical experience
and investigation has lead us to conclude that this approach is not
without drawbacks. In a nutshell, the problem is this: achieving
parallelism with par requires that the programmer understand oper-
ational properties of the language that are at best implementation-
defined (and at worst undefined). This makes par difficult to use,
and pitfalls abound — new users have a high failure rate unless they
restrict themselves to the pre-defined abstractions provided by the
Strategies library.

This quote makes a distinction between the low-level primitives par and pseq
and the pre-defined higher level strategies that I have used, but in general, the
critique that these techniques require understanding of operational details also
applies to the higher level strategies.

In our experiment, semi-explicit parallelism turned out to work well and the
presented benchmarks give a first estimate for speed-ups that can be achieved.
The presented source code is a declarative description of what is computed and
the pseudo code in Section 7.1 gives an intuition of how the implementation
works. The function shown in Section 7.1 was written in a declarative style con-
cerning the result of the function. To thoroughly analyse the parallel behaviour
of the implementation, one has to argue about the operational properties of the
language. This is difficult and beyond the scope of this thesis. The new ap-
proach, proposed by Simon Marlow et al [56], is to write parallel functions in a
monadic style which makes it easier to reason about the operational properties.

7.4 Conclusion
This chapter presents an experiment that was carried out in the course of writing
this Phd thesis. Given the little effort, the achieved speed-ups are reasonable.
For selected benchmarks I was able to speed-up the computation of the state
space by a factor of up to 5.5. The benchmarks in this chapter provide a baseline
for the speed-ups that are possible with semi-explicit parallelism.

Theoretically, pure functional programming languages work well together
with parallelization. The small experiment in this section shows that these
theoretical advantages also hold true in practice—to some extent. The next
reasonable step is to try other abstractions for parallelism in Haskell—for ex-
ample the new approach[56].

122

Chapter 8

Integrated Tool

The previous chapters describe several building blocks of my CSPM project,
namely the parser, the interpreter for the functional sub-language and the im-
plementation of the firing rules semantics of CSPM . This chapter presents an
integrated CSPM tool which combines these building blocks. I use the term
cspm for this integrated CSPM tool and also for the software of my CSPM

project in general.
This chapter is organized as follows:

Section 8.1 describes the command line interface for cspm.

Section 8.2 contains installation instructions for cspm.

Section 8.3 explains an approach for back-box testing CSPM tools.

Section 8.4 lists the limitations of cspm and incompatibilities between cspm
and the FDR.

Section 8.5 compares cspm with ProB and FDR.

Section 8.6 lists some related software and CSP projects.

8.1 Command Line Tool
The cspm command-line executable demonstrates some features of my project.
It can be used to quickly check if the CSPM libraries can be installed and run
on a system and if a specification is compatible with the libraries. cspm also
demonstrates how to glue the cspm libraries together and it can be used as a
template for building custom CSPM tools.

The cspm executable supports several commands, for example:

eval Evaluate an expression. The filename of an additional CSPM specification
can be set with an option, in which case the expression is evaluated in the
context of that specification.

trace Interactively trace a process. By default trace searches for a process that
is declared as MAIN=. . . and uses this process as the initial process. Another
initial process can be set with command line options.

123

lts Compute the LTS of a process with the breadth-first search described in
Chapter 7 or with a simple DFS. Possible output formats are, for example,
DOT graph and simplified CSPM which is suitable for refinement checking
with FDR. To deal with large or infinite labeled transition systems, a
timeout can be set and partial LTSs can be computed.

translate Translate a CSPM specification into various formats, for example
the Prolog encoding expected by ProB.

“cspm –help” lists all implemented commands and “cspm command –help”
prints a help message for one command, for example “cspm eval –help” for the
eval command.

Figure 8.1 shows examples for the usage of cspm. The examples assume that
the current directory contains the file called “funBench.csp” with the specifica-
tion from Appendix C.1.

/home/fontaine $ cspm eval "4+3"
(VInt 7)
/home/fontaine $ cspm eval --src=funBench.csp "square(7)"
(VInt 49)
/home/fontaine $ cspm trace --main=P2 funBench.csp

Process :
Prefix (PrefixState HashMD5_D3191995AC4F3A0D077CE778CEC2CDFB)
0 :
out.4
Select a Transition
0

Process :
Prefix (PrefixState HashMD5_7838F0F30CD46AD29F5391D12EB45102)
0 :
out.9
Select a Transition
0

Process :
Stop
deadlock state

/home/fontaine $ cspm lts --dotOut=t.dot --main=P2 funBench.csp
/home/fontaine $ cspm --help

Figure 8.1: Using the cspm-command line tool.

8.2 Installation of the Tools
The preferred way of installing the tools is via the Haskell Platform. The Haskell
Platform [11] is the canonical Haskell distribution and provides the Glasgow
Haskell Compiler (GHC), a set of standard libraries and the tool chain (including

124

the cabal-command) that is required for the installation. The Haskell Platform
is available for Windows, Mac and Linux. An easy installation of the cspm tools
is important for the reproducibility of the presented benchmarks and tests.

I use the cabal system for packaging and building the cspm tools and the
cspm libraries. On a current version of the Haskell Platform (2011.2.0.1), my
cspm1 libraries can be installed with the command:

cabal install CSPM-cspm

The cabal command takes care of downloading and installing the package
and the required dependencies from a server called Hackage. Hackage is a central
repository for cabal packages that is maintained by the Haskell community.
The complete source code of the cspm libraries and the CSPM-cspm package is
available on Hackage.

A nice feature of the Hackage server is that it automatically runs a test
build when a new package is uploaded and, in particular, it also builds the
haddock documentation of libraries. Haddock is a Haskell documentation tool.
The haddock documentation of the libraries is online browsable on the Hackage
web page and the documentation itself contains back-links to the source code.

The cabal tool is also responsible for managing the dependencies of the
CSPM-cspm package and the cspm libraries. The direct and indirect dependencies
of CSPM-cspm, which comprise dozens of packages, are unmanageable without tool
support.

In general, cabal resolves and installs the dependencies of a package fully au-
tomatically. The CSPM-cspm package specifies precise constraints for the versions
of the direct dependencies. The dependency resolution may fail, however, if a
dependency does not comply with the versioning policy of cabal, or if a direct
dependency has itself a dependency which fails for some reason. Usually, this
problem does not occur if the installation starts with a well-defined set of pack-
ages as provided by the Haskell Platform. I will maintain CSPM-cspm compatible
with future versions of the Haskell Platform for some time.

8.3 Black-Box Testing
Section 4.4 describes an approach for testing the firing-rules semantics that
has been implemented in the core-language module. However, these tests have
two restrictions: first they only cover the core-language module and not the
implementation of the functional sub-language of CSPM . And second, they
only test the internal consistency of one part of the core-language module with
respect to another part.

Of course, it also makes sense to systematically perform black-box tests that
systematically test the integrated CSPM tool. An interesting approach is to
check the correctness of one CSPM tool A with respect to a second tool B.

The following method can be used to test if two tools A and B implement
the same semantics :

Step 1 Start with a CSP specification of a process P1. Use tool A to compute
the labeled transition system of P1

1The relevant version of the package is CSPM-cspm-0.5.6.0.

125

Step 2 Translate the LTS back to a CSP specification with entry point P2 and
use tool B to check that P1 is a failures-divergences refinement of P2 and
that P2 is a failures-divergences refinement of P1.

When Step 2 of the test fails, it means that tool A and tool B do not agree on
the semantics of the given specification. I have applied this approach with my
implementation as tool A and FDR as tool B. For a good test coverage one
should test with a variety of specifications which cover all interesting parts of
the CSPM semantics.

Translating an LTS to CSP syntax

The translation of an LTS to a CSP specification is complicated by the fact that
there is no direct method in CSPM to specify τ transitions. I use the same trick
that is also used for testing ProB [34]. Suppose the LTS contains a state S
with the following set of transitions:

{S
e1−→ T1, S

e2−→ T2, S
X−→ Ω, S

τ−→ U1, S
τ−→ U2}

The state S is translated to the following CSPM declaration:

S = (e1 → T1 ✷ e2 → T2 ✷ SKIP) ◃ (U1 ⊓ U2)

If S has an empty set of transitions, it gets translated to S = STOP.
In other words, transitions that involve a regular event are translated to

prefix operations and X-transitions are translated to SKIP. Those transitions
are combined using ✷ (external choice). All τ -transitions are combined using
⊓ (internal choice). The non-τ parts become the left-hand-side of a timeout
operation (◃) and the τ -parts the right-hand-side. If either the τ -part or the
non-τ -part is empty, the other part is used directly, with no need for a timeout
operation.

I have used the presented method to verify the compatibility of FDR and
my CSPM tool with about 100 test cases from the ProB test suite. Apart from
the limitations listed in Section 8.4. the Haskell CSPM interpreter is almost
100% compatible with FDR.

In practice it turned out that just running Step 1 of the presented method
for a large number of specifications was already very helpful for debugging my
implementation. Most of the detected problems were related to the functional
sub-language. For example, I encountered exception from the interpreter of the
functional sub-language, because some features of CSPM had not been imple-
mented. When Step 1 successfully generated an LTS it usually also passed Step
2. This shows that the separate tests for the CSP core-language (Section 4.4)
are effective. The black-box tests did detect some discrepancies between my
tool and FDR with respect to dot-tuples (Section 8.4.2).

The same approach for black-box testing is also used by Michael Leuschel
for ProB. In one case, the routine tests that are run for ProB were able to
detect a bug in FDR. The bug was discovered when one test case started to fail
after FDR was updated to a new release.

126

8.4 Know Limitations
This section lists the known limitations and missing features of the current
version of cspm. Some of the missing features are non-trivial and the effort
for adding these features is hard to estimate. In general, these missing features
have been postponed in favour of other possible extensions that are listed in the
chapter on future work.

8.4.1 Recursive Data Types
Syntactically, it is possible to define recursive data types in CSPM like:
datatype Nat = Zero | Succ.Nat
channel c:Nat
MAIN = c?x → MAIN

The data type Nat contains an infinite number of values, which means that there
are some restrictions on how this data type can be used, depending on the tool.
For example, ProB can deal with such data types, but it will only enumerate
a finite number of alternatives when it searches for a value of such a data type.

FDR has the limitation that it will never search for a value of an infinite
recursive data type. If a specification contains non-determinism with respect to
a value from a recursive data type, FDR will throw a run-time exception. This
rules out most application of such data types in FDR.

Recursive data types are not supported by my tool. If they are used my,
tool will most likely compute false results. We have not yet investigated how to
fix this.

A related issue is the FDR type constructor Seq. Seq(l) is equivalent to
the set of all sequences over the alphabet l, i.e. l⋆. The restrictions for the
application of Seq are similar to those for recursive data types.

Workaround

Since all known CSPM implementations2 use dynamic typing, there is no need
for complex data type declarations at all. The implementations make no strict
distinction between data types and sets of values. For example, data types can
occur in an expression and a set of values can occur in a channel declaration.
channel c:NatSet(5) -- a channel declaration can use a set
MAIN = c?x → MAIN

datatype C1 = Zero | Succ
NatSet(0) = {Zero} -- a regular set replaces a data type
NatSet(n) = union ({Zero} , { (Succ,x) | x← NatSet (n-1)})

datatype C2 = Leaf | Node
BinTree(0) = {Leaf}
BinTree(n) = let ts = BinTree(n-1) within

union ({Leaf}, {(Node,c1,val,c2) | c1 ← ts, val ← {0,1}, c2 ← ts})

channel c2:BinTree(2)

2i.e. FDR, ProB, ProBE and cspm.

127

SomeSet=union(Const,{1,2,3}) -- a set expression can use a data type

Therefore, it is possible to replace a data type declaration with a regu-
lar set. It is sufficient to declare new constants like Zero and Succ. Instead
of Succ.Succ.Zero one can write (Succ,(Succ,Zero)). This avoids the use of
dot-tuples, which have an non-trivial semantics (c.f. Section 8.4.2). This
workaround is compatible with FDR, ProB, ProBE and cspm but it relies
on dynamic typing.

The latest version of FDR (FDR-2.91 from 2010) has introduced a new Proc
data type. The presented workaround can also be used to replace a data type
that contain Proc with a set of untyped tuples.

8.4.2 Dot Tuples
CSPM has two alternative syntactic variants for writing tuples. A tuple can be
written as (a,b,c,d) or it can also be written as a.b.c.d . The second variant
is called a dot-tuple in this thesis.

Dot-tuples have several applications in CSPM :

1. All events are dot-tuples of the form channel.d1.d2. · · · .dn .

2. Data types are constructed with the dot-notation, for example Pair.1.2 .

3. Arbitrary values can be joined with a dot to form a dot-tuple.

The available documentation for dot-tuples in FDR is sparse. The semantics
of dot-tuples in CSPM is basically defined by the internal implementation of
the CSPM tools. This section presents my understanding of FDR. My main
approach to investigate how dot-tuples are implemented in FDR was to try
a number of test cases. Each test case constructs a dot-tuple value and then
deconstructs it again with pattern matching.

For example I use the function :

f(a.b.c)=(a,b,c)

The function f deconstructs a dot-tuple and translates it to regular, comma-
separated tuple. It is possible to evaluate f(1.2) with the FDR interpreter
using the following command line:

echo "_evaluate(f(1.2))" | $FDRHOME/bin/state2 Spec.csp

This by-passes the GUI and is very handy for this kind of experiment. I have
used fdr-2.91rc4-academic-linux for the presented experiments.

Table 8.2 contains examples that show the behaviour of dot-tuples. It shows
a table of values for the functions f, f2 and f3. The experiments lead to the
following conclusions:

• Dot-tuples are flat. It it not possible to construct nested dot-tuples (ex-
amples (a), (b)).

• A dot-pattern can match a dot-tuple of a different size (examples (c), (d)).

• If the value has more elements than the pattern, then the last element of
the pattern matches the rest of the value (example (c)).

128

f(a.b.c) = (a,b,c)
x f(x)
1.2.3 (1, 2, 3)
1.(2.3) (1, 2, 3) (a)
(1.2).3 (1, 2, 3) (b)
1.2.3.4 (1, 2, 3.4) (c)
1.2 (1, 2, ϵ) (d)
1 Bad dot pattern match

f2(a.b.c.d) = (a,b,c,d)
x f2(x)
1 Bad dot pattern match
1.2 Bad dot pattern match
1.2.3 (1, 2, 3, ϵ)

f3(a.b) = (a,b)
x f3(x)
1 (1, ϵ)

Figure 8.2: Behaviour of dot-tuples in FDR

• The pattern can have one element more than the value. In this case
the last element of the pattern is bound to a mysterious, invisible value.
Table 8.2 shows this value as ϵ (example (d)). The true output of FDR
in experiment (d) is (1,2,) , i.e. FDR completely omits ϵ when it pretty-
prints a value.

In my point of view, the possibility to match a dot-pattern with a dot-value
with a different number of elements is a doubtful feature of FDR. I think that
this feature adds only a little expressiveness with the cost of an extra corner
case.

The implementation of dot-tuples in my tool is not 100% compatible with
FDR. For example, my tool throws an exception if the value has less elements
than the pattern. Overall, I think that a tool should reject specifications that
rely on corner cases of FDR. On the other hand, unfortunately, my tool does
not always follow that policy. For example when a dot-value has more elements
than the pattern, my tool just discards the extra elements.

A plan for future work is to add a configuration option to my tool which lets
the user select between a strict-mode (which implements a reasonable semantics
without corner cases) and a compatibility mode (which tries to be as compatible
with FDR as possible).

8.4.3 Slow Link Parallel and Renaming Operations
One of our regression tests 3 contains the following code:

channel left,right:{1..20}
channel left’,right’:({1..20},{1..10})
ITER = left’?(d,x) -> right’!(d,f(d,x)) -> ITER
f(d,x) = (x + d/x)/2

3The test is roscoe chapter4.csp, a specification that comes with the first Roscoe book
[52].

129

INIT = left?x -> right’!(x,(x+1)/2) -> INIT
FINAL = left’?(d,x) -> right!x -> FINAL
ROOTER = INIT [right’ <-> left’]

(ITER [right’ <-> left’]
(ITER [right’ <-> left’]
FINAL))

The process ROOTER is defined with a three-fold nested link-parallel operation.
The definition of the linking relation is right’ <-> left’ and the channels left’
and right’ each consist of 200 possible events.

cspm implements the link-parallel operation as a loop which iterates over
the domain of the linking relation. This implementation is inefficient. In the
example, the link-parallel operation is threefoldly nested and the domain of the
linking relation contains 200 elements. This means that the inner part of the
expression (the process FINAL) has to be evaluated 2003 times. Consequently
the running times for this example are high. The sequential running time is
approximately 40 seconds and the parallel running time is still 10 seconds (c.f.
Section 8.5.4).

An obvious way to improve the implementation is to use memorization and
to compute the sub-processes of a link-parallel operation only once. This cor-
responds to the bottom-up approach of FDR. Another idea is to use the fact
that the linking-relation is often a function and not a general relation. This is
also the case in the presented example.

8.5 Comparing CSPM Tools
Currently, there are four tools available which use CSPM as input syntax: FDR,
ProBE, ProB and the tool and libraries described in this thesis. This section
compares some aspects of these four tools.

FDR is a refinement checker and ProBE is a process tracer. ProB is a
model checker which supports full LTL checking and the latest versions of ProB
also supports refinement checks. In the current version, cspm can only check
for deadlock states and safety properties. Both ProB and cspm can be used
to compute the LTS of a specification.

Strictly speaking, a model checker, a refinement checker and a process tracer
represent different functionality. This section will not discuss the difference be-
tween model checking and refinement checking. Instead, I will focus on aspects
that are directly related to CSPM and that all tools have in common. All tools
are based on the operational semantics of CSPM . In other words, a core part
of each tool is the computation of the transition relation of a CSPM process.

8.5.1 Comparison by Aspects
This section addresses the following aspects:

• Input syntax

• Renaming

• Type checking

• Functional sub-language of CSPM

130

• Top-down vs. bottom-up

• Firing rules semantics

• Implementation language

• Code metrics

The rest of the thesis contains a detailed discussion of these aspects for cspm.
A more detailed comparison with the other CSPM tools would be interesting,
but this was beyond the scope of this thesis and I will only skim through the
list very briefly.

Input Syntax

For parsing, FDR and ProBE use a LR grammar and the bison parser gen-
erator. ProB and cspm both share the same front-end based on a parsec
combinator parser (c.f. Chapter 6). The compatibility between the two alterna-
tive front-ends is high but they may differ in corner cases. From a user’s point
of view the bison parser and the parsec parser work equally well.

Renaming

CSPM is a statically scoped language and the cspm front-end uses a static free-
names analysis and a dedicated renaming phase. The renaming phase of the
cspm front-end can statically catch errors which will pass unnoticed in FDR,
for example unbound variables or patterns which contain multiple occurrences
of the same variable.

Presumably, FDR and ProBE lack a renaming phase. Presumably, they
instead implements the scope of variables dynamically and do not check for
illegal rebinding of an identifier. For example, FDR will not detect an illegal
definition like f(x,x)=x*x; instead it will evaluate f(4,3) to 9. It looks like FDR
just processes the pattern (x,x) from left to right and that in f(4,3) the binding
x:=3 just overwrites the binding x:=4. This is at least counter-intuitive.

Type Checking

None of the tools has a built-in static type checker. There are several examples
that FDR indeed has features which imply dynamic typing, for example generic
buffers [34]. ProB and cspm try to be FDR-compatible concerning dynamic
typing, however these features remain a source of incompatibilities.

A type checker for CSPM is available from FSE as as separate program [17]
but it has its own limitations. To summarize, the lack of a proper static type
checker is a severe problem for all tools and for CSPM in general.

Functional Sub-language

As expected, Haskell is well-suited for writing interpreters for a functional pro-
gramming language and cspm shows the overall best performance in this aspect
(see benchmarks Section 5.5). ProB, which uses the non-ground representation,
lambda lifting and precompilation techniques, falls behind in the benchmarks
and also misses features like, for example, efficient support for let-expressions

131

(c.f. Section 5.2.7, Section 5.3.2). FDR seems to be overall robust but notably
slower than cspm.

Top-down vs Bottom-up

FDR uses a bottom-up approach for the CSP core semantics. In case of a
parallel composition of two sub-processes, FDR first computes the state spaces
of the sub-processes and then the parallel composition of these state spaces. The
FDR approach does not terminate if one of the sub-processes is infinite, even
if the combined state space of the sub-processes is again finite ([32] contains an
example).

From a user’s point of view, this means that many perfectly correct CSP
specifications do not work with FDR. ProB and cspm use a top-down approach
and can handle specifications which do not work with FDR.

Firing Rules

cspm uses explicit proof trees and a separate proof tree verifier. The proof tree
verifier is a direct and concise translation of the CSP firing rules to Haskell and
the correctness of the CSP core semantics in cspm relies only on the correctness
of the proof tree verifier (and automated test case generation, see Section 4.4).
The implemented firing rules of cspm are clearly listed in Appendix A.

ProB uses the built-in search of Prolog to implement the firing rules seman-
tics. A firing rule roughly corresponds to a Prolog clause and a proof tree is
only stored implicitly (as part of the SDL tree that is traversed during the exe-
cution). ProB computes some explicit information about the proof tree which
is used to show visual feedback about a enabled transition in the GUI.

I have no information whether FDR or ProBE use any systematic transla-
tion from the firing rules to C or C++ code.

Implementation Language

FDR and ProBE are closed source; it is known that they use C/C++ and
Tcl/Tk for the GUI. A version of the FDR parser is available as open source,
but it it unclear whether this it the most recent version of the parser.

The core of ProB is implemented in SICStus Prolog. The integrated ProB-
tool also consists of parts that are written in Tck/Tk, Java, C/C++ and Haskell.
The source code of ProB is available from the ProB web page under the ProB-
License.

cspm is written in Haskell (Haskell-2010 plus some GHC extensions). The
Haskell CSPM-libraries and tools are distributed as cabal source code packages via
Hackage (the central repository for Haskell packages). The Haskell CSPM-tools
are under a BSD license.

Code Metrics

Table 8.3 shows a breakup of the code size of the Haskell packages and the CSP
part of ProB.4

4 The data was generated the from source code repositories of the tools on Nov 29 2010.

132

The table lists the lines of code in the package and the total size of the
package in kilobytes. Additionally, it lists the biggest single module of the
package, the LOC and the size of that module.

Total Package Biggest Module

Package Name m
od

ul
es

siz
e
(L
O
C
)

siz
e
(k
B
)

siz
e
(L
O
C
)

siz
e
(k
B
)

CSPM-Frontend 17 3600 110 1100 30
CSPM-CoreLanguage 4 300 10 106 3
CSPM-FiringRules 13 2400 82 690 22
CSPM-Interpreter 15 2600 87 700 23
CSPM-cspm 6 670 16 215 6
cspm total w/o front end 38 5970 195 700 23
ProB-CSP 9 4200 185 1800 82
GUI Tool 20 1800 50 287 8

Figure 8.3: Code metrics for the Haskell packages

The CSPM-Frontend package contains the parser for CSPM which is shared
between ProB and cspm. Measured in lines of code, the front-end makes up
more than a third of the complete tool. The biggest module of the front-end is
Parser.hs which contains the actual combinator parser. This single module has
1100 LOC and 30kB.

The CSP part of ProB consists of 9 files and approx. 185kB of Prolog code.
The biggest Prolog source files are haskell csp.pl (approx. 1800 LOC, 82kB)
and haskell csp analyzer.pl (approx. 900 LOC, 41kB). This does not cover
the GUI and glue code, which is shared with the rest of ProB.

cspm is almost exactly the same size as the Prolog code in kilobytes. How-
ever, the Haskell implementation is split into much smaller modules and it also
has more lines of code. The largest Prolog module is more than 3 times bigger
than the largest Haskell module (82kB vs 23kB).

Of course looking at the LOC is only a very simplistic approach to comparing
Prolog and Haskell code. The tools have different features and the tools do
not implement exactly the same functionality. Also, Prolog and Haskell are
fundamentally different programming languages. Nevertheless the code metrics
are interesting.

Haskell is a statically typed language. A considerable part of the Haskell
source code consists of type signatures and declarations for algebraic data types.
These type signatures and declarations serve as a compiler checked documenta-
tion of the program. In Prolog, simple terms replace the ADTs of Haskell, for
example when representing an abstract syntax tree. The AST does not have an
explicit declaration in Prolog.

My personal opinion is that Prolog looks more verbose than Haskell. In
particular, functional programming in Prolog seems cumbersome to me. For
example, nested functions calls, which can be written in Haskell like f(g x,h
y), are very verbose in Prolog. Other examples are the lack of higher order

133

combinators like map, the lack of case expressions, the lack of local declarations,
etc.

A thorough comparison of Prolog and Haskell would be interesting, but it
is beyond the scope of this thesis. It would also be interesting to look at the
source code of FDR and ProBE, but unfortunately it is not open source.

8.5.2 Advertised Features of the Tools
The different CSPM tools are developed by different teams and each team has
different priorities for their tool. This section lists what, in my understanding,
are the most advertised features of the tools.

Advertised FDR Features

FDR implements some special heuristics for refinement checking. If a specifi-
cation is written in a special style and if it is tuned for FDR, FDR can handle
large state spaces with billions of states.

Advertised ProB Features

ProB supports many formalisms (for example B, Z, CSP,..), in particular it
also supports CSP∥B, a special combination of CSP with the B method. ProB
supports animation, LTL model checking and several other analyses.

It is based on logic programming (SICStus Prolog) and constraint solving.
ProB can deal with channels with large sets of events like channel c:{1..10000},
which other tools cannot handle. Also, it uses the top-down approach, which
has better termination properties than FDR’s bottom-up approach.

Advertised cspm Features

The Haskell CSPM-tools and libraries are implemented in a purely functional pro-
gramming language. This helps to improve the correctness and reusability of the
code. The Haskell tools use a modular design, explicit proof trees, QuickCheck
testing and correct by construction techniques. The Haskell tools were designed
to narrow the gap between tool users and tool implementers and they are a
good starting point for research on parallel model checking for CSPM .

8.5.3 The CSPM Tools Seen as a Black Box
A CSPM tool can be considered a black-box, which takes as input a specification
(i.e. a string) and which computes some result. To exactly characterize a
tool, one would have to test it with all possible inputs. Unfortunately, this is
impossible as there is an infinite number of inputs strings; in principle however,
one can roughly distinguish the following cases:

1. The correct result is computed.

2. The correct result is computed but slowly.

3. The implementation rejects a correct specification with an error.

4. The implementation does not terminate, though it should.

5. A plain wrong result is computed.

134

Case 5: Tool computes a wrong result

Case 5 clearly represents an error. I tried hard to avoid Case 5, but I have no
formal proof for the correctness of my program and I cannot rule out errors.
The same restriction applies to the other tools.

Case 4: Tool does not terminate

Case 4 is not always easy to distinguish from Case 3, because if a tool goes into
an infinite loop it will often run out of memory. Also, the question whether a
specification is finite or infinite is similar to the halting-problem and undecidable
in general.

Nevertheless, there are concrete examples of specifications where one CSPM

tool terminates and another does not. For example, it can be seen that the
bottom-up approach of FDR has principle limitations that are not present in
the top-down approach of ProB and cspm. However, there are also cases where
ProB or cspm do not terminate, though they should.

Case 3: Tool throws an exception

This is the preferred result whenever a tool does not implement a feature or if
the tool implementer has just forgotten to handle a special case. Haskell has
features which help to catch this problem and turn it into a Case 3, as opposed
to a Case 5. For example, many functions of the cspm tool just consist of one
big case distinction over an algebraic data type. The Haskell compiler can often
statically check at compile time if a function covers all cases of a ADT. If a
Haskell function is called with an argument for which it has not been defined,
it will, throw an exception by default.

I have put some effort into generating good error messages. For example,
many error messages of cspm contain information about a source location of
the CSP specification.

Case 2: Tool is slow

Case 2, namely that one tool is much slower than another tool, can also be
seen the other way around. It can also be the case that one tool is much faster
than the others. There are many possible reasons for this. For example, the
bottom-up approach of FDR can be make FDR much faster than the other
tools, but it can also be much slower than a top-down approach (depending on
the specification).

Constraint solving and special heuristics implemented in ProB can make
ProB the fastest tool (depending on the specification). cspm has known lim-
itations with renaming and link-parallel operations, but there are also other
specifications where it is faster than the other tools.

For the performance of the model checkers, i.e. ProB and cspm, it is also
important that the equality predicate on the computed states is accurate. If
identical states are not recognized by the tool as being identical, it can easily
cause an exponential slow-down or non-termination of the tool.

The relative performance of the different CSPM tools can dramatically vary
depending on the specification and even small changes in a specification can

135

make a big difference for the running time. Therefore, there is no clear perfor-
mance ranking of the tools.

Case 1: Tool works well

In spite of CSPM being a complex and tricky language, the tools often work as
expected. The ProB test suite contains more than 100 test cases for which the
CSPM tools agree.

Conclusion

For an exhaustive comparison of the tools, one would have to list specifications
for all the cases listed above. I have not prepared this list, but it surely could
be done. Experience shows that the users of the CSPM tools regularly find
problems that the developers have not thought about, and none of the tools is
free of errors. At the same time the tools are evolving and the developers fix
bugs as they get discovered.

The conclusion is that, from a user’s point of view, the different CSPM tools
complement each other. If one tool does not behave as expected, a user can try
an alternative tool. For a user of CSPM it is a big advantage to have several
separate tools available.

8.5.4 Benchmarks
Table 8.4 shows some benchmarks for ProB and cspm. These benchmarks were
run with the same settings and on the same hardware as the parallel benchmarks
in Section 7.2.

Specification P
ro

B

cs
pm

cs
pm

pa
ra
lle
l

(1
6
C
or
es
)

hanoi.csp (n=9) 430 s 250 s 45 s
hanoi.csp (n=8) 134 s 65 s 12 s
crossing.csp 23 s 39 s 7.5 s
scheduler.csp 9.6 s 6.0 s 1.4 s
basin olderog bank.csp 9.0 s 0.5 s no speed-up
peterson.csp 500 ms 246 ms no speed-up
Peterson v2.csp 620 ms 165 ms no speed-up
bankv4.csp 260 ms 172 ms no speed-up
roscoe section2-1.csp 80 ms 81 ms no speed-up
roscoe chapter4.csp 80 ms 41 s 10 s
abp chapter5 roscoe.csp 1040 ms 388 ms no speed-up

Figure 8.4: Benchmarks for cspm and ProB

For many benchmarks, cspm is between the same speed and three times
faster than ProB. For the hanoi.csp benchmark, which has an exponentially
growing state space, the parallelized version of cspm can be up to 10 times faster

136

than ProB. But there are also runaway values, for example basin olderog bank.csp
(cspm 18 times faster) and roscoe chapter4.csp (cspm 500 times slower).

roscoe chapter4.csp uses the CSP-link-parallel operation. The current im-
plementation of renaming/link-parallel in cspm is very inefficient (c.f. Section
8.4). The CSP renaming operation shows that the asymptotic complexity is
more important than constant factors. If a tool has a bad asymptotic com-
plexity in one particular case, it is easy to construct a specification where the
measured performance will also be bad.

ProB uses constraint logic programming (CLP). The underlying idea of
CLP is that a program should be a declarative combination of constraints and
that it should be easy to improve a program by just declaring additional con-
straints. For example, ProB uses integer constraint solving to efficiently com-
pute events for large channels. ProB is the fastest tool for specifications that
use integer constraints. Adding constraint-solving techniques to cspm is an
interesting open question.

CSP tools can scale in several dimensions. They can become faster and com-
pute bigger state spaces—for example solve the Hanoi puzzle for 9 discs instead
of 8. But tools can also become more expressive, for example by incorporating
constraint solving or by lifting the restrictions of the FDR bottom-up approach.

The specifications from Table 8.4 were taken from the literature and have
been written before the existence ProB and cspm5. Presumably, these specifi-
cations have been optimized for FDR, or at least they have been written with
FDR in mind. Therefore, these benchmarks only measure the tool performance
for one particular flavor of CSPM specifications.

Conclusion

Benchmarking CSPM tools is difficult, as tools differ in expressiveness and in
the type of specifications that can be handled efficiently. ProB uses techniques
such as constraint solving to increase the expressiveness of CSPM . Tools can
have different asymptotic complexities for a particular specification and imple-
mentations can also contain performance killers.

Overall, the benchmarks show that cspm performs reasonably well with
specifications that were originally written for FDR. cspm is a good starting
point for writing a high performance CSPM tool. From a tool user’s point of
view, other aspects can be more important than the running times. For example,
it is also important that the performance of a tool is predictable.

8.6 Other CSP Software and Related Work
Applications of CSPM

There have been many applications of CSPM and FDR in research. The current
form of CSPM has been in use for more than a decade now. I only list some
recent examples: Moritz Kleine has worked on CSP as a coordination language
[29] and for the verification of operating systems [28]. Björn Metzler has worked
on compositional verification of CSPM specifications [41]. Peter Wong has used

5except scheduler.csp

137

CSP to give a semantics to the Business Process Modelling Notation [62]. Nick
Moffat has worked on symmetry in CSPM specifications [43].

Libraries Based on Ideas from CSP

There exists a wide variety of software libraries for concurrency which are based
on ideas from CSP (according to the library developers). These CSP libraries
are meant for writing concurrent programs as opposed to specifications, and
therefore these libraries are not directly related to the model checkers which are
meant for formal reasoning about the correctness of specifications.

Still I want to list some references for CSP libraries:

• JCSP [59] is a framework for taking CSP ideas to Java.

• CHP [4] is a Haskell library for CSP.

• C++CSP2 [5] is a CSP library for C++.

• Python-CSP [44] and PyCSP [2] are two approaches for combining CSP
with Python.

Other Model Checkers

There are several other model/refinement checkers for CSP. Unfortunately, these
do not use the CSPM syntax and it is difficult to determine how the implemented
semantics relates to the semantics of FDR, ProB and cspm. For example, the
other model checkers do not implement multi-field events and it is unclear how
that affects the expressiveness of the tools. Here are some examples of other
CSP model checkers:

• The Adelaide Refinement Checker (ARC) [47] uses OBDDs for a compact
representation of processes.

• The PAT project [57, 6] is a model checker for CSP extended with hier-
archical state.

• JCSProB [63] is a developing strategy for translating B/CSP to Java.

CSP and Theory Proving

CSP-Prover [23, 24] uses a formalization of the CSP core semantics for the
Isabelle theory prover. It can be used to carry out formal refinement proofs
about specifications. It covers the core CSP semantics but does not directly
support CSPM syntax.

Other Process Algebras and Formalisms for Concurrency

CSP is only one example of a wider class of formalisms called process calculi.
Another well-known process calculus is the calculus of communicating systems
(CCS) [42]. Apart from process calculi, another important formalism for con-
currency is Petri nets (c.f. Wikipedia).

138

Chapter 9

Future Work

There are many possible directions for future work. The future work can roughly
be divided in short-term fixes and improvements, medium-term ideas and long-
term future projects.

9.1 Short-term
In his new book [51] Roscoe describes an extension to the CSP formalism called
the τ -priority-model. Informally, the τ -priority-model can be used to reduce un-
wanted non-determinism and unwanted symmetries in a specification by giving
certain transitions priority over others. The non-priority transitions are only en-
abled after all priority transitions have been executed. The book is accompanied
by a new version of FDR and by new CSPM specification which demonstrate
the τ -priority-model and other new features of FDR.

A reasonable short-term improvement is to also implement the τ -priority-
model in cspm and to support the latest extensions of FDR to remain compat-
ibility.

Another idea is to connect cspm and ProB such that the tools can be used
to refinement check each other (without the need for FDR). Also, it makes
sense in the short term to extend the test-suite and to fix outstanding bugs and
performance problems.

9.2 Medium-term
This section lists possible-medium term work on cspm and some further ideas.
These ideas are not fully elaborated and some of the ideas are overlapping.

Extend cspm with an LTL or CTL Model Checker

cspm already implements the “model-part” of a model checker, i.e. the com-
putation of the transition relation of a process. To turn cspm into a full model
checker one would have to extend it with a suitable logic, for example with
LTL or CTL, and implement a decision procedure for that logic. LTL and CTL
use a notion of atomic properties. One would also have to design the atomic
properties in the case of CSPM , similarly to how it has been done in ProB [50].

139

Improve the Parallel Performance

Chapter 7 describes a preliminary experiment on parallel cspm. The results
of this experiment are encouraging and in the mean time the work on parallel
Haskell is making steady progress. Just recently a new framework for paral-
lelism in Haskell has been published [56] and it would be interesting to adapt
the experiment from Chapter 7 to that framework. Distributed parallel model
checking is another interesting direction to go.

Include an (Approximating) Type Checker for CSPM

The available CSPM tools implement dynamic typing. On the other hand, it is
rare that specification writers intentionally use the dynamic feature of the tools.
Furthermore, the FDR developers state that FDR will only work correctly for
specifications which pass the FSE type checker and explicitly recommend the
use of that external type checker. However, the standalone type checker that is
available from FSE also has limitations.

Instead of depending on a external type checker it would be more reason-
able to integrate the static type checker directly into the CSPM tools. Typically,
functional programming languages like Haskell use powerful algorithms that per-
form type checking and also type inference. In the case of CSPM however, even
a limited approximating type checking could be valuable. An approximating
CSPM type checker could return one of the three results:

1. It reports an obvious type error.

2. It reports that a specification is type correct.

3. It reports a warning for specifications that cannot be easily type checked.

A possible type checker could reuse the CSPM-Frontend package and it could be
easily integrated into cspm.

Mix the Bottom-up with a Top-down Approach

One idea is to extend CSPM with an memorize-annotation which ensures that
the LTS of the annotated process is only computed once. The following example
shows a possible syntax for this feature:

P1 = memorize(some process specification)
MAIN = P1 [] P2
transparent memorize

The transparent declaration tells other tools that they should ignore the func-
tion call memorize(..) and that memorize behaves semantically like the identity
function. There are two main alternatives for the implementation of memorize:
a partial LTS for P1 can be computed on demand or the complete LTS can be
computed when the process is used the first time.

In other words, the tool follows a top-down approach overall, but the user
can annotate parts of the specification which are precomputed similarly to the
bottom-up approach of FDR. An extension of this idea is to investigate whether
some of the compression heuristics that are provided by FDR can also be in-
cluded in cspm.

140

Support Refinement Checking

The cspm tool already allows one to compute the transition relation of a process.
This means that most functionality for refinement checking has already been
implemented. I think that the cspm tool can be extended to a refinement
checker with only little extra work.

Analyze the Generated Proof Trees

The cspm tool generates the proof trees according to the firing rules semantics
of CSP, but currently these proof trees are only used as an intermediate data
structure, which helps to improve the correctness of the tool. An interesting idea
is to analyze the proof trees to gain additional information about a specification.

For example the list of proof trees that correspond to a particular trace can
be used to extract information about which parts of the specification have been
relevant for this trace. This could be used to implement a slicing operation
similar to the CSPM slicer of ProB [35].

Another idea is to detect symmetries in a specification with the help of proof
trees. For example, if the proof trees of a trace of events are “independent” of
each other, it could be possible that a permutation to the events of the trace is
also a valid trace and that this permutation of events lead to the same process
as the initial trace.

Alternative Implementation of the Firing Rules Semantics

The current design is based on several primitive operations on events and event-
closure-sets, like equality tests and membership tests. These operations are
implemented as functions which get called directly in the algorithms. In the
constraint-based approach (c.f. Section 4.3) these functions take partial inputs
and compute partial results. An interesting idea is to implement these oper-
ations as data structures which can be manipulated symbolically. This would
make it possible to use more constraint-solving techniques.

cspm uses a modular design which allows one to replace parts of the tool
with an alternative implementation. I think it would be interesting to try other
possible designs for the implementation of the firing rules semantics. The central
idea, which has turned out to work well in the current implementation, is the
use of explicit proof trees. I think it is a good idea to also base a new approach
on explicit proof trees. A new implementation which uses the same format for
proof trees could be directly checked against the old implementations with the
QuickCheck as presented in Chapter 4.

Investigate Timed CSP

Timed CSP [54] adds new constructs to CSP which allow one to express and
analyze the timed behaviour of processes. To support timed CSP in cspm one
would have to extend the CSPM parser, the implementation of the functional
sub-language and the implementation of the firing rules semantics in cspm.
This is an ambitious project. The semantics of timed CSP builds directly on the
CSP formalism that is underlying this thesis. In terms of software engineering,
extending cspm with timed CSP is an interesting case study on the reuseability
of the presented software.

141

9.3 Retiring CSPM

The cspm project can be used to explore new ideas and to test them with exist-
ing CSPM specifications. However, CSPM syntax has some severe limitations
(c.f. Chapter 6) and some important parts of the CSPM semantics are unclear
or complicated (c.f. Section 8.4.2, Section 5.4).

Therefore, I think that, in the long-term, it is better to pursue an alternative.
Given that CSPM is really just functional programming plus some small CSP
specific extensions, it may make sense to replace CSPM with a Haskell-based
embedded DSL. In other words, one could try to build a CSP library for Haskell
with the focus on model checking.

9.4 Case Study: B-method
cspm was my Haskell learning project. My personal experience is that Haskell
was well-suited for the CSPM project. In general, many projects use Haskell
for symbolic computations like interpreters, theorem provers, compilers, formal
methods tools, etc.1 The comparison between cspm and ProB leads to the
conclusion that Haskell is an interesting alternative to Prolog.

The ProB tool supports several other formalisms beside CSP. The bigger
part of ProB is dedicated to the B-method and the core of ProB is a model
finder for the logic that is underlying the B-method. The ProB core is a highly
sophisticated piece of software which has been developed over several years.
It makes heavy use of constraint logic programming and it is strongly tied to
Prolog. A model finder for the B-logic in Haskell could be an interesting case
study for a combination of Haskell and constraint programming.

9.5 GUI Tool
Many users of the formal methods tools highly appreciate a graphical user in-
terface and FDR, ProB and ProBE come with that feature. When working
with a CSPM specification, several kinds of visualization can be useful. For
example:

• Syntax highlighting and a syntax aware editor for specifications.

• Visualization of state spaces.

• A GUI for tracing processes.

• A visual representation of the structure of a process.

• Mapping events back to source locations in the specification.

• Visualization of the environment of a process.

• Visualization of inference trees.
1 The cabal packages listed on http://hackage.haskell.org give an overview.

142

http://hackage.haskell.org

I have implemented a prototype of an integrated graphical CSPM tool as a proof
of concept. The GUI is based on GTK (the Gimp Tool Kit). I will not describe
the GUI-tool in detail; instead, I show a screenshot (Figure 9.1). Binaries for
Windows, Mac and Linux which demonstrate the GUI are available for download
from my web page. The available binaries on the webpage demonstrate the GUI,
but the included core functionality lags behind several versions because work
on the GUI has been postponed in favour of the implementation of core CSP
functionality and in favor of writing this thesis. Note that the GUI is not part
of the CSPM-cspm package and that the source code of the GUI has not been
released on the Hackage repository.

Elaborating the GUI and also implementing a web front-end for my CSPM

libraries is interesting future work.

Figure 9.1: Screenshot of the GUI

143

Chapter 10

Summary

10.1 Implementation
The bigger part of this thesis consists of a detailed description of the implemen-
tation of my CSPM tool. The implementation is split into three modules, i.e. the
parser, the CSP core language and the functional sub-language of CSPM—and
the presentation follows that structure.

One requirement for my tool was to achieve high compatibility with FDR
and ProB. As a consequence, a lot of effort was put into investigating all the
particularities of CSPM and carefully implementing all details and special cases.
One contribution of the thesis is that it provides a thorough documentation of
a complete FDR compatible CSPM tool. The source code of my software and
the test cases together with the thesis can serve as a reference implementation
for any future work on CSPM tools.

Given the complexity of the project, correctness is of course a major concern.
I took several measures to ensure the correctness of my software. For example,
I use randomized test generation, correct by construction techniques, code cov-
erage analysis and extensive back-box testing. Two-way refinement checking of
the generated state space versus the original specification has turned out to be
extremely useful and helped to find subtle differences between the tools. I have
described the approaches in the corresponding sections of the thesis.

The thesis also contains a comparison of my tool with existing CSPM tools.
I have listed some preliminary benchmarks for the performance of my imple-
mentation and I have also presented some first steps towards a parallel CSPM

model checker, including some parallel benchmarks.

10.2 Haskell
This thesis is also a case study for the use of the Haskell programming language
for writing a formal methods tool. I found that Haskell is well-suited for model-
ing and implementing symbolic computations. For example Haskell’s algebraic
data types together with pattern matching perfectly support the implementa-
tion of abstract syntax trees, inference trees and tree-structured CSP-processes.

The thesis contains several arguments of why Haskell helps to improve the
correctness of the tool. Important features are the use of pure functions, strict

144

control of side effects and strong static typing.
The thesis contains a lot of Haskell source code. Source code can be com-

piled, executed and tested and it necessarily covers all details of the implemen-
tation. At the same time, declarative source code can also serve as an executable
documentation. Haskell favors a declarative programming style and I tried to
program as declaratively as possible.

An example of this is the firing rules semantics. The implementation of the
proof tree verifier can serve as an executable documentation of the firing rules.
For illustration, I have typeset the supported firing rules in the usual style for
inference rules and linked each rule directly to the Haskell source code of the
proof verifier in Appendix A.

The complete source code of my project is available online as cabal packages.
It is easy to compile and install the cspm tool and it is easy to test and reproduce
the results. The Haskell community provides the open source GHC-compiler,
libraries and other useful infrastructure which helps to make my tool portable
and maintainable.

In general, Haskell idioms and techniques are pervasive in the implementa-
tion. For example, I use Monads, higher order functions, laziness, polymorphic
types, pattern matching, etc. Haskell shines in the implementation of the func-
tional sub-language of CSPM .

In principle, a similar CSPM tool can be written in any other programming
language. However, the thesis lists several reasons why a Haskell implementation
provides additional value.

10.3 Criticism of CSPM and FDR
To make my work interesting for possible users in the CSP community and to
make it comparable and compatible with existing tools, I had to support the
CSPM standard as it is. Nevertheless, the thesis lists several points of critique
towards CSPM . Here is a summary of the most important points:

Standard by Implementation

The CSPM standard is basically defined by the reference implementation, namely
the FDR tool. FDR has evolved over many years and it contains many corner
cases and particularities which should be fixed. Unfortunately, FDR is propri-
etary code and the development of FDR is centralized in one working group.
Most of the CSP community only uses FDR as a black box.

Specification vs. Programming

In principle, CSPM is just a special purpose programming language which makes
it easy to mix CSP constructs with functional programming. The main extra is
that CSPM can be model checked with FDR or other tools.

I found that overall, FDR works well and in my opinion, it contains only
few bugs. On the other hand, blind trust in a black-box implementation is
still problematic for a formal method and model checking cannot always replace
formal correctness proofs.

One drawback of CSPM is that it leads away from the idea of a process
algebra as proposed by C.A.R Hoare, and it leads into the direction of a regular

145

programming language. In general, it is difficult to mechanically prove proper-
ties of CSPM specifications in the sense of theory proving as opposed to model
checking.

The fact that CSPM contains a functional sub-language can lead to specifi-
cations which model important parts of a system in a functional style and only
use a minimum of original CSP concepts. Such specifications are hard to reason
about with the algebraic rules of CSP.

Functional Sub-language of CSPM

From a Haskell programmer’s point of view, it is a pity that FDR defines a new
functional programming language. The only really new feature of the CSPM

syntax, with respect to Haskell, is the prefix operation, which works as an
additional binder for variable names.

One has to pay a high price for this small syntactic extension. CSPM is a
proprietary and incompatible programming language which has a crippled ex-
pressiveness compared to Haskell. CSPM lacks a proper static type system, a
module system, proper algebraic data types, type classes, type signatures and
many other features of modern functional programming languages. Further-
more, the semantics of CSPM is often unclear and important function like the
built-in equality operator are only implemented ad-hoc.

Of course, this is only my point of view and it is a current point of view.
Historically, FDR and Haskell were developed in parallel and it is therefore not
correct to say that FDR deviated from the standard.

10.4 Meta Critique
Yet Another Implementation?

As of today, there are four FDR compatible implementations for CSPM , namely
FDR, ProBE, the CSP part of ProB and cspm. The ProB-CSPM project
has been initiated and partly funded by an industrial partner who had explicitly
expressed the need for an alternative CSPM model checker. The work on the
cspm project has been going on in parallel with the work on ProB. ProB
and cspm share the same parser and test-suite and there has been a valuable
exchange between the authors of the tools.

It may seem that there is little benefit in the re-implementation of an existing
tool, but there is a number of reasons why it can still make sense. First of all
there was an explicit request from an industrial partner for an alternative tool,
and having three alternatives is better than having only two.

Secondly, I found that writing a tool is a very good way to understand and
clarify CSPM . The work on cspm has helped me to explore the design space
for CSP tools and it could be a good starting point for work on a modern
alternative for CSPM . And finally, all tools are different and all tools have their
advantages, disadvantages and their special use cases.

Novelty of the Work

The primary goal of my project was not to invent a new formalism or new
extensions for CSP. I list some ideas for new features, etc., in the future work

146

section and I think that the presented work is a good starting point for further
research.

Although I support the same formalism as existing tools, the presented im-
plementation itself is completely novel. Compared to ProB, I use another
programming language and some completely different design ideas which have
not been explored in the context of CSP before. On the meta level, having
several alternative tools for the same formalism can itself be a novelty. At least,
it is in the case of CSPM .

Another novelty is that I try to present the source code itself as an important
contribution. A CSPM model checker is an interesting software project and
it can serve as a test case for studding programming languages and software
designs. Research in this direction is not possible without source code. The
other CSPM tools are basically presented as a black box for end-users.

Significance of the Arguments ?

A problem of this thesis could be that it contains many weak words. There are
several reasons why I found it difficult to write in a strictly scientific style.

A big part of my work was software design. I have tried to explain and
argue for the important design decisions of my project and I have tried to
objectively compare my software with existing tools. I think that a good design
is important for the correctness and reusability of a software. On the other
hand, software design usually means making trade-offs and choosing between
design alternatives which cannot be fully understood in advance.

There are branches of computer science which develop objective and scientific
methods for the evaluation of software designs. However, applying this full
scientific methodology was beyond the scope of this work. One could say that
I have rather presented my personal opinions than hard facts with respect to
the software design. Still, I think that it also makes sense to address the soft
aspects of software.

The benchmark sections explain why it is difficult to make conclusive state-
ments about the relative performance of CSPM tools. In short, the performance
of the tools can have extreme variations—depending on the input specification—
and there is no canonical fixed set of representative CSPM specifications. I can
only select some specifications and benchmark them.

One solid contribution is that I have presented a software which can be
downloaded and executed. For some specifications my software outperforms the
existing tools. My arguments are glued together by a working program. The
source code can be compiled and tested.

147

Appendix A

Implemented Firing Rules

This section lists all implemented firing rules together with the relevant Haskell
sourcecode of the proof tree verfier. The relation between the firing rules and
the Haskell source-code is described in Section 4.2. Rules are printed in the
following format:

Rule ID : Free-Text Description

Proof Tree Constructor Process Constructor

Inference Rule

Haskell source code of the proof tree verifier

Rule ID The unique rule ID that is used throughout the thesis.

Proof Tree Constructor The unique constructor in the data type that stores
the proof tree.

Process Constructor The constructor from the Process data type.

Inference Rule The rule, type-set in the usual style for inference rules.

Haskell source code The implementation of the rule in the proof tree verifier.
The contiguous source code for all rules is listed in Appendix B.1.6.

In this section, small letters in the firing rules denote events from Σ, they
cannot stand for X or τ . Furthermore, firing rules that involve a regular event,
firing rules for X-transitions and firing rules for τ -transitions are strictly sepa-
rated. This separation is a difference compared to the how Roscoe presents the
firing rules [52], but the separation corresponds one-to-one to the structure of
my implementation.

There is one unique Haskell constructor in the proof tree data types for every
rule. This constructor can be used to locate all parts of the Haskell source code
that are related to this particular inference rule, i.e. the proof tree generator
and the proof tree verifier.

The Haskell code that is shown is the complete source code of the proof tree
verifier. In principle, there is a schematic translation from the source code of

148

the proof tree verifier to the inference rule. Nevertheless, this documentation
has been written by hand and after the fact. In other words, the Haskell source
code has been tested but the latex code has only gone through proofreading.

A.0.1 Normal Transitions

R-1: Prefix operation

HPrefix Prefix

(e → P) a−→ subs(a, e, P)
a ∈ comms(e)

comms(e) is the set of events that are consistent with e.
subs(a, e, P) is the result of substituting the appropriate part of a for
each identifier in P bound by e. (quote from [52] page 160).

HPrefix e p → do
p’ ← prefixNext p e
return (Prefix p, e, p’)

R-2: External choice resolves to P

ExtChoiceL ExternalChoice

P
e−→ P ′

P ✷ Q
e−→ P ′

ExtChoiceL pp q → do
(p, e, p’) ← viewRuleEvent pp
return (ExternalChoice p q, e, p’)

R-3: External choice resolves to Q

ExtChoiceR ExternalChoice

Q
e−→ Q′

P ✷ Q
e−→ Q′

ExtChoiceR p qq → do
(q, e, q’) ← viewRuleEvent qq
return (ExternalChoice p q, e, q’)

149

R-4: Interleaving: one step of P

InterleaveL Interleave

P
e−→ P ′

P ||| Q
e−→ P ′ ||| Q

InterleaveL pp q → do
(p, e, p’) ← viewRuleEvent pp
return (Interleave p q, e, Interleave p’ q)

R-5: Interleaving: one step of Q

InterleaveR Interleave

Q
e−→ Q′

P ||| Q
e−→ P ||| Q′

InterleaveR p qq → do
(q, e, q’) ← viewRuleEvent qq
return (Interleave p q, e, Interleave p q’)

R-6: Sequential composition: P does not terminate

SeqNormal Seq

P
e−→ P ′

P ; Q
e−→ P ′ ; Q

SeqNormal pp q → do
(p, e, p’) ← viewRuleEvent pp
return (Seq p q, e, Seq p’ q)

R-7: Hiding: the event is not hidden

NotHidden Hide

P
e−→ P ′

P \ X
e−→ P ′ \ X

e < X

150

NotHidden c pp → do
(p, e, p’) ← viewRuleEvent pp
not_in_Closure e c
return (Hide c p, e, Hide c p’)

R-8: Sharing: the event is not synchronized

NotShareL Sharing

P
e−→ P ′

P ∥
X

Q
e−→ P ′ ∥

X

Q
e < X

NotShareL c pp q → do
(p, e, p’) ← viewRuleEvent pp
not_in_Closure e c
return (Sharing p c q, e, Sharing p’ c q)

R-9: Sharing: the event is not synchronized

NotShareR Sharing

Q
e−→ Q′

P ∥
X

Q
e−→ P ∥

X

Q′ e < X

NotShareR c p qq → do
(q, e, q’) ← viewRuleEvent qq
not_in_Closure e c
return (Sharing p c q, e, Sharing p c q’)

R-10: Sharing, Processes synchronize

Shared Sharing

P
e−→ P ′ Q

e−→ Q′

P ∥
X

Q
e−→ P ′ ∥

X

Q′ e ∈ X

Shared c pp qq → do
(p, e1, p’) ← viewRuleEvent pp
(q, e2, q’) ← viewRuleEvent qq
guard $ eventEq ty e1 e2
in_Closure e1 c
return (Sharing p c q, e1, Sharing p’ c q’)

151

R-11: Alphabetized parallel

AParallelL AParallel

P
e−→ P ′

P X∥Y Q
e−→ P ′

X∥Y Q
e ∈ X ∧ e < Y

AParallelL c1 c2 pp q → do
(p, e, p’) ← viewRuleEvent pp
in_Closure e c1
not_in_Closure e c2
return (AParallel c1 c2 p q, e, AParallel c1 c2 p’ q)

R-12: Alphabetized parallel

AParallelR AParallel

Q
e−→ Q′

P X∥Y Q
e−→ P X∥Y Q′ e < X ∧ e ∈ Y

AParallelR c1 c2 p qq → do
(q, e, q’) ← viewRuleEvent qq
not_in_Closure e c1
in_Closure e c2
return (AParallel c1 c2 p q, e, AParallel c1 c2 p q’)

R-13: Alphabetized parallel: processes synchronize

AParallelBoth AParallel

P
e−→ P ′ Q

e−→ Q′

P X∥Y Q
e−→ P ′

X∥Y Q′ e ∈ X ∧ e ∈ Y

AParallelBoth c1 c2 pp qq → do
(p, e2, p’) ← viewRuleEvent pp
(q, e1, q’) ← viewRuleEvent qq
guard $ eventEq ty e1 e2
in_Closure e1 c1
in_Closure e1 c2
return (AParallel c1 c2 p q, e1, AParallel c1 c2 p’ q’)

152

R-14: Replicated alphabetized parallel

RepAParallelEvent RepAParallel

Pj
e−→ R

∥
Xi

Pi
e−→ ∥

Xi

P ′
i

e ∈ Xj , P ′
i = if i = j then R else Pi

RepAParallelEvent l → checkRepAParallel l

R-15: Interrupt does not occur

NoInterrupt Interrupt

P
e−→ P ′

P △ Q
e−→ P ′ △ Q

NoInterrupt pp q → do
(p, e, p’) ← viewRuleEvent pp
return (Interrupt p q, e, Interrupt p’ q)

R-16: Interrupt does occur

InterruptOccurs Interrupt

Q
e−→ Q′

P △ Q
e−→ Q′

InterruptOccurs p qq → do
(q, e, q’) ← viewRuleEvent qq
return (Interrupt p q, e, q’)

R-17: Timeout resolves by P performing a transition

TimeoutNo Timeout

P
e−→ P ′

P ◃ Q
e−→ P ′

TimeoutNo pp q → do
(p, e, p’) ← viewRuleEvent pp
return (Timeout p q, e, p’)

153

R-18: Renaming via renaming relation

Rename Renaming

P
a−→ P ′

P [[R]] b−→ P ′[[R]]
(a, b) ∈ R

Rename rel visibleEvent pp → do
(p, internalEvent, p’) ← viewRuleEvent pp
guard $ isInRenaming ty rel internalEvent visibleEvent
return (Renaming rel p, visibleEvent, Renaming rel p’)

R-19: Transition not effected by renaming relation

RenameNotInDomain Renaming

P
e−→ P ′

P [[R]] e−→ P ′[[R]]
e < dom(R)

RenameNotInDomain rel pp → do
(p, e, p’) ← viewRuleEvent pp
guard $ not $ isInRenamingDomain ty e rel
return (Renaming rel p, e, Renaming rel p’)

R-20: Chaos: anything can happen

ChaosEvent Chaos

CHAOSX
e−→ CHAOSX

e ∈ X

ChaosEvent c e → do
in_Closure e c
return (Chaos c, e, Chaos c)

R-21: Transition outside the link relation

LinkEventL LinkParallel

P
a−→ P ′

P [l ↔ r]Q a−→ P ′[l ↔ r]Q
a < dom([l ↔ r])

154

LinkEventL rel pp q → do
(p, e, p’) ← viewRuleEvent pp
guard $ not $ isInRenamingDomain ty e rel
return (LinkParallel rel p q, e, LinkParallel rel p’ q)

R-22: Transition covered by the link relation

LinkEventR LinkParallel

Q
a−→ Q′

P [l ↔ r]Q a−→ P [l ↔ r]Q′ a < range([l ↔ r])

LinkEventR rel p qq → do
(q, e, q’) ← viewRuleEvent qq
guard $ not $ isInRenamingRange ty e rel
return (LinkParallel rel p q, e, LinkParallel rel p q’)

R-23: An exception does not occur

NoException Exception

P
e−→ P ′

P [[c ◃ Q
e−→ P ′[[c ◃ Q

e < c

NoException c pp q → do
(p, e, p’) ← viewRuleEvent pp
not_in_Closure e c
return (Exception c p q, e, Exception c p’ q)

R-24: An exception occurs

ExceptionOccurs Exception

Q
e−→ Q′

P [[c ◃ Q
e−→ Q′ e ∈ c

ExceptionOccurs c p qq → do
(q, e, q’) ← viewRuleEvent qq
in_Closure e c
return (Exception c p q, e, q’)

155

A.0.2 X Transitions

R-25: Regular process termination

SkipTick Skip

SKIP X−→ Ω

SkipTick → return Skip

R-26: X cannot be hidden

HiddenTick Hide

P
X−→ Ω

P \ X
X−→ Ω

HiddenTick c pp → do
p ← viewRuleTick pp
return $ Hide c p

R-27: Termination of interrupt

InterruptTick Interrupt

P
X−→ Ω

P △ Q
X−→ Ω

InterruptTick pp q → do
p ← viewRuleTick pp
return $ Interrupt p q

R-28: Termination of timeout

TimeoutTick Timeout

P
X−→ Ω

P ◃ Q
X−→ Ω

156

TimeoutTick pp q → do
p ← viewRuleTick pp
return $ Timeout p q

R-29: Synchronized termination of sharing

ShareOmega Sharing

Ω ∥
X

Ω X−→ Ω

ShareOmega c → return $ Sharing Omega c Omega

R-30: Synchronized termination of alphabetized parallel

AParallelOmega AParallel

Ω X∥Y Ω X−→ Ω

AParallelOmega c1 c2 → return $ AParallel c1 c2 Omega Omega

R-31: Synchronized termination of replicated alphabetized parallel

RepAParallelOmega RepAParallel

∥
Xi

Ω X−→ Ω

RepAParallelOmega l
→ return $ RepAParallel $ zip l $ repeat Omega

R-32: Synchronized termination of interleaving

InterleaveOmega Interleave

Ω ||| Ω X−→ Ω

157

InterleaveOmega → return (Interleave Omega Omega)

R-33: Termination of external choice is not synchronized

ExtChoiceTickL ExternalChoice

P
X−→ Ω

P ✷ Q
X−→ Ω

ExtChoiceTickL pp q → do
p ← viewRuleTick pp
return $ ExternalChoice p q

R-34: Termination of external choice is not synchronized

ExtChoiceTickR ExternalChoice

Q
X−→ Ω

P ✷ Q
X−→ Ω

ExtChoiceTickR p qq → do
q ← viewRuleTick qq
return $ ExternalChoice p q

R-35: Termination of renaming

RenamingTick Renaming

P
X−→ Ω

P [[R]] X−→ Ω
RenamingTick rel pp → do

p ← viewRuleTick pp
return $ Renaming rel p

R-36: Termination of linked processes

LinkParallelTick LinkParallel

Ω[l ↔ r]Ω X−→ Ω

158

LinkParallelTick rel
→ return $ LinkParallel rel Omega Omega

A.0.3 τ Transitions
Most of the τ rules are just needed to propagate X and τ events.

R-37: A hidden event: one source of τ events

Hidden Hide

P
e−→ P ′

P \ X
τ−→ P ′ \ X

e ∈ X

Hidden c pp → do
(p, e, p’) ← viewRuleEvent pp
guard $ member (undefined :: i) e c
return (Hide c p, Hide c p’)

R-38: Propagation of τ

HideTau Hide

P
τ−→ P ′

P \ X
τ−→ P ′ \ X

HideTau c pp → do
(p, p’) ← viewRuleTau pp
return (Hide c p, Hide c p’)

R-39: Propagation of τ

SeqTau Seq

P
τ−→ P ′

P ; Q
τ−→ P ′ ; Q

SeqTau pp q → do
(p, p’) ← viewRuleTau pp
return (Seq p q, Seq p’ q)

159

R-40: Resolving of sequential composition produces a τ

SeqTick Seq

P
X−→ Ω

P ; Q
τ−→ Q

SeqTick pp q → do
p ← viewRuleTick pp
return (Seq p q, q)

R-41: Resolve the internal choice to P

InternalChoiceL InternalChoice

P ⊓ Q
τ−→ P

InternalChoiceL p q → return (InternalChoice p q,p)

R-42: Resolve the internal choice to Q

InternalChoiceR InternalChoice

P ⊓ Q
τ−→ Q

InternalChoiceR p q → return (InternalChoice p q,q)

R-43: CHAOS resolves to STOP

ChaosStop Chaos

CHAOSX
τ−→ STOP

ChaosStop e → return (Chaos e, Stop)

160

R-44: A timeout occurs

TimeoutOccurs Timeout

P ◃ Q
τ−→ Q

TimeoutOccurs p q → return (Timeout p q, q)

R-45: A τ transition of P does not resolve the timeout

TimeoutTauR Timeout

P
τ−→ P ′

P ◃ Q
τ−→ P ′ ◃ Q

TimeoutTauR r q → do
(p, p’) ← viewRuleTau r
return (Timeout p q, Timeout p’ q)

R-46: Propagation of τ

ExtChoiceTauL ExternalChoice

P
τ−→ P ′

P ✷ Q
τ−→ P ′ ✷ Q

ExtChoiceTauL pp q → do
(p, p’) ← viewRuleTau pp
return (ExternalChoice p q, ExternalChoice p’ q)

R-47: Propagation of τ

ExtChoiceTauR ExternalChoice

Q
τ−→ Q′

P ✷ Q
τ−→ P ✷ Q′

ExtChoiceTauR p qq → do
(q, q’) ← viewRuleTau qq
return (ExternalChoice p q, ExternalChoice p q’)

161

R-48: Propagation of τ

InterleaveTauL Interleave

P
τ−→ P ′

P ||| Q
τ−→ P ′ ||| Q

InterleaveTauL pp q → do
(p, p’) ← viewRuleTau pp
return (Interleave p q, Interleave p’ q)

R-49: Propagation of τ

InterleaveTauR Interleave

Q
τ−→ Q′

P ||| Q
τ−→ P ||| Q′

InterleaveTauR p qq → do
(q, q’) ← viewRuleTau qq
return (Interleave p q, Interleave p q’)

R-50: Propagation of τ

InterleaveTickL Interleave

P
τ−→ Ω

P ||| Q
τ−→ Ω ||| Q

InterleaveTickL pp q → do
p ← viewRuleTick pp
return (Interleave p q, Interleave Omega q)

R-51: Propagation of τ

InterleaveTickR Interleave

Q
τ−→ Ω

P ||| Q
τ−→ P ||| Ω

162

InterleaveTickR p qq → do
q ← viewRuleTick qq
return (Interleave p q, Interleave p Omega)

R-52: Propagation of τ

ShareTauL Sharing

P
τ−→ P ′

P ∥
X

Q
τ−→ P ′ ∥

X

Q

ShareTauL c pp q → do
(p, p’) ← viewRuleTau pp
return (Sharing p c q, Sharing p’ c q)

R-53: Propagation of τ

ShareTauR Sharing

Q
τ−→ Q′

P ∥
X

Q
τ−→ P ∥

X

Q′

ShareTauR c p qq → do
(q, q’) ← viewRuleTau qq
return (Sharing p c q, Sharing p c q’)

R-54: Propagation of τ

ShareTickL Sharing

P
τ−→ Ω

P ∥
X

Q
τ−→ Ω ∥

X

Q

ShareTickL c pp q → do
p ← viewRuleTick pp
return (Sharing p c q, Sharing Omega c q)

163

R-55: Propagation of τ

ShareTickR Sharing

Q
τ−→ Ω

P ∥
X

Q
τ−→ P ∥

X

Ω

ShareTickR c p qq → do
q ← viewRuleTick qq
return (Sharing p c q, Sharing p c Omega)

R-56: Propagation of τ

AParallelTauL AParallel

P
τ−→ P ′

P X∥Y Q
τ−→ P ′

X∥Y Q

AParallelTauL pc qc r q → do
(p, p’) ← viewRuleTau r
return (AParallel pc qc p q, AParallel pc qc p’ q)

R-57: Propagation of τ

AParallelTauR AParallel

Q
τ−→ Q′

P X∥Y Q
τ−→ P X∥Y Q′

AParallelTauR pc qc p r → do
(q, q’) ← viewRuleTau r
return (AParallel pc qc p q, AParallel pc qc p q’)

R-58: Propagation of τ

AParallelTickL AParallel

P
τ−→ Ω

P X∥Y Q
τ−→ Ω X∥Y Q

164

AParallelTickL pc qc r q → do
p ← viewRuleTick r
return (AParallel pc qc p q, AParallel pc qc Omega q)

R-59: Propagation of τ

AParallelTickR AParallel

Q
τ−→ Ω

P X∥Y Q
τ−→ P X∥Y Ω

AParallelTickR pc qc p r → do
q ← viewRuleTick r
return (AParallel pc qc p q, AParallel pc qc p Omega)

R-60: Propagation of τ for replicated alphabetized parallel

TauRepAParallel RepAParallel

TauRepAParallel l → do
parts ← forM l $ λx → case x of

Left a → return (a, a)
Right (c, r) → do

(p, p’) ← viewRuleTau r
return ((c,p), (c,p’))

return (RepAParallel $ map fst parts
,RepAParallel $ map snd parts)

R-61: Propagation of τ

InterruptTauL Interrupt

P
τ−→ P ′

P △ Q
τ−→ P ′ △ Q

InterruptTauL r q → do
(p, p’) ← viewRuleTau r
return (Interrupt p q, Interrupt p’ q)

165

R-62: Propagation of τ

InterruptTauR Interrupt

Q
τ−→ Q′

P △ Q
τ−→ P △ Q′

InterruptTauR p r → do
(q, q’) ← viewRuleTau r
return (Interrupt p q, Interrupt p q’)

R-63: Propagation of τ

RenamingTau Renaming

P
τ−→ P ′

P [[R]] τ−→ P ′[[R]]

RenamingTau rel pp → do
(p, p’) ← viewRuleTau pp
return (Renaming rel p, Renaming rel p’)

R-64: Propagation of τ

LinkTauL LinkParallel

P
τ−→ P ′

P [l ↔ r]Q τ−→ P ′[l ↔ r]Q

LinkTauL rel pp q → do
(p, p’) ← viewRuleTau pp
return (LinkParallel rel p q, LinkParallel rel p’ q)

R-65: Propagation of τ

LinkTauR LinkParallel

Q
τ−→ Q′

P [l ↔ r]Q τ−→ P [l ↔ r]Q′

166

LinkTauR rel p qq → do
(q, q’) ← viewRuleTau qq
return (LinkParallel rel p q, LinkParallel rel p q’)

R-66: Propagation of τ

LinkTickL LinkParallel

P
τ−→ Ω

P [l ↔ r]Q τ−→ Ω[l ↔ r]Q

LinkTickL rel pp q → do
p ← viewRuleTick pp
return (LinkParallel rel p q, LinkParallel rel Omega q)

R-67: Propagation of τ

LinkTickR LinkParallel

Q
τ−→ Ω

P [l ↔ r]Q τ−→ P [l ↔ r]Ω

LinkTickR rel p qq → do
q ← viewRuleTick qq
return (LinkParallel rel p q, LinkParallel rel p Omega)

R-68: Linking two processes hides internal communications

LinkLinked LinkParallel

P
a−→ P ′ Q

b−→ Q′

P [l ↔ r]Q τ−→ P ′[l ↔ r]Q′ (a, b) ∈ linkRelation([l ↔ r])

LinkLinked rel pp qq → do
(p, e1, p’) ← viewRuleEvent pp
(q, e2, q’) ← viewRuleEvent qq
guard $ isInRenaming (undefined :: i) rel e1 e2
return (LinkParallel rel p q, LinkParallel rel p’ q’)

167

Appendix B

Source Code Listings

This section contains the complete listings of some of the implemented modules.

B.1 CSP Core Language
B.1.1 Processes

-- |
-- Module : CSPM.CoreLanguage.Process
-- Copyright : (c) Fontaine 2011
-- License : BSD
--
-- Maintainer : fontaine@cs.uni-duesseldorf.de
-- Stability : experimental
-- Portability : GHC-only
--
-- This modules defines an FDR-compatible CSP core language.
-- The core language deals with CSP-related constructs like processes and events.
--
-- The implementation of the underlying language
-- must provide instances for the type families ’Prefix’, ’ExtProcess’
-- and class ’BL’.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DeriveDataTypeable #-}

module CSPM.CoreLanguage.Process
where
import Data.Typeable

import CSPM.CoreLanguage.Event

-- | A prefix expression.
type family Prefix i

-- | A process that has not yet been switched on.
type family ExtProcess i

class (BE i) ⇒ BL i where
-- | Try to perform an ’Event’ return the successor ’Process’ or Nothing
-- if the event is not possible.
prefixNext :: Prefix i → Event i → Maybe (Process i)

168

switchOn :: ExtProcess i → Process i

{- |
A data type for CSPM processes.
For efficiency, replicated alphabetized parallel has an explicit constructor.
Other replicated operations get translated on the fly.
For constructing processes one should rather use the wrappers from
CSPM.CoreLanguage.ProcessWrappers.

-}
data Process i

= Prefix (Prefix i)
| ExternalChoice (Process i) (Process i)
| InternalChoice (Process i) (Process i)
| Interleave (Process i) (Process i)
| Interrupt (Process i) (Process i)
| Timeout (Process i) (Process i)
| Sharing (Process i) (EventSet i) (Process i)
| AParallel (EventSet i) (EventSet i) (Process i) (Process i)
| RepAParallel [(EventSet i,Process i)]
| Seq (Process i) (Process i)
| Hide (EventSet i) (Process i)
| Stop
| Skip
| Omega
| Chaos (EventSet i)
| AProcess Int -- ^ Just for debugging.
| SwitchedOff (ExtProcess i)
| Renaming (RenamingRelation i) (Process i)
| LinkParallel (RenamingRelation i) (Process i) (Process i)
| Exception (EventSet i) (Process i) (Process i)
deriving Typeable

isOmega :: Process i → Bool
isOmega Omega = True
isOmega _ = False

B.1.2 ProcessWrapper

-- |
-- Module : CSPM.CoreLanguage.Process
-- Copyright : (c) Fontaine 2010
-- License : BSD
--
-- Maintainer : fontaine@cs.uni-duesseldorf.de
-- Stability : experimental
-- Portability : GHC-only
--
-- Wrappers for the constructors of data type ’Process’ and some
-- rewriting rules for replicated operations.
--
-- This can also be used as EDSL for CSP.
--

module CSPM.CoreLanguage.ProcessWrapper
where

import CSPM.CoreLanguage.Process
import CSPM.CoreLanguage.Event

prefix :: Prefix i → Process i

169

prefix = Prefix

externalChoice :: Process i → Process i → Process i
externalChoice = ExternalChoice

internalChoice :: Process i → Process i → Process i
internalChoice = InternalChoice

interleave :: Process i → Process i → Process i
interleave = Interleave

interrupt :: Process i → Process i → Process i
interrupt = Interrupt

timeout :: Process i → Process i → Process i
timeout = Timeout

sharing :: Process i → EventSet i → Process i → Process i
sharing = Sharing

aparallel ::
EventSet i → EventSet i

→ Process i → Process i
→ Process i

aparallel = AParallel

seq :: Process i → Process i → Process i
seq = Seq

hide :: EventSet i → Process i → Process i
hide = Hide

stop :: Process i
stop = Stop

skip :: Process i
skip = Skip

switchedOff :: ExtProcess i → Process i
switchedOff = SwitchedOff

renaming :: RenamingRelation i → Process i → Process i
renaming = Renaming

linkParallel :: RenamingRelation i → Process i → Process i → Process i
linkParallel = LinkParallel

repSeq :: [Process i] → Process i
repSeq = foldr CSPM.CoreLanguage.ProcessWrapper.seq skip

{- todo: create balanced trees of operators instead of list -}
repInternalChoice :: [Process i] → Process i
repInternalChoice [] = stop
repInternalChoice l = foldr1 internalChoice l

repExternalChoice :: [Process i] → Process i
repExternalChoice [] = stop
repExternalChoice l = foldr1 externalChoice l

repInterleave :: [Process i] → Process i
repInterleave = foldr interleave skip

170

repAParallel :: [(EventSet i,Process i)] → Process i
repAParallel l = case l of

[] → error "ProcessWrapper.hs: empty repAParallel"
[(_,p)] → p
_ → RepAParallel l

repSharing :: EventSet i → [Process i] → Process i
repSharing _ [] = error "ProcessWrapper.hs: empty repSharing"
repSharing _ [p] = p
repSharing c l = foldr1 (λa b → sharing a c b) l

repLinkParallel :: RenamingRelation i → [Process i] → Process i
repLinkParallel _ [] = error "ProcessWrapper.hs: empty repLinkParallel"
repLinkParallel _ [_]

= error "ProcessWrapper.hs: repLinkParallel over one process"
repLinkParallel rel l = foldr1 (λa b → linkParallel rel a b) l

chaos :: EventSet i → Process i
chaos = Chaos

B.1.3 Events

-- |
-- Module : CSPM.CoreLanguage.Event
-- Copyright : (c) Fontaine 2010 - 2011
-- License : BSD3
--
-- Maintainer : fontaine@cs.uni-duesseldorf.de
-- Stability : experimental
-- Portability : GHC-only
--
-- This module defines the event-related part of an interface between
-- the CSPM-CoreLanguage and the underlying implementation.
-- The underlying implementation has to instantiate the type families ’Event’,
-- ’EventSet’, ’RenamingRelation’
-- and the class ’BE’ (’BE’== base event).
--
-- For full CSPM support (channels with multiple fields, event closure sets etc.)
-- CSPM.CoreLanguage.Field is also needed.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DeriveDataTypeable #-}

module CSPM.CoreLanguage.Event
where
import Data.Typeable

type family Event i
type family EventSet i
type family RenamingRelation i

-- | Sigma is the set of all events that appear in a system.
type Sigma i = EventSet i

-- | The first argument of all functions in ’BE’ is a phantom-type-argument, i.e.
-- applications pass _ |_ and implementations must not use this value.
class BE i where

eventEq :: i → Event i → Event i → Bool
member :: i → Event i → EventSet i → Bool
intersection :: i → EventSet i → EventSet i → EventSet i
difference :: i → EventSet i → EventSet i → EventSet i

171

union :: i → EventSet i → EventSet i → EventSet i
null :: i → EventSet i → Bool
singleton :: i → Event i → EventSet i
insert :: i → Event i → EventSet i → EventSet i
delete :: i → Event i → EventSet i → EventSet i
eventSetToList :: i → EventSet i → [Event i]
allEvents :: i → EventSet i
isInRenaming :: i → RenamingRelation i → Event i → Event i → Bool
imageRenaming :: i → RenamingRelation i → Event i → [Event i]
preImageRenaming :: i → RenamingRelation i → Event i → [Event i]
isInRenamingDomain :: i → Event i → RenamingRelation i → Bool
isInRenamingRange :: i → Event i → RenamingRelation i → Bool
getRenamingDomain :: i → RenamingRelation i → [Event i]
getRenamingRange :: i → RenamingRelation i → [Event i]
renamingFromList :: i → [(Event i, Event i)] → RenamingRelation i
renamingToList :: i → RenamingRelation i → [(Event i, Event i)]
singleEventToClosureSet :: i → Event i → EventSet i

-- | A wrapper for tick-events, tau-events and events from Sigma.
data TTE i

= TickEvent
| TauEvent
| SEvent (Event i)
deriving Typeable

class ShowEvent i where showEvent :: i → String
class ShowTTE i where showTTE :: i → String

B.1.4 Fields

-- |
-- Module : CSPM.CoreLanguage.Field
-- Copyright : (c) Fontaine 2010 - 2011
-- License : BSD
--
-- Maintainer : fontaine@cs.uni-duesseldorf.de
-- Stability : experimental
-- Portability : GHC-only
--
-- This module defines the class ’BF’ for versions of CSP
-- that also support multi-field-events and event-closure sets.

{-# LANGUAGE TypeFamilies #-}

module CSPM.CoreLanguage.Field
where

import CSPM.CoreLanguage.Event
import CSPM.CoreLanguage.Process

type family Field i
type family FieldSet i
type family ClosureState i
type family PrefixState i

class BL i ⇒ BF i where
fieldEq :: i → Field i → Field i → Bool
member :: i → Field i → FieldSet i → Bool
intersection :: i → FieldSet i → FieldSet i → FieldSet i
difference :: i → FieldSet i → FieldSet i → FieldSet i
union :: i → FieldSet i → FieldSet i → FieldSet i

172

null :: i → FieldSet i → Bool
singleton :: i → Field i → FieldSet i
insert :: i → Field i → FieldSet i → FieldSet i
delete :: i → Field i → FieldSet i → FieldSet i
fieldSetToList :: i → FieldSet i → [Field i]
fieldSetFromList :: i → [Field i] → FieldSet i

joinFields :: i → [Field i] → Event i
splitFields :: i → Event i → [Field i]
channelLen :: i → Field i → Int

closureStateInit :: i → EventSet i → ClosureState i
closureStateNext :: i → ClosureState i → Field i → ClosureState i
closureRestore :: i → ClosureState i → EventSet i
viewClosureState :: i → ClosureState i → ClosureView
viewClosureFields :: i → ClosureState i → FieldSet i
seenPrefixInClosure :: i → ClosureState i → Bool

prefixStateInit :: i → Prefix i → PrefixState i
prefixStateNext :: i → PrefixState i → Field i → Maybe (PrefixState i)
prefixStateFinalize :: i → PrefixState i → Maybe (Prefix i)
viewPrefixState :: i → PrefixState i → PrefixFieldView i

data ClosureView
= InClosure
| NotInClosure
| MaybeInClosure
deriving (Show,Eq,Ord)

data PrefixFieldView i
= FieldOut (Field i)
| FieldIn
| FieldGuard (FieldSet i)

B.1.5 Firing Rules

-- |
-- Module : CSPM.FiringRules.Rules
-- Copyright : (c) Fontaine 2010 - 2011
-- License : BSD3
--
-- Maintainer : fontaine@cs.uni-duesseldorf.de
-- Stability : experimental
-- Portability : GHC-only
--
-- This module defines data types for (CSP) proof trees.
-- A proof tree shows that a particular transition is valid
-- with respect to the firing rules semantics.
--
-- (For more info on the firing rule semantics
-- see: The Theory and Practice of Concurrency A.W. Roscoe 1999.)
--
-- We use three separate data types:
-- ’RuleTau’ stores a proof tree for a tau rule,
-- ’RuleTick’ stores a proof tree for a tick rule and
-- ’RuleEvent’ stores a proof tree for an event from Sigma.
--
-- There is a one-to-one correspondence between
-- each constructor of the data types ’RuleTau’, ’RuleTick’, ’RuleEvent’
-- and one fireing rule.
--

173

{-# LANGUAGE FlexibleContexts, StandaloneDeriving, UndecidableInstances #-}
{-# LANGUAGE DeriveDataTypeable #-}
module CSPM.FiringRules.Rules
where
import CSPM.CoreLanguage
import Data.Typeable

-- | A sum-type for tau, tick and regular proof trees.
data Rule i

= TauRule (RuleTau i)
| TickRule (RuleTick i)
| EventRule (RuleEvent i)
deriving Typeable

-- | Is this a proof tree for a tau-transition ?
isTauRule :: Rule i → Bool
isTauRule (TauRule {}) = True
isTauRule _ = False

-- | Representation of tau proof trees.
data RuleTau i

= Hidden (EventSet i) (RuleEvent i)
| HideTau (EventSet i) (RuleTau i)
| SeqTau (RuleTau i) (Process i)
| SeqTick (RuleTick i) (Process i)
| InternalChoiceL (Process i) (Process i)
| InternalChoiceR (Process i) (Process i)
| ChaosStop (EventSet i)
| TimeoutOccurs (Process i) (Process i)
| TimeoutTauR (RuleTau i) (Process i)
| ExtChoiceTauL (RuleTau i) (Process i)
| ExtChoiceTauR (Process i) (RuleTau i)
| InterleaveTauL (RuleTau i) (Process i)
| InterleaveTauR (Process i) (RuleTau i)
| InterleaveTickL (RuleTick i) (Process i)
| InterleaveTickR (Process i) (RuleTick i)
| ShareTauL (EventSet i) (RuleTau i) (Process i)
| ShareTauR (EventSet i) (Process i) (RuleTau i)
| ShareTickL (EventSet i) (RuleTick i) (Process i)
| ShareTickR (EventSet i) (Process i) (RuleTick i)
| AParallelTauL (EventSet i) (EventSet i) (RuleTau i) (Process i)
| AParallelTauR (EventSet i) (EventSet i) (Process i) (RuleTau i)
| AParallelTickL (EventSet i) (EventSet i) (RuleTick i) (Process i)
| AParallelTickR (EventSet i) (EventSet i) (Process i) (RuleTick i)
| InterruptTauL (RuleTau i) (Process i)
| InterruptTauR (Process i) (RuleTau i)
| TauRepAParallel [Either (EventSet i,Process i) (EventSet i,RuleTau i)]
| RenamingTau (RenamingRelation i) (RuleTau i)
| LinkLinked (RenamingRelation i) (RuleEvent i) (RuleEvent i)
| LinkTauL (RenamingRelation i) (RuleTau i) (Process i)
| LinkTauR (RenamingRelation i) (Process i) (RuleTau i)
| LinkTickL (RenamingRelation i) (RuleTick i) (Process i)
| LinkTickR (RenamingRelation i) (Process i) (RuleTick i)
| ExceptionTauL (EventSet i) (RuleTau i) (Process i)
| ExceptionTauR (EventSet i) (Process i) (RuleTau i)
| TraceSwitchOn (Process i) -- pseudo-tau for debugging

-- | Representation of tick proof trees.
data RuleTick i

= SkipTick

174

| HiddenTick (EventSet i) (RuleTick i)
| InterruptTick (RuleTick i) (Process i)
| TimeoutTick (RuleTick i) (Process i)
| ShareOmega (EventSet i)
| AParallelOmega (EventSet i) (EventSet i)
| RepAParallelOmega [EventSet i]
| InterleaveOmega
| ExtChoiceTickL (RuleTick i) (Process i)
| ExtChoiceTickR (Process i) (RuleTick i)
| RenamingTick (RenamingRelation i) (RuleTick i)
| LinkParallelTick (RenamingRelation i)

-- | Representation of regular proof trees.
data RuleEvent i

= HPrefix (Event i) (Prefix i)
| ExtChoiceL (RuleEvent i) (Process i)
| ExtChoiceR (Process i) (RuleEvent i)
| InterleaveL (RuleEvent i) (Process i)
| InterleaveR (Process i) (RuleEvent i)
| SeqNormal (RuleEvent i) (Process i)
| NotHidden (EventSet i) (RuleEvent i)
| NotShareL (EventSet i) (RuleEvent i) (Process i)
| NotShareR (EventSet i) (Process i) (RuleEvent i)
| Shared (EventSet i) (RuleEvent i) (RuleEvent i)
| AParallelL (EventSet i) (EventSet i) (RuleEvent i) (Process i)
| AParallelR (EventSet i) (EventSet i) (Process i) (RuleEvent i)
| AParallelBoth (EventSet i) (EventSet i) (RuleEvent i) (RuleEvent i)
| RepAParallelEvent [EventRepAPart i]
| NoInterrupt (RuleEvent i) (Process i)
| InterruptOccurs (Process i) (RuleEvent i)
| TimeoutNo (RuleEvent i) (Process i)
| Rename (RenamingRelation i) (Event i) (RuleEvent i)

-- todo make special cases for Rename injective and rename relational
| RenameNotInDomain (RenamingRelation i) (RuleEvent i)
| ChaosEvent (EventSet i) (Event i)
| LinkEventL (RenamingRelation i) (RuleEvent i) (Process i)
| LinkEventR (RenamingRelation i) (Process i) (RuleEvent i)
| NoException (EventSet i) (RuleEvent i) (Process i)
| ExceptionOccurs (EventSet i) (Process i) (RuleEvent i)

type EventRepAPart i
= Either (EventSet i, Process i) (EventSet i, RuleEvent i)

{-
Not sure about this.
Maybe this moves somewhere else or should be implemented differently.
This is somehow complicated by the use of type families
-}
deriving instance

(Show (Event i), Show (Prefix i), Show (Process i), Show (ExtProcess i)
,Show (EventSet i), Show (RenamingRelation i))
⇒ Show (RuleEvent i)

deriving instance
(Eq (Event i), Eq (Prefix i), Eq (Process i), Eq (ExtProcess i)
,Eq (EventSet i), Eq (RenamingRelation i))
⇒ Eq (RuleEvent i)

deriving instance
(Ord (Event i), Ord (Prefix i), Ord (Process i), Ord (ExtProcess i)
,Ord (EventSet i), Ord (RenamingRelation i))
⇒ Ord (RuleEvent i)

175

deriving instance
(Show (Process i), Show (EventSet i), Show (Prefix i), Show (ExtProcess i)
,Show (RenamingRelation i))
⇒ Show (RuleTick i)

deriving instance
(Eq (Process i), Eq (EventSet i), Eq (Prefix i), Eq (ExtProcess i)
,Eq (RenamingRelation i))
⇒ Eq (RuleTick i)

deriving instance
(Ord (Process i), Ord (EventSet i), Ord (Prefix i), Ord (ExtProcess i)
,Ord (RenamingRelation i))
⇒ Ord (RuleTick i)

deriving instance
(Show (RuleEvent i), Show (RuleTick i), Show (Process i)
,Show (EventSet i), Show (RenamingRelation i))
⇒ Show (RuleTau i)

deriving instance
(Eq (RuleEvent i), Eq (RuleTick i), Eq (Process i)
,Eq (EventSet i), Eq (RenamingRelation i))
⇒ Eq (RuleTau i)

deriving instance
(Ord (RuleEvent i), Ord (RuleTick i), Ord (Process i), Ord (EventSet i)
,Ord (ExtProcess i), Ord (Prefix i), Ord (Event i),Ord (RenamingRelation i))
⇒ Ord (RuleTau i)

deriving instance
(Show (RuleEvent i), Show (RuleTick i), Show (RuleTau i))
⇒ Show (Rule i)

deriving instance
(Eq (RuleEvent i), Eq (RuleTick i), Eq (RuleTau i))
⇒ Eq (Rule i)

B.1.6 Proof Tree Verifier

-- |
-- Module : CSPM.FiringRules.Verifier
-- Copyright : (c) Fontaine 2010 - 2011
-- License : BSD3
--
-- Maintainer : fontaine@cs.uni-duesseldorf.de
-- Stability : experimental
-- Portability : GHC-only
--
-- A checker for the firing rules semantics of CSPM.
--
-- ’viewRuleMaybe’ checks that a proof tree is valid
-- with respect to the firing rules semantics of CSPM.
-- It checks that the proof tree is syntactically valid
-- and that all side conditions hold.
--
-- The ’Rule’ data type stores proof trees in a compressed form.
-- ’viewRuleMaybe’ constructs an explicit representation of the transition.
--
-- ’viewRule’ calls ’viewRuleMaybe’ and throws an exception if
-- the proof tree was not valid.
-- The proof tree generators in this package only generate valid proof trees.
-- ’viewRule’ is used to check that assertion.

176

{-# LANGUAGE ScopedTypeVariables #-}

module CSPM.FiringRules.Verifier
(
viewRule

,viewProcBefore
,viewEvent
,viewProcAfter
,viewRuleMaybe
,viewRuleTau
,viewRuleTick
,viewRuleEvent
)

where

import CSPM.CoreLanguage
import CSPM.CoreLanguage.Event
import CSPM.FiringRules.Rules

import Control.Monad
import Data.Maybe
import qualified Data.List as List

{- |
This function constructs an explict representation of the transition
from the proof tree of the transition.
The transition as a triple
(predecessor ’Process’, Event, successor ’Process’).
If the proof tree is invalid it throws an exception.

-}
viewRule :: BL i ⇒ Rule i → (Process i, TTE i, Process i)
viewRule proofTree = case viewRuleMaybe proofTree of

Nothing → error "viewRule : internal error malformed Rule"
Just v → v

-- | Like ’viewRule’ but just return the predecessor process.
viewProcBefore :: BL i ⇒ Rule i → Process i
viewProcBefore = (λ(p,_,_) → p) ◦ viewRule

-- | Like ’viewRule’ but just return the event.
viewEvent :: BL i ⇒ Rule i → TTE i
viewEvent = (λ(_,e,_) → e) ◦ viewRule

-- | Like ’viewRule’ but just return the successor process.
viewProcAfter :: BL i ⇒ Rule i → Process i
viewProcAfter = (λ(_,_,p) → p) ◦ viewRule

-- | Like ’viewRule’ but returns ’Nothing’ in case of an invalid proof tree.
viewRuleMaybe :: BL i ⇒ Rule i → Maybe (Process i, TTE i, Process i)
viewRuleMaybe proofTree = case proofTree of

TauRule r → case viewRuleTau r of
Just (p, p’) → Just (p, TauEvent, p’)
Nothing → Nothing

TickRule r → case viewRuleTick r of
Just p → Just (p, TickEvent, Omega)
Nothing → Nothing

EventRule r → case viewRuleEvent r of
Just (p, e, p’) → Just (p, SEvent e, p’)
Nothing → Nothing

-- | Check a tau rule.
viewRuleTau :: forall i. BL i ⇒ RuleTau i → Maybe (Process i, Process i)

177

viewRuleTau rule = case rule of
ExtChoiceTauL pp q → do

(p, p’) ← viewRuleTau pp
return (ExternalChoice p q, ExternalChoice p’ q)

ExtChoiceTauR p qq → do
(q, q’) ← viewRuleTau qq
return (ExternalChoice p q, ExternalChoice p q’)

InternalChoiceL p q → return (InternalChoice p q,p)
InternalChoiceR p q → return (InternalChoice p q,q)
InterleaveTauL pp q → do

(p, p’) ← viewRuleTau pp
return (Interleave p q, Interleave p’ q)

InterleaveTauR p qq → do
(q, q’) ← viewRuleTau qq
return (Interleave p q, Interleave p q’)

InterleaveTickL pp q → do
p ← viewRuleTick pp
return (Interleave p q, Interleave Omega q)

InterleaveTickR p qq → do
q ← viewRuleTick qq
return (Interleave p q, Interleave p Omega)

SeqTau pp q → do
(p, p’) ← viewRuleTau pp
return (Seq p q, Seq p’ q)

SeqTick pp q → do
p ← viewRuleTick pp
return (Seq p q, q)

Hidden c pp → do
(p, e, p’) ← viewRuleEvent pp
guard $ member (undefined :: i) e c
return (Hide c p, Hide c p’)

HideTau c pp → do
(p, p’) ← viewRuleTau pp
return (Hide c p, Hide c p’)

ShareTauL c pp q → do
(p, p’) ← viewRuleTau pp
return (Sharing p c q, Sharing p’ c q)

ShareTauR c p qq → do
(q, q’) ← viewRuleTau qq
return (Sharing p c q, Sharing p c q’)

ShareTickL c pp q → do
p ← viewRuleTick pp
return (Sharing p c q, Sharing Omega c q)

ShareTickR c p qq → do
q ← viewRuleTick qq
return (Sharing p c q, Sharing p c Omega)

AParallelTauL pc qc r q → do
(p, p’) ← viewRuleTau r
return (AParallel pc qc p q, AParallel pc qc p’ q)

AParallelTauR pc qc p r → do
(q, q’) ← viewRuleTau r
return (AParallel pc qc p q, AParallel pc qc p q’)

AParallelTickL pc qc r q → do
p ← viewRuleTick r
return (AParallel pc qc p q, AParallel pc qc Omega q)

AParallelTickR pc qc p r → do
q ← viewRuleTick r
return (AParallel pc qc p q, AParallel pc qc p Omega)

InterruptTauL r q → do
(p, p’) ← viewRuleTau r
return (Interrupt p q, Interrupt p’ q)

InterruptTauR p r → do

178

(q, q’) ← viewRuleTau r
return (Interrupt p q, Interrupt p q’)

TauRepAParallel l → do
parts ← forM l $ λx → case x of

Left a → return (a, a)
Right (c, r) → do

(p, p’) ← viewRuleTau r
return ((c,p), (c,p’))

return (RepAParallel $ map fst parts, RepAParallel $ map snd parts)
TimeoutTauR r q → do

(p, p’) ← viewRuleTau r
return (Timeout p q, Timeout p’ q)

TimeoutOccurs p q → return (Timeout p q, q)
RenamingTau rel pp → do

(p, p’) ← viewRuleTau pp
return (Renaming rel p, Renaming rel p’)

ChaosStop e → return (Chaos e, Stop)
LinkTauL rel pp q → do

(p, p’) ← viewRuleTau pp
return (LinkParallel rel p q, LinkParallel rel p’ q)

LinkTauR rel p qq → do
(q, q’) ← viewRuleTau qq
return (LinkParallel rel p q, LinkParallel rel p q’)

LinkTickL rel pp q → do
p ← viewRuleTick pp
return (LinkParallel rel p q, LinkParallel rel Omega q)

LinkTickR rel p qq → do
q ← viewRuleTick qq
return (LinkParallel rel p q, LinkParallel rel p Omega)

LinkLinked rel pp qq → do
(p, e1, p’) ← viewRuleEvent pp
(q, e2, q’) ← viewRuleEvent qq
guard $ isInRenaming (undefined :: i) rel e1 e2
return (LinkParallel rel p q, LinkParallel rel p’ q’)

TraceSwitchOn p → return (p, p)

-- | Check a tick rule.
viewRuleTick :: BL i ⇒ RuleTick i → Maybe (Process i)
viewRuleTick rule = case rule of

InterleaveOmega → return (Interleave Omega Omega)
HiddenTick c pp → do

p ← viewRuleTick pp
return $ Hide c p

ShareOmega c → return $ Sharing Omega c Omega
AParallelOmega c1 c2 → return $ AParallel c1 c2 Omega Omega
SkipTick → return Skip
ExtChoiceTickL pp q → do

p ← viewRuleTick pp
return $ ExternalChoice p q

ExtChoiceTickR p qq → do
q ← viewRuleTick qq
return $ ExternalChoice p q

InterruptTick pp q → do
p ← viewRuleTick pp
return $ Interrupt p q

TimeoutTick pp q → do
p ← viewRuleTick pp
return $ Timeout p q

RepAParallelOmega l
→ return $ RepAParallel $ zip l $ repeat Omega

RenamingTick rel pp → do
p ← viewRuleTick pp

179

return $ Renaming rel p
LinkParallelTick rel
→ return $ LinkParallel rel Omega Omega

-- | Check a regular rule
viewRuleEvent :: forall i. BL i
⇒ RuleEvent i → Maybe (Process i, Event i, Process i)

viewRuleEvent rule = case rule of
HPrefix e p → do

p’ ← prefixNext p e
return (Prefix p, e, p’)

ExtChoiceL pp q → do
(p, e, p’) ← viewRuleEvent pp
return (ExternalChoice p q, e, p’)

ExtChoiceR p qq → do
(q, e, q’) ← viewRuleEvent qq
return (ExternalChoice p q, e, q’)

InterleaveL pp q → do
(p, e, p’) ← viewRuleEvent pp
return (Interleave p q, e, Interleave p’ q)

InterleaveR p qq → do
(q, e, q’) ← viewRuleEvent qq
return (Interleave p q, e, Interleave p q’)

SeqNormal pp q → do
(p, e, p’) ← viewRuleEvent pp
return (Seq p q, e, Seq p’ q)

NotHidden c pp → do
(p, e, p’) ← viewRuleEvent pp
not_in_Closure e c
return (Hide c p, e, Hide c p’)

NotShareL c pp q → do
(p, e, p’) ← viewRuleEvent pp
not_in_Closure e c
return (Sharing p c q, e, Sharing p’ c q)

NotShareR c p qq → do
(q, e, q’) ← viewRuleEvent qq
not_in_Closure e c
return (Sharing p c q, e, Sharing p c q’)

Shared c pp qq → do
(p, e1, p’) ← viewRuleEvent pp
(q, e2, q’) ← viewRuleEvent qq
guard $ eventEq ty e1 e2
in_Closure e1 c
return (Sharing p c q, e1, Sharing p’ c q’)

AParallelL c1 c2 pp q → do
(p, e, p’) ← viewRuleEvent pp
in_Closure e c1
not_in_Closure e c2
return (AParallel c1 c2 p q, e, AParallel c1 c2 p’ q)

AParallelR c1 c2 p qq → do
(q, e, q’) ← viewRuleEvent qq
not_in_Closure e c1
in_Closure e c2
return (AParallel c1 c2 p q, e, AParallel c1 c2 p q’)

AParallelBoth c1 c2 pp qq → do
(p, e2, p’) ← viewRuleEvent pp
(q, e1, q’) ← viewRuleEvent qq
guard $ eventEq ty e1 e2
in_Closure e1 c1
in_Closure e1 c2
return (AParallel c1 c2 p q, e1, AParallel c1 c2 p’ q’)

NoInterrupt pp q → do

180

(p, e, p’) ← viewRuleEvent pp
return (Interrupt p q, e, Interrupt p’ q)

InterruptOccurs p qq → do
(q, e, q’) ← viewRuleEvent qq
return (Interrupt p q, e, q’)

TimeoutNo pp q → do
(p, e, p’) ← viewRuleEvent pp
return (Timeout p q, e, p’)

RepAParallelEvent l → checkRepAParallel l
Rename rel visibleEvent pp → do

(p, internalEvent, p’) ← viewRuleEvent pp
guard $ isInRenaming ty rel internalEvent visibleEvent
return (Renaming rel p, visibleEvent, Renaming rel p’)

RenameNotInDomain rel pp → do
(p, e, p’) ← viewRuleEvent pp
guard $ not $ isInRenamingDomain ty e rel
return (Renaming rel p, e, Renaming rel p’)

ChaosEvent c e → do
in_Closure e c
return (Chaos c, e, Chaos c)

LinkEventL rel pp q → do
(p, e, p’) ← viewRuleEvent pp
guard $ not $ isInRenamingDomain ty e rel
return (LinkParallel rel p q, e, LinkParallel rel p’ q)

LinkEventR rel p qq → do
(q, e, q’) ← viewRuleEvent qq
guard $ not $ isInRenamingRange ty e rel
return (LinkParallel rel p q, e, LinkParallel rel p q’)

NoException c pp q → do
(p, e, p’) ← viewRuleEvent pp
not_in_Closure e c
return (Exception c p q, e, Exception c p’ q)

ExceptionOccurs c p qq → do
(q, e, q’) ← viewRuleEvent qq
in_Closure e c
return (Exception c p q, e, q’)

where
ty = (undefined :: i)
in_Closure e c = guard $ member ty e c
not_in_Closure e c = guard $ not $ member ty e c

checkRepAParallel :: [EventRepAPart i] → Maybe (Process i,Event i,Process i)
checkRepAParallel l = do

parts ← forM l $ λx → case x of
Left w → return $ Left w
Right (c,r) → do { v ← viewRuleEvent r; return $ Right (c,v) }

-- Check that all events are equal.
let events = flip mapMaybe parts $ λx → case x of

Left _ → Nothing
Right (_,(_,e,_)) → Just e

guard $ (not $ List.null events)
&& (all (eventEq ty $ head events) $ tail events)

{-
Check that if the event is in a closure set the corresponding process has
also taken part in the event.
-}

let event = head events
guard $ flip all parts $ λx → case x of

Left (closure,_) → not $ member ty event closure
Right (closure,_) → member ty event closure

let
procs = flip map parts $ λx → case x of

181

Left pair → pair
Right (c,(p,_,_)) → (c,p)

procs’ = flip map parts $ λx → case x of
Left pair → pair
Right (c,(_,_,p’)) → (c,p’)

return (RepAParallel procs, event, RepAParallel procs’)

B.1.7 Naive Proof Tree Generation

-- |
-- Module : CSPM.FiringRules.EnumerateEvents
-- Copyright : (c) Fontaine 2010
-- License : BSD
--
-- Maintainer : fontaine@cs.uni-duesseldorf.de
-- Stability : experimental
-- Portability : GHC-only
--
-- Brute-force computation of all possible transitions of a process.
-- Enumerates all events in ’Sigma’.
--

{-# LANGUAGE ScopedTypeVariables #-}
module CSPM.FiringRules.EnumerateEvents
(

computeTransitions
,eventTransitions
,tauTransitions
,tickTransitions

)
where

import CSPM.CoreLanguage
import CSPM.CoreLanguage.Event
import CSPM.FiringRules.Rules
import CSPM.FiringRules.Search

import Control.Monad
import Control.Applicative
import Data.Either as Either
import Data.List as List

-- | Compute all possible transitions (via an event from Sigma) for a process.
computeTransitions :: forall i. BL i
⇒ Sigma i → Process i → Search (Rule i)

computeTransitions events p
= (liftM EventRule $ eventTransitions events p)

‘mplus‘ (liftM TickRule $ tickTransitions p)
‘mplus‘ (liftM TauRule $ tauTransitions p)

eventTransitions :: forall i.
BL i

⇒ Sigma i
→ Process i
→ Search (RuleEvent i)

eventTransitions sigma p = do
e ← anyEvent ty sigma
buildRuleEvent e p
where

182

ty = (undefined :: i)

anyEvent :: forall i. BL i ⇒ i → EventSet i → Search (Event i)
anyEvent ty sigma

= anyOf $ eventSetToList ty sigma

buildRuleEvent :: forall i. BL i ⇒ Event i → Process i → Search (RuleEvent i)
buildRuleEvent event proc = case proc of

SwitchedOff p → rp $ switchOn p
Prefix p → case (prefixNext p event :: Maybe (Process i)) of

Nothing → mzero
Just _ → return $ HPrefix event p

ExternalChoice p q
→ (ExtChoiceL <$> rp p <∗> pure q)
‘mplus‘ (ExtChoiceR p <$> rp q)

InternalChoice _ _ → mzero
Interleave p q
→ (InterleaveL <$> rp p <∗> pure q)
‘mplus‘ (InterleaveR p <$> rp q)

Interrupt p q → (NoInterrupt <$> rp p <∗> pure q)
‘mplus‘ (InterruptOccurs p <$> rp q)

Timeout p q → TimeoutNo <$> rp p <∗> pure q
Sharing p c q → if member ty event c

then Shared c <$> rp p <∗> rp q
else (NotShareL c <$> rp p <∗> pure q)

‘mplus‘ (NotShareR c p <$> rp q)
Seq p q → SeqNormal <$> rp p <∗> pure q
AParallel x y p q → case (member ty event x, member ty event y) of

(True, True) → AParallelBoth x y <$> rp p <∗> rp q
(True, False) → AParallelL x y <$> rp p <∗> pure q
(False, True) → AParallelR x y p <$> rp q
(False,False) → mzero

RepAParallel l → buildRuleRepAParallel event l
Hide c p → if member ty event c

then mzero
else NotHidden c <$> rp p

Stop → mzero
Skip → mzero
Omega → mzero
AProcess _n → mzero
Renaming rel p → (do

e2 ← anyEvent ty (allEvents ty)
guard $ isInRenaming ty rel e2 event
rule ← buildRuleEvent e2 p
return $ Rename rel event rule
)
‘mplus‘ (do

guard $ not $ isInRenamingDomain ty event rel
RenameNotInDomain rel <$> rp p
)

Chaos c → if member ty event c
then return $ ChaosEvent c event
else mzero

LinkParallel rel p q → (do
guard $ not $ isInRenamingDomain ty event rel
LinkEventL rel <$> rp p <∗> pure q

) ‘mplus‘ (do
guard $ not $ isInRenamingRange ty event rel
LinkEventR rel p <$> rp q

)
Exception c p q → if member ty event c

then ExceptionOccurs c p <$> rp q

183

else NoException c <$> rp p <∗> pure q
where

rp = buildRuleEvent event
ty = (undefined :: i)

buildRuleRepAParallel :: forall i. BL i
⇒ Event i
→ [(EventSet i, Process i)] → Search (RuleEvent i)

buildRuleRepAParallel event l = do
l2 ← mapM parPart l
if List.null $ Either.rights l2

then mzero
else return $ RepAParallelEvent l2

where
parPart c@(alpha, p) = if member ty event alpha

then do
r ← buildRuleEvent event p
return $ Right (alpha, r)

else return $ Left c
ty = (undefined :: i)

tauTransitions :: forall i. BL i ⇒ Process i → Search (RuleTau i)
tauTransitions proc = case proc of

SwitchedOff p → tauTransitions $ switchOn p
Prefix {} → mzero
ExternalChoice p q
→ (ExtChoiceTauL <$> tauTransitions p <∗> pure q)
‘mplus‘ (ExtChoiceTauR p <$> tauTransitions q)

InternalChoice p q
→ (return $ InternalChoiceL p q)
‘mplus‘ (return $ InternalChoiceR p q)

Interleave p q
→ (InterleaveTauL <$> tauTransitions p <∗> pure q)
‘mplus‘ (InterleaveTauR p <$> tauTransitions q)
‘mplus‘ (InterleaveTickL <$> tickTransitions p <∗> pure q)
‘mplus‘ (InterleaveTickR p <$> tickTransitions q)

Interrupt p q
→ (InterruptTauL <$> tauTransitions p <∗> pure q)
‘mplus‘ (InterruptTauR p <$> tauTransitions q)

Timeout p q
→ (TimeoutTauR <$> tauTransitions p <∗> pure q)
‘mplus‘ (return $ TimeoutOccurs p q)

Sharing p c q
→ (ShareTauL c <$> tauTransitions p <∗> pure q)
‘mplus‘ (ShareTauR c p <$> tauTransitions q)
‘mplus‘ (ShareTickL c <$> tickTransitions p <∗> pure q)
‘mplus‘ (ShareTickR c p <$> tickTransitions q)

AParallel pc qc p q
→ (AParallelTauL pc qc <$> tauTransitions p <∗> pure q)
‘mplus‘ (AParallelTauR pc qc p <$> tauTransitions q)
‘mplus‘ (AParallelTickL pc qc <$> tickTransitions p <∗> pure q)
‘mplus‘ (AParallelTickR pc qc p <$> tickTransitions q)

Seq p q
→ (SeqTau <$> tauTransitions p <∗> pure q)

‘mplus‘ (SeqTick <$> tickTransitions p <∗> pure q)
Hide hidden p → (do

e ← anyEvent ty hidden
rule ← buildRuleEvent e p
return $ Hidden hidden rule)

‘mplus‘ (HideTau hidden <$> tauTransitions p)
Stop → mzero
Skip → mzero

184

Omega → mzero
AProcess _n → mzero
RepAParallel l → mzero -- TODO ! tau for replicated AParallel
Renaming rel p → RenamingTau rel <$> tauTransitions p
Chaos c → return $ ChaosStop c
LinkParallel rel p q
→ (LinkTauL rel <$> tauTransitions p <∗> pure q)

‘mplus‘ (LinkTauR rel p <$> tauTransitions q)
‘mplus‘ (LinkTickL rel <$> tickTransitions p <∗> pure q)
‘mplus‘ (LinkTickR rel p <$> tickTransitions q)
‘mplus‘ mkLinkedRules rel p q

Exception c p q → mzero -- TODO
where

ty = (undefined :: i)

mkLinkedRules :: forall i. BL i
⇒ RenamingRelation i
→ Process i
→ Process i
→ Search (RuleTau i)

mkLinkedRules rel p q = do
(e1, r1) ← rules1
(e2, r2) ← rules2
guard $ isInRenaming ty rel e1 e2
return $ LinkLinked rel r1 r2
where

rules1 :: Search (Event i, RuleEvent i)
rules1 = rules (getRenamingDomain ty rel) p
rules2 = rules (getRenamingRange ty rel) q
rules :: [Event i] → Process i → Search (Event i, RuleEvent i)
rules s proc = do

e ← anyOf s
r ← buildRuleEvent e proc
return (e,r)

ty = (undefined :: i)

tickTransitions :: BL i ⇒ Process i → Search (RuleTick i)
tickTransitions proc = case proc of

SwitchedOff p → tickTransitions $ switchOn p
Prefix {} → mzero
ExternalChoice p q
→ (ExtChoiceTickL <$> tickTransitions p <∗> pure q)
‘mplus‘ (ExtChoiceTickR p <$> tickTransitions q)

InternalChoice _p _q → mzero
Interleave Omega Omega → return $ InterleaveOmega
Interleave _ _ → mzero
Interrupt p q → InterruptTick <$> tickTransitions p <∗> pure q
Timeout p q → TimeoutTick <$> tickTransitions p <∗> pure q
Sharing Omega c Omega → return $ ShareOmega c
Sharing _ _ _ → mzero
AParallel c1 c2 Omega Omega → return $ AParallelOmega c1 c2
AParallel _ _ _ _ → mzero
Seq _p _q → mzero
Hide c p → HiddenTick c <$> tickTransitions p
Stop → mzero
Skip → return SkipTick
Omega → mzero
AProcess _n → mzero
RepAParallel l → if all (isOmega ◦ snd) l

then return $ RepAParallelOmega $ map fst l
else mzero

Renaming rel p → RenamingTick rel <$> tickTransitions p

185

Chaos _ → mzero
LinkParallel rel Omega Omega → return $ LinkParallelTick rel
LinkParallel _ _ _ → mzero
Exception c p q → mzero -- TODO

B.1.8 Proof Tree Generation with Constraints

-- |
-- Module : CSPM.FiringRules.FieldConstraintsSearch
-- Copyright : (c) Fontaine 2010 - 2011
-- License : BSD
--
-- Maintainer : fontaine@cs.uni-duesseldorf.de
-- Stability : experimental
-- Portability : GHC-only
--
-- Field-wise generation of transitions.
-- Uses some kind of abstract interpretation/constraint propagation to avoid
-- enumeration of ’Sigma’ in some cases.
--

{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE ViewPatterns #-}
module CSPM.FiringRules.FieldConstraintsSearch
(

computeTransitions
,eventTransitions
,tauTransitions
,tickTransitions

)
where

import CSPM.CoreLanguage.Process
import qualified CSPM.CoreLanguage.Event as Event
import CSPM.CoreLanguage.Field as Field
import CSPM.FiringRules.Rules as Rules
import CSPM.FiringRules.Search

import Control.Arrow
import Control.Monad.State
import Control.Applicative
import Data.Maybe
import qualified Data.List as List

computeTransitions :: forall i. BF i
⇒ Event.Sigma i → Process i → Search (Rule i)

computeTransitions events p
= (liftM EventRule $ eventTransitions events p)

‘mplus‘ (liftM TickRule $ tickTransitions p)
‘mplus‘ (liftM TauRule $ tauTransitions p)

data RuleField i
= FPrefix (PrefixState i)
| FExtChoiceL (RuleField i) (Process i)
| FExtChoiceR (Process i) (RuleField i)
| FExtChoice (RepExtChoicePart i) (RepExtChoicePart i)
| FInterleaveL (RuleField i) (Process i)
| FInterleaveR (Process i) (RuleField i)
| FSeqNormal (RuleField i) (Process i)

186

| FNotHidden (ClosureState i) (RuleField i)
| FNotShareL (ClosureState i) (RuleField i) (Process i)
| FNotShareR (ClosureState i) (Process i) (RuleField i)
| FShared (ClosureState i) (RuleField i) (RuleField i)
| FAParallelL (ClosureState i) (ClosureState i) (RuleField i) (Process i)
| FAParallelR (ClosureState i) (ClosureState i) (Process i) (RuleField i)
| FAParallelBoth (ClosureState i) (ClosureState i) (RuleField i) (RuleField i)
| FNoInterrupt (RuleField i) (Process i)
| FInterrupt (Process i) (RuleField i)
| FTimeout (RuleField i) (Process i)
| FRepAParallel (RepAP i)
| FRenaming (Event.RenamingRelation i) (Process i)
| FChaos (ClosureState i)
| FLinkEventL (Event.RenamingRelation i) (RuleField i) (Process i)
| FLinkEventR (Event.RenamingRelation i) (Process i) (RuleField i)
| FNoException (ClosureState i) (RuleField i) (Process i)
| FExceptionOccurs (ClosureState i) (Process i) (RuleField i)

rulePattern :: forall i.
BF i ⇒ Event.EventSet i → Process i → Search (RuleField i)

rulePattern events proc = case proc of
SwitchedOff p → rp $ switchOn p
Prefix p → return $ FPrefix $ prefixStateInit ty p
ExternalChoice p q
→ joinRepExtChoiceParts

(initRepExtChoicePart events p)
(initRepExtChoicePart events q)

InternalChoice _p _q → mzero
Interleave p q
→ (FInterleaveL <$> rp p <∗> pure q)
‘mplus‘ (FInterleaveR p <$> rp q)

Interrupt p q → (FNoInterrupt <$> rp p <∗> pure q)
‘mplus‘ (FInterrupt p <$> rp q)

Timeout p q → FTimeout <$> rp p <∗> pure q
Sharing p c q
→ (FShared (initClosure c) <$> rp p <∗> rp q)
‘mplus‘ (FNotShareL (initClosure c) <$> rp p <∗> pure q)
‘mplus‘ (FNotShareR (initClosure c) p <$> rp q)

AParallel pc qc p q
→ (FAParallelL (initClosure pc) (initClosure qc) <$> rp p <∗> pure q)
‘mplus‘ (FAParallelR (initClosure pc) (initClosure qc) <$> pure p <∗> rp q)
‘mplus‘ (FAParallelBoth (initClosure pc) (initClosure qc) <$> rp p <∗> rp q)

Seq p q → FSeqNormal <$> rp p <∗> pure q
Hide c p → FNotHidden (initClosure c) <$> rp p
Stop → mzero
Skip → mzero
Omega → mzero
AProcess _n → mzero
RepAParallel l → return $ FRepAParallel $ initRepAParallel l
Renaming rel p → return $ FRenaming rel p
Chaos c → return $ FChaos $ initClosure c
LinkParallel rel p q
→ (FLinkEventL rel <$> rp p <∗> pure q)

‘mplus‘ (FLinkEventR rel p <$> rp q)
Exception c p q
→ (FNoException (initClosure c) <$> rp p <∗> pure q)

‘mplus‘ (FExceptionOccurs (initClosure c) p <$> rp q)
where

ty = (undefined :: i)
initClosure = closureStateInit ty
rp = rulePattern events

187

type PropM i a = StateT (FieldSet i) Maybe a

propField :: forall i. BF i ⇒ RuleField i → PropM i ()
propField rule = case rule of

FPrefix p → case viewPrefixState ty p of
FieldOut f → fixField f
FieldIn → return ()
FieldGuard g → restrictField $ λe → intersection ty e g

FExtChoiceL r _ → propField r
FExtChoiceR _ r → propField r
FExtChoice _p _q → return ()
FInterleaveL r _ → propField r
FInterleaveR _ r → propField r
FSeqNormal r _ → propField r
FNotHidden hidden r → if closureState hidden == InClosure

then impossibleRule
else propField r

FNotShareL c r _ → if closureState c == InClosure
then impossibleRule
else propField r

FNotShareR c _ r → if closureState c == InClosure
then impossibleRule
else propField r

FShared c r1 r2 → if closureState c == NotInClosure
then impossibleRule
else do

restrictField $ λe → intersection ty e (closureFields c)
propField r1
propField r2

FAParallelL c1 c2 r _ → case (closureState c1,closureState c2) of
(NotInClosure,_) → impossibleRule
(_,InClosure) → impossibleRule
_ → do

restrictField $ λe → intersection ty e (closureFields c1)
propField r

FAParallelR c1 c2 _ r → case (closureState c1,closureState c2) of
(_,NotInClosure) → impossibleRule
(InClosure,_) → impossibleRule
_ → do

restrictField $ λe → intersection ty e (closureFields c2)
propField r

FAParallelBoth c1 c2 r1 r2 → case (closureState c1,closureState c2) of
(NotInClosure,_) → impossibleRule
(_,NotInClosure) → impossibleRule
_ → do

restrictField $ λe → intersection ty e (closureFields c1)
restrictField $ λe → intersection ty e (closureFields c2)
propField r1
propField r2

FNoInterrupt r _ → propField r
FInterrupt _ r → propField r
FTimeout r _ → propField r
FRepAParallel RepAPFailed → impossibleRule
FRepAParallel x → restrictField $ λe → intersection ty e (repInitials x)
FRenaming _ _ → return () -- todo: some properagtion for renaming
FChaos c → restrictField $ λe → intersection ty e (closureFields c)
FLinkEventL _ r _ → propField r
FLinkEventR _ _ r → propField r
FNoException c r _ → if closureState c == InClosure

then impossibleRule
else propField r

FExceptionOccurs c _ r → if closureState c == NotInClosure

188

then impossibleRule
else propField r

where
restrictField :: (FieldSet i → FieldSet i) → PropM i ()
restrictField fkt = do

possible ← get
let restricted = fkt possible
if Field.null ty restricted

then impossibleRule
else put restricted

fixField :: Field i → PropM i ()
fixField e = do

possible ← get
if member ty e possible

then put $ singleton ty e
else impossibleRule

impossibleRule :: PropM i ()
impossibleRule = mzero
closureState :: ClosureState i → ClosureView
closureState = viewClosureState ty
closureFields :: ClosureState i → FieldSet i
closureFields = viewClosureFields ty
ty = (undefined :: i)

{-
Fix one field in the event.
-}
nextField :: forall i. BF i ⇒ RuleField i → Field i → Search (RuleField i)
nextField rule field = case rule of

FPrefix p → case prefixStateNext ty p field of
Just a → return $ FPrefix a
Nothing → mzero

FExtChoiceL r p → FExtChoiceL <$> rec r <∗> pure p
FExtChoiceR p r → FExtChoiceR p <$> rec r
FExtChoice p q
→ joinRepExtChoiceParts

(nextRepExtChoicePart p field)
(nextRepExtChoicePart q field)

FInterleaveL r p → FInterleaveL <$> rec r <∗> pure p
FInterleaveR p r → FInterleaveR p <$> rec r
FSeqNormal r p → FSeqNormal <$> rec r <∗> pure p
FNotHidden c r → FNotHidden (fc c) <$> rec r
FNotShareL c r p → FNotShareL (fc c) <$> rec r <∗> pure p
FNotShareR c p r → FNotShareR (fc c) p <$> rec r
FShared c r1 r2 → FShared (fc c) <$> rec r1 <∗> rec r2
FAParallelL c1 c2 r q
→ FAParallelL (fc c1) (fc c2) <$> rec r <∗> pure q

FAParallelR c1 c2 p r
→ FAParallelR (fc c1) (fc c2) p <$> rec r

FAParallelBoth c1 c2 r1 r2
→ FAParallelBoth (fc c1) (fc c2) <$> rec r1 <∗> rec r2

FNoInterrupt r q → FNoInterrupt <$> rec r <∗> pure q
FInterrupt p r → FInterrupt p <$> rec r
FTimeout r q → FTimeout <$> rec r <∗> pure q
FRepAParallel x → return $ FRepAParallel $ repNextField field x
FRenaming rel p → return $ FRenaming rel p
FChaos c → return $ FChaos (fc c)
FLinkEventL rel r q → FLinkEventL rel <$> rec r <∗> pure q
FLinkEventR rel p r → FLinkEventR rel p <$> rec r
FNoException c r q → FNoException (fc c) <$> rec r <∗> pure q

189

FExceptionOccurs c p r → FExceptionOccurs (fc c) <$> pure p <∗> rec r
where

rec r = nextField r field
ty = (undefined :: i)
fc c = closureStateNext ty c field

{-
Check constraints after last field and
convert RuleField to RuleEvent.
We must check all constraints here!
-}
lastField :: forall i. BF i
⇒ RuleField i → Event.Event i → Search (RuleEvent i)

lastField rule event = case rule of
FPrefix p → case prefixStateFinalize ty p of

Nothing → mzero
Just x → return $ HPrefix event x

FExtChoiceL r p → ExtChoiceL <$> rec r <∗> pure p
FExtChoiceR p r → ExtChoiceR p <$> rec r
FExtChoice (Right (p,rp)) (Right (q,rq))
→ (ExtChoiceL <$> (anyOf rp »= rec) <∗> pure q)
‘mplus‘ (ExtChoiceR p <$> (anyOf rq »= rec))

FExtChoice _ _ → error "unreachable: this case is handled by nextField"
FInterleaveL r p → InterleaveL <$> rec r <∗> pure p
FInterleaveR p r → InterleaveR p <$> rec r
FSeqNormal r p → SeqNormal <$> rec r <∗> pure p
FNotHidden hidden r → do

guard_not_inClosure hidden
NotHidden (restoreClosure hidden) <$> rec r

FNotShareL c r p → do
guard_not_inClosure c
NotShareL (restoreClosure c) <$> rec r <∗> pure p

FNotShareR c p r → do
guard_not_inClosure c
NotShareR (restoreClosure c) p <$> rec r

FShared c r1 r2 → do
guard_inClosure c
Shared (restoreClosure c) <$> rec r1 <∗> rec r2

FAParallelL c1 c2 r q → case (inClosure c1,inClosure c2) of
(True,False) → AParallelL (restoreClosure c1) (restoreClosure c2) <$> rec r <∗>

pure q
_ → mzero

FAParallelR c1 c2 p r → case (inClosure c1,inClosure c2) of
(False,True) → AParallelR (restoreClosure c1) (restoreClosure c2) <$> pure p <∗>

rec r
_ → mzero

FAParallelBoth c1 c2 r1 r2 → case (inClosure c1,inClosure c2) of
(True,True) → AParallelBoth (restoreClosure c1) (restoreClosure c2)

<$> rec r1 <∗> rec r2
_ → mzero

FNoInterrupt r q → NoInterrupt <$> rec r <∗> pure q
FInterrupt p r → InterruptOccurs p <$> rec r
FTimeout r q → TimeoutNo <$> rec r <∗> pure q
FRepAParallel RepAPFailed → mzero
FRepAParallel x → repToRules event x
FRenaming rel p → renamingRules rel p event
FChaos c → if inClosure c

then return $ ChaosEvent (restoreClosure c) event
else mzero

FLinkEventL rel r q → do
guard $ not $ Event.isInRenamingDomain ty event rel
LinkEventL rel <$> rec r <∗> pure q

190

FLinkEventR rel p r → do
guard $ not $ Event.isInRenamingRange ty event rel
LinkEventR rel p <$> rec r

FNoException c r p → do
guard_not_inClosure c
NoException (restoreClosure c) <$> rec r <∗> pure p

FExceptionOccurs c p r → do
guard_inClosure c
ExceptionOccurs (restoreClosure c) p <$> rec r

where
rec r = lastField r event
ty = (undefined :: i)
restoreClosure = closureRestore ty
inClosure = seenPrefixInClosure ty
guard_inClosure = guard ◦ seenPrefixInClosure ty
guard_not_inClosure = guard ◦ not ◦ seenPrefixInClosure ty

eventTransitions :: BF i ⇒ Event.EventSet i → Process i → Search (RuleEvent i)
eventTransitions events proc = liftM snd $ computeNextE events proc

computeNextE :: BF i
⇒ Event.EventSet i → Process i → Search (Event.Event i, RuleEvent i)

computeNextE events proc = rulePattern events proc »= runFields events

runFields :: forall i. BF i
⇒ Event.EventSet i → RuleField i → Search (Event.Event i, RuleEvent i)

runFields events r = do
let baseEvents = closureStateInit ty events
(chan,next) ← enumField (viewClosureFields ty baseEvents) r
(e,final) ← loopFields

(closureStateNext ty baseEvents chan)
[chan] -- the accumulator for fields
next
(channelLen ty chan -1)

let event = joinFields ty $ reverse e
rule ← lastField final event
return (event,rule)

where ty = (undefined :: i)

loopFields :: forall i.
BF i ⇒

ClosureState i -- the universe for events
→ [Field i] -- accumulator for fields
→ RuleField i -- current rule
→ Int -- number fields left in prefix
→ Search ([Field i], RuleField i)

loopFields _ eventAcc rule 0 = return (eventAcc, rule)
loopFields closureState eventAcc rule n = do

(f,next) ← enumField (viewClosureFields ty closureState) rule
loopFields

(closureStateNext ty closureState f)
(f:eventAcc)
next
(n-1)

where ty = (undefined :: i)

enumField :: forall i. BF i ⇒ FieldSet i → RuleField i → Search (Field i, RuleField i)
enumField top r = case execStateT (propField r) top of

Just s → do
f ← anyOf $ fieldSetToList ty s
nr ← nextField r f
return (f ,nr)

191

Nothing → mzero
where ty = (undefined :: i)

tauTransitions :: forall i. BF i ⇒ Process i → Search (RuleTau i)
tauTransitions proc = case proc of

SwitchedOff p → tauTransitions $ switchOn p
-- SwitchedOff p → mzero
-- SwitchedOff p → return $ TraceSwitchOn $ switchOn p

Prefix {} → mzero
ExternalChoice p q
→ (ExtChoiceTauL <$> tauTransitions p <∗> pure q)
‘mplus‘ (ExtChoiceTauR p <$> tauTransitions q)

InternalChoice p q
→ (return $ InternalChoiceL p q)
‘mplus‘ (return $ InternalChoiceR p q)

Interleave p q
→ (InterleaveTauL <$> tauTransitions p <∗> pure q)
‘mplus‘ (InterleaveTauR p <$> tauTransitions q)
‘mplus‘ (InterleaveTickL <$> tickTransitions p <∗> pure q)
‘mplus‘ (InterleaveTickR p <$> tickTransitions q)

Interrupt p q
→ (InterruptTauL <$> tauTransitions p <∗> pure q)
‘mplus‘ (InterruptTauR p <$> tauTransitions q)

Timeout p q
→ (TimeoutTauR <$> tauTransitions p <∗> pure q)
‘mplus‘ (return $ TimeoutOccurs p q)

Sharing p c q
→ (ShareTauL c <$> tauTransitions p <∗> pure q)
‘mplus‘ (ShareTauR c p <$> tauTransitions q)
‘mplus‘ (ShareTickL c <$> tickTransitions p <∗> pure q)
‘mplus‘ (ShareTickR c p <$> tickTransitions q)

AParallel pc qc p q
→ (AParallelTauL pc qc <$> tauTransitions p <∗> pure q)
‘mplus‘ (AParallelTauR pc qc p <$> tauTransitions q)
‘mplus‘ (AParallelTickL pc qc <$> tickTransitions p <∗> pure q)
‘mplus‘ (AParallelTickR pc qc p <$> tickTransitions q)

Seq p q
→ (SeqTau <$> tauTransitions p <∗> pure q)

‘mplus‘ (SeqTick <$> tickTransitions p <∗> pure q)
Hide hidden p → (do

rule ← (eventTransitions hidden p)
return $ Hidden hidden rule)

‘mplus‘ (HideTau hidden <$> tauTransitions p)
Stop → mzero
Skip → mzero
Omega → mzero
AProcess _n → mzero
RepAParallel _ → mzero -- TODO ! tau for replicated AParallel
Renaming rel p → RenamingTau rel <$> tauTransitions p
Chaos c → return $ ChaosStop c
LinkParallel rel p q
→ (LinkTauL rel <$> tauTransitions p <∗> pure q)

‘mplus‘ (LinkTauR rel p <$> tauTransitions q)
‘mplus‘ (LinkTickL rel <$> tickTransitions p <∗> pure q)
‘mplus‘ (LinkTickR rel p <$> tickTransitions q)
‘mplus‘ mkLinkedRules rel p q

Exception c p q → mzero -- TODO

tickTransitions :: BL i ⇒ Process i → Search (RuleTick i)
tickTransitions proc = case proc of

SwitchedOff p → tickTransitions $ switchOn p
Prefix {} → mzero

192

ExternalChoice p q
→ (ExtChoiceTickL <$> tickTransitions p <∗> pure q)
‘mplus‘ (ExtChoiceTickR p <$> tickTransitions q)

InternalChoice _p _q → mzero
Interleave Omega Omega → return $ InterleaveOmega
Interleave _ _ → mzero
Interrupt p q → InterruptTick <$> tickTransitions p <∗> pure q
Timeout p q → TimeoutTick <$> tickTransitions p <∗> pure q
Sharing Omega c Omega → return $ ShareOmega c
Sharing _ _ _ → mzero
AParallel c1 c2 Omega Omega → return $ AParallelOmega c1 c2
AParallel _ _ _ _ → mzero
RepAParallel l → if all (isOmega ◦ snd) l

then return $ RepAParallelOmega $ map fst l
else mzero

Seq _p _q → mzero
Hide c p → HiddenTick c <$> tickTransitions p
Stop → mzero
Skip → return $ SkipTick
Omega → mzero
AProcess _n → mzero
Renaming rel p → RenamingTick rel <$> tickTransitions p
Chaos _ → mzero
LinkParallel rel Omega Omega → return $ LinkParallelTick rel
LinkParallel _ _ _ → mzero
Exception c p q → mzero -- TODO

type RepAPProc i = (ClosureState i, Process i, [([Field.Field i], RuleEvent i)])
-- why not do this field wise ^

data RepAP i
= RepAP {

repInitials :: FieldSet i
,repProcs :: [RepAPProc i]
}

| RepAPFailed

instance Show (RepAP i) where show _ = "RepAP"

initRepAParallel :: forall i. BF i
⇒ [(Event.EventSet i, Process i)]
→ RepAP i

initRepAParallel l = RepAP {
repInitials = joinInitials ln

,repProcs = ln
}
where

ty = (undefined :: i)
ln = map mkLn l
mkLn :: (Event.EventSet i, Process i) → RepAPProc i
mkLn (closure,p)

= (closureStateInit ty closure
,p
,map (first (splitFields ty)) $ runSearch $ computeNextE closure p)

joinInitials :: forall i. BF i
⇒ [RepAPProc i]
→ FieldSet i

joinInitials l= fieldSetFromList ty $ concatMap jf l where
jf (_,_,a) = mapMaybe il a
il ([],_) = Nothing
il (h:_,_) = Just h
ty = (undefined :: i)

193

repNextField :: forall i. BF i
⇒ Field i → RepAP i → RepAP i

repNextField _ RepAPFailed = RepAPFailed
repNextField field x = RepAP {

repInitials = joinInitials newProcs
,repProcs = newProcs
}
where

ty = (undefined :: i)
newProcs :: [RepAPProc i]
newProcs = map filterRules $ repProcs x
filterRules :: RepAPProc i → RepAPProc i
filterRules (closure, p, rules)

= (closureStateNext ty closure field, p, mapMaybe nextR rules)
nextR ([], _r) = Nothing
nextR (h:t, r) | fieldEq ty field h = Just (t,r)
nextR _ = Nothing

repToRules :: forall i. BF i
⇒ Event.Event i
→ RepAP i
→ Search (RuleEvent i)

repToRules event ra = do
parts ← mapM mkPart $ repProcs ra
if all isLeft parts

then mzero
else return $ RepAParallelEvent parts

where
mkPart :: (ClosureState i, Process i, [([Field.Field i], RuleEvent i)])
→ Search (EventRepAPart i)

mkPart (closure, origProc, []) = do
guard (not $ inClosure closure)
return $ Left (restoreClosure closure, origProc)

mkPart (closure, _origProc, (map snd → rules)) = do
r ← anyOf rules
return $ Right (restoreClosure closure, r)

restoreClosure = closureRestore ty
inClosure = seenPrefixInClosure ty
ty = (undefined :: i)
isLeft (Left _) = True
isLeft _ = False

{-
todo : special cases for injective and relational renamings

-}
renamingRules :: forall i. BF i
⇒ Event.RenamingRelation i
→ Process i
→ Event.Event i
→ Search (RuleEvent i)

renamingRules rel proc event = do
fromEvent ← anyOf $ Event.preImageRenaming ty rel event
rule ← eventTransitions (Event.singleEventToClosureSet ty fromEvent) proc
return $ Rename rel event rule

‘mplus‘ (do
guard $ not $ Event.isInRenamingDomain ty event rel
-- here we could callback on enumNext !
rule ← eventTransitions (Event.singleEventToClosureSet ty event) proc
return $ RenameNotInDomain rel rule)

where
ty = (undefined :: i)

194

{-
We just enumerate everything,
very inefficient!
-}
mkLinkedRules :: forall i. BF i
⇒ Event.RenamingRelation i
→ Process i
→ Process i
→ Search (RuleTau i)

mkLinkedRules rel p q = do
(e1, r1) ← rules1
(e2, r2) ← rules2
guard $ Event.isInRenaming ty rel e1 e2
return $ LinkLinked rel r1 r2
where

rules1 :: Search (Event.Event i, RuleEvent i)
rules1 = rules (Event.getRenamingDomain ty rel) p
rules2 = rules (Event.getRenamingRange ty rel) q
rules :: [Event.Event i] → Process i → Search (Event.Event i, RuleEvent i)
rules s proc = do

e ← anyOf s
-- Use EnumNext instead!
computeNextE (Event.singleEventToClosureSet ty e) proc

ty = (undefined :: i)

type RepExtChoicePart i = Either (Process i) (Process i,[RuleField i])

initRepExtChoicePart :: forall i. BF i
⇒ Event.EventSet i → Process i → RepExtChoicePart i

initRepExtChoicePart events p
= if List.null rules

then Left p
else Right (p,rules)

where rules = runSearch $ rulePattern events p

{-
nextRepExtChoicePart may call nextField with invalid fields.
nextRepExtChoicePart is only an approximation, it might return invalid rules.
-}
nextRepExtChoicePart :: forall i. BF i
⇒ RepExtChoicePart i → Field i → RepExtChoicePart i

nextRepExtChoicePart (Left p) _ = (Left p)
nextRepExtChoicePart (Right (p,rules)) field
{-
This is an error, we cannot rely on nextField to check the constraints
nextField might return invalid rules
-}

= if List.null newRules
then Left p
else Right (p,newRules)

where newRules = runSearch $ msum $ map (flip nextField field) rules

joinRepExtChoiceParts :: forall i. BF i
⇒ RepExtChoicePart i → RepExtChoicePart i → Search (RuleField i)

joinRepExtChoiceParts l r = case (l,r) of
(Left _,Left _) → mzero
(Right (_,rules), Left q) → FExtChoiceL <$> anyOf rules <∗> pure q
(Left p, Right (_,rules)) → FExtChoiceR p <$> anyOf rules
(Right _,Right _) → return $ FExtChoice l r

195

B.1.9 Eval Function

--
-- |
-- Module : CSPM.Interpreter.Eval
-- Copyright : (c) Fontaine 2009 - 2011
-- License : BSD
--
-- Maintainer : Fontaine@cs.uni-duesseldorf.de
-- Stability : experimental
-- Portability : GHC-only
--
-- The main eval function of the Interpreter.
--
--
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE BangPatterns #-}
module CSPM.Interpreter.Eval
(

eval
,runEM
,getSigma
,evalBool
,evalOutField
,evalFieldSet
,evalProcess
,evalModule

)
where

import qualified CSPM.CoreLanguage as Core

import Language.CSPM.AST as AST hiding (Bindings)

import CSPM.Interpreter.Types as Types
import CSPM.Interpreter.Bindings as Bindings
import CSPM.Interpreter.PatternMatcher
import CSPM.Interpreter.Hash as Hash
import CSPM.Interpreter.SSet as SSet
import CSPM.Interpreter.ClosureSet as ClosureSet
import CSPM.Interpreter.Renaming as Renaming

import Data.Digest.Pure.HashMD5 as HashClass

import Control.Arrow
import Control.Monad.Reader as Reader
import Control.Monad.State.Strict
--import Control.Monad hiding (guard)
import qualified Data.Set as Set
import Data.Set (Set)
import qualified Data.IntMap as IntMap
import Data.IntMap (IntMap)
import qualified Data.List as List

-- | Evaluate an expression in an envirionment.
runEval :: Env → AST.LExp → Value
runEval env expr = runEM (eval expr) env

-- | Run the ’EM’ monad with a given envirionment.
runEM :: EM x → Env → x
runEM action env = Reader.runReader (unEM action) env

196

runEnv :: Env → EM x → x
runEnv env action = Reader.runReader (unEM action) env

-- | Evaluate an expression in the ’EM’ monad.
eval :: LExp → EM Value
eval expr = case unLabel expr of

Var v → lookupIdent v
IntExp i → return $ VInt i
SetExp (unLabel → RangeOpen _) _
→ throwFeatureNotImplemented "open sets" $ Just $ srcLoc expr

SetExp r Nothing → evalRange r »= return ◦ VSet ◦ Set.fromList
SetExp r (Just comps) → do

l ← evalSetComp ret comps
return $ VSet l
where ret = evalRange r »= return ◦ Set.fromList

ListExp r Nothing → liftM VList $ evalRange r
ListExp r (Just comps) → liftM VList $ evalListComp (evalRange r) comps
ClosureComprehension (el, comps) → do

l ← evalListComp (mapM eval el) comps
ClosureSet.mkEventClosure l »= return ◦ VClosure

LetI decls freenames e → do
env ← getEnv
let digest = closureDigest expr env freenames
return $ runEval (processDeclList digest env decls) e

Ifte cond t e → do
c ← evalBool cond
if c then eval t else eval e

CallFunction fkt args → do
f ← eval fkt
parameter ← mapM eval $ concat args
functionCall f parameter

CallBuiltIn bi [[e]] → builtIn1 bi e
CallBuiltIn bi [[a,b]] → builtIn2 bi a b
CallBuiltIn _ _
→ throwScriptError "calling builtIn with worng number of args"

(Just $ srcLoc expr) Nothing
Lambda {} → throwInternalError "not expection Constructor Lambda"

(Just $ srcLoc expr) $ Nothing
LambdaI freeNames patL body → do

env ← getEnv
return $ VFun $ FunClosure {

getFunCases = [FunCaseI patL body]
,getFunEnv = env
,getFunArgNum = length patL
,getFunId = closureDigest expr env freeNames
}

Stop → return $ VProcess $ Core.stop
Skip → return $ VProcess $ Core.skip
CTrue → return $ VBool True
Events → liftM VClosure evalAllEvents
CFalse → return $ VBool False
BoolSet → return $ VSet $ Set.fromList [VBool True,VBool False]

{-
Many prob test contain unboundet INT
IntSet → return $ VAllInts

-}
IntSet → return $ VSet $ Set.fromList $ map VInt [0..100] --ToDo: Fix this !!
TupleExp l → mapM eval l »= return ◦ VTuple
Parens e → eval e
AndExp a b → do

av ← evalBool a
if av then eval b else return $ VBool False

197

OrExp a b → do
av ← evalBool a
if av then return $ VBool True else eval b

NotExp e → evalBool e »= return ◦ VBool ◦ not
NegExp e → evalInt e »= return ◦ VInt ◦ negate
Fun1 bi e → builtIn1 bi e
Fun2 bi a b → builtIn2 bi a b
DotTuple l → mapM eval l »= return ◦ VDotTuple ◦ concatMap flatTuple

where
flatTuple (VDotTuple x) = x
flatTuple x = [x]

Closure l → mapM eval l »= ClosureSet.mkEventClosure »= return ◦ VClosure
ProcSharing s a b
→ liftM3 Core.sharing

(switchedOffProc a)
(evalClosureExp s)
(switchedOffProc b)

»= return ◦ VProcess
ProcAParallel aLeft aRight pLeft pRight
→ liftM4 Core.aparallel

(evalClosureExp aLeft)
(evalClosureExp aRight)
(switchedOffProc pLeft)
(switchedOffProc pRight)

»= return ◦ VProcess
ProcLinkParallel l p q
→ liftM3 Core.linkParallel

(evalLinkList l)
(switchedOffProc p)
(switchedOffProc q)

»= return ◦ VProcess
ProcRenaming rlist gen proc → do

pairs ← case gen of
Nothing → mapM evalRenaming rlist
Just gens → evalListComp (mapM evalRenaming rlist) $ unLabel gens

p ← switchedOffProc proc
return $ VProcess $ Core.renaming (toRenaming pairs) p
where

evalRenaming :: LRename → EM (Value,Value)
evalRenaming (unLabel → Rename a b) = liftM2 (,) (eval a) (eval b)

ProcRepSequence comp p
→ evalProcCompL p comp »= return ◦ VProcess ◦ Core.repSeq

ProcRepInternalChoice comp p
→ evalProcCompS p comp »= return ◦ VProcess ◦ Core.repInternalChoice

ProcRepExternalChoice comp p
→ evalProcCompS p comp »= return ◦ VProcess ◦ Core.repExternalChoice

ProcRepInterleave comp p
→ evalProcCompS p comp »= return ◦ VProcess ◦ Core.repInterleave

ProcRepAParallel comp c p
→ evalListComp ret (unLabel comp)

»= return ◦ VProcess ◦ Core.repAParallel
where ret = do { x ← evalClosureExp c; y ← switchedOffProc p; return [(x,y)]}

ProcRepLinkParallel comp link p
→ liftM2 Core.repLinkParallel

(evalLinkList link)
(evalProcCompL p comp)

»= return ◦ VProcess
ProcRepSharing comp closure p → do

l ← evalProcCompS p comp
c ← evalClosureExp closure
return $ VProcess $ Core.repSharing c l

PrefixI free chan fields body → do

198

env ← getEnv
return $ VProcess $ Core.prefix $ PrefixState {

prefixEnv = env
,prefixFields = chanOut:fields
,prefixBody = body
,prefixRHS = throwInternalError "prefixRHS undefiend" (Just $ srcLoc expr) Nothing
,prefixDigest = closureDigest body env free
,prefixPatternFailed = False

}
where chanOut = setNode chan $ OutComm chan

ExprWithFreeNames {}
→ throwInternalError "didn’t expect ExprWithFreeNames" (Just $ srcLoc expr) Nothing

_ → throwFeatureNotImplemented "hit catch-all case of eval function"
$ Just $ srcLoc expr

evalRange :: LRange → EM [Value]
evalRange r = case unLabel r of

RangeEnum l → mapM eval l
RangeClosed start end → do

s ← evalInt start
e ← evalInt end
return $ map VInt [s..e]

RangeOpen start → do
s ← evalInt start
return $ map VInt [s..]

evalBool :: LExp → EM Bool
evalBool e = do

v ← eval e
case v of

VBool b → return b
_ → throwTypingError "expecting type Bool" (Just $ srcLoc e) $ Just v

evalInt :: LExp → EM Integer
evalInt e = do

v ← eval e
case v of

VInt b → return b
_ → throwTypingError "expecting type Integer" (Just $ srcLoc e) $ Just v

evalList :: LExp → EM [Value]
evalList e = do

v ← eval e
case v of

VList l → return l

-- used in mydemos/SimpleRepAlphParallel.csp SYSTEM
VDataType l → return $ map VConstructor l

-- because of a hack in RepAParalle
VSet l → return $ Set.toList l

-- because of a hack in evalProcCompS
VClosure c → return $ Set.toList $ closureToSet c

_ → throwTypingError "expecting type List" (Just $ srcLoc e) $ Just v

setFromValue :: Value → EM (Set Value)
setFromValue v = case setFromValueM v of

Just l → return l
Nothing → throwTypingError "expecting type Set" Nothing $ Just v

199

evalSet :: LExp → EM (Set Value)
evalSet e = do

v ← eval e
case setFromValueM v of

Just l → return l
Nothing → throwTypingError "expecting type Set" (Just $ srcLoc e) $ Just v

setFromValueM :: Value → Maybe (Set Value)
setFromValueM v = case v of

VSet l → Just l
VClosure c → Just $ closureToSet c
VDataType l → Just $ Set.fromList --used in basin_olderog_bank.csp

$ map VConstructor l
_ → Nothing

evalProcess :: LExp → EM Process
evalProcess e = do

v ← eval e
case v of

VProcess p → return p
_ → throwTypingError "expecting type Process" (Just $ srcLoc e) $ Just v

evalClosureExp :: LExp → EM ClosureSet
evalClosureExp e = do

v ← eval e
case v of

VClosure x → return x
-- VAllEvents → evalAllEvents

VSet s → return $ setToClosure s
_ → throwTypingError "expecting type Event-Closure" (Just $ srcLoc e) $ Just v

listFromValue :: Value → EM [Value]
listFromValue (VList l) = return l
listFromValue v = throwTypingError "expecting type List" Nothing $ Just v

builtIn1 :: LBuiltIn → LExp → EM Value
builtIn1 op expr

= case lBuiltInToConst op of
F_Seq → evalSet expr »= return ◦ VAllSequences
F_card → do

s ← evalSet expr
return $ VInt $ fromIntegral $ Set.size s

F_empty → evalSet expr »= return ◦ VBool ◦ Set.null
F_head → do

l ← evalList expr
case l of

[] → throwScriptError "head of empty list" (Just $ srcLoc expr) Nothing
h:_tail → return h

F_tail → do
l ← evalList expr
case l of

[] → throwScriptError "tail of empty list" (Just $ srcLoc expr) Nothing
_head:rest → return $ VList rest

F_length → evalList expr »= return ◦ VInt ◦ fromIntegral ◦ List.length
F_Len2 → evalList expr »= return ◦ VInt ◦ fromIntegral ◦ List.length
F_Union → do

s ← evalSet expr
setList ← mapM setFromValue $ Set.elems s
return $ VSet $ Set.unions setList

F_Inter → do
s ← evalSet expr
setList ← mapM setFromValue $ Set.elems s

200

case setList of
[] → throwScriptError "intersection of empty set of sets"

(Just $ srcLoc expr) Nothing
l → return $ VSet $ List.foldl1’ Set.intersection l

F_set → evalList expr »= return ◦ VSet ◦ Set.fromList
F_Set → do

s ← evalSet expr
return $ VSet $ Set.fromList $ map (VSet ◦ Set.fromList)

$ List.subsequences $ Set.toList s
F_concat → do

l ← evalList expr »= mapM listFromValue
return $ VList $ List.concat l

F_null → do
l ← evalList expr
return $ VBool (List.null l)

F_CHAOS → liftM (VProcess ◦ Core.chaos) $ evalClosureExp expr
_ → throwInternalError "malformed AST1" (Just $ srcLoc expr) Nothing

builtIn2 :: LBuiltIn → LExp → LExp → EM Value
builtIn2 op a b =

case lBuiltInToConst op of
F_union → setOp Set.union
F_inter → setOp Set.intersection
F_diff → setOp Set.difference
F_member → do

av ← eval a
s ← evalSet b
return $ VBool $ Set.member av s

F_Seq → throwFeatureNotImplemented "builtIn2 FSeq" Nothing
F_elem → do

av ← eval a
l ← evalList b
return $ VBool $ List.elem av l

F_Concat → do
x ← evalList a
y ← evalList b
return $ VList $ x ++y

F_Mult → intOp (∗)
F_Div → intOp div
F_Mod → intOp mod
F_Add → intOp (+)
F_Sub → intOp (-)
F_Eq → do

x ← eval a
y ← eval b
return $ VBool (x == y)

F_NEq → do
x ← eval a
y ← eval b
return $ VBool (x /= y)

F_GE → intCmp (≥)
F_LE → intCmp (≤)
F_LT → intCmp (<)
F_GT → intCmp (>)
F_Sequential → procOp Core.seq
F_Interrupt → procOp Core.interrupt
F_ExtChoice → do

x ← switchedOffProc a
y ← switchedOffProc b
return $ VProcess $ Core.externalChoice x y

F_Timeout → procOp Core.timeout
F_IntChoice → do

201

x ← switchedOffProc a
y ← switchedOffProc b
return $ VProcess $ Core.internalChoice x y

F_Interleave → do
x ← switchedOffProc a
y ← switchedOffProc b
return $ VProcess $ Core.interleave x y

F_Hiding → do
proc ← switchedOffProc a
hidden ← evalClosureExp b
return $ VProcess $ Core.hide hidden proc

F_Guard → do
cond ← evalBool a
if cond then liftM VProcess $ switchedOffProc b

else return $ VProcess Core.stop
_ → throwInternalError "malformed AST2" (Just $ srcLoc op) Nothing

where
intOp :: (Integer → Integer → Integer) → EM Value
intOp o = do

x ← evalInt a
y ← evalInt b
return $ VInt $ o x y

intCmp :: (Integer → Integer → Bool) → EM Value
intCmp rel = do

x ← evalInt a
y ← evalInt b
return $ VBool $ rel x y

setOp :: (Set Value → Set Value → Set Value) → EM Value
setOp o = do

x ← evalSet a
y ← evalSet b
return $ VSet $ o x y

procOp :: (Process → Process → Process) → EM Value
procOp o = do

x ← switchedOffProc a
y ← switchedOffProc b
return $ VProcess $ o x y

-- | Process a module and return the top-level envirionment.
evalModule :: Module INT → Env
evalModule m

= processDeclList (hs "TopLevelEnvirionment") emptyEnvirionment
$ AST.moduleDecls m

type DeclM x = ReaderT (Digest,Env) (State (Bindings, IntMap Digest)) x

processDeclList :: Digest → Env → [LDecl] → Env
processDeclList digest oldEnv decls =

let
(newBinds,newDigests)

= execState action’ (getLetBindings oldEnv, letDigests oldEnv)
action :: DeclM ()
action = mapM_ processDecl decls
action’ = runReaderT action (digest,newEnv)
newEnv = oldEnv { letBindings = newBinds, letDigests = newDigests}

in newEnv

bindIdentM :: LIdent → Value → DeclM ()
bindIdentM i v = do

d ← asks fst
modify $ λ(values,digests) →

(bindIdent i v values

202

,IntMap.insert (identId i) (HashClass.mixInt d $ identId i) digests)

processDecl :: LDecl → DeclM ()
processDecl decl = do

case unLabel decl of
PatBind pat expr → do

finalEnv ← asks snd
let rhs = runEval finalEnv expr -- evaluate the righthand side
modify $ first $ λoldBinds → tryMatchLazy oldBinds pat rhs
digest ← asks fst
forM_ (boundNames pat) $ λi → modify $ second

$ IntMap.insert (identId i) (HashClass.mixInt digest $ identId i)
FunBind i cases → do

finalEnv ← asks snd
digest ← asks fst
bindIdentM i $ VFun $ FunClosure {

getFunCases = cases
,getFunEnv = finalEnv
,getFunArgNum = length $ casePattern $ head cases
,getFunId = mixInt digest $ AST.unNodeId $ AST.nodeId decl
}

where
casePattern (FunCaseI pl _) = pl
casePattern _ = throwInternalError "unexpected FunCase in AST"

(Just $ srcLoc i) Nothing
Assert {} → return ()
Transparent names → forM_ names $ λn → bindIdentM n cspIdentityFunction
SubType tname constrList → do

{-
subtypes are like data types except that we do not bind the constructs
todo : check subtype declaration is correct, i.e. it really declares subtype

-}
constrs ← mapM (constrDecl False) constrList
bindIdentM tname (VDataType constrs)

DataType tname constrList → do
constrs ← mapM (constrDecl True) constrList
bindIdentM tname (VDataType constrs)

NameType tname t → do
finalEnv ← asks snd
bindIdentM tname (VNameType $ runEnv finalEnv $ evalTypeDef t)

Print _expr → return ()
AST.Channel idList t → do

finalEnv ← asks snd
forM_ idList $ λi → bindIdentM i $ VChannel $ Types.Channel {

chanId = AST.uniqueIdentId $ AST.unUIdent $ unLabel i
,chanName = AST.realName $ AST.unUIdent $ AST.unLabel i
,chanLen = case t of

Nothing → 1
Just ty → case unLabel ty of

TypeTuple _l → 2
TypeDot l → length l+1

,chanFields = case t of
Nothing → []
Just l → runEnv finalEnv $ evalTypeDef l

}

constrDecl :: Bool → LConstructor → DeclM Types.Constructor
constrDecl performBinding (unLabel → AST.Constructor ident td) = do

finalEnv ← asks snd
let

cl = case td of
Nothing → []

203

Just l → runEnv finalEnv $ evalTypeDef l

constr = Types.Constructor
(AST.uniqueIdentId $ AST.unUIdent $ unLabel ident)
(AST.realName $ AST.unUIdent $ unLabel ident)
cl

when performBinding $ bindIdentM ident $ VConstructor constr
return constr

evalTypeDef :: LTypeDef → EM [FieldSet] -- ← this is too restrictive ?
evalTypeDef t = case unLabel t of

TypeDot l → mapM evalFieldSet l -- ← meight be a tuple of one
TypeTuple l → do

el ← mapM evalFieldSet l
-- cross-product
return [SSet.fromList $ map VTuple $ sequence $ map SSet.toList el]

evalFieldSet :: LExp → EM FieldSet
evalFieldSet expr = do

v ← eval expr
case v of

VInt {} → return $ SSet.singleton v
VChannel {} → return $ SSet.singleton v
VSet s → return $ SSet.Proper s

-- todo: Fix this when we have ClosureExpressions.
-- todo: This does not work for constructors that have fields.

VDataType constrList → return $ SSet.fromList $ map VConstructor constrList
VNameType _ → throwInternalError "nametype not implemented" (Just $ srcLoc expr) $ Just v
VAllInts → return $ SSet.fromList $ map VInt [0..10] --todo
_ → throwTypingError "evalFieldSet" (Just $ srcLoc expr) $ Just v

switchedOffProc :: LExp → EM Process
switchedOffProc (unLabel → ExprWithFreeNames free expr) = do

env ← getEnv
return $ Core.switchedOff $ SwitchedOffProc {

switchedOffDigest = (closureDigest expr env free)
,switchedOffExpr = expr
,switchedOffProcess = runEM (evalProcess expr) env
}

switchedOffProc expr
= throwInternalError "cannot determine free variables" (Just $ srcLoc expr) Nothing

evalOutField :: LExp → EM Field
evalOutField expr = do

v ← eval expr
case v of

VInt {} → return v
VChannel {} → return v
VConstructor {} → return v
VTuple {} → return v
VDotTuple {} → return v -- todo : Fix for genric buffers
VBool {} → return v

{-
todo: Dupport lists and sets as channel fields.
Write test for VSet and VList.
-}

VSet {} → return v
VList {} → return v

_ → throwTypingError "Eval.hs : evalOutField" (Just $ srcLoc expr) $ Just v

204

{- redo this: Most procComprehensions work on sets ! -}
evalProcCompL :: LExp → LCompGenList → EM [Process]
evalProcCompL p comp = evalListComp ret $ unLabel comp

where
ret = do

r ← switchedOffProc p
return [r]

{-
fdr does not remove duplicates from replicatesProc compostions,
see examples/CSP/FDRFeatureTests/ReplicatedInterleaveSetDef.csp
-}
evalProcCompS :: LExp → LCompGenList → EM [Process]
evalProcCompS = evalProcCompL
{-
evalProcCompS p comp

= (evalSetComp ret $ unLabel comp)
»= (mapM processFromValue) ◦ Set.toList

where
{-
We intermediateley wrap processes with VProcess.
If we make evalSetComp polymorphic we get the following error
src/Language/CSPM/Interpreter/Eval.hs:536:0:

Contexts differ in length
(Use -XRelaxedPolyRec to allow this)

-}
ret = switchedOffProc p »= return ◦ Set.singleton ◦ VProcess

-}

evalListComp :: EM [x] → [LCompGen] → EM [x]
evalListComp ret [] = ret
evalListComp ret (h:t) = case unLabel h of

Guard g → do
b ← evalBool g
if b then evalListComp ret t

else return []
Generator pat gen → do

list ← evalList gen
rets ← mapM (evalCompPat pat) list
return $ concat rets

where
evalCompPat pat val = do

e ← getEnv
case tryMatchStrict (getArgBindings e) pat val of

Nothing → return []
Just newBinds
→ return $ runEM

(evalListComp ret t)
(setArgBindings e newBinds)

evalSetComp :: EM (Set Value) → [LCompGen] → EM (Set Value)
evalSetComp ret [] = ret
evalSetComp ret (h:t) = case unLabel h of

Guard g → do
b ← evalBool g
if b then evalSetComp ret t

else return Set.empty
Generator pat gen → do

set ← evalSet gen
rets ← mapM (evalCompPat pat) $ Set.elems set
return $ Set.unions rets

where

205

evalCompPat pat val = do
e ← getEnv
case tryMatchStrict (getArgBindings e) pat val of

Nothing → return Set.empty
Just newBinds
→ return $ runEM

(evalSetComp ret t)
(setArgBindings e newBinds)

evalAllEvents :: EM ClosureSet
evalAllEvents = do

channels ← lookupAllChannels
ClosureSet.mkEventClosure $ map VChannel channels

getSigma :: Env → Sigma
getSigma = runEM evalAllEvents

cspIdentityFunction :: Value
cspIdentityFunction = VFun $ FunClosure {

getFunCases = [funCase]
,getFunEnv = emptyEnvirionment
,getFunArgNum = 1
,getFunId = Hash.hash "cspIdentityFunction"
}
where

funCase = FunCaseI [labeled $ VarPat someId] (labeled $ Var someId)
someId = labeled $ UIdent $ UniqueIdent {

uniqueIdentId = -1
,bindingSide = e
,bindingLoc = e
,idType = e
,realName = e
,newName = e
,prologMode = e
,bindType = NotLetBound }

e = throwInternalError "use identityFunction magic constants" Nothing Nothing

evalLinkList :: LLinkList → EM RenamingRelation
evalLinkList l = case unLabel l of

LinkList x → liftM toRenaming $ mapM evalLink x
LinkListComprehension gen links
→ liftM toRenaming $ evalListComp (mapM evalLink links) gen

where
evalLink :: LLink → EM (Value,Value)
evalLink (unLabel → Link a b) = liftM2 (,) (eval a) (eval b)

functionCall :: Value → [Value] → EM (Value)
functionCall v arguments = case v of

VFun fkt → callFkt fkt arguments
VPartialApplied fkt oldArgs → callFkt fkt (oldArgs ++ arguments)
f → throwTypingError "calling non-function" Nothing $ Just f
where

tryFunCases :: [FunCase] → [Value] → Env → Value
tryFunCases [] _ _ = throwPatternMatchError "no matching function case" Nothing
tryFunCases ((FunCaseI parameter fktBody) : moreCases) args env =

case matchList parameter args (getArgBindings env) of
Just newBinds → runEval (setArgBindings env newBinds) fktBody
Nothing → tryFunCases moreCases args env

tryFunCases (FunCase {} : _) _ _
= throwInternalError "not expecting FunCase-Constructor" Nothing Nothing

matchList :: [LPattern] → [Value] → Bindings → Maybe Bindings

206

matchList patList valList env
= foldM (λe (pat,val) → tryMatchStrict e pat val)

env (zip patList valList)

{-
Going from
callFkt fkt args = return $ tryFunCases (getFunCases fkt) args (getFunEnv fkt)
to the version which supports partial application
costs approx. 17 % in the fibonacci -example.

-}
callFkt :: FunClosure → [Value] → EM Value
callFkt fkt args

= case compare haveArgs needArgs of
EQ → return $ tryFunCases (getFunCases fkt) args (getFunEnv fkt)
GT → do

f2 ← callFkt fkt $ take needArgs args
functionCall f2 $ drop needArgs args

LT → return $ VPartialApplied fkt args
where

haveArgs = length args
needArgs = getFunArgNum fkt

B.1.10 Abstract Syntax Tree

--
-- |
-- Module : Language.CSPM.AST
-- Copyright : (c) Fontaine 2008 - 2011
-- License : BSD3
--
-- Maintainer : Fontaine@cs.uni-duesseldorf.de
-- Stability : experimental
-- Portability : GHC-only
--
-- This module defines an Abstract Syntax Tree for CSPM.
-- This is the AST that is computed by the parser.
-- For historical reasons, it is rather unstructured.

{-# LANGUAGE DeriveDataTypeable, GeneralizedNewtypeDeriving #-}
{-# LANGUAGE EmptyDataDecls, RankNTypes #-}
{-# LANGUAGE RecordWildCards #-}
module Language.CSPM.AST
where

import Language.CSPM.Token
import Language.CSPM.SrcLoc (SrcLoc(..))

import Data.Typeable (Typeable)
import Data.Generics.Basics (Data)
import Data.Generics.Instances ()
import Data.IntMap (IntMap)
import Data.Map (Map)
import Data.Array.IArray

type AstAnnotation x = IntMap x
type Bindings = Map String UniqueIdent
type FreeNames = IntMap UniqueIdent

newtype NodeId = NodeId {unNodeId :: Int}
deriving (Eq, Ord, Show, Enum, Ix, Typeable, Data)

mkNodeId :: Int → NodeId

207

mkNodeId = NodeId

data Labeled t = Labeled {
nodeId :: NodeId

,srcLoc :: SrcLoc
,unLabel :: t
} deriving (Eq, Ord, Typeable, Data, Show)

-- | Wrap a node with a dummyLabel.
-- todo: Redo we need a specal case in DataConstructor Labeled.
labeled :: t → Labeled t
labeled t = Labeled {
nodeId = NodeId (-1)
,unLabel = t
,srcLoc = NoLocation
}

setNode :: Labeled t → y → Labeled y
setNode l n = l {unLabel = n}

type LIdent = Labeled Ident

data Ident
= Ident {unIdent :: String}
| UIdent UniqueIdent
deriving (Eq, Ord, Show, Typeable, Data)

unUIdent :: Ident → UniqueIdent
unUIdent (UIdent u) = u
unUIdent other = error

$ "Identifier is not of variant UIdent (missing Renaming) " ++ show other

identId :: LIdent → Int
identId = uniqueIdentId ◦ unUIdent ◦ unLabel

data UniqueIdent = UniqueIdent
{
uniqueIdentId :: Int

,bindingSide :: NodeId
,bindingLoc :: SrcLoc
,idType :: IDType
,realName :: String
,newName :: String
,prologMode :: PrologMode
,bindType :: BindType
} deriving (Eq, Ord, Show, Typeable, Data)

data IDType
= VarID | ChannelID | NameTypeID | FunID
| ConstrID | DataTypeID | TransparentID
| BuiltInID
deriving (Eq, Ord, Show, Typeable, Data)

data PrologMode = PrologGround | PrologVariable
deriving (Eq, Ord, Show, Typeable, Data)

{- Actually BindType and PrologMode are semantically aquivalent -}
data BindType = LetBound | NotLetBound

deriving (Eq, Ord, Show, Typeable, Data)

isLetBound :: BindType → Bool

208

isLetBound x = x==LetBound

data Module a = Module {
moduleDecls :: [LDecl]

,moduleTokens :: Maybe [Token]
,moduleSrcLoc :: SrcLoc
,moduleComments :: [LocComment]
,modulePragmas :: [Pragma]
} deriving (Eq, Ord, Show, Typeable, Data)

data FromParser deriving Typeable
instance Data FromParser
instance Eq FromParser

castModule :: Module a → Module b
castModule Module {..} = Module {..}

type ModuleFromParser = Module FromParser

type LExp = Labeled Exp
type LProc = LExp --LProc is just a typealias for better readablility

data Exp
= Var LIdent
| IntExp Integer
| SetExp LRange (Maybe [LCompGen])
| ListExp LRange (Maybe [LCompGen])
| ClosureComprehension ([LExp],[LCompGen])
| Let [LDecl] LExp
| Ifte LExp LExp LExp
| CallFunction LExp [[LExp]]
| CallBuiltIn LBuiltIn [[LExp]]
| Lambda [LPattern] LExp
| Stop
| Skip
| CTrue
| CFalse
| Events
| BoolSet
| IntSet
| TupleExp [LExp]
| Parens LExp
| AndExp LExp LExp
| OrExp LExp LExp
| NotExp LExp
| NegExp LExp
| Fun1 LBuiltIn LExp
| Fun2 LBuiltIn LExp LExp
| DotTuple [LExp]
| Closure [LExp]
| ProcSharing LExp LProc LProc
| ProcAParallel LExp LExp LProc LProc
| ProcLinkParallel LLinkList LProc LProc
| ProcRenaming [LRename] (Maybe LCompGenList) LProc
| ProcException LExp LProc LProc
| ProcRepSequence LCompGenList LProc
| ProcRepInternalChoice LCompGenList LProc
| ProcRepExternalChoice LCompGenList LProc
| ProcRepInterleave LCompGenList LProc
| ProcRepAParallel LCompGenList LExp LProc
| ProcRepLinkParallel LCompGenList LLinkList LProc
| ProcRepSharing LCompGenList LExp LProc--

209

| PrefixExp LExp [LCommField] LProc--
-- Only used in later stages.
| PrefixI FreeNames LExp [LCommField] LProc
| LetI [LDecl] FreeNames LExp -- freenames of all localBound names
| LambdaI FreeNames [LPattern] LExp
| ExprWithFreeNames FreeNames LExp
deriving (Eq, Ord, Show, Typeable, Data)

type LRange = Labeled Range
data Range

= RangeEnum [LExp]
| RangeClosed LExp LExp
| RangeOpen LExp
deriving (Eq, Ord, Show, Typeable, Data)

type LCommField = Labeled CommField
data CommField

= InComm LPattern
| InCommGuarded LPattern LExp
| OutComm LExp
deriving (Eq, Ord, Show, Typeable, Data)

type LLinkList = Labeled LinkList
data LinkList

= LinkList [LLink]
| LinkListComprehension [LCompGen] [LLink]
deriving (Eq, Ord, Show, Typeable, Data)

type LLink = Labeled Link
data Link = Link LExp LExp deriving (Eq, Ord, Show, Typeable, Data)

type LRename = Labeled Rename
data Rename = Rename LExp LExp deriving (Eq, Ord, Show, Typeable, Data)

type LBuiltIn = Labeled BuiltIn
data BuiltIn = BuiltIn Const deriving (Eq, Ord, Show, Typeable, Data)

lBuiltInToConst :: LBuiltIn → Const
lBuiltInToConst = h ◦ unLabel where

h (BuiltIn c) = c

type LCompGenList = Labeled [LCompGen]
type LCompGen = Labeled CompGen
data CompGen

= Generator LPattern LExp
| Guard LExp
deriving (Eq, Ord, Show, Typeable, Data)

type LPattern = Labeled Pattern
data Pattern

= IntPat Integer
| TruePat
| FalsePat
| WildCard
| Also [LPattern]
| Append [LPattern]
| DotPat [LPattern]
| SingleSetPat LPattern
| EmptySetPat
| ListEnumPat [LPattern]
| TuplePat [LPattern]

-- ConstrPat is generated by renaming

210

| ConstrPat LIdent
-- This the result of pattern-match-compilation.
| VarPat LIdent
| Selectors { --origPat :: LPattern

-- fixme: This creates an infinite tree with SYB everywehre’
selectors :: Array Int Selector

,idents :: Array Int (Maybe LIdent) }
| Selector Selector (Maybe LIdent)
deriving (Eq, Ord, Show, Typeable, Data)

{- A Selector is a path in a Pattern/Expression. -}
data Selector

= IntSel Integer
| TrueSel
| FalseSel
| SelectThis
| ConstrSel UniqueIdent
| DotSel Int Selector
| SingleSetSel Selector
| EmptySetSel
| TupleLengthSel Int Selector
| TupleIthSel Int Selector
| ListLengthSel Int Selector
| ListIthSel Int Selector
| HeadSel Selector
| HeadNSel Int Selector
| PrefixSel Int Int Selector
| TailSel Selector
| SliceSel Int Int Selector
| SuffixSel Int Int Selector
deriving (Eq, Ord, Show, Typeable, Data)

type LDecl = Labeled Decl
data Decl

= PatBind LPattern LExp
| FunBind LIdent [FunCase]
| Assert LAssertDecl
| Transparent [LIdent]
| SubType LIdent [LConstructor]
| DataType LIdent [LConstructor]
| NameType LIdent LTypeDef
| Channel [LIdent] (Maybe LTypeDef)
| Print LExp
deriving (Show, Eq, Ord, Typeable, Data)

{-
We want to use 1) type FunArgs = [LPattern]
it is not clear why we used 2) type FunArgs = [[LPattern]].
If 1) works in the interpreter, we will refactor
Renaming, and the Prolog interface to 1).
For now we just patch the AST just before PatternCompilation.
-}
type FunArgs = [[LPattern]]
data FunCase

= FunCase FunArgs LExp
| FunCaseI [LPattern] LExp
deriving (Eq, Ord, Show, Typeable, Data)

type LTypeDef = Labeled TypeDef
data TypeDef

= TypeTuple [LExp]
| TypeDot [LExp]

211

deriving (Eq, Ord, Show,Typeable, Data)

type LConstructor = Labeled Constructor
data Constructor

= Constructor LIdent (Maybe LTypeDef)
deriving (Eq, Ord, Show, Typeable, Data)

withLabel :: (NodeId → a → b) → Labeled a → Labeled b
withLabel f x = x {unLabel = f (nodeId x) (unLabel x) }

type LAssertDecl = Labeled AssertDecl
data AssertDecl

= AssertBool LExp
| AssertRefine Bool LExp LRefineOp LExp
| AssertTauPrio Bool LExp LTauRefineOp LExp LExp
| AssertModelCheck Bool LExp LFDRModels (Maybe LFdrExt)
deriving (Eq, Ord, Show, Typeable, Data)

type LFDRModels = Labeled FDRModels
data FDRModels

= DeadlockFree
| Deterministic
| LivelockFree
deriving (Eq, Ord, Show, Typeable, Data)

type LFdrExt = Labeled FdrExt
data FdrExt

= F
| FD
| T
deriving (Eq, Ord, Show, Typeable, Data)

type LTauRefineOp = Labeled TauRefineOp
data TauRefineOp

= TauTrace
| TauRefine

deriving (Eq, Ord, Show, Typeable, Data)

type LRefineOp = Labeled RefineOp
data RefineOp

= Trace
| Failure
| FailureDivergence
| RefusalTesting
| RefusalTestingDiv
| RevivalTesting
| RevivalTestingDiv
| TauPriorityOp
deriving (Eq, Ord, Show, Typeable, Data)

data Const
= F_true
| F_false
| F_not
| F_and
| F_or
| F_union
| F_inter
| F_diff
| F_Union
| F_Inter
| F_member

212

| F_card
| F_empty
| F_set
| F_Set
| F_Seq
| F_null
| F_head
| F_tail
| F_concat -- fix this: Confusing F_Concat.
| F_elem
| F_length
| F_STOP
| F_SKIP
| F_Events
| F_Int
| F_Bool
| F_CHAOS
| F_Concat -- fix this: Confusing F_concat.
| F_Len2
| F_Mult
| F_Div
| F_Mod
| F_Add
| F_Sub
| F_Eq
| F_NEq
| F_GE
| F_LE
| F_LT
| F_GT
| F_Guard
| F_Sequential
| F_Interrupt
| F_ExtChoice
| F_IntChoice
| F_Hiding
| F_Timeout
| F_Interleave
deriving (Eq, Ord, Show, Typeable, Data)

type Pragma = String
type LocComment = (Comment, SrcLoc)
data Comment

= LineComment String
| BlockComment String
| PragmaComment Pragma
deriving (Eq, Ord, Show, Typeable, Data)

B.1.11 Quickcheck

-- |
-- Module : CSPM.FiringRules.Test.Test
-- Copyright : (c) Fontaine 2010
-- License : BSD
--
-- Maintainer : fontaine@cs.uni-duesseldorf.de
-- Stability : experimental
-- Portability : GHC-only
--
-- QuickCheck tests for the proof tree generators in
-- module CSPM.FiringRules.EnumerateEvents and

213

-- CSPM.FiringRules.FieldConstraints.
-- These QuickCheck properties check for soundness, completeness
-- and that both proof tree generators yield the same result.
--

{-# LANGUAGE StandaloneDeriving,FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
module CSPM.FiringRules.Test.Test
(

main
)
where

import CSPM.CoreLanguage
import CSPM.CoreLanguage.Event (allEvents)

import CSPM.FiringRules.Rules
import CSPM.FiringRules.Verifier
import CSPM.FiringRules.Test.Mock1
import CSPM.FiringRules.Test.Mock2
import qualified CSPM.FiringRules.EnumerateEventsList as EnumNext
import qualified CSPM.FiringRules.FieldConstraints as FieldNext
import CSPM.FiringRules.HelperClasses

import System.Random
import Test.QuickCheck as QC
import Data.Maybe
import qualified Data.List as List
import qualified Data.Set as Set
import Control.Monad

-- | Run a number of QuickCheck tests (with fixed seed).
main :: IO ()
main = forM_ [1,2,3,4] $ λseed → do

putStrLn $ "λnλnλnSeed " ++ show seed
mainDet seed

mainDet :: Int → IO ()
mainDet i = do

setStdGen $ mkStdGen i
testAll

testAll :: IO ()
testAll = do

testMock1
testMock2
testFields

testMock1 :: IO ()
testMock1 = do

putStrLn "testing Mock1"
quickCheck $ QC.label "generator Tau rules"

((isJust ◦ viewRuleTau) :: RuleTau M1 → Bool)
quickCheck $ QC.label "generator Tick rules"

((isJust ◦ viewRuleTick) :: RuleTick M1 → Bool)
quickCheck $ QC.label "generator Event rules"

((isJust ◦ viewRuleEvent) :: RuleEvent M1 → Bool)
quickCheck $ QC.label "sound enum Tick rules"

(sound_EnumRuleTick :: RuleTick M1 → Bool)
quickCheck $ QC.label "sound enum Tau rules"

(sound_EnumRuleTau :: RuleTau M1 → Bool)

214

quickCheck $ QC.label "sound enum Event rules"
(sound_EnumRuleEvent :: RuleEvent M1 → Bool)

quickCheck $ QC.label "complete enum Tick rules"
(complete_enumTickRules :: RuleTick M1 → Bool)

quickCheck $ QC.label "complete enum Tau rules"
(complete_enumTauRules :: RuleTau M1 → Bool)

quickCheck $ QC.label "complete enum Event rules"
(complete_enumEventRules :: RuleEvent M1 → Bool)

testMock2 :: IO ()
testMock2 = do

putStrLn "λnλntesting Mock2λnλn"
quickCheck $ QC.label "generator Tau rules"

((isJust ◦ viewRuleTau) :: RuleTau M2 → Bool)
quickCheck $ QC.label "generator Tick rules"

((isJust ◦ viewRuleTick) :: RuleTick M2 → Bool)
quickCheck $ QC.label "generator Event rules"

((isJust ◦ viewRuleEvent) :: RuleEvent M2 → Bool)
quickCheck $ QC.label "sound enum Tick rules"

(sound_EnumRuleTick :: RuleTick M2 → Bool)
quickCheck $ QC.label "sound enum Tau rules"

(sound_EnumRuleTau :: RuleTau M2 → Bool)
quickCheck $ QC.label "sound enum Event rules"

(sound_EnumRuleEvent :: RuleEvent M2 → Bool)
quickCheck $ QC.label "complete enum Tick rules"

(complete_enumTickRules :: RuleTick M2 → Bool)
quickCheck $ QC.label "complete enum Tau rules"

(complete_enumTauRules :: RuleTau M2 → Bool)
quickCheck $ QC.label "complete enum Event rules"

(complete_enumEventRules :: RuleEvent M2 → Bool)
quickCheck $ QC.label "enum Event rules == evalEventRules"

(computeNext_eq_EnumRuleEvent :: RuleEvent M2 → Bool)
quickCheck $ QC.label "enum Tau rules == symRuleTau"

(fieldTau :: RuleTau M2 → Bool)
quickCheck $ QC.label "enum Tick rules == symRuleTick"

(fieldTick :: RuleTick M2 → Bool)

sound_EnumRuleTick :: CSP1 i ⇒ RuleTick i → Bool
sound_EnumRuleTick r

= all (checkRule proc ◦ TickRule) $ EnumNext.tickTransitions proc
where proc = viewProcBefore $ TickRule r

sound_EnumRuleTau :: CSP1 i ⇒ RuleTau i → Bool
sound_EnumRuleTau r

= all (checkRule proc ◦ TauRule) $ EnumNext.tauTransitions proc
where proc = viewProcBefore $ TauRule r

sound_EnumRuleEvent :: forall i. CSP1 i ⇒ RuleEvent i → Bool
sound_EnumRuleEvent r

= all (checkRule proc ◦ EventRule) $ EnumNext.eventTransitions sigma proc
where

proc = viewProcBefore $ EventRule r
sigma = allEvents (undefined :: i)

checkRule :: CSP1 i ⇒ Process i → Rule i → Bool
checkRule proc r

= case viewRuleMaybe r of
Nothing → False
Just (p,_,_) → p == proc

complete_enumTickRules :: CSP1 i ⇒ RuleTick i → Bool

215

complete_enumTickRules r
= r ‘List.elem‘ (EnumNext.tickTransitions $ viewProcBefore $ TickRule r)

complete_enumTauRules :: CSP1 i ⇒ RuleTau i → Bool
complete_enumTauRules r

= r ‘List.elem‘ (EnumNext.tauTransitions $ viewProcBefore $ TauRule r)

complete_enumEventRules :: forall i. CSP1 i ⇒ RuleEvent i → Bool
complete_enumEventRules r

= r ‘List.elem‘ (EnumNext.eventTransitions sigma $ viewProcBefore $ EventRule r)
where sigma = allEvents (undefined :: i)

testFields :: IO ()
testFields = do

putStrLn "λnλnTesting computeNext"
quickCheck $ QC.label "sound_computeNext"

(sound_computeNext :: RuleEvent M2 → Bool)

quickCheck $ QC.label "complete_computeNext"
(complete_computeNext :: RuleEvent M2 → Bool)

quickCheck $ QC.label "FieldNext.eventTransitions == EnumNext.eventTransitions"
(computeNext_eq_EnumRuleEvent :: RuleEvent M2 → Bool)

quickCheck $ QC.label "FieldNext.tauTransitions == EnumNext.tauTransitions"
(fieldTau :: RuleTau M2 → Bool)

quickCheck $ QC.label "FieldNext.tickTransitions == EnumNext.tickTransitions"
(fieldTick :: RuleTick M2 → Bool)

sound_computeNext :: forall i. CSP2 i ⇒ RuleEvent i → Bool
sound_computeNext r

= all (checkRule proc ◦ EventRule) $ FieldNext.eventTransitions sigma proc
where

proc = viewProcBefore $ EventRule r
sigma = allEvents (undefined :: i)

complete_computeNext :: forall i. CSP2 i ⇒ RuleEvent i → Bool
complete_computeNext r

= r ‘List.elem‘ (FieldNext.eventTransitions sigma $ viewProcBefore $ EventRule r)
where

sigma = allEvents (undefined :: i)

computeNext_eq_EnumRuleEvent :: forall i. CSP2 i ⇒ RuleEvent i → Bool
computeNext_eq_EnumRuleEvent rule = ruleSet1 == ruleSet2

where
ruleSet1 = Set.fromList $ FieldNext.eventTransitions sigma proc
ruleSet2 = Set.fromList $ EnumNext.eventTransitions sigma proc
proc = viewProcBefore $ EventRule rule
sigma = allEvents (undefined :: i)

fieldTau :: forall i. CSP2 i ⇒ RuleTau i → Bool
fieldTau rule = ruleSet1 == ruleSet2

where
ruleSet1 = Set.fromList $ EnumNext.tauTransitions proc
ruleSet2 = Set.fromList $ FieldNext.tauTransitions proc
proc = viewProcBefore $ TauRule rule

fieldTick :: forall i. CSP2 i ⇒ RuleTick i → Bool
fieldTick rule = ruleSet1 == ruleSet2

where
ruleSet1 = Set.fromList $ EnumNext.tickTransitions proc

216

ruleSet2 = Set.fromList $ FieldNext.tickTransitions proc
proc = viewProcBefore $ TickRule rule

217

Appendix C

Listings of Benchmarks,
Test Cases and Examples

C.1 Pure Functional Benchmarks
The CSPM code

channel out:{0..99}
MAIN = out!(ack(3,0)%100) → STOP

P2 = out!square(2) → out!square(3) → STOP

fib1(x) = if x <2 then 1 else fib1(x-1)+fib1(x-2)

fib2(0) = 1
fib2(1) = 1
fib2(x) = fib2(x-1)+fib2(x-2)

ack (x, y) =
if x == 0 then y + 1 else

if y == 0 then ack (x - 1, 1) else
ack (x - 1, ack (x, y - 1))

square(x) = x ∗x

sum(l) = let
worker(acc,<>) = acc
worker(acc,<h>̂ t) = worker (acc+h,t)
within worker(0,l)

map (f,<>) = <>
map (f,<h>̂ t) = <f(h)> ^ map(f,t)

smc(n) = sum(map(square,<0..n>))
sum2(l) = let

worker(acc,l) = if null(l)
then acc
else worker (acc + head(l),tail(l))

218

within worker(0,l)

map2(f,l) = if null(l)
then <>
else <f(head(l))> ^ map2(f,tail(l))

smc2(n) = sum2(map2(square,<0..n>))

primes =
let

factors(n) = < m | m ← <2..n-1>, n%m == 0 >
is_prime(n) = null(factors(n))

within <n | n ← <2..>, is_prime(n) >

ith (0,l) = head(l)
ith (n,l) = ith(n-1,tail(l))

ithPrime(n) = ith(n-1,primes)

The Haskell code

module Main
where
import System.CPUTime
import Control.Exception (evaluate)
import Control.Monad

fib1 x = if x <2 then 1 else fib1 (x-1) + fib1 (x-2)

fib2 0 = 1
fib2 1 = 1
fib2 x = fib2 (x-1) + fib2 (x-2)

ackermann :: Integer → Integer → Integer
ackermann x y

= if x == 0
then y + 1
else if y == 0

then ackermann (x - 1) 1
else ackermann (x - 1) (ackermann x (y - 1))

square :: Integer → Integer
square(x) = x ∗x

mySum :: [Integer] → Integer
mySum l = worker 0 l

where
worker acc [] = acc
worker acc (h:t) = worker (acc + h) t

smc n = mySum $ map square [0..n]

mySum2 :: [Integer] → Integer
mySum2 l = worker 0 l

where
worker acc l = if null l

219

then acc
else worker (acc + head l) (tail l)

myMap :: (a → b) → [a] → [b]
myMap f l = if null l then [] else (f $ head l) : myMap f (tail l)
smc2 n = mySum2 $ myMap square [0..n]

primes :: [Integer]
primes = filter is_prime [2..]

where
factors :: Integer → [Integer]
factors n = [m | m ← [2..n-1] , n ‘mod‘ m == 0]
is_prime :: Integer → Bool
is_prime = null ◦ factors

ithPrime :: Int → Integer
ithPrime i = primes !! (i-1)

showTime :: Integer → String
showTime a = show (div a 1000000000) ++ "ms"

main = do
putStrLn "Starting test"
time_start_test ← getCPUTime
result ← evaluate $ ack (5,0)
time_finish_execute ← getCPUTime
putStrLn $ "Total time :" ++ showTime (time_finish_execute - time_start_test)
print result

The Python code

import timeit
import sys
sys.setrecursionlimit(70000)

def fib(n):
if n < 2:

return 1
else:

return fib(n-1) + fib (n-2)
def ack(n, m):

if n == 0:
return m + 1

else:
if m == 0:

return ack(n - 1, 1)
else:

return ack(n - 1, ack(n, m - 1))

def square(n): return n∗n
def sum(l):

s=0
for x in l: s = s+x
return s

220

def smc(x):
return (sum(map(square,range(0,x+1))))

print("start test")
t = timeit.Timer("res=ack(5,0)","from __main__ import ack;’gc.enable()’")
print(t.timeit(1000)/1000)

C.2 Other examples
C.2.1 Simplistic Parser
A simplistic parser implemented with parsec.
module Parser
where
import Text.ParserCombinators.Parsec
import Text.ParserCombinators.Parsec.Expr

data Exp
= Sum Exp Exp
| Diff Exp Exp
| Prod Exp Exp
| Quot Exp Exp
| Neg Exp
| Equal Exp Exp
| NEqual Exp Exp
| Ident String
| Const Integer
deriving (Show,Eq)

data Stmt
= Assign String Exp
| Print Exp
| While Exp SBlock
| If Exp SBlock (Maybe SBlock)
deriving (Show,Eq)

type SBlock = [Stmt]

whiteSpace :: Parser Char
whiteSpace = space <|> tab <|> newline

skipWs :: Parser a → Parser a
skipWs x = do

xval ← x
many whiteSpace
return xval

lexSym :: String → Parser String
lexSym s = skipWs $ string s

lexKey :: String → Parser ()
lexKey s = try $ skipWs $ do

string s
notFollowedBy alphaNum

221

parseIdent :: Parser String
parseIdent = skipWs $ do

h ← letter
r ← many alphaNum
return (h:r)

intLit :: Parser Integer
intLit = skipWs $ do

s ← many1 digit
return ((read s)::Integer)

baseExp :: Parser Exp
baseExp =

between (lexSym "(") (lexSym ")") parseExp
<|> do

lexSym "-"
e ← baseExp
return $ Neg e

<|> do
i ← intLit
return $ Const i

<|> do
i ← parseIdent
return $ Ident i

opList :: [[Operator Char () Exp]]
opList = [

[Infix (binOp "∗" Prod) AssocLeft
, Infix (binOp "/" Quot) AssocLeft
],
[Infix (binOp "+" Sum) AssocLeft
, Infix (binOp "-" Diff) AssocLeft
],
[Infix (binOp "==" Equal) AssocLeft
, Infix (binOp "!=" NEqual) AssocLeft
]

]

binOp :: String → (Exp → Exp → Exp)
→ Parser (Exp → Exp → Exp)

binOp sym constr= do
lexSym sym
return (λ x y → constr x y)

parseExp :: Parser Exp
parseExp = buildExpressionParser opList baseExp

parseStmt :: Parser Stmt
parseStmt =

do
lexKey "let"
ident ← parseIdent
lexSym "="

222

e←parseExp
return $ Assign ident e

<|> do
lexKey "print"
e ← parseExp
return $ Print e

<|> do
lexKey "while"
e ← parseExp
bl ← parseSBlock
return $ While e bl

<|> do
lexKey "if"
e ← parseExp
lexKey "then"
bl1 ← parseSBlock
ebl ← option Nothing $ do

lexKey "else"
bl2 ← parseSBlock
return $ Just bl2

return $ If e bl1 ebl

parseSBlock :: Parser SBlock
parseSBlock = do

lexKey "begin"
stmtl ← sepBy parseStmt (lexSym ";")
lexKey "end"
return stmtl

parsePrg :: Parser SBlock
parsePrg = do

many whiteSpace
prg ← parseSBlock
lexSym "."
eof
return prg

testSrc :: String
testSrc =

"beginλn let x=10;λn let y=x∗x;λn while (x!=0) beginλn"
++ "let x=x-1;λn let y=-(x+y)∗z+4λn endλnend."

test :: IO ()
test = do

putStrLn ""
putStrLn testSrc
putStrLn ""
parseTest parsePrg testSrc

C.3 CSPM Testcases
C.3.1 Primes

223

primes =
let

factors(n) = < m | m ← <2 ◦ . n-1>, n%m == 0 >
is_prime(n) = null(factors(n))

within < n | n ← <2..>, is_prime(n) >

channel p:{1..1000}

take(0,l) = <>
take(n,l) = <head (l)> ^ take(n-1,tail(l))

MAIN = ; x:take(5,primes)@ p!x → SKIP

P2 = p!2 → p!3 → p!5 → p!7 → p!11 → SKIP

assert MAIN [FD= P2
assert P2 [FD= MAIN

C.3.2 Mutual Recursive Let

channel out:{0,1,2,3}

list = let
o = <1,2> ^ z
z = <0,2> ^ o

within <3> ^ o

take(0,l) = <>
take(n,l) = <head (l)> ^ take(n-1,tail(l))

MAIN = ; x:take(10,list)@ out!x → SKIP

C.3.3 A Specification of the Hanoi Puzzle

{-
An version of the Towers of Hanoi using lots of features
which were not present in FDR 1.4
JBS 6 March 1995 (based loosely on AWR’s version for FDR 1.4)

-}

transparent diamond

n = 9 -- How many discs

-- Discs are numbered
DISCS = {1..n}

-- But the pegs are labelled
datatype PEGS = A | B | C

{-
For a given peg, we can get a new disc or put the
top disc somewhere else. We are also allowed to
to indicate when the peg is full.

224

-}

channel get, put : DISCS
channel full

-- We are allowed to put any ∗smaller∗ disc onto the current stack
allowed(s) = { 1..head(s <̂n+1>)-1 }

PEGnil = PEG(<>)
PEG(s) =

get?d:allowed(s)→PEG(<d>̂ s)
[]

not null(s) & put!head(s)→PEG(tail(s))
[]

length(s) == n & full→PEG(s)

{-
Now, given a simple peg we can rename it to form each
of the three physical pegs (‘poles’) of the puzzle.

move.d.i.j indicates that disc d moves to pole i from pole j
-}

channel move : DISCS.PEGS.PEGS
channel complete : PEGS

initial(p) = if p==A then < 1..n > else <>

POLE_A = POLE(A)
POLE_B = POLE(B)
POLE_C = POLE(C)
POLE_Cb = PEG(initial(C)) [[get.1 ← move.1.C.C]]

POLE(p) =
PEG(initial(p))

[[full ← complete.p,
get.d ← move.d.p.i,
put.d ← move.d.i.p | i← PEGS, i != p, d←DISCS]]

{-
The puzzle is just the three poles, communicating on the
relevant events: all the moves, and the done/notdone events.

-}

interface(p) = { move.d.i.p, move.d.p.i, complete.p | d←DISCS, i←PEGS }

PUZZLE1 = full →
--replicated alphabet parallel
(| | p : PEGS @ [interface(p)] diamond(POLE(p)))

PUZZLE =
--replicated alphabet parallel
-- Variation of PUZZLE1; also checks whether compilation works properly
| | p : PEGS @ [interface(p)]

225

(PEG(initial(p))
[[full ← complete.p,

get.d ← move.d.p.i,
put.d ← move.d.i.p | i← PEGS, i != p, d←DISCS]])

{-
The puzzle is solved by asserting that C cannot become complete.
then the trace that refutes the assertion is the solution.

-}

EPUZZLE = (POLE_A [interface(A) | | interface(B)] POLE_B) [union(interface(A),interface(B)) | |
interface(C)] POLE_C

MAIN = PUZZLE

NOTSOLVED = complete?x:{A,B}→ NOTSOLVED [] move?x → NOTSOLVED

-- assert NOTSOLVED [T= PUZZLE
-- assert PUZZLE λ { | complete.A, complete.B, move |} [F= STOP

C.3.4 A Model of a Level Crossing Gate

-- Model of a level crossing gate for FDR: revised version
-- Illustrating discrete-time modelling using untimed CSP

-- (c) Bill Roscoe, November 1992 and July 1995
-- Revised for FDR 2.11 May 1997

{-
This file contains a revised version, to coincide with my 1995
notes, of the level crossing gate example which was the first CSP
program to use the "tock" model of time.

The present version has (I think) a marginally better incorporation
of timing information.

-}

-- Time to compute state space: 58.5 seconds

-- LTL Formulas
-- G F e(enter) → 0.26 secs
-- G F [enter] → FALSE 412.39 secs

-- The tock event represents the passing of a unit of time

channel tock

-- The following are the communications between the controller process and
-- the gate process

datatype GateControl = go_down | go_up | up | down

-- where we can think of the first two as being commands to it, and the

226

-- last two as being confirmations from a sensor that they are up or down.

channel gate : GateControl

-- For reasons discussed below, we introduce a special error event:

channel error

-- To model the speed of trains, and also the separation of more than one
-- trains, we divide the track into segments that the trains can enter or
-- leave.

Segments = 5 -- the number of segments including the outside one
LastSeg = Segments - 1
TRACKS = {0..LastSeg}
REALTRACKS = {1..LastSeg}

-- Here, segment 0 represents theo outside world, and [1,Segment) actual
-- track segments; including the crossing, which is at

GateSeg=3

-- This model handles two trains

datatype TRAINS = Thomas | Gordon

-- which can move between track segments

channel enter, leave : TRACKS.TRAINS

-- Trains are detected when they enter the first track segment by a sensor,
-- which drives the controller, and are also detected by a second sensor
-- when they leave GateSeg

datatype sensed = in | out

channel sensor : sensed

-- The following gives an untimed description of Train A on track segment j
-- A train not currently in the domain of interest is given index 0.

Train(A,j) = enter.((j+1)%Segments).A → leave.j.A → Train(A,(j+1)%Segments)

-- There is no direct interference between the trains

Trains = Train(Thomas,0) | | | Train(Gordon,0)

-- The real track segments can be occupied by one train at a time, and each
-- time a train enters segment 1 or leaves GateSeg the sensors fire.

Track(j) =
let

Empty = enter.j?A → if j==1 then sensor.in → Full(A) else Full(A)

227

Full(A) = leave.j.A → if j==GateSeg then sensor.out → Empty else Empty
within Empty

-- Like the trains, the untimed track segments do not communicate with
-- each other

Tracks = | | | j : REALTRACKS @ Track(j)

-- And we can put together the untimed network, noting that since there is
-- no process modelling the outside world there is no need to synchronise
-- on the enter and leave events for this area.

Network = Trains [|{ |enter.j, leave.j | j←REALTRACKS |} |] Tracks

-- We make assumptions about the speed of trains by placing (uniform)
-- upper and lower "speed limits" on the track segments:

-- MinTocksPerSeg = 3 -- make this a parameter to experiment with it
SlowTrain = 4 -- inverse speed parameter, MinTocksPerSegment
NormalTrain = 3
FastTrain = 2

MaxTocksPerSeg = 6

-- The speed regulators express bounds on the times between successive
-- enter events.

SpeedReg(j,MinTocksPerSeg) =
let

Empty = enter.j?A → Full(0) [] tock → Empty
Full(n) = n < MaxTocksPerSeg & tock → Full(n+1)

[] MinTocksPerSeg ≤ n & enter.(j+1)%Segments?A → Empty
within Empty

-- The following pair of processes express the timing contraint that
-- the two sensor events occur within one time unit of a train entering
-- or leaving the domain.

InSensorTiming = tock → InSensorTiming
[] enter.1?A → sensor.in → InSensorTiming

OutSensorTiming = tock → OutSensorTiming
[] leave.GateSeg?A → sensor.out → OutSensorTiming

-- The timing constraints of the trains and sensors are combined into the
-- network as follows, noting that no speed limits are used outside the domain:

SpeedRegs(min) =
| | j : REALTRACKS @ [{ |tock, enter.j, enter.(j+1)%Segments |}] SpeedReg(j,min)

-- replicated alphabet parallel now supported

SensorTiming = InSensorTiming [|{tock} |] OutSensorTiming

228

NetworkTiming(min) = SpeedRegs(min) [|{ |tock, enter.1 |} |] SensorTiming

TimedNetwork(min) =
Network [|{ |enter, sensor, leave.GateSeg |} |] NetworkTiming(min)

-- The last component of our system is a controller for the gate, whose duties
-- are to ensure that the gate is always down when there is a train on the
-- gate, and that it is up whenever prudent.

-- Unlike the first version of this example, here we will separate the
-- timing assumptions about how the gate behaves into a separate process.
-- But some timing details (relating to the intervals between sensors
-- firing and signals being sent to the gate) are coded directly into this
-- process, to illustrate a different coding style to that used above:

Controller =
let

-- When the gate is up, the controller does nothing until the sensor
-- detects an approaching train.
-- In this state, time is allowed to pass arbitrarily, except that the
-- signal for the gate to go down is sent immediately on the occurrence of
-- the sensor event.
ControllerUp = sensor.in → gate!go_down → ControllerGoingDown(1)

[] sensor.out → ERROR
[] tock → ControllerUp

-- The two states ControllerGoingDown and ControllerDown both keep
-- a record of how many trains have to pass before the gate may go
-- up.
-- Each time the sensor event occurs this count is increased.
-- The count should not get greater than the number of trains that
-- can legally be between the sensor and the gate (which equals
-- the number of track segments).
-- The ControllerGoingDown state comes to an end when the
-- gate.down event occurs
ControllerGoingDown(n) =

(if GateSeg < n then ERROR else sensor.in → ControllerGoingDown(n+1))
[] gate.down → ControllerDown(n)
[] tock → ControllerGoingDown(n)
[] sensor.out → ERROR

-- When the gate is down, the occurrence of a train entering its
-- sector causes no alarm, and each time a train leaves the gate
-- sector the remaining count goes down, or the gate is signalled
-- to go up, as appropriate.
-- Time is allowed to pass arbitrarily in this state, except that
-- the direction to the gate to go up is instantaneous when due.
ControllerDown(n) =

(if GateSeg < n then ERROR else sensor.in → ControllerDown(n+1))
[] sensor.out → (if n==1 then gate!go_up → ControllerGoingUp

else ControllerDown(n-1))
[] tock → ControllerDown(n)

-- When the gate is going up, the inward sensor may still fire,

229

-- which means that the gate must be signalled to go down again.
-- Otherwise the gate goes up after UpTime units.
ControllerGoingUp = gate!up → ControllerUp

[] tock → ControllerGoingUp
[] sensor.in → gate!go_down → ControllerGoingDown(1)
[] sensor.out → ERROR

within ControllerUp

-- Any process will be allowed to generate an error event, and since we will
-- be establishing that these do not occur, we can make the successor process
-- anything we please, in this case STOP.

ERROR = error → STOP

-- The following are the times we assume here for the gate to go up
-- and go down. They represent upper bounds in each case.

-- DownTime = 5 -- make this a parameter for experimentation
VeryFastGate = 3
FastGate = 4
NormalGate = 5
SlowGate = 6

UpTime = 2

Gate(DownTime) =
let

GateUp = gate.go_up → GateUp
[] gate.go_down → GateGoingDown(0)
[] tock → GateUp

GateGoingDown(n) =
gate.go_down → GateGoingDown(n)

[] if n == DownTime
then gate.down → GateDown
else gate.down → GateDown |~ | tock → GateGoingDown(n+1)

GateDown = gate.go_down → GateDown
[] gate.go_up → GateGoingUp(0)
[] tock → GateDown

GateGoingUp(n) = gate.go_up → GateGoingUp(n)
[] gate.go_down → GateGoingDown(0)
[] if n == UpTime

then gate.up → GateUp
else gate.up → GateUp |~ | tock → GateGoingUp(n+1)

within GateUp

-- Since Gate has explicitly nondeterministic behaviour, we can expect
-- to gain by applying a compression function, such as diamond, to it;
-- we declare a number of "transparent" compression functions

transparent sbisim
transparent normalise
transparent explicate
transparent diamond
-- sbisim(X) = X -- added by leuschel

230

-- explicate(X) = X -- added by leuschel
-- diamond(X) = X -- added by leuschel
-- normalise(X) = X -- added by leuschel

GateAndController(dt) = Controller [|{ |tock,gate |} |] diamond(Gate(dt))

-- Finally, we put the network together with the gate unit to give our
-- overall system

System(invmaxspeed,gatedowntime) =
TimedNetwork(invmaxspeed) [|{ |sensor,tock |} |] GateAndController(gatedowntime)

MAIN = System(NormalTrain,NormalGate) -- added by leuschel

-- And now for specifications. Since we have not synchronised on any
-- error events, they would remain visible if they occurred. Their
-- absence can be checked with

NoError = CHAOS(diff(Events,{error}))

-- assert NoError [T= System(NormalTrain,NormalGate)

-- This shows that none of the explicitly caught error conditions arises,
-- but does not show that the system has the required safety property of
-- having no train on the GateSeg when the gate is other than down.

-- The required specifications are slight generalisations of those
-- discussed in specs.csp; the following notation and development is
-- consistent with that discussed there.

SETBETWEENx(EN,DIS,C) = ([]x:EN @ x → SETOUTSIDEx(DIS,EN,C))
[] ([] x:DIS @ x → SETBETWEENx(EN,DIS,C))

SETOUTSIDEx(DIS,EN,C) = ([] c:C @ c → SETOUTSIDEx(DIS,EN,C))
[] ([] x: EN @ x → SETOUTSIDEx(DIS,EN,C))
[] ([] x:DIS @ x → SETBETWEENx(EN,DIS,C))

-- The above capture the sort of relationships we need between the
-- relevant events. If we want to stay within Failures-Divergence Refinement
-- (as opposed to using Trace checking subtly), we need to do the following to
-- turn them into the conditions we need:

EnterWhenDown =
SETBETWEENx({gate.down},

{gate.up,gate.go_up,gate.go_down},
{ |enter.GateSeg |})

[|{ |gate, enter.GateSeg |} |]
CHAOS(Events)

GateStillWhenTrain =
SETOUTSIDEx({ |enter.GateSeg |},{ |leave.GateSeg |},{ |gate |})
[|{ |gate,enter.GateSeg,leave.GateSeg |} |]
CHAOS(Events)

231

-- So we can form a single safety spec by conjoining these:

Safety = EnterWhenDown [|Events |] GateStillWhenTrain

-- There are a number of possible combinations which may be of interest; try

-- assert Safety [T= System(SlowTrain,NormalGate)
-- assert Safety [T= System(NormalTrain,NormalGate)
-- assert NoError [T= System(FastTrain,SlowGate)
-- assert Safety [T= System(FastTrain,NormalGate)
-- assert NoError [T= System(FastTrain,NormalGate)
-- assert Safety [T= System(SlowTrain,SlowGate)
-- assert Safety [T= System(FastTrain,FastGate)
-- assert Safety [T= System(FastTrain,VeryFastGate)

-- An important form of liveness we have thus far ignored is that the clock
-- is not stopped: for this it is sufficient that TimingConsistency
-- refines TOCKS, where

TOCKS = tock → TOCKS

-- The following is the set of events that we cannot rely on the environment
-- not delaying.

Delayable = { |enter.1 |}
NonTock = diff(Events,{tock})
TimingConsistency(ts,gs) =

explicate(System(ts,gs)[|Delayable |]normalise(CHAOS(Delayable))λNonTock)

-- assert TOCKS [FD= TimingConsistency(NormalTrain,NormalGate)

-- The Safety condition completely ignored time (although, if you change some
-- of the timing constants enough, you will find it relies upon timing for
-- it to be satisfied). Because of the way we are modelling time, the
-- main liveness constraint (that the gate is up when prudent) actually
-- becomes a safety condition (one on traces). It is the combination of this
-- with the TOCKS condition above (asserting that time passes) that gives
-- it the desired meaning.

-- We will specify that when X units of time has passed since the last
-- train left the gate, it must be open, and remain so until another
-- train enters the system. This is done by the following, which monitor
-- the number of trains in the system and, once the last has left, no
-- more than X units of time pass (tock events) before the gate is up. The
-- gate is not permitted to go down until a train is in the system.

Liveness(X) =
let

Idle = tock → Idle
[] enter.1?_ → Busy(1)

Busy(n) = tock → Busy(n)
[] enter.1?_ → Busy(if n < GateSeg then (n+1) else n)

232

[] leave.GateSeg?_ → (if n==1 then UpBefore(X) else Busy(n-1))
[] gate?_ → Busy(n)

UpBefore(m) = m != 0 & tock → UpBefore(m-1)
[] gate?x → (if x==up then Idle else UpBefore(m))
[] enter.1?_ → Busy(1)

-- Initially the gate is up in the system, so the liveness condition
-- takes this into account.
within Idle

GateLive(X) = Liveness(X) [|{ |tock,gate,enter.1,leave.GateSeg |} |]CHAOS(Events)

-- assert GateLive(3) [T= System(NormalTrain,NormalGate)
-- assert GateLive(2) [T= System(NormalTrain,NormalGate)
-- assert GateLive(1) [T= System(NormalTrain,NormalGate)

-- Note that GateLive is antitonic, so for instance

-- assert GateLive(3) [T= GateLive(2)

C.3.5 A Specification of a Scheduler

-- A CSP specification and refinement of a scheduler

psize = 5
PID = {1..psize}
channel new : PID
channel delete : PID
channel ready : PID
channel enter : PID
channel leave : PID

-- Specification

NEWPROC(p) = new.p → PROC(p)

PROC(p) =
ready.p → enter.p → leave.p → PROC(p)
[] delete.p → NEWPROC(p)

MUTEX = enter?p → leave.p → MUTEX

SCHEDULER0 =
(| | | p:PID @ NEWPROC(p)) [| { | enter, leave |} |] MUTEX

-- Refinement

QUEUE(q) =
#q<psize & ready?p → QUEUE(q <̂p>)

[] q!=<> & enter.head(q) → QUEUE(tail(q))

SCHEDULER1 =
((| | | p:PID @ NEWPROC(p)) [| { | enter, leave |} |] MUTEX)

[| { | ready, enter |} |] QUEUE(<>)

233

assert SCHEDULER0 [T= SCHEDULER1

MAIN = SCHEDULER1

C.3.6 A Specification of a Bank System

-- A model from the paper
-- David A. Basin, Ernst-Rdiger Olderog, Paul E. Sevin:
-- Specifying and analyzing security automata using CSP-OZ. ASIACCS 2007: 70-81

-- slightly adapted for the Haskell CSPM tool

m = λ x,S @ member(x,S)
-- abbreviation for membership function
-- Definitions of constants
datatype UserID = u1 | u2 | u3
-- concrete set of user ids
datatype AccID = ac1 | ac2
-- concrete set of accounts
Val = {(-6)..6}
-- concrete set of values accounts may assume
Sum = {1..6}
-- concrete set of sums customers may transfer
-- CSP Part Bank
channel login: UserID.Bool
channel logout
channel balance: AccID.Val
channel transferReq: Sum.AccID.AccID.Bool
channel transferExec: Sum.AccID.AccID
channel abort
mainB = login?u?ok → (ok & Operate

[] not ok & mainB)

Operate = (balance?a?v → Operate
[] transferReq?s?a1?a2?ok →

(transferExec!s!a1!a2 → Operate
[] abort → Operate)

[] logout → mainB)
-- OZ Part Bank
-- We represent the current balance bal as a set of
-- pairs (account-id, value). This requires some
-- auxiliary functions defined below:
ValSet = λb,a @ { v | v ← Val, m((a,v),b) }
pick({x}) = x
PickVal = λb,a @ pick(ValSet(b,a))
withdrawOK = λb,a1,a2,s @

not(a1==a2) and
(PickVal(b,a1) - s ≥ 0)

upd = λb,a,v @
let

bminus = diff(b,{(a,vold) | vold ←Val })
within

union(bminus, {(a,v)})
-- The set of customers is defined as a concrete

234

-- subset of UserID. It appears as a global parameter
-- of the process OZB.
cust = {u1, u2}
OZB(bal,transferOK) =
-- next line is disabled for Haskell tool:

(-- m(bal,Set({(a,v) |a←AccID,v←Val})) and
m(transferOK,Bool)) &

(
([] (u,ok): {(u,m(u,cust)) | u ← UserID } @

login.u.ok → OZB(bal,transferOK))
[]
([] (a,v) :
{(a,PickVal(bal,a)) |

a ← AccID, card(ValSet(bal,a))==1 } @
balance.a.v → OZB(bal,transferOK))

[]
([] (s,a1,a2,ok):
{(s,a1,a2,withdrawOK(bal,a1,a2,s)) |

s←Sum, a1←AccID, a2 ←AccID,
card(ValSet(bal,a1)) == 1 } @

transferReq.s.a1.a2.ok → OZB(bal,ok))
[] transferExec?s?a1?a2 →

if transferOK and card(ValSet(bal,a1))==1 and
card(ValSet(bal,a2))==1

then
let

v1 = PickVal(bal,a1) - s
v2 = PickVal(bal,a2) + s

within
OZB(upd(upd(bal,a1,v1),a2,v2), transferOK)

else OZB(bal,transferOK)
)

-- Parallel Composition of CSP and OZ part of the Bank
-- starts with the following initial balance of the
-- accounts:
bal = { (ac1,3), (ac2,-2) }
Bank = mainB

[|{ | login,balance,transferReq,transferExec |} |]
OZB(bal,false)

OZB_bal_false = OZB(bal,false) -- added by mal

-- Unprotected System
UnpSys = Bank
-- SecAut
datatype Actions = Balance | Transfer
datatype PIN = p1 | p2
-- concrete set of pins
datatype TN = t1 | t2 |t3
-- concrete set of tans
-- CSP Part SecAut
channel pin: PIN.Bool
channel tan: TN.Bool
mainS = login?u?ok → (ok & Identify

235

[] not ok & mainS)
Identify = pin?p?ok → (ok & SecOperate

[] not ok & Identify)
SecOperate = balance?a?val → SecOperate

[] transferReq?s?a1?a2?ok → TanCheckExec
[] logout → mainS

TanCheckExec =
tan?t?ok → (ok & transferExec?s?a1?a2 → SecOperate
[] not ok & abort → SecOperate)
[] logout → mainS

-- OZ Part SecAut
-- The following definitions appear as
-- global parameters of the process OZS:
priv = { (u1,ac1,Balance),

(u1,ac1,Transfer),
(u2,ac2,Balance),
(u2,ac2,Transfer),
(u3,ac1,Balance),
(u3,ac1,Transfer),
(u3,ac2,Balance) }

-- concrete set of privileges
cred(u1) = p1
cred(u2) = p2
-- concrete set of credentials
N = 2
-- N+1 is the concrete length of the tanlist
tanlist(u1,0) = t1
tanlist(u1,1) = t3
tanlist(u1,2) = t2
tanlist(u2,0) = t1
tanlist(u2,1) = t2
tanlist(u2,2) = t3
-- concrete tanlist
tid0 = { (u1,0), (u2,0) }
-- initial tan indices
OZS(uid,tid) =

(m(uid,UserID) and m(tid,Set({(u,v) | u ←cust, v←{0..N} }))) &
(login?u?ok → OZS(u,tid)
[]([] (p,ok): {(p,m(uid,cust) and p == cred(uid)) |
p ← PIN } @ pin.p.ok → OZS(uid,tid))
[]([] a: {a | a ← AccID,
m((uid,a,Balance),priv)} @
balance.a?v → OZS(uid,tid))
[]([] a1: {a1 | a1 ← AccID,
m((uid,a1,Transfer),priv)} @
transferReq?s.a1?a2?ok → OZS(uid,tid))
[]([] (t,ti,ok): {(t,ti,t == tanlist(uid,ti)) |
t ← TN, ti ← {0..N},
card(ValSet(tid,uid)) == 1,
ti == PickVal(tid,uid) } @
tan.t.ok → ((ok and (ti < N) &
OZS(uid,upd(tid,uid,ti+1))
[](not ok or (ti == N) &
OZS(uid,tid)))))

236

)

-- Parallel Composition of CSP and OZ part of the SecAut
SecAut =
mainS
[|{ | login,pin,balance,transferReq,tan |} |]
OZS(u3,tid0)
-- Secure System
A = { | login, balance, transferReq, transferExec,

abort, logout |}
SecSys = Bank [| A |] SecAut

-- has alphabet A union { | pin, tan |}
--
-- Individual Traces (Use Cases): two examples
--
-- assert SecSys [T= login.u1.true → pin.p1.true →
-- transferReq.3.ac1.ac2.true →
-- tan.t1.true →
-- transferExec.3.ac1.ac2 → STOP
-- satisfied
-- assert SecSys [T= login.u1.true → pin.p1.true →
-- transferReq.3.ac1.ac2.true →
-- tan.t2.false →
-- transferExec.3.ac1.ac2 → STOP
-- not satisfied: tan t2 is false
--
-- General Properties
--
-- Deadlock
-- Bank, UnpSys, SecAut, SecSys are all
-- deadlock free. -- checked
-- Livelock (Divergence)
-- Bank, UnpSys, SecAut, SecSys are all
-- livelock free. -- checked
-- Determinism
-- Bank, UnpSys, SecAut, SecSys are all
-- deterministic. -- checked
--
-- Refinement Properties
--
-- assert UnpSys [T= SecSys
-- not satisfied due to pin and tan
-- assert UnpSys [T= SecSys λ { |pin, tan |}
-- checked for values up to 6
--
-- Security Properties
--
-- No balance check before a sequence of successful
-- login and pin, belonging to the credentials of
-- the user.
A1 = { | transferReq, transferExec, abort, tan |}
P1 = ([] u : { u | u ← UserID,
member(u,cust) } @
login.u.true → P1L(u))

237

[]([] u : { u | u ← UserID,
not member(u,cust) } @
login.u.false → P1)

[] logout → P1
[] ([] x : A1 @ x → P1)

P1L(u) =
([] p : { p | p ← PIN, p == cred(u) } @
pin.p.true → P1LP)
[]([] p : { p | p ← PIN,
not(p == cred(u)) } @
pin.p.false → P1L(u))
[] logout → P1
[] ([] x : A1 @ x → P1L(u))

P1LP = balance?a?v → P1LP
[] logout → P1
[] ([] x : A1 @ x → P1LP)

-- assert P1 [T= SecSys
-- satisfied

-- No transferExec before a successful tan.
A2 = union({ | login, balance, transferReq,

abort, logout, pin |},
{ tan.t.false | t ← TN })

P2 = tan?t!true {- mal: changed ◦ true to !true -}
→ P2T

[] ([] x : A2 @ x → P2)
P2T = transferExec?s?a1?a2 → P2

[] ([] x : A2 @ x → P2)
-- assert P2 [T= SecSys
-- satisfied

MAIN = Bank

-- LTL Formulas checked:
-- G ([transferExec] ⇒ O [transferReq])
-- G ([abort] ⇒ O [transferReq])

238

Bibliography

[1] G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference, AFIPS ’67 (Spring), pages 483–485, New York,
NY, USA, 1967. ACM.

[2] O. J. Anshus, J. M. Bjørndalen, and B. Vinter. PyCSP - Communicating
Sequential Processes for Python. In A. A. McEwan, W. Ifill, and P. H.
Welch, editors, Communicating Process Architectures 2007, pages 229–248,
July 2007.

[3] L. Augustsson. λ-calculus cooked four ways.

[4] N. C. Brown. Communicating Haskell processes: Composable explicit con-
currency using monads. In P. H. Welch, S. Stepney, F. A. Polack, F. R.
Barnes, A. A. McEwan, G. S. Stiles, J. F. Broenink, and A. T. Sampson, ed-
itors, Communicating Process Architectures 2008, volume 66 of Concurrent
Systems Engineering, pages 67–83, Amsterdam, The Netherlands, Septem-
ber 2008. WoTUG, IOS Press.

[5] N. C. C. Brown. C++CSP2: A Many-to-Many Threading Model for Mul-
ticore Architectures. In A. A. McEwan, W. Ifill, and P. H. Welch, editors,
Communicating Process Architectures 2007, pages 183–205, July 2007.

[6] R. Colvin and I. Hayes. Csp with hierarchical state. In M. Leuschel and
H. Wehrheim, editors, Integrated Formal Methods, volume 5423 of Lecture
Notes in Computer Science, pages 118–135. Springer Berlin / Heidelberg,
2009.

[7] Community. Enumerator and iteratee. http://www.haskell.org/
haskellwiki/Enumerator_and_iteratee.

[8] Community. Ghc/type families. http://www.haskell.org/haskellwiki/
GHC/Type_families.

[9] Community. Haskell programm coverage. http://www.haskell.org/
haskellwiki/Haskell_program_coverage.

[10] Community. Tying the knot. http://haskell.org/haskellwiki/Tying_
the_Knot.

[11] Community. The Haskell Platform. http://hackage.haskell.org/
platform, 2010.

239

http://www.haskell.org/haskellwiki/Enumerator_and_iteratee
http://www.haskell.org/haskellwiki/Enumerator_and_iteratee
http://www.haskell.org/haskellwiki/GHC/Type_families
http://www.haskell.org/haskellwiki/GHC/Type_families
http://www.haskell.org/haskellwiki/Haskell_program_coverage
http://www.haskell.org/haskellwiki/Haskell_program_coverage
http://haskell.org/haskellwiki/Tying_the_Knot
http://haskell.org/haskellwiki/Tying_the_Knot
http://hackage.haskell.org/platform
http://hackage.haskell.org/platform

[12] I. M. Dobrikov. Übersetzung von CSP-M nach Haskell (in German), 2010.

[13] S. Fischer. On Functional Logic Programming and its Application to Test-
ing. PhD thesis, Christian-Albrechts-Universität zu Kiel, 2010.

[14] M. Fontaine. CSPM-cspm: cspm command line tool for analyzing CSPM
specifications. http://hackage.haskell.org/package/CSPM-cspm, 2010.

[15] B. Ford. Parsing expression grammars: a recognition-based syntactic foun-
dation. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’04, pages 111–122, New
York, NY, USA, 2004. ACM.

[16] B. Ford and M. F. Kaashoek. Packrat parsing: a practical linear-time
algorithm with backtracking, 2002.

[17] FormalSystem. Typechecker download. http://www.fsel.com/
typechecker_download.html.

[18] A. Gill. Type-safe observable sharing in Haskell. In Proceedings of the 2009
ACM SIGPLAN Haskell Symposium, Sep 2009.

[19] M. Goldsmith et al. Process behaviour explorer. ProBE user manual. http:
//www.fsel.com/documentation/probe/probe-doc.pdf, 2003.

[20] M. Goldsmith et al. Failures-divergences refinement. fdr2 user manual.
http://www.fsel.com/documentation/fdr2/fdr2manual.pdf, 2005.

[21] C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[22] C. A. R. Hoare. The emperor’s old clothes. Commun. ACM, 24:75–83,
February 1981.

[23] Y. Isobe and M. Roggenbach. Webpage on CSP-Prover.
http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html.

[24] Y. Isobe and M. Roggenbach. Csp-prover - a proof tool for the verification
of scalable concurrent systems. JSSST (Japan Society for Software Science
and Technology) Computer Software, 25, 2008.

[25] J. Jeuring, S. Leather, J. P. Magalhães, and A. Rodriguez Yakushev. Li-
braries for generic programming in Haskell. Technical Report UU-CS-2008-
025, Department of Information and Computing Sciences, Utrecht Univer-
sity, 2008.

[26] O. Kiselyov. Incremental multi-level input processing with left-fold enu-
merator. ACM SIGPLAN 2008 (Developer Tracks on Functional Program-
ming), 2008.

[27] O. Kiselyov, C.-c. Shan, D. P. Friedman, and A. Sabry. Backtracking,
interleaving, and terminating monad transformers. SIGPLAN Not., 40:192–
203, September 2005.

240

http://hackage.haskell.org/package/CSPM-cspm
http://www.fsel.com/typechecker_download.html
http://www.fsel.com/typechecker_download.html
http://www.fsel.com/documentation/probe/probe-doc.pdf
http://www.fsel.com/documentation/probe/probe-doc.pdf
http://www.fsel.com/documentation/fdr2/fdr2manual.pdf

[28] M. Kleine, B. Bartels, T. Gothel, and S. Glesner. Verifying the imple-
mentation of an operating system scheduler. In Proceedings of the 2009
Third IEEE International Symposium on Theoretical Aspects of Software
Engineering, TASE ’09, pages 285–286, Washington, DC, USA, 2009. IEEE
Computer Society.

[29] M. Kleine and T. Gothel. Specification, verification and implementation of
business processes using csp. In Proceedings of the 2010 4th IEEE Interna-
tional Symposium on Theoretical Aspects of Software Engineering, TASE
’10, pages 145–154, Washington, DC, USA, 2010. IEEE Computer Society.

[30] R. Lämmel and S. L. P. Jones. Scrap your boilerplate: a practical design
pattern for generic programming. In TLDI, pages 26–37, 2003.

[31] D. J. P. Leijen and H. J. M. Meijer. Parsec: Direct style monadic parser
combinators for the real world. Technical Report UU-CS-2001-35, Depart-
ment of Information and Computing Sciences, Utrecht University, 2001.

[32] M. Leuschel. Declarative Programming for Verification: Lessons and Out-
look. In Proceedings PPDP’2008, pages 1–7. ACM Press, July 2008.

[33] M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the
B method. STTT, 10(2):185–203, 2008.

[34] M. Leuschel and M. Fontaine. Probing the Depths of CSP-M: A new FDR-
compliant Validation Tool. ICFEM 2008, pages 278–297, 2008.

[35] M. Leuschel, M. Llorens, J. Oliver, J. Silva, and S. Tamarit. The meb and
ceb static analysis for csp specifications. In LOPSTR, pages 103–118, 2008.

[36] M. Lipovača. Learn You a Haskell for Great Good! No Starch Press, 2011.

[37] S. Marlow. Happy, a parser-generator for Haskell. http://www.haskell.
org/happy/.

[38] S. Marlow. Haskell 2010 language report, 2010. http://www.haskell.
org/onlinereport/haskell2010/.

[39] S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for multicore
Haskell. In Proceedings of the 14th ACM SIGPLAN international confer-
ence on Functional programming, ICFP ’09, pages 65–78, New York, NY,
USA, 2009. ACM.

[40] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. Kirby, and G. Gopalakr-
ishnan. Parallel and distributed model checking in eddy. In A. Valmari,
editor, Model Checking Software, volume 3925 of Lecture Notes in Com-
puter Science, pages 108–125. Springer Berlin / Heidelberg, 2006.

[41] B. Metzler, H. Wehrheim, and D. Wonisch. Decomposition for composi-
tional verification. In Proceedings International Conference on Formal En-
gineering Methods (ICFEM 2008), volume 5256, pages 105–125. Springer,
Oktober 2008.

[42] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

241

http://www.haskell.org/happy/
http://www.haskell.org/happy/
http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/onlinereport/haskell2010/

[43] N. Moffat, M. Goldsmith, and B. Roscoe. A representative function ap-
proach to symmetry exploitation for csp refinement checking. In Proceed-
ings of the 10th International Conference on Formal Methods and Soft-
ware Engineering, ICFEM ’08, pages 258–277, Berlin, Heidelberg, 2008.
Springer-Verlag.

[44] S. Mount, M. Hammoudeh, S. Wilson, and R. M. Newman. Csp as a
domain-specific language embedded in python and jython. In CPA, pages
293–309, 2009.

[45] C.-c. S. Oleg Kiselyov, Simon Peyton Jones. Fun with type functions.
presented at Tony Hoare’s 75th birthday celebration, Cambridge, 17 April
2009, 2009-2010.

[46] B. O’Sullivan, J. Goerzen, and D. Stewart. Real World Haskell. O’Reilly
Media, Inc., 1st edition, 2008.

[47] A. N. Parashkevov and J. Yantchev. Arc - a tool for efficient refinement
and equivalence checking for csp. In In IEEE Int. Conf. on Algorithms and
Architectures for Parallel Processing ICA3PP ’96, pages 68–75, 1996.

[48] S. Peyton Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):0–255, Jan 2003. http:
//www.haskell.org/onlinereport.

[49] S. L. Peyton Jones. The Implementation of Functional Programming Lan-
guages (Prentice-Hall International Series in Computer Science). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1987.

[50] D. Plagge and M. Leuschel. Seven at one stroke: LTL model checking for
High-level Specifications in B, Z, CSP, and more. STTT, 12(1):9–21, 2010.

[51] A. Roscoe. Understanding Concurrent Systems. Springer, 2010.

[52] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1999.

[53] J. B. Scattergood. The semantics and implementation of machine-readable
CSP. PhD thesis, Oxford University Computing Laboratory., 1998.

[54] S. Schneider. Concurrent and Real-time Systems: The CSP Approach.
Wiley, 1999.

[55] T. Sheard. Generic unification via two-level types and parameterized mod-
ules. In Proceedings of the sixth ACM SIGPLAN international conference
on Functional programming, ICFP ’01, pages 86–97, New York, NY, USA,
2001. ACM.

[56] S. P. J. Simon Marlow, Ryan Newton. A monad for deterministic paral-
lelism. submission ICFP’2011.

[57] J. Sun, Y. Liu, and J. S. Dong. Model checking csp revisited: Introducing a
process analysis toolkit. In T. Margaria and B. Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation, volume 17
of Communications in Computer and Information Science, pages 307–322.
Springer Berlin Heidelberg, 2009.

242

http://www.haskell.org/onlinereport
http://www.haskell.org/onlinereport

[58] D. Swierstra. Combinator parsing: A short tutorial. Technical Report UU-
CS-2008-044, Department of Information and Computing Sciences, Utrecht
University, 2008.

[59] P. Welch. Process Oriented Design for Java: Concurrency for All. In
H.R.Arabnia, editor, Proceedings of the International Conference on Paral-
lel and Distributed Processing Techniques and Applications (PDPTA’2000),
volume 1, pages 51–57. CSREA, CSREA Press, June 2000.

[60] Wikipedia. Birthday problem. http://en.wikipedia.org/wiki/
Birthday_problem.

[61] Wikipedia. QuickCheck. http://en.wikipedia.org/wiki/QuickCheck,
2008.

[62] P. Y. Wong and J. Gibbons. A process semantics for bpmn. In Proceedings
International Conference on Formal Engineering Methods (ICFEM 2008),
ICFEM ’08, pages 355–374, Berlin, Heidelberg, 2008. Springer-Verlag.

[63] L. Yang and M. R. Poppleton. JCSProB: Implementing Integrated Formal
Specifications in Concurrent Java. In A. A. McEwan, W. Ifill, and P. H.
Welch, editors, Communicating Process Architectures 2007, pages 67–88,
July 2007.

[64] B. Yorgey. The Typeclassopedia. The Monad.Reader, 13:17–68, Mar. 2009.

243

http://en.wikipedia.org/wiki/Birthday_problem
http://en.wikipedia.org/wiki/Birthday_problem
http://en.wikipedia.org/wiki/QuickCheck

	Introduction
	Introduction
	Outline

	CSP
	Informal Introduction to CSP
	Semantics
	Algebraic Semantics
	Denotational Semantics
	Operational Semantics and Firing Rules

	Extensions of Core CSP
	Multi-field Events and Data
	Event Patterns
	Data Processing
	Mixing Input and Output Fields
	Parametrised Processes
	Complete Functional Process Definition

	Formal Definition of CSPM

	Software Architecture of the CSPM Tool
	The Haskell Programming Language
	Architecture Overview
	Source Code Included in the Thesis
	Hints for Understanding the Code
	Type Families

	Role of Haskell
	Haskell Critique

	Modeling of the CSP Core Language in Haskell
	Overview
	Modeling of Processes
	Modeling of Events
	Example of the Modeling of Processes

	Implementation of the Operational Semantics
	Section Outline
	Advantages of Explicit Proof Trees
	Modeling of Proof Trees
	Generation of Proof Trees for and
	Naïve Generation of Proof Trees for Regular Transitions

	Constraint-Based Generation of Proof Trees
	Generating the Initial Proof Tree Skeletons
	Constraint Propagation
	Fixing a Field Value in the Proof Tree Skeleton
	Converting a Proof Tree Skeleton to a Proof Tree
	The Main Loop
	Modeling Multi-field Events
	Event Sets for Multi-field Events
	Critique

	Testing the Implemented Semantics with QuickCheck
	Proof Tree Verifier as a Specification of the Proof Tree Generator
	Equality of the Naïve Proof Tree Generator and the Constraint-based Proof Tree Generator
	Code Coverage Analysis
	Mock Implementations
	QuickCheck Conclusion

	Summary

	Interpreter for the Functional Sub-language of CSPM
	Overview
	External Interface of the Interpreter

	Design Decisions for the Interpreter
	FDR Compatibility
	Model Checking and Equality
	Interpreter and Denotational Semantics
	Environment vs. HOAS
	CSPM Laziness
	Using Haskell Laziness and Knot-Tying
	Lambda-lifting
	Pure Interpreter
	Representing CSPM Values

	Implementation
	The eval Function
	Declarations
	The Pattern Matcher
	AST Preprocessing
	Renaming
	Instances for the Core Language
	Built-in Data Types of CSPM

	Equality and Hashing
	Pure Functional Performance
	A CSPM-to-Haskell Compiler
	Conclusion

	Parser
	Remarks on the CSPM Syntax
	Informal Syntax Definition
	Mixing Built-ins and Core Syntax
	Mixing Type Checking and Parsing
	Strange Syntax
	Operator Precedences
	Constructor and Channel Names

	The AST Data Types
	Source Locations and Node Labels
	Identifier
	Additional Constraints on Abstract Syntax Trees
	Expressions
	Declarations
	Patterns
	SYB

	The Combinator Parser
	Pros and Cons of parsec
	Code Examples
	Parser Performance

	Other Functionality Provided by the Front-End Package
	Renaming
	Interface to ProB

	Conclusion

	Exploiting Multi-Core Parallelism
	Parallel Breadth First LTS Computation
	Parallel Benchmarks
	Interpretation of the Results

	Critique on Semi-explicit Parallelism
	Conclusion

	Integrated Tool
	Command Line Tool
	Installation of the Tools
	Black-Box Testing
	Know Limitations
	Recursive Data Types
	Dot Tuples
	Slow Link Parallel and Renaming Operations

	Comparing CSPM Tools
	Comparison by Aspects
	Advertised Features of the Tools
	The CSPM Tools Seen as a Black Box
	Benchmarks

	Other CSP Software and Related Work

	Future Work
	Short-term
	Medium-term
	Retiring CSPM
	Case Study: B-method
	GUI Tool

	Summary
	Implementation
	Haskell
	Criticism of CSPM and FDR
	Meta Critique

	Implemented Firing Rules
	Normal Transitions
	 Transitions
	 Transitions

	Source Code Listings
	CSP Core Language
	Processes
	ProcessWrapper
	Events
	Fields
	Firing Rules
	Proof Tree Verifier
	Naive Proof Tree Generation
	Proof Tree Generation with Constraints
	Eval Function
	Abstract Syntax Tree
	Quickcheck

	Listings of Benchmarks, Test Cases and Examples
	Pure Functional Benchmarks
	Other examples
	Simplistic Parser

	CSPM Testcases
	Primes
	Mutual Recursive Let
	A Specification of the Hanoi Puzzle
	A Model of a Level Crossing Gate
	A Specification of a Scheduler
	A Specification of a Bank System

