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Abstract

In this work, we present recently achieved progress in the physics of binary colloidal mixtures
in equilibrium and nonequilibrium. The work consists of two parts. In the first part we study
a mixture of star polymers and hard spherical colloids as a model for a binary colloidal sys-
tem in equilibrium. Tuning the arm number of the star polymers provides a natural bridge
between the well-known borderline models of colloid-polymer and binary hard sphere mix-
tures. Using monomer-resolved Molecular Dynamics simulations and theoretical arguments
we systematically investigate the effective interactions between hard, colloidal particles and
star polymers in a good solvent. We establish analytical forms for the star-colloid interaction
which are in excellent agreement with simulation results. A new expression for the star-star
interaction for low functionalities is also introduced. Using these effective interactions in
a full two-component description we examine the demixing transition in the fluid phase in
star-polymer—colloid mixtures for different star arm numbers and star-colloid size ratios. The
demixing binodals are calculated and found to be consistent with experimental observations.
Further we examine the whole phase behavior of star-polymer—colloid mixtures for star-to-
colloid size ratios smaller than unity and different arm numbers by canonically tracing out
the star-polymers and deriving accurate effective depletion potentials between the colloids.
We find stable fluid-fluid demixing transitions for low arm numbers above a critical value
of the size ratio below preempted by a fcc-solid. By increasing the arm number and the
size ratio, the region of stability of the demixing transition with respect to crystallization of
the colloids shrinks. A comparison between the one- and two-component descriptions that
demonstrates the consistency between the two routes is also carried out.

In the second part we focus on nonequilibrium phase transitions. The influence of an
external field acting differently on the two constituents of a binary colloidal mixture per-
forming Brownian dynamics is investigated by computer simulations and a simple theory. If
the external forces are parallel and the field-free state is a mixed fluid, the simulations show
a nonequilibrium first order phase transition involving lanes of particles of the same type
which are sliding against each other in the direction of the external forces. We further show
that pattern formation also occurs in a time-dependent oscillatory field. If the frequency
of the external field exceeds a critical value, however, the system exhibits a transition back
to the disordered state. For nonparallel forces, lane formation is also observed but with an
orientation tilted with respect to the external forces. If the field-free state is crystalline, a con-
tinuous increase of the parallel external forces yields a novel reentrant freezing behavior: the
crystal first melts mechanically via the external force and then recrystallizes into demixed
crystalline lanes sliding against each other. Our results can be experimentally verified in
binary colloidal suspensions exposed to external fields under non-equilibrium conditions.






Zusammenfassung

Die vorliegende Arbeit untersucht die Physik von binéren kolloidalen Mischungen im Gleich-
gewicht und Nichtgleichgewicht. Ein interessantes und umfassendes Modell fiir binére Syste-
me im Gleichgewicht ist eine Mischung aus Sternpolymeren und harten sphérischen Kolloi-
den. Durch Verdnderung der Anzahl der Arme eines Sternpolymers ist es moglich zwischen
den wohlbekannten Kolloid-Polymer und binéiren Hartkugel Mischungen zu interpolieren.
Die effektive Wechselwirkung zwischen den Sternpolymeren und Kolloiden wird systematisch
untersucht und analytische Ausdriicke eingefiihrt. Zusétzlich présentieren wir ein Paarpoten-
tial fiir die effektive Wechselwirkung zwischen Sternpolymeren fiir kleine Armzahlen, welches
eine leichte Modifizierung des bekannten Ausdrucks fiir groflere Armzahlen ist. Durch Ver-
wendung dieser Wechselwirkungen in Fliissig-Integralgleichungen wird die Entmischung der
Kolloide in der fluiden Phase fiir verschiedene Armzahlen und Groflenverhéltnisse zwischen
Sternen und Kolloiden untersucht. Die Koexistenzkurven werden konstruiert und zeigen
quantitative Ubereinstimmung mit experimentellen Messungen. Im Anschluf berechnen wir
das komplette Phasendiagram von Sternpolymer-Kolloid Mischungen fiir einen weiten Be-
reich von Armzahlen und Gréflenverhéltnissen, indem wir die Sternpolymere aus dem binéren
System kanonisch herausintegrieren und effektive Wechselwirkungen zwischen den Kolloiden
in einem nunmehr einkomponentigen System verwenden. Fiir kleine Armzahlen finden wir
stabile fluid-fluid Entmischungen der Kolloide ab einem kritischen Gréflenverhéltnis. Die sy-
stematische Untersuchung der Phasendiagramme zeigt, daf§ die Entmischung in der fluiden
Phase bei Erniedrigung des Gréflenverhiltnisses und bei Erhhung der Armzahl instabil ge-
geniiber dem Einfrieren der Kolloide wird. Dies ist in Konsistenz mit den Phasendiagrammen
der beiden Grenzfille von Kolloid-Polymer und bindren Hartkugel Mischungen. Ein Vergleich
der zweikomponentigen und der effektiven einkomponentigen Beschreibung rechtfertigt die
angewandten statistischen Methoden und Ergebnisse im Rahmen des Modells.

Als einfaches Modell fiir binére kolloidale Mischungen im Nichtgleichgewicht betrachten
wir Kolloide mit Yukawa-Wechselwirkung, welche einer Brownschen Dynamik unterliegen. Es
wird angenommen, dafl externe Felder unterschiedlich auf die beiden Konstituenten der Mi-
schung wirken. Computersimulationen zeigen fiir parallele &uflere Krifte einen Nichtgleich-
gewichtsiibergang erster Ordnung, der zu einer Strukturbildung in der Fliissigkeit fiihrt.
Teilchen gleichen Typs sammeln sich in Streifen parallel zu den dufleren Feldern und wan-
dern kollektiv mit gleicher Driftgeschwindigkeit. Der Ubergang geschieht bei geniigend grofier
betraglicher Differenz der externen Krifte und bei ausreichend kleiner Frequenz und wird
mit Computersimulation und einfacher Theorie quantitativ untersucht. Eine experimentel-
le Verifizierung sind bidisperse kolloidale Systeme unter Sedimentation. Wir zeigen weiter,
daB der Ubergang auch bei nicht parallelen Kriften auftritt und zu ungewdhnlich verdreh-
ten Streifen fiihrt. Ist das kriftefreie System ein Festkorper, beobachten wir ein neuartiges
reentrant-freezing Verhalten: bei Erhéhung der dufleren Krifte schmilzt das System, um dann
nach dem Ubergang in die strukturierte Phase innerhalb der wandernden Domiinen wieder
einzufrieren.
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Chapter 1

Introduction

Typical soft matter systems, such as polymers and colloids, almost always occur in the
form of mixtures. It is the central goal of soft matter physics to offer insights into their
generic phase behavior which does not depend on the detailed chemical structure of their
constituents.

Multicomponent mixtures in thermodynamic equilibrium display an enormously richer
phase behavior than one-component systems. A typical pure substance consisting of spher-
ically symmetric molecules without internal degrees of freedom displays a generic phase
behavior on the temperature-pressure plane that features three phases: a gaseous and a
liquid one (if sufficiently strong attractions between the molecules are present) and a crys-
tal [1]. Moreover, the Gibbs phase rule [2] asserts that there is only one point in the phase
diagram at which these three can be found in simultaneous coexistence with one another.
Consequently, investigations of the bulk thermodynamics of one-component systems focus
on the calculation of the freezing- and liquid-gas coexistence curves, as well as on the proper-
ties in the neighborhood of the critical point associated with the latter. In multicomponent
mixtures, the additional freedom provided by the flexibility of changing the concentration
of any of the constituent species at will, opens up the possibility of various types of phase
transitions, such as, e.g., vapor-liquid, demixing, crystallization of any of the number of the
components, alloy formation etc. Thereby, new topological features in the phase diagram,
including regions of multi-phase coexistence, lines of critical points and critical end points
show up. It is therefore not much of a surprise that the structure and thermodynamics of
multicomponent mixtures are studied in much less detail than those of pure substances.

In soft matter physics, on the other hand, mixtures are the rule, not the exception. To
complicate matters even further, typical soft matter systems include components with a vast
separation of length scales, a feature that makes a true, multicomponent description of real
systems infeasible [3]. One possibility is to consider simple model mixtures: Two examples
that have been intensively investigated in the recent past [4] are mixtures of hard spheres
(colloids) and free, nonadsorbing chains on the one hand, and the binary hard sphere mixture
(BHS) of two species with a variable size ratio on the other. The theoretical investigations
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of the colloid-polymer (CP) mixture have been based mostly on an effective, one-component
description of the hard colloids, for which an additional, attractive depletion potential is in-
troduced after the polymer has been integrated out. This is the well-known Asakura-Oosawa
(AO) model [5, 6], in which the polymers are figured as penetrable spheres experiencing an
additional hard-sphere (HS) interaction with the colloids. A number of theoretical investi-
gations on the AO model [7, 8, 9, 10, 11] have revealed that the system displays a demixing
transition that accompanies the freezing of the hard colloids. However, the former becomes
metastable with respect to the latter [9] for polymer-to-colloid size ratios ¢ < g. = 0.45. For
size ratios ¢ > ¢., the system displays three phases: a colloid-poor/polymer-rich and colloid-
rich/polymer-poor fluid, as well as a solid phase, in which the colloids form a fcc-crystalline
arrangement with the polymers diffusing in it. However, for ¢ < ¢, a single, mixed fluid and
a crystal phase exist. These findings are in semi-quantitative agreement with experimental
results [12, 8, 13]. In the BHS system, the first indication of a demixing transition in the fluid
phase was offered in the work of Biben and Hansen [14]. Two-component simulations [15, 16]
have shown that the demixing transition in the fluid phase is either metastable with respect
to crystallization or it is completely absent, depending on the size ratio [17]. We note that in
all cases mentioned above, freezing refers to the large hard spheres only: the crystallization
of both components and the associated formation of binary alloys takes place at size ratios
close to unity and its investigation by theoretical methods is highly nontrivial [18, 19, 20].

A theoretical understanding of the (meta)stability of the demixing transition in two-
component mixtures is provided by the depletion potential that effectively acts between
the larger components of the mixture when the smaller ones are thermodynamically traced
out [21]. Depletion is caused by the fact that the small components have more free space
available to them when two large particles are brought close to contact than when they
are far apart. The effective interactions arising in the AO model are purely attractive;
in the BHS-case, correlation effects cause the depletion potential to develop also repulsive
parts and an oscillatory behavior [22, 23]. Hence, free polymers are more efficient depleting
agents for hard spheres than smaller hard spheres themselves. The procedure of tracing
out the small components facilitates the theoretical studies but it is subject to two strong
constraints arising from the definition of the effective interaction [21], namely: (i) the overall
thermodynamics of the mixture must, evidently, remain invariant in switching from one
description to the other and (ii) the correlation functions of the large component should also
be the same in both descriptions.

It is desirable to consider systems that interpolate between the AO and the BHS models,
in order to systematically investigate the evolution of the phase behavior as we move from
one extreme case to the other. Mixtures of colloids and nonadsorbing star polymers in
a good solvent are such a natural bridge. Star polymers are synthesized by covalently
attaching f polymeric chains on a common center. In this way, hybrid particles between
polymers and colloids can be constructed, which naturally bridge the gap between these
two common states of soft matter. The number of arms f, also known as functionality
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of the stars, allows us to go from free chains (f = 1,2) to stiff, spherical particles (f >
1) [24, 25, 26]. Effective interactions between star polymers in good [25] and ©-solvents
[27] have been recently derived and the validity of the former has been confirmed through
extensive comparisons with experiments [25, 28, 29] and simulations [26, 30]. Extensions to
polydisperse stars [31] as well as to many-body forces in dense star polymer solutions [32]
have also been recently carried out.

One purpose of this work is to examine mixtures of colloids with star polymers of vari-
able arm number f, which provide a natural bridge between the CP-mixture (corresponding
to linear chains, f = 1 and f = 2) and to the BHS (formally f — oo). To this end, we
derive depletion potentials between the colloids that, depending on f, interpolate between
interactions similar as in the AO-model and the BHS-depletion interaction [22, 23]. We sys-
tematically investigate the consistency between the one- and two-component descriptions,
since our starting point are the three interaction potentials acting between the two compo-
nents. We trace out the phase diagrams of the mixture for various combinations of star arm
numbers f and star-colloid size ratios.

Let us now review what is known about colloidal mixtures in nonequilibrium. While
equilibrium bulk phase transitions are by now well understood both by computer simulations
[33, 34] and by statistical theories [34, 35, 36], nonequilibrium situations may induce a much
richer scenario of phase transformations. In the last years an emphasis was placed onto
such transitions in driven diffusive systems, [37, 38, 39] which were extensively studied by
theory and simulation within lattice and off-lattice models and constant and oscillatory fields
[40, 41, 42]. In particular, models of identical particles were studied, which couple with a
different sign to an external uniform field (so-called “plus and minus charge” particles) [43]. In
the symmetric case where half of the particles are “plus-charge” and half of them are “minus-
charge” particles, a blocking transition was obtained if the field strength exceeded a critical
value. The particles then form stripes perpendicular to the field direction [44, 45, 46]. This
transition has been put forward recently as a concept of panic theory applied to pedestrian
zones [47]. Interestingly enough in a two-dimensional off-lattice system confined onto a strip,
the blocking transition was found to be generated by increasing the temperature which is
opposite to what one would expect from the equilibrium freezing transition that occurs by
lowering the temperature.

In this work, we focus on another kind of nonequilibrium phase transition in such a driven
diffusive off-lattice model with two particle species, which is associated to lane formation.
Lanes are formed by bundles of particles of the same kind due to a nonequilibrium “slip-
stream” effect. While such a transition towards lane formation is absent in a square-lattice
model with nearest-neighbor hopping and in pure one-component systems, it was recently
found in off-lattice simulations of a confined two-dimensional system as a intermediate state
between the disordered and the blocked state [47]. We investigate this lane formation in
more detail and map a whole phase diagram as a function of the field strength and the
range of the interparticle interaction. Experimental evidence for such an instability has
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been accumulated in sedimentation dynamics of bidisperse suspensions [48, 49, 50, 51].

As the occurrence of lane formation appears to be very general, this nonequilibrium
transition could be experimentally verified in many other systems. One example are ionic
conductors in an electric field [38]. Another less common example concerns pedestrian (or
any other traffic) dynamics where lane formation is an intuitive phenomenon [52]. A further
application which we put forward is that of mesoscopically sized colloidal suspensions, which
perform diffusive Brownian dynamics in a molecular solvent. Colloidal samples have served
as excellent model systems to detect equilibrium phase transitions such as freezing [3] or
fluid-fluid phase separation [53]. They have also played a key role for experimental verifi-
cation of kinetic mode-coupling-type theories describing the (nonequilibrium) kinetic glass
transition [54]. Indeed, well-characterized colloidal suspensions may also be subjected to
external fields resulting in nonequilibrium structure formation. The striking advantage of
colloidal samples is that the external field can systematically be controlled and tailored [55].
As possible examples which realize the Brownian model used in the present study, we men-
tion binary colloids under sedimentation, linear or oscillating shear, and charge-bidisperse
colloidal mixtures in electric fields. Another possibility to control colloidal suspensions are
external laser-optical or magnetic fields which couples to the different dielectric or magnetic
permeabilities of the solvent and the colloid material, respectively. We further mention that
two-dimensional systems for which most of the theoretical studies were done, can also be
realized by squeezing colloids between glass plates [56] or confining them across a water-air
interface [57, 58] and these can be subjected to external fields as well.

The outline of the thesis is as follows. In chapter 2 we introduce the effective interactions
in star-polymer—colloid mixtures. For the interaction between the colloids we use the well
known hard-sphere interaction. The pair potential of star polymers was recently derived for
arm numbers larger than f = 10. The purpose of this chapter is to review these interactions
and derive the effective interactions between star polymers and hard spherical colloids, as
well as the interaction between star polymers with low arm numbers. Based on the effective
interactions introduced in chapter 2, the phase behavior and structure of star-polymer—
colloid mixtures is systematically explored in chapter 3. We solve the full two-component
problem to obtain phase boundaries for the fluid-fluid demixing transition. A mapping onto
an effective one-component system is performed by deriving depletion potentials for the col-
loids. The resulting phase diagrams are compared to the binodals of the full two-component
description and the consistency is checked. In chapter 4 we turn to nonequilibrium phase
transitions in driven binary colloidal mixtures. In our simple model we observe first order
nonequilibrium transitions to pattern formation above a critical external force. The phase
behavior is systematically investigated by computer simulations and simple theories. In
chapter 5 we finally conclude with a summary and an outlook.



Chapter 2

Effective interactions in
star-polymer—colloid mixtures

The study of the structural and thermodynamic properties of the polymeric state of matter
has a long history in physics, which started with the pioneering work of Flory [59, 60, 61].
In the traditional, “polymeric approaches” to the matter, the chain nature of the macro-
molecules involved is in the foreground. However, in the last few years, alternative, com-
plementary considerations have emerged that can loosely be called “colloidal approaches”.
Here, one envisions the polymer chains as diffuse, spherical objects and the chain nature of
the molecules does not explicitly appear in the formalism. Instead, in a first step, almost all
of the monomeric degrees of freedom are thermodynamically traced out of the problem [21].
Thereby, the polymers are replaced either by their centers of mass or by one of the monomers
along their backbone, typically the end- or the central monomer. In this way, effective in-
teractions between the polymers naturally arise [21], which implicitly include the effects of
the traced-out monomers and typically have the range of the chain radius of gyration R,.
The earliest such approach dates back to the work of Asakura and Oosawa [62, 5], and
Vrij [6], who modeled polymer chains as penetrable spheres. These models pertain mostly
to Gaussian, i.e., ideal chains and are semi-quantitative. More systematic approaches have
appeared in the recent years, in which self-avoiding chains are modeled and effective in-
teractions among them are derived by means of simulations [63] or theory [64]. The gain
from adopting such an alternative view is twofold: on the one hand, one has the possibility
of looking at the same problem from a different angle; on the other hand, tracing out the
monomers reduces the complexity of the problem by a factor /V, the degree of polymerization
of the chains [65]. In this chapter, we wish to carry these considerations one step further by
looking at a two-component system of star polymers in good solvent conditions and hard,
spherical, colloidal particles.

Though the star-star interaction is readily available and the colloids can be modeled

as hard spheres, the effective cross interaction between star polymers and colloids is still
missing. The main purpose of this chapter is to present theoretical and simulation results and
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to furnish analytic expressions for the force and/or the effective interaction acting between a
star polymer and a spherical, colloidal particle for a large range of size ratios between the two.
The theoretical approach is inspired by the earlier considerations of Pincus [66] regarding the
force acting between a star and a flat wall but are made more precise here and they are also
extended to include the effects of curvature. We present the general theoretical approach,
both for flat and curved surfaces and derive analytic expressions for the star-colloid force
which include a handful of undetermined parameters. We compare those with the results
of monomer-resolved Molecular Dynamics simulations and determine the free parameters in
order to achieve agreement between theory and simulation results. The effective interaction
between star polymers is briefly reviewed and we present a modified version of the star-star
potential which is valid for very low arm numbers, f < 10.

2.1 Effective interaction between star polymers and
hard-sphere colloids

Let us now define the system under consideration and its relevant parameters. We consider a,
collection of star polymers with arm number or functionality f, and hard, spherical colloidal
particles, the interaction between the latter species being modeled through the hard sphere
(HS) potential

f < o
Vi (r) = oo forr<og (2.1)
0 else.

By considering two isolated members of each species, i.e., one star and one colloid, our goal
is to derive the effective interaction between the two. The colloids have a radius R., which
is a well-defined length scale.

The stars, on the other hand, are soft, hairy balls without a sharply defined boundary
and this leads to some freedom in defining length scales characterizing their spatial extent.
The experimentally measurable length scale that naturally arises from small-angle neutron-
or X-ray-scattering experiments (SANS or SAXS) is the radius of gyration R, of the stars
and the associated diameter of gyration o, = 2R,. For the theoretical investigations on
the subject, however, another length scale turns out to be more convenient, namely the so-
called corona radius R, of the star or the associated corona diameter o = 2R,. The corona
radius arises naturally in the blob model for the conformation of isolated stars, introduced
by Daoud and Cotton [67]. According to the Daoud-Cotton picture, the bulk of the interior
of a star in good solvent conditions (and for sufficiently long arm chains), consists of a region
in which the monomer density profile c¢(s) follows a power-law as a function of the distance
s from the star center, namely:

cls) ~ o (2) e, 22)
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with the monomer length a, the excluded volume parameter v and the reduced excluded
volume parameter = v/a®. Outside this scaling region, there exists a diffuse layer of
almost freely fluctuating rest chains, in which the scaling behavior of the monomer profile
is not any more valid. We define the corona radius R of the star as the distance from the
center up to which the scaling behavior of the monomer density given by Eq. (2.2) above
holds true. In what follows, we define the size ratio ¢ between the stars and the colloids as:

qg=—>. (2.3)

In addition, the interior of the star forms a semi dilute polymer solution in which scaling
theory [68] predicts that the osmotic pressure II scales with the concentration c as II(c) ~
¢®*. Combining the latter with Eq. (2.2) above, we obtain for the radial dependence of the
osmotic pressure of the star within the scaling regime the relation:

I(s) ~ kpT f3/25°3 (s < Ry). (2.4)

No relation for the osmotic pressure II(s) for the diffuse region s > Ry is known to date. It
is indeed one of the central points of this chapter to introduce an accurate ansatz for the
latter, one that will allow us also to derive closed formulas for the effective force between a
star and a hard object. This is the subject we examine below.

2.1.1 A star polymer and a flat wall

We begin by examining the simplest case, in which a star center is brought within a distance
z from a hard, flat wall, as depicted in Fig. 2.1. Going back an idea put forward some ten
years ago by Pincus [66], we can calculate the force Fy,(z) acting between the polymer and
the wall by integrating the normal component of the osmotic pressure II(s) along the area
of contact between the star and the wall. In the geometry shown in Fig. 2.1, this takes the
form:

Yy=00

FM@:%/ I1(s) cos 9 ydy. (2.5)

=0

Using z = s cos ¥ and y = z tan ¥ we can transform Eq. (2.5) into:

gﬂ@:mm/wm@@. (2.6)

Eq. (2.6) above implies immediately that, if the functional form for the force Fy,(z) were to
be known, then the corresponding functional form for the osmotic pressure I1(z) could be

m@m—%(ﬂﬂﬁ) (2.7)

obtained through:

z

To this end, we now refer to known, exact results regarding the force acting between a
flat wall and a single, ideal chain whose one end is held at a distance z from a flat wall [69].
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Figure 2.1: Star polymer (black-shadowed particle) interacting with a flat wall. The
star polymer consists of a inner core region, where the scaling behavior is dominant,
whereas the outer regime is shadowed and indicates the exponential decay of the
osmotic pressure.

There, it has been established that the force Fs(vivd)(z) is given by the relation:

. 0 z
Fi(2) = kyT5-1n [erf (Eﬂ , (2.8)
where erf(z) = 2/\/m fow e "dt denotes the error function and L is some length scale of
the order of the radius of gyration of the polymer. Carrying out the derivative and setting
erf(x) = 1 for x > 1, we obtain a Gaussian form for the chain-wall force at large separations:

2
Fld () kBTT exp (—%) (z>L). (2.9)

We now imagine a star composed of ideal chains. As the latter do not interact with each
other (“ghost chains”) the result of Eq. (2.9) holds for the star as well. Going now to self-
avoiding chains, we assert that, as the main effect giving rise to the star-wall force is the
volume which the wall excludes to the chains, rather than the excluded volume interactions
between the chains themselves, a relation of the form (2.9) must also hold for the force
Fi(2) between a wall and a real star, but with the length scale L replaced by the radius
of gyration or the corona radius of the latter and with an additional, f-dependent prefactor
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for taking into account the stretching effects of the f grafted polymeric chains. From Egs.
(2.7) and (2.9) it now follows that

kBT 1 2 52
I1(s) x < (; + ﬁ) exp <_ﬁ> (s> L). (2.10)
The full expression for II(s) now follows by combining Eq. (2.4), valid for s < Rg, with
Eq. (2.10), valid for s > L = R, and matching them at s = Rs. The local osmotic pressure
I1(s) is the interior of a star polymer, as a function of the distance s from its center has
hence the functional form:

s73 for s < Rg;

(2.11)
(S% + 2&2) R% exp [—k? (s — R%)] for s > R,

T(s) = Af32kgT {

-1
g
verify shortly. On the other hand, £ must be chosen to guarantee that I1(s) is continuous at

where A and k = L' are free parameters; it is to be expected that x = O(R_!), as we will

s = Ry, resulting into the value:
1

$= TR
Eq. (2.11) above concerns the radial distribution of the osmotic pressure of an isolated
star. The question therefore arises, whether this functional form for the osmotic pressure

(2.12)

can be used in order to calculate the force between a star and a flat wall also in situations
where the star-wall separation is smaller than the radius of gyration of the star, in which case
it is intuitively expected that the presence of the wall will seriously disturb the monomer
distribution around the center and hence also the osmotic pressure. In fact, it is to be
expected the osmotic pressure is a function of both the star-wall separation z and the radial
distance s, whereas in what follows we are going to be using Eq. (2.6) together with Eq.
(2.11), in which II(s) has no z-dependence itself. However, it turns out that this is an
excellent approximation. On the one hand, it is physically plausible for large star-wall
separations, where the presence of the wall has little effect on the segment density profile
around the star center and the ensuing osmotic pressure profile. On the other hand, also
at very small star-wall separations, the scaling form II(s) ~ s~ continues to be valid. To
corroborate this claim, we proceed with some arguments to this effect.

First, we refer once more to known, exact results concerning the radial distribution of the
pressure on a hard wall arising from an ideal chain grafted on it [70], a situation similar to
holding one end of a chain at a distance very close to the wall surface. The pressure ITjq(s)

eads as |70]:

' o Mia(s) 1 1 1+82—|—a2 s* + a? (2.13)
d(8) = — e ——— Jexp |-——|, :
= o (2 + a2)3R2 2Rz ) P TR

with the segment length a, indicating that in the regime a < s < R, indeed the scaling
IT;4(s) ~ s~ holds.

Second, we can employ a scaling argument, asserting that, on dimensional grounds, the
osmotic pressure exerted by a star on a nearby flat wall and held at a distance z from it, must
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Figure 2.2: Snapshot of a simulation showing a star polymer interacting with a flat
wall, at a small center-to-surface distance. The mirror-reflected image of the star, on
the right, helps demonstrate that the configuration is similar to that of an isolated
star with twice as many arms.

be of the form II(s, 2) = kpTR;® h(s/Rg, 2/ Rg), with some scaling function h(z,y); univer-
sality arguments dictate that the segment length a should not appear in the dimensional
analysis and hence s, z and R, are the only relevant length scales for this problem. Now, for
small star-wall separations, z < R,, we replace the second argument of this function by zero.
Moreover, we assert that, as the dominant contribution to the osmotic pressure for distances
s < Ry comes from the first few monomers along the chains colliding with the wall, the
degree of polymerization N of the chains should be irrelevant if the chains are long. Hence,
all R,-dependence of the pressure should drop out, with the implication h(z,0) ~ z 2 for
r < 1 and hence II(s) ~ s72 in this regime. Third, we point out that bringing a star with
f arms at a small distance to a flat wall, creates a conformation which is very similar to
one of an isolated star with 2 f-arms, as shown in Fig. 2.2. Hence, it is not surprising that
at small star-wall separations, one recovers for the radial dependence osmotic pressure the
scaling laws pertinent to an isolated star.

Finally, by inserting Eq. (2.11) into Eq. (2.6) and carrying out the integration, we find
that for small star-wall distances, z < Rs, the force scales as Fyy(2) ~ (kgT)/z, thus giving
rise to a logarithmic effective star-wall potential Vi, (z) ~ —kpT In(z/Rs). The latter is
indeed in full agreement with predictions from scaling arguments arising in polymer theory
[66, 71, 72]. This is a universal result, in the sense that it also holds for single chains, be it
real or ideal, as it can also be read off from the exact result, Eq. (2.8), using the property
erf(x) ~ z for x — 0. Thus, the proposed functional form for the osmotic pressure, Eq.
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(2.11), combined with Eq. (2.6) for the calculation of the effective force, has the following
remarkable property: it yields the correct result both at small and at large star-wall distances
and therefore appears to be a reliable analytical tool for the calculation of the effective force
at all star-wall distances. At the same time, it contains two free parameters, A and «
which allow some fine tuning when the predictions of the theory are to be compared with
simulation results, as we will do below. Yet, we emphasize that this freedom is not unlimited:
on physical grounds, x must be of the order of Rg_1 and A must be a number of order unity
for all functionalities f, as the dominant, f3/2-dependence of the osmotic pressure prefactor
has been already explicitly taken into account in Eq. (2.11).

We are now in a position to write down the full expression for the star-wall force, by
using Eqgs. (2.6) and (2.11). The result reads as:

R (2) _ ) o2 {i + 721 for 2 < Hs; (2.14)

kT 2¢ exp|—k?(2*> — R?)] for z > Rs.

Note the dominant, ~ 1/z-dependence for z — 0. Accordingly, the effective interaction
potential Vi (2) between a star and a flat, hard wall held at a center-to-surface distance z
from each other reads as:

z 22 1 .
BVan(z) = agee d ~l) — (g D€ =3) +¢ forz < Ry (2.15)
Cerfc(kz)/erfe(kRs) for z > R,
with the inverse temperature § = (kgT) ™", the additional constant
(= vme exp(k®R2) erfc(k Rs) (2.16)

KR,

and the complementary error function erfc(x) = 1 — erf(x). This completes our theoretical
analysis of the star polymer-wall force and the ensuing effective interaction potential. The
comparison with simulation data and the determination of the free parameters in the theory
will be discussed in section 2.1.3. We now proceed with the calculation of the effective force
between a star and a spherical hard particle, where effects of the colloid curvature become
important.

2.1.2 A star polymer and a spherical colloid

We apply the same idea as for the case of the hard wall: the effective force acting at the
center of the objects is obtained by integrating the osmotic pressure exerted by the polymer
on the surface of the colloid. In Fig. 2.3, the geometrical situation is displayed: within the
corona radius of the star polymer Ry = 05/2, the osmotic pressure is determined by scaling
laws; the outer regime is shadowed and signifies the Gaussian decay of the osmotic pressure.
At center-to-surface distance z (center-to-center distance r = z+ R.), the integration of the
osmotic pressure is carried out over the contact surface between star and colloid. Taking
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Figure 2.3: Star polymer (black-shadowed particle) interacting with a colloidal par-
ticle (grey sphere). The dark and shadowed regions of the star have the same meaning
as in Fig. 2.1.

into account the symmetry of the problem, e.g., its independence of the azimuthal angle, we
obtain the force Fy.(z) between the star and the colloid as:

amax
Fi.(z) = 27er/0 df sin A TI(s) cos, (2.17)

where 1 and 6 are polar angles emanating from the center of the star polymer and the colloid,
respectively. The variables ¥ and € can be eliminated in favor of the variable s, which denotes
the distance between the center of the star and an arbitrary point on the surface of the colloid.
This elimination is achieved by taking into consideration the geometrical relations (see Fig.
2.3):

s siny = R.sin 6 (2.18)

and

s cosV + R.cos0 = R, + z. (2.19)

Egs. (2.17), (2.18) and (2.19) yield for the star-colloid effective force the transformed integral:

R ; / T s [(2 + Ro)? = B2 + 57 T1(s) (2.20)

(z+ R.
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The maximum integration distance, sp.y, depends geometrically on 6., as well as on the
distance z of the star polymer to the surface of the colloid and on R.. The relation reads as

Smax = \/[z + R.(1 — cos Hma)()]2 + (R Sin Omax )?

1
_ 5\/ (47 + Ry(1 — 08 Bmas)]® + (Ry St Oimase) (2.21)

By introducing Eq. (2.11) into Eq. (2.20), an analytic expression for the effective force
follows, which reads as

Fso(2) _ AfPR, | [(2+ Re)? — RY] [ﬁ - ﬁ + \Ill(Rs)i| - ln(Ris) + Uy(Rs) for z < Ry;
2 2

ksT (24 Ro)? | [(2 + R.)? — R2)01(2) + Uy(2) for z > R,.
(2.22)
Here, the functions ¥y (x) and Wy(z) are given by:
— i 2 p2 l AN 1 2.2
Uy (z) = 7 eXP (k*R3) | = exp (—K’z?) exp (—£’Soax) | » (2.23)
S x Smax

Uy(z) = Ré exp (K*R?) [? [erf (KSmax) — erf (k)] +  exp (—£%2%) — Smaxexp (=K shax) | »

(2.24)

where & is given by Eq. (2.12). Note that, for small distances, both regimes of the osmotic
pressure contribute to the integral, whereas for larger distances, z > R, only the Gaussian
decay does so. Due to the additional dependence of sy, on the distance z, [see Eq. (2.21)],
an analytical expression for the effective potential Vi.(z), analogous to Eq. (2.15) for the
flat-wall case, is not possible here.

Some remarks regarding Fi.(z) are necessary. First, for small separations z, the force
scales as Fy.(z) ~ (kgT)/z, the same behavior found for the flat-wall case. Once more, we
obtain the universal result mentioned above, which has been shown to be also valid for an
ideal chain whose one end is held at a distance z from the surface of a hard sphere. Indeed,
for this case the force is given by the exact relation [73]:

. 0 R z
(id) () = - — ¢ z
Fi(z) kBTaZ In [1 (z n Rc) erfc (L)} , (2.25)

with L being a length scale of order R,. Eq. (2.25) above, yields Fs(éd)(z) ~ (kgT)/z for
z— 0.
Second, let us consider the limit of small size ratios ¢ = R,/R.. As can be seen from

Eq. (2.21), the upper integration limit sp,y scales as R,/q, whereas the decay parameter x

is of the order R, '. Hence, kSmax ~ ¢ !, with the implication that for small enough g¢’s, the
g
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argument KSpmax in the error function and in the Gaussian in Egs. (2.23) and (2.24) can be
replaced by infinity. As we will shortly see, this is an excellent approximation up to g < 0.3,
as both erf(x) and exp(—x?) approach their asymptotic values for x — oo rapidly. Then,
the implicit z-dependence of the force Fy.(z) through sy, drops out and a z-integration of
the latter can be analytically carried out to obtain an effective star polymer-colloid potential
V. (z) which reads as:

(2.26)

BVR(z) = Af3/2 (i) {—ln(ﬁ)_(%_l)(g—%)%—c for z < Ry;

z+ R ) | Cerfc(kz)/erfc(kRy) for z > R,

with the constant ¢ given by Eq. (2.16). Clearly, in the limit R, — oo (¢ — 0), corresponding
to a flat wall, Eq. (2.26) reduces to the previously derived result, Eq. (2.15). It is a remarkable
feature that all effects of curvature are taken into account by the simple geometrical prefactor
R./(z + R.), for sufficiently small size ratios g. In this respect, the above result bears close
similarity to the well-known Derjaguin approximation [74].

2.1.3 Molecular Dynamics simulation

In order to check the theoretical prediction of the forces at hard objects, we performed a
monomer-resolved Molecular Dynamics (MD) simulation [75] and calculated the mean force
at the center of the star polymer to compare the data with theory. The model is based on
the ideas of simulation methods applied on linear polymers and on a single star [76, 77].
The main features are as follows.

A purely repulsive and truncated Lennard-Jones potential acts between all N f monomers
at distances r:

de[(20) = () + 1] for 7 < 2400y,

VLJ(T’) =
0 for r > 21/60'LJ.

(2.27)

Here, opy is the microscopic length scale of the beads and € sets the energy scale. In
accordance with previous work [26], we have chosen T = 1.2¢/kp.

An attractive FENE (finite extensible nonlinear elastic) potential additionally acts be-
tween neighboring monomers along a chain [76]:

Vo () = —15¢ (UR—Lz)Zln [1 — (RLO)Q] for r < Ry; (2.28)

o0 for r > Ry.

This interaction diverges at » = Ry, which determines the maximal relative displacement of
two neighboring beads. The energy ¢ is the same as in Eq. (2.27), whereas for the length
scale Ry we have chosen the value Ry = 1.5 0p;.

To accommodate the polymer arms, a hard core with radius Ry is introduced at the center
of the star; its size depends on the arm number f. Accordingly, the interactions between



2.1. Effective interaction between star polymers and hard-sphere colloids 15

the monomers and the central particle were introduced. All monomers had a repulsive
interaction V};(r) of the truncated and shifted Lennard-Jones type with the central particle,

VP () 00 for r < Ry; (2.29)
r) = :
= VLJ(T' — Rd) for r > Rd,

whereas the innermost monomers in the chain an additional attractive potential V¥ p(7)
of the FENE type, namely

00 for r < Ryg;

Veene(r) = { (2.30)

VFENE("' — Rd) for r > R;.

Finally, all monomers interact with the colloid or with the wall by a hard potential. We note
that exactly this simulation model was already used by Grest et al. in their simulations of
linear and star polymers in good solvent conditions [76, 77].

The time step is typically At = 0.002¢* with t* = /mo?;/e being the associated time
unit and m the monomer mass. After a long equilibration time (500 000 MD steps), the mean
force at the core of the star whose center is held at the position R and its dependence on
the arm number f separations, is calculated as the expectation value over all instantaneous
forces acting on the star core:

IN !
Y V(e = R) + ) Vipne(ir - R\)] > : (2.31)

k=1 =1

P~ (-

where the first sum is carried over all f N monomers of the star and the second only over the f
innermost monomers of its chains. The direct force between the central particle and the wall
did not need to be considered, as the center-to-surface distance was always kept at values
where this force was vanishingly small. Note that choosing the origin of the coordinate
system on the surface of the colloidal particle or wall, at the point of nearest separation
between the star center and this surface, and also the z-axis in the direction connecting this
origin with the star center, we immediately obtain R = |R| = z.

We have carried out simulations for a variety of arm numbers f and size ratios ¢, allowing
us to make systematic predictions for the f- and g-dependencies of all theoretical parameters.
In attempting to compare the simulation results with the theoretical predictions, one last
obstacle must be removed: in theory, the fundamental length scale characterizing the star
is the corona radius Rs. The latter, however, is not directly measurable in a simulation in
which, instead, we can only assess to the radius of gyration R,. Yet, we have previously
found that the ratio between the two remains fixed for all considered arm numbers f, having
the value Rs/R, ~ 0.66 [26]. We now proceed with the presentation of our MD results.

We consider at first a star polymer near a hard wall. The theoretical prediction of
the effective interaction force is given in Eq. (2.14). First, we consider the limit of small
separations, z — 0, which allows us on the one hand to test the theoretical prediction
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| f | Ra/Rs | A KRy 7Ry
2 0.006 0.46 0.58 1.03
5 0.018 0.35 0.68 1.12
6 0.012 0.34 0.72 1.13
10 0.06 0.30 0.74 1.15
15 0.12 0.28 0.76 -
18 0.09 0.27 0.77 -
30 0.12 0.24 0.83 -
40 0.152 0.24 0.85 -
50 0.152 0.23 0.86 -
80 0.273 0.22 0.88 -
100 0.303 0.22 0.89 -

Table 2.1: The fit parameters arising from the comparison between theory and simu-
lation for the star-colloid interaction and for the star-star interaction for very low arm
numbers, see sec. 2.2. The values of R4 shown here are not exactly the same as the
input core size; they are just in the same order of magnitude, deviating only slightly
from the real input value. They are still corresponding to microscopic length, and are
thus irrelevant at length scales r ~ o5. A is the overall prefactor and x the inverse
Gaussian decay length, both used in the star-wall and star-colloid interaction Egs.
(2.22) and (2.26). 7 is the inverse Gaussian decay length for the star-star interaction
for very low arm numbers. oy, = 2R, = 0.66 0, denotes the corona diameter of the
stars, as measured during the simulation.

Fy(2) 2 kgTAf3? /2 there and on the other hand to fix the value of the prefactor A, which is
expected to have in general a weak f-dependence. For this prefactor, some semi-quantitative
theoretical predictions already exist: For f = 1,2 the prefactor may be calculated from the
bulk and the ordinary surface critical exponents v,y and v°,7? of the n-vector model. For
n = 0 this results in A(f = 1) = (y —19)/v and 232A(f = 2) = (y —7°)/v = 1/v
[78, 79]. Numerical values for the exponents are known from renormalization group theory
and simulation [80, 81] and yield A(f = 1) =~ 0.83 and A(f = 2) = 0.60. On the other hand,
for very large functionalities, f > 1, one can make an analogy between a star at distance
z from a wall and two star polymers whose centers are kept at distance r = 2z from each
other [66]. Indeed, for very large f, the conformations assumed by two stars brought close
to each other is one in which the chains of each star retract to the half-space where the
center of the star lies, a situation very similar to the star-wall case. Then, one can make the
approximation Fg(2) & Fy(22), where Fy denotes the star-star force. For the latter, it is
known [25] that it has the form:

1

" (r —0), (2.32)

5
FSS(T) = E‘f?’/Q
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implying for the coefficient A the asymptotic behavior:

. S
]cll_{goA(f) =N = 36 = 0.14. (2.33)

Since there is no theory concerning the values of A in the intermediate regime of f, A is
used as fit parameter. Its value can be obtained by plotting the inverse force 1/ Fy(2) against
z for small separations z to the hard wall. The results are shown in Fig. 2.4. Looking first
at the inset, we see that, as for the earlier case of star-star interactions [26], the reciprocal
force curves do not go through the origin, as a result of the finite core size, Rq. Once this is
subtracted, though, straight lines passing through the origin are obtained, verifying in this
way the 1/z-behavior of the force and the associated logarithmic dependence of the effective
potential at small separations. The values for A(f) can be immediately read off from the
slope of the curves and they are summarized in Table 2.1. There and in Fig. 2.5 we see
that A is indeed a decreasing function of f but the asymptotic value Ay, = 5/36 is still not
achieved at arm numbers as high as f = 100.

The decay parameter k is fixed by looking at the force at larger separations and the
obtained are also summarized in Table 2.1 and shown in Fig. 2.5. As expected, & is of the
order R, 1 as witnessed by the fact that the product kR is of order unity. A monotonic
increase of ko, with the arm number f is observed, consistent with the view that for large f
stars form compact objects with an increasingly small diffuse layer beyond their coronae [25].

With parameters A and k once and for all fixed from the star-wall case, we now turn our
attention to the interaction of a star polymer at a hard sphere of finite radius R., equivalently
size ratios ¢ # 0. Here, the force is given by the full expressions of Egs. (2.22), (2.23) and
(2.24); for small enough size ratios ¢, the approximation kspax — 00 gives rise to a simplified
expression for the force and to the analytical formula, Eq. (2.26) for the effective star-colloid
potential. Our purpose is twofold: to test the validity of these simplified expressions as a
function of ¢ and also to find an economical way to parameterize sma, as a function of ¢
for those values of the size ratio for which the approximation ks, — 0o turns out to be
unsatisfactory.

We show representative results for fixed arm number f = 18 and varying ¢ in Fig. 2.6;
results for different f-values are similar. It can be seen that the simplified result arising from
allowing spax — 00 yields excellent results up to size ratios ¢ < 0.3, see Figs. 2.6(a) and
(b). However, above this value, the approximation of integrating the osmotic pressure up to
infinitely large distances breaks down, as it produces effective forces that are larger than the
simulation results, especially at distances z of order of the radius of gyration R,. These are
the dashed lines shown in Figs. 2.6(c)-(e). The overestimation of the force is not surprising:
as can be seen from Fig. 2.3 and Eq. (2.20), we are integrating a positive quantity beyond
the physically allowed limits and this will inadvertently enhance the resulting force. Hence,
we have to impose a finite upper limit s,,,, for size ratios ¢ > 0.3 in order to truncate the
contribution of the Gaussian tail in the integral of the osmotic pressure in Eq. (2.20).
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Figure 2.4: Reciprocal effective force between a star polymer and a hard flat wall
plotted against the distance z between the star center to the surface of the wall for
small z-values. The dependence F(z) ~ 1/z is confirmed by the simulation results
(symbols). The prefactor of the potential depends on f and manifests itself in the
different slopes of the reciprocal forces. The inserted plot shows the divergence of the
force at the distance z = Ry, which is subtracted from z in the outset of the plot, to
achieve divergence of the force in the origin.
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Figure 2.5: The prefactor of A and the decay parameter x of Eq. (2.14) plotted
against the functionality f. The value of A = 5/36 ~ 0.14 for f > 1 is not reached
but the simulation data tend to this value very slowly. x shows a monotonic increase
with arm number f.
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Figure 2.6: Comparison between simulation (symbols) and theoretical (lines) results
for the effective force between a star polymer and a colloidal particle for different size
ratios ¢, as a function of the center-to-surface separation z. The arm number here is
f = 18. The solid lines in (a) and (b) are derived from Eq. (2.22) for sp.x — 00. In
(c)-(e) the curves derived by means of this approximation are shown dashed and they
increasingly deviate from the simulation results as ¢ grows. Thereby, a finite upper
integration limit has to be introduced (see the text), producing the curves denoted by
the solid lines in (c)-(e) and bringing about excellent agreement with simulation.
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In Fig. 2.7 a typical snapshot of a star polymer at a colloid illustrates the situation. One
can see that the main contribution of the osmotic pressure results from in the inner region of
the star. The outer region of the chains only interact weakly with the sphere. The question
now is how the value of s;,x must be chosen. As can be seen from Eq. (2.21), this quantity
is dependent on, R, z and Omay. (The latter depending on ¢ means that 6m,x and ¢ should
not be treated as independent quantities.) It would be indeed most inconvenient if for every
combination of these we would have to choose a different upper integration limit. Hence,
we have attempted to transfer all dependence of s, onto the maximum integration angle
Omax- We found that this is indeed possible and, in fact, the angle 6., (¢) has a very weak
g-dependence: starting with a value 0., ~ 45° at ¢ = 0.3, we find that it then quickly
saturates into the value 0, =~ 30° for all ¢ 2 0.35. In this way, we are able to obtain the
corrected curves denoted by the solid lines in Figs. 2.6(c)-(e), showing excellent agreement
with the simulation results.

We finally turn our attention to the f-dependence of the forces for a fixed value of the
size ratio, ¢ = 0.33. In Fig. 2.8 we show the simulation results compared with theory for
a wide range of arm numbers, 5 < f < 50. For the theoretical fits, the values of A and &
from Table 2.1 were used, whereas the value of the maximum integration angle was kept
fixed at 0,,x = 30° for all f-values. The agreement between theory and simulation is very
satisfactory.

Thus, our conclusions for the star polymer-colloid interaction read as follows: the general,
analytical expression for the force between the two is given by Egs. (2.22), (2.23) and (2.24),
supplemented by Eq. (2.21) in which the angle 6,,,, has to be chosen as discussed above for
g 2 0.3. An analytical formula for the effective interaction potential Vi.(z) is not possible for
such size ratios. Rather, the results for the effective force have to be integrated numerically
in order to obtain V,.(z). For size ratios ¢ < 0.3 on the other hand, the approximation
Smax — 00 in Egs. (2.22), (2.23) and (2.24) for the effective force can be made, thereby
also allowing us to derive a simple, accurate, and analytic form for the interaction potential
between a star polymer and a colloid, given by Eq. (2.26). These results form the basis of
the statistical-mechanical treatment of star polymer-colloid mixtures in terms of standard
liquid-state theories; the availability of analytical results for the pair interactions greatly
facilitates the latter.

As the ultimate goal of the derivation of the interactions we present here is precisely
to allow theoretical investigations of star polymer-colloid mixtures, we present in the next
section a short account of a revision of the star-star interaction and arguments for a modified
interaction for the case of very low arm numbers. In this way, mixtures containing stars with
arbitrary arm numbers, ranging from free chains (f = 1,2) to the “colloidal limit” of f > 1
can be studied in full generality.
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Figure 2.7: Snapshot of a typical configuration of a star polymer with f = 18 arms
near a colloidal sphere with ¢ = 0.75. One should notice that predominantly the
inner region of the star interacts with the hard sphere, yielding the main contribution
of the inner core regime to the osmotic pressure of a region, determined by f,.« ~
30°. Thereby, the upper integration limit sy, in Eq. (2.20) is limited, see also the
geometrical aspects of Eq. (2.21) and Fig. 2.3.

20

[N
1

=Y
o

3/2
Fo,/(k, TF")

0 0.5 1
(z-Ryla,

Figure 2.8: The effective force between a star polymer and a colloid for different arm
numbers f and ¢ = 0.33 plotted against z, the distance of the star center to the surface
of the colloid. The lines are the theoretical and the symbols the simulation results.
For clarity, the data have been shifted upwards by constants: f =10:1, f =18 : 2,
f=30:3, f=40:4, f =50:5.



22 2. EFFECTIVE INTERACTIONS IN STAR-POLYMER-COLLOID MIXTURES

2.2 Effective interactions between star polymers

The effective interaction between two stars in a good solvent was recently derived by the-
oretical scaling arguments and verified by neutron scattering and molecular simulation
[25, 28, 29, 26], leading thereafter to the phase diagram of the system [82, 83]. The pair
potential was modeled by an ultrasoft interaction which is logarithmic for an inner core and
shows a Yukawa-type exponential decay at larger distances [25, 82]:

r 1 .
Vi(r) = 2 kaT %20~ () + 577 for 7 < 5; (2.34)
18 15%/2 exp(—%(r —o0g)) for r > o,

However, the theoretical approach giving rise to Eq. (2.34) does not hold for arm numbers
f < 10, because the Daoud-Cotton model of a star [67], on which the Yukawa decay rests, is
not valid for small f. In these cases, the interaction has to a shorter-ranged decay for r > o.
The shortcomings of the blob model can be made evident if one considers the extreme limit
f =1, corresponding to free chains. There, the geometrical blob picture and the associated
“cone approximation” [84] break down. It is therefore instructive to consider known results
about the effective interactions between free chains in order to obtain some insight for the
case at hand.

Most of the work done on chain-chain interactions concerns the effective potential between
the centers of mass of the chains [63, 65, 85, 86, 87]. Theoretical approaches considering two
chains [87], simulations of two chains [85, 86], as well as recent, state-of-the-art simulations
of many-chain systems [63, 65] all reach the conclusion that the effective center-of-mass to
center-of-mass interaction has a Gaussian form with its range set by the radius of gyration
of the chains. Here, we are interested in a slightly different interaction, namely that between
the end-monomer of one chain and the end-monomer of the other. However, at distances of
the order of R, or larger, whether the centers of mass or the end-monomers choice of the two
chains are held fixed should not make much difference. Therefore, we assume a Gaussian
decay of the star-star potential for small f-values and center-to-center distances larger than
os- We emphasize that only the large distance decay of the interaction is affected; its form
at close approaches has to remain logarithmic [72]. Accordingly, we propose the following
star-star pair potential for arm numbers f < 10, replacing the Yukawa by a Gaussian decay:

5 —In(L) + 55 for r < og;
Vi(r) = heT 374 ol 2mos (2.35)
18 535z exp (—77(r* —o7)) for r > o,

where 7(f) is a free parameter of the order of 1/R, and is obtained by fitting to computer
simulation results, see Fig. 2.9. The values for 7 are shown in Table 2.1. For f = 2 we
obtain the value 7 = 1.03 which, together with the potential in Eq. (2.35) above yields for
the second virial coefficient of polymer solutions the value By/ Rg = 5.59, in agreement with
the estimate 5.5 < By/R} < 5.9 from renormalization group and simulations [65]. For f =5
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Figure 2.9: Effective force between two star polymers plotted against the center-to-
center distance r for arm numbers f = 2 and f = 6. The simulation data (symbols)
coincide with the logarithmic-Gauss expression (solid lines) of Eq. (2.35). In the
inset, the outer distance region is enlarged in order to clearly show the validity of the
Gaussian decay in this f-regime (solid line), whereas the Yukawa form (dashed line)
produces poor agreement there.

we find 7 = 1.12, which leads to By/R} = 11.48, in accordance with Monte Carlo (MC)
simulation results [88, 89].

The very good agreement between the logarithmic-Gauss-potential of Eq. (2.35) and the
simulation data for f < 10 can be seen in Fig. 2.9. In the inset of this figure, it can also be
seen that the Yukawa decay is way too slow there. Hence, the potential of Eq. (2.34), has a
longer range than the true interaction for small f, a property that explains the discrepancies
between the simulated and theoretical second virial coefficients based on this potential, which
have been reported by Rubio and Freire [89] in their numerical study of low-functionality
stars. At the same time, with increasing f, the roles of the Gaussian- and Yukawa-decays
are reversed: in Fig. 2.10, we show simulation and theory results for f = 10. The original,
logarithmic-Yukawa potential brings about better agreement now, as already established
by earlier studies on stars with high arm numbers [26, 25, 28]. To summarize, we propose
two analytic expressions for the effective star-star potential, valid in complementary regimes
of the functionality f. The first one concerns the regime f < 10 with the validity of the
logarithmic-Gauss-potential of Eq. (2.35) being established; in the second regime, f > 10,
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Figure 2.10: Effective force between two star polymers plotted against the center-
to-center distance r for arm number f = 10. In contrast to Fig. 2.9, here the Yukawa
form (solid line) gives an accurate description of the decay of the interaction at large
separations, whereas the Gaussian form (dashed line) does not.

the logarithmic-Yukawa-potential of Eq. (2.34) holds. We remark that the ultimative decay
of the effective interaction for very long distances is still Gaussian even for very large f, but
this is not relevant for By as it occurs for much larger distances than the corona diameter.

2.3 Summary and concluding remarks

In summary, we have presented analytic results for the force between a colloid and a star
polymer in a good solvent, accompanied with an analytic expression for the corresponding
pair potential which is valid for size ratios ¢ < 0.7. The validity of these expressions was
established by direct comparison with Molecular Dynamics simulations. It should be noted
that our theoretical approach is in principle generalizable to arbitrary geometrical shapes
for the hard particle, thus opening up the possibility for studying effective forces between
stars and hard ellipsoids, platelets etc. Further, a revised form for the star-star interaction
for small functionalities has been presented, while at the same time the logarithmic-Yukawa
form of this interaction remains valid for functionalities f > 10.

In our considerations we limited ourselves to the case where the star is smaller than the
colloid, i.e., ¢ < 1. The study of the inverse case may be possible by applying the ideas
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presented here, however additional complications arise through the possibility of the star to
“surround” the smaller, colloidal particle, in which case one part of each arm acts to bring
about a repulsion with the colloid and another causes an effective attraction between the
two. Furthermore, a pair potential picture for the many-body system become more and
more questionable for larger g as effective many-body forces [32] will play a more dominant
role in this case.

The present results now enable us to study the structural and thermodynamic properties
of concentrated star polymer-colloid mixtures. This is the topic of the next chapter, where
the calculation of the structure and the phase behavior of star-polymer—colloid mixtures is
presented for a wide range of arm numbers and size ratios.



Chapter 3

Phase behavior of
star-polymer—colloid mixtures

Having derived and presented the effective interactions in star-polymer—colloid mixtures in
the previous chapter we now proceed with the calculation of their thermodynamic properties
using the relevant pair potentials as input. In the first part we present a full two-component
description of the mixture yielding binodals for the fluid-fluid demixing transition and a
comparison with experimental results. Further, different methods of mapping onto an ef-
fective one-component system are discussed and compared to eventually obtain depletion
potentials between the colloids. Using these we trace out the complete phase diagrams of
the mixture for various combinations of star arm numbers f and star-colloid size ratios
g. The resulting phase diagrams are presented and a comparison between the two- and
one-component descriptions is made. We systematically investigate the consistency between
the one- and two-component descriptions, since our starting point are the three interaction
potentials acting between the two components.

3.1 Two-component description

We start with the description of the full two-component mixture of star-polymers and hard
spherical colloids using the effective interactions introduced and derived in the previous
chapter. We consider a binary system with N, colloidal spheres of diameter o, (radius R.)
and Nj star polymers, characterized by a diameter of gyration o, (radius of gyration R,)
and an arm number f. The total particle number is N = N, + N;. Let ¢ = 0,/0. be the
size ratio and p. = N./V and p; = N;/V the number densities of the colloids and stars,
respectively. We now define the packing fractions

7
Ne = gpcag (3.1)

of the colloids, and -
s = gpsag (32)



3.1. Two-component description 27

@
15 s
S 10 5 s go
G?) r n°
5 | |
I L L L L L | L L L L | L L L L | L
0 2.0 0'50 5 10 15

Figure 3.1: (a) Radial distribution functions and (b) static structure factors for the
colloids, obtained by the OZ-equations for binary mixtures closed with the RY-closure.
Shown are examples for arm number f = 32, size ratio ¢ = 0.5 and a fixed colloid
packing fraction 7. = 0.1, while the star polymer packing fraction 7 is increased. For
7s the system is in the immediate vicinity of the spinodal line marked by the divergence
of the £k — 0 limit of the corresponding structure factor.

of the stars in the volume V.

Access to the thermodynamics of the mixture is obtained by solving the Ornstein-Zernike
(OZ) equations for binary mixtures using the two-component Rogers-Young (RY) closure.
The RY form is reliable for the one component star polymer system [83] and shows a spinodal
instability in highly asymmetric hard sphere mixtures [90]. A brief outline regarding integral
equation theories for multicomponent mixtures is given in Appendix A. The RY-closure
[Egs. (A.2) - (A.6)] for the two-component mixture, using the interactions given by Egs.
(2.1), (2.26), (2.34), and (2.35) as inputs, was numerically solved by using the Picard-
method. Monte Carlo simulations using the same interactions as inputs and measuring the
structure factors at selected thermodynamics points, yielded excellent agreement with the
RY closure. In our work the thermodynamic consistency of the RY closure was enforced
with a single adjustable parameter «; a simple scaling of the form «;; = /045, (1,5 = ¢, 5)
with 0;; = (0; + 0;)/2 showed only small differences compared to the unscaled form.

The structure of the binary mixture is described by the three partial static structure
factors S;;(k) = 6;; + \/mizw(k), with 4,7 = c,s. Indication of a demixing transition is
the divergence of all structure factors at the long wavelength limit & — 0, marking the
spinodal line of the system. An example of a diverging structure factor is plotted in Fig. 3.1
together with the corresponding radial density distribution g..(r). For a fixed arm number
f = 32, size ratio ¢ = 0.5 and colloid density n. = 0.1 we plot the colloid correlation
functions for increasing star polymer packing fraction. As can be seen in Fig. 3.1(a), the
rising contact value g..(o.) signals an effective attraction between the colloids, induced by
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the star polymers. This is a signature of the depletion effect, to be discussed in detail below.
Further increasing of the star-density, forces the system to develop long-range fluctuations
and eventually to demix, as witnessed by the divergence of the low k-values in of the structure
factor in Fig. 3.1(b).

In order to calculate the binodal lines, it is more convenient to consider the concentration
structure factor, Scon (), which is a linear combination of the three partial structure factors.
The concentration structure factor is defined as

Seon(k) = 22Sec (k) + 22 Sss(k) — 2225Ses(K), (3.3)

with the concentrations z; = N;/N, (i = c,s). The approach to thermodynamics is then
given through the sum rule [90, 91]:

(3.4)

2¢(z,, P,T)] "
lim Seon (k) = kT [M] ’
k—0

2
0x?

where g(z., P,T) = G(z.,N,P,T)/N is the Gibbs free energy G(z., N, P,T) per particle
and P denotes the pressure of the mixture. In order to simplify the notation, we set x = z;
clearly, . = 1 —x. We solved the OZ-equations for different combinations of the parameters
f and ¢ covering a wide range in the density plane (7., 7s). Once the concentration structure
factor, Eq. (3.4), is known as function of z for a fixed pressure the Gibbs free energy can be
calculated by two simple integrations. In Fig. 3.2(a), an example for the second derivative
g"(z) is plotted for constant pressure P = fP¢® = 28, arm number f = 2 and size ratio
g = 0.5. The Gibbs free energy is then obtained by integrating ¢”(z) along isobars. If
g(x) has concave parts, (i.e., if g"(xz) < 0 for some z-region), the system phase-separates
and the boundaries are calculated by the common tangent construction on the g(z) vs. x
curves. This common-tangent construction guarantees that partial chemical potentials of
every component have the same value on both coexisting phases. As it is performed on an
isobar, and for fixed temperature, the pressure and temperature are also the same between
two phases and all conditions for phase coexistence are fulfilled.

The constants of integration for the calculation of g(z) through the differential equation
(3.4) are determined by formulating a boundary-value problem as follows. Since the Gibbs
free energy is an extensive function but in its list of natural variables (\V, P, xz,T) only one
extensive variable (V) appears, Euler’s theorem asserts that the function ¢ = G/N must
have the form [2]:

9(z) = (1 = @) pe(@) + 2 ps (@), (3-5)
where we omitted P and T from the argument list, as we are working at fixed 7" along
an isobar. If no stars are present in the system (x = 0) the Gibbs energy per particle
reduces to the chemical potential of hard spheres at the given pressure P. To determine
this, we apply the Carnahan-Starling [92] expressions for the pure hard-sphere equation
of state. If no colloids are present (z = 1), the Gibbs free energy per particle is equal
to the chemical potential of the stars at the said pressure P. To determine the chemical
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potential of the stars for a given pressure, we calculated the equation of state of a pure
star-polymer system with the one-component OZ-equation closed with RY. For f = 2,
where the star-star interaction potential is ultrasoft, it is accurate to employ a mean-field
approximation [93, 94, 95, 96, 97] (MFA) for the direct correlation function of the polymers,
css(r) = —BVis(r), where 8 = (kgT)~!. For larger arm numbers the MFA becomes less
accurate. In the MFA, use of the compressibility sum rule leads to the simple, quadratic
expression for the excess Helmholtz free energy Fi, of the star-polymer system [96]:

2
=2 [ avar @t =

with the Fourier transform Vi (k) of the function Vis(r). From Eq. (3.6) above, we obtain
the excess star chemical potential Bt cx = 0fex/0ps = BVis(0)ps and the total star chemical
potential in the MFA as

BVis(0)Z, (3.6)

N | —

Jex

Bus = In (PsUg) + 5‘7%(0)%- (3.7)

Through the procedure described above, the boundaries g(z = 0) and g(z = 1) are known
for every pressure P and an accurate integration of ¢”(x) can be performed. Once the exact
free energy is known, all other quantities of interest can be calculated, for instance the partial
chemical potentials p.(z) and us(x) of colloids and stars, respectively, which are needed to
perform the mapping of the phase diagrams from the two-component to the one-component
description in section 3.2. Examples of so-determined partial chemical potentials are shown
in Fig. 3.2(b). Some technical details on the solution of the differential equation (3.4) are
presented in Appendix B.

Inside the spinodal line, the limits S;;(k — 0) attain nonphysical, negative values asso-
ciated with the physical instability of the mixture against phase separation. Consequently,
a solution of the integral equations is not possible there, and above the critical pressure P*,
the concentration structure factor Seon(z, & = 0) is unknown in some interval Az(P). In the
example of Fig. 3.2(a), the interval is 0.9 < x < 0.95. Thus, it is necessary to interpolate
Secon(Z, k = 0) to obtain the second derivative ¢"(z) for all z, and this is shown as a solid line
in in Fig. 3.2(a). This way, the integration of Eq. (3.4) can be performed. We emphasize that
the interpolation is simply done in order to facilitate the integration. The resulting binodal
lines are independent of the precise interpolation scheme, as long as the integral equation
theories are capable of reaching the precise spinodal, i.e., the points in which the £ — 0-limit
of the structure factor diverges. Since this is not strictly the case, and sometimes we have
to stop slightly before the spinodal is reached, there are small inaccuracies induced by the
interpolation procedure that grow with the width of the interval Ax where no solutions of
the integral equation theories can be found. In the vicinity of the critical point n} ~ 0.3,
the missing interval Ax is very small and the interpolation is reliable. Here the binodals
should be accurate, while for higher pressures (packing fractions 7. < 7} and 7. > n}) the
binodals are more approximate but show reasonable behavior. For highly asymmetric sys-
tems (¢ < 0.18) it becomes more and more difficult to get solutions of the integral equations
in the vicinity of the spinodal line and the calculation of binodals is not possible.
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Figure 3.2: (a) Example of the Gibbs free energy g(x) (dashed line) plotted against
the star polymer concentration z = z, in star-polymer colloid mixtures for f = 2,
size ratio ¢ = 0.5 and a fixed pressure P = 28. g(z) is obtained from integration
of the differential equation (3.4), where Scon(k = 0,z) is calculated from the OZ-
equations (circles). The second derivative ¢g”(z) is interpolated by a cubic spline
interpolation (solid line). The inset shows g(x) after subtracting a linear function, and
demonstrates the convex/concave parts of this function. (b) Partial chemical potentials
of the colloids p.(z) and of the stars us(x), plotted against the star concentration x
for the same parameters as in (a). At the boundaries of z = 0 and = = 1, g(z) (dashed
line) is equal to the chemical potentials of colloids and stars, respectively. In (b), the
total density po2(z) along the isobar is plotted as well.

Let us give a brief outline of the experimental framework used to measure the phase
boundaries of the demixing transition in the fluid phase. The experimentalists [98] studied
two sets of star polymer-colloid mixtures consisting of poly (methylmethacrylate) (PMMA)
particles and poly(butadiene) (PB) star polymers with size ratios ¢ =~ 0.49 and ¢ ~ 0.18, re-
spectively. PMMA particles were synthesized following a standard procedure [99]. Stock sus-
pensions were prepared either in cis-decahydronaphthalene (cis-decalin) or cis-decalin/tetra-
hydronaphthalene (tetralin) mixture as an index-matched solvent. These systems have been
established as hard sphere models [12]. The volume fraction 7. was calibrated using the
onset of the hard sphere freezing transition, taken to be at n. = 0.494 and observed as the
nucleation of iridescent colloidal crystals. The PB star polymers were prepared by anionic
polymerization following an established procedure [100, 101]. Star arms were synthesized
by polymerizing butadiene with secondary butyl lithium as initiator. The resulting living
polymer chains were coupled to the chlorosilane linking agent having ideally 6, 16 and 32
Si-Cl-groups. The molecular weights M,, of the PB arms were adjusted to give star polymers
with values of (RZ2)!/2 = 0.0172M5% f 0498 [102] as close to 50 nm as possible. A linear
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Figure 3.3: (a) Binodals for the mixing-demixing transition in star polymer-colloid
mixtures for different arm numbers f = 2,6,16,32 (from top to bottom) and size
ratio ¢ &~ 0.49. Symbols mark experimental results compared with theory (lines) for
g = 0.50. The thin straight lines are tielines. (b) Same as in (a) for an arm number
f = 32 and different size ratios q.

PB polymer (f = 2) was prepared as a reference system. The particles and star polymers
were characterized using light and small angle neutron scattering (SANS) [103]. The results
are summarized in Table 3.1. Samples were prepared by mixing PMMA suspensions with
PB stock solutions. Each sample was homogenized by prolonged tumbling and allowed to
equilibrate and observed by eye at room temperature 7" = 25°C [104]. In all samples with
q =~ 0.49, addition of polymer to suspensions with 7. ~ 0.1 —0.4 brought about, successively,
phase separation into colloidal gas and liquid (or demixing), triple coexistence of gas, liquid
and crystal, and gas-crystal coexistence. In samples with ¢ =~ 0.18, addition of polymer first
led to fluid-crystal coexistence; a metastable gas-liquid binodal buried inside the equilibrium
fluid-crystal coexistence region was encountered at higher polymer concentrations [105]. In
all cases, demixing started within several hours, crystallization within two days.

The results in Figs. 3.3(a) and (b) show that theory and experiment are in good agree-
ment. This is brought about without the use of any free parameters in the former, that
would allow for a rescaling of sizes or densities. In particular, the same trends are found
as functions of the system parameters f and ¢q. By increasing f at fixed ¢ (Fig. 3.3(a)),
the demixing transition moves to lower star packing fractions 7s and the curves become flat.
The most important observation from the results shown in Fig. 3.3(a) is that the f = 2
and f = 32 mixtures show qualitatively the same phase behavior, i.e., a phase diagram
with gas-liquid coexistence. From this point of view, a colloid + 32-arm star mixture still
resembles a simple colloid polymer mixture rather than BHS. However, it is surprising that
the phase boundary drops with increasing star functionality. Apparently, therefore, 32-arm
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Monomer f M, -107%g/Mol]¥  R.nm]”  R,[nm]¥

PMMA - - 104.0+ 2.5 -
PMMA - - 289.0+ 4.5 -
PB 2 0.86 £+ 0.36 - 51.0 £ 3.5
PB 6 1.51 £ 0.06 - 52.1 £ 0.6
PB 16 3.45 £ 0.27 - 51.1 £ 0.5
PB 32 5.11 + 0.39 - 51.4 + 0.5

) small angle neutron scattering (SANS)
b) static light scattering (SLS)

Table 3.1: Molecular characteristics of PMMA particles and PB star polymers.

stars are more efficient depletants than linear polymers.

When g is decreased but f remains fixed (Fig. 3.3(b)), again a motion of the binodals to
lower 7, is observed. This trend is opposite to the one predicted by the AO model (see Figs.
2(e)-(f) in Ref. [12].) The phase separation is not a simple hybrid between the AO and the
hard sphere mixture but show a novel behavior which one could trace back to non-additivity.
A careful mapping of the current system into a nonadditive mixture would therefore be of
interest. Yet, in view of the fact that the star-star and the cross interactions display soft
tails, such a mapping is not straightforward and attempts in this direction are the subject
of current investigations. The absolute thermodynamic stability of the liquid phase will
be influenced by the competing crystal phases that may preempt the demixing transition.
Here, the exciting possibility opens up, that for size ratios ¢ 2 0.5 and f > 32, colloid-star
superlattices similar to those seen in the BHS may be stable, whereas for smaller size ratios
and/or functionalities the crystals would be of the ‘sublattice-melt’ type. In this context, it
may be significant that stars crystallize only when f > 34 [82].

Since the chemical potential of the stars in both coexisting phases is the same, it is
possible to imagine now that both are brought into partial contact with a reservoir of stars,
in which the stars have this common value of the chemical potential. The word ‘partial’
here means that the contact is assumed to materialize through a semi-permeable membrane
that allows the passage of star-polymers but not of colloids through it. Let n; be the
packing fraction of the star-polymers in the reservoir. Since the reservoir and the two
coexisting phases all have the same value for the partial chemical potential pg, it follows
that a representation of the phase diagram in the (7., 7s)-plane can be transformed, without
loss of information, into the (7, s)- or, equivalently, the (7., 7n%)-plane. A comparison to
the effective one-component description results where the phase diagrams are plotted in the
(ne, nt)-plane will be shown in the next section.
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3.2 Mapping onto an effective one-component system

In this section we proceed with a mapping of the two-component mixture onto an effective
one-component system of colloids only, in which the star-polymers have been traced out.
The result of this integration is an effective colloid-colloid interaction in which the bare,
hard-sphere potential of Eq. (2.1) is ‘dressed’ by a depletion interaction that has its origins
on the star polymers. The star-star and star-colloid interactions enforce spatial correlations
of the latter when they are brought close to two colloidal hard spheres held at separation
R1; from one another, and it is precisely these correlations that determine the form of the
depletion potential. We thus present different methods in obtaining the depletion potential
and compare between those.

3.2.1 Monte Carlo Simulation

The most accurate way to calculate the effective interaction between two colloids in presence
of the star polymers is to employ direct computer simulations [106, 107, 108, 109, 110]. To
this end, we placed two colloidal particles with coordinates R; and R, along the body
diagonal of a cubic simulation box of volume V', symmetrically around their center of mass
that coincided with the cube center. Thus R,y = Ry — R, is the vector connecting the sphere
centers and Ris = |Rys| is the mutual separation distance of the colloids. In addition, we
introduced Ny star polymers in the same box. As there are only two colloidal spheres, we
are dealing with the limit p. — 0, therefore the packing fraction 7, = (7/6)(N;/V)a} of the
stars in the box can be identified with the reservoir packing fraction 7} introduced in the
preceding section.

We performed standard NVT-Monte-Carlo simulations [75], holding the positions of the
colloidal spheres fixed and taking statistics on the stars, for various different separations o
between the colloids. We employed the pair potentials given by Eqs. (2.34) and (2.35) for
the interaction between the stars (depending on their arm number) and by Eq. (2.26) for the
interaction between stars and colloids. Due to the second colloid, the radial symmetry of the
density distribution of the stars around one colloid is broken. A nonvanishing force is now
acting on each of the colloid in direction of their connecting vector Ry, = Ry — R;, because
of depletion or aggregation of the stars between the colloids, dependent of the distance R,
between them. The resulting force in directions perpendicular to their connecting vector
remains zero. After a sufficiently long equilibration time, the force F; acting on one of the
colloids has been measured by performing the statistical average

Fi(fo) = <—ivalnc(|R1 - rj\>> . 39

In Eq. (3.8) above, r;, j = 1,2,..., N, stand for the positions of the star polymers, whereas
the symbol (...)g,, denotes a constrained statistical average over the star polymers only,
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when the two colloids are held at separation R;5. Due to symmetry, for the force on the sec-
ond colloid it holds F5(R12) = —F;(R12) and the magnitude of the depletion force, Fyep(R12),

is given by:
R, - R
Fdep(RIQ) == f

The depletion force acts for distances Ris > o. only; for closer approaches, the bare,

- F1(Ria). (3.9)

HS-interaction takes over. Fye,(R12) < 0 denotes attractions between the colloids, mediated
by the stars. Indeed, for colloid separations R, £ o, such attractions are expected to show
up, as in this case the two colloids are hit asymmetrically by the stars from the outside,
and the unbalanced osmotic pressure of the latter pushes the hard spheres together. The
total effective force acting on the first colloid in the presence of the stars is Fog(Ri2) =
Fys(Ry2) + F1(Ry2) and can be figured as the gradient of an effective potential that is a sum
of the bare, hard-sphere interaction and the depletion potential Vaep(R12):

Fi(Ry;) = —Vg,Veg(R12)
= —Vg, [Vec(R12) + Vaep(Ri2)] - (3.10)

In Fig. 4.1, we show representative examples for the resulting depletion force Fyep(Ri2)
for various different functionalities and size ratios. The figure shows also a comparison
with results of the inversion of OZ-equations, see section 3.2.2 and of the superposition
approximation, section 3.2.3. The disadvantage of the use of simulations for calculating
depletion forces is the need of many long runs for high resolved curves with good statistics.
Referring to this figure, we note that for f = 2 we recover essentially the Asakura-Oosawa-
result [9], with the depletion force being purely attractive, Fig. 4.1(a). Increasing the star
functionality, however, leads to an oscillatory behavior of the effective force, which is caused
by the increasingly strong correlation effects between the stars, see Figs. 4.1(b) and (c).
This characteristic is akin to the features of the depletion force found in binary hard-sphere
mixtures [16, 23]. Star polymers act as depleting agents that interpolate between the linear
polymer behavior and the hard-sphere one.

3.2.2 Inversion of the Ornstein-Zernike equation for binary mix-
tures

An alternative route to the depletion potential, which does not require the use of computer
simulations, is offered by the so-called inversion of the full, two-component integral-equation
theory-results in the limit of low colloid density [111, 112, 113, 114]. Indeed, it follows
from exact diagrammatic expansions in the theory of liquids [36] that the radial distribu-
tion function g(r) attains in the low-density limit the form g(r) = exp[—Sv(r)], with v(r)
denoting the pair potential acting between the constituent species of the fluid. Thereby, the
effective potential Vg (r) acting between the colloids and depending parametrically on the
star-reservoir packing fraction 1} can be obtained by solving the two-component Ornstein-
Zernike equations with the Rogers-Young closure for given star packing fraction 7; and at
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Figure 3.4: Depletion forces for different functionalities f and size ratios ¢q. (a)
f=2;(b) f=6; (c) f=32. The symbols denote simulation results, the solid lines
the force resulting from the inversion of the RY-closure and the broken lines the results
of the superposition approximation. The denoted values of the reservoir star-polymer
packing fractions, 7}, were chosen to be close to the demixing critical point in the fluid
phase.

the limit 7. — 0. The so-obtained colloid-colloid radial distribution function g..(r) can be
then inverted employing the exact relation above and yielding the effective potential as:

BVerr(r) = — lim In[gec(r; e, 73] (3.11)
nc—0

In Fig. 4.1 we show results for the effective force Fog(r) = —V Vg (r) derived from SVeg(r)
obtained by the procedure outlined above, in comparison with the simulation results of sec-
tion 3.2.1. Excellent agreement between the two is found, for all (¢, f) parameter combina-
tions considered. Small deviations for distances near contact r ~ o, could be corrected by
introducing a simple scaling for the consistency parameter «;; = a/oy; , (i, = ¢,s) with an
auxiliary ratio parameter ¢’ = 05/0. = 0.5 used for all size ratios ¢ and all arm numbers f.

3.2.3 Superposition approximation

A third way to the depletion potential is offered by the so-called superposition approrimation
(SA) of Attard [115]. If the exact star-polymer density distribution ps(71; Ry, Ry) at v
around two colloids held fixed at positions R; and Ry were known, then the depletion force
in the low-density limit could be calculated by an integration over the contributions of the
force between star-polymers and a colloid in direction of R15 = Ry — R;. As a matter of fact,
the density ps(r1; Ry, Ry) is proportional to the three-body, star-colloid-colloid distribution
function g (r1, Ry, Ry). Since the latter is in general unknown, in the SA it is factorized
as a product of pair distribution functions, as explained below.
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A, Ry, Re)

Figure 3.5: A sketch of two colloids in a distance Ri5. The origin of the coordinates
lies in the center of the left sphere. ps(r1; Ry, Ry) is the star-polymer density at 71,
in the presence of the two colloids at positions R; and Rj.

Let us consider two colloids in a distance Ry, as depicted in Fig. 3.5. We put the origin
of our coordinate system in the center of one of the two colloids surrounded by star-polymers
with density ps(r1; Ry, Ry). The depletion force acting on the left sphere is given by the
general relation, Eq. (3.8). Taking into account that Vg, Vie(|R1—71]) = =V, Ve (| R1—71]),
setting R; = 0, performing the statistical average there, and projecting on the R, direction
according to Eq. (3.9), we obtain the depletion force as:

00 d‘/sc 1
Fdep(RIQ) = —27'('/ T% #d?ﬁ / ps(’l"l;Rl,RQ)deJ, (312)
0 1 -1

where w = cosf.

The superposition approximation amounts to replacing the exact density ps(r1; Ry, Rp)
of the stars in the presence of the two colloids by the product of the bulk star density pf times
the two radial distribution functions on the stars in the presence of two isolated colloids, one
with its center at R; and one with its center at R,. Hence, in the SA one writes:

Ps(ﬁ; Rla RQ) ~ p; gcs(|r1 - R1|)gcs(|7’1 - R2|), (313)

where, evidently, pi = (6n%)/(mo2) relates the reservoir density and packing fraction. The
radial distribution functions g.s(|r1 — R;|) above relate to a sea of stars in the presence of
a single colloid, hence they are readily available by the 7, — 0-limit of the two-component

integral equation theories. Noting that |r, — Ry| = |ro| = \/R3, + 1} — Riariw, we finally
obtain in the SA:

% d‘/sc(rl)

1
T, Ges(r1) dry /1 Yes (\/R%Q +7r2— R12T1w) wdw. (3.14)

Faep(R12) = —27rp;/ r
0
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Figure 3.6: Depletion potentials Vgep(7) for the colloids obtained by mapping the two-
component system on an effective one-component system by inversion of OZ-equations
in the low-density limit. We plot the potential for different arm numbers f = 2,6, 32
for star polymer reservoir packing fractions 7} near the critical point of fluid demixing.
The size ratio is ¢ = 0.5.

In Fig. 4.1 we show results obtained from this approximation, in comparison to direct
simulation results and to the inversion presented in the preceding subsection. It can be seen
that superposition approximation reproduces the simulation results in the linear polymer
limit, f = 2, very well. In this case, the star polymer are very soft, weakly interacting
particles. Thereby, the cross-correlations between them arising from the interaction Vi (r) are
so weak that the superposition approximation is valid: the presence of a second colloid results
into a density profile for the stars that is very well approximated by the product of those
arising from two isolated colloids. However, for larger functionalities, where the star-star
interaction starts causing significant correlation effects between them, the resulting depletion
interactions and forces from the SA are less accurate. As expected, the SA underestimates
the degree of oscillatory behavior of the force; in addition, the phase of those oscillations is
in error. Thus, for large arm numbers, the superposition approximation is not an adequate
tool for calculating accurately the effective interaction.

3.2.4 Phase diagrams

Due to the shortcomings of the superposition approximation and the accuracy of the inver-
sion of the RY-results, we have resorted to the latter procedure in order to calculate the
depletion potential. Some examples of this potential are plotted in Fig. 3.6 for different arm
numbers f and reservoir packing fractions 7 of the stars. Employing this interaction, we
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proceed with the calculation of the phase diagrams of selected star-polymer—colloid mixtures.
The goal is to establish the limits of stability of the demixing transition with respect to the
crystallization of the colloids. Thereby, we limited ourselves to the common, fcc-structure for
candidate colloidal crystals, which materializes for colloids in the absence of stars (7} = 0).
Though competing crystal structures cannot be rules out a priori, the quantitative features
of the depletion potential render the stability of more open crystal structures, such as the
bee-lattice, improbable. For the calculation of the phase diagrams, we combined simulations
and perturbation theory, as explained below.

Simulation

In order to determine phase coexistence, it is necessary to calculate the Helmholtz free
energy F' = F (N, V,n:). An accurate but computational expensive way is to perform ther-
modynamical integration of Monte Carlo simulation results, using the hard-sphere system as
reference; for a detailed description, see Refs. [9] and [16]. The free energy can be integrated
as

1<j

1 Ns
F(Ncavan;) :FO(NCaVan;:0)+/ d)\ <Z‘/:iep(r)> Y (315)
0
Ne,Vink,A

while using an auxiliary effective interaction V. (r) between the star-polymers and colloids
in the simulation:

Vi (r) = Vie(r) + AViep(r)- (3.16)

Here, 0 < A < 1is a dimensionless coupling parameter, interpolating between the hard sphere
reference interaction (A = 0) and the effective potential Vig(r). For the free energy of the
hard sphere reference system, Fy(Ne, V,nf = 0), we use the Carnahan-Starling expression [92]
for the fluid, and the equation of state proposed by Hall [116] for the solid phase. The
calculation for every point on the free energy curve was performed with Ny = 108 particles
starting with a face-centered-cubic configuration. After fitting polynomials to the function
f(pe) = F/V, a common tangent construction was employed to obtain the coexistence curves
among all phases.

Perturbation theory

A theoretical understanding of the effects of the depletion potential can be reached within
the framework of standard perturbation theory, using the hard-sphere system as reference.
To first order in perturbation theory, the Helmholtz free energy of a collection of colloids
interacting by the hard-sphere plus depletion potentials is given by [36]:

F o1
R R GL O (317)

where Fy and go(r) are the free energy and radial pair correlation function of the reference
system, and ¢(r) the perturbing potential, Viep(r) in this case. Barker and Henderson
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developed a second order term, including two-body correlations [117], and refining thereby
the perturbation theory for the free energy into

F F 1 1/0
/?Vc = ﬁNCO =+ iﬂpc/ 9o(r) o(r) d3r — 1 (a—g)oﬁpc/ 9o(7) ¢2(7”) d’r. (3.18)

In Eq. (3.18) above, (0p/dp)o is the compressibility of the reference system. For the refer-
ence free energy Fp, we used the expressions of Carnahan-Starling and Hall, for the fluid
and solid phase, respectively. The pair distribution functions go(r) are provided by the
parametrizations of Verlet and Weis [118] for the fluid phase and Kincaid and Weis [119] for
the solid. Free energy calculations using Eq. (3.18) were performed by Dijkstra et al. for
the effective Asakura-Oosawa pair potential, modeling colloid-polymer mixtures [9] and for
the effective one-component system arising by integrating out the small spheres in a binary
hard sphere mixture [16]. It was found there that this approach yields excellent agreement
for the fluid-solid boundaries compared to thermodynamical integration results.

Results

As far as the star-polymer—colloid mixtures are concerned, we find from the comparison of
the Helmholtz free energy calculated from the two different approaches described above, that
the two are in excellent agreement as far as the solid branch of the free energy is concerned.
This is consistent with the findings in Refs. [9] and [16]. For the fluid branch, though,
only the low density range coincide, for larger densities the free energy of the perturbation
approach is always too large. This result is consistent with the fact that the first-order
perturbation theory arises from the Gibbs-Bogolyubov inequality and hence the resulting
free energy can only by larger than the true one. Moreover, in the fluid phase, the hard-
sphere radial distribution function go(r) severely underestimates the contact value of the
true g(r), thus resulting in an internal energy that is significantly higher than the true one
at intermediate and high fluid densities. Thus, the Helmholtz free energy of the fluid is
overestimated. In view of the inaccuracy of the perturbation theory for the fluid phase, we
resorted to the results of the Monte-Carlo simulation, whereas for the solid we employed
the perturbation approach, in order to reduce the computational effort. In Fig. 3.7 we plot
the phase diagrams for arm numbers f = 2, 6, and 32 and size ratios ¢ = 0.2, 0.5, and
0.6. For f = 2 we obtain phase diagrams that are very similar to the ones obtained for the
AO-model [9]. This is interesting since in this work we are dealing with realistic polymer-
polymer as well as polymer-colloid interactions, that go beyond the simple approximations
of the AO-model. Apparently, the overall features of such mixtures and, in particular, the
(meta)stability of the demixing transition are insensitive to the details of the interaction
potentials.
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Figure 3.7: Phase diagrams of star-polymer—colloid mixtures for different size ratios
and different star functionalities. The circles indicate the calculated phase bound-
aries from the one-component description, the squares from the full two-component
description, see section 3.1. The lines are guide to the eye. The solid lines denote
stable phase transitions and the broken ones metastable demixing binodals. The first
row shows the phase behavior for a size ratio ¢ = 0.6. (a) f = 2; (b) f = 6; (¢)
f =32, For f =2 and f = 6 the demixing transition in the fluid phase is stable,
resulting into three distinct phases: gas (G), liquid (L) and solid (S). For f = 32 the
freezing transition preempts demixing, resulting into two stable phases: fluid (F) and
solid (S). In the second row the phase behavior for ¢ = 0.5 is plotted, again the arm
number increases from (d) to (f), in analogy to the first row. Now only for f = 2 a
stable demixing binodal is found. The asterisks denote state points at which pairwise
correlation functions were calculated. The last row shows the behavior for ¢ = 0.2.
No stable fluid-fluid transition is observed for arm numbers f = 2 (g), f = 6 (h), and

F=32().
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At size ratio ¢ = 0.5, we have a demixing binodal that is only slightly stable, a result
in agreement with that of Ref. [9] in which it was found ¢. = 0.45. An increase of the
functionality f suppresses the stability of the demixing binodals, a finding which is in line
with the general trend that, as f grows, star-polymers become more akin to hard spheres; in
a mixture of hard spheres, no demixing takes place [15, 17, 16]. For f = 6, a stable demixing
binodal appears at larger size ratio, ¢ = 0.6, see Fig. 3.7(b). This is to be expected, as
for larger f the star-polymers become more akin to hard depletants and hence a depletion
force of longer range is necessary in order to bring about phase separation in the fluid phase.
For the case f = 32 we obtain demixing binodals that are always metastable with respect
to freezing, in the domain ¢ < 0.7 in which the pair potentials are reliable. The results
show a clear trend from the AO-type behavior, valid for f = 2, to the BHS-behavior, valid
for f = 32. In view of the fact that the critical value ¢. for f = 6 seems to lie slightly
below 0.6 and is growing with f, we anticipate that star polymers with f 2 10 will not
be able to bring about stable demixing transitions in a star-polymer—colloid mixture. For
g = 0.2, shown in Figs. 3.7(g), (h) and (i), we obtain no stable demixing transitions for
any of the three functionalities f = 2, 6, and 32 that we checked. At small size ratios,
star-polymers are weak depletants, causing an attraction whose range is too short to bring
about a thermodynamically stable ‘liquid-gas’ coexistence curve. Our findings are consistent
with earlier results on, e.g., the Hard-Sphere-attractive-Yukawa system [120, 121] and other
model potentials [122], in which is was found that the liquid disappears when the range of
the attractions becomes, roughly, less than 20% of that of the repulsions.

The mapping onto the one-component, depletion-like picture greatly facilitates the calcu-
lation of the phase diagrams, in particular in the crystalline state. Nevertheless, performing
this mapping remains a matter of convenience: the physics should not depend on the point
of view and, in particular, in an exact mapping both the phase boundaries and the cor-
relation functions of the colloids should be identical in both pictures [21]. Since we have
employed approximations at various stages, in both the two-component and in the depletion
approaches, it is useful to perform a comparison between the two in order to judge their
severity. This is the subject of the following section.

3.3 Comparison between the two- and one-component
descriptions

The determination of the partial chemical potentials in the full two-component system de-
scribed in section 3.1 enables us to compare the results obtained there in the (7, 7s)- or
system-representation, with the results obtained in section 3.2.4 in the (7., 7%)- or reservoir-
representation. As we can see from Eq. (3.5), the partial chemical potentials of the stars
and colloids can be simply obtained by the common tangent construction: the intersection
of the tangent with the x = 0 or x = 1 axis yield the partial chemical potential u. or s,
respectively. Now, for every two coexistence points in the (7.,7s) ensemble we determine



42 3. PHASE BEHAVIOR OF STAR-POLYMER-COLLOID MIXTURES

7 10
6 A 91 (B)
— MC 81 — PY
5t -——-PY 7t —-——- RY-2comp
4 - RY-2comp = 6|
& E 5%
S 3t > 4|
2 37
1} 2
l L
0 0
0 1 2 3 0 1 2 3
rio, rlo,
9 \ \ 5
8 (© 1 (D)
7t — Py ] 4t — MC
6 I -——- RY-2comp| | -——- PY
3| e RY=200MP
= o =
3 4 3 |
3 L
2t 1L
1 L
0 0
0 1 2 3 0 1 2 3
rlo, rlo,

Figure 3.8: Comparison of the pair correlations functions g (r) for the colloids
at different state points (A)-(D), denoted by the asterisks in the phase diagram for
g = 0.5 in figure 3.7 (d)-(f). Using the depletion potentials from the one-component
description MC simulations (solid lines) are compared to PY results (dashed lines).
Dotted lines present RY-results employing the full binary OZ-equations.

the corresponding chemical potential ps. The equation of state of the one component star
polymer system determined by RY gives us the reservoir packing fraction to every chemical
potential. We calculate the transformed curves for a size ration ¢ = 0.5 and arm numbers
f =2,6, and 32. The results of the mapping of the coexistence points from the (7, 7s)-plane
into the (7., n%)-plane are shown in Figs. 3.7(d)-(f) together with the fluid-demixing binodals
from the one-component approach. Regarding the critical points the agreement is very good.
Although many-body terms are neglected in the effective one-component description [9, 21],
we find a satisfactory agreement, both for the critical colloid density and for the critical
star polymer reservoir density. Away from the critical point, the coexistence lines from the
two-component approach are too broad. The farther one is from the critical point, the more
difficult it becomes to reach precisely the spinodal of the mixture and then the numerical
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Figure 3.9: Comparison of the static structure factors Sc.(q) for the colloids at
different state points (A)-(D), denoted by the asterisks in the phase diagram for ¢ = 0.5
in figure 3.7 (d)-(f). Using the depletion potentials from the one-component description
MC simulations (solid lines) are compared to PY results (dashed lines). Dotted lines
present RY-results employing the full binary OZ-equations.

inaccuracies caused by the interpolation in the neighborhood of the spinodal become more
and more relevant.

We now discuss the colloid-colloid correlation functions in the fluid phase. We showed
how to translate the star polymer densities on the phase boundaries to the corresponding
chemical potentials or reservoir packing fractions. Hence, we are able to compare the struc-
ture of the colloids in the one- and two-component description on selected state points of
the phase diagrams. In Fig. 3.8 we plot the pair distribution function g.. and in Fig. 3.9 the
associated static structure factors S..(k) corresponding to four different state points (A)-
(D) in the phase diagram Fig. 3.7. The size ratio is ¢ = 0.5 and the arm numbers f vary.
The state points (A)-(C) are chosen to be close to the fluid-fluid demixing critical point,
while point (D) is deep in the stable fluid phase. For the one-component system we use the
Percus-Yevick (PY)-closure, which is expected to be accurate for the short-ranged interac-
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tions between the colloids. For the two-component case, we use the RY-closure as described
in section 3.1. In addition we compute the correlation functions with computer simulations
for the state points (A) and (D), where the fluid demixing transition is not preempted by
freezing. In the simulations the structure factor was calculated directly, using [36]

Sec(k) = Nc_l (oc(k)pc(—k)), (3.19)

where p. (k) is the Fourier transform of the colloid one-particle density operator and is defined
as [306]

pc(k) = ZC exp(ik - r;), (3.20)

with the sum being extended over all positions 7; of the N, colloidal particles.

The simulations were performed using the same one-component effective interactions as
the PY-calculations. First of all, the agreement between PY and simulations data demon-
strates that the PY-closure yields very good results for the structure in systems with a hard-
sphere interaction dressed with a short-range attraction, as also seen in Refs. [9] and [123].
Further, the S..(k)’s resulting from the solution of the two-component system (through the
RY-closure) are indeed very similar to those arising from the solution of the effective one-
component system (through the PY-closure) at the corresponding thermodynamic points.
This demonstrates the validity of the mapping procedure and also serves as an indirect proof
that higher-order interactions, which have been neglected in the one-component description,
are not crucial [124, 125]. The structure factors at the thermodynamic points (A), (B), and
(C) show the typical enhancement for low k-values, due to their close distance from the
demixing spinodal. The faster divergence of the RY-structure factor is in line with the fact
that the demixing binodals of the two-component description are somewhat broader than
those arising in the framework of the depletion picture.

3.4 Summary and concluding remarks

Using the effective interactions introduced in the previous chapter we have traced out the
phase diagram of star-polymer—colloid mixtures, establishing the limits of stability of the
demixing binodals as functions of the star functionality and the size ratio, for the case in
which the star-polymers are smaller than the colloids. We have demonstrated the equiva-
lence of a two-component approach with a depletion picture, in which the stars are further
traced out. Star polymers have been shown to fulfill their unique role as natural bridging
systems between soft polymers (for low f) and colloidal particles (at high f). Hence, they
can act as selective depletants between colloidal hard spheres. All our findings can be ex-
perimentally checked by carefully preparing mixtures of index-matched hard sphere colloids
with monodisperse star-polymers in good solvents [98].

The stability of the demixing with respect to freezing has been recently studied in some
generality in the framework of the model of non-additive hard spheres [17, 126, 127]. Whether
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the present system can also fit within this picture remains to be seen. Our work is limited to
star-colloid size ratios smaller than unity, since the star-colloid interactions employed here
are derived under the assumption that the star never ‘crawls over’ the colloidal hard sphere,
see chapter 2. The investigation of the opposite case, in which the small colloids can fully
penetrate into the corona of the star-polymers [128] is problem for the future too.



Chapter 4

Nonequilibrium transitions in driven
binary colloidal mixtures

When brought into nonequilibrium, colloidal mixtures may spontaneously exhibit many
different kinds of pattern formation (for recent reviews see Refs. [129, 130]) which are much
richer than the traditional phase transitions in equilibrium systems. While the latter are by
now well-understood by microscopic theories and simulations [33, 34, 35, 36], full microscopic
theories operating on a particle-resolved level for nonequilibrium situations still represent
a major challenge. In this chapter we present a “microscopic” system designed to model
binary colloidal suspensions in an external field which is an off-lattice version [38] of a
diffusive system in an external driving field. In our model, we consider an equimolar binary
mixture of so-called A and B particles. The particles are identical as far as their mutual
interaction is concerned which we model via a Yukawa pair potential having charged colloidal
dispersions in mind. The A and B particles, however, respond differently to the external field
applied: A particles feel an external force F while B-particles are driven by a different
force F(B). Completely overdamped Brownian dynamics (with hydrodynamic interactions
neglected) is assumed [131, 132] for the colloidal motion.

For oppositely oriented external forces we observe that above a critical strength of the
external force, the system exhibits a transition towards lane formation. The lanes comprise
bundles of particles of the same kind (A or B) and are parallel to the driving field. This
nonequilibrium phase separation [133] results from a slip-stream effect caused by the evading
colloids acting via repulsive interparticle interactions. The critical force can be theoretically
estimated by comparing the external force to a typical interaction force resulting from the
pairwise potential V' (r) between the particles.

In order to characterize the lane phase we use suitable order parameters. We also find
an increase of the particle transport in the field direction induced by lane formation and
a drastic reduction of particle transport perpendicular to the field direction, which may
serve as dynamical criteria for detecting the lane formation. We further show that lane
formation is very general and is thus a generic feature of any two-component driven diffusive

46
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system. In fact, using computer simulations we demonstrate that lane formation also occurs
in unconfined systems, in three spatial dimensions, and for time-dependent oscillatory fields.
In the latter case the system exhibits a transition back to the disordered state upon reaching
a critical field frequency. In the next step we present the case where the two external forces
F@ and F®) are not parallel, for which lane formation does also occur. The direction
of the lanes, however, is tilted with respect to the driving fields. In more detail lanes are
directed along the difference vector F® _ F@A) of the two external forces. In addition, we
describe - for parallel forces - the case where the equilibrium field-free state is crystalline.
For a randomly occupied crystal a two-stage transition shows up: first, above a threshold,
the external fields melt the solid mechanically. Upon increasing the external field strength
further, a reentrant freezing transition is discovered. The resulting crystalline structure
involves completely demixed A- and B solids sliding against each other similar to the fluid
lane formation.

4.1 The model and simulation technique

In our model, we consider a binary mixture comprising 2N Brownian colloidal particles in
d = 2 or d = 3 spatial dimensions. The particles are either in an area S or in a volume
2 with a fixed total number density of p = 2N/S and p = 2N/, respectively. Half of
them are particles of type A, the other half is of type B such that the partial number
densities are py = pp = p/2. The system is held at fixed temperature T being embedded
in a bath of microscopic solvent particles of the same temperature. Two colloidal particles
are interacting via an effective pair potential. For simplicity we study the symmetric case
Vaa(r) = Vag(r) = Vgg(r) = V(r) where r is the interparticle distance. We assume an
effective screened Coulomb interaction (or Yukawa form)

V(r)=Vooexp[—k(r—o)]/r, (4.1)

where 1} is an energy scale and o is the particle diameter as a length scale. This is a valid
model for charge-stabilized suspensions both in two [134] and three dimensions [3]. The
inverse screening length x governs the range of the interaction and can be tuned, e.g., by
the concentration of added salt in the colloidal solution.

The dynamics of the colloids is assumed to be completely overdamped Brownian motion
with hydrodynamic interactions neglected, which is a safe approximation if the colloidal
volume fraction is small. The friction constant & = 37mno (with 1 denoting the shear viscosity
of the solvent) is assumed to be the same for both A and B particles. The external constant
or oscillatory force acting on the sth particle is different for the both constituents of the
binary mixture. It is

Fi(t) = F rect(wt) for A particles (4.2)

and

— —

Fi(t) = F® rect(wt) for B particles. (4.3)
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w is the external frequency (with w = 0 leading to the constant-field case). F and F®
are arbitrary constant vectors of the external field. With rect(wt) we apply a rectangular
oscillation switching from 1 to —1 defined via:

I, n<z<(2n+1)/2

rect(z) = {—1 2n+1)/2<z<n+1 (44

with n = 0..00.
The stochastic Langevin equations for the colloidal trajectories 7;(t) (i = 1, ...,2N) read
as
g@ = VL SV -7 )+ B+ FP (). (4.5)
J#
There are different forces acting onto the colloidal particles: first there is the force attributed
to interparticle interactions, then there is the external shaking or constant (w = 0) field and
finally the random forces F ) describe the kicks of the solvent molecules acting onto the

1th colloidal particle. These kicks are Gaussian random numbers with zero mean, Fi( ) = 0,
and variance

(B (8) (F™) (1) = 2k5TE5apbis6(t — 1'). (4.6)

The subscripts a and 3 stand for the d = 2 or d = 3 Cartesian components and kg7 is the
thermal energy.

In equilibrium (i.e., in the absence of any external field, such that F(4) = F( = () the
model reduces to a Brownian Yukawa fluid , which has been extensively investigated as far
as structural and dynamical equilibrium correlations and freezing transitions are concerned,
both in three [135, 136, 137] and two [134, 138, 139] spatial dimensions. Our model is
specified by various input parameters, namely the total particle density p, the thermal
energy kg7, the inverse screening length x, the dimensionless quantities Uy = V,/kgT, and
wTg, where 73 = £0%/V} is a suitable Brownian time scale.

Our Brownian dynamics (BD) code is similar to the one used in nonequilibrium simu-
lations of charge-polydisperse colloids [131, 140, 141]. For d = 2, we put N = 250 A and
N = 250 B particles into a square cell of length ¢ with periodic boundary conditions. The
total colloidal number density is p = 2N/¢%. Likewise, in three dimensions, N = 500 A and
B particles are in a cubic box of length £ such that p = 2N//3. For the snapshots of the d = 3
system (Figs. 4.3 and 4.13) we increased the number to 2N = 8000 particles for a better
resolution of the structure. We checked that the results are not dependent of the number
of simulated particles, except for small numbers, for which we found the usual finite-size
effects. We tried different starting configurations. The system was observed to run into a
nonequilibrium steady-state independent of the initial configuration. The Langevin equa-
tions of motion including the shaking external field were numerically solved using a finite
time step At and the technique of Ermak [33, 142]. The typical size of the time step was
At = 0.00375. We simulated typically 2 x 10* time steps which corresponds to a simulation
time of 607z. After an initial relaxation period of 2071y, statistics was gathered.
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4.2 Parallel external forces

Let us first consider the case of parallel external forces. For simplicity we assume the
symmetric case F) = _F(B) = féy, where €, is the unit vector along the y direction. This
is not any restriction. In fact, the asymmetric case of parallel forces FA) 4 F(®) # 0 can
directly be mapped onto the symmetric case by subtracting the overall dynamical mode
To(t) = M /t rect(wt')dt'. (4.7)
2€ 0
The Langevin equations (4.5) can be rewritten in terms of new reduced trajectories 7;(t) =
73 (t) —7o(t) such that the transformed equations have the same form as in the symmetric case
with fée, = (F@ — F(®)) /2. This implies that a binary charged suspension with charges of
equal sign is also a good realization of our model: it only matters that the external field acts
differently for both species. After a Galilei transformation the symmetric case is realized.
For further considerations we define the dimensionless field strength f* = fo/kgT.

4.2.1 Order parameter
Static order parameter

In order to detect the transition towards lane formation a sensitive order parameter is needed.
A suitable order parameter could probe particle density inhomogeneities along the field in y
direction which vanish in an ideal lane configuration. Therefore, we assign to every particle
i an order parameter ¢;, which is chosen to be 1 when the lateral distance r = |z; — ;]
(n = v/(z; — z;)>+ (2; — #;)? in three dimensions) to all particles j of the other type is
larger than a suitable length scale, say r > p~'/¢ /2. Otherwise, ¢; is set to zero. A global
dimensionless order parameter ¢ can now be defined as

1 N
¢:N<Z¢i >, (4.8)
=1

where the brackets denote a time average. In a completely mixed state, ¢ vanishes while
for ideal AB separation, ¢ = 1. A typical result for ¢ as a function of field strength f is
shown for d = 2 and a constant field (w = 0) in Fig. 4.1. While ¢ is small for a small
constant field, it grows when a critical field strength f. is approached. Further increasing
of the external field yields values close to unity. The transition towards lane formation is
reversible but exhibits a significant hysteresis. This can be deduced from Fig. 4.1(b) where
the external field strength was slowly decreased. Hence we conclude that lane formation is
a nonequilibrium first-order transition. As can be deduced from Fig. 4.1, the critical field
strength f. increases with increasing k. More results for the location of the nonequilibrium
phase transition will be presented in Sec. 4.2.3.

Simulation snapshots associated with a situation without a field as well as with a field
below and above the critical field strength are shown in Fig. 4.2(a)-4.2(c). One clearly sees
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Figure 4.1: Dimensionless order parameter ¢ as a function of field strength f* for d =
2 and different inverse screening lengths ko. In (a) the field is increased starting from
a randomly mixed configuration, while in (b) the initial configuration is completely
demixed (two lanes) and the field is decreased. The density is po? = 1.0 and Uy = 2.5,
w = 0.

lane formation parallel to the external field. A characteristic length scale corresponding to
lane formation is the average thickness of the lanes. In the snapshots, this thickness of the
lanes is about several interparticle spacings. It may be conjectured, however, in analogy
with lattice models [38], that the finite width of the lanes is due to a lack of relaxation into
the final steady state, which is a fully phase-separated situation.

We have, furthermore, considered situations with nonvanishing field frequencies w. If an
oscillatory field with amplitude f > f. is present and the frequency w is increased, the order
parameter ¢ decreases with increasing w. For low frequencies the system remains in the lane
state, ¢ = 1, while above a critical frequency, the system gets back to disorder and ¢ fades
to zero.

All these considerations are the same for a three-dimensional system. Corresponding
snapshots with lane configurations are shown in Fig. 4.3(a), 4.3(b). Of course, due to
the presence of an additional dimension, the lane structure is more complicated in three
dimensions (3D) than in 2D. A cut through a plane perpendicular to the field is shown in
Fig. 4.3(b) demonstrating that the in-plane-structure is reminiscent of a two-dimensional
phase separation or a percolating network.

Dynamical diagnostics

For a constant field (w = 0), we have also computed dynamical correlations in the nonequi-
librium steady state focusing on particle transport properties parallel and perpendicular to
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Figure 4.2: Typical simulation snapshots of the two-dimensional system: (a) dis-
ordered state without field (¢ = 0), (b) disordered state with field f = fi =~ f.
(¢ ~ 0.45), (c) lane formation with field f = fo > f1 (¢ ~ 0.99). The particles are
depicted as spheres with diameter 0. A light sphere is an A-particle while a gray

sphere is a B-particle. The parameters are ko = 4.0, po? = 1.0 , Uy = 2.5, and w = 0.

the external field. In fact, as expected, the particle transport in field direction is enhanced
once lanes have been formed. In detail, for a constant field, we define the averaged drift ve-
locity vp along the field for each particle species by measuring the mean-square displacement
in y direction in the nonequilibrium steady state by

< [(7lt) ~ 7(0)) - &) >

t—00 12

(4.9)

Clearly, as the long-time dynamics is diffusive in equilibrium, vp = 0 for f = 0. In the
mixed state vp is small as the external field enforces a transport, which is, however, still
hindered by the presence of different particle species. Once lanes are formed, vp increases
as the obstacles made up by different particle species are not any longer present signaling
an efficient particle transport along the lanes in directions parallel to the field. An example
of vp versus increasing field strength f for d = 2 is shown in Fig. 4.4(a) These results are
compared to the drift velocity of a one-component Brownian system in an external field,
where

Up = Vg = f/g, (410)

corresponding to a trivial overall dynamical mode of all the particles. Indeed during lane
formation, as probed by the order parameter ¢, the drift velocity practically equals vg. For
small fields, on the other hand, vp is significantly smaller than vy. Hence lane formation
manifests itself in a dynamical anomaly in the drift velocity, which can be used as a dynamical
diagnostics to detect such a dynamical phase change.
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Figure 4.3: Typical snapshots of the three-dimensional system with external field
f > f. and lanes parallel to the field: (a) three-dimensional view, (b) look on the (z, 2)
plane perpendicular to the field direction y. The particles are rendered as spheres with
diameter o. For these snapshots we simulated 2N = 8000 particles. The parameters
are ko = 2.0, Uy = 2.5, po® = 1.0, and w = 0.

A more dramatic effect is observed for the long time diffusion coefficient perpendicular
to the field direction as defined via

<[(7i(t) = 73(0)) - &]* > (411)

t—00 2t
For a vanishing external field in equilibrium, the long-time self-diffusion coefficient Dy, has
been the subject of intense recent research, in particular, for Brownian Yukawa systems as
studied here [143, 144, 145, 146, 147, 148, 149, 150]. Turning on the external field strength
f, particles of different types can only follow the external field by eluding each other, so that
the diffusion perpendicular to the external field has to increase with f. This effect grows
until the critical field strength is reached and the system begins to form lanes. Now the
particles are confined to lanes with thickness of some interparticle spacings which reduces
the perpendicular diffusion again. Results for Dy, versus f are shown in Fig. 4.4(b) for
d = 2, together with the corresponding order parameter ¢, and confirm these qualitative
considerations. The spectacular decrease of Dy, versus f strongly correlates with the location
of the lane formation as indicated by a strongly increasing parameter ¢. This drastic decrease
can be exploited as a sensitive dynamical diagnostics to locate lane formation. We remark
that after a very long time, lanes may fuse towards big nonstructured regions. In this case,
the final fall-off of Dy, for f > f. can be slightly shifted upwards to the equilibrium diffusion
coefficient at f = 0.
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Figure 4.4: (a) Averaged dimensionless drift velocity vfy = vp7s/0 in y direction
versus the external field f* compared to the dimensionless drift velocity v§ = vy /0
of a one-component Brownian system and to the order parameter ¢. (b) Dimensionless
long-time diffusion coefficient Df = Dy,15/ o? in x—direction versus f* also compared
to ¢. In (a) the ¢-curve is inflated to the maximal shown ordinate-value for better
comparison. The parameters are d = 2, ko = 4.0, Uy = 2.5, po? = 1.0, and w = 0.

4.2.2 Simple Theory
Constant field

We are aiming at a rough theoretical estimation of the boundaries of the laning transition
with constant external field f in two or three dimensions. We assume that the system goes
into the stratified state when the external field is larger than the typical average force between
two particles of opposite type. The latter depends both on density and on the external field
itself. We estimate a typical average force between two opposite particles by considering
different “effective” interparticle spacings. The first typical interparticle spacing is set by
the density alone, a = p~'/¢. Including fluctuations in the interparticle distance induced by
a finite temperature results in a further smaller effective average distance @ as obtained by
setting a typical interparticle energy equal to V(a) + kgT. Hence a = V' [V (a) + kpT]|
where V! is the inverse function of the interaction potential V' (r). Finally the presence of
an external field enforces an even smaller averaged distance a' between colliding opposite
particles, which can be estimated via

d=F'[f+F@a), (4.12)

where F'~! is the inverse function of F|(r) = —VV/(r). In general, a pair of opposite particles
will not collide centrally such that the actual average distance is between a’ and a. Hence
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the averaged force f between an A and a B particle is roughly

1

a—a

f= -[V(d') = V(a)]. (4.13)
The critical force f. is reached when the external force becomes of the order of the mean
force f,

foe=af. (4.14)

« is a yet not known dimensionless prefactor of the order of unity, which should depend,
in general, on the dimensionality d. It will be determined later by an optimal fit with our
simulation results, see Sec. 4.2.3.

Oscillatory field

We now focus on time-dependent external fields (4.2)-(4.3) with nonvanishing frequency. We
propose a simple theory that predicts the critical frequency w = w, upon which a transition
back to the disordered state occurs. Let the field amplitude f be such that f > f. holds. In
the segregated mixture the particles are moving collectively with the external field. Their
velocity in field direction changes sign but roughly has the modulus of the drift velocity
vo, (4.10). At the interfaces between two lanes, there is an additional friction due to the
oppositely moving particles of the other type. This additional friction should scale with the
range 1/k of the interparticle interaction in terms of a typical microscopic spacing . Hence
the drift velocity vy near an interface is

v z—f
T 1+ 1/ (ko))

which changes, however, its sign periodically according to the shaking external field. Now

(4.15)

we consider the stability of two lanes at their interface. The field frequency has to be small
enough in order to provide a sufficiently long time period in which the two lanes can slide
against each other avoiding a mixing of different particle species. If this time is getting
very small, diffusion perpendicular to the field direction will dominate and destroy the sharp
interface. Lane stability is lost when a particle has roughly reached a typical interparticle
spacing a = p~'/¢ during half a period 1/2w of the external field. Thermal fluctuations can
be neglected compared to the high critical force. This yields for the critical frequency

B0/ 2w & p 14 (4.16)

or
N fo'/?
Ve 51+ 1/ (ko))

This result can be understood both in a more qualitative and more quantitative way.

(4.17)

Qualitatively, it can be interpreted as a scaling law predicting different exponents for the
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Figure 4.5: Critical field strength f for the 2d-system versus ko for different U; and
po? as obtained from Brownian dynamics simulation (a) and theory (b). By increasing
the field strength f* the system shows a phase transition from a disordered state to a
state characterized by lane formation. The transition is indicated by the symbols, the
lines are a guide to the eye.

transition frequency for varying field strength, friction coefficient, screening length, and
particle density. Note that in our theory the transition frequencies are independent of
temperature. Furthermore, Eq. (4.17) is a full quantitative prediction, which we shall test
against our computer simulation data in Sec. 4.2.3.

4.2.3 Results for the nonequilibrium phase diagram
Constant field

The dynamical phase diagram for a constant (w = 0) external force obtained from computer
simulations is shown in Fig. 4.5(a). The location of the phase transition is estimated via
the behavior of the order parameter ¢: the critical field strength fr is obtained by setting
¢ = 0.5 for a set of runs with increasing field strengths f*. The plots clearly show that
for increasing density p or increasing interaction energy U,, an enhanced critical force f.
is necessary to drive a transition towards lane formation. By increasing one of these two
parameters the correlation between the particles is getting stronger, so as a conclusive result
we can state that whenever the correlation is increased the critical force is getting higher. A
bit more subtle is the dependence on k, which is the inverse range of the interaction potential
and controls the “softness”of the interaction. By watching, e.g., pair correlation function in
equilibrium, one observes an increase in correlation for increasing . This explains why the
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Figure 4.6: Same as Fig. 4.5 for the three dimensional system: (a) simulation results,
(b) theory.

critical field strength f is increasing with x, although this increase is practically marginal
for small densities. We also remark that, for densities po? = 1.0 or po® = 1.0 in three
dimensions and high ko & 5,6, the system is slightly below the equilibrium bulk freezing
transition [135, 139]. The particles are highly correlated and the external force has to be
strongly enhanced to enforce stratification.

In Fig. 4.5(b) we plot the results of our simple theory as described in Sec. 4.2.2 for the
same parameter combinations as chosen for the simulations in Fig. 4.5(a). Comparing theory
and simulation we see that the theory reproduces all trends correctly. In particular, f; grows
with increasing p, Uy, and & as obtained in the simulations. By assigning to « in Eq. (4.29)
a value @ = 2.0 the theory even brings about quantitative agreement, in particular for the
low density cases (p = 0.25,0.5) and can thus be used for a simple estimate for the location
of the transition towards lane formation. Furthermore the assumption implicit in our theory
that the transition is modified by particle correlations is justified.

Similar results for the nonequilibrium phase transition in three spatial dimensions are
presented in Fig. 4.6. We have observed the same trends as in two dimensions. Again the
theory is in semi-quantitative agreement with our simulation data though the curvature of
the f. versus ko data are slightly different. Here the optimal fit is a = 1.5.

Oscillating field

For an oscillating external field, data for the critical frequencies w. upon which the system
goes back into a disordered state are given in Fig. 4.7. They are shown versus the field
amplitude for different particle densities p (Fig. 4.7(a)) and for different particle interaction
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Figure 4.7: Nonequilibrium phase diagram for the two dimensional system with
oscillatory external field for Uy = 5.0. The critical field frequency w, in units of 1/75
is plotted versus the field amplitude f* for different densities (a), and for different
screening lengths (b). For low frequencies the system stays in the stratified state, while
for increasing frequency there is a transition back to disorder. Lines are theoretical
estimations, symbols are the corresponding simulation results. The long dashed lines
connecting equal symbols are a guide to the eye. In (a) the boundary moves up with
increasing density, in (b) the boundary moves up with increasing decay length.

ranges 1/k (Fig. 4.7(b)). The trends are as follows: w. increases for increasing amplitude,
increasing density and increasing k. In our considered parameter range no obvious U, de-
pendence was found in the simulation. All these trends are in accordance with our simple
theory which is also plotted in Fig. 4.7. The theory is even confirmed quantitatively by our
simulation data. The discrepancy between theory and simulation is always smaller than 20%
at least in the parameter range where simulations were performed.

4.3 Nonparallel external forces

We now proceed with the generalization of our considerations to the case of nonparallel
external forces F'Y) and F(P) [151]. We will see that the results for oscillatory forces remain
the same as for the case of parallel forces so that we only consider constant external forces
w=0.

4.3.1 Tilted lane formation

Let us first recapitulate what is known for parallel external forces F and F®: in the
previous section it was shown that lane formation occurs involving either A or B particles
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which are sliding against each other in the field direction. In the lane involving A particles
only, all these particle are drifting with an global velocity F@ /€ while opposite regions
which involve B particles are streaming with the overall velocity F® /€. By subtracting the
overall velocity using a Galilei transformation one readily sees that within the completely
separated lanes, equilibrium Boltzmann statistics is realized. The system just separates into
two different equilibrium states which are drifting relative to each other. Physically, the
formation of lanes is generated by collisions of A against B particles pushed by the external
force which dynamically separates A and B particles until completely demixed lanes are
formed. A similar lane formation for sheared granular matter was found via molecular
dynamics simulation in [152]. The formation of lanes is a sharp first-order nonequilibrium
phase transition occurring if the external field difference \ﬁ(A) — F (B)| exceeds a critical
value. A Galilei transformation also proves that only the relative velocity of A and B
regions is relevant. Hence, without loss of generality, it is sufficient to study the special case
F@) — _F(®B).

For nonparallel external forces, the collisions between A and B particles are not any
longer central and the phase separated structure will be different, in general. In order to get
insight into the location of an interface between two completely demixed regions involving A
and B particles only, we first do a simple continuum argument: consider a (one-dimensional)
interface between an A and B region with a direction described by a two-dimensional vector
J: see Fig. 4.8. The full interface position can be parameterized by a set of vectors

7(s) = Ry + sd, (4.18)

where s is a real parameter and Ry is a vector describing a point on the interface. After a
time At, the A particles have moved on average a distance F (A At/¢, while the B particles
have been displaced by a distance F (B)At/€. Neglecting any collisions, the A particles near
the interface will move towards a new interface which is described by the set of vectors

A (s) = Ry + sd + FYA/e, (4.19)
while the B particles near the interface will drift to
B (s") = Ry + s'"d+ FPIAL/¢ (4.20)

with another real parameter s’. The interface can only be stable if these two interfaces
coincide. In case they do not, there is either empty space which will be filled by neighboring
particles or A and B particles will collide which will destroy the interface as well. Hence, the
stability criterion is that for any s there is an s’ such that #4)(s) = #®)(s') which simply
yields the condition

d=——"_[FB _ ) (4.21)
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Figure 4.8: One-dimensional interface separating a region containing A particles
(light gray) and B particles only (dark gray). The direction of the interface is d. The
vector ]%0 points to the interface. The new interface after a time At at distance viAt
from the original one is shown as a dashed line.

This implies that for an interface to be stable, its direction has to be collinear with the force
difference

AF = FB) _ FA), (4.22)
Hence, the angle « describing the interface orientation (see Fig. 4.8) is

AF . F(B)
o = arcsin ————. (4.23)
[AF[|F®)]
Clearly, contrarily to the case of parallel forces, the interface position will move in space.
The interface velocity v; normal to its position can be calculated as

| FA) « F”(B)‘

= 4.24
§|AF]| 2

v =
Obviously, the same argument can be repeated with exchanged roles of A and B showing
that stable parallel lanes with the direction AF are expected which move with the interface
velocity vy given by Eq. (4.24). Furthermore, the same argument applied for a small At
shows that a curved interface is unstable such that a stable interface has to be straight.
Let us finally discuss two special cases: first returning to parallel forces, indeed the
interface direction is parallel to the field direction, the angle « is 7/2, and the interface
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velocity vanishes as follows directly from Eq. (4.24). Second the case of perpendicular forces
deserves some particular attention. Here the angle « is

|F®)|
a = arctan — (4.25)
Fo)
and the interface velocity can be expressed as
FA||F(B)
o = 2N (4.26)

E[AF|
Obviously, this general argument is only a necessary condition for a stable AB interface.
An alternative is a mixed situation with no interface at all driven by entropy. In analogy to
the parallel case we anticipate that a critical strength of AF is needed to build stable lanes.
This will now be investigated by computer simulation and simple theory in more detail.

4.3.2 Simulation results compared to simple theory

In our simulation we assume - without loss of generality - the direction of F® along the
y axis of the simulation box. The model parameters are fixed to po? = 1.0, ko = 4.0, and
Vo = 2.5kpT. Simulation snapshots for different external field strengths are shown in Fig.
4.9(a)-4.9(d). In Fig. 4.9(a), no field is applied and a homogeneous completely mixed state is
visible. In Fig. 4.9(b), on the other hand, the external forces are parallel: FA) = _F®B)_ The
magnitude | F(4) — F(B)| is beyond the critical strength [153] such that lane formation parallel
to the field shows up. Nonparallel forces with perpendicular directions are investigated in
Figs. 4.9(c) and 4.9(d). One observes formation of tilted lanes which are indeed in the
direction of the force difference vector as expected from our general argument. In following
the configurations as a function of time we verified the simple formula of the interface velocity
vr as given in Eq. (4.24).

In a next step, we study perpendicular forces keeping their ratio ¢ = |F@)|/|F(®)| fixed
but increasing their magnitude. For small forces the system stays demixed. In increasing
the strength of both fields, we have calculated suitable order parameters which are sensitive
to tilted lane formation. These are immediate generalizations of those used in Ref. [153].
The order parameter exhibits a sharp jump indicating the critical field strength of the force
difference vector upon which tilted lane formation is achieved. There is a clear hysteresis
loop if the force is reduced again such that the nonequilibrium phase transition towards
tilted lane formation is of first order. The critical value AF, of the force difference |AF]
is shown versus the ratio ¢ = |[F)|/|F(®)| in Fig. 4.10. We shall compare these data to a
simple theoretical prediction in the next subsection.

A careful remark is in order for small positive g. The periodic boundary conditions used
in the simulation correspond to a toroidal topology shown in Fig. 4.11. If ¢ is getting small
the boundary conditions enforce a multiple winding around the torus such that finite size
effects are expected to be significant. Therefore we have not shown simulation data for small
g in Fig. 4.10.
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Figure 4.9: Typical simulation snapshots of the two dimensional system: (a) dis-
ordered state without field, (b) lane formation with parallel fields F() = —F(®B) =
180kpT /o in y-direction above the critical force. (c) lane formation with perpendic-
ular fields of same magnitude |F(@| = |F(B)| = 180kszT /o above the critical force
difference. (d) lane formation with perpendicular fields and |F(|/|F(B)| = 1/2 with
|F(B)| = 180kgT /o above the critical force difference. In (c) and (d) the A particles
are drifting in z-direction, while B particles are drifting in y-direction. The lanes are
moving perpendicular to AF. The particles are depicted as spheres with diameter o.
A light sphere is an A-particle while a gray sphere is a B-particle.
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Figure 4.10: Dimensionless critical force difference AF} = AF,0/kgT versus the
ratio ¢ between the perpendicular forces |ﬁ(A)| and |ﬁ(3)‘ for the two-dimensional
system. Above the critical force the system is in the patterned state characterized by
stripe formation. The circles are simulation results, while the solid line is theory. The
parameters are ko = 4.0, Vy = 2.5kgT, and po? = 1.0.

Theory

We are aiming at a rough theoretical estimation of the boundaries of the demixing tran-
sition with constant external fields FY) and F(®. This was already put forward in the
previous section for parallel forces and is generalized here to the general case of nonpar-
allel forces. Consider first a central collision between an A and B particle pair, see Fig.
4.12. Transforming the trajectories onto one with a fixed common center of mass of the two
particles, one realizes that the collision is effectively driven by half of the force difference,
%(ﬁ(A) —F®) = —%Aﬁ for A particles and %(ﬁ(B) — F) = %Aﬁ for B particles. A tran-
sition towards patterned lanes is expected if |AF|/2 is larger than a typical average force
between A and B particles, and lane formation is induced. The latter force depends both on
density and on the external fields themselves. We estimate a typical average force between
two opposite particles by considering different “effective” interparticle spacings. The first
typical interparticle spacing is set by the density alone, a = p~ /2. Including fluctuations in
the interparticle distance induced by a finite temperature results in a further smaller effective
average distance @ as obtained by setting a typical interparticle energy equal to V(a) + kgT.
Hence a = V! [V (a) + kgT] where V! is the inverse function of the interaction potential
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Figure 4.11: Visualization of the two-dimensional system by mapping a two-
dimensional simulation snapshot onto the surface of a torus. A particles (light gray)
are drifting along the torus, while B particles (dark gray) are drifting around it. The
lanes are moving perpendicular to their direction.

V(7). Finally the presence of the external fields enforces an even smaller averaged distance
a' between two colliding opposite particles. We estimate this minimum distance a' by adding
the net force per colliding particle AF/2 to the force at distance @ via

a = F'[AF/2 + F(a)], (4.27)

where F~! is the inverse function of F(r) = —%V(r). In general, an AB particle pair will
not collide directly along AF'/2 such that the actual average distance is between o’ and a.
Hence the averaged force f between an A and a B particle is roughly

F=— V@) V@) (4.28)

a—a

The critical force difference AF, is reached when it becomes of the order of the mean force

f’
AF, = 2)\f. (4.29)

A = 2 is a dimensionless prefactor which is determined by an optimal fit to all simulation
results for parallel forces in sec. 4.2.

The basic prediction of this simple theory is that the only essential parameter governing
tilted lane formation is the magnitude |Aﬁ |. This prediction can be tested by simulation.
In fact, in Fig. 4.10, the critical value of |AF| is shown for different ratios ¢ = |F(4)|/|F(5)|,
Were the theory correct, all the simulation data should fall on a horizontal line independent
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|£ (A)

Figure 4.12: Sketch of two colloids of opposite type colliding due to the external fields
F and F®), The A particle is white, while the B particle is gray. The particles
collide effectively in direction of the difference force AF = F(B) — F(Y a5 seen from a
fixed center-of-mass.

of q. As can be deduced from Fig. 4.10, this is indeed confirmed. Furthermore, the actual
magnitude predicted from the theory is in line with the simulation data. Note that - as
far as the nonparallel case is concerned - there is no fit parameter involved. The global fit
parameter A is solely adjusted to the case of parallel forces.

Three-dimensional model

The model and all methods and arguments can readily be generalized to three spatial di-
mensions. Similar conclusions hold for the formation of tilted lanes. We have also performed
computer simulations in a cubic box in three dimensions and observed tilted lane formation.
Results are presented in Fig. 4.13: tilted lane formation is clearly visible in the plane spanned
by the two forces F4) and F(B)_ see Fig. 4.3(a). Perpendicular to the direction AF of the
lanes, the system shows a structure reminiscent of two-dimensional spinodal decomposition,
see Fig. 4.13(b). The parameters are for these snapshots k = 4.0, V; = 2.5kgT and po3 = 1.
In conclusion, this shows that pattern formation is a general effect which is independent of
the dimensionality of the model.
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Figure 4.13: Typical snapshots of the three-dimensional system with perpendicular
external fields above the critical force difference. The magnitude of the forces is
|[FM| = |F®)| = 150kgT/o. (a) Three-dimensional view, (b) look on the plane
perpendicular to the AF vector.

4.4 Reentrant freezing for a driven Brownian crystal

In this section we focus on a Brownian crystal which is driven by an external field. To this
end, the external fields acting onto A and B particles are parallel (ﬁ ) = _F®B) = féy)
but in contrast to the considerations in sec. 4.2 the field-free equilibrium initial state is a
triangular crystal. The case of a fluid field-free configuration is easier as rotational symmetry
with respect to the direction of the external field applied is ensured. This is no longer true for
a crystal where one has to specify the field direction with respect to the crystalline orientation
resulting in an anisotropy which reflects the crystalline symmetry. Clearly, in the absence
of any external field, A and B particles are indistinguishable; hence the equilibrium state is
randomly occupied triangular crystal. In the other limit of very strong fields, one expects
again phase separation into completely demixed A and B regions. Once they are demixed,
they follow Boltzmann statistics. Consequently the equilibrium state is a pure A (or B)
crystal of the same lattice than the original (field free) one. What is less clear intuitively is
how the system transforms from the first randomly occupied crystal into the demixed crystal
if the field is turned continuously on. At least two scenarios are conceivable: either the system
retains the underlying solid lattice but particle exchange hopping processes generated by
the external field demix the crystalline state or the crystal first melts mechanically via the
external field and then crystallizes again. In our simulations we almost exclusively observed
the latter scenario.



66 4. NONEQUILIBRIUM TRANSITIONS IN DRIVEN BINARY COLLOIDAL MIXTURES

In order to detect a triangular crystalline order we define a suitable crystallinity order
parameter Wg that probes sixfold symmetry around a given particle via [154, 155]

1 2N o
\116:‘<ﬁ226 Z >‘ (4.30)

j=1 <k>

Here the k-sum includes the six nearest neighbors of the given particle and the j-sum extends
over 2N particles in the simulation box. The large angular brackets indicate a time average.
¢k 1s the polar angle of the interparticle distance vector with respect to a fixed reference
frame. For ideal sixfold symmetry, i.e., for a perfect triangular crystal, ¥4 = 1. Thermal
fluctuations cause deviations from this ideal case but a value of ¥g > 0.8 [154, 155] is
conveniently taken to be conclusive evidence for a triangular crystal.

In Fig. 4.14 we plot Wg versus the difference external force f* = |F(®|o/kgT for fixed
parameters k = 4.0,V = 15.0kgT, and po? = 1. The direction of the force is (11)-direction
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Figure 4.14: Crystallinity order parameter g (solid line) and lane order parameter
¢ (dashed line) plotted versus reduced external force f* as calculated by a Brownian
dynamics simulation.

of the triangular crystal. Note that in contrast to the parameters used in section 4.3, the
interactions energy is much larger to ensure that the equilibrium field-free state is crystalline.
Indeed the crystallinity order parameter in the field-free case is around ¥g = 0.87. Upon
increasing the external field strength to f* & 10, the crystallinity order parameter sharply
drops down and stays to values close to zero indicating a melting of the crystal induced by the
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external field. This melting process is mainly caused by a mechanical stress induced by the
external field with respect to AB particle pairs. As the field is getting larger (f* = 200), the
order parameter Wq increases again to values close to 0.7. This is accompanied with lane for-
mation as indicated by a drastic increase of another order parameter ¢ defined in Ref. [153]
which is sensitive to lane formation. The whole scenario is illustrated also by simulation
snapshots shown in Fig. 4.15. While Fig. 4.15(a) corresponds to a field-free randomly mixed
crystal, Fig. 4.15(b) and (c) are in the molten state while Fig. 4.15(d) represents a refrozen
demixed crystal sliding against each other. In Fig. 4.15(b) and 4.15(c) worm like structures
along the fields occur as a precursor to lanes formed by solids. Consequently we have shown
evidence for a reentrant freezing behavior generated by external fields in nonequilibrium. A
qualitative similar situation occurs for colloidal solids in linear shear flow [156, 157, 158|.
A continuous increase of the shear rate can lead to shear-melting and subsequent recrystal-
lization into a different solid structure [137, 159, 160]. A similar effect is shear thinning and
subsequent shear thickening as observed in colloidal fluids for increasing shear rates [161].
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Figure 4.15: Snapshots of the two-dimensional system for different external forces,
starting with a solid in the free-field state. The forces acting on the two different
particle types are pointing into opposite directions. The forces are (a) f* = 0, (b)
f* =50, (c) f* =150, (d) f* = 250. In (a) and (d), the system shows a solid
structure, while in (b) and (c) the system is a homogeneously fluid. Here the total
number of particles is 2N = 250.
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4.5 Summary

In conclusion we have studied the influence of an external field on a binary colloidal mix-
ture performing Brownian dynamics in a solvent with simulation and simple theory. It was
shown that oppositely driven particles avoid each other by forming different lanes due to a
nonequilibrium slip-stream effect. Using a suitable order parameter this was identified as
a first-order nonequilibrium phase transformation. A simple scaling theory was proposed
whose predictions and trends were confirmed by our simulation data. The process of lane
formation was found to be very general: it prevails for oscillating fields provided the fre-
quency is not too small and it is present both in two and three spatial dimensions. Hence,
it should be observable in real systems such as binary colloidal dispersions, e.g., driven by
an oscillatory electric field. We have generalized our studies of nonequilibrium pattern for-
mation in continuum driven diffusive mixtures to nonparallel external fields and crystalline
states. As main results we found tilted lanes along the force difference vector which are mov-
ing with a constant interface velocity provided the external force difference is large enough.
Furthermore, a solid melts and refreezes if the magnitude of an external field is increased.



Chapter 5

Summary and Outlook

In summary, we have examined the structure and phase behavior of binary colloidal mixtures
in equilibrium and nonequilibrium. As a model for a binary colloidal system in equilibrium
we investigated a mixture of star polymers and hard-sphere colloids interpolating between
the well known colloid-polymer and binary hard-sphere mixtures. First of all we presented
analytic results for the force between a colloid and a star polymer in a good solvent, accom-
panied with an analytic expression for the corresponding pair potential which is valid for
size ratios ¢ < 0.7. The validity of these expressions was established by direct comparison
with Molecular Dynamics simulations. Our theoretical approach is in principle generalizable
to arbitrary geometrical shapes for the hard particle, thus opening up the possibility for
studying effective forces between stars and hard ellipsoids, platelets etc. Further, a revised
form for the star-star interaction for small functionalities has been presented, while at the
same time the logarithmic-Yukawa form of this interaction remains valid for functionalities
f 2 10. Using these interactions we have traced out the phase diagram of star-polymer—
colloid mixtures, establishing the limits of stability of the demixing binodals as functions of
the star functionality and the size ratio, for the case in which the star-polymers are smaller
than the colloids. We have demonstrated the equivalence of a two-component approach
with a depletion picture, in which the stars are further traced out. Star polymers have been
shown to fulfill their unique role as natural bridging systems between soft polymers (for low
f) and colloidal particles (at high f). Hence, they can act as selective depletants between
colloidal hard spheres. All our findings can be experimentally checked by carefully preparing
mixtures of index-matched hard sphere colloids with monodisperse star-polymers in good
solvents [98]. The stability of the demixing with respect to freezing has been recently studied
in some generality in the framework of the model of non-additive hard spheres [17, 126, 127].
Whether the present system can also fit within this picture remains to be seen. Our work is
limited to star-colloid size ratios smaller than unity, since the star-colloid interactions em-
ployed here are derived under the assumption that the star never ‘crawls over’ the colloidal
hard sphere. [162] The investigation of the opposite case, in which the small colloids can
fully penetrate into the corona of the star-polymers [128] is also a problem for the future.
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As a nonequilibrium system we have studied the influence of an external field on a binary
colloidal mixture performing Brownian Dynamics in a solvent with simulation and simple
theory. It was shown that oppositely driven particles avoid each other by forming different
lanes due to a non-equilibrium slip-stream effect. Using a suitable order parameter this was
identified as a first-order non-equilibrium phase transformation. A simple scaling theory was
proposed whose predictions and trends were confirmed by our simulation data. The process
of lane formation was found to be very general: it prevails for oscillating fields provided the
frequency is not too small and is present both in two and three spatial dimensions. Hence
it should be observable in real systems such as binary colloidal dispersions e.g. driven by an
oscillatory electric field.

We generalized our studies of non-equilibrium pattern formation in continuum driven
diffusive mixtures to non-parallel external fields and crystalline states. As main results we
found tilted lanes along the force difference vector which are moving with a constant interface
velocity provided the external force difference is large enough. Furthermore, a solid melts
and refreezes if the magnitude of an external field is increased.

Let us remark on possibilities of non-equilibrium lane formation in more complicated
systems: first, our studied system was completely symmetric involving the same partial
densities and the same particle-particle interactions. For experimental realizations [48, 49,
51, 50| this will not be fulfilled in general. However, the basic physics of lane formation
will not change. Secondly, if ternary and further multicomponent mixture beyond binary
ones are considered, we expect cascades of lane formation transitions involving the different
particles species as the external field is increased.

We finally comment on possible experimental realizations of our model: There are dif-
ferent fields where the pattern formation we predicted within our model can be verified,
namely in colloidal dynamics and in pedestrian motion. Binary colloidal miztures indeed
can be driven by constant external forces. Important examples for parallel forces are sed-
imentation where the external force is gravity [48, 49] or electrokinetic motion of charged
colloids [163] where the external force is an electric field. Both the fluid and crystalline field-
free state can be studied. A recent realization with mixed crystals can be found in [164].
One possible drawback is the hydrodynamic backflow [165] caused by strong hydrodynamic
interactions [166, 167, 168] which were neglected in our model. An overall backflow can be
avoided by a time dependent oscillatory field (e.g. AC electric field) which leads qualita-
tively to the same lane formation if its frequency is small enough [153]. We further think
that the long-ranged hydrodynamic flow around a driven colloidal particle will favor lane
formation, i.e. the critical field strength needed to generate lane formation is expected to
be lower than with hydrodynamic interactions neglected. Colloids can also be exposed to
external laser-optical and magnetic fields [55] which generate external forces in a controlled
way coupling to the dielectricity (resp. the magnetic permeability) of the colloidal material.
Nonparallel external forces in colloidal mixtures can be realized by crossing two external
fields e.g. gravity with electric, laser-optical with electric, laser-optical with magnetic etc.
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The two species of a colloidal mixture will in general respond differently to the two external
fields such that the resulting total external force will be different in direction.

A different realization is dynamics of pedestrians in pedestrian zones and in lecture halls.
Similar off-lattice models involving Brownian particles have been used to simulate the col-
lective behavior of pedestrians [47, 169] including escape panic [170]. Our setup of perpen-
dicular external fields is realized by two crossing pedestrian lanes in which pedestrians are
only moving in one direction. Based on our results, we would expect tilted lane formation
provided the density of the pedestrians is high enough. Finally it would be interesting to
extend phenomenological hydrodynamical theories which predict lane formation for parallel
forces via an instability [171, 49, 172, 173, 174, 175, 176, 129, 177] to the case of tilted forces.
Even more challenging would be a full microscopic non-equilibrium theory which has been
much more elaborated for second-order non-equilibrium phase transitions [38, 178]. Work
along these lines is in progress.

We finish with a couple of points: first, lane formation is also expected to occur in three-
component colloidal systems and - in general - for polydisperse samples. The formation
of lanes could provide an efficient channel to transport specific particles into a preferred
direction by driving the system via an external field. Second, one might surmise that lane
formation will also occur in lattice models if other kinds than square lattices are used or if
next-nearest neighbor hopping processes are allowed in the lattice model. This conjecture
is based on the observation that shear forces between different lanes are driving the lane
formation which are absent in a square-lattice model with nearest-neighbor hopping. Third,
lane formation should also be stable with respect to a change of the particle dynamics.
For instance, the transition is expected to be stable also if Fokker-Planck [140] rather than
Brownian dynamics is used. The only requirement should be a parallel dynamics for all
particles.



List of Abbreviations

AO Asakura-Oosawa

BHS Binary Hard-Sphere (mixture)
CP Colloid-Polymer (mixture)

CS Carnahan Starling

dcf direct correlation function

DFT Density Functional Theory
FENE Finite Extensible Nonlinear Elastic
HNC Hypernetted Chain

HS Hard Spheres

MC Monte Carlo

MD Molecular Dynamics

MFA Meanfield Approximation

0Z Ornstein-Zernike

PB Polybutadiene

PMMA Polymethylmethacrylate

PY Percus-Yevick

RY Rogers-Young

SA Superposition Approximation

SANS  Small Angle Neutron Scattering
SAXS  Small Angle X-ray Scattering
SLS Static Light Scattering
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Appendix A

Integral equation theories for
multicomponent mixtures

Let us give a brief outline regarding integral equation theories for multicomponent mixtures.
Consider, in general, a v-component liquid mixture, consisting of Ny, Ny, ..., N, particles of
species 1,2, ..., v, respectively, enclosed in the macroscopic volume V. The partial density
p; of species i, is given by p; = N;/V. The pair structure of the system is fully described by
v(v +1)/2 independent correlation functions h;;(r), ¢ < j =1,2,...,v, because symmetry
with respect to exchange of the indices dictates h;;(r) = hj;(r). Associated with the total
correlation functions are the direct correlation functions (dcf’s) ¢;;(r). For the same reasons,
there exist only v(v + 1)/2 independent dcf’s. The Fourier transforms of h;j(r) and ¢;;(r)
are denoted by h,;(k) and &;(k), respectively.
The OZ relation for one-component systems at density p takes in Fourier space the
algebraic form
h(k) = é(k) + é(k) p h(k), (A1)
where A(k) and &(k) are the Fourier transforms of the total and direct correlation func-
tions h(r) and c(r), respectively. The generalization of the OZ relation for multicomponent

mixtures reads as [179]:
H(k)=C(k)+C(k)-D- H(k), (A.2)

where H (k) and C(k) are v x v symmetric matrices with elements:
[H (k))ij = hij (k) and [C(k)]i; = &;(k), (A.3)
and D is a v X v diagonal matrix of the partial densities:
[Dl;j = piij- (A.4)

Eq. (A.2) above generates v(v + 1)/2 independent algebraic equations for the v(v + 1)
unknown functions h;;(k) and &; (k). The system becomes in principle solvable if one provides
additional v(v + 1)/2 closure equations between these functions. For example, the Rogers-
Young closure generalization to multicomponent mixtures reads as
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exp [vi;(r) fij(r)] = 1
fij(r)

(1=1,2,...,v and i < j),
(A.5)
where g;;(r) = hij(r)+1, vi;(r) = hij(r) —ci;(r) and v;;(r) is the pair interaction between
species ¢ and j. The ‘mixing function’ f;;(r) is given by:

9i(r) = exp [~ By (r)] |1 +

fij(r) =1 —exp (—ay,r). (A.6)

Usually, a single self-consistency parameter o;; =: « is employed for all components, so that
[ij(r) = f(r), as there is a single thermodynamic consistency requirement to be fulfilled,
i.e., the equality of the ‘virial’ and ‘fluctuation’ total compressibilities of the mixture. Yet,
multi-parameter generalizations of the RY closure have also been proposed [14], invoking the
partial compressibilities of the individual components. For o = 0 one recovers the Percus-
Yevick (PY) and for & = oo the Hypernetted Chain (HNC) multicomponent closures [36]
For a HS mixture, the PY closure is analytically solvable [180, 181, 182].
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Appendix B

On the r — 0 and  — 1 limits of the
Gibbs free energy

In this Appendix we present some technical details necessary for the solution of the second-
order differential equation (3.4). With the Gibbs free energy per particle

ow) = O, (B.1)

we seek to solve the equation [91]:

kgT

9"(x) = Sem(k =0’ (B.2)

where it is implied that the pressure P and the temperature T" are constant.
The concentration structure factor Scon (k) for a colloid-star mixture of partial concen-
trations z. and x4 is defined as:

Scon(k) = % <[$spc(k) - xcps(k)] [xspc(_k) - xcpS(_k)D

= a2 (ke (—R)) + a2 (u(R)pu(—h)) — 20t (e (R)pu(—R), (B.3)

where p.(k) is defined through Eq. (3.20) and similarly for ps(k).
We define the partial structure factors S;;(k) as S;;(k) = &;; + /pipjhij(k), 1,7 =c,s. It
can be shown [36] that these S;;(k)’s satisfy the equations:

reSeelk) = (oe(R)pe(=k)); (B.4)
riS(k) = ((R)p(—k)); (B.5)
VETSa(k) = ((R)()) (B.6)
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From Egs. (B.3) - (B.6) we obtain
Seon (k) = Tx2See(k) + 2522 Sss (k) — 2(wews)>/? Ses (k). (B.7)

We now set z; = =, . = 1 — = and introduce the total density p of the mixture, related to
the partial densities through p. = (1 — z)p and ps = zp. Using S;;(k) = ;; + /pipjhij(k)
and Egs. (B.2) and (B.7) above, we obtain:

Bg"(x) = {$2(1 — D)1+ (1 = 2)phee(0)] + (1 — 2)2[1 + 2phes (0)] — 222(1 — x)2pizcs(())}_1(B.8)

The quantities izz-j(O) are all finite and so is p. An analysis of the limiting behavior of the
rhs of Eq. (B.8) above, shows that it diverges as 1/z for x — 0 and as 1/(1 — z) for z — 1.
In order to circumvent this technical difficulty at the two boundaries of integration and deal
always with finite values, we split the Gibbs free energy per particle g(x) into the ideal part,
gia(z), and the excess part, gex(x), as follows:

Bg(x) = Bgia(z) + Bgex(t) = (1 — 7)Bpicia(w) + Busia(x) + Bgex(T)
= (1-2)In[(1 - 2)po?] + &I (2p0?) + Bgex(z) + 3(1 — 2)In (A_) +3eln (A_)
= (1—2)In(1—2)+zIlnz+ Bge(z) + Crz + Cy, (B.9)

where A, are the thermal de Broglie wavelengths of the colloids and stars, respectively, and
in the last line we have simply introduced two constants, Cy and C for a term in g(z) that is
linear in z and plays no role, neither in the argument that follows nor in the determination
of phase boundaries. Taking the second derivative in Eq. (B.9) above, we obtain

5"(2) = = + T+ gl(a). (B.10)

Thus, the 1/z-divergence at + — 0 and the 1/(1 — z)-divergence at £ — 1 manifest also
in Eq. (B.8) above, are seen to arise from the ideal part of the Gibbs free energy. Hence,
a second-order differential equation for which all terms that appear are free of divergences
can be written, which reads as

BYex() = m - (% + 7 i x) : (B.11)

We solved therefore numerically Eq. (B.11) for the determination of the function gex(z); ad-
dition of the analytically known term giq(z) delivers the total Gibbs free energy per particle.
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