EFFECT OF LIGHT AND TEMPERATURE ON PLANT CANOPY GROWTH

Kumulative Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von
Richard Poiré
aus Montpellier

November 2010
aus dem Institut für Chemie und Dynamik der Geosphäre (ICG-3)
Forschungszentrum Jülich GmbH
Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Ulrich Schurr
Koreferent: Prof. Dr. Achim Walter
Tag der mündlichen Prüfung: 20/12/2010
Selbstständigkeitserklärung

Richard Poiré

Statement of the authorship

I hereby certify that this dissertation is the result of my own work. No other person’s work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure.
List of abbreviations .. 81
Acknowledgments ... 83
INTRODUCTION

Environmental cues have a major impact on plant development. Only if a plant is well adapted to its environment it can reach theoretical potential and maximum yield. On the other hand when environment differs from the physiological range of a given species, it has to invest more resources to adapt. As the plant cannot move away from those suboptimal conditions, growth does not reach an optimal intensity which ultimately has an impact on biomass production and yield.

World arable area per capita is decreasing and the resources mankind can afford to invest in agriculture are more and more limited: we are running out of phosphorus (Cordell et al. 2009) and water supply is limiting for most agricultural systems. Arable land per capita declined by more than 50% from 0.43 ha in 1962 to 0.21 ha in 2007 (FAO 2010). Often, arable land is nutrient-depleted and degraded – an increase in salt concentration is amplifying this problem. Increases in world meat consumption are also driving the need for more cereal grain production. Biofuel production is now competing for the same arable land as crops, putting more pressure on agricultural productivity. With the world population and its demands rapidly increasing there is a priority to rethink our agricultural practices. This is why another green revolution is required if we are to feed the world population in the next decades. To achieve such a revolution, a better, more integrated understanding of crop growth and yield responses to environment is required.

Variations in growth dynamics in response to environmental conditions are not easy to measure. Both a detailed characterisation of the environmental conditions along with techniques able to grasp subtle changes in growth rate are required. Both spatial and temporal resolutions of these parameters are poor when studied with the naked eye, the technique commonly used by plant breeders. The greatest challenge here is to bridge the gap between the subtleties of the plant inner rhythm and our ability to monitor plant growth parameters and environmental variables.

Nutrient availability, water, light and temperature are key players driving plant development. It is critical to understand what effects they have on different time scales. As they are the most energy costly inputs in agricultural practices, we need to assess potential yield variation related to either supply or reduction of those inputs. The ability to predict the upcoming climate and to know how plants will react is at the base of a sustainable agriculture, optimising the yield and limiting inputs (energy and chemicals) (Dodd et al. 2005). We have to optimise the way plants are utilising available resources and then provide them only what is really needed to utilise their full potential.

Recent advances in non-invasive analysis techniques allow precise and continuous monitoring of changes in growth, identifying growth patterns that were otherwise concealed due to their low amplitude and timescale (Schmundt et al. 1998). Those non-invasive tools are powerful to improve our understanding of these dynamics and thus determine the ecophysiological rationale of those changes.

The knowledge of the way plants grow and make use of available resources is progressing. Nevertheless several questions remain unsolved, especially those related to dynamic processes involved in the adaptation of plant activities to fluctuating environmental conditions and the integration of the two major environmental components affecting plant growth: soil and atmosphere. Plant response towards changes in environment isn’t only local. It is one aim of this study to focus on integrated aspects of plant responses (DeLucia et al. 1992). One case study of this response is observed after root cooling is applied and we analysed changes at whole plant scale for growth patterns, carbohydrate metabolism, transport of carbohydrates and water.
MOTIVATION

This work is meant to raise the awareness on the effect of temperature and light on potted plants. Many scientific studies are currently based on the assumption that we can mimic field conditions in a growth cabinet and thus directly use the knowledge gained in the lab to the field. The need to bridge the gap between lab-based experiments and field trials is great and phenomics strategies are based on this assumption but we should remain aware of the major differences between those two worlds. Current techniques allow monitoring plant growth rhythm when exposed to fluctuating climatic conditions. Acknowledging and measuring the physiological differences between lab and field are needed to know to which extent we can export the results gained from the lab.

This work aimed at describing the integrated response at different scales when climatic cues are altered.

- The effect of soil temperature at whole plant scale is investigated in the article #1.
- The effect of air temperature and light on various plant types is detailed in article #2.
- The article #3 investigates the effect of light distribution and low air temperature on chrysanthemum. It is also a case study on how one can improve energy use in horticulture.
SHOOT AND ROOT ARE LIVING IN DIFFERENT WORLDS

TEMPERATURE HETEROGENEITY

Temperature is the main variable to take into account to understand plant performance. Low temperature can have a large negative effect on most plant metabolic processes - in case of a freezing event it can induce formation of ice crystals and cell bursting. Several protection mechanisms are acting to prevent damages caused by frost because it is critical for plants to maintain structural integrity and compartmentalisation (Guy 2003). At the other extreme, high temperatures are usually associated with high Vapour Pressure Deficit (VPD) which ultimately leads to drought stress at the plant level. There is a fine regulation between stomata opening and amount of water that plants are ready to invest to maintain low leaf temperatures and the need to allow gas exchange to sustain high photosynthesis rates (Mott & Parkhurst 1991). Increasing temperature accelerates most enzymatic reactions (Breidenbach et al. 1974) to their maximum level but above a given threshold this activity declines (Sharkey & Zhang 2010) negating any potential gain due to protein instability and activity reduction. Temperature of the above ground environment is neither static in the short nor in the long term; air temperature is fluctuating markedly throughout a typical day even in temperate areas. Ultimately, those differences in soil and air temperature have an impact on plant growth and underlying metabolism (Walter et al. 2009). Some plants do require low temperature to be able to complete their development cycle. This phenomenon is known as vernalisation and can imply weeks at low temperature, typically between 5 and 10°C, for a plant to be able to flower (Dennis & Peacock 2009). Some plant reproductive organs need to maintain a temperature higher than surrounding air. Philodendron spadixes are known for their thermogenesis that can maintain up to 30 h after being cut off the stem (Grant 2010).

In the field, amplitude of day-night temperature course can easily reach 20°C in the air while Root Zone Temperature (RZT) is remaining fairly damped over 24 h. Moreover, there is a pronounced spatial temperature gradient in the soil, which fluctuates throughout 24 h (Füllner 2007). The deeper the roots in the soil, the lower the temperatures and the lower day-night amplitude they will experience (Hillel 1998). Experiments in a specific Australian soil show, for example, that at 25 cm depth, soil temperature varies by merely one degree over 24 h and at 100 cm depth the amplitude is less than a tenth of a degree. Data from Phenonet Leeton (NSW, Australia). Courtesy of High Resolution Plant Phenomics Centre.

In laboratory experiments carried out in growth chambers or greenhouses, this effect is of great importance as pot volume is very small and thermal equilibrium with the air is much greater than in the field (Passioura 2006). We observed that soil temperature in a pot left to equilibrate in controlled conditions can rise very quickly to temperatures higher than the air temperature cf. Fig. I-1*. The effect of temperature variation belowground is even further increased by a higher heat transfer capacity of soil compared to air.

* Nomenclature for citing figures from the three research articles compiled in this thesis is as following: Fig. X-Y: where X refers to the paper I, II or III and Y is figure’s original numbering.
Fig. I-1: Temporal development of temperature at nine different locations of a soil-filled pot (1 L) transferred from 5°C to a growth chamber at 20°C. The pot was translocated from a cold room (5°C) to a climate chamber. Exact locations of temperature analysis are indicated in the scheme.

It takes only 30 to 90 minutes for the RZT to match the air temperature and after 4 hours the RZT can be up to 10 K higher than air temperature and increasing. This scenario is unlikely in the field but close to the average conditions for potted experiments. The effect of RZT at the whole plant scale isn’t well documented but nevertheless a key issue we need to address to validate the knowledge we can gain from laboratory experiment and transpose them to the field. To control and assess for the effect of RZT we used a pot cooling system (Fig. A below) (Füllner 2007).

Fig. A: Schematic overview of the pot cooling system which consists of 3 insulated chassis containing a heat exchanger. Coolant is pumped through the heat exchanger and lowers the temperature inside the box compared to the outside. Several apertures are made in the upper side of this box, allowing to place the pots inside. The cooling pump allows controlling of coolant temperature independently in the 3 zones. It takes about 30 min to reach the desired temperature within the entire pot.
We investigated the effect of sustained root cooling during the first experiment by applying 3 constant root temperatures (10, 15 and 20°C) for 19 days. We observed that *Ricinus communis* total leaf area and Relative Growth Rates (RGR) were overall reduced by a factor 2 to 3 compared to the 20°C treatment (Fig. I-2a & I-2b). We observed the same growth pattern in all 3 treatments (Fig. I-2b). When RZT was permuted every 4 days in sequence, *Ricinus communis* was adjusting its leaf growth rate in less than 24 h after change (Fig. I-3). Using DISP to reach a higher temporal resolution we observed that nocturnal average growth rates scaled well with the temperature (Fig. I-4k). In turn, diurnal average growth rates are severely decreased to values close to zero by low RZT (Fig. I-4k) while nocturnal maximal growth rates are not affected by root-zone temperature (Fig. I-4a-i). This demonstrates that leaf growth reaction to root-zone or root temperature alteration cannot simply be scaled between long-term and short-term responses, but that diel and probably circadian variations of regulating mechanisms have to be taken into account. The effects of low RZT are at whole plant scale as we also observed that root elongation and ramification decreased rapidly after cooling but in this is reversible if the RZT is warmed up (Fig. I-5).

Low Night Temperature (LNT) of 12°C reduced chrysanthemum photosynthesis efficiency (Fv/Fm) from 0.77 to 0.72 (Fig. III-7) and it correlated well with a reduction of shoot growth (Fig. III-4). We did not expect the nocturnal temperature to possibly have an effect on diurnal metabolism but indicate that air temperature has a pleiotropic effect at whole plant scale.

LIGHT HETEROGENEITY

As for temperature, light conditions are highly variable over 24 h and plants have adaptive mechanisms to cope with those fluctuations. The amount of light that reaches the canopy depends largely on the latitude, the architecture of the canopy and agricultural management in case of crops. Canopy will tend to expand to intercept up to 100% of the incident light during most of the season. If Daily Light Integral (DLI) is low, plants can increase their photosynthetic efficiency by rearranging their photosynthetic apparatus and stacking several layers of thylakoids. We observed at high temporal resolution that a swift change of the light conditions (i.e. switching the lights on or off) of a growth chamber induce a growth artefact (transient increase of growth almost immediately followed by a transient growth depression; both effects lasting less than half an hour). This effect is only visible at very high temporal resolution (Fig. III-3), it has no effect on the average daily growth rate and can be overcome if needed by dimming the light source at dawn and dusk.

Many flowering plants use photoreceptors to sense seasonal changes in night length to trigger flowering. Some species need long days, some short days and others are not responding to day length to flower. Our experiments were carried out before flowering to avoid the metabolic changes that may interfere with the physiological parameters we were monitoring.

Growth chamber light conditions can be very heterogeneous; Photosynthet ic Active Radiation (PAR) can fluctuate by 30% and more across few decimetres and have a large impact on plant development. Attention was kept in this study to grow plants only in growth chamber regions, where the light was very homogenous. This efficiency for light interception has been measured and successfully modelled for *Arabidopsis thaliana* and *Helianthus annuus*. The model even revealed that *Arabidopsis thaliana* increased its light interception efficiency when shaded (Chenu *et al.* 2008). Plants can take advantage of the night to increase their leaf area and minimise their self-shading by nyctinastic motions to explore areas with more favourable light distribution. Some species are also known for their heliotropic behaviour, they are able to track the sun during the day to optimise their light interception. We witnessed both phenomena in this study by using time lapse imaging techniques.
In case of high irradiance, plants have to find a way to cope with excessive light energy to prevent any damage. There are several light avoidance mechanisms at work depending on the duration of the high irradiance episode. If the high irradiance episode is swift, the plant can reduce the stiffness of the stem, petiole and leaf blade (Vandiver & Goriely 2008) to display less leaf area and to reduce overall light interception. If the high irradiance episode is longer other photoprotective mechanisms are engaged such as the down regulation of efficiency of the Light Harvesting Complex (LHC) (Fig. III-6) to limit production of Reactive Oxygen Species (ROS). ROS management is very important for long term light avoidance strategy as the plant cannot afford to accumulate ROS because of their high toxicity (Bowler et al. 1992).

Light effects on plant performance can also be caused by light quality as the plant can sense the differences in the intercepted spectrum. Phytochromes and cryptochromes are sensitive to red and blue light, respectively and they provide specific information to the plants concerning their neighbourhood (Franklin & Whitelam 2005). Red light or more specifically a low Red/Far Red (R/FR) Ratio indicates the proximity of other plants and competition for the available light resource. Similar to the reaction at low light conditions, plants increase their growth upward at low R/FR Ratio to remain above their competitors until the R/FR Ratio goes back to higher values. (Devlin et al. 1999) Photoperiod is for most temperate species a trigger of flowering along with R/FR Ratio. Flowering time is a major determinant of crop performance and thus it is of a great value to understand the mechanisms that are triggering flowering to design more efficient plants.

UV light is also a major component of the light spectrum quality. UV light has mutagenic effect on DNA and triggers DNA repair mechanisms of the plants (Demple & Harrison 1994). The increase in lyase activity competes with other primary metabolic activities and reduces the overall growth. The growth reduction induced by UV light has been studied in other experiments of our group at the same time as this thesis was performed. This was done both in controlled conditions with exogenous UV sources (UV-A and UV-B) and under greenhouse conditions by comparing roofing materials differing with respect to their UV-B transparencies (i.e. Phytec greenhouse at ICG3 - Jülich - Germany) (Tittmann et al. 2010).

NUTRIENT HETEROGENEITY

Nutrient availability in soils is highly variable and heterogeneous. It is essential for the plant to make the best use of available resources (Jobbágy & Jackson 2001). There are different strategies to increase root soil exploration and availability of the main nutrients (Nitrogen, Phosphorus and Potassium) to provide ample supply to sustain both root and shoot growth. Common strategies are involving preferential branching, alteration of root growth rates and production of fine roots. Phosphorus shortage will be a major limitation to agricultural production in the near future and a major research focus must be toward improving Phosphorus Use Efficiency (PUE) (Cordell et al. 2009). It will be a new challenge to use less fertilisers and more degraded soils. However, as this topic is not a primary focus of the current study, pre-fertilised soil (ED73, Balster Einheitserdewerk, Fröndenberg, Germany) was used throughout all experiments to ensure that all nutrient needs of our plants were met. We acknowledge that this potting mix represents an artificial homogeneity in the soil properties but it reflects best the average laboratory and greenhouse conditions compared to more artificial media such as hydroponic, aeroponic or agarose gel systems. It is possible to use soil cores taken from the field as alternatives to the potting mix. Collecting and using such a core is possible but remains complex as the core should be large enough to minimise border effects and as it requires a lot of care to retain the spatial heterogeneity during the sampling. The sampling process required state of the art excavation tools and a crane. Those soil cores are integrated in a controlled environment to simulate a complete ecosystem (http://www.ecotron.cnrs.fr).
No simple temperature sensor has been identified in vivo but some proteins are affected by temperature and may act as temperature sensor in addition to their primary functions (Franklin 2009). Not only the absolute ambient temperature but also the dynamics of temperature change can trigger plant response. Temperature sensing mechanisms have been reported for Arabidopsis thaliana (Kumar & Wigge 2010); there, histone H2A.Z and DNA folding seem to be key elements in the transduction of temperature changes as low as 1 K.

Fig. II-6: Leaf growth of Z. mays and A. thaliana transferred from 12/12 h day/night to a continuous light regime. Hatched bars represent subjective night in the continuous light (LL) treatment. For Z. mays, replicate plants are shown with different lines; for A. thaliana, mean value and SD (n=4) are shown.

While plants are able to sense changes in air temperature over a 24 h period, their rhythmicity is assured by a circadian clock which is sensitive to temperature but can retain its rhythm for many days under constant temperature (Fig. II-6 A. thaliana). Many processes throughout in plants are controlled by the circadian clock, the degree to which the circadian clock affects other processes differs between tissues, organs, and species (McClung 2006). There is an evolutionary advantage for plants to be adapted to a 24 h day length compared to plants that are not adapted (Dodd et al. 2005) In the dicot model species Arabidopsis thaliana, leaf growth, as well as hypocotyl growth, seems to be controlled by the circadian clock. Plant motions are mostly concealed at our time scale but time lapse imaging allows perceiving them. They can be either diurnal such as the heliotropism of sunflower or nocturnal such as nyctinastic motions. Both heliotropism and nyctinastism are reported to be controlled by the circadian clock (McClung 2006). From an evolutionary point of view, a correct phasing between
plant metabolism and forthcoming environmental conditions represents an advantage over organisms with a coarser regulation. Monitoring plants with combined thermal and chlorophyll fluorescence imaging can provide information applicable to the improvement of crop adaptability and yield performance. Combining those techniques allows continuous circadian plant monitoring of plant response at individual leaf and whole plant scale (Chaerle et al. 2007). The circadian clock is in control of both stomatal conductance and photosynthesis (Dodd et al. 2005). Therefore, it is necessary to monitor both at a high temporal resolution to understand those regulatory mechanisms. A basic yet fully functional living oscillator based on cyanobacterial KaiC protein has been reconstructed in vitro demonstrating the stability of the period regardless of the incubation temperature (Nakajima et al. 2005). Circadian clock is temperature compensated and does not tick faster as temperature increases (period remains 24 h). Temperature compensation is an essential feature of the circadian clock, the periodicity and amplitude of rhythmic processes that are controlled by the circadian clock are affected only to a minor extent by temperature variations Harmer (2009). We witnessed for dicotyledon species a decay in growth rate toward the end of the night phase when the plant is “expecting” the light phase (Fig. I-4a).

The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rhythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons (Fig. II-6). We concluded that while monocotyledons respond to external temperature by adjusting their growth rate, they do not display any rhythmicity. The rhythmicity observed for the dicotyledons (Fig. II-2) was merely modulated, but not dominated by temperature confirming that in dicotyledons, the circadian clock provides an important element of control and synchronisation between leaf growth and underlying processes.

TEMPERATURE AS ENERGY SOURCE - THERMAL TIME

The concept of thermal time arose from agronomy where it was required to be able to compare plant performance in the field across multi-plots and multi-year trials. As field conditions cannot be controlled breeders needed a way to normalise the yield (Granier & Tardieu 1998).

To do so agronomists and plant breeders express their results using a developmental scale which integrates not only time but also temperature. Temperature is a major controller of development and the relationship between growth rate and temperature is not linear (Granier et al. 2002); it follows a threshold function with respect to temperature and below a critical temperature there is no growth. This threshold is the so called “base temperature”.

Base temperature can be determined experimentally plotting the plant growth rates at various steady state meristem temperatures. The intersection of the fit line with the temperature axis indicates the base temperature. Knowing the base temperature of a given species allows the calculation of its thermal time for development or physiological age. This is done by subtracting this base temperature from the daily average meristem temperature.
Thermal time, then, represents the physiological age of a plant. Taking into account all processes that are accelerated by higher temperatures and thus expressing growth against thermal time allows normalising the results of different experiments carried out under uncontrolled conditions. It is crucial for this normalisation to keep record of the temperature experienced by the shoot meristem of the plant with a data logger in the field.

It is possible to establish a temperature compensation curve that takes into account the effect of temperature only on leaf growth (Fig. II-7). The effect of temperature on plant growth depends largely on whether it is a monocotyledon or a dicotyledon. In monocotyledons we were able to relate most of the leaf growth variation to the temperature while dicotyledons remain largely unaffected in their rhythm. There is a duality between the concepts of thermal time and circadian clock but our observations and modelling attempts managed to demonstrate that both hold true, depending on the time scale considered. Thermal time is best suited for representing ecophysiological effects on a day to day basis while the circadian clocks rules the plant physiology at a sub 24 h scale.
Not all plant species are experiencing time and temperature in the same way and while thermal time provides a good estimate of the daily amount of growth a plant can achieve (Ben-Haj-Salah & Tardieu 1995) it is not the most suited measure to explain temperature effects on a shorter time scale. The largest discriminant of interspecific difference in response toward temperature may lay in their shoot meristem physiology. The meristem is the most important tissue related to plant growth. There, cells divide and expand. We can distinguish two types of plants, monocotyledons and dicotyledons, differing in the organisation of their leaf meristems and differing in their strategy to achieve maximum growth (Fig. B).

Fig. B: Schematic overview of position of shoot and root meristems in dicots and monocots (left panel), growth zone positioning and spatiotemporal leaf growth patterns (right panel). From Walter et al. 2009.

Dicotyledonous species have their shoot meristems on the leaf blade, exposed to the sun and the surrounding conditions (Fig. B). This means that growing tissues are vulnerable to the environment and this location imposes a trade-off between growth, temperature regulation and photosynthesis when the growth conditions are suboptimal (high VPD) (Sharkey & Zhang 2010). Some dicotyledons got around this constraint by shifting their leaf growth toward the night (Fig. II-3). This night growth allows a better use of the available resource by decoupling photosynthesis during the day and leaf growth at night.

Monocotyledon plants have their meristems buried deep into the stem and thereby protecting it against most environmental pressure. The apparent part of their leaves consists of non-growing tissues which in essence are less sensitive to stressful environment. The positions of meristems in plant types may also be an important determinant of their sensitivity toward temperature change.

We observed that monocotyledonous leaf growth rate would mainly follow the air temperature regardless of the light supply (Fig. II-6c & Fig. II-6d) while dicotyledonous species seems to obey an internal growth pattern that is merely modulated by temperature (Fig. II-2 & Fig. II-3). Dicotyledonous species will retain this rhythmicity for days.
and weeks even under constant temperature and continuous light (Fig. II-6a & Fig. II-6b). This rhythm seems to be directly related to the circadian clock which is extremely robust against external cues (Nakajima et al. 2005). Monocotyledons on the other hand seem to respond only to air temperature - they do not seem to possess an endogenous rhythm and they don’t withhold their growth potential if conditions are favourable (Fig. II-7).

![Relative Growth Rate of Flaveria bidentis](image)

Fig. C: relative growth rate of *Flaveria bidentis* leaf measured at base and tip.

Soybean, a dicot was reported to be lacking a base-tip growth gradient (Ainsworth et al. 2005) and our study was able to identify that *Flaveria bidentis* has a very steep base-tip growth gradient which reminds more of a monocotyledons growth pattern. The growth is on a daily average 5 times greater at the base than at the tip of the leaf (Fig. C. This makes the fixation for Digital Image Sequence Processing (DISP) measurement more complex to follow growth rates over several days.

The simplest leaves are flat, providing the highest light interception per unit area when the leaf blade is facing the light source. As the sun’s position fluctuates during the day some leaves have beneficially evolved complex architectures thereby minimising self-shading and establishing complex 3D canopy structures (Lecoer et al. 2010). Differential growth rates of the layers that compose a leaf or flower induce a growth shift that is no longer in the plane but a more complex 3D shape.

In literature, the shift from 2D to 3D was studied at the biophysical level to find out where and when this singularity occurs leading to a complex 3D leaf (Prusinkiewicz & Barbier de Reuille 2010). It is shown there, that one can fully explain most complex leaf architecture using only differential growth rates among cell layers and physical properties. The complexity of leaf structure can make the estimation of leaf area more difficult. While it is relatively easy to estimate the area of a flat leaf, uneven 3D elements are harder to measure accurately as the error increases when calculating the leaf growth rate. While it is relatively simple to measure linear extension of a monocot leaf using a ruler, a Rotation Resistance Transducer (RRT) or a Linear Variable Differential Transformer (LVDT) the measurement of complex leaf require either leaf fixation (leaf DISP) (Walter et al. 2002a) or 3D imaging (Biskup et al. 2007).
PHOTOSYNTHESIS TYPE

Light is at the base of the energy chain in the plant. Photosynthesis transforms light energy to chemically bound energy. As photosynthesis provide the carbohydrates, the elementary structural brick of the plant, its efficiency is critical for the whole-plant growth performance.

We can distinguish at least three main types of carbon fixation as well as intermediate types. C₃ plants possess a photosynthesis pathway that uses RuBisCO and a three carbons compound as the first intermediate in the carbon fixation as in the following reaction: \(\text{CO}_2 + \text{RuBP} \rightarrow (2) \text{3-phosphoglycerate} \). C₃ plants perform well under low VPD conditions but the RuBisCO enzyme tend to be wasteful under high VPD when water is limiting, temperature high or low CO₂ levels. C₃ photosynthesis has been modelled (Farquhar *et al.* 1980). C₃ plants are transpiring up to 97% of the water they are collecting through with their root system making them very resource expensive in arid countries. C₄ plants photosynthesis is not relying on RuBisCO for first step of the fixation of CO₂. C₄ plants are fixing CO₂ as a four carbons compound (oxaloacetate or malate). This makes C₄ plants more efficient in high VPD scenario as they do not bear the drawback of photorespiration and excessive water loss. CAM (Crassulacean Acid Metabolism) plants are mostly succulent plants and are well adapted to arid conditions. They make the best use of limited resources and unlike C₃ plants are much more efficient under high VPD while consuming little water.

Some plants are able to switch from C₃ to CAM metabolism depending on the climatic conditions (Walter *et al.* 2008). This makes C₃-CAM plants a great model to study specific features of those photosynthesis mechanisms. *Flaveria bidentis* as C₄ dicot (Flaveria has also members in C₂ and C₃-C₄ types) is of great interest to study the evolution and the shift from C₃ to C₄ photosynthesis.

We hypothesised that photosynthesis type may have a role in the relationship between carbon availability, temperature and diel growth pattern. This was investigated on various plant species, either C₄ monocot or C₃ dicot.

We observed large fluctuations in the pool of carbohydrates of both C₃ and C₄ members, monocot and dicot types (Fig. II-5). While all investigated species had variations in starch levels over 24 h, this trend was less clear for fructose and sucrose. This can indicate a different metabolism or the usage of another carbohydrate as storage and transport form of carbon.

Flaveria bidentis as a C₄ dicot helped disentangling whether growth pattern is inherited from the meristem position or the photosynthesis type. *Flaveria bidentis* leaf growth response to temperature was of a dicot type and we couldn’t identify any property that could be related to the photosynthesis type. The position of the meristem seems to play a much more important role in the phasing of the shoot growth than the photosynthesis type (Fig. II-3). The existence of intermediate and cross type species (e.g. *Flaveria bidentis* and *Clusia minor*) allows testing those hypotheses.

We investigated the effect of time of day application of light in chrysanthemum plants (Kjaer *et al.* 2010). The light supply was designed to provide the same quantity of light but distributed over different photoperiods. We could measure that if the DLI is constant then the daily growth will remain the same. We could also identify a relationship between the quantity of light that a chrysanthemum plant can assimilate and the night temperature. For a given DLI we measured dramatic photosynthetic efficiency decreases when plants were exposed to LNT of 12°C compared to higher night temperature (Fig. III-6 & Fig. III-7). If temperature is comparable the effect of the distribution of light is negligible. This opens new opportunities in term of light supply in agricultural practices. Chrysanthemums are able to make use of an extended photoperiod. It is thinkable to provide additional light, either by extending the photoperiod or even by adding a light phase in the middle of the night if economically rentable. The dependencies between the photosynthesis efficiency and the circadian clock have been established
(Dodd et al. 2005) nevertheless photosynthesis remains mainly driven by the available light energy. This variation in carbohydrate supply translates into whole plant effects which determine the plant performance (Sulpice et al. 2009).

We observed that when *Ricinus communis* is exposed to low RZT it induced an accumulation glucose and fructose content of growing leaves, with values increased by a factor of four, whereas sucrose and starch concentrations were increased by a factor of two to three (Fig I-6). Roots contained negligible amounts of starch either during or after root cooling; for sucrose, fructose and glucose, lower concentrations compared with leaf samples were found, with much higher concentrations in treated plants.

![Fig. II-5: Carbohydrate concentrations of growing leaves. (A) Sucrose, (B) glucose, (C) fructose, and (D) starch. During day 1, plants were exposed to constant temperature, thereafter (grey background) temperature fluctuated as shown in Fig. 2. Mean value and SD (n=4).](image)

We observed for all species we investigated large fluctuations in the carbohydrate pool over the day in response to the light supply and temperature. Photosynthesis has been identified as the main limitation to further yield increase on modern cultivars (Zhu et al. 2010). This opens the way to new approaches aiming toward the engineering of new plants with more efficient photosynthesis. The greatest challenge at the moment is to implement a C₄ photosynthesis apparatus into a C₃ organism like rice (Sage 2004). Such initiative will insure food safety in future.
Carbohydrates are the elementary bricks of the plant structural framework. In order to optimise plant growth it is necessary to understand metabolic processes underlying carbon fixation and remobilisation. This knowledge is required to explain why a species or genotype is more efficient than another under given climatic conditions. Current technology allows accurate monitoring of leaf photosynthesis rate in situ (Li-6400; Li-Cor Biosciences GmbH, Bad Homburg, Germany) (Long & Bernacchi 2003) but it is still not easy to determine how the photosynthesis products are allocated within the plant. The tissue growth is related to the available carbohydrates so the understanding of the transport dynamics is needed if we want to engineer plants with better performances under degraded environmental conditions.

By destructive sampling we observed that lower RZT induced shoot growth reduction associated with an accumulation of carbohydrates (starch and soluble sugars as Fructose, Glucose and Sucrose) in both shoot and root (Fig. I-6).

Fig. I-6: Starch and soluble sugar content of tissues from two populations of *Ricinus communis* plants exposed either to constant root-zone temperature throughout the experiment (control, T = 20°C) or to 5 d of cold root-zone temperature (cooled, T = 10°C) followed by a return to control temperature (recovery, T = 20°C). n = 6-9, mean value and standard error. The inset shows relative growth rate (RGR) of the total leaf area of the two populations during cold root-zone temperature (n = 10, mean value and SE).
By sampling plant tissues at specific time points we can observed in all the investigated species a regular pattern of the carbohydrate concentrations, essentially starch, over a 24 h period (Fig. II-5 & Fig. III-5). The carbohydrate concentrations of a plant directly reflect the metabolic status of plant responses to climatic cues. Carbohydrates are accumulated over the day and processed at night to sustain various metabolic outputs including tissue growth. Altered carbohydrate metabolism, in turn, leads to instantaneous and often very specific growth reactions in leaves (Sulpice et al. 2009, Smith & Stitt 2007).

The ability of a plant to grow vegetatively, intercept light and perform photosynthesis is only the first step of the strategy to reach the maximum potential. In agronomy, Harvest Index (HI) is not about total biomass but related to the fraction of carbohydrate which is invested into the seeds. HI results from the biological efficiency of a plant in both fixation and translocation of carbon, thus transport mechanisms are to a large part explaining the variability observed between different genotypes. Short lived isotopes can be used to monitor the carbohydrate flow non-invasively (Minchin & Thorpe 2003). They are especially well suited to measure the dynamics of transport mechanisms under fluctuating cues. The carbon isotope 11C requires a complex setup and a cyclotron but allows monitoring the allocation of freshly assimilated photosynthesis products into the phloem stream. 11C is decaying as follows:

$$^{11}_{6}C_{6} \rightarrow ^{11}_{5}B_{6} + e^+ + \nu + 0.96 \text{ MeV}$$

The half-life of 11C is 20.38 min allowing around 2 hours of continuous monitoring before the activity level becomes too low to be measured accurately. 11C experiments performed with castor bean show a preferential carbon allocation to the shoot when the roots are cooled down to 10°C (Poiré et al. 2010). The carbon flow can be reverted quickly if soil temperature is set back to higher temperature (20°C) (Fig. I-8). We hypothesise that the transport reduction is caused by combination of differential sap loading and changes in the water fluxes along the stem.

Fig. D: Schematic overview of the 11C experiment principle with flow of photosynthesis products (left) and photograph of the experimental setup (right).
Water availability remains an issue in many countries and current breeding efforts focus on the increase of the Water Use Efficiency (WUE) (Sinclair et al. 1984). In future we will have to sustain higher crop production level and the global warming we are experiencing means that plants will be expose to dryer conditions than it is currently the case. Plants are usually responding to soil drought by closing their stomata and limiting further water losses (Holbrook et al. 2002). Drought has dramatic effects on plant performance (Davies & Zhang 1991). When water is limited plants cannot regulate leaf temperature causing the overall photosynthesis efficiency to decrease (Sharkey & Zhang 2010). This effect is transient if the stress is moderate and short but it can induce ROS production if the stress is sustained. It is crucial to measure how water limitation is perceived by the plant to understand what mechanisms have to be improved to breed next generation crops.

Different methods are available to measure the water status of a plant but when it comes to the analysis of the dynamics of the plant reaction to a short stress event then the pressure probe is a powerful tool (Zimmermann et al. 2004). Water pressure is an important driver of plant growth and the pressure probe can establish a connection between the reduction of water availability and growth. Water deficit experiments have to be carried out carefully as a proper and controlled drought environment is complex to establish and characterise.

![Image](image_url)

Fig. E: close-up view of the entry point of the pressure probe on a *Ricinus communis* stem.

Pressure probes allows a minimally invasive procedure capable of monitoring the hydrostatic pressure in the xylem by establishing a continuum between the xylem vessels, a glass capillary filled with degased water and a pressure gauge (Fig. E). This technique allows real time monitoring of hydrostatic pressure profile when the plant is exposed to variation in the water availability or climatic conditions.

We measured no reduction in transpiration rate when plants were exposed to low RZT (Fig. I-7a) but with the pressure probe we were able to measure a fast decrease in the hydrostatic tension induced by the reduction of soil temperature from 20 to 10°C (Fig. I-7b). The reduction of the hydrostatic tension was in this case associated with a reduction of the growth level in both shoot and roots supporting the theory that turgor pressure is the main driver of plant growth (Lockhart 1965). One advantage of this technique is that it allows measuring a change in pressure long before it would be possible to measure a decrease in leaf growth rate. This ability to measure the effect of

\[\frac{dV}{dtV} = \phi(P - Y) \]

\(V: \) cell volume
\(\Phi: \) extensibility
\(P: \) turgor pressure
\(Y: \) Yield threshold
short term events can be crucial to understand the dynamic changes of transport processes when a plant is exposed to various climatic conditions.

In an attempt to increase our analysis throughput, we explored the use of an open microwave resonator to estimate biomass and water content of chrysanthemum tissues. The technique is relatively new and in future it has the potential to batch process large number of biological samples. Magnetic sensors are being developed to indirectly estimate the turgor pressure non-invasively. Those Leaf Patch Clamp pressure Probes (LPCP) are less invasive than the regular pressure probe, thereby theoretically allowing high throughput analyses (Zimmermann et al. 2008).

Plant structural stiffness is realised by its inner turgor pressure acting against a network of rigidly connected fibres. The composite nature of plant tissues is largely determined by the organisation of these fibrous networks, which are composed of an inner, soft and extensible part and an outer layer which is flexible but non-elastic. Taken individually those two materials cannot sustain the weight of a plant and would simply collapse but coupled together and adding only turgor pressure, a composite material is obtained that offers amazing structural properties (Vandiver & Goriely 2008).

Fig. F: Plant plasma membrane and cell-wall structure. **a** | Cell wall containing cellulose microfibrils, hemicellulose, pectin, lignin and soluble proteins. **b** | Cellulose synthase enzymes are in the form of rosette complexes, which float in the plasma membrane. **c** | Lignification occurs in the S1, S2 and S3 layers of the cell wall (Sticklen 2008).

Hydraulic forces allow maintaining plant structure and are the main driver of plant growth. Thus it is essential for the plant to maintain an inner pressure that is able to sustain photosynthesis, structural stiffness and the hydraulic component of leaf growth. This also explains the drivers of the hydraulic theory of plant growth. The pressure needs to overcome the resistance of cell walls to achieve growth (Lockhart 1965). According to the Lockhart equation, cell growth can be improved either by acting on the turgor pressure (aquaporin) or by altering the composition of cell walls to improve extensibility and yield threshold.
Monocotyledonous leaf growth proceeds mainly in length making measurement relatively straightforward. A ruler can provide a good estimate of the leaf area analysed on a day to day basis. One can increase the temporal resolution by using Rotational Resistance Transducers (RRT) and strings attached to the tip of the leaf. This technique can be used with multiple devices side by side to provide high throughput analysis of large populations of monocots (Sadok et al. 2007). This technique was used successfully also in this thesis on maize and rice (Fig. II-6c and Fig. II-6d).

Dicotyledon plant leaves are not only growing in length but also in width. Therefore, imaging techniques are required to monitor their growth processes. For this purpose we used an industrial camera mounted above the plant canopy. The camera was able to record time lapses movies of one growing leaf of over several days. This technique has few limitations inherent to its nature. It is required that the leaf grows in the focal plane of the camera and remains within it at all time during the acquisition. The leaf was fixed using six nylon threads attached to the edge of the leaf and spun over a ring encasing the leaf. The threads were tensioned by weights and provided the elastic fixation needed for the image acquisition. The choice of the weights was very important to be able to maintain the leaf in place without disturbing the growth rhythm. The appropriate weight has been determined for each species we monitored with leaf DISP.

Fig. G: Photograph of a Ricinus communis leaf fixed on a ring to allow leaf DISP image acquisition.

DISP imaging requires that the camera remains unaffected by the visible light provided to the plant in order to monitor growth during night and days. This is achieved by using Near Infrared (NIR) interference filter in front of the camera and using NIR Light Emitting Diodes (LED) matched with the wavelength of the filters as illumination source. The combined use of LED and filter provides a consistent brightness level to the camera regardless of the PAR supplied to the plant.

DISP technique is very versatile and can monitor growth rate fluctuations for a broad range of species. DISP was the main technique used to investigate growth in dicot species of this study (Fig. I-4, II-3 & III-3).
The image acquisition frame rate is dependent on multiple factors such as the focal length of the lens, the distance to the object but also the timescale of the event to monitor. In this study, pictures were acquired at a rate of one every 180 s as it focused on growth dynamics changes occurring during minutes and hours after the application of a climatic event. The technique allows using frame rates as low as one image per second to measure growth rate changes induced by swift events such as light pulses or osmotic stress.

The DISP processing algorithm is based on the Brightness Constancy Constrain Equation (BCCE) (Schmundt et al. 1998) and assumes that the grey value of a pixel of an image remains the same over the whole sequence. Processing a stack of images provides a displacement vector for each pixel of the image and allows calculating RGR of an area of interest. DISP allows grasping the smallest variations of growth rates of either shoot (Walter et al. 2002a) or root (Walter et al. 2002b; Nagel et al. 2009) by processing time lapse movies of the growing tissues.

Leaf growth can also be measured using simpler experimental design for the image acquisition. The alternative method requires a digital Single Lens Reflex (SLR) camera placed above the canopy. This method is suited for the estimation of projected leaf area of rosette plants on a day to day basis (unpublished data from drought experiment performed in the course of this thesis in Montpellier in 2006) and allows to identify growth rate reductions from tobacco plants grown with five different soil water contents (18, 21, 25, 30, 40%). The SLR method loses some temporal resolution compared to the leaf DISP but canopy does not need to be constrained anymore. The use of multiples cameras or multiple views allows 3D reconstruction of canopy (Biskup et al. 2007). Compared to manual measurement this greatly increases the throughput at which plants can be measured. The development of custom-made software allows fast thresholding of green pixels in the image and estimating the projected leaf area of each plant. This setup brings high resolution imaging techniques directly in the field and greenhouse to measure differences in canopy development.
HORTICULTURE

In horticulture there is a need to optimise plant growth conditions while maintaining the production costs as low as possible. Ultimately product quality is determined not only by the raw biomass but also the fitness and aesthetic value of the plant. Fertilisers were a main component of the green revolution but their extensive uses makes gain potential very limited now. The increasing need for sustainability should lead to reduce the use of fertilisers and pesticides by breeding plant lines that make a better use of the available resources. The energy needed to grow horticultural plants is a major production cost and we need to find ways to minimise them. Cost reduction can be achieved in different ways, for instance by making use of power plant by-products like CO₂ and the heat generated. This allows improving plant growth conditions at low cost. Renewable energies are explored to minimise the energetic footprint of greenhouses.

In Denmark where about 75% of the overall electricity production is provided by windmills the prices per kW are set according to weather forecasts and broadcasted 24 h in advance. Breeders can then decide to make the best use of this cheap energy to supplement their plants with more heat or light (Aaslyng et al. 2003). This has the effect of speeding up all plant metabolic reactions associated with biomass production and goes toward the ultimate goal of achieving a more sustainable production, faster while remaining cheap. This can mean for the plant an extra light phase in place of the putative night. Beyond the obvious effect on the internal rhythm of the plant we have to make sure that the health of the plant is overall maintained and also that the final horticultural product remains aesthetic and with a consistent and predictable flowering time. This also means that on the days where energy is costly they may have to reduce the use of it by reducing the temperature in their greenhouses.

The experiments performed in the course of this thesis (Kjaer et al. 2010) have helped to improve future horticultural management practices by exploring the connections between growth of a horticultural crop, temperature and light intensity.

LINKING LAB-BASED PHENOTYPING TO FIELD-BASED BREEDING

Phenomics approaches and the use of High Throughput (HT) screens are a novel way to study plant performance under diverse climate conditions (Furbank 2009). Those phenotyping techniques, essentially based on non-invasive tools are able to handle large population of plants and provide physiologically relevant parameters. Those non-invasive techniques can include high resolution imaging at various wavelengths but are not limited to it. The power of those tools is coming mainly from the large number of plants they can process in a reasonable time opening the way to new scientific approaches and selection screens. New HT screens need validation from higher resolution methods to assess for the physiological relevance of the parameters measured. We need to improve the characterisation and standardisation of climate parameters to compare and reproduce studies carried out in different laboratories (Massonnet et al. 2010). Lab-based phenotyping must be done carefully to insure that the growth conditions are not too biased compared to the field conditions (Passiourea 2006).

The recent advances in the fast determination of plant area as proxy for biomass allowing batch processing of a large amount of plants in a short time. This allows some new possibilities of HT screening of plants based on pictures taken from different angles in Red, Green and Blue (RGB) colour space (GROWSCREEN: Forschungszentrum Jülich ICG-3; Scanalyzer 3D: Lemnatec; PlantScan: High Resolution Plant Phenomics Centre). Those imaging techniques can then be extended to other wavelengths and thus providing insights not only on the
area but also on the physiological status of the plant. The UV spectrum is rich of information related to the photosynthesis state of a plant. (FLUORO GROW SCREEN: Forschungszentrum Jülich ICG-3; TrayScan: High Resolution Plant Phenomics Centre). Ultimately any physiological advantage will result into an increase in biomass and harvest index and this can also be assessed non-invasively using emerging HT methods like microwave resonators (Menzel et al. 2009). Plant 3D architecture is still a limitation for high throughput approaches. There is a need to improve real 3D acquisition platforms to account for the complex architecture of plants with the help of multiple views reconstruction, X-Ray Computed Tomography (XRCT) or Light Detection And Ranging (LIDAR). More phenomics platforms are becoming available and it is necessary to implement them in breeding program to improve future crops in term of PUE and WUE (Richards et al. 2010).

Canopy architecture can be complex to characterise when plants are growing at high density but attempts have been made to characterise it for modelling purposes. L-system is a “parallel rewriting system” suited to reproduce patterns found in nature from spiral, Fibonacci sequences to the golden ratio (Prusinkiewicz & Barbier de Reuille 2010). Joint efforts on both phenotyping and biophysical modelling (unlike statistical models) can account for non-linear interactions between plant and environment. Modelling approaches together with good parameterisation can reveal complex developmental strategies adapted to specific environment (Lecoeur et al. 2010). Modelling simulations have the potential to bridge the gap between lab based observations to the field (Ma et al. 2007, Ma et al. 2008).

There is a need to improve our understanding of plant physiology at high resolution to establish high throughput screens that will contribute solving the agricultural challenges mankind will be facing in the future.
Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in *Ricinus communis*

RICHARD POIRÉ, HEIKE SCHNEIDER, MICHAEL R. THORPE, ARND J. KUHN, ULRICH SCHURR & ACHIM WALTER

Institut Phytosphere (ICG-3), Forschungszentrum Jülich GmbH, Jülich, Germany

ABSTRACT

In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in *Ricinus communis* was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant – especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots.

Key-words: 13C; biomass; image analysis; root growth; starch; sucrose; transpiration.

INTRODUCTION

The immediate environment of growing roots and leaves differs strongly in temperature, light, humidity and other environmental factors to which the growing organs are exposed. For example, soil temperature, like air temperature, has sinusoidal oscillations on a diel (24 h) scale (Hillel 1998). However, depending on soil depth and moisture, changes in soil temperature are delayed and lower in amplitude than the atmospheric temperature variation. In a typical diel pattern (shown in Walter, Silk & Schurr 2009), atmospheric temperature varies by 16 K and reaches a maximum around 1400 h, whereas soil temperature at 10 cm depth varies by merely 3 K and reaches a maximum around 1600 h. Soil temperature variation is even more damped at greater depth and the diel average temperature to which shoot and root are exposed can differ strongly, depending on weather and season. The importance for the plant of different temperatures at root and shoot has been analysed in relatively few studies throughout the last decade. Yet, in studies that did expose root and shoot to different temperatures, a clear influence of root temperature on leaf growth and on partitioning of biomass between roots and leaves has been reported (Watts 1972; Davies & Van Volkenburgh 1983; DeLucia, Heckathorn & Day 1992; Engels 1994).

Most greenhouse and growth chamber experiments use plants cultivated in relatively small, black containers although a small rooting volume can strongly hamper shoot growth (Thomas & Strain 1991). Moreover, it has to be expected that roots experience uncommon temperature regimes there and that this may affect shoot growth. In a study with soybean it has been shown for example that watering the plants with cold water (15 °C instead of 25 °C for control plants) leads to a 10% growth decrease (Passioura 2006). Yet, more often, root temperature in pot experiments will be higher than in the field because of radiative heating of the black pots. Increased root temperature can also decelerate leaf growth because of strongly increased root respiration and other factors, which was demonstrated in a study on the C$_{4}$-grass *Andropogon gerardii* (DeLucia et al. 1992) that had optimal leaf growth at a root temperature of 25 °C. At low root temperature, it is well known that root water uptake is reduced because of decreased transmembrane transport (Markhart et al. 1979), which can lead to wilting (Bloom et al. 2004) or other symptoms resembling salt stress that are induced by the decreased shoot water availability (Davies & Van Volkenburgh 1983).

From experiments where the leaf growth zone temperature has been controlled along with root temperature, it seems that the close proximity of monocot leaf meristems to the soil leads to a strong influence of soil temperature on monocot leaf processes (DeLucia et al. 1992; Engels 1994). In fact, for maize (Watts 1972), leaf extension rate was proportional to the root temperature when the meristem temperature was not controlled, but when meristem
temperature was actively kept constant, leaf extension rate was constant too, regardless of the soil temperature. In dicot plants, it is much less clear, how root temperature affects the dynamics of leaf growth, which are governed to a much higher extent by intrinsic temporal patterns probably regulated by the circadian clock (Walter et al. 2009). Experiments exposing the root system of Phaseolus to a constantly low temperature throughout 24 h indicate that leaf growth is inhibited during the day but not at night (Davies & Van Volkenburgh 1983). Such a daytime leaf growth inhibition seemed to prevail even when root temperature was increased for 8 h within a 12 h day (Ainsworth, Walter & Schurr 2005).

As carbohydrates regulate leaf growth in a diel pattern (Smith & Stitt 2007; Wiese et al. 2007; Sulpice et al. 2009), it is important to learn how carbohydrate concentrations react to altered root temperature. Presumably, shoot photosynthesis will not be directly affected by cooling the root. Yet, shoot carbohydrate would be likely to increase if the root’s demand was reduced, leading to end-product inhibition. As the diel leaf growth cycle in dicot plants is strongly affected by the interaction of water relations and carbohydrate metabolism (Walter et al. 2009), it is important to perform physiological experiments taking all of these aspects into account.

Hence, it was the aim of this study to investigate how cooling the root system throughout the diel cycle affects leaf growth dynamics in the dicot plant Ricinus communis. Leaf growth analyses were complemented by investigations of water relations, carbon translocation and carbohydrate concentrations that are a vital part of the physiological framework facilitating the diel leaf growth cycle. Ricinus communis was selected as an experimental system as, in contrast to rosette plants, leaves and roots are separated widely enough to independently control their temperature, and as leaf growth dynamics, water relations and carbohydrate metabolism have been analysed intensively in this plant species.

MATERIALS AND METHODS

Plant material

Ricinus communis L. (ecotype Carmencita rot) plants were germinated and grown in a greenhouse for 10 d. The plants were then translocated to the growth chamber some days before the experiment started (usually 14 d after germination). Plants were grown in 40 pots (1 L) filled with a pre-fertilized soil (ED73, Balster Einheitserdewerk, Fröndenberg, Germany). During germination and for the duration of the experiment soil water content was kept at optimal level.

When these pots were exposed to a temperature change in a preliminary experiment, temperature inside the pot acclimated to a new steady-state value within 1 to 4 h, depending on the exact location within the pot (Fig. 1). In this experiment, a soil-filled pot was cooled down overnight to 5 °C and then placed in a climate chamber (air temperature = 20 °C, relative humidity = 60%, light intensity = 600 μmol m⁻² s⁻¹ photosynthetically active radiation). At each position within the pot, a temperature higher than air temperature was reached within 15 to 100 min. At the bottom of the pot, steady-state temperature was reached fastest, exceeding air temperature by 3 to 5 °C. At the top, temperature still increased markedly after 4 h of incubation in the new temperature regime and it exceed air temperature already by 10 K at that time.

Experimental schedule and environmental parameters

The entire study consists of a suite of four subsequent experiments with different root temperature treatments. In each of these experiments, different parameters were monitored. In each of these experiments, air temperature was kept at 22 °C in the growth chamber and the light intensity measured with a quantum light sensor (LI-190SB, LI-Cor, Lincoln, NE, USA) was 200 μmol m⁻² s⁻¹, 12 h a day. Photosynthetic active radiation, ultraviolet (UV)-A and UV-B were measured using an optometer (XI₂, Gigahertz-Optik GmbH, Puchheim, Germany). The light was provided by an array of fluorescent lamps. The root cooling system consisted of an insulated chassis containing a heat exchanger. Coolant was pumped through the heat exchanger and thus lowered temperature inside the box compared with the outside. Several apertures were made in the upper side of this box, allowing to place the pots inside. The cooling pump allowed controlling of coolant temperature and it took about 30 min to reach the desired temperature within the entire soil volume of the pot (Füllner 2007). Up to four cooling boxes (each containing maximally 10 plants) were used for these experiments.

In the first experiment, root temperature was kept constant for 19 d with three different treatments (10, 15 and
20 °C). Leaf growth and shoot biomass was monitored. In experiment two, root temperature was modified in each cooling box every 4 d. In box A, roots were first exposed to 20, then to 15, then to 10 °C for 4 d, respectively. In box B, roots were first exposed to 15, then to 10 and then to 20 °C. In box C, roots were first exposed to 10, then to 20 and then to 15 °C. In this experiment, leaf growth and diel leaf growth cycles were analysed. In experiment three and four, only the two extreme root temperature treatments were applied, as experiments one and two showed intermediate results for the intermediate temperature treatment. In experiment three, roots were exposed to 20 °C for 7 d, then to 10 °C from day 8 to day 12 and again to 20 °C thereafter. Here, leaf growth, root growth, carbohydrate concentrations, transpiration rate and xylem pressure were analysed. In experiment four, roots were exposed to 20 °C except for a 24 h period, during which they were exposed to 10 °C. Here, carbon partitioning was analysed.

Ten thermocouples (type T, cooper/constantan and 0.5 mm in diameter) were used (three on the meristems, six in the soil, and one measuring air temperature at canopy level) to record temperature. All temperature data were recorded using a laptop PC and signal interfaces (cFP-1804; cFP-T-C-120; cFP-CB-3, National Instrument, Austin, TX, USA). Data were pooled every second and an averaged value recorded every 10 s using a Labview-based (National Instrument) program. Air temperature and air relative humidity were also recorded every 10 min using an independent data logger (Testo 175-H2, Testo AG, Lenzkirch, Germany).

Leaf growth

The length and width of initiated leaves were manually measured every other day during experiment one. Rank specific leaf form factors (0.78 for cotyledon, 0.72 for primary leaves and 0.79 for the following leaves) were used to calculate leaf area from leaf dimensions (length × width × form factor = area). For diel leaf growth assessment, primary leaves were mechanically fixed in a stationary position (compare Walter, Feil & Schurr 2002a; Fig. 1 therein) to keep growing leaves in the focal plane of the camera. Each investigated leaf was fixed at the petiole using a stripe of Parafilm (Parafilm M®, Pechiney Plastic Packaging Company, Chicago, IL, USA) and kept flat with five nylon threads, clamped to the edge of the leaf using shortened hair clips and fabric tape to protect the leaf. Each of the threads was pulled with a weight of 12 g and spun over a metal ring surrounding the leaf, a procedure that does not affect temporal or spatial growth patterns (Walter et al. 2002a). Leaf images were acquired with high resolution, monochrome CCD cameras (Scorpion SCOR-2050, Point Grey Research, Vancouver, BC, Canada), positioned above the plants and equipped with a standard objective lens (25 mm; Cosmician/Pentax; The Imaging Source, Bremen, Germany) and an infrared interference filter (880 nm; Edmund Optics, Karlruhe, Germany). Constant illumination throughout day and night was provided by six infrared diode clusters (880 nm; Conrad Electronics, Hirschau, Germany). Grey value images were taken every 180 s and were saved in a multi-tiff format. Image sequences were evaluated with algorithms based on a structure-tensor approach (optical flow via the brightness constancy constraint equation (BCCE) (Bigün & Granlund 1987; Schmundt et al. 1998) that calculates velocities from all moving visible structures at the leaf surface within the image sequence of a growing leaf. Area relative growth rates (RGRs) were calculated as the divergence of the estimated velocity field by selecting an area of interest (AOI) within the image and tracking the structure within this AOI with time. For more details, see Schmundt et al. (1998), Walter et al. (2002a) and Matsubara et al. (2006).

Root growth and water losses

During experiment three, 10 plants were grown with the root system and the surrounding soil (1 L) in a transparent plastic bag sealed at the base of the stem. This allowed carefully taking the bag out of the pot every second day for direct access to the roots growing at the surface of the bag. The position of each root tip was marked every other day. From this data, the increase in root length and root number was calculated. Furthermore, the pots were weighed at the beginning and end of each day and the lost water was replaced to give a direct estimate of transpired water as the increase in plant biomass was negligible (less than 1% of the weight difference caused by water loss via transpiration).

Carbohydrates

In experiment three, tissue sections of roots and leaves were sampled for carbohydrate analysis in the afternoon. Two discs per leaf (diameter: 8 mm) were punched out of full-grown cotyledon and growing primary leaves, were weighed, pooled, frozen in liquid nitrogen and stored at −80 °C for further extraction. Two pieces of root tissue were sampled from the main root (length: 1 cm; diameter: 1–2 mm), were rinsed with water, gently dried with tissue, pooled, frozen and stored at −80 °C. Soluble carbohydrates were extracted from frozen leaf material and glucose, fructose, sucrose and starch concentrations were analysed in a coupled enzyme assay (Jones, Outlaw & Lowry 1977) using a multiplate spectrophotometer (ht II; Anthos Mikrosysteme GmbH, Krefeld, Germany) as described in Walter et al. (2002a) and Wiese et al. (2007).

Carbon partitioning

The short-lived carbon isotope 14C decays with a half-life of 20.4 min, resulting in the emission of photons that can be detected non-invasively, because of their high energy. For plants in experiment four, 14CO2 was applied to one cotyledon, and we monitored all of the radiolabelled photosynthesize exported from the leaf, using scintillation detectors to measure radiotracer in both shoot and root, with radiation shielding arranged to limit the regions of each plant ‘seen’
by the detectors. Pairs of plants were set up in standard conditions, and after 24 h of acclimation to the shielding and detection setup, with root and shoot at 20 °C, pulses of 11CO2 were applied three times on two sequential days at 0900, 1130 and 1400 h. Soil temperature of one plant of the pair remained at 20 °C, and in the other plant it was reduced to 10 °C at 1600 h on day 1, and returned to 20 °C at 1000 h on day 2. From the time-series of radiotracer in shoot and root we used transfer-function analysis with allowance for tracer decay (Minchin & Thorpe 2003), to calculate the fraction of exported tracer being transported to root and shoot, both before and after changing the soil temperature. To show the treatment effects relative to controls, the shoot/root partitioning ratio of the treated plant calculated for each tracer pulse was divided by the partitioning ratio for the control plant measured at the same time, to allow for strong developmental effects in the young plants. The shoot/root ratio for a cotyledon’s photoassimilate changes with plant development in favour of the roots because the true leaves become carbon sources for shoot growth.

Xylem pressure

The xylem pressure probe consisted of a water-wettable pressure transducer mounted in a 50 μL Plexiglas chamber and sealed to a glass microcapillary that was inserted into the xylem vessel as described in more detail in Zimmermann et al. (2004). The plant stem was attached to a fixed metal rod, with tape above and below the insertion zone, and the microcapillary was inserted slowly into the stem using a micromanipulator. When the tension dropped suddenly, indicating that the tip had reached a xylem vessel, the microcapillary was held at that position. Pressure equilibrium between the vessel and the probe was established within a few seconds, and was usually stable for several hours, allowing a minimally invasive direct reading of the pressure of the xylem sap.

Statistical analysis

Comparisons between treatments were performed using two-tailed Student’s *t*-tests (software: SPSS Sigmastat).

RESULTS

Shoot growth

In experiment one, low root temperatures strongly reduced leaf development (Fig. 2a). At day 34, plants with 20 °C root-zone temperature reached 881 cm2 of total leaf area, whereas plants with root temperatures of 15 and 10 °C gave leaf areas of only 471 and 288 cm2, respectively. Lower root-zone temperatures led to decreased leaf growth rates throughout the entire experiment and not only during an initial phase (Fig. 2b). As leaf area and biomass might differ in their response, we also monitored shoot biomass (Fig. 2c). The biomass difference between populations with a root-zone temperature of 10 and 20 °C is in the same range as the difference in leaf area: The final fresh weight of plant shoots grown at 10 °C root-zone temperature was a factor of three lower compared with the fresh weight of plants grown at 20 °C. Plants grown at a root-zone temperature of 15 °C showed intermediate fresh weights.

When plants were exposed to controlled root-zone temperatures in experiment two for 12 d and root-zone temperature was altered two times during this period, leaf growth acclimated reversibly within some days to altered temperature regimes (Fig. 3). In this experiment, the effect of root-zone temperature on leaf RGR is most clearly shown in the population exposed to 15 °C in the beginning of the experiment (Fig. 3b). Leaf RGR was initially low (7% d−1) but increased to values around 17% d−1, which were comparable with the values in experiment one at that developmental stage (Fig. 2b). Transfer to 10 °C root-zone temperature resulted in a rapid decrease of leaf RGR to

growth activity almost vanished, independent of the exact temperature setting (Fig. 4j,k). Secondly, average nocturnal growth intensity was correlated with the selected root-zone temperature (Fig. 4k). Nocturnal average RGR decreased in the first population shown in Fig. 4a–c from the first investigated stage shown in a (root-zone temperature at 20 °C) to b (15 °C) to c (10 °C). In the second population, it decreased from d (15 °C) to e (10 °C) and increased again at the latest investigated stage to f (20 °C). Finally, in the third population, average nocturnal RGR increased from g (10 °C) to h (20 °C) and decreased to i (15 °C). Also, when average nocturnal RGR was compared between populations with developmental stage fixed, growth rates correlated with root-zone temperature: a > d > g; h > b > e, f > i > c. These results correspond very well to the results for the growth of the total leaf canopy (Fig. 2b). Thirdly, timing, amplitude and shape of the nocturnal RGR peak were not strongly affected by root-zone temperature. A nocturnal maximum RGR of approximately 1.5% h\(^{-1}\) was reached a few hours before the onset of light, whether or not root temperatures were regulated.

Figure 3. Relative growth rate (RGR) of the total leaf area of three populations of *Ricinus communis* plants exposed to three root-zone temperature sequences: a = 20, 15 and 10 °C; b = 15, 10 and 20 °C; c = 10, 20 and 15 °C. n = 10, mean value and standard error.

values around 6% d\(^{-1}\), which were comparable with growth rates reached by the 10 °C population in experiment one. When root-zone temperature was finally set to 20 °C, leaf RGR increased again to a similar level as that of the respective population at this developmental stage in experiment one (around 11% d\(^{-1}\), Fig. 3b). Populations exposed to other permutations of root-zone temperature (Fig. 3a,c) showed similar effects, clearly demonstrating that the inhibition of leaf growth induced by lowered root-zone temperature is reversible and can be relieved within some days. The reversibility of this effect is demonstrated by the fact that the final area of the three populations shown in Fig. 3 were almost the same at the end of the experiment (a: 276 ± 31 cm\(^2\); b: 275 ± 37 cm\(^2\); c: 248 ± 26 cm\(^2\)), regardless of the root-zone temperature sequence they experienced.

Diel leaf growth variation

Because leaf growth varies strongly throughout the diel cycle, the growth of single leaves was investigated at higher temporal resolution. The general decrease of leaf growth with decreasing root-zone temperature was also obvious here (Fig. 4a–i). Compared with the diel leaf growth cycle without any control of root-zone temperature (Fig. 4k), three main effects of low root-zone temperature on diel leaf growth activity can be pointed out: firstly, diurnal (daytime)
Figure 4. (a–i) Average diel cycle of leaf relative growth rate (RGR) of three populations of *Ricinus communis* plants exposed to different sequences of root-zone temperatures. Population one (a–c) was exposed to 20 °C for 4 d, then to 15 °C for 4 d and then to 10 °C for another 4 d (populations two and three: root-zone temperatures as specified in panels d–i, respectively). (j) Average diel cycle of leaf RGR with unregulated root temperature ('control' plants of this experiment). (k) Normalized average diurnal and nocturnal leaf RGR from a–i. Average diurnal (or nocturnal) RGR was related to average diurnal (or nocturnal) RGR of control plants, respectively. \(n = 4–12 \), mean value and standard error.

Figure 5. Root growth of *Ricinus communis* plants exposed to different root-zone temperatures. (a) Number of root tips counted in control plants \((T = 20 \, ^\circ C)\) and cooled plants \((T = 10 \, ^\circ C)\) between day 18 and 23 and \(T = 20 \, ^\circ C \) else). (b) Length of the main root relative to initial value at day 17. (c) Increase in number of root tips per day. (d) Velocity of the tip of the main root. \(n = 3–7 \), mean value and standard error.
growing leaves. Sucrose and starch was significantly lower in recovered cooled leaves compared with control leaves \((P \leq 0.001\) and \(P = 0.002\)). During the cooled phase, leaf RGR of the sampled leaves was a factor of two lower compared with control leaves in the same developmental stage (inset of Fig. 6).

Transpiration rates of plants from cooled and control groups were comparable both during night and day, respectively (Fig. 7a), with even somewhat higher values in cooled plants compared with control plants. In contrast to this, xylem pressure of cooled plants was significantly lower \((P \leq 0.001)\) compared with control plants: In the late afternoon, control plants reached values around \(-2.6\) bar, whereas cooled plants had a xylem pressure of \(-3.8\) bar (Fig. 7b).

We used \(^{11}\text{C}\) tracer in experiment four to show the partitioning of carbohydrate between shoot and root, after export from a cotyledon. There was a dramatic increase in shoot/root partitioning, relative to controls, in plants with root-zones cooled from 20 to 10 °C (Fig. 8). Two cases are shown, and the shoot/root partitioning increased threefold in one case, and fivefold in the other. The effect of cooling was reversible – when roots were returned to the warmer control temperature, partitioning immediately decreased, the shoots then receiving a smaller fraction of the carbon exported from the labelled cotyledons.

DISCUSSION

Growth reaction from day to day

Cold root temperatures resulted in decreased leaf growth of *Ricinus communis* (Fig. 2). The decrease was reversible and the acclimation to an altered root temperature occurred within days (Fig. 3). These results correspond to findings from monocot plants (Watts 1972; DeLucia *et al.* 1992) and they are consistent with the view that dicot leaf growth responds linearly to a range of atmospheric temperatures when analysed from day to day and not at a higher temporal resolution (Granier & Tardieu 1998). For the root itself, a similarly rapid and very intense reaction was found that was also reversible (Fig. 5). This finding is a logical consequence of the fact that root growth follows alterations in temperature almost linearly and immediately as long as temperature is within a physiological range (Pahlavanian & Silk 1988; Walter *et al.* 2002b; Hummel *et al.* 2007). The severe decrease of root elongation and ramification when temperature was decreased from 20 to 10 °C indicates a strong loss of functionality that could then indirectly affect shoot growth, for example, via diminished transport of water or nutrients to the shoot, via diminished uptake of metabolites provided by the shoot or via altered exchange of signalling substances between shoot and root.

Leaf growth reaction during the diel cycle

In contrast to the almost linear response of day-to-day leaf growth and biomass accumulation to root-zone temperature (Fig. 2), diel leaf growth patterns show a highly nonlinear response (Fig. 4). Although nocturnal average growth rates scale well with the temperature, diurnal average growth rates are severely decreased to values close to zero and nocturnal maximal growth rates are more or less independent of root-zone temperature. This result is a cornerstone of our study. It demonstrates that leaf growth reaction to root-zone or root temperature alteration cannot simply be scaled between long-term and short-term responses, but that diel and probably circadian variations of regulating mechanisms have to be taken into account. As the molecular pathway, with which plants can perceive temperature, is just beginning to be unravelled, this is a valuable insight that can help to identify process regulation in the plant temperature signalling network. For example, low temperature has been shown to stall the rhythmic expression of LHY and TOC1, two central elements of the circadian clock (Ramos et al. 2005). Because the circadian clock plays a prominent role to evoke physiological responses to alterations of the temperature (Penfield 2008) and because growth processes are also controlled by the circadian clock (Nozue et al. 2007; Harmer 2009), it will be important to clarify to which extent growth responses to temperature are affected by the circadian clock. Whereas LHY is an active component of the circadian clock in shoot and root, TOC1 is only involved in the circadian clock of the shoot (James et al. 2008), showing that differential regulation of temperature-induced processes in shoots and roots are likely. If, for example, the shoot–root temperature difference at a decisive ‘Zeitgeber’ time point of the circadian cycle is completely unnatural, growth might be disturbed for quite some time until physiological processes get back to a normal level again. Because the onset of light is such a Zeitgeber in a lot of situations (Harmer 2009), prominent morning differences between treatments with controlled, lowered root-zone temperature and uncontrolled root-zone temperature might be evoked as an output of the circadian clock.

The possible role of water relations

The reduction of leaf growth at reduced root-zone temperatures may also be caused by a reduction of water availability. Because the resistance to water uptake into roots increases at low temperature because of altered membrane fluidity and xylem conductivities (Holbrook et al. 2002; van Ieperen 2007), leaves suffer from a restricted availability of water (Turner 1994). Nevertheless the same transpiration rate as in control plants was observed both night and day (Fig. 7). This means that water had to be withdrawn or

withheld from other process such as growth. Our observation of more negative xylem tension at lower root-zone temperature supports this suggestion, as it confirms that there was a high demand for water going into the transpiration stream in plants with cooled roots. Moreover, reduced xylem tension can correlate with reduced turgor, which decreases growth processes according to the Lockhart equation (Lockhart 1965). Because diurnal transpiration was much higher than nocturnal transpiration, root cooling would have caused a severe decline of the water available for growth processes by day and a less severe decline at night, which would fit with our observations.

The importance of the transpiration stream for coordinated dicot leaf growth was recently shown in a facultative crassulacean acid metabolism (CAM) plant Clusia minor (Walter et al. 2008): When Clusia is in the C₃ mode (stomata open at day), leaf growth increases during the night and is maximal at dawn. When the plant shifts to CAM (stomata open at night), nocturnal growth is strongly reduced and diurnal growth is enhanced. These effects might also be coupled to the altered carbohydrate metabolism when the plant shifts its mode of photosynthesis.

The possible role of carbohydrates

The significance of carbohydrate metabolism for the phasing of diel leaf growth cycles has recently been shown in a study on Arabidopsis thaliana (Wiese et al. 2007). There, starch-free mutants showed strongly reduced nocturnal but enhanced diurnal growth activity, demonstrating the importance of proper access to carbohydrate stores to facilitate nocturnal growth. Increased pools of carbohydrates, in turn, can support higher nocturnal leaf growth, which was shown in a study with tall fescue exposed to differing amounts of daily irradiance (Schnyder & Nelson 1988).

In our study, carbon accumulated during the day as transitory starch and plants with low root temperature even showed higher starch concentration than plants with high root temperature (Fig. 6). Hence, this transitory starch was used by the Ricinus communis plants of our study to utilize the full growth potential of the plants at night. The increased pools of carbohydrates stored in all investigated organs when roots were cooled may be mobilized rapidly when plants recovered from cold root-zone temperature and provided essential substrates for leaf growth to recover again.

Also, our ¹¹C analyses support the notion that root cooling increased carbohydrate supplies to the shoot, to the detriment of the root (Fig. 8). The reduction of carbon import after roots are cooled is likely caused by an increase in root carbohydrates after sink metabolism slows (Minchin, Farrar & Thorpe 1994). Cooling the roots also affects the phloem pathway itself, and so may have also caused an effect like that of cold girdling, reducing phloem solution flow into the roots, and thus increasing shoot carbohydrate concentrations (Peuke, Windt & Van As 2006).

Our results demonstrate that leaf and root carbohydrate content depends strongly on root temperature. Moreover, root temperature will not be uniform within a pot (Fig. 1) and will adjust to a steady-state temperature faster or slower, depending on the exact distribution of the root system within the soil of a pot and depending on the exposure of the pot to the irradiation within the growth chamber. Hence, root system architecture, exact location of the pot in an experimental setup, or simply the extent of the root system, can have a considerable effect not only on leaf growth but also on carbohydrate content of leaves.

CONCLUSION

In conclusion, this study of a dicot shows that leaf growth, plant water relations and carbohydrate transport and concentration depend strongly on root-zone temperature. Growing cells of the leaf have restricted access to water, especially during the day, when the transpiration is high, but the consequent growth decrease can be alleviated at night when water availability is improved and stored carbohydrate can be provided. Moreover, the distribution of the root system within pots is usually inhomogeneous and rarely known, and yet soil temperature can show strong gradients within a pot, and change dramatically in time. Therefore, the strong influence of root temperature on shoot physiology is likely to be the source of considerable variability in many laboratory and greenhouse experiments, and should be considered seriously as the variation will not be random.

ACKNOWLEDGMENTS

We thank Beate Uhlig for her support during the breeding of the plants.

Richard Poiré thanks the International Helmholtz Research School of Biophysics and Soft Matter for the stimulating discussions emerging from this interdisciplinary study, and acknowledges the support of his PhD thesis at the Heinrich-Heine-Universität Düsseldorf.

REFERENCES

© 2009 Blackwell Publishing Ltd, Plant, Cell and Environment, 33, 408–417

RESEARCH PAPER

Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects

Richard Poiré, Anika Wiese-Klinkenberg, Boris Parent, Michael Mielewczik, Ulrich Schurr, François Tardieu and Achim Walter

1 ICG-3 (Phytosphere), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
2 INRA, UMR759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala, F-34060 Montpellier, France
* To whom correspondence should be addressed: E-mail: a.walter@fz-juelich.de

Received 1 October 2009; Revised 7 February 2010; Accepted 8 February 2010

Abstract

Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation. These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rhythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks.

Key words: Circadian clock, elongation, expansion, image analysis, photosynthesis, starch, sucrose.

Introduction

Leaf growth is controlled by a complex network of factors. Some of these factors are endogenous regulatory mechanisms that determine leaf shape (Wyrzykowska et al., 2002; Rolland-Lagan et al., 2003), the progression of the cell cycle (Tsukaya and Beemster, 2006), and the relationship of leaf growth to the circadian clock (Nozue and Maloof, 2006). Other factors can be regarded as external, such as the recurring changes of day and night, alterations in temperature, or further physical, chemical, or biotic parameters, which can increase or decrease growth at various time-scales (Granier and Tardieu, 2009; Walter et al., 2009). All growth-controlling environmental effects regulate endogenous mechanisms, but to a different extent. Light quality and quantity are sensed by the phytochrome and cryptochrome photoreceptors (Somers et al., 1998; Devlin and Kay, 2000, 2001) and affect photosynthesis and plant primary metabolism, which is partly controlled by the circadian clock (Harmer et al., 2000). Altered carbohydrate metabolism, in turn, leads to instantaneous and often very specific growth reactions in leaves (Wiese et al., 2007; Sulpice et al., 2009). Temperature changes also induce immediate and clear responses of growth, but it is still uncertain to what extent this is mediated via signalling cascades (Penfield, 2008; Franklin, 2009) or mere thermodynamic laws which affect the rate of all biochemical reactions (Parent et al., 2010). It is well known that the duration of each phase in the plant life cycle is inversely related to temperature (Amir and Sinclair, 1991). This knowledge is at the base of a number of models predicting the progression of the plant life cycle in any climatic conditions.
scenario (Keating et al., 2003; Yan et al., 2004). It also led to the definition of thermal time: a concept that can be used for the quantitative description of plant or even single leaf development (Granier and Tardieu, 1998; Granier et al., 2002). It has been proposed recently that the rates of most developmental processes are co-ordinated in such a way that temperature-compensated rates and durations can be calculated (Parent et al., 2010).

While, on a long time-scale, leaf growth of different species is tightly correlated to temperature, the response to short-term temperature alterations seems to vary strongly when growth reactions are investigated during a 24 h day (the diel cycle) as indicated by Walter et al. (2009). In monocotyledonous species, leaf elongation rate largely follows temperature alterations (Ben-Haj-Salah and Tardieu, 1995; Pietruszka et al., 2007), whereas in dicotyledonous species, growth patterns do not seem to be related to the daily pattern of temperature variations. In the dicot model species Arabidopsis thaliana, leaf growth, as well as hypocotyl growth, seems to be controlled by the circadian clock (Dodd et al., 2005; Nozue et al., 2007).

The aim of this study was to investigate to what extent the 24 h pattern of leaf growth rate is linked to changes in temperature and/or to endogenous rhythms. Hence, leaf growth variations of several species in fluctuating temperature regimes were compared to (i) leaf growth patterns in a stable temperature and (ii) to the pattern which would be expected if short-term variations in leaf expansion rate followed the response curve to temperature established over longer periods. The involvement of the circadian clock in these patterns was investigated by analysing leaf growth in plants transferred from regular day–night regimes to continuous light. Investigations were done in two monocotyledons, Zea mays and Oryza sativa, and four dicotyledons, Ricinus communis, Nicotiana tabacum, Arabidopsis thaliana, and Flaveria bidentis. Two of these species are C₄ (Z. mays and F. bidentis); the others are C₃.

Materials and methods
Plant material, climate conditions, and experimental outline
Maize (Zea mays, hybrid Helix), flaveria (Flaveria bidentis), tobacco (Nicotiana tabacum, ecotype Samsun), and castor bean (Ricinus communis, ecotype Carmencita) plants were germinated and grown in the greenhouse for 3 weeks and were then moved to the growth chamber 1 week before experiments started. Plants were grown in pots (0.1 l) filled with a pre-fertilized soil (ED73, Balster Einheitserdewerk, Fröndenberg, Germany). Thale cress (Arabidopsis thaliana, ecotype Ler), rice (Oryza sativa cv. Azucena) and tobacco (Nicotiana tabacum, ecotype Samsun) plants were grown for specific experiments. During all experiments, soil water content was kept at retention capacity.

A growth chamber was set to 22 °C air temperature, 12/12 h day/night and 60% relative humidity. Plants were given 1 week to acclimate to those conditions before the experiments started. Unless specified otherwise, day 1 was the last day with constant air temperature. Between days 2 and 4, air temperature was switched to follow an approximately sine-shaped function centred on 22 °C with a minimum at 17 °C and a maximum at 27 °C. Minimum temperature was reached at the end of the night and maximum temperature at the end of the day. In experiments with A. thaliana and O. sativa, only daylength was varied.

Light intensity measured with a quantum light sensor (LI-190SB; Li-Cor Biosciences GmbH, Bad Homburg Germany) was 600 μmol m⁻² s⁻¹ photosynthetically active radiation (PAR). The light was provided by an array of high pressure sodium lamps (MASTER SON-T PIA Agro 400W; Philips Deutschland GmbH, Hamburg, Germany). In experiments with A. thaliana, light intensity was 120 μmol m⁻² s⁻¹ and light was provided by fluorescent lamps (Osram; Fluora, Munich, Germany). Air temperature and relative humidity settings of the climate chamber were measured with a portable data logger placed at canopy level (Testo 175-H1; Testo AG, Lenzkirch, Germany). The experiment with rice was carried out in the Phenodyn phenotyping platform (Sadok et al., 2007). Plants were first grown in the greenhouse under naturally fluctuating light. They were then transferred in a growth chamber under a continuous light intensity of 500 μmol m⁻² s⁻¹ at leaf level, measured with a light sensor (LI-190SB, Li-Cor Quantum PAR, Lincoln, NE USA). The meristem temperature, measured with fine copper-constantan thermocouples inserted in the meristematic zones of four non-measured plants per treatment, was kept constant at 26 ± 2 °C.

Growth analysis
R. communis, N. tabacum, and F. bidentis: Investigated leaves were fixed in a stationary position (Walter et al., 2002) by using a strip of Parafilm (Parafilm M, Pechiney Plastic Packaging Company) and kept flat with five nylon threads, clamped to the edge of the leaf using shortened hair clips and fabric tape to protect the leaf. Each of the threads was pulled with a weight (R. communis: 12 g; N. tabacum: 1.5 g; F. bidentis: 5 g) and spun over a metal ring surrounding the leaf (Fig. 1F), a procedure which does not affect temporal or spatial growth patterns (Walter et al., 2002). Leaf images were acquired with high resolution, monochrome CCD cameras (Scorpion SCOR-2080; Point Grey Research, Vancouver, BC, Canada), positioned above the plants and equipped with a standard objective lens (25 mm; Cosmicar/Pentax, The Imaging Source, Bremen, Germany) and an infrared interference filter (880 nm; Edmund Optics, Karlsruhe, Germany). Constant illumination throughout day and night was provided by six infrared diode clusters (880 nm; Conrad Electronics, Hirschau, Germany). Grey value images were taken every 180 s and saved in a multi-tiff
format. Image sequences were evaluated with algorithms based on a structure tensor approach that calculates optical flow via the brightness constancy constraint equation \(\text{BCCE} \) (Bigun and Granlund, 1987; Schmoldt et al., 1998). Using the structure tensor approach, velocities of all visible and moving structures at the leaf surface within the image sequence of a growing leaf were calculated. Area relative growth rates \(\text{RGR} \) were calculated as the divergence of the estimated velocity field by selecting an area of interest \(\text{AOI} \) within the image and tracking the structure within this \(\text{AOI} \) with time. (For more details, see Walter et al., 2002; Schmoldt et al., 1998; and Matsubara et al., 2006.)

\[LER(T) = \frac{A(T)e^{\left(\frac{\Delta H}{RT}\right)}}{1 + e^{\left(\frac{\Delta S -\Delta H}{RT}\right)}} \]

where \(LER \) is leaf expansion rate, \(T \) is temperature, \(A \) is a proportionality constant, \(\Delta H \) \((\text{kJ mol}^{-1})\) is a fitted parameter representing the enthalpy of activation of the equivalent reaction. \(\Delta H \) and \(\Delta S \) are fitted parameters representing the enthalpy and entropy between the catalytically active and inactive states of the enzyme or enzymatic system. Parameters of response curves were calculated in three steps using the R language \((\text{R}_\text{Development Core Team}, 2005)\). Data were first smoothed by a second order polynomial equation in a range of 5 \(^\circ\text{C}\) at steps of 1 \(^\circ\text{C}\) each. The inflexion point was determined where the slope of the linear regression on three consecutive points was maximum. This step was omitted for the tobacco data which lacked datapoints at low temperatures. The parameters of the numerator were determined by linear regression on transformed variables \((\ln(I/T), 1/T)\) in the range of temperatures lower than the inflexion point. The parameters of the denominator of equation 1 were determined by linearization in the range of temperatures above the inflexion point following the method presented in Parent et al. (2010). The resulting parameters were \(\Delta H = 3.71 \) and 1.5, \(\Delta S = 285 \) and 135, and \(\Delta S = 0.93 \) and 0.46, for \(Z. \text{mays} \) and \(N. \text{tabacum} \), respectively.

Carbohydrates

In the main experiment, leaves were harvested for carbohydrate analysis when the lamps were switched on and off (every 12 h), respectively. For each species, two plants were sampled and from each plant, two leaf discs (diameter 8 mm) were punched out of growing leaves (the same position as the leaves taken for growth analyses). Leaf discs were weighed, pooled, frozen in liquid nitrogen, and stored at \(-80 \, ^\circ\text{C}\) for further extraction. Soluble carbohydrates were extracted from frozen leaf material and glucose, fructose, sucrose, and starch concentrations were analysed in a coupled enzyme assay (Jones et al., 1977) using a multiplate spectrophotometer-Hit II (Hitachi Mikrosysteme GmbH, Krefeld, Germany) as described by Walter et al. (2002) and Wiese et al. (2007).

Gas exchange

Gas exchange of growing leaves of each investigated species was measured using a portable, open path design, infrared gas-exchange system \((\text{Li-6400}; \text{Li-Cor Biosciences GmbH, Bad Homburg, Germany})\). The area of the leaf chamber was 6 cm\(^2\). Light intensity and temperature inside the leaf chamber were allowed to follow the ambient conditions of the growth chamber. To avoid large fluctuations of the reference \(\text{CO}_2 \), the air that went to the analyser inside the growth chamber was buffered using a 50 l plastic tank linked to the greenhouse with a nozzle.

Results

Leaf expansion of dicotyledonous species did not follow temperature variations while leaf elongation of maize did.

Similar diel leaf growth patterns occurred in tobacco plants regardless of the temperature regime (Fig. 2A–D). After having been grown at a constant temperature of 22 \(^\circ\text{C}\) until the start of the experiment, plants were exposed on day 1 to a constant daytime temperature of 27 \(^\circ\text{C}\), followed by a night temperature of 17 \(^\circ\text{C}\). On day 2, temperature was set to a constant value of 22 \(^\circ\text{C}\) again and on day 3, temperature was modulated between an afternoon peak temperature of 27 \(^\circ\text{C}\) and a minimum of 17 \(^\circ\text{C}\) at the end of the night. The average diel leaf growth pattern was almost identical during all three days (Fig. 2E).

In a second experiment; daily leaf growth cycles of four species were investigated with plants being exposed either to a constant temperature of 22 \(^\circ\text{C}\) or to a fluctuating temperature regime with an afternoon maximum of 27 \(^\circ\text{C}\) and a night minimum of 17 \(^\circ\text{C}\) (Fig. 3). On day 1, with constant temperature, pronounced diel leaf growth variations were observed with maxima in the early morning or late at night for \(N. \text{tabacum} \), \(R. \text{communis} \), and \(F. \text{bidentis} \). Despite variations between individuals, \(\text{RGR} \) varied significantly between the times of maximal and minimal growth activity during the diel cycle. Between days 2 and 4, plants were exposed to the fluctuating temperature regime. Diel growth cycles of the dicot species still reached maximal growth at the same time of the day, but the amplitude was damped and differences between maxima and minima were not significant any longer. By contrast, \(Z. \text{mays} \) leaves grew with a constant rate throughout the day and night when temperature was constant and developed a pronounced...
variation in the fluctuating temperature regime. On day 1, leaf elongation rate only changed transiently when the light was switched on or off. On day 2, leaf elongation rate decreased sharply in the morning and increased throughout the day, reaching a maximum value in the early hours of the night, when temperature was still high. During the night, leaf elongation rate declined, reaching a plateau value at the end of the night, when temperature also reached a low plateau value. On day 3 and day 4, these patterns were repeated and the correlation between leaf elongation rate and temperature became even more prominent. Maximal leaf elongation occurred as soon as temperature reached its maximum value, without any appreciable delay, taking into account the temporal definition used in this experiment (10 s). When data from the two different temperature treatments was averaged (Fig. 3, right panels), it became obvious that growth patterns in the two dicot species were far less related to temperature than in *Z. mays*.

Fluctuations in carbohydrate availability and gas exchange did not account for differences in diel leaf expansion patterns between species

Gas exchange and carbohydrate analyses were performed in *Z. mays*, *F. bidentis*, *N. tabacum*, and *R. communis*. Assimilation rates of all the species studied were high (20 μmol m⁻² s⁻¹ CO₂ and more; Fig. 4) reflecting near optimal growth conditions and thus a good vegetative status. Carbohydrate analyses showed increasing contents of starch and sucrose in all species during the day and a decrease at night (Fig. 5). On day 1 (constant temperature) the nocturnal decrease in starch was similar in all species. On days 2, 3, and 4 (fluctuating temperature regime) starch fluctuations in *N. tabacum* and *F. bidentis* decreased. *Flaveria bidentis* has a very low overall soluble sugar concentration with values ranging between 0 and 1 μmol g⁻¹ FW, which do not fluctuate strongly throughout the day. For sucrose, the strongest fluctuations were seen in *Z. mays* and *R. communis*. Overall, no pronounced differences in carbohydrate fluctuations between the two different temperature regimes were observed for any of the species studied.

In continuous light, dicotyledonous species revealed diel oscillations of leaf expansion that were not observed in monocotyledonous species

To investigate the effect of the circadian clock on the rhythmicity of leaf growth patterns, the leaf elongation rates of the monocotyledonous species *Z. mays* and *O. sativa* and of the dicotyledonous species *R. communis* and *A. thaliana* were investigated in continuous light (Fig. 6). Plants that had been exposed to fluctuating light until the first day of analysis were transferred to constant light (LL) for at least 3 d. In *A. thaliana* and *R. communis*, the diel leaf growth cycle clearly continued. In *R. communis*, leaves from different plants were followed over a long time period (18 d) after transition. In *A. thaliana*, leaf growth was followed in the same leaves from the day before light transition throughout some days of LL, demonstrating a higher period length than 24 h. By contrast, leaf growth of *Z. mays* and of *O. sativa* did not oscillate markedly in a diel manner until the end of the experiment.
An addition of the effects of endogenous rhythms and temperature accounted for experimentally observed patterns in all studied species

Maize and *Nicotiana tabacum* were tested to find out to what extent the experimental patterns observed under fluctuating temperature (days 2-4; Fig. 3) could be accounted for by the additive effects of endogenous rhythms (day 1; Fig. 3) and temperature dependency of leaf growth (presented in Fig. 1). The endogenous rhythm was considered as flat in maize, consistent with Fig. 3 (day 1). The endogenous rhythm of *N. tabacum* was inferred from the mean pattern on day 1 (Fig. 3), with a minimum expansion rate at 12.00 h. Although maize and tobacco were subjected to the same temperature scenarios, simulated temporal patterns of leaf expansion rate deduced from the response curves presented in Fig. 1 differed markedly (Fig. 7). Because the response curve reached a plateau in tobacco at temperatures which still caused an increase in elongation rate of maize, the simulated pattern of temperature effect was much more pronounced in maize than in tobacco (Fig. 7B, D).

In maize, the addition of the two effects correctly simulated the experimental pattern, with two exceptions: (i)

Fig. 3. Leaf growth of various plants from different species in different temperature regimes. Temperature regime was switched from constant to fluctuating at the beginning of day 2 (lower panels). For *N. tabacum*, *R. communis*, and *F. bidentis*, relative growth rates (RGR) were measured, while for *Z. mays*, leaf elongation rate (LER) was analysed. Right panels show average values; different line colours show different replicate plants. Asterisks indicate the significance level of growth differences in consecutive time intervals (framed in boxes; T-test): **P < 0.01, *P > 0.05; n.s. not significant.

Fig. 4. Assimilation rate of growing leaves. Mean value and SD (n=4).
a marked peak of leaf elongation rate followed light extinction, (ii) observed elongation rates were lower than the simulated ones during the day, and higher during the night. These two exceptions are probably linked to the effect of evaporative demand which lowers maize leaf expansion rate during the day (Sadok et al., 2007). In tobacco, the additive effects of endogenous rhythms and temperature also simulated the observed leaf growth pattern correctly. Observed and simulated patterns were consistent throughout the day, except for (i) a marked oscillation of RGR at 12 h, as in the case of maize, when the lights were turned off and (ii) an unexplained discrepancy 4 h after the lights were turned on. Overall, the additive effects of endogenous rhythms and temperature account for the observed leaf growth patterns, but a supplementary effect of evaporative demand was noted.

Discussion

The rhythmic variation of leaf growth in A. thaliana and N. tabacum with a slightly extending periodicity under continuous light (Fig. 3B) shows that this diel pattern is controlled by the circadian clock. This confirms findings on the overall growth performance of Arabidopsis plants (Dodd et al., 2005) and on the circadian control of hypocotyl elongation (Dowson-Day and Millar, 1999; Nozue et al., 2007). From an evolutionary point of view, a correct phasing between plant metabolism and forthcoming environmental conditions represents a crucial advantage compared with organisms with a coarser regulation (Dodd et al., 2005; Kobayashi and Weigel, 2007; Resco et al., 2009). Because temperature compensation is an essential feature of the circadian clock (Harmer, 2009), the periodicity and amplitude of rhythmic processes that are controlled by the circadian clock are affected only to a minor extent by temperature variations (Nakajima et al., 2005). When measured leaf growth patterns are compared with patterns calculated from the effects of temperature on leaf growth at the longer time-scale (Fig. 4), it becomes clear that diel leaf growth variations in all species can be considered as the added effects of circadian-clock-controlled processes and temperature-related processes, with an additional effect of evaporative demand consistent with Sadok et al. (2007). The main difference between leaf growth in monocotyledonous and dicotyledonous species is that, in dicotyledons, circadian effects are much more pronounced than in monocotyledons, where they can be neglected. In addition, the temperature effect was lower in N. tabacum than in maize because of its lower sensitivity to temperature in the range considered. Although many processes throughout the plant kingdom are controlled by the circadian clock, the degree to which the circadian clock affects other processes differs between tissues, organs, and species (McClung, 2006; Hotta et al., 2007; James et al., 2008; Jones, 2009). More precisely, the circadian system is a network of more than one single clock inside the plant with independent oscillators in each cell (Jones, 2009) that can elucidate a multitude of output responses in a multicellular organism. Hence, it comes as no surprise that in a recent DNA-microarray study, roots were found to be much less affected by the circadian clock than shoots (James et al., 2008).

A reason for the observed difference in the significance of the circadian clock for leaf growth processes in monocot
Dicot species might be found in the different organization and architectural location of their growth zones. The cellular organization of monocot leaf growth zones is very similar to that of roots, which is probably related to the similar constraints to which these tissues have been exposed in an evolutionary context (Walter et al., 2009). In contrast to dicotyledonous leaf growth zones, root apices and growth zones of monocotyledonous leaves are protected from atmospheric temperature variations by being embedded in the soil or within the sheaths of older leaves, respectively. Moreover, the growth zones of roots and monocotyledonous leaves are not involved in photosynthesis, which is itself a process strongly controlled by the circadian clock (Harmer et al., 2000).

Primary metabolism does not differ strongly between monocot and dicot species, which is reflected in prominent differences between starch and sucrose concentrations in the morning and evening in young leaves of both plant types under both temperature regimes. The periodic fluctuations of starch and sucrose in Z. mays in constant temperature suggest that light–dark cycles exert a stronger effect than available carbohydrates on growth patterns in monocotyledonous leaves.

The homologues of genes of the central oscillator of the plant circadian clock are conserved in monocots (Miwa et al., 2006). Nevertheless, our data shows that maize and rice leaf growth proceeds constantly throughout the diel cycle when plants are transferred from a day–night growth regime into continuous light (Fig. 5A). The fact that leaf growth of the C4 dicot species F. bidentis responds similarly to temperature alterations as the investigated C3 dicot species indicates that differences between maize and the investigated dicot species are related to differences in the two families (possibly their growth zone organization) rather than to differences in photosynthetic metabolism. This is confirmed by the growth pattern of O. sativa, which as a C3 monocot species does not show internal growth rhythms.

Acknowledgements

We thank Beate Uhlig and B Suard for their support during the growth of the plants. We acknowledge receipt of Flaveria bidentis seeds from Robert Furberk. RP thanks the International Helmholtz Research School of Biophysics and Soft Matter for stimulating discussions, and RP and MM acknowledge the support of their PhD theses at the Heinrich-Heine-Universität Düsseldorf.
References

Changes in time-of-day application of light, day length and night temperature lead to a rapid adjustment in chrysanthemum leaf growth pattern and carbohydrate turnover.

KATRINE KJAER¹, RICHARD POIRÉ²,³, CARL-OTTO OTTOSEN¹ & ACHIM WALTER²,⁴

¹Department of Horticulture, Aarhus University, Kirstinebjergvej 10, 5792 Aarslev, Denmark
²ICG-3 (Phytosphere), Forschungszentrum Jülich, 52425 Jülich, Germany
³Current address: CSIRO Plant Industry, High Resolution Plant Phenomics Centre, Clunies Ross St, Black Mountain, 2601 ACT, Australia
⁴Current address: Institute of Plant Science, ETH Zürich, 8092 Zürich, Switzerland

Correspondence: K. Kjaer; email: Katrine.kjaer@agrsci.dk

Keywords: image processing, starch, relative growth rate, circadian rhythm,

ABSTRACT

Leaf growth occurs in an ever-changing environment. It is unclear, how rapid alterations of light and temperature, usually interconnected in the field, lead to alterations of leaf growth patterns due to physiological parameters restricting leaf growth. In this study, chrysanthemum plants were exposed to a change in the time-of-day application of light, to shorter day length and to lower night temperature (LNT). We observed a clear shift in the diel (24 h) cycle of leaf relative growth rate (RGR) indicating a resetting of the circadian clock with a zeitgeber in
the early morning. In the treatment with LNT we observed a decrease in overall leaf growth
during the acclimation phase. Furthermore, overall leaf starch and diurnal sucrose contents
were affected by the light and temperature treatment, indicating that dynamic alterations of
light and temperature can lead to a non-linear alteration of leaf carbohydrate contents. This in
turn affects leaf growth dynamics in a characteristic manner. These results shed new light on
the dynamic processes during acclimation towards altered environmental responses of plants
in fluctuating climates.

INTRODUCTION

Plants are adapted to sense day length in order to schedule developmental events, such as
flowering, to coincide with particular environmental conditions (Jackson, 2009). In dicot
species this accurate sensing is based on the circadian clock, which has evolved as an
endogenous 24-hour oscillator present for most biochemical and physiological processes such
as CO₂ assimilation, carbohydrate availability and plant growth (Kreps & Kay 1997; Harmer
et al. 2000; Nozue & Maloof 2006; Poiré et al. 2010). Plants of the dicot model species
Arabidopsis thaliana sense day length and shift their pattern in starch accumulation during the
day and starch degradation during the night within the first 24 h after transferring the plants
from one day length to another (Gibon et al. 2004; Lu, Gehan & Sharkey 2005; Smith & Stitt
2007). Leaf and hypocotyl growth seem to be controlled by the circadian clock indicating that
plants with a clock period corresponding to the environment perform better than plants with
circadian clocks differing from the environment (Dodd et al. 2005; Nozue et al. 2007).
Furthermore, it was recently evidenced that this reduction in growth was caused by reduced
carbohydrate utilisation at night (Graf et al. 2010).
Short days (SD) promote a decrease in dry weight of plants that are otherwise grown in long
days (LD), even when the daily light integral (DLI) is the same (Adams & Langton 2005).
This phenomenon is partly explained by a decreased light use efficiency under high light intensities in SD conditions. Furthermore, SD conditions with higher light intensities are often accompanied by a decrease in individual leaf size, possibly due to formation of leaves with a thicker palisade tissue and a larger mesophyll surface area, similar to sun leaves (Björkman 1981; Adams & Langton 2005). Even though leaf areas are smaller when compared to plants grown in low light intensities and LD, the short-term acclimation patterns in leaf expansion to a change in light intensity or day length have to our knowledge not been studied. However, it has been suggested that the absolute leaf size is determined shortly after bud break, when growth is maximum (Granier & Tardieu 1999; Cookson, Van Lijsebettens & Granier 2005). This suggests that the light signal sensed by mature leaves for changes in the anatomical differentiation of growing leaves must be perceived at a specific stage and very early in leaf development (Yano & Terashima 2001; Kim et al. 2005).

A link between leaf expansion rate and carbohydrate metabolism has been suggested, but only during early development stages (Granier & Tardieu 1999). This was confirmed by Nagel, Schurr & Walter (2006), showing that a change in light intensity, and thereby a change in carbohydrate availability had a minor effect on leaf growth. In contrast, Wiese et al. (2007) showed that the starch-free mutant of *Arabidopsis thaliana* changed temporal growth activity strongly in relation to altered carbohydrate availability. Thus, alterations in carbohydrate availability impose significant effects on the circadian regulated activities of growth, even though this may not influence final leaf area.

In the field, alterations in day length or light intensity are linked to alterations in temperature, which, in turn, also exert characteristic effects on the circadian clock (Harmer 2009) which can induce non-linear alterations of leaf growth (Walter, Silk & Schurr 2009; Poiré et al. 2010). As plants are adapted to adjust growth and metabolism to combined alterations of temperature and light, it is important to adjust experimental protocols for this fact. The
manipulation of climatic parameters allows studies of the relation between carbohydrate metabolism and growth activity in plants with a normally functioning circadian clock.

Nowadays, several methods of high-resolution growth analysis (for a review see Walter et al. 2009) allow us to measure the tiniest changes in the growth patterns of single leaves and roots non-invasively.

The aim of this study was to monitor diel patterns of leaf growth and carbohydrate content in response to combinations of altered light and temperature using, *Chrysanthemum x morifolium* an appropriate dicotyledonous species since it retains vegetative growth as long as day length is above 12 h. Moreover, it is an important horticultural plant for which it is of interest to realize a most efficient use of light and energy.

MATERIALS AND METHODS

Plant material, climatic conditions and experimental set up

Cuttings of *Chrysanthemum x morifolium* cultivar ‘Coral Charm’ were propagated in soil under long day conditions in a greenhouse with 18/6 h day/night. After two weeks, plants were pinched back to three leaves, and after a total of five weeks, 50 plants were moved to a climate chamber with 18/6 h day/night regime and day/night temperature of 20/18°C.

After four days of acclimation to climate chamber conditions the plants were exposed to one of three different treatments for four days; LD: LD conditions of 18/6 h day/night, SD: a shift to SD conditions after day one by an extended night of 6 h followed by 12/12 h day/night or SDLNT: a shift to SD conditions and low night temperature (LNT) by extended night of 6 h followed by 12/12 h day/night with 20/12°C day/night temperature. For each treatment, different plants at the same developmental stage were used. Each treatment was repeated three times with several replicate plants analysed per population.
Illumination within the chamber was provided by two sets of lamps to allow for comparable light integrals in LD and SD. In LD, the light source was changed every other hour throughout the 18 h photoperiod. During the first hour of each day, the light source was metal halide lamps (Master HPI-T Plus; Phillips, Eindhoven, The Netherlands) and during the second hour the light source were high pressure sodium lamps (Master SON-T PIA Agro; Phillips, Eindhoven, The Netherlands).

The shift to SD conditions was accompanied by a shift to higher light intensity by jointly using both sets of lamps to maintain the DLI during the 12 h day (SD) in relation to the 18 h day (LD). The photosynthetic photon flux density (PPFD) was measured continuously throughout the experiment in combination with measurements of leaf photosynthesis using the external light sensor of an infrared gas-exchange system (LI-6400; LI-COR Lincoln, Nebraska, USA). Temperature and humidity were logged every minute throughout the experiments by a data logger placed at canopy level (Testo 175-H2, Testo AG, Lenzkirch, Germany). Figure 1 illustrates the climatic conditions during the first three days.

Growth analysis

Young leaves of four plants were selected for growth analysis. The 3rd or 4th youngest leaf was used being less than 50\% of the size of a fully grown leaf. The leaves were mechanically fixed (Walter, Feil & Schurr 2002) by using a strip of parafilm (Parafilm M, Pechiney Plastic Packaging Company), and kept flat with five nylon threads clamped to the edge of the leaf, using shortened hair clips and fabric tape to protect the leaf. Each of the threads was pulled with a weight of 5 g and spun over a metal ring surrounding the whole leaf. Leaf fixation with appropriate weights does not affect temporal and spatial growth patterns, as shown previously in *Ricinus communis* (Walter et al. 2002) and in *Arabidopsis thaliana* (Wiese et al. 2007). To establish the leaf expansion analysis procedure for *Chrysanthemum x morifolium*, the
influence of different weights (ranged from 0.5 g to 10 g) had been analysed showing that
fixation with five weights of 5 g each per leaf was sufficient to keep the leaf in an optical
plane of the camera and did not affect leaf expansion.
Images of fixed leaves were acquired with CCD cameras (Sony XC55 or XC75; Sony, Köln,
Germany and Scorpion SCOR-20SO, Point Grey Research, Vancouver BC, Canada)
positioned above the plants and equipped with a standard objective lens (25 mm;
Cosmiar/Pentax; The Imaging Source, Bremen, Germany) and an infrared interference filter
(880 nm; Edmund Optics, Karlsruhe, Germany). Constant illumination throughout the day and
night without affecting plant growth and photosynthesis was provided by infrared diodes (880
nm; Conrad Electronics, Hirschau, Germany). Grey value images were acquired every 180 s
and were saved in multi-tiff format. Image sequences were evaluated for average RGR of the
leaf lamina by the structure tensor approach (Schmudt et al. 1998; Walter et al. 2002; Wiese
et al. 2007). As a result of shading by the camera and infrared diodes, light intensity reaching
the analysed leaf was reduced to about half of the ambient light intensity at plant level.

Carbohydrate analysis
For the carbohydrate analysis, leaf discs with a diameter of seven mm were punched out of the
interveinal tissue of the tip of four leaves selected using the same criteria as for the growth
measurements. The leaf discs were sampled at 00:00, 06:00, 12:00 and 18:00 h each day
during the three days in each treatment. Then, after fresh weight (FW) had been determined,
they were frozen in liquid nitrogen and stored at -80°C for further extraction. Soluble
carbohydrates were extracted from frozen leaf material and glucose, fructose and sucrose
concentrations were analysed in a coupled enzyme assay (Jones, Outlaw & Lowry 1977)
using a multiplate spectrophotometer (ht II; Anthos Mikrosysteme GmbH, Krefeld, Germany)
as described in Walter et al. (2002). The remaining leaf material was prepared for starch
analysis. The pellets were dried and then gelatinised in an autoclave at 120°C for 90 min.

After incubation with Na-acetate for 16 h, the supernatant was analysed for glucose by the enzymatic assay described above.

Physiological measurements

Gas exchange of growing leaves was measured using a portable open path design infrared gas-exchange system (LI-6400, LI-COR Lincoln, Nebraska USA). The third fully-expanded leaf of each plant was clamped into a leaf cuvette (6 cm²) with controlled humidity.

Measurements lasted for three days after the start of experiment. PPFD, CO₂ concentration and leaf temperature inside the chamber was set to track the ambient conditions in the climate chamber. To reduce fluctuations in the reference CO₂, the air was buffered using a 50 l plastic tank linked to a nozzle placed outside the growth chamber at the top of the greenhouse.

Chlorophyll fluorescence was measured with a MiniPam (Heinz Walz GmbH, Pulheim, Germany) at 07:00 h each day. In total 15 leaves of individual plants were dark-adapted for 30 min with leaf clips followed by measurement of the maximum quantum efficiency of PSII \((F\textsc{v}/F\textsc{m}) \) expressed as: \(F\textsc{v}/F\textsc{m} = (F\textsc{w} - F\textsc{0})/F\textsc{w} \) (Maxwell & Johnson 2000).

Data analysis

Statistical analyses were carried out using the R-language ‘stat’ package, release 2.10.0 (http://www.r-project.org). The effect of day and treatment on weekly means of RGR values and leaf carbohydrates were analysed by a linear mixed effects model allowing for nested random effects taking into consideration that different plants, with all individuals being at the same developmental stage, were used in the treatments. This allowed results from day one to
be pooled across treatments. Means of the different treatments on day two, three and four were separated by a pairwise t-test using the holms correction (95% confidence intervals).

RESULTS

Young expanding leaves of *Chrysanthemum x morifolium* showed diel leaf growth patterns with maximum growth activity in the early morning when grown in an 18/6 h day/night regime and 20/18°C day/night temperature (Fig. 2). Minimal growth activity was reached some hours before onset of night, leading to roughly 12 h of increasing RGR and 12 h of decreasing RGR within a diel cycle. Overall, RGR declined from day to day with the observed leaf reaching maturity. When the plants were exposed to a change in the time-of day application of light followed by SD, the plants displayed a distinct shift in leaf growth pattern (Fig. 3). This shift was characterised by a resetting of the circadian clock towards the zeitgeber in the early morning. In the first extended night, RGR did not decrease from midnight to 06:00 h while in the second night there was a pronounced increase in growth towards the early morning. This was repeated in the third night although RGR was overall much lower due to the decrease in growth activity with ongoing development of the leaf.

When the SD treatment was combined with LNT, the daily average leaf growth activity decreased significantly (*p* < 0.05) on day three (Fig. 4). The leaf growth patterns were similar in the SD and SD LNT treatment showing that temperature was a less important zeitgeber for the adjustment of leaf growth compared to a change in the time-of-day application of light.

As the growth maximum was shifted by some hours towards 6 o’clock (instead midnight) and as overall, the entire 24-h-curve was shifted by six hours (Figs 2 and 3), it can be stated that the onset of day - and not the onset of night - is the decisive point in time to which the phase of the growth cycle is adjusted.

The starch content in growing leaves of the chrysanthemum plants was relatively high at all time points and in all treatments (Fig. 6a). Furthermore, only a weak diurnal pattern of starch
accumulation during the day and starch degradation during the night could be detected. Also, the daily average in leaf starch content was similar for all three days in the LD treatment (Fig. 6e). When the plants were subjected to SD, leaf starch contents generally increased. The daily average in leaf starch contents was higher on both days two and three in SD compared to LD. When the change in day length was combined with a low night temperature, leaf starch contents generally decreased during the following two days and the daily average was lower in the SD LNT treatment on day three compared to the LD treatment.

Diurnal changes in leaf sugars (glucose, fructose and sucrose) were not very pronounced but present during the first day of the experiment, with weak maxima at 12:00 or 18:00 (Fig. 6b-d). The daily average in glucose, fructose and sucrose was comparable during all days in the LD treatment (Fig 5f-h). In SD, the temporal patterns became more unclear and the maxima of the distributions did not show a clear temporal shift as it was the case for RGR maxima. The two clearest features of the SD and SD LNT treatments were that i) the SD LNT treatment increased leaf fructose contents significantly, but not glucose and sucrose and ii) for sucrose, a marked decrease was seen during the extended 6 h night (24:00 until 06:00) in both SD treatments, whereas no differences were seen in daily average values.

The chrysanthemum plantlets were grown under higher light intensities in the climate chambers compared to the greenhouse environment. Therefore, their net photosynthesis (P_n) was near saturation in the LD treatment during all three days in the climate chambers. For these plants this value was $6.8 \pm 0.5 \, \mu\text{mol m}^2\text{s}^{-1}$ at an average light intensity of $468 \pm 3.7 \, \mu\text{mol m}^2\text{s}^{-1}$ (Fig. 7a). The higher light intensity during SD did not increase P_n and when SD was combined with low night temperature, P_n decreased resulting in a significantly lower daily carbon gain in this treatment compared to the SD and LD treatment (Fig 6b).

In the greenhouse environment the plants had a maximum capacity of PSII (F_v/F_m) at 0.82 ± 0.014, thus almost reaching the maximal values of 0.83 of maximum capacity of PSII (Fig. 7)
(Johnson et al. 1993). In the growth chamber F_v/F_m was reduced to 0.77 ± 0.004 in the LD
treatment due to effects of increased light level, while F_v/F_m was significantly reduced to 0.72
± 0.01 in the SD LNT treatment on day three (p < 0.05).

DISCUSSION

Chrysanthemum leaves show a pronounced diel growth cycle with maximum growth activity
in the early morning and a minimum 12 h later when grown under a day length of 18 h.
Similar 12 h growth patterns have been reported for *Nicotiana tabacum*, *Ricinus communis*
and *Arabidopsis thaliana* (Wiese et al. 2007; Walter & Schurr 2005; Walter et al. 2002;
Walter et al. 2009). The present results suggest that both day length and temperature have
minor influence on the phasing of the leaf growth pattern, whereas the time-of-day application
of light seems to be the zeitgeber to reset the circadian clock in the early morning. In
Nicotiana tabacum, circadian oscillations of leaf growth were found to continue for up to two
weeks after plants were transferred from a 12 h photoperiod to continuous light (Walter &
Schurr 2005; Poiré et al. 2010), confirming that the circadian clock controls the oscillations in
leaf growth.

The change in the time-of-day application of light followed by SD induced a phase-shift in
leaf growth pattern in the chrysanthemum plants, confirming that growth activity in plants is
regulated by an interaction between light-dependent factors such as the phytochrome system
and the internal circadian clock (Dodd et al. 2005; Nozue et al. 2007). When plants were
exposed to LNT of 12°C from the beginning of the first 12 h night, this phase-shift was
accompanied by significantly lower growth activity. Lower leaf growth activity is often
coinciding with decreased glucose/fructose ratio that might be correlated with altered
hexokinase and phosphoglucose isomerase activities (Walter & Schurr 2005), which is also
the case here. Low temperatures can stall the expression of genes related to the circadian
clock (Ramos et al. 2005) and reset the clock followed by a new rhythm in circadian regulated
growth activities (Nozue et al. 2007). In the present experiment it was not possible to
distinguish the effect of the LNT, which confirms that temperature variations have only minor
effects on the periodicity and amplitude of leaf growth pattern and other rhythmic processes
controlled by the circadian clock, at least when temperature variations are followed by the
light-dark cycles (Poiré et al. 2010; Nakajima et al. 2005).

Circadian rhythm effects on leaf growth are pronounced in dicotyledons, but can be largely
neglected in monocotyledons, possibly due to the difference in the cellular organization and
architectural location of growth zones (Poiré et al. 2010). Also, light-dark cycles exert a
stronger effect on growth patterns than available carbohydrates. The rapid adjustment in leaf
growth in chrysanthemum was followed by a less clear change in temporal patterns of
carbohydrate concentrations. Yet, the lower growth activity of plants in the LNT treatment
coincided with decreased leaf starch content and glucose/fructose ratio. Furthermore, a
distinct decrease in leaf sucrose contents occurred during the 6 h extended night in the SD
treatment, where growth activity and hence growth-related demand for carbohydrates was at
its highest. This suggests a direct correlation between sucrose availability and diel leaf growth
patterns (Wiese et al. 2007).

Arabidopsis and several other plant species show prominent differences in leaf carbohydrate
contents in the morning and evening when grown in various day lengths (Chattertón & Silvius
1979; Gibon et al. 2009; Poiré et al. 2010). This effect was not pronounced due to high light
conditions resulting in carbohydrate accumulation, which itself affects the turnover of
photosynthates (Kuehny et al. 1991; Makino et al. 1997).

The chlorophyll fluorescence result indicates slight photoinhibition due to the change in light
level. During the following days the maximum capacity of PSII remained stable, showing that
the photosynthetic apparatus had adapted to the new light conditions. When the conditions
were shifted towards short day, there was only a small reduction in the photosynthetic
efficiency. However, the photosynthetic efficiency values decreased significantly, when plants
were exposed to short day and low night temperature. The decrease in total carbon gain was
due to a decrease in P_n. Leaf photosynthesis have earlier been shown to be negatively
correlated with leaf starch contents in chrysanthemum plants grown at low night temperatures
(Kjaer et al. 2007). However, the decrease in photosynthetic efficiency together with low leaf
temperatures in the morning possibly explained the lower P_n in the LNT experiment.
The results have a significant value in describing plant responses to an ever-changing
environment occurring in greenhouse production and as shown in this study, daily changes in
the timing of light may induce continuous phase-shifts in the rhythmic periodicity of leaf
growth.

CONCLUSIONS

The manipulation of the circadian clock induced by a change in the time-of day application of
light was useful as a tool in showing a phase-shift in the clock-regulated leaf growth pattern of
chrysanthemum plants with a normally functioning circadian clock. The response of leaf
carbohydrate contents to a change in day length illustrates that shifts in carbohydrate turnover
are affected by light conditions and that periodicity and amplitude in leaf growth patterns are
controlled by the interaction between the circadian clock and carbohydrate availability.

ACKNOWLEDGEMENTS

We thank Ruth Nielsen and Beate Uhlig for great support in the propagation and maintenance
of the plants. RP thanks the International Helmholtz Research School of Biophysics and Soft
Matter for stimulating discussions, and the support of his PhD thesis at the Heinrich-Heine-
REFERENCES

decrease of the carbon supply when Arabidopsis is grown in very short photoperiods.

Granier C. & Tardieu F. (1999) Leaf expansion and cell division are affected by reducing absorbed light before but not after the decline in cell division rate in the sunflower leaf.

Plant, Cell and Environment 22, 1365-1376.

Kjaer K.H., Thorup-Kristensen K., Rosenqvist E. & Aaslyng J.M. (2007) Low night temperatures change whole-plant physiology and increase starch accumulation in
Chrysanthemum morifolium. Journal of Horticultural Science and Biotechnology 82, 867-874.

Legends:

Figure 1. Light intensity and temperature in treatments: Long day (black line), short day (red line) and short day in combination with low night temperature. A. light intensity and B. temperature in the climate chamber on day 1 and day 2-3. Mean value (n=4).

Figure 2. Leaf growth of *Chrysanthemum x morifolium* grown in long day conditions with 18/6 h light/ dark at 20/18°C temperature. Grey areas illustrate dark periods. Mean value (n=3).

Figure 3. Leaf growth in *Chrysanthemum x morifolium* exposed to a change in the time-of-day application of light on day two and a change in temperature during the first extended night. Long day (black line), short day from day two (red line) and short day from day two and low temperature from the beginning of the first night (blue line). Grey areas illustrate dark periods. LD mean value (n=11), SD mean value (n=7), SD LNT mean value (n=12).

Figure 4. Average values of leaf growth during four days in three treatments. LD (black bars), SD (grey bars) and SD LNT (white bars). On day one the average values for LD are shown for three treatments (n=3). For day 2 to 4 the average values are from the three separate treatments: LD (n=11), SD (n=7), SD LNT (n=12). B. Error bars are SE.

Figure 5. (a-d) Diurnal patterns and (e-h) daily average values of leaf carbohydrate contents in plants grown in three treatments. For diurnal patterns, the LD plants are shown as black symbols, short day plants (red symbols) and short day and low night temperature (blue symbols). Grey areas illustrate dark periods. On day 1, average values for all three treatments.
are shown (n = 3). On day 2 and 3, values are only shown for each treatment (n=6). Error bars are SE.

The daily values were averaged over three time points during each day (06:00, 12:00 and 18:00 h). LD plants (black bars), SD plants (grey bars), SD and LNT (white bars). Average values are shown for all three treatments on day 1 (n =3), and for each treatment on day 2 and 3 (n = 18). Error bars are SE.

Figure 6. (a) Leaf photosynthesis (Pₐ, μmol m⁻² s⁻¹), (b) daily carbon gain (DCG, mmol m⁻² day⁻¹) and (c) Daily light integral (DLI, mol m⁻² day⁻¹) in three treatments. Long day (black bars), short day (grey bars) and short day with low night temperature (white bars). On day 1 the average value are shown for all three treatments (n = 3), for day 2 – 3 the average values are from the separate treatments (n = 2 for each treatment). Error bars are SE

Figure 7. Fᵥ/Fₘ values on day 0 (in greenhouse), day 1 (after four days in climate chamber) and the following days in the three treatments. Long day (black bars), short day (grey bars) and short day with low night temperature (white bars). Mean values (n = 15). Error bars are SE.

D
Fig 1:

![Graph showing PAR (μmol m⁻² s⁻¹) and Temperature (°C) over time for Day 1 (LD) and Day 2-3 (SD).]
Fig 2

![Graph showing leaf RGR over time](image-url)
Fig 3:
Fig 4:
Fig 5:
Fig. 6
Fig. 7
Environmental cues have a major impact on plant growth and development. Plants have to make the best use of the available resources to achieve their full potential and maximum yield. When environmental conditions are suboptimal for given species then they have to invest more resources to survive resulting into lower yield. The focal point of this work was to broaden the physiological knowledge about the effects of temperature and light intensity on leaf growth dynamics. Many current scientific studies are based on the assumption that laboratory conditions are comparable with field conditions and that one can directly transpose the knowledge gained from the lab to the field. Field conditions are complex to reproduce artificially and laboratory conditions are often unrealistic. Those climatic discrepancies can lead to erroneous statements about plant response toward its environment.

It is one aim of this study to investigate *Ricinus communis* responses to artificial soil and air temperature scenarios. This work relies on the extensive use of Digital Image Sequence Processing (DISP). DISP allows the acquisition of time lapse movies of the growing tissues and calculating its relative growth rate. This imaging technique associated with accurate control and monitoring of the environmental conditions allows characterising plant responses to specific environmental parameters. Different levels of steady-state temperatures were applied to investigate the potential growth limitation while variable temperature scenarios were helped to understand the dynamics of those limitations. When the root-zone temperature in *Ricinus communis* was decreased, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Low root temperature increased hydrostatic tensions in shoot xylem. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted.

The circadian clock is known to have pleiotropic effect on plant metabolisms underlying plant growth. Depending on the plant species, leaf growth patterns are differently affected by temperature variations and the circadian clock. We investigated the effect of continuous light and air temperature scenarios on monocotyledons and dicotyledonous species with different photosynthesis types. Dicotyledon species displayed rhythmicity in leaf growth and carbohydrate content regardless of the external light and temperature conditions. Monocotyledonous plants, in turn, did not retain any rhythm when grown under constant temperature. Photosynthesis type did not influence the phasing of the growth pattern. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand.

Leaf growth occurs in an ever-changing environment. It is unclear, how rapid alterations of light and temperature, usually interconnected in the field, lead to alterations of leaf growth patterns due to physiological parameters restricting leaf growth. In this study, chrysanthemum plants were exposed to a change in the time-of-day application of light, to shorter day length and to lower night temperature (LNT). We observed a clear shift in the diel (24 h) cycle of leaf relative growth rate (RGR) indicating a resetting of the circadian clock with a zeitgeber in the early morning. In the treatment with LNT we observed a decrease in overall leaf growth during the acclimation phase. The manipulation of the circadian clock induced by a change in the time-of-day application of light was useful as a tool in showing a phase-shift in the clock-regulated leaf growth pattern of chrysanthemum plants with a normally functioning circadian clock. The response of leaf carbohydrate contents to a change in day length illustrates that shifts in carbohydrate turnover are affected by light conditions and that periodicity and amplitude in leaf growth patterns are controlled by the interaction between the circadian clock and carbohydrate availability.
There is a need to bridge the gap between lab-based phenotyping and field breeding. Modern phenomics strategies are aimed toward this goal. We should remain aware of the climatic differences between the field and the lab.

Mankind will be facing new agricultural challenges in the future and we will always need to improve our understanding of plant physiology. Our agriculture has to be more sustainable by using crops that make a better use of the available resources.

Blattwachstum spielt sich in einer sich ständig verändernden Umwelt ab. Es ist unklar, wie schnell Veränderungen von Licht und Temperatur, die in der Regel miteinander verbunden sind, zu Veränderungen der Blattwachstumsmuster aufgrund physiologischer Prozesse führen. In dieser Studie wurden Chrysanthemeblättern einer veränderten Verteilung von Licht, und einer verringerten Nachttemperatur (LNT) ausgesetzt. Wir beobachteten eine deutliche Verschiebung des diurnalen Wachstumszyklus der relativen Blattwachstumsrate (relative growth rate, RGR), was eine auf eine Rückstellung der circadianen Uhr mit einem
Zeitgeber am frühen Morgen zurückgeführt werden konnte. Bei der Behandlung mit LNT beobachteten wir einen Rückgang des Blattwachstums während der Akklimatisierungsphase.

REFERENCES

Grant NM (2010) *Thermogenesis in plants: the mode of heating and regulation in hot flowers*. Doctor of Philosophy thesis, School of Biological Sciences, Faculty of Science, University of Wollongong.

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCCE</td>
<td>Brightness Constancy Constrain Equation</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>C<sub>3</sub></td>
<td>Photosynthesis metabolism starting with 3 carbons molecule</td>
</tr>
<tr>
<td>C<sub>3</sub>-C<sub>4</sub></td>
<td>Intermediate photosynthesis metabolism (e.g. in some Flaveria members)</td>
</tr>
<tr>
<td>C<sub>4</sub></td>
<td>Photosynthesis metabolism starting with 4 carbons molecule</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal–Oxide–Semiconductor</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>DISP</td>
<td>Digital Image Sequence Processing</td>
</tr>
<tr>
<td>DLI</td>
<td>Daily Light Integral</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>Fig.</td>
<td>Figure</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>HT</td>
<td>High Throughput</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared. IR wavelength starts at 700 nm.</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode</td>
</tr>
<tr>
<td>LER</td>
<td>Leaf Expansion Rate</td>
</tr>
<tr>
<td>LHC</td>
<td>Light Harvesting Complex</td>
</tr>
<tr>
<td>LIDAR</td>
<td>Light Detection And Ranging</td>
</tr>
<tr>
<td>LNT</td>
<td>Low Night Temperature</td>
</tr>
<tr>
<td>LPCP</td>
<td>Leaf Patch Clamp Pressure (probe)</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear Variable Differential Transformer</td>
</tr>
<tr>
<td>MeV</td>
<td>Megaelectronvolt</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PAR</td>
<td>Photosynthetic Active Radiation. PAR wavelength ranges from 400 to 700 nm.</td>
</tr>
<tr>
<td>PUE</td>
<td>Phosphorus Use Efficiency</td>
</tr>
<tr>
<td>RGB</td>
<td>Red, Green and Blue colour model</td>
</tr>
<tr>
<td>RGR</td>
<td>Relative Growth Rate</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RRT</td>
<td>Rotation Resistance Transducer</td>
</tr>
<tr>
<td>RuBisCO</td>
<td>Ribulose-1,5-bisphosphate carboxylase oxygenase</td>
</tr>
<tr>
<td>RZT</td>
<td>Root Zone Temperature</td>
</tr>
<tr>
<td>SLR</td>
<td>Single Lens Reflex</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet. UV wavelength ranges from 10 to 400 nm</td>
</tr>
<tr>
<td>UV-A</td>
<td>Ultraviolet A (long wave). UVA wavelength ranges from 315 to 400 nm.</td>
</tr>
<tr>
<td>UV-B</td>
<td>Ultraviolet B (medium wave). UVB wavelength ranges from 280 to 315 nm.</td>
</tr>
<tr>
<td>VPD</td>
<td>Vapour Pressure Deficit</td>
</tr>
<tr>
<td>WUE</td>
<td>Water Use Efficiency</td>
</tr>
<tr>
<td>XRCT</td>
<td>X-Ray Computed Tomography</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

This work wouldn’t have been possible without the support I got from the following people:

Uli Schurr who allowed me to carry this work at ICG-3 phytosphere. I learned so much there and it broadened my scientific horizon dramatically.

I specially thank Achim Walter who was committed with this work since the grant proposal and provided me advises and guidance I needed at the right moment.

Shizue Matsubara and Heike Schneider for their scientific rigor and introducing me to the IHRS BioSoft grad school.

Michael Thorpe and Paulo Cabrita for their help with the 11C setup.

Anika Wiese-Klinkenberg and Katrine Kjaer for the great interaction during the experiments and the redaction.

Kerstin Füllner and Arnd Kuhn for giving me access to the root cooling boxes and their advices.

I would like to thank Tobias Schuchert, Andreas Fischbach and Hanno Scharr for their support and friendship.

Georg Dreissen, Thomas Hombach and Alex Putz for technical help.

Susanne Tittmann, Lilian Schmidt, Tom Ruts, Stephan Blossfeld, Ralf Metzner, Lea Märtin, Fang li Luo, Rosanna Caliandro, Vicky Temperton, Bernd Biskup and Sabine Briem for the great interactions over the last 4 years.

Anup Karwa, Andrzej Czech, Kerstin Nagel and Bernd Kastenholz for daily discussions and cultural exchanges around lunch time.

Esther Breuer and Beate Uhlig for the technical support in molecular biology and plant breeding.

Grégoire Hummel for great welcome in Germany and his support when I needed to speak in French.

Office 412 for sustained carbohydrate supply, counselling couch and motivational words.

David Deery for providing the Phenonet data.

Robert Furbank and Xavier Sirault for constructive comments on this manuscript.

Gisela and Ralph, my German foster family.

Marina, Jean-Pierre and Florence for their encouragements, patience and love.