Molecular mechanisms of the antileukemic properties of Non-steroidal Anti Inflammatory Drugs

Kumulative - Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Raminder Singh

2011

Aus der Klinik für Hämatologie, Onkologie und klinische Immunologie der Heinrich-Heine Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. med. Rainer Haas Koreferent: Prof. Dr. rer. nat. Ulrich Rüther

Tag der mündlichen Prüfung: 13th October 2011

- ॐ असतो मा सद्गमय ।
- तमसो मा ज्योतिर्गमय ।।
 - मृत्योर्मामृतं गमय ।
- ॐ शान्ति शान्ति शान्ति ।।
- बृहदारण्यक उपनिषद् 1.3.28

Translation

om asato mā sadgamaya tamaso mā jyotirgamaya mṛtyor mā amṛtaṁ gamaya OM śānti śānti śānti – **bṛhadāraṇyak upaniṣad 1.3.28**

Translation

Lead me (by giving knowledge) from the unreal to the real;

From darkness (of ignorance) to the light (of knowledge);

From fear of death (sense of limitation) to the Knowledge immortality (limitless liberation)

OM - Let There Be Peace Peace Peace.

- Brihadaranyaka Upanishad 1.3.28

Table of Contents

ABB	REVIATIONS	II
ZUSA	MMENFASSUNG	v
ABST	RACT	. VII
CITA	TIONS OF PUBLICATIONS IN THIS DISSERTATION	IX
1		1
1.		1
1.	1 PERFECTIVE ASPECT	1 ר
1.		ے د
1.	ACUTE MYELOID LEUKAEMIA (AMIL)	5 ۸
1.	 NON-STEROIDAL ANTI-INFLAIMINATORY DROGS (NSATDS) FELECTS OF NSATDS ON CANCER 	+ ح
1. 1		2 6
1.	1 6 1 Sulindae Sulfide	0 6
	1.6.2 Diclofenac	7
	1.6.3 OSI-461	7
1.	7 CELL-CYCLE	7
	1.7.1 Cell-cycle regulation	8
	1.7.2 Cell-cycle regulators	9
	1.7.3 Cell-cycle check points	9
1.	8 Cell cycle and apoptosis	. 11
1.	9 Apoptosis	. 12
	1.9.1 Apoptosis can occur through two pathways	. 13
1.	10 JNKs	. 13
1.	11 AP-1 FAMILY	. 14
	1.11.1 <i>c-Jun</i>	. 14
	1.11.2 JunB	. 15
	1.11.3 Fra2	. 15
1.	12 GADDs	. 15
1.	13 MDA-7/IL-24	. 16
2.	AIM OF THIS STUDY	. 17
3.	PERSONAL BIBLIOGRAPHY	. 18
3.	1 Publications of dissertation	. 18
3.	2 OTHER PUBLICATIONS	. 18
4.	PUBLICATIONS OF THE DISSERTATION	. 19
4.	1 The non-steroidal anti-inflammatory drugs Sulindac Sulfide and Diclofenac induce apoptosis and	
יי	EFERENTIATION IN HIMAN ACLITE MYELOID LEUKEMIA CEUS THROUGH AN AP-1 DEPENDENT PATHWAY	20
4.	2 The novel compound OSI-461 induces apoptosis & growth arrest in human acute myeloid leukemia cells.	.50
5.	SUMMARY AND DISCUSSION	. 60
6.	REFERENCES	. 65
7		
/		. 75
8	DECLARATION	. 76

Abbreviations

AAD	7-Amino-Actinomycin D
%	Percentage
°C	Degree Celsius
Ab	Antibody
ABTS	2,2'-azino-di-(3-athylbenzthiazolin sulfonal)
AML	Acute myeloid leukaemia
APS	Ammonium Per-sulphate
АТР	Adenosine-Tri-Phosphate
BM	Bone Marrow
BrdU	Bromodeoxyuridine (5-bromo-2'-deoxyuridine)
BSA	Bovine Serum Albumin
bp	Base pairs
сАМР	Cyclic adenosine mono phosphate
СDК	Cyclin dependent kinase
CDS	Coding Sequence
CFU	Colony forming unit
СКІ	Cyclin dependent kinase inhibitor
CLP	Common Lymphoid Progenitor
CML	Chronic myeloid leukaemia
Cy5	Cyanine 5 Dye
DMSO	Dimethylsulfoxide
DTT	Dithiothreitol
E.coli	Escherichia coli
ECL	Enhanced chemo luminescence
EDTA	Ethylenediamine tetraacetic acid
ELISA	Enzyme linked immunosorbant assay
Еро	Erythropoietin

Molecular mechanisms of the anti-leukemic properties of Non-steroidal Anti Inflammatory Drugs

e.g.	For example (exempli gratia)
EtBr	Ethidiumbromide
EtOH	Ethanol
ERKs	Extracellular signal regulated kinases
FACS	Fluorescence Activated Cell Sorting (Flow Cytometry)
FBS	Fetal Bovine Serum
FCS	Fetal Calf Serum
FITC	Fluoresceine Isothiocyanate
FSC	Forward Scatter
G-CSF	Colony stimulating factor 3 (granulocyte)
GM-CSF	Granulocyte-Macrophage Colony-Stimulating-Factor
HSC	Haematopoietic Stem Cell
IL	Interleukin
IP	Immunprecipitation
JNK	c-Jun N-terminal kinase
kB	Kilo base
kDa	Kilo Dalton
L-Glu	L-Glutamine
LB	Luria broth
МАРК	Mitogen-activated protein kinase
MEP	Myeloid-Erytheroid Progenitors
mg	Milligram
MNCs	Mononuclear cells
MTS	MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium)
NP-40	Nonidet P-40
NSAIDs	Non-steroidal Anti Inflammatory Drugs
N-terminal	Amino terminal
OD	Optical Density

Molecular mechanisms of the anti-leukemic properties of Non-steroidal Anti Inflammatory Drugs

ORF	Open Reading Frame
ΡΑΑ	Polyacrylamide
РВ	Peripheral blood
PBS	Phosphate-buffered saline
PCR	Polymerase Chain Reaction
pmol	Pico-mole
PE	Phycoerythrin
POD	Peroxidase
qRT-PCR	Quantitative Real-time PCR
RNAse	Ribonuclease
RT-PCR	Reverse Transcriptase-Polymerase Chain Reaction
SSC	Side Scatter
SDS	Sodium Dodecyl Sulfate
ΤΝFα	Tumor necrosis factor α
Taq	Thermus aquaticus
TBE	Tris/boric acid/EDTA
TBS	Tris-buffered saline
TBS/T	Tris-buffered saline/Tween20
TE	Tris/EDTA
TEMED	N,N,N´,N´-Tetramethylethylendiamine
ТРО	Thyroid Peroxidase
Tris	Tris(hydrocymethyl)amino methane
UV	Ultraviolet
μg	Micro-gram
μΙ	Micro-litre
μΜ	Micro-molar

Zusammenfassung

Die akute myeloide Leukämie (AML) ist eine häufige Erkrankung bei Erwachsenen. Sie zeichnet sich durch ein schnelles Wachstum anormaler myeloider Zellen aus und ist weiterhin durch chromosomale Veränderungen, Translokationen, Duplikationen, Inversionen, Deletionen charakterisiert. In der AML wird die Differenzierung (Blastenkrise) geblockt und Zellen können nicht in ihre verschiedenen Linien ausdifferenzieren. Dadurch reifen diese Zellen nicht aus und entkommen dem Apoptose-Signalweg. Eine Repression dieser Stammzellen ist für eine AML-Therapie notwendig. Der übliche Therapieansatz für die Behandlung der AML ist eine intensive Chemotherapie. Dennoch sterben ca. 50% dieser Patienten. Außerdem sind die Standardtherapien sehr toxisch und werden von älteren Patienten schlecht vertragen.

In verschiedenen Studien wurde die Rolle von nicht-steroidalen anti-inflammatorischen Medikamenten (NSAIDs) überprüft, die eine Proliferations-Inhibierung und eine Apoptose-Induzierung bei verschiedenen Krebszellen *in-vivo* und *in-vitro* bewirken. Deshalb wurde dieser Ansatz verwendet, um mögliche Effekte einer Behandlung von CD34⁺ AML- Zellen aus dem Knochenmark von Patienten sowie AML Zelllinien mit NSAIDs zu untersuchen. Dabei wurden die Zellen mit einer physiologisch erreichbaren Konzentration der NSAIDs (OSI-461, Sulindac Sulfide und Diclophenac) behandelt. Eine DMSO-Behandlung mit der gleichen Konzentration diente als Kontrolle. Viabilität, Apoptose, Zelldifferenzierung sowie zugrunde liegende molekulare Mechanismen wurden untersucht. Es konnte eine beständige Apoptose-Induzierung sowie bis zu einem gewissen Grad eine myeloide Differenzierungskapazität in NSAIDs behandelten Zellen nachgewiesen werden.

Außerdem waren ein G2/M Zellzyklus-Arrest und die Inhibierung der *cyclin dependent kinase-1 (CDK1*) bei OSI-461 behandelten Zellen zu sehen. AML Zellen, die mit 1 μ M OSI-461 behandelt wurden, waren nicht in der Lage, ihr proliferatives Potential wieder zu erlangen, wenn sie nach einer initialen 48 Stunden Behandlung in ein 1 μ M OSI-461 freies Medium gegeben wurden, selbst in bis zu acht Tagen nicht. Außerdem zeigten auch normale CD34⁺ Zellen einen Anstieg der Apoptoserate nach einer initialen 48-stündigen Behandlung mit 1 μ M OSI-461. Aber sie waren in der Lage, nach einer 48-stündigen Behandlung mit 0SI-461 ihr normales Proliferationspotential wieder zu erlangen. Bei Leukämien ist der Schutz der normalen gesunden Stamm- und Progenitorzellen immer nötig, da gesunde Zellen für die Erholung nach der Therapie essentiell sind.

Es wurden vergleichende Protein- und Genexpressionsanalysen von Diclophenac-behandelten Zellen verwendet, um den Einfluss einer NSAID-Behandlung zu untersuchen und weitere mechanistische Einblicke in anti-leukämische Aktivitäten der NSAIDs als Reaktion auf die Behandlung zu erhalten. Die Resultate zeigen eine transkriptionale Aktivierung von *GADD45α* sowie dem nachgeschalteten *MAPK/JNK* Signalweg sowie erhöhte Proteinlevel des CASPASE 3 - Precursors. Das deutet auf eine Rolle der *c-Jun NH2-terminal kinase (JNK)* in NSAID vermittelter Apoptose hin, die von der JNK-Aktivität abhängt und eine Ergänzung zu einer durch eines spezifischen *JNK-*Inhibitor erzielten Apoptose ist.

Mitglieder der AP-1 Familie sind bei in der AML herunter reguliert. Eine transkriptionale Aktivierung der AP-1 Transkriptionsfaktoren Familienmitglieder *c-Jun, JunB* und *Fra2* nach einer Behandlung der AML-Zellen mit NSAIDs konnte gezeigt werden. Eine Re-Expression dieser Transkriptionsfaktoren führte zu einer Aktivierung von *GADD45α* sowie zu einer Apoptose-Induktion. Zusätzlich konnte gezeigt werden,

dass die durch OSI-461 erzielten antiproliferativen Effekte in AML Zellen mit der Induktion der proapoptotischen Zytokine *MDA-7/IL-24* und der Aktivierung des Wachstumsarrests sowie der *DNAdamage inducible genes (GADD)* 45 α and 45 γ assoziiert sind. Diese Daten deuten auf ein Potential der NSAIDs hin, den Zelleintritt zu Signalwegen zu regulieren, was zu Apoptose versus Proliferationsarrest führt und dass manche von ihnen möglicherweise therapeutisches Potential für einen selektiven Angriff auf leukämische Zellen haben.

Zusammengefasst wurde $GADD45\alpha$ als neuer Differenzierungs und Apoptose-Induzierer in der humanen AML identifiziert, der das Ziel der AP-1 Familienmitglieder *c-Jun, JunB* und Fra2 ist. Die Ergebnisse zeigten, dass NSAIDs eine Expression der AP-1 Genfamilie re-induzieren könnten, wobei sie die AML Proliferation inhibieren und eine Differenzierung induzieren. Damit erhält man eine neue Einsicht in die AML Pathophysiologie und eine neue Strategie, Apoptose und Differenzierung in der AML zu induzieren.

ABSTRACT

AML is described by a rapid growth of abnormal myeloid cells, which are further characterized by chromosomal abbreviations, translocations, duplications, inversions and deletions. In AML, there is a block in differentiation (blast crisis) of stem cells. Stem cells are not able to divide into different lineage. Therefore, these stem cells do not mature and escape the apoptotic pathway. Eradication of these leukemic stem cells is required for the treatment of AML. The common approach for the treatment of AML is the use of intensive chemotherapy. Yet, approximately 50% of these patients die from their leukaemia. Furthermore, standard treatments are very toxic and poorly tolerated especially in elderly patients.

Several studies have proven the role of Non-steroidal anti-inflammatory drugs (NSAIDs) to inhibit proliferation and induce apoptosis in various cancer cells *in-vitro* and *in-vivo*. Therefore, this approach was used to investigate the potential effects of NSAIDs treatment on CD34⁺ AML cells derived from patients' bone marrow and AML cell lines. These cells were treated with the physiologically achievable concentration of NSAIDs (OSI-461, Sulindac Sulfide and Diclofenac). Cells treated with equal amounts of DMSO were used as control. Viability, apoptosis and differentiation were analysed. The molecular mechanisms involved were also observed. In present study, a consistent induction of apoptosis and to some extent an increased myeloid differentiation capacity in NSAIDs treated AML cells was observed.

The G2/M cell cycle arrest was also observed along with Inhibition of the *cyclin dependent kinase-1* (*CDK1*) in OSI-461 treated AML cells. AML cells treated with OSI-461 1 μ M was not able regain their proliferative potential when after initial 48 hour treatment they were placed in a medium free of OSI-461 1 μ M, even up-to 8 days. Whereas, although normal CD34⁺ cells also showed the increase in apoptosis after initial 48 hour OSI-461 1 μ M treatment. But they were able to regain their normal proliferative potential, when they were placed in OSI-461 free cell culture medium. In leukaemia protection of normal healthy stem and progenitor cells is always needed as healthy cells are essential for recovery after therapy.

Comprehensive protein and gene expression profiling of Diclofenac treated AML cells was utilized to study the impact of NSAIDs treatment with the aim of gaining further mechanistic insights into the anti-leukemic activities of NSAIDs. The findings demonstrate a transcriptional activation of *DNA-damage inducible genes (GADD)* 45α and *MAPK/JNK* pathway as well as, increased protein levels of the CASPASE-3 precursor. This signifies the role of *c-Jun NH2-terminal kinase (JNK)* in NSAIDs mediated apoptosis. Indeed this NSAIDs mediated apoptosis is dependent on JNK activity. Addition of a specific *JNK*-inhibitor abrogated apoptosis.

The *AP-1* family members are commonly down regulated in AML. It was found that NSAID treatment of AML cells leads to activation of *AP-1* transcription factor family members: *c-Jun, JunB* and *Fra2*. Reexpression of these transcription factors results in activation of *GADD45* α and induction of apoptosis. In addition, the OSI-461 mediated anti-proliferative effects observed in AML are associated with the induction of the pro-apoptotic cytokine *MDA-7/IL-24* and activation of the growth arrest and *GADD45* α and *GADD45* γ . These data indicate that NSAIDs are able to regulate AML cell entry to apoptotic pathways, which leads to apoptosis versus proliferation arrest, and that some of these findings may have therapeutic potential for the selective targeting of leukemic cells. In summary, $GADD45\alpha$ is identified as a novel inducer of differentiation and apoptosis in human AML, targeted by the *AP-1* family member's *c-Jun, JunB* and *Fra2*. The results demonstrated that NSAIDs can re-induce expression of *AP-1* family genes, thereby inhibiting AML proliferation and inducing differentiation. These findings provide novel insights into AML pathophysiology and provide a new strategy to induce apoptosis and differentiation in the AML.

Citations of publications in this dissertation

The publications belonging to this cumulative dissertation are cited in the following way. Please see section 3 for complete references.

Serial Number	Citation	Journal	Status
1.	Singh et al. (2011)	Apoptosis	Published
2.	Singh et al. (2011)	Annals of Hematology	Published

1. INTRODUCTION

1.1 Perfective aspect

Due to developments in the field of stem cell biology in 20th century, many questions like, how a single cell grows in a multi-cellular and highly sophisticated organism can be addressed. In multicellular organism there is a continuous turnover of the cells, due to cell death. Hence there is a need to replenish the depleted cells. To make up the for loss of these cells and to insure maintenance and development throughout the life of an organism small number of organ-specific cells are present, known as **stem cells** (Cairns, 1981).

All cellular blood components are derived from haematopoietic stem cells (HSCs). HSCs are the first and best-studied cells in terms of differentiation and hierarchical order. Haematopoietic cells are short lived so there is a regular need of their regeneration throughout life of an organism (Cumano and Godin, 2007). In mammals the development of various pre, pro-precursor and mature cells is known as *"Haematopoiesis"* (Figure 1).

Figure 1: *Haematopoiesis.* Lineage tree, showing areas where branching can occur. A single haematopoietic cell can differentiate and can give rise to different lineage progenitor cells, which can further proliferate and mature, finally giving rise to mature blood cells. (HSC = Haematopoietic stem cell, MPP = Multi-Potential Progenitors, CMP= Common Myeloid Progenitor, CLP= Common Lymphoid Progenitor, Blast CFU = Blast colony-forming unit/cells, MEP = Megakaryocyte-Erythroid Progenitor cell, GMP = Granulocyte Macrophage Progenitors, CFC = Colony-forming cells, CFU = Colony-Forming Unit, CFC = Colony-forming cells, Colony-forming cells granulo-monocyte = GM- CFC, Colony-forming cell Eosinophil = Eo-CFC). Adapted from (Dalerba et al., 2007; Lobo et al., 2007)

In general, all blood cells can be found in bone marrow (BM), which is a primary site for synthesis of various Haematopoietic cells. The foundation work done by *Metcalf and Moore* (Metcalf, 1970; Moore and Metcalf, 1970), *Till and Mc Cullock* (Till and Mc, 1961) in their respective studies showed that blood stem cells or multi-potent progenitors (MPP) are located in BM. MPP are responsible for constant make up of blood cells. Different cells of haematopoietic stem cells (HSCs) and steps involved in HSCs differentiation and maturation are shown in Figure 1.

1.2 Leukaemia

Rudolf Virchow coined the term *"Leukaemia"* in *1856*, he has described that, "there is an accumulation of abnormal White Blood Cells in patients". **"Leukaemia"** is a Greek word meaning "White Blood" to describe the condition of the blood in the patient samples.

As per the definition, leukaemia can be defined as the disease of blood in which there is a blocking of differentiation (*blast crisis*) and cells are unable to divide into different lineage. These cells do not mature and escape apoptotic pathway, leading to over production of abnormal white blood cells.

Primary cause of origin of leukaemia can be contributed due to constant accumulation of chromosomal abbreviations, translocations, duplications, inversions and deletions (Lowenberg, 2008; Mrozek and Bloomfield, 2006; Tallman et al., 2005). The events which induce leukaemia are suppression of apoptosis, deregulation of cell-cycle to support uncontrolled expansion and invasion. The deregulation of cell-cycle provides a mechanism to support further neoplastic progression.

Leukaemia can divided into two basic types

- Myeloid Leukaemia
- Lymphoid Leukaemia or Lymphocytic Leukaemia

Myeloid Leukaemia: - If there is a differentiation blockage of the myeloid cells i.e. *monocytes, macrophages, neutrophils, basophils, eosinophils, erythrocytes, megakaryocytes / platelets* and *dendritic* cells, it is known as myeloid leukaemia. In some cases, these cells can still advance to maturation.

Lymphoid Leukaemia or Lymphocytic Leukaemia: - In lymphoid leukaemia or lymphocytic leukaemia as name suggests majority of the effected cells belong to lymphoid lineage i.e. *T-cells*, *B*-cells, *Nκ*-cells.

Leukaemia can also be divided according to progression and lineage type of the disease. Most of the present day leukaemia falls in one of the following major classes.

- Acute Myeloid Leukaemia (AML)
- Acute Lymphocytic Leukaemia (ALL)
- Chronic Myeloid Leukaemia (CML)

• Chronic Lymphocytic Leukaemia (CLL)

AML is related to this present study and is discussed further here.

1.3 Acute myeloid leukaemia (AML)

In 1889, Wilhelm Ebstein coined the term "acute leukaemia" to differentiate between fatal and rapidly progressive leukaemia and mild "chronic leukaemia". AML can be defined as a maturation arrest in BM cells which are not able to perform their normal activity. AML is heterogeneous disease of precursor stage myeloid cell multiagency. There is a rapid increase in immature blast cells. AML develops quickly, if not treated can be fatal in few months of its onset. AML is associated with a wide spread of deformities at the DNA level and in signalling pathways. AML is the second most common type of leukaemia in USA. It is estimated that about 12,330 people were diagnosed with AML in 2010.

Figure 2: *Classification of Leukaemia*. Leukaemia can be divided based on clinical and pathologically into variety of large groups i.e. according to which kind of blood cell is affected. Thus, first division can be between its Myeloid and Lymphoid forms. Further, Leukaemia can be subdivided. This division makes difference between acute and chronic forms. (Adapted from www.info-medicine.com/aml-french-american-british-fab-classification-m0.html and www.med-ed.virginia.edu/.%20../wcd/myeloid1. cfm, web-sites last visited on 28th of July, 2011)

AML is a heterogeneous disease due to the combination of the mutations in chromosome. These mutations play a role in the prediction of the disease. Unlike most other cancers, which are classified based on a stage or progression, AML is classified on bases of various aspects of the disease i.e. genomic mutations, age of patient, cytological disorders, etc. (Figure 2).

Abiotic and biotic sources have been reported to cure AML, including Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) (Gullett et al., 2010), Green Tea (Yang and Wang, 2010), Vitamin A (Retinoic Acid) (Shimizu et al., 2004), and curcumin powder (Das et al., 2010). But among these, NSAIDs stand apart due to most extensively studied group of drugs in relation to cancer.

1.4 Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) belong to structurally diverse group, but similar in action. Felix Hoffmann (1897) oxidised salicylic acid to Acetylsalicylic Acid (ASA) for his father who was suffering from the pain of arthritis (Cuzick et al., 2009). Later "Bayer" marketed this product under trade name "ASPRIN", thus giving rise to first commercially marketed NSAID. NSAIDs are normally used as anti-inflammatory, anti-rheumatic, anti-pyretic, and as analgesic. NSAIDs are weak acids and they dissolve in acidic environment of stomach giving high bioavailability. These drugs have greater affinity to bind to the surface molecule on ribosomes, thus further increasing their action. From the beginning of early 20th century it is known that NSAIDs arrest many tumour progressions.

Figure 3: Metabolic pathway of arachadonic acid and cyclooxygenase (COX) pathway. Arachidonic acid, released from membrane phospholipids by phospholipase A2 (*PLA2*), is metabolized by cyclooxygenases to prostaglandin H2 (*PGH2*) in two steps. *PGH2* is converted to a variety of prostanoids by specific isomerases. COX = cyclooxygenase; *PG* = prostaglandin; NSAIDs = Nonsteroidal Anti-Inflammatory Drugs; *PGD2* = prostaglandin D2; *PGE2* = prostaglandin E2; *PGF2* = prostaglandin F2; *PGI2* = prostaglandin I2; *TxA2* = Thromboxane A2. Adapted from (Thun et al., 2002; Ting and Khasawneh, 2010) and Expert Reviews in Molecular Medicine [©] 2003 Cambridge University Press.

Around 1940, it was first found that aspirin (NSAID) has effect on various vascular events (Xu, 2002). Not much is known about mechanism involved in the pharmacokinetics of the NSAIDs. In 1971, *John Vane* and his colleagues demonstrated that aspirin and other NSAIDs exert their pharmacologic

activities by inhibiting the *Cyclo-Oxygenase (COX)*. *COX* further causes the production of *prostaglandin* (Figure 3). *Prostaglandins* are involved in inflammation, blood clotting, immune response and many other physiological processes. It was discovered that *COX* exists in other forms *COX2 and COX3* too. But later it was found that *COX3* is splice variant of *COX1* (Ulrich et al., 2006). NSAIDs can also act by inducing physical modification on lipid bi-layer membrane, *NFKB* signalling, Apoptosis signalling, *APL-*β-*Catenin* pathway, *PPARa/y/δ* target genes and by release of *MPR4* etc. (Ferreira et al., 2005; Sousa et al., 2008).

There are many safety data reports on use of NSAIDs, but there are also reports about adverse effects due to regular, prolonged, or excessive use of NSAIDs. In these reports NSAIDs are shown to cause lymphoid malignancies like non–hodgkin lymphoma, asthma, effects on gastric intestine (GI) even up to bleeding, peptic ulcer and lesions, etc.(Lanas, 2009; Robak et al., 2008)

1.5 Effects of NSAIDs on Cancer

Various experimental, epidemiological and clinical data were churned out in 1980's. These data showed that NSAIDs acted positively in decreasing the development and prevention of the induction of cancers, when NSAIDS were taken occasionally or regularly (i.e. 5 to 7 times per week) or prolonged (>2 years) at clinical approved dose (Harris et al., 2005; Ruegg et al., 2003; Umar et al., 2003). NSAIDs were reported to decrease the size and number of intestinal adenomas in-patient with Familial Adenomatous (FAP) (Giardiello et al., 1993; Spagnesi et al., 1994; Steinbach et al., 2000). There was up to 50 per-cent reduction in incidence of colorectal cancer in people who took NSAIDs regularly (DuBois and Smalley, 1996; Smalley and DuBois, 1997).

Disease	Number of Patients	Duration	Drug used in study	Phase	Results	Reference
FAP	77	6 months	Celecoxib	II	Celecoxib significantly decreases the No. of colon polyps	(Steinbach et al., 2000)
FAP	10	4 months	Sulindac	III	Polyps regressed completely in 6 patients, partly in 3	(Labayle et al., 1991)
FAP	22	9 months	Sulindac	=	Sulindac decreased No. of polyps by 56% and size by 65%	(Giardiello et al., 1993)
FAP	24	6 months	Sulindac	=	Duodenal polyps <2 mm regressed in 9 of 11 patients treated with sulindac	(Nugent et al., 1993)
Previous adenomat ous polyps	44	4 months	Sulindac	III	Sulindac did not statistically significantly decrease number or size of poylps	(Ladenheim et al., 1995)

 Table 1 Effects of various NSAIDs on different types of cancers in clinical trials.

In studies on various animal models with induced or transplanted cancers, NSAIDs had inhibitory and protective effects on FAP, esophageal, stomach, lung, skin, breast, prostate, urinary bladder, colorectal cancer (Jacoby et al., 2000; Oshima et al., 1996; Wang et al., 2004), colon and pancreatic (Fujimura et al., 2006; Gonzalez-Perez et al., 2003; Thun et al., 2002; Xu, 2002). In various clinical trials NSAID has shown its effects on various cancers also. Few of the randomised clinical trials are listed in Table 1.

It is widely accepted that NSAIDs causes apoptosis and G2/M phase growth arrest (Czibere et al., 2005; Czibere et al., 2006; Zerbini et al., 2006). NSAID (Exisulind) was reported to affect on primary leukemic cells and leukemic cell lines such as KG1, THP-1 & SKM-1, through an induction of apoptosis by *JNK* pathway (Czibere et al., 2005; 2006ab). Recent studies have shown that Aspirin (NSAID) caused apoptosis in various human primary *T* & *CLL-B leukemic cells* and various cell lines (Iglesias-Serret et al., 2010; Ou et al., 2010).

NSAIDs are believed to act through blockage of *COX* activity or independently through other targets. These targets include β –*Catenin* (Lu et al., 2005), *Ras* (Herrmann et al., 1998), *Nuclear factor* κ *B* (Bren-Mattison et al., 2008; Yamamoto et al., 1999), *Cyclin GMP* (Rice et al., 2006), *ERK1/2* (Rice et al., 2006), *Peroxisome proliferation activated receptor* δ (*PPAR* δ) (He et al., 1999), *NSAIDs activated Gene-1* (Kim et al., 2005), *GADD45* (Zerbini et al., 2006), *IL-24* (Zerbini et al., 2006), *MKK4* (Czibere et al., 2005; Dai et al., 2010; Zerbini et al., 2006), (Rice et al., 2006), *JNK* (Czibere et al., 2005; Zerbini et al., 2006), *Epidermal growth factor receptor* (Pangburn et al., 2005), *prostate apoptosis response gene -4* (Herrmann et al., 1998) and *CSK/SRC*, etc. (Kunte et al., 2008).

1.6 NSAIDs used in present study

1.6.1 Sulindac Sulfide

Sulindac Sulfide is (*Z*)-5-Fluoro-2-methyl-1-[p-(methylthio) benzylidene] indene-3-acetic acid with C₂₀H₁₇FO₂S molecular formula (Figure 4) and 340.41 is the molecular weight. Sulindac Sulfide and Sulindac Sulfone are metabolites of Sulindac. Sulindac is known to cause apoptosis in different cancer cell lines (Chan et al., 1998; Herrmann et al., 1998; Lim et al., 1999; Shiff et al., 1995; Zhang et al., 2000). Sulindac Sulfide causes apoptosis in solid tumour cell lines through activation of *JNK* pathway via *GADDs* (Zerbini et al., 2006). Sulindac Sulfide is shown to have anti-cancer effects in mice models (Boolbol et al., 1996; Chiu et al., 1997). Role of Sulindac Sulfide in Familial Adenomatous Polyposis (FAP) regression of has also been reported (Giardiello et al., 1993; Labayle et al., 1991). Further studies are required to understand the role and pathways involved in anticancer activates.

Figure 4: *Molecular structure of Sulindac Sulfide* (Source: http://www.sigmaaldrich.com/catalog/ProductDetail.do ?D7=0&N5= SEARCH_CONCAT_PNO|BRAND_KEY&N4=S3131|SIGMA&N25=0&QS=ON&F=SPEC, web-site last visited on 11th of August, 2011)

1.6.2 Diclofenac

Diclofenac is 2-[(2,6-Dichlorophenyl)amino]benzeneacetic acid sodium salt. C₁₄H₁₀Cl₂NNaO₂ is the molecular formula (Figure 5) and 296.148 is the molecular mass. It is mainly used to reduce pain, inflammation and used as analgesic agent. It is a research molecule of "Ciba-Geigy" (now Novartis) and was discovered in 1973. Diclofenac treatment causes 60% decrease in tumour size in mouse model for pancreatic cancer due to the increase in apoptosis in tumours cells (Mayorek et al., 2010). Diclofenac treatment has anti-proliferative effects on various human tumours and causes apoptosis (Zerbini et al., 2006).

Figure 5: *Molecular structure of Diclofenac* (Source: http://www.sigmaaldrich.com/catalog/ProductDetail.do?D7 =0&N5=SEARCH_CONCAT_PNO|BRAND_KEY&N4=D6899|SIGMA&N25=0&QS=ON&F=SPEC, web-site last visited on 11th of August, 2011)

1.6.3 OSI-461

OSI-461 was earlier known as **CP-461**, and is *Z-5-fluro-2methyl-(-4 pyridene)-3-(-N-benzyl) - indenyacetmide hydrochloride*. OSI-461 (Figure 6) is a new generation drug and synthetic derivative of Exisulind. OSI-461 lacks both COX-1 and COX-2 inhibition activity i.e. independent of *COX-1* and *COX-2* inhibition. OSI-461 has induced apoptosis and arrest of the cell cycle in G2/M phase in variety of human cancer cells (Shimizu et al., 2004). OSI-461 has shown a slight antitumor activity in a Phase II pilot study with patients having hormone-refractory prostate cancer (Resta et al., 2011).

Figure 6: Molecular structure of OSI-461 Source: (Xiao et al., 2006)

1.7 Cell-cycle

Different events are required for the cellular progression and development of organisms, which includes cell division, cell-cycle, differentiation and apoptosis. Among these one of the important events is cell-cycle. In cell-cycle genetic material is replicated in a semi-conservative way. Cell has to

pass through many stages, these are different stages of the preparation and cell division and are known as **"Cell-cycle"** (Figure 7). Generally, cell divides into daughter cells, according to the requirement of the body and in this process, passes its genetic information to the daughter cells.

Figure 7: *Cell-cycle*. The different phases of cell cycle are represented with regulators and cell cycle checkpoints. Adapted from (Thornton and Rincon, 2009; Vermeulen et al., 2003)

1.7.1 Cell-cycle regulation

Cell-cycle is a tightly regulated mechanism. Any abnormality in single cell organism leads to its death. It causes malignancies in case of multicellular organism. To maintain cellular integrity and to pass an intact copy of the genetic material, accurate cell division is essential. Maintenance of genetic material is beneficial for cell survival and is required for cancer avoidance. The cells invest huge resources for maintenance of the genetic material. For development of cancer, cells undergo many uncontrolled cell divisions and escape apoptosis, due to these genetic modifications. Cells have regulatory mechanisms to avoid these genetic modifications, deformities and alterations (Figure 7).

1.7.2 Cell-cycle regulators

Few of the cell-cycle regulators are described below

Cyclins: -There are at least 13 *cyclins* known to date. Different *cyclins* are required to regulate cell cycle at different stages of cell-cycle. *CyclinA* expression is required for cells to leave G1 phase arrest (Bonda et al., 2010) while *cyclinA/E* is required in G1 to S phase transit and again in S to G2-phase arrest. *CyclinB* is required in G2 to M phase transit arrest (Bucher and Britten, 2008). *Cyclins* are classified on the basis of their time of expression and activation. All cyclins contain a 100 amino acids homologous region, known as "Cyclin-Box". *Cyclins* bind to *cyclin dependent kinase* (*CDK*) at this homologues region and degeneration of *cyclin* leads to inactivation of *CDKs*.

CDKs: - Cyclin Dependent Kinases (**CDKs**) are activated by the formation of the complex between cyclins and CDKs. In mammalians 12 loci are known for encoding CDKs but only CDK1, CDK2, CDK3, CDK4 and CDK6 are directly involved in cell cycle. CDK1 is expressed in late cell-cycle and is considered as mitotic kinases while other kinases are known to act in the Interphase (Chen et al., 2006a; Malumbres and Barbacid, 2005). Mutations or over-expression of CDKs is associated with a number of human cancers.

CKIs: - CKIs is short form of CDK inhibitors and indirectly control cell-cycle. Seven different CKIs are known in mammals, which belong to different classes. *p21, p27* & *p57* CKIs act in G1/S phase and are also known as first class. *P15, p16, p18* and *p19* are another class of CKI and are known as second CKIs. CKIs act by inhibiting cyclins complex (CDKs).

1.7.3 Cell-cycle check points

Checkpoints can be defined as the point of cell division with further no return, In other words if a cell has crossed this point, it is committed to next step in cell-cycle. Experiments on cells, which were starved of serum before G0 phase did not advance for cell-cycle for division, but in another scenario even starvation of serum after G0 phase did not inhibit them from cell-cycle division and to go into mitosis. These cells appeared to be committed and continued cell-cycle (Vermeulen et al., 2003).

1.7.3.1 Major cell cycle check points

G1 Check Point: - *CyclinB* and *CDK4* complex mediates the progression of cells in early G1-phase. The G1 checkpoint is first line of defence against DNA damage; it delays and stops the cells with DNA damage from entering into S-Phase. The S-phase entry of the cells is mediated by two different ways following the DNA damage. The first and reversible pathway is *CDC25A* mediated de-phosphorylation at *Try15/Thr14* of *CDK2-cyclinE/A*. By this action *CDK2-cyclinE/A* is activated (Figure 7 and 8). The

second pathway is slow and sustained. G1 arrest is caused by *p53* which is induced by *p21*. The *p21* inhibits *CDK2* leading to maintenance arrest of cell-cycle (Houtgraaf et al., 2006; Warmerdam and Kanaar, 2010). *CDC25A* plays a role in this checkpoint by the phosphorylation of the *CDK2*. If there are DNA double-stranded breaks (DSBs) then there is activation of *ATM* mediated phosphorylation of *Chk2*. DSBs cause inhibition of *CDC45*. However, single-strand breaks are repaired by activation of *rad17*, *RFC.9-1-1* complex and *ATR* through *Chk1*. In this pathway *CDK1* cause G1 arrest by phosphorylation of *CDC25A*. *ATM* and *ATR* phosphorylated *p53*, causes accumulation of *p53* and increased activity of the transcription factor *p53* (Houtgraaf et al., 2006). *p53* leads to expression of *p21*, an inhibitor of *CDK* (Figures 7 and 8). *p21* reduces activity of *cyclinD/CDK4* complex by inhibiting *CDK4* (Kraft et al., 2009).

Figure 8: *Cell cycle checkpoint pathways.* Once DNA damage is identified with the help of sensors, the checkpoint transducers *ATM* and *ATR* undergo conformational change and/or localisation, resulting in their activation. Together with their mediators, *ATM* and *ATR* activate a series of downstream molecules, including the checkpoint transducer kinases. *Checkpoint kinase-2* and *Chk1* inactivate *CDC25* phosphatases, culminating in cell cycle arrest. Adapted from (Bucher and Britten, 2008)

S-phase checkpoint: - Integrity of DNA is maintained in S-phase checkpoint. This checkpoint monitors the DNA-damage and errors occurred during replication in S-phase (Dai and Grant, 2010). *CDK2* activity is increased in S-phase and thus contributes to the homologous recombination and DNA repair (Warmerdam and Kanaar, 2010). *CDK1*, is also known as *CDC2*, plays an important role in this checkpoint (Kraft et al., 2009). During S phase *CDK1 or CDC2* is activated by ATR and is the key regulator. Two pathways are reported which acted in S-phase checkpoint. First is *ATR.ATM-Chk2.Chk1-CDC25A-CDK2*. Second is *ATM.Nbs1.MRE11.SMC1* (Dai and Grant, 2010; Falck et al., 2002).

In S-phase, *Chk1* (checkpoint kinase 1) down regulation can abrogate S-phase arrest (Xiao et al., 2003). In the first pathway *cyclinE/A-CDK2* are inhibited by the degradation of *CDC25A-ATM/CHK2* & *ATR/CHK1* due to DNA damage (Bartek et al., 2004). In the second pathway *ATM* recruit to DNA damage site with the help of *MDC1* via senor *MRN* (Watrin and Peters, 2006). *ATM* is activated on DNA damaged site and it phosphorylates *SMC1*. *SMC1* is thought to function in DNA repair and S-phase progression. *PCNA* also plays a role in S-phase checkpoint via *CHK1* (Bucher and Britten, 2008; Dai and Grant, 2010).

G2/M checkpoint: - In most cancers, G1 checkpoint is defective, so G2/M checkpoint and S checkpoint are critical in cancer. However, S-phase checkpoint is known only to slow down cell-cycle rather than the arrest. G2/M checkpoint controls the DNA damage which has passed through G1 and Sphase checkpoint. It forces the respective cells with DNA damage to apoptosis (Bucher and Britten, 2008). G2/M checkpoint ensures cell division is blocked, if damaged DNA or deformities are present in DNA (Burgoyne et al., 2009). G2/M checkpoint stops the cells with the damaged DNA from entering into M-phase. ATM-CHK2-CDC25/CDK1 pathway is activated due to double-stranded breaks and ATR-CHK1-CDC25 by DNA lesions (Houtgraaf et al., 2006). G2/M checkpoint is mainly controlled by CDK1/ cyclinB complex, p21, Cip & p27 regulators (Wang et al., 2009). The entry of cell in M phase is controlled by cyclinB/CDK1 complexes which are also involved in nuclear envelope breakdown. While in M phase CDK7, a CDK activating kinase phosphorylates CDK1 of cyclinB/CDK1 complex and activate it. In interphase cyclinB/CDK1 complex is activated by phosphorylation on Tyrosin 15 (Try15) by Myt1 and Threonin 14 (Thr14) by Wee1 (Liang et al., 2003). G2/M checkpoint works by inhibition of cyclinB/CDK1 complex by CDC25A, CDC25B and CDC25C dual specificity phosphatases that is required to dephosphorylate these sites to activate the cyclinB/CDK1 complex and progress in mitosis (Ganzinelli et al., 2008; Nigg, 2001; Raleigh and O'Connell, 2000). CDK1 is dephosphorylated by CDC25A in G2/M checkpoint. CDC25A kinase is phosphorylated at Ser 76/124 and CDC20C at Ser216 by Chk1. This further leads to CDC20A proteosomal degradation and ubiquitination via APC/C and Skp1/Cullin/F-Box protein/SCF and ubiquition ligases (Figures 7 and 8).

In G2/M, *ATR* activates *Chk1* by phosphorylation of *CDC25A, B, and C.* This phosphorylation prevents the activation of *cyclinB/Cdk1* and results in G2/M phase arrest (Boutros et al., 2006). Further sustained G2/M phase arrest is required for the induction of the transcription factors which endogenously inhibited *CDK1* e.g. *GADD45s, p21, p53 14-3-3j* (Dai and Grant, 2010; Tse et al., 2007). The stress induced activation of *p38 MAPK/MK2* and inactivation of *CDC25B/C,* is thought to be another mechanism involved in G2/M phase arrest (Bucher and Britten, 2008).

1.8 Cell cycle and apoptosis

Many physiological processes are balanced in human body. These processes include proper tissue development and homeostasis. Proper balance is always required between cell cycle and apoptosis. In fact there are many positive and negative regulations identical in cell cycle and apoptosis. Morphological common features are shrinkage of nucleolus and cell, chromatin condensation, membrane blebbing etc. Many cell-cycle genes i.e. *p53, GADD45s, cyclins, CDKs, EF2* etc. participate in apoptosis too. A normal human body needs proper balance in apoptosis and cell proliferation by cell cycle. On average normal human body makes up to $60X10^9$ cells every day. Some of these cells die or used for maintenance and homeostasis. Uncontrolled cell division with lack of apoptosis cause further complications like tumour formation and cancer in human body (Alenzi, 2004).

1.9 Apoptosis

The apoptosis is a programmed cell death and plays a crucial role in regulation of many physiological processes during embryological development as well as in adult organism. Apoptosis is highly conserved throughout evolution (Fulda, 2009). Apoptosis is essential for the removal of unwanted, damaged, or infected cells. Escape from apoptosis is a signal for many cancers.

Cell death by apoptosis was described in 1972 in ground-breaking publication by *Kerr, Wyllie and Currie* (Kerr et al., 1972). Apoptosis is a Greek word, which is referred to falling of leaves from trees in autumn. As its meaning suggest word was chosen for cell death in mammalian cells to represent desirable death of cells for better survival for the host (Cohen et al., 1992). The process of physiological cell death has been discovered more or less five times independently by various researchers in past 160 years (Cotter, 2009).

Figure 9: *Signalling pathway-showing apoptosis. GADDs, JNKs* and *AP-1* members leading to apoptosis. NSAIDs cause activation of *GADDs* and they bind to *MEKK4, MKK7* those results in *JNKs* phosphorylation via *GADDs. JNKs* leads to phosphorylation of *c-Jun (AP-1 family transcription factors)* and translocated to nucleus. *c-Jun* through *Caspases* induce apoptosis. Adapted from (Eferl and Wagner, 2003).

Apoptosis is caused by *caspases* (Figure 9). *Caspases* are cysteine-aspartic proteases or cysteinedependent aspartate-directed proteases and are involved in apoptosis, necrosis, and inflammation. About 14 *caspases* are known for their role in Apoptosis in humans. Depending upon their role in human apoptosis, *caspases* can be divided into two groups. **Caspases 2, 8, 9 and 10** are known as initiator *caspases* and mediate the interaction of *caspases* with upstream adaptors and effectors (Noy, 2010).

Caspases 3, 6 and 7 are known as effecter *caspases* or executioner *caspases* and catalyse the downstream steps of apoptosis by mediating & regulating DNA repair, structural proteins & cell-cycle related proteins (Noy, 2010).

1.9.1 Apoptosis can occur through two pathways

The intrinsic apoptotic pathway: - Intrinsic apoptotic pathway start from inside the cell in response to cellular signals from DNA damage, a defective cell-cycle or stress signals. This pathway is mediated by mitochondria and endoplasmic reticulum (ER). *Bcl-2* family members regulate this process. The *Bcl-2* family is also involved in anti-apoptotic process. Other important players of this pathway are *Cytochrome C, Apaf-1* and *pro-caspases9* (Noy, 2010).

The extrinsic pathway:-This pathway is activated from external signals by activation pro-apoptotic receptors, which are on the cell surface (Figure 9). These cell surface death receptors include $TNF\alpha$, Fas and *TRAIL* etc. These receptors further bind to *Caspases8* and initiate downstream signalling of apoptotic pathway. JNK and NFKB are known target of extrinsic pathway (Figure 9). Extrinsic pathway unlike the intrinsic pathway, triggers apoptosis independent of the p53 protein (Del Principe et al., 2005).

1.10 JNKs

JNKs are members of MAPK (mitogen-activated protein kinase) super-family that also includes the *ERK* and the *p38 MAP kinases*. The *c-Jun N-terminal kinase (JNK)* pathway and its components plays central role in mediating the apoptotic effect of NSAIDs. JNKs are known to target *AP-1* (Activator Protein – 1) transcription factors phosphorylation especially of *c-Jun* and related molecules (Weston and Davis, 2007). Generally, JNKs phosphorylates *c-Jun* on transcriptional activation domain at Ser 63 or Ser 73 sites in response to oncogenic expression (Figure 9) (Heasley and Han, 2006) and enhance the initiation of apoptosis. JNKs are generally activated in response to various stresses, UV or γ radiation, inflammation, growth factors, and oncogenes (Heasley and Han, 2006). Until now 10 JNK, isoforms are known spliced form of three JNK Genes, JNK1, JNK2 and JNK3. JNK1 and JNK2 are expressed ubiquitously, and JNK3 is expressed up to some extent in testis and heart but mainly in brain. Main target of JNKs is *c-Jun*, but they can also be phosphorylated by JunD but in lesser extent and phosphorylation of JunB via JNKs is still not clear (Shaulian, 2010).

Phosphorylation of *c-Jun* via *JNKs* was required for development and neuronal apoptosis in mice. Single *JNK* knockout mice in any of three *JNK* did not show any development defects. These knockout mice were more sensitive to skin cancer and induced lung tumorigenesis (Heasley and Han, 2006). *JNKs* exhibited role in cell-cycle via *c-Jun*, which further controls *cyclinD* (Shaulian, 2010). *JNKs* appeared to act in both pro and anti-apoptotic functions depending on the various factors i.e. tumour type, *JNK* isoform etc. (Heasley and Han, 2006).

The apoptotic pathway, mediated by *JNKs* is initiated by diverse signals i.e. stress or oncogenic signals. These signals activated *MAP Kinase Kinase Kinase (MP3Ks)* which in turn phosphorylated and activates *MKK4/MTK1* and MKK7, the isoforms of *MAP2K*. The phosphorylated *MKK4/MTK1* and MKK7 activates *JNK* (Weston and Davis, 2007). Once activated *JNKs* were translocated to the nucleus, where they phosphorylated *c-Jun* at Ser 63 and Ser 73 at N-terminal transactivation domain. By this transactivation of *c-Jun* expression of *c-Jun* is increased and there was also activation of *c-Jun* dependent apoptotic pathway (Li et al., 2004; Zerbini et al., 2004) (Figure 9).

1.11 AP-1 family

The activator protein-1 (AP-1) is a heterodimeric protein. AP-1 transcription factor was discovered in 1987 in Hela cell line nuclear extracts and identified by DNA element 5'-TGAGCTCA-3' (TRE or TPA response element). AP-1 is the first transcription factor identified in mammals and is one of the extensively studied transcription factor, functions of which are yet to be fully understood. AP-1 is a redox sensitive transcription factor and can sense stress. It can transduce changes in cellular redox status by modulating gene expression according to the stress. The AP-1 is a family of proteins, which are recognised by presence of basic leucine zipper (bZip), later is essential for DNA binding (Nair et al., 2010; Shaulian, 2010). The AP-1 has following sub families (Nair et al., 2010; Shaulian, 2010).

Jun: - This sub-family includes c-Jun, JunB, and JunD

Fos: - This sub-family includes c-Fos, FosB, Fra1 and Fra-2

Besides these other sub-families are:

Activating transcription factor (ATF) family includes, ATF1, ATF2, ATF3, ATF4, ATF5, ATF6 & ATF7.

Jun dimerization protein (Jdp) family, includes Jdp1 and Jdp2

Musculoaponeurotic Fibrosarcoma (Maf) family, includes, c-Maf, MafA, MafB and MafG/F/K.

AP-1 family members are known for the Dimer formation, which can occurs between same sub-family members or in the two sub-families to regulate the genes and the expression. *Jun* family can make both homo-dimers (formed by two identical molecules) and hetero-dimers (formed by two different macromolecules), whereas *FOS* members can make only hetero-dimers but. It is proved that *AP-1* transcription factors are active in cell proliferation, information, differentiation, apoptosis, and cellular migration and wound healing (Shaulian, 2010).

Major genes related to present study are described below

1.11.1 c-Jun

The *c-Jun* was earlier known as *Jun. c-Jun* is an early response transcription factor of *AP-1* transcription family and *Jun* sub-family. *c-Jun* is activated by various *stimuli* and mediates the transcriptional regulation response (Black et al., 1994). *c-Jun* is phosphorylated at Ser 63 and Ser 73 by the *JNK* pathway (Kallunki et al., 1994). *c-Jun* is essential for development of mice and knock down of *c-Jun* is lethal for mice at E12.5 (Vesely et al., 2009). Knock-in for *c-Jun* with *JunB* or *JunD* rescue embryonic

Molecular mechanisms of the anti-leukemic properties of Non-steroidal Anti Inflammatory Drugs

lethality until birth suggesting the overlapping functions between *Jun* family members (Eferl and Wagner, 2003).

c-Jun is known as an enhancer of proliferation, and tumour promoter and oncogene, but there are many studies, which show that *c-Jun* is involved in prevention of the cancer, e.g. *c-Jun* induces apoptosis in UV exposed cells, killing the cells with damaged DNA. *c-Jun* is also involved in regulation of tumour suppressor via $p14^{ARF}/p19^{ARF}$ (Durchdewald et al., 2009).

1.11.2 JunB

In last decades several studies on animal and clinical observations has shown *JunB* as a tumour suppressor. Expression of cyclinA by any protein was first reported through JunB and later *through* c-Jun, Fra1 etc. *JunB* is required for the re-entry in cell cycle after quiescence (Shaulian, 2010). The data in previous studies suggested that there is a co-operation between *JunB* and *c-Jun*. *JunB* rescues and improves survival of *c-Jun* deficient mice embryos (Nair et al., 2010; Shaulian, 2010). The knockout mice for *JunB* was embryonic lethal and embryos died between E 8.5 and E 10.0 day due to defect in placentation. Embryos of conditional knockout mice for JunB were without obvious abnormalities, but adult mice developed osteopenia and myelo-proliferative diseases (Vesely et al., 2009). Transgenic mice lacking *JunB* in myeloid lineage developed a myeloid disease, which resembled to Human CML (Shaulian, 2010; Zenz and Wagner, 2006). In AML patients, *JunB* expression is generally down regulated in haematopoietic stem cells (HSCs) (Shaulian, 2010).

1.11.3 Fra2

Fra2, also known as *FOSL2* or *FOS-like antigen 2* is the member of *AP-1* transcription factor family and *FOS* sub family. *FOS* sub family consists of three other members namely, *FOSB*, *FOSL1* or *Fra1*, *C-FOS* or *FOS*. The *Fra2/FOSL2* proteins form heterodimers with *Jun* proteins and then bind to DNA. The *Fra2* knockout is lethal at birth in mice (Eferl and Wagner, 2003). In a study on mice adenocarcinoma, CSMLO cell line, it was observed that these cells do not express *Fra2/FOSL2* and very low expression of *c-Fos* (Tkach et al., 2003). In other recent study on *Fra2/FOSL2*, deficient mice had a defect in differentiation in osteoblast cells (Bozec et al., 2010). However, the over expression of *Fra2/FOSL2*, increases tumour cell motility and invasion in breast cancer, colorectal cancer and mesothelioma (Milde-Langosch et al., 2008).

1.12 GADDs

The Growth Arrest and DNA Damage or GADD members are mostly localized in nucleus. Five GADD family members are known until now: GADD153, GADD34, GADD45 α (GADD45alfa), GADD45 β (GADD45beta) and GADD45 γ (GADD45gamma). GADD45 family members are identified as regulatory molecules, which protect cell and its survival by the process of cell-cycle arrest, DNA repair, and apoptosis (Reddy et al., 2008; Rosemary Siafakas and Richardson, 2009). GADD45 α was earlier known as GADD45 β was known as MyD118 as it was discovered as myeloid differentiation primary gene (Zhan et al., 1994). The GADD45 γ was earlier known as CR6 as it was isolated by using cDNA homologues to mice gene that is known as CR6 (Zhang et al., 1999).

*GADD45α, GADD45*β and *GADD45γ* have shown 55% homology to each other at amino acid level and are conserved throughout evolution. GADD45 are highly acidic with pH around 4. *GADD45s* functions are not well understood (Abdollahi et al., 1991; Vairapandi et al., 2002; Zhang et al., 1999). *GADD45α, GADD45*β and *GADD45γ* are strongly induced by stress through independent or *p53* dependent way. There was a failure of G2/M checkpoint in human cells exposed to UV and is devoid of endogenous *GADD45s* (Liebermann and Hoffman, 1998; Vairapandi et al., 2002; Wang et al., 1999). Interaction and inhibition of *CyclinB1/CDC2* complex with *GADD45s* also causes G1 cell-cycle arrest, which is may be via *p21. GADDs* play a role in DNA repair and de-methylation also (Cretu et al., 2009). In their interaction with *MKK4* which is upstream regulator of *JNK*, they induce apoptosis which was validated in Hela cells (Takekawa and Saito, 1998). Further induction of apoptosis via *GADD45*β dependent is shown in M1 leukemic, lung cancer etc. *GADD45γ* plays a significant role in apoptosis of neuronal cells and UV irradiated keratinocytes (Cretu et al., 2009). Deficiency of *GADD45*β in haematopoietic cells induces apoptosis. The *GADD45*β had a role in mice embryo fibroblast cell survival through *Nfi*γ*B*. The *GADD45*β promotes cell survival through inhibition of *MKK4-JNK* stress response apoptotic pathway (Gupta et al., 2006). *GADD455* repaired DNA and promotes survival through *PCNA* (Cretu et al., 2009).

The *GADD45* members especially *GADD45* γ play an important role in cellular apoptosis (Bulavin et al., 2003; Hollander et al., 1999). Mice which were null for *GADD45* β and *GADD45* γ were more prone to ionizing radiations, chemical carcinogens and hence had higher mutation rates and chances to have cancer (Hollander et al., 1999). The down regulation of *GADD45* α and *GADD45* γ is essential for survival of cancer cells. The loss of *GADD45* α expression contributes to tumour formation, tumour growth and decreases the rate of apoptosis, decreased rate of senescence via *JNK* (Tront et al., 2006). In many primary human tumours and cell lines of breast, prostate, pituitary, adenomas, hodgkin and nonhodgkin lymphoma, nasopharyngeal, cervical, oesophageal, lung carcinoma, and pancreatic cancer; methylation and mutations were observed in *GADD45* promoter and genes. The major step to escape from apoptosis in tumour cells was through activation of *NF* κ *B*, which causes repression of *GADD45* α and *GADD45* γ . In recent studies, it is observed that in AML there is a down regulation of *GADD45s*. *GADD45a* is reported a role in mice for suppression of leukemogenesis (Cretu et al., 2009; Zerbini and Libermann, 2005).

1.13 MDA-7/IL-24

Interleukin-24 (IL-24) is also known as Melanoma differentiation-associated-7 (MDA-7) and was discovered by subtraction hybridization of *cDNA* in human melanoma cells (Jiang et al., 1995). *MDA-7/IL-24* belongs to *IL-10* family of cytokines and like *IL-10* family of cytokines can exist as monomer or dimer. *MDA-7/IL-24* mediates its biological effects through two heterodimer receptors, *IL-20R1/IL-20R2* and *IL-22R1/IL-20R2* (Sarkar et al., 2002). The transcription of *MDA-7/IL-24* is regulated by the *AP-1* and *C/EBP* transcription factor families (Madireddi et al., 2000). The *MDA-7/IL-24* has antitumor activity in many cancers via *JNK/MAPK* dependent or other signalling pathways and result in apoptosis of tumour cells (Chada et al., 2004; Inoue et al., 2006). Expression of *MDA-7/IL-24* via adenoviral vector carrying the *MDA-7 gene* (*Ad-MDA-7*) cause growth suppression and apoptosis in cancer cells not to normal cells (Otkjaer et al., 2010). Phase one clinical trial using *Ad-MDA-7* is reported to have tumour suppressor effect (Cunningham et al., 2005; Tong et al., 2005).

2. Aim of this study

Acute myeloid leukaemia (AML) is characterized by disturbed differentiation and rapid expansion of leukemic cells. *AP-1* transcription family members are known as key regulators of myeloid differentiation. *AP-1* family members are generally down regulated in AML and thus play an important role in pathophysiology of the disease. NSAIDs cause initiation of apoptosis effectively and G2/M phase growth arrest in various types of cancer cells. *GADD45* α and *GADD45* γ activation *in-vitro* and *in-vivo* plays a major role in neo-plastic effect of NSAIDs (Czibere et al., 2005; Czibere et al., 2006).

Further studies should be carried-out to understand their role in AML and especially in-connection to *GADD45s* and *JNKs*. Elucidation of pathways involved in AML rescue in NSAIDs dependent way can be translated into clinical prospective. These pathways and their target genes can be used as therapeutic agents for designing new safer, low cost drugs, which are able to overcome drug resistance.

However, there are some questions which need to be addressed about the pathways like, role of different genes and involvement of transcription factors. How the NSAIDs dependent orchestra of pathways works in the rescue of AML and cause arrest in cell cycle and apoptosis? What is role of NSAID in apoptosis and differentiation?

Main purpose of this study was to investigate the effects of NSAIDs in AML cells and to know the pathways activated in AML cells after treatment with NSAIDs. In present study, evidence is provided that OSI-461 induces apoptosis and a G2/M cell cycle arrest in AML cells through MDA-7/IL-24 pathway and $GADD45\alpha$ and $GADD45\gamma$ activation in AML patients. It has been observed that treatment of AML cells with Sulindac Sulfide and Diclofenac leads to a consistent transcriptional activation of the AP-1 transcription factor gene and $GADD45\alpha$ with consecutive induction of apoptosis through a *c-Jun NH2-terminal kinase (JNK)* dependent pathway.

This study provides the evidences that non-steroidal anti-inflammatory drugs (NSAIDs) can be effective in chemoprevention or treatment of AML.

3. Personal bibliography

3.1 Publications of dissertation

The non-steroidal anti-inflammatory drugs Sulindac Sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway.

Published "Apoptosis" 2011 July 8

Singh R, Cadeddu RP, Fröbel J, Wilk CM, Bruns I, Zerbini LF, Prenzel T, Hartwig S, Bruennert D, Schroeder T, Lehr S, Haas R and Czibere A

The novel compound OSI-461 induces apoptosis and growth arrest in human acute myeloid leukemia cells.

Published "Annals of Hematology" 2011 Jun 30

Singh R, Fröbel J, Cadeddu RP, Bruns I, Schroeder T, Bruennert D, Wilk CM, Zerbini LF, Haas R and *Czibere A*

3.2 Other publications

Low RPS14 expression is common in myelodysplastic syndromes without 5q- aberration and defines a subgroup of patients with prolonged survival.

"Haematologica" 2009 Oct;94(10):1453-5

Czibere A, Bruns I, Junge B, Singh R, Kobbe G, Haas R, Germing U

The hematopoietic stem cell in chronic phase CML is characterized by a transcriptional profile resembling normal myeloid progenitor cells and reflecting loss of quiescence.

"Leukemia" 2009 May; 23(5):892-9

Bruns I, Czibere A, Fischer JC, Roels F, Cadeddu RP, Buest S, Bruennert D, Huenerlituerkoglu AN, Stoecklein NH, **Singh R**, Zerbini LF, Jäger M, Kobbe G, Gattermann N, Kronenwett R, Brors B, Haas R

Pegylated granulocyte colony-stimulating factor mobilizes CD34+ cells with different stem and progenitor subsets and distinct functional properties in comparison with unconjugated granulocyte colony-stimulating factor.

"Haematologica" 2008 Mar; 93(3):347-55

Bruns I, Steidl U, Fischer JC, Czibere A, Kobbe G, Raschke S, **Singh R**, Fenk R, Rosskopf M, Pechtel S, von Haeseler A, Wernet P, Tenen DG, Haas R, Kronenwett R

4. Publications of the dissertation

4.1 The non-steroidal anti-inflammatory drugs Sulindac Sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway. ORIGINAL PAPER

The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway

Raminder Singh · Ron-Patrick Cadeddu · Julia Fröbel · Christian Matthias Wilk · Ingmar Bruns · Luiz Fernando Zerbini · Tanja Prenzel · Sonja Hartwig · Daniela Brünnert · Thomas Schroeder · Stefan Lehr · Rainer Haas · Akos Czibere

© Springer Science+Business Media, LLC 2011

Abstract Acute myeloid leukemia is a heterogeneous disease with varying genetic and molecular pathologies. Non-steroidal anti-inflammatory drugs (NSAIDs) have been proven to possess significant anti-proliferative potential in various cancer cells in vitro and in vivo. Hence, treatment with these agents can be utilized to study disease specific anti-proliferative pathways. In this study, a total number of 42 bone marrow derived CD34⁺ selected de novo AML patient samples and the AML cell lines THP-1 and HL-60 were treated with the NSAIDs Sulindac sulfide and Diclofenac. We analyzed viability, apoptosis, differentiation and addressed the molecular mechanisms involved. We found a consistent induction of apoptosis and to some extent an increased myeloid differentiation capacity in NSAID treated AML cells. Comprehensive

Electronic supplementary material The online version of this article (doi:10.1007/s10495-011-0624-y) contains supplementary material, which is available to authorized users.

R. Singh · R.-P. Cadeddu · J. Fröbel · C. M. Wilk · I. Bruns · D. Brünnert · T. Schroeder · R. Haas · A. Czibere Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine-University, Düsseldorf, Germany

J. Fröbel · T. Prenzel · S. Hartwig · S. Lehr Department of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center GDC, Düsseldorf, Germany

L. F. Zerbini

International Center for Genetic Engineering and Biotechnology (ICGEB), Medical Biochemistry Division, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

A. Czibere (🖂)

Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, MA 02215, USA e-mail: aczibere@bidmc.harvard.edu

Published online: 08 July 2011

protein and gene expression profiling of Diclofenac treated AML cells revealed transcriptional activation of GADD45 α and its downstream MAPK/JNK pathway as well as increased protein levels of the caspase-3 precursor. This pointed towards a role of the c-Jun NH₂-terminal kinase (JNK) in NSAID mediated apoptosis that we found indeed to be dependent on JNK activity as addition of a specific JNK-inhibitor abrogated apoptosis. Furthermore, the AP-1 transcription factor family members' c-Jun, JunB and Fra-2 were transcriptionally activated in NSAID treated AML cells and re-expression of these transcription factors led to activation of GADD45 α with induction of apoptosis. Mechanistically, we demonstrate that NSAIDs induce apoptosis in AML through a novel pathway involving increased expression of AP-1 heterodimers, which by itself is sufficient to induce GADD45 α expression with consecutive activation of JNK and induction of apoptosis.

Keywords AML \cdot NSAID \cdot GADD45 α \cdot Growth arrest \cdot Apoptosis \cdot AP-1

Introduction

Acute myeloid leukemia (AML) represents a heterogeneous group of myeloid neoplasias which are driven by varying genetic and/or molecular alterations in clonally evolving hematopoietic stem and progenitor cells (HSPCs) [1–3]. As a consequence of this diversity, treatment regimens are nowadays refined and tailored towards the specific genetic/molecular alterations that occur in individual patients. In the current understanding of AML pathology the concept is prevailing that at some point before disease onset, the leukemic clone gains a proliferative advantage over normal HSPCs while the ability of terminal myeloid

🖉 Springer

differentiation is lost [4]. A common event in all these distinct types of leukemia is that despite eminent genetic or molecular alterations the cell intrinsic safety mechanisms to prevent survival of genetically "damaged" cells fail. Genomic instability, recurrent translocations or complex karyotype aberrations are fairly common in all types of cancer cells, including those originating from the hematopoietic system [5]. Even if there was an attempt to repair any given DNA-damage, which obviously failed, the consequence in the leukemia initiating cells is not activation of programmed cell death [6]. One may hypothesize that some of these cell intrinsic programs still exist in malignant cells and it is intriguing to speculate that they could be selectively targeted and activated through pathways that are commonly effective in all different types of AML or cancer cells in general. One example for such a re-activation of a cell intrinsic apoptosis program in cancer cells is the activation of the p38/MAPK pathway as a consequence of high-level expression of the pro-apoptotic cytokine mda-7/ IL-24 [7-10]. In these studies, independently from the origin of the cancer cells, the exact same anti-proliferative pathways were activated once mda-7/IL-24 reached a certain transcriptional threshold in these cells. Surprisingly, this induction of high-level mda-7/IL-24 expression could be achieved by treatment of cancer cells with several, structurally not related non-steroidal anti-inflammatory drugs (NSAIDs) in vitro and in vivo [11–13]. The purpose of this study was to evaluate, if these pathways can also be activated in AML cells and thereby render a potentially novel therapeutic strategy for the treatment of all subtypes of AML. We found that treatment of AML cells with NSAID leads to a consistent transcriptional activation of the AP-1 transcription factor family members' c-Jun, JunB and Fra-2. As a consequence the growth-arrest and DNA damage inducible gene (GADD) 45α is activated with consecutive induction of apoptosis through a c-Jun NH₂terminal kinase (JNK) dependent pathway.

Materials and methods

Patient samples

Bone marrow (BM) cells from AML patients and healthy donors were obtained after written informed consent according to an approved protocol. CD34⁺ cells were selected from BM mononuclear cells (MNCs) using the MACS immunomagnetic separation system (Miltenyi Biotec). Patient and disease characteristics are shown in Online Resource 1. CD34⁺ cells were cultured in serum free HPGM (Hematopoietic Progenitor Growth Medium; Lonza) supplemented with recombinant human IL-3, IL-6 (both 10 ng/ml) and SCF (25 ng/ml) (all from Peprotech).

⁄ Springer

Cells were maintained at 37° C for 48 h under humidified conditions with 5% CO₂.

Cell culture

THP-1, PC-3 and HL-60 cells were obtained from the American Type Culture Collection and Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, respectively. Leukemic cell lines were cultured in RPMI1640 (Sigma-Aldrich) and PC-3 cells in HAMS F-12 medium (BioWhitaker) containing 10% fetal bovine serum (Biochrom), 2 mM L-glutamine, 100 U/ml penicillin and 100 μ g/ml streptomycin (all Sigma-Aldrich), respectively. Moreover, medium for THP-1 cells additionally contained 0.05 mM β -mercaptoethanol (Invitrogen). Cells were cultured at 37°C, 5% CO₂ under humidified conditions.

Reagents

Sulindac sulfide and Diclofenac were purchased from Sigma-Aldrich and dissolved in DMSO. For all assays, cells were treated for 48 h with 100 μ M Sulindac sulfide, 100 μ M Diclofenac or equal amounts of DMSO (less than 0.1% final concentration). The JNK inhibitor JNKII SP6001 was purchased from Calbiochem and used at final concentrations of 40 nM.

Kinase assays and western blot analysis

The SAPK/JNK kinase assay was performed according to the manufacturer's protocol (Cell Signaling Technology). Briefly, treated cells were washed twice with ice-cold PBS and transferred into cell lysis buffer (Cell Signaling Technology) containing complete protease inhibitor cocktail (Roche) at 4°C. Protein concentrations were determined using the BCA protein kit according to the manufacturer's instructions (Pierce Biotechnology). Western blot analysis following SDS-PAGE gel separation was performed as described [11] using 30 µg of protein per sample. Antibodies used were anti-phospho-c-Jun and antiphospho histone H1 (all Cell Signaling Technology). Bands were visualized by chemiluminescence detection (Amersham ECLTM Advance Western Blotting Detection Kit, GE Healthcare).

Apoptosis and viability assay

Viability of treated cells was assessed by hemocytometry following trypan blue staining. Rate of apoptosis was measured by utilizing the cell death detection ELISA-PLUS kit according to the manufacturer's guidelines (Roche). Absorbance was measured at 405 nm on a Wallac multilabel counter 1420 (Perkin Elmer) as described before [14].

Apoptosis

Flow cytometry analysis

Expression of the cell surface markers CD11b, CD14, CD15 and CD114 was determined using a FACS Calibur (Becton–Dickinson). Cells were collected and fixed in phosphate buffered saline (PBS; Sigma-Aldrich) containing 0.1% formaldehyde. Subsequently, cells were stained for 30 min at 4°C in the dark with anti-CD11b (APC-Cy7), anti-CD14 (FITC), anti-CD15 (APC) and anti-CD114 (PE) antibodies (all BD Biosciences). Samples were washed two times with PBS containing 0.1% formaldehyde to remove residual antibodies. Data was analyzed using the Cell Quest Software package (Becton–Dickinson).

RNA isolation

Total RNA was extracted from cells using QIAshredder and RNeasy Mini Kit in combination with RNase-Free DNase Set (all Qiagen) according to the manufacturer's instructions. RNA was quantified using the NanoDrop spectrophotometer (NanoDrop Technologies).

Quantitative real-time polymerase chain reaction

cDNA was generated from 100 ng RNA using the M-MLV reverse transcriptase (Invitrogen). RT-PCR was performed on a LightCycler 1.2 utilizing the LightCycler[®] FastStart DNA Master SYBR Green I kit (both Roche). After an initial denaturation step of 5 min at 94°C, conditions for cycling were 40 cycles of 30 s at 94°C, 30 s at 60°C and 30 s at 72°C. Relative gene expression levels were calculated as the difference of CT values of the gene of interest and the housekeeping gene hGAPDH as control (Δ CT). The deltadelta CT method was used for calculation of expression differences of the respective genes. All experiments were performed in duplicates. The following primers were used in this study: GAPDH sense-TCCATGACAACTTTG GTATCG, GAPDH antisense-GTCGCTGTTGAAGTCAG AGGA; GADD45α sense-TGCTGACGCGCAGGATGTT, GADD45a antisense-GCTGCTCAACGTCGACCC; Fra-2 sense-TTGCCAAACGCCTAATTACC, Fra-2 antisense-CAGGAGACGCCCTACTCAAG; c-Jun sense-TTGCCA AACGCCTAATTACC, c-Jun antisense-CACCTGTTCCC TGAGCATGTTG; JunB sense-ATGGAACAGCCCTTCT ACCACG, JunB antisense-AGGCTCGGTTTCAGGAGT TTG.

Two-dimensional difference gel electrophoresis (2D-DIGETM)

Cells were solubilized, sonicated and purified as described previously [15]. Protein labeling with cyanine dyes was performed according to the manufacturer's (GE-Healthcare)

instructions. Labeled samples were combined (50 µg each labeled with Cy3, Cy5 and Cy2 per physical gel) and applied adjacent to the acidic end of Immobiline[™] DryStrips (24 cm, pH 4-7 and pH 6-9 linear) by cup loading. IEF was performed on a MultiPhor II electrophoresis unit (GE Healthcare) as previously described [15]. Prior to second-dimension separation using 12.5% polyacrylamide gels in a Laemmli buffer system, IPG strips were equilibrated and protein separation by size was performed on an EttanDalt 12 system (GE Healthcare) as depicted before [15]. Subsequently, gels were scanned using a Typhoon 9400 laser scanner (GE Healthcare) and protein spot abundances and statistics were determined using Proteomweaver 4.0 image analysis software (Bio-Rad) as previously described [16]. Selection criteria for detection of significant changed protein spots were set as followed: (1) protein spots have to be present in all analyzed gels; (2) the standardized average spot volume ratio exceeds 1.8-fold; (3) P-value lower than 0.05 (Student's t-test).

Protein identification by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)

For spot picking the cyanine dye-labeled gels were restained with a ruthenium fluorescent stain as previously described [17] and protein spots of interest were excised from the 2-D gels using a Gelpix spot picker (Genetix). Prior to MS analysis gel pieces were washed, the proteins trypsin digested and the resulting peptides eluted as depicted before [15]. Subsequently, 4 µl of extracted peptides were applied to a MALDI Prespotted AnchorChip target (Bruker Daltonics), incubated for 30 s and removed quantitatively. Samples were analyzed in an Ultraflex-Tof/ Tof mass spectrometer (Bruker Daltonics) and acquired mass spectra were automatically calibrated and annotated using Compass 1.1 software (Bruker Daltonics). Protein identification via peptide mass fingerprinting (PMF) was performed on-the-fly using Biotools 3.0 (Bruker Daltonics) by searching the human subset of SwissProt (Swiss-Prot_49.1) and NCBInr (NCBInr_20070326.fasta) nonredundant databases with Mascot (Version 1.9; Matrix Science). Proteins were considered as identified, when they were assigned with a Mascot score higher than 56 (= P < 0.05) on two different gels.

Gene expression profiling

Total RNA from treated THP-1 and HL-60 cells was harvested as described above. Respective cRNA was generated and hybridized to HG-U133A gene arrays (Affymetrix), washed and scanned according to the manufacturer's instructions. Array images were analyzed by dChip following smoothing-spline normalization [18]. A gene was considered significantly differentially expressed between the DMSO and Diclofenac treated groups, if the 90% lower confidence bound of the fold change between these groups was >1.2 [19]. Experiments were done in duplicates and THP-1 and HL-60 cells were analyzed together. Pathway and network analysis was done using Ingenuity web tools (Ingenuity Systems) Array data have been stored in the gene expression omnibus database (www.ncbi.nlm.nih.gov/geo/; accession no: GSE28185) according to MIAME standards.

AP-1 and GADD45 α expression and luciferase vectors

The GADD45 α expression plasmid and the pGL3-GADD45 α -luciferase vector have been described before [20]. c-Jun, JunB and Fra-2 plasmids were generated by inserting PCR products of the respective coding sequence into pcDNA3 vectors using appropriate restriction sites. Mammalian cells were transfected using Nucleofector I according to the manufacturer's (Amaxa) instructions. Transfection efficiency was measured using a GFP expressing plasmid. Luciferase assays were performed utilizing the BrightGlo Luciferase Assay System (Promega) according to the manufacturer's instructions. Experiments were done in duplicates and empty vector controls were used as reference.

RNA interference experiments

The ShRNA duplexes were designed with BLOCK-iTTM RNAi Designer (Invitrogen). The ShRNA sequences used are Fra-2 top strand-CACCGAACCTCGTCTTCACC TATCCCGAAGGATAGGTGAAGACGAGGTTC; Fra-2 bottom strand-AAAAGAACCTCGTCTTCACCTATCCT TCGGGATAGGTGAAGACGAGGTTC; c-Jun top strand-CACCGCCTTCGTTAACTGTGTATGTCGAAACATAC ACAGTTAAAGGC; c-Jun bottom strand-AAAAGCCT TCGTTAACTGTGTATGTTTCGACATACACAGTTAAC GAAGGC; JunB top strand-CACCGCTCAAACAGAA GGTCACCGAAGTCATGACCTTCTGTTTGAGC; JunB bottom strand-AAAAGCTCAAACAGAAGGTCATGACT TCGGTCATGACCTTCTGTTTGAGC. LacZ ShRNA was used as the positive, non-silencing control (top strand-CACCGCTACACAAATCAGCGATTTCGAAAAATCGC TGATTTGTGTAG; bottom strand-AAAACTACAAAAT CAGCGATTTTTCGAAATCGCTGATTTGTGTAGC). Further steps were performed according to the manufacturer's protocol. In brief, equal amounts (50 µM) of top and bottom strand oligonucleotides were annealed and cloned into the pENTR[™]/U6 vector (Invitrogen). To confirm the correct orientation and sequence of the double-strand oligonucleotides vectors were sequenced. Plasmids were transfected in primary AML cells using Nucleofector I (Amaxa) and were tested for specificity and efficiency by RT-PCR.

Statistical analysis

Statistical significance was tested using paired, two-tailed Student's *t*-test to assess the significance levels of treated samples compared to their respective DMSO controls and *P*-values below 0.05 were considered significant.

Results

NSAIDs inhibit survival of acute myeloid leukemia cells through induction of apoptosis and myeloid differentiation

To investigate a potentially anti-proliferative effect of the NSAIDs Sulindac sulfide and Diclofenac in AML, we treated HL-60 and THP-1 cells as well as 25 bone marrow derived CD34⁺ enriched de novo AML samples (see Online Resource 1 for patient demographics). We found a significant induction of apoptosis in THP-1 and HL-60 cells by 3.90 and 4.01-fold for Sulindac sulfide and by 6.30 and 5.44-fold for Diclofenac, respectively (Fig. 1a). The mean fold of apoptosis induction for the patient samples tested was 2.44 and 3.34 for Diclofenac and Sulindac sulfide, respectively (Fig. 1b). These pro-apoptotic effects were accompanied by a significant decrease of viable cells in all samples tested (Fig. 1c, d). The mean number of viable THP-1 cells decreased by 30 and 35% and viable HL-60 cells decreased by 30 and 40% when cells were treated with Sulindac sulfide or Diclofenac compared to DMSO treated controls, respectively. The mean proportion of viable cells from the 9 de novo AML patient samples analyzed decreased by 23 and 31% when treated with Sulindac sulfide or Diclofenac, respectively. Further, we asked if treatment with NSAIDs also possesses differentiation inducing capacities. Therefore, we tested cell surface expression of CD11b, CD14, CD15 and CD114 on samples from five individual AML patients via flow cytometry. Here, we found that Sulindac sulfide induced myeloid differentiation was more pronounced than in Diclofenac treated cells. Following treatment with Sulindac sulfide 3 of 5 patient samples showed an increase in the expression of CD11b and 4 of 5 patients showed increased expression of CD14, CD15 and CD114 by at least 1.5-fold, respectively (Fig. 1e). Thus, AML cells respond to in vitro treatment with NSAIDs with a significant induction of apoptosis and increased expression of myeloid differentiation markers.

Fig. 1 Sulindac sulfide and Diclofenac induce apoptosis and differentiation in AML. All samples were treated with 100 μ M Sulindac sulfide, 100 μ M Diclofenac or DMSO for 48 h. a NSAIDs significantly induce apoptosis in HL-60 and THP-1 AML cells. Data is shown as mean fold change compared to the respective DMSO control from triplicate experiments + SD (P < 0.05). b Data from 25 different bone marrow derived AML samples is shown as mean fold increase + SD (P < 0.05). c, d Viability analysis performed by

hemocytometric analysis following trypan blue staining. HL-60, THP-1 cells (c) and nine patient samples (d) were analysed. Shown are the mean viable cell numbers following 48 h of the indicated treatment + SD (P < 0.05). e Flow cytometric analysis of the cell surface expression of the myeloid differentiation markers CD11b, CD14, CD15 and CD114 after 48 h of the indicated treatment. Individual data from each analysed patient with respective fold increase as compared to the respective DMSO control is shown

Fig. 2 Differential proteome analysis of HL-60 cells treated with 100 μ M Diclofenac for 48 h. Representative 2-D gel image of HL-60 cell lysates (pH ranges 4–7, 6–9) showing the 211 protein spots with altered concentrations after Diclofenac treatment. *Red circles* represent the spots with higher and *blue circles* with lower expression

Differential proteomic analysis of total cell lysates from NSAID treated AML cells reveals activation of pro-apoptotic signaling pathways

To elucidate changes on the protein level of AML cells as a consequence of NSAID treatment, we performed differential 2-D gel analysis of Diclofenac or DMSO treated HL-60 cells followed by MALDI-TOF mass spectrometry of trypsin digested peptides for protein identification. Overall, we found that the expression of 211 potential protein spots changed in response to Diclofenac treatment. Searching the Swiss-Prot non-redundant database, peptide mass information revealed the identity of 69 protein spots (Fig. 2, numbers correspond to respective proteins in Online Resource 2). These 69 identified protein spots comprised 46 distinct proteins. Of these 46 proteins, 42 proteins had a higher concentration and four proteins showed a lower concentration in Diclofenac treated HL-60 cells. Among the differentially expressed proteins were components of the cytoskeleton such as the various actin and tubulin isoforms as well as numerous proteins involved in cell metabolism. These findings correlate well with the observed increase of apoptosis and differentiation in AML cells treated with NSAIDs as both processes require the reorganization of the cellular structure. In line with this assumption, we also found that the caspase-3 precursor was induced on the protein level following treatment with Diclofenac. These results point towards an activation of the

Deringer

levels after treatment. The *serial numbers* showing the position of the identified proteins are identical to the numbers given in Online Resource 2. *Letters* following numbers are used to distinguish between different spots representing the same protein (Color figure online)

MAPK/JNK pathway as a potential mechanism for induction of apoptosis in AML in response to NSAID treatment.

Gene expression profiling reveals activation of the MAPK/JNK pathway with induction of GADD45 α and AP-1 family transcription factors

To gain a more comprehensive insight into the molecular mechanisms involved in NSAID induced apoptosis and differentiation in AML, we performed gene expression analysis of THP-1 and HL-60 cells treated with Diclofenac or DMSO. We found a total number of 253 genes that significantly changed their level of expression in response to Diclofenac in both cell lines with a lower bound of fold change of >1.2 (Fig. 3a). Of these 253 genes, 114 had a higher and 139 a lower expression as a consequence of NSAID treatment (Online Resource 3). Among the activated genes were GADD45 α and the AP-1 transcription factor family members c-Jun, JunB and Fos. Consecutive Ingenuity network and pathway analysis revealed transcriptional changes in the network involved in transcription and cancer progression with the AP-1 family members JUN and FOS as center molecules (Fig. 3b). Furthermore, activation of the MAPK/JNK pathway was found to be the most significantly changed pathway (P < 0.001, not shown). Quantitative RT-PCR analysis confirmed the increased expression of GADD45α and the AP-1 family transcription factors c-Jun, JunB and Fra-2 in response to Sulindac sulfide or Diclofenac

Fig. 3 Gene expression profiling of Diclofenac treated AML cells. Prior gene expression profiling, HL-60 and THP-1 AML cells were treated with 100 μ M Diclofenac for 48 h. a M/A plot illustrating the 253 differentially expressed genes in Diclofenac and DMSO treated THP-1 and HL-60 cells. b Ingenuity pathway analysis reveals a network of genes involved in transcription and cancer progression to be the top altered network following Diclofenac treatment. c Quantitative RT-PCR analysis of GADD45 α and AP-1 family transcription

treatment in HL-60 cells and 14 bone marrow derived de novo AML samples. Diclofenac and Sulindac sulfide treatment induced the expression of GADD45 α by 2.10 and 1.87-fold, of c-Jun by 6.61 and 3.34-fold, of JunB by 1.69 and 1.49-fold, and of Fra-2 by 4.82 and 3.03-fold in HL-60 cells,

factor expression in NSAID treated HL-60 cells. All samples were treated with 100 μ M Sulindac sulfide, 100 μ M Diclofenac or equal amounts of DMSO for 48 h prior harvest of total RNA. Data is shown as mean fold of induction from triplicate experiments + SD. d Quantitative RT-PCR analysis of GADD45 α and AP-1 family transcription factor expression in NSAID treated AML patient samples. Data is shown as mean fold of induction + SD (n = 14, *P < 0.05)

respectively (Fig. 3c). Mean fold of induction in the 14 AML patient samples following treatment with Sulindac sulfide or Diclofenac was 11.84 and 1.67-fold for GADD45 α , 99.41 and 12.48-fold for c-Jun, 15.83 and 1.99-fold for JunB, and 2.27 and 1.66-fold for Fra-2, respectively

🖄 Springer

28

Apoptosis

Fig. 4 NSAID mediated apoptosis in AML depends on activation of JNK. a Kinase assay showing induction of JNK kinase activity in cell lysates from Diclofenac and DMSO treated THP-1 cells. b, c Addition of 40 nM of a specific JNK-inhibitor (JNK-) decreased Diclofenac induced apoptosis in THP-1 cells (P < 0.05, panel b) and in Sulindac sulfide and Diclofenac treated de novo AML samples (n = 6, P < 0.05, panel c). All samples were treated with 100 uM of the indicated drugs for 48 h. Data is shown as mean + SD

(Fig. 3d). We also tested other AP-1 transcription family members such as Fra-1, Fos and FosB, but did not find a significant increase in expression in response to treatment with NSAIDs (data not shown). Overall, treatment of AML samples with NSAIDs led to a pronounced transcriptional activation of GADD45 α , c-Jun, JunB and Fra-2 suggesting a role for these genes in NSAID induced apoptosis and differentiation in AML.

When combining the datasets of our gene expression profiling and differential proteomic studies for a comprehensive network and signaling pathway analysis using Ingenuity IPA 9.0, we found that the genomic and proteomic approach complemented each other fairly well. Two of the top three networks evolved around caspase-3 and JNK signaling (Online Resource 4). With regards to the top altered biological functions in our combined analysis approach, we found that the most significantly changed pathways all involve cellular growth, proliferation, apoptosis and cancer development. A full list of these pathways and involved genes can be found in Online Resources 5–9.

NSAID induced apoptosis is mediated by activation of JNK

It is well established that activation of GADD45 α and the MAPK/JNK pathway leads to activation of JNK with consecutive induction of cellular apoptosis through phosphorylation of c-Jun followed by activation of the caspase-3 dependent apoptosis pathway. We had already identified an increased protein concentration of the caspase-3 precursor in

🖄 Springer

our proteomics analysis and an increase in GADD45 α expression, so we examined if JNK is involved in NSAID mediated apoptosis observed in AML. First, we tested if JNK is activated as a consequence of Sulindac sulfide or Diclofenac treatment in THP-1 AML cells and found a consistent increase in JNK activity as demonstrated by an increased c-Jun phosphorylation in our JNK kinase assay (Fig. 4a). Next, we treated THP-1 cells and 6 individual AML patient samples with the aforementioned NSAIDs and added a specific JNK inhibitor that blocks JNK activity and thereby inhibits JNK-dependent apoptosis. Here, we found that addition of the inhibitor significantly decreased the proapoptotic potency of Sulindac sulfide and Diclofenac in THP-1 cells and the 6 AML patient samples tested. In THP-1 cells, addition of a JNK inhibitor decreased apoptosis by 51% when cells were treated with Diclofenac (Fig. 4b). Within the patient samples, apoptosis was decreased by an average of 40 and 26% when a JNK inhibitor was added to the Sulindac sulfide or Diclofenac treated cells (Fig. 4c). These data indicate that activation of JNK plays an integral role in NSAID mediated apoptosis in AML.

Transient expression of GADD45 α and AP-1 family transcription factors is sufficient to induce apoptosis in AML

To evaluate if the NSAID mediated increased expression of GADD45 α and the AP-1 transcription factor family members itself is sufficient to induce apoptosis in AML, we transiently overexpressed these proteins in 8 de novo bone

Fig. 5 AP-1 factors and GADD45A are sufficient to induce apoptosis in AML. a Overexpression of GADD45a or the shown AP-1 heterodimer combinations is sufficient to induce apoptosis in AML. Data is shown as mean fold increase of photometric extinction at 405 nm + SD as compared to the respective DMSO treated controls (n = 8 patients;P < 0.05). b RT-PCR showing induction of GADD45a following transfection with AP-1 heterodimers in AML patient samples. Data is shown as mean fold increase in expression + SD as compared to empty vector transcfections as controls (n = 5, P < 0.05). c Luciferase enhancer assay showing transactivation capacity of AP-1 heterodimers co-transfected with the pGL3-GADD45a promoter construct. Experiment done in triplicates and data is presented as fold of induction in luciferase activity + SD (*P < 0.05). d RNAi of JunB + Fra-2 prior Sulindac sulfide or Diclofenac treatment decreased the apoptotic potential of the aforementioned drugs. Data is shown as mean fold increase of photometric extinction at 405 nm + SD as compared to the respective DMSO treated controls (n = 2 patients)

marrow derived AML samples and performed consecutive apoptosis analyses 48 h after transduction. We did not detect an increased rate of apoptosis when c-Jun, JunB or Fra-2 were transfected alone (data not shown), but found a 1.85-fold increase when c-Jun + Fra-2, a 1.52-fold when JunB + Fra-2 and a 1.96-fold when c-Jun + JunB were co-transfected, respectively. We also found that expression of GADD45 α alone led to an average 2.1-fold increase in apoptosis in the AML samples tested (Fig. 5a). Co-transfection of AP-1 factors in five patients with de novo AML also led to an activation of transcription of GADD45 α by a 133.05-fold increase when c-Jun + Fra-2, by a 10.88-fold when JunB + Fra-2 and still by 9.87-fold when c-Jun + JunB were added, respectively (Fig. 5b). This indicates that GADD45 α may be a downstream target of these AP-1 transcription factors in NSAID treated AML cells. We also looked for an increased expression of the differentiation markers CD11b, CD14, CD15 and CD114 in AML patient samples following co-transfection with c-Jun + Fra-2, c-Jun + JunB and JunB + Fra-2. Here, only 2 out of 8 patient samples showed an increased expression of these markers in response to co-transfection of the aforementioned AP-1 transcription factors (data not shown), indicating that other NSAID-related effects may contribute to the overall increased expression of myeloid differentiation markers observed in response to Sulindac sulfide. To further establish GADD45 α as a downstream target of AP-1, we performed luciferase transactivation assays in PC-3 cells. Overexpression of AP-1 monomers demonstrated only a mild activation of the GADD45 α promoter (data not

🙆 Springer

Fig. 6 Proposed mode of action of NSAID in AML. Based on our data we propose that the NSAIDs Sulindac sulfide and Diclofenac lead to an induction of expression of the AP-1 transcription factors c-Jun, JunB and Fra-2. This results in an increased expression of GADD45 α with activation of JNK and consecutive induction of apoptosis

shown). This is in line with the minor effects observed following transfection with AP-1 single factors in AML. However, in accordance with the anti-proliferative effects observed when AP-1 heterodimers were transduced, we found a strong induction of the GADD45 α promoter by 3.13 and 3.51-fold when Fra-2 + JunB or Fra-2 + c-Jun were co-transfected, respectively (Fig. 5c). Further, we asked if loss of Fra-2 + JunB prior to treatment can abrogate apoptosis in human AML cells. Therefore, we used RNAi to inhibit expression of JunB and Fra-2 following treatment, and found that knockdown of JunB + Fra-2 decreased the induction of apoptosis for Sulindac sulfide from 2.11 to 0.76-fold and for Diclofenac from 1.81 to 1.37 fold, respectivley. Based on the data presented in this manuscript, we hypothesize that NSAIDs exert their anti-proliferative effects in AML through activation of AP-1 family transcription factors c-Jun, JunB and Fra-2, which leads to an increased transcription of GADD45 α with activation of JNK (Fig. 6).

Discussion

In this report, we demonstrate that the NSAIDs Sulindac sulfide and Diclofenac are functionally effective in AML cell lines as well as primary cells from AML patients' bone marrow. They exert their anti-proliferative activity through transcriptional activation of the AP-1 transcription factor family members' c-Jun, JunB and Fra-2 as well as through activation of GADD45 α . The transcriptional activation of GADD45 α leads to an increase in JNK activity with

⁄ Springer

30

induction of the caspase-3 dependent apoptosis program. To some extent, an increased expression of the myeloid differentiation markers CD11b, CD14, CD15 and CD114 was observed in AML patient samples treated with Sulindac sulfide. This is noteworthy as these AML samples were CD34⁺ selected leukemic cells cultured for 48 h in liquid suspension cultures without any G-CSF or GM-CSF. Under normal conditions, up to 10 days of culture in the presence of myeloid differentiation promoting cytokines are necessary to induce expression of the aforementioned differentiation markers. Still, the most profound effect observed was the significant and consistent induction of apoptosis throughout all different types of AML tested. This included BM samples from patients with complex aberrant karyotypes, FLT3-ITD mutations, MLL-mutations and recurrent translocations such as t(15,17). There is also increasing evidence that long-term low dose intake of NSAID may prevent certain types of cancers which is in line with numerous studies showing a profound anti-cancer effect of NSAID in vitro and in vivo [14, 21-24]. We do not suggest that NSAIDs should be used as single agents for the treatment of patients who suffer from AML. We consider them rather as additional compounds to increase the susceptibility to conventional cytotoxic drugs. Moreover, the cell intrinsic pathways activated through NSAID in AML that inhibit proliferation through induction of apoptosis may be exploited through novel agents or become feasible targets for future drug discovery studies. To shed some light on the potential mechanisms involved in the NSAID mediated anti-proliferative effects in AML we performed comprehensive protein and gene expression profiling studies. Results from these examinations were validated using primary cells from patients with de novo AML. At a first glance the correlation between our two types of studies was relatively weak. Still, both datasets complemented each other well. A likely reason for the low overlap between genomics and proteomics data may rely on technical reasons such as different sensitivities of the two different methods [25, 26]. Still, we identified 33% of the differentially expressed potential protein spots, implying that the actual overlap may be higher, but remains masked due to the limitations of this approach. Nonetheless, the increased expression of the caspase-3 precursor and proteins related to cellular structure and metabolism that we identified in the Diclofenac treated AML cells pointed towards activation of apoptosis and/or differentiation. Caspase-3 is a key molecule in the MAPK/JNK pathway and has been demonstrated numerous times as a critical mediator of drug induced apoptosis [27-30]. Reorganization of the cellular skeleton and a high metabolic activity are associated with both apoptosis and differentiation [31-34]. In line with these observations, gene expression profiling of Diclofenac treated THP-1 and HL-60 AML cells

revealed that the MAPK/JNK pathway was the most significantly altered pathway in response to this treatment. The activation of this pathway can lead to activation of JNK with increased phosphorylation of c-Jun [35]. This leads to its translocation to the nucleus and activation of the caspase-3 dependent apoptosis pathway [36, 37]. In line with this, we found that induction of apoptosis in NSAID treated AML patient samples and cell lines depend, at least partially, on JNK activity. Not only did we observe an activation of JNK in NSAID treated AML cells, we also found that addition of a specific JNK-inhibitor significantly decreased the apoptotic potential of NSAIDs in AML.

Our gene expression analysis also showed that GADD45 α was transcriptionally induced upon NSAID treatment. It is well established that GADD45 α is upstream of the MAPK/JNK pathway [38, 39]. GADD45α is mostly inactive in cancer cells, while it can be induced through either inhibition of NF-kB or activation of mda-7/IL-24 [11, 20]. We did not find evidence for both of these mechanisms in our data sets. Still, we found an increased expression of the AP-1 family transcription factors c-Jun and JunB. Both transcription factors have been studied extensively with respect to their role in malignant hematopoiesis and could be linked to PU.1 as critical downstream targets in a murine AML model [40]. In this model, re-expression of c-Jun and JunB restored myeloid differentiation and also inhibited proliferation of the PU.1 deficient leukemic cells. In line with these observations, we also observed that transient re-expression of c-Jun and JunB blocked proliferation through induction of apoptosis, although the effects on terminal differentiation of the patient derived AML cells were limited. The AP-1 family of transcription factors act as heterodimers and their function on target genes depends on the composition of the dimer [41, 42]. In line with this, we found an increased expression of Fra-2, another AP-1 family member. It is a Fos-related transcription factor that forms dimers with AP-1 family members from the Jun family such as c-Jun and JunB [42]. It is likely to assume that Fra-2 pairs with c-Jun or JunB in NSAID treated AML samples as we observed the most profound increase in GADD45a promoter activation when Fra-2 was co-transfected with c-Jun or JunB. Also, transfections of single AP-1 factors did not induce apoptosis or GADD45 α expression, indicating that activation of several AP-1 factors through NSAID is required to induce apoptosis in AML. Looking for a potential link between AP-1 and GADD45α we found a potential AP-1 transcription factor binding site in the GADD45 α promoter. Subsequent transactivation luciferase reporter assays revealed that the GADD45 α promoter is strongly induced by AP-1 heterodimers such as JunB + Fra-2 or c-Jun + Fra-2, but not when the two Jun factors are co-transfected.

Again, single AP-1 factor transfections had no effect on the GADD45 α promoter, which fits well with our previous observation of lack of apoptosis induction. This observation implies for the first time a direct link between AP-1 factors and GADD45 α that interact in a novel pathway to induce apoptosis in AML. Overall, we propose a model where activation of several AP-1 family transcription factors such as c-Jun, JunB and Fra-2 through NSAID treatment induces GADD45 α transcription in AML and to some degree myeloid differentiation. As a further consequence, GADD45 α activates JNK, which than leads to induction of apoptosis. These effects were observed in a broad variety of different AML subtypes indicating that targeting this pathway may be suitable to improve anti-proliferative treatment modalities for patients with AML.

Acknowledgments We would like to thank Annemarie Koch and Waltraud Passlack for excellent technical assistance. A.C. and I.B. are supported by grants from Leukämie Liga e.V. Düsseldorf, Germany and the Forschungskommission of the Heinrich-Heine-University, Düsseldorf, Germany. A.C. is further supported by the Deutsche Krebshilfe through a Dr. Mildred Scheel fellowship award and by a research fellowship award from the European Association of Hematology (EHA). L.F.Z is supported by Department of Defense grants PC051217 and OC0060439.

References

- Löwenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341(14):1051–1062
- Grimwade D, Hills RK (2009) Independent prognostic factors for AML outcome. Hematol Am Soc Hematol Educ Program 385–95
- Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellström-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114 (5):937–951
- Yang BX, Duan YJ, Dong CY, Zhang F, Gao WF, Cui XY, Lin YM, Ma XT (2011) Novel functions for mda-7/IL-24 and IL-24 delE5: regulation of differentiation of acute myeloid leukemic cells. Mol Cancer Ther 10(4):615–625
- Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogeneinduced DNA damage model for cancer development. Science 319(5868):1352–1355
- Krause A, Luciana M, Krause F, Rego EM (2010) Targeting the acute myeloid leukemia stem cells. Anticancer Agents Med Chem 10(2):104–110
- Sarkar D, Su ZZ, Lebedeva IV, Sauane M, Gopalkrishnan RV, Valerie K, Dent P, Fisher PB (2002) Mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci USA 99(15): 10054–10059
- Gupta P, Walter MR, Su ZZ, Lebedeva IV, Emdad L, Randolph A, Valerie K, Sarkar D, Fisher PB (2006) BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancer-specific apoptosis. Cancer Res 66(16):8182–8191

Springer
 Seringer
 Seringer

- Sauane M, Su ZZ, Gupta P, Lebedeva IV, Dent P, Sarkar D, Fisher PB (2008) Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci USA 105(28): 9763–9768
- Rahmani M, Mayo M, Dash R, Sokhi UK, Dmitriev IP, Sarkar D, Dent P, Curiel DT, Fisher PB, Grant S (2010) Melanoma differentiation associated gene-7/interleukin-24 potently induces apoptosis in human myeloid leukemia cells through a process regulated by endoplasmic reticulum stress. Mol Pharmacol 78(6):1096-1104
- 11. Zerbini LF, Czibere A, Wang Y, Correa RG, Otu H, Joseph M, Takayasu Y, Silver M, Gu X, Ruchusatsawat K, Li L, Sarkar D et al (2006) A novel pathway involving melanoma differentiation associated gene-7/interleukin-24 mediates nonsteroidal antiinflammatory drug-induced apoptosis and growth arrest of cancer cells. Cancer Res 66(24):11922–11931
- Suh YJ, Chada S, McKenzie T, Liu Y, Swisher SG, Lucci A, Hunt KK (2005) Synergistic tumoricidal effect between celecoxib and adenoviral-mediated delivery of mda-7 in human breast cancer cells. Surgery 138(3):422–430
- Oida Y, Gopalan B, Miyahara R, Inoue S, Branch CD, Mhashilkar AM, Lin E, Bekele BN, Roth JA, Chada S, Ramesh R (2005) Sulindac enhances adenoviral vector expressing mda-7/ IL-24-mediated apoptosis in human lung cancer. Mol Cancer Ther 4(2):291–304
- 14. Czibere A, Prall WC, Zerbini LF, Grall F, Craigie EC, Ulrich SD, Giagounidis AA, Haas R, Libermann TA, Aivado M (2005) The nonsteroidal anti-inflammatory drug Exisulind selectively induces apoptosis via JNK in secondary acute myeloid leukemia after myelodysplastic syndrome. Cell Cycle 4(6):812–817
- Lehr S, Kotzka J, Avci H, Knebel B, Muller S, Hanisch FG, Jacob S, Haak C, Susanto F, Muller-Wieland D (2005) Effect of sterol regulatory element binding protein-1a on the mitochondrial protein pattern in human liver cells detected by 2D-DIGE. Biochemistry 44(13):5117–5128
- Tews D, Lehr S, Hartwig S, Osmers A, Passlack W, Eckel J (2009) Anti-apoptotic action of exendin-4 in INS-1 beta cells: comparative protein pattern analysis of isolated mitochondria. Horm Metab Res 41(4):294–301
- Rabilloud T, Strub JM, Luche S, van Dorsselaer A, Lunardi J (2001) Comparison between sypro ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics 1:699–704
- Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98(1):31-36
- Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC (2002) Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res 30(10):e48
- Zerbini LF, Wang Y, Czibere A, Correa RG, Cho JY, Ijiri K, Wei W, Joseph M, Gu X, Grall F, Goldring MB, Zhou JR et al (2004) NF-kappa B-mediated repression of growth arrest- and DNAdamage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc Natl Acad Sci USA 101(37): 13618–13623
- Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377(9759):31–41
- Hahn E, Kraus S, Arber N (2010) Role of cyclooxygenase-2 in pathogenesis and prevention of colorectal cancer. Dig Dis 28(4-5):585-589
- Wu CY, Wu MS, Kuo KN, Wang CB, Chen YJ, Lin JT (2010) Effective reduction of gastric cancer risk with regular use of

nonsteroidal anti-inflammatory drugs in *Helicobacter pylori*infected patients. J Clin Oncol 28(18):2952–2957

- 24. Czibere A, Prall WC, Zerbini LF, Jäger M, Kobbe G, Knipp S, Libermann TA, Haas R, Aivado M (2006) Exisulind induces apoptosis in advanced myelodysplastic syndrome (MDS) and acute myeloid leukaemia/MDS. Br J Haematol 135(3):355–357
- Larbi NB, Jefferies C (2009) 2D-DIGE: comparative proteomics of cellular signalling pathways. Methods Mol Biol 517:105–132
- Lu J, Lal A, Merriman B, Nelson S, Riggins G (2004) A comparison of gene expression profiles produced by SAGE, long SAGE, and oligonucleotide chips. Genomics 84(4):631–636
- 27. Senthivinayagam S, Mishra P, Paramasivam SK, Yallapragada S, Chatterjee M, Wong L, Rana A, Rana B (2009) Caspase-mediated cleavage of beta-catenin precedes drug-induced apoptosis in resistant cancer cells. J Biol Chem 284(20):13577–13588
- Zhang B, Zhang Y, Shacter E (2003) Caspase 3-mediated inactivation of rac GTPases promotes drug-induced apoptosis in human lymphoma cells. Mol Cell Biol 23(16):5716–5725
- 29. Friedrich K, Wieder T, Von Haefen C, Radetzki S, Jänicke R, Schulze-Osthoff K, Dörken B, Daniel PT (2001) Overexpression of caspase-3 restores sensitivity for drug-induced apoptosis in breast cancer cell lines with acquired drug resistance. Oncogene 20(22):2749–2760
- Blanc C, Deveraux QL, Krajewski S, Jänicke RU, Porter AG, Reed JC, Jaggi R, Marti A (2000) Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res 60(16):4386–4390
- Rebillard A, Jouan-Lanhouet S, Jouan E, Legembre P, Pizon M, Sergent O, Gilot D, Tekpli X, Lagadic-Gossmann D, Dimanche-Boitrel MT (2010) Cisplatin-induced apoptosis involves a Fas-ROCK-ezrin-dependent actin remodelling in human colon cancer cells. Eur J Cancer 46(8):1445–1455
- Grzanka A, Grzanka D, Orlikowska M (2003) Cytoskeletal reorganization during process of apoptosis induced by cytostatic drugs in K-562 and HL-60 leukemia cell lines. Biochem Pharmacol 66(8):1611–1617
- Launay S, Brown G, Machesky LM (2003) Expression of WASP and Scar1/WAVE1 actin-associated proteins is differentially modulated during differentiation of HL-60 cells. Cell Motil Cytoskelet 54(4):274–285
- 34. Cohen DM and Chen CS (2008) Mechanical control of stem cell differentiation. StemBook, ed The Stem Cell Research Community, StemBook. doi:10.3824/stembook.1.26.1, http://www. stembook.org
- Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600):1911–1912
- Takada E, Hata K, Mizuguchi J (2008) c-Jun NH2-terminal kinase (JNK)-dependent nuclear translocation of apoptosisinducing factor (AIF) following engagement of membrane immunoglobulin on WEHI-231 B lymphoma cells. J Cell Biochem 104(5):1927–1936
- 37. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288(5467):870–874
- 38. Yin F, Bruemmer D, Blaschke F, Hsueh WA, Law RE, Herle AJ (2004) Signaling pathways involved in induction of GADD45 gene expression and apoptosis by troglitazone in human MCF-7 breast carcinoma cells. Oncogene 23(26):4614–4623
- 39. Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95(4):521–530
- Steidl U, Rosenbauer F, Verhaak RG, Gu X, Ebralidze A, Otu HH, Klippel S, Steidl C, Bruns I, Costa DB, Wagner K, Aivado

Springer

M et al (2006) Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat Genet 38(11): 1269–1277

- Shaulian E (2010) AP-1—the Jun proteins: oncogenes or tumor suppressors in disguise? Cell Signal 22(6):894–899
- Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117(Pt 25): 5965–5973

 $\underline{}$ Springer

Supplementary Data

Apoptosis

The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway

Raminder Singh¹, Ron-Patrick Cadeddu¹, Julia Fröbel^{1,2}, Christian Matthias Wilk¹, Ingmar Bruns¹, Luiz Fernando Zerbini⁴, Tanja Prenzel², Sonja Hartwig², Daniela Brünnert¹, Manoj Bhasin³, Thomas Schroeder¹, Stefan Lehr³, Daniel Geoffrey Tenen³, Rainer Haas¹, Akos Czibere^{1,3}

¹ Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine-University, Düsseldorf, Germany

² Department of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center GDC, Düsseldorf, Germany

³ Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA

⁴ International Center for Genetic Engineering and Biotechnology, Faculty of Health Sciences, University of Cape Town, South Africa

Corresponding author: Akos Czibere (aczibere@bidmc.harvard.edu)

Online Resource 1. Patient and disease characterists

No.	Diagnosis	Age	Gender	Cytogenetics	% Blasts BM	Molecular Diagnosis
1	AML M1	27	male	46. XY	41	N/A
2	sAML/MDS	67	female	45,XX,t(3,3)(q21;q26),-7[17]/46,XX[3]	13	N/A
3	sAML/MDS	5 2	male	46,XY	17	MLL-PTD
4	sAML/MDS	33	male	46, XY, t(9;22)(q34;q11) [14]	25	N/A
5	AML M2	67	male	Complex	27	N/A
6	AML M5	43	male	N/A	99	N/A
7	AML M2	30	female	Complex	80	N/A
8	MDS RAEBI	74	male	45, XY, -7 [18], 46, XY, dup (1)(q34q25)	7	N/A
9	AML M5	55	male	45, XY, -7 [24]	60	N/A
10	AML M2	53	female	Complex	44	N/A
11	sAML/MDS	70	female	46. XX	30	N/A
12	AML M1	55	female	46, XX	84	FLT3-ITD, MLL-PTD
13	AML M2	27	male	46, XY	94	N/A
14	AML M4	23	male	46, XY inv16	46	N/A
15	AML M1	78	female	46. XY	40	N/A
16	AML M4	63	female	46. XX	37	FLT3-ITD
17	AML M3	55	male	46, XY, t(15;17) [35]	95	PML-RARalpha
18	MDS RAEB II	67	male	46, XY	12	N/A
19	AML M1	57	female	46, XX, t(6;9)(p23;q34)	8 0	FLT3-ITD
20	sAML/MDS	72	male	Complex	40	N/A
21	sAML/MDS	46	male	45, X, -Y[22]. 46, XY [1]	68	N/A
22	MDS RAEB II	87	male	N/A	N/A	N/A
23	AML M4	78	male	N/A	N/A	N/A
24	sAML/MDS	72	male	46, XY	90	N/A
26	AML M3	28	female	46, XX .t(15;17) [23]	88	PML-RARalpha
27	AML M2	52	male	46. XY	20	N/A
28	sAML M4 (MDS)	63	female	46, XX 5q-, +8	28	N/A
3 0	AML M1	54	female	N/A	65	N/A
31	CMML	36	male	N/A	N/A	N/A
32	AML M4	59	female	46, XX	84	FLT3-ITD
34	CMML	72	female	N/A	6	N/A
35	AML M4	40	male	46 XY. t(3:21)	62	N/A
36	sAML/PV	80	female	N/A	30	N/A
39	AML M1	77	female	N/A	N/A	N/A
41	CMML	53	male	47 XY, +8 [7/23]; 46 XY [16/23]	15	N/A
42	AML M1	49	female	N/A	66	N/A
N/A:	Not available; sAML	/MDS: sec	ondary AML a	fter MDS; FAB classification is used		

Molecular mechanisms of the anti-leukemic properties of Non-steroidal Anti Inflammatory Drugs

Apoptosis The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in

human acute myeloid leukemia cells through an AP-1 dependent pathway Ramindor Singh¹, Ron-Pathok Gadodou¹, Julia Frobel^{1,2}, Christian Matthias Wilk¹, Inamar Bruns¹, Luz Fornando Zerbini⁴, Lan Sonja Hartwig², Daniela Drünnert¹, Manoj Shasin³, Thomas Schröeder¹, Stefan Lehr², Daniel Seoffrey Tenen³, Rainer Haas¹,

Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Eusseldorf, Germany
 Department of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center ODC, Düsseldorf, Germany
 Beth Israel Dearon Hess Medica, Center, Harvard Medica, Schrol, Boston, Massachusetts, USA

⁴ International Center for Genetic Engineering and Bictechnology, Faculty of Heath Sciences, University of Cape Town, South

Corresponding author: Akits Czibere (atzibere@pidmit.harvard.edu)

Online Resource 2. Full list of identified proteins

_ ID	Name	Annotation	MW	Fold Change
́з	Filarn n-A	FLNA_HUMAN	283192	-3,77
۰b	Filamin-A	FLNA HUMAN	283162	-3,73
´c	Filamin-A	FLNA_HUMAN	200192	- 3,4 7
'd	Filari n-A	FLNA_HUMAN	283192	-2,94
'e	Filamin-A	FLNA_HUMAN	283192	- 2,84
17	Elamin-A	FLNA HUMAN	283192	-2,11
´g	Eilamin-A	FUNA_HUMAN	283192	2,14
'n	Filamin-A	FLNA_HUMAN	283192	3,77
2a	A pha-actir in-4	ACTN4_HUMAN	105245	2,18
2b	Alpha-actinin-4	ACTN4 HUMAN	105245	ŕ.86
За	Stress-70 protein	GRP75_HUMAN	79920	2,22
3b	Stress-70 protein	GRP75_HUMAN	73920	2,57
4a	Protein disulfide isomerase precursor	PLIA1UMAN	57480	2,95
46	Protein disulfide-isomerase precursor	PETA1_OUMAN	57400	-2,24
- 0 - 0	ransitional endoplasmic reticulum All Pase	TERA_HUMAN	89819	2,10
5	v mentin VTO sumthass here also	VIME_H_MAN	02545	2,14
	A LP synthase beta chain A she tub tub 9	TOAR HUMAN	20220	2,41
0	E biox020C man of controls 16		70346	4.20
10	RDS obscome orate n.L.2.	DISLU MAN	15202	4,11
115	Protein die iftide is om ersee Akingen iregin	PLIAS SUMAN	5/146	2,25
116	Protein dis lifide isomerase 43 precursor	PEIA3 HUMAN	57146	-1.92
.2	Fumaryanetranetase	FAAA HIMAN	JF743	2.85
• 3	NADH-ubiour one ovidoreductase	NISM HUMAN	21737	2.45
14a	Sulfatransferase 1C?	ST1C2 HUMAN	35682	2.00
145	Sulfotransferase 1C2	ST1C2 HUMAN	35682	2.12
15a	Ccronin-1A	COR'A HUMAN	51678	2.01
15b	Ccronin IA	COR'A HUMAN	51678	2.61
ŕ 6	Plastin-2	FLSL TIUMAN	70015	.05
• 7	Homeobox protein GSH-1	55-EH MAN	26378	4,08
.8	Glucose-6-phosphate 1-dehydrogenase	GEPD_HUMAN	59553	2,56
195	A pha-enclase	ENOA HUMAN	47350	2,18
19b	A pha-enclase	ENOA_HUMAN	47350	4.01
19r:	A pha-milase	ENCA_HUMAN	47350	1,81
19c	A pha-enclase	ENCA_HUMAN	47350	- 2,4 0
19e	A pha-enclase	ENOA HUMAN	47350	-2,21
20	C), CT3	MIP2B_HUMAN	11563	1,90
21å	Phosphoglycerate kinase 1	PGK1_HUMAN	44854	.95
21E	Phosphoglycerate kinase 1	PGK1_HUMAN	4485-1	2,23
21c	Phosphoolycerate kinase 1	PGK1 HUMAN	44854	2,78
21c	Phosphoglycerate kinase 1	PGK1_HUMAN	44854	-1,86
22a	Tukulin beta-3 chain	TBB2_HUMAN	50095	.93
<u>11</u> %	ucuin beta 2 chain	TBB5 ^T HOWVN	50095	2,02
20	l'rotein disulfide-isomerase Asi precursor	PETA6_OUMAN	41490	2,29
./4	Proteisiong i et nuclear antigen (PONA) Rissuista krissa issa mas M1872	PUNA_HUMAN	2911912	2,00
20	Fyruvate kii asensozyn esiki nimizi Alitekeeste 1		00008	2,43 4 mi
20	Cyconerauli i Sporregulico curtenco	ODEL HUMAN	24972	206.
28	Henricio merursor	HEPT HUMAN	9915	2,0
29	Resure at the note in Rah, 11 A	RBI1A HUMAN	24361	1 99
30	Garcma-actin	ACTG HUMAN	40108	-2.33
31a	Beta-actin	ACT3 HUMAN	42052	-1.92
31L	Beta-actir	ACTE HUMAN	42052	-1.83
32	Homerin	HORN - UMAN	283140	
33	Keratin, type I cytoskeleta 64	K2CEA HUMAN	60162	4,36
34	Glutamine synthetase	GENA_HUMAN	42534	2,86
35	Tudor domain-containing protein 3	TERE3_H_MAN	734.25	2,33
36	Transketolase	TKT_HUMAN	66519	.0.
37	DNA topo somerase 2-alpha	TOF2A_HUMAN	175017	-1.05
38	E-b o/LBR-repeat protein 3	EBXL3_HUMAN	492.74	2,65
39	Poly(rC)-binding protein 1	FCEP1_HUMAN	37987	, 90
40	Brain derived neurotrophic factor prepursor	RDINE_HOWAX	26199	1,86
41	Ubiquinal-cytochrome o reductase core protein II	gi 50592900	40504	ŕ.06
42a	Fructose-bisphosphate aldelase A	ALDOA_HLMAN	39720	2,33
42b	Fructose-bisphosphate aldclase A	ALDOA_HUMAN	39720	2,73
43	Citrate synthase	CISY HUMAN	51008	2,06
44 7 =	Caspase-3 precursor A fund to fumme is one arrest?	CASE3_HUMAN MADS_UUMAN	32044	2,38
40 70-	A JEDYIALE KINASE ISLENZYINE /	KALIZ_HUMAN	ZE008	,8 4 au
MV- M	Adecular Weight in Dalton	P201_R0MAN	00010	.00

The non-steroidal anti-inflammatory drugs Sulindae sulfide and Diclofenae induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway. Raminder Singh¹, Ron-Patrick Cadeodu¹, Julia Fretel^{1,2}, Christian Mathias Wilk¹, Ingmar Bruns¹, Luiz Fernande, Zerbin⁴, Tanja Frenzel²,

Raminder Singh", Ron-Patrick Cadeodu', Julia Erricel^{en}, Christian Matthias Wilk', Ingman Bruns', Luiz Fernand', Zerbir L', Lanja Fernzel^{*}, Sonja Hartwig^{*}, Daniela Brünnett¹, Mano, Bhasin³, "nomas Schroeder¹, Stefan Lehr², Daniel Geoffrey Tenen³, Rainer Haas¹, Akos Czibere^{1,3}

¹ Department of Fematology, Oncology and Clinical Immunology, Heinrich Heine-University, Dusseldorf, Germany

- ² Department of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center ODC, Dusseldorf, Germany
- ⁹ Beth Israel Deaconess Medical Center, Harvard Medical School, Eoston, Massachusetts, USA

*International Center for Cenetro Engineering and Biotechnology, Faculty of Health Sciences, University of Cape Town, South Africa

Corresponding author: Alkos Czipere (aczibere/@bidmc.narvard.edu).

Online Resource 3. Full list of differentially expressed genes

Probe Set ID	EntrezGene ID	Gene Name	LBFC	FC
212488_at	1283	CCL5A1 collaçen, type Vi alpha 1	4 09	8,83
220616_at	N/A	y5453588	3.36	3,36
2C8102_s_at	5663	PSD, pleckstrin and Sec7 comain containing	3 35	3,35
204661_at	1043	CEI52, CEI52 molecule	3.21	44
205962_at	5062	PAK2_p21 (CDkN1A)-activated kir ase 2	2 57	4,61
214466_at	2702	GUA5, gap junction protein, alpha 5, 40kDa	2.46	5,93
206553_at	4939	CAS2, 215-cl goadenylate synthetase 2, 69/71kDa	2.32	3,86
201473_at	37.2F	IUKB jun B proto-on⊂og∈ne	2.29	2,43
200671_5_at	6711	SPTBNL spectric, heta, non-erythropytic 1	2.27	5,62
209122_at	123	ADEP adipose differentiation-related protein	2.14	2,41
211223_at	£62€	PROP1 prophet of Pit1, paired-like homeodomain transcription factor	2 12	5,13
221203_at	850	RUNX2: runt-related transcription factor 2	2.12	5,25
201062_9t	204ú	STOM stomatin	2	3,33
37547 at	27241	BBSut Bardiet-Biodlicyndrome U	1.95	1,95
2162c4_s_at	3913	LAME2: Jammin, beta 2 (Jaminin S)	1.74	5,23
213324 at	b/14	SRC: v-src sarcone (Schmidt-Ruppin A-2) viral encodene homolog (avian)	1 /3	4,87
203153_at	3434	F T1: interferon incuded protein with tetratricopeptide repeats. I	1,7	3,48
- 205047 s at	-140	ASIVS, asparagine synthetase	1.68	3,91
213958 at	923	CD6: CD6 molecule	1.67	1,67
	5/154/1	DEIT4: DINA damage inducible transcript-(1.65	2.38
219658 at	79810	PTCD3, pentatricopentide repeat domain 2	1.65	2,98
20720 sat	6530	SLC22A1 solute carrier family 22 (organit, callon transporter) member	1.64	3,76
 34640 at	316	CAMK2B, Calcium/camodulin-dependent protein kirjase. Loeta	1.64	5.23
	333	APLP i lanvlo dibeta (A4) precursor-like protein 1	1.0	2.56
207456 at	2.74	HNE46 inepatoryte nuclear factor 4, gamma	1.59	5,91
207670 at	2691	KET85 keratin 8 ^r	1.57	0.59
220177 5 at	64599	TMPRISG3 transmembrane protease, serine 3	1.56	2.66
203507 at	968	CD6(; CD68 molecule	1.55	2.75
203540 at	2670	GEAP dua ribrillary addic protein	1.54	2.61
217036 at	27445	PCLO: piccolo (presvnaptic cytometrix protein)	1 54	1.54
218954 at	10520	ARID3B: A1 rich interactive domain 33 (SRIGH1-like)	1.52	3.87
205837 c at	2993	GYPA: avecehorn A (MNis pleed group)	151	3.48
204330 x at	5673	PisG5: pregnar cy specific beta-1-givcoprotoin 5	1.5	15
209547 s at	57794	SE4: splicing factor 4	1.49	1/19
202409 at	3431	IGEP insulin like prowth factor 2 (somatomedin A)	1.47	1.47
206548 at	79938	E - 23556 Evolutional protein El J23556	1 47	2.82
31837 at	91289	TMEM112B, transmembrane protein 112B	145	3.13
207281 at	1261	CNGA3 evolic nucleotide bated channel alpha 3	1 44	1.44
204439 at	0964	FI44L interferon-indulled protein 44-like	143	2.13
205179 s at	107	ADAM8_ADAM metallopaptidase domain 6	1 43	0,89
20:693 × at	1634	DCN derin	143	2.93
219519 s at	6614	SIGLEC1 staid and boding to like lectin 1 stalpadhesin	1.43	26
218990 5 at	6707	CPRR3: small protine-rich protein 3	1.42	2.58
214211 at	049F	ET-11 ferr tin beavy polyneptide 1	1.41	1.64
201466 5 at	2725	.UN: un oncodere	14	1.92
205247 at	4855	NCTCH4: North hemolog 4 (Drosephila)	14	2.55
209524 90	50310	HDGFFP3: hepatoma-denvec crowth factor related protein 3	1.39	2.89
214319 at	10129	EKY tury homoloc (Urosochila)	1 39	1.93
215282 at	25847	AINAFC13: an aphlase promoting complex subunit 13	1 39	1.89
3421. at	1043	CD5. ² CD52 molecule	1.38	17
206315 at	92.14	CRLF1, cytokine receptor like factor 1	1 38	5.76
2203.01 at	79839	CCEU I02E: colled coll domain contair inc 102E	1.38	239
203483 at	57715	SEMA43: sema domain, immunoglobulin comain, transmembrane comain and short cutoclascing domain 4G	1.37	3,41
217678 at	23857	SLC7A11 solute carrier family 7, (cationic amino acid transporter v- system) member 11	1.37	1,59

Page 1 of 4

220088_at	728	C5AR 1: complement component 5a receptor 1	1 37	2,16
2C4364_s_at	65055	REEP1: receptor accessory protein 1	1 35	3,13
2115JU_at	5600	MAHKITI, mitogen-activated protein kinase T US D2K alter alter a site and the LC X is head of the set to the Decembra is t	1.35	2,93
200624_at	8207 8795	USP91 ubiquiti specific pedidasely, r-hiked (lat racets-like, Drusophila), ELOV di dovordi profestor on a har fotbranch (EEN14EL 2, SUE4(El 2, as vi) Mar 4	1.30	3,37
219032_at	22.47	ELEVILA, elengation of very long or all hany acids (FERN/2000, SURA/Eles, yeast)-like 4 HTMB: Microin 2	1.50	3,19
200700_BL 219449_st	2347	TRAPD Th ERSE16 accordant dura datable domain	1.30	2,42
215445_4	10263	ADVM28 ADVM restallesantidase damain 22	1.34	0,00
217359 s. at	2682	NCAM1 neural cell adhes on molecule 1	133	2.04
207563 6 4	8479	DIFT: OLin zert Nacetri für operation (Cir Már) transferade	1 33	2.0-
221114 at	258	AMCN, amelobiastin tenamel matrix protein)	1.3.3	2,24
221147 x at	51741	WWCX, WW domain containing exicored uptase	1 33	1.33
213251 at	3725	JUN: un oncogene	1 32	1.86
201925 s at	1604	CE55 CE55 molecule, decay accelerating factor for complement (Cromer blood group)	1 31	16
2C2847 at	5106	PCK2: of osof cencilsyruviate carboxykinace 2 (mtechondria)	131	1.54
210726 at	157c	CYP3A4: cytechrome P450, family 3, publiamily A, polypopt do 4	131	1.79
36129 at	9905	FUTBCT, RUN and TEC1 domain containing 1	131	3,16
	3634	ITG AM. integrin, alpha M (complement component 3 receptor 3 suburit) CD11p	1,3	1,38
210228 at	1437	CSF2 colony stimulating factor 2 (granulocyte macrophage)	1,3	2/12
	4938	CAS1 2',5-cligoadenylate synthetase 1, 40/46kEra	1.29	1,88
	8617	FGF18, fibriblast growth factor 16	1.29	5,89
203725_at	1647	GADD45A. Growth arrest and DNA-damage-inducible, a pha	1.29	1,61
219224_x_at	79797	ZNE408 izing finger protein 409	1.29	1,29
208703_s_at	1831	TSC22D2: TSC22 domain family, member 3	1.28	1,43
203547_at	920	CD4 iCD4 millerule	1.28	4,66
216994_5_at	850	RUNX2: runt-related transcription factor 2	1.20	1,65
200876_5_at	5660	PGAP, proslabosin (variant Gaucher disease and variant metachromatic leukodystrophy)	1 27	1,64
208510_5_at	5460	PPAR6: peroxisome proliferator-activated receptor gamma	1 27	16
214644_9t	833ú	HIST1H2Ak: historie cluster 1, H2ak	1 27	1,72
2175.2 ot	3433	F-12: interferon-incuded protein with totratricopeptide repeato 2	1.27	1,65
2184:54_9t	56301	NDULA4L2: NADH dehydrogenase (ubiguinone) 1 alpha subcomplex, 4-like 2	1.27	1,58
206384 b at	ъ/9c	'sCEL colellin	1-25	3,54
213233_s_at	10346	TRIM22, tripartite motif containing 22	1 26	31 ₀ 1
2C1821_s_ət	10440	TMM17A, translocase of inner mitochor drial membrane 17 homolog A (yeast)	1 26	24
217213_at	65.3C	SLC6A2 solute carrier family 6 (neurotransmitter transporter in oradrenalin) imember 2	1 26	1.7
217738_at	10135	PBEF1: pre B cell colony enhancing factor 1	1 26	1/18
213683_at	0762	NUP50, nucleoporin 50kEia	1 26	2,09
2C1926_s_at	1604	CD55, CD55 indecule, detay accelerating factor for complement (Crumer blood group)	1.25	1,48
2C4271_s_at	191C	ED/NRB rendutivelini recessuri type B	1 25	3,12
2C4415_at	25.37	IFI6 interferon, a pha-inducible protein 6	1.25	2,02
217707_at	053679	LCC653679, similar to Complement C3 preductor	1.25	1.6
220692_s_at	29968	PSAT1_phrsphrserine aminotransferase 1	1.25	1,51
2C1749_at	1889	ECE1 endothelin converting enzyme 1	1 24	1,63
2C3821_at	1839	HBLGH: heparin-binding LGH-like growth factor	1 24	1,65
211915_5_at	/20613	1008 tubulin, beta polybeptide 4, member Q	1 24	15
200924_3_at	6520	SEU3A2' solute camentamily 3, member 2	1 23	1,45
205369 x 31	1623	DB dinydrolipeamide branchold chain transacviase E2	1 23	1,07
216434_at	55J20	F _ 20009 rypothetical protein FLJ20693	1 23	1,23
203193 at and	23764	MARE, V-mailin usculosponeurosci icrosarconis oncogene neinologie ray any HRCE, budeau preste algodie, celudre geographica (5.4, AD).	1 23	1,96
219175 -+	5210	TE R2: tribbles service 2 (Disseptide)	1.22	2,20
210143_dL	324	ABC adenomatoria or knops colu	1 22	3.77
206220_3_81	F530	ERVICE or stain knaces purpose com	1.21	3,40
2002/0_at	1636	ACE providence Lectovering enzyme (opering dispetidaet, 61.1	1.21	3.7
203343_3_0	40.24	LEPC Isotonan vikaca	1 21	1.71
2146°6 at	84981	MGC 14376 Exception Internal Instein MGC 14276	1.21	1.72
219256 - at	5443ñ	SE3TC1_SE3.d_main and tetratric opentide recearts 1	1.21	1.62
22:346 at	26476	OB 10.11 olfactory recentor family 10 subfamily J member 1	1.21	1.21
221377 5 at	1317	RDPJ, recombination signal binding protein for immunoclobulin kappa J region-like	1.21	2.06
217799 x at	7320	UBE2H ubiquitin-conjugating enzyme E2H (UECC homologi veasti	1 21	1,41
207736_5_at	7142	TNE 2: transition protein 2 (during historie to protain ne replacement)	1,2	1.46
2C5685_at	942	CD86: CD66 molecule	1,2	1,79
	8573	SCARF1 scavenger receptor class F, member 1	-1 2	-1.4
215078 at	t64a	SUL2: supprokide dismutase 2, mitochondrial	-1.2	-2,12
216209_at	400084	LOC/100084: hypothetical gene supported by Alco57532, AL 137270, BC057845	1 2	2.42
2206JU at	54859	MEM 103: transmembrane protein 103	-1.2	1,58
221331_x_at	1493	CTLA4, systoxic T lymphocyte associated protein -I	1 2	1/3
207361_at	26959	HBP1: HMG box transcription factor 1	1,21	1,64
2C7477_at	N/A	Hs.283046.0	- 1,21	-2,5
206167_s_at	395	ARHGIAP6 Rho GTPase activating protein 6	- 1,21	-2,8

Page 2 of 4

2C8529 at	690	ETF3L1: basic transcription factor 3. I ke 1	1.21	2.61
	8013	NR4A3 inuclear receptor subfamily 4, group A, member 3	1.21	1.5
211945 sat	3638	ITGB1 integral beta 1	-1.21	-1.8
216310 at	57551	TAOK1 TAO kinase 1	-1.21	-2.18
	4237	ATXN3 ataxin 3	-1.21	- 54
2C3623 at	55558	FL×NA3 plexit A3	-1.22	63
206513 x at	£371	PML cromvelocytic leukemia	-1.22	-4.3
219107 at	63327	BCAN brey can	-1.22	- '89
220116 at	.2781	KONN2 notassium intermediate/small conductance calcium-activated channel, subfamily N, member 2	-1.22	-15
204720 = at	6573	THRA invitation personal constraints and a matrix	-1.22	.1.63
206569_at	1009	II 24: interfector 24	-1.23	-1.58
206814 at	480 2	NOFE: herve growth factor, beta novpentide	-1.23	-2.05
200011_ut	25.17	ICSE1: immunoclobulin superfamily, memoer 1	-1.23	-150
207055_5_81	6.1501	VES18: vacualar protein sorthing té homo og (S. cenevision)	-1.20	.2.20
200400_5_0t	27407	 Sho, vectoral proton conting to homolog(c), coronado) Ma(C) m autoanou accontato 	-1,23	-2,20
210614 at	1214	(11) (1) olathan boasischan (Ho)	1.97	2,00
200014 at	1213	ND141 auclose receptor subformit, 4, aroun 4, resembles 1	-1,24	-2,10
202340_X_at	20031	DDD1449: DDD1442 octors	1,29	00, NG C
211210_aL	29321	TEC15325: TEC1 data to formul control of 25	1,21	2,01
216549_5_81	00033	16010228. TBCT dontain family, mender 228 ABC/AB4, ethnicity, ethnic entitiety contains 6 (chicken)	1,2%	2,02
206281_at	110	ALC YAFT adenyiate tyciase activating polypeptice - (pruitary)	- 1,20	-1,5
2C4323_x_at	4763	NET, neuronorumni F (neuror bromatosis, von Reckinghausen disease, watson disease)	-1,25	-2,24
2C4989_s_at	2691	110564 integrin beta 4	-1,25	- 191
21/215_s_at	N/A	HS 220814 U	-1,25	- 1,93
2C5507_at	22399	ARHGEE111 Rhoiguanine nucleotide excharge factor (GEE) 15	-1,2%	-1,9
220065_at	64102	TNMC tenomodu in	-1,25	-2,36
216086_at	22987	SM2C (synaptic vesicle glycoprotein 2C)	-1,26	-1,0
2 19862_ s_at	26502	NARF: nuclear prefamin A resegnition factor	-1,26	- ′ ,43
220598_at	79092	CARD14: caspase recruitment domain family, member 14	-1,26	-3,46
220893_at	57399	LO 357299 uncharacterized gastric protein ZA52P	-1,26	-2,06
2C5152 at	6525	SLC5A1: soluto carrier family 6 (nourotransmitter transporter, GABA), membor 1	-1,27	-1,76
2C5544_s_at	138U	CR2: complement component (3d/Epstein Barrivirus) receptor 2	-1,27	-1,/3
2C7145 at	266U	GEHs: growth differentiation factor 8	-1,27	-2,1
2C7442_at	14 IC	CSF3, colorly stimulating factor 3 (granulocyte)	1,27	2,18
208545_x_at	6874	TAF/L TAF/LPNA polymerase II, TATA box binding protein (TBP) associated factor, 135kEa	1,27	4,23
205872_x_at	9659	PEE4DIP (phosphodiesterase 4D interacting protein (mycmegalin)	- 1,27	-3,5
216225_at	N/A	Clone MAGE 25997	1,27	2,54
219524_s_at	N/A	g13129143	- 1,27	-1,73
220821_at	2537	GALRT galanin receptor 1	-1,27	-2,06
2C4782_at	4291	MLF1: Myeloid leukemia factor 1	-1,28	-2,11
2C4083_s_at	7.69	TPM:2_tropsmyosin 2 (beta)	-1,28	- 64
2209°6_s_at	81926	C1orf14 Infromosome 1 open reading frame 14	-1,28	-3,09
219710_at	79028	SH3TC2_SH3 ditmain and tetratricopeptide repeats 2	-1,29	- 1,99
221908_at	84900	TMEM (10) transmembrane protein (10)	-1,29	-1,85
2C94G9_at	2823	GPM6A: glycoprotein MBA	-13	-2,45
206651_s_at	1361	CPD2: carboxypepticase D2 (plasma)	-1,31	-13,92
2C7658_s_at	2291	FCX01 /// F0.401B (forwhead box G1B /// forwhead box G1	-1,31	-2,36
209807 s at	4784	NETX in uploar factor BX (CCAAT-binding transpristion factor)	-1,31	-2,21
216447_3t	Is/A	CLNA: FLJ20872 ftc.; clone ALKA02604	-1,31	-1,03
218829 b at	55526	CHD7: Chromodomain helicase DNA binding protein 7	-1,31	-1,68
221457 s at	56344	BTNL2: butyrophilin like 2 (MHC class if associated)	1,31	1,67
211636 at	3507	IGHA1: immunoalobulin heavy constant alpha 1	1,32	3,2
	55811	SAC, testicular spluple adenylyl cyclase	- 1,32	
215018 at	85459	NIAA1731 NIAA1731	-1.32	-2.2
 205043_ас	103C	CFTR, evistic fibrosis transmembrane conductance regulator	-1.33	-2.83
210309_at	c4nr	RECCLS RecQuo Lein-ize 5	-1.33	-2.17
203151 at	4:30	MAP1A microtubile-associated protein 1A	-1.33	-2.3
205959 at	43.22	MM⊇13, matrix metallosenti Jase 13 (r. Janenase 3)	-1.34	.27
221182 at	80133	C1orf129, chromosome 1 onen reading frame 129	-1.34	-269
216229 at	27241	RC94: Cardet-Diedl syndrome 9	-1.34	-1.04
210230_st	15:30	DECC Exclusive biosition without	- 1.25	5.05
2(2)[22 at	2025	Mar2 IM domain Lings 2	- 1.25	-5,05
202100_00	7.20	CAPPA: complement commonent 4 binding protein, a site	- 1,00	- ,70
205054_dL	7903	DN8LI4: canalo avonemal labitatizmodiate abore 4	-1,50	51, - 050
205100_80	1002	Dinkier , cyneir ac onenai, rignt intermiediste chain n Ni c Xid 4: politio permet teorik X	-1,37	-2,38
2036LU at	0010	SELIONI, JOHLE COMONINAMI S TROADAN TROADANT A Service Service Service Com	-1,37	-2,29
210144_at	20/11	i Buli i Duzzak, i Buli i domain tami y, mernder i zza	1,37	2,26
207864 at	6332	SCIMAL sodium channel voltaco-gatoc, typo VII, alpha	- 1,38	-1,11
220771_at	51152	LOUGTISE: melanoma antigen	1,38	1,99
203734_at	8476	CEG/2BPA: CEC-12 binding protein kinase albha (DMPK like)	1,39	3,37
219800_s_at	79896	THNSL1: threonine synthase-like 1 (bacteriali	- 1,39	-2,31
2C5396_at	4038	SMALI3 (SMAD) family member 3	-14	-1,4

Page 3 of 4

Molecular mechanisms of the anti-leukemic properties of Non-steroidal Anti Inflammatory Drugs

ACADUR, 1978 1978.1 Sector 19.2 1.01 2.09 SUBLE, 8 9207 LGGG27 V, inter PF EDE, DUNADOMATA 13 -1.02 -2.04 SUBLE, 8 646 TPTATE, 0.4 -1.02 -2.04 SUBLE, 8 646 TPTATE, 1.04 -1.02 -2.04 SUBLE, 8 647 TPTATE, 1.04 -1.02 -2.04 -2.04 SUBLE, 8 5017 TRATE MARK SEC decimal to the SUBLE AND A	2C7669_at	3839	IKRT83 keratin 83	14	4
2005.2.m. 3846 LETLAPS.0. value decoded proof: 9.0 -1,42 -3.42 2005.0.m. 6.00 TSUN 10.10.10.10.10.10.10.10.10.10.10.10.10.1	2C30C0_at	11075	STMN2 istathmin like 2	1,41	2,98
2020.02.# 9/27 L00027 2 wind ref Hot, D004303407-13 -1,42 -1,42 -2,43 2020.82.# 158 CPF 141 splichner 345, (min) 1 usbank ja physpik 1 -1,45 -2,69 2020.82.# 5073 2,927 BERLYR, BRI and Feed Gramma Strates 10, 10 transmits previse -1,44 -2,70 2020.82.# 5073 2,927 -0,924 Min strates in transmits 1, 10 transmits previse -1,44 -2,70 2020.82.# 5737 COST / Chemosine CMC minit receipts 7 -1,45 -2,50 2020.82.# 5737 COST / Chemosine CMC minit receipts 7 -1,46 -2,61 2020.82.# 5737 COST / Chemosine CMC minit receipts 7 -1,46 -2,61 2020.82.# 5739 COST / Chemosine CMC minit receipts 7 -1,46 -2,61 2020.82.# 5739 COST / Chemosine CMC minit receipts 7 -1,46 -2,61 2020.82.# 5739 COST / Chemosine CMC minit receipts 7 -1,46 -2,61 2020.82.# 5749 CMC and splits 7 -1,46 -2,61 2020.82.# 5749 CMC and splits	214517_at	3846	KRTAP5.9. keratin associated protein 5.9	-1,42	-3,24
2006.p. in 6406 "1544" "Link-4 -1,42 -3,40 2015.2. a.d. 2736 CPFP1 in split spl	215500_at	92017	LOC92017, similar to R, KEN JDNA 4933437K13	-1,42	4 <u>2</u>
2023.2.ml 158 CPF 1A1 systel have 3450 tamp11 a suffamily A phytheside 1 -143 -79 2077.4.2w 9789 10102 MB104 A phytheside (FV dress) have and phytheside (FV dress) -144 -201 20201.4.8 9789 10102 MB104 A phytheside (FV dress), barried (FV dress) -144 -203 20201.2.8 9789 8778 1010 MB104 A phytheside (FV dress), barried (FV dress) -144 -203 20202.2.8 9789 6707 MB104 A phytheside (FV dress), barried (FV dress) -145 -216 20202.4.8 9789 6707 MB104 A phytheside (FV dress), barried (FV dress) -146 -248 20202.5.2.8 9789 MCD ON MP dress (FV dress), barried (FV dress) -146 -248 20202.5.2.8 1544 CSF LL dress (FV dress), barried (FV dress) -146 -248 20202.5.2.8 1544 CSF LL dress (FV dress), barried (FV dress) -146 -248 20202.5.2.8 1544 CSF LL dress (FV dress), barried (FV dre	220634_at	\$496	TBX4 Tubux 4	-1,42	-2,04
2373.4	2C4309 at	1563	CYP 11A1 cytechnome P450, family 11 subfamily A, polypeptide 1	-1.43	- 79
97964_a 0033 TGD IP dynama accept PI leasable pretent -1.44 -7.5 92014_af 0120 -0.5711 and shows plan for brank, blind OT -1.45 -2.56 92017_af 0120 -0.5711 and shows plan for brank, blind OT -1.45 -2.56 92017_af 57.07 C.C.GT (hermit Reskt) -1.46 -2.26 12027_af 57.07 C.C.GT (hermit Reskt) -1.46 -2.46 12027_af 57.02 D.N.A5 brain flexestory -1.46 -2.61 12027_af 57.33 D.N.A5 brain flexestory -1.46 -2.62 12027_af 57.33 D.N.A5 brain flexestory -1.46 -2.63 12027_af 57.34 D.N.A5 brain flexestory -1.64 -2.63 12026_af 6.190 C.M.16 brain flexestory -1.64 -2.6	203724 = at	22902	RUFY3 RUN and FYVE domain containing 2	-1,44	-3,06
22017_st 72002 (97X) hear process from Carbon Data Manage Line All 2007 -144 -278 22017_st 00169 E0105 Synthese process from Carbon Data Manage All 2007 -145 -255 22077_st 0747 CRCP3 contract-the construm Manage Manage All 2007 -145 -255 22077_st 0747 CRCP3 contract-the construm Manage Manage All 2007 -146 -251 21071_st 2522 DNA.B5 Drail Manage All Antrono, studently Elementor 5 -146 -261 21082.st NA Elementor 5 -146 -273 21082.st NA Elementor 5 -146 -273 21082.st NA Elementor 5 -146 -273 21082.st 1044 CELE chardree construm manage manage Na 151 -273 21092.st 1043 CELE chardree construm manage manage Na -151 -251 21092.st 1044 CELE chardree construm manage manage Na -151 -252 21092.st 1042 CELE chardree construm manage name of construm manage Na -156 -251 21092	219896 at	50632	DRD1IP i departine receptor Dil interacting protein	-1.44	-2.7
20113 0.013 F. 2175 App. Analog protein FL JUDY -145 -253 2078.2. # 0.023 CRCP2, departed to searching protein 7 -1.45 -2.26 21297.2. # 0.023 CRCP2, departed to searching protein 7 -1.45 -2.26 21297.2. # 0.023 CRCP2, departed to searching 3 -1.46 -2.26 21297.2. # 0.024 DNA.ED Crad Uterly 10 mode and other 5. member 7. -1.46 -2.26 21297.2. # 0.030 CHEAS Crad Uterly 10 mode and other 5. -1.46 -2.63 20025.2. ml 1.144 CS-111 bit fung to searching to smoother 5. -1.46 -2.63 20025.2. ml 1.144 CS-111 bit fung to searching	220314 at	728302	ISEX1: heat shock transmittion factor family. 2: linked 1	-14-	-279
20182. at 0023 ORICP3 optimised theoremay pream? -1.45 -2.05 20197. pt 57.007 CACK7. chemoline (S-SAC modifice exter 7 -1.45 -2.216 20187. pt 25.222 DVALBS. Dr.o.d (Hep-J) model, subdark (E, permise 5 -1.46 -2.26 20187. pt 25.222 DVALBS. Dr.o.d (Hep-J) model, subdark (E, permise 5 -1.46 -2.46 201827. pt 1044 C.SHL E, choice contract-minicromether 6 -1.46 -2.46 201827. pt 1144 C.SHL E, choice contract-minicromether 1 -1.46 -2.31 20192. pt 1044 C.SHL E, choice contract-minicromether 1 -1.66 -2.33 20192. pt 1044 C.SHL E, choice contract-minicromether 1 -1.62 -2.33 20192. pt 1044 C.SHL E, choice contract-minicromether 1 -1.62 -2.33 20192. pt 1149 C.SHL E, choice contract-minicromether 1 -1.62 -2.36 20192. pt 1149 C.SHL E, choice contract-minicromether 1 -1.64 -54 20192. pt 1149 C.SHL E, choice contract-minicromether 1 -5	221172 at	80099	E . 21075 Eventnetical protein EL J21075	-144	-2.93
21297 Jie 57.07 CCC7: themshes (5A-C model researce 7 -1.48 -2.16 21297 Jie 50.00 WTDG WHDD WHDD who such access action 3 -1.48 -2.26 21297 Jie 52.52 DVILABS for all tept-1 hands down actions action 3 -1.48 -2.46 21297 Jie 52.52 DVILABS for all tept-1 hands down actions actions and the such actions action terms in all such actions actions action terms actions action actions action terms action terms action actions action actions action actions a	207802 at	10321	CRISP3, cysteine-rich secretory protein 2	-145	-2.65
21326 et 0000 WTDC3 WAP (pucks, the crest stram 3) 1.46 2.21 21327 st 25.22 DPLABS Drait (http://withics.com/strams) 1.46 1.76 21328 st 104 HA 1.43 1.76 21328 st 104 C.S.L. 1.46 1.76 21328 st 1044 C.S.L. 1.46 1.78 21328 st 1044 C.S.L. 1.46 2.73 21328 st 1044 C.S.L. 1.46 2.74 2140 st 1144 C.S.L. 1.46 2.52 2140 st 1144 C.S.L. 1.46 2.52 2140 st 1143 C.S.L. 1.55 5.52 2131 st 1164 C.S.L. 1.55 5.23 3.33 2140 st 1167 st 1.47 1.42 1.55 3.33 2131 st 1153 1.55 1.52 3.33 1.55 3.33 2141 st 1.54 1.56 1.54 3.50 3.33 <	212977 at	57.007	C.KCE7_chemokine // ⁻ -X-C_montfi recentor 7	-1.45	-2.16
12817_st 2522 D*A.BS Draiting Jamona of Samuers 2, subtany 8, member 5 1-88 1-88 12824 at I.M.A Head (160) 1-48 1-88 12825 at SUM (10) HAM (160) 1-48 1-88 12825 at SUM (10) HAM (160) 1-48 1-78 12825 at SUM (10) HAM (160) 1-48 1-78 12825 at SUM (10) HAM (160) 1-18 2-23 12826 at SUM (10) LEFES (177) 200 (160) (260) (160) 1-16 1-16 12005 at SUM (10) LEFES (177) 200 (160) (260) (160) (160) 1-16 1-16 1-16 12005 at SUM (160) (1	215276 at	90199	WEDC8, WAP four dist lide care domain 3	-1.45	-2.21
Link Link Head of the link and processing of the link of	212275_at	25-22	DNA BS Dra Lifter-Lit bomolog, subfamily B, member 5	-1.46	1.46
21562 at 2441/0 FAM6-21 mity with sect, non-closifier (>, momber (,) 1.48 2.23 21562 at 3414 CSH1L chronic somatcharminotraph momber is at 1.47 3.2 215762 at 5433 2.1771 lain (high yron 71) 1.48 2.56 21040 gt 5030 2.1771 lain (high yron 71) 1.48 5.52 21051 gt 5054 PERCA2 protein kniws, MP-archived, at at 2 cladylic sultunt 1.52 -2.23 22002 gt 51937 TN1 11, point lays (Lyskeld, abor) 1.52 -2.34 21511 gt 7.18 TN1 11, point lays (Lyskeld, abor) 1.52 -3.31 21511 gt 7.35 TN1 11, point lays (Lyskeld, abor) 1.52 -3.34 21511 gt 7.35 FED1 is response to kind protein 2 1.52 -3.34 21551 gt 6.4302 FED1 is response to kind protein 2 1.56 -3.54 21565 gt FED1 is response to kind protein 2 1.56 -3.54 21565 gt FED1 is response to kind protein 2 1.56 -3.54 21565 gt FED1 is response to kind protein	216874 at	51/6	Horay (190)	-1,46	- 46
Linds at Linds Linds <thlinds< th=""> Linds Linds <</thlinds<>	213024 at	920120	E 6M6 2 table with some comject () member (1.46	0.79
20020_0 First CVFT71 zert land random frames and intervent reads 1,0 2.0 21970_at 1002 CVFT71 zert land random frames and intervent zert (CVFT71 zert land random) reads 1,51 5.62 20051_zt 1014 CCFF12 zert land random zert (CVFT71 zert land random) reads 1,52 2.23 20051_zt 5183 FPEKA2 proten kines, ANP-articland at 2 catalys catalytic setters 1,52 2.34 20051_zt 7.95 FNN1 in grannin bye 1 (svel-td, stan) 1,52 3,41 20051_zt 7.95 FNN1 in grannin bye 1 (svel-td, stan) 1,52 3,26 20057_zt 6.94 TSPD / Targonin bye 1 (svel-td, stan) 1,52 3,26 20057_zt 6.94 0.92 RPEDI is respinate element bridg proten 1 1,52 3,26 20057_zt 6.94 0.92 REV2 is RNA bridge proten 1 1,55 3,17 21980_zt 6.94 0.92 REV2 is RNA bridge proten 7 1,55 3,17 21980_zt 6.94 SEVEN is continuous control target proten 2,12 1,55 2,50 2,50 21980_zt </td <td>217362 at</td> <td>14 14</td> <td>CSHLI: charteous comptorestarteous between a</td> <td>-1,40</td> <td>-2.75</td>	217362 at	14 14	CSHLI: charteous comptorestarteous between a	-1,40	-2.75
2572.0 1033 CERES dely dery dependencies (SER family, member 2 1,5 5.23 2605.7_att 1014 CEP16 dati ern 16.45P-catherin -1,5 -7,5 2005.8_att 51807 TERES dely dery dely dely dely dely dely dely dely del	200230_X_at	61232	TSTET, chonolic solitatori tani roti opin nomone ike t	1,17	0,2 2,56
20007_at 0.02 CENT2_1 de You Operatement Later Stark hummy, final bei	219780_at	40000	ENERSE: diskudeeen zeelre du state di/CEE femilie) eesek en D	1,40	2,30
Accessing, all 0.014 Concentration of a concentration of a constrained and a 2 control to constrain of a constrained and a 2 control to constrain of a constrained and a 2 control to constra 2 constra 2 constrained and a 2 control to constrained and a 2	214079_at	0202	DHR S2, del you openagevie doutlase (SDR raining, mer roer 2	1,21	0.02
22005 ut 51887 -2.58 2005 ut 51897 -2.58 2015 ut 7.57 -7.57 2015 ut 7.98 -7.56 2016 ut 9.91 -7.56 2015 ut 7.92 -1.020 thousing the departed spectral spect	200517_at	1014	ULIFITO CAUTERINITO, A SP-CAUTERINI DDVAAD austra Linux AMD autic Lat. Later Spectra Landa	-1,01	01
22005.g.t 5187 TVMT II uponi leys 1 (solid a, slow) -1,52 -5,4 2517.2.ml 7.25 TVMT II uponi leys 1 (solid a, slow) -1,54 -3,69 21502.2.ml 6,934 TCPT 2 hansaits on factor 7,46.2 (trops) -1,74 -3,69 21502.2.ml 10,44 0,932.564 -1,54 -3,26 21502.2.ml 10,44 0,922.564 -1,54 -2,56 21507.2.ml 10,44 0,922.564 -1,54 -2,56 21507.2.ml 10,44 0,922.564 -1,54 -2,56 21507.2.ml 4440 CLICN2; twolm-docondent inaco inductor 2A molan grotein 7 -1,59 -2,84 21507.2.ml 4490 CLICN2; twolm-docondent inaco inductor 2A molan grotein 7 -1,62 -2,84 21005.2.ml 6,352 CLICN2; twolm-docondent inaco inductor 2A molan grotein 7 -1,62 -2,84 21025.2.ml 6,352 CLICN2; twolm-docondent inaco inductor 2A molan grotein 7 -1,62 -2,77 21181.5.g.g.gt N/A grotein A grotein A grotein A grotein A grotein A grotein A groein A groein A grotein A grotein A groein A grotein A groein A g	207709_at	5063	HRKAAZ, protein kinase, ami-kachvated, aloria 2 catalytic subunit	-1,52	-2,26
AD17_24 7.2 NMI hyperinit type 1 (set-fat, slow); 1.52 .548 25588_4 7.2 "NMC1 treprinit type 1 (ket); 1.74 .300 215912_41 6235 RPED1 has respinave element binding protein 1 1.54 .326 20057_41 144 0.922504 1.55 .3.7 215932_41 6430 COVERPT return-leng rowth factor change protein 7 1.55 .3.7 213910_41 444 0.922504 1.66 .4.54 213910_42 64302 CLEXV2A: Sectin-decind protein 27, 4-protein coupled, 13 1.6 .4.59 210057_54 6434 SUBM1 - Sodiun change, new voltage calculation and spha 2, 5 (subtranterse 1 1.6.2 .2,7 21118_54 6434 STBGA.1: STB bias qualitarisments of 2 (subtranterse 1 1.6.2 .2,7 21118_52 44 SUBM1 - Sodian chancebos (Creadianters) 1.6.6 .3.11 20057_54 4544 SUBM1 - Sodian chancebos (Creadianterse 1 1.6.2 .2,7 21118_52 4544 SUBM1 - Sodian chancebos hancebos (Creadianterse 1 1.6.2 .2,7	22UD59_at	21307	JEAS tubulin, apha 8	-1,52	-3,1
20358_vit (-7)* NR2* terporan. 1574-2 (tas); 1.1.24 4.300 216511	2C5177_at	7 35	NNIT truppminit type it (skeletal, slow)	-1,54	- ,54
21651_c,al 19.44 TF.1.2 Instauration tacket rules (Intel spericy, MuRA-bac); -1,24 -1,24 -3,39 21502_at 62.95 RPEDI tas response elements building molit inderin 2. -1,55 -2,3 21607_at 64.002 RDM2? RNA building molit inderin 2. -1,55 -2,3 21505_at 64.002 RDM2? RNA building molit inderin 2. -1,55 -2,3 21156 at 1022 CLKN282 tycle-dependent inaso inhibitor 2.4 molecomp. pts. in bitor LDKA) -1.6 -4,58 220252 at 64.0 ST.06A_L1: St.0 molecomp. pts. in bitor LDKA) -1.6 -4,58 220252 at 64.0 ST.06A_L1: St.0 molecomp. pts. in bitor LDKA) -1.6 -4,58 220252 at 64.0 ST.06A_L1: St.0 bits galaxites molecomp. 11 1.6 -2,84 22021 REASA RS.5 p21 protein activator 3 1.66 -5.61 -5.61 221322 at 23399 KELFIS KruppeHile factor 15 1.69 -2.51 21330_c,at 6546 LGR5 hubble hash controling 6 (activation 5 -1.7 -4.32 213380_c,at 6546 LGR5 hubble hash controling 6 a	2C5388_at	<i>C.P</i>	NNC2 torponin ('type 2 (tast)	-1,:-4	-3,06
215622_ni €235 RFEDI is a respinative element binding protein 1 -1,5-4 -3,36 20067_nit 64/02 RDM/25: RNA binding motif crotein 26 -1,55 -3,17 213501_nit 2400 ICCEPP / Insulinative gravith factor anding protein 7 -1,59 -2,54 211156 nit 1002 CLICM/25: receiptor 1/27, reportee condition 27, unitative gravith factor and motion 20, protein 50, nit bins CLMA) -1.6 -4,58 20055_nit 63/29 1/21/15: pumergic receiptor 1/27, reportee condition 1.2 -1.6 -4,58 20055_nit 63/29 1/21/15: pumergic receiptor 1/27, reportee condition 1.2 -1.6 -4,58 20052_nit 64/30 STIGA-A.1 TSGA-A.1 1.62 -2.7 20188_sit 44/4 STIGA-A.1 1.62 -2.1 -2.1 202622_nit 64/30 STIGA-A.1 1.64 3.51 -2.2 -2.2 -2.2 -2.3 -2.3 -2.3 -2.2 -2.3 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 <	216511_s_al	£934	TOF7L2_transcription factor 7-like 2 (T-nell specific, HMG-box)	-1,54	-3,99
20009_nt N/A 0,002584 -1,54 -2,5 20007_nt 0,4700 RDM25, RNAk binding molit crybin 26 -1,55 -3,17 213910_nt 2400 ICFEP7 insub-Nke growth factor chiding protein 7 -1,59 -2,84 211156 at 1002 CLK/024: tycle-dependent inace onthion 2A molecular, protein coupled, 13 -1,6 -4,88 20005_at 6,36,29 12/101 kp.pmmaprote receptor '2C, recriber acculation and apha 2,0 sakthanterase 1 1,62 -2,77 21118_5_at 6,34,29 12/101 kp.pmmaprote receptor '2C, recriber coupled, 13 -1,66 -8,89 20025_at 6,460 STB6A_115 Tb bals galactosamole apha 2,0 sakthanterase 1 1,62 2,77 2118_8_5_at 6,460 STB6A_2115 Tb bals galactosamole apha 2,0 sakthanterase 1 1,66 3,51 2118_8_1_x 14,7912 SDS are outline formation bancho 3 -1,66 -2,65 21382_0_at 6,564 LGR5 flexithe-incline saktowarding 6 pt Leintic-upled receptor 5 -1,7 -4,82 20195_0_at 6,900 C.NTN2 contain 12 (kond) -1,72 -7,72 20193_0_at 1	215032_at	6239	RPEB1 ras responsive element binding protein 1	-1,54	-3,26
215647_att 64/02 FRMA binding motil croling 25 -1,55 -3,17 213910_att 2490 FCEPP : neutinek growth factor binding protein 7 -1,99 -2,24 211156 102: CLKV2A: toxIn-dopondent kinds or infictor 2A implanance, p18, in bits / CDK4) -1.6 -4,88 20055_att 63,29 12/115: punnergic receptor 127, i-protein counged, 13 -1.6 -4,89 20255_att 6460 ST09ALT: ST6 bits galactosamide apha 2,6 staft/tanterse 1 1.62 2,7 201185_st 6460 ST09ALT: ST6 bits galactosamide apha 2,6 staft/tanterse 1 1.62 3,11 20221_att 22831 RASA3 RAS p21 protein adm/aora 1.62 3,11 20232_att 10712 SIX5 sin exolis formados for mode to hinclog 6 (Prosophila) 1.68 3,51 21350_att 6549 LGR5 leuche-incline gelationaming G in Letino-cupled receptor 5 -1,7 -4,32 2019_att 6401 Mir ON varyer myel cytematos via related receptor 15 -1,76 -7,72 2019_att 6402 Mir ON varyer myel cytematos via related receptor 16 -1,72 -7,72 2019_	220697_at	IN/A	gC 922584	-1,54	-2,5
21310_at 2490. IOFED? Institutive youth factor shorting protein 7 -1.59 -2.54 211156 102: CLKY02: cyclin-dependent times on interv 74, windingmouth [13] -1.6 -4.58 220025_at 6329 1.21V13: pumerpic receptor 127, 0-protein coupled, 13 -1.6 -3.59 227252 at 634. SUNNE: sodum channo, nerwotage-cated 1 camma -1.62 -3.06 227325 at 634. ST6/6A_11: Sto bata galaxiosamida pilo 2,6 stalytranterase 1 1.62 2.11 22025_at 643. ST6/6A_11: Sto bata galaxiosamida pilo 2,6 stalytranterase 1 1.62 2.11 22025_at 23399 KLETS KruppeHile factor 3 -1.64 -7.64 211661_x at 1471/2 Sto Sto sto collar for tools 0 (Crosphila) 1.68 -7.61 21205_at 23999 KLETS KruppeHile factor 15 -1.69 -2.25 213890_at 2546 LGRS houtherneth repeat-ontaining 6 piloteneoplot 5 -1.7 -4.32 22013_at 6000 C/C/N-N2 contactal Qerodata -1.76 -5.8 22014_at 6012 MirCN wingmerupe	215647_at	64062	RBM26: RNA binding motif protein 26	-1,55	-3,17
211156 dt CLKN22: cyclin dopondent Hinds on inclutor 24 medianon, p16, inh bits LDK4) -1.6 -4.88 220055_att 6340 SLN11s: pum ergo receptor 127, 0-protein coupled, 13 -1.6 -3.59 227255_att 6440 SLN11s: pum ergo receptor 127, 0-protein coupled, 13 -1.6 -3.69 227255_att 6440 SLN11s: sodum (hanno, incrvditage-cated 1 comma -1.62 -3.76 20052_att 22811 RASA3_RAS p21 protein activities of 3 -1.66 -64 217651_regit 147912 SLN5_sine ocula 6 meabox hanckog f Crosophila) 1.66 -64 217651_regit 6496 LGR5 leadment bank op (p Ldmin-Cipled receptor 5 -1.7 -4.32 206970_att 6900 Ch.TN2 contautin 2 (axonal) -1.7 -7.72 20185_att 57731 SPTEN4 specific leademention (p Ldmin-Cipled receptor 5 -1.7 -7.73 20015_att 10/2 Ch.TN2 contautin 2 (axonal) -1.7 -7.72 20195_att 57731 SPTEN4 specific leademention (p Ldmin-Cipled receptor 5 -1.7 -7.73 200716_att 10/10 Mr	213910_at	349Ú	ICFBP7: insulin-like growth factor cinding protein 7	-1,59	-2,84
20055_nt 63/29 L2LY15 punnergo receptor 127, - protein coupled, 13 -1.6 -3/89 207355_nt 64/6 SCLNNLE sodum chano, nonvoltago-cated 1 comma -1.6 -3/86 207365_nt 64/6 STEGAL1 ST6 beta gelactosamuch apino 2,6 stabUtanterse 1 1.62 -3,7 20138_5_nt N/A g7652005 1.62 -3,11 202621_at 22821 RASA3 RAS.p21 protein activ ator 3 -1.64 -1.64 201661_cgat 64/9 LGRS Factorial Formsboth activ ator 3 -1.66 -2.55 21386_mt 654/9 LGRS factorial Formsboth activ ator 3 -1.67 -4.32 206970_mt 6900 CNTN2 contatur.2 (aconal) -1.7 -4.32 206975_c_al 4012 Mr CN very myelssytmatose vira related racogene, neuroblastoma derived (avian) -1.78 200913_dt 1/412 Mr CN very myelssytmatose vira related racogene, neuroblastoma derived (avian) -1.78 200913_dt 1/412 Mr CN very myelssytmatose vira related racogene (atoma) -1.7 -7.78 200913_dt 1/412 Mr CN very myelssytmatose vira related racogene (atoma)	211156 at	1025	CL/KN2A: cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	-16	-4,58
22725 at e34.0 SUMMI-3 codum chano, nervoltage calculations -1,62 -3,60 201938_at 6430 ST86A.1: ST6 beta galactosamide alpha 2,6 stalvitranterase 1 -1,62 -2,7 221138_set 1//4 g765305 -1,62 -3,11 206221_at 22821 RASA3_RAS.p21 protein activator 3 -1,64 -1,64 221322_at 23999 KLP15 Kruppedike factor 15 -1,69 -2,25 213880_at 6549 LGR5 leache-anch repeat-containing 5 prilsin-cupled receptor 5 -1,7 -4,32 20970_at 6900 CNTN2 contactin 2 (contal) -1,72 -7,72 20185_st_al 4012 MrCN verse mployophora kine decorpen, neuroblastion aderived gavan) -1,74 -7,78 20091a_at N/A g1,44,3701 -1,79 -1,73 200191a_at N/A g1,44,3701 -1,80 -2,05 20191a_at N/A g1,44,3701 -1,74 -7,78 200191_at N/A g1,44,3701 -1,79 -1,35 -2,056 20191_at 0,072 C1	220005_at	63529	E2KY15: purinergic receptor F2Y, G-protein coupled, 13	-16	-3,59
201982.at 6430 ST6GAL1: ST6 beta galactosamide apina 2,6 stalytranterase 1 1,62 2,71 201188_s.gt NMA g7662605 1,62 3,11 20221_at 22811 RASA3 RAS p21 protein activitator 3 1,66 3,51 20122_at 23899 NELF15 Krupe-Allier factor 15 1,66 3,51 201322_at 2899 NELF15 Krupe-Allier factor 15 1,66 3,51 201380_at 6549 LGR5 leucine-inclining 6 prilletin-supledireceptor 5 1,7 4,32 206970_at 6900 0.NTN2 containing 6 prilletin-supledireceptor 5 1,7 4,32 20155_st_s_al 4012 M/CN verget mple-sptematose via related encogen, neuroblastom aderived usuan) 1,74 -7,79 20013_at N/A 01443021 1,74 -7,79 20010_st 22501 NLRPH: NLR family, pyrin somaan containing 1 1,8 4,1,9 20013_st 2002 GEOT4' drivmossme 15 oper reading frame 34 1,02 -4,47 20038_at 2006 ELM: elastin (cupravolut) actorizatorizator actorizatorizatorizatorizatorizatorizatorizatorizatorizatorizatorizatorizatorizatorizatorizatorizatorizatori actorizatori actorizatorizatorizatori actorizatorizatorizatori ac	2C7295 at	634U	SUNN16 codum channol, nonvoltage-cated 1 camma	-1,62	-3,06
22118_s_et NVA g765205 1,62 3,11 26221_at 22831 RASA3 RAS p21 protein activator 3 -1,64 -7,64 211661_x_st 147912 SDX5. sine oculas to meshock handlog 5 (prosphila) 1,66 3,51 21320_at 23999 FLETS KrupseHilke factor 15 -1,7 -4,32 266970_at 6900 CNTN2 contactin 2 (coveral) -1,72 -7,72 220185_at 57731 SPTEN4 spechitr, being numbers wire related randomen, numberstom a derived usuan) -1,74 -7,72 220195_at 4012 MrCN veny myel spirmtasse vire related randomen, numberstom a derived usuan) -1,74 -7,78 220191_at N/A g1A443701 -1,79 -7,79 210300_at 2261 NLRPH: NLR family, pyrin soman containing 1 -1,8 -1,27 220718_at 80072 ClEfot4 chromostrie 15 oper reading frame 34 -1,98 -2,92 220718_at 2092 -6/YPA gycophoriar (AMEE chard) and group) -2,06 -2,06 210452_s_st 6707 B3CALT2: UDP-Gat beteGleMAc beter 3,spa actosyltransferase, polypoptoc 2	201938_at	643C	ST6GAL1: ST6 beta galactosamide alpha 2,6 sialyltranferase 1	1,62	2,7
20221_at 2281 EASA3 RAS p21 protein activition 3 -1,64 -1,64 21661_x_st 147912 SD5.sine occlishome-box honebox honebox foresphila) 1,66 3,51 221322_at 23999 ELF15 Kruppellike factor 15 -1,69 -2,25 213806_at 6500 Ch7N2 context 12 (contable) -1,72 -1,72 20195_at 6500 Ch7N2 context 12 (contable) -1,76 -5,5 20380_at 6500 Ch7N2 context 12 (contable) -1,77 -1,78 20015_at 6012 MrCN verge myel-systematose vira related incogene, neuroblastom a derived javian) -1,78 -1,79 20018_at 00072 Cl6oft/4 thromosome 15 oper reading frame 54 -1,02 -1,79 20018_at 2007 B3CALT2: UDP-GatestaCl6Acte at 3-ga actosystransferase, polypepade 2 -1,96 -3,72 217452_stat 6707 B3CALT2: UDP-GatestaCl6Acte at 3-ga actosystransferase, polypepade 2 -1,96 -3,72 212450_at 2006 ELN: elactin (copravoluclar actic chorosos Willamo-Bouton syndromo) -2,07 -3,05 2124762_stat 6605	221138_s_at	N/A	g7662605	1,62	3,11
21/661_x_at 147912 SDS. sine oculis homesbook handlog 5 (Drosophila) 1,66 3,51 21362_at 23999 NLETS_Kruppellike factor 15 -1,99 -2,25 21380_ak 6549 LGR5 leache-inclinge-at-ordnaining 6 µ Lettin-cupled receptor 5 -1,7 -4,32 206970_at 6900 CNTN2 contactin 2 (avoid) -1,72 -7,72 20195_at 57731 SPTEN4 spectrin, Leta, not-expt rocytil. 4 -1,76 -5,5 203756_s_at 4012 MrCN vering myelksptrmatosis via related monopine, neuroblastoma derived (avian) -1,74 -7,76 20018_at 20/01 NLRPh: NLR family, pyrin domain containing 1 -1,79 -1,79 20018_at 2007 C16of(34 thromosome 15 oper reading frame 54 -1,02 -4,47 20588_at 2092 GYPA (agoophomic A (MNE shoed group) -1,98 -3,72 21126/D1 at 200e ELN: elastin (upravalvular actric choose Willow-Beuron syndromo) -2,06 -2,07 2126/D2 at 560 PisG4 (pregnardy spectro beta-1-(gregnards in secona viral (v-sis) oncogene homoloc) -2,07 -3,05 211062 s at<	2C6221_at	22821	RASA3 RAS p21 protein activator 3	- 1,64	- 64
2213C2_at 23909 kE15 Kruppel/ika factor 15 -1,69 -2,25 213830_at 6549 LGR5 leaches nch request containing bit Lefine copled receptor 5 -1,7 -4,32 206970_at 6900 CNTN2 containing bit Lefine copled receptor 5 -1,7 -4,32 220185_at 57731 SPT5N4 specific leaches not explit incluic, not explit inclit, notexplitin, incluic, not explit inclice, not explit inclit,	217661_x_at	147912	SI⊁5, sirle oculis homeobox homolog 5 (⊡rosophila)	1,66	3,51
213890_st 6549 LGR5 leacher.nch.repeat-ontaining G jr.Lein-cupled receptor 5 -1.7 -4,32 2C6970_st 6900 CNTN2 contable.10.2 (knorel) -1.72 -7.72 20195_st 57731 SPTEV4 spectric lease, not-ergit racytic 4 -1.76 -7.78 20095_st_el 4012 MYCN v-myr myel http://matosie vira related encogene, neuroblastoma derived (avian) -1.76 -7.79 20093_st 22061 NLRP1: NLR family, pyrin comain containing 1 -1.6 -1.72 20093_st 22061 NLRP1: NLR family, pyrin comain containing 1 -1.6 -1.72 20093_st 22061 NLRP1: NLR family, pyrin comain containing 1 -1.6 -1.72 20093_st 22061 NLRP1: NLR family, pyrin comain containing 1 -1.6 -1.72 20093_st 22061 NLRP1: NLR family, pyrin comain containing 1 -1.6 -1.72 20093_st 20092 GYPA: googhoint A (MNE blood group) -1.83 -2.05 201945_st_st 2000e ELN: elastin (cupravalvular acris ctenodos Willame-Beuron syndromo) -2.06 -2.06 2.855/_st_cat 6505	2213C2_at	23999	KLF15 Kruppel-lik⊌ factor 15	- 1,69	-2,25
266970_at 6900 CNTN2 contactin 2 (avoid) -1,72 -1,72 220155_at 57731 SPTEN4 spectrin, beta, nur-arythrough, 4 -1,76 -5,8 200756_st_at 4612 MriCN verrey myelseptrmatose via related encogene, neuroblastom a derived (avian) -1,74 -7,78 200913_at 10/4 013443001 -1,79 -1,79 210370_st 22761 MLRP1: NLR femily, pyrin comain containing 1 -1 -1 22018_at 00072 C15ord34: chromosome 15 open reading frame 34 -1,62 -4,47 205838_at 2992 G15ord34: chromosome 15 open reading frame 34 -1,62 -4,47 205838_at 2992 G15ord34: chromosome 15 open reading frame 34 -1,62 -4,47 205838_at 2992 G15ord34: chromosome 15 open reading frame 34 -1,62 -4,47 205838_at 2992 G15ord41: chromosome 15 open reading frame 34 -1,62 -4,47 205838_at 2992 G15DFA4: glycophora A (MNS blood group) -2,06 -3,72 210452_stat 656 P5G1; pregnarcy specific beta-1, glycophora 1 <	213380_at	8549	LGR5 Teucine-noti repeat-containing G prutein-coupled receptor 5	-17	-4,32
220185_at 57731 SPTBN4 spectric beta, not veryt rocyti. 4 -1,76 -5,6 2C9755_5_el 461/2 MrCN summer myel exploritations via related encogene, neuroblastoma derived (avian) -1,78 -7,78 20913_at N/A 01.4443701 -1,79 -1,78 210300_st 22061 NLRPh1 NLR family, pyrin somain containing 1 -1.6 -1,79 210300_st 2007 ClEor(3+ thormosome 15 oper reading frame 34 -1,20 -4.47 2C05838_at 2992 GYPA' gycophomia (MNS chood group) -1,93 -2,95 217452_5_set \$707 B3CALT2: UDP-GatibetaGleNak beta 1,3/galactosyltransferase, polypeptice 2 -1,96 -3,72 2126/0_st 2006 ELN: elstin (cupravalvultria actric tenopic What actric tenopic What actric tenopic Syltransferase, polypeptice 2 -1,96 -2,06 21262 s at 5665 PEG1: progname syltransferase, polypeptice 2 -2,06 -2,07 -3,05 21262 s at 5649 Distribute tenopsyltransferase, polypeptice 2 -2,07 -3,05 21262 s at 24649 Distribute tenopsyltransferase, polypeptice 2 -2,01 -2,01	2C6970_at	6900	CNTN2 contactin 2 (axonal)	-1,72	- 72
2C9756_s_al 461? Mr CN very: myshopt matosis via related incogene, neuroblastom a derived javian) -1,78 -1,78 2C9913_at N/A g13443701 -1,79 -1,79 210370_st 22061 NLRP1*NLR family, pyin domain containing 1 -1,8 -1,79 210370_st 200718_at 80072 C160734* chromosome 15 open reading frame 34 -1,82 -4,47 2C6888_at 2992 GYPA: gyophomin 4 (MNC blood group) -1,96 -3,72 212601 at 2006 ELD: elactin (cupravivular acritic chrobas WilliamsFraise, pclypepace 2 -1,96 -3,72 212670 at 2006 ELD: elactin (cupravivular acritic chrobas WilliamsFraise, pclypepace 2 -2,06 -2,07 20251 x_ati 5665 PEG1: prognancy specific beta-1-glycoprotoin 1 -2,07 -3,05 211062 s at 8632 CP2: carboxypeptidado 2 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,51 -2,55 -2,51 <td>220185_at</td> <td>57731</td> <td>SPTBN4 (spectrin), beta, non-enythracytic 4</td> <td>-1,76</td> <td>-5,6</td>	220185_at	57731	SPTBN4 (spectrin), beta, non-enythracytic 4	-1,76	-5,6
220913_at N/A g13443701 -1,79 -1,79 218300_st 22061 NLRP1* NLR family, pyin domain containing 1 -1.6 -1.00 220718_st 80072 C150fC4+ thromosome 15 oper reading frame 34 -1.02 -4.47 205838_st 2992 GYPA+ gycophone A (MNS blood group) -1.93 -2.85 217552_s_st 8707 B3CALT2: UDP-GatobetaGicMak beta 1.3-ga actosyltransferase, polypepade 2 -1.96 -3.75 2125670_st 2006 ELN: elston (cupravalvLar acritic choropa Willams-Beuron syndromo) -2.06 -2.07 -3.95 2125670_st 565 PPG1: pregnare of specific bets-1-glycoprotion 1 -2.07 -3.95 211062_s_at 8632 CP2: carboxycoptidaso Z -2.51 -2.51 -2.51 22394_at 284549 DXF2P564C196: OKF2F564C196 protein -2.55 -2.55 -4.09 211062_s_at 515 FD5FB platelet-derived growth factor beta on pypetide isman sarcoma viral (v-sis) on cogene homolocy -2.65 -4.09 212680_at 2922 SRP grastin is factoreations, ong cytoplasmit tail, 1 -2.31 -2.91	2C9756_s_al	4612	Mr CN, v-myc myelocytomatosis vira, related oncogene, neuroblastoma derived (avian)	-1,78	- 78
2183:00_st 22:01 NLRP1: NLR family, pyrin somain containing 1 -1.8 -1.02 220718_st 80.072 ClEorf(4: thromosome 15 open reading frame 54 -1.02 -4.47 205838_st 2992 GYPA: gycophonin A (MNE chood group) -1.93 -2.55 217452_stat \$707 B3CALT2: UDP-GalbetaCleNack bits (3-galactosyltransferase, polypepace 2 -1.96 -3.72 21267/0_st 2006 ELIN: elastin (cupravolvLera actic 4: 3-galactosyltransferase, polypepace 2 -1.96 -3.72 21267/0_st 2006 ELIN: elastin (cupravolvLera actic 4: 3-galactosyltransferase, polypepace 2 -1.96 -3.72 21267/0_st 2006 ELIN: elastin (cupravolvLera actic 4: 3-galactosyltransferase, polypepace 2 -2.96 -2.97 -2.97 -2.97 -2.97 -2.97 -2.97 -3.95 211062_stat 656- PEGT: program ary specific bacts-1-glycophoten 1 -2.97 -5.31 -2.97 -2.91 -2.91 -2.91 -2.91 -2.91 -2.91 -2.91 -2.91 -2.91 -2.91 -2.95 -2.91 -2.91 -2.91 -2.91 -	220913_at	N/A	13443021	- 1,79	79
220718_at 80.072 Cl EofC4: thromosome 15 open reading frame 34 -1.02 -4.47 205838_at 2992 GYPA: gycophonr A (MNS clood group) -1.96 -2.95 217452_5_st 6707 B2CALT2: UDP-GatbetaCloNA betta (3-gatacosyltransferase, polypepace 2 -1.96 -3.72 216570_st 2006 ELN: elation (cupravolivular action (3-gatacosyltransferase, polypepace 2 -1.96 -2.06 20255_x_at 5650 PSG1: program cy specific bets-1-gycoprotein 1 -2.06 -2.06 201062_st 6532 CLP2: catboxyoptidaso 2 -2.51 -2.51 -2.51 21186_st 2835 FEDGEB PISG1: program cy specific bets-1-glycoprotein 1 -2.51 -2.51 222384_at 284649 DKFZP564/C196: DKF2F564C196 protein 2.55 -5.31 21186_st 2311/4 NEASC: neurofascin homolog (chicken) 2.65 -4.09 204200_st 6155 FDGEB platelet-derived growth factor beta opylogitide ismain sectoma viral (v-sis) oncogene homolog) -2.65 -4.09 216652_st 41472 CST4 cystatin S -2.86 -5.36 <td>218300_at</td> <td>22061</td> <td>NLRP1: NLR family, pyrin domain containing 1</td> <td>-18</td> <td>-1,0</td>	218300_at	22061	NLRP1: NLR family, pyrin domain containing 1	-18	-1,0
205838_at 2992 GYPA: gycophom A (MNS chool group) -1,93 -2,95 217452_s_at \$707 B3CALT2: UDP-Gat betaCleNac beta 1,3-galactosyltransferase, polypeptice 2 -1,96 -3,72 212670_st 2006 ELN: elactin (cupravolvular acritic ctenopic Williams-Beuron syndrome) -2,06 -2,06 20.8257_s_dat 5665 PISG1: pregnamely specific bets-1-glycophonin 1 -2,07 -3,05 21262.0_st 5655 PISG1: pregnamely specific bets-1-glycophonin 1 -2,07 -3,05 21263.4 28649 DKFZP564C196: DKFZF564C196 protein 1 -2,05 -2,01 213136_at 23141 NERSC: neurofascin homologi (chicken) 2,63 6,99 211667_s_at 615 FDGFB platelet-derived growth factor beta polypetide ismican scroma viral (v-sis) oncogene homolog) -2,85 -4,99 211687_s_at 615 FDGFB platelet-derived growth factor beta polypetide ismican scroma viral (v-sis) oncogene homolog) -2,85 -4,99 211687_s_at 14172 CST4 cystatin S -2,88 -5,56 206326_at 2922 SRP gastrim-feleesting pectifide -2,89 -5,91	220718_at	80072	C 15orf24: chromosome 15 open reading frame 34	-1,82	-4,47
217452_s_at \$707 B3CALT2: UDP-Gat betaGloMac beta 1,3-galactosyltransferase, polypepace 2 -1,96 -3,72 21267/0_st 2006 ELN: elastin (cupravalvular acritic cteniopis Williams-Beuron syndromo) -2,06 -2,06 20.8257/s_at 5659 PISG1: pregnancy specific bets-1-glycoprotein 1 -2,07 -3,05 211062/s_st 8632 CP2 (cattoxy-optidate) 2 -2,51 -2,51 -2,51 212394_at 264649 DKFZP564C169; DKFZP564C169 protein 2,57 5,31 213186_at 23114 NEASC: neurotasic hiomologi (chicken) 2,63 5,99 204200_s_at 6155 FEREB platelet-derived growth factor beta polypetide isimilan sarcoma viral (v-sis) encogene homolog) -2,84 -7,41 206994_at 1472 CST4 cystain S -2,88 -5,56 206326_at 2922 SRP gastrin releasing peotide -2,94 -5,91 207022_s_at 10061 ABCF2 ATP-thinding cassette, sub-family E (61/N20), member 2 -3,79 -9,64 201645_s_at 19703 C110rf80_thrumosuble 1: oper reading frame a0 -3,59 -9,652 <t< td=""><td>2C5838_at</td><td>2992</td><td>GYPA: gycophonn A (MNG plood group)</td><td>-1,93</td><td>-2,85</td></t<>	2C5838_at	2992	GYPA: gycophonn A (MNG plood group)	-1,93	-2,85
212670 at 200c ELN: elatin (cupravalvular acrite ctenopis Williams-Beuron syndromo) -2,06 -2,06 20.8257 (x, at) 5665 PEG1: pregnancy specific beta-1-glycoproton 1 -2,07 -3,05 211062 s at) 8652 CP2: carboxyoepidado Z -2,51 -2,51 -2,51 222894_at) 284649 DKFZP564-196: CKF2F564C196: chicken) 2,55 5,51 213162 s at) 284649 DKFZP564C196: CKF2F564C196: chicken) 2,65 5,99 202420_s_at) 5155 FE0FB platelet-derived growth factor beta polypeptide (similar) ascredma viral (visis) oncogene homoloc) -2,65 -4,09 211667_x_at) 3811 NFR3DL1 killer cell minunoglobulin-like receiptor, three domains, ong cytoplasmic tail, 1 -2,38 -5,36 206326_at) 2922 CST4 cystam S -2,394 -5,91 207602_s_at) 10061 ABCF2 ATP-binding reassette, sub-family F (5CN20), member 2 -3,08 -3,08 204292_at) 19703 C110/f80_thrumosume 1* oper reading frame 80 -3,59 -9,64 201645_x_a41 N/A Immunoglobulin-basing light chin ((GAV) MRNA variat1= region, joing regirm, and consta	217452_\$_at	\$707	B3CALT2: UDP-CalibetaClcNAc beta 1,3-galactosyltransferate, polypeptice 2	-1,96	-3,72
DL8257_x_at 5665 PEG1: prognancy specific beta-1-glycoproton 1 -2,07 -3,05 211062_stat 6632 CP2: carboxyoepitaloo 2 -2,51 -2,51 -2,51 222394_at 284549 DKF2F564C196: DKF2F564C196 protein 2,57 5,31 213138_at 23114 NFASC: neurofacian himolog (chicken) 2,65 5,99 20200_s_at 5155 FEGFB platelet-derived growth factor beta polypeptide (similar) sarcoma viral (v-sis) oncogene himolog) -2,65 -4,09 211667_x_at 3811 NFASCI heurofacian himolog (chicken) 2,65 -4,09 211667_x_at 3811 NFASCI heurofacian himolog (chicken) 2,65 -5,66 20039_at 1472 CST4 cystain S -2,88 -5,56 200326_at 2922 GRP gastrinicfleasing pactide -2,94 -5,91 201002_s_at 10061 AB/CF2 ATP-hinding cassette, sub-family E (50N20), member 2 -3,08 -3,08 204292_at 78703 C110/f80_ihm variat1= region, joining regire, and constant region -2,82 -6,52 202030_at 2975 L1371 LM h	212670 at	200e	ELN: elactin (cupravalvular acrtic cteniodis, Williams-Beuron syndromo)	-2,06	-2,06
211062 s at 8633 CP2: carboxyooptidado Z -2,51 -2,51 -2,51 222384_at 284649 DxF22F564C196: DxF22F564C196 protein 2,57 5,31 213.18: at 23174 NEASC: neurofascin homolog (chroken) 2,65 5,99 204.00_s_at 575 FDGFB platelet-derived growth factor beta polytic (similar saccoma viral (x-sis) oncogene homolog) 2,65 -4,09 214.067_x_at 3611 NR3DL1 killer cell minutoglobulin-like receptor, three domains, ong sytoplasmic tail, 1 -2,81 -7,41 206994_at 1472 CST4 cystatin S -2,84 -5,56 206326_at 2922 GRP gastrin r-freesing pectide -2,94 -5,91 207672_s_at 10061 ABCF2 ATP-binding reassette, sub-family E (G CN20), member 2 -3,08 -3,08 204822_at 73703 C110/00_strumosure 11 oper trading frame 80 -3,59 -9,64 21645_x_at N/A Immunoglobulin-kazpa light chrin (G 4V) mRNA variat1e region, joining regim, and constant region -2,82 -6,55 206320_at 2975 L13011 Manaba At levet a 97% lower confidence bound (LB FC) of 12 for the respective fold thance (208257_%_at	5665	PisG1: pregnancy specific beta-1-glycoprotoin 1	-2,07	-3,95
222384_at 284649 DKFZP564C196: DKFZF564C196 protein 2,57 5,31 213-136_at 23114 NFASC: neurolascin homolog (chicken) 2,63 5,99 204200_s_at 5155 FD6FB platelet-derived growth factor beta poppeptide (similar) servicema viral (v-sis) oncogene homolog) -2,65 -4,09 211687_x_at 3611 NF3DL1 killer cell mmunoglobulin-like receptor, three dumains, ong sytoplasmicitail, 1 -2,81 -7,41 206994_at 1472 CST4 cystatin S -2,86 -5,56 206326_at 2922 SRP gastrin-releasing peot de -2,94 -5,91 207602_s_at 10061 ABCF2 ATP-hinding cassette, sub-family E (GSN20), member 2 -3,08 -3,08 204202_at 79703 C110180, thrumosume 11 oper reading frame 80 -3,59 -9,64 211645_x_at N/A Immunoglobulin-like region, joining region, and constant region -2,82 -6,50 2020_at 6975 L131140 homeobox 1 -13319 -4,03 -0,03 211645_x_adt 6975 L1311140 homeobox 4 -4,03 -0,03 -0,03 <td>211062 s at</td> <td>8632</td> <td>CPZ: carboxypeptidase Z</td> <td>-2,51</td> <td>-2,51</td>	211062 s at	8632	CPZ: carboxypeptidase Z	-2,51	-2,51
213-138_at 23114 NEASC: neurofascin homolog (chicken) 2,63 5,99 204200_s_at 5155 FDGEB platelet-derived growth factor beta polypeptide isimical servicema viral (v-sis) encogene homolog) -2,65 -4,09 211687_x_at 3611 IxIR3DL1 killer cell mmunoglobulin-like receptor, three domains, ong sytoplasmicital, 1 -2,81 -7,41 206994_at 1472 CST4 cystacin S -2,88 -5,56 206326_at 2922 GRP gastrinin-releasing peotide -2,24 -5,91 207622_s_at 10061 ABCE2 ATP-binding cassette, sub-family E (GSN20), member 2 -3,08 -3,06 206922_at 79703 C110180 binomosume 1 oper reading frame 80 -3,59 -9,64 21645_x_adi IV/A Immunoglobulin-like region, joining region, and constant region -2,82 -6,59 20620_at 2975 L=1311180 homeolobal 1 -4,03 -10,9 Etil list of genes that had at least a 97% lower confidence bound (LB EC) of 1.2 for the respective fold thance (EC) -4,03 -10,9	222384_at	284649	DKFZP5640196: DKFZF5640 196 protein	2,57	5,31
2C4200_s_at 5155 FDCFB platelet-derived growth factor beta polypeptide isimilan sericoma viral (v-sis) oncogene homoloc) 2,65 4,09 211687_x_at 3611 NR3DL1 killer cell mmunoglobulin-like receptor, three dumains, ong cytoplasmicital, 1 -2,81 -7,41 2C6994_at 1472 CST4 cystain S -2,88 -5,56 2C6326_at 2922 SRP gastrininet service of the gastrininet service	213-138 at	23114	NEASC: neurofascin homoloc (chicken)	2,63	5,99
211687_x_at 2811 NTR3DL1 killer cell mmunoglobulin.like receptor, three dumains, ong cytoplasmic tail, 1 -2,81 -7,41 206994_at 1472 CST4 cystam S -2,88 -5,56 206326_at 2922 SRP gastrin releasing pectide -2,94 -5,91 207022_s_at 10061 ABCE2 ATP-binding reasette, sub-family E (5CN20), member 2 -3,04 -3,08 204922_at 79703 C110/f80 -thrumosure 1: oper reading frame 60 -3,59 -9,64 21645_x_a1 N/A Immunoglobulin keepa light chain (IGAV) mRNA variat Is region, joining region, and constant region -2,82 -6,52 20203_at 2975 L=1311 Lift homeobox 1 -4,03 -10,9 Full list of genes that had at least a 97% lower confidence bound (LB FC) of 1.2 for the respective fold thance (FC) -4,03 -10,9		5155	PErGFB, platelet-derived growth factor beta polypeptide (similar) sancoma virial (v-sis) oncoderie homoloc)	2,65	4.09
2C6994_at 1472 CST4 cystain S -2,88 -5,36 2C69326_at 2922 SRP gastrinit-releasing pectide -2,94 -5,91 2C6926_at 2922 SRP gastrinit-releasing pectide -2,94 -5,91 2C6922_at 10061 ABICE2 ATE-binding cassette, sub-family E (6CN20), member 2 -3,08 -3,08 2C4922_at 78703 C110/R80_thrumosume 1: oper reading frame 80 -3,59 -9,64 21645_k_at N/A Immunoglobulin kappa light chain (IG-V2) mRNA variable region, joining region, and constant region -2,82 -6,52 2C6230_at 2975 L=1311 LIM homeobox 1 -4,03 -10,9 Full list of genes that had at least a 97% lower confidence bound (LB FC) of 1.2 for the respective fold thance (FC) -4,03 -10,9	211687 x at	3811	KLR3DL1 killer cell mmunoglobulin-like receptor, three domains, ong cytoplasmic tail. 1	-2,81	-7,41
2C6326_at 2922 GRP gastrini-releasing peet de -2,94 -5,91 2C6326_at 2922 GRP gastrini-releasing peet de -2,94 -5,91 2C6326_at 10061 AB/CF2 ATP-binding reasette, sub-family E (GCN20), member 2 -3,08 -3,08 2C6322_at 79703 C110rf80 Increasette, sub-family E (GCN20), member 2 -3,09 -9,64 211645_x_d1 N/A Immunoglobuluk kaopa light chain (IGA/V) mRNA variable region, joining region, and constant region -2,82 -6,52 2C6230_at 6975 L141/LIM homeobox 1 -4,03 -10,9 Full list of genes that had at least a 97% lower contidence bound (LB FC) of 1.2 for the respective fold thance (FC) -4,03 -10,9	2C6994 at	1472	CST4 cvstatin S	-2.88	-5.36
201002_s_at 10061 ABICE2_ATP-binding ressette, sub-farity E (650X0), member 2 -3,08 -3,08 20292_at 79703 C110rf80 Introductive 11 open reading frame 80 -3,59 -9,64 211645_x_at N/A Immunoglobulin kaopa light chain (IGAV) mRNA variable region, joining region, and constant region -2,82 -6,52 2020_at 6975 L1141/LIM homeobox 1 -4,03 -10,9 Full list of genes that had at least a 97% lower contridence bound (LB FC) of 1.2 for the respective fold thane (FC) -4,03 -10,9	2C6326 at	2922	GRP i gastrin-releasing peut de	-2.94	-591
2C4922_at 79703 C11orf80 Invension = 11 oper reading frame 80 -3,59 -9,64 211645_x_d1 N/A Immunoplot rule kappa light chain (IG-V) mRNA variatile region, joining region, and constant region -3,82 -6,52 2C6230_at 937 L1X111M homeobox 1 -4,63 -70,9 Full list of denes that had at least a 97% lower confidence bound (LB FC) of 1.2 for the region/verifiel transe (FC) -4,63 -70,9	207622 s at	10061	ABCE2_ATP-binding cassette, sub-family E (5CN20), member 2	-3.08	-3,08
211645_x_e1 IV/A Immunoglot ulur kapa light chain (IGAV) mRNA variatile region, joining regim, and constant region -2,82 -6,52 2020_at 2975 L1X1: L1M homebox 1 -4,03 -10,9 Full list of genes that had at least a 97% lower confidence bound (LB FC) of 1.2 for the region/twe fold thance (FC) -4,03 -10,9	204922 at	79703	C11orf20 bromos coe 11 oper reading frame 80	-3.59	-964
ZC6230_at C975 L-141: LIM homeobox 1 -4,00 -10,9 Full list of denes that had at least a 97% lower confidence bound (LB FC) of 1.2 for the respective fold thance (FC) -4,00 -10,9	211645	N/A	Immunodiotulin kaona liont chain (IGAV) mRNA variat le region, joining region, and constant region	.3.82	-6.52
ELL list of genes that had at least a 90% lower confidence bound ILB FCr of 1.2 for the respective fold thance (FC)	206230_at	2975		-4 00	-10.9
THE AND	Full list of denes the	it had at least a	190% lower confidence bound /LB ECi of 1.2 for the respective fold change (EC)	1,25	0,0

FC Fold Change (Dictorenac treated HL-60 and THP-1 cells / DM 50 treated HL-60 and THP-1 cells) LBFC Lower Bound of Fold Change (Dictorenac treated HL-60 and THP-1 cells / DMS0 treated HL-60 and THP-1 cells)

Page 4 of 4

The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway

Raminder Singh¹, Ron-Patrick Cadeddu¹, Julia Fröbel^{1,2}, Christian Matthias Wilk¹, Ingmar Bruns¹, Luiz Fernando Zerbini⁴, Tanja Prenzel², Sonja Hartwig², Daniela Brünnert¹, Manoj Bhasin³, Thomas Schroeder¹, Stefan Lehr², Daniel Geoffrey Tenen³ Rainer Haas¹, Akos Czibere^{1,3}

- ¹ Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine-University, Düsseldorf, Germany
- ² Department of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center GDC, Düsseldorf, Germany
- ³ Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- ⁴ International Center for Genetic Engineering and Biotechnology, Faculty of Health Sciences, University of Cape Town, South Africa

Corresponding author: Akos Czibere (aczibere@bidmc.harvard.edu)

Online Resource 4. Ingenuity network analysis of the genomic and proteomic approach datasets

Ingenuity pathway analysis of the gene expression profiling and differential proteomic analysis datasets together reveals that 2 of the top 3 altered networks following Diclofenac treatment evolved around JNK signaling with Caspase-3 as centre molecule.

Network 2

© 2000-2011 Ingenuity Systems, Inc. All rights reserved.

© 2000-2011 Ingenuity Systems, Inc. All rights reserved.

Apoptosis The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway Raminder Singh , Ron-Patrick Cadeddu , Julia Fröbel¹², Christian Matthias Wilk¹, Ingmar Bruns , Luiz Fernando Zerbin¹, Tanja Prenzel², Sonja Hartwig", Daniela Brünnert¹, Manoj Bhasin , Thomas Schroeder¹, Stefan Lehr², Daniel Geoffrey Tenen³ Rainer Haas¹, Akos Czibere¹³

¹ Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine-University, Düsseldorf, Germany ¹ Department of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center GDC, Düsseldorf, Germany

Beth Israel Deaconess Medical Center. Harvard Medical School, Boston, Massachusetts, USA

International Center for Genetic Engineering and Biotechnology, Faculty of Health Sciences. University of Cape Town, South Africa

Corresponding author: Akos Czibere (aczibere@bidmc.harvard.edu)

Online Resource 5. Ingenuity pathway analysis regarding Apoptosis

Category	Functions Annotation	p-Value	Molecules	# Molecules
Cancer	tumor	7.41E-12	ACTG1, AK2, ALDOA, APC, BCAN, BDNF, BTRC, C4BPA, CAMK2B, CASP3, CD4, CD52, CD55, CD86, CDC42BPA, CDKN2A, CSF2, CTLA4, CXCR7, CYP3A4, DCN, DNAL11, EDNRB, ENO1, FAM5C, FGF18, FLNA, FOX51, FTH1, G5PD, CALR1, GFAP, GPM6A, HAMP, HBEGF, HPGD, [H44L, IFIT1, IGF2, IGFBP7, IL24, ITGB1, ITG84, JUN, LOC51152, MMP13, MYCN, NCAM1, NF1, NGF, NOTCHA NUPSO, PAIH, BPONA, PDGFB, PFN1, PGK1, FKM2, PML, PPARG, PSAT1, RREB1, RUNX2, SCN7A, SIGLEC1, SLC6A2, SLC7A11, SMAD3, SOD2, SPTBN1, SRC, SRM, STMN2, STOM, TAF4, TAOK1, TBX4, TNNC2, TOP2A, TRADD, TUBA8, VCP, VIM, WWOX	84
Cellular Growth and Proliferation	proliferation of normal cells	2.31E-10	ADCYAP1 AMBN APC, BDNF, BTNL2, BTRC, CASP3, CD4, CD6, CD66, CDKN2A, CORO1A, CPB2, CR2, CSF2, CSF3, CTLA4, DCN, EDNRB, ELN, FGF18, FOX61, G6PD, GALR1, HBEGF, IGF2, IGFBP7, IGHM, L24, ITGAM, ITGB1, ITGB4, JUN, MSTN, WYCN, NAMPT, NCAM1, NF1, NGF, NR101, NR43, POGFB PGK1, PML, PPARG, PRKCG, RUNX2, SIGLEC1, SLC7A11, SMAD3, SOD2, SPTBN1, SRC, ST6GAL1, TNMD, TSC22D3	56
Cellular Growth and Proliferation	growth of cells	4 .60E-10	ACTB, ACTG1, ACTN4, AK2, APC, ATP5B, BDNF, C5AR1, CASP3, CD4, CD55, CD86, CDKN2A, CORO1A, CPB2, CR2, CSF2, CSF3, CTLA4, CXCR7, DCN, ENO1, FGF18, FOXG1, FTH1, GJA5, GRP, HBEGF, HBP1, HPGD, IGF2, IGFBP7, IGHM, IL24, ITGB1, ITGB4, JUN, LAMB2, LCP1, MAFF, MSTN, MYCN, NF1, NFIX, NGF, NOTCH4, NR4A3, PDGFB, PDIA3, PFN1, PGK1, PKM2, PLIN2, PML, PPARG, PSAP, RUIN22, SLC2241, SLC3A2, SLC7A11, SMAD3, SOD2, SRC, TAF4, TPM2	65
Cellular Growth and Proliferation	growth of eukaryotic cells	4.29E-09	ACTN4, APC, BDNF, C5AR1, CASP3, CD4, CD55, CD86, CDKN2A, CR2, CSF2, CSF3, CTLA4, CXCR7, DCN, FGF18, FOXG1, FTH1, GRP, HBEGF, HBP1, HPCD, IGF2, IGFB7, IGHM, IL24, ITGB1, ITGB4, JUN, LCP1, MSTN, MYCN, NF1, NF1X, NGF, NOTCH4, NR4A3, PDGFB, PDIA3, PFN1, PML, PPARG, RUNX2, SLC3A2, SLC7A11, SMAD3, SOD2, SRC, TAF4, TFM2	50
Cell Death	apoptosis of eukaryotic cells	3.37E-08	ADCY10. ADCYAP1. ALDOA. APC, ASNS. BDNF, BTRC, C5AR1. CASP3, CD4, CD55, CDKN2A, CR2, CSF2, CSF3, CTLA4, DCN, DDIT4, EDNRB, ENO1, FTH1, GSPD, HBEGF, IIFIB, IGF2, IGFB7, IGHM, IL24, ITGAM, ITGB1, ITGB4, JUN, KIR3DL1. MAPK11, MYCN, NAMPT, NCAM1, NF1, NGF, NLRP1, NR1D1, NR4A1, NR4A3, PH4B, PAK2, PCNA, PDIA3, PML, PPARG, PRKAA2, PRKCG, PSAP, RUNX2, SMAD3, SOD2, SRC, ST6GAL1, TOP2A, TRADD, TRIB3, VCP, WWOX	62

Page 1 of 5

Cell Death	cell death of eukaryotic cells	4.85E-08	ACTB, ADCY10, ADCYAP1, ALDOA, APC, ASNS, ATXN3, BDNF, BTRC, C5AR1, CASP3, CD4, CD56, CDKN2A, CR2, CSF2, CSF3, CTLA4, CYP3A4, DON, DOIT4, EONRB, ENO1, FLNA, FTH1, GSPD, GFAP, HEGEF, IFI6, IGF2, IGFBP7, IGHM, IL24, ITGAM, ITGB1, ITGB4, JUN, KIR3DL1, MAPK11, MYCN, NAMPT, NCAM1, NF1, NGF, NLRP1, NR1D1, NR4A1, NR4A3, PAHB, PAK2, PCNA, PDGFB, PDIA3, PML, PPARG, PRKA2, PRKCG, PSAP, RUNX2, SLC7A11, SMAD3, SOD2, SRC, ST6GAL1, TAF4, TOP2A, TRADD, TRIB3, VCP, WWOX	70
Cellular Development	differentiation of cells	5.69E-08	ADCYAP1, APC, BDNF, CSAR1, CASP3, CD4, CD52, CD86, CDKN2A, CHD7, CR2, CSF2, CSF3, CTLA4, DCN, EDNRB, ENO1, FGF18, FOX61, GLUL, HBEGF, HBP1, IGF2, IGFBP7, IGHM, IL24, ITGAM, ITGB1, JUN, LIMK2, MAFF, MMP13, MSTN, MYCN, NAMPT, NCAM1, NF1, NGF, NOTCH4, NR101, NR4A1, NR4A3, PML, PPARG, RASA3, RUNX2, SCEL, SMAD3, SOD2, SRC, STMN2, TCF72, TRIB3, TSC2203, WWOX	56
Cellular Movement	invasion of eukaryotic cells	6.48E-08	BCAN, BDNF, CASP3, CDKN2A, CSF2, CSF3, EDNRB, FAM5C, FLNA, GRP, HBEGF, HBP1, IGF2, ITGB1, ITGB4, JUN LCP1 MMP13, MYCN NF1 NGF, PPARG, RUNX2, SOD2, SRC, VIM, WWOX	27
Cell Morphology	shape change of eukaryotic cells	2.21E-07	APC. BDNF, CASP3. CDKN2A. CFTR. CORO1A. CSF2, DCN. EDNRB. FLNA. FOXG1, ITGAM, ITGB1, JUN. NGF, PFN1, RUNX2, SOD2, SRC, TAOK1, VIM	21
Cellular Development	shape change of eukaryotic cells	2.21E-07	APC, BDNF, CASP3, CDKN2A, CFTR, CORO1A, CSF2, DCN, EDNRB, FLNA, FOXG1, ITGAM, ITGB1, JUN, NGF, PFN1, RUNX2, SOD2, SRC, TAOK1, VIM	21
Cell Death	apoptosis	2.74E-07	ACE, ACTN4, ADCY10, ADCYAP1, ALDOA, APC. ASNS. BDNF, BTRC. C5AR1, CASP3, CD4, CD55, CDKN2A, CR2, CSF2, CSF3, CTLA4, DCN, DDIT4, DHRS2, ECE1, EDNRB, ENO1, FTH1, G6PD, HBEGF, IFI6, IGF2, IGFBP7, IGHM, IL24, ITGAM, ITGB4, JUN, KIRZDL1, LAMB2, MARK11, MYCN, NAMPT, NCAM1, NF1, NGF, NLRP1, NR1D1, NR4A1, NR4A3, DAS1, PAHB, PAK2, PCNA, PDIA3, PKM2, PML, PPARG, PRKA42, PRKCG, PROP1, PSAP, RUNX2, SMAD3, SOD2, SRC, ST6GAL1, TOP2A, TRADJ, TRIB3, VCP, WWOX	70
Gene Expression	activation of synthetic promoter	3.92E-07	ACTB, APC, BDNF, BTRC, CASP3, CD4, CDKN2A, CSF2, CSF3, DCN, HBEGF, HBP1, IL24, JUN, KLF15, MAPK11, MYCN, NGF, NOTCH4, PLIN2, PML, PPARG, RUNX2, SIX5, SMAD3, TCF7L2, TRADD, WWOX	28
Tissue Morphology	quantity of cells	7.85E-07	ACTN4, ADCYAP1, APLP1, BDNF, C5AR1, CASP3, CD4, CD86, CDKN2A, CFTR, CNTN2, CR2, CRLF1, CSF2, CSF3, CTLA4, DCN, EDNRB, FGF18, HBEGF, IGF2, IGFBP7, IGHM, IL24, ITGAM, ITGB1, JUN, LHX1, MMP13, NF1, NGF, NOTCH4, NR4A1, NR4A3, PDGFB, PML, PPARG, PSAP, RUNX2, SIGLEC1, SMAD3, SOD2	42
Cellular Growth and Proliferation	growth of cell lines	8.20E-07	ACTN4, APC, CDKN2A, CSF2, CSF3, CXCR7, DCN, FGF18, FOXG1, FTH1, GRP, HBEGF, HBP1, HPGD, IGF2, IGFBP7, IGHM, IL24, ITGB1, ITGB4, JUN, LCP1, MSTN, NF1, NF1X, NGF, NOTCH4, PDGFB, PDIA3, PFN1, PML, PPARG, RUNX2, SLC3A2, SUC7A11, SOC2, SRC, TPM2	38
Cellular Movement	migration of cells	9.46E-07	ADCYAP1. ALDOA. APC, BDNF. C5AR1, CD4, CD86, CDKN2A, CNTN2, CORO1A. CSF2, CSF3, CTLA4, CXCR7, DON, EDNRB, ELN, FAM6C, G6PD, GRP, HBEGF, IGF2, ITGAM, ITGB1, ITGB4, JUN, KRT6A, MAPK11, MMP13, NCAM1, NF1, NF1X, NGF, NR1D1, PAK2, PDGFB, PPARG, PRKCG, RUNX2, SLC3A2, SMAD3, SOD2, SRC, ST6GAL1, TCF7L2, WWOX	46
Organismal Survival	death of animal	1.08E-06	ACE, ADCYAP1, APC, APLP1, BDNF, CSAR1, CASP3, CD4, CDH16, CDKN2A, COLSA1, CRLF1, CSF2, CSF3, CTLA4, CYP11A1, DCN, HAMP, HBEGF, IGF2, ITGAM, ITGB1, ITGB4, LAMB2, MAFF, MYCN, NF1, NFIX, NR4A3, PDGFB, PFN1, PPARG, RUNX2, SNAD3, SD02, SRC, TKT, WWOX	38
Cell Cycle	G1 phase	1.78E-06	ADCYAP1. APC, BTRC, CAMK2B, CDKN2A, CSF2, CSF3, CTLA4. DCN, IGF2, IGFBP7. IGHM, ITGB1, JUN, NGF, PPARG, RUNX2, SOD2. SRC	19
Cell Cycle	entry into cell division process of normal cells	2.64E-06	CDKN2A. CSF3. CTLA4. ITGB1, MYCN. PPARG, RUNX2. SMAD3, SOD2	9
Cell Cycle	cell division process	3.07E-06	ADCYAP1, APC, ASNS, BTRC, CAMK2B, CASP3, CD4, CDKN2A, CLTC, CSF2, CSF3, CTLA4, DCN, FAM5C, FOXG1, GRP, GYPA, HBEGF, HBP1, HPGD, IGF2, IGFBP7, IGHM, IL24, ITGB1, ITGB4, JUN, MYCN, NAMPT, NF1, NGF, NR4A1, NR4A3, PAK2, PCNA, PDGFB, PML, PPARG, PSAP, RAB11A, RUNX2, SMAD3, SOD2, SRC, TCF7L2, TOP2A, WWOX	47

Page 2 of 5

Skeletal and Muscular Disorders	skeletal and muscular disorder of mice	3.29E-06	BDNF, C5AR1. CASP3, CD4, CD86, CDKN2A, CR2, CSF2, CSF3, GFAP, ITGB1, MMP13, NGF, PPARG, RUNX2. ST6GAL1	16
Organismal Survival	death of mice	3.62E-06	ACE, ADCYAP1, APC, APLP1, BDNF, CASP3, CD4, CDH16, CDKN2A, COL6A1, CRLF1, CSF2, CSF3, CTLA4, CYP11A1, DCN, HAMP, IGF2, ITGAM, ITGB1, ITGB4, LAMB2, MAFF, MYCH, NF1, NFIX, NR4A3, PDGFB, PFN1, PPARG, RUNX2, SMAD3, SOD2, SRC, TKT, WWOX	36
Skeletal and Muscular System Development and Function	skeletal and muscular process of eukaryotic cells	4.44E-06	BTF3L1. CDKN2A. CSF2. IGF2. ITGB1. JUN. PDGFB, PPARG. RUNX2, SMAD3. TSC22D3	11
Hematopoiesis	hematopoiesis	5.36E-06	ADCYAP1, APC, CSAR1, CASP3, CD4, CD52, CD6, CD66, CDKN2A, CHD7, CR2, CSF2, CSF3, CTLA4, FTH1, G6PD, HAMP, IGF2, IGHN, ITGB1, JUN, MYCN, NGF, NOTCH4, NR4A1, NR4A3, PDIA3, PML, RUNX2, SMAD3, SOD2, TOP2A	32
Hematological System Development and Function	hematopolesis	5.36E-06	ADCYAP1, APC, C5AR1, CASP3, CD4, CD52, CD8, CD88, CDKN2A, CHD7, CR2, CSF2, CSF3, CTLA4, FTH1, G6PD, HAMP, IGF2, IGHN, ITGB1, JUN, MYCN, NGF, NOTCH4, NR4A1, NR4A3, PDIA3, PML, RUNX2, SMAD3, SOD2, TOP2A	32
Cell Cycle	interphase of normal cells	6.32E-06	CDKN2A, CSF2, CTLA4, DCN, IGFBP7, IGHM, ITGB1, JUN, MYCN, PPARG, RUNX2, SOD2	12
Cell Cycle	G1 phase of eukaryotic cells	7.63E-06	APC, BTRC, CDKN2A, CSF2, CSF3, CTLA4, DCN, IGF2, IGFBP7, IGHM, ITGB1, JUN, NGF, PPARG, RUNX2, SOD2	16
Protein Synthesis	expression of protein	8.06E-06	ACE, CDKN2A, CSF3, CTLA4, GRP, IGHM, ITGB1, JUN, MSTN, PPARG, RUNX2, SOD2, SRC	13
Cell Death	apoptosis of normal cells	8.33E-06	ADCY10 ADCYAP1, ALDOA, APC, BDNF, CASP3, CD4, CDKN2A, CR2, CSF2, CSF3, CTLA4, DCN, IGF2, IGHM, IL24, ITGAM, ITGB1, JUN, MAPK11, MYCN, NAMPT, NF1, NGF, NLRP1, NR1D1, NR4A1, NR4A3, P4HB, PDIA3, PML, PPARG, RUNX2, SMAD3, SOD2, SRC, TOP2A, TRADD	38
Cell Death	apoptosis of endothelial cells	9.36E-06	ADCY10. BDNF. CASP3, CSF3, ITGB1, MAPK11, NR4A3, PPARG, RUNX2, SRC	10
Cellular Development	developmental process of epithelial cells	1.02E-05	APC, CASP3, CDKN2A, ECE1, EDNRB, HBEGF, HBP1, IGF2, IL24, ITGB1, JUN, KRT6A, MAFF, PPARG, RUNX2. SCEL, SMAD3	17
Tissue Development	ossification of connective tissue	1.05E-05	CASP3. FGF18. MMP13. NFIX, RUNX2	5
Skeletal and Muscular System Development and Function	ossification of connective tissue	1.05E-05	CASP3. FGF18. MMP13, NFIX, RUNX2	5
Cancer	hematologic cancer	1.40E-05	CD52, CD86, CDKN2A: CSF2, CTLA4, CYP3A4, ITGB1, JUN, MAPK11, MYCN, NCAM1, NF1, PDIA6, PML: RUNX2. SLC6A2, SOD2, SRC, TOP2A, TUBA8	20
Hematological Disease	hematologic cancer	1.40E-05	CD52. CD86. CDKN2A. CSF2. CTLA4. CYP3A4, ITGB1. JUN, MAPK11. MYCN, NCAM1, NF1, PDIA6, PML. RUNX2. SLC6A2, SOD2, SRC, TOP2A, TUBA8	20
Hematopoiesis	development of blood cells	1.62E-05	ADCYAP1. APC, C5AR1. CASP3, CD4, CD52, CD6. CD86. CDKN2A, CHD7, CR2, CSF3, CSF3, CTLA4. FTH1, G6PD, IGF2, IGHM, ITGB1, JUN, NOTCH4. NR4A1, NR4A3. PDIA3, RUNX2, SMAD3, SOD2, TOP2A	28
Hematological System Development and Function	development of blood cells	1.62E-05	ADCYAP1. APC, C5AR1. CASP3, CD4, CD52, CD6. CD86. CDKN2A, CHD7, CR2, CSF3, CSF3, CTLA4. FTH1, G6PD, IGF2. IGHM, ITGB1, JUN, NOTCH4, NR4A1. NR4A3. PDIA3. RUNX2, SMAD3, SOD2, TOP2A	28
Cellular Development	development of blood cells	1.62E-05	ADCYAP1. APC, C5AR1. CASP3, CD4. CD52. CD6. CD86. CDKN2A. CHD7, CR2, CSF3. CSF3. CTLA4. FTH1. G6PD, IGF2. IGHM, ITGB1, JUN, NOTCH4, NR4A1. NR4A3. PDIA3. RUNX2, SMAD3, SOD2, TOP2A	28
Tissue Development	developmental process of tissue	1.70E-05	APC, BDNF, BTF31, CASP3, CDKN2A, CH07, ECE1, ELN, FOF18, FOXG1, GJA5, HBEGF, IGF2, ITGB1, JUN, KRT6A, LHX1, MMP13, MSTN, NF1, NF1X, NGF, NR4A3, PDGFB, PFN1, PKM2, PPARG, PTCD2, RUNX2, SMAD3, SRC, TBX4, TCF7L2, TNN1, WWOX	35
Cellular Development	differentiation of tumor cell lines	1.77E-05	ADCYAP1. BDNF. CSF2. CSF3. ENO1, IGF2, ITGAM, JUN, LIMK2. MSTN, NCAM1, NGF, PML, PPARG. RUNX2, SRC, STMN2	17
Cellular Development	developmental process of T lymphocytes	2.05E-05	ADCYAP1, APC, C5AR1, CASP3, CD4, CD52, CD55, CD6, CD86, CDKN2A, CHD7, CSF2, CTLA4, FTH1, IGF2, IGHM, ITGB1, JUN, NR4A1, NR4A3, PDIA3, PPARG, RUNX2, SMAD3, TOP2A	25

Page 3 of 5

Tissue Development	development of tissue	2.07E-05	APC, BDNF, CASP3, CDKN2A, CHD7, ECE1, ELN, FGF18, FOXG1, GJA5, HBEGF, IGF2, ITGB1, JUN, KRT6A, LHX1, MMP13, MSTN, NF1, NFIX, NGF, NR4A3, PDGFB, PFN1, PPARG, PTCD2, RUNX2, SMAD3, TBX4, TCF7L2, TNNI1	31
Cellular Growth and Proliferation	growth of tumor cell lines	2.21E-05	ACTN4. APC, CDKN2A, CSF2, CXCR7. DCN, FTH1, GRP, HBEGF, HBP1, HPGD. IGF2. IGFBP7, IGHM, IL24, ITGB1, ITGB4, JUN, LCP1, NF1. NGF. PDIA3. PFN1, PPARG. RUNX2, SLC3A2. SLC7A11, SOD2, SRC	29
Cellular Development	growth of tumor cell lines	2.21E-05	ACTN4: APC, CDKN2A, CSF2, CXCR7. DCN, FTH1, GRP, HBEGF, HBP1, HPGD. IGF2, IGFBP7, IGHM, IL24, ITGB1, ITGB4, JUN, LCP1, NF1, NGF, PDIA3, PFN1, PPARG, RUNX2, SLC3A2, SLC7A11, SOD2, SRC	29
Cellular Development	developmental process of blood cells	2.40E-05	ADCYAP1 APC, C5AR1, CASP3, CD4, CD52, CD55, CD6, CD86, CDKN2A, CHD7, CR2, CSF2, CSF3, CTLA4, FTH1, G8PD, IGF2, IGHA, ITCAM, ITGB1, JUN, MYCN, NGF, NOTCH4, NR4A1, NR4A3, PDIA3, PML, PPARG, RUNX2, SMAD3, SOD2, TOP2A	34
Cellular Development	developmental process of leukocytes	2.46E-05	ADCYAP1. APC, C5AR1, CASP3, CD4, CD52, CD55, CD6, CD88, CDKN2A, CHD7, CR2, CSF2, CSF3, CTLA4, FTH1, IGF2, IGHM, ITGAM, ITGB1, JUN, MYCN, NGF, NR4A1, NR4A3, PDIA3, PML, PPARG, RUNK2, SMAD3, TOP2A	31
Cell Cycle	interphase of eukaryotic cells	2.64E-05	APC, BTRC, CDKN2A: CSF2, CSF3, CTLA4, DCN, IGF2, IGFBP7, IGHM, IL24, ITGB1, JUN, MYCN. NGF, PML, PPARG, PSAP, RUNX2, SOD2, SRC	21
Cancer	adenocarcinoma	2.75E-05	ALDOA, BTRC, C4BPA, CDKN2A, CTLA4, EDNRB, ENO1, FGF18, FTH1, NOTCH4, PCNA, PGK1, PKM2, PPARG, RUNX2, SMAD3, SRM, TRADD, TUBA8, VIM	20
Cancer	head and neck tumor	2.80E-05	APC, CDKN2A, FOXG1. GFAP. HBEGF, IGF2. JUN, MYCN, NF1, PCNA, PDGFB, PPARG, RUNX2. SLC6A2, SRC, TAOK1. TOP2A, TUBA8, VIM	19
Hematological System Development and Function	quantity of leukocytes	3.40E-05	C5AR1. CD4, CD86, CDKN2A, CR2, CSF2, CSF3, CTLA4, HBEGF, IGF2, IGHM, ITGAM, MMP13, NF1, NGF, NOTCH4, NR4A1, PML, PPARG, PSAP, RUNX2, SIGLEC1, SMAD3	23
Tissue Morphology	quantity of leukocytes	3.40E-05	C5AR1. CD4, CD86, CDKN2A. CR2, CSF2. CSF3, CTLA4, HBEGF, IGF2. IGHM, ITGAM, MMP13, NF1, NGF, NOTCH4, NR4A1, PML, PPARG. PSAP. RUNX2, SIGLEC1, SMAD3	23
Cell Cycle	cell stage	4.09E-05	ADCYAP1, APC, BTRC, CAMK2B, CD4, CDKN2A, CLTC, CSF2, CSF3, CTLA4, DCN, FDXG1, GRP, GYPA, HBEGF, IGF2, IGFBP7, IGHM, IL24, ITGB1, JUN, MYCN, NGF, PAK2, PML, PPARG, PSAP, RAB11A, RUNX2, SMAD3, SOD2, SRC, TOP2A	33
Cell Cycle	interphase	4.53E-05	ADCYAP1. APC, BTRC, CAMK2B, CDKN2A, CSF2, CSF3, CTLA4. DCN, IGF2, IGFBP7. IGHM, IL24. ITGB1. JUN. MYCN, NGF, PML, PPARG. PSAP, RUNX2, SOD2, SRC	23
Cell Cycle	cell division process of normal cells	5.10E-05	CDKN2A: CSF2: CSF3: CTLA4, DCN, HBEGF, IGF2: IGFBP7, IGHM. ITGB1, ITGB4, JUN. MYCN, NGF. NR4A3, PPARG, RUNX2, SMAD3, SOD2	19
Tissue Morphology	quantity of mononuclear leukocytes	5.42E-05	C5AR1. CD4, CD86, CDKN2A. CR2. CSF2. CSF3, CTLA4, IGF2, IGHM, ITGAM. NGF, NOTCH4, NR4A1, PML, PSAP, RUNX2, SIGLEC1. SMAD3	19
Hematological System Development and Function	quantity of mononuclear leukocytes	5.42E-05	C5AR1, CD4, CD86, CDKN2A, CR2, CSF2, CSF3, CTLA4, IGF2, IGHM, ITGAM, NGF, NOTCH4, NR4A1, PML, PSAP, RUNX2, SIGLEC1, SMAD3	19
Developmental Disorder	developmental disorder	5.62E-05	ACE. APLP1. BBS9. BDNF. BTRC, CSF2. CSF3. CYP11A1. EDNRB, ELN, FLNA, GFAP. GRP. GYPA. HBEGF. IGF2. ITGB1. JUN. KLF15. MMP13. MSTN, MYCN. NF1. NF1X, NGF, PML, PPARG, PROP1. RUNX2. SCN7A, SLC3A1. SMAD3. SOD2. SRC	34
Cell Morphology	shape change of normal cells	5.66E-05	BDNF, CDKN2A, CORO1A, CSF2, DCN, FOXG1, ITGAM, ITGB1, JUN, NGF, RUNX2, SRC	12
Cellular Development	shape change of normal cells	5.66E-05	BDNF, CDKN2A, CORO1A, CSF2, DCN, FOXG1. ITGAM. ITGB1. JUN, NGF, RUNX2, SRC	12
Hematological System Development and Function	development of leukocytes	6.19E-05	ADCYAP1. APC, C5AR1. CASP3, CD4, CD52, CD6. CD86. CDKN2A, CHD7, CR2, CSF2, CSF3, CTLA4. FTH1, IGF2. IGHM, ITGB1. JUN, NR4A1. NR4A3, PDIA3. RUNX2, SMAD3. TOP2A	25
Hematopoiesis	development of leukocytes	6.19E-05	ADCYAP1, APC, C5AR1, CASP3, CD4, CD52, CD6, CD86, CDKN2A, CHD7, CR2, CSF2, CSF3, CTLA4, FTH1, IGF2, IGHM, ITGB1, JUN, NR4A1, NR4A3, PDIA3, RUNX2, SMAD3, TOP2A	25
Cellular Development	development of leukocytes	6.19E-05	ADCYAP1. APC. C5AR1. CASP3. CD4. CD52. CD6. CD86. CDKN2A. CHD7. CR2, CSF2. CSF3. CTLA4. FTH1. IGF2. IGHM, ITGB1. JUN, NR4A1. NR4A3, PDIA3. RUNX2, SMAD3. TOP2A	25

Page 4 of 5

Gene Expression	activation of Smad binding sequence	8.51E-05	RUNX2, SMAD3. TCF7L2, WWOX	4
Cancer	development of tumor	8.58E-05	CD4. CD86, CDKN2A, CTLA4, JUN. MYCN, NOTCH4, PML, RUNX2, SMAD3	10
Hematological System Development and Function	T cell development	8.89E-05	ADCYAP1, APC, C5AR1, CASP3, CD4, CD52, CD6, CD86, CDKN2A, CHD7, CSF2, CTLA4, FTH1, IGF2, IGHM, ITGB1, JUN, NR4A1, NR4A3, PDIA3, RUNX2, SMAD3, TOP2A	23
Cell-mediated Immune Response	T cell development	8.89E-05	ADCYAP1. APC, C5AR1. CASP3, CD4, CD52, CD6. CD86. CDKN2A, CHD7, CSF2, CTLA4, FTH1, IGF2, IGHM. ITGB1, JUN. NR4A1. NR4A3, PDIA3, RUNX2, SMAD3. TOP2A	23
Cellular Function and Maintenance	T cell development	8.89E-05	ADCYAP1, APC, C5AR1, CASP3, CD4, CD52, CD6, CD86, CDKN2A, CHD7, CSF2, CTLA4, FTH1, IGF2, IGHM, ITGB1, JUN. NR4A1, NR4A3, PDIA3, RUNX2, SMAD3, TOP2A	23
Hematopoiesis	T cell development	8.89E-05	ADCYAP1, APC, C5AR1, CASP3, CD4, CD52, CD6, CD86, CDKN2A, CHD7, CSF2, CTLA4, FTH1, IGF2, IGHM, ITGB1, JUN, NR4A1, NR4A3, PDIA3, RUNX2, SMAD3, TOP2A	23
Cellular Development	T cell development	8.89E-05	ADCYAP1, APC, C5AR1, CASP3, CD4, CD52, CD6, CD86, CDKN2A, CHD7, CSF2, CTLA4, FTH1, IGF2, IGHM, ITGB1, JUN, NR4A1, NR4A3, PDIA3, RUNX2, SMAD3, TOP2A	23
Cellular Growth and Proliferation	proliferation of osteocytes	1.24 E-0 4	CSF2, FGF18, HBEGF, IGF2, RUNX2, SRC	6
Cell Cycle	delay in cell division process of eukaryotic cells	1.63E-04	CDKN2A. IGFBP7. PCNA, PPARG. RUNX2, SOD2, TOP2A	7
Cellular Development	differentiation of osteocytes	1.98E-04	APC, C5AR1, CSF2, FGF18, JUN, NAMPT, NF1, PPARG, RUNX2, SMAD3, SRC, WWOX	12
Connective Tissue Development and Function	differentiation of osteocytes	1.98E-04	APC: C5AR1; CSF2; FGF18; JUN; NAMPT; NF1; PPARG; RUNX2; SMAD3; SRC; WWOX	12
Cell Cycle	delay in G1 phase of cell lines	2.16E-04	CDKN2A, IGFBP7, RUNX2, SOD2	4
Cell Morphology	sprouting	2.43E-04	BDNF, DCN, IGF2, JUN, NCAM1, NGF, RUNX2	7
Developmental Disorder	hypertrophy	2.83E-04	ACE, BDNF, CSF2, CSF3, ELN, GFAP, GRP, HBEGF, JUN, KLF15, MSTN, NF1, NGF, PPARG, RUNX2, SRC	16
Cellular Development	sprouting of normal cells	3.07E-04	BDNF, DCN, JUN, NGF, RUNX2	5
Cell Morphology	sprouting of normal cells	3.07E-04	BDNF, DCN, JUN. NGF, RUNX2	5
Organismal Functions	healing	3.95E-04	COL5A1, HBEGF, IL24, NF1, RUNX2, SCNN1G, SMAD3, SPRR3	8
Tissue Development	aggregation of cells	4.01E-04	BDNF, C4BPA, CD4, CD6. IGHM, ITGAM, ITGB1, NCAM1, NF1. NFASC, RUNX2, SCARF1, SLC3A2	13
Tissue Development	formation of tissue	5.78E-04	BDNF, DCN, IGF2, ITGB1, JUN, LHX1, NCAM1, NR4A3, NUP50, PPARG, RUNX2, SMAD3, SRC, WWOX	14
Cell Cycle	cell stage of eukaryotic cells	6.66E-04	APC, BTRC, CDKN2A, CSF2, CSF3, CTLA4, DCN, IGF2, IGFBP7, IGHM, IL24, ITGB1, JUN, MYCN, NGF, PML, PPARG, PSAP, RUNX2, SOD2, SRC, TOP2A	22

© 2000-2011 Ingenuity Systems, Inc. All rights reserved.

Page 5 of 5

Apoptosis The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway Raminder Singh : Ron-Patrick Cadeddu : Julia Fröbel^{1,1}; Christian Matthias Wilk¹, Ingmar Bruns¹, Luiz Fernando Zerbin¹; Tanja Prenzel²; Sorga Hartwig², Daniela Brünnent¹, Manoj Bhasin , Thomas Schroeder¹; Stefan Lehr¹, Daniel Geoffrey Tenen¹ Rainer Hass¹, Akos Czibere¹

¹ Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine-University, Düsseldorf, Germany ² Department of Clinical Blochemistry and Pathobiochemistry, German Diabetes Center GDC, Düsseldorf, Germany

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA International Center for Genetic Engineering and Biotechnology, Faculty of Health Sciences. University of Cape Town, South Africa

Corresponding author: Akos Czibere (aczibere@bidmc.harvard.edu)

Online Resource 6. Ingenuity pathway analysis regarding Cancer

Category	Functions Annotation	p-Value	Molecules	# Molecules
Cancer	tumorigenesis	5.77E-15	ACE. ACTB, ACTG1, ADAMB, AK2, ALDOA, ANAPC13, APC, BCAN, BDNF, BTRC, C4BPA, CAMK2B, CASP3, CD4, CD52, CD55, CD88, CD64, CDC42BPA, COKN2A, CFTR, CSF2, CSF3, CTL44, CXCR7, CYF1141, CYP34A, DCN, DD1T4, DNAL11, EDNRB, ENO1, FAM5C, FGF18, FLNA, FOXG1, FRY, FTH1, G6PD, GALR1, GFAP, GLUL, GPM6A, GRP, HAMP, HBEGF, HBP1, HPCD, IFI44, IFIT1, IFIT2, IGF2, IGFBP7, IGHM, IL24, ITG81, ITG84, JUN, KIR3DL1, KRT1, KRT6A, LOC61152, MAPK11, MMP13, MYCN, NAMPT, NCAM1, NF1, NGF, NLRP1, NOTCH4, NR4A1, NR4A3, NUP50, P4HB, PAK2, PCNA, PD6B, PDIA3, PDIA6, PFN1, PGK1, PKM2, PLIN2, PML, PPARG, PSAT1, RREB1, RUNX2, SCN7A, SIGLEC1, SLC22A1, SLC6A2, SLC7A11, SMAD3, SOD2, SPTBN1, SRC, SRM, STM2, STOM, SULTIC2, TAF4, TAOK1, TBX4, TCF7L2, TNNC2, TOP2A, TPM2, TRADD, TTC38, TUBA8, VCP, VIM, WWOX	116
Cancer	cancer	4.60E-14	ACE. ACTB, ACTG1, ADAMS, AK2, ALDOA, ANAPC13, APC, BCAN, BTRC, C4BPA, CASP3, CD52, CD55, CD68, CD66, CD20, A2gPA, CDKN2A, CFTR, CSF2, CSF3, CTLA4, CXCR7, CYP3A4, DCN, DDIT4, DNAL11, EDNRB, ENO1, FGF18, FLNA, FOXG1, FRY, FTH1, GFAP, GLUL, GPM6A, GRP, HAMP, HBEGF, HBP1, HPGD, IFI44L, IFI11, IFI12, IG52, IG5BP7, IGHM, IL24, ITG51, ITG54, JUN, KIR3DL1, KRT1, KRTFA, LOC51152, MAPK11, MMP13, MYCN, NAMFT, NCAM1, NF1, NLPAR, NCAM, NCAM, NMP3, NDP30, P4HB, PAK2, PCNA, PDGFB, PDIA3, PDIA6, PFN1, PCK1, PKM2, PLN2, PML, PPARG, PSAT1, RREB1, RUNX2, SCN7A, SIGLE1, SLC22A1, SLC6A2, SICTA11, SMAD3, SOD2, SPTBN1, SRC, SRM, STMN2, STOM, SULTIC2, TAF4, TAOK1, TBX4, TNNC2, TOP2A, TPM2, TRADD, TTC38, TUBA8, VCP, VIM, WWOX	107
Cancer	tumor	7.41E-12	ACTG1 AK2 ALDOA. APC, BCAN, BDNF, BTRC. C48PA, CAMK2B, CASP3, CD4, CD52, CD55, CD86, CDC42BPA, CDKN2A, CSF2, CTLA4, CXCR7, CYP3A4, DCN, DNALI1, EDNRB, ENO1, FAMSC, RGF13, FLNA, POXG1, FTH1, G6PD, GALR1, GFAP, GPM6A, HAMP, HBEGF, HPOD, JFI4LI, JET1, IGF2, IGF8P7, IL24, ITG81, JICB4, JUN, LOCO1152, MMP13, MYCN, NCAM1, NF1, NGF, NOTCH4, NUP50, P4HB, PCNA, PDGFB, PFN1, PGK1, PKM2, PML, PPARG, PSAT1, RREB1, RUNX2, SCNTA, SIGLECT, SLC6A2, SLC711, SMAD3, SOD2, SPTEN1, SRC, SRM, STMN2, STOM, TAF4, TACK1, TEX4, TINC2, TOP2A, TRADD, TUBA3, VCP, VIM, WWOX	84
Cancer	benign tumor	9.19E-11	AK2, ALDOA, APC. BDNF, BTRC, CAMK2B, CDKN2A, CSF2, CXCR7, DCN, EDNRB, FAM5C, FTH1, GALR1, GPM6A, IFI4L, IFIT1, IGF2, IGFBP7, JUN, NF1, NOTCH4, NUP50, PCNA, PML, PPARG, RREB1, SCN7A, SMAD3, SOD2, SRC, STAND, TAGA, TUNCY, TOCHA, TUNCY, UCC	37

Page 1 of 3

Cancer carcinoma 2.91E-09			CTG1. ALDOA, APC, BCAN, BTRC, C4BPA, CASP3, CD55, CDC42BPA, CDKN2A, CSF2, CTLA4, CYP3A, DNAL11, DNRB, EN01. FGF18, FLNA, FTH1. HAMP. HBEGF, IFI11, IGF2, ITGB4, JUN, LOC51152, MMP13, MYCN, NCAM1, NF1, IOTCH4, F4HB, PCNA, PFN1. PCK1, PKM2, PML PPARG, PSAT1, RUNX2, SIGLEC1, SLC7A11, SMAD3, SOD2, PTBN1, SRC, SRM, STMN2, STOM, TBX4, TNNC2, TOP2A, TRADD, TUBA8, VIM, WWOX				
Cancer	malignant turnor	4.53E-09	ACTG1. ALDOA, APC, BCAN, BTRC, C4BPA, CASP3, CD52, CD55, CDC42BPA, CDKN2A, CSF2, CTLA4, CYP3A4, DCN, DNAL11 EDNRB, ENO1, FGF18, FLNA, FOXG1, FTH1, HAMP, HBEGF, IFIT1, IGF2, IL24, ITGB4, JUN, LOC51152, IMMP13, MYCN, NCAMT, NF1, NOTCH4, P4HB, PCNA, PFN1, PGK1, PKM2, PML, PPARG, PSAT1, RUNX2, SCN7A, SIGLEC1, SLC7A11, SMAD3, SOD2, SPTBN1, SRC, SRM, STMN2, STOM, TAF4, TAOK1, TBX4, TNNC2, TOP2A, TRADD, TUBA8, VIM, WWOX	63			
Cancer	uterine cancer	1.8 1 E-07	AK2, ALDOA, BTRC, CDKN2A, CSF2, EDNRB, GPM6A, IFI44L, IFIT1, IGF2, JUN, MMP13, NUP50, PCNA, PML, PPARG, RREB1, SCN7A, SRC, TOP2A, TUBA8, VCP	22			
Cancer	Cancer breast cancer 1.96E-07 IF		ACE, ALDOA, ANAPC13, APC, BTRC, CASP3, CD63, CDKN2A, CTLA4, CYP3A4, DDI74, DNAL11, ENO1, HBEGF, HBP1, IFIT1, JUN, KRT6A, MMP13, NAMP1, NOTCH4, INRA41, NR4A3, P4HB, PCNA, PDGFB, PFN1, PGK1, PLIN2, PML, PPARG, SLGA2, SMAD3, SRC, TAOK1, TOP2A, TTC38, TUBEA3, WNOX	39			
Cancer uterine tumor 8.83E-07 AK2, ALDOA, BTRC, CDKN2A, CSF2, EDNRB, GPM6A, IFI44L, IFIT1, IGF2, JUN, MMP13, NUP50, PC SCN7A, TUBA8, VCP		AK2, ALDOA, BTRC, CDKN2A, CSF2, EDNRB, GPM6A, IFI44L, IFI1, IGF2, JUN, MMP13, NUP50, PCNA, PPARG, RREB1, SCN7A, TUBA8, VCP	19				
Cancer central nervous system tumor 9.55E-07 APC, CDKN2A: EDNRB, FOXG1, GFAP, HBEGF, IGF2, MYCN, NF1, PDGFB, PML, PPARG, SLC6/ TOP2A, T UBA8		APC, CDKN2A. EDNRB. FOXG1, GFAP. HBEGF, IGF2, MYCN, NF1. PDGFB, PML, PPARG, SLC6A2, SRC, TAOK1. TOP2A, TUBA8	17				
Cancer	hyperproliferation	2.11E-06	APC, CASP3, CD86, CDKN2A, CSF2, CSF3, CYP11A1, GRP, HBEGF, ITGB1, MMP13, MYCN, NF1, NGF, PPARG, SMAD3, SRC, TAF4, TCF7L2	19			
Cancer	brain tumor	2.59E-06	APC. CDKN2A. FOXG1, GFAP, HBEGF, IGF2, MYCN. NF1, PDGFB, PPARG. SLC6A2, SRC, TAOK1, TOP2A, TUBA8	15			
Cancer	disease of tumor	2.92E-06	APC. BTRC. CD86. CDKN2A. CSF2. DCN, IGF2, MYCN, NCAM1. NF1. PML, PPARG. SRC. VIM	14			
Cancer	lung cancer	3.74E-06	ACE, ALDOA, APC, BTRC, CDKN2A, CSF3, CTLA4, ENO1, GRP, HPGD, ITGB1, ITGB4, JUN, NCAM1, PCNA, PML, PPARG, SOD2, SRC, SRM, TAOK1, TOP2A, TUBA8, VIM, WWOX				
Cancer	developmental process of tumor	5.83E-06	APC, CASP3, CD4, CD86, CDKN2A, CSF2, CTLA4, IGF2, IL24, ITGB1, JUN, MYCN, NOTCH4, PML, PPARG, RUNX2, SMAD3, SOD2	18			
Cancer	tumorigenesis of colon	6.41E-06	APC. CDKN2A. PPARG. SMAD3	4			
Cancer	digestive organ tumor	7.79E-06	ACTG1. APC, BTRC, C4BPA. CASP3, CDKN2A, CTLA4, FTH1. HAMP, HBEGF. IGF2, ITGB4, JUN, NF1, P4HB, PFN1, PGK1, PKM2, PML, PPARG, SRC, TBX4, TOP2A, TUBA8, VIM, WWOX	26			
Cancer	head and neck cancer	8.19E-06	ADAM8, APC, CDKN2A. FOXG1, GFAP, HBEGF, IGF2, JUN, KRT1, MYCN. NF1, PAK2. PCNA, PDGFB, PPARG, RUNX2. SIGLEC1 SLC6A2, SRC, TAOK1, TOP2A. TUBA8, VIM	23			
Cancer	leiomyoma	8.34E-06	AK2, ALDOA, EDNRB. FTH1, GPM6A, IFI44L, IFIT1, IGF2, JUN, NUP50, PCNA, PPARG, RREB1, SCN7A, SOD2, VCP	16			
Cancer	sarcoma	9.52E-06	APC, CDKN2A, CTLA4, ITGB4, JUN, MMP13, MYCN, NCAM1, NF1, PML, PPARG, SRC, TAOK1, TOP2A, TUBA8, WWOX	16			
Cancer	neurofibrosarcoma	1.05E-05	CDKN2A, ITGB4, MMP13, NF1, SRC	5			
Cancer	quantity of tumor	1.39E-05	APC, CDKN2A. CSF2, EDNRB. HPGD. IGF2, JUN, NGF, TAF4	9			
Cancer	hematologic cancer	1.40E-05	CD52. CD86, CDKN2A, CSF2, CTLA4. CYP3A4, ITGB1, JUN, MAPK11. MYCN, NCAM1. NF1, PDIA6, PML, RUNX2, SLC6A2. SOD2. SRC. TOP2A, TUBA8	20			
Cancer	metastasis	1.47E-05	ACTB, CASP3, CD86, CDKN2A, CSF2, CTLA4, CXCR7, EDNRB, FRY, GLUL, IGFBP7, ITGB4, NCAM1, NLRP1, PPARG, SLC7A11, SMAD3, SRC, STMN2, TOP2A, TUBA8, VIM	22			
Cancer	uterine leiomyoma	1.58E-05	AK2, ALDOA, EDNRB. GPM6A, IFI44L, IFIT1, IGF2, JUN. NUP50, PCNA, PPARG. RREB1, SCN7A, VCP	14			
Cancer	transformation	1.61E-05	APC, CD4, CDKN2A, CLTC. FOXG1, FTH1, G6PD, HBP1, ITGB1, ITGB4, JUN, MYCN, NGF, PAK2, PDGFB, PML. PPARG. PRKCG. SLC3A2, SRC, TAF4, TSC22D3	22			
Cancer	myeloid leukemia	2.61E-05	CD86. CDKN2A, CSF2, CTLA4, CYP3A4, JUN. MYCN, NCAM1. NF1. PML, SRC, TOP2A	12			

Page 2 of 3

Cancer	adenocarcinoma	2.75E-05	ALDOA, BTRC, C4BPA, CDKN2A, CTLA4, EDNRB, ENO1, FGF18, FTH1, NOTCH4, PCNA, PGK1, PKM2, PPARG, RUNX2, SMAD3, SRM, TRADD, TUBA8, VIM	20
Cancer	head and neck tumor	2.80E-05	APC; CDKN2A: FOXG1, GFAP, HBEGF, IGF2, JUN, MYCN, NF1, PCNA: PDGFB, PPARG: RUNX2; SLC6A2; SRC; TAOK1. TOP2A; TUBA8: VIM	19
Cancer	lymphomagenesis	3.14E-05	CASP3. CD52, CDKN2A, CSF2. CTLA4, DCN. JUN. NCAM1, NF1, PPARG. SRC, TAOK1, TOP2A. TUBA8. WWOX	15
Cancer	transformation of cells	3.15E-05	APC; CD4, CDKN2A, CLTC, FOXG1, FTH1, G6PD, HBP1, ITGB1, ITGB4, JUN, MYCN, NGF, PAK2, PDGFB, PML, PPARG, PRKCG, SLC3A2, SRC, TSC22D3	21
Cancer	prostate cancer	3.43E-05	BTRC, CD52, CDKN2A, CTLA4, CYP3A4, EDNRB, FLNA, IFI44L, IGHM, ITGB4, PCNA, PGK1, PML, PPARG, PSAT1, RUNX2, SIGLEC1, SLC6A2, SOD2, SRC, TOP2A, TRADD, TUBA8, WWOX	24
Cancer	tumorigenesis of neurons	3.49E-05	CASP3, CDKN2A, MYCN	3
Cancer	fibrosarcoma	3.52E-05	CDKN2A, CTLA4, ITGB4, MMP13, NF1, SRC	6
Cancer	soft tissue sarcoma	3.68E-05	CDKN2A, CTLA4, ITGB4, MMP13, MYCN, NCAM1, NF1, PPARG, SRC, TOP2A, TUBA8	11
Cancer	tumorigenesis of benign tumor	5.00E-05	APC, BTRC, CDKN2A, NF1, PML	5
Cancer	hyperproliferation of eukaryotic cells	5.45E-05	CASP3, CD86, CDKN2A, CSF2, CSF3, MYCN, NF1, NGF, PPARG, SMAD3, SRC	11
Cancer	squamous-cell carcinoma	6.86E-05	CD55. CDC42BPA, CDKN2A, IFIT1, MYCN. PCNA, SLC7A11, SMAD3, SPTBN1, SRC, STMN2, TNNC2, TOP2A, TUBA8. WWWOX	15
Cancer	neuroepithelial tumor	7.12E-05	CDKN2A GEAP. HBEGF. IGE2. NE1. PDGEB. PML. PPARG. SRC. TAOK1. TOP2A	11
Cancer	er pancreatic cancer 7.77E-05 CASP3, CDKN2A. CFTR, CTLA4, ENO1, HBEGF, ITGB4, PCNA, PML, SRC, TPM2, TUBA8, VIM		CASP3, CDKN2A, CFTR, CTLA4, ENO1, HBEGF, ITGB4, PCNA, PML, SRC, TPM2, TUBA8, VIM	13
Cancer	transformation of eukaryotic cells 8.34E-05 8.34E-05 SRC_TSC/2/D3		18	
Cancer	development of tumor	8.58E-05	CD4. CD86. CDKN2A, CTLA4, JUN, MYCN, NOTCH4, PML, RUNX2, SMAD3	10
Cancer	myelodysplastic syndrome	9.68E-05	CD52, CD86, CTLA4, MAPK11, NF1, PDIA3, PML, SRC, TOP2A	9
Cancer	transformation of fibroblast cell lines	1.28E-04	CD4, CDKN2A, CLTC, FTH1, G6PD, HBP1, ITGB4, JUN, MYCN, PDGF8, PRKCG, SRC, TSC22D3	13
Cancer	transformation of cell lines	1.31E-04	APC, CD4, CDKN2A, CLTC, FTH1, G6PD, HBP1, ITGB4, JUN, MYCN, NGF, PDGFB, PRKCG, SRC, TSC22D3	15
Cancer	glioma	1.57E-04	CDKN2A, GFAP, HBEGF, IGF2, NF1, PDGFB, PPARG, SRC, TAOK1, TOP2A	10
Cancer	lymphoma	1.89E-04	CASP3, CD52, CDKN2A, CTLA4, DCN, JUN, NCAM1, PPARG, SRC, TAOK1, TOP2A, TUBA8, WWOX	13
Cancer	hyperplasia	2.21E-04	APC. CASP3, CD86. CDKN2A. CYP11A1, GRP, HBEGF, ITGB1, MMP13, NF1, NGF. PPARG, TAF4, TCF7L2	14
Cancer	hyperproliferation of normal cells	2.24E-04	CASP3, CD86, CDKN2A, CSF2, CSF3, MYCN, NF1, NGF, PPARG, SMAD3	10
Cancer	hyperproliferation of tunica intima	2.34E-04	CDKN2A, NF1	2
Cancer	tumorigenesis of endocrine gland tumor	2.80E-04	CDKN2A, MYCN, VIM	3
Cancer	hyperproliferation of blood cells	2.80E-04	CD86. CDKN2A, CSF2, CSF3, MYCN, NF1	6
Cancer	tumorigenesis of organ	3.11E-04	APC. CDKNZA, EDNRB. GRP, HBEGF, JUN, PPARG, SMAD3, TCF7L2	9
Cancer	leukemia	4.33E-04	CD52. CD86, CDKN2A, CSF2, CTLA4. CYP3A4, ITGB1, JUN, MYCN, NCAM1, NF1, PML. SLC6A2, SRC, TOP2A, TUBA8	16
Cancer	chronic myeloid leukemia	4.37E-04	CDKN2A, CSF2, CTLA4, JUN, NF1, SRC	6
Cancer	liver tumor	4.96E-04	ACTG1, BTRC, CASP3, CDKN2A, CTLA4, HAMP, IGF2, JUN, PFN1, PML, TOP2A, TUBA8	12
Cancer	lymphoid cancer	6.13E-04	CASP3. CD52, CDKN2A, CTLA4, DCN. JUN, NCAM1. PCNA, PML. PPARG, SRC. TAOK1. TOP2A, TUBA8, WWOX	15
Cancer	prostatic tumor	6.13E-04	BTRC, CDKN2A, CTLA4, CYP3A4, EDNRB, FLNA, ITGB4, PPARG, PSAT1, RUNX2, SIGLEC1, SOD2, TOP2A, TRADD, TUBA8	15
Cancer	renal cancer	6.27E-04	APC. CDKN2A. CTLA4, EDNRB. IGF2. ITGB1, PML. PPARG, SIGLEC1. TOP2A, TUBA8	11

3 2000-2011 Ingenuity Systems, Inc. All rights reserved.

Page 3 of 3

Apoptosis The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway

Raminder Single Ron-Patrick Cadeddu Julia Fröbel¹¹, Christian Mathias Wilk¹, Ingmar Bruns¹, Luiz Fernando Zerbin¹¹, Tanja Prenzel², Sonja Hartwig¹, Daniela Brünnert¹, Manoj Bhasin , Thomas Schroeder¹, Stefan Lehr¹¹, Daniel Geoffrey Tenen³, Rainer Hazs¹, Akos Cabere^{1,3}

¹ Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine-University, Düsseldorf, Germany ² Department of Clinical Blochemistry and Pathobiochemistry, German Diabetes Center GDC, Düsseldorf, Germany

¹Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA ¹International Center for Genetic Engineering and Biotechnology, Faculty of Health Sciences, University of Cape Town, South Africa

Corresponding author: Akos Czibere (aczibere@bidmc.harvard.edu)

Online Resource 7. Ingenuity pathway analysis regarding Cell Cycle

Category	Functions Annotation	p-Value	Molecules			
Cell Cycle	cell division process of cell lines	4.49E-08	APC, BTRC, CDKN2A, CSF2, CSF3, DCN, FOXG1, GRP, GYPA, HBEGF, HPGD, IGF2, IGFBP7, IGHM, IL24, ITGB1, JUN, NYCN, NF1, NGF, NR4A1, NR4A3, PAK2, PCNA, PML, PPARG, PSAP, RUNX2, SMAD3, SOD2,	33		
			SRC, TOP2A, WWOX			
Cell Cycle	cell cycle progression	8.81E-08	ADCYAP1.APC ASNS. BTRC, CASP3.CD4, CDKN2A, CLTC, CSP2, CSP3, CTLA4, FAMSC, FOXG1, GRP, GYPA, HBEGF, HBP1, HPGD, IGF2, IGFB7, IGFM, ITGB1, ITGB4, JUN, NAMPT, NF1, NGF, NR4A1, NR4A3, PAK2, PCNA, PML, PPARG, SMAD3, SRC, TCF7L2, TOP2A, WW0X	38		
Cell Cycle	cell cycle progression of eukaryotic cells	2.15E-07	BTRC. CDKN2A, CSF2. CSF3. CTLA4. FOXG1. GRP, HBEGF. HPGD. IGF2, IGHM, ITGB1, ITGB4. NF1. NGF. NR4A1, NR4A3, PCNA, PML. PPARG. SMAD3, WWOX	22		
Cell Cycle	entry into cell division process of eukaryotic cells	9.79E-07	APC. CDKN2A, CSF3, CTLA4, HPGD, ITGB1, MYCN. PPARG, PSAP. RUNX2, SMAD3, SOD2. SRC	13		
Cell Cycle	II Cycle cell cycle progression of cell lines BTRC. CDKN2A, CSF2, FOXG1, GRP. HBEGF, HPGD, IGHM, NF1, NGF, NR4A1, NR4A3, PCNA, PML, PPAF SMAD3, WWOX		17			
Cell Cycle	G1 phase	1.78E-06	ADCYAP1. APC. BTRC, CAMK2B. CDKN2A, CSF2, CSF3. CTLA4. DCN, IGF2, IGFBP7. IGHM, ITGB1. JUN, NGF, PPARG. RUNX2. SOD2, SRC	19		
Cell Cycle	cell division process of eukaryotic cells	2.51E-06	APC. BTRC, CDKN2A, CSF2, CSF3, CTLA4, DCN, FDXG1, GRP, GYPA, HBEGF, HFGD, IGF2, IGFB7, IGHM, IL24, ITGB1, ITGB4, JUN, MYCN, NF1, NGF, NR4A1, NR4A3, PAK2, PCNA, PML, PPARG, PSAP, RUNX2, SMAD3, SOD2, SRC, TOP2A, WWOX	35		
Cell Cycle	entry into cell division process of normal cells	2.64E-06	CDKN2A, CSF3. CTLA4, ITGB1, MYCN, PPARG, RUNX2, SMAD3, SOD2	9		
Cell Cycle	cell division process of tumor cell lines	2.83E-06	APC: BTRC, CDKN2A, CSF2, CSF3, DCN, HBEGF, HPGD, IGF2, IGFBP7, IGHM, IL24, ITGB1, NF1, NGF, NR4A1, PCNA, PML, PPARG, PSAP, SOD2, SRC, TOP2A, WWOX	24		
Cell Cycle	cell division process	3.07E-06	ADCYAP1, APC. ASNS, BTRC, CAMK2B, CASP3, CD4, CDKN2A, CLTC, CSF2, CSF3, CTLA4, DCN, FAM5C, FOXG1, GRP, GYPA, HBEGF, HBP1, HPGD, IGF2, IGFBP7, IGHM, IL24, ITGB1, ITGB4, JUN, MYCN, NAMPT, NF1, NGF, NR4A1, NR4A3, PAK2, PCNA, PDGFB, PML, PPARG, PSAP, RAB11A, RUNX2, SMAD3, SOD2, SRC, TCF7L2, TOP2A, WWOX	47		
Cell Cycle	interphase of tumor cell lines	3.67E-06	APC, BTRC, CDKN2A, CSF2, CSF3, DCN, IGF2, IGFBP7, IGHM, IL24, ITGB1, NGF, PML, PPARG, PSAP, SOD2, SRC	17		
Cell Cycle	interphase of normal cells	6.32E-06	CDKN2A, CSF2, CTLA4, DCN. IGFBP7, IGHM, ITGB1, JUN, MYCN, PPARG, RUNX2, SOD2	12		
Cell Cycle	interphase of cell lines	6.35E-06	APC, BTRC, CDKN2A, CSF2, CSF3, DCN, IGF2, IGFBP7, IGHM, IL24, ITGB1, JUN, MYCN, NGF, PML, PPARG, PSAP, RUNX2, SOD2, SRC	20		
Cell Cycle	G1 phase of eukaryotic cells	7.63E-06	APC, BTRC, CDKN2A, CSF2, CSF3, CTLA4, DCN, IGF2, IGFBP7, IGHM, ITGB1, JUN, NGF, PPARG, RUNX2, SOD2	16		

Page 1 of 3

Cell Cycle	entry into interphase of eukaryotic cells	1.27E-05	APC, CDKN2A, CTLA4, ITGB1, MYCN, PPARG, PSAP, RUNX2, SOD2, SRC	10
Cell Cycle	G1 phase of normal cells	1.41E-05	CDKN2A, CSF2, CTLA4, DCN, IGFBP7, IGHM, JUN, PPARG	8
Cell Cycle	delay in G1 phase of eukaryotic cells	1.74E-05	CDKN2A, IGEBP7, PPARG, RUNX2, SOD2	5
Cell Cycle	re-entry into cell division process of cell lines	2.24E-05	CDKN2A, CSF2, FOXG1, MYCN, NGF, PPARG	6
Cell Cycle	entry into interphase of normal cells	2.24E-05	CDKN2A, CTLA4, ITGB1, MYCN, PPARG, RUNX2, SOD2	7
Cell Cycle	interphase of eukaryotic cells	2.64E-05	APC, BTRC, CDKN2A, CSF2, CSF3, CTLA4, DCN, IGF2, IGFBP7, IGHM, IL24, ITGB1, JUN, MYCN, NGF, PML. PPARG, ESAP, RUNX2, SOD2, SRC	21
Cell Cycle	cell cycle progression of tumor cell lines	2 76E-05	CDKN2A CSE2 HBEGE HBGD IGHM NE1 NGE NR4A1 PCNA PMI PPARG WW/OX	12
Cell Cycle	cell stage of tumor cell lines	3.53E-05	APC, BTRC, CDKN2A, CSF2, CSF3, DCN, IGF2, IGFBP7, IGHM, IL24, ITGB1, NGF, PML, PPARG, PSAP, SOD2, SRC, TDP2A	18
Cell Cycle	arrest in cell cycle progression of eukaryotic cells	3 99F-05	BTRC CDKN2A CSE2 CTLA4 IGHM ITGB1 NGE NR4A1 NR4A3 PML PPARG SMAD3	12
Cell Cycle cell stage ADC/XP1, APC, BTRC, CAMK2B, CD4, CDKN2A, CLTC, CSF2, CSF3, CTLA4, DCN, FOX 409E-05, IGF2, IGF8P7, IGFM, IL24, ITG81, JUN, MYCN, NGF, PAK2, PML, PPARG, PSAI SMAD3, SOD2, SRC, TOP2A			ADCYAP1, APC, BTRC, CAMK2B, CD4, CDKN2A, CLTC, CSF2, CSF3, CTLA4, DCN, FOXG1, GRP, GYPA, HBEGF, IGF2, IGFBP7, IGHM, IL24, ITCG1, JUN, MYCN, NGF, PAK2, PML, PPARG, PSAP, RAB11A, RUNX2, SMAD3, SOD2, SRC, TOP2A	33
Cell Cycle	interphase	4.53E-05	ADCYAP1, APC: BTRC, CAMK2B. CDKN2A, CSF2, CSF3. CTLA4. DCN, IGF2, IGFBP7. IGHM, IL24, ITGB1, JUN, MYCN, NGF. PML, PPARG. PSAP, RUNX2, SOD2, SRC	23
Cell Cycle	entry into S phase of eukaryotic cells	4.91E-05	APC, CDKN2A, CTLA4, ITGB1, MYCN, PPARG, PSAP, SOD2, SRC	9
Cell Cycle	cell division process of normal cells	5.10E-05	CDKN2A, CSF2. CSF3. CTLA4, DCN. HBEGF, IGF2, IGFBP7, IGHM, ITGB1, ITGB4, JUN, MYCN, NGF. NR4A3. PPARG_RUNX2_SMAD3_SOD2	19
Cell Cycle	cell stage of cell lines	5.71E-05	APC BTRC, CDKN2A, CSF2, CSF3, DCN, IGF2, IGFBP7, IGHM, IL24, ITGB1, JUN, MYCN, NGF, PML, PPARG, PSAP, RUNX2, SOD2, SRC, TOP2A	21
Cell Cycle	G1 phase of tumor cell lines	6.07E-05	APC, BTRC, CDKN2A, CSF2, DCN, IGF2, IGFBP7, IGHM, ITGB1, NGF, SOD2	11
Cell Cycle	Grade of prediction and the state of the sta		CDKN2A, CSF2, CSF3, CTLA4, IGF2, IGHM, ITGB1, ITGB4, NR4A3, PPARG, SMAD3	11
Cell Cycle	arrest in cell cycle progression of cell lines	6.80E-05	BTRC. CDKN2A, CSF2, IGHM, NGE, NR4A1, NR4A3, PML, PPARG, SMAD3	10
Cell Cycle	arrest in cell division process of eukaryotic cells	8.93E-05	BTRC. CDKN2A, CSF2, CSF3, CTLA4, DCN, IGF2, IGFBP7, IGHM, IL24, ITGB1, JUN, NGF, NR4A1, NR4A3, PML, PPARG, SMAD3, SRC	19
Cell Cycle	arrest in cell division process of cell lines	9.13E-05	BTRC. CDKN2A, CSF2. CSF3. DCN, IGF2, IGHM, IL24, ITGB1. JUN, NGF, NR4A1. NR4A3, PML, PPARG, \$MAD3, SRC	17
Cell Cycle	G1 phase of cell lines	1.00E-04	APC. BTRC, CDKN2A, CSF2, CSF3, DCN, IGF2, IGFBP7, IGHM, ITGB1, NGF, RUNX2, SOD2	13
Cell Cycle	cell division process of lymphoma cell lines	1.17E-04	CSF2, IGFBP7, IGHM, SODZ, WWOX	5
Cell Cycle	cell cycle progression of blood cells	1.26E-04	CDKN2A, CSF2, CSF3, CTLA4, IGHM, ITGB1, SMAD3	7
Cell Cycle	arrest in cell division process	1.35E-04	APC: BTRC, CDKN2A, CSF2, CSF3, CTLA4, DCN, IGF2, IGFBP7, IGHM, IL24. ITGB1. JUN, NGF, NR4A1, NR4A3, PML, PPARG, SMAD3, SRC, TCF7L2	21
Cell Cvcle	entry into S phase of normal cells	1.54E-04	CDKN2A, CTLA4, ITGB1, MYCN, PPARG, SOD2	6
Cell Cycle	delay in cell division process of eukarvotic cells	1.63E-04	CDKN2A. IGEBP7. PCNA. PPARG. RUNX2. SOD2. TOP2A	7
Cell Cycle	entry into S phase of tumor cell lines	1.82E-04	APC. CDKN2A. PPARG. PSAP. SRC	5
Cell Cvcle	entry into cell division process of tumor cell lines	1.90E-04	APC. CDKN2A, HPGD, PPARG, PSAP, SRC	6
Cell Cycle	delay in G1 phase of cell lines	2 16E-04	CDKN2A, IGFBP7, RUNX2, SOD2	4
Cell Cycle	delay in G1 phase of lymphoma cell lines	2.34E-04	IGF8P7, SQD2	2
Cell Cycle	arrest in cell cycle progression	2.71E-04	APC. BTRC, CDKN2A, CSF2, CTLA4, IGHM, ITGB1, NGF, NR4A1, NR4A3, PML, PPARG, SMAD3, TCF7L2	14
Cell Cycle	delay in cell stage of eukaryotic cells	3.36E-04	CDKN2A, IGFBP7, PPARG, RUNX2, SOD2, TOP2A	6
Cell Cycle	delay in cell division process of cell lines	4.01E-04	CDKN2A, IGEBP7, PCNA, RUNX2, SOD2, TOP2A	6
Cell Cycle	S phase of tumor cell lines	4.05E-04	APC, CDKN2A, ITGB1, PML, PPARG, PSAP, SRC	7
Cell Cycle	arrest in G1 phase of normal cells	5.44E-04	CDKN2A, CSF2, DCN, IGFBP7, IGHM	5
Cell Cycle	arrest in cell division process of blood cells	5.44E-04	CDKN2A, CTLA4, DCN, IGHM, ITGB1	5

Page 2 of 3

Cell Cycle	cell stage of eukaryotic cells	6.66E-04	APC. BTRC, CDKN2A, CSF2, CSF3, CTLA4, DON, IGF2, IGFBP7, IGHM, IL24, ITGB1, JUN, MYCN, NGF, PML. PPARG, PSAP, RUNX2, SOD2, SRC, TOP2A	22
Cell Cycle	arrest in cell cycle progression of neuronal hybrid cells	6.96E-04	NR4A1. NR4A3	2
Cell Cycle	entry into S phase of colon cancer cell lines	6.96E-04	APC. CDKN2A	2

© 2000-2011 Ingenuity Systems, Inc. All rights reserved.

Page 3 of 3

Apoptosis The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway Raminder Singh : Ron-Patrick Cadeddi : Julia Frobel¹⁷; Christian Mathias Wilk¹, Ingmar Bruns¹, Luiz Fernando Zerbini¹; Tanja Prenzel⁷; Sorga Hartwig⁷, Daniela Brünnen¹, Manoj Bhasin , Thomas Schroeder¹; Stefan Lehr¹, Daniel Geoffrey Tenen¹ Rainer Hass¹, Akos Czibere¹⁷

Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine-University, Dusseldorf, Germany

Department of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center GDC, Dusseldorf, Germany

Beth Israel Deaconess Medical Center: Harvard Medical School, Boston, Massachusetts, USA International Center for Genetic Engineering and Biotechnology, Faculty of Health Sciences, University of Cape Town, South Africa

Corresponding author: Akos Czibere (aczibere@bidmc.harvard.edu)

Online Resource 8. Ingenuity pathway analysis regarding Cell Death

Calegory	Functions Annotation	p-Value	Molecules	# Molecules
Cell Death	cell death of cell lines	1.15E-09	ACTB, ADCYAP1. APC, ASNS. ATXN3, BDNF. BTRC, C5AR1. CASP3. CD4, CD55. CDKN2A, CSF2, CSF3. CTLA4. CYP3A4, DD174. EDNRB, ENO1, FTH1, GRPD, HBEGF, FIR, IGF2, IGF3P7. IGHM, IL24. ITGAM, ITGB1. ITGB4, JUN, KIR3DL1. MAPK11, MYCN NAMPT, NGAM1, NF1, NGF, NLRP1. NRA1, P4HB, PAK2, PCNA, POGF8, PDIA3. PML, PPARG, PRKAA2, PRKCG, PSAP, SLC7A11, SOD2, SRC, ST6GAL1, TOP2A. TRADD, TRIB3. VCP, WWOX	59
Cell Death	cell death of tumor cell lines	2.34 E- 09	APC, ASNS, ATXN3, BDNF, BTRC, C5AR1, CASP3, CD4, CD55, CDKN2A, CSF2, CYP3A4, DDIT4, FTH1, G6PD, HBEGF. IFI6, IGF2, IGF8P7, IGHM, IL24, ITGAM, ITGB1, ITGB4, JUN, KIR3DL1, MAPK11, MYCN, NAMPT, NCAM1, NF1, NGF, NLRP1, NR4A1, P4HB, PAK2, PCNA, PML, PPARG, PRKAA2, PSAP, SLC7A11, SOD2, SRC, ST6GAL1, TOP2A, TRADD, VOP, WWOX	49
Cell Death	apoptosis of tumor cell lines	8.54E-09	APC, ASNS, BDNF, BTRC, CSART, CASP3, CD4, CD55, CDKN2A, CSF2, DD14, G8PD, HBEGF, IFI6, IGF2, IGFBF7, IGHM, IL24, ITGAM, ITGB1, ITGB4, JUN, KIR3DL1, MAPK11, MYCN, NCAM1, NGF, NLRP1, NR4A1, P4HB, PAK2, PCNA, PML, PPARG, PRKAA2, PSAP, SOD2, SRC, ST6GAL1, TOP2A, TRADD, VCP, WWOX	43
Cell Death	apoptosis of cell lines	1.23E-08	ADCYAP1. APC, ASNS. BDNF, BTRC, CSAR1, CASP3, CD4, CD55, CDKN2A, CSF2, CSF3, CTLA4, DDIT4, EDNRB, FTH1, GPD, HBEGF, IFI6, IGF2, IGFB7, IGHM, IL24, ITGAM, ITGB1, ITGB4, JUN, KIR3DL1, MAPK11, MYCN, NCAM1, NGF, NLRP1, NR4A1, P4HB, PAK2, PCNA, PML, PPARG, PRKAA2, PRKCG, PSAP, SOD2, SRC, ST6GAL1, TOP2A, TRADD, TRIB3, VCP, WWOX	50
Cell Death	apoptosis of eukaryotic cells	3.37E-08	ADCY10. ADCYAP1, ALDOA, APC. ASNS, BDNF, BTRC. C5AR1, CASP3. CD4, CD55, CDKN2A. CR2, CSF2, CSF3, CTLA4, DCN, DDIT4, EDNRB, ENO1, FTH1, GAPD, HEEGF, IFIG IGF2, IGFBP7, ICHM, IL24, ITGAM, ITGB1, ITGB4, JUN, KIR3DL1, MAPK11, MYCN, INAMPT, NCAM1, NF1, NC6F, ILRP1, NRT101, INRA1, INR43, PHAB, PAK2, PCNA, PDI3, PML, PPARG, PRKAA2, PRKCG, PSAP, RUNX2, SMAD3, SOD2, SRC, ST6GAL1, TOP2A, TRADD, TRIB3, VCP, WWOX	62
Cell Death	survival of eukaryotic cells	4.03E-08	ACE, ADCYAP1, BDNF, CAMK2B, CASP3, CD4, CD55, CD86, CDC428PA, CDKN2A, CRLF1, CSF2, CSF3, CXCR7, CYP3A4, HBEGF, HTN3, IGF2, IL24, ITG81, JUN, MMP13, MYCN, NF1, NGF, NR4A1, NR4A3, PCNA, PDIA3, PML, PPARG, PRKA2, PRKCG, SLC2A1, SMAD3, SOD2, SRC	37
Cell Death	cell death of eukaryotic cells	4.85E-08	ACTE, ADCV10. ADCYAP1. ALDOA. APC, ASINS. ATXN3. BDNF. BTRC. CSART, CASP3. CC4, CD55, CDKH2A, CR2, CSF2, CSF3, CTLA4. CYP3A4, DCN, DDI74, EDNRB. ENO1. FLNA. FTH1. GSPD, GFAP. HBEGF, IFI6, IGF2, IGFBP7, IGHM, IL24. ITGAM, ITGB1, ITGB1, JUN, KIR3DL1, MAPK11, MYCN, NAMPT, NCAM1, NF1, NGF, NLRP1. NR1D1, NR4A1. NR4A3. P4HB, PAK2, PCNA, PDGFB. PDIA3. PML. PPARG, PRKA2, PRKCG, PSAP, RUNX2, SLC7A11, SMAD3, SOD2, SRC, ST6GAL1. TAF4. TOP2A. TRADD. TRIB3. VCP, WWOX	70

Page 1 of 3

Cell Death	survival of cells	6 89E-08	ACE, ADCYAP1, BDNF, CAMK2B, CASP3, CD4, CD55, CD86, CDC428PA, CDKN2A, CRLF1, CSF2, CSF3, CXCR7, CYP3A4, HBEGF, HTN3, IGF2, IL24, ITCB1, JUN, MMP13, MYCN, INF1, INGF, INR4A3, OGT, PCNA, PDIA3, PML, PPARG, PRKAA2, PRKG2, SLC224, ISMAD3, SOD2, SRC, TOP2A	39
Cell Death	cell death of blood cells	1.69E-07	ADCYAP1. CASP3, CD4, CDKN2A, CR2, CSF2, CSF3, CTLA4, DCN, EDNRB, FTH1. IGHM, ITGAM, ITGB1, JUN, NAMPT. NGF, NR4A1, NR4A3, PDIA3, PML, PPARG, SMAD3, SOD2, TOP2A	25
Cell Death	ceil death	2.43E-07	ACE, ACTB, ACTN4, ADCY10, ADCYAP1, ALDOA, APC, ASNS, ATXN3, BDNF, BTRC, CSAR1, CASP3, CD4, CD55, CDKN2A, CPB2, CR2, CSF2, CSF3, CTL44, CYP3A4, DCN, DD174, DHRS2, ECE1, EDNBE, ENO1, FLNA, FTH1, G&PD, CFAP, HEEGF, IFIG IGF2, IGFB7, IGHM, IL24, ITGAM, ITGB1, ITGB4, JUN, KIR3DL1, LAMB2, MAPK11, MYCN, NAMPT, NCAM1, NF1, NGF, NLRP1, NR1D1, NR4A1, NR4A3, OAS1, PAHB, PAK2, PCNA, PDGFB, PDIA3, PKM2, PML, PPARG, PRKAA2, PRKCG, PROP1, PSAP, RUNX2, SLC7A11, SMAD3, SOD2, SRC, ST6GAL1, TAF4, TOP2A, TRADD, TRIB3, VCP, WWOX	79
Cell Death	apoptosis of blood cells	2.71 E-0 7	ADCYAP1. CASP3, CD4, CDKN2A, CR2, CSF2, CSF3, CTLA4, DCN, IGHM. ITGAM, ITGB1. JUN, NAMPT, NGF, NR4A1, NR4A3, PDIA3, PML, PPARG, SMAD3, SOD2, TOP2A	23
Cell Death	apoptosis	2.74E-07	ACE, ACTN4, ADCY10, ADCYAP1, ALDOA, APC, ASNS, BDNF, BTRC, C5AR1, CASP3, CD4, CD55, CDKN2A, CR2, CSF2 CSF3, CTLA4, DCN, DDIT4, DHRS2, ECE1, EDNRB, ENO1, FTH1, G&PD, HBEGF, IFI6, IGF2, IGFBP7, IGHM, IL24, ITGAM, ITGB1, ITGB4, JUN, KIR3DL1, LAMB2, MAPK11, MYCN, NAMPT, NCAM1, NF1, NGF, NLRP1, NR1D1, NR4A1, NR4A3, CAS1, P4HB, PAK2, PCNA, PDIA3, PKM2, PML, PPARG, PRKAA2, PRKCG, PROP1, PSAP, RUNX2, SMAD3, SOD2, SRC, ST6GAL1, TOP2A, TRADD, TRIB3, VCP, WWOX	70
Cell Death	apoptosis of leukocytes	3.03E-07	ADCYAP1. CASP3, CD4, CDKN2A. CR2, CSF2, CSF3, CTLA4, DCN, IGHM. ITGAM, ITGB1. JUN, NAMPT, NGF, NR4A1, NR4A3, PDIA3, PPARG, SMAD3. SOD2, TOP2A	22
Cell Death	ell Death cell death of leukemia cell lines 5.96E-07		C5AR1. CASP3, CD4, CD55, CDKN2A, CSF2, FTH1, ITGAM. ITGB1. JUN. KIR3DL1, NGF, PAK2, PML. SOD2. TOP2A, TRADD	17
Cell Death	cell death of leukocytes	6 66 E- 07	ADCYAP1. CASP3, CD4, CDKN2A. CR2, CSF2, CSF3, CTLA4, DCN, FTH1. IGHM. ITGAM, ITGB1. JUN, NAMPT, NGF, NR4A1, NR4A3, PDIA3, PPARG, SMAD3, SOD2, TOP2A	23
Cell Death	survival of cell lines	8.02E-07	ACE, BDNF CAMK2B CASP3, CD55, CDC42BPA, CDKN2A, CSF2, CSF3, CXCR7, CYP3A4, HBEGF, IGF2, ITGB1, JUN, MYCN, NGF, NR4A1, NR4A3, PCNA, PML, PRKAA2, PRKCG, SLC22A1, SOD2, SRC	26
Cell Death	apoptosis of leukemia cell lines	2.59E-06	C5AR1, CASP3, CD4, CD55, CDKN2A, CSF2, ITGAM, ITGB1, JUN, KIR3DL1, NGF, PAK2, PML, SOD2, TRADD	15
Cell Death	cell death of lymphocytes	5.38E-06	ADCYAP1. CASP3, CD4, CDKN2A, CR2, CSF2, CSF3, CTLA4, FTH1, IGHM, ITGB1, JUN, NGF, NR4A1, NR4A3, PDIA3, SMAD3, TOP2A	18
Cell Death	cell death of normal cells	5.76E-06	ADCY10. ADCYAP1, ALDOA, APC, ATXN3, BDNF, CASP3, CD4, CDKN2A, CR2, CSF2, CSF3, CTLA4, DCN, EDNRB, FLNA, FTH1, GFAP, IGF2, IGFM, IL24, ITGAM, ITGB1, JUN, MAPK11, MYON, NAMPT, NF1, NGF, NLRP1, NR1D1, NR4A1, NR4A3, P4HB, PDA5, PML, PPARG, RUNX2, SMAD3, SOD2, SRC, TAF4, TOP2A, TRADD	44
Cell Death	survival of normal cells	7.68E-06	ADCYAP1. BDNF, CASP3. CD4, CD86, CRLF1, CSF2. CSF3. HTN3, IGF2. ITGB1. JUN. MMP13, MYCN, NF1, NGF, PCNA, PDIA3, PPARG, PRKCG, SMAD3. SRC	22
Cell Death	apoptosis of normal cells	8.33E-06	ADCY10. ADCYAP1. ALDOA, APC. BDNF, CASP3. CD4. CDKN2A, CR2, CSF2. CSF3. CTLA4. DCN, IGF2. IGHM, IL24. ITGAM, ITGB1, JUN, MAPK11. MYCN, NAMPT. NF1. NGF, NLRP1, NR1D1. NR4A1, NR4A3, P4HB. PDIA3. PML, PPARG, RUNX2. SMA3, SOD2. SPC, TOP2A. TRAD	38
Cell Death	apoptosis of endothelial cells	9.36E-06	ADCY10. BDNF, CASP3. CSF3. ITGB1, MAPK11. NR4A3. PPARG. RUNX2, SRC	10
Cell Death	apoptosis of pheochromocytoma cell lines	1.56E-05	CASP3, DDIT4, G6PD, JUN, MAPK11, NGF, PSAP. SOD2	8
Cell Death	apoptosis of mononuclear leukocytes	1.79E-05	ADCYAP1. CASP3, CD4, CDKN2A, CR2, CSF2, CTLA4, IGHM, ITGB1, JUN, NGF, NR4A1, NR4A3, PDIA3, SMAD3. TOP2A	16
Cell Death	cell death of cancer cells	2.10E-05	BDNF, CASP3, CSF2, CTLA4, END1, IGHM, IL24, ITGB4, JUN, MYCN, NGF, NR4A1	12
Cell Death	survival of neuroglia	2.24E-05	BDNF. IGF2, ITGB1, NF1, NGF. PPARG	6
Cell Death	cell death of pheochromocytoma cell lines	2.30E-05	ATXN3. CASP3, DDIT4, G6PD, JUN. MAPK11, NGF, PSAP, SOD2	9
Cell Death	cell death of tumor cells	4.09E-05	BDNF, CASP3, CDKN2A, CSF2, CTLA4, ENO1, HBEGF, IGHM, IL24, ITGB4, JUN, MYCN, NGF, NR4A1	14

Page 2 of 3

Cell Death Cell Death Cell Death Cell Death	apoptosis of lymphocytes survival of tumor cell lines cell death of macrophages cell death of lymphatic system cells	4.87E-05 5.93E-05 6.11E-05	ADCYAP1_CASP3_C04_CDKN2A_C6R2_CTLA4_IGHM_ITGB1_JUN_NGF_NR4A1_NR4A3_PDIA3_SMAD3_TOP2A ACE_BDNF_CAM/28_CASP3_C055_CDC428PA_CDKN2A_CSF2_CXCR7_HBEGF_IGF2_ITGB1_MYCN_NGF_PCNA, PML_PRK4A5_SDD2_SRC	15 19
Cell Death Cell Death Cell Death	survival of tumor cell lines cell death of macrophages cell death of lymphatic system cells	5.93E-05	ACE, BDNF, CAMK2B, CASP3, CD55, CDC42BPA, CDKN2A, CSF2, CXCR7, HBEGF, IGF2, ITGB1, MYCN, NGF, PCNA, PML, PRKAA2, SOD2, SRC	19
Cell Death Cell Death	cell death of macrophages cell death of lymphatic system cells	6.11E-05		
Cell Death	cell death of lymphatic system cells		CASP3, CDKN2A, CSF2, DCN, NGF, NR4A1, PPARG, SOD2	8
		6.80E-05	CASP3, CD4, CDKN2A, CSF2, CSF3, DCN, ITGAM, NAMPT, NGF, PML	10
Cell Death	cell death of phagocytes	7.12E-05	CASP3, CDKN2A, CSF2, CSF3, DCN, NAMPT, NGF, NR4A1, NR4A3, PPARG, SOD2	11
Cell Death	survival of neurons	7.50E-05	ADCYAP1. BDNF, CRLF1. CSF3, IGF2. JUN. MYCN, NF1, NGF, PDIA3, PRKCG	11
Cell Death	cell death of lymphorna cell lines	7.90E-05	CASP3, CD4, CD55, CSF2, FTH1, IGFBP7, IGHM, PML, PPARG, SOD2, WWOX	11
Cell Death	cell death of antigen presenting cells	8.50E-05	CASP3, CDKN2A, CSF2, DCN, NGF. NR4A1, NR4A3, PPARG. SOD2	9
Cell Death	apoptosis of macrophages	1.16E-04	CASP3, CDKN2A, CSF2, DCN, NGF, PPARG, SOD2	7
Cell Death	survival of central nervous system cells	1.26E-04	ADCYAP1. BDNF, IGF2, JUN. NF1. NGF, PRKCG	7
Cell Death	cell death of connective tissue cells	1.31E-04	CASP3, CDKN2A, DCN, FLNA, IGF2, IL24, ITGB1, JUN, MAPK11, NGF, NR4A1, PML, PPARG, RUNX2, TRADD	15
Cell Death	delay in cell death of normal cells	1 36E-04	BDNF, CASP3, CSF2, CSF3, NGF	5
Cell Death	survival of neutrophils	1.40E-04	CSF2, CSF3, NGF, PCNA	4
Cell Death	apoptosis of phagocytes	1.41E-04	CASP3, CDKN2A, CSF2, CSF3, DCN, NAMPT, NGF, NR4A3, PPARG, SOD2	10
Cell Death	apoptosis of cancer cells	1.49 E- 04	CASP3, CSF2, CTLA4, ENO1, IGHM. IL24, ITGB4, JUN, NGF, NR4A1	10
Cell Death	cell death of B lymphocytes	1.51E-04	CDKN2A, CR2, CSF2, CSF3, IGHM, NR4A1, NR4A3, SMAD3	8
Cell Death	apoptosis of antigen presenting cells	1.74E-04	CASP3, CDKN2A, CSF2, DCN, NGF, NR4A3, PPARG, SOD2	8
Cell Death	survival of connective tissue cells	1.77E-04	CASP3, HTN3, IGF2, JUN, MMP13, NGF, PPARG	7
Cell Death	apoptosis of lymphatic system cells	1.79E-04	CASP3, CDKN2A, CSF2, CSF3, DCN, ITGAM, NAMPT, NGF, PML	9
Cell Death	apoptosis of tumor cells	1.82E-04	CASP3, CDKN2A, CSF2. CTLA4, ENO1. HBEGF, IGHM. IL24, ITGB4, JUN, NGF, NR4A1	12
Cell Death	apoptosis of bone marrow cells	1.99E-04	CASP3, CDKN2A, CSF2, CSF3, DCN, ITGAM, NAMPT, PML	8
Cell Death	cytotoxicity of neutrophils	2.34E-04	CSF2, ITGAM	2
Cell Death	cell death of neurons	2.36E-04	ADCYAP1. ATXN3, BDNF, CASP3, CD4, CDKN2A. CSF3, GFAP, IGF2, JUN, MAPK11, MYCN, NF1, NGF, NLRP1, NR1D1. P4HB, SOD2, TAF4	19
Cell Death	survival of hippocampal neurons	2.63E-04	ADCYAP1, BDNF, IGF2, JUN	4
Cell Death	survival of cerebral cortex cells	3.07E-04	ADCYAP1. BDNF, IGF2, JUN. PRKCG	5
Cell Death	delay in apoptosis of normal cells	3.18E-04	CASP3, CSF2, CSF3, NGF	4
Cell Death	activation of caspase	3.36E-04	CDKN2A, NLRP1, PML, PPARG, SMAD3, VCP	6
Cell Death	apoptosis of pancreatic cancer cell lines	3.36 E- 04	ASNS. BTRC. C5AR1, CDKN2A, G6PD, IL24	6
Cell Death	cell death of breast cancer cell lines	3.74E-04	CASP3, DDIT4, IL24. ITGB1, ITGB4, JUN, NGF, NLRP1, PML, PPARG. SOD2, TRADD, VCP	13
Cell Death	activation-induced cell death of cell lines	4.51E-04	CTLA4, ITGB1, KIR3DL1, NR4A1	4
Cell Death	activation-induced cell death	4.75E-04	ADCYAP1. CASP3, CTLA4, ITGB1, KIR3DL1, NR4A1	6
Cell Death	survival of embryonic cell lines	5.31E-04	HBEGF. NR4A1. NR4A3. SLC22A1	4
Cell Death	apoptosis of neuroblastoma cell lines	5.67E-04	BDNF. CASP3. ITGB1, MYCN. NCAM1, NGF, PPARG	7
Cell Death	apoptosis of lymphoma cell lines	5.69E-04	CASP3, CD4, CD56, CSF2, IGFBP7, IGHM, PML, PPARG, WWOX	9
Cell Death	cell death of leukocyte cell lines	6.04E-04	ADCYAP1. CASP3, CSF2, CSF3, CTLA4. IGHM, ITGB1, JUN, NGF, NR4A1, ST6GAL1	11
Cell Death	cell death of splenocytes	6.20E-04	CASP3, CD4, NGF, PML	4

© 2000-2011 Ingenuity Systems, Inc. All rights reserved.

Page 3 of 3

Apoptosis The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway Raminder Singh. Ron-Patrick Cadeddu. Julia Fröbel¹⁷, Christian Matthias Wilk¹, Ingmar Bruns¹, Luiz Fernando Zerbin¹⁷, Tanja Prenzel², Songa Hartwig¹, Danela Brünnet¹, Manoj Bhasin, Thomas Schroeder¹, Stefan Lehr¹, Daniel Geoffrey Tenen¹⁷ Rainer Haas¹, Akos Czibere^{1,17}

¹ Department of Hematology, Oncology and Olinical Immunology, Heinrich Heine-University, Düsseldorf, Germany
² Department of Clinical Blochemistry and Pathobiochemistry, German Diabetes Center GDC, Düsseldorf, Germany
⁴ Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
⁵ International Center for Genetic Engineering and Biotechnology, Faculty of Health Sciences, University of Cape Town, South Africa

Corresponding author: Akos Czibere (aczibere@bidmc.harvard.edu)

Online Resource 9. Ingenuity pathway analysis regarding Hematopoiesis

Calegory	Functions Annotation	p-Value	Molecules	# Molecules
Hematological System Development and Function	hematological process	4.91E-06	ADCYAP1, APC, CSAR1, CASP3, CD4, CD62, CD6, CD86, CDKN2A, CHD7, CPB2, CR2, CSF2, CSF3, CTLA4, FTH1, G6PD, HAMP, IGF2, IGHM, ITG81, JUN, MYCN, NGF, NOTCH4, NR4A1, NR4A3, PDGFB, PDIA3, PML, PPARG, RUNX2, SMAD3, SOD2, TOP2A	35
Hematological System Development and Function	hematopoiesis	5.36E-06	ADCYAP1, APC, C5AR1, CASP3, CD4, CD52, CD6, CD86, CDKN2A, CHD7, CR2, CSF2, CSF3, CTLA4, FTH1, G6PD, HAMP, IGF2, IGHM, ITGB1, JUN, MYCN, NGF, NOTCH4, NR4A1, NR4A3, PDIA3, PML, RUNX2, SMAD3, SOD2, TOP2A	32
Hematological System Development and Function	expansion of lymphocytes	1.27E-05	C5AR1, CD4, CD55, CD86, CDKN2A, CR2, CSF2, CTLA4, IGHM, PPARG	10
Hematological System Development and Function	differentiation of leukocytes	1.44E-05	ADCYAP1, APC, C5AR1, CD4, CD52, CD86, CDKN2A, CHD7, CR2, CSF2, CSF3, CTLA4, IGF2, IGHM, ITGAM, ITGB1, JUN, MYCN, NGF, PML, PPARG, RUNX2, SMAD3	23
Hematological System Development and Function	development of blood cells	1.62E-05	ADCYAP1, APC, C5AR1, CASP3. CD4, CD52, CD6, CD36, CDKN2A, CHD7, CR2. CSF2, CSF3, CTLA4, FTH1, G6PD, IGF2, IGHM, ITGB1, JUN, NOTCH4, NR4A1, NR4A3, PDIA3, RUNX2, SMAD3, SOD2, TOP2A	28
Hematological System Development and Function	differentiation of mononuclear leukocytes	2.84E-05	ADCYAP1, APC, C5AR1, CD4, CD52, CD86, CDKN2A, CHD7, CR2, CSF2, CSF3, CTLA4, IGF2, IGHM, ITGB1, JUN, MYCN, NGF, PPARG, SMAD3	20
Hematological System Development and Function	T cell homeostasis	3.34E-05	ADCYAP1, APC. C5AR1, CASP3. CD4, CD52. CD6, CD86, CDKN2A, CHD7. CORO1A, CSF2, CTLA4, FTH1, IGF2. IGHM, ITGB1, JUN, NR4A1, NR4A3, PDIA3, RUNX2, SMAD3, TOP2A	24
Hematological System Development and Function	quantity of leukocytes	3.40E-05	C5AR1, CD4, CD86, CDKN2A, CR2, CSF2, CSF3, CTLA4, HBEGF, IGF2, IGHM, ITGAM, MMP13, NF1, NGF. NOTCH4, NR4A1, PML, PPARG, PSAP, RUNX2, SIGLEC1, SMAD3	23
Hematological System Development and Function	quantity of blood cells	5.12E-05	C5AR1, CD4, CD86, CDKN2A, CR2, CSF2, CSF3, CTLA4, HBEGF, IGF2, IGHM, ITGAM, MMP13, NF1, NGF. NOTCH4, NR4A1, PDGFB, PML, PPARG, PSAP, RUNX2, SIGLEC1, SMAD3	24
Hematological System Development and Function	quantity of mononuclear leukocytes	5.42E-05	C5AR1, CD4, CD86, CDKN2A, CR2, CSF2, CSF3, CTLA4, IGF2, IGHM, ITGAM, NGF, NOTCH4, NR4A1, PML, PSAP, RUNX2, SIGLEC1, SMAD3	19
Hematological System Development and Function	development of leukocytes	6.19E-05	ADCYAP1, APC. C5AR1, CASP3. CD4, CD52. CD6, CD86, CDKN2A. CHD7. CR2. CSF2. CSF3. CTLA4, FTH1. IGF2. IGHM, ITGB1, JUN, NR4A1, NR4A3, PDIA3, RUNX2. SMAD3. TOP2A	25
Hematological System Development and Function	proliferation of leukocytes	6.68E-05	ADCYAP1, BTNL2: CASP3, CD4, CD6, CD86, CDKN2A, CORO1A, CR2: CSF2, CSF3, CTLA4, DCN. IGHM, IL24, ITGAM, ITGB1, MYCN, NF1, NGF, PPARG, SIGLEC1, ST6GAL1, TSC22D3	24
Hematological System Development and Function	T cell development	8.89E-05	ADCYAP1, APC, C5AR1, CASP3, CD4, CD52, CD6, CD86, CDKN2A, CHD7, CSF2, CTLA4, FTH1, IGF2, IGHM, ITGB1, JUN, NR4A1, NR4A3, PDIA3, RUNX2, SMAD3, TOP2A	23
Hematological System Development and Function	development of lymphocytes	9.94E-05	ADCYAP1, APC, C5AR1, CASP3, CD4, CD52, CD6, CD86, CDKN2A, CHD7, CR2, CSF2, CTLA4, FTH1, IGF2, IGHM, ITGB1, JUN, NR4A1, NR4A3, PDIA3, RUNX2, SMAD3, TOP2A	24

Page 1 of 2

Hematological System Development and Function	survival of neutrophils	1.40E-04	CSF2, CSF3, NGF, PCNA	4
Hematological System Development and Function	expansion of T lymphocytes	1.41 E- 04	C5AR1, CD4, CD55, CD86, CSF2, CTLA4, IGHM, PPARG	8
Hematological System Development and Function	adhesion of leukocyte cell lines	1.82E-04	CSF2, CSF3, ITGAM, ITGB1, SRC	5
Hematological System Development and Function	maturation of neutrophils	1.89E-04	CSF2, CSF3, PML	3
Hematological System Development and Function	differentiation of lymphocytes	2.51E-04	ADCYAP1, APC, C5AR1, CD4, CD52, CD86, CDKN2A, CHD7, CR2, C5F2, CTLA4, IGF2, IGHM, ITGB1, MYCN, NGF, SMAD3	17
Hematological System Development and Function	quantity of lymphocytes	2.97E-04	C5AR1, CD4, CD86, CDKN2A, CR2, CSF2, CSF3, CTLA4, IGF2, IGHM, ITGAM, NGF, NOTCH4, NR4A1, PSAP, RUNX2, SIGLEC1	17
Hematological System Development and Function	stimulation of granulocytes	3.80E-04	C5AR1, CSF2, CSF3, IGF2	4
Hematological System Development and Function	stimulation of neutrophils	3.95E-04	C5AR1, CSF2, CSF3	3
Hematological System Development and Function	T cell response	4.05E-04	C5AR1, CASP3, CD4, CD86, CSF2, CTLA4, PPARG	7
Hematological System Development and Function	cell movement of phagocytes	4.57E-04	C5AR1, CD4, CD55, CD86, CFTR. CORO1A, CSF2, CSF3, EDNRB, ELN, ITGAM, ITGB1, NGF, PDGFB, PPARG. SMAD3	16
Hematological System Development and Function	proliferation of lymphocytes	5.24E-04	ADCYAP1, BTNL2, CASP3, CD4, CD6, CD86, CDKN2A, CORO1A, CR2, CSF2, CTLA4, IGHM, IL24, ITGAM, ITGB1, MYCN, NGF, PPARG, SIGLEC1, ST6GAL1, TSC22D3	21
Hematological System Development and Function	cell movement of leukocytes	6.02E-04	ACTN4, C5AR1, CD4, CD55, CD86, CFTR. CORO1A. CSF2, CSF3, CTLA4, CXCR7, EDNRB. ELN, GFAP, ITGAM. ITGB1, NGF, PDGFB. PPARG, SMAD3	20
Hematological System Development and Function	quantity of T lymphocytes	6.55E-04	C5AR1, CD4, CD86, CDKN2A, CSF2, CSF3, CTLA4, IGF2, ITGAM, NOTCH4, NR4A1, RUNX2, SIGLEC1	13
Hematological System Development and Function	binding of peripheral blood monocytes	6.96E-04	CD4, ITGAM	2
Hematological System Development and Function	elimination of leukocyte cell lines	6.96E-04	CD4, CTLA4	2

© 2000-2011 Ingenuity Systems, Inc. All rights reserved.

Page 2 of 2

4.2 The novel compound OSI-461 induces apoptosis and growth arrest in human acute myeloid leukemia cells.

Ann Hematol DOI 10.1007/s00277-011-1282-4

ORIGINAL ARTICLE

The novel compound OSI-461 induces apoptosis and growth arrest in human acute myeloid leukemia cells

Raminder Singh · Julia Fröbel · Ron-Patrick Cadeddu · Ingmar Bruns · Thomas Schroeder · Daniela Brünnert · Christian Matthias Wilk · Luiz Fernando Zerbini · Rainer Haas · Akos Czibere

Received: 16 March 2011 / Accepted: 15 May 2011 © Springer-Verlag 2011

Abstract Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. Treatment of patients suffering from high-risk AML as defined by clinical parameters, cytogenetics, and/or molecular analyses is often unsuccessful. OSI-461 is a pro-apoptotic compound that has been proposed as a novel therapeutic option for patients suffering from solid tumors like prostate or colorectal carcinoma. But little is known about its anti-proliferative potential in AML. Hence, we treated bone marrow derived CD34⁺ selected blast cells from 20 AML patients and the five AML cell lines KG-1a, THP-1, HL-60, U-937, and MV4-11 with the physiologically achievable concentration of 1 µM OSI-461 or equal amounts of DMSO as a control. Following incubation with OSI-461, we found a consistent induction of apoptosis and an accumulation of cells in the G2/M phase of the cell cycle. In addition, we demonstrate that the OSI-461 mediated anti-proliferative effects observed in AML are associated with the induction of the proapoptotic cytokine mda-7/IL-24 and activation of the

R. Singh · J. Fröbel · R.-P. Cadeddu · I. Bruns · T. Schroeder · D. Brünnert · C. M. Wilk · R. Haas · A. Czibere Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany

L. F. Zerbini International Center for Genetic Engineering and Biotechnology (ICGEB) and Medical Biochemistry Division, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

A. Czibere (⊠)
Beth Israel Deaconess Medical Center,
Department of Hematology, Harvard Medical School,
3 Blackfan Circle,
Boston, MA 02215, USA
e-mail: aczibere@bidmc.harvard.edu

Published online: 30 June 2011

growth arrest and DNA-damage inducible genes (GADD) 45α and 45γ . Furthermore, OSI-461 treated leukemia cells did not regain their proliferative potential for up to 8 days after cessation of treatment following the initial 48 h treatment period with 1 μ M OSI-461. This indicates sufficient targeting of the leukemia-initiating cells in our in vitro experiments through OSI-461. The AML samples tested in this study included samples from patients who were resistant to conventional chemotherapy and/or had FLT3-ITD mutations demonstrating the high potential of OSI-461 in human AML.

Keywords AML · OSI-461 · GADD45 · Growth arrest · Apoptosis

Introduction

Acute myeloid leukemia is a heterogeneous malignancy originating from the hematopoietic stem and progenitor cell compartment that is characterized by the expansion of an immature blast cell population [1]. Treatment strategies are nowadays based on patients' clinical parameters and cytogenetic as well as molecular analyses. Through extensive research over the past decade, several novel risk factors and treatment strategies could be identified and developed [2]. Unsolved problems include the induction of long-term remissions in patients suffering from high-risk AML as defined by the clinical course of their disease, complex aberrant karyotypes, and/or mutations like FLT3-ITD. Still, approximately 50% of these patients die from their leukemia [2]. A feasible way to improve treatment outcomes in those patients would include sufficient targeting of the leukemia initiating cells. The novel compound OSI-461 has been widely studied in solid tumors, but little is known about its potential in hematological malignancies

Springer

such as AML. We could previously demonstrate that the OSI-461 related compounds sulindac sulfide and sulindac sulfone induce apoptosis and growth arrest in a broad variety of cancer cells through a strictly mda-7/IL-24 dependent pathway involving GADD45 α and GADD45 γ activation in vitro and in vivo [3, 4]. The anti-cancer potential of the pro-apoptotic cytokine mda-7/IL-24 is currently under investigation for various solid cancer entities, and recent work also demonstrated an anti-proliferative effect of mda-7/IL-24 in AML [5, 6]. Here, we provide evidence that OSI-461 induces apoptosis and a G2/M cell cycle arrest in AML cells, including samples obtained from high-risk AML patients.

Materials and methods

Patient samples Patient and normal bone marrow samples were obtained after written informed consent following an approved protocol. Bone marrow CD34⁺ cells were selected by immunomagnetic cell separation (Miltenyi Biotec) according to the manufacturer's instructions. Primary CD34⁺ cells were cultured in serum-free HPGM (hematopoietic progenitor growth medium; Lonza) supplemented with IL-3, IL-6 (both 10 ng/ml), and SCF (25 ng/ml; all from Peprotech). CD34⁺ cells were cultured at 37°C, 5% CO₂ under humidified conditions. Patients' characteristics are detailed in Table 1.

No. Diagnosis		Sample status	Karyotype	Molecular diagnostics	
AML 1	AML M1	Primary diagnosis	N/A	N/A	
AML 2	AML M4/M5	Primary diagnosis	47, XY +8	N/A	
AML 3	MDS RAEBII	Primary diagnosis	46, XY	MLL-PTD	
AML 4	sAML/MDS	Refractory	45, XX, t(3;3), -7/46, XX	None	
AML 5	AML M1	Refractory	46, XY	None	
AML 6	sAML/MDS	Refractory	46, XY	None	
AML 7	CML-BC	Disease progression	46, XY, t(9;22)	BCR-ABL	
AML 8	AML M1	Primary diagnosis	46, XX, t(6;9)	FLT3-ITD	
AML 9	sAML MDS	Relapse	46, XY	N/A	
AML 10	AML M5	Relapse	Complex	None	
AML 11	AML M5	Primary diagnosis	46, XX	NPM1	
AML 12	sAML/MDS	Primary diagnosis	46, XY	None	
AML 13	MDS RAEBII	Primary diagnosis	46, XX	None	
AML 14	AML M5b	Primary diagnosis	46, XX inv(16)	None	
AML 15	AML M1	Primary diagnosis	N/A	N/A	
AML 16	AML M2	Primary diagnosis	N/A	N/A	
AML 17	sAML/MDS	Refractory	Complex	None	
AML 18	AML M4	Primary diagnosis	46, XX	None	
AML 19	AML M4	Relapse	46, XX	FLT3-ITD	
AML 20	AML M2	Relapse	46, XX	FLT3-ITD	

Table 1 Patients' characteristics

52

Cell culture The AML cell lines KG-1a and HL-60 were purchased from Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, whereas THP-1, U-937, and MV4-11 cells were obtained from the American Type Culture Collection. All cell lines were purchased for the purpose of this study and grown in RPMI 1640 (Sigma-Aldrich) supplemented with 0.05 mM 2-mercaptoethanol, 2 mM L-glutamine, 100 U/mL penicillin, and 100 μ g/mL streptomycin (all Sigma-Aldrich). For HL-60 and U-937 cells media was completed with 20%, for KG-1a and THP-1 cells with 10% fetal bovine serum. Cells were cultured at 37°C, 5% CO₂ under humidified conditions.

Reagents OSI-461 was provided by OSI Pharmaceuticals Inc. and was dissolved in DMSO (Sigma-Aldrich). Cells were generally treated with 1 μ M OSI-461. Respective controls were treated with equal amounts of DMSO (less than 0.1% final concentration).

Semisolid clonogenic assays Following 48 h of initial treatment with 1 μ M OSI-461 or DMSO, cells were seeded in semisolid ready-to-use methylcellulose growth medium (MethoCult H4436, StemCell Technologies) at concentrations of 1×10^3 cells/mL. After 2 weeks of culture at 37° C, 5% CO₂ under humidified conditions, colonies were graded (CFU-GEMM, CFU-G/M/GM, CFU-E, BFU-E) and counted. Each experiment was performed in triplicates.

Ann Hematol

Apoptosis and cell viability assays Measurement of apoptosis following OSI-461 treatment was performed utilizing the Cell Death Detection ELISAplus kit (Roche). Absorbance was measured at 405 nm on a Victor Wallac multilabel counter 1420 (Perkin Elmer). Viability was assessed by counting in a hemocytometer following trypan-blue staining.

Cell cycle analysis Distribution of cells in the cell cycle was assayed with the FITC BrdU Flow Kit (BD Biosciences) by BrdU and 7-amino-actinomycin D (7-AAD) staining according to the manufacturer's instructions. Briefly, prior analysis 3×10^6 cells were incubated in 6 mL RPMI medium supplemented with 1 μ M OSI-461 or 1 μ M DMSO for 48 h. Following treatment, cells were pulsed with BrdU every 6 h for 24 h prior staining and flow-cytometric analysis on a FACS Calibur (Becton Dickinson).

Real-time PCR Total RNA was isolated using QIAshredder and RNeasy Mini Kit (both Qiagen) according to the manufacturer's instructions. The amount of extracted RNA was quantified using the NanoDrop spectrophotometer (NanoDrop Technologies). Real-time PCR was performed using the LightCycler-FastStart DNA Master SYBR Green I kit in a LightCycler 1.2 (both Roche Diagnostics). Relative gene expression levels were calculated as the difference of CT values of the gene of interest and the housekeeping gene GAPDH as control (Δ CT). The delta-delta CT method was used for calculation of expression differences of the respective genes. Primer sequences were as follows: mda-7/ IL-24 sense—CAAAGCCTGTGGACTTTAGCC; IL-24 antisense-GAATAGCAGAAACCGCCTGTG; human GAPDH sense—TCCATGACAACTTTGGTATCG; human GAPDH antisense—GTCGCTGTTGAAGTCAGAGGA; GADD45 α sense—TGCTGACGCGCAGGATGTT; GADD45 α antisense—GCTGCTCAACGTCGACCC; GADD45 γ sense—CTGCATGAGTTGCTGCTGTC; and GADD45 γ antisense—TTCGAAATGAGGATGCAGTG.

Statistical analysis Statistical significance was tested using paired, two-tailed Student t test to assess the significance levels of OSI-461 treated samples compared to their respective DMSO controls. P values lower than 0.05 were considered as significant.

Results

OSI-461 induces apoptosis and growth arrest in AML

Clinical trials have demonstrated that OSI-461 can reach steady-state plasma concentrations of 2.5 μ M in

humans [7]. A dose-response analysis of the FLT3-ITD positive human AML cell line MV4-11 revealed that OSI-461 consistently induces apoptosis at concentrations as low as 0.75 µM following 48 h of treatment (Fig. 1a). In a time-response analysis with 1 µM OSI-461 in the human AML cell line KG-1a, we found that induction of apoptosis starts as early as 36 h posttreatment (Fig. 1b). Based on these data, we chose a treatment period of 48 h with 1 µM of OSI-461 for our further experiments. First, the AML cell lines HL-60, THP-1, MV4-11, U-937, and KG-1a were treated with 1 µM OSI-461 for 48 h. Following incubation, changes in apoptosis and cell cycle as a result of OSI-461 treatment were analyzed. We found that treatment with 1 μ M OSI-461 led to a consistent induction of apoptosis in all cell lines tested (Fig. 2a). This was

Fig. 1 Dose- and time-dependent response curves to OSI-461 in AML. a FLT3-ITD positive MV4-11 cells were treated with increasing OSI-461 concentrations ranging from 0.005 μM to 5 μM for 48 h. We detected a steady increase in apoptotic activity starting at 0.75 μM as measured by an increased extinction at 405 nm. b Time-response analysis in KG-1a AML cells treated with 1 μM OSI-461 for a total of 120 h. Apoptosis was measured at the indicated time points and could be detected as early as 36 h post-treatment start

🙆 Springer

а

4

З

2

1

0

OSI-461 1µM

KG1a

DMSO

HL-60

DMSO

OD 405 nm

Fig. 2 OSI-461 induces apoptosis and growth arrest in AML cell lines. a Various AML cell lines were treated with 1 μM OSI-461 for 48 h prior to measurement of apoptotic activity. We detected a consistent increase in apoptotic cells, as indicated by the increased extinction at 405 nm. Data show means±SD of independent triplicate experiments for each treatment (*P<0.01). b Cell cycle analysis was performed by BrdU and 7-AAD staining following 48 h of treatment with 1 µM OSI-461. The upper panel shows one representative experiment in MV4-11 cells. The lower table shows the percentage of cells in the respective phases of the cell cycle, demonstrating for both THP-1 and MV4-11 cells a decrease of cells in the proliferative S-phase,

and an increase of cells in the

G2/M-phase

OSI-461 1µM OSI-461 0 OSI-

U937

MV4-11

THP-1

MV4-11	DMSO	OSI-461		THP-1	DMSO	OSI-461
sub-G0	1.91	18.05		sub-G0	0.51	9.97
G0/G1	9.54	27.83	%	G0/G1	7.29	13.75
S	85.38	36.07		S	84.12	56.46
G2/M	0.33	12.09		G2/M	0.50	12.96

accompanied by accumulation of the treated cells in the G0/G1 and G2/M-phase of the cell cycle with a decreased proportion of cells in the S-phase (Fig. 2b). Furthermore, we tested if treatment with OSI-461 also led to induction of myeloid differentiation. We evaluated cell surface expression of CD11b, CD14, CD15, and CD114, and performed clonogenic assays, but found no change in the expression of the aforementioned myeloid differentiation

markers as well as no mature colonies in our clonogenic assays (data not shown).

OSI-461 induced apoptosis in primary AML blast cells from patients with high-risk AML is durable

Next, we examined the pro-apoptotic capabilities of OSI-461 in 20 bone marrow derived CD34⁺ enriched AML

Springer

Ann Hematol

patient samples. Following treatment with 1 µM OSI-461 for 48 h, apoptosis increased by an average of 2.2-fold as compared to DMSO treated controls (Fig. 3a, $P \le 0.01$). Overall, 17 of the 20 patients tested (85%) responded to this in vitro treatment. These data point towards a potential efficacy of OSI-461 as a pro-apoptotic agent in AML. So we next asked if single agent treatment with OSI-461 is sufficient to eradicate the leukemia initiating cells in vitro. For this purpose, we treated bone marrow derived CD34⁺ enriched leukemia cells from patients AML 17 to AML 20 with 1 µM of OSI-461 for 48 h. Then, cells were transferred into fully supplemented medium (IL-3, IL-6, SCF) without DMSO or OSI-461, and cell numbers and viability were continuously assessed every 48 h for up to 8 days (192 h). We found that none of the OSI-461 treated samples was able to regain its proliferative potential, while the formerly DMSO treated cells continued to expand rapidly. Figure 3b shows data from two patients. These data indicate that 48 h of treatment with 1 µM of OSI-461 is sufficient to inhibit proliferation of the leukemic cells even after cessation of therapy for up to 8 days, indicating that OSI-461 targets the leukemia initiating cells in vitro.

OSI-461 induces apoptosis in normal hematopoietic CD34+ cells, which are able to recover and give rise to differentiated progenitors after cessation of treatment

Although no hematopoietic toxicities were reported from trials investigating OSI-461 for the treatment of patients with solid cancers, we were interested in any potentially toxic effect of OSI-461 on normal CD34⁺ hematopoietic stem and progenitor cells (HSPCs) in vitro. Therefore, we treated four normal bone marrow derived CD34⁺ cells with 1 µM OSI-461 for 48 h analog to the primary AML cells and also found an increased rate of apoptosis as a consequence of the treatment with OSI-461 (Fig. 4a). In contrast to primary AML cells, normal CD34⁺ cells did recover from OSI-461 treatment when maintained in OSI-461-free medium for another 96 h as shown by a steady increase of viable cells (Fig. 4b). We further evaluated if OSI-461 treatment did affect the differentiation capacity of normal CD34⁺ HSPC in clonogenic assays. Therefore, following 48 h of treatment with 1 µM OSI-461 or DMSO, we transferred 1×103 HSPCs/mL into methylcellulosebased medium supplemented with G-CSF, EPO, TPO, IL-

Fig. 3 Anti-proliferative effect of OSI-461 is consistent in human AML samples and maintained after cessation of therapy. a Bone marrow derived CD34⁺ enriched primary AML samples from 20 patients were treated with 1 µM OSI-461 for 48 h. Experiments were carried out in duplicates. Apoptosis was induced by an average fold of 2.2 (P<0.05) with 85% of the patients tested responding. b Following treatment with 1 µM OSI-461 for 48 h cells were transferred in fresh, OSI-461 or DMSO free, media and cultured for an additional 8 days. OSI-461 treated AML cells did not regain full proliferative potential as compared to the previously DMSO treated cells. The panel shows data for two representative patients

Fig. 4 OSI-461 treatment does not affect the hematopoietic potential of normal CD34⁺ HSPC. a CD34⁺ hematopoietic stem and progenitor cells (HSPC) from normal donors were treated with 1 µM OSI-461 for 48 h. Apoptosis analysis shows, similar to the AML patient samples, an increase in apoptotic activity in the OSI-461 treated samples. **b** Normal CD34⁺ HSPC regain their proliferative potential after cessation of 48 h of OSI-461 treatment, as shown by a continuous increase in the number of viable cells in both the DMSO and OSI-461 treated cells 48 h and 96 h posttreatment cessation. c Myeloid differentiation potential is not disturbed by OSI-461 treatment as demonstrated by clonogenic assays. No significant difference between DMSO and OSI-461 treated samples could be detected. All experiments were done in triplicates and the data are presented as mean±SD

Ann Hematol

3, IL-6, and FLT3L. After 14 days in culture, colonies were assessed and counted (Fig. 4c). We found no differences between cells previously treated with DMSO or OSI-461 with regard to their myeloid potential, thus demonstrating that OSI-461 treated normal CD34⁺ HSPCs retain their full hematological potential.

OSI-461 anti-proliferative activities are accompanied by induction of mda-7/IL-24 transcription with activation of GADD45 α and GADD45 γ

We have previously reported that related non-steroidal antiinflammatory drugs (NSAID) that cause apoptosis and a G2/M cell cycle arrest in malignant cells utilize a strictly mda-7/IL-24 dependent signaling pathway through GADD45 α and GADD45 γ activation. Therefore, we asked if this may be a molecular pathway involved in OSI-461 treated hematological malignancies and found a consistent induction of mda-7/IL-24, GADD45 α , and GADD45 γ expression in primary AML samples and AML cell lines treated with 1 μ M OSI-461 or equal amounts of DMSO for

Springer

48 h. Median fold of induction in the nine AML patients analyzed was 8.9 (range 2.7- to 60.3-fold) for mda-7/IL-24, and 2.6 (range 1.4- to 77.2-fold) and 1.7 (range 1.4- to 39.8-fold) for GADD45 α and GADD45 γ , respectively (Fig. 5b, d). This included AML samples from patients with FLT3-ITD and MLL mutations. Transcriptional activation of mda-7/IL-24, GADD45 α , and GADD45 γ following OSI-461 treatment was also consistently observed in the AML cell lines tested here (Fig. 5a, c).

Discussion

Here, we report that the novel pro-apoptotic compound OSI-461 induces apoptosis and a G2/M growth arrest in primary cells of patients with acute myeloid leukemia (AML). These anti-proliferative effects of OSI-461 are accompanied by an induction of mda-7/IL-24, GADD45 α , and GADD45 γ transcription. OSI-461 is an investigational pro-apoptotic agent related to the metabolites of the non-steroidal anti-inflammatory drug sulindac sulfoxide

Ann Hematol

Fig. 5 Changes in gene expression following OSI-461 treatment. Increase in transcript levels of mds-7/IL-24 (a and b), GADD45 α and GADD45 γ (c and d) in AML cell lines (a and c), and primary AML samples (b and d), respectively, following treatment with 1 μ M OSI-461 or DMSO as a control for 48 h

(Clinoril, Merck) [8, 9]. It does not inhibit cyclooxygenases and is supposed to act through inhibition of cancer-specific phosphodiesterases (PDE) 2 and 5 [9]. There are several promising in vitro studies showing high potency of OSI-461 against solid tumors like colorectal carcinoma, and lung or prostate cancer [10–12]. But following phase I/II trials were largely unsuccessful in patients with these entities [13–16]. We believe this discrepancy is owed to the fact that the drug concentrations used in some of the in vitro studies exceeded the achievable plasma concentration of 2.5 μ M in humans [7]. Furthermore, we postulate that the bioavailability of the drug may be insufficient in solid tumors as compared to the highly accessible bone marrow environment. Data obtained from phase I and phase II trials showed that side effects are minor with fatigue being the most severe. There were no toxicities reported for the hematopoietic system when doses between 200 and 800 mg OSI-461 twice daily were given [7]. Hence, we treated all

primary AML cells with 1 μ M of OSI-461, which is an easily achievable steady-state concentration in humans, and found a consistent and significant induction of apoptosis. To analyze the selectivity of OSI-461 induced apoptosis and growth arrest on malignant cells, we also treated normal CD34⁺ cells obtained from mobilized healthy donors. Although we also found an increased rate of apoptosis in OSI-461 treated normal cells, the effect was only transient and the cells were able to overcome the proliferative block after cessation of OSI-461 exposure while maintaining their full myeloid potential. This is of relevance as normal and malignant hematopoiesis can be observed side by side in some patients with myelodysplastic syndromes (MDS), and sparing the healthy stem and progenitor cells is essential for hematological recovery after therapy.

Asking for the mode of OSI-461 action, we found that treatment of AML cells with OSI-461 led to induction of apoptosis and an accumulation of cells in the G2/M phase of the cell cycle accompanied by an increased expression of mda-7/IL-24, GADD45 α , and GADD45 γ . This is in line with previous studies where we could show that treatment with the OSI-461 related compounds sulindac sulfide or sulindac sulfone caused strong induction of mda-7/IL-24 transcription followed by activation of GADD45 α , GADD45 γ , and JNK with inhibition of CDK1 [17]. We also found JNK-dependent induction of apoptosis in primary cells from patients with advanced MDS in response to treatment with sulindac sulfone [4]. Although sulindac sulfide and sulindac sulfone were also capable of inducing apoptosis in primary AML samples in our study, induction of mda-7/IL-24 transcription was not observed (data not shown). To the best of our knowledge, OSI-461 appears to be the only available compound that is capable of inducing mda-7/IL-24 transcription in primary AML cells. This is of interest as mda-7/IL-24 is currently under investigation as a potent pro-apoptotic drug for the treatment of different malignant solid tumors, and recent studies highlighted its efficacy as an anti-proliferative cytokine in primary AML cells [5, 6]. The anti-proliferative effects of mda-7/IL-24 do not depend on membrane expression of its physiological receptors IL-20R/IL-22R as it exerts its pro-apoptotic effects through strictly cell intrinsic pathways [18]. Current strategies of mda-7/IL-24 delivery into malignant cells involve the use of viral gene transfer [19]. Many unsolved problems like frequent adverse immune reactions and limitations related to local delivery are still not satisfactorily resolved [19]. Our data provide a new strategy for specific and systemic high-level induction of mda-7/IL-24 that could exceed the efficacy of adenoviral gene transfer approaches.

We believe that OSI-461 may be more efficient for the treatment of hematological malignancies like AML than solid cancers, as concentrations as low as 0.75μ M are

sufficient to induce apoptosis even in AML patient cells carrying FLT3-ITD mutations, who have a poor prognosis with early relapses after primary induction chemotherapy [20]. The same is true for patients who are resistant to conventional chemotherapy, as reflected by multiple relapses during the course of the disease [21, 22].

The pro-apoptotic pathways activated by OSI-461 seem to be generally intact in AML irrespective of the various genomic aberrations. Despite this heterogeneity, AML cells still share two major commonalities: they are highly proliferative and have lost their myeloid differentiation capacities. This may be very well where OSI-461 and mda-7/IL-24 interfere. For the GADD45 gene family, implications in proliferation and apoptosis in many cancers have been established, and their downstream signaling pathways leading to JNK activation and CDK1 inhibition can be activated by different upstream regulators like p38, NF- κ B, or mda-7/IL-24 [5, 17, 23, 24].

Another reason for a potentially higher efficacy of OSI-461 in AML in comparison to solid tumors could be that AML, as a systemic disease originating mainly from the bone marrow, is more accessible to relevant drug concentrations than cancer cells from solid tumors. Therefore, we strongly emphasize phase II trials to assess the efficacy and safety of OSI-461 for the treatment of high-risk AML patients who carry FLT3-ITD mutations or are resistant to chemotherapy. The drug could also be an alternative or addition for patients suffering from advanced MDS that do not qualify for high dose chemotherapy and are resistant to epigenetic treatment approaches.

Our data also underline the importance of the proapoptotic potential of mda-7/IL-24 in proliferative diseases. In summary, OSI-461 might be the right drug for anticancer treatment, but to this date, the right disease to be treated has not been found.

Acknowledgment We would like to thank Annemarie Koch for excellent technical assistance.

Financial support A.C. and I.B. are supported by grants from Leukämie Liga e.V. Düsseldorf, Germany and the Forschungskommission of the Heinrich-Heine-University, Düsseldorf, Germany. A.C. is further supported by the Deutsche Krebshilfe through a Dr. Mildred Scheel fellowship award and by a research fellowship award from the European Association of Hematology (EHA). L.F.Z. is supported by Department of Defense grants PC051217 and OC0060439.

References

- Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S et al (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19(1):138–152
- Betz BL, Hess JL (2010) Acute myeloid leukemia diagnosis in the 21st century. Arch Pathol Lab Med 134(10):1427–1433, Review

Ann Hematol

- Czibere A, Prall WC, Zerbini LF, Grall F, Craigie EC, Ulrich SD et al (2005) The nonsteroidal anti-inflammatory drug Exisulind selectively induces apoptosis via JNK in secondary acute myeloid leukemia after myelodysplastic syndrome. Cell Cycle 4(6):812–817
- Czibere A, Prall WC, Zerbini LF, Jäger M, Kobbe G, Knipp S et al (2006) Exisulind induces apoptosis in advanced myelodysplastic syndrome (MDS) and acute myeloid leukaemia/MDS. Br J Haematol 135(3):355–357
- Yang BX, Duan YJ, Dong CY, Zhang F, Gao WF, Cui XY et al (2011) Novel functions for mda-7/IL-24 and IL-24 delE5: regulation of differentiation of acute myeloid leukemic cells. Mol Cancer Ther 10(4):615–625
- Rahmani M, Mayo M, Dash R, Sokhi UK, Dmitriev IP, Sarkar D et al (2010) Melanoma differentiation associated gene-7/interleukin-24 potently induces apoptosis in human myeloid leukemia cells through a process regulated by endoplasmic reticulum stress. Mol Pharmacol 78(6):1096–1104
- O'Bryant CL, Lieu CH, Leong S, Boinpally R, Basche M, Gore L et al (2009) A dose-ranging study of the pharmacokinetics and pharmacodynamics of the selective apoptotic antineoplastic drug (SAAND), OSI-461, in patients with advanced cancer, in the fasted and fed state. Cancer Chemother Pharmacol 63(3):477–489
- Griffiths GJ (2000) Exisulind cell pathway. Curr Opin Investig Drugs 1(3):386–391, Review
- Haanen C (2001) Sulindac and its derivatives: a novel class of anticancer agents. Curr Opin Investig Drugs 2:677–683
- Xiao D, Deguchi A, Gundersen GG, Oehlen B, Arnold L, Weinstein IB (2006) The sulindac derivatives OSI-461, OSIP486823, and OSIP487703 arrest colon cancer cells in mitosis by causing microtubule depolymerization. Mol Cancer Ther 5 (1):60-67
- Oida Y, Gopalan B, Miyahara R, Inoue S, Branch CD, Mhashilkar AM et al (2005) Sulindac enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis in human lung cancer. Mol Cancer Ther 4(2):291–304
- Lim JT, Piazza GA, Han EK, Delohery TM, Li H, Finn TS et al (1999) Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines. Biochem Pharmacol 58(7):1097– 1107
- Arber N, Kuwada S, Leshno M, Sjodahl R, Hultcrantz R, Rex D et al (2006) Sporadic adenomatous polyp regression with exisulind is effective but toxic: a randomised, double blind, placebo controlled, dose-response study. Gut 55(3):367-373
- Govindan R, Wang X, Baggstrom MQ, Burdette-Radoux S, Hodgson L, Vokes EE et al (2009) A phase II study of carboplatin,

etoposide, and exisulind in patients with extensive small cell lung cancer: CALGB 30104. J Thorac Oncol 4(2):220-226

- 15. Dawson NA, Halabi S, Ou SS, Biggs DD, Kessinger A, Vogelzang N et al (2008) A phase II study of estramustine, docetaxel, and exisulind in patients with hormone-refractory prostate cancer: results of cancer and leukemia group B trial 90004. Clin Genitourin Cancer 6(2):110–116
- 16. Resta LP, Pili R, Eisenberger MA, Spitz A, King S, Porter J et al (2011) A phase I study of OSI-461 in combination with mitoxantrone in patients with advanced solid tumors potentially responsive to mitoxantrone. Cancer Chemother Pharmacol 67 (2):431–438
- Zerbini LF, Czibere A, Wang Y, Correa RG, Otu H, Joseph M et al (2006) A novel pathway involving melanoma differentiation associated gene-7/interleukin-24 mediates nonsteroidal antiinflammatory drug-induced apoptosis and growth arrest of cancer cells. Cancer Res 66(24):11922–11931
- Gupta P, Walter MR, Su ZZ, Lebedeva IV, Emdad L, Randolph A et al (2006) BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancer-specific apoptosis. Cancer Res 66(16):8182– 8191
- Sauane M, Su ZZ, Gupta P, Lebedeva IV, Dent P, Sarkar D et al (2008) Autocrine regulation of mda-7/IL-24 mediates cancerspecific apoptosis. Proc Natl Acad Sci USA 105(28):9763–9768
- Abu-Duhier FM, Goodeve AC, Wilson GA, Gari MA, Peake IR, Rees DC et al (2000) FIT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol 111(1):190–195
- Czibere A, Bruns I, Kröger N, Platzbecker U, Lind J, Zohren F et al (2010) 5-Azacytidine for the treatment of patients with acute myeloid leukemia or myelodysplastic syndrome who relapse after allo-SCT: a retrospective analysis. Bone Marrow Transplant 45 (5):872–876
- Kuendgen A, Germing U (2009) Emerging treatment strategies for acute myeloid leukemia (AML) in the elderly. Cancer Treat Rev 35(2):97–120, Review
- 23. Zerbini LF, Wang Y, Czibere A, Correa RG, Cho JY, Ijiri K et al (2004) NF-kappa B-mediated repression of growth arrest- and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc Natl Acad Sci USA 101(37):13618– 13623
- 24. Yacoub A, Gupta P, Park MA, Rhamani M, Hamed H, Hanna D et al (2008) Regulation of GST-MDA-7 toxicity in human glioblastoma cells by ERBB1, ERK1/2, PI3K, and JNK1-3 pathway signaling. Mol Cancer Ther 7(2):314–329

5. SUMMARY AND DISCUSSION

Acute myeloid leukaemia (AML) is a disease in which there is a constant accumulation of various neoplastic transformations, especially genetic alterations in stem and related cells. Studies conducted in the last decade have shed deep insights into the stem cells. It is believed now, that there are specialized cells which cause initiation of leukaemia and known as leukaemia stem cells. It is speculated that these leukaemia stem cells escape the programmed cell death in cell cycle. Leukemic stem cells have high regenerative potential and pluripotency properties. These cells are able to initiate tumours on distant and different places too; whereas normal stem cells are able to divide only at low pace that too in respective niche (Levesque and Winkler, 2009).

Non-steroidal anti-inflammatory drugs (NSAIDs) are diverse group of heterogeneous, chemically different substances which provide anti-inflammatory, anti-pyretic and analgesic effects. NSAIDs are also known for their ability to inhibit proliferation of cancer cells under *in-vitro* and *in-vivo* conditions (Fujimura et al., 2006; Gonzalez-Perez et al., 2003; Thun et al., 2002; Xu, 2002). In a previous study it was shown that NSAIDs cause up-to 70% reduction in colonic adenomas patients (Piazza et al., 2009). Anti-neoplastic effects of NSAIDs have already shown promising results in pre-clinical, clinical and epidemiological studies.

NSAIDs can play an important role in the treatment of leukaemia (Levesque and Winkler, 2009). Different modes of action of NSAIDs have been put forward. One of these is though *COX* (*cyclooxygenase*) inhibitors. *COX1* plays an important role in pathogenesis of leukaemia. *MLL-AF4* is rare genetic mutation of genes and is found in AML. *MLL-AF4* knock-in mice has a lymphoid and myeloid deregulation accompanied by increased number of cells in lymphoid and myeloid compartments (Chen et al., 2006b). It has been shown though micro-array data that *COX1* is the most up regulated gene in GMP-MLL-AF4 leukemic cells when compared to the normal HSCs.

Besides their above said commonalities NSAIDs differ in binding affinity towards iso-enzymes of *COX*. Moreover, NSAIDs are able to inhibit proliferation of cancer cells independently of *COX* activity, through other targets. These targets include *ERK1/2* (Rice et al., 2006), *GADD45s*, *MKK4* and *JNK* (Czibere et al., 2005; Zerbini et al., 2006) etc. In the present study three NSAIDs drugs; OSI-461 (*COX1* and *COX2* independent), Sulindac Sulfide (*COX1* and *COX2* inhibitor) and Diclofenac (selective *COX2* inhibitor) were examined.

The aim of the current study was to explore the role of NSAIDs anti-neoplastic effects in AML. Emphasis was paid to have an inside look into mechanism of induction of pro-apoptosis responses and those pathways which are associated with pro-apoptosis responses (Figure 10). Detailed investigation was carried-out to study the effects of NSAIDs in various human AML cells lines and primary human AML cells with different FAB types and chromosomal abnormalities. All three NSAIDs have shown similar effects on induction of apoptosis (2.2 to 6.30 fold change as compared to control), reduction of proliferation (from 23% to 40% as compared to control) and cell cycle arrest in G2/M phase (from 12.09% to 12.96% accumulation of the cells as compared to control). Also, it is worth mentioning that OSI-461 is both *COX1* and *COX2* independent.

Inhibition of AML progression

Figure 10: Schematic representation of our model of NSAIDs mediated induction of apoptosis in human AML. NSAIDs lead to an induction of expression of the *AP-1* transcription factors *c-Jun, JunB* and *Fra2*. This results in activation of *GADDs* and they that results in *JNKs* activation and consecutive induction of apoptosis.

To find-out mode of action of NSAIDs in AML, AML cells were treated with above mentioned NSAIDs. For controls, cells were also cultured in DMSO alone as control by using same amounts of DMSO as of amount of NSAIDs, which was <0.1% of the final concentration. Our results confirmed the earlier studies that NSAIDs induce apoptosis and reduction of proliferation (Zerbini et al., 2006). The expression of *MDA-7/IL-24* was increased when AML cells was treated with OSI-461 (2.2 to 60.3 fold change), but not with Sulindac Sulfide and Diclofenac.

MDA-7/IL-24 is a cytokine and belongs to the *IL-10* family of cytokines. In recent investigations on treatment of maligned solid tumours it was proved that *MDA-7/IL-24* causes the growth suppression and apoptosis in cancer cells but not in normal cells. *MDA-7/IL-24* is considered as a potent anti-neoplastic with high efficacy (Rahmani et al., 2010; Yang et al., 2011). Various studies have been carried out to examine the expression of *MDA-7/IL-24* via adenoviral vector carrying the *MDA-7* gene (Ad-*MDA-7*) (Otkjaer et al., 2010). The transfer of *MDA-7/IL-24* through adenovirus is related to the immune reaction and it cannot deliver satisfactory levels of *MDA-7/IL-24* (Sauane et al., 2008). Our results indicate that the level induction of *MDA-7/IL-24* through OSI-461 is higher and could have fewer side effects than the adenoviral vector therapy as induction of *MDA-7/IL-24* is through the drug rather than adenoviral vector carrying the *MDA-7* gene.

G2/M checkpoint is important as it prevents the cell with damaged DNA from entering mitosis (Mphase) and further cell division and proliferation. In AML there is a rapid increase in number of undifferentiated myeloid cells, which have a defective genomic DNA. In present study, G2/M arrest was observed in OSI-461 treated AML cells. OSI-461 treated AML cells were accumulated in the G2/M phase of the cell cycle. Initiation of apoptosis in NSAIDs treated cells was also observed. Above described data indicates the return of the cells towards normal cell cycle and apoptosis rather than escaping it.

Induction of *MDA-7/IL-24* is not affected in case of Sulindac Sulfide and Diclofenac treated AML cells. To investigate the mechanism involved in Sulindac Sulfide and Diclofenac mediate effects on AML, comprehensive protein and gene expression profiling of Diclofenac treated AML cells was done. There was an increased expression of CASPASE-3 precursor and other related proteins which function in cellular structure and metabolism. Re-organization of the cellular structure and high rate of metabolism is associated with the differentiation and apoptosis (Cohen and Chen, 2008; Grzanka et al., 2003; Launay et al., 2003; Rebillard et al., 2010). CASPASE-3 is a key molecule of *MAPK/JNK* pathway and it plays an important role in induction of apoptosis after NSAIDs treatment (Senthivinayagam et al., 2009). These observations were further verified by flow cytometric analysis.

Gene expression data revealed that the expression of the *MAPK/JNK* pathway is the target of NSAIDs treatment. *GADD45* α , which is an upstream target of *MAPK/JNK* pathway, was significantly upregulated in NSAIDs treated AML cells. *GADD45* family plays an important role in proliferation and apoptosis in the cancer (Takekawa and Saito, 1998). The *GADD45* is critical in activation of *JNK* and inhibition of *CDK1*. In most of the cancers *GADD45* α is down-regulated (Zerbini et al., 2006).

MAPK/JNK pathway is known to cause activation of *c-Jun NH2-terminal Kinase (JNK)* which in turn increases expression of *c-Jun*. The activation of this pathway can lead to activation of *JNK* with increased phosphorylation of *c-Jun*. The phosphorylation of *c-Jun* by the *MAPK / JNK* pathway, initiates *Caspases-3* dependent apoptosis pathway (Johnson and Lapadat, 2002; Takada et al., 2008) (Figure 9). *MAPK / JNK* pathway is related to mechanisms causing apoptosis. In line with these observations, *MAPK / JNK* pathway was the most significantly altered pathway in response to the NSAIDs treatment. The NSAIDs treatment up-regulated *MAPK / JNK* pathway and there was an activation of apoptosis in AML cells. This proved that activation of this pathway is important for NSAIDs related effects.

JNK is also known for its role in repression of basal transcription level of p53 oncogene which downregulate the expression of $p21^{cip1}$ (Cripe et al., 2002). $p21^{cip1}$ has been linked to cell cycle arrest (Tuder et al., 2008). Effect of inhibition of JNK on rate of apoptosis in NSAIDs treated AML cells was studied by the addition of JNK inhibitor in cell culture medium. Addition of JNK inhibitor resulted in significant decrease of the apoptosis rate in AML cells (26% to 50% decrease).

Treatment of primary AML cells with Sulindac Sulfide lead to an increased expression of cell surface differentiation markers like CD11b, CD14, CD15 and CD114 (at-least by 1.5 fold change respectively) after 48 hours. CD11b is a maturation marker i.e. mature granulocytes and macrophages express the high levels of CD11b. CD14 is a marker molecule for monocytes and macrophages. CD15 is a marker for the identification of granulocyte cells. CD114 is granulocyte colony stimulating factor (G-CSF) receptor. G-CSF is known to play a significant role in the hematopoietic cell differentiation into granulocytes. Under normal conditions, 10 days are required post G-CSF or GM-CSF treatment for induction of myeloid differentiation markers like CD11b, CD14, CD15 and CD114. But in present study expression of these cell surface differentiation markers was observed under normal conditions without addition of G-

CSF or GM-CSF and after 48 hours only with the addition of NSAIDs. Differential expression of the myeloid differentiation markers in our study is a significant observation and it was complementary to the results that NSAIDs treatment caused apoptosis in AML cells.

Further the genes which were differently expressed in the human micro-array were verified by the quantitative real time PCR. Expression level of differential expressed genes, $GADD45\alpha$ was 1.1 to 77.2 and $GADD45\gamma$ 0.8 to 39.8, *c*-Jun 3.34 to 99.41, JunB 1.49 to 15.83 and Fra-2/FosL2 1.66 to 4.82 fold respectively as compared to control in quantitative real time PCR.

Another observation of this study was the activation of *AP-1* family transcription factors. In NSAIDs treated AML cells, *c-Jun* and *JunB* were up-regulated. Both of the genes are known for their important role in Leukaemia. *c-Jun* and *JunB* in mice animal model studies are known to be associated with *PU.1* (Steidl et al., 2006). When transcription factor *PU.1* is knockdown in mice, it leads to AML. Restoration of *c-Jun* and *JunB* expression in the *PU.1* knockdown mice cells initiates differentiation and prevents the proliferation of the cells. In agreement with the animal model study, it was observed that when *c-Jun* and *JunB* were re-expressed in the AML cells without treatment, there was induction of apoptosis.

Expression of *Fra2/FOSL2*, another *AP-1* family member was also observed in our study. *Fra2/FOSL2* forms heterodimer with *Jun* family members (Shaulian, 2010). When AML cells were transfected with *GADD45* α or *AP-1* family transcription factor, they have induced apoptosis in heterodimer state (1.52 to 2.1 fold increase in apoptosis rate). Transfection of AML cells with *AP-1* family heterodimer was able to increase the expression level of *GADD45* α (9.87 to 133.5 fold respectively). With knockdown of the *JunB+Fra2/FosL2* with shRNAi, rate of apoptosis was decreased (0.76 to 1.37 fold decrease in apoptosis rate). This observation indicated that more than one transcription factor is required for the initiation of the apoptosis and it can be achieved by NSAIDs treatment. It was also observed that *AP-1* transcription factors and *GADD45* interact and induced apoptosis after NSAIDs treatment.

NSAIDs treatment of AML cells was responsible for apoptosis in leukemic cells even with complex aberrant karyotypes like, *FLT3-ITD* mutations, *MLL*-mutations and recurrent translocations such as *t* (*15*; *17*). No expression of *p38* or *NF-\kappaB* was observed. *NF-\kappaB* is known for its role in cancer by helping the leukemic cells to escape from programmed cell death or apoptosis. Expression of *NF-\kappaB* leads to repression of *GADDs* and inhibition of *NF-\kappaB* leads to consecutive expression of *JNK* thereof, apoptosis in AML cells (Zerbini et al., 2004). Similar observations were also made in this study confirming the important role played by NSAIDs treatment of the AML cells.

Under the present set of experimental conditions it was observed that after NSAIDs treatment of AML cells there was an activation of *AP-1* transcription factors i.e. *c-Jun, JunB* and *Fra-2/FosL2*. This activation of *AP-1* family members induced *GADD45* transcription factors. *GADD45* further activates *JNK*. The activation of *JNK* initiated apoptosis and myeloid differentiation (Figure 10).

In OSI-461 treated cells initiation of apoptosis was in agreement with earlier studies on *MDA-7/IL-24*. Clinical trials of phase I and phase II, confirmed that OSI-461 was almost free of any major side effects. Minor side effects like fatigue were reported. No haematopoietic toxicities were reported even when doses between 200 and 800 mg OSI-461 twice daily were given (O'Bryant et al., 2009).

In-vitro observations of OSI-461 treated cells do not show any significant clinical benefits to the patients suffering from solid tumours like colorectal carcinoma, lung or prostate cancer (O'Bryant et al., 2009; Resta et al., 2011). Apparent dissimilarities might be due to fact that, the amount of OSI-461

used in those studies was up-to 10 μ M which is far more than the achievable plasma concentration in patients. In humans achievable plasma concentration of OSI-461 is 2.5 μ M (O'Bryant et al., 2009).

The dose response curve (killing curve) showed that initiation of apoptosis in AML cells started at 0.75 μ M concentration of OSI-461 and after 36 hours of treatment. Therefore, AML cells were treated with 1 μ M of OSI-461 for 48 hours. 1 μ M concentration of OSI-461 is easily achievable steady-state concentration in humans. A consistent and significant induction of apoptosis was observed after 1 μ M of OSI-461 treatment.

Higher availability of OSI-461 in AML than in solid tumours can be explained as - AML is a disease of blood and originates from bone marrow. Environment of bone marrow is more accessible to relevant drug concentrations than cancer cells from solid tumours. In a previous study it was shown that intensive chemotherapy has no benefit for patients aged over 60 years (Knipp et al., 2007). OSI-461 can be a safe drug for elderly patients who are resistant to chemotherapy or with high-risk AML like *FLT3-ITD*. OSI-461 can also be an additional or alternative drug for patients suffering from MDS, for whom high dose chemotherapy is not recommended and they are resistant to normal treatment.

Treatment of normal CD34⁺ cells from healthy donors with OSI-461 has induced apoptosis, but these effects were only transient and when after initial 48 hour treatment the cells were transferred to medium without OSI-461 they overcame effects of drug and started their normal proliferation. Whereas AML CD34⁺ cells treated with OSI-461 1 μ M was not able regain their proliferative potential when after initial 48 hour treatment they were placed in a medium free of OSI-461, even up-to 8 days. This phenomenon is relevant and very important in leukaemia as there is always a need to protect normal healthy stem and progenitor cells. Protection of the healthy cells is essential for recovery after therapy.

In the present study an increase in the rate of apoptosis after NSAIDs treatment in various primary CD34⁺ AML cells and in AML cell lines was observed. Freshly obtained samples from patients, indicated that above mentioned *MAPK* / *JNK* pathway in association with *GADDs* can cause apoptosis after NSAIDs treatment in various types of AML. The expression of *GADDs* along with *AP-1* family could be a common reason for the increase in apoptosis due the NSAIDs treatment.

For patients suffering from AML, NSAIDs can bring new hope but nerveless NSAIDs can-not be suggested as the single agent for the treatment. Rather they can be thought of as compliment to the conventional drugs. NSAIDs may increase action of the conventional drugs and thus, saving susceptibility to cytotoxic effects. This study can be useful in future for the designing of the novel chemo-preventive agents or novel agents which can target pathways specifically activated through NSAIDs in AML.

6. REFERENCES

Abdollahi, A., Lord, K.A., Hoffman-Liebermann, B., and Liebermann, D.A. (1991). Sequence and expression of a cDNA encoding MyD118: a novel myeloid differentiation primary response gene induced by multiple cytokines. Oncogene *6*, 165-167.

Alenzi, F.Q. (2004). Links between apoptosis, proliferation and the cell cycle. Br J Biomed Sci 61, 99-102.

Bartek, J., Lukas, C., and Lukas, J. (2004). Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5, 792-804.

Black, E.J., Catling, A.D., Woodgett, J.R., Kilbey, A., and Gillespie, D.A. (1994). Transcriptional activation by the v-Jun oncoprotein is independent of positive regulatory phosphorylation. Oncogene *9*, 2363-2368.

Bonda, D.J., Bajic, V.P., Spremo-Potparevic, B., Casadesus, G., Zhu, X., Smith, M.A., and Lee, H.G. (2010). Review: cell cycle aberrations and neurodegeneration. Neuropathol Appl Neurobiol *36*, 157-163.

Boolbol, S.K., Dannenberg, A.J., Chadburn, A., Martucci, C., Guo, X.J., Ramonetti, J.T., Abreu-Goris, M., Newmark, H.L., Lipkin, M.L., DeCosse, J.J., *et al.* (1996). Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res *56*, 2556-2560.

Boutros, R., Dozier, C., and Ducommun, B. (2006). The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol *18*, 185-191.

Bozec, A., Bakiri, L., Jimenez, M., Schinke, T., Amling, M., and Wagner, E.F. (2010). Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production. J Cell Biol *190*, 1093-1106.

Bren-Mattison, Y., Meyer, A.M., Van Putten, V., Li, H., Kuhn, K., Stearman, R., Weiser-Evans, M., Winn, R.A., Heasley, L.E., and Nemenoff, R.A. (2008). Antitumorigenic effects of peroxisome proliferatoractivated receptor-gamma in non-small-cell lung cancer cells are mediated by suppression of cyclooxygenase-2 via inhibition of nuclear factor-kappaB. Mol Pharmacol *73*, 709-717.

Bucher, N., and Britten, C.D. (2008). G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br J Cancer *98*, 523-528.

Bulavin, D.V., Kovalsky, O., Hollander, M.C., and Fornace, A.J., Jr. (2003). Loss of oncogenic H-rasinduced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a. Mol Cell Biol *23*, 3859-3871.

Burgoyne, P.S., Mahadevaiah, S.K., and Turner, J.M. (2009). The consequences of asynapsis for mammalian meiosis. Nat Rev Genet *10*, 207-216.

Cairns, J. (1981). The origin of human cancers. Nature 289, 353-357.

Chada, S., Sutton, R.B., Ekmekcioglu, S., Ellerhorst, J., Mumm, J.B., Leitner, W.W., Yang, H.Y., Sahin, A.A., Hunt, K.K., Fuson, K.L., *et al.* (2004). MDA-7/IL-24 is a unique cytokine--tumor suppressor in the IL-10 family. Int Immunopharmacol *4*, 649-667.

Chan, T.A., Morin, P.J., Vogelstein, B., and Kinzler, K.W. (1998). Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl Acad Sci U S A *95*, 681-686.

Chen, H.H., Wang, Y.C., and Fann, M.J. (2006a). Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol Cell Biol *26*, 2736-2745.

Chen, W., Li, Q., Hudson, W.A., Kumar, A., Kirchhof, N., and Kersey, J.H. (2006b). A murine MII-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood *108*, 669-677.

Chiu, C.H., McEntee, M.F., and Whelan, J. (1997). Sulindac causes rapid regression of preexisting tumors in Min/+ mice independent of prostaglandin biosynthesis. Cancer Res *57*, 4267-4273.

Cohen, D.M., and Chen, C.S. (2008). Mechanical control of stem cell differentiation.

Cohen, J.J., Duke, R.C., Fadok, V.A., and Sellins, K.S. (1992). Apoptosis and programmed cell death in immunity. Annu Rev Immunol *10*, 267-293.

Cotter, T.G. (2009). Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9, 501-507.

Cretu, A., Sha, X., Tront, J., Hoffman, B., and Liebermann, D.A. (2009). Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther 7, 268-276.

Cripe, L.D., Gelfanov, V.M., Smith, E.A., Spigel, D.R., Phillips, C.A., Gabig, T.G., Jung, S.H., Fyffe, J., Hartman, A.D., Kneebone, P., *et al.* (2002). Role for c-jun N-terminal kinase in treatment-refractory acute myeloid leukemia (AML): signaling to multidrug-efflux and hyperproliferation. Leukemia *16*, 799-812.

Cumano, A., and Godin, I. (2007). Ontogeny of the hematopoietic system. Annu Rev Immunol 25, 745-785.

Cunningham, C.C., Chada, S., Merritt, J.A., Tong, A., Senzer, N., Zhang, Y., Mhashilkar, A., Parker, K., Vukelja, S., Richards, D., *et al.* (2005). Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther *11*, 149-159.

Cuzick, J., Otto, F., Baron, J.A., Brown, P.H., Burn, J., Greenwald, P., Jankowski, J., La Vecchia, C., Meyskens, F., Senn, H.J., *et al.* (2009). Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol *10*, 501-507.

Czibere, A., Prall, W.C., Zerbini, L.F., Grall, F., Craigie, E.C., Ulrich, S.D., Giagounidis, A.A., Haas, R., Libermann, T.A., and Aivado, M. (2005). The nonsteroidal anti-inflammatory drug Exisulind selectively induces apoptosis via JNK in secondary acute myeloid leukemia after myelodysplastic syndrome. Cell Cycle *4*, 812-817.

Czibere, A., Prall, W.C., Zerbini, L.F., Jager, M., Kobbe, G., Knipp, S., Libermann, T.A., Haas, R., and Aivado, M. (2006). Exisulind induces apoptosis in advanced myelodysplastic syndrome (MDS) and acute myeloid leukaemia/MDS. Br J Haematol *135*, 355-357.

Dai, Y., and Grant, S. (2010). New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res *16*, 376-383.

Dai, Y., Guzman, M.L., Chen, S., Wang, L., Yeung, S.K., Pei, X.Y., Dent, P., Jordan, C.T., and Grant, S. (2010). The NF (Nuclear factor)-kappaB inhibitor parthenolide interacts with histone deacetylase inhibitors to induce MKK7/JNK1-dependent apoptosis in human acute myeloid leukaemia cells. Br J Haematol *151*, 70-83.

Dalerba, P., Cho, R.W., and Clarke, M.F. (2007). Cancer stem cells: models and concepts. Annu Rev Med 58, 267-284.

Das, T., Sa, G., Saha, B., and Das, K. (2010). Multifocal signal modulation therapy of cancer: ancient weapon, modern targets. Mol Cell Biochem *336*, 85-95.

Del Principe, M.I., Del Poeta, G., Venditti, A., Buccisano, F., Maurillo, L., Mazzone, C., Bruno, A., Neri, B., Irno Consalvo, M., Lo Coco, F., *et al.* (2005). Apoptosis and immaturity in acute myeloid leukemia. Hematology *10*, 25-34.

DuBois, R.N., and Smalley, W.E. (1996). Cyclooxygenase, NSAIDs, and colorectal cancer. J Gastroenterol *31*, 898-906.

Durchdewald, M., Angel, P., and Hess, J. (2009). The transcription factor Fos: a Janus-type regulator in health and disease. Histol Histopathol 24, 1451-1461.

Eferl, R., and Wagner, E.F. (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer *3*, 859-868.

Falck, J., Petrini, J.H., Williams, B.R., Lukas, J., and Bartek, J. (2002). The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet *30*, 290-294.

Ferreira, H., Lucio, M., Lima, J.L., Cordeiro-da-Silva, A., Tavares, J., and Reis, S. (2005). Effect of antiinflammatory drugs on splenocyte membrane fluidity. Anal Biochem *339*, 144-149.

Fornace, A.J., Jr., Alamo, I., Jr., and Hollander, M.C. (1988). DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A *85*, 8800-8804.

Fujimura, T., Ohta, T., Oyama, K., Miyashita, T., and Miwa, K. (2006). Role of cyclooxygenase-2 in the carcinogenesis of gastrointestinal tract cancers: a review and report of personal experience. World J Gastroenterol *12*, 1336-1345.

Fulda, S. (2009). Cell death in hematological tumors. Apoptosis 14, 409-423.

Ganzinelli, M., Carrassa, L., Crippa, F., Tavecchio, M., Broggini, M., and Damia, G. (2008). Checkpoint kinase 1 down-regulation by an inducible small interfering RNA expression system sensitized in vivo tumors to treatment with 5-fluorouracil. Clin Cancer Res *14*, 5131-5141.

Giardiello, F.M., Hamilton, S.R., Krush, A.J., Piantadosi, S., Hylind, L.M., Celano, P., Booker, S.V., Robinson, C.R., and Offerhaus, G.J. (1993). Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med *328*, 1313-1316.

Gonzalez-Perez, A., Garcia Rodriguez, L.A., and Lopez-Ridaura, R. (2003). Effects of non-steroidal antiinflammatory drugs on cancer sites other than the colon and rectum: a meta-analysis. BMC Cancer *3*, 28.

Grzanka, A., Grzanka, D., and Orlikowska, M. (2003). Cytoskeletal reorganization during process of apoptosis induced by cytostatic drugs in K-562 and HL-60 leukemia cell lines. Biochem Pharmacol *66*, 1611-1617.

Gupta, M., Gupta, S.K., Hoffman, B., and Liebermann, D.A. (2006). Gadd45a and Gadd45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition. J Biol Chem *281*, 17552-17558.

Harris, R.E., Beebe-Donk, J., Doss, H., and Burr Doss, D. (2005). Aspirin, ibuprofen, and other nonsteroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (review). Oncol Rep *13*, 559-583.

He, T.C., Chan, T.A., Vogelstein, B., and Kinzler, K.W. (1999). PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell *99*, 335-345.

Heasley, L.E., and Han, S.Y. (2006). JNK regulation of oncogenesis. Mol Cells 21, 167-173.

Herrmann, C., Block, C., Geisen, C., Haas, K., Weber, C., Winde, G., Moroy, T., and Muller, O. (1998). Sulindac sulfide inhibits Ras signaling. Oncogene *17*, 1769-1776.

Hollander, M.C., Sheikh, M.S., Bulavin, D.V., Lundgren, K., Augeri-Henmueller, L., Shehee, R., Molinaro, T.A., Kim, K.E., Tolosa, E., Ashwell, J.D., *et al.* (1999). Genomic instability in Gadd45a-deficient mice. Nat Genet *23*, 176-184.

Houtgraaf, J.H., Versmissen, J., and van der Giessen, W.J. (2006). A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 7, 165-172.

Iglesias-Serret, D., Pique, M., Barragan, M., Cosialls, A.M., Santidrian, A.F., Gonzalez-Girones, D.M., Coll-Mulet, L., de Frias, M., Pons, G., and Gil, J. (2010). Aspirin induces apoptosis in human leukemia cells independently of NF-kappaB and MAPKs through alteration of the Mcl-1/Noxa balance. Apoptosis *15*, 219-229.

Inoue, S., Shanker, M., Miyahara, R., Gopalan, B., Patel, S., Oida, Y., Branch, C.D., Munshi, A., Meyn, R.E., Andreeff, M., *et al.* (2006). MDA-7/IL-24-based cancer gene therapy: translation from the laboratory to the clinic. Curr Gene Ther *6*, 73-91.

Jiang, H., Lin, J.J., Su, Z.Z., Goldstein, N.I., and Fisher, P.B. (1995). Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene *11*, 2477-2486.

Kallunki, T., Su, B., Tsigelny, I., Sluss, H.K., Derijard, B., Moore, G., Davis, R., and Karin, M. (1994). JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev *8*, 2996-3007.

Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer *26*, 239-257.

Kim, J.S., Baek, S.J., Sali, T., and Eling, T.E. (2005). The conventional nonsteroidal anti-inflammatory drug sulindac sulfide arrests ovarian cancer cell growth via the expression of NAG-1/MIC-1/GDF-15. Mol Cancer Ther *4*, 487-493.

Knipp, S., Hildebrand, B., Kundgen, A., Giagounidis, A., Kobbe, G., Haas, R., Aul, C., Gattermann, N., and Germing, U. (2007). Intensive chemotherapy is not recommended for patients aged >60 years who have myelodysplastic syndromes or acute myeloid leukemia with high-risk karyotypes. Cancer *110*, 345-352.

Kraft, T.E., Parisotto, D., Schempp, C., and Efferth, T. (2009). Fighting cancer with red wine? Molecular mechanisms of resveratrol. Crit Rev Food Sci Nutr *49*, 782-799.

Kunte, D.P., Wali, R.K., Koetsier, J.L., and Roy, H.K. (2008). Antiproliferative effect of sulindac in colonic neoplasia prevention: role of COOH-terminal Src kinase. Mol Cancer Ther *7*, 1797-1806.

Labayle, D., Fischer, D., Vielh, P., Drouhin, F., Pariente, A., Bories, C., Duhamel, O., Trousset, M., and Attali, P. (1991). Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology *101*, 635-639.

Ladenheim, J., Garcia, G., Titzer, D., Herzenberg, H., Lavori, P., Edson, R., and Omary, M.B. (1995). Effect of sulindac on sporadic colonic polyps. Gastroenterology *108*, 1083-1087.

Lanas, A. (2009). Nonsteroidal antiinflammatory drugs and cyclooxygenase inhibition in the gastrointestinal tract: a trip from peptic ulcer to colon cancer. Am J Med Sci *338*, 96-106.

Launay, S., Brown, G., and Machesky, L.M. (2003). Expression of WASP and Scar1/WAVE1 actinassociated proteins is differentially modulated during differentiation of HL-60 cells. Cell Motil Cytoskeleton *54*, 274-285.

Levesque, J.P., and Winkler, I.G. (2009). 38th Annual Meeting of the International Society of Experimental Hematology. Expert Rev Hematol 2, 645-647.

Li, L., Feng, Z., and Porter, A.G. (2004). JNK-dependent phosphorylation of c-Jun on serine 63 mediates nitric oxide-induced apoptosis of neuroblastoma cells. J Biol Chem *279*, 4058-4065.

Liang, Y.C., Tsai, S.H., Chen, L., Lin-Shiau, S.Y., and Lin, J.K. (2003). Resveratrol-induced G2 arrest through the inhibition of CDK7 and p34CDC2 kinases in colon carcinoma HT29 cells. Biochem Pharmacol *65*, 1053-1060.

Liebermann, D.A., and Hoffman, B. (1998). MyD genes in negative growth control. Oncogene 17, 3319-3329.

Lim, J.T., Piazza, G.A., Han, E.K., Delohery, T.M., Li, H., Finn, T.S., Buttyan, R., Yamamoto, H., Sperl, G.J., Brendel, K., *et al.* (1999). Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines. Biochem Pharmacol *58*, 1097-1107.

Lobo, N.A., Shimono, Y., Qian, D., and Clarke, M.F. (2007). The biology of cancer stem cells. Annu Rev Cell Dev Biol 23, 675-699.

Lowenberg, B. (2008). Acute myeloid leukemia: the challenge of capturing disease variety. Hematology Am Soc Hematol Educ Program, 1-11.

Lu, D., Cottam, H.B., Corr, M., and Carson, D.A. (2005). Repression of beta-catenin function in malignant cells by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A *102*, 18567-18571.

Madireddi, M.T., Dent, P., and Fisher, P.B. (2000). AP-1 and C/EBP transcription factors contribute to mda-7 gene promoter activity during human melanoma differentiation. J Cell Physiol *185*, 36-46.

Malumbres, M., and Barbacid, M. (2005). Mammalian cyclin-dependent kinases. Trends Biochem Sci 30, 630-641.

Mayorek, N., Naftali-Shani, N., and Grunewald, M. (2010). Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity. PLoS One *5*, e12715.

Metcalf, D. (1970). Studies on colony formation in vitro by mouse bone marrow cells. II. Action of colony stimulating factor. J Cell Physiol *76*, 89-99.

Milde-Langosch, K., Janke, S., Wagner, I., Schroder, C., Streichert, T., Bamberger, A.M., Janicke, F., and Loning, T. (2008). Role of Fra-2 in breast cancer: influence on tumor cell invasion and motility. Breast Cancer Res Treat *107*, 337-347.

Moore, M.A., and Metcalf, D. (1970). Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol *18*, 279-296.

Mrozek, K., and Bloomfield, C.D. (2006). Chromosome aberrations, gene mutations and expression changes, and prognosis in adult acute myeloid leukemia. Hematology Am Soc Hematol Educ Program, 169-177.

Nair, S., Barve, A., Khor, T.O., Shen, G.X., Lin, W., Chan, J.Y., Cai, L., and Kong, A.N. (2010). Regulation of Nrf2- and AP-1-mediated gene expression by epigallocatechin-3-gallate and sulforaphane in prostate of Nrf2-knockout or C57BL/6J mice and PC-3 AP-1 human prostate cancer cells. Acta Pharmacol Sin *31*, 1223-1240.

Nigg, E.A. (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2, 21-32.

Noy, N. (2010). Between death and survival: retinoic acid in regulation of apoptosis. Annu Rev Nutr *30*, 201-217.

Nugent, K.P., Farmer, K.C., Spigelman, A.D., Williams, C.B., and Phillips, R.K. (1993). Randomized controlled trial of the effect of sulindac on duodenal and rectal polyposis and cell proliferation in patients with familial adenomatous polyposis. Br J Surg *80*, 1618-1619.

O'Bryant, C.L., Lieu, C.H., Leong, S., Boinpally, R., Basche, M., Gore, L., Leonardi, K., Schultz, M.K., Hariharan, S., Chow, L., *et al.* (2009). A dose-ranging study of the pharmacokinetics and pharmacodynamics of the selective apoptotic antineoplastic drug (SAAND), OSI-461, in patients with advanced cancer, in the fasted and fed state. Cancer Chemother Pharmacol *63*, 477-489.

Otkjaer, K., Holtmann, H., Kragstrup, T.W., Paludan, S.R., Johansen, C., Gaestel, M., Kragballe, K., and Iversen, L. (2010). The p38 MAPK regulates IL-24 expression by stabilization of the 3' UTR of IL-24 mRNA. PLoS One *5*, e8671.

Ou, Y.Q., Zhu, W., Li, Y., Qiu, P.X., Huang, Y.J., Xie, J., He, S.M., Zheng, X.K., Leng, T.D., Xu, D., *et al.* (2010). Aspirin inhibits proliferation of gemcitabine-resistant human pancreatic cancer cells and augments gemcitabine-induced cytotoxicity. Acta Pharmacol Sin *31*, 73-80.

Pangburn, H.A., Kraus, H., Ahnen, D.J., and Rice, P.L. (2005). Sulindac metabolites inhibit epidermal growth factor receptor activation and expression. J Carcinog *4*, 16.

Piazza, G.A., Keeton, A.B., Tinsley, H.N., Gary, B.D., Whitt, J.D., Mathew, B., Thaiparambil, J., Coward, L., Gorman, G., Li, Y., *et al.* (2009). A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity. Cancer Prev Res (Phila) *2*, 572-580.

Rahmani, M., Mayo, M., Dash, R., Sokhi, U.K., Dmitriev, I.P., Sarkar, D., Dent, P., Curiel, D.T., Fisher, P.B., and Grant, S. (2010). Melanoma differentiation associated gene-7/interleukin-24 potently induces apoptosis in human myeloid leukemia cells through a process regulated by endoplasmic reticulum stress. Mol Pharmacol *78*, 1096-1104.

Raleigh, J.M., and O'Connell, M.J. (2000). The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. J Cell Sci *113 (Pt 10)*, 1727-1736.

Rebillard, A., Jouan-Lanhouet, S., Jouan, E., Legembre, P., Pizon, M., Sergent, O., Gilot, D., Tekpli, X., Lagadic-Gossmann, D., and Dimanche-Boitrel, M.T. (2010). Cisplatin-induced apoptosis involves a Fas-ROCK-ezrin-dependent actin remodelling in human colon cancer cells. Eur J Cancer *46*, 1445-1455.

Reddy, S.P., Britto, R., Vinnakota, K., Aparna, H., Sreepathi, H.K., Thota, B., Kumari, A., Shilpa, B.M., Vrinda, M., Umesh, S., *et al.* (2008). Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res *14*, 2978-2987.

Resta, L.P., Pili, R., Eisenberger, M.A., Spitz, A., King, S., Porter, J., Franke, A., Boinpally, R., Carducci, M.A., and Sweeney, C.J. (2011). A phase I study of OSI-461 in combination with mitoxantrone in patients with advanced solid tumors potentially responsive to mitoxantrone. Cancer Chemother Pharmacol *67*, 431-438.

Rice, P.L., Peters, S.L., Beard, K.S., and Ahnen, D.J. (2006). Sulindac independently modulates extracellular signal-regulated kinase 1/2 and cyclic GMP-dependent protein kinase signaling pathways. Mol Cancer Ther *5*, 746-754.

Robak, P., Smolewski, P., and Robak, T. (2008). The role of non-steroidal anti-inflammatory drugs in the risk of development and treatment of hematologic malignancies. Leuk Lymphoma *49*, 1452-1462.

Rosemary Siafakas, A., and Richardson, D.R. (2009). Growth arrest and DNA damage-45 alpha (GADD45alpha). Int J Biochem Cell Biol *41*, 986-989.

Ruegg, C., Zaric, J., and Stupp, R. (2003). Non steroidal anti-inflammatory drugs and COX-2 inhibitors as anti-cancer therapeutics: hypes, hopes and reality. Ann Med *35*, 476-487.

Sarkar, D., Su, Z.Z., Lebedeva, I.V., Sauane, M., Gopalkrishnan, R.V., Dent, P., and Fisher, P.B. (2002). mda-7 (IL-24): signaling and functional roles. Biotechniques *Suppl*, 30-39.

Sauane, M., Su, Z.Z., Gupta, P., Lebedeva, I.V., Dent, P., Sarkar, D., and Fisher, P.B. (2008). Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci U S A *105*, 9763-9768.

Senthivinayagam, S., Mishra, P., Paramasivam, S.K., Yallapragada, S., Chatterjee, M., Wong, L., Rana, A., and Rana, B. (2009). Caspase-mediated cleavage of beta-catenin precedes drug-induced apoptosis in resistant cancer cells. J Biol Chem *284*, 13577-13588.

Shaulian, E. (2010). AP-1--The Jun proteins: Oncogenes or tumor suppressors in disguise? Cell Signal 22, 894-899.

Shiff, S.J., Qiao, L., Tsai, L.L., and Rigas, B. (1995). Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells. J Clin Invest *96*, 491-503.

Shimizu, M., Suzui, M., Deguchi, A., Lim, J.T., Xiao, D., Hayes, J.H., Papadopoulos, K.P., and Weinstein, I.B. (2004). Synergistic effects of acyclic retinoid and OSI-461 on growth inhibition and gene expression in human hepatoma cells. Clin Cancer Res *10*, 6710-6721.

Smalley, W.E., and DuBois, R.N. (1997). Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv Pharmacol *39*, 1-20.

Sousa, C., Nunes, C., Lucio, M., Ferreira, H., Lima, J.L., Tavares, J., Cordeiro-da-Silva, A., and Reis, S. (2008). Effect of nonsteroidal anti-inflammatory drugs on the cellular membrane fluidity. J Pharm Sci *97*, 3195-3206.

Spagnesi, M.T., Tonelli, F., Dolara, P., Caderni, G., Valanzano, R., Anastasi, A., and Bianchini, F. (1994). Rectal proliferation and polyp occurrence in patients with familial adenomatous polyposis after sulindac treatment. Gastroenterology *106*, 362-366.

Steidl, U., Rosenbauer, F., Verhaak, R.G., Gu, X., Ebralidze, A., Otu, H.H., Klippel, S., Steidl, C., Bruns, I., Costa, D.B., *et al.* (2006). Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat Genet *38*, 1269-1277.

Steinbach, G., Lynch, P.M., Phillips, R.K., Wallace, M.H., Hawk, E., Gordon, G.B., Wakabayashi, N., Saunders, B., Shen, Y., Fujimura, T., *et al.* (2000). The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med *342*, 1946-1952.

Takekawa, M., and Saito, H. (1998). A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell *95*, 521-530.

Tallman, M.S., Gilliland, D.G., and Rowe, J.M. (2005). Drug therapy for acute myeloid leukemia. Blood *106*, 1154-1163.

Thornton, T.M., and Rincon, M. (2009). Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int J Biol Sci *5*, 44-51.

Thun, M.J., Henley, S.J., and Patrono, C. (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst *94*, 252-266.

Till, J.E., and Mc, C.E. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14, 213-222.

Ting, H.J., and Khasawneh, F.T. (2010). Platelet function and Isoprostane biology. Should isoprostanes be the newest member of the orphan-ligand family? J Biomed Sci 17, 24.

Tkach, V., Tulchinsky, E., Lukanidin, E., Vinson, C., Bock, E., and Berezin, V. (2003). Role of the Fos family members, c-Fos, Fra-1 and Fra-2, in the regulation of cell motility. Oncogene *22*, 5045-5054.

Tong, A.W., Nemunaitis, J., Su, D., Zhang, Y., Cunningham, C., Senzer, N., Netto, G., Rich, D., Mhashilkar, A., Parker, K., *et al.* (2005). Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther *11*, 160-172.

Tront, J.S., Hoffman, B., and Liebermann, D.A. (2006). Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res *66*, 8448-8454.

Tse, A.N., Carvajal, R., and Schwartz, G.K. (2007). Targeting checkpoint kinase 1 in cancer therapeutics. Clin Cancer Res *13*, 1955-1960.

Tuder, R.M., Yun, J.H., and Graham, B.B. (2008). Cigarette smoke triggers code red: p21CIP1/WAF1/SDI1 switches on danger responses in the lung. Am J Respir Cell Mol Biol *39*, 1-6.

Ulrich, C.M., Bigler, J., and Potter, J.D. (2006). Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer *6*, 130-140.

Umar, A., Viner, J.L., Anderson, W.F., and Hawk, E.T. (2003). Development of COX inhibitors in cancer prevention and therapy. Am J Clin Oncol *26*, S48-57.

Vairapandi, M., Balliet, A.G., Hoffman, B., and Liebermann, D.A. (2002). GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol *192*, 327-338.

Vermeulen, K., Van Bockstaele, D.R., and Berneman, Z.N. (2003). The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif *36*, 131-149.

Vesely, P.W., Staber, P.B., Hoefler, G., and Kenner, L. (2009). Translational regulation mechanisms of AP-1 proteins. Mutat Res *682*, 7-12.

Wang, X.W., Zhan, Q., Coursen, J.D., Khan, M.A., Kontny, H.U., Yu, L., Hollander, M.C., O'Connor, P.M., Fornace, A.J., Jr., and Harris, C.C. (1999). GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci U S A *96*, 3706-3711.

Wang, Y., Ji, P., Liu, J., Broaddus, R.R., Xue, F., and Zhang, W. (2009). Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer *8*, 8.

Warmerdam, D.O., and Kanaar, R. (2010). Dealing with DNA damage: relationships between checkpoint and repair pathways. Mutat Res 704, 2-11.

Watrin, E., and Peters, J.M. (2006). Cohesin and DNA damage repair. Exp Cell Res 312, 2687-2693.

Weston, C.R., and Davis, R.J. (2007). The JNK signal transduction pathway. Curr Opin Cell Biol 19, 142-149.

Xiao, D., Deguchi, A., Gundersen, G.G., Oehlen, B., Arnold, L., and Weinstein, I.B. (2006). The sulindac derivatives OSI-461, OSIP486823, and OSIP487703 arrest colon cancer cells in mitosis by causing microtubule depolymerization. Mol Cancer Ther *5*, 60-67.

Xiao, Z., Chen, Z., Gunasekera, A.H., Sowin, T.J., Rosenberg, S.H., Fesik, S., and Zhang, H. (2003). Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem *278*, 21767-21773.

Xu, X.C. (2002). COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs *13*, 127-137.

Yamamoto, Y., Yin, M.J., Lin, K.M., and Gaynor, R.B. (1999). Sulindac inhibits activation of the NF-kappaB pathway. J Biol Chem 274, 27307-27314.

Yang, B.X., Duan, Y.J., Dong, C.Y., Zhang, F., Gao, W.F., Cui, X.Y., Lin, Y.M., and Ma, X.T. (2011). Novel functions for mda-7/IL-24 and IL-24 delE5: regulation of differentiation of acute myeloid leukemic cells. Mol Cancer Ther *10*, 615-625.

Yang, C.S., and Wang, X. (2010). Green tea and cancer prevention. Nutr Cancer 62, 931-937.

Zenz, R., and Wagner, E.F. (2006). Jun signalling in the epidermis: From developmental defects to psoriasis and skin tumors. Int J Biochem Cell Biol *38*, 1043-1049.

Zerbini, L.F., Czibere, A., Wang, Y., Correa, R.G., Otu, H., Joseph, M., Takayasu, Y., Silver, M., Gu, X., Ruchusatsawat, K., *et al.* (2006). A novel pathway involving melanoma differentiation associated gene-

7/interleukin-24 mediates nonsteroidal anti-inflammatory drug-induced apoptosis and growth arrest of cancer cells. Cancer Res *66*, 11922-11931.

Zerbini, L.F., and Libermann, T.A. (2005). Life and death in cancer. GADD45 alpha and gamma are critical regulators of NF-kappaB mediated escape from programmed cell death. Cell Cycle *4*, 18-20.

Zerbini, L.F., Wang, Y., Czibere, A., Correa, R.G., Cho, J.Y., Ijiri, K., Wei, W., Joseph, M., Gu, X., Grall, F., *et al.* (2004). NF-kappa B-mediated repression of growth arrest- and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc Natl Acad Sci U S A *101*, 13618-13623.

Zhan, Q., Lord, K.A., Alamo, I., Jr., Hollander, M.C., Carrier, F., Ron, D., Kohn, K.W., Hoffman, B., Liebermann, D.A., and Fornace, A.J., Jr. (1994). The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol *14*, 2361-2371.

Zhang, L., Yu, J., Park, B.H., Kinzler, K.W., and Vogelstein, B. (2000). Role of BAX in the apoptotic response to anticancer agents. Science *290*, 989-992.

Zhang, W., Bae, I., Krishnaraju, K., Azam, N., Fan, W., Smith, K., Hoffman, B., and Liebermann, D.A. (1999). CR6: A third member in the MyD118 and Gadd45 gene family which functions in negative growth control. Oncogene *18*, 4899-4907.

7 ACKNOWLEDGMENT

I would like to express my profound sense of gratitude to my respectful Prof. Dr. med. Rainer Haas and Dr. med. Akos Czibere whose expertise, understanding, and patience, added considerably to my graduate experience. I would also like to thank them for their extraordinary direction, constant encouragement, suggestions and extensive but helpful criticism and valuable discussions. I am thankful to Prof. Dr. Ulrich Rüther for being my co-supervisor and for taking time out from his busy schedule for discussions.

Thanks are also due to Leukämie Liga e.V. Düsseldorf, Germany, for the amicable scientific support. Not much of this work or my scientific training would have been possible without their help. I am extremely grateful to Prof. Dr. med. Ulrich Germing, Dr. med. Ingmar Bruns and Dr. med. Frank Neumann for their timely help and with a smiled smiling face.

This project has given me the privilege of sharing intellectual dialogue with my colleagues, and even more, it was a time of invaluable vital experiences. I am grateful to all my colleagues at the Department of Hematology, Oncology and Clinical Immunology, for offering very conducive environment in the laboratory. I thank them for their advice, comments and valuable time. I wish to thank Dr. Nona Shayegi, Ron-Patrick Cadeddu, Sebastian Büst, Daniela Brünnert, Julia Fröbel, Matthias Wilk, Jens Lind, Ovidu Popa, Anne Koch, Sabrina Pechtel, Caro Brings and Bärbel Junge. We were extremely fortunate to share an unforgettable and beautiful time together.

I gratefully acknowledge the help of the members of German Diabetes Center and Institute for Animal Developmental, Molecular Biology of the Heinrich Heine University, Düsseldorf.

I thank many of known and unknown people in Düsseldorf, who somehow or other helped me. I thank Düsseldorf as a city and to its inhabitants. It was a remarkable part of my life and I have learned a lot in every sphere of life from this lovely city.

Many people have contributed to this dissertation in innumerable ways, and I am grateful to all of them. They have always provided unwavering love and encouragement and believed in me.

I would like to thanks all my teachers and mentors at different levels of education from school to courses.

My final expression of gratitude is reserved for my family and friends without naming anyone, for all of their love, encouragement and great deal of support for me. Without their imminent support; I would be not what I am today. Without their affection and great deal of support for that they have sustained me during the difficult period of my life. Writing of my dissertation will not be possible without their encouragement and great deal of support for me.

8 Declaration

- I, Raminder Singh confirm that:
- 1. I have written the present dissertation and has not been submitted in the same or similar form to other institutions myself and independently.
- 2. I have not previously failed a doctoral examination procedure.
- 3. This work was done wholly or mainly while in candidature for a Ph.D. degree at this University.
- 4. Where I have consulted the published work of others, this is always clearly attributed.
- 5. Where I have quoted from the work of others, the source is always given.
- 6. I have acknowledged all main sources of help.

Düsseldorf,

(Raminder Singh)

 13^{th} October 2011