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The probability of success
is difficult to estimate;
but if we never search,

the chance of success is zero.

(”Search for Interstellar Communications”, Nature, vol.184)

k%%

At a French airport one day,
the customs official looked
suspiciously at Hitchcock’s passport,
in which his occupation
was simply listed as ” Producer”.
”What do you produce?” he asked.
”Gooseflesh,” Hitchcock replied.

(British anecdote)
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Introduction

In my thesis I study the cohomology and homology of certain arithmetic groups
I' < PSLy(Ok) with coefficients in the I'-modules M = M,, ,,(Ok). Here K is an
imaginary quadratic number field and Ok denotes the ring of integers in K. The
I'-modules M, ,,(Ok) are the tensor products of the I'-modules of homogeneous
polynomials in two variables of degree n respectively m with coefficients in O, the
first [-module coming with the standard action, the second with the complex conju-
gate one. Geometrically, the game plays on the 3-dimensional hyperbolic space H?
(take the model C x RT), i. e. PSLy(C) acts on H? as a group of isometries and
PSLy(Ok) acts on H? via the embedding Ox C C. The coset space T'\H? has the
structure of a topological 3-manifold for any discrete subgroup I' of PSLy(C). If T is
torsionfree the quotient gets the structure of a hyperbolic 3-dimensional Riemannian
manifold from H2.

The cohomology and homology modules I study are finitely generated Og-modules
that contain ¢-torsion classes (¢ a prime) and so-called automorphic classes (nontor-
sion). Furthermore they admit certain natural endomorphisms 7 (0 # m € Ok)
called Hecke operators. Then it is of special interest to investigate the properties
of the eigenvalue systems for these Hecke operators acting on the cohomology or
homology modules. For a more comprehensive introduction to the subject I would
like to refer to Section 1.3, which should also give some more understanding of the
specific questions I investigated.

At first T mainly tried to get a general idea of the occuring /-torsions. For that I
studied the modules H2(T', M), HY(T', M) and in particular H, (T, M) using different
approaches. With the help of extensive computer calculations on the basis of several
Computer Algebra Systems I produced a lot of tables showing many interesting tor-
sion phenomena. The computations were carried out on several fast LINUX work
stations.

As a central part of my thesis I then studied the Hecke operators T, (7 a prime
element now) on H,(I', M) for I' = PSLy(Z[i]), in particular on ¢-torsion classes.
These Hecke operators on H;(I', M) were easier to handle than Hecke operators
on H?(T', M), and on the other hand H,(T", M) contained more interesting torsion
classes than H!(T', M). Again I carried out a lot of computer calculations to de-
termine simultaneous eigenvectors (eigenclasses) for many 75 with 7 of small norm,
which led to interesting congruences for the Hecke eigenvalues a, and to several in-
sights about the eigenclasses in the so-called free part H,(I';, M) modulo torsion. To
produce tables for the structure of the cohomology or homology modules for certain
series of M, ,,(Ok) the computations sometimes went on several days, but for the
extreme cases of computing Hecke eigenvalues on the so-called large torsion classes
(see below) it could take a week to get a single eigenvalue for prime elements 7 of
large norm. But here the point was to make it possible to get at least some.



To compute the cohomology and homology modules I mentioned above it was im-
portant to choose suitable approaches which would allow to break the methods down
to a nice algorithmic realization. I used a more topological construction to compute
H?(T', M) starting with a fundamental cellular domain whereas I chose the direct
group cohomological approach for HY(I', M) and H(I', M). An advantage of the
latter method is that one can directly work with the data in the presentations of the
groups I, which allows to switch quite easily between different arithmetic groups I'
in the computer programs.

It follows a more detailed description of the content of each chapter. In the first chap-
ter I collect the fundamental notions I need throughout the thesis. In particular Sec-
tion 1.1 contains a collection of presentations of arithmetic groups I' < PSL,(Ok),
which are quite scattered in the literature but form the basis for my computations
in Chapter 3 and 4. The fundamental coefficient modules M, ,,(Ok) are introduced
in Section 1.2. In addition to this introduction I discuss some more background
in Section 1.3, summarize some work done before and give some remarks how my
results fit in there.

The next three chapters are organized in a similar way. In the second chapter I
compute H*(T', M) for T' = PSLy(Z|[i]) and H*(T'.,, M) for many coefficient mod-
ules M = M, ,(Z[i]), where I := <(Z%Z~] (1])> The general idea I use goes back
to E. Mendoza. He constructed a suitable 2-dimensional deformation retract of H?
with a cellular I'-action (see [Me]). More precisely, I use the formulas for the second
cohomology developed in [Th] based on [Me]. Section 2.1 gives a short summary of
that approach. The strategy for the actual computation of the module invariants
and the algorithmic realization is explained in Section 2.2. In particular this section
serves as a basis for working out a conceptual setup for the computer calculations.
Therefore it contains many remarks which are relevant for the following chapters as
well (representations of the modules, choice of the Computer Algebra Systems and
certain algorithms). Most of the programs are written in MAPLE. In general I used
the Smith algorithm to compute the module invariants but I also determined a lot
of torsion by computation modulo . The computational results and some conclu-
sions are contained in Section 2.3. The main observation from the tables is that
really large /-torsions (¢ large) occur in the global cohomology H?(T', M) but not in
H?(T'!,, M) for the same coefficient modules M. For M = M, ,,(Z[7]) I want to
say from now on that an /-torsion is large if £ is greater than max(n, m), otherwise
I want to call the ¢-torsion small. Furthermore it turned out later that H?(T', M)
seems to be closely related to Hy (', M).

The first cohomology is studied in Chapter 3. Here I use the direct possibility to
express the first group cohomology as derivations modulo principal derivations. This
allows to compute H'(T', M) directly from the presentation of T'. The transfer of the
relations from the presentations of the groups I' into the modules M" (r the number
of generators of I') is explained in Section 3.1 and is carried out for I' = PSLy(Z [1])



there. The more algorithmically oriented realization of the computation of the mod-
ule invariants for H'(T', M) is explained in Section 3.2. Furthermore I discuss some
observations I got from computations with the matrix realizations coming from the
principal derivations in Section 3.3. The computer experiments suggest that the
torsion is already encoded in these matrices. So I decided to collect the correspond-
ing tables from these computations for several arithmetic groups I' < PSLy(Ok)
in Section 3.4. The aspects behind this should be studied in more detail now. In
general I didn’t find any large torsion classes for H'(T', M) so that I concentrated
on H;(I', M) in the end.

The group homological approach for Hy(I', M) is developed in Section 4.1. More
precisely, I consider the related Og-module Ar, where H;(I', M) is the kernel of a
certain map from Ar to M. Since M is free abelian all the torsion of Ar sits already
in H,(I', M), and it is enough to concentrate on Ar for the torsion. Again one can
compute Ar directly from the presentation of I'. The generators of Ar satisfy several
relations coming from the relations in the presentation of I'. The transfer of these
relations is described in Section 4.2 and is carried out there for many groups I
The algorithmic realization is described in Section 4.3, and a choice of the results
is given in Section 4.4. Here I start with I' = PSLy(Z[i]) and some tables analo-
gous to the case of H2(I', M) and then selected the groups I' = PSLy(Z[v/-2]),
I'=PSLy(Z [Hzﬂ ] ), the figure-8 knot complement group I's and the link com-
plement group I'_7(6,4) with some smaller tables. Again really huge torsion occurs
but in particular the same large ¢-torsions appear for corresponding coefficient mod-
ules in H*(I', M) and H,(I', M) for I' = PSLy(Z[i]) in all computed cases. Some
comments on that observation are also contained in Section 4.4. Furthermore the
results for Hy([', M) in the case of I' = PSLy(Z [i]) formed the basis for the follow-
ing computations with the Hecke operators.

Finally Chapter 5 is devoted to Hecke operators acting on Ag. It turns out from
general theory that Ag is generated for any group G by the elements of the form
(9—1)®gm (g a generator of G and m a generator of M). A general formula for the
Hecke operators T, on A ¢ giving T ((9 — 1) ® m) with 0 # 7 € Ok for the groups
G = PSLy(Ok) is derived in Section 5.1 (see Theorem 5.3). Then I developed
explicit formulas for certain 7 in the case of ' = PSLy(Z[i]) with its generators
A, B and U (see Propositions 5.7-5.9). Based on them I computed simultaneous
eigenclasses for many 7, (7 of small norm) for several modules M, (Z[i]). The
algorithmic realization is explained in Section 5.3. 1 carried out the computations
for several /-torsion parts A™ ®zF, but also for the free parts Ar/A™. The results
and conclusions are contained in Section 5.4.

The analysis of the results from the computer calculations led to the following ob-
servations. Again I found a different behaviour for the small and the large ¢-torsion
classes. Up to now I obtained congruences for the Hecke eigenvalues a, in all cases



of small /-torsion I considered, including congruences to twists of the eigenvalues for
the free part (if one occured, i. e. for n +m + 2 = 0 mod 4). In the cases without
such a free part I found congruences of the a, to twists of the eigenvalues for the
free part in certain other homology modules. Note that all these congruences are
established from the computational results and therefore only hold for many 7 of
small norm up to now.

For example, I analysed the 5-torsion in the case of the module Moo(Z[¢]) and
found a, = 7- (N(7) + 1) mod 5. The eigenvalue of the free part is 7'' + T here,
and we have a, = 7?(7'' + 7) mod 5. Similar congruences showed up for the 5-
torsion in the case Migo(Z[7]), for the 3-torsion and 5-torsion for M7 ,(Z[7]), for
the 13-torsion for Myso(Z [i]) and so on. Surprisingly, it was possible to identify the
numbers a, - 77° for the 5-torsion in the case Migo(Z[i]) with numbers b, (traces
of Frobenii) in a list of elliptic curves over Q(i) in J. Cremona’s thesis [Crl]. T also
managed to compute some Hecke eigenvalues on large torsion classes. So I treated
e. g. the 661-torsion for Mo o(Z [i]) and the 137-torsion for My4o(Z[7]). In contrast
to the small torsions I didn’t find such conguences here.

From the computations I also got hints about the structure of a general eigenclass
in the free part of H;(I', M). Using a homology test program and the programs for
the Hecke operators I could finally identify a general candidate in Ap for the mod-
ules M, ,,(Z[i]). Then I showed that this candidate sits indeed in Hy(I', M), and
I proved the eigenvalue equations (with the eigenvalues 7™ + 7*1) for the series
M, o(Z[i]) and M, 1(Z[i]) (see Propositions 5.16 and 5.18). Also I could prove
in the general case of modules M, ,,(Z[7]) that the so-called (B — 1)-part always
vanishes (see Lemma 5.19). Furthermore I obtained several results about torsion
classes. All that is put together in Section 5.5.

The original motivation for this thesis was of arithmetic nature (see also Section
1.3 and the suggestions for further work in Chapter 6). So the final hope or goal
would be a suggestion for a formulation of an analogue of Serre’s conjecture in the
imaginary quadratic case which would relate certain Hecke eigenclasses to appropri-
ate Galois representations mod /.

Finally, it is a pleasure for me to thank, most of all, Prof. Fritz Grunewald for sug-
gesting this wonderful topic to me, for numerous stimulating discussions and his
constant support. I'm also obliged to Colin Stahlke and Michael Stoll for several
helpful suggestions and especially for their advice in the world of Computer Algebra
Systems. Then I want to thank Fritz, Colin, Michael, Wolfgang Huntebrinker and
Sascha Rogmann for providing a nice and creative atmosphere around me.
Furthermore I would like to thank Prof. Giinter Harder for many insights I got from
his Automorphic Forms Seminar and for several very helpful conversations. Last,
but not least, I wish to thank Richard Taylor and his students since I could really
profit in the end from the inspiration I got during my stays in his research group in
Cambridge, U.K., and Harvard.
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1 Preliminaries and general setting

In this chapter we present the basic concepts and notations we want to use through-
out the thesis. This covers several remarks about arithmetic groups, and in particular
the introduction of the groups PSLy(Ok) and its congruence subgroups acting on
hyperbolic three space.

First of all Section 1.1 puts together a collection of suitable presentations for the
groups, which form the basis for our explicit computations in Chapter 3 and 4.

In Section 1.2 we introduce the modules M, ,,(Ok) which will be the general coef-
ficient systems for the group cohomology and homology we want to consider.
Finally Section 1.3 summarizes some work done before and contains several remarks
how our results fit in there.

1.1 Arithmetic groups over imaginary quadratic integers

There are various concepts of arithmetic groups and one has to take care about
the subtle differences, see e. g. [Bo], [PR], [Sel], [Se2] and [GP1], [GP2]. For us
it is suitable to take the following definition due to Harish—Chandra. Let G be
a linear algebraic group (subgroup of GL,(C)) defined over Q. We set G(Z) :=
GNGL,(Z). A subgroup I' < G(Q) is then called an arithmetic subgroup of G(Q) if
I is commensurable with G(Z), i. e. I' N G(Z) has finite index in both I' and G(Z).
Now we start with the algebraic group SLy/K for an imaginary quadratic field K and
let G/Q = Rk /o(SLz/K) be the restriction of scalars. The group G(Z) = SLy(Ok)
is an arithmetic subgroup of G(Q) = SLs(K). For technical reasons we always want
to consider the arithmetic subgroup PSLy(Ok) = SLy(Ok)/{£Id} from now on.
We write K = Q(v/—d), d > 0 a squarefree integer, for the imaginary quadratic
number fields. The ring of integers in K will always be denoted by Og. All these
rings are Dedekind rings. For more details we refer to fundamental books about
algebra or algebraic number theory, see e. g. [Ar] or [Na).

There are exactly five Euclidean cases among the rings of integers O, i. e. for
d=1,2,3,7,11. If one switches from the classical notion of being norm Euclidean
to a concept of generalized Euclidean domain there are still no more O in the list,
see e. g. [Ch] or [Na]. Furthermore there are only three more rings Ok with class
number hx = 1 or, in other words, with Ok being a principal ideal domain. We
want to denote the ideal class group by Clg. In general we mainly want to consider
finitely generated modules over the Dedekind rings Og. A good summary of their
structure is given in [Na] and from a more computational point of view in [Co2] and
[Co3].

We also need the concept of a congruence group (see e. g. [EGM 3]). Given a non-
zero ideal n C Ok, the full congruence group of level n in PSLy(Ok) is defined
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Pl(n) = { (‘CL Z) € PSLy(Oy) ‘ (Z‘ 2) = (iol i01> modn}.

A discrete subgroup I' < PSLy(C) which is PSLy(C)-conjugate to a group contain-
ing PI'(n) for some non-zero ideal n C Ok is called a congruence subgroup with
respect to PSLy(Ok). Note that if I' < PSL,(C) is a congruence subgroup then
there exits an element v € PSLy(C) so that the index of Y[y~ N PSL,y(Ok) in
PSLy(Ok) is finite. An important example of a congruence group is given for any
non-zero ideal n C Ok by

To(n) = { (‘C‘ Z) € PSLy(Ox) | cEn}.

There are more examples of groups commmensurable with PSLy(Ok) which are of
interest for us. So it can happen that the 4-dimensional K-algebra M (2, K) has
several G Ly(K)-conjugacy classes of maximal Og-orders. An example is given by

M(OK,CL) = { (Z 2) EPSLQ(OK) | a,dE(’)K, ceEa, bEa_l}

where a C Ok is a non-zero ideal. From each of these orders M(Ok, a) we get the
following cofinite subgroup of PSLy(C):

PSLy(Ok,a) = { g€ M(Ok,a) | det(g)=1}/{xld}.

PSLy(Ok,a) is commensurable with PSLy(Ok). For number theoretical applica-
tions like, e. g., the study of Hecke operators it is also necessary to consider in
addition to PSLy(Ok) the groups PSLy(Og,a) where a runs through a system of
representatives for Clg/Cl%. A study of explicit fundamental domains for these
groups is carried out in [Sch| which leads to presentations as in the standard cases.
For the general geometric background, which is the theory of groups acting on hy-
perbolic three space, we refer to [EGM 3] giving a comprehensive treatment. So let
us only mention that we want to use the upper half space model of hyperbolic three
space and want to define H® := Cx]0,00[= {(2,7) : 2z € C, » > 0}. The group
PSLy(C) of complex (2 x 2)-matrices with determinant one modulo its center {£Id}
has a natural action on H?. Furthermore we have that PSLy(Ok) is a discrete sub-
group of PSL(C), which has finite covolume but is not cocompact. For more details
about the construction of fundamental domains or a discussion of the cusps see also
[EGM 3].

Next we put together a collection of presentations for several groups I' < PSL,(Ok).
They form the basis for our computations of the group cohomology and homology
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in Chapter 3 and 4. For that we need in particular very small presentations, i. e.
with few generators and few relations. Hence we tried to find the best suitable pre-
sentations. On the other hand we changed the letters of the generators from the
references in such a way that we could use them again in as many presentations as
possible. Later on this becomes very helpful for the reuse of certain relations and
for their well-organized realization in the computer programs. The collection of the
groups PSLy(Og) includes all cases with Euclidean O, one case of class number 1
which is not Euclidean, two cases of class number 2 and one example of class number
4. In the cases of class number greater than 1 we also cover the groups associated to
the non-trivial ideal classes as described above. So we will get a nice picture about
what happens with the cohomology and homology under these different assumptions
and about the problems which arise.

At first we want to consider the five Euclidean cases. Let us start with the number
field K = Q (i) with its ring of integers Ok = Z[i]. From [EGM 3, Ch.7] we have

Proposition 1.1 Let

10 0 -1 10
=) =) =)
Then the following is a presentation of PSLy(Z[i]):
PSLy(Z[i]) = (AB,U|Ri=Ry=Ry=R,=Rs=Rs=1)
with
R, = B?, Ry = (AB)?, Ry = AUA™'U™', R, = (BUBU')3, Ry = (BU?BU!)?,
Rs = (AUBAU™'B)?.

Remark 1.2 Note that we give all relations a number here, which will be used when
we refer to these relations in the following chapters. So, relation R, will be called
Relation n later. This convention will be used for all presentations we consider.

We go on with the field K = Q(v/—2) with its ring of integers Og = Z [/—2]. Here
we set w 1= /—2. From [Sw] we have

Proposition 1.3 Let

=) 2=009) - 0d)
Then the following is a presentation of PSLy(7Z [/—2]):
PSLy(Z[v-2]) = (A BJU|R =Ry=R3=R,=1)
with
R = B?, Ry = (AB)®, Ry = AUA"'U', R, = (BU 'BU)>.
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Next we have the field K = Q(v/—3) with its ring of integers Ox = Z [@ ]. We
set w := (=14 +/-3)/2. From [EGM 3, Ch.7]| we have

Proposition 1.4 Let

(1) s= () =)

Then the following is a presentation of PSLQ(Z[H2£ ]):
PSLy(Z[(1+v=3)/2]) = (AB,U|R =Ry =Ry=Ry=Rs=Rg=1)

with
R, = B% R, = (AB)3, Ry = AUA'U™', R, = (AUBU?B)?, Rs = (AUBU"'B)3,
R¢ = A2UBU-'BUBUBU'B.

For the field K = Q(v/—7) we have the ring of integers Ox = 7Z [H‘Tg ]- Then we
set w := (14 +/-=7)/2. From [Sw| we have

Proposition 1.5 Let

() a=( ) -(02)

Then the following is a presentation of PSLy(Z| H‘Q—g ]):

PSLy(Z[(1+vV-7)/2]) = (A BJU|Ri=Ry,=R3=R;=1)
with
R, = B2, R, = (BA)}, Ry = AUA™'U", R, = (BAU"'BU)2.

The field K = Q(v/—11) has the ring of integers Ox = Z[4=]. Now we set
w:= (1++/—11)/2. Again we have from [Sw]

Proposition 1.6 Let
11 0 —1 1 w
=(o1) =0 0) =)
Then the following is a presentation of PSLy(Z[*4=11):

PSLy(Z[(1++v/-11)/2]) = (A B,U|Ri =Ry=Ry=R,=1)

with
Ry = B?, Ry = (BA)}, Ry = AUA U, R, = (BAU 'BU)?.
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We go on with one more field of class number 1 but with a ring of integers, which is no
longer Euclidean. Among the fields Q(v/—d) with that property it is the one with the

smallest d. The field is K = Q(v/—19) its the ring of integers is Ox = Z [ 4],
We set w := (14 1/—19)/2. From [Sw] we have

Proposition 1.7 Let
11 0 —1 1—w 2 1 w
=) 2=00) =570 v=07)
Then the following is a presentation of PSLy(Z[/—19]):

PSLy(Z[(1++v/=19)/2]) = (AB,C,U|Ri=Ry=Rs=R,=R;=Rg=R;=1)

with
R1 = B2, R2 = (AB)3, Rg = AUAilUil, R4 = 03, R5 = (CAil)s, RG = (BC)Q,
R; = (BAT'UCU)3.

Now we consider the first field of class number 2, which is Q(v/—5). It has the ring
of integers O = Z [v/—5]. Here we set w := v/—5. From [Sw] we have

Proposition 1.8 Let

11 0 —1 —w—4 =2
AZ(O 1)’ B:<1 0)’ CZ( 2 w—4)
—w 2 1 w
D:(z w)’ U:(o 1)'

Then the following is a presentation of PSLy(Z[+/—5]):

and

PSLQ(Z[\/—5]) - <A,B,C,D,U|R1:RQZ...:R8:1>

with
Ry = B?, Ry = (AB)®, Ry = AUA'U !, R, = A2, Rs = (BD)?, Rs = (BUDU 1),
R; = AC7'A"'BCB, Ry = ACT'A-'UDU~'CD.

As we explained above there is one more relevant group associated to an ideal which
is not principal. In [Sch] it is explained how one can find presentations in these
cases, and a kind of algorithmic procedure for that is given. So we consider here the
case of the non-trivial ideal class represented by a =< 2,1 — /=5 > in Z[v/—5].
We set w := y/—5. From [Sch] we have



15

Proposition 1.9 Let

11 10 10 1w
(1) o= ) 2= D) v-(9)

Then the following is a presentation of PSLy(Z[/—5],a):
PSLy(Z[V-5],a) = (A C,D,U|Ri=Ry=R;s=Ry=R5=1)
with

Ry =CDC'D™, Ry = (AC™Y)?, Ry = AUA"\U!, R, = (DU )3,
Rs = (CD'UA™1).

It follows one more example with class number 2. We take Q(v/—10) with its ring
of integers O = Z[+/—10]. Here we set w := v/—10. From [EGM 3, Ch.7]| going
back to [F1] we have

Proposition 1.10 Let

11 0 -1 —w 3 w—1 -4
a=(p1) 5=(03) e=(37 0 o=(*3" J1)
and
w 3 11 bw 1 w
E_<3 —w)’ F_(Qw —9)’ U_<0 1>'

Then the following is a presentation of PSLy(Z[+/—10]):
PSLZ(Z[ V_lo]) = (AaBaC’D:EaFaU | Rl :R2 _ ... :Rll = 1)

with

R1 = BQ, R2 = (BA)S, R3 = 02, R4 = EQ, R5 = (30)2, R(; = (BE)Q,
R;=C'AD'EAD, Ry =U'E~'UFCF™', Ry = D'E~'B7'DU'DBCD~'U,
Ry =D 'B'ADC'U'EDA'BD'U,

Ry =U'DB'A'D'UFD 'BADF ..

Again we also consider the group PSL, for the other ideal class. Here we take as a
representative b =< 2,1/—10 > in Z [+/—10] and set again w := 1/—10. From [Sch]
we have

Proposition 1.11 Let

(11 (10 (10 (-2
=) e=Gy) e (L) 2= (E5)
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and

— N|E

(-3 -1-¢ (1
F= (2 —w 2 ) » U= <0 ) '
Then the following is a presentation of PSLy(Z[+/—10],b):

PSL2(Z[V_1O]’5) = <A,C,D,E,F,U|R1:R2:...:R11:1>

with

Ry = CDC—1D"', R, = B2, Ry = AUA-'U™", Ry = (CA™), Ry = F*,
Rs = (FE)?, Ry = (DEU Y2, Ry = (FC 'EAY?, Ry = (DF U 1),
Ry = (0F71A71)3, Ry = (CDFilAflUfl)?’.

We finally come to an example of class number 4. We choose Q(v/—14) with its ring
of integers Z [/—14]. Here we put w := /—14. From [Sch] we have

Proposition 1.12 Let

(11 (0 -1 _[w =5 _ 4 1+ w
a=(g1) 5=(0 %) e=(5 ) »=(4 1Y)

and
 [(~5+4w  —23 (13 6w (1w
E= ( 4—w 7+w)’ F= <—2w 13)’ U= (0 1)'
Then the following is a presentation of PSLy(Z [v/—14]):

PSLy(Z[v/—14]) = (A,B,C,D,E,F,U|R =Ry=...=Ry=1)

with

R, = B?, Ry =(BA)3, Rs = AUA'U !, R, = (A"'C'BDBAD'C)?,
Rs = (A"'CD'ABDBC1)?, R = D"'CE~'A3DC'A%E,

R, =CB 'C'FC~'BCF!,

Ry =C'DA'B'D'B7'CAE-'A2CBD'BA-'DC'A%E,

Ry =ACB'D'B7'A-'DC'AFA-'C'BDBAD'CA~'F~!.

The ideal class group Clg for K = Q(v/—14) has order 4 but Clx/CIl2 has only
order 2. So we find only one more representative ¢, which leads to a group which
is not conjugate to the standard one we already considered (see also [Sch]). Hence
we only take the ideal class represented by ¢ =< 3,1+ +1/—14 > here. We put again
w := v/—14. From [Sch] we have
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Proposition 1.13 Let

11 —2 el 10 -1 0
_ —_ 3 —_ —_
A_<0 1)’ B_<1+w 2)’ C_<3 1)’ D_(1+w —1)

and
[(-3-w -4 (34w -3 (1 Lo
E_( 6 3—w>’ F_(2+2w —3+w>’ U_< 1)'

Then the following is a presentation of PSLy(Z[/—14],¢):

o

PSLy(Z[v/=14],¢) = (A,B,C,D,E,F,U|Ri=Ry=...=Rg=1)

with

R, = B?, R, = CDC'D™', Ry = AUAT'U™!, R, = (CA™")3, Rs = (DBU')?,
Re = F'AE'A"'UFEU ', R; = (CBE_lA_lUBU_lAEA_l)?’,

Rs = (AEU"'\DBE-'A-'UBD1)?,

Ry = DC'BU'AEBD 'UE-'F-'CBE'A"'UBU'AEA~'F.

For our studies of the so-called cohomology or homology of the boundary in the case
of the group I' = PSLy(Z[i]) we want to introduce its two subgroups I'y, and 'l
now. I' ist the subgroup of lower triangular matrices in PSLy(Z[i]) and ' the
subgroup of lower triangular matrices in PSLo(Z [4]) with diagonal entries one, so
', forms a subgroup of index two in I';. We have the presentations:

I'w = (A D, U|AUAT'U =D*=(AD)*>=(UD)*=1) (1.1)
and
Il = (AU |AUAT'U ! =1) (1.2)
with A, U as for PSLy(Z[i]) in Proposition 1.1 and D = ( 4 9,).

Let now again K = Q(v/—3) with its ring of integers Ox = Z [% ]. Again we
set w = (—1++/—3)/2 and let

11 1 0
=) = 0)
Then we have the famous group

Iy = (AU|[ALU)|AU)AU T =1) (1.3)

sitting inside PSLy(Z [ (14 +/—3)/2]). The group I is a torsion-free subgroup of
index 12 and is in particular a congruence subgroup of PSLs(Z[(1+ +v/—3)/2]).
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It holds that Tg\H® is homeomorphic to the complement S3\ Ky, where S is the
3-sphere and Ky the figure 8-knot (see [Rl]). Note that this is the only arithmetic
knot complement but there are still more arithmetic link complements.

Later on we carry out some computations for three link complement groups we took
from [GH]. They are all subgroups of index 6 in PSLy(Z[(1++/=7)/2]). We chose
the groups I' _7(6,4), I'_7(6,5) and I'_7(6,6). The generators of these groups are
given in [GH|. They are expressed in A, B and U as in Proposition 1.5. Using that
information and the presentation of PSLy(Z[(14++/=7)/2]) we found the following
presentations for the link complement groups using MAGMA:

I 7(6,4) = (1.4)
(XY, Z | X, Z)=2"'YX ' Z7'YZz 'y ' Zzy ' ZXY ' ZY =1)
with X = BA’B, Y =UA™', Z = BUA™'B,
I 7(6,5) = (1.5)
(XY, Z | Y UX, Y UXY X, VIXY[X L YVIX WYX LYy Xt =1)
with X = ABA and Y = AUA™!, and
I 7(6,6) = (1.6)
(X,Y, Z | YUX, Y XY[X, Y XY X LYy X 'YX LY Xt =1)
with X = ABA and Y = AUA2.

1.2 General coefficients — the modules A, ,,(Ok)

As a fundamental notion for the whole thesis we will now introduce the modules
M = M, ,(Ok). Let us already emphasize here that we assume that n + m is
even throughout the whole thesis. The modules M, ,,(Og) will form the coef-
ficient systems for the group homology or cohomology of our arithmetic groups
' < PSLy(Ok). They arise from the finite dimensional irreducible rational rep-
resentations M, ., (K) of the algebraic group G/Q introduced in Section 1.1 when
one chooses the appropriate SLs(Og )-invariant Ok-lattices. Note that M will both
carry the structure of a I'-module and of an Og-module. Let now

M,(Ok) = {Zaix”_iyi Doy E(’)K},
i=0

which is a free Og-module of rank n + 1. As a standard basis we can take ey = x",
er = 2" Yy, ..., e, = y". For example, we get My = Ok and M; = Ogx + Oky.
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Next let

Mm(OK) = {ijum_jvj : bj EOK},
=0

which is a free Og-module of rank m + 1.
Let now v = (¢ %) € PSLy(Ok). Then we set

Y(f)(z,y) = flax+cy,be+dy) for fe M,(Ok)

and
v(f)(u,v) = f(@u+cv,bu+dv) for fe€ M,(Ok),

where the bar stands for complex conjugation. An easy computation shows that
this gives a left ['-action on M, (Ok) respectively M,,(Ok). We can now define the
module

Mn,m(oK) = M,(Ok) ®o, Mm(OK)

sitting inside Ok |z, y, u, v]. M, m(Ok) is a free Og-module of rank £k = (n+1)(m+1)
with the basis e;; = 2" 'y’ @ u™ Jv? (i =0,... ,nand j =0,...,m). Later on we
don’t like to use these double indices for the basis elements anymore. So let us fix
a suitable order for the k basis elements eq,... ,e; from now on. For that we start
with ¢ = 0 going through 7 = 0,... ,m, continue with + = 1 in the same way up to
1=mn. So we end up with ey = 2" Qu™,... ,emr1 = 2" QV™, ... ;e = y" Qv™.
The left I'-action basically induces to the modules M, ,(Ok). The only thing we
have to care about is that —Id has to act trivally to give a PSLy(Ok)-action. A
short computation shows that this is only satisfied for n + m even, and therefore
we only want to consider these left PSLy(Og)-modules from now on. Note that we
then have an action of the subgroups I' < PSLy(Ok) on the modules M, ,,(Ok) as
well.

1.3 Context of the problems

Throughout this thesis we study the cohomology and homology of the considered
arithmetic groups from a group cohomological resp. group homological point of view.
The Hecke operators are considered in that context as well.

Nevertheless we want to emphasize that there are quite different definitions for the
cohomology of arithmetic groups, which all lead to deep general results in their own
way. In this sense, our case of PSL, over imaginary quadratic fields is often covered
as a special case. For a general introduction to the subject we refer to [Ha3] and
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[BW], for a good survey with many references see [LS]. Fundamental facts about
the theory can also be found in [Sel], [Se2]|, [PR] and [Bo].

Apart from group cohomology one can consider Cech or sheaf cohomology, de Rham
cohomology or the relative Lie algebra cohomology. The latter two variants involve
coefficients over R or C and represent the analytical or so-called automorphic part
of the theory. All these cohomologies are connected by comparison isomorphisms.
Here we only want to mention the one we use in Chapter 2 (see e. g. [Ha3]). For
that let [' < PSLy(Ok) be an arithmetic group as introduced in Section 1.1 and let
X =T\ be the corresponding arithmetic quotient. Let M be one of the I'-modules
we introduced in Section 1.2 and let M be the associated local coefficient system
on X (where the orders of the finite subgroups of I' are assumed to be inverted in

the modules M resp. M). Then we have H*(I', M) = H*(X, M) for the group
cohomology of T" and the Cech cohomology of X.

An important aspect of the theory is that one actually studies automorphic forms
when one studies the cohomology of arithmetic groups in the analytical setting. In
the case of our general coefficient modules over Ok instead of K or C we leave that
analytical interpretation and consider torsion classes as well. But still we want to
call the nontorsion classes automorphic. The other way round we can interpret au-
tomorphic forms as cohomology classes. Classically, this is expressed by the Eichler-
Shimura isomorphism, which states for I' = SLy(Z) and the modules M, (C) that
the sequence

0 — Sp2(I,C) & Sppo(l',C) — HY T, M, (C)) — H' (', M,,(C)) — 0

is exact, where S, ,o(I",C) and S, 5(T,C) are the spaces of the holomorphic resp.
antiholomorphic cusp forms of weight n + 2 for I'. A detailed analysis of the group
cohomology of SLy(Z) and its arithmetical applications is carried out in [Hab], for
the Eisenstein class in the first cohomology of SLy(Z) see also [Wal.

A main focus is the understanding of the Hecke operators acting on the cohomology
(see e. g. [AS1], [AS2] and [As]). Their eigenvalues give e. g. the local data to relate
certain eigenclasses to more arithmetical objects like Galois representations or ellip-
tic curves. A good summary of the various relations between modular forms, Galois
representations and abelian varieties can be found in [DDT], for several arithmetical
applications of modular forms we also refer to [Ril]-[Ri3], [SD] and [Se3], [Se4].
For GLy over Q many of these connections are already worked out. Let us only
mention the recent proof of the modularity of all elliptic curves over Q known as the
Shimura—Taniyama conjecture (see [Wi] and [TW] and recent work of F. Diamond
and R. Taylor). Furthermore J.-P. Serre (see [Se5]) established a strong conjecture
describing how Galois representations into GLy(F ;) can be modular. In its qualita-
tive version this conjecture states: Every irreducible continuous odd representation
p: Gal(Q/Q) — GLy(Fy), also called Galois representation mod ¢, is modular.
Later J.-P. Serre worked out a precise recipe to actually pinpoint the space of cusp
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forms where one should find the corresponding modular form. So he has an exact
guess for the level, the weight and the character of the expected form. This very
general conjecture is far from being proved but still has enriched the picture of the
whole theory a lot. For more details see also [Dal, [Di] and [Ed].

Now it is quite natural to study similar questions in the case of G Ly over imaginary
quadratic fields. The automorphic forms in this context are certain real analytic
functions living on the hyperbolic three space. The locally symmetric spaces I'\H?
are arithmetic 3-orbifolds. And here we see the fundamental difference to the case
of GLy over Q and other cases — there is no complex structure on the quotients, so
we don’t have an obvious algebraic variety to exploit (like Shimura varieties in other
cases). Even more, the algebraic varieties in the other cases are defined over number
fields and so we also miss this direct link to arithmetic, and at first glance we mainly
have to rely on methods from geometry, group theory and analysis.

The project of analysing the situation for imaginary quadratic fields was initiated
by F. Grunewald and J. Mennicke in the 70’s by explicit computations over Q(v/—d)
for small d, e. g. by producing tables of newforms of weight two for certain groups
Lo(p) < PSLy(Z[i]) and tables of corresponding elliptic curves over Q (7). Here
the modular forms are interpreted as homology classes of the considered arithmetic
group with constant coefficients Z. The computations use methods from combinato-
rial group theory. For more details we refer to [GM], [GHM], [EGM 1] and [EGM 2].
Many more computations for larger d were done by J. Cremona and his students
using modular symbols (see [Cr1]-[Cr3]). This is a more geometric method and cov-
ered constant coefficients C only. For a treatment of the homology with constant
coefficients including the torsion see [SV] and [Vo.

In 1994 R. Taylor et al. (see [HST] and [Tay]) proved, roughly speaking, that for
all modular forms belonging to the cohomology of the arithmetic quotients in the
imaginary quadratic case there exists a corresponding system of compatible A-adic
Galois representations (for all primes outside a set of Dirichlet density zero). The
theorem covers the case of general weight but only the situation over C, not in-
cluding any torsion phenomena. Up to now there is no idea for a construction of
a corresponding elliptic curve out of the modular form of weight two as we have it
over Q (Eichler). On the other hand, if there are candidates of corresponding el-
liptic curves, Galois representations and modular forms, then a check for the actual
coincidence is possible using the so-called Faltings-Serre method (cp. [Tay]).

Many important insights into the structure of the cohomology of arithmetic groups
[' < SLy(Ok), or about the GL, case in general, are due to G. Harder. For example
he proved that the de Rham cohomology of I'\H?® decomposes as a direct sum of
a cuspidal and an Eisenstein part and that this decomposition is respected by the
Hecke algebra. He also gives a precise description of the action of the Hecke algebra
on the Eisenstein part, see [Hal], [Ha2] and [Ha4] and also [GS]. For the analytical
background in the case of SLy(C) see also [Bl]. It contains e. g. an explicit des-
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cription of the Eichler-Shimura isomorphism in the imaginary quadratic case and
also the vanishing theorem H/ (T, My, (C)) = 0 for n # m and the groups I' we
consider. Therefore the modules M, ,,(C) with n = m remain of special interest.
The Eisenstein cohomology of SLo(Z[1]) is considered in [K6]. A topological model
which is very helpful for explicit computations of the cohomology is given in [Me].
Using that some computations of the second cohomology of I' = PSLy(Z[i]) with
coefficients in the series of modules M, ,(Z[i]) are carried out in [Th]. Further
explicit computations of the cohomology of PGLy(Z [i]) and GLo(Z[(s]) for the
special series M,, o of the coefficient modules are done in [Ca] and [Fe], also including
the determination of certain denominators of Eisenstein classes and a discussion of
bounds for the torsion in the first global cohomology and in the first and second
cohomology of the boundary (no large ¢-torsions).

For a good summary of the work done in the imaginary quadratic case see Chapter
7 of [EGM 3]. It also includes an example for mod ¢ Hecke eigenclasses computed
by F. Grunewald which suggests an analogue of Serre’s conjecture for imaginary
quadratic fields. In several cases such a conjecture for constant coefficients is also
discussed in [Fil] and [Fi2]. The computations are based on the method of modular
symbols for coefficients F,, which is not worked out for more general coefficients in
that case.

The relations to arithmetic formed the original motivation for my thesis. In order to
investigate a correspondence between certain Hecke eigenvalue systems and Galois
representations mod £ one can start with special examples of Galois representations
and can try to identify corresponding (co)homology classes. This is the approach
in [Fil] and [Fi2]. Here only the first homology with constant coefficients F, was
considered, but also for congruence subgroups I'1(N) of PGLy(Ok). In contrast to
that we started a quite systematic investigation of the cohomology and homology
of arithmetic groups I' < PSLy(Ok) with general coefficients M, ,,(Ok) to get in
particular a good overview of the occuring torsion classes. In a next step we started
with a quite general setup for studying Hecke operators 75, on H;(I', M) and worked
it out explicitly for I' = PSLy(Z[i]). Then we computed simultaneous Hecke eigen-
classes (for many 7)) in many cases of H{(I', M), in particular on certain ¢-torsion
classes but also on the automorphic classes.

The general questions about such Hecke eigenvalue systems are: how do they vary
when one changes the group I' or the module M or both, resp. how are they related
for different homology modules (or even inside the same homology module), what
are the relations between automorphic and /-torsion classes, what can be said about
congruence properties and which arithmetical objects (e. g. Galois representations
mod /) could correspond to the Hecke eigenclasses? Our computational results pro-
vide several insights in that direction. Having established the machinary on the
homology side a next step would be to analyse the Galois side in more detail.
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2 Computation of the second cohomology
H*(T', M)

The second group cohomology H*(PSLy(Z[1]), My, .m(Z[1])) should become our first
playground to get an impression about the existence and distribution of torsion for
general coefficients M, ,,(Z[%]). It also serves as a basis for working out a concep-
tual setup for the computer calculations with these general modules.

At first the choice between a group cohomological or a more topological approach
had to be made. The second group cohomology is already quite complicated to
handle. On the other hand we have a nice method through the work of E. Mendoza
(see [Me]). The main idea is to study the cohomology of a group I' with finite vir-
tual cohomological dimension through an associated finite dimensional contractible
topological space X with a proper ['-action.

In our case of I' = PSLy(Z [ i]) the standard candidate for X is the hyperbolic three
space H?, where we would have a suitable fundamental domain. However, this is
still quite complicated. Furthermore I'\H? is not compact. Now, the virtual co-
homological dimension of PSLy(Z[i]) is two. So the question arises whether one
could construct a contractible space of dimension two with proper I'-action. This
is the problem, which was solved by E. Mendoza. He constructed a I'-invariant 2-
dimensional deformation retract I of H* (K an imaginary quadratic field, so that
all PSLy(Ok) are covered), so that the quotient of Ix by any subgroup of I' of
finite index is compact, Ix has a natural CW structure with a cellular I'-action and
the quotient I'\Ix is a finite CW complex. In our case this leads to a fundamental
cellular domain with one 2-cell, four 1-cells and four O-cells. The formulas for the
second cohomology become quite easy then, since one only has to take into account
the edges. For the first cohomology one would also have to take care of the vertices
which makes it more complicated again.

Since this approach was already used in [Th] in a computation for M = M, ,,(Z [i])
with n = m we could start with the setup as developed there. So we just sketch the
construction in Section 2.1 and present the formulas one can derive for H?(T', M)
and H*(T', M). Section 2.2 describes the computation of their module invariants
and the realization in a computer program. Section 2.3 collects and discusses our
results.

2.1 The formulas for H*(I', M) and H?*(T'., M)

Our goal is to compute the second group cohomology of I' = PSLy(Z[i]) with
coefficients in the I'-modules M = M, ,,,(Z [i]). As already mentioned we want to use
a cellular decomposition for that. Since we mainly want to sketch the construction
from [Me] and [Th] and plan to study group cohomology in Chapter 3 in more detail
we want to refer for the definition of group cohomology to Section 3.1 (see also Section
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4.1 for group homology) or to [Wei]. What we need is a suitable projective resolution
of S := Z[i][3] (note that we have to invert the orders of the stabilizers to have
the comparison isomorphism for the cohomologies and that we want to consider the
modules M over S as well). After applying the invariants functor one gets a complex
whose cohomology groups are the cohomology groups H?(I', M'). Using the cellular
decomposition from [Me] yields a much better projective resolution as the standard
way due to Eilenberg-MacLane.

Mendoza’s construction of the deformation retract is based on G. Harder’s reduction
theory for arithmetic groups. A central notion is the so-called distance from a cusp.
We don’t want to work that out here. For details see [Me| and for a good overview we
also refer to [SV]. So Ik for an imaginary quadratic field K is defined as the set of all
points in H3, which lie in the minimal sets of (at least) two different cusps. Now, a
finite subcomplex F of I is called a fundamental cellular domain for I' = PSL,(Ok)
if Ix =T+ F and if points in open induced 2-cells are not I'-equivalent. Then we
have from [Me] or [Th], that

f o= {(z,C)E]HF‘: P4 =1, OgRe(z)S%, ogfm(z)g%}

is a fundamental celular domain for the action of PSL,(Z[i]) on Ig(;. The four
vertices are ¢; = (0,1), ¢o = (3,%2), ¢3 = (1%, ¥2) and ¢, = (£,*%2). The four egdes

are ki = {(2,¢) € f : Im(2) = 0}, ks = {(2,¢) € [ : Re(z) = 3}, ks = {(2,¢) €
f:Im(z) = 1} and ks = {(2,¢) € f : Re(z) = 0}. Hence Iy, is a 2-dimensional
CW complex. We write Cy := {gc; : g € PSLy(Z[i]), j=1,...4} for the set of
O-cells, Cy == {gk; : g € PSLy(Z[i]), j=1,...4} for the set of closed 1-cells and
Cy:={gf: g€ PSLy(Z[i])} for the set of closed 2-cells. Furthermore we need the

stabilizers for the edges:

Stabr (k) = <01 = (3 é>> =7./27, Stabr(k,) = <’7’ = G _01)> =17./37,

Stabr (ks) = <n - (‘Zl é>> — 2/3Z, Stabr(ks) = <0 — (2 _01>> A

The stabilizers for all other 1-cells are conjugate to these stabilizers.

Now one can form the free S-modules S[C], S[C1] and S[Cs] over the sets Cyy, C; and
Cy and can define appropriate ST-module homomorphisms dy, d; and dy between
them. One finally gets (see [Th|, Ch.2) that for I' = PSLy(Z[i]) the sequence

0 — S[Cy] -5 S[Cy] 25 S[Cy] 2 S

is a projective resolution of S, consisting of finitely generated ST-modules. Note that
the sequence is exact because of the contractability of Ig. For I' = PSLy(Z[i])



25

the modules S[Cy] and S[C;] have a quite simple structure. One gets (see [Th]) that
S[Cy] = ST and S[C}] ¢ @?:1 S[Stabr(k;)\I']. This gives Homp(S[Cs], M) — M,
which sends ¢ to ¢(f) and

4
Homr (S[C], M) — @ mStebriks),

which sends ¢ to (¢(k1),...,d(ks)). With the right choice of orientation this gives
for the boundary map ds : S[Cy] — S[C4] that do(f) = k1 + ...+ k4. Hence we get
the associated coboundary map (apply Homr( -, M)):

4
@ MStabr(kj) N M,

which sends (my, ... ,my) to m; +...+my. Now we take the definition of H?(T', M)
and get:

HYT, M) = Mj(MSbr(en) 4 pyStabr(ea))

= M/ Z vyl M+... .+ Z vy M

~v€Stabr (k1) ~yEStabr(ks)

Using our stabilizers for the edges we end up with the following formula (see [Th]):

Proposition 2.1 Let I' = PSLy(Z[i]) and M = My n(Z[i][3]). Then
H*T,M) = M/(14+0)M+(1+o)M+(1+7+7 )M+ (1+7 +17)M).

We are also interested in the cohomology H?*(T'., M), which is a variant of the so-
called cohomology of the boundary. For the definition of I’ see Section 1.1. Here the
computation is a lot easier since all stabilizers are trivial. Let again M = M, ,(Z[i])
again. The fundamental cellular domain is

{z€C: 0<Re(z) <1, 0<Im(z) <1}.

Theedgesoffarek1 {zef:Im(z) =0}, ky={2€ f: Re(2) =0}, ks = (} i) ky
and k, = (3 )kg, and the vertices are ¢, =0, =1,¢3=1+7and ¢, = 4. Asfor "
we define the sets Co, C, and 02 of O-cells, 1-cells and 2-cells, form for § = 7 [i] free
S-modules S[Cy], S[C:] and S[Cs], which become ST/ -modules, and after a suitable
choice of orientation define the boundary maps. Then we get the sequence

0 —s S[Co] -5 FC] -2 3[Co] 2 3,
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which is a projective resolution of S consisting of finitely generated free STO’O—
modules. Now we find (see [Th]) that S[C,] = STZ and S[Cy] = ST ?, which gives
us the maps Homr (S[Cs), M) — M sending ¢ to ¢(f) and Hompr, (S[C1], M) —
M?, which sends ¢ to ((15(/;1), Qb(i;/'g)). The analysis of the boundary map d» leads to
d* : M?> — M, sending (mq,mg) to (1 — (1 =9)mi + (1 = () ~1))mg. We set
p1:=(§1) and py := (§?). Then we finally get (see [Th]):

Proposition 2.2 Let I' = PSLy(Z[i]) and M = My, n(Z[i]). Then

H?(Tg, M) = M/((pr = )M + (po — 1)M).

2.2 The strategy for computing the module invariants

Now we want to compute explicitly the invariants of the modules H*(T', M) and
H?(TL, M). Since it is technically more complicated to carry out the computations
over Z [i][¢] we prefer to compute over Z[i] only. Hence we won’t find the right
parts for the 2-torsion and 3-torsion (and therefore don’t list them in our tables), but
our main focus is on higher torsion anyway. The modules H*(T', M) and H?*(T'.,, M)
are finitely generated (of finite type) over Z[i]. For such modules the following
theorem (see e. g. [EMS]) holds:

Theorem 2.3 A module T of finite type over a principal ideal domain A is isomor-
phic to a direct sum of a finite number of cyclic modules. A cyclic module is either
isomorphic to A or decomposes further as a direct sum of cyclic modules of the form
A/(m®), where 7 is a prime element. The representation of a module as a direct sum
of such modules is unique.

The A-module T can be represented in the form T'= A /N with N C A”, where N
is free and finitely generated as well. If we choose a basis for A” and express NV in
that basis, then our representation just means that T is defined by the associated
system of linear equations. More precisely, let AY = Ae; @ ... & Ae, and let N =
(u1,...,u,) be generated by ui,...,uy, then we find ¢;; so that u; = 377, cije;,
and the associated system of linear equations is Z;Zl cije;j =0fore=1,...,pu, 1 e
the matrix (¢;;) corresponds to the module N. Over a principal ideal domain, any
matrix can be reduced to diagonal form by multiplying both sides by unimodular
matrices. If we have an Euclidean algorithm in the ring A, then these multiplications
can be performed by the standard row and column transformations (interchanging
of two rows or columns or adding a multiple of one to another). These operations
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allow us to find a system of generators for the module 7" such that the matrix (c;;)
is diagonal. If a4, ... ,q; are the diagonal elements which are not zero, then we have

T =2 Afla)®...®A)(a)) ® AL

From Proposition 2.1 we know that H?([', M) = M/N, where M = Z[i]* is a
module of rank k¥ = (n + 1)(m + 1). For H*(T', M) we are in a similar situation.
So we have to represent N by a matrix like (¢;;) from above, where the columns of
that matrix generate the submodule N. In the following we will use the notation
NMAT for such a matrix. The capital letters and the appendix MAT should stress
the more algorithmic aspect of these specific representations for the cohomology
modules. Then we have

rank(H?*(T', M)) = corank(NMAT) := k — rank(NMAT),

and the torsion of H?(T', M) can be read off from the diagonal elements. The diagonal
matrix we described is not unique, since we have a certain freedom through the
elementary transformations. So we want to choose a unique form (up to units) from
now on. We say that an (r x s)-matrix D is in Smith normal form (SNF) if D
is an extended diagonal matrix (the diagonal does not necessary end in the lower
right corner), so that any diagonal element always divides the next lower diagonal
element. Let now B be an (r X s)-matrix with entries in a principal ideal domain A.
Then there exists a unique matrix in Smith normal form D (up to units), such that
D=U-B-V withU € GL,(A) and V € GLs(A). The entries d; on the diagonal of
D (which are not zero) are the elementary divisors. For the Smith normal form over
Z and principal ideal domains see [Col], for a more general setup over Dedekind
rings we refer to [Co2] or [Co3], and we come back to that later in Chapter 4 (for
the theoretical background see also [Nal).

What we have to do now is to build up the matrix NMAT for H%(I', M). Here we
use the k basis elements e; of M = M, ,(Z[i]) = Z[i]* as introduced in Section
1.2 and have to apply the action of the generators of the stabilizers to these basis
elements. From now on we want to call this basis for short the monomial basis.
Through the described base change we transform the matrix NMAT into the Smith
normal form. Then we get a basis that we want to call Smith basis. We have

H*T,M)=M/N=M/(1+0)M + (1 +0))M+ (1 +7+7)M+ (1+ 71 +72)M).

The matrix NMAT represents N when its columns generate N. We see that we have
four summands that contribute. Since M has rank k we get a (k x 4k)-matrix. The
4k columns form 4 blocks belonging to o, o1, 7 and 7. Each block consits of k£ vectors
of length & since the actions in our formula (like e. g. (1+0)) have to be applied to
each of the & basis vectors e; of length k. Since we use similar realizations in Chapter
3 and 4 again, we want to explain one example in more detail here to make really
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clear how we build up such matrices. To avoid confusion let us emphasize that we
use the notation e; for both the monomials in M,, ,,(Z [i]) and their representations
as vectors in Z [i]*.

For the example let us take the module Myo(Z[7]), so we have m = 0 and k =
(n+1) = 5. The basis of M is formed by e; = x%, e; = 23y, e3 = 2292, 4 = 2y® and
es = y*. Now e; = x* is represented by the vector (1,0,0,0,0)!, e, is represented by
(0,1,0,0,0)" and so on. We also have to compute how o, oy, 7 and 7 act on x and
y (because of m = 0 we don’t have u and v here). We get o(z) =y, o(y) = —=z,
oi(x) = iy, o1(y) =4z, 7(z) = v+ y, 7(y) = —z, 7°(z) =y, T°(y) = —(z +y),
(r) = —x + iy, 1(y) = iz, 72(x) = iy and 72(y) = iz + y. The final matrix
NMAT will be a (5 x 20)-matrix with entries in Z [4] then. The first (5 x 5)-block
belongs to o. Here we have o(e;) = e5 and then (1+0)(e;) = e;+e5 = (1,0,0,0,1)%,
which just gives the first column of NMAT. With o(e2) = —e4 and (14 o)(e2) =
es —eg = (0,1,0,—1,0)" we then get the second column of NMAT and so on. The
same has to be done for o, o1, 7 and 7 to fill the other blocks. For example, we find
(1+7+7%)(e1) = (2,4,6,4,2)" which would be the first column of the third block
and we get (1 + 7, + 72)(e1) = (2, —44, —6, 44, 2) giving the first column of the last
block. Now we can determine the rank of NMAT and the elementary divisors. We
get rank(NMAT) = 4 and therefore

rank(H2(T, Myo(Z[i]))) = 1,

and we find only 2-torsion in that case. If one analyses the matrices NMAT one finds
quite a few symmetries and opportunities to simplify the matrices but in general it
becomes a long computation by hand to actually determine the elementary divisors.
Since we also can’t control the binomial coefficients we get from powers of terms like
x + y it seems to be extremely difficult to actually proof something about the rank
in general in that way, even if we have a very simple pattern as we will see later.

If we treat a more general module M = M, ,,(Z[i]) we also have to deal with the
variables u and v. Here we just have to choose a suitable order for the basis (see
Section 1.2) and go on as described above. The computation of H*(T'., M) follows
the same strategy. From Proposition 2.2 we have

H*(LL,,M) = M/((p —1)M + (py — 1) M).

So we end up with a (k X 2k)-matrix containing the two (k X k)-blocks coming
from p; and pe. The action of 'L gives pi(z) = z, pi1(y) = z + ¥y, p2(z) = = and
p2(y) = iz+y and then one has to build up the corresponding matrix NMAT column
by column as above.

Now, our goal became to go through several series of M, ,,(Z[7]) to see whether
there is more than 2-torsion and 3-torsion, to find out whether there would be a
pattern for the torsion and which phenomena would occur. Of course, we were also
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interested in the pattern for the ranks. For n # m the ranks are quite well described
by analytical methods but it is not clear what happens for M, ,(Z[%]) in general.
Another point was to compare the torsion results for H*([', M) and H*(I', M).
For that we had to realize our strategy in a computer program. Here we first had
to find the right balance between getting enough relevant data and a reasonable
amount of time for developing the software. On the other hand we had in mind that
we would like to do other computations, e. g. for H'(T', M), and that we would like
to use the general setup for the following computations of Hecke eigenvalues as well
without inventing everything again. So it seemed to be useful to realize everything
in a quite conceptual way from the very beginning. A large part of the computation
involves linear algebra for modules, number theory and group theory and one needs a
good handling of the data. So it seemed to be quite clear to use a Computer Algebra
System for the computations which is not too specialized. Since only MAPLE was
quite generally available on our computers in the department we decided to start
the development there to see how it works and perhaps to combine it with the use of
other Computer Algebra Systems for algebraic number theory (like PARI or KANT)
or group theory (like GAP) and, if promising, to transform it to another system
later. Another very good possibility would have been M AGMA since it covers more
or less the mixture of things we need, seems to be very efficient and is really prepared
for more advaned algebraic computations, but at the beginning it was not available
for us, and it was still very much in development. One more important reason to
start with MAPLE was that it has an implementation of the Smith algorithm over
Z[i] which was just what we needed. In MAGMA there is still only a realization
over 7Z but the implementation for the general case of Dedekind rings is planned. So
we could avoid the realization of the Smith algorithm and could develop quite fast
under MAPLE. Finally, it turned out that we could perform the computations quite
far and could get enough data to see significant patterns.

So we could compute the Smith normal form for H*(I', M) for M = M, 4(Z[i]) up
to n = 40 and got similar series for m # 0. Since the matrices for I') are much
smaller we could do all these computations for H*(T', M) as well. A central point
in the program is the construction of the matrix NMAT. For that we needed a good
realization of the monomial basis for M, ,,,(Z [4]) and a conceptual realization for the
action of I' on M, ,,, which could be used for other rings of integers Ok as well. For
larger n, m it takes already quite long to build up these matrices and MAPLE uses
an enormous amount of memory for that. Later we realized the same procedure in
MATHEMATICA for a test and it was amazingly faster. The critical step is then the
Smith algorithm. In MAPLE the transformation matrices U and V' get huge entries
which limits the possibilities of computation in the end. So one idea is to use the
LLL-algorithm in between to simplify the columns but that is limited as well. We
used it with success in several computations of Hecke eigenvalues for Hy(I", M), since
we needed the matrix U for further computations. Recently we saw that MAGMA
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can perform the Smith algorithm over Z for large matrices in a quite short time
and that U has small entries. So one can get at least an overview of the elementary
divisors, because one can just interpret the Z [ i ]-lattice as Z-lattice. It also seems to
be useful to do further computations over general Dedekind rings with MAGMA (or
KANT), when the algorithms will be realized. In special cases we could also realize
them before and could enlarge some of the tables we got. A main ingredient for the
Smith algorithm is the realization of a kind of Euclidean algorithm. With the right
Smith algorithm at hand we could quite easily perform the whole computation for
other groups I' = PSLy(Ok) or congruence subgroups of them. For that we would
need the fundamental cellular domain as to be found e. g. in [Me]. Then we need the
stabilizers, can produce similar formulas for H?(T, M), have to build up the NMAT
in a similar way and can use a kind of Smith algorithm to determine the module
invariants. For the present we have it only for Euclidean rings or principal ideal
domains but in [Co2] a more general approach for all Dedekind rings is described
which should be analysed in view of our situation. Note that all these algorithmic
remarks also concern the computations made in Chapter 3, 4 and 5 as well as the
suggestions for further work in Chapter 6 and are therefore a bit longer here.

Another nice idea for detecting the torsion is to compute the rank of the matrix
NMAT modulo prime ideals. We used this idea to perform the computations much
further than mentioned above. We compute the K-rank and the rank modulo the
prime ideal. If there is a difference we just detect as many /-torsions as the prime
element appears as a factor in different diagonal elements (refering to the Z-structure
of the considered Og-modules here). Note that we always have to consider two
prime ideals in the cases of split ¢, which is covered by using the two roots of —1
in IF, as substitutes for 7. The rank differences for both roots were always the same
in the following computed cases, so we want to fix here, that we count them for
one root only. Actually, we don’t need the K-rank since the full rank appears for
most of the primes. With that computation modulo ¢ we continued e. g. the list for
H?*(T, My o(Z[1])) up to n = 80, but we could have gone further as well. We checked
the first thousend primes (which is up to 7919) and found a lot of large and interesting
torsion. Recently G. Harder showed us the list in [Ca] where a computation for the
special series M, o(Z[i]) was done for PGLy(Z[i]) (based on sheaf cohomology)
using a C-program, and so we additionally checked case by case some of the really
huge primes, which then all appeared in our case too. On the other hand we found
several torsion which didn’t appear in the list of [Ca] because we computed over
PSLy(Z[i]). Using the Smith algorithm over Z in MAGMA would give all these
huge torsions as well and probably one would find some more for PSL,. We also
computed several series for m # 0 and in particular we treated the cases M, ,(Z[i]).
We summarize all results in tables in Section 2.3 and discuss the phenomena we see.
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2.3 Results for I' = PSLy(Z[i]) and T/

Let us start with the results for the ranks for M,, ,,(Z[7]). Recall that we have n+m
even (see Section 1.2). We first computed the series H(T', M, o(Z[i])) and found
(for n > 0 up to n = 150):

1 for n =0 mod 4,

k(H*(I,M,o(Z]i]) =
rank(H'( o(Z[i]) {O for n =2 mod 4

and
rank(H?*(TL, M,o(Z[i]))) = 1.

We got a similar picture for the general M = M,, ,,(Z [i]). For n # m with n,m > 0
we found that the rank of H%(T', M) is always 0 for n+m = 2 mod 4 with n, m even
and for n +m = 0 mod 4 with n, m odd. The rank is 1 for n + m = 0 mod 4 with
n,m even and n +m = 2 mod 4 with n, m odd. For the group '/, we always found
rank 1 (also for n = m). This fits quite well in the picture of the vanishing theorem
and the analytical understanding of the Eisenstein part of the cohomology.

In the interesting case of M = M,, ,(Z[i]) we found for the ranks of H? = H*(T', M):

n (0124681012 |14 |16 |18 |20 |22 |24 26
rkH?> |O|1|1[1|1|2 |1 2|2 |2|2|3]2]3

Table 1: n even

n 11357911 13|15 |17 19|21
rkH? |1 (123|345 |5|6|T7]|7

Table 2: n odd

Since we didn’t need the Smith normal form for further computations (in contrast to
the computations of the Hecke eigenvalues for the first homology), we only want to
show one table with the precise elementary divisors we computed. In the other cases
we want to present the results we got from the computations modulo ¢, because we
need them mainly to get an overview and to compare them with other results, e. g.
for the first homology.

Let us start with the Smith normal form for M, o(Z[i]). Here ¢ x d means that we
have c entries d on the diagonal. We found:
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n || elementary divisors with factorization

2 |2

4 2

6 |2, (1+7)-2-3

8 [ 141, 2-7

10 2x%x2,(1+14)-2, 2352

121|144, 2, 2-3-11

4144 2x2, (1+4d)-2, (1+1)-22-5-7

16| 1+4, 3x2,2-3-52-11-13

18| 144, 2x2, 2x (1+4)-2,2+-3%.5.7

20 || 2x (14+14), 3x2,(1+4)-22-3-5-13-17-19

22 | 1+, 3x2,2x (14+14)-2,(1414)-2%-5, 26-3-52-11

24 | 2x (1+14), 4x2, 2-5-7-17-19-23

26 || 2x (1+1d), 3x2,2x (1+14)-2,2%-5, (1+4)-2%-3-5%-11-13?

28 || 2% (14+14), 5x2,2-3-5, (1+14)-22-3*.5%-13-17-19-23

30 | 2x (1+14), 3x2,3x(1+1d)-2, (1+1i)-23-3-5,
(1+4)-25-3-52-7-11-13

32 || 3x(1+1), 5x2,2-5%
(144)-22-32.52.13-19%2-23-29-31

34 ([ 2x (1414), 4x2,3x (1+1)-2,(1+14)-22-5, 255,
(1+14)-2°-32.5%-13-17%- 151

36 || 3x (1+14), 6x2,2-3%-5% 22.32.52.7.11-17-23-29-31

38 (3% (1414), 4x2,3x(1+1)-2, (1+1)-2%-5, (1+14)-2%-35,
27.32.52.13-17-19-29

40 || 3x (1414), 7x2,2-5,2-3-52-7-13,

(1+74)-23-32-5%.7-11-132-17-23-29-31-37- 661

Table 3: Elementary divisors for H2(PSLy(Z[1]), Mpo(Z[1]))
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From the computation mod ¢ we got the following tables for M, ,,(Z[i]). Here
we just give for each n a list of pairs [¢, ¢g], where £ is a prime and ¢, is the rank
difference one gets from the computation mod ¢. From now on we don’t count the
2-torsion and 3-torsion anymore (orders of the finite subgroups in I'). We present
tables for the series M, o(Z[i]) up to M, 5(Z[i]). The tables start with larger n
since My m(Z[i]) =2 My, ,(Z[i]) and we also add a table for M, ,(Z[i]). Finally,
we present tables for I/ in the cases M, o(Z [¢]) and M, 1(Z[i]).

The main observation is that we find really large torsion classes (large £) in the global
second cohomology H?(T', M) but all these torsions don’t appear for T', where we
only find primes up to max(n, m). The ¢-torsion classes for £ greater than max(n, m)
we want call large from now on, the other ones small. We also mark the large primes
£ with bold print in the tables.

Furthermore H%(T', M) is closely related to H(T', M). For more detailed comments
and analogous tables we refer to Section 4.4. We also computed Hecke eigenvalues
on many torsion classes for H; (I', M). Again there seems to be an obvious difference
between the large and the small torsion classes concerning congruence properties.
For that we refer to Section 5.4.

‘ n H £-torsion up to £ = 7919 and for several large extra primes

2
4

6

8 | [7.1]

10 | [5,1]

12 | [11,1]

14 | 5,1, [7,1]

16 || [5,1], [11,1], [13,1]
18 || [5,1], [7,1]

20 || [5,1], [13,1], [17,1], [19,1]

22 || [5,2], [11,1]

24 || [5,1], [7,1], [11,1], [17,1], [19,1], [23,1]

26 || [5,2], [11,1], [13,1]

28 || [5,2], [13,1], [17,1], [13,1], [23,1]

30 || [5,2], [7,1], [11,1], [13,1]

32 || [5,2], [13,1], [19,1], [23,1], [29,1], [31,1]

34 || [5,3], [13,1], [17,1], [151,1]

36 || [5,2], [7,1], [11,1], [17,1], [23,1], [29,1], [31,1]
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‘ n H {-torsion up to £ = 7919 and for several large extra primes

38 | [5,3], [13,1], [17,1], [19,1], [29,1]

40 || [5,3], [7,2], [11,1], [13,2], [17,1], [23,1], [29,1], [31,1], [37,1], [661,1]
42 | [5,3], [7,2], [13,1], [17,1], [19,1], [641,1]

44 [ 5,3], [13,2], [17,1], [29,1], [31,1], [37,1], [41,1], [43,1], [67,1], [137,1]

46

[5,4], [7,1], [11,1], [13,1], [17,1], [19,1], [23,1], [139,1]

48

[5,3], [13,1], [29,1], [31,1], [37,1], [41,1], [43,1], [47,1]

a0

[5,4], [11,1], [13,1], [17,1], [19,1], [23,1], [59547091,1]

02

[5,4], [7,1], [13,2], [17,2], [29,1], [31,1], [37,1], [41,1], [43,1], [47,1],
[3011,1]

o4

[5,4], [7,1], [13,2], [17,1], [19,1], [23,1], [163,1]

26

[5,4], [7,3], [11,1], [13,2], [17,2], [31,1], [37,1], [41,1], [43.1],
[47,1], [53,1], [461,1]

28

[5,5], [7,1], [13,2], [17,1], [23,1], [29,1], [367,1], [945929,1]

60

[5,4], [7,1], [11,2], [13,1], [17,2], [19,1], [29,1], [37,1], [41,1],
[47,1], [53,1], [59,1], [1650371,1]

62

[5,5], [13,2], [17,1], [23,1], [29,1], [31,1], [26387,1]

64

[5,5], [7,2], [11,1], [13,2], [17,1], [19,1], [29,1], [37,1], [41,1], [43,1],
[47,1], [53,1], [59,1], [61,1], [197,1], [103979,1]

66

[5,5], [7,1], [11,1], [13,2], [17,1], [23,1], [29,2], [31,1], [19920917,1]

68

[5,5], [7,2], [13,3], [17,2], [19,1], [29,2], [37,1], [41,1], [43,1], [47,1],
[53,1], [59,1], [61,1], [67,1], [503, 1], [1297,1], [1531,1]

70

72

[5,5], [7,2], [13,2], [17,2], [19,1], [23,1], [29,1], [41,1], [43,1], [47,1],
[53,1], [59,1], [61,1], [67,1], [71,1]

74

[5,6], [7,1], [11,1], [13,2], [17,2], [29,1], [31,1], [37,1]

76

[5,6], [7,1], [13,3], [17,2], [23,1], [29,1], [37,1], [41,1], [43,1],
[47,1], [53,1], [59,1], [61,1
[41193114818503,1]

[
B
[
[
B
[5,6], [7,1], [11,2], [13,2], [17,2], [29,1], [31,1], [429901,1]
[
B
[
[
B

67,1], [71,1], [73,1], [179,1],

78

[5,6], [7,1], [13,3], [17,2], [19,1], [29,1], [31,1], [37,1],
[381,1], [631,1]

80

[5,6], [7,2], [11,1], [13,3], [17,1], [23,1], [29,1], [37,1], [43,1], [47,2],
[97,1], [2647,1], [3347,1]

Table 4: (-torsion in H*(PSLy(Z [i]), My o(Z[1]))




‘ n H £-torsion up to £ = 7919

3

5

7 1 5,10, [7.1]

9

11 | [5,1], [7.,1], [11,1]

13 | [5,1]

15 || [5,2], [7,1], [11,1], [13,1]

17 || [5,1], [7.1]

19 || [5,2], [11,1], [13,1], [17,1], [19,1]

21 || [5,2], [7,1], [59,1]

23 || [5,2], [7,1], [11,1], [13,1], [17,1], [19,2], [23,1], [37,1]

25 || [5,2], [7,1], [11,1]

27 | [5,3], [7,1], [11,1], [13,1], [17,1], [19,1], [23,1], [139,1], [347,1]

29 || [5,2], [7,1], [11,1], [13,1], [73,1], [239,1]

31 || [5,3], [7,1], [13,1], [17,1], [19,1], [23,1], [29,1], [31,1], [83,1], [293,1

33 || [5,3], [7,2], [11,1], [13,1], [47,1], [53,1], [113,1], [191,1]

35 || [5,4], [7,2], [11,1], [13,1], [17,1], [19,1], [23,1], [29,1], [31,1],
[101,1], [523,1], [56333,1]

37 | [5,3], [7,1], [11,1], [13,1], [17,1], [211,1], [5087,1]

39 || [5,4], [7,1], [11,1], [13,2], [17,1], [19,1], [23,1], [29,1], [31,1], [37,1], [41,1],
(769,1]

41 || [5,4], [11,1], [13,1], [17,1], [19,1], [41,1], [1747,1]

43 || [5,4], [7,1], [11,1], [13,2], [17,1], [19,1], [23,1], [29,1], [31,1], [37,1]
[41,1], [43,1]

45 || [5,4], [7,1], [11,1], [13,1], [17,1], [19,1], [47,1], [6361,1]

47 | 5,5], [7.2], [11,1], [13,2], [17.1], [19,1], [23,1], [29,1], [31,1],
37,1], [41,1], [43,1], [47,2]

49 || [5,4], [7,3], [11,1], [13,1], [17,1], [19,1], [23,1], [37,1], [1759,1]

51 || [5,5], [7,1], [11,1], [13,2], [17,2], [19,1], [23,1], [29,1], [31,1], [37,1], [41,1],
[

43,1], [47,1], [79,1], [233,1]

Table 5: ¢-torsion in H2(PSLy(Z [i]), My1(Z [4)))
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‘ n H {-torsion up to £ = 7919

4

6

[5,1]

8

10

[5,1], [7,1]

12

[5,1]

14

[5,1], [7,1], [11,1], [13,1]

16

5,1, [7.1], [197,1]

18

[5,2], [7,1], [13,1], [17,1], [53,1]

20

[5,2], [7,1]

22

[5,2], [7,2], [11,1], [13,1], [17,1], [19,1], [43,1], [599,1]

24

[5,2], [7,1], [11,1], [31,1], [2053,1]

26

[5,3], [7,2], [11,1], [13,1], [17,1], [19,1], [23,1], [47,1]

28

30

[5,3], [7,1], [11,1], [13,1], [17,1], [19,1], [23,1], [29,1], [569,1]

32

[
[
[
[5,2], [7,3], [11,1], [13,1], [89,1], [107,1], [829,1]
[
[5,3], [7,2], [11,1], [13,1]

[

34

[5,3], [7,1], [11,2], [13,1], [17.1], [19,1], [23,1], [29,1], [31,1],
[61,1], [2039,1]

36

[5,3], [7,1], [11,1], [13,1], [17,1], [23,1], [31,1], [41,1]

38

[5,4], [7,2], [11,3], [13,1], [17,1], [19,1], [23,1], [29,1], [31,1], [37,1],
[61,1], [613,1], [1523,1]

40

[5,4], [7,2], [11,1], [13,1], [17,1], [19,1], [59,1], [967,1], [6089,1]

42

[5,4], [7,3], [11,1], [13,2], [17,1], [19,2], [23,1], [29,1], [31,1], [37.1], [41,1]

44

[
[5,4], [7,2], [11,2], [13,1], [17,1], [19,1], [41,1], [811,1], [7253,1]

46

[5,5], [7,1], [11,1], [13,2],[17,1], [19,1], [23,1], [29,1], [31,1], [37,1], [41,1],
[43,1], [1453,1], [2437,1]

48

[5,4], [7,1], [11,3], [13,1], [17,1], [19,1], [23,1], [1373,1]

a0

[5,5], [7,2], [11,1], [13,2], [17.1], [19,1], [23,1], [29,1], [31,1], [37.1], [41,1],
[43,1),[47,1], [103,1], [359,1]

Table 6: (-torsion in H%(PSLy(Z [i]), My 2(Z[1]))




‘ n H {-torsion up to £ = 7919

5

[5,1]

7

9

[5,1],[7,1]

11

[5,1]

13

5.1], [7,1], [11,1], [13,1], [23,1]

15

[5,1], [7,1

17

[5,2], [7,1], [11,1], [13,1], [17,1], [37,1], [257,1]

19

[5,1], [7,2], [3319,1]

21

[5,2], [7,3], [11,1], [13,1], [17,1], [19,1], [59,1], [941,1]

23

[5,2], [7,1], [11,1], [199,1], [283,1], [487,1]

25

5,3, [7,2], [11,1], [13,2], [17,1], [19,1], [23.1]

27

[5,2], [7,1

29

[5,3], [7,2], [11,1], [13,1], [17,1], [19,1], [23,1], [29,1]

31

[5,3], [7,2], [11,1], [13,1], [23,1], [43,1], [701,1]

33

[5,3], [7,2], [11,2], [13,1], [17,1

[

[

[

[

[

[11,2], [13,1]
[

[

[ [19,1], [23,1], [29,1], [31,1]
[

)
J
)
)

35

[5,3], [7,4], [11,1], [13,1], [17,1
[1451,1], [5237,1]

[23,1], [127,1],

37

5,4, [7,2], [11,3], [13,2], [17,1], [19,1], [23,1], [29,1], [31,1], [37.1]

39

[5,3], [7,2], [11,1], [13,2], [17,1], [19,1], [179,1], [367 1]

41

5,4], [7,2], [11,2], [13,2], [17,1], [19,1], [23.1], [29,1], [31,1], [37.1],
[41,1], [97,1]

43

[5,4], [7,2], [11,1], [13,1], [17,1], [19,2]

45

[5,5], [7,3], [11,2], [13,2], [17,1], [19,1], [23,1], [29,1], [31,1], [37,1],
[41,1], [43,1], [103,1]

47

[5,4], [7,3], [11,2], [13,1], [17,1], [19,1], [23,1]

49

[5,5], [7,4], [11,3], [13,3], [17,1], [19,1], [23,1], [29,1], [31,1], [37.1],
[41,1], [43,1], [47,1], [199,1], [3041,1], [6911,1]

o1

5,51, [7,3], [11,4], [13,2], [17,1], [19,1], [23,2], [101,1]

Table 7: (-torsion in H2(PSLy(Z[i]), My 3(Z[4]))
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‘ n H {-torsion up to £ = 7919

6

8

[5,1], [7,1]

10

[5,1]

12

[5,1],

[11,1], [23,1]

14

[5,1],

[139,3]

16

[5,2],

[11,2], [13,1]

18

[5,1],

[29,1], [53,1], [61,1]

20

[5’2]’

[11,1],

[13,1], [17,1], [19,1], [37,1], [127,1]

22

[5’2]7

[11,1],

[709,1]

24

[5,2],

[11,1],

(17,1, [19,2], [23,1], [31,1], [127,1], [4289,1]

26

[5’2]’

[11,2],

, [43,1], [877,1]

28

[5,3],

[11,1],

(17,1, [19,1], [23,2], [977,1], [3343,1]

30

[5’3]’

[11,1],

, [113.1], [233,1], [307,1], [5477,1]

32

[5,3],

[11,1],

34

[5,3];

[11,1],

, [17,1], [2467,1], [7243,1]

36

[5,4],

[11,2],

38

[5,3],

[11,2],

, [17,1], [19,1], [29,1], [61,1], [2713,1], [6883,1]

40

RIS RNSNS RS S SR

[5.4],

QO WIWIN|DNIDN| NN =N DN
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[11,4],

]
]
]
]
[13,1], [17.1], [19,1], [23,2], [29,1], [31,1], [733,1]
]
]
]
]

[
[
C 17,1, [19,1], [23,2], [29,1], [31,3]
[
[

Table 8: (-torsion in H*(PSLy(Z[1]), My 4(Z [7]))

‘ n H {-torsion up to £ = 7919

7

[5,2],

[7,2]

9

[5,1]

11

[5’3]’

[7’1]7

[11,1]

13

[5,2]

15

[5,4],

[77]‘ 7

. [13,1], [43,1], [691,1]

17

[5,3],

, [167,1]

19

[5,4],

]
[7.1],
[772]7

. [13,3], [17,1], [19,1], [23,1], [31,1], [3119,1]

21

[5,4],

[7,3],

, [367,1]

23

[5,5],

[7,2],

L [13,1], [17,2], [19,1], [23,2], [83,1], [2789,1]

25

[5,5],

[7.1],

 [23,1], [1171,1]

27

[5,6],

[7,2],

L [13,1], [17,2], [19,1], [23,1], [31,1], [491,1]

29

[575]7

[772]7

,[13,2], [73,1],[137.1]

31

[5,7],

[7’3]7

,[13,3], [17,1], [19,2], [23,1], [29,1], [31,1]

33

[5’6]’

[7’3]7

, [13,3], [29,1

[31,1], [1303,1]

35

[5,8],

[7,5],

B
C[13,1], [17,1], [19,1], [23,2], [29,2], [71,1], [439,1]
(

Table 9: ¢-torsion in H2(PSLy(Z [i]), Mys(Z [i]))

,[17.1], [19,1], [23,1], [29,1], [31,1], [37.1], [83,1]




H {-torsion up to £ = 97

||| klwIN| = O|S

[5,2], [7,3]

©

—
o

[7,2]

—_
—

[11,1]

—
\)

[7,2], [11,3]

—
w

—_
S

[11,2], [13,3]

—
(@38

—
(@2}

—t
~J

—
oo

7.1,
7.3]
7.5), [11,4], [13,2]
7.2]
7.4,

[11,2], [13,2], [17,2], [19,2], [23,2]

—_
©

[
[
[
[
[
7,

2], [13,2], [19,1]

[\
[aw]

[5,10], [7,3], [11,2], [13,2], [17,2], [19,3]

DN
—_

[5,10], [7,3]

[\
[\&]

[5,10], [7,7], [11,1], [13,2], [17,2], [19,2]

[\
w

[5,8], [7,5], [11,3], [23,1]

Do
=~

[5,10], [7,13], [11,5], [13,2], [17,2], [19,2], [23,3]

[\]
<t

[5,12], [7,4], [11,2], [13,2], [17,2]

[\V]
D

[5,17], [7,7], [11,6], [13,3], [17,2], [19,3], [23,4]

[\
-~

[5,14], [7.4], [11,2], [13,2

[\
o)

[\
©

]
]
[5,16], [7.,8], [11,6], [13,5], [17,2], [19,6], [23,2], [29, 2]
[5,14], [7,7], [11,2], [13,2]

Table 10: ¢-torsion in H*(PSLy(Z[i]), Mpn(Z[1]))
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n H £-torsion up to £ = 7919

2

1

6 | [5,1]

8 || [5,1], [7,1]

10 | [5,2], [7,1]

12 | [5,2], [7,1], [11,1]

14 | [5,2], [7,1], [11,1], [13,1]

16 | [5,3], [7,1], [11,1], [13,1]

18 | [5,3], [7,1], [11,1], [13,1], [17.1]

20 | [5,4], [7,1], [11,1], [13,1], [17,1], [19,1]

22 | [5,4], [7,1], [11,1], [13,1], [17,1], [19,1]

24 | [5,4], [7,1], [11,1], [13,1], [17,1], [19,1], [23,1]

26 || [5,5], [7,1], [11,1], [13,2], [17,1], [19,1], [23,1]

28 || [5,5], [7,1], [11,1], [13,2], [17,1], [19,1], [23,1]

30 | [5,6], [7,1], [11,1], [13,2], [17,1], [19,1], [23,1], [29,1]

32 | [5,6], [7,1], [13,2], [17,1], [19,1], [23,1], [29,1], [31,1]

34 | [5,6], [11,1], [13,2], [17,2], [19,1], [23,1], [29,1], [31,1]

36 | [5,7], [7,1], [11,1], [13,2], [17,2], [19,1], [23,1], [29,1], [31,1]

38 | [5,7], [7,1], [11,1], [13,2], [17,2], [19,1], [23,1], [29,1], [31,1], [37,1]

40 || [5,8], [7,1], [11,1], [13,3], [17,2], [19,1], [23,1], [29,1], [31,1], [37,1]

42 || [5,8], [7,1], [11,1], [13,3], [17,2], [19.,1], [23,1], [29,1], [31,1], [37,1],
[41,1]

44 || [5,8], [7,1], [11,1], [13,3], [17,2], [19,1], [23,1], [29,1], [31,1], [37,1],
[41,1], [43,1]

46 || [5,9], [7.,1], [11,1], [13,3], [17,2], [19,1], [23,1], [29,1], [31,1], [37,1],
[41,1], [43,1]

48 || [5,9], [11,1], [13,3], [17,2], [19,1], [23,1], [29,1], [31,1], [37,1], [41,1],
[43,1], [47,1]

50 | [5,10], [7,1], [11,1], [13,3], [17,2], [19,1], [23,1], [29,1], [31,1], [37,1],
[41,1), [43,1], [47,1]

52 | [5,10], [7,1], [11,1], [13,4], [17,3], [19,1], [23,1], [29,1], [31,1], [37,1],

[41,1], [43,1], [47,1]
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‘ n H {-torsion up to £ = 7919

54

, [63,1]

[7,1], [13,4], [17,3], [19,1], [23,1],

[29,1],

[31,1],

[37,1],

[41,1],

[43,1]

26

, [7,2], [11,1], [13,4], [17,3], [23,1],
, [53,1]

[29,1],

[31,1],

[37,1],

[41,1],

[43,1]

o8

, [7,2], [11,1], [13,4], [17,3], [19,1],
, [47,1], [53,1], [59,1]

[23,1],

[29,2],

(31,1],

[37,1],

[41,1],

60

, [7,2], [11,1], [13,4], [17,3], [19,1],
, [47,1], [53,1], [59,1]

[23,1],

[29,2],

(31,1],

[37,1],

[41,1],

62

L [7,1], [11,1], [13.,4], [17,3], [19,1],
. [47.1], [53,1], [59,1], [61,1]

(23,1],

[29,2],

(31,1],

[37,1],

[41,1],

64

, [7,2], [11,1], [13,4], [17,3], [19,1],
. [47.1], [53,1], [59,1], [61,1]

[23,1],

[29,2],

(31,1],

[37,1],

[41,1],

66

, [7 2], [11,1], [13,5], [17,3], [19,1],
,[47,1], [53,1], [59,1], [61,1]

[23,1],

[29,2],

[31,1],

[37,1],

[41,1],

68

[7,2], [11,1], [13,5], [17,4], [19,1],

, [63,1], [59,1], [61,1], [67,1]

[29,2],

[31,1],

(37,1],

[41,1],

[43,1]

70

, [7 2], [11,1], [13,5], [17,4], [19,1],
, [47,1], [53,1], [59,1], [61,1], [67,1]

[23,1],

[29,2],

[31,1],

[37,1],

[41,1],

72

,[7.2], [11,1], [13,5], [17,4], [19,1],
,[47.1], [53,1], [59,1], [61,1], [67,1], [71,1]

[23,1],

[29,2],

(31,1],

[37,1],

[41,1],

74

, [7 2], [11,1], [13,5], [17,4], [19,1], [23,1], [29,2],
, [47.,1], [53,1], [59,1], [61,1], [67,1], [71,1], [73,1]

(31,1],

[37,2],

[41,1],

76

, [7,1], [13,5], [17,4], [19,1], [23,1], [29,2], [31,1], [37,2],
, [63,1], [59,1], [61,1], [67,1], [71,1], [73,1]

[41,1],

[43,1]

78

L [7.2], [11,1], [13,6], [17,4], [19,1], [23,1], [29,2], [31,1],
. [47,1], [53,1], [59,1], [61,1], [67,1], [71,1], [73,1]

[37,2],

[41,1],

80

1]
]
1]
]
1]
]
1]
]
1]
]
1
]
1]
5, 13],
1]
]
1]
]
1]
]
1]
]
1]
]
1]
]
)

,[7,2], [11,1], [13,6], [17.,4], [19,1], [23,1], [29,2], [31,1],
[43 1),[47,1], [53,1], [59,1], [61,1], [67,1], [71,1], [73,1], [79,1]

[37,2],

[41,1],

Table 11: ¢-torsion in H*(T'L, M, o

(Z[:1)
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43,1, [47,1]

ol

431], [47,1]

5,101, [7,2], [11,2], [13,3], [17,3], [19,2], [23,2], [29,1], [31,1], [37,1], [41,1],

‘ n H {-torsion up to £ = 7919

1

3

5 | [56,1]

7 | [5,1], [7,1]

9 | [5,1], [7,1]

11| [5,2], [7,1], [11,1]

13 | [5,2], [7,1], [11,1], [13,1]

15 || [5,3], [7,2], [11,1], [13,1]

17 | 15,3], [7,2], [11,1], [13,1], [17,1]

19 | [5,3], [7,2], [11,1], [13,1], [17,1], [19,1]

21 || [5,4], [7,2], [11,1], [13,1], [17,1], [19,1]

23 || [5,4], [7,2], [11,2], [13,1], [17,1], [19,1], [23,1]

25 | [5,5], [7.2], [11,2], [13,1], [17,1], [19,1], [23,1]

27 || [5,5], [7.1], [11,2], [13,2], [17,1], [19,1], [23,1]

29 | [5,5], [7,2], [11,2], [13,2], [17,1], [19,1], [23,1], [29,1]

31 [ [5,6], [7.2], [11,2], [13,2], [17,1], [19,1], [23,1], [29,1], [31,1]

33 [ [5,6], [7,2], [11,2], [13,2], [17,1], [19,1], [23,1], [29,1], [31,1]

35 | [5,7], [7,2], [11,2], [13,2], [17.2], [19,1], [23,1], [29,1], [31,1]

37 | [5,7], [7.,2], [11,2], [13,2], [17.2], [19,1], [23,1], [29,1], [31,1], [37,1]

39 || [5,7], [7,2], [11,2], [13,3], [17,2], [19,2], [23,1], [29,1], [31,1], [37,1]

41 | [5,8], [7.1], [11,2], [13,3], [17,2], [19,2], [23,1], [29,1], [31,1], [37,1], [41,1]

43 || [5,8], [7,2], [11,1], [13,3], [17,2], [19,2], [23,1], [29,1], [31,1], [37,1], [41,1],
[43.1]

45 [ 5,91, [7,2], [11,2], [13,3], [17,2], [19,2], [23,1], [29,1], [31,1], [37,1], [41,1],
[43,1]

47 [ 5,91, [7,2], [11,2], [13,3], [17,2], [19,2], [23,2], [29,1], [31,1], [37,1], [41,1],
[43,1], [471]

49 || 5,91, [7,2], [11,2], [13,3], [17,2], [19,2], [23,2], [29,1], [31,1], [37.1], [4L,1],
[
[
[

Table 12: ¢-torsion in H*(T'/,,

My, (Z]1]))
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3 Study of the first cohomology H'(T', M)

To compute the first cohomology of I' we could again start with a cellular domain
as in Chapter 2, but this would become more complicated. On the other hand, the
first group cohomology is easy to get as the quotient of the derivations modulo the
principal derivations. Then the computation just involves the data directly given
by the presentation of I'. This can be realized quite well in computer programs and
makes it possible to treat different groups quite easily. Furthermore one can define
Hecke operators on the group cohomology and group homology in a nice way but
the transfer to the topological side of Chapter 2 is quite complicated. That was the
second reason for prefering this more algebraic approach.

In Section 3.1 we explain the general construction and carry out the first steps in the
case of I' = PSLy(Z[i]). Note that we want to distinguish between more general
constructions and applications to specific arithmetic groups by the notations G resp.
" for the groups in this and the next two chapters. Then we describe in Section 3.2,
how the invariants of the cohomology modules (rank and torsion) can be computed.
More details about the computations we carried out for several arithmetic groups
and some experimental observations about the torsion are discussed in Section 3.3,
and our computational results are put together in Section 3.4.

3.1 The group cohomological approach and I' = PSLy(Z[1])

Let G be a group and M be a left G-module (abelian group M on which G acts by
additive maps from the left). For g € G and m € M we write g-m for the action of ¢
on m. Note that we also assume for our computation that M carries the structure of
an Og-module. Let further R = OgG be the group ring of G over Og. As an Og-
module on which G acts Og-linearly from the left, M is a left R-module. To describe
the first cohomology of G with coefficients in M we start with the standard approach
ase. g. given in [Wei] or [Gr]. For that les M = {m € M : g¢om =m for all g € G}
be the invariant submodule of the R-module M. The invariant submodule functor
is left exact and we have M% = Homg(Ok, M). Then one can define the gth
cohomology with coefficients in the R-module M as the gth right derived functor of
the invariants functor M%. Then one gets HY(G, M) = Ext% (O, M) and therefore
H9(G, M) has the structure of an Og-module. But now we can express the first
cohomology in a more suitable way.

Definition 3.1 A derivation of G in a left G-module M isamap f: G — M
satisfying

flgh) = f(g9)+gf(h)
for all g, h € G.



44

We write Der(G, M) for the familiy of all these derivations from G in M. Since M
is an Og-module Der(G, M) becomes an Og-module as well in the obvious way via
(f+ )g) = fg)+ f(g) and (c- f)(g) = c- f(g) for all g € G. For m € M we
further define fi,(¢g) := ¢ - m — m. Obviously f, is again a derivation. Such f, are
called principal derivations of G in M, and it holds e. g. fiin = fm + fu. Therefore
he set PDer(G, M) = {fm : m € M} of principal derivations forms a submodule of
the module Der(G, M). In particular we get PDer(G, M) = M/MC¢. Finally one
can derive the following proposition (see e. g. [Wei]).

Proposition 3.2 H'(G,M) = Der(G, M)/PDer(G, M).

If we now have a presentation of the group G we can use the following construction
to prepare an explicit computation of H'(G, M). For that let gy, ... , g, be a set of
generators of G. Then we can consider the map

® : Der(G,M)— M’

given by ®(f) = (f(g1),--.-,f(g;)) for f € Der(G, M). This map ® is injective,
because two different derivations f # f with f(g1) = f(¢1), ..., f(gr) = f(g,) would
lead to f(g) = f(g) for all ¢ € G (just express g as a word in gy, ..., g, and its
inverses and use the rule in the definition of a derivation), so this cannot happen.
It is easy to see that ® is also an Og-module homomorphism and therefore we get
®(Der(G, M)) = Der(G, M). Furthermore we can restrict ® to PDer(G, M), which
sends fm to ((g1 — 1)m, ..., (g, — 1)m) for m € M (note that (g; — 1) € R). Since
PDer(G, M) is a submodule of Der(G, M) we have ®(PDer(G, M)) = PDer(G, M).
This gives

Proposition 3.3 H!(G,M) = ®(Der(G,M))/®(PDer(G, M)).

We set C := ®(Der(G, M)) and D := ®(PDer(G, M)). Now, our goal is to describe
explicitly the submodules C' and D of M" and to represent them by certain matrices
to finally compute the module invariants. As we saw above the whole construction
is determined by the presentation of the group G. A derivation is determined by
its values on the generators of the group. It remains to express the relations in the
group inside the module M". The transfer of these relations is given through ®, which
sends the 1 in Der(G, M) to 0 in M". So C consits of all tupels (my,... ,m,) € M"
satisfying the relations given by f(w;) = f(wy) = ... = f(ws) = 0, where w; = we =
... = ws = 1 are the relations in the group G and f € Der(G, M). Hence we have an
explicit description of the submodule C' of the free module M" via a set of relations.
The description of the submodule D was already given in a suitable explicit form
through ®(f) = ((g1—1)m, ..., (¢,—1)m). So we are able to represent both modules
C and D through certain matrices and can determine the invariants we are interested
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in. The description of these matrices and the steps to compute the invariants will be
discussed for the example I' = PSLy(Z [i]) in Section 3.2. As a preperation for that
computation we derive the relations in the module M" now. For that first remember
that ' = PSLy(Z[i]) = ( A,B,U | Ry = Ry = R3 = Ry = Rs; = Rg = 1) with A,
B, U and Ry,..., Rg as in Proposition 1.1. Note that the module M is now one of
the modules M, ,,(Z[i]) of rank £ = (n + 1)(m + 1) as introduced in Section 1.2.
The map P is

® : Der(G,M) — M x M x M,

sending f to (f(A), f(B), f(U)). We express (o, 8,0)' € M? via a = SF | aue;,
B=>"F Bieiand § = 3¥  die; in the basis of M, ,,(Z[i]) (see Section 1.2) and go
through the six relations now. In the first case we have f(B?) = f(B) + Bf(B) =
(14 B)f(B) = 0. This gives

Formula 3.4 (Relation 1) (1+ B)g = 0.

Note that (1 + B)fS means that one has to evaluate the action of the identity on
B € M and the action of B on f € M and to add the two results in M (since (1+ B)
is in R but not in G). One easily sees that

fl@®) = (+g9+9))f(9) (3.1)
for g € G. With f(AB) = f(A) + Af(B) we get

f((AB)?) = (1+AB+(AB)*)(f(A) + Af(B))
(14+ AB+ (AB)*)f(A) + (A+ ABA + (AB)?A) f(B),

which gives
Formula 3.5 (Relation 2) (1+ AB+ (AB)?*)a+ (A+ ABA+ (AB)?A)3 = 0.

We also find f(g7!) = —g7 ' f(g). So we get

fAUATIU™Y) = f(AU)+ AUf(ATIUTY
= fAU)+AU(f(A™H)+ AT f(UTY)
= f(A)+Af(U) + AU(=A"' f(A) = AU f(U))
= (1-AUA)f(A)+ (A- AUAT'U Y f(U),

which gives

Formula 3.6 (Relation 3) (1 - AUA Y)a+ (A—-AUA'U 1) = 0.
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Next we find
f(BUBU™Y) = f(BU)+ BUf(BU™)
= f(BU)+BU(f(B)+Bf(U™))
f(B)+ Bf(U) + BU(f(B) - BU™' f(U))
= (1+BU)f(B)+(B-BUBU™")f(U),

which gives with (3.1)
Formula 3.7 (Relation 4) T(1+ BU)+T(B—-BUBU')§ = 0
with T :=1+ BUBU"' + (BUBU')’.

We go on with
f(BU*BU )

f(BU?) + BU?f(BU 1)
= f(B)+Bf(U*) + BU*(f(B) + Bf(U™))
f(B) + B(f(U) +Uf(U)) + BU*(f(B) = BU' f(U))
(1+ BU?)f(B) + (B + BU — BU?BU ") f(U).
In combination with f(g%) = (1 + g)f(g) this leads to

Formula 3.8 (Relation 5) 7T(1+ BU?)3+ T(B+ BU — BU?BU~")§ = 0
with T :=1+ BU?BU-".

We finish with

f(AUBAU 'B)

= f(AUB) + AUBf(AU'B)

= f(A)+ Af(B) + AUB(f(A) + Af(U'B))

= f(A)+ Af(U)+ AUf(B) + AUB(f(A) — AU f(U) + AU ' f(B))

= (1+ AUB)f(A) + (AU + AUBAU ") f(B) + (A — AUBAU ") f(U),
which gives
Formula 3.9 (Relation 6)

T(1+ AUB)a + T(AU + AUBAU Y3+ T(A— AUBAU™Y)S = 0
with 7 :=1+ AUBAU"'B.

Remark 3.10 One finds a similar pattern for the formulas above as described in
more detail for the first homology at the end of Section 4.2. To extract the sum for
the part f(g) one has to take into account all contributions of letters g and ¢g~' in
the word. In case of the letter g one has to take the word up to g not including
g with positive sign, and for ¢! one has to take the word up to ¢ ! including ¢!

with negative sign.
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3.2 Computation of the module invariants

Our goal is to compute the first cohomology H(I', M) = C/D. We explain how the
module invariants can be determined. To be more transparent we want to describe
the method in more detail for I' = PSLy(Z[%]) but it can be carried out for other
[ in the same way. For that let L := M?3. The first task is to represent the
submodules C' and D of L in a suitable matrix form. Since M = M, ,,(Z|i]) has
rank £k = (n+1)(m+ 1) we have that L is a free Z | i |-module of rank 3k. To apply
the Smith algorithm as for the second cohomology in Chapter 2 it is in particular
necessary to represent D as a submodule of the free module C', e. g. we have to
identify the sublattice D in the lattice C' inside L in a precise way. Note that we
also use the notation e; of the monomials for their representation as vectors in Z [ |*
(as we did in the construction of the matrix NMAT in Section 2.2).

We first consider the module C' and represent it by a matrix RMAT given by the
relations in M3 we established in the last section. Then we find for (o, 8,4) € M3

()

dmom
B k : k 0 k 0
(a,ﬂ,é)t = = Z(l/i 0 +Zﬂl €; +Z§Z 0
B i=1 0 i=1 0 i=1 :
Oy : : 0

\0/ \0 \e:/

\é:)
In matrix form the relations in M? just mean that

RMAT - (a1, ..+ 0 Buy-ee s By 015000 50) = 0
with

0 R1 (ﬁ)el s R1 (ﬁ)ek 0
RMAT = : : :
RG(a)el e Rﬁ(a)ek tee R6(5)61 e R6(5)ek

and R;(f) = (1 + B) as in Formula 3.4, Rg(or) = T(1 + AUB) and Rg(0) = T'(A —
AUBAU™') with T as in Formula 3.9 above. Note that RMAT is a (6k x 3k)-matrix
then, but it has not yet the right form for our computation. For the application
of the Smith algorithm we need a matrix representation for C, where the columns
generate the submodule C' of L. To get such a matrix we have to compute the
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kernel of the map described by the matrix RMAT. This leads to a matrix, which
we want to call CMAT in the following. On the other hand we get the matrix
for D already in a quite suitable form, since ® sends a principal derivation f,, to
((A—=1)m,(B — 1)m, (U — 1)m). So we can represent D by the following matrix
DMAT:

(A—1)e; ... (A—1)eg
DMAT = : :
(U=1e ... (U—=1)e

This is a (3k x k)-matrix and its columns just generate D. But it remains the
problem to find D in C. For that note that any column in DMAT is in the
span of the columns of CMAT. Therefore we are done if we can express each
column of the matrix DMAT as a linear combination of columns of the matrix
CMAT, which can be realized by a base change (solving the linear systems). This
gives a final matrix representing the module C/D that we want to call CDMAT.
To that matrix we can apply the Smith algorithm, and the elementary divisors
in the Smith normal form describe the torsion part of HY(I',M) = C/D. Of
course, if we are only interested in the rank it is enough to work with the ma-
trices RMAT and DMAT. Since rank(H'(I', M)) = rank(CMAT) — rank(DMAT)
and rank(CMAT) = corank(RMAT) := 3k — rank(RMAT) we don’t need to deter-
mine the matrix CDMAT.

In the case of Z [i]-modules we could again use the Smith algorithm over Z[i] in
MAPLE. So we realized our strategy of computation in a MAPLE program to get a
first overview of the torsion and the of picture for the ranks. Later on we did some
experiments with the computation mod £ which led to the observation that the whole
torsion could be encoded in the matrix DMAT already, which would simplify the
computation a lot. Furthermore one can treat many other groups very fast then.
We want to discuss that in more detail in the next section.

3.3 Other arithmetic groups

Let us first collect some rank patterns we obtained computationally. With the setup
from Section 3.2 for I' = PSLy(Z[i]) we found a similar pattern as for the second co-
homology. Basically, the zeros are shifted. So we got rank(H'(T', M,, m(Z[1]))) =1
for n #m and n+m+2 = 0 mod 4 and rank zero in the other cases for n # m. For
n = m we found rank zero for n = 2,4, 6,8, 12 and rank one for n = 10, 14, 16, 18, 20,
furthermore rank one for n = 1, 3, rank two for n = 5 and rank three for n =7, 9.

To compute the module invariants of H'([', M) for other groups I' we have to
build up the corresponding matrices RMAT and DMAT along the same lines as
for ' = PSLy(Z[i]). As a preparation for that we have to determine again the
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relations in M", which come from the presentations of the groups I' (r the num-
ber of the generators). For example, in the the case of I'y, for I' = PSLy(Z[i])
(see (1.1)) we can reuse Formula 3.6 and have to determine the decompositions for
f(D?), f((AD)?) and f((UD)?) to get the other relations. For PSLy(Z[*Y-2])
we can use Formula 3.4-3.6 as for PSLy(Z[i]). In addition we have to decompose
f((AUBU2B)?), f((AUBU 'B)3) and f(A*UBU 'BUBU !B), which leads to
the other three relations. For the figure-8 knot complement group I's we have to
decompose f(ATUAU TAUA U TAU ).

We also got rank(H' (T, My ;m(Z[1])) = 2 for n+m + 2 = 0 mod 4 and rank zero
in all other cases. In the case of ' = PSLy(Z [%]) we found for the series
M = My o(Z [ *Y=2)) that rank(H' ([, M)) = 1 for n = 2¢ with ¢ = 2 mod 3 and
rank(H' (T, M)) = 0 in the remaining cases. In contrast to that, we found for I' = T'g
and M = M, o(Z[]) that rank(H'(T', M)) = 1 for all n we checked.

Furthermore we analysed H'(PSLy(Z), M,,(Z)) (cp. (4.4) for PSLy(Z)). Here we
computed the ranks up to n = 150 and present them up to n = 60 in Table 13.
We also computed the Smith normal forms for the matrices CDMAT up to n = 100
and determined the factorizations of the elementary divisors. As for the second
cohomology we then counted the occurence of the prime ¢ in different elementary
divisors (representing the rank mod ¢ minus the Q-rank of the corresponding ma-
trices). We want to call these numbers /-coranks of the considered matrices in the
following. Then we started playing with the matrices involved and found exactly the
same results by taking the matrices DMAT instead of the matrices CDMAT. This
suggested that the DMAT would already encode the torsion of the first cohomology.
So we continued to study that phenomenon for I' = PSL4(Z [i]) and found the same
connection (checked up to n = 30 for M, ¢(Z[7])). Of course, such a correspondence
would simplify the computations a lot, since only the generators are needed to build
up the matrices DMAT. Therefore we decided to go on with that investigation for
many more groups from Section 1.1 (where we computed mod ¢) and concentrate on
the results we got from these computations in Section 3.4. Note that the /-coranks
for the matrices DMAT for PSLy(Z) and PSLy(Z[¢]) (up to n = 30) indeed rep-
resent the /-torsions of H'(T', M). In contrast to H*(T', M) we didn’t find any large
{-torsion in H'(T', M).

Our observation has to be studied in more detail now. Note that H(T', M) & M"
and PDer(I', M) = M/M". What we have to do is to investigate the relation of
H'(I',M) and H°(I', M) and what it gives for the description of the torsion in
HY(T,M). For I' = PSLy(Z) it is known (see [Wal, p.72, going back to Dickson)
that

dimy, H(T, M,,(F,)) = #{(a,b) € N* : a(£+1)+bl(£ —1) =n}.

As one can check in Table 13 these F,-dimensions coincide with our /-coranks for the
matrices DMAT. Up to now we didn’t work out anything like that for PSLy(Z [ ]).
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3.4 Results for several arithmetic groups

In the first table Q-rank stands for the rank of H'(PSLy(Z), M,,(Z)). The ranks of
several other Ox-modules H'(T', M) were already presented in Section 3.3.

‘ n H Q-rank ‘ {-coranks up to £ = 1223 ‘

2 1 | [21]

1 1 [ [2.1], 3.1]

6 1| [2.2], B.1], B.1]

8 1 [ [2,2], 3.1, [7.1]

10 3 | [2.2], [3.1]

12 1 [[2,3],3,2], 5,1, [11,1]

14 3 23], [3.1], [13,1]

16 3 23], [3.2], [7.1]

18] 3 |24, [3.2], [5.1], 17.1]

20 3 | [24], [3,2], [5,1], [19,1]

22 5 | [24], [3,2]

24 3 | [2,5], [3,3], [5,1], [7,1], [11,1], [23,1]
26 5 | [2,5], [3,2], [5,1]

28 5 | [2,5], [3,3], [13.1]

30 5 | [2,6], [3,3], [5,1], [29,1]

32 5 | [2,6],[3,3], [5,1], [7,1], 31,1]

34 7 |26, [3,3]

36 5 | [2,7], [3.4], [5,1], [11,1], [17,1]

38 7 12,7, 13,3], [5,1], [37,1]

0 7 127, 3.4, Bl [71], [19,1]

2 7 128, 3.4, b1, [7.1], [13.1]

44 7 28], [34], [5,1], [43.1]

%] 9 |28, 34, 1]

48 7 | [2,9], [3,5], [5,1], [7,1], [11,1], [23,1], [47,1]
50 9 | [2,9], [34], [5,1], [7,1]

52 9 |29, 3.5, 5,1]

54 9 | [2,10], [3,5], [5,1], [17,1], [53,1]

56 9 | [2,10], [3,5], [5,1], [7.1], [13,1]

58 11 | [2,10], [3,5], [5,1], [7.1]

60 9 | [211], [3,6], [5,2], [19,1], [29,1], [59,1]

Table 13: ¢-coranks for the DMAT of PSLy(Z) and M, (Z)
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n H f-coranks up to £ = 1223

2 [ [2.1]
4 [ 2]
6 | [22], [5,1]
8 | [2,2]

10 [ [2,2], [3,2]

12 [ 2,3], [5,1]

14 | [2,3], [13,1]

16 | [2,3]

18 | [2,4], [5,1], 17,1]
20 | [2,4], [3,1], [5,1]
22 [ [2,4]

24 | [2,5], [5,1]

26 || [2,5], [5,1]

28 [ [2,5], [13,1]

30 || [2.6], [3:.1], [5,1], [29,1]
32 || [2,6], [5,1]

34| [2,6]

36 || 12,7, [5,1], [17,1]
38 | [2,7], [5,1], [37,1]
40 || 12,71, 13,1, [5,1]

Table 14: ¢-coranks for the DMAT of PSLy(Z[i]) and M, o(Z[7])

n H {-coranks up to £ = 1223 ‘

2 [ 2.1]

4 12,1, B.1]
6 | [2,2], [3,1]
8 | [2,2], [3,1]

10 || [2,2], [3.1]
12 | [2,3], [3,2], [11,1]
14 | [2,3], [3,1]
16 || [2,3], [3,2]
18 | [2,4],[3,2], [17,1]
20 || [2,4], [3,2], [19,1]

Table 15: ¢-coranks for the DMAT of PSLy(Z[+/—2]) and M, o(Z[v/—2])
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‘ n H {-coranks up to £ = 1223

2
4 3.1,
6 | 3]
8 || [3,1],
10 || [2,1], |
12 ][ [2,1], |

[

7,

7,1]
3,1]
3,2]

14 [ [3,1], [13,1]

16 || 3,2], [7,1]

18 | [3,2]

20 || [2,1], [3,2], [19,1]

Table 16: ¢-coranks for the DMAT of PSLy(Z [# |) and M, o(Z| %ﬂ )

‘ n H {-coranks up to £ = 1223 ‘

2 [ [2,1]
1 [2.1]
6 || [2,2]
8 | [2,2],[7.1]

10 | [2,2], [3,1]
12 | [2,3], [11,1]
14 | [2,3]
16 || [2,3], [7,1]
18 | [2,4]
20 || [2,4], [3,1]

Table 17: ¢-coranks for the DMAT of PSLy(Z [Y="1) and M, (Z [ L))

‘ n H {-coranks up to £ = 1223 ‘

2
1 3.1]
6 || [3,1], [5,1]
8 || [3,1]

10 | [2,1], [3.1]

12| [2,1], [3,2], [5,1], [11,1]
14 | [3,1]

16 || 3,2]

18 | [3,2],[5,1]

20 || [2,1],[3,2], [,1]

Table 18: ¢-coranks for the DMAT of PSLy(Z [ ]) and M, (%[ *41)
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2

4

6

[5,1]

8

10

[2,1]

12

[2,1], [5,1]

14

16

18

[5,1]

20

[2,1], [5,1]

Table 19: ¢-coranks for the DMAT of PSLy(Z[*%—2]) and M, (Z |

‘ n H f-coranks up to £ = 1223 ‘

2

4

[3.1],

6

[3,1], [5,1]

8

[3,1], [7,1]

10

[3,1]

12

[3,2], [5,1]

14

[3,1]

16

[3,2], [7,1]

18

[3,2], [5,1]

20

[3,2], [5,1]

14++/—19
2

Table 20: ¢-coranks for the DMAT of PSLy(Z[+/—5]) and M, o(Z[v/-5])

‘ n H {-coranks up to £ = 1223 ‘

2

[2,1]

4

[2,1], [3,1]

6

[2,1], [3,1]

8

[2,1], [3,1], [7,1]

10

[2,2], [3,1]

12

[2,2], [3,2]

14

(2,2], [3,1], [13,1]

16

[2,2], [3,2], [7,1]

18

(2,2], [3,2]

20

(2,3], [3,2], [19,1]

Table 21: {-coranks for the DMAT of the knot group I's and M, (Z [@ )

23

)
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n H {-coranks up to £ = 1223

2 [ ]2,3]

4 | [2,5],

6 | 2,7]

8 | [2,19], [7.,1]

10 | [2,11], [3,1]

12 [ [2,13], [11,1]

14 | [2,15

16 || [2,17], [7.1]

18 [ [2,19

22 [ [2,23

24 |[ [2,25], [7,1], [11,1], [23,1]

[
26 | [2,27], [5,1]

28 || 2,29

]
]
]
]
]
]
20 | [2,21], [3,1]
]
]
]
]
]

30 | [2,31], [3,1], [29,1]

Table 22: ¢-coranks for the DMAT of the link group I' _7(6,4) and M, o(Z | %ﬂ )

n H {-coranks up to £ = 1223 ‘

2 [ [2,2]
4| 12,3],
6 | [2,4]
8 | [2,5], [7,1]
10 || [2,6], [3,1]

Table 23: ¢-coranks for the DMAT of the link group I'_7(6, 5) and M, o(Z | 1+2£ )

n H {-coranks up to £ = 1223 ‘

2 [ 2,2]
1 |[2,3],
6 || [2,4]
8 | [2,5], [7,1]
10 | [2,6], [3,1]

Table 24: f-coranks for the DMAT of the link group I'_7(6,6) and M, o(Z | 1+2£ )
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4 The first homology H;(I', M)

The conclusions in Chapter 2 and 3 show that H?(T', M) contains more interesting
torsion than H(T', M). On the other hand there are some difficulties to handle
Hecke operators in our setup for H2(T', M) but later on our main focus shall be
on the explicit computation of Hecke eigenvalues, in particular on the torsion part.
Now classical Poincaré duality for manifolds suggested to look at Hy(I', M) as well
to see whether it would show phenomena similar to the ones for H?(I', M). So it
became of double interest for us to study H;(I', M): to use a group homological
approach for the computation to have a suitable setup for the following study of the
Hecke operators and to find out how the torsion in H?*(I', M) and H,(I", M) would
be related.

In Section 4.1 we describe the general concept of group homology we use. Then we
derive in Section 4.2 the explicit relations for the Og-modules Ar in several cases
of ' < PSLy(Ok). The relations form the basis of our computations for H,(I", M).
The computation of the module invariants of Ar and its algorithmic realization
is described in Section 4.3, and Section 4.4 contains the results of our computer
calculations and some conclusions. Here we had to make a choice for the tables we
want to present. We concentrate on I' = PSLy(Z[i]) and add several smaller tables
for PSLy(Z[v/=2]), T = PSLy(Z[*Y=2]), the knot complement group I's and a
link complement group.

4.1 Group homology with general coefficients

We use similar notations as in Chapter 3. So let again R = OxG be the group ring
of the group G over Ok and let M be a left G-module which is also an Og-module.
The Dedekind domain Ok is a commutative ring, but if G is not a commutative
group, R becomes a non-commutative ring. Note that we may view the group G as
embedded in R via the identification of g € G with 1-g € R. As an Og-module on
which G acts Og-linearly from the left, we may consider M as a left R-module. For
these and some of the following facts from homological algebra see e.g. [Wei, [Ev]
or [Br].

Furthermore let € : R — O with e () cqag-9) = > @y be the augmentation
ring homomorphism and let a be the kernel of €. a¢ is also called the augmentation
ideal of R.

Lemma 4.1 ag is a free right R-module with Ok-basis {g—1:g € G,g # 1}.

PROOF: We have that {g—1:g € G, g # 1}U{1} isabasis of R = OgG as a free Og-
module. Now it follows that ag is a free O-module with basis {g—1: g € G,g # 1},
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in other words

ag = { Z ag-(g—1) :aQEOK}.

9€G, g#£1

ag is actually a 2-sided ideal. We just choose ag to be a right R-module. O

Now we can form the tensor product over R of the right R-module ag with the left
R-module M.

Definition 4.2 Let G, M, R and ag be as above. Then

AG = ag Qg M.

To make always clear which group we consider we better write G instead of R from
now on (by abuse of notation):

aQem = aQ@prpm.

The main property we will need is

a-gQ®cm = a®gg-m for geG,me M, ac€ag. (4.1)

If M is an R-module, let M denote the largest quotient module of M on which G
acts trivially, also called the coinvariants of M. This coinvariants functor —¢ is a
right exact functor.

For short one can define the gth homology H,(G, M) of the group G with coefficients
in the R-module M as the gth left derived functor of Mg (cf. [Wei]). Note that this
gth left derived functor L,(—¢)(M) equals H,(—¢)(P), the ¢th homology of the
complex formed by a projective resolution P — M after applying the coinvariants
functor. Remark that this definition does not depend on the base ring k£ for R = kG
and k£ any commutative ring (cf. [Gr] or [Ev]). For our purposes it is convenient to
follow the approach in [Gr] which basically does what we described. The construction
ends up with the following proposition when we take into account the change of
coefficients adapted to our situation (cf. [Gr, ch. 2.2]).

Proposition 4.3 Let R=0xG. If -+ — P, — P, — Pp— O — 01isa
right projective resolution of O (all P; being right R-modules) and X = Im(P; —
P,_1), then, for any left R-module M, the sequence

0—>Hq(G,M)—>X®GM—>Pq_1®GM

1S exact.
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Taking into account the exact sequence of free R-modules
0—ag— R— O — 0,
we get from Proposition 4.3 the exact sequence
0— Hy(G,M) — ag®; M — R®g M.

Hence we get

Proposition 4.4 For a group G and an R-module M we have

Hi(G, M) = ker(®).

Note that ® is an Og-module homomorphism but it is not a G-module homomor-
phism, and we have ®(a ® m) = a - m for a € ag and m € M.

In our case G is a finitely presented group and M is a finitely generated Ox-module.
Then H,(G, M) is a finitely generated Ox-module as well.

As we pointed out at the beginning of this chapter our main interest is to com-
pute the torsion part of Hy(G, M) = ker(®) = ker(Ag — M). Observe now that
M is a free abelian Og-module, and therefore all the torsion in the Og-module
Ag = ag ®g M sits already in Hy(G, M), saying that it is enough to compute in
A g if one is only interested in the torsion.

Let ¢q,...,9, be a generating system of the group G and eq,...,e; a generating
system for the Og-module M. Then A s is generated as an Og-module by

(gi—1)®ge; =t Nj (i=1,...,r and j=1,...,k).

But there are also certain relations between these );; coming from the relations
which are given in the presentation of the group GG. Hence a first step towards an
explicit computation is to carry over these relations to the module A ; which will
be the topic of the next section. Note that we consider groups G < PSLy(Ok) and
modules M = M, ,(Ok) with k = (n 4+ 1)(m + 1) in the following.

4.2 The relations for Ag
Let
G = <gla---agr|R1:R2:---:Rs:1)

be a presentation of the group G, where R;,..., R, are words in the generators
g1, gl_la e 1gTag;1'
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We can express the action of an element g € G on the k = (n+1)(m+ 1) generators
of the Og-module M, ,,(Ok) (and left G-module) as follows

k
g5 = Y gue (j=1,...,k and g€ Ox). (4.2)
=1

For the relations in the group we find (using ®) that
(R,—1)®zm = 0 forh=1,...,s.

Then we can go through the following two steps to produce the relations between
the generators \;; of the Og-module Ag.

Step 1. Decompose the words Ry, into a sum of terms of the form (g; — 1)w,
wa word in g1, 9, %, ..., g9 and i € {1,...,7}.

Step 2. Use the property (4.1) to shift the words w along ®¢ to the side
of m € M like (¢, — NHw ®gm = (g; — 1) ®g w; - m. If we now
substitute the generators ey,...,e; of M for m and use (4.2) for
w - e, we finally get explicit relations for the \;; in Ag.

Hence A ¢ is the quotient of the free @ x-module Ox"* of rank r - k by a submodule
N determined by the relations of Step 2. A treatment of Step 2 and a more detailed
analysis of the submodule N will follow in Section 4.3. In this section we will con-
tinue to go through Step 1 for several groups I' < PSLy(Ok) and I' in the case
of I' = PSLy(Z[7]) to prepare the necessary reformulations in Ap of the relations
in the group I'. Note that we switch to the notation I' instead of G’ when we study
concrete arithmetic groups but we further use G for general constructions.

Two general rules.
We have to solve the following decomposition problem for the group G-

Let W be a word in g1, 97", ... , Gr, g t. Find an expression for W —1 of
the following form:

W1 = @-DN vt t =D wny  (43)

Jji=1 Jr=1

1

where the w;;, are words in 91,97 s e g7 as well,

The idea to find that expression is to systematically reduce the word W through
extracting terms of the form (¢; — 1) by a kind of recursive procedure. It is easy
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to see that we have indeed only two possibilities. The word W ends either with a
group generator g; or with an inverse g; '. To cover all cases we therefore need the
following two rules only. For that let W be a word as above and let g be any of the
generators of G.

Rule 4.5 (Reduction for g)
Wg—-1) = W-1)g+(g-1).
Rule 4.6 (Reduction for g!)

Wg™ =1) = W-1g7' ~(g—1g".

Now we have to apply these two rules recursively to the word W. Each reduction
step produces a new word W which equals the old word W without the last element,
thus reducing the length of W by 1. The recursion ends if W equals 1. Finally one
multiplies out and collects together the sum of words for every term (g; — 1). We
stress these observations here in such detail for two reasons. On one hand it makes
the reduction process much more transparent and shows that one can perform it
for any group G as long as one has its presentation (for finishing we need a finite
one of course). Therefore this approach covers the computation for H, (G, M) for all
these groups. On the other hand we need exactly this reduction process during the
explicit calculations with the Hecke operators again, where it also had to be realized
in a computer program in the end.

Let us now present the decompositions we found for the relations of several groups
PSLy(Ok). Here, we can see in practice how helpful and easy to handle the general
group homological approach is. We start with I' = PSLy(Z[]), which will be our
main example concerning a detailed analysis of the torsion classes and in particular
the one we will consider for the explicit computation of Hecke operators in Chapter
5. We also treat '’ in this case and the classical group PSLy(Z). It follows the
quite similar case PSLy(Z [HQE ])- To complete the picture we also consider the
other three Euclidean cases of Q. Note that there are five imaginary quadratic
fields Q(v/—d) with that property, namly for d = 1,2,3,7 and 11. Next, we present
the smallest (refering to d) case of an imaginary quadratic field with class number
1 with Ok not Euclidean, which is Q(/—19). There are only three more cases of
class number 1, or in other words with Ok being a principal ideal domain, that is
for d = 43, 67 and 163. Finally, we also show two examples of class number 2. For
that we choose Q(/—5) and Q(/—10). Here we also treat the groups associated
to the non-trivial ideal class (cp. Section 1.1). Tt follows the example Q(v/—14) of
class number 4. We conclude with the group I's belonging to the figure-8 knot and
with a link complement group.
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The group PSLy(Z[i]).

Recall Proposition 1.1 for the presentation of PSLy(Z [i]). We have three generators
A, B and U and six relations between them. We immediately get

Formula 4.7 (Relation 1) B?*—-1 = (B—-1)(B+1).

In the next case we can use for simplicity the formulas W3—1 = (W —1)(W?2+W +1)
with W = AB and (AB—1) = (A—1)B+ (B — 1) which easily give

Formula 4.8 (Relation 2) (AB)*-1 = (A-1)BT + (B—-1)T.
with 7 := (AB)?+ AB + 1.

To see how the reduction process really works we just want to give one instructive
example in detail. For that we mark all generators we extract step by step with bold
print. We consider the relation AUA U ! = 1. Here we apply two times Rule 4.6,
then one time Rule 4.5, multiply out and finally collect the sum of words together
for each generator as follows:

AUATIUT -1

= {AUAT'-1}U - (U-1)U!

= {[AU-1]A"'"-(A-DN)AYut-(U-1)U?
{{(A-D)U+U-1)]A T —(A-D)A YU - (U-1)U

= A-nHuAa'lrt+@U-naAtrt-(A-1nNAlUt —(U-1)UL

So we finally get
Formula 4.9 (Relation 3)
AUATIUT -1 = A-n0A U AU+ U-1)A' Ut -0,

For the last three relations we use similar simplifications as for Relation 2 and get:

Formula 4.10 (Relation 4)
(BUBU™')? -1 = (B-1)(UBU'+U YT+ U-1)(BU'-U"T

with 7T := (BUBU™)?2+ BUBU"! +1.
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Formula 4.11 (Relation 5)

(BU’BUY)? -1 = (B-1)(U’BU+U YT
+U-1)(UBU+BU'-U YT

with 7T := BU?BU"! +1.

Formula 4.12 (Relation 6)

(AUBAU'B)* -1 = (A-1)(UBAU 'B+U 'B)T+ (B—-1) (AU 'B+1)T
+(U = 1)(BAU'B-U"'B)T

with T := AUBAU 'B +1.

The group I') for I' = PSLy(Z[i]).

I'! is the group of lower triangular matrices in PSLy(Z[i]) with entries 1 on the
main diagonal. For the presentation of that group we refer to Section 1.1. We have
to treat only one relation which is the same as the third relation for PSLy(Z[1]).
Therefore we only have the decomposition already given by Formula 4.9.

The group PSL,(Z).
We have the following presentation (A and B as for PSLy(Z[1])):

PSLy(Z) = (A ,B|(AB)>=B*>=1), (4.4)
and thus we are done with Formula 4.7 and Formula 4.8.

The group PSLy(Z [HT‘/_T;])

Here we have three generators A, B and U and six relations as in the case of
PSLy(Z[i]) (cf. Prop. 1.4). The first three relations are actually the same and
hence the decompositions are already given by Formula 4.7, Formula 4.8 and For-
mula 4.9. In the other three cases we find:

Formula 4.13 (Relation 4)

(AUBU *B)*-1 = (A-1)UBU *BT+ (B-1)(U?B+1)T
+U - 1)(BU *B-U ?B-U 'B)T

with T := AUBU?B +1.
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Formula 4.14 (Relation 5)
(AUBU™'B)® -1 = (A-1)UBU'BT+(B-1)(U'B+1)T
+(U =1)(BU'B-U'B)T
with T := (AUBU"'B)?>+ AUBU'B + 1.

Formula 4.15 (Relation 6)

A?UBU'BUBUBU'B — 1
= (A-1)(AUBU'BUBUBU'B +UBU'BUBUBU!B)
+(B—1)(U'BUBUBU'B+UBUBU 'B+UBU 'B+U'B+1)
+({U —1)(BU 'BUBUBU 'B—-U 'BUBUBU 'B+ BUBU 'B
+ BU'B-U'B).

The group PSLy(Z[v/-2]).

Again we have the three generators A, B and U but four relations now (cf. Prop.
1.3). The first three relations coincide with the first three relations in the preceding
cases and hence the decompositions are given by Formula 4.7, Formula 4.8 and
Formula 4.9. In the remaining case we get:

Formula 4.16 (Relation 4)
(BU'BU)? -1 = (B-1)(U 'BU+U)T+ (U -1)(1-U"'BU)T
with T := BU'BU +1.

The group PSLy(Z[*Y=7]).

As for Z [/—2] we have three generators A, B and U and four relations (cf. Prop.
1.5). Relation 1 and Relation 3 coincide with the ones for Z[i] and hence the
decompositions are given by Formula 4.7 and 4.9 again. In the other two cases we
find:

Formula 4.17 (Relation 2) (BA)* -1 = (A-1)T + (B —1)AT.
with T :=(BA)?+ BA+1.
Formula 4.18 (Relation 4)

(BAUT'BU)? -1 = (A-1)U'BUT + (B-1)(AU'BU +U)T
+(U -1)(1-U'BU)T

with 7 := BAU'BU + 1.
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The group PSLy(Z 42 ]).

This case differs from the last one only in Relation 4. Hence the decompositions are
given by Formula 4.7, Formula 4.9, Formula 4.17 and the following one:

Formula 4.19 (Relation 4)

(BAUT'BU)) -1 = (A-1)U'BUT + (B-1)(AU'BU +U)T
+U -1)(1 -U 'BU)T

with T := (BAU 'BU)? + BAU 'BU + 1.

The group PSLy(Z [42]).

This is the non-euclidean case of class number 1 we want to consider. We have the
four generators A, B,C and U and seven relations (cf. Prop. 1.7). The first three
relations are the same as for Z[i| and the decompositions are therefore given by
Formula 4.7, Formula 4.8 and Formula 4.9. For the other four relations we get:

Formula 4.20 (Relation4) C®*—-1 = (C-1)(C*+C+1).

Formula 4.21 (Relation 5) (CA™')3 -1 = (A-1)(-A™HT +(C -1)A~'T
with T :=(CA™')2+CA™' + 1.

Formula 4.22 (Relation 6) (BC)*—1 = (B—1)CT+ (C—-1)T
with 7T := BC + 1.
Formula 4.23 (Relation 7)

(BAT'UCU')? -1 = (A-1)(-A"'vcUu"HT + (B-1)A"'UCU™'T
+C-)WU''T+U-1)(CU*-UYHT

with T := (BA-'UCU™")?+ BAT'UCU~" +1.

The group PSLy(Z[v/=5]).

In our first case of class number 2 we have five generators A, B,C,D and U and
eight relations (cf. Prop. 1.8). The first three decompositions are given again by
Formula 4.7, Formula 4.8 and Formula 4.9. In the other five cases we find:

Formula 4.24 (Relation4) A>-1 = (A—-1)(A+1).
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Formula 4.25 (Relation 5) (BD)>-1 = (B—1)DT+(D—-1)T

with T :=BD + 1.

Formula 4.26 (Relation 6)

(BUDU™)? -1 = (B-1)UDU'T+(D-)U'T+U-1)(DU'-UNHT

with 7T := BUDU™! +1.

Formula 4.27 (Relation 7)

ACT'A™'BCB-1 = (A-1)(C'A™'BCB - A"'BCB) + (B—-1)(CB +1)
+(C =1)(B—-C"A™'BCB).

Formula 4.28 (Relation 8)

ACT'AT'UDUT'CD -1

= (A-1)(C'A'UDU'CD - A"'UDU'CD)
+(C-1)(D-C'A™'UDU'CD)+ (D -1)(1 -U"'CD)
+(U -1)(DU'CD - U~'CD).

The group PSLy(Z[v/—-5],a) with a =< 2,1 —-+/-5 >.

Here we have the second group for Z [+/—5] coming from the other ideal class (cf.
Prop. 1.9). We have the four generators A, C, D and U and five relations. Relation
3 is the same as for Z[i] and hence its decomposition is given by Formula 4.9. In
the other four cases we get:

Formula 4.29 (Relation 1)

CDC'D'-1 = (C-1)(DC'D'-C'DH+(D-1)(C'D*-D™).

Formula 4.30 (Relation 2) (AC™1)2-1= (A-1)C7 T+ (C-1)(-C™HT
with T := AC™! +1.

Formula 4.31 (Relation4) (DU Y -1= (D-1)U'T+U-1)(-UYHYT
with T := (DU™Y)?+ DU + 1.
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Formula 4.32 (Relation 5)

(CD'UA™Y -1 = (A-1D)(-AHT+(C-1)D'UA™'T
+(D - 1) (-D'UA™HT + (U - 1)A'T

with T :=(CD'UA™)2 +CD'UA™! +1.

The group PSLy(Z[+/—10]).

In this case we have the seven generators A, B,C, D, E, F and U and eleven relations
(cf. Prop. 1.10). The decomposition of Relation 1 is the same as for Relation 1 in
the case Z [i], which is given by Formula 4.7. Relation 2 is the same as Relation 2
for d = 7, hence the decomposition is given by Formula 4.17. Relation 3 and 4 are
covered by Formula 4.7 as well if one replaces B by C' and E respectively. In the
remaining seven cases we get:

Formula 4.33 (Relation 5) (BC)*—1 = (B—1)CT+ (C-1)T
with T := BC + 1.

Formula 4.34 (Relation 6) (BE)*—~1 = (B—1)ET+ (E—-1)T
with 7T := BE + 1.

Formula 4.35 (Relation 7)
C'AD'EAD -1 = (A-1)(D'EAD+ D)+ (C —1)(—C 'AD'EAD)
+(D—-1)(1—-D 'EAD) + (E —1)AD.
Formula 4.36 (Relation 8)

U'E'WWFCF'-1 = (C-1)F '+ (E-1)(-E 'UFCF ™)
+(F-1)(CF-F™)
+U - 1)(FCF'-U'E'UFCF™).

Formula 4.37 (Relation 9)

D 'E'B'DU 'DBCD 'U -1

= (B-1)(CD'U~-B'DU'DBCD™'U) + (C -1)D™'U
+(D-1)U'DBCD™'U+ BCD'U -~ D 'E~'B™'DU'DBCD™'U — D™'U
+(E -1)(-=E'B'DU 'DBCD 'U)+ (U -1)(1-U 'DBCD 'U).
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Formula 4.38 (Relation 10)

D 'B'ADC'U'EDA™'BD™'U -1
= (A-1)(DCT'U'EDA™'BD™'U — A7'BD'U)
+(B-1)(D™'U - B 'ADC'UEDA™'BD™'U)
+(C -1)(-C™'U'EDA™'BD™'U)
+(D - 1)(CT'U'EDA™'BD™'U — D'B'ADC~'U'EDA™*'BD™'U
+A™'BD™'U — D7'U)
+(E-1)DA'BD™'U+ (U-1)1-U"'EDA™'BD™'U).

Formula 4.39 (Relation 11)

U'DB'A'D'UFD 'BADF ' -1
= (A-1)(DF '-~A'D'UFD 'BADF!
+(B—-1)(ADF™' - B 'A"'D"'UFD'BADF™)
+(D—-1)(B 'A'D'UFD 'BADF ' -~ D 'UFD 'BADF!
+F~'—~ D 'BADF™)
+(F =1)(D'BADF~' — F71)
+(U - 1)(FD'BADF~' —U'DB'A'D'UFD'BADF™).

The group PSL,(Z[+/—10],b) with b =< 2,1/-10 >.

Now we have six generators A, C, D, E, F and U and also eleven relations (cf. Prop.
1.11). Relation 1 equals Relation 1 in the second case of Z[+/—5] and hence the
decomposition is given by Formula 4.29. Relation 3 is again the same as for Z[7]
and the decomposition is therefore given by Formula 4.9. For Relation 2 we can take

the decomposition in Formula 4.7 if we replace B by E. In the other nine cases we
find:

Formula 4.40 (Relation 4) (CA™)? -1 = (A-1)(-A"HY)YT +(C-1)A"'T
with T :=CA™' +1.

Formula 4.41 (Relation 5) F3>—1 = (F—-1)(F?+ F +1).

Formula 4.42 (Relation 6) (FE)*—1 = (E—1)T + (F —1)ET.
with T :=FE +1.
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Formula 4.43 (Relation 7)
(DEU)? -1 = (D-1V)EU'T+(E-1)U'T+U-1)(-U"HT

with 7 := DEU~!' +1.

Formula 4.44 (Relation 8)

(FCT'EA?’ -1 = (A-1)T+ (C-1)(-=C'EAT + (E - 1)AT
+(F —1)C 'EAT

with T := FC'EA+1.

Formula 4.45 (Relation 9)
(DFT'U™ -1 = D-DF U 'T+(F-1)(-F'U™YT+U-1)(-U"T

with 7T := (DF- U124+ DF U +1.

Formula 4.46 (Relation 10)
(CF'AYY -1 = A-1)(A N+ (C-)F'A'T+(F-1)(-F'A YT

with T :=(CF'A™)?+CF A7 +1.

Formula 4.47 (Relation 11)

(CDF'AT'U™)2 -1 = (A-1)(-AT'U YT+ (C-1)DF'A™'U™'T
+(D-1)F'A'UT'T+(F-1)(-F'A'UNT
+U -1)(-UHT

with 7T := (CDF AU~ + CDF1A-'U~! +1.

The group PSLy(Z[v/—14]).

Finally we come to our example of class number 4 and consider the standard group
first. Here we have the seven generators A, B,C, D, E, F and U and nine relations
(cf. Prop. 1.12). For the first relation we can use the decomposition in Formula 4.7
again, for the second we can use Formula 4.17 and for the third just Formula 4.9.
For the remaining six cases we get:
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Formula 4.48 (Relation 4)

(A'C'BDBAD 'C)* -1
= (A-1)(D'C—-A'C'BDBAD'C)T + (B —1)(DBAD'C + AD"'C)T
+(C -1)(1-C'BDBAD™'C)T + (D — 1)(BAD™'C — D~'C\T

with T := A"'C'BDBAD™'C + 1.

Formula 4.49 (Relation 5)

(A'CD 'ABDBC ')? -1

= (A-1)(BDBC™' — A7'CD'ABDBC™"T + (B—-1)(DBC™ '+ C™")T
+(C -1)(D'ABDBC™' - C™Y)T
+(D - 1)(BC™ -~ D' ABDBC™H)T

with T := A"'CD'ABDBC~! +1.

Formula 4.50 (Relation 6)

D 'CE'ATPDCA’E — 1

= (A—1)(A’E+E - A3DCA’E — A2DC7'A’E — A2DC'A%F)
+(C = 1)(E*ADCA’E — A’E)
+(D —-1)(C'A*E - D'CE'A*DC™ ' A*E)
+(E-1)(1—-E*A3DC'AE).

Formula 4.51 (Relation 7)

CB'C'FC'BCF -1

= (B-1)(CF'=B'C'FC™'BCF™)
+(C -1)(B'CT'FCT'BCF™' — C'FC'BCF~' —C'BCF~ ' + F7)
+(F -1)(C'BCF ' - F1).



Formula 4.52 (Relation 8)

C 'DA'B'D'B'CAE 'A2CBD 'BA 'DC 'A*E —1
= (A-1)(E"'"ACBD 'BAT'DC™'A’E — AT'DC'A’E + A’E
+AE -~ A 'B'D'B'CAE 'A?CBD 'BA 'DC 'A*E
—~A?CBD 'BA'DC'A3E — A"'CBD 'BA'DC ' A®FE)
+(B-1)(A'DC'A’E+ D 'BAT'DC'A*E
~B 'D'B'CAE 'A?CBD 'BA 'DC 'A*E
~B'CAE'A*CBD 'BA™'DC'A’E)
+(C —=1)(AET'A?2CBD'BAT'DC™'A*E + BD"'BAT'DC'A’E
~C 'DA'B'D'B'CAE 'A?CBD 'BA'DC'A*E
—C'AE)
+(D -1)(A'B'D'BT'CAE'A"2CBD 'BA™'DC' A*E
+C'A’E — D'BAT'DC'A’E
—D'BT'CAE'A2CBD'BA™'DC ' A*F)
+(E-1)(1—-E'A2CBD'BA™'DC'A’E).

Formula 4.53 (Relation 9)

ACB'D'B'A'DC'AFA'C 'BDBAD 'CA'F' —1
= (A-1)(ACB™'D'B'"AT'DC'AFA™'C'BDBAD'CA™'F™!
—A'DC'AFA'C'BDBAD 'CA'F ' — A7 'F!
+FA'C 'BDBAD 'CA'F '+ D 'CA'F!
—~AT'CT'BDBAD™'CA™'F™)
+(B —1)(DBAD 'CA'F '+ AD'CA'F!
—B'AT'DC'AFA™'C'BDBAD'CA™'F~!
—B'AT'DC'AFAT'C'BDBAD'CA™'F™)
+(C-1)(B 'D'B'A'DC 'AFA 'C 'BDBAD 'CA'F!
+A' Pt —C'BDBAD'CAT'F™!
—~C'AFAT'C™'BDBAD™'CA™'F™)
+(D - 1)(C*AFA™'C'BDBAD 'CA™'F' - D 'CA~'F™!
—D'B'AT'DC'AFAT'\C'BDBAD 'CA'F!
+C'AFAT'C'BDBAD'CA™'F™)
+(F —1)(A"'C'BDBAD™'CA™'F~! — F71).

69
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The group PSLy(Z[v/—14],¢) with ¢ =< 3,1 ++/—14 >.

We also consider the group for the other ideal class which is not conjugate to the
preceding group. Again we have the seven generators A, B,C, D, E, F and U and
nine relations between them (cf. Prop. 1.13). For the first relation we get the
decomposition in Formula 4.7 again, for the second one we can use Formula 4.29,
for the third one Formula 4.9 and for the fourth one Formula 4.21. In the last five
cases we find:

Formula 4.54 (Relation 5)
(DBU™)? -1 = B-1)U'"T+(D-1)BU'T+ (U -1)(-UHT
with T :=DBU ! +1.

Formula 4.55 (Relation 6)

F'AET'ATWWFEU ' -1

= (A-1)(E'AT'UFEU™' — A"'UFEU™)
+HE-1)U*'-E'A'UFEU )
+HF-1)(BU = F'"AET'AT'UFEU ™) + (U - 1)(FEU™' = U™).

Formula 4.56 (Relation 7)

(CBE 'A'UBU 'AEA 1) -1

= (A-1)(FA'— A 'WBU "AEA' — A YT
+(B-1)(E'AT'UBUT AEA™ + U 'AEA™OT
+(C —1)BE 'AT'UBU "AEA'T
+E-1)(A'—-E'A'UBU "AEA YT
+({U —1)(BU'AEA™' —U'AEA™NT

with T := (CBE'AT'UBU'AFEA Y2 + CBE'A"'UBUtAEA™! +1.

Formula 4.57 (Relation 8)

(AEUT'DBE~'AT'UBD™")? -1

= (A-1)(EU'DBE‘'A™'UBD™ - A"'UBD™Y)T
+(B—-1)(E'A"'UBD™' — DT
+(D -1)(BE*A™'UBD™ — D™HT
+(E-1)(U''DBE'A'UBD™' — E'A"'UBD™MT
+(U -1)(BD™' —~U'DBE'A”'UBD™ )T

with 7 :=AEU 'DBE'A"'UBD ! +1.
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Formula 4.58 (Relation 9)

DC'BUYAEBD'UE'F'CBE'A"'UBU 'AEA™'F — 1
= (A-1)(EBD'UE'F'CBE'A'UBU'AEA™'F — A™'F
+EA™'F — AT'UBU'AEAT'F)
+(B-1)(U*AEBD'UE'F'CBE'A"'UBU*AEA™'F
+D'WE'F'CBE'A"'UBU'AEA™'F
+E 'AT'UBU 'AEA'F+ U 'AEA'F)
+(C - 1)(BE'AT'UBU'AEA™'F
—~C 'BU 'AEBD 'UE 'F 'CBE 'A'UBU 'AEA'F)
+(D —1)(DC'BU 'AEBD 'UE 'F 'CBE 'A'UBU 'AEA'F
—~D'UE'F'CBE'AT'UBU " AEA™'F)
+(E—-1)(BD 'UE 'F 'CBE 'A"'UBU 'AEA'F + A"'F
—~E 'F'CBE 'A'UBU 'AEA'F
—E'AT'UBU'AEAT'F)
+(F -1)(1—-F 'CBE 'A'UBU 'AEA'F)
+({U - 1)(E'F'CBE'A"'UBU 'AEA™'F + BUT'AEA™'F
~U'AEBD'UE'F'CBE'A'UBU'AEA™'F
~U'AEAT'F).

The group I's

The group I's has two generators and only one relation. From the presentation (1.1)
we find

Formula 4.59 (Relation for the knot complement group I'g)

ATTUAUTAUAT' U T AU —1
= A-)U'AUAT' U AU vuAT U AU U
—ATNUAUTAUA U AU L — AU tAU )
+(U-1)AU tAvA U AU U AU - U
+ATWUTTAUT —UTTAUATIUTTAU Y.,

Several link complements groups

The link complement groups we consider are the groups I' 7(6,4), I" 7(6,5) and
I' 7(6,6). But we only want to give the decomposition formulas for I'_7(6,4) here.
The group has three generators and two relations. From the presentation (1.4) in
Section 1.1 we find
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Formula 4.60 (Relation 1 for I' ;(6,4))

XZX'Z7' -1 = (X=1)ZX ' 27 =Xz Y+ (Z-1)(X'Z27 =27

Formula 4.61 (Relation 2 for I'_;(6,4))

ZYWX 72z Wy lzy lZXYy 1Zy — 1
= (X-10)Y'zy - X"'Zz7'vZz7'y tzyl ZXY T ZY)
+HY )X 12 Wz vy lzy 1 ZXY 12y — Y 1ZXY lZy — Y lZy
+Z7WYTlZY ' ZXY ' ZY YT ZY T ZXY T ZY +1)
+(Z-V)Y -Z27'YX ' Z7lyZ7 Yyl Zzy T ZXY T ZY + XYL ZY
~ZYYZ Yt ZYy '\ ZXY 'ZY - Z27'YY ' ZYy 1 ZXY ' ZY
+Y ' ZXY'ZY).

Remark 4.62 If one analyses the decomposition process of the relations carefully
one discovers the pattern behind it, which actually gives a method to write down the
results by hand very easily. Suppose we have to find the part of the decomposition
of W — 1 for a generator g appearing in the word W, that is, we have to find
(g —1) Z?Zl w; as described in (4.3). The recursive reduction process shows that
we just get one word w; for each g or ¢~ !, which occurs in W. Therefore k is the
number of g and ¢g~! appearing in the word W. To find the words w; in each case

we have to do the following:

1. We scan through W from left and stop if we find any g or g!. If
we found a g, then w; is the part of W which follows after g if one
scans on to the right (this part can also be 1). If we found ¢!, then
w; is just the part of W starting with ¢~' and going on with the
rest of W on the right side of g~'. In the first case the sign of w; is
always plus, in the second case it is minus (see Rule 4.5 and Rule
4.6).

2. We repeat the first step k£ times, that is, for all cases of g and ¢~
occuring in W when scanning from the left to the right.

1

To complete the decomposition one has to do that for all generators g of the group,
which appear in the word W.

The decomposition procedure is included in the computer program for the compu-
tation of the Hecke operators (cp. Section 5.3), where it has to be performed for
a great amount of cases. The recursion we already described gives one algorithmic
solution of the problem, this remark suggests another variant of realization.
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4.3 Computation of the module invariants

Our main goal is now to compute the torsion of the module
AF - OKT'k/N

for several arithmetic groups I', where r is the number of generators of I' and N is
the submodule given by the relations described in Section 4.2. Again we have to
represent the submodule N by a suitable matrix NMAT whose columns generate V.
Then we can apply the Smith algorithm to determine the elementary divisors or can
compute modulo ¢ (resp. modulo prime ideals) to just detect the torsion. This can
be done as explained in Chapter 2 and used in a similar way in Chapter 3.

To explain the construction of the NMAT we want to consider the example of I' =
PSLy(Z[i]) with M = M, ,(Z[i]). In (4.2) we expressed the action of an element
g € G on the generators of the module M, ,,(Z[i]). In our special situation we
express A -e; = 22:1 aje e, B-ej = Zle bjce, and U - e; = lezl ujg e¢ with
j=1,...,k and aj, bjs, ujs € Og = Z[i]. At the end of Section 4.1. we defined
Aij to be the 3k generators (¢, — 1) ®¢ e of Ag. In our special case we want to call
these generators A4 j, Ap; and Ay ;.

Let us now take the first relation B? = 1 in the group I' to see how we find the
entries of the matrix NMAT. We have (B? —1) ®re; = 0. Using Formula 4.7, which
we got from our decomposition process, this gives (B —1)(B+1) ®re; = 0.

The application of property (4.1) and the linearity of the tensor product yield

(B-1)®r(B+1)-¢; = (B-1)®rB-¢j+(B—1)Qre; = 0.

Now we express B - e; as described above, which gives

k
(B—l)@erjg €g+(B—1)®F€j = 0.
=1

Using the linearity of the tensor product again we finally get

k k
Y b (B-1)@re+(B-1)@re; = (Z bj«'f’\B,e> +Ap; = 0.
=1

=1

A similar computation has to be performed for each of the other five relations, where
we also have parts for A and U. Then we are ready to build up the matrix NMAT.
Since N sits in the free module Z [7]** we have columns of length 3k. The first &
entries come from the (A — 1)-part, the next k entries from the (B — 1)-part and
the last k£ entries from the (U — 1)-part. Each relation covers all £ generators e;
of Mpm(Z]i]) = Z[i]*, and so we end up with a (3k x 6k)-matrix containing one
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(3k x k)-part for each of the six relations. Note that we represent the generators e;
again by vectors in Z[7]* as in the preceding chapters. The computations for the
relation B? = 1 give the first k£ columns. Since we only have B in the relation we
don’t get anything in the top part (first £ rows) and in the bottom part (last k& rows)
but only in the central block. Here we just have to take the b; we computed. The
first column would then consist of k£ entries 0, the entries by; + 1,b91,... ,b;; and
again k entries 0 and so on. All the entries are in Z[i]. For example we get the
following matrix NMAT for the module M;o(Z [ ]):

r > eval m(Nmat);
00 2-1 2 0 0O0 O 0 0 0 0 0 2+2lI -2 2-210
00 -2 1-22I 00 O 0 0 0 0 0 0 0 0 [
o0 2 -1 2 -1 1 0 o0 0 0 0 0 0 0 0 0 [
01 2 -1 2 0 0O0 O 0 0 1 | 2 2+21 -2 2-210
00 2 -1 2 0 0 0 -4li 2 41 -41 4 81 4+4| -4 4-41[
01 2-1 2 0 0O0 O 0 0 1 | -2 2+21 -2 2-21Q
00 0O 0O 0O 0O OO -4 -21 4 -4 -41 8 2-2I 21 -2-21
00 O O O -2 0 O 41 -2 -41 41 -4 -8I -4 2-21 41 E

L 00 0O O 0O -1 -1 0 4 21 -4 4 4] -8 21 -1-1 2 0O

Now we can use the Smith algorithm again to find the elementary divisors. We
can also compute the rank of Ar but don’t get the correct ranks of H,(I', M) =
ker(Ar — M) that way. On the other hand there are already results about them
based on analytical methods. Nevertheless we come back to that question later when
we study the Hecke operators on Ar because it is an interesting point whether one
could proof something about the ranks by these algebraic methods.

The realization of our strategy in a computer program is quite similar to the ones in
Chapter 2 and 3. The main aspect is an elegant construction of the matrix NMAT. So
we can just take the decompositions we collected in Section 4.2 and can automate the
calculation described above to perform it easily for each relation. Since the matrix
gets quite large (compared to the matrices we had in Chapter 2 and 3) we don’t get
very far with the Smith algorithm in MAPLE. To just detect the torsion we went on
with the computation modulo ¢ then. Nevertheless we needed the transfer matrices
from the Smith algorithm for the Hecke computations but were able to get through
with a Smith algorithm modulo ¢ as will be described in Section 5.3.

4.4 Results for several arithmetic groups

We carried out the computations for most of the groups we treated in Section 4.2.
To get an overview of the occuring torsion we only want to present several longer
tables found by the computations modulo £ as we already did in Chapter 2 and 3. A
complete collection of the tables will be given elsewhere, so we also want to restrict
to several examples showing the main phenomena.



75

First of all we present similar tables as for H?(I', M) for certain series M,, ,,(Z [7])
in the case of I' = PSLy(Z[7]). Again a lot of large ¢-torsion occured. But even
more, exactly the same large primes ¢ showed up in both cases. In all cases we
computed this happend with the same multiplicity one. In contrast to that the
small torsions were quite different. We also computed H;(I's, M) and Hi(I'L, M)
for several modules M = M, ,,(Z [i]) but don’t want to give the specific tables here.
We got a picture similar to the one for the second cohomology, in particular all the
large torsions from H;(I', M) didn’t appear there for the corresponding coefficient
modules.

Of course, the question arose what deeper connection should be behind the relation
we saw between H2([', M) and H,(T', M). A kind of duality was suggested by our
results but not in a direct way. Therfore a good guess seemed to be a generalization of
the classical Lefschetz duality for manifolds with boundary (see e.g. [SZ]), which says
for 3-dimensional manifolds that the second relative cohomology is isomorphic to the
first homology (both with trivial coefficients). From recent personal communication
with G. Harder and J. Rohlfs we now know that a corresponding duality holds in
quite a general context. In particular, this would give in our case that H2(T', M) =
H,(T', M), where H?(T', M) is the cohomology with compact support. Note that we
have to invert the orders of the finite subgroups of I' in M here. Now the important
point is to understand the subtle relation between H2(T', M) and H*(T', M). From a
first analysis of the long exact cohomology sequence, several torsion results (bounds)
and some knowlege about the ranks of H'(T'w, M) we find that it is not at all clear
that H2(I', M) and H*(T', M) should always contain the same large torsions.

Let us now start with the tables of the ¢-torsions for PSLy(Z[i]) and certain series
of the modules M, ,,,(Z[i]). After that we continue with some smaller tables for
PSLy(Z[v=2]), T = PSLy(Z[*Y=2]), the knot complement group I's and the
link complement group I' 7(6,4).

‘ n H £-torsion up to £ = 7919 and for several large extra primes

[2,2]
2 | 2,2]
1 |[[2,5]
6 | [2,4], [3,1]
8 127
10 || [2,8], [3,1], [5,1]
12 || [2,9]
14 | [2,10], [3,1], [5,1]
16 | [2,13], [5,1]
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‘ n H {-torsion up to £ = 7919 and for several large extra primes

18 [ [2,12], [3,2], [5,1], [13.1]

20 | [2,15], [5,1]

22 | [2,16], [3,2], [5,2], [13,1], [17,1]

24 | [2,17], [3,1], [,1]

26 | [2,18], [3,1], [5,2], [13,1], [17,1]

28 | [2,21], [3,1], [5,2]

30 | [2,20], [3,2], [5,2], [13,1], [17,1]

32 [ [2,23], [3,1], [5,2], [19,1]

34 | [2,24], [3,3], [5,3], [13,1], [17,1], 29,1], [151,1]

36 || [2,25], [3,2], [5,2], [13,1]

38 | [2,26], [3,2], [5,3], [13,1], [17,1], [29,1]

40 | [2,29], [3,1], [5,3], [7,1], [13,1], [17,1], [661,1]

42 [ [2,28], [3,3], [5,3], [7,1], [13,1], [17,1], [29,1], [37,1] [641,1]

44 [ [2,31], [3,2], [5,3], [13,1], [17,1], [67,1], [137,1]

46 | [2,32], [3,4], [5,4], [13,2], [17,1], [29,1], [37,1], [41,1], [139,1]

48 [ [2,33], [3,2], [5,3], [13,1], [17,1], [29,1]

50 || [2,34], [3,2], [5,4], [13,2], [17,1], [29,1], [37,1], [41,1], [59547091,1]

52 || [2,37], [3,2], [5,4], [13,2], [17,1], [3011,1]

54 | [2,36], [3.4], [5,4], [7,2], [13,2], [17,1], [29,1], [37,1], [41,1], [163,1]

56 || [2,39], [3,3], [5,4], [7,2], [13,1], [17,1], [461,1]

58 || [2,40], [3,4], [5,5], [7,1], [13,2], [17,2], [29,1], [37,2], [41,1], [53,1],
[367,1], [945929,1]

60 || [2,41], [3,2], [5,4], [11,1], [13,2], [17,1], [1650371,1]

62 | [2,42], [3,3], [5,5], [7,1], [13,2], [17,2], [29,1], [37,1], [41,1], [53,1], [26387,1]

64 || [2,45], [3,3], [5,5], [13,2], [17,1], [29,1], [197,1], [103979,1]

66 | [2,44], [3,5], [5,5], [7,2], [13,3], [17,2], [29,1], [37,1], [41,1], [53,1], [61,1]
(19920917 1]

68 || [2,47], [3,3], [5,5], [13,2], [17,2], [29,1], [503,1], [1297,1], [1531,1]

70 || [2,48], [3.4], [5,6], [7,1], [11,1], [13,2], [17,2], [29,1], [37,1], [41,1], [53,1],
[61,1], [429901,1]

72 [ [2,49], 3.3, [5,5], [7.1], [13,2], [17.1], [29,1]

74 | [2,50], [3.4], [5,6], [7,1], [13,1], [17,2], [29,1], [37,1], [41,1], [53,1], [61,1]

76 || [2,53], [3.4], [5,6], [13,2], [17,2], [29,2] [179,1], [41193114818503,1]

78 || 12,52], [3,5], [5,6], [7,2], [13,3], [17,2], [29,2], [37,1], [41,1], [53,1], [61,1],
[73,1], [381,1], [631,1]

80 || [2,55], [3,3], [5,6], [13,3], [17,2], [29,1], [37,1], [47,1], [59,1], [97,1], [2647.1],
[3347,1]

Table 25: ¢-torsion in Hy(PSLy(Z[i]), Mno(Z[1]))
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n H {-torsion up to £ = 7919

1 [ (2,1, [3,1]

3 | [2,6], [3,1]

5 | [2,7]

7 112,101, 3,1, [5,1]

9 | [2,13]

11 | [2,16], [3,2], [5,1], [7,1]

13 | [2,17], [3,1], [5,1]

15 | [2,22], [3,3], [5,2],[7,1], [11,1], [13,1]

17 || [2,23], [3,1], [5,1]

19 || [2,26], [3,2], [5,2], [7,1], [11,1], [13,1],[17,1]

21 || [2,29], [3,2], [5,2], [59,1]

23 || [2,32], [3,2], [5,2], [7,1], [11,1], [13,1], [17,1], [19,1], [37,1]

25 || [2,33], [3,3], [5,2]

27 || (2,38, [3,4], [5,3], [7,1], [11,1], [13,1], [17,1], [19,1], [23,1], [139,1], [347,1]

29 || [2,39], [3,2], [5,2], [13,1], [73,1], [239,1]

31 || [2,42], [3,4], [5,3], [7,1], [11,1], [13,1], [17,1], [19,1], [23,1], [29,1], [83,1],
[203,1]

33 || [2,45], 3.2], [5,3], [7,1], [13,1], [47,1], [53,1], [113,1], [191,1]

35 || [2,48], [3,4], [5,4], [7,2], [11,1], [13,1], [17,1], [19,1], [23,1], [29,1], [31,1],
[101,1], [523,1], [5333,1]

Table 26: ¢-torsion in Hy(PSLy(Z[i]), Mp1(Z]1]))

n H £-torsion up to £ = 7919

2 [ [2,7]

4 | [2,10], [3,1]

6 | [2,15]

8 | [2,18], [3,1], [5,1], [7,1]

10 || [2,23], [3,1], [5,1]

12 | [2,26], [3,2], [5,1], [7,1], [11,1]

14 | [2,31], [3,2], [5.1]

16 | [2,34], [3,2], [5,2],[7.1], [11,1], [13,1], [197,1]

18 || [2,39], [3,2], [5,1], [7,1], [53,1]

20 || [2,42], [3,3], [5,2], [7.1], [11,1], [13,1], [17,1], [19,1]

22 || [2,47], 3,3], [5,2], [7,1], [43,1], [599,1]

24 || [2,50], [3,4], [5,2], [7,1], [11,1], [13,1], [17,1], [19,1], [23,1], [31,1], [2053,1]

26 || [2,55], [3,3], [5,2], [7,2], [11,1], [13,1], [47,1]

28 || [2,58], [3,5], [5,3], [7,2], [11,1], [13,1], [17,1], [19,1], [23,1], [89,1], [107,1],
[829.1]

Table 27: ¢-torsion in Hy(PSLy(Z[i]), Mpo(Z]i]))
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‘ n H {-torsion up to £ =113

0 | [2,1], [3,1]

2 | [2,2]

4[| [2,4], [3.1]

6 | [2,4], [3,2]

8 | [2,6], [3,1]

10 || [2,8], [3,3]

12 || [2,8], [3,3]

14 | [2,10], [3,3], [11,1]

16 || [2,12], [3,4], [11,1]

18 | [2,12], [3,5], [5,1], [11,1]

20 || [2,14], [3,4], [5,1], [11,1], [17,1]

22 || [2,16], [3,6], [11,2], [17,1], [19,1]

24 || [2,16], [3,6], [7,1], [11,1], [17,1], [19,1]

26 || [2,18], [3,6], [11,2], [17,1], [19,1], [29,1], [61,1], [89,1]
28 || [2,20], [3,7], [5,2], [11,2], [17,1], [19,1]

30 || [2,20], [3,8], [5,3], [7,1], [11,2], [17,1], [19,1], [29,1]

Table 28: (~torsion in Hy(PSLy(Z[v/—2]), Muo(Z [v/—2)))

n H {-torsion up to £ = 113 ‘
[3,1]

, [3,1]
, [3,2]

]

]

]

]

]

]

J, 3,3], [7,1]
16 | [2,2], [3,2]

]

]

]

]

]

]

]

, [3,4]

, 13,3], [7,1], [13,1]

, [3,4], [7.1]

, [3,4]

, 13,51, [7,1], [13,1], [19,1]
, [3,4], [7,1]

, 13,6], [7,1]
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We conclude with tables for the figure-8 knot complement group I's and a link
complement group for the modules M, ;. We don’t know what large primes should
be here.

‘ n H {-torsion up to £ =113

0
2

1210, 7]

6 | [2,2], [3,1]

8 12,3, 3.1], [7.1], [97.1]

10 | [2,3], [3,2], [7,2], [13.1]

12 | [2.4], 3.2], [7.2]

14 | [2,5], [3,3], [7,3], [13,1], [43,1]

16 | [2,6], [3,3], [7,3], [13,1], [31,1]

18 | [2,7], [3,4], [7,3], [13,1], [29,1]

20 || [2,7], [3.4], [7,3], [13,1]

22 | [2,8], [3,5], [7,5], [13,2], [19,1], [73,1]

24 | [2,9], [3,5], [5,3], [7,4], [13,2], [19,1], [97,1]

26 || [2,10], [3,6], [7,4], [13,3], [19,1], [59,1], [61,1]

28 || [2,11], [3,6],[5,1], [7,6], [13,2], [19,1], [43,1], [53,1]
30 | [2,11], [3,7], [5,2], [7,6], [11,1], [13,2], [19,1], [37,3]

Table 30: ¢-torsion in Hy(T's, My (Z [ L=2]))

‘ n H f-torsion up to £ =113 ‘

0

2 | [24],[3,2]

4 2,7, 3,21,[7.1]

6 || [2,9], 3,2], [7.1]

8 [ 12,121, [3.4], [7.3]

10 || [2,15], [3,5], [7.2]

12 | [2,17], [3,6], [7,4], [11,2]
14 | [2,20], [3,6], [7,4], [11,1]
16 | [2,23], [3,8], [7.5], [11,1]
18 | [2,25], [3,10], [7,5], [11,1]
20 | [2,28], [3,9], [7,6], [11,1]

Table 31: ¢-torsion in Hy(T_7(6,4), M, o(Z [ L))
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5 Hecke eigenvalues for H(I', M)

One important goal of this chapter is to explicitly compute sequences of Hecke
eigenvalues for simultaneous eigenvectors of the Hecke operators T, (7 € Z|[i] a
prime element) acting on Hy(PSLy(Z[i]), My m(Z[%])). In particular we want to
consider the action of T on certain /-torsion classes. The classes in the homology
modulo torsion (free part) we also want to call automorphic classes. Then it is of
special interest to study the properties of the occuring systems of Hecke eigenvalues
mod ¢. This includes the search for congruences, the study of the relations between
such eigenvalue systems for different homology modules H;(I', M) (changing the
group, the coefficient module or both) and the relations between torsion classes and
automorphic classes (e.g. lifts to characterstic zero) as well as questions of more
arithmetic nature like e. g. the relation to possible Galois represenations mod ¢. We
will treat some of these aspects from a computational point of view.

As we saw in Chapter 4 we can mainly concentrate on the space Ag. So we start
off in Section 5.1 with describing a quite general construction of Hecke operators
T, on the modules Ag leading to a formula for 7). on elements of Ag. Then we
derive explicit formulas for T on the generators (A — 1) @ m, (U — 1) ®> m and
(B — 1) ®r m of Ar in the case of the group I' = PSLy(Z[7]). These formulas are
the basis for the algorithmic realization of the computation of the Hecke eigenvalues,
which is explained in Section 5.3. A choice of our computational results is presented
and analysed in Section 5.4. In particular we find several interesting congruences
satisfied for all primes 7 (of small norm) we considered.

We conclude with some more theoretical insights about classes in H; (I', M) in Section
5.5. So we could guess a general candidate w in Ar for an eigenvector of the free
part (if one occurs) with the help of our computer programs and can prove that it
is indeed in H;(I', M). Furthermore we can prove the eigenvalue equation T} (w) =
(7" 47w in the cases of s = 0 and s = 1 for the modules M, 4(Z [i]) using some
results from Section 5.2 and some insights about torsion classes. In all computed
cases we also see that the eigenclasses are of infinite order for r + s + 2 = 0 mod 4.
For s = 0 and s = 1 we can also prove that the candidates in the other cases for r and
s are torsion classes. In the case of general s we show that the so-called (B —1)-part
of T, (w) always vanishes.

5.1 Hecke operators on Ag

Classically, Hecke operators were defined as an interesting set of endomorphisms
on the spaces of modular forms for Fuchsian groups I'. An important aspect was
the deep relation between the Fourier coefficients of certain modular forms and
corresponding Hecke eigenvalues, which was obtained first by Hecke. The Hecke



81

theory also gives explanations for many interesting identities and leads to important
arithmetical applications. This approach is explained in most of the books about
modular forms, cf. e. g. [Sh] or [Mi].

More generally, such Hecke operators are defined on spaces of automorphic forms
or in the other interpretation on the cohomology of arithmetic groups. Mainly
one finds that in the topological context of sheaf cohomology (cf. [Ha3] or [Ha5]).
Having the appropriate comparison isomorphisms in mind, we need a construction
on the group cohomology or homology in our situation. There are some variants
of Hecke operators on group cohomology (cf. [RW] or [Th]), which are not suitable
for us. Instead we follow the approach used in [EGM 3| for Hecke operators on I'2P
(first homology of I with trivial coefficients Z), which is based on the mechanism of
restriction and corestriction in group cohomology and homology, cf. e. g. [Br].
Since H;(G, M) C Ag it is good enough to define and to study Hecke operators
on Ag. Thus, the task of this section is to go through the general construction to
finally derive a formula of Hecke operators T, expressed on the elements of A 5. For
simplicity let us suppose in this section that G is any of the groups PSLy(Ok), and
let m # 0 be an element in Ok, which is not necessarily a prime element here. Let
further M = M, ,,(Ok). Note again that we prefer to use the notation G in the
general constructions and I' for the more explicit treatment of specific arithmetic
groups since that is a standard notation.

Now we take 6, = (% 9) and consider the two groups U := I'y(7) and U’ := (7).
Note that Ty(7) = GN ;G 6, and (1) = GN 6, Gt in our case. The groups U
and U’ have finite index in G. If we carry out the multiplication

o D) EDE) - (e

we see that I'g(m) consits of the matrices from G, where the lower left entry is
divisible by 7. Analogously, I'°(7) consits of the matrices of G, where the upper
right entry is divisible by 7. In particular we have §,y(7)d-* = I'°(7), or for short
in our notation

;U6 = U. (5.1)
Then the Hecke operator T, will be defined by the following diagram

Ae —2= Ag
}p Tz (5.2)
Ay —Z— Ay

The map @ is the transfer homomorphism, ¢, is a homomorphism induced by the
conjugation with §, and [ is induced by the inclusion. The Hecke operator 77 is
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then defined as the composition of these three homomorphisms, i. e.
T, = lTogod.

We will now see that this construction is well-defined, and we want to derive a
formula for 7 ((9 — 1) ® m), where (¢ — 1) ® z m is in Ag. It is easy to see that we
have to take for I : Ag» — A just the map I((v'— 1) ®p m) := (v’ — 1) ®¢ m with
v € U and m € M, determined by the change of the group ring under the tensor
product. For ¢, we get:

Lemma 5.1 The map ¢, : Ay — Ay given by
ex((u—1)®ym) = (6;ud'—1)Qu 6 -m, (5.3)

with u € U, m € M and m # 0 an element in Ok, is well-defined.

PROOF: First note that J, acts on an element m € M just like the elements g €
PSLy(Ok) in Section 1.2 (action of GLo(K)) and because of (5.1) we have 6,ud, " €
U'.

Now let t1 := (ugus — 1) @pm, to := (u; —1) ®p uz-m and t3 := (uy — 1) @y m) with
u1,us € U and m € M. Because of property (4.1) we have t; = t5 + t3. To show
that e, is well-defined, or in other words, that the algebraic structure is preserved
under ., we just have to show that €,(t1) = e, (t2) + e (t3).

So, on the one hand we have

ex(te) +ex(ts) = ex((u1 —1) Qpug-m)+e;((ug — 1) @y m)
= ((Lrul 5;1 — 1) Ry (57TU2 -m + (57FU2 5;1 - 1) QQur 67r - 1.

On the other hand we have

ex(t1) = ex((urug —1) @y m)
= (Spuiug 6" — 1) @ 6 -m
= ((6pu16, " — 1) Squa 6.1 + (6pu2 6.1 — 1)) ®pr 6 - m
= (0pu1 6" — 1) 6pup 0, Qi 6 - m + (Gpup 0" — 1) @y 8y -,

But §;uy 6.1 € U’ because of (5.1) and so we can apply property (4.1) again and get
€7r(t1) = (57TU1 5,;1 - ].) Rur 67|—U2 -m + (57TU,2 5,;1 — ].) Qur 67r - 1m,

which gives the equality we wanted to show. O
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Finally let us consider the transfer map ®. For that let the index of U in G be
v =[G : U]. Then we can take r1,...,7r, € G as a system of representatives for
G/U and have

G = TlUU U?”,,U.

Let ¢ € G, then there are uniquely determined elements h(g,i) € U with i €
{1,...,v}, so that

g-1i = Teu) - h(g,1). (5.4)

The two modules we need will be Ag = ag ®¢ M and Ay = ay Qu M in the
setup of Section 4.1. Now we can state the following lemma about the transfer
homomorphism .

Lemma 5.2 The map ® : ag ®ac M — ay Qu M given by

v

®((g-1)®m) = » (hlg,i) 1) ®@yr; ' m, (5.5)

i=1
with g € G, m € M, v =[G : U] and h(g,1), r; as above, is well-defined.
PRrOOF: Again we have to show that ® preserves the algebraic structure determined
by the definition of the the tensor product ag ®c M introduced in Section 4.1. For
that let ¢; := (9192 — 1) ®g m, t3 := (g1 — 1) ®g g2 - m and t3 := (g2 — 1) ®¢ m with
91,92 € G and m € M. Again we have t; = t5 + t3 because of property (4.1). Then

we have to show that ®(t1) = ®(t2) + P(3).
Note first that we have a representation as in (5.4):

9192 Ti = Tgiga(s) * h(QlQQ,i)- (5-6)

There are also representations gi - 7; = 7,3 - h(91,%) and go - 15 = 7g,() - h(9g2, ¢) and
as well a representation g - 7g,() = T'g1(g2(i)) - P91, 92(7)). Furthermore it holds that
91(92(7)) = g192(¢) for all 1,90 € G and 7 € {1,...,v}. So we replace go - ; in (5.6)
by its representation and get

91 Tos(i) - Mg2,8) = Tgigai) - h(9192,9),
giving
Torga() " 91 Toai) - B(g2,1) = h(g1g2,9).
Next, we replace g; - 74,(;) by the last representation above and finally get

h(g192,1) = h(g1, g2(2)) - h(ga,7)- (5.7)
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Then we use (5.7) to express

h(g192,1) =1 = (h(g1,92(8)) — 1)h(g2, ) + (h(g2,7) — 1). (5-8)
Now, on the one hand we have

®(ty) = @((g1—1) ®g g2 - m)

v

= Z(h(gl,i) -1)®yr;tgs-m =8

i=1
and

O(t3) = @((92—1) ®¢m)

v

= ) (Mgi)—)@yry-m =T.

=1

On the other hand we have

®(t) = ®((9192 — 1) ®g m)

v

= Z(h(gnga )—1)®yr; -m

= Z(h(ghgz(i)) — Dh(g2,7) ®@ur; ' -m+ Z(h(gmi) —1)®yr;'-m

by applying (5.8). We already see that the second sum in the last line equals 7.
So we are done if we can show that the first sum equals S. For that we have
G2 - Ti = Tgy(i) - h(g2, 1), which can be rearranged to

Tty 92 = hlga,i) -1 (5.9)

Now we get for the first sum

v v

Z(h(gla.QZ(i)) —1Dh(gs,9) @ury -m = Z(h(gla.QZ(i)) —1) ®u h(gs,7) 77" - m
= Z(h(glaQQ(i)) —1) ®u gy 92 -

because h(gs,7) € U, and therefore we can apply property (4.1) in the first step and
(5.9) in the second step.
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If we now set j := go(i), which gives i = g, '(j), we can just change the index of
summation and get

Z(h(glaQQ(i)) ~1)Qury,ig-m = Z(h(gl,j) —1)Qur; ga-m =8,
i=1 j=1
which gives the desired equality. O

Forming the composition of the three homomorphisms gives:

Theorem 5.3 Let G be any of the groups PSLy(Ok) and let m # 0 be an element in
Ok. Let then T} be the Hecke operator defined by the diagram (5.2) via T, = IToe o®,
where the homomorphisms ®, e, and I are constructed as above and let (g —1) ®gm
be in Ag with M = My m(Ok). Then

v

T((g—1)@cm) = 3 (6:h(g,i) 05" — 1) @c 6,7 - m,

i=1

where 11, ... ,1, is a system of representatives for G/U and h(g,i) € U as described
above.

Proor: Using Lemma 5.2 we get

v

O((g-1)®em) = Y (h(g,i) - )@y -m.

i=1
Applying now Lemma 5.1 yields

v

Ex0o®((g—1)®m) = Z((Sﬂh(g, )0t —1) @ 6yt - m,

=1

Finally we switch from U’ to G on the right side by using the map I and get

T:((9—1)®cm) = Toeg,o®((9—1)®cm)
= ) (6:h(g,1)6;" = 1) ®¢ 6oy - m,
i=1
O
We also need the following lemma about the index of U in G. For simplicity we
only state it for the full group PSLs(Ok) and for prime elements 7 here. For other
7 one would have to count more generally the elements of the projective line over
Ok /mOk. One can also derive a similar formula for G = T'y(p).
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Lemma 5.4 Let G be PSLy(Ok) and let m € Ok be a prime element. Then
G :To(m)] = N(7) + 1,
where N () is the norm of .

ProOOF: Let p = mOk be the principal ideal generated by 7. Then #(Ok/p) =
N(7). The ideal p is always a prime ideal and since we are in a Dedekind ring it
also holds that Ok /p is a finite field, which we want to denote by IF,, the field with
q = N(m) elements.

Now we can consider the canonical group homomorphism

We have G/ker(¢p) = ¢(G), and from ker(¢p) C D[y(w) follows [y(w)/ker(d) =
#(L'o(7)). Therefore we get

(G To(m)] = [G/ker(9) : To(m)/ker()] = [6(G) : $(To(m))] = % |

Furthermore ¢ is surjective since PSLy(Ok/p) is generated unipotently as PSLs
over a field, which gives #¢(G) = #PSLy(F,). In ¢(I'o(7)) we now have to count
matrices in PSLy(F,) of the form (&%). For even ¢ we have (¢—1)g possibilities and
for odd ¢ we count (¢ — 1)g/2. On the other hand we have #PSLy(F,) = (¢* — 1)q
for even ¢ and #PSLy(F,) = (¢*> — 1)g/2 for odd g (see [Hu]). If we divide out and
use that ¢ = N(7) in our case we get the formula we wanted to show. O
Then we can state the following corollary from Theorem 5.3.

Corollary 5.5 Take the assumptions from Theorem 5.3 but let w be a prime element
i Og. Then

N(m)+1
To((g-1)®em) = Y (5:h(g,i)6," —1) ®c opr; ' - m.

=1

PRrROOF: Just use Lemma 5.4 and replace the index v in the sum of Proposition 5.3
by N(m) + 1. O
We conclude with some remarks about the Hecke operators 7.

Remark 5.6 Observe that T} is strictly speaking the Hecke operator associated to
the principal ideal generated by n. But most of all the situation gets more subtle
if Ok has no longer class number 1. One has to consider T, for general ideals a
then, that is, not only for principal ideals. But with our construction we cover the



87

principal ideals only (which, of course, give already some insight). On the other hand
these don’t give enough information for the Euler products in view of arithmetical
applications in the end. Hence one needs formulas for the other cases as well. For
that one also has to consider the groups PSL, for the other ideal classes. If, for
example, we would be in the case of class number 2 like for Z[+/=5] and the two
groups would be G; and (G we would have to build up a construction for the Hecke
operator as a map 7T, : Ag, X Ag, — Ag, X Ag,. But still, there remain strong
problems for actually performing the explicit computations then (see also Remark
5.12). Note further that it is not difficult to generalize our formulas to congruence
subgroups of PSLy(Ok) since we preserve the finite index of U and U’ in G, but
these groups depend on G then.

5.2 Explicit formulas for I' = PSLy(Z[i])

The aim of this section is to find the explicit formulas for the Hecke operators 717, for
the three generators A, B and U of the arithmetic group I' = PSLy(Z[i]). Here,
the T, live on Ar and M is M, ,(Z[i]). We also mention the changes one would
have to make to produce similar formulas for other I' = PSLy(Ok) or I' = T'y(p).
In general one has to produce the explicit formulas for 7 ((¢ — 1) ®r m) for each
generator g of I' and m € M.

Starting with an explicit system of representatives ri,... ,7yx(r)41 for I'/T'g(7), the
first step is to compute the matrices h(g,i) € I'g(mw) for i =1,..., N(7) + 1. Then
we have to express the result for 7 ((¢ — 1) ®- m) in a second step as a linear com-
bination of the generators of Ar, which would be in our case a linear combination
of (A—1)®re; (B—1)®re; and (U — 1) ®r ¢;, where the e; (cp. Section 1.2) run
through the £ = (n+ 1)(m + 1) generators of the Z [i]-module M, ,,(Z[7]). This is
necessary to finally build up a matrix representation for each 7). acting on Ar or for
its restriction to certain /-torsion parts.

For simplicity we want to restrict to prime elements = with N(7) = 77 = p with
p being a rational prime, that is, to 7 = 1+ 4 or 7 = a + bi (up to units) with
N(m) =a*+b*> =p and p =1 mod 4. Then we have as a system of representatives
ri (i =1,...,N(7w) + 1) for T'/Ty(n) the matrices r, = (L9) forz =0,...,p—1
and the matrix ro, = (_9}), using oo for the last index.

Let us now go through the two steps for each of the generators A, B and U.

T, for the generator A.
In this case we have to carry out the two steps for the following formula from
Corollary 5.5 with m as mentioned above:
p+1
T(A—1)®rm) = Y (5,h(A,i)5;" —1) ®r br; ' - m.

=1
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Note again that we have N(mw) = p here. To avoid confusion with the i in Z[i]
we always want to use z (including x = oo) as index for the representatives from
now on. So we have to find the p + 1 matrices h(A, z) determined by the system of
representatives described above. We get

Ay = G 2) (:ch (1)) - (11»@ (1)>

for z = 0,...p — 1. Now we have to find 74(,) and h(A,z) as described in (5.4), so
that

A-1y = Taw) - h(A ).

We easily see that we can take

1 0y _ 1 0 10
142 1)  \1+z 1 0 1
forx=0,...,p— 2 and
1 0y (10 10
1+z 1)  \0 1 p 1

for x = p — 1. Hence we find that h(A,z) = (§9) forx =0,...p—2 and h(A4,z) =
(59) for z = p— 1, and these matrices are obviously contained in I'y(r).
In the last case we have

= ()G - (50

and we see that we can take
0 1\ (1 -1y _ (1 -1
10/ \o 1) =" \o 1)

0 1
-1 1
which gives h(A,00) = (§ 7).
= (§9), so that all summands for z =

Now we have 6, (§9)d*

s

.,p— 2 just

1 0
01/ rz=0,..

vanish. Furthermore we get 6, (5 ‘1))(5 L=g, (L 96 = (L Dand s, (L 1ot =

(o 7). We also have T'pll—(pll?) =(,%,9) and r} = (_9}) as an element in

PSLy(Z[i]).
Then we obtain

wn-vem = (93 ) (2, 2w
(E)) 6y e
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Next, we need a linear combination of the following form:

Tr((A—1) ©r m)

k
= Zaz( —1 ®F€Z+Zﬂz —1 ®F€Z+Z% —1)®r€i
1=1

=1
k
= (A-1)®r Zaiei +(B-1)@®r Z@-ei +(U=-1)@r Y _ e
=1 =1 =1

We mention that last rearrangement, because it gives the best suitable form for a
realization in our computer program later on, which will be discussed in Section 5.3.
To find the desired linear combination for (5.10) we first have to express the matrices
appearing on the left side of ®p as a word in A, B, U, A=, B~! and U~!. Then we
can use the decomposition process we described in Section 4.2 to extract the factors
(A—1), (B—1) and (U —1). Using the properties of the tensor product we shift
the remaining sums to the other side of ® and obtain the coefficients for the linear
combination after applying the action of the group elements to the generator m we
consider.

We now describe how one can express the matrices in the formula as words in the
group generators and its inverses and how the decomposition works. For that recall
that A= (19), B=(97) and U = (}9). Let us start with the matrix (19). We
have m € Z[1i], so that we can take m = a + bi with a,b € Z. This gives T = a — bi.
Since (19)* = (19) and (19)™"=( L 9) it is clear that we can express

al
10\ i
(ﬁ 1) = AU °,

which is a word in our generators A and U and its inverses. On the other hand we

have
1 —7 1 0
0 7)=2(Y)=
(1 0) _ A,
T 1

which gives us the representation (§ ") = BA*U’B as a word in A, B, U and their
inverses.

Applying the two rules 4.5-4.6 for the reduction process in Section 4.2 we can express
Av—1= (A — I)Apol(a)7 Ut —1= (U — l)Upol(b) and U™ —1= (U — 1)Upol(—b) and
can therefore decompose as follows:

AaU_b -1 = (A — 1)Apol(a)U_b + (U 1)UP0l( b)

and
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and
AU -1 = (A= 1) AU + (U = D)Upa),

where Apoia), Upoisy and Upgi(—p) are certain polynomials in A respectively U. These
polynomials depend on the sign of a and b. For example, we have

Apol(a) - Aa_l + Aa_2 +...+1 for a >0
and
Apoi(ay = —A"— At - ATt for a < 0.

We assumed a to be non-zero, but in case of a = 0 the polynomial A,y ,) would just
be the zero-matrix. Analogously we have to express the polynomials for U.
Finally we get

BA°U*B —1
= (A=) AU’ B+ (B = 1)(A"U'B +1) + (U = 1)Upas) B.

So we are ready to write down the final formula for the Hecke operator 7). expressed
on any generator (A — 1) ®r m of Ar.

Proposition 5.7 Let T, be the Hecke operator on Ar for I' = PSLy(Z[i]) as de-
fined in Section 5.1, where m = a+bi € Z[i] is a prime element with N(7) =p (p a
rational prime), i. e. p=1mod 4 or ™ = 141 up to units. Also letm € M, ,,(Z[7])
and let A, B and U be the generators of I' as introduced in Section 1.1. Then

T,((A—1)®r m)
= (A1) ®r Ay (U"’ <1 ip (1)> +U'B <_01 3)) ‘m

+ (B=1)®p (A°U’B +1) (_01 g) ‘m

0 0
+ (U-1)Q®r (Upol(—b) (1 ip 1> + Upan) B (—1 g)) -m.

PROOF: Replacing the two relevant matrices in (5.10) by the words in A, B, U and
its inverses we get

T:((A—1) ® m)
= (AU - 1) ®r (1 ip (1)> -m+ (BA*U’B — 1) ®r (_01 g) ‘m.  (5.11)
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If we now replace the words by the decompositions we found above and use the
properties of the tensor product we get our final formula. O

T, for the generator U.

Next, we want to consider the generator U, because we have to do here a very similar
job as for the generator A. So we leave the hardest case of the generator B until the
end.

Again we have to master our two steps for the following formula with analogous
assumptions as for A:

p+1
T(U-1)@rm) = Y (6:h(U,i)07" = 1) @ ber; ' m.

=1

As in the case of A we want to write h(U, z) instead of h(U, i) from now on. At first

we need the p + 1 matrices h(U, ) determined by the system of representatives for
['/Ty(m). We have

10 0 1 0 1
UToo = (z 1) (—1 0) = (—1 z)
and so we can take
0 1\ _ [0 1\ (1 =\ _ (1 —i
1 4) “\=10/\o 1) =" \o 1)

which gives h(U,00) = (§ 74).
For the other representatives we get

v = (Y=L Y

Since we already used 7, we should try to find an expression of the following form:

(1) = 00 e D)

Here, the first factor should be one of the r, and the second should be in I'y(7) to
be one of our matrices h(U, z). The second matrix will be in Iy(7) if 7 divides the
lower left entry  —y—+14. So we have to find an element y € {0,... ,p—1} depending
on x, such that this divisibility condition is satisfied. For that let 7 = a 4+ b: with
a’? + b2 = p as in the case of the generator A. Since 7 is a prime element we have
ged(a, b) = 1. Our goal is to express the entry as follows:

z—y+i = (a+bi)(c(z)+d(z)i) = (ac(z) — bd(x)) + i(ad(x) + be(x)).
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Using the extended Euclidean algorithm we can find some ¢(z),d(z) € Z, so that
ad(z) + be(x) = 1. Thus we have

y = x—ac(x)+ bd(x). (5.12)

Furthermore we can add any multiple of a to ¢(x) as long as we substract the same
multiple of b from d(z). If we do that in (5.12), we always modify the sum by a
summand a? + > = p. Hence we can always choose unique c(z) and d(z) so that
y is in the set {0,...,p — 1}, and we want to define them by this condition. From
now on we put z := x — y. Our consideration shows that we always have a matrix

hU,z) = (z—ll—z (1])

with z depending on 7 and x. Then we get

10y 1 0
"\z+d 1) T \rHz+1d) 1

and

Hence we obtain

rw-neem = &((deg )= (1) (1)
() =)o (G0 (o)

Next we have to go through the same business as for the generator A, that is, we
have to express T, ((U — 1) @~ m) as a linear combination of the (A — 1) ®r e;,
(B—1)®re; and (U — 1) ®r e;. This means, we first have to express the matrices
(W—1(1Z+i) (1)) and (§~7") as words in A, B, U and its inverses and then have to go
through our decomposition procedure.

From the consideration above we have 771(z + 4) = ¢(x) + d(z)i, where c(x) and
d(x) depend on z. But this dependence is not as uncontrolled as one might think.
From above it is clear that we can choose unique numbers ¢, d € Z with ad+ bc = 1,
such that ac — bd € {0,...,p — 1}. So we define ¢ and d by these conditions. Then
we see that we end up with two cases for x only. For z € {ac — bd,... ,p — 1} we
can just take c¢(z) = ¢ and d(z) = d and for z € {0,1,...,ac — bd — 1} we have
to take c¢(x) = ¢ — a and d(z) = d + b. Since the first matrix type in our formula

M

_|_
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for T, (U — 1) @r m) is already a lower triangular matrix of the right shape we can
express it again as

1 0
— c(z) rrd(x)
(71’1(2 +1) 1) ATEUTE,

but with the two cases for ¢(z) and d(z) only. Furthermore we have B(,} 9)B =

(§ ~T) and, since mi = —b + ai, we easily see that we can write
L =m) _ payep
0 1 '

Then our formula has the following shape:

(U — 1) ®r m)
ac—bd—1

p—1
_ c—ayrd+b Q0 0 crrd Q0 0
= Y U+—1)®p(_x 1)-m+ Z(AU—1)®F(_x 1)-m
=0 r=ac—bd
+ (BAT"U*B — 1) ®r (_01 g) .. (5.13)

Now we use similar decompositions for our words as in the case of the generator A.
The structure of the matrix polynomials is the same, only the exponents have to
be adapted. So we get A%®) — 1 = (4 — 1) Apoe(z), U™ — 1 = (U = 1)Upoiga(a))
At —1=(A=-1)Apup and U* —1 = (U — 1)Upyyq)- Then we obtain

Proposition 5.8 Let T, m, I' and m be as in Proposition 5.7, ¢ and d as introduced
above and let A, B and U be the generators of I'. Then

T.(U—-1) ®rm)

ac—bd—1 -1
= (A-1)®r (Apol(c—a)Ud+b Z (_7; ?)) + (APOZ(C)Ud pz (—7T:r (1)>>
=0 s=ac—bd
T Ay U°B (_01 g)] ‘m+ (B 1) @ (AU°B +1) (_01 75) m
ac—bd—1 p-l
+ U -1)®r (Upol(d+b) ; (jm (1))) T (Upol(d) Zbd (—Wx (1)))

0 =«
+ Upol(a)B (_1 0):| -m.
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PRrOOF: Using our decompositions we get from (5.13)

T.(U —1) @ m)

ac—bd—1
0
= Y (A= D U+ U = D) @1 (T, 1)
=0

p—1
0
+ Y (A= D AU + (U = DUpaa) ©r (—Wx 1>'m

r=ac—bd

+ (B-1)(A"U*B +1) & <_01 g) ‘m

. 0
+ (A= DApo-p)U*B + (U = 1)Upoi(a) B) ®r (‘1 7(;) -

If we now apply the linearity of the tensor product, our property (4.1) and rearrange
everything we get the desired formula. O

T, for the generator B.
Finally we have to carry out our two steps for the following formula for the generator
B using analogous assumptions as for the generators A and U:

p+1
T:(B-1)®m) = Z(&rh(B, )0t — 1) ®p bpry " - m.

=1

Again we write h(B,z) instead of h(B,7) from now on. So we start off with the
determination of the p 4+ 1 matrices h(B,z) € [y(7). We have

0 -1 0 1 10
Brra = (1 0)(—1 0)‘(0 1)
in PSLy(Z[i]), and so we can take

E7) = GG =6

Therefore h(B,00) = (4?) and the associated summand vanishes. Hence we have
to concentrate on

e (Y- (- ()

For x = 0 we can represent

0 -1\ /1 0 10
B-ro = <1 0) (0 1> _7"°°'<0 1)’



95

10
01
In the other cases we can express

(-331 (1)) - (p—i}w(x) ?) (—px—i—x-xinv(x)—l im)(;)—p)’

1

and therefore h(B,0) = ( >, so that the associated summand vanishes as well.

where inv(z) := v~ in the multiplicative group F;. Since inv(x) € {1,...,p — 1}
the first matrix is always one of the representatives r, with z € {1,... ,p — 1}, and
the second matrix is in I'y(7) because its determinant is one and x - inv(z) — 1 is
always divisible by p, because x - inv(z) = 1 mod p. Note here that p = 77, so that
the lower left entry in the second matrix is indeed divisible by 7. Then we have

5 v 1 5!
"\—pr+zx-inv(x)—1 inv(z)—p) "
. T m
- \r Y =pr+z-inv(z)—1) dinv(z)—p)’
and the formula for 7, ((B — 1) ®r m) looks as follows:

T.(B—1)®rm)

p—1
:2((_1 T . >_1)®F(W 0).m.
= \\7 (—px 4+ z-inv(z) — 1) inv(z) —p —z 1
So we see that the relevant matrix is a quite arbitrary matrix in PSLy(Z[i]). Hence
we first have to represent that matrix as a word in A, B, U and its inverses, which
can be done by applying the Euclidean algorithm, which we have in Z[i]. After
that we have to reduce this general word minus 1 by our decomposition process from
Section 4.2. That procedure will finally give us a representation for the terms left
to @r of the form (A — 1)Poly(y) + (B — 1)Polp(y) + (U — 1)Poly(y), where Poly,),
Polp(y) and Poly ;) are quite general matrix polynomials in A, B, U and its inverses.
This leads to

Proposition 5.9 Let T, m, I' and m be as in Proposition 5.7 and let A, B and U
be the generators of I'. Then

p—1
0
T.(B—1)@m) = (A-1)@r |>_ Polay (_”x 1) ‘m
Lz=1 .
= T 0 ]
+ (B — 1) Qr ZPOIB(z) (—.’L’ 1) -m
Lz=1 d
Fp—1 . Z
+ (U - 1) Qr POIU(Z) (_w 1) -1,
| =1 i
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where Pol (g, Polp) and Poly(y) are polynomials in A, B and U and its inverses
as described above.

PROOF: After the representation of the matrix (W—l(,pﬂz.mv(w),l) im&),p) as a

word in A, B and U and its inverses and the application of the decomposition
procedure we find:

T.((B—1)®rm)

p—1
0
= Z[(A - l)POIA(w) + (B — l)POIB(w) —+ (U — 1)P01U($)] Rr (_7; 1> - In.
=1

Using the linearity of the tensor product and property (4.1) we then get the formula
we wanted to show. O

Remark 5.10 For the generator B the most general case appeared, that is, to rep-
resent an arbitrary matrix in PSLy(Z[i]) as a word in A, B, U and its inverses and
to apply the decomposition procedure in its general form.

Of course, we could have written down the formulas for A and U in that general
version as well. But we have choosen the more explicit version to really make clear
what happens in each case. On the other hand, it seems to be useful for the realiza-
tion in the computer program to actually avoid the most general algorithms if one
already knows the expressions to finally save computation time.

Furthermore the explicit formulas for A and U could be used with success in several
proofs we give in Section 5.5.

Remark 5.11 One can treat the other cases of 7 = p with N(7) = p? in a similar
way. We would have to start with a different and larger system of representatives r;
and would have to adapt the matrices h(g, ) for g € {A, B,U} then.

Remark 5.12 One can derive such explicit formulas in a similar way for other
groups I' = PSLy(Ok) or congruence subgroups of them as long as O is Euclidean.
One starts with the sytem of representatives for I'/T'y(7) and determines the matrices
h(g,1) for all generators of the group. Then one ends up with similar formulas for
T:((¢9 — 1) @r m) for each generator g. The critical point arises when a situation as
for our generator B appears. Then one has to represent any matrix as a word in the
generators and its inverses, and for that we needed the Euclidean algorithm. So we
would need another method for the other cases of class number 1, and for higher class
number one needs another construction for the Hecke operators anyway as already
mentioned in Remark 5.6. For some of the algorithmic aspects over general Ok
one could use the approach for finitely generated modules over Dedekind domains
already worked out in [Co2| and [Co3].
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5.3 Computation of the Hecke eigenvalues

Our goal is the computation of simultaneous eigenvectors for the Hecke operators
Tr on Ar for the arithmetic group PSLy(Z[i]). As a first step we carried out
some extensive computer calculations giving results for many 7. The programs
we developed are based on the formulas we derived in Section 5.2. Inspired by the
computational results and several insights we got during the computer realizations
we were also led to several observations which could be proved using our formulas
from Section 5.2. This will be summarized in Section 5.5. The aim of this section
is the description of the steps to carry out the computer calculations. The modules
and also the maps 7} are represented by certain matrices and again we want to stress
the more algorithmic aspect by using capital letters and often the appendix MAT
for these data structures.

Note first that we only have a representation by the matrix NMAT for the submodule
N in Ar = Z [i]**/N. Here the columns of NMAT generate the module N. Using
the Smith algorithm over Z [ ] we find the matrix Ngyry which encodes the module
invariants for Ap. The elementary divisors give the torsion in Ar and the zeros on
the diagonal represent the free part.

We constructed the operators 7T, on Ar but for the computation we also need a
representation in a suitable matrix form. For that we have to realize T, as a map
on Z[i]** always having in mind that we have to consider that map modulo N in
the end.

Therefore our first step is to build up the (3% x 3k)-matrix for 7, which we want
to call TMAT,. This matrix has to consist of three (3k x k)-blocks and has to be
adapted to the shape we already chose for the matrix NMAT (see Section 4.3). So the
first block belongs to T, ((A—1) ®-m), the second block represents 75 ((B—1) ®rm)
and the last one T, ((U —1)®rm). For m we have to substitute the k generators e; of
the modules M, ,,(Z[i]). To fill up the blocks we now have to use the formulas we
derived in Proposition 5.7-Proposition 5.9 just expressed in the form we need. Each
block consits of an (A — 1)-part, a (B — 1)-part and a (U — 1)-part in an analogous
form as for the matrix NMAT. To determine the entries one has to evaluate the
action of the involved matrix polynomials on all the generators e;. Of course, that
can be realized in a nice way in a computer program. As one can imagine these
matrices become really huge for modules M, ,,(Z [¢]) with larger m and n.

To give an impression of how the final matrix might look like we present as an
example the matrix TMAT, for 7 = —1 + 27 in the case of the module M, o(Z[i])
here (for the corresponding NMAT cp. Section 4.3):
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r> evalmtpi);
2+41 0 0 6+8I -2+41 -6-8I -8-8I 0 0 [
4-81 2-41I 0 -28+241 6-121 28-161 24-121 0 0 O
2+41 2+41 2+41 -4-221 14+41 261 8+41 -12+21 8+8I[
0 1 0 -3-41 -6-161 -4-3I 5-4| 1 0 -3-41
F2+41 0 0 4-81 -4+161 12-41 -4-21 0 0 [
+2-41 -3-41 -3-41I 6 -4-31 -7-201 4+4| 4-31 -3-411
18+8I 0 0 4+121 4-21 -16-281 2+4I 0 0 [
g3+16l 0 0 -4-121 6-201 -20+241 8+161l 2-41 0 [

L 0 41 -4 1 -8-8I =21 4+101 4+181 61 -4 1 2+410

Now, the actual goal is to compute the action of T, on certain parts of Ar. So we
want to consider T} either on certain /-torsion parts of Ar or one the free part. More
precisely, we have to study the induced maps

T(Z) : A‘{_‘ors Rz Fy — A‘{_‘ors Rz IF[,

™

where A" denotes the torsion part of Ar, respectively
Tﬂ(-free) . AF/A%OTS N AF/A%OTS.

So we have to extract a nice matrix representation for the part of Ar we want to
consider and for the maps induced by 7. As already described, the matrix Ngyrry
encodes the free part and the torsion parts in a suitable way. Moreover we get the
transformation matrices UT and VT with Ngyryg = UT - NMAT - VT from the ap-
plication of the Smith algorithm (cp. Section 2.2). To treat the ¢-torsion (£ a rational
prime) we consider the diagonal elements d which are not prime to £ in Z[i] and
set dy = gedy(;1(d, €). Now we analyse Z[i]/d,Z 7] and determine the generators
over Z|[i] (one or two). For that we have to distinguish between different cases for
the general entries. For example we get the single generator 1 for the 2-torsion in
the case of the entry 1+ 4, the generators 1 and 7 for the 5-torsion in case of the
entry 5 or the generators 2 and 1+ for the 3-torsion in case of a mixed entry 3 + 3.
We carry out this procedure for all diagonal elements contributing to the chosen
f-torsion. Analogously we treat the zeros representing the free part. Here we have
1 and 7 as generators in each case. At the end we replace each column of the matrix
Ngyrra contributing to the part we consider by one or two columns obtained by
replacing the diagonal elements by the generators we determined. All these relevant
columns are collected in a new matrix LMAT. For example, if we just find one entry
d which is divisible by 5 we end up with a matrix LMAT for the 5-torsion consisting
of two columns, the first one given through the replacement of d by the generator 1,
the second one given through the replacement of d by the generator 3.

Having described the desired part by the matrix LMAT we can now apply the map
induced by T,. Note that LMAT is a representation in the Smith basis whereas the
induced map for 7, was realized by the matrix TMAT, in the monomial basis up
to now (refering to the e;). Therefore we first have to carry out a base change into
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the Smith basis for the matrix TMAT,. This can be done by forming the matrix
UT - TMAT, - UT~! since the matrix UT comes out during the determination of the
Smith normal form of the matrix NMAT. The induced action of 7, on LMAT is then
described by LMAT, = UT - TMAT, - UT ! - LMAT.

What we finally want is to extract a special matrix TMATgT*) representing the action
of T, just on the part we have chosen, i. e. in the basis given by the matrix LMAT.
For that we would have to solve the linear system LMAT - TMATS) = LMAT,,
where the star stands for an /-torsion part or the free part. In general this system
has no solution. This happens because of the interpretation of T, by maps on Z [ 7 ¢
instead of Ar = Z [ ]>*/N. Therefore we have to change the matrix LMAT, into a
matrix LMAT/ such the system can be solved (producing rows of zeros in LMAT!
where we have rows of zeros in LMAT). This is possible because T, maps the torsion
part into the torsion part and the free part into the free part. Note that the columns
of the matrix LMAT, are vectors in Z [4]3* but represent vectors in Ar and so we
can always change the columns of LMAT, modulo Z [i]-linear combinations of the
matrix Ngypry if we are in the torsion case and of a modified matrix Ngy g if we
are in the free case. We get the matrix Ng,;;rpy from the matrix Ngyyrn by replacing
all entries different from zero by one. So we find the matrix LMAT by considering
the entries in the rows of the matrix LMAT, modulo Z [ ]-linear combinations of
the entries in the corresponding rows of the matrices Ngyvrra or Ndyrg. Of course
we only get results up to conjugation for the matrices TMATS” since we could have
taken a different LMAT-basis at the beginning. For the free part we then solve
the linear system over Z and for the /-torsion parts we solve it over F,. So we get
matrices representing the maps Tg) or Téfree), and we can now look for simultaneous
eigenvectors for many 7.

We realized this whole process in a computer program and could perform the com-
putation for many interesting torsion classes in the end. We also found interesting
eigenvectors in the free part which are somehow related to the ones in the torsion
parts, what is shown by certain congruences. But all that will be discussed in Section
5.4. The computer realization contains many complicated and tricky parts. At first
many problems had to be solved for the construction of the matrix TMAT,. For that
we refer to the formulas in Section 5.2. For all three generators we need an efficient
procedure which performs the decomposition procedure for a word in A, B, U and
its inverses to bring it into the right shape of (4.3). For the generator B there is
also the problem to represent a general matrix as a word in A, B, U and its inverses
first, which can be solved by the use of the generalized Euclidean algorithm over
Z[i]. Furthermore many small tasks had to be solved as e. g. the determination
of ¢ and d in the part of U or the realization of inv(z) for B and so on. In general
it is not critical to build up the matrix for 7, but, of course, the computation time
increases a lot when the norm of 7 gets large. Then we have to deal with a lot more
summands in the formulas. The critical point in the computation is the determina-
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tion of the Smith normal form including the determination of UT. The matrix UT
gets huge entries and we even have to invert that matrix later. With the help of the
LLL-algorithm we could only compute up to n = 18 in the series M, o(Z[7]). Note
that the Smith algorithm in MAGMA produces better matrices UT but works only
over Z up to now.

But it is also possible to perform the whole computation modulo ¢ (Smith form mod
¢, solving the linear system mod ¢ and so on) getting a result mod ¢. Note that we
have to consider all matrices over F, then. So we have to fix a map from Z [¢] to I,
by sending i to one fixed root of —1 in Fy (in the nonsplit cases we have to switch to
F, and call the roots & and —a then). If we want to consider a certain /-torsion we
get zeros in the Smith normal form mod / on the diagonal, and therefore we end up
with a mixture of the /-torsion part and the free part in the matrix LMAT and have
to care about this during the analysis of the results. Nevertheless we then managed
to compute the Hecke action on several large torsion classes as e. g. in the case of
{ = 661 for M40,0(Z [’L])

5.4 Analysis of the results and several congruences

In this section we present a choice of our computational results for the Hecke eigen-
values for several modules M = M, ,,(Z[i]). Most of all we were interested in the
induced action of the Hecke operators 7). on certain /-torsion parts of Ar respectively
H, (', M) for I' = PSLy(Z[i]). For that we studied the maps T® (cp. Section 5.3).
Then we were looking for simultaneous eigenvectors for many T and collected the
corresponding sequences of eigenvalues. But of course we were also interested in
simultaneous eigenvectors in the free part, which meant to study the maps Tifree)
All these computations could be done within the same setup as described in Section
5.3. Since the picture for the free part can be explained quite well we only present
one table as an example and discuss the pattern we see. All the other tables contain
eigenvalues on certain /-torsion parts.

We start with some more detailed comments on the specific data collected in the
tables. Then we list a choice of tables and close with the analysis of our results.
All tables contain a list of 7’s we chose for the computation. These 7 always satisfy
the condition N(7) = p (p a rational prime), since we developed the formulas for
T in Section 5.2 for these cases only. We denote the eigenvalues of 7 on the free
part of Ar for the modules M, (Z [i]) by Axmn- The eigenvalues on the ¢-torsion
parts are always denoted by a,. Here we have several cases we computed with the
Smith normal form over Z [i] and some computed mod ¢. In the first situation we
mention the eigenvectors we found for the matrices TMATY and in some cases we
also include these matrices. Otherwise we only mention the choice of the root of
—1 in F, for ¢ which had to be fixed for the computation. Finally several tables
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contain some more data which are relevant for the congruences we find and we want
to discuss later. If we list 7’s or expressions in 7 for a choice of 7 the result is always
meant modulo /. For example, in the first table this happens in the second and in
the third column and for the expression 7! + 7.

The module Moo(Z[i]):

SL
_|_
e |

7 for | w for | N(7)+ 1 | a, for
U t=2|¢t=3| modH
1+
1—2

—1+2

—-1-2
3+ 21
3—2
1+ 44
1—4

-5+ 21

-5 —2

-1+ 60

—-1-6:
5+ 4i
5 — 41
7+ 20
7T—2

=5+ 61

-5 — 61

-3+ &

—3 —8i
5+ &
o — 8t
9+ 4i
9—4i

—1+10:

—1—10¢
3+ 10¢
3—10¢

~—

@
5

Ceh
o
=

=W

~—
N

|

|
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— e
—
o~
W —~
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2y
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1N
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wlw| i o R = ]|~ o | —|w|w| o] —| ro| i —| ] ol ro| | wo| ol
oo v wlw o|lo] el ol b o o] wl wl oo w| | | | =] —| | w
olo|w|lwl w|lrlc|lo kR el e R w oo o~ wl o o] el
olo|w|lwl —lw oo e e~ el o= e oo o] | w| =] wl ol el |l
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Table 32: Hecke eigenvalues a, on the 5-torsion for My (Z [7])
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On the free part for My 0(Z[4]) we found the following eigenvalues A; 19 o:

‘ (4 ‘ )\71',10,0

142 —31 + 31z
1—1 —31 — 31z

—-1—-2: —6470 + 2644;

-1+ 2 —6470 — 26441

-2-3 246044 + 13159144
1+2 6470 — 26441
241 2644 — 6470¢
2—1 2644 + 6470z
1—2¢ 6470 + 26441

243 | —246044 — 1315914:
3+ 21 1315914 + 246044

3—2 1315914 — 2460444

2—31 | —246044 + 1315914:
1447 | —2529646 4 5279464
441 | —5279464 4 2529646¢
4 —1 | —5279464 — 2529646¢
1—47 | —2529646 — 5279464:

Table 33: Hecke eigenvalues A, 190 on the free part for Migo(Z[7])

The module Mgo(Z[7]):

7 for | wfor | N(w)+ 1 | a; for (1) | a, for (%)

7r T |i=3|i=2| mod5 | (i=3) (i = 2)
1+ (D] 4 3 3 3 2
1—i | (D] 3 4 3 2 3
—1+2 | 3HT] o 3 1 0 4
12| 2H ] 3 | o 1 1 0
3+2i | (22)] 4 2 4 4 1
3-2i [(33)] 2 4 4 1 4
1+4; | (31| 3 4 3 2 3
1—4 || (45 4 3 3 3 2

Table 34: Hecke eigenvalues a, on the 5-torsion for Mg o(Z[7])
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The module M;,(Z]i]):

ar for (1) | a, for (312*)

| TY ] (i=a) (i=—a)
-1+4 || (93) 14 2a 1+«
1+4 | (33) 2+ 2 2+«
1—4 || (91) 2+a 2+ 2
—1+2i | (2%) 1+ 14 2a
-1-2i | (%%) 1+ 2a 1+«
3+2i || (13) a 2«
3—2i || (3%) 2a o'
1+4i || (32) 2+ 2 2+«
1—4i | (%)) 2+« 2+ 20
542 | O] 2+a 2 + 20
5-2(32)] 2+2a 2+ a
—1+6i || (39) 1 1
—1-6i || (39) 1 1
5+4i || (92) 1+ 2 1+«
5—4i | (20| 1+a 1+ 20
T+2i || (91) 2+« 2+ 20
7T—2i || (13) 2+ 2 2+«
—5+4+6i| (39) 2 2
—5—6i || (29) 2 2
—3+8i || (13) a 2«
-3-8i | (32) 2 a

Table 35: Hecke eigenvalues a, on the 3-torsion for M7 (Z[i])
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)

—

N(m)+1 | a, for (

7 for

7 for

The module M;;(Z]i]):

104

(i=3)

mod 5

2

)

(
(
(
(%
(
(

Table 36: Hecke eigenvalues a, on the 5-torsion for M7 (Z[i])

1+
—142i
34 2i
1+ 4
~146i
54 4i
5— 4i
7420
7—2i
~3 4 8i
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The module Mg(Z[:]):

a, for a, for a, for a, for
7r i =5 (tors) | i =5 (free) || i = 8 (tors) | i = 8 (free)
-1+ 11 11 3 10
1+ 10 3 2 2
1—13 2 2 10 3
—1+2 11 11 6 7
—1—-22 6 7 11 11
3+ 20 0 6 6 7
3—2 6 7 0
14 4: 1 12 12 1
1—4 12 1 1 12
-9+ 21 7 6 6 7
—5—2 6 7 7 6
-1+ 6¢ 11 11 5 8
-1 -6 ) 8 11 11
5+ 41 10 10 12 1
o —4i 12 1 10 10
T+ 2 1 1 1 1
7T —2 1 1 1 1
—5+ 61 3 3 3 3
-5 — 61 3 3 3 3
-3+ 8 2 11 7 7
—3—8i 7 7 2 11
o+ & 2 11 10 10
5— 8 10 10 2 11
9+ 40 5 5 12 1
9—4; 12 1 )
-1+ 10z 11 11 11 11
—1—10z 11 11 11 11

Table 37: Hecke eigenvalues a, on the 13-torsion for Migo(Z [i])
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The modules My o(Z [i]) and Myso(Z[3]):

| 7 | ax for i =106 | a, for i = 555

-1+ 114 047
1+ 047 114
1—2 114 047

-1+2 114 92

-1-2 92 114
3+ 2 84 29
3—2 29 84
1444 504 296
1—4s 296 504

-9+ 2 245 49

-5 —2 49 245
7T+ 21 178 247
7T—2 247 178

Table 38: Hecke eigenvalues a, on the 661-torsion for Mygo(Z[])

7 | ax for i =37 a, for i = 100 |
—1+i 38 38
1414 38 38
1—i 38 38
—1+2 62 109
—1—2i 109 62
342 136 14
3—-2i 14 136
14 4i 91 62
1—4i 62 91
~5+2i 79 9
—5 — 24 9 79
—~1+6i 52 64
—1— 63 64 52
5+ 4i 2 66
5— 4i 66 2

Table 39: Hecke eigenvalues a, on the 137-torsion for My o(Z [i])
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Let us now analyse our computational results. What we try to do is to find patterns
or relations which hold in all of our computed cases up to now.

We first discuss the situation for the free parts. Here we carried out the computations
for many modules M, ,(Z [¢]) and always found an eigenvector with the eigenvalue

Aem = a7 for n+m+2=0 mod 4.

In the other cases of n, m we didn’t find eigenvectors in the free part. Note that we
checked the cases of n = m only up to n = 5 but for certain n # m we treated longer
series. In the case M;5(Z[i]) we found a second eigenvector satisfying a, = az for
all 7 of small norm we considered. A choice of the eigenvalues A, ,, for Mg o(Z [i])
is given in Table 33. Here we can check that A\; 100 = 7'! + 7 holds. In the case of
M5,1(Z [Z]) the corresponding list starts with )\1+i,5,1 = —10i, )\_1_21',5’1 =114 + 401
and A_g_3;51 = 2030 — 8407 leading to 7®+72. Note that the eigenvalues 7"+ 7"+
in the relevant cases of M, ,(Z[i]) are always rational integers.

In all cases we also found that the eigenvector with the eigenvalue 7"*! 4 7m+!
satisfies the homology condition (see Proposition 4.4). So it is not only a class in Ar
but indeed in H;(I', M). In all computations we also see that it is of infinite order
(not torsion). Finally we tried to describe a general representative for the eigenvector
on the free part in terms of the generators of Ay, which is in our so-called monomial
basis. From our computational output we found e. g. the vector

(A-1)®r (—zy) + (U — 1) @r (—izy)
for M>o(Z[i]) and the vector

(A-1)®r ((1 — )2y + (1 +1)2°y* +iy®) + (B — 1) ®r ((2 + 2i)2°y?)
+ (U -1)®r (1 —d)z*y? + (=1 — i)z®y® + (1 + 20)2y* + (2 + i) zyP)

for the module Mg o(Z[i]) and so on. Now one can change these vectors modulo
torsion vectors to get a more transparent form but one can already see that it
is difficult to extract a pattern. Using a homology test program we could finally
establish a general candidate for all modules M, ,(Z[i]). Then we also proved
several properties so that we would like to refer for all of that to Section 5.5.

We got already used to distinguish between so-called small and large /-torsion classes.
That seems to continue for the Hecke eigenvalues. Here the central observation is
that some kind of congruences seems to hold for the small torsions but not for the
large ones. Let us start with a closer look at the small torsions. Table 32 collects
the eigenvalues a, on the 5-torsion for the module My o(Z [7]). Here we find

ay =7 (N(r)+1)mod 5 also giving a, =% (r'' +7) mod 5,

which is a congruence to a twist of the eigenvalue for the free part in that case. We
obtain similar results in other cases. So we find a, = 7+ (N(7) + 1) mod 5 on the
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5-torsion for Mg o(Z [4]), ar = 7+ (N(7)*+1) mod 5 on the 5-torsion for the module
Mz1(Z (1)) as well as

ay =7 (m*N(m)?+1) =% (7' +7) mod 13

on the 13-torsion for My5¢(Z[7]). Note that we used the Smith normal form modulo
¢ for My50(Z[i]) and somehow guessed what the free part should be. Furthermore
we got a; = 27 - N(m)?> mod 3 on the 3-torsion in the case of M7:(Z[:]) and
ar =7 (N(m) + 1) mod 3 on the 3-torsion for the module Migo(Z[i]) (we didn’t
show this table here). Note that a, € F3[\/—1] and that we have fixed the image of
i in F3[y/=1] here, which is the root o or —« (cp. Table 35). For the expressions
2m N (m)? we consider the image in F3[\/—1], and the congruence mod 3 should be
understood in that sense.

In all cases of M, ,,(Z[i]) with a free eigenvector we also find a congruence mod ¢
of the a, to a twist of 77! + 7™+ !, Furthermore we don’t find a congruence to just
the number 77+ + 7™ %1 in the other cases. But we find congruences to twists of the
eigenvalues of the free parts for certain shifted homology modules (other coefficients).
For example we get a, = 7 - (7'® + 7) mod 5 on the 5-torsion for Mi60(Z[7]) and
ar =7+ (7% +72) mod 5 on the 5-torsion for M7 1(Z [7]) refering to the existing free
eigenvectors on the free parts of Mis0(Z[i]) and M51(Z[i]). Via Fermat’s Little
Theorem we actually get congruences to such free parts in infinitely many other
homology modules, which happens for the other congruences above as well.
Another observation concerns the 2-torsion. In all cases we considered we found that
T acts nilpotently on the 2-torsion (actually we got T, = 0 for N(7w) > 2).

Last but not least we extracted a surprising relation of the 5-torsion for the module
Mioo(Z[i]) to the traces b, of Frobenii at 7 for certain elliptic curves over Q(7).
More precisely, we could identify the numbers a, - 75 with the numbers b, mod 5
of the elliptic curves #1, #8 and #39 over Q(7) in Table 5.1.5 on pp. 96/97 of J.
Cremona’s thesis [Crl].

Finally we analysed the 661-torsion for the module My o(Z [7]) and the 137-torsion
for My40(Z[i]). In both cases there was no eigenvector on the free part. We checked
quite general possibilities for congruences of a, to polynomials in 7 and 7 mod £ but
couldn’t find any. In particular we checked completely the case with two monomials
since that was the shape of the congruences for the small torsions. This meant to
check

ar = (TP + 777 mod ¥l for 0<a,B</¢ and +,6€{0,1}

but nothing was satisfied. Of course, the question remains whether the phenomena
for the small and large torsions are of general nature or whether the picture is more
subtle.

The choice of the computed cases and many questions we asked were motivated in
view of links to arithmetic, in particular to possible Galois representations mod Z,
which should be studied in more detail now (see also Chapter 6).
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5.5 Classes in H{(I', M) and Hecke eigenvalues on the free
part

First recall our assumptions and results from Section 5.2, in particular the Propo-
sitions 5.7 and 5.8. In several arguments we will also use the formulas (5.11) and
(5.13). We considered the case I' = PSLy(Z[i]), studied Hecke operators T, on
the spaces Ar and derived explicit formulas for the action of 7T}, on the generators
(A-1)®rm, (B—1)®rm and (U — 1) ® m of Ar. In this section we rename the
indices of the modules and assume m € M = M, ((Z[i]) from now on.

Remind that we always found an eigenvector w € Hy(T', M) in the free part Ap/Aje"®
with T (w) = (7" +7F)w for r+5+2 = 0 mod 4. Then we tried to describe these
automorphic classes in terms of Ar by a general expression what we called candidate
for the eigenvector of the free part in the last section. The output of our programs
led to expressions without any obvious pattern. But computer experiments using a
homology test program in combination with the programs for the Hecke operators
helped to enlight the structure of such eigenvectors. The main point was to actually
find vectors satisfying the homology condition (see Proposition 4.4) since our vec-
tors should be in H;(T', M). Doing this in a well-organized way one ends up with an
eigenvector quite naturally. So it made sense to start with a presumably quite close
candidate and to vary it until we would land in the first homology. Carrying out
this we studied step by step the series M, o(Z[7]), M,1(Z[i]) and so on to extract
candidates. Without a special search we could identify the vectors

w=(A-1)Qry and w=U-1)Qry"

in the case M, o(Z[4]) satistying Ty (w) = (7""' + 7T)w in all computed cases. One
immediately checks that the homology condition is satisfied since (A — 1) - y" =
y —y"=0and (U—-1)-y" =0 (A and U send y to y).

Now w = (A — 1) ®r (y" ® v*) seemed to be a good candidate for the general case
M, s(Z[i]). The homology condition is satisfied but as the following lemma shows
w is a torsion vector for s > 1 and r > 1 (which was not zero in all computed
cases). Note before that we have the relation AU = UA in I' = PSLy(Z[i]) (see
Proposition 1.1) and therefore the equation AU — A —-U+1=UA—-U - A+ 1.
This gives the following relation we are going to use:

(A-1)@r(U—-1m = (U-1)Q®r (A—1)m. (5.14)

Lemma 5.13 Let T' = PSLy(Z[1]) and let wy, = (A — 1) Qr (" @ v*) and wy =
(U —-1) ®r (y" ® v*), which are classes in H\(I', M, s(Z[i])). Then we have for
r,s > 1

2U)1 = 2’11)2 = 0.



110

PROOF: We determine the action of A and U on a certain m € M, ((Z[i]) and
obtain for r > 1:

A(.’L’yTﬁl ® ?)S) — (.I + y)y'rfl ® V¥ = myrfl ® S+ yr ® T)S,
Uy '@v®) = (z+iy)y" '®v° = oy '®v° +iy" @0’
Then we form the actions of (A — 1) and (U — 1) on m, put them in (5.14) and get
i(A-1)er (¥ ev) = (U-1)&r (v ®v°). (5.15)

Then we also determine the action of A and U on another m € M, ((Z[i]) and get
for s > 1:

A @uw'™) = ¥y @ @u+v)r' " =y @uv +y @’
Uy @uv'™) = ¢y @ @wu—iv)w’ =y Quvs ! —iy @’
Analogously to above we find with (5.14)
—i(A-1)@r (¥ ev) = (U-1)&r (¥ @v°). (5.16)
Combining (5.15) and (5.16) we indeed get 2w; = 2wy = 0. O

Our computer search finally led to the following suitable candidates which could
be verified to be a free eigenvector for a couple of r. For s =1 we got:

w = (A-1)Qr (¥ @)+ U —-1)r (¥ ®u).

Note that we could see in several examples that a vector with an (A — 1)-part only
wouldn’t be possible. Next we extracted for s = 2:

w = (A-1)&r (@ @u’+y" @uww)+ (U —1)r (v @ u’ +y" @ uv).

Then we found for s = 3:

w = (A-1)&r (20" @ u® + 3y" @ uv — 2iy" ® uv?)

+ (U —-1)®r (2y" @ u® + 3y" @ uv + 2y" @ uv?).
For s = 4 we obtained:
w = (A-=1)®r (Y Qu*+ 2y @ vPv — 2iy" @ u*? — y" @ uv?)

+ (U —-1)&r (¥ @ u* + 2" @ v®v + 24" @ u?v? + y" @ uv?).

That was enough to establish the following general candidate for s > 1:

w = (A-1)®r (y’“ ®— Y (—i) ! (8 Jkr 1>ukvs_k> (5.17)

k=1

+ (U -1)®r (yr ® Z (8 . 1) ukvs_k> .

k=1
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Note that we have to divide by gcd {(Szl) : k =1,...,s} here to get the exact
examples from above.

Now a first job is to check whether w € H;(I', M), what we got in all computed
cases.

Lemma 5.14 Let I' = PSLy(Z[i]), M = M, 4(Z[i]) and

w = (A- (y Q — Z )5 k+1(8+1> kv“”"“)

+(U-1)@r (y ® ;; (8 “]: 1)u%s—k> .

with s > 1. Then we have w € H (I, M).

Proor: If we denote the element in M, ((Z[¢]) in the (A — 1)-part by m and the
one in the (U — 1)-part by n then the homology condition says (see Proposition 4.4)
that we have to verify (A — 1)m + (U — 1)n = 0. If we put the action of A and U
into the expressions we find that we have to show

1
P (y 533 (i e (7 )(/;))

k=1 =1
s+ 1\ [k 1 e ,
- (vexye ( ) () = v o,
k=1 =1

where T} is the contribution from the (A — 1)-part and 75 comes from the (U — 1)-
part. Let us start with the double sum 77. During the summation we consider all
pairs (k,1) with 1 < [ < k for each 1 < k < s. The first observation is that we
can regroup the sum by taking all pairs (I, k) with [ < k < s for each 1 <[ < s,
which just covers the same set of pairs. Next we find that the following formula for
binomial coefficients holds:

s+ 1\ (k) _ s+1 s—1+1
k 1) \s—Il+1)\s—k+1)°
Using both we get

ZZ ekt s+1 s—1+1 b lys
s—1l+1/\s—k+1 )

I=1 k=l
Let us now substitute £ by s +1 — « and | by s + 1 — 3 yielding

Z Z (5 + 1) (g) JP-eys—ta,

=1 a=1
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Finally we rename back « to [ and 8 to k and get 77 = T5 as desired. O

Remark 5.15 As one can imagine, a kind of analogous candidate for » > 1 with v*
instead of " and a combinatorial sum in z,y can be established as well. For r =0
we would have w = (A — 1) ®r v® then. But we don’t want to go into the details
here.

Now the next step is to verify the eigenvalue equation T (w) = (7™ + 7w for
the candidate w we found. For that we have to determine 75 ((A — 1) ®- m) and
T:((U — 1) @ m) and can use our formulas from Section 5.2. The results are quite
complicated expressions. So we could only prove the eigenvalue equations for the
series M,y and M,; up to now. We first present the case s = 0 because several
difficulties don’t appear here. Then we go on with the case s = 1, where we could
use Lemma 5.13. To be precise, we get a result modulo torsion here. In general a
more subtle understanding of torsion vectors seems to be necessary. We will also
put together some first considerations in that direction.

The application of T to (A—1) ®m and (U — 1) ®> m always produces a (B —1)-
part (see formulas (5.11) and (5.13)), which should vanish or should be zero modulo
torsion. Here we can show that this (B — 1)-part indeed vanishes for our general
candidate with s > 1.

Having established the eigenvalue equation the next step would be to show that w
is indeed of infinite order in the cases 7+ s+ 2 = 0 mod 4. Up to now we know that
in all computated cases only. But we can prove for s = 0 and s = 1 that the vector
w for r + s = 0 mod 4 is indeed a torsion class.

Let us go through the mentioned results in detail now.

Proposition 5.16 Let I' = PSLy(Z[i]), M = M,o(Z[i]) with v > 0 and T, as
above. Then we have

T(A-1ery) = (@ +7)(A-1)ery,
where (A — 1) ®ry" € H(I', M).
PrOOF: From (5.11) we have
T,((A—1) ®r m)

— (AU~ 1) @r 6, (1 ip (1)> ‘m + (BAU"B — 1) ®r 6, B -m
withm € M, ((Z[i]), 7 =a+bi, N(m) =p and 6, = (T ?).

Using our decomposition rules, the linearity of the tensor product and property (4.1)
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we then get:

T,((A—1) ® m)

— a __ —-b 1 0 . b _ 1 0

= (A*-1)erU 5ﬂ(1_p 1) m + (U 1)®p57r(1_p 1)
+(B—1)®r A®U’B6,B-m + (A — 1) ® U’BS,B -m
+ (U’ -1)®r B6;B-m+ (B—1)®r6,B-m

_ (A _ b I 0 b .

= (A" —1)@®@r [U Ox <1_p 1) —l—UB(SWB} m

b b L0y
+ (U®=1)®@r [B(LTB—U 6 (1_p 1)] m
+ (B—1)®r [A“U"B6,B + 6, B] - m.

In the following we set 0, := B3, B = (}9). Now we analyse the (B — 1)-part first.
We have the useful rule

(B—1)®m = (B—1)®r (-B)-m.
Using that we find for the (B — 1)-part:
(B—1)®r (AU’ + B)o, -m = (B—1)®r (A°U® —1)é, - m.

If we now set m = y" and take into account that gﬁ(y’") = 7"y" we end up with the
expression

7" (B —1) ®r (A*U° —1)y".

But A and U send y to y such that the expression after the tensor product is just
zero. Therefore the (B — 1)-part vanishes.

Next we analyse the (A% — 1)-part. Using our polynomial decomposition in the
preparation of Proposition 5.7 and Apei(e)(y") = a - y" we get

oo [, )]

_ - —b 1 0 N T
= (A 1)®pa[U 67r<1_p 1>+U57r} y
= (A=1)®r (ay" +ar"y")

=a(m"+1)(A-1)Qry,
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since the first expression in the square brackets sends y to y and the second one
sends y to my.
Similarily we find

= U-1)®@rb [Sﬂ—U—”(xr (1 ip ?)] yr
= (U-1)®r (br"y" —by")
= b(r"—1)(U-1)®ry.

So we end up with
T(A-Dery) = a(m +1) (A-1)@ry +b(r"-1) (U-1)&ry"

But we also have (A — 1)(zy" ') = y" and (U — 1)(zy" ') = 15" (note that we need
r > 0 here). If we put that into our relation (5.14) we get

This yields
T((A-1)ery") = [am" +1)+ib(a" —1)] (A-1)®ry"

We have m = a + bi and therefore a = (7 +7)/2 and ib = (7 — 7)/2. So we finally
obtain

T(A-Dery) = @ +7) (A-1)ery

as claimed. O

Remark 5.17 From the proof we see that (U — 1) ®r y" satisfies the eigenvalue
equation as well. Of course, one could also go through 7, ((U — 1) ®r y") in a similar
way as above.

We go on with the case s = 1.

Proposition 5.18 Let I' = PSLy(Z[i]), M = M, (Z[i]) with r > 1 and T, as
above. Then we have

T(A-1)er (¥ ®@iu)+ U -1)Qr (¥ ®@u))
(T 4+72) (A-1D)@r (¥ @iu)+ (U —-1)®r (¥ @ u))

modulo torsion, where (A—1)®r (y" Qi)+ (U —1)®r (y" ® u) € H{([', M).
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PrROOF: In contrast to Proposition 5.16 we have to determine 7, not only on a
contribution from (A — 1). We set my := y" ® iu and my = y” ® u. So we have to
analyse T, ((A—1)®rmy) and 7, ((U — 1) ®r my) along similar lines as in the proof
of Proposition 5.16 and to put everything together in a suitable way at the end.
We start off with the first expression. Here we find from (5.11):

T:((A—1) ®rmy)
= (4 - 1) ®r [U"’fyﬁJrU”(ir ‘mu+ (U°—1)@r [Eﬁ - U"’%} My +ta,

where v, := 0, (11, 9) and ¢, stands for the contribution from (B — 1).
Now we find for the (A% — 1)-part:

(A= 1) @r [U (7 (y" @u) +i(1 —p)(y" ®v)) + U(in" (y" @ u))]

=i(A-1)Qr [T(y ® (u+ibv)) + (1 —p)(y" Q) + 7" (y" ® (u — ibv))]

= (A -1)Qr (7" +7)(y" ® u) + torsion

= ja(r" +7)(A—1)Qr (¥ ® u) + torsion.
Note that all the contributions we collect in torsion are of the form (A—1)®r (y" ®@v)
with certain factors, such that we can apply Lemma 5.13. We will use that argument
quite often from now on (also for (U — 1) ®r (y" ® v)). In the last two steps above
we used again our knowledge about the decomposition polynomials Ayqq) (in the

first step only for the torsion part).
Analogously we derive for the (U® — 1)-part:

U =1 &r [in"(y ®u) — UG7(y @u) +i(l—p)(y ®v))]
= ib(n" —=7)(U—-1)®r (y" ® u) + torsion.
This gives
Tr((A=1)&r (v ®iu))
= a(m"+T7T)(A—1)Qrmy+ib(n" —7T)(U—1) Qr my + t4
modulo torsion (using Lemma 5.13).
Now we go on with the second expression 7T, ((U — 1) - my). We have m = a + bi.
Recall that we can find unique numbers ¢,d € Z with ad + bc = 1 and ac — bd €
{0,...,p—1} (cp. the preparation for Proposition 5.8). Then we have from (5.13)
(replacing z by q):
T.(U—-1) ®r mp)
= (B-1)&r (AU — 1)6, -my + (U* = 1)®r 6, - my — (A" — 1)®@pA™U*S, - my
p—1 T 0 ac—bd—1 T 0
+(AcUd_1)®r Z < ¢ 1).mU+(AcaUd+b_1)®F Z < )'mU-

_ —q 1
g=ac—bd q=0 9
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Here we already applied the decomposition procedures (see Section 5.2) again. We

want to denote the (B — 1)-part by ¢y in the following, and we set &, := ( 7, 7).

First we find with my = y" ® u that

(U =) @r oy ®u) = U =1 &7 (y ©u)
ar"(U —1) ®r (y" ® u) + torsion
using Lemma 5.13 again, since the corresponding contributions are all of the form
(U —1)@r (y" ® v) with certain factors.

Then we find for the next contribution

—w-ven (L, Derew = @ -nen () ]

im w) W ®u)
= —(A"-1)®r (7Y ® (u — i7v))
= —br"(A-1)®r (y" ®u) + torsion

= ibn"(A—1) ®r my + torsion.

Next we go through

p—1
(AU =1 @r Y, &y ®u)
g=ac—bd
p—1

= (AT -Der Y. (& (T p)

g=ac—bd

‘U? —1) ®r (p — ac + bd)7(y" ® u) + torsion

(
(
—ac+ bd)T

(p
p—ac+bd)T [(A°—1) &r U(y" ®u) + (U*—1) ®r (y" ® u)] + torsion
(p )7 [(4
+ torsion

‘=1 @r (¥ ® (u—idv) + U’ =1)&r (v @u)]

=cp—ac+bd)T(A-1)Qr (¥ @u)+d(p—ac+bd)T (U—-1)Qr (y ®u)
-+ torsion

= —ic(p—ac+bd)T (A—1)Q@rmy+d(p—ac+bd)7 (U - 1)@ my
-+ torsion

All the torsion appears in a similar way as above, we used the decomposition proce-
dures several times and analysed the action of the matrices on the module elements.
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Analogously we find

ac—bd—1

(AcfaUder o 1) Qr Z 5q(yr ® U,)

q=0
= —i(c—a)(ac —bd)T(A—1)®rmy + (d+b)(ac — bd)7T(U — 1) @ my + torsion.
Putting everything together yields

T.((U —1) @ my)
= ibn"(A—1)@rmy —i7(c(p — ac+ bd) + (¢ — a)(ac — bd)) (A — 1) @ m4
+an" (U —1) @r my +7(d(p — ac + bd) + (d + b)(ac — bd))(U — 1) @ my + ty

modulo torsion. Now we can use p = a® + b? and ad + bc = 1 to get
c(p—ac+bd)+ (¢c—a)(ac—bd) =b and d(p —ac+ bd) + (d + b)(ac — bd) = a.

Simplifying the sum above and combining it with the result for T ((A — 1) ®r my4)
finally gives

Tﬂ—((A —_ 1) ®I‘ ma + (U —_ 1) ®I‘ mU)
=la(r" +7) +ib(r" —T)](A—1)@rmy + [ib(n" —7) +a(x" +7)] (U — 1) @ my

modulo torsion. Note that t4 + ty = 0 which will be proved in Lemma 5.19 for
general s > 1. Using again a = (7 + 7)/2 and ib = (7 — 7)/2 we get our final
formula

T.(A-=1)®r (v ®iu) + (U—-1)®r (v ®u))
= (" +7T) (A-1)@r (v @)+ (U—1)&r (¥ Qu)).

modulo torsion. O

Let us also add two more examples of torsion results. We find for s > 2:
A=)y @u’v™?) = 2y @uvs™' +y" ®@0°
and
U -1y @u*v*™?) = =2y @uv'™ —y @0
Then we get with relation (5.14)

(A-1D@r (2 @uv*™ —y" @v%) = (U—-1) & 2y @uv’ ™ +y" @0v°).
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Using Lemma 5.13 we then obtain

26(A-=1)@r (¥ @uv*™) + (U -1)&r (y @ uv* 1)) =0
modulo the torsion from Lemma 5.13. In a similar way we get

A-Dy ou)) = 3y ®u?v+3y @uv’ +y" ® v
and
U-Dy ou)) = =3y @u’v -3y @uv’ +iy" @ v°.
With relation (5.14) and Lemma 5.13 we then find
3(A-Der iy @u’v+y @uv’)+ (U —1)®r (¥ @ u’v +y" @ uv?)) =0

modulo the torsion from Lemma 5.13. One can establish many more torsion vectors
of similar structure. A more systematic study of that could lead to a proof of the
eigenvalue equation for the general candidate w in the case of M, ((Z[i]) for s > 1.

Now we come back again to the general candidate w from (5.17). After applying Ty
to (A—1)®rm and (U —1) ®rm we get certain (B —1)-parts. For the (B —1)-parts
in the case of our general w we get (t4 and ty chosen as for s = 1)

(B—=1)®r (BA™U*B —1)6,B -ms+ (B—1)®r (A™°U* = 1), -my = t4 + tu,
where m4 and my denote the expressions in the (A — 1)-part resp. (U — 1)-part of

w as for s = 1. Then we put in the expressions for m4 and m; and can show the
following vanishing lemma. Here we set

’ 1
S = Z%s’k (S _l: >U8k ((u —amv)kF — uf + (=0)* FHh — (=0)* 1 (u + 70)")
k=1
Lemma 5.19 Under the assumptions from above we have for s > 1 that
tg+ty = (B—l)@rﬂ'ryT@S = 0.

PROOF: It is enough to show that the sum S is zero. At first we regroup S a bit,
then substitute v by X, 7v by Y and take 7 instead of —i. So we get

s =Y (S ;: 1>ys—k((x +iY)F = XF X - (X 4 Y))).
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Furthermore we have the identity

S (T et =L (@ -0 ).

k=1
Using that several times we find

1

S = v (X +Q+)Y)"T =YV — (X 4+Y)T = (X +Y)" T 4 Y 4 X
+ (X +Y)" T — YT - X — (X + (1 +9)Y)" T + (V)T + (X + V)]
= 0. O

We conclude with our two results about general torsion vectors in the cases s = 0
and s = 1 for the modules M, ;(Z[i]). They cover the cases of r, s where we didn’t
find an eigenvector on the free part in our computer calculations and show that our
general candidate w is a torsion vector then.

Proposition 5.20 For I' = PSLy(Z[i]), (A—1) ®r y" € Hi(I',M,o(Z][i])) and
r = 0 mod 4 holds

2(A— 1) Qry" = 0.

PROOF: At first note that C := ({ %) € PSLy(Z[i]). Then we have for C the
action C'(y") = (—i)"y". Furthermore we can use our decomposition rules for A =

C—'A~'C. This gives
(A-Dery = (CT'ATIC-1)ery
= —(C=1)@r(C*A™C) - y"—(A-1) @ (A710) -y"
+(C-1)@ry
= —(C-Nerd-y+(C-1)ery —(A-1)er (A'0)-y
(A-1)®r (A7'0) -y
—(=)"(A-1)ery"
Recall that r is even to have the I'-action on the module M,o(Z[i]). Then we just
get (A—1)®ry"=—(A—1)®ry" for r =0 mod 4. a
We also get

Proposition 5.21 For I' = PSLy(Z 1)),
w o= (A1) &r (¥ ®iu)+ (U — 1) &r (y @ u) € By (T, Myy(Z[1])
and r +1 = 0mod 4 holds
20w = 0

modulo the torsion from Lemma 5.13.
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PROOF: As in the proof for Proposition 5.20 we can use A = C~'A7'C and as well
U= C~'U~'C. Then we find

w = (C'A™IC—1)@r (¥ ®@iu) + (CT'UIC —1)®r (¥ @u)

= —(C-1)@rA@ly ®u)—(A—-1)er (A7'C)(iy" ® u)
+(C-1D&r (i @u)—(C-1)er Uy Qu)
~U-1)erU'0)(y®u)+ (C—1)&r (v ®u)

= —(C-1)&r (1Y ®u+v))—i(d-1)r ((—2)"y" & (—iu+iv))
HC=1)&r (iy"®u) — (C—-1)®r (y ® (u—1v))

—(U =1 & ((-)"y @ (—iu+v))+(C—1)®r (¥ @u)

= —(=)""(A-1)er (i ®u)+ (1) (A=1) ®r (¥ ®v)
—(=)™ (U =1)er (¥ ®u) = (=1)"(U-1)&r (y ®v)

= — (=) [(A-1) & (¥ ®iu)+ (U —1)Qr (y @u)]

modulo the torsion from Lemma 5.13, which gives the result we claimed. O

6 Suggestions for further work

Of course, many more computations for the cohomology and homology can be car-
ried out in our setup to enrich the picture of the occuring ranks and torsions. This
concerns more modules M = M,, ,,(Ok) but also more groups I'. So it seems to be
useful to consider e. g. the congruence subgroups I' = I'y(n) < PSLy(Z[i]) in a
systematic way (for H,(I', M) and H'(T', M) and various modules M). The presen-
tations could be established with the help of MAGMA or GAP.

For H'(T', M) the special observations for the matrix DMAT should be considered in
more detail. Furthermore Hecke operators should be analysed here as well. They can
be defined on Der(I"; M) by a similar diagram as for Ar in Section 5.1 and one ends
up with a similar formula as in Theorem 5.3 describing T (f(g)) for f € Der(I", M).
For an explicit realization similar problems as for Ar have to be solved. For H (I, M)
or HY(I', M) the cases of the modules M = M, ,(Ok) should be studied in more
detail. Here it is of special interest to identify candidates of Hecke eigenclasses which
are not “lifted” from certain congruence subgroups I' < PSLy(Z).

In particular we suggest to study H;(I', M) further. Here we think of various aspects
we already pointed out at the end of Section 1.3. At first there are the questions
about the properties of the Hecke eigenvalue systems. In this thesis we already found
several relations between Hecke eigenvalue systems of different homology modules
for I' = PSLy(Z[i]) and we saw examples, where the eigenvalue systems couldn’t be
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lifted to characteristic zero (automorphic classes) within the same homology mod-
ules (cp. Section 5.4). Therefore it is an important question whether such a lift
always exists when one allows changes of the coefficient modules M or also of the
groups I' or both. Another intriguing question is whether one can always find cor-
responding Hecke eigenvalue systems between e. g. Hy(PSLy(Z[i]), Mpym(Z[i]))
and H, ([, M), where I" is a congruence subgroup of PSLy(Z[i]) and M = Z|i]
(constant coefficients or so-called weight 2 case). This would be relevant for a for-
mulation of an analogue of Serre’s conjecture since one could restrict to constant
coefficients then as somehow assumed in [Fil] and [Fi2].

Most of all the congruences should be analysed further. It might be possible to ac-
tually prove some of them with the help of our formulas from Section 5.2 and similar
computations as started in Section 5.5. A further study of the torsion classes could
also lead to a proof of the eigenvalue equations for all modules M, 4(Z [i]).

Also, the differences between the so-called small and large torsion classes should
be studied in more detail. For that it also seems to be helpful to carry out more
computations in both cases.

Finally, an investigation of the arithmetic side should be continued. A central point
would be a careful analysis of possible Galois representations mod ¢ which could
correspond to the Hecke eigenclasses we identified. For the small torsion classes
this would lead to an explicit study of the splitting behaviour for the possible field
extensions. For the large torsion classes it should be checked whether the image of
the absolute Galois group in possible corresponding Galois representations mod ¢
could be full or large.

In principle, the arithmetic investigations should be carried out in close relation to
the ones about the Hecke eigenvalue systems.
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