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I INTRODUCTION

The trace formula was initially introduced by Selberg in 1956 to study the
spectrum of the Laplace Beltrami operator on the locally symmetric spaces
I'\ SL2(R)/ SO(2) for lattices I' C SLa(R). Subsequently Arthur developed
in a long and involved procedure a generalised version for studying the spec-
trum of G(F)\G(A) for general reductive groups G over a number field F.
Roughly, the trace formula is an identity between sums of distributions

> " Jo(f) = Jeeom () = Jspec(f) = > I (),

0cO XEX

the so-called geometric and spectral sides. It was often used to establish
specific cases of Langlands functoriality like the Jacquet-Langlands corre-
spondence [JaLa70]; see also [Ar97] for more general cases in the context of
the theory of endoscopy. For such applications the comparison of two trace
formulas for different groups is necessary. However, the consideration of the
trace formula for an individual group may as well lead to some interesting
results, as, for example, in [LaMu09], where a higher rank version of Weyl’s
law was shown. We shall concentrate on the trace formula for the group
G = GL(n), or even mostly on G = GL(2) or G = GL(3).

In general, Arthur’s trace formula allows only smooth, compactly supported
test functions, but for some applications non-compactly supported test func-
tions would be desirable. Viewing the trace formula as some kind of non-
abelian generalisation of the Poisson summation formula, it is natural to
ask for a class of test functions resembling the test functions allowed in the
Poisson formula. For a natural class the absolute convergence of the spec-
tral side was shown in [FiLaMu09, [FiLaMull], and the convergence of the
geometric side for G = GL(2) in [FiLalla]. In general, the convergence of
the geometric side is not known, but the convergence of the semisimple part
is shown in [FiLalIb]. Therefore our first goal is to establish the absolute
convergence of a particular expansion of the geometric side for G = GL(3)
for all such test functions (see Theorem [1). By the results of this
amounts to the analysis of the non-semisimple part.

For G = GL(n) this space of test functions contains in particular functions
of the form

flo) = [ ldet(ag)l 5 Blag)d*a, g€ GLu(A),

for s € C, Rs > ”T‘H, where ® is a Schwartz-Bruhat function on the space
Maty, xn(A) of n x n matrices over the ring of adeles of the base field. Hence
the geometric and spectral side can be considered as functions of s. Conse-
quently there appear important arithmetical objects on the spectral side: By
the theory of Godement-Jacquet [GoJa72] the discrete spectrum essentially
yields a sum of completed L-functions L*(m,s) associated with a particular
class of automorphic representations 7 so that the discrete part has a mero-

morphic continuation to the whole complex plane as a function of s (see also



Theorem . There exist replacements for the space of Schwartz-Bruhat
functions on Mat,,x,(A) for other classical groups having similar features,
which are constructed in [GePSRa87| and [BrKa02|, leading to new allowed
test functions.

Such test functions suggest to study the trace formula from a function the-
oretic point of view, and we shall do this for the spectral side for GL(n),
as well as the geometric side for GL(2) and GL(3). This approach is also
connected to the ideas in [La02]. In general, one expects that the spectral
side is easier to handle, but the geometric side might contain the objects one
wants to study. Hence one exploits the analytic behaviour of the spectral
side. We shall see what this means for the cases GL(2) and GL(3).

More precisely, certain ® are expected to yield Dirichlet series on the geo-
metric side which contain information on certain objects in its coefficients as,
e.g., the number of orders in field extensions of fixed degree. Together with
further analysis of the spectral side and application of Tauberian theorems
one hopes to obtain asymptotic formulas of these quantities. In the case
of G = GL(2) the main part of the geometric side yields the Shintani zeta
function (see Theorem introduced in [Sh75] to study class numbers of
binary quadratic forms. Shintani succeeded in proving asymptotic formulas
for the mean value of the number of equivalence classes of quadratic forms
and regulators of the number fields associated with them. For them first
results were already stated by Gauss. Such asymptotics had previously been
obtained by Siegel [Si44] by other methods with less precise error terms. This
zeta function later was studied in an adelic framework by Yukie [Yu92] and
Datskovsky [Da93|, and it provides an example of a zeta function associated
with a prehomogeneous vector space.

The organisation is as follows:

We are going to show that a particular expansion of the geometric side
of the trace formula for GL(3) holds for a large class of test functions, see
Theorem [1} This is a generalisation of the results of [Filalla] for GL(2),
and complements the results of [FiLallb], where the absolute convergence
of the semisimple part was shown for general reductive groups. Hence we
are left with distributions associated with non-semisimple data, which leads
to subtle convergence issues.

The rest of this thesis is dedicated to the study of various parts of
the trace formula as functions of s, when the test functions fs are inserted.
We first prove facts about the analytic behaviour of the geometric part for
GL(3) for such test functions. In particular, we show that all distributions

except for those associated with the regular elliptic elements have holomor-
phic continuations at least up to s > %, see Propositions [29 and .



This chapter deals with the spectral side of the trace formula for
GL(n), n > 2. Tt was shown in [MuSp04} that a certain expan-
sion holds for a large class of test functions. We are going to plug in the
test functions f; again. This yields a holomorphic function of s € C for
Rs > 2L by the results of [FiLaMull]. We show that particular
distributions, namely those associated with a Levi subgroup of co-rank 0
or 1 in GL(n), can be continued meromorphically to all s € C (see Theo-
rem [32)). In particular, this implies that each spectral term for GL(2) has a
meromorphic continuation to the whole complex plane. This continuation is
essentially obtained by deforming contours of integrals. For the remaining
distributions we show that they can be holomorphically continued to a larger
half plane (Theorem , each at least in $s > 5. We need to analyse the
pole structure of local normalised intertwining operators and their growth
on certain subspaces in complexified root spaces for our approach. More-
over, we locate the first poles (the first one already occurs at s = "7“) and
compute the first residue. For n = 2 we give a more detailed account of the
spectral side connecting it to its well-known form given in [GeJa79].

One could try to use the deformation of contours in general to continue the
distribution further. For that one would need to consider integrals in at most
n — 1 variables and one could try to use the method of iterated residues as
introduced by Langlands for the analytic continuation of Eisenstein series
in [La76]. However, it seems doubtful that all terms possess continuations
to all s € C. As in general the singular hyperplanes are not “admissible in
the sense of [MoWa95|, one is led to serious convergence issues, see also the

The last chapters purpose is twofold. First, we analyse the geomet-
ric parts of the trace formula for GL(2), and thereby find the Shintani zeta
function as a part of it (Theorem . We include a quite detailed analysis,
since GL(2) is supposed to serve as a model for more general groups. Moti-
vated by this result, we turn to the analysis of the geometric side for GL(3)
for the test functions fs, which we are allowed to do by the results of the
first chapter. Using the results of the second and third chapter together with
some supplementary analysis, we obtain an asymptotic for the sum of certain
orbital integrals as a consequence of a Tauberian Theorem (Proposition .
More precisely, we show that for certain Schwartz-Bruhat functions ®; # 0
on Matzx3(Ay), there exists a > 0 such that

E/Q t(;ally real, ’Aut(E/Q)’ {EOZE\Z [OE : ZKH

[E:Q]=3 trp&2<X

as X — oo. Here I(®y,&) > 0 are coefficients associated with ®; and £ by
means of orbital integrals. To deduce such an asymptotic, one has to separate
the totally real extensions from those having a complex place, which turns
out to be conceptionally more difficult than for GL(2) due to the absence of



any prehomogeneous vector space structure. From one readily obtains
Corollary [73; There is an & > 0 such that

lim sup X3 Z res (p(s) < a. (2)
X—00 s=1
m1(E)<X

Here E ranges over all totally real cubic extensions of @, whose second suc-
cessive minimum m; (E) of the positive definite quadratic form & +— trg /g 2
on O is bounded by X. In fact, one expects that the limit of the left hand
side in actually exists and equals some suitable o > 0. This, at least,
is not too far from the truth (see Proposition : For any € > 0, the limit

inferior of X 37¢ > ress—1 (g(s) tends to oo as X — oo. However, we
m1(E)<X

were not yet able to prove the existence and equality of the limit in . At

least, we construct a sequence of Schwartz-Bruhat functions ®¢ (see Propo-

sition [75)), for which the coefficients I(®f,&)[Op : Z[£]]™! tend to 1 for all

&. To prove the equality, it would then suffice to show that this sequence of

coefficients converges uniformly in &.

There are a lot of questions left unanswered. The probably most obvious
one is, whether one can find certain expansions of the geometric side of the
trace formula, which converge for our large class of test functions, for more
general groups than GL(3), or even at least for GL(n), n > 4. Although this
presumably is true, the present approach of writing down such an expression
in an explicit way, is probably not managable in the higher rank cases, as it
gets cumbersome even for GL(3).

Restricting our attention to the case GL(3), there are as well a lot of prob-
lems left. The first one is to show that the limit of exists and is non-zero.
As indicated above, it should therefore suffice to show that the sequence
of constructed coefficients converges uniformerly. An alternative approach
would be to compute the occuring p-adic orbital integrals for the character-
istic function of Matsy3(Z,) C Matsx3(Qp). For n = 2 this can be done by
counting lattices or orders with certain multiplier rings, see, e.g. the example
in for GL(2) or also [F106, §II.1], but for n = 3 this becomes consid-
erably more difficult. If one has overcome such problems, it should as well
be possible to obtain asymptotics for cubic fields splitting in a prescribed
manner at finitely many places. The example one has in mind is that for
quadratic fields and GL(2) for which Datskovsky showed in [Da93| that

. -1

Fm X7 2L el
[E:Q]=2, E~zg
m1(E)<X

¢(2)

= > ke [ pZ—p P 4p .

pgS

Here E runs over all quadratic extensions of Q of splitting signature xg for
a finite set of places S of Q and R, is a suitable constant explicitely given



as a product over all places in S. One hopes to show similar results for n-
dimensional field extensions in general, i.e. one hopes to obtain asymptotics

of the form
Z res Ce(s) ~aX

[ECQ]:TL, E~zg °
mi1(E)<X

n(n+1)—2
4

for totally real extension for a suitable constant o > 0.

For the spectral side the most noticable question is, whether there are indeed
distributions, which can not be continued to a meromorphic function on all
of C. If the the answer to this question is affirmative, it still might be
possible to continue the distributions to a larger half plane than we did,
and one could attempt to determine the natural boundary of continuation.
However, it seems that at least with our approach the half plane can not
be enlarged: To continue the function further along our lines, one is led
to the concept of multidimensional residues. But in general the singular
hyperplanes of the considered functions are not admissible, which seems to
lead to serious difficulties here. Looking more closely at our example in
TV .iii.iii it seems that the terms having no continuation are given as certain
distributions supported on singular matrices. Hence one could try to use a
trace formula for the whole Lie algebra gl,,(A) ~ Mat, «,(A) as developed
in [Ch02|, which then also includes distributions associated with singular
matrices. This phenomenon appears to be existent already for GL(2) (but
does not yield any convergence issues there), see also Remark .
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II ABSOLUTE CONVERGENCE OF THE GEOMETRIC
SIDE OF THE TRACE FORMULA FOR GL(3)

II.i THE GEOMETRIC SIDE OF THE TRACE FORMULA FOR
GL(3)

I1.i.i INTRODUCTION

Let G be a reductive algebraic group over some number field F', and .S a finite
set of places of F' containing all archimedean valuations. The geometric side
of the trace formula for GG is an absolutely convergent sum over distributions

Jgeom(f) = Z Jo(f)

0cO

where f € C(G(Fs)') is one of Arthur’s test functions, and O is the set
of equivalence classes 0 C G(F'), which are defined via the Jordan decom-
position: 7,7 € G(F) are equivalent if and only if their semisimple parts
are conjugate in G(F). For G = GL(2) it was shown in [FiLalla] that
a modification of the fine geometric expansion converges absolutely for a
large class of test functions C(GLg(A)!, K), which now also contains non-
compactly supported functions. It was shown in [Ho08| that the coarse
geometric expansion converges for rapidly decreasing test functions from the
Harish-Chandra space, but the space of test functions considered in [FiLallal
or [FiLallb| is more natural in the sense of viewing the trace formula as a
non-abelian generalisation of the Poisson summation formula. If o consists
only of semisimple elements, J,(f) for f € C°(G(Fs)!') can be written as
a weighted orbital integral [Ar05, Theorem 11.2]. The sum over all such
classes converges absolutely for f € C(G(A)!, K) as shown in [FiLallb].

For non-semisimple classes the distribution can still be expanded as a sum
over distributions resulting from a quite involved limiting process involving
weighted orbital integrals, see [Ar05, Theorem 19.2]. For G = GL(3) and
compactly supported test functions all the weights and constants appearing
in this expansion have been computed in [FI82, Lemma 3. and Lemma 4.].
Instead of this expansion one can use Arthur’s semisimple descent formula
[Ar86l Lemma 6.2] expressing an arbitrary distribution in terms of unipotent
distributions to study J,(f). If o € O, let o denote the semisimple part of
this class. Let G, C G be the centraliser of ¢ in G, and let ¢ be the set
of all parabolic subgroups in GG, which contain the maximal split torus T" of
diagonal matrices. If R € F?, let Mg be the unique Levi component of R
containing 7. Then Arthur’s formula for the semisimple descent is

Jo(f) = /
Go(A\G(A)

— Tl (PR 1) dy,

unip

W]
W&

ReF°



where ®p, 7 is a function on Mp defined in [Ar86, p. 201]. Here T € ag
chosen according to [Ar81, Lemma 1.1].

If not specified otherwise, G = GL(3) for the rest of this chapter. For this,

the equivalence relation above reduces to a simple linear algebra criterion:

7,7 € G(F) are contained in the same equivalence class o if and only if

their characteristic polynomials are the same (cf. [Ar05, pp. 53-54]). Hence

the equivalence classes 0 € O are parametrised by monic cubic polynomials

Xo 7# 0 with coefficients in F. We may subdivide O according to the splitting
3

properties of the polynomials y,, 0 € O: Write O = [] O with O° the
i=1

set of all 0 € O, whose characteristic polynomial factorizses in 4 irreducible
polynomials over F. The classes in O' and O? consist entirely of semisimple
elements, and thus the distributions corresponding with such classes were
already treated in [FiLallb] The set O decomposes disjointly into three sets
O3t Oguad, Of’eg, according to whether the roots of x, build a set of one, two
or three elements. In the last the equivalence classes again are semisimple.
For the other two cases each o0 also contains non-semisimple elements, and
0 is no longer an actual conjugacy class, but splits in a disjoint union of
finitely many conjugacy classes, which bijectivly correspond to the minimal
polynomial of the respective orbit. Thus we will only need to consider those
equivalence classes 0 which contain some non-semisimple element, i.e. the

03 3
classes in O,,q and Ofyy-

We partly use the results from [FI82] directly and modify them analogous
to for the unipotent orbits. For the equivalence classes in OF 4
this approach turns out to be a tediuos task. Instead the semisimple descent
allows us to separate the terms which need modifications from those, which

already converge for our functions.

I1.i.ii INOTATION

We keep the notation introduced so far and additionally use the following.
Most of it coincides with the notation Arthur uses in [Ar86, [Ar05]. Let G =
GL(n) for some n € N and let ' C GL(n) be the torus of diagonal matrices.
L denotes the set of all Levi subgroups containing 7', and for any M € L,
F(M) = F%M) = {P C G | parabolic, M C P} and P(M) = P%(M) =
{P € F(M) | M is Levi component of P}. Fix a Borel subgroup Py € F(T).
For GL(n) we shall always take Py to be the group of upper triangular
matrices. P € F(T) is called a standard parabolic subgroup if Py C P. Write
L(M)={L e L|MC L} and for any L € L(M), P*(M) and FL(M) are
defined as above, but with G replaced by L. If P € F(T'), denote by Mp € L
the Levi component and by Up the unipotent radical of P. If P € F(T),
let P € F(T) be the opposite parabolic. For any M € £, ZM C M denotes
the center of M, Z := Z%. Let Ay C ZM(F,) denote the component of
1 € ZM(F,) so that in particular, Ag ~ R~o. Let ay; = Homg(X (M), R)

10



for X (M) the group of characters Z¥ — C, defined over F, and ap = ayy,,
P e F(T). Let a}; and a} be the respective dual spaces, and denote by <
-,- > the pairing ay; x a3, — C. Thereis amap Hys : M(A) — apy, defined
by < Hpr(m), A >= |log A\(m)| =: A(Hp(m)). If LM € £, M C L, there is
a canonical surjection ay; — ay, whose kernel is denoted by aﬁ/[. Similarly,
there is a surjection ap; — ay, for which the kernel is denoted by (ak,)*. For
GL(n) there are unique standard parabolic subgroups and Levi subgroups
in £ associated with any partition (n1,...,n,) of n. Let f1,..., 8,1 € a},
be the simple roots of (Py, Ap,). To shorten notation for the case GL(3),
we shall denote by Py, M1, U; the standard parabolic subgroup, respectively
Levi component, respectively unipotent subgroup associated with 31, i.e.
such that (a})* = RB;. The subscript 2 indicates the respective groups for
(B2, and the subscript 3 for 81 + [s.

Fix a finite set .S of places of F' containing all archimedean places. ( is the
Dedekind zeta function associated with F. For some place v of F, (r(s)
denotes the local, and (}(s) completed Dedekind zeta function associated
with F', for which we define the factors at the archimedean places as follows:
Cu(s) = 777%I‘(§) if v is real, and (,(s) = 7~*H1I'(s) if v is complex. For a
finite place v of F', we denote by O, C F,, the ring of v-adic integers with
uniformiser w, and corresponding norm | - |, such that |w,|;! =: ¢, € Z.

For any finite set of places S, let |a|s = [] |alv, a € A, in particular |a|oo =
veS
[] laloo, and let |a| = T |alv. Let Np/g : F — Q be the norm map, i.e.

v]oo v<oo

Npjgla) = |a|w for any a € F.

If S’ is any set of places, Cgl(s) = [Lugs Cro(s), and (rsr(s) = [[,cq Cru(s)-
A = Ap is the ring of adeles of F, and for any finite set S, Agr =[], co Fo
and AY = H;QS’ F, with J] denoting the restricted product with respect
to {Oy}, for O, the ring of integers of F,. Let Al := {a € A | |a| = 1}.
We shall use the standard maximal compact subgroup K = [[ K, with

v

G(O,) ifv < o0,
if v is real

)
U(3)  if v is complex.

We choose measures as follows: For non-archimedean v we normalise the ad-
ditive and multiplicative measures on F,, and F, such that O, and O,° both
have measure 1. On R and C we take the usual Lebesgue measure. Then the
measures on A and A* are the product measures. The measures on K and K,
for any v are then normalised such that both groups have volume 1. On any
unipotent subgroup of G we take the measure induced by the additive mea-
sure on A or F,, and on T'(A) or T'(F,) the multipicative measure of A* or
F*. The remaining measures of G(A), G(F,), and all parabolic and Levi sub-
groups are then chosen such that they are compatible with the Iwasawa de-

11



composition. With such measures we have vol(F*\A!) = res,_; CF(S)|DF|%
and vol(F\A) = 1 (see [La86l, Chapter XIV], but take account of the different
normalisation of O, there). We choose measures on ays and a}, compatible
with the pairing above, normalised such that the polytope spanned by the
simple roots in a}, has volume 1.

Denote by C2°(G(Fs)!) the space of all smooth, compactly supported func-
tions G(A)! — C such that f = fsf° with a smooth compactly supported
function fs : G(Fs)' — C, and f° : G(A®) — C the characteristic func-
tion of K¥ C G(A®). This is the class of test functions usually used by
Arthur.

The space of test functions C(G(A)}, K) we are interested in is defined as
follows. If G is an arbitrary reductive group over F' with maximal compact
subgroup K € G(Ay) and maximal torus T, P C G a parabolic subgroup
with Levi subgroup M DO T and unipotent radical U such that P = MU, then
we denote by gc, tc, and ¢ the complexified Lie-algebras of G(Fix), T (Fix),
and K, respectively. For a Lie algebra g let ¢/(g) be the universal enveloping
algebra of g with basis By. For a compact subgroup K C G(Af) with K, =
K, for almost all v, and N € NU {oo}, N > dimgc, let CN(G(A)!, K)
be the space of all continuous functions f : K\G(A)!/K — C, which are
differentiable up to degree N and for which |[X * f|[11(x\Ga)1/K) 1s finite
for all X € U(gc)<n. Let C(G(A)L, K) = C®°(G(A)}, K). Let C(G(Fxo)!)
be the space of all smooth functions h : G(Fx)! — C such that || X *
hllLyG(royy < oo for all X € U(g). Denote by p(h) the semi-norm on
CN(G(Fux)') defined by

3y X Al Ly (G (ra))-
XeBCU(gc) <dim g

In the following we fix an open-compact subgroup K C Ky C GL3(Ay) such
that K, = K, for almost all places v. For an arbitrary Levi subgroup M of
G denote by WM the Weyl group of M with respect to 7.

II.i.iii RESULTS FOR THE GEOMETRIC SIDE FOR GL(3)

We want to give a modification of the geometric side of the trace formula for
GL(3) such that it still coincides with the geometric side of the trace formula
for smooth compactly supported test functions, but also converges absolutely
for f € C(G(A)!, K). We start with the coarse geometric expansion and
modify the distributions J, individually. As mentioned above, we only need
to treat those o which contain non-semisimple elements. To state the main
result, we need some more definitions. Recall that there is a map Hp :
G(A) — ap, which is defined via Iwasawa decomposition by Hp(muk) =
Hpyp(m), m € Mp(A), uw € Up(A), k € K. If M € L, there is a function

12



vy G(A) — C associating with « € G(A) the volume of the convex hull
in aAG4 of the points
{=Hp(z) | P € P(M)}.

There are other equivalent descriptions of vy, in particular, as a multidi-
mensional derivative of a certain (G, M)-family {vp | P € P(M)}, which we
need later. The volume vy occurs as a weight function in the invariant or-
bital integrals belonging to the semisimple terms on the geometric side. For
the non-invariant integrals, there are certain modifications necessary, and
even further modifications are necessary to obtain convergent expressions
for f € C(G(A)!, K).

With the (G, M)-family {vp} there is associated a (G, M) family {vp} as in
[Ax81]. If 0 € G(F) is some semisimple element whose centraliser equals a
Levi subgroup M € L, and if R € FM(T), let as in [Ar86, §6] v} = > g

Q

with @ € F(T) running over all parabolics such that Mg = Mg and the
centraliser of ¢ in ) equals R.

We recall the definition of the functions \; g, t € T“2)(F), and wSH2)S .
TCLR)(F) x N(A) — C from [FiLalla] (wS™®)-S was denoted by w there).
Here TGL() C GL(2) is the torus of diagonal matrices, and N C GL(2), the
unipotent subgroup of upper triangular matrices. Let Cf;(l +s) = )\518*1 +
AS 4+ Af's + ... be the Laurent expansion of the truncated Dedekind zeta
function (2(s) around s = 1. For t = diag(t1,t2) € TH@(F)\ZGLQ)(F),
let )
1- |1 - ﬁ|v

Ats = — Z %7_1 log qu,

vES, [tr|o=lt2]v
and for t = diag(t,t) € ZSL2)(F),

A

AMS=ANg=-—1<.
t,S 1,8 )\El

The other weight is defined as a sum of local functions wGF®9 (¢, u) =
S w5t w), ¢ = diag(t, ) € TOH(F), u = (}7) € N(A), each

v<00

defined by

log max{|1 — %|v, |zylo} v <oo,veES,

Wg;L(z),S(t7 u) = { log /|1 — %’12) + x2 if v]oo, v real,

log(|1 — %\U + |zy]0) if v]oo, v complex,

for v € S, and for v € S, by

GL(2),5 :
Wy 2), (t,u) if |t1]y # [t2]o,
GL(2),S _ ) aLe),s 1-[1-32], .
w B ) = WM () £ S log gy if [l = oo > 1, ()
0 it |1y = |fofo < 1.

13



We shall also write wSH(2):3 (¢, u) = WG5S (¢, 2), and similarly for the local
functions. There are a few more functions occuring in the statement of the
main result. They are all arising as modifications of the weight functions in
higher dimensional cases as we will see later.

2
A AP
AS = | 20 + 71.
For each place v define local functions QM v Uo(Fy) — C, oy FY — C,
by

Put

35

§>\T(w$’ @5 (1, u1) + w5 (1, ug))
—1

i 0() =

1 uy ug

foruz( 1 u3> € Up(Fy), and

log ||, ifveS
ol (z) = —EF“E ; +loglz|, ifv¢gsS, and |z|, > 1
0 ifvgsS, and |z|, <1

for x € F,. Then we put Q%O(t,u) = > Qf/[mv(t,uy), and o(z) =

v<o0o

<Z o’ (x). The last weight function we need to define is wyy, : U(A) — C,

which is given by

%(WGL(Q)’S(U1)2 + wGL(2)’S(U3)2)

1 S ) + (),

iy (1) = WS ()OS () 1

w¢gS
where )
(log guw)? 10g qu ) ~
No(z) =q 1 + (‘Iw—l if foly > 1
0 if |x]w < 1.
Note that way(u) = Y. wWipww(w) with wagy vw(w) only depending on
v,w<oo

the local components wy,, tqy.
Collecting all the partial results from Propositions |10} |16 20, and 26| the
next sections contain the following theorem.

Theorem 1. Let f € C°(GL3(A)* ) such that fU is the characteristic func-
tion of K, forv & S, and set fx(g fK f(k~gk)dk. Then the geometric
side of the trace formula Jgeom(f) equals the sum of the following:

(i) The semisimple part which is given by

fla™tya)op ) (2)dz,

[VICG(F)ss /AM('Y)C(%F)\G(A)

14



here G(F')ss € G(F) denotes the set of semisimple elements, and [y] C

G(F)ss some conjugacy class, and C(~, F') denotes the centraliser of ~
in G(F),

(ii) the part belonging to the regular unipotent orbit in GL(3):
v(T) Z / fK(tu)wf/‘,o (u)du
tez(F) Y Vo(A)

+u(T) > /U " fi (tw) Q5 (w)du

teZ(F)

+uDAs Y [ ety

tez(F)” Uo(A)
where v(T) = vol(T(F)\T(A)!),

(111) the part belonging to the minimal unipotent orbit in GL(3):

3vol(FX\A1)? 3 / et (117 )P oS @)
teZ(F)
_ 3vol(FX\al)2SE %) ")l
2
tEZF)

(1v) the part belonging to the reqular unipotent orbit in Mj:

Z / / utnu) w2 (t1, n) vy, (u)dudn
teZ“l (F)reg Ui
+v(T)\ 5 / / u”tnu) vy, (u)dudn,
teZMl (F)re N(&) JU (A

where N = {( )} C GL(3), and ZM (F) ey = ZM1 (F) e\ Z(F).

(v) and the remaining part:

v(T) > /U } /N " u” M tnu) vy (u)dndu

Re{BxGL(1),BxGL(1 }teZMl

with Ng the unipotent radical of R considered as a parabolic subgroup
i M.

Moreover, each of the following sum-integrals converges for all test functions

feC(QLs(A), K):

15



0
> @92 a2

MCG(F)ss ¥ AMnCOHENG(A)
(1)
Z / ‘fK t’u ’Z‘wMomw |du

teZ(F)
3 / ()] D125
tez(F)” Uo(A)

3 / e (t0)]du

teZ(F)
(iii)
Z/ it (M1 )P > laf @)
teZ(F)
3 / it (117 )P

teZ(F)
(1v)
/ / | fic (u™ M tnu |Z\wGL2’ (t112,n)||var, (w)|dudn,
N(A) JUL (A

/ / i ) [oag, () | ducln,
N(A) JUL (A

teZMl (F)re

tEZMl (F)re

(v) and

Z / / | fic (u™ M na) ||V (u)|dndu.
Ui(A) J Ng(A

Re{BxGL(1),BxGL(1)} teZMl (F)req

The assertion about (i) is shown in [FiLallb], and as mentioned before,
we only need to consider the non-semisimple parts. To prove the theorem
we now proceed as follows: We first show that we only need to consider
very special test functions f. Then we continue by considering each type of
equivalence class and any conjugacy class therein separately.

Remark 2. We should note that we shall not make use of the smoothness
of the test functions in C(G(A)', K). In fact, the theorem stays true for test
functions in CN(G(A)', K) for N sufficiently large, since the results from
[FiLa11b)] stay true for f € CN(G(A)Y, K), N > 0 as well.
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I1.ii PREPARATIONS FOR THE PROOF OF THE ABSOLUTE
CONVERGENCE

I1.ii.i REDUCTION OF THE PROOF TO SPECIAL FUNCTIONS

To show the absolute convergence of the geometric side we do not need to
consider a general f € C(G(A)', K), but rather functions of a quite special
form as those considered in [FiLallal for GL(2), which allows us to find good
bounds for the integrals, see (4)).

Denote by Div(F') the divisor group of Op, i.e. all formal sums of the form
D = > D,p, with D, € Z and almost all D,, = 0. This group is canonically

v<00

isomorphic to the class of all fractional ideals in Op (cf. [Ne99, Chapter 1,
§12]), but here the language of divisors seems to be more suitable. Write 1
for the unit element having D, = 0 at all places. We denote by Div*t(F)
the subgroup of all non-negative divisors, i.e. those divisors with D, > 0
for all v. (As we draw our intuition from the case F' = Q, it seems most
natural to denote the unit in Div(F') by 1.) If Dy, Dy are two divisors, we
write Dy > Dy if Dy, > Dy, for all places v. By [Gr98, Proposition 2.6
there is for any place v < oo a bijection

Ng — K\G(F,) /Ky, (m,m2,n3) = K, diag(aw? T, @, 1)Ky,

and hence there is also a bijection

Div(F)? — Ky \G(As) /Ky,
(D1, Dy, Ds) — K (i ™), diag((wh > 7)., (@), DK .

If T, Nl,NQ S DiV(F), N1 > Ny > 0, r> 0, we write TT7N17N2 : G(Af) — C
for the characteristic function of the double coset

. N1y Na
Kf(wzv)v diag((wwy B Jus (@ * )os 1)Kf-

If v is a finite place and n,e1,e2 € Z, &1 > €2 > 0, let fp ., o : G(Fy) — C
be the characteristic function of the double coset

wiK, diag(w:!, w2, 1)K,

so that T N, N, = II fro.N1o.Ny - Let P(F') € Div(F) be the sub-
v Ty+N1,,7#0 ’ ’
group of principal divisors, i.e. the group of divisor of the form D(a) :=

> vy, (a)py for some a € F*, and let P*(F) = P(F) N Div'(F). This last
<00

semigroup is canonically isomorphic to the semigroup of integral principal
ideals in Op. The canonical map

F* — P(F), a— D,
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is surjective and each fibre is isomorphic to O. This is clear by using that
P(F) is isomorphic to the group of all fractional principal ideals.

Let f € C(G(A)!, K). As each term on the geometric side is invariant under
replacing the test function f by [i f(k=t - k)dk, we may assume from the
outset that f is K-central, i. e. invariant under conjugation with K, and we
may also suppose f(g) > 0 for all g € G(A)! by [FiLallb, Lemma 3.4]. As
explained in [FilLallal §4|, we now reduce to test functions of a very special
form. Consider the map

p:G(A) — K\G(Af)/K, g~ Kg;K,
g5 € G(Ay) denotes the finite part of g. As f is K-biinvariant,

f= Z flo—1(KzK)>

2€K\G(As)/K

where for any g € G(A)la f|<p—1(KxK)(g) = f(g)XKxK(gf)7 and XKoK
G(Af) — C denotes the characteristic function of Kz K. Hence if we write

g = googy With goo € G(Fx)!, and z = sz! with 2! € G(A)! and s € Ry,
we have f|<p*1(KzK)(g) = f(gooxl)XKmK(gf)- Deﬁning foo,x : G(Foo)l — C
by goo + f(goox!), we obtain a function in C(G(FL)). By the above iso-
morphism, there are divisors 7, N1, No € Div(F') such that T, n, n,(z) # 0.
Since Ky : K| < oo, we get

| fip—1(oml | Gay /i) = Ky o K172 deg T vy No | foo el 21 (G (P
with the degree of the Hecke operator defined by

deg Tr Ny, N, = / T Ny N, () d,
G(Ay)

and the inequality

[ flo1xam) L (\aa) k) < deg T Ny Nl foo el Lt (G (R

holds trivially. By definition,

Ifllmewym = Y. Wer@wemlln@mca/x),
ceK\G(A)/K

and in all the considerations we may replace f with X * f for X € U(g).
Hence it suffices to consider functions f of the form

f(g) = foo(goo)Tr,N1,N2 (gf) (4)

with foo € C(G(Fx)!), and to show that each of the terms in Theorem [1]is
bounded by O(deg T} N, N,)it(fso). We may even suppose that r = 1 as it
only shifts our function.

Hence to show that the terms are bounded as asserted we need to know the
degree of the Hecke operator.
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Lemma 3. Let N1, Ny € PT(F) and identify them with the respective prin-
ciple ideals. Choose generator of such ideals, and again denote them by
Ni,No € Op. Then the degree of the Hecke operator T1 n, N, equals

deg vy v, = Nrjg(VN)” [ (146" +¢,)k(0)
’U:|N1|U<1
where k(v) = 1 if either % or Ny is a unit in O, and x(v) = 1+ ¢!
otherwise.

We shall see in Corollary [6/ that only Ny, No € PT(F) are relevant. Hence
we restricted our intention to such cases. The choice of N1, Ny € Op is
unique up to multiplication with units in Oy, which do not change anything
as T n,,N, is invariant under Oj.

Proof. As degTh N, N, = fG(Af) T1 N, N, (x)dz, the left hand side is the prod-
uct over the degrees of the local Hecke operators at all places which divide /Nj.
To compute this local degree we use [Gr98), Lemma 7.4]. Let v be a place with
|N1ly < 1. Let A = (e1,€2,0), where ¢; is the valuation of N; at v. In par-
ticular €1 > €9 > 0 so that < A,2p >= 2¢; for p the half-sum of all positive
roots of GL(3), and < A\, >> 0 for all positive roots « of GL(3). Suppose
first that neither % nor Ny is a unit in @,. This means that ¢; > e9 > 0 so
that < A\, >< 0 for all negative roots . Thus in the notation of [Gr9§],
P, = P, the standard Borel subgroup, and dim(G/Py) = 3 by |Gr98, (7.3)].
Since # GL3(Fy,) = (g5 —1)(¢3 —¢0) (g5 —g5) and #Po(Fy,) = ¢3(gy—1)*, we

2
get #GL3d(iﬂzfg’C3//§)°)(F%)q§A’2p> = ¢>1 —(%Jrq“Z;)(q“H) as the degree of the local

v

Hecke opverator.

Now suppose that either Ny or % is a unit in O,, which means that either
gg = 0 or 1 = e9. (Both cases can not occur simultaneously, since then
e1 = 0 so that v was not a divisor of Nj.) Then there are exactly two neg-
ative roots « for which < A\,a >< 0 so that dim(G/P,) = 2. Moreover,
Py now is either P or Py. Therefore #P\(F,,) = ¢3(q — 1)3>(gy + 1), and
# GL3(F,,)/P\(F,,) = ¢2 + q, + 1. Thus the remaining assertion follows.
It is clear from the proof that the lemma does not depend on the initial

choice of generators for the ideals Ny, Ns. O

I1.ii.ii BASIC ESTIMATES

This section is supposed to provide some lemmas which we shall use repeat-
edly during the next sections to estimate certain integrals.

If H is a real Lie group, let b its Lie algebra. Let By C U(h) be a basis for
U(h)<dimg H-

Lemma 4. Suppose v|oo and h € C(G(F,)'). Then
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(i) If h is K,-central, h« X = X x h for all X € U(¥, c).
(ii) Let H C G(F,)! be a (real) Lie subgroup, then we have
sup\h(yg <) / | X * h(yg)|dy
XeBy

and

sup [h(gy)| < > / |+ X (gy)|dy.
XeBy

(iii) If A C H is a discrete set

S Ihlag) < 35 [ 1X < hiuo)ld.

aceH XeBy

Proof. (i) This is clear, since h(zk) = h(kz) for all z € G(F,)!, k € K,.
(ii) and (iii) This is [FiLallbl §3].
O]
In the following lemma we collect some neccesary conditions for our functions

fne1,e0 to be non-zero. All conditions follow from the elementary divisor
theorem.

Lemma 5. Let v < oo, t = diag(t1,t2,t3) € T(F), and u € Uy(F,). Then
In.er,e0(watw) = 1 implies the following conditions on t and w:

(i) |titats]y = gy &7,

(i) |titjlo < qy =2 for all i # j,

(iii) |titzugle, |titousle < g, %2,

(iv) [tita(uiuz —uz)ly < q, %2,

(v) all entries of tu are in O,.

Corollary 6. Let t € T(F) and v € Ug(Ay). Then T1 n, N, (tu) = 1 implies
that N1, No € PT(F) so that the ideals corresponding to N; are principal and

integral, and thus are each generated by an element in Op (again denoted by
Ny, N3). Moreover, the following holds:

(i) D(titats) = N1No, and all entries of tu are in Op,
(i) D(t;t;) > No for all i # j,
(’iii} D(tltgul), D(tﬂfg’dg), D(tltz(U1U3 — UQ)) Z NQ.
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The following is a consequence of the last two lemmas together with the
approximation of certain volumes. It is a higher dimensional analogue of
[FiLalla, Lemma 3.1].

Lemma 7. Let v < 0o and t € T(F'). Then the integral

/ Frr.ea (@) du
Uy (FU)

vanishes unless all conditions on t from Lemma |5 (i), (ii), (v) are satisfied.
In any case it is bounded by

3

a2 Il 2ol T [mingltl " 657}
=1

Similarly,the integral on(Aﬁ )TI,N1,N2 (tu)du vanishes unless all conditions
on N1, Ny from Corollary |6 are satisfied, in which case it is bounded by

3
Nrjg(titaNy? T[ ged(D(t:), N2)).
=1

Here we again have chosen a generator No € Of of the principal ideal Ns.

The use of ged in the last part of the lemma has the obvious meaning: For
Dy, Dy € Divt (F), we set ged(Dy, D2) = >, min{D1 4, D2, }p, € Divt(F).
As for t;, No as in the lemma, the gcd as well corresponds to a principal
ideal, taking the norm makes sense.

Proof. We need to bound the volume of the set C of triples (u1, ug, u3) € F>
1 uy us

such that f(t( 1 ulg)) = 1. For such a triple to lie in C' we know from

Lemma 5| (iii) and (v) that
urly < min{g; =2 [tatsl; " [0 ]51} = [faly ! min{1, ¢ [ts]5 "}

and
lugly < [to|, ! min{1, g, °2|t1], '}

are necessary conditions. Moreover, (v) of Lemma 5 implies that |ua|, <
lt1];'. Let € F, with |z, = ¢F. For an integer m consider the set
{y € F, | |x —yl, < q,™}. This set has volume ¢, independently of the
value of k. Therefore,

vol({uz € Fy | Jurug — uzly < g, % |tita|, 1)) = ¢, %2 [tatal;
Altogether, we obtain that vol(C') is bounded from above by
[t 2 2l min{1, gp =2 fts]; " min{1, g *2 a1} min{1, g "2t}

which proves the lemma. O
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Corollary 8. Assume that t € T(F) satisfies Corollary |6 (i) and (ii). Let

[ € C(G(A)) be of the form [ = fooT1 Ny N,y With foo € C(G(Fuo)t), foo > 0.
Then

Z /U f(etu)d

eeT OF)

2
< mln{/\fp/Q( ) 1}NF/Q fyt 3 chd ti), N2))p( foo)
= mln{/\/p/(@(h) NF/Q(t3 }NF/Q b Hng No))p(foo)-

Proof. For any € € T(Op), u € U(Ay), we have T}, n, n, (etu) = T} ny N, (tu)
so that the left hand side is

Ty Ny, N, (tu)du / foo(etu)d
/ oy v >

eeT(Or) Uo(Foo)

the finite part of which can be bounded by Lemma |7l For the infinite integral
we use that O embeds discretely in F, and that fU foo(stu)du =

NF/Q(%”) fU()(Foo) foo(uet)du. Hence applying Lemma, |4 ylelds the assertloE

In particular, a (worse) upper bound for the integral in the corollary is

3
MM%HMW%MMM
=1

and this is invariant under permutation of the entries of ¢.
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I1.iii EQUIVALENCE CLASSES IN O2__.
The equivalence classes 0 € O3, correspond bijectively to t € F*, i.e. to
the semisimple parts o = diag(¢,t,t), and we write o4 for such a class. To
determine the expansion of the distributions associated with oy, it suffices
to consider ¢ = 1, since the general case follows from the equality J,, (f) =

Jo, (f(t-)). The class 0; decomposes into a disjoint union of unipotent orbits:
. 1 11 11

The conjugacy classes of ¢ ( 1 1), t ( 1 1), and ¢ < 1 %), denoted by nf,

nt . and nreg, respectively. The distribution J,,(f) can be decomposed

accordingly, and if nis a unipotent orbit, we write J,(f) for the corresponding

part of J,(f). Hence

Joi(f) = T (f) + e, () + Tt (F)-

llll n

The orbit n’ consists of only one element and obviously yields Ju:(f) =
vol(AgG(F)\G(A))f(t). Thus the central contribution equals

> vol(AGG(F)\G(A))f(t),

teFx

which is absolutely convergent also for f € C(G(A)!, K) by [FiLallb]. Hence
we are left with the unipotent regular contribution Ju, (f) = > Ju_(f),

teFx o

and the minimal unipotent contribution Jy_. (f) = Y. Ju . (f).
tEFX l]].]ll

I1.iii.i EXAMPLE: MODIFYING THE REGULAR UNIPOTENT
CONTRIBUTION FOR GL(2)

Before we start finding expansions and modifications for the different unipo-
tent distributions for GL(3), we briefly recall how the regular unipotent
distribution for GL(2) was modified, as it gives a good impression on the
procedure. Each unipotent class o, € GLy(F), t € F*, decomposes into the
trivial orbit {t}, and the regular unipotent orbit nf,, = {t('%), = € F}.

For f € C°(G(Fs)') the sum Y JGL(Q)(f) is then given by ([FiLallal
teFx e
(10)])

vol(F X\A 51/ > (M) |aPd

teFx a1

Computing the derivative, we obtain

)\S
vol(F*\Al) reSCF /Z fx(t S + log |z|s)dx

te '
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To obtain an expression, which is convergent for f € C(GL(A)!, K) from
this, let v be a finite place of F' and x, : F,, — C the characteristic function
of O,. Then for any t € O,\{0}

/ Xo(t) log ]z = / log ||oda + / Xo(t) log |]ydz
Fv Ov FU\OU

(1
= / Xv(tx)(g?:El;Xv(x) + log |x‘va(33_1))d$

which is the same as

Ch(1) L G
e /F elte)de + / R

which leads to the definition (3). It is then clear that the definition (3
reduces to the usual unipotent contribution for f € C°(G(Fg)).

+ log |z|,)dz,

I1.iii.ii THE REGULAR UNIPOTENT ORBIT
Fix t € Z(F') temporarily, and define the function Z by
_ la 1+sq 1+s2 g% X
Z(s1,82) = T wo,v0)t (1 ))|al" " e *2d*ad™c
(AX)2 1
for f € C°(G(Fs)!) and s1,s9 € C, Rs1, Rsa > 0. Here

fK,[Uo,Uo}(Q):// f(E™ guk)dudk
K J[Uo(A),Uo(A)]

and [Up(A),Up(A)] ~ A is the first derived subgroup of Uy(A). Note that
in general if fk [v,,0,] 18 @ Schwartz-Bruhat function in the variables a and
¢, Z can be continued to a meromorphic function on C?, and s1827(s1, $2)
continues to an entire function on C2.

Lemma 9. Let f € C°(G(Fs)'). Then Jut,, (f) is given as the value of

vol(FX\ A1) <3132 + i(a% + ag)) (515251, 5)] (5)

at (s1,s2) = (0,0), or more explicitly, it is given by the sum of
1
fe( 1))

1
. <log |u1|s log |us|s + Z((log |u1]5)2 + (log \u3|5)2)> duidus, (6)

vol(FX\AL)? /

AQ

3)\5 1u
vol P \a1* S8 [ e (M g ) o sl sdusdus, (7)

205, Jue
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and

s\ 2 s
vol(F*\Al)3 <A°> + /A?f(t(luf u13>)du1du?,. 8)

Note that the coefficients and weights were already computed in [FI82
Lemma 4|, and up to a misprint in the statement of the term (8) there,
they equal our results. Yet we chose to include a derivation of those terms,
as our calculation directly yields a form more suitable for our application.

Proof. Let 31, B2 be the reduced positive roots of GL(3) wih respect to T,
and let wy, s be the corresponding weights subject to < S, @, >= §;;.
Let

la Vv v
fK,[Uo,Uo} (t ( 1 f))’a‘<)\,w1 >’C’<)\,w2 > X ad e

Z(fx jvo, v A) = /

(AX)?

for A € (a§)*. Each w € W defines an isomorphism (a§)* — (a§)*,

A= w(A), and WE 3 w +— P, = w'Pyw € P(T) defines a bijection
between W& and P(T). The regular unipotent contribution is then given
by

vol(F*\A') Y Z(fkwowe) wA) + p<2)0p,(N0p, (AT (9)
weWE

lim
A—0

with p<g = 1 + S2 (we shall suppress the volume factor in the following).
(Recall that we normalised the measures on the root spaces to yield 1 for the
root lattice so that Op, (\) = % [I <w\),m¥ >and 0p,(N\) = [] <
wel BeAo
w(X),BY >.) Since fx [uyu,] is the characteristic function of O outside of
the set S, the zeta function Z(fk (v, w(A) + p<2) can be written as the
product of truncated Dedekind zeta functions and local zeta functions:

H (P(<wA), @’ > +1) Zs(fx,[vo,00), W(A) + p<2),

WEAO

where Zs(fk [vo,00] W(A) + p<2) = Hs Zy (fx,[Uo, U], W(A) + p<2),
ve

Zo(JR,[Uo,U0]s A T+ P<2)

1 YA>+1 Y A>+1
— [t (Dl T g
FJ X F,

v

! This is a special case of a more general expression for the distributions associated with
unipotent orbits as explained in an unpublished work by Tobias Finis and Erez Lapid.
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and this local zeta function is absolutely convergent for < A\ @) >, <
A,y >> —1. Changing the multiplicative to an additive measure, the local
function Z,(fx [vy,00]s A + p<2) equals

1 oY Ny
CFw(l)z/F - fK7[Uo,U0},U(t( ‘fg))lalf w1>’C|§ 727 dyad,c.
'U>< v

For P € P(T) corresponding to w € W&, let cp(A) = Zs(fx,[vo,00), W(A) +
p<2), and dp()\) = HwEAO(C}?(< wA), @’ > +1) < w(\),@" >). Then
{ecp(N) | P € P(T)}, and {dp(\) | P € P(T)} are both (G, T)-families,
and the expression (9) equals (cd)7(0). Since the equation ck()\) = cg()\) is
satisfied for all Q € P(L), L € L(T), (cd)r(0) equals by Arthur’s splitting
formula [Ar81) Corollary 6.5]

> c(0)dL(0) = er(0)da(0) + 1 (0)dr(0) + > 7' (0)dar(0),
LeL(T) TCMCG

la
and we have ¢£(0) = Crs (1)2 [ fic, 0] (! ( { f))dsadgc, and dg(0) =

(ress—1 C2(s))%. We first compute cp(0). For w € WY let X% (a,c) =
log |a| sy + log|c|swy € af for = w(f1) and B = w(fa), i.e. we have
AXT0 (@) = (g SN EIZ ) 0N F> g X Pu (g, ¢) = w(X T (a, c)). The
set {vp(A)}pep(r) with vp(\) = AXT(09) is again a (G, T)-family. Since
all involved integrals are sufficiently convergent, we may take the limit over A
inside the integral so that c¢r(0) = f(va)2 T U, 00,5 (t (1 i f>)vT(0)d§ adgc
so that it remains to compute vp(0), which is a polynomial in log |a|s and
log |c|s. If the points {X?(a,c) | P € P(T)} constitute a positive (G, T)-
orthogonal family (which is the case for |a|g,|c|s > 0), vp(0) equals the
volume of the convex hull in a§ spanned by such points. Let P € P(T) and
let «, B be the reduced positive roots of P. If @ is adjacent to P, Ag =
{—a,a+p} or Ag = {—B,a+B} so that XF(a,c)— X%(a,c) = log |a|sa” or
XP(a,c)—X%(a,c) =log|c|sBY. Hence if |a|g, |c|s > 1, we have to compute
the volume of a polytope, which looks like the following:

log|als

log |c[s log |c[s

log |als log |als

log [c|s

and all internal angles are %’r The volume can then be easily computed to
be log |alslog |c|s + 1((log|als)? + (log|c|s)?) and this expression remains
valid for arbitrary a,c # 0.
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Since < a, X >=< B, X" >=logla|s and < B, XF >=< py, X1 >=
log |c|g, the volume is the same as (019> + 1(07 + 822))6’\(XP0(‘1’C)), where 0;
denotes the derivative with respect to < A\, @) >.

er(0) = (ps(1)? /F2 T [U0,00),5 (L (1 i g))

1
- (log |a|s log |c|s + Z((log lals)? + (log |c|s)?))dsadsc.

On the other hand, the other extrem case yields

1
dr(0) = (0102 + 1(5% +03))(CR(51)CP(52)5152) (51,52)=(1,1)
= ((A8)? + ATA%)).

Next we compute 3 (0) for Levi subgroups M of corank 1. Since again the
local integrals are absolutely convergent at 0, we have

o (0) = Crs(1)? /F2 T [U0,00) ( (1 1 i:))UZM(O)dSadSC-

Let @ € PM(T), and w € W such that P, N M = Q. Then v} (Ay) =
vp, (Aar) = |a|<COm) @Y > || <wOan) =35> with Ay € i(ad)* and {vg"} is a
(T, M )-family. The space (a)* is spanned by 1, (2 or 81 + B2 depending
on whether M = M;, My or Ms. Hence vryl(()) = %log]a\g, v:];b(o) =
% log |¢|s, and w23 (0) = % log |ac|s. On the other hand, the spaces (a§;)*
are spanned by we, wi, or wy — wy for M = M;, My, Ms so that dyy, (0) =

%)\g)\f | = da,(0), and djz,(0) = %on_l. Hence,

Y. ' (0)du(0)
TCMCG
_ 3 o a1y2 Ao / le
= 5 vl PRI . fc oot

g))log lac|sdsadgc.

Since fx [vo,00),0 18 the characteristic function of 02 C F? for v ¢ S, and
since vol(O,) = 1, we may change all integrals into global integrals over A2
so that the assertion follows. O

For this to yield a convergent expression for f € C(G(A)!, K), one needs to
modify the terms by cutting out the too much of the support of f. This
is done as follows. We could try to replace log |u;|s by wS*@5 (¢, u;) (the
function from [FiLalla] for GL(2)), but this gives an expression which is
not invariant under enlarging the set S. Nevertheless, this replacement is
not to far from the truth: we only need to add an additional term. The
polynomial of second order in log |u;| will be replaced by a weight function
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wfﬂ) (t,u) = wpr, (t, u) (depending on the chosen set S, but not on t € Z(F)),

which is the sum ) wag vw(t, u) of local weight functions wazyvw. We
v,w

write w”(u;) = wCHS (1) = WEFRS (¢ 4y), since wCGHF is independent
of t € Z(F), and recall that w®(z) = 3w (z) with

log | x|, ifvels
w(x) = { log x|y + Z’vg—f”f ifvgS and |z|, > 1
0 ifvegSand |z|, <1

Then define the replacement of the weight function in (6) by

s S
Wiy, (1) = wiy, (¢, u)

1 1
= S () (ug) + 3 (5 () +05(09)?) = 1 D () + 1 (u3)),
w¢gS
with 2
log qu)* log quw .
nw(uz) = (qiq—l) + (qul) if ‘uz‘w > 1,
0 if ‘UZ‘w <1

Hence for any v, w we have

o) = 8 () ) + 5 ) ) + 5 ) )
— ) + 710 (u)

with 0y = 1if v =w, and d,, = 0 if v # w.
The weight in (7)) will be replaced by Qf/lo (t,u) = Qg (t, u) =D Qagy 0 (t, w)
(again depending on S, but not on t € Z(F')) with

3N

Qg@(tvu) = §E(WS(U1) + w®(us)),

and the prefactor of the integral in (8)) stays the same,
2
S P
Ag = 0 + L.

Note that for T'= S U {v} for v some place not contained in S, we have

AP (G, (1)

ASUEY NS Cru(1)

28



and

W8 ) 16 (G
AU TSNS Cra(1) 2¢Ra(1) T\ Cru()

so that

(10)

S / 2
Asupy —As = =35 AS Crp(1) 19 (CF,v(1)> 1Cr, (1)

)\ CFU(]-) CF,v(l) 2CFU(]-)
If it is clear on which set .S the weights depend, we may sometimes drop the
index S.

With these weight functions we get:

Proposition 10. For f € C>*(G(Fs)') as above the sum Jut,,
teF'x

(f) is
given by the product of v(T) with the sum of

> / /U kY tuk)wag, (¢, u)dudk,

teZ(F) o(A)

/ / k™Y uk) Qg (2, w),
teZ(F) Uo(A)

Ag Z / / kY tuk)dudk
Uo(

teZ(F)

and

for S large enough. In particular, the expression is invariant under enlarging
S. Moreover, each of the sum-integrals

k™l tuk)| lwntg 0w (t, w)|dudk,
/ /(Y]O(A Z 0,Y,

v, w

> / /U ke tuk))| Z Qg 0 (¢, w)|dudk,

teZ(F

/ / k= tuk)|dudk
teZ(F Uo(A

defines a continuous semi-norm on C(G(A)!, K).

teZ(F)

and

First we want to show that the expression in the proposition is invariant
under enlarging S for f some bi- K-invariant function provided that the sum-
integrals do converge.
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Lemma 11. Let f € C*°(K\G(A)/K) be so that the expression
| ey ) + 9, (6 0) + Ar)d
Uo(4)

converges for all finite sets T 2 S. Then this integral defines a constant map
{T|SCT, T finite} — C.

It will certainly suffice to prove the lemma for 7= S U {v} for v some place
not contained in §. We may also assume that t = 1, and hence we can view
f as a function on the affine space Up(A). It will in particular suffice to prove
the lemma for f such that f(ab,) = f(a) for all a € Uy(A), b, € Up(O,) (i.e.
f is a function on the affine space A? invariant under adding elements from
03). First we show two integral identities.

Lemma 12. Suppose S, T are two finite sets of places, T = SU{v}, v & S,
and that h = [, hy, : A — C is a sufficiently integrable smooth function
with h(a + by) = h(a) for all a € A, b, € O,. Then

S _ C}‘L,v(l)
/A b(a) (@ @) = @) + ) do = 225 /A h(z)dz,

and

r —WSSU (,US$ LU:—logqv CC(A)SI‘ €T
[ M)l @) — @) @)de = B [ ) @)

(Here “sufficiently integrable” means that all occuring integrals converge ab-

solutely.)

Proof. We start with the first equation for which it suffices to show the
assertion for the local integral over F,. As h, is invariant under O, we can
write the left hand side as

log ¢,,)2 log g, \ 2
o (0) / (log |z],)?de + [ 108 @)° +2< 084 ) / ()
O, gy — 1 g —1 F,\Oy

B ) Fo(1)
— hy(0) /Ov(log|xv) da+ /FU\OU ho () da.

Since [y, (log |z]y)?dx = g?:ﬁ; the first assertion follows.

For the second identity write the left hand side as

T —(JJSIL' CL)SI' Xz ZL'(UTI’—(A)S.TL' (/JSI' X.
Ah(a:)(wv(:c) S(2))w (x)d */Ah( )@ () — w5 >>§Z S (x)d
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S

v

Since wy) (x) = 0 for x € O,, we have

[ m@)el @) - @l @de = - B [ @)
F, F,\Oy

Qv — 1
and
| hafe)wl(e) - wf(e))da
Fy
log gy
= hU(O)/ log |z|,dx — 84 / hy(x)dx
O % —1Jpn\0,
log g
— 08 / hy(x)dz
Qv — 1 »
from which the second assertion follows. O

Proof of Lemma |11, Let T = S U {v} be as before. Then wJ:\F/IO (u) — w}s\}o (u)
is the sum of

S (wd (w) = wf () w5 () + Y (wi (i) — wf () w® ()
(i.)€{(1,3),(3,1)} =13
+ (wi (u1) = wf (u1)) (wi (us) — wf (us))

and

1 2 2 1

1((%?(“1) —wy (u1))” + (wy (uz) = wy (u3))”) + 7 (o) + 10 (us))-

To compute on(A) f(u)(w}&o (u) — w;?}o (u))du note that the integration over
u1 and wug is independent of each other so that we may apply the results for
GL(2) from [FiLalla) to the first and third summand. For the second sum-
mand we use the first part of Lemma|12 and for the remaining summands the
second part of Lemma |12| to conclude that on(A) f(u)(wﬂo (u) — wf/lo (u))du
equals

_ 3logg S ;
2q,— 1 /UO(A) Fu)(w™(w) + " (us))du

log g, >2 1 (log g,)* <10gqv )2 /
+ + = + f(u)du.
((Qv_l 2 ¢—1 @w—1 Uo(A) (u)

Since Q%\Fh (u) — Qﬁ/lo (u) equals

S
2::59((005(“1) — wj (u1)) + (wy (us) — wf (us)))
~1

log gu
B )+ )
§ log gy

2q,—1

((wy (w1) =@ (wr)) + (wy (u3) — w0y (us))),
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the results for GL(2) imply that the integral on(A) Fu) (0, (u)— Q3 (u))du
is

3 log ¢u
2q,—1

/ £ () (@ (1) + wS ()
Uo(A)

X5 loga (log % )2
+ [ -3 -3 / w)du.
( Mg —1 @ —1 Uo(A) fu)
Adding this to fUO(A) f(u)(wiy, (u) — wyy, (w)du we obtain
A5 logg <logq )2 1 (log g)?
-390 z_ C S Ep mi L2 / w)du,
< Agl @ —1 @ —1 2 ¢—1 Up(A) f( )

which exactly cancels the difference (10) of (Ap — Ag) on(A) f(u)du, and
thus proves the assertion. O

To prove the assertion about the convergence in Proposition |10, we need
some estimates. Recall that it suffices to consider functions f of the form
(4), which in particular equal fyv cv v at the finite places v with €] > ¢ > 0,
and that we may even assume n* = 0. Hence we now establish estimates
for the local integrals involving such test functions and the weight factors.
As the weight wyy, is a double sum over all places, we now have to consider
integrals over two places at a time.

Lemma 13. Let v,w be non-archimedean places of F'. Let f, and f,, be the
Junctions focv cv and focw cw, respectively.

(i) The integrals on(Fu) fo(tu)|w? (us)|du, i = 1,3 vanish unless t € O,,
and unless (i) and (ii) of Lemma5 are satisfied. There exists a constant
M € N (independent of v) such that each of the integrals is bounded by

M (log | det t|;* + 5U)/ fo(tu)du
Uo(Fv)

where §, is 0 or 1 depending on whether v ¢ S orv € S.

(i) The integral on(FU ) Jow(tw)|waty vw(t, w)|du vanishes unless t € O,N
Ow, and unless the conditions (i) and (ii) of Lemma | are satisfied for v
as well as for for w. Then there exists a constant M’ € N (independent
of v and w) such that it is bounded by

M'(log | det t|; 1 + 6,)(log | det t| ;' + 5w)/ fow(tu)du.
UO(Fv,w)

Note that the first part of the lemma also provides a bound for the integral
involving €5y, », v finite, which is given by
S

A
/ fv(tu)lﬁf/foyv(u)]du < 3M\)\T0](log | det t!vl—i-év)/ fo(tu)du.
UO(Fv) —1 UO(Fv)
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(11)

We still need archimedean estimates, which are given by the following lemma.
Define for w|oo, h € C(G(Fy)'), t € F*,

H(th) = [ ST X+ hltg)ldg.
Z(Fw)\G(Fw)

XeBpaLs(Fy)

For h € C(G(Fx)'), define H(t, h) analogous.

Lemma 14. Let w be an archimedean place of F', v an archimedean or non-
archimedean place, and assume that f, has the same form as above if v is
non-archimedean. Then there exist constants My, My, M3, My > 0 such that
the following holds:

(i) The weighted integrals fU Fus) | frww (tw) ||wato w0 (w)|du and

on )|fvw tu)HwMo,vw( w)|du vanish unless all the non-vanishing
condmons with respect to v of Lemma |5 are satisfied if v is non-
archimedean. In any case they are bounded by

Mgy [t],* min{lt], ", g* ) (— log [t], + 0,) H(t, fu),
if v 1s non-archimedean, and by
MyH(t, fu)H(t, f)
if v is archimedean,
(i)
L g VBt < M o),
(iii)
g VB0 < M o),

All inequalities are valid for any Ky, -central f,, € C(G(Fy)') and K, -
central f, € C(G(Fx)') if v|oo.

(iv) For any Koo-central fo, € C(G(Fx)'), we have

Z H(et, foo) < Myp(fo)-

e€Z(OF)

As the proofs of both lemmas are quite technical, we postpone them till the
end of the section, and instead turn our attention to the completion of the
proof of Proposition [10| first.
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Proof of Proposition|10. The expression given in the proposition is well-
defined by Lemma First we show that the expression given in Propo-
sition |10| reduces to the usual contribution from the regular unipotent or-
bit if we insert f € C°(G(Fs)!). Then [t|, = 1 for all v ¢ S such that
tUp(A) Nsupp(f) # 0, and also |u;|, < 1 whenever v ¢ S, and there is some
t such that f(tu) # 0. Hence for all ¢,u such that tu € supp(f), we have
wOL2S (¢ u;) = log |ui|s and 1y, (u;) = 0 for all w ¢ S. Hence wf/jo and Q%O
reduce to the weights in @ and . Since Ag is the same scalar as in ,
it follows that the regular unipotent distribution equals the expression given
in the proposition.
For the proof of the absolute convergence we may assume that f is of the
form , i.e. f = fooT1,N,, Ny, and consider each of the three occuring sum-
integrals separately. For the term involving Ag, we only need to consider
Z fU ) fr(tu)du. The only ¢t € Z(F) ~ F* for which the integral

can be non-zero, have in particular to satisfy Np/g(t)* = Np/g(N1N2).
Thus we may assume that NF/Q(NlNg)% € Z C Op, and t = t1e with
t1 = Np/@(NlNg)% and some ¢ € OF. Using Corollary , we obtain

Z /U | f (tu)|du

teZ(F

< NF/@<N ) ged (Mg (N1 No) ¥, Ny (V)

Z /U | foo(t160)|du

€0y

N1
<NF/Q( )gcd(NF/Q(NlNz) vNF/Q(N2))3M(fOO)'
Since

Ny 3
NF/Q( )ng(NF/Q(NlNZ) aNF/Q(N2))3§NF/Q(N1)§=

the sum is bounded by /\/'F/@(Nl)iu(foo) < degT1 N, No4(foo) Dy Lemma .
Consider now the sum-integral involving Qs = Qf/lo o T Q3 Mo,f- The non-
vanishing condltlons on t from the last case apply here as well. Hence us-
ing the estimate (11) together with Lemmas 7| and (1v) again the sum

> ZfU wy 1£( tu )93, (tu)|du is bounded by
teZ(F) v

NF/@<N>gcd<t1,NF/@<N2>> S [ et s wldu

EOX UO(FOO)
N1
+MNF/Q( )ng(tl Nrjg(N2))? (log N jg(N1N2) + |S]) il foo)

< MNpjg(55) ged(ty, Niyg(N2))? (log N (N1 Na)+[S|+Mi)u( foo)

N2)
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for some absolute constants M, M; > 0 so that by the same reasoning as
before, this is bounded by O(deg T v, N, ) 4( foo)-
Using Lemmas |5 and |14 similar reasoning applies to w}ao = w}\% ff T

S

Wige f00 T w]S\Zo,oo,f + wﬂom’m so that the sum-integral

Z Z/ tu ’wMovw( )‘du

teZ(F) v,w

can be bounded by the product of MNF/Q( )gcd(t1 N jg(N2))? with

((log Npjg(N1N2))? + (|S] + M1) log Ny (N1N2) + |S|* + Ma)( foo)

for suitable constants M, M;, My > 0. Hence this is also bounded by
O(deng,Nl,N2)/‘(foo)- O

Proof of Lemma|13. (i) Assume that i = 1 (since conjugation with a cer-

(i)

tain Weyl group element yields w”(u3), we only consider w®(u1)). Let
v ¢ S. Then w(u;) = 0 unless |uy|, > 1, but [t|, need to be < 1
for such u with f,(tu) # 0 to exist. Thus fUO(Fv) fo(tu)|ws (uy)|du is
bounded by

108 go )
(log|t];! + —24v) / foltu)du < aq log | det |5 / Fo(tu)du
@ — 17 Juy(ry) o(Fy)

for some a; € N independent of f and ¢, since we assumed |t|, < 1.
Now suppose that v € S. Then the integral is bounded by

(log t]vl)/ fo(tu)du +/ fo(tu)|log |uq |y|du
Uo(Fy) Uo(Fv),luile<1

log g,
< log | det ]! / Foltu)du + 20 / £ (tu)du,
Uo(Fy) Qv — Uo(Fy)

which can be bounded by (log |dett|; ! + 1) on(FU) fo(tu)du

If v # w, the assertion is a direct consequence of (i). For v = w
similar considerations as before are necessary. The modifications in
the case v = w for wpy, v, do no harm, since the additional terms can
be bounded by — log|t|, when |t|, < 1. But this is always true when
WMo v,v 18 supposed to be non-zero.

O

Proof of Lemma |1j. For ease of notation we assume for the proof that w is
a real place and write F,, = R. The complex case is analogous.
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All assertions readily follow from the following statement together with Lem-
mas [7l and [13} We first show that there exists a constant M > 0 such that

/ ()| log lur ||t og [us] [**du < M / ST | Xeh(te)ldg
Uo(R) ZENG®) xeppor o

(12)
for all h € C(G(R)!) and all e1,e3 € {0,1,2}. Tt suffices to consider K-
central h and ¢t = 1. To show (12) we define the following subsets of Uy(R) ~
R3:
Ao = {u € Up(R) | [ur], [us| < e},
A ={u e Up(R) | |us| > e, |ug| <e, ke {1,3}\{i}}, i =1,3,
and for o € {(), (13)} a permutation on the two symbols {1,3} let

B, = {u € Up(R) | [ug)l > |ug)| > e}

This gives a partition of Up(R) in domains whose intersection form a set of
measure 0 (in R?) so that in particular,

/ :/+/+/+/+/ ,
Uo(R) Ag Ay As B B(is)

and it suffices to show (12) for each of these integrals.
Let 0 € {(), (13)}. Then the integral (12) with integration domain restricted
to B, can be bounded by

[ ) os o) < co [ gl

for some constant ¢y > 0, which is independent of o and h. Let U=U or
U = U, depending on whether 0 = () or 0 = (13). Then there is a continuous
homomorphism @ : GLy(R) — PGL3(R) such that for all u € Up(R) we have

@((1 o) ))—1u € U(R), and

o [ h)luogyldu <20 [ iin(e)ladn (13)
Bo Ne(R)

for No(R) = {n(z) = (1 %) | # > e} C GL(R), and h(g fU(R ®(g)u)da.
As U(R) is centralised by the conjugation with @(O( ), his still O(2)-
central. Using the K AK decomposition for PGLy(R), write for n(z) € N.(R)
n(x) = ki diag(a,a ko with ki, ks € O(2)/{%1}, @ € R>;. Then (13) i
bounded by

cl/ sup |\h(ky diag(a,a™ k)| (a® — a=2)d¥a,
1 kl,k’QEO(Q)/{:I:l}
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where ¢; is suitable constant depending only on the chosen normalisation
of measures. Then by [FiLallbl Lemma 3.2] there is a suitable constant cz
such that this is bounded by (using that h is O(2)-central)

Sy
1 0(2)/{£1} 0(2)/{i1}X,Y€ZBso<2)

| X %Y * h(k; diag(a, a™ko)|(a® — a=2)dk1dked™ a
=y X =Y «h(g)|dg.
Z /PGLQ(]R) |

X,YEBo(Q)

Now

/ | X *Y x B(g)|dg = / / |P(X) * ®(Y) * h(P(g)u)|dudg
PGL2(R) PGL3(R) JU(R)
<o S B(X) * B(Y) #h + Z(g)ldg
PGLs(R) 7E55

where the last inequality follows from Iwasawa decomposition and [FiLallbl
Lemma 3.2]. Note that ®(X)«®(Y)xhxZ = Z «®(X) « ®(Y) * h by the
O(3)-centrality we imposed on h. Hence (12) follows for By, B(13).

Now let i, j such that {7,j} = {1,3}. Then the integral in (12) with integra-
tion domain restricted to A; can be estimated by

/ (o) s e + / ()| Tog [ | du,
Az‘ Ai

where for the first integral the same estimates as before apply. For the second
one we get an upper bound

2/ sup \h(u)\dquuj/ | log |x||dz.
U 0

2,u; €ER ujE[—ee]
Since [ |log |z||dx is a finite constant, and

/ sup  |h(u)|dugdu; < 2cqe Z | X * h(u)|du
u2,u; ER ujE€[—e,€] XGBUO(]R) Uo(R)

< 2cse Z Z / Y « X * h(uk)|dkdu,
X€Buy,(r) Y €Bo(a) Uo(R) JO(3)/{%1}

(12)) now follows for A; and As. The integral over Ay can be bounded by

2/ sup \h(u)\duQ/ | log |x||dz
u ] 0

2€R u1,uz€[—e,e

<2 > Y [ [ vaXuhlg)dg [ |loglellda,
Uo(R) JO 0

XGBU()(R) YEBo(S) (3)/{:|:1}
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which shows when the integration domain is restricted to Ap.

From and the definition of way, v and Qg 4, all but the last assertion
follow immediately. The last assertion also follows from by additionally
using that the embedding (’);i < F1L is discrete, applying Lemma W/ (iii),
and using Z(FL)(Z(Fx)\G(Fx)) = G(Fx)t. O
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Il.iii.iii THE MINIMAL UNIPOTENT ORBIT

For the minimal unipotent orbit, we have the following expansion in the case
of f € CX(G(Fs)).

Lemma 15 ([FI82], Lemma 4 (2)). For f € C°(G(Fs)') the contribution

from the minimal unipotent orbit J,, , (f)= > Jut () is given by
teFx

3vol(F*\Al)2 Z/ /f 1t )k)|x]210g|x\dk:dxm,
AX

teF'x

This expression for the minimal unipotent contribution does in general not
converge for f € C(G(A)!, K). To obtain a convergent form we modify the
log-term again by cutting out some of the support of f: Instead of log |x| we
use a weight function a(z) = a¥(z) = 3. a3 (z), which is defined by

w

log | x|, ifvels,
o (z) = ggvg ; +log|z|, ifv¢S, and |z|, > 1,
0 ifvdgs, and |z, <1,
and add
'(2)
F(k 1t )k)\dekdXx.
2 AX
teZ(F

With these weight functions we have

Proposition 16. For f € C°(G(Fs)') the minimial unipotent contribution

T (F) = > Jue  (f) is given by the product of vol(F*\A)? with
tepx "

32/ /f(k:_lt(l1T)k)]x|2as(x)dkdxx

teFX
22 Z/ i 1t )k)dean:. (14)

teFx

Moreover, the sum-integrals

> [ et () ol 3 o)

teFx
3 / /A j)kmx\?dkdxx

te >

and

define continuous semi-norms on C(G(A)!, K).
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For f € C®(G(Fs)') it follows as for the regular unipotent case that this
new expansion reduces to the one given in Lemma |15]

First we show that the expression given in the proposition is invariant under
enlarging S. For that it will suffice to show the following lemma.

Lemma 17. Let S be a finite set of places containing all archimedean ones,
and let v be a place outside of S. Let h = [[, hy : A — C be sufficiently
integrable, and assume further that h(a + b,) = h(a) for all a € A, b, € O,.

Then
SU{’U}/(Q)
/ h(x)x|2asu{v}(x)dxx—iu/ h(z)|z]2d* z
AXx Cp {U}(Q) AX

equals
2.5 X }2’(2) - 1,2 X
/AX e )i — /A h(w)|e2d" 2.

(“Sufficiently integrable” again means that all occuring integrals converge ab-
solutely.)

Proof. We have

/A ) h(z)|z 2o (2)d* 2
— [ haaPaS@idat [ @l @) - af@)d
AX AX

and because of the invariance of h,

[ ml@laf (a3 @) - af(@)dz
Fy

(2
= 0O 0) [l oglelde 1o [ bl

Since

Cra(D) /O 2l log [7lvdz = 3" g% logg™* = ¢, (2),

k>0

and Cp,(1) va |z|vdz = (Fy(2), this equals

<}7',v(2) 2 % C}S;/(Q) B gu{v}/(z) y
Cra(2) /F m@lehde =5 c?“{”}%z))/mx hu(@)lalud* @

which proves the assertion. O

To prove the second assertion about the absolute convergence for test func-
tions f € C(G(A)!, K) in Proposition [16/ we again need estimates for the
local integrals. Thus we again assume that f = fo 75, N, With r, N1, Ny €
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P*(F), Ny < Ny, as in (4). We also assume r = 1. Fix a place v < oo

such that f, = foe, e, and write u(x) = (1 1 T) The following estimates

are elementary calculations using the conditions under which the function
fv does not vanish.

Lemma 18. The integral unweighted integral [nx foc, e, (tu(z))|z|2d* 2 as

well as the weighted integral fva fo.er.en(tu()) |20 (x)|d* z vanish unless
all conditions of Lemma |5 on t are satisfied. In this case the first one is
bounded by
[t], * min{q; **2[¢, 2, 1}
1-g¢,° ’

and the second one by

t|72 min{q; 22|t 2, 1 ~21o 1)
| |v {Q'U 72‘ "U }log(]tlgl) + Qy %ZU (1 + U2> (15)
1-— quv 1- Qv 1- Qu

with §, =1 for v € § and = 0 otherwise.

Note that

~2log gy Ov (2
> B (14 ) <3l

1—q 1—qo CF(2)
and

|t], 2 min{q, 2°2|¢|, %, 1}

1— g2

> min{g, ***[t],*, 1}
> Npjg(N2) 2 ged(Npg(t), Nejg(N2))?
for any v. In particular, the sum over all v < oo of (15) divided by

_o . —2e9),—2

t LTI o

[l mml{qv ~ o =1} 55 hounded by
—qv

Nrjg(Na)?
ged(Np/g(t), Nrjg(N2))?

1ngV%y@(t)*-3|§%(2)| (16)

F(2)

Again we also need archimedean estimates. Recall that we defined H(t, h) =
fZ(FU)\G(Fv) 3 | X x hy(g)|dg for v|oo, h € C(G(F,)!) and t € F*.

XeBpgLy(Fy)

Lemma 19. Let v be an archimedean place. Then there exist constants
My, My, M3 > 0 such that for all h € C(G(Fx)!) being Ko-central

(i)
[ In(u@)liapare < M £,),

(i)
[ (@)l tog ol % < Mt (2, £,),

v
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(#ii) and

2 / > X xh(eg)ldg < Mapu(h),

€O} Z(Foo \G(Foo) X€BpaLs(Foo)
We postpone the proof of this lemma until after the proof of Proposition |16

Proof of Proposition|16. By Lemma is well-defined, i.e. invariant
under enlarging S, for all functions f, which are bi-K-invariant and for
which the sum-integrals converge. From the definition of « it is clear that
for such f with compact support the sum (14) reduces to the distribution
associated with the minimal unipotent orbit provided S is chosen sufficiently
large.

For the convergence assume that f = f.o71 n,,n, as always. As explained in
the proof of Proposition we may restrict our attention to the case that
N1Nj has a cubic root in F, and to those ¢t € F* in (14]), which are of the

form t = t1e with ¢t; = ./\/'F/Q(NlNg)% and ¢ € Oy. By Lemmas |18/ and
we therefore have

> [ icttata))ias

teFx

S/ T1 ,N1,N2 tlu Z / ’foo tlsu )’d T
A%

f EEOX

< M(p(2 )NF/Q( ) ged(t1, Npyg(Na))u( foo)

for some absolute constant M > 0. Using some crude estimate for the ged,
we can bound this by a constant multiple of

C(2)Np/(NF* Ny * (N1 N2)3 ) foc)
< CNp/o(N1)3 1 foo) = O(deg Th v, 3, )it( foc)-
Using we similarly obtain for the weighted sum-integral in
(p(2) Nrjo(N2)?
Cr(2) ged(Npg(t), Nr/g(N2))?

-Cr(2 )NF/@( ) ng(tlaNF/Q(N2))2M(fOO)

<1ogt1 + 3| |

+ M"(r (2 )NF/@( ) ged(t1, Npyg(Na))u( foo)

for some absolute constants M’, M” > 0. This is bounded by a constant
multiple of

( r(2)

Cr(2)

DN (N1)3 ( foo) = O(deg Ty ny vy ) 1 foc).
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Proof of Lemma|19. For (i) and (ii) we again assume F, = R and write

o =11

(i) Changing the multiplicative measure on R* to an additive one on R,
we can consider the integral [, [h(u(x))||x|dz instead. We have

/ Ih (( 1 :pdx</ / Z yX*h (kk )>)\xdkd:):
0 0(2) xépg, !
Changing variables, we get the upper bound
/ / / 3 |X*h< )k)|dkdydm
XEB 0(3)

which in turn can be bounded by on(R) f0(3)/{:i:1} on Z}:/GB Y
0(3)> Up(R)

X * h(uk)|dkdu.

(ii) We first show that [ _p [>3 |h(u(z))|x?dz can be bounded as asserted.
For ki, ks € O(3), and a,b € R* let

Fk17k2 (CL, b)
= h(k; diag(a,a b, b)ky)(a® — a™2)(b* — b7 2)(ab — a1b7Y)

so that by the K AK decomposition for PGL(3),

/ / / Fkl’kQ(a,b)andedk‘ldk‘g
0(3)/{x1} Jo®@)/{+1} J1 J1

. / f(g)dg
Z(R)\G(R)

for some suitable constant cs depending only on the chosen normalisa-
tion of the measures. By [FiLallbl Lemma 3.3] there exists a constant
¢ > 0 independent of h such that for all a € R*

(SIS

Fiovs(a,0)] < ¢ / Fiy o (0, 80)| + 102 Fky o a, £)

2
30

5 |Fk1,k2(a ta)| + |02 Fy, ky(a, ta)|d™t. (17)

Here 0y F}, k,(a,b) denotes the partial derivative of F' with respective
to the variable b, which equals

02 Fy gy (a,b) =
(Xp*h)(ky diag(a,a 10, b Dk)(a® —a™2)(b* = b %) (ab—atb71)
b2+ b2 ab+a 1b7!

+27Fk;17k2(a b) W

F
b(b2 b ) k‘l,k}z (a,b),
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where for Ay = {diag(a,a"'b,b71) | a,b € R*}, X, € Lie(Az) denotes
one of the basis elements diag(0,1,—1) or diag(l,—1,0). It follows
from the identity h(kigka) = h(gka2k1) (as we supposed h to be O(3)-
central) that the application of X}, yields the derivative with respect
to b. Note that for b > 2, |bb;2+bb 22)\ <1 and \%| <1
Suppose that z > 3 . Agaln as above the K AK decomposition of x
is k1 diag(a,1,a=!)ky for suitable ki, ks € ®(0(2)) € O(3) and a =
a(z) > 1 with 3+ 2% = a®>+ a2 +1 so that a > 2. For x — oo, a(z) is
asymptotic to x so that a/(z) = aif(f_)z is asymptotic to 1. Thus there
is some ¢y > 0 such that |a/(z)| < ¢g for all z > 1. Therefore

/00 |h(u(x))|z2de
3

o0 2 —2)2

< / |h (k1 diag(a,1,a_1)k2)]a’(x)2(a a;l ) dx
3
which is bounded by
o Lohon
XY%I;O( 5 Y OB/ {F1} JOE)/{F1}

, N G :
| X * hxY(kdiag(a,1,a™ " )k")|————d" adkdk,

a

where ¢ is an absolute constant. Since a > 2 and a® — a2 > 1, this
is bounded by

< cicg Z /

/ / ‘XFYng/ (a,, a)\dx adkdk’
XYeBogs, T O£} JOE) {41}

with X F'Y the function on R* x R* associated with X xh*Y as above.
Using (17) this can be bounded by

o 3
(:100c§ / / / /2 | X FYy, 1 (a,ta)]
2 o@)/{x1} JoE)/{x1y J2 JL

X, YeBgo
+ |0 X FY), o (a, ta)|d* td™ adkdk’

< 961606 Z / / / / \XFY,@k/(a, b)|
y{£1} JoB)/{x1}J1 1

X, Y€Bg(3)
+ X, XFY (a,b)|d” ad” bdkdk,

where X, X I'Y is the function associated with X x X *x A x Y. Hence
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using the O(3)-centrality of h, this last expression equals

9cicpces Z / Y x X+ X x h(g)|dg
XYEBo(3) RN\G(R)
+ 9cicpces / Y % X3, « X % h(g)|dg.
X,Y€Boys) Y ZRNG(R)

Since |log|z|| < |z| for |x| > e, this gives the desired bound for the
integral over |z| € [3,00). For the remaining integral note that

3 3
/ h(u(@))|[z]] log|zlldz <2 sup [h(u()) / 12]| log ||| da
-3 z€[—3,3] 0

and the last integral is a finite constant. Applying Lemma [4| to bound
SUPge[—3,3 |M(u(z))] gives the missing estimate.

(iii) This is the same as Lemma |14 (iv).
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II.iv. EQUIVALENCE CLASSES IN O3

QUAD

The classes o € Oguad are in bijective correspondence to tuples (t1,t2) €
FX x F*, t; # to, or rather semisimple 0 € ZM\(F) = ZM1(F)\Z(F).
Fix such a o and let o be the corresponding class. Then for f € C°(G(Fs)!)

we have by [Ar86, Lemma 6.2]

| 0 kf
J _/ 3 Wy LM (7, Vay, 18
o(f) Co(ANG(A |W0G ’ p ,y) Y ( )

Ref”

where F? denotes the set of all parabolic subgroups in G, containing 7', and
the function ®%  : Mr(A) — C is defined by

Ry(m) = 0r(m / / y  k Yomnky) vk (ky, To)dndk
o NR

with Ty € ag given by [Ar81] Lemma 1.1] and 0r the modulus function of

the action of Mr on R. We may assume that 7' = 0 by [Ar81, Lemma 1.1].

The function vj(ky,T) is defined in [Ar86l, §6] as follows: For a parabolic

subgroup P € F(T) put vp(\,z,T) = AHP@HT) and vy (N, 2, T) =
S wp(\, 2, T)0p(N) ! as usual. Then vyr(z, T) = limy_ovar(A, 2, T),

PEP(M)

and vp(z,T) is associated with vp(\,z,T) as explained in [Ar81l (6.3)].

Then
Vplky, T) = Y vglky,T)
QEFR(T)
with F9%(T) C F(T) the subset of all parabolics @ such that Q, = R and
ag = agr. The condition that ar = ag is equivalent to demanding that the

Levi components of both groups are equal. Alternatively, v’Q(x,T) can be
defined by

v, T) = /u i I'G(X,—Hg(z) + T)dX,
Q
where the function I‘g(X, H) equals [Ar81] (2.1)]
> (IR X)iR(X - H)

ReF(T),QCR
for 7'5 : ap — C the characteristic function of the set {X € ar | a(X) >
0 Va € Ag}, and 7 : ap — C the characteristic function of {X € ar |
w(X) >0, Vo € AR}. Here Ag is the set of simple roots of (QN Mg, Ag) C
Mg, and Ap the set of simple weights of (R, AR).
For our o, G, = M so that F° = {M;, BxGL(1), BxGL(1)} for B C GL(2)

the standard Borel subgroup of upper triangular matrices. It will suffice to
consider each of the terms

[ @R, (19
Go (A\G(A)

individually for R € F? instead of (18).
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IL.iv.i THE CASE R = B x GL(1)

The Levi component Mpyar1) = Mpxcr) s the torus T C GL(3) so that
the trivial conjugacy class {13} is the unique unipotent orbit. Hence

Mp
Juni) GL(I)( %XGL(l) y) (I)%XGL(l),y(l)

M
and similarly JunﬁjGL“)(<1>0'BX L)y =

we have the following.

(I)UBXGL(l),y(l)' For this distribution

Proposition 20. For R € {B x GL(1), B x GL(1)} the sum

UTLZ 7 dy
06; / ancw) (@)

quad

converges absolutely for all f € C(G(A)!, K).

As R and R are conjugate, we only need to consider JHHEXGL“) (@%XGL( Dy ).

To prove this, we use the following simple upper bound for the weight
V/BXGL(I)'

Lemma 21. For all u € U1(A) we have
Vs, (u, To)| < (log |(1, u2)[)? + (log [|(L, us)||)*.

Here [|(z,9)ll = X [[(z,y)llo with
v<00

max{|z|y, [ylo} if v <oo

[(z, y)l = |z]2 + |y|2 if v]oo real

1Z]o + [y]o if v|oo complex.

We postpone the proof of this lemma until the end of this section. It will
therefore suffice to estimate

Lo o (R o (71 (HE g 0w Pana

for i = 2,3, where we already changed y to kyk~! (which yields only the
factor 1), and used G,(A)\G(A) ~ U;(A)(Ks\K). Taking into account that
t1 # to for o = diag(ty,t1,t2) so that |%| = 1, another change of variables

gives
1 ur w
[ o (M8 o, wPau
Uo(A) 1

with t ;
pa(ow) = log |I((1 = )% (1 = Z)uz — wus)|
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and

t
p3(a,u) = log [|(1 — g,usm.

If v is a place of F, let pa,(o,u) = log||(1 — %)2,( - %)UQ — uqus)|ly,

psp(o,u) =log||(1 — 2, us)|o-

To show the convergence we will need the following estimates.

Lemma 22. Let v be a non-archimedean place of F' and let f, be the function
Joev ez

(i) The integrals on(Fv) fv (tu) |p2,v (t) u)’dur and on(Fv) fv (tu) |p3,v (t’ u)]du
vanish unless t1,ta € O,, and unless (i) and (ii) of Lemma 5| are satis-

fied. There exists a constant M € N (independent of v) such that each
of the integrals is bounded by

M (log |det |, + log [t — ta|; ") / fo(tu)du.
Uo(Fy)

(ii) The integral fUl(Fv) fo(tu)p;o(t, u)?du vanishes unless t1,ts € O, and
unless the conditions (i) and (i) of Lemma |5 are satisfied for v. Then
there exists a constant M’ € N (independent of v) such that it is
bounded by

M’ (log | dett|, " +log|t; — t2|vl)2/ fo(tu)du.
Uo(Fv)

We also need archimedean estimates.

Lemma 23. Forty,ts € F*, h € C(G(Fx)') let the function H(t1,t2,/ |%|)
be defined by

>

My (Foo)? YeBi o

t t
Y * X * h(diag(t1,t24/ \t—ll, ta4/ \t—ll)muk)]dkdudm,
2 2

and let Hy(t1,ts %]) the respective local versions, v|oo.

/ZM2 (Foo )\M2(Fio) /Uz(Foo) /KOO/Z(FOO)mKOO XeB

(i) Let v|oo. There is a constant M > 0 such that for all h € C(G(F,)!),
te zM (F)reg N Matsx3(Op), t = diag(t1,t1,t2),

/ () [P (£, w)|du
Uo(Fy)
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log |t1 — to|,| + log | det t], + log(2 + | &
2 og] |o| + log | det Z], + log( hﬂﬂ(mhﬂﬁ

- max{1, ]%\U}

log(2 + | 2»)
Awwmmwwwwwstmul}(LQWI

Replacing (|log |t1 — ta|y| 4 log | det t], +log(2 + |%|v)) with its square,
and log(2 + \%L}) by (14 log(2 + |%\U))2 such estimates stay true for
piv in place of ;-

and

(i) There exists My > 0 such that for all h € C(G(Fx)!)

t
> logleits — eatalo| H(t1, by f !éD < My(log [t1tals + 1)pu(h)
€

S H(tntay 12D < Mon)

where the sum runs over all e € ZM1(OF) such that e1t1 # eots.

and

We again postpone the proof of both lemmas to the end of the section and
first complete the proof of Proposition |20 Let D(Ny, N2) be the set of all
pairs of integers (t1,t2) € N2, satisfying similar conditions as in Corollary |6}
3ty = Nr/g(N1N2), and Npg(N2) divides t2 and tito. For that we have
the following:

Lemma 24. Suppose that N1, No € N with No|Ny. For any € > 0 with
e < %6 we have

N1+5
5 > ged(tr, No)? ged(tz, No) = O(deg Ti,ny n,)  (20)
2 (t1,t2)€D(N1,N2)

with 1mplied constant independent of Ny, Ns.
With this lemma we can finish the proof of the proposition.

Proof of Proposition |20. We need to show that

Z / el lpi(t, )%

teZMi(F

can be bounded by O(degT1,n; N, )i(foo) for any f = fooT1 i n,. Write
pit, u)? = pi,p(t,w)* + 2pi rPico + Pioo(t, u)?. Let D(N1, Na) © ZM1 (Freg
be the set of all t € ZMi(F),e, satisfying the conditions (i) and (ii) of
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Corollary |6. Then the canonical map D(Ni, N2) — D(Ny, N3) mapping ¢
to diag(Np/q(t1), Npjg(t), Npjg(t2)) has fibres 21 (Op) ~ (OF)?, if the

image is not central in GL3(F"). (In this case, (1, %) is not contained in the

fibre.) We can restrict the summation to the set D(Ny, Ny) since all other
summands vanish by Corollary |6.

By Lemma [22
St
teZMi(F) Uo(
< MM’ Z (log | det t|o + |log|t1 — t2|oo|)2/ f(tu)du.
tezM;y (F) Uo(A)

If t € ZM(F)peq with [t1|oo # [t2]eo and t1,t2 € Op, then |log |t; — t2]oo| <
log | det t|oo. If [t1]oo = [t2]oo With t1,t2 € OF, thereis a € O with t; = tac,
and thus log [t1 —t2|ec = 10g |t1|oc +10g |1 —|se. Since there is some constant
A > 0 only depending on F such that |1 —a|. > A for all @ € O, we get in
any case |log|t] — t2|eo| < log|dett|so + |log A|. By Lemma |8 we therefore
get for the sum-integral above as an upper bound the product of

MM’ (log Ny (N1 N2) + | log A)?

with

S Neyal ) ged(m Neg(V2)? eed(ma Ny (Na) (o)

TED(Nl,NQ)

and this can be bounded as asserted by Lemma 24.

Using Lemmas 22], 23| and [§| we can find similar bounds for the sum-integrals
involving p; fpico and pioo. Application of Lemma 24| again yields the as-
sertion. O

Proof of Lemma |24 By definition of D(Ny, Ny), Na|t? = Ni—;\& and Natity =

N1N»
t1

than or equal to N2 ged(t, No) < N%(NlNg)%. Hence the partial sum on
the left hand side subject to the condition ¢; < t9 is bounded by

NITE(N{Ny)3 3 S

t1: Nalt2| N1 Na, t1<(N1Ny)3 t2lged(t,N1)
= N11+E(N1N2)% Z oo(ged(a, N1))

2
a: Nz|a|N1N2, a<(N1N2)3

so that t1 and to are divisors of Ni. The product over the ged’s is less

with ¢ the divisor function o(n) = ) 1. Since og(n) = O(n") for all n > 0,
dn
there is a constant C7 > 0, which is independent of N7 and Ny such that
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oo(ged(a, N1)) < C ged(a, Nl)% for all @ € N. Hence this partial sum is
bounded by

1 N
NIHE(NLNy)3Cy 3 N ged(b, F;)%
b: b|Ny, b<NJ3 N, 3
5 1
< N13+€N21601 Z b%.

2 1
b: b|N1, b<NP N, 3

Using Lemma [25| this can be estimated by

1 z
N3+€N1601N24N 18 H(l_p—l—lﬁ)—l _ N14+ECI H(l—p_l%)_l- (21)
p|N1 p|N1

Consider now the partial sum, in which tl,tg are subject to the condition
t1 > to. This means that t1t9 < (N1N2)3 so that if we set a = tyto this
partial sum is bounded by

NI (NyNy) 3 3 Yo

a: Nala|N1Na, a<(N;N»)3 t2lecd(a,N1)

Thus we can proceed as before and eventually arrive at (21) again.
Note that there is some prime py € N such that for all p > py we have (1 —

P 16) < p16 (and in particular, pg 1s indepent of N7). Hence we can bound

the product [] (1 —p~ 16) L by chG with ¢ = [, (1 —pfﬁ)_l. Hence
p|N1

29
the whole left hand side can be bounded by 2¢Cy N3 1515 = 2¢Cy N,
Using Lemma 3| and taking into account that ¢ < 116, we see that (20) is
bounded by

16+s

23 . 32601 deg T17N17N2

as asserted. O

Lemma 25. Let ¢ € Qso, N €N, and 1 <a < N. Then

Y d<a[Ja-p )

d|N, d<a p|N

Proof. The statement is clear if a is a divisor of N. For the other cases just
choose a divisor b of N, which is maximal with respect to the property that
b<a. O

Proof of Lemma |22, (i) We first consider ps,. By Lemma |5 we may as-
sume |ug| < [t1|71, and t1,ts € O, so that if |1 — %]v <1, we have

t
0>log|l— t—zlv > log|t1 — ta|y,
1
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and if |1 — 2, > 1,

t
0<log|l— t—2|v <log|t1|; .
1

In any case we get |log|l — %|v| < log|t1|;! + log|ta — t1],t. We
can split the integral in two parts, one belonging to the condition
lugly > |1 — %]U, and the other one to |uzl, < |1 — %|U By the
preceeding consideration we may bound the second integral by the
product of log [t1 |, ! +1log [t2 —t1],  with on(Fu) fo(tu)du. For the first
integral note that |1 — %M < |ugly < min{|t1];*, gy <2|t1 |, 2} for ug such
that f,(tu) is possibly non-zero. Thus for such ug we have

to _ _ _
| log |us|y| < |log |1 — E|v| +log [t1], " + log g, 2|t

<log|tr| ™" +1log [tz — tal, " +log [t:], ' +log|t1],?
< 2log|dett|; ! + log|ta — t1], "

Hence the asserted bound follows for ps ,.

Now consider ps,. The term log|(1 — %)Q\U is again bounded by
4log | dett|; ! + 2log [t; — ta|, L.

We now split the integral in one part belonging to |(1— %)uz —urusly, <
|(1—%)2]U, and the other belonging to |(1—%)uQ—u1U3lv > \(1—%)2|U.
The first integral is then bounded by the product of 4log|dett|; ! +

2log [t — ta|, ! with on(FU) fo(tu)du, whereas for the second integral
we have

t t t
(1= 22|y < |(1 = 2y — ugusly < |ug — urusly + | —uslo.
t1 t1 ty

By Lemma /5| if w is such that f,(tu) is possibly non-zero, the term
|ug — uqus, is bounded from above by ¢, ¢2|t1|52, and |ua|, < |t1], 1.
Thus, since g9 > 0,

t _ 4,0 _ _ _
|<1—f)u2—u1uglv < a2l e <l 2 bl < 2] des e,
1

so that for those u which we are interested in

t
|log |(1 — i)ug —wyusly| < 2log|dett|; ! + log |t — o],

which shows the asserted bound also for pa .

(ii) This is a direct consequence of the proof for (7).
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Proof of Lemma|23. (i) For ease of notation we again assume F, = R,

and write | - | = | - |,, and h = h,. We first consider ps. Write ¢ =
I
diag(t1,t2,/|% |7) with 7 = ( %! - ) € GLa(R) . Since p3 4, (t,u) =
t
wS2 (7, u3), we can bound the weight functions as in [Filallal Lemma

36] if |ug| > |§2\ then |p3 oo (t,u)| < c|u;>,]2 min{1, \ |}log(2+| ),

where we inserted |u3|2 instead of |usg|, for which the estimate stlll
holds as can be seen from the proof of the lemma. (In fact, the lemma
remains valid if the exponent 1 is replaced by any exponent r > 0. We
need the smaller exponent to bound pgm linearly in |ug|.) Here c is
an absolute constant which is independent of ¢t and u. Using that the
map h — h(m fU ®) f(mu)du € C(ZM2(R)\M2(R)) is continuous,
we can follow along the lines of [FiLalla, Lemma 3.7] to see that the
integral involving ps,(t,u) is bounded by a constant multiple of the
product of min{1, \%|} log(2 + ]%\) with

/ZMz (R)\Mx (R) /U2 (®) /0(3>/{i1} );/

t t
Y+ X x h(diag(t1,t24/ |t—1|, to \t—1|)muk)|dk:dudm
2 2

(t17t2W)

where X € By, gy and Y € Bgs), and a similar conclusion is true for
the integral involving p%yv.

For py, note that log|(1 — %)2| = 2log|t; — ta| + 2log|t1]7! is a
lower bound for all u € Up(R). This has absolute value bounded by
2log |t1 — ta] + log | det t| > 0 if ¢1,ty € Z\{0}. Hence we can bound

/ : ) P2, () Pdu
u€Uo (R),| (1~ 2 yuz —urus|<max{1, [}

< (2log |t; — ta| + log | det t| + log |t1| + log ]tz\)Q/ |h(tu)|du
Up(R

log |t] — to| + log | det ¢])2 t
§4(ogl 1—ta| + <t>g| et]) H(tr, t2 /\il)-
max{l,\ﬁ|} to

Now suppose that u is such that |(1 — %)ug — uyug| > max{1, |%|} If

| t2 ] > , we have

1

t UIU
+ 5 log (1= )P+ (uz —
2 tq

2
)|
=5

to
0 < pa,o(t,u) < |log|l — E’F
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The integral over |h(tu)|(log |1 — |) can be bounded by

(log |t1 — t2| + log | det t])?
H(t1,to \*|)
max{l\ |}

again. For the second summand note that by the modified version of
[FiLalla, Lemma 3.7] there is an absolute constant C'; > 0 such that

ULU3  log(2 + ‘t*l|)

1 124 ULU3 |9
Slog (1= =)+ (u2 — )7 < Cilug — E
2 t 1-2 1— 2 max{l,|2[}
3 10g(2+|t—1|) 1
< SO ———— 2 max{1, |ui| 2 }.
=5 aX{l\ |} X{ |UZ| }

If | 2[ < 1, then the proof of [FiLalla, Lemma 3.7] shows that there
is a constant C5 > 0 independent of ¢ and u such that

. t1 to 1
’p2,oo(tau)| < Cymin{1, |g|}|(1 - H)W — ujug|1

< 2C min{1, \ |}max{1 \uZ] }.
What remains to show is that the integral

/ |h(tu)| max{1, \uz|%}du
ueUp(R),|( f%)Uqulug\zmax{l,\%\}

can be bounded by some constant multiple of H (t1, 2,/ \) But this

follows as in the proof of the estimate (12). The assertlon for po,
follows the same way.

The second assertion follows as in the proof of Lemma |14, For the first
assertion note that for any ti,ty € Op, €1,e2 € OF, |eit1 — eata] >
[lt1] — |ta]] > 1 if |t1] # |t2|, and that in any case |e1t1 — eato| <
|t1]+|t2| < |tit2|is an upper bound. If |t1| = |t2|, then for all €1, e2 with
g1t1 # eata, ’61751 — 62152’ > ‘tl,minae(ﬂii,a;él ‘1 — 6‘ > A’tl‘ for A >0
some constant, which only depends on F. Hence |log |e1t; — eata|| <
A+1log |tits| for some A > 0 only depending on F. Then we can argue
as in the proof of Lemma [14] to conclude the assertion.

O

Il.iv.ii PROOF OF LEMMA 21

Let u = (1 ? ?) € U1(A). We first compute the points Hp(u) for P € P(T),

which we need to study the functions I'G(X, T — Hp(u)), X € a% leading to
a proof of Lemma 21
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Recall that 8 = e; — ea, B2 = es — e3 are the simple roots of the standard
minimal parabolic Py C GL(3) of upper triangular matrices, and w1, wy are
the corresponding weights. The parabolics in P(T') are enumerated according
to the following table.

Name of parabolic P Ap Ap

Q1 {B1, B2} {w1, w2}

Q2 {=61,61+ B2} {w2— w1, w2}
Q3 {=B2, 61+ f2} {w1 — w2, w1}
Qa4 {=51,—p2} {—w1, —wa}

Qs {B1,=b1 — B2} {w1 — w2, —wa}
Qs {B2,—p1 — B2} {w2—wi,—w1}

In this notation we have

Q1172Q3 T 2Q5171 Qa2 Q6| P P2Qa| 71 Q1

and

Fhxar, ={Q1,0Q3,Q5},  Fiyar, = {Q2,Q4, Q).
Writing & = Hg, (u) we get
& & & €4 & €6
0 0 ayfa af1+082 b(B1+B2)—aybr azx(B1+ B2)
with az =log||(1,2)], ay =logl[(1,y)[|, b= log||(1,z,y)||.

We now turn to the proof of Lemma 21. We have

VJ/’3><GL1(U7 T)= U/Ql(u, T)+ U/Qs (u,T) + vék (u,T),
VIBXGLl(u’ T) = UIQQ (u,T) + U/Q4 (u, T) + U/Qes (u,T)

and vy (u,T) = fag. ng (X,T — &)dX. In particular, vj, o, depends only

on the points £1,&3,¢&5, and I/jéxGL1 only on the points &2, &4,&s. From the
form of the &; it is clear that V/BXGLl

replacing a, with a.

is formally obtained from v, qp, by

The sum vy, qp, (u,T) + V/BXGLl(u’T) = vr(u,T), is the volume of the
polytope in i(a$)* with the five vertices {T" — &} (because of the special
form of uw two of the normally six vertices of the polytope degenerate into
one). The order in which the vertices are traversed is given by the order in
which the parabolics are adjacent. Thus the pentagon in question looks like

the following (or rather its translate by —7'):
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az(B1 + B2)
—&6 —&1, —&2
(b - a:c)BZ
—&4

_(a:v +ay — b)ﬂl

—&5 —&3
(=b+ay)(B1 + B2)

Now the volume of this polytope can be computed to be

1 1 1 1
1 (axay — 5(% +ay — b)2> = Z(%b +ayb — Q(ai + af/ + b)),
if we normalise the volume of the coroot lattice to be 1. Since ngxGLl
depends only on b and ay, V%;X aL only on b and a,, and one emerges from
the other by interchanging « and y, we must have

1 1 1
Vpxar, (4, T) = Z(ayb - 5( .+ 552))7

and
1

1 2 1 2
Viwar, (4 T) = 7 (azb — 5 (a3 + 50%).

This proves Lemma 21/as 0 < b < a; + ay.

Il.iv.iii THE CASE R = M,

There is a canonical morphism from the variety of unipotent elements in
GLy(F') to the variety of unipotent elements in M; (F') preserving conjugacy
classes. Hence there are two unipotent orbits in M;: The trivial orbit {13},

and the conjugacy class belonging to (1 i . ) We denote the orbits by b; and

bo, respectively. In particular the unipotent distribution Jé\flilp is the sum of

two distributions Jé\fl and Jé\;h. Note that there exists a subset 31 C G(F')gs
which is closed under conjugation such that

S @
o (A\G(A)

O'GZ]\/I1 (F)reg

—von) Y [ S e )
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with v(My) = vol(My(F)\Mi(A)'). This is, because by definition,
o) = [ kg, (. To)ak
KﬁMl(A)
= ftow) [ i (b Tk
KNM; (A)

and since Fy; (T) = {P1, P1}, vy, (ky, To) = vp, (ky,To) + v’ﬁl(ky,To) =
v, (ky) by [Ar81l Corollary 6.4]. Moreover, vy, (+) is bi-invariant under M;
so that

fr (1) = vol(K N My (A))oar, (v) f (v~ oy)-

As JM1(<I>" ) equals vol(M;(F)\M;(A)")®F, (1) and G,(A)\G(A) =~
Uy (A)(K N Ml( ))\K, the asserted equality above follows.

Hence we only have to consider by, as it contains non-semisimple elements.
We apply the regularisation used in [FiLallal to obtain a convergent expres-
sion for f € C(G(A)!, K).

Proposition 26. For f € C°(G(Fs)!') the sum-integral

S @,

UEZIWl(F) g GU(A)\G(A)
equals
v(T) Z // / F(k " onuk) w3 (n) vy, (v)dudndk
lel F)Teg U
v(T)A1s Z // / fe™ w tonuk)vay, (v)dudk
o€ ZM1(F)p, N(&) JUL(A)

with v(T) = vol(T(F )\T A)Y). Here wS¥2):5 denotes the modified weight
function for GL(2) from [FiLalld], and A1 g is the coefficient also defined

in [FiLalldl. Moreover, N is the unipotent radical of the standard minimal
1z

parabolic subgroup in My, and if n = ( 1 1) € N(A), we also write n =
(1%). Then both sum-integrals converge absolutely for f € C(G(A)!, K).

Proof. Let f € C°(G(Fs)!). Then by the results for GL(2) from [FiLallal,
the distribution Jﬂjl(@‘]’why) equals

AL / %, (n)dn + / ‘]’\417y(n)wGL(2)’s(n)dn
N(A) N(A)

for S sufficiently large. Inserting the definitions of ®F, =~ and using the
calculations from above, this equals the sum of

M / / / Sk onky)oa, (y)dy
MIANG(®) IN(A) Jrn ()
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and

/ / / POk onky)wC @S (n)orr, (1) dy.
Mi(A\G(A) JN(A) JKNM; (A)

Since K N M;(A) centralises U (A) and vy, is invariant under M;(A), us-
ing Iwasawa decomposition and changing variables, yields the asserted form

given in the proposition. Hence it remains to show the absolute conver-
gence for f € C(G(A)!, K). For that note that for u € Uj(A), there is

k € Mi(A) N K such that ku = (1 (1) H(ugéus)H) . Hence
1

Hp, (u) = (log||(1, ug, u3)||, log [|(1, u2, u3)|[, =2 log [|(1, ug, u3)[|),

and therefore vy, (u) is a constant multiple of log ||(1, u2, us)||, which can be
bounded by (log||(1, u2)||)? + (log ||(1,u3)||)?. For this we already found up-
per bounds for the local integrals in the last section. The second sum-integral
can thus be treated exactly the same way as was the sum in Proposition |20
Moreover, there are bounds for wS™2»% available in [FilLallal]. For the first
sum-integral, a combination of the estimates for the weights yields upper
bounds for the local integrals as usual (for the archimedean places using a
partition of the integration domain similar to the one used for (12])). Hence
an application of Lemma yields the absolute convergence also for this
term. O
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III SPECIAL TEST FUNCTIONS

In the following sections we shall be concerned with a class of special test
functions. Suppose that G = GL(n) for some n > 1, and let S(Mat,,x,(A))
be the space of Schwartz-Bruhat functions ® : Mat,x,(A) — C. K C
K still is a fixed compact-open subgroup of finite index. We denote by
S(Matyxn(A), K) C S(Maty,xn(A)) the subspace of all functions being biin-
variant under K, ®(kigks) = ®(g) for all k1, ks € K, g € Mat,,x,(A). Let
seC, Rs > ”TH, and consider

fy: GLu(A) — C, mmzAmemWTwmﬁw

This is well-defined and absolutely convergent for fs > % - ”Tfl by Tate’s
theory of zeta functions. Since for ® € S(Mat,,xn(A), K) we have X« ®xY €
S(Maty,xn(A), K) for all X, Y € U(gc), we get

Lemma 27. For ® € S(Mat,,xn(A), K), we have for all s € C with Rs >
2L that fs € C(Z(A)\ GLy(A), K) = C(PGL,(A), K).

Proof. This follows from

[ inldgs [ jdeng®
AX\ GLn (A) QL (A)
and [GoJa72, Lemma 12.5]. O

n—1

2 |®(g)|dg

Hence such functions may be used as test functions in the trace formula for
GL(3), as the transition from GL(3)! to PGL(3) only affects the “counting”
of our conjugacy classes, but not the convergence. Thus we have to replace
the sum over all conjugacy classes [y] C GL3(F)elreg by one over [y] C
GLB(F)eH,reg/Z(F) = PGL?)(F)ell,reg

Remark 28. Suppose M C GL(n) is a Levi subgroup, M ~ GL(ni) x
...GL(n;), and P € P(M) with P = MU. Let ® : Maty, xn, (A) X ... X
Maty,, xn, (A) —> C be a Schwartz-Bruhat function, which is bi-invariant
under M(A) N K. If we then define for m € M(A)!

ns—&-i ni(n;—1)
fM<m>=/ CAEE T em)da,

then fM e C(M(A)Y, K N M(A)) for all s with Rs > max;—;__, ”iQH. This

1s because of the following: Suppose for notational purposes that we have
®(my,...,my) =P1(my) ... - Pp(my) >0 and s €R, s > 2 Then

ns+zT: ni(n;—1)
/ /|>\| S0 |B(m)|d* Adm
ZM(A)\M(A) AX

:/ 11 / | det Amg[*F 77 [, (Am;)|dm;
AX 1=1,...,r Z(A)\ GLn,; (A)
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and if C C A* is a compact neighbourhood of 1, we have by [FiLallb, Lemma
3.3] for any i,

/ | det A |5+ |3 (Ama) | dm
Z(A)\ GL, (4)

<c2/

for some suitable constant ¢ > 0 depending only on C, and X running over
a suitable set of derivatives. But this is then bounded by

52/ / | det )\om“bi|s‘~'ni;l | X * ®;(Aam;)|d” adm;
x JZ(A)\GLn, (4) JC
< 52/ / | det ami|3+ni;1 | X * ®;(am;)|d™ adn;
= CZ/ ’det Gl X % @y(g,)|dgs

GLn, (

/ | det )\mi\SJrniT_l\X * @;(Aam;)|d* adm;
A)\ Ly, (A

where ¢ > 0 is again a constant depending only on C. But this last integral
converges for Rs > n’+1

III.i SPECIAL TEST FUNCTIONS FOR G = GL(3)

For ®s > 3 =2, f, € C(G(A)}, K), and inserting fs into the trace formula
we can view the different parts of the formula as functions of s so that we
can analyse the analytic behaviour with respect to s. Note that each of the
contributions from Theorem [I] defines a holomorphic function for Rs > 2.
What we want to show now is that we can continue each part holomorphically
up to s > 2 — ¢ for some £ > 0 except for the regular elliptic contribution.
The regular elliptic contribution amounts for the first pole at s = 2, which
follows from the results for the spectral side.

We shall assume that ®((a;;)i;) = [[ ®ij(as;) with ®;; € S(A), and ®;; > 0,

0]

i,7 = 1,2,3, which is enough for our purposes by [Yu93, Lemma (1.2.5)].
Additionally, ® will be assumed to be K-central, which is no restriction as
each of the contributions to the geometric side is invariant under replacing
P by [, Pk k)dk.

Define functions £(s),S(s) s € C, Rs > 2, by

R S Y AP o e

['Y}QG(F)ell,reg/Z(F)

and

= v x Yox)v x)dx
ORI SN CaN oy B T @

[0]CG(F)ss/Z(F)
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with v(G,) = vol(G+(F)Z% (A)\G,(A)). By [FiLallb] these functions are
well-defined and holomorphic for s > 2.

Proposition 29. The function S(s) — E(s) has an analytic continuation in
the right half plane Rs > %, and is holomorphic there.

It will be clear from the proof that the sum-integral defining S(s) — £(s) not
ouly continues to that larger half plane, but is given in this half plane by the
same-sum integral as before, which is still absolutely convergent there.

Proof. For s > 2, we have

S(s) —&(s) = Z I/(GU)/ fs(xflax)vM(g) (x)dx
[01CG(F)ss\G(Feltve Go (ANG(A)

and this equals the sum of

v(G) / la>*T3®(a)d*a,
AX

s anf
Mi,o(A\G(A) JA

[0]CG(F)ss/F>
M (o) conjugate to M

la>* T30 (ax " ox)vyy, (2)d* ade,

and

Z I/(T)/ / la>*T3® (axtox)vp(z)d* adx
T (M\G(A) JAX

(0] CG(F)ss/F*
M (o) conjugate to T'

where v(M) denotes the volume of M (F)ZM (A)\M (A). Here M (o) denotes
the smallest Levi subgroup containing the centraliser of the center of the
centraliser of o in G. The first integral is absolutely convergent for $(3s +
3) > 1, hence holomorphic there, and in fact has a meromorphic continuation
to the whole complex plane.

For ¢ > 0let S, = {pk | p € Po(A),k € K, |a(p)| > ¢ Va € Ap}. As
in [FiLallbl §6] the second summand can be estimated by the sum over
standard parabolics P with P = MU such that M is conjugate to M; of

Z / a2t p(am~tom)d* adm
AX

/AMPOM (F)\SM T EM (F)wen/F*

for ¢ sufficiently small and M (F')yen is the set of all v € M(F') whose cen-
traliser is not contained in any proper parabolic subgroup of M. Here

dp(m) = A(m)™? /U(A) O (mu)du
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and A(m) is the determinant of the linear map U(A) ~ A2 — U(A), u
mu. Then ®p is a Schwartz-Bruhat function on Lie(M(A)) ~ Matax2(A) ®
A, which is invariant under M (A) N K. This last sum-integral converges
absolutely as long as the function

hs(m) = /AX > D p, (am)d* a

defines an element in C(M(A)', KN M (Ay)). By Remark 28| this is the case
for s > %
The last integral can similarly be bounded by

/ Z / a|*®® p (at~Lot)d* adt
ArP{(F)\S,

¢ oeT(F)/F>

with

By (1) = )" /U B (1) du

where now A is the discriminant of the linear map Up(A) ~ A3 — U(A),
u + tu, and ®p, is a Schwartz-Bruhat function on Lie(T) ~ A3. As t
S la|>*® p, (at)d* a defines a function in C(T'(A)', K NT(A)) for any s with
Rs > 1, the absolute convergence, and thus holomorphic continuation in this
region follows from |[FiLallb]. O

Proposition 30. If we insert fs as the test function into the trace formula,
each of the functions, which are defined by the terms in Theorem 1| (i) —
(v) is well-defined and holomorphic for Rs > 2, and can be continued to a
holomorphic function at least in the region Rs > %

Proof. We study each of the functions separately, and denote them by H 1) (s),
k € {ii, i, iv,v} according to the enumeration of Theorem |1}

H(is): According to the three summands in Theorem |1] (i), H(;)(s) can be
3)

written as the sum of three functions 7—[82.))(5) —{—”HEQZ))(S +ngﬁ(3) each

being well-defined and holomorphic at least for Rs

V
M\/
3

3
%(u)) = As [ [T 2500

i>7
3
/ / Jaf** (H‘%(@) [ 2 (uivj—2) | d*adu,
Uo(A) JAX i=1 i<j

which therefore has a meromorphic continuation to the entire complex

plane with only poles at s = 7, and s = 0. If we make a similar change

37
of variables for the functions HEZ.Z.)), and ng’i))v the weight functions
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H(iiiy:

H(iv):

wag, (8, u) and Qpy, (t,w) amount to polynomials in log|a| and log |u;|.
Since this does not interfere with convergence issues with respect to a,
the functions 7—[82) and 7—[82) are still given by an absolutely convergent

expression for s > %

Write Hj;1)(s) = Hgili)i)(s) + Hgfi)i)(s) corresponding to the two sum-

mands in Theorem |1 (iii). Then Hg?i)i)(s) equals

-3 D [T ®i5(0) | 12(0)®23(0)
) L
3
a3.s+1 (aq x x2 X qd*
/Ax /Ax‘ ’ (Eq)“( >> (I)13( )‘ ’ d”ad” x,

which therefore has an analytic continuation to the entire C with only

poles at s = 0 and s = —%. 7-[8; (s) can also be continued holomor-

phically up to $s > 0 similar to the previous case.
Again write H ;) (s) = Hgg)(s) + Hgg)(s). Then as in the proof of
Proposition [26/ for s > 2, ”Hgiz)(s) can be bounded by the product of

v(Drs | [T @50 | | T] /A B3 (u)du

i>j i=1,2

with

/N(A) <I>12(n)dn/ |a\3s Z H ‘I)Z'i(CLO'l) @33(@02)dxa.

AXJFX sezMi(F) \i=12
(22)

As (t1,t2) — | ] <I>ii(t1)> ®33(t2) defines a Schwartz-Bruhat func-
i=1,2

tion on A2, we can apply the results of GL(2) for the regular hyperbolic
contribution to conclude that (22) converges absolutely for fs > %, and

thus 7—[&23) is a holomorphic function in this region. Similarly we infer

that ’H(D) is holomorphic for Rs > %

(iv

: As in the two previous cases it follows that the expression for H, still

converges absolutely at least up to Rs > %,
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IV THE SPECTRAL SIDE FOR GL(n)

IV.i NOTATION AND PRELIMINARIES
IV.i.i NOTATION AND A FIRST FORM OF THE SPECTRAL SIDE

We continue to use the notation from the previous part, but now G = GL(n),
n € N arbitrary. In particular, 7" C GL(n) is the maximal split torus of
diagonal matrices. For P € F(T) write P = MU with M € L(T) the
Levi component and U the unipotent radical of P. For M € L(T), WM
is the Weyl group of M with respect to T, Wy = W, and for L € £L(M)
let WE(M) be the set of all t € W such that ¢ induces an isomorphism
apr — apr. Let WE(M)eg = {t € WE(M) | kert = ag}. Write Sp for the
set of positive reduced roots of (P, Ap), and corkg(P) for the co-rank of P
in G, and similarly for P replaced by some Levi subgroup.

Let R denote the right regular representation of G(A) on L?(AcG(F)\G(A)),
and let Rgise be its restriction to L3, .(Ac¢G(F)\G(A)), the subspace of
L*(AgG(F)\G(A)) decomposing discretely under R. For any M € L(T),
let Tlgisc(M(A)Y) be the set of irreducible representations occuring in the
decomposition of L3, .(AyM(F)\M(A)), and let Ry be the right regular
representation of M(A) on L?(AyM(F)\M(A)). Let A%(P) be the space
of all ¢ : U(A)M(F)\G(A) — C such that ¢, € L?(AyM(F)\M(A)),
wz(g) = 5}3(9)_%(,0(9.1?), for all z € G(A), g € M(A), and let A%(P) be its
Hilbert space completion. In particular, A?(P) is the (K, 3)-finite part of
A2(P). For @1, 2 € A%(P) we have the inner product given by

< @1, ¥2 >=/ /gol(mk)gog(mk:)dkdm.
Ay MF)\M(A) JK

For A € ap ¢ there is a representation p(P, A, -) of G(A) on A2(P) given by

(6(P. X y)) (@) = ply)err o> =Xt Hr()>
and it is isomorphic to Indg((ﬁ)) (Rapdise ® e<MP()>) for Indg((ﬁ))(-) denoting
the parabolically induced representation. (With this definition, p(G,0,9) =
Ragisc(g).) Thus for sufficiently reasonable functions f : G(A) — C, we
get an operator p(P, A, f) on A*(P). If 7 C L& (AyM(F)\M(A)) is a
subrepresentation, we denote the restriction of p(P, A, f) to the space of
A2(P) by pz(P, )\, f), where A2(P) C A?(P) is the space of all ¢ such that
¢, is contained in the 7-isotypical component of LZ. (AnM(F)\M(A))
for any € G(A). Again fix an open-compact subgroup K C G(Ay) be-
ing hyperspecial at almost all places. Denote by A2(P)X the K-invariant
subspace of A2(P). This is equivalent to a finite direct sum of unitary
G (F)-representations. Fgr\ any infinite El\ace v, I/{\U is the unitary dual

of K,, and similarly for Ko,. For 7 € K, we denote by ||7|| the norm
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of its highest weight vector. Note that if A\; denotes the Casimir eigen-
value of 7, then A\, = ||7 — p||? — ||p||? for p the half sum of all positive
roots of GL(n) |[Kn02, Proposition (5.28)]. If 7 € K., let A2(P)K be the
T-isotypical component of A2(P)X when considered as a representation of
K. This is a finite dimensional vector space by the admissibility of 7. As
fs is invariant under Z(A), the representations which will contribute non-
trivially in the decomposition p(P, A, fs) = ®ﬂendisc(M(A)1)pﬂ(P, A, fs) must
have trivial central character. Let Sp(Mat,x,(A)) be the space of all K-
finite functions in S(Maty,xn(4A)), i.e. & € S(Mat,xn(A)) such that the set
®y, k € K, spans a finite dimensional subspace of S(Mat,,x,(A)), where
®i(g) = P(gk). Note that for & € S(Maty,xn(A)) to be K-finite this, in
fact, is only an obstruction for the infinite part so that it suffices to check
that @, is Koo-finite for each fixed a € Maty,x,(Af). Equivalently, there is
a finite index subgroup K. C K under which ®,, is bi-invariant. The
notation Sp(Mat,,x,(A), Koo K) then has the obvious meaning. C(G(A)!, K)
denotes the same space as before and we define C(G(A)!) = lim C(G(A)Y, K)
to be the direct limit over all K C G(Ay). For later purposes we choose a
non-trivial character ¥ = @, 1, : AX/F* — C.

The spectral side of the trace formula can be written as

spec Z J

x€X

for test functions f € C°(G(Fs)) where the sum is over the cuspidal au-
tomorpic data y € X (see [Ar05L §12] for a definition) and certain distri-
butions Jy. The distributions have a finer expansion valid for bi-K-finite
f € C*(G(Fs)) [Ar82, Theorem 8.2]. Such an expansion converges ab-
solutely for test functions f € C(G(A)'), which was shown in [MuSp04] for
G = GL(n), and for general reductive groups in [FiLaMull]. More precisely,
it was shown there that the spectral side of the trace formula for GL(n) can
be written as

Yoo > Y alM L) p(f.0) (23)

MeL LGL M) PEP tEWL(aM)reg

with

Thelfy= % /( | (MA(PA) My (1 0)pe P2, )

mEllgisc (M(A)l) !
(24)

and this sum-integral is absolutely convergent with respect to the trace norm

for each f € C(G(A)'). Here a(M, L,t) g) ‘WOHW |det(t — 1) 4z |*1 It is
this expansion with which we shall start with. Here My isa certaln operator
which is build out of a (G, M)-family associated with intertwining operators

the exact defintion of which will be recalled later.
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Example 31. (i) Consider the summand belonging to M = G in (23),
which means that also L = P = G. Then WL(aM)reg consists of the
identity element only, but ag is empty so that a(G,G,id) = 1. Thus
we are left with

Z /( r (Ma(G, A\) Mg (id, 0)pr (G, A, £)) dA.

71FEI_Idmc

As i(ag)* = 0, and the intertwining operators act trivially, this sum
reduces to
> trpe(G,0,f)
m€ gisc(G(A)Y)

which s exactly the discrete part of the spectral side. The absolute
convergence of this sum is the so called trace class conjecture, which
was settled for f € CY(G(A)Y) (a slightly smaller space than C(G(A)'))
by Miiller in [Mu98).

(i) If, more generally, we assume that L = G but M € L, M # G, is

arbitrary, the respective summand equals

2 2 Y. aM,G )t (Mpyp(t,0)px(P,0, f)) .

PEP(M)teEW G (M)eg mEM gise (M (A)L)

IV.i.ii RESULTS FOR THE SPECTRAL SIDE

The following will be our main result.

Theorem 32. Let M € L, P € P(M), L € L(M) andt € WE(M). Suppose
that corkg L < 1. As a function of s, J]%/[P(fs,t) can be meromorphically
continued to all s € C, and is holomorphz’a at least in s > 5 except for a
possible simple pole at s = ”TH The pole at s = "L occurs if and only if

2
L=M=P=G,t=1, and then has residue

Vol(GF)\G(A)Y) / B(z)dz

Matp, xn (A)

=G GO e Grs) [ aw)de

Matn xn (A)

This in particular implies that every spectral term for GL(2) can be continued
to a meromorphic function on the whole complex plane. We shall investigate
this case in greater detail in [IV.iv.

For L € L(M) of arbitrary corank we at least have the following.

Theorem 33. Suppose that corkg L = r > 1. Then the function Jﬁyp(fs, t)

can be meromorphically continued at least in RNs > %1_"“

there.

and 1s holomorphic
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It is questionable whether there exists a meromorphic continuation of the
distributions J]\LLP(fS, t) for corkg L > 2 to a larger half plane. See also the

We separate the proof of the two theorems in different parts, and do not
consider them in chronologiacal order. First we treat the case L = G, and
then the case L C G and finally specialise to corkg L = 1. The case L = G
as well would fit in the framwork of the general case, but as the situation
there is not obscured by the presence of any intertwining operators, we treat
it separatly. As we do not need the intertwining operators for the first part,
we do not define them until In general, we need to study the analytic
properties of intertwining operators and meromorphic functions of several
variables.

Remark 34. Note that the proofs in and [FiLaMull)] in fact stay
valid for test functions in CN(G(A)Y, K) if N is sufficiently large. Hence we
can use slightly more general functions ® to construct our test function f
and still get holomorphic functions on the spectral side at least for Rs > "TH
More precisely, let @y € S(Mat,xn(Af), K), and o € S(Mat,xn(Fix)).
Let ¢ : Matyxn(Fs) — C be a function in CN (Mat,xn(Fs)) for some
N > 1 such that | X * | is bounded for any X € U(gl,))<n (this is the case,
for example, if ¢ has compact support). Put ®(x) = ¢(Too)Poo(20o)®f(zy),
& € Matpxn(A), and let fi(g) = S |det(ag)|s+n7_1(i>(ax)dxa. This is still
well-defined, and bi-K-invariant. It is not necessarily smooth any more, but
by our assumption on the boundedness of ¢ and all its derivatives, the semi-
norms || X szLl(K\G(A)l/K) are still finite for all X € U(gl,,)<n so that at
least fs € CN(G(A)Y, K). Hence, if N is sufficiently large, fs may be used as
a test function with all terms on the spectral side converging absolutely for
Rs > 2L Forn = 3 (and also n = 2) this is also true for the geometric
terms, as remarked before. See also Remark |39
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IV.ii THE “DISCRETE* PARTS (L.E. L =G)

As announced earlier, we first treat the "discrete’ parts of Theorem [32| To
begin with, we consider the case M = G (which implies L = P = G). As
discussed before, J& ,(f,id) then equals tr Ryisc(fs). The general case with
L = G follows from 7this, see Corollary 36l

By [Mu98| the trace of the operator R restricted to the discrete subspace

can be written for Rs > ”TH as an absolutely convergent sum

O(s) == > > te(R(fs) a2 (oK)

€M gise (G(A)!) 7€ K oo

so that in particular it defines a holomorphic function in this region. We
seperate the one-dimensional representations to write ©(s) = O1(s) + O2(s)

with ©1(s) = > tr(x o det(fs)) and
XAX JFX _5Cx

O2(s) = Z tr(fs)-
m€lgisc(G(A)), dimm=o0

Note that if G = GL(2), this last sum ranges only over all cuspidal auto-
morphic representations of GLa(A)/Z(A).

In this section we show the following.

Proposition 35. The trace O(s) = tr Rgisc(fs) is well-defined and holomor-

phic for RNs > "T‘H It can be continued to a meromorphic function on C

with the first pole occuring at s = "TH, and subsequently at s = ”TH — 1,
i=1,...,n. The first and last poles are simple, and all others are of second
order. For the residue at s = "TH we obtain

res, 009 = ) GO regGile) [ et

_n+1
S=73

The function ©1(s) is an entire function.

For general Levi subgroups M we then obtain more generally.

Corollary 36. Let M ~ GL,, x... x GL,, with m = max{ni,...,n,}.
Then JAGLP(fS,t) has a meromorphic continuation to all s € C which is
holomorphic at least in Rs > mTH In particular, if M C G, then JJ\C}LP(fS, t)
is holomorphic at least for $s > 5, and a pole at s = 5 can only occur if

cotkg M =1 and M ~ GL,_1 x GL;.

The rest of this section will be concerned with the proof of the proposition,
which heavily depends on the strategy employed by Miiller in [Mu98].
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We first recall some well-known facts about zeta functions associated with
automorphic representations. Let 7 be an irreducible automorphic repre-
sentation of G(A) in L3, .(G(F)Z(A)\G(A)). For our purposes only such m
having a vector fixed by K will matter. This is because by our stipulation
on ® and by definition of f,, all other traces vanish. By the classification
of the discrete automorphic representations by Moeglin and Waldspurger in

IMoWa89] (cf. [ArGe91l p.17]) there is a bijective correspondence

{7 automorphic representations of G(A) in the discrete spectrum}

I
{(d,0) | d € N,d|n,d # n, o automorphic cuspidal repr.’s of GL4(A)},

and if m corresponds to the pair (d,o), then 7 is the unique irreducible
component of the representation induced from o[ ®0[23]®. . .@c[152],
m = %, from the standard parabolic associated to (k, ..., k) to G. Therefore,
L(s,m) = L(s+ 21, 0) - ...  L(s + 352, 0). Note that it follows from this
classification that for G = GL(3), O2 consists of terms belonging to cuspidal
representations only. L(s,7) is entire unless d = 1. If d = 1, o is a Hecke
character so that L(s,7) is again holomorphic unless o is unramified, which
means o = | - | for some t € R in which case L(s,m) = (5(s + 25% — it) -
coCp(s + 1_7" —it). The representations induced from a character o in
this way are not irreducible, but factor through o o det, and thus give rise
to the one-dimensional representations. Thus for such o has to satisfy the
additional property ¢ = 1 (or more generally, its n-th power has to equal
the central character). If 7 is not one-dimensional, the corresponding o is an
infinite dimensional representation so that in particular the corresponding
L-functions are entire.

Let ¢ =< 1, o2 > be some matrix coefficient of 7 with ¢1, 2 € A2(G) of
norm 1. Let

n—1
2

Z(®,s+ ) Z/G(A)<I>(x)|detx|s+n51gp(a:)dx

be the zeta function associated to ® and ¢ which continues to a meromorphic
function on all of C. By defintion, the quotient Z(®, s + %51, ¢)/L(s,7) is
an entire function.

Lemma 37. Let ¢ be a matriz coefficient for m € gsc(G(A)), m not 1-
dimensional. Let a € (—o0,—%5), b € (5 + 1,00) be two real numbers, and
write I,y = {z € C | a < Rz < b} for the vertical strip bounded by a and b.
Then there exists a constant M(®,a,b) > 0 independent of 7, ¢, and s such

that
n—1

1Z(®, s + @)l < M(®,a,b)

forall s € 1,y.

70



Proof. As m is assumed to be infinite dimensional, all occuring zeta functions
are entire so that if p(z) =< 7(z)p1, 2 >, then

n—1
|12(2, s + ——, #)| < A2, 5)l[pallllez2]] = AP, 5)

for Rs > "t where we can choose the constant A(®, s) inpendently of ¢1,
o, (cf. [GoJaT2, p. 184] for the cuspidal case) namely

A(@,s):/ 1 (2)]| det 2[R+ da
G

which converges for Rs > ”T‘H, and only depends on Rs. In particular,

this inequality is true on the line Rs = b. Using the functional equation
Z(®,1 — s+ 251, ¢Y) = Z(®,5 + "5, p) with ¢¥(g) = ¢(g7"), we get a
similar inequality

n—1

Z(®
2(®,5+ ™

~ n—1
790)’ = |Z(‘1>,1 — s+ T?SDVN
< B(®,9)l[¢1|lllz]| = B(®, s),

which is valid for Rs < PT” with
B(cp,s):/ B(2)| det 2[R0+ gy
G(A)

Consequently, Z(®,s + ”7_1,90) is bounded on the lines s = b, Rs = aq,

and, since we excluded 1-dimensional 7, it is also bounded on &s = 0, Rs €
[—5,%5 + 1]. From the form of the constants A and B one also sees that
the zeta functions are bounded in each vertical strip of finite width, which

is entirely contained in Rs > "TH or Ns < I_T" We now first show that

the zeta function is of finite order, i.e. the growth of |Z(®,s + 31, )] is
bounded by some constant multiple of e/** for some o > 0 as |Ss| — oo.
By the classification of the residual spectrum by Moeglin-Waldspurger, m is
the unique irreducible quotient of the representation induced from o[”+1| ®

. ® o[352] for some m|n, m # n, and ¢ € Ieyuep(GLx (A)). Hence if
® is K-finite, there exists a finite set of Schwartz-Bruhat functions v, €

S(Matn o » (A)), and a finite set of Matrix coefficients ¢; for o such that
Z(®,s+ %‘1, ) is the sum over finitely many products of the form

m

d—1 m-—1
[[2@i,s+—— - —— —i, ¢
11 (U;,5 + 5 5 i, i)

with the zeta function now defined as an integral over the group GL = (A).
Such finite sets exist for each place by [Ja79l (2.3) Proposition,§4]. Ks for
almost all places the zeta function coincides with L, (s, m) = Ly(s+ 251, 0) -

s Ly(s = ™5 L &), only a finite number of places are relevant. By eventu-
ally "refining® the local Schwartz-Bruhat functions and matrix coefficients,
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we finally obtain appropriate global functions. By [GoJaT72, §13] each of
the cuspidal zeta functions is bounded in every vertical strip of finite width,
so that consequently also Z(®,s + 251, ¢) is of finite order as well. Hence
we may apply the Phragmen-Lindel6f theorem to conclude that they are
also bounded on the strip I, = {s | @ < Rs < b} by a constant, which
only depends on ®, a,b. For not necessarily K-finite ®, the assertion fol-
lows from the K-finite case by using that the space of K-finite ® is dense
in S(Mat,,xn(A), K), and each sequence of K-finite functions converging to
some element in S(Maty,x,(A), K) yields a locally uniformly convergent se-
quence of the associated zeta functions by [Ja79, (4.5.2), (4.5.3)]. O

Let Q¢ and Qx_ be the Casimir elements for G(Fu) and Ko, respec-
tively (see [Kn86, Chapter 8.6]). Since they commute with the right regular
representation, they both operate by scalars on A2(G)X (because of the ir-
reducibility of = and 7), which we denote by A; and \;, respectively (the
eigenvalue of ()¢ only depends on 7, and the eigenvalue of Qx__ only de-
pends on 7, so that the notation is justified).Let D = id + Q% + Q%(OO. Let
© =< o1, P2 > be a matrix coefficient of 7 with 1, s € A2(G)E of norm
1. Then the operator R(D) is essentially self-adjoint, and we have

/ O ()| det x\s+n77190(x)d1‘ =< R(fs)¢1, 92 >
G(A)
=< R(D" fo)p1, RID ™M)y >= v(m, 7)™ < R(DN f,) 01, 02 >

— u(r, )N /G e det 2|+ 7 o (x)da,

where v(m,7) = 1+ A2 + A2, and @y € S(M,,(A), K) is a suitable Schwartz-
Bruhat function depending only on N, but neither on 7 nor on 7, which
exists by the following lemma.

Lemma 38. Let ¢ € S(Mat,,xn(Fxo)) and put gi(z) = (x)|det(z)]t for
teC, Rt >n, and x € G(Fx). Let X € U(gr, oc). Then X * g; again has
the form (X xg;)(x) = (z)|det(z)|* for some function 1) € S(Matyxn(Fso)).
If U € S(Mat,xn(A),K) and Fi(V,g) = ¥(g)|det(g)|*, we can find ¥ €
S(Mat,,xn(A), K) such that (X x Fy(®,-))(g) = Fi(¥, g).

Proof. We have

(X % g0)() (¢(exp(rX)z)| det(exp(rX)z)[)

- 5%:0
= (r g0+ o) Jdetton! ) o

from which our assertions are clear. O
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Proof of Proposition |32. We first show that ©2 continues to an entire func-
tion. For Rs > 2 write ©,(s) as the absolute convergent sum

Z Z l/(ﬂ',T)_N Z Z(CI)N,S—FnT_la%D) (25)

7"'GHdisc(G(A)l)vdin’l m#l TGI?O\O ISl

for suitable sets of matrix coefficients ®. ; for the 7-isotypic component of
the K-invariant part of w. Fach of the zeta functions continues to an entire
function on s € C, so that we are done if we show that (25) converges
absolutely for all s € C. Let a < 0 and b = ”TH Then by Lemma 37, there
exists M(®n,a,b) such that |Z(Pn,s + 251, )| < M(®n,a,b) for all ¢,
and all s with @ < Rs < b. One of the main ingredients of Miiller’s proof of
the trace class conjecture was [Mu98, Corollary 0.3, whose adelic version as
explained in [Mu02| §6] is that for any M € £ and any P € P(M),

> > dim(AZ(P)E)(1+ A2 + 227N < o (26)

Wendisc(M(A)l) TGEO\O

Hence (25) converges absolutely by (26]) so that we get a holomorphic con-
tinuation to s > a, and thus to all of C.

We are left with ©;(s), i.e. the trace of the one-dimensional representations
so that ©1(s) = > trx o det(fs) with x ranging over all Hecke
x:AX /FX—C
characters which are invariant under the group det(K.K) C A! and such
that x® = 1. The group det(K.,K) is of finite index in A! so that the
conductor of the possible characters is bounded. Since x"™ = 1 implies that
X[Rso = 1, where Ry is embedded in A* by putting the same entry at
all infinite places, and 1 at all finite places, there are overall only finitely
many possible characters. The trace can be computed to be try odet(fs) =
fG(A) ®(g)|det g|5+nT_1x(det g)dg. Hence the sum > trx odet(fs) yields

Xs x#1
an entire funtion. Thus only the trivial representation is left over, and it

equals

n—1 n—1

Z(®,s+ 1) =2Z(®,s+ ) = / | det $|S+HT_1<I>(:c)dx.
2 QL (A)

Hence up to multiplication with and addition of an entire function ©1(s)
equals

n—1 n—1
[T+
=0

a priori for Rs > ”T‘H, but the right hand side also gives the meromorphic
continuation to all of C, and from which we can readily read of the location

and multiplicities of the poles. O

Proof of Corollary|36. Now suppose that M C G is a Levi subgroup and
P € P(M), P = MU. Then the proof above applies also to (24), since
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we have Mpp(t,0)p(P,0, fs) = p(P,0, fs)Mpp(t,0), we can assume t = id
for the question of analytic continuation. Let 7 € Igisc(M(A)!) and let
01,02 € A2(P)X be of norm 1, and let ¢ =< p(P,,-)¢1, p2 > again be a
matrix coefficient. Then

n+1

Z(®,s+ Q)

/ / / \detglsJr 3 <I>( Y1 (mkg)ps(mk)dmdkdg
G(A) A M(F)\M(A)

and changing variables, this equals

/ / /// | det m/[*+ "2 (k" \m/uk)
M(A) JUB) VK JK J Ay M(F)\M(A)

- o1(mm'K ) po(mk)dkdmdk' dudm’. (27)

Note that for any k, k' fixed,

m' o1(mm'k )2 (mk)dm
ApM(F)\M(A)
is a matrix coefficient for 7, and by the K-finiteness of ¢1,ps (7 is ad-
missible), and if we further assume that ® is K-finite, (27) therefore is a

finite sum over a finite set of matrix coefficients ¢ for = and a finite set
{¥} C S(Maty,xn(A), Ko K) of

/ / | det m'|5+%1 U (m/u)yp(m)dudm’.
M(a) JUa)

Put
Uy (m) = e<O‘M’HM(m)>/ U (mu)du
U(A)

with apy = (n — ny,n — ny — ng,...,n,,0), which is a Schwartz-Bruhat
function on Maty, xpn, (A) X ... X Maty, xn, (A) invariant under K N M (A).
Note that pyr — ay = —("5%2, "5, ..., 5=). Write 7 = m ® ... @ 7,
with 7; € Mgise(GLy, (A)1), and accordmgly =11 -... %, By eventually

refining the sum over ¥, we can also assume Wy (m) = H U i(mg), Uars €
i=1
S(Maty, xn, (A)). Then (27) equals the finite sum over ¢ and ¥ of

T

n;—1
H/ | det "2z i(my )i (mi)dm;
i1/ GLn, (A

for which we can apply the previous results. If now ® is not K-finite, there
is a sequence of K-finite functions in S(Mat,,x,(A), K) converging to ® and
such that the resulting zeta functions converge locally uniformerly to the
zeta function associated with @ (cf. [Ja79]) so that the assertion also follows
for general ®. O
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Remark 39. Consider one of the functions fs associated with ® = PP @y
as in Remark |34, As observed there, they yield holomorphic functions in
Rs > "TH for the spectral terms. If m € T gise(G(A)Y) and f a matriz coeffi-
cient for m, we can still define a zeta function

Z(<i>,5+n_

L= / | det g7 ®(g) f(9)dg
G(A)

which is a well defined and holomorphic function for Rs > ”+1 Let ‘f(:ﬁ) =
fMatan(A) D (y)1h(tr zy)dy be the Fourier transform. Using the standard iden-
tities for Fourier transform and keeping in mind that X x ¢ is absolutely
bounded for any X € U(gl,)<n, we see that there is ¢ > 0 such that

B ()| < e(1+ [Jaff) N+

for any x € Maty,xn(A). This in particular allows us to apply Poisson sum-
mation to sums of the form > P(ax), a € A*, 0 < k <n.
zE€Matyxn(F), rka=k

We may also consider the integral defining Z(‘i), s+ %7 f) but the absolute
convergence of this can now be guaranteed only for RNs € (”“, ol %)
Following along the lines of [GoJa72] for the proof of the meromorphic con-
tinuation and the functional equation of the zeta functions of cuspidal rep-
resentations, we see that Z(®,s + 5 1,f) does not necessarily has a con-
tinuation to all of C, but at least in the half plane Rs > ﬂ + 52 f
1s cuspidal, and it has poles at the usual points if n = 1. The analogue
statements are similarly true for general © € Hyieo(G(A)Y). Moreover, in the
region of continuation, it satisfies the usual functional equation, i.e.
~ n—1 5 n—1 ,

Z(@,S“— 7f):Z(®7

)

for Rs € (% + 17?", o0). Hence if N is sufficiently large, we can continue

up to a region, where Z(i), 1—-s5+ %,f) 15 again giwen by an absolutely
convergent integral. Hence we can conclude that in the half plane of con-
tinuation, Lemma |37 stays valid, and we get a continuation of the spectral
terms at least in some larger half plane s > ”+1 — 0 with a simple pole at
Rs = ”—H

It will be clear from the next sections that also any other spectral term can be
continued to some half plane Rs > 2 — & for functions from CN (G(A)!, K).
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IV.iii THE NON-DISCRETE PART

IV.iii.i ESTIMATES FOR NORMALISING FACTORS AND MATRIX
COEFFICIENTS OF NORMALISED INTERTWINING
OPERATORS

The purpose of this section is to introduce some well-known notation, and
to find estimates for certain quantities, which will allow us later to adapt the
convergence proofs of [MuSp04], [FiLaMull] to our situation. Let (nq,...,n,)
be a partition of n, r > 2, and let M be the standard Levi subgroup associ-
ated to (n1,...,n,). Let P € P(M), and U the unipotent radical of P. Let
T=mMT&... 7, € HdiSC(M(A)l), le. m € deSC(GLm(A)l), 1=1,...,7r.
Then 7 = @, m = (Q, T10) @ ... ® (Q, Tro) with 7, local admissible
representations of GL,, (F,). For A € ajrc, T is the twisted representation

given by m(m) = m(m)e*Hn (M) Denote by Indg((ﬁ)) () the representation

of G(A) parabolically induced from 7, and denote by Indg((f:vv)) (my) the respec-

tive local version. If ) is another parabolic subgroup with Levi component
M, there are intertwining operators

Mgp(m,A) : AZ(Q) — AZ(P)

which are initially defined for A with R\ contained in a certain translate
of the positive chamber associated with P by an integral over (Ug(A) N
Up(A))\Uqg(A) [Ax05, (7.2), Lemma 7.1|, and are defined by analytic con-
tinuation elsewhere. Here an operator, depending on complex variables is
said to be holomorphic or has a meromorphic continuation if all its matrix
coefficients have the respective property. It has a pole at some point if there
exists a matrix coefficient having a pole at this point, and it has a zero if
the inverse operator has a pole there. This definition also allows us to speak
of traces, operator norms, etc. even at points, where the operator is only
defined by means of analytic continuation.

More generally, if ¢ is some Weyl group element, which maps ap isomorphi-
cally to ag, there is an intertwining operator

Mgp(\ 1) : A2(Q) —> A%(P)

satisfying MQ|p(7T, )\) = MQ‘p(ld, )\)|A3.—(Q) Write MQ\P()\) = MQ|p()\, 1)
Similarly, there are local intertwining operators [Ar05, §21|

) (Fv)

G(Fy G
JQ\P(WM )‘) = JQ|P(7TU,/\) : IndQEFV)(ﬂ-V,A) — IndP(FV) (Trv)\)

which are initially defined by an integral over (Ug(F,)NUp(F,))\Uq(F%) for
R sufficiently regular, and are defined by analytic continuation elsewhere.
There are local normalising factors rgp(my, A) such that the normalised
operators Ry p(myn) = rqp(me, \) 1 Jgp(my2) satisfy certain conditions
as in [Ar89, Theorem 2.1|. In particular, if m, ) is a spherical representa-
tion, R p(my,x) maps the spherical vector to itself so that Rg p(m, 1) acts
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as the identity at unramified places. We identify (af/[(c) with the hyper-
plane A = (A1,...,Ay) € C", Y- A\; = 0. As explained in [ArCI89, Chapter
2.2| the local normalising factors are then given as a product rg p(my, A) =

II To (T, A(@¥)) with 7r4(7y, z), € C, meromorphic functions de-
aeZ(Q)NZ(P)
fined by
Ly(z, amy))

Lv(l + z, oz(m,))sv(m, Oé(ﬂ'v), @ZJU) '

Here a(m,) is defined as m,; x 7, ; if @ = e; — e, {€x}r=1,. r the standard
basis vector in C", and the occuring L-functions are the local Rankin-Selberg
L-functions with the corresponding e-factor (see, e.g., [RuSa96|]). By the
properties of the local intertwining operators and normalising factors, their
global products Jgp(mx) = @, Jo|p(Tv,2), and g p(7,A) = @, Tq|p(Tu,r)
are well-defined functions (cf. [Ar05, §21]). If we write L(z,01 X o2) for
the completed Rankin-Selberg L-function and use its functional equation,

we obtain

11 L1 = MaY), a(7))
L(1 v ’
L LA, alx)
As in [Ar05] let Rgp(A) be the operator on A?*(P) which equals the global
normalised operator rpjo(m, A) " Mpg(m, A) whenever restricted to AZ(P).
In particular, this restriction is isomorphic to mgisc(7) many copies of the

operator ®, Rg|p(my,x) by the isomorphism

Ty, T) =

rQ|P(7T7 )‘) =

Hom(r, L*(Ay M (F)\M(A))) @ Indg(y) () — AZ(P)

(cf. [FiLaMulll), and mgisc () is the multiplicity of 7 in L3, . (Ay M (F)\M (A))
(which is 1 if 7 is cuspidal). We recall how the intertwining operators and
normalising factors give rise to (G, M)-families [Ar05, §21]: For Q,P €
P(M), A € oy, 7 € Hgige (M(A)) set

Mq(P, X, A) = Mgip(A) ™' Mgp(A + A),

rQ(A, A\, m, P) = rQ|p(7r, )\)_17'Q|p(7T, A+ A),
and
RQ(A A, P) = Rgip(A) 'Rop(A+ A).

These are all three (G, M)-families in the sense of [Ar81]. The operators
and functions Mp(P,\), rf(ﬂ,/\), Rs(A), L,S € L(M), L C S, are then
associated with these (G, M )-families as explained in [Ar81]. By [Ar81]
Corollary 6.5] one has for each 7 € Tgisc (M (A)Y)

ML<P7 )\)‘A%(P) = Z Tg(ﬂa)‘)RS()HP)\A%(Pﬁ (28)
SeL(L)

where we used that rf is independent of R € P(L). Since rop(m, A), and
hence also rg(A, A, 7, P) are products over functions associated with roots
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as above, rg(w, A) equals by [Ar82, Proposition 7.5]

S vol,a () [T ralm Aa¥)) i (m, M) (29)
F

acF

where Ly € L is such that S € P(L1), and F runs over all subsets of reduced
roots of L; with respect to Ap; such that Fr (the set of all roots of F
restricted to ar) is a basis of alil. vol 1, (FY) is the volume of the lattice
L

spanned by F} in afl.

Before proceeding to proving the ”"continuous” parts of Theorem |32 we first
collect some auxiliary results on the normalising factors and matrix coeffi-
cients of local intertwining operators.

Later on we shall need estimates on the growth of the matrix coefficients
of the local intertwining operators Rp|g(my, A) along subspaces for which
R (V) is fixed and not necessarily 0. As the intertwining operators are
factorisable into a product of operators belonging to adjacent parabolics, we
only state those estimates for the adjacent case. In view of the results of
|[FiLaMull] and Lemma 1 therein, it is sufficient to obtain estimates for the
operator itself rather than all its derivatives as in [MuSp04] for A € i(a§))*.
Results similar to the next lemma are contained in [MuSp04], in particular
in the proof of Proposition 0.2 and Lemma A.1 therein, but as we need them
in a slightly different version, we include a proof of our version. For a place
v of F' we denote by Igisc(M(F,)) the set of all m,, which occur as a local
component of some 7 € Hgigc(M(A)).

Lemma 40. Let M € L, and P,Q € P(M) adjacent along «. Suppose that
7 € Mgise(M(A)Y). Let v be a place of F, m, the local component of w. In
particular, Rg(p(my, A) only depends on A(a) € C.

(i) Suppose v < oo. There is a finite set Xo C R\[—ﬁ, ﬁ], which can

be chosen independently of m € Wgise(M(A)Y) with (Indg((gvv))wv)KV #
0, such that for all xg & Xo no K,-invariant matriz coefficient of
Rg|p(mu, A) has poles or zeros on MN(a") € mo+iR. Let § = sup,ex, |-
Suppose that xo ¢ Xo. Then there exists a constant C' = Cy, not de-

pending on 7 such that

| < Rgp(mo, A)p1,02 > | < C

for all X € (a5))*, M) € o + 4R, and all p1, s € (Indg((gz))(wv))Kv
of norm 1. For |zg| < ﬁ or |xa] > 1+ &, we can choose Cy,

independent of xg.

(ii) Let vloo. There exists a finite set R C R\[— L1, which can be

14+n?’ 1+n?

chosen independently of 7, such that all poles and zeros of RQ‘p(m, A)
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are contained in (") € R+ 7Z. Let T € I/(\v There exists a constant
¢ > 1 not depending on 7 or 7, such that for any xo € R + Z,

3+l >

min,er47 |xo — 2|

| < RQ|P(WU7A)¢17§02 > | < (C

for all X(aV) € zo + iR, and all p1,p2 € (Indg((g:))(wv))T of norm

1. Moreover, if v > 0, then there are only finitely many T € I/{\U
such that < Rg p(my, A\)¢1,02 > has a pole in X € [~r,7] for some

G(Fy
1,2 € (Indp (i) (7))

Note that by [MuSp04, Example, Remark A.4] at least the second part of
the lemma does not remain true for general unitary local 7, so that we must
assume 7, to be a local component of some unitary global representation
occuring in the discrete spectrum.

Before starting to prove the lemma we recall some representation theory,
which will use. First assume that v is a finite place and corkg M = r.
Let m; € Hgise(GLp, (A)Y), i = 1,...,7r. By the classification of the discrete
spectrum of GL,, (A) by Moeglin-Waldspurger , and the classification of the
v-adic representations by Silberger, there exist the following data:

e a partition (mj,...,m;. ) of n;,

e a parabolic subgroup P/ with Levi component M/, which is of type
(mt,...,mb),

e discrete series representations (5;» of GL,,: (Fy),
J

e real parameters s > ... > s. with \33] < % for all j

such that Lo (F) ' ‘
Tiw ~ Jppy - (01ls1] @ ... @6, [s0.])
GLy, (Fy) ) ) . . )
where J, ( Fl) denotes the Langlands quotient, i.e. the unique irreducible

quotient of the induced representation Indgk;i()Fv)(éil [si]®@...®6L[sk]) (see

ry
[MuSp04, §3]). (There are better estimates for the Langlands parameters 33'»
available, see [MuSp04], but we do not need them at the moment and they
would only complicate the description here.) Put M’ = M| x...x M} C M,
P' =P/ x...x Pl ¢ PM(M'), and for P,Q € P(M) let P(P') € P(M)
be defined by P(P')N M = P’ and P(P’) C P, and define Q(P’) similarly.
et T =M ®...07m, and § = 61 ®...® 47 . As explained in [Ar89,
§2] (cf. also [Mu02l, §7|) each K,-invariant matrix coefficient of the local
intertwining operator Rp|q(my, A) is also a K,-invariant matrix coefficient of

Rppjgpy (8, A+s) for X € (aAG/LC)*, which is identified with its image under
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the embedding (a§; ¢)* < (a5, ¢)*, and s = (si,...,s? ). Hence it suffices

to consider the second operator. Now suppose that (Ind (( ))TI'V)KV # 0.

i(a§,)* acts by p — 6[u] on the square-integrable representations, and if
m, belonging to § has a K,-invariant vector, the representation belonging
to 6[u] as well has one. If we denote by M’ C i(a§,)* the stabiliser of
this action, M’ is a cocompact lattice. By a theorem of Harish-Chandra

(see [Mu02l, §7]), there are only finitely many orbits of square-integrable
representations on M'(F,), which yield some 7, with (IndG((F") VK £ 0.
Q(P/)((;[/L], )\ + S) = RP(P’)|Q(P’)(67)‘ + s + ,LL) SO that lt
(67)jag, . =1forall4,j. Hence we get a map

™

Moreover, Rp(pry
suffices to assume

{00 € Maise (M(F,)) | (Indp(g. ;UV)KV £0} 3 my — (M, 6, 11,9)

which associates to m, the data constructed above. Note that the possibilities
for M’ and § are finite, and that s and p can only vary in a compact subset
of (aAG/[C)*. Hence as we assume that 7 occurs discretely, there are in fact
overallvonly finitely many possibilities for the tuples (M’, 4, i, s), which yield
7y € Haise (M (Fy)) possessing a K,-fixed vector.

Now assume that v is an archimedean place. Again using the classifica-
tion by Moeglin and Waldspurger together with the Langlands classification,
we can associate to m, data M/ Pl’,éj, and Langlands parameter 53- € R,
which satisfy the inequalities above so that m;, are the Langlands quo-
tients as above. We again have a bijection between the matrix coefficients
of Rpjg(my, A) and of Rppn gy (9, A + ). If v is real, GLy,(R) has dis-
crete series only for m = 1,2. For m = 1, there are only two possibilities
up to unramified characters: 6 = 1 or § = ﬁ, x € R. For m = 2 the
discrete series is, again up to unramified characters, parametrised by inte-
gers (see for example [Bu97, §2.5]). If v is complex, GL,,(C) has discrete
series only for m = 1, and it is parametrised by | € Z up to an unramified
character (see also [MuSp04) §3]). Twisting ¢ with unramified characters is
the same as the action of i(a§,)* on the representation, p — §[u]. Again
Rp(pryjq(p (6[u]; A+ 8) = Rppryq(p)(6; A + s+ 1), so that we may assume
that each 51 is uniquely determined by the integer, which is associated with

(5;. Suppose that 7 € K, with (Ind,, ((F ))(7rv))7 # 0. By [Vo86, (5.4), Propo-

sition 5.17|, the representations 7 € K are parametrised by their highest
weight vectors, which are tuples of certain half-integers. For 7 to appear in
the induced representation the tuple p + s must therefore consists of half-
integers. As p is purely imaginary and s real, this means that p = 0, and
s must consists of half-integers. This limits the possibilities of s to a fi-
nite number, as the modulus of the entries of s was bounded by 5. By the
parametrisation of the discrete series and the unitary representations of K,
we can therefore even find a finite set S C (a§;)* such that the image of the
map gisc(M(F,)) 3 mp = s € (a§)* — (a§,)* is contained in S + L for
some lattice L C (a$§,)* (in fact, L can be chosen to be the lattice spanned
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by the roots of P).

Proof of Lemmal/0. (i) The existence of a finite set Xy C R as assumed
in the lemma follows from the considerations just before the proof
and the functional equation Rgp(my,A) = Rgp(my, —A) "t for P,Q
adjacent. By [MuSp04, Proposition 4.2] X, can be chosen such that

mingex, |Rz| > H% Let & = maxgex, |z|. Suppose now that m €
Miso(M(A)") with (IndSE)m)K¥ £ 0. Let 1, 02 € (Indee) ()<~

be of norm 1, and write f(s) =< Rqp(my, swa)p1,p2 > for s € C,
and w, € a}; such that @, (B8Y) = d,p for all roots B. By [FiLaMulll,
Lemma 2| f(s) is a rational function in ¢, ° the degree of which is
bounded by some m € N, which only depends on K, but not on ¢;
or m. We now follow a similar strategy as in the proof of [MuSp04]
Proposition 0.2] to find an upper bound for the matrix coefficients.
Write F'(q,®) = f(s) for some rational function F' of degree at most m.
Note that f(s) is holomorphic in §ts > 0. Since Rg|p(my, A) is unitary
on AaV) € iR, |F(z)| <1 forall z € C, |z| = 1. F has at most a pole
of order m” <mat z=01in {z € C||z| < 1}, and at most m poles in
|z| > 1, say ai,...,a, with m" < m and counted with multiplicities.
Hence Hi(z) = F(2)z™ and Hy(z) = F(z7Y) T[] (27! —a;) are

i=1,...,m’

holomorphic functions for all of z € C, |z| < 1 with

sup [ (2)] = sup |F(2)] <1
|z|=1 |z|=1

and

sup |Ha(z)| < sup \F(z_1)| H sup |z — a;| < max{2,1+ &}™.

|z|=1 |z|=1 i:1,...,m’|Z|:1
By the maximum principle, |H;(z)| is therefore bounded by 1, and
|Ha(z)| is bounded by max{2,1 + &}™ for all z € C,|z| < 1. Now
suppose that zop € R such that R,()\) is holomorphic on A(a") €
xo + iR. This means that F'(z) is holomorphic on |z| = ¢, ®° so that

sup |f(zo +it)| = sup |F(z)] < sup [|Hi(2)|g™™ < g3

teRr |2|=q, "° |2|=qy "©

if g, <1, and

sup|f(zo +it)| = sup |F(z)]

teR |z|=qy “°
< sup |Ha(z)] sup |27t — ™™
|z|=q, 0 |z|=q5 %0, i=1,..m’
< " max{2, 14+ &} sup [z -2,

|z\:q$0, z€Xp
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if g;*° > 1. Both last bounds depend only on xg, but not on ;. If
additionally |z¢| & [ﬁ,@ +1],

1
sup |z —2|™™ < min{l, ——=}"™ = (1 4+ n?)™,
|2|=4.°, z€Xo L+n?

so that we even obtain a bound, which is independent of z.

(ii) Again by the considerations just before the proof together with the
functional equation of the intertwining operator, it is clear that there
is a finite set R = {p} C R such that Rpjg(my,A) is pole- and zero-free
outside of R + Z. We are left to show that for zop € R + Z there is
a constant as asserted. But this follows from [MuSp04, Lemma A.1,
Proposition A.2| and the proof of the lemma there.

O]

Note that this lemma also yields bounds for the norm of the operators
Rpjg(my, A)Xv (the restriction of Rpjg(my, A) to the K, -invariant space) in
the non-archimedean, and Rp|g(my, A)r (the restriction of Rpjg(my, A) to the
T-isotypical component) in the archimedean case: Under the hypotheses of
the lemma we get

. 2
dlm.Agr(P)f) 7 (30)

Mdisc (7T)

[ Rpiglme, N[ < C (

and

Rl )C(dimAz<P>£<>2 (51)

R Ty A < |c—
H P\Q( LAl )TH - < man€R+Z|$0—Z| mdisc(ﬂ')

for the constants and A as in the lemma.

For the normalising factors we have the following.

Lemma 41. Let 7 € M gs.(M(A)Y) and o be as above. Then there exists a
meromorphic function £4(-,7) : C — C such that

ro(m A(a))

@) = La(Ma"), ) + Lo(—A(a"), 7),

and £,(A(a), ) is holomorphic for RX\(a¥) > 0. If m;, wj are both cuspidal,

then
L'+ MaY), a(n))

o )\ = - A v _1571'0:
L) = T N @), a(m) ~ M@0
where

5 1 ifn; =n; and m; >~ 7,

e 0 else.
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Moreover, there exist constants m € N, Cy > 0 for N € N, such that for N
sufficiently large

/ 20 B)](1 + [12)"Ndt < Cn(1+ AZ)™ (32)
a+iR

for all a € Rsq, and 7 € Hgse( M(A)Y) with A2Z(P)X # 0. Here A, =
min, (|A|? + |)\T\2)% with A\ the Casimir eigenvalue of moo, and A; the
Casimir eigenvalue of T, and T runs over all minimal Koo-types in m (see

[0, (4.5)]).

Proof. By the classification of the residual spectrum of GL(n) by Moeglin-
Waldspurger, there are dg|ng, and cuspidal unitary representations oy of
GL(ng), k = 14,7, such that 7y is isomorphic to the unique irreducible quo-

tient of the induced representation IndQ L) (ox[25®. .. ® oy [ 2]

dy,...,dy)
for my, = ng/dy and Qq,,..4,) S GL(nk) the standard parabolic assomated
with the partititon (dk, ..., dg) of ng. Hence by the definition of the Rankin-
Selberg L-function for general 7 (see [JPSS83| or [RuSa96, Appendix|),

L(s,a(n)) = L(s,m x 7;)

H IT ZGs+ mj2_1+M70iX5j)

v=0 p=0

mi+m;—

2
= H L(S—F%—H,UiX&j).
k=0

This product is an entire function unless n; = n; and o; ~ o}, and all zeros
are contained in 0 < R(s + %mfz —k) <1, k=0,...,m; + mj —2
by [Co07, Theorem 4.3]. Moreover, each of the L-functions is bounded in
vertical strips of finite width away from its poles, see [Co07]. Hence, if we

set

\_mi+;nj_2j / m;+m;—2 ~
. L1+ MaY) 4+ 2iE=2 55 % 5,
_ B (\aY).m) = Z 1+ MaY) + == K,0; X §j)

¢ L1+ MaV) + M2 6y % 6y)
-2

R=
SR . i
+L Z JL’(1_/\(QV)_%+,{@X%)
- L1 = MaV) = 622 4 g 6 % ay)

then 2O — 8 (MaY), 7) + Ea(—A(a¥),7), and L4 (r, Aa)) is holo-
morphic on RA(«") > 0, since all zeros are contained in RA(a") < 0, but it
might have a pole at A(a") = 0. This pole occurs if and only if o; ~ ¢}, and
is simple if it occurs. Thus the function

Lo(m M) := La(m, AMaY)) = Aa¥) "y
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is holomorphic in ®A(a¥) > 0. The expression for the case that m; and 7;
are both cuspidal is clear from our computations.

The estimate follows from [Mu07, §4, §5] together with the discussion
following the last lemma. O

(32)) is a substitute for [Mu02, Theorem 5.3] we need to justify the replace-
ment of the logarithmic derivative of the normalising factors by a sum of
products of the functions £,(z,7) in the expansion of the trace formula. At
first glance it might appear odd, why one would wish to replace 77 (, \) by
the functions £,(\, 7). The reason will become obvious later: The defini-
tion of £,(\, ) ensures that they do not have poles in the right half plane,
whereas 77 (7, A) has infinitely many poles in every direction, when moving
away from the purely imaginary subspace i(a?)* C (a7 c)’. This will be
later used for the deformation of the contour of certain iﬂtegrals.

IV.iii.ii AN EXPANSION OF THE SPECTRAL SIDE AND ITS
ABSOLUTE CONVERGENCE

We first recapitulate some notation from [FilLaMull], but in a slightly more
general version, as we shall need it in a relative context, i.e. with respect to
Levi subgroups and not just the group G itself. For standard Levi subgroups
S,LeL,LCS,coksg(L)=m,and Q € PY(L), ‘B%L is the set of all m-
tuples 8 = (8Y,...,B8Y%) € £5V(Q)™ such that the set {3y, ..., 3} forms a
basis of af when restricted and projected to af. If S = G, we shall simply

write Bo . If § € ’B%D VOlaE (B) is the covolume of the lattice spanned by

the restrictions/projections of the vectors 8Y,...,3Y, in af. In particular,

the splitting formula for the normalising factors reads in this notation

rim) = volgs(h) H 1, (m, (B ), (m A(B) 7

BEBY 1

Denote by 6€(B,A,7r) the summand corresponding to 8 € SB%,L. For B €
%%L, let Z7(8) = {(Q1,...,Qm) € FS(L)™ | corka, (L) = 1, B €
a%,z’ =1,...,m}. Then for each X = (Q1,...,Qy,) € Z7 there are uniquely
determined parabolics Py, P}, ..., Py, P, € PS(L) such that Q; = P,P! and
Pi|%iPl fori=1,...,m (see §2.1]). We now want to define a non-
commutative analogue of the expansion for the normalised intertwining
operators analogue to the expansion for the unnormalised intertwining op-

erators in [FiLaMull]. Let M € £, L € L(M), S € L(L), P € P(M), with
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corkg(S) =k > 1, and Xg(8) € E¢(B). Then set

volyg ()
TRHIP()‘)_1 (d)\(dﬁl\/)Rplpf ()‘)> RP{|P2()‘)'

a0 O) (G5 R ) Brge). 39)

Axy)(P,A) =

The operators Rp, p/(A) are in fact meromorphic and only depend on A(BY)
so that the partial derivatives are ordinary derivatives of meromorphic op-
erators in one variable. From [FiLaMulll Theorem 2] it follows that there
is a non-commutative analogue of (29) for Rg(A, P) given by

= Y Ax, PN

BEDBP,s

where Xs ,(3) are certain tuples in Z§(3) associated to 3 as in [FiLaMulll,
§2.3] and p is a vector in (aj,)* in general position. The vector p is an
auxiliary variable of which the expansion above is basically independent. If

o= (p1,...,p), then Xg,(8) = (Q1,...,Qk) is chosen such that i — p; €
a*Qi7+, i =1,...,k, for some uniquely determined /i € ag.

We leave the Levi subgroups fixed and assume corkg(L) = m > 1, and
corkg(L) = v € {0,...,m} in the following. Hence for any 7 € Hgisc(M (A)!)
the operator My (P, \) restricted to the space A2(P) can be written as

ML(P Nz = > Y. Y & AmAx, 5\ P)azp)

SEL(L) BEBr,s aeBS g |

By [FiLaMulll Corollary 1] the integral
[ B0 (P LM 0P )i
t(af)*

converges absolutely in the trace norm for all f € C(G(A)'). As the proof of
the absolute convergence was reduced to the consideration of the normalising
factors and the normalised intertwining operators, it was in fact shown there
that

DD VD S

BE%P S ae%f,ns L 7"'eHdlsc

57 (e, A, ) tr(A g, (5) (A, PYMp(t,0)pr (P, A, f))dA

converges absolutely for all f € C(G(A)'). Note that the sums over a and 3
are both finite.

Each pair « € ‘B%L and 8 € Bpg determines isomorphisms

of @af = af, and  (af)" @ (a§)* = (af)"
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with respect to which the integration over i(a¥)* decomposes into two parts.
Under this isomorphism write A € (af)* as A = Ay + Ag with A\, =

m—k k
> MeY)ai € (af)* and Ag = S N(BY)Bi € (a)*, where all (co-)roots
i=1 i=1

are viewed as elements in a or (a_g)* Then the function 67 (a, A, ) only
depends on Aq, and Ay () (A, P) only on Ag.

By Lemma {41, there are functions £4,(-,7) : C — C (which implicitly
depend on S and L now, but we shall suppress such indices), holomorphic
in RA(e;") > 0, such that

07 (a,m A) = volgs(@) [ (€a,(M(ed), ) + Lo, (=N (), 7))

i=1,...,v

:VOlai(Oé) Z H Lai (M), &)

ce{£1}vi=1,..,v

with e;m = wif ¢ = 1, and g;m = 7 if &5 = —1. For n € {£1} put

nR>o = R>g if n = 1, and 7R>¢ = R<g if n = —1. Then for € € {£1}", the

product £(m, a,e,\) = V01a€<06> [T £, (ciN(@)),em) is a holomorphic
,L'i

=1,...,v
function for all A € (ag’(c)* whose real part is contained in the chamber
RA(a)) € eiR>p for i = 1,...,v. Again, a priori £(m, o, e, \) also depends
on the choice of L and S, but since the function in fact only depends on

M), specifying o and A suffices.

Proposition 42. Keep the notation introduced earlier. Denote by pr(P, A, fs)
the meromorphic continuation of the operator to all s € C. Supposen € (ag)*
such that n(a)) € ;R>o for all i = 1,...,v. Further assume that for all
v €S, and all P,Q € P(M), the operator Ry p(my, \) is holomorphic and
zero-free for all X € n+1i(a%)*, and all ™ € Myise(M(A)). Suppose further
that there are a,b € R such that for s € C with Rs € (a,b), p(P,\, fs) is
holomorphic for all X € n+i(a¥)*. Then the sum-integral

> / . L(m, a8, ) tr(AD g, (3) (P, N)pr (P, X, f))dA (34)
T€M gise (M(A)Y) n+i(af)*

converges absolutely in the trace norm for any s € C with Rs € (a,b) and
uniformely in such s.

Since the local operators are all holomorphic and zero-free at least in the
region [Rn(vY)| < ﬁ by the results of [MuSp04], there is a region given
by the intersection of the complexification of a certain Weyl chamber with
a small tube around i(a%)* C (ag’c)* with 7 satisfying at least the first

requirements.

A priori it is not clear that this converges even for Rs > 0 and n = 0,
since the function £(m, o, €, \) may grow very fast if the zeros of the Rankin-
Selberg L-functions come very close to the lines 1 + A(a)) € 14 iR. The
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construction of the original normalising factors took in some way care of
this problem, since the zeros almost cancelled each other by the functional
equation. (Of course, this as well needs more justification as was given in
[Mu02].) It is this point where (32) becomes important.

The Proposition 42| therefore shows the necessary convergence, and yields
also the analytic continuation to a slightly larger half plane. We formulated
it in a more general context to make it suitable for later application. For the
proof of the proposition we first state some simple facts about the matrix
coefficients of the induced representation.

Let m € Igise(M(A)!) so that 7 is equivalent to 71 ® ... ® m, with m; €
Hgise (GLy, (A)Y). Let ¢(g9) =< 7(g)¢1, 92 > be a matrix coefficient of the
representation induced from 7, @1, 02 € A2(P)X, and put 7(s, A, 1, p2) =<
pr(P, A, fs)pr, o2 >.

G>*

We use coordinates on (af)* as follows: if corkg L = s, we can identify

(af)* in R® with the hyperplane A1,...,\s = 0, and a basis of (af)* is
then given by the simple roots e; — ea,...,es_1 — es for {ej,...,es} the
standard euclidean basis of R%. As M C L, there is a canonical embedding

i(a¥)* — i(a§))*, A = Ay, and Ay can be given explicitely by Ay =

(FLAL, o 7 AL 22X if L= GL(my) X ... GL(my), and 1 = ip < iy <
... <ig=raresothat nj 1 +...+n;,, =mji1,j=0,...,s — L

The following is some kind of multidimensional analogue of Lemma [37.

Lemma 43. 7(s, A\, p1,p2) can be continued to a meromorphic function of
(s,\) € aj ¢, which for (Rs,RN\) varying in some compact set, is bounded
away from its poles. More precisely, there exists an entire function G(s, ) :
ay, ¢ — C such that

T

T(Sv A7 @1, ()02) = G(Sv A) H L(S + )‘Mﬂﬁv Wi):
i=1

and if C C R x (af)* ~ a} is some compact set such that 7(s,\, 1, p2)
is holomorphic for all s, \ with (Rs,R\) € C, there exists a constant C' =
C(®,C) independent of m and ¢ such that

I7(s: A 9)| < C(®,C)

for all (s,)) € a} ¢ with (Rs,R\) € C. Moreover, if m; is not 1-dimensional
for all i, then (s, \, p1,p2) continues to an entire function of s and A. For
A € i(af)* and corkg M = r > 1, 7(s, A\, 1, p2) is holomorphic at least in
Rs > %1_"

Note that if we replace T by Tt(sa )‘7 ¥1, @2) =< MP\P(tv 0),07|-(P, )‘7 fs)@l, p2 >
for some t € WE(M),eq the lemma stays valid up to permutation of the vari-
ables Apz;.
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Proof. Note that pr(P,A, fs) = papr,](P0, fs). Hence a matrix coeffi-

cient of Ind (( )) (m[AMm]) is obtained from one of Indg'((ﬁ)) () by twisting with

e (Hu ()| Then 7(s, A, @1, p2) equals

/ / / fs() o1 (mkax)ePvtra)(He (k)
Z(ANG(A Ay M(F)\M(A
- emCartea)He M) ) (k) dmdkdz.

The change of variables x +— k~ 'z yields

/ / / Fu(k L) et (Tr(@)
Z(M\G(A Ap M(F)\M (A

- o1(max)po(mk)dmdkdz,

Inserting the definitions, this is

/ /A>/AMMF)\M //'detm‘H (k™ muk)

(AM+pM><HP<m Doy (mm/uk’) o (mk)dkdk dmdudm.

As M(A) normalises U(A), (muk’) = o(mk’) so that we get

/ / / | det m/ [T "2 ePartea) (Hp(m))
M(A) JUA) J Ap M(F)\M(A)

/ / (k™ Im/uk’) o1 (mm' k) oo (mk)dkdk' dmdudm’.
KJK

Assume now that ® € Sy(Mat, xn(A), Koo K) for some finite index subgroup
Ko C Ko (we may suppose Ko, = Ko. The general case then follows as
the subspace Sp(Maty,xn(A), Koo K) C S(Maty,xn(A), K) is dense, and for
any sequence of Schwartz-Bruhat functions in the K-finite space converging
to some arbitrary element in S(Mat,x,(A), K), the sequence of associated
zeta integrals converges locally uniformely to the zeta function associated
with the limit function by [Ja79l (4.5.2), (4.5.3)].

For k, k' fixed the function

m’ ©1(mm'K" o (mk)dm
Ap M(F)\M(A)

defines a matrix coefficient of 7 so that by the K-finiteness of 7 (7 is admis-
sible) and our stipulation on ®, to be Kqo-finite, the function

m— / / O (k~ muk)p1 (mE o (k)dkdk dudm
K JK
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is a finite sum over v, ¥ of

/ / eAn+par) (Hp(m)) ’detm‘s"‘ 2 // (kmuk )w(m)dkdk’dudm

for suitable matrix coefficients {1} of 7 and Schwartz-Bruhat functions {¥'}
on Maty, xn(A) as in [Ja79]. By eventually "refining” the sum over ¥, we may
T

assume that ¥(m) = [ ¥;(m;) for m = diag(ma,...,m,), m; € GL,,(A),
i=1

and suitable ¥; € S(Maty, xn, (A)), and we can also write (m) = [] ¥i(m;)
i=1

accordingly with 1); matrix coefficients of ;, Let

Wy (m) = @M (Har(m) / / / U (kmuk')dkdk du.
K JK JU(A)

This is a Schwartz-Bruhat function on Mat,, xpn, (A) X ... X Maty,, xn, (A)
with apr = (n —ni,n —ny —na, ..., n,.,0) € ajy,.

Hence we get that 7(s, A, ¢1, p2) equals

Z/ e—aM(HM(m))\detm|5+nT_l\I/M(m)e()‘”LpM)(HP(m))w(m)dm
M(

_ZH/ |det9|5+ N (gi)i(9)dgi. (35)

P,V 1=1

Integrating the variables g1, .. ., g, one by one, the first assertion follows. The
boundednes for Js, RA varying in a compact set, now follows as in the proof
of Lemma 37, Since corkg M > 1, we have n; < n — r, and hence "ZT'H <
%1_”. Hence the function is holomorphic at least in s > %1_7“ O

Proof of Proposition 2. We can proceed along the lines of [FiLaMulll §5],

but have to be more careful, since we have to keep track of the variable s,

and additionally are no longer on i(a%)* so that the normalised intertwining

operators are not necessarily unitary any more. For each m € Hgise(M (A)!)
and 7 € Ko let d(m,7) = dim A2(P)E. Let A = id — Qg +20k . Then the
operator p(P,\,A) acts on A2(P)X by the scalar u(\,m,7) = 1+ [|A||? —
Ar + 2X;, which satisfies [u(, 7,7)[? > 2(1+ [|A|[2 4+ A2 + A2) for any 7 €
Maise (M (A)Y) and any 7 € Koo with A2(P)K £ 0 (see [Mu02, (6.2), (6.9)]).
Let ¢1, 92 € A2(P)X be of norm 1. Then for any ), s for which the matrix
coefficient is holomorphic,

| < Axg (8P, Npx(P, X, fo)er, 02 > |
< ’:U’()‘vﬂ-ﬂT)rMHAXs,H(ﬂ)(Pv )‘)711?,7"” < pW(Pv )‘7 AM * fS)‘Ph(PQ > ’

for any M € Np. Here HAXS#(ﬁ)(P, A)E_|| is the operator norm of the
operator AXS,H(ﬁ)(P’ \) restricted to A2(P)E. By Lemma [38 there exists
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some function ®; € S(Mat,x,(A), K) such that AM x f, is the same as the
function fs obtained by replacing ® with ®,,. Write M for this function.
By the definition of AXs,M(ﬁ)(P’ A)r, we have

_ vol ¢ (B) -
18 () (P, M)z A1l < Z%H(Rpﬂp(x)ﬁ) IIRpy p(VE |
m—v—1
H HRP{|P1'+1 7TT|| H HRPIP’ 7rr|”|9(7r M|
=1

with Rpjo(A)E, the restriction of Rpig(X) to AZ(P)K and

d
Gi(m,A) = Gi(m, MB))) = (Rpi‘Pi/()\)fr{,T)_lWRPHP{()\)?T

the logarithmic derivative. The operators Rp|g(A)x equal mdlsc( ) copies the
products of local operators [[ Rp|g(my,A) for any 7 with (Ind ) # 0,
veS

since for such 7, m, is unramified for v € S so that the local 1ntertw1n1ng
operators act as the identity at places outside S [Ar89, Theorem 2.1 (Rg)].
By the transitivity property [Ar89 Theorem 2.1 (R2)], each of the local (or
global) normalised intertwining operators can be factorised into a product
over intertwining operators belonging to adjacent parabolics. Hence by our
assumption on 7, Lemma 40/ and the estimates (30) and (31) thereafter, there
are constants C, C1 > 0 such that

vol o ( ) m—v—1 m—v
L”RP pOVEAL TT 1Re ey WA IRE e ()R]
i=1

i=1 =
< Crd(m, )™M (3 + ||7]])¢

for all A e n+ i(aL)* By the functional equation together with Lemma |40,
there exist Cy, Ny > 0 such that ||(Rp, p(A)E,) 7| < Co(3+||7|)Cd(, T)N2
for all A € n +i(a¥)*. Thus we have

/ 18(m, .8, M| < By, (8) (P, Npx(P, A, fo)pr, 02 > [dA
n+i(af)* ’

< L1+ |[7]|)2Cd(m, r)V I / O 77
n+i(af)*
T Senteroi),m) TT s m MBI < pe(PA FH )1, 00 > 1A
a;EQ @eﬁ

The function h(\, s) :=< p(P,\, fM)p1, 02 > can be meromorphically con-
tinued to all s € C and all A € (ag(c)*, and it is bounded for Rs, R\ varying
in a compact set by Lemma 43| away from its poles. If the continuation of
the matrix coefficient < p(P, A, fs)p1,p2 > is holomorphic at some point,
so is h(A,s). Suppose that a,b € R are such that h(),s) is holomorphic
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for A € n+i(a¥)* and Rs € (a,b). Hence by Lemma there exists
M(®M  a,b) such that |h(\,s)| < M(®M a,b) for all s with §Rs € (a,b), and
all A € n+i(a%)*, and M(®M,a,b) is 1ndependent of 7,1, 2. Hence the
above integral can be bounded by the product of C;CoM (®M a,b) with

(1 +[I7l[)* d(m, 7) e /Rm(l + Il + [lul[? 4+ AZ + A7)~/

H La; (i +Uz>51 H ng m,n(pB —|—u,,+])Hdu
a;€a B;€B

As the logarithmic derivative ¢;(, A(3)')) equals the sum of local logarithmic
derivatives Z Rp, p/ (7, A(ﬁj\/))f)*lﬁmRmp{ (70, A(B)))E, and for all u

vES
we have (1+[[n]]* + [Jul* + X7 + A1) 7M/Z < (1+ [Jul? + X7 + A7) 7M/2, it
suffices to estimate

3+ Il / (U [[ul 2+ A2+ X2)~M72 TT 2o, (m(a) + s, eim)

iRm ai€a

T (Reypr (o m(B)) + uyﬂ)f)—ldA(dBV)Rpip;(m n(B8Y) + )X ||du
Bj€B !

for each v € S. Again by the assumptions on 7 and Lemma |40} there exist
C3,N3 > 0 such that ||(Rp|p/(7Tv, (8)) + uy+)E) 7Y < Cad(m, 7)N3, as
well as HRPi\PZ.’(ﬂvvn(ﬁ )+ ) K| < Csd(m, 7)N2, for all uyqj € iR if v
is non-archimedean. If v is an archimedean place, such inequalities stay
true if we replace C3 by C3(3 + ||7||)¢d(w, 7). In particular, we may
apply [FiLaMulll Lemma 1] to the integral over a matrix coefficients of
ﬁmei‘p{ (70, 1(B) +u,44)K, as they still are rational functions of degree
bounded as asserted in [FiLaMulll Lemma 2|. Hence the integration with
respect to the second part (uy41,...,un) of the variable u can be bounded
by Lemma 1] by a constant multiple (which only depends on M
and @) of the product of (3 + ||7]|)3¢d(nm, )N TN+ Ns+2 ith

/V(1+ llwl[> + A2 + X2)"M2 T Lo, (mi(a’) + wi, ) dw

a;ca

for v € S archimedean as well as non-archimedean. Then the repeated
application of shows that this integral is bounded by some constant
multiple (which again only depends on M and ®) of

(1422 +X2)7 72 (14 A2)" (3 + |7l *d(m, )Nt Mo s,
The assertion of the lemma now follows from (26), when choosing M suffi-
ciently large. O

Note that the strategy of the proof applies equally well if we replace the
operators AXS‘#(ﬁ) and scalar functions £(m, o, e, A) by operators and scalar
functions satisfying similar factorisation and growth properties.
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From the last proposition and [FiLaMull] we get the following, which is a
slight variant of [FiLaMulll, Corollary 1].

Corollary 44. The spectral side of the trace formula for the test functions

f € C(G(A)Y) can be written as a sum over associate classes of parabolics

[P] € F(T), t € W(Mp), S € L(Lt), B € Bps, a € Bpg;,, and & €
| det(1—t) 1, |7

{1}oorks(Le) of the product of W with

Z /G S(Tr,a,a,)\)tr(AXS,Mw)(P,)\)pW(P,)\,f))d)\
€ gisc(Mp(A)L) Z(aLt)*

and this is absolutely convergent in the trace norm.Here the Levi subgroup
Ly € L(M) is uniquely determined by ap, = {X € aps | tX = X }.

Here two parabolics are called associated if their Levi component is conju-
gate. Actually, at first this follows only for the test functions fs from the
last proposition. But restricting our attention to n = 0, we see that the
argument simplifies for general f € C(G(A)!) as in §5]

Another direct consequence is the following corollary finishing the proof of
Theorem [33| and the first part of Theorem

Corollary 45. Suppose corke M = r > 1. Then as a function of s the
sum-integral with n = 0 is well-defined and holomorphic at least in
Rs > %H
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IV.iii.iii MEROMORPHIC CONTINUATION FOR corkg L =1

For any finite place v, i(a$)* acts on Tlgisc(M (F,)1) by (A, 7y) = mp[A] with
stabiliser some cocompact lattice M, C i(ag)*, and the local intertwining
operators Rp|qg(my, A), A € (af )" are periodic with respect to M,. Hence if
Rp|q(my, A) has a pole at A = )\0, it also has poles at any A € \g + M, with
the same residue as at A\g. Therefore, by the considerations leading to the
proof of Lemma 40| and the lemma, itself, there is a constant ¢ > 0 such that
for any finite place v € S, and any 7 € Hgisc (M (A)!) with (Indg((gvv))ﬂv)Kv #
0, the residues are bounded by c,

]}\re}s\ < RP|Q(WU7A)w17¢2 > ‘ <c (36)
=A0
for all ¢1,¢2 € (Indg((FF")) my)%v. (This notation makes sense only when

(ag(c)* ~ C. However, the statement remains true for L arbitrary by using

the concept of multidimensional residues as in [Ar89].) Restricting R\ to a
compact subset, there is ¢ > 0 such that

|/\r:6§0 < RP|Q(>\)§017@2 > ’ < c(l 4 HTH)C (37)

for any 7 € Hgise(M(A)Y), 7 € K., and 01,02 € A2Z(P)E and any A\ with
RAog contained in this compact set, as there are only finitely many 7 for
which Rp|g(7Te, A)- has a pole at the respective point.

Let M = U,cs, oo Mo C i(a¥)*. BEach v € X(P) defines a map i(a¥)*
iR, A = A7Y). Let v(M) = {\(yV) | A € M} C iR, and ZpM =
U, es(p) 7(M) C iR, which are both discrete sets in iR.

Lemma 46. Suppose that corkg M > 1.

(i) There exists a finite collection of functions A, : aj — C, k =
1,.... K, K <n, with
Ap(s+2) = Aks+ZA w%+ZA ) = ab+ s+ i\ (@)

where qf € %Z,qlf €Q lgfl <%, 0 < |¢f| <1, and wy, reduced

weights for Pr, such that the following holds: If p(P, A, fs) has a pole
at s+ X € a] ¢, then there exists k € {1,..., K} with

Ak(s + )\) = 0.

(i1) There exists a discrete set S C C, which is finite modulo Xp, M UZ,
such that all poles of AXs,u(ﬁ)(P’ A) are along the hyperplanes

/\(7\/) =, A€ (aL (C) )

forz €S, v e X(Ps), where Ps € P(S) is such that PsN P = P.
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Proof. (i) This is a direct consequence of Lemma 43|

(ii) This follows directly from the fact that each normalised intertwining
operator can be written as a product of intertwining operators belong-
ing to adjacent parabolics together with Lemma 40}

O

Suppose that corkg L = 1. We shall see later why we restrict ourselves to
this case. Then all occuring integrals are 1-dimensional, and they are of the
form

Z /(aG) r(m, A(BY))ra(m, AM(BY)) tr Mp|p(t,0)pr (P, A, f)dA

m€llgisc (M (A1)
(38)

and
d
. OO 5y B OO R () M (1, 0)p(P. o)A (39)

where [ is one of the two roots in (ag)* and P; and P| are adjacent along

B. We can identify (a¥)* with R via 3.

By Corollary |45 we know that such sum-integrals converges absolutely at
least in s > 3.

Lemma 47. The functions defined by (38)) and (39) can be continued to
meromorphic functions on all of C.

We first need a similar result as Lemma [37/ for residues of matrix coefficients.

Lemma 48. Let L and M be as before. Let m € Tlgise(M(A)Y), 1,00 €
A2(P)YX of norm 1. Suppose that h()\,s) =< Mpip(t,0)p(P, A, fs)p1, 02 >
has a pole at A = p(s) = as + b, a,b € Q. Further suppose that C C C is
a compact region such that H(s) := resy_s) h(A,s) is holomorphic for all
s € C. Then there exists a constant ¢ > 0 such that |H(s)| < ¢ for all s € C
and ¢ can be chosen independently of © and p(s).

Proof. This follows from the fact that a pole can occur only if m; = 1 for some
i, in which case the residue with respect to this representation is bounded
by the integral over the respective part of function ® or its Fourier transfor-
mation. The bound for the remaining part follows as in Lemma [43| U

Proof of Lemma [{7. We begin with (38). Suppose s € (3, ”TH) and 7 €

Haisc (M (A)Y), o1, 02 € A2(P)X. We begin by splitting up the normalising
factor as

7,/6(777 )‘(/Bv))rﬂ(ﬂ-ﬂ A(Bv)) = 25()‘(/8\/)77() + 25(_/\(/8V)77~1-)
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and consider the integral
[ S5OE ) < M 00PN, Lrsea >
i(af )*

which we are allowed to do by Proposition The other integral is similar
(we only move the contour in the opposite direction). We first make formal
computations and verify later that we were allowed to perform each step. For
RA(BY) € Rxg, A € (a¥ )" ~ C, the function £5(\(BY), ) is holomorphic.
By Lemma [46, we can choose Ao € Ry, sufficiently large such that for all A
with RA > Ao and Rs € (%, L), the operator p(P, A, fs) is holomorphic. We
want to apply the residue theorem to deform the contour of integration from
i(a®)* to Ag+i(af)*, and thereby pick up a finite number of residues, namely
at the singularities of p(P, A, fs) in the region crossed and such singularities
depend linearly on s. As the integral

/ (ABY), 7) tr(Mp (£, 0)p(P, A, f2))dA
Ao+i(a

€l gisc M(A

converges absolutely by Proposition |42 whenever the integrand is a holomor-
phic function of s, we may move the contour of integration to Ay + i(af)*
whenever the integrand is holomorphic there. Given sg, by Lemma we
can choose A\g > 0 such that the integrand above is holomorphic for all
Rs € (so, 241) and thus this integral defines a holomorphic function in this
region. Let p(s) € C be a residue of p(P,\, fs), which is an affine linear

function in s. If we can show that

> L5(p(s),m) res tr(Mp(t,0)p (P, fs))
€ e (M(A)1) e

continues to a meromorphlc function on all of C (or at least for s < 241)
we are done with (38), since there are only finitely many p(s). Each individ-
ual summand has a meromorphic continuation as the residue of the matrix
coefficient is some zeta function in s as can be seen as in Lemma {43, By
the considerations just before the proof of Lemma there is a discrete
set R C C outside of which £5(p(s), m) resy— ) tr(Mp(t,0)px (P, A, f5)) is
holomorphic for any 7 € Tlgis.(M(A)!) for which A2(P)% # 0. In fact, for
the finite part of the Rankin-Selberg L-function Ly(1 + A(B),8(m)) there
are only finitely many possibilities, and for the infinite part the Langlands
parameters are uniformely bounded. Let C' C C\R be some compact set.
Thus there exists a constant C7 > 0 such that |£3(p(s),7)| < C; for all
s € C and 7 € Tgisc (M (A)') with A2(P)X # 0. Note that

)

res tr(Mp(t,0)px (P, A, fs) 42 (p)x)

A=p(s)
:uwmmwwwgg%Hthomapr Juz(pys)  (40)
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for any M € N, where we used the notation of the last section, and the
function defined by the residue is uniformely bounded in any compact re-
gion away from its poles by Lemma 48] i.e. there exists Cy > 0 such
that |resy_,) < Mp(t,0)p-(P, N\, fM)p1,00 > | < Co for all s € C,
7 € Tgise(M(A)Y) and @1, 02 € A2(P)X of norm 1. Hence the above sum
can be bounded by

Z Z M(?T,T,p(S))iMC&CQ dlmAgr(P)f'{

m€gise (M(A)Y) reK o

<cC, Y Y 0+ A2+ ) Mdim A(P)K
mellgisc(M(A)L) TEI/(.;

for some other constant C' > 0 only depending on €. This converges by (26))
for M sufficiently large, and thus the above sum converges to a meromorphic
function.

For (39)) again first consider an individual matrix coefficient

_ d
/(aG)* < RP11|P()‘)WRP1\PI’()‘)RP“P()‘)MP(tv0)p(Pa A, fs)e1, 02 > dA
wag

for some 1, 2 € A2(P)E of norm 1, 7 as before and 7 € KO\O Let Rs €
(5,5 + do) for some dy > 0 (to be determined later).

By Lemma 40, we can choose Ag > 0 such that none of the intertwining
operators has a pole on Ag + i(af)*. Given sy < 21, we can choose by
proposition 42| and Lemma 46| some Ag > 0 such that the resulting integral
is holomorphic in Rs € (so, “51). If we can show that the integral over
Ao + i(ag)* and the sum over all residues in the strip 0 < RA < A\g converge
absolutely, we may apply the residue theorem. There are again only a finite
number of poles arising from p(P, A, fs), but there may be infinitely many
from the intertwining operators at the finite places. Let S C C be the set of
all singularities of the intertwining operators occuring in the integral. This
set is discrete and can be chosen independently of m with A2(P)X #£ 0
by Lemma |40, By Lemma 40 {Rz | z € S} N[0, Ao] is a finite set for all
Ao > 0, and thus we can find §y > 0 such that the induced operator and the
intertwining operators do not have a singularity at the same point A € C,
R € [0, A\o] for any s with Rs € (5, % + dg). Let Sy, be the set of all z € S

272
such that Rz € (0, \g). Consider

_ d
Z Z res tr(RP11|P()‘)7\/RP1|P{()‘)RPHP()\)
A=z dA(BY)
mEgisc (M (A)L) ZGS)\O

- Mp(t,0)pr(P, A, fs))

for which there is a discrete set of singularities outside of which any summand
is holomorphic. Using (37) and the usual estimates, we see that this sum
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converges uniformely for s in any compact subset not intersecting the set of
singularities, and hence defines a meromorphic function on C. We are left
with the finitely many poles at A = p(s) of p(P, A, fs), i.e. a sum

d
Z res tr(Rp1|p()‘)7\/RP1|P’ (AN Rpyp(N)
rellae Gy =P BT

MP(t7 O)pﬂ'(P) )‘7 fs))

Each individual summand has a meromorphic continuation to all C. By
Lemma 40| there is a discrete set in C outside of which all contributing inter-
twining operators (i.e. those operating on spaces having a K-fixed vector)
are pole- and zero-free. Using the usual estimates, it follows that this sum
converges locally uniformely (away from its poles). Hence we obtain a mero-
morphic function also in this case. O

For general L, one might try to continue the distributions JJ@’ p(fs,t) fol-
lowing a similar argument by using multidimensional residues as used by
Langlands for the classification of the continuous spectrum [La76]. However,
the singular hyperplanes of the induced operator p(P, A, fs) are in general not
admissible in the sense of as they are defined by weight equations
A(w") = cinstead of root hyperplanes A\(3Y) = c as the singular hyperplanes
of the intertwining operator and normalising factors are. This might lead to
serious difficulties.

Assume Rs > 1. We consider only the example G = GL(3), FF = Q, T =
L = M, ®; is the characteristic function of Matsx3(Z) C Matsxs(Ay),
and ®oo(z) = e "% Even in this simple case the above mentioned
problem occurs. Moreover, P = Py, a = {31, B2} the set of simple roots, and
e = (1,1). Hence the only 7 contributing to the sum over 7 € Igis.(T(A)!)
ismT=1®1®1 and we may assume S = (). (Even though S was always
supposed to contain the archimedean places, we may suppose S = (), as @,
is of a special form, i.e. in particular K-biinvariant, and thus the local
intertwining operator acts trivially) Hence the operators A Xs., ) (A, P) all
vanish, and there is only r% (7, \) left. The trace equals tr p1®1®1(P A\ fs) =
C*(s+ A)CH (s + A2 — A1)C*(s — A2) for A = A1 31 + A2f2. Splitting TT( )
up as usual, the function initially defined for Jts > 2 by

/ S1®1@ 1, A (s MC (s + A — A (s — Aa)dA
.(aT)*

seems to have no continuation to all s € C. Computing £ explicitely, we get
the integral

// C*/ + ) _i)(C*/(l‘f‘M)_i)
R C:(L+p) " C(L+p2)  pe

Cls+ 3 (2u1 + 12))¢" (s + 1(uz — p1))¢" (s — 1(ul + 2u2))dprdps

3 3 3
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where we changed variables to 1 = 2A\; — A2, and po = 22 — A;. Both
factors involving the logarithmic derivatives are holomorphic for Ru; > 0.
By Proposition 42| the integral is still convergent if we replace iR with n; +iR,
7 = 1,2, such that the integrand is holomorphic on that subspace. Choose
€ > 0 very small and irrational. We can consider the integral over us € e+iR,
u1 € iR instead, as there are no singularities in the strip 0 < Ruo < g,
and the resulting integral still converges absolutely by proposition 42, Let
a1 > 0. We first deform the the contour u; € iR to u; € a1 + ¢R and apply
the residue theorem while o € € +iR is temporarily fixed. The only poles in
the strip crossed arise from the product of the zeta functions, but not from
their logarithmic derivatives. We have R(s + £(2u1 + p12)) > 0 and thus for
such pq, po and s, there are at most singularities at

1 1
s+§(u1+2,u2)—§(2u1+,u2):c<:>,u1:33+u2—c

and at

1
s—g(,ul—l—Z,ug):c©p1:3s—2u2—3c

with ¢ € {0,1}. Hence we obtain the sum of

/ / C*’ (L) i)(C*’(lJruz) B i)
+iR al—HR CApm)  m (L +p) e

1 1
s+ 3(2M1+M2))C (s + 5 (k2 = 11))¢" (s = 5 (w1 + 2p2))dpadp
with
/ (C*’(1+38—2u2 —3c) 1 C'(T4+p2) 1
o Jevim CF(L+35 =209 —3¢)  3s —2up — 3¢ (1 +p2)  po
¢ (5 + 5 (2035 — 2 — 3¢) + 12))C* (25 — ¢ — 3 (23 — 2z — 30) + o))
res ("(s —o)dpz (41)
and
/ ((*’(1 +3s+pup—c) 1 C"I+p2) 1
R C(1+3s+pp—c) 3s+tpp—c (1 +p2) po

c=0,1"¢

C(Bs + 2 — 20)_res (s +0)C i — 50y (42)

O=C—S§

By our assumption on ¢ there are no poles of the integrands on the line
€ 4 iR so that all integrals are well-defined. Moving in the first summand
the integration pe € € + iR to s € ag + iR, ay > 0, yields a similar sum.

Choosing a1 > ao > 2, the resulting double integral over p1 € a1 + iR, ps €
az + iR is then by Proposition |42| holomorphic at least in Rs € (—a + 1, 2)
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with @ = min{a; — az, 3 (a1 + 2a2)}.
The zeta functions in (41) have singularities at most at

1
s+§(2(33—2,u2—3c)+u2):d@,u2:3s—2c—d

and at

1
s+(s—c)—5(2(33—2M2—36)+u2)=d<:>,u2:d—c

for d € {0,1}. Let as > 0. Moving the integral in (41) to p2 € ag + iR we
get the sum of (provided all occuring sum-integrals do converge)

/ (C*’(1+38—2u2—36) B 1 "A+p) 1

aptik CF(L+3s—2up—3c) 35 —2u0—3c” C*(L+p2)  po

(s + 5 (2035 — 2 — 36) + 12))C* (25 — ¢ — 3 (23 — 2z — 30) + )
res C*(s — o)dpa,

og=8—¢C

(which converges absolutely for all s < 2 by Proposition 42|if we choose as

sufficiently large) and

(C*’(1—3s+c—|—2d) B 1 )
o (*(1=3s+c+2d) —3s+c+2d
(C*’(1+3572cfd)_ 1 )
¢*(14+3s—2c—d) 143s—2c—d

. rgs(.ig*(a) giséc*(a)c*(?)s —c—d),

which defines a meromorphic function on all of C, and

"l+d—c) 1

¢¥(1+43s — 2d — ¢) 1
Z(4*(1+3s—2d—c) _33—2d—c)<§*(1+d—c) .

d=0,1
- 1es ¢7(0) res (*(0)¢7 (35 — ¢ — d),

which again defines a meromorphic function on C (not all summands occur
for all d depending on the value of ¢), and finally the infinite sum

Zp:m(”)(g*( (3+3s—3c—p)) L1(3+3s5—3c—p)

g*(%(&s +p—c— 1))@*(%(35 +1=p—c)) res (s —o)

¢"(3(3+3s—3c—p)) 1 )
1
2

with p ranging over all zeros of (* and m(p) denotes the multiplicity of this
zero. For ¢ = 1 this is a well-defined sum of meromorphic functions, which
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converges to a meromorphic function on all of C (with infinitely many poles).
If ¢ = 0 however, we have

BB
; (p)(g*(%(?)—i-&s—p)) %(34—33—0))

(5 Bs +p— D)C (535 +1— ) res ¢ (s — o)

and there is no cancelation occuring for the infinitely many zeros of the zeta
function ¢*(3(3+3s—p)), and hence this sum has singularities at the points
s = +(2p' + p—3) for p,p’ zeros of (* (such points satisfy —1 < Rs < 0).
But this set has accumulation points so that the sum does not converge to a
meromorphic function. Therefore the original integral can not be continued
to all of C using this method, but only to $s > 0.

Note that since we take the residue for ¢ = 0, the residue is of the form

/ / / B(diag(t1, ta, 0)u) 1] |ta| dtsdu
AJaJug(a)

for suitable ¢y, co with Fcq, Reo > 2, and hence is an integral over the singular
matrices. We shall see in the next section that such distribution supported
on the singular matrices already occur for GL(2).

The continuation of the term in , however, does not lead to any difficul-
ties: Moving the integral in to az + iR yields a sum of residues at the
finitely many points, where the product of zeta functions has poles, but the
logarithmic derivatives again do not contribute. Hence for this term we get
a meromorphic continuation to all of C.
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IV.iv EXAMPLE: G = GL(2)

The discussion simplifies insofar as the only non-trivial Levi subgroup L is
the torus 7" so that apart from the discrete spectrum belonging to G and
T, only the corank 1 case occurs. There are only the following terms (24):

Jg,G(f& 1)7 J’ZG’,B(fSa 1)7 Jgg(fsa 1)a J%B(fsﬁw)v Jgg(fsa U}), J’ZT,B(fsv 1)7 a'nd
J;E(fs, 1), where B C GL(2) denotes the Borel subgroup of upper triangular

matrices and B its opposite, and w € W& is the unique non-trivial element.
Note that J& (fs,w) = JS5(fs, 1)

IV.iv.i THE “DISCRETE®“ SPECTRUM
From the results on the discrete spectrum (and its generalisations to arbitrary

Levis M) we can read off the following:

Corollary 49. The functions ngG(fs, 1), JrgB(fs, 1), and JrgB(fS,w) have
meromorphic continuations to all s € C. Jg’G(fs,l) has simple poles at

s = %, f%, a pole of second order at s = %, and is holomorphic elsewhere.
The residue at s = % 18
vol(G(F)\G(A)Y) / ®(z)dx,
Matgxg(A)
and at s = —% it s

—vol(G(F)\G(A)H®(0).

The functions J%’:B(fs, 1), J%B(fs,w) have poles of second order at s = 1
and s =0, and are holomorphic elsewhere.

Proof. The meromorphic continuation, and the location and order of the
poles follow from Corollary |35(and [36. Up to an entire functione, Jgﬁ( fs; 1)
equals

2—-1 1
Z(<I>,s+,1):/ <I>(:E)|detx|s+%dx:Z(‘I>,s+*)
2 QL (A) 2

with the second expression valid for Js > % By the functional equation for
the zeta function, the residues at the last pole follows. O

Note that the function J%B(fs, 1)+ J%’:B(fs, w) is given by [GeJaT9, (6.37)]
for Rs > %
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IV.iv.ii THE CONTINUOUS SPECTRUM

For Rs > 2, the function a(T, T, id)(J%B(fs, 1)+J¥,§(fs, 1)) is the continuous
spectrum given by |GeJa79l (6.36)]. Using the local expression |[GeJa79
(7.13)], in which the sum reduces to y = 1 as we only consider the trivial
central character, we get the sum of

1 [ )
271 Jg 7(0)

27TZ Z/ tl" IR,( ) u(0'7 fS))(HtrIv(o-v fs))dO’

v#U
Here r(0) denotes the normalising factor for 7 = 1 ® 1 so that we simply

have r(o) = 21:” 8;32, and R(o) denotes the normalised intertwining op-

trI(o, fs)do

and

erator A?;,(B) — A}g;(B) with R, (o) its local version. Moreover, we
write I(o, fs) for the induced operator p1®1(B o, fs) and I,(o, fs) for the
respective local operator. The space (aT(C) here is identified with C in the
canonical way via the root a = (1, —1).

We know that each of the terms has a meromorphic continuation to all s € C,
but we want to analyse the integral involving the logarithmic derivative of
the normalising factor (o) more closely to find a specific function as a part
of it. This function will later also occur on the geometric side, and plays a
special role there.

Let sop € R, ¢ > 0. The poles of tr I (o, fs) lie at 0 = +s and 0 = +(s — 1)
so that for fs > %

1 [, v I(0, f.)do _1/Uo+im£(1+2a)trl(a,fs)da

271 Jip r(a) T J og—ico

o (CF(2s 1) 1 B
2<<}kr(25—1) Jr2(5—1)>a es tr1(o, fs)

(2s+1) 1
-2 <C§(2$+1) + 28) res trI(o, fs) (43)

with £(1420) = %

defines a holomorphic function for s > 1 — 0g. It even defines an entire
function since we may shift the contour of integration further right without
picking up any additional residues (since there are no more). For Rs > 0
the residues can be computed to be as follows:

+ % The first integral on the right hand side now

res trI(U fs) = vol(F*\A) // D ( (tl x>)]t1|28_1dxt1dt2dx
Az Jax t2

o=s—1

res trI( , fs) = — vol(F*\Ah) / / <t1 g))]tll%dxtld:r.
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Note that for any finite (or empty) set of places P

{ F+s) 1}

Cﬁ(l%—s) s

i S 5’(1—1—3)—1—@“5(1—1—3)

)
& 20 sCR(L+ )

s—0

:)\P

with Ap = A; p the constant defined in [FiLallal in order to modify the geo-

Qo (DGO

metric terms. In particular, limg_,o £(1 + 2s) = )\)‘—01 for T e ()
_ - o=1Ch

and (h(s)=(s— 1) IA1+ X+ (s— DA\ +....

We denote by T a certain distribution on the space of Schwartz-Bruhat
functions in two variables, which is defined in [Yu92, [Da96|, see (48). It
defines a meromorphic function on all of C, but has infinitely many poles.
This T appears on the geometric side as the term leftover from the hyperbolic
contribution, and it is responsible for the ifninitely many poles there.

r'(o)

Proposition 50. The integral p(s) = ﬁﬁR ) trI(o, fs)do defines a
holomorphic function for Rs > 1. (s) can be meromorphically continued
to a function on C such that o(s) —T(2s+1,®((§5)) can be written as the
sum of a meromorphic function, which is the analytic continuation of

/A/A ‘DK<<8 t§)>|tl28“<logr|<1,x>||s

B Crg(l—2s) B (rg(l+2s)
CES(I—QS) CF,S(1+23)

Yd*tdz, (44)

and a second meromorphic function, which has a pole of second order at

s = %, simple poles at s = 1,0, and is holomorphic elsewhere. The residues

at the simple poles of this function are

Ao

— vol(T(F)\T(A)l))\771 A3

Pk ((2))dz

at s=1, and

— vol(T(F)\:r(A)l)fl /A Pk ((§§))dw

at s = 0, and the main part of the Laurent expansion at s = % equals

(5= )2 vol(T(FN\T(A)) /M o Bl

~ (s = 5)" VOUT(F)\T(A))
[ @)+ o) log | trals + 20 5)ds (45)
Mat, ,(A)

with Mat9, 5(A) = {x € Matgxo(A)|det 2 = 0}.
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The measure on Mat9, ,(A) is chosen as follows: for A € MatJ, ,(A)\{0}
there exists by the polar decomposition a unique (up to unitsin [[ O,) k €

v<00
K such that kA = (§§) for unique (again up to units) (x,y) € A2\{(0,0)}.
Then kAk~" € {($§)}- On the other hand, k=1 (§ §) k € Mat3,,(A) for any
x,y, k. We then take the measure induced from K x A2 — Mat9, ,(A), cf.
also [Co83, §9] for a similar construction.

Proof. We ignore the common factor vol(F*\A') during the proof. The last
term of (43) equals

F2s+1)  (p(1—2s) t ta .

Q(C}?(%H) CF1—23>//X‘I’K< ))Itl Hd*ty da
1 (1 —2s) .

+2<23 (F(l—Qs)) Z(2x((55)):29),

with the global zeta function Z(®x ((§§),2s) = [4« [ Px((§))[t[*d*tdx.
The first summand can be written as

< w(2s+1) (1 —2s)
C}(QS +1) C}‘;(l — 2s)

) 725+ 10, 8(( )
Using [Yu92| Proposition (2.12) (2)] this is

T(2s+1,2x((55))) — C2(25)Ts(2s + 1, Pk ((55)))

Chs(1—28)  Chs(1+29
CF,S(l — 28) CF“g(l + 25)

— (P(28)Ts(25 + 1,0, P ((§5))) <—

for S a sufficiently large finite set of places of F. The different distributions
are again defined in [Yu92l Definition (2.7)]. The last two summands can be
written as the product of —(7(2s) with

Dsxcs (L T )EE Gog]|(1,2)]]s
/AS/A; (0 )

B (rg(l—2s) B Crg(l+2s)
CRS(I—QS) CF,S(1+23)

Yd*tdx

Cpg(1-2s)  (pg(l4+2s) ri (o) _ 175(0)
and we have C;s(lf%) + C;,s(1+28) =32 5o = 3ri(e)- Note that

oL - G2

) 2529
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and Z(Pk((56)),2s)/(5(2s) is an entire function. Hence this function only
has a pole of second order at s = %, and a simple one at s = 0. The main
part of the Laurent expansion at s = £ is the product of vol(F*\A!) with

—(s—;)Qi/M <1>K(<é ‘g))dtdx

Lo 1) — D)y 4 [G() (s — DI N
Ho- D2+ m ) [ 2<1>K<(0 0)>dtd

=7 [ ow(() )l + sy, (46)

and the residue at s =0 is

ol a) [ § )

~1
For the last residual term note that again Z(®x((04)),25 —1)/¢r(2s — 1)

is an entire function with

X

« x t s—
znGinzs-v= [ [ (D lap st
AX JA2 2
Thus the function

o (SF(2s—1) 1 T
? <§}(2s -1) + 2(s — 1)) Z(Px(("i3)):2s = 1)

has its only poles at s = 1, which is simple, and at s = %, which is a pole of
second order. The residue at s =1 is

Ao «
. vol(F*\A%) /

-1 A3

(I)K( (t& ti) )dtldt2d$.

The main part of the Laurent expansion at s = % is given by the product of

vol(F*\A!) with
-2 [La(y )

o o GO GO Dl [ (0 %

2 ress—1 ((s) 0 t
1 -1 tl X

—(S — *) .FCPK( )(log ’tﬂs + )\17s)dt1dt2dx (47)
2 A3 0 0

with ]-'CIDK((% t‘z )) = fA2 @K((yol ;2 ))w(yltl +yata)dy1dys the Fourier trans-
form in the “diagonal* variables. Note that we have [, FOx((%7))dz =

IR 6;((21 8))dy. If we add the Laurent expansions (46)) and (47) we there-
fore obtain (45). O
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Hence up to an entire function we obtain on the spectral side the following;:

e a meromorphic function on C with only finitely many poles,
e the meromorphic function T'(2s + 1, ®((5¢))), s € C,
e the meromorphic continuation of ,

e and the function defined by

1 : Z /R tr(Ry(0) " R, (0)1u(0, fs))(H tr I, (o, fs))do.

2mi
u€esS vFEU

which is known to have a meromorphic continuation to all s € C.

The proof that this last function can be continued to all C does not tell us
much about the location of possible poles (even though this could be made
more explicit for GL(2)). However, from the analysis of the geometric side we
shall see that the last two terms together as well can only have finitely many
poles (which additionally must be contained in in the set {—%, 0,3,1}). As
the terms of the spectral side are all subject to certain functional equations,
there should be no pole at s = —%.

Note that T'(2s+1, ®(( ¢ ))) is a distribution defined on the singular matrices
as already mentioned in the last section. Hence one could try to use the
trace formula for the Lie algebra gly(A) [Ch02] to get rid of such singular

contributions, see Remark
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V THE ELLIPTIC CONTRIBUTION FOR GL(2) AND
GL(3)

V.i THE GEOMETRIC SIDE FOR GL(2): A MODEL FOR THE
HIGHER RANK CASE

The convergence of the geometric side of the trace formula for G = GL(2)
for test functions f € C(GL2(A)!, K) was shown in [FiLalla] (although the
space of test functions was slightly smaller there, see Remark |51). In this
case we now can give a complete analysis of the geometric side showing
that each of the contributions has a meromorphic continuation to all s € C.
The individual terms are explicitly given by [FiLallal, Theorem 1], and we
will use this expansion. The regular elliptic terms are of special interest:
They amount for the first pole, and essentially yield the adelic Shintani zeta
function from [Yu92|. This zeta function is a an example of a zeta function
associated to a prehomogeneous vector space. The Shintani zeta function
itself has infinitely many poles, but there is a regularised version having only
finitely many poles and satisfying a functional equation. It will turn out that
this regularisation can be found as well on the geometric side in terms of the
summands belonging to the regular hyperbolic elements.

The geometric side now is of simpler form than before: The polynomials
Xo parametrising the equivalence classes 0 € O are of the following form:
Either x,(T") € F[T] is irreducible over F, or x,(T") = (T — t1)(T — t2) with
t1,to € F*. In the former case, the class o consists entirely of regular elliptic
terms forming one single orbit. In the latter case, o consists entirely of semi-
simple elements if ¢ 75 to, but if t; = to, 0 = by U by with by = {tl]_Q} the
trivial unipotent orbit (i.e. the singular elliptic elements), and by the orbit
belonging to t1 (1 1) (i.e. the singular hyperbolic elements). We will denote
the decomposition as

0= Oell,reg U Ohyp,reg U Osing~

We first study the elliptic and regular hyperbolic terms. The singular hy-
perbolic terms will be dealt with separately later on.

V.i.i BINARY QUADRATIC FORMS AND THE
SHINTANI-(-FUNCTION

In this section we shortly review some notation and results from [Da93] and
[Yu92].

Write G = GL(2). We want to study the action of G on the three dimensional
space of binary quadratic forms and Schwartz-Bruhat functions on this space
over the field F'. The affine algebraic group of such forms defined over F' will
be denoted by V', its F-points by Vp, and its adelic points by Vj. Let S(Va)
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be the space of Schwartz-Bruhat functions on Vi. If X = (X1, X2, X3) € Vi
is a binary quadratic form, X (u,v) = Xju? + Xouv + X302, the action of G
is given by ¢ - X (u,v) = X((u,v)g"), which is the linear transformation

a? 2ac 2 X,
X |ab ad+bc cd X
b2 2bd d? X3

for g = (‘cl g) € G(A). Equipped with this action (G, V) is a prehomogeneous
vector space. GL(1) acts by multiplication on the coefficients of V. If we
then define H to be GL(1) x GL(2), we get an action of H on V which we
denote by h-X. We view H as embedded in GL(V) ~ GL(3) so that we can
write det(h) for h = (a,g) € H and it is equal to adet(g).

Note that there is an isomorphism
Matgxo ~ V @ Al

with A! the one-dimensional affine space such that under this isomorphism
the adjoint action of G on Matsys splits into the action of the subgroup
Hg = {(detg™',g) € H| g € G} C H on V plus the identity on A'. In
particular, for the fibration given by

Matgyy — AL, g+ trg,

each fibre is isomorphic to V' and is invariant under the action of G. For
X € V let vx € Mataxs be the unique element in the fibre above 0 € Al
defined by the above isomorphism. The measure on Vj is the natural one
obtained from the identification V ~ A3. For the inner form [,-] on V, we
adopt the convention from [Da93] by defining [X, Y] = X1Y3— 3 XoYo+X3Y7.
Let v = @Q,%» : A — C* be a non-trivial character. Then YY) =
fVA U(X)yY([X,Y])dX denotes the Fourier-transform with respect to ¢. If
& € S(Matay2(A)), we use the same character to define the Fourier transform
of ® on the space of all 2 x 2 matrices by & () = fMatQXQ(A) D (y)y(tr(zy))dy.
Note that if a € A, X € V}, then

B(a+x) = /M PR LR

—— [ | o0+ wysau(x, v)aya
A JVy

For a binary quadratic form X € Vi we denote the splitting field of X over
F by F(X), and write P(X) = X3 —4X; X3 for the discriminant of the form
X. Clearly, [F(X) : F] <2 and [F(X): F] =2 if and only if P(X) is not a
square in F. Let VJl = {X € Vp|[F(X) : F] = 2}. Then V with the above
action of H and the polynomial P forms a prehomogeneous vector space. An
important consequence of this is that the action of H(F) on Vg has only
finitely many orbits. This is no longer the case for the analogue situation of
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GL(3) we are considering in the next section.
For ¥ € S(V,) and s € C, Rs > 3, the Shintani zeta-function (with trivial
central character) is defined by [Da96, [Yu92]

Z(\I/,s):/ det(B)?* " W(h- X)dh.
H(F)\H(8) ot

This is a special case of a zeta function associated with a prehomogenous
vector space. It can be shown (see [Da93|) that this zeta functions has a
meromorphic continuation to the whole complex plane. In order to get a
functional equation, the adjusted Shintani zeta function is defined which is a
slight modification of the function above. It is this adjusted function which
will occur naturally as a part of the geometric side of the trace formula.
For u = ('%) € U(A) we define as in [Da96] (1.3)]

max{l,|z,|,} if v < oo

ay(u) = 1+ |zy|2 if v|oo is real

1+ |zylo if v|oo is complex

and a(u) = [Jay(u). If z € A we also write a(z) = «((§%)). For a
Schwartz-Bruhat function = € S(A?) we put

T(E,w, ) = vol(T(F)\T(A)!) /A X /A St ta) [t a(z) dzd e (48)

(note that the difference to the definition in [Da93l §3.7] is due to our differ-
ent choice of normalisation of measures). Define the adjusted Shintani zeta
function Z,4 to be

0
Zad(\:[j, S) = Z(\I/, S) + %lwon(\p(O, ‘y ‘), w, 8)
with U € S(V,) and viewing ¥(0, -, ) as a function in S(A?). We shall write
T(E,s) = %lw:OT(E,w,s). By [Yu92, Corollary 4.3] Z,q can be meromor-
phically continued to all C with known poles and satisfies the functional
equation

Zaa(W, 8) = Zaa(T,3 — s).

V..ii THE ELLIPTIC CONTRIBUTION

We shall use the explicit form of the trace formula for G = GL(2) given in
|[FiLallal Theorem 1].

Remark 51. The form of the geometric side from [FiLallaf was shown there
to be valid for all smooth functions f : K\ GLa(A)!/K — C such that all
seminorms || X * f * Y|[11(x\ GLo(a)t/K) are finite for all X,Y € U(glyc).
Although this is sufficient for our purposes, we remark that it stays valid
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for the larger class of functions which are only subject to the condition that
all seminorms ||f * X||p1(x\ qro(a)1 /i) are finite. (This larger space of test
functions is the space we use and was also considered in [FiLallbl.) The
semisimple part converges for such test functions by [FiLallll] so that we
only need to show the claim for the non-semisimple part, i.e. the singular
hyperbolic contribution. But examining the proof of [FiLalld, Theorem 1] it
suffices to note that for central t € Z(R) and O(2)-central f € C(GLg(R)!),

sup / | f(tuk)|du = sup / | f (utk)|du
teZ(R),k€0(2) JU(R) teZ(R),k€0(2) JU(R)

< Y X =Y GLoay/ k)
X€Bo(2),Y€EBT

and also

sup | f(kiaks)| < Z I[f * X1k GLa(a)/K)>
k1 k2€0(2) XEBo)

where we used the O(2)-centrality of f.

Fix a function ® € S(M(A), K). Write G(F)en for the set of all elliptic
elements in G(F), i.e. those elements having an irreducible minimal polyno-
mial. We have G(F)en = Z(F) U G(F)eli,reg, Where G(F)elireg = Lloeoell,re 0
is the set of regular elliptic elements. The contribution from the singular
elliptic elements reduces to a Tate integral:

Proposition 52. The central contribution Y. JPL(f,) is given by
oeosing

vol(G(F)Z(A)\G(A))/ ®(219)]2[* T ad*z

AX

for Rs > 3. It has a meromorphic continuation to all s € C with simple

2
poles at s =0 and —%, and s holomorphic elsewhere. Its residues are given
by
I(G(F)\G(A)!
HGUNGAN) [ g1,
2 A
at s =0, andats:—% by
1
_lGENGE)) o o
2
Proof. See [We6T, VII, §5, Theorem 2]. O

For the regular elliptic terms we have the following.
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Theorem 53. The reqular elliptic contribution >,  Jo(fs) defines a holo-
erell,'reg

morphic function for Rs > % and can be analytically continued to a meromor-
phic function to all s € C. Up to an entire function, it equals the Shintani
zeta function Z(¥,2s) for

U(X) :/A@(a-f—’}/x)da, X € V.

The first assertion is contained in |[FilLallal Theorem 1|, and the second one
follows from the identification with the Shintani zeta function. Hence we
shall only show the last assertion. In the proof we shall use the fibration
Matgx2(F) — F' from above. The intersection of each fibre with G/(F')eli reg
is isomorphic to V.

Proof. Let Rs > 3. Thesum Y. Jo(fs) equals
0e(oell,reg

/ / > B(2qla+ zg yxg) |z dzdy.
2PN J2N2(8) o T

We now use the isomorphism Z(F)\Z(A) ~ F*\A! x R+, and split the
integral over R+ in one over (0, 1] and one over [1, 00). Since @ is a Schwartz-
Bruhat function, the integral

/ZA />< 1/ Z Z)‘QSH‘I’ Azqly + Azg ™l yxg)d* Ad* zdg
(A)G(FN\G(A) JFX\A Xevi aek

converges absolutely for all s € C, i. e. defines a holomorphic function on

C.

The remaining part of the integral is
/ / / APHEN N " B(Azqla + Azg Myxg)d A zdg.
Z(M)G(F)\G(A) JFx\Al Xevi e F
We apply the Poisson summation formula to the inner sum over ¢ to get
Z D(N\zqly + Azg~! vx9) = Z .7:1<I) + Azg~ ’YXQ)
qeEF acF
where

F1®(y + Azg tyxg) = /A<I>(q + Xzg  yx 9) v (qy)dg

is the Fourier-transform in the “central“ variable, which is again a Schwartz-
Bruhat function on A @ Vi ~ Matax2(A). Using this, the integral for (0, 1]
equals

/ / / dooaE N Fio(y —i—)\zg Lyxg)d* Ad* zdg
Z(A)G(F\G(A) J FX\A! Jo

XeVj! acFx
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1
+/ / / N 3" Fi@(Mzg lyxg)d A zdg.
Z(A)G(F)\G(A) J FX\Al Jo Xevy

Changing the variables z to z~! and X to A™! in the first integral we get

> )\72871
/Z(A)G(F)\G(A) /I;X\Al /1 Z

XeV]!

Z Fi®(Aza + A1z tg iy g)d* A\d* zdg,
acF*

which again converges absolutely for all s € C. So the analytic behaviour of
the regular elliptic contribution is completely determined by

1
/ / / NN Fi@(Azg Myxg)d* A" zdy,
Z(A)G(F)\G(A) JFx\Al Jo Xev!

and we change nothing of its analytic properties if instead we consider

Z(A)G(F)\G(A) J FX\AX Xevl
F

which is exactly the Shintani zeta function Z(¥,2s) for U(X) = F1P(yx),
X € Vi. O

V.iiii EXAMPLE: F = Q, & OF SPECIAL FORM

In this section we want to see explicitely how one can recover Shintani’s
original definition of the Shintani zeta function from the regular elliptic
terms. Suppose that we work over the field FF = Q and take ® to be
of the following special form: for a finite prime p let ®, be the charac-
teristic function of Matox2(Z,) C Matayx2(Qp), and at the real place let
D (z) = e*“r(xtx), x € Matoxo(R), be the Gauss function. Consider
fs(g) = fR>O|det ag\s+%<1>(ag)dxa as a function on GLg(R). The conju-
gacy classes in GLg (Q)eu, reg are parametrised by monic irreducible quadratic
polynomials with rational coefficients. Hence there is a bijective correspon-

dence
{[7] € GL2(Q)en, reg} «— {E quadratic field},

and for v € GL2(Q)ellreg, let £ = Q(v) be the respective quadratic field
and let dp its discriminant. Let d(7y) be the discriminant of v, and write
d(y) = a%DE for Dp € 7Z squarefree so that £ = Q(v/Dg). If Dg = 1
mod 4, dg = Dg, but if Dg =2,3 mod 4, dg =4Dg. Let 71,7 € E be
the roots of the characteristic polynomial of v, i.e. 71,72 = +a,v/Dg. The
ring of integers of E has the form Z[f] with

vVDEg if Dp=2,3 mod 4
9 —
I p=="22E VZDE if D=1 mod 4.
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Using this integral basis, there is a natural two-sheeted surjection (cf. also
Lemma 64)
Op\Z

!

{7 € GL2(Q)elreg | Q(v) = E, Dr(g 1vg)dg # 0}
GLa,y(Af)\ GL2(Af)

sending a + b0 to the unique 7 € GL2(Q)elreg having eigenvalues v =
a+ b0,y = a + bf with 6 denoting the image of § under the action of the
non-trivial element of the Galois group of E/Q. For such v, Z[y1] = Z[b0]
and d(vy) = b®Dg. If p is a prime, we have

72 if (B2) =1
ZVDgl it #2, (BE)#£1, 0rp=2,
(%) £1,Dp#1 mod 4

Zo[MYPE] if p=2, Dp= -3 mod 8,

OE@QP = OE ® Zp =

and in the second case also Z[vy1] ® Z, = Zy[b\/DE].

The local orbital integrals fGL2 @)\ CLa(Qy) ®,(97'vg)dg can now be com-

puted by counting lattices (up to principal ideals) in E ® Q, which have ~
in their multiplier ring as follows.

Lemma 54. Let v € GL2(Q) e ey correspond to a pair a + b6, a + bd € Op
as above. We have

P if (B2) =1

_ Kk+1 K__ .
/ b9 vg)dg = ¢ B2 df (BE) = 1
GLa,(Qp)\ GL2(Q) sy (2e) o

for k = L(val,(d(v)) — val,(Dg)) = valy(b) with d(y) = (try)? — 4det~y the
discriminant of v. Note that in any case, the right hand side can be written
as

Dg ) ) 1—p*

P”(l‘i‘(l—(p b1

).

See also [FI06, §II.1, Proposition 5|, where this was computed by counting
orders. We include another calculation, which is based on counting lattices
with certain multiplier rings and is slightly longer than the computation with
orders. However, it seems more promising count lattices for the respective p-
adic integrals for GL(3), as one then do not need to compute any stabilisers,
even if we have not yet succeeded in doing so.

Proof. Assume first that p # 2.
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e p split: If psplitsin E, i.e. FE®Q, ~ QIQ) as fields, v is conjugate over
GL2(Qp) to a diagonal matrix with entries v1,72 € Q,. Hence there
are plvalp(m)=valo(12)l many such lattices.

e pinert: We have GL2,(Q,) = Z(Qp). For each Zy-order o C Opgg, =
Zy|V/DEg), Zyn1] = Zy[p"V/Dg] C o there is | € {0,...,x} such that
o = Z[¢], € = p~ly;. Let k = x —[. Counting lattices as above
amounts to the same as counting o-lattices (up to principal ideals)
which have multiplier exactly equal to o. If & = 0 there is exactly
one such ideal. Hence we may assume k£ > 1. Let a C o0 be an o-
ideal for o = Z,[¢] such that the multiplier of a equals 0. Then up
to multiplication by elements of Z,, a has a Z,-basis as a Z,-lattice
of the form p™ & 4 apl2 for mq,lo € Ny, ls < mq or lo = oo, and
a=¢c+tep+...+ sml_l_bpml_l_l? € Zy, ¢ € {0,...,p — 1},
g9 # 0. For a to be an o-ideal, the following systems must be soluble
for a,b,c,d € Zy:

0\ (p™ ap\ [a _ (ap™ + bap'
pm) 1 b) b
kaDE B p’m1 OéplQ c\ Cpml + daplg
ap2 ) 1 d) d ’

Solving these equations, we get

a=—ap?, b=p™, c=Dp* ™M —a’p?T™,  d=ap?. (49)

Since o # Dg, the solvability in Z, is equivalent to m; < 2l5 and
my < 2k (if I3 # 00). Since we also assumed that the multiplier of a is
0, we moreover have m; > 2k—2. Thus m; = 2k or my = 2k—1. In the
first case ls € {k,...,2k—1} and in the second case Iy € {k,...2k—2}.
Counting these possibilities together, we get

2k—1 2k—2

Z (ka—lg _ ka—lg—l) + Z (ka—l—lQ _ p2k—1—l2—1) +92= pk +pk—1
la=k la=k

and summation over k yields the assertion.

e p ramified: Consider the integral fZ(Qp)\GLz(Qp) ®,(g7tvg)dg first.
Then almost all the consideration from the unramified case apply. We
only have to take into account that p|Dg when counting the solutions
of (49)). Write D = dp with (6,p) = 1. Hence (49) takes the form

2k+1—m1 2 2lo—mq d
)

a=—ap?, b=p™, c=dp —a‘p = ap'?.

Ifo ¢ Z?), we can argue as above that m; < min{2k + 1,25}, and o
being the multiplier of a implies m; > 2k — 1. Hence we get

2k 2k—2
Z (p2k‘+1712 _p2k‘+171271) + Z (p2k71,l2 _p2k717l271) + 2 — 2pk
lo=k+1 lo=k
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solutions. If § € ZZQ) there are again those p?* solutions, but there
could be more if a®> = § mod p. There exists an additional solution
if and only if 2k + 1 = 2ls, but this is not possible as k,lo € Z.
Thus also in this case there are 2p* solutions for k& > 1. Note that
vol(Z(Qp)\ GL2,,(Qyp)) is 2 so that the assertion follows.

If p = 2, everything remains true except in the case D = —3 mod 8, i.e.
2 is inert and Opgg, = Zo[TYPE V2DE] Similar considerations as before then
yield analogous to (49) the following equations

a = _a2l2 b= 9mi c= 22k7m171(1 _ DE) _ CV222l27m1 . 22k7m1
d = 22 4 2%k,
As Dgp = —3 mod 8, 1 — Dg = 45 with (d,2) = 1, so that ¢ = 22k-™1(2§ —

1) —a?222=™1 Hence we get 2¥ 4+ 2+~1 solutions as above for each k > 1. O

If E is totally real, the archimedean orbital integral can be computed to
equal

%0 r
/QQSH‘I’oo(ag‘lvg)andg: )2y,

/GLQW(]R)\ GLy(R)! Jo 2w, /d(7)

The sum over 7 generating totally real quadratic extensions is

2.

YEGL2(Q)ell,reg,Q(7) tot. real

v(v) / fs(g7 vg)dg
GL2,5(A)\ GL2(A)

with v(v) = vol(GLy,(Q)\ GLz(A)!). Since
1
vol(GLg(A)\ GL2(A)) = D2 res Ce(s) =2hglogeg
with ez a fundamental unit in Of o, this equals

Z hglogerl'(s)
E/Q,[F:Q]=2, tot. real 2m°v/ D
s D 1-—1b
S Neggla+0) = [+ (1 - <E>)|‘p).

at+bIeOE\Z o p p—1

Poisson summation over a yields as the main term

hplogepl'(s — %) |
> er2lp,

—2s+1 _ % 1_‘b‘P
vt Ja+a <p >)p—1 ).

beN plb

E/Q,[F:Q]=2, tot. real m
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The sum over b can be computed to equal
¢(2s —1)¢(2s)
Cp(2s—1) ~
and thus by [Da93, Theorem 0.2]

hplogepl'(s — 1) . ((25 —1)¢(2s)
2 =3 De = s — 1
E/Q,[E:Q]=2, tot. real T 2 E

_ 1
)72 Zghin, 4 (5)

o0

with Zghin+ = Y hqlogeqd™ the Shintani zeta function associated to the
d=1

positive definite binary forms introduced by Shintani in [Sh75|. Here hg is

the class number of positive definite binary quadratic forms of discriminant
d, hqlogeg is defined to be 0 if d is a square, and otherwise e4 = t + uv/d is
the minimal solution of (¢,u) € N? of 2 — u?d = 4. A similar computation
is valid for the imaginary quadratic number fields, and one obtains

> v(7)

YEGL2(Q)ell reg,Q(7y) imaginary
= 821 "' (5)I(s) Zsnin, (s) + entire fct.

/ fs(g7 ' vg)dg
GLg2 5 (A)\ GL2(A)

with I(s fl —5 + 72)~3dr, which is absolutely convergent and non-zero

oo
at least for Jts > 1, and ZShin,,(s) = > Z]—i(—d)_s the Shintani zeta func-
—d=1
tion associated with indefinite binary quadratic forms. Here again hg is the
class number of indefinite quadratic forms of discriminant d, and wy is the
order of OQ(W)’ i.e. wg = 2 unless d = —3, —4, in which case w_3 = 6 and

W_y =

V.i.iv THE REGULAR HYPERBOLIC CONTRIBUTION

In this section we analyse the contribution from the regular hyperbolic orbits
> Jo(fs). As explained before there is a bijection from Oyyp reg t0

Ue(thp,reg
T(F)\Z(F'), and each equivalence class is an actual conjugacy class.

Let t = (tl t,) € T(F)\Z(F) be fixed for the moment. We can choose a

finite set of places S, (including all the archimedean ones) such that |t1], =
[tal, = |1 — %|U =1forall v & S;. Let Sy 2 Sa be some fixed set of places
such that ®, is the characteristic function of Matoxo(O,) for v & So. If
v & S;USy, then P (t(1%)) #0,z € F,, implies |z|, < 1. Set Sy = S, U Sp.
Then for any v ¢ S; we have

wft (t,u) = log max{|x|,, 1},
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but if |z|, > 1, we have ®,(tu) = 0 by our choice of S;. Thus

/ / | det z|s+%<1>(ztu)wsi (t,u)dzdu
UA) Jz(n)

equals
Z / / | det Z\SJF%(I)(ztu)wft (t,u)dzdu
ves, JUA) JZ(A)

in which case the weights WS = WOL@2)S
|[FiLallal. Here we have Ar g, = 0.

are the usual ones for GL(2) as in

Given a finite set of places S including the archimedean places, we can collect
allt € T(F)\Z(F) with S; C Sin aset Wg. If we consider the partial ordered
set of all such finite sets S, every t € T'(F)\Z(F) lies in one of the Wg and
is then also contained in all other Wg with S D S. If for t1,to € Wg there
is some a € F* with t; = aty, we write t; ~ t3. We consider now the limit
over the net of finite sets of places S partially ordered by inclusion

lim Z / / |detZ|S+%<I>(ztu)ws(t,u)dzdu.
5 teway~ T UB) S Z(8)

For each set S the sum-integrals converges absolutely for $s > %, and if
{S;}ien is a chain of sets with S; C S;11,7 € N, the functions

3 / / | det 2|52 |®(ztw)||w (t, u)|dzdu
teWs, j~ 7 UR) JZ(A)
form a non-decreasing sequence as i — oo for s > 3. Thus if the above

2
limit exists, it has to equal
3 / / | det 2" 2 ®(2tu)w(t, u)dzdu.  (50)
te(T(FNZ(F))/z(F) U B) T ZB)/Z(F)

Up to the volume factor vol(T(F)\T(A)!) it is then the contribution from
the regular hyperbolic terms. To show the existence of the limit it suffices
to show the absolute convergence of this last sum-integral. Here
log max{|1 — %|v, |xy]p} ifv < oo
wy(t,u) = 3 log (|1 - %ﬁ, + \xv\g> if v|oo is real

log (]1 — %]v + \%\u) if v|oo is complex

t U
:log|1—£|v+logay 71),52 ,
t 1-2

and summation over all places v gives

w(t,u) =loga S P e w )
e 1—2 ] dwpw=o \1-2)
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. . 3
Lemma 55. The sum-integral given by (50)) converges absolutely for s > 5

Proof. The regular hyperbolic equivalence classes 0 € Ohyp reg correspond
bijectively to t € T(F)\Z(F'), and each class contains only semi-simple ele-
ments, namely all g~'tg, g € G(F). By [FiLallb] the sum-integral

3 / g~ g)vr(9)dg

te(T(F)\Z(F))/Z(F

converges absolutely for all s > g, where vT(g) is the volume of the convex
hull of the points {—Hpg(g), Hg(g)} in a%. As T(A)\G(A) ~ U(A)(T(A) N
K)\K, and vr is right-K-invariant, we have vr(uk) = logl|(1,x)|| with
u=('?) € UA),k € K. The change of variables u ~ t~lu~'tu then
shows that the above sum-integral equals (50)), hence the lemma. O

. _ : 1
Now write 7 = tl;m and o = % # 0. Then we get with u = < x>

1
1 25
tu =719 + Tt .
-1

Instead of taking the sum over all ¢ € T(F)\Z(F'), we can sum over all
ce€F*and 7 € F, T # +o,

1 22
Z D(ztu) Z Z O(z71y + zo ( _2>),
teT(F)\Z(F) oceF*X TeF,7#+0

and using 1_% = (1+7) thisis

1

=3 S b(erls 4 20 (1 L+ D))

oceF*x teF
1 2z 1 0
— Z <I>(z012+za< _1>)— Z @(—zalg+za< _1>).
ol ceFX

Applying Poisson summation to the sum over 7 € F, this equals

7 0
Z Z 2| PF® | —, 20 2
oceFx 71eF : z(1+I)
1 2z 1 0
_ Z <I>(z012+za< _1>)— Z @(—zah—i—za( _1>)

oceFX oel'%
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Changing (1 + Z) to z in the above integral (50)), and using the notation
as in the last section we thus get

9 / / 2s+1 «
z|** D(27 + 20020 ) (x)Vd* zdx

ceF*X 1eF

L x
to- z|** D27+ 20v0.9.: ) (x)Vd” zdz (51
Oww=0 J» Aél/FX‘ DD IL (0.2.2)) () (51)

ceFX T€EF
0 // 9641 (1 21‘) «
_ z|*® P(zolo+zo a(2z)"d” zdx (52
90 s AX/FX| | > ¥ —q))e22) (52)

oeF*
_/ / ’Z|2S+1
A JAX/FX

where we may put the derivation in the front of the first three integrals, since
all occuring integrals converge absolutely. The last integral vanishes, since
log a(0) = 0.

Z O(—z0ly+ zo <1 _01> )log a(0)d™ zdx

ocEFX

The first summand is again absolutely convergent for all s € C since ® is a
Schwartz-Bruhat function and since a(%) is bounded by some polynomial in
log |x| and log |z|. To the second summand we apply the Poisson summation
formula to the inner sum over 7 so that it reads

TN 4 :
— z|7=¢ Fi10(7'z 4+ 27 oyo1.2))a(x)d” zdx
Ow jw=0 Ja AX, /P |2| Z Z 19( (0,1,2)) ()

T'EFX g€FX

g 2
- S J’_' q> z de d
+aw|w-o/A/A§1/Fx 2 Y Fid(zoy,z))a(x) d* zda

geFX

after changing z to z~! in the first part. So the sum over 7/ € FX is
again a holomorphic function on the whole complex plane, but the summand
corresponding to 7/ = 0 may give some non-holomorphic function. However,
we may add the integral over |z| > 1 to this last term without changing its
analytic behaviour to get

0
s L [ R0 () d s

which equals up to the missing factor vol(T(F)\T(A)!) exactly the function

%‘WZOTQS,w, ) = T(2s, ¥) with ¥ and T defined as before.

The second last integral (52) equals

/A/AX P2 (1 g))loga(x)dxzdaz

= vol(T(F)\T(A))'T (25 + 1,8°)
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with ®° € S(A?), ®°(a,b) = ®((41)).

Thus if we combine the regular elliptic terms with the first part of the hyper-
bolic terms obtained from (51), we get the adjusted Shintani zeta function
of [Yu92] (cf. [Da93]) and some additional distribution. The poles of the ad-
justed Shintani zeta function are given by [Da93, Theorem 3.1|. By [Yu92,
Proposition (2.12)] the distribution 7(2s + 1, ®°) has a meromorphic con-
tinuation to all C, which is holomorphic in Rs > % However, this function
has infinitely many poles (determined by the zeros of the Dedekind zeta
function).

Remark 56. Note that T(2s + 1,®%) can also be written as

VO](T(F)\T(A)l)/ Fo(u Y you)vp (u)du
U(a)

with 7o = (§9) and Fy : Mataxa(A) — C, Fy(g) = [y« [2[*T1®(2g)d* 2.
This form of T(2s+1,®°) as an orbital integral over a singular orbit suggests
that it might be more suitable to define the test function fs on the whole Lie
algebra Matayxo(A), and use the trace formula for Lie algebras as developed
in [Ch02]. In general, it then might be possible that the infinitely many poles
occuring on the geometric and spectral side, and which prevented us from
continuing the spectral terms further, cancel.

Proposition 57. The function G given by

Gs)= Y Al

Ueaell,reguohyp,reg

for Rs > 2 has a meromorphic continuation to all s € C. G(s)—T(®°,2s+1)
equals the adjusted Shintani zeta function Z.q(V,2s) so that the poles and
main parts of the Laurent expansions of G(s) — T(®°,2s + 1) are as follows:

(i) at s =3:
(s — 31 YUCUNGA)) /M oy P
(ii) at s =1
—(3—1)—2V01(T(F31\T(A)1) /qu)((“ t”“;))dtldt2dx
s =1y UEEREB) [5(0 )10 s + A

with ® the Fourier-transform in all variabels of ® as a function on
Ms(A).
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“e . _1'
(iii) at s = 5.

_(S_%) _ovol(T (F)\T( )1)//(I)(<z Z))dzdy

(3;)_1V01( A // < ) (log|yls + A1,5)dzdy

(v) at s =0: X
_$—1V01(G(F;\G(A) ) /A(I)(a].g)da

Moreover, T(®°,2s + 1) is holomorphic for Rs > % so that the only poles of

G(s) in Rs > % are at s = % and s =1, and they are given as above.

All the assertion about Z,q are given in [Da93| Theorem 3.1].

V.i.v THE SINGULAR HYPERBOLIC CONTRIBUTION

We are left with the sums over the singular hyperbolic orbits Y. J2(fs).

06(I)hyp,sing

According to [FiLallal, Theorem 1] this equals the sum of

vol(Z(AY)T( Hs / / (zu)dzdu
:vol(FX\Al))\S/A/AX p\%((z j))dxzdx (53)

and
vol(Z(ANYT(F)\T(A)Y) / / Fy(zu)w’ (2, o) d=du
UA) J Z(4)
= vol(F*\Al) / / \z|2s+1q>(<z Z;) Yo (z,2)d" zdz  (54)
A X
and now w”(z, z) is independent of z.

The first integral (53) is again just a Tate integral in the variable z. Hence
the analytic behaviour of this part is as follows:

Proposition 58. The integral

vol(F*\AN)Ag /

U(A)

/ Fy(zu)dzdu
Z(A)

defines a holomorphic function for Rs > % and can be meromorphically con-
tinued to the whole complex plane. Its only poles are at s = % and s =0 and
they are simple poles with residues

Vol (F*\A') )\5// < >dzd:r
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ats:%and

—;vol(FX\Al)As/AM(O ﬁ))dm

at s = 0.
We now analyse the second integral (54), which is

Zwﬂ (FX\A]) / / 12+ (*” Z;))wf(z,x)dxzdx. (55)

For a place v outside of our finite set S the function ®, coincides with the
characteristic function of Matax2(O,) so that we can compute

L[ (P et ede = (29
/ / |2: s+1q> < v Zva))dXZvdSCU _ CF,’U(28)'
y J EX )

Thus (55) equals

vol(F*\A') // 2|21 ( <Z zx) Zw (z,2)d* zdx

vES

éﬁif vl(ral) [ rz|28<1><(z ;C))szzvd%,

and

which is

)
vol(F¥\A1) //A \%( z>)(log|x\s—log|z|g+§?i§23)dx o

FE2 ol(F¥\AY) / / 225 ( x)mxm

The integral [, [« [2[**®((*%))(—log|z|s + gzgz;)dxzdﬂc can be written

as —2/(®,2s) + 25/((22))2@),25) with

z(@,t):/A/AX |z]t<I>(<g z>)dxzdac.

Hence (55) is the same as

—vol(FX\Al)z’(¢,2s)+vol(FX\A1)/A/AX z|2s<I>(<Z j))loga;|sdxzda;

for Rs > % As z(®,t) as well as the second integral are Tate integrals with
well-known analytic properties, the following is immediate:
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Proposition 59. The function defined by (54) for Rs > % has a meromor-

phic continuation to the complex plane with poles of second order at s = %
and s = 0, and is holomorphic elsewhere. The principal part of the Laurent
expansion at s = % 18

cp((z x>)d:ndz
+(s—;)12vol(FX\A1)/AQ®(<Z j))logmgdxdz,

and at s =0

—s—2v01(FX\A1)i/Aq>(<O :(I);))dx

—3—1;vo1(FX\A1)/Aq>(<O g>)1og\xysdx.

For convenience we summarise the last two propositions to get

Corollary 60. The contribution from the singular hyperbolic orbits con-

verges absolutely for RNs > % It has a meromorphic continuation to all

s € C with poles of second order at s = % and s = 0. The main part of the
Laurent-expansion at s = % 18

(s—;)2ivol(FX\A1)AQ¢((z x>)dxdz
+ (s — %)_%vol(FX\Al) /AQ ¢>(<Z j))(log |5 + Ag)dzdz,

and at s =0

—SZVOI(FX\Al)jl/A(I)((O g))daz

- S_I%VOI(FX\AI) /

A

o((* 5 )oslals + As)as

Note that the last integrals involving the term (log|z|s + Ag) are invariant
under enlarging S.

V.i.vi SUMMARY FOR THE GEOMETRIC SIDE FOR GL(2)

The results from the last sections can be summarised as follows. (Recall
that & is assumed to be K-central. Otherwise ® has to be replaced by
Jx ®(k~! - k)dk in the following.)
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Theorem 61. The geometric side of the trace formula for GL(2) with test
function fs has, as a function of s, a meromorphic continuation to all s € C
(as a whole, but also each single contribution). Up to an entire function it
equals the sum of

o the adjusted Shintani zeta function

Z4d(¥,25)
for ¥ e §(Vy), = [, ®(a+ vyx)da,
o the unstable distribution
T(2s5+1,3Y),

with ®° € S(A2), ®(a,b) = d((gt)),

e and the contribution from the singular classes

vol(G(F)Z(A)\G(A))z(®, 25 + 1) — vol(F*\A')2/(®, 2s)
+ Ag vol(FX\AN) 2(®, 25) + vol(F*\A)zg(®, 25)

where the zeta functions are defined for Ro > 1 by

zO(CD,U)—/ | det 2[5 ®(2)d=

Z(A)

z(®,0) —/ / | det z\UTHq)(zu)da:dz,
Z() JUa)

5(®,0) / / |2|7®((* %)) log |z|sdxd™ 2.
AX

Note that the last two summands can be written as the derivative of a two-
dimensional zeta function: If we define

z(q»,m):/ |g;|T|Z|U<1>((Z x))dxxdx
(a7)2

and

then

As VOL(FX\AN z(®, 25) 4+ vol(F*\A) zg(®, 25)

= VOl \AY) 2 (7~ 1)3(2,7,25)] s

which yields an expression apparently not depending on the chosen set S.
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V.ii THE REGULAR ELLIPTIC TERMS FOR GL(3)

As we saw for the case of GL(2) the regular elliptic contribution yields a
meromorphic function which contains information on some arithmetic quan-
tities. We now want to study the analogous problem for G = GL(3). We
assume our ground field to be F' = Q. Recall that for s > 2 we defined
£(s) to be the regular elliptic contribution. If we assume that ® is trivial
on Z, this is the same as

_ v -1
ZOED SO | ey f8™ 20

["Y] QGL3 (Q)ell,reg

= v(7)
[Y]C€GL3(Q)ell reg

with v(y) = vol(R>oG~(Q)\G(A)). From the results for the spectral side,
i.e. Theorems 32| and |33, and the fact that almost all of the geometric terms
for GL(3) can be continued to some larger half plane by Propositions 29| and
30, we get the following.

/ / )\38+3(I)(Agfl,yg)d><>\dg
G (ANG(A) Jo

Proposition 62. The function E(s) is holomorphic for Rs > 2 and has a
meromorphic continuation at least up to Rs > % The only pole in this region
1s at s = 2, which is simple with residue

* * * _@
C*(8)C°(2) res C*(s) /M oy, B = S /M o, B

In generalisation of the Remarks|34/and 39/in the last chapters, this stays true
even if we replace fs by one of the more general functions fs € CN(GL3(A)Y K)
from Remark 34| and ® by ® provided that N is sufficiently large.

V.ii.i CUBIC FIELDS AND ELLIPTIC ELEMENTS

Suppose that F is a cubic extension over Q, and let O be the ring of integers
of E. Let Ngg: £ — Q and trg/q : £ — Q be the norm and trace map
of E/Q. There is a simple corresondence between cubic field extensions and
the regular elliptic elements. Here the conjugacy class of a number field
E/Q consists of all subfields of the Galois closure E9% of E/Q, which are
conjugate to F via some element of the Galois group Gal(E%!/Q).

Lemma 63. (i) There is a well-defined, surjective map
G(Q)ett,reg — {[E] conjugacy class of cubic extension E/Q}

taking v € G(Q)eit,req to [Q(§)] for & € C some eigenvalue of . This
map preserves the discriminant. If E is a cubic field, denote by I'p
the fibre over [E]. Then I'g is closed under taking conjugacy classes in

G(Q), i.e., if y €T, then [y] CTg.
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(ii) Let E/Q be a cubic extension. There is a surjection

E\Q — I'g/conjugacy, & [
such that the characteristic polynomials of § and ¢ coincide. In par-
ticular,
detve = Ng/g(§) and trvye = trg)gé
and the characteristic polynomial of v¢ has integer coefficients if and
only if £ € Og\Z. If E/Q is not Galois, the above map is a bijection,
but if E/Q is Galois, it is a 3-to-1 covering.

Proof. (i) Let v € G(Q)elreg and let x be its characteristic polynomial.
Let v; € C, i = 1,2,3 be the roots of x. Let E; = Q(v;) which is a
cubic extension over Q as x is irreducible. For the above map to be
well-defined, we have to show that [E;| = [E}], 4,j = 1,2, 3. But this is
clear, since ES® is the splitting field of x over Q so that Gal(E%2!/Q)
acts transitively on {Eq, Eo, F3}.

(ii) Let £ € E\Q and let 7¢ be the companion matrix of the characteristic
polynomial of £ over Q. Since Q(§) = FE, the characteristic polynomial
of £ is irreducible, and thus v¢ € G(Q)el, reg- &, &’ € E have the same
image exactly when their characteristic polynomials coincide, i.e. if
and only if there is some o € Gal(EY¥/Q) such that o(¢) = & If
E/Q is Galois, the above map therefore is 3-to-1 if E, as the Galois
group operates fixed point free on E\Q. If E/Q is not Galois, £ can
not be mapped into E by any non-trivial subgroup of Gal(E%¥/Q),
as this would either imply that the extension Q(&) is quadratic or that
E/Q is Galois. Hence in this case the map is 1 — 1.

O]

Note that if v and [E] are associated as in the lemma, then Q7] ~ E as
Q-algebras.

For a cubic extension E/Q define

ne(s) = Z /G

| a0 eg)a g
¢€F\Q )0

L (W\G(A

and further let v(E) = ress—1 CE(5)|DE\%, which is the same as the volume
of R50Gr, (Q)\G~, (A) ~ EX\Aj,. Hence by Lemma |63

v(E)
E(s) = — L _np(s). (56)
. /@E;M [Aut(E/Q)] ™

One would like to filter certain partial sums belonging to fields with pre-
scribed splitting behaviour at finitely many places by choosing appropriate
® as in the case GL(2), see [Da93|. We shall see that even in the case that
one wishes to pick out the totally real cubic fields, one is meeting problems.
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V.ii.ii CUBIC ORDERS AND THE NON-ARCHIMEDEAN INTEGRALS

Let &, £ € E\Q, v = v¢ € G(Q)ellreg be as before. In this section Rs > 2,
and we only consider ® € S(Matzx3(A)) such that & = &P, with & the
characteristic function of Matgxg(Z).

Lemma 64. Let & € S(Matsy3(A)), and assume that ®y is the charac-

teristic function of Matsy3(Z) C Matsxz(Ay). Then the orbital integral
wag ANG(A) JoS NI T3D(Ag~Ieg)d* Mg vanishes unless £ € Op.

Accordingly, we shall henceforth assume £ € Op.

Proof. Note that the integral equals the product

/ / AP (Mg yeg)d* Mg
Gre (RN\G(R) 0

11 / D, (9~ veg) Mdy.
LG @NG(@)

A necessary condition for the local integral wag (@N\G(@y) ®,(97 1 eg)dg not

to vanish is that the coefficients of the characteristic polynomial of ~, are
in Z,. By a local-global argument it follows that the coefficients have to
be in Z, i.e. £ € Op, in order that the above integral has a chance to be
non-zero. O

For a prime p let E, = E ®q Q, and Op, = O ®z Z,. As E/Q is sepa-
rable, [Ne99, Chapter II, Proposition (8.3)] asserts that E, = [] £, where

plp
the product is over all prime ideals p € Of above p, and E, denotes the

completion of E at p. If x(T') € Z[T] is the characteristic polynomial of &,
the splitting behaviour of the prime p in Of is determined by the factori-
sation of x(7') into irreducible components over Q,. Write x(T") = [[ xi(T)

(2
with x;(T") € Qp[T] irreducible over Q,. As char@Q, = charQ = 0, and x
was irreducible over Q, (x;,x;) = 1 for all ¢ # j. Then E, ~ [[ K; with

7
K; = Qp[T]/(xi(T)) and between the sets {x;} and {p|p} there is a bijection
such that Fj, ~ K; if p and ¢ correspond to each other. For any field exten-
sion E/Q denote by d : E — Q the discriminant map. The discriminant
map Maty,x,(Q) — Q as well is denoted by d.

We reduce the computation of the non-archimedean orbital integral to the
irreducible case using the following lemma.

Lemma 65. Let n > 1, x(T) € Z[T] an irreducible polynomial (over Q)
of degree n. Let € Q be some root of x, and suppose that we have a
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factorisation x(T) = [] xi(T') over Q, with x;(T) € Qp[T] irreducible over
i=1

Qp of degree n;. Let 0; € @p be a root of x;. Put K = QIf], and K; = Q,[6;].
Then K, ~ [ K; and

/ (™ 200) s
GLn vy (Qp)\ GLn(Qp)
) INOYO T / 7 (g 9,9)dg
g 8 1;[ GL“iﬁei(Qp)\GLni(Qp) P

where @]; is the characteristic function of Matyxy(Zy) € Matyxr(Qp), and
A(6;,0;) is the determinant of the linear map

Solj : Matnl X1 (Qp) — Matnz XM (Qp)a A PYOZA - A’Yeja

or more explicitly,
A(0:,07) = [ [ (o= 5)
a75
where o € @p runs over all eigenvalues of vy, and 3 € (QTD over all eigenvalues
of e, -

Note that by the definition of the discriminant d(f) we have [d(0)|, =

[T 1A(0:,0;)%p TT1d(0:))-

1<j

Proof. Let P C GL,, be the standard parabolic subgroup associated to the
partition (ni,...,n,) of n, M ~ GL(n1) x ... x GL(n,) its Levi component
and U its unipotent radical. -y is conjugate to diag(ve,,...,%,) € M(Qp)
in GLn(Qp), and GLy 5, (Qp) = GLy, 9, (Qp) X ... X GLiy, 6,(Qp) C M(Qp)
(we write GLy, 0, (Qp) = GLn, 4y, (Qp)). As @7 is invariant under GLy(Zp),
using Iwasawa decomposition the above integral equals

‘/(GLnl,el (Qp) x...XGLn,. 0, (Qp))\M (Qp) /[;v(@p)

@g(u_l diag(mi ye,m1, - . ., m, ‘e, My )u)dudm

where we wrote m = diag(my,...,m;). Since the eigenvalues (in Q,) of
the ~p,’s are pairwise distinct, the maps ;; are isomorphisms. Hence a
change of variables shows the first assertion. Hence it remains to show the
explicit form of A(6;,6;). Let B; € GLy,(Q,), Bj € GLy,(Qp) such that
B '9,B; = diag(an, ..., an,), By've,B; = diag(B1,. .., Bn;) (such Bj, B;
exist, since y has no multiple roots). Then

pij(A) = Bi((B; 70, B:)(B; ' AB;) — (B AB;)(B; ', B;)) B}
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i.e. the map ¢;; is the same as 1/)231 o @ij o 1y restricted to Maty, xn; (Qp),
where 1;, @ij : Matn,xn, (Qp) — Matn,xn, (Qp), ¥i;(A) = B 'AB;, and
$ij(A) = diag(ai, ..., an,)A — Adiag(f, ..., Bn,). Hence the determinant
of ;; is the same as the determinant of ¢;;, which is easily seen to equal the
product given above. O

Let A be some finite-dimensional semi-simple Q-algebra, and R C A a Z-
order. We denote by Frac(R) the fractional ideals of R in A, i.e. the set of
all full rank Z-lattices a C A such that Ra C a. Let Inv(R) C Frac(R) be the
subset of invertibel R-ideals in A, and P(R) = {aR | a € A*} be the set of
all principal ideals in R. If a C A is a full rank lattice, let M(a) = {a € A |
aa C a} be the multiplier of a. This is a Z-order in A (cf. [Ne99, Chapter I.,
§12]) so that a € Frac(M(a)). Let Frac’(R) = {a € Frac(R) | M(a) = R}.
We make the same definitions if we replace Q by one of the local fields Q,
and Z by Z,. In general, neither Frac(R) nor Frac’(R) are groups, but they
are acted on by P(R) so that we may build the quotients Frac(R)/P(R)
and Frac’(R)/P(R), which are both finite. (The finiteness follows along the
same lines as the finiteness of the class group is deduced.)

Lemma 66. Let n > 1, p a prime, and K = Q,(0) a field extension of
degree n generated by some element 6 € @p, which has characteristic poly-
nomial x(T') € Z[T]. Let ®, be the characteristic function of Maty,xn(Z,) C
Maty,xn(Qp). Then

/ ®,(g 1 v09)dg
QF\ GLn(Qp)
= [K*: (0Q))] Z | Frac®(0)/P(0)|[OF : 0]

0COg, 0€o

where o runs over all Zy-orders in O containing 6.

Note that if 8 ¢ O, then the right hand side is 0, and if Z,[] = Ok, the
right hand side equals

(K (O Q)] Frac® (O ) /K| = [K* : (05 Q)] Inv(Ok) / P(Ok)|

= [K™ : (Og Q)]

since Ok is a local ring. If the extension K/Q, is unramified, [K*
(OxQ;)] = 1. In general, [K* : (OxQ))] = [K : OxQyl, so that this in-

dex equals the ramification index, and we therefore have [K* : (OxQ,)] =
vol(Q,\ GL; 4(Qp)). Thus in any case,

Iorb,p((l)pyr)@) ::/ (I)p(gilryeg)dg
GLny,0(Qp)\ GLn (Qp)

= Z | Frac’(0)/P(0)|[OF : 0%].

0COk, O€o
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Proof of Lemma [66. The set {1,0,...,0"'} forms a basis of K relative to
which the matrix ~y corresponds to the endomorphism K — K given by
multiplication with 6. Moreover, this basis defines a map

U :GL,(Qp) — L, ={L C K | L is Z,-lattice of full rank}.

Hence ®,(g 1ypg) # 0 if and only if § maps the lattice Ly C K defined by
g into itself, i.e. 6L, C Ly, or equivalently § € M(Ly). Hence the integral

equals
> oo

0COK, 0€0 aeFrac®(0)/Q)f

Hence we have to compute the volume of ¥~!(a) as a subset of GL,(Q,).
Two elements g1,92 € GL,(Q)) define the same Zp-lattice if and only if
there is some k € GLy(Zp,) with go = gik. Thus f\I, o dg = 1. Since

| Frac®(0)/Qy| = |Frac®(0)/(0* Q)| = |Frac’(o )/(Of(@x)![ Kk i 0] the

assertion follows. O

As a direct consequence of the last two lemmas we get

Corollary 67. For any v € GLy(Q)ei,req we have

[OQP[’Y] : th]]_llorb,p(q>p,7) > 1.

Proof. By Lemma (66 the integral [Og, iy = Zp[Y]]™ orbp(®p,7) equals a
product of finitely many terms of the form

[OF : Zy[0]"]
W\F ac’(Zy[0])/ P(Z,[0))]
; rac’ X . X
T 05 Z,00] Zp[egg% | Frac®(0)/P(0)|[O : 0*].

for £/Q, a finite extension generated by # € E with maximal ideal p C
Opg of norm ¢. Hence it certainly suffices to show % > 1, since

| Frac®(Z,[0])/ P(Z,[0])] > 1 and the rest of the sum is > 0. Let § C Z,[6] be
the conductor of Z,[#]. For any order O, f C O C O there is an isomorphism
O*/f — (O/f)*. Moreover, p/§f C Og/f is the unique maximal ideal so that
(p N Zp[A])/ is the unique maximal ideal in Z,[#]/f. Hence

#(Op/i) = #(Or/f) — #®/f) = #Op/H1 —q¢7)
and
#(Zpl0)/1) = #(Lp[0]/1) (1 — (H(Zp[0)/ (Zp[0] N 1)) 7).
But since Zy[0]/(Z,[0) N'p) — Opg/p is injective, we altogether get
05 :2,00)) 1—g! .
[OE ZplOl] 1= (#(Zl0)/(Zpl0) 0 p))F
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If ®y € S(Matsx3(Af),Ky) is the characteristic function of Matsyx3(Z), we
define

co(y) = [ ! Oy (v yz)d

Oqpy) = ZD] /GLg,w(Af)\GLgmﬂ
and if F/Q is a cubic field, co(§) = co(7¢) for any £ € E\Q. In particular,
co(§) = 0 unless € € Og\Z. Interpreting co(&) as in the last lemma, we see
that co(§ + a) = co(&) for any a € Og\Z and a € Z so that ¢y is a well-
defined function on (Og\Z)/Z. If, more generally, ®; € S(Matszx3(Af), K)
is arbitrary, put

1

_— ®p(z tya)dz,
[Oqpy : ZI] /GLg,vmf)\GLs(Af)

o(Py,7) =
and similarly define c¢(®y, ).

V.ii.iii A FIRST ASYMPTOTIC

The aim of this section is to prove an asymptotic of sums of certain orbital
integrals, see Proposition [68. We first need some notation on quadratic forms
on lattices and their successive minima. Suppose A C R? is a lattice of full
rank, and @ : A — R a positive definite quadratic form. Let m;(Q) <
ma(Q) be the successive minima of (). Let d(Q) be the discriminant of
Q. For a totally real cubic field let Qg : (Og\Z)/Z — R be the positive
definite quadratic form Qp(§) = tr&? — £ (tr £)? whose successive minima we
denote by m(E) < ma(E). Note that Qg(£) = ||¢][2., if we view Op/Z as
embedded in R? so that the m;(E) are exactly the squares of the successive
minima associated with the lattice Op/Z C R? in the sense of Minkowski.
Moreover, 3d(Qg) = Dg.

Our first aim this section is to prove the following.

~

Proposition 68. Let ®; € S(Matsx3(Ay), K) be supported in Matz(Z),
O # 0, and suppose that c(Pp,v + a) = c(Py,7) for all v € GL3(Q) and
a € Z. Then with pp = ress—1 (g(s)

D — > o(®1,€) = BoX F +o(X3)
E tot.real, [E:Q]=3 | Aut(E/Q)| ¢e(o
ot.real, [E:Q|= E\Z)/Z,QE(§)<X

for X — oo and By is given by

eI (1)

12\/§7r*%1“(§) /xeMatgxg(A),d(xw)>0
5
5 5
_ @) 6”rytydy/ Oy(zyp)ay.
15v3  JyeMatsys(R).d(y)>0 Matz (A f)

3 2/m((3)
)
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For the proof of this proposition we obviously have to separate the field
extensions according to their signature at co. This is more complicated than
in the case of GL(2) seemingly due to the absence of a prehomogoneous vector
space structure, and hence the presence of infinitely many orbits under the
action of R-g x GL3(A).

Let ¢ : R — R>( be smooth non-negative functions satisfying

=0 ifx<%
YT () €[0,1] ifz €[5,
1 ifz>e

and

¢§($){_0 if |[x] > e

€[0,1] if|z| <e
such that v (x) + - (z) € [1,2] for all # > 0. Let ¥F : Matzx3(R) — R

be defined by X
dx — s trz)
Tt (p) = F 3 .
E(x) 1/}8 <|trx2§(trl‘)2|3>

This is can be thought of as a map on R?: Let Matsx3(R)" be the set of
trace-O-matrices. Then

Mat3><3(R) — Matgxg(R)O — RQ
with z — @ — L tro =: 9, and zg — (tr Sym® zo, det 7o) =: (a,b) we have
—4a® — 27b2)
ja/2]* 7

This is well-defined: Consider U}. Then a — 0 with ¥} (z) # 0 implies
that 27b% < —4a® — 0, and in particular, a # 0 for any « in the support of
U+, Now consider U_. If z is such that @ — 0, —4a® — 27b? stays bounded,
so that either % tends to a finite number, or the argument in ¢

U (2) = v (

tends to oo and hence lies outside the support of ¥ well in advance of any
singularity.

For x € Matsy3(R) put

d(xz — Ltrz) 1 ¢
<I>E’+ — ot 3 t 2 = t 2\ —mwtraztz
S (x) = ] <|trx2—£1,’(tr1‘)2\3 ptrz 3(r:c) )e

for ¢ : R — R>q, ¢(0) = 0, a suitable smooth function, which is not
identically vanishing, such that ®5" € S(Matsy3(R)). For 1= set
d(z — 3 tra) )

1
(tI’ 113‘2 _ g(tr x)?)le—wtr:vt:c

[tra? — &(tro)??

o5 a) =y (

for I > 0, and for given N € N, we can choose [ so large that ! €
CN(Matgxg(R)). The properties of \Ifgc can be summarised as follows.
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Lemma 69. For all g,z € GL3(R), A € R>o,
(i) E(z~'gz) = UZ(g),

(i) V= (\g) = ¥Z(9),

(iii) OE(g+ ) = UZ(g),

(i) T Az lyx) =0, if v € GL3(Q) e, reg corresponds to a field having a
complex place.

Let ®5F = &3 @ and @51 = @5 'd;, with & € S(Matzxz(As), Kj).
Let f&" and fg’f’l be defined in the usual fashion for s > 2. Then f&+

C(G(A)Y, K), but f&' € CN(G(A)!, K) for N and [ as above. However, as
remarked before, we may use f5'~ ! as a test function for the trace formula
for GL(3) provided that N, are sufficiently large, and all parts of the trace
formula are still absolutely convergent for s > 2 and can be continued to

some larger half plane s > 2 — § with poles at the usual places.

By Lemma (69| (iv), the orbital integral for > at infinity vanishes,

/ / NS (e yz)d* Az = 0,
Gy (R)\G(R)

if v € GL3(Q)el, reg is not diagonisable over GL3(R). Hence the contribution
from the regular elliptic terms for the test function f&'*

F(s) = E(s) = _VE) s

EX(s) = E(s) o Zl o AW(E i)

- Y e X (00 2@, 9O
E/Q tot. real, [E:Q]=3 £€OR\Z

/ / Mp(NQp(€))e™™ e e @™ en) X N\, (57)
RNG(R) J0

Similarly, denote by & ’l(s) the regular elliptic terms obtained from the test

577

function fs . In the following, let

Iorb(q)?o—i_a fa t)
= / /oo At@()\2QE(f))€_WA2 tr(m_lygm)t(gc—lfy&m)dx \dz
(RN\G(R) JO
and similarly
Iorb(q)i’o_Ja 57 t)

— / /-oo )\t()\2QE(§))lef7r)\2 tr(x’l'ygx)t(x’l'ygaz)dx \dz
+(RN\G(R)

_ QE(f)l/C; (R)\G(R)/O )\t+2l€—7r)\2 tr(x’l'ygx)t(:rfl’ygx)dx)\dw.
¥

133



Lemma 70. £f(s) converges absolutely for Rs > 2, and has a holomorphic

continuation at least in Ns > % except for a simple pole at s = 2. Sup-

~

pose that @y € S(Matsx3(Ay), K) is supported in Matz(Z) and is such that
c(Ps,y+a) =c(®ys,v) for all v € GL3(Q),a € Z. Then for Rs > 2, EF(s)

equals up to an entire function the product of \/371'7%](5) with

Y e X c@nOvi©s©" T 69
E/Q tot. real, [E:Q]=3 €c(Op\2)/Z
for
1) = [ X o™
0

and pgp = ress—1 Cp(s). The function I(s) converges absolutely at least for
Rs > 1.

Proof. The first assertion is just a restatement of Proposition |62l Consider
the map Op — Z ® Og/Z, £ — (tr&,[€]), which is an additive group
isomorphism. As the ¢(®y,-)’s, ¢ and ¥ ’s are well-defined maps on Op/Z
as mentioned before, the inner sum in (57) equals

D @, U () Iorn (DL, €, 35 + 3)
§€OR\Z
= Y (05 Z&]le(®y, &) (&)

§0€(Op\Z)/Z

. x )\3S+3 )\2
/G e /0 P(N2Qp(60)

. § :6771')\2 tr(x_l'y,gox)t(:v_l'ygox)fg)\QanX \dax
a€’Z

Split the integral over A in one integral over [0, 1] and one over [1,00). The
second one defines an entire function on all of C. For the first one apply
Poisson summation to the sum over a € Z, to obtain

— 72242 _1 1 _g-—1y—232
Eeﬂ')\aZE \/§7T2)\1€37r>\b.

a€Z beZ

Changing variables A=! € [0,1] <+ A € [1,00), the sum over b # 1 yields
again an entire function. Hence we are left with the term belonging to b =0
to which we may add the integral over A € [1,00) without changing its
analytic behaviour. Thus up to an entire function, the above equals

_1 v(E) .
V3r gEj TR E O &G((%j\z)/z[ofs L ZIENe( Dy, )WL (€)

. / /OO )\3s+2(p()\2QE(§0))e—ﬂ')\2 tr(xil'ygox)t(xfl'ygox)dx \dz.
G (RNG(R) Jo
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By assumption on &g, 7¢, is conjugate to a diagonal matrix over GL3(R) so
that

/ 6—7r)\2 tr(x_lfygom)t(x_l'yéox)dl_
Gy(R\G(R)

- d(§0)§eM2QE(£O)/ o~ TN (Wi +u3+ad) g,
Uo(R)

= (&) 2e ™ Qr(E0) \ 3,

_1 1
Notice that d(fo)_% = [Og : Z[&)]]_llDE2 and v(E)Dy* = ress—1 (p(s) =
pg. Therefore changing A to Qg(&y)2\, the assertion follows upon defining
I(s) = [5° A35=15(A2)e= ™ 0% X, The last assertion about I(s) follows from
the fact that by assumption p(A2)e"™" € S(R). O

Lemma 71. Suppose that | is sufficiently large and ®; is as in the last

lemma. E{’l(s) converges absolutely for Rs > 2, and continues to a mero-
morphic function at least in s > % with only pole at s = 2. Up to an entire

function, 5§’l(s) can be written for s > 2 as the sum of

35421 3s—1
=) w2, OO O

T 2m E/Q tot. real Op\Z)/Z

and

F(3s+21)
Wan—gims Y ey, d®p V()T 5)Qr(E)

w2 E/Q not tot. real £e(Op\2)/Z

with
_ 3s421—1
2

J(E,s) = / T (@Qu(6) + 436 dp

foré one of complex roots the characteristic polynomaial of &.

Proof. 5~ defines a test function f5 ! which is differentiable up to a finite
order, and we can choose this order arbitrarily high by choosing [ sufficiently
large. Hence as remarked before, we get on the spectral side holomorphic
functions for s > ”TH, which have meromorphic continuations in some
larger half plane s > 2 — § with only pole at s = 2 whose residue is given
as in Proposition |62, Similarly, as in the proof of Lemma [70, £ '(s) can be

written as the sum over all cubic fields E/Q (of any signature) of

R, 2, 108 Helle@r v e

00
/ / >\38+3(>\2QE(£0))Z
G (®V\G(®) Jo
. Z 6771’/\2 tr(a:’l'ygox)t(xil'ygox)f%)ﬁazdx \dz.

a€Z
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For totally real extensions, the proof of the last lemma tells us that the
respective summand essentially equals

(35+2l 1) s
\/>|Aut (E/Q)| o =2 > Yo @OV (OQE(E) 7,

E tot. real €e€(OE\Z)/Z

F(3s+21 1)
since for o(z) = 2!, I(s) = —53rr-
=

For not totally real extensions, we carl follows along the same lines, but now
2
the integral wa \G(R) e ™ (@™t Yeo®)' (@™ 60 ) iy equals by Lemma (72

87T)\72‘d(§)|7% / ~ efw)\Q(QE@H*PQ)dp.
4(3¢)?
Changing (Qg(§) + pz)%)\ to A, we obtain for the whole integral
o0 35+21+7

8ld(€)| 2 Qs (&) /OOOA?’S“’e—“?dXA / (Qu() + ) T

4(S€)

from which the assertion follows. O

Lemma 72. Suppose v € GL3(Q)e1, req s in GL3(R) conjugate to (—abg )
C
fora,b,c € R, b#0. Then

/ €—7r)\2 tr(x’l'yx)t(:cfl’yx)dx _ 87T/\_2‘d(’)’)‘_% /OO e—7r/\2(tr’yz+p2)dp
(RN\G(R) 4b2

Proof. The integrand is invariant under O(3), and we have G (R)\G(R) ~
(GL25(R)\ GL2(R) x {1})U1(R)Ko. Hence the left hand side equals the
product of a certain discriminant factor with

/ / exp(=mX*(tr(g ™! (4 0) ) (97" (5 2) 9)
GLa,5(R)\ GL2(R) J U1 (R)

+ & 4 uf + u3))duydusdg.

Since R\ GLg 5(R) ~ {£1}\O(2), using the K AK decomposition, the inte-
grals equals

87Te—7r/\202 / e—Tr)\Q(u%-l—u%)dulde /oo e—Tr)\2(2a2+b2(T’4+T4))(7_2 o 7'_2)d><7'.
R2 1
Substituting p = Lﬁ this is
o0
87re—7r)\202 / e—ﬂ'>\2 (u%-{—u%)dulduZ / €—7r)\2 (2(a2—b2)+4b2p2)dp
R2 1
o
_ 877)\_2 / e—7r>\2(tr'\/2+4b2p2)dp‘

1

Note that the last integral is well-defined as for any =, trv? + 4b%p? >

try2 +4b? = try'y. Noticing that 4b* = d(( 4 b)) and collecting all missing
discriminant factors, the assertion follows. O
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In the following let

+0) PE c + B

E/Q tot. real £€(OR\Z)/Z

1

Arx = Y m > o( Py, ) TE(Q).

E/Q tot. real €(0Or\Z)/Z, Qr(§)<X

These functions are related by Mellin transformation and its inverse: We

have
" 1 oo+ico
AE(X) = = / o (s)

270 J 5p—ico 35 —1
oo
-
(cf. [MoVa0T7]). Moreover, put

vels)= > pr Y, d®nOVI(9IE 5)Qm()

E/Q not tot. real  £€(Op\Z)/Z

ds

for og > 0, and

= (X)

and
1 o0+100 3X3572*1
C.(X) = 27rz/ y Ye($) 35 1 ds
= > Y d2L9¥ Qs
E/Q not tot. real ¢e(Op\2)/Z
Y& 22 23—l
T @) + 1382
with
be, x) = { \/ﬁ} if Qu($) < X
1 if Q&) > X,

where an integral with start and end point equal to 1 is understood to be 0.
This together with the definition of W_ (&) ensures that for any X, the sum
over E and ¢ is in fact finite. From the last form of C.(X), it is clear that
if [ is even, C:(X) is a non-negative, monotonically increasing function.

Proof of Proposition |68. Throughout we assume that [ is sufficiently large
and even. By definition of ¥} and ¥, we have ¥F(£) <1 < U (&) + U
for all ¢ € E with E totally real. Hence for any X > 0,

A< Y ‘utf% > c(@,€) =t B(X)

E tot.real €(OE\2)/Z2,QE(§)<X
< ANX) + AZ(X). (59)
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The coefficients Mm@%c(@,gw;(@ in the Dirichlet series a7 (s) are

non-negative and the series (58) converges absolutely for s > 2 with mero-
morphic continuation at least in Rs > % Moreover, the only pole in this
region is at s = 2, and we can choose ¢ such that I(s) is non-vanishing
on s = 2 and at any given point in s > 2. Hence an application of the

Wiener-Ikehara Tauberian Theorem [MoVa07), Corollary 8.7] yields that the
first sum in [59| satisfies an asymptotic ~ B.X3 + o(X%) for X — oco. There-
fore, liminfx oo ngZ(X) > B, for any € > 0. The constant 3. can be
given explicitly as an integral over the Schwartz-Bruhat function ®*% as in
Proposition [62. In particular, by definition, 5; — S as € \ 0, with

3v/m((3) —rtrat o 1 2
B —/ e TPt p(tral — —(tr xa)”) P r(zy)da.
"7 5 12VB1(2) St a(a) dza)>0 ( (1ol (0r)

Hence ;
liminf X 72%(X) > fp.
X—o0

To show the reverse inequality, we have to work harder. Consider the func-

tion & ’l(s). It has a simple pole at s = 2, and is holomorphic elsewhere in
3s+21

some half plane s > 2 — §. As 4\/37TF57321) is holomorphic and non-zero

2

(

in that half plane, the function

T PR | \/7?1“(58+7§l—1) B
e ) = g ey o () F )
= A(s)a () + (9

has the same properties as 5{’1 with

Bi(s) = /(1 +2?) " de = 2/ yE Ay - 1,
R 1

and the residue 57 at s = 2 is given by a constant multiple of

/ D5 (200) @ s () drr,
Mat3><3(A)

which tends to 0 as € N\, 0.

For X > 0 and o9 > 0 sufficiently large, let

1 [ootiee  3x
B0 =5 [ A s

T 270 gy —iso 3s—1
and ‘ .
1 oo+i00 ?)XSTi
ABj (X)) = — “(s)=——ds.
) =5 [ ez (), s
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In particular, Bj(X) = 2 le y~(=Dd\/y — 1. From the definitions it is clear
that C-(X) >0, B;(X) > 0 and AB;.(X) > 0 and the functions are mono-
tonically 1ncreasm§ Hence an application of the Wiener-Ikehara Theorem
gives limyx_ o X (ABlg( )+ C-(X)) = B, and, as everything is posi-
tive, AB;.(X) < 87 X3+ R.(X) for R.(X) a suitable error function with
R.(X) — 0 as X — co. Therefore, by definition

1 o+ioo 3X B
X2/8 + Rg( ) = 27”// ‘ BZ(S)QE(S)?)Si_ldS
00 —100

3s—1

and the right hand side can be written as
X
(v)) 3 2 ds

1 o+100 00 35—
~(s) / o=
270 J oo ( . 35— 1
o (1 petiee /XNTT 3ds
:/ 2/ o (s) ( > — | dBi(X)
1 T J gy —ico v 35 —1

= [ A Chan)

As A7 is monotonically increasing, the last integral can be bounded from
below as

3 B X B X 3
2/2 AZ(C)aBv) > A (3)/2 dB(v) > 0

for X sufficiently large. Hence there exists a constant ¢ > 0 such that for
any € > 0, limsupy_, .o X~ 2A (X) < ¢p7, and thus

limsupX_gAE_(X) —0

X—o00

for € (0. Therefore,

limsup X3 %(X) = limsup X "2 A7 (X) + limsup X 3 A7 (X)

X—o0 X—o0 X—o0

< BF+ B — Bo

for e N\ 0, which finishes the proof of the asymptotic. As ¥(X) is indepen-
dent of ¢, By likewise is independent of ¢, and hence can be computed to be
of the form asserted in the proposition. O

V.ii.iv BOUNDS FOR THE RESIDUES OF DEDEKIND ZETA
FUNCTIONS AND A SEQUENCE OF TEST FUNCTIONS

As co(y) > 1 for all v € GL3(Q)en, reg by Corollary 67, an immediate conse-
quence of Proposition 68| is the following.
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Corollary 73. There exists a > 0 such that

lim sup X 2 Z res Ce(s) < a. (60)
A —o0 E tot.real, [E:Q]=3 =
m1(E)<X

To complement this upper bound we shall later show the following lower
bound.

Proposition 74. For any € > 0 we have

5
1. . _7_1’_5 —
pnf X7 D, el =
E7 ml(E)SX

where E runs over all totally real cubic fields.

In fact, one expects that the limit of the left hand side in (60) exists and
equals and appropriate constant « > 0 and by Proposition |74 this can not

be too far from the truth. To proof this, one has to know more about the
finite coefficients ¢(® ¢, £) in Proposition 68, Let 113(} € S(Mat3zx3(Af),Ky) be

the characteristic function of Matsy3(Z). Using this as the finite part of the
Schwartz-Bruhat function, one could try to compute the resulting coefficients
co(7y) explicitly, as is done for the case GL(2). However, this is considerably
more difficult for GL(3) and we will not attempt to do so. Instead try to
apply a limiting process by choosing an appropriate sequence of Schwartz-
Bruhat functions ®;. Even though the sequence we shall construct, yields
coefficients tending to 1, we have not yet succeeded in proving the existence
of the limit above: For that one would have to show that the sequence
converges to 1 uniformly in &.

We shall nevertheless give the construction of this sequence of functions, as
there is a good chance to eventually prove the uniform convergence of it.

Proposition 75. For any totally real, cubic E/Q and { € (Og\Z)/Z, there
is a monotonically decreasing sequence (cm(§))mepiv+ (@) Such that cm(§) — 1
as a net on Divt(Q) for any & and such that

PE 5 5
E = apX X
. tzt JA(E/Q) 4 ml6) = anXE A o(X)
ot. rea e\Z)/Z

Qr(§)<X

as X — oo for suitable oy > 0. Moreover, (ouy) +(q) converges as a net

meDiv
on Divt(Q) with limit o > 0, which can be given as an Euler product (see

(62)) ).
For the construction of the sequence we first define functions, which are not

actual Schwartz-Bruhat functions, but will be used to build up test functions.
Let p € Z be a prime, and @2 : Matsx3(Qp,) — C the characteristic function
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of Matgxg(zp)j € Matsy3(Qp) is called regular if z has pairwise distinct
eigenvalues in Qp, i.e. d(X) # 0. Hence the set of non-regular elements in
Mat3x3(Qp) has measure 0. Define the function ®, : Matzx3(Q,) — C by

[Ogp (2] Zp (2]
i)p(w) == fGL3,x(Qp)\ GL3 (Qp> ¢2(971$g)d9
0 else.

if z is regular, and z € Matsy3(Z,),

This function is locally constant in Matsx3(Qp)\{ | d(x) = 0} by Krasner’s
Lemma. Note that for x € Matsy3(Q,) with ®,(x) # 0,

1

S ow ®,(g  wg)dg =1
[Oq, 2] * Zplz]] /C;Lg,x(@p)\ GLs(@y)

so that in fact, one would actually like to use P ¢ for building up test
functions. However, as @y ¢ S(Matzx3(Af)), we construct a sequence of
Schwartz-Bruhat functions, approximating ®.

Lemma 76. For x € Matsx3(Zy) reqular we have

0< () {: bl =1 orp”

<1 else.
Proof. We first reduce to the case of an irreducible characteristic polynomial
with the help of Lemma |65, and then use the expansion of orbital integrals
from Lemma 66, Let x € Matsyx3(Zy) be regular. Hence Qp[z] ~ E1®...®E,
with E; = Qp(6;) fields of degree n;, >, n; =3, 6; € Op,. By Lemmas 65

i=1,...,r

and [66[ the inverse @p(x)_l therefore equals the product over ¢ = 1,...,7r of
[OF, : Zp[0:]"]
Ok, : Z,[6i]]

1
ST [Frac(0)/P(0)[[O, : 0%
plVi|=0-UE,;

| Frac®(Zp[0:])/ P(Zy[0:))|

This sum is always > 1 by Corollary 67. The condition |d(z)|, = 1 implies
that |d(6;)], = 1 for all i, and hence Z,[0;] = Op, so that ®,(z) = 1. If
|d(z)|, = p~!, then either |d(6;)], = 1 or = p~!. In the first case the
factor above again is 1. But |d(6;)], = p~! can only occur if §; is divisible
by the prime element w; € Of,, i.e. wi_lﬁi € Og, or if the extension

E;/Q, is ramified with |Dg,|, = p~! because of the equation Z > [Op, :
Zp[gl]] = |DEld(91)_1|é for 6, Q/ szE, If 0; is divisible by w;, then Z >
|d(w;10z~)|g1 = qf"|d(01)|51 = qfip with §; the degree of the discriminant as
a homogeneous polynomial in the roots and ¢; the cardinality of O, /w;Op, .
Thus for this to be an integer, we must have n; = 1 and therefore Z,[6;] =
Zy, = OF,. Hence in both cases ¢; again generates the maximal order so that
we again get 1 for the corresponding factor.

O
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Lemma 77. There exists p > 0 such that

1 5
l-p= < / O, (z)dx <1
p Matgxg((@p)

for all primes p. Hence the Euler product

/ O (z)dr = H / O, (z)dx
Mat3zx3(Af) Mat3x3(Qp)

p<oo

converges to some number B € R with 0 < 5 < 1.

Proof. The second inequality is clear by the last lemma. For the first write

/ ®,(x)dr = / ®,(x)dx
Mat3x3(Qp) Matsx3(Zp)

_ / da - / (1— B, (x))dz.
Matgxg(Zp) Mat3><3(Zp)

By the last lemma 0 < 1 — ®,(z) < 1 for all x, and 1 — ®,(z) vanishes if
ld(z)], € {1,p~'}. As 0 < 1 —®,(x) < 1 for all z, it therefore suffices to
bound the volume of the set of all x with d(x) = 0 mod p? from above.
Consider the commutative diagram

Matgxg(Zp) — Matgxg(]Fp)
\ \

Ly —— F,

with vertical maps given by the discriminant. If @ € Matsy3(F,), the fibre
above @ has volume p~ in Matszx3(Zy). For z € Matsy3(Zy,) to satisfy
d(r) =0 mod p?, its reduction Z € Matgyx3(F,) must satisfy d(Z) = 0, which
is equivalent to the condition that & has at least two identical eigenvalues
in IF,. The union of the preimages of conjugacy classes of such elements all
have volume < p~—3 + O(p~*) except for the conjugacy classes generated by

t 1
T = ( " . ) with t1,%2 € Fp, t1 # t2. The union over preimages of such
2

classes has volume p~1(1 —p=2 —p~3 + p~°). Let © € Matgx3(Z,) be in the
fibre above Z. Then d(x + py) = d(z) + pAd,y + O(p?) for Ad, the gradient
of d at the point z. As t; # to, Ad; # 0 mod p, and thus for z fixed,
there are O(p®) possibilities for y to satisfy d(x + py) = 0 mod p?. Hence
vol({z € Matsx3(Zp) | d(x) =0 mod p?}) = O(p~2) with implied constant
not depending on p. O

We now define a sequence of Schwartz-Bruhat functions at the finite places,
which yield our desired test functions. Let ¥ C Matsx3(Zp) be the set of
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all z € Matsyx3(Zy) such that d(z) = 0. For m € Ny define a function
(I)ZL : Matgxg((@p) — C by

(I)m( ) 1 ifx e E-l-pmMathg(Zp)
) =1 -
Q,(z) if z & X4 p™ Matsyz(Zp).

In particular, (IDS coincides with the characteristic function of Matzyx3(Zp).
For x € Matsy3(Zp)\(X+p™ Matsx3(Z,)), the stabiliser of M3(Z,) in GL3(Q))
is canonically isomorphic to K,,. Moreover, Z,[z] is a finite index subgroup
of Matsx3(Zp) whose index is bounded in terms of m. Hence, if we identify
Stabgr,(q,)(Zplx]) with a subgroup of K, and set

K™ = N Stabgr, (@,) (Zp(z]),
x€Matzx3(Zp)\p™ Matzx3(Zp) regular

then K™ C K, is a subgroup of finite index, and by construction, ®;* €
S(Matsx3(Qp), K™). Let m = (myp)pcoo € DivT(Q). Define the function
(I);? : Mat3><3(Af) — C by

-

p<oo

which is contained in S(Matgx3(Af), Km) with Ky = [, K™ Let <IJS)C =

[T ®) be the characteristic function of Matsy3(Z) C Matsx3(Af).
p<oo

By definition we have for all m,m’ € Div'(Q) with m > w’, and all z €
Matgxg(Af)

0< Byp(z) < DP(x) < OF (2) < DY(2) < 1. (61)

Moreover, limy ®F(z) = ®;(x) for any 2. Similarly, the finite functions

@, are monotonically decreasing with limit function ®, so that the local
integrals

/ @;np (x)dx and / @zlp (gilfyg)da:,
Mat3><3(@p) GL3,’Y(QP>\ GLS(QP)

v € GL3(Q)ell, reg, converge to

/ d,(z)dr and / d,(g yg)de = 1,
Matsx3(Qp) GL3,y (Qp)\ GL3(Qp)

respectively. The infinite products over all those integrals exist by Lemma
7. Hence

lim O (z)dr = / O f(x)dx
m Matgxg(Af) MatSXS(Af)
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and

lim @‘}l(g_l’yg) =1.
M JGL3,(Af)\ GL3(Af)

In particular,

5
2m2((3
mC()/ e~y gy H/ (z)dz. (62)
15\6 yEMatszx3(R),d(y)>0 at3><3(Qp

p<oo

This finishes the construction for Proposition |75

Remark 78. If one has established an asymptotic of the form

2(X)= Y \ut/()% > 1~aXs,

FE tot. real £e(Og \Z)/Z
QRe(§)<X

one easily gets that

N = 7E ~Y 71
BonX)i= 0L TRwiera 2,
QE(§><XP

This is because by definition of primitivity, 2(X) = > me'm(%) so that by
neN
Mébius inversion,

Sprin(X) = 32 wm)S( ) ~ aXE 3 ulmym ™ = () a X,
meN meN

To prove the lower bound from Proposition [74], we first need to bound a part
of the sum we are not interested in by the following.

Lemma 79. (i) Let A C R? be a lattice with positive definite quadratic
form Q : A — R. Then

veA, Q(v)<X d(Q) d(Qﬁ

el 1
for X — 0o where R(-X21) is some error term of order O(—2>1).

d(Q)

N
SH
~
o
~
ST

(1) For all e >0

S o X 1-ouen)
E: ma(E)<X £e(Op\2)/Z
Qr(§<X

where the first sum extends over all cubic, totally real fields E/Q.
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Proof. (i) Consider the set of all points v € A with Q(y) < X or, equiv-

(i)

alently, all A-points within the ellipse {x € R? | Q(z) < X}. By a
well-known theorem of Gauss [Co62) p.161], the number of such points

is equal to the volume of the ellipse —2Z£_ plus some small error term
q 1 p [4(Q) p
of order );; . As for the number of lattice points only the ratio iQ)
4

is relevant, the asserted upper bound follows.

By Minkowski’s second theorem (see, e.g. [Ca97, VIII.4.3]), we have
Dg =< mi(E)ma(E) (we consider the successive minima of a quadratic
form) so that m;(E) < mo(FE) < X implies coDp < mi(E)me(E) <
16X?2 for some cq > 0 Hence there is by (i) some constant C' > 0 such

that x
Z 1<C0——n—
€€(0p\2)/Z, Qp(§)<X d(Qp)

for all E with m1(E) < mg(F) < X. By the Brauer-Siegel Theorem
[La86, XVI, §4 Theorem 4|, there exists for all £ > 0 some number

_1
C. > 0 such that pp = ress—1 (p(s) = 4D hpRgp < C.Dj, for all
totally real cubic fields E. Hence the left hand side of |(ii)| equals

_1
Y e Y 1<cevi Y xph
E: my(E)<X  €€0p\Z, Qp(6)<X E: ma(E)<X
This can bounded by
_1 _1
CCV3X Y. Dy ?<CC3X'™ Y D2
E: Dp<16X?2 E: Dp<16X?
By [DaHe7l, Theorem 1] or [DaWr88, Theorem I1], > 1 =
E: Dp<X
coX + o(X) for some ¢y > 0 so that

cc.v/3x'te >y Dy

E: Dp<16X2

D=

< 16coCCV/3X2TE 4 o(X?19)

which is the assertion.

O

Hence we can restrict our attention to the cubic fields with m;(E) < X <

me9 (E

). If E is such a field, there are exactly two primitive vectors +&; in

(Op\Z)/Z with Qr(&) < X both satisfying Qg(+&)) = m1(F), and for any
¢ € (Op\Z)/Z with Qg(¢) < X, there is a a unique n € Z\{0} with £ = n&.

Proof of Proposition|74. We first show that

- 5. B
lgriglofX 2 Z pPE = 00 (63)
EEe(Op\Z)/Z, Qr(§)<X

145



for any € > 0. Let € > 0. By the Brauer-Siegel Theorem there exists A. > 0
such that pgp > AEDEE for all £. Thus this sum is bounded from below by

A X3 > 1. Hence it will certainly suffice to show that
E8e(0Op\2)/Z, Qr(§)<X
there exists C' > 0 such that

3 1~CX3

as X — oo. (We do not attempt to compute the constant, but there is a
master’s thesis by Gero Brockschneider in preparation in which the asymp-
totic with exact coefficients is determined.) Using Lemma , the map
associating with the pair E,§ € (Og\Z)/Z the characteristic polynomial
T3 + agT? + a1 T + ag of €is 3 —1 or 1 — 1, and the coefficient as = 0. As
E is totally real, we have d(¢) = —4a$ — 27a3 > 0, or a2 < ——a? Since
X > Qg(&) = —2a; > 0, this implies

X 2
——<a; <0 and O<a0§\/771_3\f
2 4\f

3
Hence, ignoring constants, there are af many ap and

X/2 3 1 5 2
aida; = ——=X2 — —
/1 T 1002 5

many a; satisfying all the conditions. On the other hand, any irreducible
polynomial with integer coefficients satisfying such inequalities defines (an
equivalence class of ) a cubic field E and £ as before. Thus we only need
to show that the reducible polynomlals with coefficients satisfying above
inequalities do not contribute to CX3. 1f T3 4+ a1T + ag is reducible, write
it as a product (T? + byT + bo)(T + ¢) with by, b, c € Z. Hence ¢ = —by,
cho = ag and by — ¢ = a1. Hence if we fixed ag (for which there are at most
O(X%) possibilities), there are at most O(ad) < O(X?) possibilities for ¢
and by for any § > 0. Thus there are only O(X %+6) reducible polynomials
satisfying above constraints.

Now split the sum over F in the following parts: One belonging to E such
that mi(E) > X, one with m1(F) < X < mg(F), and the last one with
mi(E) <ma(E) < X. For E with m;(E) > X, there are no £ contributing
to the sum in so that the sum on the left hand side of equals

X-ste 3 OB 3 1

Emi(E)<X<ma(E)  €€(Ogp\2)/Z, Qr(§)<X

—|-)(_g+E Z PE Z 1.

Emi(E)Sma(E)<X  £€(Op\Z)/Z, Qp(§)<X

By Lemma E‘ the second sum tends to 0 for X — oo provided ¢ < %
Hence the first sum is not bounded from below as X — oo for any € > 0.
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As mi(F) < X < mo(E), any § € (Op\Z)/Z with Qg(x) < X is of the
form & = n& for some n € N, and & one of the two primitive vectors in
(Og\Z)/Z. Thus

2. rm 2 .

Emi(BE)<X<mz(E)  £€(Op\Z)/Z, Qp(§)<X

=2 2 e 2 !

neN By (B)SX<ma(B)  &e((Op\L)/L)prim, Q)<

=2 > PE

neN E,ml(E)Sf—Q<m2(E)
Suppose there are k > 0 and ¢g > 0 such that

5
lim inf X ~37% = co.
pin X 2, w=a
Emi(E)<X<mz(E)

Xv_g-i_'i Z PE Z 1

Emi(E)<X<mz(E)  £€(0p\Z)/Z, Qr(§)<X

— 2Zn—5+25(%)—g+5 Z PE,

n€N Emi(B)< 25 <ma(E)

and for any n, hmian_mo(%)_g“‘“ > pE = co so that the
Emi(B)< 2 <ma(E)

limit inferior of the above is 2¢9((5 — 2k) in contradiction to the unbound-

edness of the limit inferior of the first sum as X — oo. O
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Summary

The Arthur-Selberg trace formula is an identity Jgeom (f) = Jspec(f) of two
distributions, the so-called geometric and spectral side, on a space of test
functions defined on the adelic points of a reductive algebraic group. It is
an important tool in the theory of automorphic forms, and it is itself the
object of extensive studies. We are going to study different aspects of this
trace formula.

For potential applications it is of importance to have large spaces of test
functions and meaningful expansions of the distributions available. We are
giving a modified version of Arthur’s fine geometric expansion for the group
GL(3), and we are showing that this modified geometric expansion converges
absolutely for a large space of test functions. This space of test functions is
in some sense natural and corresponding results for the geometric side of the
trace formula for GL(2) resp. for the spectral side of the trace formula for
a general reductive group, have been shown by Finis and Lapid (2011) resp.
Finis, Lapid und Miiller (2011).

This space of test functions contains for GL(n) certain special functions
depending on a complex parameter s (with s > 0), which are of special
arithmetic interest. For example, the main part of the spectral side yields
a sum of automorphic L-functions by the theory of Godement-Jacquet. It
is therefore natural to consider the trace formula for GL(n) for such test
functions as a function of s. We give meromorphic continuations for the
spectral terms to larger half planes and determine their first poles.

As an application we show the following asymptotic: For certain Schwartz-
Bruhat functions ®; # 0 on the space of 3 x 3-matrices over the finite adeles,
there exists o > 0 such that

>l Y gihti—axtiexh) (o

E/Q totally real E€OE\Z
[E:Q]=3 trp /g £2<X

as X — oo. Here I(®f,£) > 0 are coefficients associated with ®; and &
by means of orbital integrals. For GL(n) in general, one expects similar
asymptotics for sums of n-dimensional field extensions of certain signature,
provided that the convergence of the required trace formula can be shown.
A consequence of is an upper bound for the limit superior of

5
X2 Z res Ce(s)
E tot. real, [E:Q]=3
mi(E)<X

as X — oo, where m(E) is the second successive minimum of the positive
quadratic form § — trg/g €2 on Op. The limit of this sum is actually
expected to exists and to be non-zero.

The case of GL(2) serves as a model and we shall study it in detail: Because of
the aforementioned results, we are allowed to use our special test functions
in this case as well. In particular, it turns out that the main part of the



geometric side is constituted by the Shintani zeta function with the help of
which Shintani was able to show asymptotics for class numbers of binary
quadratic forms.



Zusammenfassung

Die Arthur-Selberg-Spurformel ist eine Identitit Jyeom (f) = Jspec(f) zweier
Distributionen, der sogenannten geometrischen und spektralen Seite, auf
einem geeigneten Raum von Testfunktionen, welche auf den adelischen Punk-
ten einer reduktiven algebraischen Gruppe definiert sind. Sie stellt ein
wichtiges Werkzeug in der Theorie der automorphen Formen dar, und ist
selbst Gegenstand weitreichender Untersuchungen. Wir werden verschiedene
Aspekte dieser Spurformel untersuchen.

Fiir mogliche Anwendungen ist es von Bedeutung, grofe Réume von Test-
funktionen und sinnvolle Entwicklungen der Distributionen zur Verfiigung
zu haben. Wir stellen fiir die Gruppe GL(3) eine modifizierte Form der
von Arthur angegebenen feinen geometrischen Entwicklung auf und zeigen,
dass die so modifizierte geometrische Seite fiir einen grofen Raum von Test-
funktionen absolut konvergent ist. Dieser Raum von Testfunktionen ist in
gewisser Weise natiirlich und entsprechende Resultate fiir die geometrische
Seite der Spurformel von GL(2) bzw. fiir die Spektralseite der Spurformel
einer allgemeinen Gruppe wurden von Finis und Lapid (2011) bzw. Finis,
Lapid und Miiller (2011) bewiesen.

In diesem Raum von Testfunktionen befinden sich fiir die Gruppen GL(n)
insbesondere spezielle, von einem komplexen Parameter s (mit Rs > 0)
abhingige Funktionen, die von besonderer arithmetischer Bedeutung sind.
Fiir solche Funktionen ergibt sich beispielsweise mit Hilfe der Theorie von
Godement-Jacquet fiir den Hauptteil der Spektralseite eine Summe von au-
tomorphen L-Funktionen. Es ist dementsprechend naheliegend, die Spur-
formel fiir GL(n) fiir diese Testfunktionen als Funktion von s zu betrachten.
Wir werden meromorphe Fortsetzungen fiir die spektralen Terme auf grofere
Halbebenen zeigen und deren erste Pole bestimmen.

Als Anwendung werden wir folgende Asymptotik zeigen: Fiir bestimmte
Schwartz-Bruhat Funktionen @ # 0 auf dem Raum der 3 x 3-Matrizen iiber
den endlichen Adelen existieren Konstanten a > 0, so dass

> omel) Y pobti—axiiexd) ()

E/Q total reell E€OR\Z
[E:Q]=3 trp g &2<X
fiir X — oo. Hierbei sind I(®f,£) > 0 durch Bahnintegrale zu ®¢ und §
assoziierte Koeffizienten. Fiir GL(n) im Allgemeinen erwartet man &hnliche
Asymptotiken solcher Summen fiir n-dimensionale Koérpererweiterungen be-
stimmter Signatur, sofern die Konvergenz der geometrischen Seite fiir die
jeweils bendétigte Spurformel gezeigt werden kann. Eine Konsequenz von
(65) ist eine obere Schranke fiir den Limes Superior von
5

X2 > res (p(s)

E tot. reell, [E:Q]=3
mi(E)<X

fiir X — oo, wobei mq(F) das zweite sukzessive Minimum der positiv defi-
niten quadratischen Form § — trg /g €% auf Op ist. Es ist zu erwarten, dass



der Grenzwert dieser Summe existiert und nicht verschwindet.

Der Fall GL(2) dient hierbei als Vorbild und wir werden ihn im Detail un-
tersuchen: Aufgrund der oben genannten Resultate, diirfen wir auch hier
unsere speziellen Testfunktionen verwenden. Es wird sich unter anderem
herausstellen, dass der Hauptteil der geometrischen Seite durch die Shintani-
Zetafunktion gegeben ist, mit deren Hilfe Shintani in der Lage war, Asymp-
totiken fiir Klassenzahlen von bindr-quadratischen Formen anzugeben.
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