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Abstract 
Modern neuroscientific research is built upon the solid foundation of over a century of 
pioneering efforts by anatomists, physiologists, physicians, surgeons, and more recently 
physicists, mathematicians, and computer scientists. The study of the neocortex – its 
structural organization and function – has proven a particularly difficult undertaking, and 
yet it may be fundamental to the understanding of human cognition, as well as neurological 
pathologies such as the loss of memory, sensation, motor function, and various forms of 
dementia. This dissertation focuses on both the structure and function of cortex using a 
number of distinct approaches.  

Firstly, I present the results from morphometric analyses of a large cohort of elderly adults 
with symptomatic small vessel disease, called the Radboud University Nijmegen Diffusion 
tensor- and Magnetic resonance imaging Cohort (RUN-DMC). Cortical surface 
representations of 485 subjects were obtained from structural MRI scans, and analyzed for 
the effects of age, sex, hemisphere, and white matter lesion volume, both as whole-surface 
and region-of-interest analyses. A distinct pattern of age-related cortical thinning was 
observed, which was greatest in prefrontal cortex, lateral and medial temporal cortex, and 
parts of primary visual and primary auditory cortex. The relationship of white matter lesion 
volume with cortical thickness was investigated across three age groups, indicating a strong 
negative correlation in most Brodmann areas for adults aged 60-85, as well as two 
paradoxical positive correlation in motor and sensory association regions. 

Secondly, drawing on graph and game theory, I present a novel formulation of the Shapley 
value, originally devised to analyze economic systems, to assess the degree to which 
individual vertices in a graph (representing connected cortical regions), contribute to the 
global connectivity of that graph. Shapley values were calculated for both intact and lesioned 
networks, obtained from macaque tract tracing literature, to demonstrate their utility for 
analyzing real cortical networks, and predicting the effects of insults to these networks. The 
Shapley value is compared to existing graph measures of cortical networks, demonstrating a 
fair degree of covariance – but not complete redundancy – particularly with the betweenness 
centrality measure.  

Thirdly, I present an extension of the cortical hierarchy idea, first presented by Felleman 
and Van Essen (1991), which associates the anatomical patterns of cortical projections with 
their position in a functional hierarchy. A novel optimization framework is described, which 
uses continuous scales and ranges of values as constraints which define hierarchical 
relationships. The results of this optimization produce a hierarchy which is optimal, but 
which still has a number of constraint violations, corresponding to a number of regions 
which may be interesting for future anatomical investigation. Finally, a new measure based 
upon cell counting techniques, called the SLN%, is considered as a novel constraint for the 
optimization.  

Fourthly, and finally, I present a novel method for assessing the degree to which an 
interregional projection is compromised by a white matter lesion, based upon diffusion-
weighted MRI probabilistic tractography. Preliminary results from this method indicate that 
connectivity for long-range projections is difficult to detect using this technique; however, 
ways in which to resolve this issue are discussed. In light of the above research, I conclude 
by discussing the implications for clinical and basic research, and illustrate a number of 
future research prospects.  



1.1. Overview 

1 
 

1. Introduction 

1.1. Overview 
What follows is a brief introduction into the very many topics which converge on the 
research projects that follow. This section is divided into seven parts, describing: (1.) the 
neocortex, which is the biological system of interest – here I describe a bit of the history and 
origins of neocortical research; (2.) human brain mapping, in which I outline the various 
ways in which the human brain can be mapped, and the various issues which arise when one 
attempts to do so; (3.) brain connectivity, in which I present the cortex as a connected 
network, and describe the various types of connectivity (structural, functional, and effective), 
and how they are presently studied; (4.) magnetic resonance imaging, which is the data 
acquisition method for the morphometric and tractographic analyses – here I introduce some 
of the basic principles behind MRI and diffusion-weight imaging; (5.) human brain 
morphometry, in which I discuss two methods of measuring the geometry of the brain, and 
in particular the neocortex; and finally (6.) the aging brain, where I discuss the cognitive, 
structural, and functional ways in which the brain degrades in old age. 

1.2. The Neocortex 
The neocortex is the biological subject of all the discussion which follows in this dissertation. 
As such, it is useful to precede the discussion with a brief overview of this complex bit of 
tissue, and thereby set the context for what follows. Neocortex is the outermost layer of the 
central nervous system (CNS), and is a distinguishing characteristic of the class Mammalia. 
Its name derives from the observation that it is the evolutionarily newest addition to the 
CNS, and together with paleocortex and archicortex it comprises the cerebral cortex of the 
mammalian brain. Following a convention of sorts, and considering that it is the only part of 
the cerebral cortex with which we shall here be concerned, the neocortex will herein be 
referred to synonymously as simply “cortex”. 

1.2.1. History 
An association between brain and behaviour goes back at least as far as Hippocrites, who 
among other inquiries had a keen interest in the physiology of epilepsy (Chang et al., 2007). 
A clear focus upon the functional roles of neocortex, however, was first suggested by Franz 
Joseph Gall, upon whose morphological speculations the field of phrenology was founded (see 
Section 1.6), and documented more precisely by Broca (Broca, 1861) and Wernicke 
(Wernicke, 1874), each of whom inferred functional roles on the basis of their disruption by 
focal brain lesions in human cortex, which resulted in specific forms of aphasia. 
Contemporaneously, (Fritsch and Hitzig, 1960) first directly demonstrated the localized 
function of cortex, by eliciting stereotypical motor responses with targeted electrical 
stimulation of the dog brain. These and similar findings have lent support to the theory that 
the cortex behaves in a localized fashion; i.e., that each of its specific functions is subserved 
by a distinct neuroanatomical structure, which is specialized for that function. This theory 
was further substantiated by detailed investigation into the cytoarchitectonic organization of 
cortical tissue by Campbell (Campbell, 1905) and Brodmann (Brodmann, 1905, 1909), who 
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demonstrated that localized patches of tissue formed a clearly distinguishable topology 
across the neocortical sheet (see Section 1.3). 

Despite the appeal of this localization hypothesis, it had a number of prominent opponents – 
notably John Hughlings Jackson and Karl Lashley, the latter of whom argued that, apart 
from low-level sensory or motor functions, there did not appear to be any sensible connection 
between cortical lesion location and higher level functions such as learning and memory. In 
particular, Lashley (Lashley, 1950) showed that by lesioning non-sensory regions of cortex in 
rats, he could disrupt maze learning performance to a degree which was proportional to the 
extent of the lesion, and independent of its location. On the basis of this and other of his 
experimental findings, he concluded that memory traces, or engrams, are distributed equally 
throughout the cortex (his principle of equipotentiality), and that memories or learned 
behaviours emerge by means of an integration of neuronal activity specified by the 
connectivity provided by engrams, which are in turn formed by more general facilitation 
mechanisms including hormones and emotions (his principle of mass action or mass 
facilitation). 

As is commonly the case with two seemingly opposing schools of thought, the more 
parsimonious theory of cortical function is likely one which incorporates parts of both. 
Consider, for instance, face recognition. The existence of neurons selective for specific faces, 
or parts of faces, have been widely reported in the macaque superiotemporal sulcus (STS) 
(Gross et al., 1972; Desimone, 1991; Perrett et al., 1991). In humans, fMRI evidence points to 
an analogous function in the fusiform face area (FFA), located in inferotemporal cortex (IT) 
(Kanwisher et al., 1997), and localized lesions to this area typically result in a complete 
inability to perceive or differentiate faces, a condition called prosopagnosia (De Renzi, 2000). 
This evidence supports the idea that brain function, even at the level of complexity of face 
recognition, is supported by localized processing “modules”, as predicted by the localization 
hypothesis. However, a large amount of neural processing is required to either perceive a 
face, or to encode it in memory. STS receives input from the ventral processing stream, 
including visual areas V1, V2, and V4, where complex visual stimuli are thought to be 
broken into basic elements and recombined into shapes and textures, from which 
components they are constructed into complete face representations by specialized cells in 
FFA (Rolls, 2000). Moreover, to remember a face, it must be encoded, a process that appears 
to activate a broad network of areas, including amygdala and hippocampus, and 
extrastriate, frontal and parietal cortices (Keightley et al., 2010).  

From the viewpoint of modern neuroscience, one of the most appealing theories of cortical 
function is that it is comprised of many discrete sub-networks which are specialized for 
different types of information processing. Some of these modules may construct primitive 
topological feature representations of sensory stimuli, others may perform temporal 
encoding. Some may specialize in producing motor commands, others may integrate 
multimodel information, or coordinate emotional responses. These individual modules, 
which are expressed anatomically as contiguous cortical or subcortical regions, are connected 
up in specific ways which optimize the information transfer between them: a module is 
“wired” to expect certain types of information as input, to transform or integrate that 
information in specific ways, and to transmit new information of a specific type to their own 
target modules (see, for instance: (Houk and Wise, 1995)). How such an organization might 
function in the human or macaque cortex is a very open question, although frequency 
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analysis of interregional oscillations may provide some important clues (Fries, 2009). In this 
dissertation I describe a number of investigative approaches which seek to address parts of 
this open question: namely, graph theoretical and computational studies of cortical 
connectivity, and an MRI-based inquiry into age- and pathology-related alterations to 
cortical morphology. 

1.2.2. Anatomical Methods 
Our current understanding of the anatomy of human neocortex owes itself to a number of 
methodological advances. The most important of these, in the context of the present 
dissertation, include: (1.) histology, which involves the microscopic observation of cells and 
their components; (2.) tract tracing, which is a form of histology that investigates the specific 
long-range connectivity patterns of the brain (discussed in Section 1.4.1.2); and (3.) 
neuroimaging, which permits the in vivo observation of both the structure and function of 
the human brain; it is the subject of Section 1.5.  

Histology refers to the study of microscale anatomy; in neuroscience it typically refers to the 
investigation of cell morphology. Histological studies of the human cortex can be conducted 
on sections of post-mortem brain tissue, and often seek to qualitatively or quantitatively 
describe the distribution and morphology of neurons, including their spatial organization, 
packing density, size, and orientation – features which are collectively referred to as 
cytoarchitecture. A related field of research focuses on the architecture of white matter (i.e., 
myelinated axonal projections), which is referred to as myelinoarchitecture (Eickhoff et al., 
2005a). More recent advances in genetics have facilitated a third form of histological 
investigation – focusing on so-called receptorarchitecture. This methodology utilizes label 
substances which target specific RNA precursors, and thus permit an indirect spatial 
quantification of protein expression; the target molecules in this case being receptor 
proteins. Histological observations such as these have been the basis of many attempts to 
map the human brain (e.g., (Brodmann, 1909)) (see also Section 1.3). 

 

Figure 1.1. The human cortex parcellated into lobes. The anatomical reference set uses three 
primary axes: AP=anterior-posterior (front-to-back; also called rostral-caudal), ML=medial-lateral 
(middle to left and right sides), and IS=inferior-superior (bottom to top; also called ventral-dorsal). 
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1.2.3. Macroscale Anatomy 
In humans, neocortex is a component of the telencephalon, also referred to as the cerebrum, 
which also includes white matter, amygdala, hippocampus, rhinencephalon, and lateral 
ventricles. The neocortex is comprised of a convoluted “sheet” of grey matter, with a 
thickness ranging from 1.5 to 5 mm. These convolutions are referred to as gyri (singular 
gyrus), which are its outward, visible protrusions, and sulci (singular sulcus), which are its 
inward invaginations. The cortical sheet itself can be coarsely subdivided into four lobes, 
separated by major sulci: frontal, temporal, parietal, and occipital; as well as insula and 
cingulate cortex (Figure 1.1). 

1.2.4. Mesoscale Anatomy 
Histology of neuronal tissue was greatly advanced by the neuronal staining methods 
discovered by Camillo Golgi and Franz Nissl, which bear their names. Golgi’s method in 
particular has been useful for characterizing and classifying individual cells, due to its still-
mysterious ability to stain a small number of neurons in their entirety, including all 
neurites. Ramon y Cajal, for instance, utilized this technique to examine the 
cytoarchitecture of many parts of the human central nervous system, an endeavour at which 
he was extremely prolific, and for which he and Golgi shared the Nobel Prize in Physiology 
or Medicine in 1906 (see (Fishman, 2007)). Much of the early anatomy of the cortex was built 
upon histological staining methods, which revealed, among other observations: (1.) that the 
brain is comprised of distinct cellular units – particularly neurons and glial cells; (2.) that 
these units are morphologically heterogeneous and can be classified on this basis; (3.) that 
neurons are comprised of somata, dendritic arbours, and axons; and (4.) that the cortex is 
organized generally into cytoarchitectonically distinct layers.  

 

Figure 1.2. Basic six-layered structure of the neocortex. Shown on a microphotograph of sectioned 
rat somatosensory (barrel) cortex, where layer V is subdivided into a and b sublayers. This laminar 
organization is also referred to in terms of granular (layer IV), supragranular, and infragranular. 

This latter observation was first reported by Theodor Meynert (Meynert, 1868), and later 
expanded and systematized by Korbinian Brodmann (Brodmann, 1905, 1909) – among 
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others. Considering the laminar schemes proposed by a variety of independent researchers, 
Brodmann discussed the lamination of cortex in terms to two basic criteria: ontogeny (or 
embryonic development), and comparative anatomy (comparisons between the phylogeny of 
different species). Ontogenetically, cortical development occurs in an inside-out fashion, with 
the result that more superficial layers develop later (which further suggests that they are 
phylogenetically more recent). In terms of comparative anatomy, Brodmann made the 
assertion that virtually all mammals have basic six-layered cortices in the embryonic stage 
of development, which tend to decrease in adult “lower” mammals with lissencephalic 
brains. This scheme is presented in Figure 1.2.  
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1.3. Human Brain Mapping 
§1. Cartography is the diagrammatic imitation of the known parts of the World with its unique 
features and it differs from Chorography since really this is the selecting out of certain regions 
as such to detail almost all the features in the smallest detail, and fixing in place such things as 
harbours, villages, towns and the course taken by rivers. 

§2. The concern of Cartography is to determine the nature of the Earth by showing it as one 
whole, how it is formed and, from one given point, show a comprehensive circumscription with 
contours, the location of rivers, great cities and races of people most worthy of mention, and the 
shape of every one of the most distinguished features. 

§3. In its ultimate role, Chorography holds the key to describing just one part of the above 
mentioned whole as if one represented just the ear or the eye alone. But Cartography is the 
viewing of the whole, the analogy being that concerned with showing the whole head. 

–Ptolemy, on the differences between Chorography and Cartography. Geographica. (Ptolemy) 

By way of introduction into one of the world’s first treatises on cartography, Ptolemy draws a 
distinction between it and the related field of chorography (a term linked to the modern 
practice of surveying), pointing out that while the latter is concerned with the detailed 
description of some local terrestrial feature, the former approaches a holistic geometric 
representation of Earth, as well as its relation to the heavens. He draws an analogy with the 
description of the head, which is fortuitous for the present discussion because it is a nice way 
of introducing the parallel between the ancient science of cartography – the mapping of 
Earth – and the mapping of the human brain. As an earth science, cartography represents a 
fundamental tool for all other disciplines of earth science. A knowledge of maps, for instance, 
was critical to the later understanding of navigation, plate tectonics, glacial activity, and 
volcanism. Similarly, as we shall see, a knowledge of brain maps lays the groundwork for a 
large part of modern neuroscientific research. 

Ptolemy’s comparison of local and holistic representations of terrestrial topography is 
especially applicable to the problem of utilizing localized brain maps for the purpose of 
compiling larger scale brain networks (discussed in Section 1.4.1). His analogy falls short, 
however, at one crucial distinction. Whereas Earth cartographers had only one, relatively 
constant, subject of interest – our planet – brain cartographers have the added difficulty of 
mapping an entire population of individual brains, for any given animal species. And while 
there does appear to be a degree of topographical consistency across individuals within a 
species, there is also a large degree of individual variation – particularly in humans – which 
adds a new layer of complexity to the problem. What follows is a description of the historical 
development of brain mapping, definitions of its most important concepts, an introduction to 
the different topographical representations of this complex organ, and a general overview of 
the aspects of human (and non-human primate) brain mapping most relevant to this 
discussion. 

1.3.1. History and Definitions 
Seeking an anatomical basis for the localization hypothesis, Brodmann undertook a 
systematic parcellation of the cortical sheet on the basis of laminar patterns of 
cytoarchitecture, which often exhibit sharp transitions that allow clear regional delineations 
(Brodmann, 1909; Zilles and Amunts, 2010). The result of this intensive effort was a 43-
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region map of human cortex (Figure 1.3), in addition to maps in a number of different 
species, across which he made an attempt to attribute homologies. Further investigations 
into anatomical parcellation followed that of Brodmann. Cécile and Oskar Vogt, working 
alongside Brodmann, utilized myelin stains to develop a myelinoarchitectonic map, which 
subdivided the cortex into 200 regions (Vogt and Vogt, 1919). Von Economo and Koskina 
expanded upon the work of Brodmann, primarily by refining his ontology and further 
subdividing his parcellation (von Economo and Koskina, 1926).   

The parcellation and methods of Brodmann have received a number of criticisms, most 
notably by Percival Bailey and Gerhardt von Bonin (Bailey and von Bonin, 1951), who 
argued that his methods suffered from individual observer bias, given that all observations 
and parcellations were made by Brodmann alone. Moreover, von Bonin and Bailey tested 
Brodmann’s delineation methods by scrambling photographs of stained cortical tissue and 
attempting to ascribe these photographs to particular areas based solely upon Brodmann’s 
cytoarchitectonic criteria. Observing that most Brodmann areas failed this test, they 
concluded that this criteria alone was insufficient to objectively classify the majority of the 
cortical sheet. This latter criticism is valid to an extent; however, since a parcellation into 
cortical regions is essentially an attempt to ascribe anatomical borders to distinct regions, 
the topological information utilized by Brodmann (and eliminated by von Bonin and Bailey) 
is a perfectly legitimate criterion for parcellation, suffering only in the case of neighbouring 
areas. 

 

Figure 1.3. The Brodmann parcellation. Representation of the cytoarchitectonic parcellation of 
Brodmann (1905), on a population average human cortex. MW=artificially created medial wall. 

 

1.3.2. Individual Differences 
One obvious utility of a cortical parcellation is its assignment to individuals, from where it 
can serve as a means of identifying functional properties; such brain maps can, for instance, 
be used to link structural and functional phenotypes, or investigate how structural 
alterations, such as age-related degeneration, lesions, infarcts, or pathologies, are related to 
functional observations such as motor, sensory, cognitive, or memory deficits. Both the gross 
and cytoarchitectonic morphology of the human cortex, however, vary substantially across 
individuals, to a much greater extent than in other species (Kennedy et al., 1998). Since it is 
currently impossible to use cytoarchitecture or other histological approach to make regional 
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assignments in vivo, for either macaques or humans, this observation introduces a critical 
difficulty with respect to applying a canonical parcellation scheme, such as that of 
Brodmann, to living, functioning individuals within the species.  

One approach to this problem utilizes the large-scale features of human cortex which are 
generally preserved across individuals: namely, major gyral and sulcal patterns. Treating 
these features as “landmarks”,  it is possible to use their locations on the cortical surface as 
constraints for a spatial deformation field, which allows sets of nodes from two individual 
surface representations (see Section 1.3.3.2) to be mapped onto one another. This approach 
has been used to map both between individuals, between template surfaces, and even 
between primate species. While promising, however, this deformation method suffers from at 
least one major drawback: that the correspondence between major landmarks and 
cytoarchitectonic regions can vary substantially across individuals. This caveat was raised 
by Brodmann himself, and further substantiated by more recent histological methods 
(Amunts and Zilles, 2001; Uylings et al., 2005). 

1.3.3. Representations 
1.3.3.1. Textual (coordinate-independent) 

In the course of evolution of the field of comparative neuroanatomy – particularly tract 
tracing studies performed in macaque monkeys – a large number of distinct and localized 
brain maps have been devised in order to describe various scales of structural connectivity, 
with the notion that these might provide useful inferences into the structure of human brain 
networks. Typically, these “coordinate-independent” brain maps (Kötter and Wanke, 2005) 
make textual references to previously defined maps (e.g., statements such as: “Our area A is 
identical to/included within/contains so-and-so’s area X”), and often portray this relationship 
in a sectional figure. Given the large number of such anatomical studies that have been 
performed over the past century, however, the integration of this large body of mapping and 
connectivity data into a single cortical representation is a daunting task. This metadata 
approach has been undertaken in the form of the CoCoMac database, which provides a 
systematic means of cataloguing and comparing these textual representations, allowing the 
data to be integrated into cortex-wide representations. This database is described in more 
detail in Section 1.4. 

1.3.3.2. Spatial (coordinate-dependent) 

Since histological investigations typically utilize sectional slices of neural tissue, spatial 
representations of human and macaque brains have traditionally taken the form of two-
dimensional sections. This planar representation provides simple and intuitive figures for 
journal articles; however, because they are restricted to a single planar orientation, it is 
often difficult to determine anatomical relationships for features which do not occur within 
the chosen plane. The utility for morphometric analysis, moreover, is greatly limited. 

Volumetric representations are usually compiled from stacks of planar images (of a specific 
thickness), and have become increasingly popular with the advent of both computing 
technology and advanced neuroimaging techniques. An MRI scan, for instance, is naturally 
represented in this way (see Figure 1.4). Volumetric representations allow sectional views at 
arbitrary plane orientations, and can also be visualized using three-dimensional rendering 
techniques, with optional masking of specific tissue classes such as skull and scalp, thus 
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providing a vastly improved means of showing anatomical, as well as functional, features. 
Volumetric representations also permit a wider array of analytical approaches, such as 
voxel-based morphometry (VBM), described in Section 1.6.1. 

Since the neocortex takes the form of a convoluted sheet, it can be conveniently represented 
as a set of connected three-dimensional vertices: a tessellated two-manifold, as it is more 
formally known, or a surface mesh, as it will be referred to here. Such a mesh can be 
generated from a volumetric brain representation, by manually or algorithmically 
segmenting the image into tissue compartments (such as grey matter, white matter, and 
cerebrospinal fluid), and deforming a mesh of sufficient resolution to approximate the 
boundaries of these compartments (Dale and Sereno, 1993; Thompson et al., 1997; 
MacDonald et al., 2000; Kim et al., 2005). The resulting cortical surface can be used both as 
a visualization tool and as a means for performing a number of useful morphometric 
analyses, such as cortical thickness, gyrification, sulcul depth, and curvature. This 
representation is also quite useful as a population template (see Section 1.3.4 below).  

Because two-manifolds are surfaces, they can also be represented in two dimensions, in the 
same way that the surface of the (pseudo-)spherical Earth can be represented as a two-
dimensional map. As in the case of terrestrial maps, such a “flat map” representation of 
cortex is achievable by strategically defining “cuts” along the cortical surface, and unfolding 
it until it all of its vertices lie on a single plane (Figure 1.4). Although this inevitably results 
in a degree of spatial skewing, flat map representations provide a convenient view of the 
entire cortex, while retaining most of its neighbourhood relationships. Additionally, plotting 
curvature on this map allows gyrification patterns to be represented. Flat maps have also 
been used to define spatial deformation fields, allowing individual representations to be 
compared (Van Essen et al., 1998). 

1.3.4. Atlases and Templates 
Through the course of history of neuroscientific research, there have been many attempts to 
formulate a generalized spatial representation of the brain’s anatomy, which representations 
are indispensible for performing statistical comparisons between subjects. So-called 
stereotaxic representations of neuroanatomy have become increasingly refined, in response 
to the demands of neurosurgery and neurology; however, these representations have almost 
invariably relied on tedious post-mortem histological methods obtained from a limited 
number of individuals (e.g., Brodmann’s parcellation), which are not possible in the living 
organism – and particularly the living human. In the past few decades, however, as 
computer technology and neuroimaging techniques have advanced, the prospect of 
developing a universal mapping scheme, or atlas, of the human brain, has become 
increasingly likely. Stereotaxic brain atlases can thus be classified into two categories: (1.) 
classical atlases, which are typically based upon a single – or small number – of specimens, 
and which provide a guide into the relative locations of anatomical features; and (2.) 
probabilistic atlases, which are based upon a sufficiently large number of specimens to be 
representative of a population, and specify absolute spatial coordinates, relative to which a 
probabilistic distribution, derived from the sample, can be expressed. This is perhaps best 
achieved through the definition of a standard, or template representation. 
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1.3.4.1. Terminology 

Brain mapping uses a number of terms to refer to its elements, which are briefly introduced 
here: 

i. Maps and parcellations 

The term map, derived from the Latin mappa, for napkin, or towel (Merriam-
Webster online dictionary), originally referred to terrestrial charts; i.e., a two-
dimensional representation of the Earth’s features. While the brain is a three-
dimensional structure, the neocortex can be represented as a closed two-
manifold, which can be further represented as a sphere, in the same way that 
the planet can be represented as a sphere. It is, however, often desirable to 
represent more of the brain’s complexity than such a surface representation 
affords: i.e., white matter tracts, subcortical structures, ventricles, 
vasculature, etc. The term map can thus be extended to permit such 
volumetric representations. A parcellation is a class of map, in which the area 
or volume is subdivided into discrete parcels (areas or regions, see next). This 
term is usually used to refer to cortical parcellations. 

ii. Areas and regions 

The term cortical area is often used to refer to specific parcels of a cortical 
parcellation. Brodmann’s areas are such an example. This term is appropriate 
to a surface representation, where subdivisions indeed have finite surface 
areas. However, in a volumetric representation, the use of “area” to describe a 
parcel is technically erroneous, given the mathematical sense of the word. 
Neither can the term “volume” be unambiguously used, as it typically refers to 
an entire volumetric map. The more general term “region” is often used 
instead, and this is the term I will adopt herein to refer to any brain parcel. 

iii. Atlases and templates 

The term “atlas” has been used in various ways within the brain mapping 
community, often confusingly, so it is worth dissecting here. Merriam-Webster 
defines the word as: 

atlas  a: a bound collection of maps often including illustrations, informative 
tables, or textual matter  b: a bound collection of tables, charts, or plates. 

This definition fits with, for instance, classical brain atlas representations, 
whose subjects were single or small numbers of individuals. Given, however, 
that the brain of a given species is in reality a plurality of brains, with 
substantial variability, this classical definition falls short. Instead, many 
modern atlases are probabilistic in nature (see, for example, (Mazziotta et al., 
2001)); geometrically, such probabilistic atlases serve as templates onto which 
individual representations can be deformed, where the term template is 
defined as (Merriam-Webster): 

template  something that establishes or serves as a pattern. 

As the term “atlas” is widely used in the field today, I shall use it herein to 
refer to mapping schemes of both varieties. The term “template” is best 
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reserved for discussions of the geometric operations required to compose or 
register individuals to probabilistic atlases. 

1.3.4.2. Classical atlases 

Brodmann, the Vogts, von Economo & Koskina, and others have put forward cortical 
parcellation schemes based upon the post-mortem histological examination of brain slices, 
obtained from a small number of individuals. These pioneering efforts were painstaking and 
comprehensive, and their products can be considered atlases in the classical sense. More 
modern versions of such atlases are still being published, and utilized for investigations in 
animal models such as mouse, rat, and rhesus macaque (Mai et al., 1997; Paxinos et al., 
1999), as well as neurosurgery in humans (Rengachary and Wilkins, 1996). Such atlases 
might also be referred to as relativistic, given that they are generally used to ascertain the 
relative locations of anatomical structures, which serve as a rough guide for the localization 
of target regions. 

1.3.4.3. Probabilistic atlases 

Facing a growing need to represent the brain, as a plurality, with greater fidelity than that 
offered by relativistic atlases, Talairach and Tourneaux (Talairach and Tournoux, 1988) first 
introduced a method for geometrically aligning individual brain representations to one 
another. To this end, they produced a template representation (derived from the post-
mortem brain of an elderly female), and then outlined a method for aligning individuals to 
this template. This alignment scheme consisted of dividing Euclidean space into 12 parts 
(Figure 1.4), defined by consistent midsagittal anatomical landmarks (anterior and posterior 
commissures, AC and PC), and then performing 12 separate linear transformations which 
would align the dimensions of the individual brain to those of the template. Despite 
numerous drawbacks to this approach (e.g., reliance on a single, non-representative 
template, or the use of local rather than global transformations), the template-based scheme 
it proposed established a groundwork for the construction of a probabilistic atlas of the 
human brain. 

Further work has built upon this groundwork. Mazziota and colleagues (Mazziotta et al., 
2001) introduced a project aimed at establishing a population-based atlas representation of 
various data modalities, called the International Consortium for Brain Mapping (ICBM). 
This project currently collects and maintains data from a large number of subjects, using a 
variety of imaging modalities and standard protocols. As an important extension of the 
Talairach and Tourneaux template, Louis Collins and colleagues produced a new template 
called the MNI-305, consisting of MRI scans from 305 normal young adults, coregistered 
using a global 9-parameter linear transformation (Collins et al., 1994) and averaged across 
subjects. This volumetric atlas, or a derivation thereof called the ICBM-152, serves as an 
anatomical template for many modern processing tools (Ashburner and Friston, 1999; Smith 
et al., 2004) (Figure 1.4). 

One shortcoming of the ICBM-152 is that, given the high variability of cortical gyri, it 
represents cortex as blurred regions, which makes good sulcal correspondence between 
coregistered images difficult to attain. David Van Essen (Van Essen, 2005) introduced a 
different form of population template, based not upon a volumetric representation, but upon 
a cortical surface representation. The Population-Average, Landmark- and Surface-based 
atlas (PALS-B12; Figure 1.4) is based upon cortical surface approximations of 12 normal 
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young adults (six males and six females), aligned to one another using sulcal landmarks, and 
averaged to produce a single surface representation. The PALS template exhibits a more 
consistent alignment of sulci than volume-based approaches, and thus arguably provides a 
more accurate means of aligning individual representations to one another. Moreover, a 
surface-based parcellation scheme can be used to respect both sulcal boundaries and 
neighbourhood relationships, both of which suffer in an assignment based upon a volumetric 
parcellation. 

 

Figure 1.4. Probabilistic atlases. Top Left: Normalization scheme introduced by Talairach and 
Tourneaux (1988). Top Right: ICBM-152 average volumetric template. Bottom Left: PALS-B12 

surface template. Bottom Right: PALS-B12 flat map representation. 

While population-based volumetric and surface atlases provide a powerful means of aligning 
individual representations, there remains the problem of how to represent brain 
parcellations. As discussed in Section 1.3.2, individual differences in anatomy make this 
assignment non-trivial. One approach which addresses this issue is the construction of a 
probabilistic parcellation. Using ex vivo human brain sections, and applying both 
cytoarchitectonic and receptorarchitectonic criteria (the latter referring to a distribution of 
expression for specific neurotransmitter receptor molecules), one can obtain a spatial 
probability distribution for various cortical regions, which can be assigned to standard space 
and applied to individual geometrical models which have been transformed to this space 
(Amunts and Zilles, 2001; Eickhoff et al., 2005b). A variation on this approach is the use of 
neuroimaging data as the criterion for regional delineation (Shattuck et al., 2008). While 
this latter approach suffers from a lesser spatial resolution, and does not permit the 
observation of cellular or molecular features, it has been shown to have a high degree of 
interrater reliability, and has the distinct advantage of being derived from an in vivo 
population.   
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1.4. Brain Connectivity 
A popular view of the brain and its functionality is based upon the idea of connectionism: 
that the brain functions as a network of interconnected processing units, and that this 
connectivity is fundamental to its overall behaviour. Given the body of anatomical literature 
summarized here, there can be little doubt that the brain is indeed wired in such a fashion. 
The functional implications of this structural organization, however, remain one of the most 
investigated questions in neuroscientific research, and indeed form a substantial part of this 
dissertation. What follows is a summary of our current theoretical understanding of brain 
connectivity, and methods by which it is investigated. 

1.4.1. Structural Connectivity 
Structural connectivity refers to a physical connection between two distinct units. In a 
simple electrical circuit, for instance, this would refer to the “wiring” through which current 
can flow, and thus a physical means of signal transfer. In the brain, structural connectivity is 
determined by the observation of directed axonal projections from one brain region (the 
source) to another (the target). Such connections can be divided loosely into two categories: 
short-range (local) and long-range (interregional). Short-range connections (0-500μm) are 
typically found throughout the cortical sheet (Hellwig, 2000) and mediate the local spread of 
neuronal activity. Long-range connections are those which originate in one brain region and 
project via white matter fasciculi to another, distal, region. Under normal developmental 
conditions, long-range connectivity is very regular and specific within a species, and this 
specificity has also been observed to be preserved across related species such as primates.  

1.4.1.2. Experimental methods 

The bulk of current knowledge about structural connectivity in the human brain is based 
upon comparative anatomy obtained largely from macaque monkeys. Such an approach 
requires the supposition of homologies between the two species, which can be based upon 
such criteria as ontogeny, cytoarchitecture, or function. Tract tracing is a staining method in 
which the tracer substance is injected at a specific location in vivo, allowed time to be 
actively transported along axons, and examined ex vivo for the resulting distribution of 
labelled sites. Tracer substances are typically of two classes, based upon the direction in 
which they are transported: anterograde (transported from the soma towards the axon 
terminal) and retrograde (transported from the axon terminal towards the soma). Figure 1.5 
illustrates this paradigm for both tracer types. More recent advances in magnetic resonance 
imaging (MRI) allow an indirect, in vivo, noninvasive observation of cortical connectivity, by 
measuring the degree of anisotropic diffusion of water molecules in a technique called 
diffusion-weighted imaging (DWI; described in detail in Section 1.5.2).  
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Figure 1.5. Investigations of structural connectivity. A: Anterograde tract tracing. Tracer substance 

is injected in a source region, taken up by somata, and transported to axon terminals in target 
regions (orange). B: Retrograde tract tracing. Tracer is injected in a target region, taken up at axon 

terminals, and transported back to somata in source regions. C: DWI-based tractography in the 
human brain (see Section 1.5.2). 

1.4.1.3. Metadata and databases 

One drawback of the comparative anatomical approach is that, through its development, a 
large number of localized maps have been devised for individual studies which do not 
necessarily facilitate a comparison with other studies. It has been common practice, for 
instance, to introduce novel maps and nomenclature for structures with existing names, or 
to utilize differing scales of granularity depending on the scope of a given tract tracing 
experiment. Occasionally, textual statements or figures provide a means of relating 
structures in one study with those in preceding studies, but the overall result of this practice 
is a very large set of brain regions with connectivity information, but no simple means of 
incorporating this information into more holistic representations. 

This problem of metadata has been approached in a number of ways. Most relevant for the 
present discussion is the CoCoMac database (Collations of Connectivity data on the Macaque 
brain) (Kötter, 2004), which provides a systematic compilation of a large amount of existing 
tract tracing literature, including a system of recording textual relationships between the 
brain areas of different maps (i.e., using set terminology indicating whether a brain 
structure A contains, is contained by, is equivalent to, or is disjoint from another brain 
structure B). Such ontological relationships permit the combination of structural 
connectivity information across many distinct maps, including those which are separated by 
a number of relational statements (or relationship paths; e.g., A > B = C > D reduces to A > 
D). 
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1.4.2. Functional Connectivity 
As its name suggests, functional connectivity refers to a dynamic brain network through 
which signals are propagating – either by transduction of external stimuli, relaying of 
neuronal firing patterns, integration of diverged signal pathways, or generation of intrinsic 
activity. This idea is based upon the notion that the time series of activity from a given brain 
region A can be statistically compared to a second region B, and this comparison can 
demonstrate the degree to which the two signals are related to each other. The study of 
functional brain connectivity is thus an extension of signal theory into connected brain 
networks, and its investigations make extensive use of the statistical tools developed for this 
physical theory. Functional connectivity can be defined, in the context of neuroscience, as a 
statistical relationship – typically either correlation or dependence – between neural activity 
occurring within spatially distinct regions of the brain. These terms are discussed below: 

i. Correlation: 

The correlation ݎ௫௬ between two random vectors (e.g., time series) ࢞ and ࢟, is 
the degree of synchrony with which their values vary. More formally, it is the 
expectation of the product of their components, which depends upon the 
probability distributions of ࢞ and ࢟, and can be expressed as: 

௫௬ݎ ൌ  ሽݕݔሼܧ

ii. Dependence: 

The dependence of two random vectors ࢞ and ࢟ is defined in terms of 
probability densities and is proportional to the difference of the joint 
probability ݌௫,௬ሺݔ,  ሻ andݔ௫ሺ݌ ሻ from the product of the marginal probabilitiesݕ
 ሻ. In other words, two variables are independent only if their probabilityݕ௬ሺ݌
together is equal to their probability separately: 

,ݔ௫,௬ሺ݌ ሻݕ ൌ  ሻݕ௬ሺ݌ሻݔ௫ሺ݌

If: 

,ݔ௫,௬ሺ݌ ሻݕ ൐  ሻݕ௬ሺ݌ሻݔ௫ሺ݌

 can be said to be positively dependent (i.e., they are more probable ݕ and ݔ
together than separately), and if: 

,ݔ௫,௬ሺ݌ ሻݕ ൏  ሻݕ௬ሺ݌ሻݔ௫ሺ݌

 can be said to be negatively dependent (i.e., they are less probable ݕ and ݔ
together than separately). 

Correlation is in fact a special case of statistical dependence, where ࢞ and ࢟ are derived from 
linear functions, and their relationship is also linear. The two terms are also equivalent in 
the special case where both ࢞ and ࢟ have Gaussian distributions (see (Hyvärinen et al., 
2001)). These two concepts are fundamental to a number of important signal processing 
techniques that are currently used to investigate neuroimaging data: uncorrelatedness is the 
basis of principal component analysis (PCA), and independence is the basis of independent 
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component analysis (ICA), both of which methods are used to isolate distinct, relatively 
disconnected networks of functionally connected brain regions. 

In the analysis of functional connectivity, correlational approaches suffer from the fact that 
communication between brain regions will always have a specific transmission latency 
which, depending on the nature of the connectivity between regions ܣ and ܤ, and the 
temporal resolution of the recording method, may offset the phase of the oscillatory signal 
such that connected regions appear uncorrelated. This problem has been approached by 
calculating the cross-correlation (or phase coherence) of a pair of signals, which optimizes 
their correlation after accounting for a specific time-lag between them.  

Statistical dependence can also be expressed in terms of mutual information, ܫሺܺ; ܻሻ, which 
is a measure derived from information theory, and describes the degree to which two vectors 
of data contain redundant, or mutual information. This measure was originally devised to 
analyze the degree to which two lines of code could be compressed without loss of 
information, but has proven quite useful in other aspects of signal processing. For discrete 
vectors, mutual information is defined as (Latham and Roudi, 2009): 

;ሺܺܫ ܻሻ ൌ ෍  ෍ ,ݔ௫,௬ሺ݌ ሻݕ log ቆ
,ݔ௫,௬ሺ݌ ሻݕ

ሻݕ௬ሺ݌ሻݔ௫ሺ݌
ቇ

௫א௑௬א௒

 

From this equation it is easy to see that any term in the summation is positive when 
,ݔ௫,௬ሺ݌ ሻݕ ൐ ,ݔ௫,௬ሺ݌ ሻ, negative whenݕ௬ሺ݌ሻݔ௫ሺ݌ ሻݕ ൏ ,ݔ௫,௬ሺ݌ ሻ, and zero whenݕ௬ሺ݌ሻݔ௫ሺ݌ ሻݕ ൌ
 ሻ. Thus mutual information is commonly utilized to assess the degree of functionalݕ௬ሺ݌ሻݔ௫ሺ݌
dependence between two brain regions (Honey et al., 2007).  

1.4.3. Effective Connectivity 
While functional connectivity implies that connected regions are part of the same functional 
network, it does not provide information about how these regions are connected. For 
instance, if thalamic nucleus ܶ has projections to both cortical regions ܣ and ܤ, then ܣ and ܤ 
will be functionally connected, even in the case where they have no direct structural 
connections between them (Figure 1.6). Effective connectivity refers to such causal 
relationships between brain regions, and as such affords stronger statements about how a 
brain network functions; e.g., activity in ܣ causes subsequent activity in ܤ (with some 
probability ܲ). According to (Büchel and Friston, 1997): 

Effective connectivity is closer to the intuitive notion of a connection then functional 
connectivity and can be defined as the influence one neural system exerts over another (Friston 
et al., 1993b), either at a synaptic (c.f. synaptic efficacy) or cortical level. … It has also been 
proposed that “the [electrophysiological] notion of effective connectivity should be understood as 
the experiment and time-dependent, simplest possible circuit diagram that would replicate the 
observed timing relationships between the recorded neurons” (Aertsen & Preissl, 1991). 

There is an implication in this latter definition that while functional connectivity is a data-
driven statistical measure, effective connectivity is model-based and requires a parametric 
optimization (i.e., a fit to dynamic empirical data) which can offer probabilistic estimates of 
how activity is propagated through a brain network. According to Büchel and Friston, two 
such models are needed: (1.) a representation of structural connectivity, i.e., as discerned 
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from neuranatomical evidence; and (2.) a mathematical model describing the transmission of 
signals between connected regions. 

 
Figure 1.6. Functional vs. effective connectivity. Even if functional connectivity is demonstrated 

between brain areas ܣ and ܤ, it is impossible to infer from this whether a direct causal link exists 
between ܣ and ܤ, since they may be driven by a common input ܶ. 

Due to the complexity of making inferences on large networks, which do not tend to scale 
linearly, most investigations of effective connectivity focus on a limited set of regions. Three 
such approaches are summarized below: (1.) multiple linear regression, (2.) structural 
equation modelling (SEM); and (3.) dynamic causal modelling (DCM): 

1.4.3.1. Multiple linear regression 

Perhaps the simplest mathematical representation is a linear model, of the form: 

݉௜ ൌ ෍ ௜௝ܥ ௝݉ ൅ ݁௜ 

where ݉௜ is the activity in brain region ݅, ܥ௜௝ is the connection strength from region ݆ to 
region ݅, and ݁௜ is an error term (from (Büchel and Friston, 1997)). This relationship can then 
be treated as a multiple linear regression problem, where the weights ܥ are the coefficients 
and brain activity measures ௝݉ are the regressors. 

In practice, however, the covarying activity of brain networks changes with respect to time, 
and thus more temporally-informed modelling approaches are necessary to obtain accurate 
estimates of effective connectivity. Two such approaches follow. 

1.4.3.2. Structural equation modelling 

SEM (also known as path analysis) is basically an extension of the above linear model, with 
the addition of a temporal dimension, and an assumption of statistical independence 
between time steps. This involves the specification of a statistical model to describe an 
observed physical system, and the minimization of error in a goodness-of-fit statistic, which 
measures the difference between the model prediction and empirical evidence (i.e., between 
their patterns of variance and covariance) (McIntosh and Gonzalez-Lima, 1991; Penny et al., 
2004). For a connected brain network, this involves constructing a graph model whose 
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directed edges are constrained by structural connectivity, as assumed on the basis of 
previous experimentation. Subsequently, the connection strengths (i.e., synaptic efficacy) can 
be treated as free parameters, which can be manipulated so as to minimize the goodness-of-
fit error. Additionally, external inputs, representing residual variance not explained by the 
model, can be included in the minimization. The connection strength covariance matrix 
which serves as the fitting constraint represents functional connectivity, so SEM can be 
intuited as an integration of structural and functional connectivity to infer causality, which 
is possible because the connections are unidirectional. 

1.4.3.3. Dynamic causal modelling 

DCM combines a small-scale, biophysically plausible forward model with a statistical 
framework facilitating model inversion (i.e., parameter fitting) and comparison (see 
(Daunizeau et al., 2009) for review). This is a potentially much more powerful means of 
estimating effective connectivity, given a sound model formulation, because it allows 
manipulation of the underlying (“latent”) neurodynamics, rather than the observables, as is 
the case with SEM (Penny et al., 2004). The general form of a DCM model is a set of 
ordinary differential equations (ODEs) which describe the rate of change of the system’s 
state, ݔ (after (Daunizeau et al., 2009)): 

ሶݔ ൌ ݂ሺݔ, ,ݑ  ሻߠ

where ݑ represents experimental manipulations (e.g., external input), and ߠ represents free 
(unknown) system parameters (e.g., synaptic strengths). Since ݔ typically represents some 
hidden system state, such as the mean neuronal firing rate or local field potential, an 
additional transfer function (or observation equation) is usually necessary, mapping from the 
hidden state to some observable signal, such as BOLD or EEG: 

ݕ ൌ ݃ሺݔ, ߮ሻ 

where ߮ represents free (unknown) observation parameters (e.g., describing volume 
conduction in scalp EEG). The DCM can then be constructed as a graph (see Section 1.4.5), 
with each vertex representing an element of ݔ, and each edge representing a causal 
relationship, the nature of which is determined by the parameters ߠ. The vertices can then 
assume states which evolve at discrete time points, generating a simulated signal through ݕ.  

DCMs are generally set in a Bayesian statistical framework. This form allows the 
incorporation of prior knowledge, including known biophysical constraints on parameters 
(e.g., the presence or absence of anatomical connections, or the range of values a parameter 
can plausibly assume). The Bayesian framework for a DCM ݉ is characterized by (1.) the 
marginal likelihood, or model evidence: 

ሻ݉ | ݕሺ݌ ൌ න ,ߴ | ݕሺ݌ ݉ሻ · ሺ݌  ߴ݀ ሻ݉ | ߴ

where ߴ represents both sets of parameters ߠ and ߮, from above; and (2.) the posterior 
probability density: 

,ݕ | ߴሺ݌ ݉ሻ ൌ
,ߴ | ݕሺ݌ ݉ሻ · ሻ݉ | ߴሺ݌

ሻ݉ | ݕሺ݌
 

The model evidence represents the probability of a set of observations ݕ (e.g., fMRI signals), 
given a specific model ݉, by generating simulations of ݕ over all possible parameter values. 
In practice, this involves sampling over their distributions, or by using an optimization 
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approximation called a variational Bayesian technique (Penny et al., 2003). It can be used to 
compare between distinct model formulations (i.e., different versions of the function ݂, 
above). The posterior probability can be used to make inferences about model parameters ߴ 
(e.g., what happens when we modulate synaptic connectivity with serotonin?).  

1.4.4. Cortical Hierarchies 
In the early 1960s, David Hubel and Thorsten Wiesel undertook a series of 
electrophysiological experiments investigating the structural and functional organization of 
the cat visual system (Hubel and Wiesel, 1959). They reported that neurons in striate cortex 
had a very specific preference to fire in response to visual stimuli which included contrast 
(i.e., the borders between dark and light regions). These cells could be further classified on 
the basis of the orientation of the edge to which they responded, a property referred to as 
orientation tuning. Moreover, these orientation-specific cells were arranged into columnar 
groups across the striate cortex, in a topological fashion corresponding to the small retinal 
receptive field from which they received input. These orientation-tuned cells with small 
receptive fields were termed "simple cells". Other neurons were found to have a similar 
orientation specificity, but much broader receptive fields (i.e., they demonstrated a larger 
degree of spatial invariance). Still other neurons responded specifically to movement in a 
particular direction. Due to the relative complexity of these response properties, and the 
hypothesis that their inputs comprised an integration of simple cell outputs, these latter 
types of neuron were termed "complex cells". 

Further investigation of the visual system extended into anatomical regions beyond striate 
cortex, including V2, V3, V4 and MT. Hubel and Wiesel found no evidence of simple cells 
beyond striate cortex, but did find complex cells, similar in their response patterns to those 
of V1, as well as neurons with more elaborate characteristics, which they termed 
"hypercomplex cells". These cells had generally very broad receptive fields, but were specific 
for stimulus properties such as width, length, orientation of movement, and other "higher-
order" spatial and temporal patterns. 

One of the conclusions that may be drawn from this important body of research is that the 
visual cortex is potentially organized in a distinctly hierarchical fashion, such that neurons 
which receive information directly from sensory inputs code for very simple stimulus 
properties (such as retinal position and edge orientation), and this coded information is 
relayed to higher-level neurons which code in turn for more complex features. This 
perceptual hypothesis implicates a division of labour that provides an intuitive explanation 
for the patterns of connectivity in the early visual cortex, and suggests that such a 
hierarchical system may indeed be an organizing principle of the entire neocortex. 

In the late 1970s and early 1980s, the notion arose that anatomical measurements could be 
utilized as a criterion for establishing a hierarchy of cortical regions. In particular, the 
laminar source and target distributions of interregional projections were observed to 
correspond to the feedforward, lateral, and feedback relationships of the connected regions 
(Maunsell and Van Essen, 1983) (see Figure 1.7). In 1991, Daniel Felleman and David Van 
Essen systematically investigated this notion, by compiling a large body of tract tracing 
evidence, and applying this as a constraint on the delineation of a full cortical hierarchy of 
the visual system, including 32 cortical areas, and 318 of the 992 possible pairwise 
hierarchical relationships between them. This resulted in a comprehensive wiring diagram 
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of the visual system (see Figure 4, (Felleman and Van Essen, 1991)), which is still widely 
employed within the field of neuroscience.  

 

 

Figure 1.7. Projection-based constraints for determining hierarchical relationships, from Felleman 
and Van Essen (1991). 

Two major criticisms of the Felleman and Van Essen hierarchy, however, are: (1.) that it 
requires eight violations of the anatomical constraints, and (2.) that it is chosen, somewhat 
arbitrarily, by the authors, from a model space on the order of 10ଷ଻. To address these issues, 
(Hilgetag et al., 1996) developed a genetic algorithm approach, producing 150,000+ unique 
hierarchies which had less constraint violations than the original (six instead of eight). 
While the position of cortical regions at the bottom of the hierarchy (V1, V2, etc.) remained 
fairly stable across hierarchies, the higher regions varied greatly, suggesting a possibly 
inherent indeterminacy in this sort of determination. 

However, a number of developments in neuroanatomical research have changed the picture 
somewhat. Firstly, the observation that laminar source and termination patterns cannot 
only predict the direction, but also the relative hierarchical distance of a projection (i.e., how 
far apart the connected regions are in the hierarchy) (Kennedy and Bullier, 1985; Barone et 
al., 2000; Batardière et al., 2002; Hilgetag and Grant, 2010), suggests that new constraints 
can be applied to the optimization. Secondly, extending this even further, if cells labelled 
from a retrograde tracer are counted, the proportion of cells in the supragranular layers, to 
the total number of cells, can yield a real-valued estimate of the relative hierarchical 
distance, called the SLN% (Barone et al., 2000). Furthermore, while previous 
representations have chosen to set cortical regions on discrete hierarchical levels, there is no 
apparent reason why regions should be classified in this way. My colleagues and I (Reid et 
al., 2009) have proposed a new hierarchical optimization scheme, using continuous values 
rather than discrete levels, and ranges to represent hierarchical distance. These methods 
are described in Section 4.1. 

1.4.5. Graph Theoretical Approaches 
Brain networks can be conveniently represented as directed graphs, with brain regions as 
graph nodes and their projections as directed edges connecting these nodes. Graphs are 
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particularly well-suited to investigations of structural brain connectivity, as they permit the 
application of graph theoretical analyses to these networks. Below I introduce, as exemplars, 
three common graph theoretical measures which are currently used to investigate the 
structural characteristics of brain networks. For this purpose, it is useful to first define a few 
graph theoretical concepts: (1.) graph, vertex, and edge; (2.) directed graphs; (3.) weighted 
graphs; and (4.) paths: 

 

Figure 1.8. Various graph representations. A: undirected, unweighted graph. B: directed graph. C: 
directed, weighted graph. D: red edges show a directed path of length 2 from vertex i to vertex j. 

i. Graph, vertex, and edge 

A graph ܩ, is defined by a set of vertices ܸ, and a set of edges ܧ, where each 
edge defines a link between two vertices in ܸ. Figure 1.8A shows a simple 
graph with five vertices and five edges. 

ii. Directed graphs 

A directed graph is one that contains directed edges, designated with an arrow 
on one end. Directed edges depict unidirectional relationships (e.g., causality, 
axonal connections, etc.). Figure 1.8B portrays a directed graph. 

iii. Weighted graphs 

A weighted graph is one for which edges have a set of associated values, or 
weights. Edge weights allow concepts such as connection strength or distance 
to be represented in a graph (for a neural network or a geographical graph, 
respectively). Figure 1.8C portrays a weighted, directed graph. 

iv. Paths 

A path can be defined as a sequence of edges (and the vertices they connect) 
through which two vertices ݅ and ݆ ሺ݅, ݆ א  ሻ can be connected. A path must beܩ
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acyclic, meaning that it cannot contain a vertex more than once. The term 
shortest path denotes the set of unique paths between ݅ and ݆ in ܩ, which have 
the fewest number of vertices. Figure 1.8D portrays a shortest path between 
two vertices. 

1.4.5.1. Small worldness 

Small worldness is the property of a network in which any one of its vertices is connected to 
any other of its vertices via a small number of intervening vertices (i.e., relative to what 
would be expected from a randomly connected network). As first demonstrated by the social 
psychologist Stanley Milgram (Travers and Milgram, 1969), human social networks 
demonstrate this property (often referred to as “six degrees of separation” or “six degrees of 
Kevin Bacon”, depending on who you ask). Cortical networks have also been demonstrated to 
have small worldness (Sporns et al., 2000, 2007; Sporns and Honey, 2006), and this can be 
used as a measure of network efficiency (how well a network transmits information), which 
has been reported to decrease, for instance, in multiple sclerosis patients (He et al., 2009). 
Duncan Watts and Steven Strogatz (Watts and Strogatz, 1998) introduced two formal 
criteria and a canonical model to define small worldness: relative to a random graph (as 
defined by (Erdős and Rényi, 1959)), it must demonstrate (1.) an equal or smaller mean 
shortest path length; and (2.) a significantly higher clustering coefficient. This can be 
formulated more precisely as follows (after (Watts and Strogatz, 1998; Humphries and 
Gurney, 2008)): 

i. Mean shortest path length 

For a directed, unweighted graph ܩ, the shortest path length ݔ௜௝ between 
vertices ݅ and ݆ ሺ݅, ݆ א  ሻ is the path with the fewest number of interveningܩ
vertices. The mean shortest path length ீܮ, then, is the mean over all node 
pairs ሺ݅, ݆ሻ: 

ீܮ ൌ
∑ ∑ ௜௝ݔ

௡
௝

௡
௜

݊ሺ݊ െ 1ሻ , ሺ݅ ് ݆ሻ 

ii. Clustering coefficient 

The clustering coefficient ܿ௜ of vertex ݅ ሺ݅ א  ሻ represents the degree to whichܩ
݅’s neighbours are interconnected. This can be calculated as: 

ܿ௜ ൌ
௜ܧ2

݇௜ሺ݇௜ െ 1ሻ 

where ܧ௜ is the number of connections between ݅’s neighbours, and ݇௜ is the 
number of neighbours. ீܥ, the clustering coefficient of graph ܩ, is then the 
mean ܿ௜ over all vertices. 

iii. Small worldness 

Since small worldness is defined with respect to random graphs, we can get a 
measure of small worldness by taking ratios of ratios: 
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ீߛ ൌ ஼ಸ
஼ೝೌ೙೏

   and   ீߣ ൌ ௅ಸ
௅ೝೌ೙೏

 

where ܥ௥௔௡ௗ and ܮ௥௔௡ௗ are derived from a random graph, and: 

ܵீ ൌ
ீߛ

ீߣ
 

ீܵ can be considered small world if ܩ ൐ 1. 

1.4.5.2. Betweenness centrality 

Betweenness is a measure of a vertex’s centrality in a network; in other words, how well-
connected it is on average to all other vertices in the network. Centrality has been used in 
social networks to measure a person’s importance for communication within that network 
(Freeman, 1978), and high centrality is an important property of a “hub” node, such as can 
be found in computer, airport, and brain networks. Betweenness refers specifically to the 
frequency with which a vertex occurs in shortest paths between two other vertices (Freeman, 
1977; Brandes, 2001). For the simplest case of an undirected, unweighted graph, it can be 
defined more formally as follows (after Brandes, 2001):  

Given an undirected, unweighted graph ܩ, and two vertices ݅ and ݆ ሺ݅, ݆ א  ሻ, we can defineܩ
 ሻ asݒ௜௝ሺߪ ௜௝ as the number of unique, shortest paths between ݅ and ݆. We can further defineߪ
the number of unique, shortest paths between ݅ and ݆ which include vertex ݒ ሺݒ א  .ሻܩ
Betweenness centrality, then, is simply the ratio of the number of shortest paths in ܩ which 
contain ݒ, with the total number of such paths. Formally, this looks like: 

஻ܥ ൌ ෍
ሻݒ௜௝ሺߪ

௜௝௜ஷ௩ஷ௝ߪ

 

where ܥ஻ is the betweenness centrality measure.  
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1.5. Magnetic Resonance Imaging 
Magnetic resonance imaging (MRI) is based upon the principle of nuclear magnetic 
resonance (NMR), which was first observed by Isidor Rabi in 1938, and employed by Felix 
Bloch and Edward Mills Purcell in 1946, for which the latter two shared the 1952 Nobel 
Prize in Physics. This principle was further applied to medical imaging by Paul Lauterbur 
and Peter Mansfield, which earned them the Nobel Prize in Physiology or Medicine in 2003.  

It is difficult to overstate the importance of MRI to both modern neuroscientific research and 
clinical practice. Depending on the contrast and acquisition protocols used, MRI allows a 
visualization of the structural details or functional activation of the in vivo human brain, at 
an impressive spatial resolution that promises to improve as higher magnetic field strengths 
are employed. MRI, moreover, is completely noninvasive, and does not require exposure to 
potentially harmful radiation, as is the case with alternative methods such as x-ray 
computed tomography (CT) scanning. As MRI is the data acquisition method for the RUN-
DMC data considered in this dissertation, this section provides an overview of the 
techniques and basic principles underlying MRI. 

1.5.1. Basic Principles 
1.5.1.1. Nuclear magnetic resonance 

NMR is a property observed in magnetic nuclei in a magnetic field: when radiated by an 
radio-frequency (RF) electromagnetic (EM) pulse of a specific resonance frequency (or 
Larmor frequency), these nuclei absorb energy from the pulse and radiate it back at rates 
which can be used to infer the composition of the medium containing them. A commonly-
employed model of this phenomenon is: (1.) when nuclei are placed in an applied magnetic 
field ܪ଴, a fraction of their magnetic spins become aligned with ܪ଴; (2.) when they are 
radiated by an RF pulse (with a frequency equal to the Larmor frequency for a target 
particle), these spins become momentarily misaligned, creating a thermal nonequilibrium 
state; and (3.) after cessation of the RF pulse, misaligned nuclei “relax”, or return to their 
thermal equilibrium states, at measureable rates from which time constants can be derived. 
Relaxation occurs as two separate physical processes: (1.) parallel to the orientation of ܪ଴, 
called spin-lattice relaxation time (with the associated time constant ଵܶ); and (2.) 
perpendicular to it, called spin-spin relaxation time (with time constant ଶܶ). These are 
described below: 

i. Spin-lattice relaxation time (ࢀ૚)  

If we assign ܯ௓ as the net longitudinal magnetization vector (the vector in the 
direction of ܪ଴, resulting from the sum of spins in the medium being imaged), 
and ܯ଴ as the state of this vector under the uniform magnetic field ܪ଴ (i.e., the 
equilibrium magnetization), then after a sufficient RF pulse (a so-called 90º 
pulse, which rotates the net magnetization by 90º), we have ܯ௓=0 (indicating 
that all spins are misaligned with ܪ଴). The spin-lattice relaxation time 
describes the rate at which the spins realign to ܪ଴. This relaxation towards the 
equilibrium magnetization is exponential (Figure 1.9, left), and can be 
described by the function: 

ሻݐ௓ሺܯ ൌ ଴ܯ · ൫1 െ ݁ି௧ భ்⁄ ൯ 



1.5. Magnetic Resonance Imaging 

25 
 

 

 

ii. Spin-spin relaxation time (ࢀ૛) 

When spin vectors are not aligned with the longitudinal axis of ܪ଴, their 
behaviour is characterized by precession, which is analogous to the behaviour 
of a spinning top rotating in a gravitational field. A 90º RF pulse causes the 
phases of the precessing spin vectors to align in the transverse (XY) plane, 
resulting in a nonzero net transverse magnetization vector ܯ௑௒. As the system 
relaxes, however, the phases of its spin vectors fall out of alignment, until ܯ௑௒ 
approaches its equilibrium state of zero. Spin-spin relaxation takes the form of 
an exponential decay (Figure 1.9, right), described by the function: 

ሻݐ௑௒ሺܯ ൌ ௑௒ሺ0ሻܯ · ݁ି௧ మ்⁄  

Notably, the rate of decay is dependent upon two factors: (1.) molecular 
interactions, which are the phenomena of interest, and whose net effect is 
typically referred to as the true ଶܶ signal; and (2.) local inhomogeneities in the 
magnetic field within a voxel, which are typically considered noise. The 
measured signal is a combination of these factors, and is referred to as ଶܶ

 .כ

 
Figure 1.9. NMR signal relaxation profiles with typical time constants for cortical grey matter. Left: 

spin-lattice relaxation ( ଵܶ ൌ Right: spin-spin relaxation ( ଶܶ .( ݏ920݉ ൌ  .(ݏ100݉

 

1.5.1.2. Field gradients 

Because the resonance frequency of a particle is proportional to the magnetic field strength, 
a gradient set up across the field can be used to determine the position of a signal source 
produced by NMR. The three-dimensional localization of an MR acquisition can be 
accomplished in two steps: (1.) a linear, one-dimensional gradient ܩ௓ is established in the 
longitudinal direction, during the RF pulse. Since the resonance frequency required to flip a 
particle’s spin is dependent upon the field strength, only particles within a small corridor of 
the field will absorb the EM energy, and longitudinal position of this corridor can be 
controlled by the pulse frequency. In general, this is called the slice-selecting gradient, 
denoted ܩௌ. (2.) A linear, one-dimensional gradient ܩ௑ is established in the transverse 
direction during signal acquisition (in this case, the x direction). This ensures that particles 
will have differential resonance frequencies during their relaxation period, which correspond 
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to their positions with respect to the orientation of ܩ௑ (i.e., their x position). ܩ௑ (generally ܩ௙) 
is thus called a frequency-encoding gradient. A second gradient can now be used to encode 
the y direction, called the phase-encoding gradient ܩ௒ (generally ܩథ). ܩ௒ is applied for a 
duration prior to signal acquisition and then removed, resulting in a systematic offset of the 
phases of the precessing magnetization vectors; if ܩ௒ is changed across ݊ repeated 
acquisitions, this offset can be used to determine the signal’s y position. The dimensionality 
of y will thus be ݊. This determination is obtained through Fourier analyses, which will not 
be elaborated here. 

1.5.1.3. Acquisition protocols 

Since the values of ଵܶ and ଶܶ are dependent on the composition of the medium being imaged, 
their values can be used to weight voxel intensities in the resulting image, and the contrast 
between voxels can be used to differentiate between tissue classes. Since the desired 
contrasts obtained by an MRI protocol vary depending on the research or clinical question 
(e.g., grey matter, white matter, cerebrospinal fluid, strokes, lesions, or tumours), a variety 
of acquisition protocols have been developed which maximize contrast between particular 
tissue types (i.e., weighting on one or the other of these time constants). These are typically 
extensions of two basic protocols: (1.) gradient echo, and (2.) spin echo; where “echo” refers to 
a means of amplifying a signal by arranging for an alignment of spin phases at a specific 
time called the echo time (TE).  

1.5.2. Diffusion-Weighted Imaging 
Diffusion-weighted imaging (DWI) is a modification of the MR acquisition protocol, which 
allows the quantification of molecular diffusion in the brain. Since diffusion occurs 
maximally along directed fibers, DWI has been used to image the distribution and integrity 
of white matter tracts in the human brain, and thus has a very promising potential for 
connectivity research, as well as myriad clinical applications. 

1.5.2.1. Principles 

DWI derives from the observation that particles, such as water molecules, move in a random 
fashion called Brownian motion. In an isotropic medium, any one molecule may be displaced 
significantly over a duration ∆ݐ, although the net displacement of molecules will have a 
magnitude of zero. This diffusion of individual molecules can be detected by MRI. Following 
work by Stejskal and Tanner (Stejskal and Tanner, 1965), this is accomplished by adding two 
new strong gradient pulses to the acquisition sequence, equal in magnitude and duration, 
but opposite in direction. This sequence will have the effect of dephasing and then rephasing 
the spins of the particles, such that the net phase shift should be zero; however, if the 
particle is displaced along the gradient direction during the pulses, its net phase shift will 
most likely be nonzero. The average of these nonzero phase shifts will result in a reduced 
phase coherence, and a drop in the measured signal. The average rate of diffusion in a given 
voxel, then, can be inferred from the signal drop induced by this gradient pulse sequence. 
The resulting value is called the apparent diffusion coefficient (ADC). 

1.5.2.2. Diffusion tensor imaging 

The anisotropic diffusion of water through white matter was first reported by Michael 
Moseley (Moseley et al., 1990), who reported that ADC derived from this tissue was 
dependent upon the gradient direction, relative to the orientation of the white matter tract. 



1.5. Magnetic Resonance Imaging 

27 
 

This led to the idea that diffusion could be represented as a tensor, by acquisitions using 
three or more gradient directions. A tensor specifies a geometric ellipsoid, whose orientation 
and anisotropy can serve as a model for the diffusion of water molecules. For each gradient 
direction, the gradient can be represented by a vector ࢗ, oriented with the direction of 
diffusion, and having a magnitude equal to the gradient field strength. The diffusion 
weighted image is typically specified using the weighting factor ܾ: 

ଶݍ~ܾ · ∆ 

where ݍ is the magnitude of ࢗ, and  is the duration between the onset of the two gradient 
pulses. 

The resulting imaging protocol, called diffusion tensor imaging (DTI), meant that MRI could 
yield information not only about the rate of diffusion in tissue, but also the degree of 
anisotropy (a measure called fractional anisotropy, or FA), and the magnitudes and 
directions of anisotropic diffusion (reviewed in (Le Bihan, 2003)). 

1.5.2.3. Q-ball and persistent angular structure imaging 

One problem with the tensor model described above is that a single ellipsoid (representing a 
single Gaussian distribution) is often an inadequate model for diffusion, particularly in 
voxels where fibers may be crossing one another, bending, or twisting within the voxel. This 
is only partially improved by adding additional tensor models (a so-called multi-tensor 
model), since typically only two principle directions are represented in this way (Parker & 
Alexander, 2005). An alternative approach was proposed by David Tuch and colleagues (Tuch 
et al., 1999; Tuch, 2004), who suggested that a tessellated sphere called a q-ball could be 
used, in conjunction with a larger number of gradient angles.  

 
Figure 1.10. Diffusion-weighted imaging of a pig brain shown in horizontal section, obtained using 

Camino software . A: Fractional anisotropy (FA) map. Red box indicates the region magnified at 
right. B: Orientation distribution functions (ODFs), calculated with the persistent angular 

structure (PAS) model. C: Multi-tensor model of the same data. 

For a given gradient direction, the gradient field can be represented by a wavevector ࢗ: 
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ࢗ ൌ ሺ2ߨሻିଵࢍߜߛ, 

where ߛ is the gyromagnetic constant, ߜ is the duration of each diffusion gradient pulse, and 
 is oriented with the direction of ࢗ ,is the diffusion gradient vector (Tuch, 2004). Thus ࢍ
diffusion, and has a magnitude proportional to the net diffusion in that direction. 

Q-ball imaging, as this approach is called, is based upon high-angular-resolution diffusion 
imaging (HARDI), in which acquisitions are taken with gradient fields of many orientations, 
such that each vertex of the q-ball can being specified by the ࢗ vector corresponding to a 
particular orientation. Q-ball imaging, and a similar method called persistent angular 
structure (PAS-) MRI (Jansons and Alexander, 2003), provide a model-free estimation of an 
orientation probability distribution function (ODF), which allows a much more 
comprehensive representation of diffusion, and is thus a very useful means of quantifying 
the microstructural features of white matter within a voxel. An example of these ODFs is 
shown in Figure 1.10. 

1.5.2.4. Tractography 

One of the most obvious utilities of tensor, q-ball, and PAS imaging are their use in the 
tractography of white matter tracts. Tractography is a method of estimating the trajectory of 
a fiber tract using voxel-wise orientation information. This involves starting the tract at 
some seed region ܵ, and estimating its new direction after passing through a series of voxels, 
until some stopping criterion is met. For a DTI voxel, this typically means following the 
single eigenvector specifying the orientation of the ellipsoidal Gaussian distribution (Figure 
1.11A). Tractography can be performed once, or it can make use of the modelled probability 
distributions by performing multiple runs, sampling from each voxel-wise ODF on each run, 
a form of tractography called probabilistic tractography. Probabilistic tractography can also 
be performed with the use of target regions (regions in which tracts must terminate) or 
waypoints (regions through which tracts must pass), in order to investigate specific 
questions about connectivity. Since q-ball and PAS imaging provide a model-free ODF with a 
far superior representation of directional information, compared to DTI, their advantage for 
probabilistic tractography is obvious (Parker and Alexander, 2005) (Figure 1.11B).  

 
Figure 1.11. DWI-based tractography (images obtained using Camino software). A. Principle 

eigenvector obtained from a diffusion tensor model. The background is coloured by FA. B. Fiber-
orientation estimates for the same data, obtained from q-ball ODFs. The background is coloured by 

a Hessian-derived estimate of the peak sharpness for a given ODF. 
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1.6. Human Brain Morphometry 
Whoever would not remain in complete ignorance of the resources which cause him to act; 
whoever would seize, at a single philosophical glance, the nature of man and animals, and their 
relations to external objects; whoever would establish, on the intellectual and moral functions, a 
solid doctrine of mental diseases, of the general and governing influence of the brain in the 
states of health and disease, should know, that it is indispensable, that the study of the 
organization of the brain should march side by side with that of its functions. 

–Franz Joseph Gall, On the Organ of the Moral Qualities and Intellectual Faculties, and the 
Plurality of the Cerebral Organs (Gall, 1835). 

Gall was a German-born physician and neuroanatomist whose chief scientific interest was 
the establishment of a general mapping from the human brain’s morphology to its functions. 
In 1909, based upon a series of poorly-controlled experiments, Gall, along with his protégée 
Johann Gaspar Spurzheim, published an atlas of the human cortex called Anatomie et 
physiologie du système nerveux en général, et du cerveau en particulier. Perhaps the most 
notable of their assertions was that the shape and size of a person’s skull, which was 
assumed to correlate with the neural tissue beneath it, could be used to determine that 
person’s disposition and character; and, by extension, predict his or her probable behaviour. 
Although these assertions, which led to the field of phrenology and for a time enjoyed 
immense popularity, have been roundly rejected by the scientific community for lack of any 
sound empirical basis, they were perhaps the first such attempt at relating brain 
morphometry (the geometric measurement of neural tissue) to its function. 

With the advent of noninvasive, high contrast, high spatial resolution, in vivo brain imaging, 
brain morphometry has once again become a prominent field of scientific inquiry. Image 
processing techniques allow the estimation, for instance, of brain volume and density, as well 
as cortical thickness and white matter integrity. As such morphometric techniques are 
utilized in the current dissertation, they are outlined in this section. Although I am not so 
bold as to follow in the footsteps of Gall and Spurzheim, I do believe that these new, more 
direct investigations of living human brains might also be used to illuminate the functions – 
and the functional deficits – associated with localized cortical regions of interest. Such ideas 
will be more broadly considered in the Discussion. 

1.6.1 Voxel-based Morphometry 
Voxel-based morphometry (VBM) is the estimation of volumetric measures of brain shape or 
composition, based upon a brain image (see (Ashburner and Friston, 2000)). Such 
measurements rely upon the relationship of an individual image with a template image, 
constructed from a large number of individuals (see Section 1.3.4). VBM involves a number 
of steps: (1.) normalization of the subject image to the template image; (2.) intensity-based 
tissue classification; (3.) spatial smoothing; and (4.) statistical comparisons, resulting in a 
voxel-wise statistical parametric map (SPM). 

Spatial normalization for VBM typically uses a 12-parameter affine transformation, which 
removes gross individual shape differences such as head orientation and global size, but 
preserves the local idiosyncrasies which are of interest. Tissue is classified depending on the 
question of interest, typically into grey matter (GM), white matter (WM), or cerebrospinal 
fluid (CSF) compartments. Smoothing involves a voxel-wise convolution with a Gaussian 
kernel, which effectively accumulates information contained by a voxel’s spatial 
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neighbourhood, with a normal distribution that makes it statistically comparable to 
corresponding voxels in other images. The resulting value is referred to as either density or 
concentration (Ashburner and Friston prefer the latter term, as it distinguishes this value 
from that of cell-packing density, used in histology). The shape of the kernel (i.e., its 
variance component) should correspond to the magnitude of the expected differences under 
investigation. 

An SPM is obtained by performing an independent statistical analysis for each voxel in 
specific tissue compartment, typically a general linear model (GLM), which can assess the 
effects of experimental manipulations or population demographics upon morphology. Since 
this usually involves performing thousands of statistical comparisons, it entails the 
accumulation of a large amount of family-wise error (FWE). Methods for addressing this 
problem are discussed in Section 2.1.9. 

1.6.2. Surface-based Morphometry 
Given that the neocortex is formed as a convoluted sheet with a certain thickness, it can be 
represented  as a 3D surface mesh (or two-manifold), from which a number of geometric 
measures can be derived. A number of imaging algorithms have been developed for this 
purpose, most of which derive from 2D image processing methods. The “Snake model” (Kass 
et al., 1988), for instance, is a 2D method which utilizes a deformation polyline to estimate 
the boundaries in an image. In general, the goals of a surface approximation algorithm are: 
(1.) segment the image to define the boundaries of interest; (2.) define optimization 
constraints with which to guide the deformation of a approximating manifold; (3.) deform the 
manifold until it fits with an acceptable level of error (or fails). This procedure, in particular 
the CLASP routine used in this dissertation, is described in 2.1.7. The statistical analysis of 
vertex-wise effects is similar to that performed in VBM; i.e., independent vertex-wise GLMs 
are analyzed. This involves the same issue of FWE. 

Analysis of cortical thickness is likely more sensitive to anatomical changes than VBM 
approaches (Apostolova and Thompson, 2007; Hutton et al., 2009), and distinct patterns of 
cortical thinning have been observed in Alzheimer’s Disease (AD) (Apostolova et al., 2007; 
Lerch et al., 2005), schizophrenia (Narr et al., 2005), and aging (Salat et al., 2004), to name 
only a few. Within longitudinal designs, cortical thickness has also been used to produce 
dynamical maps of both the development of cortex and corresponding language skills  and 
the deterioration of cortex in AD. Such representations are also very useful for additional 
geometric measures such as sulcul depth, mean curvature, and surface area.  
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1.7. The Aging Brain 
The notion that the functionality of the human brain decreases with old age is more or less a 
matter of common knowledge. This degradation includes many varieties of information 
processing, including “speed of processing, working memory capacity, inhibitory function, 
and long-term memory” (reviewed in (Park and Reuter-Lorenz, 2009)). However, the 
patterns of such function loss are by no means clear, nor uniform across the population. 
Aging is a process which affects individuals in individual ways, which are attributable both 
to genetics and experience; this is evident from anecdotal observations ranging from male 
pattern baldness, female menopause, hearing and vision loss, and memory loss, to more 
severe pathological conditions such as Alzheimer’s Disease and other dementias, Parkinson’s 
Disease, vascular degeneration, strokes, hypertension, etc. Given both an increasingly 
elderly population, and a growing set of methodological tools including functional 
neuroimaging techniques, such degenerative patterns are being investigated with increasing 
intensity. What follows is a brief review on our current state of knowledge about the aging 
brain. 

1.7.1. Neurological and Cognitive Correlates 
1.7.1.1. Memory 

The age-related neural correlates of memory (typically working memory) have been well 
studied using various fMRI paradigms (see (Grady, 2008), for review). While specific effects 
differ according to the exact paradigm used, a consistent overactivation of the left prefrontal 
cortex (PFC) has been observed in elderly subjects (compared to younger subjects), 
corresponding to an increase in task performance (Dennis et al., 2007; Grady et al., 2008). 
Daselaar and colleagues (Daselaar et al., 2006) report a dissociation between hippocampal 
and parietotemporal activity in older adults who perform as well as younger ones, with an 
increase in associativity between rhinal and frontal cortex. These effects have been proposed 
as means of compensating for decreased hippocampal function, or attentional focus, in older 
subjects. Such compensation, however, may have its limits in the form of working memory 
load. Using an n-back paradigm, which allows working memory loads to be manipulated, 
Mattay and colleagues (Mattay et al., 2006) observed an overactivation of dorsolateral PFC 
bilaterally, in older adults who performed as well as their younger counterparts on a one-
back task, but this activation disappeared as the task became more difficult, and there was a 
corresponding drop in performance for older subjects. 

1.7.1.2. Executive function 

Studies of attention have also generally reported altered PFC activity in tasks requiring 
inhibition of distractor stimuli. Compared with younger subjects, PFC activation appears to 
be generally decreased for elderly adults (Jonides et al., 2000), but increased in those who 
successfully inhibit the distractor (Nielson et al., 2002). In a separate study, performance on 
two cognitive inhibition tasks presumed to require executive control, Stroop interference and 
stop signal responsiveness, significantly decrease with age, whereas performance on a non-
executive cognitive inhibition task does not show a similar decrease (Andrés et al., 2008). 
Since executive function (i.e., task engagement) has been shown to involve a suppression of 
so-called “default mode” network activity (Weissman et al., 2006; Fransson, 2006), this 
suppression has also been used as a measure of cognitive control. Such task-related 
suppression is reportedly reduced in older adults (Grady et al., 2006; Damoiseaux et al., 
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2008), and this effect has been shown to be proportional to task load: in low difficulty 
versions of a verb generation task, older subjects performed equally well as younger, and 
their default mode suppression was similar; however both relative performance and default-
mode suppression decreased with increasing cognitive demand (Persson et al., 2007).  

1.7.2. Structural Correlates 
1.7.2.1. White matter 

The relationship of age with the integrity of white matter (WM) has been studied from a 
number of angles. Notably, in individuals aged 60 to 90 years, the prevalence of some degree 
of WM lesions (WML) has been reported at 95% (de Leeuw et al., 2001). Moreover, 
periventricular WML severity is related to a factor-of-three increase in the rate of general 
cognitive decline for this same age group (De Groot et al., 2002). Aging has been linked 
specifically to a reduction of myelin, or myelinated fibers (Meier-Ruge et al., 1992), and age-
related WM degeneration, while global, appears to strongest in prefrontal areas (Jernigan et 
al., 2001), corpus callosum (Pfefferbaum et al., 2000), and periventricular areas (Nusbaum et 
al., 2001). Salat and colleagues (Salat et al., 2005) used DWI techniques to investigate the 
relationship of fractional anisotropy (FA) with age, and report a negative linear correlation 
of global FA with age across the most of the human life span (age 20 to 80). This effect was 
heterogeneous across the brain, being most prominent in prefrontal areas and posterior limb 
of the internal capsule (PLIC), while not significant in temporal or posterior regions. Other 
evidence suggests that prefrontal WM volume degenerates at a higher rate than cortical 
GM, particularly in adults over 75 (Salat et al., 1999).  

1.7.2.2. Grey matter 

Given the theoretical localization of function within the cortex, one might expect that the 
specific patterns of cognitive deficits described above would have some correlates in cortical 
grey matter (GM) integrity. Dekaban (Dekaban, 1978), obtained brain weight measurements 
by compiling a large number of pathology reports, and concluded a general age-related 
decrease in weight, correcting for height. At a finer scale, a number of post-mortem 
experiments investigating neuron counts have demonstrated an age-related decline 
occurring more prominently in association cortex than in primary sensory cortex (Flood and 
Coleman, 1988). One caveat of such comparisons is that they are typically made between 
separate studies employing different methodologies, often resulting in contradictory 
findings. Moreover, the use of post-mortem human tissue, in addition to having a number of 
methodological drawbacks which are difficult to control (Good et al., 2001), is also limited in 
its ability to accurately describe the living brain. 

Recent advances in MR imaging techniques have allowed for high-resolution in vivo analysis 
of age-related GM alterations. In particular, voxel-based morphometry (VBM; see Section 
1.6.1) facilitates a volumetric analysis (typically reported in terms of tissue volume or 
density) of living brain tissue, providing reasonably constrained tissue classification, region-
of-interest parcellation, and inter-subject comparisons (Ashburner and Friston, 2000). Using 
VBM, Raz and colleagues (Raz et al., 1997, 2004) report a general non-uniform age-related 
decrease in grey matter (GM) volume which is most prominent in lateral prefrontal cortex, 
and less so in sensorimotor and visual association cortices, while finding no age-related 
changes in primary visual, anterior cingulate, or inferior parietal cortices. Good and 
colleagues (Good et al., 2001) report a global age-related linear decrease in GM volume, 
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which is most pronounced bilaterally in the superior parietal gyri, pre- and post-central gyri, 
and insula/frontal operculum. An age-related decrease in GM density was also observed in 
the left middle frontal gyrus, bilateral transverse temporal gyri, and the left planum 
temporale. Sowell and colleagues (Sowell et al., 2003) found a non-linear decline in GM 
density with age, particularly in posterior temporal and inferior parietal cortices.  

An alternative MR-based morphometric approach is that of cortical GM thickness analysis, 
which is based upon a geometric approximation to the boundaries of cortical GM (see Section 
1.6.2). Cortical thickness analysis has been reported to provide a more sensitive measure of 
GM integrity than VBM (Hutton et al., 2009). Hutton et al. (2009) report a linear decrease of 
cortical thickness with age, for subjects aged 20 to 60 years. Salat et al. (Salat et al., 2004) 
investigated cortical thickness with respect to age across three age groups ranging from 18 
to 93 years, and report a significant age-related cortical thinning, apparent from middle age, 
in prefrontal, primary motor, and calcarine cortices, and a relative sparing of temporal and 
parahippocampal cortex.  

1.7.3. Structure and Function 
Given the patterns of functional and structural changes observed in aging, it is desirable to 
find links between these patterns, which would provide valuable insights into their neuronal 
mechanisms. A number of researchers have pursued this line of inquiry. In an early study, 
Salat and colleagues (Salat et al., 2002) report a significant hypertrophy of the superior 
prefrontal cortex, which corresponded to decreased cognitive performance in elderly adults. 
Colcombe et al. (Colcombe et al., 2005) tested old and young subjects on a cognitive 
inhibition task, and observed an increased activation of left PFC for older subjects, which 
negative correlated with performance. Moreover, while these authors found no difference in 
GM density between good and poor performers, they did observe higher WM density for good 
performers in underlying frontal lobe and collosal fibers. While Gunning Dixon and Raz 
(Gunning-Dixon and Raz, 2003) similarly report a negative relationship WM 
hyperintensities (WMH, an MRI marker for demyelination) on the Wisconsin Card Sorting 
Test (a measure of “perseveration”, or the ability to adapt to changing task sets), they found 
no relationship between WMH and working memory. Investigations of the brain networks 
underlying these effects are equally informative. Achard and Bullmore (Achard and 
Bullmore, 2007), for instance, report a decreased network efficiency, indicated by graph 
theoretical measures, in older adults, particularly in orbitofrontal, lateral temporal, and 
medial temporal regions. Taniwaki et al. (Taniwaki et al., 2007) report an interesting 
decrease in functional connectivity for older adults in the basal ganglia-thalamus-motor 
cortex loop, but an increased interhemispheric connectivity between the motor cortices 
themselves. 

1.7.4. Compensation 
The term “compensation” has been used, often rather loosely, to refer to the observed 
changes in apparently compromised brain tissue, which are proposed to functionally 
compensate for the loss of function imposed by this compromise. In the cognitive paradigms 
mentioned above, for example, an localized increase in activity observed in older adults 
might raise the speculation of compensatory change; i.e., an increased recruitment of one 
part of the brain network in compensation for a deficient functionality in another part. Such 
an proposition was made, for instance, by (Daselaar et al., 2006), who noted a switch from 
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hippocampal-parietal encoding of memory, to a rhinal-frontal one. Grady (Grady, 2008) 
identifies two possible models of compensatory activation: (1.) the case in which older 
subjects have increased activation in an region which in younger subjects does not activate 
(i.e., so-called over-recruitment), and both show equal performance; and (2.) the stronger 
case where older adults show a differential pattern of brain activity, which is directed 
correlated with better performance. 

Dedifferentiation refers to the idea that the over-recruitment of activation observed in older 
adults is due to decreased inhibitory processes, which normally suppress such activity. The 
result is a weakened ability to differentiate particular information streams, which is a form 
of attentional or concentration deficit. In support of this hypothesis, (Baltes and 
Lindenberger, 1997) investigated a large cohort of over 600 adults, aged 25 to 103, and found 
a strong connection between sensory functioning and cognitive ability, for both young and old 
individuals. Functionally, this theory may account for the increases in particularly bilateral 
PFC activation observed in older adults (for example (Reuter-Lorenz et al., 2000)). While on 
its face the dedifferentiation hypothesis would seem to predict a decrease in function related 
to such over-recruitment of activity, evidence suggests that this activity actually corresponds 
to increased cognitive performance in older adults (for example (Fera et al., 2005)). (Park 
and Reuter-Lorenz, 2009) present a “scaffolding theory” of aging, in which they propose that 
a normal neural mechanism exists for responding to extrinsic and intrinsic challenges. This 
primarily prefrontal mechanism supports learning (an extrinsic challenge) in younger 
individuals, gradually transferring common tasks to more specialized circuitry, while in 
older adults, whose specialized circuitry becomes compromised (an intrinsic challenge), the 
same system is recruited to compensate. 

1.7.5. Small vessel disease 
A number of neurological pathologies are especially prevalent in older adults, among them 
Alzheimer’s Disease (AD), Parkinson’s Disease, neurovascular disease, and other forms of 
mild to severe cognitive impairment. The incidence of AD, for instance, rises dramatically 
with age, such that in the U.S. in 2000, ~5% of adults aged 65-74 had mild-to-severe AD, 
~18% in adults aged 75-85, and ~45% in adults over 85 (Hebert et al., 2003). Given the 
expected increase in older adults over the next few decades, these prevalence rates, as a 
percentage of the total population, are expected to grow rapidly. In this dissertation, I focus 
on a common form of neurovascular pathology called cerebral microangiopathy, or cerebral 
small-vessel disease (SVD), which is a degeneration of small cerebral blood vessels whose 
common risk factors are age, hypertension, and possibly genetic factors (de Leeuw et al., 
2002; Launer, 2003). SVD is a significant risk factor for age-related cognitive impairment 
and dementia (O'Brien, 2003), as well as gait impairment and behavioural, psychological, 
and somatic neurological symptoms (Schmidt et al., 2002; Schmidtke and Hüll, 2005). SVD 
may also have related morphological effects. At least one study of elderly individuals (mean 
age 58 years) has demonstrated a general decrease in cortical thickness for subjects with 
SVD compared to age-matched controls, which was associated with poorer neuropsycho-
logical performance (Preul et al., 2005). Wittstock and colleagues (Wittstock et al., 2010) 
have recently reported significant collossal atrophy in patients with SVD, compared to 
controls, and suggest that this difference may be due to demyelination in collosal fibers. 
Further analysis, e.g. with DWI data, could help substantiate this hypothesis.  
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2. Cortical Morphometry 
The following study investigates the morphometry – particularly cortical thickness and 
white matter lesion volume – and was published in (Reid et al., 2010). 

2.1. Methods 

2.1.1. The RUN-DMC Dataset 
All MRI data collected for the morphometry reported in this dissertation was obtained by the 
group of Frank-Erik de Leeuw, as part of the Radboud University Nijmegen Diffusion tensor- 
and Magnetic resonance imaging Cohort (RUN-DMC). The data collected from this cohort 
include: 

• T1-weighted and FLAIR MRI 

• Diffusion-weighted MRI (DWI) 

• Resting-state fMRI 

• Cognitive scores 

o Center for Epidemiologic Studies Depression Scale (CESD) 

o Mini-mental state exam (MMSE) 

• Questionnaires 

o Life activity 

o Educational level 

• Clinical  

o Neurological work-up 

o Gait 

2.1.2. Rationale and Ethics 
Aging has substantial and universal effects upon the structure and function of the human 
brain, partly as a result of an apparent genetic program  and partly as an accumulation of 
various neuropathies. Approximately 95% of individuals between the age of 60 and 90, for 
instance, have been reported to have some degree of white matter lesions (WML) (de Leeuw 
et al., 2001). Small vessel disease (SVD), or microangiopathy, is a common pathological 
condition in elderly individuals in which small cerebral blood vessels degenerate, resulting 
in microinfarctions to proximal neural tissue. It is a significant risk factor for age-related 
cognitive impairment and dementia (O'Brien, 2003), and is also associated with behavioural, 
psychological, and somatic neurological symptoms (see Section 1.7.5). Despite this, there is 
little in the way of epidemiological knowledge of the morphological correlates of SVD. The 
RUN-DMC project is intended to obtain a large body of empirical evidence from a cohort 
with SVD, to investigate the effects of this condition upon various aspects of morphology, as 
well as behavioural and neurological function. 
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2.1.3. Subjects 
Data were collected from 503 individuals, who volunteered to participate with a response 
rate of 71.3%. This cohort consists of 284 males and 219 females aged 50-85 years, sampled 
consistently over this age range. None of the participants suffered from dementia on the 
basis of international diagnostic criteria, but all have a history of symptomatic SVD (van 
Norden et al., 2008). Eighteen subjects (3.5%) were excluded from the present analysis due 
to failures in the cortical surface generation process. Table 2.1 shows the demographics for 
the subset of the RUN DMC cohort included in the morphometric analysis. 

 

Table 2.1. Demographics for the RUN-DMC cohort. 

 Male (n=270) Female (n=215) 

Age decade 50-60 
(n=89) 

60-70 
(n=81) 

70-85 
(n=100) 

50-60 
(n=69) 

60-70 
(n=77) 

70-85 
(n=69) 

Age at disease 
onset 54.6 (3.0) 63.3 (3.1) 73.9 (3.7) 53.7 (2.9) 63.9 (3.2) 74.1 (3.8) 

Disease duration  1.2 (1.1) 1.3 (1.1) 1.2 (0.9) 1.7 (1.3) 1.4 (1.2) 1.7 (1.2) 

Age at study 
participation  55.8 (2.8) 64.7 (2.8) 75.0 (3.5) 55.4 (2.8) 65.3 (2.9) 75.8 (3.7) 

MMSE  28.6 (1.4) 28.3 (1.4) 27.5 (1.9) 28.8 (1.3) 28.2 (1.5) 27.4 (1.7) 

Education level 5.3 (1.2) 5.1 (1.3) 4.7 (1.7) 5.0 (1.0) 4.5 (1.2) 4.1 (1.5) 

WMLV (ml)  6.6 (7.0) 13.6 (18.0) 25.9 (25.1) 8.3 (13.1) 14.7 (21.6) 20.7 (15.2)

Numbers represent means (SD). All durations are in years. MMSE: Mini Mental State 
Examination; Educational levels range from 1-7: 1 representing less than primary school and 7 

reflecting an academic degree (Hochstenbach et al., 1998).  

 

2.1.4. Imaging Protocols 
Imaging was performed by the group of Frank-Erik de Leeuw, on a single 1.5 Tesla scanner 
(Magnetom Avanto, Siemens Medical Solutions, Erlangen, Germany) at the Donders Center 
for Cognitive Neuroimaging. The protocol included T1 3D MPRAGE acquisitions (TR/TE/TI 
2250/3.68/850 ms; flip angle 15º; voxel size 1.0x1.0x1.0 mm), and Fluid-Attenuated Inversion 
Recovery (FLAIR) acquisitions (TR/TE/TI 9000/84/2200 ms; voxel size 1.0x1.2x6.0mm 
(including an interslice gap of 1 mm), and DWI (TR/TE 10100/93ms, voxelsize 
2.5x2.5x2.5mm, 4 unweighted scans, 30 diffusion weighted scans with b-value of 900 
s/mm2). All participants were scanned on the same scanner. 
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2.1.5. Spatial Normalization 
Rigid-body spatial normalization aligns a subject image to a template image, using only 
translation and rotation parameters. Since the normalized image is not skewed or scaled in 
this process, this method ensures that the real spatial relationships are preserved. In other 
words, the image remains in “native space”, which is essential for a morphometric analysis. 
Spatial normalization was performed by SPM software (SPM5, Wellcome Department of 
Cognitive Neurology, University College London, UK), which essentially attempts to 
minimize the difference in intensity distributions between the source and the template 
image. To facilitate cortical surface approximation, a second linear normalization was 
performed by the Civet pipeline, using a multi-scale, 9-parameter affine transformation 
(Collins et al., 1994). This second transformation included x-, y- and z-scaling parameters, 
which effectively skews all native spatial correspondence; however, such correspondence can 
be regained (i.e., for morphometric analysis) by applying the inverse transform. 

2.1.6. Nonuniformity Correction 
Correction of the MR image for magnetic field nonuniformities (such as result from eddy 
currents, bias fields, and movement artifacts) is necessary to ensure accurate morphometric 
results (Vovk et al., 2007). The Civet pipeline performs such a correction using the N3 
method (nonparametric nonuniformity intensity normalization, (Sled et al., 1998)). In brief, 
the objective of this method is to obtain analytical approximations of the systematic bias 
field, as well as estimate the distribution of true tissue intensity, and use these estimates to 
apply global adjustments to the image. 

2.1.6. White Matter Lesion Delineation 
WM lesions were manually segmented on transversal FLAIR images. WML were defined as 
hyperintense regions on the FLAIR image, with no corresponding CSF-like hypointensity on 
the T1-weighted image. Due to the manual segmentation, WML could easily be 
differentiated from Virchow-Robin Spaces as the latter structures are hypointense on both 
T1 and FLAIR imaging (Kwee and Kwee, 2007). Additionally, gliosis surrounding lacunar 
and territorial infarctions was not considered to be WML. Segmentation was performed by 
two trained raters, who were blind to all clinical information. WML volume (WMLV) was 
calculated as lesion surface area by slice thickness (6 mm), and is reported in ml. Inter-rater 
variability was determined in a random sample of ten percent and resulted in an intraclass 
correlation coefficient of 0.99 for total WMLV. Mutual information rigid body coregistration 
(SPM5, Wellcome Department of Cognitive Neurology, University College London, UK) was 
used to align WML images with T1 images. A Talairach-based lobar atlas (WFU Pickatlas, 
v2.3) (Maldjian et al., 2003) was registered to T1 images in SPM, using a non-linear 
transformation. 

2.1.7. Cortical Grey Matter Thickness Estimation 
Cortical thickness (referred to as ݄ܶ݅ܿ݇݊݁ݏݏ hereafter, to distinguish it as a variable) analysis 
was performed using the Civet pipeline (Figure 2.1), which uses a procedure called 
Constrained Laplacian Automated Segmentation with Proximities (CLASP) (MacDonald et 
al., 2000; Kim et al., 2005), and cortical thickness was measured as the distance, in native 
space, along the links between corresponding vertices created in this process (t-link). The 
resulting surface meshes contained 40,962 vertices per hemisphere. Finally, individual 
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surface meshes were resampled to a template surface, obtained using an iterative group 
template registration algorithm (Lyttelton et al., 2007), in order to facilitate intersubject 
comparisons. The middle-cortex surface obtained from this process was used to calculate two 
further measures using custom Java routines: 1.) cortical surface area (ܣ௦௨௥௙), calculated as 
the sum of areas of the triangular faces; and 2.) cortical GM volume ( ௦ܸ௨௥௙), calculated as the 
sum over each face of its area multiplied by its average vertex-wise thickness value. 

2.1.7.1. Tissue classification 

CLASP performs two types of tissue classification : (1.) discrete classification, which assigns 
either GM, WM, or CSF to a voxel (Cocosco et al., 2003); and (2.) partial volume 
classification, which provides an probabilistic estimate of the proportion of a given voxel 
which contains a given tissue class. This is applied to deep sulci, where partial volume 
effects (PVE) contribute to uncertainty about the position of the GM/CSF surface. The 
resulting partial volume classification is used to create a CSF skeleton, which accurately 
locates the deep sulci. 

2.1.7.2. Surface approximation 

After tissue classification, CLASP begins by deforming a tesselated sphere (one per 
hemisphere) to approximate the GM/WM, starting with a low resolution (320 vertices), 
deforming according to a set of minimization constraints, and subsampling on subsequent 
iterations, to achieve increasingly fine sampling of the anatomical image. The final surfaces 
contain 40,960 vertices each. The optimization is characterized by the objective function ܱ 
(after (MacDonald et al., 2000; Kim et al., 2005)): 

ܱሺܵሻ ൌ ෍ ௞ܶሺܵሻ
ே೟

௞ୀଵ

 

where ܵ is a surface (or set of surfaces) to be deformed, ௞ܶ is a weighted minimization 
constraint, and ௧ܰ is the number of such constraints. This formulation allows the importance 
of each factor to be weighted or thresholded, depending on an a priori determination of its 
importance.  
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Figure 2.1. Surface approximation performed by the Civet pipeline: (1.) non-brain tissue, such as 
skull and scalp, are masked; (2.) tissue is segmented into GM, WM, and CSF compartments, with 
partial volume estimates; and (3.) GM and WM boundaries are approximated with a deformable 

tessellated sphere. 

 

2.1.7.3. Deformation constraints 

The four constraints used by CLASP to determine the GM/WM surfaces are: 

i. Boundary term (࢚࢙࢏ࢊି࢟࢘ࢇࢊ࢔࢛࢕࢈ࢀ) 

This is the distance between a vertex ݅ on ܵ, and the boundary of the GM and 
WM image segments, along the normal vector ࡺ௜ of ݅.  

ii. Stretch term (ࢎࢉ࢚ࢋ࢚࢙࢘ࢀ) 

This constraint attempts to maintain an ideal distance, defined by an a priori 
model, between a vertex ݅ and its neighbours, growing as the distance deviates 
from this ideal. 

iii. Bending term (ࢊ࢔ࢋ࢈ࢀ) 

The bending term penalizes angles between adjacent mesh faces which deviate 
from an ideal angle, also defined by an a priori model. Along with ௦ܶ௧௥௘௧௖௛, this 
has the effect of regularizing the surface. 

iv. Self-proximity (࢚࢟࢏࢓࢏࢞࢕࢘࢖ିࢌ࢒ࢋ࢙ࢀ) 

This term prevents non-adjacent mesh faces from being pushed too closely 
together, and has the effect of preventing self-crossing of the surface. 
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Once the GM/WM surface is approximated, it is used as a starting point for the second 
surface approximation, that of GM/CSF. For this second optimization, ௦ܶ௧௥௘௧௖௛ and 

௦ܶ௘௟௙ି௣௥௢௫௜௠௜௧௬ are used, along with two additional constraints: 

i. Laplacian (࢔ࢇ࢏ࢉࢇ࢒࢖ࢇࡸࢀ) 

This term is based upon the Laplacian map of the image (generated between 
the WM segment and CSF skeleton), and guides the smooth expansion of the 
GM/WM surface towards the CSF surface. This approach also prevents 
overlapping vertex trajectories, and provides a better correspondence between 
linked vertices, which is important for thickness estimation (see below). 

ii. Intensity (࢚࢟࢏࢙࢔ࢋ࢚࢔࢏ࢀ) 

This is a stopping constraint which prevents vertices from moving past the 
CSF skeleton. 

2.1.7.4. Cortical thickness estimate 

Having obtained surfaces which approximate the GM/CSF and WM/GM interfaces, a 
measure of cortical thickness would appear to be straightforward. There are, however, a 
number of alternatives, which produce slightly different results, particularly in regions of 
high curvature. Three possible cortical thickness metrics were examined by MacDonald et al. 
(2000); where ܣ represents the GM/WM surface, and ܤ the GM/CSF surface, these metrics 
are: (1.) t-normal, which measures the distance to the closest point along the surface normal 
vector from vertex ݅ on ܣ, to (.2) ;ܤ t-closest, which measures the closest point (along any 
vector) from vertex ݅ on ܣ, to ܤ; and (3.) t-link, which is the distance between the 
corresponding nodes on ܣ and ܤ, given that ܤ is a deformed version of ܣ. The t-normal 
measure produces distinct artifacts at sharp turns (see Figure 2.2), and the t-closest also 
produces artifacts, which are more evident in 3D. The t-link measure, which is based upon 
the Laplacian constraint, is used to obtain the results reported here. 

 
Figure 2.2. Three possible measures of cortical thickness. 

 

2.1.8. Cortical Parcellation 
Since the cortical surfaces produced by the Civet process are comprised of 81,380 vertices, 
which, in combination with random field statistical techniques, allows a nice spatial 
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representation of effects, it is also interesting to view the effects within known anatomical 
boundaries such as those described by Brodmann. There are a number of reasons to use such 
a parcellation: (1.) these maps are widely known; (2.) their regions have been traditionally 
been associated with certain functions, which allows the effects to be interpreted in relation 
to existing theory; (3.) it permits scatterplot representations of entire cortical regions, rather 
than representative vertices; and (4.) it allows comparisons to be made directly between 
regions. However, a major caveat with using this map is the observed lack of correspondence 
of some Brodmann areas (BAs) with the sulcal landmarks used to deform them across 
individuals. This is discussed in the next section. 

2.1.8.1. Landmark-based deformation 

For the purposes of the present study, I utilize a pre-established version of the Brodmann 
parcellation delineated first manually on the Colin atlas (Holmes et al., 1998) (personal 
correspondence with Van Essen), and then deformed to the PALS surface (Section 1.3.4) (Van 
Essen, 2005). To project this parcellation onto the Civet standard surface requires a 
landmark-based deformation, which specifies the correspondence between vertices on the 
PALS surface and those on the Civet surface. It requires the manual delineation of major 
sulcal and gyral landmark polylines on both surfaces, and the computation of a deformation 
field which assigns identical spatial coordinates to points along the polylines, and 
interpolates along the surface mesh between these landmarks, preserving surface topology 
and neighbourhood relationships (Van Essen et al., 1998). The deformation from PALS to 
Civet was performed by David Van Essen using Caret software, and is available on the 
SumsDB online database (Van Essen et al., 2005) (personal correspondence with Van Essen). 

As mentioned, there is a major caveat with using this approach to assign the Brodmann 
parcellation to individual cortical representations. Amunts and colleagues (Amunts et al., 
1999), for instance, investigated the cytoarchitectonic boundaries of BA44 and BA45 for 
many individuals, and found a substantial interindividual variation in both regional volume 
and correspondence with sulcal contours, thus challenging the assumptions of sulcal 
landmark-based approaches. This issue was considered in (Van Essen, 2005), by comparing 
the regional delineations of BA17, BA44, and BA45 on the PALS surface, with the 
probabilistic distribution described in (Amunts et al., 1999). While correspondence, 
illustrated in Figure 12 of (Van Essen, 2005), is not perfect, it does appear to capture the 
majority of the regional variance in the probabilistic atlas. To further address this important 
issue, we obtained modified mean ݄ܶ݅ܿ݇݊݁ݏݏ values by weighing the contribution of 
individual vertex-wise ݄ܶ݅ܿ݇݊݁ݏݏ values according to their proximity to a regional boundary 
(assuming that more central vertices have less uncertainty that border vertices). This 
approach is similar to one reported by Bezgin and colleagues (Bezgin et al., 2008), and was 
done using two weighting functions (Figure 2.3): (1.) a Gaussian decay weighting all middle 
nodes with 1.0 and using a sigma of 0.5; and (2.) a linear decay with all border nodes 
weighted 0.0 and middle nodes 1.0. 
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Figure 2.3. Weighting functions applied to Brodmann area ROIs, shown on the mean surface for the 

RUN-DMC cohort. Weighting was applied with both linear and Gaussian functions. 

 

2.1.8.2. Intersubject surface coregistration 

Once individual surface approximations and the corresponding morphometry have been 
performed in native space, it is desirable to align them to one another, or to some template 
surface, in order to allow population statistics to be calculated. This is also no simple 
problem, since the morphology of individual brains can be highly variable. One possible 
solution is, again, the use of gyral and sulcal patterns as an alignment constraint. Such an 
approach is performed by the Civet pipeline, aligning individual surfaces to a template 
constructed using an iterative resampling approach (Lyttelton et al., 2007). Given that each 
Civet surface has the topology of a sphere, and an equal number of coarsely corresponding 
vertices, the object here is to (1.) assign a feature field to the surface, for a feature which we 
want to align (e.g., mean curvature at each vertex); and (2.) manipulate the individual 
sphere by moving it around, until its feature field fits as closely as possible with the 
template sphere. This is equivalent to remapping the vertex indices, thus altering the 
correspondence with the template sphere. If these steps are repeated iteratively, in a multi-
scale way (such that increasingly fine resolutions are used), and for a large number of 
individuals, the result is a population-based template of curvature, which can be used to 
coregister other individuals.  
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2.1.9. Statistical Analyses 
Statistical analyses of cortical thickness (݄ܶ݅ܿ݇݊݁ݏݏ) were performed in four ways: (1.) mean, 
describing effects over all vertices; (2.) vertex-wise, describing effects at each vertex; (3.) 
ROI-wise, describing mean effects within the subsets of vertices defined by the Brodmann 
parcellation; and (4.) grouped by age, to allow a comparison of effects across three age 
groups: 50-60, 60-70, 70+. Analyses were performed using the SurfStat Matlab library 
(Worsley et al., 2009) and SPSS (Release 16, SPSS Inc., Chicago). 

One important issue arising from the image-based analyses summarized below is that of 
family-wise error (FWE); given that a typical image-based analysis will involve thousands of 
statistical comparisons, a large amount of Type I error (i.e., false positives) is expected. At 
least two correction methods are possible for such a large number of comparisons: (1.) the 
false discovery rate (FDR), which yields the expected rate of false positives per voxel; and 
(2.) random field theory (RFT), which uses the Euclidian characteristic to integrate spatial 
information into an estimate of Type I error. These are elaborated below: 

2.1.9.1. False discovery rate 

The simplest correction for FWE is the Bonferroni method, which refers to simply reducing 
the threshold ߙ଴ for rejecting the null hypothesis by a factor proportional to the number of 
comparisons ݉: 

஻஼ߙ ൌ
଴ߙ

݉  

The Bonferroni correction is extremely conservative, and is impractical for any large ݉, such 
as is inherent in voxel- or vertex-wise statistical parametric maps (SPMs, see below). FDR is 
a less conservative measure, and can be loosely defined as the expected rate of false positives 
ܸ amongst all significant comparisons ܴ (at threshold ߙ଴) (Storey, 2003): 

ܴܦܨ ൌ E ൤
ܸ
ܴ

൨ 

The difference between FDR and FWE corrections is that the former estimates an error rate 
from a fixed rejection area (ܴ), whereas the latter estimates a rejection area from a fixed 
error rate (ߙ଴). FDR is perhaps most useful as an exploratory technique; when performing a 
large number of, for instance, drug discovery trials, it is capable of estimating which 
comparisons are most likely significant (Benjamini and Yekutieli, 2001). Genovese and 
colleagues (Genovese et al., 2002) introduced FDR as a way to correct for multiple 
comparisons in neuroimaging; i.e., by voxel-wise corrections to SPMs.  

2.1.9.2. Random field theory 

RFT (Worsley et al., 1992) is based upon the observation that a neuroimage obtained from 
MRI is actually a continuous field: the intensities of neighbouring voxels are not 
independent of one another, but form part of a continuous function describing a physical 
medium (the human head). As such, effects in an SPM should actually be treated as distinct 
topological features, comprised of clusters of voxels, and the correction for multiple 
comparisons should be done feature-wise, rather than voxel-wise. These features can be 
approximated by a thresholded Euler characteristic (which estimates the number of distinct 
peaks in an SPM, and thus its effective dimensionality), and FWE corrections can be 
performed on these feature clusters (also called resolution elements, or resels) (Worsley et 
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al., 2004). Chumbley and Friston (Chumbley and Friston, 2009) argue against the 
commonly-used approach of performing voxel-wise FDR corrections on SPMs, illustrating 
that if FDR is to be used, it ought to be applied in a feature-wise manner.  

2.1.9.3. Mean Analyses 

Mean (subject-wise) analyses were performed for GLMs of the form: 

݁݃ܣ~ݏݏ݄݁݊݇ܿ݅ܶ ൅ ݔ݁ܵ ൅ ݁݃ܣ ൈ  ݔ݁ܵ

݁݃ܣ~௦௨௥௙ܣ ൅ ݔ݁ܵ ൅ ݁݃ܣ ൈ  ݔ݁ܵ

௦ܸ௨௥௙~݁݃ܣ ൅ ݔ݁ܵ ൅ ݁݃ܣ ൈ  ݔ݁ܵ

 ݁ݎ݄݁݌ݏ݅݉݁ܪ~௦௨௥௙ܣ

௦ܸ௨௥௙~݁ݎ݄݁݌ݏ݅݉݁ܪ 

2.1.9.4. Vertex-wise Analyses 

Vertex-wise statistics were computed as individual linear models for each of 40,962 vertices 
per hemisphere. To indicate effect size, they are represented here as significant slope values, 
such that all non-significant slopes (݌ ൏  0.05) are set to zero. Corrected ݌ statistics are 
obtained for these vertices using random field theory.  

The following GLMs were analyzed, using SurfStat: 

݁݃ܣ~ݏݏ݄݁݊݇ܿ݅ܶ ൅ ݔ݁ܵ ൅ ݁݃ܣ ൈ  ݔ݁ܵ

݁݃ܣ~ݏݏ݄݁݊݇ܿ݅ܶ ൅ ܸܮܯܹ ൅ ݁݃ܣ ൈ  ܸܮܯܹ

2.1.9.5. ROI-wise Analyses 

ROI-based analysis of ݔ݁ܵ ,݁݃ܣ, and ݁ݎ݄݁݌ݏ݅݉݁ܪ effects were performed by computing 
individual linear models for the mean of the subset of vertices in a given GM ROI. 
Significance thresholds were corrected for FWE using the Holm-Bonferroni method. 

The following GLMs were analyzed, using SurfStat: 

݁݃ܣ~ݏݏ݄݁݊݇ܿ݅ܶ ൅ ݔ݁ܵ ൅ ݁݃ܣ ൈ  ݔ݁ܵ

݁݃ܣ~ݏݏ݄݁݊݇ܿ݅ܶ ൅ ܸܮܯܹ ൅ ݁݃ܣ ൈ  ܸܮܯܹ

݁݃ܣ~ݏݏ݄݁݊݇ܿ݅ܶ ൅  ݁ݎ݄݁݌ݏ݅݉݁ܪ

2.1.9.6. Grouped by Age 

Given our findings that GM ROI-wise ܹܸܮܯ was not significantly related to ݄ܶ݅ܿ݇݊݁ݏݏ after 
 was included as a factor, we decided to further investigate the ROI-wise correlation ݁݃ܣ
between ܹܸܮܯ and ݄ܶ݅ܿ݇݊݁ݏݏ in three separate age groups: 50-60, 60-70, and 70+. Because 
 is bound by zero, and consequently has a large positive skew, we applied a log ܸܮܯܹ
transformation to these data, resulting in a bivariate normal distribution, which is 
necessary for a linear regression analysis. To plot the results for each group, we 
standardized the slope values to the statistics of the entire population. Significance was 
assessed using both ݌- and ݍ-values (false discovery rate, FDR). 
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2.2. Results 

2.2.1. Descriptive Statistics 
Figure 2.4 shows the distribution of mean ݄ܶ݅ܿ݇݊݁ݏݏ for each Brodmann Area (BA), as box 
plots for each hemisphere. BA1 and BA3 were thinnest (~2 mm) while BA38 and BA36 were 
thickest (~3.75 mm) with a high variance. Vertex-wise mean ݄ܶ݅ܿ݇݊݁ݏݏ is likewise 
distributed nonuniformly across the cortical sheet (Figure 2.4A), being thinnest in primary 
somatosensory and motor cortices (~2 mm) and thickest in the medial temporal lobe, 
temporal lobe, and insula (~4 mm or higher). The distribution of variance was also 
nonuniform, being highest (~0.2 mm) in the perirhinal region and moderately high (~0.15 
mm) in the primary motor and somatosensory cortices as well as the temporal pole. Analysis 
of hemispheric differences showed a significant difference in mean ݄ܶ݅ܿ݇݊݁ݏݏ (right > left) 
ൌ ݐ)  െ9.40, ݌ ൏  0.01), and significant hemispheric asymmetry in 28 Brodmann areas (Table 
2.2). The largest differences were found in the lateral prefrontal areas BA47 (Figure 2.5D), 
BA11, and BA45, in which the right hemisphere was thicker than the left. 

 

 
Figure 2.4. Box plots showing the distribution of Thickness for each BA ROI, for each hemisphere. 

ROIs are sorted by increasing mean Thickness. Filled boxes represent quartiles 1 to 3, capped lines 
indicate the range of regular values, circles indicate the mean, and horizontal lines indicate the 

median. 
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Figure 2.5. Three-dimensional renderings of vertex-wise values mapped onto the average surface 
and scatterplots of individual Brodmann area ROIs. A. Spatial distribution of vertex-wise mean 

 in each vertex-wise linear model of the ݁݃ܣ in mm. B. Spatial distribution of the slope for ݏݏ݄݁݊݇ܿ݅ܶ
form ݄ܶ݅ܿ݇݊݁݁݃ܣ ~ ݏݏ ൅ ൅ ݔ݁ܵ  ݁݃ܣ  ൈ  – C. Spatial distribution of the slope for Sex (Male .ݔ݁ܵ

Female) in the model ݄ܶ݅ܿ݇݊݁݁݃ܣ ~ ݏݏ ൅  .a positive (red) value corresponds to Male > Female ;ݔ݁ܵ 
D. Scatterplots of ݁݃ܣ vs. mean ݄ܶ݅ܿ݇݊݁ݏݏ for five Brodmann areas. 
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Table 2.2. Results of ROI-wise statistical analyses. 

 

2.2.2. Age 

There was a significant mean negative effect of ݁݃ܣ on ݄ܶ݅ܿ݇݊݁ݏݏ, for both left (ݐ ൌ
െ13.16, ݌ ൏ 0.01, ܴ௔ௗ௝

ଶ ൌ 0.262) and right (ݐ ൌ െ12.73, ݌ ൏ 0.01, ܴ௔ௗ௝
ଶ ൌ 0.244) hemispheres. 

Figure 2.5B shows the spatial distribution of the vertex-wise GLMs analyzed for ݁݃ܣ, and 
corrected with RFT. Most of the cortical sheet showed a significant decrease of ݄ܶ݅ܿ݇݊݁ݏݏ 
with ݁݃ܣ, with the greatest effects apparent in the ventrolateral prefrontal cortex (BA45, 
BA46, BA47), the primary and secondary auditory cortices (BA41, BA42), Wernicke’s area 
(BA22), medial temporal lobe (BA36, BA28, excluding the hippocampal formation and 
amygdala), and the primary visual cortex. Analysis of individual Brodmann ROIs provides 
an alternative picture of this distribution. In three Brodmann areas (BA11, BA21, and 
BA30), the effect of ݁݃ܣ on ݄ܶ݅ܿ݇݊݁ݏݏ was asymmetrical, as indicated by a significant 
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݁݃ܣ ൈ  interaction (Table 2.2). There were no significant mean, vertex-wise, or ݁ݎ݄݁݌ݏ݅݉݁ܪ
ROI-wise quadratic effects of ݁݃ܣ on ݄ܶ݅ܿ݇݊݁ݏݏ. The complete set of scatterplots for ݁݃ܣ ൈ
 .separated by hemisphere, can be found in the Appendix ,ݏݏ݄݁݊݇ܿ݅ܶ

 
Figure 2.6. Correlations between ܹܸܮܯ and ݄ܶ݅ܿ݇݊݁ݏݏ, for each BA, across three age groups. A. 

Standardized slopes for all BAs, sorted by lobe, then slope from the 60-70 age group. (* = significant 
at ߙ ൌ 0.05; ** = significant at ߙ ൌ 0.01). B: Scatterplots of ݈݃݋ሺܹܸܮܯሻ versus mean ݄ܶ݅ܿ݇݊݁ݏݏ, for 

selected BAs from each age group. 
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2.2.3. Sex 
While no significant mean effect of ܵ݁ݔ on ݄ܶ݅ܿ݇݊݁ݏݏ was found for either hemisphere, 
vertex-wise GLMs highlight moderate effects, which were only significant after removal of 
the ݁݃ܣ ൈ  < interaction term (Figure 2.5C): there was a significant bilateral effect (Male ݔ݁ܵ
Female) in the subgenual area (BA25), and a unilateral effect (Female > Male) in the left 
anterior cingulate cortex (BA32). Analyses of Brodmann area ROIs did not result in any 
significant ROI-wise effects of ܵ݁ݔ, after correction for multiple comparisons. There was also 
no significant mean interaction effect of ݁݃ܣ ൈ  nor any pattern of ,ݏݏ݄݁݊݇ܿ݅ܶ on ݔ݁ܵ
significant vertex-wise or ROI-wise interaction effects (Table 2.2). 

2.2.4. White Matter Lesions 
No significant ROI-wise effects were found after correction for multiple comparisons, for 
either ܹܮܯ or ݁݃ܣ ൈ ൅ ݁݃ܣ ~ ݏݏ݄݁݊݇ܿ݅ܶ in the model ,ܸܮܯܹ ൅ ܸܮܯܹ  ݁݃ܣ  ൈ  After .ܸܮܯܹ
splitting the cohort into three age groups (50 to 60, 60 to 70, and 70 to 85), we tested the 
model ݄ܶ݅ܿ݇݊݁ݏݏ ~ logሺܹܸܮܯሻ for each. The resulting correlations are shown in Figure 2.6A, 
with selected scatterplots shown in Figure 2.6B. 8 BAs show significant negative 
correlations in the 50-60 group (݌ ൏ ൏ ݍ ,0.05   0.05), 28 BAs in the 60-70 group, and 27 BAs 
in the 70+ group. BA4 shows a significant positive correlation for the 50-60 age group, as 
does BA5 for the 60-70 age group. 

2.2.5. Accuracy of Brodmann Parcellation 
Given the question of correspondence between sulcal landmarks and Brodmann areas, we 
tested the effect of weighing vertex-wise values by their proximity to regional borders, both 
with Gaussian and linear weighting functions. The results of this weighting on mean 
Thickness are shown in Figure 2.7. Neither the mean or standard deviation of Thickness 
change substantially with either weighting function, indicating that the uncertainty of 
regional borders does not have a significant impact upon the resulting statistical 
distribution of their ݄ܶ݅ܿ݇݊݁ݏݏ values. 
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Figure 2.7. Weighing vertices by proximity to borders. Means and variances for ݄ܶ݅ܿ݇݊݁ݏݏ by 
Brodmann ROI are shown, obtained by (1.) no weighting, and (2.) weighting by proximity to 

regional borders, using either Gaussian or linear weighting functions. 

 

2.3. Discussion 
The interpretation of the results reported here is greatly enhanced by the fact that they are 
derived from an exceptionally large cohort with a variety of data modalities: 503 elderly 
adults, evenly sampled by age, and matched for sex; four types of MRI acquisitions using 
identical protocols on the same scanner; and a variety of information regarding neurology, 
cognition, and life history. Moreover, the RUN-DMC cohort is controlled by excluding cases 
of clinical dementia, and including on the basis of observable small vessel disease, which is a 
very common condition in elderly adults (although its prevalence is difficult to estimate due 
to the necessity of an MR scan for diagnosis), and is a risk factor for more severe vascular 
pathologies. Here I discuss the implications of our results within the context of existing 
literature and technology. 

2.3.1. Distribution of Cortical Thickness 
Cortical thickness has a clear heterogeneous distribution across the cortex in our population, 
which is illustrated in Figure 2.4 and Figure 2.5A. Superior primary motor and sensory 
areas are comparatively thin (2.0 to 2.5 mm), and the temporal pole and medial temporal 
cortex is comparatively thick (3.5-4.0 mm). BA36 has a particularly high mean thickness as 
well as a wide variance, with values as high as 6 mm (Figure 2.4). While BA36 is indeed a 
thicker region, it is conceivable that, given its convoluted structure and the poor contrast of 
tissue types in this region (see Figure 2.8), some of its variance is attributable to 
measurement artifact. For the rest of the brain, however, the distribution of thickness values 
seems reasonable, and similar to that reported in at least one study (Hutton et al., 2009), 
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albeit globally higher than values reported in another (Salat et al., 2004), a difference which 
may be attributable to differing methods, which is worthy of further investigation. 

 
Figure 2.8. Delineation of BA36 (in red), shown as a 3D rendering and 2D sections. 

The insula has been excluded from the analyses, because the accuracy of delineating this 
structure, which lies in close proximity with basal ganglia and is difficult to differentiate 
even by eye, remains questionable. Kim and colleagues (Kim et al., 2005) have made a direct 
attempt to address this issue with their CLASP algorithm, using partial volume labelling 
which includes a subcortical compartment in regions close to the insula, identified 
probabilistically (see their Figures 4 and 5). Unfortunately, based upon our own results, the 
delineation of insula resulted in exceptionally large thickness (~6 mm) and variance, and in 
combination with visual inspection of a few subjects (for example, Figure 2.9), this led us to 
exclude the region from our final results. 
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Figure 2.9. Delineation of the insula (shown in red). Note the proximity to subcortical GM, which 

creates an added difficulty for tissue classification. 

 

2.3.2. Age-related Cortical Thinning 
In our cohort of elderly adults diagnosed with SVD, we find that cortical thickness decreases 
with age across most of the cortical sheet. The largest age effects were observed in the 
ventrolateral prefrontal cortex, the primary and secondary auditory cortex, Wernicke’s area, 
the medial temporal lobe, and the primary visual cortex (Figure 2.5B). Interestingly, the age 
effect in primary visual cortex is focused in the posterior region, which corresponds to foveal 
innervations (Wandell, 1999). This distribution of age effects is similar to that of GM density 
reported in one study (Good et al., 2001), but differs somewhat from another study of cortical 
thickness, in which the authors report thinning primarily in the primary motor cortex, 
where we find only a moderate significant effect, and apparent sparing of the ventrolateral 
prefrontal and temporal cortices, where we find the largest age effects; although these 
authors do report a similar thinning of visual cortex (Salat et al., 2004). This discrepancy 
might be due to the considerable differences between cohorts: (1.) the RUN-DMC cohort 
ranges in age from 50-85, while the Salat et al. cohort ranges from 19 to 93. The observed 
difference would suggest that the effect of age is nonlinear across the human life span, which 
is supported by findings from (Sowell et al., 2003). (2.) There was most likely a higher 
incidence of SVD in our cohort, although SVD was also present to some extent in the latter 
population (personal correspondence with Salat); given the tight relationship between age 
and SVD, it is difficult to disentangle these two factors. In at least one report (Preul et al., 
2005), a decreased mean cortical thickness was observed in individuals with SVD versus 
aged-matched controls, but the distribution of this effect across the cortex has not been 
investigated. 

Age-related thinning of primary auditory and visual cortices may represent a morphometric 
correlate to the hearing and visual deficits commonly reported by elderly adults. Similarly, 
the moderate thinning of inferior parts of motor cortex may predict a degree of motor deficits 
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(such as gait problems or head motion), although both of these speculations remain to be 
definitively investigated. Although the present study does not include the hippocampal 
formation or amygdala, a separate study has reported that age-related subjective cognitive 
failures are negatively related to hippocampal volume (van Norden et al., 2008), which may 
be closely associated with the preferential thinning of medial temporal cortex observed here. 
Finally, the age-related thinning of prefrontal and lateral temporal cortex has been noted 
variously in VBM studies (Good et al., 2001; Sowell et al., 2003; Raz et al., 2004), and also 
corresponds with fMRI evidence linking activity in these regions to cognitive deficits, 
including impaired memory and executive function, in elderly adults (reviewed in (Grady, 
2008); see also Section 1.7). 

2.3.3. Sex Differences 
We find a sex difference in cortical thickness in our cohort only for the vertex-wise analysis, 
and only after removing the interaction term from the model. This suggests a rather 
moderate local effect, but one which merits a brief discussion. As shown in Figure 2.5B, 
there is increased cortical thickness for males bilaterally, in BA25, and an increased 
thickness for females unilaterally in the left anterior cingulate (BA32). The former effect is 
interesting since it is the target of deep brain stimulation, as a treatment for major 
depression (MD) which is unresponsive to conventional treatments (Mayberg et al., 2005). 
Given that MD  has a substantially higher lifetime prevalence amongst females than males 
(Steffens et al., 2000), this morphological finding may also be related to MD. Since 
depression data (CESD scores) are available for this cohort, we tested this possibility with 
the vertex-wise GLM ݄ܶ݅ܿ݇݊݁݁݃ܣ ~ ݏݏ ൅  but did not find a significant effect of CESD ,ܦܵܧܥ 
at any part of the cortical sheet (unpublished findings).  

2.3.4. Relating White and Grey Matter Morphometry 
Combining the observation that 95% of adults aged 60-90 have some degree of WML (de 
Leeuw et al., 2001), and the observed patterns of cortical GM thinning reported here, and 
considering that cortical GM is connected through subcortical WM, the obvious question is: 
how are the two related? The answer to this question has important implications both for 
clinical practice, and basic research into the connectivity of the human brain. As a 
preliminary step, we investigated the relationship of total WMLV with GM thinning, and 
found no effect after accounting for age. However, since age is tightly coupled to WML 
incidence (de Leeuw et al., 2002), it is interesting to investigate it further. To do this, the 
RUN-DMC cohort was separated into three age groups, and the correlations of total WMLV 
with thickness in each Brodmann area were analyzed. 

The results shown in Figure 2.6 suggest that, for the 50-60 group, there appears to be only a 
weak negative correlation of WMLV with thickness, in a small number of regions. In 
contrast, negative correlations are substantially increased across most BAs for both of the 
older age groups, indicating a tighter coupling of the two morphological factors over the age 
of 60. The strongest of these relationships is found in structures associated with executive 
function (BA10), speech production (BAs 44 and 45, or Broca’s area), emotionality (BAs 
comprising cingulate cortex), and auditory processing (BAs 41 and 42). We also find positive 
correlations in the youngest group for BA4 (primary motor cortex), and in the middle group 
for BA5 (a secondary somatosensory area). These somewhat counterintuitive results may 
indicate a common compensatory and/or dedifferentiation mechanism in these regions, 
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similar to a reported hypertrophy of prefrontal cortex, which was associated with decreased 
cognitive performance (Salat et al., 2002). This is elaboration in the next section. The 
functional implications of an increased BA4 and BA5 are unclear, although the former may 
be related to one report of alterations to motor circuitry, including decreased subcortical-
cortical connectivity and increased connectivity within and between motor cortices, in older 
adults (Taniwaki et al., 2007). 

2.3.5. General Considerations 
The results of the present morphometric analyses provide a clear picture of cortical GM 
distribution in elderly adults with SVD, and a distinct pattern of GM degeneration across 
the cortical sheet. Since the RUN-DMC cohort does not include any individuals without 
SVD, it is difficult from these findings to disentangle the effects of this condition and 
“normal” aging. On the other hand, given the high prevalence of WML in elderly adults (95% 
according to de Leeuw et al., 2001), the notion of “normal” aging is perhaps ill-defined to 
begin with. Our results have an interesting pattern which focuses upon all the usual 
suspects implicated by functional studies: visual, auditory, and some motor regions, the 
parahippocampal region, and prefrontal and lateral temporal cortex. Given the wealth of 
data in the RUN-DMC data set, and the prospect of obtaining longitudinal data in the 
future, these findings are rather preliminary ones, which set a groundwork for questions 
which are perhaps more interesting, including: (1.) How well can current morphometric 
parameters predict future morphometry, and what do these patterns look like at the 
population level? (2.) To what extent can cortical GM thickness be predicted by WM 
morphometry, particularly DWI-based tractography? (3.) How does the pattern of 
degeneration in both GM and WM relate to functional activations (i.e., the resting-state 
fMRI data which is also available for these individuals)?  Can we predict, for example, the 
functional consequences of WML? (4.) How does all this relate to behavioural measures, such 
as cognition, depression, memory, motor skills, and sensation? Can we show, for instance, 
that an active lifestyle or continuing education are related to enhanced function or preserved 
morphology? These questions are revisited in the General Discussion, below. 

2.3.6. Conclusions 
We demonstrate the population-wide distribution of cortical thickness and WML in a large 
cohort representative of elderly adults with SVD. There are clear effects of age upon cortical 
thickness, which are targeted to specific cortical regions associated with vision, audition, 
memory, and executive function, all of which capacities have been observed to degrade with 
aging. These findings correspond to some extent with existing VBM literature; however, that 
the pattern differs from that reported in another cortical thickness study (Salat et al., 2004) 
is somewhat worrisome, as one possible explanation could be the different cortical thickness 
approximation algorithms used (CLASP versus Freesurfer). Fortunately, these algorithms 
have been compared by (Lee et al., 2006a), using a brain image “phantom” approach to 
assess the degree of error in the surface representation. Their results indicate that the 
CLASP surface has slightly more geometrical accuracy that that produced by Freesurfer 
(~0.5mm RMS error versus ~0.8mm); no local differences were assessed, however, and it is 
thus difficult to say how much this slight difference might affect the final morphometric 
results. The most likely interpretation is that the observed differences were due primarily to 
real discrepancies between the cohorts.  
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Given that the RUN-DMC is a prospective follow-up study, the prospect of obtaining 
longitudinal data presents the possibility of investigating the dynamic progression of cortical 
thinning both within and across subjects, which would add a very informative temporal 
aspect to this picture. This has been done previously, for example by  in Alzheimer patients, 
who demonstrate a clear spatiotemporal pattern of degeneration that is highly informative 
of the cortical regions where this disease typically originates, and how it tends to progress 
over time. A similar design may demonstrate the origins of the age- and SVD-related 
thinning reported here, and could potentially help elucidate the interactions between WM 
and GM degeneration that can only be addressed through correlation in the present cross-
sectional state of the data set. A anatomical model of compensatory changes might also be 
forthcoming from these longitudinal data. 
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3. Shapley Values for Brain Networks 
This section describes a novel graph theoretical method for estimating the importance of 
cortical regions in a structural network, to the global connectivity of that network. This 
method and its results are published in (Kötter et al., 2007). 

3.1. Methods 

3.1.1. The Shapley Function 
The Shapley rating (which I shall refer to synonymously with Shapley value) was proposed 
by Lloyd Shapley (Shapley, 1953), within the context of game theory, as a means of fairly 
assigning the collective profit attained by a coalition of players, based upon the relative 
contribution of each to that profit. We can express this more formally by designating ܰ as a 
subset of players in some game ܩ, and ܵ ك ܰ to be a subset of players who form a coalition. 
We can further specify a function ݂ ׷ ܲሺܰሻ ՜ Թ which assigns a real-valued profit to the 
coalition. ݂ is referred to abstractly as the characteristic function; in line with our objective, 
we want ݂ to represent network connectivity. By definition, for any ݂, ݂ሺ׎ሻ ൌ 0, where ׎ is 
the empty set. A Shapley value is assigned to a vertex by a Shapley function ߶௙ ׷ N ՜ Թ, 
where the subscript ݂ refers to the particular characteristic function, and ߶ is uniquely 
defined according to the following axioms (Shapley, 1953): 

i. Efficiency 

All profits must be distributed: ∑ ߶௙ሺ݅ሻ ൌ ݂ሺܰሻ௜אே . 

ii. Symmetry: 

If players ݅ and ݆ are interchangeable, their Shapley values must be equal: 
߶௙ሺ݅ሻ ൌ ߶௙ሺ݆ሻ. 

iii. Additivity: 

The collective profits of two games, defined by characteristic functions ݂ and ݃, 
are mutually exclusive. The Shapley values obtained from two separate games 
are thus independent, and the values must be added player by player: 
߶௙ା௚ ൌ ߶௙ ൅ ߶௚. 

A Shapley value for player (or cortical region) ݅ can be determined by considering the 
coalition-wise profits for all permutations of ܰ with and without ݅. More intuitively, suppose 
 ߨ is a permutation of the set of all players ܰ; if all the players were placed in a queue, then ߨ
represents one possible ordering of this queue. Next suppose that, for any given ߨ, a coalition 
 ௜ was formed, consisting of all players in front of ݅ in the queue. The contribution of ݅ toߨ݌
 ௜ is then the collective profits of this coalition with ݅, minus the collective profits withoutߨ݌
him. As a formula: 

݂ሺߨ݌௜ ׫ ݅ሻ െ ݂ሺߨ݌௜ሻ 

Applied to a single permutation of ܰ, this distribution scheme would be quite unfair, as it 
considers only those players ahead of ݅ in the queue, and is thus not representative of all 
players. However, Shapley demonstrated that if such a measure is averaged over the set Π of 
all possible permutations of ܰ (of which there are |ܰ|!), the result is a fair distribution 
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according to individual contributions. For a characteristic function ݂, the Shapley function is 
given by: 

߶௙ሺ݅ሻ ൌ
1

ܰ!
· ෍ሾ݂ሺߨ݌௜ ׫ ݅ሻ െ ݂ሺߨ݌௜ሻሿ

గאஈ

 

 

3.1.2. The Shapley Function for Cortical Networks 
Our object here is to formulate the original Shapley rating to refer to cortical networks; i.e., 
to obtain a measure of how important an individual cortical region is to the connectivity of 
the entire network. The Shapley function was developed originally for the analysis of game-
like systems, but can be abstracted to representations of different types of systems that can 
be represented as directed graphs, including cortical networks. Such a measure could help 
elucidate the roles of individual cortical regions within their larger networks, predict the 
“reachability” of one vertex to all other vertices, or estimate the effect of localized lesions 
upon the global connectivity of the network. 

A method for assigning Shapley values to cortical networks has been proposed previously 
(Abraham et al., 2006). Since we want to assess a region’s contribution to the global 
connectivity of the network, we must formulate the characteristic function ݂ such that it 
measures global connectivity. This can be done as follows: (1.) We can model our brain 
network of interest as a directed graph ܩ ൌ ሺܸீ , ீܸ ሻ, whose set of verticesீܧ  represents the 
set of cortical regions comprising the network, and whose set of edges ீܧ represents the 
projections connecting them. (2.) We define the concept of strongly connected components, in 
order to describe global connectivity. A graph ܩ is considered strongly connected if there is a 
path from every vertex ݅ ሺ݅ א ܸ) to any other vertex ݆ ሺ݆ א ܸ); that is, if there is a series of 
projections connecting every cortical region to every other region. If a subgraph of ܩ is 
denoted ܩᇱ ൌ ܸᇱ, Ԣ, with ܸԢܧ ؿ ܸீ  and ܧԢ ؿ  ሻ is an enumeration of allܩሺܥܥܵ then the set ,ீܧ
maximal subgraphs ܩᇱ which are strongly connected; each of which is called a strongly 
connected component of ܩ. Importantly, all such components are by definition disjoint. 

|ሻܩሺܥܥܵ| If .ܩ ሻ can be used to derive a measure of the connectedness ofܩሺܥܥܵ ൌ 1, then there 
is a path from any vertex ݅ to any vertex ݆ in ܩ; i.e., any cortical structure can communicate 
information to any other through some path of projections. If, on the other hand, ܩ is 
comprised of ݊ disconnected components, the value of |ܵܥܥሺܩሻ| is at least ݊. Moreover, if we 
remove a vertex ݅ from ܩ (simulating a localized lesion), the value of  |ܵܥܥሺܩሻ| may change, 
and we can thus assess the contribution of ݅ to this value. In general, the number of strongly 
connected components can be said to be proportional to the global connectivity of the 
network, and thus can serve as our characteristic function. More formally, for a given vertex 
set ܸԢ ؿ ܸீ , and edge set ܧԢ comprised of all edges connecting vertices in ܸᇱ, we have a 
corresponding graph ܩᇱ ൌ ܸᇱ,  :Ԣ, for which the characteristic function ௚݂ is given byܧ

݂ீ ሺܸᇱሻ ൌ  |ᇱሻܩሺܥܥܵ|

The corresponding Shapley function is: 

߶௙ሺ݅ሻ ൌ
1

|ܰ|!
෍ሾ|ܵܥܥሺߨ݌௜ ׫ ݅ሻ| െ ௜ሻ|ሿߨ݌ሺܥܥܵ|
గאஈ
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Based on the nature of this characteristic function, it is important to note that smaller 
values of ߶௙ actually correspond to a higher importance to connectivity; thus the Shapley 
value for brain networks is an inverse measure. A remarkable general feature of this 
measure is that, if ܩ itself is strongly connected, then the sum of all Shapley values will be 
one. Thus, for a randomly connected graph with ݊ vertices, the expected value of ߶௙ can be 
described by: 

ሾ߶௙ሿܧ ൌ 1 ݊⁄  

Shapley values for brain networks can thus be assigned meaning relative to this value. 

 

 

 
Figure 3.1. Cortical networks analyzed for Shapley values. A: Visual cortical network from Young 
(1992) (Y91), showing only connections known to exist. B: Original Walker (1940) variants W40-0 

and W40-1. C: W40-2 variant, assuming that all unknown edges exist. The positions of the vertices 
are determined using a multidimensional scaling routine (Kötter & Stephan, 2003). 

3.1.3. Empirical Data 
Shapley values were obtained for two separate macaque cortical networks, compiled from 
tract tracing experiments, and previously described in literature: (1.) a connectivity matrix 
of visual cortex (Y92) (Young, 1992), comprised of 30 vertices including V1 and several 
parietal (7a), temporal (TH), and prefrontal regions (Figure 3.1A); and (2.) three variations 
on a connectivity matrix representing prefrontal cortex (W40) (Walker, 1940), updated from 
information in the CoCoMac database (Kötter, 2004) (Figure 3.1B,C). The variations are 
based upon previous publications (Kötter and Stephan, 2003; Passingham et al., 2002; 
Stephan et al., 2001) as follows: (i.) assuming that an absence of connectivity data 
corresponds to an actual absence of a connection (W40-0); (ii.) assuming, on the contrary, 
that all unknown connections actual do exist (W40-1); and (iii.) a third variant, in which the 
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network connections were specified using an updated version of both the database and the 
algorithm used to infer connections from unrelated brain maps (W40-2). The W40-2 network 
had only a single unspecified connection, from area 11 to area 45, which was assumed to be 
absent. 

3.1.4. Statistical Comparisons of Vertex Indices 
A large variety of vertex-wise graph theoretical measures already exist, which describe 
slightly different aspects of the vertex and its relationship to the network. Kötter and 
Stephan introduced a number of vertex-wise measures called network participation indices 
(NPIs), which represent some aspect of a vertex’s participation in the network of which it is a 
member (Kötter and Stephan, 2003). Three indices were proposed: (1.) the density of a 
vertex’s connections, or how interconnected it is within the network; (2.) its transmission 
rate, which refers to the ratio of its outgoing connections (outdegree) incoming connections 
(indegree); and (3.) symmetry, which measures how many of a vertex’s connections are 
reciprocal (i.e., include both incoming and outgoing edges). Additionally, for the present 
dissertation, two versions of symmetry have been defined: (1.) symmetry-exists, which only 
considers existing symmetrical connections; and (2.) symmetry-all, which includes the 
reciprocal absence of any connections. Finally, three other measures are considered here, two 
of which have already been introduced in Section 1.4.5: (1.) the clustering coefficient (Watts 
and Strogatz, 1998), which describes the degree to which a vertex’s neighbours are 
interconnected; (2.) betweenness centrality (Freeman, 1977; Honey et al., 2007), which 
describes how central a vertex is within the network; and dynamical importance, which 
evaluates the effect of a particular vertex upon the maximum eigenvalue of the connectivity 
matrix, a value which has been used to describe global connectivity in a variety of network 
paradigms (Restrepo et al., 2006). 

Given the substantial number of graph theoretical vertex-wise measures that have been 
proposed to analyze network connectivity, and the ambiguity of the relationships between 
them, which their qualitative descriptions are often insufficient to resolve, it is interesting to 
compare them in a quantitative, statistical manner. Therefore, the relationships of the 
aforementioned graph measures to the Shapley value was examined in two ways: (1.) by 
obtain Pearson correlation coefficients for each; and (2.) by performing a stepwise multiple 
linear regression analysis (using Matlab R2008, Mathworks Inc., Natwick, MA), in which 
the measures are treated as factors in a linear model predicting the Shapley value, and each 
factor was added stepwise until their addition no longer resulted in a significant change in 
the model’s predictive power. These analyses were performed for the Y92 network, the W40 
network, and on a set of 5000 randomly generated 4- to 11-vertex networks. 

3.1.5. Lesioned Networks 
One potentially important application of Shapley values is their application to clinical 
situations, for instance to predict the consequences of focal brain lesions upon network 
connectivity. To assess the impact of such lesions on the distribution of Shapley values in a 
network, we removed single regions from the W40-2 network and recomputed Shapley 
values for the remaining vertices. 
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3.2. Results 

3.2.1. Intact Networks 
Here I report Shapley values calculated for intact versions of the four networks introduced 
in above. 

3.2.1.1. Y92 network 

The Y92 network is comprised of 30 cortical regions; therefore, the expected Shapley value is 
1 30⁄ ؆ 0.333. The Shapley values of Y92 are shown in Figure 3.2. V4 has the most negative 
value (which indicates the highest importance to global connectivity), having a value which 
is more than twice that of the next important region, FEF. Other regions with similarly low 
values are 46, V2, VP, MSTd, and 7a. Both PITd and VOT have relatively high Shapley 
ratings, indicating that their existence in the network does not contribute substantially to 
its overall connectivity. Other regions with high Shapley values are PITd, CITd, V4t, STPa, 
PITv, and AITd. 

 
Figure 3.2. Shapley values for the Y92 network. The x-axis is located at 0.333, which is the 

expected value for a 3-vertex graph. 

 

3.2.1.2. W40 networks 

Since each of the W40 variants have 12 regions, the expected Shapley value for these 
networks is 1 12⁄ ؆ 0.083. The Shapley values for the W40 networks are shown in Figure 3.3. 
The choice of connection type (existing or not) for unknown relationships, as captured in 
these variants, appears to have significant effects upon the role of its nodes in supporting 
global connectivity. Notably, both areas 9 and 24, which have a high relative importance in 
the W40-0 network, have substantially less importance in the other two variants. Area 12, 
conversely, increases its importance in these two networks. Area 8B and to a lesser extent 
area 45, which have high relative Shapley value in W40-0, gain in importance in W40-1 and 
W40-2. 
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Figure 3.3. Shapley values for the three W40 variants, sorted by the values for W40-0. The x-axis is 

located at 0.083, the expected value for a 12-vertex graph. 

 

3.2.2. Comparison with Other Measures 
Correlations between Shapley values and other vertex-wise measures of network 
connectivity (introduced in 3.1.4) are shown in Table 3.1, for both the Y92 and W40 
networks, as well as for values obtained from 5000 randomly-generated 11-vertex graphs. 
Remarkably, only transmission does not show a significant correlation for any of the three 
versions, while symmetry is insignificant at the ܽ ൌ 0.05 level for the Y92 network. Three of 
the measures (density, symmetry, and centrality) show a negative correlation with Shapley 
values, which might be considered positive due to the inverted nature of the measure. Two 
other measures (clustering and dynamical importance) are positive correlated (the latter is 
also an inverted measure of importance). 

 

Table 3.1. Comparison of network measures. Pearson correlation coefficients (ݎ) and associated ݌-
values, for six vertex-wise network measures with the Shapley value, for Y92, W40, and random 

graphs. 

 
 

The relationship of these correlations with the size of the network were further investigated 
by varying the size of the randomly-generated graphs. The result of this is illustrated in 
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Figure 3.4. While correlations for graphs of size 7 and higher appear to be stable, graphs 
below this size are not. This is particularly the case for the dynamical importance measure.  

 
Figure 3.4. Correlation coefficients calculated between six vertex-wise graph measures, for random 

networks of sizes ranging from 4 to 11. 

Given the strong correlations between some of these measures, it is also of interest to 
investigate the extent to which they can (alone or in combination) account for the variance in 
the Shapley value. This was tested with multiple linear regression (performed interactively 
in Matlab), using data obtained from the random 11-node graphs, which identified 
betweenness centrality as the measure best explaining Shapley values (ܴଶ ൌ 0.789). 
Individually, density, symmetry, and dynamical importance added similarly to the power of 
the betweenness centrality model (ܴଶ ൌ 0.838, 0.855, and 0.816, respectively), whereas 
clustering coefficient and transmission added virtually nothing to the model. 

 

 
Figure 3.5. Simulated focal lesions. Shapley values for each brain region in the network after one of 

the other regions (indicated by the symbols at right) is removed (or “lesioned”).  
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3.2.3. Lesioned Networks 
Figure 3.5 shows the vertex-wise Shapley values for the W40-2 network, after single regions 
had been removed from the network (thus simulating a focal lesion of that region). The 
expected value for this new network is 1 ሺ12 െ 1ሻ⁄ ؆ 0.091. Three areas (12, 19, and 46) 
always had the lowest Shapley values, regardless of the removal of other areas; two of these 
three areas also increased in importance if one of the others was lesioned. When all Shapley 
values in the graph are considered, it is interesting to note that the loss of 8A, 12, 46, 8B, 
and 9 all result in an increase in the range of values, whereas the loss of 45 results in a 
decrease (Figure 3.6). The range of values does not show a clear relationship to the Shapley 
value for the removed vertex, however. 

 

 
Figure 3.6. Ranges for the Shapley values of the remaining regions, after a region (shown on 

abscissa) is removed from the network. The level of the abscissa is the value of the Shapley value 
range for the intact network. 

 

3.3. Discussion 
With the increasing complexity of connected brain network models derived from ever-
improving data acquisition methods, there is a corresponding rise in the demand for novel 
theoretical methods with which to analyze them. The adaptation of graph- and game-
theoretical methods is naturally suited to such a purpose. The Shapley value was initially 
introduced as a means of analyzing the contribution of individuals to some coalition within a 
game, which abstraction was more or less intended for applications within economics. The 
value of mathematical abstraction, however, is that it allows a theory to be applied in fields 
where it was never originally intended; in the present case, to structural brain networks. In 
this section I discuss the results of analyzing a number of brain networks with the Shapley 
value, how this relates to existing graph theoretical measures, and the implications of such a 
measure in the broader context of neuroscientific research and clinical practice. 
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3.3.1. Intact networks 
3.3.1.1. Y92 network 

Analysis of the Y92 network shows that area V4 has a substantially lower value than any of 
its counterparts (Figure 3.2) (recall that a negative score indicates a higher importance for 
global connectivity). This result accords with reports that V4 is a particularly densely 
connected region within the visual network (Felleman and Van Essen, 1991), has a high 
betweenness centrality (Honey et al., 2007), and that its removal results in a decrease of the 
small-worldness of the remaining network (Sporns et al., 2007). After V4, frontal eye field 
(FEF) and area 46 (lateral prefrontal cortex) are next in importance, although as these are 
the only frontal regions in the network, their importance must be considered in context to 
the limited network under investigation (i.e., their values might change considerably with 
the inclusion of other frontal regions). Other regions with low Shapley values include the 
densely connected structures of the prestriate cortex (V2, V3, VP) and regions associated 
with the dorsal visual stream (MSTd, 7a, MT, STPp, LIP, DP). Regions with high Shapley 
values include V1 (whose subcortical input is not included) and ventral visual stream 
regions, notably subregions of inferotemporal cortex (IT), possibly because of the high degree 
of redundancy between these subregions.  

3.3.1.2. W40 networks 

The first version of the W40 network (W40-0) followed previous convention by omitting any 
connections for which there was no empirical evidence. This macaque prefrontal network 
has been previously investigated by (Passingham et al., 2002). In that study, the authors 
introduced the idea of a “connectional fingerprint”, which can uniquely identify a region 
through its connectivity pattern; furthermore, these fingerprints could be used as a basis for 
organizing regions into clusters. The three most negative regions (9, 24, and 12) and the 
three most positive regions (8B, 45, and 14), each belong to separate clusters defined in that 
(Passingham et al., 2002), which suggests that the Shapley value may provide a means of 
assigning the importance of these regions in terms of their ability to communicate with 
clusters external to their own. Moreover, it is possible that small differences in connectional 
fingerprints can result in substantial differences in their importance to global connectivity. 
Another interesting observation is that two of the four regions with the lowest Shapley 
values in this variant, 24 and 46, are among the most regularly activated across a variety of 
functional imaging paradigms, and have also been reported to activate less in individuals 
with attention deficit hyperactivity disorder in children and adolescents (Dickstein et al., 
2006). 

A second variant of W40, W40-1, resulted from making the opposite assumption that all 
unknown connections do exist. This had a number of effects on the resulting Shapley values. 
Firstly, the overall range of values decreased, due to the increased connectivity of the graph 
(and thus the less importance of any one vertex). Region 8B, whose connections were 
primarily affected by this change, had its value change from very positive to slightly 
negative, indicating that this choice of assumption regarding uncertain connectivity has a 
non-negligible impact on the resulting graph measure. A third variant, W40-2, was obtained 
by integrating updated mapping data in the CoCoMac database, resulting in a somewhat 
different connectivity structure (see Figure 3.3B). This modified structure had the effect of 
reducing the importance of 9, 24, and 8A, and increasing the importance of 12, 45, and 8B. It 
is tempting to speculate that these changes are attributable to one additional edge between 
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8B and 45, which appears to reorganize the clustering of this network, although an edge-
based graph measure could more conclusively address this.  

3.3.2. Comparison of Vertex-wise Graph Measures 
Given the large number of available metrics which are meant to capture different aspects of 
a graph’s connectivity, it is interesting to assess the degree of dependence between these 
measures and the Shapley value. Based upon the results in Table 3.1, it appears that, of the 
measures tested, only transmission is completely uncorrelated with the Shapley value. Both 
betweenness centrality and dynamical importance correlate very highly (-0.891 and 0.801 
respectively, for random graphs), while density and symmetry show more moderate 
correlations. This accentuates the notion that betweenness centrality is a useful measure of 
a vertex’s importance to graph connectivity, and this appears to hold true for graphs of size 7 
or larger (Figure 3.4), although it is important to note the ~20% residual variance, which 
indicates that the measures are capturing slightly different aspects of the graph structure 
(i.e., they are not completely redundant). Additionally, combining any two measures does not 
substantially raise the amount of explained variance (ܴଶ) in the Shapley values (from 0.789 
to 0.838 at most).  

3.3.3. Lesioned Network 
One potential application of the Shapley value is to assess the effects of a localized lesion to 
part of the network. We simulated such lesions by removing each region from the W40-2 
network, and recalculating Shapley values for the remaining network. Two observations are 
particularly striking from these results (Figure 3.5): (1.) Regions 12, 9, and 46 retain the 
lowest Shapley values for almost every lesion (with the exception of 45), and these values 
increase significantly for two of these regions when the other is lesioned. (2.) Removal of 
area 45 has the most profound effects on the network. Firstly, it reduces the importance of 
area 46, which suggest that a large part of this importance is as a connector for 45. Secondly, 
it reduces the values of both 8A and 8B, supporting the speculation made above, that the 45-
to-8B connection is indeed responsible for much of the differences in Shapley values seen in 
W40-2, compared to its counterparts. As a result of these changes, removal of area 45 also 
results in a decrease in the range of Shapley values across the entire network. In general, 
these results predict that the prefrontal network would be most sensitive to lesions in area 
45, a prediction which is supported by its high transmission index (Kötter and Stephan, 
2003). Given its low Shapley rating, a lesion to this region would not be expected to greatly 
affect global connectivity, but may instead have functional implications for specific regions in 
the remaining network, particularly areas 46, 8A, and 8B, which share similar connectional 
fingerprints. 

3.3.4. General Considerations 
The brain of humans, macaques, and other organisms have been shown to have small world 
properties (Watts and Strogatz, 1998) as well as being “scale-free” networks, a property 
which affords them general robustness to degradation, at the cost of having a number of 
“hub” nodes whose degradation is catastrophic (Albert et al., 2000). Such hub nodes can be 
identified by a number of static graph measures such as betweenness centrality, or by 
assessing the cost to connectivity of their removal, which is the effective purpose of the 
Shapley value as described here. These observations are particularly relevant to the study of 
focal lesions, as well as the more distributed type of degradation observed in the aging brain 
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(see Section 1.7.2). In the latter case, the investigation of cortical regions should be 
augmented by a consideration of the projections between them, especially given that 95% of 
adults aged 60 to 90 have some degree of WML (de Leeuw et al., 2001) and that WML 
severity is related to a factor-of-three increase in cognitive impairment (De Groot et al., 
2002). Thus, it would be useful to extend the Shapley value introduced here to graph edges, 
an approach which may complement existing measures of edge importance, such as the four 
measures proposed by Kaiser and Hilgetag (Kaiser and Hilgetag, 2004).  

This dialogue also ties in closely with the morphometric analyses of the RUN-DMC cohort, 
in which I utilize empirical methods to measure cortical thickness, WML volume, and 
anisotropic diffusion, and thereby obtain estimates of both GM and WM integrity. Realistic 
structural networks constructed with such methods can be used to alter the corresponding 
“canonical” network, such as the Y92, W40, or FVE91 networks presented in this 
dissertation. Theoretical measures of node or edge importance can then conceivably be 
compared against structural or even functional observations, and the utility of a given 
measure can be assessed in terms of its predictive power. These ideas will be further 
expanded in the general discussion, below. 

3.3.5. Conclusions 
The Shapley value graph measure introduced here is a novel means of assessing the relative 
importance of a cortical region to the connectivity of the brain network of which it is a part, 
and is closely related to, but appreciably distinct from, both betweenness centrality and 
dynamical importance. Here I report Shapley values for two cortical networks, derived from 
macaque tract tracing information: (1.) a visual network from Young (1992); and (2.) a 
prefrontal network from Walker (1940). For the latter network, the resulting highest and 
lowest values are found in regions which have been previously differentiated into clusters by 
(Passingham et al., 2002), thus adding new insight into the anatomical organization of this 
network. We also find that the assumptions regarding unknown connections (i.e., whether 
they should be considered absent or present), has a substantial impact upon the range and 
ordering of the resulting Shapley values, emphasizing the importance of a data completeness 
for these types of analyses. Finally, this measure is used to investigate the effect of 
simulated focal lesions on the connectivity of the W40-2, confirming the importance of areas 
12, 9, and 46 to the global connectivity of the prefrontal network, and also highlighting area 
45 as a region which can account for much of the importance of the other regions. 
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4. Optimization of Cortical Hierarchies 

4.1. Methods 
This section describes a method which extends the ideas of Felleman and Van Essen (1991), 
Hilgetag et al. (1996), and others (introduced in Section 1.4.4). The following methodology 
and results are published in Reid et al. (2009). 

4.1.1. Graph Representation and the Hierarchy Function 

 
Figure 4.1. Two directed graph representations of a hierarchical cortical network. A: Real-valued 

edge weights represent absolute hierarchical distances. B: Real-valued intervals represent a range 
over which hierarchical distances can vary. 

 

We start by representing a cortical network of interest as a weighted, directed graph ܩ, with 
vertex set ܸ and edge set ܧ. If ሺ݅, ݆ሻ א ݅ is the edge from vertex ܧ א ܸ to vertex ݆ א ܸ, we can 
assign a weight ݔ to each such edge representing the hierarchical distance from ݅ to ݆ (Figure 
4.1). The sign of ݔ represents its direction (ascending or descending), and ݔ ൌ 0 means that ݅ 
and ݆ are on the same level. Given this model, we can define a function ݄ ׷ ܸ ՜  Թ, such that: 

݄ሺ݅ሻ ൅ ݔ  ൌ ݄ሺ݆ሻ 

where ݄ is called the hierarchy function. 

We can refine this model to allow a more flexible representation of hierarchical distance, by 
replacing the weight ݔ with a continuous range of values. In this refinement, for every edge 
ሺ݅, ݆ሻ, there is an interval ሾݔ, ,ሿݕ ,ݔ ݕ א Թ (Figure 4.1). This interval defines a constraint 
bounding the hierarchical distance from ݅ to ݆, and results in a modification of the hierarchy 
function to a pair of inequalities: 

݄ሺ݅ሻ ൅ ݔ ൑ ݄ሺ݆ሻ  and  ݄ሺ݅ሻ ൅ ݕ ൒ ݄ሺ݆ሻ 

Finally, we can further modify ݄ to accommodate the uncertainty of the empirical data, with 
the inclusion of a deviation term ∆. For a single-weighted edge, the hierarchy function 
becomes: 

݄ሺ݅ሻ ൅ ݔ െ ∆ ൑ ݄ሺ݆ሻ  and  ݄ሺ݅ሻ ൅ ݔ ൅ ∆ ൒ ݄ሺ݆ሻ 

For a range-weighted edge, it becomes: 

݄ሺ݅ሻ ൅ ݔ െ ∆ ൑ ݄ሺ݆ሻ  and  ݄ሺ݅ሻ ൅ ݕ ൅ ∆ ൒ ݄ሺ݆ሻ 
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These inequalities allow us to obtain an optimal hierarchy for ܩ, by minimizing ∑ ∆௜௝ over all 
edges in ܧ, where ∆௜௝ is the deviation for edge ሺ݅, ݆ሻ. This optimization is performed using 
linear programming (see, for instance, (Papadimitriou and Steiglitz, 1998)). In brief, the aim 
of linear programming is the optimization of a linear objective function, subject to linear 
equality and inequality constraints, such as we have defined above. 

4.1.2. Empirical Data 
For the optimization constraints we can adopt the following notation: 

A+ Strongly ascending 

A Ascending 

D Descending 

D+ Strongly descending 

We performed linear programming optimization (QSopt Linear Programming Solver, 2008) 
on two published data sets: (1.) the original data from Felleman and Van Essen (1991) 
(FVE91), excluding regions MDP and MIP, for which no constraints are defined; and (2.) a 
second data set, which examines the connectivity of the macaque visual system using cell-
counting techniques, and thus permits the use of the SLN% value (Barone et al., 2000) (see 
Section 1.4.4).  

 
i. FVE91 

Constraints for FVE91 were 
defined by assigning ranges to 
projections, in one of two ways: 
(1.) based upon assumptions 
implied in the original paper, 
specifically D: ሾെ99,1ሿ, L: ሾ0,0ሿ, 
and A: ሾ1,99ሿ; and (2.) a modified 
version of the original 
classification scheme, 
incorporating the idea that the 
specific laminar pattern can 
provide distance, as well as 
direction information (Kennedy 
& Bullier, 1985; Barone et al., 
2000; Batardière et al., 2002). 
This modified scheme  is 
illustrated in Figure 4.2. To 
investigate the effect of range 
size and overlap upon the 
resulting optimization, ten 
constraint sets were defined, by 
systematically expanding range limits by increments of 0.1, with the exception 
of the comparatively large outer limits, which we set at 32 (the total number of 
cortical regions). The resulting constraint sets are shown in Table 4.1. 

Figure 4.2. Modified projection scheme from 
FVE91, add strongly ascending and 

descending constraints. 
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ii. SLN% 

Using cell counting techniques, Barone et al. (2000) report that the proportion 
of retrogradely labelled neurons in the supragranular layers of visual cortical 
areas (referred to as SLN%) correlates strongly with the hierarchical rank 
(according to FV91) of the target structure. This suggests that the SLN% 
measure can be used as a real-valued hierarchical distance parameter 
specifying a more refined constraint on the cost function used to determine the 
optimal hierarchical model. This possibility was investigated using a second 
visual network, obtained from Barone et al. (2000), based on the assumption 
that SLN% values are directly comparable, and thus assigning these values 
directly as edge weights. 

 

Table 4.1. Constraint sets specifying ranges for the modified FVE91 scheme. 

 
 

4.1.3. Interregional Correlations 
To get an idea of the stability of interregional hierarchical distances across constraint sets, 
we obtained correlations for each interregional pair across all ten constraint sets. Given a 
network graph ܩ, and cortical regions ݅ and ݆ (݅ ് ݆; ݅, ݆ א  and denoting the hierarchical ,(ܩ
distance between them as ݀ሺ݅, ݆ሻ, the vector ࢊ௜ is then the enumeration of all such distances: 

௜ࢊ ൌ ሾ݀ሺ݅, 0ሻ, … , ݀ሺ݅, ݇ሻ, … , ݀ሺ݅, 9ሻሿ 

From each pair ࢊ௜ and ࢊ௝, ݅ ് ݆, we can obtain a correlation ݎ௜௝ ൌ  ௝ሻ, which is anࢊ ,௜ࢊሺݎݎ݋ܿ
indication of the stability of the relative positions of ݅ and ݆ across different constraint sets. 

4.2. Results 

4.2.1. FVE91 Original 
Figure 4.3 shows a comparison between the original hierarchy from Felleman and Van Essen 
(1991), and the hierarchy produced here, by minimizing ∑ ∆௜, the sum of deviations from the 
constraints described in Section 4.1.1. Due to the nature of our constraints (i.e., steps of 
either 0 for lateral, or at least 1 or -1 for non-lateral projections), the hierarchy obtained 
through this optimization is expressed on discrete levels, like the original. While the two 
hierarchies have in general a close correspondence, a number of discrepancies are notable. 
Particularly, AITd is located at the top of our hierarchy, whereas it is substantial lower in 
the original. V4 is placed on its own level in the new hierarchy, whereas it shares a level 
with other regions in FVE91. Comparing the hierarchies quantitatively, we find that within 
the framework of our constraint set the resulting optimal hierarchy has ∑ ∆௜ ൌ 11 and 9 total 
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violations (projections having ∆௜൐ 0), while the original FVE91 has ∑ ∆௜ ൌ 17 and 12 total 
violations. 

 
Figure 4.3. Optimization of FVE91 with original constraints. Left: Hierarchy obtained by 

minimizing ∑ ∆݅. Right: Original hierarchy from Felleman and Van Essen (1991). 

 

4.2.2. FVE91 Modified 
The results of using modified constraints, as introduced in Section 4.1.2, are shown in Figure 
4.4. Mean hierarchical positions across the ten constraint sets are qualitatively stable, with 
a small degree of variation; V1 appears at the bottom and AITd at the top for all hierarchies 
generated. Notably, groups of regions appear to form clusters in which they are 
interchangeable, while clusters are distinguishable from one another. As is clear from Figure 
4.4, the number of discrete violations for a region is not related to its hierarchical level 
ൌ ݎ) ൌ ݐ ,0.0097  ൐ ݌ ,0.051   0.05). 
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Figure 4.4. Hierarchies obtained through the modified constraints for FVE91, across 10 constraint 
sets (see Table ?), sorted by mean hierarchical position. Blue line: the mean hierarchical position 

across sets (right ordinate axis), with standard deviation. Pink bars: the sum of violations, ∑ ∆௜, for 
each cortical regions, across all sets (left ordinate axis). 

 

 
Figure 4.5. The mean cortical hierarchical level distributed across the macaque cortex (F99UA1). 

Means are obtained by optimizing with modified constraints for FVE91. Both fiducial and flat map 
representations are shown. Arrows represent hierarchical relationships: green = descending, black 

= lateral, purple = ascending. Hierarchical distance is represented by edge transparency. 
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Figure 4.5 illustrates the geometrical distribution of the mean hierarchy, both as three-
dimensional cortical surfaces and a flat map representation, which also portrays the 
structural connectivity of the visual network. Figure 4.6 shows correlations across all ten 
constraint sets, of the normalized hierarchical distance between cortical regions. All 
correlations are quite high, given the consistency of the ordering as seen in Figure 4.4, but 
their variance can be compared to get an idea of interregional consistency across differing 
constraints. Two clusters of regions, ሼܸ3, ܸܲሽ and ሼܶܯ, ܸ4,  ሽ are perfectly correlated, andݐ4ܸ
have zero distance and zero variance, indicating that they always lie on precisely the same 
level. The distances between subdivisions of cortical region CIT (CITv and CITd) have a high 
correlation (ݎ ൌ 0.9997), and relatively small mean distance (0.0018) and standard deviation 
(0.0054). Similarly, the subdivisions of region PIT (PITv and PITd) are highly correlated (ݎ ൌ 
0.9976) and have a relatively small mean distance (0.0054) and standard deviation (0.0161). 
By contrast, the two subregions of region AIT (AITv and AITd) now fall widely apart with 
 .with a mean distance of 0.381 and standard deviation of 0.0389 0.9859=ݎ

 
Figure 4.6. Correlations across ten constraint sets, of interregional distance  

4.2.2.1. Alternative optimization criteria 

So far we have utilized the sum of constraint deviations ∑ ∆௜ as the sole criterion for our 
optimization. While this choice seems logical, others are possible, including: (1.) the number 
of violations (i.e., instances where ∆௜൐ 0), and (2.) the maximal deviation ∆௠௔௫. To test the 
effect of adding these objectives to the optimization, we obtained two additional sets of 
hierarchies, adding (with appropriate weights) (1.) the number of violations as a second 
objective, and (2.) all three criteria together (Krumnack et al., 2010). The inclusion of these 
criteria did result in smaller values for their respective factors, but did not result in any 
substantial changes to the resulting hierarchy. Nine constraints in particular were identified 
as consistent offenders across all minimization objectives, which are shown in Table 4.2. 
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Table 4.2. Projections which produced violations in all constraint sets, for all objective criteria. 

 
 

4.2.3. Barone et al. Network 
Figure 4.7 shows the hierarchy resulting from the optimization of the Barone et al. (2000) 
visual network, expressed in normalized arbitrary units. While the resulting hierarchy is 
similar to that reported earlier with these data (Vezoli et al., 2004), a number of large 
discrepancies are apparent between the original SLN% values and the resulting hierarchical 
distances. These differences are largest for the uppermost regions of the network (THTF, 
FST, LIP, TE). 

 
Figure 4.7. Hierarchy produced from Barone et al. (2000), using SLN% as a hierarchical distance 

constraint, and minimizing ∑ ∆௜. Black numbers indicate the original SLN% value, and red 
numbers indicate hierarchical distance (for edges) and position (for regions) following optimization. 

 

4.3. Discussion 
Since its initial proposal (Maunsell and Van Essen, 1983), and implementation (Felleman 
and Van Essen, 1991), the observation that the laminar source and termination patterns of 
interregional projections could describe relative hierarchical positions has been a popular 
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one. A cortical hierarchy constrained by anatomical observations has the potential for 
establishing a data-driven functional organization of neocortex, which can then be directly 
compared to model-driven predictions; i.e., it can be potentially used to “reverse-engineer” 
the computational machine that we call the primate brain. Since the original proposals by 
Felleman and Van Essen, the study of cortical hierarchies has advanced somewhat: while 
Hilgetag et al. (1996) demonstrated an apparent indeterminacy with the methodology, given 
the available data, others have suggested a refinement of the anatomical constraints, using 
relative supra- or infragranular labelling as a measure of hierarchical distance. My 
colleagues and I (Reid et al., 2009) have attempted to extend this dialogue, by replacing 
discrete levels with continuous values, and by refining the constraint set to include a 
representation of hierarchical distance. Here I discuss our results and their implications for 
the future.  

4.3.1. Optimization of the FVE91 Network 
4.3.1.1. Comparison with original hierarchy 

Minimizing the sum of deviations for the FVE91 network graph with respect to a constraint 
set analogous to that used by Felleman and Van Essen (1991), and identical connectivity 
information, yielded a hierarchy with 9 constraint violations; the original hierarchy, by 
comparison, violated 12 constraints (Figure 4.3). While the two hierarchies are similar, two 
notable differences are the placement of anterodorsal inferotemporal cortex (AITd) firmly at 
the top of the hierarchy, while it is placed on the second highest level in the original, and the 
placement of anteroventral inferotemporal cortex (AITv) much lower than its original 
position. These results are interesting in light of two findings by Saleem and colleagues: (1.) 
that AITv projects more densely to perirhinal cortex than does AITd (Saleem and Tanaka, 
1996); and (2.) that AITd receives denser projections from the upper bank of the superior 
temporal sulcus (STS), also known as the superior temporal polysensory area (STP), while 
AITv receives denser projections from the lower bank (Saleem et al., 2000). This differential 
parallel projection pattern, derived from information which was unavailable in the original 
publication, predicts that AITd and AITv may assume different hierarchical roles. On the 
other hand, (Tamura and Tanaka, 2001) report that single cell recordings from both these 
areas show little difference in either minimal response latencies or sharpness of stimulus 
selectivity, on which basis they argue for a hierarchical equivalence between these regions 
(but see Section 4.3.3, below). 

4.3.1.2. Modified constraint set with hierarchical distance 

In a refinement of the original constraints, we utilize ranges to represent hierarchical 
distances, based upon the relationships shown in Figure 4.2. The choice of ranges, however 
(i.e., their extents, and degree of overlap, if any), is not a trivial one, and has potential 
impact upon the optimization. We therefore defined ten constraint sets, systematically 
varying their size and overlap (Table 4.1), and normalized each resulting hierarchy to make 
them comparable. The resulting “mean” hierarchy (Figure 4.4) shows that the results are 
fairly stable across constraint sets, with V1 consistently at the bottom and AITd consistently 
at the top. Interestingly, AITv maintains its position at ~0.6 in the hierarchy, providing 
further support for the differentiation of it and its dorsal counterpart. With respect to 
constraint violations, STPp, a subdivision of STP, emerges as the worst offender. Young 
(Young, 1992) has proposed that STP may serve as a point of reconvergence of the dorsal and 
ventral visual streams. It may thus prove informative to empirically investigate the reasons 
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for such consistent violations by this and other regions, and how this affects the original 
assumptions relating laminar patterns to hierarchical relationships. 

4.3.1.3. Alternative optimization criteria 

The method described above utilizes the sum of constraint deviations ∑ ∆௜ as the sole 
criterion for the minimization performed by linear programming. This seemed to us the most 
logical choice; however, others are possible, including: (1.) the number of violations (i.e., 
instances where ∆௜൐ 0), and (2.) the maximal deviation ∆௠௔௫. In a recent publication 
(Krumnack et al., 2010), we tested the consequences of adding these criteria to ∑ ∆௜ to the 
optimization routine. While these factors were significantly lowered by their inclusion as 
minimization criteria, the resulting hierarchies are remarkable similar to that reported 
here, suggesting that the hierarchical structure is not particularly sensitive to their 
inclusion. Additionally, nine projections were identified as producing constraint violations 
across all constraint sets, for each of the three objective criteria (see Table 4.2). Such 
consistent violations have at least three interpretations: (1.) that the data for these 
connections, which produce their constraint violations, may be erroneous; (2.) that the 
conflict suggests a particularly region may consist of distinct subregions, with differing 
connectivity patterns; or (3.) that these consistent violators constitute exceptions to the 
anatomical assumptions underlying the optimization (namely, that laminar projection 
patterns correspond directly to hierarchical position). 

4.3.2. SLN% as a Hierarchical Distance Constraint 
As explained in 1.4.4, the SLN% is a further refinement of the hierarchical distance rule, 
which stipulates that the proportion of cells labelled supragranularly corresponds to the 
hierarchical distance of the projection (Barone et al., 2000), thus yielding a real-valued 
constraint, rather than a range. We tested this possibility by applying the SLN% reported in 
(Barone et al., 2000), as constraints for our optimization. The resulting hierarchy, shown in 
Figure 4.7, yields unacceptably large deviations, particularly for the highest hierarchical 
region, THTF. This result does not support the initial assumption, and forces one to consider 
the problem in more detail. A critical observation is that the SLN%, being a proportion, 
should actually be treated as a relative constraint, rather than an absolute one, as we have 
treated it here. This point is demonstrated by the asymmetry (0.7832 versus 1.0) of the only 
reciprocal projection in the network, V1 to V4, and is illustrated aptly by a baseball analogy. 
Supposing a 12-year old little-league player and a major-league outfielder were to asked to 
stand next to one another and throw a baseball at either 50% or 100% of their capacity. 
Barring some miracle, the boy will throw the ball a fraction of the distance that the major 
leaguer does, on each throw (Figure 4.8). Supposing the major-leaguer can throw twice as far 
as the boy, then in absolute terms, the boy’s 100% will be equal to the man’s 50%. 
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Figure 4.8. Absolute versus relative measures as a baseball analogy. Suppose a major league player 
throws twice as far (90m) than a little leaguer (45m). If the man throws at 50% of his capacity, and 

the boy at 100%, they will throw the same distance in absolute terms (45m). 

 

This simple analogy may apply equally to SLN% values, which for a given region ܣ should be 
considered as relative to the total range of ܣ’s projections within the hierarchy. If, for 
instance, a second region ܤ projects twice as far within the hierarchy, its SLN% values 
actually represent twice the hierarchical distance as for ܣ. To derive absolute constraints 
from relative SLN% values requires a sufficient number of reciprocal connections, whose 
relative differences can be used to derive weights for each cortical region. Such a solution 
can be illustrated with a simple three-region example, shown in Figure 4.9.  

 
Figure 4.9. Toy example for calculating relative SLN% weights. A simple three-vertex graph 

representing a hierarchy with three levels, where edge weights represent absolute hierarchical 
distance. The range of a region’s ascending and descending projections is shown at right. 
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Since SLN% is a proportional value, each vertex in this network should produce SLN% 
values relative to the range of its projections within the hierarchy (here we translate the 
SLN% such that 50% ՜ 0.0): 

ܣ ՜ ൅1 :ܤ 2⁄ ൌ ൅0.5 

ܤ ՜ െ1 :ܣ 1⁄ ൌ െ1.0 

ܣ ՜ ൅2 :ܥ 2⁄ ൌ ൅1.0 

ܥ ՜ െ2 :ܣ 2⁄ ൌ െ1.0 

From the set of reciprocal connections, we can derive a system of two equations, 
representing the relative weights ݓ௜ of each region ݅: 

஺ݓ  ൌ 2 · ஻ݓ (1)

஺ݓ  ൌ ஼ݓ (2)

Given that ܣ and ܥ are the largest values in this graph, we can assign them each a value of 
1.0, from which we can obtain our set of weights: 

஺ݓ ൌ 1.0 

஻ݓ ൌ 0.5 

஼ݓ ൌ 1.0 

This is, of course, only a toy example. To apply this approach in practice would require that 
SLN% values were obtained from a sufficient number of reciprocal projections to fully 
determine weights for all cortical regions; such a data set does not yet exist, to my 
knowledge. In general, given ݊ regions with unknown weights, we need ݊ െ 1 reciprocal 
connections (at least one for each vertex in our graph) to ensure our system is not 
underdetermined (since we assign a value of 1.0 to the region with the largest projection 
range). In practice, however, there can be as many as ݊ · ሺ݊ െ 1ሻ 2⁄  reciprocal connections, 
resulting in an overdetermined system. This suggests an optimization approach would best 
be applied to minimizing error in the set of solutions. 

4.3.3. General Considerations 
One motivation for establishing a functional cortical hierarchy from purely anatomical 
information may be the potential of such a model for generating falsifiable hypotheses about 
the way the cortex processes information. Such a model ought to predict, for instance, such 
functional parameters as the latency from stimulus to activation onset in a given region, or 
the relative degree of stimulus selectivity observed in a neuronal recording. One of the most 
prominent of our results is the consistent displacement of regions AITd and AITv across out 
hierarchies, despite their being placed on the same level in the original FVE91 hierarchy. 
These two regions have differential projection patterns with a number of regions, including 
hippocampus, superior temporal sulcus (STS) (Saleem et al., 2000), and perirhinal and 
entorhinal cortex (Saleem and Tanaka, 1996). Tamura and Tanaka (2001) investigated the 
response properties of areas TEav and TEad, which have a close correspondence with AITv 
and AITd, respectively. While they report no significant difference in minimal stimulus onset 
latencies, they report a significantly longer latency in TEav than in TEad for significant 
excitatory responses (133.2േ68.2ms versus 115.9േ52.0ms); they also found that TEav 
responded more effectively to specific objects than TEad. These functional differences do 
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suggest some difference between these two regions. A more definitive approach to this 
question may be possible using higher resolution field recordings from in vivo multi-
electrode arrays (MEAs) (Guo et al., 2008; Charvet et al., 2010). 

A second motivation for cortical hierarchies is the possible identification of regions which 
appear to violate the hierarchical organization scheme, which highlight them as regions of 
interest for anatomical  investigations. As a supplement to (Hilgetag et al., 1996), the 
authors make a number of predictions about anatomical parcellations, based upon their 
optimization results. One prediction was that region FST, which had a high variance and a 
bimodal distribution, may actually consist of two subregions. While we observe that FST is 
associated with a high number of violations, it does not appear anomalous within our 
optimal hierarchies, nor does it have especially high variance. They further suggest that four 
regional subdivisions ought to be considered distinct areas, since their interregional 
distances are variable. We find this to be true in all cases but one (PITv and PITd), which we 
find to have a high interregional distance correlation, and a small mean distance and 
variance. Our results are consistent with two other predictions, that V4t and MT are closely 
linked, as are CITd and CITv (see Figure 4.6). Finally, V3 and VP, a pair which is mentioned 
by Hilgetag et al. as one of particular interest for their potential analogy to dorsal and 
ventral hemi-regions, are also always placed at the same level in our hierarchies. (Felleman 
et al., 1997) demonstrate that the subdivision of V3 and VP is justified by a number of 
observed differences in intracortical projection patterns. Our present results, as well as 
independent comparisons using multivariate analyses of neurotransmitter receptor 
distributions (Kötter et al., 2001), suggest that, despite these differences, these two regions 
may share an identical hierarchical position. 

4.3.4. Conclusions 
A novel methodology is presented for obtaining an optimal hierarchy from anatomical 
observations of laminar source and termination patterns of interregional projections, 
building upon the research findings of Felleman and Van Essen (1991) and others. It is 
noteworthy that the functional significance of such a hierarchy is unclear; indeed, its 
relevance has been challenged by (Hegdé and Felleman, 2007), who point to the degree of 
complexity in cortical dynamics (which includes parallel processing streams, oscillatory 
modulation, and multisensory inputs) observed by modern methods, which cannot be 
adequately captured by the simplicity of the anatomical hierarchy concept. The authors 
propose an alternative Bayesian inference framework, incorporating these functional 
properties, as an alternative to the hierarchical model. Such an approach is certainly 
attractive, although it does not preclude the idea of utilizing a hierarchical representation as 
an anatomical prior; informational hierarchies do clearly exist, at least within subnetworks 
of the brain. Indeed, this suggests the necessity of an automated, observer independent 
computational method for generating hierarchies from the whole-brain networks that would 
presumably be required to represent cortical processing in this way. This idea, combined 
with a refined distance measure in the form of SLN% measurements, suggests a clear way 
forward for the investigation of cortical organization.  
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5. Structural Integrity of Corticocortical Connections 

5.1. Methods 
One important application of structural MR data is the estimation of structural integrity in 
individual subjects, particularly those with WML. Such an integrity measure can be useful 
for both clinical diagnoses of neurological symptoms, as well as measures of effective 
connectivity, or the testing of forward models of brain activation. With the RUN-DMC data 
set, it is possible to integrate the structural connectivity information contained in both the 
FLAIR-based WML delineations, DWI-based diffusion data, and cortical surface 
parcellations. Accordingly, my colleagues and I have devised a measure of connection 
integrity, which can describe the extent to which any connection between cortical regions A 
and B has been disrupted by a WML. The process of obtaining such measures from the RUN-
DMC data set is described below. 

5.1.1. Image Preprocessing 
Due to its use of high gradient fields, DWI data is particularly subject to a number of 
artifacts. Eddy currents, for instance, are produced by turning the Z gradient field off or on, 
which induces a current in the metal parts of the imager itself. This can result in significant 
image artifacts, which must be corrected after acquisition. Head motion is likewise a 
common problem. Diffusion data obtained from the RUN-DMC project were pre-processed 
using the Donders Institute Diffusion Imaging package (DIDI), a Matlab tool developed at 
the Donders Center for Cognitive Neuroimaging (Radboud University Nijmegen; 
www.ru.nl/neuroimaging/diffusion), which corrects for cardiac and motion artifacts using the 
“Patching the Artifacts from Cardiac and Head motion” (PATCH) algorithm. This is done by 
first estimating the diffusion tensor model (Section 1.5.2.2), which can be used to correct 
simultaneously for both eddy current and subject motion artifacts, using an algorithm which 
minimizes the residual error in the model  (Andersson and Skare, 2002). 

5.1.2. Surface-to-Volume Projection of Cortical Parcellation 
To obtain an appropriate volumetric parcellation, there are at least two possibilities: (1.) use 
a volume-based atlas such as the Automated Anatomical Labelling atlas (AAL) (Tzourio-
Mazoyer et al., 2002), or probabilistic atlases (Amunts and Zilles, 2001; Eickhoff et al., 
2005b; Shattuck et al., 2008), which are already aligned to the same stereotaxic space as the 
RUN-DMC images; or (2.) use a surface-based parcellation, such as is represented on the 
PALS surface (Van Essen, 2005), and project from this surface onto the volume. The former 
option is simplest, since these atlases are already aligned and can be used directly. However, 
this suffers from at least two drawbacks: (1.) in both cases, a sulcal boundary issue exists, 
such that individual variations in sulcal patterns can result in non-contiguous ROIs (i.e., 
parcellations which “jump” across sulci, and thus do not respect neighbourhood 
relationships); and (2.) in the case of the histology-based probabilistic atlas, the cortical 
representation is not yet complete.  
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Figure 5.1. The regional map (RM) painted on three surface templates. RM was manually 

delineated on the F99UA1 surface, and subsequently deformed, firstly to the PALS-B12 surface, 
and secondly to the MNI (Civet) template surface. Figure courtesy Gleb Bezgin. 

 

 
Figure 5.2. Projection of the surface-based RM parcellation into native volume space, shown for a 

single subject overlaid on a structural T1-weighted image. 
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For these reasons, we chose to use the surface-based “regional map” (RM) parcellation of 
(Kötter and Wanke, 2005). This whole-cortex parcellation consists of 38 regions per 
hemisphere, and was devised to accommodate, on a coarse scale, the degree of known or 
presumed interspecies correspondence between primate cortices (i.e., with respect to 
microstructure, function, and topography). The names of the various RM regions, therefore, 
correspond to “general functional (e.g., V1, M1, FEF), structural (e.g., amyg, HC) or 
topographic (e.g., PFCdl, PCip, TCpol) area names that are widely recognized and 
convenient to use”. The RM was manually delineated ((Bezgin et al., 2008); and personal 
correspondence) onto a template macaque cortical surface representation (F99-UA1), using 
Caret software (Van Essen, 2005), subsequently deformed to the PALS-B12 human atlas, 
and finally to the Civet template surface, using two landmark-based deformations. The 
correspondence between these three surface parcellation is shown in Figure 5.1. 

Given the vertex-wise correspondence between individual cortical surfaces in the RUN-DMC 
cohort obtained through the Civet pipeline, once deformed to the Civet template surface, the 
RM parcellation can be projected from individual surfaces to a set of voxels. This was done in 
native space, using the Caret “surface-to-volume” command, which projects vertex-wise 
paint values from a surface mesh to voxels along vertex normal vectors. Values were 
projected 1.5 mm to either side of the middle cortical surface (generally representing layer 
4), resulting in the volumetric parcellation shown in Figure 5.2. 

5.1.3. White Matter / Grey Matter Interface 
Since we are interested in the connection along WM from brain region A to brain region B, it 
is desirable to start our tractography at the interface between GM and WM. This involves 
two steps: (1.) tissue classification using the FMRIB's Automated Segmentation Tool (FAST) 
from the FSL package (Zhang et al., 2001); and (2.) expansion of the WM tissue 
compartment. The resulting overlap of expanded WM and GM compartments was assigned 
as the GM/WM interface, which served as a mask for the RM seed regions. 

5.1.4. Tractography 
Probabilistic tractography was performed by FSL’s Diffusion Toolbox (FDT), using the 
Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques with 
Crossing Fibers (BEDPOSTX) technique (Behrens et al., 2003). This involves two main 
steps: (1.) Estimation of diffusion model parameters; and (2.) probabilistic tractography: 

i. Estimation of diffusion model parameters  

Parameters for the diffusion model can be estimated from DWI data using the 
Bayesian prior probability density, yielding orientation probability 
distributions, or ODFs. In  practice this involves a numerical solution called 
Markov Chain Monte Carlo (MCMC) sampling. This requires ~24 hours of 
processing on a single processor, but is parallelizable and thus runnable on a 
computing cluster. 

ii. Probabilistic tractography 

A single tractography sample involves starting a path at the center of a seed 
voxel, and propagating it through subsequent voxels at discrete distance steps, 
sampling from the ODF at each step to determine the next direction. This is 
repeated until a stopping criterion is met, such as a low probability, a high 
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direction angle, or a labelled voxel (indicating, for instance, that a target 
region has been reached). A fixed number of such runs is made, and this 
sample represents a probabilistic distribution of tract trajectories which 
originate in the seed region. 

Probabilistic tractography was performed using 2000 samples on each pair of regions in the 
Regional Map, for a total of 38 · 2 ൌ 76 regions; 76 · ሺ76 െ 1ሻ ൌ 5700 runs; 5700 · 2000 ൌ 1.14 ·
10଼ samples. This number was actually substantially higher, since (1.) each pairwise run 
involved specifying each voxel in the WM/GM-masked RM source regions as a seed voxel, 
multiplying the number of runs by the number of voxels in the region, and (2.) this was done 
twice for each subject, such that in the second run a WML “waypoint” mask was specified, 
which was used to estimate the number of single tracks which passed through a WML mask. 
Thus, after all processing was performed, the result was a voxel-wise count of tracks starting 
in brain region ݅ and terminating in brain region ݆, and a second count for the number of 
these that went through a WML. 

5.1.5. Structural Integrity Estimation 
To obtain a score of structural integrity for each pair of regions ሼ݅, ݆ሽ, ݅, ݆ א ,ܯ ݅ ് ݆, where ܯ 
represents the set of all regions in RM, we can do the following. First, we obtain a total 
connectivity score ܿ௧௢௧௔௟, which is the sum of all tracks from ݅ to ݆, and all tracks from ݆ to ݅: 

ܿ௧௢௧௔௟ሺ݅, ݆ሻ ൌ ෍ ௜௝ݐ

ே೔

௞೔

൅ ෍ ௝௜ݐ

ேೕ

௞ೕ

 

where ௜ܰ is the total number of voxels in region ݅, and ݐ௜௝ is the total number of tracks from ݅ 
to ݆. Next, we obtain the sum ܿ௪௠௟ for the number of tracks which pass through a WML 
mask: 

ܿ௪௠௟ሺ݅, ݆ሻ ൌ ෍ ௜௝ݓ

ே೔

௞೔

൅ ෍ ௝௜ݓ

ேೕ

௞ೕ

 

where ݓ௜௝ is the total number of tracks from ݅ to ݆ which pass through a WML waypoint. The 
integrity ܫ of the connection from ݅ to ݆ can then be estimated as simple proportion: 

௜௝ܫ ൌ 1 െ
ܿ௪௠௟ሺ݅, ݆ሻ
ܿ௧௢௧௔௟ሺ݅, ݆ሻ 

5.1.6. Mean Symmetry 
Mean symmetry is graph measure which indicates the proportion of a graph’s projections 
which are reciprocal. In an undirected graph, such as that produced by DWI tractography, 
this value will necessarily be 1.0. However, a real cortical network is directed, and thus may 
have a high degree of asymmetry. Thus, the usefulness of a connectivity matrix derived from 
a DWI method, as presented above, may result in a graph which fails to represent this 
asymmetry, weakening any conclusions which may be drawn from it. Since directional data 
are available from macaque tract tracing studies, compiled in the CoCoMac database, it is 
possible to derive a measure of mean symmetry for the RM parcellation used in this study. 

To do this, we define a graph ܩ, representing the Regional Map, with 38 vertices, 
representing the 38 regions found in one hemisphere. Making the assumption that both 
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hemispheres are identically connected, a mean measure derived from one hemisphere can be 
used to represent both. If we fully connect ܩ, we can weight its edges such that ܿ௜௝ ൌ 0 
indicates no projection between vertex ݅ and vertex ݆ ሺ݅, ݆ א ሻ, and ܿ௜௝ܩ ൌ 1 indicates the 
existence of a connection. Given this representation, the number of reciprocal connections 
ܿ௥௘௖௜௣௥௢௖௔௟  can be calculated as: 

ܿ௥௘௖௜௣௥௢௖௔௟ሺ݅ሻ ൌ ෍ ܿ௜௞ · ܿ௞௜

௡೔

௞

 

where ݊௜ is the number of ݅’s neighbours. The sum of all connections ܿ௧௢௧௔௟ is: 

ܿ௧௢௧௔௟ሺ݅ሻ ൌ ෍ ܿ௜௞

௡೔

௞

൅ ෍ ܿ௞௜

௡೔

௞

 

Finally, the mean symmetry ܵ is: 

ܵሺܩሻ ൌ
2 · ∑ ܿ௥௘௖௜௣௥௢௖௔௟ሺ݅ሻ௡

௜
∑ ܿ௧௢௧௔௟ሺ݅ሻ௡

௜
 

 

5.2. Results 

5.2.1. Connectivity 
Figure 5.3 shows preliminary results of our DWI tractography method, derived from six 
subjects, and plotted using real geometric centroids derived from the Civet template surface. 
A quick visual comparison of Figure 5.3A, which shows the DWI-derived connectivity, and 
Figure 5.3B, which is the connectivity predicted by the CoCoMac database, reveals that the 
former is substantially sparser. Figure 5.3C shows the edges which are known to exist, in 
CoCoMac, and are not found by the DWI tractography; there are 131 of these, for the right 
hemisphere. Many of these are long-distance projections, although a number of longer-
distance connections are found by the tractography. Conversely, Figure 5.3D shows edges 
representing projections which are known not to exist, according to CoCoMac.  
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Figure 5.3. Preliminary results for DWI tractography. Graphs depict the right hemisphere only, and 

are shown from the right lateral aspect, with positions determined from the centroids of the RM 
ROIs. A: Undirected connectivity derived from DWI tractography, averaged over six subjects. B: 
Directed connectivity derived from the CoCoMac database. C: Edges which are known to exist in 
the CoCoMac database, but are not found with DWI tractography. D: Edges which are found with 

DWI tractography, but are known not to exist in the CoCoMac database. 

The same DWI-based connectivity is shown in Figure 5.4A, from the superior aspect. In 
Figure 5.4C, only projections to a region’s contralateral counterpart are shown. We find that 
only 20 of 82 interhemispheric pairs are connected with the DWI tractography. Long-
distance connections are particularly absent, although as with intrahemispheric 
connectivity, distance does not appear to strictly predict connection probability.  
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Figure 5.4. Superior view of DWI-derived connectivity, showing A: all projections. B: the same, with 
edges coloured by the log of the average number of tracks per voxel (as per colour scale as shown). 

C: only contralateral projections to homologous regions. D: connections coloured by the average 
integrity score (as per colour scale as shown). 

 

The output of the probabilistic tractography routine specifies the number of tracks 
originating in a seed voxel and terminating in a target region. Figure 5.5 shows the 
frequency histogram for connections per voxel, for all connections with at least one 
connection per voxel. ~700 of 1042, or 67% of voxels had less than 20 connections out of a 
sample of 2000; i.e., less than 1% of tracks originating in that voxel reached the target area. 
The remaining 33% of voxels have somewhat higher connection probabilities, but none 
greater than 0.45. Figure 5.4B shows the distribution of these values in the network (values 
are log-transformed, due to the large skew as seen in the histogram). Edges with low 
probabilities tend to occur within the core of the network, while edges with higher ones occur 
more superficially. Additionally, there is a significant negative correlation between 
interregional distance and connection probability (ݎ ൌ  െ0.4129, ݌ ൏ 0.001). 
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Figure 5.5. Histograms of DWI-derived data, showing the distribution of voxel-wise connection 
probabilities (left) and the distribution of connection integrity (right) across the DWI netowrk. 

5.2.2. Integrity Measures 
Figure 5.4D shows the connection integrity measures, derived by our method. This value 
indicates the degree to which a projection is occluded by a WML. Frontal connections appear 
to have generally lower integrity values (orange and red) than the rest of the network. There 
is also an apparent bias towards the left hemisphere. Figure 5.5, right, shows the 
distribution of integrity values across the entire network, indicating a right-skewed 
distribution. 

5.2.3. Mean Symmetry 
The mean symmetry ܵ was introduced in Section 5.1.6 to obtain an indication, based upon 
connectivity information from the CoCoMac database, of the degree to which the 
connectivity of the RM may be asymmetrical, and thus differ from the non-directed graph 
representation produced by our DWI approach. The mean symmetry of RM, based upon a 38-
vertex graph representation of a single hemisphere, is 0.7766. This indicates that ~23% of 
the cortical connections represented in this graph are asymmetrical, based upon existing 
knowledge (it is notable that ~14% of interregional relationships are unknown). 

 

5.3. Discussion 
The results reported here for the DWI connection integrity scores are very preliminary, being 
derived from only six subjects, of the total 485 for whom data are available. Nonetheless, it 
is possible to derive trends from these early results, as well as identify methodological issues 
which require further consideration before the data set can be fully processed. I discuss 
these issues in the following sections. 

5.3.1. Connectivity 
The connectivity derived from our DWI tractography method is considerably sparser than 
that predicted by the CoCoMac database, which is based upon macaque tract tracing 
literature. As Figure 5.3 illustrates, there are 131 connections per hemisphere that are 
known to exist, on the basis of CoCoMac evidence, yet are not discovered by the 
tractography. Moreover, only 24% of regions were found to have connections with their 
contralateral counterparts. These results are problematic, as they limit the network with 
which we can work, and also suggest a bias that calls into question the validity of our 
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integrity measures. These issues require further consideration, and a number of facts may 
help establish the reason for this discrepancy: 

i. Edge length 

Visually, many of the missing edges appear to be more long-distance ones (see 
Figure 5.3C), and there was indeed a substantial negative correlation between 
interregional distance and connection probability, for edges that did exist, 
although this explained only part of the variance. Distance also appears to be 
a factor for contralateral projections (see Figure 5.4C). 

ii. Edge location 

Figure 5.4B reveals an interesting pattern, in which internal edges appear to 
have more frequently small connection probabilities than external ones. This 
may also be a factor of distance (longer connections may tend to be more 
internal), but it highlights the possibility that specific spatial configurations of 
projection trajectories may be less probable (in terms of tractography) than 
others. 

This connectivity issue has been well reported in tractography literature, and has been 
attributed to a number of factors, including the presence of multiple fiber directions within a 
voxel, although the FDT routine used for tractography includes many optimizations meant 
to address many of these factors (Behrens et al., 2007). The problem of distance, however, is 
inherent in the tractography approach. The term “connection probability”, which I have 
already used, actually refers to the probability that a track starting at a given seed voxel will 
terminate in a certain set of labelled voxels elsewhere (the region of interest). This is 
necessarily a factor of distance – among other factors such as the degree of dispersion (Lazar 
and Alexander, 2005) – because with every new voxel there is a chance that the track with 
deviate or terminate. This results in low probabilities even for well-known projections 
(Sherbondy et al., 2009). Possible ways to address this issue will be discussion below. 

5.3.2. Integrity Scores 
Despite the incompleteness of the DWI-derived connectivity matrix, the preliminary average 
connection integrity results (Figure 5.4D) are somewhat promising. The most compromised 
edges appear to be between frontal areas and edges which project close to the midline (while 
these edges connect centroids and are not geometrically equivalent to WM tracts, they can 
be considered to approximate their trajectories to a very rough extent). There also appears to 
be more compromised connections for the left hemisphere than for the right. While it must 
be reiterated that these results are derived from only six subjects, the overall pattern of 
integrity loss is consistent with the pattern of GM degeneration described in Section 2.2. The 
distribution of integrity scores across the entire network is equally interesting (Figure 5.5, 
left), exhibiting a right-skew which indicates that the bulk of connections have over 50% 
integrity; although the overall numbers of compromised fibers is higher than might be 
expected. It will be a important step to investigate the ways in which this distribution 
interacts with age, as well as additional factors such as total WML load, cortical thickness, 
cognitive performance, region of interest, etc.  

5.3.3. Mean Symmetry 
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The finding that ~23% of connections between regions in the RM are asymmetrical is also 
cause for concern, considering that lack of directional information in DWI data preclude any 
knowledge of asymmetry. This suggests that any attempt to utilize the connectivity 
information derived from the method we present here should also be informed by tract 
tracing data, which can be used as a constraint on the construction of graph edges. This 
would address another problem, namely that the tractography algorithm identifies 
connections between regions which are known not to exist (Figure 5.3D).  

5.3.4. General Considerations 
The results discussed here suggest that our novel connection integrity method has the 
potential to produce very interesting information about whole-brain structural connectivity, 
which can have many benefits for further investigation into cortical circuitry, normal and 
pathological aging, and brain function in general. On the other hand, the inconsistency of 
our DWI-derived connectivity matrix with that constructed from tract tracing data indicates 
that this part of the method will require some improvement. The size of the tractography 
sample is an obvious starting point; here we have utilized 2000 samples per voxel, due to 
computational concerns, whereas a number closer to 5000 is more commonly used. Another, 
more involved potential solution is to incorporate as a priori evidence, the existence or 
absence of particular interregional connections, based upon tract tracing literature. This 
would shift the focus of our method away from the discovery of a connection towards a more 
accurate description of its trajectory, which is in any case our main concern in the production 
of an integrity estimate. A method for determining the most probable path between two ROIs 
has already been proposed by (Sherbondy et al., 2009), who sample from a probability 
distribution of possible connection paths, and determine the most probable path using the 
diffusion data. An alternative solution might be to inform the tractography algorithm based 
upon CoCoMac evidence. In this case, for a connection which is presumed to exist, the 
position of the target region can be used as a Bayesian prior which helps “guide” the track 
towards its target. 
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6. General Discussion 

6.1. The Blind Men and the Elephant 
I. 

It was six men of Indostan 
To learning much inclined, 

Who went to see the Elephant 
(Though all of them were blind), 

That each by observation 
Might satisfy his mind 

MORAL. 
So oft in theologic wars, 
The disputants, I ween, 

Rail on in utter ignorance 
Of what each other mean, 

And prate about an Elephant 
Not one of them has seen! 

 

– John Godfrey Saxes. The Blind Men and the Elephant. A Hindoo Fable.  

The fable of the blind men and the elephant is a favourite presentation device of my 
colleague Ingo Bojak which, in both our opinions, is very aptly applied to the field of 
neuroscience. The poem excerpt above is derived from an Indian fable in which six blind men 
attempt to describe an elephant by touching very different parts of it, resulting in a 
predictable dispute not dissimilar to some of the disputes which have arisen over the 
evolution of neuroscientific research. The moral, of course, is that through an integration of 
disparate forms of observation we can arrive at a more complete understanding of the 
phenomenon of interest than would be possible if we were to exclude ourselves to narrow 
fields of view. There are few disciplines where this applies more strongly than for 
neuroscience, as the present dissertation attempts to demonstrate. None of the research 
methods described herein could have been possible without the integration of the seemingly 
disparate fields of cellular biology, anatomy, physiology, neurology, mathematics, physics, 
computer science, informatics, and so on. The functional interpretations, moreover, are 
greatly enriched by considerations deriving from the field of psychology, which is my own 
background. 

In the remainder of this discussion I will attempt to draw parallels between the different 
lines of research I have pursued in my Ph.D. tenureship, and present ways in which these 
findings can be integrated in future research. The elephant I wish to comprehend will 
require an integration of structural information with a graph theoretical framework, which 
can be analyzed both statically and dynamically. The ultimate goal would be to combine 
these results with functional and behavioural data and forward modelling approaches, in an 
attempt to challenge some of the prevailing theories of cognition and aging, such as the 
scaffolding theory of (Park and Reuter-Lorenz, 2009), which make certain falsifiable 
predictions about effective connectivity. 

6.2. The Brain as a Computer 
John Von Neumann was a Hungarian-born polymath who, among many other remarkable 
achievements, invented the Von Neumann architecture, which remains the foundational 
basis of modern computer engineering. In his later years, Von Neumann published a book 
called The Computer and the Brain (Von Neumann, 1958), in which he speculated about the 
connections between the two, drawing parallels between their control structures and 
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apparent digital processing. Being dated, a number of these parallels turn out to be either 
false or grossly oversimplified, but the comparison is a fine one, and worth further 
consideration. I have been scolded in the past for referring to the human brain as a 
computer, given the vast differences between the Von Neumann architecture which resides 
in our notebooks and desktops, and which we commonly refer to as a computer, and the 
bogglingly complex architecture and communicative mechanisms of the organ that resides in 
our skull casings. However, in the more abstract Turing conceptualization of the computer, 
there is no doubt that our brains qualify.  

The progression of modern computer technology is further testament to this: both in the 
movement towards parallelized hardware and network configurations, and the advance of 
computer programming into object-oriented designs. The latter is perhaps most striking with 
respect to its resemblance of brain organizations, in that it is modularized into distinct 
objects, which specify the nature of the input they expect and the output they produce, in 
much the same way as (one might speculate) brain regions do. Moreover, like brains, this 
organization of software emerged through a sort of evolutionary process, building upon the 
trial and error of programmers and software engineers, in response to the ever-expanding 
demands of human users. Today’s software projects have assumed an organization that 
bears an uncanny resemblance to that of the brain: the use of “tiered”, or hierarchical 
structures, in which low-level code takes care of tedious tasks such as parsing and 
assembling instructions and data, and passes on its output to increasingly specialized 
modules that, in the end, execute banking orders, serve up web pages, produce thesis 
dissertations, or process MRI data sets. 

This comparison between computers and brains is, in my opinion, more than a simple 
analogy. Through an understanding of the same concepts that permit the engineering of 
complex computational structures, we can gain a better comprehension of the ways in which 
the brain must process information to accomplish the goals that its genome has set for it. 
The methods I describe here are a start: graph theory and neuroanatomy are ways to 
examine the architecture of the system, which is a required basis for advancing further, 
more functional inquiries, just as a knowledge of computer architecture, software languages, 
protocols, and engineering principles is a prerequisite for understanding and producing new 
forms of software. The study of various states of brain degradation, moreover, is as 
informative to its function as the act of “debugging” is to software design: it is sometimes 
difficult to understand why something functions until you can understand why it doesn’t 
function. In the end, as I will expand upon in the final section, I would like to see these first 
steps lead into new steps, in which the functional and effective connectivity of the RUN-
DMC data set, and others like it, can be investigated based upon statistical and simulation 
techniques such as dynamic causal modelling, or more biophysically fiducial efforts such as 
mean-field or single-cell models. This integration of theoretical and empirical methods are 
possibly the most promising conduit for understanding how our organic computers function. 

6.3. Lessons from the Aging Brain 
Based upon behavioural observations of a cohort of over 600 adults with ages ranging from 
25 to 103, (Baltes and Lindenberger, 1997) report a lifetime-wide association between early 
sensory processing and higher intellectual function. The dedifferentiation hypothesis they 
have proposed suggests a relationship between the efficiency with which early specialized 
neural circuitry can handle perceptual or multisensory challenges, and the ability of higher-
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level cognitive functions to respond to task involving these challenges. Such 
dedifferentiation has also been linked to the aging process; as low-level neural circuitry 
degrades, a higher demand is placed upon executive regions, and in particular the PFC, to 
compensate. (Park and Reuter-Lorenz, 2009) refer to this sort of compensation as 
neurocognitive scaffolding. Here I have reported an age-related thinning of parts of primary 
visual and auditory cortices, which agrees with results from (Salat et al., 2004), and would 
appear to correspond to the dedifferentiation hypothesis. Such a connection, however, would 
require more targeted investigation, the nature of which I will speculate upon here. 

While a simple task-related functional imaging design would be ideal to investigate the 
relationship between structure and function, such data are not available in the RUN-DMC 
study. Functional data are available, however, in the form of resting-state fMRI, which has 
been used to identify a commonly-activated “default mode” network in the brain (reviewed in 
(Raichle and Snyder, 2007)). Default mode activity is associated with a behaviourally 
“resting” state, and is suppressed when the brain is challenged by a cognitive task, showing 
an inverse relationship with prefrontal activity (Greicius et al., 2003). Moreover, this 
suppression is reportedly reduced in older adults, and the degree of this reduction is 
correlated with performance on some cognitive tasks (Grady et al., 2006; Persson et al., 
2007). It would be possible, therefore, to examine the default mode activity in the RUN-DMC 
cohort. While the resting-state paradigm is not associated with task demands, the functional 
results can be used to investigate functional connectivity within and between functional 
networks including the default mode network. This functional connectivity can, moreover, be 
combined with the structural results obtained from DWI data, to investigate effective 
connectivity using the methods described in Section 1.4.3. This will be formulated more 
specifically below. 

In their review of neurocognitive scaffolding, (Park and Reuter-Lorenz, 2009) propose a 
number of questions for future research. A number of these open questions can potentially be 
addressed with the RUN-DMC data set:  

i. What is the relationship between structural degradation and functional activation, 
and does this support the notion of scaffolding?  

ii. Can the presence of early-onset scaffolding predict the development of cognitive 
impairments or dementias? This prognostic question can be best answered with 
longitudinal data. 

iii. Can experience (life activity, cognitive engagement, education, etc.) help prevent the 
development of cognitive impairment and brain degradation?  

iv. Are certain patterns of functional activation support cognitive scaffolding more than 
others? Phrased differently, can the specific patterns of GM or WM degradation 
predict the degree of compensation? 

6.4. Large, Longitudinal, Human Data Sets 
As has been stated and reiterated throughout this dissertation, the RUN-DMC is a large 
cohort, with a wide variety of data modalities, including imaging data obtained at the same 
site, using the same scanner, and identical acquisition protocols. This gives it a distinct 
advantage over other attempts to collect epidemiological data, which typically combine data 
from multiple sites, incurring a number of difficult comparison issues. Other large human 
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data sets have arisen, due largely to the increased availability of dedicated research 
scanners, and an enhanced interest in such large-scale designs which, while they cannot 
typically address specific questions about brain function, have on the other hand superior 
statistical power to detect population-wide effects. Many of these projects, moreover, are 
longitudinal in nature, providing not on a cross-sectional analysis of a population, but 
important insights into how the brain evolves over time, both through normal aging and 
over the course of pathological conditions. In addition to their obvious clinical advantages, 
such data sets are hugely promising for advancing our fundamental understanding of how 
the brain functions both as a computer and as a genetically constrained organism.  
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6.5. Future Considerations 

6.5.1. Informing Models of Effective Connectivity 
As introduced in Section 1.4.3, an analysis of effective connectivity requires two models: (1.) 
a model specifying the architecture and structural connectivity of the system, and (2.) a 
mathematical model specifying its dynamic behaviour. In the case of dynamic causal 
modelling (DCM), this includes both a biophysical model of the brain, and a statistical 
framework with which to fit parameters and compare models. The RUN-DMC data set, 
combined with the CoCoMac database and the results presented in this dissertation, provide 
the necessary basis for analysis of effective connectivity, which I will outline here. It is 
important to note that a DCM will necessarily be limited to a small subset of regions. 
Therefore, such an approach should be targeted at specific questions about connectivity, such 
as those which arise from the neurocognitive scaffolding hypothesis. 

A structurally connected network can be derived in a variety of ways. The simplest 
approach, perhaps, is to use the connectivity specified by the macaque tract tracing 
literature compiled in the CoCoMac database, with respect to the Regional Map (RM) 
parcellation introduced in 5.1.2. In its current state, CoCoMac specifies connectivity for 
~86% of the possible interregional projections. A second approach may be to utilize the DWI 
information available for each subject to obtain a connectivity matrix. However, this 
approach has at least two difficulties: (1.) the problem of detecting long-range or highly-
bending projections, as discussed in Section 5.3.1.; and (2.) the lack of direction information; 
given that the mean symmetry of RM, according to CoCoMac, is only ~78%, this suggests a 
nontrivial ambiguity with respect to the directionality of any connectivity matrix derived 
solely from DWI data. A better solution would be to combine the information from both 
modalities, either by assigning directionality directly from CoCoMac or, preferably, utilizing 
CoCoMac information as a prior constraint on the tractography algorithm itself. 

The complexity of the network model is dependent upon the nature of the question being 
addressed through this analysis. Therefore, it is useful to specify a specific question at this 
point, even for the purpose of a speculative example. One question of interest arises from the 
work of Daselaar and colleagues (Daselaar et al., 2006), who report a double dissociation in 
older adults between activity in the left hippocampus and both a left parietotemporal region 
and rhinal cortex, and suggest that this may be compensated by a corresponding increase in 
associativity between left rhinal and bilateral frontal cortex. While this study used an task-
related design, it might be interesting to investigate this dissociation using our resting-state 
BOLD activity; more precisely, we are interested in whether our anatomical observations can 
predict a shift in effective connectivity, corresponding to this functional change. Since 
information on hippocampal volume is already available in the RUN-DMC cohort (van 
Norden et al., 2008), we can construct a DCM which integrates this knowledge with cortical 
thickness information, and the structural connectivity evidence provided by our WM 
integrity scores. Our model can thus be comprised of eight regions, four for each hemisphere 
(see Figure 6.1): (1.) hippocampus, (2.) parietotemporal cortex, (3.) rhinal cortex, and (4.) 
frontal cortex.  
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Figure 6.1. Example DCM formulation, to investigate effective connectivity with resting state fMRI 
data from the RUN-DMC cohort. The network is derived from (Daselaar et al., 2006), who report a 
function reorganization of this circuit in aging. ߠுಽ,௉ிೃis the connection weight from ܪ௅to ܪோ, ݔுಽis 

the activation state of ܪ௅, and ߱ுಽis the structural integrity weight for ܪ௅. 

Since the BOLD signal is temporally blurred, with a latency of ~2s, the complexity of the 
underlying biophysics can be relatively low. Activity in region ݅ can then be represented as a 
single state variable ݔሶ௜, representing neuronal activity (a so-called neural-mass model). The 
set of free parameters ߠ, representing the effective connectivity between regions, can be 
assigned to each edge in the model. Our next task is to include our structural knowledge. For 
regional GM integrity, hippocampal volume and cortical thickness can be added as 
additional fixed parameters ߱ on the model nodes; the activity of a region will then be 
multiplied by this value, where 1.0 indicates an intact, “normal” state (determined perhaps 
by the maximum value across subjects), and 0.0 indicates a complete lesion. WM integrity 
can be incorporated in the form of the prior probability term ݌ሺߴ | ݉ሻ (see Section 1.4.3.3). 
Resting state activity can be simulated as external input to single regions of the network. 

6.5.2. Mean Field Modelling 
The DCM example of the previous section provides an interesting means of investigating 
specific questions of network connectivity. Larger-scale, more comprehensive computational 
models are possible however, whose purpose is typically to address more general questions of 
brain function, for which the RUN-DMC data set is also well-suited. Mean field models 
(MFMs) comprise a class of such large-scale forward models, which aim to simulate brain 
signals such as fMRI, PET, EEG, or MEG, in a realistic way which can subsequently be 
compared to and constrained by empirically observed evidence. An MFM is based upon the 
assumption that, at least in the cortex, individual and highly nonlinear neuronal activity can 
be approximated by taking a mean over a discrete region of the cortical sheet (depending on 
the resolution of the empirical data, typically 1-2mm for fMRI). To date, such models have 
been expressed on tessellated two-dimensional sheets with only local extrinsic connectivity 
between individual vertex-wise models and their neighbours, with a connection probability 
that decays exponentially with distance (Liley et al., 2002; Bojak and Liley, 2005). As shown 
in Figure 6.2, each vertex model is comprised of an excitatory and an inhibitory component, 
with excitatory and inhibitory connections between them referred to as intrinsic 
connectivity. The real brain has a three-dimensional convoluted cortex, an anatomically 
distinct parcellation, and specific patterns of long-range connectivity. Thus, an adaptation of 
this model is to include long-range connections between cortical regions; such connections 
are exclusively excitatory. 
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Figure 6.2. Mean field model (MFM) with realistic geometry. A: Individual cortical surface obtained 
using the Civet pipeline. Each vertex defines an individual MFM, and each MFM has three types of 

connectivity. B: Long-range (interregional) extrinsic connectivity connects a vertex to vertices in 
other cortical regions. C: Short-range (local) extrinsic connectivity connects a vertex to its 

neighbours with a strength that decays exponentially with distance. D: Intrinsic connectivity 
consists of excitatory (݁) and inhibitory (݅) connections between E and I pools of neurons. 

Cortical surface representations, along with diffusion tractography and tract tracing 
information, provide a natural means of extending MFMs with realistic geometry and 
connectivity. Recently, my colleagues and I (Bojak et al., 2010) have proposed an 
implementation of such a realistic MFM, which requires a number of components, 
minimally: (1.) an accurate cortical surface representation, with a resolution that 
compromises between spatial fidelity and computational complexity; (2.) an accurate cortical 
parcellation, such as the RM, discussed in Section 5.2.1; (3.) a transfer function which maps 
from neuronal activity to observable signals (for BOLD, this is a hemodynamic response 
function; for EEG, this is a model of how signals are conducted through tissue volumes, 
including skull and scalp); (4.) a connectivity matrix, describing the patterns of long-range 
structural connectivity between cortical regions, such as can be obtained via CoCoMac or 
DWI tractography (or likely a combination of these); (5.) an estimate of signal transmission 
latency through these long-range connections. Additionally, such a model requires the 
specification of connection strengths, which are very difficult to obtain through direct 
empirical means; the closest approximation to this is a measure of projection density 
obtained from macaque tract tracing, but this approximation fails to model synaptic strength 
or multiple axonal terminations.  

Connection strengths, and other undeterminable biophysical variables, can be treated as 
free parameters, to be estimated on the basis of model inversion. Thus, once the realistic 
MFM has been constructed, the next step is to simulate signals and then estimate 
connection strengths on the basis of real signals observed from the individual from whom 
the geometry was obtained. The resting state fMRI data that is available with the RUN-
DMC data set can be used for this purpose; however, a modality with higher temporal 
resolution, such as EEG or MEG, which can capture oscillatory behaviour, is also desirable. 
Given the vast number of parameters to fit, and the relatively few mean field signals, such 
an inversion is a daunting task even with such a rich set of data; thus further simplifying 
assumptions are likely necessary.  

A realistic MFM of the whole human brain, constrained by empirical evidence, would have 
incredible benefits for both basic research and clinical practice. Such a model formulation 
can be experimentally manipulated in basically any conceivable way, many of which 
manipulations are impossible or severely limited for human or even animal subjects. Having 
trained the model on intact brains, for instance, the degree to which the model can predict 
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the functional outcomes of focal GM lesions, or WM degradation, can be assessed. An 
accurate predictive model can generate any number of falsifiable hypotheses, prior to animal 
or clinical research. Moreover, the biophysics of the model can be extended to included 
neuromodulation, synaptic plasticity, or other forms of increased complexity, without the 
need to alter the underlying framework. Such large-scale models can also be used to test the 
validity of more targeted DCMs, since the underlying ground truth is known a priori (Lee et 
al., 2006b). 

6.5.3. Longitudinal Data 
The prospect of a follow-up study for the RUN-DMC cohort allows for a number of intriguing 
extensions to the data sets reported here. While in the present cross-sectional design we are 
only able to describe trends across an aging population, the existence of time-elapsed 
information permits the extraction of within-subject information that is invaluable for 
understanding the progression of aging and SVD-related effects. A number of studies have 
investigated the progression of cortical thickness, for instance, over time. (Gogtay et al., 
2004) obtained cortical surfaces for individuals between the ages of 4 and 21, every two 
years for 8 to 10 years, and produced time-elapsed movies which demonstrated the 
development of the cortex over this period, with somatosensory and visual cortex preceding 
higher-order cortical regions. In an older cohort, (Thompson et al., 2003) investigated the 
progression of cortical GM thinning in Alzheimer’s Disease patients and age-matched 
controls, scanned twice over a two-year period. They report a distinct pattern of progression, 
which corresponds to the pattern of neurofibrillary tangles and plaques observed in 
postmortem examinations: deterioration originating in temporal and limbic regions, and 
gradually spreading to frontal and occipital regions. Both of these studies provide a clear 
precedent for a similar investigation in our SVD cohort. Such spatiotemporal information 
can be used to pinpoint the origin of pathological conditions and thus help with clinical 
prognosis, the elucidation of their mechanisms, and their possible prevention. 

Longitudinal data should also prove informative for analyses of effective connectivity and 
computational modelling. Cognitive theories such as neurocognitive scaffolding and 
dedifferentiation can be directly tested with the addition of a temporal aspect, that can 
demonstrate distinct changes both to functional and structural connectivity, and 
consequently effective connectivity. The daunting task of generative model inversion, 
discussed in the previous section, can potentially be simplified by the existence of empirical 
evidence from the same system, with altered morphology that can be directly measured 
using the morphological techniques described here. In sum, the addition of a new temporal 
dimension to the wealth of cross-sectional data that is already available for the methods I 
have discussed, promises a wealth of scientific discoveries for the considerable future. As 
such, it is perhaps the most appropriate place to conclude this dissertation, with gratitude to 
the reader who has followed to the end. 
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8. Appendix 
Scatterplots of ݁݃ܣ ൈ  .for each BA ROI, separated by hemisphere ݏݏ݄݁݊݇ܿ݅ܶ
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