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protein transport from the cytosol across the inner cell membrane. After cleavage of the signal 
peptide by a signal peptidase, the premature protein is folded in the periplasm and transferred 
over the outer cell membrane (Leonhartsberger et al., 2009). 

About the physiological role of the racemase secretion into the medium can only be 
speculated, as no further investigations have been done and no literature concerning the 
secretion of amino acid racemase EC 5.1.1.10 is available. However, it is well known that 
other racemases (e.g. alanine racemase) play an important role in the bacterial growth by 
providing D-Ala and D-Glu, which are central compounds of the murein layer (Figure 5) of all 
bacterial cell walls (Yoshimura et al., 2003), as was already described in the introduction. 
Therefore, it is likely that periplasmic amino acid racemase is involved in the isomerization of 
the respective proteinogenic L-AA in the periplasmic space. 

 

Figure 5: Schematic drawing of murein layer (E. coli). GlcNAc (N-acetylglucosamine) and MurNAc (N-
acetylmuramic acid) are cross-linked by AA-tetramers. Besides DAP (diaminopimelic acid), D-Ala and D-Glu 
are main components of these tetramers. 
 

 

4.1.2 Purification from cell extract and medium 

Enzyme purification was performed using two different methods starting from either cell 
extract or medium. Figure 6 gives an overview about the enzyme sources, the purity of the 
enzyme samples and their applications. Different purity grades were necessary due to side 
reactions that occurred using the crude cell extract. While this unpurified enzyme sample was 
sufficient for Met racemization, it led to enzymatic degradation processes of Asn and Thr that 
were identified by decreasing overall concentrations of Asn and Thr, respectively. 
Degradation of Asn and Thr was not characterized any further, but could be avoided by 
purification of the applied enzyme sample. 
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4.4 Production of chiral allo-threonine 

As was already mentioned in the introduction, various chemical multi-step reactions have 
been described for the production of racemic and chiral allo-Thr. Their complexity and 
usually low yields render these processes very cost-intensive, whereas enzymatic approaches 
are rather rare (Pons et al., 1990; Beaulieu, 1991; Blaskovich et al., 1993; Lloyd-Williams et 
al., 1997; Cardillo et al., 1998). 

In the course of this project, valuable chiral L- and D-allo-Thr was produced by enzymatic 
isomerization of the cheap starting material Thr with AArac12996 (PL) in combination with 
simple product crystallization from aqueous solutions. AArac12996 was preferred for the 
application as a process enzyme, since it exhibits an excellent stability at 30 °C (chapter 
4.1.3). 

Two different process strategies for the production of chiral allo-Thr were investigated, which 
will be discussed in chapter 4.4.2. 

 

4.4.1 Identification of threonine isomers 

Enzymatic isomerization (epimerization) of diastereomeric Thr by amino acid racemases does 
not yield the respective counter-enantiomers, as it is the case during isomerization of AA with 
only one chiral center. Since only the stereoconformation of the α-amino group is affected by 
the isomerization reaction while the β-hydroxy group remains unchanged, Thr is 
interconverted to allo-Thr (publication 4, Figure 1). 

The identity of the reaction products of D- and L-Thr was verified by chiral HPLC and 1H-
NMR spectroscopy in D2O. Chiral HPLC was able to separate three peaks, which could be 
assigned to D-Thr/D-allo-Thr, L-allo-Thr and L-Thr (Figure 24). Since it was not possible to 
distinguish D-Thr and D-allo-Thr by HPLC, only the ratio a between D- and L-isomers could 
be determined. 

a =
[D − Thr] + [D − 𝑎𝑙𝑙𝑜 − Thr]
[L − Thr] + [L − 𝑎𝑙𝑙𝑜 − Thr]  

Equation 3 

Due to the different chemical environments in diastereomeric molecules, epimers can be 
distinguished from each other by 1H-NMR spectroscopy, while enantiomers show the same 
peak pattern (Figure 25). The ratio b between Thr and allo-Thr could be determined from the 
peak areas by Equation 4. 
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b =
[D − Thr] + [L − Thr]

[D − 𝑎𝑙𝑙𝑜 − Thr] + [L − 𝑎𝑙𝑙𝑜 − Thr] 

Equation 4 

 

The absolute concentrations [D-Thr] and [D-allo-Thr] could then be calculated from Equation 
3 and Equation 4. [L-Thr] and [L-allo-Thr] can be determined in an equivalent way. 

 

[D − 𝑎𝑙𝑙𝑜 − Thr] =
[L − Thr](a + 1) + [L − allo − Thr](a − b)

b + 1
 

Equation 5 

 

[D − Thr] = a([L − Thr] + [L − 𝑎𝑙𝑙𝑜 − Thr]) − [D − 𝑎𝑙𝑙𝑜 − Thr] 

Equation 6 

 

 

 
Figure 24: HPLC chromatograms of threonine isomers (column: Crownpak CR(+), mobile phase: HClO4 (pH1), 
flow: 0.8 mL/min, T=5 °C). Retention times tr: tr(D-Thr) =1.85 min, tr(D-allo-Thr)=1.88 min, tr(L-allo-Thr)=2.04 
min and tr(L-Thr)=2.89 min. 
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Figure 25: 1H-NMR-spectra (Bruker, Avance DR X 600, 600 MHz) of Thr (top), allo-Thr (middle) and the 
reaction product of Thr isomerization (bottom) in D2O showing peaks for α-, β- and γ-protons (Thr: 600 MHz, 
ppm: δ= 1.23-1.24 (d, 3H, J=6.42, CH3), 3.49-3.50 (d, 1H, J=4.91, CH), 4.14-4.18 (m, 1H, CH); allo-Thr: 600 
MHz, ppm: δ= 1.14-1.15 (d, 3H, J=6.42, CH3), 3.77-3.78 (d, 1H, J=3.77, CH), 4.28-4.32 (m, 1H, CH)). 
 

4.4.2 Process modes 

Both enantiomers of allo-Thr have been produced by enzymatic isomerization of Thr and 
simultaneous crystallization. For a better understanding, this process may be separated into 
three individual physical and biocatalytic reaction steps, which all take place simultaneously 
in one reaction vessel and result in a dynamic interaction (Figure 26): 

• “removal” of Thr from the saturated solution by isomerization to allo-Thr 
• solution of excess (solid) D- or L-Thr 
• crystallization of accumulating D- or L-allo-Thr upon exceeding the solubility limit 

D- and L-threonine 

D- and L-allo-threonine 

reaction product of threonine isomerization 

α 

β 

γ 

β 

α 

γ 
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The dynamic interaction of these three steps yields a constant solution composition of about 
42 % D- or L-allo-Thr and 58 % L- or D-Thr, respectively. 

 
Figure 26: Production of chiral allo-Thr by enzymatic 
isomerization and crystallization. The dynamic process consists of 
three steps: isomerization (Thr  allo-Thr), crystallization (allo-
Thr) and solution of excess Thr. 

 

In contrast to enzyme-assisted PC of Asn, where the reaction process could be monitored 
polarimetrically, here the solution composition as well as the optical purity of the crystals 
were determined by chiral HPLC and 1H-NMR (chapter 4.4.1). 

The production of D- and L-allo-Thr was investigated in a repetitive batch ans in a 
continuously operated reactor. 

 

a) Repetitive batch production in one single reaction vessel 
Both enantiomers of allo-Thr were produced separately starting from either D- or L-Thr as a 
substrate. Enzymatic isomerization of Thr to the respective allo-Thr enantiomer using 
AArac12996 was performed in a tempered 30 mL reaction vessel as described in publication 
4. Therefore, the reaction solution was saturated with the respective chiral Thr until a 
sediment was formed (Figure 27, I). Crystallization of the accumulating enantiomer of allo-
Thr occurred in the same reaction vessel and started upon exceeding its solubility limit, which 
is lower compared to the one of Thr in water (Figure 16). As a result, an equilibrium 
concentration of ca. 42 % allo-Thr and 58 % Thr was formed in the solution (Figure 27, II). 
Upon complete solution of the excess Thr, the described dynamic process was interrupted and 
only allo-Thr remained in crystalline form (Figure 27, III). The crystals were separated by 
filtration and dried at 60 °C. By the addition of fresh Thr the next batch was started. Steps II 
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and III were repeated for a repetitive batch crystallization. Figure 27 depicts a repetitive batch 
process for the production of D-allo-Thr starting from a saturated L-Thr solution. 

 
Figure 27: Repetitive batch crystallization of D-allo-Thr in one single reaction vessel. I: AArac12996 is added 
to a saturated L-Thr solution (starting condition) II: dynamic process of crystallization (D-allo-Thr), solution (L-
Thr) and isomerization (L-Thr  D-allo-Thr) III: addition of fresh L-Thr when excess has depleted. Steps II and 
III are repeated for repetitive batch crystallization. 
 

Repetitive batch processes (20 mL scale) were performed for the production of D- and L-allo-
Thr, respectively. The process data and yields for both enantiomers are summarized in 
publication 4. The production of D-allo-Thr was performed over 55 days and consisted of 12 
batches with yields of 1.6 to 4.4 g D-allo-Thr per batch and a deallo between 96.9 and 100 %. 
A space time yield (STY) of 28 g/(L·d) and a final yield of 30.8 g D-allo-Thr (deallo > 99.2 %) 
were achieved. The production of L-allo-Thr was performed over 56 days and consisted of 12 
batches with yields of 1.5 to 4.0 g L-allo-Thr per batch and a deallo between 94.6 and 100 %. 
A STY of 28.8 g/(L·d) and a final yield of 32.2 g L-allo-Thr (deallo > 98.4 %) were obtained 
using a total amount of 20 mg AArac12996. The enzyme showed a remarkable high stability 
(t1/2=32 d) under process conditions yielding 2.56 g D-allo-Thr and 1.62 g L-allo-Thr per mg 
AArac12996, respectively. 

 

b) Continuous production with separate crystallization vessel 
Another process concept was investigated where crystallization of allo-Thr and solution of 
excess Thr were performed in two separate reaction vessels. Thereby, a continuous product 
separation should be enabled. Figure 28 depicts the reactor setup, which consisted of two 
tempered 150 mL reaction vessels (25 °C and 30 °C, connected by silicon tubings), each 
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Pseudomonas putida ATCC 17642 with a threonine-α-epimerase activity (EC 5.1.1.6), which 
is the only reference of an enzymatic isomerization of Thr in the literature. γ-halogenated 
derivatives of Thr were synthesized using L- and D-threonine aldolases from Pseudomonas 
putida starting from glycine and the corresponding halogenated aldehydes yielding a de up to 
97 % (Steinreiber et al., 2007). Nevertheless, chemical methods clearly outnumber the 
described enzymatic approaches. For example Blaskovich (Blaskovich et al., 1993) described 
an 8-step synthesis of D- and L-allo-Thr starting from the respective cis-isomers with a total 
yield of 38 %. 

The repetitive batch process, which has been developed in this thesis, offers an extraordinary 
simple method for the production of optically pure allo-Thr using the same amino acid 
racemase for both enantiomers. Compared to chemical synthesis methods for allo-Thr this 
process consists of only one enzyme catalyzed reaction (isomerization of bulk Thr) and 
simultaneous crystallization of allo-Thr in one single reaction vessel. The process is carried 
out at moderate temperatures in water and avoids any toxic or harmful compounds, thus being 
environmentally friendly. The product recovery is performed by simple filtration and 
subsequent crystal drying, which makes downstream processing very comfortable. In contrast 
to other biocatalytic production and separation methods for allo-Thr (Makart et al., 2008), 
very high product purities with deallo>99% can be achieved. The excellent stability of the 
biocatalyst AArac12996 in the process easily allows for several batches with the same 
enzyme sample, and thus makes complete conversion of the substrate possible. As 
demonstrated in chapter 4.4.2, a repetitive batch mode is advantageous over a continuous 
process due to the simple and robust process control. 

 

4.4.4 Added value by threonine isomerization 

Valuable chiral allo-Thr can be produced by the described simple process from low-priced 
Thr. In case of D-allo-Thr, cheap bulk L-Thr (ca. 1 €/g, catalogue price VWR 2010), which is 
mainly produced by fermentation with optimized strains of Escherichia coli and Serratia 
marcescens (Hermann, 2003; Leuchtenberger et al., 2005), is the starting material. The high 
enzyme stability, as well as low maintenance of the running repetitive batch process, result in 
a profitable added value. Easy purification of AArac12996 from the culture medium yielded 
ca. 160 mg purified enzyme preparation per liter cultivation medium (chapter 4.1.2). The 
enzyme consumption during D-allo-Thr production was ca. 0.39 mg/gD-allo-Thr (publication 4). 
Therefore, one batch of AArac12996 (160 mg) purified from 1 liter cultivation medium is 
sufficient for the production of ca. 410 g D-allo-Thr with a market value of more than 
150000 € (catalogue price Jan. 2011, IRIS Biotech GmbH, Germany). Besides D- and L-allo-
Thr, there are several derivatives commercially available (Table 7) ranging between 110 and 
575 €/g. 
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Table 7: Commercially available derivatives of allo-Thr (catalogue prices Jan. 2011, IRIS Biotech GmbH, 
Germany). 
Derivative D-enantiomer  L-enantiomer 

D/L-allo-Thr 

  390 €/g 

 

  225 €/g 
    

D/L-allo-Thr(Et)-OH 

 575 €/g 

 

 550 €/g 
    

D/L-allo-Thr(Me)-OH 

 575 €/g 

 

 550 €/g 
    

L-allo-Thr(tBu)-OH 

  

  250 €/g 
    

Boc-D/L-allo-Thr-OH*DCHA 
 

      250 €/g 

 

 
      200 €/g 

    

Fmoc-D/L-allo-Thr-OH 

 
      110 €/g 

 

 
      200 €/g 

    

Fmoc-L-allo-Thr(tBu)-OH 

  

 
      200 €/g 
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5 Conclusions 
Two different approaches for enzyme-assisted crystallization of chiral amino acids have been 
investigated in this thesis. Both approaches use purified amino acid racemases from 
Pseudomonas putida, which have been characterized in detail. While in approach 1 the 
racemase is applied for racemization of the proteinogenic amino acid Asn, approach 2 uses 
the enzyme for the isomerization of Thr to allo-Thr. 

Approach 1: Enzyme-assisted preferential crystallization of L-Asn from a racemic 
solution 
A new method, based on the combination of enzymatic racemization and preferential 
crystallization of single enantiomers from racemic solutions, was investigated. The ternary 
system DL-Asn in water was found to form conglomerates upon crystallization from racemic 
solutions and thus to allow enantioseparation by preferential crystallization. Purified 
AArac2440 was used for in situ racemization of the crystallization solution, thus keeping the 
solution ee close to racemic and thereby prolonging preferential crystallization. This process 
is the first successful demonstration of enzyme-assisted preferential crystallization. However, 
further optimization of the reactor setup as well as of the process parameters (e.g. degree of 
supersaturation, type and velocity of stirring, reactor volume, and product recovery) are 
necessary to achieve satisfying results in terms of optical product purity. 

Approach 2: Enzymatic production of chiral allo-Thr by isomerization of Thr and 
crystallization 
Valuable chiral D- and L-allo-Thr were produced by isomerization of the respective Thr 
enantiomers with AArac12996 and simultaneous crystallization from aqueous solutions. The 
repetitive batch process, which integrates isomerization and crystallization in one single 
reaction vessel, was superior to a continuous process with two separate isomerization and 
crystallization vessels. Both enantiomers of the produced allo-Thr were obtained with very 
good diastereomeric excess (deallo>98 %). The high stability of AArac12996 under process 
conditions (t1/2=32 d) as well as low process maintenance effort, offer a simple and 
economically interesting method for the production of high-priced allo-Thr for synthetic 
applications in the pharmaceutical industry. 

To expand the general scope of application of the presented processes, enzymatic 
racemization, which is the process’ bottleneck, must be the focus of intensive research. By the 
use of improved catalysts the possible substrate spectrum might not be limited to natural 
amino acids but also non-proteinogenic amino acids or even other substance groups may 
become available. Especially modern evolutionary methods or rational protein design for 
altered substrate spectra of wild type racemases (Kino et al., 2007) might lead to new 
production processes for chiral compounds. 
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I DNA sequences 

AArac2440 
1 ATGCCCTTTCGCCGTACCCTTCTGGCTGCATCCCTGGCACTTCTGATCACCGGACAGGCC 
61 CCCCTGTATGCGGCACCACCGTTGTCGATGGACAACGGCACCAACACCCTGACCGTGCAA 
121 AACAGCAATGCCTGGGTCGAAGTCAGCGCCAGCGCCCTGCAGCACAACATCCGCACGCTG 
181 CAGGCCGAGCTGGCCGGCAAGTCCAAGCTGTGCGCCGTGCTCAAGGCCGATGCCTATGGC 
241 CACGGTATCGGCCTGGTAATGCCATCGATCATCGCCCAAGGCGTGCCCTGCGTGGCGGTG 
301 GCCAGCAACGAGGAGGCCCGCGTGGTCCGCGCCAGTGGCTTCACCGGGCAACTGGTGCGG 
361 GTACGCCTGGCCAGCCTCAGCGAGCTGGAAGATGGCTTGCAGTACGACATGGAAGAGCTG 
421 GTGGGCAGCGCGGAATTTGCCCGCCAGGCCGATGCCATCGCCGCGCGCCATGGCAAGACC 
481 TTGCGCATTCACATGGCGCTCAACTCCAGCGGCATGAGCCGCAACGGGGTGGAGATGGCC 
541 ACCTGGTCCGGCCGTGGCGAAGCGCTGCAGATCACCGACCAGAAGCACCTCAAGCTGGTC 
601 GCGCTGATGACCCACTTCGCCGTGGAAGACAAGGACGATGTACGCAAGGGCCTGGCGGCA 
661 TTCAACGAGCAGACCGACTGGTTGATCAAGCACGCCAGGCTGGACCGCAGCAAGCTCACC 
721 CTGCACGCCGCCAACTCGTTCGCTACGCTGGAAGTGCCGGAAGCGCGCCTGGACATGGTA 
781 CGAACGGGTGGCGCGCTGTTCGGCGACACCGTGCCGGCGCGCACCGAGTACAAACGTGCG 
841 ATGCAGTTCAAATCGCACGTGGCGGCGGTGCACAGCTATCCGGCCGGCAACACCGTGGGC 
901 TATGACCGCACCTTCACCCTGGCCCGTGATTCGCGGCTGGCCAACATTACGGTCGGGTAC 
961 TCCGATGGCTACCGCCGGGTATTCACCAACAAGGGCCATGTGCTGATCAACGGCCACCGT 
1021 GTGCCGGTCGTGGGCAAGGTGTCGATGAACACGCTGATGGTCGATGTCACCGACTTCCCT 
1081 GATGTGAAGGGGGGTAACGAAGTGGTGCTGTTCGGCAAGCAGGCCGGGGGCGAAATCACC 
1141 CAGGCCGAGATGGAAGAAATCAACGGCGCGTTGCTCGCCGATTTGTACACCGTATGGGGC 
1201 AATTCCAACCCGAAGATACTCGTCGACTGA 

 

AArac12996 
1 ATGCAATTTAGCCGTACCCTCCTGGCTGCATCCCTCGCTCTGCTGATCACTGGCCAGGCC 
61 CCGCTGTACGCCGCACCGCCCCTGTCGATGGACAACGGCACCACCGCCCTGACCGCGCAG 
121 AACAGCAACGCCTGGGTCGAAATCAGTGCCGGCGCACTGCAACACAACATCCGTACCTTG 
181 CAGGCCGAGTTGGGCGGCAAGTCCAAGCTGTGCGCCGTGCTCAAGGCCGACGCCTATGGC 
241 CACGGTATCGGCCTGGTGATGCCGTCGATCATCGCCCAGGGCGTGCCCTGCGTGGCGGTG 
301 GCCAGCAACGAGGAGGCACGCGTGGTCCGCGCCAGTGGCTTCACCGGGCAACTGGTGCGG 
361 GTACGCCTGGCCAGCCTCGGCGAAGTGGAAGATGCCTTGCAGTACGACATGGAAGAGCTG 
421 GTTGGCAGCGCCGAGTTCGCCCGCCAGCTCGATGCCATCGCCGAACGCCACGGCAAGACC 
481 CTGCGCATTCACATGGCGCTCAATTCCAGCGGCATGAGCCGCAACGGCGTGGAAATGACC 
541 ACCTGGTCCGGCCGGGGTGAAGCGCTGCAGATCACTGACCAGAAGCACCTCCAGCTGGTC 
601 GCGCTGATGACTCACTTCGCCGTGGAAGACAAGGACGATGTGCGCAAAGGCCTGGCAGCG 
661 TTCAACGAACAGACCGACTGGCTGATCAAGCACGCGAAGCTTGATCGCAGCAAGCTCACC 
721 CTGCATGCCGCCAACTCCTTCGCTACGCTGGAAGTGCCGGAAGCGCACCTGGACATGGTG 
781 CGTACCGGTGGCGCGCTGTTCGGCGACACCGTGCCGACGCGCACCGAATACCAACGTGTC 
841 ATGCAGTTCAAGTCGCACGTGGCGGCGGTGCACAGCTACCCGGCAGGCAACACCGTCGGC 
901 TACGACCGCACCTTCACCCTGGCGCGTGATTCGCGCCTGGCCAACATCACCGTGGGTTAC 
961 TCCGATGGCTACCGCCGGGTGTTCACCAACAAGGGCCATGTGCTGATCAACGGCCACCGA 
1021 GTGCCAGTGGTGGGCAAGGTGTCGATGAACACCTTGATGGTCGATGTCACCGATTTCCCC 
1081 GATGTGAAGGGGGGCAACGAAGTGGTGCTGTTCGGCAAACAGGCCGGGAGGGAGATCACC 
1141 CAGGCCGAGATAGAAGAAATCAACGGCGCGCTGCTCGCCGACCTCTACACCGTATGGGGC 
1201 AGTTCCAACCCGAAGATTCTCGTCGACTGA 
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II AA sequences 

AArac2440 
1 MPFRRTLLAASLALLITGQAPLYAAPPLSMDNGTNTLTVQNSNAWVEVSASALQHNIRTL 
61 QAELAGKSKLCAVLKADAYGHGIGLVMPSIIAQGVPCVAVASNEEARVVRASGFTGQLVR 
121 VRLASLSELEDGLQYDMEELVGSAEFARQADAIAARHGKTLRIHMALNSSGMSRNGVEMA 
181 TWSGRGEALQITDQKHLKLVALMTHFAVEDKDDVRKGLAAFNEQTDWLIKHARLDRSKLT 
241 LHAANSFATLEVPEARLDMVRTGGALFGDTVPARTEYKRAMQFKSHVAAVHSYPAGNTVG 
301 YDRTFTLARDSRLANITVGYSDGYRRVFTNKGHVLINGHRVPVVGKVSMNTLMVDVTDFP 
361 DVKGGNEVVLFGKQAGGEITQAEMEEINGALLADLYTVWGNSNPKILVD 

 
AArac12996 
1 MQFSRTLLAASLALLITGQAPLYAAPPLSMDNGTTALTAQNSNAWVEISA 
51 GALQHNIRTLQAELGGKSKLCAVLKADAYGHGIGLVMPSIIAQGVPCVAV 
101 ASNEEARVVRASGFTGQLVRVRLASLGEVEDALQYDMEELVGSAEFARQL 
151 DAIAERHGKTLRIHMALNSSGMSRNGVEMTTWSGRGEALQITDQKHLQLV 
201 ALMTHFAVEDKDDVRKGLAAFNEQTDWLIKHAKLDRSKLTLHAANSFATL 
251 EVPEAHLDMVRTGGALFGDTVPTRTEYQRVMQFKSHVAAVHSYPAGNTVG 
301 YDRTFTLARDSRLANITVGYSDGYRRVFTNKGHVLINGHRVPVVGKVSMN 
351 TLMVDVTDFPDVKGGNEVVLFGKQAGREITQAEIEEINGALLADLYTVWG 
401 SSNPKILVD 

 

N-terminal signal peptides are highlighted in red. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AFFIRMATION 
 

Die vorliegende Dissertation habe ich vollständig und ohne unerlaubte Hilfe angefertigt. Die 
Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei keiner anderen 
Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche unternommen. 

 

Köln, März 2011 


