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Abstract 

 

Orthologous proteins descend from a common ancestral protein via a speciation event and 

often keep their ancestral functions. Therefore, orthology assignment is often applied to 

identify gene content and functions in newly sequenced species. No commonly accepted 

gold standard exists so far for orthology assignment. One reason for this is a preference of 

different evolutionary mechanisms in different phylogenetic clades. Eukaryotic genomes 

often evolve via gene duplication, while LGT (Lateral Gene Transfer) is more frequent in 

prokaryotes. The development of orthology assignment methods is therefore often based 

on the research aim and requires more or less detailed resolution of different types of 

homology. 

 

In this work I developed phyloCOP (phylogeny-based Clusters of Orthologous Proteins), a 

new greedy phylogeny- and reference-based orthology assignment method that detects 

transitive orthologous relationships in prokaryotes, while simultaneously excluding 

paralogy. PhyloCOP was designed to create orthologous clusters without one-to-many 

relations (paralogous genes) that can be directly used for function prediction and 

evolutionary studies. PhyloCOP provides customizable parameters to adjust the algorithm 

to the requirements of various datasets and research aims. The user defines the reference 

genome on which her or his comparative research is based. The degree of transitivity 

between orthologs within a cluster is also user-specified, which makes phyloCOP adjustable 

to prokaryotic datasets that include genomes with various phylogenetic distances. In order 

to evaluate phyloCOP, clusters generated from 14 and 539 prokaryotic genomes were 

compared to similar sequence similarity-based algorithms. PhyloCOP clusters that 

correspond to universally distributed Clusters of Orthologous Genes included genes from 

nearly all analyzed genomes, which is a proof for good orthology assignment quality. 

 

Metabolic networks consist of metabolites connected by reactions, which are catalyzed by 

enzymes. Complex network connections are resolved best by regarding simpler units within 

the system. Coupled reaction subsets, basic functional modules of metabolic networks, in 

which reactions are connected in a common anabolic, catabolic or transport pathway, are 

used in this work to get insights into the evolution of metabolic networks in prokaryotes. If 

metabolic network reactions and catalytic enzyme composition of the reference genome 

are established, metabolic network composition of other genomes can be resolved via 

transitive orthology prediction. 

 



I applied comparative analysis to enzymes that catalyze fully coupled reaction pairs to 

investigate metabolic network evolution using Escherichia coli K12 MG1655 as reference. 

Ancestral relations between 14 E. coli genomes were reconstructed from phyloCOP clusters 

and topologically displayed in a phylogenetic tree. Genomes were assigned to specific 

evolutionary times based on their last common ancestor with the reference genome. The 

existence of corresponding enzymes was checked at each ancestral time for each pair of 

coupled reaction enzymes. In order to resolve loss of reaction couplings and the occurrence 

of gene loss or LGT at specific evolutionary times, fractions of coupled and non-coupled 

enzyme pairs were calculated at each ancestral time point. I detected a correlation between 

gene loss and reaction coupling. All metabolic couplings turned out to be ancient and likely 

existed already in the common ancestor of the species analysed. However, there was a 

trend of increased loss of couplings in individual species with increasing phylogenetic 

distance. Previously documented gene loss in E. coli DH10B a substrain of E. coli K12 

MG1655 was verified, which further supports the good quality of the clusters generated 

with phyloCOP. In order to get deeper insights into the evolution of metabolic coupling, 

further studies with larger datasets of more distantly related genomes are recommended. 

 

 



Zusammenfassung 

 

Orthologe Proteine entstehen aus einem gemeinsamen Vorgängerprotein bei der 

Artenbildung und behalten oft ihre ursprüngliche Funktion. Die Bestimmung orthologer 

Proteine wird daher häufig verwendet um die Genzusammensetzung und Genfunktionen in 

neu sequenzierten Arten zu ermitteln. Es gibt bisher keine gemeinhin akzeptierte 

Standardmethode zur Bestimmung von Orthologie. Ein Grund dafür ist, dass verschiedene 

phylogenetische Stämme unterschiedliche  Evolutionsmechanismen bevorzugen. 

Eukaryotische Genome evolvieren häufig durch Genduplikation, während LGT (Lateraler 

Gen Transfer) häufiger in Prokaryoten vorkommt. Methoden zur Bestimmung von 

Orthologie werden deshalb oft für ein bestimmtes Forschungsziel entwickelt und es wird 

eine mehr oder weniger detaillierte Auflösung verschiedener Arten von Homologie 

benötigt. 

 

In dieser Arbeit habe ich phyloCOP (phylogeniebasierte Cluster Orthologer Proteine) 

entwickelt, eine neue gierige phylogenie- und referenzbasierte Methode zur Bestimmung 

von Orthologie, die transitive Orthologieverhältnisse in Prokaryoten detektiert und 

gleichzeitig Paralogie ausschließt. PhyloCOP wurde entwickelt, um Cluster mit einfachen 

Eins-zu-Eins-Verhältnissen der orthologen Proteine untereinander zu finden (ohne paraloge 

Proteine), die direkt für Funktionsvorhersagen und Evolutionsanalysen verwendet werden 

können. Der phyloCOP Algorithmus kann durch benutzerdefinierte Parameter an die 

Erfordernisse verschiedener Datensätze und Forschungsziele angepasst werden. Die 

Nutzerin oder der Nutzer bestimmt das Referenzgenom auf dem ihre oder seine 

vergleichenden Forschungen basieren. Der Grad der Transitivität zwischen den Orthologen 

Proteinen innerhalb eines Clusters wird ebenfalls durch den Benutzer festgelegt. Dadurch 

können die Eigenschaften von phyloCOP an prokaryotische Datensätze mit Genomen 

unterschiedlicher phylogenetischer Distanz angepasst werden. Um phyloCOP zu bewerten, 

wurden Cluster für 14 und 539 prokaryotische Genome erstellt und mit den Ergebnissen 

ähnlichen Algorithmen, die auch auf Sequenzähnlichkeiten basieren, verglichen. PhyloCOP 

Cluster, die universell vorkommenden Clustern Orthologer Gene entsprechen,  enthielten 

ein Gen von fast jedem untersuchten Genom, was ein Beleg für die gute Qualität der 

Orthologiebestimmung ist. 

 

Metabolische Netzwerke bestehen aus Metaboliten, die durch Reaktionen miteinander 

verbunden sind die wiederrum von Enzymen katalysiert werden. Komplexe 

Netzwerkverbindungen können am besten aufgelöst werden indem man einfachere 



Einheiten innerhalb des Systems betrachtet. Gruppen gekoppelter Reaktionen, 

grundlegende Funktionsmodule metabolischer Netzwerke, in denen Reaktionen in einem 

gemeinsamen anabolischen oder katabolischen Pfad oder einem Transportweg verbunden 

sind, werden in dieser Arbeit verwendet um einen Einblick in die Evolution prokaryotischer 

metabolischer Netzwerke zu gewinnen. Wenn Reaktionen des  metabolischen Netztwerks 

und die Zusammensetzung der katalytischen Enzyme eines Referenzgenoms bekannt sind, 

kann die Zusammensetzung metabolischer Netzwerke anderer Genome durch transitive 

Vorhersage von orthologen Proteinen ermittelt werden. 

 

Zur Untersuchung der Evolution metabolischer Netzwerke habe ich eine vergleichende 

Analyse mit Enzymen durchgeführt, die vollständig gekoppelte Reaktionspaare katalysieren 

und dabei Escherichia coli K12 MG1665 als Referenz verwendet. Die 

Verwandtschaftsverhätnisse von 14 E. coli Genomen wurden aus phyloCOP Clustern 

rekonstruiert und als phylogenetischer Baum dargestellt. Basierend auf ihrem letzten 

gemeinsamen Vorfahren mit dem Referenzgenom wurden die Genome bestimmten 

evolutionären Zeitpunkten zugeordnet. An jedem evolutionären Urzeitpunkt wurde das 

Vorkommen orthologer Enzyme für jedes Paar gekoppelter Reaktionen überprüft. Um den 

Verlust von Reaktionskopplungen sowie das Auftreten von Genverlust oder LGT an 

bestimmten evolutionären Zeitpunkten aufzulösen, wurden die Anteile gekoppelter und 

ungekoppelter Enzympaare an jedem Urzeitpunkt berechnet. Dabei habe ich eine 

Zusammenhang zwischen Genverlust und Reaktionskopplung detektiert. Es stellte sich 

heraus, dass alle metabolischen Kopplungen ursprünglich sind und vermutlich bereits im 

gemeinsamen Vorfahren aller untersuchter Arten vorkamen. Allerdings gab es die Tendenz 

eines vermehrten Verlustes an Kopplungen in einzelnen Arten. Ein im Vorfeld 

dokumentierter Genverlust in E. coli DH10B, einem Unterstamm von E. coli K12 MG1655 

wurde bestätigt, ein weiterer Nachweis für die gute Qualität der Cluster die mit phyloCOP 

erstellt wurden. Um einen tieferen Einblick in die Evolution metabolischer Kopplung zu 

gewinnen, werden weiterführende Studien mit größeren Datensätzen weiter entfernt 

verwandter Genome empfohlen. 
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1 

Chapter 1    Introduction 

 

 

Genome analysis aims to understand the molecular origin of an organism’s features and 

behavior. Genome analysis includes cellular function prediction and determination of 

phylogenetic roots of a species. Comparative analysis is frequently used for gene 

identification and function prediction during genome analysis. Gained information about 

the genome and proteome can subsequently be used to trace back the evolution of a cells 

physiology. 

 

The following chapters explain the concept and advantages of analyzing newly sequenced 

genomes via comparisons to other genomes. They give a general overview about 

comparative function prediction and its application on evolutionary analyses and metabolic 

network reconstruction, which leads to the scientific interest of this work: tracing back the 

evolution of prokaryotic metabolic networks via comparative genomics. 

  

1.1 Genome analysis 

 

The entire heritable information of a species is called genome. In most organisms it is 

encoded as DNA (Desoxyribonucleic acid), with the exception of some viruses that encode 

their genomes as RNA (Ribonucleic acid). Genome analysis is therefore the key to 

understand a life form’s origin, habits and behavior. DNA is a double-stranded polymer with 

α-helical secondary structure. Its primary structure, a single stranded polymer, consists of a 

sequence of four nucleotide molecules. The sugar (DNA = deoxyribose and RNA = ribose) 

and phosphate component of a nucleotide build the backbone of the polymer (Ghosh et al., 

2003). Since the phosphate groups connect two sugar molecules by asymmetric 

phosphodiester bonds between the third and fifth sugar carbon atoms, DNA strands are 

directed with a 5’ and a 3’ end. By convention, the primary structure of a DNA or RNA 

molecule is written from the 5' end to the 3' end. Nucleotides differ in their base molecular 

component only. The sequence of the four existing nucleotide base abbreviations – A 

(Adenine), T (Thymine), G (Guanine) and C (Cytosine) – is used as simplified representation 

of the DNA molecule. The sequence of one DNA strand is sufficient to describe the entire 

primary and secondary structure of the DNA molecule, since double-strands are formed via 

complementary hydrogen bonds between the bases A and T as well as G and C (Berg et al., 

2002). The entire genome consists of one or more DNA (or RNA) molecules and can 

therefore be described by the nucleotide sequence. Genome analysis is a complex time-
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consuming task with variable workflow that depends on available resources and cost-

benefit considerations. Basic steps are genome sequencing, assembly and genome 

annotation (Koonin et al., 1996).  

 

1.2 Comparative genome analysis 

 

After regulatory sequences and potential genes have been identified via sequence pattern 

search, it is of interest to differentiate pseudogenes from expressed genes and determine 

their functions. Function prediction, the second basic part of genome annotation, is done 

either experimentally (e.g. gene knock-out experiments) or via comparative analyses, on 

gene, transcript and protein level. However, experimental function prediction is time-

consuming and comparative analysis is often faster and simpler because of the existence of 

automated computational implementations. Various features of a gene can be compared, 

like structural similarities or similar interaction with other cellular components (Clifen et al., 

2003; Kellis et al., 2003). 

 

Sequence similarity comparisons between putative genes via BLAST and FASTA provide fast 

and relatively distinct function prediction. Genes, in particular genomic sequences which 

are flanked by gene specific regions, are compared to sequences of genes with known 

function (Koski and Golding 2001). 

  

1.2.1 Genes, proteins and function prediction 

 

Proteins, complex polymeric molecules, can be viewed as executive versions of genes. Most 

cellular components are made of proteins, which have various functions. Some proteins 

form cell structure while others are catalytic enzymes, which perform metabolism and 

maintain cell homeostasis. The nucleotide sequence of a protein-coding gene determines 

the primary structure of a protein, a sequence of 20 different covalently bonded amino 

acids. Hence, the terms gene and protein will be used interchangeably in the following 

chapters. Comparative function prediction at protein sequence level is more sensitive, 

because of the redundancy of the genetic code. Different nucleotide triplets specify one 

amino acid. Genes with identical sequence on the protein level might therefore not have 

the same nucleotide sequence. Nucleotide substitutions that do not affect the amino acid 

sequence of proteins are called synonymous nucleotide substitutions. Synonymous 

substitution rates are genome specific. In addition, there is a gnome-specific codon bias. 

Different species prefer different codons for the same amino acid (Grosjean et al., 1982, 
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Ermolaeva, 2001). Therefore, amino acid sequence comparison leads to more significant 

gene function prediction than nucleotide sequence comparison. Various algorithms, e.g. 

BLAST, FASTA or Smith-Waterman, exist for pairwise protein sequence similarity search 

(detailed explanation of BLAST in Chapter 2). In contrast to global alignment, algorithms 

that perform local sequence alignment do not compare the whole sequence in an instant, 

but seed their starting points at different positions in the sequence to get the longest local 

similarities (Altschul et al., 1990). 

 

Definite knowledge about a protein’s function can only be achieved by often time 

consuming experimental analysis. Previous comparative sequence similarity detection can 

help to curtail possible functions. However, proteins with similar sequence must not have 

similar functions. For a more distinct function prediction and also for evolutionary studies 

based on sequence similarity comparison, phylogenetic relationships between genes and 

species have to be taken into account. The following subchapter will give an overview 

about evolutionary mechanisms, which drive gene and species diversification and explain 

differences between prokaryotes and eukaryotes. 

 

1.2.2 Genome evolution in prokaryotes and eukaryotes 

 

Just as species originate from ancestral species, genes originate from ancestral genes. 

Genes descend from one another via speciation events, gene duplications or gene transfer 

from other species, so called LGT (Lateral Gene Transfer) (Bapteste et al., 2009). 

 

Gene and genome duplications are important evolutionary driving forces for the 

development of new genes, especially in eukaryotes (Wapinski et al., 2007a). Selective 

pressure on function maintenance of duplicated genes differs from non-duplicated ones, 

which leads to the accumulation of functional changes in duplicates. 

 

Gene duplications happen with notably lower frequency in prokaryotes. Bacterial or 

archaeal genomes evolve more often via direct or indirect genomic DNA exchange between 

individuals of different species (LGT) (Koonin et al., 2009). Three main transfer types exist: 

1) Transformation, where environmental DNA is absorbed by the cell, 2) conjugation, by 

direct cellular contact and 3) transduction via bacteriophages, which act as transfer vectors 

(Davison, 1999; Bapteste et al., 2009). 

 

The classical depiction of reconstructed phylogenetic relations is a tree like structure. It is 

assumed, that two genes or species descend from one common ancestor. Gene trees are a 
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topological illustration of the evolutionary history of a particular group of genes with 

common ancestry. Phylogenetic species trees encompass the evolutionary history of entire 

genomes or superordinate taxonomic groups and are usually generated from selected 

vertically inherited genes (often rRNA genes), which exist in all genomes. The leaves of the 

tree refer to investigated species or genes. Branches connect leaves with common 

ancestors. Ancestral nodes are further connected down to the root of the tree, which 

corresponds to the last common ancestor of all investigated species or genes. Some 

phylogenetic trees depict a summarized evolutionary history of clades, monophyletic 

organism groups with common origin (Figure 1.1).  

 

A phylogenetic tree is a reliable illustration of eukaryotic genome evolution, since most 

genes are vertically inherited. However, phylogenetic trees are only approximations for 

prokaryotic genome evolution because of the high number of LGT events even between 

distantly related genomes. Figure 1.1 shows a phylogenetic tree that was reconstructed 

from the rRNA operon that exists in all depicted prokaryotic taxa (Dagan and Martin, 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Phylogenetic tree of proteobacteria (Dagan and Martin, 2009). 

The phylogeny was reconstructed from the rRNA operon that exists in all 

included genomes. It should be considered as an approximation that does not 

completely resolve prokaryotic genome evolution.  
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The gene network in Figure 1.2 is a better and more realistic illustration of prokaryotic 

genome evolution. Connections between the branches of a phylogenetic tree show LGT 

events that connect different, even distantly related taxonomic clades (Dagan and Martin 

2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Phylogenetic relations between proteobacteria (Dagan and 

Martin, 2009). 

This network representation of protobacterial phylogeny is based on the 

phylogenetic tree in Figure 1.1 that served as backbone representation of 

vertical inheritance. The branches are connected by LGT events. 

 

 

1.2.3 Comparative phylogeny reconstruction 

 

Genome annotation via comparative sequence similarity search to already annotated 

genomes resolves most gene identities, because of the allover high protein uniformity 

among prokaryotes. To trace back the evolutionary history of a species, it’s relatedness to 

other species has to be obtained. Phylogenetic relations among species, which describe 

their origin and development, are resolved from comparisons of common parts of the 

genome or sequence comparisons of homologous proteins. Sequence selection depends on 

examined species and available data. Mixed datasets including prokaryotes and eukaryotes 



Chapter 1                                                  Comparative genome analysis 

 
 

6 

require the comparison of universally distributed genes. Such genes usually have a function 

that is necessary in all life forms. Most of them are related to basic cellular mechanisms - 

for example, functions or structures that are involved in gene expression, like ribosomal 

proteins (Chapter 2; Ciccarelli et al., 2007).  

 

Reconstruction of phylogenetic relationships among multiple species is often based on 

multiple sequence alignment in which more than two DNA or amino acid sequences are 

aligned simultaneously. Various multiple alignment algorithms exist, like CLUSTAL, MAFFT 

or MUSCLE, which are based on heuristics and differ mainly in their accuracy and speed 

(Edgar, 2004). These algorithms use a progressive hierarchical strategy for phylogenetic 

tree reconstruction, in which pairwise optimal alignments are subsequently used as guide 

tree for step-wise multiple alignment. Ancestral relations are afterwards obtained from the 

alignment results via statistical methods like Maximum Parsimony or Maximum Likelihood 

(Guindon et al., 2003, compare Chapter 2).  

 

Although phylogenetic trees are only an approximation of prokaryotic evolutionary history, 

they are useful to describe phylogenetic relations between eukaryotes and prokaryotes. 

Furthermore, the classical tree phylogeny is easy to retrieve from universally distributed 

genes, while the detection of LGT events is a rather complex task that may require multiple 

gene tree comparisons.  

 

However, discrimination between different types of ancestral gene relations is important 

for function prediction and exact phylogeny reconstruction via comparative analysis. 

 

1.2.4 Homology and analogy 

 

The biological term homology describes similarity between features with common ancestry 

of two or more taxonomic groups. In contrast, similar inter-taxonomic features without 

ancestral relation are called analogous. According to that, similar genes with common 

ancestral origin are referred to as homologs, while evolutionary unrelated genes with high 

sequence similarity are called analogs (Fitch, 1970).  

 

The similarity of analogous genes is often based on specific functional sequence motifs or 

domains, like e.g. the zinc-finger motif, which evolved several times independently. Some 

analogous genes have similar function due to these domains. Simple secondary protein 

structures like α-helix or β-sheet can similarly be placed around one another by chance. In 

contrast, complex similarities of protein sequences and higher level protein structure 



Chapter 1                                                  Comparative genome analysis 

 
 

7 

indicate homologous relations. Identification of homologous genes forms the basis of 

virtually all comparative genomic analyses (Krishna et al. 2004).  

 

In order to gain information about the evolution of genes and species analogous and 

homologous genes must be distinguished. 

 

1.2.5 Orthology, Paralogy and Xenology 

 

Homologous genes evolved from a common ancestral gene. It is assumed that functional 

similarity between homologous proteins is associated with their evolutionary history.    

Different types of homologous relationships exist, which are differentiated by the 

evolutionary event that induced their occurrence. 

 

Orthologs are genes in different species that originate via speciation from a single gene in a 

common ancestral species (see Figure 1.3). It is often assumed that orthologous genes 

retain their function during the course of evolution, as a loss of function would cause 

selective disadvantages in most cases (Kuzinar et al., 2008). 

 

In contrast, paralogs are copies of the same ancestral gene within one genome (see Figure 

1.3). Paralogs arise from gene duplications, which occur independently from speciation 

events. As explained previously, the frequency of genome duplications in prokaryotic 

genomes is much lower than in eukaryotes. The amount of paralogs is therefore lower in 

prokaryotes. Paralogs rarely retain identical functions. While the original function is 

frequently conserved – especially if its loss affects the organism’s fitness – different 

mutations may fully or partially change the function of one or both paralogous copies. 

Neofunctionalization, for instance, leads to functional changes in only one of the two 

paralogs. Subfunctionalization splits the original function among both copies (Rastogi et al., 

2005). Advantageous mutational changes accumulate faster in duplicated genes, because 

two copies increase the organism’s flexibility to respond to selective pressure on the 

original function. 

 

However, correct assignment of orthology and paralogy is required for accurate function 

prediction. Comparisons of intra-genomic with inter-genomic sequence similarities help to 

distinguish between these two types of homology (Tatusov et al., 2000). 

 

The existence of paralogs causes one-to-many or many-to-many orthology relationships 
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(see Figure 1.3). With respect to the order of evolutionary events, paralogy can further be 

differentiated into: 1) in-paralogy, if duplication happened after speciation and 2) out-

paralogy if duplication happened before speciation. These notations have been introduced 

by Remm et al., 2001 to distinguish between recent and ancient gene duplication. They 

developed a program Inparanoid, which detects orthologous clusters between a pair of 

genomes, including all common in-paralogs. In-paralogs are co-orthologous to the same 

genes in other species, while out-paralogous are not (O’Brian et al., 2005). In-paralogs 

descend all from the same protein in the common ancestor of both species, while this is not 

the case for out-paralogs. As mentioned before, functional similarity among paralogs is less 

likely than among orthologs. However, because of their closer phylogenetic relatedness, 

functional similarity among co-orthologs/in-paralogs is more likely than among out-

paralogs. Inparanoid detects co-orthologs and differentiate them from out-paralogs to get a 

complete picture of all orthologous relationships between a pair of species, which is 

especially important for function prediction in eukaryotes, were duplicated genes occur 

with high frequency (see Chapter 1.2.6). The example in Figure 1.3 illustrates that the 

existence of paralogous relationships increases function prediction complexity (Jensen, 

2001): All genes are co-orthologous to A1. With respect to speciation event 2 (and the 

corresponding ancestral species), genes B1 and B2 are intra-species out-paralogs, while C2 

and C3 are in-paralogs to one another but out-paralogs to C1 and B1. Consequently, gene 

B1 is orthologous to C1 but not to C2 and C3. B1 and C2 are inter-species out-paralogs. 

With respect to speciation event 2 not all paralogous genes in species C are co-orthologous 

to the same gene in species B (Roth et al., 2008). Various orthology assignment methods 

differentiate between in- and out-paralogy during the cluster process. Final clusters include 

in-paralogs of each step, which may lead to difficulties in gene function assignment if the 

phylogenetic relation between the cluster members is not resolved.  
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Figure 1.3: Orthologous and paralogous relations between genes (Jensen, 

2001). This homology subtype diagram illustrates the development of species 

A, B and C and their common homologous gene set. Numbers refer to intra-

species paralogs. Y-shaped bifurcations symbolize speciation and horizontal 

lines duplication events.  

 

Laterally transferred genes, so called xenologs are also homologous to genes from the 

donor genome. Recently transferred genes may have similar functions to the original in the 

donor, but they are not suitable for classical phylogeny predictions which take only vertical 

gene transfer into account, since they cross-connect phylogenetic line. Xenologs, if 

mistaken for orthologs or paralogs, violate the reconstruction of the phylogenetic history of 

genes and genomes. Since the tree like evolutionary history of prokaryotes is interrupted 

by LGT, xenologous genes should be either filtered for classical, vertical inheritance based 

phylogenetic tree reconstruction (approximation of the real prokaryotic phylogenetic 

history) or used to depict network-like evolutionary relations between the tree branches 

(Dagan and Martin 2009). It is possible to distinguish xenologs from orthologs in closely 

related genomes by synteny considerations. The synteny criterion assumes that if the 

chromosomal environment of two homologous genes is similar, they most probably arose 

via vertical inheritance and are orthologous rather than xenologous (Chapter 2; Wapinski et 

al., 2007a+b).  
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1.2.6 Homology assignment methods 

 

Because of the variability of evolutionary mechanisms various homology assignment 

strategies were designed to fulfill different requirements for subsequent analyses based on 

the assignment. Most homology assignment methods are therefore tailored for specific 

taxonomic groups and scientific tasks like genome analysis, function prediction or 

evolutionary studies. Homology prediction is based on sequence similarity in most of the 

cases. Homologous relationships can be captured 1) pairwise, which means that orthologs 

(optionally including or excluding paralogs) from two species are determined due to their 

mutual sequence similarity independently from homologous relations to other species, or 

2) through a clustering process, in which orthology relations of all examined species are 

taken into account simultaneously or sequentially. The method of choice again depends on 

research questions and observed species.  A pairwise approach can reach higher resolution 

of co-orthology relations for closely related species (O’Brian et al., 2005; Roth et al., 2008). 

In contrast, usage of cluster algorithms is advantageous for the detection of orthology in 

distant species, since orthologs with low mutual sequence similarity can be recognized via 

common orthology relations to genes from intermediate species. This property of orthology 

is called transitivity (Roth et al., 2008). 

 

On the other hand there are some homologous proteins, which are evolutionary distant 

and lost their similar functions. This is mostly true for genes from distantly related species 

or for homologous genes that occurred via gene duplication prior to the last common 

ancestor of a homologous cluster. For correct function assignment orthologous genes have 

to be distinguished from paralogs, which sometimes is not accurate when only based on 

inter-genomic sequence comparisons (see previous Chapter; Wapinski et al., 2007a). 

Additional intra-genomic sequence comparisons can help to detect paralogous genes. 

Synteny (similar chromosomal neighborhood) among closely related orthologs is a useful 

criterion to distinguish xenologs from other orthologs, (Wapinski et al., 2007a). 

 

1.2.6.1 Pairwise algorithms 

 

The most simple approach for homology assignment is based on pairwise reciprocal best 

sequence similarity hits (RBH) between two genomes (Fitch, 1970; Wall et al., 2003). If two 

genes from different species have the highest mutual sequence similarity they are 

considered to be orthologous. However, this procedure may lead to false assignments, if 

paralogous genes are involved. Since only best hits are taken into account, one-to-one pairs 
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of orthologs are detected even if the true orthology relation is multiple, which may lead to 

incomplete or false subsequent function prediction. Some orthologs may even not be 

detected at all, if the reciprocal alignment to the duplicated gene is better. Paralogs can be 

detected if other sequence similarity hits are taken into account but for correct function 

prediction they must be distinguished from orthologs.  

 

Inparanoid, for example, has been developed, to resolve the complex orthologous and 

paralogous relationships among pairs of eukaryotic species. I explain this method here to 

clarify that a complete resolution of orthologous and paralogous relations can only be 

achieved by a pairwise approach, since co-orthology and both types of paralogy are defined 

with respect to a specific speciation event (compare Chapter 1.2.5). On the other hand, 

clusters generated by this method cannot be directly used for subsequent phylogeny 

reconstruction or other evolutionary analyses, which is a striking drawback of pairwise 

orthology assignment. Inparanoid is an extended version of the standard RBH methods, 

which takes not only the best hits into account and detects many-to-many orthologous 

relations for a pair of genomes. The resulting clusters of Inparanoid only contain co-

orthologous genes from two genomes, excluding out-paralogs (Sonnhammer et al., 2004). 

Each co-orthologous cluster is based on an orthologous gene pair, which builds the core of 

each homologous cluster. At first, all mutual BLAST hits between a pair of genomes as well 

as their mean mutual scores are obtained. Gene pairs with a mean mutual score above a 

score cut-off (50 bits) and an overlap cut-off (50 % overlap) are putative orthologous pairs. 

Subsequently, co-orthologs are clustered around the pair of main orthologs, regarding each 

genome separately. Genes are only compared to main orthologs if they are from the same 

genome. A gene is considered in-paralogous and clustered to a corresponding orthologous 

group if its sequence similarity to the main ortholog is higher than to any gene from the 

other genome.  

 

If orthologous clusters are overlapping, their grade of overlapping is checked by different 

criteria and clusters are either merged or deleted, or proteins assigned to the cluster with 

the best matching main ortholog.  

 

Again, clusters obtained by Inparanoid resolve all recent homology relationships between a 

pair of species and may successfully be used for further evolutionary studies. However, 

pairwise clusters need to be further processed and merged to resolve the evolutionary 

history of each homologous gene set, which is a difficult task. Inparanoid marks the 

transition to more complex clustering algorithms, which assign orthologs for more than two 
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genomes simultaneously but lack the differentiation between in- and out-paralogs in the 

final clusters. 

 

1.2.6.2 Clustering algorithms and transitivity 

 

Clustering algorithms detect homologous relations between genes from more than two 

species and assign genes into corresponding clusters. They are especially useful for further 

phylogenetic analysis, since multiple alignment of the cluster members can directly be used 

as input for phylogenetic tree reconstruction (Tatusov et al., 2000; Wapinski et al., 2007).  

 

One of the simplest and most intuitive clustering techniques is reference-based, which 

means, that all genes with significant sequence similarity to a reference gene are connected 

to it. The basic idea is that well characterized functions of a reference genome can be 

assigned to corresponding orthologous genes from other genomes. Reference-based 

orthology assignment is frequently used for comparative functional analysis and further 

explained in Chapter 2 using the example of starCOG K12. This method is an expansion of 

the reciprocal best hit approach explained previously to more than two genomes. However, 

it is only useful if the compared genomes are phylogenetically close, sequence similarity 

between the reference genes and its orthologs is significantly high and the number of 

paralogous genes is low.  

 

In contrast to pairwise or reference-based species comparison, orthologous genes from 

species, with low mutual sequence similarity, can be detected via common orthologous 

relations to genes from intermediate species. This property of orthology is called 

transitivity. However, transitivity is violated by paralogy, since not all paralogous genes are 

co-orthologous to the same genes (Figure 1.3, Roth et al., 2008). Insufficient discrimination 

between recent and ancient paralogy may therefore lead to the assignment of 

phylogenetically distant paralogs, which have no functional similarity to the other 

orthologs. Furthermore, evolutionary gene or genome history may be resolved incorrectly if 

the order of duplication and speciation events is not resolved correctly. This is especially 

problematic for homology prediction in eukaryotic species. 

 

In contrast, most vertically inherited homology relationships among prokaryotes are 

orthologous. Cluster algorithms based on transitivity therefore, lead to reliable phylogeny 

reconstruction and function prediction even for distantly related species. Most popular 

examples for transitivity based homology cluster databases are COG (Clusters of 
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Orthologous Groups of proteins) and eggNOG ('evolutionary genealogy of genes: Non-

supervised Orthologous Groups') (Tatusov et al., 2000; Muller et al., 2010). These databases 

contain prokaryotic and eukaryotic species. COGs are initialized by three genes from 

distantly related genomes with mutual best sequence similarity, which is taken as proof for 

mutual orthology relation. If such low similarity is at least detected as the best inter-

genomic similarity, genes most probably belong to the same family. It is also expected that 

orthologs from distantly related genomes have lower sequence similarity, which is difficult 

to distinguish from analogous similarity. Therefore low-complexity regions are masked 

before the BLAST run. Before building triangles, intra-genomic gene similarities, which are 

stronger than inter-genomic ones are detected and corresponding paralogs are merged and 

treated as one orthologous unit during the subsequent analysis. Seed triangle clusters are 

subsequently merged if two of the genes are the same. Each resulting COG is analyzed 

afterwards. In order to distinguish the different evolutionary development of single 

domains, multidomain proteins are split into segments and previous steps are repeated 

with them. The aim is to find COGs, in which all members descended from one gene in the 

ancestral genome of all species represented in the cluster. The chance that this might be 

violated because of a duplication event previous to the ancestral speciation is high in COGs 

with multiple members. The last step is therefore; to check if large COGs with multiple 

members have to be separated, in which alignments are checked manually with the help of 

phylogenetic trees (Tatusov et al., 2000). Compared to Inparanoid, there is still a possibility 

to cluster ancient paralogs in the orthologous clusters. That’s why not all COGs are usable 

for function prediction. It must be decided, which of the clusters may include ancient 

paralogs. On the other hand COGs, unlike Inparanoid, clusters, may be directly used for 

evolutionary analysis of genes from multiple genomes.  

 

OrthoMCL clusters orthologous and paralogous genes from more than one eukaryotic 

species based on a graph clustering algorithm (Li et al., 2003). The MCL algorithm is 

explained in Chapter 2 of this work. The basic idea is that sequence similarities among 

genes are displayed in a graph, in which nodes represent genes and edges between them 

similarity scores. Unlike COGs, OrthoMCL identifies at first reciprocal best BLAST hits 

between every pair of genomes. To resolve recent and ancient paralogous relations, in-

paralogous genes for every inter-genomic reciprocal best BLAST hit pair of genes are 

determined. Subsequently, co-orthologs are merged to one edge in the graph, which is 

then clustered with the MCL algorithm. 
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1.2.6.3 Phylogeny and Synteny 

 

All the methods, explained so far are fast and (except the last step of COG) fully automated. 

Although most of the previously mentioned algorithms aim to resolve orthologous and 

paralogous relations, assignment results may not be fully reliable for further analyses. One 

main reason is that paralogs may evolve with different rates as well as orthologs. In order 

to resolve homologous relations correctly, including the number of gene losses, 

duplications and LGT events, other methods assign homologous genes considering 

phylogenetic relations. Most of these methods are computationally expensive (Wapinski et 

al., 2007). 

 

SYNERGY is a greedy algorithm, which clusters orthologs (and paralogs) of several genomes 

into orthogroups, based on a phylogenetic species tree that serves as guideline for the 

clustering procedure. In every step, clusters are approximated based on sequence similarity 

hits and step by step refined by the simultaneous reconstruction of intermediate gene 

trees. The step-wise procedure is a combination of more exact phylogeny-based and 

computationally less expensive automated sequence similarity hit based methods. As 

described previously, the branches of phylogenetic trees of prokaryotes are connected due 

to multiple LGT events. In order to exclude xenologs, which violate the reconstruction of 

vertical inheritance, chromosomal neighborhood relations (synteny) are also taken into 

account. All genes in a resulting orthogroup descended from a single ancestral gene via 

speciation or duplication. This means that the gene tree of any orthogroup, when 

compared to the corresponding species tree has a gene in the ancestral species which is the 

origin of all other cluster members.    

 

SYNERGY at first computes a gene similarity graph from all-versus-all genomes FASTA 

sequence comparisons to get the gene distances (Pearson and Lipman, 1988). Only 

sequence pairs with significant similarity (e-value < 0.1 and identity > 50 %) are taken into 

account. Edges are weighted due to: 1) the sequence similarity score of the gene pair, 

which is obtained based on the JTT amino acid substitution model, and 2) the gene pair’s 

synteny similarity score, which is defined by the fraction of neighboring gene pairs with 

significant similarity (considered as putative orthologs) and describes how similar the 

chromosomal neighborhood is (Jones et al., 1992; Chapter 2).  

 

After this initial step, the algorithm captures orthologous clusters step-wise based on the 

phylogenetic species tree of all investigated genomes. Every ancestral node is regarded 
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sequentially starting from the leaves and ending at the root. At first candidate orthogroups 

are detected between the genes of the genome pair with the most recent common 

ancestor X, based on the gene similarity graph. Two genes with mutual reciprocal edges or 

reciprocal edges to a third party gene are assigned into a candidate orthogroup.  

 

This is followed by a phylogenetic gene tree reconstruction for each candidate orthogroup. 

Simple one-to-one orthogroups are easy to reconstruct. Neighbor-Joining, based on a 

distance matrix of all genes in the candidate orthogroup is used for the reconstruction of 

more complex one-to-many or many-to-many orthologous relations. All internal branches 

are inspected in order to find the correct root. The rooting at each position is based on the 

assumption that all distances between leaves and root should be similar, and scored by a 

leaf-to-root variance proportional to sequence similarity and synteny scores. This is correct 

if all genes evolve with similar rate but violated by the different evolutionary rates of 

paralogs (see previous Subchapter). To resolve this, more likely root positions with lower 

occurrence of gene duplication or loss - with respect to the number of genes included in 

the orthogroup - are favored. The rooting score is thus retrieved by combined 

consideration of gene duplication and loss likelihood and sequence similarity and synteny 

variance. Rooting of the phylogenetic gene tree is a crucial step, since the position of the 

root reveals if the candidate orthogroup is sound - which means that all included genes 

descended from one common ancestral gene in the ancestral genome X. A duplication at 

the root of gene tree hints for a gene duplication that happened before X (or in X) and the 

candidate orthogroup is split into two distinct ones. This phylogeny-based step restricts and 

refines the coarse-grained homology search and determines final orthogroups for every 

internal species tree node. The alternation of coarse-grained orthogroups prediction with 

the phylogeny-based refinement aims 1) to detect complete clusters, which include all 

genes that descended from one gene in X, and 2) to reconstruct their phylogenetic history.  

 

Gene tree reconstruction is followed in every iteration by an update of the gene similarity 

graph: a) genes, which belong to the same orthogroup are merged by replacing the gene 

nodes by orthogroups, b) distances between the new orthogroups and other nodes in the 

graph are recalculated with the standard formula for distance update (used for example by 

the neighbor-Joining algorithm):  

 , , , ,

1

2
new p a p b p a bd d d d    

Here p refers to any gene or orthogroup in the graph and a and b are the original genes 

assigned to the new orthogroup.  
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All steps are repeated for every intermediate ancestral node until the root of the species 

tree. Each detected orthogroup from previous iterations is treated as a unit in the following 

steps.  Like the genes in the beginning, they are step-by-step merged to superordinate 

orthogroups. This leads to a complete final depiction of the phylogenetic history of each 

orthogroup, including the correct sequence of ancestral gene duplication and speciation 

events. The evolutionary history of eukaryotic genomes can be subsequently reconstructed 

using the SYNERGY clusters. The same is true for prokaryotic genomes, but one has to keep 

in mind that a phylogeny reconstruction based on vertical inheritance is only an 

approximation of prokaryotic genome evolution (Dagan and Martin 2009). 

 

This method is less computational expensive than other phylogeny-based approaches, since 

gene tree reconstruction is oriented at a phylogenetic species tree. However, SYNERGY’s 

greedy algorithm requires gene tree calculations at every step. Additionally, function 

prediction based on the orthogroups is complex. The corresponding final gene trees of the 

orthogroups must be examined manually to decide, which of them do not include many 

ancient paralogs and are therefore reliable for subsequent function prediction. It is also 

likely that genes in orthogroups with multiple duplication events have diverse functions. 

The cost-benefit ratio of SYNERGY is good for complex gene family analysis but for 

comparative function prediction it might be more useful to exclude paralogy and generate 

pure orthologous clusters by a computationally less expensive procedure. 

 

1.3 Systems biology and the evolution of metabolic networks 

 

The ancestral origin of many newly sequenced genomes is unknown. Evolutionary studies 

focus on the origin of species, genes, cells and cellular components as well as their change 

and diversity over time, also referred to as their evolutionary history. 

 

Huge, daily growing molecular biological databases include data about different cellular 

levels. Computer based evaluation is necessary to resolve and understand these data. In 

the past, biological knowledge was sparse, and scientific research focused on highly 

specialized knowledge about small parts of biological systems like cells, tissues, or 

organisms.  

 

Hence a new trend of integrated investigation of biological systems crystallized among 

biologists, caused by accelerated experimental speed. Integrated research on complex 

systems requires the application of interdisciplinary tools. Systems biology is a modern 
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interdisciplinary field, based on the idea of an integrated systemic biological analysis, in 

which experimental analyses and computer simulations alternate for systematic resolution 

of complex biological processes. It is a synonym for modern biological research covering 

various biological techniques (Palsson, 2006). 

 

The concept of a biological system describes all components that keep a biological process 

working. It depends on the perspective and the hierarchical level of analysis, which 

components are taken into account and how detailed the system is observed.  

 

1.3.1 Metabolic network analysis 

 

As described previously, any cell or higher life form can be considered as complex 

hierarchical system, which consists of many lower ranked interacting systems. Cell 

metabolism is a system of chemical reactions that maintains cell homeostasis and cell 

function. The biological field of metabolomics deals with the existence and concentration of 

metabolites, while fluxomic studies focus on the chemical reactions that convert one 

metabolite into another. 

 

Metabolic networks are interaction networks between metabolites, which are connected 

by reactions that are often catalyzed by enzymatic proteins. Each reaction proceeds with a 

specific speed, its reaction rate or flux. Different pathways through the entire network 

follow the transformation of specific metabolites. Two general types of pathways exist: 1) 

anabolic pathways, which synthesize more complex molecules like nucleic acids or amino 

acids from smaller components, and 2) catabolic pathways that decompose substrates into 

energy carrier molecules or building components, which are further used in anabolism 

(Palsson, 2006). 

 

A typical illustration of a metabolic network is a graph; in which nodes represent 

metabolites connected by vertices that refer to reactions (see Figure 1.4). This simplified 

network representation does not include enzyme co-factors or other regulatory molecules, 

but can be easily reconstructed as stoichiometric matrix and therefore, directly be used as 

input for computational network analyses. 

 

Metabolic network analysis is a growing systems biological branch for the investigation of 

metabolic pathways in biological systems like cells and tissues, which aims to identify the 

distribution of all involved reactions and their corresponding fluxes, to understand the 
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whole system’s metabolism. Metabolic networks are usually investigated by both 

experiments and computer simulation (Covert et al., 2001). For a simplified network 

analysis different hierarchical levels can be regarded step by step, starting from the whole 

cellular in- and output over the two metabolic sectors anabolism and catabolism, resolution 

of pathways, which fulfill a definite role until the resolution of individual reactions.  

 

 
 

Figure 1.4: Central metabolic network pathways of Escherichia coli (Edwards et 

al., 2000). Graphical network illustration of the central cell metabolism, which 

serves energy maintenance and consists of three main steps: glycolysis, pentose 

phosphate pathway and citric acid cycle. Nodes symbolize metabolites and arrows 

chemical reactions. Abbreviations for metabolite names are typed in capital letters. 

Small letters are abbreviations for names of catalyzing enzymes.  

 

An overview over network reconstruction and analysis is illustrated in Figure 1.5. The first 

step of network analysis is metabolic network reconstruction. Metabolic networks are 

reconstructed by various biological information resources with different reliability and 

availability. Genomic and comparative analysis data are easier to accomplish but less 

reliable than biochemical data. However, genome annotation and metabolic network 

analysis alike are frequently based on comparative analyses. In silico network 

reconstruction starts with the generation of a list of all involved metabolites and reactions 
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as well as the corresponding catalyzing enzymes. The common gene set of prokaryotes 

leads to reliable bona fide data (compare Subchapter 1.2.2). The enzyme set of bona fide 

networks reconstructed by comparative analysis is subsequently supplemented and 

corresponding biochemical reactions are determined by experimental data. Some 

experiments are designed for particular investigations but a lot of experimental information 

is already stored in organism specific databases like the encyclopedia of Escherichia coli 

genes and metabolism (EcoCyc) or databases, which include more than one organism like 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Karp et al., 1999; Ogata et.al., 

1999). Experimental data, as well as physiological data about an organisms metabolic 

abilities (e.g. to grow in media without specific nutrients or essential amino acids) help to 

complete the list of network components. The integrity (completeness) and correctness of 

the reconstructed network is crucial for its further analysis.  

 

 
 

Figure 1.5: Metabolic network analysis (Covert et al., 2001). Metabolic network analysis starts 

with network reconstruction via genome annotation, metabolic biochemistry and cell 

physiology data. Subsequential computational network analyses are based on network 

reconstruction and mathematical models that describe the biological meaningful properties of 

the system, taking physiological data and data from quantitative experimental analyses into 

account. Reconstruction and modeling processes alternate repeatedly until the networks 

components and behavior are completely analyzed. 

 

The resulting metabolic map, which includes the network components of a system and all 

connections, is used as input for computational model reconstruction and analysis of the 
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system’s behavior. Pathways through the network are directly established from the 

reconstruction, as well as different lengths of alternative pathways. Physiologically relevant 

pathways through the network can be obtained without knowledge about exact kinetic 

properties of each reaction, using stoichiometry and cell physiology information. 

Mathematical models for computational simulations of the cell’s network behavior – also 

under specific environmental constraints – take physiological information like substrate 

uptake rates and biologically relevant objectives like maximization of biomass production 

into account. 

 

Both, network reconstruction and simulation are iterative processes, in which in silico 

modeling and experimental verifications alternate (Covert et al., 2001)  

 

1.3.2 Evolution of metabolic networks 

 

Not only the structure and behavior but also the evolution of metabolic networks is 

analyzed via comparative genomics. Since orthologous enzymes have very often the same 

function, it is possible to assign knowledge about catalyzed reactions of the reference 

enzyme to their orthologous counter parts, which builds a backbone for subsequent 

experimental proof. 

 

For biologically meaningful comparative function prediction, well investigated genomes 

should be used as templates. Completely annotated genomes of well established model 

organisms are the best source for reliable data. In general, metabolic networks of 

monocellular organisms are easier to analyze than more complex systems like tissues or 

multi cellular organisms. The gram negative bacterium Escherichia coli is a fast growing 

molecular biological model organism with almost completely sequenced and annotated 

genome that lives in the lower intestine of warm-blooded organisms like humans. The 

metabolic network of E. coli substrain K12 MG1655 has been well investigated, and is 

therefore a useful reference for comparative studies of the evolution of prokaryotic 

metabolic networks (Palsson, 2001). 

  

Any evolutionary analysis needs multiple comparisons for a meaningful reconstruction of 

evolutionary events (see Chapter 1.3.1). The same is true for evolutionary history 

reconstruction of metabolic networks. Contemplation of the whole network may not 

resolve biologically meaningful evolutionary trends. Instead of analyzing all biochemical 

reactions separately, the focus on the development of functionally connected modules 
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leads to a better insight into the development of the whole system. The detection of 

differences in the composition of corresponding functional modules in different genomes 

may be used to trace back their origin. Information about the evolution of network 

modules can subsequently be associated to reconstruct the development of bigger parts of 

the network. 

 

As mentioned before, the network consists of functional modules, which work together to 

decompose substrates or assemble molecules of different complexity. These modules 

consist of reaction pathways that aim a specific metabolic task. Reactions within a pathway 

depend on each other if there is no alternative pathway for the uptake of an involved 

intermediate metabolite. Reactions, with dependent reaction rates or fluxes are so called 

coupled reactions. Reactions can be directionally, partially or fully coupled (linearly 

dependent). A reaction vj is directionally coupled to another one vi, if it can only be 

processed, if there is a non-zero flux i through vi. If this relation is true in both directions, 

the coupling is partial. If their reaction rates i and j are linearly dependent, vi and vj are fully 

coupled. Coupled reactions are e.g. detected via Flux Coupling Analysis (Burgard et al. 

2004). Corresponding catalyzing enzymes are also considered to be coupled.  

 

For the evolutionary analysis in this work, orthologous coupled enzymes are assigned, 

excluding paralogs (because they violate function prediction), followed by phylogenetic 

species tree reconstruction. Finally, their appearance in every branch of the phylogenetic 

tree is checked to trace back the existence of coupling in common ancestors (see      

Chapter 3). 

 

1.4 Aim of work 

 

This work deals with the evolutionary analysis of metabolic coupling based on comparative 

genomics, encompassing the development of a orthology assignment tool phyloCOP 

(phylogeny-based Clusters of Orthologous Proteins) for the detection of paralogy-free 

orthologous clusters, which are subsequently used to trace back the evolutionary history 

of fully coupled reactions in different Escherichia coli strains. Escherichia coli K12 MG1655, 

a model organism for metabolic network analysis, was used as reference for the detection 

of orthologous coupled subsets in the other genomes. 

 

As described in previous sections, investigation of gene compositions of newly sequenced 

genomes as well as function predictions are often based on comparative genomics. 
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Contemplation of orthologous and paralogous relationships among genomes resolves the 

phylogenetic history of genes and genomes respectively. For reliable comparative function 

prediction, orthologs must be distinguished from paralogs. Various phylogeny-based 

methods exist for the correct resolution of orthologous and paralogous relationships, which 

are often computationally expensive. However, exclusion of paralogous relationships is no 

hindrance for successful resolution of phylogenetic history of prokaryotic genomes, since 

gene duplications occur with much lower frequency than in eukaryotes and thus have 

lower effects on genome evolution.  

 

PhyloCOP assigns orthologous proteins into paralogy-free clusters. Although genomes are 

processed in phylogenetic order – which supports correct orthology assignment, the 

algorithm does not rely on gene tree calculations in each clustering step. Therefore, it can 

be assumed that phyloCOP is computationally less expensive than other phylogeny-based 

methods like for example SYNERGY (Subchapter 1.2.6.3). Because of user-defined 

customizable parameters phyloCOP can be adjusted to the requirements of different 

research aims. 
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Chapter 2 PhyloCOP: An orthology assignment tool with flexible features 

 

Maybe the most intuitive way to study something new is by comparison. Differences and 

similarities to familiar things help to categorize and lead the way to further analyses. 

Advantages of applying comparative genomics on genome analysis and evolutionary 

studies have already been discussed in Chapter 1. 

 

Discrimination between homology types may be complex and computationally intensive, 

depending on the diversity and kind of investigated genomes. Moreover, homology 

assignment results are created to serve as input for further biological analyses. Homology 

assignment algorithms therefore aim to maintain a balance between the production of 

reliable data and reduction of computational complexity. 

 

While several methods for the identification of orthologs based on mutual sequence 

similarity are available, there is no commonly accepted standard method for orthology 

assignment across multiple genomes (Kuzinar et al., 2008). Variable research challenges, 

the diversity of investigated species and their favorite evolutionary mechanisms require 

different assignment strategies (compare Chapter 1.2).  

 

Generating complete lists of orthologous and paralogous genes for instance needs a more 

complex algorithm than selecting a basic set of orthologous genes for phylogenetic tree 

reconstruction or function prediction. In the latter cases, a paralogy filter with higher 

specificity but lower sensitivity for orthology is sufficient. This is also true for prokaryotic 

species, which - compared to eukaryotes - contain a much lower amount of paralogs. 

Additionally, many prokaryotic genes have an orthologous counterpart in other prokaryotic 

genomes. This allows predicting the function of many genes by pairwise or multiple 

sequence comparisons along with the exclusion of paralogous genes, using transitivity 

(compare Chapter 1.2). This strategy only works, if the overall fraction of paralogous genes 

is low, since all co-orthologous relations are excluded as well. If the aim is to capture all co-

orthologous relations or if eukaryotic genomes are included in the analysis an additional 

differentiation of in-paralogy and out-paralogy is required (Chapter 1.2.2).  

 

Additional differentiation of xenologs from other homologs may be needed to resolve 

bacterial and archaeal phylogenetic history (see Chapter 1.2.2). The chromosomal 

environment of orthologous genes is often syntenic. Laterally transferred genes, in the 
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contrary, mostly have no similar chromosomal environment. However, the application of 

the synteny criterion is limited to closely related genomes, since the chromosomal 

environment of orthologous genes may differ among distantly related species. 

 

A standard method for orthology assignment should be applicable to several of these 

scientific tasks and at the same time produce results fast and easy, which is hard to achieve 

by an algorithm with fixed features. An algorithm with flexible user-defined parameters on 

the other hand, can easily be adjusted to serve various research issues. Some orthology 

assignment parameters affect assignment stringency, like sequence similarity search quality 

or required transitivity (connectivity) between the members of an orthologous cluster. For 

the analysis of various genomes, these parameters should be user-defined, since 

assignment stringency depends on genome diversity.  

 

Comparative research is also often based on a well investigated genome. Therefore a 

reference-based orthology assignment method with a user-defined reference is assumed to 

produce optimal results. 

 

The basic research aim of this work was to create an orthology assignment method, whose 

results can be further used for function prediction in prokaryotes and subsequent 

reconstruction of metabolic network evolution. Instead of creating another algorithm that 

serves a specific research aim, I focused on the development of a tool with user-defined 

parameters, which are adjustable to other research issues. 

 

2.1 Approach 

 

The balance between fast and precise orthology prediction among prokaryotes is 

maintained best by a clustering algorithm. As already described in Chapter 1.2.2, the well-

known COG database (Clusters of Orthologous Groups of proteins) includes orthologous 

clusters, generated based on transitivity via triangle linkage clustering. Co-orthologous/in-

paralogous relationships are also included in the clusters (Tatusov et al., 2000).  

 

However, COG’s triangle clustering of distantly related genes has a striking drawback: 

Recent pairs of orthologs, which exist only in two directly related genomes, cannot be 

detected. Based on COG’s idea of taking only the best mutual sequence similarity hits 

between genomes into account, I developed a greedy phylogeny-based algorithm for 

orthology assignment, phyloCOP (phylogeny-based Clusters of Orthologous Proteins), 
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which combines transitivity with phylogenetic relatedness and detects both recent and 

ancient orthology. The phyloCOP clustering algorithm uses transitivity and phylogenetic 

distance for orthology assignment. PhyloCOP is designed for the determination of a basic 

set of orthologous protein clusters from a broad range of prokaryotic species; such sets are 

particularly useful for function prediction or phylogenetic analyses. Unlike COG, phyloCOP 

therefore excludes paralogs as well as co-orthologs. Because only one-to-one orthologs are 

included in the final orthologous clusters, correct function prediction is improved and 

transitivity is not violated (see Chapter 1.2). 

 

Additionally, phyloCOP provides a set of user-defined parameters, with which the 

algorithm can be adjusted to diverse scientific needs. Based on the research question, the 

user selects a reference species used for cluster initialization. Proteins are added to clusters 

gradually by examining genomes in the order of increasing phylogenetic (or sequence 

similarity) distance to the reference genome. This phylogeny- and reference-based 

clustering process decreases computational complexity, run time and memory usage. The 

user specifies an e-value cut-off for the BLAST results (Altschul et al., 1990). The degree of 

transitivity is set via a parameter α, which determines the minimal fraction of genes in a 

cluster that have to be best BLAST hits of any newly added gene (Figure 2.1). PhyloCOP’s 

customizable features make it a useful tool for the investigation of a wide range of specific 

research questions in the study of prokaryotic genomes, and can be applied to datasets 

encompassing several hundred species. 

 

2.2 Algorithm 

 

The phyloCOP algorithm is implemented in Perl (http://www.perl.org/) and executed from 

the command line (Unix/MacOS, Windows). PhyloCOP is implemented as Perl scripts, which 

are distributed under GPL2 and can be freely downloaded from www.cs.uni-

duesseldorf.de/AG/BI/Software/phyloCOP. The phyloCOP user’s manual and Perl program 

together with example files for the usage can be found in folder Appendix_A in the 

attached CD. Running phyloCOP requires some data preparation steps – in particular 

pairwise sequence alignments of the proteins of all investigated genomes via BLAST, which 

are explained in Subchapters 2.2.2 and 2.3. 

 

 

 

 

http://www.cs.uni-duesseldorf.de/AG/BI/Software/phyloCOP
http://www.cs.uni-duesseldorf.de/AG/BI/Software/phyloCOP
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2.2.1 Greedy phylogeny-based clustering 

 

PhyloCOP is developed as greedy algorithm, which is computationally less expensive than 

for example dynamic programming when applied to large datasets. Greedy algorithms solve 

mathematical problems step wise. In each step the local optimum is chosen in order to find 

the global optimal solution. This can be problematic, since the final solution may only be a 

local optimum (Jones and Pevzner, 2004).  

 

To increase the chance to find the optimal final solution instead of a local optimum, greedy 

and phylogeny-based programming is combined in phyloCOP. The general idea of the 

algorithm is that a gene D is assigned into an orthologous cluster if it has best BLAST hits to 

more than the user-defined fraction of current cluster members, and at the same time 

more than the user-defined fraction of cluster members have a best BLAST hit to the same 

gene D. In each step genes of one genome are compared to already clustered genes and 

eventually added to a cluster if all clustering criteria are fulfilled in the current iteration (see 

Subchapter 2.2.4). Although this leads to the detection of optimal clusters in each step, it is 

possible that not all orthologous relationships are detected in this way, especially if 

phylogenetic distances among the genomes are not taken into account. 

 

In the beginning of the clustering procedure, clusters include only a small number of 

members. Therefore, relations between proteins assigned first, determine the direction of 

the later clustering procedure and initial cluster members have the strongest impact on the 

final cluster content. Since orthologous genes from closely related genomes are less 

affected by mutational changes than distantly related genes, it can be assumed that their 

sequences are more similar to each other than to genes from other genomes. In contrast, 

sequence similarity of two orthologous proteins from distantly related genomes might be 

too low to detect, which may lead to assignment failure in later steps.  

 

In order to avoid assignment failure due to low sequence similarity and to find all transitive 

orthologous relations, the reference-based phyloCOP algorithm processes genomes step-

wise in increasing phylogenetic distance to the reference. The phylogenetic order must be 

obtained previously, for example via phylogenetic tree reconstruction by a Neighbor-

Joining algorithm based on a pairwise sequence similarity scoring matrix (see Chapter 2.3). 
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2.2.2 Data preparation 

 

First, pairwise mutual inter-genomic sequence similarities are obtained by running protein 

BLAST with options –m 8 for tabular alignment output and –b 1 for the best BLAST result 

only (http://blast.ncbi.nlm.nih.gov/Blast.cgi; Altschul et al., 1990). The initial dataset for 

every genome must be distributed as FASTA file including all protein sequences. Those 

genome files are reciprocally aligned against each other via NCBI (National Center for 

Biotechnology Information) protein BLAST. A Perl script for the required multiple pairwise 

protein BLAST runs is distributed together with the phyloCOP program under GPL2 and can 

be freely downloaded from www.cs.uni-duesseldorf.de/AG/BI/Software/phyloCOP. In each 

pairwise comparison each genome is used once as BLAST database and once as query 

genome. Proteins – not nucleotide sequences – are aligned, since differences in 

synonymous substitution rates between genomes may lead to incomplete orthology 

assignments (compare Chapter 1.2.1). BLAST results are stored as a collection of folders – 

one for each genome - in which a folder includes the resulting files from pairwise 

alignments of one proteome with all others. 

 

Required input data for a phyloCOP run are the pairwise BLAST sequence alignment results 

and one concatenated protein sequence FASTA file for each analyzed genome. An 

additional file with a list of all analyzed genomes in increasing phylogenetic distance to the 

reference genome must also be supplied by the user (see below and phyloCOP user’s 

manual in Appendix_A, attached CD). 

 

2.2.3. User-defined parameters and general overview 

  

Once started, the user follows phyloCOP’s command line instructions for setting the 

parameter values and provides all required data via standard input (in particular one 

protein sequences file per genome in FASTA format and the BLAST results). All required 

information, like the required user-defined parameters and paths to input and output files 

can also be provided as input command line options when calling phyloCOP. Four user-

defined parameters are set:  

 

1) An e-value cut-off for the BLAST results selection. The e-value (expectation 

value), shows how likely a BLAST alignment could be generated by chance. 

The default BLAST e-value cut-off is 10. The quality of a BLAST alignment with 

this value is low, since every BLAST run finds 10 matches with similar quality 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.cs.uni-duesseldorf.de/AG/BI/Software/phyloCOP
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by chance and not because of significant sequence similarity. Lower e-values 

imply BLAST alignment results of higher quality. But if the expectation value is 

too low, similarities of evolutionary distant genes may not be detected. 

Depending on the phylogenetic relatedness of the investigated dataset, an    

e-value cut-off is defined by the user. The analysis of distantly related 

genomes requires a higher e-value cut-off than orthology prediction for 

closely related genomes. BLAST alignments with e-values higher than the cut-

off are discarded from orthology assignment (Altschul et al., 1990).  

 

2) The reference genome for cluster initialization. Note, that the name of the 

reference genome should be based on the name used for genome FASTA and 

BLAST result files (without the file endings like ".faa" and ".blast"). Dots and 

spacing characters should be avoided. If the reference sequence file is for 

example called "Escherichia_coli_K12.faa", the name of the corresponding 

BLAST folder "Escherichia_coli_K12" is the reference species name.  

 

3) The order in which genomes are processed based on their phylogenetic 

distance to the reference genome is supplied by the user as text file. Genomes 

are clustered based on their increasing phylogenetic distance to the 

reference genome (or in random order for α = 1.0). As previously explained 

for the reference genome, genome names in this file must be identical to 

FASTA and BLAST file names without file endings. 

 

4) The reciprocal hit degree cut-off parameter α, which determines the minimal 

fraction of genes in a cluster that have to be best BLAST hits of any newly 

added gene, which corresponds to the degree of transitivity of orthology 

relations. Higher α values increase connectivity between cluster members, 

which means a higher degree of transitivity between clustered orthologous 

genes. PhyloCOP allows α-values between 0.5 and 1.0. Lower cut-off values 

are not allowed, since phyloCOP aims the detection of orthologous clusters. 

Clusters with lower transitivity would be more or less identical to pairs of 

orthologs based only on their mutual sequence similarity. If the reciprocal hit 

degree of a gene to a cluster is > α (or = α, for α = 1.0) the gene is assigned to 

the cluster, after the paralogy check of phyloCOP is finished, which is also 

connected to α (compare section 2.2.4). A phyloCOP run with α = 1.0 produces 

exclusively clusters in which all members are reciprocal best sequence 
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similarity hits to each other, so called orthologous cliques. Cliques can be 

obtained in random genome order, since all cluster members have to be 

connected to one another. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The phyloCOP algorithm consists of five steps.  

1) selection of previously generated BLAST results by the user-defined e-value cut-off, 2) 

initializing one cluster per reference gene, 3) the recognition of pairwise best BLAST hits between 

all current species, 4) the gradual clustering, in which a gene D is clustered into a group if its 

reciprocal hit degree to and from the group is above the user-defined level α, and 5) a paralogy 

conflict filter, in which a) clusters are marked if they share the same genes and b) genes are 

removed from the analysis if they fit to only one cluster due to step 4 but have at least one 

additional reciprocal best BLAST hit to another cluster. Steps 4 and 5 are repeated for every gene-

cluster combination. User-defined parameters and clustering steps are marked with ++. 
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Figure 2.1 shows a flow chart of the algorithm. The algorithm consists of five steps: 1) 

selection of BLAST results with e-values < user-defined e-value cut-off 2) reference-based 

cluster initialization, 3) obtaining pairwise best BLAST hits between already clustered genes 

and newly added genomes, 4) the gradual clustering, in which a gene D is clustered into a 

group if its reciprocal hit degree to and from the group is above the user-defined level α, 

and 5) a paralogy conflict filter, by which genes are removed if they are assigned to a 

cluster in step 4 but have a reciprocal best BLAST hit to another cluster, and clusters are 

marked if the same gene is assigned to them in step 4. 

 

2.2.4 Preparative algorithmic steps 

 

The algorithm starts with two preparative steps: data selection and cluster initialization. 

Pairwise genomic best BLAST hits are selected for further analysis if their e-value is smaller 

than the user-defined cut-off. Each gene in the reference genome initializes one cluster. 

The protein sequence of the gene is written in a file named by its gene identification 

number.  

 

2.2.5 Iterative algorithmic steps 

 

All following steps, starting from the third step – in which pairwise best BLAST hits 

between current cluster members and genes are determined – are repeated until all 

species have been processed. In each iterative step proteins of one genome are assigned to 

the clusters obtained in the previous iteration. This also means that the decision to assign a 

cluster in a previous step affects all following steps. If an orthologous relationship among 

the first two genomes was not detected, the algorithm might fail to detect orthologs from 

other genomes. Therefore, genomes are clustered in phylogenetic order with increasing 

phylogenetic distance to the reference genome (compare Chapter 2.2.1). The clusters grow 

after each step, which implies more proteins must be compared in the next iteration. 

 

In the first iteration, clustering is simply based on the mutual best BLAST hits between the 

initial cluster proteins and the proteins of the closest relative of the reference genome. All 

selected reciprocal BLAST hits between the proteins of the reference genome and its 

closest relative are obtained. Proteins of the newly added genome with a reciprocal best 

BLAST hit to the initial cluster protein are assigned to the corresponding cluster. After the 

first iteration, clusters may include one or two proteins. Since only best BLAST hits are 

taken into account, no protein can be assigned to two clusters during the first iteration. 
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Paralogous relations among closely related proteins are automatically detected in later 

steps, when clusters are filled with more proteins. 

 

Starting from the third genome, clusters may include more than one protein. The clustering 

procedure gets more complex (step 4) and the paralogy filtering step 5 takes effect. The 

flow chart in Figure 2.2 displays phyloCOP’s assignment and paralogy filtering steps in 

detail.  

 

After selected pairwise best BLAST hits between all cluster members and the proteins of 

the newly added genome are determined in the third step of each iteration, genes are 

assigned to clusters in the main fourth step of the phyloCOP algorithm if their reciprocal 

hit degree to and from the current cluster is higher than the user-defined level α (or equals 

α for α = 1.0) (see Figures 2.1 and 2.2). The hit degree f between gene and cluster is defined 

as the fraction of genes already in the cluster with a best BLAST hit to (and from) the 

examined gene: f = bbhs/N, where bbhs is defined as the number of best BLAST hits and N 

the number of genes in the current cluster. Note that, while at least a fraction α of hits is 

required in both directions (the tested gene D must be best blast hit in its genome for αN 

genes in the cluster, and αN genes in the cluster must be best blast hits in their genomes 

for D), the hits don’t have to be reciprocal. Connectivity between genes in clusters created 

with α cut-offs < 0.5 is low for the detection of real transitive orthologous relations and 

may lead to more false orthology assignments. Thus, phyloCOP does not allow α < 0.5. 

Since cut-off values α ≥ 0.5 prevent the assignment of more than one protein per genome 

in the same orthologous group, each species can contribute at most one gene to a cluster.  

 

The parameter α is also essential for the last selective step 5 of the clustering procedure – 

the paralogy conflict filter, which is directly connected to the protein assignment step 4. 

Two main actions are performed during step 5: 

 

1) Clusters are marked as potentially involved in paralogy conflicts if they share some 

identical genes. This means in particular, that a protein fulfills the assignment 

criteria (see description for step 4) for more than one cluster and vice versa. If 

clusters include similar proteins they might be candidates for a fusion, since it can 

be assumed that they most probably resulted from ancestral gene duplications 

instead of being independent simple one-to-one orthologous clusters. If, for 

example, the same protein D is included in both clusters x and y and two different 

proteins have been assigned from all other genomes in each of the clusters, it is 
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likely, that the duplication event happened in the common ancestor of all species 

after the speciation event that led to D. More than one similar protein in clusters x 

and y may hint for more recent duplication events. For a detailed resolution of 

paralogous relations further steps would be necessary, but because of the main 

interest in function prediction and evolutionary studies in bacteria and archaea, 

these cases are simply excluded from subsequent analyses. PhyloCOP aims to detect 

simple one-to-one orthologous clusters and to separate them from paralogous 

clusters.  

 

2) Some paralogous or co-orthologous relations might be hidden and only revealed, if 

additional genomes are included in the analysis. Therefore, genes are removed 

from the analysis if they fulfill the assignment criteria (step 4) for only one cluster 

but at the same time have at least one additional reciprocal hit to another cluster 

(Figure 2.2). 

 

The paralogy conflict filter can also be seen as a combination of if-conditions with a web of 

marked clusters that serve as traps for other paralogy conflicts during the clustering 

process. The paralogy filter therefore takes also a retroactive effect on protein assignment 

that was done at the beginning of the clustering process.  

 

Decisions in both steps 4 and 5 are based on the value of α. Higher α increases within-

cluster connectivity but decreases the amount of clusters marked as problematic. The last 

two steps (steps 4 and 5) are repeated for each a cluster combination. The whole iterative 

clustering process (steps 3 to 5) is repeated in phylogenetic order, until all species are 

examined and final orthologous clusters are captured and separated from marked clusters. 

Final clusters – termed phyloCOPs – can be used for subsequent comparative functional 

analyses and further evolutionary studies. 
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Figure 2.2: Flow chart of phyloCOP’s gene assignment and paralogy conflict filter step. 

This flow chart describes the connection between the gene assignment and paralogy 

filter step and provides a detailed overview of the filter mechanism. The paralogy filter 

is embedded into the gene assignment step, and separated from previous and 

subsequent steps by a dashed horizontal line. Gene assignment consists of a collection 

phase, in which the number of current cluster members is derived, and a selection 

phase including the paralogy filter. Three decisions are made: 1. A gene D is only 

processed by the filter if it fits to a current cluster x based on its reciprocal hit degree, 

which must exceed the user-defined level α (or must be equal α if α = 1.0). 2. If the first 

condition is true, phyloCOP checks whether D has at least one reciprocal hit with 

another cluster y. D is assigned to x if the second condition is false for every cluster y. 

3. For a true second condition, the reciprocal hit degrees f between D and the union of 

x and y are compared to α. D is removed from the analysis if the reciprocal hit degrees 
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f between D and the union of x and y are < α. 4. If the third condition is true, and f of D 

from and to y > α, D is assigned to x and y and both clusters are marked for including 

paralogs when fused; in this case, x and y are likely the result of a duplication after the 

speciation event which led to D. After all genes from the currently examined species 

have been compared to all clusters, a cluster is marked for paralogy conflict if it 

includes several genes from the current species. Dashed arrows mark the transition to 

the next iteration, in which all steps are repeated with the next species. For α = 1.0, 

conditions 1, 3 and 4 are true, if the reciprocal hit degree = α. 

 

After all genes from the currently examined species have been compared to all clusters, a 

cluster is marked as problematic if it includes several genes from the current species. 

Dashed arrows mark the transition to the next iteration, in which all steps are repeated 

with the next species. For α = 1.0, conditions 1, 3 and 4 are true, if the reciprocal hit degree 

is = α. 

 

2.2.6. Output 

 

In the final step, protein sequences of assigned orthologous genes are copied into 

previously initialized corresponding cluster specific FASTA files named by the corresponding 

reference gene IDs; these can be easily selected for further processing (e.g., alignment and 

phylogeny reconstruction). FASTA files of groups with paralogy conflicts are stored in a 

separate folder. Gene identification numbers of genes excluded by the paralogy conflict 

filter are saved in a separate file. The main output of phyloCOP is two tables. One of them is 

a list of all final orthologous clusters with the gene identification numbers of all clustered 

genes – excluding clusters marked for paralogy conflict. The other one is a separated list of 

all clusters with paralogy identification marks, indicating also paralogous connections 

between groups. Both tables include complete information about the gene composition of 

each orthologous cluster (see phyloCOP user’s manual in Appendix_A, attached CD). Note 

that the total number of phyloCOPs (including marked clusters with paralogy conflicts) 

always corresponds to the number of genes in the reference genome, since initialized 

clusters that only include the reference gene are not removed.   

 

2.3 Dataset and data preparation 

 

Different datasets have been prepared to evaluate the results of phyloCOP’s orthology 

assignment. Required data preparation steps are explained in this subchapter, regarding 

also the differences for both data evaluations discussed in this work.  
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2.3.1 Initial datasets 

 

The protein sequences of all analyzed prokaryotic genomes were downloaded from 

GenBank via the NCBI ftp site (ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria). All 

genome sets are listed as tables in folder Appendix_B in the attached CD. Protein FASTA 

files were concatenated for each genome respectively and subsequently used as input for 

pairwise reciprocal protein BLAST runs until all genomes have been processed (see Chapter 

2.2.2).  

 

2.3.2 BLAST 

 

The Basic Local Alignment Search Tool is a collection of different programs for sequence 

analysis. BLAST compares sequences to each other. One sequence is used as template to 

find similar parts of another sequence, which can be a genome or a database of genomes. 

The located overlaps are called local alignments. The score of an alignment indicates its 

significance. The alignment with the highest score is assumed to be the best local hit for the 

template sequence. The total score of an alignment is calculated with the help of a 

substitution matrix, which specifies a weighted identity score for each amino acid match 

and mismatch at every position of the sequence. Some aligned positions of one protein 

sequence have no amino acid counterpart in the other aligned protein. Such gaps are 

scored by a gap scoring system, which charges initial gaps with a higher penalty than 

subsequently connected gap positions, since one mutation may insert or delete multiple 

positions at once. The basic idea of the algorithm is that alignments with many matches 

should include short pieces with high similarity. Thus, the BLAST algorithm starts to search 

short pieces with fixed length and significant total score, which is the sum of the scores for 

each of matched or mismatched position minus the gap penalties. Neighboring pieces with 

significant total scores above a specific parameter are then connected to each other to get 

a coherent alignment in both directions. The best BLAST hit is the alignment with the 

highest total score (Altschul et al., 1990). The command line version of the Basic Local 

Alignment Search Tool blastall can be downloaded from the NCBI website 

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/). 

 

Blastall needs two input formats for pairwise alignment. One sequence serves as query, the 

template for which a match is searched in a database. Each concatenated FASTA files is 

once used as query. Blastall compares each protein sequence in the query FASTA file to a 

database, which includes all protein sequences of another genome. For the pairwise 

ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
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alignments in this work, each genome served once as query and once as database. No 

genome was compared to itself. The database must have a specific format. Preformatted 

database files can be downloaded from ftp://ftp.ncbi.nih.gov/blast/db. The output of every 

pairwise blastall run is a table (option -m 8), in which the main information about each 

aligned protein pair is listed, like gene IDs, borders of the alignment, identity, score and e-

value.  

 

2.3.3 Phylogeny estimation 

 

As previously described, phyloCOP assigns orthologous genes step-wise in the order of 

increasing phylogenetic distance to the reference genome. Phylogenetic distances among 

genomes can be obtained via different algorithmic approaches based on mutual sequence 

similarities of their protein sequences. 

 

2.3.3.1 Multiple alignment and PhyML 

 

PhyloCOP’s phylogenetic run order for all comparisons based on the smaller dataset of 14 

E. coli strains was previously obtained based on orthologous clusters determined by the 

SOG (Synteny-based Orthologous Genes) algorithm (Chapter 2.4.1.1; Esser, 2010). Protein 

sequences of clusters determined by SOG (here called SOGs), which include one gene from 

all 14 genomes, were aligned by MUSCLE (multiple sequence comparison by log-

expectation) (Edgar, 2004). In general, multiple sequence alignment algorithms compare 

similarities of multiple sequences at the same time. This is a very complex, computationally 

intensive task, which is usually done via heuristics using a progressive greedy algorithm. 

MUSCLE was the method of choice because of its fast and accurate performance. 

 

Subsequently, not well aligned, divergent parts of the multiple alignment were removed by 

Gblocks (http://molevol.cmima.csic.es/castresana/Gblocks.html) (Castresana, 2000). 

Alignments were concatenated and then used as input for PhyML, which estimates 

phylogenies by Maximum Likelihood (Guindon et al., 2003). The general idea of 

phylogenetic tree reconstruction via Maximum Likelihood is to find the tree that maximizes 

the likelihood of the observed sequences under a chosen evolutionary substitution model. 

The likelihoods for all possible evolutionary scenarios are calculated, which means the 

probabilities of all ancestral amino acid compositions based on the evolutionary model 

used. The resulting tree has the most likely evolutionary history. In order to support the 

phylogeny estimation, I generated 100 bootstrap trees during the PhyML run. I used the JTT 

ftp://ftp.ncbi.nih.gov/blast/db
http://molevol.cmima.csic.es/castresana/Gblocks.html
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substitution model (Jones et al., 1992). Phylogenetic relatedness of each genome to the 

reference was finally obtained based on the topology of the resulting phylogenetic tree.  

Although the phylogenetic distance based on tree topology it is only an approximation of 

the real phylogenetic relations between prokaryotes (because of LGT), it is sufficient as 

guideline for transitive step-wise orthology assignment in the order of decreasing sequence 

similarity. A similar strategy was applied to determine the phylogenetic order for the 

phyloCOP run for the evolutionary analysis described in Chapter 3. 

 

2.3.3.2 Pairwise BLAST alignment and PHYLIP Neighbor 

 

PhyML could not obtain phylogenetic relations for the bigger datasets, because of a 

memory overflow. Thus, a computationally less expensive Neighbor-Joining method was 

used to determine the phylogenetic distances of all other genome sets. A distance matrix 

was generated from the mean score values of the 200 best mutual BLAST sequence 

similarity hits using the following formula: 

 

  score mean
 1  

 BLAST score mean max

best BLAST
d

best

 
   

 
 

 

Distances d were calculated for all pairs of genomes. Values for the distances lie between 0 

and 1. The smallest distance is 0 for the pair of genomes with the highest mean score (best 

BLAST score mean max). Subsequently, a phylogenetic tree was computed from the 

distance matrix with the PHYLIP Neighbor program, which is based on a Neighbor-Joining 

algorithm (http://evolution.genetics.washington.edu/phylip.html). Neighbor-Joining 

algorithms create relative phylogenetic trees from pairwise sequence similarities based on 

the idea of minimal evolution, normalized by the computation of mean distances for each 

genome to all others in every step of the algorithm (Saitou et al., 1987). After that, the 

phylogenetic order was estimated from the branch distances. Genomes with shorter 

distance to the reference genome are closer related to it and were clustered first. 
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2.4 Evaluation and results 

 

PhyloCOP’s accuracy has been tested by comparative evaluation. At first phyloCOP was 

compared to similar methods by checking the mutual consistency of results. In a second 

evaluation, orthologous groups from a huge dataset of 539 bacterial and archaeal genomes 

were generated and the consistency of previously defined universally distributed COGs 

(Clusters of Orthologous Genes) was checked (Ciccarelli et al., 2006). The model prokaryote 

Escherichia coli K12 was used as the reference genome in all tests.  

 

2.4.1 Comparison of sequence similarity based orthology assignment methods 

 

Two phyloCOP variants with the lowest and highest possible reciprocal hit degree cut-off (α 

= 0.5 and α = 1.0) were compared to other clustering concepts (see Table 2.1). The second 

phyloCOP variant, here named phyloCliquesOP, corresponds to searching fully connected 

cliques of genes; with α = 1.0, all members of a cluster have to be reciprocal best hits of 

each other. A simple reference-based algorithm is represented by starCOG (star wired 

Clusters of Orthologous Genes). SOG (Synteny-based Orthologous Genes) is reference-

based like starCOG but refines orthology assignment via synteny, while orthology 

prediction with a graph clustering algorithm is represented by an application of MCL (the 

Markov Cluster Algorithm) (van Dongen, 2000). Flow charts of starCOG, SOG and MCL are 

presented in Figure 2.3. The e-value cut-off for the BLAST results was 10-10 in all tests 

except for SOG (e-value = 10-1), were only BLAST results with > 70% of identical positions 

were used for clustering. 

 

2.4.1.1 SOG (Synteny-based Orthologous Genes) 

 

Unlike phyloCOP, SOG takes synteny into account, which avoids the clustering of most 

xenologous proteins (compare Chapter 1.2; Figure 2.3). Here, genes with similar sequences 

are only clustered if they are flanked by similar genes. As the number of genomic 

rearrangements increases with increasing evolutionary distance, synteny-based methods 

work best for closely related genomes. Like phyloCOP clusters, SOGs are initialized by 

reference genes. In contrast to phyloCOP, each genome is used as reference genome in 

turn. Genes with reciprocal sequence similarities (which must not necessarily be best BLAST 

hits) to genes of the reference genome and located in a similar chromosomal environment 

are added to clusters. The last step of SOG consists in building a consensus of the results 

with the different reference genomes; final clusters must be identical for more than half of 
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the reference genomes (Esser, 2010). Comparisons between phyloCOP and SOG are 

interesting, because they reveal the role of synteny consideration.  

 

2.4.1.2 StarCOG (star wired Clusters of Orthologous Genes) 

 

StarCOG (star wired Clusters of Orthologous Genes) is a simplified variant of SOG that does 

not take synteny into account and avoids assignments to more than one cluster, as only 

best BLAST hits are clustered (Figure 2.3).  Like phyloCOPs, starCOGs are initialized by 

reference genes. In contrast to phyloCOP, each genome is used as the reference genome in 

turn. Genes with reciprocal sequence similarities to the reference genome are added to 

clusters. The members of these intermediate clusters are only connected by their reciprocal 

sequence similarity to the reference protein and sequence similarities among all other 

cluster members are not taken into account. The last step of starCOG consists in building a 

consensus of the results with the different reference genomes; final clusters must be 

identical for more than half of the reference genomes. Members of final starCOGs are 

connected via mutual sequence similarities, like the proteins in phyloCOPs. Comparisons 

between phyloCOP and starCOG are interesting, because they reveal the effects of 

phyloCOP’s reference centred algorithm and phylogenetic distance consideration. 

 

In order to get a better impression of these effects, we also tested a simplified variant of 

starCOG: starCOG K12, which – like phyloCOP – generates clusters, based on just one 

reference species (here E. coli K12). Such a simple reference-based algorithm is often used, 

e.g., in the context of genome sequencing projects. In contrast to phyloCOP, genes in 

starCOG K12 must only fit to the reference gene. Therefore, usage is limited to genomes 

which are closely related to the reference. 

 

2.4.1.3 Application of MCL (Markov Cluster Algorithm) 

 

MCL obtains orthologous clusters from a graph, in which genes are vertices and edges 

represent sequence similarities between them. The BLAST output table includes all 

required information for initial graph assembly, and serves as standard input for orthology 

assignment with MCL (van Dongen, 2000; Enright et al., 2002). In order to avoid assignment 

artefacts caused by shared domains, global alignment identities of reciprocal best BLAST 

hits are optionally used as input in a non-standard application of MCL (Dagan et al., 2007) 

(Figure 2.3). The Markov Clustering Algorithm is based on graph transition probability 
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estimates.  In the initial graph, pairwise alignment scores or global alignment identities are 

represented by edges with different weights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Orthology clustering algorithms used for phyloCOP evaluation. 

(A) SOG consists of 6 steps and is synteny based, while the starCOG algorithm works 

similar without taking synteny into account. The fourth step is skipped in starCOG, and 

genes are clustered due to their reciprocal best BLAST hits to reference genes. The 

workflow is repeated iteratively until each species has been used as the reference 

genome. In the last step, a consensus is built, in which clusters that are identical in 

more than half of the iterations (reference genomes) are assigned as final clusters.  

(B) Application of MCL (van Dongen, 2000) based on reciprocal best BLAST hits. The 

third step of global alignment is optional. Depending on the dataset, either e-values of 

the reciprocal best BLAST hits or identities of global alignment results are used as MCL 

input. 

 

Genes that belong to the same orthologous cluster are expected to be more similar to each 

other than to members of other clusters. The sequence similarity scores are used to 

generate a stochastic Markov Matrix that represents transition probabilities between 
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proteins in the graph. This process, called expansion, is based on the expectation that much 

more edges with low similarity exist than pairs of genes, which makes the probability of a 

flow through a single weak edge very low. Two genes that are connected with many other 

genes – which are mostly genes that belong to one cluster – will have a low transition 

probability. Expansion corresponds to the simulation of flow through the graph. 

 

The next step is called inflation, in which the Hadamard product (entry-wise product) of the 

matrix is calculated. If the transition probability in the Markov Matrix was low, the new 

matrix entry becomes high after inflation, while higher transition probabilities lead to a 

lower entry (Enright et al., 2002). By alternating expansion and inflation steps, walks 

between proteins that belong to different orthologous cluster are step by step weakened 

and walks between proteins of the same orthologous cluster promoted until the graph 

consists of separated parts, which correspond to distinct orthologous clusters. Gene 

assignment is independent from genome affiliation, causing paralogy or co-orthology 

relationships within clusters; however, genes are never assigned to more than one cluster. 

 

2.4.1.4 Comparison of algorithm complexity 

 

The complexity of an algorithm is estimated by the big-O notation, which describes the 

worst case usage of computational resources (Bachmann, 1894; Ottmann und Widmayer, 

2002). It is determined by the most time and memory consuming step of an algorithm, 

while multiplicative constants are discarded. The big-O notation is therefore especially 

useful for runtime estimation for algorithms with large input. 

 

BLAST results are the main input for all tested methods. BLAST consist of three basic steps: 

1) The generation of a list of words that have a higher alignment score than a threshold T 

with any words of the query sequence (default T = 11), 2) Scanning the database for 

matches to the words in the list, and 3) Extension of the word hits to get aligned sequence 

pairs with scores > cut-off S. The runtime for protein BLAST with one query sequence in big-

O notation is: 

 

( / 20 )wO aW bN cNW   

 

The runtime for the compilation of the word list depends on the number of generated 

words W. The speed of the database scan is correlated with the number of residues in the 

database N. The complexity of the final determination of BLAST pairs via hit extension is 
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NW divided by the maximum possible number of 20w words with length w (default w = 3). 

Thus, BLAST runtime depends on the query sequence length and database size and can be 

modulated by word length and threshold T (Altschul et al., 1990). 

 

Let’s define M as the number of genomes and G the average number of genes per genome 

(which corresponds to the number of query sequences for each BLAST input) in our 

analysis. If W=N, W<=O(N). If L is the average gene length, W=N=GL. The runtime for 

pairwise reciprocal BLAST runs of all versus all genomes is then: 

 

2 2( (2 ( ) / 20 ))wO M GL GL  

 

For a maximal sequence size, W becomes constant: 
 
 

2 2 2( ( / 20 )) ( / 20 )w wO M GL GL O M GL M GL    
 

 

The main term for the complexity for all versus all BLAST is: 

 

2( )O M GL  

 

If only one genome is reciprocally aligned against all others (like for starCOG K12), the 

complexity of BLAST will reduce to: 

 

( )O MGL  

 

The cluster initialization step has the same complexity for both reference-based algorithms 

starCOG K12 and phyloCOP ( )O G . It is ( )O MG  for starCOG, since each genome serves once 

as reference. 

 

StarCOG K12 has the lowest complexity of all algorithms - ( )O MG , followed by starCOG 

2( )O M G  - which is basically a multiple run of starCOG K12 and subsequent choice of 

common clusters - and SOG 3( )O M G  (Esser, 2011 personal communication). In contrast to 

starCOG, starCOG K12 and phyloCOP algorithms that read the BLAST results separately for 

each pairwise comparison of two genomes, all pairwise BLAST results are read at the 

beginning of the SOG algorithm. Therefore, it is expected that SOG needs more memory, 

while the other methods require a higher number of hard disk accesses. 
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The complexity of MCL is 3( )O N , where N is the number of nodes in the graph (van 

Dongen, 2000). N corresponds to the number of genomes M multiplied by the number of 

genes per genome G. This leads to a complexity of 3 3( )O M G  for MCL, which is relatively 

high compared to the other methods, but reasonable because of the initial graph assembly. 

 

PhyloCOP is as complex as MCL 3 3( )O M G . The most memory-consuming phyloCOP step is 

the storage of the reciprocal best BLAST hits between all proteins of the currently clustered 

genome and the clusters until the complete protein set of one genome is processed. 

However, phyloCOP assigns orthologous clusters from 539 genes over night with a memory 

usage below 2 GB. Despite its relatively low complexity in big-O notation, BLAST turned out 

to be the most time consuming step for the type of data analyzed in this thesis. Calculation 

of pairwise best BLAST hits between 539 genomes took one week using 10 CPUs. This is not 

surprising, since the runtime of BLAST depends on the sequence length, which is not the 

case for any of the tested orthology assignment methods. 

 

2.4.1.5 Mismatch types 

 

Methods were compared pairwise by a Perl script that uses the MySQL database for faster 

data processing (Levar, 2009). Only clusters which include the same E. coli K12 gene were 

compared. Clusters which include paralogs (potentially after a forced fusion with other 

clusters) were ignored. Two different mismatch types are specified. Type A mismatches are 

genes that are present in a cluster when built with one method, but missing when built 

with the alternative method. Type B mismatches are different genes from the same 

genome in the same cluster built with the alternative methods (see Figure 2.4). Summed 

mismatches are plotted in Figure 2.5. 
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Figure 2.4: Pairwise cluster method comparison. 

(A) Mismatch types in pairwise cluster comparisons. Each method serves once as reference 

to which all other methods are compared. 

(B) Cluster comparison example: Two clusters are compared to each other if their E. coli K12 

gene is identical. Red and yellow colored positions mark mismatches. In this example three 

Type A and one Type B mismatches can be found. A similarity score for each compared 

cluster is derived from the fraction of matched positions. Finally, the number of all 

mismatches between two methods is calculated for each mismatch type separately. 

 

2.4.1.6 Results for a dataset of 14 genomes 

 

A dataset of 14 E. coli strains was used as input for method comparison (Appendix_B, 

attached CD). Because of comparisons to synteny-based SOG, only chromosomal genes 

have been taken into account. The total number of paralogy-free clusters is nearly the same 

for all examined methods (Table 2.1). The match score of most compared clusters is one or 

close to one, indicating a high identity between clusters produced by different methods. 

The fraction of assigned genes which have been differently classified into comparable 

clusters by the compared methods is shown in Table 2.2. All methods produced consistent 

results, with at most 2.5 % of differently assigned genes among phyloCliquesOP and SOG 

(Table 2.2).  
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Table 2.1: Compared variations of orthology assignment methods. 

Two phyloCOP variants that differ in α, three SOG variants and a non-standard application 

of MCL were compared. The table displays the total number of identified (clusters total) and 

the number of paralogy free clusters, which include a gene from the reference genome E. 

coli K12 (clusters compared). Note that the total number of clusters (including paralogy 

conflicts) derived from all phyloCOP applications always corresponds to the number of 

proteins in the reference genome, even if some of the clusters include only the reference 

gene and are otherwise empty. The same is true for the simple reference-based starCOG 

K12. 

 

 

 

 

 

 

 

 

 

 

Table 2.2: Fractions of mismatched genes comparing two methods respectively. 

Type A mismatches for both methods as reference are added together. The fraction of 

genes that are missing in comparable clusters created by one of the methods (mismatch 

Type A) is low, with a maximum of 2.4 % (*phyloCliques+SOG). The percentage of mismatch 

Type B genes, which have been assigned into different clusters, is close to 0 for all 

comparisons. 

Compared methods % Mismatch Type A % Mismatch Type B 

phyloCOP+phyloCliquesOP 1.3 0.01 

phyloCOP+SOG 1.9 0.1 

phyloCOP+starCOG 0.02 0 

phyloCOP+starCOG K12 0.2 0.01 

phyloCOP+MCL 0.4 0.002 

phyloCliquesOP+SOG 2.4* 0.1 

phyloCliquesOP+starCOG 0.7 0 

phyloCliquesOP+starCOG K12 1.3 0 

phyloCliques+MCL 1.1 0.004 

SOG+starCOG 1.5 0.1 

SOG+starCOG K12 2.0 0.1 

SOG+MCL 1.1 0.1 

starCOG+starCOG K12 0.1 0.002 

starCOG+MCL 0.1 0.002 

starCOG K12+MCL 0.4 0.01 

Assignment method Variation Clusters total Clusters compared 

phyloCOP  hit degree cut-off α = 0.5 4132 4126 

phyloCliquesOP hit degree cut-off α = 1.0 4132 4132 

SOG synteny 6497 4005 

starCOG no synteny 4047 4041 

starCOG K12 no synteny, ref. E. coli K12 4132 4132 

MCL reciprocal best BLAST hits 6872 3995 
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The tested methods mainly differ in their inclusiveness. Gene absence in one of two 

compared clusters (mismatch Type A) occurs more frequently than gene differences 

(mismatch Type B) (Tables 2.3 and 2.4; Figures 2.5 and 2.6). The highest number of 

mismatched proteins is found between phyloCliquesOP and SOG. At the same time, both 

are more exclusive than all other methods (Tables 2.2 and 2.3; Figure 2.5). StarCOG K12 

and phyloCOP are the most inclusive applications, with the lowest number of ’missing’ 

proteins. Results of both starCOG variants and phyloCOP are very similar, suggesting that a 

method based on one reference only is sufficient for closely related genomes. 

 

However SOG’s results differ from the others, since it clusters some proteins that are not 

assigned by any of the other methods except MCL. SOG assigns a small number of genes 

into different groups (Table 2.4; Figure 2.6). The reason might be its consideration of 

synteny (Esser, 2010). MCL’s graph clustering algorithm and the computationally less 

expensive starCOG give very similar results.  

 

In general, results of all tested methods are similar, indicating that phyloCOP works well for 

the tested dataset of closely related genomes. However, the intended application of 

phyloCOP is the analysis of large, phylogenetically diverse datasets. PhyloCOP’s reference 

centered algorithm and phylogenetic distance consideration are expected to facilitate the 

analysis of more distantly related genomes. 

 

 

Table 2.3: Pairwise method comparison - Mismatch type A.  

This table shows the number of genes clustered by one method (referred to as reference 

method), missing in the compared clusters generated by the other method (referred to as 

tested method). Reference methods are written in columns and tested methods in rows 

(plotted in Figure 2.5). 

 

  Genes identified with: 

  phyloCOP  phyloCliquesOP SOG starCOG starCOG K12 MCL 

G
e

n
e

s 
m

is
si

n
g 

in
: 

phyloCOP - 50 247 7 106 50 

phyloCliquesOP 601 - 572 340 672 50 

SOG 725 642 - 530 793 488 

starCOG 5 10 224 - 26 21 

starCOG K12 0 0 226 0 - 28 

MCL 132 82 62 51 188 - 
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Table 2.4: Pairwise method comparison - Mismatch type B. 

This table shows the number of differently assigned genes in compared clusters generated 

by two different methods (plotted in Figure 2.6). 

 

 phyloCOP phyloCliquesOP SOG starCOG starCOG K12 MCL 

phyloCOP - 3 56 0 5 1 

phyloCliquesOP 3 - 46 0 0 2 

SOG 56 46 - 48 55 46 

starCOG 0 0 48 - 1 1 

starCOG K12 5 0 55 1 - 3 

MCL 1 2 46 1 3 - 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5. Results of pairwise cluster method comparison.   

Distribution of mismatch Type A. Number of genes included in the clusters generated by the 

reference method which are missing in clusters determined by the tested method. 

Connections between symbols serve as marker for the behavior of each reference in all 

comparisons. SOG is the application with the highest number of missing reference cluster 

proteins. StarCOG K12 reveals the lowest number of missing reference cluster proteins 

compared to the other methods. 
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Figure 2.6: Results of pairwise cluster method comparison.   

Distribution of mismatch Type B. Number of all gene differences between corresponding 

clusters of two compared methods. Connections between symbols serve as marker for the 

behavior of each reference in all comparisons. SOG is the only method that differs 

significantly from the others. The occurrence of gene differences is low compared to the 

absence of genes (see Figure 2.5). 

 

2.4.1.7 Results for a dataset of 539 distantly related genomes 

 

To test phyloCOP’s performance on datasets of distantly related genomes, we applied 

phyloCOP, starCOGK12 and MCL to 539 bacterial and archaeal genomes of broad 

phylogenetic diversity. Since the e-value cut-off showed a significant impact on the 

integrity, defined here as completeness, of orthologous clusters that correspond to 7 

universally distributed COGs, it was chosen based on the distribution of best BLAST e-values 

of the corresponding 7 E. coli K12 proteins to all others (compare Chapter 2.4.2, Figure 

2.10). Only best BLAST hits with an e-value > 10-3 were used for orthology assignment. For 

MCL we did not perform the optional global alignment but directly used the reciprocal best 

BLAST hits as input. 

 

Histograms of the cluster size distributions of clusters created by phyloCOP, starCOG K12 

and MCL look similar (Figures 2.7, 2.8 and 2.9). Because of the phylogenetic divergence 

between the genomes most clusters include only a small number of genes. PhyloCOP 



Chapter 2  Evaluation and results 
 

 
 

49 

generated 3167 paralogy-free clusters. StarCOG K12 always detects as many clusters as 

reference proteins, which are 4131 for E. coli K12. 3738 MCL clusters from the huge dataset 

include E. coli K12 genes, but only 1376 are paralogy-free and therefore comparable.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Histograms of phyloCOP cluster sizes. Distribution of orthologous clusters 

generated with phyloCOP: The histogram shows frequencies of protein cluster sizes for the 

3167 clusters generated with phyloCOP from 539 completely sequenced prokaryotic 

genomes with E. coli K12 as reference species, an e-value cut-off of 10-3 and a reciprocal hit 

degree α = 0.5. 964 clusters were marked by the paralogy conflict filter and thus excluded 

from comparative evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Histogram of starCOG K12 cluster sizes generated from 539 genomes. 
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Figure 2.9: Histograms of MCL cluster sizes. Orthologous clusters generated by MCL from 

539 genomes: Out of 95054 MCL clusters, 1376 paralogy-free E. coli K12 gene including 

clusters were detected. The MCL cluster size distribution is similar to that one of phyloCOP 

and starCOG K12. 

 

In contrast to the small-scale E. coli analysis, MCL assigned only half the number of E. coli 

K12 genes to paralogy-free clusters: 257 of these MCL clusters cannot be found in the 

phyloCOP results, because they were excluded for paralogy there. Therefore, only 1117 

clusters are comparable between the methods. As in the analysis of the smaller dataset, 

the appearance of mismatch Type B is very low (49 mismatches, which are about 0.06 % of 

all genes assigned in comparable clusters). The frequency of genes, which were assigned by 

only one of the methods, is much higher: 10.8 %, where MCL contributes > 2/3 of the 

missing genes and phyloCOP < 1/3. The number of comparable clusters between starCOG 

K12 and MCL was only slightly higher (1375).  

 

Table 2.5: Number of type A mismatches between orthologous clusters created with three 

orthology assignment methods from 539 distantly related genomes.  

This table shows the number of genes clustered by one method (referred to as reference 

method), missing in the compared clusters generated by the other method (referred to as 

tested method).  Reference methods are written in columns and tested methods in rows. 

 

 Genes identified with: 

phyloCOP  starCOG K12 MCL 

G
e

n
e

s 

m
is

si
n

g 

in
: 

phyloCOP - 103983 7219 

starCOG K12 3720 - 3521 

MCL 2047 15137 - 
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In contrast, 3167 starCOG K12 and phyloCOP clusters were comparable. Tables 2.5 and 2.6 

give an overview of the number of mismatched proteins between all clusters. StarCOG K12 

is the most inclusive application with much higher number of proteins that cannot be 

found in corresponding MCL clusters or phyloCOPs (Table 2.5). Since paralogy is not 

recognized by starCOG K12, this is maybe due to false positive orthology relations. In 

addition, the number of type B mismatches between phyloCOP and starCOG is higher than 

in any other comparison. 

 

Table 2.6: Number of type B mismatches between orthologous clusters created with three 

orthology assignment methods from 539 distantly related genomes. 

This table shows the number of differently assigned genes in compared clusters generated 

by two different methods. 

 

 phyloCOP starCOG K12 MCL 

phyloCOP - 2696 49 

starCOG K12 2696 - 171 

MCL 49 171 - 

 

2.4.2 Comparison to universally distributed Clusters of Orthologous Genes 

 

It has been hypothesized that a small set of universally distributed genes exists; such 

universal clusters should include at least one gene from almost all species, regardless of 

their phylogenetic diversity. Such ubiquitous genes (e.g., encoding ribosomal proteins) are 

mostly primordial with a long phylogenetic history (Ciccarelli et al., 2006; Chapter 1.3).  

 

PhyloCOP clusters created from 539 completely sequenced prokaryotic genomes are 

compared to 30 previously defined universally distributed COGs (Clusters of Orthologous 

Genes), which include genes from 168 prokaryotic and 23 eukaryotic species (Ciccarelli et 

al., 2006; Appendix_B). Each universal COG includes one E. coli K12 gene. Corresponding 

gene IDs have been retrieved from the STRING database and NCBI (http://string-

db.org/newstring_cgi/show_input_page.pl; http://www.ncbi.nlm.nih.gov/sites/entrez).  

 

Most orthologous clusters of genes from diverse species are sparse, since many genes 

appear to be adaptations to specific environmental conditions, or appear only in selected 

phylogenetic branches. This is also true for phyloCOP, starCOG K12 and MCL clusters 

(Figure 2.6).  

 

 

http://string-db.org/newstring_cgi/show_input_page.pl
http://string-db.org/newstring_cgi/show_input_page.pl
http://www.ncbi.nlm.nih.gov/sites/entrez
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Table 2.7: Universally distributed COGs and corresponding E. coli K12 gene IDs**. 
#Marked COGs include paralogs. 

 

Universal COGs* Escherichia coli K12** Universal COGs* Escherichia coli K12** 

COG0012 16129166# COG0099 16131177 

COG0016 16129670 COG0100 16131176# 

COG0048 16131221 COG0102 16131121 

COG0049 16131220# COG0103 16131120 

COG0052 16128162 COG0172 16128860# 

COG0080 16131813# COG0184 16131057 

COG0081 16131814 COG0186 16131190# 

COG0087 16131199 COG0197 16131192 

COG0091 16131194 COG0200 16131180 

COG0092 16131193 COG0201 16131179# 

COG0093 16131189 COG0202 16131174# 

COG0094 16131187# COG0256 16131183 

COG0096 16131185 COG0495 16128625# 

COG0097 16131184 COG0522 16131175# 

COG0098 16131182 COG0533 16130960 

*Ciccarelli et al.,2006 

**http://string-db.org/newstring_cgi/show_input_page.pl; http://www.ncbi.nlm.nih.gov/sites/entrez 

 

In order to evaluate phyloCOP’s assignment results, we checked the integrity of phyloCOP 

clusters that correspond to the 30 universally distributed clusters based on included E. coli 

K12 genes (see Table 2.7); this was compared to the integrity of the corresponding starCOG 

K12 and MCL clusters. A cluster has the highest integrity if it includes a gene from each 

analyzed genome. 

 

A less stringent e-value cut-off was required for the large scale analysis because of the 

lower sequence similarities of orthologous proteins from distantly related species. In order 

to find a suitable e-value cut-off that is sufficient for the detection of universally distributed 

orthologous proteins in distantly related species, phyloCOP and MCL were tested with e-

value cut-offs 1 and 10-10. The integrity of 7 of 30 universal clusters was much better for the 

e-value cut-off = 1 than for the e-value cut-off = 10-10. The histogram of best BLAST e-value 

distributions for 7 E. coli K12 proteins that correspond to these clusters shows that an e-

value of 10-3 is sufficient to include most proteins with a best BLAST hit with one of the 7 

universally distributed proteins in the analysis and to exclude a peak of non-significant 

BLAST hits above. The e-value cut-off = 10-3 was used in all comparative analyses with the 

large dataset.  

 

http://string-db.org/newstring_cgi/show_input_page.pl
http://www.ncbi.nlm.nih.gov/sites/entrez
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Figure 2.10: Histogram of the log-scale distribution of e-values of best BLAST hits with 7 

universally distributed E. coli K12 proteins.  

None significant best BLAST hits can be excluded using the e-value cut-off 10-3 in all analyses 

at only a low cost of not detected universally distributed orthologs. Most best BLAST hits 

with the 7 observed proteins have an e-value of 10-50 (not shown in the graph).  

 

Figure 2.11 shows how many genomes are included in phyloCOP’s, starCOG K12’s and 

MCL’s counterparts of the universal COGs. The integrity of all 30 examined phyloCOPs is 

above 490 (out of 539) species. 22 clusters include genes from more than 530 genomes. All 

universally distributed COGs have been found as well by the application of starCOG K12 and 

MCL, with comparable integrity to the corresponding phyloCOPs. Only 5 universally 

distributed phyloCOPs, 1 starCOG K12 cluster and 4 MCL clusters include less than 500 

genomes (Figure 2.11). The slightly higher integrity of the starCOG K12 clusters is most 

probably a reflection of non-significant orthology assignment, since many proteins assigned 

by starCOG K12 are missing in comparable phyloCOP and MCL clusters (mismatch Type A, 

Table 2.5), and a relatively high number of proteins is differently assigned by starCOG K12 

(mismatch type B, Table 2.6). 11 universally distributed COGs include a low number of 

paralogs, which were not detected in the corresponding phyloCOPs (Table 2.7; Ciccarelli et 

al., 2006). 12 universal MCL clusters include paralogs, of which 10 are paralogous in the 

universal COGs (compare Tables 2.7 and 2.8), while paralogs cannot be detected by 

starCOG K12. Increasing the sensitivity of phyloCOP’s paralogy detection by changing the 

paralogy filter criteria may be required to find of the low number prokaryotic paralogs in 
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the universal COGs. However, it is not described, which genomes contribute more than one 

gene in a universal COG (Ciccarelli et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Integrity of universally distributed clusters generated by phyloCOP, starCOG 

K12 and MCL. Corresponding phyloCOP, starCOG K12 and MCL clusters identified by the E. 

coli K12 gene IDs (all clusters include only one E. coli K12 gene). The maximal number of 

included genomes is 539. *MCL clusters that include more than one gene per genome. 

 

Table 2.8: 12 universally distributed MCL clusters include paralogs. 

Twelve universally distributed COGs found by MCL include more than one gene from some genomes. 

For two of this twelve MCL clusters no paralogous proteins were detected in the corresponding 

universal COGs (compare Ciccarelli et al., 2006). 

 

E. coli K12 gene ID # genomes # paralogs 

16131190  491  1 

16131221  493  1  

16131199  494  2  

16131174  495  8  

16131175  495  15  

16128625  499  2  

16128860  529  7  

16131179  538  8  

16129166  538  6  

16131220  539  1  

16131813  539  1  

16131187  539  1  
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Most of the missing archaeal and bacterial species in the universal phyloCOPs are very 

distantly related to E. coli K12, which turned out to be the reason for exclusion. After using 

phyloCOP for orthology detection among 43 archaeal genomes with Methanosarcina 

acetivorans as a reference, nearly all universally distributed clusters were completely filled 

(compare Table 2.9 and Figure 2.12). A list of the 43 archaea is supplied in Appendix_B in 

the attached CD. 

 

 

Table 2.9: Universally distributed COGs and corresponding reference genome gene 

IDs**. Methanosarcina acetivorans was used as reference genome for archaeal 

orthology assignment analysis. For one universal COG (COG0202) no gene could be 

found in Methanosarcina acetivorans. 

 

Universal COGs* 
Methanosarcina 

acetivorans** 
Universal COGs* 

Methanosarcina 

acetivorans** 

COG0012 20093188 COG0099 20089977 

COG0016 20089069 COG0100 20089979 

COG0048 20090123 COG0102 20089485 

COG0049 20090122 COG0103 20089486 

COG0052 20089489 COG0172 20092841 

COG0080 20093063 COG0184 20089827 

COG0081 20093064 COG0186 20089951 

COG0087 20089942 COG0197 20089081 

COG0091 20089947 COG0200 20089964 

COG0092 20089948 COG0201 20089965 

COG0093 20089952 COG0202 NA 

COG0094 20089955 COG0256 20089961 

COG0096 20089957 COG0495 20090469 

COG0097 20089958 COG0522 20089978 

COG0098 20089962 COG0533 20092505 

 

 

*   Ciccarelli et al.,2006 

** http://string-db.org/newstring_cgi/show_input_page.pl;  http://www.ncbi.nlm.nih.gov/sites/entrez
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Figure 2.12: Integrity of archaeal genomes in corresponding universally distributed 

phyloCOPs. Corresponding phyloCOPs identified by Methanosarcina acetivorans gene IDs 

(all clusters include only one Methanosarcina acetivorans gene). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2  Discussion 
 

 
57 

2.5. Discussion 

 

The phylogeny-based orthology assignment algorithm phyloCOP has been developed for 

comparative analyses of diverse prokaryotic genomes. Unlike other algorithms, which 

assign orthologous genes in a pairwise manner, phyloCOP uses transitivity of orthology to 

build clusters. This leads to the detection of distant orthologous relationships, which cannot 

be achieved by simple pairwise sequence similarity consideration. Due to user-defined 

parameters, phyloCOP can be tailored to various research interests and adapted to 

datasets of different phylogenetic diversity.  

 

Application of phyloCOP to a dataset of 14 closely related genomes revealed high 

consistency with the results of other sequence similarity- and transitivity-based algorithms. 

As expected, synteny consideration affects the results, which slightly differ from the others, 

because xenologs that do not share the same chromosomal environment are filtered 

(Dagan et al., 2007). Note that synteny consideration is limited to orthology detection in 

closely related genomes because synteny among orthologous genes gets lost during 

evolutionary time (compare Chapter 1.2.2). The results of complex graph clustering with 

MCL do not significantly differ from phyloCOP or even a simple reference-based algorithm 

like starCOG K12. It appears that closely related orthologous proteins are clustered well by 

all tested algorithms. Depending on the chosen reciprocal hit degree cut-off α, phyloCOP 

can be adjusted for being more inclusive or exclusive in orthology assignment and paralogy 

detection. PhyloCOP with the reciprocal cut-off value α = 0.5 is one of the most inclusive 

methods for the small dataset analysis together with starCOG K12.  

 

For further evaluation, phyloCOP was used to assign orthologous genes from a large and 

diverse dataset of 539 genomes. Resulting clusters were compared to starCOG K12 MCL 

clusters from the same dataset. The inclusiveness of starCOG K12 is much higher compared 

to phyloCOP and MCL for the large dataset. Also a relatively high number of proteins was 

assigned differently compared to phyloCOP. Most probably starCOG K12 assigned a large 

number of false positive orthologs, since paralogy is ignored and proteins in starCOG K12 

clusters must only have a reciprocal best BLAST hit to the reference proteins, ignoring 

transitive orthology relations to other proteins in the cluster. Therefore, it can be assumed 

that a restriction of the phyloCOP α cut-off values between 0.5 and 1 is reasonable.   

 

Like in the small-scale comparison, most of the genes clustered by phyloCOP and MCL were 

assigned into corresponding clusters, while the fraction of genes, clustered by phyloCOP 
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but not by MCL and vice versa was much higher than for the small dataset. In contrast to 

phyloCOP the application of MCL is not reference-based. Thus, the majority of MCL clusters 

(about 96 %) were excluded from comparisons, because they included no E. coli K12 gene. 

About 60 % (2362 out of 3738) of the remaining MCL clusters were excluded because of 

paralogy, while only about 20 % (965 out of 4132) of the phyloCOPs were excluded for the 

same reason. This is a big difference and the question is if the larger number of paralogs 

detected with MCL reflects biological reality or not, since gene duplication in prokaryotes is 

not as frequent as in eukaryotes. Concerning the larger dataset, paralogy assignment 

seems to be very different in both methods. Among the small number of comparable 

clusters, MCL clusters include a large number of proteins that were not detected in 

corresponding phyloCOPs. Unlike phyloCOP, MCL does not consider phylogenetic distance 

during the clustering process, which may lead to false orthology assignments (see Chapter 

2.2). In general, successful application of MCL to orthology assignment relies strongly on 

diverse preparative steps that are not part of the standard application of MCL (van Dongen, 

2000, Enright et al., 2002). In addition, paralogous clusters are not automatically removed 

by MCL and the output is only ordered by cluster size. Thus, subsequent usage of MCL 

clusters for further analyses requires additional preparative steps. PhyloCOP clusters may 

be the better choice for later function prediction, based on a reference genome. 

 

The inclusiveness of phyloCOP is similar to starCOG K12 and MCL considering universally 

distributed COGs. 12 of the corresponding universal MCL clusters include more than one 

protein from one genome. Ciccarelli et al. detected paralogous proteins of prokaryotic 

origin in 10 corresponding universal COGs. However, it is not mentioned which proteins are 

paralogous in the universal COGs. 

 

PhyloCOP detects most of the universal orthologs among diverse genomes. Most absent 

proteins belong to distantly related bacterial and archaeal genomes that may not be 

captured by transitive orthology relations to the other cluster members. When applied to 

only archaeal genomes, the integrity of phyloCOPs that correspond to universal COGs was 

almost complete (Figure 2.12).  

 

All results of the comparative evaluations demonstrate phyloCOP’s ability to detect 

transitive connections between closely and most of the distantly related orthologs. 

PhyloCOP assigns paralogy-free orthologous clusters, which can be used for function 

prediction and subsequent analysis of the evolutionary history of cell function. 
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Chapter 3  Tracing back the evolution of metabolic networks 

 

Metabolic network components, which are basically metabolites and reactions, have been 

characterized for multiple genomes by genome annotations, biochemical experiments and 

cell physiology experiments. Complex systems like genome-scale metabolic networks are 

often described mathematically, based on the list of all involved metabolites and reactions 

(compare Chapter 1.3). Reaction uptake rates, so called fluxes through reactions, measure 

the production of one metabolite from another precursor metabolite.  Cellular functions 

like growth and adaptation to environmental changes are investigated and simulated 

computationally.  

 

As mentioned before, genome annotation is one of the first steps of comprehensive 

metabolic network investigation. The basic idea for investigating the evolution of metabolic 

networks is similar to evolutionary genome analysis. Similar reactions in various species are 

often catalyzed by orthologous enzymes. Knowledge about functional components 

(reactions) of a well investigated metabolic network is therefore transferable to metabolic 

networks of other species. Many components for metabolic network reconstruction are 

found by comparison and a backbone of the new metabolic network can be created.  

 

It is a very complex task to trace back the evolution of the complete genome-wide 

metabolic network of a taxonomic group. A better approach for understanding the 

evolution of the whole network is to investigate the evolution of functional network 

modules first, which consist of reactions that are connected in a common pathway through 

the network. The evolutionary analysis of functionally connected reactions in this work is a 

first step towards understanding the development of genome-wide metabolic networks. 

Coupled reactions subsets are functionally connected reactions that can be detected with 

lower computational effort than extreme pathways (see below). 

 

Coupled reactions are often embedded in pathways that lead to a specific product without 

existence of alternative reaction pathways. Such couplings are biologically meaningful, 

since they play a critical role for the functionality of the whole metabolic network. As 

already explained in Chapter 1, the fluxes of reactions which belong to coupled reaction 

subsets depend on each other. This dependency of reaction rates can be Boolean, which 

means zero flux of one reaction leads to no reaction rate in the other, or linear (Chapter 

1.3). In order to define basic components for the production of specific metabolites, it is of 



Chapter 3  Approach 

 
 

60 

interest to detect the first appearance of coupled reactions during the course of evolution. 

Since ancestral networks cannot be directly observed, comparisons between components 

of different metabolic networks lead the way for evolutionary network reconstruction. This 

comparative genomics based approach is facilitated by the fact that large databases of 

metabolic cellular reactions exist for specific species, and a large number of genomes are 

fully annotated. 

 

Application of a comparative approach and concentration on a specific subset of reactions 

simplify the evolutionary analysis of metabolic networks, since whole-network 

reconstructions of only a few networks are required. It is convenient to compare the 

enzyme set of one well investigated metabolic network to that of other genomes. Because 

of their lower complexity, most well investigated whole-genome metabolic networks are 

from monocellular species - e.g., Saccharomyces cerevisiae for eukaryotes and E. coli K12 

for prokaryotes (Reed et al., 2003). 

 

In this work, I focused on the evolution of coupled reaction pairs in the metabolic network 

of E. coli. Orthologous clusters of 14 E. coli strains were created by the previously 

developed phylogeny-based reference centered orthology assignment algorithm phyloCOP, 

which filters ambiguous paralogous relations (list of strains in Appendix_B in the attached 

CD). The phylogenetic history of coupled reaction pairs was then investigated, based on the 

appearance of orthologs. In particular, I was interested if orthologous genes associated 

with both, one or none of the coupled orthologous reactions existed at ancestral time 

points, relative moments in evolutionary time that correspond to common ancestors of 

each group of strains with the reference E. coli K12. In order to get a general overview 

about the development of coupled reactions over time, mean values from all coupled 

reaction pairs were calculated for each of the three cases at all ancestral time points. 

 

3.1 Coupled subsets and extreme pathways 

 

Genome-scale metabolic networks describe the cellular metabolism of a life form and are 

often illustrated as a graph, in which metabolites are depicted as nodes connected by 

vertices corresponding to reactions that convert one metabolite into the other (Figure 3.1 

a). This graphical representation of the metabolic network is simplified, since regulatory 

molecules are often not included. However, it is possible to describe the information inside 

the graph mathematically as a stoichiometric matrix, an in silico representation of the 
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metabolic network that can be directly used as input for computational simulation of all 

metabolite fluxes through a cell. General cell behavior and different biological scenarios, 

like adaptive processes caused by environmental changes or the effects of specific gene 

mutations can be simulated as well (Figure 3.1 b).  

 

 

 

 

 

 

 

 

 

Figure 3.1: Mathematical characterization of metabolic network functions (Papin et al., 

2003). 

(a) Graphical representation of a metabolic network. Nodes symbolize metabolites and 

arrows reversible or irreversible reactions. (b) Rows in the stoichiometric matrix correspond 

to metabolites and columns to reactions. Numbers refer to reaction fluxes from and to a 

metabolite and are based on reaction stoichiometry. 0 means that a reaction does not 

produce or consume a metabolite, while positive numbers refer to the production of a 

metabolite by the flux through a reaction and negative numbers to metabolite consumption. 

(c) High-dimensional flux space: axes correspond to a flux through reactions A, B and C. 

Network-based pathways like, e.g., extreme pathways curtail the set of possible pathways 

through the network in steady state condition. Environmental constraints are simulated by 

inequalities that curtail the possible values for specific fluxes through the network. The flux 

cone includes all possible flux distributions of the simulated network. 

 

Linear algebra describes the metabolic network at steady state by the mass balance 

equation Sv = 0, where S is the stoichiometric matrix as described above and v the flux 

vector that corresponds to the fluxes through all reactions. FBA (Flux Balance Analysis) is a 

method that simulates different cellular aims based on linear programming. Assuming that 

the cells metabolism is in steady-state and applying thermodynamic rules, FBA calculates a 

possible solution for the flux distribution of all reactions that allows the cell to achieve a 

(biologically meaningful) aim, like maximal energy or biomass production, which is 

mathematically described as an objective function. Environmental constraints are 

simulated via inequalities that allow only specific ranges of flux values through some 

reactions. A valid set of metabolic fluxes at steady state for a specific objective function is 

retrieved from the analysis of the stoichiometric matrix. This set of fluxes can be 
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understood as vectors in a more dimensional space whose axes are defined by the flux 

levels of the individual reactions (Figure 3.1 c).  

 

The whole metabolic network can be characterized by the edges of the flux cone, the 

extreme pathways, which define the borders of possible fluxes through the network under 

steady state conditions. Extreme pathways form the linear basis of the stoichiometric 

matrix which means that linear combinations of them are sufficient to characterize all 

possible ways through the network.  

 

Biologically, extreme pathways describe all anabolic and catabolic paths of a system, in 

which a substrate is assimilated and changed into a product that is either excreted or used 

for biomass production (Schilling et al., 2000; Papin et al., 2003). Extreme pathway analysis 

has been successfully applied to small-scale metabolic networks. However, the much higher 

number of reactions in a genome-scale network leads to an extremely high number of 

possible combinations and identified pathways. The identification of all extreme pathways 

in genome-scale networks is therefore computationally expensive and very slow. 

 

The local structure in genome-scale metabolic networks can be described faster and easier 

via Flux Coupling Analysis (FCA), which aims to detect coupled reaction subsets (Burgard 

et al., 2004). Like extreme pathways, coupled reaction subsets are detected via linear 

programming based on the stoichiometric matrix under steady state conditions. Instead of 

maximizing biomass, the Flux Coupling Finder (FCF) algorithm - here referred to as LP-FCF 

(linear programming FCF) - determines the minimum and maximum flux ratios for every 

pair of non-blocked reactions (with positive flux). In each simulation one of the fluxes is 

fixed and the other one is either maximized or minimized. Ratios are calculated and 

compared. Based on their values it is decided whether a reaction pair is coupled or not. 

Three different coupling types are distinguished. Two reactions are directionally coupled (

1 2v v ) if a zero flux for one reaction leads to a zero flux for the other but not vice versa, 

partially coupled (
1 2v v ) if the condition for the directional coupling is true in both 

directions, and fully coupled (
1 2v v ) if the fluxes of both reactions depend linearly on 

each other, which means that a non-zero flux through one reaction implies a non-zero flux 

through the other. The FCF algorithm performs a series of linear programming steps. Not 

each pair of reactions has to be tested, since coupled relations are transitive. Thus, 

complete sets of coupled reactions are detected, which reduces the number of tested 
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combinations. Combinatorial explosion is avoided and computation accelerated (Burgard et 

al., 2004).  

 

However, a lot of linear optimization problems must be solved by the FCF algorithm. 

Larhlimi and Bockmayr introduced a faster method for the detection of coupled reaction 

subsets at steady state conditions, in which coupling types are detected based on the 

reaction reversibility type (Larhlimi and Bockmayr, 2006). Like for the calculation of 

extreme pathways, the whole solution space in steady state is described by the flux cone, 

which is calculated from the stoichiometric matrix. The cone is based on a characteristic set 

of irreversible reactions. Exhaustive calculation of all extreme pathways is avoided. Since 

reversible reactions are not split into two irreversible ones, possible combinations are 

further reduced. In the following, this method is called MMB-FCF (minimal metabolic 

behavior FCF), to distinguish it from the LP-FCF algorithm. It is assumed that reaction 

couplings can only exist between similar reaction types. After removing blocked reactions, 

three types of reactions are distinguished: irreversible, pseudo-irreversible (reversible by 

network model definition but restricted in directionality by adjacent irreversible reactions), 

and fully reversible reactions.  

 

Three coupled reaction types were classified by Larhlimi and Bockmayr, 2006 that 

correspond to the three types introduced by Burgard et al., 2004. In this work, 

mathematical definitions of coupled reaction types are based on Larhlimi and Bockmayr, 

while corresponding names are taken from Burgard et al.: 

 

0 :  v 0 0i ji j v      directionally coupled (1) 

0 :  v 0 0i ji j v     partially coupled (2) 

  : v j ii j v       fully coupled (3) 

   

(1) Reactions i and j are directionally coupled if zero flux vi through reaction i causes zero 

flux vj through reaction j. (2) They are partially coupled, if the condition for the directional 

coupling is true in both directions. (3) Two reactions are fully coupled if conditions (1) and 

(2) are true, and either their reaction rates are similar (λ=1) or linear dependent. Because of 

its faster run time for the E. coli K12 model used here, compared to LP-FCF, MMB-FCF was 

used to detect the coupled reaction subsets that were used for the evolutionary analysis in 

this work (Larhlimi and Bockmayr, 2006). 
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3.2 Dataset and data preparation 

 

MMB-FCF was applied to detect coupled reaction subsets in the in silico model of E. coli K12 

MG1655 (Fritzemeier, 2010). A set of fully coupled reaction pairs was extracted from the 

detected fully coupled reaction subsets. PhyloCOP was used to generate 4126 paralogy-free 

orthologous clusters from 14 E. coli strains (compare Chapter 2). Pairs of orthologous 

clusters that correspond to the set of fully coupled reaction pairs were subsequently used 

for evolutionary analysis. 

 

3.2.1 Selection of fully coupled reaction subsets 

 

The expanded genome-scale in silico model of E. coli K12 (iJR904) that was created for 

constraint-based metabolic network modeling includes 931 reactions and 625 metabolites. 

This model is suitable for further comparative genome analyses, since GPR (Gene to Protein 

to Reaction) associations are included (Reed et al., 2003). Coupled reaction subsets were 

determined by running the MMB-FCF algorithm implemented in Gnu R (http://www.r-

project.org/) for SyBil (Systems Biology Library), a recent project of the Institute of 

Bioinformatics at the Heinrich-Heine-University Düsseldorf (Fritzemeier, 2010). The 142 

identified fully coupled reaction sets were used for further analysis. A paralogy-free 

phyloCOP cluster was detected for each of the 322 proteins associated with the 142 

coupled reaction sets. 

 

Only reactions that are catalyzed by enzymes (and transport via transport proteins) are 

useful for comparative gene analysis. Thus, reactions that are not catalyzed by an enzyme 

were excluded. Based on the GPR associations of the in silico E. coli K12 model, a coupled 

reaction pair may be associated to two genes or more. Isoenzymes with similar function 

catalyze the same reaction independently from each other. Some enzymes consist of 

peptide subunits, which are encoded by different genes. In this case a gene that catalyzes 

one reaction is coupled to many genes simultaneously, which is similar for enzyme 

complexes. Only couplings with at most three GPR associations were taken into account. 

Two coupled reactions ( )a b  may correspond to one of the following gene compositions: 

1) ( )A B , 2)
1 2( )A A B , where 1A  and

2A  encode isoenzymes, which both catalyze 

reaction a  independently, or 3)
1 2( )A A B , where genes A1 and A2 encode parts of an 

enzyme complex. 

http://www.r-project.org/
http://www.r-project.org/
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Simple and complex coupling conditions were differentiated. Corresponding coupled 

reaction pairs are subsequently called simple and complex. A coupling in a genome is 

existant if both reactions can be catalyzed. Based on this assumption, it was decided 

whether two reactions in a genome are coupled or not. The coupling condition for reaction 

pairs with GPR association ( )A B  is simple. Reactions a  and b are assumed to be coupled 

in a genome if orthologs were detected for both genes A  and B . Coupling conditions for 

the two other GPR associations are complex. Two reactions with GPR association 

1 2( )A A B  are assumed to be coupled if orthologs for B  and 
1A  or 

2A  are detected, 

since one isoenzyme is sufficient to maintain functionality of reaction a . This is not the case 

if genes
1A  and 

2A  correspond to parts of an enzyme complex. Therefore, coupling of 

reaction pairs with GPR association 
1 2( )A A B  is assumed to exist only if orthologs for 

both genes 
1A  and 

2A  as well as B  were detected in a genome. An exception to this rule 

might occur if a mutation led to a transfer of the whole catalyzing function to one of the 

genes 
1A  or 

2A . In the following chapters, reactions associated with detected orthologous 

genes are called orthologous reactions and coupled reaction pairs in the in silico E. coli K12 

model are called (coupled) reference reaction pairs. 219 coupled reaction pairs were 

extracted for further analysis from 130 coupled reaction subsets. 

 

3.2.2 Selection of corresponding orthologous clusters 

 

Paralogy free orthologous clusters of 14 E. coli strains and E. coli K12 as reference species 

were created with phyloCOP (α = 0.5) as explained in Chapter 2. In contrast to the 

comparative evaluation of the performance of phyloCOP, complete genomic protein sets 

were used including plasmid genes. The phyloCOP run order was newly determined, based 

on a previous run of phyloCliquesOP (reciprocal hit degree cut-off α = 1.0). Orthologous 

cliques can be assigned in random genome order, since all members of a clique are 

connected by mutual best sequence similarity hits. Cliques that include a gene from each 

genome were used to create a phylogenetic species tree with PhyML from concatenated 

multiple alignments (similar to the phylogeny estimation explained in Chapter 2.3.3.1). 

Salmonella typhi and Salmonella typhimurium LT2 served as outgroup to root the 

phylogenetic species tree (Figure 3.2). Distances of other genomes to E. coli K12 were 

obtained from the phylogenetic tree with the BioPerl CPAN module Bio::TreeIO 
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(http://search.cpan.org/~cjfields/BioPerl-1.6.1/Bio/TreeIO.pm). The resulting phyloCOP run 

order is listed in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Phylogenetic species tree obtained from phyloCliques 

The Salmonella outgroups marks the root of the tree. All branches have bootstrap support > 

96 %. 

 

 

 

 

 

 

 

 

 

 

http://search.cpan.org/~cjfields/BioPerl-1.6.1/Bio/TreeIO.pm
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Table 3.1: PhyloCOP genome run order in increasing phylogenetic distances to E. coli K12. 

 

Escherichia_coli_K12 

Escherichia_coli_W3110 

Escherichia_coli_K_12_substr__DH10B 

Escherichia_coli_C_ATCC_8739 

Escherichia_coli_E24377A 

Escherichia_coli_HS 

Escherichia_coli_O157_H7_EC4115 

Escherichia_coli_O157H7 

Escherichia_coli_O157H7_EDL933 

Escherichia_coli_SMS_3_5 

Escherichia_coli_APEC_O1 

Escherichia_coli_UTI89 

Escherichia_coli_CFT073 

Escherichia_coli_536 

 

4126 paralogy-free phyloCOPs were detected and used for further analysis. Every gene in 

the E. coli K12 in silico model has a locus tag number, while phyloCOPs are named by the gi-

number of the corresponding reference protein. Corresponding orthologous clusters were 

chosen for further analysis by translating the locus tag numbers of genes associated with 

coupled reference reaction pairs into the corresponding NCBI gi-numbers of the proteins. 

Since no corresponding gi-number was found for some locus tag numbers five pairs were 

excluded from further analysis. The remaining 214 reaction pairs consist of the following 

GPR types: 158 pairs ( )A B ,  37 pairs 
1 2( )A A B  and 19 pairs 

1 2( )A A B  (Tables in 

Appendix_C, attached CD). 

 

3.3 Evolutionary analysis 

 

I inspected the existence of coupled reaction pairs from an in silico model of E. coli K12 in 

13 other E. coli strains, to get insights into the metabolic network evolution of prokaryotes. 

A relative evolutionary time scale was introduced that allows tracing back the existence of 

coupled reference reactions in all common ancestors of E. coli K12 and the other genomes. 

Results for all coupled reactions at each relative ancestral time point were united and 

visualized in a graph. 
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3.3.1 Determination of relative ancestral times 

 

Ancestral points were classified relative to the reference genome E. coli K12. The 

phylogenetic species tree was reconstructed from complete phyloCOPs by multiple 

alignment and Maximum Likelihood tree reconstruction similar to the phylogeny estimation 

from orthologous cliques (Chapter 2.3.3.1). The rooting position for the phyloCOP species 

tree could be adopted from the phyloCliquesOP species tree because of their equal 

topology (Figures 3.2 and 3.3). Common ancestors between the reference genome and all 

other genomes that refer to internal nodes that connect a group of genomes with the 

reference, mark relative ancestral times starting with A for the reference itself until G for 

the root (Figure 3.4). Genomes connected to E. coli K12 by the same common ancestor are 

assigned to the corresponding relative time point. Some ancestral points are related to only 

one genome, while others are related to many. In order to evaluate the degree of coupling 

of a reaction pair at a time point, results are normalized by the number of genomes that 

share the same ancestor with the reference (Table 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Phylogenetic tree reconstructed by PhyML.  

The position of the root arrow was adopted from the phylogenetic tree in Figure 3.2. 
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Figure 3.4: Non-scaled representation of the phylogenetic tree rooted by Salmonella. 

Genomes belong to similar colored relative ancestral time points (A - G).   

 

Table 3.2: Genomes and corresponding ancestral time points 

Genomes that share the same common ancestor with the reference genome E. coli K12 

were assigned to the same ancestral time point (compare Figure 3.4). The number of 

assigned genomes differs for each time point. To evaluate the degree of ancestral coupling 

at a time point, the number of detected couplings is normalized based on the number of 

genomes that share the same ancestor with the reference. 

 

Genome Ancestral time point Norm. factor w  

Escherichia_coli_K12 A 1 

Escherichia_coli_W3110 B 1 

Escherichia_coli_K_12_substr__DH10B C 1 

Escherichia_coli_C_ATCC_8739 D ½ 

Escherichia_coli_HS D ½ 

Escherichia_coli_E24377A E 1 

Escherichia_coli_O157_H7_EC4115 F 1/3 

Escherichia_coli_O157H7 F 1/3 

Escherichia_coli_O157H7_EDL933 F 1/3 

Escherichia_coli_SMS_3_5 G 1/5 

Escherichia_coli_APEC_O1 G 1/5 

Escherichia_coli_UTI89 G 1/5 

Escherichia_coli_CFT073 G 1/5 

Escherichia_coli_536 G 1/5 
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3.3.2 Detection of ancestral coupled reaction pairs 

  

In order to trace back the development of the coupled reference reaction pairs, their 

existence was determined at ancestral time points. At first, each coupled reaction pair was 

examined separately. Orthologous genes associated to a coupled reaction pair were 

scanned in each species. Based on this, it was decided whether both, one or none of the 

reactions appear in the metabolic network of the species. It is considered that the coupling 

of a reaction pair got lost in a genome if a necessary orthologous gene for one of the 

reactions was not detected. On the other hand, a coupling is assumed to exist in a genome 

if all necessary orthologous genes for both reactions were detected. The lack of necessary 

orthologous genes for both reactions hints that they got lost simultaneously. In this case 

the coupling may have persisted until the gene loss event. Since more than one genome 

may be assigned to an ancestral time point, results for each appearance (both, one and 

none) must be normalized by the corresponding factor w  (Table 3.2). Subsequently, mean 

values of all normalized fractions of both, one and none detected orthologous reactions m  

were calculated from all coupled reference reaction pairs at each ancestral time point 

respectively. 

 

1 gw N   (1) 

n xw   (2) 

1

cN

i c

i

m n N


   (3) 

 

(1) The normalization factor w  depends on the number of genomes 
gN  that are associated 

with a relative ancestral time. (2) Numbers of both, one and none orthologous reactions ( x

) detected in genomes that belong to a relative ancestral time point are normalized by the 

normalization factor. (3) The mean over the results for all coupled reference reaction pairs 

was calculated. Corresponding mean values m  for all coupled reference reaction pairs were 

computed for each relative ancestral time, by summing all normalized values n  of both, 

one and none detected orthologous reactions respectively, divided by the total number of 

coupled reference reaction pairs (
cN ).  
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In addition it was assumed that, if both reactions appear in at least one associated genome, 

the coupling was present in the common ancestor (ancestral time point). This simplified 

assumption was made to determine the last common ancestor between the reference and 

the other genomes, in which the reactions were not yet coupled. 

 

 

3.4 Results 

 

The averaged normalized results for the total number of 214 coupled reference reaction 

pairs are listed in Table 3.3. Fractions of all 214 coupled reference reaction pairs for which 

both, one or none orthologous reactions were detected are displayed in Figures 3.5 and 

3.6. Most coupled reference reaction pairs appear coupled at all ancestral time points. As 

expected, the fraction of reference reaction pairs, for which no orthologous reaction was 

found, increases with higher phylogenetic distance to the reference genome. Interestingly, 

time point C that is closely related to the reference genome is an exception to this trend. 

About 10 % of the reference couplings do not exist or both reactions are deleted in E. coli 

DH10B, the only genome associated to C. Figure 3.6 shows that this is mostly due to the 

absence of one reaction of a pair only (68 % of the fractions one and none together). In 

addition, a closer look at Table 3.3 reveals that reference reaction pairs with GPR 

association 
1 2( )A A B  have the highest fraction of uncoupled reaction pairs at time 

point C, where always one of the reactions was detected. In general, fractions of one 

detected orthologous reaction were higher than none, except at time point G.  
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Table 3.3: Normalized fractions of orthologous coupled reaction pairs 

Normalized fractions of both, one and none reactions that are orthologous to all coupled 

reference reaction pairs at each ancestral time point were calculated for the three different 

GPR association types respectively as well as for all 214 clusters (total). The highest number of 

uncoupled reference reaction pairs was detected at the ancestral time point C, which 

corresponds to the substrain E. coli K12 DH10B (marked pink). 

( )A B  Both One None 

A 1 0 0 

B 1 0 0 

C 0.911 0.050 0.038 

D 0.981 0.016 0.003 

E 0.994 0 0.006 

F 0.962 0.025 0.013 

G 0.929 0.030 0.041 

1 2( )A A B  Both One None 

A 1 0 0 

B 1 0 0 

C 0.865 0.135 0 

D 0.986 0.014 0 

E 1 0 0 

F 1 0 0 

G 0.995 0.005 0 

1 2( )A A B  Both One None 

A 1 0 0 

B 1 0 0 

C 1 0 0 

D 1 0 0 

E 0.895 0.105 0 

F 0.895 0.053 0.053 

G 0.958 0.042 0 

Total Both One None 

A 1 0 0 

B 1 0 0 

C 0.911 0.060 0.028 

D 0.984 0.014 0.002 

E 0.986 0.009 0.005 

F 0.963 0.023 0.014 

G 0.943 0.027 0.030 
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Figure 3.5: Fractions of complete orthologous coupled reaction pairs. 

This graph shows the fraction of coupled reference reaction pairs for that all orthologous 

genes that are needed for the function of both reactions were detected. 

Time point A refers to the reference genome E. coli K12, from which coupled reaction pairs 

were obtained. About 9 % of the coupled reference reaction pairs are not coupled or deleted 

at time point C, which is associated with E. coli K12 DH10B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3  Results  

 
 

74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Fractions of coupled reference reaction pairs for which not all orthologs were 

detected. 

The overall fraction of incomplete reaction pairs is low. If only one orthologous reaction was 

detected, the coupling is assumed not to be existent in a genome. In B (E. coli W3110) all 

reaction pairs remain coupled, while the highest amount of uncoupled reactions was found at 

time point C (E. coli K12 DH10B). 

 

In the following, I refer to the lack of orthologous reference genes in a 

genome as gene loss. If two reactions are coupled, the probabilities that one 

or both corresponding genes are missing should differ from the gene loss 

probabilities of uncoupled reactions.  

 

Gene loss probabilities   for all combinations of two genes that are 

associated with GPR-type ( )A B  coupled reaction pairs were calculated 

from the fraction of missing genes p  at each ancestral time point:  

 

2 (1 )o p p    one gene is missing (1) 

2

n p   
both genes are 

missing 
(2) 
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Fractions of missing genes p  were derived by dividing the number of missing 

orthologs by the total number of possible orthologous genes at each ancestral 

time point respectively. Fractions p  are displayed in Figure 3.7 together with 

the fractions of ( )A B
 coupled reaction pairs for which only one or none 

orthologous gene was detected. 

K12, from which coupled reactions were obtained. About 10 % of the coupled refereaction 

pairs are not coupled at time point C, which is asso 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Fractions of GPR type ( )A B  incomplete coupled reaction pairs and missing 

orthologs p . 

Most missing orthologs were detected at time point C (E. coli DH10B). 

 

The fraction of coupled reactions for which only one orthologous gene was 

detected is much lower and the fraction of coupled reactions with two missing 

genes are significantly higher than the predicted probabilities of lost genes for 

independent pairs of genes (Figures 3.8 and 3.9). Gene loss is obviously 

correlated with reaction coupling at each ancestral time point. Genes that 

catalyze coupled reactions are more frequently lost together than 

independent genes.  
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Figure 3.8: Probabilities of gene loss o  and corresponding fractions of GPR type ( )A B  

coupled reaction pairs for which only one orthologous gene was detected. 

The fractions of coupled reactions with one missing gene are much lower than the predicted 

probabilities of lost genes for independent pairs of genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Probabilities of gene loss n  and corresponding fractions of GPR type ( )A B  

coupled reaction pairs for which no orthologous genes were detected. 
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The fractions of coupled reactions with two missing genes are significantly higher than the 

predicted probabilities of lost genes for independent pairs of genes.  

 

 

In a simplified assumption a coupling is present at an ancestral time point if it exists in one 

associated genome. Besides, the coupling is not considered cancelled if all genes for both 

reaction pairs are deleted. Results for all 214 examined coupled reaction pairs mostly 

reflect the former described fractional results, especially for time points B and C (compare 

Table 3.3 with 3.4 and Figures 3.5 and 3.6 with 3.10). In contrast, all reference reaction 

pairs appear coupled at D and G, which means that for each of the coupled reference 

reaction pairs at least one associated genome includes all required orthologous genes. 

  

 

Table 3.4: Numbers of detected coupled, deleted and not coupled reaction pairs at each 

ancestral time point 

All 214 coupled reaction pairs were included in this analysis. Results based on the simplified 

assumption that two reactions are coupled in a common ancestor if orthologs of all associated 

genes are detected in at least one genome that belongs to an ancestral time point. At time 

point F only one reaction was detected for 4 coupled reaction pairs in at least one of three 

genomes, while 3 of them were completely deleted in at least one genome (only one reaction 

pair is definitely not coupled). In correspondence to the more detailed fractional analysis, a 

significant number of reference reaction pairs appear not coupled at time point C. 

 

Times Coupled Deleted Not coupled 

A 214 0 0 

B 214 0 0 

C 195 6 13 

D 214 0 0 

E 211 1 2 

F 210 3 1 

G 214 0 0 
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Figure 3.10: Comparison between the fractions of coupled, deleted and not coupled reference 

reaction pairs. 

The histogram shows total numbers of coupled, deleted and not coupled reaction pairs, instead 

of fractions. The coupling is present if all orthologous genes for both reactions are found in at 

least one genome that belongs to an ancestral time point. Most reaction pairs remain coupled. 

Time point C shows the highest number of uncoupled pairs.     

The coupling of all investigated reaction pairs seems to be initialized at a former ancestral 

time point than G, which could not be traced back by the closely related genomes 

investigated in this study. The reason for the higher number of uncoupled reactions in C is 

most probably gene loss in E. coli K12 DH10B (see next Subchapter). 

 

3.5 Discussion 

 

The evolutionary development of functional components in prokaryotic metabolic 

networks was investigated based on comparative genomics. Coupled reaction subsets were 

detected by applying the MMB-FCF algorithm on an expanded genome-scale in silico model 

of E. coli K12 MG1655 (iJR904). In order to trace back the development of selected coupled 

MG1655 reaction pairs over evolutionary time, the appearance of previously obtained 

corresponding orthologous genes associated with orthologous reaction pairs in 13 other E. 



Chapter 3  Discussion  

 
 

79 

coli strains was checked. Genomes were assigned to relative ancestral time points that 

correspond to their common ancestors with the E. coli K12 MG1655 reference genome.  

 

A general overview about the distribution of orthologous reactions, given by the 

percentage of orthologous reactions that correspond to both, one and none reaction of all 

coupled reaction pairs, shows that the number of uncoupled reference reaction pairs is low 

at all relative ancestral times. This was expected, since closely related genomes – strains of 

the same species – were investigated. The number of cases with one detected orthologous 

reaction was always higher than the number of cases in which no orthologous reaction was 

found except at time point G. The percentage of missing orthologs at each ancestral time 

point reflects this trend (Figure 3.8). However, each examined reference reaction pair 

remains coupled in at least one of the five genomes assigned to time point G, which is 

evidence that the last common ancestors of all coupled MG1655 reaction pairs are more 

ancient than G. It can be assumed that a repetition of the presented analysis with multiple 

genomes that are more distantly related to MG1655 may result in detecting the last 

common ancestry of several coupled reaction pairs.      

 

It is likely that xenologs are included in the phyloCOP clusters, because I did neither 

differentiate xenologous proteins from orthologs nor exclude them during the assignment. 

If the ancestral time point of the initial appearance of a reaction coupling is detected, it is 

theoretically possible to detect the occurance of laterally transferred genes associated with 

coupled reaction pairs at more ancient ancestral time points. The detection of lateral gene 

transfer would then also require a data set of more distanty related genomes than used in 

this work. 

 

The probability of a combined loss of two genes that are associated with a coupled reaction 

pair is higher than for two independent genes. It is also less likely that only one reaction 

partner is deleted. The probability of gene deletion of only one of two independent genes 

corresponds to the percentage of simultaneous gene deletion of both coupled genes. This 

shows that genes associated with coupled reaction pairs are often deleted together as a 

unit. The same can be assumed for laterally transferred genes.  

 

The highest percentage of uncoupled reaction pairs was found at time point C, the second 

closest ancestral time point to the reference. The only genome associated with time point C 

is E. coli DH10B, whose phylogenetic relatedness to the reference E. coli K12 MG1655 is 
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similar to the phylogenetically closest genome E. coli W3110 at time point B (Figure 3.3). In 

contrast to C, all coupled reference reaction sets were detected in B.  

 

The progenitor of the substrains MG1655, W3110 and DH10B was the ancestral E. coli K12 

wild-type. There are remarkable differences in the construction procedure of W3110 and 

DH10B. While W3110 and MG1655 directly diverged from wild-type K12 and only slightly 

differ due to the stronger galactose-fermenting property of W3110, DH10B was 

constructed by a series of recombination steps. Therefore MG1655 and W3110 are closer 

to the ancestral K12 wild-type. During the classical genetic strain construction of DH10B 

several unspecified DNA fragments were transferred and deleted in addition to targeted 

modifications (Hayashi et al., 2006; Durfee et al., 2008). In accordance to this, the highest 

percentage of missing orthologous genes was found at time point C. 

 

The results of the evolutionary analysis in this work reflect both, the reported extensive 

sequence conservation similarity between MG1655 and W3110, and the effect of three 

large-scale deletions in DH10B: 1) the lac operon (ΔlacX74), 2) Δ(mrr-hsdRMS-mcrBC) that 

encodes six restriction enzymes, and 3) the leuLABCD operon Δ(ara leu)7697 (needs leucin 

to grow). All coupled reference reaction pairs remained coupled in W3110 because of its 

strong similarity with MG1655. 7 reaction pairs appear uncoupled at time point C because 

corresponding genes are affected by one of the deleted alleles (Table 3.5). In addition, 6 E. 

coli K12 coupled reaction pairs were lost because of these gene deletions. 
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Table 3.5: Gene composition of uncoupled and deleted reaction pairs in DH10B 

Genes that belong to alleles deleted by targeted recombination in DH10B are marked bold. 

Deleted alleles are the reason for the abolishment of 13 coupled reaction pairs in DH10B. 

Among the 13 pairs, the number of orthologous reactions found in DH10B matches to the 

number of deleted orthologous genes (Durfee et al., 2008). 

 

Coupled reference reaction pairs Orthologous reaction Deleted allele 

b0331~b1276∨b0118 One ΔlacX74 

b0333~b1276∨b0118 One ΔlacX74 

b0334~b1276∨b0118 One ΔlacX74 

b4322~b3093∨b3909 One Δ(mrr-hsdRMS-mcrBC) 

b4323~b3093∨b3909 One Δ(mrr-hsdRMS-mcrBC) 

b4323~b3092 One Δ(mrr-hsdRMS-mcrBC) 

b4323~b3093 One Δ(mrr-hsdRMS-mcrBC) 

b0331~b0333 None ΔlacX74 

b0334~b0333 None ΔlacX74 

b0334~b0350 None ΔlacX74 

b0352~b0350 None ΔlacX74 

b4322~b4323 None Δ(mrr-hsdRMS-mcrBC) 

b0062~b0063 None Δ(ara leu)7697 

 

 

DH10B is not able to use lactose as a nutrient (Hayashi et al., 2006; Durfee et al., 2008). 7 

coupled reaction pairs that belong to metabolic pathways involved in the transport and 

conversion of lactose do not exist or are no longer coupled because of the reported gene 

deletion. In addition DH10B lacks a set of restriction enzymes. Thus, reactions that belong 

to the corresponding pathways of DNA catabolism are no longer catalyzed and coupling to 

other reactions abolished. Orthologous genes that correspond to a deleted allele in DH10B 

were not detected in this analysis.  

 

As mentioned before, phyloCOP does not differentiate between xenologs and orthologs. 

Laterally transferred genes are therefore included in the phyloCOP clusters. However, 

correct function prediction is not violated by xenologs, because their functions are often 

conserved. Xenologs should not be excluded from the evolutionary analysis, since LGT is a 

main evolutionary process in prokaryotes and reaction coupling may be horizontally 

transferred as well (Dagan and Martin, 2009). For the scientific task in this work, which is 

the evolutionary analysis of metabolic coupling, it is not necessary to differentiate between 

xenology and orthology during the clustering procedure, which is computationally 
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expensive (see Chapter 2). This can be done afterwards by comparisons between gene 

trees and phylogenetic species tree.  

 

In general, results reflect some gene deletions of catalyzing enzymes in anabolic and 

catabolic pathways of E. coli DH10B, which is another evidence for the reliability of 

orthologous clusters created by phyloCOP. However, inclusion of more distantly related 

genomes is required for a higher resolution of the development of coupled reaction pairs 

over time. Information about the first occurrence of coupled reaction subsets and lateral 

gene transfer can subsequently be used for further evolutionary studies of complete 

coupled reaction subsets – functional pathways through the cell, which is one of the first 

steps towards comprehending the evolution of prokaryotic metabolic networks. 



 
 

83 

Chapter 4    Conclusion and outlook 

 

 

Systems biology, a new interdisciplinary scientific field of biology, alternates molecular 

biological analyses with computational simulation steps for integrative research. 

Experimental, physiological and genomic data serve as input for mathematical models that 

explain and simulate cellular behavior. The results of the simulations give new ideas for 

new experimental research. 

 

Over the last decades numerous molecular biological high-throughput sequencing 

techniques have been developed, which led to an immense increase of sequenced 

genomes. On the other hand, comprehensive knowledge about cellular functions is only 

available for a few species. Therefore, comparative genomics is frequently used for protein 

function prediction of newly sequenced genomes (Chapter 1). Although various sequence 

similarity based methods exist for orthology assignment, there is no gold-standard so far. A 

reason for this is the different frequency of evolutionary mechanisms like gene duplication 

and lateral gene transfer in prokaryotes and eukaryotes. Furthermore, different research 

aims require either the exclusion of paralogy or xenology, or a complete resolution of 

orthology, paralogy and xenology. Therefore, the existing orthology assignment methods 

are designed to serve specific research aims. Most previously designed algorithms that aim 

to meet the requirements of various research aims and aim to resolve all homologous 

relations among diverse taxonomic clades are computationally expensive. The 

development of an orthology assignment algorithm with user-defined parameters that 

make it adjustable to various research aims is maybe the best solution for a better cost 

benefit trade-off (Chapter 2). Metabolic networks can also be analyzed by comparative 

genomics, since many proteins are functional components of the cellular metabolism. It is 

possible to form the backbone of the metabolic network of a species based on the 

reactions associated with functionally annotated proteins. Functional relations in a well 

investigated network can be transferred to the newly investigated networks and used for 

evolutionary studies (Chapter 3). 

 

Evolutionary analysis deals with the investigation of the development of life over time. 

Ancestral states of biological systems, like metabolic networks, cannot directly be 

observed, but they can be reconstructed via comparisons between phylogenetically related 

organisms. 
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This work deals with comparative genomics applied to the analysis of prokaryotic metabolic 

network evolution. Orthologous genes are genes in different genomes with common 

phylogenetic origin. Since orthologs often share similar functions, their identification is 

used for function prediction in genomes that are not well investigated. Functional relations 

in the network of a reference species are then transferred to metabolic networks of other 

analyzed species. 

 

A new orthology assignment method - phyloCOP - was developed in this work. The 

generated orthologous clusters served as input-data for further analyses, in particular 

protein function prediction, phylogeny reconstruction and subsequent evolutionary 

analysis of metabolic coupling. The development of phyloCOP was inspired by other 

sequence similarity-based clustering algorithms, like, e.g. COG, that exploit transitive 

orthologous relations between species. PhyloCOP is a greedy phylogeny- and reference-

based algorithm that combines the better assignment accuracy of other phylogeny-based 

orthology assignment algorithms, like e.g. SYNERGY, with the higher computational speed 

and lower complexity of simple reference-based methods, like starCOG. PhyloCOP provides 

a set of user-defined parameters that make it adjustable to various research aims. The user 

chooses the reference genome, an e-value cut-off and the degree of transitivity to adjust 

the algorithm to the phylogenetic distance of the investigated genomes. 

 

PhyloCOP’s performance was tested on a smaller dataset of closely related species and a 

larger dataset including more distantly related species. PhyloCOPs created from both 

datasets were compared to alternative orthology assignment methods. Comparisons based 

on the smaller dataset show high similarity between all methods, where phyloCOP together 

with reference-based starCOG K12 is the most inclusive method.  In addition, high integrity 

of orthologous clusters that correspond to universal COGs was confirmed for the larger 

dataset of 539 species. Applied to this phylogenetically diverse dataset, simple reference-

based starCOG K12 clustered a significantly higher number of genes than MCL or phyloCOP, 

which includes most probably a high number of false positive assignments. Unlike for the 

dataset of closely related genomes, the inclusiveness of phyloCOP and starCOG is not 

similar for distantly related genomes. This indicates that simple reference-based clustering 

is not sufficient for distantly related species. All three tested algorithms performed well in 

the assignment of orthologous universally distributed proteins. Clusters that correspond to 

universally distributed COGs included proteins from most of the tested genomes. Only for a 

few distant bacterial and archaeal genomes no orthologs were found. The good 



Chapter 4  Conclusion and outlook  

 
 

85 

performance of starCOG K12 is surprising. Sequence similarity seems to be very high 

between orthologous universally distributed proteins even between relatively distantly 

related bacterial species. However, it has to be tested, if starCOG K12, phyloCOP and MCL 

clustered the same proteins. Since starCOG does not exclude paralogs false positive 

assignments are more likely. MCL, on the other hand, assigns a large number of proteins to 

clusters that include paralogs. The number of paralogous MCL clusters is significantly higher 

than the number of paralogous clusters excluded by phyloCOP. In order to test if MCL 

clustered paralogs correctly, paralogous proteins in the MCL clusters have to be observed. 

If they are e.g. isoenzymes in E. coli K12, correct paralogy assignment can be assumed. In 

this case the parameters of phyloCOP’s paralogy filter must be changed in a way that more 

paralogous clusters are detected and filtered. For example, instead of assigning a protein to 

two clusters if it fits to each of them alone (based on the reciprocal hit degree > α, with 

each of the two clusters), it could already be assigned to both clusters if the reciprocal hit 

degree of the protein with the union of both clusters is > α (Chapter 2). 

 

For the evolutionary analysis of metabolic coupling, protein functions of the well 

investigated metabolic network of E. coli K12 MG1665 were assigned to their orthologous 

counterparts in other E. coli strains. Relative ancestral time points were determined based 

on phylogenetic genome relations that were reconstructed from the phyloCOPs. 

Occurrence of orthologous proteins that correspond to selected coupled reaction pairs was 

checked at each ancestral time point (ancestor between the reference and the other 

genomes) in order to trace back the evolution of coupled reaction pairs over time. 

 

No last common ancestor was detected at which any of the investigated coupled reaction 

pairs appeared for the first time, because all investigated genomes are closely related E. 

coli strains. At time point B all reference reaction pairs remained coupled, which reflects 

the high genome similarity between the reference genome and E. coli W3110. In contrast, a 

significant number of coupled reference reaction pairs are either deleted or uncoupled in 

the second closest ancestor to E. coli K12, E. coli DH10B (ancestral time point C). Gene 

deletion seems to be the reason for the non-existence of some couplings at C since, 1) 

many gene deletions are confirmed in DH10B and, 2) all corresponding orthologous 

coupled reaction pairs exist at ancestral time points that are more distant to the reference 

genome (Chapter 3). Since xenologs are not excluded from the phyloCOP clusters, it is 

possible to detect them after the clustering procedure. However, xenologs of genes that 

are deleted in E. coli DH10B were not detected.  
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As mentioned in Chapter 3, a differentiation of xenology from orthology via gene tree 

reconstructions during the orthology assignment is computational intensive and orthologs 

are only syntenic in closely related genomes. I wanted to create a method that assigns 

orthologs to clusters that can be easily processed for further functional or evolutionary 

analysis. Correct function prediction is not violated by xenologs, because their functions are 

often conserved, since LGT provides selective advantages. It is also interesting and 

important to trace back the lateral inheritage of coupled reaction pairs because LGT is a 

main evolutionary driving force in prokaryotes. LGT can be detected after the homology 

assignment by gene tree comparisons with the assumed species phylogeny. For all these 

reasons it is useful not to exclude xenologs during the clustering procedure. 

 

Comparisons between gene loss probabilities for two independent gene pairs and the 

frequencies of deleted coupled reaction pairs reveal a correlation between reaction 

coupling and combined gene loss. Two genes that are associated with a coupled reaction 

pair are more often lost together and less often lost alone compared to independent genes. 

It is likely that two coupled genes are also more often laterally transferred together than 

alone. It can be assumed that reaction couplings last for a long time in metabolic network 

evolution. It is also interesting to investigate, why a coupled reaction pair is not conserved 

in a taxonomic clade. Reasons might be functional changes due to environmental selection 

forces. Many proteins have more than one function or have the potential to develop new 

functions. One of the proteins might have another (hidden) function that is useful to 

survive in a specific environment. Since we do not focus on the reactions themselves but on 

the proteins, we cannot see if the function associated with the coupled reaction pair got 

lost. If the protein that remains has another function and one protein that is associated 

with the other reaction of the coupled reaction pair got lost, it is likely that both coupled 

reactions got lost together. Experimental analysis might help to determine multiple 

functions and interactions of proteins. 

 

Last common ancestors in which reference reaction pairs are not yet coupled plus LGT 

events between more distantly related species can most probably be detected by repeating 

the evolutionary analysis in this work with genome sets that include more distantly related 

prokaryotic taxonomic clades. Based on this, further evolutionary studies may focus on the 

development of complete reaction pathways through the network, which is an important 

step towards understanding the evolution of cell anabolism and catabolism. 
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