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Abstract

In this thesis, we examine the structure and the phase behavior of binary mixtures of

soft-colloids in equilibrium. By employing coarse-grained models, we systematically

study the properties of soft mixtures and contrast them with those of “hard” colloids.

The work is divided in two sections, each considering a particular system. The

first part is devoted to the study of the effects of the addition of small linear (chain)

polymer to star polymer suspensions. We commence with a coarse-graining approach

that allows us to reduce the system complexity and to describe it by means of effec-

tive interactions between the central monomer. Thereafter, in a full two-component

integral-equation approach we describe the demixing transition in the fluid phase

of star/linear polymer mixtures for low and intermediate functionalities and several

chain-to-star size ratios. In order to compare the one- and the two-component de-

scriptions, we resort to the depletion interaction. For both hard sphere mixtures

and colloid/non-adsorbing polymer mixtures the range of the depletion interaction

increases with the size ratio. For the considered system, the range of the deple-

tion potential is insensitive to the size of the depletant polymer. We discuss the

physical origin of this and associated effects, as well as a mapping of the mixtures

onto a one-component system. Finally, we offer a robust comparison to experimen-

tal results, showing the accuracy of the coarse-graining procedure for developing

effective interactions between star-like micelles and polymer chains, in a wide range

of concentrated mixtures. Without any adjustable parameter we find quantitative

agreement between experiments and theory for the influence of the added chains on

the inter-micelle structure and on the phase behavior.

In the second part, we focus on the so-called GEM particles, representing, e.g.,

amphiphilic dendrimers or ring polymers in solution. We apply density functional

theory to study the interfacial and wetting properties of a phase-separating binary

fluid within the mean-field approximation. The studied system can lead to first-

order wetting transition which is characterized by a layering-like behavior due to the

clustering properties of GEM particles. Finally, we describe the dynamic behavior

of the crystal phase of GEM mixtures by means of extensive molecular dynamics

simulations. In particular, we investigate the effect of the addition of non-clustering
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particles on the dynamic scenario of one-component cluster crystals.
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Zusammenfassung

In der vorliegenden Dissertation untersuchen wir die Struktur und das Phasen-

verhalten binärer Mischungen weicher Kolloide im Gleichgewicht. Mittels coarse-

grained Modellen untersuchen wir systematisch die Eigenschaften weicher Mischun-

gen und stellen sie denen harter Kolloide gegenüber. Die Arbeit ist in zwei Ab-

schnitte unterteilt, wobei jeder ein besonderes Modell in Betracht zieht.

Der erste Teil ist der Untersuchung der Auswirkung gewidmet, welche durch

Hinzufügung von linearen Polymerketten zu Sternpolymer Suspensionen hervor-

gerufen wird. Wir beginnen mit einem coarse-graining Ansatz der uns erlaubt,

die Komplexität des Systems zu reduzieren und es mittels effektiver wechselwir-

kungen zwischen den Zentralmonomeren zu beschreiben. Anschließend beschreiben

wir mit Hilfe eines vollständigen zweikomponentigen Integralgleichungsansatzes den

Entmischungsübergang in der fluiden Phase von Stern/Ketten-Polymermischun-

gen für niedrige und mittelgroße Funktionalitäten, sowie für verschiedene Größen-

verhältnisse zwischen Ketten und Sternen. Um die ein- und zweikomponentigen

Beschreibungen zu vergleichen, greifen wir auf die Depletionswechselwirkung zurück.

Sowohl für Harte-Kugel-Mischungen als auch für Mischungen von Kolloiden und

nicht-adsorbierenden Polymeren nimmt die Reichweite der Depletionswechselwir-

kung mit zunehmendem Größenverhältnis zu. Für das betrachtete System ist die

Reichweite des Depletionspotentials unabhängig von der Größe der Ketten. Wir

erörtern den physikalischen Ursprung dieses und der damit verbundenen Effekte

sowie die Übertragung der Mischungen auf einkomponentige Systeme. Anschließend

zeigen wir mittels gewissenhaftem Vergleich zu experimentellen Ergebnissen die

Genauigkeit des coarse-graining-Verfahrens für die Herleitung effektiver wechsel-

wirkungen zwischen sternähnlichen Mizellen und Polymerketten über einen großen

Bereich konzentrierter Mischungen. Ohne jegliche anpassbare Parameter finden wir

quantitative Übereinstimmung zwischen Experiment und Theorie für den Einfluss

hinzugefügter Ketten auf die intermizellare Struktur und auf das Phasenverhalten.

Im zweiten Teil legen wir den Schwerpunkt auf die sog. GEM-Teilchen, durch

welche z.B. amphiphile Dendrimere oder Ringpolymere in Lösung repräsentiert wer-

den können. Wir verwenden Dichtefunktionaltheorie, um die Grenzflächen- und
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Benetzungseigenschaften eines phasentrennenden binären Fluids mittels der Mean-

field -Näherung zu untersuchen. Die untersuchten Systeme können zu einem Benet-

zungsübergang erster Ordnung führen, welcher sich, aufgrund der Clustereigen-

schaften der GEM-Teilchen, durch ein der Schichtung ähnliches Verhalten kenn-

zeichnet. Abschließend beschreiben wir das Phasenverhalten der kristallinen Phase

der GEM-Mischungen mittels umfangreicher Molekulardynamik-Simulationen. Ins-

besondere untersuchen wir den Effekt, den das Zufügen von nicht-clusternden Teil-

chen auf das dynamische Szenario einkomponentiger Clusterkristalle hat.
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Introduction

The recent progress in synthesis and self-organization of nano- and microscopic

colloidal particles and soft matter composites has expanded the possibilities to de-

sign and prepare new materials featuring controllable responses to different physical

and/or chemical stimuli [1, 2]. In trying to achieve a comprehensible characteriza-

tion of their static and dynamic macroscopic properties, the complex composition

of soft materials gives rise to formidable theoretical and computational challenges.

As a consequence of the large length- and time-scale asymmetries between the dis-

solved, mesoscopic aggregates and the microscopic components, a completely mi-

croscopic statistical description of this kind of systems is not possible. Neverthe-

less, the involved complexity can be greatly reduced by conveniently pre-averaging

(coarse-graining) the degrees of freedom of some of the microscopic components,

and subsequently mapping the original system onto an effective model, which con-

tains a smaller number of components governed by effective interparticle interactions

[3, 4, 5, 6, 7].

In essence, the emerging effective interactions are constrained free energies be-

tween appropriately chosen mesoscopic degrees of freedom (effective coordinates),

once a canonical trace over the microscopic ones has been carried out. It has the

advantage, that the choice of the effective coordinates does not alter dramatically

the physical description of the system at hand1, as long as the same level of appro-

ximation is preserved in the coarse-graining (CG) [4, 5]. In this way, simplified

coarse-graining methods accounting for a minimal set of properties of the meso-

scopic entities are perfectly well-suited to study generic/universal properties of soft

matter systems [8]. In the realm of colloidal suspensions, which in their “simplest”

1However it does change the form of the effective interactions

1



2 Introduction

description consist of a solution of hard particles (colloids, ∼1 nm−1µm) immersed

in a fluid of much smaller ones (solvent molecules, ions, short polymers), a CG treat-

ment is behind the effective screened Coulomb interaction between charged colloids

at low density [9], i.e., the electrostatic part of the well-known DLVO potential,

which has been of fundamental importance in the understanding of the stability of

colloidal dispersions. The same CG procedure lies in the Asakura-Oosawa model

for the depletion interaction [10, 11], which since long time has been employed to

explain the equilibrium phase behavior of colloid-polymer mixtures [12], and lately

to understand the formation and stability of clusters, gelation, repulsive-glass to

attractive-glass transition and arrested spinodal decomposition [13].

Recently, the study of soft, deformable colloids have attracted a lot of interest

because their singular properties and their relevance for technical application (e.g.,

design of filter materials, enhancement of catalytic activity) as well as for life scien-

ces (e.g., noninvasive drug/gene delivery, pathogen detection) [2]. They are mainly

polymer-based structures, which can be typically categorized into core-shell parti-

cles, being polymer-grafted nano-particles, micelles, microgels, star polymers, and

dendrimers, to name some examples of the same. As a consequence of their internal

structure, these particles may mutually interpenetrate when pressed together and

most important, their softness is tunable in multiple ways. For example, in the

case of star polymers the softness is determined by the number of polymeric arms

(functionality) anchored to the central site. The same role is played by the aggre-

gation number in block copolymer micelles, for which the ratio between the block

lengths is also a “softness parameter”. For dendrimers, softness is controlled by

the generation number, the length of the spacer between generations, and the bond

stiffness [5]. Finally, microgels are soft provided that their cross-linking is low. If

charge is further included, then charged stars, dendrimers or microgels can change

their penetrability by pH variations [14, 15].

The range of possibilities described above can be widely extended if multi-

component systems of soft particles are considered. Binary hard sphere mixtures

and mixtures of hard spheres and linear polymer chains are well established model

systems to investigate on a fundamental level effective interactions and phase be-

havior of condensed matter [16]. In the same way, studies aiming to explore in detail
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structure, dynamics and phase behavior of soft colloids, their binary mixtures and

mixtures with linear polymer are of current interest. In this work, we employ two

coarse-grained models of soft binary mixtures in order to investigate a number of

aspects of their structure and phase behavior in equilibrium.

This thesis is divided in two parts, each one considering one specific model. The

first part, presented in chapters 1, 2, and 3, is devoted to the study of the effects of

the addition of small linear (chain) polymer to a fluid of star-like colloids. We focus

on the effects of osmotic forces and on the mechanism of depletion, which allow

to address some striking phenomena on the rheology of the suspension, and which

appear to be sensitive to the chain-star size ratio. Similar behavior observed with

ionic microgel particles suggests the universality of the model [17] and therefore its

general validity.

In the second part of this work, we focus on bounded, ultrasoft particles, whose

interaction potential belongs to the family of the so-called generalized exponential

model (GEM), which has been proposed to represent the potential of mean force

(i.e. effective interaction) between the centroids of polymeric macromolecules having

a low inner monomer concentration. In such cases, the centroids might coincide

without overlapping of the constituting monomers. The most remarkable feature of

this model is that, upon increasing the density at fixed temperature, the particles

begin to overlap forming clusters that can arrange themselves in ordered phases [18].

From the theoretical point of view, the advantage of employing ultrasoft potentials

is that the mean-field approximation (MFA) becomes very accurate, so that many

complex properties can be calculated in a straightforward fashion within the realm

of classical density functional theory (DFT).

This Dissertation is organized as follows: Chapter 1 deals with a full two-

component integral-equation approach to describe the demixing transition in the

fluid phase of star/linear polymer mixtures. By mapping the mixtures onto a one-

component system, we resort to a depletion-like description in chapter 2, where

we discuss some unusual features of the depletion potential. Chapter 3 involves

a robust comparison to experimental results, showing the accuracy of the coarse-

graining procedure for developing effective interactions between star-like micelles

and the polymer chains, in a wide range of concentrated mixtures. In chapter 4, we
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apply density functional theory to study the interfacial and wetting properties of a

phase-separating binary GEM fluid within the mean-field approximation. Chapter 5

is devoted to describe the dynamic behavior of the crystal phase of GEM mixtures

by means of extensive molecular dynamics simulations. In particular, we investigate

the effect of the addition of non-clustering particles on the dynamic scenario of one-

component cluster crystals. Finally, in chapter 6 we summarize and draw a number

of concluding remarks.



Chapter 1

Demixing transition in star-linear

polymer mixtures

In this chapter, we consider the effect of the addition of small polymer

chains on the equilibrium structure, as well as on the phase behavior of

low- and intermediate-functionality star polymer solutions. By using a

recently introduced effective cross interaction between stars and chains,

the two component Ornstein-Zernike equation is solved, finding evidence

for cluster formation, which is accompanied by a spinodal instability at

moderate chain concentrations. The binodal lines are numerically cal-

culated and the dependence of the observed phenomena on functional-

ity, size and concentrations are rationalized by considering the attractive

contribution, which is displayed by the effective, chain-modified star-star

interaction potential.

1.1 Introduction

Soft matter systems are generally composed by mesoscopic entities with supramo-

lecular architectures and are largely susceptible to external influences. This cha-

racteristic allows us to tune the interactions between the different component of

the system enriching the panorama of observable phase phenomena as well as the

5



6 Demixing transition

spectrum of possibilities to take control over them. In order to gain some insights

into the understanding of trends in the phase behavior of such systems, we may

take advantage of coarse-graining procedures which lead to effective interactions

between the mesoscopic components, once the microscopic degrees of freedom have

been adequately traced out [4, 5, 19].

By following this strategy, most of the physics of colloidal-polymer mixtures can

be captured by the depletion mechanism [10, 11, 12, 16, 20, 21, 22, 23, 24, 25]. If

a colloidal particle is brought into a non-adsorbing solution of polymers, the latter

are depleted in a zone around the colloidal surfaces due to the colloidal-polymer

repulsion. The spatial extension of this zone is of the order of the radius of gyration

of the polymers. If two colloidal particles are close enough, the two depletion zones

overlap, resulting in an effective attraction between them, which can be seen as

stemming from an unbalanced osmotic pressure exerted on the colloidal particles

by the surrounding polymers. Because the range of the interaction can be tuned, a

variety of phase diagrams can be realized [12].

A new range of possibilities emerges when the hard colloids are replaced by soft

ones. Star polymer suspensions have developed to be as well characterized, tun-

able and highly versatile model of soft colloidal systems that do display very rich

equilibrium and dynamical behavior [4, 26]. Star polymers (SP) are complex macro-

molecules consisting of f polymeric chains (arms) chemically anchored to a common

core. An interesting aspect of SP is that, depending on their functionality f they

constitute intermediate entities between linear polymers (f = 1, 2) and sterically

stabilized colloids (f ≫ 1). When the core size is small compared to the length of

the chains, the effective interaction Vss(r) between two stars immersed in a good sol-

vent shows a logarithmic dependence on their center-to-center separation for small

distances and it cross over to a Yukawa form for larger ones [26].

The phase diagram of SP solutions has special characteristics originating from the

ultrasoft nature of their repulsive interaction [26]; for example, it exhibits a critical

functionality (fc ≃ 34) below which the system remains fluid at any concentration,

whereas for f > fc the phase diagram exhibits several unusual solid lattices as well

as reentrant melting as the density of the system increases [27]. If an attractive

potential is superimposed to Vss(r), so that the total resulting potential features
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the original, logarithmic repulsion for short distances, the system shows a variety

of structurally distinct states. By tuning both the amplitude and the range of

the attractive contribution, evidence was found for cluster formation, fluid-fluid

separation, fluid-solid transitions as well as the formation of a repulsive glass in SP

solutions with intermediate functionality (f ≃ 32) [28, 29, 30].

From the physical point of view, several mechanisms bringing about an attrac-

tive contribution to the star-star interaction potential can be suggested. As pre-

viously mentioned, one possibility is the introduction of one smaller component to

the system, in this case homopolymer chains. In that case, the attraction develops

as consequence of the depletion-like forces, whose properties can be influenced by

modifying the size and the concentration of chains. In order to make progress in the

description of the effects of the polymer chains on the phase behavior of star polymer

solutions, in this work we employ the coarse-grained effective interaction between all

composing entities of the mixture, (i.e. star-star, chain-chain, and star-chain inter-

actions) as input for the two component Ornstein-Zernike equation, whose solution

provides a good description of the structural properties of the mixture.

The rest of this chapter is organized as follows: In Sec. 1.2 the coarse-graining

procedure is described and the full two-component description of the mixture is

presented. In Sec. 1.3 the methods employed to determine the structure and ther-

modynamics of the system are briefly explained. The central part of this work

is presented in Sec. 1.4, where the numerical results for the coexistence lines are

displayed. Finally, in Sec. 1.5 we summarize and draw our conclusions.

1.2 Coarse-grained model of the mixture

We employ a coarse-graining description of the star-chain mixture, by taking advan-

tage of the effective interaction potential between both components once adequate

effective coordinates have been chosen and all the internal degrees of freedom of

the macromolecules are integrated out [4, 31]. We suppose both components to be

suspended in a good quality solvent, so that the interactions between the same are

steric in origin and therefore the effective interactions scale linearly with the thermal

energy kBT , where kB is the Boltzmann’s constant and T the absolute temperature.
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For star polymers the position of the central core (on which the arms are an-

chored) is the natural effective coordinate. The corresponding effective interaction

for high enough functionality (f > 10) was derived some time ago by using the blob

model of Daoud and Cotton (see Appendix A) [32, 33], and its validity has been

widely documented both theoretically and experimentally [26]. It can be expressed

as

βVss(r) =
5

18
f 3/2


− ln


r
σs


+ 1

1+
√
f
2

r ≤ σs

1

1+
√
f
2


σs

r


exp


−

√
f

2σs
(r − σs)


r > σs

(1.1)

where f and σs are respectively the functionality and the corona diameter of the

stars, and β = (kBT )
−1. The quantity σs/2 defines the distance from the center

to the outermost of the star according to the Daoud-Cotton model; it marks the

crossover between the inner part of the macromolecule (unswollen region), which

resembles a semidilute polymer solution, and the outer part, in which loose chains

form a local, dilute solution [26]. Extensive comparisons with simulation data have

set this scales to σs ≃ 1.3R
(s)
g , where R

(s)
g is the radius of gyration of the star [34].

Although there exist several adequate choices for the effective coordinate of the

linear chains [4, 35, 36, 37], by choosing the position of the central monomer of

the chain we can establish a certain symmetry between multiarm star polymers and

linear chains. In this sense, the linear chain can be considered as a star polymer

with f = 2 whose arms are anchored to the central monomer. In this representation,

the effective interaction between two linear chains, whose central monomers are a

distance r apart, is given by [38, 39]

βVcc(r) =
5

18
23/2

− ln


r
σc


+ 1

2τ2σ2
c

r ≤ σc

1
2τ2σ2

c
exp [−τ 2(r2 − σ2

c )] r > σc

(1.2)

with τσc = 1.03 and σc the corona diameter of the chains. The value of τ is chosen

in order to guarantee the correct value of the second virial coefficient of a polymer

solution. As before, the corona diameter satisfies the relation σc ≃ 1.3R
(c)
g , where

R
(c)
g is the gyration radius of the linear chain.

In order to have a complete description of the system, we still need to specify

the coarse-grained cross interaction between stars and chains. This task has been
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Figure 1.1: Coarse-grained effective interaction potentials given by Eqs. (1.1)-(1.3)

for f = 18 and size ratios ξ = 0.1, 0.3, 0.5.

recently accomplished by using scaling arguments as well as monomer-resolved MD

simulations [31]. According to the scaling analysis and similarly to Eqs. (1.1) and

(1.2), a logarithmic interaction is obtained for star-chain separations r up to σsc =

(σs + σc)/2; i.e., the cross-diameter for the logarithmic interaction is additive. For

larger separations between the star center and the central monomer of the chain, a

Flory-like approach was used in which the interaction potential is estimated by the

overlap integral between the undisturbed monomer density profiles ϱs,c(r) of the two

interacting objects. In this way the effective cross potential reads as

βVsc(r) =

−Θ(f, 2) ln


r
σsc


+K r ≤ σsc

v0

ϱs(r

′)ϱc(|r− r′|)dr′ r > σsc

(1.3)

where Θ(f1, f2) =
5
36

1√
2−1

((f1 + f2)
3/2 − (f

3/2
1 + f

3/2
2 )) and v0 is an excluded volume

parameter. The constants K and v0 are estimated by requiring that both Vsc(r) and

its first derivative are continuous functions at r = σsc. The density profiles can be

evaluated on the basis of the blob model of Daoud and Cotton, resulting [31, 38]

ϱi(r) = Ai



σi

2

−5/3
r−4/3 r ≤ σi/2

1
r2

+ 2κ2
i


ζi

σi/2
exp


−κ2

i


r2 − (σi/2)

2 r > σi/2
(1.4)
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with Ai is a normalization constant and ζi = (1+ 1
2
κ2
iσ

2
i )

−1. The parameter κi is set

by κiσi = 1.27 in order to fit the theoretical profile, Eq. (1.4), to the MD simulation

results. We emphasize that the general scheme used to evaluate Vsc(r) is consistent

for arbitrary functionality f and size ratio ξ = σc/σs, independently of the degree

of polymerization of the star and the chain; the only dependence on them comes

implicitly through σs and σc. In Fig. 1.1 a comparison between the three effective

pair potentials Vss, Vsc and Vcc is shown for f = 18 and several size ratios.

1.3 Bulk structure and phase diagram

1.3.1 Fluid structure

The structural information of the mixture was gained by solving the two component

Ornstein-Zernike (OZ, see Appendix B) equations with help of the Rogers-Young

(RY) closure, which has been showed to be reliable for one component SP solu-

tions as well as for mixtures of SP and hard-spheres colloids [27, 40]. Briefly, for

a ν-component mixture with partial densities ρi of the i-th specie, the fluid pair

structure is fully described by solving ν(ν + 1)/2 coupled OZ equations connect-

ing the total correlation functions hij(r) with the direct correlation functions cij(r),

i, j = 1, . . . , ν. In Fourier space the OZ relations read as

Ĥ(k) = Ĉ(k) + Ĉ(k) · D̂ · Ĥ(k) (1.5)

with matrix elements [Ĥ(k)]ij = ĥij(k), [Ĉ(k)]ij = ĉij(k) and [D̂]ij = ρiδij. Here,

ĥij(k) and ĉij(k) denote respectively the Fourier transform of the pair correlation

function hij(r) and the direct correlation function cij(r).

In order to have a complete solution of Eq. (1.5), it is necessary to provide ν(ν+1)

additional closure equations between the total and the direct correlation functions.

Particularly, the Rogers-Young closure for a multicomponent system is given by

gij(r) = exp [−βvij(r)]


1 +

exp [χij(r)f(r)]− 1

f(r)


(1.6)

where gij(r) ≡ hij(r) + 1, χij(r) = hij(r)− cij(r), and vij(r) are the pair interaction

between species i and j (i, j = s, c for stars and chains respectively). The auxiliary



Bulk structure and phase diagram 11

mixing function f(r) = 1−exp[−αr] is introduced to enforce thermodynamic consis-

tency of the total isothermal compressibility by matching the value of the parameter

α [41].

We determined the pair correlation functions of the star-chain mixtures by cal-

culating the three static structure factors Sij(k) = δij +
√
ρiρjĥij(k) once we had

numerically solved the OZ-RY equations, Eqs. (1.5) and (1.6), through an iterative

Picard method. This procedure was carried out for mixtures characterized by func-

tionalities f = 18, 24, 32 and size ratios ξ = 0.1, 0.3, 0.5 covering a wide range in

the density plane (ρs, ρc). For some combinations of parameters, we additionally

performed standard NV T -Monte-Carlo simulations as a check for the results from

the OZ-RY calculations.

1.3.2 Binodal lines

Based on the structural information obtained by solving the OZ-RY equations, we

can access in principle to the complete information concerning the thermodynamics

of the system. In particular, in order to determine the binodal lines, it suffices to

consider the concentration structure factor, Scon(k), which is defined as [40, 42, 43,

44]

Scon(k) = x2(1− x)Sss(k) + x(1− x)2Scc(k)− 2 [x(1− x)]3/2 Ssc(k) (1.7)

with x = ρc/(ρs + ρc) the partial concentration of chains. With this definition, the

link between the structural information and the thermodynamics of the system is

provided by the sum rule

Scon(k → 0) = kBT


∂2g(x, P, T )

∂x2

−1

, (1.8)

where g(x, P, T ) = G(x,N, P, T )/N is the Gibbs free energy per particle and P

denotes the pressure of the mixture [42]. Once Scon(k) is known as a function of

x for constant pressure and temperature, the Gibbs free energy can be calculated

by integrating (1.8) twice, as described in [40, 44]. If g(x, P, T ) has concave parts

as a function of x for some x-region, the mixture features a fluid-fluid demixing

transition and the corresponding phase boundaries can be calculated by means of the
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Maxwell’s common tangent construction, which guarantees that the partial chemical

potentials of every component have the same value on both coexisting phases. As it is

performed on an isobar, and for fixed temperature, the pressure and the temperature

are also the same for both phases and therefore all conditions for phase equilibrium

are fulfilled.

1.4 Results

1.4.1 Chain-modified effective star-star interaction

In order to gain a first insight of the effect of adding linear chains to a SP solution, we

can carry out a second coarse-graining procedure and do describe the mixture in first

approximation as an effective one-component SP solution. Under this view, the stars

are considered to interact not through Vss(r) given by Eq. (1.1), but through a new

chain-modified effective potential Veff(r) in which the degrees of freedom of the chains

have been traced out. By construction, this chain-modified interaction potential

leaves the correlation functions gss(r) and Sss(k) between the stars invariant.

One possibility to achieve this mapping is to use the inversion of the full, two

component solution for the radial distribution function in the limit of low star density

[41]. Once the star-star radial correlation function gss(r) is known by solving the

OZ equations with the Rogers-Young closure, the effective star-star potential can

be estimated by means of

βVeff(r) = − ln [gss(r; f, ξ, ρs → 0, ρc)] . (1.9)

In Fig. 1.2 we show the results for the effective star-star potential from the

inversion procedure for different values of f and ξ. As can be seen, the increase in

ρc reduces the range of repulsion and eventually yields to the rise up of an attractive

well in Veff(r) as a consequence of a typical depletion mechanism when the stars are

close enough. This effect is more pronounced as the functionality f or the size ratio

ξ increase and it becomes more difficult to chains to occupy the inter-star space for

a given r.
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Figure 1.2: Chain-mediated effective star-star potential as obtained by inversion

of the OZ equation. The influence of increasing the chain density is shown for

functionalities f = 18, 24, 32 and size ratios ξ = 0.1 (upper row) and ξ = 0.5

(bottom row).

For all combinations of parameters considered, the effective potential Veff(r) re-

mains repulsive at large star-star separations. This fact induces the appearance of a

repulsive hump together with the attractive well at intermediate distance (r & 2σs),

as a consequence of the interaction and correlations between the depletant particles;

this effect is also present in highly asymmetric hard-sphere mixtures [45]. As can be

seen in Fig. 1.2, the height of the repulsive hump decreases by increasing f . This is

a direct consequence of the functional form of the star-star interaction Vss(r), which

decays faster at large distances as the functionality becomes larger, see Eq. (1.1).

Some models of effective potentials featuring this well-and-shoulder form have

been used in order to explain the formation of finite, stable clusters in soft matter

systems [46, 47, 48, 49, 50, 51]. These structures can be built up due to the tendency
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Figure 1.3: Partial radial distribution functions of the mixtures for different chain

densities as obtained by solving the OZ equations with the RY closure. The system is

characterized by functionality f = 18, size ratio ξ = 0.5 and star density ρsσ
3
s = 0.1.

The filled circles correspond to results from Monte-Carlo simulations.
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of the attractive well to induce particle aggregates whose size is thereafter limited

by the repulsive barrier preventing the growth of an infinite cluster. If such a

barrier is rather low or narrow, the system would be driven to develop long-range

fluctuations upon an increase of the chain concentration and therefore a fluid-fluid

demixing transition of the two component mixture will be favored without a previous

occurrence of clusters, as in colloid-polymer mixtures [16].

1.4.2 Structure of the mixture

We can describe the structure of the binary mixture either by the three partial radial

distribution functions gij(r) in real space or by the three partial static structure fac-

tors Sij(k) in wavenumber space. In Fig. (1.3) we present the evolution of the partial

radial distribution functions for dilute star polymer solutions of functionality f = 18

and chain-to-star size ratio ξ = 0.5 upon the increase of the chain concentration.

Although for very small chain concentration gss(r) has a relative weak peak at

r0 ∼ ρ
−1/3
s , it rapidly develops a pronounced peak at smaller distance rc when ρc

increases further. This is a first indication of clustering of stars, which are brought

together because the attraction induced by the smaller chains, since the distance

rc is set by the minimum in the effective potential Veff(r). By further increase of

chain density the depression in gss(r) at distance 2.0 < r/σs < 2.5, which is directly

connected to the repulsive hump in Veff(r), becomes less pronounced and eventually

disappears. This effect can be explained because at high enough chain densities the

strength of the repulsive hump goes down and it can no more limit the size of the

cluster.

The previously described scenario can be further elucidated by considering the

star-star structure factors Sss(k). In Fig. 1.4 we consider the structure factors for

f = 18 and ξ = 0.5. As can be seen, Sss(k) develops a double-peak structure with

two peaks corresponding to two independent length scales. Whereas a particle peak

shows from kσs ∼ 4 at zero chain density up to kσs ∼ 6 for higher one, a cluster

pre-peak appears at smaller wavenumber kσs ∼ 1.5, suggesting the formation of

finite clusters. The size growth of such clusters as well as the increase in the inter-

cluster separation are then indicated by the shifting of the position of the cluster
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Figure 1.4: Star-star structure factors at densities (a) ρsσ
3
s = 0.1 and (b) ρsσ

3
s = 0.4

by increasing the chain density. The star functionality and size ratio are respectively

f = 18 and ξ = 0.5. Corresponding chain-chain structure factors are shown in the

insets.



Results 17

0 1 2 3 4 5 6 7 8
N

nn

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6
N

nn

0

0.2

0.4

0.6

0.8
Fr

eq
ue

nc
y 

 

ρ
c
σ

c

3
 = 0.000

ρ
c
σ

c

3
 = 0.125

ρ
c
σ

c

3
 = 0.250

ρ
c
σ

c

3
 = 0.375

ρ
c
σ

c

3
 = 0.500

ρ
c
σ

c

3
 = 0.625

10
-2

10
-1

10
0

10
1

10
2

t

-0.5

0

0.5

1

F
ss

(k
,t)

kσ
s
 = 1.00

10
-1

10
0

10
1

10
2

t

kσ
s
 = 3.70

Figure 1.5: Top: Distribution of the number of star-star nearest-neighbors for f =

18, ξ = 0.5 and different chain densities. The star densities are ρsσ
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3
s = 0.2 (right). Bottom: Star-star coherent scattering function for ρsσ
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wave vectors kσs
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∼= 3.70, i.e., around the cluster and particle peaks.

Legend is the same for all figures.

pre-peak to lower k-values. At the same time, the value of Sss(k = 0) increases

demonstrating that the system is approaching the spinodal line and therefore, for

high enough chain density, the fluid-fluid demixing transition will take place. This

fact is confirmed by looking at the behavior of the limit of long wavelength of the

chain-chain structure factor Scc(k = 0) as shown in the insets of Fig. 1.4.

As mentioned above, the particle peak of Sss(k) shifts to larger k as ρc increases,

pointing out the distance between (star-star) nearest neighbors decreases. In ad-

dition, the height of the peak goes down but, upon an further increase of ρc, it

slightly increases (see Fig. 1.4), which is an indication of the increase of the av-

erage number of nearest-neighbors. That this is indeed the case is demonstrated
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Figure 1.6: Simulation snapshots for f = 18, ξ = 0.5, ρsσ
3
s = 0.2 and different chain

densities. Color bar measures the fraction of connected stars in relation to their

total number in the simulation box. From left to right and top to bottom, ρcσ
3
c

was increased from 0 to 0.4375 in steps of 0.0625. For sake of clarity, only stars are

shown.

in Fig. 1.5, which displays the distribution of the number of (star-star) nearest-

neighbors (Nnn) extracted from MD simulation snapshots. Two stars are considered

as neighbors if the distance between them is smaller than Rcutoff = 1.5σs
∼= 2R

(s)
g .

On the other hand, the size of the larger structure, i.e., the one corresponding to the

cluster peak k, is measured by the number of connected stars. Following [52, 53],

two stars are connected, i.e., they belong to the same cluster, if they are themselves

nearest-neighbors and simultaneously nearest-neighbors of a third star. In Fig. 1.6

representative snapshots of the simulation box are presented, showing the number of

connected particles. As can be seen, clusters of connected stars coarsen as the chain

density increases and form a transient percolating network, as confirmed by look-

ing at dynamical properties. For example, the coherent scattering function Fss(q, t)

(see Appendix C) completely relaxes pointing out the star dynamics is ergodic at

both the particle and the cluster scales (see Fig 1.5). This picture is completely

analogous to the one found in colloid-polymer mixtures [53, 54]. However, there

is an important difference; since there is no glass transition in pure suspensions of
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Figure 1.7: Star-star structure factors at star density ρsσ
3
s = 0.05 for (a) f = 18,

ξ = 0.1 and (b) f = 32, ξ = 0.5. By increasing the chain density ρc the partial

structure factors grow for k → 0, as indication the system is approaching to the

demixing spinodal.
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low-functionality stars, the percolating network in the mixture never undergoes a

gel transition and therefore the spinodal decomposition will always take place at

sufficiently high chain density. A deeper analysis of the dynamical properties will

be subject of a future investigation.

Resuming back to the features of the structure factors, we have found a similar

situation by decreasing the size ratio ξ, as shown in Fig. 1.7(a) for f = 18 and

ξ = 0.1. However, in this case the position of the cluster pre-peak goes faster to

k = 0 as ρc increases and the Lifshitz line for Sss(k) (where the local minimum of the

structure factor at k = 0 turns into a maximum) is reached. On the other hand, by

increasing the star functionality, the cluster pre-peak disappears and the system is

driven directly to the demixing transition as ρc increases, as is shown in Fig. 1.7(b)

for f = 32 and ξ = 0.5. In this way, we can state that the system at hand displays

cluster formation as a precursor stage for the demixing transition for low enough

functionality, f . 24. A more detailed description of this behavior will be discussed

below.

1.4.3 Demixing transition

According to the previous discussion, we have good evidence that a demixing tran-

sition takes place in the studied system for certain ranges of chain densities. We can

give a quantitative description of this transition by determining the phase bounda-

ries as explained in Sec. 1.3.2. The results for the demixing binodal lines in the

(ρs, ρc)-plane are presented in Fig. 1.8 for functionalities f = 18, 24, 32 and size

ratios ξ = 0.1, 0.2, 0.3. In addition to the coexistence lines (thick lines) we show a

few tielines (thin lines) connecting the coexisting star-rich and star-poor phases. By

taking into account the tielines we also present a rough estimate of the position of

the critical points in the same figure.

As can be seen, for a given size ratio ξ the binodal lines move toward lower

star densities upon increasing the functionality f , meaning that the chains are more

efficient depletants for “harder” stars. If we consider an extrapolation to mixtures in

the limit f → 2, this trend is in agreement with the fact that in this limit, the critical

point lies beyond the overlapping concentration of stars [55]. On the other hand,
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Figure 1.8: Demixing binodal lines for different values of star functionality f and

size ratio ξ. The thin lines represent tie lines, whereas the filled squares correspond

to the estimated positions of the respective critical points. The thick dashed lines

indicate the cluster lines for f = 18 and f = 24.
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Figure 1.9: Comparison of the correlation functions obtained by solving OZ-RY

equation (continuous lines) and those from Monte-Carlo simulations (dots) for (a)-

(b) f = 32, ξ = 0.1 and (c)-(d) f = 18, ξ = 0.5. The (ρs, ρc)-pairs indicated in each

panel correspond respectively to the points indicated by asterisk (∗) and marked as

A, B, C and D in Fig. 1.8.

as ξ increases for fixed f , the coexistence lines shift to higher star densities, which

is similar to that found in colloid-polymer mixtures [16]. However in the system

at hand, such shift becomes comparatively smaller for larger f . This fact can be

associated with the possibility to form finite clusters of stars when the functionality

is sufficiently small, stabilizing the system against demixing at a given chain density.

Before we discuss that point, it is worth to take a look at the accuracy of the

solution of the OZ-RY equations for the system at hand. In order to carry out

a comparison, a number of Monte-Carlo simulations was performed for different
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combinations of densities, functionalities and size ratios. Some comparisons were

already presented in Fig. 1.3 concerning the evolution of the radial distributions

functions at fixed star density ρs by increasing the chain density ρc. In Fig. 1.9, a few

representative comparisons for (ρs, ρc) pairs in the neighborhood of the binodal lines

are shown for parameter combinations (f = 32, ξ = 0.1) and (f = 18, ξ = 0.5). It can

be ascertained that the agreement of the two methods is quite good and, as the size

asymmetry decreases, the discrepancies tend to disappear completely. Therefore,

the OZ-RY method gives quite reliable results for the structural information, and

consequently for the thermodynamics, of the system at hand, especially for low size

asymmetry.

Concerning the stabilization of the mixture against the demixing transition by

formation of finite clusters, whereby the emergence of a macrophase separation is

precisely defined through the divergence of the structure factors Sij(k) at k = 0,

cluster formation in a thermodynamically stable fluid is not associated with any

accompanying phase transition. In this way, we have to resort the evidence about

the occurrence of a cluster in some (arbitrary) structural criteria [28]. As previously

discussed, in the case at hand the existence of a cluster is indicated by identifying

a pre-peak in the star-star structure factor Sss(k). Following Ref. [51], in which the

fluid phase of double-Yukawa (attractive/repulsive) systems was studied, a cluster

line transition can be defined by determining the necessary chain density to generate

an inflection point in the structure factor Sss(k) from which the pre-peak rise up.

The cluster lines we have obtained by using this criterion are shown in Fig. 1.8 as

dashed lines. Qualitatively speaking, we can consider the region between the dashed

line and the binodal in Fig. 1.8, as a region of stability of the clusters. As can be

seen in Fig. 1.8, for a given ξ the extension of the cluster region decreases as f

increases, even vanishing at f = 32. As we mentioned above, in the frame of the

effective star-star potential that effect is associated to the decrease of the range of

the repulsive contribution to Veff(r) as f increases, rendering the repulsive hump

narrower. On the other hand, for f 6 24 the stability region increases for larger size

ratio ξ, because the attractive well of Veff(r) becomes deeper as ξ grows for a fixed

number of chains, whereas the range of the attraction remains practically the same,

as can be seen in Fig. 1.2. Summarizing, for larger size ratio and lower functionality,
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the well-and-shoulder structure of Veff(r) appears to be well supported for a larger

range of chain density, and therefore the cluster region gets wider.

The same phenomenology has been also described in one-component star poly-

mer suspensions with additional Fermi-like attraction potential [28, 29] as well as

for two-Yukawa systems upon variations of the repulsion and attraction ranges and

strengths [51]. Given some adequate repulsive contribution, these systems sequen-

tially reach the cluster line (as defined above) at first, then the Lifshitz line and

finally the spinodal line by increasing the attraction strength. On the other hand,

by changing the parameters describing the repulsive contribution, the cluster line

can be suppressed and the system can be directly driven to the phase separation.

The case f = 18 and ξ = 0.5 is particular compared to the other ones, as far

as the width of stability of the cluster-region is concerned (see Fig. 1.8). For this

parameter combination, the star-chain interaction is soft enough to allow the chains

to occupy the inter-star region as ρc is increased. As can be seen in Fig. 1.3(b),

this fact is corroborated by the increase of the star-chain radial correlation function

gsc(r) around r ≃ σsc = (σs + σc)/2 as the chain density grows. This enhanced

chain penetration to the star interior appears at the expense of a decrease of the

chain number around the position of the peak of the star-star correlation function

gss(r) as Fig. 1.3(a) shows; in other words, less chains remain in the region around

the stars to osmotically compress them together. Although this effect is present

for all the used functionalities provided the size ratio is relatively large, ξ = 0.5,

it is much more pronounced for f = 18. For this functionality, it appears that a

considerable fraction of the chains can be brought close enough to the stars, so that

the regime where the cross interaction potential Vsc(r) displays a logarithmic form

is reached, see Eq. (1.3). In pure, dense star polymer solutions, the crossover of the

interaction from a Yukawa to the logarithmic form causes the structure factor to

show an anomalous behavior, and it also allows the system to remain fluid for large

densities when f . 32 [56]. Taking this into account together with the behavior of

gss(r) and gsc(r), we can conclude that, at high enough chain density, the fraction of

the chains penetrating the star prevent the growth of the depletion attraction arising

from the excluded chains, thus hindering the already formed clusters from further

rapid aggregation and consequently slowing down the phase separation process.
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Finally, we emphasize a novel, unusual characteristic of our system, pertaining

to the range of the chain-induced depletion attraction. For both binary hard-spheres

mixtures and colloid-polymer mixtures, it is a well established fact that the range of

the depletion interaction increases as the size ratio does [6, 45]. As briefly mentioned

above, the attractive component of the chain-modified star-star effective interaction

Veff(r) in the system at hand, displays an unusual feature for depletion-like poten-

tials, namely its range is insensitive to the size of the depletant particles. In fact,

this attractive component can be well-described by a Fermi-like potential [28, 29],

whose length scales show a very weak dependence not only on the chain density ρc

but also on the size ratio ξ, whereas its strength grows rapidly with ρc. This unusual

behavior can be attributed to the ultra-soft nature of the considered interactions and

will be analyzed in the following chapter.

1.5 Concluding remarks

We studied the structural and phase properties of star- and linear polymer mixtures

by using a coarse-grained model for the interactions between the different species

forming the system. We found evidence that addition of linear polymers to star

polymer suspensions with small to intermediate functionality (f ≤ 32) can lead to

star cluster formation and, because the star-chain interaction is sufficiently repulsive,

to bring about regions of instability towards a fluid-fluid (demixing) transition.

The calculated coexistence data are very encouraging with respect to experimental

realization: the binodal lines lie well below the overlap concentrations of both stars

and chains, where the effective pair potential picture should bring a valid description

of the mixture. Since there is a region in the (ρs, ρc)-plane where unstable clusters

can be formed, which eventually aggregate, an increase of the characteristic forward

scattering intensity and hydrodynamic radius [50] could be expected. The rate of

increase as a function of the system parameters can be used to characterize and

control the transition.

We have rationalized the phase behavior of the mixture by considering the chain-

modified star-star effective interaction Veff(r), which features a short-range attrac-

tion and a large-range repulsive contributions. Since the strength of the attractive
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contribution to Veff(r) can be modified by changing the size ratio ξ and the chain

density ρc, and the range of the repulsive tail is fixed by f , this kind of mixtures is

a very flexible and tunable system. In previous works, the attractive contribution

to Veff(r) was considered to be a Fermi-like potential [28, 29]. Since it is possible

to relate the parameters characterizing that potential to physical parameters f , ξ

and ρc, the star-chain mixtures open a door to the experimental verification of the

predicted equilibrium and dynamical behavior of such systems [28, 29], as well as to

its critical properties [57].

Future directions should focus on the dynamics of the mixture as well as the

regime of high star densities, for which the Fermi-like model for attraction predicts

crystal structures, which are not supported by the ultrasoft repulsion alone for low

functionality. In this respect, a more quantitative understanding of the unusual

properties of the depletion-like potential due to the chains will be necessary. On the

other hand, the intermediate functionality regime (32 . f . 50) can be considered,

in order to study the effect of the chains polymers on the reentrant melting featured

in one-component systems [27].



Chapter 2

Depletion potential in ultrasoft

mixtures

The aim of this chapter is to study the influence of addition of polymer

chains on the effective interaction between star polymers, as model for

depletion potential in ultrasoft mixtures. The effects of size ratio and

chain polymer concentration on the chain-modified star-star interactions

at good (athermal) solvent conditions are investigated. For both hard

sphere mixtures and colloid-non adsorbing polymer mixtures the range

of the depletion interaction increases with the size ratio. For the systems

at hand, the range of the depletion potential is insensitive to the size of

the depletant polymer. The physical origin of this and associated effects,

as well as a mapping of the mixtures onto a one-component system are

discussed.

2.1 Introduction

The capability to tune the interactions between colloidal particles from short-range

repulsions to short-range attractions has become a valuable tool for the study of

fundamental and practical problems in soft matter physics. The question is of high

relevance to recent and ongoing work on cluster formation and stability [58], dy-

27
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namical arrest [59] and gelation [53]. In most cases, these interactions are effective

in the sense that microscopic degrees of freedom have been averaged out through a

coarse-graining procedure [4]. A typical example of that is the introduction of the

depletion potential Vdep. In the scope of the coarse-grained approaches, the best

known depletion model is that of Asakura-Oosawa (AO), in which both range and

strength of Vdep can be precisely tuned by varying the polymer-to-colloid size ratio

and the polymer concentration [10, 11]. By using this simplified, one-component

description, many insights have been gained about the equilibrium phase behavior

of colloid-polymer mixtures [16, 60]. However, when interacting polymers are con-

sidered, the AO model breaks down as result of the sensitivity of Vdep to variations

in the direct interactions among the components of the system [61, 62]. It is to be

expected that a new range of possibilities emerges when the big hard colloids are

replaced by soft ones; however, the AO-model is still the paradigm serving as the

guiding prototype in this context.

In recent years, the study of particles interacting via soft potentials, which are

realized by, for example, micelles, star polymers, dendrimers, or microgel particles,

has gained a lot of attention. In analogy with hard-core colloidal systems, the de-

pletion mechanism has been also introduced to rationalize the effect of short-range

attractions on suspensions of soft particles [63, 64, 65]. For example, in block copoly-

mer micellar suspensions, depletion forces affect not only the inter-micellar packing

but also the intra-micellar one, and they can also induce the disordering of ordered

microstructures [66, 67]. In multiarm star polymer solutions [26, 27, 68], osmotic

forces due to the addition of small linear polymers lead to formation of thermo-

dynamically stable star clusters at the low star density regime, while at high star

density they cause melting of the dense glassy state [49, 50]. These findings provide

physical mechanisms for tailoring the equilibrium and flow properties in a wide range

of ultrasoft particle mixtures. From the theoretical point of view, they motivate us

towards a better understanding of the depletion potential for such systems. In this

chapter we consider the effective interaction between highly versatile model of soft

colloids, i.e., star-polymers, resulting after the addition of small polymer chains by

using coarse-grained representations of their mutual interactions [26, 34, 35, 36, 37].
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2.2 Model

In its simplest realization, the system of interest consists of Ns = 2 star polymers

and Nc chains enclosed in a volume V , which define the partial number densities

ρs = Ns/V → 0 and ρc = Nc/V . The star-chain size ratio is given by ξ = σc/σs

where σi is the so-called corona diameter, which scales as σi ≃ (4/3)R
(i)
g (i = s, c),

with R
(i)
g the corresponding radius of gyration [34]. As in the previous chapter, we

consider the center of the stars and the middle monomer of the chains as effective

coordinates, so that the components interact through the effective potentials given

by Eqs. (1.1)-(1.3), displaying an ultrasoft logarithmic dependence at short distances

and crossing over to an exponentially decay at large ones. We want to remark that

the general scheme used to evaluate the effective potentials is consistent for arbitrary

f and size ratio ξ, independently of the degrees of polymerization of the star and

the chain; the only dependence on those comes implicitly through σs and σc.

We are interested in the effective interaction between star polymers immersed in a

bath of smaller chains. From this perspective, the stars can be described by a renor-

malized, chain-modified effective potential V eff
ss (r) in which the degrees of freedom of

the chains have been traced out. The simplest way to achieve this mapping is to em-

ploy the inversion of the full, two component solution for the star-star radial distribu-

tion function gss(r) in the limit of low star density [41]. Once gss(r) is known by solv-

ing the Ornstein-Zernike (OZ) equations with the Rogers-Young closure, the effective

star-star potential can be calculated as βV eff
ss (r) = − ln [gss(r; f, ξ, ρs → 0, ρc)]. By

construction, this chain-modified interaction potential leaves the partial correlation

functions gss(r) and the structure factor Sss(k) between the stars invariant.

2.3 Results

In Fig. 2.1 some results for the effective star-star potential from the inversion proce-

dure are displayed for different values of ξ. As expected, the increase in ρc reduces

the range of repulsion and eventually leads to the emergence of an attractive well in

V eff
ss (r). It can be seen that, contrary to the AO-case, the depth of attractive well

behaves non-monotonically with the size of the chains: at high enough but equal
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Figure 2.1: Upper row: Chain-mediated effective star-star potential as obtained

by inversion of the OZ equation with f = 18 for different size ratios and chain

densities. The pure star-star potential Vss(r) is represented by the dashed lines.

Bottom row: Corresponding depletion potentials are indicated by open symbols

while the continuous lines result from fitting to Eq. (2.3).

chain density the well becomes deepest at the intermediate size ratio, while, at the

same time, its minimum appears to be located roughly at the same position inde-

pendently of ξ. This feature is also noticeable when we focus our attention to the

induced depletion potential Vdep(r) = V eff
ss (r)− Vss(r): for all conditions considered

in Fig. 2.1, Vdep(r) displays the same qualitative behavior irrespective of the size and

concentration of the depletant polymers. The range of Vdep(r), ∆dep, changes very

little with ξ, which is counter-intuitive, as it would be normally expected that ∆dep

grows with the size ratio (and, in the case of the AO-model, in a linear fashion).

To check the validity of these results, we use as an alternative approach the

superposition approximation (SA) [69]. Here, the depletion force is evaluated from

Fdep(r) = −2π

 ∞

0

s2
dVsc(s)

ds

 π

0

ρ(1)c (s; r) cos θ sin θ dθ (2.1)
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Figure 2.2: Depletion force between two stars immersed in a bath of smaller chains

at different functionalities, size ratios and chain densities.

with ρ
(1)
c (s; r) the one-body density profile of the chains at position s induced by

the presence of two stars located at r1 and r2, where r = r2 − r1 and r̂ · ŝ = cos θ.

Within the superposition approximation, ρ
(1)
c (s; r) is decomposed as the product of

the two chain-density profiles surrounding a single star polymer, i.e.,

ρ(1)c (s; r) = ρc gsc(r; f, ξ, ρs → 0, ρc) gsc(|s− r|; f, ξ, ρs → 0, ρc) (2.2)

where the star-chain radial distribution function, gsc(r; f, ξ, ρs → 0, ρc), is readily

available from the solution of the OZ equations.

In addition, standard NV T Monte Carlo (MC) simulations were performed on

the coarse-grained two component system, see Eqs. (1.1)-(1.3), by placing two stars

in a reservoir of chains, and measuring the depletion force Fdep(r) = −∇Vdep(r). A

comparison of results from these three different approximations is shown in Fig. 2.2.

The three methods yield quite good agreement and, as ρc and ξ increase, the SA

leads to better agreement with the simulation data than the OZ inversion. This

implies that the cross-correlation between chains arising from their interaction Vcc(r)

is weak enough, so that we can still assume that the presence of a second star leads
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Figure 2.3: Upper panel: the Boltzmann factors Bsc(r) = exp[−βVsc(r)] of the star-

chain effective interaction potential. Lower panels: the normalized density profile

of chains around one isolated star with f = 32. Continuous curves were calculated

by solving the OZ equation while filled symbols correspond to results from MC

simulations. The curves for ρc = 0 are the Boltzmann factors Bsc(r).

to an overall chain density profile that is well approximated by the product of those

originated from two isolated stars. Application of more sophisticated techniques

based on a second-order expansion of a two-component density functional yield

essentially identical results with those reported above.

To understand the physical origin of these unusual features, we look in detail at

the chain density profile, ρc(r) around a single, fixed star, as shown in Fig. 2.3. The

depletion range can be estimated from there as ∆dep
∼= 2Λ, where Λ is the length

scale at which ρc(r) reaches its asymptotic, bulk value. To begin with, we consider

ρc(r) at the limit of very low chain density, which is proportional to the Boltzmann

factor of the star-chain cross interaction, i.e., ρc(r) ∼= ρc exp[−βVsc(r)]. At this limit,
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as ξ increases, the thickness of the depletion layer becomes only slightly larger and

clearly not in proportionality to ξ. Thus, for the system at hand, ∆dep is just slightly

influenced by the size of the depletant polymer chain, even at the limit ρc → 0. For

the case ξ = 0.1 there is no significant change in ρc(r), and therefore neither in the

size of the depletion zone, as the chain number density ρc increases. Concomitantly,

only the strength of Vdep(r) grows, as a consequence of the increase in the osmotic

pressure Π(ρc) of the chains. For larger ξ the size of the depletion zone decreases as

ρc increases, as a consequence of the softness of the star: the chains access a region

closer to the center of the star, due to the repulsive interactions with other chains.

This penetrability of the star causes the shrinkage of the depletion layer around it

and together with the stronger osmotic effects have as consequence a deeper and

shorter-ranged depletion potential. Finally, since Vdep(r) itself depends on Vsc(r)

and Vcc(r), but not directly on Vss(r), an increase of the functionality f at fixed

size ratio ξ renders Vsc(r) more repulsive and therefore the depletion zone around

each star widens. This effect results into a larger ∆dep and a deeper attraction, for

higher functionality stars, see Fig. 2.2. Contrary to colloid-polymer mixtures, the

range of the depletion potential is primarily determined by the nature of the depleted

particles themselves and not by the depletants.

As described in the previous chapter, for low and intermediate functionalities,

i.e., f . 32, the star-linear mixtures feature star-cluster formation as a precursor

stage for a fluid-fluid demixing transition [70]. This behavior resembles the one

predicted via a one-component model of the star suspension, for which one attrac-

tive contribution Vatt(r) was added to Vss(r), and which had the form of a Fermi

distribution [28, 29, 71, 72]:

Vatt(r) = − C

exp [(r − A)/B] + 1
. (2.3)

The above form and the describing parameters was, however, introduced ad hoc,

arguing on general grounds that depletion would be a mechanism to induce such

attractions. Although other model could be used, this Fermi-like model (FLM) has

been showed to provide a rather convenient parametrization of generic attractive

contributions, which allows for changing the characteristics (range and depth) of

the latter; the parameters A and B control the position and width of the well
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Figure 2.4: Fitting parameters of Vdep(r) from SA to the Fermi-like model, Eq. (2.3),

as a function of the chain concentration.

potential and C its amplitude [71, 72]. It is thus tempting to see whether star-linear

mixtures can be described by this model.

For the system at hand, the FLM indeed describes remarkably well the depletion

interactions, as can be seen in the lower panels of Fig. 2.1. Representative results

for the dependence of the parameters A, B, and C on the chain density ρc are shown

in Fig. 2.4 for different size ratios ξ and functionalities f . It is immediately seen

that the length scales show a weak dependence on the size ratio ξ: by increasing

ξ by as much as a factor five (from 0.1 to 0.5), we obtain very weak changes in

the parameters A and B, of order 10% at any given chain density. As the chain

density increases, the parameters A and B decrease and the trend becomes opposite

to what conventional wisdom asserts: long polymers induce shorter-ranged depletion

potentials than short ones, in strong contrast with the AO case. On the other hand,

the strength of Vdep(r) grows, as expected, with ρc, due to the increase in Π(ρc).
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2.4 Conclusions

In summary, in this chapter we described some remarkable characteristics of the

depletion potential in a model soft mixture. We found its range to show a very

weak dependence not only on the chain density ρc but also on the size ratio ξ. This

is counterintuitive, since one would have expected the range to increase as the size

of the depletant increases, and it is the result of the softness and penetrability char-

acterizing the components and the ensuing effective interaction potentials of the

system at hand. These two characteristics are not peculiar for star polymers but

they are present in many other polymer-based colloidal systems. Microgels, micelles,

polymer-grafted nanoparticles, dendrimers and, in general, hyperbranched polymers,

are highly deformable systems whose topology can be well described through a core

and shell structure. The size and softness of the latter one can be easily tuned by

changing, for example, the cross-linking or the charge (microgels), the aggregation

number (micelles), the grafted density (nanoparticles), and the generation number

or the spacer between generations (dendrimers). We expect our results, which are

based on the penetrability of the soft shell, to hold as long as the latter is thick

enough to accommodate the chains in their full extent. As the range of the deple-

tion potential exceeds that needed for phase separation and cannot be reduced by

employing smaller depletants, we anticipate macroscopic, demixing (“liquid-gas”)

transitions to take place for this family of systems. Therefore, at sufficiently high

soft-colloid concentrations, they are expected to undergo the recently reported “ar-

rested spinodal decomposition” [53, 13], which constitutes a novel route to gelation.

The mapping of the original full ultrasoft-colloidal mixture on the characteristic

parameters of the FLM effective system turns this into a more tractable problem.

Acknowledgments: I thank Dr. Federica Lo Verso for helpful discussions. This

work was partially supported by DFG-SFB TR6.
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Chapter 3

Soft Colloid/Polymer Mixtures:

Comparison with experiments

Binary mixtures of ultrasoft colloids and linear polymer chains were in-

vestigated by small angle neutron scattering (SANS) 1 and liquid state

theory. We show that experimental data can be described by employ-

ing recently-developed effective interactions between the colloid and the

polymer chains, in which both components are modeled as point par-

ticles in a coarse-grained approach, in which the monomers have been

traced out. Quantitative, parameter-free agreement between experiment

and theory for the pair correlations, the phase behavior and the concen-

tration dependence of the interaction length is achieved.

3.1 Introduction

Hard spheres have been established in the past as model systems to investigate

on a fundamental level the effective interactions and phase behavior of soft matter

[16]. A higher level of complexity is introduced when hard sphere mixtures or hard

spheres with added linear polymer chains are considered, in the context of depletion

1The entire set of experimental results showed in this chapter was acquired by Dr. Barbara

Lonetti and Dr. Jörg Stellbrink (Institut für Festkörperforschung, Forschungszentrum Jülich).
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forces, like the famous Asakura-Oosawa (AO) model for colloid-polymer mixtures

[10]. Building on these simple models, great advances have been made in the study

of gel and glass formation in colloidal systems [53, 59]. More recently, the interest

of colloid scientists has shifted towards the study of soft particles, among which star

polymers have emerged as a model for a wide class of soft spheres, including block-

copolymer micelles [73, 74] and microgel particles [15]. For a star polymer, softness

can be controlled by varying its number of arms (or functionality f), allowing to

bridge the gap between linear polymer chains (f = 2) and hard spheres (f → ∞)

[26]. Therefore, star polymers can be viewed as ultrasoft colloids, whose softness is

responsible for the observation of anomalous structural behavior [26] and favors the

formation of several crystal structures [27, 73]. In this way, mixtures of soft particles

offer a much higher versatility with respect to their hard counterparts, both in terms

of structural and rheological properties [49, 50, 75] and of effective interactions [76].

In particular, mixtures of star polymers of different sizes and functionalities have

been recently investigated in a joint theoretical and experimental effort, revealing

the existence of multiple glassy states [77]. On the other hand, the paradigmatic

case of a mixture of star polymers and linear chains (the direct soft counterpart of

the AO model) has been investigated separately theoretically [31, 76] and experi-

mentally by (mainly) macroscopic rheology [49, 50, 78]; however, detailed structural

information is still missing. Indeed, only recently a microscopic theory [31, 76], ca-

pable to appropriately coarse-grain stars and chains, has been developed. Hence,

an accurate comparison between theoretical predictions and experimental results for

the structural correlations for star/chains mixtures has not been attempted so far.

Recently, we introduced kinetically frozen star-like micelles [74, 79] formed by

the amphiphilic block copolymer poly(ethylene-alt-propylene)-poly(ethylene oxide),

PEP-PEO, as a tunable model system for ultrasoft colloids [26]. In this chapter

we study mixtures of star-like micelles and linear (PEO) chains and provide a sys-

tematic and quantitative characterization of structure factors and phase behavior

in terms of effective interactions. By combining small angle neutron scattering

(SANS) and liquid state theory, we measure and model the effective interactions

between star-like micelles and linear chains. SANS measurements in core contrast

allow a direct determination of experimental structure factors, S(Q) [80], provid-
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ing the basis for a comparison with the recently-developed theory, in which both

components are modeled as point particles in a coarse-grained approach that traces

out the monomeric degrees of freedom. A direct comparison without any adjustable

parameters, i.e., using the quantities directly given by experiments, provides a very

good agreement between experiment and theory for structure factors, phase behav-

ior and concentration dependence of the interaction length σ. The comparison is

done for a broad range of polymer volume fraction from dilute to concentrated con-

ditions, i.e. 0.05 ≤ φ/φ∗ ≤ 7, where φ∗ is the overlap concentration, and it brings

forward the influence of the added chains on the larger star polymers. Our work pro-

vides a comprehensive structural characterization of soft binary mixtures in terms

of a microscopic, effective potential and is therefore a further step forward in the

understanding and modeling of complex soft matter systems in general.

3.2 Methods

Partially deuterated PEP-PEO block polymers, as well as partially deuterated PEO

chains, were synthesized by anionic polymerization following established procedures

[81]. Molecular details of the systems are given in Table 3.1. All polymers were

dispersed in a H2O/D2O mixture (5:95, v:v) to ensure a PEO contrast matching

(core contrast). SANS experiments were performed at D11, Institute Laue-Langevin

(ILL), Grenoble. Raw data were corrected for detector efficiency and dead time,

contributions resulting from empty cell, solvent and incoherent scattering were sub-

tracted and corrected data finally normalized by a water standard to absolute units

[cm−1]. The characterization of the single star-like micelle was performed in dilute

solution. The form factor P (Q) obtained by SANS experiments was analyzed using

a core-shell model, by assuming a star-like density profile in the shell [74]. Light

scattering (SLS/DLS) and rheology were used in addition as complementary meth-

ods. A compilation of all experimental data gives a functionality f = 91±5 and the

characteristic sizes shown in Table 3.1. The results for the gyration radii give in turn

a chain-micelle size ratio ξ = R
(c)
g /R

(s)
g

∼= 0.3, which was fixed for the subsequent

theoretical analysis.

Our theoretical approach is similar to the employed in the previous chapters.
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Table 3.1: Characterization of the used polymers.

Molecular characteristics ([Mw] = g/mol)

Sample Mw,PEP Mw,PEO Mw/M
a
n xb

D

hPEP1-dhPEO20 1100 21250 1.03 0.86

dhPEO20 - 21250 1.03 0.86

Characteristic sizes [
o

A]

R
(s)
g R

(s)
core R

(s)
shell R

(s)
h R

(c)
g

218± 11 34± 2 248± 12 317± 16c 67± 3
aPolydispersity by SEC

bMolar fraction of deuterated PEO

cHydrodynamic radius obtained from DLS

The effective interactions between the components of the mixture are the same as

before. We quote these again for sake of completeness. The star-star interactions

reads as [26]:

βVss(r) =
5

18
f 3/2


− ln


r
σs


+ 1

1+
√
f
2

r ≤ σs

1

1+
√
f
2


σs

r


exp


−

√
f

2σs
(r − σs)


r > σs

(3.1)

where f is the functionality, σs is a measure of the star extension and β = (kBT )
−1

with kB the Boltzmann constant and T the temperature. Similarly, polymer chains

can be considered as two-arm stars interacting via [38, 39]

βVcc(r) =
5

18
23/2

− ln


r
σc


+ 1

2τ2σ2
c

r ≤ σc

1
2τ2σ2

c
exp [−τ 2(r2 − σ2

c )] r > σc

(3.2)

with τσc = 1.03, which guarantees the correct value of the second virial coefficient

of a polymer solution. As before, σc measures the size of the chain. The star-chain

interaction results [31]

βVsc(r) =

−Θ(f) ln


r
σsc


+K r ≤ σsc

v0

ϱs(r

′)ϱc(|r− r′|)dr′ r > σsc

(3.3)
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where σsc = 1
2
(σs + σc), Θ(f) = 5

36
1√
2−1

[(f + 2)3/2 − (f 3/2 + 23/2)] and v0 is an

excluded volume parameter. The latter comes from Flory-type arguments for the

overlapping monomer density profiles ϱi(r) (i = s, c), which can be evaluated on the

basis of the Daoud-Cotton blob model (see Appendix A) [31, 32]. We evaluated the

density profiles ϱi(r) following [31], by employing the fitting parameter κσi = 1.90

(see Eq. (1.4)), which results in a better fit of Vsc(r) given by Eq. (3.3) compared to

simulation results as the functionality increases (f ∼ 100). Once the three effective

pair potentials Vss, Vsc and Vcc are known, we can calculate the center-to-center

structure factor of stars S(Q) by solving the two-component Ornstein-Zernike (OZ,

see Appendix B) equations within the hypernetted-chain (HNC) approximation [41].

3.3 Results and Discussion

For our quantitative comparison between experiments and theory the following quan-

tities are necessary: the reduced number densities of star-like micelles, ρsσ
3
s , and of

linear chains, ρcσ
3
s , unambiguously given by experimental concentrations in terms

of volume fraction, as well as the functionality f and experimental ξ, both obtained

from independent form factor analysis. Following [31, 38], we employ σi = 4R
(i)
g /3

(i = s, c). According to the theoretical predictions, upon the addition of linear

chains, a strong loss of star-star correlations results, insofar a drastic decrease of the

peaks of S(Q) is found in comparison to the structure factor of the pure star system.

This change is accompanied by a shift of the peaks to slight higher Q and also by a

slight increase of the S(Q → 0) value. These features can be well explained based on

a depletion-like mechanics as described in [49]. The inset in Fig. 3.1 demonstrates

the strong weakening of the peak of the star-like micelle scattering intensity upon

increasing the chain density at fixed star density ρsσ
3
s = 0.37. For direct compar-

ison, theoretical S(Q) were multiplied by experimental P (Q) and convoluted with

the instrumental resolution function [82].

Fig. 3.1 shows SANS intensities I(Q) for selected concentrations below and

around the overlap polymer volume fraction φ∗ = (fM̄w/d̄NA)/(4πR
3
m/3) = 3%

(amounting to ρsσ
3
s = 0.220), with M̄w and d̄ the average molar mass and mass

density, and Rm = R
(s)
core + R

(s)
shell (see Table 3.1). The precise value of σs was de-
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Figure 3.1: Normalized SANS intensity for intermediate polymer volume fractions.

Inset: Effect of adding chains on I(Q) at ρsσ
3
s =0.37 for ρcσ

3
s = 0 (circles) and

ρcσ
3
s = 8.6 (squares). Symbols and lines correspond respectively to experimental

and theoretical results.

termined by optimizing the agreement between theory and experiment for S(Q) at

φ∗, resulting in σs(φ
∗) = 305

o

A, in good agreement with previous, independent es-

timates [26, 49] and within the experimental error bars of about 6% for R
(s)
g . The

agreement between experiment and theory is very convincing. Position, height and

width of first and second order peak of liquid-like experimental structure factors are

indeed nicely described by the theory. Only at very low Q-vectors some deviations

occur, most probably due to not-perfect contrast matching conditions. In addition,

from concentration φ=5% (ρsσ
3
s = 0.367) on, the experimental peak height of the

first structure factor peak is overestimated by theory due to the expected shrinkage

of the micellar corona following σs ∼ (φ/φ∗)−1/8 [32].

This effect is shown in more detail in Fig. 3.2 for higher concentrations well

above φ∗. We point out that this shrinkage does not affect the size ratio ξ since the

linear polymer also shrinks, following the same scaling relation. Consequently, the
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shrinkage is taken into account by re-adjusting the corresponding concentrations in

terms of ρsσ
3
s and ρcσ

3
s . The resulting theoretical I(Q) are shown as continuous

lines in Fig. 3.2 and clearly improve the agreement with experimental data. Similar

effects are achieved for concentrations even as high as 20% (≈7φ∗). Nevertheless, the

description of experimental data slightly worsens with concentration, most probably

due to three body forces, which become relevant for φ/φ∗ & 5 [83].
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Figure 3.2: Normalized SANS intensity for volume fractions well above φ∗. Symbols

correspond to experiments, dotted lines to theory with constant σ, and continuous

lines to theory with decreasing σ ∼ (φ/φ∗)−1/8. Inset: Reduced viscosity as func-

tion of the reduced shear rate for selected volume fractions, with η0 the zero shear

viscosity and γ̇c obtained from a Carreau-Fit [84].

To strengthen our quantitative comparison between experiment and theory, we

also consider the phase behavior of the system. Indeed, while S(Q) is only slightly

affected by varying the size ratio ξ, the phase behavior can be sensitively altered

by a small change in the same. Therefore, the agreement in phase behavior will

provide an additional consistency check to narrow down the values of σs, σc and ξ

and to establish the correctness of the effective interactions that we have adopted.
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We investigated the rheological properties of the samples by means of both steady

and oscillatory shear measurements. As can be seen in the inset of Fig. 3.2, most

of viscosity curves display the Newtonian-plateau typical for a liquid, as well as the

usual shear-thinning behavior at high shear rates. For larger concentration, namely

φ = 29% (ρsσ
3
s = 0.887), we find a transition to a solid (glassy) state, clearly

indicated by the absence of the Newtonian plateau. The formation of an arrested

state was also verified for φ = 33% (ρsσ
3
s = 0.966) by tube inversion.

The theoretical phase diagram is shown in Fig. 3.3 for two different values of

size ratios ξ = 0.27 and ξ = 0.30 in the (ρs, ρc) plane. To account for the possible

existence of a demixing region, we make use of the fact that, although the HNC

approximation is an accurate method to describe the one-phase region, it fails to

converge in the neighborhood of a (gas-liquid) spinodal line [41]. In this way, the

convergence line (CL) in Fig. 3.3, which denotes the region where HNC provides a

convergent solution to the OZ equations, can be considered an estimate of the phase

separation region. Hence, above the CL, we expect the homogeneous mixture to

become unstable with respect to demixing. Although it is possible to determine the

coexistence curve from the HNC results [55], this is beyond the scope of this chapter,

and therefore we keep the CL as an indicator of the location of phase separation.

To assess the existence of a freezing line, we use the Hansen-Verlet (HV) criterion.

Thus, on the right of the HV line, the main peak of S(Q) is larger than 2.85 which

corresponds to crystallization of star-like micelles at ρc = 0 [74]. Finally, an (ideal)

glass transition line (GL) is shown indicating vitrification at high concentrations

[85]. This line was calculated by means of the (one-component) mode-coupling

theory (MCT) [86], which uses as inputs only S(Q) and number density of the stars

(see Appendix C). Representative results from the solution of MCT equations are

displayed in Fig. 3.3. As can be seen, the addition of polymer chains leads to glass

melting, at fixed ρs, as previously demonstrated [50, 75].

The investigated experimental points are also reported on this phase diagram.

Given the constant ratio between star-like micelles and linear chains, our experi-

mental path through the phase diagram is a straight line with slope xn/(1 − xn),

with xn the number density fraction of the linear chains. For all experimental sam-

ples under investigation, no macroscopic phase separation was observed, and hence



Results and Discussion 45

0 0.2 0.4 0.6 0.8 1
ρ

s
σ

s
 3

0

5

10

15

20

ρ cσ s 3

φ∗

Unstable
  region

Fluid  Glass

CL

HV GL

0

0.2

0.4

0.6

0.8

f(
Q

) ρ
c
σ

s

3
=0.6

ρ
c
σ

s

3
=0.8

0 10 20 30 40
Qσ

s

0

0.2

0.4

0.6

0.8

f(
Q

) ρ
c
σ

s

3
=21.20

ρ
c
σ

s

3
=21.40

ρ
s
σ

s

3
=0.6

ρ
c
σ

s

3
=0.8

Figure 3.3: Left: Phase diagram: Symbols denote our experimental path (open

symbols assuming shrinkage, open squares correspond to glassy samples) whereas

lines are given by theory (CL, HV and GL represent respectively the convergence,

freezing and glass lines). Full lines correspond to size ratio ξ = 0.3 (the actual

experimental one), while the dashed lines provide a comparison for ξ = 0.27. Right:

Non-ergodicity factors from MCT indicating the locus of the glass line in (ρs, ρc)-

plane

they all lie in the one-phase region, in agreement with the theoretical CL results

for ξ = 0.30. Therefore a crossing with the theoretical CL, which would happen

for a smaller size ratio ξ = 0.27, must be excluded. This result confirms that the

actual experimental size ratio is close to ξ = 0.30, as previously established by the

S(Q) analysis. At higher concentrations, our experimental path meets the HV line

suggesting that an intervening liquid-solid transition might take place. However a

large number of studies on star polymer systems has shown that it is quite difficult

to nucleate a crystal, while instead solutions at high concentrations undergo a dis-

ordered arrested state [50, 87]. This was also the case for our star-like micelles in

the absence of added chains at the same functionality as in the present study [74].

In the presence of chains, we also find that arrest is retarded to higher concentra-

tions, in agreement with previous studies [50, 87]. Indeed, for the most concentrated

samples, the dynamical arrest to an amorphous solid (glass) agrees with the phase
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diagram of Fig. 3.3.

3.4 Concluding remarks

In summary, we have described structural and phase behavior of binary mixtures of

ultrasoft colloids and linear polymers. By combining small angle neutron scattering

(SANS) and liquid state theory we offer robust experimental evidence to the accu-

racy of the coarse-graining procedure for developing effective interactions between

the star-like micelles and the homopolymer chains, in a wide range of concentrated

mixtures. Without any adjustable parameter we find quantitative agreement be-

tween experiments and theory for the influence of the added chains on the inter-

micelle structure and on their phase behavior. Our work provides a comprehensive

characterization of soft binary mixtures in terms of a microscopic, effective potential

and is therefore a successful benchmark in the study of complex soft matter systems

in general, opening the way for exploring experimentally the features of anomalous

depletion predicted theoretically [76], and for studying even more versatile systems

of soft particles, such as, e.g., mixtures of micelles with block copolymers [66, 73].
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Chapter 4

Interfacial and wetting behavior of

phase-separating GEM mixtures

We apply density functional theory to study the interfacial properties of

a phase-separating binary fluid of ultrasoft particles, whose interaction

potentials belong to the family of the so-called generalized exponential

models (GEM). By using the formalism of the density functional the-

ory within the mean-field approximation, we investigate the equilibrium

density profiles for each component at the free interface as well as at a re-

pulsive, flat wall. We show that the studied system can lead to first-order

wetting transition which is characterized by a layering-like behavior due

to the clustering properties of GEM particles.

4.1 Introduction

In the last few years, a great deal of effort has been devoted to develop coarse-grained

models of complex macromolecules of several architectures and a large number of

internal degrees of freedom (e.g. linear and hyperbranched polymers, micelles, mi-

crogels, etc). In some cases, such models allow to represent the macromolecular en-

tities as effective particles interacting via an effective, isotropic potential Veff(r) [4].

On the opposite extreme of the hard-sphere colloidal interaction, many of the afore-

47
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mentioned effective potentials Veff(r) belong to the family of the so-called ultrasoft

interactions [5]. Examples of potentials belonging to this class are the gaussian-like

interactions between polymer coils, dendrimers and charged microgels in the center-

of-mass representation (gaussian core model) [35, 36, 88] as well as the effective

interaction between star polymers and polymer chains in the midpoint representa-

tion [26, 38].

The first example is particular because, when the center of mass of the aggregates

can overlap, Veff(r) turns out to be not only ultrasoft but also free of divergences

(bounded). A particular mean-field “ideal-gas” behavior has been found for a large

class of such bounded potentials, meaning that the mean-field approximation (MFA)

becomes asymptotically exact for large densities and does give accurate results for

finite densities both in uniform and non-uniform phases [89, 90, 91, 92]. The MFA

pertains, in this context, to set c(r) = −βVeff(r), where c(r) is the Ornstein-Zernike

direct correlation function. Furthermore, bounded potentials may lead to novel phe-

nomena, provided Veff(r) belongs to the so-calledQ±-class, i.e., the Fourier transform

V̂eff(q) displays an oscillatory decay around zero, whereas interactions with positive

Fourier transform are referred as Q+ potentials. In the Q±-case, the fluid features

a Kirkwood instability (also called λ-line) and therefore undergoes a microphase

ordering to crystals with multiply-occupied lattice sites (cluster crystals) at high

enough density [92, 93, 94, 95].

Extensive simulation studies of both amphiphilic dendrimers and ring polymers

of different knotedness demonstrate that such system might be experimental re-

alizations for macromolecules featuring an effective interaction of the Q± class

[96, 97, 98, 99]. From the theoretical point of view, a particular example of Q±

potentials is given by the generalized exponential model of index m (GEM-m), for

which the interaction is described by u(r) = ϵ exp [− (r/σ)m] where r is the interpar-

ticle distance, σ is a measure of the particle’s size, ϵ is the interaction strength, and

m > 2. Note that a particularly important member of this family is the penetrable

sphere model [100], which features a finite overlap energy penalty ϵ and which cor-

responds to the limit m → ∞. Recently, the phase behavior of systems composed

by GEM particles has been extensively investigated by making use of the above

mentioned mean-field character.
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Concerning pure GEM systems, the phase diagram shows a first-order transition

from a fluid of clusters to a cluster bcc-crystal above the triple temperature and a

subsequent structural phase transition from a cluster bcc to a cluster fcc crystal as

density increases for arbitrarily high temperatures [92, 94]. A remarkable property

of the cluster fcc crystals is that, upon increasing the density, the lattice constant

approaches a constant value and therefore the population of each lattice site scales

proportionally with density. This behavior is completely different from the “normal”

crystallization in colloidal systems, in which the relevant role is playing by packing

effects. On the other hand, when binary mixtures containing a non-clustering com-

ponent (m = 2) and a clustering component (m = 4) were considered, evidence was

found suggesting a quite sensitive interplay between crystallization induced by the

clustering specie and macrophase separation [101, 102], depending on both energy

and length parameters of the cross-interaction between the two species.

A systematic analysis concerning both the interfacial and the wetting properties

of GEM-mixtures across their coexisting line is still lacking. In this chapter we

aim to study the interfacial properties and the wetting behavior of a demixing,

binary fluid of GEM particles by means of the density functional theory. We follow

the same line of ideas used to study these phenomena in other ultrasoft systems,

namely mixtures of gaussian core particles and star-polymers mixtures [55, 103, 104].

The rest of the chapter is organized as follows: In Sec. 4.2 we present the employed

model and a brief survey on density functional theory. The calculation of the free

interface properties and the ensuing wetting properties follows in Sec. 4.3. Finally,

in Sec. 4.4, we summarize and draw our conclusions.

4.2 Model and Method

We consider a binary mixture of particles interacting through GEM potentials given

by

uij(r) = ϵij exp


−


r

σij

mij

, i, j = A,B, (4.1)

where the following interaction parameters were adopted: ϵij = ϵ = 1.0, σii = σ,

σAB = 1.07σ, and mAA = 2, mAB = 3, mBB = 4. The energy parameters are
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given in units of the thermal energy kBT with kB the Boltzmann constant and

T the absolute temperature. In this way, the mixture contains a non-clustering

component (GEM-2, in the following referred as A-species) and a cluster-forming

component (GEM-4, in the following referred as B-species). The cross-interaction

was chosen to be a GEM-3 potential, which also displays cluster formation in a pure

system. As mentioned above, our main interest is to study the surface and wetting

properties of this system. In this way, the inhomogeneous phases will be considered

within the framework of the density functional theory (DFT) for a flat geometry.

In DFT the grand potential of a binary system becomes a functional of the

one-particle density profiles ρi(r) (i = 1, 2) and can be expressed as [105]:

Ω[{ρi}] = F [{ρi}]−
2

i=1


drρi(r) [µi − Vi(r)] , (4.2)

where F [{ρi}] is the intrinsic Helmholtz free energy, Vi(r) is the external potential

acting on species i and µi the corresponding chemical potential. Once F [{ρi}] is
known, the equilibrium density profiles of the system can be determined by min-

imizing Ω[{ρi}] with respect to ρi(r). The free energy is normally expressed as a

combination of the ideal part Fid[{ρi}] and the excess contribution Fexc[{ρi}], the
latter arising from the interaction between particles. The first contribution to the

free energy is exactly known and can be expressed as:

Fid[{ρi}] = β−1

2
i=1


drρi(r)


ln

ρi(r)Λ

3
i


− 1

, (4.3)

where Λi is the thermal de Broglie wavelength for species i and β = (kBT )
−1. On

the other hand, the excess part of the free energy has to be constructed in an

approximate way. As mentioned above, for the type of potentials considered here,

the mean-field approximation provides an accurate functional for Fexc[{ρi}], namely

F (MFA)
exc [{ρi}] =

1

2

2
i,j=1

 
drdr′ρi(r)ρj(r

′)uij(|r− r′|) (4.4)

where uij(r) is the interaction potential between species i and j. Within the MFA

the minimization of (4.2) with respect to ρi(r) leads to

µi − Vi(r) =
2

j=1


dr′uij(|r− r′|)ρj(r′) + β−1 ln


ρi(r)Λ

3
i


, i, j = 1, 2, (4.5)
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an equation system that can be solved for the equilibrium density profiles according

to the appropriate boundary conditions.

4.3 Results

4.3.1 Bulk properties

The system defined above satisfy the condition of the MFA for fluid-fluid phase-

separation at constant pressure, i.e., û2
AB(0) > û2

AA(0) + û2
BB(0), where ûij(0) is the

Fourier transform of the potential at q = 0. In the case of GEM particles the latter

is given by

ûij(0) =


uij(r)dr =

4π

3
ϵijσ

3
ij Γ


3 +mij

mij


, (4.6)

with Γ(x) the Gamma function. By using the double-tangent construction on the

Gibbs free energy per particle [89, 103], the corresponding fluid-fluid coexistence

line was determined. The latter is shown in Fig. 4.1 in the plane (x, ρ) defined

by the relative composition x = ρB/ρ and the total number density ρ = ρA + ρB.

In the system at hand, fluid-fluid demixing occurs for total densities in the range

4.0 . ρσ3 . 5.0. At larger total density, the liquid-liquid demixing is pre-empted

by liquid-solid transitions which are explained in detail in [101].

Additional information concerning the asymptotic form of the pair correlation

functions hij(r) for the fluid phase, which is relevant to the understanding of some

aspects of the interfacial phase behavior, can be obtained by the analysis of the

complex poles in the corresponding Fourier transforms ĥij(q). Pure imaginary (q =

iα0) and complex (q = iα0+α1) poles give rise, respectively, to pure exponential and

damped oscillatory decays (note that the special case of a pole at zero wavenumber

delineates the demixing spinodal). In particular, the poles iα∗
0+α∗

1 with the smallest

imaginary part α∗
0 will set up the longest range part of all pair correlations functions,

namely rhij(r)|r→∞ ∼= A∗
ij exp(−α∗

0r) cos

α∗
1r + θ∗ij


, with the amplitude A∗

ij and

the phase θ∗ij, as demonstrated in [106, 107]. The locus of state points where the

crossover from pure exponential to a damped oscillatory decay takes place, defines

the so-called Fisher-Widom line (FWL).
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Figure 4.1: Fluid-fluid coexistence line (binodal) for the system at hand. Tie

lines joining coexisting points are represented by dashed lines. They are labeled

from A to G and correspond, respectively, to the reduced pressures Pσ3/kBT =

43.5, 46, 50, 55, 60, 65, 67. For larger densities, the phase separation is pre-

empted by fluid-solid transitions (see [101]). The inset displays the region close to

the critical point, in which the locus of the Fisher-Widom line lies. States located

outside the small region between the binodal and the Fisher-Widom lines will fea-

ture correlation functions with damped oscillatory decay. Two regimes of oscillatory

decay are found, which are separate by the cusp line.
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Figure 4.2: (a) The imaginary and real parts of the complex roots of D(MFA)(α1+iα0)

with the two smallest imaginary parts α
(k)
0 (k = 1, 2), for fixed total density ρσ3 = 3.5

and different relative compositions. The vertical dashed lines indicate the occurrence

of the cusp line. (b) Absolute values of the pair correlation functions for ρσ3 =

3.5 and various relative compositions x, as indicated in the legends. The dashed

segments represent the negative parts of hij(r).
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According to the Ornstein-Zernike equation in Fourier space, the correlation

functions of a homogeneous fluid take the generic form ĥij(q) = Nij(q)/D(q), where

the mean-field denominator results

D(MFA)(q) = 1 + βρÛs(q) + (βρ)2 x(1− x)Ûd(q), (4.7)

with Ûs(q) = (1 − x)ûAA(q) + xûBB(q) and Ûd(q) = ûAA(q)ûBB(q) − û2
AB(q) [101].

The FWL for the system at hand was determined by finding the roots of Eq. (4.7)

and the result is shown in Fig. 4.1. The qualitative form of the FWL is reminiscent

of that for symmetric gaussian mixtures, see Figs. 4 and 5 in [103]. However, and

in contrast to that case, in the present model the FWL turns out to lie quite close

to the consolute point (xc
∼= 0.5648, ρcσ

3 ∼= 4.0274) and a cusp line does show up.

The latter marks a crossover between regions of the plane (x, ρ) with two different

types of oscillatory decays of the correlations functions (see Fig. 4.1). As Fig. 4.2(a)

shows, for states between the binodal line and the cusp line, the damped oscillatory

decay of hij(r) is determined by two similar decay lengths λ
(k)
0 = 1/α

(k)
0 ∼ 0.7σ and

two different wavelengths λ
(1)
1 = 2π/α

(1)
1 ∼ σ and λ

(2)
1 = 2π/α

(2)
1 ∼ 6σ − 7σ.

In asymmetric gaussian mixtures a cusp line is also found, but there this is a

consequence of the size difference between the particles. In the present model, the

two oscillatory components appear as a consequence of the spatial growth of interca-

lated domains of similar particles, as demonstrated by the cross correlation function

hAB(r) in Fig. 4.2: around any one A particle, it is more likely to find other A

particles up to a distance ∼ 2σ beyond which a shell of clustered B particles is

located (∼ 4σ). Besides, due to the Q± character of B particles, the correspond-

ing domains (clusters) present some degree of polydispersity, as can be noted from

functions hBB(r). The merging and coarsening of the aforementioned domains will

lastly lead to the macrophase separation (demixing transition) as the total density

increases.

4.3.2 Interfacial properties

In this section the density profiles across the free planar interface between the two

coexisting demixed phases are considered. By imposing Vi(r) = 0, ρi(z → −∞) =
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ρ
(A)
i and ρi(z → +∞) = ρ

(B)
i , with ρ

(α)
i the coexisting density of component i in the

α-rich phase, Eq. (4.5) can be expressed as

ρi(z) = ρ
(B)
i exp


2

j=1

 ∞

−∞
dz′∆ρj(z

′)φij(|z − z′|)


, (4.8)

where ∆ρi(z) = ρi(z)− ρ
(B)
i and

φij(|z|) = β

 ∞

|z|
ξuij(ξ)dξ =

ϵijσ
2
ij

mij

Γ


2

mij

, |z|mij


, (4.9)

with Γ(a, x) being the incomplete Gamma function [108]. The coupled equation

system (4.8) was numerically solved by using a standard Picard’s iterative procedure.

The resulting solutions for the equilibrium density profiles at different coexistence

points, denoted as A-G in Fig. 4.1, are displayed in Fig. 4.3.

As expected, the density profiles are smooth close to the consolute point and,

as the density increases, non-monotonic profiles can be observed for both species on

both sides of the interface. By defining the relative densities ρ∗A = (ρ
(B)
A −ρA(z))/δA

and ρ∗B = (ρB(z)− ρ
(A)
B )/δB, with δi = ρ

(B)
i − ρ

(A)
i , the latter behavior can be made

more transparent, as shown in the insets of Fig. 4.3. As can be seen, with the

exception of the coexisting states A, the profiles for all others tested points feature

oscillations whose relative amplitude is much larger on the A-rich phase. Besides,

closer inspection indicates that the oscillatory behavior can be observed at larger

distances into the B-rich side.

Since it is expected that ∆ρi(z → ±∞) exhibits the same type of behavior of

hij(r → ∞) for the fluid bulk at the same pressure [106], the previously mentioned

characteristics of the density profiles are easily rationalized by looking at the Fisher-

Widom line. In this way, since the state A is the only located inside the FWL (see

inset in Fig. 4.1), the corresponding density profiles are the only ones featuring

monotonic decay on both sides of the interface for both species. On the other hand,

as x increases the decay parameter α0 decreases (see Fig. 4.2(a)), so that the decay

length is larger for the density profiles on the B-rich side. This behavior is similar

to that found in the binary gaussian core model and in star polymers mixtures

[55, 103]. Finally, the fact that the relative amplitude of the oscillations on the
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Figure 4.3: Fluid-fluid interface density profiles of gaussian (left) and GEM-4 parti-

cles (right) calculated at points A-G on the phase diagram (see Fig. 4.1). The insets

show the behavior of the relative densities ρ∗A and ρ∗B on either side of the interface.
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A-rich side are larger that on the B-rich side can be attribute to packing effects,

which are much stronger for the gaussian particles than for GEM-4 particles, due

to the Q± character of the latter ones. Note also that the majority of B-particles in

the B-rich phase creates a “planar wall” for the A-rich phase, which is harder than

the opposite one.

Once the density profiles are known, the surface tension γ between the coexisting

phases can be calculated by replacing them in Eq. (4.2). According to the mechanical

definition of the surface tension [105, 109], γ is related to the difference between the

normal and the tangential components of the pressure tensor and can expressed as

γ =

 ∞

−∞
[ω(z) + P ] dz, (4.10)

where P and ω(z) are respectively the pressure at coexistence and the grand-

potential density, i.e., Ω[{ρi}] =

ω(z)dr [see Eq. (4.2)].

Figure 4.4(a) displays the resulting surface tension as a function of the order

parameter δB = ρ
(B)
B − ρ

(A)
B . This figure also shows that, as predicted by mean-field

considerations, a cubic dependence of γ on the density difference between the two

phases results [109]. By using the maximum value of βγσ2 in Fig. 4.4(a) and taking

the typical values σ ∼ 20 nm and T ∼ 300 K, we estimate γmax ∼ 10 µN/m, which

is of the same order of magnitude as the one obtained for colloid-polymer mixtures,

but several order of magnitude below the one corresponding to molecular liquids

[110].

To shed some light into the origin of the surface tension in the demixing fluid,

it is helpful to consider the total density number ρ(z) = ρA(z) + ρB(z) and the

(symmetrized) surface segregation ∆(z) [111, 112]. The latter measures the variation

of the local concentration through the interface and is given by

∆(z) =
1

aAaB


aB


ρA(z)− ρ

(B)
A


− aA


ρB(z)− ρ

(B)
B


, (4.11)

where ai = δi/(δA+δB). In Fig. 4.4 the integrand of Eq. (4.10), i.e., the surface excess

tangential pressure as well as the functions ρ(z) and ∆(z) are plotted. According

to the square-gradient approximation to the interfacial free energy, it turns out that

both the excess tangential pressure and the surface tension can be expressed as
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Figure 4.4: (a) Surface tension as a function of the order parameter δB = ρ
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(A)
B .

The continuous line corresponds to a fit of the obtained data (filled symbols) to a

cubic dependence, i.e., γ ∝ δ3B. (b) Difference between the normal and the tangential

components of the pressure tensor across the interface for points A-G (see Fig. 4.1).

(c)-(d) Total number density and symmetrized surface segregation for the same

states.
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a combination of three terms γab (a, b = ρ(z),∆(z)), each depending on integrals

over the gradients of a and b [111, 112]. Since ω(z) + P and ∆(z) share the same

qualitative behavior, as can bee seen in Fig. 4.4, we speculate that the dominant

contribution to γ arises from the segregation term. On the other hand, the surface

segregation has been also used as an appropriate measure for the interfacial thickness

τ , by considering the latter to be the range in z where |∆(z)| deviates more than

a few percent (∼ 5%) from its maximum [113]. By using this criterion, we found

τ & 5σ for the considered values of total density.

Thermal fluctuations give rise to the existence of capillary waves along the in-

terface, which have as a consequence the broadening of the free surface between

the coexisting phases. Since DFT is a mean-field treatment, it does not account

for such effects and therefore one has to resort to another approach in order to

incorporate them into the analysis. One way is to consider a gaussian renormal-

ization (smearing) of the “bare” profiles, i.e., those obtained from DFT, over the

thermal roughness ξ⊥. In the capillary wave spectrum, each Fourier component hq

of the interface displacement (perpendicular to the z-direction) contributes accord-

ing to ⟨|hq|2⟩ = (2kBT/γ)(L/q)
2, with γ the surface tension and L the system size

[109, 114]. This result leads to ξ2⊥ = ⟨|hr|2⟩ = (kBT/2πγ) ln(L/λ0) with λ0 = 1/α0

the bulk correlation length. The main effect of the broadening is to renormal-

ize the amplitude of the oscillatory profile tails by a factor exp(−α2
Rξ

2
⊥/2), where

α2
R = α2

1 − α2
0 ∼ 1/σ2 is characteristic of the corresponding bulk fluid. In this

way, a parameter measuring the strength of the capillary-waves can be defined as

ω = (4πβγσ2)−1. Using typical numerical values, we obtain ω ∼ 0.1 for the largest

calculated γ, suggesting that the fluctuations should not bring about significant

broadening of the interface for the system at hand.

4.3.3 Wetting

In order to study the wetting properties of the considered system close to a rigid

wall, we postulate a repulsive external potential, which the wall exerts on particles
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of species i, having the form:

Vi(z) =

∞ z ≤ 0

Φi
exp(−z/λi)

z/λi
z > 0

(4.12)

where Φi ≈ kBT and λi is a parameter of order σi. The Yukawa-like form of Vi(z) is

motivated by the effective wall-polymer potential obtained from Monte Carlo simu-

lations via the inversion of the center-of-mass distribution function of self-avoiding-

walk (SAW) polymers at a hard wall. Since a SAW polymer can be effectively

described by a gaussian particle, it was demonstrated that the density profile of

gaussian particles at a Yukawa-like wall mimics the SAW polymer center of mass

profile at a hard-wall [35, 89]. Qualitatively similar effective wall-particle interac-

tions have been described by recent simulations of both athermal and amphiphilic

dendrimers at planar walls [96, 98].

The inhomogeneous density profiles imposed by the presence of the wall can be

calculated from Eq. (4.5). By replacing the chemical potential in favor of the bulk

densities, we obtain the coupled equations:

ρi(z) = ρ
(b)
i exp


−βVi(z) +

2
j=1

 ∞

0

dz′∆ρj(z
′)φij(|z′ − z|)


, (4.13)

where ∆ρi(z) = ρi(z)−ρ
(b)
i and ρ

(b)
i = ρi(∞) is the density of species i (i = A,B) in

the bulk. We choose to fix the total density ρ and approach the bulk phase boundary

(i.e., the binodal line) from the A-rich (B-rich) side by increasing (decreasing) x

toward its value at coexistence xcoex. For the approaching paths, we solve Eq. (4.13)

and determine the corresponding (Gibbs) adsorption on the wall, which is defined

by

Γi =

 ∞

0

dz

ρi(z)− ρ

(b)
i


. (4.14)

Wetting by gaussian particles

By choosing a B-rich mixture as the bulk fluid, we studied the wetting of the wall

by the A-rich phase for several sets of the parameters determining the wall potential

given by Eq. (4.12). Since both considered species have the same size, it is natural to
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Figure 4.5: Density profiles of species A adsorbed at the wall along the constant

densities (a) ρσ3 = 4.5 and (b) ρσ3 = 4.2, as the coexistence state is approached from

the B-rich side. The parameters defining the wall potential, Eq. (4.12), are ΦA =

ΦB = ϵ, λA = σ and λB = σAB. In each figure, the profiles correspond, from left to

right, to |x−xcoex| = 10−2, 3.5×10−3, 1.2×10−3, 5.0×10−4, 1.0×10−4, 5.5×10−6. The

insets show the corresponding density profiles of species B, in which the depletionof

B particles from the wall is clearer as the A-rich film grows. For the case ρσ3 = 4.5,

the arrow marks the discontinuous jump in the thickness of the film which is found

when the pre-wetting line is crossed.
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take λi = σ. With this choice, incomplete wetting is found for all tested ΦA/ΦB . 1

and ΦB ≈ ϵ as x → x+
coex. A different situation is obtained if the wall potential is

chosen to be somewhat longer-ranged for the species B, i.e., to slightly favor wall

contact with the A particles. By setting up the parameters to Φi = ϵ, λA = σ and

λB = σAB, a similar scenario to the one obtained for asymmetric gaussian mixtures

is found [55, 104].

In this case, a pre-wetting transition is present, as first revealed by inspection

of the density profiles. At high enough total density (ρσ3 & 4.8) the profile of

the species A saturates as the binodal is approached and no thick film is formed,

indicating that such density is above the wetting point. On the other hand, as x →
x+
coex at lower ρ (4.3 . ρσ3 . 4.7) the thickness of the adsorbed film starts to grow

slowly, then it features a discontinuous jump and finally it grows up continuously, as

shown in Fig. 4.5(a) for ρσ3 = 4.5. This behavior is consistent with the pre-wetting

scenario, in which the jump in the density profile occurs when the pre-wetting line is

crossed and subsequently the thickness of the film diverges as the coexistence line is

reached [115]. Eventually, at a further lower total density (ρσ3 . 4.3), the adsorbed

film grows up continuously as x → x+
coex suggesting that such a path is located below

the pre-wetting critical point, as Fig. 4.5(b) shows for ρσ3 = 4.2. We postpone for

the last section a discussion of the nature of this wetting transition, i.e., whether

the film that grows is truly infinite or we rather have a first-order thin-to-thick-film

transition with the latter having a large but finite thickness.

The above-described features can be also observed in Fig. 4.6(a), where the

corresponding adsorption curves for the A specie are plotted as a function of the

quantity ln |x − xcoex|. As can be seen, for the largest total density the absorption

saturates in the limit x → x+
coex. On the other hand, for lower densities (below

the wetting point) both discontinuous and continuous rises in adsorption can be

distinguished. As before, the discontinuity is related to the pre-wetting line and

once this line is crossed the adsorption grows in a similar way for all curves as x

goes toward the coexistence value. By using the discontinuous jump both in density

profiles and adsorption curves, we have estimated semi-quantitatively the locus of

the pre-wetting line by taking into account that it joints the binodal tangentially1.

1A more rigorous procedure involves the evaluation of the two branches of solutions which
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Figure 4.6: (a) Adsorption of species A at the wall along several paths of constant

density, as the binodal line is approached from the B-rich side. It saturates for

ρσ3 = 4.8 and grows discontinuously for ρσ3 = 4.7, indicating that the wetting

point is located between these two densities and that a pre-wetting transition takes

place for the latter one. The parameters defining the wall potential, Eq. (4.12), are

ΦA = ΦB = ϵ, λA = σ and λB = σAB. (b) Magnification of the phase diagram

(Fig. 4.1) for the high-x region in which the pre-wetting line for the A specie lies.

This line meets the binodal in the wetting point (wp) and ends in the pre-wetting

critical point (pcp). (c) Magnification of the phase diagram for the low-x region in

which the pre-wetting lines for the B specie corresponding to different ΦB values

are shown. The wetting point for ΦB/ϵ = 0.35 lies beyond the triple point (tp).
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The resulting curve lies very close to the binodal and extends from the wetting

point (xwp ≈ 0.8198, ρwpσ
3 ≈ 4.74) until the pre-wetting critical point (xpcp ≈

0.7665, ρpcpσ
3 ≈ 4.4), as displayed in Fig. 4.6(b).

Wetting by GEM-4 particles

Having evaluated the wetting properties by the gaussian particles, in this section we

turn our attention to the properties of the other component of the system. Again

the total density is fixed but now the binodal is approached from the A-rich side.

The parameters defining the wall-particle interaction are the same as before, except

for ΦB which is tuned in order to make the wall less repulsive to B particles.

When ΦB/ϵ & 0.5 is considered, incomplete wetting is found for all tested to-

tal densities, indicating that the wetting point would be located very close to the

consolute point. On the other hand, by taking 0.35 . ΦB/ϵ . 0.45 evidence for

pre-wetting transition is obtained, as revealed by the jump in the adsorption curves

and the subsequent continuous growth as x → x−
coex, as shown in Fig. 4.7. As ΦB

is further decreased, the effective attraction between GEM-4 particles and the wall

becomes strong enough to guarantee complete wetting at all densities over the left

branch of the binodal; for all tested densities the adsorption diverges continuously

as the coexistence line is approached, as shown in Fig. 4.7 for ΦB/ϵ = 0.3.

In order to have a better description of the transition represented by the dis-

continuity in the adsorption curve, we consider the corresponding density profiles.

As a representative sample, in Fig. 4.8(a) the density profiles of both species for

ΦB/ϵ = 0.35 are plotted at ρσ3 = 4.5. Concomitantly with the discontinuous jump

in ΓB, the density profile ρB(z) displays a substantial increase in both the first and

the second peaks and afterwards the thickness of the film increases continuously.

This feature contrasts with the case of wetting by the A-rich phase, where the first

peak of ρA(z) remains unaltered once the pre-wetting line is crossed, i.e., once the

discontinuity in adsorption is found, as can be seen in Fig. 4.5. Of course, note has

to be taken that, in the present case, the wall is comparatively more attractive for

minimize the grand potential, i.e., one branch for a thin adsorbed film and other for a thick

adsorbed film. The points where the two branch intersect determine the pre-wetting line [55, 104].
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Figure 4.7: Adsorption of species B at the wall along several paths of constant den-

sity, as the binodal line is approached from the A-rich side. The parameters defining

the wall potential, Eq. (4.12), are ΦA = ϵ, λA = σ and λB = σAB. By decreasing

ΦB, particles B will be preferentially adsorbed by the wall, moving the wetting

point towards the triple point. In the last panel, the full-circle line corresponds to

ρσ3 = 4.15 and the line with crosses to ρσ3 = 4.05.
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Figure 4.8: Density profiles of specie B adsorbed at the wall along the constant

densities ρσ3 = 4.5 (a) and ρσ3 = 4.2 (b) as the coexistence state is approached

from the A-rich side. The parameters defining the wall potential, Eq. (4.12), are

ΦA = ϵ, ΦB = 0.35ϵ, λA = σ and λB = σAB. In each figure, the profiles correspond,

from left to right, to |x− xcoex| = 6.3× 10−2, 4.0× 10−2, 2.4× 10−2, 1.2× 10−2, 4.5×
10−3, 1.7×10−3, 5.2×10−4, 1.0×10−4, 1.4×10−5. The insets show the corresponding

density profiles of specie A.
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B particles than it was for A particles in the previous case.

On the other hand, at ρσ3 = 4.2 the first peak of ρB(z) remains unmodified and

the second one reaches its maximum value continuously, as well as the thickness

of the adsorbed film, as Fig. 4.8(b) shows. This is an indication that the path for

constant density ρσ3 = 4.2 is located below the pre-wetting critical point. The

estimated pre-wetting lines for different values of ΦB are plotted in Fig. 4.6(c). As

expected, the localization of the pre-wetting line is quite sensitive to changes in the

parameters defining the wall potential. As can be seen, as ΦB decreases the wetting

point moves towards the triple point and the pre-wetting line becomes larger and

does extend over a wider range of relative composition x.

The sudden change in the peak structure of ρB(z) is reminiscent of the one

found for a single layering transition [115, 116], whereby a new peak, corresponding

to an adsorbed layer, does develop at the transition point and the adsorption jumps

by an amount equivalent to the extra layer of particles. A similar transition has

been reported in mixtures of colloid-polymer mixtures at a hard wall, where the

wall effectively attracts the colloids stronger that the polymers via the depletion

mechanism, giving rise to a very strong “capillary condensation”-like shift of the

coexistence chemical potential of the colloids [117, 118]. However, in strong contrast

with that case, in the ultrasoft mixture the adsorption does not remain finite as x

goes towards xcoex but it does diverges exponentially leading at last to complete

wetting, as Fig. 4.7 shows. Besides, no additional layering-like transitions were

detected when Eq. (4.13) was solved along the coexistence curve.

From Fig. 4.8, it is clear that once the discontinuity is left behind, the adsorbed

film is not only thick but it also presents a strong oscillatory structure. The latter

feature becomes more pronounced as the tested state moves closer to the triple point,

as reflected in the enhancement of the slight bumps in the adsorption curve, see e.g.,

the adsorption curves for ΦB = 0.35ϵ at ρσ3 = 4.7 and 4.8. Although no jump is

apparent indicating other transitions close to the triple point, it must be noted that

the present approach gives no information on the lateral structure of the adsorbed

layers, since it assumes density profiles ρi(z) that are modulated in the direction

perpendicular to the wall only. Therefore, the possibility of crystallized layer can

no be ruled out, as discussed below.
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4.4 Concluding remarks

By means of a mean-field density functional theory, the interfacial and wetting pro-

perties of a binary mixture of non-clustering particles (A species) and clustering

particles (B species) have been investigated. In the case of the free interface, it

was found that the density profiles of both species display oscillatory decay on both

sides of the interface. This characteristic was associated to the small region of the

phase space enclosing by the binodal and the Fisher-Widom line (FWL). Moreover,

an estimation of the surface tension and the effect of the capillary-waves on the

broadening of the interface was discussed.

Concerning the wetting properties of the mixture at a repulsive Yukawa-like

wall, we found pre-wetting transition when the binodal is approached from either

the A-rich or from the B-rich side. When short-ranged particle-particle and wall-

particle interaction potentials are considered, it is expected that Γ ∝ ln |x − xcoex|
as the coexistence line is approached below the wetting point, i.e., the adsorption

diverges logarithmically, similar to the thickness of the film [55]. This is indeed

the trend observed in the considered cases, as Figs. 4.6(a) and 4.7 show. However,

from a formal point of view the formation of a macroscopically wetting film can

only occur when the corresponding bulk correlation functions decay monotonically,

i.e., for states on the monotonic side of the FWL. Otherwise, an oscillatory effective

interface potential (excess grand potential per unit area) will develop, which can

stabilize thick but finite films (∼ 10σ−20σ) [114]. Since the total densities of all the

state points considered in Fig. 4.6(a) and 4.7 are located outside of the corresponding

FWL (see Fig. 4.1), then only pseudo-wetting can be expected to happen in the

system at hand. Accordingly, the prewetting lines should be considered as first-

order transition lines between a thin and a thick film, where the thickness of the

latter does not diverge as the binodal is approached. However, the infinitely thick

layer is still a metastable state [114].

It is interesting to note that when simple fluids with an infinitely repulsive core

and an attractive tail are adsorbed at attractive walls, complete wetting could take

place by means of a sequence of many layering transitions. However, when compara-

ble wall-particle interactions but softer particle-particle interactions are employed,
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less defined peaks are found in the density profiles ρ(z) and therefore fewer layer-

ing transitions can be identified [116]. Following this idea and having in mind that

in our particular case, all the particle-particle interactions are “ultrasoft”, if more

layering-like transitions are present in our system as the binodal is approached from

the A-rich side, then they become much more difficult to identify.

One question is still to be answer concerning the high value of the first peak of

ρB(z) seen in Fig. 4.8(a) and the possibility to have a two-dimensional crystallization

of the first layer. Although this effect can not be captured with the approach

employed here, we still can discuss some indications in this direction by taking

advantage of one analogous system. When a one-component fluid of clustering

particles (GEM-8) is considered in planar confinement due to Lennard-Jones walls,

the freezing in terms of the symmetry breaking in the plane parallel to the walls is

mainly due to a single-wall effect [119]. By taking the limit of large confinement

distance, for which the (local) density of the fluid in the middle of the confining

region is very close to that of a semi-infinite fluid reservoir on a single LJ wall, it was

found that an increasing number of layers starts to grow continuously, each having

a smaller cluster population (number of particles per cluster) than the previous one,

as the bulk freezing chemical potential is approached from below. Sequentially, the

xy-symmetry is broken in each layer and finally the walls are completely wetted

by the crystal. The growth of the wetting film is lastly interrupted by capillary

condensation. A similar scenario can happen in our system if we assume that the

B-rich film is asymmetrically confined by the solid wall and the “flat wall” provided

by the A-rich phase [118].

Finally, although there is clear evidence that ultrasoft potentials of the Q± class

accurately model the interactions between real macromolecules in dilute systems,

the validity of these potentials in dense systems has yet to be verified. The results

presented in this paper add to a growing body of work which suggests that the search

for dense systems where ultrasoft potentials remain valid is a worthwhile pursuit.
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Chapter 5

Dynamics in binary cluster

crystals

Recent studies on the phase behavior of binary mixtures of GEM parti-

cles have provided evidence for the formation of novel kinds of alloys, de-

pending on the cross interactions between the two species. In this chap-

ter we study the dynamic behavior of such binary mixtures by means of

extensive molecular dynamics simulations. Particularly, we analyze the

effect of the addition of non-clustering particles on the dynamic scenario

of one-component cluster crystals.

5.1 Introduction

Coarse-graining procedures provide a general way to represent mesoscopic aggregates

of several architectures (e.g., linear and hyperbranched polymers, micelles, micro-

gels, etc.) as particles interacting via an effective, isotropic potential Veff(r). When

the center of mass of such aggregates can coincide without violating excluded volume

interactions, Veff(r) turns out to be ultrasoft and bounded [35, 36, 88]. These char-

acteristics may lead to cluster formation providing Veff(r) belongs to the so-called

Q±-class, i.e. its Fourier transform (FT) V̂eff(q) displays an oscillatory decay around

zero (potentials with positive FT are referred as Q+ potentials) [91, 93]. Recent

71
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numerical investigations of amphiphilic dendrimers and of ring polymers with dif-

ferent degree of knotedness demonstrate that such macromolecules are candidates

for experimental realizations of the former clustering scenario, since their effective

interactions are indeed of the Q±-class [97, 98, 99].

A particular theoretical realization of Q± potentials is given by the generalized

exponential model (GEM-m), for which the interaction is described by the potential

v(r) = ϵ exp [−(r/σ)m], where r is the interparticle distance, σ is a measure of the

particle size, ϵ is the interaction strength and m > 2,. As density increases, the

GEM-m system shows, for m > 2, a first-order transition from a fluid of clusters to

a cluster bcc-crystal above the triple point temperature, and a subsequent structural

phase transition from a cluster bcc to a cluster fcc crystal. This occurs at arbitrarily

high temperatures [92, 97], contrary to the case of Q+-systems, which exhibit reen-

trant crystallization in the temperature-density plane [90]. A remarkable feature

of the cluster fcc crystals is that upon increasing the density the lattice constant

approaches a constant value afcc = 2π
√
3/q∗, with q∗ the wave vector at which v̂(q)

takes its absolute minimum. An obvious consequence of the density-independent

value of afcc is that the population of each lattice site scales proportionally with

density. These properties are rather different from usual crystallization features in

colloidal systems. Moreover, these differences are not restricted to the structural

properties but also to the dynamical ones. Regarding the slow dynamics in such

cluster crystals, incessant hopping between clusters has been revealed, which fully

changes the initial identity of the clusters without altering the lattice structure. An-

other peculiar dynamic feature of these systems is a decoupling between self- and

collective out-of-lattice correlations [120, 121].

Recently, the phase behavior of mixtures containing a non-clustering component

(m = 2) and a clustering component (m = 4) has been investigated within the

framework of the Density Functional Theory (DFT) [101, 102]. For the case of non-

demixing systems, evidence was found for the formation of novel kinds of alloys,

i.e. mixed cluster crystals [102]. Though static features of these mixtures have been

studied in detail, to the best of our knowledge no information has been reported

on the corresponding dynamical aspects. This article aims to shed light on such

aspects. By means of extensive molecular dynamics (MD) simulations, the findings
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displayed by one-component cluster crystals [120, 121] are extended to mixtures

of clustering and non-clustering particles. Analogies and differences with the one-

component case are revealed and discussed by analyzing self- and collective dynamic

correlators. This chapter is organized as follows: Model and simulation details are

given in Sec. 5.2. The static and dynamic features are presented and discussed in

Sec. 5.3. Finally, some concluding remarks are given in Sec. 5.4.

5.2 Model and Simulation

We are interested in the dynamical behavior of non-demixing systems, i.e., binary

mixtures for which the fluid-fluid macrophase separation (demixing) is preempted

by crystallization. In this way, the first step was to study the stability limits of

the homogeneous fluid against either macrophase separation or crystallization for

representative examples of the former class of mixtures. The aim was to find a

system whose demixing binodal line lies well above the λ-line in the concentration-

density plane. A precise definition of the λ-line is given below. Both binodal and

λ lines were obtained by solving the Ornstein-Zernike equation within the mean

field approximation (MFA, see Appendix B) [41]. Based on such results, the specific

systems to be simulated were determined and thus the parameters defining the

mixture (relative particle size, mixture compositions, temperature and density, self-

and cross-interactions) were chosen in such a way as to avoid the region of demixing

in the phase diagram. Because of the high total densities to be considered, the former

parameters were also selected with the goal of reducing computational expense.

The investigated system was a mixture of big GEM-8 particles and small GEM-2

(gaussian) particles. This mixture contains a non-clustering component (GEM-2, in

the following referred as A-particles) and a cluster-forming component (GEM-8, in

the following referred as B-particles). The dynamic features of this system were

investigated at fixed temperature T for a broad range of densities ρ = ρA + ρB

and several relative compositions x = ρB/ρ. The former densities are defined as

ρα = Nα/V , Nα being the number of particles of the species α and V the total

volume. In what follows, we choose units in which Boltzmann’s constant kB has the

value kB = 1. The cross-interaction was chosen to be a GEM-4 potential, which also
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displays cluster formation. In this way, for the interaction potential,

vαβ(r) = ϵαβ exp


−


r

σαβ

mαβ

, (5.1)

we used the following parameters: ϵαβ = ϵ = 1.0, σAA = 0.3σ, σAB = 0.6σ, σBB =

σ = 1.0, and mAA = 2, mAB = 4, mBB = 8. With these parameters, a common

cutoff range Rc = 1.5σ was introduced in the simulation for all the interactions.

MD simulations were performed in a cubic box with periodic boundary condi-

tions. The equations of motion were integrated in the velocity Verlet scheme [122],

with a time step ∆t/τ ranging from 0.001 to 0.005, where τ =

mσ2/ϵ and a

common mass m = 1 was used for all the particles. The size of the simulation

box, Lbox, was typically of 7 or 8 times the lattice constant afcc of the considered

mixture. The value of afcc was obtained from DFT as explained in [101, 102]. In

the following, density, time, distance, and wave vector will be given, respectively,

in units of σ−3, τ , σ, and σ−1. Initial configurations were generated by placing the

particles uniformly at the sites of the fcc lattice defined by afcc. An equilibration run

was performed in which the system was thermalized at temperature T = 0.30 by

periodic velocity rescaling. Typical equilibration times ranged from 2×105 to 2×106

time steps according to the studied density. After reaching equilibrium, manifested

by the absence of any drift in internal energy and pressure, a production run was

performed in the microcanonical ensemble, at different densities, for compositions

x = 0.65, 0.80 and 0.95. Typical production runs ranged from 106 to 108 time steps.

5.3 Results and Discussion

5.3.1 Phase diagram and static structure

The partial structure factors Sαβ(q) (α, β ∈ {A,B}) are related to the propensity

of a fluid to sustain spontaneous density fluctuations of wave vector q. They are

defined as

Sαβ(q) =
⟨ρα(q, 0)ρβ(−q, 0)⟩

NαNβ

(5.2)
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x ρ∗ q∗ afcc Lbox

0.65 1.68 5.64 1.9296 13.5070

0.80 1.46 5.74 1.8960 15.1677

0.95 1.29 5.84 1.8635 14.9079

1.00 1.25 5.86 1.8571 14.8571

Table 5.1: For each investigated composition x, density ρ∗ for the λ-line, parameters

defining the fcc lattice (D(q∗) = 0, afcc = 2π
√
3/q∗, see [101]) and box size Lbox used

in the MD.

with ρα(q, t) =
Nα

j=1 exp[iq·rαj (t)] and the sum is performed over the coordinates rαj

of all particles belonging to the species α.1 According to the OZ equations, they take,

in the homogeneous phase, the generic form Sαβ(q) = Nαβ(q)/D(q) where, within

the MFA, the denominator depends on the Fourier transform of the interaction

potentials according to

D(q) = 1 +
ρ

T
Ûs(q) +

 ρ
T

2
x(1− x)Ûd(q), (5.3)

where Ûs(q) = (1 − x)v̂AA(q) + xv̂BB(q) and Ûd(q) = v̂AA(q)v̂BB(q) − v̂2AB(q) [101].

Due to their generic form, the partial structure factors will diverge for all those

conditions where D(q) = 0, and therefore the homogeneous fluid will be unstable. If

the divergence takes place at q = 0, demixing occurs and the spinodal line denotes

the locus of state points where D(0) = 0. On the other hand, a divergence at some

q∗ > 0 signals an instability in the fluid (which is referred as Kirkwood instability)

with respect to a periodic modulation of the density. The locus of state points where

this instability takes place corresponds to the so-called λ-line [102].

For the system at hand, the last scenario is indeed the case, where the instabil-

ity dominating the phase behavior is mainly due to the Q±-nature of the species

1For uniform phases, the statistical average ⟨· · · ⟩ in the right hand side of Eq. (5.2) above

renders its left hand side a function of q = |q| only. For the crystalline phases to be considered

in what follows, we have performed an additional rotational average over symmetry-related values

of the reciprocal vectors, so that the resulting quantities (static and time-dependent correlation

functions) are shown as functions of q only.
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Figure 5.1: Left: A segment, at the high-x/moderate ρ region, of the phase diagram

of the studied ultrasoft mixture. Empty and filled symbols indicate the simulated

state points in the (ρ, x)-plane, at both sides of the melting line. The latter is

displayed as a dashed guideline for the eyes. It is estimated from the emergence of

Bragg peaks in the partial static structure factors (see below). The solid line is the

λ-line, obtained from the OZ-MFA equations. Right: Slabs of the simulation box

for x = 0.65 and ρ = 3.50, parallel to the (001)-plane (top) and to the (111)-plane

(bottom). For the sake of clarity, only GEM-8 particles are displayed, in both frontal

and lateral views, with a size much smaller than the real σ. Particles in different

layers are represented with different colors.
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B. Figure 5.1 displays the corresponding λ-line in the (x, ρ)-plane estimated from

MFA. Since this line is related to the limit of stability for the homogeneous fluid

phase, it is expected that close to it the system will tend to crystallize into solids

whose lattice constant will be dictated by q∗ (see Table 5.3.1). By visual inspection

of the configuration snapshots, state points for which the initial crystal structure

was stable were discriminated from those for which the latter melted. The melting

line estimated in this way was consistent with the analysis of Bragg peaks in the

partial structure factors (see below). No transition to other crystalline structures

was observed during the simulations, confirming the fcc structure as the underlying

lattice in the investigated crystalline states. The typical snapshots of Fig. 5.1 indeed

exhibit the expected ABC staking of the (111)-planes. It should be noted that the

apparent contradiction of having, in Fig. 5.1, a fluid phase that is stable beyond the

λ-line is an artefact arising from applying the MFA in calculating the latter. The

MFA becomes increasingly accurate at T grows, whereas we are working here at

T = 0.3. Nevertheless, this has no consequences in what follows, since we are em-

ploying the MFA λ-line merely as an indicator of the region in which alloy formation

(crystallization) is expected, without basing any further quantitative predictions on

its precise location.

More detailed structural information can be gained by considering the partial

radial distribution functions gαβ(r), which measure the probability to find a pair of

particles, of species α and β, at a mutual distance r. In Fig. 5.2 these quantities

are displayed for x = 0.80 and different densities. As expected, gBB(r) exhibits a

large peak at r = 0 (namely gBB(r → 0) ∼ 30), indicating the formation of clusters,

whose size extends up to dc ∼ 0.75. The second peak at r ∼ 1.34 corresponds to the

nearest-neighbor distance in the fcc crystal, dnn = afcc/
√
2. The radial distribution

function for distinct pairs, gAB(r), displays rather different features. The correlation

hole at r → 0 indicates that the small A-particles avoid the lattice sites and tend

to localize in the interstitials between B-clusters. Concerning correlations between

pairs of A-particles, gAA(r) displays finite small values (∼ 0.2) at r → 0. This

means that for the considered conditions, no appreciable clustering of the species A

is induced by the clustering of the species B.

On increasing the density, a significant structural change occurs in the system,
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Figure 5.2: Radial distribution functions (top) and structure factors (bottom) for

x = 0.80 and different densities. The arrows in the plot of gBB(r) indicate the

position of the kth-neighbor in a fcc lattice, i.e., dk =
√
kdnn =


k/2 afcc. The

values of the selected densities are the same in all panels (see legend for gAA(r)).

which is evidenced by the emergence of well-defined peaks of all gαβ(r) at large

distances (see top panels of Fig. 5.2). This change is better reflected in the corre-

sponding partial structure factors Sαβ(q). As shown in bottom panels for the largest

densities, the emergence of Bragg peaks in SBB(q) indicates a rather ordered struc-

ture, which still retains some characteristics of the fluid phase. On the other hand,

the nearly flat structure of SAA(q) clearly suggests the presence of a, nearly ideal,

fluid phase of A-particles. This fluid phase is immersed in the crystalline matrix of

clusters of B-particles. Strictly speaking, the A-particles form a very weakly modu-

lated fluid, so that the mixture of localized B-particles and delocalized A-particles

forms a sublattice melt phase. The one-particle density of the A-particles, however,

cannot be strictly uniform, since the crystallized B-particles act on the A-species as a

periodically modulated external potential. This structural scenario has its dynamic
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counterpart, as will be shown below.

The occupation number n of a given lattice site, i.e., the number of B-particles

in the associated cluster, is obviously an integer number. The average occupation

is in general non-integer, as a result of (at least two) significant contributions of

distinct values of n all over the lattice. For example, in the crystalline system of

composition x = 0.80 and density ρ = 2.40 around the 65% and 25% of the clusters

are composed respectively by three and four B-particles. This percentages were

estimated by counting the coordination number of each particle for r < dc ∼ 0.75.

On passing, it was also estimated by using the same criterion that around 90% of

the A-particles are isolated from particles of the same species. The former results

reflect that the lattice is full of defects which might be expected to break its stability.

As discussed in Ref. [121] for the one-component cluster crystal, the stability of

the lattice is actually maintained by incessant hopping of the B-particles between

distinct clusters. This is also the case in the mixtures considered here, as discussed

in the next subsection.

5.3.2 Dynamics in real space

A first step to gain some insight into the transport properties of the system is pro-

vided by the mean squared displacement ⟨∆r2α(t)⟩ (MSD). This quantity is shown

in Fig. 5.3 for different densities and relative compositions x = 0.65 and x = 0.95.

In the case of the A-particles, a rapid crossover is observed for all the investigated

densities, between short-time ballistic motion (⟨∆r2α(t)⟩ ∝ t2) and long-time diffu-

sion (⟨∆r2α(t)⟩ ∝ t). This is the usual dynamic behavior of a highly mobile fluid

phase. Thus, as anticipated by the static correlations, the mixture reaches a phase

in which the species A shows a fluid-like behavior in a crystalline matrix of clus-

ters of B-particles. This behavior is reminiscent of that of the superionic phase of

AgI and CuI, which is characterized by a dynamic disorder of cations between the

tetrahedral interstices formed by the fcc anion sublattices [123, 124, 125].

The MSD of the B-particles shows a similar behavior in the fluid phase. However,

an abrupt dynamic change is revealed by crossing the crystallization point. Thus,

an intermediate plateau regime arises between the ballistic and diffusive limits, ex-
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Figure 5.3: MSD of both species for x = 0.65 (left panels) and x = 0.95 (right

panels). The arrows in bottom panels separate fluid states for the B-particles from

crystal clusters (see also Fig. 5.1).

tending over longer time intervals as density increases. This regime is associated

with the temporary trapping of the B-particles within the clusters [120, 121]. The

large oscillations at the beginning of the plateau regime are the signature of strong

intracluster vibrational motion. Such short-time strong oscillations are an artifact

of the simulated Newtonian dynamics. They are expected to be strongly damped

under more realistic Brownian dynamics (BD); it has been shown that they even

vanish in Monte Carlo (MC) simulations [126]. Finally, at long times, the MSD

displays a crossover to diffusive behavior. This scenario, which has been previously

observed in the cluster crystal phase of the pure GEM-8 system [120, 121], does not

originate from the contribution to the MSD of rare events involving a few diffusing

B-particles. As anticipated above, it is the result of incessant hopping of B-particles

between neighboring lattice sites. Thus, the hopping mechanism fully changes the
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Figure 5.4: Van Hove self-correlation function at different times for x = 0.80 and

ρ = 3.05 (left: A-particles, right: B-particles). Distances are rescaled by dnn.

initial identity of each cluster without altering the overall crystalline lattice structure

[120, 121].

This hopping mechanism is clearly reflected in the van Hove self-correlation of

the B-particles, which can be evaluated from

G(s)
α (r, t) =

1

Nα


Nα
j=1

δ

r− rαj (t) + rαj (0)


. (5.4)

Figure 5.4 shows a representative example for composition x = 0.80 and density

ρ = 3.05. A sequence of well-defined peaks is present in G
(s)
B (r, t), corresponding

to different distances between lattice sites. With increasing time, the first peak

in G
(s)
B (r, t) decreases while peaks located at larger distances grow progressively,

corresponding to particles moving away from their original home clusters. By simple

integration of G
(s)
B (r, t) from its first minimum to r → ∞, it is found that only the

30% of the B-particles are located at t ∼ 5 × 104 in their initial home cluster. As

expected from the observations in the MSD (see above) the van Hove self-function

for the non-clustering species A displays a simpler behavior. For t ∼ 50 the initial

peak at r ≈ 0.3 has already vanished. At that time scale almost all the A-particles

have left their initial interstitial positions and G
(s)
A (r, t) exhibits simple Gaussian

behavior.
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Figure 5.5: Diffusivities of the A- and B-particles as a function of the density (inset)

and of the combined variable ρx/T (main panel). Solid lines are guides for the

eyes. The dashed line in the main panel indicates approximate Arrhenius behavior

DB ∼ exp[−2.3ρB/T ].

We can estimate the diffusivity of each species from the Einstein relation Dα =

limt→∞ ⟨∆r2α(t)⟩ /6t. Figure 5.5 shows the obtained results as a function of the

quantity ρB/T = ρx/T . For each composition x, an abrupt drop in the diffusivity

of the B-particles is observed in a narrow range of density. This drop reflects the

transition of the species B from the fluid to the cluster crystal, and it is indeed

expected from the previous observations in the MSD (see Fig. 5.3). The approxi-

mate scaling behavior for DB in the cluster crystal phase generalizes the observation

for the pure GEM-8 system [120, 121]. The latter was rationalized as the result of

activated hopping motion between minima of the local potential energy U , i.e, that

experienced by a test particle in the system2. By computing the map of U along

2This hopping scenario shows striking analogies, both for van Hove functions and potential

energy profiles, with the layer-to-layer diffusion of rods in smectic phases (see Ref. [129, 130, 131]).

In such systems the corresponding energy barriers separate minima located in the centers of the

layers. The incoherent scattering functions of the rods and the B-particles (see Sec. 5.3.3) also

exhibit similar trends [131, 132, 133].
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the simulation box, it was found that such minima are placed at the lattice sites

[120, 121, 127, 128, 129, 130, 131, 132, 133]. It was also found that the separating

energy barrier between neighboring sites scales as ∆U ≈ 2.3ρB, leading to Arrhenius

behavior DB ∼ exp[−∆U/T ] [120, 121]. Data in Fig. 5.5 show that this observation

is not altered in the mixture over a broad range of values of ρx/T . The introduc-

tion of the non-clustering A-particles does not even change significantly the former

activation energy ∆U .

5.3.3 Scattering functions

Relaxation of density fluctuations of wave vector q are evaluated by means of the

intermediate coherent and incoherent scattering functions. The coherent function is

defined as

Fαβ(q, t) =
⟨ρα(q, t)ρβ(−q, 0)⟩
⟨ρα(q, 0)ρβ(−q, 0)⟩

(5.5)

and characterizes collective α-β correlations, whereas the incoherent function ac-

counts for self-correlations and is given by

F (s)
α (q, t) =

1

Nα


Nα
j=1

exp{iq · [rαj (t)− rαj (0)]}


. (5.6)

With the used normalizations Fαβ(q, 0) = F
(s)
α (q, 0) = 1. Figure 5.6 shows re-

sults of the scattering functions for composition x = 0.95 at densities above and

below the crystallization line. The selected value of q = 4.0 is not a reciprocal lat-

tice vector (RLV) and therefore data in this figure reflect relaxation of out-of-lattice

correlations. Consistently with the observations in the real space, both incoherent

and coherent functions for the species A exhibit a fast decay at all the investi-

gated densities, also for those where the B-particles form a cluster crystal. This

is reminiscent of the scenario presented for the small particles in Yukawa mixtures

immediately below the crystallization temperature [134]. In close similarity to the

aforementioned work, our data reveal, for the crystalline phase, a weak oscillation

at t ∼ 2, immediately after the microscopic decay. It reflects short-time vibrational

dynamics of the A-particles within the interstitials. This effect was not detected in
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Figure 5.6: Intermediate incoherent and coherent scattering functions for fixed x =

0.95 and q = 4.0, at different densities. The arrows in bottom panels separate fluid

states for the B-particles from crystal clusters (see also Fig. 5.1).

the respective MSD, possibly because contrary to the scattering functions, the for-

mer is generally dominated by fast contributions, which may mask the oscillations.

As discussed above, these short-time oscillations and the similar ones observed for

the scattering functions of the B-particles (Figs. 5.6 and 5.7) are artifacts of the

Newtonian dynamics and will be strongly damped or even vanish for BD and MC

simulations.

Concerning the dynamics of the clustering B-particles, the present system ex-

hibits more complex features than usual crystals. As in real-space quantities, co-

herent and incoherent functions reflect an abrupt slowing down of the dynamics by

crossing the crystallization point. The intermediate plateau regime extends over

longer time intervals as density increases, before the ultimate relaxation at long
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times. This observation is reminiscent of the usual dynamic scenario associated to

the glass transition. Having noted this, distinct features are revealed by inspec-

tion of incoherent and coherent functions. Thus, the relaxation of the coherent

function FBB(q, t) in the cluster crystal phase is consistent within statistics with

a same plateau height (Debye-Waller factor, fq) for all the investigated densities.

This is not the case for the incoherent function F
(s)
B (q, t), where the plateau height

(Lamb-Mössbauer factor, f
(s)
q ) clearly grows up as density increases.

The usual observation in glass-forming systems is that both Debye-Waller and

Lamb-Mössbauer factors remain constant on approaching the glass transition from

the ergodic phase. On crossing the transition and moving deep into the glassy phase,

the former factors fq and f
(s)
q progressively increase. This feature reflects the pro-

gressive decrease of the localization length respectively associated to collective and

self-motions. With these ideas in mind, the increase of the plateau height in the

incoherent functions for the B-particles (see Fig. 5.6) suggests that a localization

transition has occurred for the self-motions, tentatively at the crystallization den-

sity. On the contrary, such a transition is not detected for out-of-lattice collective

correlations at any of the investigated crystalline states. This dynamic decoupling,

in the meaning of a different locus for the localization transitions of self- and out-

of-lattice collective motions, is also present in the pure cluster crystal [120, 121].

Having noted this, the ergodicity of self-motions is, as in the pure GEM-8 system,

restored at long times. This is reflected in the full decay of F
(s)
B (q, t). In other words,

the localization transition for self-motions of the B-particles is actually avoided. The

mechanism which restores ergodicity of self-motions is naturally the incessant hop-

ping between neighboring clusters discussed above. Qualitatively similar findings

are observed for the other studied compositions x = 0.8 and x = 0.65. Thus, the

addition of non-clustering A-particles, even up to a 35% of the total, does not alter

the former scenario of dynamic decoupling in the B-particles, and the (avoided by

hopping) localization transition for self-motions still occurs at much lower densities

that for out-of-lattice collective correlations.3

3It should be mentioned, however, that although the A-particles constitute 35% of the number

density of the system, they only account for less that 1% of its volume fraction due to their much

smaller size.
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As discussed in Refs. [120, 121], the former scenario has similarities and dif-

ferences with the dynamics in plastic crystals, where molecules are constrained to

vibrate around lattice sites, but perform full rotations which relax out-of-lattice col-

lective correlations. In the case of cluster crystals, cluster deformation constitutes

an additional mechanism of relaxation for such correlations. However, contrary to

the case of plastic crystals, self-motions can explore arbitrarily long distances in

cluster crystals by means of activated hopping. This leads to non-zero diffusivities

(Fig. 5.5) and full relaxation of incoherent scattering functions (Fig. 5.6).

As discussed above, the data presented in Fig. 5.6 for a selected non-RLV q = 4.0

display similar features, in the case of the species B, to those of the pure GEM-8

system. Novel features are revealed for both species when the scattering functions

are represented as a function of q. This is demonstrated in Fig. 5.7 for a fixed

crystalline state point, x = 0.95, ρ = 2.70, and for different values of q, including

RLVs and non-RLVs. In the case of the A-particles, the incoherent function displays

no signatures of glassy dynamics, but a fast decay for all the wave vectors. This

is also the case for the coherent function at non-RLVs. Indeed the respective time

scales are very similar for common q. However, a strong decoupling between self-

and collective dynamics is observed for RLVs. Contrary to the incoherent case, the

coherent function exhibits a plateau over several decades before relaxation at long

times.

This dynamic decoupling is rather different from that above discussed for the

species B at non-RLVs. On the contrary, it is somewhat reminiscent of the scenario

displayed by the small particles in disordered binary mixtures for certain ranges of

composition and size ratio [135, 136]. In such systems the small particles move along

a channel-like structure, formed by the interstitials of a matrix of large particles

which relaxes in a much longer time scale, or which is even in the glassy state. As a

consequence of the quasistatic arrangement of the interstitials, collective correlations

of the small particles decay very slowly, despite fast self-motions are performed,

allowing for the exploration of large distances. Thus, decoupling of incoherent and

coherent scattering functions of the small particles is observed in all the range of low

and moderate wave vectors which probe the matrix structure [135, 136]. As discussed

above, for the species A of the mixtures here investigated, the former decoupling is
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Figure 5.7: Intermediate incoherent and coherent scattering functions for fixed x =

0.95 and ρ = 2.70, at different wave vectors. Solid lines and symbols correspond

respectively to RLVs and to non-RLVs. The dashed lines indicate the zero value of

the correlators.

only observed for RLVs. This reflects the fact that the non-clustering particles are

preferentially located at the interstitials between the B-clusters, as was seen in the

static correlation functions (Fig. 5.2), and therefore also move preferentially between

them. Since collective correlations between interstitial positions are probed by the

RLVs, a decoupling between incoherent and coherent dynamics is observed for such

wave vectors, in analogy with the scenario discussed above for disordered mixtures.

Concerning the scattering functions of the clustering species B, slow relaxation

is observed for the incoherent and coherent cases, and both for RLVs and non-RLVs.

As usual, Lamb-Mössbauer factors show a monotonic q-dependence, while Debye-

Waller factors follow the modulations of the structure factor. Having noted this,
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coherent functions reveal non-trivial differences between RLVs and non-RLVs at the

longest times of the simulation window. Namely, FBB(q, t) exhibits, for RLVs, an

oscillation around t ∼ 105. This oscillation is apparently absent for non-RLVs.

For the sake of clarity, the former data for the RLVs are shown separately in

Fig. 5.8 over a time window t > 10. Given the large amplitude of the long-time an-

ticorrelations, reaching values of FBB(q, t) ∼= −0.2 at the minimum, it is improbable

that the oscillation around t ∼ 105 is an statistical artifact. The figure also includes

coherent data, at its respective RLVs, of the pure GEM-8 system at ρ = 3.0 and

T = 0.40. The rather different behavior in the pure system and in the mixture, even

with only a 5% of A-particles in the latter, becomes evident. While full relaxation

followed by oscillation is observed in the mixture, no decay is present in the pure

cluster crystal. It must be stressed that this difference is not related to a much

slower intrinsic dynamics of the pure system for the selected state point ρ = 3.0 and

T = 0.40. Indeed, by inspection of all the other dynamic observables introduced

above, including coherent functions for non-RLVs, it is found that the pure system

shows a faster dynamics than the mixture at the former state points. For example

DB ≈ 2× 10−6 and 10−5 respectively for the mixture and the pure system. There-

fore, the oscillatory feature observed at long times in the mixture is induced by the

addition of the gaussian A-particles.

The presence of negative correlations in the collective dynamics of B-particles

at near RLV-wavevectors, reached at typical times τa ∼ 105, is a particular feature

of the mixture, which is absent for the pure B system within the simulated time

window. Physically, it describes a process by which a positive density correlation at

t = 0 at a distance of the order of the lattice constant turns negative at time scales

τa. As such, it points to the existence of some characteristic oscillation frequency

ωa ∼ τ−1
a , which corresponds to wavevectors lying at the edge of the Brillouin zone,

i.e., a short-wavelength acoustical mode. Although such a process has not been seen

for the pure B-system, phonon excitations exist for the pure system as well; it is thus

reasonable to assume that the corresponding frequency for the pure system is much

smaller that ωa, so that the time required for this relaxation process to be seen in the

coherent scattering intensities is much longer. A detailed calculation of the phonon

spectra of the mixture at hand, along parallel lines to the one recently carried out
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for pure systems [137] would shed light into this question, it is however cumbersome

and it will be left as the subject of a future investigation. Nevertheless, in view

of the fact that the A-particles provide additional repulsions to the B-species and

thus enhance the restoring forces that act on the latter, it appears plausible that

in the mixture the phonon frequencies are larger than those in the pure system

and thus the characteristic time τa becomes visible within the simulation window.

Alternatively, the issue could also be resolved by performing very long simulations

for the pure B-system.

5.4 Conclusions

The dynamic aspects of binary mixtures of ultrasoft (GEM-8 and gaussian) parti-

cles have been studied by means of MD. The present work extends previous results

for the cluster crystal phase of the pure GEM-8 system, and investigates the ef-

fects of the addition of the non-clustering gaussian particles on the corresponding

dynamic scenario. The obtained results show that as the total density increases at

fixed composition, the GEM-8 species builds cluster crystals with a relatively high

localization. As in the one-component system, the incoherent scattering functions

indicate a localization transition for self-motions of the GEM-8 particles, which is

avoided by incessant hopping motion between clusters. This transition seems to

occur at lower densities than for out-of-lattice collective correlations, confirming in

the mixture the dynamic decoupling observed in the one-component cluster crystal.

On the other hand, the gaussian particles remain delocalized in the periodic

potential induced by the GEM-8 clusters and display fast self-motions. However,

slow collective dynamics is observed for specific wave vectors, namely those belonging

to the reciprocal lattice. This feature reflects the preferential motion of the gaussian

particles over the interstitials, confirming the expectations from static correlations.

A striking feature is revealed by the analysis of collective correlations of the GEM-8

particles, for wave vectors at the reciprocal lattice, a feature which we attribute to

the stiffening of an acoustical mode at the edge of the Brillouin zone, caused by the

presence of the A-particles.

An additional open question that should be the subject of future investigations
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is the influence of the type of elementary processes employed to model the dynamics

in the mixture, along the lines of the work by Coslovich et al. carried out for pure

systems [126]. Here, it should be examined which of the features discovered by

means of our MD approach survive if one employs Monte Carlo moves instead, which

are expected to mimic better the overdamped, Brownian Dynamics of the system.

Another fundamental question to investigate is how the distinct aspects revealing

dynamic heterogeneities in glass-formers [138] are modified in cluster crystals.

Finally, though a direct experimental evidence is still lacking, a very recent

simulation study indeed demonstrates the predictions based on the (zero-density

limit) GEM potential in the case of amphiphilic dendrimers [139]. By means of

monomer-resolved MC simulations, it was found that they form a homogeneous fluid

at low density, which, upon a density increase, spontaneously transforms into a fluid

of clusters. A clear signature of an active exchange of single dendrimers between

different clusters was also reported. These conclusions make us quite confident of the

reliability of the coarse-grained results for dense systems presented in this section.
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Chapter 6

Conclusion and Overview

In this thesis we presented two coarse-grained models for binary mixtures of soft-

colloids. The corresponding effective interaction potentials have been used to predict

theoretically both the structural correlations and the phase states of the mixtures.

Our work was motivated by the growing field of research in which deformable and

penetrable (spherical) colloids are mixed with macromolecular additives.

The first considered system was a star-linear polymer mixture in good solvent

conditions, which was modeled by means of a recently-developed coarse-grain ap-

proach [31]. In this case, the softness of the colloid depends on a single, well-defined

parameter, i.e. the functionality of the star (f). We have restricted ourselves to

the low/intermediate functionality regime (f < 32), which until now was not sys-

tematically explored. For this regime, fluid-fluid separation (demixing transition)

was found at high enough chain density, which proceeds from a previous clustering.

Upon the addition of linear chains, stars begin to form clusters, which in response

to a further increase of the chain density, loosely bond each other completing a tran-

sient non-percolating network. This network becomes unstable and eventually the

mixture will phase-separate.

In a similar way that in the conventional realm of colloid-polymer mixtures, we

carried out a second coarse-graining and introduced a chain-modified star-star effec-

tive interaction, which brings out a depletion-like picture. The resulting depletion

potentials have ranges that exceed those needed for phase separation and they can

become very deep under addition of sufficient polymer. Furthermore, in strong con-
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trast with both hard sphere mixtures and colloid/non-adsorbing polymer mixtures,

the range of the depletion interaction did not show a pronounced dependence on the

size of the depletant polymer.

Out results directly imply that mixtures of soft colloids with linear polymer

will undergo a fluid-fluid phase separation independently of the polymer size and,

subsequently will also show arrested spinodal decomposition, provide that the colloid

density is high enough [13]. Naturally, the latter scenario will disappear when the

(soft) colloids themselves do not arrest, which is indeed the case for low-functionality

stars. We expect these results to hold for most core-shell particle systems, inasmuch

as they can be interpreted in terms of the penetrability of the star soft-shell, as long

as it is thick enough to accommodate the small chains in their full extent.

In addition, we successfully tested theoretical results of our model against experi-

mental measurements of mixtures of star-like micelles and linear polymers. Without

any adjustable parameter, i.e., all quantities entering the theory (sizes of the two

components, star functionality and their concentrations) being simply read-off from

experiments, we find quantitative agreement between experiments and theory for

the influence of the added chains on the the structural correlations and the rheologi-

cal states of the mixture. In this way, the accuracy of the coarse-graining procedure

has been demonstrated for a range of concentrated mixtures with nontrivial spatial

correlations, clearly corroborating the success of coarse-graining beyond simulations,

in which a full, monomer-resolved, concentrated solution is unfeasible.

On the other hand, the second model studied here was a phase-separating bi-

nary mixture of GEM particles, in which one component tends to self-assemble into

clusters at high density. At the first instance, taking advantage of the mean-field

character of the GEM potential, we employed density functional theory, to inves-

tigate the interfacial and wetting properties of a (size-symmetric) GEM-2/GEM-4

fluid, which might represent athermal dendrimer/amphibilic dendrimer [96, 97], or

linear polymer/ring polymer [35, 99] mixtures. For the free interface, we found that

the density profiles of both species display oscillatory decay on both sides of the

interface, what was associated to the location of the Fisher-Widom line (FWL). Re-

garding the wetting of a Yukawa-like repulsive wall, we described a first-order wetting

transition which features a layering-like behavior as consequence of the clustering
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properties of GEM-4 particles. Although our approach can not fully account for

it, the possibility to have a cluster two-dimensional crystal close to the wall was

discussed.

Finally, we present a simulation study on the dynamics of a binary cluster crys-

tals. With the experience gained in one-component cluster crystals, we carried out

a systematic investigation regarding the effect of the addition of a smaller non-

clustering component. As the system was made denser, the cluster component can

feature a strong change in its dynamics, while the non-clustering one is hardly af-

fected. The latter remains delocalized in the periodic structure of the clustering

component and display fast self-motions. Nevertheless, slow collective dynamics is

observed for the wave vectors belonging to the reciprocal lattice, reflecting the pref-

erential motion of the small particles over the interstitials. We formulated some

analogies and differences with the one-component case, as well as with superionic

crystals and smetic liquid crystals. Although evidence of an experimental realiza-

tion of formation of cluster crystals is still lacking, most recent monomer-resolved

simulation results point out that amphiphilic dendrimers are eligible molecules to

accomplish this purpose [139].

A current line of intense work concerning coarse-graining techniques is that of

the multi-blob representation, whereby a polymer chain is divided into a certain

number of blobs. The latter are chosen in a such way that they interact through

density-independent, effective pair interactions, allowing to extend all the gained

experience in the dilute regime to the semi-dilute/concentrated regimes [140]. The

same approximation have been successfully to describe the phase behavior of diblock

copolymers, which, in a minimum model, can be mapped onto soft dumbbells [141].

In this way, the different ultrasoft models presented in this work could be useful

to further extend the achievements of the multi-blob representation to, e.g., more

complex molecular architectures, anisotropic [142] or functionalized particles [143],

and their generalization to non-equilibrium situations [144].
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Appendix A

Star polymers

Star polymers are a particular class of branched polymers, consisting of f linear

polymer chains (arms) attached to a common branch point (core). Assuming that

the arms are identical with respect to constitution and degree of polymerization (N),

and that the core size is small compared to the length of the chains, the Daoud-

Cotton model provides an elegant and transparent way to gain information about

the conformation of an isolated star polymer, in particular its monomer density

profile ϱ(r), from which the effective interaction between two isolated stars can be

derived [4, 5, 32, 33].

Daoud-Cotton model

This geometrical model employs scaling theory in the framework of blob model and

regards the inner of the star as a succession of concentric shells of spherical blobs

(see Fig. A.1), which are closely packed and within each one every chain behaves

as if it were free. In a good solvent and as consequence of the topology, the blob

size increases with the radial distance (ξ(r) ∼ f 1/2r), and three monomer density

regimes can be observed: (i) the melt-like core regime (r ∼ Rc, ϱ(r) ∼ cte); (ii)

the θ-like regime (r ∼ R1, ϱ(r) ∼ f 1/2/r), in which blobs are ideal and only the

solvent can penetrate in dense suspensions; and (iii) the excluded volume regime

(r ∼ R, ϱ(r) ∼ f 2/3/r4/3), in which blobs are swollen and star-star interpenetration

can take place in dense suspensions [17].
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Figure A.1: Left: Schematic representation of the blob representation of the internal

structure of a star polymer immersed in a good solvent. Right: Star-star effective

potential for several functionalities.

Star-star effective interaction

In the derivation of the effective star-star interaction for good solvent conditions,

i.e., when only excluded volume constraints are considered, three main aspects have

been taken into account. In first place, the configurational partition function of a

single star polymer is a power-law of the degree of polymerization N of the arms.

Secondly, at very close approaches, two star polymers of f arms each closely resemble

a single star with 2f arms. These two conditions lead to a logarithmic dependence

of the interaction at short distances between the cores [33, 145]. Finally, the third

and last consideration is that for high functionalities, star polymers are practically

spherical objects exhibiting a Yukawa-like interaction at long distances, which is

typical for sterically stabilized colloids. The resulting interaction potential reads:

Vss(r)

kBT
=

5

18
f 3/2


− ln


r
σs


+ 1

1+
√
f
2

r ≤ σs

1

1+
√
f
2


σs

r


exp


−

√
f

2σs
(r − σs)


r > σs

(A.1)

where σs/2 is the distance from star center to the center of the outermost blob

and the the decay length of the Yukawa interaction is set by the diameter of the

outermost blob diameter, ξmax ∼ 2σs/f
1/2. As can be seen in Fig. A.1, as f increases

the potential become harder and shorter-ranged [4, 5].



Appendix B

Ornstein-Zernike equation

Through the formalism of the distribution functions, it is possible to link the equilib-

rium thermodynamic properties of a fluid with the structural correlations between

its constituting particles. Instead of a direct calculation of the partition function

(ZN), this formalism allows to describe the system by considering the probability

of configurational groupings of two, three, and more particles [41]. The pair cor-

relation function g(r) particularly encloses much of the information concerning the

thermodynamic and structural properties of a fluid. Solving the Ornstein–Zernike

equation is a relatively fast way to obtain approximated results for g(r).

The Ornstein-Zernike (OZ) equation of a homogeneous and isotropic monodis-

persed system is given by

h(r12) = g(r12) + 1 = c(r12) + n


c(r13)h(r32)dr3 (B.1)

where ri is the position of particle i, rij = |ri − rj| (i ̸= j), and h(r) = g(r) − 1

is the total correlation function. So far, the OZ equation can be interpreted as a

definition of the direct correlation function c(r)1.

Equation (B.1) is an integral equation with two unknown functions, i.e. h(r)

and c(r), so that an additional relation between them becomes necessary. This

additional relation is known as closure relation, and can be derived from a diagram-

matic analysis. The diagrams can be adequately grouped leading to the identity

g(r) = exp [−βv(r) + h(r)− c(r)−B(r)] (B.2)

1The c(r) function is rigorously defined through density functional derivative methods [41].
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where v(r) is the interaction potential and B(r) encloses the so-called bridge dia-

grams. By using the closure relation (B.2) the OZ equation would be transformed

into an integral equation only for h(r) (or c(r)) if B(r) were replaced by an expres-

sion that involve only h(r) (or c(r)). Since, the complete functional form of B(r) is

practically unknown, some approximated closure relation has to be considered.

The approximate closure relation must be consistent with two features of the

potential: (i) if a hard-core potential is included, then h(r < a) = −1 with a the

diameter of particles, and (ii) at large distances c(r) → −βv(r). In the literature,

a number of approximative closure relations can be found, each of them giving

reasonable results for particular pair potentials. They include among others, mean

field (MFA), Perkus-Yevick (PY) and hypernetted chain (HNC) approximations.

The MFA pertains to set c(r) = −βv(r), while the PY and HNC closure relations

come from a partial summation of terms (of all orders in density) of the diagrammatic

expansion for g(r). The HNC approximation neglects all bridge diagrams by setting

B(r) = 0 in (B.2) whereas the PY approximation takes B(r) = ln(1+h(r)+ c(r))−
h(r) + c(r). The PY treatment is appropriate for describing the hard-core potential

while HNC appears to account satisfactorily for long-range repulsive potentials [146].



Appendix C

Non-ergodicity factor

The decay of collective density fluctuations in a fluid of N identical particles is

quantified by the normalized time-dependent density autocorrelation function, also

known as coherent (or collective) scattering function, which is defined as,

F (q, t) =
⟨ρ(q, t)ρ(−q, 0)⟩
⟨ρ(q, 0)ρ(−q, 0)⟩

(C.1)

where ρ(q, t) =
N

j=1 exp[iq · rj(t)] and the sum is performed over the coordinates

rj of all particles in the system. The plateau value of F (q, t), when present, provides

a measure of the structural arrest in the fluid, which persists for times that increase

rapidly with decreasing temperature or increasing the density [41].

The mode-coupling approach (MCT) to glass transition shows that the structural

arrest appears as a consequence of a non-linear, feedback mechanism. Within MCT

the glass transition is identified as an ergodic to non-ergodic transition when the non-

ergodicity factor f(q) = limt→∞ F (q, t), defined as the long-time limit of the density

autocorrelation function F (q, t), discontinuously jumps from zero (fluid) to a finite

value (arrested state). The non-ergodicity factor can be obtained by numerically

solving the equation

f(q)

1− f(q)
=

1

2


dk

(2π)3
V (q,k)f(k)f(|q− k|) (C.2)

V (q,k) =
ρS(q)

q4
[q · k ĉ(k) + q · (q− k) ĉ(|q− k|)]2 S(k)S(|q− k|) (C.3)
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where ρ is the number density and the direct correlation function c(r) is related to

the structure factor via the OZ equation in Fourier space, i.e., S(q) = [1− ρ ĉ(q)]−1

[41, 86].
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