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Abstract

Quantum communication is at the heart of the quantum information theory. We

study two types of quantum communication protocols over noisy transmission

channels, i.e. super dense coding and cryptography protocols. In the first part

of this thesis, for various scenarios, it is discussed how the super dense coding

capacity is influenced by noisy quantum channels. The case of memoryless chan-

nels as well as those channels with memory which are modelled by uncorrelated

and correlated noise, respectively, are considered. Explicitly Pauli channels over

arbitrary dimensions are treated and the super dense coding capacity for some

resource states is derived. For the qubit depolarizing channel, when noise is un-

correlated, the super dense coding capacity with respect to the input state is also

optimized. This illustrates a threshold value of the noise parameter below which

the super dense coding capacity is optimized by a maximally entangled initial

state, while above the threshold value the super dense coding capacity is opti-

mized by a product state. For Pauli channels, with correlated noise, the case of

non-unitary encoding is studied and the super dense coding capacity is derived.

The first part of this thesis is concluded with an example for multipartite super

dense coding.

In the second part of the thesis, the problem of optimal eavesdropping on

noisy states in quantum key distribution is investigated. The case of the six

state protocol, when the signal states are mixed with white noise, is considered.

This situation may arise either when Alice deliberately adds noise to the signal

states before they leave her lab, or, in a realistic scenario when the eavesdropper

(referred to as Eve) is not assumed to replace the noisy quantum channel by a

noiseless one. For individual attacks, we find Eve’s optimal mutual information
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with Alice as a function of the quantum bit error rate. Finally, the results illus-

trate that adding noise on the quantum level can make quantum key distribution

more robust against eavesdropping.
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Zusammenfassung

Die Quantenkommunikation ist ein zentrales Thema der Quanteninformations-

theorie. Wir untersuchen zwei Typen von Quantenkommunikationsprotokollen

in verrauschten Übertragungskanälen: superdichte Kodierung und Kryptogra-

phieprotokolle. Im ersten Teil der Arbeit wird für verschiedene Szenarien der

Einfluss von verrauschten Quantenkanälen auf superdichte Verschlüsselungska-

pazität diskutiert. Es wird sowohl der Fall von gedächtnislosen Kanälen als auch

der Fall von Kanälen, deren Gedächtnis durch unkorreliertes und korreliertes

Rauschen modelliert wird, betrachtet. Explizit werden Paulikanäle in beliebigen

Dimensionen behandelt und die superdichte Verschlüsselungskapazität für einige

Ressourcenzustände hergeleitet. Für den Qubit-Depolarisierungskanal mit unko-

rreliertem Rauschen wird die superdichte Kodierungkapazität abhängig vom Ein-

gangszustand optimiert. Sie illustriert, dass unter einem bestimmten Grenzwert

des Rauschparameters die superdichte Kodierungskapazität durch einen maximal

verschränkten Zustand und über dem Grenzwert durch Produktzustände opti-

miert wird. Für Paulikanäle mit korreliertem Rauschen wird der Fall von nicht

unitärer Verschlüsselung untersucht und die superdichte Kodierungkapazität her-

geleitet. Der erste Teil dieser Arbeit wird mit Beispielen für superdichte Kodierung

in Vielteilchensystemen abgeschlossen.

Im zweiten Teil dieser Arbeit wird das Problem des optimalen Abhörens von

verrauschten Zuständen im Bereich der Quantenschlüsselübertragung untersucht.

Der Fall des Sechs-Zustands-Protokolls, in dem die Signalzustände mit weißem

Rauschen gemischt werden, wird betrachtet. Diese Situation kann auftreten,

wenn Alice bewusst weißes Rauschen zu ihren Signalzuständen mischt, bevor

sie ihr Labor verlassen, oder, in einem realistischen Fall, wenn für den Abhörer

nicht angenommen wird, dass er den verrauschten Kanal durch einen rauschfreien
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Kanal ersetzt. Für individuelle Attacken finden wir Eves und Alices optimale

Transinformation als Funktion der Quantenbitfehlerrate. Abschließend zeigen

die Resultate, dass das Hinzufügen von Rauschen im Quantenbereich die Quan-

tenschlüsselübertragung robuster gegen Abhören machen kann.
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Chapter 1

Preliminaries

1.1 Classical information theory

Classical information theory, sometimes referred to as information theory, pro-

vides a structure for any type of communication and information processing. It

is generally believed that the information theory as a modern discipline has been

developed by Claude E. Shannon in his landmark article A mathematical the-

ory of communication [47]. In 1963, he expanded the ideas of this article in

a book with Warren Weaver [48]. Shannon’s theory provided a mathematical

model for communication based on probability theory and statistics. He focused

on engineering-type problems of communication and gave the engineers a way to

determine the capacity of a channel. However, the theory immediately absorbed

the interest of mathematicians and other scientists. Some of the applied areas of

information theory include communication theory, and coding theory which can

be subdivided to source coding and channel coding, signal analysis and cryptog-

raphy.

Information theory is a well developed subject. It provides many of tools

and concepts used in quantum information theory. Therefore, it is important to

consider classical information theory before studying how it needs to be adjusted

so that quantum effects can be taken into account.

The fundamental concept of the theory is information. It is defined as a

message or a sequence of messages to be communicated to the receiving terminal

[47]. Based on the binary logarithm, the unit of information is the bit. To convey
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1.1 Classical information theory

information from one location to another, a communication system is essential.

As depicted by Shannon, any communication system consists of five important

parts. An information source which produces a message and a destination to

whom the message is transmitted. Moreover, a transmitter and a receiver that

converts each message into some physical signals and vice versa. They can also

be called an encoder and a decoder. Finally, a channel is the medium over which

the physical signal is transmitted.

A key measure of information is known as entropy. It is closely related to the

thermodynamic entropy as defined by physicists. Entropy is a good measure of

the uncertainty associated with a random variable. For a random variable with

entropy of α, when a receiver (say Bob) at the other end of the channel gets a

signal that tells the value of that random variables, he gets rid of the uncertainty

α, or in the other words, Bob gains information α.

Besides the entropy, another important quantity in the theory is the mutual

information. In a simple communication language it measures the amount of

information shared between input and output of a noisy channel.

The rest of this section is dedicated to an introductory over classical entropies

as well as mutual information and classical channels.

1.1.1 Classical entropy

Shannon entropy

For a discrete random variable X with a sequence of messages x1, x2, ..., xn and

the probability distribution p(x1), p(x2), ..., p(xn), the Shannon entropy is defined

by

H(X) = −
∑

x

p(x) log p(x), (1.1)

where logarithms are taken to base 2. The Shannon entropy is a non-negative

concave function. That is, for two random variables X and Y with discrete

probability distributions {p(x)} and {q(x)}, the entropy of any average of these

two distributions is greater than the average of the entropies. i.e.

γH(X) + (1 − γ)H(Y ) � H(γX + (1 − γ)Y ), (1.2)

14



1.1 Classical information theory

where 0 � γ � 1 is the weight of each distribution.

Conditional entropy

Conditional entropy measures, on average, the amount of uncertainty of Y condi-

tional on knowing X. In the language of the communication, for noisy channels

without memory, and for given p(x), the output of the channel depends on the in-

put by the conditional probability p(y|x). The conditional entropy or conditional

uncertainty is then given by

H(Y |X) = −
∑
x,y

p(x)p(y|x) log p(y|x). (1.3)

Relative entropy

Relative entropy gives a measure of something like the distance between two

different probability distributions. For two random variables X and Y with the

probability distributions {p(x)} and {q(x)}, the relative entropy is defined by

H(p(x)‖q(x)) =
∑

x

p(x) log
p(x)

q(x)
. (1.4)

Relative entropy is non-symmetrical and non-negative. It takes the zero value if,

and only if, the two distributions are the same, and increases as the distributions

diverge.

1.1.2 Mutual information

For two random variables X and Y , the mutual information measures the amount

of information that can be obtained about one of the random variables by ob-

serving another. It is defined as

I(X : Y ) =
∑
x,y

p(x, y) log p(y|x) −
∑

y

p(y) log p(y). (1.5)

Mutual information is non-negative and symmetrical. It takes the zero value if,

and only if, two random variables are statistically independent.
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1.2 Quantum information theory

1.1.3 Classical channel

Channels have important roles in any communication system. A pair of wires,

a coaxial cable, a band of radio frequencies, a beam of light, etc., are examples

of classical channels. A channel can assumed to be noiseless, which is far from

reality, or it can be noisy. Mathematically speaking, a channel is a stochastic

map modeling the effect of the noise experienced by the classical message on its

way from the sender to the remote receiver. A binary symmetric channel is a

simple example for a classical channel. It can transmit only one of two symbols

(usually called 0 and 1). The effect of noise in this channel is to flip the bit being

transmitted with probability p, while with probability 1−p, the bit is transmitted

without error.

An important concept related to any communication channel is the capacity.

In the asymptotic limit of many uses of the channel, and by applying appropriate

error correction, the channel capacity is defined to be the maximum possible

rate at which information can be reliably transmitted through a noisy classical

channel. For a discrete channel, it is given by the maximum of the mutual

information I(X : Y ) with respect to all possible probability distributions {p(x)}.
i.e.,

C = max
{P (x)}

I(X : Y ) = max
{P (x)}

(H(X) − H(X|Y )) . (1.6)

1.2 Quantum information theory

Quantum information theory is the result of the generalization of the classical

information theory to the quantum world, where the information is carried by

quantum systems. Analogous to the bit, the unit in quantum information is the

quantum bit (qubit), a two-level quantum system. An example of a qubit is the

direction of the spin of an electron. Unlike classical states (which are discrete),

a quantum system can be in a superposition of states. This property is one of

the magnificent aspects of the quantum mechanics. The statistical state of a

quantum system is described by a density matrix ρ. It is a positive semidefinite

matrix with trace one. The operator that is represented by the density matrix is

16



1.2 Quantum information theory

called the density operator. A pure state density matrix has the form ρ = |ψ〉〈ψ|,
while a density matrix not expressible in this form is in a mixed state.

Another important nature of quantum world is the possibility of entangling

quantum systems. A state is said to be entangled if it cannot be written as a

convex combination of tensor products of its subsystems. Entanglement can be

used to perform tasks that are not possible with classical states. Teleportation

and super dense coding protocols are two phenomena based on entanglement.

Some concepts like capacity, entropy and channel in classical information the-

ory have been generalized for quantum information theory. In the following, a

short overview of some concepts in quantum world is provided.

1.2.1 Unitary evolution

A postulate in quantum mechanics expresses that the state of a closed (isolated)

quantum system at two different times are related by a unitary operator. That

is, if the state of a quantum system at time t1 is given by |ψ(t1)〉, at a later time

of t2 it goes to |ψ(t2)〉 = U(t1, t2)|ψ(t1)〉. The unitary transformation U(t1, t2) is

then defined by the Schrödinger equation,

i�
d|ψ(t)〉

dt
= H|ψ(t)〉, (1.7)

where H is the Hamiltonian of the system and � is the Planck’s constant. Us-

ing the Schrödinger equation (1.7), for a time-independent Hamiltonian H, the

unitary transformation U(t1, t2) is determined by U(t1, t2) = exp(− iH(t2−t1)
�

).

1.2.2 Measurement

The act of acquiring information about a physical system unavoidably disturbs the

state of the quantum system. There is no counterpart of this limitation in classical

physics. In quantum physics, a measurement is an interaction between a quantum

system and a measuring device. This interaction leaves the device in a state

representing the outcome of the measurement. The tradeoff between acquiring

information and creating disturbance is related to quantum randomness. It is

because the outcome of a measurement has a random element that we are unable

to infer the initial state of the system from the outcome.
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1.2 Quantum information theory

A postulate in quantum mechanics associates to each observable a self-adjoint

operator. Another postulate states that the measurement of a physical observ-

able corresponds to an action of the respective operator (say A) on the state

of the system. For a quantum system being described by a pure state |Ψ〉, the

probability of the outcome |Φk〉 is given by

pk = |〈Φk|Ψ〉|2. (1.8)

The process of measurement then causes a collapse of the quantum state |Ψ〉 to

the state |Φk〉. The set of the outcomes {|Φk〉} are described by the set of the

measurement operators {Ak} which act on the initial state |Ψ〉,

|Φk〉 =
Ak|Ψ〉√

pk

. (1.9)

The measurement operators Ak satisfy the completeness relation,∑
k

A†
kAk = �. (1.10)

For a quantum system being described by a mixed state ρ the probability of

the outcome |Φk〉 is given by

pk = 〈Φk|ρ|Φk〉. (1.11)

Von Neumann measurement

In this part, we explain an special type of general measurement, i.e. von Neu-

mann measurement. For an observable represented by an operator A, when the

outcomes of the measurement are the eigenvalues (say α) of the operator with the

eigenvectors |α〉 (A|α〉 = α|α〉), the quantum measurement is the so called von

Neumann or projective measurement. The observable A can then be represented

by

A =
∑

α

α|α〉〈α| =
∑

α

αPα, (1.12)
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1.2 Quantum information theory

where Pα = |α〉〈α| is the projection operator with the properties P 2
α = Pα, P †

α =

Pα, and PαPα̃ = δα,α̃Pα. The projection operators also satisfy the completeness

relation, ∑
α

P †
αPα =

∑
α

P 2
α =

∑
α

Pα = �. (1.13)

1.2.3 Quantum entropy

Von Neumann entropy

Quantum entropy is not a single concept but rather a family of notions. It

starts with von Neumann entropy which is an analogue of the Shannon entropy.

Von Neumann entropy, quantitatively, measures the information contained within

a quantum system. Instead of being defined on probability distributions, it is

defined on density matrices ρ by

S(ρ) = − tr(ρ log ρ). (1.14)

To compute the von Neumann entropy, one should find the spectrum of ρ. For

λi being the eigenvalues of ρ, it is computed by

S(ρ) = −
∑

i

λi log λi. (1.15)

Some of the important properties of von Neumann entropy are given in following.

• The von Neumann entropy is a non-negative function, S(ρ) � 0.

• For a Hilbert space with dimension d, S(ρ) takes the maximum value of log d

for the maximally mixed state �/d and the zero value for a pure state.

• The von Neumann entropy is invariant under unitary transformation U , i.e.

S(ρ) = S(UρU †).

• The von Neumann entropy is a concave function, i.e. for non-negative real

numbers αi and density operators ρi the von Neumann entropy satisfies the in-

equality

∑
i

αiS(ρi) � S

(∑
i

αiρi

)
, (1.16)
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1.2 Quantum information theory

where
∑

i αi = 1.

• The von Neumann entropy is additive. Given two density operators ρ and σ in

different Hilbert spaces A and B, we have S(ρ ⊗ σ) = S(ρ) + S(σ).

Quantum relative entropy

Another type of quantum entropy is the quantum relative entropy, which is a

measure of the closeness between two quantum states. For two density matrices

ρ and σ, the quantum relative entropy of ρ with respect to σ is defined by

S(ρ ‖ σ) = tr ρ (log ρ − log σ) . (1.17)

Some properties of relative entropy are:

• S(ρ ‖ σ) � 0, with equality if and only if ρ = σ.

• S(ρ ‖ σ) � ∞ if and only if supp(ρ) ⊆ supp(σ).

• S(ρ ‖ σ) is invariant under unitary transformations U , i.e. S(UρU † ‖ UσU †) =

S(ρ ‖ σ)

• Let H and L be two Hilbert spaces and T a completely positive trace preserving

(CPTP) map from H to L. Then, S(T(ρ) ‖ T(σ)) � S(ρ ‖ σ). Physically speak-

ing, the completely positive trace preserving map cannot increase the closeness

of two quantum states.

1.2.4 Quantum channel

Transmitting both known and unknown quantum states from one location to

another is usually an important task. It is crucial to have physical systems which

serve as quantum channels. Optical fibers and an unmodulated spin chain [7]

are examples of quantum channels which are suitable for long distance and short

distance quantum communication, respectively.

Mathematically, a quantum channel is a completely positive trace preserving

map which projects the quantum state ρ acting on the Hilbert space H1 to the

Hilbert space H2. That is, for Λ to be the quantum channel, Λ : B(H1) → B(H2).

Quantum channels are classified into channels with and without memory (they are

also called memory and memoryless channels). When noise acts independently

20



1.2 Quantum information theory

on each use of the channel we deal with memoryless channels. In comparison

to channels with memory, memoryless channels have received a great deal of

attention. However, since correlation between errors are common in the physical

systems, channels with memory are more realistic [9; 15; 29; 37; 38]. The spin

chain channel proposed by Bose [7] provides a physical example for a channel

with memory. It uses an unmodulated and unmeasured spin chain to transmit

quantum information. The state to be transmitted is placed by Alice on the

nearest spin to her. This state acts both as an input state and also part of

memory state for further uses of the channel. Afterwards, Bob who is at the

opposite end of the chain receives this state with some fidelity on the nearest

spin to him.

Both classical and quantum information can be carried over a quantum chan-

nel. The classical capacity theorem was independently proved by Holevo [23]

and Schumacher and Westmoreland [42] while the quantum capacity theorem

was originally stated by Lloyd [34]. In the asymptotic limit of many uses of

the channel, the classical (or quantum) capacity measures the maximum rate of

information in bits (or qubits) that can be faithfully transmitted per channel use.

The notions of channel capacity and super dense coding capacity are closely

related. The slight difference is that: the channel capacity is based on sending the

optimal states (including separable ones) through the channel, while, providing a

shared entangled state between Alice and Bob, the super dense coding capacity

is reached by the optimal local encoding on Alice’s side of the shared state (more

details are presented in chapter 3).
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Chapter 2

Introduction

A realistic quantum system usually suffers from unwanted interactions with the

outside world. It interacts with the environment via user interaction, power

supply, and also more fundamental processes like thermodynamic and electro-

magnetic interaction with objects outside the system. Any of these unwanted

effects are assumed as noise. Quantum noises such as thermal, shot, and Heisen-

berg uncertainty, all effect systems in various ways. Some are fundamental and

unavoidable, while others are due to quantum interactions with the environment.

Statistical prediction of the behavior of noise can be done by considering it as

quantum operations. From here we can built a picture of how a quantum state

changes when noise is introduced.

In quantum information schemes, noise does not always play a negative role.

Some positive aspects of noise have been already recognized in cryptography and

quantum biological systems. It is therefore necessary to understand the sources

and properties of quantum noise in order to design technological devices that can

avoid or possibly make use of them.

In this thesis, noise functions in both destructive and constructive directions.

In chapter 3, noise shows its destroying face in the context of super dense cod-

ing, while in chapter 3, an improving aspect of quantum noise for a problem in

cryptography is presented.
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2.1 Super dense coding

2.1 Super dense coding

Entanglement is a completely quantum characteristic which has given rise to a

number of phenomena such as super dense coding. In the original super dense

coding protocol, by making use of shared entanglement, it is possible to commu-

nicate two bits of classical information by sending one qubit only. It is possible

due to the nonlocal properties of quantum entanglement.

In a realistic super dense coding scenario, noise is unavoidably present in

the system. The central theme of chapter 3 is the question: How does noise in

the transmission quantum channel affect the super dense coding capacity ( the

optimal information transfer)? In our approach, noise can influence the super

dense coding protocol in two stages. Firstly, during the process of distributing the

entangled state between the sender and the receiver. Secondly, when the sender

(Alice) sends her part of the encoded state through the noisy channel to the

receiver (Bob). The notion of one-sided channel then regards to the special case

that noise only influences the Alice’s subsystem after encoding. It is assumed no

noise affects the Bob’s side. The two-sided channel refers to the case where both

Alice’s and Bob’s subsystems experience noisy channels. For two-sided channels,

noise can then be either uncorrelated or correlated. A Pauli channel in arbitrary

dimensions as one type of noise, and Bell states and Werner states as resources

for super dense coding, are widely used in this chapter.

In chapter 3, we discuss bipartite and multipartite super dense coding scenar-

ios, taken with the consideration of noisy channels and (non)unitary encoding.

We focus on the optimization problem of the Holevo quantity in order to find the

super dense coding capacity. chapter 3 is organized as follows:

Section 3.1 gives an introduction over super dense coding protocol and the

Holevo bound as a key concept in finding the super dense coding capacity is

discussed. An overview over different super dense coding scenarios in the presence

of noiseless channels is also provided. Section 3.2 is devoted to super dense

coding in the presence of uncorrelated noise and using unitary encoding. In

section 3.2.1, we introduce a certain condition on the von Neumann entropy and

we derive the super dense coding capacity for those cases where this condition

is fulfilled. In 3.2.2 and 3.2.3, we give examples of initial states and channels

24



2.2 Cryptography

for which this condition on the von Neumann entropy is satisfied, and calculate

their optimal super dense coding capacity explicitly. Section 3.2.4 provides a

comparison between the super dense coding capacities in the presence of a one-

sided or two-sided 2-dimensional depolarizing channel, and the classical capacity

of a 2-dimensional depolarizing channel. In section 3.3, we discuss the super dense

coding capacity in the presence of a correlated Pauli channel, considering unitary

and non-unitary encoding. In 3.3.2 and 3.3.3, we give examples of correlated

channels and initial states for which we can explicitly find the capacity. Section

3.4 is devoted to multipartite super dense coding. It provides a generalization

of the example discussed in 3.2.2. We will consider the case of one-sided Pauli

channels which influence Alices part of the state. We suppose that Bobs system

does not experience any noise. Section 3.5 provides an conclusion to chapter 3.

We show that in comparison to the super dense coding capacity with noiseless

channels, noise causes some degradation in information transform.

2.2 Cryptography

Cryptography is used to transmit a message from a sender to a receiver without

leaking useful information to any unauthorized party. It is a part of broader

field of cryptology, which also includes cryptanalysis, the art of code breaking.

Classical cryptography relies on computational complexity. It may be broken by

an effective algorithm or a powerful computer. In contrast to classical cryptogra-

phy, quantum cryptographical protocols provide an unconditional secure key, the

security of which is inherent in the laws of quantum mechanics.

In a typical implementation in quantum cryptosystems, polarized photons

are sent from Alice to Bob through an optical fiber. An eavesdropper (Eve) is

usually assumed to have every possible power that is compatible with the laws

of quantum mechanics. This power is not necessarily realistic, with respect to

existing tools and technology. In particular, Eve is supposed to be able to replace

the quantum channel (i.e. the optical fiber in our example given above), which

in reality always introduces some noise, by a noiseless fiber. Even though this

assumption is compatible with quantum mechanics, it is too restrictive from a

realist’s point of view.
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Chapter 4 is concerned with an eavesdropping problem in quantum key distri-

bution. It is assumed that Eve does not possess a noiseless fiber. The quantum

states thus will experience noise in transit from Alice to Bob. We will consider

white noise, where the noise parameter p describes the best existing fiber that

Eve can possibly get hold of. Our results also hold for the scenario where Alice

deliberately adds noise to the signal states before sending them to Bob, and the

quantum channel is noiseless. We focus in particular on the six state protocol,

for which signals are mixed with white noise. In this scenario, Alice sends the

signal states in three bases with equal probability through the channel where

eavesdropper is assumed to have access to it. Eve’s strategy is base to attack

the signal states individually. She attaches to each signal an ancilla state and

apply a unitary operator. She then attacks the signal states in a way that intro-

duces the same quantum bit error rate for different directions. That is because a

basis-dependent quantum bit error rate indicates the presence of an eavesdropper,

which Alice and Bob can easily test it.

The aim of chapter 4 is to present an intuitive understanding for the counter-

intuitive fact that additional noise on the quantum level may help the trusted

parties to improve the performance of a six state protocol. Chapter 4 is structured

as follows:

Section 4.1 provides an introduction on quantum key distribution protocols

and also two security theorems. In section 4.2, we discuss the eavesdropping on

noisy signals and we calculate the mutual information between Alice & Eve. We

will then in section 4.3 and section 4.4 derive the optimal mutual information

that Eve can obtain, when using individual attacks on noisy quantum signals,

and compare it to the mutual information achievable by eavesdropping on pure

states. We also obtain the mutual information between Alice & Bob. One ex-

pects that Alice and Bob, but also Eve, will lose some information, due to the

additional noise. It is not evident, however, how the relation between the two

mutual information curves (Alice & Bob versus Alice & Eve ) changes, when the

noise increases. By using Csiszár and Körner theorem we then in section 4.5,

discuss the security proof.
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Chapter 3

Super dense coding in the

presence of noise

3.1 Introduction

Super dense coding as a communication protocol was introduced in 1992 by Ben-

net and Wiesner [6]. It is one of the notable areas in which quantum entanglement

plays an essential role. Crucial to this communication protocol is an entangled

initial state that is shared between sender(s) and receiver(s), together with the

property that an entangled state can be transformed by the sender into another

state via a local operation, taken from some set of operations. The protocol of

super dense coding works as follows. Alice and Bob share a maximally entan-

gled pure state of two spin-1/2 particles of the form |φ+〉 = 1√
2
(|0A0B〉 + |1A1B〉)

where, 0A,B and 1A,B denote the spin-up and spin-down states, respectively. Al-

ice has qubit A and Bob has qubit B. For convenience, we drop labels A and B.

Alice locally applies one of the four unitary operations σ0, σ1, σ2 and σ3 to her

single qubit, where σ0 is the identity operator and the other three are the Pauli

operators

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.1)

Depending on Alice’s choice of transformation (up to some phases) the original

state |φ+〉 transforms into one of the four mutually orthogonal states |φ±〉 and
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|ψ±〉

(σ0 ⊗ �)|φ+〉 =
1√
2
(|00〉 + |11〉) ≡ |φ+〉, (3.2)

(σ1 ⊗ �)|φ+〉 =
1√
2
(|10〉 + |01〉) ≡ |ψ+〉, (3.3)

(iσ2 ⊗ �)|φ+〉 =
1√
2
(|10〉 − |01〉) ≡ |ψ−〉, (3.4)

(σ3 ⊗ �)|φ+〉 =
1√
2
(|00〉 − |11〉) ≡ |φ−〉. (3.5)

These four states are the so-called Bell states. Subsequent to the unitary rotation,

Alice sends her single qubit to Bob, who is now in possession of the total state.

Since Bell states are orthogonal, they all can perfectly be distinguished by Bob via

a suitable von Neumman measurement. If each of these states represents one piece

of information, Alice has managed to send one out of four messages (i.e. two bits

of classical information) by transmitting only a single qubit. This is impossible

without entanglement since the amount of classical information conveyed by an

isolated qubit cannot exceed one bit. These two classical bits of information, as

we precisely define later, is the super dense coding capacity. For the first time

the increased capacity of a quantum information channel by super dense coding

was experimentally verified in [39]. Until recently, experiments have only been

able to distinguish three out four of these states [39]. However, more complicated

schemes that make use of so-called hyper-entanglement can now distinguish all

four states [1].

The super dense coding capacity is defined to be the maximal amount of

classical information that can be reliably transmitted to the receiver for a given

entangled state. A crucial element in finding the super dense coding capacity is

the Holevo bound [22], which is a universal upper bound on classical information

that can be decoded from a quantum ensemble. Below, for noiseless and noisy

channels, we discuss the bound, and subsequently define the super dense coding

capacity for both cases.
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3.1.1 Holevo bound

A theorem stated by Gordon [20] and Levitin [32] and proved by Holevo [22]

states that the amount of accessible classical information (Iacc) contained in an

ensemble {ρi, pi} is upper bounded by the so-called Holevo quantity χ({ρi, pi}).
This upper bound is regardless to the measurement that can be performed on the

system, and is given by

Iacc ≤ χ({ρi, pi}) ≡ S (ρ) −
∑

i

piS (ρi) , (3.6)

where ρ =
∑

i piρi is the average ensemble state and S(η) = − tr(η log η) is the

von Neumann entropy of η. From the concavity of the von Neumann entropy

S(ρ) it follows that, the Holevo quantity is non-negative. In the limit of sending

long strings of the input quantum states ρi the Holevo bound is reachable [23; 42].

3.1.2 Super dense coding capacity

The first attentions, after proposing the super dense coding protocol, were given

to various scenarios over noiseless channels and unitary encoding [11; 12; 21]. For

ρ to be a shared mixed state between the sender and the receiver, Alice performs

a local unitary operation Wi on ρ to encode classical information through the

state ρi

ρi = (Wi ⊗ �)ρ(Wi
† ⊗ �). (3.7)

Subsequently, she sends her subsystem of dimension d to Bob (ideally via a noise-

less channel) with a probability pi. The ensemble that Bob receives is {ρi, pi}. As

we mentioned in the previous section, the amount of classical information trans-

mitted via a quantum channel in this process is measured by the Holevo quantity

(3.6). Then for a given shared state ρ, the super dense coding capacity has been

defined to be the maximal amount of the Holevo quantity χ{ρi, pi} with respect

to the probability pi and the unitary operator Wi

C = max
{pi,Wi}

(χ{ρi, pi}) ≡ max
{pi,Wi}

(
S (ρ) −

∑
i

piS (ρi)

)
. (3.8)
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Several lines of argument are possible tackle the optimization procedure [21; 53].

For instance, the approach given in [53] has introduced an upper bound on the

Holevo quantity (3.8)

χ({ρi, pi}) � log d + S(ρb) − S(ρ), (3.9)

where ρ is the initial resource state shared between Alice and Bob. Here, d is

the dimension of Alice’s subsystem, ρb is Bob’s reduced density operator with

ρb = tra ρ and S(ρ) = − tr(ρ log ρ) is the von Neumann entropy. The Holevo

quantity χ{ρi, pi} is a function of the resource state ρ and the encoding {Wi, pi}.
It has been proven that the upper bound (3.9) can be achieved by any complete

set of orthogonal unitary operators {Vi} which satisfy 1
d

∑d2

i=1 ViΞV †
i = tr[Ξ]� for

any operator Ξ, while the probability of choosing the unitary operators are equal,

i.e. pi = 1
d2 . Then the super dense coding capacity for noiseless channels and

unitary encoding, is given by

C = log d + S(ρb) − S(ρ) . (3.10)

Without the additional resource of entangled states, a d-dimensional quantum

state can be used to transmit the information log d. Hence, quantum states for

which S(ρb) − S(ρ) > 0, i.e. those which are more mixed locally than globally,

are the useful states for super dense coding and are the so called dense-codeable

states. For instance, any pure entangled bipartite state satisfies this inequality

and therefore, is useful for super dense coding while separable states always vio-

late it [28]. There exist a class of states which are entangled but not distillable,

i.e. using many copies of the state, it is impossible to obtain a maximally entan-

gled state from them by local operation and classical communication (LOCC).

These states are the so called bound entangled states [24]. Any bipartite bound

entangled state also violates S(ρb)−S(ρ) > 0 [11; 26] and therefore, like separable

states are useless for super dense coding. In general, relation S(ρb) − S(ρ) > 0

cannot hold for quantum states with positive partial transpose [11]. Therefore,

states that are useful for super dense coding always have a non-positive partial

transpose (NPT). However, the converse is not true: There exist states which are

NPT, but which are not useful for super dense coding. One can also classify bi-

partite states according to their usefulness for super dense coding [12]. A simple
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classification of bipartite quantum states according to their dense-codeability is

coming in the following (see also Figure 3.1).

1-Separable state: These states are not useful for super dense coding.

2-PPT entangled states: These states are entangled with positive partial trans-

pose but cannot be used for super dense coding. The entanglement of these states

cannot be detected by the partial transposition criterion.

3-NPT non-DC states: These states are entangled with non-positive partial trans-

pose but still not useful for super dense coding. However, their entanglement can

be detected by the partial transposition criterion.

4- NPT DC states. These states are entangled with non-positive partial transpose

and they are useful for super dense coding.

A generalization of this classification for the multipartite quantum states has been

considered in [11; 12]. Besides the case of a single sender and receiver sharing

an initial entangled state and using unitary encoding some other scenarios also

have been discussed: many senders and either one or two receivers, non-unitary

encoding, continuous variables, etc. [12; 27; 33].

3.1.3 Holevo quantity in the presence of noise

As we defined before, a quantum channel is a communication channel which

can transmit quantum information. Physically, a noisy quantum channel is a

process that arises through interaction with the environment. Mathematically, a

noisy quantum channel can be described as a completely positive trace preserving

(CPTP) map acting on the quantum state. We consider Λ : ρi → Λ(ρi) to be

a CPTP map that acts on the encoded state ρi (3.7). For {Λ(pi, ρi)} to be the

ensemble that Bob receives, the Holevo quantity is given by

χ{Λ(ρi, pi)} = S
(
Λ(ρ)

)
−
∑

i

piS (Λ(ρi)) =
∑

i

piS
(
Λ(ρi)‖Λ(ρ)

)
, (3.11)

where Λ(ρ) =
∑

i piΛ(ρi) is the average state and S(ρ ‖ σ) = tr ρ (log ρ − log σ)

is the relative entropy (1.17). Note that χ{Λ(ρi, pi)} is a function of the resource

state ρ, the encoding {Wi, pi} and the channel Λ. For brevity of notation we will

31



3.1 Introduction

S PPT NPT ( non-DC  ) NPT ( DC )

Figure 3.1: Classification of bipartite quantum states, according to their use-

fulness for super dense coding [12]. S stands for separable states. PPT, NPT

(non-DC) are the set of PPT entangled states and NPT entangled states which,

despite of being entangled, cannot be useful for super dense coding. NPT (DC)

are the set of NPT entangled states that can be used for super dense coding.

not write explicitly these arguments of χ. Likewise to the noiseless channel, the

super dense coding capacity C for a given resource state ρ and the noisy channel

Λ is defined to be the maximum of the Holevo quantity χ{Λ(pi, ρi)} with respect

to {Wi, pi}

C = max
{Wi,pi}

(χ{Λ(pi, ρi)}) ≡ max
{Wi,pi}

(
S
(
Λ(ρ)

)
−
∑

i

piS (Λ(ρi))

)
. (3.12)

The rest of the present chapter discusses different super dense coding scenarios,

taken with the consideration of noisy channels. For these scenarios, we focus on

the optimization problem of the Holevo quantity in order to find the super dense

coding capacity.
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3.2 Super dense coding with uncorrelated noise

A majority of research related to quantum channels has focused on memoryless

channels. As we defined in preliminary chapter, a channel is called memoryless

if the output of the channel just depends on the corresponding input and not on

any previous inputs. Uncorrelated noise is a model of such a channel. In this

section, we focus on uncorrelated noise, the case of a single sender and a single

receiver, and assumes unitary encoding. We study two different scenarios of noisy

channels. Firstly, we will assume that the sender Alice and the receiver Bob share

already a bipartite quantum state ρ (it could for instance have been distributed

to them by a third party). After Alice’s local encoding operation, she sends her

part of the quantum state to Bob via the noisy channel, described by the map

Λa, see Figure 3.2. We call this the case of a one-sided channel. Secondly, we

consider the case where Alice prepares the bipartite state ρ and sends one part

of it via a noisy channel, described by the map Λb, to Bob, thus establishing the

shared resource state for super dense coding. When the two parties want to use

this resource, Alice does the local encoding and then sends her part of the state

via the channel Λa to Bob, see Figure 3.3. We call this case a two-sided channel.

3.2.1 Optimal super dense coding capacity

In order to obtain the capacity in the presence of uncorrelated noise, we consider

bipartite systems, where each subsystem has finite dimension d. A general density

matrix on Cd ⊗ Cd in the Hilbert-Schmidt representation can be conveniently

decomposed as

ρ =
1

d2

(
�⊗ �+

d2−1∑
j=1

rjλj ⊗ �+ �⊗
d2−1∑
j=1

sjλj +
d2−1∑
j,k=1

tjkλj ⊗ λk

)

= �⊗ ρb

d
+

1

d2

(
d2−1∑
j=1

rjλj ⊗ �+
d2−1∑
j,k=1

tjkλj ⊗ λk

)
, (3.13)
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Λa

Bob
ρ

{W , p }i i

Alice

Figure 3.2: One-sided noise: Bipartite super dense coding with an initially en-

tangled state ρ, shared between Alice and Bob. Alice applies the unitary operator

Wi, taken from a set {Wi} with probability {pi}, on her part of the entangled

state ρ. She sends the encoded state with probability pi over a noisy channel,

described by the map Λa, to Bob. In the first approach we assume that Λa just

affects Alice’s subsystem, but that there is no noise on Bob’s side.
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Λa

BobAlice
(ρ)bΛ

{W , p }i i

Figure 3.3: Two-sided noise: Bipartite super dense coding with an initially en-

tangled state ρ, shared between Alice and Bob. In the second approach, the noisy

channel Λa influences Alice’s subsystem after encoding while the noisy channel

Λb has already affected Bob’s side in the distribution step of the initial state ρ.
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where ρb = tra ρ represents Bob’s reduced density operator and λj are the gen-

erators of the SU(d) algebra with tr λj = 0. The parameters rj, sj, tjk are real

coefficients. We introduce the set of unitary operators {Vi}, defined as

Vi=(m,n)|j〉 = e( 2πinj
d

)|j + m(mod d)〉. (3.14)

These operators satisfy the condition d−1 tr(ViV
†
j ) = δij. Integers m and n run

from 0 to d − 1 such that we have d2 unitary operators Vi. We will also consider

in the following the case of unital noisy channels acting on Alice’s and Bob’s sub-

systems, namely channels described by the completely positive trace preserving

map

Λ(ρ) =
∑
m

KmρK†
m ,

∑
m

K†
mKm = � ,

∑
m

KmK†
m = � , (3.15)

where Km are Kraus operators. Here, the first condition on the Kraus operators

corresponds to trace preservation, and the second condition guarantees the unital

property Λ(�) = �. We will show that for unital memoryless noisy quantum

channels and certain initial resource states, the set of unitary operators {Vi} in

equation (3.14) with equal probabilities is the optimum encoding and leads to

the maximum of the Holevo quantity.

We will first prove in Lemma 1 some properties that hold for the specific

encoding {Vi}. In the following the symbol τi will denote the resource state after

encoding with Vi, whereas τ will denote the resource state after encoding with an

arbitrary unitary operation U . The ensemble average after the specific encoding

with {Vi}, the probability distribution pi = 1/d2 and after action of the channel

will be denoted as ρ̃.

Lemma 1. Let Λa(ρ1) =
∑

m Amρ1A
†
m and Λb(ρ2) =

∑
m̃ Bm̃ρ2B

†
m̃ be any two

unital channels which act on Alice’s and Bob’s side, respectively. For an initial

resource state ρ shared between Alice and Bob, the global channel Λab then acts

as

Λab(ρ) =
∑
m,m̃

(Am ⊗ Bm̃) ρ
(
A†

m ⊗ B†
m̃

)
. (3.16)

Then the following statements hold:

1-a) For τi = (Vi ⊗ �)ρ(Vi
† ⊗ �), with Vi being defined in (3.14), the average ρ̃ of
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the ensemble {pi = 1
d2 , Λab(τi)} takes the form ρ̃ = �⊗ Λb(

ρb

d
).

1-b) For τ = (U ⊗ �) ρ
(
U † ⊗ �

)
with U being any unitary operator acting on

Alice’s system, tr (Λab(τ) log ρ̃) = −S(ρ̃).

1-c) The relative entropy between Λab(τ) and ρ̃ can be expressed as S (Λab(τ)‖ρ̃) =

S (ρ̃) − S (Λab(τ)).

Proof 1-a): In [21] it was shown that the average of the ensemble

{pi = 1
d2 , τi} is∑

i

1

d2
τi =

1

d2

∑
i

(Vi ⊗ �)ρ(V †
i ⊗ �)

=
1

d2

∑
i

(Vi ⊗ �)

[
�⊗ ρb

d
+

1

d2

(
d2−1∑
j=1

rjλj ⊗ �+
d2−1∑
j,k=1

tjkλj ⊗ λk

)]
(V †

i ⊗ �).

By using 1
d

∑
i(ViλjV

†
i ) = tr[λj]� and the Hilbert-Schmidt decomposition for ρ

(3.13) we get

= �⊗ ρb

d
+

1

d2

d2−1∑
j=1

rj

∑
i

(ViλjV
†
i ) ⊗ �+

1

d2

d2−1∑
j,k=1

tjk
∑

i

(ViλjV
†
i ) ⊗ λk

= �⊗ ρb

d
+

1

d

d2−1∑
j=1

rj tr[λj]︸ ︷︷ ︸
0

(�⊗ �) +
1

d

d2−1∑
j,k=1

tj,k tr[λj]︸ ︷︷ ︸
0

(�⊗ λk)

= �⊗ ρb

d
(3.17)

Then the average of the ensemble {pi = 1
d2 , Λab(τi)}d2−1

i=0 by using (3.17), the

linearity of the channel and its unital property is

ρ̃ =
∑

i

1

d2
Λab(τi) = Λab(

∑
i

1

d2
τ i) = Λab(�⊗ ρb

d
)

=
∑
m,m̃

(Am ⊗ Bm̃) (�⊗ ρb

d
)
(
A†

m ⊗ B†
m̃

)
=

∑
m

AmA†
m ⊗

∑
m̃

Bm̃
ρb

d
B†

m̃

= �⊗ Λb(
ρb

d
). (3.18)

�
Proof 1-b): In Lemma (1-a) we showed that ρ̃ = �⊗ Λb(

ρb

d
) and hence, log ρ̃ =
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�⊗ log Λb(
ρb

d
). Therefore:

tr (Λab(τ) log ρ̃) = tr

[(∑
m,m̃

(AmU ⊗ Bm̃)ρ(U †A†
m ⊗ B†

m̃)

)(
�⊗ log Λb(

ρb

d
)
)]

= tr

[∑
m,m̃

(AmU ⊗ Bm̃)ρ
(
U †A†

m ⊗ B†
m̃ log Λb(

ρb

d
)
)]

.

By using the decomposition (3.13) for ρ we have

tr (Λab(τ) log ρ̃) = tr

[(∑
m

AmUU †A†
m

)
⊗
(∑

m̃

Bm̃
ρb

d
B†

m̃ log Λb(
ρb

d
)

)

+
1

d2

(
d2−1∑
j=1

rj

∑
m

AmUλjU
†A†

m

)
⊗
(∑

m̃

Bm̃B†
m̃ log Λb(

ρb

d
)

)

+
1

d2

d2−1∑
j,k=1

tjk

(∑
m

AmUλjU
†A†

m

)
⊗
(∑

m̃

Bm̃λkB
†
m̃ log Λb(

ρb

d
)

)]
. (3.19)

By using linearity of the trace and the relations

tr[
∑
m

AmUU †A†
m] = tr[

∑
m

AmA†
m] = tr[�] , (3.20a)

tr[
∑
m

AmUλjU
†A†

m] = tr[UλjU
†∑

m

A†
mAm] = tr[UλjU

†] = 0, (3.20b)

we can write

tr (Λab(τ) log ρ̃)

= tra trb

[∑
m,m̃

�⊗
(
Bm̃

ρb

d
B†

m̃ log Λb(
ρb

d
)
)]

= trb

[(∑
m̃

Bm̃ρbB
†
m̃

)
log Λb(

ρb

d
)

]

= trb

[
Λb(ρb) log Λb(

ρb

d
)
]

= −S(ρ̃). (3.21)

�
Proof 1-c): Using the definition of the relative entropy S(σ‖ρ) = tr(σ log σ −
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3.2 Super dense coding with uncorrelated noise

σ log ρ) and the result of Lemma (1-b) we can write

S(Λab(τ)‖ρ̃) = tr(Λab(τ) log Λab(τ) − Λab(τ) log ρ̃)

= tr(Λab(τ) log Λab(τ)) − tr(Λab(τ) log ρ̃)

= S(ρ̃) − S(Λab(τ)). (3.22)

�
We now show that for resource states with a certain symmetry property,

namely for those states where the von Neumann entropy after the channel action

is independent of the unitary encoding, the encoding with the equally probable

operators {Vi}, as given in (3.14), is optimal. Our proof follows the line of

argument developed in [21].

Lemma 2. Let τi denote the resource state after encoding with Vi, given in

(3.14). Let

χ̃ = S(ρ̃) − 1

d2

d2−1∑
i

S(Λab(τi)) (3.23)

be the Holevo quantity for the ensemble {pi = 1
d2 , Λab(τi)}, where ρ̃ is the average

state of this ensemble and Λab(·) is defined in (3.16). For all the channels Λab and

all initial states ρ for which

S(Λab(τ)) =
1

d2

d2−1∑
i

S(Λab(τi)) (3.24)

holds, χ̃ is the super dense coding capacity. Here τ = (U ⊗ �) ρ
(
U † ⊗ �

)
, as we

defined already above, with U being any unitary operator.

Proof: Let us consider an arbitrary encoding, leading to an ensemble {pi, Λab(ρi)}.
We will show that its Holevo quantity χ cannot be higher than χ̃ in (3.23), if the

condition (3.24) is fulfilled.

If S(Λab(τ)) = 1
d2

∑
i S(Λab(τ

i)), then from (3.23) and Lemma (1-c),

χ̃ = S(ρ̃) − S(Λab(τ))

= S(Λab(τ)‖ρ̃). (3.25)
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3.2 Super dense coding with uncorrelated noise

Since this equation holds for any τ that fulfills (3.24), it specially holds for arbi-

trary encoding ρi, i.e.

χ̃ = S(Λab(ρi)‖ρ̃) =
∑

i

piS(Λab(ρi)‖ρ̃). (3.26)

Using Donald’s identity, see [17], the right hand side of the above equation can

be decomposed as∑
i

piS(Λab(ρi)‖ρ̃) =
∑

i

piS(Λab(ρi)‖Λab(ρ)) + S(Λab(ρ)‖ρ̃) (3.27)

with Λab(ρ) =
∑

i piΛab(ρi). The first term on the right hand side is the Holevo

quantity for any arbitrary ensemble {pi, Λab(ρi)}. Hence,

χ̃ = χ + S(Λab(ρ)‖ρ̃). (3.28)

Since the relative entropy S(Λab(ρ)‖ρ̃) is always positive or zero we can say that χ̃

is always bigger or equal than χ and hence, χ̃ is the super dense coding capacity.

�
From Lemma 2 we find that

χ̃ = S(ρ̃) − S(Λab(τ)). (3.29)

Since the above equation holds for τ = (U ⊗ �) ρ
(
U † ⊗ �

)
with any unitary U ,

it especially holds for τ = ρ. Hence, whenever the condition (3.24) is true, the

super dense coding capacity is given by

C = χ̃ = S(ρ̃) − S(Λab(ρ)), (3.30)

where ρ̃ is the average of the ensemble after encoding with the specific (and

equally probable) unitaries {Vi} and after the channel action, as introduced in

Lemma 1. As an interpretation of this formula, note that the action of a noisy

channel typically will increase the entropy of a given state, and therefore will

decrease the super dense coding capacity of the original resource state.

In the next two sub-sections we will study examples of channels and bipartite

states satisfying the condition (3.24), and evaluate explicitly the corresponding

super dense coding capacities.
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3.2 Super dense coding with uncorrelated noise

3.2.2 One-sided d-dimensional Pauli channel

A d-dimensional Pauli channel [18] that acts just on Alice’s side is defined by

ΛP
a (ρi) =

d−1∑
m,n=0

qmn(Vmn ⊗ �)ρi(V
†
mn ⊗ �) , (3.31)

where qmn are probabilities (i.e. qmn ≥ 0 and
∑

mn qmn = 1). The operators

Vmn, defined in (3.14) with a slightly different notation for the indices, can be

expressed as

Vmn =
d−1∑
k=0

exp

(
2iπkn

d

)
|k〉〈k + m(mod d)| . (3.32)

They satisfy tr Vmn = dδm0δn0 and VmnV
†
mn = �, and have the properties

VmnVm̃ñ = exp

(
2iπñm

d

)
Vm+m̃(mod d),n+ñ(mod d), (3.33)

tr[VmnV
†
m̃ñ] = dδmm̃δnñ, (3.34)

VmnVm̃ñ = exp

(
2iπ(ñm − nm̃)

d

)
Vm̃ñVmn. (3.35)

As the Kraus operators of one-sided Pauli channel (3.31) are unitary it is a unital

channel.

Bell states

A Bell state in d × d dimensions is defined as

|Φ00〉 =
1√
d

d−1∑
j=0

|j〉 ⊗ |j〉. (3.36)

The set of all maximally entangled Bell states is then obtained by |Φmn〉 = (Vmn⊗
�)|Φ00〉, for m, n = 0, 1, ..., d − 1. For d = 2, we use the notation |Φ+〉 ≡ |Φ00〉.
We will show that for a Bell state shared between Alice and Bob, and with a

one-sided d-dimensional Pauli channel, the condition (3.24) is fulfilled. To do so,

we will first prove the following Lemma.
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3.2 Super dense coding with uncorrelated noise

Lemma 3. Let us define πmn := (VmnU⊗�)ρ00(U
†V †

mn⊗�), where U is a unitary

operator, ρ00 = |Φ00〉〈Φ00| and Vmn is defined in (3.32). For m = m̃ or n = ñ,

πmnπm̃ñ = 0 (3.37)

holds.

Proof:

First, we prove that ρ00(U
†V †

mnVm̃ñU ⊗ �)ρ00 = 0. We start with proving

〈Φ00|(U †V †
mnVm̃ñU⊗�)|Φ00〉 = 0, from which the previous statement follows. Due

to (3.34) for m = m̃ or n = ñ the expression V †
mnVm̃ñ is traceless and {Vjk} form

a complete set. We can thus expand V †
mnVm̃ñ =

∑
(j,k) �=(0,0) βjkVjk with expansion

coefficients βjk. Therefore,

〈Φ00|(U †V †
mnVm̃ñU ⊗ �)|Φ00〉

=
∑

(j,k) �=(0,0)

βjk〈Φ00|(U †VjkU ⊗ �)|Φ00〉

=
1

d

∑
(j,k) �=(0,0)

d−1∑
m,n=0

βjk〈mm|(U †VjkU ⊗ �)|nn〉

=
1

d

∑
(j,k) �=(0,0)

d−1∑
m,n=0

βjk〈m|U †VjkU |n〉 〈m|n〉︸ ︷︷ ︸
δmn

=
1

d

∑
(j,k) �=(0,0)

βjk tr[U †VjkU ] =
1

d

∑
(j,k) �=(0,0)

βjk tr[Vjk] = 0.

Since ρ00 = |Φ00〉〈Φ00|, we arrive at

ρ00(U
†V †

mnVm̃ñU ⊗ �)ρ00 = 0. (3.38)

which completes this part of the proof. Therefore, by using (3.38), for m = m̃ or

n = ñ we have,

πmnπm̃ñ = (VmnU ⊗ �) ρ00(U
†V †

mnVm̃ñU ⊗ �)ρ00︸ ︷︷ ︸
0

(U †V †
m̃ñ ⊗ �) = 0.

�
By using the orthogonality property (3.37) and the purity of the density operators
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3.2 Super dense coding with uncorrelated noise

πmn, we can write

S(ΛP
a (τ)) = S

(
ΛP

a

(
(U ⊗ �)ρ00(U

† ⊗ �)
))

= S

⎛
⎝ d−1∑

m,n=0

qmn (VmnU ⊗ �)ρ00(U
†V †

mn ⊗ �)︸ ︷︷ ︸
:=πmn

⎞
⎠

= H({qmn}) , (3.39)

where H({qmn}) = −∑
m,n qmn log qmn is the Shannon entropy defined in (1.1).

We note that the von Neumann entropy S(ΛP
a (τ)) is independent of the unitary

encoding U . Consequently, for a one-sided d-dimensional Pauli channel with an

initial Bell state, the condition (3.24) is satisfied. The super dense coding capacity

(3.30) for an initial Bell state and a one-sided Pauli channel in d dimensions takes

the form

Cone−sided Pd
Bell = S(

�

d
⊗ ρb) − H({qmn})

= S(
�

d
) + S(ρb) − H({qmn}) = log d2 − H({qmn}) (3.40)

where S(ρb) = log d for a d-dimensional Bell state and m, n = 0, 1, ..., d−1 . Using

(3.10) we notice that the super dense coding capacity of a d× d-dimensional Bell

state in the noiseless case is given by log d2. Thus, in the presence of a one-

sided Pauli channel the super dense coding capacity is reduced by the amount

H({qmn}) with respect to the noiseless case - i.e. the channel noise is simply

subtracted from the super dense coding capacity with noiseless channels.

We notice that the same capacity is achieved also for any maximally entangled

state, i.e. for any |Φ〉 = Ua ⊗ Ub|Φ00〉. Actually, Lemma 3 still holds in this case

and therefore also the derivation of the capacity (3.40).

Werner states

For ρ00 to be a Bell state in d dimensions with ρ00 = |Φ00〉〈Φ00|, we say ρW is a

Werner state in d dimensions if ρW = 1−η
d2 � + ηρ00 with 0 ≤ η ≤ 1. Sometimes

its also called the noisy Bell state or a pseudo pure Bell state. For d = 2 we

use the notation ρW = 1−η
4
� + ηρ+ for a Werner state with ρ+ = |Φ+〉〈Φ+|. We

will now evaluate the super dense coding capacity for an input Werner state.
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3.2 Super dense coding with uncorrelated noise

The Werner state ρW in the presence of a one-sided d-dimensional Pauli channel

provides another example of states and channels that satisfy (3.24).

Using (3.39), {qmn} is the set of eigenvalues of ΛP
a

[
(U ⊗ �)ρ00(U

† ⊗ �)
]
. The

Pauli channel is a linear and unital map. Expressing the identity matrix � in a

suitable basis, we arrive at

S
(
ΛP

a

(
(U ⊗ �)ρW (U † ⊗ �)

))
= S

(
ηΛP

a

[
(U ⊗ �)ρ00(U

† ⊗ �)
]
+

1 − η

d2
�

)

= S

(
ηdiag (q00, ..., qd−1d−1) +

1 − η

d2
�

)

= S

(
diag

(
ηq00 +

1 − η

d2
, ..., ηqd−1,d−1 +

1 − η

d2

))

= H

(
{ηqmn +

1 − η

d2
}
)

. (3.41)

From (3.41) it is apparent that the output channel entropy is independent of the

unitary encoding. Consequently, the super dense coding capacity, according to

(3.30), is given by

Cone−sided Pd
Werner = log d2 − H({1 − η

d2
+ ηqmn}). (3.42)

The above capacity is also achieved by any other state with the form Ua ⊗
UbρW U †

a ⊗ U †
b .

3.2.3 Two-sided d-dimensional depolarizing channel.

In (3.31) we introduced the concept of a one-sided d-dimensional Pauli channel.

A two-sided d -dimensional Pauli channel is then defined by

ΛP
ab(ρi) =

d−1∑
m,n,m̃,ñ=0

qmnqm̃ñ(Vmn ⊗ Vm̃ñ)ρi(V
†
mn ⊗ V †

m̃ñ). (3.43)

The d -dimensional depolarizing channel is a special case of a d -dimensional Pauli

channel, with probability parameters

qmn =

{
1 − p + p

d2 , m = n = 0
p
d2 , otherwise,

(3.44)
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3.2 Super dense coding with uncorrelated noise

with the noise parameter p, 0 ≤ p ≤ 1, and m, n = 0, ..., d−1. In a d−dimensional

depolarizing channel with probability p, the quantum state is replaced with a

completely mixed state �

d
and with the probability 1 − p left unchanged. In the

following Lemma we make the statement that the von Neumann entropy of a

state that was sent through the two-sided depolarizing channel is independent of

any local unitary transformations that were performed before the action of the

channel.

Lemma 4. Let Λdep
ab denote a two-sided d -dimensional depolarizing channel. For

a state ρ and bilateral unitary operator Ua ⊗ Ub, we have

S
(
Λdep

ab

(
(Ua ⊗ Ub) ρ(U †

a ⊗ U †
b )
))

= S(Λdep
ab (ρ)). (3.45)

Proof: Considering Λdep
a and Λdep

b to be the d -dimensional depolarizing channels

that act on Alice’s and Bob’s system, respectively, it is straightforward to verify

that

Λdep
a (λj) = (1 − p)λj , (3.46)

(where λj are as before the generators of SU(d)), and analogously for Bob’s

system. We also show that for Λdep
a (UλjU

†) a similar expression holds. By the

fact that λj is traceless, we have

Λdep
a (UλjU

†) = Λdep
a

⎛
⎝ d−1∑

m,n�=(0,0)

γmnVmn

⎞
⎠ .

Here, Λdep
a (·) as we defined before is a linear map that is given by Λdep

a (·) =∑d−1
m̃,ñ=0 qm̃ñVm̃ñ(·)V †

m̃ñ. Then we can write

Λdep
a (UλjU

†) =
d−1∑

m,n�=(0,0)

γmnΛdep
a (Vmn)

=
d−1∑

m̃,ñ=0

d−1∑
m,n�=(0,0)

γmnqm̃ñVm̃ñVmnV
†
m̃ñ.
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3.2 Super dense coding with uncorrelated noise

By using (3.35) and unitarity of Vmn, we have

Λdep
a (UλjU

†) =
d−1∑

m̃,ñ=0

d−1∑
m,n�=(0,0)

γmnqm̃ñ exp

(
2iπ(nm̃ − ñm)

d

)
Vmn

=
d−1∑

m,n�=(0,0)

γmnVmn

d−1∑
m̃,ñ=0

qm̃ñ exp

(
2iπ(nm̃ − ñm)

d

)
.

For qm̃ñ we replace the expression of (3.44) and we can write

Λdep
a (UλjU

†) =
d−1∑

m,n�=(0,0)

γmnVmn

⎛
⎜⎜⎜⎜⎝1 − p +

p

d2

d−1∑
m̃,ñ=0

exp

(
2iπ(nm̃ − ñm)

d

)
︸ ︷︷ ︸

δ0,mδ0,n

⎞
⎟⎟⎟⎟⎠

= (1 − p)
d−1∑

m,n�=(0,0)

γmnVmn = (1 − p)UλjU
†,

which completes this part of proof. Therefore,

Λdep
a (UaλjU

†
a) = (1 − p)UaλjU

†
a . (3.47)

In the next step we show the following covariance property of the two-sided de-

polarizing channel, namely

Λdep
ab

(
(Ua ⊗ Ub) ρ(U †

a ⊗ U †
b )
)

= (Ua ⊗ Ub)
[
Λdep

ab (ρ)
]
(U †

a ⊗ U †
b ), (3.48)

holds. To prove the above expression, we use the decomposition (3.13) for ρ and
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(3.47), and get

Λdep
ab

(
(Ua ⊗ Ub) ρ(U †

a ⊗ U †
b )
)

=
1

d2
Λdep

ab

[(
�⊗ �+

d2−1∑
j=1

rjUaλjU
†
a ⊗ �

+�⊗
d2−1∑
j=1

sjUbλjU
†
b +

d2−1∑
j,k=1

tjkUaλjU
†
a ⊗ UbλkU

†
b

)]

=
1

d2

[
�⊗ �+

d2−1∑
j=1

rjΛ
dep
a (UaλjU

†
a) ⊗ �+ �⊗

d2−1∑
j=1

sjΛ
dep
b (UbλjU

†
b )

+
d2−1∑
j,k=1

tjkΛ
dep
a

(
UaλjU

†
a

)⊗ Λdep
b

(
UbλkU

†
b

)]

=
1

d2

[
�⊗ �+ (1 − p)

(
d2−1∑
j=1

rjUaλjU
†
a ⊗ �+ �⊗

d2−1∑
j=1

sjUbλjU
†
b

)

+(1 − p)2

d2−1∑
j,k=1

tjkUaλjU
†
a ⊗ UbλkU

†
b

]

= (Ua ⊗ Ub)
1

d2

[
�⊗ �+ (1 − p)

(
d2−1∑
j=1

rjλj ⊗ �+ �⊗
d2−1∑
j=1

sjλj

)

+(1 − p)2

d2−1∑
j,k=1

tjkλj ⊗ λk

]
(U †

a ⊗ U †
b )

= (Ua ⊗ Ub)
[
Λdep

ab (ρ)
]
(U †

a ⊗ U †
b ).

Since the von Neumann entropy is invariant under unitary transformations, the

proof of Lemma 4 is complete. �
As a consequence of Lemma 4 we can conclude that for a two-sided d-dimensional

depolarizing channel the entropy for a given initial state ρ is independent of the

unitary encoding, namely

S
(
Λdep

ab

(
(U ⊗ �) ρ

(
U † ⊗ �

)))
= S

(
Λdep

ab (ρ)
)

. (3.49)

Therefore, (3.24) holds and, according to (3.30), the super dense coding capacity

for a given general resource state ρ, with a two-sided d-dimensional depolarizing
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channel is given by

Ctwo−sided depd(ρ) = S

(
�

d
⊗ Λdep

b (ρb)

)
− S

(
Λdep

ab (ρ)
)

= S

(
�

d

)
+ S

(
Λdep

b (ρb)
)
− S

(
Λdep

ab (ρ)
)

= log d + S
(
Λdep

b (ρb)
)
− S

(
Λdep

ab (ρ)
)

. (3.50)

Notice that since Lemma 4 holds for any local unitary Ua ⊗ Ub, the capacity

(3.50) depends only on the degree of entanglement of the input state ρ. In other

words, all input states with the same degree of entanglement have the same super

dense coding capacity.

Comparing the above expression (3.50) with the one for the noiseless case,

given by C = log d+S(ρb)−S(ρ), one realizes that in the case of two-sided noise

the channel that affects Bob’s subsystem enters twice, both in the von Neumann

entropies for the local and the global density matrix.

Super dense coding capacity and optimal initial state

In (3.50) we obtained the super dense coding capacity of an arbitrary given ini-

tial resource state ρ for the two-sided d-dimensional depolarizing channel. In this

subsection we perform the optimization of the super dense coding capacity over

the initial state of two qubits for the two-sided 2-dimensional depolarizing chan-

nel. Thus, we derive the optimal value of the super dense coding capacity, if Alice

and Bob have a depolarizing channel available for the transfer of 2-dimensional

quantum states and can choose the initial resource state.

A pure state of two qubits |ϑα〉 can be written in the Schmidt bases {|ui〉}, {|vi〉}
as |ϑα〉 =

√
1 − α|u1v1〉 +

√
α|u2v2〉 with 0 ≤ α ≤ 1/2. Two local unitaries Va

and Vb convert the computational bases to the Schmidt bases. Therefore, |ϑα〉 in

computational bases can be written as |ϑα〉 = Va ⊗ Vb(
√

1 − α|00〉 +
√

α|11〉). In

(3.45) we showed that the output von Neumann entropy of the two-sided depolar-

izing channel is invariant under previous local unitary transformations. Therefore

|ϑα〉 and |ϕα〉 =
√

1 − α|00〉+√
α|11〉 lead to the same dense coding capacity. We

can thus parametrize a pure initial state as a function of a single real parameter,

namely as the state |ϕα〉, and follow the approach of Ref. [13]. The super dense
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3.2 Super dense coding with uncorrelated noise

coding capacity (3.50) of a pure state of two qubits as a function of α and the

noise parameter p is given by

Ctwo−sided dep2
α (|ϕα〉〈ϕα|) = 1 − ξ1 log ξ1 − ξ2 log ξ2 + γ1 log γ1 + γ2 log γ2

+ 2γ3 log γ3 , (3.51)

where γi (with i = 1, 2, 3, 4) are the eigenvalues of Λdep
ab (|ϕα〉〈ϕα|) and ξs (with

s = 1, 2) are the eigenvalues of Λdep
b (ρb,α), where ρb,α = tra(|ϕα〉〈ϕα|). The

eigenvalues γi and ξs are explicitly given by

γ1,2 =
1

2

(
1 − p(1 − p

2
) ± (1 − p)

√
1 − 4pα(2 − p)(1 − α)

)
,

γ3 = γ4 =
p

2
(1 − p

2
) ,

ξ1 = α − pα +
p

2
,

ξ2 = 1 − α + pα − p

2
. (3.52)

We can now maximize expression (3.51) with respect to the variable α, for

a given noise parameter p, and find interesting results. They are illustrated in

Figure 3.4, where we plot the super dense coding capacity in (3.51) as a function

of the noise parameter p, for various values α. We find that there is a threshold

value pt ≈ 0.345, where two curves cross each other: for 0 ≤ p ≤ 0.345 the value

α = 1/2 leads to the highest super dense coding capacity, i.e. the optimal initial

resource state is a Bell state. For p ≥ 0.345, the optimal choice is α = 0, i.e.

product states are best for super dense coding. As shown graphically in the close-

up of Figure 3.4 , the curves for intermediate values of α are always lower than

α = 1/2 or α = 0. In order to prove this claim, we also evaluated Ctwo−sided dep2

α=1/2 −
Ctwo−sided dep2

α in the range of 0 ≤ p ≤ 0.345 and Ctwo−sided dep2

α=0 − Ctwo−sided dep2
α in

the range of 0.345 ≤ p ≤ 1 as functions of the parameters α and p. We found that

these two functions are positive or zero. Thus, for pure initial states it is always

best to either use maximally entangled states or product states, depending on

the noise level.
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Figure 3.4: The super dense coding capacity for the two-sided depolarizing

channel in 2 dimensions, Ctwo−sided dep2
α , as function of the noise parameter p,

for α = 0, α = 0.08, α = 0.2 and α = 1/2. For the definition of α see main text.

For 0 ≤ p ≤ 0.345 a Bell state, i.e. α = 1/2, leads to the optimal capacity, while

for 0.345 ≤ p ≤ 1 the optimal initial state is a product state (α = 0).
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3.2 Super dense coding with uncorrelated noise

In the following we call the super dense coding capacity of an initial Bell

state |ϕ1/2〉 in the presence of a two-sided 2-dimensional depolarizing channel

Ctwo−sided dep2

Bell . Using (3.51) with α = 1/2, this capacity is given by

Ctwo−sided dep2

Bell = 2 +
1 + 3(1 − p)2

4
log

1 + 3(1 − p)2

4

+ 3
1 − (1 − p)2

4
log

1 − (1 − p)2

4
. (3.53)

The super dense coding capacity with an initial product state |ϕ0〉 in the presence

of a two-sided 2-dimensional depolarizing channel is denoted in the following as

Cch dep2 . From (3.51) with α = 0 it follows that

Cch dep2 = 1 +
p

2
log

p

2
+

2 − p

2
log

2 − p

2
. (3.54)

Note that (3.54) is identical to the classical channel capacity of the depolarizing

channel for qubits [30].

We now show that using mixed initial states as a resource cannot increase the

super dense coding capacity, i.e. |ϕ1/2〉 and |ϕ0〉 are the optimal input states for

the range of noise parameter 0 ≤ p ≤ 0.345 and 0.345 ≤ p ≤ 1, respectively. To

show this claim we first write the super dense coding capacity (3.50) in the form

of the relative entropy

Ctwo−sided depd(ρ) = log d + S
(
Λdep

b (ρb)
)
− S

(
Λdep

ab (ρ)
)

= − trb

[
Λdep

b (ρb)
(
log Λdep

b (ρb) − log d
)]

− S
(
Λdep

ab (ρ)
)

= − trb

[
Λdep

b (ρb)
(
log Λdep

b

(ρb

d

))]
− S

(
Λdep

ab (ρ)
)

By using tra Λdep
ab (ρ) = Λdep

b (ρb) and also the property �⊗ log σ = log(�⊗ σ), we

arrive at the relative entropy form

Ctwo−sided depd(ρ) = − tra trb

[
Λdep

ab (ρ)
(
�⊗ log Λdep

b

(ρb

d

))]
− S

(
Λdep

ab (ρ)
)

= − tr
[
Λdep

ab (ρ) log
(
�⊗ Λdep

b

(ρb

d

))]
− S

(
Λdep

ab (ρ)
)

= tr
[
Λdep

ab (ρ) log Λdep
ab (ρ)

]
− tr

[
Λdep

ab (ρ) log
(
�⊗ Λdep

b

(ρb

d

))]
= S(Λdep

ab (ρ)‖�
d
⊗ Λdep

b (ρb)) . (3.55)
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3.2 Super dense coding with uncorrelated noise

Since any mixed state can be written as a convex combination of pure states ρk,

i.e. ρmix =
∑

k pkρk, and ρb,mix = tra(ρmix) =
∑

k pkρb,k, we can write

Cρmix
= S(Λdep

ab (ρmix)‖ρ̃)

= S(Λdep
ab (ρmix)‖�

d
⊗ Λdep

b (ρb,mix))

= S(
∑

k

pkΛ
dep
ab (ρk)‖�

d
⊗
∑

k

pkΛ
dep
b (ρb,k))

= S(
∑

k

pkΛ
dep
ab (ρk)‖

∑
k

pk
�

d
⊗ Λdep

b (ρb,k))

≤
∑

k

pkS(Λdep
ab (ρk)‖�

d
⊗ Λdep

b (ρb,k)) . (3.56)

In the above inequality we have used the subadditivity of the relative entropy,

i.e. S(
∑

i piri‖
∑

i qisi) ≤
∑

i piS(ri‖si) + H(pi‖qi), where H(·‖·) is the Shannon

relative entropy, defined as H(pi‖qi) =
∑

i pi log pi

qi
[40]. We showed before that

the super dense coding capacity of a pure state for 0 ≤ p ≤ 0.345 is upper bounded

by the super dense coding capacity of a Bell state |ϕ1/2〉, and for 0.345 ≤ p ≤ 1 it

is upper bounded by the product state |ϕ0〉. Remembering that ρk is pure, and

using (3.55), we find that for 0 ≤ p ≤ 0.345

Cρmix
≤

∑
k

pkS(Λdep
ab (ρk)‖�

d
⊗ Λdep

b (ρb,k)) ≤ Ctwo−sided dep2

Bell , (3.57)

and for 0.345 ≤ p ≤ 1

Cρmix
≤

∑
k

pkS(Λdep
ab (ρk)‖�

d
⊗ Λdep

b (ρb,k)) ≤ Cch dep2 , (3.58)

which proves our claim.

It is interesting to note that the optimal capacity for the two-sided qubit de-

polarizing channel is a non-differentiable function of the noise parameter p, and

that the optimal states are either maximally entangled or separable. In other

words, there is a transition in the entanglement of the optimal input states at the

particular threshold value of the noise parameter pt ≈ 0.345. Notice that a similar

transition behavior in the entanglement of the optimal input states for transmis-

sion of classical information was found also for the qubit depolarizing channel
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3.2 Super dense coding with uncorrelated noise

with correlated noise [36]. It is interesting that in the present context the tran-

sition behavior arises in a memoryless channel and is not related to correlations

introduced via the noise process.

3.2.4 Super dense coding capacity versus channel capacity

In this section, we consider the question of whether or not it is reasonable in

the presence of noise to use the super dense coding protocol for the transmission

of classical information? To answer this question, we provide a comparison be-

tween the classical capacity of a 2-dimensional depolarizing channel and the super

dense coding capacities of a one-sided and two-sided 2-dimensional depolarizing

channel, for the resource of an initially shared Bell state. Since the depolarizing

channel is a special form of a Pauli channel, according to (3.40) the super dense

coding capacity for a one-sided 2-dimensional depolarizing channel for an initially

shared Bell state is

Cone−sided dep2

Bell = 2 +
4 − 3p

4
log

4 − 3p

4
+ 3

p

4
log

p

4
. (3.59)

The super dense coding capacity for a two-sided 2-dimensional depolarizing chan-

nel with a Bell state as resource is given in (3.53). The classical capacity Cch dep2 of

the 2-dimensional depolarizing channel is achieved by an ensemble of pure states

belonging to an orthonormal basis, say {|0〉, |1〉} at the channel input, with equal

probability 1
2

and performing a complete von Neumann measurement in the same

basis over the channel output [30]. Its expression is given explicitly in (3.54).

In Figure 3.5, we plot Cone−sided dep2

Bell , Ctwo−sided dep2

Bell , Cch dep2 , and C = 1 in terms

of the noise parameter p. As we expect, the first three capacities Cone−sided dep2

Bell ,

Ctwo−sided dep2

Bell and Cch dep2 decrease as the noise increases. As expected, the

super dense coding capacity of a one-sided 2-dimensional depolarizing channel

Cone−sided dep2

Bell is greater than the classical capacity Cch dep2 for all values of p, as

the additional resource of entanglement is used in super dense coding. The com-

parison between Ctwo−sided dep2

Bell and Cch dep2 illustrates that for 0.345 ≤ p ≤ 1 the

2-dimensional depolarizing channel capacity is greater than the super dense cod-

ing capacity for a two-sided 2-dimensional depolarizing channel. This suggests
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3.2 Super dense coding with uncorrelated noise

that for 0.345 ≤ p ≤ 1 Alice and Bob do not win by sending classical information

via a super dense coding protocol with unitary encoding. For this regime, the

noise degrades the entanglement too much to be useful. Now we can answer the

question posed at the beginning of this sub-section: super dense coding is not

always a useful scheme for sending classical information in the presence of noise.

We notice also that Cone−sided dep2

Bell corresponds to the entanglement assisted

capacity for the depolarizing channel [5]. According to (3.59) for p = 0.252

the super dense coding capacity for an initial Bell state via the one-sided 2-

dimensional depolarizing channel is equal to one. The maximum information that

can be transmitted by two-dimensional systems without any source of entangled

states is C = 1. That is, for p = 0.252 the super dense coding capacity reaches

the classical limit, as can be seen in Figure 3.5. It was shown in [25] that the

classical limit of the quantum teleportation protocol, when using a Bell state

and distributing one subsystem of it via a depolarizing channel, is reached at

p = 1/3. In the absence of noise, quantum teleportation and super dense coding

are two equivalent protocols [49]. According to our results this is not true in the

presence of noise, as we have shown explicitly for the depolarizing channel: here,

the quantum/classical boundary for super dense coding occurs at a different noise

value than for quantum teleportation.

We point out that the expression (3.40) for the super dense coding capacity

of a Bell state provides a lower bound to the entanglement-assisted capacity of a

general Pauli channel.

We also note that the discussed issues in the present section have been mainly

published in [45].
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Figure 3.5: The classical capacity Cch dep2 of the 2-dimensional depolarizing chan-

nel and the super dense coding capacities for an initial Bell state in the presence

of a one-sided and two-sided 2-dimensional depolarizing channel, Cone−sided dep2

Bell

and Ctwo−sided dep2

Bell , respectively, as functions of the noise parameter p.
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3.3 Super dense coding in the presence of a correlated Pauli channel

3.3 Super dense coding in the presence of a cor-

related Pauli channel

In many real world applications the assumption of having uncorrelated noisy

channels is far from reality and memory effects need to be taken into account. We

already in the preliminaries chapter, briefly, explained the notion of the channels

with memory. In this section, we use the correlated noise as a model for a

channel with memory. In this model, noise in the consecutive uses of the channel

is correlated. One of the aspects of such channels is the possibility to enhance

the capacity. Here, we specifically consider the Pauli channel (3.31). Let ΛP
a

and ΛP
b being two d-dimensional Pauli channels which act on Alice’s and Bob’s

subsystems, respectively. These two channels are correlated with the definition,

ΛP
ab(·) =

d−1∑
m,n,m̃,ñ=0

qmnm̃ñ(Vmn ⊗ Vm̃ñ)(·)(V †
mn ⊗ V †

m̃ñ). (3.60)

where the probability qmnm̃ñ is given by qmnm̃ñ = (1 − μ)qmnqm̃ñ + μqmnδm,m̃δn,ñ

with the correlation degree 0 ≤ μ ≤ 1. For μ = 0 the two channels ΛP
a and ΛP

b

are uncorrelated and for μ = 1 they are fully correlated.

We name (3.60) a correlated Pauli channel. In the present section, for a single

sender and a single receiver, a correlated Pauli channel as well as unitary and

non unitary encoding, we obtain two explicit expressions for super dense coding

capacity. We show that both unitary and non-unitary encoding problems reduce

to the problem of finding a single CPTP map (in the case of unitary encoding

this is a specific unitary transformation) that minimizes the output von Neumann

entropy after applying it and the channel to the input state ρ. For the case of

unitary encoding we find examples that the single unitary operator is explicitly

defined. The rest of the present section will explain in detail the above statements.

3.3.1 Unitary encoding

This subsection treats the optimization of the Holevo quantity having a correlated

Pauli channel and unitary encoding. We introduce an upper bound on the Holevo

quantity and we show that this upper bound is reachable and thus is the super
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3.3 Super dense coding in the presence of a correlated Pauli channel

dense coding capacity. This procedure phrased in the following Lemma.

Lemma 5. Let

χ = S
(
ΛP

ab(ρ)
)
−
∑

i

piS
(
ΛP

ab (ρi)
)

(3.61)

be the Holevo quantity with ρi = (Wi ⊗�)ρ(Wi
† ⊗�), the average state ΛP

ab(ρ) =∑
i piΛ

P
ab(ρi) and ΛP

ab to be the correlated Pauli channel defined via (3.60). Let

Umin be the unitary operator that minimizes the von Neumann entropy after

application of this unitary operator and the channel ΛP
ab to the initial state ρ, i.e.

Umin minimizes the expression S
(
ΛP

ab((Umin ⊗ �)ρ(U †
min ⊗ �))

)
. Then the super

dense coding capacity CP
un is given by

CP
un = log d + S

(
ΛP

b (ρb)
)− S

[
ΛP

ab

(
(Umin ⊗ �)ρ(U †

min ⊗ �)
)]

. (3.62)

Proof: We start with introducing an upper bound on the Holevo quantity (3.61).

Since Umin is a unitary operator that leads to the minimum of the output von

Neumann entropy, for χ we have

χ = S
(
ΛP

ab(ρ)
)
−
∑

i

piS
(
ΛP

ab (ρi)
)

≤ S
(
ΛP

ab(ρ)
)
− S

[
ΛP

ab

(
(Umin ⊗ �)ρ(U †

min ⊗ �)
)]

.

The von Neumann entropy is subadditive and the maximum entropy of a d-

dimensional system is log d. Therefore,

χ ≤ S
(
trb ΛP

ab(ρ)
)

+ S
(
tra ΛP

ab(ρ)
)
− S

[
ΛP

ab

(
(Umin ⊗ �)ρ(U †

min ⊗ �)
)]

≤ log d + S
(
tra ΛP

ab(ρ)
)
− S

[
ΛP

ab

(
(Umin ⊗ �)ρ(U †

min ⊗ �)
)]

. (3.63)

Since tra ΛP
ab(ρ) = ΛP

b (ρb) it follows that

χ ≤ log d + S
(
ΛP

b (ρb)
)− S

[
ΛP

ab

(
(Umin ⊗ �)ρ(U †

min ⊗ �)
)]

. (3.64)

The upper bound (3.64) is achievable. To show this claim, we consider the ensem-

ble {p̃i = 1
d2 , Ũi = ViUmin} with Vi being defined in (3.14). The Holevo quantity

for this ensemble is denoted by χ̃ and is given by

χ̃ = S

[∑
i

1

d2
ΛP

ab

(
(Ũi ⊗ �)ρ(Ũi

† ⊗ �)
)]

−
∑

i

1

d2
S
[
ΛP

ab

(
(Ũi ⊗ �)ρ(Ũi

† ⊗ �)
)]

. (3.65)

57



3.3 Super dense coding in the presence of a correlated Pauli channel

By using (3.17), Lemma (1-a), and noting that Umin acts only on Alice’s side, we

find that the argument in the first term on the RHS of (3.65) is given by

∑
i

1

d2
ΛP

ab

(
Ũi ⊗ �)ρ(Ũi

† ⊗ �)
)

=
∑

i

1

d2
ΛP

ab

(
(ViUmin ⊗ �)ρ(U †

minVi
† ⊗ �)

)

= ΛP
ab

[∑
i

1

d2
(Vi ⊗ �)(Umin ⊗ �)ρ(U †

min ⊗ �)(Vi
† ⊗ �)

]

= ΛP
ab(

�

d
⊗ ρb) =

�

d
⊗ ΛP

b (ρb). (3.66)

Furthermore, the second term on the RHS of (3.65) can be expressed in terms

of the unitary operator Umin and the channel. By inserting the action of the

correlated Pauli channel, and using (3.35), from which it follows that Vi=jk and

Vmn commute up to a phase, we can write

∑
i

1

d2
S
(
ΛP

ab

(
Ũi ⊗ �

)
ρ(Ũi

† ⊗ �)
)

=
1

d2

∑
i

S

( ∑
m,n,m̃,ñ

qmnm̃ñ(Vmn ⊗ Vm̃ñ)

[
(ViUmin ⊗ �) ρ

(
U †

minV
†
i ⊗ �

)]
(V †

mn ⊗ V †
m̃ñ)

)
=

1

d2

∑
i=k,j

S

( ∑
m,n,m̃,ñ

qmnm̃ñ(Vkj ⊗ �) (Vmn ⊗ Vm̃ñ)
[
(Umin ⊗ �) ρ

(
U †

min ⊗ �

)]
(
V †

mn ⊗ V †
m̃ñ

)
(V †

kj ⊗ �)
)

.

(3.67)
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Since von Neumann entropy is invariant under unitary transformation we have

∑
i

1

d2
S
(
ΛP

ab

(
Ũi ⊗ �

)
ρ(Ũi

† ⊗ �)
)

=
1

d2

∑
kj

S

(
(Vkj ⊗ �)

[ ∑
m,n,m̃,ñ

qmnm̃ñ (Vmn ⊗ Vm̃ñ) (Umin ⊗ �) ρ
(
U †

min ⊗ �

)
(
V †

mn ⊗ V †
m̃ñ

)]
(V †

kj ⊗ �)
)

=
1

d2

∑
kj

S

( ∑
m,n,m̃,ñ

qmnm̃ñ (Vmn ⊗ Vm̃ñ)
[
(Umin ⊗ �) ρ

(
U †

min ⊗ �

)]
(
V †

mn ⊗ V †
m̃ñ

))
= S

[
ΛP

ab

(
(Umin ⊗ �) ρ

(
U †

min ⊗ �

))]
(3.68)

Inserting (3.66) and (3.68) into (3.65), one finds that the Holevo quantity χ̃

is equal to the upper bound given in (3.64) and consequently, is the super dense

coding capacity. �
By Lemma 5, we have proved that, in order to determine the super dense

coding capacity , its enough to find an optimal Umin that minimizes the channel

output von Neumann entropy S
[
ΛP

ab

(
(Umin ⊗ �)ρ(U †

min ⊗ �)
)]

. In the next sub-

section we give examples of the channels and initial states for which Umin is

explicitly determined.

3.3.2 Correlated quasiclassical channel

A d−dimensional quasiclassical depolarizing channel (or simply quasiclassical

channel) is a particular form of a d−dimensional Pauli channel. For this channel,

the probabilities of the displacement operators V0n, with zero mode (m = 0)

and regardless to the phase shift n, are equal and they differ from the rest of the

probabilities which are also equal

qmn =

{
1−p

d
, m = 0

p
d(d−1)

, otherwise.
(3.69)
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The quasiclassical channel is characterized by a single probability parameter 0 ≤
p ≤ 1. With the probability p, a displacement occurs and with the probability

1 − p, no displacement occurs to the quantum signal. Like in the classical case,

p can also be seen as amount of the noise in the channel.

Bell states

Here, for a shared Bell state ρ+ = |Φ+〉〈Φ+| with |Φ+〉 = 1√
2
(|00〉 + |11〉), and in

the presence of a Correlated quasiclassical channel we find Umin. We investigate

the case of d = 2. For two-dimensional systems the displacement operators are

the identity and the three Pauli operators

� =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.70)

A two-dimensional correlated quasiclassical channel is then

ΛQ
ab(·) =

∑
m,n

qmnσm ⊗ σn(·)σm ⊗ σn, (3.71)

where qmn = (1−μ)qmqn+μqnδmn with q0 = q3 = 1−p
2

and q1 = q2 = p
2
. According

to find Umin, we start with the most general 2 × 2 unitary operator U

U =

(
a b

−b∗ a∗

)
, (3.72)

where a and b are complex variables which satisfy |a|2+|b|2= 1. The output of

a correlated quasiclassical channel on an arbitrary state ρ is invariant under the

unitary transformation σ3 ⊗ σ3, i.e. ΛQ
ab(ρ) = ΛQ

ab ((σ3 ⊗ σ3)ρ(σ3 ⊗ σ3)) [37]. The

proof for this statement is coming in the following argument: The Pauli operators

satisfy the property σmσn = iεmnkσk + δmnσ0. Therefore,

ΛQ
ab ((σ3 ⊗ σ3)ρ(σ3 ⊗ σ3)) = Σmnqmn(σmσ3 ⊗ σnσ3)ρ(σmσ3 ⊗ σnσ3)

= q00(σ3 ⊗ σ3)ρ(σ3 ⊗ σ3) + q01(σ3 ⊗ σ2)ρ(σ3 ⊗ σ2)

+ ... + q33(σ0 ⊗ σ0)ρ(σ0 ⊗ σ0). (3.73)

Since q0 = q3 and q1 = q2, the probabilities qmn = (1 − μ)qmqn + μqnδmn fulfill

q00 = q33, q01 = q32, ..., q22 = q11. Therefore,

ΛQ
ab ((σ3 ⊗ σ3)ρ(σ3 ⊗ σ3)) = ΛQ

ab(ρ). (3.74)
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�
By considering (3.74), we can use instead of (U⊗�)ρ+(U †⊗�), the expression

1
2

[
(U ⊗ �)ρ+(U † ⊗ �)

]
+ 1

2

[
(σ3U ⊗ σ3)ρ

+(U †σ3 ⊗ σ3)
]

which can be written as

1

2

[
(U ⊗ �)ρ+(U † ⊗ �)

]
+

1

2

[
(σ3U ⊗ σ3)ρ

+(U †σ3 ⊗ σ3)
]

=

⎛
⎜⎜⎜⎝

aa∗
2

0 0 a2

2

0 bb∗
2

−b2

2
0

0 −(b∗)2

2
bb∗
2

0
(a∗)2

2
0 0 aa∗

2

⎞
⎟⎟⎟⎠

= |a|2|Φ1〉〈Φ1| + |b|2|Φ2〉〈Φ2|, (3.75)

with |Φ1〉 and |Φ2〉 to be

|Φ1〉 =
1√
2

(
a

|a| |00〉 +
a∗

|a| |11〉
)

, (3.76a)

|Φ2〉 =
1√
2

(
b

|b| |01〉 − b∗

|b| |10〉
)

. (3.76b)

After applying the quasiclassical channel, using (3.74) and (3.75), and the

concavity of the von Neumann entropy, for S
[
ΛQ

ab

(
(U ⊗ �)ρ+(U † ⊗ �)

) ]
we arrive

at

S
[
ΛQ

ab

(
(U ⊗ �)ρ+(U † ⊗ �)

) ]
= S

[
ΛQ

ab

(
1

2
(U ⊗ �)ρ+(U † ⊗ �) +

1

2
(σ3U ⊗ σ3)ρ

+(U †σ3 ⊗ σ3)

)]
= S

[
|a|2ΛQ

ab(|Φ1〉〈Φ1|) + |b|2ΛQ
ab(|Φ2〉〈Φ2|)

]
≥ |a|2S

[
ΛQ

ab(|Φ1〉〈Φ1|)
]

+ |b|2S
[
ΛQ

ab(|Φ2〉〈Φ2|)
]

≥ S
[
ΛQ

ab(|Φ+〉〈Φ+|)
]
, (3.77)

where in the last line we have used that both S
[
ΛQ

ab(|Φ1,2〉〈Φ1,2|)
]

are lower

bounded by S
[
ΛQ

ab(|Φ+〉〈Φ+|)
]
. The proof for this statement comes in the fol-

lowing: A quantum state does not change up to a global phase and thus, we can

rewrite |Φ1〉 (a similar argument holds for |Φ2〉) as

|Φ1〉 =
1√
2

(|00〉 + exp(iφ)|11〉) . (3.78)
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After applying the correlated quasiclassical channel ΛQ
ab to the state |Φ1〉, we arrive

at

ΛQ
ab(|Φ1〉〈Φ1|) =

1

4

[
�⊗ �+

(
μ + (1 − μ)(1 − 2p)2

)
σ3 ⊗ σ3+

μ cos φ(σ1 ⊗ σ1 − σ2 ⊗ σ2) + μ(1 − 2p) sin φ(σ1 ⊗ σ2 + σ2 ⊗ σ1)] . (3.79)

The von Neumann entropy of a quantum state is defined via its eigenvalues. The

eigenvalues of (3.79) are

γ1,2 = (1 − μ)p(1 − p)

γ3,4 =
1

2

(
1 − 2(1 − μ)p(1 − p) ±

√
μ2(1 − 4p(1 − p)sin2 φ)

)
. (3.80)

To minimize the von Neumann entropy S(ΛQ
ab(|Φ1〉〈Φ1|)) = −∑

i γi log γi, the

eigenvalues should diverge as much as possible with respect to the parameter φ.

The eigenvalues γ1,2 are independent of φ. Thus, the most divergence happens

when we maximize γ3 while we minimize γ4. This happens by φ = 0 and it leads

the state (3.78) to be a Bell state which proves the above statement. Therefore,

S
[
ΛQ

ab(|Φ1〉〈Φ1|)
]
≥ S

[
ΛQ

ab(|Φ+〉〈Φ+|)
]
, (3.81)

�
The lower bound on the von Neumann entropy (3.77) is reachable. It is not

difficult to see that, the variables a = 1 and b = 0, which leads to the identity

operator for U , reaches the bound. This ends successfully our attempt for fining

a unitary operator which minimizes the output entropy. Therefore, the super

dense coding capacity for a correlated quasiclassical channel, a Bell state, and

Umin = �, according to (3.62), is given by

CQ,B
un = 2 − S

(
ΛQ

ab

(|Φ+〉〈Φ+|)) . (3.82)

Werner states

For d = 2 the Werner state is ρW = η|Φ+〉〈Φ+| + 1−η
4
�. In order to find Umin,

similar to the case of the Bell state in the previous part, we start by applying

the most general unitary operator U on the Werner state ρW . Once more we use

this property that the output of a quasiclassical channel is invariant under the
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3.3 Super dense coding in the presence of a correlated Pauli channel

rotation σ3 ⊗ σ3 on the input state (3.74), i.e. the channel outputs for the input

states (U ⊗ �)ρW (U † ⊗ �) and (σ3U ⊗ σ3)ρW (U †σ3 ⊗ σ3) are equal and therefore

we can use the average of both states instead of only (U ⊗�)ρW (U † ⊗�). Hence,

1

2
(U ⊗ �)ρW (U † ⊗ �) +

1

2
(σ3U ⊗ σ3)ρW (U †σ3 ⊗ σ3)

=

⎛
⎜⎜⎜⎝

ηaa∗
2

+ 1−η
4

0 0 η a2

2

0 η bb∗
2

+ 1−η
4

η−b2

2
0

0 η−(b∗)2

2
η bb∗

2
+ 1−η

4
0

η (a∗)2

2
0 0 η aa∗

2
+ 1−η

4

⎞
⎟⎟⎟⎠

= |a|2
(

η|Φ1〉〈Φ1| + 1 − η

4
�

)
+ |b|2

(
η|Φ2〉〈Φ2| + 1 − η

4
�

)
, (3.83)

where |Φ1〉 and |Φ2〉 are defined in (3.76a) and (3.76b). By applying the quasi-

classical channel, by using (3.83), and also the concavity of the von Neumann

entropy, for S
[
ΛQ

ab

(
(U ⊗ �)ρW (U † ⊗ �)

) ]
we find the upper bound

S
[
ΛQ

ab

(
(U ⊗ �)ρW (U † ⊗ �)

) ]
= S

[
ΛQ

ab

(
1

2
(U ⊗ �)ρW (U † ⊗ �) +

1

2
(σ3U ⊗ σ3)ρW (U †σ3 ⊗ σ3)

)]
= S

[
|a|2ΛQ

ab

(
η|Φ1〉〈Φ1| + 1 − η

4
�

)
+ |b|2ΛQ

ab

(
η|Φ2〉〈Φ2| + 1 − η

4
�

)]
= S

[
ΛQ

ab

(
|a|2

(
η|Φ1〉〈Φ1| + 1 − η

4
�

)
+ |b|2

(
η|Φ2〉〈Φ2| + 1 − η

4
�

))]

≥ |a|2S
[
ΛQ

ab

(
η|Φ1〉〈Φ1| + 1 − η

4
�

)]
+ |b|2S

[
ΛQ

ab

(
η|Φ2〉〈Φ2| + 1 − η

4
�

)]
≥ S

[
ΛQ

ab

(
η|Φ+〉〈Φ+| + 1 − η

4
�

)]
. (3.84)

In the last line we have used that both S
[
ΛQ

ab

(
η|Φ1,2〉〈Φ1,2| + 1−η

4
�
) ]

are lower

bounded by S
[
ΛQ

ab

(
η|Φ+〉〈Φ+| + 1−η

4
�
) ]

. The proof for this statement is similar

to the Bell state case and is based on the eigenvalue computation. We let νi

to be the spectrum of ΛQ
ab

(
η|Φ1〉〈Φ1| + 1−η

4
�
)
. Since the channel is linear then

ΛQ
ab

(
η|Φ1〉〈Φ1| + 1−η

4
�
)

= ηΛQ
ab (|Φ1〉〈Φ1|) + 1−η

4
�. Thus, its spectrum can be

expressed in terms of γi (3.80) which are the eigenvalues of ΛQ
ab (|Φ1〉〈Φ1|). Hence,
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3.3 Super dense coding in the presence of a correlated Pauli channel

for νi we have

ν1,2 = ηγ1,2 +
1 − η

4
,

ν3,4 = ηγ3,4 +
1 − η

4
. (3.85)

As we can see in (3.85) that the eigenvalues νi have the most divergence when

γi are maximally divergent. As in the previous part this is reached by φ = 0.

Therefore, the minimum of the von Neumann entropy S
[
ΛQ

ab

(
η|Φ1〉〈Φ1| + 1−η

4
�
)]

=

−∑
i νi log νi is obtained for φ = 0 which leads to the entropy S

[
ΛQ

ab

(
η|Φ+〉〈Φ+| + 1−η

4
�
) ]

.

Therefore, for any phase φ,

S
[
ΛQ

ab

(
η|Φ1,2〉〈Φ1,2| + 1 − η

4
�

)]
� S

[
ΛQ

ab

(
η|Φ+〉〈Φ+| + 1 − η

4
�

)]
, (3.86)

which completes this part of our proof. �
Now, we reach for a = 1 and b = 0 the lower bound (3.84) and thus Umin = �.

The super dense coding capacity for a shared Werner state and in the presence

of a correlated quasiclassical channel is, according to (3.62), given by

CQ,W
un = 2 − S

(
ΛQ

ab (ρW )
)

. (3.87)

3.3.3 Fully correlated Pauli channel

In this section we give two more examples for which Umin is determined. Both

examples are for fully correlated Pauli channel while the initial states are the Bell

state and the Werner state. A fully correlated Pauli channel is a special form of

a correlated Pauli channel (3.60) when μ = 1. For d = 2 it is

Λf
ab(·) =

∑
m

qm(σm ⊗ σm)(·)(σm ⊗ σm).

(3.88)

where
∑

m qm = 1 and σm are either identity or Pauli operators.

Bell states

As we defined the problem before, according to find the capacity (3.62), we should

find Umin. To do so, we use the property that the Bell state ρ+ is invariant
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3.3 Super dense coding in the presence of a correlated Pauli channel

under the unitary transformation (σm ⊗ σm), i.e. (σm ⊗ σm)ρ+(σm ⊗ σm) = ρ+

and therefore is invariant under the action of a fully correlated Pauli channel.

By using the invariance, the von Neumann entropy S
[
Λf

ab

(
(U ⊗ �)ρ+(U † ⊗ �)

)]
takes a zero value by Umin = �. Consequently, the super dense coding capacity,

according to (3.62), for a Bell state and a correlated Pauli channel, is two bits.

It is the maximum information transfer for d = 2. It shows that no information

at all is lost to the environment and this class of channels behave like a noiseless

one. This is a known result in the literatures of channel capacity.

Werner states

A fully correlated Pauli channel (3.88) with a Werner state ρW as a shared state

between Alice and Bob is the last example for which we determine the operation

Umin. To do so, we derive a lower bound on S
(
Λf

ab

(
(U ⊗ �)ρW (U † ⊗ �)

))
with U

to be an arbitrary unitary operator. By using the concavity of the von Neumann

entropy and also by using the invariance of the von Neumann entropy under the

unitary transformation, the lower bound on S
(
Λf

ab

(
(U ⊗ �)ρW (U † ⊗ �)

))
is

S
(
Λf

ab

(
(U ⊗ �)ρW (U † ⊗ �)

))
= S

(∑
m

qm(σm ⊗ σm)(U ⊗ �)(ηρ+ +
1 − η

4
�)(U † ⊗ �)(σm ⊗ σm)

)

≥ S

(
ηρ+ +

1 − η

4
�

)
. (3.89)

By using the invariance of a Bell state under the action of a fully correlated Pauli

channel, i.e. Λf
ab(ρ

+) = ρ+, it follows that the lower bound (3.89) is reachable

by the identity operator. Then Umin = � and the super dense coding capacity,

according to (3.62), is given by

Cf,W
un = 2 − S

(
Λf

ab (ρW )
)

. (3.90)

3.3.4 Non-unitary encoding

So far, we have assumed that the encoding in the super dense coding protocol is

unitary. The super dense coding protocol with non-unitary encoding for noiseless
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3.3 Super dense coding in the presence of a correlated Pauli channel

channels has been discussed by M. Horodecki et al. [26], M. Horodecki and Piani

[27], and Winter [50]. In this part we consider the possibility of performing non-

unitary encoding in the presence of a correlated Pauli channel. Let us consider Γi

to be a completely positive trace preserving (CPTP) map. Alice applies the map

Γi on her side of the shared state ρ, thereby encoding ρ as ρi = [Γi⊗�](ρ) := Γi(ρ).

The rest of the scheme is similar to the case of unitary encoding. Alice sends the

encoded state ρi = Γi(ρ) with the probability pi to Bob through the correlated

Pauli channel ΛP
ab. Now, the question is: which ensemble of CPTP maps gives

the super dense coding capacity? In other language, what is the optimum Holevo

quantity with respect to the encoding Γi and pi? To answer this question, first

we give the expression for the super dense coding capacity with a correlated Pauli

channel and non-unitary encoding:

C = max
{Γi,pi}

χ = max
{Γi,pi}

(
S

[∑
i

piΛ
P
ab (Γi(ρ))

]
−
∑

i

piS
[
ΛP

ab (Γi(ρ))
])

, (3.91)

where ΛP
ab(ρ) is defined via (3.60). Similar to the unitary encoding case in section

3.3.1, we find an upper bound on the Holevo quantity (3.91) and then we show

that this upper bound is reachable by a pre-processing before unitary encoding.

The above statement will be expressed in the following Lemma.

Lemma 6. Let χ be the Holevo quantity (3.91), and Let Γmin(·) := [Γmin ⊗�](·)
be the map that minimizes the von Neumann entropy after application of this

map and the channel ΛP
ab to the initial state ρ, i.e. Γmin minimizes the expression

S
(
ΛP

ab(Γmin(ρ))
)
. Then the super dense coding capacity is given by

CP
non−un = log d + S

(
ΛP

b (ρb)
)− S

(
ΛP

ab(Γmin(ρ))
)
. (3.92)

where ρb = traρ and ΛP
b is the d−dimensional Pauli channel.

Proof: Γmin(·) is a map that leads to the minimum of the entropy after applying

it and the channel to the initial state ρ. Therefore,

χ = S

(∑
i

piΛ
P
ab (Γi(ρ))

)
−
∑

i

piS
(
ΛP

ab (Γi(ρ))
)

≤ S

(∑
i

piΛ
P
ab (Γi(ρ))

)
− S

(
ΛP

ab(Γmin(ρ))
)
.
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3.3 Super dense coding in the presence of a correlated Pauli channel

Since the von Neumann entropy is subadditive and since the maximum entropy

of a d-dimensional system is log d, we have

χ ≤ log d + S

(
tra

(∑
i

piΛ
P
ab (Γi(ρ))

))
− S

(
ΛP

ab (Γmin(ρ))
)
.

By using tra

∑
i piΛ

P
ab (Γi(ρ)) = ΛP

b (ρb), we find the upper bound

χ ≤ log d + S
(
ΛP

b (ρb)
)− S

(
ΛP

ab (Γmin(ρ))
)
. (3.93)

Now, we show that the ensemble {p̃i, Γ̃i(ρ)} with p̃i = 1
d2 and Γ̃i(ρ) = (Vi ⊗

�)Γmin(ρ)(V †
i ⊗ �), where Vi is defined in (3.14) reaches the upper bound (3.93).

In the other words, the optimal encoding consists of a fixed pre-processing with

Γmin and a subsequent unitary encoding. This is analogous to the case of noiseless

channels, for which the same statement was shown in [27]. Below we prove the

above claim.

The Holevo quantity of the ensemble {p̃i, Γ̃i(ρ)} is

χ̃ = S

(∑
i

1

d2
ΛP

ab

(
Γ̃i(ρ)

))
−
∑

i

1

d2
S
[
ΛP

ab

(
Γ̃i(ρ)

)]
. (3.94)

By noting that Γmin acts only on Alice’s side, using (3.17), and Lemma (1-a), we

find that the average of ΛP
ab

(
Γ̃i(ρ)

)
, i.e. the argument in the first term on the

RHS of (3.94), is given by

∑
i

1

d2
ΛP

ab

(
Γ̃i(ρ)

)
=
�

d
⊗ ΛP

b (ρb). (3.95)

Furthermore, the second term on the RHS of (3.94) is given by

∑
i

1

d2
S
(
ΛP

ab

(
Γ̃i(ρ)

))
=
∑

i

1

d2
S
(
ΛP

ab

(
(Vi ⊗ �) Γmin(ρ)

(
V †

i ⊗ �

)))

=
1

d2

∑
i

S

(
(Vi ⊗ �)

[
d−1∑

m,n,m̃,ñ=0

qmnm̃ñ (Vmn ⊗ Vm̃ñ) Γmin(ρ)
(
V †

mn ⊗ V †
m̃ñ

)]

(V †
i ⊗ �)

)
=

1

d2

∑
i

S
[
ΛP

ab (Γmin(ρ))
]

= S
[
ΛP

ab (Γmin(ρ))
]
, (3.96)
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where in the second line of the above equations we have inserted the action of

the correlated Pauli channel, and we have used (3.35), from which it follows that

Vi and Vmn commute up to a phase.

Inserting (3.95) and (3.96) into (3.94), one finds that the Holevo quantity

χ̃ is equal to the upper bound given in (3.93). Consequently, the Lemma has

been proved and the super dense coding capacity with non-unitary encoding is

determined by (3.92). �
Comparing (3.92) and (3.62) shows that applying the appropriate pre-processing

Γmin on the initial state ρ before the unitary encoding {Vi} may increase the su-

per dense coding capacity, with respect to only using unitary encoding for the

case of a correlated Pauli channel. However, for some examples no better encod-

ing than unitary encoding is possible. For instance, since two bits is the highest

super dense coding capacity for d = 2, our results derived in section 3.3.3 for

fully correlated Pauli channel and the Bell state provide an example where no

pre-processing can improve the capacity.

Note that the present section is being currently prepared for publication [44].

3.4 Multipartite super dense coding in the pres-

ence of noise

The notion of multipartite super dense coding has been introduced by Bose et

al. [8] which generalizes the Bennett-Wiesner scheme [6] of super dense coding

to multipartites. In this scheme, it was shown that the use of the multipartite

entangled state can allow a single receiver to read messages from more than one

source through a single measurement. This task has been done in the following

way. (N + 1) parties share an (N + 1)-particle maximally entangled state, i.e. a

|GHZ〉 state,

|GHZ〉 =
|0〉⊗N+1 + |1〉⊗N+1

√
2

, (3.97)

possessing one particle each. N -parties, whom are referred as senders, are tent

to send their messages to one receiver (Bob). The N senders decide in advance
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3.4 Multipartite super dense coding in the presence of noise

to perform only certain unitary operations on the particles given to them. One

of the senders have any of four possible unitary operations at her disposal, while

each of the others have any of two possible unitary operations. That is, one

of the senders encodes two bits on her particle, while the other senders encode

one bit each. The unitary operations must be chosen so that for each possible

combination of unitary transformations performed by senders, the state of (N+1)

particles changes to another member of the set of the maximally entangled states.

A known set of such unitary operations is the set of the Pauli operators (3.70).

The number of possible combination of unitary transformations by N senders is

then 4 × 2 × 2... × 2 = 2N+1. In the other hand, there are exactly 2N+1 states

in the set of maximally entangled states of (N + 1) particles. After performing

their unitary transformations, N senders send their particles to Bob which have

now all (N + 1) particles at disposal. Bob performs an appropriate measurement

on (N + 1) particles, which identifies the maximally entangled state in which

particles are. Bob can then learn about the messages sent by each of the senders

by the result of his single measurement. Comparing the rate of the information

gain in the above scheme with the case that Bob performs a super dense coding [6]

with each of N senders shows the efficiency of the above scheme (for more details

about the rate of information gain see[8]). It is more efficient because it requires

only (N +1) particle as apposed to super dense coding communication with each

sender, which requires 2N particles [8]. A generalization of this multipartite super

dense coding to higher dimensions has also been discussed by Liu et al. [35].

Another generalization of distributed super dense coding for noiseless channels

has been widely discussed by Bruß et al. [11]. In this paper, they follow a different

goal than the above multipartite scheme. The problem is to find the optimal

unitary encoding for multipartite super dense coding. Two scenarios of many

senders with either one or two receiver(s) has been discussed. It has been shown

that for a single receiver, Alices do not need to apply global unitaries to gain the

optimal super dense coding capacity but it’s enough that each Alice performs a

local encoding on her side. It has also been shown that bound entangled states of

bipartite cut between Alices and Bob are not “multi” dense-codeable. For the case

of two receivers, some of the Alices send their information to the first Bob while

the others send theirs to the second Bob. Then the super dense coding capacity
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depends on the possibility of interaction between the receivers. If two receivers are

not allowed to communicate, the corresponding capacities are additive while when

they are allowed to use global measurements, they can obtain higher capacity.

Furthermore, a general classification of multipartite quantum states according to

their dense-codeability has been investigated.

Up to now, for noisy channels, we have only investigated the case of a single

sender and a single receiver. In this section, we give an example for multipar-

tite super dense coding considering the Pauli channel and unitary encoding. The

multipartite problem that will be discussed here, is a generalization of the bi-

partite scenario discussed in section 3.2.2 for the case of a one-sided Pauli chan-

nel and a bipartite Bell state. We assume that there exist k-Alices (A1, ..., Ak)

and k-Bobs (B1, ..., Bk) with the shared state ρa1b1
00 ⊗ ... ⊗ ρakbk

00 . The Bell state

ρ
ajbj

00 = |Φ00〉〈Φ00|ajbj is the shared state between the jth Alice & Bob, where

|Φ00〉 is defined in (3.36). The dimension of the jth Alice & Bob system is given

by d2
j . In this scenario, the Alices apply a global unitary operation W a1...ak

i1...ik
on

their side of the shared state ρa1b1
00 ⊗ ... ⊗ ρakbk

00 and encode the state through

ρi1...ik =
(
W a1...ak

i1...ik
⊗ �

b1...bk
) (

ρa1b1
00 ⊗ ... ⊗ ρakbk

00

)(
W a1...ak

i1...ik

† ⊗ �
b1...bk

)
. (3.98)

Then each of Alices send their dj-dimensional subsystem through a one-sided

Pauli channel (3.31) to the corresponding Bob. The probability of sending the

encoded state ρi1...ik is given by pi1...ik (see also Figure 3.6). Then the ensemble

that the Bobs receive is {ΛP
a1...ak

(ρi1...ik), pi1...ik} where Λa1...ak
is a channel which

globally acts on Alices’ subsystem with the definition

ΛP
a1...ak

(·) =
∑

m1n1...mknk

qm1n1...mknk

(
V a1

m1n1
⊗ ... ⊗ V ak

mknk

)
(·) (V a1†

m1n1
⊗ ... ⊗ V ak†

mknk

)
,

(3.99)

where V
aj
mjnj are the displacement operators for the jth Alice which are defined in

(3.32). The probabilities qm1n1...mknk
add to one and can represent the correlation

between the channels. Similar to the bipartite case, the amount of classical
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information that the Bobs receive is given by the Holevo quantity

χ ({ρi1...ik , pi1...ik}) = S

[∑
i

pi1...ikΛ
P
a1...ak

(ρi1...ik)

]

−
∑

i

pi1...ikS
[
ΛP

a1...ak
(ρi1...ik)

]
, (3.100)

and the super dense coding capacity is the optimum of this quantity with respect

to the encoding {W a1...ak
i1...ik

, pi1...ik}, i.e.

C = max
{W a1...ak

i1...ik
,pi1...ik

}
χ ({ρi1...ik , pi1...ik}) . (3.101)

Now, we focus on the optimization procedure. We prove that the second term

of the Holevo quantity (3.100) is invariant under unitary rotation Ua1...ak of the

state ρa1b1
00 ⊗ ...⊗ ρakbk

00 . Therefore, the optimization only runs over the first term

on the RHS of the Holevo quantity (3.100). To show this claim, we first prove

the following Lemma.

Lemma 7. Let

ρa1b1
00 ⊗ ... ⊗ ρakbk

00 = |Φa1b1
00 ...Φakbk

00 〉〈Φa1b1
00 ...Φakbk

00 |, (3.102)

be k−copies of the Bell states with different dimensions. Let us define

πm1n1...mknk
:=

(
V a1

m1n1
⊗ ... ⊗ V ak

mknk
⊗ �

b1...bk
) (

Ua1...ak ⊗ �
b1...bk

)(
ρa1b1

00 ⊗ ... ⊗ ρakbk
00

) (
Ua1...ak† ⊗ �

b1...bk
) (

V a1†
m1n1

⊗ ... ⊗ V ak†
mknk

⊗ �
b1...bk

)
,

(3.103)

where Ua1...ak is a unitary operator with the dimension of the system of all

Alices and V
aj
mjnj being the displacement operators (3.32). For different states

πm1n1...mknk
,

πm1n1...mknk
πm̃1ñ1...m̃kñk

= 0 (3.104)

holds.

Proof. To prove the Lemma, first we show that the statement

〈Φa1b1
00 ...Φakbk

00 |(Ua1...ak†)
(
V a1†

m1n1
V a1

m̃1ñ1
⊗ ... ⊗ V ak†

mknk
V ak

m̃kñk
⊗ �

b1...bk
)

(Ua1...ak) |Φa1b1
00 ...Φakbk

00 〉 = 0, (3.105)
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A1

a2

�

�

�

�

a1b1

�

a2b2

akbk

A2

Ak

a1

�ak

B1

B2

Bk

{Wi1...ik

a1...bk
p
i1...ik},

Figure 3.6: The multipartite super dense coding for k-copies of Bell states with

different dimensions. Alices apply a global unitary operator W a1...ak
i1...ik

, taken from

a set of {W a1...ak
i1...ik

} with the probability {pi1...ik}, on their side of the shared state

ρa1b1
00 ⊗ ... ⊗ ρakbk

00 . The Bell state ρ
ajbj

00 is shared between the jth Alice & Bob

and the one-sided Pauli channel ΛP
aj

acts on the subsystem of the jth Alice after

encoding. Since the channels can be correlated, the action of a global channel on

Alices’ system has been denoted by ΛP
a1,...,ak

. We have considered that there is no

noise on the Bobs’ side.
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holds. By using the definition (3.36) for a Bell state we have

〈Φa1b1
00 ...Φakbk

00 |(Ua1...ak†)
(
V a1†

m1n1
V a1

m̃1ñ1
⊗ ... ⊗ V ak†

mknk
V ak

m̃kñk
⊗ �

b1...bk
)
(Ua1...ak)

|Φa1b1
00 ...Φakbk

00 〉
=

∑
j1...jk

∑
j̃1...j̃k

〈j1j1...jkjk|(Ua1...ak†)
(
V a1†

m1n1
V a1

m̃1ñ1
⊗ ... ⊗ V ak†

mknk
V ak

m̃kñk
⊗ �

b1...bk
)

(Ua1...ak) |j̃1j̃1...j̃kj̃k〉
=

∑
j1...jk

〈j1...jk|Ua1...ak† (V a1†
m1n1

V a1
m̃1ñ1

⊗ ... ⊗ V ak†
mknk

V ak
m̃kñk

)
Ua1...ak |j1...jk〉

= tra1...ak

[
Ua1...ak† (V a1†

m1n1
V a1

m̃1ñ1
⊗ ... ⊗ V ak†

mknk
V ak

m̃kñk

)
Ua1...ak

]
= tra1...ak

[
V a1†

m1n1
V a1

m̃1ñ1
⊗ ... ⊗ V ak†

mknk
V ak

m̃kñk

]
= δm1m̃1δn1ñ1 ...δmkm̃k

δnkñk
, (3.106)

where in the last line we have used tr VmnV
†
m̃ñ = dδmm̃δnñ. Different states

πm1n1...mknk
have at lease one different indice for mi or ni. Then by using (3.106),

the statement (3.105) is proved. Subsequently, we arrive at(
ρa1b1

00 ⊗ ... ⊗ ρakbk
00

) (
Ua1...ak†) (V a1†

m1n1
V a1

m̃1ñ1
⊗ ... ⊗ V ak†

mknk
V ak

m̃kñk
⊗ �

b1...bk
)

(Ua1...ak)
(
ρa1b1

00 ⊗ ... ⊗ ρakbk
00

)
= 0. (3.107)

By using (3.107), for πm1n1...mknk
πm̃1ñ1...m̃kñk

we have

πm1n1...mknk
πm̃1ñ1...m̃kñk

=
(
V a1

m1n1
⊗ ... ⊗ V ak

mknk
⊗ �

b1...bk
)
(Ua1...ak)

(
ρa1b1

00 ⊗ ... ⊗ ρakbk
00

) (
Ua1...ak†) (V a1†

m1n1
V a1

m̃1ñ1
⊗ ... ⊗ V ak†

mknk
V ak

m̃kñk
⊗ �

b1...bk
)

︸ ︷︷ ︸
(Ua1...ak)

(
ρa1b1

00 ⊗ ... ⊗ ρakbk
00

)
︸ ︷︷ ︸

=0

(
Ua1...ak†) (V a1

m̃1ñ1
⊗ ... ⊗ V ak

m̃kñk
⊗ �

b1...bk
)

= 0,

which completes the proof. �
We now demonstrate that the second term of the Holevo quantity is indepen-

dent of the chosen unitary encoding. Using the orthogonality property (3.104)

and the purity of the density operator πm1n1...mknk
, the channel output entropy
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can be written as

S
[
Λa1...ak

((
Ua1...ak ⊗ �

b1...bk
) (

ρa1b1 ⊗ ... ⊗ ρakbk
) (

Ua1...ak† ⊗ �
b1...bk

))]

= S
[ ∑

m1n1...mknk

qm1n1...mknk

(
V a1

m1n1
⊗ ... ⊗ V ak

mknk
⊗ �

b1...bk
) (

Ua1...ak ⊗ �
b1...bk

)
(
ρa1b1

00 ⊗ ... ⊗ ρakbk
00

) (
Ua1...ak† ⊗ �

b1...bk
) (

V a1†
m1n1

⊗ ... ⊗ V ak†
mknk

⊗ �
b1...bk

) ]

= S

[ ∑
m1n1...mknk

qm1n1...mknk
πm1n1...mknk

]
= H ({qm1n1...mknk

}) , (3.108)

where H ({qm1n1...mknk
}) = −∑

m1n1...mknk
qm1n1...mknk

log qm1n1...mknk
is the Shan-

non entropy. Consequently, the channel output entropy, and thus the second term

of the Holevo quantity, is just determined by the channel probabilities qm1n1...mknk

and it is invariant under unitary encoding.

Here, by using the above result, we just focus on the first term of the Holevo

quantity to find the optimal encoding. Since the von Neumann is subadditive,

and since the maximum von Neumann entropy for a d-dimensional system is log d,

we find the upper bound

S

(∑
i1...ik

pi1...ikΛa1...ak
(ρi1...ik)

)

≤ S

(
trb1...akbk

∑
i1...ik

pi1...ikΛa1...ak
(ρi1...ik)

)

+ S

[
tra1...akbk

∑
i1...ik

pi1...ikΛa1...ak
(ρi1...ik)

]

+ ... + S

[
tra1b1...ak

∑
i1...ik

pi1...ikΛa1...ak
(ρi1...ik)

]

≤ log d1 + log d1 + ... + log dk. (3.109)

The above bound can be reached by the set of the product encoding V a1...ak
i1...ik

=

V a1
i1

⊗ ... ⊗ V ak
ik

which are chosen with equal probability p̃i1...ik = 1
d2
1d2

2...d2
k
. The

local unitary operators V
aj

ij
are defined in (3.14).
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Now we show that the above ensemble reaches the bound in (3.109). In the

following the symbol τ̃i1...ik denotes the resource state after encoding with V a1,...,ak
i1...ik

.

The ensemble average after the specific encoding with {V a1...ak
i1...ik

}, the probability

distribution p̃i1...ik = 1
d2
1d2

2...d2
k
, and after action of the channel will be denoted as

ρ̃i1...ik . Then, by using Lemma (1-a) and the linearity of the channel, the entropy

of the average ensemble state ρ̃i1...ik is given by

S(ρ̃i1...ik) = S

(∑
i1...ik

p̃i1...ikΛa1...ak
(τ̃i1...ik)

)

= S

(
Λa1...ak

(∑
i1...ik

p̃i1...ik τ̃i1...ik

))

= S

(
Λa1...ak

(
�

d1

⊗ ρb1 ⊗ ...
�

dk

⊗ ρbk

))

= S

(
Λa1...ak

(
�

d1

⊗ �

d1

⊗ ...
�

dk

⊗ �

dk

))

= S

(
�

d1

⊗ �

d1

⊗ ...
�

dk

⊗ �

dk

)
= log d2

1 + ... + log d2
k, (3.110)

which is the bound in (3.109). The above optimal encoding illustrates that Alices

cannot send more classical information by performing global unitaries and the

optimal capacity is gained by local operations. By using (3.110) and (3.108) the

multipartite super dense coding capacity is given by

CP
multi = log d2

1 + ... + log d2
k − H({qm1n1...mknk

}). (3.111)

Therefore, for one-sided correlated Pauli channels, the super dense coding capac-

ity is reduced be the amount of H({qm1n1...mknk
}) with respect to the noiseless

case. We also notice that the same capacity is achieved for any maximally en-

tangled state, i.e. for any (Ua1 ⊗ Ub1 ⊗ ... ⊗ Uak
⊗ Ubk

) |Φ00
a1b1 ...Φ00

akbk〉. In fact

Lemma 7 still holds in this case and also the derivation of the capacity.

For k−copies of the d−dimensional Bell state ρab
00 with uncorrelated one-sided

Pauli channels, i.e. qm1n1...mknk
= qm1n1qm2n2 ...qmknk

, the multipartite super dense

capacity is k-times the one of the single copy capacity (3.40).

CP,k−copy
multi = k

(
log d2 − H({qmn})

)
. (3.112)

75



3.5 Conclusion

Note that the present section is being currently prepared for publication [43].

3.5 Conclusion

The first part of the present chapter covers the situation of uncorrelated noise.

We investigated the bipartite super dense coding protocol in the presence of a

unital noisy channel, which acts either on only Alice’s subsystem after encoding

(one-sided channel) or on both Alice’s and Bob’s subsystems (two-sided chan-

nel). For those cases where the von Neumann entropy fulfills a specific condition,

the super dense coding capacity was derived. It was shown that a one-sided d-

dimensional Pauli channel for the resource of Bell as well as Werner states fulfill

the above-mentioned condition on the von Neumann entropy. The condition on

the von Neumann entropy is also satisfied for a two-sided d-dimensional depolar-

izing channel. For these examples, we derived the explicit optimal super dense

coding capacity, as a function of the initial resource state. When the initial state

can be chosen, we found for the case of a two-sided 2D depolarizing channel that

the optimal initial resource state is either a Bell state or a product state, depend-

ing on the value of the noise parameter. We also compared the classical capacity

of the 2D depolarizing channel to the super dense coding capacities for an initial

Bell state with a one-sided and two-sided 2D depolarizing channel. Our results

showed that Alice and Bob may not win by sending classical information via a

super dense coding protocol with unitary encoding if there is too much noise.

Comparing the critical noise parameters for the quantum/classical boundary, we

found that, in the scenario of the depolarizing channel, the protocols quantum

teleportation and super dense coding are not equivalent, in the sense that they

do not have the same critical noise parameter.

We then discussed the super dense coding protocol in the presence of a cor-

related d-dimensional Pauli channel considering both unitary and non-unitary

encoding. Regarding the unitary encoding, it was shown that the problem of

finding the super dense coding capacity reduces to the easier problem of finding

a unitary operator which is applied to the initial state such that it minimizes

the von Neumann entropy. It was proven that for the 2D quasiclassical chan-

nel and 2D fully correlated Pauli channel with Bell states and Werner states as
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resources it is the identity operator which minimizes the von Neumann entropy.

For those examples the super dense coding capacities were explicitly derived. It

was also presented that by considering non-unitary encoding, the optimal strat-

egy is to apply a pre-processing before unitary encoding. If the CPTP map that

minimizes the von Neumann entropy is known, we found an expression for super

dense coding capacity.

Finally, this chapter was concluded with an example for multipartite super

dense coding. For k-copies of Bell states and one-sided correlated Pauli channels,

the super dense coding capacity was explicitly calculated. Compared to the same

scenario with noiseless channels, the capacity reduces by some amount of the

Shannon entropy. It was illustrated that no global encoding by Alices can improve

the capacity and that the local encodings by each of the Alices are sufficient to

reach the capacity. We also showed that for one sided uncorrelated Pauli channels

the multipartite capacity is simply additive, i.e. it is the sum of the single copy

capacities.

As an outlook, it would be also interesting to study the following open prob-

lems. How can the super dense coding capacity be determined for other channels

and states than the ones that fulfil the specific entropy condition in the case of the

uncorrelated noise? What happens in the case of other correlated noisy channels

than the Pauli channels? How does noise in general affect the multipartite super

dense coding scenarios for the case of the many senders and either one or two

receivers? Does global encoding in this case help?
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Chapter 4

Optimal eavesdropping on noisy

states in quantum key

distribution

4.1 Introduction

Cryptography is the study of secret (Crypto-) writing(-graphy). The history

of cryptography goes back to 400 B.C. It is the art or science of encompassing

the principles and the methods of transforming an intelligible message into one

that is unintelligible, and then re-transforming that message back to it’s original

form. In the late 1940s, mainly due to the paper of Shannon [47], cryptography

became part of information theory and mathematics. He was one of the first

modern cryptographers to attribute advanced mathematical techniques to the

science of ciphers. Cryptography is nowadays defined as a mathematical system

of transforming information so that it is unintelligible for any unauthorized party.

In opposite, Cryptanalysis or codebreaking studies the principles and methods of

transforming an unintelligible message back into an intelligible message without

knowledge of the key. Both cryptography and cryptanalysis are called cryptology.

Some basic concepts in cryptography are as follows.

Plaintext

The original intelligible message (information)
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Cipher

An algorithm, a series of well-defined steps that can be followed as a procedure,

for transforming an intelligible message into one that is unintelligible

Ciphertext

The transformed unintelligible message (information)

Key

A key is normally a string of bits used by a cryptographic algorithm to transform

plain text into cipher text or vice versa and is only known by senders and receivers.

The key should be the only part of the algorithm that is necessary to keep secret.

Encoding

The process of converting a plaintext to a ciphertext using a cipher and a key

Decoding

The process of converting a ciphertext to a plaintext using a cipher and a key

4.1.1 Quantum cryptography

Quantum cryptography stands at the crossroads between quantum mechanics and

information theory. Some of the “negative” laws in quantum mechanics, due to

its contrast to classical physics, has just recently been turned positive in the field

of quantum information. Quantum cryptography is one of the best examples that

reveals the positive side of these laws. Some of these laws read:

In general a measurement perturbs the quantum system and it is gener-

ally impossible to extract information about a quantum state without disturbing

it. This principle enables unconditionally secure key distribution that is impossi-

ble classically. If a protocol is secure against the most powerful adversary limited

only by laws of physics, its security is called unconditional.

No-cloning theorem

A known quantum state can be perfectly copied. One can prepare the system in

a known well defined state, say one of its eigenstate, and then applies a sequence

of unitary transformation that result in the desired state. But if the quantum

system is not known, due to linearity and unitarity of quantum mechanics it is
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impossible to create a perfectly cloned state [51]. This limitation on quantum

information processing and communication has several important implications

such as the possibility of realizing secure quantum communication channels and

the impossibility of communicating faster than the speed of light.

Non-orthogonal states cannot be reliably distinguished

Classically, we are able to distinguish different items of information but there is

no quantum measurement capable to distinguish perfectly, between two quantum

states |ψ1〉 and |ψ2〉 with 〈ψ1|ψ2〉 = 0. Indistinguishability of non-orthogonal

states plays a key role in quantum cryptography.

4.1.2 Quantum key distribution (QKD)

In quantum cryptography or, more precisely, quantum key distribution a secret

key is established between two trusted parties (Alice and Bob), by employing

certain quantum states as signals, and suitable measurements . Two important

quantum key distribution schemes are the BB84 and the Six state protocol.

BB84 protocol

BB84 is a QKD scheme developed by Charles Bennett and Gilles Brassard in

1984 [4]. In this protocol there exist two pairs of states with two orthogonal

states within each pair. Pairs of orthogonal states are referred to as a basis.

The two pairs of signal states of the protocol with pure state are {|0x〉, |1x〉} and

{|0z〉, |1z〉}, where |0α〉 and |1α〉 with α = x, z denote the eigenstates of Pauli

operator σα. Here, the states |0α〉 symbolize the classical bit value 0, and |1α〉
represents the classical bit value 1. Alice randomly sends one of the four quantum

states to Bob. No possible measurement can distinguish the 4 different states

perfectly, as they are not all orthogonal. When Bob receives a state from Alice

he chooses randomly one of the basis x or z for making a measurement. When

Bob does the measurement in the same basis that Alice sends the state, there

is a correlation between their results. After Alice sends the necessary number

of the signals and Bob did the measurements, they communicate over a classical

channel to tell when they used which basis. They discard all the signals in which
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they used a different basis (sifting), which is half on average, leaving half the

bits as a shared key. To check for the presence of eavesdropping Alice and Bob

now compare a certain random subset of their remaining bit strings. If a third

party, Eve, has gained any information about the signals, this introduced errors

in Bob’s measurements. If the level of eavesdropping is below a certain threshold,

a key can be produced that is guaranteed to be secure (i.e. the eavesdropper has

no information about), otherwise no secure key is possible and communication is

aborted.

Six state protocol

In the six state protocol [2; 10] Alice enlarges the mentioned pairs of the BB84

protocol to three. The third pair is {|0y〉, |1y〉}. In this case Alice sends a state

chosen randomly among the six states and Bob measures randomly in the x, y,

or z basis. Here the a priori probability that Alice and Bob use the same basis

is reduced to 1/3, which means that they have to discard 2/3 of the transmitted

qubits before they can extract a cryptographic key. In the case of a symmetric

protocol, i.e. px = py = pz = 1/3. The advantage of this protocol compared to

the BB84 protocol is its higher symmetry. There also exist asymmetric six state

protocol with px = py = pz.

4.1.3 Security

The usefulness of noisy channels for cryptographic purposes is now widely ac-

cepted by the scientific community. The first results dealing with noisebased

cryptography were obtained by Wyner [52] for Discrete Memoryless Channels

and later extended by Leung-Yan-Cheong and Hellman [31] for Gaussian chan-

nels as well as Csiszár and Körner [14], who proved that two parties connected

by a noisy channel can communicate securely, even in the presence of an eaves-

dropper receiving the messages. The general idea discussed in [14] is that three

parties Alice, Bob and Eve do measurements on their quantum systems where

the outcomes are the classical random variables A, B and E with the joint prob-

ability distribution p(A, B, E). It provides a necessary and sufficient condition

on the possibility that Alice and Bob extract a secret key from p(A, B, E). Here
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we mention this idea in the following theorem without going through the proof.

However, it is rather intuitive.

Theorem 4.1 (Csiszár and Körner [14]): For a given p(A, B, E), Alice and Bob

can establish a secret key if and only if the mutual information between Alice &

Bob is bigger than the mutual information between Alice & Eve or Bob & Eve,

i.e. I(A : B) � I(A : E) or I(A : B) � I(B : E), where the mutual information

I(A : B) is defined in equation (1.5).

Key rate

The key rate K is defined by the ratio of the length of the final secure key to the

length of the raw key.

Theorem 4.2 (Csiszár and Körner [14]): If Alice, Bob and Eve share independent

realizations of the classical probability distribution that results from the protocol

and eavesdropping strategy, the key rate K is lower bounded by K ≥ I(A : B) −
I(A : E).

In this chapter, we present an intuitive understanding for the counter-intuitive

fact that additional noise on the quantum level may help the trusted parties

to improve the performance of a quantum cryptographic protocol. A related

question has been studied in [41]: There, it has been shown that if one of the

parties (Alice or Bob) adds some noise to their classical measurement data before

error correction, then the BB84 [4], B92 [3] and six state protocol [2; 10] are more

robust with respect to quantum noise, i.e. the secret key rate is non-zero up to

higher values of the quantum bit error rate. Adding noise at the quantum level,

i.e. before the measurement, will also lead to additional noise at the classical

level. In this sense our scenario should lead, at least qualitatively, to a similar

result as shown in [41].

In the following in the asymptotic limit of many signals we will discuss the six

state protocol with additional (equal) noise on all signal states. We also consider

that Alice’s and Bob’s apparatuses are perfect while they do not have total control

over the channel.
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4.2 Eavesdropping on noisy states

In the six state protocol with mixed states Alice sends instead of pure states one

of the following six mixed states (either deliberately, or due to unavoidable noise

in the transmission channel):

ρi = (1 − p)|i〉〈i| + p

2
�, i ∈ {0α, 1α}, (4.1)

with α = x, y, z. The parameter p describes the amount of noise, with 0 ≤ p ≤ 1.

Here, we assume the noise to be equal in all bases, i.e. we study the depolarizing

channel. (In a more general model, polarization dependent noise could be treated

in an analogous way, by letting pα depend on α = x, y, z.)

For the eavesdropping strategy we assume that Eve is restricted to interfering

separately with each of the single systems sent by Alice (i.e. individual attack).

In this class of attacks she attaches to each qubit an independent probe which is

initially in the state |X〉 and applies some unitary transformation. The dimension

of the probes and the interaction are in principle arbitrary, but in [19] it has been

shown that the most general unitary eavesdropping attack on a d-dimensional sig-

nal state needs only d2 linearly independent ancilla states of Eve. (This argument

also holds when the signal states are mixed, as the unitary transformation of the

basis states already uniquely defines the transformation of any superposition, due

to linearity, and thus also of a mixture of projectors onto superpositions of basis

states.) Thus, it is enough for Eve to use two qubits for her probe states.

The most general unitary transformation U that Eve can design is defined

via its action on the basis states (where we use for the computational basis the

notation |0〉 = |0z〉 and |1〉 = |1z〉),

U |0〉|X〉 =
√

1 − D|0〉|A〉 +
√

D|1〉|B〉, (4.2a)

U |1〉|X〉 =
√

1 − D|1〉|C〉 +
√

D|0〉|D〉, (4.2b)

where D is called the disturbance, with 0 ≤ D ≤ 1
2
. Eve’s normalized probes

after interaction are |A〉, |B〉, |C〉, and |D〉. They have to be chosen such that U

is a unitary operator,

〈X|〈0|U †U |1〉|X〉 =
(√

1 − D〈A|〈0| +
√

D〈B|〈1|
)(√

1 − D|1〉|C〉 +
√

D|0〉|D〉
)

,
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where 〈0|1〉 = 0. The unitarity of U leads to

〈A|D〉 + 〈B|C〉 = 0 (4.3)

We notice that the same unitary transformation U should be applied to the other

initial states |0x,y〉 and |1x,y〉. After Eve’s interaction ρi changes to a shared

state between Alice and Eve ρAE
i . In the following we explicitly calculate ρAE

i for

i = 0α, 1α:

ρAE
0 = (1 − p

2
)
[
(1 − D)(|0〉〈0|)(|A〉〈A|) + D(|1〉〈1|)(|B〉〈B|)

+
√

D(1 − D)(|0〉〈1|)(|A〉〈B|) +
√

D(1 − D)(|1〉〈0|)(|B〉〈A|)
]

+
p

2

[
(1 − D)(|1〉〈1|)(|C〉〈C|) + D(|0〉〈0|)(|D〉〈D|)

+
√

D(1 − D)(|1〉〈0|)(|C〉〈D|) +
√

D(1 − D)(|0〉〈1|(|D〉〈C|)
]
, (4.4)

ρAE
1 = (1 − p

2
)
[
(1 − D)(|1〉〈1|)(|C〉〈C|) + D(|0〉〈0|)(|D〉〈D|)

+
√

D(1 − D)(|1〉〈0|)(|C〉〈D|) +
√

D(1 − D)(|0〉〈1|)(|D〉〈C|)
]

+
p

2

[
(1 − D)(|0〉〈0|)(|A〉〈A|) + D(|1〉〈1|)(|B〉〈B|)

+
√

D(1 − D)(|0〉〈1|)(|A〉〈B|) +
√

D(1 − D)(|1〉〈0|(|B〉〈A|)
]
, (4.5)

ρAE
0x

=
1

2

[
|0〉〈0|[(1 − D)|A〉〈A| + D|D〉〈D|] + |1〉〈1|[(1 − D)|C〉〈C|

+ D|B〉〈B|] +
√

D(1 − D)|0〉〈1|[|A〉〈B| + |D〉〈C|]
+

√
D(1 − D)|1〉〈0|[|B〉〈A| + |C〉〈D|]

]
+ (

1 − p

2
)
[
|0〉〈1|[(1 − D)|A〉〈C| + D|D〉〈B|] + |1〉〈0|[(1 − D)|C〉〈A|

+ D|B〉〈D|] +
√

D(1 − D)|0〉〈0|[|A〉〈D| + |D〉〈A|]
+

√
D(1 − D)|1〉〈1|[|C〉〈B| + |B〉〈C|]

]
, (4.6)
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ρAE
1x

=
1

2

[
|0〉〈0|[(1 − D)|A〉〈A| + D|D〉〈D|] + |1〉〈1|[(1 − D)|C〉〈C|

+ D|B〉〈B|] +
√

D(1 − D)|0〉〈1|[|A〉〈B| + |D〉〈C|]
+

√
D(1 − D)|1〉〈0|[|B〉〈A| + |C〉〈D|]

]
− (

1 − p

2
)
[
|0〉〈1|[(1 − D)|A〉〈C| + D|D〉〈B|] + |1〉〈0|[(1 − D)|C〉〈A|

+ D|B〉〈D|] +
√

D(1 − D)|0〉〈0|[|A〉〈D| + |D〉〈A|]
+

√
D(1 − D)|1〉〈1|[|C〉〈B| + |B〉〈C|]

]
, (4.7)

ρAE
0y

=
1

2

[
|0〉〈0|[(1 − D)|A〉〈A| + D|D〉〈D|] + |1〉〈1|[(1 − D)|C〉〈C|

+ D|B〉〈B|] +
√

D(1 − D)|0〉〈1|[|A〉〈B| + |D〉〈C|]
+

√
D(1 − D)|1〉〈0|[|B〉〈A| + |C〉〈D|]

]
+i (

1 − p

2
)
[
|0〉〈1|[(1 − D)|A〉〈C| + D|D〉〈B|] + |1〉〈0|[(1 − D)|C〉〈A|

+ D|B〉〈D|] +
√

D(1 − D)|0〉〈0|[|A〉〈D| + |D〉〈A|]
+

√
D(1 − D)|1〉〈1|[|C〉〈B| + |B〉〈C|]

]
, (4.8)

ρAE
1y

=
1

2

[
|0〉〈0|[(1 − D)|A〉〈A| + D|D〉〈D|] + |1〉〈1|[(1 − D)|C〉〈C|

+ D|B〉〈B|] +
√

D(1 − D)|0〉〈1|[|A〉〈B| + |D〉〈C|]
+

√
D(1 − D)|1〉〈0|[|B〉〈A| + |C〉〈D|]

]
−i (

1 − p

2
)
[
|0〉〈1|[(1 − D)|A〉〈C| + D|D〉〈B|] + |1〉〈0|[(1 − D)|C〉〈A|

+ D|B〉〈D|] +
√

D(1 − D)|0〉〈0|[|A〉〈D| + |D〉〈A|]
+

√
D(1 − D)|1〉〈1|[|C〉〈B| + |B〉〈C|]

]
. (4.9)

ρB
i = trE(ρAE

i ) corresponds to Bob’s state when Alice sends the signal state
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|i〉. The partial trace over Eve’s system in (4.4),...,(4.9) read :

ρB
0 = trE(ρAE

0 ) = (1 − p

2
)
[
(1 − D)(|0〉〈0|) + D(|1〉〈1|)

+
√

D(1 − D)(|0〉〈1|)〈B|A〉 +
√

D(1 − D)(|1〉〈0|)〈A|B〉
]

+
p

2

[
(1 − D)(|1〉〈1|) + D(|0〉〈0|) +

√
D(1 − D)(|1〉〈0|)〈D|C〉

+
√

D(1 − D)(|0〉〈1|〈C|D〉
]
. (4.10)

ρB
1 = trE(ρAE

1 ) = (1 − p

2
)
[
(1 − D)(|1〉〈1|) + D(|0〉〈0|)

+
√

D(1 − D)(|1〉〈0|)〈D|C〉 +
√

D(1 − D)(|0〉〈1|〈C|D〉
]

+
p

2

[
(1 − D)(|0〉〈0|) + D(|1〉〈1|) +

√
D(1 − D)(|0〉〈1|)〈B|A〉

+
√

D(1 − D)(|1〉〈0|)〈A|B〉
]
, (4.11)

ρB
0x

= trE(ρAE
0x

) =
1

2

[√
D(1 − D)|0〉〈1| (〈B|A〉 + 〈C|D〉)

+
√

D(1 − D)|1〉〈0| (〈A|B〉 + 〈D|C〉) + |0〉〈0| + |1〉〈1|
]

+ (
1 − p

2
)
[
|0〉〈1| [(1 − D)〈C|A〉 + D〈B|D〉]

+ |1〉〈0| [(1 − D)〈A|C〉 + D〈D|B〉] +
√

D(1 − D)|0〉〈0|[〈D|A〉 + 〈A|D〉]
+

√
D(1 − D)|1〉〈1|(〈B|C〉 + 〈C|B〉)

]
, (4.12)

ρB
1x

= trE(ρAE
1x

) =
1

2

[√
D(1 − D)|0〉〈1| (〈B|A〉 + 〈C|D〉)

+
√

D(1 − D)|1〉〈0| (〈A|B〉 + 〈D|C〉) + |0〉〈0| + |1〉〈1|
]

− (
1 − p

2
)
[
|0〉〈1| [(1 − D)〈C|A〉 + D〈B|D〉]

+ |1〉〈0| [(1 − D)〈A|C〉 + D〈D|B〉] +
√

D(1 − D)|0〉〈0|[〈D|A〉 + 〈A|D〉]
+

√
D(1 − D)|1〉〈1|(〈B|C〉 + 〈C|B〉)

]
, (4.13)
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ρB
0y

= trE(ρAE
0y

) =
1

2

[√
D(1 − D)|0〉〈1| (〈B|A〉 + 〈C|D〉)

+
√

D(1 − D)|1〉〈0| (〈A|B〉 + 〈D|C〉) + |0〉〈0| + |1〉〈1|
]

+i (
1 − p

2
)
[
|0〉〈1| [(1 − D)〈C|A〉 + D〈B|D〉]

+ |1〉〈0| [(1 − D)〈A|C〉 + D〈D|B〉] +
√

D(1 − D)|0〉〈0|[〈D|A〉 + 〈A|D〉]
+

√
D(1 − D)|1〉〈1|(〈B|C〉 + 〈C|B〉)

]
, (4.14)

ρB
1y

= trE(ρAE
1y

) =
1

2

[√
D(1 − D)|0〉〈1| (〈B|A〉 + 〈C|D〉)

+
√

D(1 − D)|1〉〈0| (〈A|B〉 + 〈D|C〉) + |0〉〈0| + |1〉〈1|
]

−i (
1 − p

2
)
[
|0〉〈1| [(1 − D)〈C|A〉 + D〈B|D〉]

+ |1〉〈0| [(1 − D)〈A|C〉 + D〈D|B〉] +
√

D(1 − D)|0〉〈0|[〈D|A〉 + 〈A|D〉]
+

√
D(1 − D)|1〉〈1|(〈B|C〉 + 〈C|B〉)

]
. (4.15)

The quantum bit error rate in the z-basis is denoted as Qz, and is given as

the fraction of original signals |0〉(|1〉) sent by Alice, but interpreted as |1〉(|0〉)
by Bob, namely

Qz = 1
2
〈0|ρB

1 |0〉 + 1
2
〈1|ρB

0 |1〉, (4.16)

where ρB
0 and ρB

1 are the states that Bob receives when Alice sends |0〉 and |1〉,
respectively. We define Qx,y in an analogous way for the x and y-basis.

As we assume the noise to be uniform, a quantum bit error rate that is basis-

dependent indicates the presence of an eavesdropper. We therefore assume that

Eve uses a strategy that produces the same quantum bit error rate in the three

different bases, i.e.

Q = Qz = Qx = Qy. (4.17)

which can be tested by Alice and Bob, by comparing a part of their bit string for

the z-basis. Again, an analogous requirement has to hold in the other two bases,
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too. Additionally, we restrict Eve to attack in such a way that the two terms of

Qx,y,z are identical, i.e.

Q = 〈0|ρB

1 |0〉 = 〈1|ρB

0 |1〉 , (4.18a)

Q = 〈0x|ρB

1x
|0x〉 = 〈1x|ρB

0x
|1x〉 , (4.18b)

Q = 〈0y|ρB

1y
|0y〉 = 〈1y|ρB

0y
|1y〉 , (4.18c)

By substituting from (4.10), (4.11) in (4.18a), it can be easily verified that the

relationship between the quantum bit error rate Q and D is

Q = D(1 − p) +
p

2
. (4.19)

For 〈0x|ρB
1x
|0x〉 and 〈1x|ρB

0x
|1x〉, using (4.12), (4.13) and (4.3),we have

〈0x|ρB

1x
|0x〉 =

1

2

[
1 +

√
D(1 − D)Re (〈A|B〉 + 〈D|C〉)

]
− (

1 − p

2
)
[
(1 − D)Re〈A|C〉 + DRe〈B|D〉

]
, (4.20a)

〈1x|ρB

0x
|1x〉 =

1

2

[
1 −

√
D(1 − D)Re (〈A|B〉 + 〈D|C〉)

]
− (

1 − p

2
)
[
(1 − D)Re〈A|C〉 + DRe〈B|D〉

]
. (4.20b)

Substituting (4.20a) and (4.20b) in (4.18b) results a restriction over Eve’s states,

Re (〈A|B〉 + 〈D|C〉) = 0. (4.21)

The expressions Qx is then,

Qx =
1

2
− (

1 − p

2
)
[
(1 − D)Re〈A|C〉 + DRe〈B|D〉

]
(4.22)

Similar to the x direction we consider the y direction and arrive at

〈0y|ρB

1y
|0y〉 =

1

2

[
1 + i

√
D(1 − D)Im (〈A|B〉 + 〈D|C〉)

]
− (

1 − p

2
)
[
(1 − D)Re〈A|C〉 − DRe〈B|D〉

]
, (4.23a)

〈1y|ρB

0y
|1y〉 =

1

2

[
1 − i

√
D(1 − D)Im (〈A|B〉 + 〈D|C〉)

]
− (

1 − p

2
)
[
(1 − D)Re〈A|C〉 − DRe〈B|D〉

]
. (4.23b)
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From the equality 〈0y|ρB
1y
|0y〉 = 〈1y|ρB

0y
|1y〉 we find another restriction on Eve’s

states,

Im (〈A|B〉 + 〈D|C〉) = 0. (4.24)

Then the quantum bit error rate in the y− direction is

Qy =
1

2
− (

1 − p

2
)
[
(1 − D)Re〈A|C〉 − DRe〈B|D〉

]
(4.25)

Since it has been considered that the quantum bit error rate Q is equal in all

directions, i.e. using Qx = Qy and (4.22) and (4.25), we find a new restriction on

Eve’s states that reads,

Re (〈B|D〉) = 0. (4.26)

By using (4.26) in 2Q = Qy we obtain for the scalar product of |A〉 and |C〉

Re〈A|C〉 = 2 − 1

1 − D
=

2(1 − 2Q)

2 − p − 2Q
. (4.27)

For convenience, we summarizes the four conditions between Eve’s probes men-

tioned in (4.3),(4.21),(4.24),(4.26) and (4.27):

〈B|D〉 = 0, (4.28a)

Re〈A|C〉 =
2(1 − 2Q)

2 − p − 2Q
, (4.28b)

〈A|B〉 + 〈D|C〉 = 0, (4.28c)

〈A|D〉 + 〈B|C〉 = 0. (4.28d)

Note that instead of Re〈B|D〉 = 0 we used the stronger condition 〈B|D〉 = 0. We

also note that the quantum bit error rate Q only depends on the scalar product

between |A〉 and |C〉. Eve’s two-qubit states can be written as an expansion of

four basis vectors with complex coefficients. As explained above, Eve’s states

only need to be four-dimensional. We have the freedom to choose |B〉 = |00〉.
Equation (4.28a) allows to assign |D〉 one of the other three basis vectors, e.g.,

|D〉 = |11〉. The general expansion for the normalized vectors |A〉 and |C〉 are

|A〉 = αA|00〉 + βA|10〉 + γA|01〉 + δA|11〉, (4.29)
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with

|αA|2 + |βA|2 + |γA|2 + |δA|2 = 1 , (4.30)

and

|C〉 = αC |00〉 + βC |10〉 + γC |01〉 + δC |11〉, (4.31)

with

|αC |2 + |βC |2 + |γC |2 + |δC |2 = 1. (4.32)

We have to determine the free parameters αA, ..., δA and αC , ..., δC such that Eve’s

transformation is optimized. As a figure of merit we will calculate the mutual

information between Eve and Alice, and optimize Eve’s transformation such that

she acquires the maximal mutual information.

4.3 Optimal eavesdropping in terms of mutual

information

The mutual information measures the information that two parties share. Here

the parties have variables X, Y that can take values x, y, respectively. The mutual

information is defined [40] as

IXY := I(X : Y ) =
∑
x,y

p(x, y) log p(y|x) −
∑

y

p(y) log p(y), (4.33)

where p(x, y) = p(x)p(y|x), is the joint probability to find x and y, and p(y|x)

is the conditional probability of y, given x. All logarithms are taken to base 2.

We determine the mutual information between Alice and Eve as a measure of the

amount of information that Eve extract from the original state. Arbitrarily, we

choose the z−basis for the rest of our calculations. We need to find Eve’s state

after interaction with the original state ρi. Accordingly, we trace out Alice’s
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subsystem form the shared states ρAE
0 and ρAE

1 ,

ρE
0 = trA ρAE

0 = (1 − p

2
) ((1 − D)|A〉〈A| + D|B〉〈B|)

+
p

2
((1 − D)|C〉〈C| + D|D〉〈D|) , (4.34a)

ρE
1 = trA ρAE

1 = (1 − p

2
) ((1 − D)|C〉〈C| + D|D〉〈D|)

+
p

2
((1 − D)|A〉〈A| + D|B〉〈B|) . (4.34b)

Let M1, ...,M4 and M5, ...,M8 to be the conditional probabilities of measuring

|00〉, |10〉, |01〉 and |11〉 by Eve, given ρE
0 and ρE

1 , respectively. These conditional

probabilities Mi are

M1 := p(00|ρE
0 ) = (1 − p

2
)
(
(1 − D)|αA|2 + D

)
+

p

2
(1 − D)|αC |2,(4.35a)

M2 := p(10|ρE
0 ) = (1 − p

2
)(1 − D)|βA|2 +

p

2
(1 − D)|βC |2, (4.35b)

M3 := p(01|ρE
0 ) = (1 − p

2
)(1 − D)|γA|2 +

p

2
(1 − D)|γC |2, (4.35c)

M4 := p(11|ρE
0 ) =

p

2

(
(1 − D)|δC |2 + D

)
+ (1 − p

2
)(1 − D)|δA|2, (4.35d)

M5 := p(00|ρE
1 ) =

p

2

(
(1 − D)|αA|2 + D

)
+ (1 − p

2
)(1 − D)|αC |2, (4.35e)

M6 := p(10|ρE
1 ) = (1 − p

2
)(1 − D)|βC |2 +

p

2
(1 − D)|βA|2, (4.35f)

M7 := p(01|ρE
1 ) = (1 − p

2
)(1 − D)|γC |2 +

p

2
(1 − D)|γA|2, (4.35g)

M8 := p(11|ρE
1 ) =

p

2
(1 − D)|δA|2 + (1 − p

2
)
(
(1 − D)|δC |2 + D

)
. (4.35h)

p(y) =
∑

x p(x)p(y|x) is the probability that Eve detects y. Therefore, the prob-

abilities of measuring |00〉, |10〉, |01〉 and |11〉 by Eve are,

p(00) = p(ρE
0 )p(00|ρE

0 ) + p(ρE
1 )p(00|ρE

1 ) =
1

2
(M1 + M5), (4.36a)

p(10) = p(ρE
0 )p(10|ρE

0 ) + p(ρE
1 )p(10|ρE

1 ) =
1

2
(M2 + M6), (4.36b)

p(01) = p(ρE
0 )p(01|ρE

0 ) + p(ρE
1 )p(01|ρE

1 ) =
1

2
(M3 + M7), (4.36c)

p(11) = p(ρE
0 )p(11|ρE

0 ) + p(ρE
1 )p(11|ρE

1 ) =
1

2
(M4 + M8). (4.36d)
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Using (4.35a-4.35h) and (4.36a-4.36d), the two terms of the mutual information

in (4.33) read,

∑
y

p(y) log p(y) =
1

2

[
(M1 + M5) log(M1 + M5) + (M2 + M6) log(M2 + M6)

+(M3 + M7) log(M3 + M7) + (M4 + M8) log(M4 + M8)
]
− 1, (4.37a)∑

x,y

p(x)p(y|x) log p(y|x) =
1

2

[
M1 log M1 + M2 log M2 + M3 log M3

+M4 log M4 + M5 log M5 + M6 log M6 + M7 log M7 + M8 log M8

]
. (4.37b)

Then the mutual information between Alice and Eve is,

IAE =
∑
x,y

p(x, y) log p(y|x) −
∑

y

p(y) log p(y)

=
1

2

[
M1 log M1 + M2 log M2 + M3 log M3 + M4 log M4 + M5 log M5

+ M6 log M6 + M7 log M7 + M8 log M8

]
− 1

2

[
(M1 + M5) log(M1 + M5)

+ (M2 + M6) log(M2 + M6) + (M3 + M7) log(M3 + M7)

+ (M4 + M8) log(M4 + M8)
]

+ 1

= 1 +
1

2
(τ [M1, M5] + τ [M2, M6] + τ [M3, M7] + τ [M4, M8]) , (4.38)

where we used the definition

τ [x, y] = x log x + y log y − (x + y) log(x + y). (4.39)

Eve wishes to retrieve the maximal information, i.e. she has to choose the

optimal coefficients αA,C , βA,C , γA,C , δA,C , for fixed p and Q. The full problem

can be simplified with the following argument: As mentioned above, for a fixed

noise parameter p the quantum bit error rate Q only depends on the real part

of the overlap between |A〉 and |C〉, see equation (4.28b). Therefore, Eve is

free to choose those states on which Q does not depend in such a way that

her information is maximal, as long as the constraints given in equations (4.28a)-

(4.28d) are fulfilled. Thus, Eve will choose her ancilla states orthogonal (whenever

possible), i.e. 〈A|B〉 = 〈B|C〉 = 〈A|D〉 = 〈D|C〉 = 0, which corresponds to αA =

93



4.3 Optimal eavesdropping in terms of mutual information

δA = αC = δC = 0. One realizes by looking at equation (4.2a) and (4.2b) that

in this way Eve’s probe states are made as distinguishable as possible (for given

〈A|C〉 = 0). The best measurement for the two remaining non-orthogonal states

|A〉 and |C〉 is rank one and orthogonal [16; 40]. With αA = δA = αC = δC = 0

and D = (Q− p
2
)/(1−p), the conditional probabilities Mi in (4.35a-4.35h) reduce

to

M1 = M8 = (1 − p

2
) · Q − p

2

1 − p
, (4.40a)

M2 = (
1 − p

2
− Q

1 − p
){(1 − p

2
)|βA|2 +

p

2
|βC |2}, (4.40b)

M3 = (
1 − p

2
− Q

1 − p
){(1 − p

2
)|γA|2 +

p

2
|γC |2}, (4.40c)

M4 = M5 =
p

2
· Q − p

2

1 − p
, (4.40d)

M6 = (
1 − p

2
− Q

1 − p
){(1 − p

2
)|βC |2 +

p

2
|βA|2}, (4.40e)

M7 = (
1 − p

2
− Q

1 − p
){(1 − p

2
)|γC |2 +

p

2
|γA|2}. (4.40f)

By substituting these Mi’s in (4.38), the mutual information between Alice and

Eve IAE is,

IAE = 1 +
1

2
(
1 − p

2
− Q

1 − p
) ·

{
τ
[
(1 − p

2
)|βA|2 +

p

2
|βC |2 ,

p

2
|βA|2 + (1 − p

2
)|βC |2

]
+ τ

[
(1 − p

2
)|γA|2 +

p

2
|γC |2, p

2
|γA|2 + (1 − p

2
)|γC |2

]}
+ (

Q − p
2

1 − p
).τ

[
1 − p

2
,

p

2

]
. (4.41)

We continue the problem of optimizing IAE by using the Lagrange multiplier

method. To do this, first, we redefine the complex coefficients βA,C , γA,C in polar

coordinates:

βA = rβA
, (4.42)

βC = rβC
, (4.43)

γA = rγA
exp(iΦγA

), (4.44)

γC = rγC
exp(iΦγC

). (4.45)
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We note that because of the unphysical global phase we have the freedom to

choose βA and βC to be real. Using the Lagrange multiplier method we then

write the Lagrangian L as

L = IAE + λ1g1 + λ2g2 + λ3g3, (4.46)

where g1 , g2 and g3 are the constraints (4.28b),(4.30) and (4.32). The derivative

dL = 0 yields the following system of equations:

g1 = rβA
rβC

+ rγA
rγC

cos(ΦγA
− ΦγC

) − 2(1 − 2Q)

2 − p − 2Q
= 0, (4.47a)

g2 = rβA

2 + rγA

2 − 1 = 0, (4.47b)

g3 = rβC

2 + rγC

2 − 1 = 0, (4.47c)

rγA
rγC

sin(ΦγA
− ΦγC

) = 0, (4.47d)

rβA
{(1 − p

2
− Q

1 − p
)((1 − p

2
) log M2 +

p

2
log M6 − log(M2 + M6)) + 2λ2}

+λ1rβC
= 0, (4.47e)

rβC
{(1 − p

2
− Q

1 − p
)(

p

2
log M2 + (1 − p

2
) log M6 − log(M2 + M6)) + 2λ3}

+λ1rβA
= 0, (4.47f)

rγA
{(1 − p

2
− Q

1 − p
)((1 − p

2
) log M3 +

p

2
log M7 − log(M3 + M7)) + 2λ2}

+λ1rγC
cos(ΦγA

− ΦγC
) = 0, (4.47g)

rγC
{(1 − p

2
− Q

1 − p
)(

p

2
log M3 + (1 − p

2
) log M7 − log(M3 + M7)) + 2λ3}

+λ1rγA
cos(ΦγA

− ΦγC
) = 0. (4.47h)

with Mi given in (4.40a- 4.40f). It is not straightforward to extract the solution

from this set of equations. We will follow a strategy based on analytical and

numerical methods. Due to equation (4.47d) there are two possible solutions,

which are cos(ΦγA
− ΦγC

) = 1 and cos(ΦγA
− ΦγC

) = −1 (as rγA
and rγC

cannot

be zero).

Let us first assume the option cos(ΦγA
−ΦγC

) = 1. Note that in this case the

set of equations (4.47a) - (4.47h) is invariant under the simultaneous exchange

rβA
↔ rγA

and rβC
↔ rγC

. As we can see from (4.41), the mutual information

function is also symmetric under this exchange. Now, we combine the set of the
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4.3 Optimal eavesdropping in terms of mutual information

equations (4.47a)-(4.47h) to one joint equation in terms of p, Q and rβA
2. The

task is to find all roots for rβA
2. From equations (4.47b) and (4.47c) we have

rγA
2 = 1 − rβA

2 and rγC
2 = 1 − rβC

2. This fact, together with the symmetry

mentioned above, means that there has to be an even number of roots for rβA

2

(if one finds a solution for r2
βA

, then 1 − r2
βA

is also a solution). Numerically (by

plotting the joint equation in terms of rβA
2) we show that for different p and Q

there are always exactly two roots. Analytically, rβC
2 = 1 − rβA

2 is a possible

solution for the equations (4.47b)-(4.47h). By inserting this expression for rβC
2

as well as rγA
2 and rγC

2 (see above) into (4.47a) we find two solutions for rβA
2

which are parametrized in terms of p and Q. One of them is

rβA
2 = |βA|2 = 1

2

(
1 + 1

1− p
2
−Q

√
(Q − p

2
)(2 − 3Q − p

2
)
)

(4.48)

and the other one is

rβA
2 = |βA|2 = 1

2

(
1 − 1

1− p
2
−Q

√
(Q − p

2
)(2 − 3Q − p

2
)
)
. (4.49)

Both of them lead to the same mutual information (this is clear from the sym-

metry, as explained above). Thus, we find that the maximal mutual information

between Alice & Eve is

IAE = 1 + (
1 − p

2
− Q

1 − p
)
{(

(1 − p)|βA|2 +
p

2

)
log

(
(1 − p)|βA|2 +

p

2

)
+

(
1 − p

2
− (1 − p)|βA|2

)
log

(
1 − p

2
− (1 − p)|βA|2

)}
+ (

Q − p
2

1 − p
)
{p

2
log

p

2
+ (1 − p

2
) log (1 − p

2
)
}

, (4.50)

Using these analytical and numerical considerations ensured that |βC |2 =

1 − |βA|2 is the unique relation between rβA
2 and rβC

2.

For the case cos(ΦγA
− ΦγC

) = −1, we repeat the above process. However,

equation (4.47a) is now not symmetric under the exchange rβA
↔ rγA

and rβC
↔

rγC
. If we plot the joint function for equations (4.47a)-(4.47h)

in terms of rβA
2, we just find one root, and thus just expect one solution of

the set of equations. Analytically we obtain rβC
= rβA

as a possible solution.

This leads to the following mutual information between Alice and Eve:

IAE = (
Q − p

2

1 − p
)
{

1 +
p

2
log

p

2
+ (1 − p

2
) log (1 − p

2
)
}

. (4.51)
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Comparing the equations (4.50) and (4.51) analytically, we see that for all p and

Q the function in (4.50) is bigger than (4.51). Therefore, equation (4.50) is the

optimal mutual information.

IAE = 1 + (
1 − p

2
− Q

1 − p
).
{(

(1 − p)|βA|2 +
p

2

)
log

(
(1 − p)|βA|2 +

p

2

)
+

(
1 − p

2
− (1 − p)|βA|2

)
log

(
1 − p

2
− (1 − p)|βA|2

)}
+ (

Q − p
2

1 − p
)
{p

2
log

p

2
+ (1 − p

2
) log (1 − p

2
)
}

, (4.52)

where, |βA|2 is given by equation (4.49). In Figure

4.4 Mutual information between Alice and Bob

Obtaining the mutual information between Alice and Bob is an easy task. Bob

does a measurement in z−direction. The probabilities that he detects |0〉 and

|1〉, given ρB
0 and ρB

1 are

p(0|ρB
0 ) = 〈0|ρB

0 |0〉 = (1 − p

2
)(1 − D) +

p

2
D, (4.53a)

p(0|ρB
1 ) = 〈0|ρB

1 |0〉 = (1 − p

2
)D +

p

2
(1 − D), (4.53b)

p(1|ρB
0 ) = 〈0|ρB

0 |0〉 = (1 − p

2
)(1 − D) +

p

2
D, (4.53c)

p(1|ρB
1 ) = 〈0|ρB

0 |0〉 = (1 − p

2
)D +

p

2
(1 − D). (4.53d)

Therefore, the probabilities of detecting |0〉 and |1〉 by Bob, are

p(0) =
1

2

[
(1 − p

2
)(1 − D) +

p

2
D + (1 − p

2
)D +

p

2
(1 − D)

]
=

1

2
, (4.54a)

p(1) =
1

2

[
(1 − p

2
)(1 − D) +

p

2
D + (1 − p

2
)D +

p

2
(1 − D)

]
=

1

2
. (4.54b)

From the definition (4.33), the mutual information between Alice and Bob is
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then,

IAB =
∑
x,y

p(x)p(y|x) log p(y|x) −
∑

y

p(y) log p(y)

=
[
(1 − p

2
)(1 − D) +

p

2
D
]
log

[
(1 − p

2
)(1 − D) +

p

2
D
]

+
[
(1 − p

2
)D +

p

2
(1 − D)

]
log

[
(1 − p

2
)D +

p

2
(1 − D)

]
+ 1.

Using(4.19), we rewrite the above mutual information (4.55) in terms of quantum

bit error rate Q,

IAB = 1 + Q log Q + (1 − Q) log(1 − Q). (4.55)

One easily confirms that in the absence of white noise, i.e. for p = 0, the mutual

information functions (Alice&Bob and Alice&Eve ) reduce to the noiseless case

described in [10].

4.5 Security proof

In this part we conclude that how the added quantum noise can make quantum

key distribution more robust against eavesdropping. To do so, we start for an

example with the noise parameter p = 0.05 which is introduced due to equation

(4.1). For this amount of noise we plot the mutual information curves IAE (equa-

tion 4.52) and IAB (equation 4.55) as a function of the qubit error rate Q and

we compare them with the noiseless case (p = 0). The plots are shown in ??.

As we observe for p = 0.05 both IAB and IAE start at a non-zero value for Q.

Compare to the pure state case (p = 0), the mutual information between Alice

and Bob IAB remains invariant while the mutual information between Alice and

Eve IAE decreases. We also observe that for p = 0.05, the crossing-point between

two mutual information curves ( IAB and IAE) has moved towards a larger Q.
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0.1 0.2 0.3 0.4 0.5
Q

0.2

0.4

0.6

0.8

1.0

I

IAB for six pure states

—— IAB for six mixed states

— - — Optimal IAE for six pure states

— — — Optimal IAE for six mixed states

Figure 4.1: Mutual information between Alice & Bob and Alice & Eve for six

pure (p = 0) and six mixed state (p = 0.05) cases, as a function of qubit error

rate (Q).
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4.5 Security proof

Now, we pay attention on arbitrary p. For any p = 0 both information curves

start at a non-zero value for Q, as we have Q ≥ p/2 from equation (4.19)(like the

mentioned example for p = 0.05). In Figure 4.2 for an example with quantum

bit error rate Q = 0.11, the mutual information IAE as a function of p has been

depicted. It confirms again that with increasing the noise parameter p Eve loses

more and more information on Alice’s qubit.

0.05 0.10 0.15 0.20
p

0.05

0.10

0.15

0.20

0.25

IAE

Figure 4.2: Mutual information IAE as a function of noise parameter p for an

example with quantum bit error rate Q = 0.11.

On the other hand, from equation (4.55), it is evident that IAB does only

depend on the quantum bit error rate Q and is “independent” on p. Intuitively

speaking, both the trusted and untrusted parties undergo some degradation of

their information due to the noise. The crossing point Q(p) := Q as a function

of noise p is give by

Q(p) = Root
[
IAB(Q) − IAE(Q, p) = 0

]
, (4.56)

where IAE(Q, p) and IAB(Q) are the same mutual information functions given in

equation (4.52) and (4.55), respectively. We plot this Q-value for the crossing-
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4.5 Security proof

point (equation 4.56) as a function of noise p. The result is shown in Figure

4.3. For p = 0 the crossing point is Q(p = 0) = 0.15637. In equation (4.19) the

relation between qubit error rate Q, disturbance D and noise p is given. One

might expect that the crossing point of the two information curves obeys this

linear dependence, i.e. Q = D(1− p) + p/2 with D = 0.15637; this is the dashed

line in Figure 4.3. However, the true value for the crossing point is the solid line

and lies above that straight line. From Figure 4.3 (solid line) it is easy to see

that as p increases the crossing point between two mutual information curves also

moves to higher values.

0.46 0.47 0.48 0.49 0.50
p

0.320

0.325

0.330

Crossing Point�Q�

0.2 0.4 0.6 0.8 1.0
p

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Crossing Point�Q�

Figure 4.3: The solid line is the value of Q for the crossing point of IAB and IAE,

as a function of the noise parameter p. The dashed straight line corresponds to

equation (4.19) when D=0.15637. For details see text.

101



4.5 Security proof

A natural question then arises that: Which consequence does this have for

the creation of a secret key? Following the mentioned theorem by Csiszár and

Körner (Theorem 4.1), a secret key can be established if IAB − IAE ≥ 0, i.e. for

values of Q which are smaller than the value for the crossing point. Therefore,

the area that Alice and Bob can establish a secret after error correction and

privacy amplification has been increased. In fact it shows that additional noise

on the quantum level helps the trusted parties to improve the performance of

a quantum cryptographic protocol. In other words, the six state protocol with

mixed states is more robust against eavesdropping than the six state protocol

with pure states. Following Theorem 4.2 we also find a lower bound on the key

rate (K ≥ IAB − IAE). The lower bound is illustrated in Figure 4.4 for the pure

state case (p = 0) and for the mixed state case with p = 0.05. It shows that

adding the noise also improves the lower bound on the key rate.

0.00 0.05 0.10 0.15 0.20 0.25
Q

0.2

0.4

0.6

0.8

1.0
K

Figure 4.4: Lower bound on the key rate K as function of Q, for the individual

eavesdropping strategy as described in the text. Dashed line: p = 0, solid line:

p = 0.05.
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4.6 Conclusion

In this chapter, a positive aspect of the quantum noise in an eavesdropping prob-

lem was provided. We investigated the six state protocol with additional noise

on all signal states in the presence of an eavesdropper. We derived the optimal

mutual information that Eve can obtain, when using individual attacks on noisy

quantum signals, and compared it to the mutual information achievable by eaves-

dropping on pure states. As we expected, Alice and Bob, but also Eve, lose some

information due to the additional noise. It was also shown that the threshold value

of the quantum bit error rate, below which the mutual information between Alice

& Bob is bigger than Alice & Eve, moves towards higher values (depending on

the noise parameter p). This lead, by following a theorem by Csiszár and Körner,

to an enlargement in the eligible area for which the trusted parties can produce a

secret key. It was also depicted that due to the additional noise the lower bound

on the key rate upgrades. In fact the extra noise improves the performance of

the six state protocol and it becomes more robust against eavesdropping.

The present chapter has been mainly published in [46]. As an outlook, it would

be interesting to study other protocols and/or other types of noise. It would be

also interesting to look at the present eavesdropping problem from another point

of view. That is to calculate the key rate as a function of the noise parameter p,

number of the signals n, the quantum bit error rate Q, and a security parameter

which is called ε. By adding extra noise we predict an improvement in the key

rate. However, this claim should be mathematically verified.
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