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Chapter 1

Introduction

1.1 Colloids

The mere observation of a small particle moving criss-cross through the solvent, as done by the
botanist Brown in the early 19th century using a simple microscope, finally led Jean-Baptist
Perrin to the first experimental proof of the existence of molecules and the determination of the
number of Avogadro[1]. For this he was rewarded the Nobel prize in 1926. Particles, so called
colloids, display this random motion due to the continuous bombardment of solvent molecules.
As a result of this thermal motion they are not much affected by gravity. Perrin realized that
colloidal particles could mimic the behavior of atoms, given that the Brownian motion of the
colloids is very similar to the random motion of atoms. Thus dispersions of colloidal particles can
be considered as being thermodynamic systems which display, as molecular systems, phenomena
like phase transitions. With this analogy a very rich experimental tool is given to explore the
phase behavior of particles with a huge variety of interactions, taking advantage of a few very
practical features of colloidal particles:

The most obvious feature is that colloids are very big and slow as compared to molecules.
This means that processes, which are too fast and small to be probed at the molecular scale, can
be easily accessed on the colloidal scale using light microscopy and scattering. Apart from the
length and time scales that are experimentally easily accessible, there is also a wealth of physical
and chemical tricks that can be used to tailor the interactions between the particles. This is
very important because the interactions between the particles determine if a given system is
stable or not. This phase behavior can be theoretically predicted provided that the interaction
potential between the particles is known. Thus, Colloidal systems provide the experimentalist
the tools to study the effect of the interaction between the particles on the overall behavior of
the system, so that theory can be directly tested.

The most simple interaction between two particles is the so-called ’hard core’ interaction.
With ’hard’ we mean that there is no interaction when the particles do not overlap and an
infinite interaction when they do overlap. The simplest morphology of a particle is a spherical
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particle. Considering a system of hard spheres is thus like considering a system of billiard
balls, except that billiard balls do not undergo brownian motion. Dispersions of colloidal hard
spheres have been subject of extensive study over the past decades although the phase behavior
is limited to the crystallization at a volume fraction of 0.49 and the vitrification at a volume
fraction of 0.64[2]. Colloidal particles can also be made attractive by grafting them with a
thin layer of polymer. The attraction can then be tuned by changing the solvent quality of
the polymer. Such systems show a ’gas-liquid’ transition including the critical behavior just
before the phase transition, very similar to molecular systems[3]. These ’sticky spheres’ can
also form gels at very low concentrations. To understand the behavior of dispersion of spheres
one only needs to consider the position of the particles or, on a more coarse grained scale, the
fluctuations in the density.

1.2 Lyotropic liquid crystals

However important atoms are, and their colloidal spherical equivalents, almost all molecules or
proteins that are present in nature are not spherical. The most simple non-spherical particles
are rods. Compared to spheres, rods have a far more rich phase behavior since it depends on
both the positional and orientational degrees of freedom of the rods. The simples transition
of rod-like particles is between between the isotropic phase (I), displaying orientational and
positional disorder, to the nematic phase (N), displaying a mean averaged orientation but
still no long-ranged positional order. Orientational order manifests itself when the dispersion
is birefringent due to the difference in the refractive index parallel and perpendicular to the
average orientation of the rods. Observations of birefringent structures have been first described
by Zocher[4] who studied dispersions of V2O5 and FeOOH. These systems consist of inorganic
needle shaped particles, as was found by ultramicroscopy, introduced by Zsigmondy in the
early 20th century. Not much later, in 1936, similar observations were made on dispersions
of Tobacco Mosaic Virus by Bawden et al. [5]. At that time it was surprising that dilute
low viscous dispersions of colloidal particles could show birefringence, since birefringence was
associated with mineral crystals or thermotropic liquid crystals. The latter is a class of systems
consisting of small anisometric molecules that form a nematic phase at low temperature which
can be melted into isotropic phase at high temperatures. For these thermotropic liquid crystals
the interactions between the molecules play an important role. For colloidal dispersions, which
are two-component systems, this is not obvious.

It was Onsager who reasoned on the basis of purely geometrical considerations that dis-
persions of hard rods should also undergo a phase transition from the isotropic phase to the
nematic phase[6]. At this phase transition the system will gain positional entropy, since the ac-
cessible volume is higher when rods are aligned in the nematic phase, at the cost of orientational
entropy. Since temperature does not play a role for such systems, dispersions of aligned hard
rods are called lyotropic liquid crystals, indicating that only the number of dispersed particles
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Figure 1.1: Bifurcation diagram of the nematic order parameter S for hard rods (ϕR
p = 0) with

L/D = 133. Open circles indicate spinodal points, separating the unstable and metastable
region, while the filled circles indicate binodal points, separating the metastable and the sta-
ble region. The arrows indicate concentration quenches that would render the system in a
supersaturated state.

is important. He predicted that this is a first order phase transition, which means in the case
of rods that there is a discontinuity in orientation as well as concentration. As a result there is
a concentration range where the isotropic and nematic phases coexist. The concentration and
orientational order parameter of the coexisting phases characterize the binodal points. These
are also the points after which the dispersion becomes metastable to fluctuations in the ori-
entation, when increasing the concentration from an initially isotropic phase or decreasing the
concentration from an initially nematic phase. Similarly, spinodal points can be defined and
calculated, which mark the concentration where the dispersion becomes unstable and each fluc-
tuation in orientation will result in phase separation. The full bifurcation diagram consisting
of the metastable and unstable isotropic and nematic phase have been calculated by Kayser
and Raveché[7] and is plotted in Fig. 1.1.

If the concentration of rods is further increased then a sequence of transitions where rods
are positionally ordered take place: the smectic phase, which consists of regularly spaced layers
of rods that show a liquid-like order within the layer; the columnar phase, where columns
of rods are hexagonally ordered; the 3-D ordered crystalline phase[8, 9]. This is again very
different from dispersions of spheres, that either have liquid-like order or crystalline order. This
sequence of phase transitions makes that lyotropic liquid crystals are of fundamental interest.
They form the most simple system where randomly diffusing particles can self-assemble into
these structures with higher architecture. As mentioned before it is straightforward to see if
a nematic phase has formed by detecting the birefringence of the system. Similarly, if rods
are longer than the optical resolution then the smectic phase can be observed by Differential
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Figure 1.2: Artist impression of a labeled particle jumping between adjacent smectic layers .

Interference Contrast microscopy, using the regular fluctuations in the refractive index. In
both cases one observes features that are a signature for the reduced entropy. In the case of the
nematic phase orientational order is detected, while for the smectic phase positional order in
one dimension is detected. Signature for the increase in positional entropy has not been given
so far. This raises the question of how the underlying dynamics of the rods behaves throughout
phase space. Dynamic light scattering, which still is the working horse in colloidal physics, is
very inconclusive, even in the isotropic phase, because of the complexity of the interpretation of
the measurements. Some measurements have been performed using fluorescence recovery after
photon bleaching, but the results are limited in the concentration range and information that
can be extracted[10]. By monitoring the motion of individual rods one could directly observe
the effect a phase transition has on the motion of particles, but likewise also it could give direct
information on the nature of the different phases. The wealth of information contained in such
observations is not yet sufficiently appreciated. ’Diffusion of rods in dispersions of rods’
is the subject of part I of this Habilitationsschrift . For these measurements fd viruses are
used in combination with fluorescence video microscopy. This virus is a bacteriophage which
are very long (880 nm) and thin (6.6 nm) and quite stiff with a persistence length of 3.3 µm
which therefore constitute the most ideal systems available. In chapter 2 and 3 (Ref. [11, 12])
the focus is on the nematic phase and the I-N transition, where in chapter 3 in addition the
influence of hydrodynamic interactions is addressed. For this we relied also on Multi-Particle
Collision dynamics simulations to implement hydrodynamic interactions. In chapter 4 and
5(Ref. [13, 14]) the self-diffusion in the smectic phase is studied, see Fig. 1.2.

So far experimental studies of I-N transition have mostly focused on the location of the I-N
binodal points. Experimentally these points are easily found since the nematic phase can be
clearly distinguished from the isotropic phase using its birefringence. The challenge has been to
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find systems that actually fulfil the requirements set by the Onsager theory, namely that they
have to be very long (at least 40 time longer than they are thick) and infinitely stiff. Since this
turned out not to be an easy task, extensions of Onsager theory have been proposed in order to
incorporate the effect of flexibility[15, 16], small aspect ratio[17, 18],polydispersity[19, 20, 21].
Very little attention has been paid sofar to the kinetic pathway of this transition. If one is able
to monitor the phase separation, then one has access to a rich source of information. First,
it would be possible to study supercooled and superheated fluids, because this is effectively
what metastable nematic and isotropic phases are, respectively. For dispersions of colloidal
spheres this is difficult because the spinodal and binodal line are located very close to each
other, while the energy barrier for phase separation to take place is low. Second, systems might
be arrested in the metastable state[3]. Once phase separation sets in the question arises which
features characterize the phase separation of colloidal rods. Where for phase separating spheres
one needs to consider density concentrations, for rods both the orientation and concentration
fluctuations need to be considered. The question is which parameter is enslaved by which.
Also the morphology of the formed structures during the phase separation are possibly much
different from the usually observed features observed for spheres. In short, the mechanism of
phase separating rods is still unclear and the bifurcation diagram, including the unstable and
metastable regions, has been merely a theoretical concept until recently. Some hints of different
phase separation pathways were found for a system of Boehmite rods[22] and actin filaments[23].
In Part II of this Habilitationsschrift the ’Isotropic-nematic Phase separation kinetics’
of fd virus is described. Shear flow is used to stabilize the nematic phase of an initially biphasic
sample, again consisting of dispersed fd virus. The phase separation kinetics that sets in after
cessation of the shear flow is set by the concentration of the sample. In this way the I-N spinodal
point was determined. In chapter 6 (Ref. [24]) we focus our attention to the morphology during
phase separation, while in chapter 7 (Ref. [25]) we focus on the spinodal decomposition and
compare results to theory. In chapter 8 (Ref. [26]) we study the influence of attraction to
the location of the N-I spinodal point, but also on the growth rate of the formed structures.
In addition we determined also the I-N spinodal point by using pressure quenches. With this
technique we instantaneously concentrated the sample making use of the compressibility of
water.

1.3 Dispersions of rod-like particles under shear flow

As described above, the mesoscopic length scale of colloids has the advantage that physical
processes in equilibrium become more accessible. Another consequence of the length scale is
that the shear modulus of colloidal dispersions is very low, so that moderate external fields are
sufficient to affect the behavior of the system. That is why colloidal dispersions are typical
examples of ’soft matter’ systems. The phase behavior of colloidal dispersion in external fields
is still a very immature area of research as compared to the equilibrium phase behavior. This
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despite of the fact that in nature and industry systems are almost always subjected to external
fields, like shear flow, EM fields, temperature gradients and confinement. In recent years colloids
in external fields were subject of increasing interest. Exemplarily are the intensive studies
within the transregio network TR6 ”Colloids in external fields”[27, 28]. Our contribution to
this network was in the area of colloidal dispersions in shear flow. A well known biological
example is blood circulation, where effectively highly concentrated dispersions of more or less
deformable cells are pushed through narrow channels[29]. A well known industrial example
is paint, of which the flow behavior sets the final product[30]. Already the simplest case of
dispersions of colloidal hard spheres in the fluid phase in shear flow displays a very rich scale
of features: divergent viscosity with increasing concentration[31] as seen in blood rheology[32]
and extreme shear thickening[33] as used for body armor[34]. To understand the flow behavior
of colloidal dispersions it is important to understand how the system is structurally changed
when it is submitted to the flow. Vise versa, shear flow can also affect the phase behavior
of the colloidal dispersion. For attractive colloidal spheres it has been shown for example
theoretically[35] and experimentally[36] that the critical structure factor is strongly affected
by shear flow and that, as a result, the location of the location of the phase transition shifts.
Here it plays an important role that the critical structure is much bigger than the particle size
and moreover that the dynamics of the system is very slow close the critical point. In other
words, one should scale the shear rate with the dominating length and time scale of the system.
Also for repulsive charged spheres we have shown how the crystallization kinetics changes when
the dispersion is submitted to a shear flow[37]. Here again a thermodynamically driven phase
transition competes with shear flow that erodes the formed crystals. In this case, however,
shear also can accelerate the phase transition, because of convection by shear flow. For hard
spheres the shear induced transition from a glass state to a crystalline state[38].

For dispersions of rods one expects that external fields will affect the behavior even of single
particle. When the applied field, and therefore the applied torque on the rod, is high enough
as compared to the rotational diffusion of the rod then this induces an average orientation.
This has been observed already in 1902 by Majorana who observed that dispersions of colloidal
of Ferroxides become birefringent when subjected to a magnetic field[39]. Not much later, in
1912, Zocher found that also flow could induce birefringence. This was before the steady state
birefringence structures were found. To demonstrate the peculiarity of the fact that fluids can
show birefringence Bawden et al. [5] published a photo of a goldfish in a bowl with a ’dilute
solution of protein from infected sap’ between crossed polarizers. These ’proteins’ were in fact
the tobacco mosaic virus we introduced earlier. These examples show that the flow behavior
of colloidal rods was already a subject of interest in the early days of colloidal physics. They
show that alignment can be induced by shear flow.

The obvious question is how flow alignment influences the location of the I-N transition,
since fluctuations in the orientation are not needed anymore to form a nematic phase from
the isotropic phase when rods are already aligned by shear flow. In other words, the phase
diagram of colloidal rods might change when rods are submitted to an external field like shear
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Figure 1.3: Expected non-equilibrium phase diagram with the I-N and N-I spinodal, the right
and left solid line respectively, the binodal line (dashed) and the tumbling-flow alignment line
(dotted). .

flow. For fd virus this has been studied using a magnetic field[40], where it was shown that
indeed the I-N spinodal point shifts to lower concentrations. In other words, the external field
stabilizes the nematic phase. Theoretically it has been shown that shear has the same effect on
the location of the I-N and N-I spinodal point [41, 42], see the solid lines in Fig. 1.3. There are
very few experimental examples where the flow induced I-N transition has been studied. The
spinodal line has also been determined indirectly for fd virus dispersions using flow hysteresis
experiments[41].

To predict the I-N binodal line (dashed line in Fig. 1.3) is a far more difficult task which
has not been fulfilled sofar. To get a sense of the physics that is at hand one should first ask
the question how the isotropic and the nematic phase respond independently to shear flow.
For infinite dilute rods it is known that they perform rotations in the so called Jeffrey orbits.
Brownian rods have on average a small angle with the flow direction, depending on the size of
the particle[43]. The flow alignment in the highly entangled isotropic phase has been studied
for a large variety of samples. The alignment of the rods or rodlike particles reduces the degree
of entanglement and therefore the viscosity is decreased[44, 45, 46]. The flow behavior of the
nematic phase is more complex. Theoretical predictions have shown already quite some time
ago that the nematic phase might undergo a tumbling motion where the nematic director leaves
the initial flow alignment and makes a full turn in the flow-gradient plane to return again at the
flow direction[47]. Later it was shown that the trajectory of a tumbling nematic phase strongly
depends on shear rate and initial orientation[48, 49]. The director will only be fully flow
aligned at sufficiently high shear rates. First experimental evidence of such a process was given
for sheared polymeric liquid crystals[50]. The problem of this type of systems is that they only
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form a nematic phase at rather high volume fractions, due to the flexibility and polydispersity of
the particles. The viscosity of such dispersions is dominated by the stress between the nematic
domains, i.e. the texture of the nematic phase. Comparison with theory for such systems can
only be done when the system is close to flow alignment[51]. The advantage of fd viruses is that
the I-N phase transition already takes place at very low concentrations, so that the contribution
of the texture to the stress is expected to be low. Moreover, the equilibrium phase behavior
of fd virus, see part I and II, as well as the flow behavior of the isotropic phase, see Ref. [45],
can be theoretically understood. Thus the goal of part III of this Habilitationsschrift is to
study the effect of shear flow on the phase behavior of dispersions of rod-like colloidal particles,
i.e. more specifically on the ’Isotropic-nematic Phase Transition under shear flow ’,
using fd virus as a model system. First, in chapter 9 (Ref. [52]) an overview is given of all
the important transition lines, i.e. the spinodal and binodal line and the tumbling-to-flow
alignment line. Also it is shown here that within a distinct part of the biphasic region bands
are formed that are stacked in the vorticity or neutral direction. In the following chapters
each aspect is treated separately. Chapter 10 (Ref. [53]) focuses on the rheological response of
the pure nematic phase of fd viruses, as studied over a wide concentration range. The results
correspond nicely with calculations using Smoluchowski theory. Thus the flow behavior of the
full nematic phase is well characterized. Next, in Chapter 11 (Ref. [54]) it is shown how the two
different dynamic states, i.e. the tumbling nematic and the flow aligning isotropic phase, and
which parameters set the non-equilibrium phase behavior. Again, as in chapter 3, experiments
are combined with Multi-Particle Collision dynamics, thus giving a microscopic insight of the
physics at hand.

The formation of shear bands stacked in the vorticity or neutral direction, as introduced
in chapter 9, is strongly connected to the presence of biphasic structures in the dispersion.
Structure formation in the neutral direction falls under a class of hydrodynamic instabilities
within a broad range of instabilities. In general one can distinguish between shear banding in
the vorticity direction and in the gradient direction, see top and bottom panel of Fig. 1.4[55].
The ’classical’ picture of vorticity band formation is that the fluid splits up in rings of different
viscosity which are both subjected to the same shear rate, i.e. with different stress[56, 42] as
shown schematically in Fig. 1.4. Vorticity banding thus would occur at a constant shear rate
and for shear thickening fluids. This is however not at all generally true. There is experimental
evidence[57, 58, 59] and theoretical justification[60] that vorticity bands are formed due to
instabilities in the interface between two gradient bands. Also it was shown theoretically that
a coupling between flow and concentration can induce vorticity bands.

In recent years another class of fluids showing vorticity bands developed. The common
feature of these systems is that the fluid contains inhomogeneities, such as polymers [61],
self-assembled structures like in worm-like micellar[62], clay gels[63], and emulsion droplets[64].
These structures will be non-uniformly stretched due to the curved streamlines that are present
in most rheological devices, thus generating hoop-stresses that give rise to elastic normal
forces[65] which set the fluid in weakly rolling motion. In Fig. 1.4 this effect is schemati-
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cally drawn for a polymer and a droplet. The mechanism underlying the vorticity-banding
instability is thus analogous to the well known elastic instability of polymer systems, leading to
the Weissenberg effect (see Weissenberg 1947), where the role of polymer chains is now played
by the inhomogeneities. Note that this is a pure elastic instability and that inertia does not
play a role as is the case for the also wellknown Taylor instability[66]. In chapter 12 and 13 it
is shown that the vorticity banding that is observed in the I-N phase separating system of fd
virus, see chapter 11, belongs to this class of fluids. The kinetics of the shear band formation
and its dependence on the location within the non-equilibrium phase diagram and on the used
geometry is described in chapter 12(Ref. [67]), while in chapter 13 a mechanism is proposed to
explain the shear band formation(Ref. [68]).

1.4 Flow instabilities in dispersions of worm-like parti-

cles

Gradient banding in shear flow is far better documented [69] and understood[55, 70] than
vorticity banding. The ’classical’ picture of gradient band formation is that an extreme shear
thinning fluid becomes mechanically unstable and splits up in a region of a low viscosity and high
shear rate close to the moving wall and a region with a high viscosity and low shear rate close
to the static wall such that the stress in both bands is constant, see Fig. 1.4. From a theoretical
point of view this is very similar to an equilibrium gas-liquid phase separation[71, 72]. Where in
the latter case one is interested how fluctuations in the density become unstable and grow, in the
case of shear banding one is interested in small deviations from the linear velocity profile that
grow. In principle its occurrence is independent of the structural changes in the fluid underlying
the shear thinning behavior, as long as the shear thinning is substantial. Thus gradient banding
has been observed for systems ranging from hard sphere colloidal crystals[73] and soft colloidal
glasses[74] to associative polymer networks[75], entangled polymer solutions[76, 77] and DNA
solutions[78, 79].

The mechanism underlying shear thinning in the case of DNA solutions is the shear induced
disentanglement of the polymers, which depends on the reptation dynamics of the polymers. A
disentangled polymer system will have much lower viscosity than an entangled polymer system.
It is still a matter of debate if shear banding really occurs in such systems, i.e. if these systems
show two distinct bands with different shear rates or a continuous distribution of shear rates[80].
Shear thinning behavior is far more pronounced for dispersions of living polymers, which are
self-assembled particles. This class of polymers has two mechanisms to release stress: reptation
and the break up and recombination of the polymers. In the case that the average breaking
time is much faster than the reptation time it can be shown that this results in a unique
relaxation mechanism and strong shear thinning[81, 82]. Surfactant wormlike micelles are self-
assembled particles consisting of lipids, which are continuously exchanged between the different
micelles. The first rheological studies showing the potential of such systems are due to Rehage
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and Hoffmann, see e.g. Ref. [83, 84]. Indeed strong shear thinning was found, depending on
the exact constitution of the sample. Therefore wormlike micelles are the ’working horse’ for
experimentalists in the field of flow instabilities. It should also be mentioned that strong shear
thinning is a very desirable feature for industrial applications. The flow behavior of shampoo,
for example, is mainly engineered by using surfactant wormlike micelles. It goes without saying
why for this application shear thinning is useful: at low shear it behaves like a gel, at high shear
it flows very easily. The same features are also very useful in, e.g. the oil industry[85]. The
first experimental proof for the occurrence of structure formation in the fluid were birefringence
measurements showing the split up of fluid into regions with low and high birefringence, i.e.
probably into regions with high and low viscosity respectively[86]. This strongly hinted that
also the shear rate in both regions is different. The existence of shear banding in this class
of systems has first been found by Callaghan et al. in a pipe-flow geometry using Nuclear
Magnetic Resonance Microscopy[87]. Using Heterodyne Dynamic Light Scattering Salmon et
al[88] demonstrated for the first time that indeed a scenario is at hand where the systems splits
up in two bands with shear rates of γ̇1 and γ̇2. The contribution of both bands is set by the
lever rule, similar to the lever rule for gas-liquid phase separation. The mechanisms of how the
shear bands are formed after starting up the flow and how the shear bands are related with
the birefringent structures was nicely demonstrated both by Hu and Lips[89] and Miller and
Rotstein[90]. Both groups used Particle Imaging Velocimetry (PIV) in combination with small
angle light scattering and birefringence imaging. The system that was used in the latter three
studies, but also by Rehage and Hoffmann and many others, was a 6 wt. % cetylpyridinium
chloride/sodium salicylate (CPyCl–NaSal) micellar solutions. The kinetics of the shear band
formation is very interesting from a fundamental point of view. Again, as for the I-N transition
discussed in Part II of this Habilitationsschrift, the question can be asked whether the velocity
profile is meta-stable or unstable for fluctuations in the velocity. In the literature on shear band
formation it is often stated that a shear induced nematic phase ’nucleates’ on the moving inner
wall. This implies two things: first, that shear flow induces a phase transition and second,
that the shear bands ’grow’ from the wall. The PIV experiments eliminated these implications
since the shear bands form instantaneously so that no mass transport can take place, i.e. no
phase separation, and they also from from the middle of the gap. Both features imply that the
flow is unstable after start up, although features for a spinodal-like decomposition could not
be found. The flow behavior is much more complex for somewhat higher concentrations than
6 wt. % CPyCl–NaSal, where the flow profile shows strong oscillations[91]. This is one of many
examples of temporal fluctuations[92, 93, 94]. There are equally many mechanisms that could
play a role: the system could be metastable for shear band formation, there could be dynamic
stick-slip behavior, it could be that the system jumps between two states γ̇1 and γ̇2 without
formation of shear bands, the system might undergo a tumbling motion, or the interface between
the shear bands might fluctuate, which is difficult to recognize when using 1-D experiments.
Here it should be mentioned that most of these effects have been observed for shear thickening
wormlike micelles like cetyl trimethylammonium tosilate[93] and cetyl trimethyl ammonium
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bromide[94]. A nice overview of the different reported effects is given in Ref. [69].

In spite of the extended literature there are still fundamental questions to be answer for a full
understanding of gradient shear banding. First of all, the microscopic arguments underlying the
predicted shear thinning behavior for living polymers as described in Ref. [81] do not have an
experimental counterpart. Thus it is not at all clear what the actual reason is for the extreme
shear thinning of these surfactant systems and whether this is a generic feature for living
polymers. Second, in the debate on the stability of the gradient bands there is still no direct
link between theory and experiments. Here the meta- or unstabile flow might play an important
role but also practical aspects like the stick-slip boundary conditions. These questions need to
be answered for a thorough understanding of Flow instabilities in dispersions of worm-
like particles , as described in Part IV of this Habilitationsschrift.

In chapter 14 the flow behavior of bis-urea substituted toluene (EHUT) is described (Ref.
[95]). This is a bifunctional monomer that assembles reversibly into long, semiflexible polymer
chains by multiple hydrogen bonds[96] with a total persistence length of at least 100 nm[97].
Similar to the traditional wormlike micelles, this system also shows strong shear thinning
behavior[98]. Using heterodyne dynamic light scattering not less than three different shear
banding regimes are observed. At low shear rates the system shows ’classical’ shear banding,
as described above. The shear banding regime at higher shear rates, however, is related to a
shear-induced phase transition and the appearance of texture. Hence, EHUT is the the first
living polymer system which was not a surfactant wormlike micellar system that showed shear
banding. Moreover, the experiments on this system hint to different mechanisms and reasons
for shear thinning and shear band formation. First, as mentioned earlier, the living character
of the polymer plays an important role. In the initial paper (Ref. [81]) it is assumed that
shear does not influence the breaking or recombination time. If the breaking time decreases
with shear then one could argue that entanglements disappear, causing shear thinning. On
the other hand one could argue that living polymers merge due to imposed flow, such that
they elongate. Because long rods have a low rotational diffusion coefficient, they will more
easily flow-align, causing shear thinning. For both mechanisms there is some support from
simulations[99, 100]. The advantage of the EHUT system is that so called ’chain stoppers’
can be used, such that recombination is inhibited. Doing so the characteristic maximum in
the stress at the start of the shear thinning plateau becomes less pronounced, hinting that
the shear thinning is somehow related to a coupling of chain alignment and growth[98]. Also
for surfactant wormlike micelles some experimental justification for shear induced structural
changes is found[101]. Both mechanisms describe a mechanical origin of shear thinning. An-
other reason for shear thinning could be the proximity of an I-N transition as described in Part
I and II, because the collective rotational diffusion coefficient goes to zero approaching the I-N
spinodal[102, 42]. Most systems described here can in principle form a nematic phase. The I-N
transition is, however, in most cases located at quite high concentrations due to the flexibility
and polydispersity of the systems.

Both the influence of the proximity of the I-N transition and the microscopic behavior of
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the living polymers can in principle be studied by using systems that can be imaged and that
also show the I-N transition. Poly(butadiene) poly(ethylene oxide) (PbPeo) diblock copolymers
with a 50-50 block composition form wormlike micelles that fulfil both criteria[103, 104]. In
chapter 15 (Ref. [105]) it is shown that this system displays a gradient shear banding transition,
purely due to proximity of the I-N spinodal. Step rate quenches was used to locate the non-
equilibrium I-N binodal, as in chapter 9. The equilibrium I-N spinodal was found by dynamic
shear experiments where we simultaneously probed the stress and the ordering of the Kuhn
segments using time-resolved rheo-SANS and fitting the data using the equation of motion for
the ordering tensor of rods. This in itself is an unique combination where the macroscopic
stress can be related with the microscopic orientational behavior of the rods. With heterodyne
dynamic light scattering, as used in chapter 14, we identified a small region close to the I-N
spinodal where shear bands form. Our findings were confirmed later for surfactant wormlike
micelles[106]. Observations using fluorescence microscopy in combination with a counter rotat-
ing cone-plate shear cell did not reveal any breaking or recombination (not published), so that
the future challenge is to find a system that does show the breaking-recombining dynamics, but
that can still be imaged.

The second issue that should be addressed is the stability of the gradient bands. In the
original theory on gradient shear band formation there is only one parameter that is needed
to select the two stresses at the beginning and the end of the stress plateau and that also
drives fluctuations in the flow profile into a shear banded state. This term is called the ’shear-
curvature viscosity’[72] and the ’stress diffusion coefficient’[107] in two very similar theories
that were developed at the same time. Where this was for some time only a mathematical
concept needed to describe shear banding, it could actually be determined by monitoring the
’interface travel’ of the birefringent band[108] and also by analyzing the flow profile of 6 wt. %
CPyCl–NaSal in microfluidic cells[109]. In chapter 16 (Ref. [110]) the interface travel in the
latter system is probed by a step rate experiment within the stress plateau, directly recording
the interface displacement using Ultra-Sonic Velocimetry (USV) coupled to standard rheology
in Couette geometry. The main goal of this paper was however to show how the existence of
shear bands in a sheared dispersion can be proven with a standard rheometer superimposing a
shear oscillation on a steady shear flow in the shear banding regime.

The only time constant that sets the response of the system described in chapter 16 is
the ’shear-curvature viscosity’ or the ’stress diffusion coefficient’. Here it is assumed that the
gradient bands in this system are well behaved, i.e. stable. As mentioned above this is not
generally true. Even when considering purely shear thinning systems, still strong fluctuations
are reported, like for 10 wt. % CPyCl–NaSal[91]. The occurrence of these fluctuations depended,
however, on which batch of material is used. One possible explanation for the fluctuations is
given by the group of Lerouge, where it was shown how vorticity bands grow from instabilities in
the interface between high and low viscous gradient bands[57, 58, 59]. The same observations
were also made for shear thinning CPyCl–NaSal dispersions[111]. If the instability of the
interface is a generic feature it does not explain the dependence on which batch of materials is
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used. So the question is if there could be another mechanism at hand. In the paper by Lopez et
al it was mentioned that the system slips or, in other words, that the mechanically applied shear
rate is not the actual shear rate[91]. The experiments lack, however, time resolution, which
is a problem when using NMR. A high time resolution is also needed to distinguish between
an metastable or unstable flow, as mentioned earlier [89, 90]. If the flow is unstable then
bands could nucleate and melt, which is also a possible reason for the observed fluctuations.
In chapter 17 (ref. [112] we perform measurements very similar to and on the same system as
the experiments described in Ref. [89, 90], i.e. recording time-resolved velocity profiles during
transient strain-controlled experiments, in this case using USV as in chapter 16. To access
the effect of the boundary conditions we used smooth and sandblasted geometries, something
that is not possible with optical techniques like PIV. For stick boundary conditions standard
shear banding is observed, although depending on the degree of micellar entanglement temporal
fluctuations are observed in the highly sheared band. For slip boundary conditions wall slip
occurs only for shear rates larger than the start of the stress plateau. At low entanglement,
shear band formation is shifted by a constant, while for more entangled systems shear bands
constantly nucleate and melt. This has the important implication that for both concentrations
wall slip acts as to stabilize the bulk flow. Micellar orientation gradients at the walls may
account for these original features. If the boundary conditions are not well controlled then
fluctuations may occur, especially for those systems that have a high barrier to form shear
bands.
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PACS. 61.30.-v – Liquid crystals.
PACS. 66.10.-x – Diffusion and ionic conduction in liquids.

Abstract. – We measure the self-diffusion of colloidal rod-like virus fd in an isotropic and
nematic phase. A low-volume fraction of viruses are labelled with a fluorescent dye and dis-
solved in a background of unlabelled rods. The trajectories of individual rods are visualized
using fluorescence microscopy from which the diffusion constant is extracted. The diffusion
parallel (D‖) and perpendicular (D⊥) to the nematic director is measured. The ratio (D‖/D⊥)
increases monotonically with increasing virus concentration. Crossing the isotropic-nematic
phase boundary results in increase of D‖ and decrease of D⊥ when compared to the diffusion
in the isotropic phase (Diso).

Introduction. – Suspensions of semi-flexible polymers exhibit a variety of dynamical
phenomena, of great importance to both physics and biology, that are still only partially
understood. Advances over the past decade include direct visual evidence for a reptation-
like diffusion of polymers in a highly entangled isotropic solution and shape anisotropy of
an isolated polymer [1–4]. If the concentration of the polymers is increased, a suspension
undergoes a first-order phase transition to a nematic phase, which has long-range orientational
order but no long-range positional order. As a result of the broken orientational symmetry,
it is expected that the diffusion of polymers in the nematic liquid crystals will be drastically
different from that in concentrated isotropic solutions. While the static phase behavior of semi-
flexible nematic polymers is well understood in terms of the Onsager theory and its extensions
by Khoklov and Semenov [5, 6], the dynamics of semi-flexible polymers in the nematic phase
is much less explored [7].

In this paper, we determine the concentration dependence of the anisotropic diffusion of
semi-flexible viruses in a nematic phase and compare it to the diffusion in the isotropic phase.
Experimentally, the only data on the translational diffusion of colloidal rods in the nematic
phase was taken in a mixture of labelled and unlabelled polydysperse boehmite rods using
fluorescence recovery after photobleaching (FRAP) [8]. Theoretically, molecular-dynamics
simulations were performed on hard spherocylinder and ellipsoidal systems from which the
anisotropic diffusion data was extracted [9–11]. The unisotropic diffusion has also been studied
in low-molecular-weight thermotropic liquid crystals using NMR spectroscopy or inelastic
scattering of neutrons [12].
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Real-space microscopy is a powerful method that can reveal dynamics of colloidal and poly-
meric liquid systems that are inaccessible to other traditional techniques [3,7]. We use digital
microscopy to directly visualize the dynamics of fluorescently labelled fd in a nematic back-
ground of unlabelled fd. The advantage of this method is an easy interpretation of data and
no need to obtain macroscopically aligned monodomains in magnetic fields. The advantages of
using fd are its large contour length which can be easily visualized with optical microscope and
its phase behavior which can be quantitatively described with the Onsager theory extended
to account for electrostatic repulsive interactions and semi-flexibility [13,14]. Viruses such as
fd and TMV have been used earlier to study the rod dynamics in the isotropic phase [15].

Experimental methods. – The physical characteristics of the bacteriophage fd are its
length L = 880 nm, diameter D = 6.6 nm, persistence length of 2200 nm and a surface charge
of 10 e−/nm at pH 8.2 [16]. Bacteriophage fd suspension forms isotropic, cholesteric and
smectic phases with increasing concentration [16–18]. The free energy difference between the
cholesteric and nematic phase is very small and locally the cholesteric phase is identical to ne-
matic. We expect that at short time scales the diffusion of the rods for these two cases would
be the same. Hereafter, we refer to the liquid crystalline phase at intermediate concentration
as a nematic instead of a cholesteric.

The fd virus was prepared according to a standard biological protocol using XL1-Blue
strain of E. coli as the host bacteria [19]. The yields are approximately 50mg of fd per liter
of infected bacteria and the virus is typically grown in 6 liter batches. Subsequently, the virus
is purified by repetitive centrifugation (108000 g for 5 hours) and re-dispersed in a 20mM
phosphate buffer at pH = 7.5. First-order isotropic-nematic (I-N) phase transition for fd
under these conditions takes place at a rod concentration of 15.5mg/ml.

Fluorescently labelled fd viruses were prepared by mixing 1mg of fd with 1mg of suc-
cinimidyl ester Alexa-488 (Molecular Probes) for 1 hour. The dye reacts with free amine
groups on the virus surface to form irreversible covalent bonds. The reaction is carried out
in small volume (100µl, 100mM phosphate buffer, pH = 8.0) to ensure a high degree of la-
belling. Excess dye was removed by repeated centrifugation steps. Absorbance spectroscopy
indicates that there are approximately 300 dye molecules per each fd virus. Viruses labelled
with fluorescein isothiocynante, a dye very similar to Alexa 488, exhibit the phase behavior
identical to that of unlabelled virus. Since liquid crystalline phase behavior is a sensitive
test of interaction potential, it is reasonable to assume that the interaction potential between
labelled viruses is very similar to that between unlabelled viruses.

The samples were prepared by mixing one unit of anti-oxygen solution (2mg/ml glucose
oxidase, 0.35mg/ml catalase, 30mg/ml glucose and 5% β-mercaptoethanol), one unit of a
dilute dispersion of Alexa 488 labelled viruses and eight units of the concentrated fd virus
suspension at the desired concentration. Under these conditions the fluorescently labelled
viruses are relatively photostable and it is possible to continuously observe rods for 3-5 min-
utes without significant photobleaching. The ratio of labelled to unlabelled particles is roughly
kept at 1 : 30000. The samples were prepared by placing 4µl of solution between a No 1.5
cover slip and coverslide. The thickness of the samples is about 10µm. Thin samples are
important to reduce the signal of out-of-focus particles. Samples are equilibrated for half an
hour, allowing flows to subside and liquid crystalline defects to anneal. We have analyzed data
at various distances from the wall and have not been able to observe a significant influence of
wall on the diffusion of viruses.

For imaging we used an inverted Nikon TE-2000 microscope equipped with 100× 1.4 NA
PlanApo oil immersion objective, a 100W mercury lamp and a fluorescence cube for Alexa
488 fluorescent dye. The images where taken with a cooled CCD Camera (CoolSnap HQ,
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a b

Fig. 1 – (a) Image of fluorescently labelled rods dissolved in a background nematic phase of unlabelled
rods. The scale bar is 5µm. (b) Two-dimensional Gaussian fit to an individual rod. Arrows indicate
the long and short axis. The circle indicates the center of mass. From this fit it is possible to obtain
the orientation of an individual fd rod. The pixel size is 129 nm.

Roper Scientific) set to an exposure time of 60ms, running in a overlap mode at a rate of
16 frames per second with 2× 2 binning. The pixel size was 129 nm and the field of view was
89µm × 66µm. Typically there were around hundred fluorescently labelled rods in the field
of view. For each fd concentration ten sequences of four hundred images were recorded.

Analysis method. – Figure 1a shows a typical image of fluorescently labelled rods in a
background nematic of unlabelled rods. Due to limited spatial and temporal resolution of the
optical microscope, labelled fd appear as a slightly anisotropic rod, although the actual aspect
ratio is larger than 100. To measure the anisotropic diffusion in the nematic phase, it is first
necessary to determine the nematic director which has to be uniform within a field of view.
Spatial distortion of the nematic would significantly affect our results. The centers of mass
and orientation of rods are obtained sequentially. In a first step, a smoothed image is used
to identify the rods and obtain the coordinates of its center of mass using image processing
code written in IDL [20]. Subsequently, a two-dimensional Gaussian fit around the center of
mass of each rod is performed (fig. 1b). From this fit the orientation of each rod-like virus is
obtained. This procedure is then repeated for a sequence of images.

The length of a trajectory is usually limited to a few seconds, after which the particles
diffuse out of focus. In fig. 2a and b we plot the trajectories of an ensemble of particles
for both isotropic and nematic sample. As expected, the trajectories in the isotropic phase
are spherically symmetric (fig. 2a) while those in the nematic phase exhibit a pronounced
anisotropy (fig. 2a). The symmetric nature of the distribution indicates that there is no
drift or flow in our samples. We obtain the orientation of the nematic director using two
independent methods. One method is to measure the main axis of the distribution shown
in fig. 2b. This procedure assumes that the diffusion is largest along the nematic director.
An alternative method is to plot a histogram of rod orientations which are obtained from 2D
Gaussian fits to each rod (fig. 1b). The resulting orientational distribution function (ODF) is
shown in fig. 2c. In principle, it should be possible to obtain both the nematic director and
order parameter from ODF shown in fig. 2c. We find that the order parameter obtained in
such a way is systematically higher than the order parameter obtained from more reliable X-
ray experiments [14]. This is due to significant rotational diffusion each rod undergoes during
an exposure time of 60ms.

The differences in the orientation of the nematic director obtained using these two methods
is always less than 5 degrees. For the example shown in fig. 2, from the anisotropy of the
diffusion we obtain a nematic director at an angle of 31.2◦ (fig. 2b), while the peak of the
orientational distribution function lies at 30.2◦ (fig. 2c). The director can be “placed” along
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Fig. 2 – (a) A collection of trajectories of fluorescently labelled virus particles in the isotropic phase.
All trajectories are translated so that the first point is located at the origin. For clarity we only
show the center of mass and not the line connecting subsequent points in a particle trajectory. The
concentration of virus in this sample was 14mg/ml. (b) Anisotropic trajectories of the fluorescently
labelled viruses diffusing in the nematic phase. The concentration of the background virus in this
sample was 21mg/ml. x′ and y′ indicate a new lab-frame in which the director is aligned along the
y′-axis. (c) The orientational distribution function obtained by plotting the probability distribution
function of the virus orientation for isotropic (open circles) and nematic phase (full squares). The
orientation of the virus is obtained from two-dimensional Gaussian fits, an example of which is shown
in fig. 1b. The nematic directors obtained from (b) and (c) are almost identical.

one of the two main axes by rotating the lab-frame.
The diffusion coefficients of the rods parallel (D‖) and perpendicular (D⊥) to the director

are calculated from the x′- and y′-component of the mean-square displacement. When the
director lies along the y′-axis, D‖ and D⊥ are given by

D‖ =
1
N

1
2

∑
{y′i(t)− y′i(0)}2, (1)

D⊥ =
1
N

1√
2

∑
{x′i(t)− x′i(0)}2, (2)

where N is the number of traced particles. To obtain D⊥, Dx is multiplied with
√
2 since

only one component of the diffusion perpendicular to the director is measured. The under-
lying assumption of our analysis is that the nematic director is oriented in the field of view.
For 10µm thin samples this is reasonable.

Results and discussion. – Typical mean-square displacements (MSD) are shown in fig. 3
for samples in an isotropic and nematic phase. On average, the mean-square displacement was
linear over fifty frames in the nematic phase, but only over twenty-five frames in the isotropic
phase. The diffusion perpendicular to the director is slower in the nematic phase as compared
to the isotropic phase. Therefore in the nematic phase, the particles stay longer in focus and
can be tracked for a longer time. Because the MSDs are linear over the entire time range
and displacements are up to a few times the particle length, we are measuring pure long-
time self-diffusion. Visual inspection of the trajectories in the concentrated isotropic phase,
just below I-N coexistence shows no characteristics of the reptation observed in suspensions
of long DNA fragments or actin filaments [2, 3]. This points to the fact that fd is very
weakly entangled in a concentrated isotropic suspension. This is in agreement with recent
microrheology measurements of fd suspensions [21]. We note that MSDs obtained from few
hundred trajectories within a single field of view are very accurate. However, if we move to
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Fig. 3 – The mean-square displacements of rods along the director (full squares) and perpendicular
to the director (full triangles) obtained for a nematic sample at virus concentration of 21mg/ml.
The isotropic data are given by the open squares and were taken just below the I-N phase transition
at virus concentration of 14mg/ml. The diffusion along the director is significantly enhanced when
compared to the diffusion in the isotropic phase, while the diffusion perpendicular to the director is
significantly suppressed. The mean-square displacements shown in this figure are measured from a
single field of view.

another region of the sample we obtain MSD with a slightly different slope. This leads to the
conclusion that the largest source of error in measuring the anisotropic diffusion coefficient is
the uniformity of the nematic director within the field of view.

The concentration dependence of the anisotropic diffusion constants is shown in fig. 4a.
The nematic phase melts into an isotropic phase at low concentrations and freezes into a

a b

Fig. 4 – (a) The concentration dependence of the translational diffusion parallel to (D‖) and per-
pendicular to (D⊥) the nematic director are indicated by squares and triangles, respectively. The
nematic phase in coexistence with the isotropic phase occurs at cfd = 15.5mg/ml and is indicated
by a vertical line. The x-axis is rescaled so that I-N transition takes place at [fd]N=1. (b) The plot
of the dimensionless ratio of the parallel to perpendicular diffusion constant D‖/D⊥ as a function of
the nematic order parameter. The concentration dependence of the nematic order parameter is taken
from ref. [14]. Open triangles are data for hard spherocylinders with aspect ratio of 10 taken from
ref. [11] while open circles are data for ellipsoids with aspect ratio 10 taken from [9].
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smectic phase at high concentrations. We made an attempt to measure the diffusion of rods
in the smectic phase, but have not seen any appreciable diffusion on optical length scales over
a time period of minutes. The most strinking feature of our data is a strong discontinuity in
the behavior of the diffusion constant at the I-N phase transition. Compared to diffusions in
isotropic case Diso, D‖ is larger by a factor of four, while D⊥ is smaller by a factor of two.
The concentration dependence of D‖ and D⊥ exhibit different behavior. With increasing
concentration, for D‖ we measure an initial plateau, which is followed by a broad region
where the diffusion rate decreases monotonically. D⊥, however, shows a monotonic decrease
of the diffusion constant over the whole concentration range where nematic phase is stable.

It is useful to compare our results to previous theoretical and experimental work, espe-
cially the measurements of the diffusion coefficient for silica-coated boehmite rods [8]. In this
work the authors measure D‖/D⊥ ≈ 2 for monodomain nematic samples which are in coexis-
tence with the isotropic phase. This is significantly different from D‖/D⊥ ≈ 7.5 for fd virus.
Another significant difference is that results on boehmite indicate that both D‖ and D⊥ are
smaller than Diso, in contrast to our measurements, where D‖ is much larger and D⊥ is much
smaller than Diso.

When comparing our data to simulations of the diffusion of hard spherocylinders and ellip-
soids [9,11], one needs to compare equivalent samples. Scaling to rod concentration where the
I-N transition takes place would be erroneous, since fd virus is a semi-flexible rod. The semi-
flexibility of the virus drives the isotropic-nematic phase transition to higher concentrations
and it significantly decreases the order parameter of the nematic phase in coexistence with the
isotropic phase [13,14]. We choose to compare data and simulations at the same value of the
nematic order parameter which is determined independently [14]. For fd, the nematic order
parameter is 0.65 at the I-N coexistence, it monotonically increases with increasing rod con-
centration and saturates at high rod concentration. Experiment and simulation qualitatively
agree and both show a rapid increase of D‖/D⊥ ratio with increasing nematic order parame-
ter (fig. 4b). We note that there is a discrepancy between the simulations results obtained in
refs. [9, 11] which might be due to different systems studied in these two papers.

Interestingly, simulations predict that upon increasing rod concentration beyond I-N coex-
istence D‖ initially increases and subsequently upon approaching the smectic phase decreases.
The author argues that the non-monotonic behavior of D‖ is the result of the interplay between
two effects. First, with increasing rod concentration the nematic order parameter increases
which enhances D‖. Second, with increasing rod concentration there is less free volume which
leads to decrease of D‖. The author further argues that the first effect dominates at low rod
concentrations where the nematic order parameter rapidly increases while the second effect
dominates at high rod concentrations where the nematic order parameter is almost saturated.
In contrast, both of these effects contribute to a monotonic decrease in D⊥ with increasing
concentration, which is observed in simulations. Due to relatively large error in our experimen-
tal data, it is not clear if the behavior of D‖ is non-monotonic. There is an initial hesitation,
but D‖ decreases over most of the concentration range. This difference between simulations
and experiment might be because we compare experiments of semi-flexible fd to simulations
of perfectly rigid rods. Compared to semi-flexible rods, the order parameter of rigid rods
increases much faster with increasing rod concentration [14].

It would be of interest to extend our measurements to rotational diffusion in the isotropic
and nematic phase. At present the rod undergoes significant rotational diffusion during each
exposure which reduces resolution and prevents accurate determination of the instantaneous
orientation of a rod. It might be possible to significantly reduce the exposure time by either
using a more sensitive CCD camera or a more intense laser as an illumination source.
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Conclusions. – Using fluorescence microscopy we have visualized rod-like viruses and
measured the anisotropic long-time self-diffusion coefficients in the isotropic and nematic
phase. In the nematic phase the diffusion along the director and the diffusion perpendicular to
the director decrease monotonically with increasing rod concentration. The ratio of parallel
to perpendicular diffusion increases monotonically with increasing rod concentration. The
results compare qualitatively with simulations on hard rods with moderate aspect ratios.

Note added in proofs. – Our experiments coupled with recent observations of sub-diffusive
behavior of ellipsoidal particles in a nematic fd illustrate that much remains to be understood
about the dynamics of colloidal liquid crystals [22].
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The effect of hydrodynamic interactions on the diffusion of rods in the nematic phase is studied, both

experimentally by time-resolved fluorescence video microscopy and theoretically by mesoscale-

hydrodynamics simulations. The aspect ratio of the rods and the relative importance of hydrodynamic

interactions—compared to direct interactions—are varied independently. This is achieved in

experiments by using charged rod-like viruses (fd-virus) with varying ionic strength, both for the wild-

type virus and viruses coated with a brush of polymers. In computer simulations, hydrodynamic

interactions are incorporated by a particle-based mesoscopic simulation technique. It is found that

translational long-time diffusion coefficients for parallel motion along the nematic director, scaled with

the diffusion coefficient at infinite dilution, are significantly affected by hydrodynamic interactions, but

are insensitive to the aspect ratio. In contrast, the diffusion anisotropy—defined as the ratio of the

diffusion coefficients parallel and perpendicular to the nematic director—shows only a weak

dependence on hydrodynamic interactions, but strongly varies with the aspect ratio.

1 Introduction

The diffusion of colloidal particles in complex environments is of

interest for a large variety of soft-matter and biological systems.

Diffusion in concentrated suspensions of spheres has been

extensively studied, and is known to be strongly affected both by

direct and hydrodynamic interactions (see, for example, ref. 1).

Likewise, diffusive transport within cells is strongly affected by

the densely packed environment. Here, the environment is

a complicated mixture of many macro-molecular components,

part of which is a network formed by microtubules and F-actin.

Diffusion of spherical macromolecules through similar isotropic

networks of very long and thin biopolymers has been studied in

detail.2–6 However, only a few experimental studies have been

devoted to diffusion of spherical colloids through nematically

ordered networks,7–9 despite the fact that orientationally-ordered

structures are found in abundance in nature.10 Even less is known

about the diffusion of rod-like colloids in concentrated suspen-

sions. Experiments on thermotropic11,12 and lyotropic systems13–16

as well as computer simulations17–19 show that in the nematic

phase, diffusion along the director can be orders of magnitudes

faster than diffusion in the perpendicular direction.

For diffusion of relatively small spheres through rod networks,

hydrodynamic interactions (HI) are essential.7 However, there is

so far little understanding of the role played by hydrodynamic

interactions for the diffusion of rods in rod networks, both in the

isotropic and nematic phases. In particular, the importance of

hydrodynamic interactions—in comparison with direct interac-

tions—for the diffusive properties of rods in the nematic phase

parallel and perpendicular to the director is not known.

The understanding of the diffusion in dispersions of sterically

interacting rods in the semi-dilute regime has greatly profited

from the tube model of Doi.20,21 With the work of Fixman,22

Edwards and Evans23 and Teraoka and Hayakawa,24,25 the val-

idity of the Doi theory has been extended to apply over a large

concentration range. These theories have been verified on

a qualitative level in ref. 26 experimentally and in ref. 27–29 by

simulations. Possible deviations from experimental results might

be related to the neglect of HI in both theory and simulation.

Hydrodynamic interactions have been described in terms of

hydrodynamic screening, due to entanglement of the long and

thin rods in the network.5,7,30,31 These descriptions, however, do

not explain the role of hydrodynamics for diffusion of rods in the

isotropic or in the nematic phase. In simulations, an early

attempt has been made to incorporate HI by transferring the

hydrodynamically-caused diffusion anisotropy at infinite dilu-

tion (as derived in ref. 32,33) to dense rod systems by an aniso-

tropic step size in Brownian-dynamics simulations. This,

however, neglects HI with neighboring rods.19 Recently, HI have

been included through the explicit incorporation of the solvent

on a coarse-grained level.34–36 Thus, quantitative predictions

based on a theory that includes both direct and hydrodynamic

interactions are not available for the diffusion of rods in both the

isotropic and nematic phases.

The goal of this paper is to assess the importance of HI in

dense suspensions of colloidal rods, focusing on the nematic

phase. Both experiments and simulations are performed. The

relative importance of direct interactions and HI is varied in

experiments by varying the range of electrostatic interactions and

grafting the rods with a hydrodynamically impenetrable polymer

brush. In the simulations, HI can be incorporated by embedding

the rods in a particle-based mesoscopic solvent; in this approach,

HI can be switched off by employing a collision rules corre-

sponding to molecular chaos. We demonstrate that the dynamics

in the isotropic phase is governed by steric interactions, and that

HI cause a slowing down of the diffusion by at most 30%. In the

nematic phase, HI are enhanced because they take place over the
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full length of the aligned rods, which is a situation not considered

in ref. 34,36. As a result HI causes a slowing down of the diffu-

sion by up to a factor of two.

2 Variation of hydrodynamic and direct interactions

The relative importance of hydrodynamic interactions (HI) and

direct interactions can be tuned in the experiments by varying the

range of direct interactions, either by variation of salt concen-

tration that affects the range of electrostatic interactions between

the charged rods, or by coating the rods with polymers. In order

to quantify the variation of the interaction parameters, the

effective diameter deff and the hydrodynamic diameter dhyd are

introduced. Here, the effective diameter deff characterizes the

range of direct interactions, and is defined by the distance

between parallel, repulsive rods at which the interaction potential

equals kBT. The hydrodynamic rod diameter dhyd is the diameter

of a virtual hard rod with no-slip boundary conditions, which

shows the same hydrodynamic properties. For example, in the

case of a particle with a dense polymer brush, the solvent is

caught in the polymer mesh of the brush and does not contribute

to hydrodynamic interactions, as described in ref. 38. Thus dhyd is

determined by the steric polymer-brush thickness.

In the case where deff [ dhyd, the average distance between

rods is large as a result of the long-ranged repulsive interactions,

so that hydrodynamic interactions are relatively weak. The

maximum relative contribution of hydrodynamic interactions is

realized for deff ¼ dhyd, which is the case for hard-core interac-

tions.

In simulations it is a relatively simple matter to vary both radii

independently. The hydrodynamic interactions can be switched

on or off. Direct interactions are determined by the length

parameter of a repulsive Lennard-Jones interaction. In fact, even

the unphysical case deff < dhyd can be realized in simulations. We

consider three cases that are depicted in Fig. 1a: rods without HI

(i.e. no explicit solvent), rods with deff ¼ 2 dhyd, and rods with

deff ¼ dhyd. The importance of HI thus increases from top to

bottom in Fig. 1a.

For experiments, a systematic variation of deff relative to dhyd is

less straightforward. We vary the salt concentration and coat the

rods with polymer brushes to change both radii.39 Variation of

salt concentration affects the range of electrostatic interactions,

but leaves the hydrodynamic radius essentially unchanged.

Grafting the rod surface with a hydrodynamically impenetrable

polymer brush affects both radii. A few typical choices are

depicted in Fig. 1b. Without a polymer brush, dhyd equals the

hard core radius of the rod, while deff is large due to a low salt

concentration. The case deff ¼ dhyd can be achieved using

a combination of salt and a polymer brush. We can thus tune two

parameters independently: the effective aspect ratio of the rod

peff ¼ L/deff (where L is the length of the rods), and the HI–size

ratio

a ¼ deff � dhyd

dhyd

(1)

The effective aspect ratio affects the concentration where the

isotropic–nematic phase transition occurs.40 Rods with different

lengths of coating polymers, see Fig. 1b, therefore have different

orientational order parameters at the same effective volume

fraction, which has to be taken into account when we want to

assess the role of HI. The HI–size ratio characterizes the differ-

ence between deff and dhyd. For large a, HI are relatively unim-

portant. Formally, no HI corresponds to an infinite value of a,

since dhyd ¼ 0. The larger a is, the more solvent is contained

Fig. 1 Schematic representation of the tuning of hydrodynamic and

direct interactions. (a) In simulations solvent particles are considered

explicitly (middle and bottom) or left out (top). Long-range, repulsive

direct interactions are mimicked by Lennard-Jones spheres with a diam-

eter of deff ¼ 2dhyd, which are permeable for the solvent but not for other

rods (middle). (b) Experimentally deff is determined by the ionic strength

(top and middle) or the size of the coating polymers (bottom), while dhyd

is determined by the steric surface.

This journal is ª The Royal Society of Chemistry 2010 Soft Matter, 2010, 6, 4556–4562 | 4557

D
ow

nl
oa

de
d 

by
 F

or
sc

hu
ng

sz
en

tr
um

 J
ue

lic
h 

G
M

B
H

  o
n 

07
 S

ep
te

m
be

r 
20

10
Pu

bl
is

he
d 

on
 0

6 
A

ug
us

t 2
01

0 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0S
M

00
08

1G

View Online

37



within the region between two parallel rods at a distance where

the direct-interaction energy equals kBT.

The effect of HI is measured by the rate at which the rods

diffuse. Translational diffusion coefficients can be determined

from the slope of the mean square displacement (MSD) versus

time. Since the interactions have a different influence on diffu-

sion parallel and perpendicular to the long axis of the rods, we

distinguish between displacements parallel, ~rk, and perpendic-

ular,~rt, to the rod axis. The corresponding diffusion coefficients

Dk and Dt are defined as

D~rk
2(t) ¼ h|~rk(t) �~rk(0)|2i ¼ 2Dk t (2)

D~rt
2(t) ¼ h|~rt(t) �~rt(0)|2i ¼ 4Dt t (3)

where h.i is an ensemble average over all rods. The total MSD,

irrespective of orientation, defines the total diffusion coefficient

Dtot as

MSD ¼ h|~rtot(t) �~rtot(0)|2i ¼ Dtott ¼ 2Dkt + 4Dtt (4)

The MSD is determined by fluorescence video microscopy, as

will be discussed in more detail in Sec. 4 below. The above

definitions of Dk,t can be used at infinite dilution to distinguish

between diffusion parallel and perpendicular to the long axis of

a rod. In the nematic phase, however, Dk,t are usually defined as

the diffusion coefficient parallel and perpendicular to the nematic

director, instead of the long axis of a rod. For the quite high

degrees of alignment in the nematic phase, however, the differ-

ence between the two definitions of Dk,t is probably quite small.

3 Theoretical model and simulation technique

In the simulations, HI are implemented by employing a particle-

based mesoscale simulation technique called multi-particle

collision dynamics (MPC).41 This method provides all hydrody-

namic and thermodynamic properties of the fluid that are

essential for rod dynamics.42,43

Nrod rods of length L and diameter d are modeled by a linear

string of n monomer beads of mass M. The monomers are con-

nected by a harmonic spring potential

UbondðrÞ ¼
k

2
ðjrj � lÞ2 (5)

with spring constant k, which controls the bond length l, so that

L ¼ (n � 1)l. A bending potential Ubend, with bending rigidity k,

ensures semi-flexibility of rods. The excluded-volume interaction

between all monomers is modeled via a repulsive, shifted and

truncated 6–12 Lennard-Jones potential, which is characterized

by a diameter s ¼ d and an energy scale 3. With these potentials,

Newtonian equations of motion are solved by the velocity Verlet

algorithm with a time step hV.

The dynamics of the solvent particles of mass m of the MPC

fluid proceeds in alternating streaming and collision steps, with

time step h. In the streaming step, fluid particles move ballisti-

cally. For the collisions, particles are sorted into the cells of

a cubic lattice with lattice constant a. All particles in a collision

box exchange momentum by a rotation of their velocities relative

to the center-of-mass velocity by an angle a. The coupling of the

monomer beads with the fluid occurs in the collision steps of the

MPC algorithm. To describe low-Reynolds-number fluids, the

time step h has to be chosen small enough for the mean path

l ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
to be much smaller than the cell size a.44 The

parameters used in our simulations for the fluid are

h ¼ 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=kBT

p
, a ¼ 130�, and number density r ¼ 10 a�3.

With these parameters, the fluid viscosity is obtained45 to be

h ¼ 8:21
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p

=a2. For the rods, we choose bond length l ¼ a,

M¼ 10 m, and hV/h¼ 0.05. Note that hV� h is typically required

to resolve the motion of the monomers as determined by the

strong direct interactions with the other monomers. For the

stiffness of a rod we require that the end-to-end distance of

a single rod in thermal equilibrium is 98% of its contour length.

This determines the bending rigidity k for a given aspect ratio L/

d uniquely. In addition, we set k ¼ 4k/l2.

The hydrodynamic diameter dhyd of rods in a MPC fluid has

been determined in ref. 46 by fixing a rod47 at the center of the

simulation box and exposing it to a constant flow, with streaming

direction both perpendicular and parallel to the rod orientation.

In the limit of a large box size, the friction coefficients xt and xk
were then fitted simultaneously to the theoretical expressions32

xk ¼ 2phL

�
ln

L

dhyd

� 0:207þ 0:980
dhyd

L

��1

(6)

xt ¼ 4phL

�
ln

L

dhyd

þ 0:839þ 0:185
dhyd

L

��1

(7)

which are very similar to the more precise calculations of

Cichocki et al.,33 by varying dhyd. The hydrodynamic diameter

was obtained to be dhydx0.9a.

The steric diameter deff of the rods is determined in the simu-

lations by the parameter s of the Lennard-Jones potential. We

employ two values, deff h
ffiffiffi
26
p

s ¼ l (touching spheres) and deff ¼
2l (overlapping spheres), see Fig. 1a. In addition, we choose

3 ¼ 10kBT to describe strong repulsion.

In order to demonstrate that HI is correctly captured by our

simulation method, we simulated diffusion coefficients of single

non-interacting rods with different aspect ratios. The diffusion

coefficient of a single rod is sensitive to HI between ‘‘beads’’

within the rod. The leading order contribution to the friction

coefficient in an expansion with respect to the aspect ratio, is in

fact fully determined by HI. Simulated diffusion coefficients,

orientationally averaged Diso as well as parallel Dk and perpen-

dicular Dt to the long axis of the rod, are plotted in Fig. 2 as

a function of the aspect ratio. The simulated values are compared

to theoretical predictions

Dk ¼
kBT

xk
; Dt ¼

kBT

xt

(8)

with xk and xt given by eqn (6) and (7), respectively. We find

a very good correspondence between simulations and theory,

with a hydrodynamic diameter dhyd x a. This is in good agree-

ment with the calculation of friction coefficients in ref. 46 and of

the total diffusion constants in ref. 48, and confirms that indeed

HI are correctly accounted for in our simulations.

Hydrodynamic interactions can be switched off in the simu-

lations by a small modification of the collision rule.37,38 In this
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case, denoted Brownian-MPC, the momentum of all fluid

particles in a collision box is selected from a Maxwell–Boltzmann

distribution with temperature T;38 this destroys all hydrody-

namic correlations. However, thermodynamic properties as well

as monomer friction coefficients are essentially the same as for

the full MPC simulations.38 The effect of hydrodynamic inter-

actions on rod diffusion can thus be assessed by comparing

simulation results for both solvents.

To generate an equilibrium initial configuration of the

isotropic or nematic phase, we first prepare a system of straight

rods with random positions (unless there is overlap), and random

orientations for isotropic systems (i.e. S z 0) or unidirectional

orientations for nematic systems (i.e. S ¼ 1). In order to avoid

finite-size effects, the linear dimensions of the simulation box in

the isotropic phase is taken larger than twice the rod length. For

nematic systems, we make use of the anisotropy and set the box

lengths in the two dimensions perpendicular to the nematic

director to just one rod length. Then we let the dynamics evolve

using the Brownian-MPC solvent until the system reaches equi-

librium as the potential energy and the nematic order parameter

S approach stationary values. A configuration of the end of the

equilibration run is used to initialize the simulation of rod

diffusion. During the simulation, configurations are recorded

periodically.

4 Experimental details

For the production of polymer-coated rods, we follow ref. 39 by

using fd viruses53 which are intrinsically mono-disperse, very thin

(L ¼ 880 nm, dhyd ¼ 6.6 nm) and stiff (persistence length P ¼ 3.0

mm) rods. These wild-type viruses (WT-fd) are coated with the

water soluble and neutral polymer poly-ethylene oxide (PEO)

from Nektar with molecular masses of 5 and 20 kDa. These two

systems of coated fd-viruses will be referred to as 5kd-fd and

20kd-fd, respectively. Dispersions are prepared at ionic strengths

between 4 and 20 mM. The effective diameter of the rods is

determined for the different systems from the lower spinodal

concentration where the I–N transition takes place, which is

according to Onsager40 at 4L/deff ¼ 4. We thus find that at an

ionic strength of 20 mM deff¼ 14 nm for 5kd-fd, and deff¼ 37 nm

for 20kd-fd. A cartoon of the systems with the different deff and

dhyd is shown in Fig. 1b. Fluorescence correlation spectroscopy

experiments on the different virus derivatives in combination

with eqn (6), (7) and (8) show that dhyd to a good approximation

is equal to the steric diameter of the virus55.

To determine the self-diffusion coefficient, we rely on fluo-

rescence video microscopy, as has been successfully used

earlier.15,49 To follow single rods in time, about one fd out of 104

has been labeled with the dye Alexa-488 (Invitrogen), with

around 200 labeled particles in the field of view. Fluorescence

microscopy was performed on a Axiovert Zeiss microscope using

a Hamamatsu C9100 Electron Multiplying Charge Coupling

Device operated by Metamorph software. We operated at frame

rates of up to 50 frames per second taking 1000 frames per stack.

Data were analyzed with an adapted version of free-ware particle

tracking software,54 allowing for the determination of the rod

orientation.

5 Results

The mean square displacement (MSD) as a function of time just

in the nematic region close to the I–N transition, are plotted in

Fig. 3. The MSD along and perpendicular to the nematic director

is considered.15 In order to compare the experimental and

simulated curves, the MSD is scaled by the rod length L, and the

time is scaled by the time tL it takes the rod to diffuse one rod

length in the parallel direction. The first observation is the large

Fig. 2 Simulation data and theoretical values for diffusion constants of

single rods with dhyd ¼ a. Dashed and dotted lines indicate theoretical

predictions (8). The full line is given by D0 ¼ kBT/(3phL). Simulation

data are obtained from independent runs.

Fig. 3 The MSD scaled by the rod length and the time tL where MSD ¼
L2 and hP2(q0 � qt)i as a function of time. (a) Simulations, where the

dashed line depicts the orientational diffusion. Also shown are the fits in

two time windows of the parallel diffusion. (b) Experiments with diffu-

sion parallel (,) and perpendicular (O) to the director. The solid

symbols depict the measured rotational diffusion. The concentration was

[5kd-fd] ¼ 15 mg/ml and tL ¼ 660 ms.
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ratio Dk/Dt, which is consistent with earlier experimental

results,15 but is now also confirmed by simulations. We will come

back to this point later.

Both experiment and simulations show that the slopes of the

MSD versus time are not constant. Thus a distinction can be

made between short- and long-time translational diffusion,

similar to the dynamics of spherical colloids (see, e.g., ref. 50).

For spherical colloids, short-time diffusion relates to trans-

lational motion within a ‘‘static cage’’ formed by neighbouring

spheres; for these small times, only hydrodynamic interactions

play a role, direct interactions with the neighbouring spheres are

not relevant. There is a transition to long-time diffusion when the

tracer sphere diffused over distances comparable to the cage size.

At this time scale, the dynamics of the tracer sphere is also

affected by the direct interactions with the neighbouring spheres.

For rod-like colloids, a similar distinction can be made for

both translational and rotational diffusion. As can be seen from

Fig. 3, the transition from short- to long-time translational

diffusion occurs when the tracer rod diffused over a distance of

the order of its own length. A similar interpretation can be given

for the short- and long-time orientational diffusion of rods. In the

nematic phase, the ‘‘cage’’ consists of neighbouring rods that

constrain the orientational motion of the tracer rod. The strength

of the orientational constraint is characterized by the order

parameter hP2i, where P2 ¼ ½(3cos2q � 1) is the second-order

Legendre polynomial, and q is the angle between the long axis of

the rod and the director n̂. For short times, a tracer rod displays

an orientational diffusion within the cage, which is only affected

by HI. For longer times, the tracer rod experiences direct inter-

actions with the neighbouring rods that affects the orientational

dynamics. In order to quantitatively distinguish short- and long-

time dynamics, we introduce the orientational correlation

function

\P2ðQ0 �QtÞ.

¼
ðp

0

dcosQ0

ðp

0

dcosQP2ðQ0 �QÞ PðQ0Þ PðQ; tjQ0Þ ;
(9)

where P(Q0) is the probability density function of the angle Q0 of

the long axis of the tracer rod with the nematic director at time

t ¼ 0, and P(Q, t | Q0) is the conditional probability density

function that the tracer rod has an angle Q with the nematic

director at time t, given that the angle was Q0 at t ¼ 0. This

correlation function is unity at t¼ 0, and relaxes in the long-time

limit to hP2i2. As can be seen from Fig. 3, both the simulations

and the experiments reveal that the rotational long-time limit is

reached earlier than the translational long-time limit. The limited

time-resolution of the experimental set up does not allow

a detailed analysis of the effect of HI on the rotational diffusion,

so that in the following we will focus on the long-time diffusion.

In contrast to the short-time measurements, this regime is more

easily accessible experimentally, but requires a substantial

computational effort, especially for high aspect ratios.

The concentration dependence of both components of the

translational long-time diffusion and the total long-time diffu-

sion coefficients is shown in Fig. 4 for various aspect ratios peff

and HI–size ratios a. The data are scaled by the orientationally

averaged diffusion at infinite dilution, thus taking out the effect

of HI on the single particle level. Fig. 4a,b shows results for Dk, t

from simulations and experiments, respectively, while Fig. 4c

shows simulation and experimental results for Diso.

The vertical grey bars in Fig. 4a–c indicate the two-phase

isotropic–nematic region. First, note that the diffusion coeffi-

cients in the isotropic phase just below the two-phase coexistence

are larger than Dt and smaller than Dk in the nematic phase just

above the two-phase coexistence. This has been observed

before,15 and is also observed for diffusion of spherical colloids in

a nematic liquid crystal.7,51 The larger value of the total, orien-

tationally averaged diffusion coefficient Diso in Fig. 4c just inside

the nematic phase as compared to the isotropic phase reflects the

increase in free volume at the isotropic-to-nematic transition, in

accordance with Onsager’s theory.40 Second, we find a maximum

in Dk and Diso as a function of concentration in the nematic

phase. The non-monotonic concentration dependence within the

nematic phase is found both with and without HI, and is in

accordance with a similar observation in simulations by L€owen.19

Fig. 4 Parallel (solid symbols) and perpendicular (open symbols)

diffusion constants, scaled by the diffusion of the rods at infinite dilution,

for (a) simulations and (b) experiments for various aspect ratios peff and

HI ratios a, as indicated. (c) The total diffusion of a few selected exper-

iments (open symbols) and simulations (solid symbols). The arrow here

indicates the increase in the mobility of the rods. The gray bar indicates

the phase transition concentration.
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The reason for the non-monotonic concentration dependence is

that the orientational order parameter increases at low concen-

tration rapidly, leading to an increase of diffusion coefficients,

while at higher concentrations, where the order parameter is

nearly constant, the increasing hindrance through direct inter-

actions leads to a decrease of diffusion rates.19 The increase of the

diffusion rate in the nematic phase at low concentrations, and the

larger total diffusion coefficient just inside the nematic phase as

compared to the isotropic phase, reflects the increase of trans-

lational entropy due to an increase of the nematic ordering. The

differences in the scaled diffusion rates between experiment and

simulations can be related to the flexibility of the rods (see ref. 18,

where it was found that the diffusion rate decreases significantly

with increasing flexibility). This complies with the fact that the

relative persistence length of the simulations rods were longer

than the relative persistence length of the fd virus.

Both the simulation and experimental results in Fig. 4a,b show

that the aspect ratio affects the absolute parallel diffusion rate

only weakly; the curves for a ¼ 0 but different aspect ratios

display almost the same diffusion rates. The diffusion coefficients

do, however, strongly depend on a, which shows that inter-

particle HI has a considerable effect on the diffusive properties of

the rods. The simulation results in Fig. 4a, where the diffusion of

rods with and without HI is compared for aspect ratio peff ¼ 20,

show that the scaled parallel diffusion coefficient D̂k increases by

almost a factor 2 when a increases from 0 to N (no HI). The

same trend is seen in the experimental results in Fig. 4b, where

there is a considerable increase in D̂k with increasing HI–size

ratio from a¼ 0.3 to a¼ 2.8 for a small difference in the effective

aspect ratio (peff ¼ 35 and peff ¼ 40). The curve of D̂k with strong

HI (small a) lies below the curve of D̂k with weak HI (large a). It

is striking to see that without HI (Fig. 4a), the scaled parallel

diffusion coefficient reaches unity in the nematic phase for 4L/

deff x 6.5. This implies that diffusion is almost free, and inter-

actions with the neighboring particles have a very small effect.

Although the aspect ratio has a negligibly small effect on the

value of the scaled parallel diffusion coefficient, it has

a pronounced effect on the anisotropy of diffusion, as quantified

by the ratio Dk/Dt. The anisotropy in the diffusion increases

with increasing peff, as shown in Fig. 5a for both experiments and

simulations. In contrast to the absolute values of scaled diffusion

coefficients, the diffusion anisotropy is only weakly affected by

the HI ratio a: curves with the same (or similar) aspect ratios are

close together for different values of a. The anisotropy in

diffusion is thus essentially determined by direct interactions,

and HI is unimportant. One effect of increasing the aspect ratio is

that the orientational order increases. To assess the role of

orientational order, we plot the diffusion anisotropy in Fig. 5b as

a function of the orientational order parameter < P2 >. If the

concentration dependence of the orientational order parameter is

at the origin of the differences observed in Fig. 5a for the

different aspect ratios, then the data of Fig. 5a for different

aspect ratios should fall on the same master curve when plotted

as a function of the order parameter. Comparing, for example,

the experimental curves in Fig. 5b for a ¼ 0 with peff ¼ 25 and

peff ¼ 52, clearly shows that the diffusion anisotropy increases

with increasing aspect ratio. Therefore, differences in order

parameter alone do not explain the observed differences in the

diffusion anisotropy.

In Fig. 5b, we also include data from earlier simulations by

Darinskii et al.18 (peff ¼ 8), where HI is neglected, and L€owen19

(peff ¼ 16), where HI within a rod are taken account of by

imposing anisotropic diffusion constants for a single rod

according to eqn (8), but HI between rods are neglected. These

data lie somewhat above our simulation data without HI, even

though their aspect ratio is smaller, which is probably due to the

finite flexibility of the rods in our simulations. The fact that there

is an overlay of simulation data with peff ¼ 40 and experimental

data for with peff¼ 25 reflects the fact that the orientational order

parameter at the phase transition is higher for the simulation

data due to the higher bending rigidity, as discussed in ref. 18.

Thus flexibility is another important variable for the diffusion of

rods. For an experimental study of flexibility, the stiff mutant fd-

Y21M of the fd virus52 could be used.

6 Conclusion

We have studied the effect of HI on the diffusion of rods in the

nematic phase, both by simulations and experiments. We have

determined the diffusion coefficient as a function of the aspect

ratio peff, and the HI–size ratio a which measures the importance

of direct interactions relative to HI: for a ¼ N, HI are unim-

portant, while for a ¼ 0 HI are maximally important. In the

nematic phase, we could detect the transition from short-time to

long-time translation and orientational diffusion. Long-time

Fig. 5 The ratio of the diffusion coefficient parallel and perpendicular to

the director as a function of (a) the dimensionless concentration and (b)

the averaged orientational order parameter. The open and closed

symbols indicate experimental and simulation results, respectively. In (b),

the simulation results of L€owen19 (-, peff ¼ 16) and Darinskii et al.18 (�,
peff ¼ 8) are also shown.
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translational diffusion is reached when a rod diffuses over

a distance comparable to its own length. On that time-scale,

rotational correlations are completely relaxed.

To study the effect of hydrodynamic interactions in the

nematic phase, we focused on long-time translational diffusion

coefficients, where both diffusion parallel and perpendicular to

the director is probed. In our experiments, we varied the HI–size

ratio a by varying the hydrodynamic diameter dhyd of the core of

the rods and the effective diameter deff of direct interactions

independently. In the simulations, the extreme case of no HI (a¼
N) has also been explored. It is found that, in the nematic phase,

the absolute values of diffusion coefficients (scaled with the

diffusion coefficient at infinite dilution) depends only weakly on

the aspect ratio, but is strongly affected by HI: scaled diffusion

coefficients change significantly when a is varied. Inter-particle

HI can give rise to a reduction of diffusion coefficients by a factor

of 2. The ratio of the diffusion coefficient parallel and perpen-

dicular to the nematic director, which characterizes the anisot-

ropy of diffusion, on the other hand, depends only weakly on the

HI–size ratio, but varies with the aspect ratio. The diffusion

anisotropy is therefore only weakly affected by HI.
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We report the direct visualization at the scale of single particles of mass transport between smectic
layers, also called permeation, in a suspension of rodlike viruses. Self-diffusion takes place preferentially
in the direction normal to the smectic layers, and occurs by quasiquantized steps of one rod length. The
diffusion rate corresponds with the rate calculated from the diffusion in the nematic state with a lamellar
periodic ordering potential that is obtained experimentally.

DOI: 10.1103/PhysRevLett.99.197802 PACS numbers: 61.30.�v, 82.70.Dd, 87.15.Vv

Since the pioneering work of Onsager on the entropy
driven phase transition to a liquid crystalline state [1], the
structure and the phase behavior of complex fluids con-
taining anisotropic particles with hard core interactions has
been a subject of considerable interest, both theoretically
[2] and experimentally [3]. Understanding of the particle
mobility in the different liquid crystalline phases is more
recent [4]. In experiments various methods have been
applied to obtain the ensemble averaged self-diffusion
coefficients in thermotropic [5] and amphiphilic [6] liquid
crystals, block copolymer [7] and colloidal systems [8].
Only a few studies have been done where dynamical
phenomena are probed at the scale of a single anisotropic
particle: the Brownian motion of an isolated colloidal
ellipsoid in confined geometry [9] and the self-diffusion
in a nematic phase formed by rodlike viruses [10] represent
two recent examples. In the latter case, the diffusion par-
allel (Dk) and perpendicular (D?) to the average rod
orientation (the director) has been measured, showing an
increase of the ratio Dk=D? with particle concentration.
Knowledge of the dynamics at the single-particle level is
fundamental for understanding the physics of mesophases
with spatial order like the smectic (lamellar) phase of
rodlike particles. In this mesophase the particle density is
periodic in one dimension parallel to the long axis of the
rods, while the interparticle correlations perpendicular to
this axis are short-ranged (fluidlike order). For parallel
diffusion to take place, the rods need to jump between
adjacent smectic layers, overcoming an energy barrier
related to the smectic order parameter [11]. This process
of interlayer diffusion, or permeation, was first predicted
by Helfrich [12]. In this Letter, we use video fluorescence
microscopy to monitor the dynamics of individual labeled
colloidal rods in the background of a smectic mesophase
formed by identical but unlabeled rods. In this way we
directly observe permeation of single rods in adjacent
layers. As in the nematic phase, self-diffusion in a smectic
phase is anisotropic: the diffusion through the smectic
layers is shown here to be much faster than the diffusion
within each liquidlike layer, i.e., Dk=D? � 1, in contrast
to thermotropic systems. Moreover, since the individual

rod positions within the layer are monitored, the potential
barrier for permeation is straightly determined for the first
time. The permeation can then be described in terms of
Brownian particles diffusing in a one-dimensional periodic
symmetric potential.

The system of rods used in this work consists of fila-
mentous bacteriophages fd, which are semirigid polyelec-
trolytes with a contour length of 0:88 �m, a diameter of
6.6 nm, and a persistence length of 2:2 �m [13].
Suspensions of fd rods in aqueous solution form several
lyotropic liquid crystalline phases, in particular, the chiral
nematic (cholesteric) phase and the smectic phase [14].
The existence of a smectic phase in suspensions of hard
rods is an evidence of the high monodispersity and there-
fore of the model system character of such filamentous
viruses [15,16]. The colloidal scale of the fd bacteriophage
facilitates the imaging of individual rods by fluorescence
microscopy, as well as smectic layers by differential inter-
ference contrast (DIC) microscopy [14]. Figure 1(a) shows
a sequence of images of a single region [17] where both
techniques are combined. A comparison of the images
shows that some rods jump between two layers while
others remain within a given layer. The trajectory of one
of the rods is plotted in Fig. 1(b) in the direction parallel (z)
and perpendicular (x) to the director. This figure summa-
rizes the key observation of this Letter: the diffusion
throughout the smectic layers takes place in quasiquan-
tized steps of one rod length; i.e., the mass transport
between the layers is a discontinuous process. Moreover,
it shows that the diffusion within the smectic player is
extremely slow [18].

The ‘‘hopping-type’’ diffusion is the consequence of the
underlying ordering potential of the smectic phase and the
vacancies available in adjacent layers. A phenomenologi-
cal expression for permeation has been derived by coupling
the displacement of a segment of a smectic layer u to the
compressibility modulus ~B via the permeation parameter
�b [11]:

 

@u
@t
� �b ~B

@2u

@z2 : (1)

On a single-particle level, the fundamental solution of this
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diffusion equation is the self–van Hove function [19],
which is the probability for a displacement z during a
time t:

 G�z; t� �
1

N

XN

i�1

��z� zi�0� � zi�t��: (2)

Since single particles are experimentally identified, the
self–van Hove function can be directly obtained from the
histogram of particle positions after a time t, as plotted in
Fig. 2 for low (I � 20 mM) and high ionic (I � 110 mM)
strengths. For a fluid made of Brownian particles, a smooth
Gaussian distribution that smears out over time is expected
for the self–van Hove function. However at low ionic
strength, G�z; t� shows distinct peaks exactly at integer
multiples of the particle length [and therefore of the layer
thickness, see Fig. 2(a)] as expected from visual observa-
tion (Fig. 1). At high ionic strength the curves are smoother
[Fig. 2(b)], but in all cases the experimental self–van Hove
function is not Gaussian at any time. This implies that the
permeation parameter �b in Eq. (1) is a function of position
z, due to the energy landscape imposed by the smectic
layers.

The energy landscape can be determined experimentally
from the distribution of particle positions with respect to
the middle of a layer parallel to the director. To this end,
time windows are selected where the particle remains for
ten frames or more within the same layer. The distribution
of particles within a single layer is then obtained by
addition of all particle positions relative to the average
position of particles for all selected time windows. The
resulting distributions are plotted in Fig. 3(a) for the two

ionic strengths. To obtain the total particle distribution for
the full smectic phase, the distributions of particles in a
single layer [Fig. 3(a)] is added periodically to itself at all
integer numbers of layer spacing L [Fig. 1(a)]. The smectic
ordering potential is then deduced from the Boltzmann
factor P�z� 	 e�Ulayer�z�=kBT for the probability of finding a
particle at position z, as shown in Fig. 3(b). Both potentials
can be best fitted with a sinusoidal Ulayer�z� �
U0 sin�2�z=L�, giving an amplitude of U0 � 1:36kBT at
low ionic strength and U0 � 0:66kBT at high ionic
strength. The difference between the two amplitudes ex-
plains the fact that for I � 20 mM the self–van Hove
function exhibits discrete peaks, while for I � 110 mM
the potential barrier is small enough to exhibit a monotonic
behavior of the probability density function. The reason for
the more pronounced potential at low ionic strength might
be that electrostatic interactions between rods are more
long ranged; i.e., particles are more strongly correlated so
that it is more difficult to create a void between them. The
fact that the potential can be fitted by a sinusoidal is
remarkable by itself. Indeed, the use of such a potential
is very common due to its simplicity [20], but this ordering
potential has never been directly observed until now.
Moreover the height of the potential, i.e., the smectic order
parameter, can be directly obtained.
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FIG. 2 (color). Probability density function in space at differ-
ent times for two ionic strengths: 20 mM (a) and 110 mM (b).
The functions are normalized to one, the z axis is scaled by the
smectic layer thickness L.

FIG. 1 (color). (a) Time sequence of an overlay of fluorescence
and DIC images showing labeled particles jumping between
adjacent smectic layers (�t � 0:071 s is the time between two
frames). The layer spacing is L ’ 0:9 �m. (b) Displacement of a
given particle in the direction parallel (red) and perpendicular
(black) to the director. The green lines indicate the residence
time, i.e., the time for which one particle stays in a given layer.
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The overall mean square displacement (MSD) of rods
parallel and perpendicular to the director of the smectic
and nematic phase is plotted in Fig. 4 for both ionic
strengths. The time evolution of the MSD given by
h�r2�t�i 	 t� provides the diffusion exponent �: � < 1 is
characteristic of a subdiffusive behavior, while � > 1 is
referred to as superdiffusion. The parallel motion is close to
be diffusive (� ’ 1) in both the nematic (� � 0:97) and
smectic (� � 0:94) phases for I � 110 mM and in the
nematic phase for I � 20 mM (� � 0:95). Only the par-
allel motion in the smectic phase for low ionic strength,
i.e., where the discrete peaks in the self–van Hove function
are observed, is significantly subdiffusive: � � 0:81. The
perpendicular motion is in all cases strongly subdiffusive:
for I � 110 mM, � reduces from 0.63 before to 0.56 after
the nematic-smectic (N-Sm) transition and for I � 20 mM
it reduces from 0.68 to 0.46. Anomalous subdiffusive be-
havior has often been observed in systems where diffusion
takes place by steps, e.g., in the case of release from a
surrounding cage [21]. This ‘‘cage escape’’ might be at the
origin of the observed subdiffusive behavior for both par-
allel and perpendicular diffusion. For parallel diffusion the
cage is formed by the energy barrier imposed by the
smectic layers, as shown by smaller � for higher ordering

potential. Perpendicular diffusion at high volume fractions
is only possible through a reptationlike motion along the
long axis to escape the local excluded volume, as observed
for polymers for which typically � � 0:5 [22]. This ex-
cluded volume is huge, even for rods at high orientational
order, due to the large rod aspect ratio of 
 130. In
addition, perpendicular diffusion in the smectic phase is
hindered due to the ordering potential, which couples this
diffusion to the permeation and which thus explains the
decrease of � from the nematic to the smectic phases. For
subdiffusive systems, a non-Gaussian distribution of the
probability density functions has been observed as in Fig. 2
[21], even though these two features are not a priori corre-
lated. Note also that boundary effects might influence the
probability density [23].

The anisotropy in the total diffusion, Dk=D?, which is
about 20 in the nematic phase [10], increases in the smectic
phase as a result of the pronounced subdiffusivity of the
perpendicular motion (decrease of �). These observations
show an opposite trend as compared to thermotropic liquid
crystals [4,5], where usually Dk=D? evolves from being
larger than 1 at temperatures close to the N-Sm transition
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FIG. 4 (color). (a) Mean square displacement parallel to the
director for the two indicated ionic strengths in the nematic
phase (red line), in the smectic phase (blue dashed line), and in
the nematic phase considering the oscillatory potential (red
dotted line). (b) Mean square displacement perpendicular to
the director (same convention as above). The insets show the
same data in a log-log scale, yielding the degree of subdiffusion
from the linear regression (black line).
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FIG. 3. (a) Histogram of time averaged particle positions par-
allel to the director within the smectic layer at 20 mM (�) and
110 mM (�). The histogram is normalized by the total number
of positions. (b) Resulting effective mean ordering potential in
the z direction obtained by applying the Boltzmann factor. The
solid lines are a fit to a sinusoidal potential.
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temperature to being smaller than 1 at lower temperatures
[24]. Therefore the diffusion in the smectic phase can be
effectively considered as a one-dimensional diffusion of a
Brownian particle in a periodic potential in the high fric-
tion limit. A general expression for such a diffusion pro-
cess is given by [25]

 Dk �
D0

he�Ulayer�z�=kBTiheUlayer�z�=kBTi
: (3)

The brackets indicate averaging over one period of the
ordering potential. The diffusion coefficient in the smectic
phase can then be calculated taking D0 as the diffusion
coefficient in the nematic phase close to the N-Sm tran-
sition, and using Ulayer as obtained from the fit of the
potentials plotted in Fig. 3: the diffusion coefficient de-
creases by a factor 0.84 at I � 110 mM and by a factor
0.44 at I � 20 mM. Indeed the MSD in the smectic phase
is obtained from the MSD in the nematic phase, using these
factors for both ionic strengths (see Fig. 4), although at I �
20 mM some deviation appears due to the subdiffusivity in
the MSD. Thus, we have shown how the mobility of rods
decreases after the N-Sm transition, contrary to the
isotropic-nematic transition where the global mobility in-
creases due to entropic gain [1,10]. It seems therefore to
indicate that fd virus suspensions do not behave as a system
of rigid hard rods for high concentration in agreement with
a recent work [16]. Moreover, the very slow diffusion
within the layers suggests that the smectic phase of semi-
flexible colloidal rods consists of layers of glasslike, rather
than fluidlike, particles.

In conclusion, we have for the first time visualized the
process of permeation in the smectic phase at the scale of
single particles for a system of charged rods. This allowed
us to give a full and coherent description of the diffusion
process without any assumptions on the system. The dif-
fusion is strongly anisotropic in the direction normal to
the smectic layers and quasidiscontinuous due to the pres-
ence of the layers. The parallel diffusion rate complies with
the rate in the nematic phase, taking into account the
ordering potential, which is obtained directly from our
measurements.

We thank Jan Dhont for fruitful discussions. This project
was supported by the European network of excellence
SoftComp. MPL acknowledges also the SFB TR6 for
financial support.
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Abstract
Self-diffusion in a model system of rod-like particles is studied in the smectic (or lamellar)
phase. The experimental system is formed by a colloidal suspension of filamentous fd virus
particles, which allows the direct visualization at the scale of the single particle of mass
transport between the smectic layers. Self-diffusion takes place preferentially in the direction
normal to the smectic layers and occurs in steps of one rod length, reminiscent of a
hopping-type of transport. The probability density function is obtained experimentally at
different times and is found to be in qualitative agreement with theoretical predictions based on
a dynamical density functional theory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The self-organization into liquid crystalline states is a
field of intensive research, both theoretically [1] and
experimentally [2, 3]. Recently, the dynamics of such
self-assembled anisotropic media has been investigated in
particular by the determination of self-diffusion coefficients
in different kinds of mesophases [4]. These measurements
have been performed with experimental techniques probing
the samples collectively (ensemble averaged), such as in
nuclear magnetic resonance (NMR) for thermotropic [5] and
amphiphilic [6] liquid crystals, and fluorescence recovery after
photobleaching (FRAP) for lyotropic (colloidal) systems [7].
Only a few studies have been performed where dynamical
phenomena are tracked at the scale of the single anisotropic
particle [8, 9].

In this work, the model system of aqueous dispersion
of filamentous virus fd particles, which exhibit a highly
monodisperse length and width distribution and the ability
to be visualized individually by fluorescence microscopy, has
been used to explore the time-dependent phenomena in the

smectic phase. In this lamellar mesophase, the particle density
is quasi periodic in one dimension parallel to the long axis
of the rods, while the interparticle correlations perpendicular
to this axis are short-ranged (fluid-like order). In the smectic
phase of fd virus suspensions, we investigate experimentally
the process of interlayer diffusion or permeation, first predicted
by Helfrich [10], corresponding to the jump along the long
axes (or director) of single rod-like particles between adjacent
smectic layers [9].

Here we first show that fd dispersions undergo a first
order nematic–smectic and smectic–columnar phase transition,
by using differential interference contrast microscopy. X-ray
scattering is used to confirm that, within the smectic layers,
rods show a Lorentzian radial distribution, typical for a liquid-
like ordering, but also for a glass. Having established the
structural characteristics of the smectic phase, fluorescence
video microscopy is employed to study self-diffusion in this
lamellar mesophase. Although particles can supposedly diffuse
freely within each liquid-like layer (with diffusion coefficient
D⊥) but must overcome a free energy barrier to jump between
adjacent layers (with diffusion coefficient D‖), surprisingly,
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Figure 1. Phase coexistence of the different mesophases observed in aqueous suspensions of fd rod-like viruses by differential interference
contrast microscopy. Coexistence of the (a) columnar (left) and smectic (right) phases and of the (b) smectic (left) and chiral nematic (right)
phases. The scale bars indicate 10 μm in both cases.

the diffusion through the smectic layers is shown here to be
much faster than the diffusion within each liquid-like layer,
i.e. D‖/D⊥ � 1. This behaviour will be analysed in terms
of a recently developed time-dependent density functional
theory [11].

2. Experimental details

2.1. Materials and methods

The system of rods used in this work consists of filamentous
bacteriophages fd, which are semi-rigid polyelectrolytes with
a contour length L = 0.88 μm, a diameter d = 66 Å,
a persistence length of 2.2 μm, and a molecular weight of
MW = 1.64 × 107 g mol−1. fd was grown using the XL1-Blue
strain of E. Coli as the host bacteria and purified following
standard biological protocols [3]. In this study, the ionic
strength has been fixed at I = 20 mM by a dialysis of fd
suspensions against a TRIS-HCl–NaCl buffer at pH = 8.2.
At this pH, the fd charge density is about 10 e nm−1. The
virus concentrations were measured using spectrophotometry
with an absorption coefficient of 3.84 cm2 mg−1 at 269 nm.
Video fluorescence microscopy has been used to monitor
the dynamics of individual labelled colloidal rods in the
background of a smectic mesophase formed by identical but
unlabelled rods, where about one fd rod out of 104 has been
labelled with the dye Alexa-488 (Invitrogen). The colloidal
scale of the fd bacteriophage enables the imaging of individual
rods by fluorescence microscopy, as well as smectic layers by
differential interference contrast (DIC) microscopy [3].

2.2. Phase diagram and structural investigations

Suspensions of fd rods in aqueous solution form several
lyotropic liquid crystalline phases with increasing particle
concentration, ranging from the chiral nematic (N*) [12] via
the smectic (Sm) [9, 13] to columnar (Col) and crystalline
phases [14]. The existence of a smectic phase in suspensions
of hard rods is an evidence of the high monodispersity in the
particle length and therefore of the model system character
of such filamentous viruses [15]. A conceptually appealing
intuitive explanation for the appearance of the smectic phase

was given by Wen and Meyer [16], and it goes as follows.
In the uniaxial nematic phase, neighbouring rods overlap each
other by random amounts along their principal direction. This
creates volumes at the end of every rod, which are accessible
only to that rod but not to any other rod. In the smectic
phase, with rods distributed in layers, the random overlapping
of rods along their length is avoided, so these excluded volumes
disappear, thereby increasing the free volume of the system.
Hence, though positional entropy is lost at the transition to the
smectic phase, freely available volume is gained and therefore
the overall configurational entropy increases.

At I = 20 mM, the typical virus concentration for the
smectic phase to occur is 115 mg ml−1, which corresponds
to a volume fraction φ = 0.13. The volume fraction has
been calculated with the bare virus diameter, and not with
an effective diameter taking into account the electrostatic
interactions between rods. Figure 1 presents the phase
coexistence of the smectic phase with the chiral nematic
and columnar mesophases, respectively. Both Col–Sm and
Sm–N* phase transitions are first order, and they are fully
reversible by dilution or concentration of the sample. Note
that a sufficiently pronounced particle length polydispersity
has been shown to rule out the smectic phase [15] and that
rod flexibility also destabilizes the smectic organization [17].
Another consequence of the virus flexibility is that the smectic
layer spacing is very close to the particle length [18, 13].

In order to study the nature of the positional order
within the smectic layers, small angle x-ray scattering (SAXS)
has been performed at the ESRF-ID02 beamline (Grenoble,
France). Figure 2(a) presents the average radial intensity
in the wavevector range suitable for probing the interaxial
organization of the rods. The position of the Bragg peak is
q100 = 0.0492 Å

−1
, which corresponds to a distance between

rods of dinter = 4π/
√

3q100 = 147 Å. In a conventional liquid
the positional correlations decay exponentially with distance,
giving a Lorentzian scattering profile of the Bragg reflections.
A line shape analysis of the first order Bragg peak has been
performed as shown in figure 2(b): a Lorentzian distribution
almost perfectly fits the data. A positional correlation length of
ξ = 2π/FWHM = 540 Å is found, which corresponds to an
inter particle correlation extending up to about four neighbours.
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Figure 2. (a) Average radial intensity as a function of the scattering wavevector, probing the inter-rod structure within the smectic layer.
(b) Lorentzian fit (solid line) of the first order Bragg reflection (open symbols) which are not resolution limited. The dashed line shows the
subtracted linear background.

Figure 3. (a) Overlay of differential interference contrast and fluorescence images, showing the smectic layers and two fluorescently labelled
particles, and the schematic representation of the jump of rod-like particles between adjacent smectic layers. The layer spacing is
L � 0.9 μm. (b) Displacement of a given particle in the direction parallel (red line) and perpendicular (black line) to the normal of the
smectic layers. The horizontal green lines indicate the residence time, i.e. the time for which one particle stays in a given layer.

This demonstrates that the structure of the order is liquid-like
in the layers of the smectic phase.

2.3. Self-diffusion of single particles

Figure 3(a) shows an example of images of a single region
where both DIC and fluorescence techniques are combined:
some rods jump between two layers while others remain within
a given layer. The trajectory of one of the rods is plotted in
figure 3(b) in the direction parallel (z) and perpendicular (x)
to the director. The main result of our measurements is the
following: diffusion between the smectic layers takes place
in quasi-quantized steps of one rod length, and the diffusion
within the smectic layer is extremely slow.

The ‘hopping-type’ diffusion is the consequence of the
underlying ordering potential of the smectic phase and the
vacancies available in adjacent layers. It shows that the
mass transport between the layers is a discontinuous process,
as evidenced by the self-Van Hove function G(z, t) in
figure 4(a) [19], which is defined as the probability density for
a displacement z during a time interval t :

G(z, t) = 1

N

〈
N∑

i=1

δ[z + zi (0 ) − zi (t)]
〉

. (1)

For an uniform fluid of Brownian particles, a smooth
Gaussian distribution that smears out over time is expected for
the self-Van Hove function. In the smectic phase, however,
G(z, t) shows distinct peaks exactly at integer multiples of the
particle length (and therefore of the layer thickness), as also
inferred from visual inspection of the rod trajectories (figure 3).

2.4. Mean square displacement

The overall mean square displacement (MSD) of rods parallel
and perpendicular to the director of the smectic and nematic
phases is plotted in figure 4(b). Here parallel MSD is scaled
by the length of the rod L, while the time is scaled by the
time it takes to diffuse one rod length in the nematic phase,
i.e. τL = L2/Dnem

‖ . Similarly, the perpendicular MSD is
scaled by the rod diameter d , while the time is scaled by the
time it takes to diffuse one rod thickness in the nematic phase,
i.e. τd = d2/Dnem

⊥ . The time evolution of the MSD given by
〈�r 2(t)〉 ∼ tγ provides the diffusion exponent γ : γ < 1 is
characteristic of a sub diffusive behaviour, while γ > 1 is
referred to as super diffusion. The parallel motion is close to
be diffusive in the (chiral) nematic phase (γ = 0.95) close to
the N*–Sm phase transition over the whole studied time range,
i.e. over several rod lengths. However, the parallel motion in
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Figure 4. (a) Evolution of the self-Van Hove function at different times. The functions are normalized to one, the z-axis is scaled by the
smectic layer thickness L . (b) Log–log representation of the scaled mean square displacement (MSD) parallel and perpendicular to the
director in the nematic and smectic phases (see legend) versus the scaled time. The dotted lines indicate the time the rods diffuse one rod
length. The dashed lines represent the numerical fits by a power law.

the smectic phase is significantly sub diffusive for t < τL :
γ = 0.77, while it is diffusive for t > τL (γ = 0.96). The
perpendicular motion is, in both cases, strongly sub diffusive.
In the nematic phase γ = 0.68, while in the smectic phase
once again two regimes can be distinguished: γ = 0.38 for
t < 1000τd and γ = 0.57 for t > 1000τd .

3. Theoretical details

In order to theoretically study the diffusion in uniform and non-
uniform complex fluids, a general method was put forward
allowing for the straightforward calculation of Van Hove
correlation functions within dynamical density functional
theory [11]. Because the fd virus filaments can be considered
as long, thin rods of high stiffness (see section 2.1) that are
strongly aligned in the nematic and smectic phases, one can
in a first approximation neglect the orientational degrees of
freedom [20] and model a liquid crystalline fd virus dispersion
as a fluid of aligned hard rods of an effective length and
diameter. Within the dynamical density functional theory we
next invoke the second virial approximation [21], which is not
quite exact at the densities where the smectic phase is stable
but contains the relevant physics, and numerically solve the
relevant kinetic equations that link the self-diffusion of a test
particle to the collective diffusion of all the other particles in
the system.

In figure 5 we compare the self-Van Hove correlation
function G(z, t) obtained from our model calculations with
the measurements displayed in figure 4. Here L denotes the
smectic layer spacing and τL is the parallel diffusion time τL =
L2/Dshort

‖ , where Dshort
‖ is the short-time parallel diffusion.

The model parameters for the smectic state in the calculation
were chosen such that the smectic ordering potential barriers
correspond to those determined in the experiment from a
Boltzmann weighting of the density profiles [9].

Figure 5 shows that even a calculation at the level
of the second virial approximation can account for the

Figure 5. The self-Van Hove correlation function G(z, t) obtained
within the dynamical density functional calculation based on a highly
idealized second virial model of perfectly aligned, perfectly rigid
hard rods, indicated by the blue dotted lines, exhibits the qualitative
features of the measurement (red solid lines). Here L is the smectic
layer spacing and τL is a parallel diffusion time. The quantitative
differences can be attributed to an overestimation of the
compressibility and the neglect of the particle bending flexibility
within the theoretical model.

qualitative features of the non-trivial, hopping-type diffusive
behaviour of rod-like particles along the director from one
smectic layer to the next. The quantitative differences
between the measurements and theory can be understood by
realizing that the second virial approximation overestimates
the compressibility of the fluid. Indeed, a rod in the model
fluid can, compared to a real fd virus, more easily squeeze
into a neighbouring layer, which increases the decay rate in
the central region around z = 0 and the growth rate of the first
side peaks around z = ±L in figure 5. The height of the peaks
around z = ±2L is associated with the cooperative movement
of a rod from the central layer via a void in the first layer to
the second layer, which is more pronounced in the experiment
than in the calculation.
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4. Discussion

Anomalous sub diffusive behaviour has often been observed
in systems where diffusion involves an initial waiting time,
e.g. following the release of a test particle from a temporary
cage caused by the presence of other particles [22]. It stands
to reason that this ‘cage escape’ might be at the root of
the observed sub diffusive behaviour for both parallel and
perpendicular diffusion observed in the smectic phase. For
parallel diffusion of rods the cage is actually formed by the free
energy barrier imposed by the smectic layers, superimposed
on which is the effective barrier from the enhanced number
of particles that cage the central (test) particle [11]. Indeed
in both the experiments and the calculations (see also figure
3(a) of [11]) the parallel behaviour is sub diffusive for t <

τL , related to the crossover between short-time and long-time
diffusive behaviour.

The anisotropy in the diffusivities, D‖/D⊥, which is
about 20 in the nematic phase [8], increases in the smectic
phase within the measured time range as a result of the
pronounced sub diffusivity of the perpendicular motion (as
indicated by the decrease of γ ). Since this sub diffusive
behaviour lasts for the whole studied time range, i.e. thousands
of rod diameters, it seems that the rods in the layers are glass-
like rather then liquid-like. This observation is apparently
opposite to the trend found for thermotropic liquid crystals,
where usually D‖/D⊥ decreases due to an Arrhenius form of
the diffusion constants [4, 5]. Also note that preliminary results
by Dogic on the self-diffusion of fd virus particles in single
lamellar membranes indicate that without neighbouring layers
perpendicular diffusion is much faster [23].

The cause of the experimentally observed perpendicular
sub diffusive behaviour is not clear a priori. The theoretical
calculations show diffusive long-time behaviour in the
perpendicular direction; it should be realized, however, that
both flexibility and orientational degrees of freedom are not
taken into account in the theory, both of which will result
in significant excluded volume effects. Thus, the dominant
mode of perpendicular diffusion could be a repetition-like
parallel motion of the rod along the long axis to escape its
locally excluded volume, similar in nature to what is observed
for polymers in the dense melt, for which typically γ =
0.5 [24]. Including these effects could also help to explain
the discrepancy between the envelope of the measured and
calculated Van Hove functions plotted in figure 5, since the
experimentally observed ∼z−1 behaviour could be related to
the relaxation of voids once a rod has jumped between two
adjacent layers.

5. Summary

We have shown by means of real-space video fluorescence
microscopy that the diffusive transport of particles between
the layers of a smectic lyotropic colloidal liquid crystal is
a discontinuous process that occurs in steps of one layer
spacing. Our approach using the dynamical density functional
theory, which is found to describe qualitatively the underlying
dynamics, points out the importance of the existence of free

energy barriers between the smectic layers. This gives rise to
a kinetics where particles hop from one layer to the other with
a time scale which is dictated by the height of the barriers. At
shorter time scales, the particles remain trapped in the smectic
layers and perform a diffusive ‘bobbing’ motion about the local
minimum of the self-consistent molecular field.
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Chapter 6

Kinetic pathways of the nematic
isotropic phase transition as studied by
confocal microscopy on rod-like viruses
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2 Soft Condensed Matter, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht,
The Netherlands

E-mail: p.lettinga@fz-juelich.de

Received 28 September 2005
Published 28 October 2005
Online at stacks.iop.org/JPhysCM/17/S3609

Abstract
We investigate the kinetics of phase separation for a mixture of rod-like
viruses (fd) and polymer (dextran), which effectively constitutes a system of
attractive rods. This dispersion is quenched from a flow-induced fully nematic
state into the region where the nematic and the isotropic phase coexist. We
show experimental evidence that the kinetic pathway depends on the overall
concentration. When the quench is made at high concentrations, the system
is meta-stable and we observe typical nucleation-and-growth. For quenches at
low concentration the system is unstable and the system undergoes a spinodal
decomposition. At intermediate concentrations we see the transition between
both demixing processes, where we locate the spinodal point.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Systems that are quenched into a state where at least one order parameter is unstable undergo
spinodal phase separation. Here, the initially homogeneous system is unstable against
fluctuations of arbitrary small amplitude, and phase separation sets in immediately after a
quench. In the initial stage of phase separation an interconnected ‘labyrinth structure’ of regions
with somewhat higher and lower values of the order parameter is observed. For quenches
where the system becomes meta-stable, phase separation is initiated by fluctuations with a
sufficiently large amplitude. Since such fluctuations have a small probability of occurring,
phase separation sets in after a certain delay time, referred to as the induction time. Here,
nuclei are formed throughout the volume which grow when they are sufficiently large. The

0953-8984/05/453609+10$30.00 © 2005 IOP Publishing Ltd Printed in the UK S3609
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two different mechanisms of phase separation (spinodal decomposition and nucleation-and-
growth) can thus be distinguished during the initial stages of phase separation from (i) the
difference in morphology (interconnected structures versus growth of isolated nuclei) and
(ii) the delay time before phase separation sets in (no delay time for spinodal decomposition
and a finite induction time for nucleation-and-growth). As Onsager showed in 1949 [1], the
situation is different when the particles are not spherical in shape, i.e. disc-like or elongated
particles. Here the system can become unstable or meta-stable with respect to fluctuations
in orientation. These orientational fluctuations drive concentration differences, resulting in a
phase with high concentration and orientational order, the nematic phase, and a phase with
low concentration and no orientational order, the isotropic phase. For very long and thin rods
with short-ranged repulsive interactions, the binodal concentrations, i.e. the concentrations of
the isotropic and nematic phases in equilibrium after phase separation is completed, have been
determined using different approximations in minimizing Onsager’s functional for the free
energy (see [2] and references therein), while for shorter rods computer simulations have been
performed to obtain binodal concentrations [3, 4]. Also the spinodal concentration where the
isotropic phase becomes unstable has been found [1, 5].

Binodal points are relatively easy to determine experimentally, since they are given by
the concentrations of the bottom and top phase after phase separation. In contrast, it is not
at all straightforward to obtain spinodal points, since one would ideally like to perform a
concentration quench from low or high concentration into the two-phase region, where the
initial state is isotropic or nematic, respectively. In a recent paper a ‘quench’ of this kind
was performed by inducing polymerization of short actin chains [6], and tactoids and spinodal
structures were observed. Signatures of spinodal decomposition have also been obtained for
boehmite rods, by homogenizing a phase separated system and using sequential polarization
microscopy and small angle light scattering measurements [7]. Alternatively, external fields
like shear flow [8] and a magnetic field [9, 10] can be applied to prevent a system from
phase separation and to stabilize the nematic phase. After cessation of such an external field
the nematic phase will become unstable or meta-stable, depending on the constitution of the
sample, and phase separation sets in. In this paper we induce a fully nematic phase with a well
defined director by imposing shear flow to a dispersion of colloidal rods. We use fd-viruses
as the system, since the equilibrium phase behaviour concerning the binodal points has been
well understood on the basis of Onsager theory [11, 12]. Polymer is added to the dispersion
in order to widen the region of isotropic–nematic phase coexistence, which facilitates the
phase separation experiments [13]. We perform quenches of a flow aligned initial state to
zero shear, which renders the system unstable or meta-stable to fluctuations in the orientation,
depending on the concentration of rods. As a consequence phase separation sets in, which
we observe by confocal scanning laser microscopy (CSLM). We perform this experiment for
different concentrations, throughout the region of phase coexistence. Our results illustrate the
difference between nucleation-and-growthand spinodal decomposition in the case of demixing
elongated particles, and result in the determination of the nematic–isotropic spinodal point.

2. On the instability of initial states

A convenient way to analyse the stability of a homogeneous initial state is to derive an equation
of motion for the order parameter tensor,

S0(t) =
∮

dû ûûP0(û, t). (1)
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Figure 1. The bifurcation diagram, where the orientational order parameter P2 is plotted against
concentration. Indicated are the various meta- or unstable regions for the two different initial states
of the homogeneous suspension. The points marked by X and O are spinodal and binodal points,
respectively.

The largest eigenvalue P2 of the tensor Q0(t) = 3
2 [S0(t) − 1

3 Î] (where Î is the identity)
measures the degree of alignment. For the isotropic state P2 = 0, while for a perfectly
aligned state P2 = 1. A stability analysis of stationary solutions of this equation of motion
is most conveniently made on the basis of a bifurcation diagram [5], where P2 for stationary
solutions is plotted against the concentration. A schematic bifurcation diagram is given in
figure 1. The two solid lines represent stable stationary solutions of the equation of motion,
while the dotted lines represent unstable stationary solutions. The isotropic state ceases to be
stable above the concentration indicated as Cspin

i , while the nematic state becomes unstable at

concentrations lower than Cspin
n . Above Cspin

i , the isotropic state is still a stationary solution,

but is now unstable. Below Cspin
n , in contrast, there is no unstable nematic state that is a

stationary solution of the equation of motion. The two spinodal concentrations Cspin
i and Cspin

n

are connected by a separatrix which separates the basins of attraction for the isotropic and
nematic state. A homogeneous initial state above this separatrix develops a higher degree of
alignment, while an initial state below the separatrix becomes more isotropic.

Note that the bifurcation diagram relates to homogeneous systems. In an experiment,
starting from a homogeneous state, inhomogeneities develop simultaneously with the change
of the order parameter of the otherwise homogeneous system. In equilibrium, after completion
of phase separation, there is an isotropic phase with concentration Cbin

i in coexistence with a
nematic phase with concentration Cbin

n . One can either start from a stationary state, in which
case P0 in equation (1) is independent of time, or from a non-stationary state, like a nematic
state with a concentration lower than Cn, in which case the time dependence of the temporal
evolution of alignment of the otherwise homogeneous system couples to the evolution of
inhomogeneities through the time dependence of P0.

In this paper we prepare an initial nematic state shearing a suspension at large enough
shear rate such that the induced nematic phase is stable against phase separation (see [14] for a
discussion of the bifurcation diagram for sheared systems), and then quench to zero shear rate.
For this initial state it is expected that spinodal decomposition occurs at lower concentrations,
while nucleation and growth is observed at higher concentrations. For an isotropic initial
state this would be reversed: spinodal decomposition at high concentrations and nucleation
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Table 1. Overview of the samples used.

Code ϕ5
nem ϕ4

nem ϕ3
nem ϕ2

nem ϕ1
nem

fd (mg ml−1) 29.5 28.1 25.8 23.6 19.3
ϕnem 0.96 0.85 0.68 0.52 0.18

and growth at lower concentrations. The observed phase separation kinetics thus depends
crucially on the preparation of the initial state of the suspension.

3. Materials and methods

As model colloidal rods we use fd-virus particles which were grown as described elsewhere
[13]. A homogeneous solution of 22.0 mg ml−1 fd-virus and 12.1 mg ml−1 of Dextran
(507 kd, Sigma-Aldrich) in 20 mM tris buffer at pH 8.15 with 100 mM NaCl is allowed
to macroscopically phase separate. This concentration of fd-virus is exactly in the biphasic
region, which is very small when no polymer is added, namely between 21 and 23 mg ml−1.
Due to the added polymer, the binodal points shift to 17 and 30 mg ml−1, respectively. New
dispersions are prepared by mixing a known volume of the coexisting isotropic and nematic
bulk phases. The relative volume of nematic phase in this new dispersion is denoted as ϕnem.

For the microscopic observations we used a home-built counter-rotating coneplate shear
cell, placed on top of a Leica TCS-SP2 inverted confocal microscope. This cell has a plane
of zero velocity in which objects remain stationary with respect to the microscope while
shearing. For details of the setup we refer to [15]. For the measurements described here we
used confocal reflection mode at a wavelength of 488 nm. Quench experiments were done
as follows. Samples were first sheared at a high rate of 10 s−1 for several minutes. The
shear was then suddenly stopped, after which images were recorded at regular time intervals.
These images were parallel to the flow–vorticity plane. Table 1 gives an overview of the
concentrations where quench experiments have been performed.

4. Results

In the top row of figure 2 we show micrographs of the initial stage of phase separation for five
different concentrations taken after a shear rate quench from a high shear rate, where the nematic
state is stable for each concentration, to zero shear. These images show the flow (vertical)–
vorticity (horizontal) plane at a given time after the quench. Thus the director of the initial
nematic phase lies in the vertical direction. Fourier transforms of the images are plotted in the
second row of figure 2. The background is corrected for by subtracting the Fourier transform of
the first frame. The third row plots the development of the total intensity of the images minus the
intensity in the isotropic phase, as determined from an isolated isotropic region, normalized by
the initial nematic intensity. Qualitatively the difference between the concentrations is obvious.
In the first two images, i.e. the two highest concentrations, isolated dark ellipsoidal structures
can be seen on a bright background. These are droplets of the isotropic phase referred to as
tactoids. The number of tactoids increases when the concentration is decreased ((b) and (c))
until the structures become interconnected ((d) and (e)). This also follows from the Fourier
transform of the pictures where a ring is detected for the lowest concentration and a constant
increasing intensity towards K = 0 for the highest concentration. The timescale at which
the inhomogeneities are formed also changes. As can be seen in the third row of figure 2,
the high concentrations all show an induction time before the phase separation sets in, while
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Figure 2. The initial stages of phase separation for five different concentrations after a quench
from a flow aligned nematic phase to zero shear. The top row shows the micrographs taken by
reflection confocal scanning laser microscopy (field of view = 110 µm); the middle row shows the
Fourier transform of the micrographs; the bottom row plots the mean intensity of the micrographs
minus the mean intensity for the isotropic phase, normalized by the initial intensity of the nematic
phase.

for the low concentrations phase separation sets in immediately. Note also the times at which
the images in figure 2 were taken. The isolated nuclei and the induction time are typical for
nucleation-and-growth, while the interconnected structures and immediate phase separation
are typical for spinodal decomposition.

We use the Fourier transform of the images as shown in figure 2 to quantify the phase
separation processes. The interesting quantity for nucleation-and-growth is the width of the
Fourier transform, �k, which is a measure for the anisotropic form factor of the nuclei.
Alternatively one could determine the average size of the features in real space, but due to
the low contrast this is difficult. For spinodal decomposition the interesting quantity is the
wavevector at which the Fourier transform reaches its maximum, kmax, quantifying the fastest
growing concentration fluctuation. In both cases the fit of the Fourier transform should be
performed in two dimensions, since the initial state is anisotropic. Therefore we took cross
sections parallel and perpendicular to the director in the Fourier domain, i.e. the vertical
and horizontal in figure 2 middle row, to determine kmax. Typical cross sections are shown
in figure 3, where the wavevector k is scaled by the rod length L. To determine �k, we
performed a 2D Gaussian fit around the origin of the Fourier transforms. Results of a 2D
Gaussian fit of the Fourier transform around the origin are shown for the higher concentrations
in figures 4(a) and (b), plotting the width in the direction of the director and perpendicular to the
director, respectively. kmax as found from fits of the cross sections parallel and perpendicular
to the director are given in figures 4(c) and (d), respectively. Both fit procedures result in
an anisotropic morphology as can be seen in figure 5, where we plotted �k⊥L/�k‖L and
kmax,⊥L/kmax,‖L.
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Figure 3. The cross section of the Fourier transform parallel (a) and perpendicular (b) to the
director for ϕ1

nem. The length is scaled by the rod length L .
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Figure 4. Width of the 2D Gaussian fit, �k L , of the Fourier transform parallel (a) and perpendicular
(b) to the director for the higher concentrations. Wavevector kmax L where the intensity is maximum
for the cross sections parallel (c) and perpendicular (b) to the director for the lower concentrations.

The late stages of the different phase separation processes also show some interesting
phenomenology, as can be seen in figure 6. For spinodal decomposition we observe first
a growing of the interconnected structures, which then break down into tactoids. Later on
the tactoids coalesce, and they become more spherical with increasing size. Note that these
tactoids contain the nematic phase and not the isotropic phase, as observed for the nucleation-
and-growth process at higher concentrations. In the late stage of nucleation-and-growth, i.e. at
high concentrations, we see that coalescence of tactoids containing the isotropic phase as
shown in the bottom row of figure 6 is favorable when two tactoids meet somewhat from the
middle. In this case the rod orientation near both features is similar and the barrier which has
to be overcome for coalescence is low.
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Figure 5. (a) The ratio �k⊥L/�k‖L for the higher concentrations and (b) the ratio
kmax,⊥ L/kmax,‖L for the lower concentrations.

Figure 6. The late stages for spinodal decomposition in the top two rows (ϕ1
nem, field of

view = 375 µm), and coalescence of tactoids in the bottom row (ϕ5
nem, field of view = 73 µm).

5. Discussion

On the basis of these observations we can now locate the metastable region, i.e. where the
system has to overcome a free energy barrier, and the unstable region, where there is no such
barrier. At the high concentrations (ϕ5

nem, ϕ4
nem) the system is meta-stable, which is reflected

by the observed isolated structures formed (top row in figure 2) and the induction time (bottom
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row in figure 2). With decreasing concentration the system approaches the unstable region:
the number of nuclei increases while the induction time decreases and finally vanishes. The
lowest concentration ϕ1

nem is clearly unstable after cessation of the flow. It shows all the features
typical for spinodal decomposition: phase separation immediately sets in throughout the whole
sample, with a typical length scale which is characterized by the scattering ring observed in the
Fourier transform. It can be shown, in fact, that the observed phase separation process for the
lowest concentration has features typical for the spinodal decomposition of rods, as derived
recently from a microscopic theory by one of the authors [16]. This will be the subject of a
following paper [17].

In the intermediate region it is difficult to judge from the morphology if nucleation-and-
growth takes place or spinodal decomposition, since it is difficult to distinguish between a high
number of tactoids and an interconnected structure. However, ϕ3

nem shows a short induction
time after the quench after which clearly separated tactoids are formed, while for ϕ2

nem phase
separation immediately sets in showing ellipsoidal structures which clearly ‘influence’ each
other. Moreover, figure 4 shows that the size of the structures formed in ϕ3

nem coincides after
some time with the clearly nucleated structures of ϕ4

nem and ϕ5
nem, while the size of the structures

formed in ϕ2
nem coincides with samples which clearly show spinodal decomposition. Thus, we

locate the transition from meta-stable to unstable, i.e. the spinodal point, between at 23.5 and
25.8 mg ml−1. This is the first experimental observation of the spinodal point in a rod-like
system. We should mention at this point that in fact our sample consists of a mixture of rods
and polymer. Addition of the polymer causes a widening of the biphasic region [13], i.e. a
shift of the binodal points. It is now interesting to see that the high concentration binodal
shifts as much as from 23 to 30 mg ml−1. In contrast, the high concentration binodal point,
Cbin

n , shifts from a concentration between 21 and 23 mg ml−1 to somewhere between 23.5 and
25.8 mg ml−1. This leads to the interesting conclusion that the shift of the high concentration
binodal point, Cbin

n , due to the attraction between the rods, is considerable compared to the
shift of the high concentration spinodal point, Cspin

n . In other words, making the rods attractive
causes a widening of the meta-stable region, while the unstable region remains unaffected.
Addition of more polymer will result in more complex kinetics as described in [18].

Interestingly, for all concentrations we observe that the morphology of the phase separating
system is anisotropic. This is most clear for the highest concentrations, where the tactoids all
point upwards, i.e. in the direction of the director of the surrounding nematic phase. Also
the Fourier transforms for the lower concentrations show deformed intensity rings in Fourier
space (rightmost FFT image in figure 2). Moreover, the kinetics of the phase separation is also
fastest in the direction of the nematic director. This follows for instance from the ratio of kmax

as plotted in figure 5(b), which increases in time. In other words, for all concentrations phase
separation is anisotropic, due to residual alignment after the quench of the initially strongly
sheared suspension, and not isotropic as is the case for spheres [19].

The length of the first observed tactoids just below Cbin
n is about 12 times the rod length,

while just above Cspin
n it is seven times the rod length. The thickness is about two-thirds of the

length in both cases. Typical length scales for the initial spinodal morphology are not more than
six rod lengths. These sizes seem to be quite small, considering also the random orientation of
the rods in the isotropic phase, but it is in accordance with the microscopic theory for spinodal
decomposition of rods [16]. It does suggest that we really image the initial stage. The breaking
up of the spinodal structure into nematic tactoids and the sequential growth in the late stage
of spinodal decomposition seems surprising since for dispersions of spheres only coalescence
and macroscopic phase separation would be observed. However, a similar order of events has
been observed for polymer mixtures with thermotropic liquid crystals [20]. Simulations on
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such mixtures show that the breakdown is due to the effect of the flow-alignment coupling,
and not primarily due to elastic effects [21]. An explanation along the same lines was given
by Fukuda in a numerical treatment of time-dependent Ginzburg–Landau equations of liquid
crystalline polymers [22]. The volume dependence of the morphology in the final stage can
be explained by the competition between the interfacial tension and nematic elasticity of the
tactoids [23].

6. Conclusion

We studied the kinetics of the nematic–isotropic phase transition of a dispersion of fd-virus
particles with added polymer after shear quenches into the two-phase region. By varying the
equilibrium rod concentrationϕnem we were able to detect a nucleation-and-growthmechanism
for high ϕnem, spinodal decomposition for low ϕnem, and the transition between the two
processes. In this way we were able to trace for the first time the nematic–isotropic spinodal
point Cspin

n . Thus, we found that addition of polymer widens the meta-stable region greatly.
Furthermore, we showed that the phase separation is strongly influenced by the director
of the initial nematic state. The nematic phase also influences the late stages of spinodal
decomposition, causing a splitting up of the interconnected structures.
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[4] Graf H and Löwen H 1999 Phase diagram of tobacco mosaic virus solutions Phys. Rev. E 59 1932–42
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Nematic-isotropic spinodal decomposition kinetics of rodlike viruses
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We investigate spinodal decomposition kinetics of an initially nematic dispersion of rodlike viruses. Quench
experiments are performed from a flow-stabilized homogeneous nematic state at a high shear rate into the
two-phase isotropic-nematic coexistence region at a zero shear rate. We present experimental evidence that
spinodal decomposition is driven by orientational diffusion, in accordance with a very recent theory.
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I. INTRODUCTION

Systems that are quenched into a state where at least one
order parameter is unstable, undergo spinodal phase separa-
tion. Here, the initially homogeneous system is unstable
against fluctuations of an arbitrary small amplitude, and the
phase separation sets in immediately after a quench. In the
initial stage of the phase separation an interconnected “laby-
rinth structure” of regions with somewhat higher and lower
values of the order parameter is observed. For systems con-
taining spherical particles the relevant order parameter is the
concentration. As Onsager showed in 1949 �1�, the situation
is different when the particles are not spherical in shape, i.e.,
disklike or elongated particles. Here the system can become
unstable or metastable with respect to fluctuations in orien-
tation. These orientational fluctuations drive concentrations
differences, resulting in a phase with high concentration and
orientational order, the nematic phase, and a phase with low
concentration and no orientational order, the isotropic phase.
For very long and thin rods with short-ranged repulsive in-
teractions, the binodal concentrations, i.e., the concentrations
of the isotropic and nematic phases in equilibrium after
phase separation is completed, have been determined using
different approximations in minimizing Onsager’s functional
for the free energy �see Ref. �2�, and references therein�,
while for shorter rods computer simulations have been per-
formed to obtain binodal concentrations �3,4�. The spinodal
concentration, where the isotropic phase becomes unstable
has been obtained �1,5�.

Recently, a microscopic theory was developed by one of
the authors, describing the initial stage of the kinetics of
spinodal decomposition �SD� �6�. It is shown there that de-
mixing is dominated by the rotational diffusion and not by
the translational diffusion as suggested in earlier work �7,8�.
This is in line with results based on the Ginzburg-Landau
equations of motion, where the importance of the coupling
between the concentration and orientation was studied �9,10�
for rod-polymer mixtures.

Signatures of SD have been observed for suspensions of
boehmite rods, by polarization microscopy and small angle
light scattering �SALS� on a homogenized system �11�. For
such experiments, however, there is always an experimental
lapse time between homogenization and the first moment of
observation. In these experiments the initial state is not well
defined. Ideally one would like to perform a concentration

quench from low or high concentration into the two-phase
region, where the initial state is isotropic or nematic, respec-
tively. In a recent paper such a kind of “quench” was per-
formed by inducing polymerization of short actin chains
�12�. Alternatively, external fields such as shear flow �13� or
magnetic fields �14� can be used to achieve well-defined
quenches. Switching on or turning off such an external field
can take the initially homogeneous system into either an un-
stable or metastable state.

In this paper we induce a nematic phase with a well-
defined director by imposing shear flow to a dispersion of
colloidal rods. At a sufficiently high shear rate, the fully
nematic, homogeneous state is stable. The shear flow is then
suddenly switched off, after which the system becomes ei-
ther unstable or metastable. As a system we use suspensions
of fd viruses, which are monodisperse and very long and thin
and are somewhat flexible particles. The equilibrium phase
behavior for these semiflexible rods, as far as the binodal
points are concerned, is well understood on the basis of an
Onsager theory, extended to include charge and flexibility
�15,16�. A polymer is added to the dispersion in order to
widen the region of the isotropic-nematic phase coexistence,
which renders phase separation experiments feasible �17�. In
a previous study we obtained the spinodal point that sepa-
rates the unstable and metastable region relevant for the ini-
tial state in the experiments described in the present paper
�18�. In this paper, experiments are performed at concentra-
tions such that the cessation of shear will render the system
unstable. We interpret our data on the basis of the recent
microscopic theory �6� mentioned above. Experimental evi-
dence is given that phase separation is indeed driven by ori-
entational ordering, which enslaves the concentration. We
use confocal microscopy to confirm that demixing is indeed
proceeding via spinodal decomposition, rather than nucle-
ation and growth, through the observation of an initial inter-
connected structure of inhomogeneities. In addition we also
use SALS experiments because these have a better time reso-
lution and a better statistics. The present experiments are
qualitative in the sense that only the specific wave vector
dependence of the unstable eigenmode is discussed, without
systematically varying the amount of added dextran which
leads to attraction between the rods.

This paper is organized as follows. First we give a brief
overview of the microscopic theory on SD of rod dispersions
�6�, leading to predictions that will be tested experimentally.
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After the section on materials and methods, experimental
results are presented for both techniques. In the discussion
we analyze our results using the predictions of the micro-
scopic theory.

II. THEORY

The time evolution of the probability density function
�pdf� of the orientations and positions of an assembly of N
rods is described by the so-called Smoluchowski equation.
From this microscopic equation of motion, an equation of
motion for the number density ��r , û , t� of rods at r with
orientation û at time t can be derived by the integration �6�

�

�t
��r,û,t� = 3

4D̄� · D�û�����r,û,t� − ���r,û,t�F̄�r,û,t��

+ DrR̂ · �R̂��r,û,t� − ���r,û,t�T̄�r,û,t�� . �1�

Here, D̄ and Dr are the orientationaly averaged translational
diffusion coefficient and rotational diffusion coefficient of a
noninteracting rod, respectively. The orientational depen-
dence of the translational diffusion coefficient of a noninter-

acting rod is described by the tensor D�û�= �Î+ ûû�. Further-

more, R̂ j�¯�= û j ��ûj
�¯� is the rotational operator with

respect to û j, where �ûj
is the gradient operator with respect

to the Cartesian coordinates of û j. For very long and thin

rods with hard-core interactions, the average force F̄ and

torque T̄ on a rod with position r and orientation û due to
interactions with other rods are given by

F̄�r,û,t� = − �Veff�r,û,t� ,

and

T̄�r,û,t� = − R̂Veff�r,û,t� , �2�

where the ”effective potential,”

Veff = 1
2DL2�−1� dû��û � û��	

−1

1

dl	
−1

1

dl���r + 1
2Llû

+ 1
2Ll�û�,û�,t� , �3�

has been introduced earlier by Doi and Edwards �19�.
In order to describe initial decomposition kinetics, the

density ��r , û , t� is written as

��r,û,t� = �̄P0�û,t� + ���r,û,t� , �4�

where �� is the small deviation with respect to the initial
probability density function �̄P0�û , t=0�, with �̄=N /V the
average number density of rods. Note that P0 is generally a
function of time, which reflects the temporal evolution of
alignment of the otherwise homogeneous system. Although
we treat in this paper a quench from the nematic state, we
will now proceed by assuming that the initial state is isotro-
pic. Nonisotropic initial states require numerical analysis,
since an appropriate �nonlinear� equation of motion for P0
should be solved simultaneously to the equation of motion

for �� �6�. The general features of demixing are probably not
very different for the different initial states.

During the initial stage of demixing, �� can be expanded
up to second order in spherical harmonics as

���r,û,t� = A0�r,t� + A2�r,t�:ûû . �5�

The scalar A0 is proportional to the local number density of
rods, while the tensor A2 describes the development of ori-
entational order during demixing. As it turns out, the number
density A0 is enslaved by the orientational contribution A2.

Using these definitions in the equation of motion Eq. �1�,
the corresponding equations of motion for A0 and A2 can be
derived. These equations can be solved, leading to

A0�k,t� = −
1
10D̄k2�1 − 1

4
L
D��1 + 29

84�kL�2��
D̄k2�1 + 2 L

D�� − 6Dr�1 − 1
4

L
D��1 − 499

8064�kL�2��
�k̂k̂:A2�k,t� ,

k̂k̂:A2�k,t� = k̂k̂:A2�k,t��k,t = 0�exp�− ��−�t� , �6�

where � is the volume fraction of rods, and L and D are their

length and thickness, respectively. Furthermore, k̂ is the unit
vector along the wave vector k, and ��−� is the eigenvalue
related to the unstable mode, which is equal to

��−� = 6Dr
1 − 1
4

L

D�
�1 − 499

8064�kL�2� − O�kL4� . �7�

Note that for L /D��4, this eigenvalue is negative for
sufficiently small wave vectors, so that, according to Eq. �6�,
inhomogeneities with the corresponding wavelength 2� /k
will grow in time without any time delay. This concentration
marks the location of the isotropic-to-nematic spinodal and is
in accordance with Onsager’s prediction �1�.

The proportionality of the density A0 to the orientational
contribution A2 in Eq. �6� reflects the enslavement of density
to orientational order during demixing. That is, the transition
is driven by orientational diffusion rather than translational
diffusion.

Although Eq. �7� has been derived for an initial isotropic
distribution, we think that the main conclusion, i.e., that ori-
entational fluctuations dominate the phase separation, is also
valid for phase separation starting from the nematic state.

In a scattering experiment the total scattered intensity is

related to the quantities A0 and k̂k̂ :A2 as

I � �A0�k,t��1 − 1
72�kL�2� − 1

180�kL�2k̂k̂:A2�k,t��1 − 3
560�kL�2�

+ O��kL�6��2. �8�

As for gas-liquid spinodal demixing suspensions of spheres,
the scattered intensity during isotropic-nematic demixing
suspensions of rods exhibits a ringlike pattern where a par-
ticular finite wave vector grows most rapidly. The occurrence
of a maximum in the scattered intensity at finite wave vec-
tors during demixing has a fundamentally different origin for
demixing rods as compared to spheres. For gas-liquid demix-
ing of suspensions of spheres, the eigenvalue �here referred
to as ��−�� itself exhibits an extremum at a finite wave vector.

LETTINGA et al. PHYSICAL REVIEW E 73, 011412 �2006�

011412-2

73



For spheres ��−� is of the form Dk2�1−	k2�, where D and 	
are wave vector-independent, positive coefficients �20,21�.
The prefactor k2 signifies the fact that the diffusion of
spheres over long distances takes longer times, while 	k2

signifies the stabilization of large concentrations gradients. It
is easily verified that an eigenvalue of this form exhibits an
extremum at a finite wave vector. For gas-liquid demixing of
suspensions of spheres this maximum in the growth rate re-
sults in the maximum in the scattering pattern. For the
isotropic-nematic demixing of suspensions of rods, the ei-
genvalue is of the form D�1−	k2� �see Eq. �7��, that is, the
prefactor k2 as compared to spheres is missing here. As a
consequence ��−� remains finite at zero wave vectors. This
difference in the wave vector dependence of the eigenvalue
��−� for gas-liquid and isotropic-nematic demixing is due to
the fact that gas-liquid demixing is governed by translational
diffusion while isotropic-nematic demixing is �predomi-
nantly� governed by rotational diffusion. The maximum in
the scattering pattern is now due to the combination of the
wave vector dependence of the eigenvalue and the wave
vector-dependent prefactors to the time exponent. Note that
according to Eq. �8�, the prefactor of the time exponent is
indeed �k2, rendering the scattered intensity equal to zero at
a zero wave vector, which expresses conservation of the
number of rods. The k dependence of ��−� can be tested ex-
perimentally using the fact that, according to Eqs. �6� and
�8�, the scattered intensity is �exp���−�t�. Hence,

�

�t
ln�I�k,t�� = 2��−� = 12Dr�1 − 1

4
L
D��1 − 499

8064�kL�2�� . �9�

The slope of a plot of ln�I�k , t�� as a function of t for a given
wave vector is thus equal to ��−� for that particular wave
vector. Repeating this for various wave vectors allows us to
construct the wave vector dependence of ��−�.

In addition, the critical wave vector kc above which the
system becomes stable, that is, where ��−� becomes positive,
is equal to

kcL = 2�8064

499
�1

4
−

1
L
D�

� 8�1

4
−

1
L
D�

. �10�

For shallow quenches, that is, for concentrations where the
L /D� is close to 4, the critical wave vector is thus relatively
small. That is, shallow quenches result in relatively large
scale inhomogeneities while deeper quenches give rise to
relatively small scale inhomogeneities.

In this paper we prepare an initial nematic state, by shear-
ing a suspension at a large enough shear rate such that the
induced nematic phase is stable against phase separation �see
Ref. �22� for a discussion of the bifurcation diagram for
sheared systems�, and then quench to zero shear rate. Since
the orientation of the rods dominates the phase separation, it
is expected that phase separation takes place anisotropically
for an initial nematic state. In the following we will test this
assumption and also the predictions made above for the
isotropic-nematic SD, which we believe to hold true also for
the nematic-isotropic SD.

III. MATERIALS AND METHODS

As model colloidal rods we use fd-virus particles which
were grown as described in Ref. �17�. The physical charac-
teristics of the bacteriophage fd are length L=880 nm; diam-
eter D=6.6 nm; persistence length 2.2 
m. A homogeneous
solution of 22.0 mg/mL fd-virus and 10.6 mg/mL of dext-
ran �507 kd, Sigma-Aldrich, radius of gyration of 18 nm� in
20 mM tris buffer at pH 8.15 with 100 mM NaCl is allowed
to macroscopically phase separate. Without dextran the bin-
odal concentrations are 21 and 23 mg/mL for the isotropic
and nematic phase, respectively. Due to the added dextran,
the binodal points shift to 17 and 31 mg/mL, respectively.
The lower spinodal point Cspin for this sample was found to
be equal to 24.7±1.1 mg/mL, as determined in a previous
paper �18�. We prepared three dispersions by mixing a
known volume of coexisting isotropic and nematic bulk
phases of the quiescent dispersion. In this way, the osmotic
pressure is independent of the varying ratio of dextran to the
fd-virus concentration. The mixing ratios of isotropic and
nematic phases are chosen such that a quench from the nem-
atic phase under the flow will always render the aligned sys-
tem unstable without flow, that is, the fd concentration is
larger than the lower binodal concentration Cbin

=17 mg/mL and smaller than the lower spinodal concentra-
tion Cspin=24.7±1.1 mg/mL �18�. The fd concentrations are
denoted hereafter as � f, where f = �C−Cbin� / �Cspin−Cbin� re-
lates to the fraction of the concentration between the lower
binodal and spinodal. The concentrations used in the present
study are as follows: �0.52=19.3 mg/mL, �0.55
=19.9 mg/mL, and �0.84=23.6 mg/mL. For the SALS mea-
surements the concentration of fd and dextran were
21.0 mg/mL and 12.1 mg/mL, respectively. Due to the fact
that we used different concentrations of dextran for the dif-
ferent experiments, we cannot directly compare the SALS
data to the microscopy data.

For the microscopy experiments we used a home-built
counter rotating cone-plate shear cell, placed on top of a
Leica TCS-SP2 inverted confocal microscope. This cell has a
plane of zero velocity in which objects remain stationary
with respect to the microscope while shearing. For details of
the setup we refer to Ref. �23�. For the measurements de-
scribed here we used a confocal reflection mode at a wave-
length of 488 nm. Quench experiments were done as fol-
lows. Samples were first sheared at a high rate of 10 s−1 for
several minutes. The shear was then suddenly stopped, after
which images were recorded at regular time intervals. For the
SALS measurements we used a home made cylindrical opti-
cal shear cell. The rotating hollow inner cylinder has a radius
of 21.5 mm, the gap width is 2.47 mm. The shear cell is
placed in a cylindrical toluene bath with the second gap of
the cell exactly in the middle of the bath. A 5 mW He-Ne
laser �Melles-Griott� with a wavelength of 632.8 nm was
used as a light source. The laser beam is directed along the
gradient direction through one single gap using a periscope
system, which is inserted into a silicon oil filled inner cylin-
der at a fixed position. In this way the flow-vorticity plane is
probed. Scattered intensities are projected on a white screen,
with a beam stop in the middle. The size of the beam stop
corresponds to a scattering angle of 1.4° and a wave vector
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of 2.4�105 m−1. Images were taken in transmission with a
peltier cooled 12 bit CCD camera, with 582�782 pixels
�Princeton Instruments, microMAX�. The maximum scatter-
ing angle was 5.1°, which corresponds to a wave vector of
1.0�106 m−1.

IV. EXPERIMENTAL RESULTS

Confocal images of the morphology during spinodal de-
composition in the early stage after a shear rate quench for
different concentrations are given in the top row of Fig. 1
while in the bottom the corresponding Fourier transforms are
plotted. The observed ringlike scattering patterns, typical for
spinodal decomposition, are anisotropic with symmetry
around the nematic director which is along the flow direc-
tion. The same anisotropy is observed in the SALS measure-
ments, where such Fourier space images are directly probed
�see Fig. 2�.

Cross sections of the Fourier transforms and scattering
patterns parallel and perpendicular to the director are given
in Figs. 3�a� and 3�b�, respectively. From these profiles we
obtain the wave vector at which the Fourier transform exhib-
its its maximum, kmaxL, quantifying the wavelength of the
fastest growing Fourier component of the inhomogeneous
morphology. The values for kmaxL for directions parallel and
perpendicular to the director as obtained from such cross
sections of the Fourier transform of the confocal images and
the SALS patterns are plotted as a function of time in Figs.
4�a� and 4�b�, respectively. The ratio kmax,� /kmax,� of kmax
perpendicular and parallel to the director is plotted in Fig.
4�c�. This figure thus characterizes the anisotropy in the mor-
phology. Since this ratio is larger than 1, the typical size of
inhomogeneities perpendicular to the director is smaller than
the size of inhomogeneities in the direction parallel to the
director.

Comparing the profiles obtained from microscopy and
from SALS, it is obvious that the SALS signal is less noisy.
This is due to the fact that the volume that is being probed by

microscopy is much smaller than the volume probed by
SALS. On the other hand, due to the beam stop the profile
starts at higher k values than the profiles obtained from mi-
croscopy. The large difference in the scattered intensity par-
allel and perpendicular to the flow direction is also observed
under identical conditions for isotropic systems, and is
caused by the experimental setup �24�.

V. DISCUSSION

The main result of the theoretical treatment in Sec. II for
SD of a dispersion of rods is expressed by Eq. �6�. This

FIG. 1. �Color� The initial stages of SD for three different con-
centrations, as indicated in the figure. The top row shows the mi-
crographs taken by the reflection confocal scanning laser micros-
copy �field of view =110 
m�; the bottom row shows the Fourier
transform of the micrographs.

FIG. 2. The scattering pattern for a sample with �fd�
=21.0 mg/mL and �dextran�=12.1 mg/mL taken 23 s after the ces-
sation of flow.

FIG. 3. Cross sections of the Fourier transform of the confocal
images parallel and perpendicular to the director for a fd concentra-
tion of �0.52 �a�, and the parallel and perpendicular cross sections of
the scattered intensity as found from SALS �b�. The wave vector is
scaled by the length L of the fd virus and the intensities are given in
arbitrary units.
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equation shows that changes in the concentration of rods are
enslaved by changes in the orientation of the rods. Although
the treatment was done for an initially isotropic state we
believe that this result is valid independent of the initial con-
dition. This relation between concentration and orientation
has a few consequences, which can be tested experimentally:
�1� as for spheres there is no demixing for k→0; �2� but the
driving force of phase separation given by ��−� goes to a
constant value for k→0 and not to zero as would have been
the case when the translational diffusion dominates phase
separation kinetics �see the exponent in Eq. �6��. As a result
kmax shifts in time also in the initial stage of demixing; �3�
shallow quenches result in relatively large scale inhomoge-
neities while deeper quenches give rise to relatively small
scale inhomogeneities, see Eq. �10�.

All micrographs in images Fig. 1 show interconnected
structures typical for spinodal decomposition. The resulting
Fourier transforms in Fig. 1 as well as the SALS pattern in
Fig. 2 are slightly elongated in the direction of the director.
The observation of a ring structure confirms the prediction
that the scattered intensity is zero for k→0, i.e., that there is
no demixing for k→0 �see also the cross sections in Fig. 3�.
As pointed out in the theory section this is a general feature
of SD, and it is a consequence of the conservation of the
number of rods. The anisotropy in the morphology as well as
in the growth rates, see Fig. 4�c�, shows that the formation of
inhomogeneities is affected by the initial orientation of the
rods. The anisotropy in the phase separation is also seen in
the case of nucleation and growth, where we observed that
the nucleating tactoids of isotropic phase are oriented along
the director of the nematic background phase �18�. This an-
isotropy is due to the residual alignment after the quench of
the initially strongly sheared suspension.

When plotting the wave vector where the intensity ring
exhibits its maximum, i.e., kmax, as a function of time, it is
readily seen that this maximum shifts to smaller values also
during the initial stage of demixing right after the quench
�see Fig. 4�. That the initial stage of demixing is probed
follows from Fig. 5, where the logarithm of the intensity is
plotted versus time. In the initial stage this relation should be
linear �see Eq. �9��, which is indeed seen to be the case for
all values of kL. The initial stage of the SD ends where this
curve starts to deviate from linearity. For more shallow
quenches closer to the spinodal, at higher concentrations, the
initial stage extends up to 100 sec.

More importantly, for each value of kL we obtain the
phase separation rate ��−� from the slope of the curve �see

Eq. �9��. The resulting curves of ��−� vs kL are plotted in Fig.
6 for two different confocal microscopy samples �a� and the
SALS sample �b�. Clearly, ��−� approaches a finite value for
k→0, as was predicted by theory, see Fig. 6�c�. This shows
that the demixing kinetics is dominated by rotational diffu-
sion. The absolute value for ��−� is about a factor of 10
higher for the SALS experiment than for the microscopy
experiments, which is probably due to the lower dextran con-
centration that has been used in the microscopy experiment
as compared to the SALS experiment. The analysis we used
for our data could, in principle, also be applied to the mea-
surements of van Bruggen et al. �11�, where a similar behav-
ior of the SALS patterns is observed.

Figure 4�a� also confirms the theoretical prediction in Eq.
�10� that the initial inhomogeneities are larger for shallow
quenches than for deep quenches. The length scale of the
initially formed structures for the deep quench �circles,�0.84�
is 11 times the rod length in the direction parallel to the
initial director and 7.1 times the rod length in the direction
perpendicular to the initial director. For the shallow quench
�squares, �0.52� the initial structure is barely anisotropic and
has a typical size of 17 times the rod length. After about 1 m
the typical sizes for both concentrations start to overlap.

Finally we would like to remind our readers that the
theory presented in Sec. II is valid for repulsive rods. In our
experimental system, however, depletion attractions between
rods are induced by adding dextran. On adding more dextran,
translational diffusion could play a more important role dur-
ing phase separation. Rod-polymer mixtures has been treated
on the basis of Ginzburg-Landau equations of motion with a

FIG. 4. The wavelength of the fastest growing Fourier component kmaxL as found from the cross sections parallel to the director �open
symbols� and perpendicular to the director �filled symbols� of �a� the Fourier transforms of confocal images with a fd concentration of �0.84

�squares� and �0.52 �circles�, and �b� the SALS pattern. �c� The anisotropy of the spinodal structure given by the ratio kmax,�L /kmax,�L for
�0.84 �squares� and the SALS measurement �triangles�.

FIG. 5. The logarithm of the Fourier component of confocal
images for sample �0.52 �a� and the scattered intensity from SALS
experiments �b� as a function of time for various values of kL. The
eigenvalue ��−� is obtained from the initial slope of this plot.
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thermodynamics input, amongst others, by Liu and Fredrick-
son �9�, Matsuyama et al. �10�, and by Fukuda �25�. In these
papers it is shown that translational diffusion indeed be-
comes more important on increasing the polymer concentra-
tions. This results in a minimum in ��−� as a function of the
wave vector at sufficiently high polymer concentrations. We
therefore believe that the pronounced minimum that is ob-
served for the SALS measurement, see Fig. 6�b�, is related to
attractions between the rods as induced by the added dextran.
The two microscopy measurements depicted in Fig. 6�a� are
done at a lower overall dextran concentration. The sample
with the somewhat lower fd concentration, i.e., higher poly-
mer concentration, shows a less pronounced minimum as
compared to the SALS sample, while for the sample with the
lowest polymer concentration no minimum is present. These
observations confirm the theoretical prediction on the poly-
mer dependence of the phase separation kinetics. In future
studies we will systematically vary the polymer concentra-
tion for a fixed concentration of fd.

VI. CONCLUSION

We studied the nematic-isotropic SD of dispersions of fd-
virus particles with added polymer after shear quenches into
the two-phase region for varying concentrations. We exem-

plified the fundamental difference between spinodal decom-
position of dispersions of rods and spheres using a recently
developed theory. The main difference is that in the case of
rods the phase separation is dominated by rotational diffu-
sion. As a result the eigenvalue ��−�, which quantifies the rate
of the phase separation, approaches a nonzero constant value
for k→0, contrary to gas-liquid demixing of spheres where
the corresponding eigenvalue becomes zero for k→0. This is
due to the fact that for rods a local reorientation is sufficient
to start the phase separation, whereas for spheres transla-
tional diffusion over finite distances is needed. We found
experimentally the same k dependence of ��−� as predicted by
theory �6,9,10�. Our experiments thus confirm that demixing
is dominated by rotational diffusion and not by translational
diffusion as suggested in earlier work �7,8�. In addition, we
found a possible effect of translational diffusion through the
minimum of the wave-vector dependence of the unstable
eigenmode, due to attractions between the rods as induced by
the added dextran Refs. �9,10�. This will be subject of further
investigations.
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The kinetics of isotropic-nematic �I-N� and nematic-isotropic �N-I� phase transitions in dispersions of rodlike
fd viruses are studied. Concentration quenches were applied using pressure jumps in combination with polar-
ization microscopy, birefringence, and turbidity measurements. The full biphasic region could be accessed,
resulting in the construction of an experimental analog of the bifurcation diagram. The N-I spinodal points for
dispersions of rods with varying concentrations of depletion agent �dextran� were obtained from orientation
quenches using cessation of shear flow in combination with small-angle light scattering. We found that the
location of the N-I spinodal point is independent of the attraction, which was confirmed by theory. Surprisingly,
the experiments showed that also the absolute induction time, the critical nucleus, and the growth rate are
insensitive of the attraction if the concentration is scaled to the distance to the phase boundaries.
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I. INTRODUCTION

A long-standing issue in the physics of fluids is the be-
havior of the homogeneous fluid close to the point where it
becomes unstable and phase separates, i.e., the spinodal
point �s �1�. Before the spinodal point the fluid will be meta-
stable or supersaturated, which means that the fluid will only
undergo a phase transition if fluctuations in the concentration
are sufficiently high to overcome a certain nucleation barrier.
Thus the metastable region is characterized by the induction
time �ind for phase separation to set in. �ind goes to infinity
entering the metastable region from the stable region at the
binodal point �b, i.e., 1 /�ind→0 at �b, while �ind→0 ap-
proaching �s. For molecular fluids it is very difficult to de-
termine the spinodal point because the tiniest impurity will
lower the nucleation barrier and the phase separation is very
fast. The binodal point is easier to access since it is given by
the final phase-separated state. Colloidal systems have
proven to be very suitable for this type of fundamental stud-
ies. The main reason is that the interactions between the
colloids can be tailored, while the size of the colloids slows
down the kinetics as compared to fluids permitting direct
visualization �2�. One way of tailoring the interaction be-
tween colloids is to add nonadsorbing polymers to the sys-
tem. Polymers induce attractive interaction between the col-
loids due to the depletion of the polymer between the
colloids �3�. The range and the strength of the attractive po-
tential is controlled by the polymer size and concentration,
respectively. Due to attractions colloid-polymer mixtures
typically show a gas-liquid-like phase transition �4�. Despite
of the advantages of colloids, it is also for this class of sys-
tems difficult to access the metastable and unstable region in
a controlled way. First, the spinodal and binodal line are
located very close to each other, while the energy barrier for
phase separation to take place is low. Second, systems might
be arrested in the metastable state �5�. The challenge is to
bring the system in a metastable state while maintaining the
system homogeneous.

While the concentration is the only order parameter of
interest for gas-liquid phase separating colloidal spheres, dis-
persions of colloidal rods have two order parameters that

characterize the phase behavior which are strongly coupled:
particle concentration and orientational order. These systems
exhibit an isotropic-nematic �I-N� phase transition, where the
system gains positional entropy at the cost of the orienta-
tional entropy. The location of the transition can be derived
from Onsager theory for slender hard rods �6�. The phase
behavior around the I-N transition is characterized by two
branches �7�: an isotropic branch with zero orientational or-
der and a nematic branch with a finite orientational order, as
depicted in Fig. 1. The I-N binodal point �b

�I� will be first
encountered when following the isotropic branch by increas-
ing the concentration. For ���b

�I� the system will be meta-
stable or supercooled with respect to fluctuations in the ori-
entation toward an aligned state. After some typical
induction time �ind fluctuations will be sufficient to overcome
the nucleation barrier and isolated nematic droplets �tactoids�
will grow in an isotropic background. For even higher con-

metastable
unstable

metastable

nematic

unstable

ϕs(N)

ϕb(I) ϕs(I)

ϕb(N)

ϕ

isotropic

1.0

FIG. 1. Bifurcation diagram of the nematic order parameter S
for hard rods ��p

R=0� with L /D=133 corresponding to the free
energy Eq. �1�. Open circles indicate spinodal points, while the
filled circles indicate binodal points. The arrows indicate concentra-
tion quenches that are made to render the system in a supersaturated
state. The dashed line indicates possible locations of the system
when inducing a full nematic phase applying an external field.

PHYSICAL REVIEW E 80, 031402 �2009�

1539-3755/2009/80�3�/031402�12� ©2009 The American Physical Society031402-1

80



centrations, i.e., for ���s
�I� the system becomes unstable to

fluctuations, such that each fluctuation in the orientation of
the rods will result in a continuous growth of the nematic
phase out of the isotropic phase. Likewise, the system will
have a nematic-isotropic �N-I� binodal �b

�N� and spinodal �s
�N�

point when following the nematic branch by decreasing the
concentration. In this case the system is superheated because
fluctuations toward a lower ordering drive the phase separa-
tion. Beyond the binodal point, i.e., for ���b

�N� isotropic
nuclei �atactoids� will form after some induction time �ind,
while beyond the spinodal point, i.e., for ���s

�N�, each fluc-
tuation in the orientation of the rods initiates spinodal phase
separation and an isotropic phase of disordered rods continu-
ously grows out of the nematic phase.

The difference in concentration between the I-N and N-I
binodal points of a hard rod liquid is only about 10% �8�.
Hence the spinodal and binodal points are located very close
to each other. The density difference between the binodal
points increases when the rods are made attractive: the I-N
binodal shifts to lower concentrations while the N-I binodal
shifts to higher concentrations. This has been shown experi-
mentally for various rod-polymer mixtures �9–12�. It is,
however, not obvious that the location of the spinodal points
are equally affected by adding polymer. As a consequence it
is not known to what extend the metastable and unstable
regions are affected by the addition of polymer. Even for
hard rods the location of the spinodal points, i.e., the open
symbols in Fig. 1, has never been experimentally confirmed.
The goal of this paper is to locate the spinodal points with
respect to the binodal points over a range of attractions by
probing the kinetics of the phase-separation process. This
goal requires a well defined time t=0 at which the system is
quenched from an initially stable state into a metastable or
unstable state, in order to determine the induction time �ind.
Taking advantage of the two order parameters that character-
ize rod dispersions also two types of quenches can be made:
a quench in the orientation and in concentration.

An orientation quench can be performed by first applying
an external field to a phase-separated system somewhere in
the biphasic region, thus preparing a full nematic phase, as
indicated by the dashed line in Fig. 1. The system is
quenched when at t=0 the external field is switched off,
which renders the system either unstable or metastable de-
pending on the concentration. Tang and Fraden used the dia-
magnetic anisotropy of fd virus to induce I-N phase transi-
tions with a high magnetic field �13� and demonstrated nicely
the existence of an unstable region. Here they quenched,
however, always to some finite field strength. Similarly, we
used in an earlier paper shear flow to prepare a stable nem-
atic phase �14�. Cessation of flow at t=0 renders the nematic
phase metastable or unstable depending on the concentration,
see Fig. 1. Small-angle light scattering �SALS� was then
used to probe the formed biphasic structures and determine
the spinodal as the concentration where structure formation
sets in immediately after the quench. In this paper we again
rely on this technique on mixtures of fd and dextran but as
compared to the earlier experiments the sensitivity is im-
proved such that measurements could be performed also
when density differences between the phases were small as is
the case at low polymer concentrations.

The disadvantage of the orientation quench is that only
the nematic-isotropic transition is probed. In order to access
also the I-N transition one needs to make a concentration
quench. Such a quench can be made by rigorous stirring a
phase-separated system and probe it immediately after stir-
ring as was done for dispersions of boehmite rods �15�.

Apart from the practical problems this imposes on the
experiment, the results could also be biased by residual
alignment in the sample after mixing �16�. Quenches were
also initiated by polymerizing short actin filaments �17�.
Both methods could evidence the distinction between
nucleation-and-growth and spinodal decomposition by the
morphology of the phase-separated structures without pin-
pointing the actual location of the spinodal points.
Nucleation-growth mechanisms and spinodal structures have
also been observed in computer simulations �18–21�. In this
paper we perform pressure quenches from 1 bar up to 1000
bar and vice versa. Given the compressibility of water, this
corresponds with instantaneous concentration quenches of up
to 5% �22� as indicated by the solid arrows in Fig. 1. We
probe changes using polarization microscopy, birefringence,
and turbidity measurements. We could determine both the
I-N and N-I spinodal since a full nematic phase could be
induced, starting with a full isotropic phase. Thus we con-
struct an experimental analog of the bifurcation diagram
plotted in Fig. 1. Since with pressure quenches only a small
concentration range can be accessed, we relied on cessation
of shear flow to study the attractive rods with added dextran.

To supplement the experiments we have used scaled par-
ticle theory �SPT� approach to predict the phase behavior of
colloidal rods for a range of polymer concentrations, includ-
ing the I-N and I-N spinodal lines. The experimental data are
qualitatively compared with this theory. In Sec. II we intro-
duce the SPT and present its results in the form of two phase
diagrams. In Sec. III we introduce our experimental tech-
niques and sample preparation. The effect of the pressure and
orientation quenches are given in Secs. III B and III C, re-
spectively, resulting in the determination of the spinodal and
binodal points in Sec. IV C and growth rates in Sec. IV D.

II. THEORY

The phase diagram of a rod-polymer mixture can be pre-
dicted from free-volume theory, as elaborated in detail in
Refs. �23,24�. The free energy per particle of a system of N
hard spherocylindrical rods with length L and diameter D in
a volume V in osmotic equilibrium with a reservoir of ideal
nonadsorbing polymer with a volume fraction �p

R takes the
following form:

�F

N
� log y + ��f� + P�f�y +

1

2
Q�f�y2 −

�3� − 1��p
R

2q3

	��f�,��
�

�1�

in terms of the thermal energy �−1=kBT, rod aspect ratio
L /D=�
1, and polymer-colloid size ratio q=2Rg /D �with
Rg the polymer radius of gyration�. The density variable y
=� / �1−�� is related to the rod packing fraction �
= �� /4�LD2N /V. The reference part �p

R=0 corresponds to a
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system of hard rods and stems from SPT. The orientational
entropic contribution in Eq. �1� is defined as

��f� =� dûf�û�ln�4�f�û�� , �2�

where the unspecified distribution f�û� describes the prob-
ability of rods with orientational unit vector û normalized
over all possible orientations via �dûf�û�=1. The coeffi-
cients P and Q pertain to the shape �i.e., aspect ratio� of the
rods:

P�f� = 3 +
3�� − 1�2

3� − 1
��f� ,

Q�f� =
12��2� − 1�

�3� − 1�2 +
12��� − 1�2

�3� − 1�2 ��f� . �3�

The quantity ��f� represents the following double orienta-
tional average:

��f� =
4

�
� � dûdû�f�û�f�û���û � û�� . �4�

The last term in Eq. �1� accounts for the depletion contri-
bution. It depends on the free-volume fraction 	, expressing
the average fraction of the system volume available to the
polymer at a given rod packing fraction �. An explicit ex-
pression follows from SPT:

	��f�,�� = �1 − ��exp�− Ay − B�f�y2 − C�f�y3� , �5�

with coefficients A ,B ,C given explicitly in �24�. Since the
reservoir polymer concentration �p

R is proportional to the
depth of the minimum of the attractive depletion potential, it
serves as a measure for the strength of attraction between the
rods. As the polymers are treated as an ideal gas, the polymer
volume fraction �poly in the system simply follows from mul-
tiplying the reservoir value �p

R with the fraction of available
free volume 	��f� ,��.

The SPT coefficients P, Q and free-volume fraction de-
pend implicitly on the unspecified orientational distribution
f�û�. In the isotropic state, all orientations are equally prob-
able so that f =1 /4�, �	0, and �	1. In the nematic state, it
will be a nonuniform distribution peaked along some nem-
atic director n̂. An accurate variational form for f has been
proposed by Onsager �6� which takes the following form:

f�� =
� cosh�� cos �

4� sinh �
, �6�

with 0��� the polar angle between û and the nematic
director n̂ �cos = û · n̂� and ��0 a variational order param-
eter �note that �=0 leads back to the isotropic constant f
=1 /4��. With the use of an explicit trial function, the orien-
tational averages associated with Eqs. �2� and �4� become
analytically tractable �6,25�. The results for the orientational
averages are

���� = ln�� coth �� − 1 +
arctan�sinh ��

sinh �
� 0 �7�

and

���� =
2I2�2��

2 sinh2 �
� 1, �8�

with I2�x� a modified Bessel function.
The equilibrium value for � is found by a minimization of

the total free energy which leads to the stationarity condition

�F

��
	 0 �9�

for a given rod packing fraction and attraction strength �p
R.

The nematic order parameter associated with the equilibrium
value for � is found from

S =� dûP2�û · n̂�f�û� = 1 −
3 coth �

�
+

3

�2 , �10�

where S	0 in the isotropic and 0�S�1 in the nematic
phase. The solution of Eq. �9� for hard rods ��p

R=0� is given
in Fig. 1, showing two branches where the stationary solu-
tions correspond to a local minimum of the free energy �7�.
The spinodal point marks the transition between a stable and
an unstable solution of Eq. �9�.

However, this �second-order� transition is pre-empted by a
first-order phase transition. Thus a discontinuity both in con-
centration and in the ordering of the system will occur. The
coexistence of two phases requires that the osmotic pressure
� and chemical potential � of the isotropic phase, with vol-
ume fraction �b

�I�, and the nematic phase, with volume frac-
tion �b

�N�, are equal:

���b
�I�� = ���b

�N�� , �11�

���b
�I�� = ���b

�N�� . �12�

The binodal points can thus be found using the thermody-
namic relations �= �F

�NV,T
and �=− �F

�VN,T
in combination with

Eq. �1�.
The phase diagram for a rod-polymer mixture is given in

Fig. 2�a� and shows the characteristic widening of the bipha-
sic gap as the amount of polymer is increased. The location
of the spinodal points, however, appears much less affected
by the depletion attraction. This is reflected more clearly if
we plot the spinodal curves in terms of the fraction 0
��nem�1 of nematic phase formed rather than the overall
rod packing fraction �. Applying the lever rule, we may
relate �nem to � via

�nem =
� − �b

�I�

�b
�N� − �b

�I� , �13�

with �b
�I/N� as the binodal rod packing fractions correspond-

ing to the coexisting isotropic and nematic phases. Figure
2�b� shows that the N-I spinodal instability occurs if the
overall rod concentration corresponds to the nematic phase
occupying about 20% of the system volume. This result is
virtually independent of the strength of the depletion attrac-
tion as long as the amount of added polymer is not too large.
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III. EXPERIMENT

A. Sample

Fd-virus suspensions were used in a 20 mM Tris buffer
with 100 mM NaCl at a pH of 8.2. The virus is a long and
thin rodlike particle �length of 880 nm long, width of 6.6 nm,
persistence length 2.2 �m�. Attractions between the rods are
varied through depletion by addition of dextran �480 kd,
Pharmacosmos�. A small amount of fluoresceinisothiocyanat
�FITC�-labeled dextran was added to be able to determine
the dextran concentration spectroscopically. See Ref. �26� for
the labeling procedure of dextran. The samples were pre-
pared as follows: first, a homogeneous fd-virus suspension of
21.1 mg/ml fd virus with dextran is allowed to macroscopi-
cally phase separate into an isotropic and nematic phase. The
two phases were then separated into two different vials and
the dextran and fd-virus concentrations were determined
spectroscopically. Three different dextran concentration were
used in this study given an initial virus concentration of 21.1
mg/ml: 6 mg/ml �low�, 13 mg/ml �middle� and 20 mg/ml
�high�. The resulting phase diagram is shown in Fig. 3. This
phase behavior differs somewhat from previous published
results for the same system �9,14�. The deviation might be
due to different polydispersity of the dextran which can dras-

tically change the interaction �27� and thus the phase behav-
ior �28�. By combining different volumes of the isotropic,
�b

�I�, and the nematic, �b
�N�, phase from the initially phase-

separated sample we can prepare any concentration along
one tie line, with a concentration �nem relative to the phase
boundaries as expressed in Eq. �13�. The concentration of
dextran and fd virus for each sample was checked after every
new mixing. For pressure experiments a sample very close to
the isotropic-nematic spinodal has been prepared at the same
ionic strength but without dextran.

B. Microscopy, birefringence, and turbidity at high pressure

For all pressure experiments we used a small container
sealed by a vitron ring, which contains the sample while it
allows for pressurizing via holes in the brass support ring.
For microscopy and birefringence measurements the con-
tainer was placed in the polarization microscopy cell, where
the polarization was maintained. The cell was mounted in a
specially designed cell holders for microscopy or birefrin-
gence. For turbidity measurements a small angle neutron
scattering �SANS� cell was used, which has longer optical
pathway, to increase the sensitivity of the experiments, but
which has windows that scramble the polarization. The de-
tailed description of the cell and the preparation procedure
can be found in Ref. �29�.

Polarization microscopy was performed on a Zeiss Ax-
ioplan microscope with a 10x/0.30 Plan, NEOFLUAR objec-
tive. The cell was placed between crossed polarizers in order
to detect birefringence corresponding to the change in the
order parameter. Starting at 1 bar we applied different pres-
sures up to 1000 bar with steps of 200 bar steps. Pressurizing
was performed with a rate of 100 bar/s. Pressure releases
were performed from a sample in the nematic phase that had
been equilibrated at a pressure of 1000 bar for about 1 h.
Consequently, we decreased the pressure starting from this
equilibrated sample inducing the nematic-isotropic phase

FIG. 2. �a� Phase diagram for a rod-polymer mixture with
L /D=133 and colloid-polymer size ratio q=2Rg /D=5.4. Plotted in
terms of the rod packing fraction �rod and polymer volume fraction
�poly in the system. Coexisting isotropic and nematic phases are
connected by tie lines, with the nematic phase having a higher �rod.
�b� Location of the isotropic-nematic spinodals in terms of the frac-
tion of nematic phase �nem �Eq. �13�� plotted versus the system
polymer concentration �poly on the vertical axis.
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FIG. 3. Phase diagram of the I-N transition of �dextran� vs �fd�
at an ionic strength of 110 mM. The solid symbols are the binodal
points as determined spectroscopically after phase separation. The
open symbols are the spinodal points as determined after shear rate
quenches, see below. The thin lines connecting the binodal points
are the tie lines.
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transitions. After changing the pressure, sequences of images
were taken using a Carl Zeiss Axiocam charge coupled de-
vice �CCD� color camera and Zeiss acquisition software. The
sequences of images were taken with different time reso-
lution: in the beginning every 5 s and in the end every
minute over a total time of 3 h. Optical birefringence mea-
surements were performed on a home made setup consisting
of a argon ion laser line at 514.5 nm, a beam expander, two
polarizers and a coherent fieldmaster-GS power and energy
meter. The detector was operated by a self written LABVIEW

application. The pressure quenches were applied with the
same protocol as described above, starting always at 1 bar.
The detector registered the intensity of the through-going
beam with a time resolution of 0.4 s over a total time of 1 h.
To acquire more information about kinetics of the nematic-
isotropic transition, measurements of the forward transmis-
sion were performed. When a phase transition takes place,
the sample becomes turbid which is indicated by a decrease
in the transmission. Turbidity was probed with a He-Ne laser
and a coherent fieldmaster-GS power and energy meter. Pres-
sure releases were performed as described above. The trans-
mission was detected and registered as in the birefringence
measurements with the help of the LABVIEW software.

C. SALS under shear

A homebuild optical couette shear cell combined with a
SALS setup was used �30�. The shear cell consisted of a
rotating inner cylinder with a diameter of 43 mm and a static
outer cylinder with a diameter of 47 mm resulting in a gap
width of 2 mm. The inner and outer cylinders were both
made of optical grade glass. A 15 mW HeNe laser �Melles
Griot� operating at a wavelength of 632.8 nm was used. To
ensure that the laser beam went through only one gap, it was
directed through the center of the rotational axis of the inner
cylinder. In the rotating cylinder, the beam was directed
along the radial direction with a prism. Scattered intensities
were projected with a lens directly on to the chip of a Peltier
cooled 12-bit CCD camera with 582�782 pixels �Princeton
Instruments, microMAX�. The scattering angles on the chip
were calibrated by placing a known grid �PAT 13 Heptagon�
in the scattering volume.

The fd-virus solution was always presheared at 100 s−1

and quenched to zero shear rate at t=0, at which time the
registration of the SALS patterns started with a rate of about
2 frames/s. Immediately after cessation of flow the rods will
on average be oriented along the flow direction. Thus ini-
tially the system will be in a homogenous flow-induced nem-
atic state with a well defined “director” n̂. The effect of the
preshearing was checked for a number of samples by reduc-
ing the preshearing to 50 s−1. No difference on the result
could be found, and we therefore kept the protocol of a pres-
hearing rate of 100 s−1.

IV. RESULTS

A. Concentration quenches using pressure

Sequences of micrographs taken after pressure quenches
for different time delays are gathered in Figs. 4 and 5. The

starting pressure for Fig. 4 was 1 bar so that initially the
system was in the isotropic phase. The varied depth of the
quenches allowed for exploration of different regions on the
phase diagram. For the 200 bar pressure quench the images
stay dark throughout the whole experiment �data not shown�.
For a quench to 400 bar the total intensity only starts to
increase after about 5 min. At longer times brighter regions,
indicative of a finite order parameter, are visible due to
nucleation and growth. The possible presence of tactoids
could not be observed, because a 10� objective was used.
An induction time �ind for phase separation to set in is char-
acteristic for the metastable states. For a quench to 800 bar
an almost instant change in the intensity is observed along
with homogeneous structure formation. This observation
suggests that the I-N spinodal is located in the immediate
vicinity of this applied pressure. In the last sequence corre-
sponding to the deepest quench of 1000 bar one can see the
full transition from isotropic to nematic phase through spin-
odal decomposition. First, the increase in intensity started
immediately after the quench, i.e., �ind=0. Second, the initial
early stages of the transition exhibited morphology charac-
teristic for spinodal decomposition-interconnected labyrinth-
like structures spanning through the whole sample. Figure 6

800 bar 1000 bar400 bar

0 s

5 min

15 min

40 min

3 h

1 bar to:

Time

FIG. 4. �Color� Sequence of polarization microscopy image af-
ter an increase in pressure, starting at 1 bar. The final pressure is a
measure of the concentration. Bright regions with a higher orienta-
tional order parameter appear at about 15 min after a quench to 400
bar indicative of a nucleation-growth mechanism �middle left�. For
a final pressure of 1000 bar phase-separation sets in immediately
�top right�, indicative of spinodal decomposition, while after 40 min
a full nematic phase is formed �bottom right�.
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shows a thresholded picture taken at 50 s after this quench.
Typical spinodal decomposition morphology is evident. The
last two micrographs of the 1000 bar quench show that the
system develops into a fully nematic phase indicated by large
homogenous regions of the same color that only reorient
with time. Thus the I-N spinodal �s

�I� is located in the very
proximity of the N-I binodal �b

�N�.

Figure 5 depicts the nematic-isotropic phase transition af-
ter the pressure quenches from 1000 bar to the indicated
pressures. The difference in the morphology for the shallow-
est quench from 1000 to 800 bar are subtle and changes are
only visible 3 h after quenching �data not shown�. For the
quench from 1000 to 600 bar the changes are more pro-
nounced. After about 20 min grainy structures are formed,
characteristic for a phase separation via nucleation and
growth. Such structures can still be seen in the last image of
the sequence though the overall intensity decreased substan-
tially. The image taken two minutes after the quench from
1000 to 400 bar shows that the overall intensity has de-
creased, indicative of a lower ordering, while already some
biphasic dark and white structures seem to be visible. The
first image after the deepest quench, from 1000 to 200 bar,
shows that phase-separation sets in immediately �top right�,
indicative of spinodal decomposition, while the total inten-
sity is much reduced. After 1 h a full isotropic phase is
formed �bottom right� showing that a full phase transition
took place. A more conclusive location of the spinodal and
binodal points can be obtained with turbidity and birefrin-
gence measurements as presented in Sec. IV C.

Since with 1000 bar we approach the limit of the maxi-
mum applicable pressure, we cannot use this technique to
study dispersions of rod-polymers mixtures. For such disper-
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FIG. 7. �Color� Development of the scattering pattern for �nem

=0.20, 0.62, and 0.82, after a shear rate quench from 100 to 0 s−1

for the high dextran concentration. For �nem=0.20 spinodal decom-
position immediately sets in as can be concluded from the faint ring
at 31 s �upper right�, while for �nem=0.82 nucleation of structure
can only be observed after about 150 s �middle left�. The induction
time for structure formation is indicated by the dashed line.
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2 min
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1 h

1000 bar to: 200 bar400 bar600 bar

0 s
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15 min
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3 h

FIG. 5. �Color� As Fig. 4 but now starting at 1000 bar.
Nucleation-and-growth events can be seen for a final pressure of
600 bar after 15 min �middle left�. For a final pressure of 200 bar
phase-separation sets in immediately �top right�, indicative of spin-
odal decomposition, but also the total intensity is much reduced,
indicative of a lower ordering. After 1 h a full isotropic phase is
formed �bottom right�.

FIG. 6. Filtered and binarized micrographs of fd virus after the
pressure jump from 0 to 1000 bar taken at 50 s after the quench.
Growing interconnected structures are a clear proof of spinodal de-
composition taking place.
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sions the width of the biphasic region �see Fig. 3� cannot
anymore be bridged. For this reason we use shear flow to
induce a flow-stabilized nematic phase followed by cessation
of shear flow.

B. Orientation quenches using cessation of shear flow

The development of the scattering pattern after a quench
in the shear rate can be seen in Fig. 7 for three different
�nem:0.20, 0.62, and 0.82. The time at which the first detect-
able scattering structure appears increases with increasing
�nem as indicated by the dashed line in Fig. 7. For the highest
concentration this is the case only after about 150 s. For this
concentration it is difficult to identify specific features. For
the lower two concentrations the scattering pattern occurs as
two slightly bend lines perpendicular to the director �x̂�. In
the early stage these lines scatter weakly but with time the
intensity increases, the peak sharpens and the position moves
to smaller wave vectors. The scattering patterns are isotropic
in the initial stage but become increasingly more asymmetric
with time. This indicates that the formed objects are increas-
ingly more elongated and oriented along the director. To
quantify the development of the formed biphasic structure
we extract intensity profiles along and perpendicular to the
director. The time development of the scattering along the
director is shown in Fig. 8. Here the formation of the struc-
ture peak and both the movement to lower q values and the

intensity increase in this peak are clearly seen for the two
lowest concentrations, �nem, where it should be mentioned
that for the lowest �nem the peak develops immediately after
cessation of flow, indicative of spinodal decomposition. At
the highest concentration the structure peak can only be dis-
tinguished at longer times, characteristic for nucleation and
growth. Figure 8 and similar plots taken for other concentra-
tions will be used in the following sections as a base to
deduce the induction time for structure formation.

C. Spinodal and binodal points

Figures 4, 5, and 7 all show that after the quench phase-
separation sets in immediately or after some induction time
�ind, depending on the depth of the quench. As explained in
the introduction, in order to locate the spinodal and binodal
points we have to find at what concentration �ind for the
formation of nematic �for the I-N transition� or isotropic
structures �for the N-I transition� goes either to zero or to
infinity.

To determine �ind for quenches in the orientation we plot
the intensity of the peak in the scattering pattern, see Fig. 8,
as a function of time. Figure 9�a� shows this time develop-
ment for three different �nem. The induction �ind is now ob-
tained by extrapolating the linear intensity increase to zero
intensity. This procedure was repeated for different attraction
strength, i.e., different dextran concentrations. The result is
shown in Fig. 10�a�, where, respectively, �ind and 1 /�ind are
plotted vs �nem for the three attractions. The N-I spinodal
�s

�N� and binodal �b
�N� points are determined by extrapolating

�ind and 1 /�ind to zero, respectively. Interestingly, the curves
of �ind and 1 /�ind for the different attractions overlap if we
scale the concentration relative to the phase boundaries. As a
consequence the location of �s

�N� is independent of the attrac-
tion and is found to be �nem=0.25. More striking even is the
observation that also the absolute induction times are only
effected by the relative distance from the phase boundary
�nem and not the absolute fd concentration or the attraction,
i.e., the dextran concentration. Of course the phase bound-
aries can also be determined by measuring the concentration
of the two separated phases or visual observation, consider-
ing that no scattering pattern should occur for the homoge-
neous phases. The deviation between the different methods is
less than 5%. This means that the high-concentration phase
boundaries can be determined in three different ways and the
low-concentration phase boundary in two ways.

The spinodal decomposition is characterized not only by
the fact that it immediately sets in but also by the morphol-
ogy of the formed structure, which should be bicontinuous. It
has been shown that the transition in the morphology is quite
smooth �14,15�. This is also exemplified by Figs. 7 and 8�b�
for �nem=0.62. A clear ring structure is observed, exemplary
for spinodal structures, but also for this concentration an in-
duction time is observed. Thus the phase separation has al-
ready spinodal characteristics, but clearly the system is still
in the metastable region. Therefore the only reliable way to
determine the spinodal point is by using the induction time.

The kinetics of the phase separation for samples without
polymer was studied using the pressure quench. The reason
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FIG. 8. Development of the scattering along the flow direction
for �a� �nem=0.20 and �b� �nem=0.62 as deduced from the scatter-
ing patterns in Fig. 7. The total time is three and a half minutes in
�a� and six minutes in �b�.
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is that with this technique we access both the N-I and the I-N
transitions. As described in Sec. III B the location of these
points could be estimated from microscopy experiments. The
interpretation of the micrographs is, however, not straightfor-
ward. Quenches starting from an initial nematic phase at
1000 bar show that the overall intensity decreases as well as
that structures are formed. To separate the two effects we
additionally performed turbidity measurements since turbid-
ity is a measure of the biphasic structure that is created in the
sample during phase separation. In Fig. 9�b� the responses of

the turbidity and the total integrated intensity Itotal of the
polarization micrographs are plotted for quenches to 400 and
200 bar. For the quench to 400 bar clearly an induction time
is observed in the turbidity, while the birefringence, which
dominates the intensity of the polarization microscopy,
shows a fast and a slow decay. Since the flow induced nem-
atic phase has a higher-order parameter than the metastable
nematic branch �see Fig. 1� the nematic phase will first relax
to this branch, which explains the initial fast decay of the
birefringence to Itotal

branch. Turbidity is not sensitive for this pro-
cess because structure formation is not involved in this pro-
cess. Hence we can conclude that phase-separation sets in
only after an induction time of about 650 s. For the quench to
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FIG. 9. �a� The intensity at the peak of the scattering pattern,
I�qmax�, after cessation of shear flow for �nem=0.30 ���, �nem

=0.62 ���, and �nem=0.82 ��� at the high dextran concentration to
study the N-I transition. �b� Turbidity �solid symbols� and total
intensity of the polarization micrographs �open symbols� after a
pressure drop �cubes: 400 bar, bullets: 200 bar� to study the N-I
transition. The total intensity of the polarization micrographs after
the initial decay, Itotal

branch, is also indicated. �c� Birefringence intensity
after an increase in pressure to study the I-N transition. The lines in
the plots indicate the extrapolation to determine the induction time
after a shear rate or pressure quench.
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FIG. 10. Induction times �filled symbols� and inverse induction
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phase to determine �b
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200 bar changes in birefringence and turbidity set in imme-
diately so �ind=0. Since we know from microscopy that the
final stage for 200 bar is fully isotropic, the down turn in the
turbidity after half an hour can be interpreted as the disap-
pearance of biphasic structure. Before reaching the fully iso-
tropic phase �low turbidity� the system undergoes a phase
transition �high turbidity�. When pressurizing an initially iso-
tropic sample then the increase in birefringence can only be
caused by the formation of the nematic phase. Thus the in-
duction times for the formation of the nematic phase can be
obtained from the birefringence responses as plotted in Fig.
9�c�.

The induction times and the reverse induction times are
plotted in Figs. 10�b� and 10�c� for the turbidity and birefrin-
gence, respectively. The pressures corresponding to �s

�N� and
�s

�I� are determined from these two figures as the pressures
where �ind→0, while the pressures corresponding to �b

�N� and
�b

�I� are given by the pressures where 1 /�ind→0. We can now
construct the experimental equivalent �Fig. 11� of the theo-
retical bifurcation diagram �Fig. 1� using pressure as a mea-
sure of concentration and the total intensity of the micro-
graphs after the initial decay as a measure of the orientational
order parameter �Fig. 9�b��. Note that the error bar in the
pressure is determined from the uncertainty in the extrapola-
tion to �ind→0 and 1 /�ind→0. Another source of error could
also be the exact concentration of the rods since the data
were taken on different batches. This error would show up as
a shift of the entire curve that is obtained from the used
batch. This could explain why �s

�N� is somewhat smaller than
�b

�I�, which is in principle not possible.

D. Growth rates

The average size of the structures that are formed during
the phase separation can be deduced from the location of the

peak of the scattered intensity. The resulting size parallel and
perpendicular to the director are plotted in Fig. 12 as a func-
tion of time. Surprisingly the size of the formed structures as
well as the rate with which they grow do not depend on the
attraction. The structure formed in the early stage is isotro-
pic, while the structure growth is anisotropic: the structures
are growing faster along the director so that the structure
becomes anisotropic with time but the anisotropy in the
structure does not seem to increase beyond an aspect ratio of
2. This can also be appreciated from Fig. 13, where the ex-
tracted growth rates are plotted against �nem for all attrac-
tions in. The only factor that affects the growth rate is the
distance from the phase boundaries. As expected the growth
rates go to zero at �b

�N� while the growth rate seems to go to
a plateau value around �nem=0.25, which is, as we have seen
in the last paragraph, the spinodal point �s

�N�.
To access the very early changes, below 25 s, we look at

the logarithm of the intensity ln�I� with time, at different
wave vectors q. In this way we probe the length scale of the
density fluctuations which has initially the highest probabil-
ity to grow. This investigation is only done along the director
since for the neutral direction the signal-to-noise ratio is too
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low. In Fig. 14�a� d ln�I� /dt is plotted as a function of q for
three different �nem for sample B. d ln�I� /dt peaks at the
same q vector for all �nem, i.e., independent if it is in the
unstable region or far in the metastable region. The length
scale over which the system grows fastest turns out to be of
the same size as the objects which have just formed at the
induction time, i.e., the critical nuclei. For the nucleation-
growth regime this means that in the first time window new
nuclei are formed continuously with a well defined size,
which start growing at the induction time. In Fig. 14�b�
d ln�I� /dt vs q is plotted for the three different attractions at
a volume fraction of �nem=0.2, i.e., for a spinodal decom-
posing sample. Again the maximum q of the growth is the
same for all attractions, as was found for the induction time.
On the other hand the amplitudes are different. This ampli-
tude difference is due to the change in contrast difference
between the isotropic and nematic. With increasing dextran
concentration the width of the biphasic region increases and
thus the density and contrast between the two phases. If we
now combine this observation with the observation that both
the growth rate of the objects and the induction time do not
change with added attraction it is evident that what by eye
seems to be a faster phase separation with more dextran
added only is an optical effect due to the increase in contrast.

V. DISCUSSION

The main goal of our investigations was to study the ex-
tent of the supercooled or superheated regime for dispersions

of attractive rods and how it depends on the strength of the
attraction. This dependence is given in Fig. 3. The location of
the N-I spinodal point almost does not change in the range of
attractions studied here. This holds both for the absolute con-
centration of fd virus �Fig. 3� as well as the fraction of the
coexisting nematic phase �nem �Fig. 10�a��, at least within the
experimental error. These observations are confirmed by
theory, where it is found that both spinodal lines as a func-
tion of the absolute rod concentration are insensitive of the
attraction �Fig. 2�a��. The N-I spinodal line has a weak de-
pendence on the attraction when plotted as a function of �nem
�Fig. 2�b��.

Using �nem as the scaled concentration we observed that
not only the location of the spinodal is insensitive for the
attraction, but also the size of the critical nuclei that are
formed in the metastable region �Fig. 12� the induction after
which they start to grow �Fig. 10�a�� and the rate with which
they grow �Fig. 12�. This is surprising since in classical
nucleation theory these parameters depend on the difference
in the chemical potential between the homogeneous and de-
mixed state and the interfacial tension between the two
formed phases �1�. These thermodynamic parameters are ex-
pected to be quite different, considering that the width of the
biphasic region for the highest used dextran concentration
has increased with an order of magnitude, see Fig. 3. Given
the fact, however, that the relative location between �b

�N� and
�s

�N� set the length and time scales, there must be another
parameter that determines the nucleation barrier. To gain the-
oretical understanding of this problem would require a full
dynamical density-functional approach, including spatial in-
homogeneities �31�, to access the evolution of the micro-
structure over time. Using Monte Carlo simulations Schilling
et al. �32� did not find an increased orientation correlation for
polymer volume fraction comparable to those used in the
experiments. If the initial stage of phase separation is domi-
nated by collective rotational diffusion, then both experi-
ments and the simulation �32� hint that depletion interactions
do not lead to a stronger preference of rods to align. Simu-
lations by Cuetos et al. �19� confirm that the aspect ratio of
critical nucleus is less than two independent of supersatura-
tion. The size of the critical nuclei is, however, in the order
of 1 rod length, whereas our measurements indicate that the
critical nucleus is about 7 rod lengths long independent of
the depth of the quench or the attraction strength. This is
most clearly shown in Fig. 14 because this figure plots at
what density wavelength the intensity growths fastest. Com-
bination of simulations and theory does show that the aniso-
tropy in the surface tension due to the planar anchoring of
rods at the interface plays an important role in the formation
of a critical nucleus �20�. If this effect dominates the kinetics,
it is understandable that attraction between the rods is less
important than for example the aspect ratio of the rod. Com-
paring experiments and simulations one should realize that
not only the aspect ratio of the viruses is an order of magni-
tude bigger than those used in simulations but also that we
consider in Fig. 14 the N-I and not the I-N transition.

The only parameter that is influenced by the attraction is
the rate at which the gradient in the density grows, as plotted
in Fig. 14�b�, which is due to the increasing width of the
biphasic region. All samples in this plot are quenched into
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the unstable region, and therefore undergo spinodal decom-
position. The curve for the highest attraction, i.e., the highest
polymer concentration, shows a clear peak. This is typical
for spinodal decomposition that is dominated by translational
diffusion �33,34�. At the middle concentration there is still a
clear peak, but it is not obvious whether the demixing rate
goes to zero for q→0 or not. For the lowest concentration of
dextran the data are too noisy to draw any conclusions. Our
results are somewhat different from earlier experiments per-
formed at 13 mg/ml of dextran, which hinted that the growth
rate does not go to zero for q→0 �14�. Also the binodal lines
found in this paper have sharper features as compared to
those published in Ref. �9�. Differences in the polydispersity
of the dextran that is used could explain these discrepancies.
In the latter paper also a significantly large part of the phase
diagram was covered. The reason for the somewhat limited
range of attraction studied here is that higher concentrations
of dextran would lead to a too high turbidity of the sample
and multiple scattering, corrupting the reliability of the mea-
surements. This effect could explain the fact that for the high
polymer concentrations in Fig. 14�b� a finite growth rate is
found at high q values. Concerning the time dependence of
the structure growth we found within experimental error a
power law of around one, see the linear dependence in Fig.
12�a�, whereas theory predicts a lower power dependence
�31�. Possibly we are restricted to the very initial stage of the
phase-separation process. The sizes of the coalescing struc-
ture formed at later times are too big so that the scattered
light hits the beam stop. This problem does not occur when
using microscopy as in Refs. �17,35�.

With the pressure quench we accessed both the N-I and
the I-N transition. As for the N-I transition we observed that
also �s

�I� is located in the proximity of �b
�N�. With this we

confirm the theoretical prediction done in Ref. �7�. What
these experiments also show is that for the deepest quenches
the initially homogeneous single phase �I or N� undergoes a
local phase separation before it completely turns into the new
single phase. This mechanism confirms similar observations
in computer simulations �20� on initially isotropic hard
spherocylinder-polymer mixtures. The fact that we can reach
the full nematic state from the isotropic state with the pres-
sure quench is striking since it is known that the concentra-
tion difference between the two binodal points is 10%,
whereas with a pressure quench to 1000 bar the water is
compressed only 5%. Here it is important to note that we are
comparing the isotropic phase at 1 bar with the nematic
phase at 1000 bar. Assuming that the width of the biphasic
region does not change with pressure, it would mean that at
high pressure the I-N transition sets in at lower concentra-
tions. It is known that the location of the I-N transition is
temperature dependent. This dependency could be linked to

the temperature dependence of the flexibility of the fd virus
�36�. Similarly, the features of fd virus could changes at high
pressures. This change cannot be an irreversible process such
as denaturation since the phase transitions are completely
reversible. Further experiments are needed to show if is a
specific feature like the flexibility of rodlike viruses that
changes with pressure. Alternatively, more general features
such as the Debye screening length of charged colloids could
be pressure dependent.

VI. CONCLUSIONS

We have studied the behavior of supersaturated disper-
sions of rodlike viruses. Superheated nematic dispersions
were prepared by first applying a strong shear flow. Cessa-
tion of the shear flow at t=0 renders the nematic phase meta-
stable or unstable depending on the concentration, see Fig. 1.
We probed the structure formation using small-angle light
scattering. With the analysis of the scattering patterns we
could access the induction time for structure formation �ind,
the size of the critical nucleus and the growth rate. These
parameters were measured over a broad range of attractions
as induced by the addition of dextran as a depletion agent.
We found that the N-I spinodal point, i.e., the concentration
where �ind→0, is independent of the attraction, which was
confirmed by theoretical calculations. Interestingly, also the
absolute induction time, the critical nucleus and the growth
rate are found to be insensitive of the attraction if the results
are plotted in terms of the fraction occupied by the nematic
phase. This observation suggests that concepts of classical
nucleation theory are insufficient to understand nucleation
processes in anisotropic fluids. We also applied pressure
quenches on dispersions of rods without added polymer, thus
supercooling or superheating the system. The pressure
quenches were deep enough to induce a complete phase tran-
sition from the isotropic to the nematic phase and vice versa,
which takes place initially via phase separation. As a conse-
quence both the N-I and I-N spinodal could be accessed. By
a combination of polarization microscopy, birefringence, and
turbidity measurements we were able to construct an experi-
mental analog of the bifurcation diagram of Kayser and
Raveché �7�.
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Abstract
We present the non-equilibrium phase diagram of rod-like colloids (fd-viruses)
under shear flow. The shear-induced displacement of the isotropic–nematic
binodal is obtained from time resolved rheology measurements. Vorticity
banding is observed within the biphasic region, as bounded by the binodal.
Here, in the stationary state, regular, millimetre sized bands with mutually
differing orientational order are stacked along the vorticity direction. For the
fully nematic phase we determine the location of transition lines from tumbling
to either wagging or flow aligning, depending on the concentration. The
location of these dynamical transition lines agree with theory for hard rods,
when scaling to the orientational order parameter in equilibrium.

1. Introduction

Dispersions of rods are sensitive to external fields such as shear flow or a magnetic field,
since they can undergo transitions in orientational order. On increasing the concentration, a
first-order transition occurs, from an disordered isotropic state to an orientationally ordered
nematic state. The binodal concentrations for this isotropic–nematic phase transition are fully
determined by the balance between orientational and translational entropy when only excluded
volume interactions are involved. When rods are subjected to shear flow, the rod orientation
will be affected, so the concentration at which the transition occurs will be shear rate dependent.
In other words, the location of the binodal will change on applying shear flow. The transition
will cease to occur at sufficiently high shear rates where shear aligning forces dominate over
inter-rod forces. The binodal thus closes on itself in the shear rate versus concentration plane.

At finite shear rates, banded structures of macroscopic size can be formed. There are
two such structures to be distinguished: vorticity banded and gradient banded structures. In
the former case, a regular alternating banded structure extends along the vorticity direction,
where the orientational order in the two kinds of bands is different. The latter type of

0953-8984/04/383929+11$30.00 © 2004 IOP Publishing Ltd Printed in the UK S3929
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banding consists of coexisting regions (the bands) with different shear rates extending along the
gradient direction [1–3]. For rigid hard rods, gradient banding is predicted to occur in a very
limited region close to the non-equilibrium critical point in the shear rate versus concentration
plane [1, 4].

In addition, in the fully nematic state, stationary shear flow can induce oscillatory motion
of the nematic director. That is, the shear aligned state becomes unstable in some regions in
the shear rate versus concentration diagram. The trajectory which is described by the tip of
the director is very sensitive to the applied shear rate and the rod concentration. At low shear
rates the director undergoes a continuous tumbling motion in the plane defined by the flow
and the gradient of the flow, while at high shear rates the rods align with the flow [5, 6]. At
intermediate shear rates multiple solutions to the Doi–Edwards equation are obtained, which
are sensitive to the initial orientation of the director [7, 8]. In a small region of the phase
diagram even chaotic behaviour of the stress is found. A full theoretical phase diagram of this
dynamic behaviour is presented in the contribution of Hess and Kröger in this Special Issue [9].

Experimental indications of the instabilities mentioned above have been found in various
kinds of systems. Wormlike micelles at low concentrations show shear-induced phase
transitions and structure formation [3, 2, 10], whereas at higher concentrations tumbling
behaviour was found [11]. Also hydroxypropylcellulose, which is a liquid crystalline polymer,
undergoes shear-induced phase transitions [12] at low concentrations and shows a tumbling
behaviour at high concentrations [13]. Evidence for the transition from tumbling to wagging
has been found by Mewis et al [14] and Grosso et al [15], using nematic solutions of poly-
benzyl glutamate, another liquid crystalline polymer. Direct comparison of these experiments
with theory for hard rod suspensions, however, is not straightforward. In the case of polymeric
liquid crystals the analysis is hampered by the fact that the inter-domain stress dominates the
response at higher concentrations [16]. For wormlike micelles comparison between theory
and experiment is complicated by shear-dependent scission–association kinetics [17]. To gain
fundamental understanding of the above-mentioned phenomena, the ideal system would be a
system of monodisperse hard rods with a very large aspect ratio (say L/D > 100, where L
is the length and D is the thickness of the rod). For such rods, Onsager showed that in the
absence of shear flow the isotropic–nematic transition concentrations can be calculated exactly
on the basis of a second-virial-coefficient approach [18]. One of the few systems available
that comes close to the ideal system is that of fd-virus suspensions. The fd-virus is a rod-
like virus, inherently monodisperse, very thin and relatively stiff. Its equilibrium behaviour
can be quantitatively predicted, taking into account the semi-flexible nature of the rods and
their charge [19]. Furthermore, as will become clear in the present paper, contributions to the
stress from domain boundaries are relatively small, so theoretical predictions that apply for
homogeneous dispersions of rods can be employed. Moreover, we already successfully used
this system to determine the average isotropic–nematic spinodal [20].

In this paper we will therefore use fd-virus dispersions in shear flow to access the above-
mentioned shear-induced instabilities. The goal is then to determine the full non-equilibrium
phase diagram (in the shear rate versus concentration plane) and show the connection between
the different regions. For the director instability diagram we will discuss a direct comparison
with the theory of hard rods. For the determination of the non-equilibrium binodal and the
shear banding regime we added polymer to the dispersion in order to induce some attraction
between the rods. This causes the biphasic region to widen, such that it is easier to access
the concentration dependence of the binodal and to enhance the phase separation kinetics.
We use rheology to determine the location of the paranematic–nematic binodal of sheared
suspensions. We perform in situ macroscopic and microscopic birefringence measurements
to study vorticity shear band formation. Rheology and in situ microscopy are used to study
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the director instabilities in the fully nematic phase. In the discussion we summarize the results
and suggest a connection between the different phenomena.

2. Experimental details

The viscosity and stress response was measured using an ARES strain controlled rheometer
(Rheometric Scientific, Piscataway, NJ). A double-Couette geometry was used because of the
fairly low viscosity of the samples under study. Microscopy under shear has been carried out
using a Linkam plate–plate shear cell and a standard polarizing microscope. We used a home-
built shear cell with a Couette geometry of optical glass in order to monitor the birefringence
of the sheared sample. The inner cylinder has a radius of 21.5 mm; the gap width is 2.47 mm.
A periscope was inserted into the inner cylinder which guides polarized light through one gap
only. Transmitted light was detected through a second polarizer which is used as an analyser.

The physical characteristics of the bacteriophage fd are: length L = 880 nm; diameter
D = 6.6 nm; persistence length 2.2 µm; and the number of elementary charges per unit
length is around 10 e− nm−1 at pH 8.2 [21]. Also, fd exhibits isotropic, cholesteric and
smectic phases with increasing concentration [22, 23]. The fd virus was prepared according
to standard biological protocols found in [24], using the XL1 blue strain of E. coli as the host
bacterium. The standard yield is ≈50 mg of fd per litre of infected bacteria, and virus is
typically grown in 6 l batches. The virus was purified by repetitive centrifugation (108 000 g
for 5 h) and finally re-dispersed in a buffer. A buffer of 20 mM tris-HCl at pH 8.2 was used for
the measurements in the fully nematic phase (isotropic to nematic phase separation occurs at
11 mg ml−1). The same buffer with an extra 100 mM NaCl was used for the measurements in
the biphasic region, and 12 mg ml−1 of dextran (507 kd, Sigma-Aldrich) was added in order
to widen the biphasic region [25].

3. Theory

For spatially homogeneous dispersions of rigid rods, the orientational probability density
function, or orientational distribution function (P), is sufficient to describe the state of the
system. The temporal evolution of the orientational distribution function in shear flow can be
found by solving the equation of motion of the orientational distribution function, given by the
N-particle Smoluchowski equation [1, 5, 26]

∂ P(û, t)

∂ t
= DrR̂ ·

{
R̂P(û, t) + DL2ρ̄P(û, t)R̂

∮
dû′ P(û′, t)|û′ × u|

}
− R̂ · P(û, t)û × (Γ · û). (1)

Here R(· · ·) = û × ∇û(· · ·) is the rotation operator with respect to the orientation û of a
uniaxial rod, ρ̄ is the number density of rods, D is the thickness and L is the length of the rods.
Furthermore, Γ = γ̇ Γ̂ is the velocity gradient tensor and γ̇ the shear rate:

Γ̂ =
( 0 1 0

0 0 0
0 0 0

)
, (2)

complying with a flow in the x-direction with its gradient in the y-direction.
In the absence of flow, equation (1) reproduces Onsager’s thermodynamic approach for

very long and thin hard rods. In the presence of shear flow, new phenomena are predicted
by equation (1) in addition to the paranematic–nematic phase transition. Marrucci and
Maffettone [5] were the first to solve the equation of motion for the orientational distribution
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Figure 1. Determination of the binodal for [fd] = 20 mg ml−1 and [dextran] = 12.5 mg ml−1,
using shear rate quenches from the fully nematic state to the biphasic region and measuring the
normalized stress σN(t) = σ(t)/σ (t → ∞). The initial shear rate was γ̇ = 7 s−1 and the low
shear rates were varied between γ̇ = 1.0 s−1 (bottom) and γ̇ = 3 s−1 (top). The inset shows the
magnitude of the stress response �σN, obtained from the fit to σN = 1 − �σNe−t/τ , as a function
of the shear rate.

function numerically, restricting consideration to two dimensions in order to reduce the
computational effort. They found that the director undergoes a tumbling motion with respect
to the flow direction, resulting in a negative normal stress N1. Larson used a more general
solution, relying on an approximation for the excluded volume interaction term (the last term
in equation (1)), in the form of a closure relation, in order to derive from equation (1) a closed
equation of motion for the orientational order parameter tensor. He predicted a transition from
tumbling to wagging, where the director oscillates between two small angles at somewhat
higher shear rates, and finally to flow aligning at high shear rates. The use of approximation
for the interaction contribution, however, can greatly bias the results, as has been discussed by
Feng et al [27]. The location of the transitions in the shear rate versus concentration diagram
is especially sensitive to the approximation, and in fact no satisfactory approximation has been
found previously. In this paper we will use a finite element method to numerically solve the full
equation of motion (1) for the orientational distribution function, without any approximation.

4. The non-equilibrium binodal

During the isotropic–nematic phase separation, ellipsoidal droplets (tactoids) of one phase
dispersed in a background of the other phase exist. When shear is applied to the system, the
tactoids will be distorted and long stripes along the flow will be formed (see the left micrograph
in figure 2) and the rods in the paranematic phase will gain some ordering due to flow alignment.
When approaching the binodal we observed that the contrast between the elongated tactoids
and the background phase disappears, with the result that light scattering and microscopy are
not useful tools for obtaining the position of the binodal. The viscosity of a rod dispersion,
on the other hand, is very sensitive to ordering in the system, which makes rheology a more
suitable tool for obtaining the binodal point: an increase in the viscosity is expected when a
system which is forced into the fully nematic phase by applying a high shear rate is quenched
into the biphasic region through a sufficient reduction of the shear rate. In figure 1 we show an
example of such an experiment, where we plot the normalized stress σN(t) = σ(t)/σ (t → ∞)

as a function of time after the shear rate is quenched. The initial shear rate was 7 s−1, while the
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Figure 2. Three images of shear bands stacked in the vorticity direction. The images are taken
by using a 1 cm radius polarized light source placed in the centre of the Couette shear cell. The
analyser is placed at the other side of the gap under 70◦ , 90◦ and 110◦ respectively. Also shown
is a close-up taken with a home-made polarization microscope within the bands, showing typical
elongated regions of nematic and paranematic phases as discussed above. The shear bands are about
1 mm in height. The typical height of the elongated regions within the bands is about 10–20 µm.

(This figure is in colour only in the electronic version)

final shear rate is varied between 1.5 and 3 s−1. We fitted the response to a single exponential
(σN = 1−�σNe−t/τ ), disregarding the initial fast response, which is probably due to relaxation
of the pure nematic phase. The viscosity increases with a typical exponential time constant of
around τ = 15 s. The magnitude of the exponent �σN is set by the amount that the ordering
in the nucleated paranematic tactoids deviates from the ordering in the nematic phase. Since
the ordering in the paranematic phase increases with shear rate, it will approach the ordering
of the nematic phase at the binodal. Thus �σN will vanish at the binodal, as can be seen in the
inset in figure 1. The full binodal is found from such experiments for various concentrations
obtained by mixing coexisting equilibrium isotropic and nematic phases at different ratios.
The binodal is plotted in figure 3. Note that the position of the binodal very much depends on
the amount of polymer added to the system. Preliminary investigations show that position of
the binodal shifts to higher shear rates with increasing polymer content.

5. Vorticity shear banding within the biphasic region

In order to study the birefringence of the sheared biphasic system, we arranged a polarizer and
analyser in such a way that the birefringence throughout a single gap was detected. Doing so,
we observed, in addition to the formation of tactoids after a shear rate quench, the formation of
macroscopic bands. The bands are stacked in the vorticity direction, indicative of an instability
in that direction. The bands are up to a millimetre in height (see figure 2) and form in about
12 h. Both the size of the bands and the timescale on which they are formed are orders of
magnitude larger than those for the microscopic phase separation—that is, the formation of
tactoids.

Interestingly, as can be seen in figure 2, the typical biphasic structure is maintained
inside the bands, and also no concentration differences are observed between the bands (data
not shown). The contrast between the bands is fully determined by the differences in the
orientational order. Keeping the polarizer fixed along the flow direction, the intensity of the
bands can be inverted by changing the orientation of the analyser. When the angle is less than
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Figure 3. The experimental phase diagram of the fd-virus under shear. The negative hatched region
indicates the biphasic region. Here the sample also contains polymer (dextran), in order to widen the
concentration difference of the two coexisting phases. The black region indicates the region where
the sample exhibits shear banding, which is completely contained within the two-phase region. The
positive hatched region is the region where the director of the nematic phase tumbles with respect to
the shear flow. The boundary given by the solid line is the experimental points in the fully nematic
phase; the dashed line indicates that in the biphasic region tumbling already takes place.

90◦, one band will light up; when it is more than 90◦, the other band will light up. Changing
the orientation of both the polarizer and analyser with respect to the shear flow while keeping
them crossed does not cause a change of the relative intensity of the bands. The intensity will
just increase to reach a maximum at 45◦ with the shear flow. Combining the two observations,
it can be concluded that the polarized light is not retarded within the bands, but rotated. This
means that the average orientation of the rods is tilting towards or from the vorticity direction
depending on the band. This is similar to what is happening in the cholesteric phase; however,
in this case the tilt is occurring in the presence of the biphasic structure.

The region in the phase diagram where the bands are formed (the black region in figure 3)
is limited to the biphasic region. On the low concentration side, banding abruptly ceases to
occur on crossing the binodal. On the high concentration side, banding ceases to occur at a
concentration where the sample contains about 70% of nematic phase. Interestingly, at these
concentrations oscillations in the viscosity after a step down of the shear rate are also observed
(data not shown). As will be discussed later, these oscillations are reminiscent of instabilities
in the nematic director. The concentration at which the highest shear rate is reached for which
bands are still observed is somewhat higher than the concentration where the binodal peaks.
The bands start to form at low but non-zero shear rates. The shear band region is fully contained
within the biphasic region, defined as the region that is bounded by the binodal.

The fact that banding occurs only in the biphasic region suggests that inhomogeneities
that are intrinsically present in this region are responsible for the vorticity banding instability.

6. Director dynamics in the fully nematic phase

Contrary to observations on the otherwise isotropic phase, the viscosity in the nematic phase
does not monotonically shear thin, as can be seen in figure 4(a). There are two regions of shear
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Figure 4. (a) The stationary viscosity as a function of the shear rate at an fd-virus concentration of
19 mg ml−1 or C/Cnem = 1.3. (b) The response of the viscosity to a flow reversal as a function of
the strain for three different shear rates (solid curve: γ̇ = 4 s−1; dashed curve: γ̇ = 33 s−1; dotted
curve: γ̇ = 70 s−1). The negatively hatched region in (a) corresponds to a phase where oscillations
are strongly damped (solid curve in (b)); the horizontally hatched region in (a) corresponds to a
phase where the oscillations are weakly damped (dashed curve in (b)); the positively hatched region
in (a) corresponds to a phase of very strongly damped oscillations (dotted curve in (b)).

thinning separated by a small local maximum in the viscosity. This local maximum indicates
that at this shear rate the ordering in the system is partly lost, contrary to what is expected
when the degree of alignment increases with the shear rate.

In order to understand the local maximum in viscosity and to detect possible oscillatory
viscoelastic responses, one needs to access the dynamic behaviour by means of transient
experiments such as step down and flow reversal experiments. As mentioned in the last
paragraph, the response of a pure nematic phase to a step down of the shear rate will lead to an
oscillatory response of the viscosity. Likewise, an oscillatory response is seen when performing
flow reversal, where the direction of the flow is suddenly reversed without changing the absolute
value of the shear rate [14]. In figure 4(b) we show typical responses of the viscosity after a
flow reversal for shear rates in three characteristic regions: a region where the response shows
strongly damped oscillations, a region where the response is weakly damped and a region
where the response is very strongly damped. Interestingly, the region of the weakly damped
oscillations starts at the point where the viscosity reaches its local maximum.

This type of behaviour has been predicted by Larson, who solved the equation of motion
for the orientational distribution function in an approximated way [6]. Larson argued that
the nematic phase will tumble due to the torque that is exerted on those rods which have an
orientation in the wings of the orientation distribution. This torque is then transmitted to the
rest of the distribution due to strong excluded volume interactions between the rods. However,
during the tumbling process the distribution passes the angle corresponding to the extensional
direction of the velocity gradient tensor in shearing flow. At this point the distribution of the
rods will be distorted with the result that the ordering will be partly lost. With increasing shear
rate this effect becomes stronger and as a consequence the experimentally observed viscosity
will increase. At a critical shear rate this effect is so strong that the ordering is completely
lost. Since isotropically distributed rods flow align, the director will not pass the angle of
extensional flow and return to the flow direction. This is the point where the so-called wagging
regime is entered and where the viscosity will reach its maximum.

The damping of oscillations in the tumbling regime is probably caused by interaction
between different nematic domains [28]. The explanation of the transition from strongly
damped to weakly damped is then that in the wagging state the director oscillates around the
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Figure 5. The structure in the nematic phase at rest (a) and at a shear rate of 250 s−1 (b) at a
concentration of 25 mg ml−1, as observed by using a shear cell with a plate–plate geometry under
the polarizing microscope. Note that the shear rate increases somewhat when going from the left
to the right of this picture, since a plate–plate geometry is used.

flow direction. Compared to the tumbling state, the wagging state corresponds to a more
ordered state where the polydomain structure will have disappeared. This disappearance of
polydomain structure at the shear rate where the viscosity reaches its maximum is demonstrated
in figure 5. Here we use polarization microscopy in combination with an optical shear cell to
monitor the structure. It can be clearly seen that structure disappears at a very well defined
shear rate, since for a plate–plate geometry the shear rate is increasing with increasing distance
from the centre. Another interesting feature shown in this image is that at this shear rate and
concentration shear bands are formed. The origin of these bands, which are only formed at
higher concentrations, is not clear yet and further experiments are needed. The presence of
the bands does however facilitate the identification of the point where the domain structure
disappears. At lower concentrations no bands are observed. Since it takes a force of 108 000 g
over 5 h to sediment fd-virus particles over a distance of a few centimetres, which is orders of
magnitude larger than the forces resulting from gradients in the shear rate, inhomogeneities as
a result of shear rate gradients are negligibly small.

We can now identify the shear rate where the maximum viscosity is reached with the
shear rate where the tumbling region ends and wagging sets in. Making this identification
for concentrations between C = 1.1 ∗ Cnem and 2.5 ∗ Cnem (where Cnem is the binodal
concentration beyond which the pure nematic state is stable), we can produce a phase diagram
plotting the transition shear rate as a function of concentration (� in figure 3). In order to
compare experiments with theory the shear rate and the concentration need to be expressed
in dimensionless units. According to the Smoluchowski equation (1), the dimensionless
shear rate, the Peclet number Pe, is the shear rate divided by the rotational diffusion of
the rods at infinite dilution. The latter can be measured by means of electric birefringence
measurements [29]. When scaling the concentration, one should consider the particles which
are used not to be ideal rods, since they are somewhat flexible and charged. Therefore, the
dynamic phase behaviour for ideal rods is probably not recovered when an experimental
binodal concentration is simply scaled to Onsager’s theoretical binodal concentration. It is
more reasonable to compare the dependence of the transition shear rate on the orientational
order parameter P2 = 〈 1

2 (3 cos2(θ) − 1)〉 describing the average ordering of the rods, where θ

refers to the angle between the rod and the director of the nematic phase. Since the ordering
of the rods directly reflects the interaction between the rods, it is a more reliable parameter
than the concentration. For fd-virus it was shown that order parameter was well predicted by
theory, when taking the flexibility and charge of the particles into account [19]. In figure 6
we plot both comparisons of experiment and theory, rescaling the concentration to the higher
binodal concentration (a) and to the order parameter in equilibrium (b). The theoretical points
in figure 6 are obtained by tracking the angle between the director and the flow direction in
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Figure 6. Comparison between the experimental and theoretical dimensionless transition shear
rates Pe as a function of the concentration scaled to the concentration at the isotropic–nematic
transition (a) and as a function of the equilibrium order parameter P2 = 〈 1

2 (3 cos2(θ)−1)〉, obtained
using experimental data of Purdy et al [19] and equation (1) for zero shear. Here θ refers to the
angle of the rod with respect to the director of the nematic phase. For experiments, the tumbling–
wagging transition is identified via the shear rate where the viscosity shows a local maximum
(�). For theory, the tumbling–wagging transition (�) and wagging–flow aligning transition (◦)
are found by solving the equation of motion (1) for the orientational distribution function. The
experimental shear rate is in both figures scaled to the Peclet number with the rotational diffusion
at infinite dilution (21 s−1 [29]).

time, solving equation (1) numerically. The time dependence of this angle defines whether the
system is in the tumbling, wagging or flow aligning regime.

Clearly, the scaling with respect to the order parameter gives the best comparison between
experiment and theory; note that no adjustable parameters were used in the theory. Apparently
the above-mentioned non-ideal features of the fd-virus are accounted for when scaling results
to the same orientational order parameter. In addition, the polydomain structure of the sample,
which is not included in the theory, does not seem to hamper the comparison. This is probably
due to two factors. First, the viscosity of the dispersion is relatively low. It is for example
about three orders of magnitude lower than that of typical polymeric liquid crystals such as
PBG [16]. Second, at the transition, polydomain structure has disappeared and is therefore
not important any longer. Thus, we believe that in principle all the physics is contained in the
equation of motion given by equation (1). To describe vorticity banding, however, equations
of motion that include spatial inhomogeneities must be derived (see [30, 31] for the derivation
of such an equation).

7. Discussion and conclusion

The aim of this paper is to give an experimental overview of the phase behaviour under
shear flow and the flow behaviour of rod dispersions, ranging from concentrations where the
isotropic–nematic phase transition occurs up to concentrations deep into the nematic phase. A
summary of the phase and flow behaviour is given in the preliminary non-equilibrium phase
diagram in figure 3. As far as we know, this is the first attempt to experimentally determine
a complete phase diagram under shear flow of stiff rods, ranging from low concentrations,
through the biphasic region, far into the nematic region.

Measurements in the biphasic region have been performed on rod–polymer mixtures at
high ionic strength, while for the pure nematic phase measurements have been performed
without polymer and at low ionic strength. Comparing values for the shear rates for these two
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regions as given in our phase diagram should therefore be done with caution. For example, the
shear rates at which the non-equilibrium binodal is found will decrease with decreasing polymer
concentration. Still missing in the experimental phase diagram is the location of spinodals for
a system of attractive rods and in particular the location of the critical point. Systematic
measurements to determine the full phase diagram for several polymer concentrations are in
progress.

Vorticity banding is found to occur only within the two-phase region as bounded by the
non-equilibrium binodal. Vorticity banding is therefore most probably the result of a normal
stress related instability induced by inhomogeneities that are formed after quenching into the
two-phase region. Theoretically, the challenge is to incorporate stresses that are generated
by spatial inhomogeneities in orientational order (and possibly concentration) in the Navier–
Stokes equation. A first attempt to derive appropriate equations of motion for stiff, long and
thin rods on a microscopic level can be found in [30, 31]. Gradient banding is expected to
occur close to the critical point due to critical slowing down of rotational diffusion. However,
theory predicts gradient banding to occur only in a very small concentration interval near the
critical point. Furthermore, theory predicts a very small difference between the shear rates in
the two bands. Gradient banding of stiff rods is therefore probably very difficult to detect.

The measurements for the fully nematic phase show that the Smoluchowski theory for
homogeneous rod suspensions quantitatively describes tumbling and wagging in fd-virus
suspensions as long as the concentrations at which the transitions occur are scaled to the
order parameter of the dispersion. Stresses arising from polydomains are of minor importance
for these kinds of dispersions. The combination of fd-virus suspensions with the extension of
the theory towards inhomogeneous systems is therefore promising for the full understanding
of rods under shear.
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The behavior of a colloidal suspension of rodlike fd viruses in the nematic phase, subjected to steady
state and transient shear flows, is studied. The monodisperse nature of these rods combined with relatively
small textural contribution to the overall stress make this a suitable model system to investigate the effects
of flow on the nonequilibrium phase diagram. Transient rheological experiments are used to determine
the critical shear rates at which director tumbling, wagging, and flow-aligning occurs. The present model
system enables us to study the effect of rod concentration on these transitions. The results are in
quantitatively agreement with the Doi-Edwards-Hess model. Moreover, we observe that there is a strong
connection between the dynamic transitions and structure formation, which is not incorporated in theory.

I. Introduction

When subjected to shear flow, liquid crystals can exhibit
a variety of surprising phenomena, which arise because
of the anisotropic shape of the constituent rods. Theoreti-
cally, the behavior of a suspension of hard rods during
shear flow can be described by the equation that governs
the time development of their probability distribution
function, as derived by Hess1 and by Doi and Edwards.2
In the absence of a flow, the Doi-Edwards-Hess (DEH)
theory reduces to the Onsager description of equilibrium
nematic liquid crystals and can be used to describe the
isotropic-nematic (I-N) phase transition of a hard rod
suspension.3 The rheological properties are predicted to
be highly nonlinear functions of the Péclet number (Pe),
which is the ratio of shear rate γ̆ over rotational diffusion
constant Dr. This is not surprising as the Pe number can
be much larger than unity when the rodlike molecules
have large aspect ratios.

The nonlinear response of the rheological properties
indicates that the shear flow distorts the equilibrium
distributionofmacromoleculesor rods.Thespatiotemporal
microstructural changes during flow are even more
complex. At low shear rates, the DEH theory predicts that
the pseudo vector describing the average alignment of
the rods, i.e., the “director”, undergoes a continuous
“tumbling” motion in the plane defined by the velocity
and the velocity gradient vectors. At high shear rates the
director is predicted to align with the flow.4,5 At inter-
mediate shear rates, it is possible to obtain multiple

solutions to the Doi-Edwards-Hess equation, which are
dependent on the initial orientation of the director.6,7 For
one stable solution called “wagging” the nematic director
oscillates between two angles in the plane defined by the
flow and the gradient of the flow. Other solutions such as
kayaking and log-rolling are also possible, in which the
director oscillates out of the flow-gradient plane at these
intermediate shear rates.8

Experiments on polymeric liquid crystals have con-
firmed several predictions of the Doi-Edwards equation.
Using a combination of rheological and rheo-optical
measurements, it was shown that nematic solutions of
poly(benzyl-glutamate) (PBG) tumble at low shear rate
and become flow aligning at high shear rates.9 The
existence of a wagging regime and a potential coexistence
of wagging and log-rolling regimes at intermediate flow
rates have also been revealed in experiments.8,10 However,
there remain significant difficulties when comparing
experiments on polymeric liquid crystals (PLC) to theo-
retical predictions. One problem is that different levels of

* To whom correspondence should be addressed.
(1) Hess, S. Fokker-planck-equation approach to flow alignment in

liquid crystals. Z. Naturforsch. 1976, 31 (a), 1034-1037.
(2) Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics;

Clarendon Press: Oxford, U.K., 1986.
(3) Onsager, L. The effect of shape on the interaction of colloidal

particles. Ann. N.Y. Acad. Sci. 1949, 51, 62-659.

(4) Marrucci, G.; Maffettone, P. L. Description of the liquid-crystallin
phase at high shear rates. Macromolecules 1989, 22, 4076.

(5) Larson, R. G. Arrested tumbling in shearing flows of liquid crystal
polymers. Macromolecules 1990, 23, 3983-3992.

(6) Faraoni, V. Grosso, M.; Crescitelli, S.; Maffettone, P. L. The rigid-
rod model for nematic polymers: An anaysis of the shear flow problem.
J. Rheol. 1999, 43, 829.

(7) Forest, M. G.; Wang, Q. Monodomain response of finit-aspect-
ratio macromolecules in shear and realted linear flows. Rheol. Acta
2003, 42, 20-46.

(8) Grosso, M.; Crescitelli, S.; Somma, E.; Vermant, J.; Moldeaers,
P.; Maffettone, P. L. Prediction and observation of sustained in a shear
liquid crystalline polymer. Phys. Rev. Lett. 2003, 90, 098304.

(9) Burghardt, W. R.; Fuller, G. G. Role of director tumbling in the
rheology of polymer liquid crystal solutions. Macromolecules 1991, 24,
2546.

(10) Mewis, J.; Mortier, M.; Vermant, J.; Moldenaers, P. Experi-
mental evidence for the existence of a wagging regime in polymeric
liquid crystals. Macromolecules 1997, 30 (5), 1323-1328.

8048 Langmuir 2005, 21, 8048-8057

10.1021/la050116e CCC: $30.25 © 2005 American Chemical Society
Published on Web 07/12/2005

108



the microstructure may lead to different contributions to
the stress tensor.11 In addition to the molecular contribu-
tion to the stress tensor, textural aspects contribute. The
latter include Frank elasticity contributions due to the
presence of spatial distortions of nematic director and
viscous interactions between “domains”. In addition, there
is an indirect effect to the stress tensor as the defects
disturb the orientation distribution function. These tex-
tural contributions to the total stress dominate the
behavior at high concentrations and low shear rates,12

making it difficult to accurately extract information about
the concentration dependence of different flow transitions.
The textural portion of the stress typically displays scaling
of the transient rheological response with strain rather
than with Pe number.13 The strain scaling is a typical
feature of materials where the time response is determined
by an inherent length scale which in the case of PLCs is
set by the size of the large non-Brownian nematic
domains.14

The DEH theory describes the flow behavior of a
homogeneous ensemble of rods but does not consider any
polydomain effects. Therefore, an ideal system for testing
DEH theory should have small textural contributions. In
this paper, we use rodlike fd virus suspensions to access
the concentration dependence of the transition of tumbling
to wagging and wagging to flow aligning. We show that
the contribution of textural stress is very low, although
the spatial distribution of directors still has to be accounted
for. The main motive for using fd virus is the thorough
understanding of its equilibrium behavior, which has been
quantitatively described using the Onsager theory ex-
tended to take into account the semiflexible nature of fd
as well as its surface charge.15 Moreover, fd has already
successfully been used for (micro)rheology experiments
in the isotropic phase.16,17 The aim of the present paper
is to make a comparison between the dynamic flow
behavior of fd suspensions and the available microscopic
theoretical predictions of the DEH theory for a homoge-
neous system of colloidal rods under shear.

The paper is organized as follows. In section II, we
discuss the equation of motion of the orientational
distribution function and the numerical method we use
to solve it. The experimental details about sample
preparation and measurements are given in section III.
The results are discussed in five parts: the stationary
viscosity of fd suspensions, the concentration and shear
rate dependence of the oscillatory response to a flow
reversal, the relaxation after cessation of flow at high
concentration, and in situ microscopy under shear. In
section IV, the textural contribution to the stress tensor
is investigated in more detail. Finally, we present a

nonequilibrium phase diagram of shear and concentration
dependence of different flow transitions.

II. Theory
The distribution of an ensemble of rods can be described

by the probability density function P(û1,.., ûN, r1,.., rn) of
the positions {rbi} and orientations {ûi} of the rods. Ignoring
any spatial correlations, i.e., restricting to a monodomain,
we have P(û1,.., ûN, r1,.., rn) ) FjP(û1,.., ûN), where Fj ) N/V
is the particle density. Therefore, the orientational prob-
ability density function, or orientational distribution
function (ODF), fully characterizes the system. The time
evolution of the ODF for a suspension of rods during flow
is obtained by solving the equation of motion for the ODF,
given by the N-particle Smoluchowski equation

where R(...) ) û × ∇û(...) is the rotation operator with
respect to the orientation û of a rod. Dr is the rotational
diffusion of a rod at infinite dilution. Furthermore, D is
the thickness of the rods and L is their length. Γ ) γ̆ Γ̂ is
the velocity-gradient tensor with γ̆ the shear rate. Here
we choose

which corresponds to a flow v in the x-direction and its
gradient ∇v in the y direction.

The concentration where the isotropic phase becomes
unstable in the absence of shear flow can be calculated by
solving the Smoluchowski equation at zero shear rate.
This equation agrees with Onsagers approach to the I-N
transition. Often the Maier-Saupe potential is used instead
of the exact potential, which in fact corresponds to the
first term of the Ginzburg-Landau expansion of the outer
product in the exact potential given between the brackets
in eq 1.18 Under flow conditions, a rich dynamics phase
behavior is found as a function of shear rate and rod
concentration. Marrucci and Maffettone were the first to
solve the equation of motion of the ODF numerically,
restricting themselves to two dimensions in order to reduce
the computational effort.4 They found that the director
undergoes a tumbling motion with respect to the flow
direction, resulting in a negative normal stress N1. Larson
expanded the ODF in three dimensions using spherical
harmonics and truncated the expansion after checking
for convergence.5 This treatment predicts a transition from
tumbling to “wagging” and finally to flow aligning state
with increasing shear rates. A closure relation is frequently
used for the interaction term on the right side of eq 1. This
can greatly bias the results, see e.g., Feng et al.19 The
location of the flow transitions in the flow-concentration
diagram is very sensitive to the choice of the closure, and
no satisfactory closure has been found up till now.

In this paper, we use a finite element method to
numerically solve the equation of motion for the ODF,
thus avoiding the use of any specific closure relation. As
a typical diffusion-convection equation, eq 1 describes
the diffusive-convective transport dynamics of an ori-
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entation of a homogeneous ensemble of thin rigid rods. A
surface of a sphere is constructed on which a tip of the rod
moves with respect to its center of mass. The equation for
the probability of finding the tip of a rod in an area is
determined by the transport fluxes on its boundaries due
to (1) the Brownian diffusion (the first term in the brace
brackets of eq 1), (2) the convection induced by the
interparticle forces (the second term in the brace brackets
of eq 1), and (3) the convection due to the imposed shear
flow (the third term of eq 1).

To solve eq 1 numerically, a discretization scheme is
used, and meshes on the surface of a unit sphere are
constructed. For those operators inside the brace brackets
which represent the transport fluxes, we apply the central
differences approximations. However, the rotation opera-
tor outside of the brace brackets needs to be discretized
using the concept of transport fluxes through the bound-
aries of the mesh. In other words, the integral form of the
eq 1 is invoked and applied to each of the mesh elements.
To do this the identity, (û × ∇û)‚F ) ∇û‚(F × û) is used
in order to transform the angular transport flux of a rod
to the translational transport flux of one tip of that rod.
It differs from the conventional method of discretizing a
differential equation where the operators are written
explicitly into the sum of the first- and second-order
derivatives, and then the latter are approximated by
selected difference schemes. The advantage of the current
method is that, since neighboring meshes share bound-
aries, the fluxes leaving one mesh are always absorbed by
the surrounding meshes and vice versa. Therefore, there
is no loss and generation in the total amount of the ODFs
as the computation proceeds (see Figure 1). In practice,
a 40 × 80 mesh was used on the surface of a unit sphere
with 40 equispaced grids in the polar angle and 80
equispaced grids in the azimuthal angle in a spherical
coordinates. The right-hand side of eq 1 is discritized on
the meshes according to the flux-conservative method
mentioned above. A fourth order Adams' predictor-
corrector method20 was invoked to follow the time evolution
of the ODF. More details will be published in a forthcoming
paper.

The time-dependent ODF is now used to calculate the
time-dependence of three parameters characterizing the
flow behavior of a nematic phase: (1) θ describing the
angle between the nematic director and flow direction, (2)
the scalar magnitude of the director defined by the order

parameter P2, and (3) the total stress of an ensemble of
flowing rods. The angle and magnitude of the order
parameter are obtained from the order parameter tensor

The largest eigenvalue of the order parameter tensor λ,
characterizes the degree of alignment of rods with respect
to the director given by the corresponding eigenvector n̂.
The largest eigenvalue of S is 1/3 in the isotropic phase
and 1 for a perfectly aligned nematic phase. Scalar order
parameter P2 is defined as P2 ) (3λ - 1)/2.

The stress σ12 is obtained from the deviatoric part of the
stress tensor derived by Dhont and Briels18

where

and

Here, φ ) π/4 D2LFj is the volume fraction of rods, and Pe
) γ̆/Dr the rotational Péclet number which is defined as
the shear rate scaled with the rotational diffusion of a rod
at infinite dilution. The first term between the brackets,
S - 1/3Î, stems from the Brownian contribution to the
stress. The second term stems from the direct interaction
between rods and describes the elastic contribution to the
total stress. The proportionality constant φ L/D is the
dimensionless rod concentration and is also called the
nematic strength. The terms proportional to ∼Per stem
from the flow of the suspension and described the viscous
contribution to the total stress. This term disappears
instantaneously when the shear is switched off.

In Figure 2, we plot the evolution of the three parameters
(angle θ, order parameter P2, and stress σ12) as a function
of strain for different shear rates at a dimensionless rod
concentration of φ L/D ) 4.5. For this calculation, we used
an initial rod orientation in the flow-gradient plane. The
flow behavior between Péclet numbers of 4.5 and 5.0
exhibits a sharp transition from tumbling behavior, where
the director continuously rotates, to wagging behavior
where the director hops back and forth between two well
defined angles. At higher shear rates, the director is found
to be flow aligning. The order parameter at low shear
rates remains unchanged, but is significantly reduced at
the point of the tumbling to wagging flow transition.

III. Materials and Methods
The viscosity and stress response were measured using an

ARES strain controlled rheometer (TA instruments, Delaware).
A double wall Couette geometry was used because of the fairly
low viscosity of the samples. Polarized light microscopy images
of fd under shear flow were taken using a Linkam CSS450 plate-
plate shear cell.

The physical characteristics of the bacteriophage fd are its
length L ) 880 nm, diameter D ) 6.6 nm, persistence length of
2200 nm, and a charge per unit length of around 10 e-/nm at pH
8.2.21 When in solution, fd exhibits isotropic, cholesteric, and

(20) Korn, G. A.; Korn, T. M. Mathematical Handbook for Scientists
and Engineers; Mc-Graw and Hill: New York, 1968.

(21) Fraden, S. Observation, Prediction, and Simulation of Phase
Transitions in Complex Fluids, volume 460 of NATO-ASI - Series C;
Baus, M.; Rull, L. F.; Ryckaert, J. P., Eds.; Kluwer Academic Publish-
ers: Dordrecht, The Netherlands, 1995; pp 113-164.

Figure 1. Flux conservation method used in discritizing eq 1.
The rod indicates the orientation of the director with respect
to the shear flow. The probability of finding a tip of one rod in
the shaded area of the unit sphere is determined by the flux
of the probabilities through the boundary of that area.

S ) Idû ûûP(û, t) (3)

ΣD ) η0γ̆ +

3FjkBT{S - 1
3
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smectic phases with increasing concentration.22,23 fd forms a
cholesteric phase while the DEH theory is valid for nematic
structures. In practice, nematic and cholesteric phase are locally
almost identical and the free energy difference between these
phases is very small.24 In this paper, we do not distinguish
between these two phases. The fd virus was prepared according
to standard biological protocols using XL1-Blue strain of E. coli
as the host bacteria.25 The standard yields are approximately 50
mg of fd per liter of infected bacteria, and virus is typically grown
in 6 L batches. The virus is purified by repetitive centrifugation
(108 000 g for 5 h) and re-dispersed in a 20 mM Tris-HCl buffer
at pH 8.2.

A. fd as a Model Hard Rod System. The Onsager theory for
hard rod dispersions predicts a first order phase transition
between a disordered, isotropic phase and an orientationally
ordered, nematic phase. Due to hard core athermal interactions
considered in the Onsager model, the phase diagram is tem-
perature independent and the rod concentration is the only
parameter that determines the location of the I-N phase
transition. The two points spanning the region of isotropic-
nematic coexistence are called the binodal points. The spinodal
point is located at a rod concentration higher than the lower

binodal point and is determined by the following condition φ L/D
) 4. fd viruses are not true hard rods, due to surface charge and
limited flexibility. As a consequence, their equilibrium phase
behavior differs from the ideal hard rod case described by Onsager
based theory, e.g., DEH. The finite flexibility of fd viruses drives
the concentration of the binodal points to a 30% higher value
when compared to equivalent but perfectly stiff hard rods. In
addition, flexibility also reduces the value of the order parameter
of the coexisting nematic phase. For fd, the order parameter of
the coexisting nematic is about 0.65, whereas Onsager theory
for hard rods in equilibrium predicts the order parameter of 0.8.15

The effect of surface charge is to increase the effective diameter
of the rod Deff and therefore the excluded volume interaction
between charged rods. As a consequence, the charge reduces the
real concentration of the phase transition.26

For the fd suspension used, the binodal point at high rod
concentration cIN occurs at 11 mg/mL. After taking the effects of
flexibility and charge into account, it was shown that the order
parameter of the nematic solution of fd is quantitatively described
by the extensions of the Onsager theory to the semiflexible case.15

Hence, even though fd is flexible and charged, it can be used to
quantitatively test predictions of the DEH theory. It is, however,
a very difficult and until now unfulfilled task to incorporate charge
and flexibility into a nonequilibrium equation of motion such as
eq 1. Therefore, in this paper, we use data from ref 15 to convert
the measured concentration of fd to the nematic order parameter
of the sample. After that, we compare experiments and theory
at the same values of the order parameter.

IV. Results
A. Stationary Viscosity. The measurements of a

stationary viscosity as a function of the shear rate for
different fd concentrations are shown in Figure 3. For the
lowest concentrations of fd, the viscosity decreases
continuously with shear rate except for a small hesitation
at a shear rate of 10 s-1. This hesitation is similar to what
is observed for solutions of PBG at low concentration in
solventm-cresol.13,27 For fd at intermediate concentrations,
shear thinning becomes less pronounced, the hesitation
shifts to higher shear rates and turns into a local
maximum. For the highest fd concentration, almost no
shear thinning is observed, only a pronounced peak in the
viscosity. This shear thickening behavior has not been
previously reported.

A hesitation in the shear rate dependence of the viscosity
was predicted theoretically by Larson.5 It was argued that
the transition from the tumbling regime to the wagging
regime implies a broadening of the ODF which leads to
higher dissipative stresses. The broadening of the ODF

(22) Dogic, Z.; Fraden, S. Smectic phase in a colloidal suspension of
semiflexible virus particles. Phys. Rev. Lett. 1997, 78, 2417.

(23) Dogic, Z.; Fraden, S. Development of model colloidal liquid
crystalsandthekineticsof the isotropic-smectic transition.Philos.Trans.
R. Soc. London A 2001, 359, 997.

(24) Dogic, Z.; Fraden, S. Cholesteric phase in virus suspensions.
Langmuir 2000, 16, 7820-7824.

(25) Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning:
A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press:
Plainview, NY, 1989; Chapter 4.

(26) Tang, J.; Fraden, S. Isotropic-cholesteric phase transition in
colloidal dispersions of filamentous bacteriophage fd. Liq. Cryst. 1995,
19 (4), 459-467.

(27) Kiss, G.; Porter, R. S. Rheolog of concentrated solutions of poly-
(γ-benzyl-glutamate). J. Polym. Sci. 1978, 65, 193-211.

Figure 2. Three plots showing the behavior of the angle of the
nematic director θ (a), the magnitude of the nematic order
parameter(b), and the average stress (c) as a function of strain
after a start up of the flow. The dimensionless rod concentration
is φ L/D ) 4.5. Data are obtained by numerically solving eq 1
using the finite element method. The rods are initially placed
in the flow-gradient plane. For the stress calculation only the
elastic contribution (eq 4) was considered.

Figure 3. Stationary viscosity as a function of shear rate for
four different concentration of fd virus at 11.5, 13, 16, and 25
mg/mL.
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is illustrated in Figure 2b. As can be seen in Figure 2c,
it is not straightforward that ODF broadening really has
an effect on the stress. We calculated the time-dependent
viscosity by numerically solving the equation of motion of
the ODF for 20 different initial orientations of the director.
From the time-dependent ODFs, we calculated the
viscosity using either only the elastic term or both elastic
and viscous terms. The viscosity is averaged over all 20
traces and a tumbling period after the transient start up
flows have died out. The results are scaled to the
experiment using a typical concentration of 16 mg/mL for
Fj in eq 4 and the value of Dinf

0 ) 20 s-1, taken for the
rotational diffusion at infinite dilution.15,28 In Figure 4
the stationary viscosity decreases continuously with
increasing shear rate and only shows a hesitation when
the viscous contribution to the stress is not included. The
shear rate where this hesitation occurs corresponds with
the shear rate where the system nematic ordering is
significantly reduced and the transition from tumbling to
wagging takes place, as can be concluded from Figure 2.
Comparing the model predictions to the experiments, it
should be noted that the experimentally observed features
are much more pronounced. Moreover, there is no real
reason to leave out the viscous contribution although it
does obscure the behavior we see in the experiment. Still,
the maximum in the viscosity is interpreted as a signature
of the transition from tumbling to a wagging state.

There are three observations to keep in mind when
considering fd in the nematic phase under shear flow,
which all point to very low stresses in such systems when
compared to polymeric liquid crystals. First, the viscosity
of fd in the nematic phase is two to 3 orders of magnitude
lower than the viscosity of typical polymeric liquid crystals
such as poly(benzyl glutamate) (PBG),29 although the dif-
ference in solvent viscosity is only 1 order of magnitude.
Second, the range over which the viscosity of fd suspension
varies is more limited with changing shear rate and rod
concentration: the viscosity lies between 70 times the sol-

vent viscosity for low shear rate and low rod concentration
and 20 times the solvent viscosity for high shear rate and
rod concentration. Moreover, the viscosity as calculated
from the equation of motion of the ODF is of the same
order as the measured viscosity. Third, polymer nematics
exhibit negative first normal stress differences for certain
shear rates as was first observed for PBG solution.26 This
is a direct consequence of the tumbling of the nematic
director. Attempts have been made to measure the first
normal stress difference for nematic fd solutions but due
to very low force the signals were too small to be measured.

B. Flow Reversal Experiments. In flow reversal
experiments, the sample is first sheared at a constant
shear rate in one direction until the steady state condition
is reached. Subsequently, the direction of flow is suddenly
reversed while keeping the magnitude of shear rate
constant. Such experiments have been very useful in
characterizing and understanding the dynamics of sheared
liquid crystalline polymers.13 In the present work, flow
reversal experiments were performed covering a wide
range of shear rates and fd concentrations. Typical flow
reversal experiments are depicted in Figure 5 for a fd
concentration of 11.5 mg/mL which corresponds to c/cIN )
1.05. At the lowest shear rates, a damped oscillatory
response is obtained which decays within few oscillations
(Figure 5a). Increasing the shear rate results in a more
pronounced oscillatory response, which damps out rela-
tively slowly. The oscillatory response in Figure 5b is most
pronounced at a shear rate of 12 s-1. At even higher shear
rates, the damping again increases (Figure 5c). To
quantitatively characterize the response of a nematic to
a flow reversal, the data is fitted to a damped sinusoidal
superimposed onto a asymptotically decaying function of
the following form:

(28) Kramer, H. Deggelmann, M.; Graf, C.; Hagenbtichle, M.; Johner,
C.; Weber, R. Electric birefringence measurements in aqueous fd virus
solutions. Macromolecules 1992, 25, 4325-4328.

(29) Vermant, J.; Moldenaers, P.; Picken, S. J.; Mewis. J. A
comparison between texture and rheological behaviour of lyotropic liquid
crystalline polymers during flow. J. Non-Newtonian Fluid Mech. 1994,
53, 1-23.

Figure 4. Theoretical time averaged viscosity at a dimension-
less concentration of L/D φ ) 4.5 with (0) and without (9) the
viscous contribution of the rods, as calculated by solving the
equation of motion of the ODF for 20 independent initial
orientations of the director. The lines indicate the transition
from tumbling to wagging, and from wagging to flow aligning
as found from Figure 2. The results are scaled to the experiment
using a typical concentration of 16 mg/mL for Fj in eq 4 and Dinf

0

) 20 s-1 for the rotational diffusion at infinite dilution.15,28

Figure 5. Viscosity of the nematic fd solution in a response
to a flow reversals. The sample is sheared at shear rate +γ̆
until the viscosity is equilibrated; at time t ) 0 the shear rate
is changed to -γ̆. The concentration of fd is kept constant at
11.5 mg/mL. The data can be nicely fitted to eq 7. The fits are
not shown for clarity.

η(t) ) ηstat{1 + Ae-γ̆t/τd sin(2πγ̆t - æ
P )}(1 - bgγ̆t) (7)
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This is an empirical choice, but each variable in the fit
contains important information about the behavior of rods
in shear flow. Figure 6 shows the behavior of fit parameters
as a function of the shear rate at few selected concentra-
tions of fd virus. In this figure, we indicate with vertical
dashed lines the shear rates at which the steady state
viscosity exhibits a local maximum for four different
concentrations. Interestingly, these are exactly the same
shear rates at which the damping constant τd as well as
the tumbling period P show a sharp increase. The asymp-
totic constant b, on the contrary, shows a decrease. These
features disappear for the highest fd concentration. Pre-
sumably the three regions showing different flow reversal
behavior correspond to tumbling, wagging and flow align-
ing regime. This will be discussed in more detail in section
V.B. In the next section. we first discuss the concentration
and shear rate dependence of the tumbling period in the
regime where rods exhibit tumbling flow behavior.

C. Tumbling Period as a Function of Shear Rate
and Rod Concentration. DEH theory predicts that as
the De (or Pe) number is increased, that the “molecular”
period of oscillation decreases with increasing shear rate
in the tumbling regime.5 This feature was never fully
explored, since in most polymeric liquid crystals it was
found that the tumbling period was strain scaling,
implying that the response overlaps when the period is
scaled with the applied shear rate and the stress is
normalized by its steady state value. The strain scaling
arises as a consequence of the presence of a large, non-
Brownian, length scale in the sample that determines the
time response, even at relatively high De (or Pe) numbers.
This most probably is the domain size characterizing the
nematic texture. The log-log plot of the tumbling period
(T ) P/γ̆) as a function of the shear rate is shown in Figure

7. Here the data are only shown for a low shear rate region
which is associated with the tumbling region. Strain
scaling, if present, would give a slope of -1. However, as
can be seen in the inset of Figure 7, the reciprocal
indicating strain scaling is only approached and not
reached at the highest rod concentration studied here.

The shear rate dependence of the tumbling period is
compared to the theoretical prediction for the same rod
concentration as well as the same order parameter, see
Figure 8. The reason for using the order parameter to
assess the theoretical predictions was discussed at length
in section III.A. For purposes of comparison, the order
parameter was obtained from X-ray experiments and the
value of Dinf

0 ) 20 s-1. We emphasize that DEH theory is
microscopic and that there are no adjustable parameters
in the comparison between theory and experiments.
Clearly there is a qualitative correspondence between
theory and experiment, both showing a continuous
decrease of the period. The quantitative correspondence,
on the other hand, is limited. This is probably due to fact
that texture, although not dominating the response, is
still present. It will be shown later in section V.B that the
shear rate and rod concentration dependence of a tumbling
to wagging and wagging to flow-aligning transition agree
much better with DEH theory.

The concentration dependence of the tumbling period
is shown in Figure 9. Here, theory and experiments are
compared at a fixed shear rate at which the tumbling to
wagging flow transition occurs. The tumbling period
increases with increasing rod concentration (Figure 9a)
or, equivalently, increasing order parameter of the nematic
phase (Figure 9b). The increase of the tumbling period

Figure 6. (a) Steady-state viscosity as function of the shear
rate for fd virus at four different concentrations. All viscosity
curves exhibit shear thinning at low shear rates followed by a
local maximum in viscosity. (b-d) Behavior of the parameters
obtained from fitting the response of the shear flow reversal
experiments to eq 7. The vertical lines indicate the local
maximum in viscosity curves. The local maximum in the steady-
state viscosity curve corresponds to maximum of the tumbling
period P and damping constant τd and minimum of asymptotic
constat b in the flow reversal.

Figure 7. Dependence of the tumbling periods on the shear
rate for different concentrations of the nematic fd. The figure
shows that the tumbling period scales with a power low as a
function of the shear rate. The inset shows the power law
dependence of the tumbling period on the shear rate for different
fd concentrations.

Figure 8. Period of the oscillations (in units of strain) as a
function of the Péclet number, where the shear rate is scaled
with the rotational diffusion of fd at infinite dilution.
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with increasing order parameter was already predicted
using a linearized version of the DEH theory.30

In conclusion, the absence of strain scaling of the
tumbling period and the qualitative agreement between
theory and experiment the tumbling period indicates that
the response of the suspension of fd virus is dominated
by the molecular elasticity arising from the distortion of
the ODF of particles.

D. Relaxation at High Concentration. To measure
the relative magnitude of the elastic texture contribution
to the overall stress, relaxation experiments were per-
formed. For polymeric liquid crystals such as polyben-
zylglutamate (PBG) solutions in m-cresol, Walker et al.12

showed that there are three different regimes of relaxation
behavior, each of which is related to a distinct structural

(30) Kuzuu, N.; Doi, M. J. Phys. Soc. Jpn. 1984, 53, 1031.

Figure 9. Period of the oscillations (in units of strain) as a
function of the dimensionless concentration (a) and order
parameter (b). The shear rate was chosen at the point we identify
with the tumbling to wagging transition for experiment (9)
and exact theory (O).

Figure 10. Stress relaxation after cessation of flow for fd at
25 mg/mL (c/c* ) 2.3), varying the initial shear rate. The time
is scaled by the initial shear rate. The stress is normalized by
the stress before the cessation of flow.

Figure 11. Polarization images of the nematic fd at 14 and
25 mg/mL for a range of different steady-state shear rates. The
dashed line in the bottom right image indicates the border
between the structured and unstructured regions.

8054 Langmuir, Vol. 21, No. 17, 2005 Lettinga et al.

114



relaxation. There is a “fast” relaxation of the nematic fluid;
a “slower” relaxation that exhibits scaling with the shear
rate before the cessation of flow, which is due to the indirect
contribution of the texture to the overall stress; and a
“long-time” relaxation due to the reorganization of the
texture on a supramolecular level which will not be
addressed here.

Stress relaxation experiments were performed in the
low shear rate “tumbling” region, at shear rates smaller
than those corresponding to the maximum in the viscosity.
The sample used had a relatively high fd concentration
of 25 mg/mL, corresponding with c/cIN ) 2.3. Some typical
responses to the cessation of flow are depicted in Figure
10.Thestress isnormalized to itsvaluebefore thecessation
of flow, and the time axis is scaled by the shear rate. The
fast component of the decay takes place at less than a
tenth of a second, which is comparable to the response of
the force re-balanced transducer and therefore not shown.
The slow component of the stress relaxation scales when
time is multiplied with the previous shear rate, but only
from the point that the stress has decayed to less than
30% of its original value, or less for higher initial shear
rates. From Figure 10, it can be concluded that the
contribution to the stress for the highest concentration
used and for low shear rates is 30%. This is the absolute
upper limit for the samples used in this paper. It should
be noted that for PBG solutions 30% it was found to be
the lower limit.12

E. In Situ Microscopy. The flow-induced changes of
the liquid crystalline texture during steady-state shear
flow were studied using a plate-plate geometry in
combination with a polarization microscope. Measure-
ments were performed for fd concentrations of 14 and 25
mg/mL. Typical images are shown in Figure 11 for different
shear rates. Interestingly the characteristic size of the
“domains” was very large. Birefringent regions of up to
half a millimeter were observed under static conditions.
When the sample is subjected to shear flow, these domains
will elongate and eventually disappear, at values of the
shear rate which correspond to the maximum in the
viscosity (see Figure 6a). An important difference between
the two concentrations is that the elongated domains
merge into bands for high rod concentration, whereas for
the low concentration the structure disappears before such
bands are formed. Interestingly, this transition to a banded
structure in the high concentration fluid takes place at a
shear rate which is higher than the shear rate where the
low concentration fluid loses its features.

V. Discussion

When comparing the flow behavior of the polymeric
nematic phase and the colloidal nematic phase of the
dispersed fd viruses, the most striking observation is the
qualitative agreement between the two systems, despite
the fact that fd is 1 order of magnitude larger. The viscosity
of the fd nematic is much smaller, and the rotational
diffusion of fd is much slower when compared to polymeric
liquid crystals. Flow reversal experiments reveal typical
transitions in the transient rheological behavior: damped
oscillations occur at low shear rates changing to undamped
oscillations at intermediate shear rate, which disappear
if the shear rate is increased even further; the time scale
of the oscillations of the stress transients is comparable.
Also other well-known phenomena like the formation of
very large bands upon cessation of flow along the vorticity
direction which have been studied in detail in polymeric
systems31 can also be observed here (data not shown).

Having established that fd virus dispersions indeed
undergo a tumbling motion under flow, the dynamic
behavior of fd suspensions can be rationalized on the basis
of the microscopic theoretical predictions for a homoge-
neous system of rods under shear. Doing so, one important
prerequisite needs to be fulfilled, namely that the domi-
nating contribution to the stress is coming from the
nematic fluid and not from the texture. It will be argued
here that this indeed is the case. Having done so, we will
be able to map out a phase diagram of the dynamic
transitions from tumbling to wagging to flow aligning.

A. Textural Evolution during Flow. The word
“texture” refers to disclination points and lines where the
director of the nematic phase changes discontinuously,
markingdomains in thesample.Whenasystemcontaining
these domains and disclinations is subjected to shear flow,
part of the dissipated energy is used to destroy these
structures. Figure 11 shows that the domains tend to
elongate and align with the flow. Disclinations can also
cause a direct contribution to the total stress resulting in
a high viscosity and a very pronounced shear thinning
behavior, typically referred to as region I.32 Experiments
on polymeric liquid crystals have revealed several features
of the flow behavior of nematic liquid crystals which are
attributed to the presence of texture in the nematic phase.
Tumbling induces distortions in the director field and the
defects arrest the tumbling, thereby inducing an elastic
stress. The length scale over which this distortion occurs,
i.e., the “domain” length scale, is an inherent non-
Brownian length scale, see ref 33. As a consequence, stress
patterns during flow reversal will display strain scaling.
Also the damping of the oscillations is explained on the
base of the presence of the polydomain structure, where,
e.g., the “friction” between the domains would lead to a
damping of the oscillations.14,34 The scaling of the stress
relaxation process after the flow is stopped with shear
rate has been explained using the same arguments. From
such an experiment, the relative contribution to the total
stress of a homogeneous nematic phase and the polydo-
main texture can be estimated since the relaxation
dynamics of the nematic phase is much faster than that
of polydomain structure.12

The micrographs in Figure 11 clearly reveal that texture
under flow exists in nematic fd dispersions. Their con-
tribution to the rheology is, however, far less prominent
when compared to polymeric liquid crystals such as PBG.
This we can infer from several observations. First, very
moderate shear thinning is observed in the low shear rate
regime for the low concentrations, which gradually
disappears with increasing concentration (Figure 6b). This
is very similar to theoretical predictions for a homogeneous
nematic phase (Figure 2b in ref 18). Also, the calculated
and measured viscosities are of the same order of
magnitude. In contrast, shear thinning can be fairly strong
in the low shear rate region (region I) where texture
dominates the response, and it will increase with increas-
ing concentration,35 although also other microstructural

(31) Vermant, J.; Moldenaers, P.; Mewis, J.; Picken, S. J. Band
formation upon cessation of flow in liquid-crystalline polymers. J. Rheol.
1994, 38 (5), 1571-1589.

(32) Walker, L. M.; Wagner, N. J. Rheology of region i flow in a
lyotropic liquid-crystal polymer: The effects of defect texture) under
shear and during relaxation. J. Rheol. 1994, 38 (5), 1524-1547.

(33) Burghardt, W. R.; Fuller, G. G. Transient shear flow of nematic
liquid crystals: Manifestations of director tumbling. J. Rheol. 1990, 34
(6), 959-992.

(34) Kawaguchi, M. N.; Denn, M. M. A mesoscopic theory of liquid
crystalline polymers. J. Rheol. 1999, 43 (1), 111-124.

(35) Marrucci, G.; Greco, F. Flow behavior of liquid crystaline
polymers. Adv. Chem. Phys. 1993, 86, 331.
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features can contribute here.36 Second, the tumbling period
is not strain scaling (Figure 7), which could be due to
either a smaller relative magnitude of the textural stress
or due to the fact that we are not in a low enough Pe
regime. Third, “strain” scaling is recovered for the slow
“textural” relaxation process after the flow has been
stopped. This experiment shows that at the highest rod
concentrations used and at low shear rates the distortional
textural contribution is about 30%. For most experiments
done, this value is probably significantly lower. So, where
texture is important, even dominating the stress response
for molecular LCPs, molecular elasticity is far more
dominating the fd virus. Though we just argued that the
texture does not dominate the shear response of the
system, this does not mean that the shear response is not
influenced by texture. For one, the oscillations we observe
are still strongly damped, and the damping only decreases
when the transition to the flow aligning state is reached
(see the behavior of τd in Figure 6). Moreover, the presence
of texture might explain the discrepancy in the behavior
of the period of the oscillations between experiment and
theory (Figure 9). Most importantly, we know from
microscopy that texture is present under shear (see Figure
11). It should be noted, however, that the size of the
polydomain structure of the fd dispersions is 1 order of
magnitude bigger as compared to PBG,29 so that the
density of disclination lines and points is about 3 orders
of magnitude lower for fd. Note that the length scale of
the texture during flow is still small compared to the
dimension of the flow cell. Since the contribution of texture
scales with the density of the disclinations,35 texture will
be far more dominating for e.g. PBG than for fd, even
when elastic constants are almost the same for the two
systems,24,37).

B. Phase Diagram of Dynamical Flow Transitions.
In this section, the experimental results are combined
and a nonequilibrium phase diagram of fd rods under
shear flow is presented. The results for the four fit
parameters plotted in Figure 6 show clear transitions at
well-defined shear rates for all fd concentrations. Although
they only give an indirect proof of the transitions, they
can be used to infer information about the flow transitions.
For all fd concentrations (except for the highest one) the
shear rate where the maximum viscosity is reached is
identical with the shear rate where the period as well as
the damping constant start to increase (indicated by the
vertical dashed lines in Figure 6). The microscopic
observations are in fairly good agreement with the
transitions inferred from the rheology. Upon approaching
the tumbling to wagging transition from tumbling to flow
aligning, the texture becomes too faint to resolve in the
microscope and texture subsequently disappears upon
reaching the FA region. For the high fd concentration,
i.e., the sample showing shear banding (Figure 11 last),
one can identify a sharp transition from a structured to
an unstructured region in the same micrograph. Since
this picture was taken in the plate-plate geometry, there
is a shear rate distribution across the image: the shear
rate is increasing going from the left side to the right. A
sharp spatial transition therefore also represents a sharp
transition at a given shear rate. Although, due to the
method of zero gap-setting, the value of the shear rate is
not exactly known ((20%), one can still identify the shear

rate where structure disappears as the shear rate where
the viscosity reaches its local maximum (the down pointing
triangles in Figure 6a). For low fd concentration of (14
mg/mL) the structure disappears around the point where
the viscosity reaches its local maximum, although the
morphological transition for the lower concentration is
less abrupt.

Figure 12 shows the behavior of flow transitions as a
function of shear rate for various fd concentrations. For
the experiment, we plotted the Péclet numbers where the
viscosity shows a local maximum and where the damping
constant reaches a maximum. The theoretical predictions
for the tumbling to wagging and wagging to flow aligning
transitions are obtained from the plots of the angle of the
nematic director θ under flow, see Figure 2. Similar to the
method used in Figure 9, the experimental concentration
is scaled to the theoretical concentration in two different
ways: effective concentration (Figure 12a) and the order
parameter P2 (Figure 12b). This figure was shown in a
preliminary paper without a detailed explanation.38 The
shear rate is rescaled to the Péclet number by using the
rotational diffusion coefficient at infinite dilution. Figure
12 allows us to draw some important conclusions. First,
it is clear that scaling the concentration with the equi-
librium order parameter gives better agreement when
compared to the scaling by the dimensionless concentra-
tion. The fact that theory and experiment agree without
using any fitting parameters (P2 was obtained in a separate
experiments15) leads to the conclusion that the DEH theory
describes the flow behavior of the fd nematics quite well,(36) Ugaz, V. M.; Cinader, D. K.; Burghardt, W. R. Origins of region

I shear thinning in model lyotropic liquid crystalline polymers.
Macromolecules 1997, 30 (5), 1527-1530.

(37) Taratuta, V. G.; Hurd, A. J.; Meyer, R. B. Light-scattering study
of a polymer nematic liquid crystal. Phys. Rev. Lett. 1985, 55 (2), 246-
249.

(38) Lettinga, M. P.; Dhont, J. K. G. Nonequilibrium phase behavior
of rodlike viruses under shear flow. J. Phys.: Condens. Matter 2004,
16, 3929.

Figure 12. Phase diagram of flow transitions for the nematic
fd phase as a function of dimensionless concentration (a) and
order parameter (b). The experimental points indicate the Péclet
numbers where the viscosity shows a local maximum (9) and
where the damping constant τd (b) reaches a maximum. The
theoretical points indicate tumbling to wagging (0) and wagging
to flow aligning (O) transitions.
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as long as the effects of flexibility and charge of the
experimental rods are included in the calculation of the
order parameter. A less convincing agreement is obtained
when comparing the experimental and theoretically
calculated periods (Figure 9). The reason for this could be
the remaining textural contribution to the overall stress
which, although small, cannot be neglected. Since we
deduce from Figure 12b, that a dimensionless concentra-
tion of φ L/D ) 4 corresponds with a fd concentration of
16 mg/mL, we used this number a posteriori to scale the
calculated molecular viscosity in Figure 4. The pure elastic
contribution shows a very nice quantitative correspon-
dence with the experimental data. Interestingly, when
the viscous term is added, the theoretical viscosity is higher
than the experimental viscosity, despite of the fact that
no hydrodynamics is incorporated.

In the previous subsection, it was argued that the
influence of textural contribution to the stress tensor of
fd are relatively small, as compared to PLCs. There are
however strong indications that the dynamic behavior is
influenced by the macroscopic bands which are formed
for the samples at the highest concentrations used (see
Figure 11 end). As can be seen in Figure 6, the typical
features for the transition to wagging disappear: there
is no increase in the damping constant, nor in the period
of the oscillations. Moreover, the theory shows only a
moderate hesitation of the stationary viscosity (which even
disappears when the viscous term is added, Figure 4),
whereas in experiments a local peak is observed which is
more pronounced with increasing concentration. The
microscopy pictures show that at high concentrations the
systems finds another way to handle the distortion of the
particle distribution at high shear rates by forming shear
bands where the overall orientational distribution is
alternating, as was already observed and partially ex-
plained for the polymeric systems.29,39,40 In the present
work, the concentration dependence of the phenomenon
at hand suggests that this merits further experimental as
well as theoretical work. In this context, one should not
forget that we compare experiments on charged and
semiflexible fd with theory for hard and stiff rods. It could
well be that these factors also play an important role. It
will be a major challenge especially to take the semiflex-
ibility into account in the equation of motion.

VI. Conclusions
Colloidal suspensions of rodlike fd viruses are an ideal

model system to study the behavior of the nematic liquid
crystalline phase under shear flow. Flow reversal experi-
ments show signatures for tumbling, wagging, and flow

aligning behavior, very similar to the behavior found in
polymeric liquid crystals. The rigid rod nature of the fd
suspension, possibly combined with a smaller relative
textural contributions to the overall stress tensor make
fd virus a suitable model system for the DEH theory.
Important in this respect is that the overall viscosity is
only one to 2 orders of magnitude higher than the solvent
viscosity. Also it is important to note that stress relaxation
experiments combined with the absence of strain scaling
in flow reversal experiments suggest that there is only a
limited contribution of textural aspects to the overall
stress, even for the highest fd concentration used in this
work. The shear thickening of the viscosity observed for
a range of fd concentrations is as yet, unexplained. The
maximum in the viscosity occurs at the critical shear rate
where the tumbling to wagging transition takes place.
Microscopic observations show that at this shear rate the
morphological features disappear, suggesting a strong
connection between the dynamic transitions and structure
formation.

The experimental results have been compared to a
microscopic theory for rod like molecules subjected to shear
flow. A nonequilibrium phase diagram is constructed,
describing the transitions from tumbling to wagging and
from wagging to flow-aligning as a function of rod
concentration and applied shear stress. When scaling the
results to the concentration where the isotropic-nematic
transition takes place, the experiment and theory show
only a qualitative agreement, possibly due to the fact that
the real rods are are both semiflexible and charged.
However, when scaling the results using the order
parameter, which is determined by the interactions
between the rods, theory and experiment show an excellent
agreement without using any fit parameters. Thus, it can
be concluded that the DEH theory accurately captures
the dynamic features of a hard rod system. fd dispersions
constitute such a hard rod system as long as flexibility
and charge are properly taken into account, which can be
simply achieved by using the order parameter to scale the
data. More theoretical work is needed, however, to explain
the clear connection between the observed band formation
at high concentrations and the dynamic transitions, and
to incorporate the effect of flexibility of the rods.
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The effect of shear flow on the isotropic-nematic phase transition of attractive colloidal rods is

investigated by a combination of simulations and experiments. The isotropic phase aligns with the

flow, while the nematic phase undergoes a collective rotational motion which frustrates the merging of the

coexisting regions. The location of binodals, spinodals, and the tumbling-to-aligning transition line in the

shear-rate versus concentration plane are investigated. The phase diagrams in the shear-concentration

plane for the various strengths of attractions can be mapped onto a master curve by appropriate scaling.
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Phase transitions occurring in soft matter systems are
significantly affected by flow. Both the nature and location
of the phase transition lines are changed due to the applied
flow [1]. The challenge is to find the parameters that
determine the nonequilibrium steady states under flow
conditions. One important parameter is the interfacial ten-
sion between coexisting phases [2], as is the case for
crystal and liquid phases of spherical colloids under shear
flow [3]. Colloidal-rod suspensions constitute a particu-
larly interesting system to study the effect of flow on their
phase behavior [4,5], since rod orientation is strongly
coupled to the shear field. Rods in the isotropic (I) phase,
align with the flow and become paranematic (P). This
suggests that the transition to the nematic (N) phase, where
rods have orientational order, is facilitated by shear. On the
other hand, rods in the nematic phase undergo a collective
tumbling motion in the presence of shear flow [6–8]. The
question that then arises is how these two effects will affect
isotropic-nematic coexistence. Apart from fundamental
interest, a detailed understanding of the flow behavior of
a model system of attractive colloidal rods is useful for
industrial applications where shear alignment of elongated
objects, such as carbon nanotubes [9], wormlike micelles
[10], and polymers, play a role.

In this Letter, the nonequilibrium phase diagrams of
attractive colloidal rods in shear flow are investigated by
a combination of mesoscale hydrodynamic simulations,
small-angle light-scattering (SALS) experiments, and
rheology. The simulations allow for a microscopic under-
standing of the behavior of coexisting phases and their
interface under shear, including the possible role of col-
lective tumbling motion of rods. In addition, the bino-
dals—which define the concentrations of coexisting
paranematic and nematic states in the shear-rate versus
concentration plane—are determined. Experiments allow
for the determination of the full phase diagrams, including
spinodals—where the homogeneous nematic state be-
comes unstable—binodals, and tumbling-to-aligning tran-
sition lines. Both in simulations and experiments, the
attractive rod-rod interactions are systematically varied,

which affects the phase behavior, interfacial properties of
coexisting phases as well as tumbling behavior.
Earlier experimental studies have mostly focused on the

shear-induced P-N transition of wormlike micelles [10],
that can break and recombine. For dispersions of hydroxy-
propyl-cellulose, the P-N transition temperature has been
shown to change due to shear flow [11]. Much less is
known about suspensions of monodisperse rodlike colloids
like fd-virus particles. These systems exhibit an I-N phase
transition without flow. The I-N biphasic gap width in the
absence of flow is known to increase significantly when
polymer is added, which induces depletion attractions [12].
The nonequilibrium binodal under shear flow conditions
for a single, fixed strength of attraction has been studied by
rheological experiments on fd-virus dispersions, which
show that the P-N transition concentration changes on
applying flow [13]. Hence, both attractive interactions as
well as flow have a pronounced effect on the location of
P-N transition lines. Also the effect of shear on nematic-
paranematic interfaces in systems of soft repulsive ellip-
soids has been studied by simulations [14].
In our simulations, each rod consists of Nm monomers

with a bond and a bending potential. The bond potential
keeps the distance between monomers essentially fixed at
lb while the bending potential provides rigidity to each rod
[15]. The interactions between the monomers of different
rods are described by a Lennard-Jones potential with a
minimum of � (in units of the thermal energy kBT) and a
diameter �. Molecular dynamics simulations of rodlike
colloids are combined with a mesoscopic description of
the solvent known as multiparticle-collision dynamics
(MPC) (see Ref. [16] for details). The simulation box
consists of 20� 22� 30 cubic collision cells with lattice
constant a, and 50 solvent particles per cell. We use the
parameters � ¼ lb ¼ a=4. This hybrid approach has been
shown to account for long-range hydrodynamic interac-
tions between rods [15] and has been successfully applied
to different systems in flow [17]. Lubrication forces, how-
ever, are not accounted for in MPC simulations. The rods
have an aspect ratio of 20. Previous simulations indicate
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that I-N coexistence for such rods occurs in a small
interval of packing fractions �0 around 0.125 [18], which
we obtain by including 104 rods in the simulation box. To
impose shear, Lees-Edwards boundary conditions are
employed. For a homogeneous fluid, these boundary con-
ditions result in a linear velocity profile ðvx; vy; vzÞ ¼
ð _�y; 0; 0Þ, with _� the applied shear rate (where the
x direction is the flow direction and the y direction is the
gradient direction). Shear rates are expressed in simulation

time units
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma2=kBT
p

, where m is the mass of a solvent
molecule.

The simulated system is first prepared in equilibrium
with coexisting isotropic and nematic phases, where the
director of the nematic phase is aligned parallel to the
interface. A snapshot of I-N coexistence in equilibrium
is shown in Fig. 1(a). Then, shear is applied with the im-
posed flow direction parallel to the interface. At small
shear rates, rods in the isotropic phase flow-align, i.e.,
become paranematic, and portions of the nematic phase
display collective rotations, as shown in Fig. 1(b) and in
Ref. [19]. These periodic motions were also observed in
simulations for hard rods in a full nematic phase [20]. This
behavior is characterized by both the local concentration

and the local orientational order parameter SxðyÞ �
½3ûxûx � 1�=2, where ûx is the component of the unit
vector connecting the end points of a rod along the flow
direction, and the overline indicates averaging over the
vorticity and flow directions. The time dependence of the
density � and orientational order parameter Sx of rods
as a function of the position y along the gradient direc-
tion is plotted in Figs. 1(c) and 1(d). As can be seen from
Fig. 1(c), the nematic phase has a higher concentration
than the isotropic phase, as expected. More importantly,
Fig. 1(d) demonstrates the periodic tumbling motion of
rods in the nematic phase. This is seen for all nematic
domains in coexistence with paranematic regions and for
all strengths of attractions studied. At long times, both
Figs. 1(c) and 1(d) show that the nematic phase is some-
what displaced and seems to split into two nematic do-
mains. Such a behavior is also seen experimentally by
confocal microscopy [19]. Binodals are determined at
times where the density of the paranematic state has
reached a stationary value (this happens approximately at
_�t ¼ 25, 50, 100 for � ¼ 3:0, 3.2, 3.5, respectively) by
averaging over about one tumbling period. The binodals
obtained in this way are plotted in Fig. 2(a) for different
attractions. Here, the concentration is expressed in terms of
’nem and the shear rate is scaled by a factor _�max such that
all data points fall onto a master curve. This master curve is
obtained from the combined set of data from both simula-
tions and experiments (which will be discussed below).
The scale factor _�max can be identified with the maximum
of the binodal. Simulations for shear rates just above _�max

indeed indicate a homogeneous state. The inset in Fig. 2(a)
shows that the effect of the increasing attraction between
rods is that the coexistence region widens and that _�max

increases. Because of slowing down of the dynamics and
large-scale correlations close to spinodals, considerably
longer simulations with larger system sizes would be re-
quired to determine the location of spinodals.
In our experiments, we use fd-virus suspensions where

depletion attractions are varied through addition of dex-
tran. fd virus is a long and thin rodlike particle (880 nm
long, aspect ratio 120, persistence length 2:2 �m) [12].
Suspensions of varying colloid and dextran concentrations
were prepared as follows. First, a homogeneous fd-virus
suspension of 21:1 mg=ml fd virus with dextran (480 kd,
Pharmacosmos) in 20 mM Tris buffer with 100 mM NaCl
is allowed to macroscopically phase separate into an iso-
tropic and nematic phase. A volume Vnem of the nematic
phase is then mixed with a volume Viso of the coexisting
isotropic phase. The concentration of the fd rods is char-
acterized by the fraction ’nem ¼ Vnem=ðVnem þ VisoÞ of the
nematic phase that is present in the homogeneous mixture.
This ensures that the polymer osmotic pressure (and hence
the strength of attraction) in the homogeneous suspensions
is independent of the rod concentration like for the simu-
lations. The way the phase diagram is determined experi-
mentally is conceptually different from simulations. We

v

v.v

a b

 0.6  0.65  0.7  0.75

y

Sxφ/
0

φ
 0.9  1  1.1

γ  t
·

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  0  50  100  150

γ  t
·

dc

FIG. 1 (color). Snapshots of the simulation box with � ¼ 3:5,
(a) at equilibrium, and (b) in a tumbling event at _� ¼ 0:003.
Colors in (a) and (b) are coding the rod orientation: horizontal is
red, vertical is green, and perpendicular to plane of view is blue.
Red arrows in (b) denote flow direction. (c) Time evolution of
the normalized density �=�0, and (d) of the orientational order
parameter Sx along the gradient direction. For a movie see
Ref. [19].
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obtain the binodal and spinodal experimentally by starting
from a stable, homogeneous shear-induced nematic state at
100 s�1, and taking data immediately after reducing the
shear rate to a prescribed value. We measure the induction
time for the formation of inhomogeneities, as probed with
light scattering, after such a shear-rate quench. The in-
duction time vanishes on approaching the spinodal line,
while it diverges on approaching the binodal. In Figs. 3(a)
and 3(b), the induction time and its inverse are shown as a
function of concentration for several shear rates. The re-
sulting experimental phase diagram is displayed in
Fig. 2(b), scaled in the same way as for the simulations.
The inset also displays the tumbling-to-aligning transition
lines. As was shown for fd-virus suspensions in the fully
nematic phase [7], this transition corresponds to the point
in the flow curve where shear thickening occurs, as well as

the shear rate at which nematic domains disappear. Both
features can also be observed for flow-induced nematics
with ’nem > 0:4. An example of a flow curve is given in
Fig. 3(c). The middle inset in Fig. 3(c) shows an aniso-
tropic scattering pattern typical for the sheared nematic
structure, while after the peak in the viscosity only back-
ground scattering is observed (right inset). The tumbling-
to-aligning transition lines obtained from these two differ-
ent experiments coincide within experimental error. Note
that the formation of vorticity bands reported earlier [21]
does not affect the light-scattering results.
The most striking feature of Fig. 2 is that the scaled

experimental and simulation binodals overlap for different
attractions, as do the scaled spinodals. Coexisting nematic
states are in tumbling motion while the paranematic state is
flow aligned, so that the interface between the two phases
is highly dynamic. Time-averaged stresses across such
interfaces must be obtained from dynamical equations for
order parameters, together with an expression for the stress
in terms of these order parameters, in order to calculate an
effective interfacial tension. Moreover, the tumbling-to-
aligning transition line ends at the maximum of the bi-
nodal, which is also the point where the tumbling nematic
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and flow-aligned paranematic states merge. The spinodal
line ends far below the maximum of the binodal. The
spinodal displays the expected shear-rate dependence;
i.e., shear stabilizes the nematic phase, in line with earlier
experiments [5]. Note that the experiments show a non-
monotonic concentration dependence of the location of the
maximum of the binodal as a function of the strength of
attraction contrary to the simulations. This is probably due
to the different forms of the interaction potentials in simu-
lations and experiments.

Because of the observed scaling, the effect of attractive
interactions on the phase diagram is reduced to two pa-
rameters, _�max and the biphasic gap width w in the absence
of flow, i.e., the difference in packing fractions between the
isotropic and nematic phase in equilibrium, w ¼ ð�n �
�iÞ=�0 (with �0 the overall packing fraction). These two
parameters are found to be linearly related, as shown in
Fig. 4. Here, the bare rotational Peclet numbers are defined
as Pemax ¼ _�max=D

0
r , where D

0
r is the rotational diffusion

coefficient at infinite dilution. For fd virus, D0
r is taken

from Ref. [7], while for simulations it is calculated from
the length and diameter of a rod [22]. The difference in
slopes in Fig. 4 between the experimental and simulation
results is due to different aspect ratios of the rods, which
affects the rotational self-diffusion close to the phase tran-
sition [23]. The open symbols in Fig. 4 refer to an extrapo-
lation to semiflexible rods with only hard-core repulsive
interactions.

In conclusion, we have been able to establish generic
features of the phase behavior of (attractive) rodlike col-
loids under flow conditions. Binodals and spinodals in the
shear-concentration plane can be mapped onto a master
curve for various strengths of attractions. Furthermore, the
coexisting nematic is in tumbling motion, which explains
why the tumbling-to-aligning transition line in the homo-

geneous state at higher shear rates ends at the maximum of
the binodal.
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Vorticity banding in rodlike virus suspensions
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Vorticity banding under steady shear flow is observed in a suspension of semiflexible colloidal rods �fd virus
particles� within a part of the paranematic-nematic biphasic region. Banding occurs uniformly throughout the
cell gap within a shear-rate interval ��̇− , �̇+�, which depends on the fd concentration. For shear rates below the
lower-border shear rate �̇− only shear elongation of inhomogeneities, which are formed due to paranematic-
nematic phase separation, is observed. Within a small region just above the upper-border shear rate �̇+, banding
occurs heterogeneously. An essential difference in the kinetics of vorticity banding is observed, depending on
the morphology of inhomogeneities formed during the initial stages of the paranematic-nematic phase separa-
tion. Particle tracking and polarization experiments indicate that the vorticity bands are in a weak rolling flow,
superimposed on the applied shear flow. We propose a mechanism for the origin of the banding instability and
the transient stability of the banded states. This mechanism is related to the normal stresses generated by
inhomogeneities formed due to the underlying paranematic-nematic phase transition.

DOI: 10.1103/PhysRevE.74.026307 PACS number�s�: 47.20.Ft, 47.55.�t, 47.15.Fe, 82.70.�y

I. INTRODUCTION

At equilibrium, complex fluids undergo a variety of order-
ing transitions that are driven by purely thermodynamic
forces �see, for example, Refs. �1,2��. External fields can
greatly affect the phase behavior of these systems. For non-
conservative fields such as a shear flow no thermodynamic
analog is yet known, where the equality of scalar quantities
in coexisting phases �the analogs to pressure and chemical
potential� suffices to predict the location of phase transition
lines as a function of the strength of the driving force. The
search for such a formalism remains at the forefront of re-
search in soft condensed matter and nonequilibrium physics
�3,4�. In addition to nonequilibrium phases, systems driven
by a shear flow frequently exhibit hydrodynamically driven
pattern formation which have no equilibrium analogs. Some
representative examples include Taylor-Couette flow at high
shear rates and shear banding at much lower shear rates
�5–7�.

A particularly important example of a complex fluid
whose phase behavior is greatly affected by a shear flow is a
system of rodlike colloids. At equilibrium rods undergo a
thermodynamically driven phase transition from an isotropic
to a liquid crystalline nematic phase �2�. Shear flow strongly
aligns rods and therefore affects the location of the isotropic
�paranematic-� nematic phase transition �8–10�. An isotropic
state under shear flow is referred to as a “paranematic” state
to indicate that flow partially aligns otherwise isotropic rods.
The paranematic-nematic binodal is defined as the locus of
points that separates the one-phase region from the region
where phase coexistence occurs. The spinodal under shear
flow is defined as the locus of points where the system be-
comes unstable against infinitesimally small perturbations of
the orientational order parameter. The spinodal and binodal
referred to here and hereafter in the present paper are con-
nected to the paranematic-nematic phase transition, that is,
the shear-affected isotropic-nematic phase transition that also
occurs in the absence of flow. Whenever a spinodal or bin-

odal is mentioned in this paper, it refers to the shear-affected
isotropic-nematic phase transition and not to the banding
transition, except when explicitly mentioned otherwise.

Besides shifts of the equilibrium binodals and spinodals,
shear flow can also lead to the formation of banded structures
in a number of complex fluids including rodlike colloids
studied here. In general two types of banding transitions can
be distinguished: gradient banding and vorticity banding. In
the case of gradient banding, coexisting regions �“bands”�
extend along the gradient direction. The shear rate is essen-
tially constant within these bands �see Refs. �11–16��. The
gradient banding transition is relatively well understood and
it occurs when the shear stress decreases with increasing
shear rate �17–21�. In case of vorticity banding, regions of
different internal structure are alternately stacked along the
vorticity direction �9,10,22–24�. The origin and the mecha-
nism of the vorticity banding transition are not yet known. It
was suggested in Ref. �17� that vorticity banding can occur
when the shear stress is a multivalued function of the shear
rate. As far as we know, there are no systematic experimental
studies of vorticity banding concerning shear-band formation
kinetics, the characteristic features of vorticity-banded struc-
tures, the internal structure of individual bands, and the pos-
sible connection to the underlying nonequilibrium phase be-
havior.

In the present paper we systematically study pattern for-
mation �vorticity-banding transition� under steady shear flow
conditions of a suspension of rodlike colloids in shear flow,
where bands of different orientational order are stacked
along the vorticity direction. We quantify the relationship
between pattern formation and the underlying nonequilib-
rium, shear-affected paranematic-nematic phase transition.
Vorticity banding is observed within a part of the biphasic
isotropic-nematic region, under both controlled shear-rate
and shear-stress conditions. We propose a possible mecha-
nism that describes the vorticity-banding instability and also
explains the temporary stability of the quasistationary
banded states. The proposed mechanism implies that there is
no genuine stationary vorticity-banded state, and that its tran-
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sient stability relies on the presence of inhomogeneities
formed due to paranematic-nematic phase separation. The
lifetime of the vorticity-banded state is thus set by the life-
time of the inhomogeneities. As soon as the inhomogeneities
disappear, for example due to sedimentation, the vorticity-
banded state also disappears. This process takes a few days
as compared to the formation of bands within an hour. Since
vorticity banding occurs only inside the biphasic
paranematic-nematic region, the inhomogeneities that form
after a shear-rate quench due to paranematic-nematic phase
separation seem to play a crucial role in rendering the system
unstable against vorticity banding. The kinetics of the band-
ing transition is found to be fundamentally different depend-
ing on whether these inhomogeneities are isolated or form an
interconnected structure. Furthermore, above the region
where bands are formed homogeneously, there is a small
shear-rate range where heterogenous banding is observed.

As an experimental model system we use the monodis-
perse rodlike virus fd. Extensive experiments have shown
that the equilibrium isotropic-nematic phase transition of fd
virus is quantitatively described by Onsager’s theory �25�
when it is extended to take into account fd flexibility and its
surface charge �26–29�. Besides fd, numerous other systems
of rodlike particles exhibit an isotropic-nematic phase tran-
sition, with important examples including DNA �30�, tobacco
mosaic virus �31� and synthetic Boehmite rods �32�. The
phase behavior of fd has been studied in the presence of an
external magnetic �conservative� field in Ref. �33�. The in-
duced shift of isotropic-nematic binodals and spinodals for
such a conservative external field can be defined thermody-
namically, simply by adding the corresponding potential en-
ergy to the Hamiltonian. The analogous procedure is not al-
lowed for the shear flow due to its nonconservative nature.

Besides previous experiments on fd �9,10�, the only other
experimental study of the paranematic-nematic phase transi-
tion of colloidal rods in shear flow, that we are aware of, is in
dispersions of hydroxypropylcellulose �15�. However, there
is significant work done on shear banding and phase transi-
tions of related systems such as wormlike micelles
�11,12,23,34� and thermotropic liquid crystals �13,14�. A
complication of wormlike micelles systems, when compared
to suspensions of rods, is that the worm-length distribution
and the scission and recombination kinetics depend on the
shear rate.

The main body of this paper is organized as follows. In
Sec. II, details of the fd virus suspensions, the experimental
setup, and the data analysis are given. The topology of the
shear-induced nonequilibrium phase diagram is given in Sec.
III. The kinetics of band formation is described in Sec. IV. In
Sec. V we describe experiments which indicate that the
bands are in rolling flow. Finally, we propose a mechanism
for the vorticity-banding instability in Sec. VI. This mecha-
nism is reminiscent of the well-known elastic instability of
polymers �35–39�, where nonuniform elastic deformation of
the polymers leads to a rolling flow. In the present case,
elastic deformations of inhomogeneities formed due to
paranematic-nematic phase separation lead to the vorticity-
banding transition and the associated rolling flow.

II. EXPERIMENTAL DETAILS

In this section we discus the colloidal system and the
experimental setup together with the data analysis.

A. The colloidal system

We use monodisperse rodlike fd viruses which are a good
model system for studies of liquid crystalline phase behavior
�26–29�. The bacteriophage fd is a semiflexible filamentous
molecule with a contour length L=880 nm and a diameter
D=6.6 nm. The persistence length is P=2200 nm, which is
more than twice its contour length. Fd virus is thus relatively
stiff. The molecular weight of native fd is 1.64�107 g/mol.
Bacteriophage fd was grown and purified following standard
biological protocols, using the Xl1-blue strain of Escherichia
coli as the host bacteria �40�. The standard yield was ap-
proximatively 15 mg of fd per liter of infected bacterial cul-
ture. The virus particles were purified by repeated centrifu-
gation �105g for 5–6 h�, and redispersed in high-ionic-
strength buffer to screen electrostatic interactions �20 mM
tris-HCl, pH 8.15, 100 mM NaCl�. Dextran �507 kD, radius
of gyration 16 nm, Sigma-Aldrich� was mixed with the fd
dispersion in order to widen the biphasic region and enhance
the phase-separation kinetics �29�.

Two different dispersions are used in the experiments
with two different dextran concentrations. To study the non-
equilibrium kinetics and phase diagram we used a low dex-
tran concentration �10.6 mg/ml dextran, 21.7 mg/ml fd�. To
study the internal structure of bands we used a high dextran
concentration �14.5 mg/ml dextran, 21.7 mg/ml fd�. Sus-
pensions on which experiments were performed have been
prepared as follows. The homogeneous mixtures were al-
lowed to phase separate for a few hours, after which full
phase separation was achieved by gentle centrifugation �104g
overnight�. The binodal concentrations with added low con-
centration of dextran are determined to be 17.5±0.5 and
29.0±1.5 mg/ml. The width of the phase-coexistence region
is considerably wider when compared to a pure fd suspen-
sion, where binodal points are at 21 and 23 mg/ml, respec-
tively. A volume Viso from the isotropic phase is mixed with
a volume Vnem of the coexisting nematic phase. The concen-
tration of fd virus particles in such a mixture is expressed
in terms of the quantity �nem�Vnem/ �Vnem+Viso�, which
varies from 0 for the lower binodal concentration
�17.5±0.5 mg/ml� to 1 for the upper binodal concentration
�29.0±1.5 mg/ml� in the absence of flow. Homogenized
mixtures within the biphasic region at various concentrations
�nem are used for the vorticity-banding experiments. Such
mixtures are prepared to be at constant dextran chemical po-
tential, independent of the fd concentration. The samples
with higher dextran concentration form thicker and more
regular vorticity bands, and are thus more suitable to study
the internal structure of the bands.

The variable �nem defined above is not introduced here as
an “order parameter,” but rather as a convenient measure for
the concentration of a sample relative to the two binodal
concentrations. In all our experiments the actual fd concen-
tration is always between the two binodal concentrations, so
that �nem always lies between 0 and 1.
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B. Experimental setup and data analysis

Transparent couette shear cells are used with gap widths
ranging from 1.0 to 2.0 mm. The rotating inner cylinder has
a radius of 24 mm while the outer cylinder is fixed. The
experiments are performed under controlled-rate conditions.
For one concentration, the determination of the border shear
rates is repeated under controlled-stress conditions, using a
Bohlin rheometer �CVO�. The optical couette cell is placed
between a polarizer and an analyzer and is illuminated from
one side with a white light source, as sketched in Fig. 1. The
polarizer P is oriented along the flow direction. The optimal
contrast between vorticity bands is obtained when the polar-
izer and analyzer A are not exactly crossed. Typically, the
angle between the analyzer and the flow direction is 80°. The
reason for this is related to the weak rolling flow within the
bands and is discussed in Sec. V. The transmitted light inten-
sity is monitored with a 12-bit charge-coupled device CCD
camera �RS Princeton Instruments� equipped with a telecen-
tric lens �Computar 5.5 mm�. One pixel corresponds to
8.8 �m in real space, which sets the spatial resolution in the
vorticity direction of our setup. The depth of the focus is
about 1 mm. Therefore, an image is smeared along the gra-
dient direction over a large part of the gap. Since the orien-
tational order differs in the two types of vorticity bands, they
appear in transmission as alternating bright and dark stripes,
stacked along the vorticity direction �see the inset in Fig. 1�.

For lower dextran concentrations, the extent of a single
dark or bright band is between 50 and 120 �m. A single
image at each time covers a region that includes about 50
vorticity bands divided over 582 pixels. The intensity at a
particular height is the average over 80–100 adjacent pixels
along the flow direction. Typically, ten such cuts from a
single image are analyzed as described below and averaged.

To probe the evolution of banded structures right after a
shear-rate quench, optical morphologies are recorded every
10–60 s, depending on the rate of band formation, which is
a function of the cell gap width, fd concentration, and shear
rate. The total recording time varies from 1 to 3 h, which is
the time to reach the quasistationary banded state.

The intensity profiles are analyzed as follows. An inten-
sity profile I�z , t� at a particular time t obtained from images
as described above is first represented by a Fourier series as

I�z,t� = I0�t� + �
n=1

Nmax

��n�t�sin�2�z/L� + �n�t�cos�2�z/L�� ,

�1�

where I0 is the average intensity, L is the total height of the
image, and 0	z	L is the height variable along the vorticity
direction. In order to avoid high-frequency peaks due to
noise being identified as a vorticity band, we averaged three
adjacent intensities, corresponding to 26 �m. The maximum
number of Fourier modes Nmax is therefore equal to one-third
of the number of image pixels. A band thus encompasses at
least three pixels. The average number n̄ of bright and dark
bands is now obtained from

n̄�t� = �
n=Nmin

Nmax

nPn�t� , �2�

where Nmin is chosen equal to 3 in order to eliminate spuri-
ous long-wavelength variations in light intensity which are
much longer than a typical bandwidth, while

Pn�t� =
��n

2�t� + �n
2�t�

�
n=Nmin

Nmax

��n
2�t� + �n

2�t�

�3�

is the normalized probability for a Fourier mode of order n.
The average width at a given time of a vorticity band is then
obtained from

H�t� = L/2n̄�t� . �4�

As mentioned above, the choices for Nmax and Nmin are such
that high-frequency contributions �due to noise� are elimi-
nated and low-frequency variations �due to nonuniform illu-
mination� do not lead to erroneous results. We confirmed by
counting the number of bands by hand for a number of ex-
periments that the procedure described above gives the cor-
rect number of bands.

III. THE NONEQUILIBRIUM PHASE DIAGRAM

The paranematic-nematic and vorticity-banding phase
diagram in the shear rate versus fd concentration plane is
presented in Fig. 2 �similar phase diagrams can be found in
Refs. �9,10��. For fd virus suspensions, vorticity banding is
observed within a part of the two-phase paranematic-nematic
region which is bounded by the binodal. Dextran is added to
fd rods, which induces depletion attractions. This in turn
leads to a widening of the biphasic region �29� and an en-

FIG. 1. Schematic of the experimental setup. The optical shear
cell is placed between two polarizers, and spatial-temporal images
of the banded structure are recorded with a CCD camera equipped
with a telecentric lens. Additionally we show an image of a typical
banded structure. The polarizers are not exactly crossed for the
reasons discussed in Sec. V. The unit vector ẑ indicates the vorticity
direction.
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hancement of both phase-separation and vorticity-banding
kinetics. It is still uncertain whether banding occurs in fd
suspensions without any dextran.

We first turn our attention to determining the location of
the paranematic-nematic binodal under flow, which was ac-
complished using time-resolved shear-stress measurements
after a shear-rate quench �10�. Starting at a high shear rate,
where the homogeneous state is stable, the shear rate is
quenched to a lower value and the shear stress is measured as
a function of time. If the system crosses the binodal, inho-
mogeneities in concentration and orientation order develop
with time, giving rise to an increase of the shear stress. On
quenching from a high to a lower shear rate, isotropic inho-
mogeneities are formed in a nematic background. Since these
isotropic inclusions have a higher viscosity as compared to

the nematic background, their growth is accompanied by an
increase in the shear viscosity. Such time-resolved stress
measurements allow the determination of the paranematic-
nematic binodal in the fd concentration versus shear rate
plane and lead to the upper solid curve in Fig. 2. The binodal
determined in this way marks the concentrations of phase
coexistence after completion of phase separation, since the
homogeneous phases that coexist become metastable or un-
stable on increasing �for the lower binodal� or decreasing
�for the upper binodal� the fd concentration. Note that this
binodal is not connected to a shear-induced phase transition,
contrary to many wormlike micellar systems. Here, the bin-
odal is merely shear affected, and also occurs in the absence
of flow.

The above-described method is not suitable for determin-
ing the paranematic-nematic binodal for the case of either
high dextran concentration or high fd concentration. With
increasing dextran concentrations the binodal is located at
increasingly higher shear rates. As a result, the difference in
the orientational order across the binodal is not as pro-
nounced as for samples with lower dextran concentration.
This leads to a decrease of the stress response after a shear-
rate quench and renders the experimental determination of
the binodal difficult. For this reason we have not shown the
binodal in the inset of Fig. 2. At high fd concentration
��nem
0.7� close to the homogeneous nematic phase, states
with periodic tumbling or wagging of rods in shear flow are
observed �10,41�. This is evidenced by an oscillating shear-
stress response subsequent to a shear-rate quench. For homo-
geneous nematic phases, theory predicts such behavior for
certain rod concentrations and shear rates �37,42–46�. Due to
the oscillatory response, the location of the binodal as well as
the extent of the vorticity-banding transition cannot be deter-
mined for �nem
0.7. Therefore, the measurements of the
binodal and vorticity banding are limited to lower fd concen-
trations. More details about the experimental determination
of the binodal are available in Ref. �10�.

The vorticity-banding region is determined from profiles
taken at various shear rates similar to the ones shown in Fig.
3. The profiles in Fig. 3 persist for more than a week and are
taken for a fixed fd concentration ��nem=0.23�. The shear
rate �̇− is the lower-border shear rate of the vorticity-banding
region �the lower bound of the shaded region in the phase
diagram in Fig. 2�, and �̇+ is the upper-border shear rate. As
can be seen in Fig. 3, for shear rates below �̇−, no clear
bright and dark bands are formed. Inhomogeneities that are
formed due to phase separation are stretched to a certain
extent �leftmost profile in Fig. 3�, but do not give rise to the
formation of vorticity bands. For shear rates ��̇−��̇��̇+�
within the vorticity-banding region, clear bright and dark
bands are formed �two middle profiles in Fig. 3�. These pro-
files exhibit relatively large intensity variations and a longer-
wavelength structure when compared to those outside the
banding region. For shear rates slightly above �̇+, heteroge-
neous vorticity banding is observed �rightmost profile in Fig.
3�. The shear-rate range ��̇+��̇��̇het� where heterogeneous
banding occurs is about 5–10 % of the homogenous
vorticity-banding shear-rate range ��̇−��̇��̇+�. Experi-
ments of this kind are repeated for different fd concentrations

FIG. 2. The nonequilibrium phase diagram in the shear rate
versus concentration plane for an overall fd concentration of
21.0 mg/ml and an overall dextran concentration of 10.6 mg/ml.
The fd concentration is expressed in terms of �nem as defined in
Sec. II A. The upper solid curve is the paranematic-nematic binodal
and the shaded area is the region where vorticity banding is ob-
served. The � are experimental points where banding occurs for the
first time on increasing the shear rate while the � are the experi-
mental data where banding ceases to occur. The inset shows part of
the vorticity-banding region for an overall dextran concentration of
14.5 mg/ml. Here, the binodal is not shown. The lower figure
�which is taken from Ref. �9�� shows a banded state for the same
dextran concentration of 14.5 mg/ml. The bandwidth is about
2 mm. The two enlargements on the right show the inhomogeneities
that are present within the bands. The thickness of these inhomoge-
neities is of the order of 10–20 �m.
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to determine the entire vorticity-banding region in the fd
concentration vs shear rate plane. For each fd concentration
the final shear rate in the two-phase region is systematically
varied in steps of 0.02–0.04 s−1. The prequench shear rate is
always 10 s−1, which is far above the binodal.

Due to sedimentation, the system will eventually phase
separate into a coexisting paranematic and a sheared nematic
bulk phase. This can be seen in Fig. 4 in Ref. �9�, which
shows a partly demixed system where sedimentation of
denser nematic inhomogeneities occurred to some extent.
The upper phase in this figure is a homogeneous paranematic
phase that does not contain any inhomogeneities. The ab-
sence of a banded structure in the upper phase demonstrates
that the lower binodal in Fig. 2 coincides with the lower
bound of the vorticity-banding region.

The inset in Fig. 2 shows the vorticity-banding region �up
to �nem=0.4� for the higher dextran concentration of
14.5 mg/ml. In this case the vorticity-banding region ex-
tends to much higher shear rates since the attractions be-
tween the rods are increased. Still, this region is contained
within the biphasic region as bounded by the binodal. The
vorticity bands at higher overall dextran concentrations are
larger and more regular. Such bands are used for experiments
on the internal flow and orientational order within the bands
as described in Sec. V. The typical quasistationary banded
structures that is observed for these higher dextran concen-
trations are shown in the lower part of Fig. 2. On the right-
hand side there are two microscopy images that show the
inhomogeneous microstructure found within each of the
bands. These inhomogeneities are due to paranematic-
nematic phase separation and are formed right after the

shear-rate quench. In the proposed mechanism that underlies
vorticity banding as presented in Sec. VI, these inhomogene-
ities play an essential role in the stabilization of the banded
state.

IV. KINETICS OF VORTICITY BANDING

The experiments discussed in the present section are done
on fd-dextran suspensions with the lower overall dextran
concentration of 10.6 mg/ml. Figure 4 shows time-
dependent banded intensity profiles subsequent to a quench
from an initial shear rate of 10 s−1 to four final shear rates
located in the biphasic paranematic-nematic region. The pro-
files in Fig. 4�a� are for a final shear rate 0.15 s−1 just below
the lower-border shear rate �̇−=0.16 s−1. No banding is ob-
served. Here, the striped pattern is due to inhomogeneities
that are formed due to paranematic-nematic phase separation
and are elongated in shear flow. For Fig. 4�b�, the final shear
rate 0.17 s−1 is just above �̇−. Here, the growth of the vortic-
ity bands is clearly visible as the appearance and coarsening
of bright and dark bands. Similarly, for a shear rate 0.45 s−1

just below the upper-border shear rate �̇+=0.46 s−1, the
banding transition is clearly observed in Fig. 4�c�. In a small

FIG. 3. Quasistationary intensity profiles taken a few hours after
the shear-rate quench into the vorticity-banding region. The gap
width is 2.0 mm and the fd concentration is �nem=0.23. The overall
dextran concentration is 10.6 mg/ml, which complies with the
phase diagram in Fig. 2. The border shear rates �̇− and �̇+ are the
lower and higher shear rates that bound the vorticity-banding region
in the phase diagram. The leftmost profile shows an image for a
shear rate just below �̇−. The two middle profiles are for shear rates
within the banding region, while the rightmost profile is taken for
the shear rate just above �̇+, where heterogeneous banding occurs.
The vertical axis is given in camera-pixel number and a scale bar is
added on the left side. The intensity scales are the same for all four
profiles.

FIG. 4. Temporal evolution of the vorticity banding morpholo-
gies at various shear rates for an fd concentration of �nem=0.23 and
a gap width of 2.0 mm. The overall dextran concentration is
10.6 mg/ml. The numbers above the intensity profile images refer
to the time after the shear-rate quench in minutes. �a�, �b� Shear
rates 0.15 and 0.17 s−1 just below and above the lower-border shear
rate �̇−=0.16 s−1, respectively. �c�, �d� Shear rates 0.45 and �̇+

=0.47 s−1 just below and above the upper-border shear rate �̇+

=0.46 s−1, respectively. Heterogeneous banding is observed in �d�
just above the upper-border shear rate.
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shear-rate region just above the upper-border shear rate �̇+,
heterogeneous banding occurs, as can be seen in Fig. 4�d�.

In order to quantify the growth kinetics of vorticity bands,
the time-dependent bandwidth is obtained from intensity pro-
files by the Fourier-mode analysis described in Sec. II B. A
typical result of such an analysis is shown in Fig. 5�b�. There
is a well-defined time t0, beyond which vorticity banding
occurs. Afterward the bandwidth increases continuously until
it saturates at long times �the times indicated as td– th are in
this regime�. The time t0 corresponds to the profile marked
with tc. From the corresponding image in Fig. 5�a� it can be
seen that, indeed, at the time t0 clear bright and dark stripes
begin to appear. On average the bright and dark regions have
an equal width during their growth.

It is much harder to ascertain the behavior of the system
prior to the onset of the shear-banding transition. Since the

depth of the camera focus is 1 mm, the acquired image is a
superposition of spatial variations of inhomogeneities along
the gradient direction. Therefore, the apparent bandwidth
found in this region using image analysis is highly suscep-
tible to artifacts. The best way to study the behavior of in-
homogeneities formed in this region is with small-angle light
scattering �SALS�. SALS data showing the evolution of co-
existing droplets �inhomogeneities� upon a shear-rate quench
into a biphasic region are shown in Ref. �9�. The conclusion
drawn from these experiments is that right after the shear-
rate quench the inhomogeneities formed due to paranematic-
nematic phase separation are shear stretched along the flow
direction. This process is usually complete in about 10 min.
After this initial stage we do not see any significant change
in the SALS pattern. This indicates that any further coarsen-
ing process of coexisting phases is suppressed by the shear
flow. Even after vorticity bands are fully developed it is pos-
sible to observe the presence of inhomogeneities in both
bands �see lower panel of Fig. 2�.

The relevant parameters obtained from growth curves like
the one in Fig. 5�b� are the growth time and final bandwidth
in the stationary state. These parameters are extracted as fol-
lows. We write

H�t� = H0 + H��t� for t � t0, �5�

where t0 is the time at which banding sets in, H0 is the
bandwidth at time t0, and H� describes the growth of the
bands. The time dependence of the vorticity-bandwidth, to
within experimental error, can be described with a single
time exponential,

H��t� = A�1 − exp��t0 − t�/�	 �t � t0� , �6�

where A is the total increase of the bandwidth at long times.
This will be referred to as the growth amplitude while  is
the band-growth time. The final bandwidth is equal to H0
+A �see Fig. 5�. The solid line in Fig. 5�b� is a best fit to Eqs.
�4� and �6� for t
 t0. The parameters A and  characterize the
growth kinetics of the vorticity bands.

An exponential growth of the bandwidth is observed to
within experimental error. The growth time  is therefore the
relevant experimental measure for the growth rate of bands.
There is as yet no theory concerning band-growth kinetics
that explains exponential growth or possible deviations from
exponential growth at longer times.

The growth time  and the growth amplitude A are mea-
sured as functions of shear rate and fd concentration �within
the shaded region in Fig. 2�. To compare such measurements
for different fd concentrations, the shear rate is normalized in
dimensionless units as

�̇N �
�̇ − �̇−

�̇+ − �̇−

. �7�

Here, �̇− and �̇+ are the lower-border and upper-border shear
rates, respectively.

Systematic measurements of kinetic parameters are done
for two different fd concentrations �nem=0.23 and 0.35. The
final bandwidth H0+A and the growth time  are given in
Figs. 6�a� and 6�b� as a function of the normalized shear rate.

FIG. 5. �a� Temporal development of vorticity profiles right after
a shear-rate quench into the banding region. �b� The bandwidth H as
a function of time right after a shear quench, as measured from
profiles as given in �a�. The solid line is an exponential fit to the
data according to Eqs. �4� and �6�. Here, the times ta– tc in both
figures are related to shear stretching of inhomogeneities at several
times after the quench, while td– th relate to growth of vorticity
bands. The fd concentration is �nem=0.23, the shear-cell gap width
is 2.0 mm, and the shear rate is 0.25 s−1. The overall dextran con-
centration is 10.6 mg/ml. The shear rate is located in the middle of
the vorticity-banding region.
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The relatively small shear-rate range beyond �̇+ where het-
erogeneous banding occurs is also indicated in this figure.
Since a Fourier-mode analysis in this region is not possible,
the dashed lines are simple estimates from profiles such as
the one given in Fig. 4�d�.

We find an important difference in the kinetic behavior
depending on the fd concentration. For both cases the band-
width at the instant of time where banding sets in is H0
=60±5 �m. The final bandwidth is always larger than the
bandwidth H0 when banding starts. The final bandwidth for
lower fd concentration �nem=0.23 varies by about 10%
throughout the banding region. The band-growth time  di-
verges both in the vicinity of the lower-border shear rate �̇−
and below the shear rate �̇het where heterogeneous banding
ceases to occur. Hence, for low fd concentration, banding
ceases to occur for shear rates lower than �̇− or higher than
�̇het due to a vanishing growth rate 1 /. In contrast, for high
fd concentration ��nem=0.35� band-growth rates are finite
throughout the banding region �lower curve in Fig. 6�b��.
The reason that banding ceases to occur in this case, for
shear rates below �̇− and above �̇het, is that the growth am-
plitude A vanishes �lower curve in Fig. 6�a��.

Additionally we note that the time t0 is constant through-
out the region where homogeneous banding occurs, to within
experimental error. For �nem=0.23, t0=11±2 min, while for
�nem=0.35, t0=8±2 min.

Assuming that the inhomogeneities formed due to phase
separation are at the origin of the vorticity-banding instabil-
ity, the different banding kinetics for the two fd concentra-
tions are probably related to the different morphology and
mechanical properties of these inhomogeneities. Figure 7
shows the morphologies for three different fd concentrations
during the early stages of phase separation, obtained by con-
focal microscopy. These images are taken after a shear-rate
quench to a zero shear rate. For the lowest concentration, an
interconnected morphology is observed during the initial
stages of phase separation. This is reminiscent of spinodal
decomposition. After about 10 min, the connectedness is

lost, and a blurry morphology of inhomogeneities is formed.
At the highest fd concentration, nucleation of isotropic tac-
toids in a nematic background is observed. A somewhat or-
dered, noninterconnected structure exists after about 10 min.
For the middle concentration, which is close to the spinodal,
interconnectedness still exists to some extent after 10 min.
Slow phase separation in the vicinity of the spinodal leads to
a still interconnected structure after a relatively long time.
The fact that spinodal decomposition is observed at low fd
concentration and nucleation and growth at high concentra-
tion is due to the residual alignment of the fd rods subse-
quent to a shear quench �47,48�. A quantitative analysis of
this type of phase-separation kinetics is given in Ref. �48�,
where the relevant spinodal concentration is found to be
around an fd concentration of �nem=0.6. The morphologies
shown in Fig. 7 will be strongly deformed under shear flow,
but will probably still be very different with changing fd
concentrations. Different mechanical properties of these
shear-deformed inhomogeneities might be at the origin of the
observed difference in the banding kinetics for the two fd
concentrations. A more systematic microscopic investigation
is necessary to quantify the relation between the shear-
deformed morphology of inhomogeneities and the observed
vorticity-banding kinetics.

As mentioned before, the spinodal and binodal referred to
here are connected to the paranematic-nematic phase transi-
tion, that is, the shear-affected isotropic-nematic phase tran-
sition which also occurs in the absence of flow. It refers to
the shear-affected isotropic-nematic phase transition and not
to the banding transition.

FIG. 6. �a� The final bandwidth as a function of the normalized
shear rate as defined in Eq. �7� for two fd concentrations �nem

=0.23 and 0.35, as indicated in the figure. In both cases the overall
dextran concentration is 10.6 mg/ml. �b� The band-growth time 
as a function of shear rate for the same fd concentrations. Above the
upper-border shear rate �̇+, heterogeneous banding occurs for both
concentrations. The dotted lines are estimates of bandwidths and
growth rates from intensity profiles like in Fig. 4�d�.

23 % 52 % 70 %

90 s

300 s

600 s

FIG. 7. Confocal images taken in reflection mode of the mor-
phology of phase-separating suspensions, 90, 300, and 600 s after a
shear-rate quench to zero shear rate, for three different fd concen-
trations, �nem=0.23, 0.52, and 0.70, as indicated in the figure. The
bright regions are nematic, the dark regions are isotropic. The field
of view is 180 �m.
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As will be discussed in Sec. VI, gradients in shear rate
determine the normal stress that is generated by the inhomo-
geneities, which in turn stabilizes the quasistationary state.
Since the morphology of inhomogeneities at the time that
banding sets in depends on the overall fd concentration, as
discussed above, the final bandwidth, therefore, might be
concentration dependent. As can be seen from Fig. 8�a�, the
final bandwidth is indeed seen to be depending on the fd
concentration. The final bandwidth decreases with increasing
fd concentration. There should also be a gap-width depen-
dence of the final bandwidth due to the fact that the gradients
in shear rate increase with increasing gap width. Such a gap-
width dependence is indeed found, as shown in Fig. 8�b�. As
can be seen, the bandwidth increases as the gradients in shear
rate become larger.

V. STRUCTURE OF QUASISTATIONARY VORTICITY-
BANDED STATE

Two experiments provide strong indication that the vor-
ticity banding is due to a weak rolling flow superimposed
onto the applied shear flow. For both of these experiments
we have used a somewhat higher dextran concentration of
12.3 mg/ml to produce large and regularly stacked vorticity
bands. The width of the quasistationary bands under these
conditions is about 1 mm. In a first experiment we use po-
larization optics to probe the orientational order of fd rods
within adjacent bands. The couette cell is placed between an
exactly crossed polarizer and analyzer �see Fig. 1�. A � /2
plate is placed between the couette cell and the analyzer,
with a variable angle � with respect to the polarization di-
rection of the analyzer. When the optical axis of the � /2
plate is perpendicular �or parallel� to A there is no visible
contrast between the two bands �middle image in Fig. 9�a��.
This implies that the orientational order averaged along the
gradient direction is the same in both bands. However, all the
rods along the gradient direction are not necessarily aligned

in the same direction. In other words the rod orientation can
form a left- or right-handed helix. This can be shown by
changing the angle of the � /2 plate. The polarized light is
rotated equally by the two bands but in exactly opposite
directions. This is nicely demonstrated by the leftmost and
rightmost images in Fig. 9�a�, where the � /2 plate is at
angles 80° and 100° with respect to A. The brightness of a
band in the left image is equal to the brightness of adjacent
bands in the right image. The transmitted intensity in the two
bands as a function of the angle � is plotted in Fig. 9�b�.
Such behavior is consistent with banded structures that are in
a rolling motion �as depicted in Fig. 10�b��. Since the rolling
motion is opposite in direction for two adjacent bands, the
change of the polarization direction of light is equal but op-
posite in sign for the two bands. This optical phenomenon is
similar to propagation of light in cholesteric liquid crystals
�49�.

In the second experiment focused on determining the
structure of vorticity bands we have tracked tracer particles
within a vorticity band. Here, a couette cell is used with two
counter-rotating cylinders. The height of the cell is adjusted
to keep track of the particle along the vorticity direction. The
position of the tracer particle in the gradient direction is
probed by changing the relative angular velocity of the two
cylinders so as to shift the plane of zero velocity in order to
keep the particle within the field of view. The relative angu-
lar velocities are adjusted in such a way that the average
shear rate remains unchanged. As can be seen from Fig.
10�a�, the height z of the tracer sphere, which is the compo-
nent of its position along the vorticity direction, oscillates in
time with an amplitude that is roughly equal to the band-
width. There is drift of the z position due to sedimentation of
the large tracer particle. The experimental measure for the
location of the tracer sphere in the gradient direction is the
so-called speed ratio S. S is defined as
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FIG. 8. �a� The concentration dependence of the final bandwidth
H for a shear rate equal to 0.34 s−1 and for the lower overall con-
centration of 10.6 mg/ml. The gap width of the shear cell is
2.0 mm. �b� The gap-width dependence of the final bandwidth for
�nem=0.23. The data points are averages over shear rates within the
banding region, and the error bars relate to the spread in bandwidth
on variation of the shear rate �see the upper curve in Fig. 6�a��.
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FIG. 9. �a� Images of shear bands illuminated with white light
with a polarization direction parallel to the flow and the crossed
analyzer directed along the vorticity direction. Between the ana-
lyzer and the couette cell there is a �1/2�� platelet with its optical
axis at an angle of 80°, 90°, and 100° with respect to the analyzer
�from left to right�. The height of the images is 6.5 mm. �b� The
transmitted intensity of two adjacent bands �the bands marked as 1
and 2 as a function of the angle �. � is the angle between the
analyzer and the �1/2�� platelet. The solid lines are best fits to a
linear combination of a sine and cosine with the same period and
the same offset phase. The overall dextran concentration is
12.3 mg/ml, the shear rate is 0.26 s−1, and �nem=0.17.
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S =
�o

�i + �o
, �8�

where �i and �o are the �absolute values of� the rotational
velocities of the counter-rotating inner and outer cylinders,
respectively. The rolling velocity is simply superimposed
onto the velocity v0 in the perpendicular direction that one
would have for a Newtonian fluid in a couette cell. Indeed,
heterodyne dynamic light scattering experiments within the
banded state show an essentially linear velocity profile as for
a Newtonian fluid. The fluid flow velocity v0 is given as a
function of the radial distance � from the centerline of rota-
tion as

v0��� =
�

Ro
2 − Ri

2
�oRo
2 + �iRi

2 − ��o + �i�
Ro

2Ri
2

�2 � , �9�

where Ri and Ro are the radii of the inner and outer cylinders,
respectively. The location �0 of the plane of zero velocity is
thus equal to

�0 = RoRi� �o + �i

�oRo
2 + �iRi

2 =
RoRi

�SRo
2 + �1 − S�Ri

2
, �10�

where the definition of the experimental parameter S in Eq.
�8� has been substituted. This relation is used to construct the
plot in Fig. 10�a� for the radial position of the tracer particle.
Although there is a drift of the particle toward the outer
cylinder due to gradients in the shear rate, the radial position
seems to exhibit an oscillatory behavior. Since the tracer par-
ticle will migrate to the outer cylinder due to gradients in

shear rate and its initial radial position is in the middle of the
gap of the shear cell, these oscillations are not very pro-
nounced. Therefore, the data for �0 are too noisy to unam-
biguously correlate the height and the radial position in order
to prove that there is a rolling flow. The data in Fig. 10,
however, strongly indicate the existence of a rolling flow, as
depicted in Fig. 10�b�.

Typically, 1–5 h are needed to establish a banded state
that remains unchanged for at least a week. There is a differ-
ence between density of nematic and paranematic phase and
therefore the inhomogeneities will slowly sediment over a
long period of time. This will eventually lead to a state where
two homogeneous bulk phases coexist: a paranematic and a
sheared nematic phase �see Fig. 4 in Ref. �9�.�. Microscopy
images and small-angle light scattering experiments indicate
that inhomogeneities are present within the bands �9,10�.
These inhomogeneities are necessary to maintain a normal
stress along the gradient direction that stabilizes the vorticity
bands. As soon as these inhomogeneities coalesce, for ex-
ample due to sedimentation, the stabilizing normal stress
ceases to exist, and bands will disappear. The banded struc-
ture is therefore a long-lived, transient state. In this sense the
banded structure is referred to as quasistationary, since the
inhomogeneities will not persist for ever.

VI. POSSIBLE MECHANISM FOR VORTICITY BANDING

We have measured the flow curve of fd-dextran mixtures
for the possible rheological signs of a gradient-banding tran-
sition. In the case of gradient banding, the flow curve of the
homogeneous system, before banding occurs, exhibits a van
der Waals looplike dependence on the shear rate. That is,
there is a region of shear rates where the shear stress of the
homogeneously sheared suspension decreases with increas-
ing shear rate �see Fig. 11�a��. A mechanism similar to gra-
dient banding would play a role in the present system when
the shear stress of the suspension just before banding sets in

FIG. 10. �a� On the right axis, the position z in the vorticity
direction of a tracer sphere with a diameter of 50 �m is shown as a
function of time in the quasistationary banded state as measured by
video microscopy with a counter-rotating couette cell, where the
radii of the inner and outer cylinders are 18.5 and 20.0 mm, respec-
tively. The time t=0 is the time after which the optical trapping of
the tracer sphere is released. The radial position �0 of the tracer
sphere is shown on the left axis. The overall dextran concentration
is 12.3 mg/ml, the fd concentration is �nem=0.17, and the shear
rate is 0.88 s−1. The bandwidth is about 1 mm. �b� A sketch of the
rolling flow that complies with the observed oscillatory behavior of
the position coordinate of the tracer particle.
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FIG. 11. �a� A typical van der Waals looplike shear-rate depen-
dence of the shear stress for a homogeneously sheared system that
will exhibit gradient banding. The viscosity � and the shear stress
�= �̇ � as a function of shear rate are shown in �b� and �c�, respec-
tively. Vorticity banding is observed within the shaded region. The
vertical bounds of the shaded area correspond to the lower- and
upper-border shear rates. The data points are measured 5 min after
a shear-rate quench, just before vorticity banding occurs. The fd
concentration is �nem=0.35. �d� The shear stress for higher shear
rates, for �nem=0.33. The overall dextran concentration is
10.6 mg/ml. The vertical line indicates the location of the binodal.
The gap width is 1.0 mm.
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would exhibit such a decrease of the shear stress with in-
creasing shear rate. When gradient bands are allowed to fully
develop before a stress measurement is done, a plateau in the
shear stress as a function of shear rate is observed under
controlled shear-rate conditions �17–21�. This plateau can be
tilted when the stress couples strongly to variables such as
concentration �17�. There is no such signature in the flow
curve for the fd suspensions within the vorticity-banding re-
gion as seen in Figs. 11�b� and 11�c�. Here, the shaded area
indicates the vorticity-banding region, that is, the shear-rate
range ��̇− , �̇+� in the phase diagram in Fig. 2 where vorticity
banding is observed. The stress and viscosity data in Figs.
11�b� and 11�c� are obtained 5 min after a shear-rate quench.
Vorticity banding sets in after 10 min. These data essentially
do not change when measured within a time window of
about 5–10 min after the quench. In the case of gradient
banding such curves would exhibit a van der Waals looplike
behavior as depicted schematically in Fig. 11�a�. The system
is only weakly shear thinning �see Fig. 11�b�� and does not
show any sign of a van der Waals loop nor a stress plateau.
In addition, we have repeated the determination of the border
shear rates for one concentration under controlled stress con-
ditions. No differences were found with the controlled rate
experiments: both border shear rates are the same. The
mechanism for vorticity banding is thus clearly different
from that of gradient banding. Finally we confirmed that the
shear stress is also well behaved throughout the entire bipha-
sic region, as shown in Fig. 11�d�. Here, the vertical line
indicates the location of the binodal.

In view of the rolling flow within the bands �see Sec. V�,
the vorticity-banding instability might have a similar origin
as the elastic instability studied in polymeric systems
�35–39�. The origin of this well-known instability is as fol-
lows. When there is a gradient in shear rate, as in a couette
cell, the shear-induced stretching of polymer chains leads to
normal stresses along the gradient direction. Chains which
are not perfectly aligned along the streamlines are stretched
in a nonuniform way due to gradients in the shear rate �Fig.
12�a��. On average, such nonuniform stretching of chains
leads to normal stresses that pull a volume element toward
the rotating inner cylinder �also depicted in Fig. 12�a��.
These “hoop stresses”’ set the fluid in motion toward the
inner cylinder. This leads to a rolling flow �as sketched in
Fig. 10�b��, since at the inner cylinder the flow velocity must
change to the vorticity direction. In case of a free surface, the
fluid may climb the inner cylinder, in which case the increase
in hydrostatic pressure compensates the normal stress in the
gradient direction. This is known as the Weissenberg or rod-
climbing effect.

We propose that, in a similar way, nonuniform shear-
induced deformation of the inhomogeneities �instead of poly-
mer chains� may be at the origin of the vorticity-banding
instability, as depicted in Fig. 12�b�. Nonuniform deforma-
tion of inhomogeneities �formed during the initial stages of
paranematic-nematic phase separation� due to gradients in
shear rate are thus responsible for the vorticity-banding in-
stability and the stabilization of the banded structures.

There are, however, additional forces that might play a
role here. Since inhomogeneities are very much extended
along streamlines, bending elasticity might give rise to sig-

nificant normal stresses in the opposite direction, away from
the center of the couette cell �see Fig. 12�c��. Bending elas-
ticity �49� might counteract the stretching forces in generat-
ing hoop stresses.

The following experimental observations can be intu-
itively understood on the basis of the above-proposed
mechanism.

�i� At a given overall shear rate, gradients in the shear rate
in a couette cell increase with increasing gap width of the
couette cell. Therefore the driving force for rolling flow will
increase with increasing gap width. This will probably lead
to an increase of the bandwidth. Indeed an increase of the
bandwidth with increasing gap width is observed �see Fig.
8�b��.

�ii� Shear gradients in a couette cell are large when the
overall shear rate is large. This might explain why vorticity
banding occurs only at sufficiently high shear rates, that is,
the lower-border shear rate �̇− is larger than zero. Gradients
in shear rate are not sufficiently pronounced for shear rates
below �̇− to render the normal stresses strong enough to in-
duce vorticity banding.

�iii� At larger shear rates, close to the upper-border shear
rate, inhomogeneities are relatively thin due to shear stretch-
ing. This diminishes the nonuniform stretching within the
inhomogeneity �see Fig. 12�b�, where now the inhomogene-
ity is very thin�. In addition, the bending forces will be
smaller, since a thinner inhomogeneity is more easily bent as
compared to a thick inhomogeneity. This might explain why
banding ceases to occur above the upper-border shear rate
�̇+, which is well within the two-phase region.

�iv� Contrary to gradient banding, the region where vor-
ticity banding occurs and the final bandwidth are indepen-

FIG. 12. �a� The origin of the well-known elastic instability of
polymer systems. The dots on the polymer chain are used to indi-
cate the degree of stretching. Without stretching or for uniform
stretching, the dots would be equally spaced. When a chain is not
aligned along streamlines, stretching is nonuniform and normal
stresses are generated. The resulting forces pull a volume element
toward the rotating inner cylinder, as indicated by the arrow. �b�
Similar stretching of the inhomogeneities that are formed due to
nonequilibrium paranematic-nematic phase separation. The dots are
used to visualize nonuniform stretching. �c� In comparison to flex-
ible polymer chains, bending elasticity may play a role as well. In
such cases normal stresses act in the opposite direction, as depicted
by the arrows in the figure.
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dent of whether the shear rate or shear stress is controlled.
This agrees with the mechanism proposed above, since nor-
mal stresses are important instead of shear-gradient stresses.

Although the mechanism proposed above is in accord
with a number of experimental observations, more theoreti-
cal and experimental work is needed to validate these sug-
gestions. Measurements of normal stresses along the gradient
direction during the initial stages of banding could be per-
formed. This will not be straightforward since, in weak roll-
ing motion, these stresses are probably quite small. In addi-
tion, a detailed experimental study of the dependence of the
flow pattern within the bands on varying gap width would be
valuable.

Stationary vorticity-banded states are also found in aggre-
gated nanotube suspensions �50�. Instead of the inhomoge-
neities formed due to phase separation as in our fd virus
suspensions, here, similar deformation of the nanorod aggre-
gates may be at the origin of the vorticity banding. Normal
stress measurements reported in Ref. �50� indeed indicate
that such stresses play a role in vorticity banding. Stationary
vorticity banding has also been observed in wormlike micel-
lar systems �23�. There are two possibilities here: either in-
homogeneities are formed due to a shear-induced
paranematic-nematic phase transition, or the wormlike mi-
celles themselves are nonlinearly stretched �like polymer
chains in the elastic instability of polymer systems�. In those
wormlike micellar systems where a shear-induced
paranematic-nematic phase transition occurs and no vorticity
banding is observed, the mechanical properties related to
stretching of the inhomogeneities are probably such that nor-
mal stresses are not large enough to give rise to rolling flow.
In the weakly flocculating systems in Ref. �22�, the nonuni-
form stretching of flocs of colloidal particles is probably at
the origin of the observed vorticity banding.

VII. SUMMARY

We have performed experiments under steady shear-flow
conditions on the structure and kinetics of vorticity banding
in sheared suspensions of rodlike fd virus. We determined
the vorticity- banding region which is entirely enclosed by
the paranematic-nematic binodal. Under both controlled
shear-rate and shear-stress conditions banding occurs be-
tween the lower- and upper-border shear rates �̇− and �̇+,
respectively, where �̇− is larger than zero. After a shear-rate
quench from a high shear rate into this region, inhomogene-
ities are formed due to phase separation. These inhomogene-
ities are shear elongated up to a well-defined time after
which vorticity banding occurs. The growth of the vorticity-
bandwidth can be described, to within experimental error, by
a single-exponential function of time. There are two impor-
tant parameters that characterize the kinetics of band forma-
tion: �i� the band-growth time  in the exponential, the in-
verse of which measures the growth rate of band formation,

and �ii� the amplitude A of the time exponential, which is
related to the total growth of the bandwidth as compared to
the initial apparent bandwidth of shear-stretched inhomoge-
neities. The growth kinetics depends on the morphology and
the mechanical properties of the inhomogeneities formed due
to the phase separation. Two different scenarios have been
found. For small fd concentration,  diverges at the border
shear rates, while the amplitude A remains finite. The growth
rate of bands thus vanishes. For larger fd concentration, the
amplitude A vanishes at the border shear rates, while  re-
mains finite.

Experiments indicate that there is a weak rolling flow
within the bands. A possible mechanism that is at the origin
of the banding instability as well as the stabilization of qua-
sistationary banded states is proposed, where the mechanical
properties of the inhomogeneities are essential. The proposed
mechanism is similar to the elastic instability for polymer
systems, where the inhomogeneities play the role of the
polymer chains.

The proposed mechanism explains, on an intuitive level, a
number of the observed phenomena, like the gap-width de-
pendence of the vorticity-bandwidth, the large bandwidth
with increasing dextran concentration, and the fact that band-
ing occurs only beyond a certain nonzero shear rate and
ceases to occur above another shear rate. Moreover, the pro-
posed mechanism explains why the border shear rates are
independent of whether controlled shear rates or controlled
shear stresses are applied. Just above the upper-border shear
rate there is a finite probability to have a localized assembly
of neighboring inhomogeneities which are still thick enough
to give rise to banding. This leads to the observed heteroge-
neous band formation.

More experiments are necessary to unambiguously vali-
date the proposed mechanism. In addition, theory should be
developed to confirm such a scenario. In particular, the ex-
pression for the stress tensor as obtained in Ref. �51�, which
is valid for highly inhomogeneous systems of stiff, long, and
thin rods, could serve as a starting point for the theoretical
validation of the proposed mechanism. Simulations also
might provide a better understanding of the behavior of col-
loidal rods under shear flow �52,53�.
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Abstract A possible mechanism for the vorticity-banding
instability is proposed on the basis of experiments with
colloidal rod-like particles that exhibit an isotropic–nematic
phase transition. The proposed mechanism is similar to the
well-known elastic instability for polymer systems that is
due to nonuniform elastic deformation of polymer chains as
a result of gradients in the local shear rate (the Weissenberg
effect). However, the role of polymer chains is now played
by inhomogeneities that exist in systems exhibiting vortic-
ity banding. For the rod-like colloidal system investigated
here, inhomogeneities are formed during the early stages of
phase separation. Nonuniform deformation of these inho-
mogeneities are thus proposed to lead to hoop stresses
which give rise to banded structures where there is
secondary, weakly rolling flow within each of the bands.
Many of the features found experimentally for the rod-like
colloidal system can be understood on the basis of this
proposed mechanism. For different types of systems that
also show vorticity banding, inhomogeneities can be
identified, which might lead to vorticity banding for the
same reasons as for the rod-like colloidal systems studied
here.

Keywords Instability . Dispersions . Phase separation

Introduction

Two types of banding transitions have been found exper-
imentally in various types of complex solutions, which are
referred to as gradient banding and vorticity banding. In
case of gradient banding, typically two regions with
different shear rates coexist in the stationary state, where
in each of the two regions the shear rates are essentially
constant, independent of position (see, for example, Berret
1997; Olmsted et al. 2000). The gradient-banding instability
occurs when the shear stress (the flow-gradient component of
the stress tensor) of the homogeneously sheared system
decreases with increasing shear rate. The molecular origin of
the accompanied severe shear-thinning behavior is relatively
well understood. The origin of the vorticity-banding insta-
bility, however, is not yet understood. In the present paper,
we propose a possible mechanism for this instability that is
related to hoop-stresses generated by nonuniform shear-
induced stretching of inhomogeneities. These inhomogene-
ities can be due to early stage phase separation; they can be
self-assembled structures like in worm-like micellar, or they
can be aggregates in weakly flocculating colloids. The
nonuniform deformation of such inhomogeneities gives rise
to elastic normal forces which set the fluid in weakly rolling
motion. The rolls correspond to the observed bands that are
stacked in the vorticity direction. The mechanism underlying
the vorticity-banding instability is thus analogous to the well-
known elastic instability of polymer systems, leading to the
Weissenberg effect (see Weissenberg 1947), where the role
of polymer chains is now played by the inhomogeneities.

Experiments on fd-virus suspensions will be discussed,
where vorticity banding is found within the isotropic–
nematic two-phase region, which partly extend on earlier
work by Kang et al. (2006). Fd virus is a stiff, long, and
thin colloidal rod, suspensions of which are model systems
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for monodisperse rods. Inhomogeneities are, in this case,
due to early stage isotropic–nematic phase separation. The
experimental findings discussed in the present paper that
can be understood on the basis of the proposed mechanism
mentioned above include (1) the different vorticity-banding
kinetics depending on whether phase separation leads to bi-
continuous structures or isolated inhomogeneities just
before banding occurs, (2) the finite shear-rate range where
vorticity banding is found, (3) the couette-cell gap-width
dependence of the shear-rate region where banding occurs,
(4) the gap-width dependence of the final vorticity-band
width, and (5) the observed rolling flow within the bands.

This paper is organized as follows. In Section Experiments
with fd-virus suspensions, we discuss experimental results
on fd-virus suspensions, some of which are also discussed
by Kang et al. (2006). The mechanism leading to vorticity
banding, as mentioned above, will be discussed in
Section A possible mechanism for vorticity banding. Ex-
perimental findings will be interpreted on the basis of the
proposed mechanism in Section Intuitive explanation of
vorticity-banding characteristics of fd-virus suspensions
and of other systems, where other vorticity-banding
systems are also discussed within the scope of the
proposed mechanism.

Experiments with fd-virus suspensions

Fd virus is a stiff, rod-like virus of colloidal dimensions,
with a thickness of D=6.6 nm, a length of L=880 nm, and a
persistence length of 2,200 nm. We used suspensions with a
high ionic strength (20 mM TRIS buffer, pH=8.15 with
100 mM added NaCl) where dextran is added (radius of
gyration 16 nm) to enhance isotropic–nematic phase
separation and vorticity-band formation. Samples were
prepared as follows. First, we prepare a homogeneous solution
of fd virus at an overall concentration of 22.1 mg/ml and the
appropriate dextran concentration. This mixture is then left to
phase separate under gentle centrifugation for about 24 h, to
establish separation into two bulk phases. Then a volume Vnem
from the lower, nematic bulk phase and a volume Viso from
the upper, isotropic bulk phase are mixed. This is the mixture
that is used in our shear experiments. This procedure of
sample preparation ensures that the chemical potential of
dextran is independent of the total fd-virus concentration.
Experiments are performed for two rod concentrations Φnem=
0.23 and 0.35, where Φnem=Vnem/(Vnem+Viso). Unless stated
otherwise, the dextran concentration in the inhomogeneous
suspension is 10.6 mg/ml.

Shear experiments are done in an optical couette cell with
a stationary outer cylinder and a rotating inner cylinder. The
gap width of the couette cell can be varied from 1.0 to

2.5 mm. The sample is pre-sheared at a shear rate of 10 s−1

for at least 10 min. This shear rate is far above the highest
shear rate that bounds the two-phase region. Experiments are
done by quenching from this high shear rate to a lower shear
rate where vorticity banding occurs. Vorticity banding of
fd-virus suspensions is observed both under controlled shear
rate and controlled shear stress conditions, within a limited
part of the two-phase paranematic–nematic region as
bounded by the isotropic–nematic binodal in the shear-rate
vs fd-concentration plane (see also Kang et al. 2006). For a
fixed fd-concentration, banding occurs within a shear-rate
interval +

�
þ; +

�
þ

� �
, where the “border shear rates” +

�
� and +

�
þ

lie within the two-phase region.
Vorticity bands are visualized by placing the couette cell

between polarizers that are slightly off from a crossed align-
ment of polarizations. Time resolved transmitted intensity
profiles are recorded with a CCD camera equipped with a
telecentric lens. An example of such intensity profiles is
given in Fig. 1. The two types of bands appear as alternating
dark and bright regions. Average band widths are obtained
through a Fourier mode analysis of the resulting transmitted
intensity profiles, where the height of bright and dark bands
is equal. Details are given by Kang et al. (2006).

The banded patterns that are discussed here are similar to
that found for the well-known Taylor instability. The Taylor
instability for the fd-virus suspensions has been observed to
occur at a shear rate typically equal to about 25 s−1. This
shear rate is about a factor of 50–100 larger than the typical
shear rates where vorticity banding is seen. We are thus far
below the critical shear rates at which the Taylor-banding
instability occurs.

Outside the banding region, the suspension merely phase
separates into a sheared bulk isotropic state (the “paranematic
phase”) and a sheared bulk nematic phase, without the
occurrence of a banded structure. Confocal images of
morphologies of phase separating fd-virus suspensions at
various concentrations after a shear-rate quench from 10 s−1 to
a zero shear rate are shown in Fig. 2. These images are taken
10 min after the shear quench. The bright regions are
nematic regions, the dark regions are isotropic. On increasing
the rod concentration, the difference in rate of decomposition
leads to isolated inhomogeneities at high rod concentrations
and a bi-continuous structure at low concentrations at the
instant where banding sets in. The observed spinodal
decomposition at low concentration and nucleation and
growth at higher concentration indicates that the initial state,
before demixing occurred, is aligned due to the high shear rate
before the shear-rate quench. Demixing kinetics of fd-virus
suspensions is studied in detail by Lettinga et al. (2005).

Vorticity banding is only found within the isotropic–
nematic two-phase region, which indicates that the inho-
mogeneities that are formed after the quench are essential
for the banding instability. Without these inhomogeneities,
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vorticity banding does not occur. It is therefore to be
expected that the kinetics of vorticity-band formation
depends on the fd concentration, as according to Fig. 2,
the morphology of inhomogeneities that is formed during
the initial stages of demixing varies with the fd concentra-
tion. This is indeed the case as can be seen from Fig. 3,
where the band width as a function of time right after the
shear quench is plotted. Right after the quench, inhomoge-

neities are shear-stretched, giving rise to a decrease of the
apparent “band width”. At a well-defined time, vorticity
banding sets in, and the band width increases with time.
The two plots (a) and (b) on the left are for 23% and the
two plots (c) and (d) on the right are for 35%. The time
where banding sets in is 10 min for 23% and 15 min for
35%. For the two upper plots (a) and (c), the shear rate is
close to the lower border shear rate. The two lower figures,

Fig. 2 Confocal images of fd-suspensions with increasing Φnem (from left to right, as indicated in the figure), after a quench from shear rate 10 s−1

to a zero shear rate, taken 10 min after the shear quench. The spinodal is located at approximately 52% (Lettinga et al. 2005)

Fig. 1 An example of intensity profiles at different times. The
numbers are times in minutes after the shear-rate quench. The bright
and dark bands are the two types of vorticity bands that are formed.

The left upper bar is 1 mm long. Banding sets in 10 min after the
quench. The most left figure taken 8 min after the quench thus shows
shear-stretched inhomogeneities, before banding occurred

Rheol Acta (2008) 47:499–508 501
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(b) and (d) are for a shear rate in the middle of the shear-
rate interval γ

�
�; γ

�
þ

� �
where vorticity banding occurs. The

solid curves are a fit to a single time exponential. For the
lower concentration of 23%, close to the lower border shear
rate +

�
� (see Fig. 3a), the growth time is much larger than

for the shear rate in the middle of the banding interval (see
Fig. 3b). The total increase of the band width, however, is
approximately the same for both cases (∼40 μm). On the
contrary, for the higher concentration of 35%, the growth
time is approximately the same for the two shear rates, but
the total increase of the band width is much smaller at the
lower-border shear rate (see Fig. 3c and d). Hence, vorticity
banding ceases to occur due to the divergence of the
growth time in the case of a bi-continuous, spinodal-like
structure, and banding ceases to occur due to a vanishing
amplitude in the case of isolated inhomogeneities. Interest-
ingly, the shear-rate interval +

�
� ; +

�
þ

� �
where vorticity

banding occurs depends on the gap width of the shear cell,
as can be seen from Fig. 4. For the lower fd concentration
with Φnem=0.23, where we have a bi-continuous structure,
the shear-rate region where banding occurs widens with
increasing gap width. For the higher fd concentration,
however, where isolated inhomogeneities are formed, both

border shear rates decrease with increasing gap width. The
shear rate interval where banding occurs now decreases with
increasing gap width. As will be discussed in Section Intuitive
explanation of vorticity-banding characteristics of fd-virus
suspensions and of other systems, the gap-width dependence
of both g

�
� and g

�
þ is probably due to the change of gradients

in local shear rates. The different behavior for the two
concentrations is due to differences of the elastic properties
of the inhomogeneities formed during the initial stages of
demixing for Φnem=0.23 and 0.35. As can be seen from
Fig. 4c, the band width in the stationary state depends on the
gap width. Vorticity bands become broader on increasing the
gap width of the shear cell.

To investigate whether the shear rate is constant
throughout the vorticity bands or whether they exhibit
internal rolling flow, we tracked the position of a tracer
sphere along the vorticity direction. This experiment is
performed on a sample with a relatively high dextran
concentration (12.3 mg/ml) and a relatively low fd
concentration (Φnem=0.17) leading to more pronounced
bands with a typical band width of about 1 mm. The cell
gap width in this experiment is 1.5 mm, and the shear rate
is 0.88 s−1. As can be seen in Fig. 5, there is an oscillatory
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Fig. 3 The time dependence of
the band width for two different
fd-rod concentrations: a and b
for Φnem=0.23%, and c and d
for 0.35%. a +

�
=0.17 s−1 close to

the lower border shear rate and
b +
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=0.29 s−1 in the middle of

the banding region for 23%, and
similarly c +
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motion of the tracer sphere along the vorticity direction,
indicating that the bands are in (weakly) internal rolling
flow. There is also a drift downwards as a result of
sedimentation. No oscillations of the shear stress under
controlled shear-rate conditions have been observed in the
stationary vorticity-banded state. In Section A possible
mechanism for voricity banding, we will discuss a possible
mechanism leading to rolling flow. Furthermore, the rod
concentration is the same within the two bands, as can be
seen from the fluorescent image in the right panel in Fig. 6,
where the fd rods are fluorescently labeled. The left panel
shows the banded structure as visualized through birefrin-
gence. The right figure probes the same area, and shows the
fluorescent intensity from a laser beam directed along the
vorticity direction. As can be seen, the fluorescent intensity
is homogeneous along the vorticity direction, implying that
the concentrations within the bands are similar. Within
experimental noise (about 2%), no contrast between bands
could be seen.

A possible mechanism for vorticity banding

A recently proposed mechanism by Fielding (2007) for
vorticity banding involves the formation of a gradient
banded flow, before vorticity banding occurs. The gradient-
banded interface generates normal body forces that set the
suspension in motion along the gradient direction. This
would ultimately lead to vorticity banding where the bands
are in internal rolling flow. Kang et al. (2006) report on
stress measurements for fd-virus suspensions just before

vorticity banding occurs. The shear stress is found to be a
monotonically increasing function of shear rate. Further-
more, no decrease of the measured shear stress is ob-
served during banding (experiments like in Fig. 1 given
by Lettinga and Dhont 2004 have been extended to a much
larger time range). We neither found a van der Waals loop-
like behavior of the stress nor observed a stress plateau.
There is thus no sign that gradient banding plays a role in
the formation of vorticity bands in the fd-virus suspensions.
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Fig. 4 The variation of the
upper-border shear rates (empty
squares) and lower-border shear
rates (filled squares) with the
cell gap width for the two con-
centrations Φnem=23% (a) and
35% (b). c The band width in
the quasi stationary state as a
function of the couette cell gap
width. The data points are for
23% at shear rates 0.29 s−1
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Fig. 5 The position of a tracer sphere (diameter 50 μm) in the vorticity
direction within a band as a function of time. The dextran concentration
was 12.3 mg/ml, the cell gap width is 1.5 mm and Φnem=0.15
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This suggests that a different mechanism is probably
involved for vorticity banding of fd-virus suspensions.
Schmitt et al. (1995) proposed a mechanism for the
development of a banded structure along the vorticity
direction that involves spinodal decomposition, where the
mass diffusion coefficient is negative. For our fd-virus
suspensions, however, banding is found throughout the
two-phase region, including the meta-stable region where
the mass diffusion coefficient (and also the orientational
diffusion coefficient) is positive. This indicates that the
proposed mechanism by Schmitt et al. (1995) does not
apply to our system of rod-like colloids. The rolling flow
within the bands and the monotonically increasing shear
stress with increasing shear rate show that the stationary
state is not a state where the shear rate is constant
throughout the gap, as was assumed in earlier theories by
Olmsted and Lu (1999), Olmsted (1999), Goveas and
Olmsted (2001), and Aradian and Cates (2006).

In view of the experimental results presented in the
previous section, we propose a mechanism that is similar to
the elastic instability for polymer systems, known as the
Weissenberg effect. The Weissenberg effect is due to
normal stresses in the gradient direction, so-called hoop
stresses, which are generated by nonuniform elastic defor-
mation of polymer chains (see, for example, Weissenberg
1947; Larson et al. 1990; Pakdel and McKinley 1996, and
Groisman and Steinberg 1998). This elastic instability has
the following microscopic origin. In a couette geometry,
the local shear rate increases slightly towards the inner
cylinder. This leads to a more pronounced stretching of the
part of a polymer chain that is closer to the inner cylinder
and to a less pronounced stretching of the part of a polymer
chain further away from the inner cylinder (see Fig. 7a).
On average, this nonuniform stretching leads to a body
force that is directed towards the inner cylinder. When these

normal forces are large enough, this leads to a flow towards
the inner cylinder. We note that volume elements do not
immediately move towards the inner cylinder once the
instability occurs. The flow towards the inner cylinder is
initiated in the bulk of the suspension and is accompanied
by a back flow (see the stability analysis later in this
section). In the resulting stationary state, this leads to bands
assembled along the vorticity direction, where there is a
secondary, rolling flow within the bands. Near the surface
of the polymer system, the upwards flow along the inner
cylinder leads to the well- known “rod-climbing” effect.
The vorticity-banding instability is proposed to be of the
same origin, where the role of polymer chains is now
played by inhomogeneities (see Fig. 7b). In the case of the
fd-virus suspensions discussed above, the inhomogeneities
formed during the initial stages of phase separation are
nonuniformly deformed, leading to hoop stresses which
give rise to banding.

The proposed mechanism that underlies the vorticity
instability can be specified in somewhat more detail by
means of a stability analysis. The crude stability analysis
described below explains the major features of the vorticity
instability. For sufficiently shallow inhomogeneities, the
internal structure of the inhomogeneities will be able to
adjust to the imposed flow such that the body force By in
the y direction (the gradient direction) is zero. When
inhomogeneities become more pronounced, however, such
an adjustment may not be possible anymore, resulting in a
nonzero body force, which leads to flow along the gradient
direction. We ask for the amplitude of inhomogeneities
under which a change in the amplitude of the inhomoge-
neities leads to flow in the gradient direction of the initial
flow profile. Within the “Weissenberg scenario for vorticity
banding”, a nonzero flow velocity uy along the y- direction

equidistant 
velocity lines

a b
Fig. 7 a A schematic of the origin of the Weissenberg effect, where
polymer chains are nonuniformly stretched, as indicated by the dots,
which would be equidistant for uniform stretching. b Nonuniform
deformation of an inhomogeneity. The dotted lines indicate the
nonuniform deformation, like the dots for the polymer chain. The lines
are equidistant flow velocity lines. The arrow represents the normal
force towards the inner cylinder

Fig. 6 Left figure: the banded structure. The dextran concentration
here is 12.3 mg/ml. Right figure: the same are as in the left figure,
where now the fluorescent intensity of a laser beam along the vorticity
direction is probed. Here, the fd virus is fluorescently labeled
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initiates vorticity banding. As the discrete nature of the
inhomogeneities along the flow direction is relatively
unimportant, the gradient component of the Navier–Stokes
equation reads,

rm
@

@t
þ uy

@

@y
þ uz

@

@z

� �
uy y; z; tð Þ ¼ By y; z; tð Þ; ð1Þ

where uz is the flow velocity in the z direction (the vorticity
direction). Let δuy be the small change of uy due to a
change of the amplitude of inhomogeneities, and δBy the
accompanied change of the body force. As uz=0 before
banding occurs, linearization of the Navier–Stokes Eq. 1
gives,

rm
@duy y; z; tð Þ

@t
¼ dBy y; z; tð Þ: ð2Þ

The z dependence of both δuy and δBy is approximately
sinusoidally ∼exp{ikz}, where Λ=2π/k is the typical
distance between inhomogeneities (as sketched in
Fig. 8a). This wavelength corresponds to the most
pronounced Fourier mode of the intensity profile taken at
12 min as given in Fig. 1. The y dependence of δBy is much
more complicated and is related to the nonlinear deforma-
tion of the inhomogeneities along the gradient direction.
Substitution of the forms,

δuy y; z; tð Þ ¼ δuy yð Þ exp ikz� Γ tf g;
δBy y; z; tð Þ ¼ δBy yð Þ exp ikz� Γ tf g: ð3Þ

into Eq. 3 leads to,

�ρmΓδuy yð Þ ¼ δBy yð Þ: ð4Þ

Here, Γ >0 is the flow relaxation time in case no
vorticity banding occurs, while Γ<0 when the system is
unstable against vorticity banding. A theoretical pre-
diction for the behavior of the body force By for rod-
like colloids can be based on the equations of motion for

the density and order parameter, and the constitutive
equation for inhomogeneous suspensions as derived by
Dhont and Briels (2002, 2003). Here, the body force is
expressed in terms of integrals over the probability density
ρ r;û; t
� �

for the position r of a rod and its orientation
specified by the unit vector û. The constitutive equation
derived by Dhont and Briels (2003) contains three distinct
contributions: there is a Brownian body force, a contribu-
tion due to rod–rod interactions and a contribution due to
direct coupling of flow to microstructural order. The
Brownian body force and the coupling contribution are
linear in the probability density, while the interaction
contributions to the body force are bilinear. The probability
density is now written as ρ r; û; t

� � ¼Aρ̂0 r;û
� �þδAρ̂1

r;û; t
� �

, where ρ̂0 and ρ̂1 are re-normalized densities, where
their prefactors A and δA specify their amplitude. The
density ρ̂0 is supposed to lead to a zero body force in the
gradient direction. We are looking for those amplitudes A,
above which the probability density is not able anymore to
adjust itself to the imposed flow profile such that the body
force remains zero. Upon linearization of the above
mentioned contributions to the body force with respect to
δA, the following possible contributions to δBy result. The
linear terms in the density give rise to contributions that do
not involve the amplitude A. Normal body forces vary

like � +
�
τ

� �2

for small shear rates, where τ is the relaxation
time of shear-induced deformations of inhomogeneities. For
high shear rates, normal forces shear-thin to a relatively
small value. Hence, the linear terms in density give rise to

contributions of the form � g
�
τ

� �2
f g

�
τ

� �
δA, where f tends to

a nonzero constant for small shear rates and tends es-
sentially to zero for high shear rates. For convenience, we
shall use the simplest function with these limiting proper-

ties: f g
�
τ

� �
¼ 1

�
1þ g

�
τ

� �4
� �

. The rod–rod interaction con-

tributions to the body force which are bilinear in the density

similarly lead to contributions of the form � +
�
C

� �4
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Fig. 8 a The flow field along the
gradient direction in the initial
stage of vorticity banding. The
light grey inclusions represent
inhomogeneities. b Stability dia-
gram for vorticity banding within
the “Weissenberg scenario”. A
measures the magnitude of inho-
mogeneities. For the lower curve,
A=C, while for the upper curve,
A=4C. The system is unstable in

the shear-rate interval +
�
l; +

�
u

� �
,

where +
�
l is “the lower border

shear rate” and +
�
u is the “upper

border shear rate”
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f 2 +
�
C

� �
AδA, as ρ̂0 and ρ̂1 are essentially equal. The linear

change of the body force due to a slight change of the
density is thus of the form,

d By

� ¼ C1 þ C2A
g
�
t

� �2

1þ g
�
t

� �4

8><
>:

9>=
>;

g
�
t

� �2

1þ g
�
t

� �4 dA; ð5Þ

where the constant C1 is linear in ρ̂1 and C
2
is bilinear in ρ̂0

and ρ̂1. These constants are determined by the internal
structural properties of the inhomogeneities. Without loss of
generality, A and δA can be taken positive. Suppose that δuy
is negative, implying that the flow is directed towards the
inner cylinder at positions where inhomogeneities are
present and a “backflow” occurs in between the inhomo-
geneities, as sketched in Fig. 8a (the analysis given below
proceeds similarly when δuy is negative). From Eqs. 4
and 5, the following instability criterion for which Γ<0 is
then found,

C1 þ C2A
g
�
t

� �2

1þ g
�
t

� �4 < 0: ð6Þ

As no banding is expected when interactions are absent
(in which case C2=0), the constant C1 must be positive.
Banding can thus occur when C2<0. The instability
condition can thus be rewritten as,

A
g
�
t

� �2

1þ g
�
t

� �4 > C; ð7Þ

where C ¼ �C1=C2 > 0. The corresponding stability diagram

is given in Fig. 8b. The form +
�
C

� �2
�

1þ +
�
C

� �4
� �

has a single

maximum at g
�
t ¼ 1, with a maximum value of 1/2.

Hence, when A<2C, there is no instability (see the lower
curve in Fig. 8b, for which A=C). In this case, inhomoge-
neities are not sufficiently pronounced to produce body
forces which lead to flow along the gradient direction. That a
minimum strength of inhomogeneities is required for vorticity
banding is evidenced by the fact that banding occurs only at a
characteristic time after the shear-rate quench, where phase
separation led to sufficient inhomogeneities (see Fig. 3).
When A>2C, an instability occurs only in a limited shear-rate
range +

�
l; +

�
u

� �
, with +

�
l > 0 (as indicated in the upper curve in

Fig. 8b, for which A=4C). This is also seen in our
experiments, where for a given fd concentration, banding
indeed occurs in a shear-rate range where the lower border
shear rate is nonzero. A threshold shear rate is needed to
produce body forces along the gradient direction, while shear
thinning of normal stresses leads to zero body forces,
rendering the system stable again at higher shear rates. A

more precise analysis can be performed using the constitutive
relation as derived by Dhont and Briels (2002, 2003).

To further validate the proposed mechanism, the gap
width dependence of the shear rate for the onset of elastic
instability, as given in Fig. 4a and b, could be compared to
theory. Larson et al. (1990) predicts a G1/2-dependence
on the gap width G. However, there are too few data points
in Fig. 4a and b to confirm this prediction. It is also not
possible to estimate the critical Weissenberg number where
banding first occurs, as this involves the relaxation time of
the nonuniformly stretched inhomogeneities to their homo-
geneous state. It is not clear how to measure or estimate
such a relaxation time.

The volume fraction of dextran is about 0.15, and
therefore below the overlap concentration. The dextran is
therefore dilute and far from being entangled. Dextran as
such is therefore not at the origin of the observed banding.
In fact, for a given dextran concentration, vorticity banding
ceases to occur outside the paranematic–nematic two-phase
region. The role of dextran is to induce depletion attractions
between the rods, which apparently has an appreciable
effect on the mechanical properties of the inhomogeneities.

Intuitive explanation of vorticity-banding
characteristics of fd-virus suspensions
and of other systems

Assuming that the mechanism described in the previous
section is at the origin of vorticity banding, a number of
the experimental findings for the fd-virus suspensions can
be understood intuitively.

Based on the proposed mechanism, it is immediately
clear why banding is observed only within the two-phase
region. Without the presence of elastically deformable
inhomogeneities that are formed due to phase separation,
hoop stresses cannot be generated, and banding will not
occur.

Banding is observed only within a limited shear-rate
region +

�
� ; +

�
þ

� �
, with +

�
� > 0. The overall shear rate must

exceed a minimum value to lead to normal stresses that are
sufficiently large to lead to rolling flow. Banding probably
ceases to occur at higher shear rates because the extent of
inhomogeneities in the gradient direction becomes too
small to achieve sufficient nonuniform deformation in that
direction.

For a couette geometry, local gradients in shear rate
increase with increasing gap width. Such larger gradients in
shear rate lead to stronger nonuniform stretching and
therefore to larger hoop stresses. This explains why +

�
�

decreases with increasing gap width (see Fig. 4a and b).
That the upper border shear rate +

�
þ decreases for increasing

gap width in case of isolated inhomogeneities and increases
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in case of a bi-continuous structure is unclear. It reflects the
different elasticity of inhomogeneities in a bi-continuous,
spinodal-like structure or isolated inhomogeneities. The
stronger hoop stresses for larger gap widths evidently leads
to larger band widths, which is indeed observed (see
Fig. 4c).

Vorticity banding is found, independent of whether the
shear rate or shear stress is controlled. This agrees with the
proposed mechanism, as normal stresses are important,
independent of whether shear rate or shear stress is
controlled during the experiment.

Finally, the same observed rolling flow within the bands
for the polymer systems is expected, as the same mechanism
is responsible for the observed banding.

Vorticity banding is observed in different kinds of
systems. Inhomogeneities can be identified in all these
systems that might be elastically nonuniformly deformed,
leading to banding as proposed above. Vorticity banding
has been seen in nanotube suspensions by Lin-Gibson et al.
(2004), which are partly aggregated. These aggregates are
the necessary inhomogeneities to induce the hoop stresses
leading to banding. The normal stress measurements by
Lin-Gibson et al. (2004) indeed indicate that such stresses
play a role in vorticity banding for these systems. Similar
aggregates of weakly flocculating spherical colloidal par-
ticles are reported by Vermant et al. (1999) to give rise to
vorticity banding. Stationary vorticity banding has also been
observed by Bonn et al. (1998) for worm-like micellar
systems. Either the worm-like micelles serve here as the
inhomogeneities or a shear-induced nematic phase is formed,
leading to the same kind of inhomogeneities for our fd-virus
suspension.

Vorticity banding is occasionally connected to a strong
shear thickening (like for the worm- like micelles found by
Bonn et al. 1998), where the shear stress exhibits a
discontinuity, as schematically depicted in Fig. 9. Assuming
that the shear rate is spatially constant and equal to the
applied shear rate throughout the system, the accompanied
multi-valued form of the flow curve is a necessary
condition for the existence of vorticity bands. The two
shear stresses indicated in Fig. 9 correspond, in that case, to
the stresses carried by the two different microstructures (or
phases) that exist within the bands. However, such a shear-
thickening behavior is not observed in our fd-virus
suspensions. What might happen for systems that exhibit
such a shear thickening is that inhomogeneities exist due to
a shear-induced phase transition of a phase with a much
higher shear viscosity compared to structure at low shear-
rates. Highly viscous inhomogeneities could be formed
during the initial stages of this shear-induced phase
transition, which then lead to vorticity banding according
to the proposed mechanism in the previous section
(personal communication with John R. Melrose).

Summary

Experiments on vorticity banding of suspensions of
colloidal rod-like particles (fd virus) reveal the importance
of inhomogeneities that are formed during the initial stages
of isotropic–nematic phase separation. Vorticity banding
occurs only within the two-phase region and banding
kinetics depends on whether the inhomogeneities are
formed due to spinodal decomposition or a mix of spinodal
decomposition and nucleation and growth. Furthermore, the
shear-rate region where banding occurs and the final band
width depend on the gap width of the couette cell, and there
is a secondary weakly rolling flow within the bands. This
lead us to propose a mechanism that gives rise to the
vorticity-banding instability, which is similar to the well-
known elastic instability of polymer systems (theWeissenberg
effect). Instead of nonuniform deformation of polymer chains
that lead to hoop stresses giving rise to band formation, the
inhomogeneities are nonuniformly deformed in case of
vorticity banding. The vorticity-banding instability is thus
proposed to be similar to the Weissenberg effect, where the
role of polymer chains is now played by inhomogeneities.
Many of the observed banding characteristics can be
understood intuitively on the basis of this mechanism.

Inhomogeneities can be identified in other systems that
exhibit vorticity banding. It remains, however, to be further
investigated whether these other systems also exhibit
banding due to the proposed elastic instability. The main
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Fig. 9 The shear viscosity as a function of shear rate, where beyond a
critical shear rate g

�
c , a shear-induced, very viscous phase is formed.

The two dashed branches are (meta-table) states. In case the shear rate
is equal to the applied shear rate g
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app throughout the gap, the two

types of vorticity bands support the stresses σ1 and σ2
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features that should be investigated are whether there is a
secondary, rolling flow within the bands and whether the
banding characteristics depend on the properties of the
inhomogeneities that are present. A quantitative understand-
ing requires a theory that includes stresses generated by
nonuniformly stretched inhomogeneities.

It would be interesting to perform normal stress measure-
ments in a cone-plate geometry. However, in view of the very
long oscillation time of the rolling flow, the normal stress
differences for the fd-virus suspensions might be too small to
measure with the present available rheometers.
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Multiple Shear-Banding Transitions in a Supramolecular Polymer Solution
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We report on the nonlinear rheology of a reversible supramolecular polymer based on hydrogen
bonding. The coupling between the flow-induced chain alignment and breakage and recombination of
bonds between monomers leads to a very unusual flow behavior. Measured velocity profiles indicate three
different shear-banding regimes upon increasing shear rate, each with different characteristics. While the
first of these regimes has features of a mechanical instability, the second shear-banding regime is related to
a shear-induced phase separation and the appearance of birefringent textures. The shear-induced phase
itself becomes unstable at very high shear rates, giving rise to a third banding regime.

DOI: 10.1103/PhysRevLett.97.108301 PACS numbers: 83.60.Rs, 47.50.�d, 83.60.Wc, 83.80.Rs

Coupling between fluid microstucture and flow yields a
rich scala of non-Newtonian behavior in complex fluids.
Many complex fluids display flow instabilities or flow-
induced phase transitions above a critical shear rate or
stress. Solutions of wormlike micelles, for example,
undergo a shear-banding instability in which the fluid
separates in the gradient direction into coexisting regions
(bands) supporting different shear rates (‘‘gradient band-
ing’’) [1,2]. Rod-like colloids, on the other hand, display
‘‘vorticity banding,’’ in which the different shear bands are
separated in the vorticity direction [3]. Several other sys-
tems, such as attractive emulsions or carbon nanotube
suspensions, show an elastic instability that leads to the
formation of shear-induced aggregates aligned in the vor-
ticity direction [4,5].

Several aspects of these instabilities can be reproduced
by phenomenological models, see e.g. [6]. Shear banding
in the gradient direction, for example, can be related to a
nonmonotonic constitutive equation relating the shear
stress � and the shear rate _�. When a shear rate is applied
in the region where � decreases with _�, an initially homo-
geneous flow becomes mechanically unstable. In the sim-
plest scenario, the system then separates into a weakly
sheared band that flows at _�1 and a highly sheared band
that flows at _�2 [1]. Increasing the overall shear rate within
the unstable region leads to an increase of the width of the
high shear band, while the stress remains constant. The
microscopic origin of the shear-banding instability varies
for different systems. For wormlike micelles, two alterna-
tive mechanisms for shear banding have been proposed.
Cates and coworkers predicted a nonmonotonic constitu-
tive equation leading to a shear-banding instability, based
on the Doi and Edwards reptation model for polymers [1].
This purely mechanical instability is responsible for shear
banding in semidilute solutions of wormlike micelles, far
from an equilibrium phase transition [2]. In more concen-
trated systems, on the other hand, the appearance of a
banded flow is related to a first-order phase transition

induced by the flow, such as an isotropic-to-nematic tran-
sition [6,7]. In this case, the two shear bands correspond to
two structurally different coexisting phases.

Most experimental studies on shear banding have been
performed with solutions of wormlike micelles. These
have been successfully described as reversible equilibrium
polymers that can break and recombine on experimental
timescales [8]. In recent years, various other types of
reversible supramolecular polymers have been synthe-
sized, based on more specific reversible interactions, such
as metal coordination complexes and hydrogen bonding
[9]. The availability of these polymers paves the way for
experiments that will lead to a more general understanding
of the flow behavior of reversible polymers.

In this Letter, we report for the first time on shear
banding in a solution of reversible supramolecular poly-
mers based on hydrogen bonding. The unique feature of
this system is that we observe three different shear-banding
regimes upon variation of the shear rate, each with different
characteristics. While the banded state at low shear rates
has features of a mechanical instability, the second shear-
banding regime is related to a shear-induced phase tran-
sition and the appearance of texture. In this region, we find
a very unusual relation between the relative widths of the
two shear bands and the overall shear rate: the width of the
high-shear band decreases when the global shear rate in-
creases. At very high shear rates, the shear-induced phase
becomes itself unstable, giving rise to a third banding
regime.

The system under examination is a solution of bis-urea-
substituted toluene (EHUT), a bifunctional monomer that
assembles reversibly into long, semiflexible polymer
chains by multiple hydrogen bonds [10]. The persistence
length of EHUT polymers was estimated to be at least
100 nm [11], which is an order of magnitude larger than
for most wormlike micelles [8]. We study solutions of
EHUT in dodecane at concentrations up to 6:4 g=l at
20 �C. No evidence for an isotropic-to-nematic phase tran-

PRL 97, 108301 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
8 SEPTEMBER 2006

0031-9007=06=97(10)=108301(4) 108301-1 © 2006 The American Physical Society

154



sition (at rest) was observed for this concentration range
and temperature. Rheological measurements were per-
formed on a Paar Physica MCR 300 rheometer in con-
trolled strain mode using a Couette geometry of 26.66 mm
inner diameter and 1.13 mm gap width and a solvent trap to
minimize evaporation. It was checked that a different
Couette geometry gave only small differences. Spatially
resolved velocity profiles were measured in a closed trans-
parent Couette cell (43 mm inner diameter, 2.5 mm gap)
using heterodyne dynamic light scattering in combination
with a differential Laser Doppler velocimeter [12]. The
rheo-optical properties of the sheared solutions were
studied by placing a transparent Couette cell (43 mm inner
diameter, 2.5 mm gap) between crossed polarizers. Images
were taken in the plane defined by the flow and vorticity
directions so that the measured birefringence is an average
over the gap.

Figure 1 shows the steady state shear stress � as a
function of the shear rate _� for a 5:9 g=l EHUT solution
at 20 �C. Several regimes are indicated in this figure. In
regime A ( _� < _�I � 0:01 s�1), the stress increases linearly
with the shear rate. The solution behaves as a Maxwell
fluid in this regime with a viscosity � of 368 Pa � s, plateau
modulus G0 of 16 Pa and a relaxation time �0 of 23 s as
obtained from the transient stress response after startup of
shear flow and from dynamic linear rheology measure-
ments. At _� � _�I � 0:01 s�1 and� � �B � 3:3 Pa, there
is an abrupt change of slope, after which the stress de-
creases slightly with increasing shear rate. After reaching a
minimum, the stress increases again, but with a much
lower slope than in the linear regime. Region B is charac-
terized by stress overshoots, very slow transient behavior

(it may take hours before a steady state is reached), and
metastability. At _� > _�II � 0:06 s�1, the stress exceeds
�B and increases with increasing shear rate with a slope
of about 0.3 (regime C). In regime D, the slope of the flow
curve decreases and reaches a minimum of around 0.08 at
_� ’ 30 s�1. In regime E, the slope increases again, and it

eventually reaches a value of around 0.5 in regime F.
RegimesD and E are again characterized by slow transient
behavior. Care was taken to ensure that the points in Fig. 1
really correspond to the steady state values for the stress.
Different shear histories were applied to the solution,
which all resulted in the same steady state value. We also
measured a flow curve in controlled stress mode. This gave
the same result, except that no points could be measured in
regime B: at � � �B, the shear rate ‘‘jumps‘‘ from _�I to
_�II. As indicated in the inset in Fig. 1, flow curves at dif-

ferent concentrations exhibit qualitatively the same charac-
teristics. The onset of regime B occurs at the same normal-
ized shear rate _�I�0 � 0:20� 0:03 and stress �B=G0 �
0:18� 0:03 for all concentrations, where G0 and �0 both
increase with increasing concentration [11]. At higher
shear rates, the normalized flow curves do not superim-
pose, and the normalized stress at a certain normalized
shear rate decreases with increasing concentration.

Figure 2 shows velocity profiles in the gap of the Couette
cell measured at different applied overall shear rates. The
lowest shear rate for which a velocity profile could be
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measured was 0:01 s�1, just on the boundary of regimes A
and B. The velocity profile is linear, as expected for a
Newtonian solution. At shear rates between 0.015 and
0:066 s�1 (regime B, Fig. 2(a)], the profiles exhibit a
‘‘kink’’ indicating a banded structure. The kink becomes
more pronounced with increasing shear rate. The measured
velocity profiles also enable a quantification of wall slip. In
regime B, there is a marginal slip at the stationary outer
cylinder. At shear rates between 0.066 and 0:25 s�1 (re-
gime C, Fig. 2(b)), the profiles are linear, indicating that
the flow is homogeneous. Slip is negligible in this regime.
An unambiguous banded state is observed again in regimes
D and E, at shear rates between 0.25 and 300 s�1. In
regime D, between 0.25 and 30 s�1, the velocity profile
in both shear bands is approximately linear [Fig. 2(c)],
while in regime E, above 30 s�1, the high-shear band has
a strongly curved profile [Fig. 2(d)]. At the highest shear
rate applied ( _� � 308 s�1), the low shear band has dis-
appeared and only one band is left, also with a curved
velocity profile (regime F, Fig. 2(d)]. The curved velocity
profiles in regimes E and F are an indication for strong
shear thinning in these regimes [12]. The profile for _� �
308 s�1 can be fitted with a power-law fluid �� _�a with
an exponent a � 0:15 [13]. The same shear-thinning ex-
ponent accounts for the profiles in the high shear band in
regime E. A slope of 0.15 is also indicated in the flow curve
shown in Fig. 1. It can be seen in this figure that this
exponent is in reasonable agreement with the slope of the
measured flow curve in the relevant region (regime E and
the beginning of regime F).

Solutions of EHUT thus exhibit three different shear-
banding regimes. The onset of the first shear-banding
regime (B) occurs at the same normalized shear rate _�I�0

and stress �B=G0 for different EHUT concentrations
(Fig. 1, inset), suggesting that the origin of shear banding
in this regime is a mechanical instability of the underlying
constitutive relation, such as proposed by Spenley and
Cates [1]. Indeed, birefringence images show no evidence
for a shear-induced phase transition in regime B [Fig. 3(a)]:
no significant increase of the birefringence could be de-
tected in regimes B and C. The unstable flow behavior is
also supported by the jump in the flow curve when mea-
sured under controlled stress. The shear-banded flow at

higher shear rates, in regimesD and E, on the other hand, is
accompanied by the appearance of birefringent textures in
the solution [Fig. 3(b)–3(d)]. These textures could be seen
for the first time at a shear rate of about 1 s�1 (i.e. in
regimeD). They appear a few seconds after startup of shear
flow and remain visible for many hours under steady flow.
After cessation of the shear flow, the textures disappear
again on the timescale of several seconds. With increasing
shear rate, the overall birefringence increases and the
textures become finer and at very high shear rates, they
seem to disappear [Fig. 3(d)]. Without polarized incoming
light, no texture could be seen. The textures can be inter-
preted as domains of a new phase induced by the shear flow
and suggest that, contrary to regime B, the banded structure
in regimes D and E is related to a shear-induced phase
separation (for example between an isotropic and a ne-
matic phase). Similar domain patterns have been seen in
other multiphase flows where they were attributed to a
viscoelastic asymmetry between the two phases [5]. In
wormlike micelle solutions, a shear-induced phase transi-
tion is observed only for very concentrated micellar solu-
tions, close to an equilibrium phase transition [7]. For
EHUT solutions, we did not see evidence for a phase
transition at rest for the concentrations used, but, never-
theless, a transition is induced by the flow. This suggests
that the flow couples more strongly to chain alignment and
growth for EHUT than for wormlike micelles, probably
because of the longer persistence length of EHUT poly-
mers [8,11].

In order to obtain more detailed information about the
behavior in the three different shear-banding regimes, we
extract from the velocity profiles displayed in Fig. 2 the
average shear rates in both shear bands and the width of the
two bands. These are shown in Fig. 4 as a function of the
overall applied shear rate. Clearly, our observations do not
correspond to the simple picture in which a change of the
applied shear rate only affects the relative proportion of

FIG. 3. Birefringence images taken in the plane defined by the
flow and vorticity directions of a 5:9 g=l EHUT solution at 20 �C
under shear flow for different applied shear rates (as indicated).
The flow regime is indicated in parentheses. Each image is 1	
1 cm.
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each layer, while the shear rates in both bands and the value
of the stress remain constant [1]. In regime B, we find that
both the shear rate in the low shear band _�1 and that in the
high shear band _�2 increase with increasing _�. Moreover,
we do not see a clear stress plateau in the flow curve
(Fig. 1). These observations may be due to the inherent
stress gradient of the Couette cell. Alternatively, the com-
positions of the two bands could be different and vary
when the overall shear rate is varied [6]. The relative width
of the high shear band �2 increases with the overall shear
rate _� in regime B, as expected [1]. It approaches unity as
regime C is approached, where the banded structure dis-
appears. The difference in viscosity between the two bands
in regime B is rather small: the ratio _�2= _�1 varies between
1 and 2. In regime D, where shear banding is related to a
phase transition (as seen from birefringence images), the
variation of _�1, _�2, and �2 with _� is rather unusual. Upon
increasing the shear rate, �2 first remains more or less
constant and then decreases, while the ratio between the
shear rates in both bands ( _�2= _�1) increases from 1 to
approximately 50. Clearly, such behavior cannot be ex-
plained by current theory. It suggests a complex interplay
between the structure of the two phases, the concentrations
and length distributions in both phases, and the shear flow.
In regime E, the behavior is more or less as expected. Upon
increasing the overall shear rate, the shear rates in the two
bands remain approximately constant, while �2 increases
monotonically to unity at the boundary between regimes E
and F, where also the textures disappear. The behavior of
_�1, _�2, and �2 upon variation of the overall shear rate

changes very abruptly at _� � 30 s�1, between regimes D
and E. As noted above, the shapes of the velocity profiles
also change here: in regimeD the profiles are linear in both
bands, while in regime E the high shear band is strongly
curved [Fig. 2(c) and 2(d)]. These observations suggest
that the shear-induced phase that is formed in regime D
becomes unstable in regime E, thus giving rise to a third
shear-banding regime. Whether this instability is a me-
chanical instability or a phase transition to a new shear-
induced phase or structure is unclear. It would be useful to
extend the present rheological study with scattering tech-
niques, microscopy, or birefringence imaging in the vor-
ticity direction to obtain information about the
microstructure of the two phases.

In summary, we studied the nonlinear rheology of a
solution of hydrogen-bonded supramolecular equilibrium
polymers. Upon variation of the shear rate, these polymers
exhibit a very rich and complex behavior with three differ-
ent shear-banding regimes. For the first time, we observe
within the same system the two different types of gradient
shear banding that have been described: a mechanical
instability at low shear rates and a shear-induced phase

transition at higher shear rates. The characteristics of the
banded flow regimes cannot be fully explained by current
theories and ask for a detailed microscopic modeling of
equilibrium polymers under flow that takes into account
the coupling between flow alignment, reversible breakage
and recombination reactions, and concentration gradients
in the gap. By comparing with other types of reversible
supramolecular polymers and contrasting to wormlike mi-
celles, we may be able to extract the role of specific
bonding interactions and chain flexibility in these systems.
Alternatively, by adding monofunctional monomers that
block chain ends and prevent their recombination [14], one
could investigate the role of recombination reactions, while
adding trifunctional monomers would give the possibility
of bundle or network formation.
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Abstract
The linear and nonlinear dynamic response to an oscillatory shear flow of giant wormlike
micelles consisting of Pb–Peo block copolymers is studied by means of Fourier transform
rheology. Experiments are performed in the vicinity of the isotropic–nematic phase transition
concentration, where the location of isotropic–nematic phase transition lines is determined
independently. Strong shear-thinning behaviour is observed due to critical slowing down of
orientational diffusion as a result of the vicinity of the isotropic–nematic spinodal. This severe
shear-thinning behaviour is shown to result in gradient shear banding. Time-resolved
small-angle neutron scattering experiments are used to obtain an insight into the microscopic
phenomena that underlie the observed rheological response. An equation of motion for the order
parameter tensor and an expression of the stress tensor in terms of the order parameter tensor
are used to interpret the experimental data, both in the linear and nonlinear regimes. Scaling of
the dynamic behaviour of the orientational order parameter and the stress is found when critical
slowing down due to the vicinity of the isotropic–nematic spinodal is accounted for.

1. Introduction

Dispersions of surfactant wormlike micelles form a class
of systems that has been intensively studied during the
past two decades. Wormlike micellar systems sometimes
exhibit extreme shear-thinning behaviour (Berret 2004),
resulting in shear-induced structure formation like shear
banding (Manneville 2008). Strong shear thinning is of
practical interest, since often systems are required in practical
applications that exhibit extreme differences in viscosity
between the sheared and quiescent states. The reason for
the popularity of wormlike micelles lies in their complex
rheological behaviour like shear banding and chaotic response,
which are connected to the thinning behaviour of these systems
(Berret 2004). It is therefore important to understand the
microscopic mechanism underlying the very strong shear-
thinning behaviour of wormlike micelles. There are several
possible microscopic mechanisms that could be responsible
for the occurrence of strong shear thinning (Cates and
Candau 1990). One mechanism is related to the breaking
and/or merging of worms. Scission due to shearing forces
and merging of worms through stressed entanglement points
(Briels et al 2004) can lead to strong shear thinning. Another

possible mechanism for strong shear thinning is connected
to the fact that wormlike systems can undergo an isotropic–
nematic (I–N) phase transition. Rotational diffusion close to
I–N spinodal lines in the phase diagram is very slow, so that
a relatively strong alignment on applying shear flow occurs.
Such a strong increase in the degree of alignment leads in
turn to strong shear thinning. We shall hereafter refer to
the slowing down of rotational diffusion close to the I–N
spinodals simply as ‘critical slowing down’. By definition,
the rotational diffusion coefficient at the spinodal changes sign,
and is therefore zero at the spinodal, which implies very slow
rotational Brownian motion.

For most studied surfactant wormlike micellar systems,
the I–N transition occurs at relatively high volume fractions
of around 10%. At this high concentration the viscosity of
the system is quite large, and moreover a transition to a gel
phase can interfere. For CPLC/NaSal inbrine, for example,
gelling occurs in the vicinity of the I–N transition on changing
the temperature by just a few degrees. Furthermore, the I–N
transition is only found under flow conditions. These features
complicate detailed studies on the rheological response of
wormlike micelles and its microscopic origin. We therefore
study here a system that exhibits many of the properties
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of wormlike micellar systems that are responsible for their
interesting rheological behaviour, but that does not have
the above-mentioned complications of surfactant wormlike
micellar systems. For an I–N transition to occur without flow,
we need a system where the persistence length lp is much
larger than the thickness d of the chains. The ratio lp/d should
be larger compared to typical values for wormlike micelles.
A candidate system could be micelles formed from block
copolymers. A well-studied system is the poly(butadiene)–
poly(ethylene oxide) (Pb–Peo) diblock copolymer with a 50–
50 block composition in aqueous solution. The main advantage
of this system is that it is very stiff, with a persistence
length of around 500 nm and a diameter of 14 nm. The
contour length of the Pb–Peo worms is around 1 μm. As a
result of the large ratio lp/d compared to common surfactant
micellar systems, the diblock copolymer system shows an I–
N transition at a modest concentration of about 5%, although
the transition concentration has not been determined accurately
yet (Won et al 1999). Other advantages of the Pb–Peo
system are that it is possible to tune the monomer-exchange
kinetics between the polymers (Lund et al 2006) or its
morphology (Denkova et al 2008) by using different solvent
mixtures. Furthermore, these polymers are easily marked
with fluorescent dyes, which enables their visualization with
fluorescence microscopy. In a recent study Förster et al used
this system, amongst others, for Rheo-SANS measurements,
where stationary shear measurements were combined with
small-angle neutron scattering (SANS) (Förster et al 2005). A
feature of this diblock copolymer system that is probably not
shared with micellar systems is that the polymers do not easily
break and merge under flow. We thus focus on the microscopic
mechanism mentioned above, related to critical slowing down
of rotational diffusion close to the I–N transition.

In section 2, a well-known theoretical framework for
the dynamics and rheological behaviour of stiff rods is
summarized. This theory does not include flexibility of
single polymer chains, but does include the slowing down of
rotational diffusion due to the vicinity of the I–N spinodal.
This theory will be used to assess the effect of the vicinity of
the I–N transition on rheological response. A comparison of
our experiments with predictions based on this theory can only
be done on a qualitative level, since flexibility is neglected in
the theory. After the materials section we describe a newly
developed time-resolved SANS set-up, and the couette cells
and rheometers that were used. In section 5 we first discuss
the flow curve of the system and determine the corresponding
flow profiles. It is also shown in this section how the (non-
equilibrium) binodal line can be found from shear step-down
experiments. Then we discuss SANS experiments on quiescent
and stationary sheared systems, which we need as an input
in the last subsection on dynamic experiments. In the latter
subsection we connect the time-resolved SANS measurements
with Fourier transform rheology results. The spinodal point is
determined in order to establish whether the concept of critical
slowing down indeed applies.

2. Theory

2.1. Concentration dependence of the rotational diffusion
coefficient

On approach of the isotropic–nematic (I–N) spinodal, the
collective rotational diffusion coefficient vanishes and becomes
negative in the unstable part of the phase diagram. As will be
discussed later, this rotational diffusion coefficient describes
the dynamics of small perturbations of the orientational order
parameter from its value in a stationary state. For a system
of very long and thin, rigid rods with repulsive interactions
that have a range that is small compared to the length of the
rods, critical slowing is described by the equation of motion
for the orientational order parameter tensor S ≡ 〈ûû〉, where û
is the unit vector along the long axis of a rod, which specifies
the orientation of the rod, and where the brackets indicate
ensemble averaging. Starting from the Smoluchowski equation
for rod-like colloids with hard-core interactions, an equation of
motion for S can be derived (Dhont and Briels 2003a), which
is similar to the Doi–Edwards equation of motion (Doi and
Edwards 1986):

d

dt
S = −6Dr

{
S − 1

3 Î + L
D ϕ

(
S(4):S − S · S

)}

+ γ̇
{
Γ̂ · S + S · Γ̂T − 2S(4):Ê}

, (1)

where Dr is the rotational diffusion coefficient at infinite
dilution, L is the length of the rods, d their core diameter, ϕ

is the volume fraction of rods, γ̇ is the shear rate, Γ̂ is the
velocity-gradient tensor and Ê = 1

2 [Γ̂+Γ̂T] is the symmetrized
velocity-gradient tensor (where the superscript ‘T’ stands for
‘transpose’). Furthermore, S(4) ≡ 〈ûûûû〉 is a fourth-order
tensor. A closure relation that expresses contractions of the
form S(4):M in terms of S for arbitrary second rank tensors M
is discussed in (Dhont and Briels 2003a):

〈û û û û〉:M = 1
5

{
S · M + M · S − S · S · M

− M · S · S + 2S · M · S + 3SS:M}
, (2)

where M = 1
2 [M + MT] is the symmetric part of the tensor

M. For simple shear flow, the velocity-gradient tensor has the
form

Γ̂ =
( 0 1 0

0 0 0
0 0 0

)

, (3)

which corresponds to a flow in the x direction with its gradient
in the y direction.

The largest eigenvalue λ of S, the ‘orientational order
parameter’, is a measure of the degree of alignment (for the
isotropic state λ = 1/3 and for a perfectly aligned state, λ =
1). In order to illustrate critical slowing down of orientational
diffusion, we consider first an isotropic state which is slightly
perturbed. The equation of motion for a small perturbation δλ

of λ = 1/3 in the isotropic state, in the absence of flow, is
readily obtained from equation (1) together with the closure
relation (2):

dδλ

dt
= −6Dr

{
1 − 1

4

L

d
φ

}
δλ = −6Deff

r δλ (4)
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where

Deff
r = Dr

{
1 − 1

4

L

d
φ

}
(5)

is the effective rotational diffusion coefficient. Hence,

δλ(t) = δλ(t = 0) exp {−6 Deff
r t}. (6)

From equation (5) it can be seen that Deff
r → 0 as (L/d)ϕ →

4. Collective rotational diffusion thus becomes very slow on
approach of the spinodal concentration where (L/d)ϕ = 4.
For larger concentrations, where Deff

r < 0, the isotropic state
is unstable, and the initially small orientational order parameter
increases in time. In the presence of shear flow, the above
analysis must be done numerically, since the unperturbed
(stable or unstable) stationary state under shear flow is
not known analytically. The effective rotational diffusion
coefficient is now a tensorial quantity rather than a scalar as for
the isotropic state discussed above. The phenomenon of critical
slowing down, however, is unchanged: rotational diffusion
becomes very slow on approach of the spinodal (where at
least one of the eigenvalues of the rotational diffusion tensor
changes sign). This slowing down of rotational diffusion has
pronounced effects on the shear-thinning behaviour, as will be
discussed later.

2.2. Dynamic response of stress and orientational order

From microscopic considerations, an expression for the stress
tensor Σ can be obtained (Dhont and Briels 2003b), which is
similar to an earlier derived expression by Doi and Edwards
(Doi and Edwards 1986):

ΣD = 2η0γ̇

[
Ê + (L/D)2

3 ln{L/D}ϕ

×
{
Γ̂ · S + S · Γ̂T − S(4):Ê − 1

3
ÎS:Ê − 1

γ̇

dS
dt

}]
. (7)

For an oscillatory shear flow, the shear rate γ̇ in equations (1)
and (7) is time-dependent:

γ̇ (t) = γ̇0 cos{ωt}, (8)

where γ̇0 = Aω is the shear amplitude, with A the strain
amplitude and ω the frequency of oscillation.

The linear and nonlinear response of suspensions or
rigid rods, within the approximations involved in the theory,
can be obtained from numerical solutions of equations (1)
and (7) (Dhont and Briels 2003a). In particular, dynamic
response functions can be obtained from a Fourier analysis
of the time dependence of the stress tensor after transients
have relaxed. For sufficiently large shear rates, higher-order
nonlinear response functions come into play. For these higher
shear amplitudes, the time-dependent stress tensor must be
Fourier-expanded as

ΣD = 2γ̇0Ê
∞∑

n=0

|η|n sin(nωt + δn), (9)

where |η|n and δn are the amplitude and phase shift of
the Fourier components, respectively. Similarly, the scalar
orientational order parameter will respond in a nonlinear
fashion, so that

P2(t) =
∞∑

n

|P2|n cos(ωt + εn), (10)

where P2 = 1
2 [3λ − 1] (as before, λ is the largest eigenvalue

of S). It should be mentioned that in scattering experiments
only projections of the orientational order parameter tensor are
probed. In that case, P2 in equation (10) does not correspond
to the largest eigenvalue of S, but only to the corresponding
projection of S. In the experiments described in this paper the
vorticity-flow plane is probed, for which it is readily shown
from equation (1) by expanding S for small shear rates that
the leading term in shear rate varies like ∼γ̇ 2. The time
dependence of the experimentally determined orientational
order parameter term has therefore the double frequency of the
applied shear flow.

One may ask about the shear rate beyond which nonlinear
response is expected, and beyond which a frequency phase
shift will be found. An analysis of the equation of motion (1)
and the expression (7) for the stress tensor for the isotropic
state and to leading order in nonlinearity reveals that the so-
called effective Peclet number:

Peeff = γ̇0/Deff
r , (11)

and the effective Deborah number:


eff = ω/Deff
r , (12)

measure the nonlinearity and phase shift. Here, the effective
rotational diffusion coefficient is given in equation (5).

3. Material

In this study we used a symmetric Pb–Peo block copolymer
prepared by living anionic polymerization; the synthesis fol-
lows a two-step procedure since the polymerization conditions
for ethylene oxide are different from those for butadiene. De-
tails of the two-step procedure can be found in an earlier publi-
cation (Allgaier et al 1997). The Pb–Peo block copolymer was
characterized by size exclusion chromatography (SEC) using
a mixture of tetrahydrofuran/dimethylacetamide 90/10 v/v as
eluant. The polydispersity, Mw/Mn, of the block copolymer
was smaller than 1.04. No signs of PEO and PB homopoly-
mers were found in the SEC chromatograms. Absolute molec-
ular weights were determined by 1H-NMR measurements in
CDCl3. Thereby, the signal of the t-butyl initiator group was
taken as an internal reference. The number average molecu-
lar weights, Mn, are 2.6 kg mol−1 for PB and 2.64 kg mol−1

for PEO. Polymer solutions were prepared by dissolving the
polymer in D2O (Chemotrade, %D = 99.8%) and, in order
to guarantee its complete dissolution, especially in the case of
high concentration samples, they were kept for half an hour at
56 ◦C and then left to cool down slowly to the ambient temper-
ature. When not specified otherwise, the concentrations will be
expressed as a weight fraction.
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Figure 1. (a) Flow curves for different Pb–Peo concentrations.
(b) The relative flow velocity �v(x) = V (x) − γ̇ x throughout the
gap of the couette cell for various applied shear rates as indicated by
the arrows in (a): 0.01, 0.1, 1 and 5 s−1. The lines indicate two shear
bands.

4. Experimental details

SANS experiments have been performed at the SANS I
instrument at the SINQ spallation source at the Paul Scherrer
Institute (PSI) in Villigen, Switzerland (Kohlbrecher and
Wagner 2000). We used thermal neutrons of wavelength
λ = 0.8 nm with a wavelength spread �λ/λ of about 0.1.
The data analysis was performed using the BerSANS software
package (Keiderling 2002). A standard water sample was used
for calibration of absolute scattering intensities and also to
account for non-uniform detector efficiency. For the Rheo-
SANS experiments a Rheowis strain-controlled rheometer with
a couette type shear cell (bob: 48 mm radius, cup: 50 mm
radius) was placed in the neutron beam in the so-called radial
configuration. In this configuration the neutron beam passes
through the centre of the sapphire cell, transparent for neutrons,
and is parallel to the gradient direction so that the flow-
vorticity plane is probed by the 2D detector. The accessible
torque range is between 10−7 and 0.046 N m, the frequency
range between 5 × 10−3 and 10 Hz and the amplitude range
between 5 × 10−2 and 45. Both steady state and oscillatory

experiments were performed. In order to probe the time-
dependent structural changes with SANS under oscillating
shear, a stroboscopic data acquisition scheme, implemented
on the SANS-1 instrument, has been used. The electronics
of the rheometer supplies a low and high signal depending
on the turning direction. The falling edge of this rectangular
signal has been used to trigger the data acquisition of the
scattered neutrons, producing histograms of 128 × 128 pixels
of 0.75 ×0.75 cm2 spatial resolution and at least n = 100 time
channels of widths �t = (n × ω/2π)−1, where ω/2π is the
frequency of the applied oscillating shear. The time of flight ttof

of the scattered neutrons between sample and detector has been
corrected to obtain the exact phase between applied shear and
scattered neutrons. However, this correction can be practically
neglected as the applied shear frequencies are much lower
than 1/ttof. Before starting the neutron data acquisition the
rheometer was oscillating for several cycles to ensure that no
transient effects were measured. To obtain sufficient counting
statistics for each time channel, the histograms of many shear
cycles were summed up over a time going from 1 h to
15 min for the lowest and highest concentration, respectively.
With this technique the temporal evolution of the structural
alignment of the diblock copolymers during a whole shear
cycle could be measured.

Fast Fourier transform rheological experiments were
performed on a strain-controlled rheometer (ARES, TA
instruments), using a couette geometry (bob: 32 mm radius,
cup: 34 mm radius). The stress response to dynamic
strain experiments has been simultaneously recorded with a
Analog Digital Card and analysed with fast Fourier transform
software as described in (Wilhelm et al 1998). The same
instrument was used for step-rate experiments and to obtain
flow curves. Spatially resolved velocity profiles were measured
on a homebuilt heterodyne dynamic light scattering set-up
using a closed, transparent couette cell (2 mm gap), see
e.g. (Salmon et al 2003).

5. Results and discussion

5.1. Flow curve and step-down rheology

The Pb–Peo block copolymer under study forms wormlike
micelles in water solution. As molecular wormlike micelles,
consisting of surfactant molecules, these giant wormlike
micelles show a pronounced shear-thinning behaviour.
Figure 1(a) shows the stress as a function of the shear
rate for Pb–Peo solutions with volume fraction between 1%
and 2%. These concentrations lie close to the suggested
literature value for the I–N transition (Won et al 1999), but
are still in the isotropic phase. All the curves in figure 1(a)
exhibit a shear-thinning region which extends to lower shear
rates with increasing volume fraction of micelles, while the
corresponding stress plateau becomes flatter. For the sample
with the highest concentration, i.e. [Pb − Peo] = 2%, we
tested if the sample shows shear banding, as is expected
for extreme shear-thinning samples (Dhont and Briels 2008,
Olmsted 2008). A few typical velocity profiles relative to
the applied shear rate within the gap of the couette cell are
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Figure 2. (a) The response of the normalized stress
σN(t) = σ(t)/σ (t → ∞) to shear rate quenches from the fully
nematic state into the biphasic region. The initial shear rate was
γ̇ = 7 s−1 and the low shear rates were varied between γ̇ = 0.8 s−1

(bottom) and γ̇ = 2.0 s−1 (top). (b) The magnitude of the stress
response �σN, obtained from the fit to σN(t) = 1 − �σN e−t/τ as a
function of the shear rate. Lines are guides to the eye. (c) The
resulting binodal points obtained from the shear rate in (b) where
�σN becomes zero. The circle indicates the equilibrium I–N binodal,
that is, the binodal point in the absence of flow. The line is a guide to
the eye, representing the non-equilibrium binodal. The open star
indicates the location of the spinodal at zero shear rate.

plotted in figure 1(b), as obtained from spatially resolved
heterodyne light scattering measurements. Shear banding is
observed between 0.1 and 0.75 s−1, which corresponds to the

flat region in the flow curve in figure 1(a). At the lowest
investigated shear rate, 0.01 s−1, the velocity profile is linear
(see figure 1(b)). Increasing the shear rate to 0.1 s−1, inside the
stress plateau region, a banded structure can be recognized and
the velocity profile shows a characteristic kink, as can be seen
from figure 1(b). In the investigated overall shear-rate range,
the average shear rate in the high shear-rate band is twice that
of the lower shear-rate band. The fraction of the gap occupied
by the high shear-rate band increases with the overall shear
rate, and for shear rates higher than 1 s−1 the low shear-rate
band disappears and a linear profile is re-established.

In order to locate the isotropic–nematic binodal, i.e. the
point where the isotropic phase becomes metastable, rheology
is a very useful tool as the viscosity of the micellar solution is
very sensitive to the local orientation of the worms. To exploit
the large difference between the viscosity of the isotropic
and nematic phases, we performed step-down experiments in
the concentration region between 2% and 5%. As we have
shown in an earlier paper on rod-like viruses (Lettinga and
Dhont 2004), the viscosity of the system will increase in time
when the system is quenched from a high shear rate, where
the nematic phase is stable, to a lower shear rate, where the
nematic phase becomes meta- or unstable. Figure 2(a) shows
an example of the normalized stress σN(t) = σ(t)/σ (t → ∞)

(where σ is the shear stress) as a function of time after the
shear rate was quenched from 7 s−1 to a final value ranging
from 2 to 0.8 s−1. The curves are fitted to a single exponential
σN(t) = 1 − �σN e−t/τ , where �σN depends on the fraction
of the formed isotropic phase, which tends to zero at the
binodal point. Thus, for each concentration the binodal point
was determined as the shear rate at which �σN vanishes
(see figure 2(b)). The resulting binodal points are plotted
in figure 2(c). This figure constitutes the low concentration
branch of the non-equilibrium binodal for the Pb–Peo block
copolymer system. The equilibrium I–N binodal, in the
absence of flow, is found to be located at [Pb − Peo] =
1.7 ± 0.1%. The open star in figure 2 indicates the location
of the spinodal at zero shear rate. How this spinodal point was
determined will be discussed later.

As we are dealing with a system that can also be described
as flexible rods, we know from Chen (1993), for example, that
the I–N phase coexistence region is very broad and thus the
location of the I–N spinodal can be found at a significantly
higher concentration than the I–N binodal. In the case of
rigid rods, the collective rotational diffusion becomes very
small on approach of the spinodal point, as discussed in
section 2. For semi-flexible chains, the rotational motion of
the Kuhn segments will become very slow on the approach of
the spinodal. We will now employ dynamic experiments to
access this slowing down. We want to do this not only on the
macroscopic level, i.e. by rheology, but also on the microscopic
level, in order to establish a link between the behaviour of
Kuhn segments and the measured stress in the system.

5.2. SANS on quiescent and stationary sheared samples

The quiescent dispersion of Pb–Peo micelles has an angle-
averaged scattering pattern as plotted in figure 3(a). At low
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Figure 3. (a) Angle-averaged SANS curve at zero shear. The full
line indicates the q range where a q−1 dependence is found, typical
for rods. (b) Scattering pattern of 1% Pb–Peo in deuterated water at
shear rate γ̇ = 1 s−1 in the flow-velocity plane. The dashed lines
indicate the Q range that is used to obtain the azimuthal intensity
profile as plotted in (c). Here θ is the angle with the shear flow and
the full line indicates a fit to equation (13).

(This figure is in colour only in the electronic version)

Q values, the scattering curve shows a I ∼ q−1 dependence,
typical for rods. The transition from I ∼ q−1 to a I ∼ q−2

dependence that is expected for wormlike micelles is outside

Table 1. Structural micelle characteristics as obtained from fitting of
the SANS curve in figure 3.

Nag (nm−1) σcore (nm) σshell (nm) β

26.5 6.4 7.8 3.65

the experimental window. This shows that the persistence
length of the worms is at least 500 nm, in agreement with
previous experiments on the same system (Won et al 1999).
For this reason the data could be fitted with the form factor of
a long cylinder. The details of the fitting procedure are beyond
the scope of this paper and will be described elsewhere. The
main point is that the cylinders are assumed to have a uniform
core and a shell with an exponential density profile, i.e. density
∼(1 − r) e(−αr), where r = r−σcore

σshell
. From the fitting, the core

and shell radii σcore and σshell, the aggregation number per unit
length and the exponent α have been obtained. The numerical
values of these parameters are given in table 1. The values
for the cylinder cross section is in agreement with that already
reported in the literature (Won et al 1999).

Figure 3(b) shows a typical scattering pattern of Pb–Peo
under shear conditions (with γ̇ = 1 s−1), which shows the
shear-induced anisotropic structure. This can be more clearly
seen in the azimuthal intensity profile, as plotted in figure 3(c),
which is obtained from the part of the scattering pattern in
figure 3(b) where the scattered intensity is proportional to q−1

(the area in between the circles in figure 3(b)). Assuming
a Maier–Saupe type of orientation distribution function, the
azimuthal scattered intensity I (Q, θ) from the nematic phase
is generally well described by (Picken et al 1990)

I (Q, θ) ∼ exp {β P2(θ) − 1} , (13)

where the parameter β describes the width of the intensity
profile and P2 is the second-order Legendre polynomial. The
solid line in figure 3(c) shows an example of a fit of the
expression in equation (13) with the experimental data as
obtained from the scattering pattern in figure 3(b). The scalar
order parameter 〈P2(θ)〉 can then be calculated from

〈P2(θ)〉 =
∫ π

0 exp {β P2(θ)} P2(θ) sin(θ) dθ
∫ π

0 exp {β P2(θ)} sin(θ) dθ
. (14)

In this way, the order parameter 〈P2(θ)〉 can be obtained from
scattering data for each shear rate at different concentrations.
As expected, flow-induced orientation of the cylindrical
micelles is observed.

In Förster et al (2005) it is suggested that the shear
viscosity is a universal function when plotted against the
orientational order parameter, independent of concentration.
We indeed find such a behaviour for our Pb–Peo system, as
can be seen from figure 4. For the two concentrations of 1
and 2%, the two curves fall on top of each other. Contrary
to Förster et al (2005), we do not find a linear dependence of
the viscosity on the order parameter, probably due to the fact
that we also used data at shear rates lower than those where the
stress plateau occurs.
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Figure 4. The scaled viscosity η (with η0 the viscosity at zero shear
rate) versus the orientational order parameter 〈P2〉.

5.3. Dynamic experiments

Oscillatory shear-rate experiments were performed for
concentrations lower and around the I–N equilibrium binodal
point, i.e. between 0.5 and 2%. As for steady-state
measurements, the order parameter 〈P2〉 can be calculated
from SANS experiments according to equations (13) and (14)
at each point in time during an oscillation. In this way we
probe the time dependence of the orientational order parameter
〈P2〉. In order to compare and relate the orientational response
with the change in the stress the stress response was also
recorded and analysed by fast Fourier transform rheology
experiments on samples in a somewhat broader concentration
range between 0.5 and 2.5%.

In figure 5 we plot the time-dependent response of 〈P2〉
((a) and (b)) and the stress ((c) and (d)) of a 2% sample. In
figures 5(a) and (c), the response for different shear amplitudes
γ̇0 (see equation (8)) is shown, where the maximum shear
rate during an oscillation is kept constant by adjusting the
frequency. In figures 5(b) and (d), the response for different
frequencies is shown, where again the maximum shear rate
during an oscillation is kept constant, but now by adjusting
the shear amplitude. The first thing to note is that the order
parameter oscillates with twice the frequency of the applied
shear rate, even for low shear rates where the stress response
is linear in the shear rate. The reason for this is that the
scattering experiments probe the flow-vorticity plane, so that
the measured order parameter characterizes the orientational
order within that plane. As already discussed in section 2, there
is no linear response of the order parameter in this plane and
the leading response is quadratic in the shear rate. This results
in the double-frequency response of the probed projection
of orientational order. The experimental trends are in good
qualitative agreement with the theoretical calculations based
on equations (7) and (1), as can be seen from figure 6, where
figure 6(a) should be compared to the experimental results in
figure 5(b), and figures 6(b)–5(d). The theoretical curves have
the same form as the experimental curves, exhibiting similar
trends on changing frequency and shear amplitude. In order to
quantify the dynamic response we analyse this response on the
basis of the Fourier modes as given in equations (9) and (10)

for the stress and (flow-vorticity projected) orientational order
parameter 〈P2〉, respectively. The experimental phase shifts
for the 2% sample are shown in figures 7(a), (c) and (e). The
Fourier amplitude ratios that measure the departure from linear
response, |P2|4/|P2|2 for 〈P2〉 and |η|3/|η|1 for the stress, are
plotted in figures 7(b), (d) and (f).

As mentioned in the theory section 2, the rate at which
a dispersion of rods relaxes close to the spinodal point is
determined by the effective diffusion coefficient Deff given
by equation (5). There are two unknown parameters in
this equation, namely the spinodal concentration, i.e. the
concentration where L

d φ = 4, and the rotational diffusion
at infinite dilution Dr. When critical slowing down is
at the origin of the difference in dynamic response for
various concentrations, we should find scaling when response
functions are plotted against effective quantities, like the
effective Peclet number in equation (11) and the effective
Deborah number in equation (12). In order to test such a
scaling for relatively low shear rates, we need to know the
concentration where the I–N spinodal in the absence of flow
is located. In view of our expression (5) for the effective
rotational diffusion coefficient, we will use the following
similar form for the effective diffusion coefficient of the Pb–
Peo system:

Deff
r = Dr {1 − [Pb − Peo]/C} , (15)

where, as before, [Pb − Peo] is the concentration of Pb − Peo
and C is a scaling parameter that determines the location of
the I–N spinodal. For a given value of the parameter C ,
the effective Peclet and Deborah numbers are calculated from
equations (11) and (12).

As can be seen from figure 9, all experimental data for
phase shifts and nonlinear response functions collapse on a
single curve when C is taken equal to 3. This is true for
both the stress response as well as for the response of the
orientational order parameter 〈P2〉 (projected on the flow-
vorticity plane). This is in accord with the idea that the
concentration dependence of the response of both orientational
order as well as the stress is related to critical slowing down.
Thus, in terms of polymer concentration, the spinodal point
is located at [Pb − Peo]spin = 3%. The spinodal point is
indicated by the open star in figure 2(c). This spinodal
concentration seems to be in accord with the somewhat lower
binodal concentration of 1.7% in the absence of flow.

The spinodal concentration can be estimated from the
length, thickness and volume fraction of the wormlike
micelles, neglecting the effect of the flexibility. As discussed
before, the structural parameters of the wormlike micelles have
been derived from fitting of scattering data (see table 1). In
this way we can estimate the location of the I–N spinodal
by equating both expressions (5) and (15) for the effective
diffusion coefficient. Since φ = 2.73 × [Pb − Peo], d =
14.2156 nm and L = 1 μm (L obtained from DLS and
microscopy data, to be published) we find that

[Pb − Peo]spin = 4

2.73
× d

L
= 2.1%, (16)
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Figure 5. Time-dependent response of the orientational order parameter 〈P2〉 ((a) and (b)) and the stress ((c) and (d)) to an oscillatory shear
flow at a shear rate of γ̇max = 1.0 s−1 ((a) and (c)) and a frequency of 0.05 Hz ((b) and (d)) at a concentration of 2% Pb–Peo. The thin dotted
curves indicate the applied shear rate. The time t is scaled with the period T of oscillation.

Figure 6. Theoretical predictions for the response of (a) the stress and (b) the order parameter 〈P2〉 for 
 varying from 3 to 60. The arrows
indicates increasing 
. The effective Peclet number is Peeff = 75 and the concentration is L

d ϕ = 3.3. The time t is scaled with the period T of
oscillation.

which, in view of the neglect of flexibility in obtaining this
number, is in reasonable agreement with the value obtained
from the dynamic experiments.

In order to compare the experimental results with theory,
the rotational diffusion at infinite dilution Dr needs to be
determined. To do so we determine the Deborah number 
eff

for which the limiting values for the phase shifts for Peeff → 0
as found in the experiments is reproduced. As can be seen
in figure 8 there is a reasonable comparison, especially for
ε2(Peeff → 0), between the theoretical calculation using

eff = 24 and the experimental frequency of 0.05 Hz at a
concentration of 2%. Since we know from the scaling that C =
3, it follows that L

d ϕ = 10/3 for this concentration, and thus,
with equation (12), we find that Dr = 0.04 s−1. This number,
together with the dimensionless concentration L

d ϕ, was used

in the scaling of the frequency and shear rates in figure 9. In
this figure, as well as in figure 8, the theoretical validity of the
scaling argument is tested by calculating the dynamic response
at two different dimensionless concentrations L

d ϕ = 10/3 and
5/3, having the same distance to the spinodal point as the 2%
and 1% samples.

The theoretical frequency dependence of phase shifts
and nonlinear response functions exhibit the same features
as the experimental results, as can be seen from figure 9:
the functional form of both is reproduced and the absolute
values are in qualitative agreement. Due to the neglect of
flexibility, a quantitative agreement is not expected. What is
more important, however, is that the functional variation with
the effective frequency is the same for both experiment and
theory. We can therefore draw the important conclusion that
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Figure 7. Results of the Fourier analysis using equation (10) for 〈P2〉(t) (open symbols) and equation (9) for the stress (filled symbols) at 1%
((a) and (b)) and 2% ((c)–(f)) Pb–Peo. ((a), (c) and (e)) are plots of the phase shift δ1 for the stress and ε2 for 〈P2〉, while ((b), (d) and (f)) are
plots of |η|3/|η|1 for the stress and |P2|4/|P2|2 for 〈P2〉), which quantities measure the departure from linear response. In ((a)–(d)), the shear
rate is fixed to γ̇max = 4.0 s−1 for 1% Pb–Peo and γ̇max = 1.0 s−1 for 2% Pb–Peo. In ((e) and (f)) the frequency is fixed to ν = 0.05 Hz.

the scaling with equation (15) in the experiments is justified.
In other words, the flow response of the Pb–Peo system scales
with the distance from the spinodal point.

The correspondence between theory and experiment is
especially satisfactory for the frequency dependence of the
phase shift in 〈P2〉, ε2 in figure 9(c) and the nonlinearity in the
stress, given by |η|3/|η|1 in figure 9(b). This correspondence
confirms the choice of Dr = 0.04 s−1. The experimental
phase shift δ1 in the stress, given in figure 9(a), however,
shows a more pronounced frequency dependence as predicted
by theory. Concerning the phase shifts, it is interesting to note
that, at low frequencies, 〈P2〉 is in phase with the applied shear
field γ̇ ∝ dγ

dt ∝ cos(ωt) and ε2 = 0, while at high frequencies
ε2 → π . For the stress we observe that at low frequencies δ1 =
π/2, corresponding to fluid-like behaviour, while δ1 decreases

with increasing frequency, but never reaches 0, which value
corresponds to solid-like behaviour. The variation of ε2 is twice
that of δ1 due to the fact that 〈P2〉(t) ∼ γ̇ 2, as discussed before.

The frequency dependence of the nonlinear response
functions show that with increasing frequency the system
becomes more linear (at the cost of an increasing phase shift).
The linear response regime therefore extends up to larger shear
rates when the frequency increases. The reason for this is that,
at high frequencies, microstructural order is not able any more
to fully respond to the external field.

There is a considerable discrepancy between the value of
the orientational diffusion coefficient Dr at infinite dilution
that one would calculate for the length and thickness of the
worms from well-known expressions for stiff rods (Tirado et al
1980) and the value found in our experiments. It is unclear
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Figure 8. Shear rate dependence of the phase shifts δ1 and ε2 for the
theoretically calculated response of the stress (bottom curves) and the
orientational order parameter 〈P2〉 (top curves), respectively, at a
scaled volume fraction of L

d φ = 10/3 (solid line) and L
d ϕ = 5/3

(dashed line). The effective Deborah number is 
 = 24eff. The
symbols give the experimental response for the stress (solid) and
〈P2〉 (open) at 2% Pb–Peo, scaled with the orientational diffusion
coefficient at infinite dilution with a value of Dr = 0.04 s−1 and
C = 3.

whether this is the result of the flexibility of the rods. Another
source for this discrepancy might be that the theory neglects
dynamical correlations. In the derivation of equations (1)
and (7), the rod–rod pair-correlation function is taken equal
to the Boltzmann exponential of the pair-interaction potential.
This is asymptotically exact for very long and thin hard
rods for the calculation of thermodynamic quantities of rod
suspensions. For dynamical processes (with or without
shear flow), however, such an approximation for the pair

correlation is approximate, and particularly neglects dynamical
correlations. Simulations have shown that such correlations
are of importance, at least for fast dynamical processes (Tao
et al 2006). The simulations show that critical slowing down
is enhanced by dynamical correlations. This might explain the
above-mentioned discrepancy between theory and experiment.
This is a subject for future investigations.

6. Conclusion

The aim of this paper is to find the microscopic mechanism of
the strong shear-thinning behaviour of giant wormlike micelles
consisting of Pb–Peo block copolymers. The dynamics of
the stress is probed by dynamic shear experiments in the
linear and nonlinear regimes using Fourier transfer rheology.
The dynamics of the orientational order parameter under
oscillatory flow is studied with a newly developed time-
resolved neutron scattering set-up. It is shown that critical
slowing down of orientational Brownian motion due to the
vicinity of the isotropic–nematic spinodal is responsible for the
shear-thinning behaviour. The response functions for different
concentrations are indeed identical when plotted against an
effective Deborah number that accounts for critical slowing
down. In a certain shear-rate range, shear thinning is so
strong that gradient shear banding occurs, where flow profiles
have been measured with heterodyne light scattering. The
location of the binodal in the shear rate versus concentration
plane is determined by step-down rheology, and the spinodal
concentration in the absence of flow is obtained from the
scaling behaviour of response functions. Both the measured

Figure 9. The phase shifts ((a) and (c)) and nonlinearity ((b) and (d)) for the stress ((a) and (b)) and 〈P2〉 ((c) and (d)) versus the Deborah
number. The symbols indicate the experiments for different concentrations. The solid lines give the theoretical responses for L

d ϕ = 10/3 and
the dashed line for L

d ϕ = 5/3. For the scaling of the experimental frequency we used a value for the orientational diffusion coefficient at
infinite dilution of Dr = 0.04 s−1 and C = 3 was used, see equation (15). Peeff = 250 for all data.
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linear and nonlinear stress response and order parameter
response are in qualitative agreement with a theory for stiff
rods that includes critical slowing down on approach of the
isotropic–nematic spinodal. The comparison with theory,
however, is qualitative since the theory neglects flexibility.
Another possible reason for deviations between theory and
experiments might be that the theory neglects dynamical
correlations, which have been shown by simulations to enhance
critical slowing down. In surfactant wormlike micellar
systems, shear thinning can also be due to breaking and stress-
induced merging of worms. The breaking and merging of
worms can give rise to strong shear thinning by itself, and can
give rise to shear banding in the absence of critical slowing
down, far away from the spinodal. Scission and stress-induced
merging probably do not play a role in the Pb–Peo block
copolymer system that we studied here.
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Synopsis

Wormlike micelle solutions are submitted to small-amplitude oscillatory shear superimposed to
steady shear in the shear banding regime. By imposing a shear oscillation, the interface between
high- and low-shear regions oscillates in time. A two-fluid semiphenomenological model is
proposed for superposition rheology in the shear banding regime, which allows us to extract a
characteristic velocity for the interface dynamics from experiments involving only a standard
rheometer. Estimates of the stress diffusion coefficient D can also be inferred from such
superposition experiments. The validity of our model is confirmed by directly recording the
interface displacement using ultrasonic velocimetry. © 2007 The Society of Rheology.
�DOI: 10.1122/1.2750665�

I. INTRODUCTION

During the last decade, wormlike micelle solutions have become a model system to
study the so-called “shear banding” phenomenon. Depending on the concentration, most
of these surfactant systems constituted of long, cylindrical, semiflexible aggregates un-
dergo a shear-induced transition from a state of entangled, weakly oriented micelles to a
state of highly aligned micelles above some critical shear rate �̇I. Such a transition is
strongly shear thinning since the viscosity of the aligned state can be orders of magnitude
smaller than the zero-shear viscosity of the system. Under simple shear and above �̇I, the
system spatially separates into coexisting bands of high and low viscosities correspond-
ing, respectively, to the entangled and aligned states. As the shear rate is increased above
�̇I, the shear-induced structure progressively expands in the sample along the velocity

a�Present address: Laboratoire de Physique, CNRS UMR5672, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex
07, France; electronic mail: sebastien.manneville@ens-lyon.fr

© 2007 by The Society of Rheology, Inc.
1047J. Rheol. 51�5�, 1047-1072 September/October �2007� 0148-6055/2007/51�5�/1047/26/$27.00
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gradient direction until the system is fully aligned at some shear rate �̇N �in this work I
and N, respectively, stand for isotropic and nematic in reference to the isotropic-to-
nematic transition although the precise structure of the shear bands is still unclear�. The
rheological signature of shear banding is the existence of a horizontal plateau at a con-
stant shear stress �=�c in the shear stress versus shear rate constitutive curve ���̇�,
which extends from �̇I to �̇N. The present paper is restricted to the shear banding scenario
described above and referred to as “gradient banding” in the literature. Another situation
known as “vorticity banding” may also occur in wormlike micelles, where the system
separates into bands bearing different stresses stacked along the vorticity direction, cor-
responding to a vertical portion in the flow curve, i.e., to a shear-thickening transition. A
recent review of the specific rheological properties of wormlike micelles is available in
Berret �2005�.

The first experimental evidence for a stress plateau in nonlinear rheological measure-
ments was provided by Rehage and Hoffmann �1991� on the CPCl-NaSal system. Further
research effort established the generality of this peculiar feature on other wormlike mi-
celle systems �Berret and co-workers �1994, 1997�; Soltero and co-workers �1999��.
Theoretically, shear banding was first interpreted in the framework of nonequilibrium
phase transitions in liquid crystals �Cates and Milner �1989�; Olmsted and Goldbart
�1990, 1992��. Specific features of the wormlike micelles such as polymerlike behavior
and reversible breakage were then included by Spenley and co-workers �1993� in con-
nection with the nonlinear rheology of conventional polymers �Cates and co-workers
�1993��. These two different approaches led to a theoretical debate about nonmonotonic
constitutive equations and shear banding seen either as a mechanical instability or as a
nonequilibrium phase transition �Schmitt and co-workers �1995, 1996�; Olmsted and Lu
�1997�; Porte and co-workers �1997��. Theoretical and numerical works later focused on
including stress diffusion to account for a unique stress selection and for the band dy-
namics �Dhont �1999�; Yuan �1999�; Olmsted and co-workers �2000�� and on studying
the effects of flow-concentration coupling �Fielding and Olmsted �2003a�� or the possible
instabilities inherent to the models �Fielding �2005��.

From the experimental point of view, phase separation under shear was ascertained for
the first time by flow birefringence which showed the coexistence of bands of weakly
oriented and highly anisotropic material in sheared CTAB solutions close to an isotropic-
to-nematic equilibrium transition �Cappelaere and co-workers �1995�; Makhloufi and
co-workers �1995��. Early nuclear magnetic resonance measurements confirmed the ex-
istence of inhomogeneous flows and the presence of differently sheared regions charac-
terized by different order parameters �Mair and Callaghan �1996�; Britton and Callaghan
�1997�; Mair and Callaghan �1997�� but it is not until recently that the simple shear
banding scenario described above received full experimental validation from light scat-
tering and particle tracking velocimetry in the CPCl-NaSal system �Salmon and co-
workers �2003�; Méndez-Sánchez and co-workers �2003�; Hu and Lips �2005��. In par-
ticular the so-called “lever rule” which, in strong analogy with first-order equilibrium
phase transitions, gives the proportion � of the aligned state as a function of the shear rate
�̇ along the stress plateau

�̇ = �1 − ���̇I + ��̇N, �1�

appears as a rather robust feature provided that steady state is reached �Salmon and
co-workers �2003�; Lerouge and co-workers �2004��.

Thus, although the exact nature of shear bands is still under debate, the coexistence of
differently sheared bands is now well established �López-González and co-workers
�2006��. Most of latest work on shear banding has concentrated on the local flow dynam-
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ics during transients �Lerouge and co-workers �2004�; Hu and Lips �2005��, on velocity
and birefringence fluctuations and departures from the steady scenario described above
�Holmes and co-workers �2003�; Becu and co-workers �2004�; López-González and co-
workers �2004�; Lee and co-workers �2005�; Yesilata and co-workers �2006��, on inter-
face stability �Lerouge and co-workers �2006��, and on modeling such spatiotemporal
dynamics �Radulescu and co-workers �2003�; Fielding and Olmsted �2003b, 2004,
2006��.

In this paper we propose to use the parallel superposition technique introduced by
Booij �1966a� to investigate shear banding in wormlike micelles and more precisely to
access the dynamics of the interface between shear bands. In our opinion, the interest of
superposition rheology has been overlooked in the literature. In particular, only a very
limited number of papers are devoted to superposition measurements in complex fluids
that show strong flow-microstructure coupling, e.g., associative polymers �Tirtaatmadja
and co-workers �1997�� or liquid crystalline polymers �Grizzuti and Maffettone �2003��.
Our aim is to show how this technique, which is available on most rheometers, can be
used to access the dynamical behavior of shear bands, without having to rely on involved
techniques as described above. We first recall the principle of superposition rheology and
illustrate it in the case of wormlike micelles sheared below �̇I, i.e., in the homogeneous,
entangled state. Then a two-fluid semi-phenomenological model is described for super-
position rheology in the shear banding regime in the simple case of infinite parallel
plates. This model is extended to account for experimental geometries, namely cone-and-
plate, Couette, and Mooney–Couette geometries. The corresponding calculations are
gathered in the appendix. Finally, our model is probed experimentally on the well-studied
wormlike micellar system CPCl-NaSal through superposition rheology and compared to
direct measurements of the interface dynamics using ultrasonic velocimetry in Couette
geometry. The results are further discussed and interpreted in terms of the stress diffusion
coefficient D, a key parameter in recent theoretical approaches of shear banding.

II. ONE-FLUID SUPERPOSITION RHEOLOGY

Superposition rheology as first introduced by Booij �1966a� is the addition of a small-
amplitude oscillatory shear to a main steady shear. The oscillatory shear can be either
parallel or perpendicular to the steady shear. Superposition allows one to probe the
dynamical response of a shear-driven system and to generalize the notions of viscoelastic
moduli to far-from-equilibrium conditions through a perturbation analysis. The properties
of the “superposition moduli” and the relationships between “parallel moduli” and “or-
thogonal moduli” were discussed by Vermant and co-workers �1998� and Dhont and
Wagner �2001� and applied to polymer solutions and colloidal suspensions, respectively.
Here we focus on parallel superposition which is now available as an option on most
recent commercial rheometers.

A. Notations for one-fluid superposition rheology

Let us first introduce the various notations for superposition rheology. In the following
we shall use complex notations and assume that the shear rate reads

�̇ = �̇1 + �̇2ei�t. �2�

Both �̇1 and �̇2 are taken to be real and positive. If �̇2 corresponds to a perturbation to the
steady shear in the linear regime, the shear stress can be written as
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� = �1 + �2ei�t, �3�

where �1 is real and �2 is the complex amplitude of the oscillatory part of the shear
stress. The issue of specifying which variable is controlled and which is measured will be
addressed below and further discussed in Sec. II B. From Eqs. �2� and �3�, two apparent
viscosities are defined as

� =
�1

�̇1

, �4�

��
* =

�2

�̇2

. �5�

Since the oscillatory part of the shear is only a linear perturbation of the steady compo-
nent, � depends only on �̇1 and reduces to the standard shear viscosity found when �̇2

=0. On the other hand, the complex viscosity ��
* depends on both �̇1 and � and allows

one to explore the dynamical behavior of the shear-driven system.
When both �̇1 and �̇2 tend to zero, one should recover the usual complex viscosity

�*��� so that

lim
�̇1→0

��
*��,�̇1� = �*��� . �6�

Another useful limit is found by considering vanishing frequencies for a finite �̇1. In
that case, �̇2 and �2 become steady perturbations so that Eq. �5� reduces to ��

*

=d�1 /d�̇1, which leads to

lim
�→0

��
*��,�̇1� = ���̇1� + �̇1

d�

d�̇1

��̇1� . �7�

B. Conventional rheology of wormlike micelles in the low-shear
regime

As already reported many times in the literature, semidilute solutions of wormlike
micelles present an almost perfect Maxwellian behaviour in the linear regime �Rehage
and Hoffmann �1988��. Such a striking feature was predicted and explained in terms of a
reaction-diffusion model by Cates �1987�. However, at high frequencies, significant de-
viations from the Maxwell model may occur due to fast relaxation modes �Fischer and
Rehage �1997�; Yesilata and co-workers �2006��. Thus a more thorough description of the
low-shear rheology of polymer-like micelles is provided by the Oldroyd-B model �Old-
royd �1953, 1955�� whose linear complex viscosity �*��� and nonlinear shear viscosity
���̇� read

�*��� = �0
1 + i��2

1 + i��1
, �8�

���̇� = �0
1 + �s2�̇�2

1 + �s1�̇�2 , �9�

where �1, �2, s1, and s2 are characteristic times.
In the following, we focus on a wormlike micelle solution made of cetylpyridinium

chloride �CPCl, from Aldrich� and sodium salicylate �NaSal, from Acros Organics� dis-
solved in brine �0.5 M NaCl� with a fixed concentration ratio �NaSal� / �CPCl�=0.5 and a
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total surfactant concentration of 8% wt �unless stated differently� as described by Rehage
and Hoffmann �1988�; Berret and co-workers �1997�. The working temperature is T
=21 °C. Figure 1 shows the linear viscoelastic moduli of our micellar solution measured
in the Mooney–Couette geometry described below �see Sec. IV A� with a standard stress-
controlled rheometer �AR1000, TA Instruments�. All the experiments in the present work
were performed under controlled shear stress. Both G� and G� are very well described by
the Oldroyd-B model �Eq. �8� with G�+ iG�= i��*� which captures the departure of G�
from the �−1scaling at high frequencies.

The constitutive curve � vs �̇ of the same micellar solution is shown in Fig. 2. As
expected the fluid is weakly shear thinning below �̇I�2.2 s−1. Above �̇I very strong shear
thinning is observed and the stress saturates at a plateau value �c�100 Pa. This corre-
sponds to the shear banding transition. The solid line in Fig. 2 shows that the nonlinear
rheological behavior of our fluid in the low-shear regime is rather well captured by the
Oldroyd-B model �Eq. �9��.

FIG. 1. Linear rheology of an 8% wt CPCl-NaSal solution: storage modulus G� �•� and loss modulus G� ��� vs
frequency �. The solid lines correspond to an Oldroyd-B fluid �Eq. �8�� with �0=122 Pa s, �1=0.87 s, and
�2=0.60 ms.

FIG. 2. Nonlinear rheology of an 8% wt CPCl-NaSal solution: shear stress � vs shear rate �̇ �a� in linear scales
and �b� in logarithmic scales �right�. The solid line corresponds to an Oldroyd-B fluid �Eq. �9�� with �0

=122 Pa s, s1=0.59 s, and s2=0.13 s. The dashed line is the best fit of the high-shear branch by a Bingham fluid
�=�B+�B�̇ with �B=91.7 Pa and �B=1.13 Pa s. The shear banding regime extends from �̇I�2.2±0.2 s−1 to
�̇N�7.4±0.4 s−1.
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C. Superposition rheology of wormlike micelles in the low-shear regime

The superposition rheology of an Oldroyd-B fluid was computed by Booij �1966b� and
leads to

��
*��,�̇1�

�0
=

1 − �1�2�2�1 + s1
2�̇1

2� + �3s2
2 − s1

2 + s1
2s2

2�̇1
2��̇1

2 + i���1 + �2 + ��1s2
2 + �2s1

2��̇1
2�

�1 + s1
2�̇1

2���1 + i��1�2 + s1
2�̇1

2�
.

�10�

It is easily checked that Eqs. �6� and �7� are recovered from Eq. �10� when the limits
�̇1→0 and �→0 are considered.

Figure 3 presents superposition measurements in the low-shear regime. The steady-
state shear rates �̇1 indicated in the caption of Fig. 3 �and later Figs. 4, 6, and 13� are the
values measured by the rheometer. In all our experiments, the amplitude of the oscillatory

FIG. 3. Superposition rheology of an 8% wt CPCl-NaSal solution in the low-shear regime: ���
*�� , �̇1�� vs � for

�a� �̇1=0, �b� 0.025, �c� 1.09, and �d� 1.49 s−1. The solid lines correspond to an Oldroyd-B fluid �Eq. �10�� with
�0=122 Pa s, s1=0.59 s, s2=0.13 s, �1=0.87 s, and �2=0.60 ms.

FIG. 4. Superposition rheology of an 8% wt CPCl-NaSal solution in the shear banding regime: ���
*�� , �̇1�� vs

� for �a� �̇1=2.5 and �b� 7.14 s−1. The solid lines correspond to an Oldroyd-B fluid �Eq. �10�� with �0

=122 Pa, s1=0.59 s, s2=0.13 s, �1=0.87 s, and �2=0.60 ms.
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part of the shear stress is fixed to �2=0.5 Pa, except for Sec. IV B where �2=1 Pa.
Figure 3 clearly shows that the five parameters inferred from Figs. 1 and 2 yield a good
description of ��

*�� , �̇1� for all �̇1�1.5 s−1 when used in Eq. �10�.

III. TWO-FLUID SUPERPOSITION RHEOLOGY: THEORETICAL
PREDICTIONS

The above results obtained in the low-shear regime prompt us to use the superposition
technique in the shear banding regime. Indeed the CPCl-NaSal system is known to
separate into weakly and highly sheared bands as described in the introduction �Berret
and co-workers �1997�; Porte and co-workers �1997��. Previous work has shown that the
shear banding phenomenon is rather simple in this particular system: the proportion of
shear-induced structure is given by the lever rule �1� and no wall slip is detected �Salmon
and co-workers �2003�; Hu and Lips �2005��. In the case of our 8% wt CPCl-NaSal
solution, the shear banding transition occurs for �̇��̇I�2.2 s−1 and �=�c�100 Pa. The
value for the critical shear stress is in good agreement with the prediction �c=0.67G0,
with G0=�0 /�1 the plateau modulus �Spenley and co-workers �1993��. Note, however,
that the stress plateau is not perfectly flat at �c in Fig. 2. This is most probably due to the
curvature of the Mooney–Couette geometry which induces a significant slope of the
constitutive curve in the shear banding regime �Radulescu and Olmsted �2000�; Salmon
and co-workers �2003��. Such a slope may also arise from flow-concentration coupling
�Schmitt and co-workers �1995�; Olmsted and Lu �1997�; Fielding and Olmsted �2003a��.
However, in the absence of clear experimental evidence for such a mechanism in the
literature on the system under study, we shall not refer to concentration coupling effects
thereafter. In any case, the slope in the flow curve makes it hard to distinguish between
the “stress plateau” and the homogeneous high-shear regime where the system is fully
aligned �see also Appendix Sec. B�.

Figure 4 shows that the Oldroyd-B model used in the low-shear regime completely
fails in describing the complex viscosity ��

*�� , �̇1� when �̇1��̇I. This is a strong indica-
tion that the system enters the shear banding regime and that the model for superposition
needs to be modified. In the following, we discuss a two-fluid model for superposition
rheology in the presence of shear banding. This simple model is presented for various
geometries, from the most simple geometry �infinite parallel plates� to the more compli-
cated one actually used in our experiments �Mooney–Couette geometry�. The detailed
calculations for experimental geometries are presented in the Appendix.

A. Infinite parallel plates

Let us first consider the case of two unbounded parallel plates in translation separated
by a gap e. We assume that the fluid separates into bands of “isotropic” �I� and “nematic”
�N� material. In a superposition experiment in the shear banding regime, the steady
component of the shear stress is fixed to �1=�c and the steady component of the shear
rate in the isotropic �respectively, nematic� material is simply �̇I1= �̇I �respectively, �̇N1

= �̇N�, where �̇I and �̇N are the limits of the stress plateau. This leads us to generalize the
notations introduced in Sec. II A to the two-fluid case

��t� = �c + �2ei�t, �11�

�̇�t� = �̇1 + �̇2ei�t, �12�

�̇I�t� = �̇I + �̇I2ei�t, �13�
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�̇N�t� = �̇N + �̇N2ei�t, �14�

�I =
�c

�̇I

and ��I
* =

�2

�̇I2

, �15�

�N =
�c

�̇N

and ��N
* =

�2

�̇N2

. �16�

Since the steady shear in each phase is fixed to �̇I and �̇N, respectively, �I and �N are two
constants and ��I

* and ��N
* depend only on �. In other words �I and �N are the apparent

viscosities of the isotropic and nematic materials under a steady shear stress �1=�c,
while ��I

* and ��N
* correspond to the dynamical behaviors of the two phases for �1=�c.

In the absence of wall slip, the lever rule �1� is a mere consequence of the continuity
of the velocity at the interfaces between bands �Salmon and co-workers �2003�� and the
proportion of shear-induced structure ��t� obeys

��t� = �1 + �2ei�t, �17�

�̇�t� = �1 − ��t���̇I�t� + ��t��̇N�t� , �18�

�̇1 = �1 − �1��̇I + �1�̇N. �19�

Note that the fact that the “instantaneous” lever rule �18� applies at all times actually
results from a steady-state approximation of the Navier–Stokes equations, i.e., from as-
suming that 	�tv
�z�. This assumption will be checked below a posteriori. Moreover,
Eq. �19� leads to the lever rule for the apparent viscosity

1

�
=

�̇1

�c
=

1 − �1

�I
+

�1

�N
. �20�

Using the above notations and restricting the analysis to linear response, it is easily
shown that

�̇2 = �1 − �1�
�2

��I
* + �1

�2

��N
* + �2�c� 1

�N
−

1

�I
	 . �21�

In order to get an expression for ��
*=�2 / �̇2 in the shear banding regime, we need to link

�2 and �2. We chose to use the reaction-diffusion model proposed by Radulescu and
co-workers �1999� that assumes the existence of a single band and shows that the inter-
face between the isotropic and nematic regions moves at a velocity c that only depends
on the difference ��rc�−�c, where rc is the position of the band, and vanishes for
��rc�=�c. More precisely, if one assumes the shear-induced structure to be located from
r=0 to r=rc�t�=��t�e, with r being the coordinate across the gap, the model predicts

d�

dt
=

��r� − �c

e

 dc

d�



�c

=
��r� − �c

�c

c0

e
=

�2ei�t

�c

c0

e
, �22�

where we have introduced the characteristic velocity c0 defined by c0 /�c=dc /d���c
.

Equation �17� then leads to

�2 =
�2

�c

c0

i�e
. �23�
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Experimentally the amplitude �2e of the oscillations of the interface position rc�t�
should be accessible through the time-resolved velocimetry techniques mentioned in the
introduction provided that the spatial resolution is fine enough. An estimate of c0 from
direct measurements of �2 using ultrasonic velocimetry will be presented in Sec. IV B.
Finally, inserting Eq. �23� into Eq. �21� and using the definition �5� yields

1

��
* =

1 − �1

��I
* +

�1

��N
* +

�̇N − �̇I

�c

c0

i�e
. �24�

Equation �24� shows that the complex viscosity in parallel superposition involves two
terms

1

�L
=

1 − �1

��I
* +

�1

��N
* , �25�

1

�D�

=
�̇N − �̇I

�c

c0

i�e
. �26�

The first term �L��̇1 ,�� corresponds to the “steady” lever rule �20� applied to the com-
plex viscosities ��I

* and ��N
* and depends on both �̇1 �through �1� and � �through ��I

* and
��N

* �. In principle ��I
* ��� and ��N

* ��� are accessible through superposition measurements
in the homogeneous states at �̇1= �̇Iand �̇1= �̇N, respectively �or at least by extrapolation
of ��

*��̇1 ,�� when �̇1→ �̇I
− and �̇1→ �̇N

+�, so that �L�� , �̇1� is known once �1 is known via
Eq. �19�.

The second term �D�
��� accounts for the dynamics of the interface between the two

bands and does not depend on �̇1. Note, however, that this “dynamical” term depends on
the geometry since e shows up in Eq. �26�. Since good approximations of �̇I, �̇N, and �c

are given by nonlinear rheological measurements, the only unknown in Eq. �26� is c0. We
conclude that superposition rheology in the shear banding regime should provide an
experimental means of probing the dynamics of the interface between shear bands
through the measurement of c0. In practice the various parameters involved in Eq. �24�
are not that easy to extract from independent measurements. As already pointed out the
limits of the stress plateau are not always clear �see Fig. 2�. But the largest difficulty
probably lies in getting a good approximation for the dynamical behavior of the shear-
induced structure ��N

* ��� from superposition measurements at �̇1��̇N. Indeed the high-
shear branch of the flow curve is sometimes impossible to access due to flow instabilities
that tend to expel the sample from the measuring tool at high shear rates �Berret and
co-workers �1997�; Hu and Lips �2005��. Still one may argue that ��N

* ��� could also be
inferred from superposition experiments in the shear banding regime by looking at the
dependence of ��

*�� , �̇1� on �1 in Eq. �24�. We shall further discuss this point below in
Sec. IV C.

A simple way to overcome the difficulty raised by ��N
* is to focus on the limit �1

→0, i.e., just at the onset of shear banding. In this limit Eq. �24� becomes

lim
�1→0

1

��
* =

1

��I
* +

�̇N − �̇I

�c

c0

i�e
, �27�

where c0 is the only unknown parameter since ��I
* is known from measurements in the

low-shear regime. Experimentally, �1 is varied for a given frequency �. The value at the
origin of the linear regression of 1/��

* vs �1 is then Eq. �27�, from which 1/�D�
��� is
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determined. Finally, a linear fit of �D�
��� vs � yields c0. This fitting procedure will be

tested in Sec. IV A.
To conclude this discussion of Eq. �24�, let us check the validity of the “instantaneous”

lever rule �18�. In the case of oscillating velocity and stress fields, neglecting the time
derivative in the Navier–Stokes equation is equivalent to setting 	�v2
�2 /e where v2

� �̇2e. In the low-frequency limit, Eq. �24� yields ��
*=�2 / �̇2� i�e�c /c0��̇N− �̇I� so that

the steady-state approximation holds if

	c0e
�̇N − �̇I

�c

 1. �28�

With the typical values 	=103 kg m−3, c0�1 mm s−1 �as will be checked experimentally
below�, e=1 mm, �̇N− �̇I=10 s−1, and �c=100 Pa, the left-hand side of Eq. �28� is about
10−4. Hence, the approximation holds at least in the low-frequency limit of Eq. �24�.
More generally, the steady-state approximation reads 	�e2
 ���

*�. It can be checked from
Figs. 3 and 4 that, for the highest frequencies achieved in our experiments ��
�100 rad s−1�, one always keeps ���

* � �1 Pa s, so that, with 	�e2�0.1, the approxima-
tion remains valid.

B. Experimental geometries

Standard experiments use cone-and-plate or Couette geometries �or their combination
known as the Mooney–Couette geometry�. The changes that the use of such geometries
induces in Eqs. �24�–�26� are described in detail in the Appendix. It is shown in Appendix
Secs. A and B that the expressions found for ��

* in both the cone-and-plate and the
Couette geometries can be written in forms similar to Eq. �24�.

In particular, in both cone-and-plate and infinite parallel plates, it is seen from Eq. �23�
that �2 diverges at low frequencies for fixed �2, i.e., under controlled stress. Such a
behavior is a direct consequence of the highly nonlinear fluid response under controlled
stress in flat geometries, where jumps between the two shear branches of the flow curve
are expected. Therefore, to ensure that the experiments are conducted inside the stress
plateau for all frequencies, superposition rheology in the cone-and-plate geometry re-
quires to work under controlled shear rate, so that �2 �and thus �̇2 through Eqs.
�17�–�19�� always remains a linear perturbation of the steady shear. Since a controlled-
stress rheometer is used in the present work and since ultrasonic velocimetry is not
available in the cone-and-plate geometry, we shall rather focus on the Couette geometry
where the divergence of �2 does not occur.

More precisely, Appendix Sec. B shows that in the “small-gap approximation,” i.e.,
when the gap e is small enough compared to the radius R0 of the inner cylinder, the case
of a Couette geometry reduces exactly to the case of infinite parallel plates provided that
�D�

is replaced by

1

�D
=

�̇N − �̇I

�c

c0

i�e +
2c0e

R0

=
1

�D�

1

1 −
2ic0

�R0

. �29�

This corresponds to the zero-order version of Eq. �A14�, i.e., it assumes that both the term
of order e /R0 in Eq. �A16� and the first-order corrective term 1/�� given by Eq. �A17�
can be neglected. As seen in Eq. �A11� the curvature of the Couette geometry prevents �2

from diverging at low frequencies so that superposition measurements can be performed
under controlled stress.
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Finally, Appendix Sec. C shows that the case of a Mooney–Couette geometry of height
h can be handled by considering the proportions co= �1+R0 /2h�−1 and cp=1−co of the
surface, respectively, covered by the Couette �co� and by the cone-and-plate �cp� geom-
etries relative to the total surface. In particular, ��

* is given by the following average of
the corresponding viscosities ��co

* and ��cp
* ,

��
* = co��co

* + cp��cp
* . �30�

However, to close the problem one has to specify the values of �1 in the two parts of the
geometry. As shown in the Appendix, this leads to serious complications and the inter-
pretation of superposition measurements in the Mooney–Couette geometry requires in
principle the full knowledge of the dynamical behaviors ��I

* and ��N
* of the high- and

low-viscosity materials.
To keep things analytically tractable and although this may be a crude approximation

of the actual behavior in the Mooney–Couette geometry, we shall assume that

1

��
* =

co

��co
* +

cp

��cp
* , �31�

which is consistent with Eq. �30� only for e /R0
1. Using the effective �1 found in
Appendix Sec. C and given by

�1 = co
R0

e
���1 − cp�c

co�c
− 1	 + cp

�̇1 − �̇I

�̇N − �̇I

, �32�

together with Eq. �A14� at zero order in e /R0 for ��co
* and Eq. �A6� with e=R0 tan � for

��cp
* , one finds

1

��
* =

1 − �1

��I
* +

�1

��N
* +

�̇N − �̇I

�c

c0

i�e� co

1 −
2ic0

�R0

+ 2cp . �33�

Equation �33� is exactly Eq. �24� up to a corrective frequency-dependent term on c0 that
accounts for the Mooney–Couette geometry. Thus under the above assumptions we may
still use the data analysis procedure described above in Sec. III A �see Eq. �27�� on
experimental data recorded in the Mooney–Couette geometry.

IV. TWO-FLUID SUPERPOSITION RHEOLOGY: EXPERIMENTAL RESULTS

A. Superposition experiments in the Mooney–Couette geometry

Superposition experiments were performed in the shear banding regime on the previ-
ous 8% wt CPCl-NaSal solution under controlled stress in a Mooney–Couette geometry
with inner radius R0=24 mm, outer radius R1=25 mm, and height h=30 mm. Using the
notations defined above, this corresponds to co�0.7 so that we cannot neglect the
presence of the cone. The small-gap approximation holds since e /R0�0.04. A solvent
trap is used to prevent evaporation and we checked that no significant change of the
rheological properties of our micellar solution occurs over the �8 h maximal duration of
our experiments.

Figure 5 shows the experimental 1 /��
*��1� data obtained when varying the imposed

steady shear stress �1 �i.e., the average proportion �1 of oriented phase� for a given
frequency �. 1 /��

*��1� is inferred from the raw data ��
*��̇1 ,�� at fixed � �see Figs. 4 and

6 for examples of such raw data�. To test the robustness of the linear behaviour of 1 /��
*

vs �1 expected from Eq. �33�, the data were plotted against �1 computed from Eq. �A21�
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alone �i.e., taking co=1 and neglecting the cone-and-plate part of the geometry, see �

symbols�, from Eq. �A22� alone �i.e., taking cp=1 and neglecting the Couette part of the
geometry, see � symbols�, and from the full Eq. �A23� with co=0.7 and cp=0.3 �see �
symbols�. The quality of the three linear fits are similar and the values of the slopes as
well as the intercepts at �1=0 are all very close. We conclude that the linear behavior
predicted by Eq. �33� is indeed observed and that the way �1 is computed is not critical.

In order to use the extrapolation procedure proposed in Sec. III A for Eq. �27�, ��I
* is

taken to be the experimental value for the homogeneous fluid obtained closest to the
onset of shear banding. The corresponding data are shown in Fig. 6�a� �� symbols, see
also the discussion in Sec. IV C�. We then calculate 1 / �̃=1/��

*��1→0�−1/��I
* for vari-

ous frequencies � ranging from 0.07 to 70 rad s−1. The real and imaginary parts of �̃ are
plotted as a function of � in Fig. 7.

If Eq. �33� holds, one expects

�̃��� =
�c

�̇N − �̇I

i�e

c0 � co

1 −
2ic0

�R0

+ 2cp
−1

. �34�

If one further assumes that 2c0 /�R0
1, then one should find a range of � for which
I��̃��R��̃� and

FIG. 5. �a� Real and �b� imaginary parts of 1 /��
*��̇1 ,�� vs �1 deduced from Eq. �A21� ���, from Eq. �A22� ���,

and from Eq. �A23� ���. The solid lines are the best linear fits of the � data while the dotted lines show the
linear fits obtained using the � and � data. The frequency is �=0.26 rad s−1. The fluid under study is an 8% wt
CPCl-NaSal solution.

FIG. 6. �a� ���I
* ���� measured closest to the onset of shear banding for �̇1=1.7 s−1��̇I ��� and inferred from the

fitting procedure based on Eq. �33� �•�. �b� ���N
* ���� measured in the high-shear state for �̇1=11.1 s−1 ��� and

deduced from Eq. �33� �•�. The fluid under study is an 8% wt CPCl-NaSal solution.
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I��̃� �
�c

�̇N − �̇I

�e

c0

1

1 + cp
. �35�

Figure 7�a� shows that I��̃��R��̃� for ��0.07−3 rad s−1 in the experiment. The best
linear fit of I��̃� vs � over this range of frequencies yields c0�1+cp�
=0.13±0.05 mm s−1 so that c0=0.1±0.04 mm s−1. The large uncertainty ��40% � on the
determination of c0 is mainly due to the uncertainty on �̇I and �̇N and therefore on the
calculation of �1. Since 2c0 /�R0�0.003–0.1 for ��0.07–3 rad s−1, the approximation
leading to Eq. �35� is justified a posteriori. These results were obtained with �̇I

=2.2 s−1, �̇N=7.4 s−1, and �c=100 Pa, which were estimated independently from nonlin-
ear rheology as explained in Appendix Sec. B. However, at “high” frequencies ��
�1 rad s−1�, the terms induced by the curvature of the Mooney–Couette geometry are no
longer negligible, so that first-order terms in e /R0 should be taken into account in Eq.
�A14�. This most probably explains the observation of negative data for I��̃� in Fig. 7�b�.

In the last section of this paper we use ultrasonic velocimetry to directly access the
dynamics of the interface during superposition experiments and check the validity of the
above findings. These experiments were performed on a 6% wt CPCl-NaSal solution
�due to technical limitations involving the velocimetry setup and the 8% wt sample�. To
allow for a direct comparison with velocimetry experiments, Fig. 8 presents the analysis

FIG. 7. I��̃� �•� and R��̃� ��� vs � in �a� logarithmic scales and �b� semilogarithmic scales. The solid line is
the best linear fit of I��̃� by Eq. �35� with �̇I=2.2 s−1, �̇N=7.4 s−1, �c=100 Pa, e=1 mm, and c0

=0.1 mm s−1. The fluid under study is an 8% wt CPCl-NaSal solution.

FIG. 8. I��̃� �•� and R��̃� ��� vs � in �a� logarithmic scales and �b� semilogarithmic scales. The solid line is
the best linear fit of I��̃� by Eq. �35� with �̇I=4.0 s−1, �̇N=6.3 s−1, �c=68 Pa, e=1 mm, and c0

=0.31 mm s−1. The fluid under study is a 6% wt CPCl-NaSal solution.
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of superposition rheology measurements performed on the 6% wt solution. The results
are qualitatively the same as those for the 8% wt sample shown in Fig. 7. The estimate
for c0 in the 6% wt sample is c0=0.31±0.15 mm s−1.

B. Ultrasonic velocimetry during superposition experiments

1. Velocity profile measurements

Superposition experiments in the shear banding regime have shown the possibility of
characterizing the dynamics of the interface between shear bands using only a standard
rheometer. In this section, the above results and model are confirmed using time-resolved
local velocity measurements. To access the velocity field we used the ultrasonic veloci-
metry technique described in Manneville and co-workers �2004�. As shown by Becu and
co-workers �2004�, this technique allows one to measure the velocity profile of shear-
banding wormlike micelles in the gap of a Couette cell with a temporal resolution of
about 1 s and a spatial resolution of about 40 �m.

Figure 9 shows a typical velocity profile v�r� measured in a 6% wt CPCl-NaSal
solution, where r is the distance from the inner rotating cylinder. As explained in Man-
neville and co-workers �2004�, the fluid was seeded with 1% wt hollow glass spheres
�Sphericel, Potters Industries� of mean radius 11.7 �m and density 1.1 in order to provide
acoustical scattering. We checked that both linear and nonlinear rheological properties
were not significantly affected by the addition of such acoustic contrast agents. Since the
velocity profiles are recorded in the Couette part of the Mooney–Couette cell, we shall
focus on the model developed in Appendix Sec. B. Let us only recall here Eq. �A11�
which gives the complex amplitude r2=�2e of the interface displacement

r2 =
�2

�c

R0
2

�R0 + r1�2

c0

i� +
2c0

R0 + r1

. �36�

In the following, the steady shear stress is fixed to �1 such that �1�0.5. The steady-
state velocity profile of Fig. 9 clearly shows two linear parts that separate the gap into

FIG. 9. Velocity profile v�r� ��� recorded in a 6% wt CPCl-NaSal solution at steady state for �1=70.5 Pa
�which corresponds to �1�0.5�. The solid lines represent linear fits of the velocity profile in the high- and
low-shear bands. Their intersection yields the position rc of the interface. The dotted line shows the velocity
profile for a Newtonian fluid.
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two shear bands of equal width where the apparent viscosities differ by a factor of about
2. Linear fits in the two shear bands yield the interface position r1=�1e�0.5 mm.

2. Measurement of c0 in a transient experiment

In the framework of the model proposed by Radulescu and co-workers �1999�, the
characteristic velocity c0 can be deduced from transient velocity profile measurements.
Indeed by suddenly decreasing the shear stress from �=�1+�2 to �=�1 at time t=0 and
by measuring the evolution of the velocity profiles v�r, t� in time, we can easily track the
interface position rc�t�. Experimentally �2 is fixed such that, by using Eq. �A9�, r2��
=0�=�2��=0�e�0.2 mm. In the small-gap approximation, the equation for the interface
position reads

1

c0

drc

dt
=

��rc� − �c

�c
=

2

R0
�r1 − rc�t�� , �37�

which leads to

rc�t� = r1 + r2e−2c0t/R0, �38�

where r2��=0� was simply noted r2. As seen in Fig. 10, the position of the interface rc�t�
is well fitted by Eq. �38� which yields c0=0.28±0.03 mm s−1. Comparing with the results
of the superposition measurements shown in Fig. 8, one finds that both values are in
quantitative agreement, which confirms the relevance and the ability of superposition
rheology to extract dynamical information in the shear banding regime. Of course the
uncertainty on c0 given by time-resolved velocimetry is much less than that of the su-
perposition method �but at the cost of using a more involved technique and processing a
large amount of ultrasonic data�.

The present analysis of the velocity measurements also neglects the first two stages of
the band dynamics during the transient, namely low-shear band destabilization and inter-
face reconstruction, as evidenced by Radulescu and co-workers �2003�. These initial
stages were shown to occur in typically 2 s which is of the order of the temporal reso-
lution of our velocimetry experiments. Thus we only focus on the last dynamical step
called “interface travel” in Radulescu and co-workers �2003�. In particular, due to the
existence of two early relaxation stages, one may argue that the initial position is ill

FIG. 10. Position of the interface rc�t� vs time as the external shear stress is reduced from �1+�2=71.5 Pa to
�1=70.5 Pa at t=0. The solid line is the best fit by Eq. �38� with r2=0.17 mm and c0=0.28 mm s−1. The fluid
under study is a 6% wt CPCl-NaSal solution.
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defined and that the interface position after reconstruction may significantly differ from
r1+r2. This is the reason why r2 was actually left as a free parameter in Eq. �38�.

3. Validation of the model for superposition experiments

Now turning to the superposition experiment, we add an oscillatory shear stress of
amplitude �2 to a steady shear stress �1, and follow the position of the interface in time
for various frequencies. Figure 11 presents the measurements of the local shear rates in
the two bands and of the interface position rc�t� versus time for two different frequencies.
As expected these various quantities oscillate in time and, in spite of some experimental
scatter, fitting rc�t� by sine functions for various frequencies yields a good estimate for
the amplitude r2���=�2���e.

The dots �•� in Fig. 12 show the amplitude �r2� of the interface oscillations inferred
from ultrasonic velocimetry for four different frequencies, while the solid line is calcu-
lated using Eq. �36� with the value c0=0.28 mm s−1 obtained from the transient experi-
ment. The quantitative agreement between the experimental data and the calculated pre-
diction confirms the generality of Eq. �36� and provides strong support for the model
developed in Sec. III. Let us emphasize that in the present case the prediction for r2��� is
obtained without any free parameter since �2, r1, R0, and e are known experimentally and
�c is found by nonlinear rheology.

C. Discussion and perspectives

Our main result is that superposition rheology can be used to infer conclusive infor-
mation on the dynamics of wormlike micelles in the shear banding regime. In particular,
superposition measurements lead to an estimate of the velocity c0 which characterizes the
dynamics of the interface between shear bands. The present uncertainty on the estimation
of c0 through superposition rheology alone is of the order of ±40%. In our opinion this
relatively large uncertainty is due to the use of a Mooney–Couette cell and to the subse-
quent approximations needed to process the superposition data in order to recover c0.

FIG. 11. �a� Local shear rates vs time in the nematic band �top� and isotropic band �bottom� along with the
global shear rate recorded by the rheometer �middle� for �=0.05 rad s−1 and �b� �=0.1 rad s−1. Position of the
interface rc�t� vs time for �c� �=0.05 rad s−1 and �d� �=0.1 rad s−1. The solid lines are the best fits by sine
functions. The fluid under study is a 6% wt. CPCl-NaSal solution submitted to stress oscillations of amplitude
�2=1 Pa around the mean value �1=70.5 Pa.
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Experiments in the cone-and-plate geometry under controlled shear rate should be sim-
pler to process and should provide a better accuracy on c0. To minimize boundary effects
in the concentric cylinder geometry, one could also avoid the use of a Mooney–Couette
cell by trapping an air bubble below the inner cylinder.

Let us now discuss the value of c0 found from the superposition experiments reported
above. According to Radulescu and co-workers �2003�, c0 is linked to the diffusion
coefficient D of the stress across the streamlines, a central parameter in recent theoretical
approaches of shear banding �Olmsted and co-workers �2000��. More precisely, one has


d�

dc



�=�c

=
�c

c0
= KG0��1

D , �39�

where c=ed� /dt is the velocity of the interface, K is a dimensionless parameter that
depends on the constitutive model, G0 is the plateau modulus, and �1 the main relaxation
time already introduced in Sec. II B. Following Radulescu and co-workers �2003�, we
take KG0 /��

*�0, �̇I��̇I=0.3. From the nonlinear rheological measurements of Sec. II B and
using Eq. �7�, we find ��

*�0, �̇I��̇I�0.09�c. With c0=0.1 mm s−1 and �1=0.87 s, Eq. �39�
yields D�6.3 10−12 m2 s−1for the 8% wt CPCl-NaSal solution. This corresponds to a
stress correlation length �=�D�1�2.3 �m, which is much larger than the mesh size �
��kT /G0�1/3�30 nm of our system. Let us emphasize the fact that ultrasonic velocim-
etry has provided the same order of magnitude for c0 at a slightly lower surfactant
concentration but with a much better accuracy �c0=0.28±0.03 mm s−1 for a 6% wt
CPCl-NaSal solution�, which confirms that the stress diffusion coefficient estimated from
Eq. �39� should be in the range 10−12–10−11 m2 s−1 in the system under study.

Such a value of D differs by two orders of magnitude from the stress diffusion
coefficient inferred from transient rheo-optical measurements by Radulescu and co-
workers �2003� in various wormlike micelle solutions with 0.3 M CTAB �D�1.2–7.2
�10−14 m2 s−1�. Consequently our stress correlation length is about 20 times larger than
the estimate found by Radulescu and co-workers �2003�, ��100 nm, which was compa-
rable to the mesh size of their micellar network ���26 nm�. Since we used the

FIG. 12. Amplitude of the interface displacement �r2� vs �. The solid line represents the prediction of Eq. �36�
where all the parameters �2=1 Pa, �c=68 Pa, r1=0.5 mm, and c0=0.28 mm s−1 are known independently. The
dotted lines were computed using c0=0.25 �lower curve� and c0=0.31 mm s−1 �upper curve� in Eq. �36�. They
illustrate the sensitivity of the prediction to a 10% variation in c0, which corresponds to the experimental
uncertainty on the fit of Fig. 10. The fluid under study is a 6% wt CPCl-NaSal solution.
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CPCl-NaSal system rather than CTAB solutions such a difference may not be too unex-
pected. For instance the viscosity difference between the two coexisting phases, and
hence, the width of the stress plateau, is much smaller in our case ����̇N− �̇I��4.5� than
in the experiments of Radulescu and co-workers �2003� ����̇N− �̇I��19–80�. Moreover,
the value of K is not only model dependent but could also vary with the average shear
rate �Dhont �1999��. Estimates of D inferred from Eq. �39� should thus probably be taken
with care. In any case, superposition experiments in CTAB solutions, where wider stress
plateaus and a better precision on their limits should make the determination of c0 more
accurate, would be very useful in order to confirm the values of D found by Radulescu
and co-workers �2003� in this system.

Besides extracting a value for D, superposition rheology in the shear banding regime
would be even more interesting if it could provide some information on the rheological
behavior of the nematic phase as suggested in Sec. III A. Indeed information about the
structure and dynamics of the shear-induced, oriented phase is often tricky to derive from
conventional measurements due to the slope in the flow curve that results from curvature
and due to instabilities that occur on the high-shear branch. Here the dynamical behavior
��N

* ��� of the shear-induced phase may be recovered by considering the slopes of the
linear fits of 1 /��

* in Fig. 5 which are equal to 1/��I
* −1/��N

* according to Eq. �33�. The
reconstructed ��N

* ��� data are presented in Fig. 6�b�, where they are compared to super-
position data measured at the beginning of the high-shear branch of the flow curve. The
fact that the experimental data are systematically lower than the reconstructed data can be
easily explained by the distance from the experimental shear rate ��̇=11.1 s−1� to the
upper limit of the stress plateau ��̇N�7.4 s−1�. Moreover, as shown in Fig. 6�a�, which
compares experimental data recorded just below �̇I and the ��I

* ��� data reconstructed
using the �1=0 limit and c0=0.1 mm s−1 in Eq. �33�, superposition measurements at the
onset of shear banding also yield a very good approximation of the complex viscosity
��I

* ��� close to the beginning of the plateau. This allowed us to check the consistency of
our fitting procedure and to confirm that superposition rheology provides useful quanti-
tative information on the dynamical behaviors of both the entangled and the oriented
states. A deeper analysis and modelling of such behaviors are left for future work.

For the sake of completeness, Fig. 13 shows superposition data obtained on the high-
shear branch of the flow curve. Although a simple interpretation of Fig. 13�b� may not be
possible due to the occurrence of flow instabilities for �̇�15 s−1, these data clearly show
that the dynamical behavior of the shear-induced phase totally differs from the initial

FIG. 13. Superposition rheology of an 8% wt CPCl-NaSal solution in the high-shear regime: ���
*�� , �̇1�� vs �

for �a� �̇1=11.1 and �b� 15.0 s−1. The solid lines correspond to an Oldroyd-B fluid �Eq. �10�� with �0

=122 Pa, s1=0.59 s, s2=0.13 s, �1=0.87 s, and �2=0.60 ms.
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Oldroyd-B behavior of the weakly oriented, entangled phase. Such information may turn
out to be crucial for the modeling of shear banding since the exact behavior of the fluid
at the limits of the stress plateau is usually unknown.

Finally, the influence of normal stresses or flow-concentration coupling in superposi-
tion experiments and the way to include them in a model also constitute directions for
further research.

CONCLUSION

In this paper we have shown that superposition rheology constitutes a useful tool to
access the dynamics of a shear-banded flow. A two-fluid semiphenomenological model
was proposed based on the simplest shear banding scenario. This model was shown to
provide a good description of the oscillations of the interface between shear bands in
CPCl-NaSal wormlike micelle solutions sheared in the Mooney–Couette geometry. In
particular an estimate for the stress diffusion coefficient D was reported for the first time
in the CPCl-NaSal micellar system, whose value was shown to be significantly larger
than that reported for CTAB systems. Independent measurements of the interface dynam-
ics through local velocimetry experiments nicely corroborated our model without any
free parameter. We have shown, however, that a more accurate determination of the
characteristic velocity requires a simpler and better controlled geometry. Further experi-
ments, e.g., under controlled shear rate in the cone-and-plate geometry, should allow one
to probe even more precisely the dynamics of the shear bands using only a standard
rheometer and to infer important information on the dynamical behaviors of the two
coexisting phases. The formalisms to use for these experiments are also supplied in the
present work.
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APPENDIX: TWO-FLUID CALCULATIONS IN EXPERIMENTAL GEOMETRIES

In this Appendix the detailed calculations for two-fluid superposition rheology are
presented in the standard geometries used in the experiments namely cone-and-plate,
Couette, and Mooney–Couette geometries.

A. Cone-and-plate geometry

Let us first consider a cone-and-plate geometry of angle �
1 and maximum radius
R0. In such a geometry and in a homogeneous fluid, the shear rate can be considered as
constant throughout the sample. In the shear banding regime, �̇1 and �1 are still linked by
the lever rule �19� so that Eq. �20� remains valid. Moreover, at a given distance r from the
axis of the cone, the system is equivalent to an infinite parallel plate geometry of gap
e=r tan � for which the shear stress is

��r� = �c + ��
*�r��̇2ei�t, �A1�

where ��
*�r� is computed from Eq. �24� by setting e=r tan �. One can then calculate the

total stress exerted on the cone from
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� =
2

R0
2�

0

R0

��r�rdr . �A2�

In analogy with Eqs. �25� and �26� let us define the two characteristic viscosities

1

�L
=

1 − �1

��I
* +

�1

��N
* , �A3�

1

�D
=

�̇N − �̇I

�c

c0

i�R0 tan �
, �A4�

so that �D corresponds to the dynamical term �D�
of the complex viscosity �Eq. �26��

with e=R0 tan �. With these notations, inserting Eq. �A1� into Eq. �A2� leads to �=�c

+��
*�̇2ei�t, where

��
* = �L�1 − 2

�L

�D
+ 2

�L
2

�D
2 ln�1 +

�D

�L
	� . �A5�

The above expression for ��
* in the cone-and-plate geometry clearly differs from Eq.

�24� obtained for infinite parallel plates. In particular a linear fit of 1 /��
* vs �1 does not

seem relevant. As discussed in Sec. III A, one could still use Eq. �A5� to fit ��
* with two

free parameters ��N
* ��� and �D���. Such a procedure would provide an estimate for

�D��� and therefore c0. Another way to proceed is to notice that in our experiments
�D��L, so that

1

��
* �

1

�L
+

2

�D
, �A6�

which is equivalent to Eq. �24� with 2e=R0 tan �. In this case the linear regression of
1/��

* may also lead to a good approximation of c0.

B. Couette geometry

Let us now consider a concentric cylinder geometry �Couette geometry� where the
inner cylinder of radius R0 is rotating while the outer cylinder of radius R1 remains fixed.
This choice is made to be consistent with the experimental section but our model can
easily be adapted to any rotational configuration of the two cylinders. The gap between
the rotor and the stator is e=R1−R0. In the Couette geometry the shear stress is not
homogeneous throughout the whole cell. Under the steady-state approximation already
discussed in Sec. III A, the shear stress depends on the distance r from the inner cylinder
as

��r� =
�1 + �2ei�t

�1 +
r

R0
	2 , �A7�

so that �1+�2ei�t=��0� corresponds to the shear stress at the inner cylinder. Note that the
rheometer may rather indicate “average” shear stresses for �1 and �2 measured in super-
position experiments. Since these stresses only differ from the values at the inner cylinder
by a geometrical factor of order 1 and since this factor also depends on the way the
average is defined, we shall leave out this complication and stick with �1 and �2 as the
values at the inner wall.
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In the simple shear banding scenario described in the introduction, the inhomogeneity
of � ensures that only two shear bands separated by a single interface coexist in the gap.
More precisely, the shear-induced transition occurs when there exists 0�rc�e such that
��rc�=�c. For r�rc, ��r���c so the fluid remains entangled and in the high-viscosity
state, while for r�rc, ��r���c and the fluid is in the shear-induced low-viscosity state.
Another consequence of the stress inhomogeneity is that the stress plateau is not flat
�Radulescu and Olmsted �2000�; Salmon and co-workers �2003��. Indeed the shear-
induced state first appears when ��0�=�c and fills the whole cell when ��0�=�c�1
+e /R0�2. When e /R0
1, this leads to a linear � vs �̇ curve with slope d� /d�̇
=2e�c /R0��̇I− �̇N�. In the case of the experimental data shown in Fig. 2, e /R0�0.04 and
the shear stress is indeed seen to increase linearly in the shear banding regime. However,
as already noted, the high-shear branch of the flow curve is hardly distinguishable from
the “stress plateau.” Still we can take advantage of the existence of a tilted plateau to
estimate �̇N. Fitting the flow curve at high shear rates by a Bingham fluid �=�B+�B�̇ �as
suggested by Salman and co-workers �2003�� and looking for the shear rate correspond-
ing to �=�c=100 Pa yields �̇N=7.4±0.4 s−1 �see dashed line in Fig. 2�.

Thus, from Eq. �A7�, it is required that �c��1±�2��c�1+e /R0�2 for a superposition
experiment to be performed in the shear banding regime at all times. Let us define r1 such
that �c=�1 / �1+r1 /R0�2 and rc�t� the position of the interface at time t. The model
proposed by Radulescu and co-workers �1999� implies that

1

c0

drc

dt
=

��rc� − �c

�c
= �1 +

�2

�1
ei�t	�R0 + r1

R0 + rc
	2

− 1. �A8�

In the linear response, Eq. �A8� leads to rc�t�=r1+r2 exp�i�t�, where

r2 =
�2

�1

c0

i� +
2c0

R0 + r1

. �A9�

Since rc�t�=��t�e, one gets ��t�=�1+�2 exp�i�t� with

�1 =
r1

e
=

R0

e
���1

�c
− 1	 , �A10�

�2 =
r2

e
=

�2

�c

R0
2

�R0 + r1�2

c0

i�e +
2c0e

R0 + r1

. �A11�

This last equation is tested experimentally through velocity profile measurements in Sec.
IV B.

Once the interface motion is known from Eqs. �A10� and �A11�, one can go back to
the apparent shear rate, i.e., the shear rate averaged over the whole sample

�̇�t� = �̇1 + �̇2ei�t = �
0

rc�t� � �1�r�
�N��1�r��

+
�2�r�ei�t

��N
* ��,�1�r��� dr

e
+ �

rc�t�

e � �1�r�
�I��1�r��

+
�2�r�ei�t

��I
* ��,�1�r��� dr

e
, �A12�

where �1�r�=�1 / �1+r /R0�2 and �2�r�=�2 / �1+r /R0�2. Since our superposition experi-
ments are performed under controlled stress, we have noted the viscosities �I, �N, ��I

* ,
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and ��N
* as functions of the local steady shear stress �1�r�. In principle, knowing the

different viscosities �from experimental measurements or extrapolated data as mentioned
in Sec. III A�, Eqs. �A9� and �A12� allow one to solve for �̇1 and �̇2 and thus to find
��

*=�2 / �̇2.
In order to get an explicit form for ��

* that we may compare to Eq. �24�, we shall
assume that the small-gap approximation e
R0 holds, which is almost always the case in
standard experiments in the Couette geometry. In that case, expanding Eq. �A12� to
first-order in e /R0 and looking for the constant terms leads to

1

�
=

�̇1

�1
=

1 − �1

�I��c�
+

�1

�N��c�
+

e

R0
� 1

�I��c�
��1 − �1�2 �c

�I��c�

 ��I

��



�c

− 1 + �1
2�

−
�1

2

�N��c�
� �c

�N��c�

 ��N

��



�c

+ 1�� . �A13�

This yields the apparent viscosity � indicated by the rheometer in the shear banding
regime �up to some multiplicative factor of order 1 that depends on whether the rheom-
eter actually indicates the shear stress at the inner wall or some average shear stress, as
already mentioned above�. Note the first order correction in e /R0 to the case of simple
shear given by Eq. �20�. By looking for the terms proportional to exp�i�t� in the first-
order expansion of Eq. �A12�, one finds

1

��
* =

�̇2

�2
=

1

�L
+

1

�D
+

1

��
, �A14�

with

1

�L
=

1 − �1

��I
* +

�1

��N
* , �A15�

1

�D
=

�̇N − �̇I

�c

c0

i�e +
2c0e

R0
�1 + �1

e

R0� 1

i�e +
2c0e

R0

− 2� �
1

�D�

1

1 −
2ic0

�R0

, �A16�

1

��
=

e

R0
� 1

��I
* ��1 − �1�2 �c

��I
* 
 ���I

*

��



�c

− 1 + �1
2� −

�1
2

��N
* � �c

��N
* 
 ���N

*

��



�c

+ 1	� ,

�A17�

where we have dropped the dependence on �c of the various viscosities for the sake of
clarity. Equation �A14� generalizes Eq. �24� to the case of a small-gap Couette geometry
and shows that ��

* now involves three terms: the lever rule �L, the dynamical component
�D that arises from the motion of the interface, and �� a first-order correction to �L

similar to that found in Eq. �A13� and linked to the stress inhomogeneity. Keeping in
mind that the various viscosities in Eq. �24� are taken at �1=�c, the case of two infinite
parallel plates is easily recovered from Eqs. �A13�–�A17� when R0→�.

Therefore, in a small-gap Couette geometry, 1 /��
* is a second-order polynomial in �1

whose value for �1→0 is
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lim
�1→0

1

��
* =

1

��I
* +

�̇N − �̇I

�c

c0

i�e +
2c0e

R0

. �A18�

This is very similar to Eq. �27� so that the same data analysis should lead to the mea-
surement of �D��� and to an experimental determination of c0.

C. Mooney–Couette geometry

Experimentally, in order to minimize boundary effects due to the finite height of the
cylinders, one often uses a composite geometry, called the Mooney–Couette geometry,
made of a Couette cell of gap e with a cone-shaped bottom such that e=R0 tan ��R0�.
In a Newtonian fluid and in the small-gap approximation, this geometry ensures that the
shear rate remains constant over the whole sample.

Using the results obtained in Appendix Secs. A and B, one can easily construct a
model for superposition experiments in the Mooney–Couette geometry of height h by
considering the proportions co= �1+R0 /2h�−1 and cp=1−co of the surface respectively
covered by the Couette �co� and by the cone-and-plate �cp� geometries relative to the total
surface. The total shear stress is then simply given by �=co�co+cp�cp, which yields

� = co�co + cp�cp, �A19�

��
* = co��co

* + cp��cp
* , �A20�

where �cp and ��cp
* are given by Eqs. �20� and �A6�, and �co and ��co

* by Eqs. �A13� and
�A14�. To close this set of equations, one has to specify the values of �1 in the two parts
of the geometry. Since the shear rate is perfectly homogeneous in the cone-and-plate, the
steady component of the shear stress acting on the cone is �1cp=�c so that the steady
component of the shear stress acting on the inner cylinder is �1co= ��1−cp�c� /co. Thus
the local proportions of shear-induced structure �1cp and �1co are given by

�1co =
R0

e
���1 − cp�c

co�c
− 1	 , �A21�

�1cp =
�̇1 − �̇I

�̇N − �̇I

. �A22�

In the limit e /R0
1 one can define an effective �1 for the whole cell:

�1 = co�1co + cp�1cp = co
R0

e
���1 − cp�c

co�c
− 1	 + cp

�̇1 − �̇I

�̇N − �̇I

. �A23�

With Eqs. �A20�, �A6�, �A14�, �A21�, and �A22�, one can in principle determine the
characteristic velocity c0 and the dynamical behaviors of the two coexisting phases ��I

*

and ��N
* by fitting ��

* using Eq. �A20� at a fixed �. However, in practice, such a fit
requires to know precisely �c, �̇I, and �̇N together with �̇1 and ��

* for at least four
different values of �1. As already pointed out, �c, �̇I,and �̇N may be difficult to access
and, in a curved geometry, are known to within 10% at best. Therefore, the complexity of
the fitting procedure along with the high number of unknowns prevent us to fit experi-
mental data to the full model described above. Moreover the simple data analysis pro-
posed in Sec. III A and based on an extrapolation to �1=0 �in order to remove the
dependence on the unknown viscosity ��N

* � is no longer possible in the Mooney–Couette
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geometry since �1cp and �1co do not go to zero for the same �̇1 or �1. Nevertheless, in
Sec. III B, it is shown that Eq. �24� along with �1 calculated from Eq. �A23� may still
allow us to estimate c0.
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The interplay between shear band (SB) formation and boundary conditions (BC) is investigated in

wormlike micellar systems (CPyCl-NaSal) using ultrasonic velocimetry coupled to standard rheology in

Couette geometry. Time-resolved velocity profiles are recorded during transient strain-controlled experi-

ments in smooth and sandblasted geometries. For stick BC standard SB is observed, although depending

on the degree of micellar entanglement temporal fluctuations are reported in the highly sheared band. For

slip BC wall slip occurs only for shear rates larger than the start of the stress plateau. At low entanglement,

SB formation is shifted by a constant � _�, while for more entangled systems SB constantly ‘‘nucleate and

melt.’’ Micellar orientation gradients at the walls may account for these original features.

DOI: 10.1103/PhysRevLett.103.248302 PACS numbers: 83.80.Qr, 47.50.�d, 83.50.Rp, 83.60.�a

During the past two decades, shear banding (SB), i.e.,
the shear-induced coexistence of macroscopic bands with
widely different viscosities, has been evidenced in a large
range of complex fluids [1]. Sheared dispersions of surfac-
tant wormlike micelles have attracted considerable atten-
tion due to their practical use in industry, but also because
they challenged the physicists to address a nonequilibrium
problem with concepts from thermodynamics [1–3].
Indeed, rheological measurements show that the flow curve
of shear-banding systems, i.e., the measured shear stress �
vs the applied shear rate _�, presents a plateau at a well-
defined shear stress �? over a given range of shear rates
[4], very similar to the plateau in pressure as a function of
overall concentration of a demixed system. As for equilib-
rium phase transitions, it has been suggested that the flow
can be either metastable or unstable for SB formation,
depending on the applied shear rate [2,5–7]. The formation
of two coexisting SB, bearing the local shear rates _�1 and
_�2 that mark, respectively, the lower and upper limits of the
stress plateau, constitutes a pathway for the relaxation of
the excess stress in the initially linear flow. Stress relaxa-
tion can, however, also occur through apparent wall slip.
Slip phenomena are ubiquitous in polymers [8,9] and soft
glassy materials [10]. Wall slip has also been reported in
shear-thinning wormlike micellar systems [11,12] but its
connection with SB has been underexposed. Still, informa-
tion on the interplay between wall slip and a flow insta-
bility like SB are essential for fully understanding the
behavior of complex fluids.

In this Letter, wall slip is shown to compete with SB
formation by offering an alternative route for stress relaxa-
tion. We use tunable boundary conditions (BC) at the walls
as an experimental tool to probe the effect of wall slip on
the flow behavior of cetylpyridinium chloride/sodium sal-
icylate (CPyCl-NaSal) micellar solutions at 6 and 10 wt%
in 0.5 M NaCl brine at 23 �C. We enforce ‘‘stick’’ BC by
using a rough sandblasted Plexiglas Couette cell and par-

tial ‘‘slip’’ BC by using a smooth Plexiglas cell [13]. The
competition between SB formation and wall slip after
shear rate quenches is addressed through simultaneous
rheological [14] and time-resolved velocity profiles mea-
surements. For the latter, we use ultrasonic speckle veloc-
imetry (USV) [15] since the sandblasted cell is not
transparent and optical techniques as in [16–18] would
be too difficult to implement. We show that with slip BC,
wall slip occurs only for shear rates larger than the start of
the stress plateau for both the concentrations under study.
The extent to which SB formation is frustrated by wall slip
strongly depends, however, on the degree of micellar en-
tanglement. Very large temporal fluctuations are reported
in the more concentrated sample for both BC.
The flow curve of 6 wt% CPyCl-NaSal shown in

Fig. 1(a) for stick and slip BC reveals a stress plateau at
�? ’ 75 Pa that extends from _�1 ’ 4:5 to _�2 ’ 22 s�1,
with a slight tilt due to the curvature of the Couette cell
[16]. Interestingly the flow curve for slip BC does not show
such a sharp bend at _�1 as with stick BC. Figure 1(b)
presents the stress responses for quenches from _�init lo-
cated in the low shear regime to _�appl ¼ 8 s�1 located in

the beginning of the stress plateau. In line with earlier
experiments [2,7], the stress shows a slow decay after an
initial overshoot and a few oscillations. As in Ref. [7], we
define the amplitude of this slow relaxation as the excess
stress �� ¼ �M � �1, where �M is the ‘‘mechanical’’
stress at the end of the oscillations and �1 is the steady-
state shear stress. Although the initial overshoot is more
pronounced for stick BC, the stress responses for t * 10 s
are very similar for both BC. Yet, depending on the BC,
velocity profiles display radically different behaviors that
persist in the steady state. As seen from Figs. 1(c) and 1(d),
linear profiles are recorded just before and after the shear
rate quench for both BC. For stick BC, a high SB develops
within a few seconds at " ¼ �=e ’ 0:5, where � is the
width of the SB and e the gap width. The interface then
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migrates towards its final position in agreement with pre-
vious observations [17]. For slip BC, however, SB do not
fully develop [see the velocity profile at t ¼ 3:3 s in
Fig. 1(d)] and the system rather slips to reach a steady
state characterized by a homogeneous shear flow with
substantial wall slip (about 40%) at the inner cylinder, as
in a recent report on DNA dispersions [9].

Figure 2 provides the analysis of the time-resolved
velocity measurements after quenches to _�appl ¼ 8 s�1,

as in Figs. 1(c) and 1(d). Each velocity profile was ana-
lyzed to extract the true shear rate _�trueðtÞ, the proportion of
highly sheared material "ðtÞ, and the local shear rates _��ðtÞ
in each SB [19]. As noted above our results for stick BC are
consistent with previous data where no significant wall slip
was reported [16,17]. They also reveal two important new
features: (i) the presence of noticeable fluctuations in both
_�trueðtÞ and _�þðtÞ while "ðtÞ and _��ðtÞ remain roughly
constant for t * 30 s and (ii) the fact that the position of
the SB settles with the same dynamics as the shear stress.
For slip BC, Fig. 2(a) shows that (i) the imposed shear rate
_�appl cannot be sustained although initially _�true ’ _�appl

and (ii) wall slip sets in immediately and has the same
time constant as the stress relaxation since _�trueðtÞ and �ðtÞ
follow the same decay. Figures 2(b) and 2(c) reveal that
shear banding is observed during the buildup of wall slip. A
high SB is formed with " ’ 0:2 and _�þ ’ 10 s�1, a value
close to the initial shear rate for stick BC. However, for slip
BC, _�þ rapidly drops and approaches _��, which leads to
the loss of banding structure [hence the lack of "ðtÞ and _��
data for t * 40 s] and to linear profiles with _�true ’ 5 s�1

in the steady state. We conclude that at _�appl ¼ 8 s�1 the

excess stress relaxes fully due to wall slip for slip BC,

while for stick BC it relaxes by SB formation. Both pro-
cesses have the same time constants since the decay of
_�trueðtÞ for slip BC is the same as the settling of the SB
through "ðtÞ for stick BC. As a consequence the stress
relaxations for stick and slip BC are also similar [see the
dashed line in Fig. 1(b)].
Quenches were repeated as described above for final

shear rates _�appl covering almost the whole stress plateau

[20]. Figure 3 presents the steady-state values of the true
shear rate _�1

true and the proportion of the high SB "1, as
well as the amplitude of the relaxation of "ðtÞ [noted �"
and defined in Fig. 2(b)] and that of the stress relaxation
��. As shown by the solid line _�true ¼ _�appl in Fig. 3(a),

stick BC apply for the sandblasted cell. Moreover the linear
behavior of "1 vs _�appl is consistent with the ‘‘lever rule’’:

"1 ¼ ð _�appl � _�1Þ=ð _�2 � _�1Þ [see solid line in Fig. 3(b)]

with _�1 ¼ 3:4� 0:2 s�1 and _�2 ¼ 22:4� 0:5 s�1 in sat-
isfactory agreement with both the flow curve and the
steady-state values of the local shear rates _�� ¼
4:3� 0:3 s�1 and _�þ ¼ 22� 1 s�1 measured from the
velocity profiles [19]. These observations not only confirm
previous results in the absence of wall slip [16–18] but also
allow us to evidence the migration of the high SB towards
the stator (i.e., �" < 0) for deep quenches. For slip BC,
_�true ¼ _�appl only holds when _�appl < _�1. Wall slip is
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FIG. 1 (color). (a) Steady-state flow curves of 6 wt% CPyCl-
NaSal for stick (black) and slip BC (red) for a shear rate sweep
of 1200 s. (b) Stress responses �ðtÞ � �1 after a shear rate
quench to _�appl ¼ 8 s�1 at t ¼ 0 for stick (black, _�init ¼
0:8 s�1) and slip BC (red, _�init ¼ 2 s�1). The dashed line
indicates an exponential decay with a characteristic time of
10 s. (c) Velocity profiles vðr; tÞ for stick BC at various times
during the quench shown in (b) [see colored dots in (b)]. r
denotes the radial position from the inner rotating cylinder.
(d) Same as (c) for slip BC.
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observed over the whole stress plateau and _�1
true is shifted

by a constant � _� ’ 3:4 s�1 with respect to stick BC. If SB
occurs in the presence of wall slip, then one expects "1 to
be shifted by the same amount. Figure 3(b) shows that SB
indeed sets in for _�appl > _�1 þ � _� ’ 8 s�1. However, the

slope of "1 vs _�appl is slightly smaller than for stick BC

leading to a shift that increases with _�appl [see dashed line

in Fig. 3(b)]. The same observation holds for Fig. 3(c)
where the shift between the �" curves is seen to increase
up to about 15 s�1 for the highest achievable _�appl. This

suggests a more subtle influence of wall slip on SB than a
mere shift due to the difference between _�appl and _�true but

remains questionable due to surface instability for very
deep quenches. Finally, if one assumes that the viscosity
of the slip layer at the rotor does not depend on _�appl

throughout the stress plateau, then a constant � _� corre-
sponds to some constant stress released by wall slip.

Figure 3(d) shows that the excess stress �� is most
affected by the BC for _�appl ¼ 5–8 s�1 (where�� is about

twice smaller for slip BC than for stick). At larger _�appl,

�� follows roughly the same decay for both BC.
It is interesting to see how the balance between SB and

wall slip changes for a more entangled system, e.g., a
10 wt% CPyCl-NaSal sample, as studied by López-
González et al. [11]. The response to shear rate quenches
for this system, where �? ’ 158 Pa, _�1 ’ 1:7 s�1, and
_�2 ’ 20 s�1 is plotted in Fig. 4. Even in the sandblasted
cell where stick BC are supposed to be valid, the true shear
rate never coincides with _�appl. Moreover, considerable

fluctuations in _�þ are observed, while _�� remains much
smoother. For slip BC and _�appl ¼ 5 s�1, we observe that

the sample slips to the shear rate _�1 at the start of the stress
plateau where there is no excess stress [see the green line in
Fig. 4(a)]. A quench to a higher shear rate of _�appl ¼ 8 s�1

reveals that _�true jumps from _�1 to significantly higher
values over short time windows indicated by vertical
dashed lines in Fig. 4. Velocity profiles also show that,
when _�true > _�1, a small but detectable high SB forms with
" * 0:1 and _�þ ’ 15–20 s�1. In other words the high-
shear state is formed over short periods of time and is
unstable over longer times, which is reminiscent of ‘‘nu-
cleation and melt’’ events typical of metastability. Since
_�true � _�1 up to _�appl ’ 12 s�1 [see open triangles in
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Fig. 3(a)], wall slip dominates SB formation over the full
accessible part of the stress plateau.

In summary, we established that under slip BC wall slip
is observed only for shear rates larger than the start of the
stress plateau, i.e., _� > _�1. For the 6 wt% sample, SB
formation is suppressed by wall slip over the first � _� ’
3:4 s�1 into the stress plateau, while for higher shear rates
stable SB are observed together with partial slip. For
10 wt% CPyCl-NaSal, ‘‘nucleation and melt’’ is observed
over the full accessible part of the stress plateau. This has
the important implication that for both concentrations wall
slip acts as to stabilize the bulk flow.

By combining presently available theories we may in-
terpret our results along the following line of argumenta-
tion. Strong gradients in the shear rate can build up at the
wall, assuming that wormlike micelles preferentially align
with the smooth walls, i.e., that gradients in orientation are
intrinsically present at the wall, see Ref. [21]. Orientation
gradients grow when the system is quenched into the
plateau region, see Refs. [5,6]. The stress that is stored in
the system after the quench needs to diffuse in order for the
system to relax, see Ref. [22]. These latter two processes
should be independent of whether the gradients are present
in the bulk or at the wall. Combining these arguments one
can explain the observation that no apparent wall slip is
observed below the stress plateau because in this region the
flow is stable and gradients at the walls or in bulk do not
grow. It also follows that the time constants of _�true for slip
BC and " for stick BC are comparable in Fig. 2, resulting in
similar stress decays [see Fig. 1(b)], since the same stress
diffusion is needed in both cases. Once the SB have settled
_�� ¼ _�1 holds for the low SB both for stick and slip BC.
Fluctuations between both conditions can now easily occur
since no stress diffusion is needed. This may account for
the difference between the stable low SB and the fluctuat-
ing high SB [see Fig. 4(c)], and for the fast formation of the
nucleating bands in the more concentrated sample.

To conclude, BC appear to be a crucial control parame-
ter that accounts for some of the fluctuations reported
earlier on similar systems [11,12]. The interplay between
wall slip and SB formation may have major implications
for tuning the flow behavior of complex fluids showing
flow instabilities. A full understanding of our experiments
still requires a proper combination of the above mentioned
theories. The competition between local stress relaxation at
the wall via slip and bulk relaxation through SB formation
depends on the details of the system, such as the surface
treatment and the degree of entanglement in the bulk. A
possible microscopic input in the theory could be to mimic
surface roughness, i.e., stick BC, by randomizing the align-
ment of the wormlike micelles at the walls. This is missing
from the theoretical work so far. Experiments on a less
coarse grained level as was achieved here with USV are
also needed to identify micellar orientations at the wall.
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Chapter 18

Summary

This Habilitationsschrift treats two main themes: the dynamics and phase separation kinetics
of dispersions of colloidal rods in equilibrium and under shear flow. Part I and II on dispersions
of colloidal rods in equilibrium concerns issues that are fundamental to the understanding
of lyotropic liquid crystals. In Part I the self-diffusion of rod-like particles throughout the
different phases is investigated. It is shown how diffusion is influenced by the different degrees
of ordering and, vise versa, how the different phases are characterized by the diffusive behavior
of the rods. Part II is dedicated to the isotropic-nematic (I-N) phase separation kinetics. Here
the interest is to characterize the unstable and meta-stable regions in the bifurcation diagram
and the resulting phase separation kinetics. As both are already old issues, at the same time
new physical issues arise, like the anomalous diffusion of rods in the smectic phase and the
coalescence of nematic droplets. In part III and IV the focus is on the phase behavior and
flow behavior of rod-like particles. The goal in part III is very similar to the goal in part
II, namely to find the phase boundaries and characterize the phase separation kinetics, but
now for a system subjected to shear flow. It is expected that the phase boundaries will shift,
because shear flow induces alignment in the system. This is however not straightforwardly the
case and the dynamic states of the sheared isotropic and nematic need to be considered. Also
flow instabilities are observed, which are caused by the elastic deformation of the biphasic
structures. The working horse that we use in part I to III are fd viruses, which are the most
ideal rods available so far due to the high aspect ratio and stiffness of the rods. In part IV
flow instabilities are studied for worm-like ’living’ polymers. These are worm-like particles
that can break up and recombine and that have a relatively long persistence length. These
systems show intriguing similarities and differences with the sheared dispersions of fd virus.

The subject of Part I is ”Diffusion of rods throughout phase space”. In chapter 2
and 3 the diffusion around the I-N transition into the nematic phase is studied. The method-
ology we used for all the papers in Part I, Video Fluorescence Microscopy, is introduced in
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chapter 2, ”Self-diffusion of rod-like viruses in the nematic phase”. Here a small fraction of
viruses is labelled with a fluorescent dye and dispersed in a background of unlabelled rods.
The trajectories of individual rods are visualized using fluorescence microscopy from which
the diffusion constant is extracted. In chapter 1 we focused on the the diffusion parallel (D‖)
and perpendicular (D⊥) to the nematic director. The ratio (D‖/D⊥) increases monotonically
with increasing virus concentration. Crossing the isotropic-nematic phase boundary results in
increase of D‖ and decrease of D⊥ when compared to the diffusion in the isotropic phase (Diso).

In chapter 3 we focused on ”Hydrodynamic interactions in dense rod suspensions”. We did
this experimentally by comparing the diffusion rate of charged rod-like viruses with and without
polymer coating at various ionic strengths. Here we exploited the fact that the surface of the
virus can be modified by grafting a polymer layer onto it, together with the fact that the double
layer of counter ions can be tuned by the ionic strength of the buffer. Both modifications lead to
an effective thicker rod resulting in an I-N phase transition at a lower ionic strength. However,
the hydrodynamic interactions will be different because the distance between the surface of two
neighboring rods is very different for the two types of modified rods. In computer simulations
performed in the group of prof. Gompper in Jülich the hydrodynamic interactions are directly
accessed by explicitly simulating the solvent. The anisotropy in the diffusion of rods in the
nematic phase is dominated by the effective excluded volume, while the absolute values of the
diffusion coefficients are strongly affected by hydrodynamic interactions. In all cases the total
diffusion increases after the I-N transition, which can be regarded as a signature of the increase
in the positional entropy.

The other two chapters in Part I concern the diffusion of rods in the smectic phase. The main
results are presented in chapter 4, ”Self-Diffusion of Rodlike Viruses through Smectic Layers”.
It was always thought that in the smectic phase rods behave liquid-like within the layer, while
positional entropy in the third direction is lost. We, however, directly visualized at the scale
of single particles a significant mass transport between smectic layers, also called permeation.
Self-diffusion takes place preferentially in the direction normal to the smectic layers, and occurs
by quasiquantized steps of one rod length. This was illustrated by analyzing individual tracks,
but also by the distinct peaks at integer rod lengths in the Self-van Hove function, which is
the probability to find a particle at position r at time t, given that is was at position 0 at
time 0. We calculated the probability of the position of the rod with respect to the middle
of the layer, from which the mean potential energy that stabilizes the smectic layers could be
inferred, using the Boltzmann factor. Thus diffusion in the smectic phase is a nice example of
the diffusion of a Brownian particle in a periodic potential, given that the rods move almost
only in the direction parallel to the long axis. Using an exact theory for such a process, we
could show that the diffusion rate corresponds with the rate calculated from the diffusion in the
nematic state with the lamellar periodic ordering potential that is obtained from the positional
distribution function. Note that all of these features cannot be found by scattering techniques.
The diffusion within the layer has a glassy character, i.e. it is a subdiffusive process. Thus we
concluded that the smectic phase of fd viruses consists of layers of glassy rods.
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In chapter 5, ”Dynamical and structural insights into the smectic phase of rod-like
particles”, we extended the analysis of the diffusion and focus on the subdiffusive character
of the transport process. It is shown that the motion of the rods is subdiffusive before the
rod has diffused its own length and becomes almost diffusive for longer times. The diffusion
perpendicular to the rod also becomes more diffusive, but is still glassy-like. There is a
qualitative agreement between the probability density function of displacement at different
times, i.e. the self-van Hove function, that was found experimentally with the theoretical
predictions based on a dynamical density functional theory.

Part II is dedicated to the ”Isotropic-nematic Phase separation kinetics”. To
understand the nature of the I-N and N-I phase transition one has to access the kinetics of these
transitions. For this the system needs to be ’quenched’ from a stable state to an unstable state.
Though this is generally experimentally difficult, we took advantage of the fact that there are
two parameter that determine the phase behavior of colloidal rods: position and orientation.
This means that a quench can also be made by pre-aligning the rods with an external field
and studying the response of the system when this nematic stabilizing field is switched off.
Performing such quenches at different concentrations within the isotropic-nematic coexistence
region will render the system meta-stable or unstable, such that the N-I spinodal and binodal
points can be probed. In order to access a wide range of concentrations, the polysaccharide
dextran was added to the dispersion, which induces depletion interactions between the rods.
This results in an increase in the width of the biphasic region as well as higher contrast between
the different phases.

In chapter 6, ”Kinetic pathways of the nematic-isotropic phase transition as studied by
confocal microscopy on rod-like viruses”, the main features of the N-I phase separating process
are outlined. Here we used confocal microscopy in combination with a shear cell. The contrast
in the microscopy is due to differences in birefringence, i.e. polarization confocal microscopy.
If the quench is performed at high concentrations then dark spindle-like structures are formed
after some induction time. These spindles are atactoids, which means that they are droplets
of the isotropic phase in a background of the nematic phase. They are randomly distributed
in space but all have the same orientation, namely with the long axis parallel to the director
of the nematic, i.e. the direction of the applied field before the quench. The finite induction
time and the randomly distributed isotropic nuclei are clear signatures for a nucleation-and-
growth process. Hence at high concentrations the system is meta-stable after switching of
the field. For quenches at low concentration phase separation immediately sets in and a bi-
continuous structure is formed. This is typical for systems that undergo spinodal decomposition.
Hence for the low concentrations the system is unstable after the quench. At intermediate
concentrations we identified the transition between both demixing processes, where the spinodal
point is located. Except for the fact that these experiments show that we have the experimental
tools to locate the N-I spinodal, maybe the most fascinating observation of this paper is the
late stages of the spinodal decomposition. First, we observed that the bicontinuous structure
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breaks up in small nematic tactoids, instead of a gradually growing bicontinuous structure.
Eventually these tactoids grow, mainly via coalescence. The coalescence process on itself is
very interesting because it seems that it can only take place when tactoids have a specific
orientation with respect to each other. Also the aspect ratio of the tactoids decreases with
increasing size as predicted from theory.

”Nematic-isotropic spinodal decomposition kinetics of rodlike viruses” are further studied
in chapter 7. Here we used confocal microscopy as well as small-angle light scattering to
monitor spinodal decomposition after a shear rate quench. Plotting the eigenvalue λ(−), which
quantifies the rate of the phase separation, versus the scattering angle k we observed that λ(−)

approaches a nonzero constant value for k → 0. In contrast, for gas-liquid demixing of spheres
the corresponding eigenvalue becomes zero for k → 0. This is due to the fact that for rods a
local reorientation is sufficient to start the phase separation, whereas for spheres translational
diffusion over finite distances is needed. This corresponds with the theoretical predictions for an
initially isotropic phase, where it is shown that concentration fluctuations follow fluctuations
in the orientation. Translational diffusion dominates when the concentration of dextran is
increased.

The effect of attraction on the kinetics of the I-N transition is studied into more detail
in chapter 8, ”Supersaturated dispersions of rodlike viruses with added attraction”. The N-I
spinodal points for dispersions of rods with varying concentrations of dextran were obtained
again from orientation quenches using cessation of shear flow in combination with small-angle
light scattering. We found that the location of the N-I spinodal point is independent of the
attraction, which was confirmed by theory. Surprisingly, the experiments showed that also
the absolute induction time, the critical nucleus, and the growth rate are insensitive to the
attraction if the concentration is scaled to the distance to the phase boundaries, i.e. the
binodal points. In addition we also applied concentration quenches using pressure jumps. Here
we profit from the compressibility of water, which is about 5 % at 1 kbar. We probed the
response with polarization microscopy, birefringence, and turbidity measurements. The full
biphasic region could be accessed, resulting in the construction of an experimental analog of
the bifurcation diagram.

Part III describes the ’Isotropic-nematic Phase Transition under shear flow ’.
Chapter 9, ”Non-equilibrium phase behaviour of rod-like viruses under shear flow” , summarizes
the main physical phenomena that play a role: The shape of the binodal line, the dynamic
behavior of the nematic in shear flow, and the formation of vorticity shear bands. In the
following chapters each of these themes is studied in detail.

In chapter 10 the ”Flow Behavior of Colloidal Rodlike Viruses in the Nematic Phase” is
treated. The monodisperse nature of these rods combined with relatively small textural con-
tribution to the overall stress make this a suitable model system to investigate the effect of
flow on the nonequilibrium phase diagram. Transient rheological experiments are used to de-
termine the critical shear rates at which director tumbling, wagging, and flow-aligning occurs.
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The present model system enables us to study the effect of rod concentration on these transi-
tions. The results are in quantitative agreement with the Doi-Edwards-Hess model. Moreover,
we observed that there is a strong connection between the dynamic transitions and structure
formation, which is not incorporated in theory.

In chapter 11 ”Attractive Colloidal Rods in Shear Flow” are studied, focussing on the effect
of shear flow on the isotropic-nematic phase transition of attractive colloidal rods. When a
biphasic dispersion of rods is sheared, a flow aligned isotropic (paranematic) phase coexists
with a tumbling nematic phase, as we know it from chapter 10. The location of binodals and
spinodals are determined using small-angle light scattering and step rate rheology experiments.
The maximum of the binodal is set by the tumbling-to-aligning transition line. Thus it could
be concluded that the collective rotational motion of the nematic phase frustrates the merging
of the coexisting regions. This was confirmed by simulations. The phase diagrams in the shear-
concentration plane for the various strengths of attractions can be mapped onto a master curve
by appropriate scaling, similar to the results presented in chapter 8.

In a part of the biphasic region ”Vorticity banding in rodlike virus suspensions” are observed,
which is the subject of chapter 12. Banding occurs uniformly throughout the cell gap within
a shear-rate interval, which depends on the rod concentration. For shear rates below the
lower-border shear rate only shear elongation of inhomogeneities, which are formed due to
paranematic-nematic phase separation, is observed. Within a small region just above the
upper-border shear rate, banding occurs heterogeneously. The kinetics of vorticity banding
is essentially different, depending on the morphology of inhomogeneities formed during the
initial stages of the paranematic-nematic phase separation, as described in part II. Particle
tracking and polarization experiments indicate that the vorticity bands are in a weak rolling
flow, superimposed on the applied shear flow. We suggest that the mechanism to explain the
origin of the banding instability and the transient stability of the banded state is related to
the normal stresses generated by inhomogeneities formed due to the underlying paranematic-
nematic phase transition.

The question ”Is vorticity-banding due to an elastic instability?” is answered in chap-
ter 13. A mechanism similar to the well-known elastic instability for polymer systems
(the Weissenberg effect) is proposed, where nonuniform elastic deformation are caused
by gradients in the local shear rate. The role of polymer chains is now played by the
inhomogeneities due to the underlying paranematic-nematic phase transition. Nonuniform
deformation of these inhomogeneities are thus proposed to lead to hoop stresses which give
rise to banded structures where there is secondary, weakly rolling flow within each of the bands.

In Part IV ”Flow instabilities in dispersions of worm-like particles” are studied
for three different systems. These systems can all be categorized as ’living’ polymers, which
are polymer-like particles that can break up and recombine. They are quite stiff, meaning that
the ratio of Kuhn-length over the diameter is at least about 10, so that they can generally
be described as ”worm-like”. All of the three systems show shear band formation, but now
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in the gradient direction, when submitted to shear flow in the region where there is strong
shear-thinning. The origin of this flow instability is different for the different systems.

In chapter 14 the ”Multiple Shear-Banding Transitions in a Supramolecular Polymer Solu-
tion” is studied. This system consists of reversible supramolecular polymers, based on hydrogen
bonding. Velocity profiles measured by heterodyne dynamic light scattering indicate three dif-
ferent shear-banding regimes upon increasing shear rate, each with different characteristics.
While the first of these regimes has features of a mechanical instability, as for the surfactant
wormlike micelles, the second shear-banding regime is related to a shear-induced phase sepa-
ration and the appearance of birefringent textures, similar to the block copolymer wormlike
micelles. The shear-induced phase itself becomes unstable at very high shear rates, giving rise
to a third banding regime. This cascade of flow instabilities is very unusual.

”Dynamic response of block copolymer wormlike micelles to shear flow”, described in chap-
ter 15, is dominated by the proximity of the isotropic-nematic phase transition and hence by the
critically slowing down of the rotational diffusion. As in chapter 9 we first determined the lo-
cation of I-N phase transition lines by rheological step down experiments. To probe the critical
slowing down we determined the rheological and structural response to an oscillatory shear flow
by means of Fourier transform rheology and time-resolved small-angle neutron scattering exper-
iments, respectively. The equation of motion for rod-like particles linking the order parameter
tensor to the the stress tensor is used to interpret the experimental data, both in the linear
and nonlinear regimes. Scaling of the dynamic behaviour of the orientational order parameter
and the stress is found when critical slowing down due to the vicinity of the isotropic-nematic
spinodal is accounted for. Rheological flow curves show also that the sample displays extreme
shear thinning behavior on approaching the I-N spinodal. Using heterogeneous dynamic light
scattering we confirm that indeed gradient shear bands form close to this spinodal point in
a well defined range of shear rates. Thus this system is one of the very few, if not the first,
examples of gradient banding due to the critical slowing down of the rotational diffusion.

Far more common is the gradient shear banding in the third system that was studied, i.e.
surfactant wormlike micelles, in particular cetylpyridinium chloride/sodium salicylate (CPyCl-
NaSal) micellar solutions in 0.5 M NaCl brine. Here shear thinning is mainly related to the
cession and recombination kinetics of the worms. In chapter 16 it is described how ”Superposi-
tion rheology of shear-banding wormlike micelles” can be used to verify the existence of shear
bands with a standard rheometer. By superimposing a shear oscillation to steady shear in the
shear banding regime, the interface between high- and low-shear regions oscillates in time. A
two-fluid semi-phenomenological model was proposed for superposition rheology in the shear
banding regime, which allowed us to extract a characteristic velocity for the interface dynamics
from experiments involving only a standard rheometer. Estimates of the ’stress diffusion coef-
ficient’ can also be inferred from such superposition experiments. The validity of our model is
confirmed by directly recording the interface displacement using ultrasonic velocimetry coupled
to standard rheology in Couette geometry.

The same combination of system and technique was used to study ”Competition between
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shear banding and wall slip in wormlike micelles” described in chapter 17. In this case time-
resolved velocity profiles are recorded during transient strain-controlled experiments in smooth
and sandblasted geometries. For stick boundary conditions standard shear banding is observed,
although depending on the degree of micellar entanglement temporal fluctuations are reported
in the highly sheared band. For slip boundary conditions wall slip occurs only for shear rates
larger than the start of the stress plateau. At low entanglement, shear band formation is shifted
by a constant, while for more entangled systems shear bands constantly nucleate and melt. This
has the important implication that for both concentrations wall slip acts as to stabilize the bulk
flow. Micellar orientation gradients at the walls may account for these original features.
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• 2005: Visiting researcher for half a year at Centre Recherche Paul Pascal, CNRS, Pessac,
France.

• Winter 2011: Habilitation at the Science Faculty of the Heinrich Heine university
Düsseldorf.



iv

Recent educational tasks

• Presently supervising two PhD students at the Forschungszentrum Jülich and co-
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Holmqvist, G. Meier, M. P. Lettinga, and G. Nägele. Many-body hydrodynamic interac-
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