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Introductory Remarks

Parts of this doctoral thesis contains results from experiments carried out with ion-
sensitive microelectrodes for measuring the extracellular potassium concentration in

brain tissue slices and resembles content of the following diploma theses:

1.: Haack, Nicole; February, 2010; “Influence of Ammonium on the Extracellular

Potassium Homeostasis in the Hippocampus”.

2.: Koch, Daniel; February, 2011: “Mechanisms of Ammonia-induced Extracellular

Potassium Changes in the Hippocampus of Mouse”.



Abstract

Hepatic encephalopathy (HE) is a serious neurological disorder, which is caused by
acute or chronic liver failure. It is attributed to an increase of extracellular ammonium
(NH4+) that causes a disturbance of ion distribution in both, neurons and astrocytes, as
indicated by alterations in intracellular sodium concentration and pH (Kelly and Rose,
2010). Here, the role of astrocytes in mediating the effect of NH;" on the extracellular
potassium  concentration ([K'],) and the NH;'-induced changes of the
electrophysiological properties of astrocytes in the CAl region of acute mouse
hippocampal slices was analyzed. Astrocytes were identified by labeling with
Sulforhodamine 101 (SR101) and based on their electrophysiological properties.

Application of NH;" caused a transient increase in baseline [K'], as determined
by K'-sensitive microelectrodes. [K'], then slowly declined to the baseline. After
removal of NH4", a temporary reduction of [K'], occurred. Whole-cell patch-clamp
recordings revealed that astrocytes were reversibly depolarized during application of
NH,". Under voltage-clamp mode conditions, NH;" induced an inward current as well
as a reduction in the membrane resistance. During development, an increase of the
NH, -induced depolarization, current, and [K+]0 increase was observed. In the presence
of Ba®", both the depolarization and the inward current were dramatically reduced,
indicating an involvement of K inward-rectifier (K7R) channels in the NH, -induced
changes of membrane potential and current. This was confirmed with astrocytes from
Kir4.1 -/- mice, which exhibited virtually no NH4 -induced depolarization and inward
current.

Altogether, our results show that the NH, -induced depolarization of astrocytes
as well as the [K'], increase reflect an impairment of K" homeostasis. This may cause
an increased neuronal excitability and reduced glutamate uptake by astrocytes, which in

turn is part of the pathology of HE.



Zusammenfassung

Hepatische Enzephalopathie (HE) ist eine schwerwiegende neurologische Erkrankung,
die durch akute oder chronische Leberschddigung verursacht wird. Sie steht mit einer
Erhohung des extrazelluliren Ammoniums (NH;") in Verbindung, die sowohl in
Neuronen als auch in Astrozyten zu einer Beeintrachtigung der lonenverteilung, wie der
intrazelluldren Natrium-Konzentration und des pH-Wertes, fiihrt (Kelly and Rose,
2010). In dieser Arbeit wurde die Rolle der Astrozyten hinsichtlich des Effekts von
NH," auf die extrazelluldre Kalium-Konzentration ([K'],) und die NH,4 -induzierten
Verdnderungen der elektrophysiologischen Eigenschaften von Astrozyten in der CAl-
Region des Hippokampus der Maus untersucht. Astrozyten wurden anhand ihrer
Farbung mit Sulforhodamine 101 (SR101) und ihrer elektrophysiologischen
Eigenschaften identifiziert.

Die Applikation von 5 mM NH," verursachte einen Anstieg der [K']o, welcher
mittels K -sensitiver Mikroelektroden gemessen wurde. Danach sank die [K'], wieder
langsam auf ihren Ausgangswert. Das Auswaschen des NH," fiihrte zu einer temporiren
Abnahme der [K'],. Whole-cell patch-clamp-Messungen zeigten, dass Astrozyten
wihrend der Applikation von NHy4" reversibel depolarisierten. In Voltage-clamp fiihrte
NH," zu einem Einwirtsstrom sowie einer Verringerung des Membranwiderstandes.
Wihrend der Entwicklung nahmen die NH4'-induzierte Depolarisation, der
Einwirtsstrom und die [K']o-Erhohung zu. In der Gegenwart von Ba*" waren sowohl
die Depolarisation als auch der Einwértsstrom stark reduziert, was auf einen Beitrag von
einwirtsgleichrichtenden K™ (KIR)-Kanilen an der NH, -induzierten Anderung des
Membranpotentials und Membranstroms hindeutet. Dies wurde anhand von Astrozyten
aus Kir4.1 -/- Midusen bestitigt, die annidhernd keine NH, -induzierte Depolarisation
und keinen Einwértsstrom aufwiesen.

Zusammengenommen zeigen diese FErgebnisse, dass die NH4 -induzierte
Depolarisation der Astrozyten als auch der Anstieg der [K'], eine Storung der K'-
Homoostase widerspiegeln. Dies konnte zu einer erhohten neuronalen Erregbarkeit und
einer verringerten Glutamat-Aufnahme durch Astrozyten fithren, was wiederum ein Teil

der Pathologie von HE ist.
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Introduction

1 Introduction

1.1  Astrocytes and their neighbours

The brain together with the spinal cord, is part of the central nervous system (CNS). It is
structured in different functional areas e.g. such as cortex, hippocampus and cerebellum
that again are comprised of several different cell types, which can be generally divided
into neurons and glia (also neuroglia). In 1856, Rudolf Virchow first described
neuroglia being responsible for CNS cohesion, as the term glia, derived from the Greek
word for glue, already suggests. With 100 billion (10'") cells, these glia resemble the
predominant cells, as they 10-fold overtop the number of neurons. Glia can be
subdivided in macro- and microglia. Like neurons, macroglia originate from the
neuroectodem and can be subdivided again into astrocytes and oligodendrocytes.

The term astrocyte was introduced around 1913 and was used by Santiago
Ramoén y Cajal to describe fibrous and protoplasmic shaped glia (Kimelberg, 2004).
These cells are comprised of several functions (see next chapter). The main functions of
oligodendrocytes are myelination and maintenance of axonal processes of neurons to
enable fast signal propagation in vertebrates by electrical isolation of the fibers (Bunge,
1968; Baumann and Pham-Dinh, 2001). In contrast to macroglia, microglia arise from
the mesoderm and reflect the immune system of the CNS, as they are
immunocompetent (Dheen ST, 2002; Farber and Kettenmann, 2005) and the immune

system of the body is not able to overcome the blood brain barrier.

1.2 One cell type - multiple functions

During the last one hundred years, the view of astrocyte function dramatically changed
from being the glue that holds together CNS tissue to communication elements
(Volterra and Meldolesi, 2005). Among others, astrocytes have important functions
providing metabolites to neurons, as they bridge the gap between neurons and blood
vessels by contacting both with their endfeet. Upon neuronal activity, astrocytes
regulate blood vessels diameter to increase cerebral blood flow (vasomodulation) and
ensure an on demand delivery of metabolites to neurons (Zonta et al., 2003; Mulligan

and MacVicar, 2004; Metea and Newman, 2006; Takano et al., 2006).
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Astrocyte endfeet are not equal, as they are specialized depending on the structure they
cover. At the side of blood capillaries, astrocytic endfeet together with endothelial cells
form the blood-brain-barrier including a selectivity filter that allows the transfer of
nutrients e.g. glucose and amino acids and a repulsion of bacteria, viruses and most
cytotoxic substances (Hawkins et al., 2006). Moreover, blood-brain-barrier properties of
the endothelial cells are induced by astrocytes (Pekny et al., 1998; Kuchler-Bopp et al.,
1999). At the neuronal side, astrocytes control synapse formation (Ullian et al., 2004).
Afterwards, synapses are ensheathed by astrocytic endfeet that maintain and modulate
synaptic communication between neurons (Kang et al., 1998; Araque et al., 1999;
Haydon, 2001; Newman and Volterra, 2004; Haydon and Carmignoto, 2006; Perea and
Araque, 2010). Modulation of synaptic transmission is provided by the degree of
astrocytic neurotransmitter uptake and the release of gliotransmitters (Danbolt, 2001;
Halassa et al., 2009; Eulenburg and Gomeza, 2010).

Another important feature of astrocytes for normal brain function is the uptake
and redistribution of locally released K by a process called ‘spatial buffering’ or ‘K"
siphoning’ (Kofuji and Newman, 2004). Kir channels are the predominant channel type
in astrocytes (Seifert et al., 2009). Beside the Na', K"-ATPase, those channels are
mainly responsible for the K™ uptake, as their absence causes an impairment of K"
buffering (Neusch et al., 2006; Seifert et al., 2006; Kucheryavykh et al., 2007). Next K"
is redistributed within the astrocytic network (Holthoff and Witte, 2000; Wallraff et al.,

20006) and is released at sides of lower extracellular potassium concentration.
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1.3 Identification of astrocytes

Working on astrocytes requires a reliable identification. There are several techniques
available to sufficiently identify astrocytes, although each of them is comprised of
different advantages and disadvantages. Those techniques include 1) SR101-labeling,

2) electrophysiology, 3) immunohistochemistry or 4) transgenic approaches.

1.3.1 SRI10I1-labeling

The in vivo suitable red fluorescent dye SR101 selectively labels mature and immature
classical defined astrocytes in both, cortex and hippocampus (Fig. 1) (Nimmerjahn et
al., 2004; Kafitz et al., 2008). During the first two weeks of postnatal development, the
amount of SR101-labeled cells in the stratum radiatum increases as visualized by

counter labeling with SBFI-AM, which is supposed not to increase in the amount and

Fig. 1: Robust labeling pattern of SR101 vs. SBFI-AM in the hippocampal CA1 region during early

postnatal development.

Fluorescence images of acute slices from P3 (A) and P15 (B) rats double-stained with SR101 (upper left
panels) and SBFI-AM (upper right panels), taken at a custom build two-photon laser-scanning
microscope. The lower, enlarged panels show the merged fluorescence images. SP: stratum pyramidale;
SR: stratum radiatum. Arrows mark double-labeled cells located in the stratum radiatum; arrowheads
point out cells which are exclusively stained by SBFI. Note that putative pyramidal neurons in the stratum
pyramidale are also stained with SBFI, but not with SR101. (Kafitz, Meier, Stephan, Rose 2008)
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specificity (Fig. 2). Neurons in the stratum pyramidale remain unlabeled. SR101-
negative cells in the stratum radiatum show properties of NG2 or ORG (outward
rectifying glia) called cells, that have a depolarized membrane potential compared to
astrocytes, a high membrane resistance, and display currents through voltage activated
sodium and potassium channels (Kafitz et al., 2008; Honsek et al., 2010).

The reliable identification of astrocytes a priori makes a confirmation via
electrophysiological  measurements or  postrecording  immunohistochemistry
unnecessary. This is a big advantage for both, imaging experiments using ion-sensitive
dyes such as Fura-2 or SBFI as well as patch-clamp experiments for unerringly
targeting astrocytes. It is important to note that the electrophysiological properties of
such labeled astrocytes do not differ from those reported earlier (Steinhauser et al.,
1992; Wallraff et al., 2004; Zhou et al., 2006). It must be considered that SR101 is not
fixable. Thus, another dye must be added to the intracellular solution in patch-clamp
experiments (Fig. 5) or nano beats have to be placed to be able to identify the measured

cell after fixation.

SR101 - labeling Fig. 2: Upregulation of SR101-positive
- + - + cells compared to all SBFI-labeled cells.

-

o

o
]

Quantification of the percentage of SR101-
negative (white bars) and SR101-positive
(grey bars) cells on the total number of
small-sized SBFI-labeled cells located in
the stratum radiatum in P3 (n=22 slices;
- 2185 cells) and P15 rats (n=11 slices;
— 757 cells). (Kafitz, Meier, Stephan, Rose

2008)
P3 (n = 2185) P15 (n = 757)

Total number of
SBFl-labeled cells [%]
3

o
L

1.3.2 Electrophysiological properties of astrocytes

As mentioned above, astrocytes show distinct electrophysiological properties allowing
to distinguish them from all surrounding cell types. Compared to neurons and NG2
cells, astrocytes display a low membrane potential and resistance and they are incapable
to generate action potentials. Moreover, they undergo considerable changes in channel

complement and passive membrane properties during early postnatal development

10
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(Kressin et al., 1995; Bordey and Sontheimer, 1997; Zhou et al., 2006; Kafitz et al.,
2008). During the first postnatal week, most astrocytes display currents through voltage-
activated potassium channels resulting in a non-linear I'V-relationship and can be termed
‘non-passive’ (Fig. 34, B). At the beginning of the third postnatal week, astrocytes
predominantly lack voltage-activated currents and show only ohm-like currents.
Because of the resulting linear I'V-relationship, these astrocytes can be termed ‘passive’
(Fig. 3C). During this maturation process, non-passive astrocytes become passive (Fig.

3D), while their membrane resistance decreases (Zhou et al., 2006; Kafitz et al., 2008).

A P3, SR101+, non-passive B p7, srR101+, non-passive

2_/ ¥
Vv
m
W’"""""l["] T3 I|Illllllllvl[n|‘]\/l]
- -100 -50 50 15084900 50 50
-2" _2_
C P15, SR101+, passive D
nPC PC nPC PC nPC PC
| 5 nA | Al 100 7 [ ]
- n
2.5ms 12 / 5 _ 80 - _
— EE .
10.5 nA 84 é % 60
2.5ms 4 £ © 40 A
V [mV] 20 r
1T 1T 17T T T T 1T 17T 17T 177 1T 1T 171 O i
-150 00 -50 50 P3 p7 P15
=1 (n=42)  (n=6)  (n=37)

Fig. 3: IV-relationship of SR101-positive cells of P3 (A), P7 (B) and P15 (C) rats.

Cells were held at -85 mV and subjected to 10 ms voltage steps ranging from -150 to +50 mV at 10 mV
increments. The insets on the left side show the resulting membrane current before (top) and after leak
subtraction (bottom). The IV-plots depict the amplitudes of the resulting currents at 8 - 10 ms after the
start of the voltage step of the same cell, the grey lines show the linear regression curves. Astrocytes at
P3 (A) and P7 (B) exclusively showed non-linear IV-relationships. At P15 (C), mostly linear IV-curves
were found. (D) Quantification of the amount of cells with non-linear (non-passive cells, nPC, white
bars) or linear (passive cells, PC, grey bars) IV-curves on the total number of SR101-positive cells at P3,
P7 and P15. (Kafitz, Meier, Stephan, Rose 2008)
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According to this decrease of astrocytic membrane resistance, an issue regarding proper
patch-clamp conditions arises. In astrocytes older than two weeks, the membrane
resistance is in general lower than the achievable series resistance. It must be considered
that clamping of astrocytes exhibiting a low membrane resistance might be insufficient
(Zhou et al., 2009).

The low membrane resistance is based on two principles: At first, the high
potassium conductance (Walz et al., 1984) that is enhanced during the early postnatal
development, as the expression of potassium channels increases with age (Sontheimer
and Waxman, 1993; Ransom and Sontheimer, 1995; Seifert et al., 2009). Second,
astrocytes are extensively coupled via gap junctions forming a syncytium in which ions,

nutrients, and currents are distributed (Fig. 4) (Wallraff et al., 2006; Giaume and Theis,

Fig. 4: Gap junctional coupling of astrocytes.

Based on the SR101-labeling, one astrocyte in the CA1 region of the stratum radiatum from a mouse at
P16 was chosen (arrow) and characterized electrophysiologically (upper left). The intracellular solution
contained the gap junction impermeable Alexa 594 to identify the patched cell after fixation and the gap
junction permeable Neurobiotin (detected with Avidin Alexa 488) to visualize coupled cells (lower left).
Superimposing the SR101-labeling pattern, Alexa 594 (red fluorescent dye; in the image converted into
blue), and Avidin Alexa 488 revealed that all coupled cells were SR101 positive (lower right). The
astrocytic network was not restricted to the stratum radiatum, but is rather capable of crossing laminar
borders. Here, Neurobiotin reached cells in the strata oriens (in pictures above SP) and lacunosum

moleculare (in pictures below SR). SP: stratum pyramidale; SR: stratum radiatum.

12
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2010; Xu et al., 2010). While the astrocytic network in the hippocampus has no borders
and crosses all lamina (Konietzko and Muller, 1994), in layer IV of the barrel cortex it
is restricted to its barrel (Houades et al., 2008). During the early postnatal development
the degree of coupling increases (Schools et al., 2006). To overcome the issue of the
low input resistance and to gain voltage-clamp control, the astrocytic membrane
resistance can be raised by decreasing leak conductances using potassium channel
blockers and with pharmacological uncoupling agents or isolation of astrocytes
(Anderson et al., 1995; Wallraff et al., 2006; Seifert et al., 2009).

Altogether, the electrophysiological identification of astrocytes is a fast and
explicit method, which is straight forward in patch-clamp recordings, but can be
difficult in combination with imaging experiments, because of the potential loss of the

cell soma during withdrawel of the patch pipette.

1.3.3 Immunohistochemical properties of astrocytes

Beside the two methods described above, which identify astrocytes prior to actual
experiments, astrocytic identity can be determined in fixed tissue by
immunohistochemistry. In particular, the glial fibrillary acidic protein (GFAP) is a
widely used marker for astrocytes. It is the predominant intermediate filament in mature
astrocytes and belongs to the cytoskeletal protein family. GFAP is thought to be
important in modulating astrocyte motility and shape by providing structural stability to
astrocytic processes (Eng et al., 2000), although KO mice lacking GFAP develop
normally without showing any anatomical, histological, or behavioral abnormalities
(Pekny et al., 1995). Although GFAP is a suitable marker for astrocytes, it must be
considered, that there are few GFAP-negative cells with electrophysiological properties
of astrocytes. Therefore, GFAP only labels a subset of astroglial cells (Fig. 5) (Lee et
al., 2006; Raponi et al., 2007; Kafitz et al., 2008). The utilization of other astrocyte
specific intermediate filaments, like Vimentin or S1008, is even more restricted, as they
are developmental dependent expressed in more immature or, respectively, mature

astrocytes (Stichel et al., 1991; Raponi et al., 2007).

13
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Alexa 488

B

Alexa 488

Fig. 5: Immunohistochemical characterization of SR101-positive cells at P15.

(A) From left to right: image of the staining pattern of SR101 in the stratum radiatum. Based on this
staining, a SR101-positive cell was chosen (arrow) and characterized electrophysiologically while filling
the cell with Alexa 488. In the subsequent immunohistochemical analysis, the same cell also showed
immunoreactivity for GFAP. The merged picture of all three fluorescence images confirms the identity
of the triple-labeled cell. (B) The same experimental design also identified the rare case of a cell, which
was SR101-positive, electrophysiologically characterized as glial cell, but showed no immunoreactivity
for GFAP (arrow). The arrowheads point to cells, which were double-labeled for SR101 and GFAP. SP:
stratum pyramidale; SR: stratum radiatum. (Kafitz, Meier, Stephan, Rose 2008)

1.3.4 Transgenic mice

Another way to identify astrocytes a priori is to utilize transgenic mice, in which a
reporter gene coding e.g. for GFP or EGFP is inserted into the genome and coupled to
the astrocyte specific GFAP promoter (Zhuo et al.,, 1997; Nolte et al., 2001). The
GFAP-EGFP transgene is not active in all astrocytes and differs between different brain
regions. While there is in the cerebellum a complete overlap between EGFP expression
and GFAP immunoreactivity, in the hippocampus the amount of cells, which express
EGFP, is lower than the amount of GFAP immunopositive cells (Nolte et al., 2001).
Furthermore, approximately 50 % of all SR101-labeled cells in the neocortex in vivo

exhibit GFAP controlled EGFP expression (Nimmerjahn et al., 2004). In summary, in
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transgenic mice astrocytes can be identified a priori, but it must be considered that these

resemble only a part of the entire astrocyte population.

1.4 The hippocampus

In 1911 Santiago Ramoén y Cajal showed his drawing of the hippocampus in the book
Histologie de Systeme Nerveux. He already speculated about the direction of signal
propagation: input to the dendrites and output through the axon. He additionally
concluded that a single hippocampal neuron could influence a large number of target
cells and areas (Andersen et al., 2007). The hippocampus is embedded in the medial
temporal lobe of each hemisphere and shows a distinct circuitry (Fig. 6) that was
already suggested by Cajal. The hippocampal formation comprises four regions:
1) hippocampus proper (subdivided in CA3 to CA1l), 2) gyrus dentatus, 3) subiculum,
and 4) entorhinal cortex.

The different cell types, mainly neurons and astrocytes, are organized in distinct
layers. The neuronal cell bodies are located in the strata pyramidale and granulosum
with their dendrites extending into neighboring lamia, while astrocytes are located in all
layers beside those two. Neurons in the gyrus dentatus (granule cells) and in the stratum
pyrmidale (pyramidal cells) receive excitatory input via the perforant path from the
entorhinal cortex. Granule cells project their axons (mossy fibers) on CA3 pyramidal
cells, which in turn send their axons (Schaffer collaterals) to CA1l pyramidal cells.
Those project back onto neurons in the entorhinal cortex.

Early implications of hippocampal function were gained on the case of the
patient H.M. in the mid fifties. H.M. suffered from massive epileptic seizures and at
final consequence, the medial portion of his temporal lobe was resected bilaterally
causing anterograde amnesia. Post surgery examination of H.M. showed that his short
term memory of position, people or profiles (declarative/episodic memory) was not
impaired. It became immediately clear that the hippocampus is not the place of memory
storage but is necessary for memory consolidation. In contrast, learning of movement
(non-declarative/implicit memory) was not affected. It became clear that the
hippocampus is a well suitable structure to study, because of its function in memory and
the conserved and well-arranged synaptic circuits providing research on basic cellular

physiology and synaptic plasticity.
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Fig. 6: The hippocampal formation.
(A) Cajals drawing of the hippocampus from his 1911 book Histologie de Systeme Nerveux. (B) Scheme
of the hippocampal formation and its connectivity. (A+B from Andersen et al. 2007) (C) Reconstruction

from 4 single VIS-DIC images of the mouse hippocampus at P20. (For abbreviations see page 3)
(D) Reconstruction from 4 single fluorescence images of the same area as in C. The SR101-labeling
pattern shows a similar lamination as seen with VIS-DIC. All lamina except for the pyramidal cell
bodies containing stratum pyramidale displayed red fluorescent SR101-labeled astrocytes. It must be
considered that the fluorescence intensity differs between the several cell layers.
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1.5 Hepatic encephalopathy

1.5.1 The clinical perspective - acute and chronic liver failure

Hepatic encephalopathy (HE) is a serious neurological disorder caused by acute (ALF)
or chronic (CLF) liver failure. The only way of full healing consists in a liver
transplantation. ALF is accompanied by an [NH4] increase in blood from
0.05-0.1 mM to 0.3 - 0.5 mM (Clemmesen et al., 1999). NH," is capable to cross the
blood-brain-barrier (Ott and Larsen, 2004) and can rise to 1 - 5 mM in the brain (Swain
et al., 1992a; Swain et al., 1992b). Patients show a rapid progression of symptoms -
within hours or days - that can be subdivided into four grades (West Haven Criteria)
(Ferenci et al., 2002):
» Grade I: Patients exhibit mild confusion and alteration in their sleep-wake
rhythm.
* QGrade II: Patients show psychomotoric deceleration and minimal disorientation
for time and place.
» QGrade III: Patients display strong confusion as they become spacy and loose
more and more of their intellectual skills.
» QGrade IV: Patients become unconscious and comatose.
Shortly after achieving grade IV, most patients die from increased intracranial pressure
(Capocaccia and Angelico, 1991; Schiodt et al., 1999) caused by astrocyte swelling
(Ganz et al., 1989; Blei et al., 1994).

The other form of HE, CLF, shows a slow progression. The [NH,'] in blood
rises to 0.1 - 0.2 mM. Symptoms mainly attract attention after ingestion of NH," in form
of amino acids or proteins in the nutrition. Hyperammonemic syndromes are generally
treated with a reduction of protein intake. Ornithine administration is effectively used to
lower ammonium levels by activating the urea cycle (see chapter 1.5.3) (Felipo and

Butterworth, 2002).
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1.5.2 NH," administration: A model for hepatic encephalopathy

To study the pathogenesis of HE, several different animal models are available, in
which the liver is mechanically or chemically destroyed. These models show features of
HE, for example brain edema and increased brain ammonia and glutamine content
(Butterworth et al., 2009). In young primates ammonium infusion caused an increase of
the blood ammonium concentration and a concomitant change in mental state, which
can be correlated with symptoms observed in HE patients (Voorhies et al., 1983).

Beside this, acute brain tissue slices are widely used to directly investigate the
effect of hyperammonemia on the cellular level. Those slices provide the advantage of a
well-preserved cytoarchitecture combined with an easy handling. It must be considered
that at least in CLF further toxins than ammonium accumulate (Felipo and Butterworth,
2002). Nonetheless, ammonium plays a key role in the pathogenesis of HE. It has been
shown to induce different features of HE as brain edema, swelling of astrocytes, an
overall decreased glutamate and increased glutamine content, and an increase of the
basal extracellular glutamate concentration (Ganz et al., 1989; Swain et al., 1992a;

Kosenko et al., 1993; Blei et al., 1994; de Knegt et al., 1994).

1.5.3 The origin of NH;" accumulation

The origin of the NH,  accumulation is

H,0
related to deficits in the urea cycle. In general, e 0 i 2 ﬁ
the degradation of amino acids leads to a Urea'\“_|2
release of NH;". Some of it is used for the | Argininosuccinate Ornithine
synthesis of new nitrogen containing

Carbamoyl

molecules. In a healthy organism the overage Aspartate Citrulline phosphate
is then detoxified in the liver via the urea R v
cycle (Fig. 7). Initially, the o-residue of most Cytosol M“°;2j£’r'i‘f”a'
amino acids is temporarily transferred during *NH+P,
transamination to a-ketoglutarate forming Fig. 7: The urea cycle.
glutamate before NH4 is separated by | Modified from Berg et al. 2002

glutamate dehydrogenase (oxidative deamination). In mitochondria of hepatocytes,

carbamoylphosphate is synthesized from NH;', HCO; and phosphate (P;). Under
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removal of the phosphate and incorporation of ornithine, citrulline is build. After
conversion to argininosuccinate and arginine in the cytosol, ornithine is retrieved under
separation of urea.

The loss of function of one at the urea cycle participating enzymes causes an
interruption of this cycle and finally results in an increased NH;" content in the blood
(hyperammonemia) and in CNS tissue. Untreated newborns suffer from seizures or
coma. If they survive, most of them display mental retardation or cerebral paralysis. In
adulthood, liver damage and secondly hyperammonemia are often caused by durable

high levels of alcohol, viral infections (e.g. by hepatitis C) or autoimmune diseases.

1.5.4 NH, impairs ion homeostasis

As initially mentioned, hepatic encephalopathy (HE) is a serious neurological disorder
caused by acute or chronic liver failure. A major factor for the pathology of HE is the
increased ammonium (NH,") concentration in the brain (Swain et al., 1992a; Swain et
al., 1992b) that is accompanied by altered glutamate and energy metabolism (Rama Rao
and Norenberg, 2001; Rose, 2002) as well as astrocytic swelling (Norenberg et al.,
2007). At physiological conditions the balance between NH; and NH," is with 98 % on
the side of NH,™ (Felipo and Butterworth, 2002). In contrast to the uncharged ammonia,
ammonium itself is incapable to cross plasmamembranes. However, as the ion radius
and charge of NH," correspond to those of K, it can effectively substitute for K" at ion
channels (Hille, 1973; Latorre and Miller, 1983; Allert et al., 1998; Nagaraja and
Brookes, 1998) and transporters (Yan et al., 2001; Bergeron et al., 2003; Titz et al.,
2006; Kelly et al., 2009) although their affinity for NH," in comparison to K" is lower
(Marcaggi and Coles, 2001).

In the central nervous system, NH;" causes an impairment of ion distribution.
Recent studies showed that the intracellular concentrations of Na” and H' are altered
during hyperammonemia. In hippocampal slices, NH;  causes an acidification in
neurons that is mediated by the Na', K'-ATPase. Astrocytes simultaneously exhibit an
acidification mediated by the Na’, K'-ATPase and the Na', K', CI cotransporter
(NKCC) as well as a concomitant [Na']; increase that is exclusively mediated by NKCC
(Kelly and Rose, 2010). As shown in primary astrocytic cultures, this [Na']; increase

leads to a reduced glutamate uptake (Kelly et al., 2009). Furthermore, measurements of
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K" in the extracellular space revealed a [K'], increase during NH4" application (Alger
and Nicoll, 1983). It is thought that the [K '], increase is due to a loss of cellular K, as
the tissue content of K is decreased during hyperammonemia (Benjamin et al., 1978).
Upon the application of NH,', several different cell types exhibit a
depolarization. In glial cells of bee retina, a depolarizing effect of NH;" was observed
that is insensitive to bumetanide and Ba>" (Marcaggi et al., 2004). In the presence of
NH,", pyramidal neurons in the hippocampus depolarized in a concentration-dependent
manner (Alger and Nicoll, 1983; Kelly and Church, 2005). The latter authors assumed
an entry of NHy4 into the cell via K channels being responsible for the NH, -induced
depolarization. In cultures of cortical astrocytes, it was shown that NH4" causes a
depolarization involving Ba”"-sensitive K inward rectifier (KIR) channels (Allert et al.,

1998).

1.5.5 Disturbed distribution of glutamate and glutamine

Beside the impairment of intra- and extracellular ion homeostasis and an overall
disturbance of membrane potential, the balance of glutamate and glutamine in the CNS
is affected. The glutamate-glutamine-cycle is an important process, by which released
glutamate is retrieved to the presynaptic terminals of neurons to refill the glutamate pool
(Fig. 8) (Danbolt, 2001). It is placed in two compartiments, the presynaptic terminal and
the astrocyte, which covers the synapse. Glutamate is released from the presynaptic
terminal via exocytosis and is taken up again either by the presynaptic neuron or the
astrocyte. The secondary active transport of glutamate is driven by the Na™ gradient and
causes an increase of the intracellular Na' concentration. Both, the activation of the
Na', K'-ATPase as well as the conversion of glutamate to glutamine by the astrocyte
specific enzyme glutamine synthetase (GS) cause a consumption of ATP. This in turn
causes an enforced utilization of glucose and finally results in an activity-dependent
supply of neurons (Voutsinos-Porche et al., 2003). Glutamine is transported back from
the astrocyte to the presynaptic terminal before it is cleaved into glutamate and NH," by
the enzyme phosphate-activated glumatinase (PAG).

As already mentioned, ALF and CLF cause an [NH,'] increase in the brain
(Swain et al., 1992a; Swain et al., 1992b). The predominant way to lower the NH4"

content is the metabolization of glutamate into glutamine. But it must be considered that
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there is no real detoxification of NHy4', as it is released again in neurons by the PAG.
Additionally, since the GS is working at near maximal capacity under normal
physiological conditions, hyperammonemia likely causes an exceeding of the capacity
to synthetize glutamine, in turn leading to an increase of the NH4" content (Cooper and
Plum, 1987; Felipo and Butterworth, 2002).

However, HE and hyperammonemia cause a disturbance of the glutamate-
glutamine-cycle and thus lead to a changed glutamate-glutamine ratio in brain tissue.
Increased glutamine levels have been found in HE patients and hyperammonemic
animals suffering from liver enzymopathy (Lavoie et al., 1987; Ratnakumari et al.,

1994). In parallel, the glutamate content is decreased, thus resulting in a decreased

Glutamatergic synapse Astrocyte

Mitochondrion

NH,* Glutamine
Glutamate <>~ Gln ‘/.’/ \ Gl
PAG Gs ADP + Pi n
Na* PAG
NH,* ATP )\
Glutamate l\iHiGlu
K+
. . ROS «— MPT
OH', HCO
004 3 %
&>~ Na Astrocytic

‘=
/ Na* v Ca* % Swelling

Metabotropic lonotropic
Glutamate Receptors

Fig. 8: Glutamate-glutamine-cycle and possible relevance for astrocyte swelling.

The glutamate-glutamine-cycle is an important process, by which released glutamate is transferred back
to the presynaptic terminal to refill the glutamate pool. Glutamate is taken up into astrocytes by
glutamate transporters and is converted under ATP consumption to glutamine by the incorporation of
NH,". After the transport of glutamine into the pre-synapse, glutamate is retrieved by the release of
NH,". Beside this, glutamine is transported into mitochondria for metabolization. The cleaved NH," is
thought to cause an increased production of reactive oxygen species (ROS) and the mitochondria
permeability transition (MPT) due to a collapse of the membrane potential of the inner mitochondrial

membrane.
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glutamate-glutamine ratio (Lavoie et al., 1987; Swain et al., 1992a; Kosenko et al.,
1993; Blei et al., 1994). However, in the extracellular space and the cerebrospinal fluid,
the glutamate content is increased (Watanabe et al., 1984; de Knegt et al.,, 1994;
Michalak et al.,, 1996). The reason for the increased extracellular glutamate
concentration can be either enhanced glutamate release from neurons and astrocytes or a

reduced uptake into astrocytes or both (Rose, 2006).

1.5.6 NH, -induced swelling of astrocytes

Beside the alteration of the glutamate-glutamine ratio, a swelling of astrocytes was
observed during hyperammonemia (Ganz et al., 1989; Blei et al., 1994) that can be
caused by several mechanisms. It was shown that the NKCC is activated during
hyperammonemic conditions (Kelly et al., 2009; Kelly and Rose, 2010). It mediates an
osmotic load by transporting four ions (1 Na®, 1 K", 2 CI) into the cell, thus causing
swelling (Jayakumar et al., 2008). On the other hand, it was shown that inhibition of GS
during hyperammonemic conditions with methioninsulfoximine (MSO) reduces three
features of HE: 1) the accumulation of glutamine, 2) the formation of brain edema, and
3) swelling of astrocytes (Takahashi et al., 1991; Willard-Mack et al., 1996; Tanigami et
al., 2005).

It was thought that glutamine itself causes cell swelling. But it was shown that
the glutamine increase does not properly correlate with the cell swelling regarding the
time course and concentration (Zwingmann et al., 2004; Jayakumar et al., 2006).
Although the precise mechanism is still under investigation, it is thought that the
production of reactive oxygen species (ROS) in mitochondria and a process termed
“mitochondria permeability transition” (MPT) causes swelling of astrocytes (Fig. 8)
(Norenberg et al., 2007). Evidence for this comes from experiments showing that
inhibition of the enzyme PAG with 6-diazo-5-oxo-L-norleucine (DON) inhibits the
formation of ROS, the MPT, and the NH, -induced swelling (Jayakumar et al., 2004;
Rama Rao et al., 2005; Jayakumar et al., 2006). Despite this, the mechanism how MPT

and ROS formation cause astrocyte swelling during hyperammonemia is unknown.
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1.6  Aim of this study

Astrocytes play an important role in the pathogenesis of HE, as they exhibit swelling
leading to intracranial hypertension (Norenberg et al., 2007) and convert glutamate
NH, -enforced into glutamine causing a reduction in brain glutamate content (Blei et
al., 1994). Furthermore, during hyperammonemic conditions, the ion distribution in
astrocytes is impaired (Kelly and Rose, 2010). As in the presence of NHy4", astrocytes
display a depolarized Ey (Allert et al., 1998) and [K'], is increased (Alger and Nicoll,
1983), K" homeostasis might be impaired.

Up to now, the depolarizing effect of NH;" was studied only in primary cultures
from cortical astrocytes (Allert et al., 1998) or in glial cells of bee retina (Marcaggi et
al., 2004). The electrophysiological properties of astrocytes under hyperammonemic
conditions in the context of the surrounding tissue remained unexplored. Such an
investigation becomes even more relevant by the fact that NH,;" causes an increase of
the [K'], in the hippocampus (Alger and Nicoll, 1983). However, this result was treated
as a side product and the question regarding the amount and the mechanisms of the
[K'], increase was not addressed.

In this study we addressed the question, whether these NH, -induced alterations
of the electrophysiological properties of astrocytes and [K '], are linked to a disturbed
K" homeostasis that in turn might have implications for the pathology of HE.

To answer this question, we performed whole-cell patch-clamp recordings of
identified SR101-labeled astrocytes and K'-sensitive measurements in the stratum
radiatum of acute mouse hippocampal slices to analyze the NH, -induced changes in
both, the electrophysiological properties of astrocytes and the [K'],. Additionally, we
took advantage of pharmacological as well as genetic approaches to indentify the

underlying mechanisms.

23



Materials and Methods

2 Materials and methods

2.1 Tissue preparation and identification of astrocytes

The study and all experiments were carried out in accordance with the guidelines of the
Heinrich-Heine-University (HHU) Diisseldorf and University of Bonn Medical Center
as well as the European Communities Council Directive (86/609/EEC) and approved by
the institutional animal care and use committee. Preparation of acute hippocampal slices
(250 um) from Balb/c mice (postnatal days 3 -4 (P3), 7-10(P7), 13-16(P13),
18 -21 (P18)) and C57BL6 Kir4.1 -/- mice (postnatal days 7 - 10 (P7)) (Kofuji et al.,
2000) was performed using standard techniques (Meier et al., 2006; Kafitz et al., 2008).

Animals were decapitated and their brains were rapidly isolated. Animals older
than P12 were anesthetized with CO, prior to decapitation. After sectioning, slices for
[K'], measurement were kept at 34 °C for 30 min in artificial cerebrospinal fluid
(ACSF). For whole-cell patch-clamp experiments, slices were kept at 34 °C for 20 min
in ACSF with 0.5 - 1 uM sulforhodamine 101 (SR101) followed by a 10 min incubation
in SR101-free ACSF at 34 °C. This procedure results in the specific staining of
astrocytes (Kafitz et al., 2008). Afterwards, slices were kept in ACSF at room
temperature (RT, 19 - 22 °C) until they were used for experiments, which were also
performed at RT.

The ACSF contained (in mM): 125NaCl, 2.5KCl, 2 CaCl,, 1 MgCl,,
1.25 NaH,;PO4, 26 NaHCOs3, and 20 glucose, bubbled with 95 % O, and 5 % CO, to
result in a pH of 7.30. Solutions containing NH," or altered [K'] were prepared by
equimolar substitution of Na'. Solutions had a final osmolarity of 310 =5 mOsm/L.
Pharmacological substances were applied via bath perfusion or by focal pneumatic
ejection (PDES-DXH, NPI Electronic GmbH, Tamm, Germany). In the latter case,
pipettes similar to those for patch-clamp recordings were used (see below) applying
8 psi for 2 s in patch-clamp experiments and 200 ms in [K '], measurements. Chemicals
were purchased from Sigma, except for tetrodotoxin (Alomone Labs, Jerusalem, Israel

or Biotrend Chemicals, Cologne, Germany).
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2.2 Whole-cell patch-clamp

To investigate the effect of NH4  on the electrophysiological properties of astrocytes,
somatic whole-cell recordings were done. Cells were patched in a maximal depth of
~20 pm and were obtained at an upright microscope (Nikon Eclipse FN1, 60x water
immersion objective, N.A. 1.00, Nikon Europe, Diisseldorf, Germany) using an EPC10
amplifier and “PatchMaster”-software (HEKA Elektronik, Lambrecht, Germany). The
pipette solution contained (in mM): 120 K-MeSOs;, 24 KCl, 10 HEPES (N-(2-
Hydroxyethyl)piperazine-N'-2-ethanesulfonic ~ acid), 12 NaCl, 4 Mg-ATP, and
0.4 Na3-GTP, pH 7.30. In experiments investigating the effect of Ca®" and those done
on Kir4.1-/- animals, 4mM EGTA (glycol-bis(2-aminoethylether)-N,N,N’,N'-
tetraacetic acid) was added to the pipette solution. Patch pipettes (2.5 - 3.5 MQ) were
drawn from borosilicate glass capillaries (Hilgenberg, Waldkappel, Germany) using a
vertical puller (PP-830, Narishige, Japan). For measurement of membrane currents, cells
were clamped to a membrane potential of -85 mV (unless stated otherwise), liquid
junction potential was corrected. Compensation of series resistance and slow
capacitance was not performed, because of insufficient voltage control of mature
astrocytes (Zhou et al., 2009). For determination of I'V-relationships, a step-wise or
ramp-like protocol ranging from -150 to +50 mV was used. The former one had 10 mV
increments. To separate passive currents from voltage-gated currents in the step
protocol, online leak subtraction (P/4) was performed. Signals were sampled at 50 kHz
and filtered at 2.9 and 10 kHz. Beside this, all voltage- and current-clamp measurements
were sampled at 50 Hz. Measurements were rejected, if the series resistance exceeded
10 MQ. Data were processed and analyzed by employing “IGOR Pro”-Software
(WaveMetrics, Inc., Lake Oswego, OR).

2.3 Measurement of extracellular potassium ([K'],)

To analyze the effect of NH," on the [K'],, we used double-barreled, K -sensitive
microelectrodes placed ~50 uM deep in the stratum radiatum of the CA1 region.
Briefly, two 7-cm-long glass capillaries with filament (Clark Electromedical
Instruments, Harvard Apparatus Ltd., Kent, UK) were simultaneously pulled (Typ PE-2,

Narishige, Japan). One barrel was silanized by exposure to the vapor of
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hexamethyldisilazane (Fluka, Buchs, Switzerland) at 40 °C for 90 min, while the other
one was prevented from being silanized by vapor pressure. The tip of the silanized
barrel was filled with a liquid neutral K™ carrier based on valinomycin (Ionophore I,
Cocktail B, Fluka, Buchs, Switzerland) and backfilled with 100 mM KCIl (Neumann et
al., 2001). The reference barrel was filled with HEPES-ringer containing (in mM):
125 NaCl, 2.5 KCl, 1.25 NaH;POy4, 2 CaCl,, 2 MgCl,, and 25 HEPES. A chlorinated
silver wire was inserted into each barrel, which was then sealed with dental wax. The
resistance of the K -sensitive channel was 10 - 20 GQ, that of the the reference channel
30 - 100 MQ. The electrodes were calibrated in CO,/HCOj5-free saline with 152 mM
Na’, 25 mM HEPES and different [K']. The electrode slope (s) was given by the
equation:
AV,

s = ” 1),
K (1)

with AV, representing the voltage shift upon a given [K'] change (ApK,). Because
NH," is detected by valinomycin, the artifact was determined exposing all solutions,
used in the experiment, to the electrode withdrawn from the slice. The peak [K'], was

calculated by the equation:

AV AV,

peadic L <] 10”0 )

with [K']wer resembling the initial [K'], (2.5 mM), AV being the sum of NH, -
induced artifact and [IC]0 increase, AV, representing the NH, -induced artifact, and s
the slope of the electrode (Eq1) (Fig. 12B). The K™ undershoot (min[K],) upon removal
of NH," was calculated by the equation:

AV,

min[K* ], =[k"],, *[—10 +1] 3),

with AV, resembling the [K'], decrease (Fig. 12B). Data were processed and analyzed
by employing “Origin”-Software (Origin Lab Coorporation, Northampton, MA).
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2.4 Identification of Kir4.1 -/- mice

In order to confirm the results from the Ba>" experiments, we took advantage of using
mice with a genetic inactivation of the K inward rectifier (KIR) channel 4.1. Kir4.1 -/-
mice were generated by a replacement of the coding region for the two transmembrane
segments and a part of the C-terminus of the Kir4.1 subunit (amino acids 33 - 266) by a
neomycin resistance gene causing a loss of function and a mislocation of the created
protein (Kofuji et al., 2000). We verified the knock out status of designated Kir4.1 -/-
mice by determination of the -electrophysiological properties of patch-clamped
astrocytes, immunohistochemical labeling against GFAP (glial fibrillary acidic protein)
and Kir4.1 (K" inward rectifier channel 4.1), and genotyping.

One brain hemisphere from Kir4.1 -/- animals and their wild type littermates,
which were prepared for acute experiments, was immediately fixed for 2 days at 4 °C in
4 % paraformaldehyde. Fixed tissue was cut with a Vibratome (HM650V, Microtom,
Microm International GmbH, Walldorf, Germany) in 12 - 15 pM thick slices that were
immunohistochemically processed for GFAP (Millipore, Chemicon AB5541,
Schwalbach/Ts., Germany, dilution 1:250 or Sigma-Aldrich G3893; Taufkirchen,
Germany, dilution 1:500) and Kir4.1 (Alomone Labs APC-035, Jerusalem, Israel,
dilution 1:100). Secondary antibodies were fluorescence conjugated with Alexa Fluor
488/594 (Invitrogene, A11039/A11008, Darmstadt, Germany, dilution 1:100).

Fixed tissue was permeabilized with 0.25 % Triton X-100 and incubated with
primary and secondary antibodies, each for 2 h. Non-specific binding of antibodies was
reduced using 0.5 % BSA, 2 % NGS, and 3 % milk powder. At last nuclei were marked
with DAPI (4',6-Diamidin-2-phenylindol, Invitrogene, Molecular Probes D3571,
2.1 uM) for 15 min. All steps were performed at RT. Labeled slices were coverslipped
and documented with confocal laser scanning microscope (Nikon C1) based on a Nikon
Eclipse E600FN (60x water immersion objective, N.A. 1.00). Images of all test groups
were equally processed for maximum projection and overlaid using “Imagel”’-software.
Negative controls showed no background labeling excluding cross talk and bleeding
over. The partially remaining weak labeling of somata was caused by the specificity of

the utilized antibody detecting the amino acids 356 - 375 of the C-terminus.
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For genotyping of Kir4.1 knockout mice, DNA was isolated from mouse tails using a
DNA isolation Kit (Jena Analytik, Jena, Germany). About 100 ng of DNA was used for
PCR amplification of Kir4.1 genomic DNA using the following oligonucleotides:

forward, 5'-CTTCAGCCAGCATGCCGTTGTG;

reverse, 5'-AGGCGTGAACTCGTAACCCCAGAG.
For the detection of the neomycin resistance gene the following oligonucleotides were
used:

forward, 5'-ACATCGCATCGAGCGAGCAC;

reverse, S'-AAGGCGATGCGCTGCGAATC.
35 PCR cycles were performed using the Hot Taqg DNA polymerase (Peqlab, Erlangen,
Germany). The lengths of the PCR products were 400 bp (Kir4.1) and 354 bp

(neomycin resistance gene).

2.5 Statistics

Unless otherwise specified, data are presented as means + s.e.m. and were statistically
analyzed by one-tailed non-/paired Student’s f-test; p represents probability values,
n.s. = not significant, * p <0.05, ** p <0.01, *** p <0.001; n represents the number of

independent experiments.
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3  Results

3.1 Properties of SR101-labeled cells

To unerringly identify astrocytes prior to experiments, we used SR101-labeling (Fig. 9)
and the electrophysiological characterization (Fig. 10) of patch-clamped cells. The
labeling of acute hippocampal slices with SR101 resulted in a selective staining of
astrocytes as reported earlier (Kafitz et al., 2008). Cells in layers containing pyramidal
(CA3 to CA1) or granule cells (dentate gyrus) remained unstained. SR101-positive cells
in the stratum radiatum showed properties of classical astrocytes (Steinhauser et al.,
1992; Kressin et al., 1995; Bordey and Sontheimer, 1997; D'Ambrosio et al., 1998;
Bordey and Sontheimer, 2000; Zhou et al., 2006; Kafitz et al., 2008), comprising a
highly negative membrane potential (Ey) and a low and with development decreasing
membrane resistance (Ry). During the early postnatal development the amount of cells,
which exhibited currents through voltage activated potassium channels decreased
continuously (Fig. 10; Fig. 11, Supplementary Table 1). Finally, positive current
injection failed to elicit action potentials in any of the cells investigated (n = 510; data

not shown). By doing that, we had got a reliable measure for astrocytic identity.

Fig. 9: SR101-labeled astrocytes in the mouse
hippocampus

Maximum intensity projection of a confocal
z-stack with 14 slices, each step 1 pm. Section of
the stratum lacunosum moleculare in the CAl
region. Incubation of the hippocampal slice
obtained from a mouse at P14 with the red
fluorescent dye SR101 results in a specific
labeling of astrocytes. Since astrocytic processes
extensively ensheath blood vessels (BV), those
can be identified by the SR101-labeling.
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Fig. 10: I'V-relationship of SR101-positive cells during early postnatal development.

Patched cells were held at —85 mV and subjected to 10 ms voltage steps ranging from —150 to +50 mV
at 10 mV increments and the resulting membrane currents before (left) and after leak subtraction
(middle) were recorded. The IV plots (right) depict the amplitudes of the resulting currents at 8 to 10 ms
after the start of the voltage step of the respective cell, the grey lines show the linear regression curves.
Astrocytes from animals at P3 and P7 predominantly showed non-linear I'V-relationships. At P13 and
P18 animals, mostly linear IV-curves were found.
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Fig. 11: Developmental changes of astrocytic membrane properties.

(A) During the early postnatal development, astrocytes displayed an unchanged highly negative Ey; [mV]
and a significant decreasing Ry, [MQ], while Cy; [pF] was not significantly altered. (B) Quantification of
the amount of astrocytes with non-linear (non-passive glial cells, nPGs) or linear (passive glial cells,
PGs) IV-curves on the total number of SR101-positive cells at different developmental stages. Between
P7 and P13 was a transition from nPGs to PGs. It must be considered that the developmental dependent
decrease of RM likely caused at least an underestimation of the proportion of nPGs due to insufficient
voltage control. All values are given as mean+ S.D. n-Values are contained under the bars.
**%: p <0.001.

3.2  NH, -induced depolarization and [K+]0 increase

In order to determine the effect of NH,; on astrocytes in acute hippocampal slices,
5 mM NH," was equimolar substituted for Na’ in the ACSF. The application of NH4"
for 10 min caused a depolarization of ~8 mV, which was reduced at P3 and occurred
age-independently with a half time of 52+ 8s (n=114) (Fig. 124, Supplementary
Table 2). In approximately two third of the experiments the peak depolarization was
followed by a slow repolarization of 1-2mV, which turned to a plateau, as a
prolongation of the NH;" application up to 30 min did not result in further repolarization
(data not shown). Upon removal of NH,", the astrocytes temporarily hyperpolarized
before Ey completely recovered to its initial value. The amplitude of the NH4 -induced
depolarization increased during early postnatal development (Fig. 124), while the time
course remained essentially stable (data not shown).

To show early and late developmental NH,'-induced [K'], increase,

hippocampal slices from P3 and P18 mice were taken. The application of 5 mM NH,"
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caused a transient [K+]0 increase of ~0.4 mM at P3 and ~1 mM at P18, which reached
its half maximum age-independently within 76 =3 s (n=155). Subsequently, [K'],
began to decrease and within 20 - 25 min [K'], returned to its basal level of 2.5 mM.
Upon NH; removal, [K'], temporarily decreased below baseline, reached age
dependently a half minimum after 76 + 11 s at P3 (n =5) and 115+ 6 s at P18 (n =42)
and then recovered within ~20 min (Fig. 12B, Supplementary Table 3). This [K'],
undershoot was independent of the duration of the NH," application, if the minimal time
period was 10 min. A reduction of the application period shorter than 10 min led to a

+q
reduced [K'], increase.
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Fig. 12: NH, -induced changes of astrocytic Ey; and [K'], in acute hippocampal slices.

(A) Left: Effect of 5SmM NH, on Ey of an astrocyte at P18. Bath application of NH,"  caused a
depolarization of about 8 mV, which was maximal after ~2 min; subsequently the cell repolarized by
~2 mV. After removal of NH,", a hyperpolarization occurred before the cell recovered to initial Ey.
Right: Age-dependence of the membrane depolarization (AEy) of astrocytes induced by 5 mM NH,". At
P3, astrocytes exhibited significantly smaller depolarization compared to that from older animals.
(B) Left: Effect of 5SmM NH," on [K'], in the stratum radiatum of a slice obtained from P18. Bath
control: Effect of SmM NH, on the electrode potential after withdrawal of the electrode. Due to
simultaneous detection of K™ and NH," by the ionophore (AV,.,), the NH, -dependent component
(AV,) was estimated afterwards to calculate the [K'], increase (hatched area). Bath application of NH,"
caused a transient [K'], increase of about 1 mM that vanished within 20 - 30 min. Upon removal of
NH,', [K'], decreased temporarily below baseline (AV ). Right: Changes in [K'], induced by 5 mM
NH," in hippocampal slices from P3 and P18. During development, the [K'], increase was significantly
gained. n-Values are contained within the bars.
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Because of the high K" permeability of the cell membrane, astrocytic Ey strongly
depends on [K'], and [K']; (Kimelberg et al., 1979; Walz et al., 1984; Anderson et al.,
1995). In order to test, whether the NH, -induced [K ], increase is sufficient to explain
the NH, ' -induced membrane depolarization, [K'] in the ACSF was raised age-
dependently from 2.5 to 2.9 mM at P3 or, respectively, 3.5 mM at P18. The increase of
[K'], caused a depolarization of astrocytes (AEy: P3: 2.3+0.1 mV, n=4; PI8:
5.2+ 0.3 mV, n = 10), which was significantly smaller than the according NH, -induced
depolarization (P3 and P18: p <0.001), and had a significantly reduced half time of
18 +£4 s at P18 compared to the depolarization induced by NH;" (p <0.001) (data not
shown). At P3, however, the half time was not significantly reduced (40 +3s;
p =0.293). Altogether, the NH, -induced depolarization is only partially due to NH, -
induced [K '], increase as the NH4 -induced depolarization exceeded the depolarization
induced by the increase of [K'], and at least one further mechanism has to be

considered.

3.3 Relative membrane permeability

In order to determine the concentration-dependence of the NH," effect on [K+]O and Ey,
we varied [NH,'] in between 0.5 and 20 mM (Fig. 134, C). [NH,;'] > 20 mM caused an
irreversible depolarization of the astrocytes and hence were not evaluated.

A [K'], increase was detected reliably at 1 mM NH,'; at higher [NH4'], the
[K'], increase became continuously larger, showing no sign of saturation (Fig. 134,
Supplementary Table 3). Therefore, Ey of astrocytes was expected to rise stronger with
increasing [NH4'].

We then patch-clamped astrocytes and altered [K'] in the ACSF in the range
from 0.5 - 5 mM to determine the relationship between [K+]0 and Ey. A reduction of
[K'], resulted in hyperpolarization and an increase in depolarization (Fig. 13B). The
relationship between [K'], and Ey did not correlate with Nernst equation (Eq4), but
could be well described with the Goldman-Hodgkin-Katz (GHK) equation (Eq5),
adjusting the relative Na" permeability to 0.015.

We next applied increasing [NH4 ] and astrocytes depolarized accordingly (Fig.
13C, Supplementary Table 2). The measured Ey did not follow a relationship based on

a Michaelis-Menten equation, but on a GHK equation (Eq6), which includes a relative
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NH,4" permeability of 0.33, the relative Na' permeability from Eq5, and the measured
[NH, ]-dependent peak [K'],, respectively. The [NH4 ]; was set to 0, as the intracellular
solution diluted entering NH,". (For details regarding Eq4 - 6 see supplementary data).
Taken together, these results suggest that NH, " substitutes for K" at respective channels,

which however have a lower permeability for NH,".

3.4 NH,'-induced inward current

We next investigated the effect of NH;  on the membrane current of astrocytes. Bath
application of 5 mM NH, " caused an inward current (Inma+), which corresponded to the
NH, -induced changes in Ey, in showing a peak current that was followed by a small
recovery (Fig. 144, Supplementary Table 2). During the first two weeks of postnatal
development, Inpa+ increased significantly and then remained stable.

The response to hyperpolarizing pulses (AEg =-5 mV) was used to determine
membrane resistance (Ry), input resistance (Ry,) and series resistance (Rgs). In the
presence of NH;", Ry decreased significantly (Fig. 14B, Supplementary Table 2). The
reduction itself decreased with age of the experimental animals, because of the
developmental decrease of astrocytic Ry (Supplementary Table 1).

The IV-relationship of the cell before and during NH, application was
measured by linearly shifting Ey from -150 to +50 mV. At P7, NH," caused a parallel
shift of the IV-curve of about 8 mV (Fig. 14C). This value is close to the average NH,'-
induced depolarization measured in current-clamp mode (Fig. 124). There was virtually
no change in the rectification of the IV-relationship by reducing current amplitudes.

Taken together, astrocytes exhibited an NH4 -induced inward current suggesting
either an influx of NH," into the cells or a competitive inhibition of K" channels
preventing an efflux of K'. The latter case is unlikely, because of the shifted but

otherwise unaffected I'V-relationship.
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Fig. 13: Concentration-dependence of NH, -induced [K'], increase and relative membrane
permeability for K, Na" and NH,".

(A) Left: Changes in [K'], induced by different [NH,'], at P18; superimposing of single traces. Right:
Dependence of maximal [K'], in the presence of NH," on the [NH,],. With increasing [NH, '], peak
[K'], raised showing no sign of saturation. Dashed line indicates initial [K'],. (B) Left: Effect of
changing [K'], on Ey of an astrocyte at P18; superimposing of single traces. Right: Relation between Ey
and [K'], at P18. The straight line labeled with Eq4 illustrates the Nernst potential of K™ (R* = 0.918),
whereas EqS5 shows the relationship between [K'], and Ey given by the GHK equation with a relative
Na"/K" permeability (Pyo/Px) of 0.015 (R*=0.997). (C) Left: Changes in Ey of astrocytes at P18
induced by different [NH,'],; superimposing of single traces. Right: The curve shows the calculated
relationship between [NH;'], and Ey based on the GHK equation (Eq6), assuming a relative NH, /K"
permeability (Pxua/Px) of 0.33 and correcting [K'], for the peak [K'],, as determined at different [NH, '],
(see A; R?=0.981). n-Values of respective mean values are located near x-axes.
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Fig. 14: NH, -induced inward current (Ixys:) and reduction of membrane resistance (Ry,).

(A) Left: Measurements of Iyys+ at different developmental stages. Right: During the first two weeks of
development, the amplitude of Iygg+ increased significantly. (B) Left: The response to hyperpolarizing
pulses (-5 mV) every 30 s revealed a reduction in input resistance (Ry,) and after subtraction of series
resistance (Rg) a decrease in Ry (P18). Right: The NH, -induced reduction of Ry was present at all
developmental stages. (C) Left: IV-curves before (black line) and during (grey line) bath application of
5mM NH,". NH," caused a averaged parallel shift in the IV-relationship of about 8 mV that is
comparable to the NH, -induced depolarization (see Fig. 124). Right: Magnification of the IV-curves
shown left. n-Values are contained within the bars.
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3.5 Pathway of NH,4 -induced depolarization and [K '], increase

In order to highlight pathways for the NH, -induced depolarization and [K'], increase,
several inhibitors of different channels and transporters were tested at P18. Results were
summarized (Supplementary Table 4), but not depicted. (For patch-clamp experiments
including Ba®" see next chapter).

TTX (500 nM) and bumetanide (100 uM) failed to affect the NH, -induced
depolarization and [K'], increase or to alter steady-state conditions, indicating its
independence from neuronal action potentials and sodium-potassium-chloride
co-transport (NKCC). Additionally, the depolarization of astrocytes was independent
from TEA (5mM) sensitive voltage activated K™ channels (Ky), as well as Ca*"-
activated K~ channels (Kc,), because the Ca®" chelator EGTA (4 mM) in the pipette
solution had no altering effect. CNQX (10 uM) and D-L-AP5 (100 uM) were
simultaneously used to exclude AMPA and NMDA receptor-mediated K release from
postsynaptic terminals as a source for the [K'], increase ()* test). In addition, Ba*"
(100 uM) as a blocker of Kir channels failed to reduce [K'], increase (5 test) and did

not alter baseline [K .

3.6 Reduction of the NH, -induced depolarization and current by Ba*"

While not affecting baseline [K'], and its NH, -induced increase, Ba®" effectively
reduced the NH,'-induced depolarization by 50-67 % (p<0.001) (Fig. 154,
Supplementary Table 4). It must be considered, that Ba*" itself caused a depolarization
(AEyp: P7:19.5+£1.0mV, n=9; P18: 7.9 + 0.5 mV, n = 7) that might reduce the NH,"-
induced depolarization by decreasing the driving force for the NH4" influx. Therefore,
we repeated the experiments in voltage-clamp mode showing a significant reduction of
Inpas by 62 - 77 % (p < 0.001) (Fig. 15B, Supplementary Table 4). Also in the presence
of Ba®*, NH4" caused a reduction of Ry;, which, however, increased by a factor of 2 - 3
than under control conditions (ARy: P7: 10.1 £4.6 MQ, n=3; P13: 5.3+ 1.1 MQ,
n =4; data not shown). It must be considered, that Ba’" itself led to an increase in Ry
(ARM: P7: 73 £ 17 MQ, n=6; P13: 6.9 + 1.6 MQ, n=4).

In voltage-clamp mode, a ramp-like stimulation protocol was performed to

determine the astrocytic IV-relationship during the measurement (Fig. 15C). Ba®*"
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reduced current amplitudes at negative potentials, indicating a loss of Kir currents as
revealed by subtraction from control IV-curve (P7, n = 5). Independent from that, NH4"
still caused a shift of the IV-relationship. Taken together, the Ba*"-mediated reduction
of both, the NH, -induced depolarization as well as current suggest that NH," entered

the astrocytes via Kir channels.
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Fig. 15: Effect of Ba** on NH,'-induced depolarization and membrane current.

(A) Left: Measurement of astrocytic Ey at P18. In the presence of Ba®", the NH, -induced depolarization
was reduced from 8.5 to 3.4 mV. Right: The inhibiting effect of Ba*" on the NH,-induced depolarization
increased with age. (B) Left: Measurement of Iyps+ at P7. In the presence of Ba2+, Inpsr Was reduced
from 134 to 9 pA. Right: The inhibiting effect of Ba®" on the NH, -induced current increased with age.
n-Values are contained within the bars. (C) From left to right: IV-curves under control conditions, in
Ba®" (100 uM) with and without NH," (5 mM), and after subtraction of IV-curves in Ba®>" from control
and normalization to the mean value at Ey=-150 mV (P7; n=>5). Adding Ba®" to ACSF caused a
reduction in the current amplitude at negative potentials turning the IV-relationship from linear to
outward rectifying. Magnification shows a shift in the IV-relationship after addition of NH,". The Ba*'-
sensitive current showed characteristic inward rectification, indicating a loss of Kir currents.
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3.7 Astrocytes from Kir4.1 -/- lack sensitivity to NH,"

In order to confirm the conclusions from the Ba*" experiments, we took advantage of
using Kir4.1 -/- mice (Kofuji et al., 2000). Double labeling of astrocytes with antibodies
against GFAP and Kir4.1 showed a loss of Kir4.1 immunoreactivity (Fig. 164). Patch-
clamped astrocytes from Kird.1 -/- mice were significantly depolarized and for
clamping to -85 mV, a huge holding current was necessary (Fig. 168, Supplementary
Table 1). The IV-relationship showed slightly reduced current amplitudes at negative
holding potentials (Ey). The weaker outward rectification of astrocytes from Kir4.1 -/-
mice compared to Ba*"-treated astrocytes from wild type mice (Fig. 15C) is presumably
due to gap junction coupling that contributes to the linear I'V-relationship of passive
astrocytes (Blomstrand et al., 2004).

We determined the effect of NH4 on astrocytes from Kir4.1 -/- mice and wild
type littermates by pressure application of 5 mM NHy4'. Astrocytes from wild type mice
exhibited a depolarization (AEm: 5.8 +0.9mV, n=15) that lasted as long as the
application period (Fig. 16C). In voltage-clamp mode, NH," caused an inward current
(74 £ 16 pA, n=17), which corresponded to the NH4 -induced depolarization. By
contrast, in astrocytes from Kir4.1 -/- mice the NH; -induced depolarization (AEy:
0.5+0.1 mV, n=4) was reduced to 9+4 % (p<0.001). Because of the highly
depolarized membrane potential, clamping those astrocytes to Exy=-85 mV required
holding currents in the ‘nA’ range, which made proper measurements of small currents
upon NH," application almost impossible. Despite this, clamping to -50 mV required
considerable smaller holding currents of maximal up to 200 pA. Thus, NH4" caused an
inward current (5 £ 1 pA, n =4, p =0.005), which was reduced to 6 + 1 % compared to
wild type (p < 0.001). These results clearly show that Kir4.1 mediated the NH, -induced
depolarization and current.

As the Ba®" experiments already suggested, the NH, -induced [K '], increase in
the stratum radiatum obtained from Kir4.1 -/- mice (A[K'],: 0.78 £ 0.12 mM, n = 6)
was not significantly different from that in their wild type littermates (A[K']o:
0.71 £ 0.09 mM, n=6; p=0.305) (Fig. 16D). The [K'], undershoot upon removal of
NH," was also unchanged (A[K']o: Kir-/-: 0.76£0.24mM, n=6; wild type:
1.08 £0.12 mM, n = 6; p = 0.128). These results confirm that Kir channels were not the

+. .
source for the [K '], increase.

39



Results

Kir4.1 -/- K

C Pressure application of NH,*

WT 5 mM NH,* Kir4.1 -/-
2mv]_ -
1s
-82 mV- -44 mV -
IO Y R —— -55 pA-

E, = -50 mV

25 pAL_
1s

-E,=-85mV

D NH,*-induced K* transients
5 mM NH,* bath

control
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Fig. 16: Kir4.1 -/- mice (P7) lack sensitivity for NH4+. Kir4.1 -/- mice (P7) lack sensitivity for NH,".
(A, B) Immunohistochemical and electrophysiological confirmation of genotype. (A) Co-labeling of
GFAP and Kir4.1 showed a reduction in Kir4.1 immunoreactivity in GFAP-positive astrocytes of KO
mice (right). (B) Astrocytes from KO mice were significantly depolarized and for clamping to -85 mV a
huge holding current was necessary (middle; zero current indicated by the dashed line). Right: The
IV-relationship of the respective astrocyte from KO mice showed slightly reduced current amplitudes at
negative holding potentials (Ey) compared to that from WT. (C) Pressure application of NH," caused a
depolarization (upper traces and diagram) and Iyys+ (lower traces and diagram) of astrocytes from wild
type mice, but not in those from KO littermates. (D) The [K '], increase in the stratum radiatum from KO
mice was unaffected compared to those from wild type mice. n-Values are contained within the bars.

3.8 K" uptake in astrocytes

The ability of astrocytes to take up elevated extracellular K™ strongly depends on their
highly negative Ey. The NHy4 -induced depolarization of astrocytes, therefore likely
impairs the K' uptake capability. To address this question, we consecutively clamped
astrocytes to Ey =-85 and -75 mV to imitate the effect of NH," on the Ey and then
pressure applied K'. The shift of Ey to less negative values caused a significant
reduction of the K'-induced inward current by 16 +7 % (n =5, p = 0.038) (Fig. 174).

This result supports the idea of an NH, -induced impairment of K uptake.

A  K*-induced current Fig. 17: K" uptake / Summary of results.

5 mM K* (A) Left: Voltage-clamp measurement of an

astrocyte at P18. Pressure application of K"

caused an inward current that was reduced if
Ey was shifted from -85 to -75 mV. Right:
The normalized K'-induced current was
reduced by 16 %. n-Values are contained
within the bars. (B) Scheme of an astrocyte

-E,=-75mV
—E,=-85mV

showing pathways for Iyysr entry (upper

B Summary of experiments
part) and [K'], increase (lower part).

Ba2+
Crossed channels and transporters do not

mediate the effects of NH,". Kir channels
mediate the NH,'-induced depolarization via
an influx of NH,". None of the investigated
channels or transporters are involved in the

[K'], increase.
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Taken together, the results show that NH," causes a depolarization and inward current
in hippocampal astrocytes as well as a [K'], increase. The data suggest that NH4" can
substitute for K" at respective channels. Additionally, the results show that the NH,'-
induced depolarization of astrocytes depends on two mechanisms: First, influx of NH4"
through Kird.1 channels, as experiments with Ba®" and on Kir4.1 -/- mice revealed.
Second, the NH, -induced [K'], increase causing a further depolarization (Fig. 17B).
The origin of the NH, -induced [K+]0 increase remains unclear, as it was not affected by

the utilized inhibitors.
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4  Discussion

In this study we addressed the question, whether these NH,4 -induced alterations of the
electrophysiolgical properties of astrocytes and [K'], cause a disturbance of the K'

homeostasis that in turn might have implications for the pathology of HE.

NH," causes a depolarization in a variety of cell types (Allert et al., 1998; Marcaggi et
al., 2004; Kelly and Church, 2005). Whole-cell current-clamp recordings revealed that
astrocytes depolarized in the presence of 5SmM NH;" by about ~8mV. [K'],
measurements showed that [K'], increased by about 1 mM, which is in line with an
earlier report (Marcaggi et al., 2004). The [K'], decrease in the presence of NH;" and
return to its basal level of 2.5 mM is presumably the reason for the initial NH4 -induced
peak depolarization of astrocytes that is followed by a partial repolarization during
ongoing perfusion with NH,". The NH, -induced depolarization of astrocytes exhibited
a faster time course compared to the [K'], increase. Although the final [NH;'] was
achieved more slowly, the ultimate concentration deep in the tissue was the same as in
the first cell layers (Benjamin et al., 1978). Therefore, the fact that the maximal
depolarization is detected earlier than the peak [K'],, is likely due to the penetration

depth of the respective recording electrode.

4.1 Mechanism of the NH4 -induced depolarization of astrocytes

We addressed the question by which mechanism NH," causes the depolarization and
inward current in astrocytes. The electroneutral NKCC, which transports K*, Na" and
2 CI into the cell, is also known to transport NH, " instead of K* (Yan et al., 2001; Kelly
et al., 2009; Kelly and Rose, 2010). It was speculated that the NH, -induced
depolarization could arise from a channel-mediated efflux of intracellularily
accumulated CI" (Marcaggi et al., 1999). In our experiments, however, bumetanide had
no effect on the NH, -induced depolarization, thus excluding an involvement of the
NKCC. Therefore, a different mechanism for the NH, -induced depolarization had to be

considered.
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Astrocytes can be seen as a K sensor. Regarding that NH," caused a [K '], increase, we
determined the relationship between [K'], and astrocytic Ey. Depending on the
experimental conditions it was found that cells in the CNS exhibit a relationship
between [K'], and Ey that either showed Nernst behavior (Hodgkin and Horowicz,
1959; Orkand et al., 1966; Ransom and Goldring, 1973; Walz et al., 1984; Meeks and
Mennerick, 2007) or GHK behavior (Kimelberg et al., 1979; Anderson et al., 1995). In
this study, astrocytes from acute hippocampal slices exhibited a GHK behavior. As
astrocytes predominantly show K™ conductance (Walz et al., 1984) a close correlation
between Ey and Eq5 was achieved, if the relative Na* permeability was adjusted at a
low value of 0.015 (Fig. 13B).

In order to test, whether a [K'], increase of 1 mM is sufficient to cause a
depolarization of about 8 mV in astrocytes at P18, we perfused the tissue with ACSF
containing 3.5mM K' instead of 2.5mM. The half time of the K’ induced
depolarization was significantly shorter than that induced by NH,". This is in line with a
study on glial cells of the bee retina (Marcaggi et al., 2004). But it is likely that, at least
in our experimental model, the process leading to an accumulation of K' in the
extracellular space is slower than the wash-in of ACSF with increased [K']. Therefore,
the shorter half time of the K'-induced depolarization compared to that induced by
NH, " is only an initial hint that the [K+]0 increase is not the sole reason for the NHy -
induced depolarization of astrocytes. More pivotal is the fact that the K'-induced
depolarization was 39 % smaller than the NH, -induced depolarization. Furthermore,
while the NH,4 -induced [K+]0 increase was abolished in less than 30 min, the astrocytes
stayed depolarized in the presence of NH,". Altogether, this clearly shows that the
NH, -induced depolarization is only partially due to the [K'], increase.

The question arises, whether the Ey; of astrocytes under NH, " conditions follows
a distinct predictable mechanism. The depolarization induced by different [NH4'] could
not be fitted properly with a Michaelis-Menten equation, as it was described by others
(Marcaggi et al., 2004), but with GHK equation assuming a relative NH;" permeability
of 0.33 and taking into account the measured [NH4'] dependent [K'], increase (Fig.
13C). This supports the idea that NH," can penetrate the cell membrane, enters the cell

via K channels and hence contributes to the depolarization of the astrocytes.
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4.2 Kird.1 channels mediate the NH4 " influx

We next addressed the question regarding the molecular basis mediating the influx of
NH," into the astrocytes. The NH, -induced depolarization and inward current
increased during the early postnatal development. This is likely due to an increased K
channel expression in astrocytes, as e.g. Kir4.1 channels are upregulated during the
early postnatal development (Seifert et al., 2009). The Kir channel blocker Ba*" reduced
both the NH, -induced depolarization as well as Ixps+ by 50 - 75 %, depending on the
developmental stage. The remaining depolarization and membrane current were likely
caused by the [K'], increase that was unaffected by Ba®" or genetic inactivation of
Kir4.1 and thus independent from Kir channels. In addition, pressure application of
NH," led to a strongly reduced depolarization and change in membrane current of
astrocytes from Kird.1 -/- mice, clearly showing that Kir4.1 channels resemble the
molecular basis. The remaining small NH; -induced depolarization and inward current
is likely due to entry of NH," into astrocytes through two pore domain channels (Kyp),
which resemble a smaller fraction of K' channels in astrocytes (Seifert et al., 2009).

It is discussed, whether a NH4" influx through Kir channels contributes to the
NH,-induced acidification (Nagaraja and Brookes, 1998; Titz et al., 2006; Kelly and
Rose, 2010). It can be argued that the depolarizing effect of NH," is rather due to an
inhibition of Kir channels mimicking Ba®". This seems to be unlikely, because both,
NH," and Ba®", showed at different developmental stages a different degree of impact
regarding the membrane depolarization. While the NH4 -induced depolarization at P7
and P18 was similar, the depolarizing effect of Ba*" was about 2.5 fold augmented at
P7. Furthermore, the effect of NH;" and Ba®" on Ry was contrary. While NH, " caused
even in the presence of Ba®" a decrease of Ry, Ba®" led to an increase by lowering Kir
channel conductance. Finally, while Ba®" caused an alteration of the IV-relationship by
reducing current amplitude at negative potentials, NH, " did not. Therefore, and because
of the predictable contribution to astrocytic Ey following the GHK equation, it is more

likely that NH," enters astrocytes through Kir channels.
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4.3 Origin of the NH, -induced [K'], increase

The NH, -induced [K+]0 increase may either result from an enhanced K" release or
areduced K’ uptake. As we excluded K" release during neuronal activity, synaptic
transmission, or from Kir channels, a mechanism containing a reduced K" uptake
capability becomes more likely. If NH," is competing with K at channels, transporters,
or pumps and by that causes an [K'], increase, specific inhibitors must cause an
increase in baseline [K'], that is followed by no or reduced further K™ accumulation
upon application of NH,". Experiments with bumetanide, Ba*" or on Kir -/- mice, did
not affect either baseline [K'], or the NH; -induced [K'], increase, indicating its
independence from NKCC and Kir channels. The Na', K'-ATPase inhibitor ouabain
itself caused a multi-phase [K'], elevation without achieving a steady-state in an
appropriate time (data not shown), so that under those conditions measurements of
NH, -induced [K'], increase are difficult to evaluate. It was shown before, that NH,"
enters astrocytes via the Na', K'-ATPase causing an acidic shift (Kelly and Rose,
2010). NH," probably replaces K" at the Na', K'-ATPase and therefore causes less K
uptake resulting in a [K'], increase. Additionally, upon removal of NH," the [K'],
decrease below baseline is likely due to an intensified Na', K'-ATPase activity further
indicating the relevance of the pump for the [K'], alterations during and after

hyperammonemic conditions.

4.4 Impairment of K" homeostasis - Implications for the pathology of HE

The question arises, whether the NH,4 -induced depolarization of astrocytes impairs
their function and therefore might contribute to the pathology of HE. In fact, pressure
application of K showed that the K'-induced inward current in astrocytes became
smaller when the membrane potential was shifted into positive direction, suggesting a
reduced K* uptake. This in turn would cause increased and prolonged elevations of
extracellular K™ due to K efflux and hence lead to an increased neuronal excitability
(Voskuyl and ter Keurs, 1981; Balestrino et al., 1986; Kreisman and Smith, 1993; Walz,
2000). This hypothesis is supported by the fact that NH," causes an increased spiking
frequency of hippocampal pyramidal neurons (Kelly and Church, 2005).
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Discussion

Under hyperammonemic conditions, astrocytes exhibit an acidification and a
bumetanide sensitive [Na']; increase that reduces the uptake of extracellular glutamate
(Kelly et al., 2009). As the respective transporter is electrogen (Danbolt, 2001),
glutamate uptake is additionally linked to the electrical gradient. Therefore, the NH, -
induced depolarization of astrocytes will further reduce the clearance of glutamate.
Finally, the increased extracellular glutamate concentration can result in neurotoxicity
by increasing NMDA receptor-mediated Ca®" influx into neurons (Marcaida et al.,
1992; Monfort et al., 2002; Rodrigo et al., 2009; Lau and Tymianski, 2010). In chronic
HE the glutamate uptake is additionally reduced by the downregulation of
corresponding transporters further enhancing the pathology of HE (Knecht et al., 1997;
Chan and Butterworth, 1999; Chan et al., 2000).

Altogether, our results show that the NH4 -induced depolarization of astrocytes as well
as the [K'], increase reflect an impairment of K' homeostasis. This may cause an
increased neuronal excitability and reduced glutamate uptake by astrocytes, which in

turn is part of the pathology of HE.
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Appendix

A Supplementary data

A.1  Basic electrophysiological properties of astrocytes

Membrane Membrane | Membrane
[pnd] potential resistance | capacitance |nPG| PG | n
P [mV] [MQ] [PF]

Mouse Age
line Genotype

P3 |-846 + 0.7 | 49 + 6 42 + 2 |94%| 6%| 59
P7 |-85.8 = 0.3 19 + 2° 62 + 3 [80%[20%| 71

Balb/c
P13 |-863 + 0.3 5 + 1° 56 + 4 [17%(83%| 69
P18 | -84.9 + 0.2 3+ 0° 43 + 2 | 1%]99% (231
WT P7 |-843 £ 06 | 26 + 3 61 + 4 [83%|17%]| 46

C57Bl6

Kird.1-/-| P7 |-514 + 1.1°| 20 = 3 58 £ 3 |91%]| 9%| 34

Supplementary Table 1: Membrane properties of SR101-positive cells during early postnatal
development.

a: significantly increased compared to WT.

b: significantly decreased compared to younger group.
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A.2  Relative membrane permeability

The relationship between [K+]0 and astrocytic Ey did not correlate with Nernst

equation:

R*T K"
E, = *1n 2 4),
A (HKj @

but could be well described with the Goldman-Hodgkin-Katz (GHK) equation:

&7, falNa ] K]
Eu = F ln[ a[Na*JA + [K*Ji ] ©)

I

adjusting the relative Na" permeability (0{ = P% j to 0.015. R, T and F represent the
K

gas constant, the absolute temperature and the Faraday constant. ‘0’ and ‘1’ refer to ion
concentrations in the ACSF and, respectively, intracellular solution. The Measured Ey
did not follow a relationship based on a Michaelis-Menten equation, but on a GHK
equation:

CRr*1, (aNa'] +[K"] +ﬁ[NH4*]U
Ev="% ln[ alNa* | + [k ]| + p|NH,"| (©)

which includes a relative NH;" permeability ( p= Py % ) of 0.33, o from Eq5, and
K

the measured [NH,'] dependent peak [K'], respectively. The [NH4']; was set to 0, as

the intracellular solution diluted entering NH,".
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A3 NHj -induced alterations of astrocytic Ey and [K'],
Age +
[pnd] [NHs ]| AEM[mV] | n| ARM[MQ] | n | Inmss [pA] | n
P3 5 5.6 £ 0.6 [19/303 = 6.7 41 118 = 32 8
P7 5 73 + 04*120| 3.6 £ 0.8 71 242 + 33*|10
P13 5 77 £ 04 (23 2.5 £ 05 | 14| 395 + 42% |21
P18 1 24 + 03 | 8
5 8.5 + 0.3°52 22 + 04 | 9| 408 £ 73| 9
10 |13.9 + 04°[15
20 |31.8 £ 3.6°| 7

Supplementary Table 2: NH, -induced changes in astrocytic membrane

properties.

a: significantly increased compared to younger group.

b: significantly increased compared to lower concentration.

ARy values were not tested for significance against each other, because of the

developmental dependent decrease of resting Ry.

| [T ] T [
P3 5 0.39 + 0.02 | 0.56 + 0.13 | 5
P18 | 0.5 | 0.00 + 0.00° | 0.00 + 0.00*| 2
1 0.20 £ 0.07° | 0.07 + 0.03*| 4
25 | 038 + 0.11° | 0.34 + 0.12°| 4
5 1.07 £ 0.06®| 0.75 + 0.05°|50
10 | 1.50 + 0.23° | 0.98 + 0.19°| 5
20 | 3.75 + 1.03° | 1.23 + 041°| 7
Supplementary Table 3: NH, -induced changes in [K'],.

a: significantly increased compared to younger group.

b: significantly increased compared to lower concentration.

x: not significantly different from base line.
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L Age o 0 AK' o
Inhibitor [pnd] AEM [%] | n | Inpas [%] [%]

Ba*" P7 | 50 + 6°|7| 38 + 9°

P13 23 + 4°

P18 | 33 + 5|7 88 + 5
Bum 106 + 2 | 4 73 + 14
TTX 96 + 19| 4 84 + 11
TEA 114 + 14| 4

CNQX/D-L-

bs 93 + 3

Supplementary Table 4: Summary of pharmacology.

a: significant reduction of NH, -induced changes in Ey/Inps+/[K o1
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Publications

C Publications

Next I have attached reprints or prepared manuscripts I contributed to during my time in

the Institute for Neurobiology (IFN).

C.1  Stephan et al., in Preparation

Mechanisms of Ammonium-induced Depolarization of Astrocytes in situ

Jonathan Stephan, Nicole Haack, Daniel Koch, Simone Durry, Karl W. Kafitz, Gerald

Seifert, Peter Hochstrate, Christian Steinhduser, and Christine R. Rose

My contributions:

» vast majority of the whole-cell patch-clamp recordings (main part of the

experimental data illustrated in all tables and figures)

= data analysis of all electrophysiological recordings

= overall statistics

* initial documentation of immunohistochemical labeling, together with S.D.

= complete illustration

» writing the first draft
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C.2  Langer et al., Submitted

Intracellular sodium propagation between hippocampal astrocytes in situ

Julia Langer, Jonathan Stephan, Martin Theis, and Christine R. Rose

My contributions:

= dye coupling studies (figure 54)

= discussion of the manuscript
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(A} inhibition of purinergic receptors
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(B) inhibition of glutamate uptake
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(A) astrocyte dye coupling (©)
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Abstract

The reliable identification of astrocytes for physiological measurements was always time-consuming and difficult. Recently, the fluorescent dye
sulforhodamine 101 (SR101) was reported to label cortical glial cells in vivo [Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F. Sulforhodamine
101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 2004:1:31-7]. We adapted this technique for use in acute rat hippocampal
slices at early postnatal stages (P3, 7, 15) and in young adults (P24-27) and describe a procedure for double-labeling of SR101 and ion-selective dyes.
Using whole-cell patch-clamp, imaging, and immunohistochemistry, we characterized the properties of SR101-positive versus SR101-negative
cells in the stratum radiatum. Our data show that SR101, in contrast to Fura-2 or SBFI, only stains a subset of glial cells. Throughout development,
SR101-positive and SR101-negative cells differ in their basic membrane properties. Furthermore, SR101-positive cells undergo a developmental
switch from variably rectifying to passive between P3 and P15 and lack voltage-gated Na™ currents. At P15, the majority of SR101-positive cells is
positive for GFAP. Thus, our data demonstrate that SR101 selectively labels a subpopulation of glial cells in early juvenile hippocampi that shows
the typical developmental changes and characteristics of classical astrocytes. Owing to its reliability and uncomplicated handling, we expect that

this technique will be helpful in future investigations studying astrocytes in the developing brain.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Astrocyte; Sulforhodamine 101; Hippocampus; Imaging; Electrophysiology: GFAP; SBFI; Fura-2

1. Introduction

During the last decade it has been firmly established that
astrocytes are not purely supportive for neuronal function,
but also modulate the synaptic communication between neu-
rons (Araque et al., 1999; Fiacco et al., 2007; Haydon, 2001;
Haydon and Carmignoto, 2006; Kang et al., 1998; Nedergaard,
1994; Newman and Volterra, 2004; Parri et al., 2001; Parri and
Crunelli, 2007; Pascual et al., 2005; Schipke and Kettenmann,
2004; Serrano et al., 2006; Verkhratsky et al., 1998; Volterra
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E-mail addresses: kafitz@uni-duesseldorf.de (K.W. Kafitz), s.meier @uni-

duesscldorf.de (S.D. Mcicer), jonathan.stephan @ uni-ducsscldorf.de (J. Stephan),
rose @uni-duesseldorf.de (C.R. Rose).
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2 Tel.: +49 211 81 13486.

3 Tel: +49 211 81 10581.

4 Tel: +49 211 81 10582,

0165-0270/$ — see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jneumeth.2007.11.022

and Meldolesi, 2005). Recent studies demonstrated that astroglia
also plays a central role in the regulation of blood vessel diameter
during neuronal activity (Metea and Newman, 2006; Mulligan
and MacVicar, 2004; Takano et al., 2006; Zonta et al., 2003).
The analysis of astrocytes in the intact tissue with electrophysi-
ological and high-resolution imaging techniques, however, was
always hampered by the problem of a reliable identification
of this cell type. The identification of astrocytes based solely
on morphological criteria, such as somatic size and cellular
architecture, hosts the chance to mistakenly include small-sized
neurons (Kimelberg, 2004). Immunohistochemical stainings of
markers such as glial fibrillary acidic protein (GFAP) or the
Ca®*-binding protein S-100B can only be performed after the
experiment, are time-consuming and often do not allow an
undeniable identification of the cells analyzed in physiologi-
cal experiments. To overcome this problem, transgenic mice, in
which enhanced green fluorescent protein (EGFP) is expressed
under the human GFAP promoter have been raised (Hirrlinger
et al., 2006; Nolte et al., 2001; Zhuo et al., 1997). However,
because astrocytes show very diverse levels of GFAP-expression
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(Kimelberg, 2004), this approach enables the identification of
only a subset of astrocytes.

Many studies reported that glial cells take up the membrane-
permeable forms of Ca* indicator dyes such as Fura-2 or Fluo-4
much better than neurons (Dallwig and Deitmer, 2002; Wang et
al., 2006), and astrocytes were thus often identified based on the
emission patterns of the indicator dyes used. This approach was
extended by Dallwig and Deitmer (2002), who have described
that neurons and astrocytes in acute brain slices differ in their
response to changes in the external potassium concentration.
Still, this approach can only identify about 80% of astrocytes and
necessitates performing additional Ca®*-imaging experiments.

Recently, the fluorescent dye sulforhodamine 101 (SR101)
was reported as a powerful tool for specific labeling of corti-
cal glial cells in the intact brain of juvenile and adult rodents
(Nimmerjahn et al., 2004; Wang et al., 2006). In the present
study we adapted this technique for use in an acute tissue slice
preparation of the rat hippocampus. Because in the CA1 region
of the rodent hippocampus, astrocytes undergo considerable
changes in channel complement and passive membrane prop-
erties during postnatal development (Bordey and Sontheimer,
1997; Kressin et al., 1995; Zhou et al., 2006), we performed
the study at different developmental stages during the first 4
weeks after birth (postnatal days 3, 7, 15, and 24-27). Using
whole-cell patch-clamp, imaging techniques, and immunohis-
tochemistry, we show that the percentage of SR101-positive
cells inthe stratum radiatum increases during development. Fur-
thermore, SR101-positive cells lack voltage-gated Na* currents
and change from variably rectifying to passive cells between
P3 and P15. At P15, the majority of SR101-labeled cells is
positive for the astrocytic marker GFAP. Thus, our data demon-
strate that SR101 selectively labels a subset of glial cells in
the hippocampus that shows typical characteristics of classical
astrocytes.

2. Methods
2.1. Tissue preparation and labeling with SR101

Experiments were carried out on acute tissue slices (250 pm)
of rat hippocampi harvested at postnatal days 3,7, 15, and 24-27
as described earlier (Meier et al., 2006). In brief, animals were
decapitated and the hippocampi were rapidly removed. Slices of
P3 and P7 animals were sectioned in ice-cold normal artificial
cerebrospinal fluid (ACSF; in mM: 125 NaCl, 2.5 KCl, 2 CaCl,,
1 MgCly, 1.25 NaH;PO4, 26 NaHCO3 and 20 glucose, bubbled
with 95% O, and 5% CO2; pH 7.4). Following sectioning, slices
were kept at 34 °C for 20 min in ACSF that contained 0.5-1 p.M
sulforhodamine 101 (SR101), followed by a 10 min incubation
in normal ACSF at 34 °C. Preparation of slices from animals
older than 15 days as well as their incubation with SR101 at
high temperature was performed in ACSF with a reduced Ca?*
concentration (in mM: 125 NaCl, 2.5 KCl, 0.5 CaCl,, 6 MgCls,
1.25NaH,P0y, 26 NaHCO; and 20 glucose, bubbled with 95%
Oy and 5% COy; pH 7.4). Afterwards, all slices were kept at
room temperature until they were used for experiments, which
were also performed at room temperature. Unless stated oth-

erwise, all chemicals were purchased from Sigma—Aldrich Co.
(Taufkirchen, Germany).

2.2. Determination of the density of SR10I-labeled cells

For determination of the amount of SR101-positive cells
on the total number of cells exhibiting glial morphology,
slices were double-labeled with SR101 and the ester form of
sodium-binding benzofuran isophthalate (SBFI), a conventional
Na*-gelective fluorescent dye that exhibits similar properties as
Fura-2 (Meier et al., 2006). To this end, SBFI-AM (800 p.M)
was repeatedly (1-5s duration each) pressure-injected through
a fine-tipped glass microelectrode into the stratum radiatum
(Stosiek et al., 2003). Injection was followed by a 45-60 min
wash in normal ACSF at room temperature to allow for dif-
fusion and de-esterification of the dye. Stacks of images (31
optical sections at 1 or 1.5 pm thickness) were then taken at
a custom build two-photon laser scanning microscope (excita-
tion wavelength at 850 nm) based on an Olympus FV300 system
(Olympus Europe, Hamburg, Germany), coupled to a Mai-Tai
Broadband laser (Spectra Physics, Darmstadt, Germany) and
equipped with two fluorescence detection chamnels. Fluores-
cence emission of SBFI was collected between 400 and 590 nm,
emission of SR101 was detected between 610 and 630 nm. Max-
imum intensity projections and analyses of the staining patterns
were performed at montages of image stacks using “Imagel”-
software.

2.3. Electrophysiology and immunohistochemistry

Somatic whole-cell recordings were obtained at an upright
microscope (Nikon Eclipse B60OFN, 60x water immersion
objective, N.A. 1.00, Nikon Europe, Diisseldorf, Germany)
using an EPC10 amplifier (HEKA Elektronik, Lambrecht, Ger-
many). ‘“‘PatchMaster”-software (HEKA Elektronik) was used
for data acquisition. Some recordings were carried out at a
Zeiss Axioscope (Zeiss, Jena Germany, 40x water immersion
objective, N.A. 0.80, Olympus Europe, Hamburg, Germany)
using an Axopatch 200A and “PClamp 8.27-software for data
acquisition (Molecular Devices, Sunnyvale, CA). The pipette
solution contained (in mM): 120 K-MeSO; or K-gluconate,
32 KCl, 10 HEPES (N-(2-hydroxyethyl)piperazine-N-(2-
ethanesulfonic acid), 4 NaCl, 4 Mg-ATP and 0.4 Na3-GTP,
0.1 Alexafluor 488 (Molecular Probes/Invitrogen, Karlsruhe,
Germany), pH 7.30. Cells were generally held at membrane
potentials of —85 mV. To separate passive conductances from
voltage-gated currents, online leak subtraction (P/4) was per-
formed. Data were processed and analyzed by employing “IGOR
Pro”-Software (WaveMetrics, Inc., Lake Oswego, OR).

Following electrophysiological recordings, images of fluo-
rescence emission of SR101-labeled (excitation wavelength:
587 nm, emission detected above 602nm) and Alexa-filled
(excitation wavelength: 488 nm, emission detected between 495
and 575 nm) cells were captured by a CCD camera (Spot RT KE,
Diagnostic Instruments, Inc., Sterling Hights, MI) and “Spot”-
software attached to the microscope. Slices were immediately
fixed over night at 4°C in paraformaldehyde and immuno-
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histochemically processed for GFAP (dilution 1:100; DAKO
70334, Hamburg, Germany) as reported earlier (Kafitz and
Greer, 1998; Kafitz et al., 1999). Labeled slices were cover-
slipped and documented as described above. Images of the
immunohistochemistry were corrected for shrinkage caused by
fixation by a factor of 1.467 and overlaid employing “‘Adobe
Photoshop”-software.

24. Ca®* imaging

Conventional, wide-field fluorescence imaging was per-
formed using a variable scan digital imaging system (TILL
Photonics, Martinsried, Germany) attached to an upright micro-
scope (Axioskop, Zeiss, Jena, Germany; 40x water immersion
objective, N.A. 0.80, Olympus Europe, Hamburg, Germany)
and a CCD camera as a sensor (T'ILL Imago SVGA, TILL
Photonics, Martinsried, Germany). To this end, after confir-
mation of successful SR101-staining (excitation wavelength:
575 nm;, detection of emission: >390nm), cells were addition-
ally dye-loaded with the Ca® -selective dye Fura-2 (Fura-2-AM,
500 pM); employing the protocol described above for SBFL

For wide-field imaging of Fura-2, background-corrected fluo-
rescence signals (>410nm) were collected from defined regions
of interest after alternate excitation at 356 and 380nm; images
were acquired at 2 Hz. After background subtraction, the ratio
of the fluorescence emission (Fzs4/F330) was calculated using
TillVision software (TILL Photonics, Martinsried, Germany)
and data were analyzed off-line using “IGOR Pro”-Software
{(WaveMetrics, Inc., Lake Oswego, OR). Changes in calcium
concentration were estimated based on an in vifro calibration
of the Fura-2 fluorescence. ATP was applied by a Picospritzer
IT (General Valve/Parker Hanifin, Flein/Heilbronn, Germany)
coupled to standard micropipettes (Hilgenberg, Waldkappel,
Germany) placed at a distance of approximately 10-20 m to a
given cell.

2.5. Statistics

Unless otherwise specified, data are expressed as
means + S.E.M. Data were statistically analyzed by a standard
i-test.

3. Results

3.1. Labeling pattern of acute hippocampal slices with
SR101 and SR101/SBFI-AM

Incubation of cells in solutions containing 10-20 .M of the
membrane-permeable acetoxymethyl ester (AM) forms of ion-
selective fluorescent dyes such as the Ca®*-sensitive dye Fura-2
or the Na*-gensitive dye SBFI enables the loading and analysis
of many cells at a time (e.g. Rose and Ransom, 1996, 1997). In
acute brain slices, it was observed consistently that this stain-
ing protocol results in a fairly selective staining of astrocytes,
and consequently, their primary identification in the intact tissue
was often based on this specific staining pattern (Dallwig and
Deitmer, 2002; Wang et al., 2006). Using bolus loading (injec-

tion of the AM-form of fluorescent dyes into the extracellular
space) instead of bath incubation, in contrast, results in a good
quality staining of neurons as well as astroglia (Meier et al.,
2006; Stosiek et al., 2003). Injection of dyes thus enables the
study of both astrocytes and neurons at the same time. However,
dye-loaded neurons, such as interneurons with small somata
in the stratum radiatum of the hippocampus, might be falsely
identified as astrocytes based on this staining technique.

To overcome this problem, we adapted a protocol for appli-
cation of the red fluorescent dye SR101, which was reported to
stain astrocytes in the intact cortex of rodents (Nimmerjahn et al.,
2004), for use in acute slices of the rat hippocampus. SR101 is
excited around 575nm and its emission can be collected above
590nm, making it suitable for use in combination with many
available ion-selective dyes. Initial experiments were carried out
employing a post-incubation with SR101-containing ACSF at
room temperature for 20 min. Independent from the SR101 con-
centration used (from 100 pM — as suggested by Nimmerjahn
et al. (2004) for in vive experiments — down to 0.5 M), this
protocol resulted in an unspecific surface label of SR101. The
vast majority of the unspecific SR101 staining most likely repre-
sented a nuclear label of superficial neurons whereas cells with
typical astrocytic morphology were not stained (not shown). In
stark contrast to this, we found that incubation of the slices right
after their preparation in ACSF containing 500 nM-1 pM SR101
for 20min at high temperature (34 °C), resulted in a highly
specific staining of cells with astrocytic morphology that was
maintained for more than 8 h. The staining pattern of SR101 in
slices obtained from animals at postnatal day 3 (P3, Fig. 1A),
P7 (not shown), P15 (Fig. 1B), as well as P24-27 (not shown)
excluded virtnally all cells of the strafum pyramidale, clearly
indicating that SR101 exclusively labeled glial cells throughout
development in this preparation.

To portray cells additional to SR101-positive ones in these
preparations, we performed a second labeling with the Na*-
selective fluorescent dye SBFI-AM, which (like Fura-2) is
excited in the UV range. SBFI-AM was directly injected into
the stratum radiatum, followed by a period of 45-60 min incu-
bation in ACSF to allow for diffusion of the dye into the
cells and sufficient de-esterification. Atall developmental stages
investigated (P3, P7, and P15), and in contrast to SR101, SBFI-
AM labeled cells in the stratum pyramidale (presumably CA1
pyramidal neurons) as well ag SR101-negative cells in the stra-
fum radiatum with large somata that presumably represented
interneurons or ectopic pyramidal neurons (Fig. 1A and B).
SBFI-AM labeling in the stratum radiatum also included small-
sized SR101-negative cells that morphologically resembled
astrocytes as judged by the size and shape of their somata and pri-
mary processes (Fig. 1A and B). Interestingly, the percentage of
SR101-positive cells on the total number of small-sized SBFI-
loaded cells with glial morphology changed during postnatal
development. At P15 (=757 cells in 11 slices), roughly 90%
of these SBFI-stained cells were also SR101-positive, whereas
at P3 (n= 2185 cells in 22 slices) only about 50% of them were
labeled with SR101 (Fig. 2). As judged by optical inspection of
SR101-incubated slices at P24-27 the vast majority of small-
sized cells with glial morphology were also SR101-positive.
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(A)P3

Fig. 1. Labeling pattern of SR101vs. SBFI-AM inthe hippocampal CA1 region.
Fluorescence images, taken at a two-photon laser-scanning microscope, of acute
slices from postnatal day P3 (A) and P15 (B) rats, double-stained with SR101
(upper left panels) and SBFI-AM (upper right panels). The lower, enlarged pan-
els show the merged fluorescence images. SP: strafum pyramidale; SR: stratum
radiatum. Arrows mark double-labeled cells located in the stratuwm radiatum,
arrowheads point out cells which are exclusively stained by SBFI. Note that puta-
tive pyramidal neurons in the strafum pyramidale are also stained with SBFI,
but not with SR101.

Taken together, these results demonstrate that SR101 stains
cells with glial morphology in acute tissue slices of the rat
hippocampus. Presumptive neurons are completely spared. In
addition, we found a clear developmental profile of the staining
pattern for SR101. Whereas the SR101-labeling comprised the
vast majority of cells with glial morphology in P15 and adult

SR101 - labeling

- + - +
100 7

Total number of
SBFl-labeled cells [%]
(42
o
1

04 [

P3 (n = 2185) P15 (n =757)
Fig. 2. Quantification of the percentage of SR101-negative (white bars) and
SR101-postive (grey bars) cells on the total number of small-sized SBFI-labeled

cells located in the stratum radiatum in P3 (n=22 slices; 2185 cells) and P15
rats (=11 slices; 757 cells).

animals, only about half of such cells were stained by SR101 at
P3.

3.2. Electrophysiological characterization of
SRI101-positive and SR101-negative cells

In the CA1 region of the rodent hippocampus, several types
of astrocytes were described based on their electrophysiologi-
cal properties (Bordey and Sontheimer, 2000; D’ Ambrosio et
al., 1998; Kressin et al., 1995; Steinhauser et al., 1994b; Zhou
and Kimelberg, 2001). Moreover, astrocytes undergo consid-
erable changes in channel complement and passive membrane
properties during early postnatal development (Bordey and
Sontheimer, 1997, Kressin et al., 1995; Zhou et al., 20006).
Therefore, we characterized the electrophysiological properties
of SR101-positive and SR101-negative cells with glial mor-
phology in the stratum radiatum by performing patch-clamp
experiments in the whole-cell configuration. Current injection
in the current-clamp mode failed to elicit action potentials in
any of the cells investigated (z = 126; not shown) indicating that
they were indeed glia or glial precursor cells, respectively.

Throughout development, SR101-positive and SR101-
negative cells differed significantly in their membrane
properties. At early stages, SR101-negative cells (n =13 at P3,
#=>5 at P15) generally had more depolarized membrane poten-
tials, their membrane resistance was higher and their membrane
capacity was lower than that of SR101-positive cells (Table 1).
We found no differences in these properties between P3 and P15
animals in SR101-negative cells. At P24-27, SR101-negative
cells showed a tendency to be more hyperpolarized and had a
higher membrane resistance and capacity compared to younger
stages (Table 1). SR101-positive cells also showed developmen-
tal changes in their electrophysiological properties. Whereas the
membrane potential of SR101-positive cells was highly negative
at all four stages investigated (—80 to —87 mV; Table 1), their
membrane resistance decreased from 94 M2 at P3 (n=42), to
68 M2 at P7 (n=6), and to 6 and 11 MQ2 (P15, n =37, P24-27,
n=13). At the same time, membrane capacity increased (from
69 to 880 pF; Table 1).

Toreveal the functional expression of voltage-gated ion chan-
nels, cells were held in the voltage-clamp mode at —85mV
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Table 1

Membrane properties of SR101-positive and SR101-negative cells at P3, P7, P15 and in young adults (P24-27)

SR101 A d Membrane Membrane Membrane
labeling ge [pnd] potential [mV] | resistance [MQ] [ capacity [plF| il
P3 -67+£17 353 £ 325 30430 13
SR- P15 77+ 14 302 +202 27+ 18 5
P24-27 -81+5 168 £ 153 95+ 89 6
*

i P3 -83+6 94 £ 52 69+48 42
P7 -804 68 + 32 120+ 72 6

SR+
ris -87+3 6+5 139 £ 91 37
P24-27 -85+4 11+10 880+ 1274 13

Significance level: **a=0.01.

and then subjected to a rectangular voltage step protocol (from
—150 to +50mV, 10mV increments). The voltage-step pro-
tocol induced large capacitive as well as passive currents
(Fig. 3A-C; insets). Leak subtraction (P/4) was performed to
reveal voltage-gated currents activated by membrane depolar-
ization (Fig. 3A—C; insets; see also Fig. 4). The amplitudes of the
currents were measured at 810 ms afler the start of the voltage
step, and current was plotted versus voltage (I/V-relationship,
Fig. 3A-C). Data were fit by a linear regression curve; the
threshold for linearity of the I/V relation was set at a regression
coefficient of % =0.9983.

At P3, both SR101-positive (n=42) and SR101-negative
(n=13) cells exhibited voltage-activated outward currents
and only non-linear [/V relationships with a variable degree
of outward rectification were found (“non-passive cells”,
nPC; Figs. 3A, D and 4A, B). In SRI101-positive cells,
outward-currents were non-inactivating (Fig. 3A), while in
SR101-negative cells, the amplitude of outward currents
decreased over time (Fig. 4A). At P7, SR10l-positive cells
exhibited non-linear I/V relationships with non-inactivating out-
ward currents as well (n=6; Fig. 3B and D), whereas the
majority (78%) of SR101-positive cells at P15 (n=38) and all
SR 101-positive cells at P24-27 (n=13) lacked voltage-gated
currents and thus showed a linear [/V relationship (“passive
cells”, PC; Figs. 3C, D and 4D). SR101-negative cells at P15
(n=5) as well as at P24-27 (n=6), in contrast, exclusively
showed non-linear properties (Fig. 4C).

To further characterize SRI10l-positive and negative
cells, we examined which phenotype functionally expressed
voltage-gated fast inward currents. To relieve inactivation
of voltage-gated Na* channels, the voltage step protocol
was extended by a hyperpolarizing preconditioning pulse to
—120mV. SR101-positive cells completely lacked fast inward
currents at P3 (n=42; Fig. 4B), at P15 (n=37; Fig. 4D) as well as
at P24-27 (n=13).In contrast, 4 out of 13 SR101-negative cells
at P3 (Fig. 4A) and all SR101-negative cells at P15 (n=5) and
at P24-27 (n=6) expressed voltage-gated fast inward currents.

Taken together, these results demonstrate that small-sized,
SBFI-stained cells in the stratum radiatum represent glial cells
that can be divided into two subtypes differing in their staining
pattern with SR101 as well as in their passive and active mem-
brane properties. Al P15 and in young adults, the vast majority of
SR101-positive cells show the typical electrophysiological prop-
erties of classical passive astrocytes (Bordey and Sontheimer,
2000; D’ Ambrosio et al., 1998; Steinhauser et al., 1992; Zhou
et al., 2006).

3.3. Immunohistochemical characterization of
SRI01-positive cells

To further establish the astrocytic identity of SR101-positive
glial cells at P15, we immunohistochemically stained for GFAP.
To this end, SR101-positive cells were first characterized elec-
trophysiologically and in parallel filled with the fluorescent dye
Alexa 488 via the patch pipette to enable their identification in
the slices processed for immunohistochemistry. As described
above, we found that all SR101-positive cells at P15 exhibited
electrophysiological properties of classical astrocytes (n=26).
The majority of these cells (n=23/26 cells) were also GFAP-
positive, confirming their astrocytic identity (Fig. SA). Three
of 26 investigated SR101-positive cells were GFAP-negative
(Fig. 5B), indicating that GFAP only labels a subset of astroglial
cells as reported earlier (Lee et al., 2006; Raponi et al., 2007).

3.4. ATP-induced Ca®* transients in SR101-stained slices

To validate the described double-staining protocol of SR101
and ion-selective dyes for physiological measurements, we per-
formed dynamic fluorescence imaging in acute hippocampal
slices al P15, employing the Ca?*-sensitive dye Fura-2-AM
(Fig. 6). We tested the responses of the cells to a focal pres-
sure application of ATP (10 uM for 100 ms) through a fine
micropipette, which has been shown to induce intracellular Ca?*
transients in glial cells (Verkhratsky et al., 1998). Focal applica-
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Fig. 3. I/V relationship of SR10 l-positive cells of P3 (A), P7 (B) and P15 (C)
rats. Cells were held at —85mV and subjected to 10 ms voltage steps ranging
from —150 to +50 mV at 10 mV increments. The insets on the left side show the
resulting membrane currents before (top) and after leak subtraction (bottom).
The I/V plots depict the amplitudes of the resulting currents at 8-10 ms after
the start of the voltage step of the same cells, the grey lines show the linear
regression curves. Animals at P3 (A) and P7 (B) exclusively showed non-linear

tion of ATP resulted in a transient elevation of the intracellular
Ca®* concentration in 15 out of 18 SR101-positive (83%), as
well ag in 5 out of 7 SR101-negative cells (71%) within the field
of view (n =06 experiments in 6 slices; Fig. 6). The amplitude of
ATP-induced calcium transients was dependent on the distance
of the cells from the tip of the application pipette, the orientation
of perfusion flow, and the depth of the cell in the slice. When
analyzing cells located within a circular area with a radius of
50 pm from the tip of the application pipette, the amplitude of
the calcium transients was not significantly different between
SR101-positive and SR101-negative cells and averaged about
20nM. In summary, these measurements confirm that SR101
labeling of acute slices does not interfere with intracellular ion
measurements using ion-selective fluorescent dyes (Jourdain et
al., 2007; Nimmerjahn et al., 2004).

4. Discussion

In the present study, we describe a procedure for double-
labeling of acute slice preparations of the rat hippocampus
with the fluorescent dye SR101 and AM-esters of ion-selective
fluorescent dyes. SR101 was introduced recently to selec-
tively identify astrocytes in the neocortex of 2-4-week-old rats
(Nimmerjahn et al., 2004). It is a red fluorescent dye that can be
combined with flucrescent dyes excited in the UV range such
as Fura-2 or SBFI (this study) or excited at 400-500nm such
as Oregon Green (Nimmerjahn et al., 2004) and Alexa 488 (this
study, Nimmerjahn et al., 2004). In accordance with the latter
study, we did not find any evidence for a distortion of induced
intracellular Ca?* transients in cells that were stained with both,
SR101 and the ion-selective fluorescent dye.

Astrocytes in sifn are heterogeneous with respect to their
physiological properties (I’ Ambrosio et al., 1998; Grass et al.,
2004: Matthias et al., 2003; Steinhauser etal., 1992, 1994b; Zhou
and Kimelberg, 2000, 2001) and undergo considerable changes
in channel complement and passive membrane properties dur-
ing early postnatal development (Bordey and Sontheimer,
1997; Kressin et al., 1995; Zhou et al., 2006). Thus, using
whole-cell patch-clamp, imaging techniques and immunchis-
tochemistry, we characterized the properties of SR101-positive
versus SR101-negative cells in the sirafum radiatum at postnatal
days 3, 7, 15 and 24-27.

Based on their electrophysiological properties, two basic
types of astrocytes have been described in the hippocam-
pus (Bordey and Sontheimer, 2000; D’ Ambrosio et al., 1998;
Kressin et al, 1995; Steinhauser et al.,, 1994b; Zhou and
Kimelberg, 2001). One cell type, termed “outwardly rectifying”
(Zhou and Kimelberg, 2000, 2001) or “complex” (Kressin et
al., 1995; Steinhauser et al., 1994b) is mainly characterized by a
membrane potential which is significantly more positive than the
equilibrium potential for K*, by a high input resistance, and by
a low membrane capacity. Moreover, this cell type functionally

IV relationships, in P15 animals (C), mostly linear I/V curves were found. (D)
Quantification of the amount of cells with non-linear (non-passive cells, nPCs,
white bars) orlinear (passive cells, PCs, grey bars) I/V curves on the total number
of SR101-positive cells at P3, P7 and P15.
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Fig. 4. Expression pattern of voltage-gated fast inward currents at P3 (A, B) and P15 (C, D). To relieve inactivation of voltage-gated Na* channels, cells were held at
—85mV and subjected to a prepulse to —120 mV for 10 ms before stepping from —110 to +10mYV in increments of 10 mV. Shown are the resulting currents before
(upper traces) and after (lower traces) leak subtraction. At both ages, fast voltage-gated inward currents were only observed in SR101-negative (A, ), but not in

SR 101-positive (B, D) cells.

expresses two types of K*-outward currents, a delayed rectifier
and a transient A-type current, as well as TTX-sensitive Nat
channels. The hallmarks of the second type of astrocytes are a
highly negative membrane potential, a low input resistance, and
ahigh membrane capacity. Furthermore, these cells lack voltage-
gated Na*t currents and show a largely symmetrical expression
of inward and outward K* currents that consist predominantly
of ohmic currents with small contributions of delayed rectifier
K* currents. Accordingly, this cell type was called “passive”
(Kressin et al., 1995; Steinhauser et al., 1994a) or “variably
rectifying” (Zhou and Kimelberg, 2000, 2001) astrocyte. In
addition, both astrocyte types differ in their expression profile
for ionotropic glitamate receptors and glutamate transporters.
Whereas the first type expresses ionotropic glutamate receptors
and lacks glutamate transporter currents (Matthias et al., 2003;
Zhou and Kimelberg, 2001), the second type lacks ionotropic
glutamate receptors, but shows significant glutamate uptake
currents (Matthias et al., 2003; Zhou and Kimelberg, 2001).
Based on these differences, the second type (“‘passive” or “vari-
ably rectifying” astrocyte) is often regarded as the “‘classical”
astrocyte, as it is capable to perform classical functions of astro-
cytes, such as the uptake of glutamate and potassium from the

extracellular space (Matthias et al., 2003; Zhou and Kimelberg,
2001).

Our results show that SR101-positive cells during the first 4
weeks of postnatal development display the electrophysiological
properties typical for immature and mature classical astrocytes
described above, The developmental profile of current expres-
sion of SR101-positive cells is in good agreement with earlier
studies showing that the amount of outward rectification in such
cells decreases with age (Steinhauser et al., 1992; Wallraff et
al., 2004; Zhou et al., 2006). The electrophysiological proper-
ties of SR101-negative cells, in contrast, are reminiscent of the
first type of astrocytes described above, but may also include a
population of glial cells positive for the chondroitin sulfate pro-
teoglycan NG?2 and thus, may partly represent glial progenitor
cells (Matthias et al., 2003; Zhou et al., 2006).

Taken together, our data demonstrate for the first time that
SR101, incontrast to conventional fluorescent ion-selective dyes
such as Fura-2 or SBFI, selectively labels a subpopulation of
glial cells in the early postnatal hippocampus that shows the
typical developmental changes and characteristics of classical
astrocytes. Staining with SR101 enables a direct and reliable
identification of virtually all such astrocytes in acute brain slices
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Alexa 488

®)

Alexa 488

Fig. 5. Immunohistochemical characterization of SR101-positive cells at P15. (A) From left to right: image of the staining pattern of SR101 in the stratum radiatum.
Based on this staining, a SR101-positive cell was chosen (arrow) and characterized electrophysiclogically while filling the cell with Alexa 488. In the subsequent
immunohistochemical analysis, the same cell also showed immunoreactivity for GFAP. The merged picture of all three fluorescence images confirms the identity
of the triple-labeled cell. (B) The same experimental design also identified a cell which was SR101-positive, electrophysiologically characterized as glial cell, but
showed no immunoreactivity for GFAP (arrow). The arrowheads point to cells, which were double-labeled for SR101 and GFAP. SP: stratum pyramidale; SR: stratum
radiatum.

SR101+

4 100 ms ATP A

Fig. 6. ATP-induced Ca" transients in SR101-positive and SR101-negative cells at P15. Top, left: image of the staining pattern of SR101 in the stratum radiatum.
Top, center and right: staining pattern of the Ca®*-sensitive dye Fura-2 and merged image. Bottom, left: image of the Fura-2 fluorescence. The colored lines indicate
the regions of interest (r1-r6) in which the Ca?*-measurements were performed. The position of the application pipette (AP) is indicated schematically on the right.
Bottom, right: focal pressure application of 10 pM ATP for 100 ms induced Ca®* transients in both SR101-positive (left) and SR101-negative (right) cells. The
experiment was performed using a widefield imaging system.
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for physiological measurements as well as immunochistochemi-
cal studies. Owing to its reliability and uncomplicated handling,
we expect that this technique will be helpful in future inves-
tigations studying the functions of astrocytes and neuron-glia
interaction in the developing brain.
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