Radiologische und funktionelle Ergebnisse nach operativer Versorgung von Wirbelkörperfrakturen im thorakolumbalen Übergang

Dissertation

Zur Erlangung des Grades eines Doktors der Medizin

Der Medizinischen Fakultät der Heinrich-Heine-Universität

Düsseldorf

vorgelegt von

Filiz Temizel-Kanbur

2010
Als Inauguraldissertation gedruckt mit Genehmigung der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf “

gez. Univ.-Prof. Dr. med. Joachim Windolf

Dekan

Referent: Prof. Dr. med. Flohé

Korreferent: PD Dr. Jäger
Gewidmet meinen Eltern.
1. Inhaltsverzeichnis

1. Inhaltsverzeichnis ... 1
2. Abkürzungsverzeichnis ... 2
3. Einleitung .. 3
 3.1 Anatomie, Biomechanik und Klassifikation 3
 3.2 Konservativ-funktionelle und operative Therapie 5
4. Material und Methoden .. 8
 4.1 Patientenkollektiv und Datenerhebung 8
 4.2 ABC-Klassifikation der Wirbelsäulenverletzungen von C3 bis L5 8
 4.3 Zum Nachuntersuchungstermin wurden folgende Daten erhoben 12
 4.3.1 Radiologische Diagnostik .. 12
 4.3.2 Klinische Untersuchung .. 13
 4.3.3 Schmerzwahrnehmung .. 13
 4.4 OP-Techniken ... 14
 4.4.1 OP-Technik der dorsalen Operation 14
 4.4.2 Querstabilisation ... 14
 4.4.3 Laminektomie .. 15
 4.5 Statistische Auswertung .. 15
5. Ergebnisse .. 16
 5.1 Patientenkollektiv .. 16
 5.2 Frakturlokalisation .. 17
 5.3 Unfallmechanismen .. 18
 5.4 Polytrauma .. 18
 5.5 Begleitverletzungen .. 19
 5.6 Operatives Vorgehen ... 19
 5.7 OP Zeitdauer .. 20
 5.8 Komplikationen ... 21
 5.9 Klinische Nachuntersuchungen .. 22
 5.10 Beschwerden an der Spongiosaentnahmestelle 22
 5.11 Radiologische Auswertung ... 23
 5.11.1 AO Klassifikation ... 23
 5.11.2 Cobb Winkel .. 23
 5.12 Radiologisches Ergebnis in Korrelation zu Schmerzen bei der Nachuntersuchung 32
6. Diskussion ... 33
7. Zusammenfassung .. 40
8. Literaturverzeichnis .. 41
9. Danksagung .. 45
10. Lebenslauf .. 46
2. Abkürzungsverzeichnis

AWMF = Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften
BWS = Brustwirbelsäule
DGU = Deutsche Gesellschaft für Unfallchirurgie
D + S = dorsale Instrumentierung mit transpedikulärer Spongiosaplastik
D – S = dorsale Instrumentierung ohne transpedikulärer Spongiosaplastik
EK = Erythrozytenkonzentrate
FBA = Finger-Boden-Abstand
LWS = Lendenwirbelsäule
m = männlich
Min = Minimum
Max = Maximum
MW = Mittelwert
NU = Nachuntersuchung
OP = Operation
Prae-OP = präoperativ durchgeführte Röntgenbilder und entsprechend gemessener Cobb Winkel (Unfallbilder)
Post-OP = postoperativ durchgeführte Röntgenbilder und entsprechend gemessener Cobb Winkel
Prae-ME = vor der Metallentfernung durchgeführte Röntgenbilder und entsprechend gemessener Cobb Winkel
Post-ME = nach der Metallentfernung durchgeführte Röntgenbilder und entsprechend gemessener Cobb Winkel
Tab. = Tabelle
USS = Universal Spine System
V = ventrale Instrumentierung
w = weiblich
WS = Wirbelsäule
3. Einleitung

3.1 Anatomie, Biomechanik und Klassifikation

topografisch zu der Rückenmuskulatur und lässt sich unterteilen in eine spinokostale Gruppe, eine modifizierte Interkostalmuskulatur und eine spinoskapulare und spinohumerale Gruppe.

Man unterteilt die Wirbelsäule in eine vordere, mittlere und hintere Säule (nach Denis) [12]. Das sogenannte Drei-Säulen-Modell.

Anhand dieses 3-Säulen Modells wird wie folgt eingeteilt:
- Die vordere Säule entspricht dem Ligamentum longitudinale anterius sowie der vorderen Hälfte des Wirbelkörpers und der Bandscheibe.
- Die mittlere Säule entspricht der Hinterwand, dem hinteren Anteil der Bandscheibe und dem Ligamentum longitudinale posterius.
- Die hintere Säule besteht aus den Facettengelenken, den Wirbelbögen und dem kräftigen dorsalen Ligamentkomplex (Ligg. flava, Ligg. interspinalia und Lig. supraspinale).

Bei diesem Modell ist die mittlere Säule entscheidend für die Stabilität.

Nach der Definition von White und Panjabi [37] besteht eine klinische Instabilität, wenn „, die Wirbelsäule die Fähigkeit verliert, unter physiologischen Belastungen den normalen Bewegungsspielraum so beizuhalten, dass kein neues oder zusätzliches neurologisches Defizit, Deformitäten oder Schmerzen auftreten.“

Man unterscheidet drei Verletzungsmuster:

Typ A: Kompressionsfraktur
Typ B: Distraktionsfraktur
Typ C: Rotationsfraktur

In den Leitlinien der AWMF online Orthopädie/ Rehabilitation nach Frakturen der Brust- und Lendenwirbel wird klassifiziert nach Ursache, nach Lokalisation, nach Komplikationen und es wird differenziert in stabile und instabile Frakturen.

3.2 Konservativ-funktionelle und operative Therapie

Ziel der Behandlung von Wirbelkörperfrakturen ist die Wiederherstellung von Form und Stabilität der Wirbelsäule, die Reduktion neurologischer Schäden, Vermeidung chronischer Schmerzen, die Dekompression und Stabilisierung. Wie oben erwähnt unterscheidet man stabile und instabile Frakturen und dementsprechend die Therapie.

Die konservative Therapie ist immer dann indiziert, wenn die Stabilität der Wirbelkörperfraktur gewährleistet ist. Stabile Frakturen sind isolierte Quer- und Dornfortsatzfrakturen und einige Kompressionsfrakturen ohne Beteiligung der Hinterkante. Nach der akuten Phase, die mit Schmerzen verbunden ist, beginnt man frühzeitig die funktionelle Weiterbehandlung, die aus physikalischen und krankengymnastischen Methoden besteht.

Der kombinierte dorsoventrale Zugang wird bei komplexen Instabilitäten mit Verletzung aller 3 Säulen und Bänder eingesetzt. Halswirbelfrakturen werden lokalisationsabhängig meistens von ventral versorgt, Brust- und Lendenwirbelfrakturen primär von dorsal. [27].

Es herrscht also in der Fachwelt eine große Unsicherheit über die Notwendigkeit der Stabilisierung aller Säulen. Sicher ist, dass Wirbelkörperfrakturen mit Neurologie operativ stabilisiert werden müssen, was in der Regel über eine dorsale Instrumentierung mit Fixateur intern geschieht. Die zusätzliche ventrale Stabilisierung bei zerstörter ventraler Säule erscheint aus biomechanischen Überlegungen und der Zerstörung des Bandscheibenfaches indiziert. Es bleibt im punkto Funktionalität jedoch ungeklärt, ob der zusätzliche ventrale Eingriff in der Tat auch eine Verbesserung der klinischen Symptomatik bewirkt. Insofern existieren Schulen, die fast alles primär von dorsal operieren und solche, die prinzipiell ein kombiniert dorsoventrales Vorgehen propagieren, parallel in der deutschen Unfallchirurgie.

In der dargestellten retrospektiven Untersuchung wurden die Ergebnisse von Wirbelkörperfrakturen des thorakolumbalen Übergangs untersucht, die allein von dorsal operativ stabilisiert wurden.

Hierbei wurde der Zusammenhang der radiologischen und klinischen Ergebnisse mit der funktionellen Beweglichkeit der Wirbelsäule und den Schmerzen der Patienten analysiert.
4. Material und Methoden

4.1 Patientenkollektiv und Datenerhebung

4.2 ABC-Klassifikation der Wirbelsäulenverletzungen von C3 bis L5

Quelle: www.thieme.de
A Kompression

| 1. Impaktionsbruch | 1. Deckplattenimpression | 1. kranial
2. Keilbruch | 2. seitlich
3. Wirbelkörperimpaktion | 3. kaudal |
|-------------------|--------------------------|-------------------|-------------------|-------------------|
| 2. Spaltbruch | 1. frontaler Spaltbruch | 1. kranial
2. sagittaler Spaltbruch | 2. seitlich
3. dislozierter frontaler Spaltbruch | 3. kaudal |
| 3. Berstungsbruch | 1. inkompleter Berstungsbruch | 1. kranial
2. Berstungsspaltbruch | 2. seitlich
3. Kneifzangenberstungsbruch | 3. kaudal |
2. kompletter Flexionsberstungsbruch | 2. kompletter axialer Berstungsbruch |
B Distraktion

<table>
<thead>
<tr>
<th>1. transligamentäre Flexionsdistraktionsverletzung</th>
<th>2. mit Korpusfraktur</th>
<th>3. mit Subluxation/Luxation und Gelenkfortsatzfraktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. mit Diskuszerreißung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. mit Diskuszerreißung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. mit Diskuszerreißung und Gelenkfortsatzfraktur</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. transossäre Flexionsdistraktionsverletzung</th>
<th>1. horizontale Wirbelzerreißung</th>
<th>1. ohne Gelenkfortsatzfraktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. mit Horizontalspondylodese mit Zerreißung der Bandscheibe</td>
<td>2. mit Subluxation/Luxation und Gelenkfortsatzfraktur</td>
<td></td>
</tr>
<tr>
<td>2. Flexionsspondylodese mit Zerreißung der Bandscheibe</td>
<td>3. mit Subluxation/Luxation und Gelenkfortsatzfraktur</td>
<td></td>
</tr>
<tr>
<td>3. Flexionsspondylodese mit Korpusfraktur</td>
<td>4. mit Subluxation/Luxation und Gelenkfortsatzfraktur</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Hyperextensionsscherverletzung</th>
<th>1. Hyperextensionssubluxation</th>
<th>1. ohne Gelenkfortsatzfraktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hyperextensionssubluxation</td>
<td>2. mit Gelenkfortsatzfraktur</td>
<td></td>
</tr>
<tr>
<td>2. Hyperextensionsspondylodese</td>
<td>3. Hintere Luxation</td>
<td></td>
</tr>
<tr>
<td>3. Hintere Luxation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Torsion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Rotation mit Kompression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Rotationsskeilbruch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Rotationsspaltbruch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Rotationsberstungsbruch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Rotation mit Distraktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Rotation mit B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Rotation mit B2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. Rotationsskeilbruch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. frontaler</td>
</tr>
<tr>
<td>Rotationsspaltbruch</td>
</tr>
<tr>
<td>2. sagittaler</td>
</tr>
<tr>
<td>Rotationsspaltbruch</td>
</tr>
<tr>
<td>3. vertikale</td>
</tr>
<tr>
<td>Wirbelkörperseparation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Rotation mit Distraktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rotation mit B1</td>
</tr>
<tr>
<td>2. Rotation mit B2</td>
</tr>
<tr>
<td>1. Rotationssubluxation</td>
</tr>
<tr>
<td>2. einseitige Luxation</td>
</tr>
<tr>
<td>3. einseitige Subluxations-/</td>
</tr>
<tr>
<td>Luxationsfraktur</td>
</tr>
<tr>
<td>4. einseitige Luxation und</td>
</tr>
<tr>
<td>Korpusfraktur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Rotationsberstungsbruch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. inkompletter</td>
</tr>
<tr>
<td>Rotationsberstungsbruch</td>
</tr>
<tr>
<td>2. Rotationsberstungsbruch</td>
</tr>
<tr>
<td>3. kompletter</td>
</tr>
<tr>
<td>Rotationsberstungsbruch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. Rotationsskeilbruch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. frontaler</td>
</tr>
<tr>
<td>Rotationsspaltbruch</td>
</tr>
<tr>
<td>2. sagittaler</td>
</tr>
<tr>
<td>Rotationsspaltbruch</td>
</tr>
<tr>
<td>3. vertikale</td>
</tr>
<tr>
<td>Wirbelkörperseparation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Rotation mit Distraktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rotation mit B1</td>
</tr>
<tr>
<td>2. Rotation mit B2</td>
</tr>
<tr>
<td>1. horizontale Wirbelzerreiung</td>
</tr>
<tr>
<td>2. einseitige</td>
</tr>
<tr>
<td>Flexionsspondylolyse mit</td>
</tr>
<tr>
<td>Diskuszerreiung</td>
</tr>
<tr>
<td>3. einseitige</td>
</tr>
<tr>
<td>Flexionsspondylolyse mit</td>
</tr>
<tr>
<td>Korpusfraktur</td>
</tr>
</tbody>
</table>
Die persönlichen Daten, die Unfall- und Operationsdaten und der prä- und post-operative Verlauf, wurden aus der Krankenakte entnommen.

Als Einschlusskriterien galten:

- Traumatische Fraktur von BWK8–LWK4
- Operative Versorgung der Fraktur mit einem Fixateur interne (USS = Universal Spine System)
- Erfolgte Materialentfernung

4.3 Zum Nachuntersuchungstermin wurden folgende Daten erhoben

4.3.1 Radiologische Diagnostik

Zur radiologischen Verlaufsbeurteilung wurde die Verlaufsreihe: Unfall-, die postoperativen und vor bzw. nach Materialentfernung aufgenommenen Röntgenbilder ausgewertet. Gemessen wurden die Kyphosewinkel nach Cobb:

![Diagramm der Kyphosewinkel nach Cobb](Quelle www.thieme.de)

- $\alpha = \text{vertebrale Kyphose}$
- $\beta = \text{segmentale Kyphose}$
- $\gamma = \text{lokale Kyphose}$

Die Klassifikation der Frakturen erfolgte über Röntgenaufnahmen der Wirbelsäule in zwei Ebenen und der Computertomografie. Da einige Patienten durch Zuverlegung in der Klinik
für Unfallchirurgie der Universität Essen behandelt wurden, wurde die Klassifikation allein durch die Röntgenaufnahmen durchgeführt.

Standarddiagnostik bei Verdacht auf Wirbelkörperfrakturen ist die Röntgenaufnahme des thorakolumbalen Wirbelsäulenabschnittes in zwei Ebenen.

4.3.2 Klinische Untersuchung

Bei Patienten, die operativ mit autologer Spongiosaplastik versorgt wurden, wurden die Entnahmestellen untersucht und Beschwerden ermittelt.

4.3.3 Schmerzwahrnehmung
Die Schmerzwahrnehmung der Patienten wurde mit Hilfe der Untergruppe des Schmerzes aus dem SF-36-Fragebogen charakterisiert. Mit folgenden Fragen wurde diese Angabe eingestuft:

<table>
<thead>
<tr>
<th>Frage</th>
<th>Keine Schmerzen</th>
<th>Sehr leicht</th>
<th>Leicht</th>
<th>Mäßig</th>
<th>Sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wie stark waren Ihre Schmerzen in den vergangenen 4 Wochen?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2. Inwieweit haben die Schmerzen Sie in den vergangenen 4 Wochen bei der Ausübung Ihrer Alltätigkeiten zu Hause oder im Beruf behindert?</td>
<td>Überhaupt nicht</td>
<td>Etwas</td>
<td>Mäßig</td>
<td>Ziemlich</td>
<td>Sehr</td>
</tr>
<tr>
<td>Tabelle 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Das Ergebnis erhält man, indem die Punktzahl der beantworteten Fragen summiert und in Bezug zur maximal erreichbaren Punktezahl (10) der Prozentsatz gebildet wird.
4.4 OP-Techniken

4.4.1 OP-Technik der dorsalen Operation

4.4.2 Querstabilisation

Bei Rotationsverletzungen mit Beeinträchtigung der seitlichen Stabilität werden die Längsstäbe des USS-Systems durch ein oder zwei Querstabilisatoren abgestützt.
4.4.3 Laminektomie

4.5 Statistische Auswertung

Sofern nicht anders gekennzeichnet, wurden alle Daten als Mittelwert dargestellt. Der Vergleich zwischen den Messwerten der Patienten erfolgte mittels „Wilcoxon-Test“, „T-Test“ und „Mann Whitney-Test“. Ein statistisches Niveau $\alpha = 0,05$ galt als signifikant. Die statistischen Auswertungen erfolgten mit dem Software-Programm SPSS.
5. Ergebnisse

5.1 Patientenkollektiv

Die vorliegenden Ergebnisse resultieren aus präoperativen Daten der Patienten, die retrospektiv aus Patientenakten ermittelt wurden. Von 107 Patienten, davon 41 Frauen = 38% und 66 Männer = 62%, mit einem durchschnittlichen Alter von 42,3 Jahren (Minimum 15 / Maximum 91 Jahre), konnten 51 Patienten nachuntersucht werden. Bei diesen Patienten wurden 122 Frakturen im thorakolumbalen Übergang diagnostiziert, von diesen wurden zusätzlich 51% mit autologer Spongiosaplastik und 17 % mit einer Laminektomie behandelt. Von diesem Patientengut konnten retrospektiv 51 Patienten nachuntersucht werden (Abb.1+2)

Von den nicht untersuchten Patienten lehnten 21 % die Nachuntersuchung ab, 23% der Patienten waren inzwischen verstorben und 56 % der Patienten konnten aus sonstigen Gründen nicht nachuntersucht werden.

5.2 Frakturlokalisation

Die Frakturlokalisation ist der Abbildung 4 zu entnehmen.

Der Lendenwirbelkörper 1 ist mit 30% der am häufigsten frakturierte Wirbel.
5.3 Unfallmechanismen

Die Unfallmechanismen sind in der folgenden Abbildung zu sehen. Der akzidentelle Sturz aus größerer Höhe (in der Regel > 3m) ist mit 54 % der häufigste Mechanismus der Wirbelkörperfrakturen, wobei auch der Suizid einen beträchtlichen Anteil mit 23 % einnimmt, bei dem ebenfalls ein entsprechender Sturzmechanismus zu Grunde liegt.

<table>
<thead>
<tr>
<th>Unfallmechanismen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehrsunfall</td>
<td>16%</td>
</tr>
<tr>
<td>Sonstige</td>
<td>7%</td>
</tr>
<tr>
<td>Suizid</td>
<td>23%</td>
</tr>
<tr>
<td>Sturz</td>
<td>54%</td>
</tr>
</tbody>
</table>

5.4 Polytrauma

36 % der Patienten waren polytraumatisierte Verletzte mit vielen Begleitverletzungen, siehe Abbildung 6 und Tabelle 3.
5.5 Begleitverletzungen

Die folgende Tabelle gibt einen Überblick über die Art der Begleitverletzungen der polytraumatisierten Patienten.

<table>
<thead>
<tr>
<th>Verletzung</th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremitätenverletzung</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Zusätzliche WK-Frakture</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Intrathorakale Verletzungen</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Beckenfrakturen und Beckenverletzungen</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Kopf-/Hirnverletzungen</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Frakturen des knöchernen Thorax</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Weichteilverletzungen</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Intraabdominale Verletzungen</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabelle 3

5.6 Operatives Vorgehen

Die Ergebnisse basieren auf den Auswertungen der Krankenakten, der klinisch chirurgischen Untersuchung und der Röntgenkontrollaufnahmen. Von den 107 operierten Patienten wurden 51 % (55 Patienten) zusätzlich mit allogener Spongiosaplastik, 19% (21 Patienten) mit einer Querverstrebung und 15 % (17 Patienten) laminektomiert.

Spongiosaplastik:

<table>
<thead>
<tr>
<th></th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>55</td>
<td>51</td>
</tr>
<tr>
<td>Nein</td>
<td>52</td>
<td>49</td>
</tr>
</tbody>
</table>
Querverstrebung:

<table>
<thead>
<tr>
<th></th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>Nein</td>
<td>86</td>
<td>81</td>
</tr>
</tbody>
</table>

Tabelle 5

Laminektomie:

<table>
<thead>
<tr>
<th></th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Nein</td>
<td>90</td>
<td>85</td>
</tr>
</tbody>
</table>

Tabelle 6

5.7 OP Zeitdauer

<table>
<thead>
<tr>
<th></th>
<th>Zeitdauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mit Spongiosaplastik</td>
<td>154 Minuten</td>
</tr>
<tr>
<td>Ohne Spongiosaplastik</td>
<td>143 Minuten</td>
</tr>
<tr>
<td>Mit Laminektomie</td>
<td>219 Minuten</td>
</tr>
</tbody>
</table>

Tabelle 7
5.8 Komplikationen

Bei einigen Patienten ergaben sich allgemeine und operative Komplikationen. Diese teilten sich folgendermaßen auf.

Allgemeine Komplikationen

<table>
<thead>
<tr>
<th>Komplikation</th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfallchirurgische/Neurochirurgische Intensivbetreuung</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Multiorganversagen</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>pulmonaler Infekt</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Alkoholdelir</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Herpes Zoster</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Blasenaffektionsstörungen</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Lungenembolie</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Herzrhythmusstörungen</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Tabelle 8

Operative Komplikationen

<table>
<thead>
<tr>
<th>Komplikation</th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parästhesie im Gesicht</td>
<td>1</td>
<td>16,6</td>
</tr>
<tr>
<td>Disseminierte intravasale Gerinnungsstörung, Massentransfusion</td>
<td>2</td>
<td>33,3</td>
</tr>
<tr>
<td>Wundheilungsstörungen</td>
<td>3</td>
<td>50</td>
</tr>
</tbody>
</table>

Tabelle 9

Bluttransfusionen:

Intraoperativ und innerhalb von 24 Stunden postoperativ wurden bei 43 Patienten durchschnittlich 1,79 Erythrozytenkonzentrate infundiert und 5 Patienten bekamen autologes Blut über cell-saver.
5.9 Klinische Nachuntersuchungen

Der durchschnittliche Finger-Boden-Abstand der untersuchten 51 Patienten beträgt 15,4 cm (Min 0 cm / Max 37 cm). Das Ott-Maß betrug 30 cm / 31,2 cm (Min 30 cm / Max 34 cm) und das Schober-Maß 10 cm / 13,6 cm (Min 10,5 cm / Max 16,5 cm).

Das Maß der Seitwärtsneigung im Stand nach rechts lag bei 41,5° und nach links bei 42,3°.

<table>
<thead>
<tr>
<th></th>
<th>Mittelwert</th>
<th>Stabwa</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Normwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ott-Maß in cm</td>
<td>30:31,2</td>
<td>1,1</td>
<td>34</td>
<td>30</td>
<td>32-34</td>
</tr>
<tr>
<td>Schober-Maß in cm</td>
<td>10:13,6</td>
<td>2,4</td>
<td>16,5</td>
<td>10,5</td>
<td>14-17</td>
</tr>
<tr>
<td>Fingerspitzen-Boden-Abstand in cm</td>
<td>15,4</td>
<td>11,2</td>
<td>37</td>
<td>0</td>
<td>0-10</td>
</tr>
<tr>
<td>Seitwärtsneigung nach rechts in °</td>
<td>41,5</td>
<td>10,7</td>
<td>60</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Seitwärtsneigung nach links in °</td>
<td>42,3</td>
<td>11</td>
<td>60</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 10

5.10 Beschwerden an der Spongiosaentnahmestelle

29 der 51 nachuntersuchten Patienten erhielten operativ eine autogene Spongiosaplastik. Während der klinischen Untersuchung wurde auch die Entnahmestelle am hinteren Beckenkamm untersucht und nach Vorhandensein und Art der Beschwerden gefragt. 34 % der Patienten gaben in dieser Region spezifisch Beschwerden an.

Die Art der Beschwerden zeigt folgende Tabelle:

<table>
<thead>
<tr>
<th>Beschwerden</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmerzen</td>
<td>30 %</td>
</tr>
<tr>
<td>Hypästhesie</td>
<td>40 %</td>
</tr>
<tr>
<td>Parästhesie</td>
<td>30 %</td>
</tr>
</tbody>
</table>

Tabelle 11
5.11 Radiologische Auswertung

Die Auswertung und Ausmessung der Röntgenaufnahmen ergibt folgende Ergebnisse:

Aus dem Patientenkollektiv von 107 Patienten wurden von 91 Patienten die Röntgenaufnahmen ausgewertet.

5.11.1 AO Klassifikation

Die Frakturen wurden mit der AO-Klassifikation nach Magerl et. al [27] ausgewertet. Die Klassifikation erfolgte auf Basis der präoperativen konventionellen Röntgenbilder und der CT-Untersuchungen, sofern diese vorlagen. Die Klassifikation wurde durch zwei Beobachter und bei Unklarheiten durch einen dritten Untersucher eingeteilt. Es ergab daraus folgende Frakturverteilung:

<table>
<thead>
<tr>
<th>AO-Klassifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1.1</td>
</tr>
<tr>
<td>A1.2</td>
</tr>
<tr>
<td>A1.3</td>
</tr>
<tr>
<td>A2.1</td>
</tr>
<tr>
<td>A2.2</td>
</tr>
<tr>
<td>A2.3</td>
</tr>
<tr>
<td>A3.1</td>
</tr>
<tr>
<td>A3.2</td>
</tr>
<tr>
<td>A3.3</td>
</tr>
<tr>
<td>B1.1</td>
</tr>
<tr>
<td>B1.2</td>
</tr>
<tr>
<td>B2.1</td>
</tr>
<tr>
<td>B2.2</td>
</tr>
<tr>
<td>B2.3</td>
</tr>
<tr>
<td>B3.1</td>
</tr>
<tr>
<td>B3.2</td>
</tr>
<tr>
<td>B3.3</td>
</tr>
<tr>
<td>C1.1</td>
</tr>
<tr>
<td>C1.2</td>
</tr>
<tr>
<td>C1.3</td>
</tr>
<tr>
<td>C2.1</td>
</tr>
<tr>
<td>C2.2</td>
</tr>
<tr>
<td>C2.3</td>
</tr>
<tr>
<td>C3.1</td>
</tr>
<tr>
<td>C3.2</td>
</tr>
<tr>
<td>XX</td>
</tr>
</tbody>
</table>

Abb. 7

XX : keine Auswertung möglich, da keine Unfallbilder vorlagen

Die häufigste Fraktur war bei 18 Patienten (19 %) eine Typ A3.1 Kompressionsfraktur, gefolgt von der Typ A3.3 Fraktur mit 16%. Bei 20 Patienten lagen keine Unfallbilder vor, so dass keine Klassifikation vorgenommen werden konnte.

5.11.2 Cobb Winkel

Die vertebalen, lokalen und segmentalen Cobb-Winkel wurden bei 91 Patienten ausgemessen und die Mittelwerte errechnet, da von einigen Patienten nicht immer die kompletten Röntgendiagnosen zu erheben waren.

Einige Daten konnten, zum Zeitpunkt der Studie, aufgrund des lückenhaften bzw. nicht verfügbaren radiologischen Bildmaterials, nicht immer durchgehend erhoben werden.

Folgende Zeitpunkte wurden betrachtet:
Unfall = erstes Röntgenbild oder CT-Rekonstruktion
Post-OP = erste postoperative Röntgenbilder
Prä-ME = vor der Metallentfernung durchgeführte Röntgenbilder
Post-ME = mindestens 6 Wochen nach der Metallentfernung durchgeführte Röntgenbilder

Mittelwerte der Cobb- und Delta Winkel von allen Patienten

Der Mittelwert des vertebalen Cobb Winkels betrug zum Unfallzeitpunkt 14,2° und wurde mit der Operation auf 8,1° aufgerichtet. Der Wirbelkörper sinterte bis vor der Metallentfernung auf 9,6° und nach der Metallentfernung auf weitere 10,3°.

![Cobb-vertebrals](image)

Abb. 8

Der Mittelwert des segmentalen Winkels war vor der Operation 15,0° und wurde nach der Operation auf 8,9° aufgerichtet. Der Winkel sinterte auf 12,7° und nach der Metallentfernung noch deutlich weiter auf 15,7°.

![Cobb-segmentals](image)

Abb. 9
Der Mittelwert des präoperativen lokalen Winkels wurde auf 11,5° bemessen und verkleinerte sich nach der Operation auf 6,8°. Bis zur Entfernung des Metalls vergrößerte sich der Winkel auf 10,5° und nach der Operation nochmals um 4° auf insgesamt 14,4°.

![Cobb-lokal](image)

Abb. 10

Aus den ausgemessenen Mittelwerten der Cobb Winkel wurden die vertebralen, segmentalen und lokalen Delta- Winkel errechnet. Diese 3 Delta Winkel ergeben sich aus der Differenz der präoperativen und der postoperativen Winkel, der postoperativen und prä-ME Winkel und der prä-ME und post-ME Winkeldifferenz.

Der vertebrale Delta Wert der präoperativen und postoperativen Winkeldifferenz bemisst sich bei 7,09° (p<0,05). Die segmentale Differenz ist 6,68° (p<0,05) und der lokale Wert befindet sich bei 4,79° (p<0,05).

![Delta prä OP-post OP](image)

Abb. 11

Der vertebrale Delta-Winkel der postoperativen und und prä-Metallentfernung Winkeldifferenz ist -1,49° (p<0,05). Der segmentale Deltawinkel ist -3,30° (p<0,05) und der lokale Wert bemisst sich bei -3,53° (p<0,05).
Der vertebrale Delta-Winkel der prä-Metallentfernung und der post-Metallentfernungsdifferenz ist -1,49° (p< 0,05). Der segmentale Deltawinkel bemisst sich bei -3,89° (p> 0,05) und der lokale Winkel ist -4,38° (p> 0,05).

Diese Ergebnisse belegen eindeutig, dass es nach der Metallentfernung zu einem nachträglichen Sinter kommt, welches vornehmlich im geschädigten kranialen Bandscheibenfach geschieht.

Cobb- Winkel mit gesamter Röntgenreihe

Von 21 Patienten konnte die gesamte Röntgenreihe ausgewertet werden, zum Vergleich dienen die folgenden Grafiken.

Der Mittelwert des vertebralen Cobb Winkels betrug zum Unfallzeitpunkt 16,14° und wurde mit der Operation auf 7,66° aufgerichtet. Der Wirbelkörper sinterte bis vor der Metallentfernung auf 8,71° und nach der Metallentfernung auf weitere 10,38°.
Der Mittelwert des segmentalen Winkels war vor der Operation 16,80° und wurde nach der Operation auf 8,24° aufgerichtet. Der Winkel sinterte auf 10,76° und nach der Metallentfernung auf 15,39°.

Der Mittelwert des präoperativen lokalen Winkels wurde auf 12,52° bemessen und verkleinerte sich nach der Operation auf 7,57°. Bis zur Entfernung des Metalls vergrößerte sich der Winkel auf 10,10° und nach der Operation nochmals auf 14,95°.
Vergleich der Cobb- Winkel mit und ohne Spongiosaplastik

Die separate Darstellung der Cobb Winkel mit und ohne Spongiosaplastik ergibt folgende Grafiken:
Einfluss der Laminektonie

Cobb Winkel mit Laminektomie

14 Patienten wurden operativ zusätzlich mit der spinalen Dekompression behandelt. Die Messung der Winkel zeigt folgende Grafik.

Der Mittelwert des vertebalen Cobb Winkels betrug zum Unfallzeitpunkt 12,5° und wurde mit der Operation auf 9,5° aufgerichtet. Der Wirbelkörper sinterte bis vor der Metallentfernung auf 10,43° und nach der Metallentfernung auf weitere 10,44°.
Der Mittelwert des segmentalen Winkels war vor der Operation 14,9 ° und wurde nach der Operation auf 10,25° aufgerichtet. Der Winkel sinterte auf 12,57° und nach der Metallentfernung auf 18,33°.

Der Mittelwert des präoperativen lokalen Winkels wurde auf 10,8° bemessen und verkleinerte sich nach der Operation auf 6,88°. Bis zur Entfernung des Metalls vergrößerte sich der Winkel auf 7,71° und nach der Operation nochmals auf 16,11°.
Vergleich der Cobb Winkel bei Spongiosaplastik entweder mit oder ohne Laminektomie

Vergleicht man die Cobb Winkel der Patienten, die alle eine Spongiosaplastik erhalten haben und entweder zusätzlich eine Laminektomie oder keine Laminektomie erhalten haben, dann zeigt sich folgende Grafik.

Abb. 22

Abb. 23

Abb. 24
5.12 Radiologisches Ergebnis in Korrelation zu Schmerzen bei der Nachuntersuchung

Die Ergebnisse der SF-36 Fragen wurden mit dem lokalen Cobb Winkel des Röntgenbildes korreliert, das nach der Metallentfernung aufgenommen wurde.

Dieser Korrelationskoeffizient beträgt 0,11807373.
6. Diskussion

Die Fraktur eines Wirbelkörpers im thorakolumbalen Übergang ist ein einschneidendes Ereignis mit einer langwierigen Heilungsphase. Es gibt verschiedene Therapiemöglichkeiten, wichtig ist dabei die richtige und beste Therapie dem Patienten individuell anzupassen.

Ziel der Studie war es, das postoperative radiologische Ergebnis, das Schmerzempfinden des Patienten und die Bewegungseinschränkungen zu ermitteln, um eine Aussage zu der Therapie und die klinischen und radiologischen Auswirkungen zu machen.

Die ermittelten Ergebnisse der Frakturlokalisation und Unfallursache stimmen mit den Angaben der Literatur überein. So gilt ähnlich wie bei dem untersuchten Kollektiv der 1. Lendenwirbelkörper als die häufigste Frakturlokalisation und der Sturz aus großer Höhe als die häufigste Ursache [10, 17, 28].

Segmentaler und lokaler Cobb Winkel erzielen keinen Nettogewinn. Daraus lässt sich eindeutig schließen, dass der frakturierte Wirbelkörper von dorsal zumindest partiell stabil zur Ausheilung gebracht werden kann, aber insbesondere im kranial angrenzenden Bandscheibenfach eine irreversible Schädigung entsteht, die hauptsächlich für den Korrekturverlust verantwortlich ist.

Das Prinzip und die Überlegung von Daniaux, der transpedikulären Spongiosaplastik, war die Behandlung der verletzten Wirbelsäule und die Wiederherstellung der statischen, dynamischen und protektiven Funktion der Wirbelsäule.

Die durch die Fraktur bzw. instrumentelle Reposition entstandene Höhle wird mit autologer Spongiosa aufgefüllt, was eine rasche knöcherne Konsolidierung sichern soll. Zusätzlich wird transpedikulär das kranial angrenzende Bandscheibenfach ausgeräumt und mit Spongiosa aufgefüllt, um die Ausbildung eines Fusionswirbels zu erzielen.

Laut Literatur zeigt Knop et al. [17] in seiner retrospektiven Studie auch keine signifikante Korrelation zwischen dem Korrekturverlust und dem klinischen Outcome in einer Patientengruppe, die allein von dorsal instrumentiert und mit transpedikulärer...
Spongiosaplastik behandelt wurden. Andress et al. kommen auch zu der Erkenntnis, dass die transpedikuläre Spongiosaplastik den Korrekturverlust der Wirbelkörper nicht verhindern kann [4]. In beiden Gruppen, die beide von dorsal instrumentiert werden und jeweils mit oder ohne Spongiosaplastik behandelt werden, kommt es zu einem Korrekturverlust.

In den folgenden 7 Artikeln wurden zwei Gruppen, jeweils eine mit transpedikulärer Spongiosaplastik behandelten Patienten und eine Gruppe ohne transpedikulär operierten Patienten miteinander verglichen, die alle von dorsal instrumentiert wurden:

In der retrospektiven Studie von Andress et al. [4] wird vermerkt, dass die Spongiosaplastik den Korrekturverlust nicht verhindern kann.

In der Studie von Stromsoe et al. [37] sieht man auch keine Korrelation zwischen dem radiologischem Korrekturverlust und dem Outcome des Patienten.

Zusammenfassend kann man also sagen, dass die Spongiosaplastik keinen positiven Effekt auf das Endresultat hat. Es besteht aber eine weit gestreute Meinung über das optimale Therapieverfahren und keine Klarheit darüber, welcher Korrekturverlust klinisch relevant ist.

In dieser Studie kommt man zu dem gleichen Ergebnis, dass die Spongiosaplastik keinen relevanten Unterschied zeigen kann und zu dem noch bei ca. 30% der Patienten Beschwerden an der Spongiosaentnahmestelle auftreten.

Der Korrekturverlust in unserer Studie zeigt sich am größten mit 7,55° im lokalen Cobb Winkel. Dies ist darauf zurückzuführen, dass die kranial und kaudal gelegenen Zwischenwirbelscheiben sintern. Dies kann wie oben erwähnt weder durch die dorsale Instrumentierung noch durch die transpedikuläre Spongiosaplastik verhindert werden.

Knop et al. [17] beobachteten einen Korrekturverlust von 7,8° im lokalen Cobb Winkel. In der vergleichenden Studie von Knop et al. [18] sieht man keinen signifikanten Unterschied zwischen einer nur instrumentell stabilisierten und einer mit transpedikulärer Spongiosaplastik versorgten Gruppe. Die Gruppe zeigte sogar einen größeren Korrekturverlust mit 10,6° im Gegensatz zu 8,7°. Somit decken sich unsere Befunde sehr gut mit den Daten in der Literatur, was sich auch in der folgenden systematischen Literaturanalyse widerspiegelt:
Studien zur dorsalen Instrumentierung von Wirbelkörperfrakturen:

<table>
<thead>
<tr>
<th>Studie</th>
<th>Behandlungsmethoden</th>
<th>Korrekturverlust Cobb</th>
<th>Korrekturgewinn Cobb</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>dorsal + Spongiosaplastik lokal</td>
<td>7,8°</td>
<td>lokal</td>
</tr>
<tr>
<td>4</td>
<td>dorsal +/- Spongiosaplastik segmental 6° segmental</td>
<td>kein Gewinn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dorsal + Spongiosaplastik segmental 7,5° segmental</td>
<td>0,5°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dorsal – Spongiosaplastik segmental 3° segmental</td>
<td>kein Gewinn</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>dorsal + Spongiosaplastik vertebral</td>
<td>1,4° vertebral</td>
<td>10,7°</td>
</tr>
<tr>
<td></td>
<td>lokal</td>
<td>8,9° lokal</td>
<td>0,7°</td>
</tr>
<tr>
<td></td>
<td>dorsal – Spongiosaplastik lokal</td>
<td>6° lokal</td>
<td>10,6°</td>
</tr>
<tr>
<td></td>
<td>dorsal + Spongiosaplastik vertebral</td>
<td>1,4° vertebral</td>
<td>10,1°</td>
</tr>
<tr>
<td></td>
<td>lokal</td>
<td>8,9° lokal</td>
<td>6°</td>
</tr>
<tr>
<td></td>
<td>dorsal - Spongiosaplastik vertebral</td>
<td>4,1° vertebral</td>
<td>9,7°</td>
</tr>
<tr>
<td></td>
<td>lokal</td>
<td>9,9° lokal</td>
<td>4,2°</td>
</tr>
<tr>
<td></td>
<td>dorsal + Spongiosaplastik vertebral</td>
<td>1,3° vertebral</td>
<td>7,7°</td>
</tr>
<tr>
<td></td>
<td>lokal</td>
<td>7,9° lokal</td>
<td>0,3°</td>
</tr>
<tr>
<td>13</td>
<td>dorsal lokal</td>
<td>11,7° lokal</td>
<td>kein Gewinn</td>
</tr>
<tr>
<td>7</td>
<td>dorsal + Spongiosaplastik lokal</td>
<td>6,1° lokal</td>
<td>4,5°</td>
</tr>
<tr>
<td>38</td>
<td>dorsal + Spongiosaplastik vertebral</td>
<td>1,4° vertebral</td>
<td>kein Verlust vertebral</td>
</tr>
<tr>
<td></td>
<td>segmental 11,6° segmental</td>
<td>10,1°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lokal 7,7° lokal</td>
<td>5,1°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dorsal - Spongiosaplastik vertebral</td>
<td>4,1° vertebral</td>
<td>keine Gewinn</td>
</tr>
<tr>
<td></td>
<td>segmental 9,9° segmental</td>
<td>4,2°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lokal 6,3° lokal</td>
<td>7°</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>dorsal + Spongiosaplastik lokal</td>
<td>10,2° lokal</td>
<td>11,7°</td>
</tr>
<tr>
<td></td>
<td>dorsal - Spongiosaplastik lokal</td>
<td>9,5° lokal</td>
<td>11,8°</td>
</tr>
<tr>
<td>18</td>
<td>dorsal + Spongiosaplastik lokal</td>
<td>10,6° lokal</td>
<td>3,8°</td>
</tr>
<tr>
<td></td>
<td>dorsal - Spongiosaplastik lokal</td>
<td>8,7° lokal</td>
<td>11,5°</td>
</tr>
<tr>
<td>26</td>
<td>dorsal +/- Spongiosaplastik vertebral (Flexion – Kompression - Verletzung)</td>
<td>kein Verlust vertebral</td>
<td>10°</td>
</tr>
<tr>
<td></td>
<td>segmental 5° segmental</td>
<td>5°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lokal 2° lokal</td>
<td>3,7°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dorsal +/- Spongiosaplastik segmental (Flexion – Distraktion - Verletzung)</td>
<td>1,5° segmental</td>
<td>14,5°</td>
</tr>
<tr>
<td></td>
<td>lokal 8° lokal</td>
<td>7°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dorsal +/- Spongiosaplastik segmental (Rotations – Verletzung)</td>
<td>9,5° segmental</td>
<td>1,5°</td>
</tr>
<tr>
<td></td>
<td>lokal 10° lokal</td>
<td>5°</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>dorsal initial Winkel<20° vertebral</td>
<td>kein Verlust vertebral</td>
<td>4,4°</td>
</tr>
<tr>
<td></td>
<td>lokal 5,6° lokal</td>
<td>2,2°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dorsal initial Winkel>20° vertebral</td>
<td>kein Verlust vertebral</td>
<td>2°</td>
</tr>
<tr>
<td></td>
<td>lokal 13° lokal</td>
<td>kein Gewinn</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>dorsal + Spongiosaplastik vertebral</td>
<td>1,3° vertebral</td>
<td>7,7°</td>
</tr>
<tr>
<td></td>
<td>lokal 7,9° lokal</td>
<td>0,3°</td>
<td></td>
</tr>
</tbody>
</table>
Um nun eine Aussage machen zu können, welches operative Verfahren als Standardverfahren angewendet werden sollte, müsste man Ergebnisse einer Untersuchung haben, die randomisiert und prospektiv das dorsale operative Vorgehen mit dem dorsoventralen Vorgehen vergleicht. Eine solche Studie liegt aber aktuell nicht vor und es ist auch kein entsprechendes Studienprotokoll publiziert, so dass die Diskussion auch weiter die Fachwelt beschäftigen wird. Die transpedikuläre Spongiosplastik gilt aber zu Recht als ineffektives Verfahren und wird zunehmend verlassen.
7. Zusammenfassung

Die retrospektive Studie umfasst 107 Patienten, denen ein Fixateur interne an der Klinik für Unfallchirurgie der Universitätsklinik Essen implantiert wurden.

Mittels standardisierten Fragebögen wurden die Daten des prä-, intra-, und postoperativen Status zusammengefasst und durch die Nachuntersuchungsdaten ergänzt. Insgesamt wurden 51 Patienten nachuntersucht.

In den durchgeführten körperlichen Untersuchungen sieht man, dass es bei den Patienten zu keiner Einbuße der funktionellen Beweglichkeit der Wirbelsäule kommt.

Trotz operativer Therapie, mittels dorsaler Instrumentierung, kommt es zu einer Sinterung der Wirbelkörper. Die Spongiosaplastik kann dies als zusätzliche Methode auch nicht verhindern.

Jedoch ist es auch offensichtlich, dass die Spongiosaplastik bei einem beträchtlichen Anteil der Patienten (31 %) Beschwerden verursacht.

Wichtig ist die Tatsache, dass es keine Korrelation zwischen der Schmerz wahrnehmung und der radiologisch gemessenen Werte gibt. Erstaunlicher Weise ist die Schmerz wahrnehmung geringer als man anhand der radiologischen Sinterung vermuten würde.

Um die Frage der bestmöglichen operativen Therapie und operativen Zugangsmöglichkeit beantworten zu können, muss daran erinnert werden, dass es viel zu wenige prospektiv randomisierte Studien gibt, die uns eine bessere Datenlage und Auswertung ermöglichen würden.
8. Literaturverzeichnis

1. Acaroglu ER, Schwab FJ, Farcy JP.
 Simultaneous anterior and posterior approaches for correction of late deformity due to
 thoracolumbar fractures.

 The effect of transpedicular intracorporeal grafting in the treatment of thoracolumbar
 burst fractures on canal remodeling.

3. Alanay A, Acaroglu E, Yazici M, Oznur A, Surat A.
 Short-segment pedicle instrumentation of thoracolumbar burst fractures: does
 transpedicular intracorporeal grafting prevent early failure?

 Long-term results after posterior fixation of thoraco-lumbar burst fractures.

 [CT-based assessment score after ventral spondylodesis for thoracolumbar spine
 fracture]

6. Bastian L, Knop C, Lange U, Blauth M.
 [Transpedicular implantation of screws in the thoracolumbar spine. Results of a survey
 of methods, frequency and complications]

7. Boucher M, Bhandari M, Kwok D.
 Health-related quality of life after short segment instrumentation of lumbar burst
 fractures.

 W.
 [Bone grafts endoscopically applied to the spine. Results and therapeutic
 consequences.]

 Rueger JM.
 [Investigation of the health-related quality of life after a dorso ventral stabilization of
 the thoracolumbar junction]

10. Briem D, Rueger JM, Linhart W.
[Osseous integration of autogenous bone grafts following combined dorso-ventral instrumentation of unstable thoracolumbar spine fractures]

Vertebral body reconstruction with injectable hydroxyapatite cement for the management of unstable thoracolumbar burst fractures: a preliminary report.

The three column spine and ist significance in the classification of acute thoracolumbar spinal injuries. Spine 8: 817-831

[Kyphotic deformation in fractures of the thoracic and lumbar spine]

14. Finkelstein JA, Chapman JR, Mirza S.
Anterior cortical allograft in thoracolumbar fractures.

15. Godlewski P, Mazurkiewicz T.
[Preliminary evaluation of the efficacy of transpedicular refilling of spongiosa loss with autologous grafts in thoraco-lumbar vertebral bodies using the Daniaux method]

[Treatment concepts for fractures of the thoracolumbar junction and lumbar spine]

Fate of the transpedicular intervertebral bone graft after posterior stabilisation of thoracolumbar fractures.

18. Knop C, Fabian HF, Bastian L, Blauth M.
Late results of thoracolumbar fractures after posterior instrumentation and transpedicular bone grafting.

[Fractures of the thoracolumbar spine. Late results of dorsal instrumentation and its consequences]

[Combined surgery for fractures of the thoraco-lumbar junction using the inlay-span method]

Transpedicular instrumentation and short-segment fusion of thoracolumbar fractures: a prospective study using a single instrumentation system.

22. Leferink VJ, Zimmerman KW, Veldhuis EF, ten Vergert EM, ten Duis HJ.
Thoracolumbar spinal fractures: radiological results of transpedicular fixation combined with transpedicular cancellous bone graft and posterior fusion in 183 patients.

23. Leferink VJ, Keizer HJ, Oosterhuis JK, van der Sluis CK, ten Duis HJ.
Functional outcome in patients with thoracolumbar burst fractures treated with dorsal instrumentation and transpedicular cancellous bone grafting.

24. Liljenqvist U, Mommsen U.
[Surgical treatment of thoracolumbar spinal fractures with internal fixator and transpedicular spongiosa-plasty]

A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184-201

[Evaluation of ventral stabilization techniques for thoracolumbar fractures by helical computer tomography]

27. Mikles MR, Stchur RP, Graziano GP.
Posterior instrumentation for thoracolumbar fractures.

Limitations of dorsal transpedicular stabilization in unstable fractures of the lower thoracic and lumbar spine: an analysis of 133 patients.

29. Resch H, Rabl M, Klampfer H, Ritter E, Povacz P.
[Surgical vs. conservative treatment of fractures of the thoracolumbar transition]

Changes in the loads on an internal spinal fixator after iliac-crest autograft.

31. Rüter A, Trentz O, Wagner M

32. Sasso RC, Renkens K, Hanson D, Reilly T, McGuire RA Jr, Best NM.
Unstable thoracolumbar burst fractures: anterior-only versus short-segment posterior fixation.

9. Danksagung

An dieser Stelle möchte ich mich bei all jenen bedanken, die durch Ihre Unterstützung zum Gelingen der Arbeit beigetragen haben.

Insbesondere möchte ich dabei folgende Personen erwähnen:

Herrn Prof. Dr. med. J. Windolf für die Unterstützung und Möglichkeit in seiner Klinik meine Dissertationsarbeit machen zu dürfen.

Herrn Prof. Dr. med. Sascha Flohè, der mir das Thema der Arbeit gab und mich durch seine Vorschläge und Unterstützung betreut hat.

Meinen Eltern, meinen Geschwistern, und meinem Ehemann, mit deren passiven Druck die Arbeit vorangetrieben wurde.

Und natürlich allen Patienten, die sich dazu bereit erklärt haben, an der Nachuntersuchung teilzunehmen.
10. Lebenslauf

Name: Filiz Temizel-Kanbur geb. Temizel
Geburtsdatum: 30.10.1979
Geburtsort: Essen
Eltern: Dursun Ali Temizel
Gülbahar Temizel, geb. Turan
Geschwister: Nagihan Varol
Canan Temizel-Ferrara
Songül Ayyildiz-Temizel
Sinan Temizel
Sonay Temizel

Studium: WS 2000/01 Studienbeginn an der Universität Duisburg-Essen
SS 2002 Physikum Universität Duisburg-Essen
SS 2003 1.Staatsexamen Universität Duisburg-Essen
SS 2005 2.Staatsexamen Universität Duisburg-Essen
Okt.2006 3.Staatsexamen Universität Duisburg-Essen

Beruflicher Werdegang:
ab 01.01.2011 Assistentärztin in der Klinik für Gynäkologie und Geburtshilfe, Marien Hospital Witten