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Chapter 1

Introduction and Background

In the last centuries, physics has constantly been extending its frontiers to-
wards the extremes. Astrophysical theories deal with the universe as a whole
and particle physics describes structures in the sub-nucleon range. Regard-
ing ultrafast processes, we are now living in an era, in which femtosecond
(1fs = 1071%s) and even attosecond (las = 107'¥s) time scales start to
become accessible to scientific investigation. In order to observe anything
happening in such an exceedingly short period of time, it is necessary to
have a “camera” or a “flash light” with an “exposure time” in the same order
of magnitude. This work deals with the physics of such “flash lights”.

Let us now begin with a brief look at the development of ultrashort and
ultraintense lasers and their applications.

1.1 Development of Ultrashort Relativistic Laser
Pulses

In the 1980’s, the invention of the “Chirped Pulse Amplification” (CPA) tech-
nique lead to the opening of an entirely new area of research: the physics of
relativistic laser-plasma interaction. Using the CPA technique, electromag-
netic energy can be focused in both time and space to reach unprecedented
intensities. The fields are so strong that an electron inside the field will be
accelerated to almost the speed of light within a time shorter than an optical
half-cycle, which for visible light is in the order of a femtosecond (10717 s).
The history of ultrashort relativistic laser pulses started in 1985 with the
invention of the CPA technique by Strickland and Mourou [1|. The principle
of this technique is not hard to explain.

We start with an extremely short, but low energy light pulse, as it can
for example be generated by a Ti:Sa-laser, making use of mode-locking. The
possibility of amplifying these pulses directly is limited. Because of their
extreme shortness, their intensity becomes extremely high already at mod-
erate energies. Intensities of some gigawatts per square centimetre would
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Figure 1.1: Schematic diagram of the history of highest intensity laser pulses

damage the gain medium so that amplification is not possible in the usual
way. Therefore, the pulse has to be stretched in a controlled manner, so that
the energy density goes down without losing the pulse energy. The stretch-
ing is done by adding a “chirp”, i.e. a controlled temporal variation of the
frequency, to the pulse phase. In this way, the stretching is reversible. The
chirped pulse is then amplified using either a conventional laser amplifier or
optical parametric amplification [2] in a nonlinear crystal. The latter case
promises to allow for even higher intensities than conventional CPA and
is referred to as OPCPA (optical parametric chirped pulse amplification).
After the amplification stage, the pulse is compressed again, and is ready to
be focused to the target of interest.

Figure 1.1 shows the historical development of the highest reachable laser
intensities schematically. The physics of laser-plasma interaction started
off in the 1970’s, when laser fields became strong enough to directly ionize
matter. A good introduction to the physics of laser-plasma interaction in
the sub-relativistic regime is given in the book by Kruer [3].

In the mid-eighties the invention of CPA put an end to a temporary stag-
nation in the development of high intensity lasers. Eventually this brought
laser-plasma physics to a new level: the laser-plasma became relativistic. In
this regime, it is convenient to characterize the laser field with the dimen-



sionless parameter ag = eAg/mcc?, where Ay is the peak vector potential of
the pulse. ag corresponds to the maximum transverse momentum an electron
gains inside the laser field in units of mec. Today relativistic laser-plasma
physics can be explored even in university scale labs, e.g. the ARCTURUS
laser system at the university of Diisseldorf is able to produce fields of about
ag ~ 10. A broad overview of phenomena in this regime is found in Ref. [4].

The next big step will be accomplished when laser fields reach a strength
of ag ~ 1000. At that point, not only the electrons, but also the ions will
directly be accelerated to relativistic velocities. The European ELI (extreme
light infrastructure) project [5], which at the moment is in its preparatory
phase, aims at this regime.

When the laser field approaches the Schwinger limit [6] of 8 x 10'¥ V /m,
it will be possible to study electron-positron pair creation and other exotic
quantum electrodynamic (QED) effects in vacuum. This corresponds to
an intensity of I ~ 8 x 103Y W/ch, but some signatures of QED, such
as vacuum polarization, should already be observable at considerably lower
intensities, therefore the limit in Fig. 1.1 was put to 1029W/cm2. Notice
also the difference in the units of the threshold parameters: Whereas for
the electrons or ions to become relativistic, ag respectively IA? o ag is the
crucial quantity, in the case of vacuum QED, [ itself is important. Thus
higher frequencies, which can be focused down to smaller spots, are not very
suitable to easily observe ion relativistic effects, but can in principle very well
be used to approach the Schwinger limit. High harmonics generated at solid
surfaces may provide a means to reach this limit in not-so-distant future.
We explain the possibility of coherent harmonic focusing in chapter 3.

1.2 Relativistic Laser-Plasma Interaction

Light with an intensity of I > 1014W /cm? ionizes almost any material almost
instantly. Therefore, the interaction of ultraintense lasers with matter has
to be understood as laser-plasma interaction. Due to the extreme shortness
of the laser pulses considered in this work, we are mainly interested in the
response of the electrons, which is much faster than the ion response due to
their higher charge to mass ratio ¢/m. The central parameter characterizing
the interaction is therefore the electron density n.. If the electron density
is below the critical density n. < n. = eomew8/62, so that the laser pulse
can propagate inside the plasma, we talk about underdense plasmas. This
is the case for plasmas generated from gases. For ne > n., the laser pulse is
reflected and we talk about overdense plasma. For laser-plasmas generated
from solids, peak densities of the order of 10% n, are typical.

If the product of intensity and the square of the wavelength reaches a
value of TA? > 10'W pm?/cm?, the plasma electrons are accelerated to ve-
locities close to the speed of light ¢. In this relativistic regime, the boundary



between underdense and overdense is shifted due to the change in the effect-
ive electron mass. Now, the governing parameter is S = n./(agn.) with ag
and n. as defined above, which separates overdense (S > 1) from underdense
(S < 1) plasmas.

The relativistic character of the interaction gives rise to strongly non-
linear behaviour of the system, opening up the possibility for converting the
laser energy to several channels, such as intense XUV or x-ray radiation or
quasi-monoenergetic relativistic particle beams.

For example, an intense laser pulse travelling through underdense plasma
generates a wake in the plasma density. The longitudinal electric field in this
wake can be exploited to accelerate electrons |7]. On top of that, for highly
relativistic and sufficiently short laser pulses, that wakefield condenses to a
single “bubble” [8, 9]. This bubble captures electrons from the plasma in its
field and accelerates them to a quasi-monoenergetic spectrum with energies
on the MeV or even GeV scale.

The exposure of overdense plasmas with relativistic light bears further
intriguing potential. One of the most exciting phenomena here is the gen-
eration of intense high harmonics. The produced radiation can reach up to
x-ray frequencies and is coherently emitted in the form of attosecond pulses.
Additional interesting features of relativistic laser-overdense plasma interac-
tion are the acceleration of ions and the generation of huge magnetic fields.
A comprehensive survey of topics in relativistic laser-plasma interaction ac-
cording to the state of the art of 2005 is found in Ref. [4].

The use of nano-structured targets can further enhance the possibilit-
ies offered by ultra-intense lasers. An example for this are ultrathin foils
or nanoscale droplets. If these are hit by a relativistic laser pulse, all elec-
trons are extracted from the material, leading to highly compressed electron
bunches travelling within the laser pulse.

1.3 Thesis Outline

The three main topics of this work are covered in the following three chapters,
each framed individually by a short introductory section and a final section
that summarizes the most important results of the chapter.

Pulses of some of the latest generation lasers are so short that their
envelope contains only a few optical cycles. At this point, the classical
analytical description of a laser pulse breaks down. Therefore, novel methods
to mathematically represent these pulses are needed. In chapter 2 of this
thesis', a new concept is introduced, tested and discussed. We show that
our concept is both clearly superior to more conventional approaches and
very convenient for the use in numerical simulations.

'Chapter 2 is based on the publication Ref. [10], but it has been largely extended to
now also account for arbitrary Hermite-Gaussian modes.



Chapters 3 and 4 both are about the generation of pulses in the at-
tosecond time range, both exploiting non-linear relativistic effects induced
by ultraintense laser pulses. However, apart from these commonalities the
discussed strategies are different:

Chapter 3 deals with the generation of high harmonics at solid density
plasma surfaces?. The basic principle of this scheme is as straightforward as
it is effective: a relativistically intense (IA\? > 10'® W cm ™2 um?) laser pulse
creates a plasma on a solid surface and is reflected. Due to relativistic non-
linearities in the interaction of the laser pulse with the plasma electrons, the
reflected radiation contains harmonics of the fundamental laser frequency.
These harmonics are locked in phase and are therefore emitted in the form
of attosecond pulses. Despite its apparent simplicity, this process is rich in
intriguing physical details.

An alternative scheme consists in driving an electron bunch to high ve-
locities with one high power laser pulse and then scatter a probe pulse at
the accelerated electron bunch to upconvert its frequency via the relativistic
Doppler effect. This method possibly offers the advantage of enhanced con-
trol over the generated pulse structure, since the driver and probe pulses are
distinct here. We study this scheme? in chapter 4.

A brief conclusion of the whole thesis is found in chapter 5. After that,
there is an appendix, describing some of the mathematical techniques used
in this thesis.

*Parts of chapter 3 are based on the publications [11, 12].
3Chapter 4 is based on results that have been presented at the SPIE Europe Optics
and Optoelectronics Conference [13].



Chapter 2

Propagation of Ultrashort
Electromagnetic Pulses in
Vacuum

One of the most fascinating lines of development in laser technology [14]
leads to the concentration of electromagnetic energy in smaller and smaller
space-time regions. These laser pulses may contain not more than a few
optical cycles and can be focused down to a single wavelength - sometimes
called the A3-regime. Additionally, the ability to control the carrier envelope
phase (CEP) of the pulse increased drastically [15, 16]. Possible applications
for these well controlled pulses range from high-gradient electron acceleration
[17-20] over the generation of ultrashort, coherent x-ray flashes [21-23] to
attosecond spectroscopy [24]. At the point where the duration of the pulse
approaches its cycle duration, conventional analytical representations of light
pulses, based on the assumption of (near-)monochromaticity, break down.

As in the case of extremely focused beams [25, 26], the vectorial char-
acter of light gains importance for extremely short pulses. There is an in-
terdependence between the spatio-temporal pulse shape and its polarization
which needs to be analyzed carefully. Not all field structures conceivable in
a simplified 1D geometry (V = 0) can be realized as finite energy, localized
3D wave packets, as we are going to demonstrate in section 2.1. Commonly
used models are shown to be consistent only for a certain choice of the car-
rier envelope phase (CEP). In consideration of the growing ability to control
the CEP and its increasing relevance for short pulses, this is not sufficient.
To find a set of realistic wave packet solutions, the second potential is in-
troduced, which allows for consistent analytical representation of arbitrary
phased and polarized electromagnetic wave packets.

To complete the analytical description, we need a solution of the scalar
wave equation in an approximation that is adequate for extremely short,
focused pulses. In our approach (section 2.2) we follow the work of Porras
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[27] and employ the analytic signal. The results are written down in a closed
analytical form. The presented, handy form is particularly convenient for
use in numerical simulations. We also generalize the solution to arbitrary
Hermite-Gaussian modes, including radially polarized ones. Because of their
strong and purely longitudinal fields on the optical axis, radially polarized
pulses appear to be highly interesting for electron acceleration [19, 20]; this
idea will be followed up on in chapter 4.

In section 2.3, all solutions undergo rigorous numerical testing. Any
significant error would show up after the solutions have been propagated
by the self-consistent electromagnetic field solver. It turns out that the new
pulse representation is clearly superior to the standard approach in the sense
that it produces by far less artifacts both at the pulse initialization region
and at the region of the propagated pulse.

2.1 Second Potential Representation

In this section, we introduce the second potential as a straightforward method
to transform a localized, finite energy (square integrable) solution of the
scalar wave equation into a localized, finite energy solution of the complete
set of Maxwell equations. As we will see, this task is not fulfilled by simply
assigning the scalar wave solution to a component of one of the fields or
potentials. Therefore, the second potential is, besides its practical use, also
of fundamental physical significance.

It is well known, that an electromagnetic pulse can be represented by
its four-potential A% = (¢, A). Each component satisfies the vacuum wave
equation: A% = 0. We use the Lorenz gauge 0,A% = 0 and further set the
scalar potential to zero ¢ = 0, which can be done in vacuum without loosing
generality. Because of ¢ = 0, the Lorenz gauge coincides with the Coulomb
gauge

V-A=0 (2.1)

here. Now the fields are written as E = —¢ '9;A and B =V x A. We are
interested in finite energy pulse-like structures, so that A may be required
to be a localized function: |A| — 0 for » — co. Thereby, the vector potential
is uniquely defined. This can be seen since any change of A that meets
the above conditions would result in measurable changes in the electric or
magnetic fields.

In laser physics, it is common to choose an analytical solution to the wave
equation for the main, i.e. transverse components of the pulse. Then the lon-
gitudinal component can be determined via integration: A, = f:o Vi-Aidz.
However, this integral can yield a non-vanishing longitudinal potential com-
ponent far from the actual pulse region, since commonly used solutions to
the wave equation do not satisfy the condition

11
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Figure 2.1: Logarithm of the square transverse magnetic field
logig ((By/Bo)?) in the y = 0 plane resulting from an ultrashort, linearly
polarized, (a) sine- and (b) cosine-phased Gaussian potential. The pulse
duration is ¢ = 0.5 X\ and focal spot width o = 2 \.

/‘ V., Ajdz =0 (2.2)

for ultrashort pulses. This component cannot simply be ignored, but causes
non-zero longitudinal electric and transverse magnetic fields, an example of
which is shown in Fig. 2.1b. Although these fields have a small amplitude
of the order O ((c/wc)?), they in fact even contain an infinite amount of
energy because of their infinite extension.

To get a realistic finite energy pulse, the choice of the transverse vector
potential is restricted by Eq. (2.2). This is a fundamental difference to the
1D case, where such a restriction on the waveform does not exist. Before the
consequences of this restriction are discussed in detail, let us introduce the
second potential ¥, which enables us to describe a reasonable set of realistic
pulse structures in a more convenient way. We simply define it as the vector
potential to the vector potential, thus:

VxW¥=A. (2.3)

Of course, each component of ¥ has to satisfy the wave equation AW; —
(,%8?‘1/7 = 0. Then, the wave equation for A and the Coulomb gauge readily
follow from Eq. (2.3) and there are no restrictions like (2.2) on the choice
of the second potential components. This means that, unlike the compon-
ents of the vector potential which are unique but still coupled by Eq. (2.1),
the components of the second potential are completely decoupled but not
uniquely determined.

To bridge the gap from the second potential to more classical represent-
ations of electromagnetic radiation, it proves useful to split ¥ up into its

12
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Figure 2.2: Schematic diagrams visualizing the difference between (a) lin-
ear/circular/elliptic, (b) radial and (c) azimuthal polarization. The dia-
grams depict characteristic electric field structures in a plane orthogonal to
the beams propagation direction.

longitudinal component €, - ¥ and its transverse component €, x W. For
a large class of laser pulses, it is convenient to choose €, - ¥ = (0. Then
Eq. (2.3) becomes A, = =V - (6, x ¥) and A = é, x 0,¥. In the near-
monochromatic case 9, ~ —iw/c we get €, x ¥ ~ icA | /w, hence in the long
pulse limit the transverse component €, x ¥ is, except for a constant complex
factor, identical with the transverse components of the vector potential.

Let us point out that each electromagnetic pulse in vacuum can be rep-
resented solely by the transverse component of the second potential, sub-
sequently abbreviated as TSP. This is easily seen, since it can be obtained
by taking the integral €, x ¥ = fzoo A | d2 from an arbitrary vector poten-
tial in Coulomb gauge. To make the representation unique, we demand the
condition |¥| — 0 for |r| — oo in the half-space x > 0, so that €, x ¥ is
unambiguously given by the just mentioned integral. Then, for a vast class
of laser pulses including all linearly, circularly and radially polarized modes,
¥ will vanish at infinity in all directions. To understand this, we write the
integral condition (2.2) in terms of the TSP:

V- (e x ¥ =0. (2.4)

s=—co)

In general, it possesses non-trivial solutions, corresponding to structures,
where the fields produced by ¥ at z — —oo vanish, but W itself does not.

However, we look at important special cases. For linear polarization
(U, = 0), one can easily show that Eq. (2.4) has none but the trivial solution.
The same is true for circular polarization, which we define by ¥, = iV,
and the components are assumed to be analytical functions. Eq. (2.2) then
only has solutions of the type W (x + iy), so there is no non-trivial solution
that fulfils the boundary condition. For both linear and circular, and also
the more general case of elliptic polarization, the electric field vector points
in the same direction everywhere in one plane transverse to the propagation

13



direction, see Fig. 2.2a. Another interesting structure is the radially polarized
pulse, see Fig. 2.2b. With the help of the TSP it can be represented as
€, x W = f(ry,zt)r;. Again, there is no non-trivial finite energy solution
0 (2.4) of this form.

Summarizing, for realistic linearly, circularly or radially polarized pulses,
the condition Eq. (2.2) simply reduces to:

ey x| = / Aldz=0. (2.5)

In other words, all localized linearly, circularly and radially polarized
electromagnetic pulses can be represented by a localized TSP.

Commonly used analytical wave packet solutions do in general not ful-
fil the above condition when directly assigned to A . Take, for instance,
a pulse with a Gaussian longitudinal profile, Ay(z =0,y =0, z,t = 0) =
agexp [—(z/e7)?] cos(2mz/A), then | W, (2 = —o00)| = agerm!/? exp (—(c1/2X)?) #
0, meaning that some field components would extend to infinity as in Fig. 2.1.
Unlike the cosine-phased Gaussian, the sine-phased potential may in prin-
ciple be used for A,, as the integral vanishes here [see also Fig. 2.1(a)|.
Assigning an exact Gaussian profile to the transverse electric field directly
instead of the vector potential does not help. Rather, by calculating the
second potential of such a pulse it is not hard to prove that this structure
does not exist for any phase.

Besides for the representation of linearly, circularly or radially polarized
pulses as shown above, the TSP could in principle also be used for the
representation of azimuthally polarized pulses [Fig. 2.2(c)|. Therefore, one
could choose €, x ¥ = f(r |, z,t)é,. Notice that this interesting mode does
not produce any longitudinal field at all. However, for this sort of function
Eq. (2.4) possesses non-trivial solution, meaning that the TSP does not have
to vanish as z — —oo for each localized pulse shape. Therefore, this kind
of structure is more generally represented by the longitudinal component
e, - ¥ of the second potential instead of the transverse one. E.g., assigning
a Gaussian profile to €, - ¥ yields an Hermite-Gaussian TEg; mode with
azimuthally polarized electric field.

2.2 Solution of the Wave Equation for Short Pulses

In the previous section, we reduced the problem of finding a pulse-like solu-
tion to the Maxwell equations to the easier problem of finding a sufficiently
accurate solution to the scalar wave equation LU = 0. But also the com-
monly used solutions of the scalar wave equation are not appropriate for
extremely short pulses, as they generally make use of the assumption of
quasi-monochromaticity. We now look for more appropriate solutions. They
later may be inserted for an arbitrary component of W.

14



Fourier transforming the scalar wave equation in time and the spatial
directions transverse to the beam propagation direction z yields PV =
—((w/c)* — k%)W, with the general solution

&P (—iz (%)2 — ki) . (2.6)

Next, the focal spot profile ¥(z = 0) has to be chosen. We are interested
in functions that are both physically significant and mathematically handy.
Therefore, we consider Hermite-Gaussian modes, which can be defined via
the following k| -dependence:

U(z,k,w)= U

HGmo: | oK exp [— (/ﬂa/z)ﬂ . (2.7)

Here, we introduced the beam waist diameter . Note that in general,
it may depend on the frequency w. To be able to analytically carry out
the inverse Fourier transformation in the transverse dimensions, we have to
Taylor expand the square root in Eq. (2.6). For most focused pulses we can
assume 0214:3_ < w? and then neglect fourth order terms in the Taylor series,
thus

(W/e)® — k2 mw/c—ck? /(2w). (2.8)

This is the paraxial approximation. In section 2.3 we show, that this
approximation allows us to use focal spot sizes down to ¢ ~ A and still
obtain a reasonable accuracy. After inserting Eq. (2.7) into Eq. (2.6), we
calculate the inverse Fourier transform in the transverse directions:

Wy (1) wr” Y g i 2w/ (2.9)
r«x|— exp |——————— —izw/c| . :
m 2z + iwo? ) O W P T 2icz /w
Before we can find out the time dependence of the pulse, it is necessary
to choose the frequency dependence of the focal spot size o. At least three
consistent choices seem to be interesting:

1. Constant focal spot size for all frequencies in the spectrum: o = const.
Approximately, this is the case for high harmonics generated by relativ-
istic plasma surfaces. We are going to discuss this case in section 3.3.

2. Constant beam divergence § = \/mwo for all frequencies in the spec-
trum, meaning o o 1/w. This is probably the closest description to
conventionally focused laser pulses in experiments.

3. Constant Rayleigh length zgr; = wo?/\ for all frequencies in the spec-
trum, meaning o o« 1/4/w. This case lies in between the previous two
cases. For a few-cycle laser pulse with a moderately broad spectrum
the difference to these cases should not be too big.

15



Since it leads to great simplifications in the analytical representation, the
third option is employed here. Therefore, we reformulate Eq. (2.9) in terms
of the Rayleigh length zp;.

Further recall that, unlike in the long-pulse limit, the spectrum of the
short pulse varies in space. Thus the frequency dependence of the pulse
needs to be introduced at a certain, fixed point in space. The preferred
point of a focused laser pulse is clearly the centre of the focal spot, without
loss of generality we locate it at r = 0. For even numbered m and n, the
function ¥,,, does not vanish there, and we simply let ¥ (t) be the pulse
time dependence at r = 0 and ’(ZJ(Q)) its Fourier transform. However, if either
m, n or both of them are odd numbers, U,,,, vanishes on the optical axis. In
this case we choose 1)(w) to be the spectrum in the immediate surrounding
of r = 0, corresponding to the lowest order of the occurring polynomials in
x and y. Taking all this into account we obtain:

i N AR (\/%x) tn ( %y> (rt
\Pm”(r’w) - Qb(w) (q> \/,fmmod2 \/.fnmod2 exp I:_Zw <20q
iw w
(2.10)
where H,,(§) = (—1)" exp(§2)j£; exp(—¢?) are the Hermite polynomials and
q = z + iz is the complex confocal parameter.

Now, we can carry out the inverse Fourier transformation in time. Note
that, for any choice of m and n, Eq. (2.10) contains exclusively integer powers
of w. In the time domain, these factors translate into derivatives. The
exponential factor of the form exp(—iwa) simply leads to an, albeit complex,
shift in the argument of ) (t).

We write down the final 3D solution for an arbitrary transverse Hermite-
Gaussian mode in the space-time domain with a completely general temporal
profile:

a7 B (o) B (i) o2
\Pm”(r’t) - <> mod 2 mod 2 (G (t - ) :
7 Vo ¢ 2
(2.11)
The roots of 9; in the denominator may seem awkward at first glance,
but the interpretation is straightforward. After inserting the Hermite poly-
nomials and reducing the fractions, only integer powers of J; remain. The
resulting linear differential operators are then applied to the complex func-
tion .
In complete analogy we can derive the 2D solutions, with the field ¥
varying in only one transverse direction x. This may come in handy partic-
ularly for numerical simulations:

20 (r t) = (Zm)lgm Ww <t— 2w ) . (2.12)

q \/am mod 2 c %
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Figure 2.3: Direct comparison of a two dimensional cut through the com-
plete scalar short-pulse solution (2.11) using (a) the “naive” choice (') =
exp (—t"? /7% + i(wot’ + ¢)) and (b) the analytic signal Eq. (2.13). Pulse
parameters are: ¢t = 0.5\ 0 = 2\, ¢ = —10X (before focus) and
m =n = 0 (Gaussian mode).

Another, seemingly simpler way to obtain valid, Hermite-Gaussian-like
short-pulse paraxial solutions is to start from the plain Gaussian m =n =10
mode and simply apply spatial derivatives 0, and d, to it. However, for
these solutions the temporal profile at (respectively around) r = 0 is not
given by 1 (t) anymore.

One last obstacle has to be overcome before the solutions (2.12) and
(2.11) can be put in use: The temporal pulse profile ¥(¢) has to be consist-
ently extended to complex arguments t' = ¢t —z/c—x?/2cq. Some care has to
be taken here. Let us consider a Gaussian temporal profile for example. Na-
ively choosing ¢(t') = exp (—t"?/7% + i(wot’ + ¢)) yields a solution diverging
for big r; as O(exp(r)).

To see how the extension of 1(t) to complex arguments can be done prop-
erly, we reconsider the representation in the frequency domain Eq. (2.10).
Having a closer look at the real part of the argument of the exponential func-
tion, we notice that it behaves as —C’wri, with C' > 0. It is now evident, that
negative frequencies cause ¥ to diverge for r| — oo and we cannot allow
for finite values of 1)(w) at any w < 0. This is actually a consequence of the
paraxial approximation, which obviously fails to handle negative frequency
components.

Anyway, as shown in Ref. [27], there is an elegant way around this seem-
ing problem. For each real function u(t) it is possible to find exactly one com-
plex representation t(t) with Re(t(t)) = u(t) and 9(w) = 0 for w < 0. This
complex representation is known as the analytic signal (see Appendix A.2).

For a Gaussian pulse u(t) = exp(—t2/72) cos(wot + ¢) it is possible to
calculate a closed analytic expression for the analytic signal:
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Y (t') = woe; (ei‘z’w (tT/ - 717) + e 0w (i_/ + ZT)) ; (2.13)

wherein 7 = wo7/2 and w(z) = exp(—=z?)erfc(—iz) is the complex error
(or Faddeeva) function |28]. The analytic signal of the Gaussian pulse was
also calculated in Ref. [27], but Eq. (27) from Ref. [27] disagrees with (2.13)
for Im(#') # 0. Analytical and numerical tests show, that (2.13) is the
correct solution. Please note also, that the form of representation chosen
in Eq. (2.13) is very convenient for numerical applications since both sum-
mands vanish independently for Im(#') — +o0o. Thus there is no trouble
with subtracting two large numbers. If we do not require the temporal pro-
file to be ezactly Gaussian, it is even possible to drop the generally much
smaller second summand. Further, besides the exactly Gaussian real part
of Eq. (2.13), the near-Gaussian imaginary part may also be used. This
insight is particularly useful for representing circularly and elliptically polar-
ized light.

Figure 2.3 serves to illustrate the meaning of (2.13) and its difference to
the naive choice ¥(t') = exp (—t"?/7? +i(wot’ + ¢)). In the region near
the optical axis, Im(t’) is small and the solutions agree almost completely.
However, for bigger 7, the naive solution [Fig. 2.3(a)| diverges, while the one
using the analytic signal |Fig. 2.3(b)| shows a proper beam-like behaviour
and vanishes.

Finally we consider some important special cases of Egs. (2.11) and
(2.12) more explicitly. Besides the very common linearly polarized Gaus-
sian mode TEMg, the radially polarized mode TMg; is of high interest,
compare chapter 4. For those two cases, the focal spot profile in terms of
the second potential ¥ can be written down as:

& x B = d(w) exp [_ (”)2] {‘9 Mo 94y
z=0 o e, TEMy
This corresponds to the m = n = 0 mode in Eq. (2.11), respectively to
a superposition of an m = 1 and n = 0 mode in ¥, and an m = 0 and
n = 1in ¥,. Renormalizing the solutions from Egs. (2.11) and (2.12) for
convenience, we obtain:

g 2 ™
ézx\II(r,t):Re[(ZRl> ¢(t—z—”>} SRR O R 1)
q e, TEMgy

Here g = 1 for a linear (¢ = 0.5 in 2D) and g = 2 for a RP (¢ = 1.5 in
2D) laser and ¢ = z + iz is the confocal parameter again. Further inter-
esting special cases are easily derived from Eq. (2.11). Circularly polarized
Gaussian pulses can e.g. be constructed by assigning ¥, = Re(¥qg) and
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U, =Im (¥op). An azimuthally polarized TEg; mode is created by the use
of the longitudinal second potential: ¥, = Re (Vq), ¥, = ¥, = 0.

The short-pulse paraxial wave solutions Egs. (2.11),(2.12) together with
the analytic signal (2.13) and the second potential (2.3) are a powerful and
universal tool for the representation of ultrashort, focused electromagnetic

pulses down to the few- and even single-cycle regime.

2.3 Numerical Tests

One important application of the new pulse representation given by Egs. (2.3),
(2.11) and (2.13) is the use in numerical simulations. Therefore, it seems just
natural to use a numerical solver to practically test them. In this section
we demonstrate the validity of the new representation and further prove
its superiority to more conventional approaches, utilizing a self-consistent
numerical Maxwell solver.

We use the particle in cell (PIC) code VLPL [29]. To begin with, the fields
are initialized inside the VLPL simulation grid. Then they are propagated
using a standard algorithm on the Yee-mesh. Finally, it is verified if the
numerically propagated pulse still agrees with the analytical term, overall or
in some key parameters, and furthermore, if unphysical static fields remain
at the place, where the pulse was initialized.

2.3.1 Checking the short pulse paraxial wave solution

First we check the correctness of Eqgs. (2.11) and (2.13), proving their su-
periority to a conventional representation often used for numerical simu-
lations. The “conventional”, or separable form is a simple product of a
monochromatic, transversely Gaussian beam with a Gaussian temporal pro-
file Wgop = exp (—iwo(t — z) — (t — 2)?/7% —r? Jo?). Circularly polarized
pulses are used, so that the shape can well be seen in the intensity plots,
with a duration of ¢ = X and a focal spot width of ¢ = 2A. The pulses
are focused over a distance of 50X inside the simulation. In Fig. 2.4, the ini-
tial condition and the numerically propagated solution at the focal spot are
shown. The product approximation shows strong asymmetric deformation in
the focus and the focal field does not reach its analytically specified intensity
Iy. In contrast, the proper short pulse solution is nearly perfectly symmet-
ric in the focus and reaches the desired maximum. The presented solution
Eqgs. (2.11) and (2.13) is clearly superior to the simple product approach.
Depending on the required accuracy, our approach can be used down
to focal spot sizes of ¢ ~ A. Below that, the paraxial approximation fails.
However, focusing a A-pulse (¢ = c¢r = \) over a distance of 50\ with
the PIC electromagnetic solver still leads to acceptable results. After the
propagation, we obtain a focal intensity of 82% (or 90%, when also using the
TSP representation) of the analytically specified value, still with a perfectly
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Figure 2.4: Focusing properties of different approximations of the wave equa-
tion, evaluated in a 2D version of the PIC code VLPL. (a) and (b) show the
intensity distribution as it is initialized inside the code and (c) and (d) show
the propagated solution at the focal spot. (a) and (c) use the CW paraxial
solution multiplied with a temporal profile, (b) and (d) the correct short
pulse solution. The circularly polarized laser pulses are Gaussian both in
space and time with duration ¢r = A and width o = 2\.
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symmetrical spot shape. For comparison: using the product approach in
the same kind of simulation, the numerical intensity reaches only 42% of the
specified value.

2.3.2 Checking the second potential representation

Now we come to the second potential representation. The alternative to its
use is to assign arbitrary wave equation solutions to the transverse compon-
ents of the vector potential and then make some kind of approximation for the
longitudinal part. The simplest possibility is to fully neglect the longitudinal
field component, but for strongly focused pulses a somewhat more reason-
able approximation can be reached by choosing A, = (¢/iwg)Vy - Al. We
will call this the “quasi-monochromatic approximation”, because it relies on
0, ~ —iwg/c. This approximation should be preferred to an exact calculation
of the longitudinal vector potential component to given transverse potential
components, because it at least yields pulse structures with finite energy.
Due to the energy conserving property of the field propagator algorithm, the
pulse will be forced to self-organize into a consistent structure of finite exten-
sion. While this happens, unphysical static fields arise, which tend to make
the concerned regions in the simulation domain unusable for further compu-
tations. We can describe these fields as being generated by so-called virtual
charges. The virtual charge distribution can be estimated analytically in the
case of a linearly polarized Gaussian laser pulse. To do this, we calculate
the divergence of the vector potential in the quasi-monochromatic approx-
imation. We base our estimate on A, ~ Agexp(—iwpz — (2/c7)? — (11 /0)?)
and apply A, = (¢/iwo)0zAz. The virtual charge distribution is then found
to be pyirt = (47)710(V - A) =~ zxA,/(cnm?0?). Certainly these unphys-
ical charges increase for very short, focused laser pulses. Let us see, if the
problem can be cured by the use of the second potential representation.

When employing the second potential representation for an ultrashort
pulse, the additional derivative will slightly alter the pulse shape. As shown
before, this is inevitable, since a perfectly Gaussian shaped linearly polarized
vector potential can exist as an independent structure in vacuum only if
it is sine-phased. To make the TSP represented pulse comparable to the
conventional one, it is necessary to take care for the frequency shift caused
by the z-derivative, which can be estimated as weg = wg + \/5/7'

Fig. 2.5 shows the pulses after a short propagation distance in the PIC
simulation box. Firstly one observes that, despite of the very short duration,
the moving pulse structures (right half of the images) appear very similar
in the conventional and the TSP version. Secondly one notices, that the
conventional pulse leaves behind a significant amount of virtual charge fields
in the initialization region (left half of the images), having both a longitudinal
and a transverse component. This undesired phenomenon can neatly be
suppressed by the use of the second potential, as seen in panels (b) and (d)
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Figure 2.5: Logarithm of the transverse [(a) and (b)] and longitudinal [(c)
and (d)] square electric field log,o ((E;/E)?), i € {x,z} after a propaga-
tion time ¢t = 10 A. The pulses shown in (a) and (c) are Gaussian in the
vector potential, the ones in (b) and (d) are Gaussian in the TSP (transverse
component of the second potential). Pulse parameters are ¢7 = 0.3 A and
zp = 472 \. For the second potential, a corrected frequency wh = wo— V2/T
was used to take account for the frequency shift caused by the additional de-
rivative.
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Figure 2.6: The longitudinal pulse field in PIC at the time c(t—t¢) = 4\ after
initialization, compared to the analytic solution. Once the TSP was used for
initialization (yellow or light grey line) and once the near-monochromatic
approximation for A, (red or dark grey line). The differences in the analytical
representations are too small to be seen in the diagram, so that both are
represented by one curve (dashed black line). Pulse parameters are: ¢ =

0.5), 0 = 2\,

of the figure.

2.3.3 Hermite-Gaussian transverse modes

The next test we want to present concerns the longitudinal field component
on the optical axis of a radially polarized pulse, which is of particular interest
for vacuum electron acceleration [19, 20]. The pulse length used was ¢t =
0.5\, and the focal spot size ¢ = 2\. Again, the conventional approach
corresponds to a near-monochromatic approximation A, = iV, - A} /w,
so as to generate a finite pulse structure from the given transverse field
components. The phase ¢ in Eq. (2.13) was chosen as ¢ = 0 for the second
potential representation and as ¢ = /2 for the conventional representation,
so that the pulses are actually comparable. Initially, the longitudinal field
nearly agrees for both representations, since the first term of Eq. (2.13),
which is the dominating one, is the same in both cases.

In Fig. 2.6 we show the longitudinal field of the pulse after it has left its
virtual charges behind. The fields initialized using the conventional repres-
entation already differ significantly from the analytical description, whereas
the TSP represented fields agree almost perfectly. This will be crucial e.g.
when PIC simulations are to be compared with other analytical or semi-
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numerical calculations, where the field is inserted analytically and is not
self-consistently propagated. Without an exact and reliable pulse represent-
ation, such a comparison would hardly be possible.

Finally, we present some pictures of the ultra-short versions of higher
order Hermite-Gaussian modes. In Fig. 2.7, 2D Hermite-Gaussian modes
derived from Eq. (2.12), up to order m = 4 are displayed. Fig. 2.8 shows
a collection of views of the 3D TEMy; mode. To verify the correctness
of the results, we again calculated the pulse fields at a stage before focus
analytically and used the electromagnetic solver of the PIC code VLPL to
focus the pulse down to a spot size of ¢ = 2 X over a distance of 10 \. If the
pulse focuses at the specified location to the specified intensity and further
shows the characteristic mode symmetry and profile, we can conclude that
our representation has been correct. As can be seen from Figs. 2.7-2.8, all
the modes up to m = 4 fulfil our expectations.

Conclusion of Chapter 2

We have developed a novel closed form analytical representation of ultrashort,
focused laser pulses. It is applicable for durations down to the single-cycle
regime and focal spot sizes down to a wavelength. Due to its numerically
convenient form and its high accuracy in a wide range of parameters it is
ideally suited for use in numerical simulations.

The new representation consists of two parts. First, the laser pulses are
represented via the second potential, defined by the equation

VxW¥=A,

which solves the fundamental problem of generating an accurate, actual finite
energy solution of the Maxwell equations out of a solution of the three di-
mensional wave equation. For the practical use in numerical simulations this
means, that unphysical “virtual charges” are reduced by orders of magnitude.

The second part of the new representation is a sufficiently accurate solu-
tion of the three dimensional scalar wave equation. Therefore, we derived
a solution in the short pulse paraxial approximation for arbitrary Hermite-
Gaussian modes and arbitrary carrier envelope phase:

) B () B (Vi) o2
\I]m”(r’ t) = (> mod 2 n mod 2 ¥ <t L ) )
a NG ¢ 2
where 9 is the analytical signal corresponding to the temporal pulse profile
in the centre of the focal spot.

The new representation was tested thoroughly and has been found to
be of far superior accuracy compared to conventional product approaches
based on the quasi-monochromatic approximation for pulses in the single-
cycle regime.
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Figure 2.7: 2D Hermite-Gaussian short-pulse modes of order m € {1, 2, 3, 4}
(mode number increases from top to bottom), initialized at z = —10 A before
the beam waist employing Eqgs. (2.12), (2.13) and (2.3) and then focused by
a self-consistent electromagnetic solver. The left column shows the pulses at
the initialization stage, the right column after focusing. Pulse parameters
are: ctr =X and o =2\,
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Figure 2.8: Ultrashort 3D Hermite-Gaussian mode TEMs;. (a) and (b) are
recorded at a time 10 laser periods before the pulse reaches the focal spot,
(d) inside the focus and (c) 5 laser periods after the focus. All plots refer to
the transverse magnetic field component E,. The panels (a) and (d) show a
cross-section at y = 0 (optical axis), (b) displays a cross-section at x = —10A\.
Panel (c) displays surfaces where E, = +0.2 in a 3D perspective view.
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Chapter 3

Attosecond Pulses from
Relativistic Surface Plasmas

The exciting new possibilities opened up by the advent of femtosecond laser
pulses lead us to the question, if it is possible to create even shorter pulses,
with durations in the attosecond time range.

One, already well-established way to produce light pulses of attosecond
scale duration is the generation of high order harmonics by the non-linear
interaction of gas atoms with lasers of intensities slightly above the ionization
threshold [30]. This mechanism is however limited to not-too-high laser
intensities and low efficiency. Production of coherent attosecond pulses of
higher energy could open up the way to entirely new methods of attosecond
research such as XUV pump-probe spectroscopy [31]. The currently most
promising way towards more intense attosecond pulses is the generation of
high order harmonics (HHG) at solid density plasma surfaces.

For a complete understanding of this attosecond pulse generation scheme,
it is necessary to study three stages in the laser-plasma interaction process:

Plasma Formation. Before the main laser pulse hits the solid target sur-
face, the pedestal of the pulse already ionizes it and turns it into a
plasma. The plasma then thermally expands and at the same time
is pushed inside by the laser ponderomotive potential. Depending on
the contrast ratio of the laser system and the exact structure of the
pre-pulse, this may yield very different surface density profiles. These
processes are well understood today and can reliably be simulated by
hydro-codes such as Multi-F'S [32].

Harmonics Generation. The second stage is the harmonics generation
itself. It happens during the interaction of the main laser pulse with
the pre-formed plasma density gradient. If the laser pulse duration is
in the order of just a few ten femtoseconds or below, the motion of
the ions during this period can be neglected, and the interaction takes
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place between the laser electromagnetic fields and the plasma electrons.

Diffraction. After the radiation has been emitted from the surface, it will
propagate through space. Due to the extremely broad spectrum of the
emitted radiation and its coherent phase properties, it is well worth to
take a closer look at its diffraction and focusing behaviour.

In section 3.1, we examine the theory of relativistic HHG. Different mod-
els are discussed and spectra are analytically derived from the models via
asymptotic analysis. The analytical results are substantiated by numerical
simulations. We find that the most efficient regime of single pulse HHG
is governed by the formation of highly compressed electron nanobunches in
front of the surface and results in a slowly decaying spectral power law with
an exponent of 6/5 - instead of 8/3, as for the previously known relativistic
mechanism.

Whereas section 3.1 focuses on the spectral envelope, section 3.2 deals
with the fine structure of the high harmonics spectra. This fine structure
contains information about the motion of the surface plasma on the femto-
second timescale. Therefore, it provides a useful diagnostic, helping us to
gain deeper insight in the relativistic processes involved.

Finally, section 3.3 deals with surface HHG in a realistic 3D geometry.
Here, diffraction takes on an important and intriguing role. With carefully
designed surfaces or laser pulses we may harness diffraction as a sort of
spatial spectral filter. With a well designed focusing geometry, it should
even be possible to focus the harmonics coherently in both space and time,
yielding unprecedented intensities that exceed the intensity of the laser itself
by more than a thousand times.

The basic idea for HHG at overdense plasma surfaces has been around
for almost thirty years now and endured several generations of high power
lasers. In this work, we focus on the most efficient, highly relativistic regime.
Before we move on to the actual study, it is worth to have a brief look at
the history of the topic.

History

The first observation of high harmonics from plasma surfaces was reported
from the Los Alamos Scientific Laboratory [33, 34] in 1981. At that time,
huge CO» lasers were used at nanosecond pulse duration and the observed
radiation was non-coherently emitted into the whole half-space in front of
the target. A theoretical explanation for this first observation was given in
Ref. [35]. The spectrum extended up to a sharp cutoff, which was found
to be the plasma frequency corresponding to the maximum electron density.
Therefore, non-linear collective plasma behaviour could be identified as the
source of the harmonics. In the strongly inhomogeneous plasma, laser light
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was resonantly converted to plasma oscillations, which in turn produced
harmonics by sum frequency mixing with the laser light.

For some time then, it became silent around surface HHG, but interest
rose again, when the CPA technique, invented in 1985 by Strickland and
Mourou [1], revolutionized ultraintense laser science in the 1990’s. With the
newly possible fs-duration, multi-TW pulses, HHG entered an entirely new
regime [36, 37]. Because of the much shorter pulse duration, the plasma
surface is not destroyed by the pulse and the harmonics are cleanly emitted
around the specular direction along with the reflected fundamental |38].

In the mid-nineties, there were first theoretical reports about a novel
HHG mechanism based on a non-linearity of purely relativistic origin, provid-
ing a source for harmonics without the limitation of a strict cutoff at the
plasma shelf density [39-42|. The mechanism could roughly be described by
a simple model, now commonly termed the “relativistically oscillating mir-
ror” (ROM) [40, 41]. However, for the time being, lasers were still not strong
enough to unambiguously demonstrate the relativistic effect in distinction to
the non-relativistic plasma non-linearities.

In the first decade of the new millennium, theory of surface HHG made
further substantial advances. It was found, that for fs-laser systems the
harmonics due to the plasma non-linearity were much stronger than could
be expected from the old theory. This was attributed to so-called Brunel
electrons [43| that trigger the plasma oscillations instead of the evanescent
laser field, leading to “coherent wake emission” (CWE) [44]. Also, the ROM
model was substantially refined by Baeva et al. [45], who managed to cal-
culate a universal spectral envelope (I o w~%/3) for the model by means of
asymptotic analysis. The refined version of the ROM model takes fully into
account the surface acceleration, leading to a smooth spectral cutoff at a fre-
quency scaling as w,. o 7>, comparable to synchrotron radiation, and not just
proportional to v? like the Doppler frequency upshift at a constantly moving
mirror. Around the same time, experiments were first able to unambigu-
ously demonstrate the relativistic mechanism and confirmed the spectrum
obtained in the refined ROM model, see Ref. |46].

In 2010, an der Briigge and Pukhov 11| discovered another mechanism
based on the relativistic non-linearity. They found out, that for certain
combinations of parameters, extremely dense and narrow electron bunches
may form at the surface. In this exciting regime, not even the basic boundary
condition of the ROM model is valid and the frequency upconversion process
can be much more efficient than predicted by the model. The radiation is
then described as coherent synchrotron emission (CSE) from the electron
“nanobunches”.
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3.1 Theory of Relativistic Surface Harmonics

We discuss the theory of HHG at surface plasmas, with a focus on the highly
relativistic regime ag > 1.

In subsection 3.1.1, we start by summarizing the theoretical framework
all models of the interaction are based on. Once having the equations written
down, it is straightforward to derive some selection rules for the parity and
the polarization of the generated harmonics.

In subsection 3.1.2, the ROM model is discussed. We are going to see
that this reputedly well-known model still bears some surprises, with respect
to both its foundation and the spectra that can be derived from it.

After this, we consider a variation of the ROM boundary condition that
was suggested in Ref. [47] in conjunction with a two-pulse-scheme (subsec-
tion 3.1.3). We show, that this condition represents a “totally reflecting
oscillating mirror” (TROM) with negligible skin depth and rigorously derive
a spectral envelope from the model via asymptotic analysis.

Especially for p-polarized oblique incidence, the formation of highly dense
and narrow electron nanobunches in front of the surface is often observed. If
these bunches carry a considerable amount of charge, they emit intense high
frequency radiation that is not described within the ROM model. In this
case, we can derive the spectrum by calculating the coherent synchrotron
emission (CSE) from these bunches - as presented in subsection 3.1.4.

3.1.1 Starting point of analysis

The foundation of the theory of surface HHG is explained here.

In Sub. 3.1.1.1, we demonstrate the Green function solution of the in-
homogeneous wave equation. This solution provides a general starting point
of HHG theory. Then (Sub. 3.1.1.2), we have a closer look at the source term
to derive general selection rules concerning the parity and polarization of the
generated harmonics. In Sub. 3.1.1.3, we briefly deal with surface HHG in
the sub-relativistic regime.

3.1.1.1 Solution of the inhomogeneous wave equation

Let us begin with the classical wave equation for the electromagnetic po-
tential. Since the basic structure of the physical mechanism can best be
understood in a one dimensional slab geometry, we let A depend on only
one spatial coordinate x and the time ¢. By this we do not generally exclude
oblique incidence, because it can be treated in a Lorentz boosted frame
wherein the laser is normally incident (see App. B.2). In this geometry, the
wave equation in Coulomb gauge (V - A = 0) can be written as:

1 47,
gﬁfA(t,az) — 0?A(t,z) = ?‘]L(t,l’). (3.1)
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Equation (3.1) can generally be solved with the help of a Green function.
We formally write down the solution as

A(t,z) =4rn // L, )Gtz ', ') dt'da’. (3.2)

By the choice of G, the asymptotic behaviour of A can be controlled.
We choose the Green function G in order to solve Eq. (3.1) and additionally
fulfil the boundary condition |A(t,z)| — 0 for x — +o0, i.e. there is no
light coming from the right and all radiation coming from the left is fully
reflected. We obtain:

1 |l — 2| x—1a
tet d)y==10(t—t/ —-—2)—-0(t—t — .
Gty = 3 o ) -o( )] e

where 6 denotes the Heaviside step function.
It proves convenient to continue working with the transverse electric field
E| = —¢ '0;A instead of the vector potential here. Thus Eq. (3.2) becomes:

2 0 — _
EL(t,x)—:/ {jL (t—x cx,:c/) —Jj1 (t—i—x cx,:c’>} dx'. (3.4)

Let us define 2, = sup{z : j(t,2') =0, Vt, Vo’ < x}: the leftmost point
which is reached by any charge during the laser-plasma interaction process.
It can be seen that for all z < x,, to the left of the plasma, the first term in
Eq. (3.4) represents the incoming radiation, while the second term represents
the reflected one. To the right of the plasma both terms cancel, as our choice
of the Green function requested.

Due to the assumption of one-dimensionality, the radiation does not
change while propagating in vacuum?, and the incoming and outgoing fields
E; and E, are each function of only one variable t + 2/c. We may therefore
drop the argument x and identify

2 +00 /
E;(t) = %T jL <t + %, x’) da’ (3.5)
2 +o0 /
E,(t) = —g jLG—iﬂgdﬂ (3.6)

so that E | (¢, ) = E;i(t — x/c) + E.(t + z/c) for x < z,.

Egs. (3.5) and (3.6) provide a powerful and general starting point for the
theory of harmonics generation. Whereas Eq. (3.6) tells us how to obtain
the reflected field E, from a given current distribution, Eq. (3.5) provides a
condition on the current for a given incident field E;. Note that this equation
stems from our choice of the Green function and physically represents the

'Tn a real experimental setting however, diffraction will play an important role; it is
discussed in Sec. 3.3 of this thesis.
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condition of total reflection. If instead we had chosen the Green function in
a way that all fields vanish for ¢ — —oo, then there would be no E;, but
the generated field to the left of the plasma would be the same as E, in
Eq. (3.6). Equation (3.5) is of course not sufficient to explicitly calculate j |,
but it can be harnessed to obtain j| and consequently E, in conjunction with
some additional assumption. This is a possible approach to derive boundary
conditions for the ROM and TROM models (subsections 3.1.2 and 3.1.3).

3.1.1.2 Selection Rules

Before we move on to present these models, let us collect some general facts
about the source term j, , stemming from the plasma response to the laser.
Therefore, we consider the fluid equations for a cold relativistic plasma.
These equations do not account for kinetic effects like trajectory crossing, but
they are adequate to derive some general properties of the physical process?.
For a relatively short laser pulse, we can neglect the ion response, so the
current is given by:

j=—e(nv—ngvo), (3.7)

where e is the elementary charge, n is the electron density and v is the
electron fluid velocity. Note that we consider all magnitudes in the inertial
frame in which the laser is normally incident. In this frame, the electrons
and ions possess some initial velocity vg parallel to the surface, and the
initial density ng is not necessarily identical to the initial density in the
laboratory frame. The velocity v is related to the relativistic momentum p
like v = p/yme, where v = /1 + (p/mec)?. Due to the conservation of the
canonical momentum|3], the transverse component can directly be connected
to A in the presumed 1D geometry:

P1 = Ppo + €A. (3.8)

The set of equations is completed by the equation of motion for the lon-
gitudinal momentum component p,, the continuity equation and the Poisson
equation for the electrostatic potential due to charge separation:

dpz _ Vi
on = =0 (nv), (3.10)
D20 = dme(n—no), (3.11)

wherein d/dt = 0y + v,0, denotes the absolute time derivative.

Having a closer look at these equations, it is possible to derive some
“selection rules” with respect to parity (even or odd harmonic numbers) and
polarization (see also Ref. [40]).

2A more complete description of the plasma, practically equivalent to the Vlasov equa-
tion, is given by the PIC simulations.
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incident light ‘ odd harmonics | even harmonics

normal (linear) | same as incident -

oblique (s) S p
oblique (p) p p

Table 3.1: Selection rules for polarization (s, p) and parity (even, odd) of
harmonics at plasma surfaces depending on the polarization and the angle
of the incident laser.

1. Assuming normal incidence of linearly polarized light, we take pg = 0,
A = Ae,. It is obvious then, that j., = 0, and the polarization of the
incident light is conserved. For the y-component of the source term,
we obtain j, oc nA/vy. About the longitudinal momentum p,, which
enters both n [through v, in Eq. (3.10)] and 7, we know that p, =
e (835(1) + eAz/'y). Thus, the longitudinal momentum is driven by the
square of the laser field A% and therefore has the same periodicity as A2.
Consequently, it possesses only even harmonics of the laser frequency.
The same holds true for n and 7, as can be seen from Eq. (3.10)
and v = \/1+eA? + p2. Finally, j, is a product of A ~ coswpt (in
zeroth order) with quantities that possess only even harmonics of the
fundamental laser frequency. We conclude, that j, and therefore A
purely consist of odd harmonics of the fundamental.

2. For s-polarized oblique incidence, we may assume py = poe, and
initially A = Ae,. In this case, j, o nA/v as in the normal in-
cidence case, but additionally there is a source term in z-direction:
Jz X npo/y — nopo/vo. Again, p,, n and «y contain only even harmon-
ics of the laser frequency. Consequently, j, and A, contain only odd
harmonics and j, and A, contain only even harmonics of the funda-
mental.

3. For p-polarized oblique incidence, we can take py = poe, and A =
Ae,. We immediately see, that there is no source term in z-direction
(- =0), and j, < po (n/y —no/v0) + enA/~y obviously contains both
even and odd harmonics. Another interesting fact is that p, is now
also driven by a term that is linear in A. This implies, that harmonics
can be observed here at lower intensities compared to s-polarized and
normal incidence.

In table 3.1, the rules just derived are summarized for reference.

3.1.1.3 Sub-relativistic plasma non-linearity

This work deals with generation of harmonics due to relativistic mechanisms.
These have to be distinguished from harmonics generated by sub-relativistic
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plasma non-linearity. Here, we explain the sub-relativistic mechanism in
brief.

It is found that for p-polarized oblique laser incidence, the threshold for
harmonics generation is much lower than for s-polarized or normal incidence.
This is due to plasma non-linearities, which are not of relativistic origin
and only occur for p-polarized incidence. Under this condition, two effects
may lead to the excitation of plasma oscillations inside the inhomogeneous
plasma-gradient:

1. Resonant absorption of the laser field, see e.g. the book by Kruer [3].

2. Electron bunches that are separated from the main plasma and then
re-enter, see the famous work by Brunel [43].

Due to the strong inhomogeneity of the plasma, these oscillations couple
back to electromagnetic modes via sum frequency generation, leading to
the emission of high harmonics. When the excitation happens by means
of Brunel electrons, the mechanism is commonly referred to as “coherent
wake emission” (CWE) [44]. CWE is the prevalent sub-relativistic generation
process for femtosecond-scale laser pulses.

According to their generation mechanism, the sub-relativistic harmonics
have a strict frequency limit, given by the plasma frequency w, corresponding
to the maximum density [33, 35, 44]. The subsequently discussed relativistic
harmonics are not subject to this limitation and can therefore easily be
distinguished from the ones generated by the non-relativistic mechanism.
The transition between both regimes for moderately relativistic laser pulses
was discussed by Tarasevitch et al. in Ref. [48].

3.1.2 The relativistically oscillating mirror (ROM) model

Due to its descriptive nature, the term “relativistically oscillating mirror”
(ROM) is in common use. However, its usage varies among authors and
there has been no accurate and generally accepted definition so far. In the
frame of this work, we define the ROM model as the model based on the
boundary condition?

E; (t - mp(t)) + B, <t + w) =0, (3.12)

C C

wherein zAgp denotes the coordinate of the “apparent reflection point” (ARP).
In Ref. [40], where the term “oscillating mirror” was first used in the context
of relativistic laser-plasma interaction, it was applied to a model based on
an oscillating step-like plasma boundary. We are going to see soon that the
above boundary condition is closely related to that model. Further, the ARP

*This means, we refer to the same model that the work of Baeva et al. [45] is based
on, called “refined ROM model” in the introductory part of this chapter.

34



is intuitively understood as a sort of mirror, which oscillates at relativistic
velocities.

This subsection consists of three parts. At first (Sub. 3.1.2.1), we invest-
igate the foundation of Eq. (3.12), trying to clarify, under which conditions it
is applicable. Then (Sub. 3.1.2.2), we demonstrate a simple way to check the
validity of the model within a simulation. Finally (Sub. 3.1.2.3), we derive
some very general properties of the spectrum that follows from Eq. (3.12).

3.1.2.1 Foundation of the ARP boundary condition

Here, the applicability of the boundary condition Eq. (3.12) is analyzed. To
do this, we consider two possible ways to arrive at the condition. At first, we
discuss the popular approach introduced by Gordienko et al. [49] in 2004.
However, we will see, that their derivation is based on assumptions, which
are hardly ever fulfilled in a realistic setup. Then, we suggest an alternative
approach?. This new approach connects the ARP boundary condition to the
assumption of a moving step-like electron density profile. The correlation
between the shape of the electron density profile and the resulting radiation
can nicely be confirmed within PIC simulations.

We begin with the old approach from Ref. [45, 49]. Tt is based on the
Taylor expansion of the current distribution with respect to time: j, (to +
h, ¥) = ji(to, ©) + h L (to, x) + O(h?). This is inserted into Eq. (3.4),
expanding around ¢ty = ¢t — ¢/, using h = (z — 2’)/c. Then, the zeroth order
term vanishes immediately and, neglecting the second and higher orders,
what remains is:

A [P x -2/

EL%—
C Jz

OjoL(t—t, 2')dd. (3.13)

Now, the time derivative 0;j, is estimated by the current divided by the
“skin layer evolution time” 7 = min (j; /0;j1 ). In this way, for © = xgys at
the plasma surface, E| can be estimated as:

471d
EL(:U = -'Esurf) ~ ?JL, (314)

where § refers to the skin length and J to the instantaneous net current.

The idea of Gordienko et al. was now to neglect the field at the moving
surface and conclude the applicability of Eq. (3.12). We see that the field
at the surface becomes small compared to the incident field, when the char-
acteristic time 7 is long compared to the skin length 6, ¢ > §. There is
however no reason to assume that this is generally the case under relativistic
conditions.

“In Ref. [50], another way to prove a supposedly “relativistic invariant” generalization
of the discussed boundary condition is argued. The proof is however not based on sound
physical reasoning, and it actually only shows the trivial fact that any function can be
obtained by modulating phase- and amplitude of any other non-vanishing function.
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For a conservative estimate, assume that 7 is in the order of the time
it takes for the longitudinally moving electrons to traverse the skin layer.
Since the electrons are moving at velocities close to the speed of light, it
is immediately seen that ¢7/6 ~ 1. Moreover, considering a step-like or
even 0-like moving electron density profile, as it is routinely observed in PIC
simulations of the interaction (consider e.g. Fig. 3.3), even the above Taylor
expansion may be rendered worthless due to singularities in j| or 0 .

Therefore, let us now consider an alternative derivation of the boundary
condition (3.12), based on the model of an oscillating, step-like boundary.
Our starting point is an arbitrary component of the wave equation (3.1). We
adapt it to the aforementioned density profile and normal incidence. Further,
we make use of the conservation of the canonical momentum (3.8) and switch
to relativistically normalized units (¢t — ¢, ...) for convenience:

w2

(02— 07) A =0 (2 — sure(t)) 7PA’ (3.15)

where wy, is the electron plasma frequency and - is the electron y-factor. We
make the complex ansatz:

[ Ait—x)+ A (t+x) (x < zgure(t))

Alt, z) = { At + i) (@ > zoni(t) (3.16)

wherein k = ,/wg/ (’ng) — 1 is a real number, as the plasma is overdense.
To take account for the relativistic non-linearities, we allow for general func-
tions instead of strictly assuming A,, A o exp (iwpt). Note, that the vacuum
part (x < xguf) of Eq. (3.16) is an exact solution of Eq. (3.15). The skin layer
part is an exact solution for the fundamental mode, A o exp (iwpt). Con-
sidering that in many cases (w3 - spectrum) the biggest share of energy
is still contained in the laser fundamental mode, we consider this reasonable
enough within our simple model.

Now the function A as well as its first partial spatial derivative must be
continuous in the point xg,(t) at every time ¢. Defining a;(t) = A;(t —

Teurt(t)), ar(t) = Ap(t + zane(t)), as(t) = As(t + ikzgur(t)), we get:

a; +a, = as (3.17)
1 1 1
a; ar = ————0as. 3.18
Tgurf — 1 ’ Tourt + 1 " Tsurf — Z/H ° ( )
Solving for as yields
a = o Lsurf — i/k Ei(t — xsuri(t)) (3.19)
( 1+i/k ’
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where a; = (Zguer — 1) F; was used. Inserting this back into Eq. (3.18), we
obtain
K—1

s Z,Ei(t — Taurf(t)) = 0. (3.20)

Since [(k—1)/(k+1)| = 1 for k € R, it is now seen that Eq. (3.20) agrees
with Eq. (3.12) except for a phase term. This phase can be included in the
function zagp ().

We have shown here that the ARP boundary condition (3.12) is valid
under three main assumptions: a step-like electron density profile, normal

Er(t + xsurf(t)) +

incidence and the interaction is dominated by the laser fundamental. In this
case, the ansatz (3.16) is reasonable. If the density inside the plasma is not
exactly constant, but there is a sharp rising edge behind which comparatively
weak fluctuations follow, the ansatz (3.16) might still be useful, as the precise
behaviour of the field deep inside the skin layer has no strong influence on
the reflection. The new calculation equips us with a rough idea of when
Eq. (3.12) can be expected to be useful.

3.1.2.2 Verifying the ARP boundary condition

Equation (3.12) has a simple interpretation that allows us to verify within
simulation data, whether it is fulfilled or not. For Eq. (3.12) to have any
useful physical meaning, it is required that |Zarp ()| < c at all time®. It is
obvious then, that the reflected field E, is nothing but a phase modulation
of the negative of the incident one (—F;). In a PIC simulation, we can
easily check this by looking at the fields in the time domain. If and only
if Eq. (3.12) is fulfilled, then both functions possess the same sequence of
extrema and monotonic intervals.

Fig. 3.1 shows one example, where Eq. (3.12) is approximately fulfilled
and another, where it is distinctly violated. The example in Fig. 3.1(a) that
obeys Eq. (3.12) is obtained by normal incidence on a sharply defined plasma,
therefore confirming the rough calculations presented above. The other ex-
ample [Fig. 3.1(c)] was obtained under p-polarized oblique incidence. Here,
extremely narrow and dense electron bunches have formed in front of the
surface. We are going to discuss this case in more detail in subsection 3.1.4.
Now, we continue with the case, where the ROM model works.

3.1.2.3 Analytical derivation of the spectrum

Given the validity Eq. (3.12), it is possible to calculate the general form of
the spectral envelope with only a few straightforward assumptions.

’Otherwise, the fields are un- or overdetermined, leading to contradictions or useless
tautologies. The condition |Zarp(¢)| < c is also exploited in the subsequent calculation of
the spectral envelope.
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100} (a) o (b)

Figure 3.1: Radiation in time [(a) and (c)] and spectral [(b) and (d)] domain
for two simulations. (a) and (b) correspond to a case, where Eq. (3.12)
is valid. Simulation parameters are: normal incidence, plasma density
N = 250 N, sharp edged profile. (¢) and (d) correspond to a case, where
Eq. (3.12) is severely violated: plasma density ramp o exp(z/(0.33A)) up
to a maximum density of N, = 95 N, (lab frame), oblique incidence at 63°
angle (p-polarized). Laser field amplitude is ag = 60 in both cases. In all
frames, the reflected field is represented by a blue line. In (a) and (c), the
green line represents the field of the incident laser and the black dashed
lines mark the maximum field of it. In (b) and (d), the dotted black line
represents an 8/3 power law, the red dashed line corresponds to the “nan-
obunch” CSE spectrum given by Egs. (3.35) and (3.36), with w,s = 800wy
and w,r = 225 wy.
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We start by writing down the Fourier transform of E,.(t) from Eq. (3.12),
taking into account the retarded time:

B (w) = —/EZ- (t - “RP) i(t+a/c) <1 n xARP) dt. (3.21)

C C

The incoming laser pulse is described by an envelope approximation
E;(t) = g(t) [exp (iwot) + exp (—iwpt)] /2, where g(t) is a slowly varying func-
tion. We arrive at

E.(w) = E{f+E_
Be = [o(t= 0o (o (14 7)o (1= 1) )
X (1 + iACRP> dt. (3.22)

Now note that for high w, the exponential term leads to a rapid oscilla-
tion of the integrand during most of the time. Because of this oscillation,
most contributions cancel, except for those where the phase of the integrand
stands still. This means that the integral can be handled by the method of
stationary phase. The somewhat more technical details of this calculation
are shifted to appendix A.1, but before presenting the final result here, we
would like to remark two interesting points:

1. The stationary phase points correspond to the instants when the ARP
moves towards the observer with maximum velocity. These moments
are crucial for the generation of high order harmonics. The corres-
ponding ARP gamma factor yarp = (1 — :1'02ARP/02)_1/2 possesses a,

sharp spike at these instants, which is the reason why we also call

them ~-spikes [45].

2. The spectrum depends on the exact behaviour of the ARP in the
neighbourhood of these points. In Ref. [45] it was presumed, that
the derivative of the ARP acceleration is different from zero at the -
spike. Other cases are imaginable however, and it is intriguing to see,
what difference they make. Let us consider the most general case, in
which Zarp has a zero of order 2n — 1 at the y-spike, meaning that
dkxARp/dtk =0 for all 2 < k < 2n. We will subsequently refer to n as
the order of the vy-spike.

After the calculations in appendix A.1, the spectrum can now be written as:

2

n 2 _ 54
I,(w) W Z o gAi, (W . (3.23)

1/(2n+1
ce{—1,1} 2 ()2
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Figure 3.2: Logarithmic plot of the spectra Eq. (3.23) following from the
ARP boundary condition, for orders n = 1, 2, 10 of the ~-spike. All spectra
have been normalized to Iy = I(wp), and = 1, v = 8 was used throughout.

wherein « refers to the peak value of yarp(t). gAi, is a generalized Airy-
function in the sense gAi, (z) = (2m) 1 [*_exp [i (wt + 271 /(2n + 1))] dt.
These functions are not commonly available in general purpose numerical
function libraries. With a small trick, they are however not hard to com-
pute. The details of the numerical calculation of the integral are explained
in appendix B.3.

Fig. 3.2 shows the spectra Eq. (3.23) for different orders n of the ~-spike.
Let us regard the cases n =1 and n > 1.

The case n = 1 has been investigated before by Baeva, Gordienko and Puk-
hov (BGP) in Ref. [45]. Here, we can apply another very good approximation

to obtain the handy form:
W\ 2/3 2
@) e
Wy

where Ai(z) is the well known Airy-function, and w,/wp ~ 3. The roll-
off frequency w, marks the point, where the initial power law decay of the
spectral envelope merges into a more rapid exponential decay. In the case
w < wy, the Airy function is O(1) and one obtains the 8/3-power law spec-
trum. For w > w,, the Airy function dominates and the decay becomes
exponential. Note the scaling of w, with 43, which stands in contrast to
the Doppler shift from the reflection at a constantly moving mirror, which
produces a frequency upshift by a factor of only 49%2. An example for this
sort of spectrum from a PIC simulation can be seen in Fig. 3.1(b).
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To the best of our knowledge, the case n > 1 has not been investigated
before. We note the following differences to the BGP case (n = 1):

1. The power law part of the spectra decays slightly slower with increasing
n. In addition, the non-power law part gains influence for increasing n
at low frequencies already and leads to even slower decaying spectra.
This is possibly favourable for the efficient production of attosecond
pulses.

2. Because of the oscillatory behaviour of the generalized Airy functions
gAi, (x) at positive z and for n > 1, the spectra become strongly mod-
ulated at frequencies w > w,, compare Fig. 3.2. This might possibly
explain spectral modulations observed in numerical and real experi-
ments before, see e.g. Ref. [51].

3. The roll-off frequency, which scales as 7 in the BGP case, approaches
a 72 scaling in the limit n — oo, reminiscent of the Doppler effect
from a mirror moving with constant velocity. This seems reasonable,
since for higher order v-spikes, the acceleration is very small in the
neighbourhood of the stationary phase point. Therefore, its influence
on the spectrum decreases with n.

To sum up this subsection, we have reviewed the popular “relativistically
oscillating mirror” (ROM) model for the relativistic generation of harmonics
at overdense plasma surfaces, based on Eq. (3.12). We have found, that it
is applicable for normal incidence and step-like electron plasma boundaries.
Because of its simplicity - it reduces the whole complex interaction physics
to one simple function xarp(t) - the model helps us to gain insight into the
basic mechanism that leads to the generation of high harmonics. Further, we
have analytically calculated the possible spectra in the relativistic limit with
the help of asymptotic analysis. Here we noticed, that even within the model,
spectra that deviate considerably from the well known BGP 8/3-power law
are in principle possible.

3.1.3 Totally reflecting oscillating mirror (TROM) and w2/3
spectrum

As we see e.g. from Fig. 3.1, the ROM model based on Eq. (3.12) as it was
used in Ref. [45], is not universally valid in the highly relativistic regime -
not even as an approximation. It is thus worth looking for alternatives.

This subsection is about another model that one might intuitively asso-
ciate with the name “relativistically oscillating mirror”, we call it the “totally
reflecting oscillating mirror” (TROM). The model is rigorously based on the
assumption of total reflection from a perfectly localized current layer.

First (Sub. 3.1.3.1), we derive the corresponding boundary condition.

Then (Sub. 3.1.3.2), we demonstrate the spectral properties that follow from

41



this boundary condition, utilizing asymptotic analysis once again. Finally
(Sub. 3.1.3.3) we give some remarks about the possible physical realization
of the model.

3.1.3.1 Foundation of the TROM boundary condition

The TROM model is particularly interesting because of its mathematical
lucidity. It can be rigorously derived from only two straightforward assump-
tions. These assumptions are:

1. There is total reflection, no light passes through the mirror. Therefore,
we can relate the plasma current to the incident radiation via Eq. (3.5).

2. The skin layer of the reflecting plasma is infinitely thin. Therefore, the
current can completely be described by j(t,x) = j(¢)d(z — zrrROM(1)).

Inserting the current profile into Egs. (3.5) and (3.6), we obtain:

J(t — zrrOM(t)/C)
¢+ drrom(t — zTROM(1)/€)

j(t +@rroM(t)/c)
¢ — &rroMm(t + zTROM(E) /C)”

E@(t) = 27

(3.25)

E.(t) = 2n (3.26)

Now, the assumption of total reflection is exploited by using Eq. (3.4).
We eliminate j and arrive at the boundary condition:

t 1—4 t
B (it zrroM (1) n x.TROM/C E(t— wrroM(t) =0. (3.27)
c L+ drROM/C ¢

Compare this to Eq. (3.12), which represents the ROM model. The
difference lies in the pre-factor of E;, which amplifies the reflected field at
times, when the mirror moves towards the observer. Since these are the
regions which are responsible for high frequency radiation, we expect a flatter
spectrum here compared to the ROM model.

Further note, that Eq. (3.27) is always the correct boundary condition
for a totally reflecting mirror in the limit of constant velocity. In this case,
Eq. (3.27) could simply be derived by a Lorentz transformation to the system,
where the mirror is at rest. For a strongly accelerated mirror however, we
need the additional assumption of a perfectly localized skin layer to obtain
Eq. (3.27).

3.1.3.2 Analytical derivation of the TROM spectrum

We now derive the spectrum corresponding to Eq. (3.27). The beginning of
the calculation is analogue to the calculation in subsection 3.1.2.3, and we
arrive at
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B = _/g(t_xTROM>eXp [2 (w (HwTROM)in (t_xTROM>)}
& C &

x (1 - m) dt. (3.28)

Compare this to Eq. (3.22). The difference lies in the last factor: Whereas
in Eq. (3.22) it is 1 — @#arp/c, we have 1 4+ &trom/c here. This difference
is crucial, since at the stationary phase points, where Zrrom/arp &~ —¢, the
term in Eq. (3.22) becomes very small, whereas the term in Eq. (3.28) even
has a maximum.

Again, we can analytically calculate the corresponding spectrum, as
shown in App. A.1. In general, for a y-spike of the order n we obtain:

2

-2
__2 . wy~* — odwy
17 W) o w 2l ogAi, | ————~ . (3.29
Trom (@) Ue;; | <2<aw)1/(zn+1)> (3.29)

This is the same as the ROM spectrum Eq. 3.23, except for the different
exponent in the power law. The TROM spectrum is much flatter. For high
order -spikes, the power law part even tends to w?, so that the spectrum is
merely determined by the generalized Airy functions.

In the more likely case n = 1, Eq. (3.29) can to a good approximation

be simplified:
2
1 W\ 2/3
1 .
ITrom(w) o o2/ [AI ((M) )

(3.30)

Compared to the w™®/3 decay predicted for the ROM model [Eq. (3.24)],
we obtain a slowly decaying w™2/3 power law here.

3.1.3.3 Physical Feasibility of the TROM model

As we have seen, the TROM model yields a distinctly flatter spectrum than
the ROM one. Therefore, if there were a physical system that behaves ac-
cording to the TROM model, it could be much more efficient in the produc-
tion of attosecond pulses. Let us try to answer (a) why this is difficult and
(b) how it might still be possible.

The difficulty can readily be seen from Eq. (3.25). We notice that the
current j does not necessarily vanish at the instant when the surface moves
at maximum velocity. This is in contrast to the normal behaviour of an ultra-
relativistic plasma. The transverse current is the product of the transverse
fluid velocity component v, and the charge density p. Since the transverse

43



velocity component becomes very small at the instant of maximum longit-
udinal velocity, a finite j implies a huge plasma density. But very dense
plasmas are hard to drive to relativistic motion.

For single pulse schemes, the realization is probably impossible. The
behaviour of ultra-relativistic plasmas is governed by the S-parameter S =
N¢/agN.. If the S-parameter is too low, it leads to an extended skin layer
in contradiction to the assumption of a perfectly localized current layer. If
the S-parameter is too high, the plasma is not driven to relativistic motion
at all.

In Ref. [47|, Tarasevitch et al. propose the realization of the boundary
condition (3.27) via a two pulse scheme. In the scheme, the first, relativist-
ically strong pulse drives the plasma surface to oscillation. The second pulse
is much weaker and has a polarization orthogonal to the first one. It is used
as a probe and the spectrum in the direction of its polarization is recorded.
Indeed, for a certain set of parameters it was possible to observe the gener-
ation of harmonics according to Eq. (3.27). Thereby, they heuristically also
find a 2/3-power law spectrum, confirming the above calculations.

In this case, the probe pulse “harvests” the harmonics generated by the
much stronger driver pulse. Thus, the scheme is not appropriate to increase
the overall efficiency of frequency conversion or attosecond pulse production.
In the following section, we will look at a physical mechanism, where the
overall efficiency is indeed increased considerably in comparison to the ROM
case.

3.1.4 Coherent synchrotron emission (CSE) from electron
nanobunches

Cases where the ARP boundary condition (3.12) does not apply are stud-
ied here. We find, that the radiation can be described as coherent synchro-
tron emission (CSE) from extremely compressed electron “nanobunches” that
form in front of the surface.

At first (Sub. 3.1.4.1), the generation process is investigated by close
examination of PIC data. Then, the spectrum is calculated analytically
(Sub. 3.1.4.2) and some intriguing properties of the radiation are derived
(Sub. 3.1.4.3). Finally, we analyze the sensitivity of the process to changes
in the laser-plasma parameters (Sub. 3.1.4.4).

3.1.4.1 Electron nanobunching process

Let us now have a fresh look at Fig. 3.1(c). It is evident, that the maximum
of the reflected field reaches out about an order of magnitude higher than the
amplitude of the incident laser. The reflected radiation can clearly not be
obtained from the incident one by phase modulation and the ARP boundary
condition Eq. (3.12) fails.
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Consequently, the spectrum deviates from the 8/3-power law, compare
Fig. 3.1(d). Indeed, the efficiency of harmonics generation is much higher
than estimated by the calculations in Ref. [45]: about two orders of mag-
nitude at the hundredth harmonic. Also, we can securely exclude coherent
wake emission (CWE) as the responsible mechanism, since this would re-
quest a cut-off around w = 10wg. The radiation has to be attributed to a
new sort of mechanism.

To get a picture of the physics behind, let us have a look at the motion
of the plasma electrons that generate the radiation. Figure 3.3 shows the
evolution of the electron density corresponding to both sample cases from
Fig. 3.1. In addition to the density, contour lines of the spectrally filtered
reflected radiation are plotted. These lines illustrate where the main part of
the high frequency radiation emerges.

We observe that in both cases the main part of the harmonics is generated
at the point, when the electrons move towards the observer. This shows
again that in both cases the radiation does not stem from CWE. For CWE
harmonics, the radiation is generated inside the plasma, at the instant when
the Brunel electrons re-enter the plasma [44].

Apart from that mutuality, the two presented cases are very different.
Figure 3.3(a) corresponds to the ROM case. It can be seen that the density
profile remains roughly step-like during the whole interaction process and the
plasma skin layer radiates as a whole. This explains why the ROM model
works well here, as we have seen before in Fig. 3.1(a) and (b).

Figure 3.3(b) looks clearly different. The density distribution at the
moment of harmonics generation is far from being step-like, but possesses
a highly dense (up to ~ 10000 N, density) and very narrow J-like peak,
with a width of only a few nanometres. This electron “nanobunch” emits
synchrotron radiation coherently.

The high frequency radiation is emitted by a highly compressed electron
bunch moving away from the plasma. However, the electrons first become
compressed by the relativistic ponderomotive force of the laser that is direc-
ted into the plasma, compare the blue lines in Fig. 3.4. During that phase,
the longitudinal electric field component grows until the electrostatic force
turns around the bunch, compare the green lines in Fig. 3.4. Normally, the
bunch will loose its compression in that instant, but in some cases, as in the
one considered here, the fields and the bunch current match in a way that
the bunch maintains or even increases its compression. The final stage is
depicted by the red lines in Fig. 3.4.

We emphasize, that such extreme nanobunching does not occur in every
case of p-polarized oblique incidence of a highly relativistic laser on an over-
dense plasma surface. On the contrary, it turns out that the process is highly
sensitive to changes in the plasma density profile, laser pulse amplitude, pulse
duration, angle of incidence and even the carrier envelope phase of the laser.
For a longer pulse, we may even observe the case, that nanobunching is
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Figure 3.3: The electron density and contour lines (cyan) of the emitted har-
monics radiation for w/wp > 4.5, in (a) the ROM and (b) the nanobunching
regime. The small windows inside the main figures show the detailed density
profile at the instant of harmonic generation. All magnitudes are taken in
the simulation frame. The simulation parameters are the same as in Fig. 3.1,
where (a) here corresponds to Fig. 3.416(21)—(b) and (b) to Fig. 3.1(c)-(d).
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Figure 3.4: Formation of the nanobunch in the simulation corresponding to
Figs. 3.1(c)-(d) and 3.3(b). We depict the electron density N, in units of
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longitudinal electric field component E, in relativistically normalized units.

47



present in some optical cycles but not in others. The parameters in the ex-
ample were selected in a way to demonstrate the new effect unambiguously,
i.e. the nanobunch is well formed and emits a spectrum that clearly differs
from the BGP one. The dependence of the effect on some parameters is
discussed in subsection 3.1.4.4.

Because of the one dimensional slab geometry, the spectrum is not the
same as the well known synchrotron spectrum [52] of a point particle. We
now calculate the spectrum analytically.

3.1.4.2 Analytical derivation of the nanobunch 1D CSE spectrum

The calculation of the spectrum is based on two assumptions:

1. As in the TROM model, the radiation is generated by a narrow bunch
of electrons. Optimal coherency for high frequencies will certainly be
achieved, if the current layer is infinitely narrow: j(t,x) = j(t)o(x —
z¢(t)). To include more realistic cases, we allow in our calculations for
a narrow, but finite electron distribution:

J(t,x) = j(t)f(z — za(t)) (3.31)
with variable current j(¢) and position x(t), but fixed shape f(x).

2. In contrast to the TROM model, we give up on calculating j(¢) dir-

ectly from the incident radiation by the assumption of total reflection.
This means, that although we know that the bunch itself is not capable
of totally reflecting the incoming radiation and consequently there are
some additional currents inside the plasma, we do not care for them as
their contribution to the high frequency spectrum are small compared
to the contribution by the highly compressed bunch.
However, to get some kind of result, an assumption about the func-
tions j(t) is required. Since we are dealing with the ultrarelativistic
regime ag > 1, it is reasonable to assume that changes in the velocity
components are governed by changes in the direction of motion rather
than by changes in the absolute velocity, which is constantly very close
to the speed of light ¢. We are going to see, that this assumption is
enough to obtain the spectrum.

Following Eq. (3.6), the radiation field is expressed as Ecsg (¢, ) = 2mc™!
X [j(t+ (z—2a")/c, 2') da’. We take the Fourier transform, thereby con-
sidering the retarded time, and arrive at the integral

Bosnle) = 2 ) [ o) e [-iw (14 24 ) [ oo

o c

wherein f(w) denotes the Fourier transform of the shape function.
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In analogy to the standard synchrotron radiation by a point particle,
the integral can be solved with the method of stationary phase. Therefore,
we Taylor expand the current j(t) and the electron bunch coordinate x¢(t)
around the instant, where x.; is closest to —c. Due to the ultrarelativistic
behaviour, the current vanishes at these instants and we write: j(t) = apt™.
After the calculations shown in appendix A.1, the result can be expressed as

N . —4m2api™  d"gAi, (€)
E _ n
CSE(("'}) f(W) C(alw)n+1/2n+1 dé’n ’

where gAi, (€) refers to a generalized Airy function, defined in Eq. (B.4) and
— w2n/2n+16/a}/(2”+1).

(3.33)

Anyway, note that high order y-spikes (n > 1) imply, that the nanobunch
remains for a comparatively long time at low transverse currents. This ap-
pears to be unlikely here, as a static nanobunch would not stay together for
long time without magnetic fields that can counteract the Coulomb explo-
sion. Therefore, we go on to discuss only the two most likely special cases
n=1and n=2:

1. The current changes sign at the stationary phase point and we can
Taylor expand j(t) = agt. Consequently, z¢(t) = —vot + a1t3/3. The
spectral envelope can now be written as:

o

where Ai’ is the Airy function derivative, w5 ~ 23/2\/07178’, and yg =
(1 —v2)~1/2 is the relativistic y-factor of the electron bunch at the
instant when the bunch moves towards the observer. As in the ROM
models, the spectral envelope (3.34) does not depend on all details of
the electron bunch motion x.;, but only on its behaviour close to the
stationary points, i.e. the y-spikes.

I(w) o |f(w)Po™?

2. In the case, when the current does not change sign at the stationary
phase point, we Taylor expand j(t) = agt? and x4 (t) = —vot + a1t /5.
This yields to the spectral envelope

) w \4/5 2
I(w) o | f(w)Pw™%5 !S" <<wrs> )] , (3.35)

with §” being the second derivative of S(z) = gAi,y(z) = (2m)~!

x [ exp [7, (act —|—t5/5)] dt, a special case of the canonical swallowtail
integral [53]. For the characteristic frequency w,s we now obtain w,s &
25/4W78'5. Because now even the derivative of I, is zero at the
stationary phase point, the influence of acceleration on the spectrum
decreases and the characteristic frequency scaling is closer to the ~2-
scaling for a mirror moving with constant velocity.
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Figure 3.5: Coherent 1D synchrotron spectra for an infinitely thin electron
layer f(w) =1 and w,s = 100. The blue line corresponds to Eq. (3.34) and
the red line to Eq. (3.35). For comparison, the dashed black line denotes the

BGP 8/3-power law.

In Fig. 3.5 the CSE spectra of the synchrotron radiation from the electron
sheets are depicted. Comparing them to the 8/3-power law from the BGP-
case, we notice that, because of the smaller exponents of their power law
part, the CSE spectra are much flatter. E.g., around the 100th harmonic
we win more than two orders of magnitude. Note that, as in the case of
higher order 7-spikes in the ROM model, side maxima are found in the
spectrum (3.35). This might provide an explanation for modulations that
are occasionally observed in harmonics spectra, compare Ref. [51, 54].

To compare the analytically obtained spectrum with the PIC result, the
finite size of the electron bunch must be taken into account. We assume a
Gaussian density profile which leads us to

|f(w)]” = exp [— (;:fﬂ : (3.36)

Thus the spectral cut-off is determined either by w;s, corresponding to
the relativistic y-factor of the electrons, or by w; ¢ corresponding to the bunch
width. A look at the motion of the electron nanobunch in the PIC simulation
(Fig. 3.6) tells us that there is no change in sign of the transverse velocity
at the stationary phase point, consequently we use Eq. (3.35). We choose
wrp = 225w and wrs = 800wy to fit the PIC spectrum, corresponding to a
Gaussian electron bunch f(z) = exp [—(2/§)?] with a width of § = 1072\
and an energy of v ~ 10. This matches well with the measured electron
bunch width dpwnm = 0.0015 X [see Fig. 3.3(b)| and the laser amplitude
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Figure 3.6: Normalized transverse fluid velocity v,/c of the electron nan-
obunch. Parts of the plasma with a density below 500 N, are filtered out.

ag = 60, since we expect v to be smaller but in the same order of magnitude
as ag. In this case w,y < wps, so the cut-off is dominated by the finite
bunch width. Still, both values are in the same order of magnitude, so
that the factor coming from the Swallowtail-function cannot be neglected
and actually contributes to the shape of the cut-off. The modulations that
appear in Fig. 3.5 for frequencies around w,; and above cannot be seen in
the spectra, because it is suppressed by the Gauss-function Eq. (3.36). The
analytical synchrotron spectrum agrees excellently with the PIC result, as
the reader may verify in Fig. 3.1(d).

3.1.4.3 CSE Radiation Properties

As we see in Fig. 3.1(c), the CSE radiation is emitted in the form of a single
attosecond pulse whose amplitude is significantly higher than that of the
incident pulse. This pulse has a FWHM duration of 0.003 laser periods, i.e.
9as for a laser wavelength of 800 nm. This is very different from emission of
the ROM harmonics, which need to undergo diffraction (see also Sec. 3.3) or
spectral filtering [45] before they take on the shape of attosecond pulses.
When we apply a spectral filter in a frequency range (Wiow,Whigh) t0 a
power-law harmonic spectrum with an exponent g, so that I(w) = Ip(wo/w)?
, the energy efficiency of the resulting attosecond pulse generation process is

Whigh
Natto — / I (UJ) dw

Wlow
I q—1 q—1

_ dowo < wo > B < wo ) (3.37)
q—1 | \wiow Whigh

o1




The scaling (3.37) gives nROM ~ (wp/wiew)?? for the BGP spectrum with
g = 8/3. For unfiltered CSE harmonics with the spectrum ¢ = 4/3 the
efficiency is close to n$F = 1. This means that almost the whole energy
of the original optical cycle is concentrated in the attosecond pulse. Note
that absorption is very small in the PIC simulations shown; it amounts to
5% in the run corresponding to Fig. 3.1(c)-(d) and is even less in the run
corresponding to Fig. 3.1(a)-(b).

The ROM harmonics can be considered as a perturbation in the reflected
signal as most of the pulse energy remains in the fundamental. On the
contrary, the CSE harmonics consume most of the laser pulse energy. This
is nicely seen in the spectral intensity of the reflected fundamental for the
both cases [compare Fig. 3.1(b) and (d)|. As the absorption is negligible,
the energy losses at the fundamental frequency can be explained solely by
the energy transfer to high harmonics. We can roughly estimate this effect
by IPCF/IESF ~ I w83 dw/ I w43 dw = 5. This value is quite close

to the one from the PIC simulations: IéFig' 1b)/IéFig' 19— 37,

Further, we can estimate amplitude of the CSE attosecond pulse ana-
lytically from the spectrum. Since the harmonic phases are locked, for an
arbitrary power law spectrum I(w) o< w™? and a spectral filter (wWigyw, Whigh)
we integrate the amplitude spectrum and obtain:

Batto & QM [( il )g_l - ( 0 >g-1] (3.38)

q—2 Wiow Whigh

Apparently, when the harmonic spectrum is steep, i.e. ¢ > 2, the radiation
is dominated by the lower harmonics wiyy,. This is the case of the BGP
spectrum ¢ = 8/3. That is why one needs a spectral filter to extract the
attosecond pulses here. The situation changes drastically for slowly decaying
spectra with ¢ < 2 like the CSE spectrum with ¢ = 4/3. In this case,
the radiation is dominated by the high harmonics wpign. Even without any
spectral filtering the radiation takes on the shape of an attosecond pulse. As
a rule of thumb formula for the attosecond peak field of the unfiltered CSE

radiation we can write:
atto

ECSE &~ /3 (mg/f” . 1) Ey (3.39)

Using m. = w,/wp = 225, the lower of the two cut-off harmonic numbers used
for comparison with the PIC spectrum in Fig. 3.1d, we obtain Epeax = 8.8 Ep.
This is in nice agreement with Fig. 3.1c.

3.1.4.4 Sensitivity of the nanobunching process to parametric
changes

Now, we have a look at the dependence of the harmonics radiation in and
close to the nanobunching regime on the laser and plasma parameters. Fx-
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Figure 3.7: Dependence of the intensity boost 7 = max(FE?)/ max(E?) and
the pulse compression I' = (wgr)~!, where 7 is the FWHM width of the
attosecond intensity peak in the reflected radiation, on ag. The laser amp-
litude ag is varied between 5 and 195 in steps of 10. Other parameters are
the same as in Fig. 3.3b.

emplary, the laser intensity and the pre-plasma scale length are varied here.
The pulse duration however will be left constantly short, so that we can
simply focus our interest on the main optical cycle. For longer pulses, the
extent of nanobunching may vary from one optical cycle to another, which
makes a parametric study more difficult. We are going to examine two di-
mensionless key quantities: the intensity boost 7 = max(E?)/ max(E?) and
the pulse compression I' = (wp7)~!. It is straightforward to extract both
magnitudes from the PIC data, and both are quite telling. The intensity
boost 7 is a sign of the mechanism of harmonics generation. If the ARP
boundary condition Eq. (3.12) is approximately valid, we must of course
have 7 &= 1. Then again, if the radiation is generated by nanobunches, we
expect to see strongly pronounced attosecond peaks [see Eq. (3.39)] in the
reflected radiation and therefore n > 1. The pulse compression I' is defined
as the inverse of the attosecond pulse duration. In the nanobunching regime,
we expect it to be roughly proportional to 7, as the total efficiency of the
attosecond pulse generation remains 7ai0 < 1, compare Eq. (3.37). In the
BGP regime, there are no attosecond pulses observed without spectral fil-
tering. So the FWHM of the intensity peak is on the order of a quarter laser
period, and we expect I ~ 1.

In figure 3.7 the two parameters 1 and I' are shown in dependence of
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Figure 3.8: Dependence of the intensity boost 7 = max(FE?)/ max(E?) and
the pulse compression I' = (wp7) ™!, on the plasma scale length in units of
the laser wavelength L/X in the lab frame. Except for the plasma scale
length, parameters are the same as in Fig. 3.3b. The plasma ramp is again
an exponential one o exp(x/L).

ag. Except for the variation of ag, the parameters chosen are the same as in
Figs. 3.1(c)-(d), 3.3(b) and 3.6.

First of all we notice, that for all simulations in this series with ag > 1,
we find > 1. Thus, Eq. (3.12) is violated in all cases. Since we also notice
I'> 1 and I' ~ 5, we know, that the radiation is emitted in the shape of
attosecond peaks with an efficiency of the order 1. This indicates, that we
can describe the radiation as CSE. The perhaps most intriguing feature of
Fig. 3.7 is the strongly pronounced peak of both curves around ag = 55.
We think that because of some very special phase matching between the
turning point of the electron bunch and of the electromagnetic wave, the
electron bunch experiences an unusually high compression at this parameter
settings. This is the case that was introduced in subsection 3.1.4.1.

Figure 3.8 shows the two parameters n and I' as functions of the plasma
gradient scale length L. It is seen that both functions possess several local
maxima. Further, 7 and I' behave similar apart from one runaway value at
L = 0.225)\, where the FWHM peak duration is extremely short, but the
intensity boost is not as high. A look at the actual field data tells us that in
this case the pedestal of the attosecond peak is broader, consuming most of
the energy. This deviation might e.g. be caused by a different, non-Gaussian
shape of the electron nanobunch.
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The maximum of both functions lies around L = 0.33\, the parameter
setting analyzed in detail before. In the limit of extremely small scale lengths
L < 0.1\, n and I' become smaller, but they remain clearly bigger than
one. Thus the reflection in this parameter range can still not very well be
described by the ARP boundary condition. For longer scale lengths L >
0.8\, both key values approach 1, so the ARP boundary condition can be
applied here. This is a possible explanation for why the BGP spectrum
(3.24) could experimentally measured at oblique incidence [46].

3.2 Fine Structure in Relativistic Harmonics Spec-
tra

In section 3.1, theoretical models of surface HHG were discussed. From these
models we were able to compute the envelope of the harmonic spectrum, but
they do not tell anything about the fine structure of the individual harmonic
lines. The fine structure provides additional details about the laser-plasma
interaction on the femtosecond timescale and thus may serve as a useful
diagnostic. However, to utilize it, a thorough understanding is needed at
first. This section aims to provide this understanding.

In subsection 3.2.1, we briefly discuss the fine structure occurring in the
moderately relativistic regime. In the highly relativistic regime, the spectral
fine structure is closely related to the phase of individual attosecond pulses
inside the generated pulse train. Therefore, we examine the dependence of
this phase on laser amplitude and plasma density in subsection 3.2.2. Next,
we relate this to the chirp of the relativistic harmonics (Sub. 3.2.3) and
calculate its footprint in the spectral fine structure (Sub. 3.2.4), which is
well accessible in experiments. Such experiments have been conducted at
the ARCTURUS facility in Diisseldorf. In subsection 3.2.5, we report about
how they substantiate the presented theory.

3.2.1 Spectral fine structure in the moderately relativistic
regime

At moderate intensities, modulations in the spectral fine structure such as
half integer harmonics are mainly caused by parametric instabilities in the
underdense part of the pre-plasma.

Parametric instabilities, such as stimulated Raman scattering and the
two plasmon decay in the underdense pre-plasma lead to creation of plasmons
at about half the laser frequency [3]. These plasmons can then recombine
with the laser or harmonics photons via sum frequency mixing, leading to side
bands or spectral lines at half-integer multiples of the fundamental [55, 56].
This mechanism is prevalent for moderate intensities ag ~ 1, longer pulse
durations ¢ > )\ and extended pre-plasmas.
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Moderate broadening of the harmonic lines may also be caused by the
inherent chirp of the CWE process, see Ref. [57|. This chirp arises due to
the dependence of the excursion times of the Brunel electrons. For higher
intensities, the excursion times are longer, thus the attosecond pulses are
emitted with a longer delay. Assuming a bell shaped temporal profile of the
laser pulse, this leads to a negative (blue to red) chirp.

At higher intensities ag > 1, the relativistic ponderomotive force of the
laser sweeps away all electrons from the underdense plasma regions. There-
fore, parametric instabilities play no important role anymore. Also, the CWE
mechanism looses importance as the relativistic effects take over. However,
for these pulses, there is again a mechanism that leads to a variation of the
phase of the attosecond pulses depending on the temporal variation of the
laser intensity. This can lead to heavy broadening and modulation of the
harmonic lines, particularly for extremely short pulses et 2 A. Let us now go
on to discuss this mechanism in detail. We begin by numerically computing
the dependence of the phase of the attosecond peaks on the laser intensity
and other parameters.

3.2.2 Attosecond peak phase in the highly relativistic regime

This subsection is divided into the investigation of normal incidence and the
investigation of s- and p-polarized oblique incidence.

3.2.2.1 Universal phase relation in normal incidence

We start by examining the case of normal incidence on a perfectly steep
plasma boundary. To begin with, a suitable definition of the “phase of the
attosecond pulse” is needed.

Having another look at Fig. 3.1(a), showing a quite typical case of the
reflected electric field in normal incidence HHG, tells us what to do. Due
to the discontinuities in the function FE,(t), the time derivative possesses
clearly pronounced peaks. Therefore, we define the “attosecond phase” ¢ as
the position of the maximum of the time derivative of the reflected electric
field 9, E,.. Later on (Sec. 3.3) we will see, that 9y F, also happens to play an
important role in the computation of the far field. ¢ is normalized in a way,
that ¢ = 0 if there is only the Guoy phase shift in the case of simple non-
relativistic reflection from an infinitely dense surface. With this definition,
we measured ¢ for a huge range of densities N = 20...450 N, and laser
amplitudes ag = 0...450. The result is displayed in Fig. 3.9.

Very short pulses (7 = 27/w) were used, so that the surface remained
intact during the interaction even for high intensities. The phase of the
incoming laser pulse is chosen in a way so that E; = 0 at the maximum
of the envelope, thus the attosecond peak is located close to the maximum
of the envelope. The attosecond phase ¢ is plotted against the inverse S-
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Figure 3.9: Phase dependence of the attosecond peak on the inverse S-
parameter, S~! = agN./N, under normal incidence.

parameter (see Ref. [49]) S™! = agN./N. For all simulations in the highly
relativistic regime ag > 1, we find an excellent agreement with the fit

¢=275"1-0.32, (3.40)

while in the low intensity limit S~! — 0 the phase shift tends to the value ¢ =
acot((N/N. — 2)/(2y/N/N. —2)), which is expected from non-relativistic
optics, approving the correctness of the PIC calculations once again.

Physically, the phase shift ¢ can be understood as a consequence of the
electron surface being pushed inside the plasma by the laser. If the electron
surface is pushed in to a depth of A, we expect the phase to experience an
additional shift oc A. Let us devise a rough model in order to understand the
linear scaling of ¢ with S~!. Therefore we assume that there is a pressure
balance between the ponderomotive force fpong o< ag of the laser and the
electrostatic restoring force foq = qFE o« N2A? of the plasma. Equalizing
both terms yields A ~ ag/N and consequently, a linear dependence of ¢ on
St

Note further, that in the ultrarelativistic regime the function ¢ is indeed
completely independent of the absolute plasma density. This is the clearest
footprint of the S-similarity [49] in laser-overdense plasma interaction ob-
served so far.
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Figure 3.10: Phase dependence of the attosecond peak on the inverse S-
parameter in the simulation frame, szl = aoNC(S)/N(S), under s-polarized
oblique incidence; density N and laser amplitude ag are varied. In relation
to the laboratory frame S-parameter, Sg scales as Sg = S1/cos®#. Both
the phase of s-polarized and p-polarized generated harmonics is displayed.
The angle of incidence is 6 = 45°

3.2.2.2 Phase behaviour at oblique incidence®

When considering oblique incidence, the polarization is crucial. For s-polarized
oblique incidence, we retain a behaviour similar to the one observed under
normal incidence. For p-polarized incidence, the behaviour changes in many
ways. We analyze both cases using 1D PIC simulations in a Lorentz trans-
formed frame (see App. B.2).

Consider Fig. 3.10. As in the case of normal incidence, we confirm the
dependence on the S-parameter with high accuracy in the ultrarelativistic
regime. If the density is varied, but the ratio S~' = agN./N is kept constant,
there is no change in the attosecond phase. We also see that there is virtu-
ally no difference between the phase of the p-polarized and the s-polarized
generated harmonics. This is evidence that they both are generated due to
the same physical mechanism. They are not generated at separate phases as
are CWE and ROM pulses in the weakly relativistic regime [44].

Further, as in the normal incidence case, an approximately linear depend-
ence on S~! is found. This can be understood, as the mechanism leading
to the indention of the electron plasma surface is basically the same as for
normal incidence: There is a pressure balance between the ponderomotive

5The results presented in this section have been obtained in cooperation with Sebastian
Miinster.
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Figure 3.11: Phase dependence of the attosecond peak on the inverse ef-
fective S-parameter under s-polarized incidence, angle of incidence 6 and
laser amplitude ag varied. The effective S-parameter is defined as Seg =
S,/ cos? 0 = Sg/~ to bring out the consistent linear dependence. Here, only
the phase of the s-polarized generated harmonics is displayed since the one
for the p-polarized harmonics almost agrees (see Fig. 3.10).

light pressure and the electrostatic force.

In the laboratory frame however, the ponderomotive light pressure is
expected to be weaker compared to normal incidence, since the laser does
not hit the surface head on, but under an angle . Seen in the simulation
frame, the ions and the electrons possess currents in opposite directions.
This generates a magnetic repulsion, counteracting the electrostatic restoring
force. Effectively, it leads to a mitigation of the electrostatic force by a factor
of 1/~. Therefore we expect, that the scaling in s-polarized oblique incidence
should remain independent of the angle 6 if we consider it a function of
Sett = Ss/v = S/ cos? 0.

This can well be confirmed by the numerical results depicted in Fig. 3.11.
We conclude, that for s-polarized incidence, the phase of both the s-polarized
and the p-polarized fraction of the generated harmonics is determined only
by the effective S-parameter Seg = agN./(N cos®6) and does not depend
on ag, N and 6 separately.

For p-polarized incidence, matters are more complex. In addition to the
ponderomotive force, the surface is also pushed in and pulled out directly by
the longitudinal electric field component of the laser. Numerical results are
shown in Fig. 3.12.

Despite of the highly complex interaction, the attosecond phase ¢ again
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Figure 3.12: Phase dependence of the attosecond peak on the inverse S-
parameter in the simulation frame under p-polarized incidence, angle of in-
cidence 6, density N and laser amplitude ag are varied.

depends only on the S-parameter, not on ag and N separately. The slope is
however not linear anymore. As we can see from Fig. 3.12, the non-linearity
increases with the angle of incidence 6.

Note further that in the case of p-polarized incidence, the duration of
the pulse may also play an important role. Oblique p-polarized incidence
can lead to the generation of very strong quasi-static magnetic fields close
to the surface. Therefore, memory effects are present and ¢ is not just a
function of the instantaneous intensity but a functional of the whole history
of the incident field. In section 3.2.5, we will show an example of this highly
interesting effect.

3.2.3 Evidence of harmonic chirp in PIC simulation

As we have just seen, the phase of the attosecond pulses generated from
overdense plasmas depends on the S-parameter of the interaction. Because
of the relativistic radiation pressure of the laser pulse, the electrons are
pushed inside the plasma during the rising edge of the laser pulse, causing
an initial red shift of the reflected light. Later, the electron fluid will return
to its original position and therefore cause a blue shift. This shifting of
frequencies is called harmonic chirp”.

"In addition to the Doppler shift due to the physical displacement of the electron
surface, for an extended demnsity gradient there is also a “virtual” Doppler shift due to

the motion of the reflecting surface because of the variation in relativistic transparency,
compare Ref. [56]. However, we do not intend to further distinguish these phenomena
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Figure 3.13: Transverse magnetic field component B, of a laser reflecting and
generating harmonics at an overdense plasma surface at normal incidence.
The dashed line highlights the motion of the reflecting surface, fitted by a
Gaussian function, corresponding to Eq. (3.46) with a = 1.35. Parameters
are: laser amplitude ag = 10, duration ¢ = 5\; sharp edged plasma with
density n, = 20n, starting at x = 1 A, fixed ions.

The motion of the reflecting surface can be followed in an z-t-colourscale
image of the transverse magnetic field component. Figure 3.13 shows such
an image for a PIC simulation of normal laser incidence on a perfectly sharp
plasma boundary. Realistic cases with oblique, p-polarized incidence on a
plasma with a finite density gradient will be discussed in subsection 3.2.5.
In our simple case we see that the motion of the surface is well described
by a Gaussian function, i.e. the surface displacement is proportional to the
instantaneous laser amplitude. This agrees with the observations made in
subsection 3.2.2 with even shorter laser pulses.

As a result, the reflected radiation contains a positive chirp. This chirp
can be made visible in a time-frequency image (or spectrogram). To compute
the spectrogram, the time-series data from the PIC simulation is multiplied
with a bell-shaped window function that is gradually moved over the data.
Then, spectra of the products are calculated, yielding the spectrogram.

In Fig. 3.14 such a spectrogram is shown. The data stems from the same
simulation as the previous figure. The chirp from red to blue is clearly visible
in the fundamental and all harmonics shown. The higher the harmonic
number, the more pronounced is the chirp. This is due to the nature of
the Doppler effect. Because the relative Doppler frequency shift Aw/w is
constant, the absolute shift Aw is proportional to the frequency. Further

here, since their effect on the reflected radiation is essentially the same.
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Figure 3.14: Spectrogram with logarithmic colourscale of the reflected ra-
diation. Simulation parameters are the same as in figure 3.13. For the
computation of the spectrogram, a Blackman-Harris window with a width
of about eight laser periods was used.
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note that the positive chirp (from red to blue) observed here distinguishes
this relativistic regime from the CWE regime, where a negative chirp (from
blue to red) is observed [57].

3.2.4 Spectral footprint of harmonic chirp

In the time integrated spectrum the chirp is visible in the line structure.
Due to the dependence of the Doppler shift on w, we also expect the line
structure to vary according to the spectral region.

To describe this structure analytically, assume the radiation is given as
a sequence of attosecond pulses emitted at the times ¢ with identical shape
f(t) but possibly different amplitudes Ej, corresponding to the laser envel-
ope:

E(t) =) Ey f(t—t). (3.41)
k

Now we Fourier transform Eq. (3.41) and take the absolute square to
arrive at the spectrum:

2

I(w) = |f(w)? : (3.42)

E Eke—iwtk,
k

J(w)

where f(w) denotes the Fourier transformation of the attosecond pulse shape
function f(t). Its absolute square | f(w)|?
ope that has been discussed in Sec. 3.1. Here, we concentrate on the second
factor J(w) that represents the spectral fine structure.

In the trivial case of equidistant pulses with constant intensities, i.e.
Ei =1 and t, = kTp = 27k /wy, the result is a sequence of sharp harmonic
lines at multiples of the fundamental frequency wg. Such a spectrum oc-
curs for harmonics generated by comparatively long laser pulses (picosecond
range) with moderate intensities®. Early experiments on surface harmon-
ics generation worked with such pulses and obtained spectra close to this
prediction, compare e.g. Ref. [34].

The spectrum changes as pulses become shorter and more intense. As
described above, the harmonics move from a red-shifted to a blue-shifted
phase due to the Doppler effect of the averaged surface motion. To get a
first impression of the effect on the spectra, let us consider two trains of pulses
with a slightly different periodicity T7 and T5. Both pulse trains will produce
a train of harmonic lines corresponding to their repetition frequencies w; =
27 /T; (i € {1,2}). The harmonic lines will then interfere with each other.

corresponds to the spectral envel-

8Note though, that in this regime the line structure may be affected by other effects,
such as parametric instabilities in the underdense pre-plasma, as was explained in subsec-
tion 3.2.1.
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Figure 3.15: Spectral fine structure of as-pulse train with two different fre-
quencies w; = 0.95wy and we = 1.05wgy. The pulse train contains 9 pulses.

Provided they possess a finite linewidth dw and the difference between the
two interfering frequencies is small in the sense A = ws — w K dw, we can
calculate the frequency period € of the occurring interference pattern by
setting Q = nwy = (n+1)w; and therefore Q ~ w3 /A, where wy = (w1 +w2)/2
is the centre frequency.

Fig. 3.15 shows the actual spectrum J(w). The figure confirms the ana-
lytically evaluated modulation frequency of £ = 10wg. The first few lines
clearly pronounce multiples of the fundamental frequencies, then the lines
become broader and at around 5wg, we observe two lines per harmonic.
Around 10wp, we observe one peak per harmonic again, but this time at
half integer frequencies. After that, the structure repeats, shifting back to
integer harmonics around 20 wy.

Certainly, in reality the period of the as-pulses does not change abruptly,
but continuously. Let us therefore consider a linearly chirped train of atto-
second pulses:

2
t = = (k: - ﬁk:Q) , (3.43)
wo m
where kK = —m ... m. Note that the parameter S represents the maximum

cycle averaged velocity acquired by the reflecting surface. Inserting (3.43)
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Figure 3.16: The model from Eqs. (3.42) and (3.43), using |f(w)| = 1 and
m = 64 throughout. Spectra are smoothed by convolution with a Gaussian
function of FWHM Aw = 0.1 wy.

into (3.42) we arrive at

S 2mk 27k?
ZEk exp(—iwty) =1+ 2ZCOS < i w) exp (zﬂwﬁ> . (3.44)
% el wo mwo

The resulting spectra are depicted in Fig. 3.16. Again, we see a periodic
modulation of the spectrum. Because of the continuously changing period
lines also broaden, especially in the high frequency range. This leads to a
decay of the modulation amplitude. Further, a quasi-continuum is observed
at the spectral regions where two harmonics per period were observed with
the discrete frequency model. The modulation period corresponds to the
frequency difference A between the extreme ends of the linear chirp and
therefore is proportional to the maximum surface velocity. Thus, it is possible
to extract physical information from the line structure. If the reflecting
surface attains a velocity of # (in units of ¢), we can expect large scale
modulations in the line structure with a period Q given by

wo

Q= 15 (3.45)
Let us now reconsider the example from the previous subsection 3.2.3.
From Sec. 3.2.2 and also Fig. 3.13 of this section, we learn that the phase of
the reflected radiation depends roughly linear on the laser field. Therefore,
we can directly relate Ej, and tj to the envelope g(t) of the laser. At normal
incidence we further expect two attosecond pulses per period with alternating

sign. This leads us to the model:

ty ~ wmk/wy+ ag(mk/wp)
B, ~ (=1*g(rk/wo). (3.46)
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Figure 3.17: Comparison of the line structure from the fifth to the ninth har-
monic (a) from PIC data and (b) due to Egs. (3.42) and (3.46). Simulation
parameters corresponding to the blue line in (a) are the same as in Figs. 3.13
and 3.14, the red line in (a) corresponds to the same set of parameters except
for n, = 50 n..

Inserting Egs. (3.46) into Eq. (3.42) yields the fine structure of the spec-
tral lines. For S = n./agn. 2 1, the model parameter o can be determined
from the linear slope in Fig. 3.9 (or Eq. (3.40)). Therefore, a = 1.35 corres-
ponds to S =2 and a = 0.54 to S = 5.

Now we can compare the simple model to spectra obtained from PIC
data. As shown in Fig. 3.17, this comparison shows good qualitative agree-
ment. Remaining differences can arguably be attributed to the non-linear
dependence of the attosecond phase and the harmonics intensity in the only
moderately relativistic interaction at the edges of the pulse, which are not
included in the simple model.

We conclude, that the line broadening observed in relativistic harmonics
spectra can to a large extent be explained by the chirp due to unequal spa-
cing of the attosecond pulses. It does not imply a loss in coherency of the
individual attosecond pulses.

3.2.5 Experimental confirmation of harmonic chirp®

Let us now have a look at a set of parameters derived from real experiments
carried out at the Diisseldorf ARCTURUS laser facility. The laser is ob-
liquely incident under an angle of 45° and the light is p-polarized with an
estimated peak amplitude of about ag = 8. Two different kinds of plasma
mirrors were used to improve the laser contrast ratio: the AR' mirror lead-
ing to a high contrast and an extremely steep density gradient and the pol-

9The results presented in this section have been obtained in cooperation with colleagues
from the ILPP in Diisseldorf and the I0Q at the Friedrich-Schiller University in Jena.
Yanti-reflex coated, 0.1% reflectivity
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Figure 3.18: Plasma density profiles corresponding to experiments at the
Arcturus laser facility using AR and BK7 type plasma mirrors. The blue
crosses (AR) and circles (BK7) represent the results of the Multi-FS hy-
drocode calculations performed by Jens Osterholz, the black solid (AR) and
dashed (BK7) lines represent the approximations by double exponential func-
tions used in the PIC simulations. All magnitudes are shown in the Lorentz
transformed simulation frame (see App. B.2).

ished BK7 glass'! yielding a medium contrast and a little less steep density
gradient. The profiles created by the laser pre-pulses were computed using
the Multi-FS|[32] hydrocode, the results are visualized as blue markers in
Fig. 3.18. For use in PIC simulation, the hydrocode results were approxim-
ated by double exponential density profiles of the type
no(z) = {exp [a(z — x0)] +exp [b(z — x1)] (x < x2) ’ (3.47)
ng (x > x2)

as indicated by the black lines in Fig. 3.18.

Figure 3.19 shows the transverse magnetic field from the interaction.
Compare this to Fig. 3.13. The strong temporal asymmetry is conspicuous:
Instead of instantly returning to its initial position as in the normal incidence
case (Fig. 3.13), the electron surface remains indented. The static magnetic
field, created by the current of the Brunel electrons, holds the electrons
inside.

Because of this temporal asymmetry and the non-linear dependence of
the phase on the amplitude, Eq. (3.46) ceases to apply here. To reproduce
the exact spectral shape in our model would therefore require to exactly

Y 4% reflectivity
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Figure 3.19: Colourscale image of the transverse magnetic field component
B, as a function of time ¢ and space x, overview and detail. The dashed
lines in the detail graphs denote the part of the surface motion used to
model the spectral chirp. The data stems from simulations with a realistic
set of parameters: The incident laser has a Gaussian temporal profile a =
ap exp(—t?/72) with amplitude ag = 8.1 and pulse duration 7 = 10\/c for
both subfigures. The density profiles used are displayed in Fig. 3.18, here
(a) corresponds to the AR and (b) to the BK7 plasma mirror.
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trace the surface motion with a non-elementary function. The purpose of
our simple model is however not to exactly reproduce the spectrum, but to
extract some crucial features. Our aim is to provide clear evidence that the
modulations in the experimental and PIC spectra are caused by the unequal
spacing between the attosecond peaks and to show, which information can be
gained from the spectra. We therefore design the model as plain as possible,
leaving only two free parameters 5 and m. We concentrate on the main phase
of harmonic generation ¢t = 30...45 A\ /c and approximate the surface motion
during this phase by a parabola, corresponding to a linear chirp. Also, the
temporal asymmetry is ignored, taking the sum in Eq. (3.44) always from
—m to m.

Considering the complexity of the actual, highly non-linear process and
the simplicity of the model, we observe an excellent agreement between the
experimental spectra, the PIC spectra and the analytically calculated ones,
compare Fig. 3.20. From the conjunction between the plasma motion in
Fig. 3.19 and the model spectra from Fig. 3.20, it becomes clear that the
modulations in the spectrum are caused by the unequal spacing between the
attosecond pulses within the generated pulse train.

Another interesting detail is the slight redshift to be observed in exper-
imental [Fig. 3.20(b)| and PIC [Fig. 3.20(d)| data, in particular between
the 15th and the 25th harmonic. This overall redshift is a footprint of the
aforementioned temporal asymmetry in the femtosecond plasma dynamic.
Therefore, it witnesses the self-generated static magnetic field.

Let us now estimate the surface velocity from the experimental spectra,
employing Eq. (3.45). In the “medium contrast” case, we observe a transition
from integer harmonics in the region up to the 25th order to half-integer
harmonics in the region beyond the 30th order. In between, the lines merge
into a quasi-continuum. Thus, the modulation cycle is about €2 ~ 27wy, and
the cycle averaged surface velocity is in the order of 0.01 c.

We conclude that the harmonic spectrum is rich in information about
the plasma dynamics on the femtosecond timescale. In the presented exper-
iment, the influence of the laser contrast on the pre-plasma scale is clearly
reflected in the harmonics chirp and thus, in the spectral fine structure. From
modulations in the spectrum, we can estimate the cycle averaged velocity of
the electron plasma surface during its interaction with the main pulse.

3.3 Relativistic Harmonics in 3D Geometry

Up to now, we studied the theory of surface HHG in a simplified 1D geometry.
This chapter is dedicated to the investigation of harmonics spectra and the
attosecond pulses in realistic 3D geometry. There are two new groups of
phenomena to be considered:

1. Due to the extremely broad spectrum of the generated radiation, dif-
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Figure 3.20: Comparison of (a)-(b) experimental, (c)-(d) PIC and (e)-(f)
model spectra according to Egs. (3.42) and (3.43). The left column rep-
resents the experiment conducted with the AR plasma mirror (high con-
trast, very short pre-plasma) and the corresponding simulations, the right
column represents an experiment conducted with the BK7 plasma mirror
(medium contrast, slightly longer pre-plasma) and the corresponding simu-
lations. Parameters in (c) and (d) are the same as in Fig. 3.19. Parameters
chosen in model: (e) § = 0.0028, (f) B = 0.011, |f(w)] = w¥3 and m =7
for both. PIC and model spectra were smoothed by convolution with a Gaus-
sian function of FWHM Aw = 0.15wq for the sake of better comparability
with the spectrometer data. Intensity units within one row are comparable,
but non in between the rows.
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fraction will exert a major influence on the spectrum in the far field.
Although the photon flux through a surface surrounding the whole
solid angle of 27 in front of the plasma remains constant for each fre-
quency, we expect the radiation field to be inhomogeneous so that the
spectrum changes as a function of position. Firstly, because of the
different diffraction lengths of the harmonics, and secondly, because
the harmonics field distribution at the plasma surface may differ in
intensity and phase from that of the driving laser. It is our main con-
cern to investigate these phenomena since they may lead to very useful
applications.

2. For very tightly focused laser pulses (o ~ \), 3D effects may play a
role in the physics of the harmonics generation itself, so that 1D theory
is not applicable anymore. We discuss the transition to this regime in
section 3.3.4.

Two works [22, 58] precede the study of this section, which is based on the
author’s own work Ref. [12, 59]. The letter [58] by Gordienko et al. studies
the coherent focusing of the surface harmonics radiation under strongly ideal-
ized conditions, and Naumova et al. [22]| concentrate on extremely tightly
focused (“A3-regime”) pulses. Here, we present a broader overview of 3D
phenomena that play a role in HHG experiments.

We begin with some analytical estimations about how the harmonics
spectrum changes due to diffraction in vacuum (subsection 3.3.1). Then
(subsection 3.3.2), we verify the assumption of “locally independent” HHG,
to see down to which focal spot sizes 1D theory is still applicable for the
generation process itself. We propose to exploit diffraction effects as “spatial
spectral filters” (subsection 3.3.3) - an alternative or supplement to spectral
transmission filtering to unveil the attosecond pulses in the harmonics radi-
ation. The coherent focusing of harmonics (CHF), as proposed in Ref. [58],
is a promising pathway towards extremely strong fields, perhaps reaching up
to intensities that should allow us to observe exotic effects such as non-linear
vacuum polarization [6, 60], predicted by quantum electrodynamics (QED).
In subsection 3.3.4, we discuss it, thereby considering a more realistic setup
compared to the original proposition in Ref. [58].

3.3.1 Harmonics spectrum changes due to vacuum propaga-
tion

Vacuum propagation exerts an intriguing influence on high harmonics radi-
ation generated from solid surfaces. We start with simple analytical estima-
tions in order to illustrate this. Further, we aim to give an idea of how these
effects might be harnessed to work in our favour.

We begin by considering a linearly polarized Gaussian laser pulse nor-
mally incident onto a planar and sharp-edged overdense plasma surface. The
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generated harmonic spectrum can be approximated by a power law every-
where close to the surface, so that Inear(r, w) = Iy(r) (w/wp) P for w > wy,
where the exponent p depends on the exact HHG mechanism, e.g. p = 8/3
in the BGP case (see section 3.1.2.3). If we neglect the intensity dependence
of absorption, Iy(r) is proportional to the intensity of the incoming beam,
and therefore Gaussian.

Let us at first regard the idealized case that the phase of the generated
harmonics does not depend on r. Since the frequency w is of course very
different for distinct harmonic orders but the focal spot size o is the same for
all of them, we easily find that the beam divergence 6 = fywg/w is inversely
proportional to the harmonic order. The high orders are emitted into a much
smaller cone than the lower orders. On the optical axis, the spectrum in the
far-field is therefore expected to show a much stronger pronunciation of high
harmonic orders compared to the spectra obtained within 1D models.

Let us therefore evaluate the development of the spectrum on the optical
axis. We are also interested in including the intensity-dependent frequency
cut-off in our estimate, so we start with:

w

-p
Inear(r,w) = Iy(r) (w) 0 ([a(r)]? we — w). (3.48)
0
Here, the cut-off frequency is assumed to have a power law dependence on

the vector potential amplitude a(r) at a given point of the surface.

The general starting point for our computations of the far-field is the
Kirchhoff formula:

1

() = o yﬁd}x (G(F 7 )VH(F) — Y(PVG(F, 7)), (3.49)

with G(7,7) = exp(iw|F — 7|)/|7 — 7|. Specialized to the geometry of a
beam focused onto a planar surface, assuming cylindrical symmetry and
using F_ = 0.5(F, — B;) this becomes

Rina /72 2
F_(z,t)],_, = 1/ rdr o F_ (m =0,7t— M) , (3.50)
T Jo &

where || > Ry, ~ o is assumed. Equation (3.50) is specialized to planar
surfaces, but the results of the following calculations may easily be re-
interpreted for curved surfaces, as we are going to see in section 3.3.4.
Applying (3.50) to the harmonics generated by a Gaussian laser pulse as
given by Eq. (3.48) and no phase dependence on r included, we find the far
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field spectrum to be

Iww) = I (%)p+2)2(11‘1w>2

2
x w ap | We
(=) + (2
T, 2
~ OxQRl <w> —p+27 (351)
T, a9—>00 o wo

wherein xr; = 702 /) is the Rayleigh length of the fundamental.

Eq. (3.51) shows explicitly how vacuum propagation influences the harmon-
ics spectrum on-axis. Just by picking the right point in space in front of the
harmonics-generating surface, we can find a spectrum decaying two powers
slower than the spectrum predicted by 1D theory, i.e. (using the BGP expo-
nent p =8/3) I x w~2/3_ Physically, the reason for this is the much stronger
collimation of the higher harmonic orders.

Another interesting detail is that the sharp spectral cut-off in the near-
field yields a soft roll-off in the far-field. Provided the far field spectrum
can be measured accurately, conclusions on the constants ¢ and w., which
determine the general intensity dependence of the harmonics cut-off (see Eq.
(3.48)) in the near-field are possible in principle.

However, the above calculation presumed that there is no phase depend-
ence on the distance from the optical axis r in the near field. In section 3.2.2,
we have seen that the attosecond phase ¢ depends on the S-parameter of the
interaction. Therefore, to produce the effect explained above, it is necessary
to keep the local S-parameter constant along the surface. In section 3.3.3, we
discuss methods to achieve this, employing PIC simulation to substantiate
our proposal.

Now let us estimate the consequences of the variation of the local S-
parameter along the surface in the case of a Gaussian laser pulse, normally'?
incident on a surface with steep density gradient up to a constant density.
Due to the curved phase surface, we expect the harmonics pulse to self-focus.
Applying Eq. (3.40), we can calculate the curvature of the generated phase
surface and consequently, the self-focusing distance x:

S
Top = T‘;xm. (3.52)

Due to this self-focusing, the divergence angle of the individual harmon-
ics is not simply proportional to the harmonic wavelength anymore. Equa-
tion (3.40) allows us to derive an expression for the divergence angle:

0\ = 0o \/<;0>2 + (25(?)2 (3.53)

12For s-polarized oblique incidence, the results remain valid when replacing So by the
effective S-parameter Seg = So/cos2 0.
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wherein 6y is the solid angle, from which the laser itself is focused.

3.3.2 Checking the assumption of locally independent gen-
eration

In the above calculations we have assumed, that the generation process it-
self can be described by the 1D models discussed in section 3.1. Only to
investigate the diffraction of the emerging radiation, we consider the real 3D
geometry. In other words, we presumed that the harmonics are generated
locally independently at each point of the surface. This means that the radial
field gradient has no influence on the harmonics spectrum and phase at a
certain point. There is no transverse energy transfer. Mathematically this
condition can be expressed as

Ff(y?’z)t) :F*[F+|y/:y7z’:z7t/§t] (354)

where F_ stands for the reflected field and F for the field of the incoming
radiation.

Note that this assumption also allows us to perform 1D instead of 3D
PIC simulations, even if we are interested in the far-field of a realistic 3D
geometry. Assuming the validity of Eq. (3.54), we can merge the results
of a series of 1D simulations, utilizing Eq. (3.50) to obtain the far-field. 1D
simulations are computationally much cheaper and so they can be performed
with a higher resolution in the same amount of time on the same computer.

Let us now check in which parameter region the condition (3.54) is sat-
isfied. The reflected field is of course generated by plasma electrons. The
electrons are driven by the electromagnetic field of the laser pulse. In the
ultra-relativistic case, the size of the electron orbits is on the order of .
The scale length, on which the radiation intensity at the surface changes in
radial direction is the beam waist 0. Therefore, if 0 ~ A, the electrons might
mediate between regions of different intensities, endangering the validity of
Eq. (3.54). If o0 > A, the electrons are not able to travel this distance and
one expects that (3.54) is fulfilled.

We now compare results of 1D and 3D PIC simulations to verify this.
3D simulations were performed using the spot sizes ¢ = 5, 2, 1, 0.5 A, all
with the dimensionless laser amplitude ap = 30 and the plasma density
ne = 90n,, where n, = wgm/47re2 is the critical density. The laser pulse
is linearly polarized in y-direction. The reflected field in the 3-dimensional
PIC simulations was always recorded at a distance of 1\ to the originally
sharp-edged plasma surface. This field is directly compared to the result of
1D PIC simulations with the same parameters (61p3p). Anyway, for the
most tightly focused pulses the field recording distance is in the order of the
fundamental Rayleigh length so that a direct comparison with 1D PIC is
pointless. Instead of this, it can be compared to the far field calculated with
equation (3.50) from 1D results. For o = 1 A, the distance is already too big
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Table 3.2: Deviations from the assumption of locally independent harmonic
generation according to the measure (3.55).

a/A 51D,3D 5%,30 53/,2

5.0 0.011  0.018 0.016

2.0 0.011 0.019 0.036

1.0 - 0.036 0.115
0.5 0196 0.092 0.240

to compare directly but yet too small to use (3.50), so the value is missing
here.

Yet two more comparisons were performed. The absolute far field (x —
00) calculated by Eq. (3.50) from 1D and 3D PIC data is compared (613 ).
This method verifies the accuracy of our quasi-1D calculations of the far-field
directly.

The third comparison (J,,.) concerns the radial symmetry of the reflected
pulse. In the 3D geometry, it can in principle be broken because of the linear
polarization of the incoming laser pulse, but it obviously cannot be broken
as long as (3.54) holds. Thus this symmetry check provides another indirect
criterion for verifying (3.54). The fields compared are F_(z = 1\, y =
ovIn2, z =0, t) and F_(z = 1\, y = 0, z = 0v/In 2, t), both obtained from
the 3D PIC simulations.

The results of all these comparisons are collected in Tab. 3.2. The relative
deviations are measured using

s _ Jdtlat) = foP
S FATAGIEENFAGIE

This measure is 0 if fiand fo are identical functions and 1 if they are
completely uncorrelated.

(3.55)

It can be seen that deviations are very small for not too tiny focal spots
such as 0 = 5A. Thus, models based on Eq. (3.54) may be used for the vast
majority of today’s HHG experiments. Even in the case o = A\, Eq. (3.54)
still holds as a rough approximation. Our studies of even tinier focal spots
have shown, that the deviations from Eq. (3.54) are generally not favourable
for the generation of attosecond pulses.

We now go on to discuss diffraction effects, assuming the validity of
Eq. (3.54), which is correct for not too small focal spots in the sense explained
above.

3.3.3 Self-focusing and spatial spectral filtering using Super-
Gaussian pulses or Constant-S surfaces

In this subsection we would like to present the results of some numerical
experiments. These experiments were carried out with the 1D version of the
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Figure 3.21: Spectra, near- and far-field (z = oo) for different types of laser
pulses, normalized to the intensity of the fundamental. (ag = 20)

VLPL PIC code (App. B.1) in combination with a 3D cylindrical geometry
numerical propagator based on Eq. (3.50) to obtain the far-field on the optical
axis from each series of 1D simulations. The simulations were made with
HHG at a planar surface in mind, but in subsection 3.3.4 we are going to see
that all results can easily be re-interpreted to suit HHG at a curved surface
in confocal geometry. This is crucial in regard of the exciting possibilities
opened up by coherent focusing of the harmonics radiation.

We start with a simulation of a Gaussian laser pulse, given by a(x,r,t) =
ag Re [exp (iwo(z/c —t) — (t/7)* = (r/0)?)], normally incident onto a sur-
face with a steep and constant density profile. The laser parameters are:
ap = 20, 0 = 5\, 7 = 27/wy. The surface density is n, = 90n,., so that
the ultra-relativistic similarity parameter [49] Sy = n./(apn.) = 4.5 at the
maximum of the laser pulse.

The resulting spectra for the near and the far-field on the optical axis in
comparison to the analytical estimate (3.51) disregarding the phase variation
are shown in Fig. 3.21(a). It is seen, that there is still a big difference in
the slope of the spectrum compared to Eq. (3.51). Although the spectrum
in the far field decays slightly slower than the spectrum close to the surface,
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Figure 3.22: Self-focusing of a Gaussian pulse (ag = 20, 0 = 5A) in front
of a planar surface compared to focusing of a Super-Gaussian pulse (same
amplitude and power) to the same distance using a curved surface. The time
unit Ty = 27 /wy is just the laser period.

the improvement is far behind from what we could expect if the attosecond
phase remained constant along the surface.

In Fig. 3.22 we see what happens at an intermediate distance from the
surface. According to Eq. (3.52), the pulse should be self-focused at a dis-
tance of around z,y ~ 130A. Indeed, we observe that the pulse is self-
focused, and the self-focusing length is in reasonable agreement with the
analytical estimate. The achieved intensity is about four times the laser in-
tensity, and it is reached at a distance of about 100\ from the surface. Even
attosecond peaks can be seen, yet the contrast ratio is quite poor.

In order to improve the quality of these pulses, we should aim to keep
the attosecond phase ¢ - and thus the relativistic S-parameter - constant
alongside the surface. Basically, there are two possibilities to achieve this:

1. The use of laser pulses with sufficiently flat intensity distributions
across the focal spot, e.g. Super-Gaussian. This causes the part of
the laser pulse that contributes considerably to the HHG to be at a
nearly constant intensity level.

2. Varying the surface density in a way, so that S(r) = n.(r)/(a(r) n.) =
const.

For testing these ideas, we perform additional simulation runs: some of them
using Super-Gaussian laser pulses I o exp [—(r/c)*] or I o exp [—(r/c)?]
and some of them using a conventional Gaussian laser pulse, but a surface
with radially varied density so that the local similarity parameter remains
constant S(r) = 4.5. In the simulations with the Super-Gaussian laser pro-
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Figure 3.23: The integrand ®(r,t) = r O, F_(z = 0,r,t) from Eq. (3.50). The
colour scale is the same for both plots. Gaussian laser pulses with ag = 20
are used.

file, o was chosen in a way so that the laser power and amplitude are the
same as in the corresponding simulations with the Gaussian pulse.

The spectra obtained from these simulations are depicted in Fig. 3.21(b)-
(d). We see a great improvement compared to the unoptimized case Fig. 3.21(a).
Evidently, the spectra decay much slower in the far-field, reaching close to
the ideal I o w~2/? line that was expected from the analytical estimate
in subsection 3.3.1. The lower frequencies are filtered out by diffraction in
space. Therefore we may refer to these schemes as “spatial spectral filters”.

The advantage of the constant-S surface can nicely be seen in Fig. 3.23,
showing the integrand from which the far-field is calculated. The integration
to obtain the far-field is carried out along the path ¢/ = t — Va2 4+ r?/c.
Thus for the very far field in front of a planar surface, the integration path
becomes a straight line. The intensity of the integral becomes maximal if
the integrand is big over the whole integration path. Therefore we see, that
self-focused or defocused attosecond pulses are represented by curved lines in
our diagram, whereas non-self-focused attosecond pulses are represented by
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straight lines. Further, longer lines lead to higher peak intensities. With this
knowledge, the advantage of a constant-S surface can be easily understood
from Fig. 3.23. Notice also that for the constant-S surface the side peaks are
strongly defocused, yielding a better contrast ratio to the main peaks. For
Super-Gaussian pulses the image would look similar to Fig. 3.23(a), except
for that the upper part is stretched.

To liven up the picture of how the attosecond pulses emerge, we take
a look at the on-axis field at different distances x from the surface. For
Fig. 3.24 we choose a simulation with a constant-S surface, because the
process of “vacuum” attosecond pulse generation is most pronounced here.
While we depart from the surface together with the reflected radiation, we
see how the attosecond pulses get rectified and the whole rest of the radiation
is simply diffracted away from the optical axis.

Focusing these improved pulses using a confocal setting yields a much
better result than the self-focusing of a Gaussian pulse in front of a planar
surface as can be seen from Fig. 3.22. Here a Super-Gaussian pulse was
chosen, but the use of a constant-S surface leads to a similar effect, as shown
further below.

Let us now have a look at a broader range of parameters. In Fig. 3.25 the
intensity and duration of the attosecond pulses in the far-field is compared for
different laser amplitudes ag and all the proposed schemes. As shown in the
following subsection 3.3.4, the results can be applied for planar surfaces as
well as for focusing geometries. We compare the attosecond pulses in the far-
field of a planar surface or at the focal spot in front of a spherically curved
surface. We notice once again, that the Super-Gaussian laser pulse focal
spots and the constant-S surfaces yield a clear advantage for the attosecond
pulse generation.

In earlier works [31, 45|, transmission filtering has been suggested as a
technique to improve the quality of the attosecond pulses. Let us compare
this to our method of spatial spectral filtering via shaping of the laser pulse
focal spot.

Applying transmission filters directly to the results of 1D PIC calcula-
tions, as it has been done in previous works, yields a somewhat unrealistic
picture, since the filters have to be placed inside the far-field in a real exper-
iment. In this work we consider the 3D geometry and apply optical filters
to the far-field radiation.

We compare attosecond pulses generated by lasers with a Gaussian and
a Super-Gaussian focal spot, see Fig. 3.26. The first thing to notice is that
filtering influences the temporal structure of the attosecond pulses. While the
attosecond pulses in the unfiltered far-field are pure half-cycle pulses, optical
filtering can generate single- or multi-cycle pulses, depending on the filter
frequency. Then, unlike transverse pulse shaping (see Fig. 3.25), transmission
filtering naturally leads to a decrease of the attosecond peak intensity. To
obtain a significantly shortened pulse, one needs to use filters with a very
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Figure 3.24: The reflected field on the optical axis, observed at different
distances = from the surface. Data from PIC simulation using a Gaussian
laser pulse with ag = 20 focused on a planar constant-S surface.
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Figure 3.25: Comparison of the intensity and duration (full width half max-
imum) of the far-field attosecond pulses for different laser intensities, radial
laser shapes and plasma surfaces. The intensity unit Iy = (agzg;/z)? is the
peak intensity value we would get at the same distance from the surface for
a Gaussian laser pulse with the same power and maximum vector amplitude
without the generation of harmonics. The time unit Ty = 27 /wy is the laser
period.

high threshold frequency, eating up most of the pulse energy. Nevertheless,
filtering leads to an improvement of the contrast ratio by a factor of about
3 for wyp, = 100wy.

To get the shortest possible pulse duration and the best contrast ratio, we
recommend to combine transverse pulse shaping with the use of an optical
filter. When attosecond pulses with a maximum peak intensity are required,
the transverse pulse shaping or constant-S surfaces combined with the proper
focusing geometry are the best option.

3.3.4 Optical scalings for harmonics focusing

In this subsection, we examine focusing geometries for the surface harmonics
radiation. In Ref. [58] it has been shown, that coherent harmonic focusing
(CHF) has the potential to produce unprecedentedly intense electromagnetic
fields. The created intensities may be so extreme, that they can be used to
explore exotic QED effects such as vacuum polarization or even electron-
positron pair creation [6, 60]. However, the conditions under which the
phenomenon was examined in Ref. [58] were strongly idealized: A perfect
spherical wave, uniformly illuminating a curved plasma surface with a large
solid angle of 2 = 1 and a tiny radius of R = 4\ was studied - something
that is not achievable with a focused Gaussian beam. Therefore, important
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Figure 3.26: The temporal structure of the attosecond pulses in the far-field
of a Supergaussian (left column) and a Gaussian (right column) laser-pulse,
both with the same power and peak amplitude ag = 50 in the focus. The
intensity is normalized so that the maximum in case of no harmonics and
no absorption for the Gaussian Laser would be at /Iy = 1. In the second
and third lines high-pass filters are applied. The filter function is a simple
step like function with a linear transition of the width § = wq, the threshold
frequency is wyp.
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Figure 3.27: Ilustration of the geometry underlying Eqs. (3.57), (3.58)

effects such as the variation of the laser intensity on the harmonics generating
surface were not taken into account. Here, we discuss CHF under more
realistic conditions.

In order to better understand CHF, we start by assembling some optical
scaling laws for the broadband harmonics radiation. These laws are imme-
diate consequences of Eq. (3.49). As the geometries and frequency spectra
involved in CHF may be unusual, we also make an effort to give conditions
of validity for the scaling laws in the cases when they are different from the
ones for the fundamental Kirchhoff integral (3.49).

Before we start considering curved surfaces, we have a look at what
happens, when the size of the focal spot is changed on a planar surface. So if
the laser field is focused onto a planar surface and the focal spot size is varied
but the maximum amplitude of the vector potential ag is kept constant:

FY0, r, t) = F'90, ar, t),

wherein « is the dimensionless factor describing the focal spot scaling, the

reflected radiation scales as!'?:

Therefore, as long as Eq. (3.54) holds, a variation in the focal spot size
will yield an exactly similar field structure in the far-field, just scaled in size.
Now we are interested in actively focusing the harmonics radiation. The
most straightforward way to do so is the use of a curved surface for HHG,
since it can do without relying on any optical components suitable for the
extremely broadband radiation. We consider a confocal geometry, in the

13To obtain the result (3.56), mo* /(4 \z®) < 1 must be assumed. Thus, for very high
frequencies and small distances z Eq. (3.56) may not apply anymore.
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sense that the field distribution FER) of the radiation on the curved surface

is the same as for the focal spot in the planar geometry FEOO)
and intensity. This can be written as:

F® (2 = /RZ— 12— R, r, t) = F™(0, r, 1),

where R is the radius of the curved surface. We find that the field in front of
the planar surface at the distance x is similar to that in front of the curved
surface at the distance x g, where o, and x g are related according to

- in both phase

1 1 1
— =+ = 3.57
TR Teo + R ( )

In this case, the field relation is

= FER)(xR, 0,t—axr/c) = ?FEOO)(QUOO, 0,t—2xs0/c). (3.58)
R
This result becomes exact for small focusing solid angles, but also in the
most interesting limit xr — R, which corresponds to the actual focal spot
when there is no self-focusing present. The scaling law allows us to simply
re-interpret all results obtained for a planar surface in subsection 3.3.3 to
such for a spherical®.
Next, we consider the variation of the focal distance, but keep the field
amplitude at the surface and the solid angle constant:

a0, = FO,00
= F0,t—ar/c) = aFD(0,t—r/c). (3.59)

So if the focal distance is varied, the intensity in the focal spot increases
proportionally to the input power. Since a higher intensity at the surface
generally creates a bigger number of harmonics and therefore leads to more
than linear amplification of the radiation in the focal spot, we should aim
for a focal distance as small as possible.

If the solid angle of the mirroring surface is varied, but the field amplitude
and the focal distance are kept constant, the intensity in the focal spot
increases stronger than the input power:

FR, a0, 1) = FY(R, 0,1
= 90,0 = o2FY(0, 1. (3.60)

This intensity gain is even stronger than the one achieved by the temporal
focusing gain due to HHG. Therefore, to maximize the focal spot intensity

"Of course, as long as the condition (3.54) holds.
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Figure 3.28: Suggested geometry for coherent focusing of the surface har-
monics radiation, produced by a Gaussian laser beam. Ideally, the plasma
surface should be designed in a way, that the S-parameter does not change
with the distance from the optical axis.

with a constant laser power, it is first needed to maximize the solid angle of
CHF. Of course, this solid angle is limited by the focusing geometry of the
driving laser itself. Second, the CHF distance should be minimized in order
to make maximum use of the temporal focusing gain due to surface HHG.
As shown in subsection 3.3.3, the use of a constant-S surface would be ideal
here, compare Fig. 3.25.

A focusing geometry that fulfils the above criteria is presented in Fig. 3.28.
The laser is focused to a distance of one Rayleigh length x g in front of the
HHG surface. The plasma surface is spherically curved with a radius of 2z
and the density of the surface is modulated in a way, that the S-parameter
S = ne/(aon.) is constant everywhere. The harmonics radiation will then
be coherently focused to a distance of 2z in front of the curved surface.

As an example, we have computed the output of this scheme for a laser
pulse with a peak intensity of Iy = 5 x 1024\7\//(?m2 as it is expected for
the European ELI (extreme light infrastructure) laser facility [5]. Here, our
PIC simulations predicted an intensity enhancement by a factor of 3000 with
the above geometry, yielding an impressive value of I ~ 1.5 x 1028W/cm2.
With such a field intensity, it should be possible to observe clear signatures
of QED vacuum non-linearities.

In this section, we have discussed the effect of diffraction on the HHG
radiation under realistic conditions. To make maximum use of these, tech-
niques to shape the focal spot or the plasma surface have to be implemented.
With these techniques, it may be possible to produce intensities that are
more than a thousand times higher than the conventional focusing intensity
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of the laser, opening up the possibility of verifying vacuum QED effects with
ultraintense laser systems.

Conclusions of Chapter 3

The reflection of relativistic light at overdense plasma surfaces, performing
a strongly non-linear oscillation, is currently one of the most promising can-
didates for the production of intense attosecond pulses.

We have taken a fresh look at the theory of their generation. The found-
ations of the supposedly well-known ROM model have been re-investigated,
yielding a clearer picture of the scope of application of the model. Further,
the model has been extended to higher order v-spikes, demonstrating the
possibility of modulated spectral structures and power law spectra I oc w™¢
with exponents ¢ < 8/3 even within the ROM model. The explicit formu-
lation of the TROM model and its comparison to the ROM model sheds
additional light on the physics of relativistic high harmonics generation.

A third model was motivated by numerical observations: amazingly dense
and narrow electron “nanobunches” may form at the plasma surface, emit-
ting coherent synchrotron radiation efficiently. This nanobunching regime of
relativistic HHG is optimal for attosecond pulse generation in the sense that
the generated pulses bear almost the full energy of the entire optical cycle of
the driving laser. Here, we expect a flat power law spectrum with ¢ < 4/3 up
to a smooth cut-off at a frequency which is determined either by the bunch
relativistic energy w,s o< woy? or by the nanobunch width wyp o< c/d .

We have also studied carefully the phase properties of the relativistic
harmonics, something that has largely been neglected so far. The relation
of the electron surface motion to the spectral fine structure has been in-
vestigated. It has been found that the spectral fine structure can deliver
valuable information on the motion of the electron surface on a femtosecond
timescale.

The phase properties are also crucial when considering the free space
propagation of the harmonic radiation. We have shown that diffraction can
be harnessed as a spatial spectral filter for the harmonics radiation by design-
ing the target surface or the laser pulse focal spot in the right way. This
way, attosecond pulses can be extracted efficiently without the use of optical
transmission filters.

Our study can further provide the basis for focusing schemes of the har-
monics radiation. CHF (coherent harmonic focusing) has the potential to
produce intensities that exceed the one of the driving laser by several orders
of magnitude. Our proposed focusing scheme was shown to yield an intens-
ity enhancement by a factor of 3000 with parameters as expected for the
ELI facility. Here, unlike previous studies, we took a realistic Gaussian laser
pulse geometry into account.
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Chapter 4

Coherent Thomson Scattering
at Laser Compressed and
Accelerated Electron Bunches

The relativistic Doppler effect offers a fundamental means of frequency up-
converting electromagnetic radiation. Light reflected by a mirror, that moves
with a velocity close to ¢ towards the incident light wave, is frequency up-
shifted by a factor of I' ~ 442, But where to get such a mirror?

In 1993, Esarey ef al. [61] mentioned the possibility of scattering light
from fast moving electrons to upconvert its frequency. However, in the in-
coherent regime, the conversion efficiency of this process is rather poor. To
greatly boost the efficiency, one needs to have a highly compressed bunch of
electrons, since only then the scattering process can become coherent. The
condition for coherency is, that the scale length of the electron bunch or its
density gradient needs to be of the order of the wavelength to be generated
or smaller. Since we target the VUV or even x-ray regime, this is much
smaller than what can be reached by commonly used techniques, including
conventional accelerators as well as laser-plasma accelerators.

However, laser acceleration of electrons in vacuum may provide a means
to reach these tiny bunch sizes. In this scheme, electrons are extracted
from a small droplet or a thin foil by a highly relativistic driver laser (ag =
eAg/mc? > 1). The electron bunch becomes accelerated and at the same
time compressed by the forces of the laser field. The acceleration can be
achieved either by the relativistic E x B-force of a conventional laser pulse,
as suggested in Ref. [62], or by the longitudinal field on the optical axis of
a radially polarized pulse [63], as suggested in Ref. [20]. In both cases, the
bunch is compressed because of the laser pulse acting as a “snowplough” on
the electrons. Spacecharge forces are counteracting the compression, thus
limiting the amount of charge that can effectively be compressed. Neverthe-
less, in a wide range of parameters the edges of the electron bunches density
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profile remain sharp, so that coherent Thomson scattering is still possible.

Consequently, two regimes of the discussed scheme can be distinguished.
In the first regime, discussed e.g. in Ref. [62], the bunch as a whole scatters
the radiation. Therefore, we refer to this regime as bunch scattering here. To
achieve the necessary extreme compression, the charge density of the target
has to be low enough so that Coulomb forces are negligible at least during
the first acceleration phase. In the second regime, discussed e.g. in [64-66],
the charge density of the target is higher. Although Coulomb forces are
large here, leading to a rapid expansion of the target, the edges of the bunch
may still be steep enough to scatter the radiation coherently for a certain
interval of time after the electrons have been separated from the ions. In
this chapter, we refer to it as the edge scattering regime.

In the edge scattering regime, the scattering efficiency is generally higher
than in the bunch scattering regime due to the higher amount of charge.
However, due to the rapid Coulomb explosion it is usually impossible to
utilize more than the first half-cycle of the driver pulse for effective accelera-
tion. Therefore, the bunch velocity is lower compared to the bunch scattering
regime. Further, the possible duration of the probe pulse to be scattered is
strictly limited.

In this chapter, we study the described scheme with an emphasis on the
transition between the bunch scattering and the edge scattering regime. We
use analytic models and PIC simulations to describe and analyze thoroughly
the important physical effects. In section 4.1, the basic ideas behind the
scheme are described. We show, that the snowplough effect in direct laser
acceleration is an ideal candidate for the generation of compressed electron
bunches for coherent scattering. We directly compare the two possible imple-
mentations of an “electromagnetic snowplough”, i.e. the use of longitudinal
field components on the one hand and the use of transverse components on
the other. In section 4.2, we move to the discussion of the schemes under
realistic conditions. Multidimensional effects and spacecharge repulsion play
a crucial role here. Finally, the conversion efficiency is estimated. Tech-
niques to increase the efficiency and gain further control over the generated
radiation are suggested and discussed. Reaching best possible control over
the temporal envelope of the driver pulse appears to be the most important
issue here.

4.1 Compressing Electron Bunches for Coherent Thom-
son Scattering (CTS)

Coherent Thomson scattering can be much more efficient than its incoherent
counterpart, since for coherent scattering the efficiency is proportional to
the square of the number of scatterers and not to the number itself, as
in the incoherent case. For a planar layer of resting electrons with a one-
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dimensional density structure the efficiency is, expressed in normalized units
25 2
n=m"|n(4m)[”, (4.1)

wherein 7(k) = N_;! [ N(z)e?**dx is the Fourier transform of the dens-
ity distribution, and x must be measured in units of the laser wavelength.
A smooth density profile may be approximated by a Gaussian, N(z) =

Ny n exp (— (m/A)2> For this sort of profile, the efficiency is

n=n°(nA)? e 8T, (4.2)

That means, in case of a smooth profile, coherent scattering is most
efficient for A% < 1/(872) ~ 0.01. The radiation is scattered at the bunch
as a whole, and we will refer to this type of scattering as bunch scattering.

However, it is interesting to also consider dengity profiles that are not
smooth, but contain a sharp edge and therefore cannot be approximated by
a Gaussian profile. If there is a sharp edge in the density profile with a scale
length much smaller than the scattering wavelength, it can be approximated
by a Heaviside function: N(z) = Nn©(x). The function yields a scattering
efficiency of

n?

=16 (4.3)

This sort of scattering at a density discontinuity provides a chance of
reaching reasonable efficiencies even without perfect bunch compression, and
we will refer to it as edge scattering.

If the electrons are moving fast in the direction opposite to the scattering
laser pulse, the frequency of the backscattered radiation will be upshifted by
the factor I' = (1 + (3;)/(1 — ;) because of the relativistic Doppler effect.
Now, the condition for coherency has to be considered in the rest frame of
the scatterers. Transforming it back to the laboratory frame, it yields the
condition

A

1= 3, < 1. (4.4)

We call A, g “effective bunch width”, since it is the normalized width
that effectively has to be considered when the bunch is to be used for backs-
cattering. Eq. (4.4) means, that the bunch length in the laboratory frame
has to be distinctly smaller than the wavelength to be produced. Since we
aim at VUV and x-ray radiation, this is a challenge indeed. But, as we will
see, the snowplough effect may provide a means for achieving the required
compression.

Aeﬂ‘ =

Let us start with a simple analytic argument. Assume a force moving
with constant speed v, - such as a plane electromagnetic wave - acting
on a small bunch of initially resting electrons. Further assume that the
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bunch charge is low, so that spacecharge effects can be neglected. The force
will then result in an acceleration « of the bunch electrons that retains the
translational symmetry of the original force: a(x, t) = a(x — vypt). If the
force accelerates the electrons in its own propagation direction, the bunch
will become compressed like snow in front of a snowplough. Considering
only the translational symmetry, we find, that the bunch is compressed to
the size

B (4.5)

This simple but highly remarkable result means that in the case vy, = c,
the effective bunch length A g is preserved during the entire acceleration
process. Thus radiation, which could initially be scattered coherently at the
electron bunch, can still be scattered by the accelerated bunch, though its
wavelength could be much smaller in the rest frame of the electrons. This
is the reason why the snowplough compression can be considered an ideal
candidate for the compression of electron bunches for CTS.

The question remains, which actual force implements such an accelera-
tion. Two options are discussed here:

e the longitudinal E x B-force, provided by the transverse fields of a
circularly or linearly polarized laser mode,

e the longitudinal electric field on the optical axis of a radially polarized
laser mode.

In both cases, the phase velocity vy, is only a little greater than the va-
cuum light speed ¢, so that the compression is close to ideal, as seen from
Eq. (4.5). More precisely: A Gaussian or Hermite-Gaussian TMy; laser pulse
takes on its maximum phase velocity in the focal spot, given by vp,,/c =
2%,/ (xr (g — gN/(27))), where zg = mo?/) is the Rayleigh length and
g = 1 for the Gaussian and g = 2 for the TMg; mode. Since the minimum
wavelength that can coherently be generated from an electron bunch is dir-
ectly related to its size and the minimum compression size is related to the
phase velocity via Eq. (4.5), we can estimate a lower limit for the focal spot
size that can be used to accelerate and compress an electron bunch that is
able to generate radiation with a certain wavelength \:

AL (4.6)
A g2\
This limitation is not a very strong one. When e.g. aiming at a wavelength
as small as \ = A/1000, using a foil with initial thickness Ay = 0.1\ and a
linearly polarized driver pulse, we get the condition o > 7\ - thus still rather
small focal spots are allowed.
Let us take a closer look at the direct electron acceleration and compres-
sion via the transverse electric field. We express the momentum in terms
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of the vector potential. This can be done by making use of the appropriate
laws of conservation derived from the Hamiltonian of the particular system.
For a plane wave we obtain the well known formulae:

P, = A, (4.7)
A2
P, = TL (4.8)

where P is the particle momentum, A | is the vector potential associated
with the electromagnetic wave and relativistically normalized units are used!.
Using (4.7) and (4.8), the Doppler factor for backscattered light can be

determined: 145
IDOR = 71— 5Z =1+ A7 (4.9)

Now we come to the acceleration via longitudinal field. For a particle
exactly on the optical axis of a radially polarized pulse the transverse mo-
mentum is zero, as there is no transverse field on the optical axis. For the
longitudinal momentum we obtain, assuming v, = ¢

Ay —2

24, -2 (4.10)

Note that the solution is singular for A, — 1, meaning that there is no
dephasing. A test particle can, in principle, be accelerated to infinite energy
even if the vector potential takes on only finite values. On the first look,
this may seem unreasonable, but it is not, since our precondition vy, = ¢
also implies o = oo, that means that such a pulse would necessarily contain
infinite energy. Therefore, to reveal the actual capability of longitudinal field
acceleration, it is mandatory to consider forces with phase velocity different
from c. On doing this, we obtain:

_ 1 2 2 ~
Pm_vgh_1 [(Am—mphﬂ/mx—n +02,— 1| ~

Az

’Uph—l

(4.11)

Because of dephasing there is no singularity anymore. Still, in the com-
mon case vVpy, & ¢, Py grows extremely fast. Additionally, the fact that there
is no transverse velocity component further supports the growth of the Dop-
pler conversion rate I'. Figure 4.1 shows the expected Doppler conversion
ratio as a function of the dimensionless amplitude for longitudinal and trans-
verse fields. From this point of view, the use of radially polarized pulses for
direct acceleration appears very tempting.

'P/mec — P, eA/mec2 — A
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Figure 4.1: Comparison of the theoretically achievable Doppler conversion
rate I'ncr = (1 + B:)/(1 — B;) for scattering at electrons accelerated via
longitudinal field according to Eq. (4.11) or transverse field according to
Eq. (4.9). Phase velocities vp,/c = 1.1 (1.01) correspond to the maximum
vpp, for TMoy laser beams with o/A = 1.1 (3.2).

4.2 Numerical Studies under More Realistic As-
sumptions

In the previous section we have demonstrated, that directly laser accelerated
electron bunches seem to be ideally suited for light frequency upconversion
via CTS. The theoretical minimum requirement is just a laser reaching re-
lativistic amplitudes of A > 1 or even, in case of acceleration via longit-
udinal field, only A, > 1. This is something that nowadays is available in
university scale laboratories. However, in the first simple estimates we have
neglected spacecharge and most multidimensional effects. In this section we
discuss the effects that have been ignored so far, aiming to answer the ques-
tion how efficient and controllable the proposed setup can be in reality and
which difficulties have to be overcome to realize it experimentally.

Numerical simulations are therefore utilized. Most of the simulations in
this chapter are carried out at rather moderate frequency conversion ratios
(I'pcor ~ 10), because in this regime many of the interesting effects are
already visible and the simulations are very accurate and quick to run so
that it is possible to cover a large parameter region. In subsection 4.2.6, we
consider the luring possibility to scale the scheme up to very high frequency
conversion ratios, as indicated by Fig. 4.1.
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Figure 4.2: Results of a series of 1D PIC simulations of direct electron accel-
eration in vacuum, using a driver laser with amplitude ag = 3 and Gaussian
temporal profile E o exp(—(ct/A)?). The initial foil width Ag = 0.1\
was chosen and the density Ny was varied. We display the key magnitudes
interesting for frequency upconversion via CTS: (a) the expected Doppler
conversion rate I'pyor = (14 82)/(1 — Bz) from the electron bunch and (b)
the effective bunch width A g at the time, where the electron bunch reaches
its maximum longitudinal velocity. A perfect snowplough effect without the
perturbing effect of Coulomb repulsion would lead to A g = Ap.

4.2.1 Spacecharge effects

Since we know that for C'TS the scattering efficiency goes up with the square
of the accelerated charge [compare Eq. (4.1)], it is of course desirable to accel-
erate and compress as much charge as possible. On the other hand, as soon
as the electrons are detached from the plasma background charge, a Cou-
lomb explosion will take place, working against the snowplough compression.
The speed of the explosion depends on the amount of charge involved. This
means, that for a given driver pulse there will be an optimum charge amount,
governing the choice of material and foil thickness in a real experiment.

To evaluate the magnitude of this effect, we run a series of 1D PIC sim-
ulations. Simulations are carried out for different initial densities Ny and
laser amplitudes ap. In each simulation, we record the average longitud-
inal velocity [, of the bunch electrons and use it to calculate the expected
Doppler conversion rate I'nr of the electron bunch. Then we denote the
value of A g at the instant, when I'pcR reaches its maximum. In order to
calculate A, the bunch size A was obtained by computing the root mean
square deviation of the particles positions, A2 := > p(Xp— (X))2. Tt is then
divided by 1 — f3;, yielding the effective bunch width A,g. The outcome is
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displayed in Fig. 4.2.

In the limit of very low electron numbers, we confirm the results of the
previous section 4.1: I'noR reaches a maximum of about 10, correspond-
ing to Eq. (4.9), and the bunch becomes compressed according to the ideal
snowplough effect, resulting in A g ~ Ay, as predicted by Eq. (4.5).

For moderate initial charge densities Ny < 0.1 N,, the effective bunch
length at the velocity maximum grows approximately linearly with the ini-
tial density: A,g/Ao ~ 14 aNo/N,, with o = 20 in our case. Simulations
show that if higher field amplitudes ag are used, yielding higher I'ncR.
the slope of A,g(No) is even steeper. This can be explained because the
acceleration takes more time, giving the bunch more time to spread, and
further the demand for compression is even higher at high I'yR. Further-
more, the maximum average velocity decreases for large average densities,
and consequently also the expected Doppler conversion rate I'yg for bunch
scattering. This leads to A.g reaching a quasi-plateau and even declining
slightly for large initial densities Ny > 0.4 N..

Let us now estimate the optimal initial density and efficiency for pure
bunch scattering. Assuming a Gaussian density profile, we expect the op-
timal efficiency to lie within the linear density regime, as the exponential
decay in Eq. (4.2) yields extremely low efficiency for bunches as wide as
Ao ~ 0.4 X Thus, we can estimate optimal initial density for C'TS applic-
ations from the linear relation given above. Taking the wavelengths of the
probing and driving laser to be the same (A, = \g), the resulting optimal

density is Nop/Ne = a~ [—0.5 +/025+ 1 /(SWQAg)] In the considered

example, this amounts to Ny, /N, ~ 0.04. By inserting this into Eq. (4.2),
we calculate an optimal efficiency of about 7 ~ 4 x 107>,

This is the optimal scattering efficiency under the assumption of a smooth
bunch density profile. However, looking at the real density profiles (Fig. 4.3)
of the accelerated electrons, we notice that they are generally not smooth but
contain sharp edges. Thus we expect, that although at higher densities CTS
is effectively not possible at the bunch as a whole, scattering at the edges
may still work. The efficiency of the backscattering process then depends on
the height of the density jump, see Eq. (4.3).

During the ultrafast process of acceleration and compression thermal ef-
fects are negligible, therefore the numerically observed conservation of the
sharp density edges appears physically sound. It is not difficult to show that
both the snowplough compression and the Coulomb explosion, considered in
isolation, just maintain the initial rectangular density profile of the bunch,
changing only its extension. In the highly relativistic regime under consider-
ation, both effects couple in a complicated manner. This leads to an actual
change in shape, but still the sharpness of the edges of the density distribu-
tion is conserved. For Ny = 0.29 N, the rear edge even turns into a d-like
peak.
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Figure 4.3: Density profiles of the accelerated and compressed electron
bunches at maximum velocity for different initial densities. The driver laser
was the same as in Fig. 4.2, ag = 3.

A possible explanation for this is the light pressure gradient inside the
thin foil. From a certain point in time, the front part of the bunch reflects a
significant part of the driver light, so that a ponderomotive potential gradient
builds up inside the foil, leading to an additional compression force that
might in certain areas even overcompensate the spacecharge repulsion. Also
one notices that, starting from a certain value, the height of the density
jump depends only weakly on the initial density. This suggests that the
CTS conversion efficiency will reach a plateau at that point for the frequency
corresponding to the leading edges velocity.

So far, the motion of electron bunches directly accelerated by lasers in
vacuum has been examined. In Fig. 4.4 the light actually backscattered from
these bunches is depicted. To keep matters as simple as possible, a non-
relativistic scattering laser (aésc) = 0.1) was used with the same frequency
as the driver. The polarization of the scattering laser was perpendicular to
the one of the linearly polarized driver, so that the scattered radiation could
easily be separated from the intense driver radiation with high numerical
accuracy. The driver laser in the simulations of Fig 4.4 has an amplitude of
ap = 3, 80 we can expect a maximum Doppler conversion rate of I'ncR =
10 in the low charge limit according to Eq. (4.9). The average generated
frequency is slightly lower though for very low charges and the spectrum
is quite broad. This can be understood, because the bunch velocity keeps
changing during the scattering process. If the amount of charge is increased,
the frequencies generated decrease as expected from Fig. 4.2. Further, for
a wide range of initial densities we observe two or even more spectral lines.
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Figure 4.4: (a) Energy conversion efficiency n and (b) spectra of scattered
light from laser accelerated bunches of different initial densities. The driver
pulse is the same as in the previous figures, temporally Gaussian and ag =
3. In (b), the colourscale corresponds to the logarithm of the normalized
spectral intensity.

This can be explained due to the jumps in the density profiles (see Fig. 4.3)
which are moving at different velocities, thus generating separate spectral
lines.

4.2.2 Acceleration via longitudinal field of a radially polar-
ized laser pulse

Let us now have a look at the electron bunch acceleration via longitudinal
field. As could be seen from Fig. 4.1 in the first section of this chapter, the
acceleration via longitudinal field promises much higher frequency conver-
sion ratios especially at moderate field amplitudes. However, there are also
additional restrictions arising for longitudinal field acceleration which should
not be concealed.

The first restriction is the inherent transverse inhomogeneity of the field.
Since the longitudinal field component is closely related to the gradient of
the radial field, its transverse extension is fundamentally limited, no mat-
ter how big the focal spot is made. For the Hermite-Gaussian TMg;-mode
one finds the critical radius, where the radial field component overtakes the
longitudinal one, to be:

20 o2 4 A
= — — 4 — ~ —. 4.12
e 2 A2 + 7 ] osa w2 ( )

This radius also marks an upper limit for the transverse size of an electron
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bunch to be accelerated and compressed about uniformly by the longitudinal
field component.

The second restriction is caused by the Coulomb forces, which are an even
bigger problem in the case of longitudinal field acceleration. For acceleration
via transverse field, there are two effects mitigating the Coulomb explosion
and thus helping to keep the electron bunch together. First, because of
their transverse velocity component, the electrons already reach relativistic
velocities before they are detached from the ion background charge. This
results in an increased effective mass, slowing down the Coulomb explosion.
Second, the magnetic force of the parallel currents partially compensates the
electrostatic repulsion, as already mentioned in [62]. These benefits do not
exist in the case of acceleration via longitudinal field.

Still, the use of radially polarized drivers appears interesting at least
for moderate driver intensities. Therefore, we use a 2D PIC simulation to
demonstrate the feasibility of the scheme with a 10 TW driver laser. The
PIC results are cross-checked with direct numerical solutions of the equation
of motion of test particles in the analytically provided field of the driver
laser. The direct solution avoids issues with the finite spatial grid resolution
typical for PIC simulation, but does not self-consistently include the Cou-
lomb repulsion of the electrons. However, as we work with quite low bunch
charge in the PIC simulation, the results should be comparable. To obtain
reasonable agreement between both, it is crucial to employ the exact short
pulse description (see Chapter 2) in both PIC simulation and model. For
the sake of computational efficiency, the PIC simulation was performed in a
Lorentz transformed system, co-moving with the electrons. In the simula-
tion run presented here, a transformation velocity of § = 0.7 proved to be
optimal?.

Typical results are depicted in Fig. 4.5. We find, that the averaged
bunch momentum [Fig. 4.5(a)| reaches a maximum value around ctg = 4.8 \.
Then, after going through a decelerating phase, the bunch becomes accel-
erated again, entering the second optical cycle of the driver laser. Looking
at the bunch spread [Fig. 4.5(b) and (c)|, we notice that the bunch is torn
apart here. Consequently, coherent scattering is only possible during the
first acceleration stage.

A geries of further simulations carried out for longitudinal field acceler-
ation at various parameters confirmed, that the phase transitions from one
accelerating phase to the next are highly critical for the maintenance of the
bunch compression. If the electrons gain different transverse velocities at a
point, where v, = 0, the bunch instantly looses its shape. This results from
a combination of the small transverse component of the laser field near the
optical axis and, especially for higher amounts of charge to be accelerated,

2For higher transformation velocities, the spatial and temporal offsets required for the
simulation box would nullify the efficiency gain from the Lorentz transformation.
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Figure 4.5: The bunch trajectories in 2D PIC and the 2D model, considering
the motion of only four test particles in a given laser field. PIC was carried
out in a Lorentz transformed system, using § = 0.7 in direction of the
driver pulse. The subscript S indicates, that the magnitude is taken in the
simulation frame rather than in the laboratory frame. The plots show (a)
the averaged electron momentum in relativistically normalized units, (b)
the transverse bunch spread and (c) the effective bunch width, normalized
to the initial bunch width. Simulation parameters were: focal spot size
o = 2\, longitudinal field corresponding to a laser power (assuming actual
3D geometry) P = 10 TW, initial bunch diameter Ay = 0.1A. In the PIC
simulation, the initial electron density was N = 0.01 V..
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Figure 4.6: Probe and scattered radiation in (a) spectrum and (b)-(c) time
domain. The time domain pictures are taken in the simulation frame, but
the spectrum is transformed back to the laboratory system.

also from the Coulomb forces between the electrons. During the stages where
the electrons are moving fast, they possess a high effective mass v > 1, so
that the transverse forces do not affect the bunch angular spread anymore.
It is best to use the electrons in the first acceleration stage to guarantee for
a stable, strong enough compression.

In Fig. 4.6, the result of scattering is displayed. Even if only the first
acceleration stage could be used, the frequency of the scattered radiation is
upshifted by a factor of I'yop = 40 in the laboratory system. To obtain this
factor with an ordinary linearly polarized driver pulse, a power of at least
P ~ 100 TW would be required. The integrated energy efficiency lies in the
order of n = 1079, which roughly agrees with Eq. (4.2), when estimating the
effective bunch width from Fig. 4.5(c). This indicates that - in contrast to the
acceleration via transverse field - the edges of the bunch density profile soften
during acceleration, so that the profile becomes approximately Gaussian.

We observe another interesting detail in Fig. 4.6(c). The scattered pulse
appears slightly chirped, starting at low frequencies and ending at higher
ones. This indicates, that the reflecting electron bunch was accelerated dur-
ing the scattering process.

To conclude, we found that the scheme utilizing the longitudinal field
component of a radially polarized pulse appears interesting especially for
moderate driver powers. It was shown via PIC simulation, that the scheme
is actually feasible, but its limitations with respect to efficiency are grave.
Therefore, we now turn our attention back to acceleration via transverse field
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Figure 4.7: Semi-logarithmic plot of the time dependence of the Doppler
factor of a single electron (or low charge electron bunch) accelerated by a
plane, temporally Gaussian laser pulse. The red dashed line corresponds to
a linearly polarized mode, the blue solid line to a circularly polarized one.
Both pulses have the same amplitude (ap = 10) and duration (7 = A/c).

component.

4.2.3 Linear versus circular polarization

For transverse field acceleration, the use of both linearly and circularly polar-
ized driver lasers may be considered. Given the same average power, linearly
polarized pulses of course reach higher field amplitudes, but Ai (z,t) is a
strongly oscillating function, thus oscillations of I'peg (t) = 1443 (zq/(t),t)
follow. For a circularly polarized laser pulse, I'ncR (%) is determined by the
envelope of the laser pulse and not by its optical cycle. This means, that by
controlling the envelope of the driver pulse, wide control over the frequency
of the scattered radiation can be achieved.

The difference is illustrated by the actual solution of the equation of
motion of a test electron in the laser field in both cases, shown in Fig. 4.7.
Not only the fluctuations in I'p g are much smaller for a circularly polarized
driver, but also the net period, where I'y R is high, is distinctly longer at the
same driver pulse duration. Therefore, the use of a circularly polarized driver
is recommended to maximize the stability of the scheme under discussion.

4.2.4 Finite focal spot size

A strict limitation on the transverse bunch size like Eq. (4.12) does not exist
for acceleration through the E x B-force of a linearly or circularly polarized
pulse. The electron bunch can in principle be extended to any size in the
directions normal to the optical axis, if only enough power is available to
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Figure 4.8: The temporal evolution of the Doppler conversion rate I'ncop
and the effective bunch length A g/A¢ as a function of time for different
focal spot sizes o. The laser pulse is circularly polarized, having a Gaussian
profile in both longitudinal and transverse direction. Parameters are ag = 10,
7 = A/c and the initial electron distance Ag = 0.1\, spacecharge is not taken
into account here.
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increase the size of the driver laser focal spot accordingly. However, since
the power available in real experiments is limited, it is necessary to focus
the laser down to small spot sizes to reach sufficient intensities. Small spot
sizes on the other hand lead to electrons escaping from the laser beam region
sideways.

First, we estimate the lower limit for the focal spot size to capture at
least some electrons and compress and accelerate them inside the beam.
This condition on the spot size is usually stronger than the one stemming
from the increase in phase velocity, Eq. (4.6). Certainly, it should be within
the order of magnitude the amplitude of the transverse electron motion in a
plane wave: ro = apgA/2m.

We check and quantify the effects of finite laser pulse diameter by in-
tegrating the equation of motion for test particles. Spacecharge effects are
purposely not taken into account to examine the effect of finite focal spot
size well separated here. Fig. 4.8 shows the key parameters A,g and I'pcR,
representing the bunch compression and velocity, for two charges accelerated
by a finite-diameter Gaussian pulse.

In Fig. 4.8(a) it can be seen, that for the escaping bunch (red line, o = 3)
Ao 1s increasing rapidly even without spacecharge effects. Obviously, the
strong field inhomogeneity destroys the snowplough compression. Therefore
we conclude, that it is not appropriate for CTS. The other electrons, ac-
celerated by a pulse with ¢ > ag) , remain inside the field region and are
stopped (o = 30, oo) or almost stopped (o = 10), when they leave the influ-
ence area of the laser pulse due to dephasing. Here, due to the unperturbed
snowplough effect, A g is almost constant. These bunches can be utilized
for CTS.

It is also interesting to look at I'n R (¢) for different o [Fig. 4.8(b)]. For
o = 3\, because of the strong transverse field inhomogeneity, Eq. (4.8) is
invalidated and the electrons can maintain their full momentum outside the
pulse region. However, as we have seen before, the bunch compression is
poor in this case. Even for a focal spot as large as ¢ = 10\ = 271y, there
are considerable deviations from the ideal plane wave case (0 = 00). The
period of time at maximum velocity is considerably shorter here compared
to the plane wave. Only at ¢ = 30\ = 677, the difference to o = oo starts
to vanish.

We conclude that larger driver beam diameters (o > r() are generally
advantageous and yield a more stable acceleration.

4.2.5 Pulses with a sharp rising edge

In subsection 4.2.1 we have seen, that the efficiency for scattering at the
electron bunch is mainly determined by the height of the rising edge of the
bunch density profile. This edge is widely invariant under changes of the
initial foil thickness and charge. However, there is a way to increase the
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Figure 4.9: Density profiles of the accelerated and compressed electron
bunches at maximum velocity for different initial densities. This time the a
driver laser (ap = 3) with a sharp rising edge (eq. 4.13) was used instead of
a Gaussian, compare figure 4.3.

scattering efficiency, and that is sharpening the rising edge profile of the
driver lasers. To demonstrate the potential, we consider an ideally steep
profile, described by?:

E(t) = Ep 0(wot + m)0(—wot + ) cos(wot). (4.13)

With the steep pulse profile a better compression can be expected, be-
cause acceleration and compression happen much faster here than in the case
of the Gaussian pulse, and so there is less time for the Coulomb explosion.

In figures 4.9 and 4.10, some PIC results for this pulse shape are shown.
When comparing Fig. 4.9 to Fig. 4.3, we see that the jump in the density
profile at maximum velocity indeed increases considerably. Even at high
initial densities (Ny/N. ~ 1) the bunch stays together and is accelerated as
a whole. Therefore, we can expect a distinct boost in CTS efficiency n. As
a matter of fact, n is increased by about two orders of magnitude, as the
reader may verify by comparing Fig. 4.10 to 4.4.

Still we notice, that the denser bunches stay behind in comparison to the
less denser bunches. Consequently, also 'R goes down with increased

3Although the rear part is not important for our purpose, we write the full pulse
profile like this. The reason is that this way the pulse may consistently be extended to a
finite 3D structure with linear polarization, fulfilling the integral conditions ffooo Edt =
ffooo A dx = 0. The feasibility of ultrashort pulse structure in 3D has been discussed in
detail in chapter 2.

103



0 0.01 0.02

Figure 4.10: (a) Net efficiency and (b) spectra of scattered light from laser
accelerated bunches of different initial densities, using a driver laser (ag = 3)
with a sharp rising edge. Compare this to figure 4.4.

charge. For Ny/N. =~ 1, the electron velocity at its maximum is lower by
about a factor of two compared to the low charge limit. It appears that now
an increase in the bunch charge, instead of causing a Coulomb explosion,
results in an increased overall inertia of the bunch. A possible explanation
for this is that the bunch reflects some part of the driver radiation during
acceleration at these densities. This reflection consumes the driver power
after some time, but also causes a gradient of light pressure inside the bunch,
steepening the density profile.

To sum up, a steep rising edge of the driver laser leads to a huge gain
in scattering efficiency and appears to be an indispensable key factor for the
successful implementation of the proposed scheme.

4.2.6 Scaling up to the x-ray regime

Up to now, we thoroughly discussed the scheme for moderate frequency con-
version ratios I'pop < 10. This discussion gave us some general idea about
what is crucial to achieve reasonable conversion efficiencies. Nonetheless it
is an exciting question how efficiently it is possible to scale the scheme up
to extremely high frequency conversion ratios, finally targeting the x-ray
regime.

Scaling up the frequency of course brings about some additional diffi-
culties: Because of the generally longer acceleration period and the need
for even smaller bunch sizes, spacecharge repulsion becomes more critical.
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Figure 4.11: (a) Net efficiency and (b) spectra of scattered light from laser
accelerated bunches of different initial densities, using a driver laser (ag = 20)
with a sharp rising edge. Compare to Figs. 4.4 and 4.10.

Consequently, conversion efficiencies cannot be expected to be the same as
for lower I'pR. Our attempts to use conventional, smooth temporal pro-
file laser pulses or radially polarized modes to reach the x-ray regime have
resulted in poor efficiencies, hardly measurable even inside our numerical
simulations.

But, utilizing a pulse with an extremely sharp leading edge we were able
to obtain some more encouraging results. In Fig. 4.11, the outcome of a
series of 1D PIC simulations is shown. Here, we used a laser amplitude of
ap = 20, targeting a frequency upconversion rate of 'pcgp < 400. It is
observed that the best scattering efficiency can be reached with an initial
density of Ny = 0.6 N., leading to an efficiency of n ~ 4 x 107% with an
upconversion ratio of about I'ncr ~ 200. For a Ti:Sa laser (A = 0.8 um ),
this would correspond to a photon energy of about 300eV in the soft x-ray
regime. The laser amplitude ag = 20 used in Fig. 4.11 is already within
reach of present day laser systems. However, the extremely steep rising edge
of the field envelope, which is crucial for the compression of the bunch, is for
sure still a challenge for today’s experiments.

Conclusions of Chapter 4

In this chapter we have studied coherent Thomson scattering at laser com-
pressed and accelerated electron bunches as a scheme for generation of co-
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herent XUV or x-ray radiation.

The condition for coherent scattering at a moving bunch implies that the
bunch possesses a structure that is smaller than the wavelength generated
in the scattering process. For XUV or x-ray radiation, this is certainly a big
challenge. However, it seems that the snowplough effect by laser acceleration
in vacuum can actually meet this challenge, since it rigorously conserves the
“effective bunch width” A.g = A/(1 — ;) at least when spacecharge and
multidimensional effects are neglected. To reveal the magnitude of these
effects in a realistic setup, we carry out numerical simulations.

Here, two variants of the acceleration scheme have been examined: (a) the
use of the longitudinal electric field on the optical axis of a radially polarized
TMp; mode and (b) the use of a conventional circularly or linearly polarized
laser pulse, utilizing the relativistic E x B-force. Both variants have their ad-
vantages: Scheme (a) yields extremely high frequency conversion ratios even
for moderate driving powers, whereas (b) produces better compression and
therefore a higher conversion efficiency. This is attributed to the transverse
velocity of the electron layers. The transverse current produces a magnetic
field which can partially compensate the Coulomb repulsion.

By analyzing a wide range of parameters it has been found that the most
crucial magnitude for the efficiency of the scheme is the rising edge of the
driving laser pulse. For a laser pulse with a slowly increasing envelope, the
spacecharge of the electrons will lead to massive broadening of the electron
bunch. In this case, a good efficiency for coherent scattering cannot be
achieved. If on the other hand the rising edge is sufficiently steep, the electron
bunch will be compressed and accelerated extremely rapidly, so that the
bunch reaches relativistic velocities before the spacecharge repulsion can take
effect. In this case, the bunch remains compressed and can efficiently be used
for coherent Thomson scattering.

Further we observe, that a higher initial foil charge generally favours
the scattering efficiency, but leads to a decrease in the frequency conversion
ratio. Very recently, there has been an interesting proposal to overcome this
drawback. In Ref. [67], it is suggested to reflect the driver pulses from a
high density foil during the bunch acceleration. This rids the electron bunch
of the driver field, leaving them in a constant motion. Further, before the
electrons leave the field region, the reflected part of the pulse acts on the
electrons in a way so that their direction of motion is turned exactly in
the forward direction. Therefore, the Doppler conversion ratio is increased
in this scheme. However, it should also be noted, that the efficiency may
again be decreased by this process, as the width or the gradient scale length
remains the same, but (5, is increased.
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Chapter 5

Conclusions

In this thesis, the physics of ultrashort light pulses was enlightened from
various viewpoints.

We introduced a novel mathematical description of few-cycle electro-
magnetic pulses. The new description enables us to write down accurate
analytical closed form expressions even for pulses, where the classical mono-
chromatic approximation clearly fails. We have considered Gaussian and
Hermite-Gaussian transverse modes, combined with an arbitrary temporal
shape, defined in the centre of the focal spot. It is found that, when assigning
these fields directly to the transverse electric field or vector potential, not all
temporal shape functions are physically sound. Most of them would produce
an infinitely extended field structure containing infinite energy. With the
new method, employing the second potential W, exactly those pulse shapes
that actually possess finite energy are selected. Comprehensive numerical
benchmarks were applied to test the validity and accuracy of the new de-
scription. Further, the tests readily demonstrate the suitability of the new
pulse representation for numerical simulations.

The theory of high harmonics generation (HHG) in the highly relativistic
regime was reviewed and extended systematically. The foundations of the
popular relativistically oscillating mirror (ROM) model in its refined version
[45] have been discussed and newly laid. The model has been extended
by the novel concept of higher order ~y-spikes, demonstrating the possibility
of different spectra even within the supposedly well-understood model. In
addition, a variant of the ROM model, the totally reflecting oscillating mirror
(TROM), has been introduced. Though its physical realization might be
difficult, the comparison between the TROM and the ROM model should
bring greater clarity into the ongoing discussion about models for relativistic
harmonic generation.

It has been found that in p-polarized oblique incidence, one can often
observe the formation of highly compressed electron bunches in front of the
plasma surface. These nanobunches emit synchrotron radiation coherently,
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and it is seen in PIC simulations that they can contribute the largest part of
the HHG. The spectrum can be obtained within an analytical model again,
yielding a power law of w~%° in excellent agreement with the numerical
results.

Further, the spectral fine structure and the diffraction in a real 3D geo-
metry, aspects that had often been disregarded so far, were examined closely
in this thesis. We have found that the fine structure in the highly relativ-
istic regime serves as an excellent plasma diagnostic, containing information
about the cycle averaged motion of the electron plasma surface. Diffraction
phenomena can be exploited as spatial spectral filters.

The coherent focusing of harmonics has been investigated in a realistic
geometry. Due to the temporal focusing provided by the HHG mechanism,
it should be possible to achieve focal intensities that exceed the one of the
generating laser by more than three orders of magnitude.

An alternative scheme for the frequency upconversion of ultrashort, ul-
traintense laser pulses has been discussed: coherent Thomson scattering at
electron layers compressed by the relativistic snowplough effect. Tt is found,
that the rising edge of the driving laser pulse is crucial for a successful real-
ization of this scheme. Provided a sufficiently powerful laser pulse with an
extremely steep rising edge is available, this method may offer a great deal
of control over the generated radiation.

108



Appendix A

Analytical Techniques

A.1 Stationary Phase Method

In this section, the asymptotic evaluation of integrals via the stationary
phase method is explained. The method has e.g. been applied to diffraction
integrals and the calculation of synchrotron spectra and plays a vital role
in the theory of high harmonics generation at overdense plasma surfaces.
For a comprehensive introduction to this method and related ones, consider
e.g. the book by Wong [68]|. Here, we describe the method briefly with the
applications from section 3.1 in mind.
We are interested in integrals of the form

o0

F(w) = / g(t) expiw f(t)] dt, (A.1)
—00

where g(t) and f(t) are assumed to be smooth functions. We want to find an

asymptotic approximation for F(w) in the limit of big w. Then, the rapidly

oscillating integrand cancels everywhere except for the regions of “stationary

phase” where df (t)/dt = 0.

In the simplest case, we can find a set of well separated points {tx} on
the real axis where df (t)/dt = 0 and d?f(t;)/dt*> # 0. Then f(t) and g(t)
can be Taylor expanded around these points: f(t ~ tx) ~ aj + bg(t — t)?
and g(t =~ tx) ~ c¢x. Now, the integral can be evaluated analytically:

o0

Flw) =~ cheiwak/ exp [iwby(t — tk)2] dt

k —00

T ~1/2
= — g by /cke“"ak’
iw
k

It can be seen that the behaviour of the integral depends on two factors.
The first factor scales o< w™1/2 and constitutes a spectral envelope, whereas
the sum determines if the contributions from each stationary point interfere
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positively or negatively and is thus responsible for the structure of the single
“harmonic” lines. This sort of behaviour also extends to the more complicated
cases discussed below, but the envelope factor varies sensitively according to
the exact structure of the stationary phase points. Let us now go on to
discuss the relevant cases.

A.1.1 First order v-spikes

Taking a look at the integrals that we encounter in the models presented
in Section 3.1, we find that none of them ever contains points where the
condition df(t)/dt = 0 is exactly fulfilled. It is possible to understand this
in terms of physics. The phase functions f(¢) in the models are always
connected to the difference between the trajectory of a point, that is somehow
connected to the plasma motion and the motion of the emitted light wave.
Since the plasma cannot be faster than light, f(¢) is strictly monotonic,
consequently df /dt # 0.

Still it is possible to apply the stationary phase method by considering
points where df (t)/dt ~ 0. Technically, this can be viewed as a region where
two saddle points, that are located in the complex plane slightly off the real
axis, closely merge.

The ROM model, as discussed in Sec. 3.1.2 leads us to integrals of the
sort

Falw) = [ expli (b w0) + o F )] (L+a0) i (A2)

This integral has to be handled with attention: Note that although w >
wp is assumed, we must not neglect wp in the exponent. The reason for this
will become evident later.

The Taylor expansion of x(¢) around the velocity maximum can be writ-
ten down as z(t) = —vt + at?/3. In the case a # 0, we speak about a
“~-spike of the order 17. In the case, when o = 0, higher orders of the Taylor
expansion have to be considered. It is discussed in subsection A.1.2.

We shift the stationary phase point to tgp = 0 without loss of generality
here, as we are not interested in absolute phase terms. Using the abbreviation
§=1—v=~1/(2v?), we get F(w) = Fi(w) + Fy(w) with

F(w) = 5/exp [z <t(5wi(2—5)w0)+a(w¢wo)t;>] dt

Fy(w) = a/t2 exp [z <t (6wi(2—6)wo)+a(w¢wo)t?’ﬂ it

3
(A.3)
By now it should become clear why F5 and the above mentioned wg-terms
could not be neglected: We want to presume w > wp, but not dw > wy.
Later on, we may neglect wy compared to w and § compared to 1.
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Fy and F5 can now be expressed in terms of the well-known Airy function
Ai(z) = 2m) 1 [T exp (i (xt +12/3)) dt:

Filw) = ——mai(g) (A4)
a(w F wo)

Bw) = T Aig). (A5)
w F Wo

with £ = (0w £ (2 — 0)wp) / (o (w Trwo))l/:s. For the calculation of Fy, we
made use of Ai”(z) = zAi(z). After taking the sum of F| and Fy, the w™/3

terms cancel and only the w™%/3 term remains, which represents the leading
order now: 14
us .
Fa(w) = - 5 A©) (A.6)
Vo (wF wo)

Taking the absolute square yields the famous —8/3-power law spectrum.
For the TROM model (section 3.1.3), the integral looks a bit different:

Fafw) = [ expli (o % wn) + 2()w F wn))) (L a(0) db. (AT

The integration works in complete analogy to the case shown above, but
in this case, the w™/3-terms do not cancel out. Therefore, we obtain in
highest order:

47

Fulw) = ——2 Ai(g). (A3)
a(wF wp)
In the case of CSE (section 3.1.4), the integral is of the sort:
Flw) = / J(#) exp [—iw (¢ + 2(1))] dt. (A.9)

To get some meaningful result out of this, we need to make an assumption
about the relation between y(t) and z(t). We assume, that during the time
of harmonic generation, the absolute velocity (&2 + ¢2)'/? is approximately
constant and close to the speed of light. This is reasonable in the ultra-
relativistic regime. With this assumption, the stationary phase points are
exactly the points, where y vanishes and the electrons move towards the
observer. Now we can Taylor expand 5(t) = apt and x(t) = —vt + ayt3/3.
Substituting into Eq. (A.9) yields:

Fw) = a /  exp [z <—w5t _ walt;)] n (A.10)

where 6 = 1 — v as above. Again, the result can be expressed in terms of the
Airy function:

—2mapt . Sw?/3
Flw) = — AV . A1l
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A.1.2 Higher order v-spikes

In the previous subsection (Sec. A.1.1), we dealt with the case when the
transverse velocity of the electrons pass zero. Together with the assumption
of ultrarelativistic motion this lead us to the Taylor expansion x(t) = —vt +
at3/3. In this section we deal with the possibility, that the transverse velocity
does not go through, but touches zero, so that the third order of z(¢) vanishes.

In general, if the first 2n orders of x(t) vanish, it can be written: z(t) =
—vt + at? 1 /(2n + 1). We refer to this case as a “y-spike of the order n”.

Inserting this into Eq. A.2 yields:

Aw) = 6 / exp [z <t (6w + (2 = 8)wo) + alw T wo);n: dt
AW = a / 2 oxp [z <t (6w £ (2 — §)wo) + alw :Fwo);;":ﬂ it
(A12)

These integrals can now be expressed by a generalized Airy function, which
we define as gAi,(z) = (2m) [% exp [i (wt + 271 /(2n +1))] dt. Note
that for n = 1 we retain the Airy function and for n = 2 we obtain a special
case of the canonical swallowtail integral [53]. Since the gAi,(z) are not
available in general purpose numerical libraries, their numerical computation

is explained in Sec. B.3.

In analogy to the Airy function, the gAi, () fulfil ODEs: d*"gAi, (z)/dx®" +

(—1)"z gAi,, (x) = 0. Exploiting this, 1 and F5 become

2w
w) = Al A.
Fi(w) 2n+\1/mg (&) (A13)
Faw) = 2 gai,(6) (A14)

where & = (0w £ (2 —)wy) / (o (w F wo))l/(2”+1). After again taking the
sum of Fy and Fb, the w71 termg cancel and what remains is:
+47

2”*'\1/&(00 ¥ w0)2n+2/2n+1

In complete analogy the TROM model, represented by the integral (A.7),
yields:

Fi(w) = BAL(6). (A.15)

Falw)= — % gAi(6). (A.16)

Finally we calculate the CSE integral (A.9) for higher orders of the ~-
spike. Here, this means y(t) = aot"™ and, consequently, x(t) = —vt +
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a1t?™*1/(2n + 1). Since this works in complete analogy to the hitherto
discussed cases, we just present the result:

—2magi™  d"gAi, (&)

F(w) = (ayw)"F/2nt den

(A.17)
wherein £ = w2n/2n+15/a}/(2”+1).

A.2 Analytic Signal

Here the analytic signal, a powerful tool from signal theory, is explained in
brief'. In the present work it has been used to derive an analytical finite
energy solution of the 3D scalar wave equation in paraxial approximation.

Given a real-valued function f(t), we are looking for a complex function
fa(t) that fulfils two conditions:

1. Tts real part is identical with f(¢): Re[fa(t)] = f(1).

2. The Fourier transform of f,(¢) must not contain any negative frequency
components: fq(w < 0) = 0.

fa(t) is then called the analytic signal. One well known example is the
exponential function of an imaginary argument. One can easily verify, that
for f(t) = cos(Qt) with Q > 0 the corresponding analytic signal is f,(t) =
exp (iQ2t).

There is a straightforward way to obtain f,(¢) for any real signal f(t).
At first, the Fourier transform of f(t) is computed:

f)= [ rwea

Then, we identify fa(w) = 20(w)f(w), and finally the analytic signal can
be obtained by applying the inverse Fourier transformation:

fa(t) = % /_Z fa(w) et o, — 711-/000 f(w) et 4o

From this algorithm it is immediately clear that f, fulfils condition 2.

Recalling the symmetry property f(—w) = f(w), that is valid for all real-
valued f(t), it is also not hard to see that condition 1 is fulfilled.

The above recipe allows us to evaluate the analytic signal numerically
via fast Fourier transformation (FFT) algorithms and in some cases also
analytically. Fig. A.1 shows the analytic signal of a Gaussian pulse as an
example. Note that the absolute value of the analytic signal represents a

'For a more comprehensive discussion, consider e.g. Ref. [69].
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Figure A.1: Analytic signal of a Gaussian pulse f(t) = Re[fa(t)] =
cos (2mt) exp (—t?)

smooth envelope to the Gaussian pulse. This is no coincidence but a general
property of the analytic signal. Therefore, determining the absolute value of
the analytic signal is a natural way to obtain the slowly varying envelope of
a given real signal with a well-defined carrier frequency.

For our purpose, it is needed to calculate the analytic signal of a complex-
valued argument ¢’ = ¢ +4u. Even in this case, the procedure is basically the
same. We find f,(w) = 20(w) exp (—uw) f(w). The additional exponential
factor thus causes no trouble for v > 0, as it is always the case in the
applications in chapter 2.
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Appendix B

Numerical Techniques

B.1 Particle-in-Cell (PIC) Simulation

In physics, simulations provide a tool to bridge the gap between analytical
theory and experiment. While experiments of course are the foundation of
empirical science, especially in plasma physics diagnostics are often very in-
direct, and it is difficult to gain immediate insight from experiments alone.
In addition to this, modification of single parameters may require big efforts
and costs, but it can quickly be performed within a simulation. Analyt-
ical theory on the other hand yields a profound understanding of physical
processes. However, especially plasma theory has to rely on extensive ap-
proximations and assumptions, so that it is often hard to directly compare
its results to real experiments.

For these reasons, simulations have over the last decades become an in-
dispensable tool in plasma physics. One of the most powerful simulation
tools for plasma physics known today are PIC (Particle-in-Cell) simulations.
Especially in the field of laser-plasma interaction, there is now barely a pub-
lication, in which the results are not backed up by PIC simulations.

The PIC algorithm is based on the Maxwell equations and the Vlasov
equation
P

m+/1 + p2

which provides the full kinetic description of a collisionless plasma. There-
fore, PIC codes are - unlike hydro-codes, which rely on momenta equation
derived from (B.1) - capable of dealing with highly non-thermal plasmas,
which play a crucial role in laser-plasma interaction. In contrast to so called
Vlasov codes, PIC codes do not directly sample the particle distribution
function f(x,p,t) on a Eulerian mesh. Instead, they sample the distribution
with so called macroparticles: f(x, p, t) = >, W) S(x — xp(1), p — Pp(t)),
where W), refers to the weight and S to the shape function of the individual
particles. This picture is highly intuitive: The macroparticles correspond to

Ouf + Onf + %apf —0, (B.1)
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for each cell ¢

Figure B.1: Computational cycle of a PIC simulation

“clouds” of real particles, which simply move according to the laws of mech-
anics. Besides its intuitive simplicity, this model has the advantage of being
computationally effective, since sampling of empty phase space regions is
avoided.

Let us now have a look at how the PIC algorithm works. A simulation run
starts by initializing the physical constituents (laser fields, plasma particles)
in the simulation box!. After that, the fields and particles are propagated
in time step by step. Therefore, the computational cycle (see Fig. B.1) is
executed repeatedly: From the momenta p, and positions x, of the macro-
particles, currents j. and charge densities p, are calculated at each cell? by an
interpolation algorithm. Using these values, the electric and magnetic fields
E. and B, are propagated in time by a Maxwell solver. Interpolating these
fields to the particle positions, the forces F), on the particles are computed.
Finally, the particle positions and momenta are updated and the cycle starts
again.

Several variants of this algorithm exist, varying e.g. in the dimensionality
of the considered system, the system of equations they are based on (whether
or not the equations of motion are relativistic, magnetic fields are included
or only electric, etc.) and the numerical algorithms used to propagate fields
and particles. Further, there are a lot of possible extensions to the basic
algorithm like including ionization effects, collisions, etc..

In this work, the code VLPL (Virtual Laser Plasma Laboratory) [29] by
Alexander Pukhov has been used, a fully relativistic PIC code, which exists
in 1D, 2D and 3D versions. Also, some extensions have been implemented
and applied, e.g. for initializing ultra-short, focused laser pulses and for
simulating in Lorentz transformed systems.

'the spatial region to be simulated
Zpoint of the spatial simulation grid
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B.2 Lorentz Transformation to Describe Oblique
Incidence in 1D

In laser-plasma theory, it is often convenient to describe things in a one
dimensional (1D) slab geometry, i.e. all spatial derivatives perpendicular to
the optical axis are neglected. For not too small laser focal spot sizes, this is
very often a reasonable approximation and leads to great simplifications in
numerical as well as analytical theory. In numerical computations, the grid
size can be reduced by orders of magnitude, allowing for higher resolution
in the critical dimension. In analytical calculations, it sometimes enables us
to give closed form solutions and straightforward, comprehensible models.
Whereas it is obvious that the 1D treatment can be employed in situations
of normal laser incidence, it can also be extended to oblique laser incidence.
Therefore, as shown by Bourdier in Ref. [70], a Lorentz transformation does
the job.

From the lab frame £, we transform to the inertial frame S, in which
the laser is normally incident. Let the light wave in £ be described by
the frequency 4-vector (wg, ck’, ckﬁ, 0) = wf§ (1, cosa, sina, 0), wherein z
denotes the direction normal to the surface and « is the angle of incidence.
In §, we claim ck;g ) Thus, the Lorentz transformation is given by the
matrix

v 0 =By O

0O 1 0 0
A= , B.2
-y 0 v O (B2)

0O 0 0 1

with f = sina and v = (cos a)fl. Now, we can derive all interesting mag-
nitudes. In the frame S, the plasma is streaming with the velocity vg = —cf,
the laser wavelength is altered by AS = yA% and therefore the corresponding
critical density changes to nS. = y2n’%. The electron density itself changes
to n® = yn%, thus the normalized density

%)

° Z—S =3~ (B.3)
C

scales even with 3.
Especially in the theory of harmonics generation (chapter 3) this trans-
formation is often used, so it is handy to have these formulae down pat.

B.3 Numerical Calculation of the Generalized Airy
Function

This section explains the numerical computation of the integral

[ee] . 2n+1
gAi, (z) = + / o (ot 5T) gy, (B.4)

2T
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The unmindful immediate application of a trapezoidal formula would fail
here due to the rapidly oscillating integrand, which further does not vanish
at infinity. The integral only converges because of the steadily decreasing
oscillation period for ¢t — +oo.

However, a simple trick can be applied to calculate the integral numer-
ically: We shift the contour of integration along the imaginary axis by a
margin of a > 0. Due to Cauchy’s integral theorem, this will not change the
results®. Next, the symmetry of the integrand can be exploited, so that the
contour of integration can be halved. We obtain:

oA (1) = % /O " exp [Im (f(z, £))] x cos[Re (f(z,4))] dt  (B.5)

(t + da)?"H!

flz,t) = (t+ia)z+ o+ 1

(B.6)

Note that, since a > 0, f(z, t) possesses the highly desirable property
limy_yoo [Im (f(x,t))] = +o00. This means, that the integrand vanishes ex-
ponentially for large ¢, and we can approximate (B.5) with a trapezoidal
formula.

Since a does not affect the value of the integral, it can be chosen in a way
S0 as to minimize the computational effort. For too small a, the integrand
vanishes only slowly for ¢ — oo so that the numerical upper boundary would
have to be very high. For too large a, the integrand oscillates more rapidly,
so that the time step would have to be very small. Our experience showed,
that the best choice for a depends mainly on the order n of the function.
For n < 2 we found a = 1 a good choice, whereas for n > 2, smaller a work
better.

3For large t, the contours connecting the real axis to the new integration path yield
vanishing contributions.
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