Identifizierung und Charakterisierung von Regulatoren der Acyl-CoA Carboxylasen in Corynebacterium glutamicum

Inaugural – Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Jens Nickel

aus Heinsberg

Juni 2010

Die vorliegende Arbeit wurde am Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1) der Forschungszentrum Jülich GmbH unter Anleitung von Herrn Prof. Dr. M. Bott und in der Arbeitsgruppe von Herrn Dr. L. Eggeling durchgeführt.

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf.

Referent: Prof. Dr. Michael Bott Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1) Forschungszentrum Jülich GmbH

Koreferent: Prof. Dr. em. Hermann Sahm Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1) Forschungszentrum Jülich GmbH

Tag der mündlichen Prüfung: 12.07.2010

Ausschnitte der vorliegenden Dissertation wurden in folgender Publikation veröffentlicht:

Nickel J, Irzik K, van Ooyen J, Eggeling L (2010). The TetR-type transcriptional regulator FasR of *Corynebacterium glutamicum* controls genes of lipid synthesis during growth on acetate. *Mol Microbiol.* **78(1):** 253-65.

Inhaltsverzeichnis

Inhaltsverzeichnis	I
Verzeichnis der Abkürzungen	
I. Finleitung	1
1. Corynebacterium glutamicum	
2. Acyl-CoA Carboxylasen und Lipidsynthese	2
3. Regulation des Lipidstoffwechsels	6
4. Ziel der Arbeit	10
II. Material und Methoden	11
1. Bakterienstämme und Plasmide	11
2. Oligonukleotide	13
3. Nährmedien	22
4. Kultivierungsbedingungen	23
4.1 Kultivierung von <i>E. coli</i>	23
4.2 Kultivierung von <i>C. glutamicum</i>	
4.3 Bestimmung des Wachstums von Bakterienkulturen	
5. Molekularbiologische Methoden	
5.1 Isolierung von Blasmid DNA	
5.2 Isolierung von PNA	25
5.4 Reinigung von DNA	26
5.5 Bestimmung von Nukleinsäurekonzentrationen	26
5.6 DNA-Agarose-Gelelektrophorese	27
6. Rekombinante DNA-Techniken	27
7. Klonierungsexperimente	
7.1 Herstellung und Transformation kompetenter E. coli-Zellen	28
7.2 Herstellung und Transformation kompetenter	
C. glutamicum-Zellen	28
7.3 Polymerasekettenreaktion (PCR)	29
7.4 Quantitative Real-Time PCR	
7.5 DNA-Microarray-Technologie	
7.5.1 Synthese fluoreszenzmarkierter cDNA-Sonden	
7.5.2 DNA-Chip-Hybridisierung	
7.5.3 Messung und Quantifizierung der Fluoreszenz von	22
7.6 Konstruktion von Dolotionsmutanton mit Hilfo dos	
nK10mobsecB_Systems	34
7 7 DNA-Sequenzanalyse	35
8 Biochemische Methoden	
8.1 Zellaufschluss	36
8.2 Genexpression	
8.3 Bestimmung von Proteinkonzentrationen	
8.4 SDS-Polyacrylamid-Gelelektrophorese	
8.5 MALDI-TOF-Massenspektrometrie	
8.6 Chromatographische Methoden	
8.6.1 Gelfiltrationschromatographie	

	8.6.2 Ni ²⁺ -NTA-Affinitätschromatographie	.39
	8.7 DNA-Protein-Interaktionsstudien	.40
	8.7.1 Affinitätsreinigung mittels Dynabeads® M-280 Streptavidin	.40
	8.7.2 Gelretardationsexperimente	.42
	8.7.3 Koisolationsexperiment zur Identifikation des FasR Effektors 8.8 Fettanalyse nach Weibull-Stoldt	.43 .44
Ш.	Ergebnisse	.45
1.	Transkriptionsanalyse der Gene der Carboxylase-Untereinheiten	-
	accD1, accD2 und accBC	.45
	1.1 Einfluss der Kohlenstoffquelle	.45
	1.2 Einfluss von Oleat	.48
2.	Untersuchungen zur Regulation der Gene accD1 und accD2	.49
	2.1 Identifizierung von Regulatoren, die an die	
	accD1-Promotorregion binden	.50
	2.2 Identifizierung von Regulatoren, die an die	F 4
0	accu2-Promotorregion binden	.54
3.	Charakterisierung der putativen Regulatoren von accD1	.50
	3.1 Deletion der Gene task, mark, syrb und whiA	. 50
	5.2 Charaktensierung der Deletionsmutanten	57
	3.3 Konstruktion der Komplementationsmutante	57
		61
Л	Transkriptomanalyse von AfasP im Vorgleich zum Wildtyn	62
4. 5	Charakterisierung von EasP	.03 66
5.	5.1 Heterologe Generation und Proteinpränaration	.00 66
	5.2 Bestimmung des apparenten Molekulargewichts von FasR	.00
6.	Identifizierung der Zielgene und der Bindestelle von FasR	.70
	6.1 Gelretardationsexperimente mit putativen Zielgenen von FasR	.71
	6.2 Identifizierung der FasR-Bindestellen in den Promotorregionen	
	von accD1, accBC, fasA und fasB	.72
	6.3 Berechnung des FasR-Bindemotivs	.80
	6.4 Überprüfung des FasR-Bindemotivs vor <i>accD1</i>	.82
7.	Identifizierung des Effektors von FasR	.84
	7.1 Einfluss von CoA, Acetyl-CoA und Malonyl-CoA auf FasR	.84
	7.2 Koisolationsexperimente zur Identifizierung des FasR-Effektors	87
IV.	Diskussion	.90
1.	Abhängigkeit der accD1-Genexpression von der	
	Kohlenstoffquelle und Oleatzugabe	.90
2.	Regulationsmechanismus von <i>accD1</i>	.93
3.	Charakterisierung der C. glutamicum-Mutante ∆fasR	.96
4.	Charakterisierung des Regulators FasR	.99
V.	Zusammenfassung	104
VI.	Abstract	105
VII.	Literaturverzeichnis	106
VIII.	Anhang	121
	-	

Verzeichnis der Abkürzungen

Abb.	Abbildung
APS	Ammoniumpersulfat
AS	Aminosäure
ATP	Adenosintriphosphat
bp	Basenpaare
C. glutamicum	Corynebacterium glutamicum
cDNA	complementary DNA (komplementär DNA)
DNA	Desoxyribonukleinsäure
DNase	Desoxyribonuklease
dNTP	Desoxyribonukleosidtriphosphat
DTT	Dithiothreitol
E. coli	Escherichia coli
EDTA	Ethylendiamintetraessigsäure
EtBr	Ethidiumbromid
f	femto (10 ⁻¹⁵)
g	Gramm
g	g-Zahl (Fliehkraft)
h	Stunde
HCI	Salzsäure
IPTG	Isopropylthiogalactosid
kb	Kilobasen
kDa	Kilo Dalton
LB	Luria Broth
Μ	molar
min	Minuten
m	milli (10 ⁻³)
MOPS	4-Morpholinpropansulfonsäure
mRNA	messenger RNA (Boten-RNA)
μ	mikro (10 ⁻⁶)
n	nano (10 ⁻⁹)
NaOH	Natronlauge

nt	Nukleotide
NTA	Nitrilotriacetic acid (Nitrilotriessigsäure)
OD	optische Dichte
ORF	offener Leserahmen
р	pico (10 ⁻¹²)
PAGE	Polyacrylamidgelelektrophorese
PCR	Polymerase Chain Reaction (Polymerasekettenreaktion)
рН	Konzentration des Wasserstoffs
RNA	Ribonukleinsäure
RNase	Ribonuklease
RT	Raumtemperatur
SDS	Natriumdodecylsulfat
S	Sekunde
Tab.	Tabelle
TAE	Tris-Acetat-Puffer mit EDTA
TE	Tris-Puffer mit EDTA
TEMED	N, N, N', N'-Tetramethylethylendiamin
Tris	Tris-(hydroxylmethyl-)aminomethan
Upm	Umdrehungen pro Minute
v/v	Volumen / Volumen
w/v	Gewicht / Volumen

I. Einleitung

1. Corynebacterium glutamicum

Corynebacterium glutamicum wurde 1957 in Japan von Udaka und Kinoshita in Bodenproben entdeckt (Kinoshita et al., 1957), als man Glutamatproduzierende Bakterien isolierte und charakterisierte. Heutzutage gilt C. glutamicum einer der bedeutendsten Mikroorganismen für als die großtechnische Produktion von L-Aminosäuren und für die weiße Biotechnologie (Eggeling und Sahm, 1999). Pro Jahr werden etwa 1,8 Millionen Tonnen L-Glutamat (Nakamura et al., 2007) und 0,9 Millionen Tonnen L-Lysin (Leuchtenberger et al., 2005) mit modifizierten Stämmen von C. glutamicum hergestellt. Damit stellen beide Aminosäuren die bei weitem größte Menge produzierter Aminosäuren dar. L-Glutamat dient in erster Linie als Geschmacksverstärker und L-Lysin ist ein wichtiger Futtermittelzusatz (Eggeling und Sahm, 1999; Malumbres et al., 1995). Weiterhin ist C. glutamicum, aufgrund seiner apathogenen Eigenschaften und als Vertreter der Corynebacterineae, ein Modellorganismus für die nahverwandten pathogenen Spezies, wie z.B. Mycobacterium tuberculosis, Mycobacterium leprae oder Corynebacterium diphtheriae (Stackebrandt et al., 1997). C. glutamicum ist ein gram-positives, Biotin-auxotrophes, unbewegliches und stäbchenförmiges Bakterium, dessen Zellwand eine Mykolsäure-haltige Lipidschicht besitzt (Takeno et al., 2007; Pascual et al., 1995; Minnikin et al., 1984).

Seit 2003 ist das 3,3 Mbp-große Genom von *C. glutamicum* sequenziert (Kalinowski et al., 2003) und es gibt umfangreiche Transkriptom- und Proteomanalysen, um Stoffwechselwege und -flüsse in diesem Bakterium aufzuklären (Wendisch, 2003; Schaffer et al., 2001). Für die Produktion von L-Glutamat sind spezielle Kulturbedingungen, wie z.B. Biotin-Mangel, Zugabe von Antibiotika (z.B. Penicillin G, Ethambutol) oder Zugabe von Detergenzen (z.B. Tween-40, Tween-60) erforderlich, damit Glutamat ins Medium ausgeschieden werden kann (Eggeling et al., 2001; Kimura, 2002; Nunheimer et al., 1970; Duperray et al., 1992; Radmacher et al., 2005). Es zeigte sich,

dass die Glutamat-Produktion auch von der Membranbeschaffenheit beeinflusst wird (Shimizu et al., 2003), deshalb ist die Aufklärung und Regulation der Lipidsynthese ein interessanter Aspekt. In diesem Zusammenhang wurde das Gen *dtsR1* gefunden, wobei "*dtsR*" für "detergent sensitive rescuer" steht (Kimura et al., 1996). Durch biochemische Arbeiten und die Genomsequenz konnte gezeigt werden, dass es im Genom von *C. glutamicum* insgesamt vier paraloge Gene gibt, die nun als *accD1-accD4* bezeichnet werden. Von dreien dieser Gene ist bekannt, dass sie Komponenten von Acyl-CoA Carboxylasen und somit an der Lipidsynthese beteiligt sind (Gande et al., 2007).

2. Acyl-CoA Carboxylasen und Lipidsynthese

Bei Carboxylasen handelt es sich um Ligasen, die den Einbau von Kohlenstoffdioxid in ihr Substrat, das meist namensgebend ist, katalysieren. C. glutamicum besitzt drei Acyl-CoA Carboxylasen (Gande et al., 2007). Hierbei handelt es sich um eine Acetyl-CoA Carboxylase, die an der Fettsäuresynthese beteiligt ist, eine Acyl-CoA Carboxylase, die an der Mykolsäuresynthese beteiligt ist, indem sie aktivierte Fettsäuren als Substrat nutzt, und eine Carboxylase mit bislang unbekannter Funktion (Gande et al., 2004). In Escherichia coli gibt es nur eine einzige Carboxylase und zwar die ubiquitäre Acetyl-CoA Carboxylase, die erstmals 1958 von Wakil und Gibson entdeckt wurde (Wakil et al., 1983). Die Acetyl-CoA Carboxylase katalysiert die irreversible Initiationsreaktion der Fettsäuresynthese durch die Carboxylierung von Acetyl-CoA zu Malonyl-CoA, wie in Abbildung 1 dargestellt ist (Freiberg et al., 2004; Gande et al. 2007). Malonyl-CoA ist der essentielle Baustein für die Fettsäuresynthese und diese Synthesereaktion ist der geschwindigkeitsbestimmende Schritt, denn eine Überproduktion der Acetyl-CoA Carboxylase führt in E. coli zu einer Erhöhung der Fettsäureausbeute (Davis et al., 2000; Davis und Cronan, 2001). Das Enzym aus E. coli ist sehr gut untersucht und besteht aus vier Polypeptiden, nämlich der Biotin-Biotincarboxylcarrierprotein Carboxylase (AccC), dem (AccB), der α -Carboxyltransferase (AccA) und der β -Carboxyltransferase (AccD). Die Acetyl-CoA Carboxylase Reaktion umfasst zwei Teilreaktionen (James und Cronan, 2004). Zunächst wird das kovalent an AccB gebundene Biotin durch

AccC carboxyliert. Im Anschluss erfolgt die Übertragung der Carboxylgruppe von Biotin auf Acetyl-CoA durch den Komplex AccAD, wodurch Malonyl-CoA gebildet wird. Die hier verwendeten Abkürzungen der Untereinheiten beziehen sich auf die Acetyl-CoA Carboxylase aus *E. coli* (Cronan und Waldrop, 2002).

Acetyl-CoA CoA Carboxylase Acetyl-CoA + ATP + HCO_3^- = ➡ Malonyl-CoA + ADP + H⁺ + P_i

<u>Abb.1:</u> Carboxylierung von Acetyl-CoA zu Malonyl-CoA durch die Acetyl-CoA Carboxylase. Die Synthese von Malonyl-CoA erfolgt aus Acetyl-CoA, indem zunächst die Carboxylgruppe unter ATP-Verbrauch an den Carboxylase-Cofaktor Biotin gebunden wird und im Anschluss wird die Carboxylgruppe auf Acetyl-CoA übertragen.

Die Carboxylasen in C. glutamicum und den verwandten Corynebacterineae weisen jedoch einen anderen Aufbau auf. Die Acetyl-CoA Carboxylase in C. glutamicum besteht aus den drei Untereinheiten AccD1 (
B-Untereinheit der Carboxyltransferase). AccBC (Biotincarboxylase und Biotincarboxylcarrierprotein) und AccE (ε-Untereinheit der Acvl-CoA Carboxylase). Hiervon besitzt die AccD1-Untereinheit eine Funktion bei der Carboxylierung der Substrate (Li und Cronan, 1992; Li et al., 1992) und die AccBC-Untereinheit ist ein Fusionsprotein aus AccB und AccC, das den Cofaktor Biotin trägt, der durch AccB auch carboxyliert wird (Samols et al., 1988; Chapman-Smith und Cronan, 1999). Die Acetyl-CoA Carboxylase ist ein labiler Komplex, dessen molekulare Masse in C. glutamicum 812 kDa beträgt, so dass er vermutlich aus jeweils sechs Untereinheiten ($\alpha_6\beta_6\epsilon_6$) aufgebaut ist. Diese Acetyl-CoA Carboxylase, wie auch die von E. coli und anderen Organismen, ist befähigt neben Acetyl-CoA auch Propionyl-CoA als Substrat umzusetzen (Gande et al., 2007).

Die an der Mykolsäuresynthese beteiligte Acyl-CoA Carboxylase besteht aus vier Untereinheiten, AccD2 und AccD3 (beides β -Untereinheiten der Carboxyltransferase), AccBC und AccE (Gande et al., 2004). Die Acyl-CoA Carboxylase aktiviert die Acylgruppe einer am Acylcarrierprotein gebundenen C₁₆-Fettsäure durch α -Carboxylierung (Gande et al., 2004). Die dritte Carboxylase besteht aus den drei Untereinheiten AccD4, AccBC und AccE. Die

Gene *accD1*, *accD2* und *accE* liegen direkt benachbart in einem synthenischen Genlokus in *C. glutamicum*. Das Gen *birA*, das für die Biotinligase kodiert und den Cofaktor Biotin an die AccBC-Untereinheit bindet (Chapman-Smith und Cronan, 1999), liegt direkt stromaufwärts von *accD1*. Das Gen *accBC* liegt etwa 5 kb vom *accD1/accD2*-Lokus entfernt. Im Gegensatz zu *accD1*, *accD2* und *accD3* ist *accD4* das einzige dieser paralogen Gene, das nicht essentiell ist (Gande et al., 2007). Gegenüber der Situation in *C. glutamicum* mit vier *accD*-Genen liegen in *C. efficiens* und *C. diphtheriae* fünf und in *Mycobacterium tuberculosis*, *M. bovis* und *M. marinum* sogar sechs *accD*-Gene z.T. unbekannter Funktion vor (Kalinowski et al., 2003; Cole et al., 1998; Glickman und Jacobs, 2001).

Die an die Malonyl-CoA Synthese anschließende Fettsäuresynthese verläuft linear in mehreren repetitiven Schritten (siehe Abbildung 2) und wird durch die Fettsäuresynthase katalysiert (Freiberg et al., 2004; Cronan et al., 1997). *C. glutamicum* besitzt eine Fettsäuresynthase Typ I (Fas I), wie die anderen *Corynebacterineae* und Eukaryoten. Fettsäuresynthasen dieses Typs werden durch ein einziges Polypeptid kodiert, wogegen die Fettsäuresynthasen des Typs II, wie sie z.B. *E. coli* besitzt, aus mehreren einzelnen Polypeptiden aufgebaut sind (White et al., 2005; Maier et al., 2008).

Bakterielle Fettsäuresynthese. Schematische Darstellung Abb.2: des Stoffwechselweges aus E. coli mit Metaboliten und entsprechenden Enzymen (schwarzer Kasten). Ausgangssubstrat ist Acetyl-CoA, das durch die Acetyl-CoA Carboxylase (ACC) zu Malonyl-CoA carboxyliert wird (roter Kasten). Die ACC-Reaktion ist untergliedert in zwei Teilreaktionen, die kovalente und ATP-abhängige Bindung von CO₂ an den AccB-Cofaktor Biotin und die nachfolgende Übertragung der Carboxylgruppe von Biotin auf Acetyl-CoA. In der weiteren Fettsäuresynthese wird Malonyl-CoA auf das Acylcarrierprotein (ACP) transferiert. Danach folgt eine schrittweise Verlängerung der Fettsäurekette durch vier aufeinanderfolgende Schritte. nämlich Kondensation (FabH), Reduktion (FabG), Dehydratisierung (FabZ) und nochmalige Reduktion (Fabl, FabK) unter Einsatz von weiteren Molekülen Malonyl-CoA. Abkürzungen: FabD = Malonyl-CoA:ACP Transacylase. FabH = β -Ketoacyl-ACP-Synthase III, FabG = β -Ketoacyl-ACP Reductase, FabZ = β -Hydroxyacyl-ACP Dehydrase, Fabl / FabK = Enoyl-ACP Reductase, FabF / FabB = β -Ketoacyl-ACP Synthase I / II (Abb. nach Freiberg et al., 2004).

C. glutamicum besitzt sogar zwei Fettsäuresynthasen, wie *C. efficiens* und *C. ammoniagenes* (Nishio et al., 2003; Stuible et al., 1997), die bei *C. glutamicum* durch das essentielle Gen *fasA* (Fas IA) bzw. das nichtessentielle Gen *fasB* (Fas IB) kodiert werden. *C. diphtheriae* oder *C. jeikeium* weisen, wie *E. coli* und *B. subtilis*, nur eine Fettsäuresynthase auf (Stuible et al., 1996; Radmacher et al., 2005). Fas IA synthetisiert vorwiegend Stearat (18:0) und Oleat (18:1), wohingegen Fas IB Palmitat (16:0) und Stearat produziert, aber kein Oleat (Stuible et al., 1996; Stuible et al., 1997). Die Analyse von Phospholipiden aus der Cytoplasmamembran ergab, dass sie zu etwa 90 % aus den Fettsäuren Oleat und Palmitat bestehen (Minnikin et al., 1984; Radmacher et al., 2005).

Zusätzlich zu den "normalen" Fettsäuren besitzen die Vertreter der *Corynebacterineae* noch Mykolsäuren, α -verzweigte β -Hydroxyfettsäuren, die eine zweite äußere Lipidschicht bilden (Alderwick et al., 2005). Diese zweite Lipidschicht der gram-positiven Corynebacterineae, die sogenannte Mycomembran, ähnelt der äußeren Membran gram-negativer Bakterien (Lee et al., 1997). Die Synthese der Mykolsäuren erfolgt in mehreren Schritten aus zwei Fettsäuremolekülen (Radmacher et al., 2005) und hierbei wird unter anderem die Acyl-CoA Carboxylase benötigt (Gande et al., 2007). Im Vergleich zu Mycobacterium tuberculosis besitzt C. glutamicum überwiegend einfache, aus den Fettsäuren Oleat und Palmitat aufgebaute Mykolsäuren des Typs 32:0 und 34:1 (Collins et al., 1981) und geringe Mengen der Mykolsäuren 34:0, 36:0, 36:1 und 36:2 (Jang et al., 1997).

3. Regulation des Lipidstoffwechsels

Die Regulation der Fettsäuresynthese ist intensiv in *E. coli*, aber auch in *Bacillus subtilis* und *Streptococcus pneumoniae* untersucht worden, um aufzuklären, unter welchen Bedingungen die Fettsäuresynthese aktiviert oder reprimiert wird und welche Schlüsselenzyme auf transkiptioneller Ebene im Syntheseweg reguliert werden (Rock und Cronan, 1996; Zhang et al., 2002; Schuiman et al., 2003; Lu und Rock, 2006). *E. coli* besitzt überwiegend unverzweigte Fettsäuren und zwei Transkriptionsregulatoren, die in die Fettsäuresynthese bzw. den Fettsäureabbau eingreifen, FadR und FabR (siehe Abbildung 3). FadR gehört zur GntR-Familie und reguliert vornehmlich den Fettsäuresbau, aber aktiviert auch die beiden Gene *fabA* und *fabB*, die an der Fettsäuresynthese beteiligt sind. Effektoren für FadR sind langkettige Acyl-CoA Derivate (Haydon und Guest, 1991; Henry und Cronan, 1992; Campbell und Cronan 2001; Fujita et al., 2007). FabR ist ein Mitglied der TetR-Familie und

reprimiert gezielt die Expression der beiden Gene fabA und fabB des Fettsäuresynthasekomplexes Fas II, wobei der Ablauf als auch der Effektor noch aufzuklären sind (Zhu et al., 2009; Fujita et al., 2007; Campbell und 2001). Zusätzlich wird die Fettsäuresynthese mittels Cronan. Feedbackhemmung durch das Acylcarrierprotein (ACP) gesteuert, das die Acetyl-CoA Carboxylase und das Protein Fabl hemmt (Heath und Rock, 1996; Davis und Cronan, 2001; Zhang und Rock, 2009). Weiterhin reguliert das AccB-Polypeptid, eine Untereinheit der Acetyl-CoA Carboxylase, die Expression des accBC-Operons durch Inhibierung der accBC-Transkription (James und Cronan, 2004).

B. subtilis hingegen besitzt sowohl unverzweigte als auch verzweigte Fettsäuren und einen Transkriptionsregulator FapR der DeoR-Familie, der die Fettsäuresynthese reprimiert (siehe Abbildung 4) (Kaneda, 1977; Schuiman et al., 2003; Schuiman et al., 2006). FapR reprimiert die Expression des *fap* Regulons (Schuiman et al., 2003). Malonyl-CoA, der essentielle Grundbaustein für die Fettsäuresynthese, inhibiert die FapR-Repression des *fab*-Regulons (Schuiman et al., 2006; Zhang und Rock, 2009).

Der human-pathogene Organismus *Streptococcus pneumoniae* besitzt überwiegend unverzweigte Fettsäuren, wie auch *E. coli*. In diesem Organismus ist der Transkriptionsregulator FabT an der Repression der Fettsäuresynthese beteiligt. Das FabT-Regulon umfasst nahezu alle Gene, die in die Fettsäuresynthese involviert sind (siehe Abbildung 4) (Lu und Rock, 2006; Fujita et al., 2007).

In C. glutamicum ist noch nichts über die Regulation der Fettsäuresynthese bekannt. Es konnten bislang lediglich zwei Regulatoren identifiziert werden, die Gene der Fettsäuresynthese beeinflussen könnten. So konnten GlxR-Bindemotive vor den Genen accD1, accD4, fasA, fasB und accBC identifiziert werden (Kohl und Tauch, 2009). In in vitro Bindestudien konnte nachgewiesen werden, dass GlxR vor allen aufgelisteten Genen, mit Ausnahme von accBC, bindet (Kohl et al., 2008; Kohl und Tauch, 2009). Bei GlxR handelt es sich um einen essentiellen und globalen Regulator von C. glutamicum, der unter anderem Bindestellen vor Genen des Glyoxylatzyklus, des Gluconatmetabolismus und der Fettsäuresynthese besitzt (Kim et al., 2004; Letek et al., 2006; Jungwirth et al., 2008). Einen experimentellen Beleg, ob

7

GIxR die Expression der oben genannten Gene direkt beeinflusst, gibt es hingegen noch nicht, weil GIxR nicht deletierbar ist (Koch und Tauch, 2009). Ferner zeigte sich in einer SugR-Deletionsmutante, dass bei Wachstum auf Acetat die *accD1*-Expression um den Faktor 7 und die *fasB*-Expression um den Faktor 6 reduziert ist (Engels et al., 2008).

<u>Abb. 3:</u> Schema der Fettsäuresynthese und dessen Regulation in *E. coli.* Ausgangssubstrat ist Acetyl-CoA, das durch die Acetyl-CoA Carboxylase (AccABCD) zu Malonyl-CoA carboxyliert wird. Danach wird Malonyl-CoA durch FabD auf das Acylcarrierprotein (ACP) transferiert. Anschließend folgt eine schrittweise Verlängerung der Fettsäurekette durch vier Schritte: Kondensation (FabH), Reduktion (FabG), Dehydratisierung (FabZ) und Reduktion (FabI). Das Acyl-ACP kann wieder in diesen Zyklus eingespeist werden. FadR fungiert als Aktivator der Gene *fabA* und *fabB* und wird selbst durch langkettige Acyl-CoAs (>14 C-Atome) reprimiert. FabR reprimiert die Genexpression von *fabA* und *fabB*. Zudem regulieren Acyl-ACPs die Acetyl-CoA Carboxylase (AccABCD) und FabI über Feedback-Inhibition.

Abkürzungen: FabA = 3-Hydroxydecanoyl-ACP Synthase, FabB = 3-Ketoacyl-ACP Synthase I, FabD = Malonyl-CoA:ACP Transacylase. FabG = β -ketoacyl-ACP Reductase, FabZ = β -hydroxyacyl-ACP Dehydrase, FabI = Enoyl-ACP Reductase (Umgezeichnet nach Fujita et al., 2007).

der <u>Abb. 4:</u> Schema Fettsäuresynthese und dessen Regulation in B. subtilis bzw. S. pneumoniae. Die Fettsäuresynthese verläuft in beiden Organismen analog zu der in E. coli. Die Fettsäuresynthese in B. subtilis (linke Seite) wird fast vollständig durch das Protein FapR reguliert und reprimiert. Der Repression durch FapR wirkt Malonyl-CoA entgegen. Die Fettsäuresynthese in S. pneumoniae (rechte Seite) wird vollständig durch das Protein FabT reprimiert. Der Effektor von FabT ist bislang unbekannt (Umgezeichnet nach Fujita et al., 2007).

4. Ziel der Arbeit

In vorangegangenen Arbeiten wurden bereits Gene in C. glutamicum identifiziert, die einerseits für die Lipidsynthese verantwortlich sind und andererseits in Abhängigkeit vom eingesetzten Substrat unterschiedlich exprimiert werden. Davon sind die Gene der Acyl-CoA Carboxylasen accD1 und accD2 betroffen (Gande et al., 2004). Dies ist von besonderem Interesse, weil die Membranbeschaffenheit einen Einfluss auf die Aminosäureausscheidung hat (Shimizu et al., 2003). Ferner konnten bislang weder Regulatoren dieser Gene, noch Metabolite, die als Effektoren von entsprechenden Regulatoren fungieren, identifiziert werden. Deshalb sollten zunächst Regulatoren, die an der Lipidsynthese in C. glutamicum beteiligt sind, identifiziert werden. Ferner sollten Regulator-defekt Mutanten hergestellt werden, um über globale Expressionsanalysen das entsprechende Regulon charakterisieren zu können. Schließlich war es das Ziel die spezifische DNA-Bindestelle eines möglichen Transkriptionsregulators zu identifizieren und zu charakterisieren, um ein erstes Modell der Kontrolle von Genen der Lipidsynthese in C. glutamicum zu erstellen.

II. Material und Methoden

1. Bakterienstämme und Plasmide

Tab. 1: Die in dieser Arbeit verwendeten Bakterienstämme

Stamm	Genotyp	Referenz
<i>Ε. coli</i> DH5α	F', endA1, hsdR17, $(r_{\kappa} m_{\kappa}^{*})$, supE44, thi-1, recA1, gyrA, (Nal ^r), relA1, Δ (lacZYA ⁻ argF)U169, (φ 80lacZ Δ M15)	Hanahan, 1983
<i>E. coli</i> BL21 (DE3)	F⁻, ompT, hsdS, gal(λcIts857, ind1, Sam7, nin5, lacUV5-T7gene1) dcm⁺ Tet ^r (DE3)	Studier und Moffatt, 1986
<i>C. glutamicum</i> ATCC13032	Wildtyp-Stamm	Abe et al., 1967
ATCC13032 ∆fasR	Wildtyp mit einer <i>in-frame</i> -Deletion von <i>fasR</i> (NCgl2404)	diese Arbeit
ATCC13032 <i>∆mar</i> R	Wildtyp mit einer <i>in-frame</i> -Deletion von <i>marR</i> (NCgl2886)	diese Arbeit
ATCC13032 ∆syrB	Wildtyp mit einer <i>in-frame</i> -Deletion von <i>syrB</i> (NCgl0405)	diese Arbeit

Tab. 2: Die in dieser Arbeit verwendeten Plasmide

Plasmid	Marker / Eigenschaft	Referenz
pEKEx2	<i>E. coli-C. glutamicum-</i> Shuttle-Vektor für die regulierte Genexpression (Kan ^R , P _{tac} , <i>lacl</i> ^Q , pBL1 <i>oriV_{C.g.}</i> , pUC18 <i>oriV_{E.c.}</i>)	Eikmanns et al., 1991
pEKEx2-fasR	pEKEx2 mit einem 638 bp <i>Pst</i> I- <i>BamH</i> I- Fragment kodierend für das <i>C. glutamicum</i> FasR-Protein	diese Arbeit
pEKEx2- <i>marR</i>	pEKEx2 mit einem 473 bp <i>Pst</i> I- <i>BamH</i> I- Fragment kodierend für das <i>C. glutamicum</i> MarR-Protein	diese Arbeit
pEKEx2- <i>syrB</i>	pEKEx2 mit einem 884 bp <i>Pst</i> I- <i>BamH</i> I- Fragment kodierend für das <i>C. glutamicum</i> SyrB-Protein	diese Arbeit

Fortsetzung Tab. 2							
pET16b	Expressionsplasmid für <i>E. coli</i> BL21 (DE3) (Amp ^R , P _{T7} , T7 Terminator, ori _{pBR322} , <i>lac</i> I, N-terminaler 10xHis-Tag)	Novagen					
pET16b-fasR	pET16b mit einem 635 bp <i>Ndel-BamH</i> I- Fragment kodierend für das <i>C. glutamicum</i> FasR-Protein	diese Arbeit					
pET16b- <i>marR</i>	pET16b mit einem 470 bp <i>Ndel-BamH</i> I- Fragment kodierend für das <i>C. glutamicum</i> MarR-Protein	diese Arbeit					
pET16b- <i>syrB</i>	pET16b mit einem 881 bp <i>Ndel-BamH</i> I- Fragment kodierend für das <i>C. glutamicum</i> SyrB-Protein	diese Arbeit					
pK18 <i>mob</i>	Integrationsvektor (Kan ^R , <i>oriV_{E.c.} oriT</i>)	Schäfer et al., 1994					
pK18 <i>mob-fasR-</i> Strep	pK18 <i>mob</i> mit einem 704 bp <i>Xbal-Xmal-</i> Fragment kodierend für <i>fasR</i> und einen C-terminalen StrepII-Tag	diese Arbeit					
pK19 <i>mobsacB</i>	Integrationsvektor (Kan ^R , <i>oriV_{E.c.}, oriT</i> , <i>sacB</i>)	Schäfer et al., 1994					
pK19 <i>mobsacB</i> ∆fasR	pK19 <i>mobsacB</i> mit einem 1008 bp <i>Xma</i> l- <i>Pst</i> I-Crossover-PCR-Fragment, das die <i>fasR</i> flankierenden Bereiche umfasst	diese Arbeit					
pK19 <i>mobsacB</i> ∆glxR	pK19 <i>mobsacB</i> mit einem 1050 bp <i>Xma</i> l- <i>Sal</i> I-Crossover-PCR-Fragment, das die <i>glxR</i> flankierenden Bereiche umfasst	diese Arbeit					
pK19 <i>mobsacB</i> ∆ <i>mar</i> R	pK19 <i>mobsacB</i> mit einem 1060 bp <i>Pst</i> I- <i>Hind</i> III-Crossover-PCR-Fragment, das die <i>marR</i> flankierenden Bereiche umfasst	diese Arbeit					
pK19 <i>mobsacB</i> ∆syrB	pK19 <i>mobsacB</i> mit einem 1057 bp <i>Xma</i> l- <i>Hind</i> III-Crossover-PCR-Fragment, das die <i>syrB</i> flankierenden Bereiche umfasst	diese Arbeit					
pK19mobsacB ∆whiA	pK19 <i>mobsacB</i> mit einem 1008 bp <i>Xma</i> l- <i>Hind</i> III-Crossover-PCR-Fragment, das die <i>whiA</i> flankierenden Bereiche umfasst	diese Arbeit					

2. Oligonukleotide

Die Oligonukleotide in Tabelle 3 wurden von der Firma Eurofins MWG GmbH (Ebersberg) synthetisiert.

<u> Tab.3:</u>	Die	in	dieser	Arbeit	verwendeten	Oligonukleotide	für	Amplifikationen,
Deletior	nen, S	Sequ	Ienzierui	ngen, Bi	ndestudien und	l Mutationsanalys	en	

Name	Sequenz (5'→3') ^{a,b,c,d,e,f}									
Quantitative Real-Time PCR (Kapitel 7.4)										
c- <i>accBC</i> -RT	CGG	ТСТ	CCC	AAT	CGC	CAT	CAA	GGC	AG	
w-accBC-RT	GCC	GTG	СТТ	ATC	GGC	GAT	GAC	CTG	AG	
c- <i>accD1</i> -RT	GAG	CTG	GCA	ATC	GAC	ACC	GGC	CGC	С	
w-accD1-RT	CCA	CGA	AGT	CGG	TCA	GAG	CTG	GGC	С	
c- <i>accD2</i> -RT	CAC	ATG	GCT	ACC	TCC	GGT	ACC	TCC	CA	
w-accD2-RT	CGG	GGA	ATC	CGG	GAT	GAT	GGT	GTC	С	
c- <i>accE</i> -RT	GCA	GAT	CGT	ATC	TGG	CAA	CCC	AAC	CG	
w- <i>accE</i> -RT	CGG	GCG	AGA	CAG	ACG	CTC	ATC	С		
c- <i>birA</i> RT Rev	CAC	СТТ	CCA	ATG	CGA	GGG	AAG	TTG	С	
w-birA RT For	ACT	CGC	GGC	GGG	ACT	CGC	TGT	CAT		
c- <i>maf</i> -RT	CTG	CGC	CGG	AGG	AGA	TCG	TCC	GCC	A	
w- <i>maf</i> -RT	CAT	CGC	CAA	AGA	TGA	TGG	CGT	GGC	С	
ddh-forward	ACG	TGC	TGT	TCC	TGT	GCA	TGG			
ddh-reverse	GCT	CGG	СТА	AGA	CTG	CCG	СТ			
Deletionen (Kapitel 7.6)										
fasR Start N _{OUT} -Xmal	GGA AAT	GAT GA	ACC	CCA	CCC	G <mark>GG</mark>	TTT	TCA	TTG	CCT
fasR Start N _{IN}	CGC	ATC TTC	CAC CAA	TAA TTG	ACT TTC	TAA AGT	ACA	AGT	GCC	TGC

Fortsetzung Tab. 3										
fasR End C _{IN}	TGT TAC	TTA CTC	AGT TTC	TTA TCC	GTG	GAT GCT	GGG	CTG	ATT	ТСТ
<i>fasR</i> End C _{OUT} - <i>Pst</i> I	CGC GAT	СТС	AGC	GTG	CG <mark>C</mark>	TGC	<u>AG</u> T	GTT	TGC	ACT
fasR Proof 1 Deletion	GCG	TGC	CAC	TGC	GCT	ACT	CCT	G		
fasR Proof 2 Deletion	CCG	TCC	CCG	ACA	ACA	TGT	ACG	GCC		
glxR Start N _{o∪⊺} –Xmal	CGA GC	TGT	GAG	ACC	C <u>C</u>	CG <mark>G</mark>	<u>G</u> AG	GCC	GCT	ТСТ
<i>glxR</i> Start N _{IN}	CCC ACC	ATC TTC	CAC CAC	TAA TGC	ACT TTT	TAA TCT	ACA	CTC	CTG	TAC
glxR End C _{IN}	TGT GAG	TTA CAT	AGT TTG	TTA GCA	GTG CGT	GAT CGC	GGG	GTG	GAC	ACC
glxR End C _{OUT} -Sall	GTG G	GAG	TCC	СТС	ATG	A <u>GT</u>	C <mark>G</mark> A	CTT	TGG	AGG
glxR Proof 1 Deletion	GAA	CGT	CCG	TGC	ACT	GGG	CGG			
glxR Proof 2 Deletion	GCT	GAC	GGC	GCA	CAG	CGT	TTC	CGT	CAG	
marR Start N _{OUT} -Pstl	GCA ACT	CCG	TTG	C <u>CT</u>	GC <mark>A</mark>	<u>G</u> TC	CAT	TCT	TTA	CCA
<i>marR</i> Start N _{IN}	CCC TGC	ATC CAG	CAC CAT	TAA AGC	ACT GGT	TAA ATT	ACA	AGG	CAT	GCC
<i>marR</i> End C _{IN}	TGT TGG	TTA AAA	AGT GAG	TTA ACC	GTG GAC	GAT AGC	GGG	TAC	GGT	AGC
marR End C _{OUT} -HindIII	ACC GGC	CCT GAG	CGC	GGC	AC <u>A</u>	AG <mark>C</mark>	TTT	AGT	GGG	ACG
marR Proof 1 Deletion	CAG	GAG	GAT	TTT	TAC	TAT	TCG			
marR Proof 2 Deletion	ATC	CAA	GCT	CCG	CGA	CGT	TGG			
<i>syrB</i> Start N _{OUT} - <i>Xma</i> l	CAC	СТА	ATG	GA <u>C</u>	CC <mark>G</mark>	<u>G</u> GA	TCA	GCG	CAC	CAA
<i>syrB</i> Start N _{IN}	CCC GAG	ATC GTG	CAC CAT	TAA GTG	ACT TGC	TAA TAA	ACA	GAG	CTG	ATT
<i>syrB</i> End C _{IN}	TGT ATC	TTA CAG	AGT AAA	TTA TTT	GTG ATT	GAT GAC	GGG	AAG	GCC	CTG
<i>syrB</i> End C _{OUT} - <i>Hind</i> III	GAA	TTG	TTT	GGG	A <mark>AA</mark>	GCT	TAT	GTG	ACT	CGC
syrB Proof 1 Deletion	CGC	ACT	GGA	CTG	СТС	ACC	GGA			
syrB Proof 2 Deletion	GTG	GTG	AAT	ССТ	TGA	TCA	GGG			
whiA Start N _{OUT} –Xmal	GTA G	GCT	GCA	ACC	CCC	GGG	CAG	GTG	CGA	CGC

Fortsetzung Tab. 3										
whiA Start N _{IN}	CCC CAG	ATC TGA	CAC CAC	TAA GCC	ACT TAC	TAA TCC	ACA	ATC	ACT	CGT
whiA End C _{IN}	TGT		AGT	TTA	GTG	GAT	GGG	TCT	GTT	GTG
whiA End C _{OUT} -HindIII	ACG ATG GAG	CAA C	TGT	GTC	AAG	CTT	TTA	GGT	CAA	TCA
whiA Proof 1 Deletion	ССТ	CGT	GAT	CGT	GGC	GTT	GAC	CGA	CAT	
whiA Proof 2 Deletion	CCA	AGG	CGG	CCC	ATG	ATG	GAG	TCG	AAC	
Integration (Kapitel 7.6)										
Strep-fasR for	TAT A	ACC	CGG	<u>G</u> AT	GGA	AGC	GGC	AGG	CAC	TGA
Strep-fasR rev	TAT GGC	ATC TCC	TAG AAG	ATT CGC	ATT TTC	TTT CAG	CGA TAG	ACT CCA	GCG CGG	GGT AGA
pK18int-Check	GCC	GAA	TAG	ССТ	СТС	CAC	CCA	AG		
Sequenzierprimer (Kapite	əl 7.7))								
M13 rev (-49)	GAG	CGG	ATA	ACA	ATT	TCA	CAC	AGG		
M13 uni (-43)	AGG	GTT	TTC	CCA	GTC	ACG	ACG	TT		
pEKEx2-fw-2	CGG	CGT	TTC	ACT	ТСТ	GAG	TTC	GGC		
pEKEx2-rv-2	GAT	ATG	ACC	ATG	ATT	ACG	CCA	AGC		
Т7	TAA	TAC	GAC	TCA	СТА	TAG	GG			
T7 term	СТА	GTT	ATT	GCT	CAG	CGG	Т			
Expression (Kapitel 8.2)										
c-fasR-pEKEx2-BamHI	CGG AGC	TGG C	CGA	CGT	GCG	<u>G</u> GA	TCC	СТА	TCC	AGT
w- <i>fasR</i> -pEKEx2 <i>-Pst</i> I	CTT TTG	ATG GAA	ACA GCG	T <u>C</u> T GCA	GCA GGC	GAA ACT	<i>GGA</i> GAA	<i>GAT</i> ATT	<i>ATA</i> TTA	<i>GAT</i> A
c-fasR-pET16b-BamHI	CGG AGC	TGG	CGA	CGT	GCG	GGA	TCC	СТА	TCC	AGT
w-fasR-pET16b-Ndel	GAC	ACT	GAA	CAT	ATG	GAA	GCG	GCA	G	
c- <i>marR</i> -pEKEx2-BamHI	GTT TGT	GAG C	ATG	GAG	A <mark>GG</mark>	ATC	CTT	AAG	AAC	CGC
w- <i>marR</i> -pEKEx2-Pstl	ATC ATG	GAA CTG	CGG GCA	A <mark>CT</mark> GGC	GCA ATG	GAA CCT	<i>GGA</i> AAT	<i>GAT</i> TTA	ATA AAC	<i>GAT</i> G

Fortsetzung Tab. 3	
c- <i>marR</i> -pET16b- <i>Bam</i> HI	GAG ATG GAG A <mark>GG ATC C</mark> TT AAG AAC CGC TG
w- <i>marR</i> -pET16b- <i>Nde</i> I	GGC AAT ACC <u>CAT ATG</u> CTG GCA GGC ATG
c- <i>syrB</i> -pEKEx2- <i>Bam</i> HI	CAT GGC GGC TGT T <mark>GG ATC C</mark> TC AGT TTC CGT CAA T
w- <i>syrB</i> -pEKEx2 <i>-Pst</i> I	CTT GCA TAC C <mark>CT GCA G</mark> AA GGA GAT ATA GAT ATG CAC CTC AAT CAG CTC GAA TTT TTC A
c- <i>syrB</i> -pET16b- <i>Bam</i> HI	CAT GGC GGC TGT T <mark>GG ATC C</mark> TC AGT TTC CGT
w- <i>syrB</i> -pET16b- <i>Nde</i> l	GGT TTA GCA <u>CAT ATG</u> CAC CTC AAT CAG
DNA-Affinitätsreinigung	(Kapitel 8.7.1)
c-accD1-BIOTIN	BITEG-TGG AGC AAT TTT TCC TTC AGG AGC T
w-accD1-FISH	AGG TCG GCG ATC TTG CCG GCAG TGG
c-accD2-BIOTIN	BITEG-CAA GCA CAA GAA CGT CAC TCG CCC T
w-accD2-FISH	TGC AAG ACG GGA GCG AAG ATC GGA C
Gelretardationsexperime	nte (Kapitel 8.7.2)
c-BS- <i>accBC</i>	CAC CAC GGT TAG CGA CAA GA
c2-BS-accBC	GTG AAT ATT CTT GCA CAC TCA AC
c2a-BS- <i>accBC</i>	CTC AAC CAG ATA TGA GGA CTT AC
c3-BS-accBC	CAT ATT CTG GGG GAA TTC TTC
w-BS-accBC	TCG GTG TCA TAG AAT AGG CGT
w1-BS- <i>accBC</i>	CCA TAT TTC CTG CCT AAA AC
w2-BS- <i>accBC</i>	GAG TAA GTC CTC ATA TCT GGT TG
w3-BS- <i>accBC</i>	GCA ACT ATG TGT CTA CCC ACT GAG
c-BS-accD1	TGG AGC AAT TTT TCC TTC AGG AGC T
c3-BS-accD1	CGT CGA AAA GCG CGC TTT AAG
c4-BS- <i>accD1</i>	CGC ACG CAG CAC GAA CCT GTT

Fortsetzung Tab. 3									
c5-BS-accD1	CCG	ССТ	ACC	GCT	ACG	ATT	TCA		
c5b-BS- <i>accD1</i>	CGA	ТТТ	CAA	AAC	ATG	ACC			
c6-BS- <i>accD1</i>	CAT	GAC	CAT	TTC	СТС	ACC	TTT	G	
w-BS-accD1	AGG	TCG	GCG	ATC	TTG	CCG	GCA	GTG	G
w1-BS- <i>accD1</i>	GGT	GAG	GAA	ATG	GTC	ATG			
w1b-BS-accD1	GCG	ACG	TCA	ATC	AAA	GGT	G		
w2-BS- <i>accD1</i>	GTC	ATG	TTT	TGA	AAT	CGT	AGC	GG	
w3-BS- <i>accD1</i>	CGG	GGG	TAA	CGT	CCA	CAA	TAT		
w5-BS- <i>accD1</i>	ACG	CGA	CCC	CAC	TAC	ATT	GGC		
c-BS-fasA	GCG	ATC	ACC	TGC	TGC	CAG	GCA	G	
c2-BS- fasA	CCA	СТТ	ACG	AAT	GCG	TAG	GTT	AC	
w-BS- <i>fasA</i>	CAT	GCT	GGC	AGC	GCC	GAT	AGT	GGC	
w2-BS- <i>fasA</i>	ССС	ACC	AGT	AAC	AGT	GGT	TAA	С	
w3-BS- <i>fasA</i>	CCA	GAA	AAA	CAT	GAG	GGT	TTA	GTC	
w4-BS- <i>fasA</i>	CGT	GAG	TAT	TTC	TTC	ACT	GAC	ACC	GC
c-BS- <i>fasB</i>	CCA	AAG	CGG	TTA	ATC	AGT	С		
c2-BS- <i>fasB</i>	CCC	GAA	GTT	ССТ	GCT	CAA	TTC		
c3-BS- <i>fasB</i>	CAG	GGC	GTG	GAT	ССТ	GAC	CTG	AAG	
c3a-BS- <i>fasB</i>	ССТ	СТТ	ATC	GTG	CCA	TTT	AAC	С	
c4-BS- <i>fasB</i>	CGA	AAT	ACT	CAT	GCC	TTC	AAA	G	
w-BS- fasB	GCC	GGG	AGC	TGT	AGA	AAA	TTG		
w2-BS- fasB	CGC	GAT	TTC	GAT	GCC	TGG	ATG	G	
w2a-BS- fasB	CCC	TCA	AGC	AAA	TGG	AAG	GTG	AAC	

Fortsetzung Tab. 3										
w2b-BS- <i>fasB</i>	CAC	TTG	TTG	GAA	GGA	ССТ	TTT	С		
w2c-BS- fasB	ССТ	CAT	GAT	TTG	TGG	CAT	ATT	G		
w3-BS- <i>fasB</i>	GCG	TTC	ATC	CCG	GCT	AAG	TTA			
c-BS-NCgl0140	CCA	СТТ	СТТ	CAC	GTT	CCG	CGC	С		
w-BS-NCgl0140	CCA	CAA	СТТ	CAC	GCG	CAA	GGT	СТС		
c-BS-NCgl0281	ССТ	CTG	ССТ	CGA	CGG	TTG	GGT	TAC	С	
w-BS-NCgl0281	СТС	GGC	GGT	GGG	GTT	GCT	GGT	GGT	С	
c-BS-NCgl0375	GTC	GAC	GTC	AAT	GAA	ATT	CAG			
w-BS-NCgl0375	СТС	ACG	TGG	TTT	ACG	CCA	GGC			
c-BS-NCgl0388	CGT	CCA	СТС	TGG	GTA	GTG	СТ			
w-BS-NCgl0388	GGG	CTG	CTG	CAA	TGG	AGA	GG			
c-BS-NCgl0670	CAC	CAC	GGT	TAG	CGA	CAA	GA			
w-BS-NCgl0670	TCG	GTG	TCA	TAG	AAT	AGG	CGT			
c-BS-NCgl0677	CAA	GCA	CAA	GAA	CGT	CAC	TCG	CCC	Т	
w-BS-NCgl0677	TGC	AAG	ACG	GGA	GCG	AAG	ATC	GGA	С	
c-BS-NCgl0678	TGG	AGC	AAT	TTT	TCC	TTC	AGG	AGC	Т	
w-BS-NCgl0678	AGG	TCG	GCG	ATC	TTG	CCG	GCA	GTG	G	
c-BS-NCgl0797	CAT	TCC	AAG	AAA	TGA	AGC	TGT	CAG	GGT	CC
w-BS-NCgl0797	СТС	TCC	AAA	TTC	TGG	GCT	CGC	С		
c-BS-NCgl0802	GCG	ATC	ACC	TGC	TGC	CAG	GCA	G		
w-BS-NCgl0802	CAT	GCT	GGC	AGC	GCC	GAT	AGT	GGC		
c-BS-NCgl0886/7	CGG	CCA	ТТТ	СТТ	TTG	ATA	GGC			
w-BS-NCgl0886/7	GTC	ATG	CCC	ACA	GCA	TAG	A			

Fortsetzung Tab. 3									
c-BS-NCgl0935	ССТ	CTG	ССТ	CGA	CGG	TTG	GGT	TAC	С
w-BS-NCgl0935	CCG	CGT	ССТ	ACG	СТТ	TAC	GAC		
c-BS-NCgl1094	CGC	TCC	GAT	GCG	AGG	AAG	ACC		
w-BS-NCgl1094	GGT	GTA	ACC	ACA	CGT	CAC	CGC	G	
c-BS-NCgl1232	GTG	GCC	ATC	GGG	ATT	GTG	CG		
w-BS-NCgl1232	CAA	AAG	CCA	СТТ	СТТ	TAC	CAC		
c-BS-NCgl1578	GCA	GGT	TGT	GGT	TAT	GAT	GTG		
w-BS-NCgl1578	GGG	TGT	GTC	GCG	GAT	GGA	GA		
c-BS-NCgl1855	TGT	GCG	GCT	ACC	GCG	ACT	G		
w-BS-NCgl1855	TCA	CGC	ACC	TGT	TGC	TGT	GAT		
c-BS-NCgl2199	ATT	CGG	ACT	СТТ	CTG	CAG	GG		
w-BS-NCgl2199	TGC	TGA	GCC	ACG	TCG	GAT	G		
c-BS-NCgl2308/9	CAC	AGA	TAA	GCC	GCG	GGC	A		
w-BS-NCgl2308/9	GGC	CAC	CGC	TTC	AGC	AGT	GG		
c-BS-NCgl2404	CGC	TGC	TGT	GCC	GGA	CGG	С		
w-BS-NCgl2404	GTT	CGT	GCA	ACT	GGT	CAC	GTG		
c-BS-NCgl2409	CCA	AAG	CGG	TTA	ATC	AGT	С		
w-BS-NCgl2409	GCC	GGG	AGC	TGT	AGA	AAA	TTG		
c-BS-NCgl2737	GTC	CCA	CTG	GTT	CTG	TGG	CG		
w-BS-NCgl2737	ACA	GGA	ATC	ATG	ТСТ	CAC			
c-BS-NCgl2772	CCG	GAA	TAC	CCG	TGG	TGC	GGA	CAA	CC
w-BS-NCgl2772	CGC	ACG	CCG	CGT	CAA	CCA	GCG	C	
Mutationsanalyse (Kapite	el 8.7.	2)							

Fortsetzung Tab. 3										
c-BS-accD1-motif	GCG ATG	ACG TTT	TCA TGA	ATC AAT	AAA CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif	CGC CAC	TAC CTT	GAT TGA	TTC TTG	AAA ACG	ACA TCG	TGA C	CCA	TTT	ССТ
c-BS-accD1-motif-3	GCG TTT	ACG TGA	TCA AAT	ATC CGT	AAA AGC	GGT G	GAG	GAA	ATC	ATG
w-BS-accD1-motif-3	CGC CTT	TAC TGA	GAT TTG	TTC ACG	AAA TCG	ACA C	TGA	TTT	CCT	CAC
c-BS-accD1-motif-6	GCG TGA	ACG AAT	TCA CGT	ATC AGC	AAA G	GGT	GAG	GAC	ATG	ТТТ
w-BS-accD1-motif-6	CGC TGA	TAC TTG	GAT ACG	TTC TCG	AAA C	ACA	TGT	CCT	CAC	CTT
c-BS-accD1-motif A	GCG A <mark>GT</mark>	ACG GTT	TCA TGA	ATC AAT	AAA CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif A	CGC CAC	TAC CTT	GAT TGA	TTC TTG	AAA ACG	CAC TCG	TGA C	CCA	ТТТ	ССТ
c-BS-accD1-motif B	GCG <mark>C</mark> TG	ACG TTT	TCA TGA	ATC AAT	AAA CGT	GGT AGC	GAG G	GAA	ATG	G <mark>GA</mark>
w-BS-accD1-motif B	CGC CAC	TAC CTT	GAT TGA	TTC TTG	AAA ACG	ACA TCG	GTC C	CCA	ТТТ	ССТ
c-BS-accD1-motif C	GCG ATG	ACG TTT	TCA TGA	ATC AAT	AAA CGT	GGT AGC	GAG G	GAA	A <mark>GT</mark>	TTC
w-BS-accD1-motif C	CGC CAC	TAC CTT	GAT TGA	TTC TTG	AAA ACG	ACA TCG	TGA C	AAC	ТТТ	ССТ
c-BS-accD1-motif D	GCG ATG	ACG TTT	TCA TGA	ATC AAT	AAA CGT	GGT AGC	GAG G	G <mark>CC</mark>	CTG	GTC
w-BS-accD1-motif D	CGC CAC	TAC CTT	GAT TGA	TTC TTG	AAA ACG	ACA TCG	TGA C	CCA	GGG	ССТ
c-BS-accD1-motif E	GCG ATG	ACG TTT	TCA TGA	ATC AAT	AAA CGT	GGT AGC	G <mark>CT</mark> G	TAA	ATG	GTC
w-BS-accD1-motif E	CGC CAC	TAC CTT	GAT TGA	TTC TTG	AAA ACG	ACA TCG	TGA C	CCA	TTT	AAG
c-BS-accD1-motif F	GCG ATG	ACG TTT	TCA TGA	ATC AAT	AAA CGT	TTG AGC	TAG G	GAA	ATG	GTC
w-BS-accD1-motif F	CGC <mark>ACA</mark>	TAC ATT	GAT TGA	TTC TTG	AAA ACG	ACA TCG	TGA C	CCA	TTT	CCT
c-BS-accD1-motif G	GCG ATG	ACG TTT	TCA T <mark>TC</mark>	ATC AAT	AAA CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif G	CGC CAC	TAC CTT	GAT TGA	T <mark>GA</mark> TTG	AAA ACG	ACA TCG	TGA C	CCA	TTT	CCT
c-BS-accD1-motif H	GCG ATG	ACG T <mark>GG</mark>	TCA <mark>G</mark> GA	ATC AAT	AAA CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif H	CGC CAC	TAC CTT	GAT TGA	TTC TTG	CCC ACG	ACA TCG	TGA C	CCA	TTT	ССТ
c-BS-accD1-motif I	GCG ATG	ACG TTT	TCA TGA	ATC AAT	CCC CGT	GGT AGC	GAG G	GAA	ATG	GTC

Fortsetzung Tab. 3										
w-BS-accD1-motif I	CGC CAC	TAC C <mark>GG</mark>	GAT <mark>G</mark> GA	TTC TTG	AAA ACG	ACA TCG	TGA C	CCA	TTT	ССТ
c-BS-accD1-motif J	GCG ATG	ACG TTT	TCA TGA	A <mark>GA</mark> AAT	AAA CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif J	CGC CAC	TAC CTT	GAT T <mark>TC</mark>	TTC TTG	AAA ACG	ACA TCG	TGA C	CCA	TTT	ССТ
c-BS-accD1-motif K	TAT ATG	CAT TTT	<mark>GAC</mark> TGA	CTC CCG	AAA ATG	GGT CTA	GAG T	GAA	ATG	GTC
w-BS-accD1-motif K	ATA CAC	GCA CTT	TCG TGA	GTC GGT	AAA CAT	ACA GAT	TGA <mark>A</mark>	CCA	TTT	ССТ
c-BS-accD1-motif L	GCG ATG	ACG TTT	TCA T <mark>TC</mark>	A <mark>GA</mark> AAT	AAA CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif L	CGC CAC	TAC CTT	GAT T <mark>TC</mark>	T <mark>GA</mark> TTG	AAA ACG	ACA TCG	TGA C	CCA	TTT	ССТ
c-BS-accD1-motif M	GCG ATG	ACG TTT	TCA T <mark>TC</mark>	ATC AAT	CCC CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif M	CGC CAC	TAC C <mark>GG</mark>	GAT <mark>G</mark> GA	T <mark>GA</mark> TTG	AAA ACG	ACA TCG	TGA C	CCA	TTT	ССТ
c-BS-accD1-motif N	GCG ATG	ACG T <mark>GG</mark>	TCA <mark>G</mark> GA	A <mark>GA</mark> AAT	AAA CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif N	CGC CAC	TAC CTT	GAT T <mark>TC</mark>	TTC TTG	CCC ACG	ACA TCG	TGA C	CCA	TTT	ССТ
c-BS-accD1-motif O	GCG ATG	ACG T <mark>GG</mark>	TCA <mark>G</mark> GA	ATC AAT	CCC CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif O	CGC CAC	TAC C <mark>GG</mark>	GAT <mark>G</mark> GA	TTC TTG	CCC ACG	ACA TCG	TGA C	CCA	TTT	ССТ
c-BS-accD1-motif P	GCG ATG	ACG T <mark>GG</mark>	TCA GTC	ATC AAT	AAA CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif P	CGC CAC	TAC CTT	GAT TGA	T <mark>GA</mark> TTG	CCC ACG	ACA TCG	TGA C	CCA	TTT	ССТ
c-BS-accD1-motif Q	GCG ATG	ACG TTT	TCA TGA	A <mark>GA</mark> AAT	CCC CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif Q	CGC CAC	TAC C <mark>GG</mark>	GAT GTC	TTC TTG	AAA ACG	ACA TCG	TGA C	CCA	TTT	ССТ
c-BS-accD1-motif R	GCG ATG	ACG T <mark>GG</mark>	TCA GTC	A <mark>GA</mark> AAT	CCC CGT	GGT AGC	GAG G	GAA	ATG	GTC
w-BS-accD1-motif R	CGC CAC	TAC C <mark>GG</mark>	GAT GTC	T <mark>GA</mark> TTG	CCC ACG	ACA TCG	TGA C	CCA	TTT	CCT
c-BS-accD1-motif S	GCG CGT	ACG <mark>G</mark> TT	TCA TGA	ATC AAT	AAA CGT	TTG AGC	TCT G	TCC	CGT	TGA
w-BS-accD1-motif S	CGC ACA	TAC ATT	GAT TGA	TTC TTG	AAA ACG	CAC TCG	GTC C	AAC	GGG	AAG

^a Schnittstellen von Restriktionsenzymen sind unterstrichen ^b Basenaustausche sind rot markiert ^c Linkersequenzen sind dick dargestellt ^d eingefügte Ribosomenbindestellen sind kursiv dargestellt

^e BITEG ist ein angehängtes Biotin am 5' Ende ^f eingefügter Strep-TagII ist grau hinterlegt

3. Nährmedien

BHI-Medium:	37 g/l BHI (Difco) (Menkel et al., 1989)
BHIS-Medium:	37 g/l BHI (Difco) und 182 g/l Sorbitol (Merck) (Menkel et al., 1989)
CgIII-Medium:	10 g/l Pepton (Difco), 10 g/l Hefeextrakt (Difco), 2,5 g/l NaCl (Merck) und 20 g/l Glucose (Merck) (separat autoklaviert) zugeben (Menkel et al., 1989)
CgXII-Medium:	20 g/l (NH ₄) ₂ SO ₄ (Merck), 5 g/l Harnstoff (Merck), 1 g/l KH ₂ PO ₄ (Merck), 1 g/l K ₂ HPO ₄ (Merck), 0,25 g/l MgSO ₄ · 7 H ₂ O (Merck), 10 mg/l CaCl ₂ (Merck), 42 g/l MOPS (Roth), 0,2 mg/l Biotin (Merck), pH 7 (mit NaOH einstellen), nach dem Autoklavieren 1 ml/l Protokatechusäure (30 g/l in verd. NaOH gelöst, sterilfiltriert), 1 ml/l Spurensalzlösung und 40 g/l Glucose (Merck) zugeben (Keilhauer et al., 1993)
LB-Medium:	10 g/l Trypton (Difco), 5 g/l Hefeextrakt (Difco), 10 g/l NaCl (Merck) (Bertani, 1951)
SOB-Medium:	20 g/l Trypton (Difco), 5 g/l Hefeextrakt (Difco), 0,6 g/l NaCl (Merck), 0,2 g/l KCl (Merck), nach dem Autoklavieren 1 g/l MgCl ₂ (Merck) und 1 g/l MgSO ₄ (Merck) (beide sterilfiltriert) zugeben (Hanahan, 1983)

Für feste Nährböden wurde den Medien 15 g/l Agar-Agar (Difco) zugesetzt. Wenn erforderlich wurde den Nährmedien Kanamycin in einer Endkonzentration von 50 µg/ml (*E. coli*) oder 25 µg/ml (*C. glutamicum*) bzw. Ampicillin in einer Endkonzentration von 100 µg/ml (*E. coli*) zugesetzt.

4. Kultivierungsbedingungen

4.1 Kultivierung von E. coli

Für die Kultivierung von *E. coli* wurde routinemäßig Luria-Bertani-Medium (LB-Medium) verwendet (Sambrook, 1989). Nur zur Regeneration der Zellen nach einer Transformation bzw. bei der Kultivierung zur Herstellung kompetenter Zellen wurde SOC-Komplexmedium (Sambrook, 1989) eingesetzt. Bei einer selektiven Kultivierung von Bakterienstämmen, die Antibiotika-Resistenzen trugen, wurde den Medien Kanamycin in einer Endkonzentration von 50 μg/ml oder Ampicillin in einer Endkonzentration von 100 μg/ml zugegeben. Alle *E. coli*-Stämme wurden in Schüttelkolben, in Reagenzgläsern bzw. auf Agarplatten bei 37 °C kultiviert. Die Kultivierungen zur Plasmid-Isolierung erfolgten im Allgemeinen in Reagenzgläsern mit 5 ml LB-Medium, die für 15-20 h mit 170 Upm geschüttelt wurden.

Zur Stammhaltung von Bakterienkulturen wurde nach der Kultivierung 1 ml der Zellsuspension mit 1 ml sterilem Glycerin gemischt und bei -75 °C gelagert.

4.2 Kultivierung von C. glutamicum

C. glutamicum wurde standardmäßig in 500 ml Erlenmeyerkolben mit zwei seitlichen Schikanen kultiviert, die 50 ml CgXII-Minimalmedium mit 4 % (w/v) Glucose enthielten und bei 30 °C und 150 Upm inkubiert wurden (Eggeling und Bott, 2005). Zum Animpfen der Vorkulturen wurden Einzelkolonien von Agarplatten verwendet, die nicht älter als 4 Tage waren. Die Vorkultivierung erfolgte zunächst für 8 h in 5 ml CgIII-Medium mit 2 % (w/v) Glucose und anschließend für 16 h in 50 ml CgXII-Minimalmedium mit 4 % (w/v) Glucose, bevor die 50 ml Hauptkultur mit einer OD₆₀₀ von 0,5 - 1 inokuliert wurde.

Bei Kultivierungen mit anderen Kohlenstoffquellen erfolgte die 1. Vorkultivierung für 8 h in 5 ml CgIII-Medium mit 2 % (w/v) Glucose, anschließend zur

Adaptation der Zellen die 2. Vorkultivierung für 16 h in 50 ml CgXII-Minimalmedium mit 2 % (w/v) Acetat, 1 % (w/v) Propionat, 1 % (w/v) Lactat oder 2% (w/v) Gluconat. Danach wurde die 50 ml Hauptkultur mit der entsprechenden Kohlenstoffquelle mit einer OD_{600} von 0,5 inokuliert.

Zur Stammhaltung von Bakterienkulturen wurde nach der Kultivierung 1 ml der Zellsuspension mit 1 ml sterilem Glycerin gemischt und bei -75 °C gelagert.

4.3 Bestimmung des Wachstums von Bakterienkulturen

Das Wachstum von Bakterien in Flüssigkultur wurde anhand der optischen Dichte (OD) bei einer Wellenlänge von 600 nm mit einem Ultrospec 3300 *pro* Spectrophotometer (Amersham Biosciences, Freiburg) bestimmt. Eine lineare Abhängigkeit zwischen der Zelldichte und der optischen Dichte ist bis zu einer Extinktion von 0,5 gegeben. Lag die gemessene Extinktion höher als 0,5, wurde die Probe mit Saline (0,9 % NaCl) verdünnt.

5. Molekularbiologische Methoden

5.1 Isolierung von genomischer DNA aus C. glutamicum

Zur Isolierung chromosomaler DNA aus *C. glutamicum* wurden Zellen einer 5-ml-CgIII-Übernachtkultur zentrifugiert (6000 x *g*, 5 min), in 400 µl Lysispuffer (2,42 g/l Tris, 0,74 g/l Na₂EDTA, 1,2 % (v/v) Triton X-100, pH 8,0) mit 20 mg/ml Lysozym (frisch zugesetzt) resuspendiert und 1 h unter Schütteln bei 37 °C inkubiert. Daraufhin wurden 80 µl 10 % (w/v) SDS und 25 µl Proteinase K (20 mg/ml in TE-Puffer) zugegeben und 30 min bei 70 °C inkubiert (Eggeling und Bott, 2005). Nach Zugabe von 500 µl Phenol/Chloroform/Isoamylalkohol (Verhältnis 25:24:1; pH 7,5 - 8,0) wurden die Phasen durch 3 min Zentrifugation bei 15000 x *g* (Biofuge pico, Heraeus) getrennt, die obere, wässrige Phase abgenommen, mit 1 ml eiskaltem abs. Ethanol versetzt und 10 min mit 15000 x *g* bei 4 °C zentrifugiert (Biofuge fresco, Heraeus). Die präzipitierte DNA wurde mit 70 % Ethanol gewaschen, erneut zentrifugiert, das Ethanol vollständig abgenommen, die DNA luftgetrocknet und in 250 µl EB-Puffer (Qiagen, 10 mM Tris-HCl, pH 8,5) gelöst (Chomczynski und Sacchi, 1987).

5.2 Isolierung von Plasmid-DNA

Zur Isolierung von Plasmid-DNA aus *E. coli* wurde das QIAprep-Spin Miniprep-Kit (Qiagen, Hilden) nach den Angaben des Herstellers verwendet. Dieses Kit basiert auf der alkalischen Lyse von Zellen (Birnboim und Doly, 1979). Die Isolierung von Plasmid-DNA aus *C. glutamcium* erfolgte ebenfalls mit dem QIAprep-Spin Miniprep-Kit (Qiagen, Hilden). Aufgrund des im Vergleich zu *E. coli* dickeren Mureinsacculus wurden die *C. glutamicum*-Zellen zunächst noch 1-2 h mit 15 mg/ml Lysozym im Puffer P1 (Qiagen, Hilden) unter Schütteln bei 37 °C inkubiert (Schwarzer und Pühler, 1991).

5.3 Isolierung von RNA

Die Gesamt-RNA aus C. glutamicum wurde mit dem RNeasy Mini-Kit nach Herstellerangaben (Qiagen) isoliert. Die Methode beruht auf einem mechanischen Aufschluss der Bakterien in Gegenwart von Guanidinisothiocyanat und DTT, die zu einer sofortigen Inaktivierung der RNasen führen und somit die Isolierung intakter RNA gewährleisten (Wilfinger et al., 1997). Anschließend wurde die RNA in Gegenwart von Ethanol und einer speziellen, hochkonzentrierten Salz-Puffer-Lösung (RNeasy, Qiagen) an eine Silica-Gel-Membran adsorbiert, die selektiv einzelsträngige RNA-Moleküle ab einer Größe von 200 Basen bindet.

1 oder 2 ml einer *C. glutamicum*-Kultur (OD₆₀₀ zwischen 8 und 10) wurden in vorgekühlte Eppendorfreaktionsgefäße gegeben, sofort zentrifugiert (1 min, 16100 x g, 4 °C) und das Pellet bis zur weiteren Verwendung mittels flüssigem Stickstoff eingefroren und bei -70 °C gelagert (Berstein et al., 2002; Khodurskyet al., 2003). Die Zellpellets wurden dann in 350 µl eiskaltem RLT-Puffer (RNeasy, Qiagen) mit 10 mM DTT resuspendiert und in Gegenwart von 250 mg Zirkonium/Silica-Perlen (\oslash 0,1 mm, ROTH) 15 s und dann nochmals 30 s in einem Amalgamator (Silamat S5, Vivadent, Ellwangen) mechanisch aufgeschlossen.

Nach Abtrennen der Zelltrümmer und intakten Zellen durch Zentrifugation (2 min, 16100 x g) wurde der Überstand mit 250 μ l eiskaltem, absolutem Ethanol vermischt, auf die RNeasy-Säulen aufgetragen und nach Herstellerangaben gereinigt (RNeasy-Kit, Qiagen). Die RNA-Konzentration

wurde photometrisch bestimmt (vgl. Kapitel 5.5). Die Lagerung der isolierten RNA erfolgte bei -20 °C.

5.4 Reinigung von DNA

Die Isolierung und Reinigung von DNA-Fragmenten aus Agarose-Gelen erfolgte mit dem QIAquick Gel Extraction Kit (Qiagen) oder dem NucleoSpin Extract 2 in 1 Kit (Macharey & Nagel, Düren) nach den Protokollen des Herstellers.

Um PCR-Produkte von Nukleotiden und Oligonukleotiden zu reinigen, wurde das PCR-Purification-Kit nach Angaben des Herstellers (Qiagen, Hilden) verwendet.

Zur Entfernung von Proteinverunreinigungen wurden die DNA-Proben mit gleichen Phenol-Chloroform-Isoamylalkohol Mengen von (25:24:1 Volumenanteile, AquaPhenoITM, Roth) versetzt, gemischt und 10 min bei 15000 x g und Raumtemperatur zentrifugiert (Holm et al., 1986). Die obere, wässrige, DNA-haltige Phase wurde in ein neues Reaktionsgefäß überführt und mit der gleichen Menge an Chloroform-Isoamylalkohol versetzt, gemischt und abermals 10 min bei 15000 x g und RT zentrifugiert und der Überstand in ein neues Eppendorfreaktionsgefäß überführt, die 2,5-fache Menge an eiskaltem 0,3 M Ammoniumacetat in absolutem Ethanol hinzugegeben und die DNA wurde für 2 h bei -70 °C gefällt. Die präzipitierte DNA wurde durch 30 min Zentrifugation bei 15000 x g und 4°C sedimentiert, mit eiskaltem 70 %-igem (v/v) Ethanol gewaschen, getrocknet und in EB-Puffer (Qiagen) gelöst.

5.5 Bestimmung von Nukleinsäurekonzentrationen

Die Nukleinsäurekonzentration in EB-Puffer (Qiagen, 10 mM Tris-HCl, pH 8,5) wurde durch Messung der Extinktion bei 260 nm mittels Nanodrop ND-1000 (Peqlab, Erlangen) bestimmt. Dabei wurde mit folgenden Umrechnungsfaktoren gearbeitet (Sambrook, 1989):

doppelsträngige DNA: OD_{260} = 1 entspricht einer Konzentration von 50 ng/µl.

einzelsträngige DNA und RNA: $OD_{260} = 1$ entspricht einer Konzentration von 40 ng/µl.

Zusätzlich fand eine Reinheitsüberprüfung durch den Quotienten OD₂₆₀/OD₂₃₀ statt, der um 1,8 (DNA) bzw. 2,0 (RNA) liegen sollte.
5.6 DNA-Agarose-Gelelektrophorese

Gelelektrophoretische Auftrennungen von DNA für analytische und präparative Zwecke erfolgten in horizontalen Elektrophoresekammern (Lilley et al., 1993). Für die Gele wurde 1-2 %-ige (w/v) Agarose (my-Budget Universal Agarose, Bio-Budget) in 1xTAE-Puffer (40 mM Tris, 1 mM EDTA, mit Essigsäure auf pH 8 einstellen) verwendet, der gleichzeitig auch als Elektrophorese-Puffer diente. Die Auftrennung erfolgte mit einer Spannung zwischen 80 und 120 V. Die Anfärbung der DNA erfolgte durch Ethidiumbromid (1 µg/ml) mit anschließender Dokumentation. Zur Größenbestimmung der DNA wurde je nach zu erwartender Größe der DNA-Fragmente der DNA-Längenstandard Gene Ruler™ 100 bp DNA Ladder Plus oder Gene Ruler™ 1 kb DNA Ladder (beide von Fermentas) verwendet.

6. Rekombinante DNA-Techniken

Die verwendeten Restriktionsendonukleasen wurden von Fermentas oder Roche Diagnostics bezogen. Der Verdau von DNA erfolgte standardmäßig in 20 µl-Ansätzen unter Verwendung eines geeigneten Restriktionspuffers (Roche, Mannheim) und 5 U Enzym. Die Restriktionsansätze mit Plasmid-DNA oder PCR-Fragmenten wurden mindestens 1 h bei 37 °C inkubiert mit Ausnahme von *Sma*l, das bei 25 °C inkubiert wurde.

Die alkalische Phosphatase katalysiert die hydrolytische Abspaltung der Phosphatgruppe von den 5'-Enden der DNA (Krebs und Beavo, 1979). Da die Ligase nur 5'-Phosphat-Enden mit 3'-OH-Enden verknüpfen kann, wurde durch Vektor-DNA mit alkalischer Phosphatase Behandlung linearer eine Rezirkularisierung des Vektoranteils bei der Ligationsreaktion vermieden. Hierdurch wurde der Anteil rekombinanter Plasmide im Ligationsansatz erhöht. Zur Dephosphorylierung der 5'-Stränge wurde das Plasmid mit 0,5 U alkalischer Phosphatase ("Shrimp alkaline phosphatase", Roche Diagnostics, Mannheim) versetzt und 2 h bei 37°C inkubiert. Anschließend erfolgte eine Hitzeinaktivierung der alkalischen Phosphatase für 15 min bei 65 °C.

Für Ligationen wurde das "Rapid DNA Ligation Kit" (Roche Diagnostics) nach Herstellerangaben verwendet, jedoch wurden die Ansätze entgegen der Angaben 60 min bei RT inkubiert.

7. Klonierungsexperimente

7.1 Herstellung und Transformation kompetenter E. coli-Zellen

Durch eine RbCl₂-Behandlung erhielten *E. coli*-Zellen die Kompetenz, freie DNA aus dem Medium aufzunehmen. Die Herstellung der kompetenten Zellen erfolgte nach Hanahan (Hanahan, 1985). Einige 2 - 3 mm große Kolonien wurden von einer frischen LB-Platte in 1 ml SOB-Medium resuspendiert. Damit wurden 50 ml SOB-Medium inokuliert und bis zu einer OD₆₀₀ von ~0,5 bei 37 °C und 160 Upm inkubiert. Danach wurden die Zellen in 50 ml Falcontubes überführt und 15 min auf Eis inkubiert. Die Zellen wurden 15 min bei 6100 x g (Megafuge 1.0R, Heraeus) und 4 °C geerntet, in eiskalter RF1-Lösung (100 mM RbCl₂, 50 mM MnCl₂, 30 mM K-Acetat, 10 mM CaCl₂, 15% Glycerin, pH 5,8) resuspendiert und 15 min auf Eis inkubiert. Nach erneutem Zentrifugieren wurden die Zellen in eiskalter RF2-Lösung (10 mΜ Morpholinopropansulfonsäure, 10 mM RbCl₂, 75 mM CaCl₂, 15% Glycerin, pH 6,8) resuspendiert, nochmals 15 min auf Eis inkubiert und dann in vorgekühlte Eppendorfreaktionsgefäße aliquotiert, die sofort in flüssigem Stickstoff schockgefroren wurden. Die Zellen wurden bis zur Verwendung bei -75 °C gelagert.

Zur Transformation kompetenter *E. coli*-Zellen wurden 50 µl der Zellen mit etwa 0,5 µg Plasmid gemischt und für 45 min auf Eis inkubiert. Nach einem Hitzeschock für 90 s bei 42 °C wurden 750 µl LB-Medium zugegeben und der Ansatz für weitere 60 min bei 37 °C inkubiert. Der Hitzeschock war notwendig, damit die DNA durch die Membran geschleust werden konnte. Entsprechend dem Resistenzgen des transferierten Plasmids wurde der Ansatz auf LB-Platten mit 50 µg/ml Kanamycin oder 100 µg/ml Ampicillin ausplattiert.

7.2 Herstellung und Transformation kompetenter *C. glutamicum*-Zellen

Aus einer Übernacht-Vorkultur in BHIS-Medium wurde die Hauptkultur in 100 ml vorgewärmtem BHIS-Medium mit 2 ml der Vorkultur inokuliert. Die Kultivierung erfolgte bei 30 °C und 120 Upm bis zu einer OD₆₀₀ von 1,75 (van der Rest et al., 1999). Die Kultur wurde zentrifugiert (6000 x *g*, 10 min, 4 °C) und in 25 ml TG-Puffer (1 mM Tris, 10 % (v/v) Glycerin, pH 7,5) resuspendiert. Die Zellen wurden anschließend zweimal mit TG-Puffer und zweimal mit eiskaltem

10 %-igem (v/v) Glycerin gewaschen und dann in 1 ml 10 %-igem (v/v) Glycerin resuspendiert, aliquotiert und bei -75 °C gelagert.

Die Transformation der kompetenten *C. glutamicum*-Zellen wurde mittels Elektroporation mit anschließendem Hitzeschock durchgeführt (Tauch et al., 2002). Dazu wurden 150 µl kompetente Zellen mit etwa 1 µg Plasmid in einer eisgekühlten Elektroporationsküvette gemischt und mit 750 µl 10 %-igem (v/v) Glycerin überschichtet. Die Elektroporation (Gene Pulser Xcell, Bio-Rad, München) erfolgte mit einer Kapazität von 25 µF, einem Widerstand von 200 Ω und einer Spannung von 2,5 kV. Im Anschluss an die Elektroporation wurden die Zellen in 4 ml BHIS-Medium suspendiert, 1 h bei 30 °C inkubiert und auf BHIS- oder LB-Platten mit 25 µg/ml Kanamycin ausplattiert.

7.3 Polymerasekettenreaktion (PCR)

Die PCR (Mullis und Faloona, 1987) wurde sowohl für analytische (Kontrolle von Transformanden und Deletionsmutanten) als auch präparative Zwecke (invitro-Amplifizierung von DNA-Fragmenten) genutzt. Falls im Text nicht anders vermerkt, wurde für präparative PCR-Ansätze die KOD Hot Start DNA Polymerase (Merck, Darmstadt) und für analytische PCR-Ansätze die Tag-DNA-Polymerase (Qiagen) verwendet. Die Reaktionen wurden in einem T3000 Thermocycler (Biometra, Göttingen) durchgeführt. Die Reaktionsbedingungen für die PCR wurden entsprechend den Angaben des Herstellers gewählt. Die Reaktionen erfolgten in einem Gesamtvolumen von 50 µl und enthielten 0,1 -0,75 µg Matrizen-DNA, je 300 nM Primer, 2,6 U Taq-DNA-/KOD-Polymerase sowie je 200 µM dATP, dGTP, dCTP und dTTP (Saiki et al., 1988). Nach einem Denaturierungsschritt für 5 min bei 95 °C wurden 30 Zyklen nach Herstellerangaben durchlaufen: Die Annealing-Temperatur wurde üblicherweise 5°C unter Schmelztemperatur T_m der Primer der gewählt. Die Schmelztemperatur T_m der DNA kann mit der Formel T_m [°C] = $[(G + C) \cdot 4] +$ $[(A + T) \cdot 2]$ abgeschätzt werden (Sambrock et al 1989). Als Elongationszeit wurde 1 min pro 1 kb des zu amplifizierenden Fragments verwendet. Zur Kontrolle von C. glutamicum-Transformanden wurden einzelne Kolonien mit einem sterilen Zahnstocher zunächst auf eine neue Agarplatte ausgestrichen und der am Zahnstocher verbliebene Rest der Zellen als Matrize direkt in die PCR-Ansätze gegeben. Zur Analyse wurden Aliquots der PCR-Ansätze mittels Agarose-Gelelektrophorese aufgetrennt. Zur Reinigung wurden die PCR-Fragmente aus dem Gel mit dem NucleoSpin Extract 2 in 1 Kit (Macharey & Nagel, Düren) oder dem MinElute Gel Extraction Kit (QIAGEN, Hilden) nach Angaben des Herstellers aufgearbeitet.

7.4 Quantitative Real-Time PCR

Die quantitative Real-Time PCR diente zur Quantifizierung von cDNA-Mengen und somit zur Berechnung der RNA-Mengen und wurde mit dem LightCycler 1.0 (Roche Diagnostics, Mannheim) durchgeführt.

Zunächst erfolgte die reverse Transkription, weil die *Taq*-DNA-Polymerase RNA nicht direkt als Matrize nutzen kann. Somit wurde RNA in einem ersten Schritt mit Hilfe der reversen Transkriptase (*Omniscript Reverse Transkriptase*, Qiagen, Hilden) in cDNA umgeschrieben. Diese wurde anschließend durch PCR amplifiziert. 500 ng RNA wurde mit je 1 µl Primer, 2 µl 10x RT-Puffer (Qiagen), 2 µl dNTP-Mix (je 25 mM dATP, dGTP, dCTP, dTTP, Qiagen) und mit H₂O bidest. auf 19 µl aufgefüllt und 5 min bei 70 °C denaturiert, um RNA-Sekundärstrukturen aufzuschmelzen. Dann folgte eine 1-minütige Inkubation bei 57 °C (Sambrock et al., 1989) und nach Zugabe von 1 µl reverse Transkriptase (*Omniscript RTase*, Qiagen) erfolgte eine 60-minütige Inkubation bei 37 °C mit anschließender Inaktivierung bei 70 °C. Die cDNA wurde ohne weitere Aufreinigung als Template (1:10-Verdünnung) in die quantitative Real-Time PCR eingesetzt.

Als Reagenzien für die quantitative Real-Time PCR dienten die Bestandteile des DyNAmo Capillary SYBR® Green qPCR Kits (Finnzymes, Espoo, Finnland). Pro Ansatz wurden 10 µl 2x Master Mix, je 1 µl w-/c-Primer, 2 µl Template und 6 µl H₂O zusammengegeben und im Light Cycler 1.0 mit dem Standardprogramm amplifiziert und ausgewertet. Der Fluoreszenzfarbstoff SYBR Green I (Invitrogen, Karlsruhe) bindet doppelsträngige DNA und hat ein Absorptionsmaximum bei einer Wellenlänge von 521 nm. Bei der Messung der cDNA-Konzentration erfolgte eine Anregung der in speziellen Kapillaren (LightCycler Capillaries, Roche, Mannheim) vorliegenden Proben durch eine blaues Licht emittierende Diode (LED) mit einer Anregungswellenlänge von 470 nm. Die Fluoreszenzmessung erfolgte mit dem Kanal F1 bei einer Wellenlänge von 530 nm nach Herstellerangaben. Nach einer Vorinkubation

erfolgte die Amplifikation und das Produkt wurde fortlaufend per Fluoreszenzmessung analysiert und die Spezifität der PCR-Reaktion erfolgte anhand der Schmelzkurvenanalyse.

Parallel zu den Proben wurde das Referenzgen ddh (meso-Diaminopimelatdehydrogenase) zur Normierung amplifiziert, um so eventuelle Ungenauigkeiten durch abweichende PCR-Effizienzen oder Template-Konzentrationen zu berücksichtigen. Darüber hinaus sollten sich die Transkriptionsstärken der zu untersuchenden Gene und des Referenzgens nicht zu stark unterscheiden.

Die Quantifizierung basierte auf der Steigung der Geraden in der exponentiellen Phase und diese korrelierte mit dem Ursprungsgehalt an cDNA in der Probe. Der Wert wurde für jedes Gen mit Standardwerten (1 pg/µl – 0,1 fg/µl) berechnet, wobei die spezifische Standardkurve aus mindestens fünf Werten erstellt wurde.

In dieser Arbeit wurde der Crossing Point (CP) herangezogen, um die DNA-Konzentration der Probe anhand der Standardgeraden zu berechnen, weil in dieser Phase der PCR die Effizienz konstant war. Der CP war der Zyklus der Real-Time PCR, an dem die Fluoreszenz der Probe die Hintergrundfluoreszenz überstieg.

7.5 DNA-Microarray-Technologie

7.5.1 Synthese fluoreszenzmarkierter cDNA-Sonden

Für den Vergleich Genexpressionsmuster genomweiter wurden fluoreszenzmarkierte cDNA-Sonden ausgehend von gleichen Mengen (20-25 µg) der zu vergleichenden RNA-Proben synthetisiert (Wendisch et al., 2001). Die RNA-Proben wurden aus C. glutamicum Zellen isoliert, die sich in der exponentiellen Wachstumsphase befanden. Die Experimente wurden mit bis zu drei unabhängigen Kulturen durchgeführt. Die cDNA-Sonden wurden aus präparierter RNA mittels reverser Transkriptase und Zufalls-Hexamer-Oligonukleotiden synthetisiert. Als Fluoreszenzfarbstoffe wurden die dUTP-Analoga Cy3-dUTP ($\lambda_{Absorption max}$ 550 nm, $\lambda_{Fluoreszenz max}$ 570 nm, grün, Amersham Biosciences) und Cy5-dUTP (Absorption max 649 nm, AFluoreszenz max 670 nm, rot, Amersham Biosciences) verwendet. Die RNA (20-25 µg Gesamt-RNA in 14 μ I H₂O gelöst) wurde mit 1 μ I einer 500 ng/ μ I pdN6

Zufallshexanukleotid-Primer-Lösung (in bidest. H₂O gelöst, Amersham Biosciences) inkubiert für 10 min bei 65 °C und anschließend 2 min auf Eis abgekühlt. Die reverse Transkription wurde mit 3 μl Cy3-dUTP (1 mM) oder Cy5-dUTP (1 mM), 6 μl 1.Strang Puffer (End-Konz. 50 mM Tris-HCI, pH 8,3, 75 mM KCI, 3 mM MgCl2, 10 mM DTT), 3 μl DTT (0,1 M), 0,6 μl Nukleotidmix (End-Konz. 500 pM dATP, dGTP, dCTP, 200 pM dTTP; Invitrogen, Groningen) und 2 μl Superscript-II Reverse Transcriptase (End-Konz. 400 U; Invitrogen, Groningen) durchgeführt (Wendisch et al., 2001).

Der Ansatz wurde 10 min bei RT und anschließend 110 min bei 42 °C inkubiert. Nach der reversen Transkription wurde die RNA durch Zusatz von 10 μ l NaOH (0,1 N) 10 min bei 70°C hydrolysiert. Die Lösung wurde mit 10 μ l HCl (0,1 N) neutralisiert. Die Abtrennung nicht eingebauter Nukleotide erfolgte durch Ultrazentrifugationseinheiten (Microcon YM-30, Millipore). Der Ansatz wurde mit Wasser auf 500 μ l aufgefüllt, durch Zentrifugation (10 min, 13000 x *g*) auf etwa 20 μ l eingeengt und dieser Schritt nochmals wiederholt. Danach wurden die für eine Hybridisierung vorgesehenen Cy3- bzw. Cy5-markierten Sonden vereinigt und es erfolgte, wie oben beschrieben, eine weitere Ultrafiltrationszentrifugation (10 min, 13000 x *g*). Die so erhaltene cDNA-Sonde (~ 5 μ l) wurde sofort für die DNA-Chip-Hybridisierungen eingesetzt.

7.5.2 DNA-Chip-Hybridisierung

Die DNA-Chips wurden von der Firma Operon (Köln) nach den Vorgaben des IBT hergestellt. Auf die DNA-Chips wurden spezifische, synthetisierte Oligonukleotide gespottet (u.a. 3057 offene Leseraster (ORFs), 1176 intergenische Regionen, 60 tRNA-Gene und 15 rRNA-Gene). Als Matrize für die Synthese der Oligonukleotide (ORFs und intergenische Regionen) diente das Genom von *C. glutamicum* ATCC 13032.

Vor der Bestimmung der relativen mRNA-Spiegel wurde der DNA-Chip 1 h bei 42 °C in OpArray Pre-Hyb Lösung (Operon, Köln), im Anschluss 5 min bei 37 °C in Waschlösung 1 (6,25 ml OpArray Wash B ad 250 ml mit bidest. Wasser) und in Wasser gewaschen und getrocknet (Wendisch et al., 2001). Die aufgereinigten Cy3-bzw. Cy5-markierten cDNA-Sonden wurden vereinigt (~ 5 µl) und 50 µl OpArray Hyb Lösung (Operon, Köln) hinzugegeben. Dieser Ansatz wurde 3 min bei 95 °C denaturiert und anschließend 10 min bei RT inkubiert (Zimmer et al., 2000). Vor der Hybridisierung wurde ein Spezialdeckglas (MAUI Mixer AO, BioMicro) auf den DNA-Chip befestigt, um eine gleichmäßige Verteilung der Probenlösung sicherzustellen und damit die Probenlösung nicht austrocknet. Die Sonden wurden auf den Chip gegeben und dann wurde der DNA-Chip in einer MAUI-Hybridisierungskammer (BioMicro, Salt Lake City, USA) über Nacht bei 42 °C inkubiert (Zimmer et al., 2000).

Um die Probenlösung und unspezifisch gebundene fluoreszenzmarkierte cDNA nach der Hybridisierung zu entfernen, erfolgte ein stringentes Waschen des DNA-Chips für je 10 min in Waschlösung 2 (40 ml OpArray Wash A, 20 ml OpArray Wash B ad 400 ml mit bidest. Wasser) bei 42 °C und in Waschlösung 3 (25 ml OpArray Wash A ad 250 ml mit bidest. Wasser) im Dunkeln bei 37 °C. Nun wurde der Chip noch 5 min im Dunkeln bei Raumtemperatur in Waschlösung 4 (5 ml OpArray Wash A ad 250 ml mit bidest. Wasser) gewaschen (Zimmer et al., 2000). Durch Zentrifugation (5 min, 1600 x *g*, RT, Zentrifuge 4K15, Rotor 11150, Einsätze 13220 von Sigma) wurde der DNA-Chip getrocknet und anschließend die Fluoreszenz auf der DNA-Chip-Oberfläche bestimmt (Wendisch et al., 2001).

7.5.3 Messung und Quantifizierung der Fluoreszenz von

Hybridisierungssignalen

Um die relativen mRNA-Spiegel der zu vergleichenden Proben zu bestimmen, wurde die Cy3- und die Cy5-Fluoreszenz der Spots gemessen. Da das Verhältnis von Cy3- und Cy5-Fluoreszenz eines Spots unter geeigneten Bedingungen direkt mit dem Verhältnis der Anzahl der mRNA-Moleküle in den verglichenen RNA-Proben korreliert, ist es ein Maß für den relativen mRNA-Spiegel (Shalon et al., 1996; Wendisch et al., 2001). Zum Messen der ortsaufgelösten Fluoreszenz auf den DNA-Chips wurde der Axon GenePix 6000 Laser Scanner (Axon Instruments, Sunnydale, USA) verwendet. Die DNA-Chip-Oberfläche wurde zum Anregen der fluoreszierenden Molekülgruppen mit monochromatischem Licht zweier verschiedener Wellenlängen bestrahlt, eine zur Anregung von Cy3-dUTP (532 nm) und die andere für Cy5-dUTP (635 nm), und die daraufhin emittierte Fluoreszenz wurde mit lichtempfindlichen Kathoden bei 570 nm (Cy3-Fluoreszenz) und bei 670 nm (Cy5-Fluoreszenz) registriert. Diese wandeln die Cy3- und Cy5-Fluoreszenz in elektrischen Strom um und

somit korreliert die gemessene Stromstärke direkt mit der Cy3- bzw. Cy5-Fluoreszenz. Mit Hilfe der Software wurde die ortsaufgelöste Information für die Cy3- und Cy5-Fluoreszenz anhand der numerischen Werte als Fluorogramm bildlich dargestellt und im 16-bit-TIFF-Format elektronisch gespeichert (GenePix Pro 6.0 Software). Hierdurch wurden die Roh-Fluoreszenz-Daten erhalten. Die 'GenePix Array List' (erstellt von Dr. T. Polen, IBT-1) erlaubte eine Zuordnung jedes einzelnen detektierten DNA-Spots zu dem entsprechenden *C. glutamicum*-Gen und die Resultate wurden im GPR-Format gespeichert.

Im Anschluss wurden die DNA-Microarray-Daten normiert und statistisch ausgewertet. Veränderte relative mRNA-Spiegel von Genen mit *p*-Werten >0,05 wurden als statistisch nicht signifikant verändert betrachtet. Die DNA-Chip-Daten wurden mit Hilfe einer von Dr. T. Polen entwickelten Software (Polen et al., 2003; Polen und Wendisch, 2004) erfasst und auf dem Zentralrechner des Instituts in der IBT Microarray Datenbank hinterlegt.

7.6 Konstruktion von Deletionsmutanten mit Hilfe des

pK19mobsacB-Systems

Die C. glutamicum-Deletionsmutanten wurden im Leseraster ("in-frame") deletiert, um die Expression stromabwärts liegender Gene möglichst nicht zu beeinträchtigen. Die Deletionsmutanten wurden nach Niebisch und Bott (Niebisch und Bott, 2001) in Anlehnung an die von Link et al. (1997) beschriebene Methode mit dem Vektor pK19mobsacB (Schäfer et al., 1994) konstruiert. Hierbei wurden in einer ersten PCR zwei etwa 500 bp große Fragmente, die den 5'- und den 3'-flankierenden Bereich des zu deletierenden Gens enthielten, amplifiziert. Durch das Einbringen einer 21 bp langen, komplementären Sequenz konnten in einer Crossover-PCR die beiden Fragmente zu einem Fusionsprodukt (~1 kb) amplifiziert werden, dann mit den entsprechenden Restriktionsenzymen verdaut, gereinigt und in den entsprechend geöffneten Vektor pK19mobsacB kloniert werden. Nach der Sequenzierung des klonierten Crossover-PCR-Produkts wurden fehlerfreie Plasmide mittels Elektroporation in C. glutamicum transferiert und auf BHIS-Nährböden mit 25 µg/ml Kanamycin ausplattiert (Eggeling und Bott, 2005). Der Vektor pK19mobsacB wird in C. glutamicum nicht repliziert. Daher sollte bei Kanamycinresistenten Klonen das Plasmid durch homologe Rekombination in das Chromosom integriert worden sein. Durch Kultivierung dieser Zellen in Vollmedium ohne Kanamycin konnte ein zweites Rekombinationsereignis erfolgen. Die Bakterienkultur wurde in verschiedenen Verdünnungen auf LB-Medium mit 10 % Saccharose ausplattiert. Das *sacB*-Gen des pK19*mobsacB*-Plasmids kodiert für das Enzym Levansucrase, das Saccharose in ihre Monosaccharide Fructose und Glucose spaltet und Fructose zu oligomerem Levan umsetzt. Es konnte gezeigt werden, dass die *sacB*-Expression in Anwesenheit von Saccharose letal für *C. glutamicum* ist (Jäger et al., 1992). Daher sollte bei Saccharoseresistenten Klonen das Plasmid durch ein weiteres Rekombinationsereignis wieder aus dem Chromosom entfernt worden sein. Bei diesem zweiten Rekombinationsereignis kann entweder die Wildtyp-Situation wiederhergestellt oder die gewünschte Deletion erzeugt werden. Klone, die sowohl Saccharoseresistent als auch Kanamycinsensitiv waren, wurden durch Kolonien-PCR analysiert.

Integrationsmutanten wurden erzeugt, indem in den Vektor pK18mob, der ebenfalls in C. glutamicum nicht frei replizierbar ist, ein internes Fragment des zu unterbrechenden Gens kloniert wurde (Schäfer et al., 1994). Hierfür wurde der integrative Vektor pK18mob-fasR-Strep konstruiert, in dem FasR mit Cterminal angehängtem Strep-Tagll vorlag. Das Gen fasR wurde mit den Primern Strep-fasR for und Strep-fasR rev amplifiziert und über die Schnittstellen Xmal und Xbal in den Leervektor pK18mob kloniert. Das Konstrukt wurde per Sequenzierung kontrolliert und per Elektroporation in den Wildtyp C. glutamicum ATCC13032 eingebracht.

7.7 DNA-Sequenzanalyse

Für DNA-Sequenzierungen wurde die Kettenabbruchmethode (Sanger et al., 1977) durch Zugabe von ddNTPs verwendet. Hierfür wurde die durch QIAprep Spin Miniprep Kit oder Qiagen Plasmid Midi Kit (Qiagen, Hilden) isolierte hochreine DNA mit den in Tabelle 3 angegebenen Oligonukleotiden bei der Firma Eurofins MWG GmbH (Ebersberg) sequenziert.

Vergleiche der in dieser Arbeit ermittelten DNA-Sequenzen mit DNA-Sequenzen aus Datenbanken wurden mit Hilfe des Programms ,,Blast-Blast 2 Sequences" (www.ncbi.nlm.nih.gov) durchgeführt. Die weitere Bearbeitung der erhaltenen Sequenzen erfolgte mit dem Programm ,,Clone Manager 7" für Windows XP (Version 7.03, Scientific & Educational Software). Eine weitere Datenbank, die zur Untersuchung von Ähnlichkeiten auf DNA- und Proteinebene, Funktionen von Proteinen und Stoffwechselwegen eingesetzt wurde, war die ERGO Datenbank (http://ergo.integratedgenomics.com/ERGO/) von Integrated Genomics.

8. Biochemische Methoden

8.1 Zellaufschluss

Für den Aufschluss von *C. glutamicum* Zellen wurde das Pellet in 10 ml Aufschlusspuffer (TGED-Puffer: 20 mM Tris-HCI pH 7,5, 1 mM EDTA, 10 % (v/v) Glycerin, 0,01 % (v/v) Triton X-100, 100 mM NaCl und 1 mM DTT) resuspendiert und 100 µl Proteaseinhibitor-Mix, bestehend aus 100 mM Phenylmethylsulfonylfluorid (PMSF) und 100 mM Diisopropylfluorophosphat (DFP), hinzugefügt. Der Zellaufschluss erfolgte durch fünf- bis zehnmalige Passage durch eine French-Press-Zelle (SLM AMINCO[®] Spectronic Instruments, Rochester) bei einem Druck von 172 MPa (Strauss, 2003). Anschließend wurden intakte Zellen sowie Zelltrümmer durch Zentrifugation (20 min bei 5500 x *g*, 4 °C) getrennt. Danach erfolgte eine Ultrazentrifugation des zellfreien Überstandes (60 min bei 180000 x *g*, 4 °C), die zur Entfernung weiterer Zelltrümmer und Membranfragmente führte.

Der Aufschluss von *E. coli* Zellen erfolgte per Ultraschall. Der Zellaufschluss kleiner Volumina erfolgte in 2 ml-Eppendorfgefäßen bei 4 °C durch den Ultraschalldesintegrator (Branson Sonifier W-250, Branson Sonic Power Company, Danbury, USA) mit einer Beschallungsdauer von 4 min, einer Pulslänge von 20 % und einer Beschallungsintensität von 2 (Amos et al., 1967). Durch Zentrifugation (30 min, 15000 x g, 4 °C) wurden die Zelltrümmer nach der Ultraschallbehandlung vom Rohextrakt getrennt. Der Zellaufschluss großer Volumina erfolgte nach Resuspension in ca. 20 ml TNI5-Puffer (20 mM Tris-HCl pH 7,9, 500 mM NaCl, 5 mM Imidazol) in einem 50 ml Gefäß bei 4 °C durch den Ultraschalldesintegrator (Branson Sonifier W-250, Branson Sonic Power Company, Danbury, USA) mit einer Beschallungsdauer von 4 min, Pulslänge 30 %, Beschallungsintensität 8, gefolgt von einer 1-minütigen Pause und einer weiteren Beschallungsdauer von 2 min, Pulslänge 30 %, Beschallungsintensität 8 (Robrish et al., 1976). Durch Zentrifugation (30 min, 5500 x g, 4 °C) wurden

die Zelltrümmer nach der Ultraschallbehandlung vom Rohextrakt getrennt. Danach erfolgte eine Ultrazentrifugation des zellfreien Überstandes (60 min bei 180000 x g, 4 °C), die zur Entfernung weiterer Zelltrümmer und Membranfragmente führte.

8.2 Genexpression

Gene, die exprimiert werden sollten, wurden in den Vektor pET16b (Novagen, Madison, WI, USA) kloniert und unterlagen somit einer Expressionskontrolle durch den T7-Promotor, den nur die T7 RNA-Polymerase erkennt (Studier et al., 1990). Durch diese stringente Transkriptionskontrolle kommt es nicht zur Transkription, wenn keine T7 RNA-Polymerase in der Zelle aktiv ist. Der *E. coli* Expressionstamm BL21 (DE3) verfügt über ein T7 RNA-Polymerase-Gen unter Kontrolle des *lac*-Promotors. Durch Zugabe von IPTG wurde zunächst die T7-RNA-Polymerase exprimiert, die dann die heterologen Gene auf dem pET-Vektor transkribiert. Die Expression dieser Gene mit dem pET16b-Vektor resultiert in Fusionsproteinen mit einem N-terminalen Deca-His-Tag.

Für die Expressionkulturen wurden bis zu 6 x 700 ml LB-Medium mit einer Übernachtkultur von BL21(DE3) auf eine OD₆₀₀ von 0,1 inokuliert und zunächst bei 30 °C bis zu einer OD₆₀₀ von ca. 0,5 inkubiert. Die Expression des Zielgens wurde durch Zugabe von 0,1 - 1 mM IPTG (Endkonzentration) induziert. Danach wurden die Zellen bei 30 °C bis zu 4 Stunden inkubiert und im Anschluss erfolgte die Zellernte durch Zentrifugation (10 min, 5300 x g, 4 °C). Die sedimentierten Zellen wurden mit 50 ml Aufschlusspuffer TNI5 gewaschen und bis zur weiteren Verwendung bei –20 °C gelagert.

8.3 Bestimmung von Proteinkonzentrationen

Proteinkonzentrationen wurden mit dem Bicinchoninsäure (BCA)-Test (Smith et al., 1985) bestimmt. Hierbei wurden 50 µl Probe mit 1 ml BCA-Reagenz (BCA[™] Protein Assay Kit, Pierce Biotechnology Inc., Rockford, USA) versetzt, zunächst 30 min bei 37 °C, dann 10 min bei Raumtemperatur inkubiert und die Extinktion bei 562 nm gemessen (Ultrospec 3300 pro Spectrophotometer, Amersham Biosciences). Als Standard wurden definierte Konzentrationen von Rinder-Serumalbumin (BSA) verwendet.

8.4 SDS-Polyacrylamid-Gelelektrophorese

Zur Auftrennung löslicher und membrangebundener Proteine nach ihrer Masse wurde die SDS-PAGE (Laemmli, 1970; Lewis et al., 1970) mittels des NuPAGE-Systems (Invitrogen, Karlsruhe) durchgeführt. Hierfür wurden 10 %ige oder 12%ige Bis-Tris Polyacrylamidgele verwendet. Die Proben wurden mit 1/5 Volumen sechsfach konzentriertem Ladepuffer (350 mM Tris, 10 % (w/v) SDS, 60 mM DTT, 30 % (v/v) Glycerin, 0,175 % (w/v) Bromphenolblau, pH 6,8) gemischt und 10 min bei 95 °C denaturiert. Als Größenstandard wurde der Protein Marker Precision Plus Protein Standards (Bio-Rad, München) verwendet. Die Auftrennung erfolgte bei konstanter Stromstärke (0,02 A pro Gel) und einer maximalen Spannung von 170 V. Die Proteine wurden mittels eines kolloidalen Coomassie-Farbstoffes (GelCode Blue Stain Reagent, Pierce, Rockford, USA) für 1-2 h direkt angefärbt und der überschüssige Farbstoff durch dreimaliges Waschen mit Wasser für jeweils 15 min entfernt.

8.5 MALDI-TOF-Massenspektrometrie

Für die Peptidmassen-,,Fingerprint"-Analysen wurden Proteinbanden aus Coomassie-gefärbten SDS-Polyacrylamidgelen ausgeschnitten, zweimal für je 10 min in 350 µl 0,1 M Ammoniumbicarbonat in 30 % (v/v) Acetonitril gewaschen und für 20 min in der Vakuumzentrifuge getrocknet (Harvey, 1996). Anschließend erfolgte die Fragmentierung und Aufarbeitung der Proteine, indem eine 30-minütige Inkubation der Gelfragmente in 2 µl 3 mM Tris/HCl pH 8,8 mit 10 ng/µl Trypsin (Promega) durchgeführt wurde. Nach Zugabe von 4 µl 3mM Tris/HCI pH 8,8 ohne Trypsin wurden die Proben über Nacht bei Raumtemperatur inkubiert. Zur Elution der nun gespaltenen Proteine aus dem Gelstück diente eine 15-minütige Inkubation mit 9 µl Wasser, gefolgt von der Zugabe von 7,5 µl 30 % Acetonitril (v/v) in 0,1 % Trifluoressigsäure (w/v) und einer 10-minütigen Inkubation bei Raumtemperatur (Fountoulakis und Langen, 1997). Anschließend wurde die Konzentration und Reinheit der Peptide durch die Konzentrierung per "ZipTip[®] C₁₈ standard bed" (Millipore) erhöht, um die Auswertbarkeit der Proben zu verbessern. Danach wurden die Proteinfragmente mit gesättigter α -Cyano-4-hydroxyzimtsäure in 50 % (v/v) Acetonitril und 0,25 % (v/v) Trifluoressigsäure eluiert und auf die Probenplatte aufgetragen. Eine externe Kalibrierung erfolgte für jede Probe mit Hilfe der Calibration Mixtures 1 und 2 des "Sequazyme Peptide Mass Standard Kits" (Applied Biosystems). Die Proben wurden in einer Voyager-DE STR Biospectrometry Workstation (Applied Biosystems) im positiven Reflektor-Modus mit 20 kV Beschleunigungsspannung, 63 % Gitterspannung und einer Verzögerungszeit von 125 ns analysiert. Zur Steuerung des Geräts und zur Datenanalyse wurde die Voyager Control Panel Software 5.0 und die Voyager Data Explorer Software 3.5 (Applied Biosystems) verwendet. Die erhaltenen Peptidmassen wurden zur Suche in einer lokalen Datendank mit 3312 *C. glutamicum*-Proteinen (Degussa) mit Hilfe des MS-Fit-Programms (Clauser et al., 1999) genutzt. Von einer sicheren Identifizierung wurde ausgegangen, wenn mindestens vier der experimentell bestimmten Peptidmassen mit den vorhergesagten Massen übereinstimmten oder mehr als 25 % des Proteins mit den identifizierten Peptiden abgedeckt werden konnte.

8.6 Chromatographische Methoden

8.6.1 Gelfiltrationschromatographie

Proteinen Die native Größe von wurde durch Größenausschlusschromatographie analysiert. Hierfür wurde das Protein mittels einer HiLoad 16/60 Superdex 200 "prep grade"-Säule (Amersham Biosciences), welche an ein ÄKTA[™] Explorer-System (GE Healthcare) angeschlossen war, aufgetrennt. Die Säule wurde zuvor mit 1x Bandshift (BS)-Puffer (50 mM Tris-HCl, 50 mM KCl, 10 mM MgCl₂, 0,5 mM EDTA, 10 % (v/v) Glycerin, pH 7.5) äguilibriert. Für die Größenbestimmung wurde 1 mg Protein in 1x BS-Puffer auf die Säule gegeben und bei 4 °C mit einer Flussrate von 1 ml/min analysiert (Gande et al., 2004; Gande et al., 2007). Die Säule wurde zuvor mit einem Protein Molekulargewichtsmarker (MWGF-70, Sigma Chemie, Deisenhofen) kalibriert. Dafür wurden 2,5 mg Albumin, 1 mg Carboanhydrase, 1 mg Cytochrom c und 1,5 mg Aprotinin in je 0,5 ml bidest. H₂O gelöst und einzeln chromatographisch aufgetrennt.

8.6.2 Ni²⁺-NTA-Affinitätschromatographie

Die Proteinreinigung der Fusionsproteine mit Polyhistidin-Tag erfolgte über Ni²⁺-NTA (Nickel-Nitrilotriessigsäure), die an Agarose gebunden war (Hochuli, 1988; Janknecht et al., 1991). Die Säule hatte ein Bettvolumen von 2 ml Ni²⁺-NTA- Agarose und wurde mit 25 ml TNI5-Puffer äquilibriert. Anschließend wurde der Zellrohextrakt auf die Säule gegeben. Schwach bzw. unspezifisch gebundene Proteine wurden zunächst mit Waschpuffern TNI5-100 (Zusammensetzung siehe TNI5, aber mit bis zu 100 mM Imidazol) entfernt. Das spezifisch gebundene Protein wurde nun mit 5 x 1 ml TNI200- und 5 x 1 ml TNI400-Puffer eluiert. Die eluierten Fraktionen wurden guantitativ auf ihren Proteingehalt untersucht, indem je 20 µl mit jeweils 100 µl Bradford-Reagenz (Coo Protein Assay, Uptima, Frankreich) gemischt wurden. Die Elutionsfraktionen mit Protein wurden vereinigt und bis zur weiteren Verwendung bei 4 °C gelagert. Die Proteinreinigung wurde durch SDS-PAGE überprüft und die Proteinenthaltenden Fraktionen mittels Amicon Ultra-4 5K Ultracel Säulen (Millipore) Der Pufferaustausch von Proteinlösungen erfolgte durch konzentriert. Gelfiltration mit Sephadex-G25-Material. Dazu wurden PD-10-Säulen (GE Healthcare, München) verwendet. Die Säule wurde mit 25 ml Bandshift-Puffer äguilibriert. Anschließend wurden 2,5 ml Proteinlösung aufgetragen und das Protein mit 10 x 0,5 ml des BS-Puffers eluiert. Die Fraktionen wurden qualitativ auf ihren Proteingehalt untersucht und die Fraktionen mit den höchsten Proteinkonzentrationen vereinigt.

8.7 DNA-Protein-Interaktionsstudien

8.7.1 Affinitätsreinigung mittels Dynabeads® M-280 Streptavidin

Zur Identifikation von DNA-bindenden Proteinen, die mit den Promotorregionen der Gene accD1 und accD2 interagieren, wurde die Ziel-DNA-Sequenz (accD1bzw. *accD2*-Promoter) über Biotin an Streptavidin-beschichtete paramagnetische Beads gebunden und eine Affinitätsreinigung durchgeführt (Ozyhar et al., 1992). Dynabeads® M-280 Streptavidin (Dynal A. S., Oslo) sind uniforme, supramagnetische "Kugeln", an die gereinigtes Streptavidin, welches Biotin mit hoher Affinität (KD = 10-15 M) bindet, kovalent gebunden ist (Holmberg et al., 2005). Der accD1-Promotorbereich (168 bp) wurde durch PCR mit markierten Primern (c-accD1-BIOTIN, w-accD1-FISH) amplifiziert und ebenso wurde der konforme accD2-Promotorbereich (340 bp) mit den Primern (c-accD2-BIOTIN, w-accD2-FISH) amplifiziert.

Die resultierenden PCR-Produkte besaßen somit am 5'-Ende einen Biotinrest und wurden mittels QIAEX II Gel Extraction Kit (Qiagen, Hilden) aufgereinigt. Die Bindungskapazität der Dynabeads® M-280 Streptavidin liegt bei ca. 40 bis 50 pmol eines 300 bp langen DNA-Fragmentes pro mg Dynabeads. Bei größeren Fragmenten ist die Bindungskapazität aufgrund der sterischen Behinderung reduziert. Es wurden 220 pmol biotinyliertes accD1-Promotorfragment (1 µg eines 1 kb langen DNA-Fragmentes = 1,52 pmol) bzw. 220 pmol biotinyliertes accD2-Promotorfragment an 0,75 ml Dynabeads® M-280 Streptavidin (Bindungskapazität ≤ 300 pmol) gebunden. Vor der Kopplung der DNA-Fragmente wurden die Dynabeads zunächst mit einem Ausgangsvolumen B+W-Puffer (10 mM Tris-HCl, pH 7,5, 2 M NaCl) gewaschen. Die Sedimentation der Dynabeads erfolgte in einem Dynal MPC-1 Magnethalter und der Waschpuffer wurde mit einer Pipette entfernt. Anschließend wurden die Dynabeads wieder im gleichen Puffer resuspendiert. Die Dynabeads wurden nach einem zweiten Waschschritt in dem gleichen Volumen (1,5 ml) wie das DNA-Fragment in B+W-Puffer resuspendiert, mit dem biotinylierten DNA-Fragment versetzt und 1 h bei RT in einem 15 ml Falcontube geschüttelt, wobei die Umdrehungszahl so gewählt wurde, dass die Dynabeads nicht sedimentierten. Anschließend wurde der Ansatz schrittweise in ein 2 ml Reaktionsgefäß überführt, gefolgt von drei Waschschritten mit jeweils einem Ausgangsvolumen (bezogen auf die eingesetzte Menge Dynabeads® M-280 Streptavidin) B+W-Puffer. Für die Affinitätsreinigung wurden die mit den DNA-Dynabeads® M-280 Fragmenten beladenen Streptavidin in einem Ausgangsvolumen TGED-Puffer (20 mM Tris-HCl, pH 7,5, 1 mM EDTA, 10 % (v/v) Glycerin, 1 mM DTT (frisch zugesetzt), 0,01 % (v/v) Triton X-100, 100 mM NaCI) resuspendiert. Für die Affinitätsreinigung wurden die C. glutamicum-Proteinextrakte (vgl. 8.1) mit 500 µg chromosomaler C. glutamicum-DNA (vgl. 5.1) und den DNA-beladenen Dynabeads in einem 50 ml Falcontube gemischt und 60 min bei RT unter Schütteln inkubiert. Danach wurde der Ansatz einmal mit 1 ml TGED-Puffer, zweimal mit 2 ml TGED-Puffer und 400 µg chromosomaler C. glutamicum DNA und ein weiteres Mal mit 1 ml TGED-Puffer gewaschen. Anschließend wurden die stark gebundenen Proteine durch hohe Salzkonzentrationen mit 350 µl Elutionspuffer (TGED-Puffer mit 0,5, 1 bzw. 2 M NaCl) eluiert. Die vereinigten Eluate wurden mittels 100%-iger Trichloressigsäure gefällt und das Pellet anschließend in 20 µl TE-Puffer

(10 mM Tris-HCl, 1 mM EDTA, pH 7,6) resuspendiert. Die Analyse erfolgte mittels SDS-PAGE (vgl. 8.4).

8.7.2 Gelretardationsexperimente

Um zu untersuchen, ob gereinigtes FasR an putative Zielgene binden kann, wurden die Promotorregionen dieser Gene oder Teile davon durch PCR amplifiziert und mittels MinElute PCR Purification Kit (Qiagen) gereinigt. Je 100 ng des PCR-Produktes wurden zusammen mit verschiedenen FasR-Konzentrationen (0 - 150-facher Überschuss) in BS-Puffer (50 mM Tris-HCl, 50 mM KCl, 10 mM MgCl₂, 0,5 mM Na₂EDTA, 10 % (v/v) Glycerin, pH 7,5) 30 min bei RT inkubiert. Anschließend wurden die Ansätze mit 4 µl Ladepuffer (0,1 % (w/v) Xylencyanolblau, 0,1 % (w/v) Bromphenolblau, 20 % (v/v) Glycerin in 1xTBE) versetzt und auf einem 15 %-igen nativen Gel (Acrylamid:Bisacrylamid 75:1) (1,33 ml 40 % (w/v) Acrylamid, 0,5 ml 2 % (w/v) Bisacrylamid, 0,5 ml 10xTBE, 2,12 ml H2O bidest., 50 µl 10 % (w/v) APS und 5 µl TEMED) aufgetrennt. Als Gel- und Elektrophoresepuffer diente 1xTBE (5,5 g/l Borsäure, 0,74 g/l Na₂EDTA · 2 H₂O, 10,8 g/l Tris) (Schaaf und Bott, 2007). Die Elektrophorese erfolgte ca. 90 min bei RT und einer konstanten Spannung von 170 V. Nach 20-minütigem Anfärben der Gele bei RT in wässriger Ethidiumbromidlösung (1 µg/ml) und anschließendem Waschen in bidest. H₂O wurden die DNA-Banden durch Belichtung mit UV-Licht sichtbar gemacht. Die Dokumentation der Gele erfolgte mit einer E-BOX Modell 3000 (PeqLab, Erlangen).

Die Mutationsanalyse erfolgte ebenfalls durch Gelretardationsexperimente. Hierfür wurden zunächst jeweils 10 µl der komplementären Primer (siehe Tabelle 3) mit 20 µl 2x BS-Puffer (100 mM Tris, 100 mM KCl, 20 mM MgCl₂, 1 mM EDTA, 20% (v/v) Glycerin, pH 7,5) vermischt, für 10 min auf 95 °C erhitzt und dann schrittweise bis auf 8 °C abgekühlt, wobei die Temperatur um 2007). 0,25 °C / min abgesenkt wurde (Kendall et al., Nachdem die Konzentration auf 100 ng / μΙ eingestellt wurde, erfolgten die Gelretardationsexperimente, wobei das PCR-Produkt im Ansatz durch die entsprechende Primerkombination ausgetauscht wurde.

8.7.3 Koisolationsexperiment zur Identifikation des FasR Effektors

Ni²⁺-NTA-Agarose gebunden Hierfür wurde FasR-N_{His} an für und Koisolationsexperimente genutzt. Ein schematischer Ablauf ist in Abbildung 5 gezeigt. Das an die Ni²⁺-NTA-Agarose immobilisierte FasR-N_{His} wurde zunächst mittels Waschpuffern (bis TNI50) gereinigt, gefolgt von einem Pufferaustausch mit 50 mM Kaliumphosphatpuffer (KPP). Anschließend wurde Rohextrakt von aufgeschlossenen C. glutamicum Zellen appliziert, in dem sich auch der Effektor befinden und an FasR anlagern sollte. Unspezifische Proteine wurden mit 50 mM KPP entfernt und der Effektor durch TNI50-Zugabe eluiert. Von jedem Schritt wurden Fraktionen gesammelt und für die GC-TOF-MS Analyse vorbereitet. Über Nacht wurden 200 µl Probe lyophilisiert, derivatisiert mit 50 µl Methoxyaminhydrochlorid (20 mg / ml in Pyridin) für 90 min bei 35 °C und anschließend mit 70 µl N-Methyl-N-(trimethylsilyl)trifluoroacetoamid und 10 ml Alkan für 30 min bei 35 °C inkubiert. Im Anschluss wurden die Proben per GC-TOF-MS analysiert.

<u>Abb. 5:</u> Schematische Darstellung der Isolation des FasR-Effektors mittels Ni²⁺-NTA-Reinigung und anschließender GC-TOF-MS Analyse.

Als Kontrolle diente eine zweite Reinigung, die nach den gleichen Bedingungen durchgeführt wurde, wo aber kein *C. glutamicum* Rohextrakt appliziert wurde.

8.8 Fettanalyse nach Weibull-Stoldt

Um zu untersuchen, ob die Expressionsunterschiede der Acetyl-CoA Carboxylase-Untereinheiten in *C. glutamicum* einen direkten Einfluss auf die Lipidsynthese hatte, wurde eine Fettanalyse nach Weibull-Stoldt durchgeführt. Hierfür wurden *C. glutamicum* Kulturen in Minimalmedium CgXII mit 4 % Glucose oder 2 % Acetat angezogen, geerntet und lyophilisiert. Für die Analyse wurden pro Bedingung 10 g lyophilisierte Zellen eingesetzt, in 100 ml Wasser und 150 ml 25 %-iger Salzsäure aufgenommen und für eine Stunde gekocht, um die Zellen aufzuschließen. Danach wurde die Lösung filtriert und mehrmals gewaschen, um die Salzsäure vollständig zu entfernen. Das Pellet wurde nun für ein bis zwei Stunden bei 103 °C getrocknet, für 2 bis 4 Stunden extrahiert und destilliert, um das Extraktionsmittel zu entfernen. Danach wurde das Pellet so lange bei 103 °C getrocknet, bis ein konstantes Gewicht erzielt wurde, woraus dann der prozentuale Anteil an Lipiden berechnet wurde.

III. Ergebnisse

1. Transkriptionsanalyse der Gene der Carboxylase-Untereinheiten *accD1*, *accD2* und *accBC*

Die Acyl-CoA Carboxylasen katalysieren den sowohl ersten und wichtigsten Schritt in der Fettsäuresynthese, als auch eine wichtige Carboxylierung im Syntheseweg der Mykolsäuren. Um nachzuweisen, ob die Gene dieser Enzyme einer Regulation unterliegen, wurde eine mRNA-Quantifizierung dieser Gene mittels Real-Time PCR während des Wachstums von *C. glutamicum* auf verschiedenen Kohlenstoffquellen sowie bei Zusatz der Fettsäure Oleat durchgeführt.

1.1. Einfluss der Kohlenstoffquelle

Zunächst wurde geprüft ob eine Kohlenstoff-abhängige Regulation des Wildtyps *C. glutamicum* ATCC 13032 besteht. Zu diesem Zweck wurden mehrere Wachstumstests in Minimalmedium CgXII mit den Kohlenstoffquellen Glucose (4 %), Acetat (2 %), Propionat (1 %), Lactat (1 %) oder Gluconat (2 %) durchgeführt. In der exponentiellen Wachstumsphase wurden Proben entnommen (siehe Pfeile in Abbildung 6) um mittels Real-Time PCR zu analysieren, welchen Einfluss die eingesetzte Kohlenstoffquelle auf die Expression der Gene *accD1* (β -Untereinheit der Carboxyltransferase), *accD2* (β -Untereinheit der Carboxyltransferase) und *accBC* (Biotin Carboxylase und Biotincarboxylcarrierprotein) hatte. Zudem wurde analysiert, ob das Gen *birA* (Biotin-Ligase), das im entgegengesetzten Leserahmen vor *accD1* im Genom liegt, unter den getesteten Bedingungen unterschiedlich exprimiert wurde.

<u>Abb. 6:</u> Wachstum von *C. glutamicum* ATCC 13032 in Minimalmedium mit verschiedenen Kohlenstoffquellen. Die Pfeile markieren die Zeitpunkte der Probenahme für die Real-Time PCR Experimente.

In Abbildung 7 sind die Quotienten der mRNA-Level der Gene *accD1*, *accD2*, *accBC* und *birA* gezeigt, die nach Anzucht in Minimalmedium CgXII mit der jeweiligen Kohlenstoffquelle immer in Bezug auf Glucose gesetzt wurden. Zusätzlich sind die mRNA-Level durch die absolute Transkription des Referenzgens *ddh* (Diaminopimelat-Dehydrogenase) normiert worden.

Während bei Wachstum in 1 % Propionat, 1 % Lactat und 2 % Gluconat keine signifikante Änderung des *accD1*-Transkriptlevels zu beobachten ist, kann bei Wachstum in Acetat eine deutlich geringere Transkription um den Faktor 6 im Vergleich zu Wachstum in Glucose gezeigt werden. Auch das Gen *accBC* zeigt eine signifikant geringere Transkription in Abhängigkeit zu Acetat. Im Gegensatz zu diesen Ergebnissen kann keine signifikante Veränderung des Transkriptlevels in den weiteren Kohlenstoffquellen und der anderen untersuchten Gene *accD2* und *birA* beobachtet werden.

<u>Abb. 7:</u> Transkriptquantifizierung der Gene der Carboxylase-Untereinheiten accD1, accD2, accBC sowie der Biotin-Ligase birA. Die Konzentration der jeweiligen Transkripte wurde auf die Konzentration des konstitutiv exprimierten Gens ddh bezogen. Blau gibt das Verhältnis von 4 % Glucose zu 2 % Acetat an. Orange gibt das Verhältnis von 4 % Glucose zu 1 % Propionat an. Grün gibt das Verhältnis von 4 % Glucose zu 2 % Glucose zu 2 % Gluconat an.

Die Real-Time PCR Experimente machten somit eine spezifische Acetatabhängige Regulation des Gens *accD1* und von *accBC* deutlich. Dies könnte ein Hinweis sein, das Metabolite des Acetat-Stoffwechsels als Effektor für die Regulation eine Rolle spielen.

Um zu ermitteln, ob die deutlichen Expressionsunterschiede einen direkten Einfluss auf die Lipidsynthese in *C. glutamicum* haben, wurde eine Fettanalyse durchgeführt mit dem Ziel den prozentualen Anteil der Lipide zu berechnen.

Während in Glucose gewachsene Zellen einen Fettanteil von 3,8 % (\pm 0,4 %) haben, ist bei Anzucht in Acetat ein Fettanteil von 4,2 % (\pm 0,3 %) zu messen. Somit existiert kein gravierender Unterschied in den Gesamt-Lipidmengen bei diesen Kohlenstoffquellen im Gegensatz zu Glutamat-induzierten Produktionsbedingungen, bei denen die Gesamt-Lipidmenge fast halbiert ist im Vergleich zur nicht-induzierten Anzucht von *C. glutamicum* (Hoischen und Krämer, 1990).

1.2. Einfluss von Oleat

Um zu untersuchen, ob Fettsäuren eventuell einen Einfluss auf die Expression der Gene haben, wurde dem Minimalmedium CgXII (mit 4 % Glucose und 1 % Brij35) 0,03 % Oleat zugegeben. Das Detergenz Brij35 war nötig, um das Oleat zu lösen. Die Ergebnisse der Real-Time PCR sind in Abbildung 8 gezeigt.

Wiederum wurde für das Gen *accD1* eine stark veränderte Transkription gezeigt. Durch die Zugabe von Oleat verringerte sich der mRNA-Level von *accD1* um den Faktor 5. Dies erscheint insofern plausibel da AccD1 direkt an der Bereitstellung von Malonyl-CoA beteiligt ist, welches als Grundbaustein für Oleat fungiert, die im Wildtyp mit 55 % am Häufigsten vorkommende Fettsäure. Der Anteil von Oleat in der Zellwand erhöht sich durch die Zugabe von 0,03 % Oleat ins Medium auf über 70 % (Radmacher et al., 2005). Die Gene *accD2*, *accBC* und *birA* zeigten jedoch eine unveränderte und gleich bleibende Expression in Anwesenheit von Oleat.

Die Expression von *accD1* wird besonders stark und spezifisch reguliert, so dass in nachfolgenden Experimenten durch DNA-Bindestudien ermittelt werden sollte, welche Proteine in der Promotorregion von *accD1* binden. Zudem soll die Promotorregion von *accD2* analysiert werden, um zu überprüfen, ob eine Regulation erfolgt, die jedoch unter den bis dato getesteten Bedingungen in den Transkriptquantifizierungen nicht messbar war.

<u>Abb. 8:</u> Transkriptquantifizierung der Gene der Carboxylase-Untereinheiten accD1, accD2, accBC sowie der Biotin-Ligase birA in Abhängigkeit von der Oleataddition im CgXII-Minimalmedium. Die Konzentration der jeweiligen Transkripte wurde auf die Konzentration des konstitutiv exprimierten Gens ddh bezogen.

2. Untersuchungen zur Regulation der Gene accD1 und accD2

Das Gencluster in dem *accD1* und *accD2* vorliegen ist in Abbildung 9 gezeigt. Die Gene *accD1* und *accD2* liegen in *C. glutamicum* direkt benachbart und in gleicher Leserichtung vor. Unmittelbar stromabwärts von *accD2* liegt das Gen *accE*, das für die ε-Untereinheit der Acyl-CoA Carboxylasen kodiert. Interessanterweise liegt in Gegenrichtung zum Gen *accD1* das Gen *birA*, das als Biotin-Ligase annotiert ist. Der Genort weist zudem eine weitestgehend synthenische Anordnung innerhalb der *Corynebacterineae* auf.

Die quantitativen Real-Time PCR Experimente zeigten, dass die *accD1* Transkription bei Wachstum auf Acetat und in Anwesenheit von Oleat signifikant verändert ist, was auf eine starke Regulation von *accD1* schließen lässt. Um die putativen Regulatoren von *accD1*, aber auch von *accD2*, zu isolieren, wurden DNA-Bindestudien durchgeführt mit denen die Proteine identifiziert werden, die an die Promotorregion des jeweiligen Gens binden.

<u>Abb. 9:</u> Genomische Organisation des Genlokus von *accD1* und *accD2*. Beide Gene kodieren für β -Untereinheiten der Acyl-CoA Carboxylasen. Der Genlokus umfasst zudem die Gene *birA* (Biotin-Ligase), *accE* (ϵ -Untereinheit der Acyl-CoA Carboxylasen) und *maf* (Protein unbekannter Funktion). Hervorgehoben sind die Fragmente, die in die DNA-Bindestudien eingesetzt wurden. Die Fragmente beinhalten die intergenische Region und Teilbereiche der flankierenden Gene.

2.1. Identifizierung von Regulatoren, die an die accD1-Promotorregion binden

In *C. glutamicum* ist eine starke transkriptionelle Regulation des Gens accD1 zu beobachten, weshalb DNA-Bindestudien durchgeführt wurden, um putative Regulatoren von *accD1* zu identifizieren. Hierfür wurde die Promotorregion von accD1 mittels PCR amplifiziert und durch einen Biotin-Tag markiert. Die Promotorregion umfasste 312 bp, die sowohl die intergenische Region zwischen birA und accD1, als auch die ersten 70 bp der Gene birA und accD1 beinhaltete. Das Fragment wurde über einen Biotin-Tag an Dynabeads (Streptavidin-beschichtete paramagnetische Kugeln) gekoppelt und mit Proteinrohextrakt von C. glutamicum Zellen inkubiert. Der Proteinrohextrakt wurde aus Zellen nach Anzucht in Komplexmedium CgIII, Minimalmedium CgXII mit 4 % Glucose bzw. 2 % Acetat präpariert. Die Abbildungen 10 und 11 und die Tabellen 4 und 5 zeigen die mit dem accD1-Fragment isolierten und per MALDI-TOF Massenspektrometer analysierten Proteinbanden.

In Abbildung 10 wird ersichtlich, dass sehr viele der im Rohextrakt enthaltenen Proteine ans Fragment gebunden haben und sich trotz diverser Waschschritte auch erst in den Elutionsfraktionen von der DNA ablösten. Dies ist in den Spuren 0,5 bzw. 1 M NaCl zu beobachten, was die Auswertung erschwerte. Bei den Ansätzen mit in Glucose-gewachsenen Zellen war die intensivste Bande bei 40 kDa zu beobachten. Darüber hinaus wurden weitere Banden bei 25, 17 und 12 kDa identifiziert. Im Folgenden wurden alle Banden durch MALDI-TOF analysiert. Die DNA-Bindestudien mit in Acetat-gewachsenen Zellen zeigten ein anderes Ergebnis. Sowohl die Proteine der 40 kDa Bande als auch der 17 kDa Bande wurden nicht exprimiert. Im Gegensatz dazu war die stärkste Bande bei 25 kDa zu beobachten und deutlich stärker exprimiert als sie es beim Ansatz mit Glucose war. Die Identität und Funktion aus Abbildung 10 analysierter Proteine ist in Tabelle 4 beschrieben und darunter befanden sich AccBC (Untereinheit der Acyl-CoA Carboxylasen), die DNA-bindenden Proteine TopA (Topoisomerase) und SsB (Einzelstrang-bindendes Protein), die bereits charakterisierten Regulatoren RamA und GlxR, aber auch die putativen Regulatoren NCgl2404, NCgl0405 und NCgl2886.

Abb. 10: DNA-Bindestudien mit der Promotorregion von accD1.

RE = Rohextrakt. M = Proteinmarker. In den weiteren Spuren sind Aliquots der Elutionsfraktionen mit 0,5, 1 bzw. 2 M NaCl aufgetragen nach Anzucht in Minimalmedium CgXII mit 4 % Glucose oder 2 % Acetat. Rechts vermerkt sind Annotationen relevanter, identifizierter Proteine und Regulatoren.

	NCgl	Cg	Gen	Funktion	
110	0304	0373	topA	DNA Topoisomerase I	
66	2702	3100	danK	Chaperon	
64	0670	0802	accBC	Acetyl-CoA Carboxylase (α-Untereinheit)	
59	2398	2731	uxaC	Uronsäure Isomerase	
56	0726	0868	secA	Translokase	
41	1703	1996	cgIIM	Methylase	
40	1704	1997	cgIIR	Restriktionsendonuklease (Typ II)	
37	1203	1410	rbsR	R Transkriptionsregulator (Lacl-Familie)	
36	2473	2833	cysK O-Acetylserin(thiol)-Lyase		
34	2472	2831	ramA	Transkriptionsregulator des Acetatmetabolismus	
26	1195	1400		DNA Polymerase III (ε-Untereinheit)	
27	2404	2737		Transkriptionsregulator (TetR-Familie)	
26	0286	0350	glxR	cAMP-abhängiger Transkriptionsregulator	
25	0405	0500		Transkriptionsregulator (LysR-Familie)	
23	2880	3307	ssb	Einzelstrang-bindendes Protein	
22	1597	1870	ruvA	Holliday-Struktur DNA Helikase	
17	2886	3315		Transkriptionsregulator (MarR-Familie)	
12	0323	0399		hypothetisches Membranprotein	

<u>Tab. 4</u>: Mit MALDI-TOF-MS identifizierte Proteine, die an das *accD1*-Fragment gebunden haben. Die Proben stammten aus dem SDS-Gel aus Abbildung 10.

Bei den DNA-Bindestudien mit in Komplexmedium angezogenen Zellen zeigte sich eine dominante Bande bei 28 kDa, aber auch bei 34, 23 und 16 kDa lagen spezifische Proteinbanden mit erhöhter Intensität vor. Die Identität analysierter Proteine aus Abbildung 11 ist in Tabelle 5 beschrieben.

<u>Abb. 11:</u> DNA-Bindestudien mit der Promotorregion von *accD1*.

RE = Rohextrakt. M = Proteinmarker. In den weiteren Spuren sind Aliquots der Elutionsfraktionen mit 0,5, 1 bzw. 2 M NaCl aufgetragen nach Anzucht in Komplexmedium CgIII. Rechts vermerkt sind Annotationen relevanter, identifizierter Proteine und Regulatoren.

<u>Tab.</u>	5:	Mit	MAI	_DI-7	ΓOF-Ν	ΛS	identifizierte	Proteine,	die	an	das	accD1-Fragment
gebur	nder	n hal	ben.	Die I	Probe	n s	tammten aus	dem SDS-	-Gel a	aus /	Abbilo	dung 11.

Größe	NCgl	Cg	Gen	Funktion		
[kDa]						
97	1299	1525	polA DNA Polymerase I			
75	0745	0889	recQ	putative DNA Helikase		
74	1540	1805	priA	<i>iA</i> Primosom-aufbauendes Protein		
59	0251	0310	katA	Katalase		
51	2035	2321		DNA Polymerase III (ε-Untereinheit)		
35	1527	1792		putativer Transkriptionsregulator		
31	2472	2831	ramA	Transkriptionsregulator des Acetatmetabolismus		
28	1856	2115	sugR	Transkriptionsregulator (DeoR-Familie)		
25	0286	0350	glxR	cAMP-abhängiger Transkriptionsregulator		
23	2880	3307	ssb	Einzelstrang-bindendes Protein		
18	2886	3315		Transkriptionsregulator (MarR-Familie)		

Neben Proteinen, die generell eine DNA-bindende Funktion besitzen, wie z.B. die DNA-Polymerase oder das Einzelstrang-bindende Protein, konnten sechs Proteine bei den Versuchen mit Zellen, die in CgXII-Minimalmedium gewachsen waren, identifiziert werden, die als Regulatoren annotiert sind. Ferner wurden zwei zusätzliche, putative Regulatoren bei Wachstum in CgIII-Komplexmedium nachgewiesen. Weiterhin zeigten diese Experimente. dass ie nach Kohlenstoffquelle die Menge an gebundenem Protein variiert. Dies fällt insbesondere beim Vergleich der Menge des TetR-Typ Regulators (NCgl2404) auf, der in Acetat bzw. Glucose gewachsenen Zellen exprimiert wurde (Abbildung 10).

Um die Annahme zu bestätigen, dass diese Regulatoren einen Einfluss auf die *accD1*-Expression aufweisen, wurden entsprechende Deletionsmutanten in nachfolgenden Experimenten hergestellt. Dazu wurden die unbekannten, bisher nicht untersuchten Regulatoren *syrB* (NCgl0405), *whiA* (NCgl1527), *fasR* (NCgl2404) und *marR* (NCgl2886) aus den vorhergegangenen Experimenten ausgewählt.

2.2. Identifizierung von Regulatoren, die an die accD2-Promotorregion binden

Parallel wurden DNA-Bindestudien mit einer 469 bp Sonde der Promotorregion von *accD2* durchgeführt, um aufzuklären ob die Untereinheiten der Acyl-CoA-Carboxylase ebenfalls einer Regulation unterliegen, die unter den getesteten Bedingungen der Real-Time PCR nicht identifiziert wurde.

Auch in diesen Affinitätsreinigungen konnten spezifische Proteine isoliert werden (Abbildung 12). Besonders dominant waren die Banden der Größe 52, 27 und 26 kDa, die in beiden Ansätzen in Glucose- und Acetat-gewachsenen Zellen erkennbar waren. Im Ansatz der Acetat-gewachsenen Zellen wurde zusätzlich eine Bande um 15 kDa identifiziert, bei der es sich um einen Eisenaufnahmeregulator handelt (Tabelle 6). Bei den weiteren Banden handelte es sich abermals um DNA-bindende Proteine wie RecQ (DNA Helikase) oder Ssb und die charakterisierten Regulatoren RamB, GntR2, Fur und CgtR2.

Abb. 12: DNA-Bindestudien mit der Promotorregion von accD2.

RE = Rohextrakt. M = Proteinmarker. In den weiteren Spuren sind Aliquots der Elutionsfraktionen mit 0,5, 1 bzw. 2 M NaCl aufgetragen nach Anzucht in Minimalmedium CgXII mit 4 % Glucose oder 2 % Acetat. Rechts vermerkt sind Annotationen relevanter, identifizierter Proteine und Regulatoren.

Größe [kDa]	NCgl	Cg	Gen	Funktion
84	1152	1354	rho	Transkriptionsterminator
75	0745	0889	recQ	putative DNA Helikase
74	1540	1805	priA	Primosom-aufbauendes Protein
54	0358	0444	ramB	Transkriptionsregulator des Acetatmetabolismus
36	0641	0773		putative Exodeoxyribonuklease
27	1650	1935	gntR2	Transkriptionsregulator (GntR-Familie)
26	2880	3307	ssb	Einzelstrang-bindendes Protein
25	0839	0996	cgtR2	putativer Zweikomponentenregulator
15	2200	2502	fur	Eisenaufnahmeregulator
12	0323	0399		hypothetisches Membranprotein

Tab. 6: Mit MALDI-TOF-MS identifizierte Proteine, die an das *accD2*-Fragment gebunden haben. Die Proben stammten aus dem SDS-Gel aus Abbildung 12.

In diesem Experiment wurden mit der *accD2*-Sonde vier Regulatoren identifiziert. Allerdings konnte keiner dieser Regulatoren auch mit der *accD1*-

Sonde isoliert werden, so dass auszuschließen ist, dass die Transkription beider Gene durch den gleichen Regulator kontrolliert wird.

3. Charakterisierung der putativen Regulatoren von accD1

Für die Charakterisierung wurden die vier putativen Regulatoren FasR (NCgl2404), MarR (NCgl2886), SyrB (NCgl0405) und WhiA (NCgl1527) ausgewählt, weil die weiteren Regulatoren entweder bereits charakterisiert wurden (Letek et al., 2006; Schröder und Tauch, 2010) oder weil gezeigt wurde, dass sie nicht in die Fettsäuresynthese involviert sind (Emer et al., 2009; Engels et al., 2008; Nentwich et al., 2009).

FasR besteht aus 212 Aminosäuren und ist ein Transkriptionsregulator der TetR-Familie aufgrund eines charakteristischen helix-turn-helix-Motivs im vorderen Bereich der Aminosäuren 18 bis 64. Zudem sind TetR-Transkriptionsregulatoren unter anderem involviert in die Kontrolle von Effluxpumpen, Resistenz gegen Antibiotika, osmotischen Stress oder Katabolismus 2005). Der als MarR (Ramos et al., annotierte Transkriptionsregulator ist 157 Aminosäuren groß und gehört zur MarR-Klasse (Multiple antibiotic resistance Regulator). MarR-Klasse-Regulatoren kontrollieren Funktionen für die Resistenz gegen diverseste Antibiotika, organische Lösungen und oxidativen Stress (Alekshun et al., 2001). SyrB ist ein 294 Aminosäure großes Protein und gehört aufgrund des typischen helix-turnhelix-Motivs zur LysR-Famile von Transkriptionsregulatoren, die unter anderem Bereiche des Metabolismus, des Quorum Sensings und die Motilität regulieren (Maddocks und Oyston, 2008). Zu WhiA ist bis auf die vermutete Größe von 327 Aminosäuren nichts bekannt.

3.1. Deletion der Gene fasR, marR, syrB und whiA

Um die Funktion der Regulatoren FasR, MarR, SyrB und WhiA charakterisieren und untersuchen zu können, sollten die Stämme *C. glutamicum* Δ *fasR*, *C. glutamicum* Δ *marR*, *C. glutamicum* Δ *syrB* und *C. glutamicum* Δ *whiA* durch Einführung von *in frame*-Deletionen konstruiert werden.

Während diese genomische Modifikation für die drei Regulatoren FasR, MarR und SyrB durchgeführt werden konnte, war eine Deletion des Gens *whiA* nicht möglich. Dies könnte bedeuten, dass dieser Regulator essentiell ist. Bei der erfolgreichen chromosomalen Deletion der Regulatoren FasR, MarR und SyrB konnten pro Regulator mindestens zwei Deletionsmutanten hergestellt werden, die weiter untersucht wurden.

3.2. Charakterisierung der Deletionsmutanten $\Delta fasR$, $\Delta marR$ und $\Delta syrB$

Nach erfolgreicher Deletion der Regulatoren wurden Wachstumsexperimente für eine phänotypische Charakterisierung der $\Delta fasR$ -, $\Delta marR$ - und $\Delta syrB$ -Mutante durchgeführt. Es wurde untersucht ob die Deletion Auswirkungen auf das Wachstum von *C. glutamicum* in Komplexmedium CgIII, Minimalmedium CgXII mit 4 % Glucose oder Minimalmedium CgXII mit 2 % Acetat hat.

In den folgenden Abbildungen sind die Wachstumsexperimente der einzelnen Stämme bzw. der Klone mit den deletierten Genen *fasR* (Abbildung 13), *marR* (Abbildung 14) und *syrB* (Abbildung 15) gezeigt.

<u>Abb. 13:</u> Wachstum der *fasR*-Deletionsklone 1 (rot) und 2 (grün) im Vergleich zum Wildtyp (blau). Die Anzucht erfolgte in CgIII-Medium (\Box), CgXII-Medium mit 4 % Glucose (**O**) bzw. 2 % Acetat (Δ).

In dem Komplexmedium CgIII mit 2 % Glucose konnte eine Reduktion des Wachstums von *C. glutamicum* $\Delta fasR$ im Vergleich zum Wildtyp beobachtet werden, so dass die End-OD nur bei 25 lag im Gegensatz zum Wildtyp mit einer End-OD von 50. Zusätzlich wuchs die $\Delta fasR$ Mutante mit einer Wachstumsrate μ von 0,45 deutlich langsamer im Vergleich zum Wildtyp mit 0,56.

Auch in dem Minimalmedium CgXII mit 4 % Glucose bzw. mit 2 % Acetat wuchs der Deletionsstamm langsamer und zu einer geringeren Zelldichte als der Wildtyp. Der Vergleich der Wachstumsraten zeigt, dass die Mutante *C. glutamicum* $\Delta fasR$ 20 – 30 % langsamer wuchs. Die Wachstumsraten von *C. glutamicum* $\Delta fasR$ waren $\mu = 0,31$ in CgXII 4 % Glucose bzw. 0,17 in CgXII 2 % Acetat. Im Vergleich dazu wuchs der Wildtyp mit $\mu = 0,39$ in CgXII 4 % Glucose bzw. 0,24 in CgXII 2 % Acetat. Auf Grund der signifikanten Verringerung der Wachstumsrate wurde somit ein eindeutiger Phänotyp durch die Deletion des Regulators gezeigt.

Da fast alle bekannten TetR-Regulatoren Repressoren sind (Ramos et al., 2005), lässt dies vermuten, dass das schlechte Wachstum der $\Delta fasR$ -Mutante mit verstärkter Expression von *accD1* korreliert. FasR wird somit sowohl bei Wachstum in Glucose als auch in Acetat benötigt, um die normale End-OD und maximal mögliche Wachstumsrate zu erzielen.

<u>Abb. 14:</u> Wachstum der *marR*-Deletionsklone 1 (rot) und 2 (grün) im Vergleich zum Wildtyp (blau). Die Anzucht erfolgte in CgIII-Medium (\Box), CgXII-Medium mit 4 % Glucose (**O**) bzw. 2 % Acetat (Δ).

Abbildung 14 zeigt das Wachstumsverhalten von *C. glutamicum* ∆*marR* im Vergleich zum Wildtyp in dem Komplexmedium CgIII und Minimalmedium CgXII mit 4 % Glucose oder 2 % Acetat als Kohlenstoffquelle. In beiden Medien zeigt sich ein nahezu unveränderter Wachstumsverlauf bei Wildtyp und Mutante.

Auch die Wachstumsraten der Mutante *C. glutamicum* $\Delta marR$ und des Wildtyps sind nahezu identisch. Die Deletion des Regulators MarR hat also keinen erkennbaren Einfluss auf das Wachstum von *C. glutamicum* unter den getesteten Bedingungen.

<u>Abb. 15:</u> Wachstum der *syrB*-Deletionsklone 1 (rot) und 2 (grün) im Vergleich zum Wildtyp (blau). Die Anzucht erfolgte in CgIII-Medium (\Box), CgXII-Medium mit 4 % Glucose (**O**) bzw. 2 % Acetat (Δ).

C. glutamicum $\Delta syrB$ wuchs in allen getesteten Medien unverändert im Vergleich zum Wildtyp und zeigte keinerlei Abweichungen im Wachstumsverhalten und in der erzielten Biomasse. Der gleiche Effekt zeigte sich bei der Berechnung der Wachstumsrate μ , in der es auch keine Abweichungen zwischen Mutante $\Delta syrB$ und Wildtyp gab.

Von den untersuchten Regulatoren zeigt alleine die Deletion des TetR-Regulators FasR einen veränderten Phänotyp im Vergleich zum Wildtyp und ist zudem in einem synthenischen Genlokus in direkter Nachbarschaft zu drei Lipidsynthese-relevanten Genen lokalisiert (Abbildung 16). Das Gen acpS für Acylcarrierprotein-Synthase, (NCgl2405) kodiert die die ein 4-Phosphopantethein vom Coenzym A auf die Fettsäuresynthase überträgt. Auch die Fettsäuresynthase fasB (NCgl2409), eine von zwei Fettsäuresynthasen in C. glutamicum (Radmacher et al., 2005), liegt in unmittelbarer Nachbarschaft von FasR. Direkt stromabwärts von fasR liegt das Gen einer Thiol-spezifischen Peroxidase, die den Phosphopantethein-Rest der Fettsäuresynthase aktiviert, wodurch die Fettsäuresynthase erst funktionsfähig ist.

<u>Abb. 16:</u> Genomische Organisation im Bereich des Transkriptionsregulators FasR. Das stromabwärts liegende *bcp*-Gen kodiert für die Thioredoxinperoxidase und das stromaufwärts liegende *acpS*-Gen kodiert für die Acylcarrierprotein-Synthase. Die Fettsäuresynthase *fasB* liegt ebenfalls stromaufwärts von *fasR*.

3.3. Konstruktion der Komplementationsmutante *\[]fasR* pEKEx2-

fasR

Um zu bestätigen, dass die Wachstumseffekte der Deletionsmutante $\Delta fasR$ durch die Deletion des Gens fasR hervorgerufen wurden, war das Ziel eine Kopie des Gens fasR in die entsprechende Mutante einzubringen, wodurch die Wachstumseffekte kompensiert werden sollten. Die komplementierte Mutante sollte dann wieder wie der Wildtyp wachsen. Hierfür wurde der Vektor pEKEx2-*fasR* konstruiert, in den das Gen *fasR* über *Pst*I und *Bam*HI einkloniert wurde. Das per Sequenzierung kontrollierte Plasmid pEKEx2-*fasR* wurde dann in die

Deletionsmutante $\Delta fasR$ transformiert. Ebenfalls wurde parallel der Leervektor als Kontrolle in die Deletionsmutante $\Delta fasR$ eingebracht. Im pEKEx2-Plasmid ist die Expression des *fasR*-Gens unter der Kontrolle eines IPTG-induzierbaren *tac*-Promotors, jedoch haben die Analysen von Diesveld et al. (2009) gezeigt, dass auch ohne IPTG-Zugabe eine hohe Basalexpression des pEKEx2-Vektors erfolgt, so dass für dieses Experiment kein IPTG hinzugegeben werden muss.

Es zeigte sich (Abbildung 17), dass der Leervektor pEKEx2 keinen Einfluss auf das Wachstumsverhalten von $\Delta fasR$ hatte. Die Mutante weist mit und ohne Leervektor eine verringerte Wachstumsrate auf und erreicht eine geringere End-OD als der Wildtyp. Dagegen zeigte der komplementierte Stamm $\Delta fasR$ pEKEx2-*fasR* ein im Vergleich zum Wildtyp normales Wachstum, so dass bestätigt werden konnte, dass die Effekte der Deletionsmutante ursächlich auf Abwesenheit von FasR zurückzuführen sind und der Wachstumsdefekt durch pEKEx2-*fasR* wiederhergestellt wird.

<u>Abb.</u> 17: Wachstum des Wildtyps *C. glutamicum* ATCC13032 (schwarz), der Deletionsmutante $\Delta fasR$ (rot), der komplementierten Mutante $\Delta fasR$ pEKEx2-fasR (blau) und der dazugehörigen Kontrolle $\Delta fasR$ Leervektor (grün) in Komplexmedium CgIII (\Box) bzw. Minimalmedium CgXII mit 4 % Glucose (**O**).

4. Transkriptomanalyse von ∆fasR im Vergleich zum Wildtyp

Mit Hilfe von genomweiten DNA-Microarrays wurde untersucht, welchen Einfluss die *fasR*-Deletion auf die globale Genexpression in *C. glutamicum* hat. Hierfür wurden die mRNA-Level von $\Delta fasR$ und Wildtyp nach Kultivierung in Minimalmedium CgXII mit 4 % Glucose oder 2 % Acetat als Kohlenstoffquelle verglichen. Die Transkriptomanalyse wurde für Acetat drei Mal durchgeführt und es wurde von unabhängigen Kulturen ausgegangen, da die DNA-Bindestudien zeigten, dass FasR in Acetat-gewachsenen Zellen stark exprimiert ist und besonders stark bindet. Zum Vergleich wurde eine weitere Transkriptomanalyse mit in Glucose-gewachsenen Zellen durchgeführt. In Tabelle 7 sind relevante

Gene der Acetat-Zellen aufgelistet, deren Verhältnis sich signifikant um mehr als den Faktor 2 (Ratio >2 bzw. <0,5) unterschieden. Zusätzlich wurden in der Tabelle noch die Verhältnisse bei Wachstum auf Glucose eingefügt.

Insgesamt war in der Mutante bei 352 Genen der mRNA-Level mehr als zweifach erhöht und bei 238 Genen der mRNA-Level mehr als zweifach erniedrigt (p-Wert <0,05).

Die Chips mit in Acetat-gewachsenen Zellen zeigten, dass das Gen metE, das für eine Cobalamin-abhängige Methyltransferase kodiert, die an der L-Methioninsynthese beteiligt ist (Rey et al., 2005), um den Faktor 13 hochreguliert wurde. Auch das potentielle Zielgen accD1 (NCgl0678) wurde signifikant um den Faktor 7 stärker exprimiert. Zudem weisen die Fettsäuresynthase Gene fasA und fasB eine um den Faktor 3 erhöhte Transkription auf. Interessanterweise werden zwei andere Regulatoren, NCgl1578 (Faktor 12) und NCgl0886 (Faktor 7) stärker exprimiert, was darauf schließen lässt, dass FasR ein übergeordneter Regulator anderer Regulatoren ist. Zudem wurde die fadA Expression der Gene (Acetyl-CoA Acetyltransferase), fadD (langkettige Fettsäure-CoA Ligase) und ppmA (Membrangebundene Protease) signifikant verringert (Möker et al., 2004). Darüber hinaus wurde sowohl das als Regulator annotierte Gen NCgl2199 um den Faktor 6 verringert exprimiert als auch das Gen welches für den globalen Repressor LexA kodiert, der in die SOS-Antwort und Zellteilung involviert ist, um den Faktor 10 verringert exprimiert. Möglicherweise werden auch diese Gene durch FasR reguliert werden oder es besteht ein indirekter Zusammenhang. Das Gen accBC, das für eine Untereinheit der Carboxylasen kodiert, zeigt eine leicht verringerte Expression.

Im Vergleich hierzu zeigte das Microarray-Experiment mit in Glucose angezogenen Zellen keine Veränderung des mRNA-Levels von *accD1*, dem potentiellen Zielgen von FasR. Bei allen Genen in Tabelle 7 war der mRNA-Level nahezu unverändert. Vielleicht kann FasR in Anwesenheit von Glucose nicht an die Promotorregion seiner Zielgene binden. Im Einklang damit steht, dass FasR in den DNA-Bindestudien auf Glucose auch nur vermindert nachgewiesen werden konnte. Die Acetat-abhängige Expression der Fettsäuresynthase stimmt auch völlig mit den durch E. Radmacher durchgeführten Real-Time PCR Experimenten überein, die zeigen, dass *fasA* in Acetat verringert exprimiert wird im Vergleich zu Glucose (Radmacher et al., 2005).

<u>**Tab. 7:</u> DNA-Microarray-Experimente**, in denen der mRNA-Level der *fasR*-Mutante mit dem des Wildtyps verglichen wurde. Der Vergleich wurde drei Mal durchgeführt, ausgehend von unabhängigen Kulturen, die in CgXII-Minimalmedium mit 2 % Acetat kultiviert wurden und einmal für die Kulturen mit 4 % Glucose. Es sind ausgewählte Gene aufgelistet, deren gemitteltes mRNA-Verhältnis entweder \geq 2 oder \leq 0,5 war oder Gene, die an der Fettsäuresynthese beteiligt sind. Der p-Wert war kleiner als 0,05. Die mit "*" gekennzeichneten Werte haben einen p-Wert größer 0,05.</u>

NCgl	Cg	Gen	FunktionRatio		atio
				Acetat	Glucose
1094	1290	metE	Methioninsynthase II (Cobalamin-unabhängig)	13,0	0,6
1578	1846		Transkriptionsregulator (TetR-Familie)	12,0	0,4
1577	1845		Zuckertransporter (ABC-Typ)	10,1	0,5
1576	1844		Membranprotein	9,6	0,4
1232	1447		Transmembranprotein (Co/Zn/Cd Effluxsystem)	9,3	-
0678	0812	accD1	Acetyl-CoA Carboxylase (β-Untereinheit)	7,2	1,4
0886	1053		putativer Transkriptionsregulator (TetR-Familie)	6,8	0,4
0375	0464	сорА	Kupfer-Transporter	6,6	1,0
0802	0957	fasA	Fettsäuresynthase I-A	3,3	0,3
2409	2743	fasB	Fettsäuresynthase I-B	2,7	1,1
0670	0802	accBC	Biotincarboxylase und Biotincarboxylcarrierprotein	0,7	2,9
2309	2625	fadA	Acetyl-CoA Acetyltransferase	0,2	0,3
0388	0480	fadD	langkettige Fettsäure-CoA Ligase	0,2	0,7
2199	2500		Transkriptionsregulator (ArsR-Familie)	0,2	1,3
0935	1111	eno	Enolase	0,1	0,4
2737	3138	ppmA	Membrangebundene Protease	0,1	1,2
0140	0180	maa	Maltose O-Acetyltransferase	0,1	0,8
1855	2114	lexA	LexA Repressor	0,1*	1,5
2404	2737	fasR	Transkriptionsregulator (TetR-Familie)	0,0	-

Ein Aktivitätstest der Acetyl-CoA Carboxylase sollte belegen, welchen Einfluss die FasR-Deletion und die dargebotene Kohlenstoffquelle auf die Acetyl-CoA Carboxylase hat (siehe Tabelle 8). Der Vergleich von Wildtyp und FasR-Überexprimierer zeigt, dass es kaum Unterschiede gibt, wohingegen die FasR-Deletion gravierende Auswirkungen auf die Aktivität der Acetyl-CoA Carboxylase hat sowohl bei Anzucht in Glucose, als auch in Glucose plus Oleat und in Acetat. Während die Aktivität in Glucose bzw. Glucose plus Oleat stark, um den Faktor 2 bzw. 1,5 erhöht ist, ist die Aktivität in Acetat um 50 % reduziert.

	spez. Aktivität der Acetyl-CoA Carboxylase						
	(prozentual in Relation zum Wildtyp auf Glucose)						
	Glucose Glucose + Oleat Acetat						
Wildtyp	100 %	88 %	37 %				
∆fasR	207 % 128 % 19 %						
Wildtyp pEKEx2-fasR	114 % 121 % 40 %						

<u>**Tab. 8**</u>: Spezifische Aktivität der Acetyl-CoA Carboxylase in Wildtyp, $\Delta fasR$ und Wildtyp pEKEx2-*fasR* nach Anzucht auf Glucose, Glucose + Oleat und Acetat

5. Charakterisierung von FasR

Um den Regulator FasR genauer charakterisieren zu können, wurde ein FasR-Fusionsprotein in *E. coli* überproduziert und aufgereinigt. Ferner wurde aufgereinigtes FasR für Interaktionsstudien hergestellt.

5.1. Heterologe Genexpression und Proteinpräparation

Für die Expression und Reinigung des Regulators FasR wurde zunächst das Plasmid pET16b-*fasR* konstruiert, das für eine Variante von FasR mit einem aminoterminalen Polyhistidin-Tag kodiert (Studier und Moffatt, 1986) und in den *E. coli* Stamm BL21 (DE3) transformiert. Dieser spezielle Stamm besitzt eine unter Kontrolle des *lac*-Promotors stehende T7-RNA-Polymerase. Die T7-RNA-Polymerase ist essentiell für die Expression, weil das Zielgen auf dem Plasmid pET16b unter Kontrolle des T7-Promotors steht und somit nur von der T7-RNA-

Polymerase exprimiert werden kann (Grossmann et al., 1998). Zunächst wurden Expressionstests bei unterschiedlichen Temperaturen und mit unterschiedlichen IPTG-Konzentrationen durchgeführt, indem der transformierte Stamm in LB-Medium bis zu einer OD₆₀₀ von 1 angezogen wurde, dann die Expression des Zielgens durch Zugabe von 0,1, 0,5 und 1 mM IPTG induziert, der Ansatz 4 h bei 25, 30 oder 37 °C inkubiert und per SDS-PAGE analysiert wurde. Vor IPTG-Zugabe und jede Stunde nach IPTG-Zugabe wurden Proben genommen. In Abbildung 18 ist erkennbar, dass bereits nach 1 h Induktion eine dominante Bande mit einer Masse von 25 kDa vorhanden war und dessen Menge noch leicht zunahm mit zunehmender Induktionsdauer. Bei der Bande handelte es sich um das Protein FasR-N_{His}, wie die Analyse mit MALDI-TOF bestätigte. Die Ausbeute an FasR war bei Anzucht bei 30 °C und Zugabe von 1 mM IPTG am Größten.

Abb. 18: Induktionskontrolle der Expression von His-getaggtem FasR.

M = Proteinmarker. Die Anzucht erfolgte bei 30 °C und die Induktion erfolgte mit 1 mM IPTG in *E. coli* BL21 (DE3) pET16b-*fasR*. In den weiteren Spuren sind Aliquots der Proben nach 0, 1, 2, 3 bzw. 4 h nach IPTG-Induktion aufgetragen.

Zur Proteinexpression und -isolierung in größerem Maßstab wurden die Zellen in 700 ml LB-Medium kultiviert und bei 30 °C mit 1 mM IPTG induziert. Der Zellaufschluss erfolgte per Ultraschall, gefolgt von zwei Zentrifugationsschritten. Nach der Ultrazentrifugation lag der Großteil des Proteins gelöst im Überstand vor (siehe Abbildung 19), womit die lösliche Fraktion auf eine Ni-NTA-Agarose-Säule gegeben werden konnte. Die Säule wurde mit TNI5-, TNI20- und TNI50-Puffern gewaschen und die Elution erfolgte mit TNI100- und TNI200-Puffer. In den TNI200-Elutionsfraktionen lag das Protein FasR-N_{His} in großen Mengen und nahezu rein vor und konnte für die weiteren Experimente verwendet werden.

<u>Abb. 19:</u> Affinitätsreinigung von His-getaggtem FasR nach Expression in *E. coli* BL21 (DE3) pET16b-fasR. M = Proteinmarker. ÜS = Aliquot des Überstandes bzw. P = Aliquot des Pellets nach der Ultrazentrifugation. DF = Aliquot des Durchflusses in der Affinitätsreinigung. In den weiteren Spuren sind Aliquots der Wasch- bzw. Elutionsfraktionen aufgetragen.

Aufgrund des His-Tags lag die molekulare Masse von FasR-N_{His} bei 26,6 kDa im Gegensatz zum nativen FasR mit 24 kDa. Das Protein FasR-N_{His} wurde so konstruiert, dass bei Bedarf der His-Tag mittels Faktor Xa abgespalten werden kann und nur ein zusätzlicher Histidinrest am Protein verbleiben würde.

5.2. Bestimmung des apparenten Molekulargewichts von FasR

Die Analyse von FasR-N_{His} mittels Größenausschlusschromatographie sollte aufzeigen, ob das Protein in Lösung als Monomer, Dimer oder Tetramer vorliegt. Das Protein FasR-N_{His} wurde wie oben beschrieben aufgereinigt und zusätzlich weiter aufkonzentriert mit Hilfe von Amicon Ultra-4 5K Ultracel Säulen, über PD-10-Säulen umgepuffert in Bandshift-Puffer (50 mM Tris-HCl, 50 mM KCl, 10 mM MgCl₂, 0,5 mM EDTA, 10 % (v/v) Glycerin, pH 7.5) und falls notwendig abermals aufkonzentriert. Für die Bestimmung des nativen Molekulargewichtes wurde 1 ml FasR-Lösung (1 mg/ml) über eine HiLoad 16/60 Superdex 200-Säule mit einer Flussrate von 1 ml/min aufgetrennt. Anhand einer Eichgeraden, die mit den Standards Aprotinin (6,5 kDa), Cytochrom c (12,4 kDa), Carbonanhydrase (29 kDa) und Albumin (66 kDa), erstellt wurde (siehe Abbildung 20), konnte die Größe von FasR-N_{His} ermittelt werden. Es ergab sich für FasR-N_{His} eine molekulare Masse von 40,3 kDa. Das berechnete Molekulargewicht von FasR-N_{His} beträgt 26,57 kDa. Somit verhält sich natives FasR-N_{His} wie das 1,5-fache des Monomers. Es ist deswegen wahrscheinlich, dass FasR in Lösung als Dimer vorliegt, was typisch für TetR-Regulatoren ist (Ramos et al., 2005). Das deutlich vom erwarteten Elutionsvolumen abweichende Verhalten könnte auf eine besonders kompakte Konformation des Dimers hinweisen.

<u>Abb. 20:</u> Größenausschlusschromatographie zur Bestimmung der nativen Masse von FasR-N_{His}. Hierfür wurden neben FasR-N_{His} noch vier Standardproteine über eine HiLoad 16/60 Superdex 200-Säule aufgetrennt. Zur Elution wurde Bandshift-Puffer (50 mM Tris-HCl, 50 mM KCl, 10 mM MgCl₂, 0,5 mM EDTA, 10 % (v/v) Glycerin, pH 7.5) eingesetzt. V_e ist das Elutionsvolumen der verschiedenen Proteine und V₀ ist das Ausschlussvolumen der Säule (44 ml).

6. Identifizierung der Zielgene und der Bindestelle von FasR

Um die Zielgene von FasR zu identifizieren, wurden Interaktionsstudien mit den Promotorregionen der Gene, die in den Transkriptomvergleichen eine veränderte Genexpression aufzeigten, durchgeführt. Des Weiteren sollten die Interaktionsstudien zeigen, ob eine direkte Regulation der Gene durch FasR erfolgte. Ferner sollte die exakte Bindestelle lokalisiert werden, um ein Konsensusmotiv für eine genomweite Analyse nach FasR-Zielgenen ableiten zu können.

6.1. Gelretardationsexperimente mit putativen Zielgenen von FasR

Der Nachweis der *in vitro* Interaktion von FasR mit dem Promotorbereich des putativen Zielgens erfolgte durch <u>E</u>lectrophoretic <u>M</u>obility <u>S</u>hift <u>A</u>ssay (EMSA)-Experimente (Jiang et al., 2009). Für die EMSA-Experimente wurden neben den Promotorregionen der putativen Zielgene auch die Promotorregionen von Genen, die an der Fettsäuresynthese beteiligt sind, analysiert. Für das EMSA-Experiment wurde die jeweilige Promotorregion mit molaren Überschüssen (0x bis 120x) an FasR-N_{His} inkubiert und mit nativen Polyacrylamidgelen analysiert, ob eine Interaktion stattgefunden hat (Abbildung 21).

Insgesamt wurden 21 Promotorregionen untersucht. Darunter befanden sich die Promotorregionen aller Gene aus Tabelle 7 (Microarray-Experiment) und zusätzlich noch am Fettstoffwechsel beteiligte Gene, wie *accD2*, *accD3* und *fabG*. Eine Bindung von FasR erfolgte an die Promotorregionen von *accBC*, *accD1*, *fasA* und *fasB*. Die stärkste Interaktion erfolgte mit der Promotorregion von *accD1*. Eine Autoregulation von FasR ist auszuschließen, weil FasR nicht an die eigene Promotorregion bindet, obwohl dies bei TetR-Regulatoren sehr oft der Fall ist (Ramos et al., 2005).

Alle vier Gene an deren Promotorregion FasR bindet, sind an der Fettsäurebiosynthese beteiligt Dies lässt vermuten, dass FasR ein übergeordneter Regulator der Fettsäuresynthese ist. Darüber hinaus ist durch den Abgleich mit den Microarray-Experimenten anzunehmen, dass FasR die Expression von *accD1*, *fasA* und *fasB* bei Wachstum auf Acetat reprimiert.

<u>Abb. 21:</u> EMSA-Experimente zur Identifizierung von Promotorregionen an die FasR bindet. Eingesetzt wurden DNA-Fragmente, die die Promotorregionen der genannten Gene abdeckten, dann 30 min bei RT mit verschiedenen molaren Überschüssen von FasR-N_{His} inkubiert und über native 15%-ige Polyacrylamidgele aufgetrennt und mittels Ethidiumbromid gefärbt. Es wurden EMSA-Experimente mit allen Genen aus dem Microarray-Experiment gemacht und zusätzlich noch weitere Gene von *C. glutamicum*, die am Fettstoffwechsel beteiligt sind.

6.2. Identifizierung der FasR-Bindestellen in den Promotorregionen von *accD1*, *accBC*, *fasA* und *fasB*

Die ersten Interaktionsstudien zeigten, dass FasR vier Gene, die am Fettstoffwechsel beteiligt sind, direkt reguliert: *accD1* (β-Untereinheit der Acetyl-CoA Carboxylase), *accBC* (Biotincarboxylase und Biotincarboxylcarrier der Acyl-CoA Carboxylasen), *fasA* und *fasB* (die beiden Fettsäuresynthasen von

C. glutamicum). FasR reprimiert die Expression der Gene *accD1*, *fasA* und *fasB* und lediglich *accBC* wird aktiviert. Hierfür könnte die Lage der FasR-Bindestelle bezogen auf den Transkriptionsstart verantwortlich sein (Pittard und Davidson, 1991). Die Transkriptionsstartpunkte und die Terminatoren wurden per RLM-Race bestimmt. Hierbei wird die RNA mittels T4-RNA-Ligase zirkularisiert, durch dein Einsatz spezifischer Primer und reverser Transkriptase über den Transkriptionsstart hinaus in cDNA umgeschrieben, das Produkt in einer PCR amplifiziert, in den Vektor pUC19 kloniert und das Konstrukt synthetisiert und sequenziert (Nickel et al., 2010). Der jeweilige Transkriptionsstartpunkt und Terminator pro Gen ist in Tabelle 9 aufgelistet.

<u>Tab. 9:</u> Transkriptionsstartpunkte und Terminatoren der FasR-Zielgene, in Bezug zum Startcodon (Translationsstart) bzw. Stoppcodon (Translationsende).

Gen	Transkriptionsstartpunkt	Terminator
	(in Relation zum Startcodon)	(in Relation zum Stoppcodon)
	[Anzahl bp]	[Anzahl bp]
accD1	+/- 0	+51
accBC	-60	+70
fasA	-80	+52
fasB	-66	+67

Die Identifizierung des FasR-Bindebereichs in der jeweiligen Promotorregion erfolgte ebenfalls per EMSA-Experiment. Hierbei wurde FasR-N_{His} mit Teilfragmenten (Tabelle 10) der jeweiligen Promotorregion inkubiert und der Ansatz durch native Gelelektrophorese aufgetrennt.

Tab. 10: Teilfragmente der Promotorregionen von *accD1*, *accBC*, *fasA* und *fasB* einschließlich ihrer Größe und der verwendeten Primer.

Gen	Fragment	Größe [bp]	Primer
accD1	A	313	c-BS-accD1, w-BS-accD1
	В	93	c-BS-accD1, w5-BS-accD1
	С	124	c3-BS-accD1, w3-BS-accD1
	D	164	c4-BS-accD1, w-BS-accD1
	E	214	c-BS-accD1, w3-BS-accD1

Fortsetz	ung Tab. 10			
	F	92	c4-BS-accD1, w2-BS-accD1	
	G	78	c6-BS-accD1, w-BS-accD1	
	Н	102	c5-BS-accD1, w-BS-accD1	
	I	104	c4-BS-accD1, w1-BS-accD1	
	J	89	c5b-BS-accD1, w-BS-accD1	
	К	253	c-BS-accD1, w1-BS-accD1	
	L	119	c4-BS-accD1, w1b-BS-accD1	
accBC	А	255	c-BS-accBC, w-BS-accBC	
	В	87	c3-BS-accBC, w-BS-accBC	
	С	143	c2-BS-accBC, w-BS-accBC	
	D 57 c2-BS-accBC, w2-BS-accBC			
	E	102	c-BS-accBC, w3-BS-accBC	
	F	66	c2a-BS-accBC, w1-BS-accBC	
	G	111	c2a-BS-accBC, w-BS-accBC	
	Н	98	c2-BS-accBC, w1-BS-accBC	
	I	169	c-BS-accBC, w2-BS-accBC	
fasA	А	444	c-BS-fasA, w-BS-fasA	
	В	343	c-BS-fasA, w2-BS-fasA	
	С	205	c-BS-fasA, w3-BS-fasA	
	D	93	c-BS-fasA, w4-BS-fasA	
	E	68	c2-BS- fasA, w3-BS-fasA	
fasB	A	662	c-BS-fasB, w-BS- fasB	
	В	132	c4-BS- fasB, w-BS- fasB	
	С	437	c3-BS- fasB, w2-BS- fasB	
	D	68	c2-BS- fasB, w3-BS- fasB	
	E	94	c-BS-fasB, w3-BS- fasB	
	F	331	c3-BS- fasB, w2a-BS- fasB	
	G	221	c3-BS- fasB, w2b-BS- fasB	
	Н	116	c3-BS- fasB, w2c-BS- fasB	
	I	69	c3a-BS- fasB, w2b-BS- fasB	
	J	417	c3a-BS- fasB, w-BS- fasB	
	K	209	c-BS-fasB, w2c-BS- fasB	

Zur Eingrenzung der FasR-Bindestelle in der Promotorregion von *accD1* (Abbildung 22) wurde zunächst das im vorherigen Versuch eingesetzte 313 bp lange Fragment A in drei Unterfragmente B-D unterteilt. Nur mit Fragment D erfolgte eine Interaktion. Die beiden Fragmente F und G, die das Fragment D abdecken, führten zu keinem Shift, so dass die Bindestelle an den jeweiligen Enden dieser Fragmente liegen müsste. Diese Fragmente wurden stückweise verlängert und mit Fragment J, das 11 bp länger als Fragment G ist, konnte ein Shift erzielt werden. Erst eine Verlängerung von Fragment F um insgesamt 27 bp reichte aus, um mit Fragment L einen Shift zu beobachten. Die FasR-Bindestelle vor *accD1* konnte auf den Bereich von -11 bp bis +32 bp eingegrenzt werden, wobei zwei Bereiche innerhalb dieser Promotorregion besonders wichtige Teile für die Bindung von FasR beinhalten. Zum Einen der Bereich von -11 bp bis +32 bp (Frag. G und J in Abbildung 22) und zum Anderen von +17 bp bis +32 bp (Frag. I und L in Abbildung 22) bezogen auf den Transkriptionsstartpunkt, der mit dem Translationsstartpunkt übereinstimmt.

<u>Abb. 22:</u> Identifizierung der Bindestelle von FasR in der Promotorregion von *accD1*. Oben sind schematisch die DNA-Fragmente dargestellt, die für die Untersuchung eingesetzt wurden. Im rechten Bereich ist angegeben, ob das Fragment im EMSA-Experiment zu einem Shift führte (+/-). Die nativen Polyacrylamidgele im unteren Bereich zeigen, ob eine Bindung von FasR erfolgte. Eingesetzt wurden je 100 ng DNA-Fragment ohne bzw. mit 25-fachem und 50-fachem molaren FasR-Überschuss. Die Inkubationsdauer lag bei 30 min und RT, bevor das DNA-Protein-Gemisch mittels nativer Polyacrylamidgelelektrophorese aufgetrennt wurde.

Die Eingrenzung der Bindestelle innerhalb der *accBC*-Promotorregion zeigte, dass mit Fragment C ein Shift erfolgte, jedoch nicht mit den Fragmenten B und D, die den Bereich von Fragment C abdeckten (Abbildung 23). Nur wenn der Bereich zwischen den Fragmenten B und D enthalten war, wurde ein Shift beobachtet, wie es mit den Fragmenten F, G und H der Fall war. Die Eingrenzung der FasR-Bindestelle im Promotorbereich von *accBC* zeigte, dass nur ein Shift erfolgte, wenn der Bereich von -137 bp bis -92 bp eingesetzt wurde und liegt 30 bp stromaufwärts zum Transkriptionsstartpunkt, der bei -60 bp liegt (bezogen zum Translationsstartpunkt). Dies lässt auf eine Aktivierung von *accBC* durch FasR schließen, da Repressoren überwiegend den Transkriptionsstartpunkt blockieren (Pittard und Davidson, 1991).

<u>Abb. 23:</u> Identifizierung der Bindestelle von FasR in der Promotorregion von *accBC*. Oben sind schematisch die DNA-Fragmente dargestellt, die für die Untersuchung eingesetzt wurden. Im rechten Bereich ist angegeben, ob das Fragment im EMSA-Experiment zu einem Shift führte (+/-). Die nativen Polyacrylamidgele im unteren Bereich zeigen, ob eine Bindung von FasR erfolgte. Eingesetzt wurden je 100 ng DNA-Fragment ohne bzw. mit 25-fachem und 50-fachem molaren FasR-Überschuss. Die Inkubationsdauer lag bei 30 min und RT, bevor das DNA-Protein-Gemisch mittels nativer Polyacrylamidgelelektrophorese aufgetrennt wurde.

Die Identifizierung der Bindestelle in der Promotorregion von fasA erfolgte über eine schrittweise Verkürzung von Fragment A (444 bp) (Abbildung 24). Mit Fragment D wurde kein Shift erzielt, weshalb die Bindestelle in dem Bereich von Fragment C lokalisiert sein musste, der nicht von Fragment D abgedeckt wurde. Mit Fragment E konnte direkt belegt werden, dass die vorderen 69 bp in Fragment C für die Bindung essentiell sind. Es zeigte sich, dass der Bereich von -113 bp bis -45 bp für die Bindung von FasR unerlässlich ist und in diesem Bereich liegt auch der Transkriptionsstartpunkt (-80 bp bzgl. Translationsstartpunkt).

<u>Abb. 24:</u> Identifizierung der Bindestelle von FasR in der Promotorregion von *fasA*. Oben sind schematisch die DNA-Fragmente dargestellt, die für die Untersuchung eingesetzt wurden. Im rechten Bereich ist angegeben, ob das Fragment im EMSA-Experiment zu einem Shift führte (+/-). Die nativen Polyacrylamidgele im unteren Bereich zeigen, ob eine Bindung von FasR erfolgte. Eingesetzt wurden je 100 ng DNA-Fragment ohne bzw. mit 25-fachem und 50-fachem molaren FasR-Überschuss. Die Inkubationsdauer lag bei 30 min und RT, bevor das DNA-Protein-Gemisch mittels nativer Polyacrylamidgelelektrophorese aufgetrennt wurde.

Auch in der Promotorregion von *fasB* konnte die FasR-Bindestelle eingegrenzt werden (Abbildung 25). Essentiell für die Bindung war der 36 bp umfassende Bereich zwischen den Fragmenten J und K, denn beide Fragmente deckten 626 bp des ursprünglichen Fragment A (662 bp) ab. Im Falle von *fasB* lag die Bindestelle im Bereich von 96 bis 130 bp stromabwärts vom

78

Transkriptionsstartpunkt. Dies würde ebenfalls für eine Aktivierung sprechen, jedoch zeigte die Transkriptomanalyse, dass *fasB* durch FasR reprimiert wird.

<u>Abb. 25:</u> Identifizierung der Bindestelle von FasR in der Promotorregion von *fasB*. Oben sind schematisch die DNA-Fragmente dargestellt, die für die Untersuchung eingesetzt wurden. Im rechten Bereich ist angegeben, ob das Fragment im EMSA-Experiment zu einem Shift führte (+/-). Die nativen Polyacrylamidgele im unteren Bereich zeigen, ob eine Bindung von FasR erfolgte. Eingesetzt wurden je 100 ng DNA-Fragment ohne bzw. mit 25-fachem und 50-fachem molaren FasR-Überschuss. Die Inkubationsdauer lag bei 30 min und RT, bevor das DNA-Protein-Gemisch mittels nativer Polyacrylamidgelelektrophorese aufgetrennt wurde.

6.3. Berechnung des FasR-Bindemotivs

Die Analyse der vier eingegrenzten Promotorbereiche diente der Identifizierung eines konservierten Sequenzmotivs, an das FasR bindet. Hierfür wurde das MEME (Multiple EM for Motif Elicitation) Programm Version 4.3.0 (http://meme.nbcr.net/meme4 3 0/cgi-bin/meme.cgi) verwendet und die eingegrenzten Sequenzbereiche der Promotorregionen von accD1, accBC, fasA und fasB genutzt (Bailey et al., 2006) mit den Standardeinstellungen (Länge des Motifs: 6 bis 50 Basen; Anzahl an Motiven: max. 3). Das Konsensusmotiv mit der höchsten Übereinstimmung wurde ausgewählt (Tabelle 10). Zudem wurde in Tabelle 10 noch vermerkt, wo sich das jeweilige Motiv in Relation zum Transkriptions- bzw. Translationsstartpunkt befindet. FasR besitzt demnach ein 29 Basenpaar umfassendes Bindemotiv, das hoch konserviert ist und eine palindromische Symmetrie aufweist. Zur besseren Veranschaulichung wurde dieses Bindemotiv mit dem Weblogo-Programm Version 2.8.2 (http://weblogo.berkeley.edu/) dargestellt (Abbildung 26) (Crooks et al., 2004).

<u>Tab.</u>	<u>10:</u> I	МЕМЕ	Vergl	eich der	Bind	estellen	von FasF	R vor	den	Genen <i>accD1, a</i>	ccBC,
fasA	und	fasB,	der	Position	des	Motivs	bezogen	auf	den	Transkriptions-	bzw.
Trans	slatio	nsstar	tpunkt	und die d	darau	s resultie	erende Kor	nsen	sus-S	Sequenz.	

	Sequenz	Pos.	<u>Pos. TKS</u>		<u>Pos. TLS</u>	
		[b	p]	[bp]		
		von	bis	von	bis	
accD1	TTTCAAAACATGACCATTTCCTCACCTTT	-9	+20	-9	+20	
accBC	CCCCAGAATATGAGTAAGTCCTCATATCT	-68	-40	-128	-100	
fasA	CCGAAATAGATGACTAAACCCTCATGTTT	-27	+1	-107	-79	
fasB	CCGCAAAAGATGACGTTTTCCTCATGATT	-107	-79	-173	-145	
Konsensus	CC-CAAAA-ATGAC-ATCCTCAT-TTT					

<u>Abb. 26:</u> WebLogo Darstellung des FasR-Konsensus-Bindemotivs aus Tabelle 14, wobei die ,inverted repeats' durch die Boxen hervorgehoben wurden.

Da regulatorische Systeme unter verwandten Spezies oft ähnlich aufgebaut sind (Babu et al., 2006), wurde mit dem palindromischen Bereich des Konsensusmotivs von accD1 (5'-AAACATGACCATTTCCTCA-3') eine BLAST Abfrage in anderen Corynebakterien Stämmen durchgeführt. Die Analyse lieferte sechs Treffer in C. glutamicum R, C. efficiens und C. diphtheriae (Tabelle 11). In jedem Organismus war ein Seguenzmotiv zu 100 % identisch mit dem Konsensusmotiv. Es befindet sich im 5'-Bereich eines Gens, das für eine β -Untereinheit der Acetyl-CoA Carboxylase kodiert, die als dtsR (C. glutamicum R) und pccB (C. diphtheriae) annotiert waren. Zudem lag in jedem Organismus eine Bindestelle in der Promotorregion eines Gens der Fettsäuresynthase mit dem gleichen Abstand von 85-152 bp zum Translationsstartpunkt, wie es in *C. glutamicum* bei *fasB* der Fall war.

Otamino	-		•
	Lokalisation	Homologie zum accD1 Motiv	Bemerkung
C.diph.	AAAAGATGACGTTTTCCTCA	81%	85 bp stromaufwärts
	158019 158000		der Fettsäuresynthase
			(DIP1846)
	CAAAACATGACCATTTCCTCA	100%	Im 5' Ende von <i>pCCB2</i>
	290114 290094		(DIP0660)
C.eff.	AAAAGATGACGTTTTCCTCA	81%	149 bp stromaufwärts
	2550986 2550967		der Fettsäuresynthase
			II (CE2392)
	CAAAACATGACCATTTCCTCA	100%	Im 5' Ende von dtsR
	795688 795668		(CE0738)
C.glut.	AAAAGATGACGTTTTCCTCA	81%	152 bp stromaufwärts
R	2651304 2651285		der Fettsäuresynthase
			(cgR_2406)
	CAAAACATGACCATTTCCTCA	100%	Im 5' Ende von accD1
	918887 918867		(cgR_0828)

<u>**Tab. 11:**</u> Identifizierung von FasR-Bindestellen im Genom dreier Corynebakterien Stämme

* C. diph. = Corynebacterium diphtheriae gravis NCTC13129, C. eff. =

Corynebacterium efficiens YS-314, C. glut. R = Corynebacterium glutamicum R

Zusätzlich konnten in den Genomen dieser Corynebakterien Stämme ein TetR-Typ Regulator identifiziert werden, der mindestens eine Homologie von 72% zu FasR aufwies (cgR_2403, CE2388, DIP1844), so dass anzunehmen ist, dass es sich hierbei um die orthologen Vertreter von FasR in diesen Stämmen handelt und sich ein ähnlicher Regulationsmechanismus in den *Corynebacteriaceae* gegeben ist.

6.4. Überprüfung des FasR-Bindemotivs vor accD1

Zur exakten Bestimmung der Interaktionsstellen zwischen FasR und der DNA wurden Mutationsanalysen des Bindemotivs in der Promotorregion von *accD1* durchgeführt, um zu verifizieren, ob einzelne Basenpaare essentiell für die FasR-Bindung sind. Hierbei wurden in mehreren Schritten je zwei bis vier Basen innerhalb der 29 bp langen Sequenz ausgetauscht. Es wurden zudem mehrere Basen stromaufwärts und –abwärts zusätzlich zur mutierten Sequenz verwendet um sicherzustellen, dass FasR auch im Randbereich des untersuchten Motivs binden kann, wofür ein Überhang notwendig ist. Pro Mutation wurden zwei komplementäre Primer synthetisiert, gemischt, erhitzt und schrittweise auf 8 °C abgekühlt (Kendall et al., 2007). Die Fragmente wurden anschließend zusammen mit molaren Überschüssen an FasR in EMSA-

Experimenten eingesetzt und per nativer Polyacrylamidgelelektrophorese analysiert (Tabelle 12 und Abbildung 27).

Die Mutationsanalyse zeigte, dass Mutationen in bestimmten Bereichen der Bindestelle die Bindung von FasR vermindern oder sogar hemmen. Eine Verkleinerung des Bereichs zwischen den ,inverted repeats' führt zum Verlust der Bindungsfähigkeit. Die Motive D und E zeigen zudem, dass der Bereich um das Startcodon ATG, welches innerhalb des ersten ,inverted repeat' liegt, wichtig für die Bindung von FasR ist. Auch Motiv H weist einen nahezu vollständigen Bindungsverlust von FasR auf und überlappt teilweise mit dem zweiten ,inverted repeat'. Ferner führt der Austausch des letzten Tripletts im Bindemotiv zu einem fast vollständigen Verlust der FasR-Bindung (siehe Motiv J).

Tab. 12: Eingesetzte Sequenzen für die Mutationsanalyse der FasR-Bindestelle in der Promotorregion von *accD1*. Die eingefügten Mutationen sind unterhalb der Wildtypsequenz (wt) angegeben und Deletionen von Basen sind durch Unterstreichung dargestellt. In der Wildtypsequenz sind durch die MEME-Analyse bestätigte konservierte Basen fett hervorgehoben, das Startcodon ist unterstrichen und die Basen der ,inverted repeats' sind rot hervorgehoben. In der Spalte Shift ist angegeben, wie das eingesetzte Fragment im Vergleich zum Wildtypfragment geshiftet ist (++++ = gleich gut; +++ = etwas schlechter; ++ = schlecht; + = kaum; - = kein Shift). Bei den Basenaustauschen wurde ein Purin durch ein Pyrimidin (oder umgekehrt) ersetzt. Zuunterst sind die Basen aus der Wildtypsequenz schwarz hinterlegt, die wichtig für die FasR-Bindung sind.

Motiv	Sequenz	Shift
wt	TTT CAAAA CATGACCATTTCCTCACCTTT	++++
-3		-
-6		-
A	GG	++
В	GA	++++
С	CCC	+++
D	CAC	+
E	GTC	-
F	AAC	++
G	GGG	++
Н	AAG	-
I	ACAA	++
J	GGG	+
	TTTCAAA <mark>ACATGA</mark> CCATTT <mark>CCT</mark> CACC <mark>TTT</mark>	

<u>Abb. 27:</u> Mutationsanalyse der FasR-Bindestelle in der *accD1*-Promotorregion. Mutationsanalyse mittels EMSA-Experimenten, bei denen jeweils 20-, 40- und 60facher molarer Überschuss von FasR zu je 100 ng Fragment eingesetzt wurde. Nach 30 min Inkubation bei RT erfolgte die Auftrennung in 15%-igen Polyacrylamidgelen. Die DNA wurde mittels Ethidiumbromid angefärbt.

7. Identifizierung des Effektors von FasR

Um die Funktion eines Regulators verstehen und untersuchen zu können, ist es hilfreich, den Effektor des Regulators zu identifizieren. Deshalb wurden mehrere Experimente durchgeführt, um den Effektor von FasR zu ermitteln.

7.1. Einfluss von CoA, Acetyl-CoA und Malonyl-CoA auf FasR

Der Nachweis des Effektors von FasR wurde *in vitro* über EMSA-Experimente versucht, wobei die Promotorbereiche von *accD1*, *accBC* und *fasB* entsprechend den zuvor durchgeführten EMSA-Experimenten eingesetzt wurden. Im Vergleich zu den bisher durchgeführten Experimenten wurden zwei Änderungen eingeführt. In den Ansätzen mit Effektor wurden zusätzlich je 20 mM des möglichen Effektors hinzugefügt (Engels und Wendisch, 2007) und es fand eine Vorinkubation von Effektor und FasR statt. Als Effektoren wurden Coenzym A (CoA), Acetyl-CoA (AcCoA) und Malonyl-CoA (MalCoA) getestet.

Um eine Interaktion des Effektors mit dem Regulator zu ermöglichen wurde zunächst nur der Effektor mit dem Regulator inkubiert. Anschließend wurde die DNA hinzugefügt, inkubiert mittels Polyacrylamidgelelektrophorese aufgetrennt (Abbildung 28).

Durch die bisherigen Ergebnisse ist bekannt, dass die *fasR* Deletion in der verstärkten Transkription von *accD1*, *fasA* und *fasB* resultiert. Darüber hinaus zeigt FasR hohe Identitäten zu TetR-Repressoren. Unter Berücksichtigung dieser Voraussetzungen ist zu erwarten, dass bei Bindung des Effektors keine Interaktion mit der DNA erfolgt. Entgegengesetzt der Erwartungen konnte durch keinen der getesteten Effektoren eine signifikante Veränderung des Bindungsverhalten von FasR erzielt werden.

<u>Abb. 28:</u> EMSA-Experimente von FasR mit möglichen Effektoren. Die EMSA-Experimente wurden mit den kompletten Promotorregionen von *accD1, accBC* bzw. *fasB* durchgeführt. Zusätzlich wurde kein (ohne) bzw. je 20 mM Effektor (CoA, Acetyl-CoA (AcCoA) oder Malonyl-CoA (MalCoA)) hinzugefügt. Des Weiteren wurde der Effektor zunächst für 15 min bei RT mit dem Regulator FasR inkubiert, dann die DNA hinzugegeben und der Ansatz wie üblich 30 min bei RT inkubiert und aufgetrennt.

7.2. Koisolationsexperimente zur Identifizierung des FasR-

Effektors

Da als Effektor von FasR auch langkettige Fettsäuren und Fettsäure-CoA Derivate in Frage kamen, wie im Falle von YsiA in *Bacillus subtilis* (Matsuoka et al., 2007), wurde über Koisolationsexperimente versucht, den Effektor zu identifizieren. Hierfür sollte ein *C. glutamicum* Stamm konstruiert werden, der ein ins Genom integriertes FasR-Protein mit C-terminalem Strep-Tag exprimiert, wodurch eine schonende Isolation ermöglicht wird. Das FasR-Strep-Protein sollte im Folgenden an eine Streptavidin-Sepharose Säule immobilisiert werden, der daran gebundene Effektor eluiert und mittels GC-TOF-MS identifiziert werden.

Hierfür wurde der integrative Vektor pK18*mob-fasR*-Strep konstruiert, in dem FasR mit C-terminal angehängtem Strep-Tag vorliegt. Das Konstrukt sollte entsprechend dem Deletionskonstrukt in den Wildtyp *C. glutamicum* ATCC13032 eingebracht werden. Es gab zwar Integranten, aber bei den Klonen war der Vektor trotz fehlender homologer Bereiche irgendwo im Genom integriert. Vermutlich wirkt sich chromosomal kodiertes FasR-Strep im Genlokus von FasR nachteilig auf die Zelle aus.

Alternativ wurde das konstruierte FasR-N_{His} durch E. coli BL21 (DE3) exprimiert die Ni²⁺-NTA-Agarose und im Anschluss an gebunden. um SO Koisolationsexperimente durchzuführen. Das gebundene FasR wurde zunächst durch Waschpuffer gereinigt. Anschließend wurde Rohextrakt von aufgeschlossenen C. glutamicum Zellen appliziert, unspezifische Proteine durch Waschschritte entfernt und versucht, den Effektor mittels TNI50 von FasR zu eluieren und die Proben mittels GC-TOF-MS zu analysieren (Abbildung 29). Als Kontrolle diente eine zweite Aufreinigung, die nach den gleichen Bedingungen durchgeführt wurde, bei der kein C. glutamicum Rohextrakt appliziert wurde (Teil A, Abbildung 33). Alle unspezifisch gebundenen Moleküle aus dem Rohextrakt konnten entfernt werden (Teil B, Abbildung 33). Jedoch konnten keine signifikanten Unterschiede in den Analysen festgestellt werden (Teil C, Abbildung 33). Marginale Abweichungen in den Konzentrationen der Moleküle waren detektierbar, aber keine zusätzlichen Moleküle befanden sich im Versuchsansatz im Vergleich zur Kontrolle.

<u>Abb. 29:</u> GC-TOF-MS Analyse der Koisolationsexperimente mit FasR-N_{His}. Gezeigt ist die Applikation des Kochsaftes auf die Ni²⁺-NTA-Säule mit gebundenem FasR (A), das Entfernen unspezifisch gebundener Proteine, die sich im Kochsaft befunden haben

(B) und die Elutionsschritt zur Entfernung des Effektors (C). Das jeweils obere Diagramm zeigt die Ni²⁺-NTA-Säule des Ansatzes mit FasR und Kochsaftapplikation und das jeweils untere Diagramm zeigt die Kontrolle, immobilisiertes FasR an eine Ni-NTA-Säule ohne Kochsaftapplikation.

IV. Diskussion

Der erste und geschwindigkeitsbestimmende Schritt in der Fettsäuresynthese ist die irreversible Carboxylierung von Acetyl-CoA zu Malonyl-CoA durch die Acetyl-CoA Carboxylase (Cronan, 2001; Cronan und Waldrop, 2002). Dies ist in vielen untersuchten Organismen und auch in *C. glutamicum* der Fall, wo die Acetyl-CoA Carboxylase eine von drei Acyl-CoA-Carboxylasen ist. Es ist anzunehmen, dass die für die verschiedenen Acyl-CoA Carboxylase-Untereinheiten in *C. glutamicum* kodierenden Gene *accD1*, *accD2*, *accD3*, *accD4*, *accE* und *accBC* einer bislang noch unbekannten Regulation unterliegen. Die Identifizierung verantwortlicher Transkriptions-Regulatoren ist interessant, da so der Zusammenhang zwischen Zellwandaufbau und Glutamatproduktion weiter untersucht werden kann (Radmacher et al., 2005; Nampoothiri et al., 2002).

1. Abhängigkeit der *accD1*-Genexpression von der Kohlenstoffquelle und Oleatzugabe

Während das Gen *accD1* für die Carboxylierung von Acetyl-CoA und die Synthese von Fettsäuren benötigt wird, werden die Gene *accD2* und *accD3* für die Synthese der Mykolsäuren benötigt. Inwieweit die Kohlenstoffquelle oder extern verfügbares Oleat einen Einfluss auf die Genexpression von *accD1*, *accD2* und *accBC* hatte, galt es zu analysieren. Darüber hinaus war von Interesse, ob es einen Einfluss auf den Lipidgehalt gab, da Glutamat-produzierende *C. glutamicum* Stämme einerseits einen höheren Anteil an ungesättigten Fettsäuren und andererseits nur noch die Hälfte an Lipiden in Relation zum Trockengewicht besitzen (Hoischen und Krämer, 1990; Shimizu et al., 2003).

In *E. coli* wurde bereits gezeigt, dass die Expression der Gene *accA*, *accD* und *accBC* bei in Acetat-gewachsenen Zellen im Vergleich zu in Glucosegewachsenen Zellen um den Faktor 10 reduziert war (Li und Cronan, 1993). Die Expressionsanalysen mit in Acetat-gewachsenen Zellen von *C. glutamicum* zeigten, dass nur die Expression des Gens *accD1* um den Faktor 7 reduziert war, während die Gene *accBC*, *accD2* und *birA* eine nahezu unveränderte Expression aufwiesen. Auch die Daten aus der Jülicher-Microarray-Datenbank (JMD) bestätigten die Real-Time PCR Experimente, da die in der Datenbank dokumentierten Versuche ebenfalls zeigten, dass beim Vergleich der Kulturen nach Anzucht in Acetat mit nach Anzucht in Glucose lediglich die Expression von *accD1* verändert war. Die Expression von *accD1* war um den Faktor 5 reduziert, während die Gene *accD2*, *accBC* und *birA* eine unveränderte Expression aufzeigten.

Während die Kontrolle der Expression von *accA*, *accD* und *accBC* in *E. coli* von den zwei Mechanismen Autoregulation und Wachstumsrate abhängig war (James und Cronan, 2004), war dies nicht der Fall für *C. glutamicum*, denn bei in Propionat-gewachsenen Zellen ist die *accD1*-Expression im Vergleich zu Glucose fast unverändert. Jedoch beträgt in Propionat die Wachstumsrate $\mu = 0,1 \text{ h}^{-1}$, was im Vergleich zu Acetat (0,24 h^{-1}) und Glucose (0,4 h^{-1}) weitaus geringer ist (Veit et al., 2009).

Somit handelt es sich bei der accD1-Regulation um einen Acetat-spezifischen Effekt, der zur Frage führt, worin diese Spezifität liegt. Es ist bekannt, dass die Metabolitkonzentration an Acetyl-CoA in Acetat-gewachsenen Zellen gegenüber in Glucose-gewachsenen Zellen deutlich erhöht ist, was in unmittelbarem Zusammenhang mit der Acetyl-CoA Carboxylase steht (Wendisch et al., 1997). Bei Wachstum auf Acetat beträgt die interne Acetyl-CoA Konzentration in C. glutamicum 145 µM, auf Glucose dagegen nur 24 µM. Es ist deswegen denkbar, dass durch die hohe Acetyl-CoA-Konzentration auf Acetat die Fettsäuresynthese aktiviert wird. Dies ist im Falle von E. coli experimentell durch Überexpression der Acetyl-CoA Carboxylase Untereinheiten belegt worden, wo gezeigt werden konnte, dass in diesem Stamm die Fettsäuremenge um den Faktor 6 erhöht war (Davis et al., 2000). Der Grund für den hohen Acetyl-CoA Pool wird sein, dass Acetyl-CoA ein Intermediat der Acetatverstoffwechslung ist. Zusätzlich ist die Acetat-Aufnahme 4-mal so hoch bei Wachstum in Acetat, wie die Aufnahme von Glucose bei Wachstum in Glucose (Gerstmeir et al., 2003). Die Aufnahme von Acetat erfolgte durch den Monocarbonsäure-Transporter MctC, der eine hohe Affinität für Acetat und Propionat hat (Jolkver et al., 2009).

Eine Repression der *accD1*-Expression bei Wachstum in Acetat scheint wichtig, damit weder zu viel Acetyl-CoA in Malonyl-CoA umgewandelt wird noch zu viele Lipide synthetisiert werden. Um zu überprüfen, ob sich die Gesamtlipidmengen in Glucose- und Acetat-gewachsenen Zellen unterscheiden, wurde der Gesamtlipidgehalt nach Weibull-Stoldt bestimmt (Kolar et al., 1993). Grandvalet et al. (2008) haben gezeigt, dass in Oenococcus oeni der Gesamtlipidgehalt bei Anzucht in Acetat um den Faktor 3 reduziert war, wohingegen in C. glutamicum eine Kontrolle des Gesamtlipidgehalts vorliegt, denn die Lipidmengen in Glucose- oder Acetat-gewachsenen Zellen unterscheiden sich nicht. Wie in dieser Arbeit gezeigt werden konnte, beträgt der Lipidgehalt in Glucosegewachsenen Zellen 3,8 % (± 0,4 %) und in Acetat-gewachsenen Zellen 4,2 % (± 0,3 %). Radmacher et al. (2005) konnte zeigen, dass die Zusammensetzung der einzelnen Fettsäuren bei Wachstum in Glucose und Acetat fast identisch war, wohingegen die Zusammensetzung im Vergleich dazu bei Wachstum auf Propionat stark variierte durch die Bildung von ungeradkettigen Fettsäuren (Radmacher et al., 2005). Die Expression von accD1 war aber bei Wachstum in Propionat im Vergleich zu Glucose unverändert. Jedoch zeigte sich, dass die Expression von *fasB*, der Fettsäuresynthase I-B, bei Wachstum in Propionat verändert ist (Hüser et al., 2003).

Weiterhin wurde der Einfluss von Oleat untersucht, denn bei Wachstum in Glucose mit Zusatz von Oleat weichte die Zusammensetzung der Fettsäuren ebenfalls ab. Der Palmitat-Gehalt war um den Faktor 2 verringert und der Oleat-Gehalt um den Faktor 1,5 erhöht (Radmacher et al., 2005). Das Real Time PCR Experiment zeigte, dass durch den Zusatz von Oleat die *accD1*-Expression um das 5-fache verringert war, aber die Reduktion der *accD1*-Expression konnte nicht alleine hierfür verantwortlich sein, wie die Daten mit in Acetat-gewachsenen Zellen zeigten. Wie Daten aus der JMD belegten, war zusätzlich die Genexpression von *fasB*, das für die Fettsäuresynthase I-B kodiert, um den Faktor 6 reduziert, die in *C. glutamicum* vorwiegend Palmitat und Stearat produziert (Stuible et al., 1996; Stuible et al., 1997).

Ferner konnte von Botella et al. (2009) gezeigt werden, dass die Verringerung der *accD1*-Expression bei Wachstum in Acetat einen Einfluss auf die Aktivität der Acetyl-CoA Carboxylase hatte. Die Carboxylase-Aktivität verringerte sich bei Wachstum in Acetat um den Faktor 3 im Vergleich zu Glucose-

gewachsenen Zellen. Zusätzlich wurde gezeigt, dass die Acetyl-CoA Carboxylase Aktivität in Propionat-gewachsenen Zellen ebenfalls um den Faktor 3 verringert war (Botella et al., 2009). Da in dieser Arbeit gezeigt werden konnte, dass die *accD1*-Expression in Propionat nur unwesentlich von der in Glucose verschieden ist, kommen weitere Möglichkeiten zur Kontrolle der Acetyl-CoA Carboxylase Aktivität in Betracht. So könnten zusätzliche Regulationseffekte, z.B. auf postranskriptioneller Ebene eine Rolle spielen. Auch könnten mehrere Transkriptionsregulatoren beteiligt sein, die in die Regulation der insgesamt vier Gene die am Acetyl-CoA Carboxylase Aufbau beteilgt sind, eingreifen (Sahm et al., 2000; Muffler et al., 2002; Veit et al., 2009). Eventuell ist ein Metabolit der Lipidsynthese an der Regulation beteiligt, wie z.B. Methylmalonyl-CoA, ein Fettsäure-CoA Derivat, oder auch ein Lipid.

Wie die Experimente mit Oleatzugabe zeigten, fand eine Lipid-abhängige Regulation von *accD1* in *C. glutamicum* statt. Diese ist auch insofern verständlich, als bei Oleatzugabe dieses nicht mehr synthetisiert werden muss. Allerdings könnte auch hier ein weiterer Regulator beteiligt sein, der unabhängig von der in dieser Arbeit detailliert untersuchten Kohlenstoffquellen-abhängigen Regulation die *accD1*-Expression kontrolliert. In *M. tuberculosis* wurde bereits gezeigt, dass der Regulator KstR (TetR-Familie) ein Regulon für die Aufnahme und den Abbau von Lipiden aktiviert, wenn Palmitat im Medium enthalten ist (Schnappinger et al., 2003; Mitra et al., 2005).

2. Regulationsmechanismus von accD1

Zur Isolierung und Identifizierung von Regulator-Proteinen wurde die DNA-Affinitätschromatographie genutzt (Frunzke et al., 2008; Brocker und Bott, 2006; Emer et al., 2008; Engels et al., 2008). Neben putativen Regulatoren wurden auch Proteine isoliert, die entweder direkt mit der DNA, wie das Ssb, TopA, DnaK oder RuvA oder mit den Streptavidinresten der paramagnetischen Dynabeads interagierten, z.B. über Biotin (Gadgil et al., 2001; Rey et al., 2003). Vergleichbar zu Versuchen mit *E. coli* konnte auch in *C. glutamicum* AccBC mit der *accD1*-Sonde isoliert werden (James und Cronan, 2004). Vermutlich interagiert das AccBC-Polypeptid mit der Promotorregion von *accD1*, um

93

dessen Expression zu reprimieren, wie es entsprechend in *E. coli* der Fall ist, in dem AccB vor das Operon *accBC* bindet und dessen Expression reprimiert (James und Cronan, 2004).

Zudem wurden acht Regulatoren mit der *accD1*-Sonde identifiziert: RbsR, RamA, FasR, GlxR, SyrB, MarR, WhiA und SugR. Weitergehende Analysen waren bislang mit RbsR, RamA, GlxR und SugR erfolgt. Zur Veranschaulichung wurden die bekannten Bindestellen der jeweiligen Regulatoren in Abbildung 30 in Bezug zum Transkriptionsstartpunkt von *accD1* dargestellt.

Abb. 30: Bindestellen der mittels DNA-Affinitätsreinigung isolierten und in der Literatur weitergehend charakterisierten Regulatoren inkl. der Position der Bindestelle bezogen auf den Transkriptionsstart. Der *accD1*-Transkriptionsstart ist mit einem Pfeil gekennzeichnet.

Aufgrund der Vielzahl an Regulatoren, die an die *accD1*-Promotorregion gebunden haben, musste überprüft werden, welchen Einfluss die jeweiligen Regulatoren auf die *accD1*-Expression hatten, um die Regulation der Lipidsynthese im Detail zu analysieren.

RbsR reguliert das für den Ribose-Transport zuständige *rbs*-Operon ohne bekannte Effekte auf die *accD1*-Expression (Nentwich et al., 2009).

Für RamA, einem Regulator der Gene des Acetat-Metabolismus aktiviert, konnten bereits Bindestellen in der Promotorregion von *accD1* experimentell nachgewiesen werden. Diese sind ACCCCA (Pos. -14 bp) und GGGGGT (Pos--139 bp) (Cramer et al., 2006; Cramer und Eikmanns, 2007; Emer et al., 2009; Toyoda et al., 2009). Somit könnte RamA sowohl als Aktivator als auch als Repressor für *accD1* fungieren. Aber in diesem Fall aktiviert RamA die *accD1*-Expression bei Wachstum auf Glucose (Cramer und Eikmanns, 2007; Emer et al., 2009). Ob RamA einen Einfluss bei Wachstum auf Acetat hatte, konnte nicht analysiert werden, weil die $\Delta ramA$ -Mutante nicht auf Acetat wächst. Es besteht daher die Möglichkeit, dass RamA das Gen accD1 bei Wachstum auf Glucose reguliert.

Der Transkriptionsregulator GIxR ist essentiell und reguliert Gene des Acetat-, Lactat-, Gluconat- und Ethanolmetabolismus, des Aromatenabbaus, des Glyoxylatzyklus, der Glutamataufnahme und der Fettsäurebiosynthese (Kim et al., 2004; Letek et al., 2006; Brinkrolf et al., 2007; Kohl et al., 2008). GIxR besitzt vor *accD1* die Bindestelle GGTGA-N₆-TCACT (Position -104 bp) und es konnte gezeigt werden, dass GIxR bei Wachstum auf Glucose als Repressor von *accD1* fungiert (Kohl und Tauch, 2009).

Zwar handelt es sich bei SugR um einen Repressor von Genen der Zuckeraufnahme und der Glycolyse (Toyoda et al., 2009), aber es liegt vor *accD1* eine SugR-Bindestelle CTGAACA (Pos. -98 bp bzgl. Transkriptionsstart von *accD1*) (Engels et al., 2008; Toyoda et al., 2009). In der SugR-Deletionsmutante sind die Gene *accD1* bzw. *fasB* um den Faktor 6,6 bzw. 5,9 erhöht, was zeigt, dass ihre Expression durch SugR stark reprimiert wird bei Wachstum in Acetat (Engels und Wendisch, 2007; Engels et al., 2008).

Somit kommen für die Acetat-abhängige Regulation von *accD1* die Regulatoren SugR und FasR in Frage, wobei FasR im Gegensatz zu SugR im Bereich des Transkriptionsstartpunktes bindet und einen stärkeren Einfluss auf die accD1-Repression haben sollte (Bekker et al., 2006). Darüber hinaus wurde SugR in Komplexmedium gewachsenen Zellen nachgewiesen, während FasR am Acetat-gewachsenen Zellen exprimiert wurde dominantesten in und ausschließlich unter diesen Bedingungen mit der accD1-Promotorregion isoliert werden konnte. Des weiteren ist von Regulatoren der TetR-Familie bereits gezeigt worden, dass diese auch in die Membranbeschaffenheit eingreifen (de la Paz Santangelo et al., 2009). Somit ist anzunehmen, dass SugR den Metabolitfluss reguliert, denn Kimura (2002) konnte nachweisen, dass die Uberexpression von accD1 eine Verringerung der L-Glutamatproduktion durch Interaktion mit der 2-Oxoglutarat-Dehydrogenase bewirkt.

3. Charakterisierung der C. glutamicum-Mutante ∆fasR

Nach der erfolgreichen Deletion des Gens *fasR* sollte überprüft werden, welche Auswirkungen das Fehlen von FasR auf *C. glutamicum* hatte.

Der Wachstumsvergleich der *∆fasR*-Mutante mit dem Wildtyp zeigte, dass der FasR-Regulator einen Einfluss auf das Wachstum hatte, weil sowohl in dem Komplexmedium CgIII als auch in den Minimalmedien mit 4 % Glucose bzw. 2 % Acetat eine weitaus niedrigere End-OD und eine signifikant reduzierte Wachstumsrate erzielt wurde (siehe Tabelle 12). Obwohl der Wildtyp schon eine verringerte Wachstumsrate und eine niedrigere Biomasse bei Wachstum in Acetat zeigte (Gerstmeir et al., 2003), erreichte die Mutante durchschnittlich nur 60 % der Biomasse des Wildtyps, nur 80 % der Wachstumsrate mit Glucose und 70 % der Wachstumsrate mit Acetat als C-Quelle.

<u>**Tab. 12:**</u> Vergleich der End-ODs und der Wachstumsrate μ von Wildtyp und $\Delta fasR$ -Mutante bei Wachstum in Komplexmedium CgIII und den Minimalmedien CgXII mit 4 % Glucose bzw. 2 % Acetat

	Cg	jili	CgXII 4 %	Glucose	CgXII 2 % Acetat		
	End-OD	μ	End-OD	μ	End-OD	μ	
Wildtyp	50	0,54	65	0,39	24	0,24	
∆fasR	25	0,45	40	0,31	16	0,17	

Um herauszufinden welche Faktoren in der *∆fasR*-Mutante den frühzeitigen Wachstumsstopp, die verringerte Wachstumsrate und den damit einhergehenden, veränderten Phänotyp verursachten, wurde eine genomweite Transkriptomanalyse durchgeführt.

Da FasR nicht aus in Glucose-angezogenen Zellen isoliert wurde, war phänotypisch kein Wachstumsdefekt zu erwarten. Kein Gen das an der Fettsäuresynthese beteiligt war, wurde unter den untersuchten Konditionen reprimiert.

Beim Vergleich der mRNA-Level nach Anzucht auf Acetat wiesen mehrere Gene, die an der Fettsäuresynthese beteiligt sind (*accD1, fasA* und *fasB*), bei Abwesenheit von FasR ein erhöhtes Expressionsniveau auf und werden dementsprechend durch FasR reprimiert. Vergleichbares wurde auch für *fasA* und *fasB* von Radmacher et al. gezeigt (2005). Bei Wachstum auf Acetat war im Real-Time PCR Experiment von Radmacher et al. (2005) die *fasA*-Expression um das 8,3-fache reduziert und die von *fasB* um den Faktor 2,1 verringert.

Auch fadD (NCgl0388), das an der Lipidsynthese beteiligt sein könnte, zeigte einen veränderten Transkriptlevel und es ist bekannt, dass orthologe Gene in Mycobacterium tuberculosis als Acyl-CoA Ligasen fungieren und an der Mykolsäuresynthese beteiligt sind (Portevin et al., 2005). Dies war allerdings bei FadD nicht der Fall da das paraloge Gen (NCgl2774) diese Funktion in C. glutamicum übernimmt. Unter den weiteren Genen, die im DNA-Microarray-Experiment gelistet sind, befanden sich auch zwei Regulatoren der TetR-Familie (NCgl1578; NCgl0886), ein Regulator der ArsR-Familie (NCg2199) und der Repressor LexA (NCgl1855). Zu den drei erstgenannten Regulatoren sind bisher keine Untersuchungen durchgeführt worden, weshalb keine Aussage getroffen werden kann, ob diese einen Einfluss auf das Wachstum von C. glutamicum haben. Im Gegensatz dazu wurde LexA in C. glutamicum charakterisiert (Jochmann et al.. 2009) und ist als ubiquitärer Transkriptionsregulator in die SOS-Reparatur involviert und für die schnelle Behebung von DNA-Schäden verantwortlich (Walker, 1984; Friedberg et al., 2005; Erill et al., 2007; Butala et al., 2009). Es ist daher nicht zu erwarten, dass LexA einen Einfluss auf die Wachstumsdefekte der FasR-Mutante hat.

Um die Hypothese zu bestätigen, dass der Phänotyp der *∆fasR*-Mutante durch die Deletion des FasR-Regulators hervorgerufen wird und keine Sekundärmutation in der Deletionsmutante vorlag, wurde einerseits das Stamm Plasmid pEKEx2-fasR in den С. glutamicum ∆fasR zur Komplementation eingebracht und andererseits überprüft, ob FasR direkt die Expression der Gene aus Tabelle 7 beeinflusst. Der Stamm C. glutamicum ∆fasR pEKEx2-fasR war vergleichbar zum Wildtyp und erreichte eine entsprechende Biomasse und Wachstumsrate. Somit ist der beobachtete Phänotyp, sowohl bei Anzucht in Glucose als auch in Acetat, auf die Abwesenheit des fasR-Gens zurückzuführen. Um zu überprüfen, ob FasR die Expression der Gene direkt beeinflusst oder andere sekundäre Einflüsse für die mRNA-Level-Unterschiede verantwortlich sind, wurden Gelretardationsexperimente mit den Promotorregionen aller Gene aus Tabelle 7 durchgeführt. FasR interagiert jedoch nur mit den Promotorregionen von accD1, accBC, fasA und fasB und reguliert direkt deren Expression. Der

Zusammenhang zwischen der variierenden Expression der anderen Gene und der FasR-Deletion ist weiterhin unklar, da nicht gezeigt werden konnte, ob dies auf nicht gefundene, direkte oder sekundäre Effekte zurückzuführen ist. Vielleicht interagiert FasR direkt mit einem anderen Protein, wodurch FasR ein verändertes Bindungsverhalten aufweist und andere Bindemotive erkennt (Muhl et al., 2009) oder FasR aktiviert einen weiteren Regulator, wie es zwischen RamA und SugR nachgewiesen wurde (Toyoda et al., 2009).

Für das veränderte Wachstumsverhalten von C. glutamicum AfasR könnten auch die Acyl-CoA Carboxylase-Aktivitäten ursächlich sein, die auf Enzymaktivitätsebene reguliert werden, wie es unter anderem in E. coli und Hefen der Fall ist (Faergeman und Knudsen, 1997; Fujita et al., 2007). Auch in C. glutamicum wurde nachgewiesen, dass die Acetyl-CoA Carboxylase Aktivität bei Anzucht auf Acetat um den Faktor 3 verringert war (Botella et al., 2009). Der Aktivitätstest der Acetyl-CoA Carboxylase zeigte, dass die Unterschiede beim Vergleich zwischen Wildtyp und FasR-Überexprimierer minimal waren, wohingegen die FasR-Deletion gravierende Auswirkungen auf die Aktivität der Acetyl-CoA Carboxylase hatte. Sowohl bei Anzucht in Glucose als auch in Glucose plus Oleat und in Acetat. Während die Aktivität in Glucose bzw. Glucose plus Oleat um den Faktor 2 bzw. 1,5 erhöht ist, ist die Aktivität in Acetat um 50 % reduziert. Die verringerte Aktivität in Acetat korreliert mit den Daten aus der Transkriptomanalyse, in der gezeigt wurde, dass die Expression von accD1 in Acetat um den Faktor 7 reprimiert war. In der *AfasR*-Mutante ist die Aktivität der Acetyl-CoA Carboxylase bei Anzucht in Glucose erhöht, aber der mRNA-Level nahezu unverändert. Dies deutet darauf hin, dass in diesem Fall eine Regulation auf Protein-Ebene erfolgen muss, indem ein bestimmter Metabolit akkumuliert und eine allosterische Inhibierung der Acetyl-CoA Carboxylase erfolgt.
4. Charakterisierung des Regulators FasR

In Folge der von Hüser et al. (2003) nachgewiesene Transkriptionskontrolle des Gens *accD1* wurde in dieser Arbeit der Transkriptionsregulator FasR identifiziert. FasR war bisher nicht unter den 77 charakterisierten Regulatoren des Metabolismus in den Fokus wissenschaftlichen Interesses gelangt, obwohl ein orthologes Gen zu *fasR* in allen bisher sequenzierten Corynebakterien Stämmen vorliegt und *fasR* in der Genregion von *fasB* und *acp* vorliegt (Rock und Cronan, 1996; Brinkrolf et al., 2009).

Über Gelretardationsexperimente konnte belegt werden, dass FasR an die accBC Promotorregion von accD1. fasA. fasB und bindet. Überraschenderweise konnte keine Interaktion mit der Promotorregion von Genen der Mykolsäuresynthese, wie accD2, accD3 oder pks, nachgewiesen werden, obwohl Fettsäuren als Vorstufen für die Mykolsäuresynthese dienen (Bhatt et al., 2007; Tam und Lowary, 2009). Somit ware eine gemeinsame Regulation von Fettsäure- und Mykolsäuresynthese in Betracht gekommen, zumal Mykolsäuren stets vom Organismus synthetisiert werden müssen im Gegensatz zu Fettsäuren, die mitunter aus der Umgebung importiert werden oder im Falle von pathogenen Organismen vom Wirtsorganismus stammen können (Bhatt et al., 2007; Daffé und Etienne, 1999).

Ferner wurde untersucht, ob die Bindestellen von FasR mit den Schlussfolgerungen bezüglich Repression von accD1, fasA und fasB bzw. Aktivierung von accBC korrelieren. Für accD1 und fasA wurde gezeigt, dass die FasR-Bindestelle mit dem Transkriptionsstartpunkt überlappt, wie es für TetR-Regulatoren typisch ist (Abbildung 31). Hierdurch ist die Zelle mit FasR in der Lage die Expression des Zielgens zu blockieren und eine Anlagerung der RNA-Polymerase zu unterbinden (Ramos et al., 2005). Obwohl die FasR-Bindestelle 80 bp stromaufwärts des fasB-Transkriptionsstartpunkts liegt, wurde gezeigt, dass FasR als Repressor fungiert. Somit ist anzunehmen, dass FasR mit einer Untereinheit des an den Promotor gebundenen RNA-Polymerase Komplexes interagiert, wodurch es zur Ablösung der RNA-Polymerase vom Promotor kommt, wie es beim Repressionsmodel II der Transkriptionsregulatoren der IclR-Familie der Fall ist (Molina-Henares et al., 2005). Bei accBC passen Lage der FasR-Bindestelle und Funktion als Aktivator überein, denn hier bindet FasR ca. 40 bp stromaufwärts vom Transkriptionsstartpunkt und wird demnach die

Interaktion der RNA-Polymerase mit der DNA erleichtern, wie es für Transkriptionsaktivatoren bereits belegt wurde (Babu und Teichmann, 2003; Muhl et al., 2009).

<u>Abb. 31:</u> Bindestellen von FasR und weiteren möglichen Regulatoren in den Promotorregionen der vier FasR-Zielgene inkl. der Position der Bindestelle bezogen auf das Startcodon. Der Transkriptionsstartpunkt ist per Pfeil und die Position bezogen zum Startcodon gekennzeichnet.

Mit Hilfe der MEME-Software konnte ein FasR-Bindemotiv aus den vier eingeengten FasR-Bindestellen ermittelt werden. Das FasR-Bindemotiv besteht aus insgesamt 24 Basen, das von zwei jeweils acht Basen-langen ,inverted repeats' begrenzt wird, die ihrerseits durch einen Bereich von acht Basen voneinander getrennt sind. Hierbei handelt es sich um ein sehr langes Bindemotiv der Form 8-8-8, denn bei den meisten TetR-Regulatoren ist das Bindemotiv weitaus kürzer mit Längen von 14 bis 16 Basen (Krug et al., 2005; Beckers et al., 2005; Ramos et al., 2005; Rey et al., 2005). Der TetR-Regulator AcnR aus *C. glutamicum* weist ein Bindemotiv der Form 6-4-6 auf (Krug et al., 2005), AmtR hingegen bindet an die sogenannte AmtR-Box der Form 4-6-4 mit zwei palindromischen Motiven (Jakoby et al., 2000; Beckers et al., 2005; Buchinger et al., 2009; Hasselt et al., 2009) und McbR interagiert ebenfalls mit

einem palindromischen Motiv der Form 5-6-5 (Rey et al., 2003; Rey et al., 2005). Bei den beiden TetR-Regulatoren AmtR und McbR konnte gezeigt werden, dass der Regulator bei Anwesenheit des Effektors GlnK bzw. S-Adenosylhomocystein nicht mehr bindet (Jakoby et al., 2000; Buchinger et al., 2009; Rey et al., 2003). Ein derartiger Effektor wurde für FasR unter den analysierten Substanzen nicht identifiziert.

Eine Mutationsanalyse der FasR-Bindestelle vor accD1 sollte zeigen, ob die Veränderungen des Zielmotivs durch Basenaustausche einen Effekt auf die Affinität von FasR zur Bindestelle hat. Zwar ist die FasR-Bindestelle nicht hochkonserviert jedoch führt jede Veränderung innerhalb der ,inverted repeats' zu einem Verlust der FasR-Bindung, wie es vergleichbar bei dem Regulator RipA nachgewiesen worden ist (Wennerhold et al., 2005). Dort führt ein Austausch innerhalb der ,inverted repeats' immer zu einem Verlust der Bindung, wohingegen ein Austausch im Bereich zwischen den ,inverted repeats' ohne Folgen war. Auch bei GntR1/2 führt nahezu jeder Triplettaustausch im Bindemotiv zum Verlust der Bindung (Frunzke et al., 2007), wobei das GntR1/2 Bindemotiv im Vergleich zum FasR-Bindemotiv keine ,inverted repeats' aufweist. Darüber hinaus führte keine Mutation zu einer höheren Affinität von FasR zum Bindemotiv, wie es für den Regulator PhoR in C. glutamicum der Fall war (Schaaf und Bott, 2007). Aufgrund des großen Bindemotivs waren einzelne Basenaustausche nicht so gravierend für das Bindungsverhalten von FasR wie es bei anderen Regulatoren der Fall war, so dass einzelne Bereiche variabel sind, wenn die benachbarten Bereiche im ,inverted repeat' unverändert bleiben. Eine Verkleinerung des Abstandes zwischen den ,inverted repeat' um drei oder sechs Basen führte zum Verlust der FasR-Bindung. Die Relevanz des Abstandes wurde auch bei dem Regulator AmtR gezeigt, wo bereits eine Verkürzung um eine Base zum Verlust der Bindung führte (Muhl et al., 2009). Ein Grund hierfür liegt im Aufbau von TetR-Regulatoren, die meistens als Dimere an die DNA binden (Ramos et al., 2005), wie im Falle von AmtR und FasR. Durch die Verkleinerung des Abstandes kann eine Untereinheit des Dimers nicht mehr an den jeweiligen ,inverted repeat' binden, was die Bindung vollständig unterbindet. Die Berechnung der nativen Größe von FasR wurde lediglich mit der 1,5-fachen Masse des Monomers ermittelt was an der sehr kompakten Konformation des FasR-Dimers liegt (Asenjo und Andrews, 2008).

101

Somit ergibt sich ein sehr detailliertes Bild zur Funktion des bislang unbekannten Regulators FasR und seiner Zielgene (Abbildung 32). FasR ist ein Regulator des TetR-Typs, der wesentliche Gene der Lipidsynthese kontrolliert. Dies sind *accD1*, *accBC*, *fasA* und *fasB*, die für die Funktion der Acetyl-CoA Carboxylase, bzw. für die zwei Fettsäuresynthasen kodieren. Die Gene *accD1*, *fasA* und *fasB* werden gegenüber Glucose in Acetat reprimiert. Obwohl diese Beobachtung mit den derzeit vorliegenden Ergebnisse nicht erklärt werden kann, ist dieser Effekt spezifisch für Acetat und resultiert wahrscheinlich aus der erhöhten Acetyl-CoA Konzentration.

Weder Acetyl-CoA noch andere Effektoren wie der Grundbaustein für die Fettsäuresynthese Malonyl-CoA, der in *B. subtilis* als Effektor von FapR fungiert (Schujman et al., 2006), konnten das Bindeverhalten von FasR beeinflussen.

Eventuell handelt es sich bei dem Effektor um ein längerkettiges Fettsäurederivat wie es bereits für den Regulator FabR aus E. coli gezeigt wurde (Zhu et al., 2009; Fujita et al., 2007). Es kommt auch in Betracht, dass ein an der Fettsäure- oder Mykolsäuresynthese beteiligtes Protein, welches nicht mit Fettsäurevorstufen beladen ist, der Effektor ist, wie es für das nichtadenylierte Protein GlnK und AmtR in C. glutamicum nachgewiesen wurde (Muhl et al., 2009; Beckers et al., 2005; Burkovski, 2007). In Anbetracht der Tatsache, dass FasR aus in Acetat-gewachsenen Zellen isoliert wurde und unter diesen Bedingungen eine erhöhte Acetyl-CoA Konzentration in C. glutamicum vorherrscht (Wendisch et al., 1997), könnte auch ein Acyl-CoA Derivat als Effektor fungieren. Eine weitere Möglichkeit ist die Interaktion mit einem zweiten Protein, so dass FasR nicht mehr als Repressor, sondern als Aktivator agiert, wie im Falle des TetR-Regulators DhaQ in Lactococcus lactis (Christen et al., 2006). Der Regulator EthR in M. tuberculosis weist eine hohe Homologie zu FasR auf und konnte in Kristallisationsexperimenten zusammen mit Hexadecyloctanoat kristallisiert werden (Frenois et al., 2006), so dass die Identifizierung des Effektors mitunter langwierig sein könnte, da eine Vielzahl an möglichen Effektoren in Frage kommt.

Neben der Identifikation der vier Zielgene gelang es aber ein sehr stark konserviertes DNA-Bindemotiv zu identifizieren. Dessen Lage zum Transkriptionsstart stimmt mit einer Repression von *accD1*, *fasA*, und *fasB*

überein, sowie einer möglichen Aktivierung von *accBC*. Hier könnten *in vitro* Transkriptionsstudien zeigen, ob tatsächlich eine Aktivierung erfolgt.

Abb. 32 Modell zur FasR-abhängigen Regulation in C. glutamicum

Oben ist die Situation auf Acetat wiedergegeben, wenn FasR an die Zielgene bindet und sie reprimiert (Repression in rot = $-\frac{1}{2}$). Unten ist der Fall für Glucose gezeigt, wenn der Effektor von FasR mit dem Regulator interagiert, FasR nicht mehr an die Zielgene binden kann und die Expression der Gene erhöht ist (Aktivierung in grün = \rightarrow). Erhöhte Pools bzw. Enzyme mit höherer Aktivität sind grün hinterlegt. Gene mit unveränderter Expression sind in schwarz (\rightarrow) dargestellt.

Die Gene *accD1*, *accD2* und *accD3* kodieren für β -Untereinheiten der Acyl-CoA Carboxylasen und die Gene *fasA* und *fasB* kodieren für Fettsäuresynthasen. Bei AccBC und AccE handelt es sich um Untereinheiten der Acyl-CoA Carboxylasen: AccBC = Biotincarboxylcarrierprotein, AccE = ϵ -Untereinheit.

V. Zusammenfassung

Die Acyl-CoA Carboxylasen und Fettsäuresynthasen sind an essentiellen Reaktionen der Fettsäure- und Mykolsäuresynthese beteiligt. In vorherigen Analysen wurde gezeigt, dass die Lipidbeschaffenheit von *C. glutamicum* einen Einfluss auf die Aminosäureproduktion hat und somit ist die Aufklärung der Fettsäuresynthese-Regulation von großem Interesse. Für *E. coli, B. subtilis* und *S. pneumoniae* wurden bereits globale Regulatoren der Fettsäuresynthese identifiziert. Im Falle von *C. glutamicum* lagen hingegen bisher nur Indizien vor, dass die Fettsäuresynthese in Abhängigkeit der eingesetzten Kohlenstoffquelle reguliert wird.

Ziel dieser Arbeit war die Untersuchung der Lipidsyntheseregulation in *C. glutamicum*, um Informationen zu Regulatoren und deren Zielgenen zu bekommen. Hierbei stand die Acetyl-CoA Carboxylase, die den initialen Schritt der Fettsäuresynthese, die Synthese von Malonyl-CoA, katalysiert im Fokus. Es konnten folgende Ergebnisse gewonnen werden:

- Nur die Expression des Gens *accD1*, das f
 ür die β-Untereinheit der Acetyl-CoA Carboxylase kodiert, war bei Wachstum auf Acetat reprimiert, nicht aber auf Glucose. Die Anwesenheit von Oleat reprimierte ebenfalls nur die *accD1*-Expression bei Wachstum auf Glucose.
- Insgesamt konnten acht Regulatoren identifiziert werden, die an die Promotorregion von *accD1* binden. Darunter vertreten waren die globalen Regulatoren GlxR, RamA und SugR, sowie der bislang unbekannte durch NCgl2404 kodierte Regulator FasR.
- 3. Die Deletion von *fasR* verursachte einen signifikanten Wachstumsdefekt. Transkriptomanalysen ergaben bei der Deletionsmutante eine stark veränderte Expression von Fettsäuresynthesegenen bei Anzucht auf Acetat. Die Expression des Acetyl-CoA Carboxylasegens *accD1* war etwa 7-fach erhöht, und die der beiden Fettsäuresynthasegene *fasA* und *fasB* etwa 3-fach, was auf eine Repression durch FasR hinweist.
- 4. Durch Gelretardationsstudien konnten FasR-Bindestellen in den Promotorregionen von *accD1*, *accBC*, *fasA* und *fasB* ermittelt werden. Zudem konnte hieraus ein stark konserviertes Konsensusmotiv abgeleitet werden.

Durch diese Arbeiten gelang es Einblicke in die Regulation der Lipidsynthese von *C. glutamicum* zu bekommen.

VI. Abstract

The acyl-CoA-carboxylases and fatty acid synthases are involved in essential reactions of the fatty acid and mycolic acid synthesis. Previous studies revealed, that the membrane state can be involved in the triggering of amino acid overproduction and understanding of fatty acid synthesis and regulation is therefore an aspect of interest. In *E. coli*, *B. subtilis* and *S. pneumoniae*, the global regulators of fatty acid synthesis are identified. In the case of *C. glutamicum*, there is only evidence, that the fatty acid synthesis regulation is influenced by the used carbon source.

The aim of this work was the analysis of lipid synthesis regulation in *C. glutamicum*, to identify and characterize the involved regulators and their target genes. The first dedicated step in fatty acid synthesis, the formation of malonyl-CoA, has priority and is catalyzed by the acetyl-CoA-carboxylase. The following results are obtained:

- Only the expression of *accD1*, the β-subunit of the acetyl-CoA-carboxylase, was repressed during growth on acetate but not during growth on glucose or other carbon sources. The expression of *accD1* was also repressed during growth on glucose in presence of oleate.
- Eight regulators were identified, which bind to the promoter region of *accD1*. Among these were the global regulators GlxR, RamA and SugR as well as the so far unknown regulator FasR, encoded by NCgl2404.
- 3. The *fasR* deletion caused a significant growth defect. The transcriptional analysis of the deletion mutant during growth on acetate revealed a generally altered expression of genes involved in fatty acid synthesis. A 7-fold increased expression of the acetyl-CoA-carboxylase gene *accD1* was determined, and a 3-fold increased expression of the fatty acid synthase genes *fasA* and *fasB*. This points to a repression of these genes by FasR.
- 4. The FasR binding site was identified in the promoter regions of *accD1*, *accBC*, *fasA* and *fasB* via gel retardation experiments. Furthermore a strong conserved binding motif of FasR was derived from these four binding sites.

This work revealed insights in the regulation of lipid synthesis in C. glutamicum.

VII. Literaturverzeichnis

Abe H, Goto S, Shinozaki K, Kuwahara S (1967). Transmission of multiple drug-resistance from *Shigella* to *Aeromonas* and non-agglutinable *Vibrio* through conjugation. *J Antibiot.* **20(2):** 120-5.

Alderwick LJ, Radmacher E, Seidel M, Gande R, Hitchen PG, Morris HR, Dell A, Sahm H, Eggeling L, Besra GS (2005). Deletion of *Cg-emb* in *corynebacterianeae* leads to a novel truncated cell wall arabinogalactan, whereas inactivation of *Cg-ubiA* results in an arabinan-deficient mutant with a cell wall galactan core. *J Biol Chem.* **280(37)**: 32362-71.

Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF (2001). The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution. *Nat Struct Biol.* **8(8):** 710-4.

Amos H, Kuhn A, Andre-Schwartz J (1967). Protein synthesis in sonically damaged *Escherichia coli*. *J Bacteriol*. 94(1): 232-40.

Asenjo JA and Andrews BA (2009). Protein purification using chromatography: selection of type, modelling and optimization of operating conditions. *J Mol Recognit.* **22(2):** 65-76.

Babu M, Teichmann SA, Aravind L (2006). Evolutionary dynamics of prokaryotic transcriptional regulatory networks. *J Mol Biol.* **358:** 614-33.

Bailey TL, Williams N, Misleh C, Li WW (2006). MEME: discovering and analyzing DNA and protein sequence motifs. *Nucleic Acids Res* **34**: 369-73.

Beckers G, Strösser J, Hildebrandt U, Kalinowski J, Farwick M, Krämer R, Burkovski A (2005). Regulation of AmtR-controlled gene expression in *Corynebacterium glutamicum*: mechanism and characterization of the AmtR regulon. *Mol Microbiol.* **58(2)**: 580-95.

Bekker M, Teixeira de Mattos MJ, Hellingwerf KJ (2006). The role of twocomponent regulation systems in the physiology of the bacterial cell. *Sci Prog.* **89**: 213-42.

Berstein LM, Larionov AA, Poroshina TE, Zimarina TS, Leenman EE (2002). Aromatase (CYP19) expression in tumor-infiltrating lymphocytes and blood mononuclears. *J Cancer Res Clin Oncol.* **128(3):** 173-6.

Bertani G (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic *Escherichia coli*. *J Bacteriol*. **62(3)**: 293-300.

Bhatt A, Molle V, Besra GS, Jacobs WR. Jr, Kremer L (2007). The *Mycobacterium tuberculosis* FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. *Mol Microbiol.* **64:** 1442-54.

Birnboim HC, Doly J (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res.* **7(6):** 1513-23.

Botella L, Lindley ND, Eggeling L (2009). Formation and metabolism of methylmalonyl coenzyme A in *Corynebacterium glutamicum*. *J Bacteriol*. **191(8):** 2899-901.

Brinkrolf K, Brune I, Tauch A (2007). The transcriptional regulatory network of the amino acid producer *Corynebacterium glutamicum*. *J Biotechnol*. **129(2)**: 191-211.

Brinkrolf K, Schröder J, Pühler A, Tauch A (2009). The transcriptional regulatory repertoire of *Corynebacterium glutamicum*: reconstruction of the network controlling pathways involved in lysine and glutamate production. *J Biotechnol.* doi:10.1016/j.jbiotec.2009.12.004

Brocker M and Bott M (2006). Evidence for activator and repressor functions of the response regulator MtrA from *Corynebacterium glutamicum*. *FEMS Microbiol Lett.* **264(2):** 205-12.

Buchinger S, Strösser J, Rehm N, Hänssler E, Hans S, Bathe B, Schomburg D, Krämer R, Burkovski A (2009). A combination of metabolome and transcriptome analyses reveals new targets of the *Corynebacterium glutamicum* nitrogen regulator AmtR. *J Biotechnol.* **140(1-2):** 68-74.

Burkovski A (2007). Nitrogen control in *Corynebacterium glutamicum*: proteins, mechanisms, signals. *J Microbiol Biotechnol.* **17(2):** 187-94.

Butala M, Zgur-Bertok D, Busby SJ (2009). The bacterial LexA transcriptional repressor. *Cell Mol Life Sci.* 66: 82-93.

Campbell JW and Cronan JE Jr (2001). *Escherichia coli* FadR positively regulates transcription of the *fabB* fatty acid biosynthetic gene. *J Bacteriol.* **183(20):** 5982-90.

Chapman-Smith A and Cronan JE Jr (1999). In vivo enzymatic protein biotinylation. *Biomol Eng.* **16(1-4):** 119-25.

Chapman-Smith A and Cronan JE Jr (1999). Molecular biology of biotin attachment to proteins. *J Nutr.* **129(2S Suppl):** 477S-484S.

Chomczynski P and Sacchi N (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Anal Biochem.* **162(1):** 156-9.

Christen S, Srinivas A, Bähler P, Zeller A, Pridmore D, Bieniossek C, Baumann U, Erni B (2006). Regulation of the *Dha* operon of *Lactococcus lactis*: a deviation from the rule followed by the Tetr family of transcription regulators. *J Biol Chem.* **281**: 23129-37.

Clauser KR, Baker P, Burlingame AL (1999). Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. *Anal Chem.* **71(14):** 2871-82.

Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998). Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence. *Nature*. **393**: 537-44.

Collins CH, Yates MD, Down GF (1981). False positive direct films in tuberculosis bacteriology. *Med Lab Sci.* 38(2): 129-31.

Cramer A and Eikmanns BJ (2007). RamA, the Transcriptional Regulator of Acetate Metabolism in *Corynebacterium glutamicum*, Is Subject to Negative Autoregulation. *J Mol Microbiol Biotechnol* **12(1-2)**: 51-9.

Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ (2006). Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of *Corynebacterium glutamicum*. *J Bacteriol*. **188(7):** 2554-67.

Cronan JE Jr (1997). In vivo evidence that acyl coenzyme A regulates DNA binding by the *Escherichia coli* FadR global transcription factor. *J Bacteriol.* **179(5):** 1819-23.

Cronan JE Jr (2001). The biotinyl domain of *Escherichia coli* acetyl-CoA carboxylase. Evidence that the "thumb" structure is essential and that the domain functions as a dimer. *J Biol Chem.* **276(40):** 37355-64.

Cronan JE Jr and Rock CO (1996). Biosynthesis of membrane lipids. In *Escherichia coli* and *Salmonella*: Cellular and Molecular Biology, pp. 612–36. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.

Cronan JE Jr and Waldrop GL (2002). Multi-subunit acetyl-CoA carboxylases. *Prog Lipid Res.* **41(5):** 407-35.

Cronan JE Jr and Waldrop GL (2002). Multi-subunit acetyl-CoA carboxylases. *Prog Lipid Res.* **41(5):** 407-35.

Crooks GE, Hon G, Chandonia JM, Brenner SE (2004). WebLogo: A Sequence Logo Generator. *Genome Res* 14(6): 1188-90.

Daffé M and Etienne G (1999). The capsule of *Mycobacterium tuberculosis* and its implications for pathogenicity. *Tuber Lung Dis.* **79:** 153-69.

Davis MS and Cronan JE Jr (2001). Inhibition of *Escherichia coli* acetyl coenzyme A carboxylase by acyl-acyl carrier protein. *J Bacteriol.* **183(4):** 1499-503.

Davis MS, Solbiati J, Cronan JE Jr (2000). Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in *Escherichia coli. J Biol Chem.* **275(37):** 28593-8.

de la Paz Santangelo M, Klepp L, Nuñez-García J, Blanco FC, Soria M, García-Pelayo MC, Bianco MV, Cataldi AA, Golby P, Jackson M, Gordon SV, Bigi F (2009). Mce3R, a TetR-type transcriptional repressor, controls the expression of a regulon involved in lipid metabolism in *Mycobacterium tuberculosis*. *Microbiology*. **155(Pt 7)**: 2245-55.

Diesveld R, Tietze N, Fürst O, Reth A, Bathe B, Sahm H, Eggeling L (2009). Activity of exporters of *Escherichia coli* in *Corynebacterium glutamicum*, and their use to increase L-threonine production. *J Mol Microbiol Biotechnol.* **16(3-4):** 198-207.

Duperray F, Jezequel D, Ghazi A, Letellier L, Shechter E (1992). Excretion of glutamate from *Corynebacterium glutamicum* triggered by amine surfactants. *Biochim Biophys Acta.* **1103(2):** 250-8.

Eggeling L and Bott M (eds) (2005). Handbook of *Corynebacterium glutamicum*. CRC Press, Inc., Boca Raton, FL.

Eggeling L and Sahm H (1999). L-Glutamate and L-lysine: traditional products with

Eggeling L, Krumbach K, Sahm H (2001). L-glutamate efflux with *Corynebacterium glutamicum*: why is penicillin treatment or Tween addition doing the same?. *J Mol Microbiol Biotechnol.* **3(1):** 67-8.

Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991). A family of *Corynebacterium glutamicum/Escherichia coli* shuttle vectors for cloning, controlled gene expression, and promoter probing. *Gene.* **102:** 93-8.

Emer D, Krug A, Eikmanns BJ, Bott M (2009). Complex expression control of the *Corynebacterium glutamicum* aconitase gene: identification of RamA as a third transcriptional regulator besides AcnR and RipA. *J Biotechnol.* **140(1-2):** 92-8.

Emer D, Krug A, Eikmanns BJ, Bott M (2009). Complex expression control of the *Corynebacterium glutamicum* aconitase gene: identification of RamA as a third transcriptional regulator besides AcnR and RipA. *J Biotechnol.* **140(1-2):** 92-8.

Engels V and Wendisch VF (2007). The DeoR-type regulator SugR represses expression of *ptsG* in *Corynebacterium glutamicum*. J Bacteriol **189(8)**: 2955-66

Engels V, Lindner SN, Wendisch VF (2008). The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in *Corynebacterium glutamicum*. *J Bacteriol*. **190(24):** 8033-44.

Erill I, Campoy S, Barbé J (2007). Aeons of distress: an evolutionary perspective on the bacterial SOS response. *FEMS Microbiol Rev.* **31(6):** 637-56.

Faergeman NJ, Knudsen J (1997). Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. *Biochem J.* **323(Pt 1):** 1-12.

Freiberg C, Brunner NA, Schiffer G, Lampe T, Pohlmann J, Brands M, Raabe M, Häbich D, Ziegelbauer K (2004). Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. *J Biol Chem.* **279(25):** 26066-73.

Frénois F, Baulard AR, Villeret V (2006). Insights into mechanisms of induction and ligands recognition in the transcriptional repressor EthR from *Mycobacterium tuberculosis. Tuberculosis.* **86(2):** 110-4.

Friedberg EC (2005). Suffering in silence: the tolerance of DNA damage. *Nat rev Mol Cell Biol.* 6(12): 943-53.

Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M (2008). Co-ordinated regulation of gluconate catabolism and glucose uptake in *Corynebacterium glutamicum* by two functionally equivalent transcriptional regulators, GntR1 and GntR2. *Mol Microbiol.* **67(2):** 305-22.

Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M (2008). Co-ordinated regulation of gluconate catabolism and glucose uptake in *Corynebacterium glutamicum* by two functionally equivalent transcriptional regulators, GntR1 and GntR2. *Mol Microbiol.* **67(2):** 305-22.

Fujita T, Toda T, Ohashi M (1986). Enzyme-linked immunodetection of proteins on Coomassie blue-stained two-dimensional cellulose acetate membranes. *Anal Biochem.* **159(1):** 8-11.

Fujita Y, Matsuoka H, Hirooka K (2007). Regulation of fatty acid metabolism in bacteria. *Mol Microbiol.* **66:** 829-39.

Gabrielsen OS, Hornes E, Korsnes L, Ruet A, Oyen TB (1989). Magnetic DNA affinity purification of yeast transcription factor tau--a new purification principle for the ultrarapid isolation of near homogeneous factor. *Nucleic Acids Res.* **17(15):** 6253-67.

Gadgil H, Oak SA, Jarrett HW (2001). Affinity purification of DNA-binding proteins. *J Biochem Biophys Methods*. **49(1-3):** 607-24.

Gande R, Dover LG, Krumbach K, Besra GS, Sahm H, Oikawa T, Eggeling L (2007). The two carboxylases of *Corynebacterium glutamicum* essential for fatty acid and mycolic acid synthesis. *J Bacteriol.* **189:** 5257-64.

Gande R, Gibson KJ, Brown AK, Krumbach K, Dover LG, Sahm H, Shioyama S, Oikawa T, Besra GS, Eggeling L (2004). Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in *Corynebacterianeae* such as *Corynebacterium glutamicum* and *Mycobacterium tuberculosis*. *J Biol Chem.* **279(43):** 44847-57.

Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003). Acetate metabolism and its regulation in *Corynebacterium glutamicum. J Biotechnol.* **104(1-3):** 99-122.

Glickman MS and Jacobs WR Jr (2001). Microbial pathogenesis of *Mycobacterium tuberculosis*: dawn of a discipline. *Cell.* **104(4):** 477-85.

Grandvalet C, Assad-García JS, Chu-Ky S, Tollot M, Guzzo J, Gresti J, Tourdot-Maréchal R (2008). Changes in membrane lipid composition in ethanol- and acid-adapted *Oenococcus oen*i cells: characterization of the *cfa* gene by heterologous complementation. *Microbiology*. **154(Pt 9)**: 2611-9.

Grossmann C, Tintinger R, Zhu J, Maurer GM (1998). Partitioning of low molecular combination peptides in aqueous two-phase systems of poly(ethylene glycol) and dextran in the presence of small amounts of K2HPO4/KH2PO4 buffer at 293 K: experimental results and predictions. *Biotechnol Bioeng.* **60(6)**: 699-711.

Hanahan D (1983). Studies on transformation of *Escherichia coli* with plasmids. *J Mol Biol.* 166(4): 557-80.

Harvey DJ, Naven TJ, Küster B (1996). Identification of oligosaccharides by matrix-assisted laser desorption ionization and electrospray MS. *Biochem Soc Trans.* **24(3):** 905-12.

Hasselt K, Sevvana M, Burkovski A, Muller YA (2009). Crystallization and preliminary crystallographic analysis of the global nitrogen regulator AmtR from *Corynebacterium glutamicum*. *Acta Crytallogr Sect F Struct Biol Cryst Commun.* **65(Pt 11):** 1123-7.

Haydon DJ and Guest JR (1991). A new family of bacterial regulatory proteins. *FEMS Microbiol Lett.* 63(2-3): 291-5.

Heath RJ and Rock CO (1996). Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in *Escherichia coli*. *J Biol Chem.* **271(4)**: 1833-6.

Henry MF and Cronan JE Jr (1991). *Escherichia coli* transcription factor that both activates fatty acid synthesis and represses fatty acid degradation. *J Mol Biol.* 222: 843-9.

Hochuli E (1988). Large-scale chromatography of recombinant protein. *J Chromatogr.* **444:** 293-302.

Hoischen C and Krämer R (1990). Membrane alteration is necessary but not sufficient for effective glutamate secretion in *Corynebacterium glutamicum*. *J Bacteriol.* **172(6):** 3409-16.

Holm C, Meeks-Wagner DW, Fangman WL, Botstein D (1986). A rapid, efficient method for isolating DNA from yeast. *Gene.* **42(2):** 169-73.

Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A (2003). Development of a *Corynebacterium glutamicum* DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source. *J Biotechnol.* **106(2-3)**:269-86.

impetuous developments. 52: 146-53.

Jäger W, Schäfer A, Pühler A, Labes G, Wohlleben W (1992). Expression of the *Bacillus subtilis sacB* gene leads to sucrose sensitivity in the gram-positive bacterium *Corynebacterium glutamicum* but not in *Streptomyces lividan*. *J Bacteriol*. **174(16)**: 5462-5.

Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A (2000). AmtR, a global repressor in the nitrogen regulation system of *Corynebacterium glutamicum*. *Mol Microbiol*. **37(4)**: 964-77.

James ES and Cronan JE (2004). Expression of two *Escherichia coli* acetyl-CoA carboxylase subunits is autoregulated. *J Biol Chem.* **279(4):** 2520-7.

Jang HK, Niikura M, Song CS, Mikami T (1992). Characterization and expression of the Marek's disease virus serotype 2 glycoprotein E in recombinant baculovirus-infected cells: initial analysis of its DNA sequence and antigenic properties. *Virus Res.* **48(2):** 111-23.

Janknecht R, de Martynoff G, Lou J, Hipskind RA, Nordheim A, Stunnenberg HG (1991). Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. *Proc Natl Acad Sci U S A.* 88(20): 8972-6.

Jiang D, Jarrett HW, Haskins WE (2009). Methods for proteomic analysis of transcription factors. *J Chromatogr A.* **1216(41)**: 6881-9.

Jochmann N, Kurze AK, Czaja LF, Brinkrolf K, Brune I, Hüser AT, Hansmeier N, Pühler A, Borovok I, Tauch A (2009). Genetic makeup of the *Corynebacterium glutamicum* LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. *Microbiology*. **155(Pt 5)**: 1459-77.

Jungwirth B, Emer D, Brune I, Hansmeier N, Pühler A, Eikmanns BJ, Tauch A (2008). Triple transcriptional control of the resuscitation promoting factor 2 (*rpf2*) gene of *Corynebacterium glutamicum* by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. *FEMS Microbiol Lett.* **281(2):** 190-7.

Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003). The complete *Corynebacterium glutamicum* ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. *J Biotechnol.* **104**: 5-25.

Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003). The complete *Corynebacterium glutamicum*

ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. *J Biotechnol.* **104(1-3):** 5-25.

Kaneda T (1977). Fatty acids of the genus *Bacillus*: an example of branchedchain preference. *Bacteriol Rev.* **41(2):** 391-418.

Keilhauer C, Eggeling L, Sahm H (1993). Isoleucine synthesis in *Corynebacterium glutamicum*: molecular analysis of the *ilvB-ilvN-ilvC* operon. *J Bacteriol.* **175(17):** 5595-603.

Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS, Stoker NG (2007). A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in *Mycobacterium smegmatis* and *Mycobacterium tuberculosis*. *Mol Microbiol*. **65(3)**: 684-99

Khodursky AB, Bernstein JA, Peter BJ, Rhodius V, Wendisch VF, Zimmer DP (2003). *Escherichia coli* spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management. *Methods Mol Biol.* **224:** 61-78.

Kim HJ, Kim TH, Kim Y, Lee HS (2004). Identification and characterization of *glxR*, a gene involved in regulation of glyoxylate bypass in *Corynebacterium glutamicum*. *J Bacteriol.* **186(11):** 3453-60.

Kimura E (2002). Triggering mechanism of L-glutamate overproduction by DtsR1 in coryneform bacteria. *J Biosci Bioeng.* **94(6):** 545-51.

Kimura E, Abe C, Kawahara Y, Nakamatsu T, Tokuda H (1997). A *dtsR* gene-disrupted mutant of *Brevibacterium lactofermentum* requires fatty acids for growth and efficiently produces L-glutamate in the presence of an excess of biotin. *Biochem Biophys Res Commun.* **234(1):** 157-61.

Kinoshita S, Udaka S, Shimono M (1957). Studies on the amino acid fermentation. Production of L-glutamate by various microorganisms. *J Gen Appl Microbiol.* **3:** 193-205.

Kohl TA and Tauch A (2009). The GlxR regulon of the amino acid producer *Corynebacterium glutamicum*: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. *J Biotechnol.* **143(4):** 239-46.

Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A (2008). The GlxR regulon of the amino acid producer *Corynebacterium glutamicum*: in silico and in vitro detection of DNA binding sites of a global transcription regulator. *J Biotechnol.* **135(4)**: 340-50.

Kolar K, Faure U, Torelm I, Finglas P (1993). An intercomparison of methods for the determination of total fat in a meat reference material. *Fresenius J Anal Chem.* **347:** 393-5.

Krebs EG and Beavo JA (1979). Phosphorylation-dephosphorylation of enzymes. *Annu Rev Biochem.* 48: 923-59.

Krug A, Wendisch VF, Bott M (2005). Identification of AcnR, a TetR-type repressor of the aconitase gene *acn* in *Corynebacterium glutamicum*. *J Biol Chem.* **280(1):** 585-95.

Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*. **227(5259):** 680-5.

Letek M, Valbuena N, Ramos A, Ordóñez E, Gil JA, Mateos LM (2006). Characterization and use of catabolite-repressed promoters from gluconate genes in *Corynebacterium glutamicum*. *J Bacteriol*. **188(2)**: 409-23.

Leuchtenberger W, Huthmacher K, Drauz K (2005). Biotechnological production of amino acids and derivatives: current status and prospects. *Appl Microbiol Biotechnol.* **69(1):** 1-8.

Lewis GP, McMartin C, Yates C (1970). An amino-acid receptor in the guineapig ileum. *Br J Pharmacol.* **39(1):** 213P-214P.

Li SJ and Cronan JE Jr (1992). The genes encoding the two carboxyltransferase subunits of *Escherichia coli* acetyl-CoA carboxylase. *J Biol Chem.* **267(24):** 16841-7.

Li SJ and Cronan JE Jr (1993). Growth rate regulation of *Escherichia coli* acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis. *J Bacteriol.* **175:** 332-40.

Li SJ, Rock CO, Cronan JE JrLewis GP, McMartin C, Yates C (1970). The *dedB* (usg) open reading frame of *Escherichia coli* encodes a subunit of acetyl-coenzyme A carboxylase. *J Bacteriol.* **174(17):** 5755-7.

Lilley DM, Bhattacharyya A, McAteer SP, Duckett DR (1993). Gel electrophoretic analysis of the structure of nucleic acids. *Biochem Soc Trans.* **21(1):** 111-6.

Link AJ, Phillips D, Church GM (1997). Methods for generating precise deletions and insertions in the genome of wild-type *Escherichia coli*: application to open reading frame characterization. *J Bacteriol.* **179(20)**: 6228-37.

Lu YJ and Rock CO (2006). Transcriptional regulation of fatty acid biosynthesis in *Streptococcus pneumoniae*. *Mol Microbiol*. **59(2)**: 551-66.

Maddocks SE and Oyston PC (2008). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. *Microbiology.* **154(Pt 12):** 3609-23.

Maier T, Leibundgut M, Ban N (2008). The crystal structure of a mammalian fatty acid synthase. *Science*. **321(5894):** 1315-22.

Malumbres M, Mateos LM, Guerrero C, Martín JF (1995). Molecular cloning of the *hom-thrC-thrB* cluster from *Bacillus* sp. ULM1: expression of the *thrC* gene in *Escherichia coli* and *corynebacteria*, and evolutionary relationships of the threonine genes. *Folia Microbiol.* **40(6):** 595-606.

Matsuoka H, Hirooka K, Fujita Y (2007). Organization and function of the YsiA regulon of *Bacillus subtilis* involved in fatty acid degradation. *J Biol Chem* **282(8)**: 5180-94.

Menkel E, Thierbach G, Eggeling L, Sahm H (1989). Influence of increased aspartate availability on lysine formation by a recombinant strain of *Corynebacterium glutamicum* and utilization of fumarate. *Appl Environ Microbiol.* **55(3):** 684-8.

Minnikin DE, Minnikin SM, Parlett JH, Goodfellow M, Magnusson M (1984). Mycolic acid patterns of some species of *Mycobacterium*. *Arch Microbiol*. **139(2-3)**: 225-31.

Mitra D, Saha B, Das D, Wiker HG, Das AK (2005). Correlating sequential homology of Mce1A, Mce2A, Mce3A and Mce4A with their possible functions in mammalian cell entry of *Mycobacterium tuberculosis* performing homology modeling. *Tuberculosis (Edinb).* **85:** 337-45.

Möker N, Brocker M, Schaffer S, Krämer R, Morbach S, Bott M (2004). Deletion of the genes encoding the MtrA-MtrB two-component system of *Corynebacterium glutamicum* has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. *Mol Microbiol.* **54**: 420-438.

Molina-Henares AJ, Krell T, Eugenia Guazzaroni M, Segura A, Ramos JL (2006). Members of the IcIR family of bacterial transcriptional regulators function as activators and/or repressors. *FEMS Microbiol Rev.* **30(2)**: 157-86.

Muffler A, Bettermann S, Haushalter M, Hörlein A, Neveling U, Schramm M, Sorgenfrei O (2002). Genome-wide transcription profiling of *Corynebacterium glutamicum* after heat shock and during growth on acetate and glucose. *J Biotechnol.* **98(2-3):** 255-68.

Muhl D, Jessberger N, Hasselt K, Jardin C, Sticht H, Burkovski A (2009). DNA binding by *Corynebacterium glutamicum* TetR-type transcription regulator AmtR. *BMC Mol Biol.* **10:** 73.

Mullis KB and Faloona FA (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. *Methods Enzymol.* **155:** 335-50.

Nakamura R, Takeuchi R, Kuramochi K, Mizushina Y, Ishimaru C, Takakusagi Y, Takemura M, Kobayashi S, Yoshida H, Sugawara F, Sakaguchi K (2007). Chemical properties of fatty acid derivatives as inhibitors of DNA polymerases. *Org Biomol Chem.* **5(24):** 3912-21.

Nampoothiri KM, Hoischen C, Bathe B, Möckel B, Pfefferle W, Krumbach K, Sahm H, Eggeling L (2002). Expression of genes of lipid synthesis and altered lipid composition modulates L-glutamate efflux of *Corynebacterium glutamicum*. *Appl Microbiol Biotechnol.* **58(1):** 89-96.

Nentwich SS, Brinkrolf K, Gaigalat L, Hüser AT, Rey DA, Mohrbach T, Marin K, Pühler A, Tauch A, Kalinowski J (2009). Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in *Corynebacterium glutamicum* ATCC 13032. *Microbiology*. **155(Pt 1):** 150-64.

Nickel J, van Ooyen J, Eggeling L (2010). The TetR-type transcriptional regulator FasR of *Corynebacterium glutamicum* controls genes of lipid synthesis during growth on acetate. *Mol Microbiol.* MMI-2010-09808 (submitted)

Niebisch A and Bott M (2001). Molecular analysis of the cytochrome *bc1-aa3* branch of the *Corynebacterium glutamicum* respiratory chain containing an unusual diheme cytochrome c1. *Arch Microbiol.* **175(4):** 282-94.

Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T (2003). Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of *Corynebacterium efficiens*. *Genome Res.* **13(7)**: 1572-9.

Nunheimer TD, Birnbaum J, Ihnen ED, Demain AL (1970). Product inhibition of the fermentative formation of glutamic acid. *Appl Microbiol.* **20(2):** 215-7.

Ozyhar A, Gries M, Kiltz HH, Pongs O (1992). Magnetic DNA affinity purification of ecdysteroid receptor. *J Steroid Biochem Mol Biol.* **43(7):** 629-34.

Pascual C, Lawson PA, Farrow JA, Gimenez MN, Collins MD (1995). Phylogenetic analysis of the genus *Corynebacterium* based on 16S rRNA gene sequences. *Int J Syst Bacteriol.* **45(4):** 724-8.

Pittard AJ and Davidson BE (1991). TyrR protein of *Escherichia coli* and its role as repressor and activator. *Mol Microbiol.* **5(7)**: 1585-92.

Polen T and Wendisch VF (2004). Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. *Appl Biochem Biotechnol.* **118**: 215-32.

Polen T, Rittmann D, Wendisch VF, Sahm H (2003). DNA microarray analyses of the long-term adaptive response of *Escherichia coli* to acetate and propionat. *Appl Environ Microbiol.* **69(3):** 1759-74.

Portevin D, de Sousa-D'Auria C, Montrozier H, Houssin C, Stella A, Lanéelle MA, Bardou F, Guilhot C, Daffé M (2005). The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. *J Biol Chem.* **280**: 8862-74.

Radmacher E, Alderwick LJ, Besra GS, Brown AK, Gibson KJ, Sahm H, Eggeling L (2005). Two functional FAS-I type fatty acid synthases in *Corynebacterium glutamicum*. *Microbiol* **151(7)**: 2421-7.

Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005). The TetR family of transcriptional repressors. *Microbiol Mol Biol Rev* 69(2): 326-56.

Rey DA, Nentwich SS, Koch DJ, Rückert C, Pühler A, Tauch A, Kalinowski J (2005). The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of *Corynebacterium glutamicum* ATCC 13032. *Mol Microbiol.* **56:** 871-87.

Rey DA, Pühler A, Kalinowski J (2003). The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in *Corynebacterium glutamicum. J Biotechnol.* **103(1):** 51-65.

Robrish SA, Grove SB, Bernstein RS, Marucha PT, Socransky SS, Amdur B (1976). Effect of sonic treatment on pure cultures and aggregates of bacteria. *J Clin Microbiol.* **3(5):** 474-9.

Rock CO and Cronan JE Jr (1996). *Escherichia coli* as a model for the regulation of dissociable (type II) fatty acid biosynthesis. *Biochim Biophys Acta.* **1302(1):** 1-16.

Sahm H, Eggeling L, de Graaf AA (2000). Pathway analysis and metabolic engineering in *Corynebacterium glutamicum*. *Biol Chem.* **381(9-10):** 899-910.

Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science*. **239**(4839): 487-91.

Sambrook J (1989). A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Molecular cloning.

Samols D, Thornton CG, Murtif VL, Kumar GK, Haase FC, Wood HG (1988). Evolutionary conservation among biotin enzyme. *J Biol Chem.* **263(14):** 6461-4.

Sanger F, Nicklen S, Coulson AR (1977). DNA sequencing with chainterminating inhibitors. *Proc Natl Acad Sci U S A.* **74(12):** 5463-7.

Schaaf S and Bott M (2007). Target genes and DNA-binding sites of the response regulator PhoR from *Corynebacterium glutamicum*. *J Bacteriol.* **189(14):** 5002-11.

Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994). Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene.* **145**: 69-73.

Schaffer S, Weil B, Nguyen VD, Dongmann G, Günther K, Nickolaus M, Hermann T, Bott M (2001). A high-resolution reference map for cytoplasmic and membrane-associated proteins of *Corynebacterium glutamicum*. *Electrophoresis*. **22**: 4404-22.

Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK (2003). Transcriptional Adaptation of *Mycobacterium tuberculosis* within Macrophages: Insights into the Phagosomal Environment. *The Journal of Experimental Medicine*. **198:** 693-704.

Schujman GE, Guerin M, Buschiazzo A, Schaeffer F, Llarrull LI, Reh G, Vila AJ, Alzari PM, de Mendoza D (2006). Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. *EMBO J.* **25(17):** 4074-83.

Schujman GE, Paoletti L, Grossman AD, de Mendoza D (2003). FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. *Dev Cell.* **4:** 663-72.

Schröder J and Tauch A (2010). Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. *FEMS Microbiol Rev.* **Epub ahead of print**.

Schwarzer A and Pühler A (1991). Manipulation of *Corynebacterium* glutamicum by gene disruption and replacement. *Biotechnology*. 9(1): 84-7.

Shalon D, Smith SJ, Brown PO (1996). A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. *Genome Res.* **6(7):** 639-45.

Shimizu H, Tanaka H, Nakato A, Nagahisa K, Kimura E, Shioya S (2003). Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by *Corynebacterium glutamicum*. *Bioprocess Biosyst Eng.* **25(5)**: 291-8.

Smith AJ, Cawston TE, Hazleman BL (1985). A rapid and reproducible method for the analysis of immune complexes using affinity chromatography and Western blotting. *J Immunol Methods.* **84(1-2):** 125-34.

Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Päuker O, Hippe H (1997). Phylogenetic analysis of the genus *Desulfotomaculum*: evidence for the misclassification of *Desulfotomaculum guttoideum* and description of *Desulfotomaculum orientis* as *Desulfosporosinus orientis* gen. nov., comb. nov. *Int J Syst Bacteriol.* **47(4):** 1134-9.

Strauss H (2003). A device for facilitating the use of the French press. Anal Biochem. 321(2): 276-7.

Studier FW and Moffatt BA (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. *J Mol Biol.* 189(1): 113-30.

Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990). Use of T7 RNA polymerase to direct expression of cloned genes. *Methods Enzymol.* **185**: 60-89.

Stuible HP, Meier S, Schweizer E (1997). Identification, isolation and biochemical characterization of a phosphopantetheine:protein transferase that activates the two type-I fatty acid synthases of *Brevibacterium ammoniagenes*. *Eur J Biochem.* **248(2):** 481-7.

Stuible HP, Meurer G, Schweizer E (1997). Heterologous expression and biochemical characterization of two functionally different type I fatty acid synthases from *Brevibacterium ammoniagenes*. *Eur J Biochem.* **247(1):** 268-73.

Stuible HP, Wagner C, Andreou I, Huter G, Haselmann J, Schweizer E (1996). Identification and functional differentiation of two type I fatty acid synthases in *Brevibacterium ammoniagenes*. *J Bacteriol*. **178(16):** 4787-93.

Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M (2007). Anaerobic growth and potential for amino acid production by nitrate respiration in *Corynebacterium glutamicum*. *Appl Microbiol Biotechnol*. **75(5):** 1173-82.

Tam PH and Lowary TL (2009). Recent advances in mycobacterial cell wall glycan biosynthesis. *Curr Opin Chem Biol.* **13:** 618-25.

Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J (2002). Efficient electrotransformation of *corynebacterium diphtheriae* with a minireplicon derived from the *Corynebacterium glutamicum* plasmid pGA1. *Curr Microbiol.* **45(5):** 362-7.

Teichmann SA and Babu MM (2002). Conservation of gene co-regulation in prokaryotes and eukaryotes. *Trends Biotechnol.* **20(10):** 407-10.

Toyoda K, Teramoto H, Inui M, Yukawa H (2009). Involvement of the LuxRtype transcriptional regulator RamA in regulation of expression of the *gapA* gene, encoding glyceraldehyde-3-phosphate dehydrogenase of *Corynebacterium glutamicum. J Bacteriol.* **191(3):** 968-77.

van der Rest ME, Lange C, Molenaar D (1999). A heat shock following electroporation induces highly efficient transformation of *Corynebacterium glutamicum* with xenogeneic plasmid DNA. *Appl Microbiol Biotechnol.* **52(4)**: 541-5.

Veit A, Rittmann D, Georgi T, Youn JW, Eikmanns BJ, Wendisch VF (2009). Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by *Corynebacterium glutamicum*. *J Biotechnol.* **140:** 75-83.

Wakil SJ, Stoops JK, Joshi VC (1983). Fatty acid synthesis and its regulation. *Annu Rev Biochem.* **52:** 537-79.

Walker GC (1984). Mutagenesis and inducible responses to deoxyribonucleic acid damage in *Escherichia coli*. *Microbiol Rev.* **48(1)**: 60-93.

Wendisch VF (2003). Genome-wide expression analysis in *Corynebacterium* glutamicum using DNA microarrays. *J Biotechnol.* **104(1-3):** 273-85.

Wendisch VF, Spies M, Reinscheid DJ, Schnicke S, Sahm H, Eikmanns BJ (1997). Regulation of acetate metabolism in *Corynebacterium glutamicum*: transcriptional control of the Isocitrate lyase and malate synthase genes. *Arch Microbiol* **168**: 262–9.

Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S (2001). Isolation of *Escherichia coli* mRNA and comparison of expression using mRNA and total RNA on DNA microarrays. *Anal Biochem.* **290:** 205-13.

Wennerhold J, Krug A, Bott M (2005). The AraC-type regulator RipA represses aconitase and other iron proteins from *Corynebacterium* under iron limitation and is itself repressed by DtxR. *J Biol Chem.* **280(49):** 40500-8.

White SW, Zheng J, Zhang YM, Rock (2005). The structural biology of type II fatty acid biosynthesis. *Annu Rev Biochem.* **74:** 791-831.

Wilfinger WW, Mackey K, Chomczynski P (1997). Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. *Biotechniques.* **22(3):** 478-81.

Zhang YM and Rock CO (2009). Transcriptional regulation in bacterial membrane lipid synthesis. *J Lipid Res.* **50 Suppl:** S115-9.

Zhang YM, Marrakchi H, Rock CO (2002). The FabR (YijC) transcription factor regulates unsaturated fatty acid biosynthesis in *Escherichia coli*. *J Biol Chem.* **277(18):** 15558-65.

Zhu K, Zhang YM, Rock CO (2009). Transcriptional regulation of membrane lipid homeostasis in *Escherichia coli*. *J Biol Chem.* **284:** 34880-8.

Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S (2000). Nitrogen regulatory protein C-controlled genes of *Escherichia coli*: scavenging as a defense against nitrogen limitation. *Proc Natl Acad Sci U S A.* 97(26): 14674-9.

VIII. Anhang

<u>Abb. 33:</u> Plasmidkarte von pK19*mobsacB* ∆*fasR*. Das Plasmid trägt ein 1008 bp Xmal-Pstl-Crossover-PCR-Fragment, das die *fasR* flankierenden Bereiche umfasst.

<u>Abb. 34:</u> Plasmidkarte von pK19*mobsacB ∆marR*. Das Plasmid trägt ein 1060 bp Pstl-HindIII-Crossover-PCR-Fragment, das die *marR* flankierenden Bereiche umfasst.

<u>Abb. 35:</u> Plasmidkarte von pK19*mobsacB ∆syrB*. Das Plasmid trägt ein 1057 bp Xmal-HindIII-Crossover-PCR-Fragment, das die *syrB* flankierenden Bereiche umfasst.

<u>Abb. 36:</u> Plasmidkarte von pK19*mobsacB* ∆*whiA*. Das Plasmid trägt ein 1008 bp Xmal-HindIII-Crossover-PCR-Fragment, das die *whiA* flankierenden Bereiche umfasst.

<u>Abb. 37:</u> Plasmidkarte von pK18*mob-fasR*. Das Plasmid trägt ein 704 bp Xbal-Xmal-Fragment kodierend für *fasR* und einen C-terminalen StrepII-Tag.

Abb. 38: Plasmidkarte von pET16b-fasR. Das Plasmid trägt ein 635 bp Ndel-BamHI-Fragment kodierend für das *C. glutamicum* FasR-Protein.

<u>Abb. 39:</u> Plasmidkarte von pEKEx2-*fasR*. Das Plasmid trägt ein 638 bp PstI-BamHI-Fragment kodierend für das *C. glutamicum* FasR-Protein.

Danksagung

Herrn Prof. Dr. Sahm möchte ich für die Überlassung des interessanten Themas, seine konstruktive Kritik, sein Interesse an dieser Arbeit und für die Möglichkeit dieser Promotion danken.

Herrn Prof. Dr. Bott danke ich für die freundliche Übernahme des Korreferats, für die Bereitstellung des Arbeitsplatzes am IBT-1 und seine konstruktive Kritik.

Mein ganz besonderer Dank gilt Herrn Dr. Eggeling für seine guten Ratschläge, seine immerwährende Diskussionsbereitschaft und sein Interesse am Fortgang dieser Arbeit. Allen Mitgliedern des Instituts für Biotechnologie 1 danke ich für die gute und freundliche Atmosphäre im und auch außerhalb des Instituts.

Für die wunderbare Atmosphäre im Labor, im Büro, bei gemeinsamen Aktivitäten und darüber hinaus danke ich allen ehemaligen und jetzigen Mitgliedern der Arbeitsgruppe Eggeling: Lothar Eggeling, Karin Krumbach, Helga Etterich, Doris Rittmann, Michael Stolz, Jan Marienhagen, Oliver Fürst, Peter Ilse, Mathias Seidel, Christina Klein, Jan van Ooyen, Eva Radmacher, Roland Gande, Antonia Heyer, Stephan Binder, Tina Wings, Norma Stäbler, Katharina Raasch, Laure Botella, Melanie Hoffelder, Jens Schweitzer und Ramon Diesveld.

Mein besonderer Dank gilt den Kollegen aus Raum 119, die immer ein offenes Ohr hatten und die Zeit im IBT-1 zu einem unvergesslichen Erlebnis für mich gemacht haben!

Ganz herzlich möchte ich mich bei Ramon Diesveld bedanken für die kurzweiligen Fahrten zur Arbeit, für die unzähligen Gespräche, die zahlreichen Tipps und für die vielen gemeinsamen Abende in Aachen! Meiner Genomik+/SysMAP-(Leidens)Gefährtin Melanie Hoffelder danke ich auch vielmals für ihre "wirren" Träume, die vielen Gespräche und die wunderschöne Erinnerung an eine echte Märchenhochzeit! Mathias Seidel und Laure Botella danke ich für die stets gute Stimmung im Büro! Ein besonderer Dank geht auch an Norma Stäbler und Katharina Raasch für die netten Gespräche und die gemeinsame Vorliebe fürs Oishii!

Meinen Eltern und meinem Bruder, sowie meiner ganzen Familie, danke ich für den Mut, den sie mir immer wieder zugesprochen haben, für ihre große Unterstützung und ihr Verständnis nicht nur während der Promotion sondern auch darüber hinaus! Die vorgelegte Dissertation habe ich eigenständig und ohne unerlaubte Hilfe angefertigt. Die Dissertation wurde in der vorgelegten oder ähnlichen Form noch bei keiner anderen Institution eingereicht. Außerdem habe ich bisher keine erfolglosen Promotionsversuche unternommen.

Düsseldorf, den

Jens Nickel