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Summary
The algebraic K-theory Farrell-Jones Conjecture is a conceptional approach to
calculate the algebraic K-groups of a group ring R[G] where R is a simplicial ring
with unit and G an infinite group. It states that the assembly map

hGn (EVCycG,KR)→ hGn (pt,KR)
is an isomorphism for all n ∈ Z. The target calculates to Kn(R[G]), the nth algebraic
K-group of the group ring R[G]. The conjecture has deep connections to geometric
topology. For example for G a torsion-free group and R = Z it predicts the vanishing
of the Whitehead group Wh(G) of G and hence by the famous s-cobordism theorem
of Barden-Mazur-Stallings and Smale the triviality of each h-cobordism over a
differentiable manifold of dimension ≥ 5 with fundamental group G. The conjecture
is known for a large class of groups but the general case is open.

Recently Bartels, Lück and Reich proved the Farrell-Jones Conjecture for G a
word-hyperbolic group in the sense of Gromov and R an arbitrary discrete ring. This
prompts the question about an extension of it to a more general kind of rings. In this
thesis we formulate the Farrell-Jones Conjecture for simplicial rings. Simplicial rings
are a homotopy theoretic generalization of discrete rings and play itself an important
role in the investigation of higher-dimensional manifolds. Our work requires a whole
new set of tools. We prove, among other things:
Theorem A. Let R be a simplicial ring. For each free G-equivariant control space
X there is a category

CG(X,R)
of G-equivariant controlled simplicial R-modules over X. It has the structure of a
category with cofibrations and weak equivalences, so its algebraic K-theory is defined.
Theorem B. Let R be a simplicial ring. The functor hG(−,KR) from G-CW-
complexes to spectra, defined as

Z →−→ K−∞(g∞wCG(Zcc, R)),
is a G-equivariant homology theory. Its coefficients are the non-connective algebraic
K-theory spectra G/H →→ K−∞(R[H]).

This description allows the following conclusion:
Theorem C. The assembly map is an isomorphism if and only if

K−∞
wCG


(EVCycG)cc, R


is contractible.

This opens the door to attack the conjecture for word-hyperbolic groups and
simplicial rings with techniques known from the case of discrete rings. To establish
the theorems we considerably generalize the theory of “controlled modules” over a
discrete ring used by Bartels-Lück-Reich and introduce homotopy theoretic methods
into the subject. As a crucial step we obtain a definition of the non-connective
algebraic K-theory spectrum of any simplicial ring.
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Zusammenfassung
Die Farrell-Jones-Vermutung für algebraische K-Theorie ist ein konzeptioneller An-
satz zur Bestimmung der algebraischen K-Gruppen eines Gruppenringes R[G], wobei
R ein simplizialer Ring mit Eins und G eine unendliche Gruppe ist. Die Vermutung
besagt, dass die Assembly-Abbildung

hGn (EVCycG,KR)→ hGn (pt,KR)

für alle n ∈ Z ein Isomorphismus ist. Die rechte Seite berechnet sich zu Kn(R[G]),
der nten algebraischen K-Gruppe des Gruppenringes R[G]. Die Vermutung hat tiefe
Verbindungen zur geometrischen Topologie. So folgt aus ihr für G eine torsionsfreie
Gruppe und R = Z, dass die Whitehead-Gruppe Wh(G) von G trivial ist. Der
berühmte s-Kobordismussatz von Barden-Mazur-Stallings und Smale impliziert dann
die Trivialität jedes h-Kobordismus über einer differenzierbaren Mannigfaltigkeit der
Dimension ≥ 5 mit Fundamentalgruppe G. Die Vermutung ist für eine große Klasse
von Gruppen bekannt, aber der allgemeine Fall ist offen.

Kürzlich zeigten Bartels, Lück und Reich die Farrell-Jones Vermutung wenn G
eine wort-hyperbolische Gruppe im Sinne Gromovs und R ein diskreter Ring ist.
Das wirft die Frage nach einer Erweiterung der Vermutung für eine allgemeinere Art
von Ringen auf. In dieser Dissertation formulieren wir die Farrell-Jones Vermutung
für simpliziale Ringe, diese können als homotopietheoretische Verallgemeinerung
von diskreten Ringen angesehen werden und spielen selbst eine wichtige Rolle in
der Untersuchung höher-dimensionaler Mannigfaltigkeiten. Unsere Untersuchen
benötigen eine Reihe neuer Methoden und Konstruktionen. Unter anderem zeigen
wir:

Theorem A. Sei R ein simplizialer Ring. Für jeden freien G-äquivarianten Kon-
trollraum X gibt es eine Kategorie

CG(X,R)

von G-äquivarianten kontrollierten simplizialen R-Moduln über X. Diese hat die
Struktur einer Kategorie mit Kofaserungen und schwachen Äquivalenzen, womit ihre
algebraische K-Theorie definiert ist.

Theorem B. Sei R ein simplizialer Ring. Der Funktor hG(−,KR) von G-CW-
Komplexen nach Spektren, der als

Z →−→ K−∞(g∞wCG(Zcc, R)),

definiert wird, ist eine G-äquivariante Homologietheorie. Ihr Koeffizientenspek-
trum sind die nicht-zusammenhängenden algebraischen K-Theorie-Spektren G/H →→
K−∞(R[H]).

Diese Beschreibung erlaubt die folgende Schlussfolgerung:
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Theorem C. Die Assembly-Abbildung ist genau dann ein Isomorphismus, wenn das
Spektrum

K−∞
wCG


(EVCycG)cc, R


zusammenziehbar ist.

Diese Formulierung ermöglicht die Vermutung für wort-hyperbolische Gruppen
und simpliziale Ringe mit Methoden aus dem Fall der diskreten Ringe anzugreifen.
Zum Beweis der obigen Theoreme verallgemeinern wir die von Bartels-Lück-Reich
genutzte Theorie der „kontrollierten Moduln“ über diskreten Ringen und führen
homotopietheoretische Techniken in das Gebiet ein. Als wichtigen Zwischenschritt
erhalten wir eine Definition des nicht-zusammenhängenden algebraischen K-Theorie-
Spektrums eines simplizialen Ringes.
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Introduction

The algebraic K-theory Farrell-Jones Conjecture for a group G and a simplicial
ring R (with unit) states that the assembly map

hGn (EVCycG,KR)→ hGn (pt,KR) (†)

is an isomorphism for all n ∈ Z. The target calculates to Kn(R[G]), the nth algebraic
K-group of the group ring R[G]. The source is the G-equivariant homology theory
with coefficients in the G-equivariant non-connective algebraic K-theory spectrum
of R, evaluated on the classifying space for the family of virtually cyclic subgroups
of G.

It is known that for discrete rings R the assembly map (†) is an isomorphism for
a large class of groups, the recent result [BLR08] shows this for word-hyperbolic
groups. The conjecture for a group G, together with a variant for L-theory, implies a
wide range of other well-known conjectures in geometric topology and algebra. Most
notably is perhaps the Borel Conjecture, which states that closed aspherical manifolds
of dimension ≥ 5 with fundamental group G are topologically rigid. This means,
each two closed manifolds of dimension ≥ 5 with fundamental group isomorphic to G
whose universal covers are contractible are homeomorphic. An algebraic conjecture
implied by the Farrell-Jones Conjecture is e.g. the Kaplansky Conjecture, which
states that for G torsion-free and a field F of characteristic zero the only idempotents
in the group ring F [G] are 0 and 1. See [LR05] for a broad overview.

The recent success on the Farrell-Jones Conjecture with coefficients in a discrete
ring prompts the question about an extension of it to a more general kind of rings.
In this thesis we formulate the Farrell-Jones Conjecture for simplicial rings. This
requires a whole new set of tools. We prove (as Proposition 3.3):

Theorem A. Let R be a simplicial ring. For each free G-equivariant control space
X there is a category

CG(X,R)

of G-equivariant controlled simplicial R-modules over X. It has the structure of a
category with cofibrations and weak equivalences, so its algebraic K-theory is defined.

We explain the notions later. If Z is a G-CW-complex we get a G-equivariant
control space Zcc. It is the space Z ×G× [1,∞) together with continuous control
conditions. We define it in Definition 7.3. We show (as Theorem 7.7):
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Theorem B. Let R be a simplicial ring. The functor hG(−,KR) from G-CW-
complexes to spectra, defined as

Z →−→ K−∞(g∞wCG(Zcc, R)),

is a G-equivariant homology theory. Its coefficients are the non-connective algebraic
K-theory spectra G/H →→ K−∞(R[H]).

This description allows the following conclusion (Lemma 7.33):

Theorem C. The assembly map (†) is an isomorphism if and only if

K−∞
wCG


(EVCycG)cc, R


is contractible.

We follow the work of [BLR08], so our work makes it possible to attack the Farrell-
Jones Conjecture for simplicial rings with the same methods which proved to be
successful for the case of discrete rings.

We refrain from explaining the assembly map here but refer to the introduction of
Chapter 7 for the definition of a G-equivariant homology theory and to Section 7.6
for the definition of the assembly map.

Motivational Background. Simplicial rings are important in the study of Wald-
hausen’s A-theory ([Wal85]), an early result is Goodwillie’s calculation of the ra-
tionalized homotopy fiber of the A-theory of a map of topological spaces [Goo86].
Waldhausen’s A-theory of a space X, its long name being algebraic K-theory of
topological spaces of X, is a variant of algebraic K-theory of the group ring Z[π1(X)],
where π1 denotes the fundamental group. It takes into account the whole homotopy
type of X and is deeply related to the study of higher-dimensional manifolds. It can
be viewed as the algebraic K-theory of the ring spectrum S[G(X)], the “group ring”
over the sphere spectrum S, where G(X) is the Kan Loop Group of X. The Kan
Loop Group of a connected topological space X is a topological group which has the
homotopy type of the loop space of X. There is an assembly map for A-theory. It is
proved in [CPV98], using techniques related to the techniques of [BLR08], that for a
certain class of groups, smaller than the one mentioned above, the assembly map for
A-theory is injective. This uses results of Vogell [Vog90, Vog95]. As ring spectra are
a further generalization of simplicial rings, the results in this thesis can be viewed as
a step to unify this two approaches.

Next we motivate the main notions of this thesis before we give an outline.

Review of controlled algebra. The proof of the Farrell-Jones Conjecture for word-
hyperbolic groups uses “controlled algebra”. We explain the idea of controlled algebra
in a simple example. Assume we have a discrete ring R. Let Z be the integers and
consider the standard euclidean metric on it. Let M be a projective R-module with
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a direct sum decomposition


i∈ZMi, such that each Mi is finitely generated and
projective. A morphism f : M →M ′ is a matrix with row and columns indexed over
Z and the entries at (i, j) being maps fi,j : Mi → M ′

j . We say that f is controlled
if the matrix is concentrated around the diagonal, i.e. there is an α ≥ 0 such that
fi,j is the zero map for |i− j| > α. This gives the category of controlled R-modules
over Z with metric control. It is an additive category, so we can take its algebraic
K-theory. It turns out ([PW85]) that its K-group Kl+1 is the algebraic K-group
Kl(R) of R for l ≥ 0. Further its K0 may be non-trivial. (We usually consider the
algebraic K-theory of R as a space K(R), so this construction gives a 1-fold delooping
of K(R), i.e. a space D1 with ΩD1 homotopy equivalent to K(R). The newly arising
homotopy group π0D1 can be non-trivial, so this delooping is non-connective.)

We can do this construction for Zn with the standard euclidean metric instead of
Z and obtain an n-fold non-connective delooping Dn of K(R). Even more there are
natural maps Dn → ΩDn+1, so we even get a non-connective spectrum. This is the
non-connective algebraic K-theory spectrum of R. Its non-negative homotopy groups
are the ordinary algebraic K-groups of R and its negative homotopy groups are the
negative algebraic K-groups defined by Bass (cf. [Ros94]).

We can replace Zn by the space Rn together with the euclidean metric. The direct
sum decomposition is then indexed over r ∈ Rn, but we need a finiteness condition
to get an interesting category. We require that each point in Rn has a neighborhood
U such that the modules Mr, r ∈ U , are zero for all but finitely many r. It turns out
that the control spaces Zn and Rn give equivalent categories, hence we can construct
the delooping also using Rn.

We can vastly generalize the kind of “control spaces” we take as inputs. Besides
using any metric space we can axiomatically define what a “control space” should be.
This gives much more examples than only metric spaces. We do this in Section 1.2.
For any control space we get an additive category and can take its algebraic K-theory.
The proof of [BLR08] reduces the Farrell-Jones Conjecture for a discrete ring to the
vanishing of the algebraic K-theory of the category of “controlled modules” over a
certain control space.

Main notions of the thesis. We can take a slight variation of the above definition
of a controlled module over Z. Assume M is a free module with basis {ei | i ∈ I}. A
map κ : I → Z is the same as a direct sum decomposition of M indexed over Z such
that the basis restricts to a basis for each summand. Hence, if we restrict to free
modules, we can define a controlled module over Z to be a free module with basis
indexed over I and a map κ from I to Z. A map f : (M,κ)→ (M ′, κ′) between such
modules is then said to be controlled if there is an α ≥ 0 such that each basis element
ei in M is mapped to an element which can be written as the sum of basis elements
e′
j , j ∈ J of M ′ with |κ(i) − κ′(j)| ≤ α for all j ∈ J . This is the same notion of

control as defined above. We again get an additive category of which we can take the
algebraic K-theory. As we restricted ourselves to free modules, we cannot expect to
get the same K0. But it is well-known that taking free modules instead of projective
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modules gives the same Ki for i ≥ 1 and this is also true in this situation. Again
we can apply this construction to the metric spaces Zn and Rn, where for the latter
we need similar finiteness conditions as above. This also gives us a non-connective
delooping of K(R), and because K0 of the category of controlled modules over Zn
gets mapped to K1 of the category over Zn+1, the difference of free or projective
modules does not matter, the deloopings agree up to a weak equivalence of spectra.

Modules over simplicial rings are more complicated than modules over discrete
rings. Recall, e.g. from Appendix A, that a simplicial ring R is a sequence of rings
(with unit) Rn, n ∈ N, together with structure maps, and a simplicial module M
over R is a sequence of abelian groups Mn together with structure maps, where Mn

is an Rn-module. To take algebraic K-theory we only consider cellular R-modules.
They correspond to the free modules over a discrete ring. The idea is to imitate
CW-complexes. So we define a cellular module to be a module which arises by
attaching cells to the zero module. The precise definition of a cellular R-module is
given in Section 1.1.

A cellular R-module has a set of cells �RM . They can be considered as elements
in Mn for varying n and correspond to the choice of a basis of a free module over
a discrete ring. Hence we define a controlled simplicial R-module over Z to be a
cellular R-module together with a map κR : �R M → Z, where �RM is the set of
cells of M . Like for discrete modules and CW-complexes the image of a cell under
a map of cellular simplicial R-modules is contained in a finite cellular submodule,
i.e. a submodule generated by finitely many cells. This gives us a way to say when a
map f : (M,κR) → (M ′, κ′

R) is controlled, namely we want that there is an α ≥ 0
such that the image of a cell ei is contained in a submodule generated by cells
e′
j with |κ(ei) − κ′(e′

j)| ≤ α. But we also have structure maps, so we impose the
corresponding condition that the boundary of a cell ei of M is contained in such
a submodule. This gives us the category of controlled modules over Z. A precise
definition is given in Section 1.3. This definition works for any control space X, we
denote the category by C(X,R). For technical reasons we also require all modules to
be finite-dimensional.

To take algebraic K-theory of simplicial rings one needs a more general definition
than the one for additive categories. The definition we use is Waldhausen’s S.-
construction. We review the necessary background briefly in Appendix B. It takes
as input a category with cofibrations and weak equivalences, so we define a class of
cofibrations and a class of weak equivalences in C(X,R) in Chapter 2 and start to
check the axioms. The weak equivalences will be the homotopy equivalences, so
we define also the notions of cylinder and homotopies. All this is summarized as
Proposition 3.3 in Section 3.1. The category C(X,R) is the one which is studied in
this thesis.

Actually so far we hid an important point, the role of the discrete group G. We
want G to act freely on the control space. We further want G to act freely on
each cellular module in such a way that it takes cells to cells, we call this action
cell-permuting. Finally the control map κR should be G-equivariant. This gives the
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category of G-equivariant controlled simplicial modules, which we denote by CG(X,R).
It specializes to the one discussed before for G the trivial group. Astonishingly, albeit
this is the decisive ingredient in the Farrell-Jones Conjecture, it does not play an
important role in our discussions. For most arguments we can simply ignore its
presence.

The idea of Germs. We go back to category of discrete controlled modules over
Z. Instead of Z we can also take N together with the euclidean metric as control
space and consider the category of controlled modules over it. It turns out that
this category has an Eilenberg swindle, hence its K-theory vanishes. The swindle
is constructed from the map n →→ n+ 1 on N, it shifts a module “to infinity”, and
hence we can take the sum over the shifted modules as an Eilenberg functor, as this
is still a finite projective module over each n ∈ N. There is a way to concentrate to
“what happens at infinity”.

In the case of a discrete ring, a controlled module over N can be written as a direct
sum M[0,i] ⊕M(i,∞) for each i ≥ 0, where the index indicates which summands are
collected. We want to ignore the first summands systematically. So we say that two
maps from M to N are equivalent if there is an i such that they agree if restricted
to M(i,∞). This is the category of germs at infinity for N. It is again an additive
category so we can take its algebraic K-theory. It turns out that this is again a
1-fold non-connective delooping of K(R), i.e. Kl of this category is Kl−1 of the ring
R for l ≥ 1.

In the case of simplicial R-modules we do not get a direct sum decomposition,
but still can consider similar submodules M(i,∞) of M , see Section 4.1 for a precise
definition. Thus we can consider the category of germs and it turns out that we
can define the notion of homotopy and hence of homotopy equivalences there. It
is not clear whether there is a structure of a category with cofibrations and weak
equivalences on the category of germs. But we can simply define a map in C(N, R)
to be a germwise weak equivalence if it becomes one in the category of germs. This
is a larger class of weak equivalences than the homotopy equivalences, but it also
makes C(N, R) into a category with cofibrations and weak equivalences, hence we
can take its K-theory.

Again this notion can be vastly generalized, we can define for any G-equivariant
control space X and a set of germ support sets on X the germwise weak equivalences
and show this gives a class of weak equivalence for CG(X,R). This is carried out in
Chapter 4.

Outline. Let us give a summary of the content of this thesis. We gave motivations
for the crucial definitions above. All the basic definitions are contained in Chapter 1.
We define the notions of cellular simplicial module, control space and controlled
simplicial module over a control space in Sections 1.1 to 1.3. Section 1.5 contains
the G-equivariant versions and in particular the definition of the category CG(X,R)
which is the object of study of this thesis. Chapter 2 is devoted to construct the
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structure of a category with cofibrations and weak equivalences on CG(X,R), where
the weak equivalences are the homotopy equivalences. The construction is finished
in Section 3.1. In Sections 3.2 to 3.6 we discuss different finiteness conditions on
CG(X,R)—in particular finite, homotopy finite and homotopy finitely dominated
modules—to actually get categories with interesting K-theory. Section 3.7 discusses
the connective K-theory of these categories. We prove that the finite and homotopy
finite modules have equivalent K-theories and that their K-theories agree with the
K-theory of the homotopy finitely dominated modules except at K0. We show that
the K-theory for the G-equivariant control space G/1 and the simplicial ring R is the
K-theory of R[G]. We finish with a proof that a weak equivalence of simplicial rings
induces a weak equivalence on the K-theory of the categories of controlled modules.

Chapter 4 is devoted to the discussion of germs. We show that CG(X,R) together
with the germwise weak equivalences is also a category with cofibrations and weak
equivalences. To prove that, we have to redo most proofs of Chapter 2 for the
germwise weak equivalences. In that case we only indicate the differences, we wrote
Chapter 2 with that in mind.

With the homotopy equivalences and the germwise weak equivalences we have two
classes of weak equivalences, hence Waldhausen’s generic fibration theorem B.5 gives
a homotopy fiber sequence of spaces. We analyze this homotopy fiber sequence for
the germs away from a subspace in Section 5.1. This gives a coarse Mayer-Vietoris
theorem for control spaces, which we discuss in Section 5.2. Finally Section 5.3 shows
that a flasque shift on X like the one n →→ n+ 1 on N gives an Eilenberg swindle on
CG(X,R) and hence shows that its K-theory space is contractible. We analyze this
contraction carefully and show that compatible shifts give compatible contractions.

The theorems from Chapter 5 have a “defect” at K0 as the K-theory we take there
is connective. We do not have a direct definition of non-connective K-theory of a
category with cofibrations and weak equivalences, so we define K−∞(wCG(X,R)) as
the spectrum with nth space K(wCG(X×Rn, R)) in Section 6.1. We show, using the
results from Chapter 5, the following theorems. (They are restated in Section 6.1.)

Theorem. Let R be a simplicial ring and X a control space. There is a non-
connective algebraic K-theory spectrum

K−∞(wCG(X,R)).

Its structure maps are isomorphism on πk for k ≥ 1, so it is almost an Ω-spectrum.
It agrees on the ith stable homotopy group πi, i ≥ 1 with the connective K-theory
K(wCG(X,R)).

Theorem. Let X be a control space and Y ⊆ X a “good” closed subspace. Denote
by gw the germwise equivalences on X away from Y . There is a homotopy fiber
sequence of spectra

K−∞(wCG(Y,R))→ K−∞(wCG(X,R))→ K−∞(gwCG(X,R)).

This homotopy fiber sequence is our generalization of the homotopy fiber sequence
obtained from a “Karoubi filtration” of additive categories in [CP97].
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Theorem. Assume X has a flasque shift. Then K−∞(wCG(X,R)) is contractible.

Theorem. A weak equivalence of simplicial rings R→ S induces a weak equivalence
of spectra

K−∞(wCG(X,R))→ K−∞(wCG(X,S)).

We further prove a coarse Mayer-Vietoris theorem. These theorems are versions
for non-connective K-theory of the theorems from Chapter 5 which were mentioned
above. They do not have the “defect” at K0 any more. Chapter 6 is devoted to their
proofs, Section 6.1 contains a complete summary of our results on non-connective
K-theory including the precise statements of the Theorems above.

Following the idea from [BFJR04] we construct in Chapter 7 for a simplicial ring
R a homology theory with coefficients in KR, the G-equivariant non-connective
algebraic K-theory spectrum of R. We calculate that it has the right coefficients and
compare it to the connective K-theory of R in Section 7.5. In Section 7.6 we finally
construct the assembly map and state the Farrell-Jones Conjecture for a simplicial
ring. We prove Theorem C from above as Lemma 7.33, which reduces the conjecture
to the vanishing of the algebraic K-theory of the control space (EFG)cc. It is the
same control space which appears in [BLR08], up to an insignificant change, see
Remark 7.34. As we believe the methods from there apply, we state this vanishing
as a conjecture.

Appendix A contains a brief summary on simplicial sets and simplicial rings.
Appendix B contains a review of Waldhausen’s algebraic K-theory of spaces, which is
the construction of algebraic K-theory we use in this thesis. Appendix C investigates
mapping telescopes in the simplicial setting, this is a tool we need in the proof of
Lemma 5.10.

Relations to simplicial modules. If we take G the trivial group and the one-point
control space, all our constructions yield constructions in the category of finite-
dimensional cellular simplicial R-modules. We strongly suppose that all of the results
are well-known for (uncontrolled) cellular simplicial R-modules, but there does not
seem to be a canonical reference available. There is an interesting technical point: We
do not have homotopy groups available in the category CG(X,R), hence we are forced
to do all proofs without referring to homotopy groups. Thus a byproduct of our
constructions we get proofs of foundational homotopy theoretic facts about cellular
simplicial R-modules without using homotopy groups. Notable are the gluing lemma
for homotopy equivalences (Lemma 3.8) and the Extension Axiom. Further our proof
that a weak equivalence of simplicial rings induces an equivalence on K-theory uses
only the S.-construction. All the proofs in the literature the author is aware of use
the plus-construction description of K-theory of simplicial rings, a tool which does
not seem to be available in our category. (Note however that the plus-construction
style proofs give the stronger result that an n-connected map of simplicial rings gives
an (n+ 1)-connected map on algebraic K-theory. This kind of result does not seem
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to be readily available in our setting.) Our results also give a construction for a
non-connective algebraic K-theory spectrum for any simplicial ring.

Remarks for the knowledgeable reader. We give some extra explanations for
readers familiar with [BLR08]. Although the constructions and theorems of this
thesis follow closely the ideas of [BFJR04] and [BLR08] we construct everything from
scratch. We need to modify some definitions and constructions; partly to streamline
some constructions, partly to correct some small mistakes. We elaborate on some
points in the order they are treated here.

In the definition of a control space (Definition 1.6) we require the diagonal to be
contained in any control condition E ∈ E . This assures Y ⊆ Y E for every Y and
implies E ∪ E′ ⊆ E ◦ E′ for two control conditions E,E′ (Remark 1.10).

The definition of locally finite differs between [BFJR04] and [BLR08], but the
latter refers to the former for the constructions and theorems. We want to use the
latter definition, so compared to [BFJR04] we need some extra conditions when we
look at subspaces of a control space. These extra conditions will be satisfied in all
our applications. We introduce the notion of a froper subspace (Definition 5.3). This
is a technical condition we need on the subspaces of control spaces which occur in
the homotopy fiber sequence and the coarse Mayer-Vietoris theorem. Corresponding
assumptions should have been made in [BLR08].

Further it is convenient to introduce the notion of a set over a control space X
and in particular of a locally finite set (Definition 3.17). This allows to hide the
complexity of a locally finite controlled module behind the simpler notion of a locally
finite set, which makes some proofs easier to digest.

The homotopy fiber sequence with germs of Theorem 6.4 is a precise analog of the
homotopy fiber sequence one gets for a Karoubi filtration of an additive category.
Each choice of germ support sets on a control space X gives such a Karoubi filtration
of the categories of [BLR08]. There are Karoubi filtrations which do not arise from
such a situation, but it seems that no such ones are used in [BLR08]. In that sense
our Theorem 6.4 generalizes the article [CP97] for all our applications.

We make the condition of the existence of an Eilenberg swindle of Proposition 4.4
of [BFJR04] into an axiomatic definition and call it a flasque shift (Definition 5.22).
We further discuss compatibility of the induced contractions to actually get a map of
spectra.

The summary in Section 6.1 covers the same range of tools which are repeated in
Section 3 of [BLR08], in particular we reprove all of it in our setting.

The definition of a G-equivariant homology theory in [BFJR04] contains some
inconsistencies, we tried to give a more consistent definition in Chapter 7, cf. Re-
mark 7.2.
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Notations and conventions
A spectrum is always a spectrum of topological spaces in the sense of Bousfield-
Friedlander [BF78], i.e. a sequence Xi, i ∈ N, of topological spaces with maps ΣXi →
Xi+1. An Ω-spectrum is a spectrum whose adjoint structure maps ΩXi → Xi+1 are
weak equivalences. We assume familiarity with the homotopy theory of spectra.

We also freely use the language of simplicial sets, simplicial rings and simplicial
modules, see [GJ99] or Appendix A for a brief review.

The third main tool we use is Waldhausen’s algebraic K-theory of spaces [Wal85],
we give a very brief summary of the results we need in Appendix B.

We sometimes use the property that for a diagram in a category

. //

��

. //

��

I

.

��

II

. // . // .
the whole diagram I + II is a pushout if I and II are pushouts and II is a pushout if
I and I + II are pushouts. The dual version is proved in [Bor94a, I.2.5.9], the third
possible implication does not hold in general.

The set of natural numbers N contains zero. All rings have a unit.
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1. Definitions

1.1. Simplicial Modules

We give a concise summary of the theory of simplicial modules we need. See
Appendix A for a bit more details.

Let ∆ = {[n] | n ∈ N} be the category of finite ordinals and order-preserving
morphisms. Let Rings be the category of rings with unit and let cRings the category
of commutative rings with unit. Let Ab be the category of abelian groups.

Definition 1.1. A simplicial abelian group is a functor ∆op → Ab. A simplicial
ring R is a functor ∆op → Rings. A simplicial ring R is called commutative if it
factors over cRings.

Definition 1.2. A simplicial left module over R is a simplicial abelian group M
together with a bilinear map µ : R ×M → M of simplicial abelian groups, the left
multiplication satisfying the usual associativity and unitality diagrams. A simplicial
right R-module is a simplicial abelian group M together with a bilinear map µ : M ×
R→M , the right multiplication, which satisfies the corresponding dual diagrams for
associativity and unitality.

Alternative characterizations of simplicial R-modules are given in Appendix A.2. If
M is a simplicial left R-module it has the structure of a simplicial right Rop-module,
where Rop is the opposite ring. So usually we only treat left modules. If R is
commutative the notion of simplicial left and right modules over R agree. The
category of simplicial left R-modules has all limits and colimits and they are formed
in simplicial abelian groups. We denote the coproduct of R-modules Mk by


kM

k

and do not use the sum notation.
Let M be a right R-module, N be a left R-module, then the tensor product M⊗RN

is defined. It is a simplicial abelian group. It gives a bifunctor M,N →→ M ⊗R N
which is a left adjoint in each variable, so it commutes with colimits. Each simplicial
abelian group is a left and right Z-module, where Z is considered as simplicial
ring, and each left R-module is a R-Z-bimodule, i.e. it has a right Z-multiplication
compatible with the left R-multiplication. If M is an R-S-bimodule and N a left
S-module then M ⊗S N is a left R-module.

For A a simplicial set Z[A] is the free simplicial abelian group on A ([GJ99,
p. 4]). For M a simplicial left R-module define M [A] as the simplicial left R-module
M⊗ZZ[A]. For M,N simplicial left R-modules define HOMR(M,N) as the simplicial
abelian group [n] →→ HomR(M [∆n], N). If M is an R-S-bimodule HOMR(M,N)
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inherits a left S-multiplication. The functor M ⊗R− is left adjoint to HOMR(M,−).
Both M →→M [A] and A →→M [A] commute with colimits.

The simplicial left R-module M arises by attaching an n-dimensional R-cell from
M ′ if there is a map R[∂∆n]→M ′ such that M is isomorphic to the pushout

R[∂∆n] //

��

M ′

��

R[∆n] //M ′ ∪R[∂∆n] R[∆n]

of R-modules. There is an adjunction (i.e. a natural bijection)

HomR(M [A], N)� HomsSet(A,HOMR(M,N)). (1)

It follows that one can always attach cells of the same dimension simultaneously
and lower dimensional cells can be attached first. We use the terms n-dimensional
R-cell and n-cell interchangeably. (See also Section 1.3 for some more details on this
adjunction.)

Definition 1.3. A map f : N →M of simplicial R-modules is said to be a cellular
inclusion (or cellular) if M arises from N by attaching cells and f is the inclusion
of N . A simplicial left R-module M is called cellular if the map ∗ → M from the
trivial R-module to M is a cellular map. We write cellular inclusions as N �M .

If N � M is a cellular inclusion we can write M as colimit of the sequence of
cellular inclusions

M−1 �M0 �M1 � · · ·�Mi� · · ·

with M−1 = N and Mi is the pushout in


k R[∂∆i]
��

��


k ∂ek

//Mi−1
��

��
k R[∆i]


i ek

//Mi

. (2)

The maps ∂ek : R[∂∆i]→Mi−1 �M are called the attaching maps and the maps
ek : R[∆i]→Mi�M are called the i-cells of M . If M is cellular then the Mi are
uniquely determined and Mi is called the i-skeleton of M . A choice of the above
pushouts for each i is called a cellular structure on M . It determines M up to
isomorphism. Such a choice is almost never unique. From the cellular structure we
get the n-cells R[∆n]→M , which on the other hand determine the cellular structure.
For a cellular simplicial R-module we always choose a fixed cellular structure, i.e. the
module comes with a choice of cells. We say that M is of dimension n or of finite
dimension if it has only cells of dimension smaller or equal than n. We say M is
finite if it has only finitely many cells.
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Lemma 1.4. Let A → B be an inclusion of simplicial sets. Let M be a cellular
simplicial R-module. Then M [A]→M [B] is a cellular inclusion.

Proof. We claim that M [∂∆n]→M [∆n] is a cellular inclusion. This follows because
R[∆m ×∆n] arises from R[∂∆m × ∂∆n] by attaching (n ·m)- and (n ·m− 1)-cells.
As B arises from A by attaching cells the claim follows.

It follows that for a cellular module M all modules M [A] are cellular.
Remark 1.5. Table 1.1 shows how the simplicial case specializes to the case of discrete
R-modules. Recall that a simplicial set is called discrete if the only non-degenerate
simplices have dimension 0. A discrete simplicial ring is essentially the same as
an ordinary ring known from algebra, so we call these discrete rings if we want to
distinguish them from simplicial rings.

simplicial R-modules, R simplicial ring discrete R-modules, R discrete ring

cellular module free module
cellular structure choice of a basis
cellular inclusion direct summand with free complement
M [A] (A a simplicial set)


a∈AM (A a set)

I R [∆n]


I R
of finite dimension —
finite finite dimensional

Table 1.1.: How the notions for simplicial rings specialize to discrete rings.

The simplicial notions specialize to the algebraic notions if R is discrete and we
only attach 0-cells. So in some sense the algebraic theory is contained in the simplicial
theory.

1.2. Control
It is hard to motivate the notion of control before actually giving the definition.
Maybe the most elementary non-trivial situation where “control phenomena” arise
is the following: Given A and B topological spaces and let H : A × I → B be a
homotopy of maps A→ B. In some sense H is moving a lot of points around in B,
namely H gives paths from H(a, 0) to H(a, 1) in B for all a ∈ A. We want to talk
about when H “does not move the points too far away from each other, but in a
uniform way”. The simplest case would be to give a metric on B and require that the
distance between H(a, 0) and H(a, t) for all t ∈ [0, 1] is bounded by a global constant
α. The following constructions give a framework for doing this kind of arguments.
See the introduction of [BLR08] for references for “controlled topology”. Note that
the given example is only for motivation, we want to apply control to simplicial
modules instead.

The following is adapted from [BFJR04, 2.3ff.].

21



Definition 1.6. Let X be a topological Hausdorff space. A morphism control
structure on X consists of a set E of subsets E of X×X (i.e. relations on X), called
the morphism control conditions. We require:

(i) For E,E′ ∈ E there is an E ∈ E such that E ◦ E′ ⊆ E where “◦” is the
composition of relations.

(ii) For E,E′ ∈ E there is an E′′ ∈ E such that E ∪ E′ ⊆ E′′.

(iii) Each E ∈ E is symmetric, i.e. (x, y) ∈ E ⇔ (y, x) ∈ E.

(iv) The diagonal ∆ ⊆ X ×X is a subset of each E ∈ E.

For convenience we usually assume that the diagonal ∆ is itself in E. To keep the
notation simpler we also often assume E ◦ E′ ∈ E, cf. Remark 1.10.

Remark 1.7. We require X to be a topological space, but this is only used later to
define the notion of locally finiteness in Section 3.4. It is convenient to include it
in the definition from the beginning. The Hausdorff property is used only in the
proof of Lemma 3.22 in Section 3.4. If one wants to ignore the topology one can
assume that X has the discrete topology. There is relatively few interaction between
the control structure and the topology, the most notably one being the notion of a
proper control space. On the other hand the definition of continuous control starts
with a topological space Z and defines a control structure on Z × [1,∞), thus in this
case the control space comes with a distinguished topology. The notions of a proper
control space and continuous control are defined later. The topology can be ignored
until Section 3.4.

For U ⊆ X a subset and E ∈ E we define the E-thickening of U in X as

UE = {x ∈ X | ∃y ∈ U : (x, y) ∈ E}.

An arbitrary relation α ∈ X ×X is called E-controlled for E ∈ E if α ⊆ E. It is
called controlled if there is an E ∈ E such that it is E-controlled. An example of a
relation is the graph of a (not necessarily continuous) map f : X → X, so f is called
(E-)controlled if the graph of f is (E-)controlled. Note that if f is E-controlled then
the image of U ⊆ X under f is contained in UE .

Definition 1.8. Given X and a morphism control structure E on X. An object
support structure on (X, E) is a set F of subsets F of X, called the object support
conditions. We require:

(i) For F, F ′ ∈ F there is an F ′′ ∈ F such that F ∪ F ′ ⊆ F ′′.

(ii) For F ∈ F and E ∈ E there is an F ′′′ ∈ F such that FE ⊆ F ′′′.

We call (X, E ,F) a control space. There are cases where we are not interested
in object support conditions F so we leave them out, which is the same as setting
F = {X}.
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The control space (X, E ,F) is called proper if for each K ⊆ X compact, for E ∈ E
and F ∈ F there is a K ′ ⊆ X compact such that (F ∩K)E ∩ F ⊆ K ′.

A map of control spaces from (X1, E1,F1) to (X2, E2,F2) is a (not necessary
continuous) map f : X1 → X2 such that for each E1 ∈ E1 and F1 ∈ F1 there are
E2 ∈ E2 and F2 ∈ F2 with (f × f)(E1) ⊆ E2 and f(F1) ⊆ F2.

Examples 1.9. (cf. [BFJR04, Section 2.3]) As said, setting F := {X} has the same
effect as leaving out the object support conditions, so we abbreviate (X, E , {X}) as
(X, E).

(i) (metric control). Let X have a metric d. Then

Ed = {E | there is an α such that E = {(x, y) | d(x, y) ≤ α}}

is a morphism control structure on X.

(ii) (continuous control). Let Z be a topological space and [1,∞) the half-open
interval with closure [1,∞]. Define a morphism control structure Ecc on X :=
Z × [1,∞) as follows. E is in Ecc if it is symmetric and
(a) For every x ∈ Z and each neighborhood U of x×∞ in Z× [1,∞] there is a

neighborhood V ⊆ U of x×∞ in Z×[1,∞] such that E∩((XrU)×V ) = ∅.
(b) p[1,∞) × p[1,∞)(E) ∈ Ed([1,∞)), where d is the standard euclidean metric

on [1,∞) and p[1,∞) is the projection to [1,∞).

(iii) (products). If (X1, E1,F1) and (X2, E2,F2) are control spaces, then (X1 ×X2,
E1 × E2,F1 ×F2) is one, where by a misuse of notation E1 × E2 := {E1 × E2 |
E1 ∈ E1, E2 ∈ E2} and F1 ×F2 := {F1 × F2 | F1 ∈ F1, F2 ∈ F2}.

(iv) (pullbacks). If (X2, E2,F2) is a control space and f : X1 → X2 an arbitrary
map, then (X1, f

−1(E2), f−1(F2)) is one, where

f−1(E2) := {E′ | ∃E ∈ E2 : (x, y) ∈ E′ if and only if (f(x), f(y)) ∈ E}

and similar f−1(F2) := {f−1(F ) | F ∈ F2}.

(v) (intersection). If (X, E1,F1) and (X, E2,F2) are control spaces, then (X, E1∩E2,
F1 ∩ F2) is one where we misuse the notation and set E1 ∩ E2 := {E1 ∩ E2 |
E1 ∈ E1, E2 ∈ E2} and F1 ∩ F2 := {F1 ∩ F2 | F1 ∈ F1, F2 ∈ F2}.

(vi) (uncontrolled). (X, {X ×X}, {X}) is a control space which imposes no control
condition at all.

(vii) (compact support). Let set F ⊆ X be in Fc if it is compact. These are the
compact object support conditions. They are object support conditions for
(X, Ed) where X is a proper metric space (i.e. closed balls are compact) or for
the continuous control conditions Ecc on Z × [1,∞).
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Remark 1.10. Note that as we require morphism control conditions to be symmetric
we have E ◦E′ = E′ ◦E for E,E′ ∈ E . Note further that ∆ ⊂ E implies E ⊆ E ◦E′

and Y ⊆ Y E . So in particular E ∪ E′ ⊆ E ◦ E′, so Definition 1.6(iv) and (i) imply
1.6(ii). We leave (ii) in the definition for the analogy to [BFJR04, 2.3].

In many examples we have E ◦ E′ ∈ E , but that does not need to hold always, a
counterexample is at the end of Section 1.3.

If E ⊆ E is cofinal, i.e. for each E ∈ E there is an E ∈ E with E ⊆ E, then in
all our applications E and E give equivalent control structures, which means that
the categories C(X,R, E ,F) and C(X,R, E ,F) defined below are equivalent (or even
equal). Hence we can always pass to a cofinal subset of E , or in the other direction
assume that every E′ for which there is an E ∈ E with ∆ ⊆ E′ ⊆ E is also in E . This
is sometimes convenient to have and we will use this freely. Assuming E ◦E′ ∈ E for
E,E′ ∈ E is an example of that.

1.3. Controlled simplicial modules
From now on all modules are simplicial left R-modules for R a simplicial ring.

Let M be a cellular simplicial R-module. We always assume that M has a chosen
cellular structure. This determines the n-cells of M which are by definition maps
R[∆n]→M . By the adjunction (1) a map α : R[∆n]→M of simplicial R-modules is
the same as a map α : ∆n →M of simplicial sets, where in turn this map is determined
by the image α(id[n]) of the generating simplex of ∆n. So an n-dimensional R-cell
of M gives an element in Mn which determines the cell. In particular the cellular
structure on M gives a subset of elements in


n∈NMn; we denote this subset by �RM

and call it the cells of M , imitating [Wei02, II.6.1]. For a cell e ∈ �RM we usually
denote its associated characteristic map R[∆n]→M by e. Up to isomorphism, �RM
and the boundaries of its elements determine M .

Remark 1.11 (Motivation). We want to construct algebraic K-Theory following
Waldhausen. For this one needs a suitable category of “cofibrant” objects. For a
discrete ring R these are the free or the projective modules. For a simplicial ring R
a suitable category is the category of cellular R-modules.

In the setting of [BFJR04] a “module over X” for a discrete ring S can be considered
as an S-module M together with a direct sum decomposition M ∼=


x∈XM

x. Each
subset U ⊆ X determines a direct summand


x∈U M

x of M . A map f : M → N
between such S-modules over X has associated some “control data”, namely (a, b) ∈
X ×X is in the “support of f” if and only if

Ma →

z∈X

M z f−→

y∈X

My →M b

is not the zero map. We then require that the support of f is contained in some E ∈ E .
While for free or projective S-modules each short exact sequence splits, not every
short exact sequence of cellular simplicial R-modules (exactness defined degreewise)
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splits, as simplicial modules have additionally structure maps, in particular face
maps δ∗

i , δi : [n − 1] � [n]. Also some of the “geometry” of X should play a role
when considering the cellular simplicial modules over X, so it is not enough to define
a cellular simplicial module over X to be a direct sum of cellular simplicial modules
(Mx

n )n for each x ∈ X, we want to have face maps which have a “distance”. Hence
the face maps δ∗

i also have to be “controlled” and moreover all structure maps should
be. The way to require this is the following.

A cellular R-module M is “generated” by the cells �RM . The way to make M an
E-controlled module over X for E ∈ E is to choose for each cell e ∈ �RM an element
κR(e) ∈ X. Then one considers the map of R-modules e : R[∆n]→M and require
that e hits only elements in M which are “over y ∈ X” with (κR(e), y) ∈ E. Note
that a general element in M is a linear combination of (degeneracies of) cells, so it
does not “live over one y ∈ X”; the general strategy is to say that if m = n+ e in M
then the support of m is contained in the union of the support of n and e. We make
this precise now.

Definition 1.12. Let (X, E ,F) be a control space. A general R-module over X is a
cellular R-module M together with a map κR : �RM → X.

A boundary of a simplex in �RM does not need to be contained in �RM . Define
the set of simplices of M as �M :=


n∈NMn. Each element a ∈ Mm ⊆ �M has a

unique representation as
a =


ei∈I(a)

ri · σ∗
i ei (3)

with I(a) ⊆ �RM finite, ri ∈ Rm, ri ̸= 0, σi : [m] � [ni] surjective and ei ∈
�RM ∩Mni . We can interpret I as a map �M → �RM . We extend κR : �RM → X
to a map κ : �M → P(X) by setting

κ(a) := κR(I(a)) = {κR(ei) | i ∈ I(a)}.

For σ : [m]� [n] surjective and e ∈ �RM ∩Mn we have κ(σ∗(e)) = κ(e) = {κR(e)}.
This means that degeneracies of cells are automatically “controlled”. This is not
true for boundaries of a cell, so we have to require it: Let e be an n-cell of M and
δ : [l]� [n] be injective. This gives a relation R(e, δ) := κR({e})× κR(I(δ∗(e))) ⊆
X ×X on X. We get a bigger relation R(e) by taking the union over all injective
maps δ : [l]� [n] and all l, so set

R(e) :=


l, δ:[l]�[n]

R(e, δ) = κR({e})× κR
 
l, δ:[l]�[n]

I

δ∗(e)


.

Then R(e) ⊆ X×X measures the “distance” of e and its boundaries over the control
space X.

Definition 1.13. Let (X, E ,F) be a control space. A controlled R-module (M,κR)
over X is a general R-module (M,κR) over X such that there are E ∈ E and F ∈ F
with
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(i) (boundary control): 
e∈�RM

R(e) ⊆ E

(ii) (support):
κR(�RM) ⊆ F.

We say (M,κR) is E-controlled and has support in F . We often leave κR understood.

Let (M,κR), (M ′, κ′
R) be general R-modules over X and f : M → M ′ a map of

simplicial R-modules. For each e ∈ �RM we get a relation Rf (e) by setting x ∼ y if
x = κR(e) and y ∈ κ′(f(e)).

Definition 1.14. Let (X, E ,F) be a control space. Let (M,κR), (M ′, κ′
R) be con-

trolled R-modules over X and f : M → M ′ be a map of simplicial R-modules. Let
E ∈ E.

The map f is E-controlled if 
e∈�RM

Rf (e) ⊆ E.

The map f is controlled if there is an E ∈ E such that f is E-controlled.

Remark 1.15. If f : M → M ′ is E-controlled and g : M ′ → M ′′ is E′-controlled,
then g ◦ f is E′ ◦ E-controlled. If f1, f2 : M →M ′ are E1-, resp. E2-controlled and
E1∪E2 ⊆ E3, then f1+f2 is E3-controlled. A map f : M →M ′ which is ∆-controlled
is a map “over X”, i.e. it maps cells over x ∈ X to a linear combination of cells over
x.

Definition 1.13 of control for a cellular simplicial R-module only works well if
the module in question is finite-dimensional, i.e. it has only cells up to a certain
dimension, see Section 1.1. Hence we require finite-dimensionality for all modules we
consider. We make the following definition.

Definition 1.16. Let (X, E ,F) be a control space. The finite-dimensional controlled
R-modules over X together with the controlled morphisms form a category which we
denote by

C(X,R, E ,F).

A map ϑ : (X, E ,F) → (X ′, E ′,F ′) of control spaces induces a functor ϑ∗ from
C(X,R, E ,F) to C(X ′, R, E ′,F ′) which sends (M,κR) to (M,ϑ ◦ κR).

For the following we fix a control space (X, E ,F). We abbreviate C(X,R, E ,F)
by C(X,R), by C(X) or simply by C. Let (M,κR) ∈ C(X,R) be a controlled R-
module, let A be a finite-dimensional simplicial set. The map p : A→ ∗ induces a
map p∗ : M [A]→M of simplicial R-modules which maps cells to cells, i.e. �RM [A]
to �RM . Therefore (M [A], κR ◦ p∗) is a controlled R-module and the map p∗ is
∆-controlled. More generally for every map p : A → B of simplicial sets we get a
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map M [p] : M [A] → M [B] which is ∆-controlled if M [A] and M [B] have the just
defined control maps.

Let R be R considered as left R-module. Define for x ∈ X the control map
κxR : �R R→ X, (�RR = {1R}), by κxR(1R) := x. This gives a controlled R-module
(R, κxR). This also gives controlled R-modules (R[∆n], κxR ◦ p∗), which we denote by
R[∆n]

x
for the next construction. In general we write them as R[∆n] and leave the

control map and the x understood. This works for more general simplicial sets than
∆n, we will use it e.g. for ∂∆n below.

Definition 1.17. A ∆-controlled map of controlled R-modules over X is called a
cellular inclusion if it is one after forgetting the control.

The next characterization is clear but often helpful.

Lemma 1.18. A map M → N is a cellular inclusion of controlled R-modules if and
only if it induces an injective map �RM → �RN and is ∆-controlled.

Note that inducing a map �RM → �RN is a strong condition, it means that cells
are mapped to cells and strongly depends on the chosen cell structure.

If M → N is a cellular inclusion of controlled R-modules it follows that M arises
from N by attaching controlled cells. Here N is said to arise from N ′ by attaching a
controlled n-cell over x ∈ X if there is a pushout diagram

R[∂∆n]
x

��

��

∂e // N ′
��

��
R[∆n]

x
e // N

in C(X) where the vertical maps are ∆-controlled, i.e. induced by ∂∆n → ∆n. It is
convenient to assume that x = κR(e(id[n])), so that R[∆n] is concentrated over κR(e),
e := e(id[n]) and the boundary control R(e) of e in B is the same as the morphism
control of ∂e. By definition all modules in C(X) are cellular and for A � B an
inclusion of simplicial sets the map M [A]→M [B] is a cellular inclusion in C (using
Lemma 1.4).
Remark 1.19. The category C(X,R, E ,F) has finite coproducts. If M1 is an E1-
controlled module with support on F1 and M2 is an E2-controlled modules with
support on F2 and E1 ∪ E2 ⊆ E′′ as well as F1 ∪ F2 ⊆ F ′′, then M1 ⨿M2 is an E′′-
controlled module with support on F ′′. In the context of categories with cofibrations
and weak equivalences the twofold coproduct is usually denoted by M1 ∨M2, a
reminiscent of the one-point union, so we will also use that notation. Certain larger
coproducts exist in C(X,R, E ,F), e.g. for a fixed module M and any index set I
the I-fold coproduct


IM exists. This only becomes important when we need the

mapping telescopes from Appendix C in Lemma 5.10.
Remark 1.20. (Isomorphic objects) Let M and N be in C(X,R, E ,F) and let M
be E-controlled with support on F . If f : M → N and g : N → M are inverse
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isomorphisms with f and g being E′-controlled, then N is E′ ◦E ◦E′-controlled and
has support on FE

′ .
Note that if M,N are isomorphic as simplicial modules they need not to be

controlled isomorphic, even if one of the isomorphisms is controlled. This is already
wrong for discrete R-modules with R a discrete ring. This implies in particular that
the choice of a cellular structure does matter.

Example 1.21. A counterexample is the following: Let X = N the discrete space
of the natural numbers with the standard euclidean metric. We get the morphism
control conditions Ed. Consider the module M :=


i∈NR{ei}. One basis of this

module is b1
i := ei, i ∈ N. Another one is b2

i := ei − ei−1, i ∈ N with e−1 := 0. So
we get two structures of a controlled module on M by mapping the ith element
of each basis to i. Call the modules (M1, κ

1
R) and (M2, κ

2
R). The identity is an

(uncontrolled) isomorphism of M1 and M2. The map id∗ : (M2, κ
2
R) → (M1, κ

1
R) is

controlled, as b2
i = b1

i − b1
i−1. However, in the inverse direction b1

i =
i

k=0 b
2
k, so the

map id∗ : (M1, κ
1
R)→ (M2, κ

2
R) is not controlled!

Remark 1.22. Note that albeit C(X,R, E ,F) is an additive category, the K-theory
defined by the split inclusions and isomorphisms (as used in [BLR08]) is not the
right one. We have to take homotopies into account. We define suitable structures
of a category with cofibrations and weak equivalences on C(X,R, E ,F) in Chapter 3
which allows us to use Waldhausen’s construction of algebraic K-theory.

If X is a point or more generally the control space is (X, {X × X}, {X}) the
category C(X,R) is equivalent to the category of finite-dimensional cellular simplicial
R-modules.

Let (X,R, E ,F) be a control space. According to our definition of C(X,R, E ,F)
each module has support on some F ∈ F and for two modules M,N there is an F ′

such that both have support on F ′. So we can replace a morphism control condition
E by the control conditions E ∩ (F ×F ) for all F ∈ F without changing the category
C(X,R, E ,F). Stated formally we set E := {E ∩ F × F | E ∈ E , F ∈ F} and get

C(X,R, E ,F) = C(X,R, E ,F).

We therefore can require a weaker condition of maps of control spaces, as in [BFJR04,
3.3 (ii)]. There the morphism condition on a map f : (X, E ,F)→ (Y, E ′,F ′) reads as
follows

“[. . . ] for E ∈ E and every F ∈ F there exists an E′ ∈ E ′ with
(f × f)(E ∩ F × F ) ⊆ E′.”

This corresponds to replacing E by E as above and then using the usual condition
(f × f)(E) ⊆ E′. One readily checks that E is still a morphism control structure in
the sense of Definition 1.6, cf. also Remark 1.10. We will come across maps X → Y
which give maps of control spaces from (X, EX ,FX) to (Y, EY ,FY ) but not from
(X, EX ,FX) to (Y, EY ,FY ).
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1.4. The “Fundamental Lemma”
Let R be a simplicial ring. Let M , N be simplicial left R-modules and let A be a
simplicial set. Let HomR(M,N) be the set of R-module homomorphisms from M to
N and let HOMR(M,N) be the simplicial mapping space of homomorphisms from
M to N (cf. Section 1.1). There is an adjunction (cf. (1))

HomR(M [A], N)� HomsSet(A,HOMR(M,N)). (4)

It sends a map f : M [A] → N to the map A →→ HOMR(M,N) which assigns to
a n-simplex a ∈ A the map M [∆n] a∗−→ M [A] f−→ N , where a : ∆n → A is the
characteristic map of a. In the other direction M [A] is a colimit of M [∆n]a := M [∆n]
for a ∈ A an n-simplex, so the maps M [∆n]a → N glue to a map M [A]→ N . The
bijection is natural in M , N and A. (See [GJ99, p. 158/Prop. 5.1 on p. 20] for the
case of simplicial abelian groups.)

There is a controlled version of this adjunction. It is not a full-fledged genuine
adjunction, but it is enough for what we need. Let (X, E ,F) be a control space, let
M,N ∈ C(X,R, E ,F) be controlled modules over X and let A be a simplicial set.
Let E ∈ E be a morphism control condition.

Definition 1.23. Define HomE
R(M,N) as the set of E-controlled maps from M to

N , i.e. the subset of maps f ∈ HomR(M,N) such that f is E-controlled.
Define HOME

R(M,N) as the spaces of E-controlled maps from M to N , i.e. the
subspace of elements f : M [∆n]→ N in HOMR(M,N)n for all n such that f is an
E-controlled map. As the boundaries and degeneracies of f are again E-controlled
this is a well-defined simplicial subset of HOMR(M,N).

Lemma 1.24 (Fundamental Lemma, 1st part). For M,N ∈ C(X,R, E ,F), a sim-
plicial set A and E ∈ E there is a bijection

HomE
R(M [A], N)

∼=−→ HomsSet(A,HOME
R(M,N))

which is induced by the adjunction (4).

A priori this bijection is only natural for ∆-controlled maps. We discuss naturality
after the proof.

Proof. The map M [A]→ N is E-controlled if and only if each map M [∆n]a → N =
M [∆n] a∗−→M [A]→ N is E-controlled, as M [∆n] a∗−→M [A] is ∆-controlled.

For each map f in C there is some E ∈ E such that f is E-controlled, so the set
of homomorphisms from M to N in C is the colimit of HomE

R(M,N) over E ∈ E .
As E is filtered by condition (ii) of Definition 1.6, this is a filtered colimit of sets
and even a union in our case. As the colimit does not depend on F we denote it by
HomE

R(M,N). Similar define HOME
R(M,N) as the filtered colimit (or as the union)

of HOME
R(M,N).
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In general HomsSet(A,−) does not commute with filtered colimits. However if A
is a finite simplicial set it does. So we get for A finite a bijection

HomE
R(M [A], N)

∼=−→ HomsSet(A,HOME
R(M,N)).

An EN -controlled map N → N ′ induces maps HomE
R(M,N)→ HomEN ◦E

R (M,N ′)
and HOME

R(M,N)→ HOMEN ◦E
R (M,N ′), and therefore maps

HomE
R(M,N)→ HomE

R(M,N ′) and HOME
R(M,N)→ HOME

R(M,N ′).

Similar an EM -controlled map M ′ →M induces maps

HomE
R(M [A], N)→ HomE◦EM

R (M ′[A], N) and
HOME

R(M [A], N)→ HOME◦EM
R (M ′[A], N)

and therefore maps

HomE
R(M [A], N)→ HomE

R(M ′[A], N) and HOME
R(M [A], N)→ HOME

R(M ′[A], N).

Corollary 1.25 (Fundamental Lemma, 2nd part). If A is a finite simplicial set and
M,N ∈ C(X,R, E ,F) we have a bijection

HomE
R(M [A], N)

∼=−→ HomsSet(A,HOME
R(M,N))

which is natural in A, M and N .

Remark 1.26. This is not quite an adjunction, but it is one “for all practical purposes”,
in particular for our practical purposes. The problem is that HOME

R(M,N) is not
a finite simplicial set, so the set of homomorphisms on the right-hand side is not a
Hom-functor of the category of finite simplicial sets. For an adjunction one would
need e.g. to be able to apply it to HOME

R(M,N) for A, but the bijection does not
hold for this in general non-finite simplicial set.

Actually for practical applications the first part of the Fundamental Lemma is
more useful as it has an explicit control condition. However the second version
includes the naturality which makes the similarity to an adjunction more explicit.

1.5. Equivariant controlled modules
We need equivariant versions of the notions of Sections 1.1 to 1.4. So for the following
let G be an arbitrary discrete group. Most of the definitions are straightforward
generalizations. We are mainly interested in free actions with regard to our applica-
tions, cf. the discussion in [BFJR04, Section 3] and Section 7.1. All our notions here
specialize to the notions of Sections 1.1 to 1.4 if we let G be the trivial group {1}.

Definition 1.27. Let M be a simplicial R-module. An action of G on M is a
group homomorphism ρ : G→ AutR(M) from G to the automorphism group of M .
(This is the same as a map G→ HomR(M,M) which takes group multiplication to
composition.)
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An action of G on M gives an action on each Mn. The action is called cell-
permuting if it induces an action on the chosen cell structure �RM . An action is free
if it is cell-permuting and the action on �RM is free. A free action makes each Mn

into a free Rn[G]-module.
Let M,N be simplicial R-modules which have G-actions ρM and ρN respectively.

A map f : M → N of simplicial R-modules is called G-equivariant if for each g ∈ G
the diagram

M
f
//

ρM (g)
��

N

ρN (g)
��

M
f
// N

commutes. A G-equivariant map i : L → M is called a cellular inclusion if it is
one after forgetting the G-action. If the action is cell-permuting it follows that M
arises from L by attaching G-cells, i.e. cells of the form R[∆n][G/H], H a subgroup
of G. If the G-action on M (and hence on L) is free M arises by attaching free
G-cells


R[∆n][G/1]. (See [DL98] for a discussion of the analogous case of G-

CW-complexes.) The module R[∆n][G/H] inherits its G-action from the G-set
G/H, which is interpreted as a discrete simplicial set with a G-action. Equivalently
R[∆n][G/H] is the coproduct


g∈G/H R[∆n] which inherits the obvious G-action by

the permutation of factors.
If M is a simplicial R-module with G-action and A a simplicial set then M [A]

has a G-action by the functoriality of −[A]. Denote by HomR(M,N)G the set
of G-equivariant homomorphisms from M to N . It is a subset of HomR(M,N).
Denote similarly by HOMR(M,N)G the subspace of HOMR(M,N) of G-equivariant
homomorphisms. The adjunction (1) gives an adjunction

HomR(M [A], N)G � HomsSet(A,HOMR(M,N)G). (5)

(See below for a more detailed discussion of this in the controlled context.)

Definition 1.28. A G-equivariant control space is a control space (X, E ,F) such
that X has a G-action and the morphism control conditions E ∈ E and the object
support conditions F ∈ F are G-invariant, i.e. gE = E with diagonal action and
gF = F for all E,F and all g ∈ G.

A free G-equivariant control space is a G-equivariant control space (X, E ,F) such
that the action on X is free. A map of G-equivariant control spaces (X, EX ,FX)→
(Y, EY ,FY ) is a map of control spaces which is also G-equivariant.

The control space (X, E ,F) is called G-proper if for each G-compact set K ⊆ X,
for E ∈ E and F ∈ F there is a G-compact set K ′ ⊆ X such that (F ∩K)E ∩F ⊆ K ′.

Examples 1.29. These are from [BFJR04, Definitions 2.7,2.9; Section 3.1,3.2].

(i) (G-equivariant continuous control). Let Z be a topological space with continu-
ous G-action. Define the equivariant continuous morphism control structure
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EGcc(Z) on X := Z × [1,∞) as follows. E is in EGcc(Z) if it is symmetric,
invariant under the G-operation and
(a) For every x ∈ Z and each Gx-invariant neighborhood U of (x,∞) in

Z × [1,∞] there is a Gx-invariant neighborhood V ⊆ U of (x,∞) in
Z × [1,∞] such that E ∩ ((X r U)× V ) = ∅.

(b) p[1,∞) × p[1,∞)(E) ∈ Ed([1,∞)), where d is the standard euclidean metric
on [1,∞) and p[1,∞) is the projection to [1,∞).

(ii) (G-compact support). Let X be a G-space. Define the G-compact object
support conditions FGc as follows. A set F ⊆ X is in FGc if it is G-compact,
i.e. of the form GK for some compact set K ⊆ X. These are object support
conditions for the control space (Z × [1,∞), EGcc) from the previous item.

(iii) (Resolutions). A resolution of the G-space Z is a free G-space Z together with
an equivariant continuous map p : Z → X such that for every G-compact set
GK ⊆ Z there is a G-compact set GK ⊆ Z with p(GK) = GK. Further the
G-action on Z should be properly discontinuous and G\Z should be Hausdorff.
The standard resolution is Z ×G→ Z. (It is a resolution for Z Hausdorff.)

Definition 1.30. Let (X, E ,F) be a free G-equivariant control space. A controlled
simplicial R-module with G-action over X is a controlled module (M,κR) over X
such that M has a cell-permuting G-action and κR : �RM → X is G-equivariant. It
follows that the G-action on M is free.

A morphism of controlled simplicial R-modules with G-action over X from (M,κR)
to (N,κR) is a G-equivariant morphism M → N which is controlled over X.

Denote the category of finite-dimensional controlled simplicial R-modules over X
with free G-action and its morphisms as

CG(X,R, E ,F).

We abbreviate it by CG(X,R), CG(X) or CG.

All further definitions of Section 1.3 transfer to CG.

Remark 1.31. A cellular simplicial R-module with free cell-permuting G-action is
the same as a free cellular R[G]-module, where R[G] is the (simplicial) group ring.
However, a controlled simplicial R-module with G-action is not the same as a
controlled R[G]-module. The reason is that we want to “distribute” the G-action over
X, i.e. it should be “horizontally” while the R-multiplication should be “vertically”,
i.e. agnostic of the X.

The adjunction (4)

HomR(M [A], N)� HomsSet(A,HOMR(M,N))
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restricts to the equivariant adjunction (5)

HomR(M [A], N)G � HomsSet(A,HOMR(M,N)G)

as follows. For a G-equivariant map M [A] → N and all a ∈ A the induced maps
M [∆n]a →M [A]→ N are also G-equivariant and vice versa those equivariant maps
glue to an equivariant map M [A]→ N .

This gives the corresponding equivariant controlled versions of the Fundamental
Lemma 1.24 and 1.25. For E ∈ E define HomE

R(M,N)G and HOME
R(M,N)G as the

subset resp. subspace of G-equivariant maps in HomE
R(M,N) and HOME

R(M,N).

Lemma 1.32 (Equivariant Fundamental Lemma, 1st part). For M and N in
CG(X,R, E ,F), a simplicial set A and E ∈ E there is a bijection

HomE
R(M [A], N)G

∼=−→ HomsSet(A,HOME
R(M,N)G)

which is induced by the adjunction (5).

Corollary 1.33 (Equivariant Fundamental Lemma, 2nd part). If A is a finite
simplicial set and M,N ∈ CG(X,R, E ,F) we have a bijection

HomE
R(M [A], N)G

∼=−→ HomsSet(A,HOME
R(M,N)G)

which is natural in A, M and N .

Here we use the obvious definitions of HomE
R(M [A], N)G and HOME

R(M,N)G as
the subset and subspace of G-equivariant maps. (Alternatively we could define it as
the colimit over E.)

Proof of Lemma 1.32 and Corollary 1.33. The bijections are restrictions of the bi-
jections of Lemma 1.24 and Corollary 1.25 by (5), so the control condition holds.
The naturality of Corollary 1.33 follows from the naturality of Corollary 1.25.

Remark 1.34 (Removing equivariance). Denote by R[G/1] a cellular simplicial con-
trolled R-module (


g∈G/1Rg, κR) over X with the obvious free G-action, where Rg

denotes a 1-dimensional free R-module. It is determined the value of κR on the cell
(1R)e for e ∈ G. If we forget the control we have an adjunction

HOMR[G](R[G/1], N)� HOMR(R,N).

For the controlled modules this gives natural isomorphisms

HOME
R(R[G/1], N)G ∼= HOME

R(R,N)

and
HOME

R(R[G/1], N)G ∼= HOME
R(R,N)

where on the right-hand side we forget the G-action on N and consider N as a
non-equivariant controlled cellular R-module. This simplifies the right-hand side of
the Fundamental Lemma in the case M = R[G/1].
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Of course all the remarks of Section 1.4 apply.
Remark 1.35. Let us sketch the prospective use of the lemma. We will be concerned
with problems where the simplicial set A changes. A common situation is the inclusion
Λn
i → ∆n of a horn into the n-simplex which induces a map M [Λn

i ]→M [∆n]. We
then want to know if we could extend a map M [Λni ]→ N to a map on M [∆n].

The Fundamental Lemma translates this problem into a situation of simplicial
maps Λn

i → Q with Q := HOMR(M,N) where we can analyze (and solve) it. The
crucial point is that we do not need to care about control any more, the Fundamental
Lemma does this for us. Further the Equivariant Fundamental Lemma now even
takes care about the equivariance, so from that point of view this situation is not
more complicated than the non-equivariant one. These are the reasons why we call
this two facts “Fundamental Lemma” as they hide a lot of complications for us.
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2. Structures on CG(X, R, E ,F)

We want to define the algebraic K-Theory of C(X,R, E ,F) and CG(X,R, E ,F). The
established way to do this is to use Waldhausen’s S.-construction which takes as
input a category with cofibrations and weak equivalences and produces an infinite
loop space or equivalently a connective spectrum ([Wal85]), see Appendix B for a
brief overview. The following discusses the ingredients we need to produce such
a structure on CG, the actual result is Proposition 3.3 in Section 3.1. We assume
first that F = {X}, i.e. that we do not have any object support conditions. For
non-trivial object support conditions there are only two extra things to check which
are discussed in Section 3.3.

The first step is that we show that CG is a category with cofibrations (cf. B.1). This
is established in Section 2.2. Then we define cylinders in Section 2.3, which are used
to define homotopies in Section 2.4. The homotopy equivalences are the first choice of
the weak equivalences for CG(X,R) (the second are the germwise weak equivalences
which we define in Chapter 4). To prove the axioms of a category of weak equivalences
we have to do some intermediate steps. We prove that the mapping cylinder of a
homotopy equivalence is a deformation retract of the source (Section 2.6), and then
that the pushout of cofibration which is a homotopy equivalence is again a homotopy
equivalence (Section 2.7). We finish this chapter with a proof of the Extension Axiom
for homotopy equivalences.
Remark 2.1. A lot of the proofs in the following sections are formal in the sense
that they do not use specific properties of CG but merely some basic Lemmas about
CG. Some of these Lemmas are e.g. the existence of pushouts along cofibrations
(Lemma 2.6), and the horn-filling and the homotopy extension properties (Lem-
mas 2.21 and 2.29). However, it does not seem worthwhile to try to make this
formality precise by giving an axiomatic framework as things will not get easier to
understand.

One consequence of this formality is that quite a few proofs look exactly like proofs
for the corresponding statements for uncontrolled cellular R-modules. Of course our
results specialize to the uncontrolled case, but the converse is not true in general.
The main obstacle is that we do not have homotopy groups available in the controlled
setting, which make things considerably easier in the uncontrolled case, as a map
between uncontrolled cellular R-modules is a homotopy equivalence if and only if
it induces an isomorphism on homotopy groups of the underlying simplicial sets.
The author suspects that the uncontrolled cases of the results of this chapter are
well-known, but there does not seem to be a standard reference for this.

Another point we have to pay attention to is the following. When we deal with an
infinite number of cells or an infinite number of steps, e.g. for an induction, we have
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to take care of the control conditions. In particular CG does not contain all infinite
colimits, for in general the set

∞
i=0Ei, Ei ∈ E is not longer controlled. This is the

main reason we assume our modules to be of finite dimension. If we do only finitely
many steps we can often do the proof without mentioning control conditions at all,
and we will do so.

2.1. Pushouts along cellular inclusions and cofibrations
The categories C and CG do not have all pushouts, e.g. for R := Z the pushout of
∗ ← Z ·2−→ Z is Z/2 and not free. But pushouts along cellular inclusions exist even
canonically.

Lemma 2.2 (Pushouts along cellular inclusions). Let (A, κAR)→ (B, κBR) be a cellular
inclusion in CG, let f : (A, κAR) → (C, κCR) be any controlled map in CG. Then the
pushout D := C ∪A B,

A // //

f
��

B

��

C // // D

of simplicial R-modules has a canonical structure of an object (D,κDR ) in CG. Further
(C, κCR)→ (D,κDR ) is a cellular inclusion.

Hence CG has canonical pushouts along cellular inclusions.

Remark 2.3. It is important that the pushouts are canonical to get functorial mapping
cylinders later. Being “canonical” should mean that for each diagram there is a
preferred choice of the pushout, only depending on the diagram.

Proof. We first prove this for C, i.e. G = {1}. Clearly D exists as a finite-dimensional
simplicial R-module, as the category of finite-dimensional simplicial R-modules is
cocomplete. It suffices to show that C → D is a cellular inclusion.

As A� B is cellular, B has a filtration

A = B−1 � B0 � B1 � · · ·� Bi� · · ·

and each Bi is a pushout 
Ji
R[∂∆i] // //

��


Ji
R[∆i]

��

Bi−1 // // Bi

.

Set inductively Di as the pushout

Bi−1 // //

��

Bi

��

Di−1 // // Di
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control conditions we have

A,B EB-controlled
C EC-controlled
f Ef -controlled

gC , gB E-controlled

A // //

f

��

B

f
�� gB

��

C // //

gC
,,

D
g

��
@

@
@

@

T

control conditions we get

D EC ∪ Ef ◦ EB-controlledf Ef -controlled
g E-controlled

Table 2.1.: Control conditions on pushouts along cellular inclusions in CG.

with D−1 := C. Then the Di give a filtration

C = D−1 � D0 � D1 � · · ·� Di� · · ·

of D and Di is the pushout


Ji
R[∂∆i] // //

��


Ji
R[∆i]

��

Di−1 // // Di

.

So C → D is cellular, thus D is cellular. The cells of D are indexed by the cells of C
and the cells of B which are not in A, so �RD ∼= �RC ∪ (�RB r �RA) and we specify
this isomorphism to get a canonical model for D, call it ϕ in the following. (Recall
that �RD and boundary data determine D.)

Define κDR as

κDR (e) :=

κCR(e) if ϕ(e) ∈ �RC,
κBR(e) if ϕ(e) ∈ �RB r �RA.

Let f : A → B be Ef -controlled, let B be EB-controlled and C be EC-controlled.
Then the boundary control for e ∈ �RD with ϕ(e) ∈ �RB is Ef ◦EB and the boundary
control for e ∈ �RD with ϕ(e) ∈ �RC is EC . So (D,κDR ) is an EC∪Ef ◦EB-controlled
module. Further B → D is Ef -controlled. If B and C have object support on F ∈ F
then D has object support on F .

If B → T , C → T are compatible E-controlled maps, the induced map D → T is
also E-controlled. This shows that the pushout D in simplicial modules gives the
pushout (D,κDR ) in C.

If A, B, C have a free G-action then D has a free G-action, e.g. because ϕ : �RD ∼=
�RC∪(�RBr�RA) is an isomorphism of free G-sets. Hence (D,κDR ) is also a pushout
in CG.

Remark 2.4. For reference the control conditions for a pushout along a cellular
inclusion CG are recorded in Table 2.1.
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Definition 2.5. A cofibration in CG is a map A → B which is isomorphic to a
cellular inclusion, i.e. there is a diagram in CG

A //

∼=
��

B

∼=
��

A′ // // B′

(6)

where A→ A′ and B → B′ are isomorphisms and A′ � B′ is a cellular inclusion.
We denote cofibrations again by “�”.

One way to state the definition is to say that B arises from A by attaching cells
up to isomorphism. This implies in particular that the cellular structure of A and B
might not be compatible.

Lemma 2.2 remains true for cofibrations except that pushouts might no longer be
canonical:
Lemma 2.6 (Pushouts along cofibrations). Let A� B be a cofibration in CG and
A→ C any controlled map. Then the pushout D of C ← A� B exists in CG and
the map C → D is a cofibration which can be chosen to be a cellular inclusion.
Proof. Choose a cellular inclusion A′ � B′ isomorphic to A� B. Diagram (6) is
also a pushout diagram so we set D := C ∪A′ B′ using Lemma 2.2 and get the big
diagram

A //

∼=
��

B

∼=
��

A′ // //

��

B′

��

C // // D

.

Both smaller squares are pushouts and therefore the outer one is the desired pushout
in CG. Note that pushouts might not be canonical as one might not be able to choose
the cellular inclusion A′ � B′ canonically depending on A� B.

2.2. CG(X, R, E ,F) is a category with cofibrations
Let coCG be the class of cofibrations in CG.
Lemma 2.7. coCG is a subcategory of CG.
Proof. Identities are cofibrations. We have to prove that composition of two cofibra-
tions is a cofibration.

Composition of cellular inclusions is a cellular inclusion. Assume we have cofibra-
tions A� B, B� C. Then A� B is isomorphic to a cellular inclusion

A // //

∼=
��

B

∼=
��

A′ // // B′
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and the pushout C ′ in
B // //

∼=
��

C

∼=
��

B′ // // C ′

can be chosen by Lemma 2.6 such that B′ → C ′ is a cellular inclusion. So A→ C is
isomorphic to the composition of cellular inclusions

A′ � B′ � C ′

and hence it is a cofibration.

Lemma 2.8. The category CG together with the class coC is a category with cofi-
brations in the sense of B.1/[Wal85].

Proof. We have to check four axioms.

(0) coCG is a subcategory.

(i) Isomorphisms are in coCG.

(ii) All maps ∗ →M are in coCG.

(iii) Cofibrations admit cobase change.

Items (ii) and (i) are satisfied by definition. Item (iii) holds by Lemma 2.6 and (0)
by Lemma 2.7.

Remark 2.9. This is the time to make an important remark about our choice of
cofibrations. In general retracts of maps in coCG are no longer cofibrations! Otherwise
the pushout along a cofibration might not yield again a cellular simplicial R-module,
so we would have to include retracts of cellular simplicial R-modules in our definition
of CG, but we had trouble to find a good notion of control for these kind of R-
modules. In the world of discrete R-modules this means that we are only looking at
free modules and not at projective ones because we need properties which depend
on a basis of our modules which are hard to get for projective modules. However,
our category is big enough to have homotopy retracts, which we will have reason to
discuss later.

A counterexample for R a discrete ring is the following. Let B be an R-module
which is stably free but not free, so B ⊕ Rn ∼= Rm. Then cellular inclusions are
inclusions of direct summands with free complement, compare with Table 1.1 on
page 21. Assume m > n and choose an inclusion a : Rn → Rm such that the
complement is free. Thus a is a cellular inclusion. Then the inclusion into the second
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summand 0⊕ id : Rn → B ⊕Rn is a retract of the cellular inclusion a⊕ idRn ,

Rn
0⊕id

//

i1
��

B ⊕Rn

��

Rn ⊕Rn a⊕id
//

pr1
��

Rn ⊕B ⊕Rn

��

Rn
0⊕id

// B ⊕Rn

.

But the complement of 0⊕ id is B and not free. So if we would require retracts of
cofibrations to be cofibrations then 0⊕ id must be a cofibration. It would follow, as

Rn // //

��

B ⊕Rn

��

∗ // // B

is a pushout along a cofibration, that B must be in our category, although B is not
free.

2.3. A cylinder functor
For the next constructions we need the notion of a mapping cylinder for any map
f : A→ B in CG. In the context of categories with cofibrations a Cylinder Functor
(B.3/[Wal85, 1.6]) serves this purpose.
Remark 2.10. Note that albeit [Wal85] requires a category with cofibrations and
weak equivalences we actually do not need the weak equivalences in the definition of
a Cylinder Functor. However the weak equivalences are needed in the statement of
the Cylinder Axiom, so we will only mention the axiom here briefly in 2.18 and defer
the discussion of it.

We first recall the definition of a Cylinder Functor.
Recollection 2.11 (Cylinder Functor, B.3/[Wal85, 1.6]). Let C be a category with
cofibrations. A Cylinder Functor is a functor which takes a map f : A→ B in ArC
to a diagram

A
ι0 //

f
!!C

CC
CC

CC
CC

T (f)
p

��

B
ι1oo

id
}}zz

zz
zz

zz
z

B

.

Here ι0 is called the front inclusion, ι1 is called the back inclusion and p is called the
projection. Further the following two axioms should be satisfied.

(i) (Cyl 1) Front and back inclusion assemble to an exact functor

ArC −→ F1C
f →→


ι0 ∨ ι1 : A ∨B� T (f)


.
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(ii) (Cyl 2) T (∗ → A) = A for every A ∈ C and the projection and the back
inclusion are the identity map on A.

Here ArC is the arrow category of C and F1C is the full subcategory of ArC with
objects the cofibrations. Both can be made into categories with cofibrations, with
the cofibrations of F1C being slightly non-obvious. See Appendix B and [Wal85, 1.1]
for the precise definitions. We use the notion “A∨B” from [Wal85] for the coproduct
of A and B.

Definition 2.12. Let f : A → B be a map in CG. Define T (f) as the canonical
pushout in

A[1] // //

f

��

A[∆1]

��

B // T (f)

. (7)

Proposition 2.13. The assignment f →→ T (f) gives a Cylinder Functor on CG.

There is a lot to check. We will first construct the required data and show the
functoriality. Then we check the axioms. The whole proof occupies almost the rest
of this section and we state the steps as lemmas.

Lemma 2.14. T gives a functor from ArCG into diagrams in CG, taking f : A→ B
to a commutative diagram

A
ι0 //

f
!!C

CC
CC

CC
CC

T (f)
p

��

B
ι1oo

id
}}zz

zz
zz

zz
z

B

. (8)

Proof. First A →→ A[∆1] is a functor and as A[1]� A[∆1] is a cellular inclusion the
pushout in (7) is functorial as by Lemma 2.2 there is a canonical choice of T (f).
Therefore T (f) depends functorially on f .

The map ι0 is given by A[0] → A[∆1] → T (f), ι1 is given by B → T (f) in (7).
The maps id : B → B and A[∆1] pr−→ A

f−→ B induce the map p:

A[1] // //

f

��

A[∆1]

��

pr

��

B //

id
,,

T (f)
p

""E
E

E
E A

f

��

B

.
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This gives diagram (8). One checks that

A
f
//

��

B

��

A′ f ′
// B′

gives a map of diagrams (8). Hence we made T into a functor.

Lemma 2.15 (Cyl 2). T (∗ → A) = A for A ∈ CG and p and ι1 are the identity.

Proof. We have ∗[∆1] = ∗, so T (∗ → A) is the pushout of ∗ ← ∗ → A, which is A
by inspection of the proof of Lemma 2.2. (Of course a canonical isomorphism would
suffice, for the proof as well as for the definition of (Cyl 2).)

We split the proof of (Cyl 1) into two parts which will be the next two lemmas.

Lemma 2.16. Front and back inclusion give a functor ArCG → F1CG,

f →→ (A ∨B� T (f)).

Proof. The only thing to show is that A∨B → T (f) is a cellular inclusion. Consider
the diagram

∗ // //
��

��

A
��

��

I

A // //

f

��

A ∨A // //

��

II

A[∆1]

��

III

B // // A ∨B // T (f)

.

Here A∨A� A[∆1] is the cellular inclusion ι0 ∨ ι1 : A[0]∨A[1] = A[0⨿ 1]� A[∆1].
We claim that every possible square is a pushout along a cellular inclusion. I is a
pushout square by definition, as well as I + II. It follows that II is one. Further II
+ III is a pushout square by definition of T (f), so III is one. Hence the lower map
A ∨B → T (f) is a cellular inclusion by Lemma 2.2.

The last and most difficult part is to check the exactness of the functor ArCG →
F1CG.

Lemma 2.17. The functor of Lemma 2.16 is exact.

Let us briefly recall the cofibrations in ArC and F1CG, cf. also Appendix B. For
notation let

A
f
//

��

B

��

A′ f ′
// B′

(9)
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be a map in ArCG from A → B to A′ → B′. It is a cofibration in ArCG if both
vertical maps are cofibrations. The category F1CG is the full subcategory of ArCG
with objects being the cofibrations in CG. Hence if f and f ′ are cofibrations the
diagram also shows a map in F1CG. It is a cofibration in F1CG if A → A′ and
A′ ∪A B → B′ are cofibrations in CG. See [Wal85, Lemma 1.1.1] for details and a
proof that the composition of cofibrations in F1CG is again a cofibration.

Proof. Both A ∨ B and T (f) are colimits, hence commute with pushouts, which
are formed pointwise in ArCG and F1CG. The functor respects the zero object
∗ → ∗. So we only have to show that it maps cofibrations to cofibrations. More
concretely we have to show that for a map (9) which is a cofibration in ArCG the
maps A ∨ B → A′ ∨ B′ and (A′ ∨ B′) ∪A∨B T (f) → T (f ′) are cofibrations in CG.
As functors respect isomorphisms we can assume that all cofibrations are cellular
inclusions.

So assume we have a diagram (9) where the vertical maps are cellular inclusions.
We can factor (9) into

A

f

��

id
A

f∗

��

// A′

f ′

��

B // B′ id
B′

(where we write the maps horizontally for presentational reasons). If suffices to check
each map individually. As B� B′ is a cellular inclusion and A ∨B′ is the pushout
of B′ � B → A ∨B the map A ∨B → A ∨B′ is a cellular inclusion by Lemma 2.2.
By the same reason A ∨B′ → A′ ∨B′ is a cellular inclusion.

Recalling that by Definition 2.12 T (f) is the pushout B ∪f A[∆1]

A //

f

��

A[∆1]

��

B // T (f)

we see that T (f∗) is the pushout

B //

��

T (f)

��

B′ // T (f∗)

and hence (by “canceling A” by a similar pushout argument as in the proof of
Lemma 2.16) it is the pushout

A ∨B //

��

T (f)

��

A ∨B′ // T (f∗)
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so the map (A ∨ B′) ∪A∨B T (f) → T (f∗) is the identity and therefore a cellular
inclusion. Using the canceling argument for B we can write the other map

(A′ ∨B′) ∪A∨B′ T (f∗)→ T (f ′)

as
A′ ∪A[0] A[∆1] ∪f∗ B′ → A′[∆1] ∪f ′ B′. (10)

Here the first object is a cylinder where we glued in spaces at both sides. But because
A� A′ is a cellular inclusion so is A′[0] ∪A[0] A[∆1] ∪A[1] A

′[1]� A′[∆1]. We have
the commutative diagram

A[1] // //

��

��

��

f∗

��

A′[0] ∪A[0] A[∆1]
��

��

A′[1] // //

f ′

��

A′[0] ∪A[0] A[∆1] ∪A[1] A
′[1] // //

��

A′[∆1]

��

B′ // // A′[0] ∪A[0] A[∆1] ∪f∗ B′ // A′[∆1] ∪f ′ B′

where every square and in particular the lower right one is a pushout (by the same
reasoning as in the proof of Lemma 2.16). The lower right horizontal map is the map
(10). Hence using Lemma 2.2 one last time it follows that the map (10) is a cellular
inclusion.

The Cylinder Functor T satisfies the Cylinder Axiom with respect to the homotopy
equivalences. We defer the proof until we actually define what a homotopy equivalence
is. (The definition involves the Cylinder Functor.) We state it here for completeness.

Lemma 2.18 (Cylinder Axiom). T satisfies the Cylinder Axiom, i.e. T (f)→ B is
a homotopy equivalence for all f : A→ B in C..

Proof. This will be proved in 2.33.

Remark 2.19. Compared to the topological case the mapping cylinders we get are
reduced as ∗[∆1] = ∗. This is necessary for the Cylinder Functor to be exact. In
particular T respects cofiber sequences (cf. 2.43, see the proof of Lemma 2.48 for an
application of this property).

2.4. Homotopies, horn-filling and the homotopy extension
property

We can apply the Cylinder Functor to idA : A → A and get the module T (idA) =
A[∆1] together with maps ιi : A[i] → A[∆1], i = 0, 1, and p : A[∆1] → A. We call
A[∆1] a cylinder for A and use it to define the notion of homotopy in CG.
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Definition 2.20. Let A,B ∈ CG and let f, g be maps A→ B. A homotopy from f
to g is a map H : A[∆1]→ B such that H ◦ ι0 : A[0]→ A[∆1]→ B is equal to f and
H ◦ ι1 : A[1] → A[∆1] → B is equal to g. Then f and g are said to be homotopic,
written f ≃ g.

We sometimes abbreviate H ◦ ι0 as H0, etc. If C � A is a cellular inclusion (or
more generally any map) we say that a homotopy H : A[∆1]→ B is relative to C or
constant or trivial on C if the induced composed homotopy C[∆1] → A[∆1] → B
factors over p : C[∆1]→ C, i.e. it can be written as the composition C[∆1]→ C → B.

To actually show something about homotopies we need the horn-filling property,
which we discuss next.

Let ∆n be the standard n-simplex. The ith horn Λni is the simplicial subset of ∆n

generated by all but the ith face of ∆n. Recall that a simplicial set K is called fibrant
or Kan if for all n and i every map Λni → K can be extended to a map ∆n → K. This
process is called “horn-filling”, so K is also said to have the “horn-filling” property or
the Kan Extension Property (after [Kan57]). Kan sets are homotopically nice, e.g. if
K and L are Kan, being homotopic is an equivalence relation on maps L→ K, and
such a map is an π∗-isomorphism if and only if it is a homotopy equivalence. See the
[GJ99, I.3] for the basic definitions of horns and horn-filling in the case of simplicial
sets and a proof that any simplicial group has the Kan Extension Property.

We need the analogous property in the category CG. The following lemma and
its proof is a prototype for a lot of arguments that will follow. Its key ingredient is
the Fundamental Lemma 1.32 and this is in fact the reason why we call 1.32 the
“Fundamental Lemma”.

Lemma 2.21 (Horn-filling). Let Λni ⊆ ∆n be a horn. Given objects M , P from CG.
Then any E-controlled map M [Λn

i ] → P can be extended to an E-controlled map
M [∆n]→ P . We say that we can fill the horn M [Λni ] over P .

Proof. We want a dashed map in

M [Λni ]

��

// P

M [∆n]

<<y
y

y
y

y

,

where M [Λn
i ] → M [∆n] is ∆-controlled, i.e. induced by Λn

i → ∆n. By the Funda-
mental Lemma 1.32 this is equivalent to the existence of a dashed map (of simplicial
sets) in

Λni

��

// HOME
R(M,P )G

∆n

88pppppp

.

But HOME
R(M,P )G is a simplicial (abelian) group, hence it has the horn-filling

property for simplicial sets. So the dashed lift exists.
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In the following we use the notions “Kan Extension Property” and “horn-filling”
interchangeably. We need a relative version of horn-filling.

Lemma 2.22 (Relative horn-filling). Let M,P ∈ CG. Let A be a cellular submodule
of M , let Λn

i ⊆ ∆n be a horn. Any controlled maps A[∆n] → P and M [Λn
i ] → P

which agree on A[Λni ] can be extended to a controlled map M [∆n]→ P .

Remark 2.23. Checking the proof shows that the extension is only E′ ◦En-controlled,
with M being E-controlled, E′ the control of the maps to P and n the dimension of
M . This is not as good as in the previous Lemma, but sufficient for our applications.

Proof of 2.22. First assume that M arises from A by attaching only one k-cell and
that G = {1}. We prove that

R[∆k × Λni ∪ ∂∆k ×∆n]

��

//M [Λni ] ∪A[Λn
i ] A[∆n]

��

R[∆k ×∆n] //M [∆n]

is a pushout in CG. First M is the pushout

R[∂∆k] //

��

A

��

R[∆k] //M

.

As adjoining a simplicial set commutes with colimits we get pushouts

R[∂∆k][∆n] //

��

(A)

A[∆n]

��

R[∆k][∆n] //M [∆n]

and

R[∂∆k][Λni ] //

��

(B)

A[Λni ]

��

R[∆k][Λni ] //M [Λni ]

.

Further R[∆k × Λni ∪ ∂∆k ×∆n] and M [Λni ] ∪A[Λn
i ] A[∆n] are the pushouts

R[∂∆k][Λni ] //

��

(C)

R[∆k][Λni ]

��

R[∂∆k][∆n] // R[∆k × Λni ∪ ∂∆k ×∆n]

and

A[Λni ] //

��

(D)

M [Λni ]

��

A[∆n] //M [Λni ] ∪A[Λn
i ] A[∆n]

.

We have a larger diagram

R[∂∆k][∆n] //

��

(E)

R[∆k × Λni ∪ ∂∆k ×∆n] //

��

(F)

R[∆k][∆n]

��

A[∆n] //M [Λni ] ∪A[Λn
i ] A[∆n] //M [∆n]

.

46



We want that the square (F) is a pushout. This now follows from the rules for
composing pushouts: We first show that (E) is a pushout. We write (B) + (D) for the
“composition” (stacking) of the diagrams (B) and (D) along the only common map,
etc. We have that (B) + (D) is a pushout which is the same diagram as (C) + (E).
As (C) is a pushout it follows that (E) is one. Then (E) + (F) is the pushout (A),
therefore (F) is one.

We want to find a dashed lift in

R[∆k × Λni ∪ ∂∆k ×∆n]

��

//M [Λni ] ∪A[Λn
i ] A[∆n]

��

// P

R[∆k ×∆n] //M [∆n]

77ppppppp
, (11)

but as the square is a pushout it suffices to find a lift R[∆k ×∆n]→ P . For this it
suffices by the Fundamental Lemma 1.33 to find a lift in the diagram of simplicial
sets

∆k × Λni ∪ ∂∆k ×∆n

��

// HOME
R(R,P )

∆k ×∆n

55kkkkkkk

.

Such a lift exists as the vertical inclusion arises by repeated horn-filling (cf. [GJ99,
p. 18/19]) and HOME

R(R,P ) is an abelian group and hence Kan.
If G ̸= {1} we have to find a lift R[G/1][∆k ×∆n], but we can first find the lift for

R[{1}/1][∆k ×∆n] and then extend equivariantly. Alternatively the whole argument
works for R replaced with R[G/1] and the equivariance of the Fundamental Lemma.

If we want to attach more than one cell we have to take care of the control
conditions. Assume M is E-controlled. We can arrange Diagram (11) such that the
left horizontal maps are E-controlled (and the left vertical map is ∆-controlled). If the
right horizontal map to P is E′-controlled, then by the first part of the Fundamental
Lemma 1.32 the lift is E′ ◦ E-controlled.

Assume that M arises from A by attaching only cells of dimension k. As they can
be attached individually we can take the lift for each cell, each of which is E′ ◦ E-
controlled, and glue it to a common lift, which therefore is again E′ ◦ E-controlled.
The general case follows by induction and the finite-dimensionality of M .

Remark 2.24. This is one of the places where we need the finite-dimensionality of
our modules, at least for the proof of the lemma.

Corollary 2.25. Let M,N be in CG. Being homotopic is an equivalence relation on
HomCG(M,N).

For the proof of the corollary and following proofs it is convenient to have a
diagram language available. We provide a digression to describe the language we will
use. So the reader can skip to Definition 2.27 if the following proof of Corollary 2.25
is clear.
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We need a quick definition: For each map f : A → B we have the constant or
trivial homotopy Trf : A[∆1] p−→ A

f−→ B from f to f .

Proof of Corollary 2.25 using notation from the digression below. Let f , g and h be
maps A→ B and H, G : A[∆1]→ B be homotopies such that H0 = f , H1 = g = G0
and G1 = h. We use that by Lemma 2.21 we can fill horns like A[Λ2

1]→ B.
The map f is homotopic to itself via the trivial homotopy Trf ,

f Tr // f .

This shows reflexivity. From H and G we get a homotopy F from f to h by filling
the horn

h

f H // g

G

OO

to
h

f

F���

@@���

H // g

G

OO

.

This proves transitivity. For H we get a homotopy H from g to f by filling a horn

f

f

Tr���

@@���

H // g

to

f

f

Tr���

@@���

H // g

H

OO

.

This shows symmetry and finishes the proof.

The same proof, using relative horn-filling, shows:

Corollary 2.26. Let M,N be in CG, let A ⊆ M be a cellular submodule. Being
homotopic relative A is an equivalence relation on HomCG(M,N).

2.4.1. Digression: Describing maps by diagrams
In the following we will often have to describe maps like A[∆1 × ∆1] → B or
A[∆1 ∪∆0 ∆1]→ B. Here we introduce some notation we will use. We tried to make
it intuitive so that one can read off the map directly from a single diagram.

If one recognizes the simplicial sets which are meant by pictures like

. . ,
. .
. . ,

. .

. . ,
. .
. . , or

. .

. .
one can skip the next two paragraphs in this section, but one should have a look at
the third paragraph, where we discuss subsets of ∆1 ×∆1.

There are some simplicial sets which come from (abstract) simplicial complexes
and hence can be described combinatorially and even by pictures. Recall that an
(abstract) simplicial complex consists of a set of vertices which is partially ordered,
together with (k+ 1)-element subsets for each k ≥ 0 on which the induced ordering is
total and which are called the k-simplices (cf. [Hat02, p. 107]). The easiest example

48



(except the point) is probably the simplicial interval ∆1. We draw the corresponding
simplicial complex as . . , which shows the two 0-simplices (vertices) and the one
1-simplex (arrow). The direction of the arrow determines the order of the vertices,
it goes from the smaller one to the bigger one. We will call the smaller vertex the
0th vertex and the bigger one the 1st vertex. Note that when we talk about the
boundary, the notation is different: One gets the 0th boundary by leaving out the
0th simplex, hence the 0th boundary is the 1st vertex!

A more complicated example of a simplicial complex would be the model for
∆1 ×∆1 which we draw as

. .

. . . It consists of four 0-simplices (vertices), five 1-
simplices (arrows) and two 2-simplices (triangles enclosed by arrows). One 2-simplex
consists of the three upper left vertices and the other one consists of the three lower
right vertices. Note that the arrows are the most important part, the dots are merely
there to make the pictures easier to read. If three of the arrows enclose a triangle this
should always mean that the corresponding 2-simplex is in the simplicial complex.

We make an important exception when we want to draw subsets of ∆1 ×∆1 =. .
. . . If we draw

. .

. . , this should denote the simplicial complex generated by
the lower horizontal 1-simplex. This includes the lower vertices as endpoints, but it
should not include the upper vertices. They are just drawn to make it unambiguous
which subset of

. .

. . we mean.
As a simplicial complex uniquely determines a simplicial set, each of the pictures

also defines a simplicial set. We are only interested in the simplicial sets and not in
the simplicial complexes they depict. (The reader is invited to look at the pictures
four paragraphs earlier to recognize the simplicial sets they define.)

We are interested in controlled simplicial R-modules of the form A[∆1 ×∆1], for
A any controlled simplicial R-module, and want to describe maps out of it. Recall
first, that each simplicial set is the “union of its simplices”, or more precisely the
colimit of standard simplices indexed over the simplex category (cf. [GJ99, p. 6/7
and Lemma 2.1]), and we can index over the non-degenerated simplices only.

Therefore the simplicial R-module A[∆1 ×∆1] is a quotient of

A[∆2] ⨿ A[∆2] ⨿
5
A[∆1] ⨿

4
A[∆0].

Hence to give a map A[∆1 ×∆1]→ B we only have to give compatible maps

A[∆2]→ B A[∆2]→ B
5
A[∆1]→ B

4
A[∆0]→ B. (12)

For the induced map A[∆1 ×∆1]→ B to be controlled it suffices that both maps
A[∆2]→ B are controlled as A[∆1 ×∆1] is the pushout along a cellular inclusion in

A[∆1]⨿A[∆1] // //

��

A[∆2]⨿A[∆2]

��

A[∆1] // // A[∆1 ×∆1]

.
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The last two groups of maps in (12) have to be controlled because compatibility
implies they are restrictions of the first two maps. We will develop a graphical
language to specify these maps now.

Of course the maps A[∆2]→ B determine the other ones, so we only need to give
these. However we will only write down the maps on the boundary, as these will be
more important for us. This makes it easier to draw the pictures and the map on
the 2-simplex itself will be specified in the text. The pictures we will draw look like
the following:

r

p

β
??�������

γ
// q

α

OO .

This should denote a map A[∆2]→ B as follows. Restricted to the 0th, 1st or 2nd
boundary it is α, β or γ : A[∆1]→ B, respectively. Restricted to the 0th, 1st or 2nd
vertex it is p, q, or r : A[∆0] = A → B, respectively. Sometimes we will draw the
decoration on the arrow, sometimes beside it if it improves the readability.

More examples are drawn below. The left picture shows a homotopy from α to β,
the middle shows a horn A[Λ2

0]→ B, and the right the map A[∆2]→ B which arises
by filling the horn in the middle.

α H // β

α

α

Tr���

??���

H // β

α

α

Tr���

??���

H // β

H

OO

The right diagram shows how we proved the symmetry of the relation “homotopic”
above. We sometimes call H the “inverse homotopy” to H.

Sometimes we leave out the decorations for vertices, as they are uniquely determined
by the decorations on the arrows, and draw dots instead. All this works for more
complicated simplicial sets as long as we can draw diagrams for them.

This ends the digression.

The next goal is to show that cofibrations have the homotopy extension property.
Definition 2.27. Let A, B, P be in CG. A map A→ B has the homotopy extension
property (HEP) if for all maps

A[∆1]→ P, B[0]→ P

which coincide when precomposed with A[0] → A[∆1] resp. A[0] → B[0] there is a
map B[∆1]→ P extending both, i.e. the lift in

A[∆1] ∪A[0] B[0] //

��

P

B[∆1]

88r
r

r
r

r
r

(13)

exists.
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Remark 2.28. The pushout A[∆1] ∪A[0] B[0] exists by Lemma 2.2. Of course the
homotopy extension property for arbitrary P and f is equivalent to the special case
where P = A[∆1] ∪A[0] B[0] and f = id.

Lemma 2.29. Cofibrations have the homotopy extension property.

Proof. It suffices to prove the Lemma for cellular inclusions, because if f is isomorphic
to f ′ then f has the HEP if and only if f ′ has the HEP. Then it is the relative
horn-filling property for Λ1

0 ⊆ ∆1 of Lemma 2.22.

2.5. Homotopy equivalences
Being homotopic is an equivalence relation on controlled maps A → B in CG by
Corollary 2.25, so we do not have to care if our homotopies go from 0 to 1 or vice
versa and further can concatenate homotopies. We will use this freely if needed.

There is an obvious notion of homotopy equivalences.

Definition 2.30. A map f : A→ B is a homotopy equivalence in CG if there is a
map g : B → A, its homotopy inverse, such that f ◦ g is homotopic to idB and g ◦ f
is homotopic to idA.

If for A,B ∈ CG there is such a homotopy equivalence, then A and B are called to
be homotopy equivalent. We write A ≃ B for homotopy equivalent modules.

As this is a very important definition in this thesis let us unwrap the definition a
bit. Recall that the objects A and B in CG = CG(X,R, E ,F) are cellular simplicial
R-modules with a free cell-permuting action of G and an equivariant control map to
X. Then f : A→ B being a (controlled) homotopy equivalence means that there is
an E ∈ E and an E-controlled map g : B → A as well as E-controlled homotopies
HA : A[∆1]→ A from g ◦ f to idA and HB : B[∆1]→ B from f ◦ g to idB . Note that
the maps f and g and in particular the homotopies are required to be G-equivariant
where A[∆1] and B[∆1] inherit the G-action from A and B respectively.

In the following we will not explicitly mention the control conditions E ∈ C, as
all maps in CG are by definition E-controlled for some E ∈ E . Note however, that
some of our constructions increase the control conditions, i.e. they result in maps
which are only E′-controlled with E ⊆ E′. An example for this is the pushout-
construction of Lemma 2.2. Sometimes it is important that the control conditions
are not increased and we will explicitly mention this in that cases. An example for
that is the horn-filling property of Lemma 2.21 above.

The homotopy equivalences in CG will be our category of weak equivalences for
the category with cofibrations (cf. B.2). We now prove the Saturation Axiom as well
as the Cylinder Axiom for homotopy equivalences in CG.

Recall that the saturation axiom (see Appendix B/[Wal85]) for weak equivalences
means that if for maps f : A → B, g : B → C two of the maps f , g, and g ◦ f
are weak equivalences then so is the third one. (This is sometimes also called the
“2-of-3”-property.)
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Lemma 2.31 (Saturation Axiom). The homotopy equivalences in CG satisfy the
2-of-3 property.

Proof. Given maps f , g, and h with g ◦ f = h,

.
g

��
55

55
55

.
f
DD						
h
// .

.

We prove only one case, the other two are similar. Note that for β ≃ β′ we have
α ◦ β ◦ γ ≃ α ◦ β′ ◦ γ and that homotopy inverses are unique up to homotopy, as for
two homotopy inverses f , f ′ of f we have f ≃ f ◦ f ◦ f ′ ≃ f ′.

Assume that g and h have homotopy inverses g and h. Set

f := h ◦ g.

Then f is a homotopy inverse for f as

f ◦ f = f ◦ h ◦ g ≃ g ◦ g ◦ f ◦ h ◦ g
= g ◦ h ◦ h ◦ g
≃ g ◦ g
≃ id

and
f ◦ f = h ◦ g ◦ f = h ◦ h ≃ id .

Note that the construction of homotopy inverses by this lemma gives a control
condition for the inverse and the homotopies which are usually much bigger than the
original control conditions involved before.

For the next result we need the notion of a (controlled) deformation retraction in
CG. This is the expected notion, but we define it nonetheless.

Definition 2.32 (Deformation retraction). Let i : A� M be a cellular inclusion
in CG, i.e. we can consider A as a submodule of M . A is a deformation retract of
M if there is a map r : M → A such that r ◦ i is idA and i ◦ r is homotopic to idM
relative A.

The map i is called the inclusion and r is called the retraction or deformation
retraction.

In particular each deformation retraction is a homotopy equivalence and if A is
a deformation retract of M then in particular the inclusion A→M is a homotopy
equivalence. (But being a deformation retraction is of course a much stronger
property, as we will see later.)

For the Cylinder Axiom recall that the Cylinder Functor T of Proposition 2.13
gives in particular a retraction p : T (f)→ B for every map f : A→ B.
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Lemma 2.33 (Cylinder Axiom). The map p : T (f)→ B is a deformation retraction.
Therefore T satisfies the Cylinder Axiom (Lemma 2.18/[Wal85, 1.6]).

Proof. We only have to prove that ι1 ◦ p : T (f)→ B → T (f) is homotopic relative
B to idT (f). Recall that T (f) is defined as the pushout of B ← A[1]→ A[∆1]. We
see that ι1 ◦ p is induced by p1 : A[∆1]→ A[1]→ A[∆1]. The following diagram of
pushouts shows the situation

B

��

A[1] //oo

��

A[∆1]

��

T (f)

p

��

B

��

A[1] //oo

��

A[1]

��

B

i
��

B A[1] //oo A[∆1] T (f)

.

As −[∆1] commutes with pushouts we only have to give a homotopy H from idA[∆1]
to p1 which is relative to A[1], i.e. a map A[∆1 ×∆1]→ A[∆1] with

A[∆1 × 0]→ A[∆1 ×∆1]→ A[∆1] = id and
A[∆1 × 1]→ A[∆1 ×∆1]→ A[∆1] = p1 .

But there is a well-known map H : ∆1 ×∆1 → ∆1 of simplicial sets inducing such a
map.

(That map can, similar to our notation above, be described as follows. Denoting
the simplices of ∆1 as 0→ 1 we could just write H down as

1 // 1

0 //

OO @@�������
1

OO
,

cf. [Lam68, I.5.4] for the “dual case”.)
Thus the homotopy H which is induced by H is a homotopy relative to A[1] which

induces the desired homotopy.

2.6. Homotopy equivalences and mapping cylinders
The Cylinder Functor T from Lemma 2.13 gives for each map f : A → B in CG a
mapping cylinder, i.e. a factorization of f as p ◦ ι0 : A → T (f) → B where ι0 is a
cellular inclusion. We have just proved in Lemma 2.33 that p is homotopy equivalence,
so by the Saturation Axiom 2.31 it follows that f is homotopy equivalence if and
only if ι0 is one. However, much more is true.

Proposition 2.34. Let f : A→ B be a homotopy equivalence in CG. Then A is a
deformation retract of T (f) via the inclusion ι0.
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The proof takes several steps and occupies the rest of this section. It is an adaption
of the corresponding proof for topological spaces which the author learned from
F. Waldhausen [WalAT, pp. 140ff.].

Let f : A→ B be the controlled homotopy equivalence from above. Let us collect
and name the data we have: We have maps

f : A→ B, g : B → A

and homotopies
HA : A[∆1]→ A, HB : B[∆1]→ B

from g ◦ f to idA, resp. from f ◦ g to idB. Assume all of these are controlled by
E ∈ E .

We will construct:

(i) A retraction T (f) r−→ A.

(ii) A homotopy ι0 ◦ r ≃ idT (f).

(iii) A better homotopy ι0 ◦ r ≃ idT (f) which is relative to A.

All these maps will satisfy control conditions. These three steps suffice to prove
Proposition 2.34, so proof will be complete after proving the last step in Lemma 2.39.

For the first step we prove a general lemma first.

Lemma 2.35. Suppose we have a map f : A → B. Let g : B → P be a map such
that g ◦ f is homotopic via H : A[∆1]→ P to a map h : A→ P . Suppose all maps
are E-controlled. Then there exists an E-controlled map

T (f)→ P

such that composition with the front inclusion A→ T (f)→ P is equal to h and the
composition with the back inclusion B → T (f)→ P is equal to g.

Remark 2.36. The lemma is useful when converting a homotopy commutative diagram
as on the left below into the strict commutative one on the right below,

A
f
//

h
��

@@
@@

@@
@ B

g

��

P

 

A
ι0 //

h
!!C

CC
CC

CC
CC

T (f)

��

P

,

where T (f) ≃ B. It is stated here such that we can refer to it later.
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Proof. The mapping cylinder T (f) was defined as the pushout B ∪A[1] A[∆1]. To
construct the desired map it therefore suffices to use the strict commutative diagram

A[∆1]
H

!!D
DD

DD
DD

DD

A[1] g◦f
//

OO

OO

f

��

P

B

g

<<yyyyyyyyy

to get an induced map T (f) → P which satisfies all the desired properties, in
particular it is E-controlled, which can be looked up in Table 2.1 on page 37.

Lemma 2.37. There is a retraction r : T (f)→ A for the inclusion ι0 : A� T (f).
The composition with the back inclusion B

ι1−→ T (f) r−→ A is equal to g.

Proof. To construct the retraction we apply Lemma 2.35 with P := A, H := HA

and f := f, g := g. Let r be the map given by the Lemma.

Now we have to construct a homotopy from T (f) r−→ A → T (f) to the identity.
This might not be relative to A, but we will correct this later.

Lemma 2.38. The map T (f) r−→ A
ι0−→ T (f) is homotopic to the identity.

Proof. Recall from Lemma 2.33 that T (f)→ B is a deformation retraction, i.e. the
composition T (f) p−→ B

ι1−→ T (f) is a homotopic to the identity. So we pre- and
postcompose T (f) → A → T (f) with T (f) → B → T (f) and get a map which is
homotopic to it. This can be written as

T (f) r // A
ι0 //

f
!!C

CC
CC

CC
CC

T (f)
p

��

B

ι1

OO

g

=={{{{{{{{{
B

ι1
��

T (f)

p

OO

T (f)

with compositions identified as f and g. But f ◦ g is homotopic to idB via HB by
assumption. So we are left with

B
id // B

ι1
��

T (f)

p

OO

T (f)

which is homotopic to idT (f) again by Lemma 2.33. Being homotopic is an equivalence
relation by Corollary 2.25 so ι0 ◦ r is homotopic to idT (f).
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Let s := ι0 ◦ r : T (f) → A → T (f) and let H be the homotopy from idT (f) to s
we get by Lemma 2.38. We have s ◦ ι0 = ι0 as well as idT (f) ◦ ι0 = ι0 so on the
endpoints H is relative to the cellular inclusion ι0 : A→ T (f). We want to make the
whole homotopy relative to A, i.e. A[∆1] ι0[∆1]−−−−→ T (f)[∆1] H−→ T (f) should be equal
to A[∆1] p−→ A

ι0−→ T (f).

Lemma 2.39. Let s be the map T (f) r−→ A
ι0−→ T (f). There is a homotopy relative

A from the identity on T (f) to s.

Proof. (We use the diagram notation of Digression 2.4.1.) A is a retract of T (f)
and ι0 : A→ T (f) has the homotopy extension property. We will use this homotopy
extension property to construct a certain map T (f)[∆1×∆1]→ T (f) which restricted
to 1×∆1 will be the desired homotopy from idT (f) to s relative to A.

Note that s is an idempotent, i.e. s2 = s. We use the notation from above. The
proof will proceed as follows. We will prescribe the map T (f)[∆1 ×∆1]→ T (f) on
the subspace A[∆1 ×∆1]� T (f)[∆1 ×∆1] and on the top, bottom and left part
of ∆1 ×∆1 =

. .

. . , i.e. on T (f)[
. .
. . ]. Then we check that the two maps are

compatible. This will give a map

T (f)[
. .
. . ] ∪A[

. .

. . ]→ T (f)

which can be extended by the homotopy extension property to the desired map
T (f)[

. .

. . ]→ T (f).
Both maps will be constructed from the same map, which we describe first.

Horn-filling gives for any map T (f)[
. .
. . ] → T (f) a map T (f)[

. .

. . ] → T (f),
in particular we get for the first diagram below the second one, where H is the
“inverse homotopy”. Extending this as in the third diagram below gives a map
G : T (f)[∆1 ×∆1]→ T (f).

. .

.
H

OO

Tr}}}

>>}}}
. H // .

.
H

OO

Tr}}}

>>}}}
. H // .

.
H

OO

Tr}}}

>>}}}

Tr // .
Tr

OO

Define the map A[∆1 ×∆1]→ T (f) as the restriction of G to A[∆1 ×∆1]. Define
the map T (f)[

. .

. . ]→ T (f) as

. H◦s // .

.
H

OO

Tr // .
so on the

. .

. . -part it is the restriction of G, but on the upper part
. .
. . we

replace the homotopy H by H ◦ s. This replacement is crucial for the proof.
We check that these maps are compatible. First H is a homotopy from s to id,

hence H ◦ s is a homotopy from s2 to s; but s2 = s so it agrees with H on the upper
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left vertex. Second, restricted to A the map s is the inclusion ι0 : A→ T (f), hence
H ◦ s ◦ ι0 = H ◦ ι0. So this glues to a map

T (f)[
. .
. . ] ∪A[

. .

. . ]→ T (f).

This can be interpreted as a map T (f)[0×∆1]→ T (f) together with a homotopy
on the submodule T (f)[0 × {0, 1}] ∪ A[0 ×∆1]. So using the homotopy extension
property of Lemma 2.29 we get map T (f)[∆1 × ∆1] → T (f). This map in turn
defines a homotopy when restricting along T (f)[1×∆1]→ T (f)[∆1 ×∆1] (which
is T (f)[

. .

. . ]→ T (f)[
. .
. . ]). This homotopy starts at the identity, ends at the

map s and is the constant homotopy on A. Hence it is the desired homotopy.

This proves Proposition 2.34.

2.7. Pushouts of homotopy equivalences which are
cofibrations

Lemma 2.40. Let
A //

��

B

��

C // D

be a pushout diagram in CG where A→ C is a cofibration and a homotopy equivalence.
Then B → D is a homotopy equivalence.

Remark 2.41. This is a key result on the way to prove the Gluing Lemma for homotopy
equivalences. Almost exactly the same proof works if we assume that A → B is
a cofibration instead of A → C, as the proof of part (ii) of Lemma 2.42 below is
symmetric in B and C.

Proof. We can factor f : A→ C into A� T (f)→ C. Taking the pushouts along the
cellular inclusion A� T (f) and along the cofibration A� C gives a commutative
diagram

A //

��

B

��

T (f) //

��

Q

��

C // D

and the induced map Q→ D completes the lower square to a pushout square.
The following Lemma shows that both maps B → Q and Q→ D are homotopy

equivalences, so their composition B → D is one.

Lemma 2.42. In the situation above the following holds.
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(i) The map B → Q is a deformation retraction.
(This uses that A→ C is a homotopy equivalence.)

(ii) The map Q→ D is a homotopy equivalence.
(This uses that A→ C is a cofibration.)

Proof of part (i). By Proposition 2.34 A is a deformation retract of T (f) via the
cellular inclusion A � T (f). Therefore we have a retraction r : T (f) → A and a
homotopy H : T (f)[∆1] → T (f) from ι0 ◦ r to idT (f) which is relative to A. This
induces a retraction Q→ B via

B
id // B

A
id //

ι0
��

OO

A

��

OO

T (f) r // A

and a homotopy of Q→ B → Q to idQ via

B[∆1]
pr

// B

A[∆1]
pr

//

��

OO

A

��

OO

T (f)[∆1] H // T (f)

.

As H is relative to A this diagram commutes and gives a map on the pushout with
the desired properties. (Here we used that −[∆1] commutes with colimits.)

Hence Q→ B is a deformation retraction.

Proof of part (ii). Written out Q→ D is the map

B ∪A[1] A[∆1] ∪A[0] C → B ∪A C

induced by A[∆1] → A. We have to construct a homotopy inverse for this map.
We will construct a homotopy equivalence A[∆1] ∪A[0] C → C which is relative to
ιA1 : A[1]� A[∆1] ∪A[0] C, resp. to jA : A� C, hence glues along A[1]→ B to the
desired homotopy equivalence

B ∪A[1] A[∆1] ∪A[0] C
≃−→ B ∪A C ,

as −[∆1] commutes with pushouts. We therefore have to construct for

e : A[∆1]A[0]C → C
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(induced by A[∆1]→ A) maps

g : C → A[∆1] ∪A[0] C

and homotopies

H : C[∆1]→ C

G :

A[∆1] ∪A[0] C


[∆1]→ A[∆1] ∪A[0] C

with the properties

H0 = id H1 = e ◦ g
G0 = id G1 = g ◦ e

G ◦ ιA1 [∆1] = ιA1 H ◦ jA[∆1] = jA

g ◦ jA = ιA1 e ◦ ιA1 = jA .

Using the homotopy extension property of the cofibration jA : A� C (Lemma 2.29)
there is a retraction R : C[∆1]→ A[∆1] ∪A[0] C. Define g as the composition

C
ιC1−−−→ C[∆1] R−−−→ C ∪A[0] A[∆1].

We get g ◦ jA = ιA1 .
Define H as the composition e ◦R : C[∆1]→ C ∪A[0] A[∆1]→ C. One checks that

H is a homotopy from idC to e ◦ g relative to A.
For the other composition consider the commutative diagram

C ∪A[0] A[∆1]

j
$$J

JJJJJJJJ
e // C

g
//

ιC1 ��
;;

;;
;;

;;
C ∪A[0] A[∆1]

C[∆1]
pr

AA��������
//____ C[∆1]

R

::ttttttttt

where dashed map is the projection to C[1]. It is homotopic relative C[1] to the
identity. This gives a homotopy G from the composition g ◦ e to the identity, using
that R is a retraction for j. One checks that G is relative to A[1].

This shows that e is a homotopy equivalence and therefore makes Q → D into
one.

2.8. The Extension Axiom

Our next goal is to prove the so called Extension Axiom for the homotopy equivalences
in CG. We first recall its definition.
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Recollection 2.43 (cf. Appendix B/[Wal85, 1.2]). Let C be a category with cofibrations.
A cofiber sequence in C is a sequence A� B � C in C where A� B is a cofibration
and B � C is isomorphic to the map B � B/A := B ∪A ∗ in the pushout

A // //

��

B

��

∗ // // B/A

.

A subcategory wC of weak equivalences of C satisfies the Extension Axiom if for each
map of cofiber sequences

A

fA

��

// // B

fB

��

// // C

fC

��

A′ // // B′ // // C ′

where fA and fC are weak equivalences the map fB is a weak equivalence. Sometimes
B (resp. fB) is called an extension of A by C (resp. of fA by fC).

We show that the homotopy equivalences in CG satisfy the Extension Axiom. We
first need a relative homotopy lifting property.

Lemma 2.44 (Relative homotopy lifting property). Let A � B be a cellular
inclusion in CG. Let U � P also be a cellular inclusion in CG and let P � Q := P/U
the quotient map. Then A → B has the relative homotopy lifting property with
respect to P → Q. This means, that given a solid commutative diagram of controlled
maps

A[∆1] ∪B[0] //

��

P

��

B[∆1] //

99tttttt
Q

(14)

then the dashed lift exists.

Remark 2.45. This generalizes the fact that cellular inclusions have the homotopy
extension property, which is the case Q = ∗ and which is proved in Lemma 2.29. The
proof here is similar but we need an additionally lemma (Lemma 2.46 below), which
we show after the proof.

The map P � Q is a ∆-controlled map in CG and it is a Kan fibration after
forgetting the control, as it is a homomorphism of simplicial abelian groups. We give
an explicit reference for this in Lemma 2.47.

Proof. Assume both horizontal maps in (14) are E′-controlled and that B is EB-
controlled.
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We first assume that A arises from B by attaching only one free G-cell. So we
have to solve the lifting problem for the outer diagram

R[G/1][∂∆n ×∆1 ∪∆n × 0] //

��

��

A[∆1] ∪B[0] //

��

��

P

��

R[G/1][∆n ×∆1] // B[∆1] // Q

,

where the left horizontal maps are EB-controlled and the leftmost vertical map is
∆-controlled. We need to find a map R[G/1][∆n ×∆1]→ P which fits into the outer
diagram. We can apply the Fundamental Lemma 1.32 as the left vertical map is
∆-controlled, i.e. induced by a map on simplicial sets. Note that the composition of
both horizontal maps is E := EB ◦ E′-controlled.

By the Fundamental Lemma 1.32 the map R[G/1][∂∆n × ∆1 ∪ ∆n × 0] → P
which is E-controlled and G-equivariant corresponds to a map of simplicial sets
∂∆n ×∆1 ∪∆n × 0→ HOME(R[G/1], P )G and R[G/1][∆n ×∆1]→ Q corresponds
to ∆n ×∆1 → HOME(R[G/1], Q)G. As P � Q is ∆-controlled it induces a map

HOME(R[G/1], P )G → HOME(R[G/1], Q)G

where the HOM-spaces have the same control condition. So the naturality of the
Fundamental Lemma 1.32 gives the diagram

∂∆n ×∆1 ∪∆n × 0 //

��

HOME(R[G/1], P )G

��

∆n ×∆1 // HOME(R[G/1], Q)G

. (15)

A lift there provides the desired lift. For such a lift to exist it would be sufficient
that the right map is a Kan fibration of simplicial sets, but in general it is not even
surjective. But we can find a lift if we extend the control condition on the upper
space.

First we can replace HOME(R[G/1], P )G by HOME(R,P ) by Remark 1.34 to get
rid of G. Then Lemma 2.46 below provides the desired lift and shows that it is
EP ◦ E-controlled. This proves the Lemma if A arises from B by attaching only one
cell.

For the general case of A� B a cellular inclusion note that cells of the same degree
can be attached independently. Then the procedure above produces inductively for
each n a lift Bn[∆1]→ P which has the fixed control condition ((EP )n+1 ◦E), where
Bn is the submodule of B consisting of A and all cells of B up to dimension n. As
B is finite-dimensional this finishes the proof.

For the proof above we needed the following lemma.
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Lemma 2.46. Given the situation of Lemma 2.44, in particular let p : P � Q be
the quotient map as above. Given the diagram

∂∆n ×∆1 ∪∆n × 0 //

��

HOME
R(R,P )

��

∆n ×∆1 // HOME
R(R,Q)

and let P be an EP -controlled module. Then there is a lift of the lower map to a map

∆n ×∆1 → HOMEP ◦E
R (R,P )

making the diagram

∂∆n ×∆1 ∪∆n × 0 //

��

HOMEP ◦E
R (R,P )

��

∆n ×∆1

55kkkkkkkkkkkkkkk
// HOMEP ◦E

R (R,Q)

commutative.
Proof. The problem is that HOME

R(R,P )→ HOME
R(R,Q) is not surjective in general

and hence no Kan fibration.
As HOM(R,P ) = P and HOME(R,P ) ⊆ HOMEP ◦E(R,P ) ⊆ HOM(R,P ) there

is a commutative diagram

HOME(R,P )

��

⊆
// HOMEP ◦E(R,P )

p2
��

⊆
// P

p

��

HOME(R,Q)
⊆
// HOMEP ◦E(R,Q)

⊆
// Q

.

The map p2 is surjective onto its image Im(p2) in HOMEP ◦E(R,Q) hence it is a Kan
fibration by Lemma 2.47 below, as it is a homomorphism of simplicial abelian groups.

We show that HOME
R(R,Q) ⊆ Im(p2). Let α : R[∆n] → Q be an element in

HOME
R(R,Q)n, let e be the generator of R[∆n]. So α is E-controlled and R[∆n] is

concentrated over κ(e). We have α(e) =


i ri · σ∗
i e
Q
i with ri ∈ Rn, ri ̸= 0, eQi a

cell in Q of dimension ≤ n and (κR(e), κ(eQi )) ∈ E. As p is a quotient by a cellular
inclusion there is for each eQi a (unique) ePi ∈ P with p(ePi ) = eQi , as cells in Q
correspond to cells in P which are not in U . As p is ∆-controlled it follows that
κ(ePi ) = κ(p(ePi )) = κ(eQi ), hence (κ(e), κ(ePi )) ∈ E. As P is EP -controlled each ePi
determines an EP -controlled map R[∆ki ]i → P where R[∆ki ]i is concentrated over
κ(ePi ).

So let R[∆n]i′ be concentrated over κ(e) such that the composition R[∆n]i′
(σi)∗−−−→

R[∆ki ]i → P is EP ◦ E-controlled. Hence it is a map in HOMEp◦E(R,P ). It follows
that

α(e) =

i

ri · (σi)∗p2(ePi ) = p2


i

ri · (σi)∗e
P
i


,
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so α(e) ∈ Im(p2). As this is true for all α ∈ HOME(R,Q) we have HOME(R,Q) ⊆
Im(p2). So we have a diagram

∂∆n ×∆1 ∪∆n × 0 //

��

HOME
R(R,P )

��

⊆
// HOMEP ◦E

R (R,P )

p2

��

∆n ×∆1 // HOME
R(R,Q)

⊆
// Im(p2)

where p2 is a Kan fibration of simplicial sets. As the left vertical map arises by filling
horns there is a lift ∆n×∆1 → HOMEP ◦E

R (R,P ) which has the desired properties.

The next lemma just states the well-known fact that a surjective map of simplicial
abelian groups is a Kan fibration. It is stated and proved here as we referred to that
fact.

Lemma 2.47. Any surjective map B � C of simplicial abelian groups is a Kan
fibration.

Consequently for a cellular inclusion of simplicial R-modules A � B, the map
B � B/A is a Kan fibration of simplicial sets.

Proof. The kernel of B � C (which is formed degreewise) is a simplicial subgroup
A of B. Each An acts freely on Bn by multiplication and Cn is the quotient of this
action. Now [GJ99, Corollary V.2.7, p. 263] shows that the quotient map is a Kan
fibration.

Recall that for E-controlled maps f, g : A→ B in CG the maps f + g and −f are
again E-controlled in CG. We turn to the Extension Axiom.

Lemma 2.48 (Extension axiom). Let

A // //

∼
��

B

��

// // C

∼
��

A′ // // B′ // // C ′

be a map of cofiber sequences in CG. Assume that A→ A′ and C → C ′ are homotopy
equivalences. Then B → B′ is a homotopy equivalence.

Proof. We can factor the vertical maps functorially by using the Cylinder Functor
from Proposition 2.13. As a Cylinder Functor is exact it respects the cofiber sequences
(cf. Remark 2.19). We get a diagram

A // //

∼
��

B

��

// // C

∼
��

TA // //

∼
��

TB

∼
��

// // TC

∼
��

A′ // // B′ // // C ′

.
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By Proposition 2.34 A and C are deformation retracts of TA and TC , respectively,
with the inclusions being the left and the right vertical upper maps. What remains
to be shown is that the vertical upper middle map is a homotopy equivalence. This
is proved in Lemma 2.49 below, where it is shown that B is a deformation retract of
TB.

Lemma 2.49. Assume we have a cofiber sequence A � B � B in CG where
B = B/A for brevity. Suppose we have a diagram

A
��

��

// // B
��

��

// // B
��

��

TA // // TB // // TB

in CG where the horizontal lines are cofiber sequences and the vertical arrows are
cellular inclusions. Suppose that A and B are deformation retracts of TA and TB
with inclusions the left and right vertical maps. Then B is a deformation retract of
TB with inclusion the middle vertical map.

Remark 2.50. Of course we are interested in a situation where the vertical maps are
inclusions into the mapping cylinder. When we assume that TA � TB � TB is a
cofibration sequence this means that TB comes with an isomorphism to TB = TB/TA
which is compatible with the projection from TB.

Lemma 2.47 and therefore Lemma 2.44 applies to the maps B → B and TB → TB,
so we have the relative homotopy lifting property with respect to these maps.

We prove a slightly stronger statement than Lemma 2.49:

Lemma 2.51. Assume that we are in the situation of Lemma 2.49. Let D0 be a
cellular submodule of D. Then each controlled map (D,D0)→ (TB, B) of pairs in
CG is controlled homotopic relative D0 to a map into B.

Proof of Lemma 2.49 using 2.51. By Lemma 2.51 the map id : (TB, B)→ (TB, B) is
controlled homotopic relative B to a map TB → B. This is the desired deformation
retraction.

The proof of Lemma 2.51 may look a little bit complicated. The following “toy
situation” is easier: Assume all objects are abelian groups and we want to prove that
the middle map is surjective if the outer ones are. We prove the “toy fact” first, the
actual proof will follow this proof closely. The reader is advised to try the proof
oneself first, as it is really easy, and to look it up only for the notation.
Remark 2.52 (Proof of the toy situation). Assume we have a commutative diagram
of abelian groups

A

��

// B

fB

��

// B

��

A′ // B′ //
B

′
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where the horizontal lines are short exact sequences. Assume that the outer maps
are surjective, then the middle map is surjective.

Let α be an element in B′. We will denote the constructed elements by consecutive
Greek letters and denote projections to the quotient by a bar. So α is an element in
B

′. As B → B
′ is surjective there is an element β in B which maps to α. As B → B

is surjective there is an element γ in B which maps to β ∈ B. The elements fB(γ)
and α do not need to be equal in B′, but they become equal when projected to B′,
so α− fB(γ) factors through A′ � B′. As A→ A′ is surjective there is an element
δ in A which maps to α− fB(γ) in B′. Hence, considered in B, fB(δ + γ) equals α.

Proof of Lemma 2.51. Let α : (D,D0) → (TB, B) be a controlled map. This gives
a map α into (B, TB). As B is a deformation retract of TB we get a homotopy
H : D[∆1] → TB from α to a map into B which is constant on D0. It comes from
the deformation of (B, TB) precomposed with α. Lemma 2.44 applies to the map
TB → TB. So we get a lift H of H, relative to α and D0.

D0[∆1] ∪D[0] α //

��

TB

����

D[∆1]

H

99rrrrrr
H // TB

This is a homotopy from α to a better map, call it β : D → TB. However, β might
not yet factor through B in which case the lemma would follow. But composition
with TB → TB gives a map β to TB which factors through B.

B // //

��

B

��

D
β
//

β

;;

TB // // TB

Using Lemma 2.44 again this time for B � B and the constant homotopy of β in B
we get some lift of β to B, call it γ.

∗ //
��

��

B // // B

D

γ
??�

�
�

�
β

<<

It follows that the difference β − γ : D → TB is zero when composed with TB → TB.
Hence it factors through TA. As the restrictions of β and γ to D0 both lie in B the
restriction of β−γ to D0 factors through A. So β−γ gives a map (D,D0)→ (TA, A).
We can show the situation by the following commuting diagrams.

TA // // TB // // TB

D

β−γ
OO

0

==||||||||β−γ

aaB
B

B
B

, A // // B // // B

D0

β−γ
OO

0

>>~~~~~~~~β−γ

``@
@

@
@

, A // TA

D0

β−γ

OO�
�
�

// D

β−γ

OO�
�
�
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Hence, as A→ TA is a deformation retraction, there is a homotopy G relative to D0
of β − γ to a map into A. It comes from the deformation of (A, TA) precomposed
with β − γ. Call the resulting map δ : D → A. Via the inclusion (TA, A)→ (TB, B)
the map G can be viewed as a homotopy to TB with:

G : D[∆1]→ TB
G|0 = β − γ
G|1 = δ

G|D0[∆1] = β − γ|D0

.

Therefore G+ γ : D[∆1]→ TB is a homotopy from β to δ + γ, where δ and γ factor
through B so the sum also factors through B. Furthermore the homotopy is constant
on D0. Concatenating the two homotopies H and G thus gives a homotopy relative
D0 from α to a map into B. This is what we wanted to show.

Note that all maps above are in fact in CG, because maps in CG form an abelian
group and being homotopic relative a subspace is an equivalence relation in CG by
Corollary 2.26.
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3. Algebraic K-theory of categories of
controlled modules

To define the algebraic K-Theory of category CG following Waldhausen we have to
put on CG the structure of a category with cofibrations and weak equivalences (see
[Wal85]/Appendix B). We do that in Section 3.1, which relies on the results established
in Chapter 2. The resulting category with cofibrations and weak equivalences is
called CGa , where the “a” should stand for “all” objects. That is, if we refer to CGa
we always refer to CG together with the particular classes of cofibrations and weak
equivalences. We define the weak equivalences to be the homotopy equivalences and
denote them by wCG. If we refer to CGa with the homotopy equivalences as weak
equivalences we often just write wCGa . Note however that CGa is “too big” in the sense
that it has infinite sums and hence an Eilenberg-swindle, therefore its algebraic K-
Theory vanishes. But it contains subcategories satisfying certain finiteness conditions
whose K-Theory is interesting and which inherit the structure of a category with
cofibrations and weak equivalences. They are discussed in the following sections.
First we discuss object support conditions, then three different finiteness conditions,
the finite, homotopy finite and homotopy finitely dominated modules, denoted by
CGf , CGhf and CGhfd. In the last section we discuss and compare the algebraic K-theory
of these categories. We also show that CG(G/1, R) and C(pt, R[G]) are equivalent
categories and that they have equivalent algebraic K-theory. We further prove that
a weak equivalence of simplicial rings induces a weak equivalence on the algebraic
K-theory of the categories of controlled modules over a control space.

For the whole chapter G is a discrete group and all control spaces as well as all
modules are G-equivariant and free. We usually leave this understood.

3.1. CGa as a category with cofibrations and weak
equivalences

Recollection 3.1. Let R be a simplicial ring, let (X, E ,F) be a control space with
morphism control conditions E and object support conditions F . Let G be a
(discrete) group. Recall that CG = CG(X,R, E ,F) is the category of finite-dimensional
controlled simplicial R-modules with G-action. Recall that a cofibration is a map
which is isomorphic to a cellular inclusion. Recall that a homotopy is mapM [∆1]→ N
and that a homotopy equivalence is a map which has a homotopy inverse.

Definition 3.2. Denote the category of cofibrations in CG by coCG. Define the weak
equivalences in CG to be the homotopy equivalences and denote the subcategory of them
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by wCG. Define CGa (X,R, E ,F) to be CG together with these two subcategories. (Here
the “a” should stand for “all objects”). We abbreviate CGa (X,R, E ,F) by CGa (X,R)
or CGa .

We first assume that F = {X}, i.e. that we have no object support conditions, as
we did in the last chapter. The case of general F will be considered in Section 3.3,
as its treatment is parallel to the treatment of the finiteness conditions.

Proposition 3.3. CGa (X,R, E) is a category with cofibrations and weak equivalences.
It has a Cylinder Functor which satisfies the Cylinder Axiom and its weak equivalences
satisfy the Saturation and the Extension Axiom.

Let us recall the definition of a category with cofibrations and weak equivalences
in the sense of [Wal85, 1.2].
Recollection 3.4 (Category of weak equivalences [Wal85, 1.2]/B.2). Let C be a
category with cofibrations (cf. Definition B.1). A category of weak equivalences in C
is a subcategory wC satisfying the following axioms.

(i) wC contains all isomorphisms of C.

(ii) (Gluing lemma). If we have the diagram

B

��

A

��

oooo // C

��

B′ A′oooo // C ′

with A� B and A′ � B′ cofibrations and all three vertical arrows are in wC,
then the induced map

B ∪A C → B′ ∪A′ C ′

on the pushouts is also in wC.

We formulate the steps in the proof of Proposition 3.3 as lemmas.

Lemma 3.5. CGa is a category with cofibrations.

Proof. This is Lemma 2.8.

Lemma 3.6. The category CGa has a Cylinder Functor which fulfills the Cylinder
Axiom.

Proof. The existence of a Cylinder Functor is Proposition 2.13. The Cylinder Axiom
is Lemma 2.33.

The next step is to show that the homotopy equivalences fulfill the axioms of
a category of weak equivalences. The class of homotopy equivalences contains all
isomorphisms and it is a subcategory by the Saturation Axiom (Lemma 2.31). It
remains to prove the gluing lemma. Here we use a tool from [GJ99], the notion of a
category of cofibrant objects. This is the only place where we need the notion, so we
are brief and refer to [GJ99, p. 122] for details.
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Recollection 3.7 (Category of cofibrant objects). A category of cofibrant objects is a
category D which satisfies the following axioms.

(0) The category contains all finite coproducts.

(i) The 2-of-3 property holds for weak equivalences.

(ii) The composition of cofibrations is a cofibration, isomorphisms are cofibrations.

(iii) Pushout diagrams of the form

A //

i
��

B

i∗
��

C // D

exist when i is a cofibration. In this case i∗ is a cofibration which is additionally
a weak equivalence if i is one.

(iv) For each object there is a cylinder object.

(v) For each X the unique map ∗ → X from the initial object is a cofibration.

The notion of a cylinder object in [GJ99, p. 123] is slightly different then our notion,
but if the Cylinder Axiom 2.33 holds our Cylinder Functor applied to the identity
yields a cylinder object in the sense of [GJ99, p. 123].

Lemma 3.8. The category CGa fulfills the axioms of a category of cofibrant objects.
Hence it fulfills the gluing lemma.

Proof of Lemma 3.8. The proof that a category of cofibrant objects has a gluing
lemma is Lemma II.8.8 in [GJ99, p. 127]. It remains to check the axioms of a category
of cofibrant objects.

As CGa is a category with cofibrations by Lemma 2.8 it has finite coproducts,
the composition of two cofibrations is a cofibration as well as isomorphisms are
cofibrations, the unique map from the initial object is a cofibration and pushouts of
cofibrations are cofibrations.

Further the weak equivalences satisfy the 2-of-3 axiom by the Saturation Axiom
(Lemma 2.31). Pushouts of cofibrations which are homotopy equivalences are cofibra-
tions which are homotopy equivalences by Lemma 2.40. Further we have a Cylinder
Functor which satisfies the Cylinder Axiom. This gives a cylinder object for each
object. This shows all axioms and hence implies the Gluing Lemma for CGa .

Lemma 3.8 gives a direct corollary:

Corollary 3.9. The category CGa has the structure of a category with cofibrations
and weak equivalences.

Lemma 3.10. The class wCa satisfies the saturation axiom.
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Proof. This is already part of the structure of a category with cofibrations which
was proved in Lemma 3.8. The actual proof is Lemma 2.31.

Lemma 3.11. The homotopy equivalences in CGa satisfy the Extension Axiom.

Proof. This was proved in Lemma 2.48.

This finishes the proof of Proposition 3.3. Next we consider full subcategories of
CGa .

3.2. Subcategories of CGa
Let us recall the data we have for CGa . We have a simplicial ring R and a control
space (X, E). (We did not impose object support conditions so far.) Below, E always
denotes an arbitrary, not fixed, element of E . We defined CGa = CGa (X,R, E) as the
category with cofibrations and weak equivalences with the following data.

Obj CGa E-controlled cellular R-modules
Mor CGa E-controlled maps
coCGa maps isomorphic to cellular inclusions
wCGa homotopy equivalences

This gives the structure of a category with cofibrations and weak equivalences on
CGa , where “a” stands for “all”. The category is not of interest itself as it has an
Eilenberg-swindle. But all the other categories we consider are subcategories of this
one (with possibly other weak equivalences). So this category will save us a lot of
work in proving the axioms for the other ones.

We will now impose restrictions on the objects we consider. This means, we
single out a subset of objects Obj CG? of Obj CGa and consider the full subcategory
CG? generated by it. We define the cofibrations and weak equivalences simply by
restriction to this subcategory. As a table:

Obj CG? a subset of CGa specified by ?
Mor CG? all morphisms in Mor CGa between objects of Obj CG? .
coCG? coCGa ∩Mor CG?
wCG? wCGa ∩Mor CG?

There is an easy criterion when CG? is again a category with cofibrations and weak
equivalences.

Lemma 3.12. Let A→ C be a map and A� B a cofibration in CG? . If the pushout

A // //

��

B

��

C // C ∪A B
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in CGa is also contained in CG? , then CG? is a category with cofibrations and weak
equivalences. If additionally for each A ∈ CG? the cylinder A[∆1] is again in CG? , then
the Cylinder Functor T of CGa restricts to CG? , so in particular CG? has a Cylinder
Functor which satisfies the Cylinder Axiom. Further CG? satisfies the Saturation
Axiom and the Extension Axiom.

Proof. The first part is clear, as this is the cobase change, which is the only axiom
which requires new objects. With A[∆1] also T (f) = A[∆1] ∪A[1] C is in CG? , which
shows the second part. The validity of the three axioms is completely clear.

Remark 3.13. Note that if A[∆1] is contained in CG? for each A in CG? , then the class
wCG? of weak equivalences in CG? agrees with the homotopy equivalences in CG? .

The lemma reduces the number of conditions we have to check to two. We state
them again because we will refer to them several times in the following.

Conditions 3.14. The conditions of Lemma 3.12 are:

(C1) For C ← A� B in CG? the pushout is in CG? .

(C2) For A in CG? , A[∆1] is in CG? .

3.3. Object support conditions

So far we have assumed that there are no object control conditions. We impose
them now. Let (X, E ,F) be a control space. Let (M,κ) be a controlled module
over (X, E ,F). Recall that M has support on F ∈ F if κR(�RM) ⊆ F . Note that
CG(X,R, E ,F) is the full subcategory of CG(X,R, E , {X}) spanned by modules with
support in some F ∈ F .

Define CGs (X,R, E ,F) by restricting CGa to the objects with support on some F ∈ F .
We abbreviate CGs (X,R, E ,F) by CGs . We have:

Obj CGs := {M ∈ CGa | suppM ⊆ F, F ∈ F} .

Lemma 3.15. CGs is a category with cofibrations and weak equivalences. It has a
Cylinder Functor satisfying the Cylinder Axiom and the class of weak equivalences
satisfy the Extension and the Saturation Axiom.

Proof. We only have to check (C1) and (C2) from 3.14. Assume we have a cofibration
A � B and a map A → C with supp(A) ⊆ FA, supp(B) ⊆ FB, supp(C) ⊆ FC ,
with FA, FB, FC ∈ F . Let D be the pushout C ∪A B in CGa . If A� B is a cellular
inclusion, then by the construction of Lemma 2.2 supp(D) ⊆ FB ∪ FC ∈ F . Let be
A� B be E-isomorphic to the cellular inclusion A′ � B′. Then supp(B′) ⊆ FBE ,
hence supp(D) ⊆ FC ∪ FBE ∈ F . This shows (C1).

For A, supp(A[∆1]) = supp(A) ⊆ FA ∈ F . This shows (C2).
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The category CGs is still too big, but it is equally convenient to have as the
category CGa . For the following, if we have object support conditions on X, we
(re-)define CGa (X,R, E ,F) as CGs (X,R, E ,F), this is consistent for F = {X}. If we
want to restrict further to fewer objects, i.e. require extra conditions, we still only
have to check conditions (C1) and (C2) of 3.14, so Lemma 3.12 still holds with this
definition of CGa . We will assume that we have object support conditions from now
on and continue to construct further subcategories of CGa .

3.4. Finite objects
Next we discuss finiteness conditions. These will give categories which have interesting
algebraic K-theory. It is convenient to introduce the notion of a set over a control
space (X, E ,F) and define when such a set over X is locally finite.

Definition 3.16. Let (X, E ,F) be a control space. A set over X is a set L together
with a map κ : L→ X such that its image κ(L) is contained in an F ∈ F . Let (L, κ),
(L′, κ′) be sets over X. A map f : L → L′ is a map of sets over X if the relation
{(κ(l), κ′ ◦ f(l)) | l ∈ L} is a subset of an E ∈ E.

If G is not trivial then we assume that L has a free G-action and that κ is
G-equivariant. Further all maps of sets over X are supposed to be G-equivariant.

For a controlled module (M,κR) we get the set (�RM,κR) over X. This is our
prime example. Note that if (M,κ1

R), (M,κ2
R) are controlled modules over X such

that (�RM,κ1
R) and (�RM,κ2

R) are isomorphic as sets over X then (M,κ1
R) and

(M,κ2
R) are controlled isomorphic.

Definition 3.17. A set (L, κ) over the control space (X, E ,F) is locally finite if for
each point x ∈ X there is a neighborhood Ux of x such that κ−1(Ux) ⊆ L is finite.

This notion of local finiteness gives rise to the notion of finiteness of a controlled
module.

Definition 3.18. A module (M,κR) ∈ CG is called finite if it is locally finite, that
is (�RM,κR) is a locally finite set over X. Remember that by definition all objects
of CG are finite-dimensional.

Definition 3.19. Define CGf = CGf (X,R, E ,F) by restricting CGa to the finite modules.
Stated as a table

Obj CGf := {M ∈ CGa |M is finite } .

Lemma 3.20. CGf is a category with cofibrations and weak equivalences. It has a
Cylinder Functor satisfying the Cylinder Axiom and the class of weak equivalences
satisfies the Extension and the Saturation Axiom.

We need some preparations before we prove this. The next two lemmas discuss
how we can change the control map of a controlled module.
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Remark 3.21. Note that modules isomorphic to finite modules do not need to be
finite again, if the control space is not “good”. Take as example Rr {0} with metric
control and as module (


n∈NR · en, κ) with κ(en) = 1/n. This is finite (as 0 is not

in Rr {0}) and isomorphic to (


n∈NR · en, κ′) with κ′(en) = 1, which is not finite.
If the control space is proper (cf. Sections 1.2 and 1.5) then modules isomorphic to
finite modules are again finite, see also Remark 3.24.

Lemma 3.22. Let f ′ : A → B be a cofibration in CGf . Then it is isomorphic to a
cellular inclusion in CGf .

Proof. By definition f ′ is only isomorphic to a cellular inclusion in CGa , which does
not need to be in CGf by Remark 3.21.

By Lemma 2.6 the pushout of f ′ along idA can be chosen as

A
f ′
//

idA

��

B

��

A
f
// D

such that f is a cellular inclusion. Then D is isomorphic to the finite module B, but
need not be finite itself. We show in the next lemma that D can indeed be made
into a finite module. That lemma finishes the proof.

Lemma 3.23. Let f : A → D be a cellular inclusion in CG such that A is finite
and (D,κD) is isomorphic to a finite module (B, κB). Then there is a control map
κD : �RD → X such that (D,κ) is a finite module which is isomorphic to (D,κD).

It follows that A→ (D,κ) is isomorphic to a cellular inclusion in CGf .

Proof. We do two steps to improve κ0 := κD. For the proof we have to improve
the set (�RD,κ0) over X and make it into a locally finite one. Hence we will define
maps κ1, κ2 : �R D → X which are controlled isomorphic to κ0 and “improve” κ0,
in particular κ2 is a locally finite over X. Than we can take κ := κ2. We prove the
non-equivariant case first, i.e. assume G = {e}.

First we define κ1 such that its image is contained in the image of κB. As (B, κB)
and (D,κ0) are controlled isomorphic there is an E ∈ E such that for each e ∈ �RD
there is an x(e) ∈ Im κB ⊆ X such that (κ0(e), x(e)) ∈ E. Set κ1(e) := x(e).

As κB : �R B → X is a locally finite set over X its image has no accumulation
points, i.e. for each point x ∈ X there is a neighborhood Ux containing only finitely
many points of the image of κB. Thus the same is true for the image of κ1.

Set
T := {x ∈ X | κ−1

1 (x) is infinite}.

As X is Hausdorff we have that (D,κ1) is finite if and only if T is empty. So T are
the “trouble points”. We change κ1 on κ−1

1 (T ). Fix a degree n. In the following we
want to ignore the part in Dn and Bn coming from cells of lower dimension, i.e. from
degeneracies of such cells. Thus we assume that the (n − 1)-skeleton of B and D
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as simplicial R-module is trivial by replacing D with D′ := D/skn−1D and B with
B′ := skn−1B, i.e. we collapse all cells of dimension < n to a point. Then D′ is
a cellular R-module with no cells of dimension < n and the k-cells for k ≥ n are
in one-to-one correspondence to the k-cells of D, similar for B′. The new modules
D′ and B′ are still isomorphic controlled modules (with control map defined by
restriction of the ones from D and B). Their degree n parts D′

n and B′
n are the free

Rn-module on their n-cells. We do not change the name of the control maps.
Set for x ∈ T

TDx
n := {e | e ∈ (�RD′)n, κ1(e) = x}.

In words these are the cells of D′ in degree n over x ∈ T (here (�RD′)n := �RD′∩D′
n).

TDx
n is a basis of the direct summand concentrated over x of the Rn-module D′

n.
As x is in T this module might is not finitely generated, so we have to change the
control map on it. (In fact, for each x there is an n′ such that this module is not
finitely generated, but it might not be for the n in question. To keep the notation
simpler we do not exclude that case, but we could.)

We now use that (D′, κ1) is still E′-isomorphic to the finite module (B′, κB) for
some E′ ∈ E .

Let ⟨TDx
n⟩ be the free direct summand of the free Rn-module D′

n with basis TDx
n.

There is an isomorphism θ : B′
n → D′

n of Rn-modules, so in particular θ is surjective.
It is E′-controlled.

This gives a map
ϕn : (�RB′)n → Pf

 
x∈X

TDx
n


from the n-cells of B′ to the finite subsets of


x∈X TD

x
n by writing θ(e), for e ∈

(�RB′)n, as a linear combination of the basis (�RD′)n of D′
n and setting q ∈ ϕn(e) ⊆

TDx
n if q occurs as a summand. (Note that not every element in (�RD′)n is in TDx

n,
so ϕn(e) might be the empty set.) It is important that ϕn assigns to each e a finite
set.

The projection to ⟨TDx
n⟩ composed with θ gives a map θx : B′

n → ⟨TDx
n⟩ which is

surjective. By the control condition θx is still surjective if restricted to the submodule
of B′

n (freely) generated by the cells over {x}E′ . Thus if q ∈ TDx
n occurs as a

summand of θ(e) then κB(e) is in {x}E′ and each such q occurs as a summand for
some e. Hence there is a “partial section”

ixn : TDx
n → (�RB′)n

to ϕn such that

κ1(d), κB(ixn(d))


∈ E′ for d ∈ TDx

n. (“Partial section” means the
union of ϕn ◦ ixn(d) over all d ∈ TDx

n contains TDx
n.)

We can do the construction for all n up to the dimension of B and D. (We only
need the data ϕn and ixn for all n and x ∈ T , which are maps of sets, and use that
(�RB′)n = (�RB)n.) Therefore these give maps of (subsets of) �RB and �RD.)

Define κ2 : �R D → X by

κ2(d) =

κB(ixn(d)), if κ1(d) = x ∈ T , d ∈ (�RD)n,
κ1(d), else.
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Then (κ2(d), κ1(d)) ∈ E′, hence (D,κ1) and (D,κ2) are controlled isomorphic. We
claim that (D,κ2) is finite.

We only have to show that for each y ∈ X there are only finitely many d with
κ2(d) = y. So let d ∈ κ−1

2 (y). We show that d lies in a finite union of finite sets
which only depend on y.

If z := κ1(d) ̸∈ T then κ2(d) = κ1(d) so d ∈ κ−1
1 (z) which by definition of T is a

finite set. If κ1(d) = x ∈ T then there is an eB ∈ (�RB)n such that eB = inx(d) and
κB(eB) = y. There are only finitely eB with κB(eB) = y hence it suffices to show
that


x∈X(ixn)−1(eB) is finite for each eB. But as ixn is a “partial section” of ϕn the

set

x∈X(ixn)−1(eB) is contained in ϕ(eB), which is a finite set. Hence each d with

κ2(d) = y is contained in a finite union of finite sets and therefore κ−1
2 (y) is finite.

This proves the finiteness of (D,κ2) and therefore the first part for G trivial.
If G is not trivial first note that κ1 can be chosen to be G-equivariant by simply

doing the choice on a set of representatives. Further θ and ϕn are G-equivariant.
As G acts freely on X we can just define ixn only for x in a set of representatives
of G-orbits and extend equivariantly. Then κ2 is equivariant, as κB, κ1 and the
collection of ixn are. This shows the equivariant case.

Now the map A → (D,κ) induces an injective map �RA → �RD. Redefining
κ such that the inclusion is a ∆-controlled map of sets over X finishes the proof
(cf. Lemma 1.18).

Remark 3.24. The proof of the Lemma implies the following for the control space
X if T was not empty: There are points x ∈ X and E ∈ E such that {x}E is not
contained in a compact subset. Namely ixn must hit infinitely many cells of B over
points in {x}E , but B is locally finite. In particular X is not a proper control space
in the sense of Section 1.2.

The main point of the Lemma is that B and D might have different cellular
structures, see Remark 1.20 why one has to be careful in such cases.

Proof of Lemma 3.20. Again we only have to check the conditions 3.14. We prove
(C1) first. If A� B is a cellular inclusion in CGf , i.e. A and B are finite objects, the
pushout along any map A→ C exists in CGf , as the canonical pushout provided by
Lemma 2.2 lies in CGf . (The set over X of the pushout is a union of the set (�RC, κR)
over X and a subset of (�RB, κR).)

So let A� B be a cofibration in CGf . This means it is isomorphic to a cellular
inclusion A′ � B′ in CGa . By Lemma 3.22 it is also isomorphic to a cellular inclusion
in CGf . So we get a diagram

A // //

∼=
��

B

∼=
��

A // // D

where the lower row is a cellular inclusion in CGf . Hence pushouts along cofibrations
exists in CGf which shows (C1).
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For (C2) note that if A is finite A[∆1] is again finite. This follows as R[∆n][∆1] =
R[∆n×∆1] has only finitely many R-cells, so for each e ∈ A a cell with κR(e) = x ∈ X
the module A[∆1] contains only finitely many extra cells, each of which is again over
x. This proves the lemma.

We do not have functoriality of CGf for all maps of control spaces any more, but
we have the following obvious criterion.

Lemma 3.25. Let ϕ : (X, EX ,FX)→ (Y, EY , EY ) be a map of control spaces which
maps locally finite sets over X to locally finite sets over Y . Then ϕ induces a functor
CGf (X,R, EX ,FX)→ CGf (Y,R, EY ,FY ).

Remark 3.26. Note that inclusions of subspaces do not map locally finite sets to
locally finite sets in general. A counterexample is the inclusion R r {0} → R,
cf. Remark 3.21. However closed inclusions do map locally finite sets to locally finite
set and hence do induce a functor of categories of controlled modules.,

3.5. Homotopy finite objects
We call a controlled module M ∈ CGa homotopy finite if there is a finite module M ′ ∈
CGf and a homotopy equivalence M ′ ∼−→M in CGa . We define CGhf = CGhf (X,R, E ,F)
by restricting to the homotopy finite objects. Stated again:

Obj CGhf :=

M ∈ CGa |M is homotopy finite


.

Lemma 3.27. CGhf is a category with cofibrations and weak equivalences. It has a
Cylinder Functor satisfying the Cylinder Axiom and the class of weak equivalences
satisfies the Extension and the Saturation Axiom.

Proof. The proof is formal. We check (C2) of 3.14 first. Let A, B be homotopy finite
objects and A→ B a map. Then B[∆1] and even T (A→ B) are weakly equivalent
to B by Lemma 2.33 and hence homotopy finite.

To check (C1), we use that we know (C1) holds for finite objects and that the
gluing lemma holds. We replace the pushout diagram

C Aoo // // B ,

with A,B,C homotopy finite, step by step by a diagram with finite objects. So
assume that there are finite objects A′, B′, C ′ weakly equivalent to A,B,C. Note
that we have inverses for weak equivalences, which we will use freely. Below we
denote mapping cylinders by MA, MB, etc. and cofibrations by �.

We get a chain of maps of diagrams. In the following the arrows marked with •−→
are defined by composition. The first step is

C A // //oo B

C A′

∼

OO

•oo // //MB

∼

OO
,
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where A′ is finite and MB is the mapping cylinder of A′ → A� B, which still is
homotopy finite. Next we get a map

C

∼
��

A′oo // //MB

C ′ A′ // //•oo MB

by C being homotopy finite. Then take

C ′ A′ // //oo MB

MC′

∼

OO

A′oooo // //MB

with MC′ being the cylinder of A′ → C ′ which is finite as A′ and C ′ are finite. Finally
we get a map

MC′ A′oooo // //MB

∼
��

MC′ A′ • //oooo B′

as MB is weakly equivalent to B′. Using the gluing lemma four times gives that
C ∪A B is weakly equivalent to the finite object MC′ ∪A′ B′.

A map of control spaces (X, EX ,FX)→ (Y, EY , EY ) induces a functor

CGhf (X,R, EX ,FX)→ CGhf (Y,R, EY ,FY )

if it maps finite sets over X to finite sets over Y , cf. Lemma 3.25.

3.6. Homotopy finitely dominated objects
We call an object M ∈ CGa homotopy finitely dominated if it is a (strict) retract of
a homotopy finite object. We define CGhfd = CGhfd(X,R, E ,F) by restricting to the
homotopy finitely dominated objects. Stated again:

Obj CGhfd := {M ∈ CGa |M is retract of a homotopy finite object } .

Let us recall some definitions first.

Definition 3.28. Let M,M ′ be objects in CGa .

(i) M is called a retract of M ′ if there are maps i : M → M ′, r : M ′ → M such
that r ◦ i = idM .

(ii) M is called a homotopy retract of M ′, or dominated by M ′, if there are maps
i : M →M ′, r : M ′ →M and a homotopy H : M [∆1]→M from r ◦ i to idM .
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We first need a lemma.

Lemma 3.29. Let A ∈ CGa . Then the following are equivalent.

(i) A is a homotopy retract of a finite module A′.

(ii) A is a retract of a homotopy finite module A′′.

(iii) A is a homotopy retract of a homotopy finite module A′′′.

Proof. Clearly (i) ⇒ (iii) and (ii) ⇒ (iii) hold. We show (iii) ⇒ (i) first.
As A′′′ is homotopy finite, there is a finite module B and maps f : A′′′ → B,

g : B → A′′′ such that g◦f ≃ idA′′′ , so A is a homotopy retract of B via A i−→ A′′′ f−→ B
and B

g−→ A′′′ r−→ B.
Now we show (i) ⇒ (ii). We have maps i : A → A′, r : A′ → A with r ◦ i ≃ idA.

Using Lemma 2.35 we can make the homotopy commutative diagram

A
i //

id
  

@@
@@

@@
@@

A′

r

��

A

into a strict commutative one, namely

A //

id
!!C

CC
CC

CC
C T (i)

��

A

.

Hence A is a retract of T (i) and as T (i) ∼−→ A′ is a homotopy equivalence, T (i) is
homotopy finite.

Lemma 3.30. CGhfd is a category with cofibrations and weak equivalences. It has a
Cylinder satisfying the Cylinder Axiom Functor and the class of weak equivalences
satisfies the Extension and the Saturation Axiom.

Proof. Again we only show (C1) and (C2) from 3.14. Assume that A,B,C are retracts
of homotopy finite objects A′, B′, C ′. Note that we can make the coretraction into a
cofibration by replacing A′ with the mapping cylinder of A→ A′, so we will assume
that the coretractions iA, iB, iC are actually cofibrations.

We want to show that C ∪A B is a retract of a homotopy finite object. We reduce
this to the case where A is homotopy finite. Consider the commutative diagram

A // //

��

��

B

A′ • //

��

B

A // // B

.
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(As before •−→ denotes a map defined by composition.) We can factor the horizontal
maps into cofibrations simultaneously using the Cylinder Functor. We obtain

A // //

��

��

M

��

∼ // B

A′ // //

��

M

��

∼ // B

A // //M
∼ // B

.

There and in all following diagrams the composition of the vertical arrows is always
the identity, which holds in the diagram above by the functoriality of the Cylinder
Functor. By the gluing lemma C ∪AM is weakly equivalent to C ∪A B. Then the
diagram, extended by C,

C Aoo // //

��

��

M

��

C A′•oo // //

��

M

��

C Aoo // //M

,

shows that C ∪AM is a retract of C ∪A′ M . We are done if we show that C ∪A′ M is
finitely dominated. As M is homotopy equivalent to the homotopy finitely dominated
object B, Lemma 3.29 shows that M is again a retract of a homotopy finite module
M ′.

Now we can use that we have coretractions C � C ′, M �M ′ with C ′,M ′ homo-
topy finite objects, which are also cofibrations. This gives a commuting retraction
diagram

C

��

A′oo // //M
��

��

C ′

��

A′•oo // • //M ′

��

C A′oo // //M

,

where we want to emphasize, that the map A′ �M ′, defined by composition, is a
cofibration. Thus C ∪A′ M is a retract of C ′ ∪A′ M ′, which is homotopy finite, as
being a pushout of homotopy finite objects along a cofibration.

For (C2), A[∆1] is dominated by A′[∆1].

Again a map of control spaces (X, EX ,FX)→ (Y, EY , EY ) induces a functor

CGhfd(X,R, EX ,FX)→ CGhfd(Y,R, EY ,FY )

if it maps finite sets over X to finite sets over Y , cf. Lemma 3.25.
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3.7. Connective algebraic K-theory of controlled modules
The categories CGf , CGhf and CGhfd are all categories with cofibrations and weak
equivalences, so we can use Waldhausen’s S.-construction from [Wal85] to produce
an algebraic K-Theory spectrum K(CG? ) and therefore also the corresponding infinite
loop space. Define Kn(CG? ) for n ≥ 0 as the nth homotopy group πnK(CG? ). This
algebraic K-Theory spectrum is always connective so we do not assign any name
to its negative homotopy groups. Later we will define a non-connective algebraic
K-theory spectrum which might have negative K-groups. It may differ in K0 with
the K-groups defined here.
Remark 3.31. There is a slight set-theoretical problem, as CGa is not a small category
according to our definition but it needs be one to apply the K-theory construction.
However, we take the usual approach (see e.g. [Wal85, Remark before 2.1.1]) and fix
a suitable large set-theoretical small category of simplicial R-modules to begin with.
Then all the categories we consider are again small. (We could get such a category
by fixing a large cardinal and require all elements to lie in it.)

We will assume such a choice from now on.
All three categories from Section 3.4 to 3.6 are sufficiently small so they have

interesting algebraic K-Theory. We make the definition explicit.

Definition 3.32 (Algebraic K-theory of categories of controlled modules). Let G
be a group, (X, E ,F) be a free G-equivariant control space. Let R be a simplicial
ring. Define the algebraic K-theory space of the category with cofibrations and weak
equivalences CGf (X,R, E ,F) as the infinite loop space

K(wCGf (X,R, E ,F))

where K is Waldhausen’s algebraic K-theory of spaces [Wal85]. We define similar
the algebraic K-theory of CGhf and CGhfd.

We first compare the different notions of finiteness.

Proposition 3.33. Let (X, E ,F) be a control space and R a simplicial ring.

(i) The inclusion CGf (X,R, E ,F)→ CGhf (X,R, E ,F) is exact and induces a homo-
topy equivalence on K-Theory.

(ii) The inclusion CGhf (X,R, E ,F) → CGhfd(X,R, E ,F) is exact and induces an
isomorphism on Kn for n ≥ 1 and an injection K0(CGhf )→ K0(CGhfd).

Remark 3.34. In view of the theorem one can consider CGhfd as an “idempotent
completion” of CGhf . We prove in Corollary C.5 in Appendix C that idempotents
and certain homotopy idempotents split in CGhfd. The author does not know if every
homotopy idempotent splits in CGhfd but suspects that it does. Hence it is not clear
that K0(CGhfd) is the “correct” group from this point of view. However, this does not
matter much as we construct a non-connective delooping later anyway, whose K0
will be the “correct” group.
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Proof. To prove (i) we use Waldhausen’s Approximation Theorem B.7 and apply
it to the inclusion functor. See B.6 for a recollection of the assumptions we have
to check. A map is a homotopy equivalence in CGf if and only if it is one in CGhf , so
(App 2) is satisfied.

So given A ∈ CGf and B ∈ CGhf and let f : A → B be a map. For B there is by
definition a Bf ∈ CGf homotopy equivalent to B, i.e. there are maps g : Bf → B and
g : B → Bf with both compositions being homotopic to the identity. Define a map
j : A→ Bf as j := g ◦ f . Then g ◦ j is homotopic to f , so Lemma 2.35 gives for the
homotopy commutative diagram on the left below the strict commutative diagram
on the right:

A
f
//

j
��

B

Bf

g

>>}}}}}}}
 

A
f
//

ι0
��

B

T (j)
H

=={{{{{{{{

with T (j) ∈ CGf , A→ T (j) a cofibration and a map Bf → T (j) which is a homotopy
equivalence. As there is a commutative diagram

Bf

∼
��

∼ // B

T (j)
H

==||||||||

the Saturation Axiom (Lemma 2.31) shows that H is a homotopy equivalence. This
shows (i).

For (ii) we use Exercise 1.10.2 from [TT90]. This is the following cofinality result
(in notation from there):

Let A and B be Waldhausen categories. Suppose A is a full subcategory
of B closed under extensions, that w(A) = A∩w(B), and that a map in
A is a cofibration in A iff it is a cofibration in B with quotient isomorphic
to an object of A. Suppose that B has mapping cylinders satisfying the
cylinder axiom, and that A is closed under them. Suppose finally that A
is cofinal in B in that for all B in B there is B′ in B such that B ∪B′ is
isomorphic to an object of A.
Then K(A)→ K(B)→ “K0(B)/K0(A)” is a homotopy fibre sequence.

The sequence K(A) → K(B) → “K0(B)/K0(A)” can either be interpreted as
a homotopy fiber sequence of infinite loop spaces or of spectra. We use it for
infinite loop-spaces, then the last term is simply the discrete group K0(B)/K0(A).
(In the spectra-version it would be the Eilenberg-MacLane spectrum HM with
M := K0(B)/K0(A), which is characterized by π0HM = M and πnHM = 0 for
n ̸= 0 up to weak equivalence of spectra.)

We have to check the conditions. Most of them are clear or shown in the previous
sections, in particular a map A → A′ in CGhf which is a cofibration in CGhfd is a
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cofibration in CGhf , and therefore its quotient is again in CGhf . We first show the
cofinality and then that CGhf is closed under extensions in CGhfd.

For B ∈ CGhfd there is an A ∈ CGhf such that B is a retract of A, i.e. there are maps
r : A→ B, i : B → A such that r ◦ i = idB. By replacing A with T (i) we can assume
that i is a cofibration, hence there is a cofiber sequence

B
i
� A

p
� C := A/B.

The retraction r : A→ B and the map ∗ → C give a map A→ B ∨ C, and ∗ → B
and A→ C give another one. The sum of these maps makes the diagram

B // //

=
��

A // //

��

C

=
��

B // // B ∨ C // // C

commutative and both rows are cofiber sequences. By the Extension Axiom 2.48 the
map A→ B ∨ C is a homotopy equivalence, hence B ∨ C ∈ CGhf .

Next we need to show that CGhf is closed under extensions in CGhfd. So let

A� B � C

be a cofiber sequence in CGhfd with A,C ∈ CGhf and B (“the extension of A by C”) in
CGhfd. As CGhf is cofinal there is a B′ ∈ CGhfd such that B ∨B′ ∈ CGhf . Then

A� B ∨B′ � C ∨B′

is a cofiber sequence with A,B ∨ B′ ∈ CGhf , hence the quotient C ∨ B′ is in CGhf by
the gluing lemma. Similar but easier we get cofiber sequences

C � C ∨B′ � B′

showing B′ ∈ CGhf and
B′ � B ∨B′ � B

showing B ∈ CGhf , what we wanted to show. Part (ii) of the proposition follows.

If X is a point the category C(X,R) is just the category of simplicial R-modules.
We have a similar result in the presence of G.

Lemma 3.35. Let R be a simplicial ring and G a (discrete) group. Then the
categories CG(G/1, R, {G×G}, {G}) and C(pt., R[G], {pt.}, {pt.}) are equivalent and
both are equivalent to the category of finite-dimensional cellular simplicial R[G]-
modules.

The equivalences respect the finiteness conditions f , hf and hfd.
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Proof. Let (M,κR) ∈ CG(G/1, R). First we can forget κR as each two controlled
modules (M,κR), (M,κ′

R) are isomorphic. Then M is a finite-dimensional cellular
simplicial R-module with a cell-permuting G-action. This is the same as a finite-
dimensional cellular simplicial R[G]-module. G-orbits in �RM are in bijection to
cells (elements) in �R[G]M . This proves the first part.

If M is a finite R-module over G/1 (with discrete topology) then �RM contains
only finitely many G-orbits, hence �R[G]M is finite. Homotopies and retracts in
CGa (G/1, R) and Ca(pt., R[G]) correspond to each other. This shows the lemma.

Corollary 3.36. The algebraic K-Theory of CGhfd(G/1, R, {G×G}, {G}) is homotopy
equivalent to K(R[G]), the algebraic K-theory of the simplicial ring R[G].

Proof. The definition of algebraic K-Theory of simplicial rings we use is in [Wal85,
2.3]. As CGhfd(G/1, R) is equivalent to the category of finite R[G]-modules the corollary
follows.

Remark 3.37. As always one has to be careful about the “correct” definition of K0.
The definition in the corollary yields the “correct” K0, whereas CGf and CGhf would
only give the part of K0 corresponding to the image of K0(Z). See also the Remark
after [Wal85, Thm. 2.3.2].

We finish with an observation about a change of the rings.

Theorem 3.38. Let f : R→ S be map of simplicial rings which is a weak equivalence.
Then f induces a map CG? (X,R)→ CG? (X,S) which is an equivalence on algebraic
K-Theory. (Here ? can be f , hf or hfd.)

The proof will take the rest of this section. We do some preparations first. If M
is a cellular R-module then S ⊗R M is a cellular S-module and we get a natural
bijection �RM ∼= �S(S⊗RM) which makes S⊗RM into a controlled S-module. This
construction respects all finiteness conditions and cofibrations, so we get an exact
functor S ⊗R − : CG? (X,R)→ CG? (X,S). We make two observations first before we
prove Theorem 3.38.

Lemma 3.39. Let R→ S be a weak equivalence of simplicial rings and P a cellular
(uncontrolled) R-module. Let η : P → resS⊗RP be the unit of the adjunction between
the induction S ⊗R − and the restriction resR. Then η is a weak equivalence of
simplicial R-modules and in particular a homotopy equivalence of simplicial sets.

Proof. This follows from the gluing lemma and induction over the dimension of P .
We get a pushout-diagram

R[∆n]

≃
��


R[∂∆n]oo //

≃
��

Pn−1

≃
��

S[∆n]

S[∂∆n]oo // S ⊗R Pn−1
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where the vertical maps are weak equivalences of simplical R-modules, hence by
the gluing lemma for simplicial R-modules (cf. [GJ99, II.8.12;III.2.14]) the pushout
Pn → S ⊗R Pn is a weak equivalence. As simplicial abelian groups are fibrant as
simplicial sets the weak equivalence is a homotopy equivalence of simplicial sets.

Lemma 3.40. Let M,P ∈ CGa (X,R). For any map

g : S ⊗RM → S ⊗R P

in CGa (X,S) there is a map f : M → P in CGa (X,R) such that g is homotopic to
S ⊗R f in CGa (X,S). If A�M is a cellular inclusion in CGa (X,R) and f ′ : A→ P
a map such that

S ⊗R A
S⊗Rf

′
//

��

��

S ⊗R P

id
��

S ⊗RM
g
// S ⊗R P

(16)

commutes, then g is homotopic to S ⊗R f relative to S ⊗R A.

Proof. We do induction over the dimension of the cells attached to A. So assume
that M is the pushout 

R[∂∆n] //

��

A

��
R[∆n] //M

and we have maps f ′ : A → P , g : S ⊗R M → S ⊗R P such that Diagram (16)
commutes. We have to construct a map f : M → P and a homotopy from g to
S ⊗R f relative to S ⊗R A. It suffices to construct this for each cell individually. So
choose one cell e : R[∆n]→M attached to A and let x := κR(e). As M is controlled
there is an E ∈ E and cellular submodules A′ ⊆ A, P ′ ⊆ P with support on {x}E
such that the attaching map of e factors as R[∂∆n]→ A′ � A and the restriction
g′ of g to A′ ∪R[∂∆n] R[∆n] factors over P ′. In other words we get a commutative
diagram

S ⊗R A′ //

��

��

S ⊗R P ′

id
��

S ⊗R (A′ ∪R[∂∆n] R[∆n]) g′
// S ⊗R P ′

in CGa (X,S) and it suffices to construct a map f : A′ ∪R[∂∆n] R[∆n] → P ′ and
homotopy of g′ to S ⊗R f . We use the adjunction of S ⊗R − and the restriction res
along R→ S to obtain the diagram

A′ //

��

��

P ′

η

��

A′ ∪R[∂∆n] R[∆n]
g′
// resS ⊗R P ′

.
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Here g′ is the adjoint to g′ and similar η is the unit of the adjunction. Using the
adjunction of R[−] and the forgetful functor to simplicial sets we can simplify further
to the diagram

∂∆n //

��

��

P ′

η

��

∆n // resS ⊗R P ′

.

of simplicial sets. It suffices to construct a lift up to homotopy there. Now as R→ S
is a weak equivalence the unit η : P ′ → resS⊗R P ′ is a weak equivalence of simplicial
sets and a homotopy equivalence by Lemma 3.39. If follows that in the last diagram
there exists a lift up to homotopy. This lift gives a map

f : A′ ∪R[∂∆n] R[∆n]→ P ′

such that η ◦ f is homotopic relative A to g′. As P ′ has support on {x}E the map f
is always at least E2-controlled. This proves the lemma for a single cell.

For all cells together note that for each cell in the same dimension we get the same
control condition E, hence the constructed lift has on each cell the same control
condition, so the homotopy and the lift glue together. Then we use the homotopy
extension property to get a map S ⊗RM → S ⊗R P homotopic to g which relative
to A and the n-skeleton of M . Induction and the finite-dimensionality of M finishes
the proof.

Proof of Theorem 3.38. We apply the Approximation Theorem B.7 to the functor
F := S ⊗R − : CG? (X,R) → CG? (X,R). We prove (App 1) first. Let α : M → M ′

be a map in CG? (X,R) such that S ⊗R α is a homotopy equivalence in CG? (X,S).
By Lemma 3.40 there is a map β′ : M ′ → M such that the homotopy inverse
β : S ⊗R M ′ → S ⊗R M of S ⊗R α in CG? (X,S) is homotopic to S ⊗R β′. Hence
there is a homotopy H : S ⊗RM [∆1]→ S ⊗RM from S ⊗R idR to S ⊗R (β′ ◦ α) in
CG? (X,S) which is homotopic relative to M [∂∆1] to a homotopy S ⊗R H ′ where H ′

is a homotopy from idR to β′ ◦ α, using Lemma 3.40 again. Vice versa for α ◦ β′, so
α is also a homotopy equivalence in CG? (X,R).

For (App 2) take M ∈ CG? (X,R) and N ∈ CG? (X,S) and a map S ⊗R M → N .
Assume that it is a cellular inclusion by taking the mapping cylinder. We show that
N is homotopy equivalent relative S⊗RM to a module S⊗RM , with M ∈ CG? (X,R).

We proceed by induction over the dimension of cells of N which are not in S⊗RM .
Hence assume we have an R-module Mn, an S-module Nn homotopy equivalent to
N relative to S ⊗RM , and a cellular inclusion S ⊗RMn → Nn such that the S-cells
of Nn which are not in S ⊗RMn are of dimension ≥ n+ 1. We only need to show
that there is an R-module Mn+1 such that the union of the n + 1-skeleton Nn

n+1
of Nn with S ⊗RMn is homotopy equivalent to S ⊗RMn+1 relative to S ⊗RMn.
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Then we can take the pushout

Nn
n+1 // //

��

Nn

��

S ⊗RMn+1 // // Nn+1

to get a module Nn+1 homotopy equivalent relative S ⊗RMn to Nn which contains
S ⊗RMn+1 as a cellular submodule. This gives the induction step, the induction
terminates after finitely many steps as N and hence each Nn is finite-dimensional.

By assumption Nn
n+1 is the pushout of

S[


∆n+1] S[

∂∆n+1]

ϕn+1
//oo S ⊗RMn .

where ϕn+1 is the attaching map for the cells. By Lemma 3.40 there is a map
ψn+1 : R[


∂∆n+1] → Mn such that S ⊗R ψn+1 is homotopic to a ϕn+1. Call the

homotopy Hn+1. Applying the gluing lemma to the diagram (where all vertical maps
are homotopy equivalences)

S[


∆n+1]

��

S[

∂∆n+1]

ϕn+1
//oo

��

S ⊗RMn

��

S[


∆n+1][∆1] S[

∂∆n+1][∆1] H

n+1
//oo S ⊗RMn[∆1]

S ⊗R R[


∆n+1]

OO

S ⊗R R[

∂∆n+1]

S⊗ψn+1
//oo

OO

S ⊗RMn

OO

shows that the pushout of the first row is homotopy equivalent to the pushout of
the last row. (This is a simplicial version of the topological fact that homotopic
attaching maps yield homotopy equivalent CW-complexes.) In the last row S ⊗R −
commutes with the pushout, define Mn+1 as the pushout of

R[


∆n+1] R[

∂∆n+1]

ψn+1
//oo Mn .

The resulting map S ⊗RMn+1 → Nn
n+1 is the desired homotopy equivalence.

Summarizing we get for m := dimN a diagram

S ⊗RM

��

// N

≃
��

S ⊗RMm
∼= // Nm
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which we can make into the desired diagramm

S ⊗RM //

S⊗−
��

N

S ⊗RM
∼

;;wwwwwwwww

.

using a homotopy inverse for the left map and defining M as the mapping cylinder
of M →Mm to make the diagram strictly commutative. This proves (App 2). The
theorem follows by the Approximation Theorem B.7.

This finishes the discussion of the different structures of categories with cofibrations.
Next we will discuss another class of weak equivalences.
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4. Germs
Germwise weak equivalences give a new class of weak equivalences on CG(X,R, E ,F)
larger than the class of homotopy equivalences. It is convenient to introduce a whole
“category of germs”.

We motivate the notion of germs in Section 4.2. We show in Section 4.1 that for
M ∈ CG(X,R, E ,F) a controlled module and U ⊆ X a subset of the control space
(X, E ,F) we can “restrict” M to U . This allows us to define germs in Section 4.3 and
show in the following sections that the germwise weak equivalences give a category of
weak equivalences on CG(X,R, E ,F) which satisfies the Gluing Lemma, the Extension
Axiom and the Saturation Axiom.

4.1. Modules with support on subsets
Lemma/Definition 4.1. Let (M,κR) be an E-controlled module in CG(X,R, E ,F).
Let U be a G-invariant subset of X.

Then there is an E′ ∈ E and a cellular submodule (MU , κ) of (M,κ) with
(i) κ−1(U) ∩ �RMU = κ−1(U)

(ii) suppMU ⊆ UE
′.

Here E′ only depends on E and the dimension of M .
Remark 4.2. One could say that MU is the “restriction of M to U”. The first condition
ensures that “over U” there is no difference between M and MU whereas the second
conditions implies in particular that MU is controlled isomorphic to a module over
U .

Recall that all modules in CG are required to be finite-dimensional. This is strongly
linked to this definition and the definition of control for a module in Section 1.3:
as 4.1 would not be true for every infinite-dimensional controlled module with the
definition of control given in Section 1.3. The proof below will show that E′ can be
chosen to be En, for n the dimension of M .

Proof. We define MU by specifying a subset of the generating cells of M . Let n
be the dimension of M . Let Cn be set of cells eni of M of top dimension n with
κ(eni ) ∈ U . Define Cl, l < n by descending induction.

For all boundaries δ∗(el+1
i ) of cells el+1

i ∈ Cl+1 we have a unique representation
(cf. (3) in Section 1.3)

δ∗(el+1
i ) =


el

j∈I(δ∗(el+1
i ))

rj · σ∗
j e
l
j .
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Let IU be the subset of e ∈ (�RM)l with κR(e) ∈ U . Then define

Cl := IU ∪


el+1
i ∈Cl+1

I(δ∗(el+1
i )).

Then
n
i=0Ci =: �RMU generates the desired submodule MU of M . The G-

invariance is automatic. As the boundaries are controlled by E, MU has support on
UE

n with En := E ◦ n· · · ◦ E ∈ E .

4.2. Motivation and controlled preliminaries

So what should a “germ” be? It is an already established notion in the form of
“germs at infinity”, see [BFJR04] for the case of discrete controlled modules and
[CPV98] for a slightly different version in the setting of controlled topological spaces.
We generalize the “infinity”. The basic idea is that for a control space (X, E), a
subspace Y ⊆ X, and the category CGhfd(X,R, E) we want to ignore “anything over
Y systematically”. In particular modules with support on Y should be equivalent to
the trivial module and hence maps factoring over such a module should be equivalent
to the zero map. The categorical properties require us to remove more. For example
there are objects which are isomorphic to ones having support on Y but itself have
only support on Y E for some E ∈ E , we want them to be equivalent to the zero
module as well. The technical tool to do this is to introduce a new category of weak
equivalences, the germwise weak equivalences. Let us elaborate on this a bit before
providing the formal definition.

Assume we have a control space (X, E) and a subspace Y of X. An instructive
example for the following is (R≥0, Ed), the positive real numbers with metric control,
with subspace {0}. We use the following observation: If we have a module M on X
and we are only interested in the part “away from Y ”, we can consider the modules
MXrY Ei , Ei ∈ E , cf. Definition 4.1. We want maps from M to be equivalent if the
agree on MXrY Ei , in particular MXrY Ei �M will be a germwise weak equivalence.
(Note that for {0} ⊂ (R≤0, Ed) the sets X r Y Ei are of the form (α,∞), α ∈ R≥0.)

We axiomatize the properties we need from the sets XrY Ei below in Definition 4.4
as germ support sets which hopefully makes the arguments more transparent. The
sets X r Y Ei are our only example for them. Note that object support conditions F
do not play any role in these discussion, so we will not mention them in this chapter
any more.
Remark 4.3. The aim of this theory is to play the role of a Karoubi filtration of
an additive category from [CP97], which gives a homotopy fiber sequence in the
algebraic K-theory of these additive categories. In particular we want the precise
analogue of Proposition 4.2 of [BFJR04], which says that an inclusion of control
spaces gives a Karoubi filtration, and hence a fiber sequence. The problem why
we cannot apply that theory is the following: For discrete R-modules M in CG(X)
and Y ⊆ X a G-equivariant subspace we can decompose M as M = MY ⊕MXrY ,
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but this decomposition not possible for a general simplicial R-module. Therefore
we do not have “complements” for simplicial modules, and further we have to take
homotopy equivalences into account. Readers familiar with the notion of a Karoubi
filtration from [CP97] should view the category CG together with the germwise weak
equivalences gwCG as an analogue of the Karoubi quotient U/A from [CP97, Def. 3.3],
for U an A-filtered additive category.

Definition 4.4. Let (X, E) be a G-equivariant control space. A set of germ support
sets is a collection U of G-invariant subsets Ui of X such that

(i) For U1, U2 ∈ U there is a U3 ∈ U with U3 ⊆ U1 ∩ U2.

(ii) For U1 ∈ U and E ∈ E there is a U4 ∈ U with U4
E ⊆ U1.

We can draw some immediate conclusions.

Lemma 4.5. Suppose we have a set of germ support sets U on (X, E).

(i) For each Ui ∈ U the restricted module MUi from 4.1 exists.

(ii) For U1, U2 ∈ U there is a U3 ∈ U and cellular inclusions MU3 � MU1 and
MU3 �MU2.

(iii) For M ∈ CG(X,R, E ,F), U1 and an E-controlled map f : A → M there is a
U4 ⊆ U1 ⊆ X such that the restricted map f : AU4 →M factors through MU1,

AU4
//

f
##F

FFFFFFF
MU1

��

M

,

which implies in particular that for any map f : A→ B and any U1 there is a
U4 such that f restricts to

AU4
f
//

��

BU1

��

A
f
// B

Proof. The first claim follows from 4.1, the second and third are then easy to
check.

Remark 4.6. The definition of “germ support sets” is made such that Lemma 4.5
is true (and a bit more which we will need later in a proof). The first point of the
definition requires that we can always make two germ support sets smaller to get a
common germ support set, whereas the second point is that we can always restrict
quite far, getting a certain “margin” to the original set.

Like for object support conditions and morphism control conditions we can alway
pass to a cofinal subset of germ support sets, this time with respect to the descending
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order “⊇”. This means that if U ⊆ U ′ are germ support sets such that for each
U ′ ∈ U ′ there is a U ∈ U with U ⊆ U ′ then U and U ′ are equivalent for all purposes.
Note that the axioms for germ support sets are dual to the ones for object support
conditions, i.e. {X r U | U ∈ U} is a set of object support conditions. This is no
coincidence, but in applications where the concepts are used simultaneously they are
“orthogonal”, i.e. the specific germ support sets and object support conditions are
chosen independently and are not dual to each other.

Lemma 4.7. Let (X, E) be a free G-equivariant control space and Y a G-invariant
subspace of X. The collection of sets {Ui} := {X r Y Ei | Ei ∈ E} is a set of germ
support sets.

Proof. As Y and each Ei is G-invariant the G-invariance of Ui follows.
Given U1 = X r Y E1 and U2 = X r Y E2 then there is a E3 with E1 ∪ E2 ⊆ E3.

It follows for U3 := X r Y E3 that Y E1 ∪ Y E2 ⊆ Y E3 and hence

U1 ∪ U2 = (X r Y E1) ∩ (X r Y E2) = X r (Y E1 ∪ Y E2) ⊇ X r Y E3 = U3.

This proves the first part.
For the second part let U1 = X r Y E1 and given an E ∈ E . We prove that for

U4 := X r Y E◦E1 we have U4
E ⊆ U1. So take x ∈ U4

E . Then there is a (x, y) ∈ E
with y ̸∈ Y E◦E1 . It follows x ̸∈ Y E1 . Hence x ∈ U1.

Definition 4.8. We call the germ support sets UY := {Ui} = {X r Y Ei | Ei ∈ E}
from Lemma 4.7 the germs support sets away from Y .

4.3. The category of germs
For the category of controlled simplicial R-modules CG(X,R, E ,F) and a collection
of germ support sets U = {Ui} satisfying Definition 4.4 we define the category of
germs at U . This category will be denoted by CG(X,R, E ,F)g where the little “g”
refers to the chosen collection U which usually will be left understood.

Definition 4.9. Let (X, E ,F) be a control space and U = {Ui} a set of germ support
sets on X. Consider the category CG = CG(X,R, E ,F). A partial map from A to
B is a map AU → B for some U ∈ U . For U1 ⊆ U , U,U1 ∈ U and a partial map
f : AU → B we call the composition AU1 → AU → B the restriction of f to U1. It is
again a partial map.

Two partial maps f1,2 : AU1,2 → B are equivalent if there is a U3 ⊆ U1 ∩ U2 such
that the restrictions to U3 are equal, i.e.

AU3 � AU1
f1−→ B equals AU3 � AU2

f2−→ B.

Note that a partial map AU → B does not need to be a restriction of a map
A→ B, but every map A→ B gives a partial map AU → B by restriction.
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Lemma 4.10. Let f, f ′ be partial maps from A to B, let g, g′ be partial maps from
B to C. Assume that f is equivalent to f ′ and g is equivalent to g′. Then there is a
U such that composition of the partial maps g ◦ f : AU → C is defined. Further g ◦ f
and g′ ◦ f ′ are equivalent as partial maps.

Proof. Assume we have the following maps:

f : AU1 → B g : BU3 → C

f ′ : AU2 → B g′ : BU4 → C.

Then by Lemma 4.5 (iii) there are U1 and U2 such that f and f ′ restrict to

f : AU1
→ BU3 f ′ : AU2

→ BU4 ,

hence we can compose.
Further there is a U3 ⊆ U3 ∩ U4 such that g = g′ : BU3

→ C and a U1 ⊆ U1 ∩ U2

such that f = f ′ : A
U1
→ B. Therefore there is a V ⊆ U1 such that we get the

equality of the restrictions

g ◦ f = g′ ◦ f ′ : AV → BU3
→ C.

Definition 4.11. We call an equivalence class of partial maps from A to B a germ.
We usually write f : A→ B for a germ from A to B by a misuse of notation.

Remark 4.12. Note that a more precise notation for a germ from A to B would be
the notation [f : AU → B], but this is inconvenient to use.

Definition 4.13. Let (X, E ,F) be a control space and U a set of germ support
conditions. Define the category of germs of CG as the category with the same objects
as CG(X,R, E ,F) and with morphisms the germs from A to B. The composition is
given by Lemma 4.10, leaving U understood.

Denote the category of germs by CG(X,R, E ,F)g or abbreviated by CGg. Here and
in the following the little “g” always refers to the collection U .

We have an obvious functor CG → CGg by which we can regard morphisms and
objects in C as lying in Cg. It take a map A → B to a partial map AU → B for
U ∈ U and then takes equivalence classes. The functor is surjective on objects by
definition. This gives for each simplicial set K and M ∈ CGg an object M [K] in CGg.
So in particular we get the object A[∆1]. It will serve as a cylinder.

Definition 4.14. A homotopy from f to g in CGg is germ H : A[∆1]→ B such that
H ◦ ι0 is f and H ◦ ι1 is g.

The following lemma shows that the notion of homotopy is unambiguous.

Lemma 4.15. Restriction commutes with adjoining a simplicial set, e.g. AU [∆1] is
A[∆1]U .
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Proof. This follows by inspection.

We note an obvious but important fact.

Lemma 4.16. For any module A and any subset Ui the canonical inclusion AUi � A
is an isomorphism in CGg.

Remark 4.17. The interplay between the categories CG and CGg is important, so let
us give a few remarks about it. A germ from A to B in CGg is represented by a
partial map AU → B in CG, this means, using Lemma 4.5(iii), that we can transport
finite diagrams without cycles in CGg back to CG and investigate them there. For
example if we want to show that a diagram commutes in CGg we can look at the
corresponding diagram of partial maps in CG and check its commutativity. Note
however, that if it does not commute in CG it still might commute in CGg as some
restriction might commute.

So although the functor CG → CGg is neither injective nor surjective on morphisms
from A to B in general, we still can and must use the source category CG to examine
the target category CGg. We will use this strategy in the case of pushout-diagrams.

4.4. Germwise weak equivalences
As before we fix some set of germ support sets U and consider germs g with respect
to U . The notion of homotopy in CGg yields the notion of homotopy equivalence.
Hence we can make the following definition.

Definition 4.18. A map A → B in CG is called a germwise weak equivalence or
gw-equivalence if it becomes a homotopy equivalence in CGg.

We will show that an analogue of the Gluing Lemma and the Extension Axiom
hold in CGg, which will provide us with these axioms for the gw-equivalences. We
will not prove that CGg is a category with cofibrations and weak equivalences as we
do not need that. In particular we refrain from defining cofibrations there. The
author does not know, if CGg can be made into a category with cofibrations and
weak equivalences.

We first need a very helpful technical lemma.

Lemma 4.19. Let
A // //

��

B

��

C // // Q

be a pushout along a cofibration in CG, then it is a pushout in CGg.

As before we can assume that A� B is a cellular inclusion. We prove first that if
we restrict the diagram it does not matter.
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Lemma 4.20. Let C ← A→ B be a diagram in CG with pushout Q where A� B is
a cellular inclusion. Let CU2 ← AU1 � BU3 be a restriction of the diagram, Ui ∈ U ,
i.e. the diagram

CU2

��

AU1
oo // //

��

BU3

��

C Aoo // // B

is strictly commutative in CG. (It follows that AU1 � BU3 is a cellular inclusion.)
Let QU be the pushout of the restricted diagram in CG.

Then the induced map between the pushouts QU → Q is an isomorphism in CGg.

Remark 4.21. In general QU → Q will not be injective in CG. E.g. if AU1 is “small”
and C a point the map BU3 → QU might not collapse some cells of BU3 which are
collapsed by B → Q.

Proof. We take the canonical model forQ andQU from Lemma 2.2 and therefore know
precisely how they are constructed. In particular we have �RQ ∼= �RC ∪ (�RBr�RA)
and �RQU ∼= �RCU2 ∪ (�RBU3 r �RAU1) and the control maps are the ones induced
by the control maps of C and B. We will denote all control maps by κ as there is no
ambiguity. We choose a U such that QUU has support contained in U1 ∩ U2 ∩ U3.
Such a U exists by Lemma 4.5.

We show that QUU � Q is a cellular inclusion such that over U the cells of QUU
and Q are in bijection. Let e1 ∈ �RQU be a cell which comes neither from �RC
nor from �RB r �RA. The it must be from �RBU3 r �RAU1 , hence it follows that it
comes from a cell e2 ∈ �RAr �RAU1 . Therefore κ(e2) ̸∈ U1, in particular e1 ̸∈ QUU .
So QUU is a cellular submodule of Q.

So let now e1 be a cell in �RQ with κ(e1) ∈ U . Then there is an e2 which is either
in �RC or in �RB r �RA which maps to e1. In both cases κ(e2) = κ(e1) ∈ U , hence
e2 ∈ �RCU1 or e2 ∈ �RBU3 , so it provides an element e3 in �RQUU mapping to e1 in
�RQ. This shows all cells of Q which lie over U are already in QUU .

It follows that the composition QUU � QU � Q is an isomorphism in Cg. As the
first map is one, so then is the second, which proves the lemma.

Proof of Lemma 4.19. We assume A� B is a cellular inclusion. We now have to
check the universal property. Denote B → Q by iB and C → Q by iC .

Assume that T is an object in CGg and let f : B → T , g : C → T be two germs
which agree when precomposed with A → B. This means that there are U1, U2,
U3 ∈ U such that the maps

AU1 → BU3
f−→ T

AU1 → CU2
g−→ T

exist and agree in CG. If we take the pushout QU of CU2 ← AU1 → BU2 in CG we
get a (unique) induced map QU → T (in CG) and by the last lemma the canonical
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map QU → Q is an isomorphism in CGg so this gives a germ t : Q→ T compatible
with the germs B → T and C → T . This gives the existence.

Assume there is another germ t′ : Q → T compatible with f and g. By taking
representing partial maps of t′ ◦ iB and t′ ◦ iC we get a solid commutative diagram

AV1

��

// BV3

��
�
�
�

t′◦iB

��

CV2

t′◦iC ,,

//___ QV

  
B

B
B

B

T

. (17)

We get a unique induced map QV → T on the pushout which represents t′, i.e. QV →
T represents the same germ as QV

∼=g−−→ Q
t′−→ T . But all partial maps in the solid

diagram (17) represent the same germs which also induce the map t′ : QU → T . It
follows that the outer diagram

QU

t

  
@@

@@
@@

@@
∼=
��

Q
t

t′
// T

QV

∼=

OO

t′

>>~~~~~~~~

commutes in CGg and this implies t = t′. This shows the uniqueness.

Lemma 4.22. Homotopy of germs in CGg is an equivalence relation.

Proof. Reflexivity is clear using Lemma 4.15. Symmetry follows by the existence of
a “twist” map A[∆1]→ A[∆1] by the Kan Extension property. Transitivity follows
as soon as we show that homotopies can be concatenated.

By the horn-filling property we have a map A[∆1]→ A[∆1 ∪∆0 ∆1]. We only need
to show that two homotopies A[∆1]→ B can be glued to a map A[∆1 ∪∆0 ∆1]→ B
if the end of the first is the same germ as the start of the second. But the last lemma
showed the source of this is a pushout in CGg so this can be done.

The lemma implies that the homotopy equivalences in CGg behave in the same
way as one is used to. In particular we have the following lemma.

Lemma 4.23. The gw-equivalences fulfill the Saturation Axiom.

Proof. The gw-equivalences are the homotopy equivalences in CGg, so one can regard
the question there. But the elaborated proof we gave for the Saturation Axiom 2.31
in CG unsurprisingly also works for the homotopy equivalences in CGg.
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4.5. CG as a category with cofibrations and germwise weak
equivalences

The goal of this section is to show that the germwise weak equivalences also satisfy
the axioms of a category of weak equivalences in CG (cf. B.2 / Recollection 3.4).
The main point is to prove the Gluing Lemma. That requires the same steps as
in the proof of the Gluing Lemma for the homotopy equivalences which we did in
Section 3.1. Fortunately big parts of that proof there can be reused, so we follow
the same strategy. After that we also show that the Extension Axiom holds for the
germwise weak equivalences, which is parallel to Section 2.8.

We state the crucial lemma first, then deduce the existence of a structure of
a category of germwise weak equivalences on CG(X,R, E ,F) before we prove that
lemma afterwards. We follow the same strategy we used to show Proposition 3.3,
the proofs are parallel to those of Section 3.1 and Sections 2.4 to 2.8. Therefore
we sometimes only remark the differences to the proofs from there, in particular all
statements about CG from there which do not involve weak equivalences apply here
and we will use them without further remarks.

Lemma 4.24. Given a pushout diagram

A //

��

∼gw f

��

B

��

C // D

in CG where A → C is a cofibration and a gw-equivalence. Then B → D is a
gw-equivalence.

Proof. Deferred after Remark 4.28.

Remark 4.25. Of course it also follows that B → D is a cofibration as CG is a category
with cofibrations, which we proved already.

Lemma 4.26. The category CG = CG(X,R, E ,F) together with the cofibrations and
gw-equivalences as weak equivalences is a category of cofibrant objects in the sense of
Remark 3.7.

Proof. From the axioms for a category of cofibrant objects (see Remark 3.7 for a
list) we only need to show a part of 3.7(iii): The pushout of an acyclic cofibration is
an acyclic cofibration, but this is Lemma 4.24. The remaining points either do not
involve weak equivalences or are already shown: The Saturation Axiom is Lemma 4.23
and the Cylinder Axiom is implied by wC ⊆ gwC. Hence Lemma 4.24 implies this
lemma.

Lemma 4.27. The category CG = CG(X,R, E ,F) together with the cofibrations
and gw-equivalences as weak equivalences is a category with cofibrations and weak
equivalences. It has a Cylinder Functor which satisfies the Cylinder Axiom and its
weak equivalences satisfy the Saturation Axiom.
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Proof. This is implied by Lemma 4.26 which in particular implies the Gluing Lemma
for gw-equivalences, as categories of cofibrant objects satisfy the Gluing Lemma by
[GJ99, II.8.8].

Remark 4.28. We denote this category as gwCGa . It also satisfies the Extension Axiom
which we will prove in Lemma 4.34.

We start the proof of Lemma 4.24. Basically we have to redo Sections 2.4 to 2.7
for germwise homotopy equivalences. However some proofs transfer to our situation,
so we only sketch the steps and describe the differences.

We first need a version of the homotopy extension property. We repeat that there
is a functor CG → CGg by which we can interpret “real” maps as germs. Hence it
makes sense for example to say that two maps in CG are “germwise homotopic”, this
should mean there is a homotopy in CGg between the maps regarded as germs. We
abbreviate this and say they are g-homotopic, and the same for other notions.

Lemma 4.29 (g-HEP). Let A� C be a cofibration in CG, let Q be in CG, and let
C → Q be a germ (g-map) in CGg. Assume there is a g-homotopy H : A[∆1]→ Q
in CGg starting at H0 : A � C → Q. Then H can be extended to a g-homotopy
H : C[∆1]→ Q in CGg.

Proof. We have to find a dashed arrow in the diagram

A[∆1] ∪ C //

��

Q

C[∆1]

::v
v

v
v

v

in CGg. We can assume that A→ C is a cellular inclusion.
The germ C → Q is represented by a partial map CU1 → Q, so H0 is represented

by the partial map AU1 → CU1 → Q where AU1 → CU1 is a cellular inclusion. Let
the g-homotopy H be represented by A[∆1]U2 → Q. There is a U3 ⊆ U1 ∩ U2 such
that (A[∆1]∪C)U3 = AU3 [∆1]∪CU3 and the germ A[∆1]∪C → Q is represented by
the pushout AU3 [∆1] ∪ CU3 → Q in CG. The map l in the diagram

AU3 [∆1] ∪ CU3
//

��

Q

CU3 [∆1]
l

99ssssss

exists in CG by the homotopy extension property from Lemma 2.29. It is a diagram
of partial maps for the desired diagram of germs above, so in particular H := l
represents a solution for the extension problem.

Analogous we have a horn-filling property.
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Lemma 4.30. Every horn can be filled in CGg.

Proof. Given a germ A[Λn
i ] → B in CGg. This is represented by a partial map

A[Λn
i ]U → B and A[Λn

i ]U is AU [Λn
i ] by Lemma 4.15. But AU [Λn

i ] can be filled in
CG, so there is a map AU [∆n]→ B which extends the horn, which is a partial map
A[∆n]U → B.

The notion of a deformation retraction (see Definition 2.32) makes sense in CGg.
We need it in a case where the inclusion exists already in CG. So the data we have
for A being a deformation retract of M in CGg (in our application) are an inclusion
i : A→M in CG, a germ r : M → A such that r ◦ i = idA in CGg, and a g-homotopy
M [∆1]→M from i ◦ r to idM in CGg. As Definition:

Definition 4.31. If i : A→M is a map in CG and r : M → A a map in CGg such
that A is a deformation retract of M in CGg with inclusion i and retraction r then A
is called a g-deformation retract of M and r is called a g-deformation retraction.

Remark 4.32. Note that the notion of a g-deformation retract is only useful for
discussions about CG if at least one of maps “inclusion” or “retraction” is in CG. In
our cases this will always be the inclusion.

As before we denote the Cylinder Functor (or mapping cylinder) applied to a map
f : A→ B in CG by T (f).

Lemma 4.33. Let f : A→ B be a gw-equivalence in CG. Then A is a g-deformation
retract of T (f) via the inclusion ι0.

Proof. We do the same three steps as in the proof of Proposition 2.34. The first
step is to get the g-retraction r : T (f)→ A. But the proof of Lemma 2.37 works in
CGg. We only need that T is also a Cylinder Functor in CGg, which follows as we
have cylinders and pushout by Lemmas 4.15 and 4.19. Hence we get a germ r with
r ◦ i = idA as germs.

The next step is to construct a g-homotopy i ◦ r ≃ idT (f). But the proof of
Lemma 2.38 applies verbatim. We just have to interpret all maps and homotopies
as maps in CGg. So we get a homotopy H : T (f)[∆1]→ T (f) from i ◦ r to idT (f) in
CGg.

So the last step is to make that homotopy relative to (i.e. constant on) A. Again we
can apply the proof of Lemma 2.39 verbatim, interpreting it in CGg. (It was written
in that way.) Just note that all the constructions we do there are available: To
construct maps from M(f)[

. .

. . ] etc. we need that they are pushouts and arise by
adjoining the simplicial set, which is provided by Lemmas 4.19 and 4.15. The needed
homotopy extension property and the horn-filling are provided by Lemmas 4.29
and 4.30. We get the desired relative homotopy. This finishes the proof.

Finally we can prove Lemma 4.24.
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Proof of Lemma 4.24. We again follow the same strategy as in the non-germ case,
namely in the proof of Lemma 2.40. We factor f as A → T (f) → C and consider
the two pushouts

A //

��

B

��

T (f) //

��

Q

��

C // D

in CG. If we show that B → Q and Q→ D are gw-equivalences then we are done.
But Q→ D is even a w-equivalence by Lemma 2.42(ii), which only uses that A� C
is a cofibration.

For the other part Lemma 2.42(i) applies again verbatim if we interpret it as being
in CGg.

The next step is to prove the Extension Axiom for the gw-equivalences in CG.
Again we use the same strategy as in before. We will be brief. See Section 2.8 for
the original proof.

Lemma 4.34. The category gwCG of weak equivalences satisfies the Extension
Axiom.

Proof. This is the same proof as for Lemma 2.48, once we prove the analogue of
Lemma 2.49 below.

The analogue of Lemma 2.49 is of course (note the “g”-deformation retracts):

Lemma 4.35. Assume we have a cofiber sequence A � B � B in CG where
B = B/A for brevity. Suppose we have a diagram

A
��

��

// // B
��

��

// // B
��

��

TA // // TB // // TB

in CG where the horizontal lines are cofiber sequences and the vertical arrows are
cellular inclusions. Suppose that A and B are g-deformation retracts of TA and TB
with inclusions the left and right vertical maps. Then B is a g-deformation retract
of TB with inclusion the middle vertical map.

Again there is a slightly stronger statement which is more convenient to prove. Its
formulation is actually a bit more “germ-like” than Lemma 2.51.

Note that if we have a cellular inclusion D0 � D and a germ support set U ∈ U
then we have a cellular inclusion D0U � DU . We write (D,D0)U for such a situation,
similar as we write (D,D0) for the pair.
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Lemma 4.36. Assume we are in the situation of Lemma 4.35. Then for each
controlled map (D,D0)→ (TB, B) there is a germ support set U such that the partial
map (D,D0)U → (TB, B) is controlled homotopic relative (D0)U to a map into B.

It is clear Lemma 4.36 implies Lemma 4.35. We describe how to interpret the
proof of Lemma 2.51 to get a proof for Lemma 4.36.

Interpretion of the Proof of 2.51. The proof is nearly the same as for the original
Lemma 2.51, which was written with this application in mind. We describe the
differences.

The difference in the prerequisite is that the two deformation retractions are now
germwise deformation retractions. This means we have only partial homotopies
TA[∆1]U → TA and TB[∆1]V → TB from the inclusions to maps into the respective
submodules. (A partial homotopy is just a partial map from A[∆1] to B.) There
are two situations in the proof where we need them, in both cases we construct a
homotopy of maps from D to TA by composing a map D → TA with the homotopy
TA[∆1]→ TA (resp. to TB).

But by Lemma 4.5 respective Lemma 4.10 we can always restrict further such that
we can compose the map from D with the homotopy. This means we can follow the
proof as written and when we get to one of the situations where we have to compose
with a partial homotopy, we replace D by DU ′ for a suitable germ control set U ′ ∈ U ,
get a real homotopy of maps from DU ′ , and continue with the proof with DU ′ instead
of D. After doing this twice we get a map DU ′′ → B which is homotopic relative to
(D0)U ′′ to our original map. This provides the proof.

To summarize we proved the following Theorem. Denote by gwCGa (X,R, E ,F) the
category CG(X,R, E ,F) together with the usual cofibrations coCG(X,R, E ,F) and
the germwise weak equivalences gw as weak equivalences.

Theorem 4.37. gwCGa (X,R, E ,F) is a category with cofibrations and weak equiva-
lences. It has a Cylinder Functor which satisfies the Cylinder Axiom and its weak
equivalences satisfy the Saturation and the Extension Axiom.

The discussion of Chapter 3 about the different categories with cofibrations and
weak equivalences given by finiteness conditions is orthogonal to, hence unaffected by,
the choice of the weak equivalences. With the obvious notations we get the corollary.

Corollary 4.38. The three categories gwCGf (X,R, E ,F), gwCGhf (X,R, E ,F) and
gwCGhfd(X,R, E ,F) are categories with cofibrations and weak equivalences. They
all have a Cylinder Functor which satisfies the Cylinder Axiom and their weak
equivalences satisfy the Saturation and the Extension Axiom.

101





5. Connective algebraic K-theory of CG
f

Let G be a group, (X, E ,F) a G-equivariant control space and R a simplicial ring.
In Chapter 2 and 3 we constructed a category with cofibrations and weak equiva-

lences CGf (X,R, E ,F), the finite controlled simplicial R-modules over (X, E ,F) with
weak equivalences wCGf the homotopy equivalences, and took its (connective) al-
gebraic K-theory. Here we prove three basic theorems relating the K-theory of
these for different control spaces. These are the following, omitting some technical
conditions: First, if Y ⊆ X is a G-invariant closed subspace then there is a homotopy
fiber sequence relating K(wCGf (Y )) and K(wCGf (X)). Second, we prove a “coarse
Mayer-Vietoris” theorem for control spaces, which gives a homotopy fiber square
relating the K-theory of control spaces X, A, B and A ∩B, when A ∪B = X and
(X,A,B) forms an “excisive triple”. Third we show that if X has a “flasque shift”,
then its algebraic K-theory vanishes.
Remark 5.1. The three theorems correspond to the tools of Section 4 of [BFJR04].
The homotopy fiber sequence we construct corresponds to the homotopy fiber sequence
of a Karoubi filtration ([CP97]) arising from an inclusion of control spaces ([BFJR04,
Prop. 4.2]), the coarse Mayer-Vietoris of course corresponds to the coarse Mayer-
Vietoris ([BFJR04, Prop. 4.3]) and the “flasque shift” is an axiomatization of the
conditions of [BFJR04, Prop. 4.4] which produces an Eilenberg-Swindle.

There are two notable differences between [BFJR04] and our treatment. First
and minor, we are still dealing with connective algebraic K-theory, as there is no
direct definition of non-connective algebraic K-theory for a general category with
cofibrations and weak equivalences. This is solved in the next chapter where we
define non-connective algebraic K-theory using the tools of this chapter and prove
the corresponding three theorems for non-connective algebraic K-theory. Second, our
definition of (local) finiteness, which is taken from [BLR08], differs slightly but in a
crucial way from the definition in [BFJR04], so we have to carry an extra condition all
along. This new condition on a subspace Y ⊆ X, which we call froper (see Def. 5.3),
is satisfied in all the applications we discuss.

5.1. The homotopy fiber sequence with germs
Let G be a group and R be a simplicial ring. Let (X, E ,F) be a G-equivariant
control space, Y ⊆ X a G-invariant subspace and let UY := {X r Y Ei | Ei ∈ E}
be the set of germs support sets away from Y (cf. Definition 4.8). By Lemma 3.20
the category CGf (X,R, E ,F) has the structure of a category with cofibrations and
weak equivalences wCGf , which are the homotopy equivalences. It further has a
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Cylinder Functor satisfying the Cylinder Axiom and the weak equivalences satisfy
the Saturation Axiom and the Extension Axiom.

It has a second class of weak equivalences, the germwise weak equivalences, denoted
by gwCGf , which depend on the set of germ support conditions UY . Corollary 4.38
shows that CGf (X,R, E ,F) together with gwCGf also has the structure of a category
with cofibrations and weak equivalences which has a Cylinder Functor satisfying the
Cylinder Axiom and the class of weak equivalences satisfy the Saturation Axiom and
the Extension Axiom.

We have the inclusion wCGf ⊆ gwCGf of the two kinds of weak equivalences.

Lemma 5.2. Waldhausen’s generic fibration theorem B.5 gives a homotopy fiber
sequence

K(wCGf (X,R, E ,F)gw)→ K(wCGf (X,R, E ,F))→ K(gwCGf (X,R, E ,F)) (18)

of algebraic K-theory spaces.

Proof. One checks directly that all assumptions of B.5 are satisfied.

In the Lemma CGf (X)gw is the full subcategory of wCGf (X) with objects M such that
∗ →M is a gw-equivalence (and with wCGf (X) ∩ CGf (X)gw as its weak equivalences).
We can describe its K-theory in terms of the K-theory of CG(Y ) if Y is a froper
subspace of X. We define and discuss this notion now.

Definition 5.3 (Froper subspace). Let (X, E ,F) be a G-equivariant control space
and let Y be a G-invariant subspace of X. We say that Y is froper if it is closed in
X and if for each E ∈ E there exists a G-equivariant map fE : Y E → Y which is
controlled, is the identity on Y and maps locally finite sets over X with support in
Y E to locally finite sets over Y .

Remark 5.4. See Definition 3.17 to recall the definition of a locally finite set over
X. We need to check the locally finiteness with respect to X, as Y E might not be
closed. Note that as Y is closed a set over Y is a locally finite set over X if and only
if it is a locally finite set over Y .

We have a range of examples where the conditions are always satisfied.

Lemma 5.5. Let (X, E ,F) be a free G-equivariant control space. If X is proper,
locally compact and G acts properly discontinuous on X then each G-invariant closed
subspace Y ⊆ X is froper.

Note that as the action of G on X is free, G acts properly discontinuous if and
only if for each x in X there is a neighborhood U of x such that gU ∩ U = ∅ for
g ∈ G, g ̸= 1G.

Proof. Assume first that G is the trivial group. Take any E-controlled map fE : Y E →
Y . Let (L, κ) be a locally finite set over X with support in Y E , i.e. κ(L) ⊆ Y E ⊆ X.
We show that (L, fE ◦ κ) is locally finite over Y .
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There is an F0 ∈ F with κ(L) ⊆ F0, hence fE ◦ κ(L) ⊆ FE0 . So pick an F ∈ F
with FE0 ⊆ F . We get κ(L) ⊆ F , fE ◦ κ(L) ⊆ F . Take x ∈ Y and a compact
neighborhood U of x in X. The preimage f−1

E (U ∩F ) is contained in (U ∩F )E . As X
is proper there is a compact set U ′ containing (U ∩ F )E ∩ F . Hence κ−1(f−1

E (U)) =
κ−1(f−1

E (U ∩ F )) ⊆ κ−1(U ′ ∩ F ) = κ−1(U ′) is a finite subset of L.
If G is not trivial, we can choose fE to be G-equivariant. Then each of Y , E,

F0 and F is G-invariant. Further from U we get a G-compact set GU and by the
G-properness of X we have that (L, fE ◦ κ) is G-finite on GU , i.e. (fE ◦ κ)−1(GU)
contains only finitely many G-orbits. As G acts properly discontinuous and free there
is a neighborhood V of x in X containing only one representative of any G-orbit,
hence (fE ◦ κ)−1(V ) is finite.

Lemma 5.6. Let i : Y → X be the inclusion of a froper subspace, denote by g the
germs away from Y . There is a functor

wCGf (Y,R, i−1E , i−1F)→ wCGf (X,R, E ,F)gw.

After applying algebraic K-theory it induces an isomorphism on πn for n ≥ 1 and an
injection on π0.

Remark 5.7. Lemmas 5.2 and 5.6 say that we almost have a homotopy fiber sequence

K(wCGf (Y,R, i−1E , i−1F))→ K(wCGf (X,R, E ,F))→ K(gwCGf (X,R, E ,F))

but there is a “defect” on π0 of the first term. It would be an actual homotopy fiber
sequence if we replace f (finite) with hfd (homotopy finitely dominated) but we
need the “finite” version in the next section.

Definition 5.8. We say that a functor is coconnected if it is like in the lemma,
i.e. it induces an injective map on π0 and bijective maps on πn for n ≥ 1.

Proof of Lemma 5.6. The proof takes the rest of this section. We do a reduction
first. Let i : Y ⊆ X be the inclusion. We define a functor F : wCGa (Y )→ wCGa (X)gw
as follows.

A controlled module (M,κR) over Y is mapped to the controlled module (M, i◦κR)
in CGa (X). A morphism A → B defines a morphism F (A) → F (B). The control
conditions are satisfied because for each EY ∈ i−1E there is an E ∈ E with EY ⊆ E
and similar for each FY ∈ i−1F there is an F ∈ F with FY ⊆ F , by definition of
i−1E and i−1F . For each M ∈ CGa (Y ) the map ∗ → F (M) is a germwise equivalence
as F (M)XrY = ∗, hence (M, i ◦ κR) is in CGa (X)gw.

Clearly F maps cofibrations to cofibrations and homotopy equivalences to homotopy
equivalences, so F is an exact functor CGa (Y ) → CGa (X)gw. It also respects the
finiteness conditions. Namely as Y is froper it is closed in X, so F maps finite
modules to finite modules. As F respects homotopies it takes homotopy finite
modules to homotopy finite modules and homotopy finitely dominated modules to
homotopy finitely dominated modules. This shows the existence of the functor.
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Therefore there is a commutative square

wCGf (Y,R, i−1E , i−1F) (1)
//

��

wCGhfd(Y,R, i−1E , i−1F)

(3)
��

wCGf (X,R, E ,F)gw (2)
// wCGhfd(X,R, E ,F)gw

. (19)

In Proposition 3.33 we proved that (1) is coconnected. We show that the functor
(2) is coconnected in Lemma 5.9 below. We further show that (3) induces a weak
equivalence on algebraic K-theory in Lemma 5.10 below. Then the claim follows.

Lemma 5.9. Let (X, E ,F) be a control space and U = {Ui} an arbitrary set of germ
support sets. The inclusion

CGf (X,R, E ,F)gw → CGhfd(X,R, E ,F)gw

is coconnected.

Proof. The proof follows the proof of Proposition 3.33 closely and uses the results
which are established in that proof. The inclusion factors as

CGf (X)gw → CGhf (X)gw → CGhfd(X)gw.

The Approximation Theorem B.7 applies to the first functor like in Proposition 3.33
(i) with the additional fact that if ∗ →M is a gw-equivalence and M is homotopy
equivalent to N then ∗ → N is a gw-equivalence.

To the second functor we can apply the same cofinality result from [TT90] as in
the proof of 3.33 (ii). See there for the statement and the strategy. We also use that
we established there that CGhf (X) is cofinal in CGhfd(X).

Hence we only have to prove that CGhf (X)gw is cofinal and closed under extensions
in CGhfd(X)gw. Pick an A ∈ CGhfd(X)gw. We show that there is a B′ ∈ CGhfd(X)gw

such that A ∨B′ ∈ CGhf (X)gw, that is ∗ → A ∨B′ is a gw-equivalence and there is a
homotopy equivalence A ∨B′ → D where D is finite.

We have that ∗ → A is a gw-equivalence and A is homotopy finitely dominated. It
was shown in the proof of 3.33(ii) that there is a B ∈ CGhfd(X) such that A ∨ B is
homotopy finite, i.e. there is a finite D′ and a homotopy equivalence f : D′ → A ∨B.
The map ∗ → D′ does not need to be a gw-equivalence. But we can change B and
D′ simultaneously such that it becomes one.

So choose a UA ∈ U such that AUA
→ A is homotopic to the trivial map and

choose a U ⊆ UA and a submodule D′
U ⊆ D′ such that supp(f(D′

U )) ⊆ UA. Note
that D′

U is again finite. The cone on D′
U ⊆ D′ gives a finite module CUD′ such

that ∗ → CUD
′ is a gw-equivalence. The map f gives a map D′

U → A ∨B and the
cone CU (A ∨B) on f is homotopy equivalent to CUD′ hence still homotopy finite
and germwise trivial. (The cone of a map f : M → N is T (f)/M , the pushout of
∗ ←M

ι0−→ T (f).)
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The map D′
U → A ∨ B gives two maps fA : D′

U → A and fB : D′
U → B and

vice versa, as A ∨ B is also the categorical product of A and B. As fA maps DU

into AUA
it is homotopic to the trivial map, hence D′

U → A ∨ B is homotopic to
fB : D′

U → B → A ∨B. Therefore CU (A ∨B) is homotopy equivalent to A ∨ C(fB).
Here C(fB) is the cone of fB, it is still homotopy finitely dominated and ∗ → C(fB)
is a gw-equivalence. This shows that A ∨ C(fB) is homotopy equivalent to CUD′,
hence homotopy finite, and ∗ → A ∨ C(fB) is a gw-equivalence, hence we get the
desired cofinality with B′ := C(fB′).

The extension property is easier. We know from Proposition 3.33 that if A �
B � C is a cofiber sequence in CGhfd(X)gw with A and C in CGhf (X)gw then B is in
CGhf (X). But as the Extension Axiom holds for gw-equivalences it follows from the
map of cofiber sequences

∗
∼gw

��

// // ∗

��

// // ∗
∼gw

��

A // // B // // C

that ∗ → B is also a gw-equivalence.

Next we prove that the map (3) in Diagram (19) induces a weak equivalence on
K-theory which needs the results of Appendix C about mapping telescopes. The
next lemma only works for ? = hfd. It is the main reason why we consider homotopy
finitely dominated modules. Recall that the germs are the germs away from Y .

Lemma 5.10. The functor F : wCGhfd(Y )→ wCGhfd(X)gw satisfies the Approximation
Property B.6. Hence it induces an equivalence on algebraic K-Theory.

Proof. We already know that wCG(X) and wCG(Y ) satisfy the Saturation Axiom
and CG(Y ) satisfies the Cylinder Axiom, hence once we know that F satisfies the
Approximation Property B.6, Waldhausen’s Approximation Theorem B.7 applies
and shows that F induces an equivalence on algebraic K-theory.

(App 1) is easy: As F is fully faithful and F (A[∆1]) = F (A)[∆1] it reflects weak
equivalences, i.e. if F (α) is a weak equivalence, then α is one.

(App 2) is more complicated. We follow a strategy we adapted from the proof of
[CPV98, 2.12].

Given A in CGhfd(Y ) and a map α : F (A) → M in CGhfd(X)gw. We have to show
that there is an A′ together with a map A→ A′ in CGhfd(Y ) such that the diagram

F (A)

��

//M

F (A′)

<<yyyyyyyyy

commutes and F (A′)→M is a homotopy equivalence.
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We can assume that α : F (A)→M is a cellular inclusion by replacing M with the
mapping cylinder T (α) as α factors as F (A)� T (α) ∼−→M . Therefore we consider
F (A) as a submodule of M .

From the assumptions we have that ∗ →M is a gw-equivalence. This means there
is a germ support set U = X r Y E such that MU →M is homotopic to the trivial
map, let H be such a homotopy. Lemma 5.11 below shows that we can choose U
such that MU∪Y = MU ⨿MY , that is “U is far away from Y ”. In particular we have
F (A) ⊆ MY . By combining H with the constant homotopy Tr on MY we get a
homotopy

H ⨿ Tr: (MU ⨿MY )[∆1]→M.

At 0 it is the inclusion, so it is compatible with the identity M [0] id−→ M there.
The homotopy extension property 2.29 then gives a homotopy from idM to a map
µ : M →M which extends this homotopy. The homotopy is relative to F (A) and µ
is zero on MU .

This means µ has support on X r U . By definition X r U = Y E for an E ∈ E .
Let Eµ be a control condition satisfied by µ. Then µ factors through MY E◦Eµ , so we
get the commutative diagram

M
µ

//

p

%%K
K

K
K

K M

MY E

OO

OO

//___ MY E◦Eµ

OO
i

OO

where we define p as the factorization of µ over MY E◦Eµ and i as the inclusion
MY E◦Eµ →M .

From p and i we get two maps. First we get back µ as µ = i◦p. So this composition
is homotopic relative F (A) to the identity. And second we get the map η := p ◦ i,
which is a homotopy idempotent via η2 = p ◦ i ◦ p ◦ i = p ◦ µ ◦ i using the homotopy
p ◦H ◦ i. This is also relative to F (A), i.e. we have commutative diagrams

F (A)

�� %%LLLLLLLLLL

MY E◦Eµ

η
//MY E◦Eµ

and

F (A)[∆1]

inc[∆1]
��

Pr // F (A)

inc
��

MY E◦Eµ [∆1] p◦H◦i
//MY E◦Eµ

.

Let κ : �R MY E◦Ey → X be the control map of MY E◦Ey , assume Im κ ⊆ Y E′ .
As i : Y ⊆ X is froper there is a controlled map fE′ : Y E′ → Y and therefore κ :=
fE′◦κ : �RMY E◦Ey → Y is a control map such that i◦κ and κ are controlled isomorphic.
This makes (MY E◦Ey , κ) into an object in CGa (Y ) such that F ((MY E◦Ey , κ)) and
(MY E◦Ey , κ) are controlled isomorphic. Define η via

(MY E◦Ey , κ) η
//

∼=
��

(MY E◦Ey , κ)
∼=
��

MY E◦Eµ

η
//MY E◦Eµ

.
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(Here we identified objects of CG(Y ) with their images under the fully faithful functor
F .) Then η is a homotopy idempotent in CGa (Y ).

Now we use Appendix C on mapping telescopes. We summarized the all results we
need in Proposition C.4. By Proposition C.4 there is for the homotopy idempotent η
a module Tel(η) in CGa (Y ) satisfying the properties we need below. We show there is
a chain of homotopy equivalences

F (Tel(η))
∼=−→ Tel(η) ≃−→ Tel(µ) ≃−→ Tel(idM ) ≃−→M. (20)

Then Lemma 5.12 below shows that Tel(η) is in CGhfd(Y ).
First F (Tel(η)) ∼= Tel(F (η)) so we can completely work in CGa (X). As the homotopy

idempotents η and F (η) are isomorphic, Proposition C.4 (ii) shows that there is an
isomorphism Tel(F (η))→ Tel(η).

For η and µ we have two strict commutative diagrams

M
µ

//

p

��

M

p

��

MY E◦Eµ

η
//MY E◦Eµ

, MY E◦Eµ

η
//

i

��

MY E◦Eµ

i

��

M
µ

//M

which give maps p∗ : Tel(µ)→ Tel(η) and i∗ : Tel(η)→ Tel(µ) by Proposition C.4 (ii)
which further shows that the composition p∗ ◦ i∗ is

(p ◦ i)∗ = η∗ : Tel(η)→ Tel(η)

and i∗ ◦ p∗ is
µ∗ : Tel1(µ)→ Tel(µ)

As µ and η are coherent by Lemma C.2 both maps are homotopic to the identity (on
the corresponding telescope) by Proposition C.4 (vi). So i∗ : Tel(η) → Tel(µ) is a
homotopy equivalence.

Now µ : M →M is homotopic to idM hence Proposition C.4 (iii) gives a homotopy
equivalence Tel(µ) → Tel(idM ). By Proposition C.4 (iv) there is a homotopy
equivalence Tel(idM )→M .

We claim that all maps are relative to F (A). This follows from the following
diagram where the lower vertical maps are the inclusions ι from Proposition C.4 (i).

F (A)

�� &&MMMMMMMMMMM

**VVVVVVVVVVVVVVVVVVVVVVVVV

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

F (B) //

��

MY E◦Eµ

��

//M

��

//M

�� $$I
II

II
II

II
II

F (Tel1(η)) // Tel1(η) // Tel1(µ) // Tel1(idM ) //M
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It is commutative by Proposition C.4 (v). Hence we get with A′ := Tel(η) a strict
commutative diagram

F (A) //

��

M

F (A′)
≃

<<yyyyyyyyy

as desired. This proves the Approximation Property.

There are two lemmas left we used above have to prove.

Lemma 5.11. There is a germ support set U away from Y such that MY ∪U =
MY ⨿MU is a coproduct of controlled modules over X.

Proof. If M is an E-controlled module there is by Definition 4.1 an E′ only depending
on E and M such that for each V ⊆ X we have suppMV ⊆ V E′ . Also there is an
Ej such that (Y E′)E′ ⊆ Y Ej or equivalently (X r Y Ej )E′ is a subset of X disjoint
to Y E′ . Set U := X r Y Ej . It follows that suppMU is disjoint from suppMY , and
so the lemma follows.

Lemma 5.12. Let i : Y ⊆ X be a froper subspace of the control space (X, E ,F). If
A is a finite module in CGf (X) which has support on Y E for some E ∈ E then A is
isomorphic to a finite module with support on Y .

Let further (M,κR) ∈ CGa (Y,R, i−1E , i−1F) and assume that M is homotopy finitely
dominated on X, i.e. (M, i◦κR) ∈ CGhfd(X). Then M is homotopy finitely dominated
on Y , i.e. M ∈ CGhfd(Y ).

Proof. By the assumption that Y is froper, hence there is an E-controlled map
ω : Y E → Y which is the identity on Y and take the locally finite set (�RA, κR) to
the locally finite set (�RA,ω ◦ κR). This makes A′ := (A,ω ◦ κR) into a locally finite
module over Y such that A and A′ are E-controlled isomorphic.

For M there is by assumption a finite module B in CGf (X), maps M j−→ B
r−→M and

a homotopy from r ◦ j to idM . If the support of j and r is in E then r is zero outside
U := Y E , j factors as M j′

−→ BU → B and r ◦ j agrees with r′ ◦ j′ : M → BU →M ,
r′ being the obvious restriction. Then r′ ◦ j′ is still homotopic to id and BU is a
finite module with support on some Y E′ . Hence by the first part it is isomorphic to
a finite module with support on Y and M is dominated by this module.

Remark 5.13. Although Lemma 5.12 looks quite innocent, it is the main place where
we need the assumption that Y is froper. In particular it seems that the result is
not true without a suitable assumption on Y . In [BFJR04] the assumption that the
control space X is proper ensured this, but as the definition of “locally finite” was
changed in [BLR08] it seems not to be clear if this is still sufficient. (By Lemma 5.5 it
would be sufficient to require X to be proper, locally compact and having a properly
discontinuous free G-action, but this might be too strong for our applications.)

Let us summarize the main result of this section as a Lemma for further references.
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Lemma 5.14. For (X, E ,F) a G-equivariant control space, i : Y ⊆ X a froper
subspace and the germs away from Y . There is a homotopy fiber sequence of spaces

K(wCGf (X,R, E ,F)gw)→ K(wCGf (X,R, E ,F))→ K(gwCGf (X,R, E ,F)).

Further there is a map

K(wCGf (Y,R, i−1E , i−1F))→ K(wCGf (X,R, E ,F)gw)

which is an isomorphism on πi for i ≥ 1.

5.2. Coarse Mayer-Vietoris

The “coarse Mayer-Vietoris” is an G-equivariant, “coarse” version of the Mayer-
Vietoris principle. It gives a homotopy pullback square of spaces for a triple (X,A,B)
of control spaces satisfying certain conditions. In this section we discuss the version
for connective K-theory.

Definition 5.15 (Coarsely excisive, cf. [BFJR04, Prop. 4.3]). Let (X, E ,F) be a G-
equivariant control space and let A,B ⊆ X be G-invariant subspaces with A∪B = X.
Then A and B as well as A∩B inherit G-equivariant control structures. We call the
triple (X,A,B) coarsely excisive if for every E ∈ E and F ∈ F there is an E′ ∈ E
and an F ′ ∈ F such that

(A ∩ F )E ∩ (B ∩ F )E ⊆ (A ∩B ∩ F ′)E′ ∩ F ′.

Recall the definition of a froper subspace from Definition 5.3.

Lemma 5.16 (Coarse Mayer-Vietoris, cf. [BFJR04, Prop. 4.3]). Let (X, E ,F) be
a free G-equivariant control space and let A and B be closed subspaces of X such
that A ∪B = X, assume that A is froper in X. Suppose that the triple (X,A,B) is
coarsely excisive.

Choose two sets of germs support conditions: Let UA be the germ support conditions
on A away from A∩B, denote the germs by g. Let UX be the germ support conditions
on X away from B, denote the germs by g′.

Then the diagram

wCGf (A, i−1
A E , i

−1
A F)gw //

��

wCGf (A, i−1
A E , i

−1
A F)

��

wCGf (A ∪B, E ,F)g′w // wCGf (A ∪B, E ,F)

is a homotopy pullback of spaces after applying algebraic K-theory, where iA is the
obvious inclusion.
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Remark 5.17. In view of Lemma 5.6 we could say that

wCGf (A ∩B, j−1E , j−1F) //

��

wCGf (A, i−1
A E , i

−1
A F)

��

wCGf (B, i−1
B E , i

−1
B F) // wCGf (A ∪B, E ,F)

is almost a homotopy pullback on K-theory except at π0, where j, iA and iB are
the obvious inclusions. We will correct this in the next chapter where we define
non-connective algebraic K-theory.

We write A ∪B instead of X for emphasis.

Proof. The vertical functors exist because A is closed in A∪B. Note that both kinds
of germ support sets are subsets of A. For each V ∈ UA there is an U ∈ UX with
U ⊆ V . Therefore the diagram extends to a map of homotopy fiber sequences

wCGf (A)gw //

��

wCGf (A)

��

// gwCGf (A)

��

wCGf (A ∪B)g′w // wCGf (A ∪B) // g′wCGf (A ∪B)

(21)

and we are done if we show that F : gwCGf (A)→ g′wCGf (A∪B) induces an equivalence
on K-theory. We apply the Approximation Theorem B.7.

First we show (App 1). Let f : M0 →M1 be a map in gwCGf (A) such that the map
F (f) : F (M0)→ F (M1) is a g′w-equivalence. We have to show f is a gw-equivalence,
this uses that (X,A,B) is coarsely excisive. Assume F ∈ F contains the support
of M0 and M1. We have to show that for U ∈ UX there is a V ∈ UA such that
U ∩ F ⊇ V ∩ F . Assume U = X r (BE), as (X,A,B) is coarsely excisive there is an
E′ ∈ E and an F ′ ∈ F such that

(A ∩ F )E ∩ (B ∩ F )E ⊆ (A ∩B ∩ F ′)E′ ∩ F ′

Define V as Ar (A∩B)E′ . A calculation shows U ∩F ⊇ V ∩F which shows (App 1).
For (App 2) take M ∈ CGf (A) and a map F (M) → N . As M has support on

A there is an E such that the map factors as F (M) → NAE → N . Now NAE is
isomorphic to an object N ′ of CGf (A) by Lemma 5.12 as A is froper in A ∪ B and
N is finite. Further the resulting map N ′ → NAE → N is a g′w-equivalence. This
shows (App 2).

Remark 5.18. This proof is the reason why we use the finite modules. In particular it
is not true in general, that for a homotopy finite module M the module MU is again
homotopy finite, the same for homotopy finitely dominated, hence the Approximation
Property for the rightmost vertical map in (21) does not follow.
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5.3. Flasque shift and Eilenberg swindle
There is a very helpful vanishing criterion: If a category C with cofibrations and
weak equivalence has a flasque functor (also called an Eilenberg swindle) then its
algebraic K-theory vanishes. If we are careful we can describe the contraction of the
algebraic K-theory space and hence discuss when such contractions are compatible.

Definition 5.19. Let C be a category with cofibrations and weak equivalences. An
exact functor T : C → C is called flasque functor or an Eilenberg functor if there is a
natural weak equivalence of functors

ε : T ∼−→ T ∨ IdC .

Lemma 5.20 (Eilenberg swindle). Let C,D be categories with cofibrations and weak
equivalences and let F : C → D be an exact functor.

Assume that C,D have flasque functors TC and TD. Then the algebraic K-theory
of C and D vanishes, i.e. there is a pointed homotopy

K(C) ∧ I+ → K(C)

from the trivial map to the identity, and similar for D.
Assume further that TC, TD are compatible with F , i.e. the diagram

C
TC
��

F // D
TD
��

C F // D

commutes and the natural transformations

F ◦ TC
F◦εC−−−→ F ◦ (TC ∨ IdC) and TD ◦ F

εD◦F−−−→ (TD ∨ IdD) ◦ F

agree. Then the nullhomotopies for K(C) and K(D) are compatible in the sense that
the diagram

K(C) ∧ I+
K(F )∧I+

//

��

K(D) ∧ I+

��

K(C)
K(F )

// K(D)

commutes.

Proof. For C, the natural equivalence ε := εC induces a (pointed) homotopy e = eC
from K(T ) to K(T ∨ IdC),

e : K(T ) ≃ K(T ∨ IdC)

by [Wal85, 1.3.1]. As K(C) is an infinite loop space it has a homotopy associative
multiplication µ : K(C) ∨K(C)→ K(C) with a homotopy inverse. Composing K(T )
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with the homotopy inverse we get a functor K(T )−1 : K(C)→ K(C). We can take
the coproduct of this functor with the homotopy from above and get a homotopy (of
maps)

K(T )−1 ∨K(T ) ≃ K(T )−1 ∨

K(T ) ∨ IdC


. (22)

Here “≃” means there is a homotopy from the left map to the right map. The
multiplication and the homotopy inverse in K(C) give a homotopy from the trivial
map to the first term above:

∗ ≃ K(T )−1 ∨K(T ).

For the last term in (22) the homotopy associativity and then the multiplication and
the homotopy inverse give homotopies

K(T )−1 ∨

K(T ) ∨ IdC


≃


K(T )−1 ∨K(T )


∨ IdC ≃ ∗ ∨ IdC

∼=−→ IdC

which shows the first claim.
The exact functor F gives a map of infinite loop spaces, hence in particular K(F )

is compatible with the multiplication, the inverse and all corresponding homotopies.
The only thing we have to check is that the homotopy e is compatible with K(F ),
i.e. K(F ) ◦K(eC) = K(eD) ◦K(F ). But that follows from F ◦ eC = eD ◦ F . This
shows the second claim.

If our control space (X, E ,F) has a certain self-map, then the category CG(X)
(and all its variations) has a flasque functor.

Lemma 5.21 (Eilenberg swindle for control spaces). Assume there is a G-equivariant
self map s : X → X with the following properties:

(i) s maps locally finite sets over X to locally finite sets over X.

(ii) For each x ∈ X there is a neighbourhood U and an n such that (sn)−1(U) is
empty.

(iii) For every E ∈ E there exists an E′ with
n≥1

(s× s)n(E) ⊆ E′.

(iv) For every F ∈ F there exists an F ′ ∈ F with

n≥1 s

n(F ) ⊆ F ′.

(v) For every F ∈ F the set {(x, s(x)) | x ∈ F} is contained in some E ∈ E.

Then s induces a flasque functor T on wCGf (X,R, E ,F).

Definition 5.22. We call such an s a flasque shift on X.
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Remark 5.23. The remark of [BFJR04, Prop. 4.4] applies: In many applications the
last three properties follow because for every E ∈ E one has (s× s)(E) ⊆ E and for
every F ∈ F one has s(F ) ⊆ F .

Lemma 5.21 is our generalization of Proposition 4.4 of [BFJR04]. Compared
to [BFJR04, Prop. 4.4] (v) was simplified in view of (iv), and in (iii) we replaced
E ∩ F × F by E in view of the Remark at the end of Section 1.3.

Note that the Lemma might not be true for a different class of weak equivalences.
One needs (roughly) that a certain countable coproduct of weak equivalences is
again one. This is not true for germwise weak equivalences if the shift goes “in the
direction” of the germs. Otherwise gwCf (R+), germs away from 0, which is used,
below would be trivial.

Proof. The map s induces an exact functor s∗ : CGa (X,R, E ,F) → CGa (X,R, E ,F)
via (M,κR) →→ (M, s ◦ κR). It respects the control conditions because of (iii) and
(iv) for n = 1. There is an obvious natural isomorphism ε : s∗ → Id, ε(M,κR) =
(M, s ◦ κR) ” Id ”−−−→ (M,κR). It is controlled because of (v).

Using the coproduct in CGa (X,R, E ,F) we can form

T :=
∞
n≥1

s∗
n : (M,κR) →−→

 ∞
n≥1

M,
∞
n≥1

(sn ◦ κR)


We claim that this is our flasque functor. For M ∈ CGa (X) the properties (iii) and
(iv) are precisely the conditions needed that T (M) is still controlled and has a valid
object support. Property (iii) also implies this for maps, hence T gives indeed a functor
CGa (X) → CGa (X). Taking T ∨ Id is the same as

∞
n≥0 s∗

n, hence s∗ ◦ (Id∨T ) ∼= T

and the natural transformation s∗ → Id gives a natural isomorphism T
∼=−→ T ∨ Id.

It is clear that T maps cofibrations to cofibrations and one checks that it also
maps homotopy equivalences to homotopy equivalences. This shows T is a flasque
functor on wCGa (X), we now show that it respects the finiteness conditions. This
uses properties (i) and (ii).

So let M be a finite module. Consider the locally finite set (�RM,κR). Pick x ∈ X,
a neighborhood U of x and an n such that (sn)−1(U) is empty. As s maps locally
finite sets to locally finite sets also si does so. Hence


i≥1(si ◦ κR)

−1
(U) is equal

to
n

i=1(si ◦ κR)
−1 (U) which is finite union of locally finite sets and hence again

locally finite. Then T also respects the homotopy finite and the homotopy finitely
dominated modules.

If we have compatible flasque shifts we get a comparison map.

Lemma 5.24. Let f : X → Y be a map of control spaces and let sX : X → X and
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sY : Y → Y be flasque shifts such that the diagram

X
f
//

sX

��

Y

sY

��

X
f
// Y

commutes. Then the flasque functors TX and TY induced by sX and sY are compatible
in the sense of Lemma 5.20.

Proof. As TX is defined as
∞
n=1 s∗

n and f∗ commutes with s and coproducts we
have f∗ ◦ TX = TY ◦ f∗ and hence are left to check that the natural transformations

f∗ ◦ εX : f∗ ◦ TX → f∗ ◦ (TX ∨ Id)

and
εY ◦ f∗ : TY ◦ f∗ → (TY ∨ Id) ◦ f∗

agree. But εX is induced by the natural transformation δX = “ Id ” : sX∗ → Id via
εX = δX ◦ TX and similar εY . Hence the commutativity f∗ ◦ δX = δY ◦ f∗ shows the
lemma.

Corollary 5.25. For f , sX and sY as in the lemma we get compatible contractions
of K(CGf (X)) and K(CGf (Y )).

Example 5.26. Consider R+ with metric control. It has a flasque shift via x →→
x + 1. Hence K(wCf (R+, R, Ed)) is contractible. More generally for (X, E ,F) a
G-equivariant control space we get the G-equivariant control space (X × R+, E ×
Ed,F × {R+}) whose algebraic K-theory K(wCGf (X × R+, R)) is contractible.

If Y is another control space and f : X → Y a map of control spaces then

f∗ : K(wCGf (X × R+, R))→ K(wCGf (Y × R+, R))

is compatible with the contractions. This gets important in the next chapter when
we construct deloopings.
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6. Non-connective algebraic K-theory
Our definition for the algebraic K-theory of the (G-equivariant) control space
(X, E ,F) with coefficients in the simplicial ring R is, unwrapping the definition
(cf. Section 3.7/Appendix B/[Wal85]),

K(CGf (X,R, E ,F)) := Ω|S.wCGf (X,R, E ,F)| .

This is a topological space. But according to [Wal85] it has the structure of an
infinite loop space, in other words it is the zeroth space of a connective Ω-spectrum.
(Recall “connective” means the spectrum has no negative homotopy groups.) Such
a spectrum is sometimes called a delooping of the space, hence the space above
has a connective delooping. It is well-known that for purposes of the Farrell-Jones
Conjecture one needs a non-connective delooping, i.e. a spectrum which has negative
homotopy groups (cf. [LR05]). For R a discrete ring these negative homotopy groups
of the non-connective algebraic K-theory spectrum for R are the negative algebraic
K-groups of R first defined by Bass [Bas68].

The purpose of this chapter is to define such a non-connective delooping of the
algebraic K-theory space of a control space and to discuss the corresponding homotopy
fiber sequence, Mayer-Vietoris-theorem and the Eilenberg swindle in that case. These
are the non-connective versions of the three basic theorems of the last section.

Unfortunately we have no definition of non-connective algebraic K-theory of a
general category with cofibrations and weak equivalences as we have for additive
categories by work of Pedersen and Weibel ([PW85]). Hence we are forced to do the
delooping by manipulations of the control space. This is inspired by their ideas.

Let us summarize the results we want to prove in this chapter. As always X is a
(G-equivariant) control space. Further K−∞ denotes the non-connective algebraic
K-theory we are about to construct. Roughly speaking K−∞ is a functor which can
be applied to categories of the form wCGf (X,R, E ,F).

(i) For A ⊆ X a suitable subspace the sequence

wCGf (A,R)→ wCGf (X,R)→ gwCGf (X,R)

induces a homotopy fiber sequence on K−∞-spectra.

(ii) For A ∪B = X suitable subspaces the square

CGf (A ∩B,R) //

��

CGf (A,R)

��

CGf (B,R) // CGf (A ∪B,R)

gives homotopy pullback of spectra after applying K−∞.
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The conditions on the subspaces A,B ⊆ X are nearly the same as in Lemma 5.6
and Lemma 5.16. (We need two extra froper conditions for A ∩B ⊆ B and B ⊆ X.)
The results would not be true as stated without non-connective K-theory. In some
sense this solves the “K0-problem” noted before.

6.1. Overview and the theorems

In [PW85] and [PW89] Pedersen and Weibel defined the non-connective K-theory of
an additive category via a geometric construction which in our language uses the
control space Zn or Rn with metric control. Roughly speaking for R a ring the space
K(wCf (Rn, R, Ed, {Rn})) is a non-connective n-fold delooping of K(R). We take that
as the motivation for the following definition.

Lemma/Definition 6.1. Let (X, E ,F) be a G-equivariant control space, R a sim-
plicial ring, G a discrete group. Define the nth term of the non-connective algebraic
K-theory spectrum K−∞(wCG(X,R, E ,F)) as

K(wCGf (X × Rn, R, E × Ed,F × {Rn})).

There are structure maps

K(wCGf (X×Rn, R, E×Ed,F×{Rn}))→ ΩK(wCGf (X×Rn+1, R, E×Ed,F×{Rn+1}))

which induce an isomorphism on πi for i ≥ 1 and an injection on π0.

Remark 6.2. For non-connective K-theory the spectra for finite, homotopy finite and
homotopy finitely dominated modules are all stably equivalent, hence the difference
does not matter. We choose the finite version to work with, as it is a bit easier to
handle in the proof.

Remark 6.3. Recall that E ‘×’ Ed and F ‘×’ {Rn} is a misuse of notation. Also recall
Definition 5.3 of a froper subspace.

We have the following theorems.

Theorem 6.4. Let (X, E ,F) be a control space and i : Y ⊆ X a froper subspace. Let
gw be the germwise weak equivalences on X away from Y . Then

K−∞(wCG(Y, i−1E , i−1F))→ K−∞(wCG(X, E ,F))→ K−∞(gwCG(X, E ,F))

is a homotopy fiber sequence of spectra.

Theorem 6.5 (Coarse Mayer-Vietoris for non-connective K-Theory). Let (X, E ,F)
be a free G-equivariant control space and let A and B be froper subspaces of X such
that A ∪B = X, assume further that A ∩B is froper in A. Suppose that the triple
(X,A,B) is coarsely excisive (Definition 5.15).
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Then the diagram

K−∞(wCG(A ∩B, j−1E , j−1F)) //

��

K−∞(wCG(A, i−1
A E , i

−1
A F))

��

K−∞(wCG(B, i−1
B E , i

−1
B F)) // K−∞(wCG(A ∪B, E ,F))

is a homotopy pullback of spectra, where iA, iB, j are the obvious inclusions.

Theorem 6.6 (Flasque shift). Assume (X, E ,F) is a free G-equivariant control space
which has a flasque shift. Then K−∞(wCG(X,R, E ,F)) is contractible.

Theorem 6.7 (Change of rings). Let f : R → S be a map of simplicial rings. It
induces a map

K−∞(wCG(X,R, E ,F))→ K−∞(wCG(X,S, E ,F))

which is a weak equivalence if f is a weak equivalence of simplicial rings.

The proofs rely on the corresponding Lemmas for the connective K-theory together
with some tricks using the Eilenberg swindle. They are given in the next sections.
Having defined K−∞ for categories of controlled modules we can make the following
definition for a simplicial ring R.

Definition 6.8 (Non-connective algebraic K-theory spectrum). Let R be a simplicial
ring. Define the non-connective algebraic K-theory spectrum of R as

K−∞(R) := K−∞(wC(pt, R))

6.2. The non-connective K-theory spectrum K−∞

In this section we prove Lemma 6.1. We need an auxiliary lemma first which we will
often use implicitely.

Lemma 6.9. Let (X, EX), (Y, EY ) be a control spaces. Recall that then (X×Y, EX ×
EY ) is a control space.

(i) If E = EX × EY then (A × B)E = AEX × BEY for EX ∈ EX , EY ∈ EY and
E = EX × EY ∈ E.

(ii) If A ⊆ X is froper and B ⊆ Y is froper than A×B ⊆ X × Y is froper.

Proof. The first part is clear by definition. For the second part use that A, B are
froper to choose maps fA : AEX → A, fB : BEY → B. Then fA × fB is controlled,
the identity on A×B and maps locally finite sets to locally finite sets.

We prove the statement about the structure maps of K−∞(wCG(X,R, E ,F)).

119



Proof of 6.1. Let Rn+ be R≥0×Rn−1 and Rn− be R≤0×Rn−1 both with metric control.
Note that their intersection is 0×Rn−1 ∼= Rn−1. We then have a commutative diagram

K(wCGf (X × Rn−1)) //

��

K(wCGf (X × Rn+))

��

K(wCGf (X × Rn−)) // K(wCGf (X × Rn))

. (23)

By Example 5.26 we have a flasque shift on Rn± and hence on X × Rn±, so the upper
right and lower left corners are contractible. Hence we get a map

K(wCGf (X × Rn−1))→ ΩK(wCGf (X × Rn)) (24)

from the upper left term to the homotopy pullback of the rest. We discuss its
connectivity.

The triple (Rn,Rn+,Rn−) is froper and coarsely excisive, as one readily checks. It
follows that (X×Rn, X×Rn+, X×Rn−) is also froper and coarsely excisive. Lemma 5.16
then gives the following homotopy pullback of spaces where the germs are away from
Rn− ⊂ Rn (and where we neglect the control conditions for the moment):

K(wCGf (X × Rn+)gw) //

��

K(wCGf (X × Rn+))

��

K(wCGf (X × Rn)gw) // K(wCGf (X × Rn))

. (25)

By Lemma 5.6 there is a square

K(wCGf (X × Rn−1)) (1)
//

��

K(wCGf (X × Rn+)gw)

��

K(wCGf (X × Rn−)) (2)
// K(wCGf (X × Rn)gw)

(26)

where (1) and (2) are coconnected (cf. Definition 5.8). We can take the diagram (26)
+ (25), which is diagram (23) above. As (25) is a homotopy pullback it follows that
the homotopy pullback of (26) is homotopy equivalent to ΩK(wCGf (X ×Rn)). Hence
we get the diagram

K(wCGf (X × Rn−1)) γ

**

((

β

))TTTTTTTT

ΩK(wCGf (X × Rn))

��

α // K(wCGf (X × Rn+)gw)

��

K(wCGf (X × Rn−)) α′
// K(wCGf (X × Rn)gw)
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where the map α is an isomorphism on πi for i ≥ 1 as α is the homotopy pullback of
α′, which has the same property. The same is true for γ which is the map (1) above,
hence also for β, but β is the map of (24). We further see that γ is injective on π0,
hence the same is true for β.

We neglected the control conditions. E.g. for the upper right space Lemma 5.16
needs them to be i−1

∗ (E ×Ed), where i∗ is the map induced by the inclusion Rn+ ⊂ Rn
and Ed the metric control. But i−1Ed is the metric control on Rn+. Hence (Rn+, Ed)
and (Rn+, i−1Ed) are the same control spaces. The same is true for all the other spaces
occurring. Therefore the control structures in the statement agree with the ones we
have by Lemma 5.16.

Lemma 6.10. Let f be a map (X, EX ,FX) → (Y, EY ,FY ) of equivariant control
spaces. Assume f maps locally finite set to locally finite sets (cf. Definition 3.17).

Then f induces a map K−∞(f) on the non-connective K-theory spectra,

K−∞(f) : K−∞(CGf (X,R, EX ,FX))→ K−∞(CGf (Y,R, EY ,FY )).

Proof. The assumption implies that f maps finite modules to finite modules, hence f
gives a map CGf (X,R, EX ,FX)→ CGf (Y,R, EY ,FY ). We show that f ×Rn also maps
locally finite sets to locally finite sets, the proof for Rn+, Rn− and Rn−1 is the same.

Clearly f × Rn : (X × Rn, EX × Ed,FX × {Rn})→ (Y × Rn, EY × Ed,FY × {Rn})
is a map of control spaces. Let (L, κ) be a locally finite set over X × Rn, we have
to show that (L, (f × Rn) ◦ κ) is locally finite over Y × Rn. Let (y, t) be a point in
Y ×Rn. Choose a compact neighborhood K of t in Rn. We can restrict L to X ×K
and it is still a locally finite set, call it LK . Using the projection pX : X ×K → X
it becomes a locally finite set over X by Lemma 6.11 below. Hence over Y the set
(LK , pY ◦ (f × Rn) ◦ κ) becomes a locally finite set. So there is a neighborhood U of
y such that (pY ◦ (f × Rn) ◦ κ)−1(U) is finite. Then U ×K is a neighborhood over
which (L, (f × Rn) ◦ κ) is finite.

It follows that we also get induced maps

CGf (X × Rn, R, EX × Ed,FX × {Rn})→ CGf (Y × Rn, R, EY × Ed,FY × {Rn})

and the same for Rn+, Rn−, Rn−1, hence maps of the commutative squares like (23)
which defines the structure map (24). By Example 5.26 the contractions on the
corners are compatible, hence the induced structure map is natural with respect to f .

Thus the collection of K(f × Rn) give the desired map of spectra.

We have to provide a lemma we just used.

Lemma 6.11. Let (X, E ,F) and (K, EK ,FK) be control spaces with K being compact
as a topological space. Then the projection p : (X ×K, E × EK ,F ×FK)→ (X, E ,F)
maps locally finite sets to locally finite sets.
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Proof. Clearly p is a map of control spaces. Let (L, κ) be a locally finite set over
X ×K. We show that (L, p ◦ κ) is locally finite. Choose for each point w ∈ X ×K a
neighborhood Uw such that κ−1(Uw) is finite. Let x be a point in X, then there is a
neighborhood U of x such that p−1(U) = U ×K is covered by finitely many Uw, as
K is compact. Hence (p ◦ κ)−1(U) ⊆


w κ

−1(Uw) is also finite.

6.3. Non-connective algebraic K-theory for germwise
equivalences

Let U be a set of germ support conditions on (X, E ,F) and denote the germs
by g. We need a non-connective delooping of the spaces K(gwCGf (X,R, E ,F))
and K(wCGf (X,R, E ,F)gw). For this we need theorems corresponding to the results
of Chapter 5 for germs. We sketch the results in this section. The construction
is largely parallel to Definition 6.1. If Y ⊆ X is froper we further show that the
non-connective deloopings of K(wCGf (X,R, E ,F)gw) and K(wCGf (Y,R, i−1E , i−1F))
are equivalent.

Lemma/Definition 6.12. Let G be a discrete group, (X, E ,F) be a G-equivariant
control space and R a simplicial ring. Let U be a set of germ support conditions and
denote the germwise weak equivalences by gw.

Define the nth space of the non-connective algebraic K-theory spectrum of the
category gwCG(X,R, E ,F) as

K(gwCGf (X × Rn, R, E × Ed,F × {Rn}).

Denote the spectrum by K−∞(gwCG(X,R, E ,F)). As before there are structure maps

K−∞(gwCG(X,R, E ,F))n → ΩK−∞(gwCG(X,R, E ,F))n−1

which induce an isomorphism on πi for i ≥ 1.

We sketch the results to prove the lemma. First we need a more general statement.
We already showed that for a control space X and germ support conditions on it
we get a homotopy fiber sequence. If we have two control spaces with germ support
conditions on both of them we can combine them to get three different germ support
conditions on the product control space, and correspondingly some more homotopy
fiber sequences. This is summarized in the following lemma.

Lemma 6.13. Let X and Y be control spaces and UX and UY be germ support
conditions on X, resp. Y . Then we get three canonical germ support conditions
on X × Y , namely UX × {Y }, {X} × UY and UX × UY (with the usual misuse of
notation). Call the corresponding germwise weak equivalences gw, hw and hgw. We
have inclusions w ⊆ gw ⊆ hgw and w ⊆ hw ⊆ hgw, where w are the homotopy
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equivalences. We get a diagram where each row and each column is a homotopy fiber
sequences after applying K-theory:

(wChw)gw //

��

wCgw //

��

hwCgw

��

wChw //

��

wC //

��

hwC

��

gwChw // gwC // hgwC

.

(Of course C is an abbreviation for CGf (X × Y,R, EX × EY ,FX ×FY ).)

Proof (Sketch). The homotopy fiber sequences result from the generic Fibration
Theorem B.5. There are only two things to check. The first is that (Chw)gw ∼= (Cgw)hw
which is clear. The second is that gwChgw ≃ gwChw on K-theory. If X = Y = R+
and the germs are away from zero this is the following picture.

X

Y0
0

I

II

III

IV
gw

hw

hgw

A module in Chgw is nullhomotopic on (IV) (i.e. there is a germ support set from
UX × UY such that the restricted module is contractible), a module in Chw is
nullhomotopic on (IV) + (III), so we have an inclusion. But gw-equivalences ignore
(I) + (III), so each module in Chgw is gw-equivalent to one which is also trivial on
(III).

For the general case and a more precise proof we use the Approximation The-
orem B.7. We want to approximate a map A → B, A ∈ Chw, B ∈ Chgw. B can
be restricted to a module on UX × Y ∪ X × (Y r UY ) (being (I) + (II) + (IV)
above) for suitable germ support sets UX ⊆ X and UY ⊆ Y and the restriction
is a gw-equivalence, as well as the restricted module is in Chw. By the homotopy
extension property the identity on A is homotopic to a map which is zero on some
X × U ′

Y , hence maps into the restricted submodule of B. Thus we get the second
approximation property up to homotopy which we can rectify as done before.

Proof of 6.12 (Sketch). The proof goes analogous to the proof of Lemma 6.1, but
one needs to establish analogous results for the lemmas used first. We sketch these
here.
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Denote the germs on X × Rn+ away from X × 0× Rn−1 by hw and the germs on
X ×Rn away from X ×Rn− by h′w. For the germwise weak equivalences gw and hw
we can apply Lemma 6.13, as well as we can apply it to gw and h′w. We we get a
diagram

gwCGf (X × Rn+)hw //

��

gwCGf (X × Rn+) //

��

hgwCGf (X × Rn+)

��

gwCGf (X × Rn)h′w // gwCGf (X × Rn) // h′gwCGf (X × Rn)

.

where the horizontal lines are homotopy fiber sequences after applying algebraic
K-theory. The proof of Lemma 5.16 (coarse Mayer-Vietoris) shows that the rightmost
vertical map satisfies the Approximation Property B.6. It applies for the germwise
equivalences hgw and h′gw and the subspace X × Rn+ ⊂ X × Rn, as we are in
exactly the same situation of comparing two germwise weak equivalences. Hence the
rightmost map induces an equivalence on K-theory. Next we identify the leftmost
column.

We have to show that gwCGf (X × Rn−1) → gwCGf (X × Rn+)hw is coconnected,
but we can do the same proof as for the corresponding Lemma 5.6 for homotopy
equivalences. Lemma 5.6 uses a lot of other results and we comment briefly on
how they transfer to gw-equivalences. The main tool we use during the proof of
Lemma 5.6 is the Approximation Theorem B.7. To apply it to a functor F we have
to check conditions (App 1) and (App 2) of the Approximation Property B.6 for F .
While (App 1) is often easy to show, (App 2) requires more work as we have to
construct for any map F (A)→ B a map A→ A′ and a gw-equivalence F (A′)→ B.
However, the proofs in Section 5.1 construct such an A′ and a map F (A′) → B
which is a homotopy equivalence, i.e. a w-equivalence. As w ⊆ gw this map is also
a gw-equivalence, so the proofs in Section 5.1 also show (App 2) for the case of
gw-equivalences.

First Proposition 3.33 (comparison between the finiteness condition f , hf and hfd)
is used, whose proof applies verbatim for gw-equivalences, as (App 1) is always clear.
The next is Lemma 5.9, which is the analogue of Proposition 3.33 for CGgw instead
of CG. It also holds but note that the gw-equivalences there are the hw-equivalences
above. The most delicate part is Lemma 5.10, but the proof there shows that for
each module M in CGhfd(X × Rn+)hw any map N → M factors as a map N → M ′

followed by a w-equivalence M ′ →M , where N and M ′ are in CGhfd(X × 0). So the
crucial map is also a gw-equivalence and Lemma 5.10 holds for them.

The last thing is to check the Eilenberg-swindle on gwCGf (X×Rn+). Everything from
Definition 5.19 on generalizes to gw-equivalences, with the exception that we have to
check that the flasque functor T we construct is actually exact (cf. Remark 5.23),
where the point is of course that it maps gw-equivalences to gw-equivalences. But
this holds as the shift s : Rn+ → Rn+, t →→ t+ 1 is “orthogonal” to the germs g; that
is if f is a gw-equivalence which comes with some (three) germ support sets for
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the germwise inverses and homotopies, then s(f) is a gw-equivalence which we can
choose to have the same germ support sets! This implies that T (f) =


n s

n(f) is
again a gw-equivalence.

Now everything works exactly like in the proof of Lemma 6.1.

Remark 6.14. Note that because the construction of K−∞(gwCG(X)) is analogous to
the construction of K−∞(wCG(X)) we get a natural map of spectra from the latter
to the former.

We also need a non-connective spectrum for wCgw. Our proof of the coarse Mayer-
Vietoris theorem does not seem to work for the germwise-trivial objects, so we omit
the connectivity assumptions on the structure maps.

Lemma/Definition 6.15. Let (X, E ,F) be a G-equivariant control space and i : Y ⊆
X a froper subspace. Denote by g the germs away from Y . There is a non-connective
algebraic K-theory spectrum K−∞(wCG(X,R, E ,F)gw), defined in degree n as

K(wCGf (X × Rn, R, E × Ed,F × {Rn})gw).

There further is a stable equivalence of spectra

K−∞(wCG(Y,R, i−1E , i−1F))→ K−∞(wCG(X,R, E ,F)gw).

Note that a priori we do not make any connectivity assumptions about the structure
maps of the spectrum. However the proof of the second claim shows that the structure
maps of K−∞(wCG(X)gw) are isomorphisms on πi for i ≥ 1.

Proof. As before we have a diagram

wCGf (X × Rn−1)gw

��

// wCGf (X × Rn+)gw

��

wCGf (X × Rn−)gw // wCGf (X × Rn)gw

.

There is a flasque shift on Rn± which respects the gw-equivalences as noted in the
last proof, hence the upper right and lower left corners have an Eilenberg swindle
and vanishing K-theory. This gives the structure maps of the spectrum.

Lemma 5.6 provides a functor wCGf (Y × Rn) → wCGf (X × Rn)gw which is an
isomorphism on πi for i ≥ 1. The functor is compatible with the flasque shifts, so
we get the desired stable equivalence of spectra K−∞(wCG(Y ))→ K−∞(wCG(X)gw).
(It follows that the structure maps of K−∞(wCG(X)gw) are an isomorphism on πi
for i ≥ 1.)

Note that this third version of the non-connective K-theory spectrum has also the
expected functoriality properties.
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6.4. The homotopy fiber sequence and coarse
Mayer-Vietoris for K−∞

We can now prove Theorem 6.4 which gives the homotopy fiber sequence for non-
connective algebraic K-theory.

Proof of Theorem 6.4. We know by the connective homotopy fiber sequence of
Lemma 5.14 that

K(wCGf (X×Rn, R, E ,F)gw)→ K(wCGf (X×Rn, R, E ,F))→ K(gwCGf (X×Rn, R, E ,F))

is a homotopy fiber sequence for all n. Therefore we get a homotopy fiber sequence
on non-connective K-theory spectra

K−∞(wCG(X)gw)→ K−∞(wCG(X))→ K−∞(gwCG(X)).

By Lemma 6.15 the map K−∞(wCG(Y ))→ K−∞(wCG(X)gw) is a stable equivalence
of spectra, hence the result follows.

Remark 6.16. We want to give a bit more details why we get the fiber sequence
of spectra. A fibration of spectra is defined to be a degreewise fibration. We can
factor the rightmost horizontal map into a (degreewise) fibration and a degreewise
cofibration which is also a degreewise weak equivalence. We get a (solid) diagram

. //

��
�
�
� . //

��

∼
��

.
id
��. // . // // .

where the upper row is the original row. Taking the fiber of the lower row (which is
the homotopy fiber of both rows) gives a map from the leftmost upper spectrum to
the (homotopy) fiber.

Degreewise this is a replacement by a fibration sequence; as degreewise the upper
row was a homotopy fiber sequence, the left vertical map is degreewise a weak
equivalence, hence also a weak (=stable) equivalence of spectra. Hence the upper
row is weakly equivalent to a fiber sequence and hence a homotopy fiber sequence.

The proof of the non-connective coarse Mayer-Vietoris Theorem 6.5 proceeds
similarly.

Proof of Theorem 6.5 (Sketch). Using Theorem 6.4 we can proceed as in the proof
of the non-connective case (Lemma 5.16), namely we can extend the diagram to the
right to

K−∞(wCG(A ∩ B, j−1E , j−1F)) //

��

K−∞(wCG(A, i−1
A E , i−1

A F)) //

��

K−∞(gwCG(A, i−1
A E , i−1

A F))

��

K−∞(wCG(B, i−1
B E , i−1

B F)) // K−∞(wCG(A ∪ B, E , F)) // K−∞(gwCG(A ∪ B, E , F))
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and show that the rightmost map gives a stable equivalence of spectra, which is the
argument of Lemma 5.16 applied degreewise.

The two results we just proved are precisely the analoga of Proposition 4.2 (iii)
(Coarse Pair/Karoubi fiber sequence) and Proposition 4.3 (Coarse Mayer-Vietoris)
of [BFJR04]. These are the fundamental results about the algebraic K-theory and
in particular the coarse Mayer-Vietoris is the crucial ingredient for the construction
of the equivariant homology theory of [BFJR04, Section 5]. Thus we can prove the
corresponding results now in our setting.

The proofs of 6.6 and 6.7 are now easy. We state them here for completeness.

Proof of 6.6. If X has a flasque shift, then the space in each degree of the spectrum
K−∞(wCG(X,R, E ,F)) is contractible, hence the spectrum itself is contractible.

Proof of 6.7. The map f : R → S induces maps CGf (X × Rn, R) → CGf (X × Rn, S)
which by Theorem 3.38 induces an equivalence on connective algebraic K-theory if f
is a weak equivalence of rings. The maps are compatible with the contractions on
Rn± and hence induce a map of spectra. It is an weak equivalence of spectra if f is a
weak equivalence of rings.
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7. An equivariant homology theory

We define a functor hG(−,KR) from G-CW-complexes to spectra and show that it is
an unreduced generalized G-equivariant homology theory with coefficients in KR, the
non-connective G-equivariant algebraic K-theory spectrum of the simplicial ring R.
Here KR is a functor from the orbit category OrG—which consists of G-spaces G/H
and G-equivariant maps—to spectra, and evaluated on G/H it gives a spectrum
weakly equivalent to K−∞(R[H]).

Recall that a G-CW-complex is a CW-complex with G-action such that the image
of an open cell under the action of g ∈ G is either disjoint to the cell or fixed
pointwise. Equivalently a G-CW-complex is a space arising by attaching G-cells
in increasing dimension, where a G-cell of dimension n is a G-space of the form
(G/H ×Dn, G/H × ∂Dn) with H ⊆ G a subgroup of G. (A convenient way to look
at G-CW-complexes is to consider them as spaces under the orbit category OrG
of G, but we will not need this viewpoint and refer to [DL98] for details.) We now
define and discuss what we mean by a G-equivariant homology theory.

Definition 7.1 (Unreduced G-equivariant homology theory). Let G be a group. An
unreduced G-equivariant homology theory is a functor hG(−) from G-CW-complexes
to spectra such that:

(0) (Functoriality) If f : X → Y is a G-equivariant map between G-CW-complexes
then there is a map

hG(f) : hG(X)→ hG(Y )

of spectra. (This is mentioned so that we can refer to it later.)

(i) (Homotopy Invariance) If f is an G-equivariant homotopy equivalence then
hG(f) is an equivalence of spectra.

(ii) (Mayer-Vietoris) A homotopy pushout square of G-CW-complexes induces a
homotopy pullback square of spectra.

(iii) (Compact support) Let {Xi | i ∈ I} be the G-finite (or equivalently G-compact)
subcomplexes of X. Then the natural map

hocolim
i∈I

hG(Xi)→ hG(X)

is an equivalence of spectra.
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Remark 7.2. This definition follows closely the definition in the beginning of Section 5
of [BFJR04] where an “equivalent” definition is given, too. However this “equivalent”
definition actually uses a notion of reduced homology theory (without saying so)
and the reformulation seems to be slightly weaker for uncountable G-CW-complexes.
The last issue is related to the trick we discuss now.

The above axioms (0) to (ii) correspond to the Eilenberg-Steenrod axioms. Axiom
(iii) is sometimes called the direct limit axiom (e.g. in [Hat02, 4.F]) and goes back
to Adams [Ada71]. However, it is also mentioned in [Spa89, p. 203] (which was
published in 1966!) as the axiom of compact support, hence our name. It implies
Milnor’s Additivity Axiom [Mil62] which is more commonly required, hence we prove
the stronger axiom. (Note that according to [Hat02, 4.F/p.455] the stronger axiom
is needed to provide representability by a spectrum in the non-equivariant case.)

The proof of (i) and (ii) is easier if we restrict to finite G-CW-complexes (which are
the G-compact ones). Then we invoke a general trick that taking (iii) as a definition
we could extend any homology theory to arbitrary G-CW-complexes. As (iii) will hold
for us, the Mayer-Vietoris axiom is automatically satisfied for all G-CW-complexes.

We define hG(−,KR) in Section 7.1. Section 7.2 shows that the functor restricted
to finite G-CW-complexes satisfies (0) to (ii) of Definition 7.1 ((iii) is trivially true),
i.e. it is a homology theory on finite G-CW-complexes. Section 7.3 shows how to
extend any homology theory on finite G-CW-complexes to a homology theory on all
G-CW-complexes by requiring 7.1(iii) to hold, and uses this to show that hG(−,KR)
is a G-equivariant homology theory in the sense of Definition 7.1. We briefly remark
how one gets from our definition to a corresponding reduced homology theory and
how to obtain a homology theory for pairs in Section 7.4.

We define KR, the G-equivariant algebraic K-theory spectrum of R, as the G-
equivariant spectrum G/H →→ hG(G/H,KR) in Section 7.5. Then it is of course
trivially true that KR are the coefficients of hG(−,KR), but we have no other defini-
tion at hand. We calculate hG(G/H,KR) ≃ K−∞(R[H]) to justify the name. Finally
we show there is a weak a map of spectra K(R) → K−∞(R) from the connective
algebraic K-theory to the non-connective one and this map is an isomorphism on
stable homotopy groups πi for i ≥ 1. Last we discuss the assembly map for hG(−,KR)
in Section 7.6.

7.1. A G-equivariant homology theory with coefficients KR

Recall that in the previous section we defined for a free G-equivariant control space
(X, E ,F) and a simplicial ring R the non-connective spectrum K−∞(wCG(X,R, E ,F)).
For a set of germ support conditions on X denoted by g we have the corresponding
spectrum K−∞(gwCG(X,R, E ,F)).

Let X be a G-CW-complex. We get a G-equivariant control space by taking the
G-equivariant continuous control on X × [1,∞) (see Example 1.29), denote it by
EGcc(X). The control space is in general not free. But we can take the standard
resolution (cf. Example 1.29 (iii) and [BFJR04, 3.1]) which is the space X×G× [1,∞)
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with the projection p : X ×G× [1,∞)→ X × [1,∞). We get a free G-equivariant
control space by pulling back the G-equivariant control condition from X × [1,∞)
and taking the G-equivariant compact object support conditions pulled back from
X ×G (cf Ex.1.29 and Ex.1.9). Thus we make the following definition.

Definition 7.3. For X a G-CW-complex define the free G-equivariant control space
as

Xcc := (X ×G× [1,∞), p−1EGcc(X), p−1
X×GFGc)

Note that G acts free and properly discontinuous on Xcc.

Lemma 7.4. For f : X → Y a map of G-CW-complexes we get a map f cc : Xcc →
Y cc of free G-equivariant control spaces. The map takes locally finite sets to locally
finite sets.

Proof. Let f cc : X ×G× [1,∞)→ Y ×G× [1,∞) be the map induced by f : X → Y .
We have to check that it gives a map of control spaces and that it takes locally finite
sets to locally finite sets.

The part for the control spaces is proven in Proposition 3.2 of [BFJR04] if we use
that taking the standard resolution is functorial. For the proposition to apply we
have to invoke the “trick” at the end of Section 1.3 and replace E by “E ∩ (F × F)”
(misuse of notation), which gives equivalent control spaces, i.e. the same category
CG(X). We hide this change of the control structure as it is irrelevant for us.

A locally finite set (M,κ) over Xcc has compact support in X ×G-direction, hence
restricted to X ×G× [n, n+ 2] it is even finite. Therefore the set (M,f ◦ κ) over Y cc

is always finite on Y ×G× [n, n+ 2] and therefore in particular locally finite.

There is a canonical inclusion X ×G× 0→ Xcc of control spaces which gives us
germ support conditions on Xcc. These are the “germs at infinity”, denote them by
g∞.

Definition 7.5. Define hG(−,KR) as the functor from G-CW-complexes to spectra

X →−→ ΩK−∞(g∞wCG(Xcc)).

Remark 7.6. The looping is just a degree shift to get hG(G/G,KR) ≃ K−∞(R[G]).
Usually we suppress it for the following proofs, although it has the nice property
that it makes hG(−,KR) into an Ω-spectrum.

We now can state our theorem.

Theorem 7.7. hG(−,KR) is a G-equivariant homology theory with coefficients
G/H →→ K−∞(R[H]).

This will be proven as Corollary 7.21 in Section 7.3.
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7.2. Homotopy invariance and Mayer-Vietoris property
We prove that hG(−,KR) is a homology theory if restricted to finite G-complexes.
We want to apply the theorems from Chapter 6.

To apply the coarse Mayer-Vietoris principle (6.5) we will need the next result. It
is an adaption of Proposition 5.3 of [BFJR04] which we reprove here as we need the
details of the proof. For the Mayer-Vietoris property of hG(−,KR) we will apply the
following proposition with both A and B compact, but for the homotopy invariance
we need a non-compact B. Note that Proposition 5.3 of [BFJR04] does not hold
true for A ∩ B = ∅ as stated, we give the full correct statement here. (However,
the proof from [BFJR04] applies to both situations.) The result is used to show
that the triple (Xcc, Acc, Bcc) is coarsely excisive (Definition 5.15). We also need an
addendum which ensures that the subspaces are froper (Definition 5.3).

Lemma 7.8 (Adaption of [BFJR04, Prop. 5.3]). Let X be a G-CW-complex and let
A,B ⊆ X be two G-invariant closed subsets with A being G-compact and A∪B = X.
Assume that there exists a G-invariant open neighborhood U of A∩B in X such that
U is homeomorphic to (A∩B)× (−1, 1), where G acts trivially on (−1, 1). Moreover,
U ∩A should correspond to (A ∩B)× [0, 1) and U ∩B to (A ∩B)× (−1, 0].

Let E be in EGcc(X). Assume (A ∩ B) is not empty, then there exists an E′ ∈
EGcc(X) such that

(A× [1,∞))E ∩ (B × [1,∞))E ⊆ ((A ∩B)× [1,∞))E′

If A ∩B = ∅ then there is a t such that

(A× [1,∞))E ∩ (B × [1,∞))E ∩X × [t,∞) = ∅.

Remark 7.9. Note that this Lemma implies the same result for the control spaces
obtained by resolutions, as we have no object support conditions imposed so far.

Lemma 7.10 (Addendum). Given the situation above. Consider the control space
Xcc which was defined as

(X ×G× [1,∞), EGcc(X ×G), p−1
X×GFGc).

Then the subspace (A ∩ B) × G × [1,∞) is froper in A × G × [1,∞) as well as
B × [1,∞)×G is froper in X ×G× [1,∞).

Proof of Lemma 7.8. We follow closely the proof of [BFJR04] and give some more
details.

Let ZA := (A× [1,∞))E r (A× [1,∞)). For 0 < ε < 1 let Uε be the neighborhood
of A∩B corresponding to (A∩B)× [−ε, ε]. The continuous control condition implies
that for every x ∈ A×∞ and for the Gx-invariant neighborhood Uε×[1,∞)∪A×[1,∞)
there is a Gx-invariant neighborhood V such that V E ⊆ Uε × [1,∞) ∪ A × [1,∞).
We can shrink V to a neighborhood V ′ × [txε ,∞). As A is G-compact it is covered
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by finitely many orbits of such neighborhoods and therefore there is a V ′′ ⊃ A and
tAε such that (V ′′ × [tAε ,∞))E ⊆ Uε × [1,∞) ∪A× [1,∞). It follows that

ZA ∩

X × [tAε ,∞)


⊆ Uε × [1,∞).

We have the analogous result for ZB := (B× [1,∞))Er (B× [1,∞)). Assume that
E has the metric control condition α, i.e. for ((x, t), (x′, t′)) ∈ E we have |t− t′| ≤ α.
Let U◦

ε be the neighborhood of A ∩B corresponding to (A ∩B)× (−ε, ε). Then for
0 < ε < 1 the continuous control condition implies that for every x in the compact
G-invariant subspace Ar U◦

ε and its Gx-invariant neighborhood (Ar Uε/2)× [1,∞)
there is a Gx-invariant neighborhood V such that V E ⊆ (A r Uε/2) × [1,∞). As
Ar U◦

ε is G-compact there is a tBε such that
(Ar U◦

ε )× [tBε ,∞)
E ⊆ (Ar Uε/2)× [1,∞)

As B in contained in the complement of (Ar Uε/2) and E is symmetric it follows
that

(B × [tBε + α,∞))E ⊆ (X r (Ar U◦
ε ))× [tBε ,∞) = (Uε ∪B)× [tBε ,∞)

where we used that due to the metric control B × [tBε + α,∞)E ⊆ X × [tBε ,∞). In
particular we have

ZB ∩

X × [tBε + α,∞)


⊆ Uε × [1,∞).

Set tε := max(tAε , tBε +α), so (ZA∪ZB)∩(X× [tε,∞)) ⊆ Uε× [1,∞). If A∩B = ∅
it follows that (ZA ∪ ZB) ∩ (X × [tε,∞)) is empty and hence

(A× [1,∞))E ∩ (B × [1,∞))E ∩X × [t,∞) = ∅.

Else define for t > t 1
2

the function

ε(t) := min{ε | (ZA ∪ ZB) ∩X × [t,∞) ⊆ Uε × [1,∞)}.

Note that ε(tε) ≤ ε and ε(t) ≤ ε(t′) for t ≥ t′ and ε(t) goes to zero for t going to
infinity.

For z ∈ A ∩B let Lε(z) ⊆ U correspond to {z} × (−ε, ε). Set

E′ :=


(x, t), (y, t)


| t < t 1
2

or x = y

or x ∈ A ∩B and y ∈ Lε(t)(x)
or y ∈ A ∩B and x ∈ Lε(t)(y)


.

One sees that E′ is symmetric and G-invariant. One checks that it is a continuous
control set. It satisfies our claim. Figure 7.1 shows a picture of the situation.
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X

∞
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t1/2

A

B
Uε

E′

Figure 7.1.: A sketch of E′

Proof of the Addendum. We treat the case B ⊆ X. We have to construct a controlled
retraction (B × G × [1,∞))E → B × G × [1,∞) which maps locally finite sets to
locally finite sets.

We use the notation and results from the previous proof. It suffices to define a map
f : ZB → B × [1,∞) and extend it G-equivariantly. If (x, t) ∈ ZB ∩X × [t1/2,∞)
then it is contained in U1/2 × [t1/2,∞). Hence x ∈ U1/2 has a parametrization as
(x′, s) ∈ A∩B× [−1/2, 1/2], so we can write (x, t) as (x′, s, t). Then we map (x′, s, t)
to (x′, 0, t). Else t ≤ t1/2 and we choose some y in B and map (x, t) to (y, t). This
gives a map f : ZB → B × [1,∞).

This map f is E′-controlled for the E′ constructed to E in the previous proof. It
gives a retraction f ×G : (B×G× [1,∞))E → B×G× [1,∞) which is G-equivariant
and E′-controlled. Let (M,κ) be a locally finite set over Xcc with support in BE .
We have to show that M ′ := (f ×G)∗(M) is a again a locally finite set.

Using that G acts properly discontinuous and free on B × G we find for x ∈
B × G × [1,∞) a neighborhood V ⊆ B × G × [i, i + 2] with gV ∩ V = ∅ for
g ∈ Gr {e}. As M has G-compact support in B ×G-direction it is finite on V . As
V ′ := (f ×G)−1(V ) has also the property that gV ′ ∩ V ′ = ∅ for g ∈ Gr {e} and is
again contained in B ×G× [i, i+ 2] it follows that M is finite on V ′, and therefore
M ′ is finite on V .

This shows that f × G maps locally finite sets to locally finite sets. (Note that
the lemma is only true for the resolutions, as there might be no retraction without
taking resolutions, e.g. if G acts freely on A ∩B but not on A.)

We can now prove the homotopy invariance. This is a slight variation of Proposi-
tion 5.6 of [BFJR04], as there seem to be some typos in the proof.

Lemma 7.11. The functor hG(−,KR) is homotopy invariant.

Proof. It suffices to show that the canonical map X × I → X induces an equivalence
of spectra.

For i = 0, 1 let Xi := [i, 1]×X and Zi := [i,∞)×X. We get four control spaces
Xcc
i and Zcci . Let Zcc′

i be the control space Zcci with the different object support

134



condition p−1
X×GFGc, i.e. we do not require compact support in [i,∞)-direction. We

want to check that the triple (Zcc′
0 , Zcc

′
1 , Xcc

0 ) satisfies the conditions of the coarse
Mayer-Vietoris (Theorem 6.5). Lemma 7.8 shows that the triple (Zcc′

0 , Zcc
′

1 , Xcc
0 )

is coarsely excisive and the addendum shows Xcc
1 = Xcc

0 ∩ Zcc
′

1 is froper in Xcc
0 .

One checks further that Zcc′
1 and Xcc

0 are froper in Zcc
′

0 . Thus the assumptions of
the coarse Mayer-Vietoris (Theorem 6.5) are satisfied, which therefore provides a
homotopy fiber square of spectra

K−∞(wCG(Xcc
1 )) //

��

K−∞(wCG(Xcc
0 ))

��

K−∞(wCG(Zcc′
1 )) // K−∞(wCG(Zcc′

0 ))

.

Both lower spaces have a flasque shift by Lemma 7.12 below and hence are trivial. It
follows that the upper map is a homotopy equivalence.

However, we want to have the result for germwise equivalences away from 1
in the continuous control direction. It suffices to prove it for the control spaces
ι : Xi ×G× 1 ⊆ Xcc

i , then we get that in the map of homotopy fiber sequences

K−∞(wCG(Xi ×G× 1, ι−1E , ι−1F)) //

��

K−∞(wCG(Xcc
i )) //

��

K−∞(g∞wCG(Xcc
i ))

��

K−∞(wCG(X0 ×G× 1, ι−1E , ι−1F)) // K−∞(wCG(Xcc
0 )) // K−∞(g∞wCG(Xcc

0 ))

the first two vertical maps are equivalences of spectra and hence the third vertical
arrow is also an equivalence of spectra, which by definition is the map hG(X0,KR)→
hG(X1,KR).

If we pull back the control conditions of Xcc
i to Xi × G × 1 we get no control

conditions at all, as Xi is compact. It follows that X1×G×1→ X0×G×1 induces a
homotopy equivalence on the spectra, which is the left map in the diagram above.

We still have to provide a flasque shift:

Lemma 7.12. There is a flasque shift on

Zcc
′

i =

[i,∞)×X ×G× [1,∞), EGcc([i,∞)×X ×G),FGc(X ×G)).

It may be given by

ϕ : [i,∞)×X ×G× [1,∞)→ [i,∞)×X ×G× [1,∞)
(s, x, γ, r) →→ (s+ 1

r , x, γ, r).

Proof. We can assume X = pt and G = {e}, as ϕ is constant in these directions
and the continuous control on the space is the intersection of the pullbacks of the
continuous control conditions on [i,∞)× [1,∞), X× [1,∞), and G× [1,∞); the same
is true for the object support conditions. Therefore, on [i,∞)× [1,∞), we have no
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equivariance, no extra metric control conditions (except the one in [1,∞)-direction)
and no object support conditions. The shift reduces to ϕ(s, r) →→ (s+ 1/r, r).

We recall how the continuous control conditions on the space [i,∞)× [1,∞) look
like (cf. Example 1.9(ii)). We say that a set E ⊆


[i,∞)× [1,∞)

2 is a continuous
control condition if it satisfies the following two conditions. First we have the
original continuous control condition which we can rephrase as: For each point
(x,∞) ∈ [i,∞)× [1,∞] and each neighborhood U of (x,∞) in [i,∞)× [1,∞] there
is a neighborhood V of (x,∞) in [i,∞)× [1,∞] such that V E is contained in U . We
denote this condition by (C). Then there is an extra metric control condition saying
that for E there is an α such that for each ((x, r), (x′, r′)) ∈ E we have |r − r′| ≤ α.
We denote this condition by (M).

To prove that ϕ is a flasque shift we have to check the five conditions (i)–(v) of
5.21. First ϕ is a homeomorphism onto its image, this shows that it maps locally
finite sets to locally finite sets, hence (i). Now pick an x = (s, r) and ε < 1. Then
(sn)−1([s− ε, s+ ε]× [r − ε, r + ε]) is empty for n > (s+ ε)(r + ε), which shows (ii).
We have no object support conditions, so (iv) is satisfied.

For (v) it suffices to show that D := {(x, ϕ(x))} = {((s, r), (s+ 1
r , r))} is a valid

continuous control condition, i.e. satisfies (C) and (M). Pick an s0 ∈ [i,∞) and a
neighborhood U of (s0,∞) in [i,∞)× [1,∞]. We can assume that

U = [s0 − ε, s0 + ε]× [l,∞].

We set as attempt V := [s0 − ε
2 , s0 + ε

2 ]× [J,∞] and try to determine J . We have
V D = {(s+ 1

r , r) | (s, r) ∈ V }. If J ≥ l we get V D ⊆ [i,∞)× [J,∞), so we only need
to check the first coordinate. For this we have for r ≥ 2/εs+ 1

r
− s0

 ≤ |s− s0|+
1
r

≤ ε

2 + 1
r
≤ ε,

hence with J := max(l, 2
ε ) we have V D ⊆ U . This shows (C). Condition (M) is

obviously true. Hence property (v) holds.
Condition (iii) is left, which is more intricate. For each E satisfying (C) and (M)

we have to show that D :=

n(s× s)n(E) also satisfies (C) and (M). Again choose

an s0 and a neighborhood U := [s0 − ε, s0 + ε]× [l,∞]. We have to find a K such
that for V := [s0− ε/2, s0 + ε/2]× [K,∞] we have V D ⊆ U . Assume that E satisfies
(M) with metric control condition α. Then D satisfies (M) with the same metric
control condition. Thus if we assume K ≥ l+α we have V D ⊆ X × [l,∞) and hence
can ignore that direction.

Pairs in D have the form (s+ n/r, r), (s′ + n/r′, r′) with ((s, r), (s′, r′)) ∈ E. So
we have to find a K such that for each n and each pair ((s, r), (s′, r′)) ∈ E with
|s+ n

r − s0| ≤ ε
2 and r ≥ K we haves′ + n

r′ − s0

 ≤ ε.
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It suffices to show that s+ n

r
− s′ − n

r′

 ≤ ε

2 .

For ω > 0 set U qω := [q − ω/2, q + ω/2] × [1,∞]. We can consider the cover
{U qω | q ∈ [i, s0 + ε]} of [i, s0 + ε]× [1,∞]. By the continuous control condition we
get for each U qω a neighborhood V q

ω of (q,∞) such that (V q
ω )E ⊆ U qω. Without loss of

generality V q
ω has the form Iqω × [rqω,∞], Iqω some interval. As [i, s0 + ε] is compact,

finitely many Iqω cover it. Take rω as the maximum of the finitely many rqω for which
Iqω × [rqω,∞] covers [i, s0 + ε]× {∞}. Then for each r ≥ rω and s ≤ s0 + ε we have
that ((s, r), (s′, r′)) in E implies |s− s′| ≤ ω.

Set ω := ε/4 and get rω. Pick (s+ n/r, r) ∈ V . We then have s+ n
r ≤ s0 + ε. We

further (can) assume r ≥ rω. Now have the estimates together to show that

V D = ([s0 − ε/2, s0 + ε/2]× [K,∞])D ⊆ [s0 − ε, s0 + ε]× [l,∞] = U,

if we set K large enough.
For ((s+ n/r, r), (s′ + n/r′, r′)) in D we can estimates+ n

r
− s′ − n

r′

 ≤ s− s′ + n ·
1r − 1

r′


≤ ε

4 + n · |r
′ − r|
rr′ .

The metric control condition provides |r′ − r| ≤ α. Further from s+ n
r ≤ s0 + ε we

get n ≤ (s0 − s+ ε) · r, hence n ≤ 2ε · r. We can estimate further

ε

4 + n · |r
′ − r|
rr′ ≤ ε

4 + 2ε · r · α
rr′

≤ ε

4 + 2εα
r′

and hence for r′ ≥ 4α this is bounded by ε/2. Setting K := max(rε/4, 4α, j) + α we
get 

[s0 −
ε

2 , s0 + ε

2]× [K,∞]
E
⊆ U.

This shows the property (C) and hence finishes the proof.

Remark 7.13. The difference to the proof of [BFJR04, Prop. 5.6] is, besides that we
give more details, that the conditions on Zcc

′
i are different. We explicitly do not

require extra metric control in the [i,∞)-direction and no compact support in that
direction, as this would make Lemma 7.12 wrong.

Lemma 7.14 (Mayer-Vietoris). Assume we have a homotopy pushout of finite
G-CW-complexes

X0 //

��

X1

��

X2 // X3

.
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Then
hG(X0,KR) //

��

hG(X1,KR)

��

hG(X2,KR) // hG(X3,KR)

is a homotopy pullback square of spectra.

Proof. We assume that X0 ̸= ∅. The case X3 = X2 ⨿X1 seems to need an extra
treatment. We do it in Lemma 7.15 below.

By the homotopy invariance we can replace X by the double mapping cylinder
of X1 ← X0 → X2 and thus are in the situation of Lemma 7.8. Together with
its Addendum it shows the assumptions of Theorem 6.5 (coarse Mayer-Vietoris).
Applying it to Xcc

2 ← Xcc
0 → Xcc

1 yields that the diagram

K−∞(wCG(Xcc
0 )) //

��

K−∞(wCG(Xcc
1 ))

��

K−∞(wCG(Xcc
2 )) // K−∞(wCG(Xcc

3 ))

(A)

is a homotopy pushout of spectra. The pullback of the control conditions along
ι : Xi × 1→ Xcc

i gives no control conditions at all. As all spaces are non-empty the
categories CGf (Xi ×G× 1, R) are all equivalent and hence in the diagram

K−∞(wCG(X0 ×G× 1)) //

��

K−∞(wCG(X1 ×G× 1))

��

K−∞(wCG(X2 ×G× 1)) // K−∞(wCG(X3 ×G× 1))

(B)

all maps are equivalences of spectra, in particular it is a homotopy pushout square.
We have obtained for i = 0, . . . , 3 homotopy fiber sequences

K−∞(wCG(Xi ×G× 1, ι−1E , ι−1F))→ K−∞(wCG(Xcc
i ))→ K−∞(g∞wCG(Xcc

i )).

The third terms form the square

hG(X0,KR) //

��

hG(X1,KR)

��

hG(X2,KR) // hG(X3,KR)

. (C)

So we get a sequence of the squares of spectra which is a homotopy fiber sequence at
each corner
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(A) −−−→ (B) −−−→ (C)

where (A) and (B) are homotopy pushout squares. It follows that (C) is a homotopy
pushout square.

We still need to show the case A∩B = ∅, i.e. A⨿B = X. This seems to be more
complicated.

Lemma 7.15. Let X = A ⨿ B the disjoint union of G-CW-complexes. Then
hG(A⨿B,KR) ∼= hG(A,KR) ∨ hG(A,KR).

Proof. The proof goes pretty deep into the definitions. We do a few reductions first.
Note first that if the control space Y is the disjoint union of two control spaces

Y1, Y2 and we take as control conditions also the disjoint unions, then the category
CGf (Y,R) is equivalent to CGf (Y1, R)×CGf (Y2, R). (Note that “disjoint union of control
spaces” just means that for each yi ∈ Yi the pair (y1, y2) is not in any E ∈ E .) The
product extends to the categories with cofibrations and weak equivalences and, as
Waldhausen’s K-theory respects finite products of categories, to the K-theory. This
works for finite products with Rn. Hence, as for spectra product and coproduct agree
up to homotopy, we get the result for our non-connective K-theory.

In our situation consider the control spaces (A⨿B)cc and Acc ⨿Bcc. They differ
only in the control conditions and there is a map from the latter to the former. So if
we show that the Approximation Theorem applies to

F : g∞wCGf (Acc ⨿Bcc)→ g∞wCGf ((A⨿B)cc),

with the germs at infinity, we are done. Lemma 7.8 shows for A ∩B = ∅ that for
each E ∈ EGcc there is a t such that for all a ∈ A × [t,∞) and b ∈ B × [t,∞) the
pair (a, b) is not in E. This means, that “near infinity (A⨿B)cc is a disjoint union”.
We now make that statement into a proof. Abbreviate g∞wCGf (Acc ⨿ Bcc) by D
and g∞wCGf ((A⨿B)cc) by D′, so we have to show that F : D → D′ satisfies the two
conditions of the Approximation property.

For (App 1) let f : M → M ′ be a map in D. Assume that F (f) is a germwise
equivalence in D′ with all associated data controlled by E. By Lemma 7.8 there is a
t such that E ∩ (X × [t,∞))2 splits as EA ⨿ EB. Hence there is a t such that if we
restrict the germwise inverse and the homotopies to X × [t,∞) they come from D.
This shows f is a g∞w-equivalence in D.

Let M be an object in CGf (Acc ⨿Bcc). It is a controlled module over A⨿B with
no “crossing” differentials (i.e. differentials from A to B or vice versa). Let P be in
CGf ((A ⨿ B)cc) and let f : F (M)→ P . Recall that we have to find a module P ′ in
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CGf (Acc ⨿Bcc) and maps such that the diagram

F (M) //

��

P

P ′

∼g∞w

<<yyyyyyyyy

commutes and the lower diagonal map is a g∞w-equivalence. We can assume that
M → P is an inclusion by replacing it by the mapping cylinder. Use again Lemma 7.8
to choose a t such that PX×[t,∞) has no “crossing” differentials. PX×[t,∞) → P is
a g∞w-equivalence. If we enlarge it to P ′ := F (M) ∪ P[t,∞) the map P ′ → P is
still a g∞w-equivalence and P ′ has no “crossing differentials”, hence comes from
CGf (Acc ⨿Bcc). This shows the (App 2).

Thus hG(−,KR) is a homology theory on G-finite G-CW-complexes. We will
calculate its coefficients in Section 7.5.

7.3. Direct Limit Axiom and extension to arbitrary
G-CW-complexes

We now extend our discussion from the previous section to arbitrary G-CW-complexes.
In the following finite always means G-finite.

Let hG be a functor from finite G-CW-complexes to spectra which satisfies the
axioms (0) to (iii) from above. (Note that (0) just demands the functoriality and in
(iii) the indexing category of the homotopy colimit is finite in which case it has a
terminal object and hence (iii) is always true, cf. Remark7.17 below.)

Lemma/Definition 7.16. Define a functor hG from all G-CW-complexes to spectra
by hG(X) := hocolim

Xi⊆X finite
hG(Xi)

Then hG extends hG in the sense that for X a finite G-CW-complex the canonical
map hG(X)→ hG(X) is an equivalence of spectra.

Further hG is a G-equivariant homology theory which satisfies the compact support
axiom (iii).

Remark 7.17. Recall that we have a functorial definition of the homotopy colimit
of a functor F : C → (Spectra) by setting hocolimc∈C F (c) as the realization of the
simplicial object

[n] →→


c0→···→cn∈C
F (c0)

with the obvious structure maps (cf. [GJ99, Example IV.1.8,p. 199]). It has the
property that for an objectwise weak equivalence F (c) ≃−→ F ′(c) it gives an equivalence

140



hocolimF → hocolimF ′. Further if C′ ⊆ C is cofinal then the map from hocolimC′ F
to hocolimC F is an equivalence. There also is a canonical map hocolimC F →
colimC F which does not need to be an equivalence in general.

Proof of 7.16. Let {Xi} be the system of finite subcomplexes of X. If X is finite
then it is a terminal object in {Xi}, hence

hocolim hG(Xi) ≃ hG(X).

To prove homotopy invariance we show that the projection p : X × I → X induces
an equivalence of spectra. Note that {Xi × I ⊆ X × I}, with Xi ⊆ X finite, is a
cofinal subsystem of the finite subcomplexes of X × I. Hence p gives a map

hocolim hG(Xi × I)→ hocolim hG(Xi)

which is pointwise a weak equivalence, hence gives a weak equivalence on the homotopy
colimit (cf. Remark 7.17). This shows the homotopy invariance.

For the Mayer-Vietoris Axiom note that it suffices to prove the case when X is
the union of subcomplexes A and B. Then each finite subcomplex Xi of X gives a
pair of finite subcomplexes of A and B whose union is Xi. Hence if we index over
the finite subcomplexes of X we get diagrams

Ai ∩Bi //

��

Ai

��

Bi // Xi

(27)

of finite G-CW-complexes. Hence hG(−) of the diagram

A ∩B //

��

A

��

B // X

(28)

is the homotopy colimit diagram of the homotopy pushout diagrams (solid)

hG(Ai ∩Bi) //

��

hG(Ai)

��

//___ .
≃

��
�
�
�
�

hG(Bi) // hG(Xi) //___ .

We can extend the diagrams functorially to the right as shown, with the rows being
homotopy cofiber sequences. Then the right horizontal map is an equivalence as the
solid diagram is a homotopy pushout. If we take the homotopy colimit over i we
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get a similar diagram where the rows are still homotopy cofiber sequences and the
rightmost vertical map is an equivalence. Hence

hG(A ∩B) //

��

hG(A)

��hG(B) // hG(X)

is a homotopy pushout. (We used that (27) and (28) are also homotopy pushouts of
G-CW-complexes.) This shows the Mayer-Vietoris property.

The compact support axiom is now easy. For Xi ⊆ X the finite subcomplexes we
have that hG(Xi)→ hG(Xi) is an equivalence, hence

hocolimhG(Xi)→ hocolim hG(Xi)→ hG(X)

is one.
This proves the lemma.

Our compact support axiom states that hG(X) is equivalent to the homotopy
colimit over the finite subcomplexes of X. For hG(X,KR) we can replace the
homotopy colimit by the actual colimit as we show now. This was already done in
[BFJR04], so one can view the following lemma as a justification for that.

Lemma 7.18. Given X and Xi ⊆ X a cofinal filtered system of subcomplexes of
X. If hG(Xi) consists of CW-complexes in each degree for each Xi and the induced
maps hG(Xi)→ hG(Xj) are cellular inclusions in each degree then

hocolim hG(Xi)→ colim hG(Xi)

is an equivalence.

Remark 7.19. This is not automatically clear as a cofibration of spectra is more than
a cofibration in each degree.

That Xi ⊆ X is a cofinal filtered system means that besides it is filtered, i.e. for
X1, X2 there is an X3 with X1 ⊆ X3, X2 ⊆ X3, we also have


iXi = X. The lemma

applies to our situation of hG(−,KR) defined above and explains why the “directed
unions” axiom of [BFJR04] holds, although it is stated as colimXi h

G(Xi,KR) →
hG(X,KR) (in our notation) being a weak equivalence. The assumptions of the
lemma hold because an inclusion of subcomplexes Xi ⊆ Xj gives an inclusion of
control spaces Xcc

i ⊆ Xcc
j and then an inclusion of categories, which further gives an

inclusion of the (bi-)simplicial sets involved in the S.-construction. Then realization
respects inclusions and taking the loop space does not change the argument.

Proof. The colimit of spectra is formed by taking the colimit degreewise. We
show that hocolim hG(Xi) → colim hG(Xi) is a π∗-isomorphism. An element in
πn colim hG(X) is represented by a map f : Sn+k → hG(X)k for some k > 0− n. As
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colim hG(Xi)n is the colimit of cellular inclusions over a filtered set it follows that
there is an Xj such that f factors as Sn+k → hG(Xj)k → colim hG(Xi)k, as Sn+k is
compact. Hence f factors also as Sn+k → (hocolim hG(Xi))k → colim hG(Xi)k. This
shows surjectivity.

Assume that f ∈ πn hocolim hG(Xi) becomes zero in colim hG(Xi). Then there
is a k′ such that Sn+k′ → colim hG(Xi)k′ is nullhomotopic, i.e. extends to a disk
Dn+k′+1 → colim hG(Xi)k′ . As Dn+k′+1 is again compact this shows that f is zero
in πn hocolim hG(Xi), hence it shows the injectivity.

In Section 7.1 we have defined a functor hG(−,KR) from all G-CW-complexes to
spectra. We just showed that if we use the results from Section 7.2 we could restrict
it to the finite G-CW-complexes and the extend it again to all to get a G-equivariant
homology theory. We now show that the compact support axiom (iii) holds for
hG(−,KR). This implies that it is itself a homology theory.

Lemma 7.20. The functor hG(−,KR) satisfies the compact support axiom.

Corollary 7.21. For all G-CW-complexes X we have an equivalence

hG(X,KR) ≃−→ hG(X,KR).

Hence hG(−,KR) is itself a homology on all G-CW-complexes.

Proof of Corollary 7.21. We have hG(X) = hocolim hG(Xi)
≃−→ hG(X).

Proof of 7.20. This follows closely the proof of the corresponding Proposition 5.5
of [BFJR04]. We have to show that for X a G-CW-complex and Xi ⊆ X the finite
subcomplexes we have that

hocolim
Xi⊆X

hG(Xi,KR)→ hG(X,KR)

is an equivalence of spectra. Note that the set of finite subcomplexes of X is filtered,
that is, each two finite subcomplexes are contained in a common finite subcomplex.

We get that Xcc is the filtered union of the Xcc
i . Because of the object support

condition which requires compact object support of the modules in the X-direction
we have that the category CGf (Xcc) is the filtered union of CGf (Xcc

i ), as each object
support set lies in one Xcc

i . The rest is an argument about Waldhausen’s algebraic
K-theory.

Recall that in degree 0 the spectrum hG(X,KR) was defined as K(g∞wCGf (Xcc)),
where K(wC) is defined as Ω|S.wC|. Here S. is Waldhausen’s construction [Wal85]
which takes a category with cofibrations and weak equivalences to a bisimplicial set.
One checks that it takes an inclusion of categories to an inclusion of bisimplicial sets.
Geometric realization respects this, so we have a homeomorphism

colim
i
|S.wCi| ≃−→ |S.wC| .
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Now as S1 is compact (and Ω|S.wC| is the space of maps S1 → |S.wC|), as well as
the structure map in the colimit are cellular inclusions, we see that colim Ω|S.wCi| →
Ω|S.wC| is a homeomorphism.

For the degree n of hG(X,KR) we get the same result with the slightly modified
control space (X × [1,∞)× Rn). Hence the map

colim
Xi⊆X

hG(Xi,KR)→ hG(X,KR)

is an equivalence. That we can replace the colimit by a homotopy colimit follows by
Lemma 7.18.

7.4. Reduced and unreduced theories

Let us briefly discuss the notion of a reduced G-homology theory, in particular let us
notice a few things which are different from the non-equivariant case. It is well-known
(see e.g. [Hat02, p. 161]) that for the non-equivariant case the notion of a reduced
homology theory and an unreduced homology theory are essentially equivalent. For
the G-equivariant case the same is true but we have to be more careful from where
our functors start.

Above we defined an unreduced homology theory. It starts from the unpointed
G-CW-complexes and has the property that evaluated on the point it is not trivial.
A reduced homology starts from pointed G-CW-complexes and is trivial on the point.
Pointed means that X comes with a map ∗ → X from the one-point space with
trivial G-action, we usually assume that it goes to the 0-skeleton. From a reduced
homology we get an unreduced by evaluating on X+, X together with a disjoint
basepoint. In the other way we get a reduced homology theory from an unreduced
one by taking the kernel (or fiber) of the map hG(X)→ hG(∗). Assuming that X
has a basepoint gives a canonical section to this map.

Via this construction we can extend the above homology theory to pairs. First take
the associated reduced homology theory and then set hG(X,A) to be the reduced
theory evaluated on X ∪A CA, the mapping cone of the inclusion A→ X. Note that
if A = ∅ we get X ∪A CA = X+, hence we get the original theory back.

7.5. Coefficients and comparison to algebraic K-theory of
simplicial rings

As a byproduct of our construction we get a definition for the algebraic K-theory
spectrum over the orbit category OrG.

Definition 7.22. Let R be a simplicial ring, G a group. Define the OrG-spectrum
KR via G/H →→ hG(G/H,KR).

144



We show now that this has the “right” coefficients, i.e. we claim that this is the
right notion of a functor KR from the orbit category. However, we have no alternative
definition, so the only thing we will show is the following lemma, which calculates
the coefficients.

Lemma 7.23. For H a subgroup of G we have an equivalence of spectra

hG(G/H,KR) ≃ K−∞(R[H]).

Here the right-hand side is the non-connective algebraic K-theory of the simplicial
group ring R[H]. We defined it in Definition 6.8 as the non-connective K-theory
of the category C(pt, R[H]), so it is a spectrum which has in degree n the space
K(Cf (Rn, R[H], Ed)). We split the proof into several lemmas.
Remark 7.24. We recall a notation we already used in Section 1.3. If (M,κR) is a
cellular module over the control space X we denote by Mx the part of the module
which “lives” over x ∈ X. More precisely this is the graded subgroup of M which is
generated by κ−1

R (x). Note that it does not inherit differentials, nor it is a module
over a ring. (It is merely a sequence of abelian groups where the ith item is an
Ri-module.) As a graded abelian group we have M ∼=


x∈XMx, so this notion is

useful if we want to change κR. Usually we treat the cases degreewise and hence
assume that Mx is an R-module where now R is a discrete ring. We also denote the
1-dimensional free R-module by R to distinguish it from the ring itself.

Lemma 7.25. For any group H there is an equivalence of categories

ϕ : CHf (H,R)
∼=−→ Cf (∗, R[H]).

Hence it induces an equivalence on non-connective algebraic K-theory.

Proof. Let (M,κR) be a module in CHf (H,R). As it arises by attaching cells, it
suffices to describe the case M =


h∈H Rh. In that case M ∼= R[H] where the

right-hand side has an H-operation coming from the R[H]-module structure which
is compatible with the H-operation on the left-hand side. This gives a module M ′ in
Cf (∗, R[H]).

For the other direction a cellular R[H]-module comes (by our definition) with a
chosen basis {ei}. We get a cellular R-module by choosing the basis {h · ei} and
forgetting the H-action. We have to define κR, but we can simply set κR(ei) := e ∈ H
and extend equivariantly. Thus the categories are equivalent.

The equivalence respects the notion of homotopy and hence homotopy equivalences.
This gives us the equivalence on K-theory spaces.

For the control spaces Rn × H and Rn we get the analogous maps by simply
leaving the Rn-direction untouched. Hence we get the desired equivalence of the
non-connective K-theory spectra.

Remark 7.26. We make a notation explicit which we already used sometimes. From
Example 1.9 we know a lot of control conditions, but in particular we know how we
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can pull back morphism control conditions along a projection. So if p : X × Y →
Y is a projection and Y has a morphism control structure E we abbreviate the
pullback of this structure along p by EY . If E is for example the continuous control
structure on Y × [1,∞) we abbreviate the pullback along p by EYcc instead of writing
(p×[1,∞))−1Ecc(Y ×[1,∞)) and similar for metric control Ed. In general a superscript
denotes the space from which the morphism control condition is pulled back.

Let H be a subgroup of G. Take first the control space (H, {H×H}, {H}), the free
H-equivariant control space with no control conditions at all. Then let (G/H, E∆)
be the G-equivariant control space with E∆ = {∆}, ∆ the diagonal, i.e. controlled
maps are the maps over G/H. Take the standard resolution of this control space to
get the free G-equivariant control space (G/H × G, EG/H∆ ,FGc), where we assume
additionally G-compact object support.

Lemma 7.27. There is a functor

Φ: CHf (H,R, {H ×H}, {H})→ CGf (G/H ×G,R, EG/H∆ ,FGc)

which induces an equivalence of categories and hence an equivalence on algebraic
K-theory.

Proof. Let (M,κR) be a module in the source of Φ. Recall that we denote the cells
of M by �RM and that κR is a map �RM → H. As Z[G] is a right Z[H]-module,
define

Φ(M) := Z[G]⊗Z[H] M.

Then Φ(M) is again a cellular R-module and �RΦ(M) ∼= G×H (�RM) as (free) G-sets.
Define κ′

R : �RΦ(M)→ G/H×G by extending (e,m) →→ ([e], κR(m)) G-equivariantly.
The control condition in the target can be described as the G-equivariant extension
of the rule (([e], g), ([x], g′)) ∈ E if and only if [x] = [e]. Hence Φ takes controlled
modules to controlled modules and controlled maps to controlled maps. Thus Φ is a
functor. Its image consists of exactly the modules which are concentrated over the
G-orbit of ([e], e).

We have to show that each module (N,κR) in the target is isomorphic to a module
of this form. Choose a set gi ∈ G of representatives of G/H, then the set ([e], gi) is
a system of representatives of the G-orbits of G/H ×G. As (N,κR) has G-compact
support it lies in only finitely many of the G-orbits of ([e], gi). Let eji be the cells over
([e], gi), i.e. {eji}j = κ−1

R (([e], gi)). Then define κ′
R as κ′

R(eji ) := ([e], e) and extend
equivariantly. Note that (N,κR) and (N,κ′

R) are controlled isomorphic and (N,κ′
R)

lies in the image of Φ, an inverse is given by the restriction of (N,κ′
R) to [e] ×H,

as no boundary maps from cells over ([e], g) to cells over ([x], g′) are allowed for
[x] ̸= [e]. This shows the equivalence of the categories. The part about the algebraic
K-theory follows similar like for the preceding lemma.

Lemma 7.28. Let H ⊆ G be a subgroup, let EG/H∆ be the set of control conditions
on G/H × G which is the pullback of the discrete control condition on G/H. Let
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E [1,∞)
d be the pullback of the metric control condition on [1,∞). Take germs to be

the germs at infinity on G/H ×G× [1,∞). Then there is an equivalence of spectra

ΩK−∞
g∞wCG(G/H ×G× [1,∞), R, EG/H∆ ∩ E [1,∞)

d ,FGc)

−→

K−∞
wCG(G/H ×G,R, EG/H∆ ,FGc)


Proof. It suffices to prove that the middle term in the fiber sequence for germs (6.4)

wCG

G/H ×G× [1,∞), R, EG/H∆ ∩ E [1,∞)

d ,FGc


has an Eilenberg-swindle. But the map (γ, g, t) →→ (γ, g, t + 1) is a flasque shift
(5.22).

Lemma 7.29. There is a functor

g∞wCGf (G/H ×G× [1,∞), R, EG/H∆ ∩ E [1,∞)
d ,FG/H×G

Gc ) −→

g∞wCGf (G/H ×G× [1,∞), R, EG/HGcc ∩ E
[1,∞)
d ,FG/H×G

Gc )

which induces an equivalence on algebraic K-theory. (Where again the germs are
taken at infinity.)

Proof. It is a simple check that EG/H∆ ∩ E [1,∞)
d ⊆ EG/HGcc ∩ E

[1,∞)
d , hence the functor

exists.
The main idea is the same as in the proof of (M-V). Due to the discreteness of the

space G/H ×G and the G-compact support conditions we find for each morphism
control condition E a t such that E ∩ [t,∞)2 is the diagonal. The rest is provided by
an application of the approximation property. We note again that an extra factor of
Rn in the control spaces does not change the arguments, hence we get an equivalence
on non-connective algebraic K-theory.

Summarizing:

Proof of Lemma 7.23. By the preceding lemmas we get a chain of equivalences of
spectra

K−∞(R[H])←− K∞
wCH(H,R)


−→ K∞

wCG(G/H ×G,R, EG/H∆ ,FGc)


←− ΩK−∞

g∞wCG


G/H ×G× [1,∞), R, EG/H∆ ∩ E [1,∞)

d ,FG/H×G
Gc


−→ ΩK−∞


g∞wCG


G/H ×G× [1,∞), R, EG/HGcc ∩ E

[1,∞)
d ,FG/H×G

Gc


= hG(G/H,KR).

That shows the lemma.
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One last thing is to compare this to the usual algebraic K-theory of simplicial
rings.

Lemma 7.30. For any simplicial ring R there is a (weak) map of spectra

K(R)→ K−∞(R)

from the connective algebraic K-theory spectrum to the non-connective one (cf.
[Wal85]) which is an isomorphism on πi for i ≥ 1. (A weak map means there is a
chain of maps from the left to the right but the maps in the wrong direction are weak
equivalences.)

Proof. The zeroth term of K−∞(R) is K(R). As the source is an Ω-spectrum by
[Wal85, 1.5.3] and the structure maps on the target give isomorphisms on πi for i ≥ 1
the result follows once we constructed the maps.

For the map we use the idea of the “up or across”-Lemma from [Fie77]. Recall
that K(R) is an Ω-spectrum with ith term equal to Ω|wS.iR-Mod|, i.e. the i-fold
iterated S.-construction. Our definition of K−∞(R) was Ω|wS.Cf (Rj , R, Ed)|. But
we can also iterate the S.-construction there and get a bispectrum

(i, j) →→ Ω|wS.iCf (Rj , R, Ed)|.

The structure maps of this bispectrum Xi,j are weak equivalences in the i-direction
and it contains both other spectra. Namely Xi,0 agrees with the spectrum K(R)
whereas X0,j agrees with the spectrum K−∞(R). Choosing inverses for the homotopy
equivalences Xi,j → ΩXi+1,j we get the desired maps (first up to homotopy) as

Xi,0 → ΩXi,1 → · · · → ΩiXi,i
∼←− Ωi−1Xi,i−1

∼←− · · · ∼←− Xi,0.

A diagram chase shows that they are compatible with the structure maps, up to a
sign. We get the strict maps in the usual way, e.g. if we assume that the structure
maps of K(R) are closed inclusions with the homotopy extension property. From
that we can choose the inverses compatibly. The author is not sure if K(R) already
has this property, but certainly it can be arranged up to a weak equivalence (in the
wrong direction, unfortunately).

Remark 7.31. Note that it also follows that the possible difference at K0 can be
corrected by simply taking the “correct” definition of the space K(R) in degree zero.
Namely assume that K0(R) is K0 not of the finite, but of the homotopy finitely
dominated modules (cf. [Wal85, 2.3.2]). Define K−∞(R) not by the finite modules
over Rn but by the homotopy finitely dominated modules over Rn, which give an
equivalent spectrum as remarked before. Then we get indeed a map which is also an
isomorphism on π0.
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7.6. The assembly map
A family F of subgroups of a group G is a non-empty set of subgroups closed under
taking conjugates and subgroups. The classifying space EFG for G and F is a G-
CW-complex whose H-fixed point set is contractible for H ∈ F and empty otherwise.
It is unique up to G-homotopy equivalence. (See e.g. [DL98] for a construction for
any G and F .)

Definition 7.32 (K-Theory Assembly Map with coefficients in a simplicial ring).
Let R be a simplicial ring, G a group and F a family of subgroups of G. Define the
assembly map for hG(−,KR) and the family F to be the map

hG(EFG,KR)→ hG(pt,KR) (29)

induced by the G-equivariant map EFG→ pt.

We have hG(pt,KR) ≃ K−∞(R[G]) as shown as part of Lemma 7.23, hence if we
take homotopy groups we get for each n ∈ Z the map

hGn (EFG,KR)→ K−∞
n (R[H])

which is also called the assembly map. (The lower n denotes the nth homotopy group
πn of the corresponding spectra.)

In [BLR08] it is shown that for a discrete ring R, G a word-hyperbolic group in
the sense of Gromov and F = VCyc the family of virtually cyclic subgroups of G
the assembly map is a weak equivalence of spectra. (A group is called virtually
cyclic if it contains a cyclic subgroup of finite index.) It is conjectured to be a weak
equivalence for any discrete ring R, any group G and F the family of virtually cyclic
subgroups of G. This is the so-called Farrell-Jones Conjecture for algebraic K-theory,
which is known—together with its variant for L-theory—to imply a plethora of other
conjectures, in particular it implies the Borel Conjecture which states that closed
aspherical manifolds of dimension ≥ 5 are topologically rigid. See [LR05] for an older
overview and the introduction of [BLR08] for a nice summary. The conjecture is
known for many groups but the general case seems to be completely open at the
time of writing.

We can mimic the approach to the proof of the main theorem of [BLR08] in our
setting. Let X be a G-CW-complex. We defined Xcc in Definition 7.3 as

Xcc := (X ×G× [1,∞), p−1EGcc(X), p−1
X×GFGc)

and the subspace X ×G× 1 inherits the control conditions, namely

X0 := (X ×G× 1, {X ×G× 1}, p−1
X×GFGc) .

Denote by g∞ the germ support conditions on Xcc away from X0, i.e. the “germs at
infinity”.
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Define for any simplicial ring R the categories with cofibrations and weak equiva-
lences T G(X) (“target”), OG(X) (“obstruction”) and DG(X) (“domain”) as

T G(X) := wCG(X0, R), OG(X) := wCG(Xcc, R), DG(X) := g∞wCG(Xcc, R) .

By Theorem 6.4 we get a homotopy fiber sequence of spectra

K−∞T G(X)→ K−∞OG(X)→ K−∞DG(X) .

Lemma 7.33. The assembly map (29) is an isomorphism if and only if the spectrum
K−∞OG(EFG) is contractible.

Proof. The map EFG→ pt induces a map of homotopy fiber sequences of spectra

K−∞T G(EFG)

��

// K−∞OG(EFG)

��

// K−∞DG(EFG)

��

K−∞T G(pt) // K−∞OG(pt) // K−∞DG(pt)

.

As ptcc has a flasque shift t →→ t + 1 (cf. Definition 5.22) the term K−∞OG(pt) is
contractible. Further (EFG)0 and pt0 are equivalent control spaces, as there is no
control condition depending on EFG, thus the left vertical map is a weak equivalence
of spectra. It follows that the assembly map K−∞DG(EFG) → K−∞DG(pt) is a
weak equivalence of spectra if and only if K−∞OG(EFG) is contractible.

Remark 7.34. Actually the definitions in [BLR08] use an extra metric control condition
on the G-factor in Xcc, namely they require all maps to be controlled with respect
to the word-metric on G. However, as remarked there this is not essential for the
definition of hG(X,KR). In particular if we require the extra condition we still get a
G-equivariant homology theory with coefficients in the algebraic K-theory of R and
therefore equivalent functors. We do not need it for our results so we leave it out,
but we could have included it.

We believe that the methods of [BLR08] can be made to work in our situation:

Conjecture. Let R be a simplicial ring, G a word-hyperbolic group and F = VCyc
the family of virtually cyclic subgroups of G. Then K−∞OG(EFG) is contractible.

We have just shown that this implies the Farrell-Jones Conjecture for word-
hyperbolic groups with coefficients in a simplicial ring:

Conjecture (Farrell-Jones Conjecture for a simplicial ring). Let R be a simplicial
ring, G a word-hyperbolic group and VCyc the family of virtually cyclic subgroups of
G. The algebraic K-theory assembly map for R, G and VCyc

hG(EVCycG,KR) −→ hG(pt,KR)

is a weak equivalence of spectra.
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Appendix





A. Simplicial sets, simplicial abelian
groups, and simplicial modules

A.1. A quick review on simplicial methods

We introduce very briefly the basic notions of simplicial sets and of simplicial modules
over a simplicial ring. A good general modern reference is [GJ99]. An older but still
good German reference is [Lam68]. This section does not contain anything new. We
assume familiarity with the notions of category theory (see e.g. [ML98, Bor94a]).

Simplicial methods are a generalization of the idea of combinatorial or geometrical
simplicial complexes. In particular we will have the notion of n-simplex and we have
face (or “boundary”) maps. But to get a good combinatorial notion we also need
degeneracy maps, roughly these allow us to interpret an n-simplex also as certain
n+ 1-simplices. Hence we define the category ∆.

Definition A.1. Let n be a natural number, including zero. Let [n] be the ordered
set 0 < 1 < · · · < n of natural numbers {0, . . . , n}. Let ∆ be the category with objects
the ordered sets [n] for all n and morphisms all monotone (=order preserving) maps.

The category ∆ contains two particular classes of maps. Any injective monotone
map [n− 1]→ [n] is determined by the i ∈ [n] which is not in the image. Call this
map δin. Any surjective monotone map [n + 1] → [n] is determined by the j ∈ [n]
which is hit twice. Call this map σjn. The category ∆ is generated by the δin and
σin for all n, 0 ≤ i, j ≤ n with some very explicit relations (see e.g. [GJ99, 1.2] or
[Lam68, (1.3)]). We often omit the index n.

Definition A.2. Let C be a category. A simplicial object in C is a functor ∆op → C.
The simplicial objects in C together with the natural transformations of functors as
morphisms form a category. It is denoted by sC.

A simplicial object C in C is hence given by a sequence C0, C1, . . . of objects
in C together with structure maps α∗ : Cn → Cm for each order preserving map
α : [m]→ [n]. Therefore we sometimes denote C by C.. The maps δin induce maps
(δin)∗ =: dni : Cn → Cn−1 which we sometimes call the face maps or boundaries.
The maps σjn induce maps sni := (σjn)∗ : Cn → Cn+1 which we sometimes call the
degeneracy maps. As δi, σj generate ∆ the maps di, sj with its relations determine
the structure of C. as a simplicial object. As sC is a functor category it possesses all
limits and colimits if C does and they are formed degreewise in C.
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An object X. in sSet is called a simplicial set. An element x ∈ Xn is a called an
n-simplex of X.. An n-simplex x is called degenerate if it is in the image of a map
sni . The simplices which are not degenerate are called non-degenerate, they generate
the simplicial set X. in the sense, that each simplex can be written as α∗(y) for
y a non-degenerate simplex. In particular maps out of X. are determined on the
non-degenerate simplices. The standard n-simplex is defined as the simplicial set
[m] →→ Hom∆([m], [n]) and denoted by ∆n. . By the Yoneda-Lemma a map ∆n. → X.
of simplicial sets is determined by a map ∆n

n ⊃ {id[n]} → Xn. We sometimes denote
that map by x and call it the characteristic map of x. Each simplicial set can
be written as the colimit of standard simplices over its non-degenerate simplices
(cf. [GJ99, I.2.1], [Lam68, II.1.4]).

There is a functor | − | : sSet → Top which produces for a simplicial set X a
CW-complex |X|, called the geometric realization of X. It is determined by |∆n|
being the geometric n-simplex (convex hull of the standard basis vectors in Rn+1)
and compatibility with colimits. A simplicial set is called discrete if each n-simplex
for n ≥ 1 is degenerate. The geometric realization of a discrete simplicial set is a
discrete topological space. A point in X is a 0-simplex in X0. We denote the points
of ∆n canonically by 0, . . . , n. If x is a point in X define the nth homotopy group
πn(X,x) of X as πn(|X|, |x|) of its geometric realization. A map f : X → Y is called
a weak equivalence if either X and Y have no simplices or X is not empty and for
each x ∈ X and each n the induced map πn(X,x)→ πn(Y, f(x)) is an isomorphism.

In a precise sense geometric realization induces an equivalence between the homo-
topy theories of simplicial sets and topological spaces ([GJ99, I.11]).

The boundary ∂∆n of the standard n-simplex ∆n is the simplicial subset of ∆n

generated by di(id[n]), 0 ≤ i ≤ n. Its geometric realization is homeomorphic to the
topological (n− 1)-sphere. The kth horn Λnk ⊂ ∆n is the simplicial subset generated
by dj(id[n]), for j ̸= k, 0 ≤ j ≤ n. Its geometric realization is homeomorphic to the
(n− 1)-disk.

Recall the limits and colimits of simplicial sets are formed in sets. So the product
A×B of two simplicial sets A, B is (A×B) := An ×Bn with the structure maps
acting diagonally. A homotopy of maps f, g : X → Y is a map H : X × ∆1 → Y
such that the zeroth restriction H ◦ ι0 : X × 0 ⊂ X × ∆1 → Y equals f and the
first restriction H ◦ ι1 : X × 1 ⊂ X ×∆1 → Y equals g. Note that in general being
homotopic is not an equivalence relation on maps X → Y .

Definition A.3. An map f : X → Y of simplicial sets is a Kan fibration if for each
solid diagram

Λnk //

� _

��

X

f

��

∆n //

>>}
}

}
}

Y

the dotted lift exists. If the map X → ∗ to the one-point simplicial set is a Kan
fibration, then X is called Kan, fibrant, or said to have the extension property.
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A map f : X → Y is a homotopy equivalence if there is a homotopy inverse map
g : Y → X such that f ◦ g and g ◦ f are homotopic to the identity. Homotopy
equivalences are weak equivalences. Here we mostly consider homotopy equivalences
between Kan sets, so we do not care about the direction of the homotopies due to
the following lemma.

Lemma A.4. Let Y be Kan. Then

(i) Being homotopic is an equivalence relation on maps X → Y .

(ii) We can define πn(Y, y) as pointed homotopy classes of maps ∂∆n+1 → Y .

(iii) Inclusions of simplicial sets (defined degreewise) have the homotopy extension
property for maps into Y .

(iv) If X and Y are Kan then each weak equivalence X → Y is a homotopy
equivalence.

A.2. Simplicial abelian groups and simplicial rings
An object in sAb is called a simplicial abelian group. As there is a forgetful functor
Ab → Set each simplicial abelian group has an underlying simplicial set. Hence the
notions for simplicial sets make sense for simplicial abelian groups. Alternatively a
simplicial abelian group could be defined as an abelian group object in simplicial
sets with respect to the product. This means a simplicial abelian group A is a
simplicial set together with maps µ : A×A→ A, the multiplication, and ι : A→ A,
the inverse, and unit map u : ∗ → A which satisfy the usual commutative diagrams
for associativity, unitality and the inverse (cf. [ML98, III.6] or [Bor94b, 3]). A third
equivalent way would be to define a simplicial abelian groups A. as a sequence of
abelian groups A0, A1, . . . together with group homomorphisms α∗ for all α ∈ ∆.

Note that as sAb is a functor category it contains all (small) limits and colimits
and they are formed degreewise as limit and colimits in the category of abelian
groups. As the forgetful functor respects limits, in particular the product A×B of
two simplicial abelian groups is formed by the product in sets.

The underlying simplicial set of a simplicial abelian group is Kan. The notion of
homotopy between simplicial abelian groups is different from the notion of homotopy
of simplicial sets, as A×∆1 does not have a canonical abelian group structure if A
has one. If X is a simplicial set we can form the simplicial abelian group Z[X] which
is defined as the composition of the functor X : ∆op → Set with the free abelian
group functor Z[−] : Set → Ab. It is the left-adjoint to the forgetful functor.

We can form the tensor product A⊗Z B of two simplicial abelian groups A and
B by taking in degree n the tensor product of groups An ⊗Z Bn and letting the
structure maps act diagonally. It makes sAb into a closed symmetric monoidal
category (see [ML98, VII.7] and [Bor94b, 6.1] for a definition). We therefore can
define the simplicial abelian group A[X] := A⊗Z Z[X] for a simplicial abelian group
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A and a simplicial set X. In [GJ99] this construction is denoted by A⊗X (e.g. in
II.2), but the author believes our notation is more convenient. A homotopy of maps
of simplicial abelian groups is then a map A[∆1]→ B.

A simplicial ring is an object in sRings. There are two additional equivalent
descriptions. First, a simplicial ring R. is a sequence of rings R0, R1, . . . together
with the usual simplicial structure maps α∗ which additionally are maps of rings
(with unit). The second point of view is that a simplicial ring is a monoid in the
symmetric monoidal category of simplicial abelian groups.

A (left) module M over a simplicial ring R is a simplicial abelian group M together
with a bilinear map µ : R × M → M which satisfies the associativity and unit
diagrams similar to the ones for simplicial abelian groups. As the map is bilinear it
can equivalently be given by a linear map R⊗ZM →M of simplicial abelian groups.
The category of (left) R-modules is in general not a category of simplicial objects (for
some category C), so we have only one further equivalent formulation: A simplicial
R-module M is a sequence of abelian groups M0,M1, . . . such that each Mi is an
Ri-module and structure maps α∗ for α ∈ ∆ on M which respect addition and the
R-multiplication.

If R is an “ordinary” ring we can make it into a simplicial ring R. by setting
Ri := R and α∗ := id for all α ∈ ∆. This is discrete as simplicial set. Usually we
do not distinguish between R and R. and call both discrete rings. Similar if R is
discrete and M is an “ordinary” R-module then we get a simplicial R-module M.
by setting Mi := M and α∗ := id. We call such R-modules also discrete and do not
distinguish between M and M.. Note that if M is a discrete R-module it necessarily
implies that R is a discrete ring. To emphasize that R is a simplicial ring and we
sometimes say the category of module over R the “simplicial R-modules”.

Again simplicial R-modules have all (small) limits and colimits. They are formed
in simplicial abelian groups, hence degreewise in abelian groups. This follows in
the same way it follows for discrete R-modules, or, if one likes fancy language, from
the fact the simplicial R-modules are modules over a monoid in simplicial abelian
groups (see e.g. [Bor94b, 4.3] for the general theory, in particular Propositions 4.3.1
and 4.3.2).
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B. On categories with cofibrations and
weak equivalences

We recall briefly the results from [Wal85] which we need. A good summary can
also be found in Section 2 of [CP97]. An extensive resource is also [TT90]. Most
definitions are repeated at the places where they are needed for the first time.

Definition B.1 (Category with Cofibrations [Wal85, 1.1]). A category with cofibra-
tions is a pointed category C together with a subcategory coC, the cofibrations, such
that the following axioms hold.

(i) Isomorphisms are in coC.

(ii) All maps ∗ → A are in coC.

(iii) Cofibrations admit cobase change, i.e. if A� B is a cofibration and A→ C
any map then the pushout

A // //

��

B

��

C // D

exists in C and the map C → D is again a cofibration.

Here “�” denotes a cofibration and “∗” denotes the zero object.

Definition B.2 (Category of weak equivalences [Wal85, 1.2]). Let C be a category
with cofibrations. A category of weak equivalences in C is a subcategory wC satisfying
the following axioms.

(i) wC contains all isomorphisms of C.

(ii) (Gluing lemma). If we have the diagram

B

��

A

��

oooo // C

��

B′ A′oooo // C ′

with A� B and A′ � B′ cofibrations and all three vertical arrows are in wC,
then the induced map

B ∪A C → B′ ∪A′ C ′

on the pushouts is also in wC.
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Weak equivalences are denoted by “ ∼−→”.

A functor F : A → B between categories with cofibrations is exact if it takes cofibra-
tions to cofibrations, the zero object to the zero object and respects pushouts along
cofibrations. A functor between categories with cofibrations and weak equivalences
is exact if it additionally takes weak equivalences to weak equivalences.

The weak equivalences satisfy the Saturation Axiom if for a, b composable maps in
C and two of a, b and a ◦ b are weak equivalences, then so is the third.

If A � B is a cofibration, denote the pushout along A → ∗ by A/B. Call
B � A/B the quotient map. Then A → B → B/A is a called a cofiber sequence.
(Here we deviate slightly from [Wal85] where the term “cofibration sequence” is
used.)

The category C is said to satisfy the Extension Axiom if for a map of cofiber
sequences

A // //

��

B

��

// // C

��

A′ // // B′ // // C ′

in C the maps A→ A′ and C → C ′ are weak equivalences, then the map B → B′ is
a weak equivalence.

Let C be a category with cofibrations. Let ArC be the category of arrows in C with
morphisms (A→ C)→ (B → D) being the commutative squares

A //

��

B

��

C // D

.

A morphism is a called a cofibration in ArC if A→ B and C → D are cofibrations in
C. This makes ArC into a category with cofibrations by [Wal85, 1.1.1]. Let F1C be
the full subcategory of ArC with objects being the cofibrations. A cofibration in F1C
is a commutative square as above (where than A→ C and B → D are cofibrations)
such that A→ B and the induced map B∪AC → D are cofibrations. This definition
makes F1C into a category with cofibrations by [Wal85, 1.1.1].

Definition B.3 (Cylinder Functor [Wal85, 1.6]). A Cylinder Functor on C is a
functor from ArC to diagrams in C which takes a map f : A→ B to a diagram

A
ι0 //

f
!!C

CC
CC

CC
CC

T (f)
p

��

B
ι1oo

id
}}zz

zz
zz

zz
z

B

Here ι0 is called the front inclusion, ι1 is called the back inclusion and p is called the
projection. Further the following two axioms should be satisfied.
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(i) (Cyl 1) Front and back inclusion assemble to an exact functor

ArC −→ F1C
f →→


ι0 ∨ ι1 : A ∨B� T (f)


.

(ii) (Cyl 2) T (∗ → A) = A for every A ∈ C, further the projection and the back
inclusion are the identity map on A.

T is said to satisfy the Cylinder Axiom if the projection T (f) → B is in wC for
every f : A→ B in C.

We turn to the definition of algebraic K-theory.

Definition B.4 (Algebraic K-theory of a category with cofibrations and weak
equivalences [Wal85, 1.3]). For any category with cofibrations and weak equivalences
C define the algebraic K-theory of C as the space

K(wC) := Ω|wS.C|
where S. is Waldhausen’s construction from [Wal85, 1.3], w denotes the class of
weak equivalences, | − | is the nerve of a simplicial category (i.e. the realization of a
bisimplicial set) and Ω the loop space.

We do not discuss the construction as we only need the following theorems. There
is a canonical connective delooping of K(wC), so it is an infinite loop space. We
could also vary the definition to define K(wC) as the corresponding spectrum. The
latter point of view is taken in [TT90]. We regard it as a space here.

Let C be a category with cofibrations which has two classes of weak equivalences
vC and wC with vC ⊆ wC. Denote by Cw the full subcategory of C with objects A
such that ∗ → A is in wC. It inherits the structure of a category with cofibrations
and weak equivalences.

Theorem B.5 (Fibration Theorem [Wal85, 1.6.4]). If C has a Cylinder Functor and
the category of weak equivalences wC satisfies the Cylinder Axiom, the Saturation
Axiom and the Extension Axiom then there is a homotopy fiber sequence

K(vCw)→ K(vC)→ K(wC)

on algebraic K-theory spaces.

The result in Thomason-Trobaugh [TT90, 1.8.2] state this as a homotopy fiber
sequence of spectra.

Definition B.6 (Approximation Property [Wal85, 1.6],[TT90, 1.9.1]). Let F : A → B
be an exact functor of categories with cofibrations and weak equivalences. F has the
Approximation Property if the following two axioms hold.

(i) (App 1) A map f in A is a weak equivalence if (and only if) its image F (f) in
B is a weak equivalence.
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(ii) (App 2) Given any object A in A and a map x : F (A)→ B in B there exists
a map a : A→ A′ in A and a weak equivalence x′ : F (A′)→ B in B such that
the triangle

F (A) x //

F (a)
��

B

F (A′)
x′

==zzzzzzzzz

commutes.

Theorem B.7 (Approximation Theorem [Wal85, 1.6.7],[TT90, 1.9.1]). Let A, B be
categories with cofibrations and weak equivalences which satisfy the Saturation Axiom.
Assume A has a Cylinder Functor satisfying the Cylinder Axiom. Let F : A → B be
an exact functor with the Approximation Property. Then F induces an equivalence

K(F ) : K(wA)→ K(wB)

on algebraic K-theory spaces.

We used Thomason-Trobaugh’s remark in [TT90, 1.9.1] that we can use a weaker
version of the approximation property. In [Wal85] there is the further requirement in
(App 2) that a is a cofibration, which we can always be arrange due to the existence
of a Cylinder Functor.

160



C. Homotopy idempotents and mapping
telescopes in the simplicial setting

A map η : K → K in CGa is called a homotopy idempotent if η2 is homotopic to η.
Here we provide the necessary tools we need about homotopy idempotents. The only
place where we need this theory is the proof of Lemma 5.10, however this is a crucial
step there and the lemma itself is the important step to establish the homotopy
fiber sequence of Section 5.1. (We defined the category with cofibrations and weak
equivalences CGa = CGa (X,R, E ,F) for a control space (X, E ,F) and a simplicial ring
R in Section 3.1.)

Some parts of the following proposition need an extra assumption on the idempo-
tent.

Definition C.1. A homotopy idempotent η : K → K with homotopy H from η2 to
η is called coherent if there is a map G : K[∆1 ×∆1]→ K whose restrictions to the
boundary look as in the following diagram

• η◦H
//

H◦η[∆1]
�� ��

@@
@@

@@
@ •

H
��

•
H
// •

.

We show that coherent homotopy idempotents split up to homotopy in CGa , this is
proved as Corollary C.5. Note that in the Definition we just the diagram language
we described in Digression 2.4.1.

Lemma C.2. If η arises from a homotopy domination, as in the case of Lemma 5.10,
then it is coherent.

Proof. So assume η = p ◦ i and i ◦ p is homotopic to id via H ′, i : K → L, p : L→ K.
Then the coherence homotopy G can be given by the composition

K[I × I] ∼= L[I][I] i[I][I]−−−→ L[I][I] H′[I]−−−→ L[I] H′
−→ K

p−→ K.

Remark C.3. The author does not know if every homotopy idempotent in CGa is coher-
ent. For the topogical case it is known that there are unpointed homotopy idempotents
of infinite-dimensional CW-complexes which do not split, however every pointed
homotopy idempotent as well as every homotopy idempotent of finite-dimensional
CW-complexes splits. See [HH82] for the last result and further references.
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The results we show in this appendix are summarized in the following Proposition.

Proposition C.4. Let η : K → K be a homotopy idempotent in CGa (X). There is a
construction Tel(−) which assigns to any homotopy idempotent η an object Tel(η) in
CGa (X). It has the following properties.

(i) There is a cellular inclusion ι : K � Tel(η)

(ii) Let

A
µ
//

f
��

A

f
��

K
η
// K

be a strict commutative diagram of homotopy idempotents. Then f induces
a map f∗ : Tel(µ) → Tel(η). This is functorial in f . In particular if f is an
isomorphism then Tel(f) is isomorphism.

(iii) If η, µ are homotopic homotopy idempotents then there is a homotopy equiva-
lence

Tel(η) ≃−→ Tel(µ).

(iv) Consider the telescope Tel(idK) of the homotopy idempotent idK : K → K.
There is a map

Tel(idK)→ K

which is a homotopy equivalence.

(v) All maps in (ii) to (iv) are relative to ι : K → Tel(η), i.e. they commute with
this cellular inclusion.

(vi) From (ii) we get for µ = η = f an induced map η∗ : Tel(η) → Tel(η). This
map is a homotopy equivalence. If η is coherent, η∗ is homotopic to id.

(vii) If η is coherent then there is a map c : Tel(η)→ K such that ι ◦ c is homotopic
to η∗ : Tel(η)→ Tel(η) and hence to the identity on Tel(η). Therefore Tel(η)
is a homotopy retract of K. Further c ◦ ι is homotopic to η itself.

The proof of this proposition takes the rest of this appendix. A summarizing proof,
which lists the lemmas where each part is proved, is given at the end of the appendix.

We can draw a direct corollary which says that coherent homotopy idempotents
split up to homotopy in CGa .

Corollary C.5. Let η : K → K be a coherent homotopy idempotent in CGa . Then
there is a B ∈ CGa such that K is homotopy equivalent to Tel(η)∨B. Moreover under
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this equivalence η corresponds to the projection pr: Tel(η)∨B → Tel(η)→ Tel(η)∨B,
i.e. there is a homotopy commutative diagram

K
f
//

η

��

Tel(η) ∨B
pr
��

K
f
// Tel(η) ∨B

where f is the homotopy equivalence K ≃−→ Tel(η) ∨B.

Proof. We know by C.4 (vii) that Tel(η) is a homotopy retract of K. Using
Lemma 2.35 we can make the homotopy commutative diagram

Tel(η) c //

id
$$I

IIIIIIII K

ι

��

Tel(η)

into

Tel(η) // inc //

id
$$I

IIIIIIII
T (c)

��

Tel(η)

,

which is a strict commutative diagram, where T (c) is the mapping cylinder of c and inc
is a cellular inclusion. Take the cofiber of inc and call it B. The sum of the retraction
T (c) → Tel(η) and the quotient map T (c) → B gives a map s : T (c) → Tel(η) ∨ B
(using that CG is an additive category and hence twofold products and coproducts
agree, cf. the proof of 3.33(ii)). The map makes the diagram of cofiber sequences

Tel(η) // //

��

T (c)

s

��

// // B

��

Tel(η) // // Tel(η) ∨B // // B

commutative and the Extension Axiom 2.48 shows that s is a homotopy equivalence.
This gives the homotopy equivalence f : K → T (c)→ Tel(η) ∨B.

By C.4 (vii) the map η : K → K factorizes up to homotopy as c◦ i : K → Tel(η)→
K. Hence the upper triangle in

K
η

//

ι
��

K

��

Tel(η)

c

::vvvvvvvvv
// // T (c) // // B

is homotopy commutative, whereas the lower one commutes strictly. It follows that
K

η−→ K → T (c)→ B is homotopic to the zero map.
Further K → T (c)→ Tel(η) equals ι, hence by adding homotopies the map

f ◦ η : K −→ K
≃−→ T (c) ≃−→ Tel(η) ∨B
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is homotopic to K ι−→ Tel(η)� Tel(η) ∨B. As

K
ι //

η

��

Tel(η) ∨B

η∗∨0B

��

K
ι // Tel(η) ∨B

is strictly commutative by C.4 (ii) and (v), where 0B denotes the zero map on B,
and as η∗ ≃ id by C.4 (vi) it follows that

K
≃
f
//

η

��

Tel(η) ∨B

id∨0B

��

K
≃
f
// Tel(η) ∨B

is homotopy commutative and the claim follows.

We would like to give a quick and direct definition of Tel(η) and show Propo-
sition C.4 with this. Unfortunately during the proof of (iii) to (vii) we need at
some point that squares which commute only up to homotopy also induce maps
on telescopes. However this can be arranged only up to homotopy, which in our
case involves invoking the horn-filling property of Section 2.4. But this usually
involves choices, which might destroy a functoriality we need in the proof. Our way
around this is to invoke the horn-filling property only in the very last step and in
between work with “long homotopies”, which we will define below. In the category of
topological spaces these kind of homotopies are sometimes called “Moore homotopies”
and amount to replace the interval [0, 1] involved in the definition of homotopy by
intervals [0, n], for n ∈ N. There they make concatenation of homotopies strictly
associative.

If we work simplicially we have altogether two kind of difficulties. First concate-
nation of homotopies usually involves using the horn-filling property and hence is
not canonical or even functorial and second, homotopies have a direction. But still
we could formally concatenate homotopies and even find a simplicial set I such that
the concatenated homotopies give a map A[I] → B if each homotopy was a map
A[∆1]→ B (which may go “from 1 to 0”). This makes “concatenation” of homotopies
strictly associative and we can still invoke horn-filling to get an “ordinary” homotopy
back.

The technical tools for this are provided in the next section. In the section after
that we discuss the theory of mapping telescopes we need.

Note that we always work in the category CGa here, but the theory seems to work
much more general. However the does not seem to exist an established general
framework including the category CGa we are interested in, so we refrain from stating
the results in that generality.
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Remark C.6. For the interested reader let us give a short elaboration on the last
remark. The point is that the only general structure CGa has is that of a category
with cofibrations and weak equivalences with some additional properties, and there
does not seem to be a suitable established notion which implies the properties we
need. We list the main properties of CGa which we use.

First the category CGa is a category with cofibrations. It has an operation “adjoining
a simplicial set” CGa ×sSet → CGa , which constructs from a module M and a simplicial
set A a module M [A] and the “Fundamental Lemma” (Section 1.4) holds, which
is a weaker than the property than that A →→ M [A] is a left adjoint. We have
(relative) horn-filling for this construction (Lemma 2.22), and the Cylinder Functor is
constructed from A[∆1]. Further the weak equivalences are the homotopy equivalences
with respect to this notion of cylinder. This makes CGa into a category with cofibrations
and weak equivalences and it satisfies the Saturation Axiom, the Cylinder Axiom
and the Extension Axiom.

Further we need for the actual construction of the telescope that for a module
M ∈ CGa we can form the countable coproduct


NM .

We now give a quick definition of Tel(η) and sketch Proposition C.4 (i) and (ii)
for the convenience of the reader, before we go to the general theory. The full proof
of Proposition C.4 will be given in Section C.2

Definition C.7 (Mapping Telescope, simple version). Let f : A→ A be a map in
CGa . We defined the mapping cylinder T (f) as the canonical pushout (cf. 2.12)

A[1] // //

f

��

A[∆1]

��

A // T (f)

.

It comes with two cellular maps ι0,1 : A→ T (f), the front and back inclusion. We
can form the pushout

∞
i=0A⨿

∞
i=1A

ι1⨿ι0 //

c

��

∞
i=0 T (f)

��∞
i=1A

// Tel(f)

,

where ι1 is the back inclusion of A into T (f), ι0 the front inclusion, both from the
ith summand to the ith summand, and c is the map which maps the ith summand of
the first coproduct and the (i+ 1)th summand of the second coproduct to the (i+ 1)th
summand of the target.

We call Tel(f) the telescope of f .

Remark C.8. Note that the upper horizontal map is a cellular inclusion, so the
pushout exists by Lemma 2.2. We also used that we the countable coproducts above
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exist in CGa . Further note that we can write the pushout as the coequalizer
∞
i=0

A⇒
∞
i=0

T (f)→ Tel(f),

where the two maps are the back inclusions and the front inclusions into the “next”
summand.

Proof of Proposition C.4 (i)-(ii). Let η : K → K be a homotopy idempotent. Take
as inclusion ι : K → Tel(η) the composition of the front inclusion of K into the first
summand T (η) together with the quotient map to Tel(η). (This the only one of the
front/back inclusions we have not used in the construction of Tel(η).)

For (ii) the map f gives a commutative diagram

A[∆1]

f [∆1]
��

A
ι1oo

f

��

µ
// A

f

��

A[∆1] A
ι1oo

η
// A

whose row-wise pushout gives a map T (µ) → T (η). This glues together to a map
f∗ : Tel(µ)→ Tel(η), which additionally is compatible with ι.

For the rest we have to talk about “long homotopies”.

C.1. Some simplicial tools
For this and the next section we will work in the category with cofibrations and weak
equivalences CGa from Section 3.1. See Remark C.6 for a rough list of the properties
we will use.

We start by defining what we mean by an interval in the category of simplicial sets.
This is no common notion there, but it is convenient for us to stress the analogies to
the topological setting.

Definition C.9. Let i ∈ N. The one-point simplicial set i, (ik = {i}) is called a
point at i or interval of length 0 from i to i.

A simplicial set I(i, i+ 1) together with a bijection of its zero simplices l : I(i, i+
1)0 → {i, i + 1} is called an interval of length 1 from i to (i + 1) if I(i, i + 1) is
isomorphic to ∆1 as simplicial set. The map l is called the labeling.

Let i, j ∈ N, i+ 2 ≤ j. Defined recursively, a simplicial set I(i, j) together with a
bijection l : I(i, j)0 → {i, i+ 1, . . . , j} is called an interval of length (i− j) from i to
j if I(i, j) is a pushout

j − 1 //

��

I(j − 1, j)

��

I(i, j − 1) // I(i, j)

(30)
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where j − 1 is a point at (j − 1) and j − 1 → I(j − 1, j) is the map “inclusion of
the point at (j − 1)” which is determined by mapping the only zero simplex of j − 1
to the zero simplex in I(j − 1, j) labeled by j − 1, similar for j − 1 → I(i, j − 1).
Further require the labeling l to be compatible with this pushout.

The standard interval from i to (i+ 1) is the simplicial set ∆1 together with the
labeling l(0) = i, l(1) = i+ 1. The standard interval from i to j for i+ 2 ≤ j is the
simplicial set arising from the standard interval from i to j − 1 by the pushout (30)
with I(j − 1, j) being the standard interval of length 1.

An interval I(i, j) from i to j is called ordered if it is isomorphic to the standard
interval from i to j and the isomorphism respects the labeling.

Remark C.10. We like to draw pictures for intervals, e.g. the picture for the standard
interval of length 1 is 0→ 1.

The standard interval is an interval, but for given i and j there are 2j−i different
simplicial sets up to isomorphism which are intervals from i to j. The four ones for
I(0, 2) are for example

0→ 1→ 2 0→ 1← 2
0← 1→ 2 0← 1← 2

This ambiguity is intentional, as we want to allow all those cases. We will see later
that in the presence of the Kan condition this does not matter much. Note that the
notion of an ordered interval is unambiguous, the upper left interval above is the
only ordered interval of the four examples.

We often just write I(i, j) for an interval from i to j leaving all the other data
understood. For A ∈ CGa we also often abbreviate A[I(i, j)] as A[i, j] and A[i] as A[i],
slightly misusing notation.

We can extend the definition of an interval to the case j =∞.

Definition C.11. Define an simplicial set I(i,∞) to be an interval from i to ∞ if
it is the filtered colimit (or union) of intervals I(i, j) for j →∞. It is called ordered
if each of the I(i, j) is.

Remark C.12. We will mostly need this notion for ordered intervals from 0 to ∞. To
visualize it, its topological realization can be identified with R≥0.

C.1.1. Long homotopies

We defined a homotopy as a map A[∆1] → B in Section 2.4. However, using the
notion of interval we just introduced we can generalize it as follows.

Definition C.13. Let I(0, j) be an interval from 0 to j. Let f0, fj : A→ B be two
maps in CGa . A (long) homotopy from f0 to fj is a map H : A[I(0, j)]→ B such that
the restriction to A[0] is f0 and the restriction to A[j] is fj. We say that H has the
length j.
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Example C.14. If f : A→ B is a map in CGa and I(0, i) any interval we always have the
constant on trivial homotopy Tr: A[0, i]→ B induced by the map A[0, i]→ A→ B.
We also define it for i = 0 and therefore call the map Tr: A[0, 0] = A[0] = A

f−→ B
the trivial homotopy of length 0.

Remark C.15. Usually we omit the “long”. We chose to let the homotopies start at
zero, as this will make the definition of concatenation of homotopies below easier.

Of course each homotopy in the usual sense is a long homotopy, but for the converse
we need the horn-filling property. Namely, by the Kan property each long homotopy
induces a homotopy A[∆1]→ B, if i, j ∈ N. However, this is not unique or functorial,
at least a priori. This is the reason we need the generalized notion of an interval. It
makes the next construction functorial.

C.1.2. Concatenation of homotopies

If I(0, i) and I(0, j) are intervals we define the concatenation I(0, i)✷ I(0, j) as the
pushout

i //

��

I(i, i+ j)

��

I(0, i) // I(0, i)✷ I(0, j)

where I(i, i+ j) is defined as a “relabeling” of I(0, j), namely replace the labeling l of
I(0, j) by l(k) = i+k. This gives a strictly associative, non-commutative construction
for intervals.

Homotopies which agree on the start resp. endpoint can be concatenated. For
H1 : A[0, i]→ B, H2 : A[0, j]→ B with H1|A[i] = H2|A[0] define the concatenation

H1 ✷H2 : A[0, i+ j]→ B

as the map induced by the identification on the pushout I(0, i)✷ I(0, j). The
concatenation of homotopies is strictly associative.

Remark C.16. Note that concatenation of two homotopies adds the lengths. Note
further that the (constant) homotopy of length 0 acts as a neutral element with
respect to concatenation of homotopies.

We do not have strict inverses for homotopies, but sometimes we have to consider
for H : A[I(0, j)]→ B the inverse homotopy H, where I(0, j) is some interval. For
this define the reversed interval I(0, j) of I(0, j) as the same simplicial set with the
reverse labeling, namely l is replaced by l(k) := j − l(k). Then define the inverse
homotopy as the obvious map H : A[I(0, j)]→ B.

If j = 1 and I(0, j) is an ordered interval we draw the homotopy as H // and
the inverse homotopy as Hoo . (Note that we do not need to use the decoration
H.) The following lemma is a prototype for the arguments used later.
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Lemma C.17. Let H : A[0, 1] → B be a homotopy. The concatenation H ✷H is
homotopic, relative boundary, to the constant (or trivial) homotopy Tr: A[0, 2] →
A→ B.

Proof. (This is also a prototype for the proofs used later. Cf. the Digression 2.4.1
for the diagram language we use.) Assume that I(0, 1) is the standard interval, the
other case proceeds similar.

We have to give a homotopy A[0, 2][∆1] → B. Therefore we have to give maps
A[∆2]→ B which fit together as shown in the picture of [0, 2]×∆1 below. But this
can be done easily, as the 2nd degeneracy map ∆2 → ∆1 provides a map as in the
picture below on the right. The whole map arises by gluing these together.

•
Tr
��

Tr //

H
@@

@

��
@@

@

•
H

��

•
Tr
��

Troo

H
~~

~

��~~
~

• H // • •Hoo

•
H
222

��
222

•
Tr���

EE���

H // •

Remark C.18. To avoid citing the Kan Extension property we actually gave a
homotopy from the constant homotopy to the given one. This is a trick we will use
later on several times. If we a willing to use the Kan Extension property we could
proceed as follows to get a homotopy in the “right” direction. Use the Kan property
to extend the left cone to the right 2-simplex

•
H
222

��
222

• Tr // •

•
H
222

��
222

•
H��
EE��

Tr // •

.

Then H is a homotopy inverse to H in the “old sense”. This allows to construct a
diagram

• Tr // • •Troo

•
Tr

OO

Tr~~~

??~~~

H // •
H
OO

•
Tr

OO

Hoo

Tr@@@

__@@@

giving the desired homotopy. Another way to get a homotopy in the right direction
is to cite the Kan Extension property on the resulting homotopy of homotopies from
above.

Similar diagrams show that H ✷H is homotopic to the trivial homotopy.
The lemma (including the remark) also holds if we allow an interval of length n

instead of length 1. To prove this one does induction over n and start building the
homotopy from the middle, patching in in each induction step some of four trivial
homotopies of the remaining homotopies H ′ of length 1, like

• H′ // •

•
Tr

OO

H′
~~~

??~~~

H′ // •
Tr

OO

or
• •Troo

•
H′

OO

•
H′

OO

Troo

H′@@@

__@@@
.
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(It is recommended to write down the corresponding homotopy oneself for the case
of a homotopy of length 2.)

This trick will work for the more complicated situations later, hence we will tacitly
only draw the diagrams for length 1 homotopies in the following.

C.1.3. Intervals of different length are homotopy equivalent

We now prove that for A ∈ CGa the modules A[0, i], (i ∈ N), are homotopy equivalent
to A. We prove even more that the homotopies are relative to the endpoints. These
are the key lemmas which enable us to consider only homotopies of length 1 for our
results later. It is crucial for the following that we have the horn-filling property.

We first consider the case of intervals of length 1 and 2.

Lemma C.19. Let I(0, 2), I(0, 1) be intervals, A ∈ CGa . Then A[0, 2] is homotopy
equivalent to A[0, 1], relative endpoints. If there is a projection I(0, 2) → I(0, 1)
respecting the endpoints it induces such a homotopy equivalence.

Remark C.20. That a homotopy equivalence is relative to the endpoints means, that
the restriction of both homotopies relative endpoints gives the constant homotopy
there. This allows to glue the homotopy equivalences together later.

Remark C.21. As the lemmas suggests, one can choose any two kinds of the interval
I(0, 1), however there may be only one for which a projection map I(0, 2)→ I(0, 1)
actually exists.

The lemma is implied by the following more direct statement. Assume that
the standard 2-simplex ∆2 has 0-simplices 0, 1, 2. We denote by i⇀j the 3 non-
degenerated 1-simplices of it, e.g. 0⇀1 denotes the unique 1-simplex with boundaries
0 and 1. All of them are ordered intervals of length 1. Recall that Λ2

i denotes the
ith horn of ∆2, e.g. Λ2

1 is the simplicial subset of ∆2 generated by all faces but the
1st one (which is 0⇀2).

Lemma C.22. All the inclusions A[i⇀j]→ A[∆2] and A[Λni ]→ A[∆2] have defor-
mation retractions. For A[i⇀j]→ A[∆2] a deformation retraction can be chosen to
be induced by the collapse of a 1-simplex not equal to i⇀j.

Proof. We prove only two cases, the other ones are similar.
There is a retraction ∆2 → 0⇀2 taking 1 to 2, and there is a homotopy of

simplicial sets from the identity to this retraction, relative to 0⇀2. This induces
the deformation retraction A[∆2]→ A[0⇀2]. (One could also take 1 to 0 and get a
homotopy from that retraction to the identity.)

For the map A[Λ2
1]→ A[∆2] we get, by horn-filling, a retraction r : A[∆2]→ A[Λ2

1].
Hence we get a map

A[(∆2 × 1) ∪ (Λ2
1 ×∆1) ∪ (∆2 × 0)] id∪id∪r−−−−−→ A[∆2].
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This can be extended, again by horn-filling, to the desired homotopy

A[∆2 ×∆1]→ A[∆2].

This gives a deformation retraction A[∆2]→ A[Λ2
1].

Corollary C.23. Let Λ2
i be the ith horn and di the ith face of ∆2. Then A[di]

and A[Λ2
i ] are homotopy equivalent relative the 0-simplices of di. The homotopy

equivalence can be chosen to be one of the maps A[Λ2
i ] → A[di] which induced by

collapsing one 1-simplex.

Proof. For simplicity of notation set i := 1. By Lemma C.22 we get a composition
of homotopy equivalences relative 0⨿ 2

A[Λ2
1]→ A[∆2]→ A[0⇀2]

where the last map (and hence the composition) can be chosen to be induced by
collapsing a 1-simplex not equal to 0⇀2.

Remark C.24. Note that in general the homotopy we get is not canonical, as its
construction involved choices during the filling of horns. Horn-filling is also implicitly
used for the fact that composition of homotopy equivalences is again a homotopy
equivalence, hence involving even more choices.

Corollary C.25. Let I(0, 1) be the standard interval and I(0, i) any interval. Then
we have a homotopy equivalence relative endpoints

A[0, 1] ≃ A[0, i].

Proof of the Corollary and Lemma C.19. Corollary C.23 implies A[0, 2] ≃ A[0, 1]
relative endpoints if there is a projection I(0, 2) → I(0, 1). It also implies A[→
] ≃ A[←] relative endpoint by the chain A[→] ≃ A[→←] ≃ A[←] of homotopy
equivalences relative boundary. (Here →, ← and →← are pictures denoting the
corresponding intervals as explained before.) The corollary follows by induction.

C.1.4. Homotopies of infinite length
Let I(0,∞) be an infinite interval which we assume to be ordered for simplicity
(cf. Definitions C.11 and C.9). Abbreviate A[I(0,∞)], A ∈ CGa suggestively as
A[0,∞). We now prove that A[0,∞) is homotopy equivalent to A. This needs again
the horn-filling property.

We suggestively call a map A[0,∞)→ B a homotopy of infinite length. From such
a homotopy we want to get a homotopy of length 1. In general, this is of course
impossible. But if the homotopy is “convergent” in the sense below this can be done.

Lemma C.26 (Infinite Homotopy). Let H : A[0,∞)→ B be a convergent homotopy,
this means we assume:
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(i) There is a filtration A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · · ⊆ A by cellular submodules
such that


iAi = A.

(ii) For each Ai there is an ni such that H|Ai[ni,∞) is the trivial homotopy Tr. (This
means it is induced by the projection on Ai, or “constant in [ni,∞)-direction”).

Then there exists a homotopy G : A[∆1] → B with G|A[0] = H|A[0] and G|Ai[1] =
H|Ai[ni].

Remark C.27. Recall that A is a cellular R-module with R-cells �RA. That Ai
is a cellular submodule hence means that Ai ⊆ A is an R-submodule and that
�RAi ⊆ �RA. Recall that the 0-simplices of I(0,∞) are labeled by the natural
numbers so let I(n,∞) denote the obvious subsimplicial set of I(0,∞) which is an
interval from n to ∞. Then Ai[ni] and Ai[ni,∞) denote obvious cellular submodules
of A[0,∞).
Remark C.28. This lemma is well-known in the topological case. H1 may be called
the “limit” of the homotopy H.

Proof. Recall that we assumed I(0,∞) to be an ordered interval.
We first describe a new simplicial set arising from I(0,∞), it is sketched in

Figure C.1 below. Let I(0, 2) be the ordered interval of length 2 from 0 to 2 which is
a subsimplicial set of I(0,∞). It is isomorphic to the horn Λ2

1, so we can glue in a
∆2 along this horn, define I(0, 2) as the pushout

Λ2
1

//

j2
��

∆2

��

I(0,∞) // I(0, 2)

.

It has an extra 1-simplex with boundaries 0 and 2 and arises from I(0,∞) by horn-
filling. Now I(0, 2) contains a horn Λ2

1, namely the one generated by the 1-simplex
from 0 to 2 and the one from 2 to 3. We take the pushout along the inclusion of the
horn j3 : Λ2

1 → I(0, 2) and call it I(0, 3):

Λ2
1

//

j3
��

∆2

��

I(0, 2) // I(0, 3)

.

This similar has a new 1-simplex with boundaries 0 and 3. Continue to define I(0, n)
by induction. Define I(0,∞) as the filtered colimit of the I(0, n). There is a canonical
inclusion I(0,∞)→ I(0,∞). Figure C.1 sketches a picture of I(0,∞) with I(0,∞)
being the bottom line.

172



. . .

Figure C.1.: A sketch of I(0,∞).

We have A[0,∞) =

nA

[0, n], with A[0,∞) being an abbreviation for A[ I(0,∞)].
As A[0, n] arises from A [0, n− 1] by horn-filling we can get from H : A[0,∞)→ B

a map H ′ : A[0,∞) → B by taking the colimit (which amounts to filling horns
countably often).

The idea is that from H ′ we get for each n a homotopy A[∆1]→ B of length one
if we restrict to the simplex from 0 to n, and for increasing n they get better and
better. However for this to work we have to be careful when filling the horns in
the definition of H ′. We make this precise now and define a map H : A[0,∞)→ B

where we take care of that. We denote the restriction of a map H ′ : A[0, n]→ B or
A[0,∞)→ B to the 1-simplex with boundaries 0 and n of I(0,∞) by H ′

|A(0,n).
Note the following: For i ∈ N and n ≥ ni we have that H|Ai[n,n+1] is the constant

homotopy Tr. Hence for the submodule Ai we can fill the horn jn+1 : Ai[Λ2
1]→ Ai[0, n]

in the following way
X

��
X

&& Tr // , (31)

where X is a homotopy coming from the previous horn-fillings. We now arrange the
horn-filling such that these horns are filled in exactly that way.

We can do induction over i. So assume that we have constructed a homotopy
Gi : Ai[0,∞) → B which extends H : Ai[0,∞) → B and has the property that
Gi|A(0,n) = Gi|A(0,ni) for all n ≥ ni. By the relative horn-filling property 2.22 we can
extend Gi to a map Ai+1 [0, ni+1]→ B. From there on we can extend the map further
along the constant homotopy as in (31). Hence we get a map Gi+1 : Ai+1 [0,∞) with
Gi+1|A(0,n) = Gi+1|A(0,ni+1) for all n ≥ ni+1. This shows the induction step.

Taking the colimit over Gi we get a map H : A[0,∞) → B. We now define
G|Ai

: Ai[∆1]→ B as the restriction of H (or equivalently Gi) to Ai(0, ni), i.e. to the
1-simplex from 0 to ni. This is compatible with the inclusion Ai → Ai+1 and thus
the colimit over i gives the desired homotopy.

Lemma C.29. The map A→ A[0,∞) is deformation retraction, so in particular a
homotopy equivalence.

Proof. The map [0,∞) → 0 induces a retraction A[0,∞) → A. We have to prove
that the composition A[0,∞)→ A→ A[0,∞) is homotopic to the identity. We use
the Infinite Homotopy Lemma C.26.
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Define the convergent homotopy H : A[0,∞)[0,∞)→ A[0,∞) as the map induced
by the map

(i, j) →→ min(i, j)

where we use that map [0,∞) × [0,∞) → [0,∞) is determined on the 0-simplices.
We regard j as the homotopy direction. This map has the following properties:

(i) For j = 0 it is the projection to 0, hence the map above.

(ii) For any j ≥ i the map A[0, i][j]→ A[0, i] is the identity.

(iii)

iA[0, i] is a filtration of A[0,∞) by cellular modules.

Now the Infinite Homotopy Lemma C.26 applies and hence we get a homotopy
G : A[0,∞)[∆1]→ A[0,∞) from the projection to 0 to the identity.

C.2. On the mapping telescope
The goal of this section is to prove Proposition C.4. As explained before, we need long
homotopies for this, hence we also need long mapping cylinders and long telescopes,
which we define now. We need the following definitions only for maps f : A → A,
hence we state them only for these kind of maps.

Definition C.30. Let f : A → A be a map in CGa and I = I(0, i) an interval of
length i ≥ 1 (cf. C.9).

(i) A[I] is called a cylinder for the interval I.

(ii) The pushout
A[i]

f

��

// A[I]

��

A //M I(f)

is called the mapping cylinder of f of length i for the interval I. The map from
A[0] to M I(f) is called the front inclusion and the map from A[i] to M I(f) is
called to back inclusion. The induced map M I(f)→ A is called the projection.

(iii) The pushout ∞
i=0A⨿

∞
i=1A

ι1⨿ι0 //

c

��

∞
i=0M

I(f)

��∞
i=1A

// TelI(f)

,

is called the telescope of f for the interval I. In the diagram ι1 is the back
inclusion of A into M I(f), ι0 the front inclusion, both from the ith summand
to the ith summand, and c is the map which maps the ith summand of the first
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coproduct and the (i+ 1)th summand of the second coproduct to the (i+ 1)th
summand of the target.
The front inclusion into the first mapping cylinder ι0 : M I(f) (which is not
used in the diagram above) gives a map

ι : A→ TelI(f)

which is a called the front inclusion of the mapping cylinder.

Remark C.31. The telescope consists (as usual) of infinitely many mapping cylinders
plugged together to the right. Note that each mapping cylinder has the same interval
structure. Note further that we used that the countable coproducts exists in CGa .

The definition is an immediate generalization of Definition C.7. The definitions
agree if we set I = I(0, 1) to be the standard interval of length 1.

Lemma C.32. Let f : A → A be a map in CGa . Let I = I(0, i) be an interval and
∆1 be the standard interval.

(i) The mapping cylinders for I and ∆1 are homotopy equivalent relative to the
front and the back inclusion: M I(f) ≃M∆1(f) = T (f).

(ii) The mapping telescopes for I and ∆1 are homotopy equivalent: TelI(f) ≃
Tel∆1(f) = Tel(f).

(iii) The telescope TelI(idA) of the identity is homotopy equivalent to A, the homo-
topy equivalence is given by the projection to A.

Each map I → ∆1 respecting the endpoints can be chosen to induce the first two
homotopy equivalences.

Remark C.33. Note that while we can give the homotopy equivalences quite explicit,
the inverse usually will involve a choice, as we used the Kan Extension property to
construct it. Hence it is not canonical and not easy to write down.

Proof. Corollary C.25 gives a homotopy equivalence A[∆1] ≃ A[I] relative endpoints,
which can assumed to be induced by the projection if there is one. This glues to a
homotopy equivalence M∆1(f) ≃ M I(f) (or use the gluing lemma). This in turn
glues to a homotopy equivalence Tel∆1(f) ≃ TelI(f).

By the first part we can assume the interval I to be ordered. The telescope
TelI(idA) is then just A[0,∞). Lemma C.29 provides the homotopy equivalence.

We have the analogue of C.4 (i)-(ii) for long telescopes, which we state briefly.

Lemma C.34. Let f : A→ A be a map in CGa and I an interval.

(i) There is a cellular inclusion ι : A = A[0]� TelI(f).

(ii) TelI(f) is a functor from the arrow category of CGa .

175



Proof. The map ι is just the front inclusion. A morphism ϕ from f to g in ArCGa is
a commutative square

A
f
//

ϕ

��

A

ϕ

��

B
g
// B

which gives a map M I(f)→M I(g) compatible with front/back inclusion and the
projection and hence a map TelI(f)→ TelI(g). It is compatible with ι.

C.2.1. Homotopy commutative squares

We saw that the telescope is functorial for commutative squares of self-maps. There
is an important further property. Even for homotopy commutative squares we get an
induced map on the telescopes. But this is “only up to homotopy” in a sense we will
explain now. Take as example a homotopy idempotent η : K → K. Then the square

K

η

��

idK // K

η

��

K
η
// K

(32)

is only homotopy commutative. Clearly if it should induce a map on telescopes the
induced map should somehow depend on the homotopy to get an interesting map. We
want to allow long homotopies. So let I be an interval and H : K[I]→ K a homotopy
from η ◦ η to η ◦ idK . Take another interval J so we get the telescopes TelJ(idK) and
TelJ(η). Then the map induced by the homotopy commutative square (32) will only
give a map (η,H)∗ : TelJ ✷ I(idK) → TelJ(η), where J ✷ I is the concatenation of
intervals from Section C.1.2. By the previous lemma TelJ ✷ I(idK) is still homotopy
equivalent to Tel(idK) = Tel∆1(idK), but we only get a commutative square

TelJ ✷ I(idK) ≃ //

(η,H)∗
��

Tel(idK)

k

��

TelJ(η) ≃ // Tel(η)

where the horizontal maps are homotopy equivalences, but the right vertical map
k is only well-defined up to homotopy because it involves a choice of a homotopy
inverse for the upper horizontal equivalence. But such a choice is non-canonical as it
is constructed using horn-filling. In particular there does not seem to be a way such
that the map k depends functorially on the homotopy commutative square (32).

On the other hand the map (η,H)∗ on the left will depend “functorially” on η
and H if we build in the enlargement of the intervals. This section makes these
constructions precise.
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Definition C.35. A square

A
f
//

a

��

A

a

��

B
g
// B

(33)

is homotopy commutative if there is an interval I = I(0, i) and a specified homotopy
Ha : A[0, i] → B which goes from g ◦ a to a ◦ f . This should mean Ha

|A[0] = g ◦ a
and Ha

|A[i] = a ◦ f .

Remark C.36. One should view the square as a “map” from f to g in a certain
category which includes the homotopies. We refrain from defining this category.
Remark C.37. The homotopy of a homotopy commutative square always goes from
the lower left corner to the upper right, it is helpful to visualize this as

A
f
//

a

��

A

a

��

B
g
//

H~~~~~~

:B~~~ ~~~

B

when thinking about the homotopies. The reader is encouraged to do this for the
diagrams we will use; we refrain from doing this, to keep the diagrams simpler.

We chose the direction of the homotopy such that it will fit together with our
definition of mapping cylinder.

The next observation is the most important one in this section.

Lemma/Definition C.38 (Stacking squares). Homotopy commutative squares can
be composed (stacked). Given two homotopy commutative squares

A
f
//

a

��

A

a

��

B
g
// B

, B
g
//

b
��

B

b
��

C
h // C

(34)

with homotopies Ha, Hb using intervals Ia, Ib, then composed (stacked) square

A
f
//

b◦a
��

A

b◦a
��

C
h // C

is homotopy commutative with homotopy

(Hb ◦ a[Ib])✷(b ◦Ha) : A[Ib✷ Ia]→ C.

Proof. Careful checking shows that the given homotopy makes the stacked square
homotopy commutative.
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The next Proposition is clear, but for it to hold we indeed need homotopies of
length greater than 1.

Proposition C.39. Composition (stacking) of homotopy commutative squares is
strictly associative, because concatenation of homotopies is. The length of the homo-
topies add. If the square is strictly commutative we can and hence will assume that
the “homotopy” has length 0.

Note that we only “compose in one direction” of the two possible directions in
which the square could be “stacked”. The reason is simply, that this is the only case
we are interested in.

C.2.2. Homotopy commutative squares and mapping cylinders
A homotopy commutative square induces a map on mapping cylinders and hence on
telescopes.

Lemma/Definition C.40. Let I be an interval. A homotopy commutative square

A
f
//

a

��

A

a

��

B
g
// B

(35)

with homotopy H : A[I] → B induces a map called (H, a)∗ : M I(f) → B such that
the diagram

A
ι0 //

a

��

M I(f)

��

A
ι1oo

a

��

B
g
// B B

idBoo

(36)

commutes (strictly). Here ι0 is the front and ι1 the back inclusion. Each such diagram
determines uniquely a homotopy commutative square (35).

If J is another interval, taking the mapping cylinder with J of the left square
of (36) gives a map a[J ]✷(H, a)∗ : MJ ✷ I(f)→MJ(g) such that the diagram

A
ι0 //

a

��

MJ ✷ I(f)

��

A
ι1oo

a

��

B
ι0 //MJ(g) B

ι1oo

(37)

commutes. We call the induced maps the cylinder maps of the homotopy commutative
diagram, resp. the cylinder maps with respect to J .

Remark C.41. The notation a[J ]✷(H, a)∗ should indicate the map. On the first part
it is just a[J ] : A[J ]→ A[J ], on the second it is first the homotopy and then the map
a.
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Proof. The pushout of the strictly commutative diagram

A[I]

H

��

A[i]ι1oo

a◦f
��

f
// A

a

��

B B
idB //

idBoo B

gives the map (H, a)∗ : M I(f)→ B and then diagram (36) commutes. Conversely
taking the map A[I]→M I(f)→ B gets back the homotopyH and the commutativity
of (36) shows that H makes the square (35) homotopy commutative.

Taking the mapping cylinder is functorial, even if we do it with J . Noting that for
ι0 : A→M I(f) we have MJ(ι0) ∼= MJ ✷ I(f) shows the last claim.

The next definition is visualized in Figure C.2 below. We define a kind of composi-
tion of mapping cylinders, but this needs to enlarge the source of the first map. The
reason for this will become clearer in the following lemmas.

Definition C.42. Given maps f : A → A, g : B → B and h : C → C as well as
a : A → B and b : B → C. Assume we have cylinder maps (Ha, a)∗ : M Ia(f) → B

and (Hb, b)∗ : M Ib(g) → C like in Definition C.40 satisfying diagrams like (36).
Define the “composition” (Ha, a)∗ � (Hb, b)∗ as

M Ib ✷ Ia(f) a[Ib]✷(Ha,a)∗−−−−−−−−−→M Ib(g) (Hb,b)∗−−−−→ C

More generally let J be another interval. Assume we have cylinder maps with
respect to J

a[J ]✷(Ha, a)∗ : MJ ✷ Ia(f)→MJ(g) and b[J ]✷(Hb, b)∗ : MJ ✷ Ib(g)→MJ(h)

Define the “composition” as
a[J ]✷(Ha, a)∗


�

b[J ]✷(Hb, b)∗


:

MJ ✷ Ib ✷ Ia(f) a[J ]✷ a[Ib]✷(Ha,a)∗−−−−−−−−−−−−−→MJ ✷ Ib(g) b[J ]✷(Hb,b)∗−−−−−−−−→MJ(h)

The “composition” is compatible with stacking homotopy commutative squares.

Lemma C.43. Given two homotopy commutative squares

A
f
//

a

��

A

a

��

B
g
// B

, B
g
//

b
��

B

b
��

C
h // C
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A

MJ ✷ Ib ✷ Ia(f)

B

MJ ✷ Ib(g)

C

MJ(h)

aHaa[Ib]a[J ]

bHb
b[J ]

Figure C.2.: Composition of maps of long mapping cylinders. Shows the mapping
cylinder construction is “functorial” if performed with long cylinders.

with homotopies Ha : A[Ia] → B, Hb : B[Ib] → C. Then the cylinder map of the
stacked homotopy commutative square (cf. C.38)

A
f
//

b◦a
��

A

b◦a
��

C
h // C

is equal to the “composition” of the cylinder maps of the individual squares, i.e.
(Hb ◦ a[Ib])✷(b ◦Ha), b ◦ a


∗

= (Hb, b)∗ ◦

a[Ib]✷(Ha, a)∗


The same is true for cylinder maps with respect to J .

Proof. We have to check the equality of two maps MJ ✷ Ib ✷ Ia(f) → MJ(h). Fig-
ure C.2 shows the situation. With its help for the bookkeeping the equality can be
checked directly.

Remark C.44. In some sense the compatibility with composition means that this
construction is “functorial”, but of course the “composition” of maps of mapping
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cylinders has a different source than the original maps, so it is not a composition in
our category CGa . This lemma is the reason why we need long cylinders.

We can directly extend these results to telescopes. For these we always set J := ∆1,
the standard interval of length 1 in the lemmas above.

Definition C.45. Two homotopy commutative squares

A
f
//

a

��

A

a

��

B
g
// B

, B
g
//

b
��

B

b
��

C
h // C

with homotopies Ha : A[Ia]→ B, Hb : B[Ib]→ C induce maps

(Ha, a)∗ : Tel∆1 ✷ Ia(f)→ Tel∆1(g),

(Hb, b)∗ : Tel∆1 ✷ Ib(g)→ Tel∆1(h).

Define (Ha, a)∗ to be induced by the map M∆1�Ia(f)→M∆1(g) from Definition C.40
and similar for (Hb, b)∗.

Define the “composition”

(Hb, b)∗ �(Ha, a)∗ : Tel∆1 ✷ Ib ✷ Ia(f)→ Tel∆1(h)

as the map induced by the “composition”

M∆1 ✷ Ib ✷ Ia(f)→M∆1 ✷ Ib(g)→M∆1(h)

from Definition C.42.

Lemma C.46. The “composition” (Hb, b)∗ �(Ha, a)∗ is the same map as the map
induced by the stacked homotopy commutative square

A
f
//

b◦a
��

A

b◦a
��

C
h // C

.

Proof. This clear in view of Lemma C.43.

Lemma C.47. The induced map (H, a)∗ commutes with the front inclusions ι,
i.e. the following square commutes.

A
ι //

a

��

Tel∆1 ✷ Ia(f)

(H,a)∗
��

B
ι // Tel∆1(g)
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Proof. This follows e.g. from the commutativity of diagramm (37) in Lemma C.40.

If we consider a strictly commutative square as a homotopy commutative square
with constant homotopy of length 0 then our definition gives the same map as the
one from Lemma C.34.

Lemma C.48. Let I be an interval and consider a homotopy commtative square

A
f
//

id
��

A

id
��

A
f
// A

with homotopy the trivial homotopy Tr: A[I] → A for the interval I. The map
(Tr, id)∗ : Tel∆1 ✷ I(f)→ Tel∆1(f) is induced by the projection ∆1 ✷ I → ∆1 mapping
I to 1 ⊆ ∆1.

Proof. This follows by inspection.

Remark C.49. Note that the problem with cylinders of different lengths might
even arise if we would be in the topological setting, as even there composition of
homotopies is only associative up to homotopy; but there it is usually hidden by
the fact that there is always a canonical homeomorphism [0, 1] ∼= [0, i] and two such
homoemophisms (preserving endpoints) are homotopic.

C.2.3. A homotopy criterion
Assume we have two homotopy commutative squares

A
f
//

a

��

A

a

��

B
g
// B

and
A

f
//

a
��

A

a
��

B
g
// B

with homotopies Ha and Ha. By extending the homotopies by trivial homo-
topies we can assume that they have the same length and are indexed over the
same interval I. We want a criterion when the two induced maps (Ha, a)∗ and
(Ha,a)∗ : Tel∆1 ✷ I(f)→ Tel∆1(g) are homotopic.

Lemma C.50. Assume that in the above situation:

(i) There is a homotopy H : A[J ]→ B from a to a; and

(ii) There is “2-homotopy” G : A[I][J ] → B from Ha to Ha which restricts on
0× J to g ◦H and on i× J to H ◦ f [J ].

Then the two induced maps (Ha, a)∗, (Ha,a)∗ : Tel∆1 ✷ I(f) → Tel∆1(g) are homo-
topic. The homotopy is (G,H)∗ : Tel∆1 ✷ I(f)[J ]→ Tel∆1(g).
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To explain what we mean by G being a 2-homotopy it is easiest to draw a picture
for I = J = ∆1. In our standard diagram language for maps from A[I][J ] to B
(cf. Digression 2.4.1 and Lemma C.17) we could draw a diagram of G as follows:

g ◦ a Ha
//

g◦H
�� ##G

GG
GG

GG
GG

a ◦ f

H◦f [J ]
��

g ◦ a
Ha // a ◦ f

. (38)

(To simplify it we usually replace the corners by dots, as they are determined by the
map on the edges.) So G can either be viewed as a homotopy from g ◦H to H ◦ f [J ]
or as a homotopy from Ha to Ha.
Proof. Interpreting G as homotopy from g ◦H to H ◦ f [J ] gives a homotopy com-
mutative square

A[J ]
f [J ]
//

H

��

A[J ]

H

��

B
g

// B

with homotopyG : (A[J ])[I]→ B. We get an induced map (G,H)∗ : Tel∆1 ✷ I(f [J ])→
Tel∆1(g). As the telescope is a colimit it commutes with adjoining an interval, hence
we can write the domain of the induced map as Tel∆1 ✷ I(f)[J ]. Therefore (G,H)∗ is
a homotopy, we have to check that it is the desired one.

Assume J is an interval I(0, j) from 0 to j. The strict commuting square

A[0] f
//

ι0
��

A[0]

ι0
��

A[J ]
f [J ]
// A[J ]

gives a map on telescopes (Tr, ι0)∗ : Tel∆1(f) → Tel∆1(f [J ]) which is the same as
the inclusion induced by 0→ I(0, j) = J . Lemma C.43 shows that the “composition”
(G,H)∗ � (Tr, ι0)∗ is the same as the map induced by the homotopy commutative
square

A[0] f
//

H|A[0] =a
��

A[0]
a

��

B
g
// B

with homotopy Ha = G|A[I][0] which is the stacking (composition) of the two squares
above. It follows that

(G,H)∗|0 = (G,H)∗ � (Tr, ι0)∗ = (Ha, a)∗.
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Similar with the inclusion ιj : A[j]→ A[J ] we get

(G,H)∗|j = (G,H)∗ � (Tr, ιj)∗ = (Ha,a)∗.

Remark C.51. Note that we really have a strict equality for the restrictions in the
proof, thanks to our careful tracking of homotopies and the functoriality. The author
does not know how to prove a lemma like this without using long homotopies and
long cylinders. So this lemma is the technical reason why we need long homotopies!

Remark C.52. The lemma we just proved is the key lemma we use in the following.
Due to the lemma we only need to show that homotopies like H and G as above
exist if we want to show that certain maps on telescopes are homotopic. We usually
give G in the form of diagrams like (38).

To make our live easier, we will pretend that all the homotopies we start with
have length 1, which allows us to draw nice (and small) diagrams in the proofs. The
strategy to extend this to longer homotopies is the same as described after the proof
of Lemma C.17 at the end of Section C.1.2. Note that we could not literally assume
that the homotopies have length 1, even if we could arrange it! One has to read the
proof as if there were longer homotopies to maintain the generality we need.

Remark C.53. If a = a then Ha and Ha are two different homotopies which make
the same square homotopy commutative. Then Lemma C.50 gives a useful criterion
when these induce homotopic maps on the telescopes. We will apply the lemma in
this situation.

C.2.4. Homotopic maps between telescopes

The next lemma implies Proposition C.4 (iii).

Lemma C.54. Let f, g : A→ A be homotopic maps. Then Tel∆1(f) and Tel∆1(g) are
homotopy equivalent. The homotopy equivalences are relative to the front inclusions.

Proof. Let H : A[I] → A be the homotopy from g to f . We get two homotopy
commutative squares

A
f
//

id
��

A

id
��

A
g
// A

and
A

g
//

id
��

A

id
��

A
f
// A

with homotopies H : A[I]→ A and H : A[I]→ A (where the latter is the “inverse”
homotopy, cf. Section C.1.2). This gives maps (H, id)∗ : Tel∆1 ✷ I(f)→ Tel∆1(g) and
(H, id)∗ : Tel∆1 ✷ I(g)→ Tel∆1(f). By Lemma C.46 the “composition”

(H, id)∗ � (H, id)∗ : Tel∆1 ✷ I ✷ I(f)→ Tel∆1(f)
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is induced by the homotopy commutative square

A
f
//

id
��

A

id
��

A
f
// A

with homotopy H ✷H : A[I ✷ I] → A. By Lemma C.17 it is homotopic relative
endpoints to the trivial homotopy, hence Lemma C.50 shows that (H, id)∗ � (H, id)∗
is homotopic to (Tr, id)∗. By Lemma C.48 (Tr, id)∗ is the map induced by the
projection ∆1 ✷ I ✷ I → ∆1. The same holds for the other composition.

As (Tr, id)∗ : Tel∆1 ✷ I(f)→ Tel∆1(f) is a homotopy equivalence by Lemma C.32
we get two homotopy commutative triangles

Tel∆1 ✷ I(f) ≃ //

(H,id)∗
��

Tel∆1(f)

ϕ
xxqqqqqqqqqq

Tel∆1(g)

and

Tel∆1 ✷ I(g) ≃ //

(H,id)∗
��

Tel∆1(g)

ψ
xxqqqqqqqqqq

Tel∆1(f)

where ϕ is defined using a chosen homotopy inverse of the horizontal map and ψ
similarly. We claim both compositions of these maps are homotopic to the identity.
Together with these triangles we get a large diagram

Tel∆1 ✷ I ✷ I(f) ≃ //

(H,id)∗
��

Tel∆1 ✷ I(f) ≃ //

(H,id)∗
��

Tel∆1(f)

ϕ
xxqqqqqqqqqq

Tel∆1 ✷ I(g) ≃ //

(H,id)∗
��

Tel∆1(g)

ψ
wwnnnnnnnnnnnn

Tel∆1(f)

where the square is strictly commutative. The left vertical composition is the
“composition” (H, id)∗ � (H, id)∗ which is homotopic to (Tr, id)∗, which is exactly
the composition of the upper horizontal maps. It follows that ψ ◦ ϕ ≃ id and similar
for the other composition.

As the homotopy inverses in the definition of ψ and ϕ can be chosen to respect
the front inclusion by Lemma C.32 and all other maps and homotopies are relative
to it ϕ is a homotopy equivalence relative to the front inclusion. This shows the
lemma.

For any map f : A → A and an interval I we not only get a telescope TelI(f)
but also a self-map (Tr, f)∗ : TelI(f) → TelI(f). We show that it is a homotopy
equivalence. Recall that TelI(f) is a quotient of


n∈NM

I(f). The map taking the
nth component to the (n+ 1)st component is compatible with the quotient, hence
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induces a map TelI(f) → TelI(f), which we will call the shift map and denote it
by sh.

Lemma C.55. Let I be an interval, f : A→ A a self-map. The maps sh and (Tr, f)∗
from TelI(f) to TelI(f) are homotopy inverse:

(Tr, f)∗ ◦ sh = sh ◦ (Tr, f)∗ ≃ id : TelI(f)→ TelI(f)

Proof. For notation let I = I(0, i) be an interval from 0 to i. The first equality
is clear. To provide the homotopy it suffices to restrict to a submodule M I(f) of
TelI(f). Then we can restrict the target to the submodule M I(f) ∪A M I(f) of
TelI(f) which is the pushout of M I ι1←− A[i] ι0−→ M I(f), where ι0, ι1 are the front
resp. back inclusion.

As M I(f) is the pushout of A[I] ι1←− A
f−→ A we get a map A[I] → M I(f)

which we denote by id[I] by a slight misuse of notation. Similar we get a map
ϕ : A[I ✷ I] → M I(f) ∪A M I(f) which can be defined as the map induced by the
pushouts of the rows of

A[I]

id[I]
��

A[i]oo //

f

��

A[I]

id[I]◦f [I]
��

M I(f) Aoo //M I(f)

.

We get two inclusions j0, j1 : A[I]→ A[I ✷ I], corresponding to the two inclusions of
the interval I → I ✷ I. (Recall that I ✷ I is the pushout of two copies of I along the
endpoint resp. the startpoint.) Forming ϕ◦ j0 gives that (ϕ◦ j0)|A[0] = (ϕ◦ j0)|A[i] ◦f ,
hence it glues to a map of mapping cylinders and therefore of telescopes. The same is
true for ϕ◦j1. The induced map of ϕ◦j0 is the identity, whereas ϕ◦j1 induces the map
sh ◦ (Tr, f)∗. Therefore to show that these maps are homotopic it suffices to produce
a homotopy H from j0 to j1 with the compatibility (ϕ ◦H)|A[0] = (ϕ ◦H)|A[i] ◦ f .

For simplicity we only treat the case I = ∆1. So we have to produce a map
A[∆1 × ∆1] → A[∆1 ✷∆1]. Writing I ✷ I as I(0, 1)✷ I(1, 2) and using our usual
diagram notation (cf. Digression 2.4.1), the notation of an arrow denoting the
target 1-simplex it maps to, we use horn-filling to fill the diagram on the left below
symmetrically to the diagram on the right.

• •

•
I(0,1)

OO

I(0,1)
// •
I(1,2)

OO • I(1,2)
// •

•
I(0,1)

OO

I(0,1)
//

??~~~~~~~
•
I(1,2)

OO

. (39)

(We first fill the lower right horn and the use the symmetry of the diagram to take
the same map for the upper right simplex.) This gives a homotopy H from j0 to j1.
Restricting to A[0] is the same as restricting to A[1] and “shift” one up, hence one
checks that ϕ ◦H has the desired compatibility and glues to the desired homotopy

TelI(f)[I]→ TelI(f)
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from the identity to sh ◦ (Tr, f)∗. If I is a more general interval than ∆1 the
diagram (39) has to be replaced by a similar diagram of I2, but this can be filled
symmetrically in the same way and thus also produces the desired homotopy.

C.3. Telescopes of homotopy idempotents
Lemma C.56. Let η : K → K be a coherent homotopy idempotent in CGa , I an
interval. Then the induced map η∗ = (Tr, η)∗ : TelI(η) → TelI(η) is not only a
homotopy equivalence but even homotopic to the identity id.

Proof. We abbreviate (Tr, η)∗ by η∗. We show η∗ ◦ η∗ ≃ η∗, then by Lemma C.55 we
have η∗ ◦ sh ≃ id and therefore η∗ ≃ η∗ ◦ η∗ ◦ sh ≃ η∗ ◦ sh ≃ id and we are done.

We assume that H : A[I] → A is the homotopy from η2 to η and that I = ∆1.
(Intervals of longer length work similarly.) As η is coherent we have a diagram

• η◦H
//

H◦η[I]
��

X
@@

@

��
@@

@

•
H
��

•
H
// •

.

where X is is just a name to the denote the restriction to the diagonal. Using that
diagram we can build the diagram

η3 Tr //

η◦H
��

X
III

II

$$I
IIII

η3

X

��

η3Troo

H◦η[I]
��

X
uuu

uu

zzuuuuu

η2 H // η η2Hoo

η2 Tr //

η◦Tr

OO

Huuuuu

::uuuuu

η2

H

OO

η2Troo

Tr ◦η[I]

OO

HIIIII

ddIIIII

which gives a 2-homotopy G such that Lemma C.50 shows that (G,H)∗ is a homotopy
from η2

∗ to η∗, but only as maps Tel∆1 ✷ I ✷ I(η)→ Tel∆1(η). But as for Lemma C.54
the triangle for η∗

Tel∆1 ✷ I ✷ I(η) ≃ //

η∗
��

Tel∆1(η)

η∗
wwppppppppppp

Tel∆1(η)

,

as well as the one for η2
∗, commutes, here even strictly, and therefore also the maps

on the cylinder of the same lengths are homotopic.

Lemma C.57. Let η : K → K be a coherent homotopy idempotent in CGa . Then there
is a map c : Tel∆1(η)→ K such that the composition ι ◦ c with the inclusion ι : K →
Tel∆1(η) is homotopic to the identity on Tel∆1(η), whereas the other composition
c ◦ ι is homotopic to η : K → K.
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Proof. Let H : A[I] → A be the homotopy from η2 to η. We get two homotopy
commutative squares

K
id //

η

��

K

η

��

K
η
// K

and
K

η
//

η

��

K

η

��

K
id // K

with homotopies H : A[I]→ A and H : A[ I ]→ A. Hence we get two induced maps

(H, η)∗ : Tel∆1 ✷ I(idK)→ Tel∆1(η)

(H, η)∗ : Tel∆1 ✷ I(η)→ Tel∆1(idK).

Consider the “composition” (C.45)

(H, η)∗ � (H, η)∗ : Tel∆1 ✷ I ✷ I(η)→ Tel∆1(η)

which by Lemma C.46 is equal to (H ◦η[I]✷ η◦H, η2)∗. As the homotopy idempotent
is coherent (cf. C.1) we have a map A[I × I]→ A which is on the boundary of I2:

• η◦H
//

H◦η[I]
�� ��

@@
@@

@@
@ •

H
��

•
H
// •

. (40)

Thus by pasting two copies of the above square together as shown below we get the
2-homotopy G

η3 H◦η[I] //

η◦H
��

η2

H

��

η3η◦Hoo

H◦η[I]
��

η2 H // η η2Hoo

η2

η◦Tr

OO

Huuuuu

::uuuuu

Tr // η2

H

OO

η2

Tr ◦η[I]

OO

HIIIII

ddIIIII

Troo

from H ◦ η[I]✷ η ◦H to Tr and by Lemma C.50 (G,H)∗ gives a homotopy from the
composition (H, η)∗ � (H, η)∗ to the map (Tr, η)∗. Similar the other “composition”
(H, η)∗ � (H, η)∗ is homotopic to (Tr, η)∗ : Tel∆1 ✷ I ✷ I(idK)→ Tel∆1(idK) using the
2-homotopy

η2

H

��

η3η◦Hoo

X
JJJ

JJ

%%J
JJJJX

��

X
ttt

tt

yyttttt

H◦η[I] // η2

H

��
η η Tr //Troo η

where X is the diagonal in diagram (40) and the upper left and right triangles are
also from (40).
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Now we make (H, η)∗ and (H, η)∗ into maps of telescopes of the same length as in
the proof of Lemma C.54. Define c and ι by choosing a homotopy inverse in the top
row of the following diagrams

Tel∆1 ✷ I(η) ≃ //

(H,η)∗
��

Tel∆1(η)

cxxqqqqqqqqqq

Tel∆1(idK)

and

Tel∆1 ✷ I(idK) ≃ //

(H,η)∗
��

Tel∆1(idK)

ιwwooooooooooo

Tel∆1(η)

.

A similar argument as in the proof of Lemma C.54 using a big triangle shows
that c ◦ ι is homotopic to η∗ : Tel∆1(idK) → Tel∆1(idK) and ι ◦ c is homotopic
to η∗ : Tel∆1(η) → Tel∆1(η). Lemma C.56 shows that on Tel∆1(η) the map η∗ is
homotopic to the identity.

Now ιidK
: K → Tel∆1(idK) is a homotopy equivalence and even an inclusion for

a deformation retraction pr by Lemma C.32. Set c := pr ◦c : Tel∆1(η) → K, noteι ◦ ιidK
= ιη. Then ι ◦ c = ι ◦ ιidK

◦ pr ◦c is homotopic to ι ◦ c and hence to idTel∆1 (η)
and c ◦ ι = pr ◦c ◦ ι ◦ ιidK

is homotopic to η : K → K. This shows the lemma.

Proof of Proposition C.4. We already proved every single claim. We defined Tel(η)
in Definition C.7, provided the inclusion (C.4(i)) and showed the functoriality (C.4(ii))
right after that. The inclusion ι : K → Tel(idK) is a homotopy equivalence (C.4(iv))
by Lemma C.32 and homotopic maps gives homotopy equivalent telescopes (C.4(iii))
by Lemma C.54. The compatibility with the inclusion (C.4(v)) was noted along the
lemmas.

A homotopy idempotent induces a homotopy equivalence on its own telescope by
Lemma C.55, and a coherent homotopy idempotent even induces a map homotopic
to the identity by Lemma C.56 (C.4(vi)). Finally the retraction up to homotopy to
the inclusion (C.4(vii)) is provided in Lemma C.57.
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