
Instance-Based Ontology
Matching and the Evaluation of

Matching Systems

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Katrin Simone Zaiß

aus Düsseldorf

November 2010

Aus dem Institut für Informatik

der Heinrich-Heine Universität Düsseldorf

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Stefan Conrad

Koreferent: Prof. Dr. Martin Lercher

Tag der mündlichen Prüfung: 10.12.2010

The Answer to the Ultimate Question of
Life, the Universe, and Everything:

101010

(loosely based on Douglas Adams’ novel
The Hitchhiker’s Guide to the Galaxy)

Acknowledgements

This thesis is the result of three and a half year of research at the Databases and
Information Systems Group of the Department of Computer Science at the Heinrich
Heine University of Düsseldorf.

First of all, I acknowledge my advisor and first referee Prof. Dr. Stefan Conrad for
supporting me in my research and for creating a motivating and comfortable working
atmosphere. I am very thankful for the possibility to work under his supervision
and to learn from his experiences. I also thank the second reviewer of this thesis,
Prof. Dr. Martin Lercher, for his interest in my work and willingness to be the second
referee.

My special compliments go to my colleagues and friends, Sadet Alčić and Tim Schlüter,
who helped me with their technical knowledge and their patience, and who enlightened
each working day with their great sense of humor. It was a pleasure to share the office
with Sadet, and I thank Tim for the joint work. Additionally, I extend my compliments
to my new colleagues, Ludmila Himmelspach, Jiwu Zhao and Thomas Scholz, and to
my former colleague, Johanna Vompras, who supported me with her experience.

Special thanks to Guido Königstein, Marga Potthoff, and Sabine Freese for their gui-
dance in technical and administrative issues.

My deepest and warmest thanks go to my family, my parents Sabine and Kurt Zaiß,
my brother Max and my sister Alexa. They support me in each situation and without
their love and their mental support, this thesis would not have been possible.

Last but not least, I deeply want to thank André Teloo for supporting me each and
every day with his patience, his understanding and his ability to always look on the
bright side of life.

Düsseldorf, Germany
November, 2010 Katrin Simone Zaiß

Abstract

The matching of heterogeneous information sources is a crucial task in many different
domains. In order to find relations between the different pieces of information, which
are annotated using different structures and formats, matching systems have been de-
veloped. In the past two decades, ontologies became more and more important as a
way to represent the semantics of information in a machine read- and processable way.
Hence, many ontology matching systems have been developed as well, which make use
of the different parts of ontologies to resolve the heterogeneities. Most systems focus on
the exploit of schema or structure information, but ontologies also provide instances,
which express the semantics of a concept independent of its meta information. Cur-
rent instance-based matching methods give room for improvements in several aspects.
Matching Systems also need to be evaluated using appropriate test data. Existing
benchmarks are not sufficient for testing instance-based methods. In this thesis, we
focus on the development of instance-based matching methods, their combination with
schema- and structure-based methods and their evaluation.

We introduce two novel instance-based matching methods. The first method makes
use of regular expressions or sample values to characterize the concepts of an ontology
by their instance sets. The second approach uses the instance sets to calculate many
different features like average length or the set of frequent values. Both approaches
finally compare the characterizations, i.e. the regular expressions or the features, to
obtain similarities between the entity sets of two (or more) ontologies. An alignment
between the ontologies is then obtained by examining the similarity set.

In order to test single matching methods or complex matching systems well-defined
test benchmarks have to be available, preferably including the correct alignments to
facilitate the evaluation. Current benchmarks do not enable extensive studies on
instance-based methods, because the number of instances is significantly too low. We
present an additional benchmark, ONTOBI, which can be used to test instance-based
methods, but also all other kinds of matching algorithms or systems.

Finally, we present MICU, a complex matching system which unifies the advantages of
instance-, schema- and structure-based matching methods combined with an efficient
user feedback interaction. In order to speed up the process alignments of previous
matching cycles are reused.

Zusammenfassung

Heterogene Informationsquellen findet man in vielen unterschiedlichen Gebieten und
das Matching (der Abgleich) dieser Quellen ist ein Prozess, der häufig gebraucht wird.
Um die Verbindungen zwischen den verschiedenen Informationen, die unterschiedlich
formuliert und struktiert sein können, zu finden, wurden Matching-Systeme entwickelt.
Als Struktur zur maschinenles- und verarbeitbaren Repräsentation von Wissen wurden
in den letzten zwei Jahrzehnten Ontologien immer populärer. Folglich wurden auch vie-
le Ontologie-Matching-Systeme entwickelt, welche die unterschiedlichen Elemente der
Ontologien untersuchen um die Heterogenitäten zwischen den Ontologien aufzulösen.
Dabei verwenden die meisten Systeme hauptsächlich Schema- und Strukturinformatio-
nen, obwohl Ontologien auch Instanzen enthalten, welche die Bedeutung der Konzepte
unabhängig von jeglichen Meta-Informationen beschreiben. Die bisher existierenden in-
stanzbasierten Methoden bieten noch einigen Raum für Verbesserungen. Diese Arbeit
beschäftigt sich mit der Entwicklung neuer instanzbasierter Methoden, ihrer Kombi-
nation mit schema- und strukturbasierten Methoden und ihrer Evaluation.

Zu Anfang werden zwei neue instanzbasierte Methoden vorgestellt. Der erste An-
satz verwendet reguläre Ausdrücke oder Beispielwerte um Konzepte einer Ontologie mit
Hilfe ihrer jeweiligen Instanzmengen zu charakterisieren. Die zweite Methode berech-
net aus der Instanzmenge verschiedene Features (Merkmale) wie die Durchschnittslänge
oder die Menge der am häufigsten vorkommenden Werte. In beiden Fällen werden die
Charakteristika, d.h. die regulären Ausdrücke oder die Feature-Werte, verglichen um
eine Ähnlichkeit zwischen den verschiedenen Elementen der zwei Ontologien zu berech-
nen. Die paarweisen Ähnlichkeiten werden dann verwendet um die Korrespondenzen
zwischen den Ontologien zu finden.

Um einzelne Methoden oder komplexe Matching-Systeme testen zu können, braucht
man geeignete Testdaten-Sets, in denen idealerweise auch direkt die Menge der Referenz-
Korrespondenzen enthalten sein sollte. Bisher verfügbare Benchmarks bieten jedoch
nicht die Möglichkeit instanzbasierte Methoden ausführlich zu testen, da nicht genügend
Instanzen vorhanden sind. Mit ONTOBI präsentieren wir einen zusätzlichen Bench-
mark, mit dem man instanzbasierte, aber auch alle anderen Arten von Matching-
Methoden oder -Systemen, testen kann.

Abschließend stellen wir mit MICU ein komplexes Matching-System vor, welches die
Vorzüge von instanzbasierten mit denen von schema- und strukturbasierten Methoden
kombiniert und dabei effizient mit dem Benutzer zusammenarbeitet. Zusätzlich werden
die Ergebnisse früherer Matching-Durchläufe wiederverwendet.

Contents

Contents i

1 Introduction 1

1.1 Motivation . 1

1.2 Application Areas . 3

1.3 Contributions of this Thesis . 4

1.4 Outline of this Work . 6

2 Background 7

2.1 The Semantic Web . 7

2.2 Ontologies . 8

2.3 Ontology Languages . 9

2.3.1 Resource Description Format 10

2.3.2 Resource Description Framework Schema 12

2.3.3 Web Ontology Language . 13

2.4 The Matching Problem . 15

2.5 Similarity Functions . 17

2.6 Classification of Matching Systems . 20

2.7 Evaluation of Matching Systems . 22

2.7.1 Types of Evaluation . 23

2.7.2 Rules . 24

2.7.3 The Data Set . 24

2.7.4 Evaluation Measures . 26

2.8 Summary . 27

3 Related Work 29

3.1 Matching Systems . 29

3.1.1 Schema- and Instance-Based Systems 29

3.1.2 Instance-Based Systems . 32

3.2 Benchmarks . 35

3.2.1 OAEI . 35

3.2.2 STBenchmark . 37

ii CONTENTS

3.2.3 IIMB . 37

3.3 Summary . 38

4 Instance-based Matching 39

4.1 Using Regular Expressions to Describe

Instances . 40

4.1.1 Regular Expressions . 41

4.1.2 First Approach - Predefined Regular Expressions 41

4.1.3 Arranging Lists and Creating Vectors 43

4.1.4 Second Approach - Transforming Catchwords 45

4.1.5 General Process . 46

4.1.6 Creation of Candidate Mapping 47

4.1.7 Finding Attribute Correspondences 49

4.2 Combing Concept and Instance Features 50

4.2.1 General Process . 50

4.2.2 Extracting Features . 51

4.2.3 Concept Features . 52

4.2.4 Numerical Features . 53

4.2.5 String Features . 54

4.2.6 Date Features . 55

4.2.7 Comparing Features . 56

4.2.8 Similarity Function . 56

4.2.9 Propagating Similarity . 58

4.2.10 Determination of a Mapping . 59

4.3 Summary . 60

5 The Matching System 61

5.1 Architecture . 61

5.2 Used Methods . 64

5.2.1 Schema-Based Methods . 64

5.2.2 Instance-Based Methods . 65

5.2.3 Structure-Based Methods . 67

5.3 Alignment Reuse and User Feedback 68

5.4 Summary . 69

6 ONTOBI - An Evaluation Benchmark with many Instances 71

6.1 The Reference Ontology . 72

6.1.1 Dynamically Exploiting Wikipedia Infoboxes 73

6.1.2 Using DBpedia . 74

6.2 Transformation of Meta Information and Instances 75

CONTENTS iii

6.3 Creating Test Cases . 77

6.3.1 The Ontology Modificator . 77

6.3.2 Test Cases . 78

6.4 Fulfillment of Requirements . 81

6.5 Summary . 83

7 Evaluation and Discussion 85

7.1 Instance-based Matchers . 85

7.1.1 Test Data . 85

7.1.2 Regular Expressions Approach 86

7.1.3 Feature Approach . 90

7.1.4 Discussion . 94

7.1.5 Comparison of Regular Expression and Feature Matcher 95

7.2 MICU . 96

7.2.1 Tests with ONTOBI . 97

7.2.2 Tests with OAEI . 100

7.2.3 Discussion . 102

8 Conclusion and Future Work 105

8.1 Summary . 105

8.2 Future Work . 106

References 107

List of Figures 115

List of Tables 117

1
Introduction

1.1 Motivation

Knowledge is an important resource of humankind. The development of the Internet

facilitates the distribution and the accessibility of all kinds of information. The in-

formation concerning one domain of interest can be structured and displayed in many

different ways, i.e. it is presented heterogeneously. In most cases a human can cope

with this heterogeneity, but for computers it is quite difficult to capture the semantics

of the information. To enable the “understanding” of knowledge for computational

applications, ontologies have been developed. Originally, ontologies have been used in

the context of philosophy and information theory. “An ontology is an explicit specifi-

cation of a conceptualization”, this definition of an ontology has been introduced by

Thomas R. Gruber [Gru93]. Thus, an ontology describes a specific domain of interest

by including concepts and the relations among them. A hierarchical taxonomy as it is

used to describe biological relationships between races can be represented by an onto-

logy. The goal of an ontology in computer science is that it adds semantics to the data

such that an application can classify the information.

Example 1. Imagine having a website of an institute of computer science. This website

may include various names, images and email addresses. Using the structure and the

graphical representation of the website, a human can link the names to the images

and find the correct email address of a person. For computer applications it is rather

difficult to connect these pieces of information, especially because the information might

be represented heterogeneously on different websites. Ontologies can be used to connect

the information that belongs to one person. An ontology describing the website might

include a concept that is named “Person”. Each person has a name, a surname, a

2 Introduction

title, an image and an email address; these properties are called attributes. For each

person that is displayed on the website, an instance of the concept “Person” is created,

and the values of the attributes are stored and linked to the person as well. A computer

application is now able to search for a person and find the correct email address without

using any heuristics or considering the graphical representation.

So, how is the information stored? Ontologies need to be represented in a struc-

tured way, such that they can be easily processed by applications. Since XML has

been developed for this purpose, it can be used to represent ontologies as well. But

semantics can not be expressed with XML. Hence, languages like RDF or OWL have

been developed, which use the syntax of XML and extend it with the possibility to add

semantics. The information is always stored in triples consisting of subject, predicate

and object. The used predicates are often predefined such that there is a common

understanding of the meaning. This structured way of representing the knowledge

enables the extraction of the desired information for adequate applications. Although

this reduces the structural or syntactical heterogeneity of the knowledge, there is still

heterogeneity that is caused by humans. In the example described above the designer

of the ontology could name his concept “Employee” instead of “Person” and the attri-

butes could be named in an other way, too. Additionally, the division of the domain

of interest into concepts and attributes might differ depending on the developer or the

framework in which the domain is embedded. This kind of heterogeneity cannot easily

be detected or solved automatically by any application extracting the information.

Example 2. After working at the Technical University of Munich, a professor currently

works at the University of Duesseldorf. There is information available about this profes-

sor on the websites of both universities. Imagine a person who searches for information

about this professor. Using a normal search engine, both websites might appear in the

results and the user has to examine them to find the current working place and the

correct email address. If ontologies are used, the application (e.g. a semantic search

engine) might directly find the recent email address because both websites contain con-

cepts that belong to the professor, and the one existing on the Munich website includes

an attribute like “discarded on” with a date in the past. But this only works if the

application is able to detect the similarity of both concepts using the concept definition.

In the case that the concepts are described heterogeneously the application cannot find

a connection. To solve the heterogeneity problem a matching system can be used.

Matching systems have been developed to find correspondences between all kinds

of information sources (i.e. files, databases, ontologies etc.). They represent a kind of

artificial intelligence that tries to rebuild the human interaction with computer systems

and the knowledge of the relations between the different concepts in the world. In the

case of ontology matching systems similar concepts have to be found as automatically

1.2 Application Areas 3

as possible. According to the different types of heterogeneity, different kinds of stra-

tegies have been developed. We mainly focus on ontology matching approaches, but

most of the strategies can be adapted to all kinds of information resources. In ge-

neral, the strategies can be divided into schema-, structure- and instance-based ones.

Schema-based matching methods aim to find similar concepts by regarding the names

of concepts and attributes independent of the used structure and/or expression, e.g.

misspellings, homonyms and synonyms should be detected. Structure-based matching

methods use the relations between the entities and the graphical topology of an onto-

logy to detect correspondences. Some ontologies also contain instances, i.e. concrete

values of concepts. These instances provide a huge amount of information and are also

used for matching purposes. The instance sets are compared element-wise or a feature

set is calculated which provides the basis for a comparison.

The matching of ontologies is needed in many other applications as well. An over-

view will be given in the next subsection.

1.2 Application Areas

The variety of application scenarios in which ontology matching is a crucial tasks is

very high. [ES07] define six central use cases for ontology matching:

• ontology engineering

• information integration

• peer-to-peer information sharing

• web service composition

• autonomous communication systems

• navigation and query answering on the web

Ontology engineering describes the process of designing, editing or versioning on-

tologies. If a new ontology should be created, there might be the wish or the need to

reuse ontologies or to combine existing ontologies. To support the designer during this

process, a matching system can search for correspondences. This is especially import-

ant if the ontologies are very big. In some cases, there might be different versions of an

ontology, because it has evolved and the previous versions still exist. If a system uses

the old version and wants to upgrade to the new one, a matching system can help to

find differences between the versions.

The most important application scenario for matching systems is information inte-

gration. Whenever multiple heterogeneous information sources shall be used together

4 Introduction

for a common task (e.g. query answering), the sources have to be matched and inte-

grated (physically or at least virtually). A matching system produces the connections

between the sources by finding similar terms, concepts or attributes; these connections

provide the basis for the integration process. Imagine having two companies that aim

to cooperate or merge. As a consequence, their data (e.g. employee data) has to be

integrated to a common data source. In most cases the particular databases or infor-

mation sources are structured heterogeneously using different terms etc and so on, such

that a matching algorithm could facilitate finding the correct correspondences.

In peer-to-peer networks, systems may exchange data. If the peers are totally au-

tonomous (as they should be), they might describe their data using different kinds of

concepts or labels. To enable a reasonable information exchange anyway, the different

descriptions (e.g. ontologies) have to be matched.

Web services may present their interfaces using different languages. A data mat-

ching process is needed to match the service descriptions as well as the inputs and

outputs.

Autonomous communication systems like agents often have to exchange messages.

The outer form of the messages is determined by an agent communication language, but

the content of the message is expressed according to a local ontology. To understand

the message, an agent has to match his ontology to the ontology of the sender.

The answering of queries is an important issue for the web. Search engines are

used very often and they work with ontologies to refine queries, too. Each question,

that is posed by a user, is translated into terms of the local ontology; this is done by a

matching process. Meta search engines translate a query into the terms of the different

ontologies, that are provided by the underlying search engines, collect the results and

translate them back according to the original ontology.

1.3 Contributions of this Thesis

The matching of ontologies is important for many different tasks. In the last decades a

lot of research has been done in the field of information source matching. In most cases

the matching strategies focus on the use of schema or structure information. There are

also some approaches that use the instance sets to find correspondences between the

concepts, but there is still room for improvements. The goal of this thesis is to deve-

lop new instance-based matching methods, to enhance existing ones and to combine

them with appropriate schema- and structure-based methods. As a result a matching

system should be obtained, which interacts with the user who can prove and correct

the matching results.

In detail, the contributions of this thesis are:

1.3 Contributions of this Thesis 5

• The main contribution of this thesis is the presentation of two novel instance-

based matching methods. The first one makes use of regular expression and

catchword lists to characterize the instance sets. Using these lists, a vector re-

presentation is created for each instance set. These vectors provide the basis for

calculating similarities and finally for deriving a matching.

The second approach uses the instance set to calculate a set of well-defined fea-

tures that describe the instance set. These features are collected in a vector

and compared by using different similarity measures. The obtained attribute-to-

attribute similarity is propagated upwards to finally match concepts, too.

• Another contribution of this work is the development of an evaluation framework

for testing ontology matching systems. This framework, ONTOBI, is helpful

for all kinds of matching systems, but has also been developed with regard to

instance-based matching methods. Existing evaluation benchmarks mainly focus

on schema- and structure-based methods, because the number of instances is very

small (if there are some actually). ONTOBI is an evaluation benchmark, which

contains a huge set of different matching tasks; the ontologies consist of many

classes and the data set contains more than 13000 instances. For each matching

task, a reference alignment is given such that the evaluation is facilitated.

• For creating ONTOBI, an ontology modificator has been developed which gets

an ontology as input and applies several modifications such as addition/deletion

of comments, extraction of synonyms, insertion of spelling mistakes or flattening

of the hierarchy. The modifications can be chosen manually and the resulting

ontology is created in the same format as the input ontology. Additionally, a

reference alignment can be produced, which describes the relation between input

and output ontology. Using the ontology modificator one can produce its own

evaluation benchmark.

• A further contribution is the presentation of a new matching system, which com-

bines the new instance-based matchers with well known schema- and structure-

based matchers. This matching system also includes a user feedback mechanism

which enhances the matching quality. Additionally, it provides the possibility

to evaluate the matching results by comparing the produced alignment with a

reference alignment.

6 Introduction

1.4 Outline of this Work

This thesis is organized as follows: Chapter 2 contains a general introduction and gives

an overview of the theoretical background of this thesis. First, ontologies are briefly

introduced including the description of the different elements as expressed in the on-

tology languages RDF, RDFS and OWL. Then, the field of matching heterogeneous

information sources is introduced by giving a problem definition and representing the

different kinds of matching methods. Finally, the different aspects that are important

for evaluating matching systems are presented.

In Chapter 3 we give an overview of the state of art by introducing several matching

systems and evaluation frameworks.

Chapter 4 includes the presentation of the major objective of this thesis, i.e. the deve-

lopment of novel instance-based matching methods. First, an approach using regular

expressions is described, followed by a method, that uses features to find mapping cor-

respondences.

These methods are included in a more complex matching system which is described in

Chapter 5.

Chapter 6 gives an overview of the benchmark developed for the evaluation of matching

systems and especially for instance-based matching methods.

The proposed matchers and the matching system are evaluated using different test

scenarios; the results are presented and discussed in Chapter 7.

The thesis concludes in Chapter 8.

2
Background

The matching of heterogeneous information sources is a problem which occurs in many

application areas; the information sources might be database schemas, XML schemas,

ontologies or other models. Since this thesis focuses on the matching of ontologies, we

reduce the matching problem to an ontology matching problem. In the following, a

few foundational aspects are clarified. First of all, a short introduction to the Semantic

Web is given in Section 2.1 and the term “ontology”, as it is used in the context of

this thesis, is explained in detail in Section 2.2. The different languages that can be

used to model an ontology are presented in Section 2.3. A definition of the matching

problem itself is given in Section 2.4. After that, similarity measures, which provide

the basis for any matching algorithm, are presented in Section 2.5. Section 2.6 gives

an overview of the different kinds of matching systems and algorithms. In Section 2.7

the principles of the evaluation of matching systems are explained in detail. A short

summary in Section 2.8 concludes this chapter.

2.1 The Semantic Web

The World Wide Web is a collection of billions of documents that store a huge amount

of data and information. In most cases one and the same information is stored in many

different, heterogeneously structured documents. Although search engines have been

improved over the last years, it is sometimes still difficult for a user to find the best

answer to his question in an appropriate time. In the Semantic Web [BL],[BLHL01],

an idea of Tim Berners-Lee, the director of the W3C (World Wide Web Consortium),

documents are annotated with additional meta data, such that software agents can

interpret the information to capture the semantics. This is not only limited to the

8 Background

use within the WWW but can also be used within several applications. The most

simple way to add meta data to information is the use of RDF (see Section 2.3), which

describes relations between different pieces of information. Meta information can also

be used not only to better describe information sources but to better understand the

questions of the user. Hence, search queries can be adapted using a specific knowledge

base which e.g. “knows” that business and trade denote the same. An interesting

development is the search engine, or as the inventors say “knowledge engine” [wol10],

Wolfram—Alpha which is able to answer questions directly without only displaying

websites containing the search words. Asking “Which day of the week was 23rd of

August 1983?” the user gets the answer “Tuesday” and additional information about

the time that has past since then or special events on this date are displayed.

2.2 Ontologies

Ontologies are a relatively new way of defining and storing knowledge. In the context of

the Semantic Web, ontologies represent a way to add meta information to the contents

included in a website, such that software agents can understand the meaning of the

information and better work with it.

In general, an ontology describes a certain domain by dividing it into several concepts

and describing the relations between those concepts. A concept (also called class) is

the biggest component (concerning the information content) of an ontology. It may be

described by several attributes, which are concrete data fields (data type properties,

see Subsection 2.3). It is also possible to store information directly as instances (also

named data values) of concepts. In addition, most ontologies provide extra information

on the entities, e.g. data types or comments. An exemplary ontology is displayed in

Figure 2.1 and the different parts of the ontology are named in Example 3:

Example 3. The ontology in Figure 2.1 displays a few pieces of information of the

domain “organization of a university” stored in an ontology.

Professor, address, chair and lectures are concepts or classes. The pale blue fields like

name or surname are called attributes or data type properties. The diamonds represent

relations between different concepts; a relation might be an object property or (not shown

in this example) a subclass property. Instances are concrete values of the attributes and

are displayed in italic strings. An instance belonging to the concept ‘professor” is Stefan

Conrad, where Stefan is the value of the attribute “name” and Conrad the value of

“surname”. This instance has a relation to the instance conrad@cs.uni-duesseldorf.de.

Summarized an ontology contains the following elements or entities: concept, at-

tribute, relation and instance.

2.3 Ontology Languages 9

professor addresshas

chair

holds

lectures

has

offers

name surname mail

name

CP
name description

ConradStefan conrad@cs.uni-duesseldorf.de

data type property

object property

phone

0049211104532

ssn

Figure 2.1: Example Ontology O1

To describe the meaning of the terms more exactly we will give a formal notation in

the following. An ontology is a tuple O =< C,A, I, R,D > such that:

C = {c1, ..., ck} is the set of concepts.

A = {A(c1), ..., A(ck)} with A(cl) = {al1, ..., aln} being a set of attributes assigned to

a concept cl.

R = {r1, ..., rm} with rp ∈ C × C × σ is the set of relations; a relation connects two

concepts with each other, σ denotes the natural alphabet in which the name/type of

the relation is expressed.

I = {I1, ..., Ik} with In = {i1, ..., io} being a set of instances assigned to a concept cn.

Concept instances can be divided into several attribute instances. An attribute

instance denotes the value of a concrete attribute within a concept instance.

After introducing the different languages, that can be used to express ontologies, in

the next section, these entities will be connected to specific elements of the language.

2.3 Ontology Languages

In the Semantic Web software agents should be able to understand the content of

web pages. Ontologies are one possibility of representing knowledge and correlations

10 Background

between different pieces of information. To be automatically processable for software

agents, the knowledge has to be expressed as simple as possible in an adequate format.

For this purpose several languages have been developed which will be explained in the

following.

2.3.1 Resource Description Format

RDF (Resource Description Framework) [Bec04] is a language used for describing re-

sources and is recommend by the W3C. RDF uses a simple data model which is un-

derstandable for humans and machines, the RDF Model. The information is presented

as a statement, a so-called triple, that always consists of three parts: subject, predicate

and object. The predicate represents a binary relation between the subject and the

object.

An example for a statement is: Stefan Conrad has the family name Conrad.

In this case Stefan Conrad is the subject, has the family name is the predicate and

Conrad is the object. As the names states, RDF is used to describe resources (in

the Web), so the entities are connected to URIs (Uniform Resource Identifiers, see

[BLG05]). Additionally, the use of URIs ensures the unambiguous identification of the

resources that are used. Subjects and predicates are usually resources (expressed in

URIs), whereas an object may be a resource or a literal. Literals are Unicode strings

representing a concrete value. Plain literals are literals that have an appended language

tag, typed literals are extended by a data type URI. Whenever a resource is needed to

organize a group of other resources or to represent an unnamed relation, blank nodes

can be used as subjects or predicates.

The RDF statements may be represented as directed graphs, the so called RDF

graphs. The graph displaying the example described above is shown in Figure 2.2.

Resources are represented as ovals, arcs display the predicates, where the arc always

points from the subject to the object, and rectangles symbolize literals.

http://www.person.de/StefanConrad

Stefan

Conrad

http://www.w3.org/2001/vcard-rdf/3.0#Given

http://www.w3.org/2001/vcard-rdf/3.0#Family

Figure 2.2: A sample RDF graph

RDF statements can be represented using different kinds of syntaxes. As mentioned

2.3 Ontology Languages 11

before, RDF statements are often expressed in a XML syntax, also called RDF/XML.

Another possibility is the N3 (Notation 3) syntax [n306], which is better readable for

humans and nicely displays the triple structures of the statements. In the following,

both languages are used to express the RDF graph of Figure 2.2.

The following text shows the translation of the RDF graph into RDF/XML.

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#">

<rdf:Description rdf:about="http://www.person.de/StefanConrad">

<vcard:Given>Stefan</vcard:Given>

<vcard:Family>Conrad</vcard:Family>

</rdf:Description>

</rdf:RDF>

First of all, the used XML version has to be stated. The second tag includes the defini-

tion of namespaces; xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

sets the variable rdf to the URI mentioned consecutively. This variable can be used in

the following document instead of the whole URI which improves the readability and

saves storage space. rdf:RDF is the root element of each RDF document. Using the

rdf:about attribute, the resources, i.e. the subject that is described in the following

within the rdf:Description tag, is introduced. The following tags vcard:Given and

vcard:Familiy are the properties (predicates) of the resource stated with rdf:about.

The data values, i.e. the literals, are included within the property tags.

In this example, the objects are always literals. If the resource of our example Stefan

Conrad has a photo available in the web, which is a resource with a URI, the corre-

sponding RDF/XML document describing this fact looks like this:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#">

<rdf:Description rdf:about="http://www.person.de/StefanConrad">

<vcard:photo rdf:resource="http://dbs.cs.uni-duesseldorf.de/conrad.jpg" />

</rdf:Description>

</rdf:RDF>

The resource denoting the image, i.e. the object in this case, is directly included in the

property tag vcard:photo and a rdf:resource is prefixed.

As mentioned before, N3 is another syntax for representing RDF graphs. N3 is better

readable for humans and offers the possibility to express logics (e.g. by allowing the use of

variables).

12 Background

Our example in N3:

@prefix : <http://www.w3.org/2001/vcard-rdf/3.0#> .

<http://www.person.de/StefanConrad> :Family "Conrad";

:Given "Stefan" .

Similar to the RDF/XML syntax it is possible to define namespaces in N3 by using @prefix.

Each statement ends with an “.” and it is possible to concatenate different properties des-

cribing the same resource by an “;”.

2.3.2 Resource Description Framework Schema

RDF is only usable for describing resource and relations between them; it is not possible

to create new properties and classes or to create a taxonomy. For this reason, an extension

of RDF, RDF Schema (RDFS) [BG04], has been developed which allows the definition of

classes. A class denotes a group of resources; in other words, a resource is an instance of a

class. RDFS extends RDF especially with the following classes and properties:

• Classes (self-explaining)

– Class

– Resource

– Literal

– Datatype

– Property

• Properties

– range: states that the values of a property are instances of the specified class

– domain: states that any resource that has the according property is an instance

of the class

– type: states that a resource is an instance of the specified class

– subclassOf: states that all instances of one class are also instances of another

class

– subPropertyOf: states that all resources related by one property are also related

by another

– label: represents a human-readable label of the resource

– comment: represents a human-readable description of the resource

The RDF Model can be used without changes, i.e. each RDFS statement is also an RDF

graph and the RDF/XML syntax can also be used. The following example shows the usage

of the Class concept:

2.3 Ontology Languages 13

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://www.person.de/">

<rdfs:Class rdf:ID="Person" />

<rdfs:Class rdf:ID="Professor">

<rdfs:subClassOf rdf:resource="Person"/>

</rdfs:Class>

</rdf:RDF>

A class Person is introduced using <rdfs:Class rdf:ID="Person" />.

The subject of this statement is http://www.person.de/Person, the object is

http://www.w3.org/2000/01/rdf-schema#Class and the, not obvious, property is

http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

2.3.3 Web Ontology Language

The Web Ontology Language (OWL) [SCW04] is another extension of RDFS and provides

additional vocabulary to describe more semantics, e.g. relations between classes, characteri-

stics of properties etc. It is the standard language for defining ontologies. There are three

sublanguages of OWL:

• OWL Lite: simplest version; enables the creation of taxonomies and simple axioms

• OWL DL: extends OWL Lite with the possibility to express full description logics, but

with some restrictions to ensure computational completeness and decidability, e.g. a

class cannot be an instance of an class

• OWL Full: like OWL DL but without restrictions

In the following, the most important elements of OWL, that we will need for further expla-

nations, are explained.

A class is the most basic element of an ontology and its definition is made using the following

statement:

<owl:Class rdf:about="http://www.person.de/Professor"/>

Individuals, also called instances, are defined as instances of certain classes using the following

statement:

<Professor rdf:ID="http://www.person.de/StefanConrad"/>

This is the simplest way of assigning an instance to a class, which equals the more complex

statement (with additional specification of the property vcard:Given):

14 Background

<owl:Thing rdf:ID="http://www.person.de/StefanConrad" />

<owl:Thing rdf:about="http://www.person.de/StefanConrad">

<rdf:type rdf:resource="Professor"/>

<vcard:Given>Stefan</vcard:Given>

</owl:Thing>

In this example, the property vcard:given has the value “Stefan” for this determined in-

stance; this is what we call attribute instance. In general, properties are binary relations and

using OWL, we can distinguish between two types of properties: datatype properties and ob-

ject properties. Datatype properties define a relation between classes and literals (together

with the assignment of XML datatypes). Using the properties rdfs:domain and rdfs:range

the datatype property can be restricted. A statement creating a datatype property called

name, which belongs to the domain of Professor, i.e. it is an attribute of Professor, and

which contains string values, is the following:

<owl:DatatypeProperty rdf:about="http://www.w3.org/2001/vcard-rdf/3.0#name">

<rdfs:domain rdf:resource="http://www.person.de/Professor"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

Object properties define a relation between two classes. The properties rdfs:range and

rdfs:domain are also defined for this type of property. The following example statement

defines an object property belonging to the class Professor which is named has and which

connects Professor to the class Address:

<owl:ObjectProperty rdf:about="http://www.person.de/has">

<rdfs:range rdf:resource="http://www.person.de/Address"/>

<rdfs:domain rdf:resource="http://www.person.de/Professor"/>

</owl:ObjectProperty>

According to the definition of an ontology given in Section 2.2, we finally want to connect

the entities to OWL elements:

• a concept is defined as a Class

• an attribute is a owl:DatatypeProperty

• a relation is either a owl:ObjectProperty or a rdfs:subclassOf

• a (concept) instance is assigned to a class using the rdf:type property

• an attribute instance is the literal that is related to a concept instance by a specified

attribute

2.4 The Matching Problem 15

2.4 The Matching Problem

An ontology can be used in many different application areas to describe and store knowledge.

In general, there are many different ontologies describing the same domain. In most cases, the

ontologies are not totally equal, because the used vocabulary differs and the coverage of the

domain is varying. If two ore more ontologies need to be compared, matched or integrated,

correspondences have to be found despite the heterogeneity. To demonstrate the different

types of heterogeneities, Figure 2.3 shows an ontology which describes the same domain as

the ontology displayed in Figure 2.1, but uses different terms.

prof.

professor
ship

has

lectures

holds

name family name eMail
address

name

credit pointsname description conditions

has written publications

title

type

semester periods
 per week

phone

Figure 2.3: Example Ontology O2

[ES07] differentiates the following types of heterogeneity: Syntactic, terminological, concep-

tual and semiotic heterogeneity.

Syntactic heterogeneity is caused by the different representation formats of an ontology or

knowledge base. RDF and OWL are only two possible languages, there are also formalisms

like F-logic [KLW95]. Generally, this problem can be solved by finding equivalences between

the different languages, preferably without loss of information. This kind of heterogeneity is

not considered by most of the systems and it is not addressed in this thesis as well.

Terminological heterogeneity denotes the usage of different terms for the same (or a simi-

lar) real world thing. The labels of an entity might be expressed in different languages or

synonyms are used, e.g. “surname” and “family name” in our example ontologies. Another

example for this kind of heterogeneity is the use of abbreviations, like “professor” and “prof.”

in our example. Furthermore, the used terms can be different due to the specific context they

16 Background

are used in. This kind of heterogeneity is difficult to cope with, because natural language

evolves and the vocabulary differs among the people even if they speak the same language.

Conceptual heterogeneity (or semantic heterogeneity) is the collective term for several diffe-

rent possibilities to model a domain. It can be divided into three subproblems: difference in

coverage, granularity and perspective.

Coverage differences occur, if ontologies are written from the same point of view, i.e. in the

same context and with comparable vocabulary, but the part of the domain that is described

differs and there are only overlapping parts. In our example the second ontology includes an

additional concept “publications” which is not described by the first ontology.

Difference in granularity means that the same section of the domain is described but the

depth of details is not equal. The concept “lecture” is included in both example ontologies

but in the second ontology there are more attributes describing it.

If the point of view from which an ontology is designed differs, there is a difference in per-

spective.

Semiotic heterogeneity is caused by the subjective interpretation of the used terms by hu-

mans. Terms can be considered regarding their context or not, such that terms with the same

semantics are interpreted in different ways. The first example ontology includes the attribute

“CP” which stands for credit points. This is obvious when regarding the surroundings of this

attribute, but the abbreviation itself can represent many different things.

A matching process aims to solve the different types of heterogeneities preferably auto-

matically; a technically representation is shown in Figure 2.4, which has been published in

[ES07]. A matching process can be represented as a function that matches two input ontolo-

gies o and o′ by using a previous alignment A, a set of parameters and several other resources.

As a result an alignment A′ is produced, which represents the correspondences between the

two input ontologies. Additionally, the kind of correspondence (equivalence, subclass etc.)

and the confidence (similarity value) is given.

matching

ontology 1

ontology 2

predefined alignment alignment

parameter

external
resources

Figure 2.4: Matching Process, taken from [ES07]

2.5 Similarity Functions 17

The resulting alignment is defined as a set of correspondences, which represent relations

between different entities. A correspondence can be described by a 5-tuple (see [ES07]):

< id, e, e′, r, n >, (2.1)

where id is a unique identifier of the correspondence, e is an entity of ontology o, e′ an entity

of o′, r denotes an alignment relation, e.g. = or < and n gives a confidence value, e.g. a

similarity value.

Depending on the matching algorithm the entities that can be combined within one corre-

spondence can be limited, e.g. such that concepts can only be matched with concepts and

not with attributes.

The notation given above describes so-called 1:1 (one-to-one) correspondences, in which ex-

actly two entities take part. Due to difference in granularity or coverage in some cases there

might also be 1:n (one-to-many) or even n:m (many-to-many) correspondences. Regarding

our example ontologies the concepts professor and address of O1 match prof. in O2.

For this purpose, the equation given above can be extended such that a correspondence can

include more than two entities.

2.5 Similarity Functions

Similarity measures form the basis of all matching algorithms, because they determine whe-

ther two entities are similar or not. In the following, a formal notation of a similarity function

as it used in the scope of this thesis is given:

A similarity function sim : E × E → R with E = E1 ∪ E2, E1 is the entity set of ontology

O1, E2 the entity set of O2, which gets two entities as input and calculates a similarity value,

has to satisfy some properties (see [ES07]):

• positiveness: ∀x ∈ E, y ∈ E, sim(x, y) ≥ 0

• maximality: ∀x ∈ E,∀y, z ∈ E, sim(x, x) ≥ sim(y, z)

• symmetry: ∀x, y ∈ E, sim(x, y) = sim(y, x)

In this case, entities might be strings (e.g. concepts labels or comments), numbers (feature

values) or sets of numbers or strings.

In the scope of our thesis we focus on similarity functions that calculate a (normalized)

similarity value that is in the range of [0, 1].

In some cases it might be useful to calculate distance values instead of similarity values.

Distance functions fulfill the properties of similarity measures (but with minimality instead

of maximality, i.e. ≥ has to be replaced by ≤).

18 Background

Additionally, the following two properties hold for a distance function dist : E ×E → R:

• definiteness: ∀x, y ∈ E, dist(x, y) = 0 if and only if x = y

• triangular inequality: ∀x, y, z ∈ E, dist(x, y) + dist(y, z) ≥ dist(x, z)

In the following we want to present a few of the most common similarity functions used

in matching algorithms. We distinguish between string-based measures, numeric measures

and set-based measures (mainly based on [ES07]). Another overview of several similarity

measures can be found in [MYC08]; several distance measures are described in [WM97].

String-based measures:

The simplest possibility to determine the similarity of two strings is to test on equality.

A corresponding measure can be defined as

simequ(s, t) =

0 if s = t

1 if s 6= t
, (2.2)

with s and t being two strings.

Strings might include spelling mistakes which results in a string equality of 0. For this purpose

the n-gram measures can be used. An n-gram is a substring of length n, and n-gram(s, n) is

defined as the set of all substrings of length n that can be obtained of string s. The n-gram

measure for two strings s and t is defined as follows:

simngram(s, t) = n-gram(s, n) ∩ n-gram(t, n) (2.3)

This measure calculates a value ∈ N0; to normalize it to the interval [0, 1], the following

equation can be used:

simngramNorm(s, t) =
n-gram(s, n) ∩ n-gram(t, n)

min(|s|, |t|)− n+ 1
(2.4)

For short strings, the n-gram measure calculates relatively small similarities. e.g. in the case

that only two letters are swapped. An example: the strings “label” and “laebl” do only have

one 2-gram in common, which is “la”; consequently, the normalized 2-gram similarity of these

two strings is 1
4 . To cope with this problem, small strings can be extended by adding some

extra chars at the beginning and the end of the string (equally for both strings, that are

compared).

The edit distance, is one of the most used dissimilarity measures. It calculates the number

of operations that is needed to transform one string into another (and vice-versa). The allowed

operations are not limited in general, but in most cases they consist of insertion, deletion

and substitution. The cost which is assigned to each operation does not have to be equal but

in most cases it is 1 (the Levenshtein distance, see [ES07]). Most easily the edit distance ed

2.5 Similarity Functions 19

between two string s and t with |s| = m and |t| = n can be defined recursively:

edi,j = min

edi−1,j−1 +0 if si = tj

edi−1,j−1 +1 (substitution)

edi,j−1 +1 (insertion)

edi−1,j +1 (deletion)

, 1 ≤ i ≤ m, 1 ≤ j ≤ n (2.5)

with edi,0 = i for 1 ≤ i ≤ m and ed0,j = j for 1 ≤ j ≤ n.

In general, there are a lot of possibilities to normalize the edit distance to the interval [0, 1]

and to transform it into a similarity measure (if desired). The String Similarity is a measure

based on the edit distance ed and calculates a similarity value between 0 and 1.

simstrsim(c, d) := max
(

0,
min(|c| , |d|)− ed(c, d)

min(|c| , |d|)

)
(2.6)

Number measures:

In some cases it might be demanded to compare numbers during the ontology matching

process. Especially when comparing features like average length created using the instance

set, a similarity of numeric values has to be calculated. One possibility is:

simnum(a, b) =
1

1 + |(a− b)|
, (2.7)

with a and b being two numbers.

Set-based measures:

In some cases it is useful not only to compare single values (strings or numbers), but also

sets of them. One very popular measure is the cosine similarity, which calculates the similarity

of two vectors expressed as the cosine of the angle between them. It is only applicable for

vectors containing numbers and it is defined as:

simcos(v, w) =
v ∗ w
|v| · |w|

, (2.8)

with v and w being two vectors, |v| = |w|. For ontology matching purposes, the cosine

similarity is always in [0, 1], because the values included in the vectors are always positive,

i.e. we do not know of any approach that includes negative values within such vectors.

Another possibility to compare vectors is the Minkowski distance. As the name states, it

calculates a distance, not a similarity, and is defined as

simMink(v, w) =

(
n∑
i=1

|vi − wi|p
)1/p

, (2.9)

with |v| = |w| = n.

For p = 1 this distance is also known as the Manhattan distance, for p = 2 it is called the

Euclidean distance and for limp→∞ it is known as the maximums distance or the Chebyshev

20 Background

distance.

The set-based similarity measures or distances presented so far can only be applied on

vectors containing numbers. To compare sets of strings other similarity measures are needed.

The simplest possibility is again to test on equality.

simsetEqu(S, T) =
|S ∩ T |
|S|+ |T |

, (2.10)

with S and T being two sets of strings.

In most cases it might be useful not to test on equality but on similarity. First of all, the

similarity of all possible string pairs (s, t) with s ∈ S and t ∈ T is calculated and all pairs

with a similarity above a certain threshold are counted. Formally, we calculate a set V with:

V = {(s, t)|s ∈ S, t ∈ T, with sim(s, t) ≥ t, t is threshold} (2.11)

The similarity of the two string sets is the calculated as:

simsetSim(S, T) =
|V |
|S| · |T |

(2.12)

Similarity Aggregation:

In most cases, two or more similarity values are aggregated to a single one. The simplest

possibility of combining x similarity values is given by:

simagg(sim1, ..., simx) =
∑x

i=1wei · simi∑x
i=1wei

, (2.13)

with wei being weights assigned to the similarity values simi.

2.6 Classification of Matching Systems

Different surveys examining matching approaches can be found in the literature. The basis

is established by [RB01], which has been extended in [SE05].

Matching algorithms may use different types of data as input, which provide a basis for

dividing matching techniques. [SE05] propose three categories: terminological, structural

and semantic. The interpretation of input data can also be used to categorize matching

algorithms; [SE05] propose the following ones:

• element vs. structure level, describing the granularity of the match

• syntactic vs. external vs. semantic, describing the interpretation of the match

All categories (input and interpretation categories) use different kinds of techniques that will

be explained in the following (see Figure 2.5 for an overview).

Mapping on the element-level implies that the elements (concepts, tables) are considered

independently from their structure, i.e. the relations to other entities are not taken into

account. In contrast, structure-level approaches analyze the structure of the entities when

2.6 Classification of Matching Systems 21

computing a mapping configuration. Syntactic techniques interpret the input data only

considering the structure of the entities, while external methods use external knowledge

like a thesaurus or human input. If methods exploit the meaning of the data, they are

called semantic approaches. In the following, we want to give some examples for element-

and structure level techniques illustrating the big variety of different possibilities to find a

mapping configuration.

Element-level techniques may base on strings, languages, constraints, linguistic resources

or previous alignments; additionally, upper level ontologies are taken into account (external

techniques).

String-based techniques are used to compare and to map names on account of the string

similarity between them. Several methods can be used to determine the string similarity;

among them are prefix and suffix tests, distance functions like the edit distance and the

n-gram measure.

In contrast, language-based techniques do not consider names as strings but as words of a

natural language. Names gets tokenized by parsing them using blanks, points, digits etc.

as separators. Additionally, tokens can be analyzed to find their basic forms, i.e. infinitives

of verbs or the singular instead of the plural, what improves the comparability of the to-

kens. Some matching algorithms also include the elimination of stop words, such as articles,

prepositions, conjunctions and so on.

Constraint-based techniques consider internal constraints, such as data types, value ranges

and the number of attributes, subconcepts or keys. The closeness of data types or the cardina-

lity of attributes may be determined to compare entities, for instance. The key characteristics

of two entities can also be used to calculate a similarity value, i.e. if the (unique) keys of two

entities match it is very likely that the entities describe the same concept.

Linguistic resources are common thesauri like WordNet [Wor10] that are used to detect

synonyms or hyponyms.

The reuse of alignments that have been produced in previous matching processes is very

useful, because a matching task might be similar to a previous one, especially if the ontologies

describe the same domain. The saving of time can be very high.

Upper level formal ontologies are not used yet, but they could be used as additional exter-

nal resources to capture the semantics of entities or to add structure to poorly structured

ontologies.

Element-level techniques are also name schema-based matching methods.

Structure-level algorithms consider different kinds of information while searching for a

mapping configuration. We can distinguish between graph-, model- or taxonomy-based tech-

niques and the use of repositories of structures.

Graph-based techniques use graph algorithms to determine similarities between nodes of a

labeled graph representing the database schema or the ontology. Graph matching algorithms

determine a mapping, which minimizes a specific distance function, that considers children,

leaves or relations. The similarity of inner nodes is based on the similarity of children/leave

22 Background

nodes or already mapped concepts.

Taxonomy-based techniques again use graph structures but they examine only “is-a” relations.

Concepts linked with such a relation are similar, hence neighbored concepts may be also

similar. An exemplary rule considers sub/superconcepts: If sub/super-concepts are similar,

it is very likely that the compared concepts also match.

Model-based techniques exploit the semantic interpretation of the input ontologies and apply

methods like propositional satisfiability or description logics reasoning techniques.

The repository of structures stores all ontologies and pairwise similarities between them, but

there are no alignments included. The goal is to find similar ontologies for each input on-

tology, such that an alignment can be reused (which is then extracted of the repository of

alignments) or a new matching task between the input and the similar ontology can be initia-

ted. To gain an effect of this repository, the similarity function that compares two ontologies

has to have a lower cost than the matching process.

The classification of [SE05] only refers to schema- and structure-based matching approaches.

Whenever schema information is not given satisfactorily or if the schemas to be mapped use

different terms to describe the same real-world-concept, it is useful to consider instances. On

the one hand, instance-based techniques can be used to improve the effectivity of schema-

based approaches; on the other hand, instance-level techniques can be used on their own.

[RB01] propose a classification of instance-based methods by dividing them into linguistic-

and constraint-based methods. Linguistic-based approaches use information retrieval techni-

ques to gain information about word frequencies and combination of words. The use of value

ranges, data types or the appearances of character patterns characterize the constraint-based

approaches.

In [ES07] the classification of [SE05] is slightly extended by adding an extra kind of input

category for ontology instances, which is named extensional. Additionally, data analysis and

statistics is introduced as a new group of matching techniques which use (a sample of) the

instances to derive patterns or to calculate frequency distributions.

Extensional matching techniques are also named instance-based matching methods.

An overview of the whole classification schema can be found in Figure 2.5.

2.7 Evaluation of Matching Systems

To determine their quality, matching systems need to be tested and evaluated. For this

purpose it is helpful to use a well-defined test set. In the following, the different types of

evaluation and the demands made on test sets are presented.

2.7 Evaluation of Matching Systems 23

String-
based
name

similarity,
description
similarity,

global
namespace

Language-
based

tokenisation,
lemmatisation,
morphology,
elimination

Linguistic
recources

lexicons,
thesauri

Constraint-
based

type
similarity,

key properties

Alignment
reuse

entire shema
or ontology,
fragments

Upper
level,

domain
specific

ontologies
SUMO,
DOLCE,

FMA

Data
analysis

and
statistics
frequency
distribution

Graph-
based

graph homo-
morphism,

path,
children,
leaves

Linguistic

Terminological

Internal Relational

 Structural Extensional Semantic

 Matching techniques Kind of input

Matching techniques Granularity/Input interpretation

 Element-level Structure-level

 Syntactic External Syntactic External Semantics

 Basic techniques

Repository
of

structures
structure
metadata

Taxonomy-
based

taxonomy
structure

Model-
based

SAT solvers,
DL reasoners

Figure 2.5: Classification of Matching Approaches, taken from [ES07]

2.7.1 Types of Evaluation

There are a lot of reasons for testing and evaluating matching systems. Independent of the

particular evaluation design, there are several types of evaluation (see [ES07]): competence

benchmarks, comparative evaluation and application-specific evaluation.

• Competence benchmarks are one possibility of evaluating systems. A benchmark con-

tains a set of well-defined test cases, which provides the basis for determining the

quality of a system. The single tasks are usually designed to test a particular aspect

or method of the matching systems and the overall quality of the matching systems

can be determined by observing the quality through all tests. The goal of this kind of

evaluation is to find out the weak and strong points of a system and to improve the

system.

• A comparative evaluation has the aim to compare systems by letting them execute the

same tasks and determine the best system. For this purpose it is very important to

define clear evaluation rules and the test data should be available shortly before the

evaluation phase, such that systems can not easily adapt their systems parameter ac-

cording to the tasks. A comparative evaluation can also be done by using a benchmark

test series. The aim of this evaluation is to get an overview of the quality within the

whole field.

24 Background

• Application-specific evaluation is quite self-explanatory. Systems produce results for a

specific application, e.g. proposed by a company that wants to find the best system for

their specific problem. This kind of evaluation can also be used within a comparative

evaluation.

2.7.2 Rules

Independent of the type of evaluation, the evaluation framework should follow a few principles

to ensure a clear evaluation procedure. In [ES07] several general aspects are defined:

• systematic procedure: matchings tasks have to be reproducible and comprehensible,

and the execution has to be comparable.

• continuity: the matching tasks should be executed continuously to observe develop-

ments and improvements.

• quality and equity: the evaluation rules have to be defined very exactly and the quality

of the ontologies should be as high as possible. Additionally, no kind of matching

systems may be privileged.

• dissemination: the benchmark and the results should be available publicly.

• intelligibility: the analysis of the results should be understandable, i.e. the reference

alignments and the alignments produced by the systems should be available.

These rules should be generally taken into account when designing a particular evaluation

framework.

2.7.3 The Data Set

The two most important things in any evaluation are the data sets and the used evaluation

measures. The data set can be chosen or designed according to the different factors that

influence the matching process (see Figure 2.4), i.e. input ontology, input alignment, para-

meters and resources, output alignment and the matching process itself. In the best case,

the different evaluation tasks also differ in these dimensions to cover the “whole spectrum of

matching” ([ES07], p. 198). In the following the different aspects will be examined according

to their influence on the evaluation process.

• The input ontologies are the ontologies that need to be matched. These ontologies

might differ in their language and the described knowledge (see also Section 2.4 for the

different kinds of heterogeneity), and the number of ontologies might be two or more.

Most systems focus on the matching of two ontologies, such that most evaluation

frameworks focus on this problem, or the systems divide bigger matching tasks into

smaller ones that only match two ontologies.

2.7 Evaluation of Matching Systems 25

• A matching process can use an input alignment to enhance the matching quality. The

input alignment might be produced by another matching process (e.g. using different

methods) or could contain user-defined mapping candidates. There are two important

characteristics: the alignment might be changed, updated or supplemented by the the

matching process and the alignment may contain 1:1, 1:n or m:n mapping candidates.

Most systems do not require or allow input alignments and for evaluation purposes it

might be reasonable to perform the matching process without any input alignment to

focus on the performance of the methods used within the system.

• Parameters, as well as resources, also influence the matching process. Resources might

be oracles, thesauri like WordNet or catalogs like Google. User inputs also fall in

the same category; users might verify matching proposals or support the system with

their background knowledge. For evaluation purposes, one has to decide, if the use of

external resources is allowed or not. The use can also be limited such that the resources

can be incorporated but they must not be tuned according to the matching task.

Most systems use a set of parameters to adapt the matching process according to the

present matching task. Parameters might include weights for each single matching

method or for a group of methods, thresholds and so on. In an evaluation process

it is important to decide, if parameters can be changed for every matching tasks or

if they should be equal for the whole set. For competitive benchmark tests it might

be demanded to use a fixed parameter set whereas competence benchmarks aim to

test the quality of a single system or a single matching method. For the latter case

the parameters can be adapted such that the methods reach the maximum quality.

It is also useful to vary the parameters to observe the stability of matching method

according to different parameter sets.

Some systems also provide the possibility to train themselves by using a sample data

set, which influences the matching results and the quality as well. Providing a sample

set for training might be very useful for systems that use machine learning techniques,

because otherwise there might be a disadvantage for such systems.

• The output alignment can be characterized by many aspects: multiplicity, justification,

relations and strictness. Multiplicity describes the cardinality of the mappings included

in the alignment, 1:1, 1:n or n:m or also denoted as one-to-one, injective or total. A

justification should explain the alignment in the case that a non-standardized alignment

format is used. The relations between the entity pairs included in the alignment can

be different; entities might be connected by an equivalence relation =, a subsumption

relation ≤ or a incompatibility relation ⊥. Additionally, a value or confidence measure

illustrating the confidence of the mapping assignment can be included in the alignment

(strictness). For competitive evaluations it is very useful to use a common alignment

format (such as the one proposed in [Euz06]).

26 Background

• For the matching process itself some aspects can be important. The space or time

available for producing an alignment might be limited (resource constraints). As des-

cribed before, entities may be concepts, attributes, relations or instances, and all these

entities potentially might appear in an alignment. For evaluation purposes it is import-

ant to define which entity pairs can be included in the alignment, e.g. only concepts,

everything besides instances, attribute-to-concept mappings are also possible etc.

2.7.4 Evaluation Measures

According to the rules and regarding the characteristics of the data set a matching system

produces an alignment for the proposed matching tasks. The resulting alignment now has

to be examined to determine its quality. For this purpose a reference alignment is needed,

which can either be present in the used alignment format (for automatic evaluation) or the

user has to create an alignment manually.

In the following some evaluation measures are presented.

Precision and recall are the most conventional evaluation measures. They have been develo-

ped for the field of information retrieval to express the quality of a search result. Precision

expresses the accuracy and recall represents the completeness. Both measures have been

adapted to ontology matching, the precise definitions are given below (adapted from [ES07],

p. 206):

Given a reference alignment A∗ and an alignment A, the precision PA∗(A) is defined as the

number of correct found correspondences divided by the total number of found correspon-

dences, more formally:

PA∗(A) =
|A∗ ∩A|
|A|

=
true positives

number of correspondences
(2.14)

The recall value represents the number of correctly found correspondences divided by the

number of existing correspondences, i.e.

RA∗(A) =
|A∗ ∩A|
|A∗|

=
true positives

number of existing correspondences
(2.15)

When comparing systems among each other, a combined measures could be helpful. The

F-Measure combines precision and recall by calculating their harmonic mean (see [ES07], p.

207):

FMA∗ (A) =
2× PA∗(A)×RA∗(A)
PA∗(A) +RA∗(A)

(2.16)

Another measure combining precision and recall, which expresses the number of error cor-

rections that are needed to transform A into A∗, is the overall measure. It can be calculated

by

OA∗(A) = RA∗(A)×
(

2− 1
PA∗(A)

)
(2.17)

2.8 Summary 27

The overall measure determines a value in [−1, 1] and a negative value shows that the ali-

gnment does not have a high quality.

In literature, some more measures can be found, e.g. relaxed [EE05] or semantic [Euz07]

precision and recall.

2.8 Summary

In this chapter we presented an overview of the basic principles in the field of ontology

matching. The Semantic Web and ontologies have been introduced, including the detailed

description of the RDF and OWL. Furthermore, the matching problem itself has been in-

troduced and a classification of matching approaches has been presented. The variety of

different matching methods is very huge, such that there are many possibilities to build a

matching system. Some example matching systems and algorithms are presented in the next

chapter. Finally, this chapter described the principles of matching system evaluation. There

are already some benchmarks, which are also presented in the next chapter.

3
Related Work

The field of matching heterogeneous information sources has been widely addressed in the

last decades, hence there is a lot of related work. In the Section 3.1 the most important

approaches are presented; the focus lays on the description of the instance-based matchers

and similar approaches are summarized. Afterwards in Section 3.2, the existing benchmarks

for testing ontology matching systems are described. The chapter is concluded with a short

summary.

An introducing article can be found in [Zai08b].

3.1 Matching Systems

In literature, there are many matching systems and single matching algorithms, which either

use schema, structure- or instance information or a combination of them. In the scope of

this thesis, the instance-based methods are most interesting such that we mainly focus on

the description of such methods. First of all, a few schema- and instance-based matching

systems are presented in Subsection 3.1.1, whereas we mainly focus on the presentation of

COMA++, because, at present, it is the most complete matching tool. Subsection 3.1.2 gives

an overview of instance-based matching methods that mainly make use of machine learning

techniques or duplicates.

3.1.1 Schema- and Instance-Based Systems

COMA++

COMA++ is currently one of the most complete matching systems. The predecessor, COMA

(COmbining MAtch algorithms), has been published in 2002 [DR02] and was developed for

matching simple schemas. Coma++ extends COMA by adding the possibility to import

complex XML schemas (e.g. ontologies), by inserting additional matchers and by offering a

30 Related Work

fragment-based match approach to cope with large schemas.

Each input file is transferred into a specific internal graph representation, which provides

the basis for the matching process. The matching library contains the following matching

methods:

• simple matchers, mainly based on element names: Affix detection, Trigram, Soundex,

Edit Distance, Synonyms, Type, Reuse and Statistics

• combined matchers: Name, NamePath, NameType, NameStat, Parents, Siblings, Child-

ren, Leaves

Some of the simple matchers are explained in detail in Section 2.5. Synonym uses a name

synonym table (created with the help of users) to calculate a similarity between two elements

(synonyms have a similarity of 1.0, hypernyms one of 0.8).

Equally, Type measures the similarity of data types. Statistics compares the structural sta-

tistics of an element (like number of children or parents) by applying the Euclidean distance

function.

The combined matchers are composed by various simple matchers or additional structural

matchers. Name combines the element-based simple matchers to calculate an aggregated

similarity of the elements. For this purpose, the names are preprocessed by applying tokeni-

zation and acronym/abbreviation extension.

NamePath concatenates the element names of all elements that are contained in a common

path (given by relations or hierarchical structures) to a long string and applies the Name

matcher on it.

NameType combines the values of the Type and the Name matcher; equally NameStat com-

bines Name and Statistics. Children is another structural matcher that propagates the si-

milarity of leaf elements (obtained by applying another hybrid matcher like NameType) to

upper elements. The similarity of an element is calculated by using the similarities of its

children, regardless of their types (inner element or leaf). In contrast, Leaves only considers

the similarities of the corresponding leaves.

Parents (as well as Siblings) calculate the similarity of two elements by measuring the simi-

larity of parental elements or by considering the neighbors on the same level.

As presented in [EM07], the matching library has been extended by some instance-based

matching methods, which can mainly be divided into constraint- and content-based methods.

The constraint-based methods include the following constraints:

• general constraints: average length, used characters, differentiation between numbers,

letters and special chars

• numerical constraints: determine whether a number is positive or negative and what

type the number has (integer, float), average value, standard deviation

• pattern constraints: check, if all instances follow a given pattern of a predefined pattern

library

3.1 Matching Systems 31

The content-based matchers compares the instance sets of two concepts c1 of ontology O1 and

c2 of ontology O2 by pairwise comparing the instances using sim, one of the string similarity

function mentioned before, e.g. the edit distance or the trigram measure. The content-based

similarity is then calculated by using the following formula:

similarity (c1, c2) =
∑n

k=1maxl=1...m(sim(ic1k
, ic2l

)) +
∑m

l=1maxk=1...n(sim(ic1k
, ic2l

))
n+m

,

where n is the number of instances i assigned to c1 and m the number of instances of c2.

Since not all concepts may contain instances, a similarity propagation algorithm is proposed

to calculate the similarity of concepts that do not have instances by measuring the instance

similarities of child concepts.

Regarding the classification of [SE05] given in Section 2.6, COMA++ uses syntactic and

external techniques on the element level, as well as syntactic methods on the structure-level.

Additionally, the use of instances is classified as extensional, and data analysis as well as

language-based techniques are used.

The concept- and structure-based methods of COMA++ are well tested and perform quite

good (see OAEI 2006 tests [MER06]). Additionally, the supported graphical user interface is

very intuitive and provides a huge functionality.

The two instance-based matchers cannot be judged fully, because the introducing paper does

not clarify one of the most important things for these algorithms, which is the comparison

of the constraint values. It is not clear, how constraints like patterns are compared and

how the different constraints are measured together. In contrast to the constraints-based

comparison, the content-based similarity calculation needs a huge computing effort, which

may be a problem for large numbers of instances.

Quick Ontology Mapping

Quick Ontology Mapping [ES04] (short: QOM) is another hybrid matching system, which

uses instances, schema and structure information to produce a mapping. The algorithm used

by QOM includes six steps:

1. Feature Engineering

2. Selection of Next Search Steps

3. Similarity Computing

4. Similarity Aggregation

5. Interpretation

6. Iteration

In the first step, the Feature Engineering, the ontologies are transformed into RDF triples.

The Selection of Next Search Steps aims to reduce the number of entity pairs that have to be

compared. For this purpose, QOM uses a strategy like Random (selection of a fixed number

32 Related Work

of pairs) or Area (consider pairs that are close to already matched pairs).

In the Similarity Computing step, for each pair many different properties are compared,

among them are: concept label, concept URI, direct property set, properties of subconcept,

use of same-as relations, domain and range. The instances are also considered, but they are

mainly tested on equality or only the URIs are regarded.

In the Similarity Aggregation step, the different similarities are normalized using a sigmoid

function, weighted and finally summed up. The similarities are interpreted, i.e. according

to several thresholds mapping candidates are determined. Finally, the whole process can be

iterated for up to 10 times.

Referring to the classification in Section 2.6, we can state that QOM is a schema- and instance-

based approach with two ontologies as input. It makes use of element-level (syntactic and

external) techniques, but also of structure-level (syntactic) methods.

The biggest disadvantage of QOM is the selection of next search steps, because potential

mapping candidates might not take part in the further matching process. Furthermore, the

number of different similarity values that are calculated within the similarity computation

step is very high, such that only entities, that are similar in many parts, have a high overall

similarity value.

Other Systems

In the past many different ontology matching systems have been developed; an overview

can be found in [ES07]. RiMom [Jie04], ASMOV [JMSK09], Anchor-Flood [SA09], Falcon-

AO [JHCQ05], OLA [EV04], Sambo [LT06], AROMA [DGB07], GeRoMeSuite [KQL07] with

an additional instance matcher described in [QGK09] and SemInt, described in [LC94] and

[LC00], are further hybrid matchers.

Systems, that mostly rely on the schema information, are e.g. CtxMatch [BSZ03], H-

Match [CFM06], DSSim [NVVM06], Lily [WX09], SimilarityFlooding [MGMR02], OntoMer-

ge [DMQ03] and Cupid [MBR01].

3.1.2 Instance-Based Systems

Glue

Glue [DMDH02], [DMDH04], developed at the University of Washington, is another instance-

based ontology matcher, which does not use additional schema-based methods. The mapping

process consists of the three steps: Distribution Estimation, Similarity Estimation and Rela-

xation Labeling.

During the Distribution Estimation step the joint probabilities of each possible concept

pair out of the two input ontologies are computed using a set of learners. In detail, the

process of distribution estimation for a pair (c1, c2) ∈ O1 ×O2 works as follows:

• Divide the set of instances of O1 into two sets: one set U c1O1
contains all instances

belonging to c1, the remaining instances are included in the second set U c1O1
.

3.1 Matching Systems 33

• Train a learner with these two sets, which decides whether an instance belongs to c1
or not.

• Repeat the first two steps for c2 and ontology O2.

• For each instance of c1 apply the learner trained with instances of c2 and vice-versa,

i.e. calculate the sets U (c1,c2)
O1

and U
(c1,c2)
O1

and U
(c1,c2)
O2

and U
(e1,e2)
O2

respectively.

• Calculate the probabilities P (c1, c2), P (c1, c2), P (c1, c2), P (c1, c2), e.g. by

P (c1, c2) =
|U (c1,c2)
O1

|+ |U (c1,c2)
O2

|
|UO1 |+ |UO2 |

.

• The remaining three joint probabilities can be computed in the same way.

There are three types of learners: Content Learner, Name Learner and Meta Learner. The

Content Learner uses the instance values to train a Bayes classificator. The Name Learner

works similar to the Content Learner, but the name of the respective instance is used. The

name of an instance is the concatenation of the concept names from the root to the cor-

responding concept. The Meta Learner combines both learners and calculates a weighted

average of the two probabilities.

After calculating the probability distributions, the calculated values are combined with

a similarity function, e.g. the Jaccard-coefficient or the MSP measure, in the Similarity

Estimation process. The result of this process is a similarity matrix containing the similarity

values of all possible concept pairs. In the last step, this matrix, domain-specific constraints,

heuristic knowledge and relaxation labeling (a graph algorithm, [Hum83]) are applied to

find the best mapping configuration, i.e. to find pairs of concepts that match with a high

probability. Constraints concern e.g. the neighborhood of a concept (“Two nodes match

if their children match”) or the frequency (“There can be at most one node that matches

concept c1”).

So, Glue makes use of extensional matching techniques, and uses data analysis and statistic

methods. Additionally, Glue uses graph-based matching methods to exploit the structure of

the ontology.

The process executed of Glue is very time-consuming, because for the training of the learners

all instances are used. Furthermore, this may lead to an overfitting.

Automatch

Automatch [BM02] is another instance-based matching system and has been developed at the

University of Fairfax. Originally, it is designed for matching databases schemas, but the used

methods can be adapted to ontology matching tasks. Automatch uses knowledge bases which

include example values to describe the attributes. For each attribute of an schema there is

an attribute dictionary, which consists of possible instance values and probability estimates

(scores). The probability estimates are calculated by applying a Bayesian learning algorithm.

34 Related Work

The values of the dictionary are chosen by following one of three statistical feature selection

strategies: mutual information, information gain and likelihood ratio. The attributes direc-

tories are used to match the two input ontologies using the following algorithm: first of all,

all attributes of the schemas are matched against the attribute dictionary and an individual

match score is calculated. The individual scores are summed up to obtain attribute pair sco-

res, which provide a basis for the application of a minimum cost maximum flow algorithm,

that finally determines an optimal mapping.

Summarized, Automatch makes use of extensional matching techniques, based on the lan-

guage, and data statistics.

The disadvantage of Automatch is, that it is time-consuming and it does not exploit schema

information at all. Hence, entity pairs having the same name are not recognized without

performing the complex instance-matching process. Additionally, Automatch cannot work

with entities or ontologies, that do not have instances.

Dumas

DUMAS (Duplicate-based Matching of Schemas) [BN05] is an instance-based matching ap-

proach developed at the Technical University of Berlin. It uses the existence of fuzzy/appro-

ximate duplicates to find mapping correspondences and does not use any meta information

like attribute names. To use this algorithm, one has to make the assumption that at least a

few duplicates exists; but DUMAS does not search for all duplicates, only the K most similar

instances are considered. The algorithm works as follows: each instance is represented as

a single string. To enhance the quality of the comparison, stop words are removed and the

string gets stemmed. The string represents a bag of words, which is translated into the vector

space model, i.e. each dimension contains a weight for a term of the global vocabulary (i.e.

the set of all used words). The weights are calculated by computing a SoftTFIDF measure

[MYC08], which modifies the common TDIDF [SFW83] measure by taking the natural lo-

garithm of the frequencies. The vector representations are then compared by applying the

cosine measure. To reduce time and space complexity, not all instance pairs are compared,

but the Whirl [CH98] algorithm or another sampling algorithm is used. The instance pairs

are ranked by similarity and the K most similar pairs are selected. The attribute correspon-

dences are deduced from the K high confidence duplicates by following this algorithm: For

each duplicate compare the different attribute values among each other using a normalized

edit distance. The result is a similarity matrix, in which all values beneath a user defined

threshold are set to 0. This matrix is then used as input for an algorithm solving a bipartite

graph matching algorithm which outputs corresponding attributes.

According to the classification schema, DUMAS is an instance-based matching system using

language-based techniques and data statistics.

The drawback of DUMAS is, that it depends on the existence of duplicates. The system

cannot work without duplicates and if the number of duplicates is too low, the matching

quality is rather bad. DUMAS does no use schema information at all, which could reduce

the time-complexity, and enable the matching of entities that do not provide instances.

3.2 Benchmarks 35

Others

There are several other approaches, that also use instance information as input of machine-

learning techniques. [WES08] make use of a Markov Random Fields [Kin80] to classify con-

cept pairs as matched or unmatched. The basis is provided by the instance set which is used

to create term frequency vectors for each attribute of each concept. These attribute vectors

are then compared using the cosine similarity and a vector containing the calculated cosine

similarities represents the concept pair. Finally, the concept feature vector gets classified by

using the Markov Random Field.

[ITH03] use k-statistics (as presented in [Fle73]) on sets of documents to determine the si-

milarity of categories in multiple internet directories. FCA-Merge [SM01] maps ontologies

which share the same instance set. Further instance-based matching systems can be found

in [ES07]; among them are LSD [DDL00] (a predecessor of GLUE), T-tree [Euz94], iMap

[DLD+04] and Caiman [LG01].

3.2 Benchmarks

Currently, there are some frameworks for evaluating ontology matching systems which are

introduced in the following. There are also a few benchmarks for instance matching purpo-

ses. Instance matching aims at finding similar instances between heterogeneous information

sources, e.g. ontologies, and is not equivalent to the instance-based matching of ontologies.

Nevertheless, we examine some instance matching benchmarks according to their adaption

for ontology matching tasks.

3.2.1 OAEI

The largest and most popular framework for testing ontology matching systems is the one

published by the OAEI (see [OAE09] for the OAEI 2009). Since 2005, this initiative has the

aim to provide a basis for system analysis. The OAEI organizes an annual workshop (Ontolo-

gy Matching - OM) which is incorporated with the International Semantic Web Conference.

Different test scenarios including different real-world matching tasks, an instance matching

track and a benchmark are provided on the organizations website around 5 months before

the OM workshop. Everyone can execute all or a subset of the matching tasks and send the

results to the organizers, who evaluate them. The results are presented and discussed in the

OM workshop.

The most interesting part of this framework is the benchmark test series. The benchmark

includes ontologies describing the domain of bibliography. The starting point of every single

matching task within this benchmark is a reference ontology. In 2009 this ontology consists of

33 concepts, 64 properties (40 object properties and 24 data type properties), 56 individuals

and 24 anonymous individuals. The reference ontology is modified using different transfor-

mations to create 50 other ontologies.

The transformations can be divided into six categories:

36 Related Work

• name: spelling mistakes, replacement by random names, different naming conventions

and the translation into another language

• comments: suppression, translation

• specialization hierarchy: expansion or flattening

• instances: suppression

• properties: suppression or restriction

• classes: expansion or flattening

Each of the modified ontologies has to be matched against the reference ontology and the

reference alignment is given. The systems participating in the contest execute all tasks of

the benchmark, compute precision and recall and present their results at the OM workshop

at the International Semantic Web Conference.

The OAEI benchmark ontologies only contain a very limited number of instances and no trans-

formations are executed on the instance level (besides suppression). Hence, this benchmark

is not sufficient for testing instance-based matchers or systems using a lot of instance-based

matching methods.

There is also an instance matching track at the OAEI 2009 including three different

benchmarks, the IIMB benchmark, the A-R-S benchmark and the T-S-D benchmark.

• The IIMB benchmark is created using the ISLab benchmark described in Subsection

3.2.3. In this benchmark only the instance set is modified, schema and structure of the

ontology remain the same. The number of instances is around 300, i.e. it is slightly

higher than in the OAEI benchmark ontologies.

• The A-R-S benchmark consists of three ontologies which all describe the domain of

scientific publications: the Rexa ontology, which has 4 classes and 18492 instances, the

eprints ontology, which contains the same 4 classes as Rexa but less properties and

1130 instances, and SWETO-DBLP.

• The T-S-D benchmark also includes three datasets: TAP, SWETO-testbed and DBpe-

dia 3.2, which contain a bigger number of classes (around 120-200) and attributes and,

additionally, a huge amount of instances.

For each benchmark test, a reference alignment is given as well, which includes similar

instances. To adapt these benchmarks for ontology matching tasks, a reference alignment

containing entity correspondences has to be created. Additionally, the number of variances

in the schemas of the ontologies in the A-R-S and T-S-D benchmark is not sufficient for

performing extensive studies with ontology matching systems.

3.2 Benchmarks 37

3.2.2 STBenchmark

STBenchmark [ATV08] dynamically creates test (named target) ontologies by getting a re-

ference (or source) ontology as input and applying several transformations on it. Basically,

it consists of two components: a basic set of mapping scenarios and a generator for mapping

scenarios and source instances.

• The basic set of mapping scenarios includes transformations like simply copying the

instances, generation of constant instance values for some attributes, flattening or ex-

panding the hierarchy and so on, which are applied on the source ontology to produce

a target ontology.

• The mapping scenario generator SGen gets, as input, a set of parameters like number

of subelements or depth of nesting and creates a mapping scenario as a result. More

complex scenarios are obtained by concatenating multiple mapping scenarios. The

source instance generator IGen uses ToxGene ([BMKL02]), a template-based XML

data generator. First, IGen creates a ToxGene template according to several parameters

(like maximum length of string values) and the source schema. The input template

contains information about the data ranges and the desired vocabulary and is used for

randomly (according to a Gaussian distribution) generating data values.

Equally to other related work, no transformations are applied on the instance level. Fur-

thermore, the use of artificial data is not that useful for testing all aspects of a matching

systems, because they follow a more or less strict pattern and it is difficult to completely

simulate a human creator. Additionally, no reference alignment is given which complicates

the evaluation; thus, the benchmark is not appropriate for comparative system evaluation/-

analysis.

3.2.3 IIMB

The Islab Instance Matching benchmark (IIMB) [FLMV08] is a benchmark created for perfor-

ming instance matching tasks. The reference ontology contains 5 concepts, 17 properties and

302 instances. Equally to the OAEI benchmark, the reference ontology is modified several

times to create test scenarios but the transformations only happen on the instance level. The

instances are modified e.g. by inserting typographical errors, by transforming the structure

or by doing logical transformation.

The reference ontology is quite small and the number of available instances is slightly

higher than the one of the OAEI benchmark but not high enough for extensive evaluation of

instance-based matchers. The transformations done on the instance level are very useful, but

a combination with modified meta information would be necessary for obtaining an ontology

matching benchmark.

38 Related Work

3.3 Summary

This chapter illustrated some of the existing matching systems. The whole field is very hu-

ge, such that many different approaches exists. Most systems focus on the use of schema

and structure information to find entity correspondences, although instances can help to

capture the semantics of attributes and concepts. The presented instance-based matching

systems have some drawbacks and can be improved. In the next chapter, we present two

novel instance-based matchers, which exploit the instance information to find entity corre-

spondences in different ways.

We also presented some evaluation benchmarks in this chapter. The number of existing ones

is not very high and the quality can be enhanced as well, especially in respect to instance-

based matching methods and systems. Hence, we developed an additional benchmark, which

is presented in Chapter 6.

4
Instance-based Matching

Matching of heterogeneous information sources is a problem that appears in many different

applications, in artificial but also in real scenarios. Especially in the scope of the Semantic

Web, ontologies become more and more important and the problem of matching or integra-

ting them is existent, too. The data in the Semantic Web is structured by the concepts

and relations of the underlying ontologies, and the displayed data is stored as instances. It is

obvious, that the amount of instance data provides a high information content. Most existing

matching systems do not make (sufficient) use of the information given by the instance set,

but solely rely on class and structure information. Some kinds of heterogeneity can not be

solved by only considering the schema information, e.g. if labels are chosen very subjectively

or if they are meaningless. This lack motivates the development of instance-based matchers.

In the scope of this thesis, two novel instance-based matchers are presented.

At first, we introduce a matcher that makes use of regular expressions or a catchword list to

describe the instances of a concept. This provides a basis for creating a vectorial representati-

on for each concept, the RECW vector. These vectors are compared by applying a similarity

measure and an alignment is produced. The second approach also tries to characterize the

concepts by regarding their instance sets, but in this case a set of predefined features is deter-

mined. Depending on the data types of the attributes, date, numerical or string features are

calculated. The features provide the basis for a pairwise comparison between attributes of

different ontologies. The attribute similarities are then used to compute a concept similarity.

This chapter is organized as follows:

In Section 4.1 a matcher using regular expressions or catchwords is presented. A second

matching approach, which is based on the calculation of a feature set, is presented in Section

4.2. A short summary concludes this chapter.

40 Instance-based Matching

4.1 Using Regular Expressions to Describe

Instances

Instances provide a huge amount of data which should be used for matching ontologies. The

difficulty is to process the information such that it characterizes the associated concepts as

well as possible. Additionally, the comparability of different instance sets should be facilita-

ted. The most obvious approach is to compare the instances directly, but this uses a lot of

time, space and computing power. The approach presented in this section tries to represent

a set of instances by one single value. Preliminary thoughts have been published in [ZSC08],

the whole work can be found in [ZC09a].

Regular expressions seem to be suitable for this purpose. The best way to find one

regular expression characterizing a set of data values would be to dynamically infer a regular

expression that fits to all the instances. Unfortunately, until now it is very difficult to infer

regular expressions on the basis of positive example values for an alphabet of a regular size. In

[BGNV08] an approach is presented, which is able to infer deterministic regular expressions

from a set of sample values, but the process is still very time-consuming. Additionally,

whenever a sample is used, there is the danger of overfitting or the sample set might not be

representative, such that the regular expression is too general. Hence, we decided to make use

of predefined regular expressions, i.e. for each domain a set of regular expressions describing

typical data values is created. This implicates an expenditure of time before performing

a matching task, but the regular expressions can easily be reused in following matching

processes or in other matching systems.

Nevertheless, it might be difficult to create appropriate regular expressions; either a

domain expert might not be an expert for regular expressions, or the expert for regular

expressions might not be familiar with the domain. To facilitate the process, we provide a

second approach which makes use of catchwords. Catchwords represent data values, that are

often assigned to concepts or attributes of the specific domain, i.e. they ideally represent the

set of the most frequent values.

Independent of the used approach (regular expression or catchword), a fixed, ordered

list including the expressions is created. For each attribute of a concept, the instance set

is extracted and the best fitting regular expression/catchword is assigned to this attribute.

The assigned expressions are collected for all attributes of a concept and are represented

together in a single vector, the RECW (Regular Expression or CatchWord) vector, i.e. for

each concept there is one RECW vector representing its underlying instances. The RECW

vectors of the involved ontologies are compared pairwise by applying the cosine measure; the

resulting similarity matrix provides the basis for determining a mapping.

According to the classification schema presented in 2.6, this matcher is an extensional mat-

ching approach, that uses data analysis techniques.

This section is organized as follows:

First of all, regular expressions are introduced in Subsection 4.1.1. In Subsection 4.1.2 the

first approach is explained and the creation of the RECW vectors is described in Subsection

4.1 Using Regular Expressions to Describe
Instances 41

4.1.3. Afterwards, the second approach is presented in Subsection 4.1.4. In Subsection 4.1.5

the general matching process is clarified and the creation of candidate mappings is explained

in Subsection 4.1.6. Evaluation and discussion of this approach can be found in the separate

evaluation Section 7.1.2.

4.1.1 Regular Expressions

For our approach we need regular expressions which represent a kind of common denominator

of a set of strings, i.e. instances in our case. The goal is to find a regular expression (RegEx

for shorthand) that fits to the majority of instances included in a set. In general, there are

different ways to compose regular expressions. We use the syntax described in [Hab04] to

represent the regular expressions and for a better understanding of the example in Figure 4.1

we give some examples in the following (also see [ZC09a]):

• The regular expression

R.*

matches any string that starts with “R”, followed by an arbitrary number of any cha-

racter or digit (the dot denotes any character and the asterisk denotes that this symbol

can appear arbitrarily often), it would match e.g. “RegEx”.

• Regular expressions can be composed in many different variations. The expression

.*(((c|C)onference)|((w|W)orkshop)).*

would match any string in which “Conference”, “conference”, “Workshop” or “work-

shop” appears.

• For convenience, there are many abbreviations, e.g. “\d” for any digit and “\w” for

any character (small or capital) or digit, and special symbols like “\s” for a whitespace.

An expression, that makes use of these abbreviations, is

[\w-\.]+@([\w-]+\.)+[\w-]{2,4}

which describes email addresses. “[...]{2, 4}” denotes that the expression in the squared

brackets has to occur twice at minimum and 4 times at maximum.

4.1.2 First Approach - Predefined Regular Expressions

As explained before, regular expressions are a good formalism to characterize a set of va-

lues, but the automatic inference is difficult. Hence, this matching approach uses a list of

predefined regular expressions. The list is created manually by a domain expert, which has

ideally experience in the domain the ontologies describe and in the construction of regular

42 Instance-based Matching

expressions; otherwise two or more experts have to work together. It is also thinkable to

search for predefined regular expressions in the web or - which is the long-term goal - to reuse

lists of former matching processes. There might be values that are very unspecific, such that

a list of regular expressions should always contain very general regular expressions that fit to

most of the instances. But this poses a problem since an instance might fit to several regular

expressions. For this purpose, the lists get ordered, from very specialized at the beginning to

very general at the end. For each attribute, we extract k instances, and for each instance we

iterate over the regular expression list. The first regular expression to which the instance fits,

is assigned to the instance. The regular expression that fits to the majority of the instances

of an attribute is assigned to the attribute.

In ontologies, instances assigned to a concept are resources that have a unique URI or identi-

fier, which in most cases also includes information on the semantics of the instances. In some

cases, the name of the instance is (also) represented as a rdfs:label attribute, but in other

cases the label is only encoded in the instance name. The following two ontology snippets

should clarify this observation.

In this snippet the instance name a43836633 is senseless and the actual name of the instance

is included in the rdfs:label tag.

<Proceedings rdf:about="#a32071928">

<rdfs:label>Proceedings of the First European Semantic Web Symposium</rdfs:label>

<rdfs:year>1998<rdfs:year>

</Proceedings>

Another possibility to model the same fact would be:

<Proceedings rdf:about="#ProceedingsOfTheFirstEuropeanSemanticWebSymposium">

<rdfs:year>1998<rdfs:year>

</Proceedings>

In contrast to the first possibility, in the latter case the name of the instance would not

be considered as an attribute instance value and consequently would not take part in the

similarity calculation process. Thus, we decided to create an additional attribute named

label for each concept, that does not have such an attribute by definition. The instance

names are then assigned to this new attribute and join in the feature calculation process as

every other instance.

4.1 Using Regular Expressions to Describe
Instances 43

4.1.3 Arranging Lists and Creating Vectors

As explained before, the regular expressions describing the instances of a domain are created

manually by experts and collected in a list. Since all instances should only get assigned to

one regular expression, i.e. the first fitting one, the list needs to be ordered such that very

special regular expressions are at the top and very general expressions are on the bottom of

the list. In our case “very special” means that the fewest number of instances matches this

expression. For this purposes we extract a sample set of instances from one ontology and

“train” the list using them. The used procedure is described in Algorithm 1.

input : unordered list u containing d RegEx
output: ordered RegEx list l
init. d-dim array with zeros
int[] counter=zeros(1,d);
count RegEx matches
forall ontology o, concept c ∈ o, attribute a ∈ c do

insert k attribute instances i ∈ a in set Ia;
forall i ∈ Ia do

for r = 1, ..., d do
if r-th RegEx of list u matches instance i then

counter[r]++;
end

end

end

end
list l =emptyList;
/*sort list l according to counter[]*/
for r = 1, ..., d do

find m with counter[m] = max! and counter[m]≥ 0;
l.appendAtBeginning(m-th RegEx of list u);
counter[m]=-1;

end
return l

Algorithm 1: Arranging the regular expression list

First of all, for each regular expression a counter is initialized. For each attribute a a

set Ia containing k instances is extracted. Then we iterate over the regular expression list

u and compare the instances to the regular expressions. Whenever an instance matches a

regular expression, the counter of the corresponding regular expression is incremented. After

repeating this process for all attributes of the ontology the list is ordered according to the

counter values. The regular expression which describes the least instances, i.e. whose counter

has the lowest value, is set to the top of the list. The following expression are ordered

ascending concerning their counter values and as a result we obtain the ordered list l. Now,

we can define a bijective function δ : {1, ..., d} → Θ, where Θ is the subspace of regular

expressions that are contained in l (and u), with

44 Instance-based Matching

δ(i) = ri,

where r is the i-th regular expression of the ordered regular expression list l.

As explained before in Subsection 4.1.2, the ordered regular expression list is used to assign

regular expressions to attributes. According to this process, we can now define a function

reg : A×Θ from the attribute space A to the space of regular expression with

reg(a) = argmaxrk(countera[rk]), 1 ≤ k ≤ d,

where a is an attribute of a certain concept and rk the regular expression that is assigned to

a (i.e. to the majority of examined instances belonging to this attribute). After determining

the regular expression assignments, they are summarized for each concept and represented

in a vector representation, the RECW vector. The RECW vector v ∈ Nd, representing a

concept c, is the vector whose components vi (i = 1, ..., d) contain the number of assignments

from δ(i) (i.e. the i-th regular expression in the RegEx list l) to an attribute in c. Hence, the

sum of all components of v equals the number of attributes in c. The algorithm of building

the vector is clarified in Algorithm 2.

input : concept c, ordered RegEx list l
output: RECW vector v
calculate δ and δ−1;
calculate function reg:
forall attribute a ∈ concept c do

compare certain amount of instances with RegEx list l to determine reg(a);
end
initialize RECW vector v:
forall component vi, 1 ≤ i ≤ d do

vi = 0;
end
count allocated RegEx in accordant component:
forall attribute a ∈ c do

inc(vδ−1(reg(a)), 1);
end
return v

Algorithm 2: Building the RECW vector

The process gets clarified by the example that is displayed in Figure 4.1.

In general, regular expressions that fit to most of the instances of an attribute are assigned

to the attribute. In the case, that there is a very special regular expression (i.e. an expression

at the top of the list), that describes many of the instances of an attribute, but less that

k/2 (due to the randomly selection of the k instances, or due to spelling mistakes), the

attribute would be assigned to the less specific regular expression. However, the major goal

of our approach is to find the most specific regular expression for each attribute. For this

purpose, we can use a weighted regular assignment approach. As before, the instances are

matched to the regular expression list and the first fitting regular expression is assigned to

4.1 Using Regular Expressions to Describe
Instances 45

Instances of concept prof.

Attribute assignments

Stefan 0049211104532
Martin Schmidt +4989453212
John Meyer 063543217

name family name eMail address phone
Conrad conrad@cs.uni-duesseldorf.de

mschmidt@ucla.com
John.Meyer@gmx.net

[\w-\.]+@([\w-]+\.)+[\w-]{2,4}
(00|\+)+[0-9]{2,3}(_|.)+[0-9]*

RegEx list
eMail
phone number
affiliation .*(Institute | institute | departement | Departement)*.*
number \d+
string .*

Attribute Assigned Regular Expression
name string
family name string
eMail address eMail
phone phone number

corresponding RECW vector

(1,1,0,0,2)

eMail string

phone number

Figure 4.1: Creation of RECW vectors, an example

the instance, i.e. the counter of the corresponding regular expression is incremented. This

process is repeated for all k instances of an attribute. Normally, the regular expression with

the highest counter would be assigned to the attribute. In the weighted approach the counters

are multiplied by a weight wri which depends on the position of the regular expression in the

ordered list l:

wri = 1
i · d

with i being the position of ri in the ordered list l and d being the total number of regular

expressions. Using this weighting formula, the first, i.e the most specific regular expression,

gets the highest weight and the last the lowest weight. The assignment of a regular expression

to an attribute is then determined using:

reg(a) = argmaxrk(wrk
∗ countera[rk]), 1 ≤ k ≤ d, (4.1)

4.1.4 Second Approach - Transforming Catchwords

The building of regular expressions is the most precise way to characterize instance sets, but

in some cases it might be difficult to determine them. On the one hand, there might not be an

expert which has experience in both, the domain and in formulating regular expressions. On

the other hand, it is very time-consuming to build complex regular expressions. To facilitate

the matching process, we decided to expand the approach described before by offering the

possibility to specify so-called “catchwords” instead of regular expressions.

46 Instance-based Matching

 RegEx / Catchword
file

Ontology
O

1

Ontology
O

2

Parser Create RegEx vectors Calculate matrix with
cosine similarities

Create Mapping

instances vectors matrix

1:1 &1:n
mappings

Figure 4.2: Instance-Based Matching Process

In our case, catchwords denote groups of strings (s1, s2, ..., sn), where the values si re-

present frequent values (strings or substrings) related to an attribute of the ontology. When

creating the catchword list, the domain expert should think of values that are typical for the

domain the ontology describes. In our example frequent substrings could be “@” or “.com”

for an attribute like email, or the word “Institute” might appear in many instances describing

the affiliation of a person. Values, that are assigned to the same attribute, form one string

set (or catchword group) which is treated equally to a singular expression. Obviously, it is

not always easy to specify frequent substrings for all attributes. The instances of an attribute

like “name” generally do not contain common substrings, but there might be values, that

appear more often than others, e.g. “Smith”. The expert manually determines such frequent

values. Alternatively, one can extract sample values for each attribute out of the instance

sets, where the most frequent values should be selected. This process is also required for

numerical attributes, because it is difficult to specify frequent values manually. Furthermore,

each catchword list is automatically extended by values of standard attributes (with limited

space of possible instances) like month or day.

The process of obtaining the RECW vectors remains nearly the same. The instances set

of each attribute is matched against the catchword list. An instances matches a catchword

group (s1, s2, ..., sn) if the instance equals one of the values si or if the instance includes one

of the si as substring. Due to the lack of order in the catchword list, an instance might map

to more than one catchword group, but this does not influence the process; it only means

that the counters of more than one catchword group might be incremented. Apart from that,

the process of building the RECW vector is equal to the one described in Algorithm 2 (just

replace RegEx by catchword group).

4.1.5 General Process

The two approaches described before calculate the RECW vectors for each concept of the

input ontologies. To determine an alignment between the ontologies, we have to compare the

vectors. The general flow of the matching method is shown in Figure 4.2.

As input we need a set of k instances for each concept of the two ontologies O1, O2 that

4.1 Using Regular Expressions to Describe
Instances 47

should be matched. Using these instance sets we compute the RECW vector sets VO1 =

{v1, ..., vn} and WO2 = {w1, ..., wm} with the help of (ordered) regular expressions/catchword

lists as described before. Each vector contains digits representing the number of attributes of

a specific concept that are assigned to the regular expression/catchword group. Thereafter,

the vectors are compared by calculating a similarity with the cosine measure:

simcos(v, w) =
v ∗ w
|v| · |w|

, (4.2)

with v and w being two RECW vectors. The values contained in the vector do not differ very

much (because the sum of them always equals the number of attributes which is not that

varying) and in many dimensions the value is 0. Due to this, the Manhattan or Euclidean

distance of the vectors would be rather small. The cosine measure better considers the

different dimensions, i.e. the distance is smaller if the vectors share values > 0 in the same

dimension and dimensions, in which only one vector has a value, are neglected completely;

hence it produces better results for this application.

After calculating simcos for each (vi, wj) ∈ VO1 ×WO2 we obtain a similarity matrix which

provides the basis for the computation of an alignment.

4.1.6 Creation of Candidate Mapping

Using the similarity matrix with the cosine similarities, an alignment can be computed. The

process is described in Algorithm 3, in which both 1:1 and 1:n mappings are considered. The

process of finding 1:n mappings is explained in detail in Example 4.

The similarity matrix is taken as input and all concept pairs that have a similarity of tmax
(a predefined threshold) or higher are directly inserted into the mapping set Map, these

mappings are 1:1 mappings. The process of finding 1:n mappings is motivated by the following

Example:

Example 4. Considering our example ontologies in Figure 2.1 and 2.3, we see that a pro-

fessor and his email address are modeled differently. The first ontology has two concepts,

“professor” and “email”, where professor contains three attributes “phone”, “name” and

“surname” and email is an object property with the attribute “address”. If the same re-

gular expression list is used as in Figure 4.1 the two concepts could be represented by the

vectors vprofessor = (0, 0, 0, 1, 2) and vaddress = (1, 1, 0, 0, 0). The same fact is modeled in

the second ontology within the concept “prof.” which is represented by the vector wprof. =

(1, 1, 0, 0, 2). The cosine similarity between these vectors is simcos(vprofessor, wprof.) = 0.73

and simcos(vaddress, wprof.) = 0.58. These values might be below a threshold and consequently,

these concept pairs would not be considered in a mapping. For humans it is obvious that the

two concepts “professor” and “address” map to the concept “prof.”. Our algorithm is also

able to detect such relations, because it also compares combinations of concepts by adding the

corresponding RECW vectors. In this example “professor and email” have a common RECW

vector which is vprofessor&address = (1, 1, 0, 1, 2) and the cosine similarity to wprof. is 0.93

which indicates a mapping.

48 Instance-based Matching

The process of finding 1:n mappings works as follows. For each concept ci ∈ O1 a

candidate mapping set CMi, which contains all concepts cj ∈ O2 having a similarity between

tmin and tmax to concept ci ∈ O1, is generated. Construct the power set P of all elements in

CMi to calculate all possible combinations of the concepts cj of O2. For each combination

included in P (CMi) sum up the corresponding RECW vectors (the result is a vector wcm)

and calculate the cosine similarity between concept vectors vi and wcm. If the new similarity

is above tmax, add the corresponding concepts to Map. The whole process has to be repeated

for the second ontology. As a result, we obtain the final set of mapping correspondences.

input : similarity matrix M
with i identifier for a concept vector of O1 and j of O2

[i, j] cosine similarity of the vectors
minimum threshold tmin
maximum threshold tmax

output: set Map of 1:n mappings
for i = 0, ...,M.length()− 1 do

define set CMi containing mapping candidates
for j = 0, ...,M.length()− 1 do

if [i, j] ≥ tmax then
Map← (i, j)

end
else if tmin < [i, j] < tmax then

CMi ← j
end

end
construct power set P(CMi)
forall cm ∈ P(CMi) do

sum up vectors for all concepts, whose identifier is in cm
result: vector wcm
calculate sim sc of concept vector i and wcm
if sc > tmax then

Map← (i, cm)
end

end

end
return Map

Algorithm 3: Finding 1:n Mappings

4.1 Using Regular Expressions to Describe
Instances 49

4.1.7 Finding Attribute Correspondences

The approach described so far only determines concept correspondences; attributes or rela-

tions are not considered. To find property correspondences, we use those concept correspon-

dences that have a high confidence, i.e. a high similarity, and that are most probably a correct

match. For each concept of such a high confidence pair, the properties are compared pairwise

using the regular expression, they are assigned to, and a string-based similarity measure, e.g.

based on the edit-distance, that compares the attribute names. One can limit the attribute

comparison pairs to those, that have instances and hence are assigned to a regular expression,

or extend the approach and compare all attributes of the concepts. For attributes, that do

not contain instances, only the string similarity is calculated.

50 Instance-based Matching

4.2 Combing Concept and Instance Features

The matching method described in the previous section aims at characterizing the whole in-

stance set of an attribute by one single feature, i.e. the assignment to a regular expression or

a catchword group. The instance-based matching method proposed in this section calculates

a set of features, e.g. average length or frequent values, for all properties of each concept that

provides instances. In this process we distinguish between dates, numerical and string-based

attribute values and calculate specific features. Properties of different ontologies are then

compared by calculating a similarity using the corresponding features. Finally, the property

similarities are propagated to an overall concept similarity.

Preliminary work has been published in [ZC09b]. The work described in this paper has been

extended by adding some extra features and by considering concept information, i.e. by cal-

culating concept features as well to enhance the matching quality.

With regard to the classification of Section 2.6, the matcher presented in this section is

mainly extensional and uses data analysis and statistic techniques as well as language-based

methods. Furthermore, for the concept features linguistics resources are used and string-

based matching methods are used.

The remainder of this section is organized as follows: First, the general process is descri-

bed in Subsection 4.2.1; the process of extracting features is explained in Subsection 4.2.2.

The different features belonging to the different data types are presented in the following

subsections: Subsection 4.2.3 describes the concept features, Subsection 4.2.4 lists the nume-

ric features, the string features are presented in Subsection 4.2.5 and the date features are

described in Subsection 4.2.6. The process of comparing the features and determining an

alignment is included in Subsection 4.2.7. An evaluation of this approach and thoughts on

future work can be found in the additional evaluation Section 7.1.3.

4.2.1 General Process

Only concepts that contain instances are interesting for our approach. Each concept, that

provides instances, is involved in the feature calculation process. Concept instances are split

into attribute instances and for each attribute concept-based features and date, numeric

or string-based features are calculated (depending on the type). Additionally, the resource

URIs assigned to object properties are included in the process. The result is a feature cube

which contains feature values for each property of each concept. If there are no instances

for a single property, the values of the numeric, date or string features are set to “null”

and only the concept-based features obtain values. This process is executed for both input

ontologies; hence two feature cubes are created. To match the two ontologies, the feature

cubes have to be compared according to the following procedure: As usual, the concepts of

the two ontologies are compared in pairs, in which each concept of one ontology is compared

to each concept of the other ontology. For each concept pair the corresponding slice of the

feature cube is extracted. The slice is then divided into single feature vectors that belong to

4.2 Combing Concept and Instance Features 51

one property. The properties of one concept are compared with all properties of the other

concept by applying the similarity function described in Section 4.2.8. It is important to state

that only similar data types are compared, i.e. numeric features are compared with numeric

features and the same holds for date and string features. The result of the comparison

process is a similarity matrix which contains similarity values for each pair of properties of

each concept (besides the properties of different types; in these cases the similarity value is

set to “null”). Using this matrix, the similarities on the property level can be used to obtain

property correspondences and finally, the similarities can be propagated to the concept level,

such that concept mapping candidates can be determined.

Ontology
O

1

Ontology
O

2

Feature Calculation
with property instances 1:1

mappings

Onto1

co
nc

ep
t

property fea
tur

e

Onto2

co
nc

ep
t

property fea
tur

e

Sim
matrix

Similarity Calculation

property

pr
op

er
ty

Figure 4.3: Matching Process

4.2.2 Extracting Features

Our matching approach focuses on the instances of an ontology, but adds several concept-

based features to exploit the expressiveness of the meta information. Normally, instances

belong to whole concepts; for our purpose the instances are separated according to the at-

tributes they describe. It is easier to capture the semantics, i.e. to calculate features, for a

single attribute, that has similar instance values, than for all instances of a concept at once.

Hence, for each attribute of a concept we obtain an instance set, which provides a basis for the

feature calculation process. Due to this procedure, it does not matter if a concept instance

only contains attribute instances for some attributes, because they are treated independently

anyway.

Our definition of attribute only includes datatype properties. Since concepts often contain

many object properties, we decided to include them in the feature calculation process as

well. Object properties denote the relation of two concepts and their instances respectively,

i.e. the value of an object property is another resource. The resource URI is treated as the in-

stance of the object property. In the following, datatype and object properties are subsumed

as properties. The pseudo code Algorithm 4 clarifies the process of feature extraction.

For each concept of an ontology the corresponding property set Pc is extracted. For

each p ∈ Pc k instances are extracted, independently of the other properties of the concept.

Thereupon, each instance set is used to calculate the different features. First of all, several

52 Instance-based Matching

input : concept c ∈ C, threshold k
output: feature vector set Fc

Extract all properties of c→ Pc
forall properties p ∈ Pc do

extract k property instances Ip;
FeatureCalculation(Ip) ← feature vector fi
Fc → fi

end
return Fc

Algorithm 4: Extracting Features

concept features (including property name etc.) are determined. Depending on the type of

the instances, we calculate numerical, date or string features as well. If there are no instances

for a property, only the concept features are determined. Finally, there is a feature set for

each property which provides the basis for the propertywise comparison of two concepts.

4.2.3 Concept Features

Previous work showed, that meta information has to be considered if the matching quality

should be high for different matching scenarios, because ontologies do not always contain

instances for all concepts. In most of the cases the comparison of concept and property

names or comments provides good results, if the ontologies are written in the same language.

Naturally, the use of language is always subjective; people use a different vocabulary and

there are a lot of synonyms and homonyms to be considered. However, the use of concept-

based matching methods is essential to find mappings if no other information (like instances)

is available.

The matching approach proposed in this section can be integrated in a more complex system

(see Chapter 5) to increase the influence of meta information-based methods. By now, we

focus on a few important features extracted out of the meta information to complete our

feature set. Among them are:

• property name

• name of concept and name of father concept (if available)

• property comments; only key words; elimination of stop words, stemming; if no com-

ment is available, extract definitions from thesauri

• synonyms of the property name

The name of the property is the most obvious meta information that can be used for compa-

rison. If two properties have the same or a similar name, it is very likely that they describe

the same real world fact (except in the case of homonyms).

The surrounding context of a concept might help to limit the semantics of the property (espe-

cially for synonyms). Since the features are calculated for each property of a concept, the

4.2 Combing Concept and Instance Features 53

value of the concept and father concept name feature is the same for all properties of each

concept.

Ontologies often include comments expressed in natural language to describe the meaning of

an entity, e.g. of attributes. If property comments are available, keywords are extracted by

eliminating stop words and using a stemming algorithm. Alternatively, a property descripti-

on is extracted using a thesauri (e.g. WordNet).

As described in Subsection 2.4, synonyms are a well known problem in the matching process.

For this purpose, the synonyms of the property are determined using WordNet [Wor10].

4.2.4 Numerical Features

Attribute values are often expressed in numerical values; object properties are always treated

as string features. On the one hand, it is easier to calculate features out of a set of numerical

values because there are a lot of different measures (from statistics) that can be applied.

On the other hand, the used alphabet is limited to eleven elements (ten digits and a point),

hence the range of different values is smaller in contrast to string attributes. Besides this,

numbers do not contain obvious semantics like attributes expressed in natural language, i.e.

the semantics of numeric attributes is more difficult to capture if no meta information is

implied. However, we try to bridge this semantic gap by calculating various features that

describe the numerical data set as detailed as possible. Additionally, some features using

the meta information of the corresponding concept and its attributes are determined (see

Subsection 4.2.3). In summarization, the following features are calculated for each attribute

that includes numerical instances:

• average value

• range, i.e. minimum and maximum value

• variance

• coefficient of variance

• set of frequent values

• most frequent number of digits (in total and divided into places before and after the

decimal point)

The average value is the most obvious feature that can be calculated out of a set of numeric

values. In combination with the value range, it gives a detailed overview of the set. Both

values can be a strong hint for similarity, e.g. the range of marks is quite similar in general.

But minimum and maximum value could also be outliers occurred by typing mistakes or

accidentally using different scales. In this case the variance could be a useful measure.

If two instance sets include the same data but it is expressed in different scales, average value

and range might differ significantly. For this purpose, the coefficient of variance is implicated

in the feature set. The coefficient of variance is defined as the standard deviation divided by

54 Instance-based Matching

the average value and provides good results for data sets expressing similar data in different

scales.

It is very likely that two instance sets describing the same real world fact share some values.

Several matching systems search for duplicates and use this information for the matching

process. Our approach extracts the most frequent values; values are “frequent” if x percent

of the instances in this set take this value. The threshold x can be defined by the user or it

can be set to a fixed number of frequent values that should be returned (if possible).

The last feature, the most frequent number of digits, is divided into two parts: first of all, all

digits are counted independently of their position; additionally, the number of digits before

and after the decimal point is determined. On the one hand, this feature expresses the

accuracy of the values (the decimal places), and on the other hand, it says something about

the average length of the values. As said before the range may be influenced by outliers, and

the length of the average value may not be the most frequent length within the instance set.

4.2.5 String Features

In general, most of the instance values may be strings; especially the resource values of object

properties are always treated as strings. In contrast to numerical values, the used alphabet is

much bigger which results in a huge variety of instances. String values are normally expressed

in terms of a natural language (excluding values like DNA sequences e.g.), which means that

the values might be subjective. The same address can be expressed using a different format

or using abbreviations; a bigger difference might occur if strings represent a comment or a

rating a person has composed to describe a book or a film. As explained before, there is also

the problem of using synonyms and homonyms and the used vocabulary might differ from

person to person. Furthermore, spelling mistakes might occur. Due to all these facts it is

quite difficult to compare string values in some cases. Our approach tries to compare sets of

strings by reducing them to some features:

• average length and variance

• common substrings

• set of frequent values

• average number of words (or tokens) and variance

• set of used special chars

• ratio of chars and numbers

• regular expression

The length of a string might be characteristic for certain attributes. Descriptions are longer

than names, but names are usually longer than abbreviated strings describing the sex oder

another status for example. By calculating the average length and the variance we obtain

two useful features.

4.2 Combing Concept and Instance Features 55

Common substrings are very interesting; they define a kind of pattern, which most of the

instances follow. For our purpose common substrings are strings with a minimum length of 3,

that are included in xc percent of the values. The limitation of the length on a value greater

or equal than three has been done due to the fact, that the frequency of substrings of length

two is too high and too expressionless. If an instance value consists of more than one word,

common substrings are searched for each word of length ≥ 3.

The frequent value feature is similar to the search for duplicates that many matching systems

use. The definition of frequent is equivalent to the one given for the calculation of frequent

numerical values.

For comparison it is also important to determine the average number of words. Names might

be described in two words, comments are much longer. It is also very important to get an

overview of the length distribution, so the variance is calculated as well.

String values often contain more than just simple characters, namely digits and or special

chars. Both give a good hint on the semantics of the property: special chars like “@” are

included in email addresses, normal addresses include points and digits etc. In fact, special

chars are frequent substrings of length 1 but they are not included in the common substring

set.

To determine the average number of used digits, the ratio between chars and number is cal-

culated.

The last feature tries to characterize the instance set by creating a regular expression, that

fits to most of the instances. The regular expressions are very simple and do only include

the following symbols: c for one character, s for string (more than one character, at most

one word), d for digit and the included special chars. The regular expression fitting the value

“Madison Ave 234” would be “ssd”; a value like “zaiss@cs.uni-duesseldorf.de” is described

by the regular expression “s@s.s-s.s”.

4.2.6 Date Features

In our previous approach (described in [ZC09b]) we focused on string and numeric features;

dates have been treated as string, but the string features are not expressive enough to di-

stinguish between different dates, because the average length and the used special chars are

similar in most cases. Consequently, we decided to calculate special features for date values:

• day, month and year range

• frequent days, months and years

First of all, the date values are split into day, month and year. For each part of the date the

range is calculated. Starting dates of new employees might always be on the beginning of a

month and earnings payments either on the 15th or on the last day of the month. Using the

range together with frequent values for day, month or year we can better distinguish between

different attributes including dates.

56 Instance-based Matching

4.2.7 Comparing Features

The previous subsections describe the different features that are calculated by using the

instance sets of an properties. As a result we obtain two feature cubes (one for each ontology)

which contain feature values for all attributes of all concepts. To match the two ontologies,

the two cubes have to be compared in an appropriate way. For this purpose, the cubes

are sliced according to the concepts and then divided into feature vectors describing single

attributes. These feature vectors are compared using a similarity function. In general, there

are a lot of different possibilities to calculate a similarity value between two vectors. In our

case it is quite difficult to find an appropriate measure, because the values of the feature

vectors are heterogeneous; they contain numeric and string values or sets of different values.

Section 4.2.8 describes the similarity measures used for evaluation in this paper. The result

of determining a similarity between all pairs of attributes is a similarity matrix, which is used

to calculate property correspondences and subsequently, to propagate a concept similarity

(see Section 4.2.9). Finally, the concept similarities provide a basis for computing a mapping

(see Section 4.2.10).

Pseudo code Algorithm 5 gives an overview of the comparing process (O1 and O2 are the two

ontologies to be matched).

input : feature cubes F1 of O, F2 of P
output: Mapping M

Define set FO1 , FO2 as the set of feature vectors of O1 and O2;
Define matrix Msim;
forall concept ck ∈ O1, cm ∈ O2 do

Slice the cube → slicecl ;
forall attributes acl ∈ slicecl do

Divide slice according to property pcl → feature vector fpcl
;

FX ← fpcl
, X = O1 or O2;

forall fpck
∈ FO1 and fpcm

∈ FO2 do
Msim ← SimilarityCalculation(fpck

, fpcm
);

end

end

end
MconceptSim = SimilarityPropagation(Msim);
DeterminationOfMapping (MconceptSim);
return Fc

Algorithm 5: Comparing Features

4.2.8 Similarity Function

The proposed idea is based on the calculation of features for each property of an concept.

These features are compared pairwise using a similarity measure. The features are hetero-

geneous, consequently, the choice of an appropriate measure is not easy; the vectors include

4.2 Combing Concept and Instance Features 57

numeric values (e.g. average length), string values (like names) and sets of numbers or strings.

For comparing strings, measure like the edit distance can be used. Numbers can easily be

compared by calculating the absolute result of their difference. Both distances can be ex-

tended such that sets of numbers or strings are measured. The first measure we propose to

compare heterogeneous feature vectors is called HFD (heterogeneous feature distance) and

it is similar to the Euclidean function. It is defined as follows:

HFD(f, g) =

√√√√ m∑
p=1

dp(fp, gp)2 (4.3)

The feature vectors f and g are compared dimension by dimension (from 1 to m). dp is a

distance function that is specific for any kind of value pair the feature vectors can contain

and it is defined as:

dp =

{ ed(fp, gp) if fp, gp are strings

ndiff (fp, gp) if fp, gp are numbers

HFD(fp, gp) if fp, gp are sets

(4.4)

String pairs are compared using an implementation of the edit distance ed as introduced in

Subsection 2.5. Numeric values are compared using the ndiff measure (explained below).

ndiff (fp, gp) =
|fp − gp|
range

(4.5)

The range is used to normalize the difference of the two numbers and is calculated by consi-

dering all available values for this feature.

Sets of strings or numbers are recursively compared with the HFD measure.

fp and gp can not have different types, because the values of the vectors f and g are ordered

(according to the different features). Furthermore, f and g are only compared, if they have

the same type, too, i.e. the composition of the vectors is always the same.

The HFD measure is a normalized distance measure, and since the use of similarities is more

usual in matching scenarios, it can be easily transformed into a similarity measure HFS by

using the following function:

HFS(f, g) = 1−HFD(f, g) (4.6)

The HFD measure can easily be modified by using other distance functions for the different

datatypes. The edit distance could be replaced by another string comparison measure like

string equality or the n-gram measure. The similarity of numbers could be calculated in an

unnormalized way or using a number equality measure.

There are also more possibilities for comparing sets of numbers, e.g. the cosine similarity.

Additionally, instead of using the Euclidean function one can use the Manhattan distance

58 Instance-based Matching

or another comparison measure (see Subsection 2.5 or [WM97] for an overview of different

measures). For evaluation purposes we use some of these measures (see Section 7.1.3).

4.2.9 Propagating Similarity

Each property of a concept ck is compared to each property of another concept cm, i.e. the

corresponding feature vectors are compared as described in the previous section. The result

is a similarity matrix. All property pairs that have a similarity above a fixed threshold

and that do not participate in another correspondences are part of the alignment (also see

Subsection 4.2.10). Since the mapping should also contain pairs of matched concepts, the

property similarity has to be propagated up to the concepts.

In our approach we concentrate on the following two propagation strategies:

• maximum approach

• stable approach

The maximum approach (see e.g. [EM07]) determines the maximum similarity for each pro-

perty to another one, sums up all similarities and divides the sum by the number of properties.

The advantage of this approach is the fact that all similarities and all attributes are taken

into account. An illustration of the process is shown in the following example:

Assume having the two concepts (with their related attributes in brackets) professor(name,

surname) and prof.(name, family name, phone, eMail address). The different attributes could

have the similarities shown in Table 4.1.

sim name family name phone eMail address

name 0.9 0.3 0.1 0.1

surname 0.3 0.86 0.1 0.1

Table 4.1: Example attribute similarities

The maximum approach propagates the similarity from the attributes similarities to a concept

similarity using the following equation:

simconcept =
maxsim(name) + ...+ maxsim(eMailaddress)

#professor + #prof.
(4.7)

Thus, the maximum similarity value of each property is determined and the similarities of

all properties are summed up. Following, this sum is divided by the number of properties.

In this case, the concept similarity between “professor” and “prof.” is computed as follows:

simconcept =
1
6
∗ (max

sim
(0.9, 0.3) + max

sim
(0.3, 0.86) + ...

...+ max
sim

(0.3, 0.86, 0.1, 0.1)) (4.8)

4.2 Combing Concept and Instance Features 59

Consequentely, the similarity of the two concepts is determined by using the maximum ap-

proach is 0.62.

The stable approach is related to the “stable marriage problem”. We try to find a map-

ping between the two property sets based on the calculated similarities which is as optimal

as possible, which has the consequence, that an entity is not always mapped to its maximum

similarity partner. A detailed description of the used method, the Gale-Shapley algorithm,

is given in [GS62]. The similarities of the mapped property pairs are summed up and nor-

malized. An advantage of this approach is that it is more precise in respect to the definition

of the matching problem, i.e. if concepts are similar there are very likely pairs of similar

attributes. A disadvantage is that not all attributes participate in the mapping if the number

of attributes of the two concepts differs and hence they are not considered when calculating

the concept similarity.

To illustrate the stable approach we use the same concepts and similarities as in the

previous example. The algorithm searches for a stable mapping configuration, the details of

the Gale-Shapley algorithm are omitted here. In this case, the mapped property pairs are:

(name, name) and (surname, familiy name). These attributes are mapped because they share

the highest similarity (which is the most trivial case for a stable mapping). The similarity

values of the mapped pairs are summed up and divided by their number. Hence, the concept

similarity of the two concepts using the stable approach is 0.88.

4.2.10 Determination of a Mapping

The similarity propagation step transforms property similarities to concept similarities. Fi-

nally, we have to calculate a set of mapped concepts to extend the set of correspondences. In

our case we determine pairs of concept that have a similarity above a fixed threshold t. All

similarities below the threshold are rejected. To obtain the best mapping configuration out

of the remaining concept pairs, the following strategy is used:

1. Search the concept pair (ck, cm) with the highest similarity value and mark it as map-

ped.

2. Reject all unmarked pairs (ck, x) and (y, cm) with x, y being any concepts.

3. Repeat step 1 and 2 until the list of mapping candidates is empty or only contains

marked pairs.

This approach is a composition of the propagation strategies described in the previous

subsection. In our evaluation the described strategy is used, but the maximum or the stable

approach could also be used to determine a mapping.

60 Instance-based Matching

4.3 Summary

In this chapter we presented two novel instance-based matchers. The first one uses regular

expressions or catchwords to characterize attributes. For each concept, the regular expressions

describing its attributes are represented in a RECW vector. These vectors are compared

using the cosine measure to find concept correspondences. The concept similarity can be

propagated downwards to the property level.

The second approach uses the instances of an attribute to calculate several features depending

on the type of the property. These features can be compared pairwise using a similarity

function. The property similarities can then be used to find concept correspondences.

Instance-based methods are rather time-consuming and not all concepts or properties contain

instances. Consequently, the instance-based matchers should be integrated into a complex

matching system, which also contains schema and structure matcher. In the next chapter

MICU is introduced, which is a matching system that combines different matchers and interacts

with the user.

5
The Matching System

The instance-based matchers described in the last section are only applicable for concepts

with instances and in general, not all concepts of an ontology contain instances.

In most hierarchical ontologies instances only exist for leaf concepts, e.g. ontologies de-

scribing web directories include the different categories and the relations among them, but

instances (documents or links), can only be found on the lowest level. Hence, it is very

useful to combine instance-based matchers with other matching methods exploiting schema

and structure information. In the scope of this thesis we integrated the two instance-based

matchers into a complex matching system name MICU (Matching using Instances, Concepts

and the User), which makes use of previous alignments and several schema- and structure-

based matching methods. Additionally, the user interacts with the matching system during

the matching process and helps increasing the matching quality.

The remainder of this chapter is organized as follows: Section 5.1 presents the architecture of

MICU. The used matching methods are explained detailed in Section 5.2. The user interaction

and the reuse of previous alignments is described in Section 5.3. MICU is evaluated using

ONTOBI and the OAEI benchmark; the results are described and discussed in the separate

evaluation Chapter 7.

5.1 Architecture

MICU is a matching system that combines concept-, instance- and structure-based matching

methods and interacts with the user to increase the match quality. The architecture is shown

in Figure 5.1, summarized in Algorithm 6 and explained afterwards.

Parsing and Extracting

First of all, the ontologies are parsed and all pieces of meta information like concept and

attribute names or comments are extracted. Additionally, for each concept it is noted if there

are instances belonging to it, but the instances are not extracted, yet.

62 The Matching System

input : ontologies O1, O2
output: alignment A

Parsing and Extracting(O1, O2) →
global set E = {(ei, ej), ei ∈ O1, ej ∈ O2}
A = A ∪ReuseOfAlignment(E);
A = A ∪ SchemaBasedMethods(E);
A = A ∪ InstanceBasedMethods(E);
A = A ∪ StructureBasedMethods(E);
A← AskUser(E);
return A

Algorithm 6: Matching Process

Reuse of alignments

To reuse alignments of previous match results, all mappings that have been confirmed

by a user in previous matching processes are stored in a database. This database is queried

for each concept, attribute or relation pair as the first step in the matching process. If the

pair exists in the database, the corresponding similarity value is obtained. If this value is

above a certain threshold tmapRep, the concept pair is directly added to the alignment. The

advantage of this procedure is that the matching process of entities that already have been

matched in previous matching processes can be shortened.

Schema-based methods

After looking up in the mapping repository, the remaining entity pairs are compared using

several schema-based methods, which exploit concept, attribute and relation labels and com-

ments. Pairs that have a similarity above a certain threshold tsch are directly added to the

alignment; pairs with a similarity above a threshold tmapCand but beneath tsch are presented

to the user who has to decide, whether the entities have to be aligned or not. Confirmed pairs

are added to the alignment, rejected pairs are still considered in further matching methods.

Instance-based methods

All remaining pairs in which both participating entities provide instances are the input

of the instance-based matching methods. This process is mainly performed on the attribute

level, because our instance-based matchers use attribute instances, but the similarities of

the attributes are used to calculate concept correspondences as well. Again, pairs having a

similarity above a threshold tinst are added to the alignment, and all pairs with a similari-

ty between tmapCand and tinst are proposed to the user who has to reject false correspondences.

Structure-based methods

Finally, the remaining entities are used to perform a structure-matching; several cons-

traints are used to determine additional correspondences based on already matched entities.

5.1 Architecture 63

The user is again demanded to reject false correspondences and finally, an overview of the

whole alignment is shown. The user gets another possibility to correct the alignment before

it is stored.

Mapping
Repository

O1 O2

looking up
previous alignments

Entities

schema-based
methods

Alignment

instance-based
methods

structure-based
methods

WordNet

Figure 5.1: Architecture of MICU

The whole matching process is designed to reduce the time complexity and to benefit from

the interaction with the user. The set of entities that participate in the different matching

methods is reduced in each step. First of all, already matched entities are detected while

scanning the alignment database, such that their similarity does not need to be recalculated

again. The actual matching process starts with schema-based methods, because very similar

labels or comments are a strong hint for a correct correspondence. The user only has to

look at correspondences, that have a certain similarity, and he is demanded to reject false

correspondences. Due to this process, the entity set that takes part in the time-consuming

instance-based matching is reduced. Additionally, only concepts or attributes providing in-

stances are considered at all. After performing the instance-based matching, the user is

demanded to reject false correspondences again. The set of correct correspondences, that

have been found during the matching process by now, provides a good basis for proceeding

with the matching process using the structural information of the ontologies. Already mat-

ched entities work like anchors from which the similarity is propagated to unmatched nodes

64 The Matching System

using several constraints.

It might seem like the user has to interact with the system very often, but each time, when he

is asked to reject mappings, he only has to examine a small set of correspondences (compared

to the whole set of entities) and his decisions enhance the quality of further matching process.

So, in total the user has no more work to do than in traditional user feedback dialogs that

appear at the end of the matching process, but in most cases the effort is reduced.

The full automation of the matching process does not seem to be possible without decreasing

the quality of the matching result.

5.2 Used Methods

In the description of MICU several matching methods have been mentioned. In the following

the different methods are presented in detail and they are labeled using the classification

described in Section 2.6.

5.2.1 Schema-Based Methods

The schema-based matching methods used in MICU mainly use concept, attribute and relation

labels. Additionally, comments are used and WordNet is queried to obtain synonyms and to

obtain comments, if not provided by the input ontologies.

With respect to the classification given in Section 2.6, the schema-based methods are mainly

syntactic (on the element level) and external (on the element level).

Three methods are applied on entity labels: string similarity based on the edit distance or on

the n-gram measure and a prefix-/suffix-similarity. The string similarity based on the edit

distance is shown in Equation 2.6; the string similarity using the n-gram measure is stated

in Equation 2.4 with n set to 2.

The prefix-/suffix similarity of two strings s and t is defined as follows:

simpreSuf (s, t) =

1 if s = t1t ∨ s = tt2 ∨ t = s1s ∨ t = ss2

0 else
, (5.1)

for some t1, t2, s1, s2.

It tests whether one entity label is the prefix or the suffix of the other label. In the case,

that the value of this similarity measure is 0 it is completely deleted out of the similarity

calculation process, because the fact, that the labels do not have a prefix or suffix similarity,

has no significance for the real similarity of two labels.

For each entity label WordNet is queried to obtain its synonyms. The process could be

accelerated by building up a synonym database which is filled and queried during the matching

process, such that the synonym information can be reused in future matching processes. For

each label there might be a set of synonyms, which are compared using Equation 2.10. If

only one or none of the labels has synonyms, the similarity between the synonym sets is 0.

For optimizing reasons, we do not consider the synonym measure in this case, but we exclude

5.2 Used Methods 65

it from the similarity calculation. The fact, that labels do not have synonyms should not

have an influence on the similarity; otherwise two equal labels, that do not have a synonym,

would have a synonym similarity of 0, which would decrease their overall similarity.

Most ontologies include comments that describe entities in terms of natural language. These

comments can be used to determine the semantics of the entities. If comments are not

available, MICU searches for definitions in WordNet (this process can again be accelerated

by storing extracted information in a database to reuse it in further matching processes)

and treats them as comments. For each pair, that provides comments for both entities, the

comments are stemmed and stop words are eliminated. After that, the normalized comment

sets are compared using Equation 2.10. Similar to the handling of labels that do not have

synonyms the absence of comments should not influence the similarity in a decreasing manner.

Hence, the comment measure is not considered if comments are not available.

The similarities of the methods described before are aggregated using Equation 2.13.

Each entity pair with a similarity above tsch is directly added to the set of new correspondences

A1; pairs with a similarity between tmapCand and tsch are shown to the user, who decides if

these pairs are also added to A1 or if they stay in the entity set E. Finally A1 is returned.

The whole process is again described in Algorithm 7.

5.2.2 Instance-Based Methods

The instance based methods used in MICU are the ones described before in Section 4.1 and

Section 4.2. The feature approach is always executed if instances are available. The number

of instances used for feature calculation has to be determined by the user before starting the

matching process. The process as described in Algorithm 5 in Subsection 4.2.7 is stopped

after calculating the similarity matrix Msim, and the attribute correspondences are obtained.

Subsequently, the similarities are used to propagate concept correspondences within the Si-

milarityPropagation step, which creates a concept similarity matrix MconceptSim. This matrix

provides the basis of determining concept correspondences.

The instance-based matching approach using regular expressions is not used by default,

because it demands further effort done by the user, i.e. if available, an appropriate file has to

be selected or regular expressions have to be specified. If wished by the user, the approach

is executed as described in Figure 4.2.

The whole process is presented in Algorithm 8.

If the regular expression approach is not executed, the similarity of an entity pair is

defined as simo,p = FeatureApproach(Io, Ip).

66 The Matching System

input : entity set E
output: alignment set A1

similarity matix simschema;
forall (ei, ej) ∈ E do

simi,j =StringSimilarityED(ei, ej);
simi,j = simi,j + StringSimilarityNGram(ei, ej);
define methodCounter := 2;
if ei, ej have synonyms (included or extracted from WordNet) then

simi,j = simi,j + SynonymSet(ei, ej);
methodCounter + +;

end
if ei, ej have comments (included or extracted from WordNet) then

simi,j = simi,j + CommentSet(ei, ej);
methodCounter + +;

end
simpreSuf =PrefixSuffixSimarity(ei, ej);
if simPreSuf == 1 then

simi,j = simi,j + simPreSuf ;
methodCounter + +;

end
simschema ← simi,j;

end
correspondence set A1;
user set U1;
forall simk,l ∈ simschema do

if simk,l ≥ tsch then
A1 ← (ek, el);

end
if tmapCand ¡ simk,l < tsch then

U1 ← (ek, el);
end

end
A1 = A1 ∪ AskUser(U1);
E = E − A1;
return A1

Algorithm 7: SchemaBasedMethods

5.2 Used Methods 67

input : entity set E
output: alignment set A2

forall (eo, ep) ∈ E; Io 6= ∅, Ip 6= ∅ do
simo,p = FeatureApproach(Io, Ip) or RegExApproach(Io, Ip);
if simo,p ≥ tinst then

A2 ← (eo, ep);
end
if tmapCand < simo,p < tinst then

U2 ← (eo, ep);
end

end
A2 = A2 ∪ AskUser(U2);
E = E − A2;
return A2

Algorithm 8: InstanceBasedMethods

5.2.3 Structure-Based Methods

The structure-based method used in MICU is executed as a final step to refine the mapping.

It uses the correspondences and similarities determined by the schema- and instance-based

methods and propagates the similarity to adjacent nodes. For this purpose an algorithm that

is similar to the Similarity Flooding algorithm [MGMR02], which will be explained in the

following.

Similarity Flooding is a graph matching algorithm that has been adapted to schema mat-

ching. For this purpose, schemas are transformed into directed graphs. An initial mapping

between all nodes of these graphs is determined using a StringMatch operator, which com-

pares common prefixes and suffixes. The initial mapping is then used as the starting point

for the main algorithm, which produces a refined mapping using a fixpoint computation.

First, a similarity propagation graph is constructed, in which every node represents a can-

didate mapping pair of the two input schemas. The edges represent the original relations

between the entities in their source schemas and additionally an extra edge is inserted in

the reverse direction (because a similarity can be propagated upwards and downwards). To

every edge a weight, that indicates how well a similarity propagates to the adjacent nodes,

is assigned. The weight for each edge depends on the number of outgoing edges of the cor-

responding node, i.e. if a node has two outgoing edges, the weight assigned to these edges is

0.5, for three edges it is 1
3 and so on.

Using this similarity propagation graph, the similarities of the initial mapping are propaga-

ted, i.e. flooded, through the graph by iteratively multiplying the similarities with the edge

weights and summing up the values for all incoming edges of a node. The process is iterated

until a fixpoint is reached or until a fixed number of iterations is executed.

Finally, a filter, like a threshold filter, is used to determine the final mapping.

68 The Matching System

In MICU we use the similarity flooding algorithm as described above, only the initial

mapping is not obtained using the StringMatcher but using the results of the schema-and

instance-based matchers executed before. Furthermore, the similarities are only propagated

to unmatched nodes, i.e. the similarities of already matched nodes are not changed and we

only perform one iteration. As a final filter we use a simple threshold tstruct.

According to the classification used in Section 2.6, this matcher is a syntactic structure-level

matcher.

The whole structure-based matching algorithm is presented in Algorithm 9.

input : entity set E
output: alignment set A3

matrix simstruct ← Structure-Based Matching(E)
user set U3:
forall simo,p ∈ simstruct do

if simo,p ≥ tstruct then
A3 ← (eo, ep);

end
if tmapCand < simo,p < tstruct then

U3 ← (eo, ep);
end

end
A3 = A3 ∪ AskUser(U3);
E = E − A3;
return A3

Algorithm 9: StructureBasedMethods

5.3 Alignment Reuse and User Feedback

The reuse of alignments is a good way to reduce the time complexity of the matching process.

All correspondences, that are included in a final alignment of a matching process, are inserted

into a database together with their similarity values. Further matching processes can then

reuse the correspondences included in the database to find first matching correspondences.

Another advantage besides the saving of time is that entities might not have instances in the

current matching process but in previous ones. If the schema information of such entities is

dissimilar, we can find this mapping correspondence anyway by using the previous alignments.

It is obvious, that entities aligned in previous matching processes do not necessarily have to

be matched in the current process, but this is a uncertainty with which we have to cope in

all other matching methods, too.

The process of reusing previous alignments is shortly described in Algorithm 10.

As explained in Section 5.1, in most cases it is necessary to interact with the user to

increase the matching quality. The goal of MICU is to find a balance between user action

5.4 Summary 69

input : entity set E
output: alignment set A0

forall (ei, ej) ∈ E do
query database D;
if (ei, ej) ∈ Dandsim(ei, ej) > tmapRep then

A0 ← (ei, ej);
end
E = E − A0;

end
return A0

Algorithm 10: ReuseOfAlignment

and automated process (as proposed in [Hea09]). The user should not be overburdened, but

the quality should be increased. Consequently, we decided to ask the user for rejecting false

correspondences from time to time to make advances of the short concentration phases of

humans.

input : global entity set E; set of candidate correspondences U
output: alignment set AU ;

forall (ei, ej) ∈ U do
ask user to reject;
if (ei, ej) is not rejected then

AU = AU ∪ (ei, ej);
end

end
return AU

Algorithm 11: AskUser

5.4 Summary

In this chapter we presented a novel matching system called MICU, which unifies the advan-

tages of different kinds of matching methods. Additionally, previous alignments are reused,

WordNet is queried and the user is involved in the matching process. The architecture of

MICU is flexible, such that new methods can be included at any time.

MICU as well as the two novel instance-matchers described before need to be evaluated. For

this purpose, we present ONTOBI in the next chapter. ONTOBI is a benchmark, which

contains many classes and properties, and especially a huge amount of instances.

6
ONTOBI - An Evaluation

Benchmark with many Instances

Matching systems or single matching methods need to be tested to determine their quality

for different scenarios. In some cases it is important that a matching strategy works well for

a special application, in other cases (if the application space is not limited) methods should

be all-rounders. In each case, an extensive evaluation is advisable to detect weak and strong

points of a method or system and to determine an overall quality. Most evaluation frame-

works focus on the evaluation of the matching quality and disregard the time complexity.

In general there are different types of evaluation (see Subsection 2.7). The aim of this thesis is

to develop matching methods and a matching system that work as good as possible and solve

many different kinds of heterogeneities. For testing purposes we decided to use a benchmark

test series because the variety of the test cases is very huge and it is possible to determine

weak and strong points very detailed.

There are already a few benchmarks available as described in Subsection 3.2 but they are

mostly not usable for testing instance-based matching methods because the number of availa-

ble instances is very small and there are either no variances on the concept-level or on the

instance-level. Hence, we decided to build our own benchmark which includes heterogeneities

on the concept, structure and instance level and which provides a huge amount of instances.

Our first approach has been described in [Zai08a] and [ZCV10]; a user can dynamically build

his own ontology by browsing Wikipedia and selecting the information that should be stored

in the ontology. This process works semi-automatically but it is very time-consuming and

includes some sources of errors. Consequently, we decided to use a part of DBpedia [LBK+09]

which is an ontology based on Wikipedia. In this way we obtain a reference ontology that

provides the basis for our benchmark. A set of transformations is applied on this reference

ontology such that we obtain heterogeneous ontologies which have to be matched against

the reference ontology. For applying the transformations, an ontology modificator has been

72 ONTOBI - An Evaluation Benchmark with many Instances

developed which allows to execute one or more transformations on any ontology, outputs the

new ontology in the same format as the input ontology and also creates the reference ali-

gnment on the fly represented as described in the Ontology Alignment API [Euz06]. For the

benchmark proposed in this thesis, ONTOBI, we apply a well-defined set of transformations

and create 17 test cases, each testing different types and grade of heterogeneities.

The remainder of this chapter is organized as follows:

The first section describes the construction of the reference ontology: the construction using

Wikipedia is described in Subsection 6.1.1 and the use of DBpedia is presented in Subsecti-

on 6.1.2. An overview of the transformations is given in Subsection 6.2 and the process of

creating test cases is explained in Subsection 6.3. An evaluation concerning the predefined

requirements is given in Subsection 6.4. The chapter concludes with a summary in Subsection

6.5.

6.1 The Reference Ontology

The requirements mentioned in Section provide a basis for the development of our benchmark

named ONTOBI (ONTOlogy Matching Benchmark with many Instances). Additionally, we

formulated more precise criteria that need to be fulfilled to guarantee the compliance with

these requirements. They are derived from our experience with existing matching systems/al-

gorithms and from the types of heterogeneity described in Subsection 2.4:

• large ontologies: most instance-based matchers need a certain number of instances to

achieve best quality. Furthermore, the time complexity is an interesting issue when

evaluating instance-based approaches. The instances of this benchmark should be

realistic (not artificially created) and the variety of different values should be high (if

the number of values is not limited by definition). This criteria is very important to

reach equal conditions for all kinds of matching systems.

• differences in structure: similar to the OAEI the structure of the ontologies should

be flattened or expanded in some cases, i.e. the ontologies should be conceptually

heterogeneous. This is very important since a lot of matchers exploit the structural

information of an ontology and structural heterogeneity is an important issue for all

matching systems.

• differences in instances: instances that are semantically equal can be formated in dif-

ferent ways, one good example is the date. Matching systems should be able to detect

semantical similarity despite of structural differences. Additionally, instances can in-

clude spelling mistakes or the instance sets can be completely different.

• differences in schema: given that the ontologies should be as realistic as possible schema

variances like spelling mistakes, abbreviations or synonyms should be implemented as

well.

6.1 The Reference Ontology 73

The benchmark described in Subsection 3.2 and ONTOBI will be compared according to all

these requirements later on in Subsection 6.4.

First of all, a reference ontology has to be created, which has to fulfill some more proper-

ties. Obviously, the number of concepts has to be high enough to express different structures

(different properties, relations, different conceptualizations to find 1:n mappings etc.).

The properties of a concept are either data type or object properties and both possibilities

should be represented. Optionally, the ontology could contain different concepts having

attributes expressing the same real world thing but modeled by different properties (e.g. a

date can be modeled as data type or object property).

In particular, this benchmark should be usable for instance-based matchers, i.e. the onto-

logy should contain an appropriate number of instances as well. To build a realistic benchmark

instances should not be created artificially.

The data types of the instances should be varying, i.e. not all information should be

stored in strings.

Since a lot of matching systems use comments to produce an alignment, most of the con-

cepts in the reference ontology should contain comments, too. Preferably all meta information

and the instances should be translatable into another language.

6.1.1 Dynamically Exploiting Wikipedia Infoboxes

Our first approach for obtaining a reference ontology semi-automatically exploits Wikipedia

to obtain concepts, attributes, relations and instances. For this purpose it makes use of the

info boxes provided for many articles, because they represent knowledge in a structured form

such that it can easily be used to model an ontology. An example info box is shown in

Figure 6.1. Each info box displays a set of attributes of a concept together with values for a

special instance of this concept. As one can see in the example an info box mainly consists of

two columns. The first column includes the attribute names, e.g. country and state. These

attributes are assigned to a concept which gets a user-defined name in our approach, in

this case e.g. “city”. The values in the second column represent attribute instances, which

are linked to further concepts. The links are automatically extracted and represent object

properties. So, for each concept that should be included in the ontology an exemplary info

box is searched and the corresponding attributes are extracted and assigned to the concept.

Relations between concept are created automatically, but it is possible to add user-defined

relations as well. After finishing the process of creating concepts and relations, instances

can be extracted. Instances can be chosen manually or a complete list of instances can be

extracted at once. The assignment of instances to concepts works automatically.

The evaluation of this approach showed, that it generally works well but in some cases not all

values are extracted out of a info box and the automatic assignment of the instances is error-

prone. Further studies showed that there is already an ontology representing the knowledge

of Wikipedia called DBpedia.

74 ONTOBI - An Evaluation Benchmark with many Instances

Figure 6.1: Info box for “Duesseldorf”

6.1.2 Using DBpedia

DBpedia is a project that has the goal to provide the knowledge stored in Wikipedia in a

web-accessible knowledge base that can answer complex queries (e.g. list all films of Tom

Cruise, in which Cameron Diaz also played a role). The ontology provided in this project

includes the most commonly used info boxes of Wikipedia and a huge amount of instances

as well and can be queried using different interfaces that are e.g. based on SPARQL [EP06].

The concepts of this ontology describe persons, places, organizations, species, buildings and

works. For constructing our reference ontology we choose version number 3.4, which contains

205 classes, 1144 object properties and 1024 data types properties. The DBpedia ontology

only contains rdfs:subClassOf and owl:ObjectProperty relations and is strictly hierarchical.

The most important subject when creating the reference ontology for ONTOBI is provi-

ding a big instance set, because this is an issue disregarded in other approaches. We decided

not to use all instances because the set is too huge (over one million instances) and we wan-

ted to create an ontology with a varying range of instances. Finally, we extracted 17 to 576

instances for more than 50 percent of the concepts on the lowest ontology level; that makes

a total amount of 13704 instances at the moment. During the process of including instances,

we added further 8 classes, 37 object properties and 87 data type properties.

6.2 Transformation of Meta Information and Instances 75

The ontology is written in terms of OWL-DL and presented in RDF/XML format (similar

to the ontologies created for [OAE09]) and the meta information and instances are written

in English.

The DBpedia ontology does not provide comments in its schema ontology. Since these

are used by many matching algorithms, comments describing the concepts are added using

their definitions in WordNet, if available.

6.2 Transformation of Meta Information and In-

stances

Once we obtained a reference ontology, we transform it to create a set of modified ontologies.

These ontologies are mapped against the reference ontology. According to the different types

of heterogeneity described in Section 2.4 and the requirements explained in Section 2.7 and

Subsection 6.1, several transformation rules are defined; an overview is given in Table 6.1.

The modifications can be divided into simple and complex ones; the partitioning is mainly

based on experience with different matching systems and the development of an own matcher

respectively. Simple modification rules can be divided into two parts:

1. they only pertain one part of an ontology, i.e. either the meta information, the structure,

or the instance set.

2. one type of matching algorithm can cope with the effect of the modification, e.g. spelling

mistakes can be “corrected” by using simple measures like the edit distance.

Simple modifications usually should not influence the matching quality significantly. Complex

modifications are much more difficult to handle and have effect on various elements of the

ontology.

In the following the different transformations are explained in detail:

• M describes a set of operations resulting in spelling mistakes, i.e. insertion/deletion

of one character or switching of two characters. It is applied to concept and property

names or instance values as well and the executed operation is determined randomly

in each case.

• Instance values may be formatted in different ways. A good example is the date: dates

may be expressed as object properties related to a concept “date” or as a data type

property. In the latter case the RDF data type of the “date” may be string or date, and

the format may be “dd.mm.yy” or any other. The F transformation aims to randomly

vary the formats for a certain amount of instance values.

• Concepts may include comments (rdfs:comment property), that describe the semantics

of this concept. This information can be used to detect homonyms or synonyms. By

applying transformation S1 for all entities the comments are fully deleted.

76 ONTOBI - An Evaluation Benchmark with many Instances

identifier modification applied on

simple transformations

M spelling mistakes C,A(ck), I(ck) ∀ck ∈ C

F changed format I(ck) ∀ck ∈ C

S1 suppressed comments C,A(cK) ∀ck ∈ C

S2 no data types I(ck) ∀ck ∈ C

I1 overlapping data sets Co ⊆ C

complex transformations

H1 expanded structure

H2 flattened structure

L1 another language C,A(ck) ∀ck ∈ C

L2 random names C,A(ck) ∀ck ∈ C

L3 synonyms C,A(ck) ∀ck ∈ C

I2 disjunct data sets Co ⊆ C

Table 6.1: Overview of the modifications

• Modification S2 has the effect that all rdfs:range properties assigning data type proper-

ties to data types and object properties to resources are deleted. Additionally, instance

values (i.e. literal objects) can be assigned to XML data types, e.g.

http://www.w3.org/2001/XMLSchema#date. This assignment provides additional in-

formation on the semantics of the instance values and the corresponding concept. The

application of S2 results in the repression of all data type assignments.

• As a default case, the instance sets of the ontologies are identical. Modification I1

replaces a part of the instance values by new ones. Depending on the number of new

instances, this modification is simple or more complex. The exchanged instances are

distributed randomly according to the concepts they belong to.

• The structure of the ontology is another important hint for most matching algorithms.

The application of H1 results in an expanded hierarchy, i.e. several top-level concepts

are added to the ontology and the structure might be rearranged as well.

• H2 is the opposite operation to H1; the hierarchy structure is flattened by deleting (all)

top-level concepts, such that all concepts are on the same level.

• Meta information and instances may be written in different languages. The application

of L1 causes the translation of all concept and attribute names and all comments to

6.3 Creating Test Cases 77

another language.

• The meta information of an ontology might be completely senseless due to human or

technical reasons. L2 simulates this case by replacing all concept and/or attribute

names by random strings.

• The meta information of ontologies is always created subjectively, hence the same real

world objects are often described with different labels. Transformation L3 replaces

concept and attribute names by synonyms (if possible).

• Modification I2 results in an exchange of the whole instance set. The distribution of

the new instances according to the concepts is chosen randomly.

6.3 Creating Test Cases

The different test cases shall provide a basis for testing different parts of a matching system

and the system in general. Therefore, different pieces of information are repressed or changed

gradually by applying one or more of the predefined operations. Each test case consists of

two ontologies to be matched: the reference ontology and one modified reference ontology. To

simplify the evaluation of the matching results, the correct reference alignment is given. The

format for this alignment is borrowed from [Euz06] (Ontology Alignment API). An overview

of the process is given in Figure 6.2. As evaluation measures, the standard measures precision

and recall, and their combination, the F-measure, are proposed.

Test case

reference ontology

modified ontology

mods Alignment

Figure 6.2: Overview of a test case

6.3.1 The Ontology Modificator

In addition to the development of a complete benchmark test series we want to provide a

possibility to create test cases dynamically and for various ontologies. For this purpose we

constructed and implemented an ontology modificator that gets an ontology as input, app-

lies one or more of the transformations described above and outputs the modified ontology.

Furthermore, the reference alignment should be produced such that it can be used for fur-

ther evaluation of self-produced matching results between input and output ontology. The

78 ONTOBI - An Evaluation Benchmark with many Instances

modificator provides the following possibilities:

• insertion of (additional) comments using WordNet

• creation of misspellings (concept/property labels and/or instance values)

• repression of data type assignments and/or labels

• replacement of concept and property labels by random strings

• substitution of concept or property labels with synonyms using WordNet (if possible)

• changing of instance format

• flattening of hierarchy

• distribution of instances

• creation of reference alignment

Until now is not possibly to extend the hierarchy automatically, because a user has to specify

the name of superconcepts manually, such that it makes sense. Additionally it is not possible

to create new instances; the user has to provide a set of instances which can be distributed

over the two ontologies depending on the chosen transformation I1 or I2 (or disjunct datasets).

The modificator copies the input ontology and changes the statements that are pertained of

the selected transformation. If instances should be included in the output ontologies the

corresponding statements are added and finally the transformed, heterogeneous ontology is

generated. Additionally, the reference alignment is written using the format described in

[Euz06].

6.3.2 Test Cases

Using the reference ontology as the starting point a systematic benchmark is created. For

this purpose the reference ontology is modified using one or more of the transformations

mentioned in Section 6.1. Most of the transformations are done automatically by using our

ontology modificator which has been described in the previous subsection. The modification

H1 (extension of structure) is done by hand using the Protégé [Pro09] ontology editor to

guarantee the quality of the ontologies. The translation to another language, test L1, is not

created yet, because due to the high number of classes and properties this process is very

time-consuming.

In general, there are a lot of different possibilities to combine the transformations. For testing

purposes we choose a set of possibilities according to our personal experience with matching

systems, i.e. we choose those cases which we think are most interesting or most challenging.

Additional test cases can be created at any time using the ontology modificator.

The combination of the different modifications gradually increases the difference between the

modified and the reference ontology, such that the matching task gets more complex.

6.3 Creating Test Cases 79

test number modification(s)

simple tests

OS1 M

OS2 S1

OS3 I2

OS4 L1

OS5 L2

OS6 L3

OS7 H1

OS8 H2

complex tests (two mods)

OC1 M, S1

OC2 L2, S2

OC3 L3, I1

OC4 H2, I1

complex tests (at least three mods)

OCC1 M, S1, S2, I2

OCC2 M, L3, S2

OCC3 L3, H1 , I2

OCC4 S1, F, I1

Table 6.2: Overview of the benchmark

An overview of the complete benchmark series can be found in Table 6.2. The ontologies in

the simple tests series are reference ontologies, which have been modified by using one single

transformation. These tests can be very helpful to determine the quality of a single matcher,

which focuses on one part of an ontology. The complex tests are divided into two parts.

The tests OC1-OC4 combine two transformations with the goal to create a more difficult

test without deleting too much information. The combinations consist of two modifications

that concern different parts of an ontology (structure, instance set or meta information of

concepts and property) or that are not that strong when applied solely. At least one part of

the ontology stays equal to the referring one of the reference ontology.

The tests OCC1-OCC4 are the most difficult ones and use three or more combinations.

In these cases the loss of information is significant and to gain good matching results, the

matching system must provide and combine various matchers.

80 ONTOBI - An Evaluation Benchmark with many Instances

In the following, the goals of the test cases are described more in detail:

• simple tests : These tests only use one modification to change the reference ontology,

i.e. the matching task is quite simple for a complex matching system. But it might be

reasonable to test single matching methods and for this purpose these test cases are

appropriate. The instance set stays the same for all tests besides OS3. Language-based

matching methods can be tested using OS1, OS2 and OS4-6, structural algorithms

might be challenged in test case OS7 and OS8. The transformation F and S2 are too

weak to be applied solely.

• complex tests (2 modifications):

– OC1 combines M and S2 to create an ontology with reduced meta information. M

is also applied to the instance set, such that the instance sets differ slightly, too.

The structure stays the same, such that especially name-based or language-based

techniques can be tested.

– OC2 is a difficult test, because the concept and attributes are replaced by random

strings and data types are repressed. Comments are still available, hence systems

can capture the semantics of the concepts by applying language-based techniques

and by analyzing instance values.

– OC3 combines the use of synonyms with an exchange of some instances. The

amount of overlapping instances is about 1000, and the instances are not distribu-

ted equally. This test is appropriate to evaluate a combination of language- and

instance-based matchers or the use of structural matchers which are mainly not

influenced by the modifications.

– OC4 combines disjunct data sets with a flattening of the hierarchy. This task

is quite easy for language-based matchers, since the meta information stays the

same, but it is a challenge for instance-and structure-based methods, because there

is no structure at all (all concepts are on the same level), and the instances sets

are totally different.

• complex tests (at least 3 modifications):

– OCC1 changes the meta information (misspelling and no comments) and the in-

stance set (misspelling, no data types, disjunct data sets). This task is especially

useful for instance matchers, which have to cope with disjoint, “false” and incom-

plete data (due to the misspellings and the lack of data type assignments).

– OCC2 causes a significant change in the meta information of the ontology, because

the concept and attribute names are replaced by synonyms, which include mis-

spelling as well, and comments are repressed totally. Instance set and structure

stay the same, such that this task is a challenge for all language- and name-based

matchers.

6.4 Fulfillment of Requirements 81

– OCC3 transforms all parts of the ontology and is therefore appropriate to test

a combination of different matchers. Names are replaced by their synonyms, the

hierarchy is expanded and the structure of the ontology is rearranged; additionally

the instance sets are disjoint.

– OCC4 concentrates on the modification of the instance set by changing the format

of all date values (e.g. from yyyy-mm-dd to dd.mm.yyyy), repressing the data type

assignments and generating overlapping instance sets.

Certainly, one can think of lots of other combinations and test cases, but we tried to

focus on the most interesting and probably most useful ones. The test cases aim to challenge

different kinds of matching methods, such that each test case might be more or less difficult

for the different matchers (matching systems). Another important issue is the combination

of different matchers. A system, that provides different kinds of matchers (name-/structure-

/instance-based) has to find good combination strategies to obtain a good matching quality

throughout all benchmark tests. For this purpose, we tried to vary the modified parts of the

ontology and the difficulty of the different tests.

The matching of large ontologies is also an issue that needs some more studies. Most of the

matching systems can not work with very large ontologies with a good performance (if they

are able to load the ontologies at all). The ontologies of this benchmark are very large, such

that it can be used for testing performance and scalability, too.

6.4 Fulfillment of Requirements

In Subsection 2.7 and Subsection 6.1 several requirements on evaluation benchmarks have

been mentioned. Table 6.3 shows the quality of ONTOBI according to these requirements

and coincidentally compares ONTOBI with the benchmarks described in Subsection 3.2.

First of all, we want to describe the result of ONTOBI in more detail: The previous

sections clearly describe the systematic procedure of ONTOBI. The test cases are the same

for all participants that want to use it. A reference alignment is given, such that the results

are non-ambiguous. The continuity can be assured if the systems repeat the tests in certain

time intervals. As evaluation rules the measures precision, recall and f-measure are proposed.

As long as the benchmark is not used officially within a workshop or the like, the compliance

with these rules can not be checked. i.e. we can not make an universally valid statement

concerning the continuity. The quality of the ontologies extracted from DBpedia is quite

good; the reliability on the data obtained from Wikipedia is given, because the instances

are assigned to the correct concepts and for matching purposes it does not matter if the

information is always up-to-date. The modifications are very manifold and the combinations

try to balance the parts of the ontologies that are changed such that no type of matching

system is favored or disadvantaged, i.e. the equity is ensured. This is also caused by the

fact, that ONTOBI provides differences in all three parts of the ontology, i.e. in schema,

structure and instance set. The benchmark provides a huge set of instances and the number

82 ONTOBI - An Evaluation Benchmark with many Instances

OAEI A-R-S

Benchmark T-S-D IIMB STBenchmark ONTOBI

systematic + + + + +

continuity + + + n/a n/a

quality + + + n/a +

equity o - - n/a +

large onto. - - o n/a +

diff. in schema + - - o +

diff. in structure + - - + +

diff. in instances - + + o +

dissemination + + + - o

intelligibility + + + - o

Table 6.3: Comparison of Evaluation Benchmarks: + fully satisfied, o partly satis-
fied, - not satisfied

of concepts and properties is also high. Dissemination and intelligibility are also ensured,

since the benchmark is available publicly and the correct reference alignment is given (see

http://dbs.cs.uni-duesseldorf.de/projekte/ONTOBI/).

The OAEI Benchmark fulfills most of the requirements, but one of the most important points,

i.e. the equity can not be assured fully, because instance-based methods are disadvantaged

due to the lack of a reasonable amount of instances. Furthermore, the ontologies are quite

small and there are no modifications executed on the instance set (except the deletion of

instances).

The IIMB only provides differences on the instance level, such that equity can not be assured

(but to remember: IIMB was built to test instance matching methods, not instance-based

matching methods). Additionally, the ontologies are not very large.

A-R-S and T-S-D, also instance matching benchmarks, are larger than IIMB, but apart from

that they have the same limitations.

STBenchmark can not be fully evaluated using the requirements, because aspects like quality

depend on the input ontology (since STBenchmark is a sort of ontology modificator). The

biggest disadvantage is, that no reference alignment is generated.

6.5 Summary 83

6.5 Summary

The benchmark, presented in this chapter, is constructed to test matching systems, especially

with respect to their instance-based matchers. Compared to existing benchmarks, the number

of instances is high, but not all concepts contain instances. Hence, the benchmark should

be extended in future work. The modifications on the schema level can be improved, i.e.

more spelling mistakes can be included or different notations can be used. The structural

transformation can also be extended by flattening single entities or by changing data type

into object properties and vice-versa. Nevertheless, ONTOBI is more appropriate for testing

instance-based matchers than the other existing benchmarks.

In the next chapter, we will use ONTOBI and other test sets to evaluate the novel instance-

based matchers on their own and in combination with schema- and structure-based methods

in MICU.

7
Evaluation and Discussion

In the two Chapters 4 and 5 different approaches to determine entity correspondences have

been presented. First of all, two instance-based matchers have been proposed; the first one

uses regular expressions or catchwords to find concept and property mappings, the second

one calculates features for each property and derives property and concept correspondences.

Both approaches are evaluated using the ONTOBI benchmark and additionally using one

version of the Islab Instance Matching Benchmark.

With MICU we also presented a complete matching system which combines many different

matchers and interacts with the user. MICU is also evaluated using ONTOBI and additionally,

the benchmark tests of the OAEI 2009 are executed.

The remainder of this chapter is organized as follows: The two instance-based matchers are

evaluated in Section 7.1. The test data is shortly introduced in Subsection 7.1.1, before

presenting the evaluation results of the regular expression approach in Subsection 7.1.2 and

of the feature approach in Subsection 7.1.3. Additionally, the results are discussed and some

directions for future work are pointed out. Finally, in Section 7.2 MICU is evaluated and

discussed.

7.1 Instance-based Matchers

7.1.1 Test Data

For testing matching methods we need appropriate test data, which has to fulfill some criteria

as described in Section 2.7. The benchmark presented in this thesis, ONTOBI, is designed

for this purpose, such that it will be used for evaluating the two instance-based matchers and

MICU.

For the regular expression matcher, one version of the IIMB is used in addition. IIMB is

described in Subsection 3.2.3 and the used version can be found on [IIM10]. The ontologies

86 Evaluation and Discussion

included in this benchmark always have the same schema (identical meta information), but

the instances differ. This is not a problem, since the instance-based matching methods are

first evaluated solely and they include non or only a few pieces of schema information. The

reference ontology contains 6 classes, 47 datatype properties and 222 instances. The modi-

fications applied on the reference ontology contain value, structural and logical ones, which

provide the basis for different test cases. The tests 02 to 10 contain value transformations,

i.e. typographical errors or different data representation formats. Structural transformations

like deletion of values or separation of properties are included in the tests 11 to 19. The

ontologies of tests 20 to 29 are modified logically, e.g. instances are allocated to different

classes. The tests 30 to 37 combine the three transformations. For evaluating our matchers

we choose 5 tests of each test group.

The reference alignment only includes instance correspondences but since the schema infor-

mation is not changed, it is easy to create one.

7.1.2 Regular Expressions Approach

The approach described in Section 4.1.1 uses regular expressions or catchwords to characterize

the attributes of a concept using the corresponding instance sets. To show the strengths of

this approach and to test different configurations, we evaluate this method using the ONTOBI

benchmark. The parameters, that have influence on the matching process and the produced

alignment, are:

• regular expression or catchword approach

• number of instances

• similarity measures

• considering of concept instance URIs

• propagation to attributes

First of all, we have to distinguish between the two sub methods, i.e the use of regular expres-

sions or catchwords. The number of instances used for determining the regular expression

that best fits to the attributes can influence the matching quality, too. The approach is quite

fast, such that bigger amounts of instances do not pose a problem, but the probability of an

overfitting might be increased. The number of instances per concept is not too high and it is

rather difficult to determine a general best number of instances, such that in most cases we

used 200 instances (half of the maximum number of instances per concept).

The similarity measure, that is used to compare the vectors, can be based on the Manhattan

or the Euclidean distance, the cosine or another measure.

The regard of labels, i.e. the URIs of concept instances, can be enabled or not. Additionally,

the computed concept similarities can be propagated downwards to the attribute level, but

since this step is dominated by a string-based label comparison, which is not an instance-

7.1 Instance-based Matchers 87

based approach, we only test this step once.

An overview of the different test configurations can be found in Table 7.1. The regular

expression list has been created manually for this approach; the catchword list has also been

created manually and extended with the 5 most frequent instance values of each attribute of

the reference ontology. All tests use the ONTOBI benchmark, because this approach mainly

focuses on the detection of concept correspondences, such that the IIMB benchmark with its

7 classes is not suitable.

RegEx/CW # inst. sim. measure concept inst. attribute propagation

R1 RegEx 200 cosine no no

R2 RegEx 200 cosine no yes

R3 RegEx 200 cosine yes no

R4 RegEx 50 cosine yes no

R5 RegEx 200 Euclidean no no

R6 RegEx 200 Euclidean yes no

R7 RegEx 200 Manhattan no no

R8 CW 200 cosine no no

R9 CW 50 cosine no no

R10 CW 200 Euclidean no no

Table 7.1: Overview of the configurations for the regular expression and catchword
tests

R1 and R2 execute the regular expression approach without and with attribute propa-

gation step; the results are shown in Figure 7.1. In general, the precision and recall values

are comparable; the most significant difference is observable in tests OS3, OS5, OC2, OC3

and OCC4. In OS5 and OC2 the approach without attribute propagation performs better,

which is explainable with the replacement of schema labels by random names. In test OS3

the approach with attribute propagation produces better results, because the instance sets

are disjoint but the meta information stays the same.

In the tests R3 and R4, whose results are presented in Figure 7.2, the number of instances

is different, and concepts instances are considered in the matching process. In general, the

two configurations produce similar results. The average F-measure of R4 is slightly higher

with 0.7 compared to 0.68 for R3. The tests OS3, OS5, OCC1 and OCC3 provide better

results for a lower amount of instances, which may be caused by the disjoint data sets in OS3,

OCC1 and OCC3. In OS5 labels have been replaced by random strings, which has influence

on the URI of the concept instances. Additionally, the selection of the instances has influence

88 Evaluation and Discussion

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Figure 7.1: left side R1, right side R2: regular expression approach without and with
attribute propagation

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Figure 7.2: left side R3, right side R4: regular expression approach with 200 or 50
instances and concept instances

on the determination of the assigned regular expression.

In the previous tests, the cosine measure has been used to compare the vectors. In tests

R5 to R7 we use the Euclidean or the Manhattan measure. The distance d calculated by

these measures is transformed into a normalized similarity simn by using : simn = 1
1+d . We

also test the influence on the concept instances if the Euclidean or the Manhattan distance

is used. The results are shown in Figure 7.3. In these test cases it makes no difference if

the Manhattan or Euclidean measure is used, such that the displayed results are valid for

both cases. But there is a difference concerning the use of concept instances. The average

F-Measure is 0.62 for R5 and 0.7 for R6 but in the test cases OS3, OC2, OC4, OCC1, OCC3

and OCC4 the precision and recall values for the approach that uses the concept instances

are significantly lower. Interestingly, this is not the case if the cosine similarity is used (see

tests R1 and R3 for comparison). The addition of a “label” attribute combined with a change

of the meta information, which is reflected in the concept instance URI, too, influences the

Euclidean similarity significantly.

Finally, we also evaluate the catchword approach. For this purpose three different con-

figurations are used. On the one hand, the size of the used instance set and on the other

hand, the similarity measure is varied. The results of the different instance amounts, i.e of

7.1 Instance-based Matchers 89

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Figure 7.3: left side R5/R7, right side R6: regular expression approach with Eucli-
dean measure and without or with concept instances

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Figure 7.4: left side R8, right side R9: catchword approach with 200 and 50 instances

tests R8 and R9, are displayed in Figure 7.4. In contrast to the regular expression approach,

the overall result is nearly similar.

As a last test, we execute the catchword approach with the Euclidean measure; the result

is presented in Figure 7.5. The overall performance is only slightly lower than with the cosine

measure, but in some test cases the results differ a lot. Especially in test OC1 (instance

misspellings) the result is significantly worse than for the test R8.

Discussion

The evaluation shows, that the regular expression approach has a good overall quality. The

consideration of concept instances it not always benefiting, especially if the meta information,

which is reflected in the URL in most cases, is changed significantly. The cosine measure

provides better results than the Euclidean or the Manhattan measure, because it rewards if

two vector share any values in the same dimension. The amount of used instances seems not

to play a huge role, but to avoid the problem of overfitting, the instance set should not be

too large. The catchword approach has been proposed as a more simple approach, such that

everybody, who is not an expert in creating regular expressions, can use it. In general, it

is worse than the regular expression approach, because especially numeric values can not be

90 Evaluation and Discussion

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

Figure 7.5: R10: catchword approach using the Euclidean measure

expressed exactly using catchwords.

In future work, the creation of regular expression and catchword list and the reuse of existent

regular expression can be enhanced to provide better results, especially for numeric values.

Additionally, another similarity measure could perform better than the cosine measures.

7.1.3 Feature Approach

The instance-based matcher described in Section 4.2 calculates features using the instance

sets of attributes. The feature set depends on the type of the instances, which can be

string, number or date. Additionally, concept features can be determined and included in

the similarity process as well. The following parameters influence the matching process:

• number of instances used for feature calculation

• use of concept features or not

• size of set-based features like frequent values and common substrings

• propagation algorithm

• threshold

In general, it makes sense to use as many instances as possible for calculating the features.

But if the instance set is too large, the process may take too much time. At least when

computing the common substring values, the number of instances should be limited. Similar

7.1 Instance-based Matchers 91

thoughts have to be spent on the size of set-based features.

The concept features provide an additional possibility to increase the similarity of concept

pairs that do not provide many instances, but in case of very heterogeneous schema informa-

tion it might decrease the similarity.

The similarities calculated on the basis of the instance sets are attribute similarities. To find

concept correspondences as well the similarity has to be propagated upwards. We proposed

two strategies, the maximum and the stable approach.

The threshold determines which similarity value indicates a mapping and might influence the

matching result as well.

The feature based approach is evaluated with the IIMB and the ONTOBI benchmarks

using different configurations. First, the IIMB tests are described.

Tests with IIMB

As described before, the IIMB ontologies only contain a few classes and properties and the

meta information like entity labels is the same for all classes. Hence, the concept-based

features would be similar such that we do not consider concept-features in these tests.

The configuration of the test series T1 and T2 can be found in Table 7.2. The results of both

test series, which only differ in the threshold value, are exactly the same. Hence, the result,

that can be found in Figure 7.6, is valid for T1 and T2.

1 2 3 4 5 6 11 12 13 14 15 21 22 23 24 25 30 31 32 33
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

Figure 7.6: T1/T2 IIMB: without concept features, threshold 0.5

92 Evaluation and Discussion

inst. concept features size of sets threshold

T1 (IIMB) all no 3 0.5

T2 (IIMB) all no 3 0.7

T3 (ONTOBI) all no 3 0.3

T4 (ONTOBI) all no 3 0.5

T5 (ONTOBI) all no 3 0.7

T6 (ONTOBI) all yes 3 0.3

T7 (ONTOBI) all yes 3 0.5

T8 (ONTOBI) all yes 3 0.5

T9 (ONTOBI) all no 7 0.5

T10 (ONTOBI) all no 1 0.5

Table 7.2: Overview of the configurations of the feature approach tests

In tests 01 to 06, the value transformation tests, the approach performs quite well. The

average F-measure is 0.87, if we exclude the last test. The values of test 06 include a lot

of spelling mistakes in each word, such that the mapping quality is lower than in the other

tests.

The structural transformation tests 11 to 15 are rather difficult for this approach. The

precision is still acceptable, but the recall especially for test 13 is quite low. In test 13 many

datatype properties have been transformed into object properties, and the resource name

(that is also included in the matching process) is a senseless identification number. Hence,

the object properties decrease the similarity of the entity pairs. In test 14 the feature-based

approach fails completely, because all datatype properties, except one called “hasDataValue”

which is not included in the reference ontology, have been replaced by object properties.

The logical transformations applied on the ontologies of tests 20 to 25 do not pose a problem

for this matching approach, because only the assignment of the instances to the different

classes differs. Some classes do not contain instances at all, such that we can not obtain a

recall of 1.

The complex tests 30 to 33 combine different transformations. Our approach especially has

problems if the spelling mistakes are very grave, which is especially the case in tests 31 and

32.

Tests with ONTOBI

We also evaluate the feature-based approach using the ONTOBI benchmark. All tests are

executed using different configurations, which can be found in Table 7.2. Since ONTOBI also

7.1 Instance-based Matchers 93

differs the schema information, the concept-based features take part in the matching process

as well, but they are only calculated for those concepts that do provide instances.

The distance measure, that compares sets of strings or numbers, has been adapted, such that

the number of equal elements is counted and divided by the maximum number of elements

in total. Since this produces a similarity, it is transformed into a distance by subtracting the

value from 1; more formally i.e.

HFD(fp, gp) = 1− | {(f, g)|f ∈ fp, g ∈ gp, f = g} |
max(|fp|, |gp|)

(7.1)

where fp, gp are sets. String are compared using the edit distance and the similarity between

numbers is calculated with the ndiff measure as described in Subsection 4.2.8.

In the first three tests T3 to T5 concept features are not calculated and only the threshold

is varying. Interestingly, the results of all three tests are (nearly) the same. T3 and T4 are

completely the same, but in some cases of T5 one correspondence less is found. Hence, the

result for all three tests is shown in Figure 7.7. The recall values correspond to the number

of entity correspondences that can be found, i.e. concepts and properties, that do not contain

instances, are not considered.

As expected, the most difficult tests have been the ones in which the instance set is com-

pletely different (tests OS3, OCC1 and OCC3). Additionally, the flattening of the hierarchy

seems to be hard to cope with (test OS8,OC4,OCC3).

The same tests have been repeated including the concept features (T6 to T8), the results can

be found in Figure 7.8. Equally to the concept test, the threshold has been varied from 0.3 to

0.7 and no significant differences occur. The most interesting observation is, that the quality

of the matching result is decreased when including the concept features. The precision is

always lower in contrast to the tests T3 to T5, only the recall value is better in some cases.

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

Figure 7.7: T3 to T5 ONTOBI: without concept features, threshold 0.3, 0.5, 0.7

94 Evaluation and Discussion

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

Figure 7.8: T6 to T8 ONTOBI: with concept features, threshold 0.3, 0.5, 0.7

The size of the several set-based features like frequent values can also influence the mat-

ching process. Hence, we test our approach again with varying size. The tests described

before always calculate 3 values, the test T9 calculates 7 values, T10 only 1 value; concept

features are also omitted. The results are displayed in Figure 7.9 and 7.10. The increase of

the set size results in a worse result, but the reduction of the size to 1 slightly enhances the

matching quality in contrast to the tests with set size 3.

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

Figure 7.9: T9 ONTOBI: without concept features, threshold 0.5, set size 7

7.1.4 Discussion

The results of the evaluation show that the feature-based matching approach is very stable

according to the threshold, i.e. the differentiation of similar and dissimilar entities is good.

The precision and recall values of the reference ontology are not 1, because some attribute

7.1 Instance-based Matchers 95

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

Figure 7.10: T10 ONTOBI: without concept features, threshold 0.5, set size 1

pairs share the same feature vector, such that the similarity is the same. In this case, only the

correspondence, that is found first, is considered. It works well for overlapping instance sets,

which should be the most common case, i.e. it is not very probable that the instance sets are

disjoint. The number of elements calculated for the set-based measures has to be adapted to

the ontology set. It seems to be more effective, if the set size is rather small. Concept features

do not increase the matching quality if the meta information is heterogeneous for most entities.

The flattening of the hierarchy seems to be quite problematic for the approach, such that it

has to be enhanced in this direction. Overall, the results are promising, especially under the

consideration that this approach should be used as an extension to and in combination with

schema-based matching approaches.

In future work the features can be used as input e.g. for a neural network that classifies the

instance sets or the similarity function can be improved.

7.1.5 Comparison of Regular Expression and Feature Matcher

In general, the two approaches are comparable, i.e. the problems mainly occur in the same

test cases. In test OS1b, which includes spelling mistakes in the instances, the regular expres-

sion approach performs slightly worse, because the spelling mistakes influence the assignment

to more specialized regular expressions.

The average F-measure of the regular expression approach is higher than for the feature mat-

cher, which is caused by the exactness of the regular expressions in contrast to the feature

values, which might be similar for different attributes (e.g. the average length). Additionally,

the regular expression approach is faster.

The advantage of the feature matcher is that it does not need any additional effort before

the execution, in contrast to the regular expression approach, for which first regular expressi-

ons have to be defined. This disadvantage of the regular expression approach might become

96 Evaluation and Discussion

smaller by time, because regular expressions (or lists) can be reused.

Both approaches need propagation strategies. The feature approach calculates property map-

pings and propagates the corresponding similarities to the concept level, whereas the regular

expression approach propagates the concept similarities to the properties.

It is difficult to define exact regular expressions for numeric values. In the case that the

instances of an ontology contain many numbers, the feature matcher should produce better

results. The same holds for instances that include many dates, because they cannot easily be

distinguished by regular expressions. Contrarily, for string attributes, the regular expression

approach can capture the semantics more precisely.

Concluding we can state that both approaches have advantages and disadvantages and

that the performance of both methods depends on the matching task.

7.2 MICU

MICU is a complete matching system, which combines the instance-based matcher described

in this thesis with schema- and structure-based matchers. MICU is also tested using ONTOBI

and, additionally, some of the OAEI 2009 benchmark tests are executed.

The general flow of MICU is described in Section 5.1; first schema-based matchers are applied

on the schema. Afterwards, the instance-based matcher (in general the feature matcher) finds

additional property matches, and finally, the similarity is propagated to unmatched entities.

The general idea is to compare the whole schema using the schema-based matchers. But if

the ontologies of ONTOBI are used, the schema-based matching of all entities would last

too long. For this purpose we adapted our system such that the result is produced within

a shorter time period. The OAEI tests pose another challenge, because in these cases the

ontologies are quite small, and there are only a few instances available.

In general, the results of the matching processes can be influenced by some factors:

• used matchers

• threshold and weights

• time optimization

• user feedback

The used matchers can vary according to the input ontology. Additionally, thresholds and

weights have to be set for several parts of the program. Time optimization is an issue,

that appeared when we tested MICU with ONTOBI (see next subsection for details). In the

following, the different test scenarios and the adaption we have to make on MICU are explained.

7.2 MICU 97

7.2.1 Tests with ONTOBI

The ontologies of ONTOBI are very large; the reference ontology contains 213 classes, 1181

object properties and 1103 data types properties. In the original architecture of MICU all

entities are compared to at least all entities of similar type using the schema-based matchers.

In this case it would result in 213 ·213+1.181 ·1.181+1.103 ·1.103 = 2.656.739 comparisons to

be made, which would cost a lot of time. Especially when involving synonym and comment

sources (WordNet or databases) the execution time is too long. Hence, we adapted MICU as

follows: first, all concepts are matched using the schema-based matching methods, because

the concepts form the biggest information unit. Afterwards, the instance-based matcher finds

object and datatype property mappings. The concept propagation step of the feature matcher

can determine additional concept correspondences. The structure-based matcher propagates

the concept similarities to unmatched concept pairs. Finally, there is another schema-based

matching round in which the properties of matched concepts are compared and aligned.

We test MICU using the configurations described in Table 7.3. A detailed description of the

different configurations will be given in the following together with the presentation of the

results.

used matchers thresholds time opt. user

M1 feature matcher 0.7 yes no

M2 feature matcher + concept propagation 0.7 yes no

M3 feature matcher 0.7 yes yes

M4 regular expression 0.7 yes no

M5 no instance matcher 0.5 yes no

Table 7.3: Overview of the configurations of the ONTOBI/MICU test

In general, the threshold of the schema-based matcher and the feature matcher is set to

0.7 for most of the tests. As shown before, the threshold does not play a significant role for the

feature matcher, since this approach has a good discriminatory power, i.e. similar entities have

a high similarity. The schema-based matchers also showed a good accuracy in the ONTOBI

tests, such that the threshold is set to 0.7 as well. A lowering of the threshold would produce

very similar results, because for each entity only the best fitting correspondence is searched,

which has a similarity of 0.7 or higher. The structure-based matcher has a lower threshold

in all tests, because we aim to find the best partner for all unmatched concepts, such that

preferably there is a mapping partner for each entity.

Tests M1 and M2 combine schema- and structure-based matcher with the feature matcher.

In the first case, the concept propagation step of the feature matcher is disabled, i.e. the

feature matcher can only find attribute correspondences. This is reflected in the results as

shown in Figure 7.11. The results of M2 are around 0.2 higher than those of M1 in each test

98 Evaluation and Discussion

case, besides OS5 and OC2 (the random names cases). The concept propagation algorithm

finds a few more correspondences for OS5 and OC2, but the number of concepts, that include

instances, is too small in contrast to the number of total entities, such that the precision and

recall values do not differ much.

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Figure 7.11: M1 and M2, ONTOBI: feature matcher without and with concept
propagation

In test M3 the user feedback dialog is evaluated. The threshold is again 0.7 and the user

is asked to look at correspondences that have a similarity between 0.3 and 0.7. The result

is shown in Figure 7.12. The results does not differ significantly compared to M2, because,

as explained before, the discriminatory power of the used algorithms is very high. In case

of spelling mistakes (tests OS1, OS1b) and synonyms (tests OS6, OC3, OCC3) some more

correspondences can be found. Whenever entity names are replaced by random strings, the

user gets many correspondence proposals, but it is difficult to decide which correspondences

are correct. In all other cases, the inclusion of the user is very low, i.e. he does not have to

look at many correspondences (around 20 in the maximum, in all tests besides the random

tests).

We also test the quality of MICU in the case, that the feature matcher is replaced by the

regular expression matcher. In test M4 we used the same regular expression file as in the

evaluation of the regular expression matcher described in Subsection 7.1.2. The user dialog is

enabled, and the attribute propagation step of the regular expression matcher is enabled, i.e.

after determining concept mappings, the attributes are compared using their corresponding

regular expression and their string similarity. Figure 7.13 shows the performance of MICU in

this test. For most of the tests cases, the regular expression approach performs slightly better

than the feature approach. Especially precision and recall of tests OS3, OCC1 and OCC3

are higher. In contrast, the results of the random name tests OS5 and OC2 are lower; this

is caused by the attribute propagation step of the regular expression. The string similarity

comparison is not useful in this case, such that the comparison of the regular expressions

dominates the similarity of two attributes. Since the number of regular expression included

in the list is limited, it is not unlikely that two attributes share the same regular expression

although they are not similar.

7.2 MICU 99

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

Figure 7.12: M3 ONTOBI: feature matcher with user feedback

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

Figure 7.13: M4 ONTOBI: regular expression matcher

Finally, the instance-based matchers of MICU are disabled completely in test M5. The

result of this test is shown in Figure 7.14. The precision and recall values of most test cases

are slightly smaller compared to test M2. The results of OC4 and OCC3 are significantly

better, because the names are not changed in test OC4, and in OCC3 the instance sets differ

completely, which reduces the performance of the feature matcher. The result for OCC3 with

the regular expression matchers in M4 is comparable to the values reached in M5. In the

random names test, the schema-based matchers fail completely.

100 Evaluation and Discussion

refOnto
OS1
OS1b

OS2
OS3

OS5
OS6

OS7
OS8

OC1
OC2

OC3
OC4
OCC1

OCC2
OCC3

OCC4

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recal l
Precision

Figure 7.14: M5 ONTOBI: no instance matcher

7.2.2 Tests with OAEI

Besides testing MICU and especially the combination of the different matchers, we wanted

to compare MICU to other matching systems. One good possibility is to perform the OAEI

tests, see Subsection 3.2.1. We decided to choose some of the benchmark test 2009, where

we concentrate on the most interesting ones. The performed tests are shortly described in

Table 7.4.

The tests, that are not executed in this evaluation are mainly combinations of the other

tests, such that their executions would not provide significantly new information. We also

used different configurations of MICU for performing the OAEI tasks; an overview can be

found in Table 7.5.

First of all, we compared the performance of MICU with and without instance matcher.

The results are displayed in Figure 7.15.

101 201 202 203 204 205 207 221 222 223 224 228 247 248
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

101 201 202 203 204 205 207 221 222 223 224 228 247 248
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Figure 7.15: M6 and M7 OAEI: with feature matcher and without any instance-
based matcher

7.2 MICU 101

test number description

101 reference ontology

201 random names

202 random names, no comments

203 no comments

204 naming convention

205 synonyms

207 translation to French

221 no hierarchy

222 flattened hierarchy

223 expanded hierarchy

224 no instances

228 no properties

247 expanded hierarchy, no instances, no properties

248 random names, no comments, no hierarchy

Table 7.4: OAEI benchmark tests

As expected, in test cases in which the meta information is changed significantly (tests

201, 202 and 248) the instance-based matcher can find additional correspondences and hence

increase recall and precision. The same observation can be made for the synonym test 205

and the French ontology in test 207. In test 248 the instance-matcher is essential to find any

matching, because schema and structure information is changed or suppressed completely.

In all other cases, MICU gets similar or slightly better results without the instance matchers.

This is caused by the fact, that there are only a few instances that are quite similar to each

other, such that it is difficult to distinguish between the sets. The average precision of M6

(without test 101) is 0.85, the corresponding recall value is 0.66. In comparison, the values

of test configuration M7 (without test 101) are 0.72 for precision, and 0.63 for recall. Hence,

the use of instance matchers is helpful, even though the set of instances is quite small.

We also tested MICU with the regular expression matcher instead of the feature matcher in

test M8. The result is presented in Figure 7.16. Interestingly, the precision value is higher

than for test M6; the average value of the 2xx tests is 0.9. The average recall value is only

slightly smaller than that of M6 and is 0.64. In this test configuration of MICU, the regular

expression matcher is used with enabled attribute propagation, i.e. for matched concepts the

attributes are matched using their label and the assigned regular expression.

102 Evaluation and Discussion

used matchers thresholds time opt. user feedback

M6 feature matcher 0.7 no no

M7 no instance-based matcher 0.7 no no

M8 regular expression 0.7 no no

M9 feature matcher 0.7 no yes

Table 7.5: Overview of the configurations of OAEI/MICU test

101 201 202 203 204 205 207 221 222 223 224 228 247 248
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

Figure 7.16: M8 OAEI: regular expression matcher

The precision of the “difficult” tests 201, 202 and 248 is higher, but the recall is lower. The

precision in the synonym test 205 is significantly higher, which might be caused by the

attribute propagation step of the instance-based matcher.

Finally, we evaluated the OAEI tests with enabled user interaction; the result of test M9

is shown in Figure 7.17.

7.2.3 Discussion

The performance of MICU in the ONTOBI tests is quite good. Especially the precision is

consistently high, the recall value can be improved. The results in test M5 shows, that the

modifications on the schema level of ONTOBI do not pose a huge problem for the schema

matchers of MICU. Hence, ONTOBI could be improved such that it is a bigger challenge. For

comparison purposes, ONTOBI should have been tested with other systems as well. Unfortu-

nately, none of the available matching systems was able to cope with the huge amount of data.

7.2 MICU 103

101 201 202 203 204 205 207 221 222 223 224 228 247 248
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Recall
Precision

Figure 7.17: M9 OAEI: user feedback

In the case that entity names are senseless or very different, a user feedback dialog could

improve the results. At present, MICU only displays entity names in the user feedback dialog,

which makes it very difficult for the user to decide which correspondence might be the right

one. In future work, the user feedback dialog can be enriched with further information, e.g.

instance samples, comments, or the position of the entity within the ontology.

The results of the OAEI 2009, from which the OAEI tests executed with MICU have been

taken, can be found in [EFH+09]. For the 2xx tests, the precision values are in the range of

[0.73, 0.98] and the recall values range from 0.23 to 0.86. Hence we can state, that our system

can produce appropriate results (although we have not executed all tests), even though MICU

can not compete with the best systems. Due to the facts, that MICU needs instances to

gain best results in case of dissimilar schema information and that these are not sufficiently

available in the OAEI tests, the result is satisfying.

8
Conclusion and Future Work

This chapter concludes this thesis. First, a summary with the contributions of this thesis is

given in Section 8.1. Finally, some ideas for future work are presented in Section 8.2.

8.1 Summary

Heterogeneous ontologies can be found in many different areas. For several applications it

is necessary to match those ontologies, preferably automatically. Existing matching systems

mostly rely on schema and structure information, but the instances should also be considered,

because the information content of the instance set is not negligible.

In this thesis, we presented two novel instance-based matchers, which exploit the instance sets

in two different ways. The first matcher uses regular expressions and catchwords to describe

attributes and hence concepts. The concept representations are used to determine concept

correspondences, which provide the basis for an additional attribute matching step. The

disadvantage of this approach is, that prior effort is needed to create the regular expressions.

The second approach does not need any input of the user. The instance set of each at-

tribute is used to calculate a set of features, which is different for numeric, string or date

values. Additionally, concept features representing some pieces of schema information can

be calculated. The features of attributes having the same type are then compared using a

heterogeneous similarity function and finally attribute correspondences are determined. The

attribute similarities can then be propagated to the concept level.

Although instance-based methods provide good results, they should be combined with com-

mon schema- and structure-based matchers. Instance-based methods are quite time-consuming,

and in general not all concepts of an ontology provide instances. Hence, we presented MICU, a

matching system that combines schema-, instance- and structure-based methods to determine

a mapping between different kinds of ontologies (with or without instances etc.). Additional-

ly, alignments can be reused and WordNet can be queried to obtain comments or synonyms.

105

106 Conclusion and Future Work

MICU is extended by an efficient user feedback dialog.

For testing single matching methods or complete matching systems an appropriate bench-

mark is needed. The existing benchmarks do not fulfill the demands we make on test sets.

Hence, we developed an additional benchmark named ONTOBI, which contains much more

entities and instances than all other benchmarks. Using this benchmark, we evaluated our

two instance-based matchers and MICU.

The evaluation showed, that the instance-based matchers are comparable and both have a

good performance. The same observation can be made for MICU.

8.2 Future Work

The field of matching heterogeneous information sources has been studied extensively in the

last decades. Ontology matching is a more recent issue, and there is still some work to do.

The instance-based matchers presented in this thesis can be enhances, especially with respect

to the used similarity functions. Additionally, the features could be used to train neural net-

works or other models used for classification.

The combination of different kinds of matchers is also an issue for which more work is needed.

An idea is to automatically determine, which matcher is applied on which entity set of the

ontology, such that the best result is achieved.

Another remarkable point for future work is the enhancement of existing evaluation bench-

marks. The ontologies of ONTOBI provide a good basis, but the modifications have to be

extended.

Furthermore, there is a need to adapt existing matching systems, such that they can process

huge ontologies as the ones included in ONTOBI.

References

[ATV08] Bogdan Alexe, Wang-Chiew Tan, and Yannis Velegrakis. STBenchmark: To-

wards a benchmark for mapping systems. Proc. VLDB Endow., 1(1):230–244,

2008.

[Bec04] Dave Beckett. RDF/XML Syntax Specification (Revised) . http://www.w3.

org/TR/rdf-syntax-grammar/, February 2004.

[BG04] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF

Schema. http://www.w3.org/TR/rdf-schema/, February 2004.

[BGNV08] Geert Jan Bex, Wouter Gelade, Frank Neven, and Stijn Vansummeren. Learning

Deterministic Regular Expressions for the Inference of Schemas from XML Data.

In WWW ’08: Proceeding of the 17th international conference on World Wide

Web, pages 825–834, New York, NY, USA, 2008. ACM.

[BL] Tim Berners-Lee. What the Semantic Web can represent.

http://www.w3.org/DesignIssues/RDFnot.html,.

[BLG05] Tim Berners-Lee and Networking Group. Uniform Resource Identifier (URI):

Generic Syntax . http://www.ietf.org/rfc/rfc3986.txt, January 2005.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific

American, May 2001.

[BM02] Jacob Berlin and Amihai Motro. Database Schema Matching Using Machine

Learning with Feature Selection. In Advanced Information Systems Engineering,

14th International Conference, CAiSE 2002, Toronto, Canada, May 27-31, 2002,

Proceedings, pages 452–466, 2002.

[BMKL02] Denilson Barbosa, Alberto O. Mendelzon, John Keenleyside, and Kelly Lyons.

ToXgene: An extensible template-based data generator for XML. In In WebDB,

pages 49–54, 2002.

[BN05] Alexander Bilke and Felix Naumann. Schema Matching using Duplicates. In

Proceedings of the 21st International Conference on Data Engineering, ICDE

2005, 5-8 April 2005, Tokyo, Japan, pages 69–80, 2005.

108 REFERENCES

[BSZ03] Paolo Bouquet, Luciano Serafini, and Stefano Zanobini. Semantic Coordination:

A New Approach and an Application. In The Semantic Web - ISWC 2003, Se-

cond International Semantic Web Conference, Sanibel Island, FL, USA, October

20-23, 2003, Proceedings, pages 130–145, 2003.

[CFM06] Silvana Castano, Alfio Ferrara, and Stefano Montanelli. Matching Ontologies in

Open Networked Systems: Techniques and Applications. pages 25–63, 2006.

[CH98] William Cohen and Haym Hirsh. Joins that Generalize: Text Classification Using

WHIRL. In Proceedings of the Fourth International Conference on Knowledge

Discovery and Data Mining, pages 169–173, 1998.

[DDL00] AnHai Doan, Pedro Domingos, and Alon Y. Levy. Learning Source Description

for Data Integration. In WebDB (Informal Proceedings), 2000.

[DGB07] Jérôme David, Fabrice Guillet, and Henri Briand. Association Rule Ontology

Matching Approach. International Journal on Semantic Web and Information

Systems, 3(2):27–49, 2007.

[DLD+04] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Y. Halevy, and Pedro

Domingos. iMAP: Discovering Complex Mappings between Database Schemas.

In Proceedings of the ACM SIGMOD International Conference on Management

of Data, Paris, France, June 13-18, 2004, pages 383–394, 2004.

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learning

to map between Ontologies on the Semantic Web. In WWW ’02: Proceedings

of the 11th international conference on World Wide Web, pages 662–673. ACM

Press, 2002.

[DMDH04] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y. Halevy. Ontology

Matching: A Machine Learning Approach. In Handbook on Ontologies, pages

385–404. Springer, 2004.

[DMQ03] Dejing Dou, Drew Mcdermott, and Peishen Qi. Ontology Translation on the

Semantic Web. In Journal of Data Semantics, page 2005, 2003.

[DR02] Hong Hai Do and Erhard Rahm. COMA - A System for Flexible Combination of

Schema Matching Approaches. In VLDB 2002, Proceedings of 28th International

Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong, China,

pages 610–621, 2002.

[EE05] Marc Ehrig and Jérôme Euzenat. Relaxed Precision and Recall for Ontology

Matching. In Integrating Ontologies ’05, Proceedings of the K-CAP 2005 Work-

shop on Integrating Ontologies, Banff, Canada, October 2, 2005, 2005.

REFERENCES 109

[EFH+09] Jérôme Euzenat, Alfio Ferrara, Laura Hollink, Antoine Isaac, Cliff Joslyn,

Véronique Malaisé, Christian Meilicke, Andriy Nikolov, Juan Pane, Marta Sa-

bou, François Scharffe, Pavel Shvaiko, Vassilis Spiliopoulos, Heiner Stucken-

schmidt, Ondrej Sváb-Zamazal, Vojtech Svátek, Cássia Trojahn dos Santos,

George A. Vouros, and Shenghui Wang. Results of the Ontology Alignment

Evaluation Initiative 2009. In Proceedings of the 4th International Workshop on

Ontology Matching (OM-2009) collocated with the 8th International Semantic

Web Conference (ISWC-2009) Chantilly, USA, October 25, 2009, 2009.

[EM07] Daniel Engmann and Sabine Maßmann. Instance Matching with COMA++. In

Datenbanksysteme in Business, Technologie und Web (BTW 2007), Workshop

Proceedings, 5.-6. März 2007, Aachen, Germany, 2007.

[EP06] Andy Seaborne Eric Prud’hommeaux. SPARQL Query Language for RDF .

http://www.w3.org/TR/rdf-sparql-query/, October 2006.

[ES04] Marc Ehrig and Steffen Staab. QOM - Quick Ontology Mapping. In INFOR-

MATIK 2004 - Informatik verbindet, Band 1, Beiträge der 34. Jahrestagung

der Gesellschaft für Informatik e.V. (GI), Ulm, 20.-24. September 2004, pages

356–361. GI, 2004.

[ES07] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag, Hei-

delberg (DE), 2007.

[Euz94] Jérôme Euzenat. Brief overview of T-tree: the Tropes Taxonomy building Tool.

In Proceedings of the 4th ASIS SIG/CR workshop on classification research ,

Columbus (OH US), pages 69–87, 1994.

[Euz06] Jérôme Euzenat. An API for ontology Alignment (version 2.1).

http://gforge.inria.fr/docman/view.php/117/251/align.pdf, 2006.

[Euz07] Jérôme Euzenat. Semantic Precision and Recall for Ontology Alignment Eva-

luation. In IJCAI 2007, Proceedings of the 20th International Joint Conference

on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 348–353,

2007.

[EV04] Jérôme Euzenat and Petko Valtchev. Similarity-Based Ontology Alignment in

OWL-Lite. In Proceedings of the 16th Eureopean Conference on Artificial In-

telligence, ECAI’2004, including Prestigious Applicants of Intelligent Systems,

PAIS 2004, Valencia, Spain, August 22-27, 2004, pages 333–337, 2004.

[Fle73] J.L. Fleiss. Statistical Methods for Rates and Proportions. John Wiley and Sons,

1973.

[FLMV08] Alfio Ferrara, Davide Lorusso, Stefano Montanelli, and Gaia Varese. Towards

a Benchmark for Instance Matching. In Proceedings of the 3rd International

110 REFERENCES

Workshop on Ontology Matching (OM-2008) Collocated with the 7th Internatio-

nal Semantic Web Conference (ISWC-2008), Karlsruhe, Germany, October 26,

2008, 2008.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2):199–220, 1993.

[GS62] D. Gale and L. S. Shapley. College Admissions and the Stability of Marriage.

The American Mathematical Monthly, 69(1):9–15, 1962.

[Hab04] Mehran Habibi. Real World Regular Expressions with Java 1.4. APress, 2004.

[Hea09] Marti A. Hearst. Search User Interfaces. Cambridge University Press, 2009.

[Hum83] Robert A. Hummel. A Design Method for Relaxation Labeling Applications. In

Proceedings of the National Conference on Artificial Intelligence. Washington,

D.C., August 22-26, 1983, pages 168–171, 1983.

[IIM10] The ISLab Instance Matching Benchmark. http://islab.dico.unimi.it/iimb/, last

visited: October 2010.

[ITH03] Ryutaro Ichise, Hideaki Takeda, and Shinichi Honiden. Integrating Multiple

Internet Directories by Instance-based Learning. In IJCAI-03, Proceedings of the

Eighteenth International Joint Conference on Artificial Intelligence, Acapulco,

Mexico, August 9-15, 2003, pages 22–30, 2003.

[JHCQ05] Ningsheng Jian, Wei Hu, Gong Cheng, and Yuzhong Qu. Falcon-AO: Aligning

Ontologies with Falcon. In Integrating Ontologies ’05, Proceedings of the K-CAP

2005 Workshop on Integrating Ontologies, Banff, Canada, October 2, 2005, 2005.

[Jie04] Jie Tang and Bangyong Liang and Juan-Zi Li and Kehong Wang. Risk Minimi-

zation Based Ontology Mapping. In Content Computing, Advanced Workshop on

Content Computing, AWCC 2004, ZhenJiang, JiangSu, China, November 15-17,

2004, Proceedings, pages 469–480, 2004.

[JMSK09] Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka. Ontology

matching with semantic verification. Journal of Web Semantics, 7(3):235–251,

2009.

[Kin80] Ross Kindermann. Markov Random Fields and Their Applications (Contempo-

rary Mathematics ; V. 1). American Mathematical Society, 1980.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-

oriented and frame-based languages. Journal of the ACM, 42(4), 1995.

[KQL07] David Kensche, Christoph Quix, Xiang Li 0002, and Yong Li. GeRoMeSuite:

A System for Holistic Generic Model Management. In Proceedings of the 33rd

REFERENCES 111

International Conference on Very Large Data Bases, University of Vienna, Au-

stria, September 23-27, 2007, pages 1322–1325, 2007.

[LBK+09] Jens Lehmann, Chris Bizer, Georgi Kobilarov, Søren Auer, Christian Becker,

Richard Cyganiak, and Sebastian Hellmann. DBpedia - A Crystallization Point

for the Web of Data. Journal of Web Semantics, 2009.

[LC94] Wen-Syan Li and Chris Clifton. Semantic Integration in Heterogeneous Data-

bases Using Neural Networks. In VLDB’94, Proceedings of 20th International

Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chi-

le, Chile, pages 1–12, 1994.

[LC00] Wen-Syan Li and Chris Clifton. SEMINT: A tool for identifying attribute cor-

respondences in heterogeneous databases using neural networks, journal = Data

and Knowledge Engineering. 33(1):49–84, 2000.

[LG01] Martin S. Lacher and Georg Groh. Facilitating the Exchange of Explicit Know-

ledge through Ontology Mappings. In Proceedings of the Fourteenth Internatio-

nal Florida Artificial Intelligence Research Society Conference, May 21-23, 2001,

Key West, Florida, USA, pages 305–309, 2001.

[LT06] Patrick Lambrix and He Tan. SAMBO - A system for aligning and merging

biomedical ontologies. Journal of Web Semantics, 4(3):196–206, 2006.

[MBR01] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic Schema Mat-

ching with Cupid. In VLDB 2001, Proceedings of 27th International Conference

on Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages 49–58,

2001.

[MER06] Sabine Massmann, Daniel Engmann, and Erhard Rahm. COMA++: Results

for the Ontology Alignment Contest OAEI 2006. In Proceedings of the 1st In-

ternational Workshop on Ontology Matching (OM-2006) Collocated with the 5th

International Semantic Web Conference (ISWC-2006), Athens, Georgia, USA,

November 5, 2006, 2006.

[MGMR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity Flooding: A

Versatile Graph Matching Algorithm and Its Application to Schema Matching.

In Proceedings of the 18th International Conference on Data Engineering, 26

February - 1 March 2002, San Jose, CA, pages 117–128. IEEE Computer Society,

2002.

[MYC08] Erwan Moreau, François Yvon, and Olivier Cappé. Robust Similarity Measures

for Named Entities Matching. In Proceedings of the 22nd International Confe-

rence on Computational Linguistics (Coling 2008), pages 593–600, Manchester,

UK, August 2008.

112 REFERENCES

[n306] Notation3. http://www.w3.org/DesignIssues/Notation3, last update: March

2006.

[NVVM06] Miklos Nagy, Maria Vargas-Vera, and Enrico Motta. DSSim-ontology Mapping

with Uncertainty. In Proceedings of the 1st International Workshop on Onto-

logy Matching (OM-2006) Collocated with the 5th International Semantic Web

Conference (ISWC-2006), Athens, Georgia, USA, November 5, 2006, 2006.

[OAE09] Ontology Alignment Evaluation Initiative - OAEI-2009 Campaign.

http://oaei.ontologymatching.org/2009/, 2009.

[Pro09] The Protégé Ontology Editor and Knowledge Acquisition System.

http://protege.stanford.edu/, December 2009.

[QGK09] Christoph Quix, Sandra Geisler, David Kensche, and Xiang Li 0002. Results of

GeRoMeSuite for OAEI 2009. In Proceedings of the 4th International Workshop

on Ontology Matching (OM-2009) collocated with the 8th International Semantic

Web Conference (ISWC-2009) Chantilly, USA, October 25, 2009, 2009.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic

schema matching. VLDB Journal, 10(4):334–350, 2001.

[SA09] Md. Hanif Seddiqui and Masaki Aono. An efficient and scalable algorithm for

segmented alignment of ontologies of arbitrary size. Web Semantics: Science,

Services and Agents on the World Wide Web, 7(4):344 – 356, 2009.

[SCW04] Michael K. Smith and and Deborah L. McGuinness Chris Welty. OWL Web On-

tology Language Guide. http://www.w3.org/TR/owl-guide/, last update: Fe-

bruary 2004.

[SE05] Pavel Shvaiko and Jérôme Euzenat. A Survey of Schema-Based Matching Ap-

proaches. In Journal on Data Semantics IV, volume 3730 of Lecture Notes in

Computer Science, pages 146–171. Springer, 2005.

[SFW83] Gerard Salton, Edward A. Fox, and Harry Wu. Extended Boolean information

retrieval. Communications of the ACM, 26:1022–1036, November 1983.

[SM01] Gerd Stumme and Alexander Maedche. FCA-MERGE: Bottom-Up Merging of

Ontologies. In Proceedings of the Seventeenth International Joint Conference

on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10,

2001, pages 225–234, 2001.

[WES08] Shenghui Wang, Gwenn Englebienne, and Stefan Schlobach. Learning Concept

Mappings from Instance Similarity. In The Semantic Web - ISWC 2008, 7th

International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, Oc-

tober 26-30, 2008. Proceedings, pages 339–355, 2008.

REFERENCES 113

[WM97] D. Randall Wilson and Tony R. Martinez. Improved Heterogeneous Distance

Functions. Journal of Artificial Intelligence Research, cs.AI/9701101, 1997.

[wol10] About Wolfram—Alpha. http://www.wolframalpha.com/about.html, last vi-

sited: October 2010.

[Wor10] WordNet . http://wordnet.princeton.edu/, last visited: October 2010.

[WX09] Peng Wang and Baowen Xu. Lily: Ontology Alignment Results for OAEI 2009.

In Proceedings of the 4th International Workshop on Ontology Matching (OM-

2009) collocated with the 8th International Semantic Web Conference (ISWC-

2009) Chantilly, USA, October 25, 2009, 2009.

[Zai08a] Katrin Zaiß. Entwicklung eines Frameworks für instanzbasiertes Ontologie-

Matching. In Tagungsband zum 20. GI-Workshop über Grundlagen von Da-

tenbanken (20th GI-Workshop on the Foundations of Databases), Apolda,

Thüringen, 13.-16. Mai 2008, 2008.

[Zai08b] Katrin Zaiß. Ontologie-Matching: Überblick und Evaluation. Datenbank-

Spektrum, 8(24):12–17, 2008.

[ZC09a] Katrin Zaiß and Stefan Conrad. Instance-Based Ontology Matching Using Diffe-

rent Kinds Of Formalisms. In Proceedings of World Academy of Science, Enginee-

ring and Technology, International Conference on Semantic Web Engineering,

July 29-31, Oslo, Norway, pages 164–172, 2009.

[ZC09b] Katrin Zaiß and Stefan Conrad. Partial Ontology Matching Using Instance Fea-

tures. In On the Move to Meaningful Internet Systems: OTM 2009, Confederated

International Conferences, CoopIS, DOA, IS, and ODBASE 2009, Vilamoura,

Portugal, November 1-6, 2009, Proceedings, Part II, pages 1201–1208. Springer,

2009.

[ZCV10] Katrin Zaiß, Stefan Conrad, and Sven Vater. A Benchmark for Testing Instance-

Based Ontology Matching Methods. In Proceedings of 17th International Confe-

rence on Knowledge Engineering and Knowledge Management, 11th October-15th

October 2010, Lisbon, Portugal, 2010.

[ZSC08] Katrin Zaiß, Tim Schlüter, and Stefan Conrad. Instance-Based Ontology Mat-

ching using Regular Expressions. In R. Meersman, Z. Tari, and P. Herrero,

editors, On the Move to Meaningful Internet Systems: OTM 2008 Workshops,

ODBase 2008, LNCS 5333, 9-14. November 2008, Monterrey, Mexico, pages

40–41. Springer-Verlag, 2008.

List of Figures

2.1 Example Ontology O1 . 9

2.2 A sample RDF graph . 10

2.3 Example Ontology O2 . 15

2.4 Matching Process, taken from [ES07] . 16

2.5 Classification of Matching Approaches, taken from [ES07] 23

4.1 Creation of RECW vectors, an example . 45

4.2 Instance-Based Matching Process . 46

4.3 Matching Process . 51

5.1 Architecture of MICU . 63

6.1 Info box for “Duesseldorf” . 74

6.2 Overview of a test case . 77

7.1 left side R1, right side R2: regular expression approach without and with

attribute propagation . 88

7.2 left side R3, right side R4: regular expression approach with 200 or 50 instances

and concept instances . 88

7.3 left side R5/R7, right side R6: regular expression approach with Euclidean

measure and without or with concept instances 89

7.4 left side R8, right side R9: catchword approach with 200 and 50 instances . . 89

7.5 R10: catchword approach using the Euclidean measure 90

7.6 T1/T2 IIMB: without concept features, threshold 0.5 91

7.7 T3 to T5 ONTOBI: without concept features, threshold 0.3, 0.5, 0.7 93

7.8 T6 to T8 ONTOBI: with concept features, threshold 0.3, 0.5, 0.7 94

7.9 T9 ONTOBI: without concept features, threshold 0.5, set size 7 94

7.10 T10 ONTOBI: without concept features, threshold 0.5, set size 1 95

7.11 M1 and M2, ONTOBI: feature matcher without and with concept propagation 98

7.12 M3 ONTOBI: feature matcher with user feedback 99

7.13 M4 ONTOBI: regular expression matcher . 99

7.14 M5 ONTOBI: no instance matcher . 100

7.15 M6 and M7 OAEI: with feature matcher and without any instance-based

matcher . 100

116 LIST OF FIGURES

7.16 M8 OAEI: regular expression matcher . 102

7.17 M9 OAEI: user feedback . 103

List of Tables

4.1 Example attribute similarities . 58

6.1 Overview of the modifications . 76

6.2 Overview of the benchmark . 79

6.3 Comparison of Evaluation Benchmarks: + fully satisfied, o partly satisfied, -

not satisfied . 82

7.1 Overview of the configurations for the regular expression and catchword tests 87

7.2 Overview of the configurations of the feature approach tests 92

7.3 Overview of the configurations of the ONTOBI/MICU test 97

7.4 OAEI benchmark tests . 101

7.5 Overview of the configurations of OAEI/MICU test 102

