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Abstract

Nowadays, multiple hypotheses testing has become a promising area of statistics. In medicine,

biology, pharmacology, epidemiology and even marketing, many hypotheses often have to be

tested simultaneously. In some applications like genome-wide association studies, there may be

several hundreds of thousands hypotheses to be tested.

An important concept in multiple testing is controlling a suitable Type I error rate. The

Family-Wise Error Rate (FWER) is a classical error rate criterion and denotes the probability

of one or more false rejections. Unfortunately, the FWER is often too restrictive if the number of

hypotheses is very large. In 1995, Benjamini and Hochberg introduced an alternative error rate

called the False Discovery Rate (FDR). The FDR denotes the expected proportion of falsely re-

jected hypotheses among all rejections. Typically, multiple test procedures controlling the FDR

are more powerful than multiple tests controlling the FWER. However, if the number of true hy-

potheses is large and almost all hypotheses are true, procedures controlling the FWER may be a

good alternative to tests controlling the FDR.

In this work we deal with multiple test procedures that control one of the aforementioned

multiple error rates for independent test statistics and dependent ones as well. In the case of de-

pendent test statistics, asymptotic considerations play a decisive role. Chapter 1 is an introduction

into basic concepts and problems concerning multiple hypotheses testing.

In Chapter 2 we discuss a possibility to improve the power of some classical multiple tests

controlling the FWER by applying a plug-in estimate for the number of true null hypotheses. We

investigate several plug-in estimates and prove FWER control of Bonferroni, Šidàk and so-called

step-down plug-in multiple test procedures. Moreover, we obtain some asymptotic results and

compare the power of plug-in tests with the power of the corresponding classical procedures.

In Chapter 3 we restrict our attention to exact control of the FDR for step-up-down (SUD)

test procedures. We give a recursive scheme which allows to calculate critical values such that the

corresponding FDR equals the pre-specified FDR bounding curve. This scheme is numerically

extremely sensitive so that computation of feasible solutions remains a challenging problem. We

introduce alternative FDR bounding curves and study their connection to rejection curves as well

as the existence of valid sets of critical values leading to these FDR bounding curves. In order to

compute feasible critical values two further approaches are presented.

In Chapter 4 we focus on situations where some kind of weak dependence occurs. We con-

sider models where the empirical cumulative distribution function of p-values corresponding to

true null hypotheses is asymptotically bounded by the distribution function of a uniform vari-

ate. Important examples of weak dependence like block-dependence of test statistics and pairwise

comparisons are investigated in more detail. We prove that large classes of plug-in tests and SUD

procedures control the corresponding error rate under weak dependence at least asymptotically.

Various numerical examples illustrate our theoretical results.
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Zusammenfassung

In den letzten Jahrzehnten ist multiples Hypothesentesten ein vielversprechender Bereich der

Statistik geworden. In der Medizin, Biologie, Pharmakologie, Epidemiologie und sogar im Bere-

ich Marketing handelt es sich bei vielen Fragestellungen um multiple Testprobleme. Zum Beispiel

werden in genomweiten Assoziationsstudien manchmal viele Hunderttausende von SNPs auf As-

soziation mit einer Erkrankung getestet.

Ein wichtiges Konzept multiplen Hypothesentestens ist die Kontrolle eines geeigneten mul-

tiplen Fehlerkriteriums. Die bekannteste Fehlerrate ist die sogenannte Family Wise Error Rate

(FWER). Damit wird die Wahrscheinlichkeit bezeichnet, dass mindestens eine Nullhypothese

fälschlicherweise abgelehnt wird. Ist die Anzahl von Tests groß, so sind die meisten FWER

kontrollierenden multiplen Testverfahren sehr konservativ. Im Jahr 1995 haben Benjamini und

Hochberg vorgeschlagen, die False Discovery Rate (FDR) zu kontrollieren, d.h. den erwarteten

Anteil fälschlich abgelehnter Nullhypothesen bzgl. aller abgelehnten Hypothesen. Typischerweise

lehnen FDR kontrollierende Verfahren mehr Hypothesen ab als Prozeduren, die die FWER kon-

trollieren. Dennoch, die letzteren können eine gute Alternative zu FDR kontrollierenden Verfahren

darstellen, falls die Anzahl der Tests groß ist und fast alle Hypothesen wahr sind.

In dieser Arbeit untersuchen wir multiple Testverfahren, die die FWER oder die FDR kontrol-

lieren, sowohl für unabhängige als auch abhängige Teststatistiken. In dem abhängigen Fall spielen

asymptotische Betrachtungen eine entscheidende Rolle. In Kapitel 1 werden Grundkonzepte und

Problemstellungen des multiplen Testens eingeführt.

In Kapitel 2 wird die Güte einiger klassischer FWER kontrollierender Tests verbessert, indem

die Anzahl aller Tests durch die geschätzte Anzahl wahrer Hypothesen bei der Berechnung kritis-

cher Werte ersetzt wird. Wir untersuchen einige Schätzer für die Anzahl wahrer Hypothesen und

beweisen FWER Kontrolle für Bonferroni, Šidàk und sogenannte step-down plug-in Tests. Wir

präsentieren asymptotische Ergebnisse und vergleichen Güten von neuen und klassischen Tests.

In Kapitel 3 wird der Fokus auf step-up-down Testsverfahren gelegt, die die FDR kontrol-

lieren. Wir präsentieren ein rekursives Schema zur Berechnung zulässiger kritischer Werte, die

zu vorher festgesetzten Schranken für die FDR führen. Das Schema ist numerisch sehr sensibel,

so dass die Existenz einer zulässigen Lösung ein anspruchsvolles Problem ist. Wir führen neue

sogenannte FDR beschränkende Kurven ein und untersuchen sowohl deren Zusammenhang zu

Ablehnkurven als auch die Lösbarkeit des rekursiven Schemas für diese FDR beschränkende Kur-

ven. Außerdem werden weitere Verfahren zur Berechnung zulässiger kritischer Werte vorgestellt.

Kapitel 4 widmet sich abhängigen Teststatistiken, die eine sogenannte "weak dependence"

Bedingung erfüllen. Wir betrachten Modelle, bei denen die empirische Verteilungsfunktion von

p-Werten unter Nullhypothesen asymptotisch nicht oberhalb der Winkelhalbierenden verläuft.

Blockabhängigkeit von Teststatistiken und Paarvergleiche sind die bedeutendsten Beispiele für

"weak dependence" und werden ausführlich untersucht. Wir prüfen FWER und FDR Kontrolle für

große Klassen von plug-in und SUD Tests. Verschiedene numerische Beispiele veranschaulichen

die theoretischen Ergebnisse.
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Overview

In various applications of statistics, simultaneous testing of a large number of hypotheses is ev-

eryday life. For example, in multiple endpoints studies in clinical trials, a new treatment has to

be compared with an existing one in terms of a number of measurements (endpoints). In genome-

wide association studies, sometimes hundreds of thousands of single-nucleotide polymorphisms

(SNPs) have to be tested simultaneously. Other applications in multiple testing can be found in

medicine, biology, pharmacology, epidemiology, bioinformatics and even marketing.

Typically, one is not interested in whether or not all null hypotheses are true. It is important

to make decisions about individual hypotheses, that is, we want to decide which hypotheses are

false. Clearly, if we carry out many statistical tests simultaneously, the probability of making false

rejections increases with the number of tests. The aim of a multiple test procedure is to control a

suitable Type I error rate and to maximise the number of correct rejections at the same time. Note

that a single test controls the probability of a false rejection (Type I error). In the multiple case,

the Type I error rate can be generalised in different ways.

One of the well-known multiple error measures is the so-called Family-Wise Error Rate

(FWER), that is, the probability of falsely rejecting at least one true null hypothesis. Up to a

few years ago, the FWER was the most used error rate criterion. Unfortunately, multiple test pro-

cedures controlling the FWER require that individual tests are performed at a lower level than the

pre-specified FWER-level, which often results in a low power. Instead of controlling the FWER,

one can control the False Discovery Rate (FDR) introduced in Benjamini and Hochberg [1995].

The FDR is the expected proportion of falsely rejected null hypotheses among all rejected hy-

potheses. Since the FDR is less restrictive than the FWER, the FDR has become an attractive

error measure especially if the number of hypotheses is large. On the other hand, if the number of

null hypotheses increases and the proportion of true null hypotheses converges to 1, multiple test

procedures controlling the FWER may be good alternatives to multiple tests controlling the FDR.

In this dissertation we deal with both types of multiple test procedures, that is, multiple tests

controlling the FWER and others controlling the FDR. We consider independent test statistics and

dependent ones as well, where the latter often occur in applications. Moreover, because of massive

multiplicity appearing in many applications, asymptotic investigations feature prominently in this

work. This dissertation is organised as follows.

Chapter 1 serves as an introduction for this treatise. A general multiple-testing problem and

possible error rate criteria are presented. We consider various classical multiple test procedures

1



and show under which conditions these tests control the corresponding error rate. We give some

notations and definitions and describe the problems that are considered in further chapters.

In Chapter 2 we discuss a special approach of improving the power of some classical multiple

test procedures controlling the Family-Wise Error Rate (FWER). This approach is based on plug-

in estimates for the number of true null hypotheses. Although, the idea of plug-in multiple test

procedures is not new, cf. e.g. Schweder and Spjøtvoll [1982], Hochberg and Benjamini [1990]

or Benjamini and Hochberg [2000], no theoretical results seem to be available until recently. In

this chapter we investigate several plug-in estimates and prove FWER control of Bonferroni and

so-called Šidàk plug-in multiple tests. Moreover, we show that suitable plug-in step-down tests

also yield FWER control. Thereby, we obtain some asymptotic results and provide some power

considerations. Some of the main results of this chapter are published in Finner and Gontscharuk

[2009]. Independently, similar findings concerning FWER control of special plug-in tests with

respect to a specific mixture model were obtained in Guo [2009].

Chapter 3 deals with exact control of the False Discovery Rate (FDR) for step-up-down (SUD)

test procedures related to the Asymptotically Optimal Rejection Curve (AORC). The AORC was

introduced in Finner et al. [2009] and has the property to exhaust the pre-specified FDR level α

under extreme parameter configurations, at least asymptotically. Since SUD procedures based on

this curve do not control the FDR for a finite number of hypotheses, we propose various methods

for the computation of critical values leading to finite FDR control. Finner et al. [2009] propose

an upper bound for the FDR of an SUD test which is exact for an SU test in so-called Dirac-

uniform models. We give a recursive scheme which allows to calculate critical values such that

the corresponding FDR equals the pre-specified FDR bounding curve and discuss its solvability.

Another interesting approach, which yields a set of critical values such that the corresponding

FDR is close to α, is given by an iterative method based on the fixed point theorem. The main

results in this chapter are submitted for publication.

In Chapter 4 we investigate multiple test procedures based on dependent test statistics. We

introduce a modified version of weak dependence and present a simple condition that is equiva-

lent to some boundary case of this modified version of weak dependence. We show that plug-in

procedures and SUD tests control the corresponding error rate under weak dependence at least

asymptotically. Assuming some type of weak dependence between p-values, one of the main

problems with respect to asymptotic FDR control occurs if the proportion of rejected hypotheses

tends to 0. We prove asymptotic FDR control for a broad class of step-wise multiple tests with

respect to some restrictions on a given parameter space guaranteeing that the proportion of re-

jected hypotheses is asymptotically bounded away from 0. An important boundary case of weak

dependence is given by dependent p-values such that the asymptotic empirical distribution func-

tion (ecdf) of those p-values that correspond to true null hypotheses, coincides with the asymptotic

ecdf of independently uniformly distributed p-values. This case of weak dependence is asymptoti-

cally least favourable for the FWER of suitable multiple tests. Moreover, if in addition to this kind

2



of weak dependence, p-values under alternatives follow a Dirac distribution with point mass in

0, these p-values are asymptotically least favourable for the FDR of special step-wise procedures

satisfying some power requirement. We consider different types of dependence ensuring weak

dependence. Block-dependence of test statistics and pairwise comparisons will be investigated in

more detail. Thereby, various numerical examples illustrate our theoretical results.

Some definitions of different types of convergence and relevant theorems are summarised in

an Appendix.

Most issues investigated in this treatise except the plug-in methods in Chapter 2 were raised

in a research project sponsored by the Deutsche Forschungsgemeinschaft (DFG), grant No. FI

524/3-1, under the responsibility of my advisor Apl. Prof. Dr. Helmut Finner and Prof. Dr. Guido

Giani.
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Chapter 1

General framework for multiple testing

In this chapter we briefly introduce the multiple testing framework and some basic concepts. Sec-

tion 1.1 describes the general setup and provides basic definitions and notation. In Section 1.2

we review the concept of the Family-Wise Error Rate (FWER) and introduce some well known

elementary multiple test procedures. Moreover, we introduce the concept of rejection curves and

critical value functions as a useful tool in multiple testing. Section 1.3 is concerned with the

false discovery rate (FDR) criterion introduced by Benjamini and Hochberg [1995]. We discuss

different multiple test procedures controlling some error rates and show how multiple tests can

be defined in terms of rejection curves and crossing points. In Section 1.4 we introduce a set of

possible assumptions for deriving theoretical results and define Dirac-uniform models which pro-

vide least favourable parameter configurations with respect to different error rates under several

conditions.

1.1 Introduction to basic concepts

First of all, we introduce the notation of our general setup which applies in this work.

Notation 1.1 (General setup)

For some statistical experiment (Ω,A, {Pϑ : ϑ ∈ Θ}) we consider the general problem of simul-

taneously testing a finite number of hypotheses Hi, i ∈ In, where In = {1, . . . , n}. Hypothe-

ses are interpreted as subsets of the underlying parameter space Θ, and it will be assumed that

∅ 6= Hi ⊂ Θ, i ∈ In. The corresponding alternatives are given by Θ \ Hi. Let pi, i ∈ In,

be p-values for testing Hi. Suppose pi : (Ω,A) −→ ([0, 1],B), i ∈ In, where B denotes the

Borel-σ-field over [0, 1]. For ϑ ∈ Θ, Pϑ denotes the underlying probability measure. As usual, let

a p-value pi satisfy 0 < Pϑ(pi ≤ x) ≤ x for all ϑ ∈ Hi, i ∈ In, and x ∈ (0, 1], i.e. p-values un-

der null hypotheses are uniformly distributed or stochastically larger than a uniform variate. Let

n0 = n0(n, ϑ) denote the number of true null hypotheses and In,0 = In,0(ϑ) = {i ∈ In : ϑ ∈ Hi}
and In,1 = In,1(ϑ) = In \ In,0 = {i ∈ In : ϑ 6∈ Hi} denote the index set of true and false null

hypotheses, respectively. Furthermore, n0 = |In,0(ϑ)|. Let n1 = n1(n, ϑ) be the number of false

4



CHAPTER 1. GENERAL FRAMEWORK FOR MULTIPLE TESTING 5

Test decision

Hypothesis 0 1

true Un Vn n0

false Tn Sn n1

n−Rn Rn n

Table 1.1: Outcomes in testing n hypotheses.

hypotheses, i.e. n1 = n− n0 = |In,1(ϑ)|. Below, we write n0, n0(n) or n0(ϑ) (and n1, n1(n) or

n1(ϑ), resp.) depending on which parameter dependence we would like to point out. Finally, let

ϕ = (ϕi : i ∈ In) denote a non-randomised multiple test procedure for Hi, i ∈ In. For i ∈ In, a

hypothesis Hi is rejected if and only if ϕi = 1.

Table 1.1 shows the possible outcomes in testing n hypotheses. The number of all rejections

is given by Rn, the number of false (true) rejections is denoted by Vn (Sn, resp.) and the number

of correctly (falsely) accepted hypotheses is given by Un (Tn, resp.). Note that Vn, Sn, Un and Tn
are not observable and, typically, n0, n1 are unknown.

By testing a single hypothesis, the probability of a false rejection (Type I error) has to be

controlled while we are looking for a test that possibly minimises the probability of a false rejection

(Type II error).

In the multiple testing case, if we perform each individual test ϕi, i ∈ In, at level α, the

corresponding multiple test ϕ = (ϕi : i ∈ In) can reject a huge number of true null hypotheses.

For example, when testing n = 500000 null hypotheses at level α = 0.05 (e.g., in genome-wide

association studies, several hundreds of thousands of single-nucleotide polymorphisms (SNPs)

have to be tested simultaneously), around Vn = 25000 false rejections are expected if almost all

hypotheses are true. In real applications, this is completely out of the question.

The Type I error rate can be generalised for multiple testing in different ways. Typically,

all generalisations involve the number of false rejections Vn. First, we consider those error rate

criteria which are only based on the distribution of Vn. One of the classical multiple error rates is

the Family-Wise Error Rate (FWER), i.e. the probability of at least one false rejection, i.e.

FWER = Pϑ(Vn ≥ 1).

In the next section, the FWER will be considered in detail.

One can generalise the FWER as follows. For a fixed k ∈ N the generalised FWER denotes

the probability of rejecting at least k true null hypotheses, that is,

gFWER(k) = Pϑ(Vn ≥ k).

Obviously, the case k = 1 reduces to the usual FWER.

Another possibility is to control the False Discovery Proportion (FDP), which is defined as

the number of false rejections Vn divided by the number of all rejections Rn and we set FDP = 0

Asymptotic and Exact Results in Multiple Hypotheses Testing, Veronika Gontscharuk



6 1.2. FAMILY-WISE ERROR RATE

if Rn = 0, i.e.

FDP =
Vn

Rn ∨ 1
.

For a given γ ∈ (0, 1), one wishes to control Pϑ(FDP > γ) at some pre-specified level α. More

information about gFWER(k) and FDP control can be found in Lehmann and Romano [2005].

There is no doubt that the latter error measure was motivated by the False Discovery Rate

(FDR) introduced in Benjamini and Hochberg [1995]. The FDR is defined as the expected FDP,

i.e.

FDR = Eϑ[FDP].

When all null hypotheses are true, i.e. n = n0, controlling the FWER and the FDR are equivalent.

In that case either FDP = 0 (if Vn = 0) or FDP = 1 (if Vn > 0, since all rejections are false),

and the expected ratio is equal to the probability of any false rejection. However, if n1 > 0 and

the number Sn of truly rejected hypotheses is greater than 0, the FDP is either 0 (if Vn = 0) or

0 < FDP < 1 (if Vn > 0), and the expected ratio is smaller than the probability of at least one

false rejection. In those cases the FDR is smaller than the FWER, and controlling the FDR at a

pre-specified level α can result in fewer Type II errors than controlling the FWER at the same level

α. The power increases when more alternative hypotheses are true.

There are many other possibilities to generalise the Type I error rate in the multiple case, see,

for instance, Sarkar and Guo [2009]. In this work, however, we restrict our attention to the FWER

and the FDR.

1.2 Family-Wise Error Rate

As mentioned before, by testing n ≥ 2 null hypotheses quite a few false rejections (Type I errors)

are possible. The probability for at least one false rejection among Hi, i ∈ In, is given by the

so-called Family-Wise Error Rate (FWER), which is a well-known error rate criterion. For a

fixed ϑ ∈ Θ and a given test ϕ we define the number of false rejections by

Vn = Vn(ϕ) = #{i ∈ In,0 : Hi is rejected}.

Note that Vn is typically unknown. The actual FWER of a multiple test ϕ, given a ϑ ∈ Θ, can

formally be expressed by

FWERϑ(ϕ) = Pϑ (Vn ≥ 1) .

A multiple test ϕ controls the FWER at pre-specified level α ∈ (0, 1) if

sup
ϑ∈Θ

FWERϑ(ϕ) ≤ α.

The Bonferroni test is a classical multiple test procedure controlling the FWER. Thereby all

individual tests ϕi, i ∈ In, are performed at level α/n, that is, a Hi is rejected if and only if

pi ≤ α/n. Since

FWERϑ(ϕ) ≤
∑

i∈In,0

Pϑ

(

pi ≤
α

n

)

≤ n0

n
α,

Asymptotic and Exact Results in Multiple Hypotheses Testing, Veronika Gontscharuk



CHAPTER 1. GENERAL FRAMEWORK FOR MULTIPLE TESTING 7

the Bonferroni test always controls the FWER at level α under the general setup, that is, p-values

under nulls are uniformly distributed or stochastically larger than a uniform variate, and it does

not matter whether the p-values are independent or not. Unfortunately, the threshold α/n is very

small if the number of hypotheses n is large. Obviously, this results in low power for individual

hypotheses of the Bonferroni test.

A possible improvement of the classical Bonferroni test is the oracle Bonferroni (OB) test,

where each ϕi, i ∈ In, is carried out at level α/n0. Clearly, the oracle Bonferroni test also controls

the FWER under the same assumptions.

If p-values are independent, then for a fixed threshold α′ ∈ (0, 1) we get

Pϑ(
⋂

i∈In,0

{pi > α′}) =
∏

i∈In,0

Pϑ(pi > α′) ≥ (1− α′)n0 .

The expression Pϑ(
⋂

i∈In,0
{pi > α′}) can be interpreted as 1 − FWERϑ(ϕ), where ϕ is the

multiple test such that each ϕi, i ∈ In, is performed at level α′. Then ϕ controls the FWER

at level α if 1 − α ≤ (1 − α′)n0 , which is equivalent to α′ ≤ 1 − (1 − α)1/n0 . Thus if p-

values corresponding to true null hypotheses are independent, the Šidàk test, which rejects each

hypothesis Hi if pi ≤ 1 − (1 − α)1/n for i ∈ In, controls the FWER at level α. Moreover, if all

hypotheses are true and the corresponding p-values are iid uniformly distributed, then the FWER

for the Šidàk test is exactly α. Similar to the Bonferroni test case, the oracle Šidàk test with the

threshold 1− (1− α)1/n0 controls the FWER under the same condition as the Šidàk test.

The disadvantage of the considered oracle tests is that the number of true null hypotheses n0

is typically unknown. In Chapter 2 we introduce Bonferroni plug-in (BPI) procedures related to

the OB test or the oracle Šidàk test based on an estimator for n0. It will be shown that the FWER

of a BPI test is controlled under suitable assumptions.

The test procedures described before provide examples of single-parameter adjustment pro-

cedures, meaning that a hypothesis is rejected if its corresponding p-value is not greater than the

common threshold (which is α/n for the Bonferroni case and α/n0 for the OB test). Now we

briefly describe some stepwise multiple test procedures, which are often uniformly more powerful

than their single-parameter counterparts. Firstly, we introduce step-down (SD) test procedures.

An SD procedure for testing n hypotheses can be defined in terms of n critical values

0 < α1:n ≤ . . . ≤ αn:n < 1 (1.1)

and works as follows. Let p1:n ≤ . . . ≤ pn:n be the ordered p-values and denote the corresponding

hypotheses by H(1), . . . , H(n). Then a hypothesis H(i), i ∈ In, is rejected if and only if pj:n ≤
αj:n for all j ≤ i, otherwise it cannot be rejected. In other words, the SD procedure starts with

the most significant p-value (i.e. p1:n) by comparing it with the smallest critical value (i.e. α1:n).

If p1:n > α1:n, then all hypotheses are accepted, otherwise we reject H(1) and compare p2:n with

α2:n. If p2:n > α2:n, thenH(2), . . . , H(n) are accepted, otherwise we rejectH(2) and compare p3:n

with α3:n and so on.

One example for an SD procedure is the Bonferroni–Holm step-down test with critical values

αi:n = α/(n−i+1), i ∈ In. It controls the FWER at level α. As in the case of the Bonferroni test,
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control of the FWER of the Bonferroni–Holm procedure is guaranteed for any type of dependence

of p-values. Moreover, it is well-known that the Bonferroni–Holm SD procedure is uniformly

more powerful than the classical Bonferroni single-parameter procedure.

A further type of stepwise procedures are step-up (SU) tests starting with the least significant

p-value (pn:n). For a given set of critical values (1.1), reject all hypotheses if pn:n ≤ αn:n.

Otherwise, for i ∈ In reject hypotheses H(1), . . . , H(i) if pi:n ≤ αi:n and pj:n > αj:n for all

j ≥ i + 1. Note that an SU test rejects at least as many hypotheses as the corresponding SD test

with the same set of critical values.

The Hochberg test is an SU test with critical values αi:n = α/(n − i + 1), i ∈ In, i.e.

an SU test with the same critical values as in the Bonferroni–Holm test, cf. Hochberg [1988].

Obviously, the Hochberg SU procedure is more powerful than the Bonferroni–Holm SD test. On

the other hand, the Hochberg procedure controls the FWER under more restrictive assumptions,

for example, if test statistics are independent or multivariate totally positive of order 2 or a scale

mixture thereof, cf. Sarkar [1998]. A further example for an SU procedure is the Simes test with

critical values αi:n = iα/n, i ∈ In. Simes [1986] showed that his procedure controls the FWER

for independent test statistics under the global null hypothesis, that is, H0 =
⋂n
i=1Hi.

Now we introduce the notation of rejection curves and show that various multiple tests can

be implemented in terms of crossing points between the corresponding rejection curve and the

empirical distribution function of p-values. Let ϕ be a multiple test defined in terms of critical

values (1.1). Thereby, the critical values may be defined in terms of a critical value function

ρ : [0, 1] → [0, 1] such that ρ is non-decreasing and continuous, ρ(0) = 0 and αi:n = ρ(i/n),

i ∈ In. Moreover, r defined by r(t) = inf{u : ρ(u) = t} for t ∈ [0, 1], will be called a rejection

curve. For example, r(t) = (t(n + 1) − α)/(nt) is the rejection curve of the Bonferroni-Holm

and Hochberg test procedures.

Denoting the empirical cumulative distribution function (ecdf) of the p-values by

F̂n(t) =
n∑

i=1

I(pi ≤ t),

Sen [1999] mentioned the following relationship

pi:n ≤ αi:n if and only if F̂n(pi:n) ≥ r(pi:n).

We say a point t = αi:n is a crossing point between F̂n and r, if it satisfies F̂n(pi:n) ≥ r(pi:n)

and F̂n(pi+1:n) < r(pi+1:n) for i ∈ In−1 or F̂n(pn:n) ≥ r(pn:n) for i = n. If we define t∗ as the

smallest (or largest) crossing point between F̂n and r, it follows that t∗ is a random threshold of

the SD (or SU) procedure based on r. Thereby, this SD (or SU) test rejects all Hi, i ∈ In with

pi ≤ t∗. Note that SU and SD procedures belong to the class of step-up-down (SUD) procedures

which will be introduced and investigated in Chapter 3.
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1.3 False Discovery Rate

When the number of hypotheses n is in the tens or hundreds of thousands, control of the FWER

becomes too rigorous so that individual tests ϕi, i ∈ In, have little chance to reject any hypothesis.

A radical weakening of the FWER is the False Discovery Rate (FDR), which was proposed by

Benjamini and Hochberg [1995] as follows. For a fixed ϑ ∈ Θ and a given test ϕ let

Rn = Rn(ϕ) = #{i ∈ In : Hi is rejected}

be the number of all rejections. Define the false discovery proportion as

FDPϑ(ϕ) =
Vn

Rn ∨ 1
.

The actual FDR is given by

FDRϑ(ϕ) = Eϑ[FDPϑ(ϕ)] = Eϑ

[
Vn

Rn ∨ 1

]

.

Alternatively, the actual FDR can be expressed as

FDRϑ(ϕ) = Eϑ

[
Vn
Rn
|Rn > 0

]

· Pϑ(Rn > 0).

We say that ϕ controls the FDR at level α ∈ (0, 1) if

sup
ϑ∈Θ

FDRϑ(ϕ) ≤ α.

When all hypotheses are true, that is, n = n0, we obtain

FDRϑ(ϕ) = Pϑ(Rn > 0) = Pϑ(Vn > 0) = FWERϑ(ϕ).

In general, since Vn/(Rn ∨ 1) ≤ 1, we get Vn/(Rn ∨ 1) ≤ I(Vn ≥ 1) and consequently

FDRϑ(ϕ) ≤ FWERϑ(ϕ),

and typically this inequality is strict except when all hypotheses are true. If a test procedure ϕ

controls the FWER, then ϕ implies FDR control. On the other hand, if FDRϑ(ϕ) ≤ α the FWER

may be greater than α. Thereby, FDR control allows more false rejections (i.e. the number of true

null hypotheses which are rejected) than FWER control especially if the number of true rejections

(i.e. the number of rejected false hypotheses) is large so that the FDR is more liberal (in the sense

of permitting more rejections) than the FWER.

One of the best known multiple-testing procedures controlling the FDR is the linear step-

up (LSU) procedure proposed and investigated in Benjamini and Hochberg [1995]. The original

LSU procedure ϕLSU
(n) (say) rejects Hi, i ∈ In, if and only if pi ≤ mα/n, where m = max{i ∈

In : pi:n ≤ αLSU
i:n} with αLSU

i:n = iα/n, i ∈ In (i.e. Simes’ critical values), cf. Simes [1986].

Now let ϑ ∈ Θ and suppose that pi, i ∈ In,0(ϑ), are iid uniformly distributed on [0, 1] and that
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Figure 1.1: AORC with α = 0.1 (curve) and the rejection curve corresponding to the LSU proce-

dure with α = 0.1 (straight line). Here α1 denotes the ith critical value αLSU
i:n corresponding to the

LSU test and α2 denotes the ith critical value induced by the AORC.

(pi : i ∈ In,0) and (pi : i ∈ In,1) are independent random vectors. Then one of the most

interesting results for the LSU procedure is that

FDRϑ(ϕ
LSU
(n)) =

n0

n
α.

Different proofs of this equality can be found, for instance, in Benjamini and Yekutieli [2001],

Finner and Roters [2001], Sarkar [2002] or Storey et al. [2004].

The fact that the FDR is bounded by n0α/n, that is, the FDR is distinctively smaller than α

for smaller n0-values, raised hope that improvements of the LSU procedure should be possible.

For example, Finner et al. [2009] proposed a non-linear asymptotically optimal rejection curve

(AORC). For a fixed α ∈ (0, 1), the AORC is defined by

fα(t) =
t

t(1− α) + α
, t ∈ [0, 1]. (1.2)

Figure 1.1 displays the AORC with α = 0.1 (curve) and the rejection curve of the LSU procedure

with α = 0.1 (straight line). Larger critical values αi:n induced by the AORC are considerably

greater than the corresponding Simes’ critical values αLSU
i:n . This may result in a larger number of

rejected hypotheses. In the picture, α1 denotes the ith critical value αLSU
i:n corresponding to the LSU

test and α2 denotes the ith critical value induced by the AORC.

The idea behind the AORC is as follows. Consider models such that p-values corresponding

to true null hypotheses are iid uniformly distributed and p-values under alternatives are equal to

0. Moreover, let the proportion of true null hypotheses converge to a ζ ∈ (α, 1) with α ∈ (0, 1).

Then the limiting ecdf of p-values converges to 1 − ζ + tζ denoted by F∞(t|ζ). Let ϕSS(t) be a

single-parameter procedure, which rejects hypotheses with p-values not greater than t. Thereby,

the asymptotic FDR of ϕSS(t) in the considered models is given by

FDR∞(ϕSS(t)|ζ) =
tζ

1− ζ + tζ
.
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By setting FDR∞(ϕSS(t)|ζ) ≡ α we obtain a solution for t depending on ζ, i.e.

tζ :=
α(1− ζ)
ζ(1− α)

.

We are looking for a curve r such that the crossing point between r and the limiting ecdf F∞(·|ζ)
is tζ , that is,

r

(
α(1− ζ)
ζ(1− α)

)

= F∞

(
α(1− ζ)
ζ(1− α)

∣
∣
∣
∣
ζ

)

=
1− ζ
1− α.

Noting that

t =
α(1− ζ)
ζ(1− α)

if and only if ζ = ζ(t) =
α

(1− α)t+ α
,

we get r(t) = fα(t) given in (1.2). Note that for ζ ∈ [0, α] we can set tζ ≡ 1, which implies that

all hypotheses are rejected and FDR∞(ϕSS(1)|ζ) = ζ ≤ α. Below, we will show that the described

models, which will be called Dirac-uniform models, are least favourable for certain SU procedures

(cf. Theorem 1.2 in Section 1.4). The AORC fα is in some sense asymptotically optimal since

the FDR level α is exhausted in this least favourable case, cf. Finner et al. [2009]. In Chapter

3 we present different methods how to construct multiple tests related to the AORC. Moreover,

in Chapter 4 we introduce a modified version of weak dependence and show that a large class of

step-up-down (SUD) procedures controls the FDR under weak dependence at least asymptotically.

This result is in a line with recent investigations concerning FDR control of the LSU procedure

under dependence, for example, in Benjamini and Yekutieli [2001], Finner et al. [2007] or Sarkar

[2002].

1.4 General assumptions and Dirac-uniform models

As mentioned in the previous sections, FDR and/or FWER control for certain multiple test proce-

dures, especially for those which exhaust the corresponding error rate level, is usually guaranteed

under special conditions on the distribution function of p-values like

(D1) ∀ ϑ ∈ Θ : ∀ i ∈ In,0(ϑ) : pi ∼ U([0, 1]),

(I1) ∀ ϑ ∈ Θ : pi, i ∈ In,0(ϑ), are independent,

(I2) ∀ ϑ ∈ Θ : (pi, i ∈ In,0(ϑ)) and (pi, i ∈ In,1(ϑ)) are independently distributed random

vectors.

For example, if (I1) is fulfilled, then the Šidàk test controls the FWER at level α. Conditions (D1),

(I1) and (I2) are sufficient for FDR control of the LSU test. We will use these assumptions or at

least a few of them for deriving theoretical results in the following chapters.

One possible way to construct multiple tests controlling one of the error rates for all ϑ ∈ Θ

is to find a least favourable parameter configuration (LFC) for Θ, i.e. a parameter ϑ0 such

that under ϑ0 the corresponding error rate is larger than under each ϑ ∈ Θ. An LFC ϑ0 does not
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have to belong to Θ and it is not necessarily unique. Obviously, the FWER/FDR is controlled

for all parameters ϑ ∈ Θ if the FWER/FDR is controlled in an LFC. For example, let Θ be a

parameter space such that condition (I1) is fulfilled and n0(ϑ, n) = n0(n) for all ϑ ∈ Θ and some

n0(n) < n. Then each ϑ0 such that n0(ϑ0) = n0(n) and p-values corresponding to true null

hypotheses are independently uniformly distributed on [0, 1] is an LFC for the Šidàk test.

Condition (D1) mostly serves as an LFC for further investigations so that the main results of

this work apply if p-values under nulls are stochastically larger than a uniform variate. However,

in the next theorem (D1) is a necessary condition.

The next theorem shows the behaviour of the FDR for an SU procedure under specific as-

sumptions on the corresponding critical values.

Theorem 1.2 (Benjamini and Yekutieli [2001])

Suppose that (D1), (I1) and (I2) are fulfilled. Then an SU procedure with critical values satisfying

(1.1) has the following properties:

(a) If the ratio αi:n/i is increasing in i, as (pi : i ∈ In,1) increases stochastically, the FDR

decreases.

(b) If the ratio αi:n/i is decreasing in i, as (pi : i ∈ In,1) increases stochastically, the FDR

increases.

In the case of the LSU procedure αi:n/i equals α so that the FDR of the LSU test is indepen-

dent of the distribution of p-values under alternatives. The condition that αi:n/i is increasing in

i can be equivalently expressed in terms of a rejection curve ρ corresponding to the given critical

values (1.1), that is,

(A1) ρ(t)/t is non-decreasing for t ∈ (0, 1].

Note that condition (A1) is equivalent to the property that r(t)/t is non-increasing for t ∈ (0, 1],

where r = ρ−1.

It follows from Theorem 1.2 that under (D1), (I1), (I2) and (A1) LFCs for an SU test are

obtained in one of the so-called Dirac-uniform (DU) models. Thereby, Pn,n0 denotes a situation,

where (D1) and (I1) are fulfilled and pi, i ∈ In,1, follow a Dirac distribution with point mass 1

at 0. This implies that condition (I2) is fulfilled. We refer to this setting as DU(n, n0). Note that

Pn,n0 does not necessarily belong to the model {Pϑ : ϑ ∈ Θ}.
It will be shown that DU models are LFCs for the FWER of a BPI test, cf. Chapter 2. More-

over, for a broad class of SU tests, DU models are LFCs for the FDR, cf. Chapter 3. Unfortunately,

so far it is not known whether DU models are LFCs for an SD procedure. However, Finner et al.

[2009] constructed upper bounds for the FDR of an SUD test and showed that these upper bounds

are the largest in DU models. In Chapter 3 we utilise theses bounds to construct various SUD tests

controlling the FDR.

Moreover, Chapters 3 and 4 deal with asymptotic control of the FWER and/or FDR, where

useful tools are so-called asymptotic DU models. These are defined in the following way. Consider

DU(n, n0) models with n0/n→ ζ for some ζ ∈ [0, 1]. The Extended Glivenko-Cantelli Theorem
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(cf. Shorack and Wellner [1986], p.105) yields that the ecdf F̂n(t) =
∑n

i=1 I(pi ≤ t) of all

p-values converges almost surely and uniformly on [0, 1] to the limiting function given by

F∞(t) = F∞(t|ζ) = 1− ζ + ζt.

This limiting DU model with infinite number of p-values, where ζ is the proportion of true null

hypotheses, is called the asymptotic DU model.

Asymptotic and Exact Results in Multiple Hypotheses Testing, Veronika Gontscharuk



Chapter 2

Plug-in procedures controlling the

FWER

In this chapter we deal with control of the Family-Wise Error Rate (FWER) of some multiple test

procedures based on an estimator for the number of true null hypotheses n0. In Section 2.1 we

consider Bonferroni and Šidàk procedures with plug-in estimates. We call these tests Bonferroni

plug-in (BPI) tests and show that a BPI procedure controls the FWER under the assumption that

p-values are independent random variables under true null hypotheses, i.e. condition (I1) given

in Chapter 1 is assumed to be fulfilled. In Section 2.2 we investigate the asymptotic behaviour

of BPI test procedures and derive the asymptotic distribution of the number of false rejections

Vn. Section 2.3 deals with plug-in tests related to the Bonferroni-Holm and Šidàk-Holm multiple-

testing procedures. In Section 2.4 we evaluate the power of BPI tests for normally distributed test

statistics. BPI tests for dependent test statistics will be discussed in Chapter 4. In Section 2.5 some

concluding remarks will be given.

As mentioned in the previous chapter, although Bonferroni-type test procedures (for exam-

ple, Bonferroni or Šidàk tests) control the FWER at a pre-specified level α, they typically have

extremely low power if the number n of all hypotheses is large. If the number n0 of true null hy-

potheses is known, then the corresponding oracle procedures, where the number of all hypotheses

n is replaced by the number of true null hypotheses n0, typically control the FWER. Thus, if n0

is distinctively smaller than n, it should be possible to test the individual hypotheses at a higher

level than a corresponding classical procedure does, which results in more power.

Unfortunately, the number n0 of true null hypotheses is mostly unknown. To overcome

this problem, we can replace n0 in thresholds of oracle tests by an estimator for the number of

true null hypotheses denoted by n̂0. This idea is not new. For example, Schweder and Spjøtvoll

[1982] considered a pairwise comparisons problem with 17 means, i.e. n = 136 pair hypothe-

ses. They estimated n0 by a visual fit of a line to the larger p-values (i.e. to the least significant

p-values) in a p-value plot and mentioned that in their specific example there might be about 25

true null hypotheses, so that the level α/25 should be used for the individual tests. However,

Schweder and Spjøtvoll [1982] did not give any proof for FWER control. Moreover, it seems that

14
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there have been no theoretical results concerning strong control of the FWER of a Bonferroni

procedure with a plug-in estimate for the number of true null hypotheses until recently. The main

results of this chapter are published in Finner and Gontscharuk [2009]. Independently and at the

same time some similar findings concerning FWER control of adaptive Bonferroni and Holm pro-

cedures with respect to a specific mixture model were obtained in Guo [2009]. He proved that a

special version of an adaptive Bonferroni procedure controls the FWER in finite samples while

the corresponding adaptive Holm test controls it asymptotically.

Applications of plug-in estimators can be found in the literature on FDR procedures. For

example, Storey [2002] proposed a plug-in linear step-up (plug-in LSU) procedure using an

estimator for the proportion of true null hypotheses π0 = n0/n depending on a tuning parameter

λ ∈ (0, 1). Thereby, the critical values αi:n = iα/n, i ∈ In, of the LSU test are replaced by α̂i:n =

iα/(nπ̂0), i ∈ In, where π̂0 denotes an estimator for π0. The critical values αi:n = iα/(nπ0),

i ∈ In, correspond to the "oracle LSU" procedure. The plug-in LSU test can be interpreted as an

LSU test with a random level α/π̂0. Let

Rn(t) = #{i ∈ In : pi ≤ t}

denote the number of p-values that are less than or equal to t for t ∈ [0, 1]. Then the empirical

cumulative distribution function (ecdf) F̂n of all p-values can be expressed as F̂n(t) = Rn(t)/n,

t ∈ [0, 1]. Storey [2002] proposed to estimate π0 by

π̂0 =
n−Rn(λ)

(1− λ)n
=

1− F̂n(λ)

(1− λ)
, (2.1)

where λ is a tuning parameter. The corresponding estimate for the number of true hypotheses can

be found in Schweder and Spjøtvoll [1982] and is given by

n̂0 =
n−Rn(λ)

1− λ =
1− F̂n(λ)

(1− λ)
n

for some fixed λ. Obviously, π̂0 = n̂0/n. The following consideration shows why these estimators

work. If p-values corresponding to true null hypotheses are iid uniformly distributed, then the

number of true p-values which are greater than λ is about (1 − λ)n0. Assuming that p-values

corresponding to false hypotheses are "false enough", i.e. pi, i ∈ In,1, are small enough, only a

few of them are expected to be greater than λ. Consequently, n− Rn(λ) is also about (1− λ)n0

or perhaps somewhat larger. Figure 2.1 illustrates this estimation method for n = 50 and n0 =

30, where the p-values are generated with independent normal variables (mean 0 for true null

hypotheses and mean 1 for false hypotheses).

In Storey et al. [2004] it was shown that under suitable assumptions concerning the joint

distribution of the p-values the estimate (2.1) can be used in the plug-in LSU procedure, resulting

in asymptotic FDR control. Moreover, Storey et al. [2004] proposed a slightly modified version

of (2.1), that is,

π̂1
0 =

n−Rn(λ) + 1

(1− λ)n
=

1− F̂n(λ) + 1/n

(1− λ)
, (2.2)
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Figure 2.1: Estimation of π0: illustration of Schweder and Spjøtvoll’s idea. Here π̂0 corresponds

to (2.1) and π̂1
0 to (2.2). The ecdf F̂n of p-values is generated by n = 50 p-values with n0 = 30.

which ensures finite FDR control.

In this chapter we replace the constant 1 in the plug-in estimator in formula (2.2) by a suitable

parameter κ > 0. The parameter κ will be chosen such that the FWER of a BPI test is not larger

than a pre-specified α-level. We also consider an alternative estimator of n0, which was proposed

in Benjamini and Hochberg [2000], that is,

n̂0 =
n− k + 1

1− pk:n
, (2.3)

where k ∈ In is fixed and pk:n is the kth smallest p-value.

2.1 Bonferroni plug-in procedure

Consider the general problem of multiple-testing defined in Notation 1.1. We first require that for

all parameter configurations ϑ ∈ Θ p-values are independent random variables under the corre-

sponding null hypotheses, that is, (I1) is fulfilled. Note that we do not require any assumptions

concerning the joint distribution of the p-values under alternatives, i.e. the pi, i ∈ In,1, may be

mutually dependent and may depend on pi, i ∈ In,0. As mentioned in Chapter 1 an important tool

for theoretical investigations are Dirac-uniform (DU) configurations, that is, p-values correspond-

ing to true null hypotheses are independently uniformly distributed on [0, 1], whereas p-values

under the alternatives follow a Dirac distribution with point mass in 0. In this case we write Pn,n0

and FWERn,n0 instead of Pϑ and FWERϑ, respectively.

We now give a formal definition of a Bonferroni-type plug-in procedure in terms of estimators

n̂0 for n0.

Definition 2.1

Let n̂0 : [0, 1]n → [0,∞) be an estimator of n0 and let α̂ : [0,∞] → [0, 1] be non-increasing.

Then the random quantity α̂ = α̂(n̂0) will be called a plug-in threshold. A multiple-test procedure
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which rejects all hypotheses Hi with pi ≤ α̂, i ∈ In, will be called Bonferroni plug-in (BPI) test

(based on n̂0).

In this section we consider two types of thresholds α̂, that is,

α̂1 = α/n̂0, (2.4)

α̂2 = 1− (1− α)1/n̂0 , (2.5)

where equation (2.4) is in line with a Bonferroni correction and equation (2.5) is in line with a

Šidàk correction. Similarly as in (2.1) and (2.2), we consider the following class of estimators for

the number of true null hypotheses n0, that is,

n̂0 =
n−Rn(λ) + κ

1− λ , κ ≥ 0, (2.6)

where λ ∈ (0, 1) is a pre-specified tuning parameter. In what follows, the parameter κ ∈ R

will be chosen such that FWER is controlled by the corresponding BPI procedure. Thereby, the

estimator n̂0 may take values in [0,∞) and not necessarily in N. Since an estimator given in (2.6)

is constructed by assuming that most of the p-values greater than λ belong to true null hypotheses,

it is natural to reject only p-values smaller than λ. Requiring α̂i ≤ λ, i = 1, 2, we get the following

restriction on κ, that is,

κ ≥ α(1− λ)

λ
(2.7)

in the case of equation (2.4) and

κ ≥ (1− λ)
log(1− α)

log(1− λ)
(2.8)

in the case of equation (2.5). It will be shown that BPI procedures with thresholds (2.4) and (2.5)

based on the estimator (2.6) control the FWER.

Estimators given in (2.3) yield a further class of estimators for the number of true null hy-

potheses n0. This class is given by

n̂0 =
n− k + κ

1− pk:n
, κ ≥ 0, (2.9)

where pk:n is the kth smallest p-value and k ∈ In is pre-specified. Again, we will choose the

parameter κ such that the FWER is controlled.

The following lemma shows that under weak assumptions concerning an estimator n̂0 the

FWER of a BPI test becomes largest if p-values corresponding to true null hypotheses are inde-

pendently uniformly distributed on [0, 1] and p-values under alternatives are set to 0, that is, in a

DU model. This is an important fact because FWER under Pn,n0 can be calculated exactly.

Lemma 2.2

Let ϑ ∈ Θ be such that (I1) is fulfilled. Let n̂0 : [0, 1]n → [0,∞) be a symmetric function of n
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arguments such that n̂0(x1, . . . , xn) is non-decreasing in each xi. Then a BPI test based on n̂0

satisfies

Pϑ(Vn ≥ r) ≤ Pn,n0(Vn ≥ r) for all r ∈ In0 = {1, . . . , n0},

and

FWERϑ ≤ FWERn,n0 , (2.10)

i.e. Dirac-uniform configurations are least favourable for the FWER.

Proof: Note that α̂(n̂0(x1, . . . , xn)) is symmetric and non-increasing in each xi. Setting

α̃(x1, . . . , xn0) = α̂(n̂0(x1, . . . , xn0 , 0, . . . , 0)) for (x1, . . . , xn) ∈ [0, 1]n,

we get

∀ (x1, . . . , xn) ∈ [0, 1]n : α̂(n̂0(x1, . . . , xn)) ≤ α̃(x1, . . . , xn0).

Let p0
1:n0

, . . . , p0
n0:n0

denote the order statistic of pi, i ∈ In,0. Then

Pϑ(Vn ≥ r) = Pϑ(p
0
r:n0

≤ α̂(n̂0)) ≤ Pϑ(p
0
r:n0

≤ α̃(p0
1:n0

, . . . , p0
n0:n0

)), (2.11)

where α̂(n̂0) = α̂(n̂0(p1, . . . , pn)). For the given Pϑ, let Ui:n0 , i ∈ In0 , denote the ith order

statistic of n0 iid uniformly distributed on [0, 1] random variables. Since p0
r:n0

is stochastically not

smaller than Ur:n0 and α̃(p0
1:n0

, . . . , p0
n0:n0

) is stochastically not larger than α̃(U1:n0 , . . . , Un0:n0),

Lemma A.11 yields

Pϑ(p
0
r:n0

≤ α̃(p0
1:n0

, . . . , p0
n0:n0

)) ≤ Pϑ(Ur:n0 ≤ α̃(U1:n0 , . . . , Un0:n0)). (2.12)

Noting that pi, i ∈ In,0 are iid uniformly distributed on [0, 1] under the measure Pn,n0 , we get

Pϑ(Ur:n0 ≤ α̃(U1:n0 , . . . , Un0:n0)) = Pn,n0(p
0
r:n0

≤ α̂(n̂0)).

The latter and the inequalities (2.11), (2.12) complete the proof. �

Remark 2.3

Lemma 2.2 implies that DU models are LFCs for each Θ such that for all parameter configurations

ϑ ∈ Θ p-values are independent random variables under the corresponding null hypotheses.

For an arbitrary but fixed t ∈ [0, 1] the number of p-values corresponding to true null hy-

potheses which are not greater than t is denoted by

Vn(t) = #{i ∈ In,0 : pi ≤ t}.

Since DU models are least favourable parameter configurations for the FWER of a BPI test, it is

an interesting question which of the estimators of n0 are unbiased in DU models. The next lemma

provides formulas for the expectation of n̂0 with respect to (2.6) and (2.9) in DU(n, n0) models.

Let n1 = n1(n) denote the number of false null hypotheses, i.e. n1 = n− n0.
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Lemma 2.4

In a DU(n, n0) model the expected value of the estimator in (2.6) is given by

En,n0 [n̂0] = En,n0

[
n0 − Vn(λ) + κ

1− λ

]

= n0 +
κ

1− λ (independent of n).

In case of (2.9) we get

n̂0 = n− k + κ almost surely for k ≤ n1,

and

En,n0 [n̂0] = n0 +
κ

1− (k − n1)/n0
for k > n1.

Proof: Since En,n0 [Vn(λ)] = n0λ, the formula for En,n0 [n̂0] in case of (2.6) is obvious. In case

of (2.9), we first note that pk:n = 0 almost surely for k ≤ n1 in a DU(n, n0) model, which yields

the second formula of this lemma. In case of k > n1, define s = k − n1. Then pk:n = p0
s:n0

is the

sth smallest p-value corresponding to the true null hypotheses. The pdf of p0
s:n0

, denoted by fs, is

given by

fs(x) = n0

(
n0 − 1

s− 1

)

xs−1(1− x)n0−s.

It holds

En,n0

[
n− k + κ

1− pk:n

]

= n0

(
n0 − 1

s− 1

)∫ 1

0

n0 − s+ κ

1− p ps−1(1− p)n0−sdp

= n0

(
n0 − 1

s− 1

)

(n0 − s+ κ)

∫ 1

0
ps−1(1− p)n0−s−1dp

= (n0 − s+ κ)
n0

n0 − s
= n0 +

κ

1− s/n0
.

The substitution s = k − n1 completes the proof.

�

Remark 2.5

Lemma 2.4 implies that estimators given in (2.9) are always larger than n0 if k < n1, while

estimators given in (2.6) have a fixed bias κ/(1 − λ). Therefore, estimators given in (2.6) seem

to be preferable. Moreover, estimators given in (2.6) and those given in (2.9) with k ≥ n1 are

unbiased for κ = 0. Clearly, it is tempting to try κ = 0 in a BPI test. Unfortunately, this does not

work. For example, for n = n0 = 2, α = 0.05 and λ = 0.5 a BPI test with α̂1 = α/n̂0 based on

n̂0 given in (2.6) does not control the FWER under Pn,n0 . In what follows it will be shown that

κ = 1 is always a reasonable choice.

The next theorem yields explicit formulas for the FWER and the distribution of the number

of false rejections Vn with respect to a BPI test with critical values (2.4) and (2.5) based on the

estimator (2.6) under Pn,n0 . If Vn(λ) = s, s ∈ In0 ∪ {0}, then

c1(s) =
α(1− λ)

n0 − s+ κ
and c2(s) = 1− (1− α)(1−λ)/(n0−s+κ)
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denote the realised thresholds under Pn,n0 according to α̂1 and α̂2, respectively.

Theorem 2.6

Let α ∈ (0, 1) and λ ∈ (0, 1) such that κ satisfies conditions (2.7) and (2.8), respectively. In the

DU(n, n0) model it holds for a BPI test with thresholds α̂i, i = 1, 2, based on the estimator (2.6),

that

Pn,n0(Vn = r) =

n0∑

s=r

(
n0

s

)(
s

r

)

(1− λ)n0−sci(s)
r(λ− ci(s))s−r (2.13)

for r ∈ In0 ∪ {0}. Moreover,

FWERn,n0 = 1−
n0∑

s=0

(
n0

s

)

(1− λ)n0−s(λ− ci(s))s. (2.14)

Note that Pn,n0(Vn = r) and FWERn,n0 are independent of n.

Proof: For notational simplicity, we denote p-values corresponding to true null hypotheses by

p0
1, . . . , p

0
n0

and for ordered p-values we write p0
1:n0

, . . . , p0
n0:n0

. By noting that

Pn,n0(Vn = r) =

n0∑

s=r

Pn,n0(Vn = r, Vn(λ) = s)

and setting p0
n0+1:n0

≡ 1 we obtain

Pn,n0(Vn = r, Vn(λ) = s)

= Pn,n0(p
0
r:n0

≤ α̂i, p
0
r+1:n0

> α̂i, Vn(λ) = s)

= Pn,n0 (Vn(α̂i) = r, Vn(λ) = s)

= Pn,n0 (Vn(ci(s)) = r, Vn(λ) = s)

=

(
n0

s

)(
s

r

)

Pn,n0

(
p0
1, . . . , p

0
r ≤ ci(s), p

0
r+1, . . . , p

0
s ∈ (ci(s), λ], p0

s+1, . . . , p
0
n0
> λ

)

=

(
n0

s

)(
s

r

)

(1− λ)n0−sci(s)
r(λ− ci(s))s−r.

Since

FWERn,n0 = Pn,n0(Vn ≥ 1) = 1− Pn,n0(Vn = 0),

formula (2.14) is obvious by choosing r = 0 in (2.13). �

Remark 2.7

If the conditions (2.7) and/or (2.8) are not fulfilled, the probability of exactly r rejections, i.e.

Pn,n0(Vn= r), cannot be calculated with formula (2.13). As a consequence, FWERn,n0 cannot be

calculated with (2.14) in this case.

The next theorem yields the FWER of a BPI procedure with critical values α̂1 and α̂2 based

on the estimator (2.9) in a DU model.
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Theorem 2.8

Let α ∈ (0, 1) and k ∈ In. By setting n1 = n− n0, the FWER of a BPI test with the threshold α̂1

based on (2.9) in a DU(n, n0) model is given by

FWERn,n0 = 1−
(

1− α

n− k + κ

)n0

for k ≤ n1 (2.15)

and

FWERn,n0 = 1−
(

1− α

n− k + κ+ α

)n−k+1

for k > n1. (2.16)

Moreover, the FWER of a BPI test with α̂2 based on (2.9) is given by

FWERn,n0 = 1− (1− α)n0/(n−k+κ) for k ≤ n1 (2.17)

and for k > n1 we get

FWERn,n0 = 1− n0!

(k − n1 − 1)!(n− k)! (2.18)

×
∫ 1

t∗

(

t− 1 + (1− α)(1−t)/(n−k+κ)
)k−n1−1

(1− t)n−kdt,

where

t∗ = 1 +
n− k + κ

ln(1− α)
LW

(
ln(1− α)

−n+ k − κ

)

(2.19)

and LW denotes the Lambert W function, which is the inverse function of f(x) = xex.

Proof: At first, we consider the case k ≤ n1, which implies pk:n = 0 almost surely. Then the

estimator (2.9) is equal to n − k + κ and the critical values α̂i, i = 1, 2, are α/(n − k + κ)

and 1 − (1 − α)1/(n−k+κ), respectively, that is, α̂i, i = 1, 2, are almost surely constant. Hence,

FWERn,n0 = 1− (1− α̂i)n0 , i = 1, 2, yielding (2.15) and (2.17).

Now we investigate the case k > n1, that is, pk:n corresponds to a true null hypothesis. It

holds FWERn,n0 = 1− Pn,n0(Vn = 0) and Pn,n0(Vn = 0) = Pn,n0(minj∈In,0 pj > α̂i). Then

Pn,n0(Vn = 0) =
∑

j∈In,0

Pn,n0

(

min
j∈In,0

pj > α̂i, pk:n = pj

)

= n0Pn,n0

(

min
j∈In,0

pj > α̂i, pk:n = pi0

)

,

for some i0 ∈ In,0. Obviously, {minj∈In,0 pj > α̂i} ⊆ {pk:n > α̂i}. Thereby, the α̂is depend on

pk:n. If pk:n = t for some t ∈ [0, 1], then

c1(t) =
α(1− t)
n− k + κ

and c2(t) = 1− (1− α)(1−t)/(n−k+κ)

denote the realised thresholds under Pn,n0 according to α̂1 and α̂2, respectively. For i = 1, 2, the

equality t = ci(t) has a unique solution ti (say) in [0, 1], where t1 = α/(n − k + κ + α) and
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t2 = t∗ with t∗ given in (2.19). Altogether we get {pk:n > α̂i} = {pk:n > ti}. It follows that

Pn,n0(Vn = 0) = n0

∫ 1

ti

Pn,n0

(

min
j∈In,0

pj > ci(t), pk:n = pi0 |pi0 = t

)

dt

= n0

∫ 1

ti

Pn,n0

(

min
j∈In,0\{i0}

pj > ci(t), pi0 > ci(t), pk:n = pi0 |pi0 = t

)

dt.

For t > ti we have {pi0 = t} ⊆ {pi0 > ci(t)}. Moreover, under {pi0 = t} we get {pk:n = pi0} =

{#{j ∈ In \ {i0} : pj ≤ t} = k − 1}. Hence,

Pn,n0(Vn = 0) = n0

∫ 1

ti

Pn,n0

(

min
j∈In,0\{i0}

pj > ci(t),#{j ∈ In\{i0} : pj ≤ t} = k − 1

)

dt

= n0

(
n0 − 1

k − n1 − 1

)∫ 1

ti

(t− ci(t))k−n1−1(1− t)n−kdt.

Note that the last formula immediately implies (2.18). For a BPI test with threshold α̂1 we obtain

that

t− c1(t) =
n− k + κ+ α

n− k + κ

(

t− α

n− k + κ+ α

)

=
n− k + κ+ α

n− k + κ
(t− t1)

and consequently

Pn,n0(Vn = 0) = n0

(
n0 − 1

k − n1 − 1

)(
n− k + κ+ α

n− k + κ

)k−n1−1

×
∫ 1

t1

(t− t1)k−n1−1 (1− t)n−kdt.

By substituting τ = (t− t1)/(1− t1) in the integral before, we get

Pn,n0(Vn = 0) =
n0!

(k − n1 − 1)!(n− k)!

(
n− k + κ+ α

n− k + κ

)k−n1−1

×(1− t1)n0

∫ 1

0
τk−n1−1(1− τ)n−kdτ,

where the integral in the latter expression is the beta function B(k− n1, n− k+ 1), cf. Frampton

[1986], p.57. Noting that for x, y ∈ N

B(x, y) =
(x− 1)!(y − 1)!

(x+ y − 1)!
,

we obtain

Pn,n0(Vn = 0) =

(
n− k + κ

n− k + κ+ α

)n−k+1

,

which implies (2.16). �

The next theorems provide conditions, under which a BPI test procedure with the considered

thresholds controls the FWER.
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Theorem 2.9

Let ϑ ∈ Θ and assume (I1). Let α ∈ (0, 1), λ ∈ (0, 1) and κ ≥ 1 such that κ satisfies conditions

(2.7) and (2.8), respectively. Then the BPI procedure with threshold α̂i, i = 1, 2, based on the

estimator (2.6) controls the FWER at level α.

Proof: Let n0 = n0(ϑ). Lemma 2.2 yields that it suffices to check that FWERn,n0 given in (2.14)

does not exceed α, which is equivalent to the inequality

1− α ≤ (1− λ)n0

n0∑

s=0

(
n0

s

)

(λ− ci(s))s(1− λ)−s, i = 1, 2. (2.20)

Below, we write ci(s, α) instead of ci(s), i = 1, 2 and define the functions

hλ(α) =
1− α

(1− λ)n0
(2.21)

and

gλ,i(α) =

n0∑

s=0

(
n0

s

)

(λ− ci(s, α))s(1− λ)−s, i = 1, 2. (2.22)

Then (2.20) is equivalent to hλ(α) ≤ gλ,i(α), i = 1, 2. Obviously,

hλ(0) = gλ,i(0) =
1

(1− λ)n0

and

h′λ(0) = − 1

(1− λ)n0
.

Hence, (2.20) holds if h′λ(0) ≤ g′λ,i(0) and g′′λ,i(α) ≥ 0 for all α ∈ [0, 1], i = 1, 2. We get

g′λ,i(α) = −
n0∑

s=1

(
n0

s− 1

)

(n0 − s+ 1) (λ− ci(s, α))s−1 (1− λ)−sc′i(s, α)

and

c′1(s, α) =
1− λ

n0 − s+ κ
, c′2(s, α) =

1− λ
n0 − s+ κ

(1− α)
1−λ

n0−s+κ
−1
.

Thus,

g′λ,1(α) = −
n0∑

s=1

(
n0

s− 1

)
n0 − s+ 1

n0 − s+ κ

(
λ

1− λ −
α

n0 − s+ κ

)s−1

,

g′λ,2(α) = −
n0∑

s=1

(
n0

s− 1

)
n0 − s+ 1

n0 − s+ κ




(1− α)

1−λ
n0−s+κ

1− λ − 1





s−1

(1− α)
1−λ

n0−s+κ
−1
.

The assumptions (2.7) and (2.8) imply

λ

1− λ −
α

n0 − s+ κ
≥ 0 and

(1− α)
1−λ

n0−s+κ

1− λ − 1 ≥ 0 for s ∈ In0 .

Asymptotic and Exact Results in Multiple Hypotheses Testing, Veronika Gontscharuk



24 2.1. BONFERRONI PLUG-IN PROCEDURE

Hence, g′λ,i(α) is non-decreasing, that is, g′′λ,i(α) ≥ 0, i = 1, 2. Furthermore, the inequality

h′λ(0) ≤ g′λ,i(0) is equivalent to

− 1

(1− λ)n0
≤ −

n0∑

s=1

(
n0

s− 1

)
n0 − s+ 1

n0 − s+ κ

(
λ

1− λ

)s−1

. (2.23)

Since

1

(1− λ)n0
=

n0∑

s=0

(
n0

s

)(
λ

1− λ

)s

=

(
λ

1− λ

)n0

+

n0−1∑

s=0

(
n0

s

)(
λ

1− λ

)s

,

inequality (2.23) is equivalent to

(
λ

1− λ

)n0

≥
n0−1∑

s=0

(
n0

s

)
n0 − s

n0 − s− 1 + κ

(
λ

1− λ

)s

−
n0−1∑

s=0

(
n0

s

)(
λ

1− λ

)s

,

or
(

λ

1− λ

)n0

≥ (1− κ)
n0−1∑

s=0

(
n0

s

)
1

n0 − s− 1 + κ

(
λ

1− λ

)s

. (2.24)

Obviously, the latter inequality is fulfilled for κ ≥ 1 and therefore inequality (2.20) holds under

the assumptions of Theorem 2.9, which finally yields that FWER is controlled at level α. �

Remark 2.10

Note that in the case of a BPI procedure with α̂i, i = 1, 2, based on the estimator (2.6), κ = 1

always fulfils conditions (2.7) and (2.8) if α ∈ (0, 1) and λ ∈ [α, 1). Violation of (2.7) or (2.8) can

lead to an exceedance of the pre-specified FWER-level. For example, for α = 0.05 and λ = 0.06

condition (2.7) implies κ ≤ 0.783. By setting κ = 0.1 for the BPI test with (2.4) we get that (2.7)

is not fulfilled and we obtain FWER2,2 = λ2 + 2(1 − λ)2α/(1 + κ) = 0.0839 (note that (2.14)

does not apply here). However, Guo [2009] showed that a BPI procedure with the critical value α̂1

based on the estimator (2.6) with κ = 1 controls the FWER for all α ∈ (0, 1) and all λ ∈ (0, 1),

that is, condition (2.7) can be dispensed with. Thereby, this result was obtained by constructing an

upper bound for the FWER. In contrast to that, our results are based on the exact formula (2.14)

for the FWER in DU models.

Theorem 2.11

Let ϑ ∈ Θ and assume (I1). Let α ∈ (0, 1) and k ∈ In. Then the BPI procedure with threshold

α̂i, i = 1, 2, based on the estimator (2.9) controls the FWER at level α for all k ≤ n1 and κ ≥ 0,

where n1 = n − n0. Moreover, for k > n1 the BPI procedure with threshold α̂1 based on the

estimator (2.9) controls the FWER for κ ≥ 1.

Proof: Lemma 2.2 yields that the FWER of a BPI test with α̂i, i = 1, 2, based on (2.9) is maximal

in a DU model so that FWER control follows if (2.15)-(2.18) are not greater than α. In case of

k ≤ n1 the inequalities (2.15) and (2.17) in Theorem 2.8 immediately imply that the corresponding
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FWER is not greater than α. Then we have to prove that (2.16) is not greater than α, which is

equivalent to the inequality

(

1− α

n− k + κ+ α

)n−k+1

≥ 1− α. (2.25)

Setting

h(α) = 1− α and g(α) =

(

1− α

n− k + κ+ α

)n−k+1

,

it suffices to check that h(α) ≤ g(α) for all α ∈ [0, 1]. Clearly, h(0) = g(0) = 1, h′(0) = −1,

g′(0) = − n− k + 1

n− k + κ+ α

and

g′′(α) = (n− k + 2)
(n− k + 1)(n− k + κ)n−k+1

(n− k + κ+ α)n−k+3
≥ 0, α ∈ [0, 1].

For κ ≥ 1 we get h′(0) ≤ g′(0) for all α ∈ [0, 1], which implies (2.25). Therefore inequality

(2.25) holds under the assumption of Theorem 2.11 and the FWER is controlled at level α. �

Remark 2.12

We could not prove that a BPI test with the threshold α̂2 based on (2.9) controls the FWER for

k > n1. But for fixed n, α and k, we can always find a κ = κ(n, α, k) such that the FWER, i.e.

the expression in (2.18), is not greater than α. Moreover, we observed that κ ≡ 1 yields FWER

control for all considered n-, α- and k-values.

Remark 2.13

Note that a smaller value of κ may result in a slightly more powerful BPI procedure. Hence, we

can try to find a κ < 1 for fixed n, α and λ (or k resp.), i.e. κ = κ(n, α, λ) (or κ = κ(n, α, k)

resp.), by checking that the FWER, i.e. the corresponding expression (2.14), (2.16) or (2.18), is

not greater than α for all n0 ∈ In. For illustration we consider BPI tests with the critical value

α̂1 based on (2.6). For α = 0.05, 1 ≤ n0 ≤ 200, λ = 0.5, 0.6, 0.7, 0.8 the largest κ values are

attained for n∗0 = 7, 9, 13, 21 and are given by κ∗ ≈ 0.872, 0.867, 0.861, 0.857. The left picture in

Figure 2.2 (in Figure 2.3 resp.) suggests that a BPI test with threshold α̂1 based on the estimator

(2.6) (the estimator (2.9) resp.) and λ = 0.5, 0.6, 0.7, 0.8 (k = n− 3n0/4, n− n0/2, n− n0/4, n

resp.) and corresponding κ∗ controls the FWER for all n if (I1) is fulfilled. The picture on the

right side in Figure 2.2 (in Figure 2.3 resp.) suggests that the best choice of κ for a BPI test with

α̂2 based on the estimator (2.6) (the estimator (2.9) resp.) converges to some limiting value that is

less than or equal to 1 for n0 → ∞. We note that the κ values are not increasing if n0 increases

for a BPI test with α̂2 based on (2.6); and κ increases for a BPI test with α̂2 based on (2.9).

It seems that the apparently optimal κ∗-values are close to 1 such that the loss in power seems

negligible by choosing κ = 1. In Sections 2.4 we will restrict our attention to BPI procedures with

the threshold α̂1 based on the estimator (2.6) with κ = 1.
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Figure 2.2: Values of κ such that FWERn,n0 = α for a BPI test with threshold α̂1 (left picture)

and α̂2 (right picture) based on the estimator (2.6) for α = 0.05 and λ = 0.5, 0.6, 0.7, 0.8. The

curves may be identified by noting that κ increases when λ increases in n0 = 50 and decreases in

n0 = 10 in the left and right picture, respectively.

Figure 2.3: Values of κ such that FWERn,n0 ≤ α for a BPI test with threshold α̂1 (left picture) and

α̂2 (right picture) based on the estimator (2.9) for α = 0.05 and k = ⌈n/4⌉ , ⌈n/2⌉ , ⌈3n/4⌉ , n
and n0 ∈ In. The curves may be identified by noting that κ increases when k increases in n = 50.

In the case of BPI tests with α̂1, for fixed n and k and the corresponding κ (left graph) we get

FWERn,n0 = α for all n0 ∈ {n − k + 1, . . . , n}. In case of BPI tests with α̂2, for fixed n and k

and the corresponding κ (right graph) we obtain FWERn,n = α and FWERn,n1
0
< FWERn,n2

0
for

all n1
0 and n2

0 such that n− k + 1 ≤ n1
0 < n2

0 ≤ n.
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2.2 Asymptotic behaviour of Bonferroni plug-in tests

The following theorem yields the asymptotic behaviour of the number of false rejections Vn in the

least favourable DU configuration. That is in line with the asymptotic results in Finner and Roters

[2002] for various traditional multiple-testing procedures; see Remark 2.18.

Theorem 2.14

Let α ∈ (0, 1), λ ∈ (0, 1), κ ∈ R and set β1 = α, β2 = − log(1−α). Consider DU(n, n0) models

with n0 = n0(n) → ∞ as n → ∞. Then, for i = 1, 2, it holds for a BPI test with threshold α̂i

based on the estimator given in (2.6) that

lim
n→∞

Pn,n0(Vn = r) = exp(−βi)
βri
r!

for r ∈ N ∪ {0}, (2.26)

lim
n→∞

En,n0Vn = βi. (2.27)

Moreover, let k = k(n) ∈ In satisfy

lim inf
n→∞

k − n1

n0
≥ 0 and lim sup

n→∞

k − n1

n0
< 1, (2.28)

where n1 = n1(n) = n− n0. Then (2.26) and (2.27) hold also for a BPI test with thresholds α̂i,

i = 1, 2, based on (2.9) with given values of k.

Proof: First we consider the case of a BPI test with α̂1 = α/n̂0. We obtain for ǫ > 0, r ∈
In0 ∪ {0} and all n ∈ N that

Pn,n0(Vn ≤ r) ≤ Pn,n0

({

#

{

i ∈ In,0 : pi ≤
α

n̂0

}

≤ r

}

∩
{
n̂0

n0
< 1 + ǫ

})

+Pn,n0

(
n̂0

n0
≥ 1 + ǫ

)

≤ Pn,n0

({

#

{

i ∈ In,0 : pi ≤
α

n0(1 + ǫ)

}

≤ r

}

∩
{
n̂0

n0
< 1 + ǫ

})

+Pn,n0

(
n̂0

n0
≥ 1 + ǫ

)

≤ Pn,n0

(

#

{

i ∈ In,0 : pi ≤
α

n0(1 + ǫ)

}

≤ r

)

+ Pn,n0

(
n̂0

n0
≥ 1 + ǫ

)

=

r∑

s=0

(
n0

s

)(
α

n0(1 + ǫ)

)s(

1− α

n0(1 + ǫ)

)n0−s

+ Pn,n0

(
n̂0

n0
≥ 1 + ǫ

)

= G

(

r

∣
∣
∣
∣
n0,

α

n0(1 + ǫ)

)

+ Pn,n0

(
n̂0

n0
≥ 1 + ǫ

)

,

where G(·|m, p) denotes the distribution function of the binomial distribution B(m, p). Similarly
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we get

Pn,n0(Vn ≤ r) ≥ Pn,n0

({

#

{

i ∈ In,0 : pi ≤
α

n̂0

}

≤ r

}

∩
{
n̂0

n0
> 1− ǫ

})

≥ Pn,n0

({

#

{

i ∈ In,0 : pi ≤
α

n0(1− ǫ)

}

≤ r

}

∩
{
n̂0

n0
> 1− ǫ

})

≥ Pn,n0

(

#

{

i ∈ In,0 : pi ≤
α

n0(1− ǫ)

}

≤ r

)

− Pn,n0

(
n̂0

n0
≤ 1− ǫ

)

=
r∑

s=0

(
n0

s

)(
α

n0(1− ǫ)

)s(

1− α

n0(1− ǫ)

)n0−s

− Pn,n0

(
n̂0

n0
≤ 1− ǫ

)

= G

(

r

∣
∣
∣
∣
n0,

α

n0(1− ǫ)

)

− Pn,n0

(
n̂0

n0
≤ 1− ǫ

)

.

Moreover, since En,n0Vn =
∑n0

r=1 Pn,n0(Vn ≥ r), the inequalities derived before imply

α

1 + ǫ
− n0Pn,n0

(
n̂0

n0
≥ 1 + ǫ

)

≤ En,n0Vn ≤
α

1− ǫ + n0Pn,n0

(
n̂0

n0
≤ 1− ǫ

)

.

Therefore, if the following condition

n0Pn,n0

(∣
∣
∣
∣

n̂0

n0
− 1

∣
∣
∣
∣
≥ ǫ

)

→ 0 for n→∞ (2.29)

is fulfilled, then (2.26) and (2.27) apply by choosing ǫ = ǫn such that ǫn ↓ 0 for n→∞.

Analogously, it follows for a BPI test with α̂2 = 1− (1− α)1/n̂0 that

Pn,n0(Vn ≤ r) ≤ G
(

r
∣
∣
∣n0, 1− (1− α)1/(n0(1+ǫ))

)

+ Pn,n0

(
n̂0

n0
≥ 1 + ǫ

)

and

Pn,n0(Vn ≤ r) ≥ G
(

r
∣
∣
∣n0, 1− (1− α)1/(n0(1−ǫ))

)

− Pn,n0

(
n̂0

n0
≤ 1− ǫ

)

.

Since

n0

(

1− (1− α)1/(n0(1±ǫ))
)

→ − log(1− α)

1± ǫ for n0 →∞,

the distribution of Vn converges to the desired Poisson distribution if condition (2.29) applies.

For proving (2.27) it suffices to show that the estimators given in (2.6) and (2.9) fulfil (2.29).

The next lemma yields this result. �

Lemma 2.15

Let n̂0 be an estimator for the number n0 of true null hypotheses defined in (2.6) or (2.9) with

κ ∈ R, λ ∈ (0, 1) or k = k(n) ∈ In that satisfies (2.28), respectively. Then

∀ ǫ > 0 : ∃ C1, C2 > 0 : ∀ n ∈ N : Pn,n0

(∣
∣
∣
∣

n̂0

n0
− 1

∣
∣
∣
∣
≥ ǫ

)

≤ C1e
−n0C2 . (2.30)
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Proof: First we consider the estimator given in (2.6). Noting that

n̂0

n0
=

1− F̂n,0(λ) + κ/n0

1− λ ,

we obtain {
n̂0

n0
≤ 1− ǫ

}

=

{

F̂n,0(λ)− λ ≥ κ

n0
+ ǫ(1− λ)

}

and {
n̂0

n0
≥ 1 + ǫ

}

=

{

λ− F̂n,0(λ) ≥ − κ

n0
+ ǫ(1− λ)

}

.

For fixed ǫ > 0 and κ > 0 there exists an Nǫ,κ ∈ N such that for all n0 ≥ Nǫ,κ we get ǫ(1− λ)±
κ/n0 ≥ ǫ(1− λ)/2. Altogether this implies

{∣
∣
∣
∣

n̂0

n0
− 1

∣
∣
∣
∣
≥ ǫ

}

⊆
{∣
∣
∣F̂n,0(λ)− λ

∣
∣
∣ ≥ ǫ(1− λ)

2

}

for n0 ≥ Nǫ,κ.

Hence, for n0 ≥ Nǫ,κ we get

Pn,n0

(∣
∣
∣
∣

n̂0

n0
− 1

∣
∣
∣
∣
≥ ǫ

)

≤ Pn,n0

(∣
∣
∣F̂n,0(λ)− λ

∣
∣
∣ ≥ ǫ(1− λ)

2

)

≤ Pn,n0

(

sup
x∈[0,1]

∣
∣
∣F̂n,0(x)− x

∣
∣
∣ ≥ ǫ(1− λ)

2

)

≤ 2 exp

(

−n0ǫ
2(1− λ)2

2

)

,

where the latter inequality follows by applying the Dvoretzky-Kiefer-Wolfowitz (DKW) inequal-

ity, cf. Theorem A.10.

Now we show that the estimator given in (2.9) fulfils (2.30). We divide the proof into two

parts: (i) n1 ≥ k and (ii) k = n1 + s for s ∈ In0 .

(i) Since pk:n = 0 in DU models, we get

n̂0

n0
= 1 +

n1 − k
n0

+
κ

n0
almost surely.

The first expression in (2.28) implies limn→∞(k−n1)/n0 = 0. Hence, n̂0/n0 = 1+ o(1) almost

surely and consequently we obtain Pn,n0(|n̂0/n0 − 1| ≥ ǫ) = 0 for fixed ǫ > 0, κ ∈ R and

sufficiently large n-values. Then (2.30) is trivially fulfilled.

(ii) W.l.o.g. let s < n0 and limn→∞ s/n0 = η ∈ [0, 1), because the second property in (2.28)

applies. Note that
n̂0

n0
=

1− s/n0 + κ/n0

1− ps:n0

=
1− s/n0 + κ/n0

1− F̂−1
n,0(s/n0)

,

where ps:n0 is the sth smallest p-value corresponding to true null hypotheses, F̂n,0 is the ecdf of

null p-values and F̂−1
n,0(u) = inf{t ∈ [0, 1] : F̂n,0(t) ≥ u}. Then

{
n̂0

n0
≤ 1− ǫ

}

=

{

F̂−1
n,0(s/n0) ≤

s/n0 − ǫ− κ/n0

1− ǫ

}

.
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Since F̂−1
n,0(y) ≤ x if and only if y ≤ F̂n,0(x) for x ∈ R and y ∈ [0, 1] (cf. Witting [1985], p. 20),

we get
{
n̂0

n0
≤ 1− ǫ

}

=

{

F̂n,0

(
s/n0 − ǫ− κ/n0

1− ǫ

)

≥ s

n0

}

and setting y = (s/n0 − ǫ− κ/n0)/(1− ǫ) we obtain
{
n̂0

n0
≤ 1− ǫ

}

=

{

F̂n,0 (y)− y ≥ ǫ(1− s/n0) + κ/n0

1− ǫ

}

.

Thus,
{
n̂0

n0
≤ 1− ǫ

}

⊆
{

sup
x∈[0,1]

(F̂n,0 (x)− x) ≥ ǫ(1− s/n0) + κ/n0

1− ǫ

}

.

Obviously, for fixed ǫ > 0 and κ ∈ R there exists some Nǫ,κ ∈ N such that for all n0 ≥ Nǫ,κ it

holds
{
n̂0

n0
≤ 1− ǫ

}

⊆
{

sup
x∈[0,1]

|F̂n,0 (x)− x| ≥ ǫ(1− η)
2(1− ǫ)

}

.

The latter relation together with the DKW inequality yields

Pn,n0

(
n̂0

n0
≤ 1− ǫ

)

≤ 2 exp

(

−n0
ǫ2(1− η)2
2(1− ǫ)2

)

. (2.31)

Similarly we obtain
{
n̂0

n0
≥ 1 + ǫ

}

=

{

F̂−1
n,0(s/n0) ≥

s/n0 + ǫ− κ/n0

1 + ǫ

}

.

Noting that the inverse ecdf F̂−1
n,0 is left continuous, we get

{
n̂0

n0
≥ 1 + ǫ

}

⊆
{

F̂−1
n,0(s/n0 + 0) ≥ s/n0 + ǫ− κ/n0

1 + ǫ

}

.

Moreover, since s/n0 ∈ (0, 1) and x ≤ F̂−1
n,0(y + 0) if and only if F̂n,0(x− 0) ≤ y for x ∈ R and

y ∈ (0, 1) (cf. Witting [1985], p.20), it follows for a fixed ǫ > 0 and sufficiently large n that
{
n̂0

n0
≥ 1 + ǫ

}

⊆
{

F̂n,0

(
s/n0 + ǫ− κ/n0

1 + ǫ
− 0

)

≤ s

n0

}

.

Note that F̂n,0(x) ≤ F̂n,0(x− 0) + 1/n0 almost surely for all x ∈ (0, 1). Hence,
{
n̂0

n0
≥ 1 + ǫ

}

⊆
{

F̂n,0

(
s/n0 + ǫ− κ/n0

1 + ǫ

)

≤ s+ 1

n0

}

.

Setting y = (s/n0 + ǫ− κ/n0)/(1 + ǫ) we obtain
{
n̂0

n0
≥ 1 + ǫ

}

⊆
{

y − F̂n,0(y) ≥
ǫ(1− s/n0)

1 + ǫ
− κ+ 1 + ǫ

n0(1 + ǫ)

}

and herewith
{
n̂0

n0
≥ 1 + ǫ

}

⊆
{

sup
x∈[0,1]

|x− F̂n,0(x)| ≥
ǫ(1− s/n0)

1 + ǫ
− κ+ 1 + ǫ

n0(1 + ǫ)

}

.
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For fixed ǫ > 0 and κ ∈ R there exists some Nǫ,κ ∈ N such that for all n0 ≥ Nǫ,κ it holds

{
n̂0

n0
≥ 1 + ǫ

}

⊆
{

sup
x∈[0,1]

|x− F̂n,0(x)| ≥
ǫ(1− η)
2(1 + ǫ)

}

.

Then the DKW inequality implies

Pn,n0

(
n̂0

n0
≥ 1 + ǫ

)

≤ 2 exp

(

−n0
ǫ2(1− η)2
2(1 + ǫ)2

)

. (2.32)

Conditions (2.31) and (2.32) yield (2.30). �

Remark 2.16

For estimators given in (2.6), the choice of κ = 0 may be preferred, because κ = 0 leads to unbi-

ased estimators of n0. For estimators given in (2.9), κ = 0 also leads to unbiased estimators of n0

if (2.28) is fulfilled. The first condition in (2.28) means that the kth smallest p-value corresponds

asymptotically to a true null hypothesis (i.e. k > n1 and consequently n̂0/n0 → 1, n → ∞, al-

most surely if n0 →∞) or that pk:n corresponds asymptotically to a false hypothesis (i.e. k ≤ n1

and consequently n̂0 = n − k + κ ≥ n0 + κ) but n̂0 is not too large. In general, n̂0/n0 may be

considerably larger than n0 if k < n1. If the proportion of true null hypotheses is asymptotically

larger than 0, then the second condition in (2.28) can be replaced by lim supn→∞ k/n < 1.

Remark 2.17

If the alternative distributions are not Dirac, estimators for the number of true null hypotheses

become stochastically larger. Hence, the critical values α̂1 and α̂2 become stochastically smaller. It

follows that Vn becomes stochastically smaller than under a DU distribution. For estimators given

in (2.9), parameters k = k(n) fulfilling lim supn→∞(k − n1) < 0 may lead to an overestimation

of n0 and consequently Vn becomes stochastically smaller than in DU models.

Remark 2.18

In Finner and Roters [2002] the distribution of Vn and its limiting distribution for iid uniformly dis-

tributed p-values were computed, assuming that all hypotheses are true, especially for traditional

single-parameter and certain stepwise procedures. Their limiting results for single-parameter pro-

cedures (without plug-in estimate) coincide with Theorem 2.14.

2.3 Step-down plug-in procedures

It this section we consider the possibility of a step-down plug-in (SDPI) procedure related to the

Bonferroni-Holm test. Let ϑ ∈ Θ be given and suppose that the assumption (I1) is satisfied. One

possibility to define critical values for an SDPI procedure corresponding to the Bonferroni test is

given by

α̂
(1)
i:n = max

(
α

n̂0
,

α

n− i+ 1

)

, i ∈ In. (2.33)
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Analogously, critical values for an SDPI test corresponding to the Šidàk procedure are given by

α̂
(2)
i:n = max

(

1− (1− α)1/n̂0 , 1− (1− α)1/(n−i+1)
)

, i ∈ In. (2.34)

An SDPI procedure rejects all Hi with pi ≤ α̂
(i)
m:n, i = 1, 2, where

m = max{j ∈ In : ps:n ≤ α̂(i)
s:n for all s ≤ j}.

Remark 2.19

As in the case of BPI procedures, the probability of at least one false rejection for these SDPI

procedures is largest if p-values corresponding to true null hypotheses are iid uniformly distributed

on [0, 1] and p-values under alternatives follow a Dirac distribution with point mass 1 at 0, that is,

DU(n, n0) models are LFCs for the FWER and hence FWERϑ ≤ FWERn,n0 .

The next theorems give formulas for the calculation of the FWER in DU models.

Theorem 2.20

Let α ∈ (0, 1), λ ∈ (0, 1) and let κ satisfy conditions (2.7) and (2.8), respectively. Then the FWER

of the SDPI procedure with thresholds (2.33) based on the estimator (2.6) in a DU(n, n0) model

is given by

FWERn,n0 = 1−
min(⌊λn0+κ⌋,n0)

∑

s=0

(
n0

s

)

(1− λ)n0−s

(

λ− α

n0

)s

−
n0∑

s=⌊λn0+κ⌋+1

(
n0

s

)

(1− λ)n0−s

(

λ− α(1− λ)

n0 − s+ κ

)s

and the FWER of the SDPI test with (2.34) based on (2.6) in a DU(n, n0) model is given by

FWERn,n0 = 1−
min(⌊λn0+κ⌋,n0)

∑

s=0

(
n0

s

)

(1− λ)n0−s
(

λ− 1 + (1− α)1/n0

)s

−
n0∑

⌊λn0+κ⌋+1

(
n0

s

)

(1− λ)n0−s
(

λ− 1 + (1− α)(1−λ)/(n0−s+κ)
)s
,

where ⌊x⌋ denotes the smallest integer greater than or equal to x.

Proof: Let n1 = n − n0. An SDPI procedure implies that the smallest p-value corresponding to

true null hypotheses should be compared with the critical value α̂(i)
n1+1:n in DU models. Hence,

the event {Vn = 0} is equivalent to the event {mini∈In,0 pi > α̂
(i)
n1+1:n}. If Vn(λ) = s for

s ∈ In0 ∪ {0}, then

c1(s) = max

(
α(1− λ)

n0 − s+ κ
,
α

n0

)

and c2(s) = max(1−(1−α)(1−λ)/(n0−s+κ), 1−(1−α)1/n0)
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denote the realised critical values α̂(i)
n1+1:n, i = 1, 2, under Pn,n0 . It follows

Pn,n0(Vn = 0) =

n0∑

s=0

Pn,n0

(

min
j∈In,0

pj > ci(s), Vn(λ) = s

)

=

n0∑

s=0

Pn,n0 (#{j ∈ In,0 : pj ∈ (ci(s), λ]}= s,#{j ∈ In,0 : pj > λ}=n0 − s)

=

n0∑

s=0

(
n0

s

)

(1− λ)n0−s (λ− ci(s))s.

By noting that c1(s) = α(1 − λ)/(n0 − s + κ) and c2(s) = 1 − (1 − α)(1−λ)/(n0−s+κ) for

s > λn0 + κ, i.e. s ≥ ⌊λn0 + κ⌋+ 1, and c1(s) = α/n0, c2(s) = 1− (1− α)1/n0 otherwise, we

obtain the desired formulas for the FWER. �

Theorem 2.21

Letα ∈ (0, 1), k ∈ In and κ ≥ 0. Setting n1 = n−n0, t′ = (k−n1−κ)/n0, t1 = α/(n−k+κ+α)

and t2 = t∗ with t∗ given in (2.19), the FWER of the SDPI procedure with thresholds (2.33) based

on the estimator (2.9) in a DU(n, n0) model is given by

FWERn,n0 = 1−
(

1− α

n0

)n0

≤ α for k ≤ n1 (2.35)

and

FWERn,n0= n0

(
n0 − 1

k − n1 − 1

)(
∫ max(t1,t′)

t1

(

t− α(1− t)
n− k + κ

)k−n1−1

(1− t)n−kdt (2.36)

+

∫ 1

max(t1,t′)

(

t− α

n0

)k−n1−1

(1− t)n−kdt
)

for k > n1.

Moreover, the FWER of the SDPI test with (2.34) based on (2.9) in a DU(n, n0) model is given by

FWERn,n0 = α for k ≤ n1, (2.37)

and for k > n1 we obtain

FWERn,n0= n0

(
n0 − 1

k − n1 − 1

)(
∫ max(t2,t′)

t2

(

t− 1 + (1− α)(1−t)/(n−k+κ)
)k−n1−1

(2.38)

×(1− t)n−kdt+

∫ 1

max(t2,t′)

(

t− 1 + (1− α)1/n0

)k−n1−1
(1− t)n−kdt

)

.

.

Proof: It holds FWERn,n0 = 1 − Pn,n0(Vn = 0) and Pn,n0(Vn = 0) = Pn,n0(minj∈In,0 pj ≥
α̂

(i)
n1+1:n), i = 1, 2. First we investigate the case k ≤ n1, which implies pk:n = 0 almost surely.

Then the estimator n̂0 given in (2.9) equals n − k + κ almost surely and consequently we get
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Figure 2.4: Values of κ such that FWERn,n0 = α for the SDPI procedure with thresholds given

in (2.33) based on the estimator (2.6) for α = 0.05 and λ = 0.5, 0.6, 0.7, 0.8. The curves may be

identified by noting that κ increases when λ increases in n0 = 300.

n̂0 ≥ n0 since κ ≥ 0. Hence, α̂(1)
n1+1:n = α/n0 and α̂(2)

n1+1:n = 1− (1− α)1/n0 . Moreover, SDPI

procedures with k ≤ n1 and κ ≥ 0 coincide with the corresponding classical SD tests. It follows

that FWERn,n0 = 1− (1− α̂(i)
n1+1:n)

n0 which yields (2.35) and (2.37).

Now we consider the case k > n1, which implies that pk:n corresponds to a true null hypoth-

esis. If pk:n = t for some t ∈ [0, 1], then

c1(t) = max

(
α(1− t)
n− k + κ

,
α

n0

)

and c2(t) = max
(

1− (1− α)(1−t)/(n−k+κ), 1− (1− α)1/n0

)

denote the realised thresholds under Pn,n0 according to α̂(1)
n1+1:n and α̂(2)

n1+1:n, respectively. Similar

as in the proof of Theorem 2.8 we get

Pn,n0(Vn = 0) = n0

(
n0 − 1

k − n1 − 1

)∫ 1

ti

(t− ci(t))k−n1−1(1− t)n−kdt.

By noting that c1(t) = α(1− t)/(n− k + κ) and c2(t) = 1− (1− α)(1−t)/(n−k+κ) for t ≤ t′ =

(k − n1 − κ)/n0 and c1(t) = α/n0, c2(t) = 1 − (1 − α)1/n0 otherwise, we obtain (2.36) and

(2.38).

�

Remark 2.22

In contrast to BPI tests, a SDPI procedure does not always control the FWER if κ = 1. There are

λ ∈ (0, 1) and n0 ∈ N such that FWERn,n0 exceeds the level α. For example, α = 0.05, λ = 0.5,

κ = 1 and n0 = 3 yield FWER3,3 ≈ 0.055 for the SDPI test with critical values given in (2.33)

based on the estimator (2.6). But for fixed λ, α and n it is possible to calculate the minimum κ

such that

max
1≤n0≤n

FWERn,n0 = α.
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Then the SDPI procedure with this κ controls the FWER. On the other hand, the case κ > 1

may result in less rejections as obtained with the corresponding BPI procedure with κ = 1. For

example, for α = 0.05, 1 ≤ n0 ≤ 300, λ = 0.5, 0.6, 0.7, 0.8 the largest κ-values for the SDPI

tests with (2.33) based on (2.6) are attained for n∗0 = 30, 69, 113, 191 and are given by κ∗ ≈ 2.765,

3.100, 3.427, 3.754. Figure 2.4 suggests that an SDPI test with thresholds defined in the expression

(2.33) based on the estimator (2.6) and one of these λ’s and corresponding κ∗ control the FWER

for all n if (D1) and (I1) apply.

Even though the SDPI procedure with κ = 1 does not always control the FWER, the FWER

is controlled asymptotically if n̂0/n0 → 1 for n0 →∞ almost surely. The next theorem gives this

result.

Theorem 2.23

Let α ∈ (0, 1), κ ∈ R, λ ∈ (0, 1) be fixed and/or k = k(n) satisfy (2.28). Consider DU models

with n0(n) → ∞ as n → ∞. Then the limiting FWER of an SDPI procedure with thresholds

(2.33) based on (2.6) or (2.9) is given by

lim
n→∞

FWERn,n0 = 1− exp(−α) < α,

and the limiting FWER of an SDPI test with (2.34) based on (2.6) or (2.9) is given by

lim
n→∞

FWERn,n0 = α.

Proof: Note that α̂(1)
n1+1:n ≥ α/n0 for an SDPI test with thresholds given in (2.33) and α̂(2)

n1+1:n ≥
1− (1− α)1/n0 for an SDPI test with thresholds given in (2.34). Hence,

Pn,n0(Vn = 0) = Pn,n0

(

min
j∈In,0

pj ≥ α̂
(1)
n1+1:n

)

≤ Pn,n0

(

min
j∈In,0

pj ≥ α/n0

)

=

(

1− α

n0

)n0

for an SDPI test with thresholds given in (2.33) and

Pn,n0(Vn = 0)=Pn,n0

(

min
j∈In,0

pj ≥ α̂
(2)
n1+1:n

)

≤Pn,n0

(

min
j∈In,0

pj ≥1−(1− α)1/n0

)

= 1− α

for an SDPI test with thresholds given in (2.34). As in Theorem 2.14 we get

Pn,n0(Vn = 0) ≥ Pn,n0

(

{Vn = 0} ∩
{
n̂0

n0
∈ [1− ǫ, 1 + ǫ]

})

= Pn,n0

({

min
j∈In,0

pj ≥ α̂in1+1:n

}

∩
{
n̂0

n0
∈ [1− ǫ, 1− ǫ]

})

.

If n0 ≤ n̂0 ≤ (1 + ǫ)n0, then α̂(1)
n1+1:n = α/n0 and α̂(2)

n1+1:n = 1 − (1 − α)1/n0 . Moreover, if

(1−ǫ)n0 ≤ n̂0 < n0, then α/n0 < α̂
(1)
n1+1:n ≤ α/(n0(1−ǫ)) and 1−(1−α)1/n0 < α̂

(2)
n1+1:n ≤ 1−

(1−α)1/(n0(1−ǫ)). By noting that α̂(1)
n1+1:n ≤ α/(n0(1− ǫ)) and α̂(2)

n1+1:n ≤ 1− (1−α)1/(n0(1−ǫ))

Asymptotic and Exact Results in Multiple Hypotheses Testing, Veronika Gontscharuk



36 2.4. POWER INVESTIGATION

for all n̂0-values, we get for all n0 ≥ Nǫ,δ that

Pn,n0(Vn = 0) ≥ Pn,n0

({

min
j∈In,0

pj ≥
α

(1− ǫ)n0

}

∩
{
n̂0

n0
∈ [1− ǫ, 1 + ǫ]

})

≥ Pn,n0

(

min
j∈In,0

pj ≥
α

(1− ǫ)n0

)

− Pn,n0

(∣
∣
∣
∣

n̂0

n0
− 1

∣
∣
∣
∣
≥ ǫ

)

=

(

1− α

(1− ǫ)n0

)n0

− Pn,n0

(∣
∣
∣
∣

n̂0

n0
− 1

∣
∣
∣
∣
≥ ǫ

)

for an SDPI test with thresholds given in (2.33) and

Pn,n0(Vn = 0) ≥ Pn,n0

({

min
j∈In,0

pj ≥ 1− (1− α)1/(n0(1−ǫ))

}

∩
{
n̂0

n0
∈ [1− ǫ, 1 + ǫ]

})

≥ Pn,n0

(

min
j∈In,0

pj ≥ 1− (1− α)1/(n0(1−ǫ))

)

− Pn,n0

(∣
∣
∣
∣

n̂0

n0
− 1

∣
∣
∣
∣
≥ ǫ

)

= (1− α)1/(1−ǫ) − Pn,n0

(∣
∣
∣
∣

n̂0

n0
− 1

∣
∣
∣
∣
≥ ǫ

)

for an SDPI test with thresholds given in (2.34). Lemma 2.15 implies Pn,n0(|n̂0/n0 − 1| ≥ ǫ) =

o(1). Since FWERn,n0 = 1 − Pn,n0(Vn = 0), for each ǫ > 0 it follows for SDPI tests with

thresholds given in (2.33) and (2.34) that

1− exp(−α) ≤ lim
n0→∞

FWERn,n0 ≤ 1− exp(−α/(1− ǫ)) + o(1)

and

α ≤ lim
n0→∞

FWERn,n0 ≤ 1− (1− α)1/(1−ǫ) + o(1),

respectively. Setting ǫ = ǫn ↓ 0 completes the proof. �

2.4 Power investigation

In this section we compare the power of BPI tests with the power of corresponding classical tests

with fixed threshold. We restrict our attention to a simple normal model with fixed alternatives

and fixed number of true null hypotheses n0. Let Xij , i ∈ In, j ∈ Im, be independent normally

distributed random variables with unknown mean ϑi and known variance σ2 > 0. We consider the

following multiple-testing problem

Hi : ϑi ≤ 0 versus Ki : ϑi > 0, i ∈ In.

The associated test statistics and p-values are given by Ti =
∑m

j=1Xij/(σ
√
m), i ∈ In, and

pi = pi(ti) = 1 − Φ(ti), i ∈ In, respectively, where ti denotes the realisation of Ti. Let ϑ =

(ϑ1, . . . , ϑn) and ϕi denote the test for Hi. The power of a single test ϕi in terms of ϑ is defined

as

βi(ϑ) = Pϑ(ϕi = 1), i ∈ In,1.
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Alternatively, we may consider the expected proportion of correct rejections as power, that is,

β(ϑ) =
1

n− n0

∑

i∈In,1

Pϑ(ϕi = 1) =
1

n− n0

∑

i∈In,1

βi(ϑ). (2.39)

Obviously, the power of a multiple test depends on the distribution of the p-values under alterna-

tives. We consider the case, where means corresponding to alternatives all have the same value,

i.e. ϑi = µ for i ∈ In,1 for some fixed µ > 0. For simplicity, we confine ourselves to considering

a BPI test with κ = 1 and critical value α/n̂0 given in (2.4) based on n̂0 given in (2.6). Under

the assumptions stated before, the power of single tests ϕi, i ∈ In,1, and the overall power defined

in equation (2.39) only depend on δ = µ
√
m/σ and coincide, i.e. βi(δ) = β(δ). For i ∈ In,1, a

straightforward calculation yields

β(δ) = Pϑ (pi ≤ α/n̂0)

=

n∑

s=1

Pϑ

(

pi ≤
α

n̂0
| #{k ∈ In \ {i} : pk ≤ λ} = s− 1

)

×Pϑ (#{k ∈ In \ {i} : pk ≤ λ} = s− 1)

=
n∑

s=1

Pϑ

(

pi ≤
α

n̂0
, | #{k ∈ In \ {i} : pk ≤ λ} = s− 1

)

×
s−1∑

j=0

Pϑ (#{k ∈ In \ {i} : pk ≤ λ} = s− 1, #{k ∈ In,0 : pk ≤ λ} = j)

=
n∑

s=1

Φ
(
δ − uα(1−λ)/(n−s+1)

)
s−1∑

j=0

(
n0

j

)(
n− n0 − 1

s− 1− j

)

λj(1− λ)n0−j

× (Φ(δ − uλ))s−1−j (1− Φ(δ − uλ))n−n0−s+j ,

where uz denotes the (1− z)-quantile of a normal distribution. Note that the power of the Bonfer-

roni test and the power of the OB test are given by

β(δ) = Φ
(
δ − uα/n

)
and β(δ) = Φ

(
δ − uα/n0

)
,

respectively. Clearly, if n̂0 < n, then a BPI test rejects at least as many hypotheses as the classical

Bonferroni procedure. Thereby, additional rejections appear if there are i ∈ In such that pi ∈
(α/n, α/n̂0]. On the other hand, the power of the OB test seems to be an upper bound of the

power of a BPI test. For n = 50, n0 = 10, 30, α = 0.05 and λ = 0.5 we compare the power of

the BPI test with the threshold α̂1 based on (2.6), the classical Bonferroni test and the OB test in

terms of δ = µ
√
k/σ ∈ [0, 6]. Figure 2.5 shows that the power of the OB test (full curve) and the

BPI (asterisks) test differs only slightly. Clearly, in the model considered here the BPI test is more

powerful than the classical Bonferroni test. Although the gain in power for n0 = 30 is not as large

as we might wish, the gain in power for n0 = 10 is remarkable. For example, for δ = 2, 3, 4 we

obtain β(δ) = 0.138, 0.464, 0.819 for the Bonferroni test, β(δ) = 0.252, 0.645, 0.915 if n0 = 10
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Figure 2.5: Power β(δ) in terms of δ =
√
mµ/σ (Bonferroni: dashed line; BPI: asterisks; OB:

full curve) for n = 50, λ = 0.5, n0 = 10 (left picture) and n0 = 30 (right picture).

Figure 2.6: Power β ≡ β(δ) of the BPI procedure (full curves) for δ =
√
mµ/σ =

2.0, 2.6, 3.1, 3.7 (from bottom to the top) in terms of λ for n = 50 and n0 = 10, 20, 30, 40

(from left to right picture). The power of the Bonferroni test (dashed line) always lies below the

corresponding power of the BPI procedure.
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and β(δ) = 0.169, 0.520, 0.853 if n0 = 30 for the BPI test. In Section 4.7 in Chapter 4 we

consider a simulation study, which shows that there are different distributions for which the gain

in power is large. In any case, we have to keep in mind that control of the FWER is a very strict

criterion and that even critical values of the OB test remain small compared to α as long as the

number of true null hypotheses n0 is not very small.

In conclusion, we look at the dependence of the power of the BPI procedure on the tuning

parameter λ in this specific model with n = 50 and α = 0.05 for n0 = 10, 20, 30, 40 and

δ =
√
mµ/σ = 2.0, 2.6, 3.1, 3.7. Figure 2.6 shows that differences in the power of the BPI

procedure (full curve) for various λ-values are small if n0 and/or δ is large. Moreover, the power

decreases in all cases if λ approaches 1. It seems that a λ of around 0.5 is a good compromise.

Note that in all the cases that are considered here the power of the BPI procedure is always greater

than the power of the Bonferroni procedure (dashed line). Figure 2.6 indicates again that the power

gain becomes more apparent for smaller values of n0.

We conclude this section with a simulated example, where we compare the number of hy-

potheses which are rejected with the test procedures considered before.

Example 2.24

In the multiple-testing problem given at the beginning of this section we set ϑi = 0 for all i ∈ In,0
and ϑi = µ for i ∈ In,1, where µ denotes a random variable following a uniform distribution on

[0, 3]. Let n = 40, n0 = 18, α = 0.05 and λ = 0.5. The BPI test with the threshold α̂1 based

on (2.6) and κ = 1 yielded n̂0 = 28 and for the SDPI test with the optimal κ = 2.76 we obtained

n̂0 = 31.52. The OB test rejected 5 hypotheses, the BPI and SDPI tests rejected 4 each and the

Bonferroni test rejected only 2 hypotheses. Thereby, the smallest critical values of the SDPI test

were a little smaller than the threshold of the BPI procedure.

2.5 Conclusions

In this chapter, we have proved that a Bonferroni-type procedure based on a suitable plug-in es-

timate for the number n0 of true null hypotheses controls the FWER under several distributional

assumptions. Typically, the power of a plug-in test is larger than the power of the corresponding

classical test and smaller than the power of the associated oracle procedure. The latter implies that

we may have a gain in power by a BPI procedure if the corresponding oracle procedure has more

power than the classical test.

Note that a plug-in procedure can be more conservative than the corresponding classical test.

In fact, n̂0 can be larger than n and consequently the threshold α̂ of a plug-in test can be smaller

than the threshold of the classical test. This is more likely to occur when n0 is close to n. There-

fore, we do not recommend a BPI procedure if there is prior knowledge that the proportion of true

null hypotheses is large. However, if this proportion is not too large, BPI tests are more attractive

than classical tests.

Furthermore, we have shown that corresponding SD procedures can be adjusted so that their
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FWER is controlled at pre-specified level α. Unfortunately, we cannot recommend this method

for small n-values, because our simulations have shown that the power of SDPI tests seems to be

smaller than the power of BPI procedures. The reason for this is that κ utilised in SDPI tests need

to be larger that in BPI tests. This implies that the smallest critical values of a SDPI procedure are

typically smaller than a BPI threshold.

The tuning parameter λ appearing in the estimators (2.6) has to be chosen independently

of the data, and the results presented in this chapter for a BPI procedure based on (2.6) heavily

depend on this assumption. Note that the estimator (2.9) is a data-dependent version of (2.6)

with λ = pk:n. Some investigations concerning the case of a data-dependent λ can be found

in Storey et al. [2004]. Obviously, to obtain a meaningful estimate for the number of true null

hypotheses n0, the number of p-values greater than λ should be large enough. In Section 2.4 we

speculated that λ ≈ 0.5 may be a good compromise. A further indication for this choice may

be that rejection of hypotheses with p-values greater than 0.5 is typically disliked. In any case, it

seems there is no uniform best choice for the parameter λ.

A further issue is the choice of k for the estimator n̂0 given in (2.9). Moreover, for k ≤ n−n0

the estimator (2.9) can be considerably larger than n0 so that we prefer to recommend a BPI

procedure based on the estimator (2.6).

In contrast to λ and/or k, the choice of κ does not seem to be problematic. It has been proved

that in case of independent null p-values κ ≡ 1 always implies FWER control for a BPI test with

critical value (2.4) and/or (2.5) based on (2.6) and α not greater than λ or for a BPI procedure with

critical value (2.4) based on (2.9). Thereby, optimal κ-values are only slightly smaller than 1 such

that the power of a BPI test with κ = 1 is almost the same as one of the BPI test with an optimal

κ. Note that a BPI test with α̂1 based on (2.6) and κ = 1 controls the FWER for all α ∈ (0, 1) and

λ ∈ (0, 1) (i.e. α and λ such that λ < α are allowed), cf. Guo [2009].

In conclusion, we mention again that if the number of hypotheses n is very large, then the

power of any multiple-test procedure controlling the FWER often tends to 0 so that the advantage

of a plug-in procedure becomes negligible. For such multiple-testing problems the false discovery

rate (FDR) is an attractive alternative error rate criterion. In Chapter 3 we introduce various

methods for constructing multiple tests controlling the FDR. Moreover, in Chapter 4 we investigate

the FWER of BPI tests in the case of dependent p-values.
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Chapter 3

FDR controlling multiple tests related

to the asymptotically optimal rejection

curve

As mentioned in Chapter 1, application of the FDR criterion allows for more type I errors on

the average than application of the FWER criteria, but bounds the proportion of false rejections.

Therefore, the usage of the FDR criterion can lead to more rejections. Benjamini and Hochberg

[1995] proposed the linear step-up (LSU) procedure, which controls the FDR under several as-

sumptions, cf. Chapter 1. Thereby, the pre-specified α-level is exhausted only if all hypotheses

are true while the actual FDR is distinctively smaller than α if the proportion of true null hypothe-

ses is small. Various approaches are available which improve the LSU procedure with respect

to the power. For example, Storey et al. [2004] suggested plug-in LSU tests which use a plug-

in estimate for the number of true null hypotheses n0, cf. Chapter 2. Another approach can

be found in Finner et al. [2009]. They constructed a non-linear asymptotically optimal rejection

curve (AORC) such that for extreme parameter configurations SUD procedures based on this curve

control the FDR at least asymptotically. For a fixed α ∈ (0, 1), the AORC is defined in (1.2) and

the corresponding critical values are given by

αi:n = f−1
α (i/n) =

iα

n− i(1− α)
, i ∈ In. (3.1)

Note that αn:n = 1 for all α ∈ (0, 1) implies that an SU test procedure based on (3.1) always

rejects all hypotheses. Moreover, Finner et al. [2009] showed that SUD procedures based on the

AORC critical values typically do not control the FDR for a finite number of all hypotheses. It

follows that the critical values (3.1) have to be adjusted in order to obtain finite FDR control

for an SUD test. Finner et al. [2009] proposed SUD procedures with slightly adjusted AORC

critical values (replace n by n+ βn in the denominator of the AORC critical values for a suitable

βn). Gavrilov et al. [2009] proved that SD tests with βn = 1 control the FDR under the usual

independence assumptions. Clearly, an SUD procedure rejects at least as many null hypotheses as

41
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the SD test with the same set of critical values and the corresponding SU test is the most powerful.

Hence, the construction of AORC related multiple tests controlling the FDR for fixed n-values,

and exhausting the pre-specified FDR level as sharply as possible, remains an open problem.

In this chapter we focus on exact control of the FDR for step-up-down (SUD) test procedures

related to the asymptotically optimal rejection curve (AORC). In Section 3.1 we introduce the

class of SUD tests, which includes SU and SD procedures, and derive explicit formulas for upper

bounds of their FDR. In the case of SU tests we obtain that upper bounds for the FDR are the

FDR-values in DU models. We show under several assumptions that upper bounds and FDRs of

SUD tests in DU models coincide asymptotically. Moreover, we prove that FDR control of an SU

test implies FDR control of all SUD tests with the same set of critical values. We provide condi-

tions under which FDR control of an SUD test follows from FDR control of the corresponding SD

test. In Section 3.2 we provide a recursive scheme for the computation of critical values leading to

the pre-specified FDR-values. We also consider a possibility to compute a feasible set of critical

values such that the corresponding FDR-values coincide with the pre-specified FDR-values for

larger numbers of true hypotheses. In Section 3.3 we introduce alternative FDR bounding curves

and show their connection to rejection curves. We give some examples of FDR bounding curves

and discuss the solvability of the corresponding recursive schemes. Section 3.4 deals with var-

ious methods based on the AORC. We show how critical values corresponding to the AORC or

to a modified AORC can be adjusted in order to obtain finite FDR control. For single-parameter

adjustment methods we investigate the behaviour of the adjusting parameters for SUD test pro-

cedures. We also consider an adjustment method, which modifies critical values αi:n depending

on i ∈ In and discuss a possibility of exact solving. In Section 3.5 we introduce an approach for

the computation of critical values yielding finite FDR control which is based on the fixed point

theorem. This iterative method combined with a β-adjustment yields a good (and may be the best)

set of critical values. Finally, in Section 3.6 we discuss advantages and disadvantages of each

method.

3.1 SUD tests and upper FDR bounds

Throughout this chapter, we consider a multiple-testing problem described in Notation 1.1. More-

over, we make the general assumptions that the conditions (I1) and (I2) are fulfilled, that is, pi,

i ∈ In,0(ϑ), are independent and that (pi : i ∈ In,0) and (pi : i ∈ In \ In,0) are independent ran-

dom vectors. Suppose that ϕ = (ϕi : i ∈ In) is defined in terms of critical values (1.1) such that

the corresponding continuous critical value function ρ fulfils the condition (A1), which implies in

particular that ρ is strictly increasing. Below, we call critical values (1.1) fulfilling (A1) feasible.

As before, a rejection curve associated with ρ is defined by r = ρ−1. Note that r and ρmay depend

on the number of hypotheses n but do not depend on n in asymptotic considerations. Moreover,

we define q(t) = ρ(t)/t for t ∈ (0, 1] and q(0) = limt→0 ρ(t)/t. Thereby, 0 ≤ q(0) ≤ 1 if

condition (A1) applies. It holds q(1) ≤ 1.

First we give a formal definition of SUD test procedures.
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Figure 3.1: The ecdf of n = 50 p-values, where n0 = 15 p-values correspond to true null hy-

potheses, and the AORC with α = 0.1. An SUD test based on the AORC with λ1 = 40 (λ2 = 80)

rejects hypotheses with p-values which are not greater than ti.

Definition 3.1

For λ ∈ In an SUD(λ) procedure ϕλ = (ϕ1, . . . , ϕn) of order λ is defined as follows. If pλ:n ≤
αλ:n, set mn = max{j ∈ {λ, . . . , n} : pi:n ≤ αi:n for all i ∈ {λ, . . . , j}}, whereas for pλ:n >

αλ:n, put mn = sup{j ∈ {1, . . . , λ − 1} : pj:n ≤ αj:n} (sup ∅ = −∞). Define ϕi = 1 if

pi ≤ αmn:n and ϕi = 0 otherwise (α−∞:n = −∞). Thereby, λ = 1 yields an SD procedure and

λ = n yields an SU procedure.

An SUD test ϕλ can be defined in terms of a random threshold t∗ depending on the data, that

is, ϕi = 1 if and only if pi ≤ t∗, cf. Section 1.2 in Chapter 1. If pλ:n ≤ αλ:n, then t∗ is the

smallest crossing point between r and the ecdf F̂n such that pλ:n ≤ t∗. If pλ:n > αλ:n, then t∗ is

the largest crossing point between r and the ecdf F̂n such that t∗ < pλ:n. Figure 3.1 shows the ecdf

of n = 50 p-values (n0 = 15) and the AORC defined in (1.2) with α = 0.1. An SUD test based on

the AORC with λ1 = 40 (λ2 = 80) rejects null hypotheses with p-values being not greater than ti.

Clearly, an SUD(λ2) test rejects at least as many hypotheses as an SUD(λ1) procedure if λ1 ≤ λ2.

Therefore, an SU test rejects the most hypotheses.

As mentioned before, although an SUD procedure ϕλ based on the AORC (i.e. with critical

values (3.1)) with λ ∈ In−1 does not necessarily reject all hypotheses, the FDR is not controlled

for a fixed n ∈ N. Benjamini and Yekutieli [2001] showed that in the case of SU tests, feasible

critical values imply that the FDR becomes larger if p-values decrease stochastically, cf. Theorem

1.2. This implies that DU models are least favourable parameter configurations (LFC) for the

FDR of an SU test if p-values corresponding to true null hypotheses are iid uniformly distributed

on [0, 1], cf. Chapter 1. Thereby, Pn,n0 denotes the probability measure in the DU(n, n0) model,

that is, all p-values pi, i ∈ In,0, are iid uniformly distributed on [0, 1], and all pi, i ∈ In,1, follow

a Dirac distribution with point mass 1 at 0. Unfortunately, for an SUD procedure with λ ∈ In−1

it is not known whether DU configurations are least favourable. It is also not known whether the

FDR of an SU test is maximum in DU models if p-values corresponding to true null hypotheses
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are stochastically larger than a uniform variate. However, Finner et al. [2009] showed that DU

configurations yield an upper bound for the FDR of SUD procedures. Moreover, this upper bound

for an SU procedure is sharp if the corresponding DU configuration belongs to the model. For the

computation of upper bounds b(n, n0) we need formulas for the probability mass function (pmf)

of Vn under DU configurations. They can be obtained in terms of the joint cumulative distribution

function (cdf) of order statistics.

Let 0 ≤ c1:n ≤ · · · ≤ cn:n ≤ 1 and n ∈ N be given. Then a general recursive formula for

the joint cdf F kn of the order statistics U1:n, . . . , Un−k:n, 0 ≤ k ≤ n, of n iid uniformly distributed

random variables Ui is given by

F kn (c1:n, . . . , cn−k:n) = 1−
n−k−1∑

j=0

(
n

j

)

Fj(c1:n, . . . , cj:n)(1− cj+1:n)
n−j , (3.2)

with F 0
n = Fn and F 0

0 ≡ Fnn ≡ 1. We apply formula (3.2) (for k = 0), which is essentially

Bolshev’s recursion, cf. Shorack and Wellner [1986], pp. 366-367, for the calculation of the pmf

of Vn for an SUD procedure of order λ under DU configurations. The next lemma yields this

result.

Lemma 3.2

For the pmf of Vn of an SUD(λ) procedure based on critical values 0 ≤ α1:n ≤ . . . ≤ αn:n ≤ 1

under a DU configuration with n0 true null hypotheses and n1 = n − n0 false hypotheses, we

obtain that Pn,n0(Vn = j)/
(
n0

j

)
is equal to







Fj(αn1+1:n, . . . , αn1+j:n)ᾱ
n0−j
n1+j+1:n, if λ ≤ n1,

Fn0−j(ᾱλ:n, . . . , ᾱλ:n
︸ ︷︷ ︸

n−λ+1

, ᾱλ−1:n, . . . , ᾱn1+j+1:n)α
j
n1+j:n, if λ > n1 ∧ j < λ− n1,

Fj(αλ:n, . . . , αλ:n
︸ ︷︷ ︸

λ−n1

, αλ+1:n, . . . , αn1+j:n)ᾱ
n0−j
n1+j+1:n, if λ > n1 ∧ j ≥ λ− n1,

for j = 0, . . . , n, where ᾱj:n = 1− αj:n, j ∈ In.

Proof: For notational convenience, we denote the p-values corresponding to true null hypotheses

by p0-values. The vector of ordered p-values (p1:n, . . . , pn:n) is almost surely of the form

(p1:n = 0 = . . . = 0 = pn1:n
︸ ︷︷ ︸

n1

, pn1+1:n = p0
1:n0

, . . . , p0
n0:n0

= pn:n).

Case 1. Let λ ≤ n1. In this case, we necessarily fall into the SD branch of the test procedure,

because at least the first λ components of the vector of ordered p-values are 0 such that pλ:n ≤ αλ:n

is true with probability 1. Consequently, the event {Vn = j} can be expressed as

{Vn = j} = {pn1+1:n ≤ αn1+1:n, . . . , pn1+j:n ≤ αn1+j:n} ∩ {pn1+j+1:n > αn1+j+1:n}.

Since the second event implies that all ordered p-values with ordered indices n1 + j+1 or greater

are larger than αn1+j+1:n, the event means that (n0 − j) p0-values are greater than αn1+j+1:n.
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Since we have
(
n0

j

)
possibilities to choose these p0-values and all p-values are assumed to be

independent, we immediately obtain the result.

Case 2. Let λ > n1 and j < λ − n1. In order to reach this case, we must have pλ:n > αλ:n

and fall into the SU branch of the procedure. Consequently, we can write

{Vn = j} = {pλ:n > αλ:n, pλ−1:n > αλ−1:n, . . . , pn1+j+1:n > αn1+j+1:n}∩{pn1+j:n ≤ αn1+j:n}.

Since pn1+j:n ≤ αn1+j:n automatically implies that p0
k:n0

≤ αn1+j:n for all k = 1, . . . , j, we can

again choose j of the n0 p0-values to fulfil this relationship.

Case 3. Let λ > n1 and j ≥ λ − n1. In this third case, we fall into the SD branch of the

procedure, resulting in

{Vn = j} = {pλ:n ≤ αλ:n, pλ+1:n ≤ αλ+1:n, . . . , pn1+j:n ≤ αn1+j:n}∩{pn1+j+1:n > αn1+j+1:n}.

The assertion then follows in analogy to the SD considerations under case 1. �

Corollary 3.3

For an SU procedure with critical values 0 ≤ α1:n ≤ · · · ≤ αn:n ≤ 1 in a DU(n, n0) model we

obtain

Pn,n0(Vn = j) =

(
n0

j

)

Fn0−j(1− αn:n, . . . , 1− αn−n0+j+1:n)α
j
n−n0+j:n, (3.3)

cf. Lemma 3.2 in Finner and Roters [2002].

This result is immediate if we consider the case λ = n in Lemma 3.2. Alternatively, the pmf

of Vn in this case can be calculated by the recursive formula (3.9) below.

Now we present an upper bound for the FDR of an SUD(λ) procedure ϕn which was intro-

duced in Finner et al. [2009]. The following result corresponds to the slightly more general Theo-

rem 4.3 in Finner et al. [2009]. In what follows, Pϑi refers to the situation where (pj : j ∈ In\{i})
has the same distribution under ϑi as under ϑ except that we put pi ≡ 0 under ϑi.

Theorem 3.4

Let ϑ ∈ Θ be such that n0 ∈ N hypotheses are true and the remaining ones are false. Let i ∈ In,0.

Then, for an SUD(λ) test with λ ∈ In based on a rejection curve ρ it holds under (I1), (I2) and

(A1) by setting q(t) = ρ(t)/t that

FDRϑ(ϕ
λ) ≤ n0

n

n∑

j=1

q(j/n)Pϑi(Rn/n = j/n) =
n0

n
Eϑiq(Rn/n) (3.4)

≤ n0

n
En,n0−1q(Rn/n), (3.5)

with equality in (3.4) for an SU test (i.e. for λ = n) if (D1) is fulfilled.

Remark 3.5

In Theorem 4.3 in Finner et al. [2009] p-values corresponding to true null hypotheses have to be
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uniformly distributed on [0, 1], i.e. (D1) has to be fulfilled. However, it can be easily seen that for

pi, i ∈ In,0, being stochastically larger than a uniform variate, the expression in (3.4) is also an

upper bound for the FDR, cf. proof of Theorem 4.1 (inequality (4.4) in particular) and proof of

Theorem 4.3 in Finner et al. [2009].

Note that (3.5) is a ϑ-free upper bound for the FDR for all n0 ∈ In. Setting

b(n, n0|λ) =
n0

n
En,n0−1 [q(Rn/n)] , n0 ∈ In, (3.6)

and b∗n = max1≤n0≤n b(n, n0), we obtain supϑ∈Θ FDRϑ(ϕ) ≤ b∗n.

An explicit representation of the upper FDR bound b(n, n0|λ) for SUD(λ) tests is given in the

next theorem.

Theorem 3.6

For an SUD(λ) procedure with λ ∈ In and critical values (1.1) satisfying (A1), it holds

b(n, n0|λ) = n0

n0∑

j=1

αn1+j:n

n1 + j
Pn,n0−1(Vn = j − 1), (3.7)

where n1 = n− n0. For an SU test, that is λ = n, b(n, n0|n) can alternatively be calculated by

b(n, n0|n) =

n0∑

j=1

j

n1 + j
Pn,n0(Vn = j) = FDRn,n0(ϕ

n) (3.8)

and it even holds equality in every summand in (3.7) and (3.8), i.e.

Pn,n0(Vn = j) =
n0

j
αn1+j:nPn,n0−1(Vn = j − 1) for j ∈ In0 . (3.9)

Proof: In order to prove (3.7), we keep in mind that the expectation in (3.6) refers to a DU

configuration with (n0 − 1) true null hypotheses and (n1 + 1) false hypotheses and since pj ∼ ε0

for all j ∈ In,1, we get Rn = Vn + (n1 + 1) Pn,n0−1-almost surely. A straightforward calculation

now yields

n0

n
En,n0−1

[

q

(
Rn
n

)]

=
n0

n
En,n0−1

[
ρ(Rn/n)

Rn/n

]

= n0En,n0−1

[
αRn:n

Rn

]

= n0En,n0−1

[
αVn+n1+1:n

Vn + n1 + 1

]

= n0

n0−1∑

k=0

αk+n1+1:n

k + n1 + 1
Pn,n0−1(Vn = k)

= n0

n0∑

j=1

αn1+j:n

n1 + j
Pn,n0−1(Vn = j − 1),

which is formula (3.7). Equality (3.9) and consequently the left-hand side equality of (3.8) are im-

mediate consequences of the representation of the pmf of Vn for an SU test ϕn given in Corollary

3.3. The right-hand side equality follows with Theorem 3.4. �
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A natural question concerns the quality of the upper bounds (3.6). The next lemma shows that

(3.6) and the FDR often coincide asymptotically in DU models.

Lemma 3.7

Let ϕn be an SUD(λn) test based on some rejection curve r with ρ = r−1 satisfying (A1) and

λn/n → κ ∈ [0, 1]. Consider a sequence of DU(n, n0) models with n0(n)/n → ζ ∈ [0, 1] and

suppose that Rn/n converges to some fixed value at least in probability. Then the bound given in

(3.6) converges to the limiting FDR under DU(n, n0), that is,

lim
n→∞

b(n, n0(n)) = lim
n→∞

FDRn,n0(n) (3.10)

for all ζ ∈ [0, 1] if κ ∈ (0, 1] and for all ζ ∈ [0, 1) if κ = 0 (which includes SD procedures).

Proof: Let t∗n ∈ [0, 1] be the crossing point between r and the ecdf of p-values F̂n such that

r(t∗n) = F̂n(t
∗
n) = Rn/n, that is, ϕn rejects hypotheses with p-values not greater than t∗n. Note that

the existence of t∗n is guaranteed by the structure of SUD test procedures. From the convergence

of Rn/n we get that there exists a t∗ ∈ [0, 1] such that t∗n → t∗, n→∞, in probability. Then ϕn
rejects asymptotically all hypotheses with p-values not greater than t∗. For t∗ > 0 this implies that

FDRn,n0 → ζt∗/(1− ζ + ζt∗), n→∞. Moreover, if t∗ > 0 we obtain b(n, n0) → ζt∗/r(t∗) =

ζt∗/F∞(t∗|ζ), where F∞(t∗|ζ) = limn→∞ F̂n(t
∗) = 1− ζ + ζt∗. Hence, for ζ < 1 (i.e. t∗ > 0)

we get equation (3.10) for all κ ∈ [0, 1].

Now we consider the case of t∗ = 0 (i.e. ζ = 1) and κ > 0. Theorem 4.3 in Finner et al.

[2009] yields

FDRn,n0 = n0

n∑

j=1

αj:n
j

Pn,n0(Rn = j|pi0 ≤ αj:n),

where i0 ∈ In,0 and αj:n = ρ(j/n), j ∈ In. Then setting

C1,n = n0

λn∑

j=1

αj:n
j

Pn,n0(Rn = j|pi0 ≤ αj:n)

and

C2,n = n0

n∑

j=λn+1

αj:n
j

Pn,n0(Rn = j|pi0 ≤ αj:n),

we obtain FDRn,n0 = C1,n + C2,n. The statement (4.2) in Finner et al. [2009] yields

Pn,n0(Rn = j|pi0 ≤ αj:n) = Pn,n0−1(Rn = j) for j ≤ λn

and consequently

C1,n = n0

λn∑

j=1

αj:n
j

Pn,n0−1(Rn = j).

Since Pn,n0−1(Rn = j + n1) = Pn,n0−1(Vn = j − 1) for j ∈ In0 , the representation (3.7) of the

upper bound in Theorem 3.6 implies b(n, n0|λn) = C1,n + C3,n, where

C3,n = n0

n∑

j=λn+1

αj:n
j

Pn,n0−1(Rn = j).
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We will show that C2,n and C3,n converge to 0 if n increases, which implies limn→∞ FDRn,n0 =

limn→∞C1,n = limn→∞ b(n, n0). Since (A1) applies and αn:n ≤ 1, we get αj:n/j ≤ 1/n for all

j ∈ In, hence

C2,n ≤ C3,n ≤
n0

n
Pn,n0−1(Rn > λn). (3.11)

Note that t∗ = 0 is equivalent to Rn/n → 0, n → ∞, in probability in DU(n, n0) models. It

follows that there are no crossing points between the limiting ecdf of p-values (i.e. F∞(t) = t)

and the rejection curve r in (0, κ]. Hence, Rn/n → 0, n → ∞, in probability in DU(n, n0 − 1)

models, too. For λn/n→ κ > 0, we obtain

∀ ǫ > 0 : ∃ Nǫ ∈ N : ∀ n ≥ Nǫ : Pn,n0−1(Rn > λn) ≤ ǫ.

Thus, (3.11) yields that for all ǫ > 0 there exists an Nǫ ∈ N such that for all n ≥ Nǫ we get

C2,n ≤ C3,n ≤ ǫ, which completes the proof. �

Remark 3.8

Note that for κ = 0 and ζ = 1 the bound and the FDR may not be equal in the limit. For

example, for n0 = n the FDR of an SD test based on fα equals 1− (1− α1:n)
n which converges

to 1− exp(−α) < α = limn→∞ b(n, n|1).

As shown before, upper bounds given in (3.7) (which are equal to (3.6)) for an SD test are

not sharp such that they can be improved. One possibility can be derived from results that are

implicitly contained in Gavrilov et al. [2009], cf. proof of Theorem 1.1, p. 623, the second line

in formula (3.5). The next corollary yields this result. Below, Pϑ−i denotes a probability measure

for which p-values have almost the same distribution under Pϑ as under Pϑ−i , the only difference

being that pi ≡ 1 under Pϑ−i .

Corollary 3.9

Let ϑ ∈ Θ such that n0 ∈ N hypotheses are true and the remaining ones are false. Let i0 ∈ In,0.

If (I1) and (I2) are fulfilled for an SD test ϕ1 with critical values (1.1), then

FDRϑ(ϕ
1) ≤ n0

n

n∑

j=1

q(j/n)Pϑ−i0 (Rn/n = (j − 1)/n) (3.12)

=
n0

n
Eϑ−i0 q

(
Rn + 1

n

)

.

Moreover, the upper bound (3.12) attains its maximum in DU configurations, i.e.

n0

n
Eϑ−i0 q

(
Rn + 1

n

)

≤ bSD(n, n0) (say),

where

bSD(n, n0) = n0

n0∑

j=1

αn1+j:n

n1 + j
Pn−1,n0−1(Vn−1 = j − 1|α1:n, . . . , αn−1:n). (3.13)
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It is well-known that an SU test rejects at least as many null hypotheses as an SD test with

the same set of critical values. But a question of general interest is whether FDR control of

an SU procedure implies FDR control of the corresponding SUD procedures. An investigation

concerning this problem can be found in Blanchard and Roquain [2008]. They gave a specific

dependency condition, under which FDR control of an SD test follows from FDR control of the

corresponding SU procedure. Note that the dependence condition given in Blanchard and Roquain

[2008] results in very restrictive conditions on the critical values.

The next theorem yields the desired result for SUD tests requiring more restrictive distribu-

tional assumptions but only the simple monotonicity property (A1) on the critical values.

Theorem 3.10

Consider an SU test ϕn and an SUD(λ) test ϕλ with the same set of critical values 0 ≤ α1:n ≤
. . . ≤ αn:n ≤ 1 and λ ∈ In−1. Then, under assumptions (D1),(I1),(I2) and (A1) it holds

FDRϑ(ϕ
λ) ≤ FDRϑ(ϕ

n) for all ϑ ∈ Θ. (3.14)

Hence, if the FDR is controlled by the SU test ϕn, then the SUD(λ) test ϕλ also controls the

FDR. Moreover, the bounds b(n, n0|λ) defined in (3.6) are non-decreasing in λ ∈ In ((D1) is not

required for this).

Proof: Set Rλn = Rn for an SUD(λ) test. An SUD(λ2) test rejects at least as many hypotheses

as an SUD(λ1) test for any 1 ≤ λ1 ≤ λ2 ≤ n, which implies that Rλ1
n is stochastically not

greater than Rλ2
n . Under (A1) we obtain that ρ(Rλn/n)/(Rλn/n) is stochastically non-decreasing

in λ, hence the bounds b(n, n0|λ) defined in (3.6) and Eϑiq(Rλn/n) are non-decreasing in λ. Since

(D1) is fulfilled, we get together with Theorem 3.4 that

FDRϑ(ϕ
λ) ≤ n0

n
Eϑiq(Rλn/n) ≤ n0

n
Eϑiq(Rnn/n) = FDRϑ(ϕ

n).

�

By means of Theorem 3.10 we have an alternative method of obtaining FDR controlling SUD

procedures. Once we have an SU procedure with critical values (1.1) controlling the FDR, all

corresponding SUD procedure with the same set of critical values control the FDR, too. Unfortu-

nately, for λ < n the calculation time for the pmf of Vn via the formula in Lemma 3.2 increases

rapidly if n increases. For an SU test (i.e. λ = n) all computations are much easier and faster due

to the efficient recursive formula (3.9). In any case, as long as we are able to compute the pmf of

Vn for an SUD(λ) procedure with fixed critical values, we can easily compute the bounds for the

FDR given in Theorem 3.6.

Note that Theorem 3.10 also implies that an FDR controlling SUD test can be based on larger

critical values than an SU procedure which controls the FDR. On the other hand, for fixed critical

values an SUD(λ1) test rejects at least as many hypotheses as an SUD(λ2) test if λ1 is larger than

λ2. Hence, there is a trade-off between the conservativity of critical values and the conservativity

of the test structure, quantified by the parameter λ of the SUD test.
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The following lemma is a partial reverse of Theorem 3.10 and shows that FDR control of an

SD test sometimes implies FDR control of the corresponding SUD(λ) test for certain values of λ.

Lemma 3.11

Let ϕλ with λ ∈ In denote SUD(λ) tests with fixed critical values satisfying (A1) such that

b(n, n0|1) ≤ α for all n0 ∈ In, that is, the SD test controls the FDR at level α. Define

n∗0 = min{k ∈ In : FDRn,n0(ϕ
n) ≤ α for all n0 = k + 1, . . . , n} (3.15)

with the convention min ∅ = ∞. If n∗0 ≤ n, then FDRn,n0(ϕ
λ) ≤ α for all n0 ∈ In and all

λ ≤ n− n∗0 + 1, that is, an SUD(λ) test controls the FDR at level α if λ ≤ n− n∗0 + 1.

Proof: Suppose that n∗0 ≤ n. Theorem (3.10) yields that FDRn,n0(ϕ
λ) ≤ α for n0 = n∗0 +

1, . . . , n and λ ∈ In. A look at Lemma 3.2 and formula (3.7) immediately yields for λ ∈ In that

b(n, n0|λ) = b(n, n0|1) for all n0 ≤ n− λ+ 1.

Hence, for λ ≤ n− n∗0 + 1 we obtain

FDRn,n0(ϕ
λ) ≤ b(n, n0|λ) = b(n, n0|1) ≤ α for all n0 ≤ n∗0

which completes the proof. �

If it is known that an SD test controls the FDR for some fixed critical values, then we can try

to find some n∗0 ∈ In, which ensure the conditions in Lemma 3.11. Note that in this case it is only

necessary to check whether the corresponding SU test with the same critical values controls the

FDR for larger numbers of true null hypotheses. Thereby, an SU test requires less computation

time than an SUD procedure.

3.2 General computational issues

The formulas derived in Section 2.1 imply that it suffices to check FDR control of an SUD pro-

cedure at level α ∈ (0, 1) for all DU configurations. Since each SUD(λ) procedure with λ ∈ In

rejects all n − n0 false hypotheses with probability 1 under DU(n, n0) configurations, we only

have to prove that the FDR is less than or equal to g∗(n0/n) in this case, where the function g∗ is

defined by g∗(ζ) = min{α, ζ} for ζ ∈ [0, 1] and plays an important role below. It follows that

b(n, n0|λ) ≤ g∗(n0/n) for all n0 ∈ In, (3.16)

yields that the SUD test ϕλ controls the FDR at level α. Clearly, our objective is to exhaust the

FDR level given by the function g∗ for SUD procedures.

For a start, suppose for a moment that for each n0 ∈ In the FDR under a DU(n, n0) config-

uration should be bounded by g(n0/n) for an arbitrary but fixed function g : [0, 1] → [0, 1]. To

achieve this, we require with respect to (3.7) that

n0

n0∑

j=1

αn1+j:n

n1 + j
Pn,n0−1(Vn = j − 1) = g(n0/n) for all n0 ∈ In. (3.17)
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For n0 = 1 this results in

αn:n = ng(1/n). (3.18)

Setting

hn0(αn−n0+2:n, . . . , αn:n) =

n− n0 + 1

n0Pn,n0−1(Vn = 0)



g(n0/n)− n0

n0∑

j=2

αn1+j:n

n1 + j
Pn,n0−1(Vn = j − 1)



 ,

we obtain

αn−n0+1:n = hn0(αn−n0+2:n, . . . , αn:n) (3.19)

for 2 ≤ n0 ≤ n, i.e., we get a recursive scheme for the determination of critical values. As a

matter of course, we have to check whether the resulting solution is feasible.

Unfortunately, for g ≡ g∗ this recursive scheme only leads to feasible critical values for very

small values of n. For example, for α = 0.05 and SU tests, we only get feasible solutions for

n ≤ 6, cf. Kwong and Wong [2002].

However, a question of more general interest is to find functions g such that condition (3.17)

leads to feasible critical values for all n ∈ N. There exists at least one such function, that is g(ζ) =

ζα, ζ ∈ [0, 1], which corresponds to the LSU procedure introduced in Benjamini and Hochberg

[1995]. Further candidates will be presented in Section 3.3.

In order to exhaust the FDR-level and to find feasible critical values close to AORC-based

critical values, we can try to relax (3.18) and (3.19) as follows. In a first step one may choose

m ∈ In−1 starting values αn−i+1:n ≤ · · · ≤ αn:n, i ∈ Im, satisfying all constraints required for a

feasible solution and

b(n, i|λ) ≤ g∗(i/n) for i = 1, . . . ,m, (3.20)

where some of the inequalities may be strict. In a second step one can try to examine whether

recursive computation of the remaining critical values via (3.19) leads to a feasible solution with

b(n, i|λ) = g∗(i/n) for i = m+ 1, . . . , n. (3.21)

Although this proposal sounds attractive, it turns out to be a balancing act and extremely sensitive

with respect to the initial critical values, which will be shown in Section 3.4. Our experience is that

one needs to be lucky to find a feasible solution with this method for larger values of n. The main

reason for the sensitivity of this method seems to be that the new critical value to be calculated via

(3.19) is the smallest critical value in the support of the distribution of Vn and typically has very

small impact on the actual FDR. Figure 3.2 shows the AORC (red curve) and the cdf of p-values

(black line) in the DU(n, n0) model. The crossing point tζ (say), which specifies the FDR for an

SUD test, is typically greater (and asymptotically strictly greater) than the smallest critical value

αn:n−n0+1, such that it is not possible to obtain b(n, n0) = α by adjusting αn:n−n0+1.
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Figure 3.2: AORC (red curve) and the cdf of p-values (black line) in the DU(n, n0) model. The

crossing point tζ (say), which specifies the FDR, is typically greater than the smallest critical value

αn:n−n0+1 (denoted by α1 in the figure).

3.3 Alternative FDR curves and exact solving

In this section we investigate the question whether there exist further functions g : [0, 1]→ [0, α],

α ∈ (0, 1), such that the FDR of an SU test procedure ϕn under a DU(n, n0) configuration fulfils

the following equalities

FDRn,n0(ϕ
n) = g(n0/n) for all n0 ∈ In (3.22)

for a fixed n ∈ N or probably for all n ∈ N. We call any function g an FDR bounding curve

if it satisfies the natural restrictions g(0) = 0 and 0 < g(ζ) ≤ min{ζ, α} for all ζ ∈ (0, 1]

and some α ∈ (0, 1). As noted in Section 3, g(ζ) = αζ leads to the LSU procedure while

g∗(ζ) = min{α, ζ} does not work for the most n ∈ N. At present, g(ζ) = αζ is the only known

type of an FDR bounding function which solves (3.22).

For SUD(λ) tests (3.22) may be replaced by b(n, n0|λ) = g(n0/n) for all n0 ∈ In. Among

others, we investigate conditions such that

lim
n→∞

FDRn,n0(ϕ
n) = g(ζ) or lim

n→∞
FDRn,n0(ϕ

λ) = lim
n→∞

b(n, n0|λ) = g(ζ)

holds for all ζ if n0/n→ ζ.

Similarly as in Finner et al. [2009], we can try to find the asymptotic rejection curve r and

the asymptotic critical value curve ρ associated with an FDR bounding curve g. Since ρ should

satisfy (A1), this imposes further conditions on g as will be seen below. Assume for a moment

that limn→∞ n0/n = ζ ∈ (0, 1). Then, for a fixed threshold t, the asymptotic FDR with respect

to DU configurations is given by

FDRζ(t) =
tζ

(1− ζ) + tζ
. (3.23)

Solving FDRζ(t) = g(ζ) for t leads to

tζ =
g(ζ)(1− ζ)
ζ(1− g(ζ)) . (3.24)
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Note that the threshold for the p-values is determined by the asymptotic crossing point between

the rejection curve r and the asymptotic ecdf F∞(t|ζ) = ζt+ (1− ζ) of p-values with respect to

DU configurations, cf. Chapter 1. This results in an implicit definition of the asymptotic rejection

curve r given by r(tζ) = F∞(tζ |ζ), or equivalently,

r

(
g(ζ)(1− ζ)
ζ(1− g(ζ))

)

=
1− ζ

1− g(ζ) , ζ ∈ (0, 1). (3.25)

Analogously, the asymptotic critical value function ρ ≡ ρ(·|η) = r−1 is implicitly defined by

ρ

(
1− ζ

1− g(ζ)

)

=
g(ζ)(1− ζ)
ζ(1− g(ζ)) , ζ ∈ (0, 1). (3.26)

The following lemma shows that r and ρ are well defined for suitable FDR bounding curves g.

Lemma 3.12

Let g : [0, 1] → [0, α], α ∈ (0, 1), be a continuous FDR bounding curve such that g(ζ)/ζ is

non-increasing in ζ ∈ (0, 1] and b = limζ→0 g(ζ)/ζ ∈ (0, 1]. Then r : [0, b] → [0, 1] and ρ :

[0, 1] → [0, b] are well defined via (3.25) and (3.26), respectively, and by setting r(0) = ρ(0) = 0

and r(b) = 1, ρ(1) = b. Moreover, ρ fulfils condition (A1).

Proof: Let ζ = sup{ζ ∈ [0, 1] : g(ζ) = ζ}. Then g(ζ) = ζ for ζ ∈ [0, ζ] and g(ζ) < ζ for

ζ ∈ (ζ, 1]. Moreover, if there exists a ζ ∈ (0, ζ), then b = 1 and (3.25) yields r(1) = 1 and (3.26)

yields ρ(1) = 1. Setting g1(ζ) = (1 − ζ)/(1 − g(ζ)), ζ ∈ [0, 1], g2(ζ) = g(ζ)/ζ, ζ ∈ (ζ, 1] and

g2(ζ) = b for ζ ∈ [0, ζ], (3.26) can be written as

ρ(g1(ζ))

g1(ζ)
= g2(ζ).

Since g2 is non-increasing and g1 is strictly decreasing on [ζ, 1], we obtain that r : [0, b] → [0, 1]

and ρ : [0, 1] → [0, b] are well defined and ρ fulfils condition (A1). From g1(0) = 1, g1(1) = 0

and g2(0) = b we obtain the remainder. �

We note that if ζi denotes the solution of (1 − ζ)/(1 − g(ζ)) = i/n with respect to ζ, the

asymptotic critical values can be computed by

αi:n = ρ(i/n) =







g(ζi)(1− ζi)
ζi(1− g(ζi))

, i ∈ In−1,

b , i = n.

Typically, for a given bounding function g we can determine ζi-values for i ∈ In−1 (and

hence, critical values) only numerically. But in the next example we give a bounding function g

for which the corresponding critical value function ρ can be outlined analytically.

Example 3.13

The FDR bounding function

g(ζ) =
αζ

ζ + α(1− ζ)
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Figure 3.3: FDR bounding functions g∗ (upper curve) and g (lower curve) given in Example 3.13

with α = 0.1 (picture on the left) and the corresponding rejection curves fα (lower curve) and r

(upper curve) (picture on the right).

leads to

tζ =
α(1− ζ)

α+ ζ − 2αζ
and ζ(t) =

α(1− t)
t+ α− 2αt

.

Then the rejection curve related to g is given by

r(t) =
t(1− tα)

t+ α− 2αt
, t ∈ [0, 1]

and the corresponding critical value function is given by

ρ(t) =
2tα− t+ 1−

√
4t2α2 − 4t2α+ 4tα+ t2 − 2t+ 1− 4α2t

2α
.

Figure 3.13 shows the FDR bounding functions g and g∗ with α = 0.1 on the left as well as the

rejection curve r and the AORC fα on the right-hand side of this figure.

The next theorem shows that in DU models the asymptotic FDR of an SUD test based on the

rejection curve defined in (3.25) equals the given FDR bounding curve.

Theorem 3.14

Let g be an FDR bounding curve with the same properties as in Lemma 3.12. Consider SUD(λn)

tests ϕn based on r defined in (3.25) with λn/n → κ. Then we obtain for the limiting FDR in

DU(n, n0) models with n0/n→ ζ that

lim
n→∞

FDRn,n0 = g(ζ)

for (i) κ ∈ (0, 1] and ζ ∈ [0, 1] if b < 1, (ii) κ ∈ (0, 1) and ζ ∈ [0, 1] if b = 1 and (iii) κ = 0 and

ζ ∈ [0, 1).

Proof: Let g1 and g2 be defined as in the proof of Lemma 3.12. Setting tζ = g1(ζ)g2(ζ) we obtain

that tζ as a function of ζ is continuous for ζ ∈ [0, 1] and strictly decreasing for ζ ∈ [ζ, 1] with
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tζ = b for ζ ≤ ζ and tζ = 0 for ζ = 1. For each ζ ∈ [0, 1] it will be shown that r(t) = F∞(t|ζ)
has at least one solution and at most two solutions in [0, b]. Note, that from (3.25) we obtain

r(tζ) = F∞(tζ |ζ), which implies that there exists at least one solution, namely tζ . Now suppose

there exists a further solution t′ 6= tζ . The strict monotonicity of tζ in ζ ∈ [ζ, 1] yields that there

exists a ζ ′ ∈ [ζ, 1] such that t′ = tζ′ . Altogether we get r(tζ′) = F∞(tζ′ |ζ ′) = F∞(t′|ζ), hence

ζ = ζ ′ or t′ = 1 which implies the existence of at most two solutions, namely tζ < 1 and 1 or

only tζ . Finally, we get Rn/n → F∞(tζ |ζ) = r(tζ) = g1(ζ) and ρ(Rn/n) → ρ(r(tζ)) = tζ =

g1(ζ)g2(ζ), hence b(n, n0) → g(ζ) for ζ ∈ [0, 1] with formula (3.6). Lemma 3.7 completes the

proof. �

In order to complete the picture concerning the relationship between asymptotic rejection

curves, asymptotic critical value curves and asymptotic FDR bounding curves, we consider the

case where we start with an asymptotic rejection curve r.

Remark 3.15

Let r : [0, b] → [0, 1] be continuous with b ∈ (0, 1] and r(b) = 1 and suppose there exists a

ζ0 ∈ [0, 1) such that for each ζ ∈ (ζ0, 1] there exists a unique crossing point t(ζ) between F∞(·|ζ)
and r on [0, b] if b < 1 or on [0, 1) if b = 1 while the unique crossing point t(ζ) on [0, 1] is b for

ζ ∈ [0, ζ0]. Moreover, suppose that r(t)/t is non-increasing in t ∈ (0, b]. Consider a sequence

of DU(n, n0) models and a sequence of SUD(λn) tests based on r such that Rn/n → r(t(ζ)) as

n0(n)/n→ ζ for all ζ ∈ [0, 1]. Then the asymptotic FDR bounding curve on [0, 1) is given by

g(ζ) =
ζt(ζ)

1− ζ + ζt(ζ)

and g(ζ)/ζ is non-increasing in ζ ∈ (0, 1) with limζ→0 g(ζ)/ζ = b. Moreover, with ρ = r−1 and

ρ(1− ζ + ζt(ζ)) = t(ζ) we get

lim
ζ→1

g(ζ) = lim
ζ→1

ζt(ζ)

1− ζ + ζt(ζ)
= lim

ζ→1
ζ
ρ(1− ζ + ζt(ζ))

1− ζ + ζt(ζ)
= lim

t→0

ρ(t)

t
= q(0),

which is in line with the asymptotic results in Finner et al. [2009] for SUD procedures, where it is

shown that under suitable assumptions the asymptotic FDR for n → ∞ and ζ → 1 (or ζ = 1) is

q(0).

Example 3.16

A class of FDR bounding functions g for which the system of equations given by the recursive

scheme (3.18) and (3.19) can be solved at least for a broad range of n-values is given as follows.

These functions depend on two further parameters γ, η with 1 ≤ η ≤ γ/α, α ≤ γ ≤ 1, and are

defined by

g(ζ|γ, η) =

{

α(1− (1− ζ/γ)η), , 0 ≤ ζ < γ,

α, , γ ≤ ζ ≤ 1.

We first note that g(ζ|1, 1) = αζ, g(ζ|α, 1) = g∗(ζ) and g(ζ|γ, η) ≤ g∗(ζ) for all ζ ∈ [0, 1].

Moreover, g(·|γ, γ/α) and g∗ have the same slope in ζ = 0, g(ζ|γ, η) is non-decreasing in η and
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Figure 3.4: FDR bounding curves g∗(ζ) and g(ζ|γ, η) in Example 3.16 with γ = 0.5, η = 6, 8, 10

(from bottom to top in ζ = 0.1) and α = 0.05.

in γ for ζ ∈ [0, 1]. Note that g(·|γ, η) gets closer to g∗ if η increases and/or γ decreases. Figure

3.4 displays the situation for α = 0.05 and γ = 1/2. In this example, for η = 6, 8, 10, g(ζ|γ, η)
and g∗(ζ) are equal for ζ ∈ [0.5, 1] and nearly coincide for ζ ∈ [0.3, 0.5). Whether (3.22) can

be solved heavily depends on α and the choice of γ and η. It seems that a smaller α increases

the chance to solve (3.22) for larger values of n. For example, for α = 0.01 and γ = 0.1 there

always exists an η at least for n ≤ 500 such that (3.22) is solvable, whereas for α = 0.05, n = 7

and α = 0.1, n = 4 we could not find any solution. For γ = 0.5 we can find suitable η’s for

α = 0.01, 0.05 and n ≤ 500 (probably also for much larger n-values), as well as for α = 0.1 and

n ≤ 341, but not for n = 342. Moreover, for γ = 1, α = 0.01, 0.05, 0.1 we can find suitable η’s

at least for n ≤ 500.

In the case α = 0.1 we fail to find feasible critical values for larger n. The reason for this is

that the parameter η is bounded by γ/α which decreases if α increases. This results in a worse

approximation of g∗ for smaller values of ζ. Thereby, we observed that for arbitrary but fixed α

and γ a suitable parameter η, i.e. an η such that the recursive scheme (3.18) and (3.19) can be

solved, increases if n increases. It seems that the larger the value of n, the better g∗ has to be

approximated by an FDR bounding curve.

An idea how g∗ can be approximated in a smooth way is as follows. For a given function

G : [0, 1] → [0, α] we can apply a linear transformation, such that the corresponding transformed

function g : [0, 1] → [0, α] fulfils the condition g(ζ) ≤ ζ. For example, Figure 3.5 shows the

function G(ζ) = α(1 − eζη) and the transformed function g that lies below g∗. Thereby, this

considered linear transformation maps the vector (1, 0) to itself and the vector (0, 1) to the vector

(1, 1).

Now we give a formal definition of a general class of functions g which allow to approximate

g∗ in a smooth way.

Let E = [η,∞) or E = (η,∞) for some η ∈ R and let Gη : [0, 1] → [0, α], η ∈ E, be

continuous and non-decreasing functions such that Gη(x)/x is non-increasing in x ∈ [0, 1] with
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Figure 3.5: FDR bounding curve g (the lowest curve in ζ = 0.1) obtained by the linear trans-

formation of the function G(ζ) = α(1 − eζη) (the highest curve in ζ = 0.4) with α = 0.1 and

η = 50.

limx↓0Gη(x)/x = bη ∈ (0,∞), Gη(0) = 0 for all η ∈ E and limη→∞Gη(x) = α for all

x ∈ (0, 1]. Moreover, Gη is assumed to satisfy either

(G1) ∃ γ ∈ (0, 1−α) such thatGη(γ) = α for all η ∈ E andGη(x) is strictly increasing in η ∈ E
for all x ∈ (0, γ);

or

(G2) Gη(x) is strictly increasing in η ∈ E for all x ∈ (0, 1].

In case of (G2) we formally set γ = 1. We denote the set of all these (Gη)η∈E by G. Now define

hη by

hη(x) = x+Gη(x)

and g(·|η) : [0, 1]→ [0, α] by

g(ζ|η) = Gη(h
−1
η (ζ)), ζ ∈ [0, 1]. (3.27)

A little analysis yields that

g(ζ|η) ≤ g∗(ζ) ∀ η ∈ E and ∀ ζ ∈ [0, 1],

g(ζ|η) < g∗(ζ) ∀ η ∈ E and ∀ ζ ∈ (0,min{γ + α, 1}),

lim
η→∞

g(ζ|η) = g∗(ζ) ∀ ζ ∈ [0, 1],

lim
ζ→0

g(ζ|η)/ζ = bη/(1 + bη) ∀ η ∈ E.

If (G1) applies, we obtain g(ζ|η) = α for ζ ∈ [α+ γ, 1].

Lemma 3.17

Let (Gη)η∈E ∈ G and let g(·|η) be defined by (3.27). Then the asymptotic rejection curve r ≡
r(·|η) defined via (3.25) is strictly increasing on [0, bη/(1 + bη)] with

lim
η→∞

r(t|η) = fα(t) ∀t ∈ [0, 1].
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If (G1) applies, i.e. γ + α < 1, then

r(t|η) = fα(t) ∀t ∈ [0, tγ ],

where tγ = {α(1−α− γ)}/{(1−α)(γ+α)}. The asymptotic critical value function ρ ≡ ρ(·|η)
defined via (3.26) satisfies the monotonicity condition (A1).

Proof: For min{γ + α, 1} < ζ ≤ 1, the asymptotic rejection curve r implicitly defined by (3.25)

coincides with the AORC which has all desired properties. Therefore, it suffices to show the

assertions of the lemma for 0 ≤ ζ ≤ min{γ + α, 1}. In view of Lemma 3.12 we have to show

that g(ζ|η)/ζ is continuous (which is trivial) and non-increasing in ζ. Substituting ζ = hη(y) in

g(ζ|η)/ζ = Gη(h
−1
η (ζ))/ζ, we see that g(ζ|η)/ζ is non-increasing if

Gη(y)/y

Gη(y)/y + 1

is non-increasing which is implied by the assumptions. �

Clearly, there are uncountable choices of Gη to approach g∗ in a smooth way. For example,

we can choose Gη = αHηI[0,1] for a suitable family of cdfs Hη on [0,∞) such that Gη has the

desired properties, see the following example.

Example 3.18 (Families of probability distributions for generating FDR bounding curves)

Let α ∈ (0, 1).

(a) (Beta distributions.) Let E = [1,∞) and consider the family of beta distributions with cdfs

Hη(u) = (1− (1−u)η)I[0,1](u)+ I(1,∞)(u) for η ∈ E. Setting Gη = αHη and x = uγ for some

γ ∈ (0, 1− α] this leads to (compare with Example 3.16)

Gη(x) = α(1− (1− x/γ)η)I[0,γ)(x) + αI[γ,1](x), η ∈ E.

Then (Gη)η∈E ∈ G, hence Lemma 3.17 applies. For convenience, we denote the resulting FDR

bounding curves by g(·|η, γ). Note that g(·|η, γ) is non-increasing in γ ∈ (0, 1−α] for ζ ∈ [0, 1].

Moreover, g(ζ|1, 1− α) = αζ which is the FDR bounding curve of the LSU procedure.

(b) (Exponential distributions.) Let E = (0,∞) and consider the family of exponential distribu-

tions with parameter η ∈ E and cdf Hη (say) and define again Gη = αHη. Then we have

Gη(x) = α(1− exp(−ηx))I[0,1](x), η ∈ E,

and (Gη)η∈E ∈ G with γ = 1, hence Lemma 3.17 applies again. The resulting FDR bounding

curves are denoted by g(·|η).

It seems that one can choose FDR bounding curves of the type introduced in Example 3.18

being closer to g∗ and allowing for exact solving of (3.18) and (3.19) for larger values of n than the

ones in Example 3.16. For suitable choices of η and γ in (a) and (b) in Example 3.18 we obtain

approximately identical FDR curves and critical value functions (rejection curves). Moreover,
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for α = 0.01, 0.05 and γ = 0.5 in Example 3.18(a), we can find suitable ηs for n ≤ 500 (and

probably for much larger values of n) such that (3.22) is solvable for both examples. For instance,

if α = 0.05, then for η = 16, γ = 0.5 in Example 3.18(a) and η = 35 in Example 3.18(b) there

are feasible critical values with (3.22) for at least n ≤ 500. As noted before, the case of larger

α-values is problematic. At least for α = 0.1, (3.22) can be solved for both examples for larger

values of n than in Example 3.16, i.e., for at least n ≤ 700 we find an η such that (3.22) is solvable.

All in all this approach (as long as it works) yields an attractive possibility to obtain a feasible set

of critical values which should not differ too much from the AORC based critical values (3.1).

Anyhow, it remains completely unclear whether for each n there exists an η such that (3.22) can

be solved.

Of course, for SUD procedures it is also possible to apply the recursive scheme (3.18) and

(3.19) such that the upper bound is equal to one of the FDR bounding curves considered in Exam-

ples 3.16 and 3.18. But, as mentioned before, computations for SUD tests can take a long time.

3.4 AORC adjustments

In this section we present different adjustment methods related to the AORC or to a modified

AORC, such that the FDR is controlled for a finite number of hypotheses. We consider single-

parameter and multiple-parameter adjustment methods. In the case of single-parameter adjust-

ments we investigate the behaviour of the adjusting parameter βn for various SUD test procedures.

We show that exact solving (i.e. the most FDR-values should be α) seems to be possible only if the

number of all hypotheses n is very small. On the other hand, β-adjustment methods yield a good

approximation of the α level even for n-values being not too large. Moreover, it is mostly easy to

implement critical values corresponding to a single-parameter adjustment approach. Thereby, crit-

ical values corresponding to theses tests depend on the number of all hypotheses, the pre-specified

parameter α and an adjusting parameter βn so that one has only to determine the correspond-

ing adjusting parameter βn. Since for a large number of all hypotheses computation complexity

increases rapidly, AORC adjustments yield a good alternative for other multiple test procedures.

3.4.1 Single-parameter adjustment

One way to get a feasible set of critical values for an SUD(λ) procedure controlling the FDR is to

adjust the AORC. For example, as already mentioned in Finner et al. [2009], we can try to find a

suitable βn > 0 such that the adjusted rejection curve

fα,βn(t) =

(

1 +
βn
n

)

fα(t), t ∈
[

0,
α

α+ βn/n

]

,

with corresponding, always feasible critical values

αi:n =

i
n+βn

α

1− i
n+βn

(1− α)
=

iα

n+ βn − i(1− α)
, i ∈ In, (3.28)
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Figure 3.6: Rejection curves fα,βn(t) for SU tests with n = 10, 30, 100 and fα(t) (from top to

bottom in t = 0.2) with α = 0.05, β10 = 1.23, β30 = 1.41 and β100 = 1.76.

yields FDR control by an SUD(λ) test at level α. Below, we say the parameter βn is optimal if βn
is the minimum value, which yields FDR control. For example, for α = 0.05 and n = 100, 1000

we obtain that β100 = 1.76, β1000 = 3.07 for an SU test and β100 = 1.54, β1000 = 1.82 for

an SUD(λn) test with λn = ⌈n/(1 + α)⌉ yielding strict FDR control. Note that this choice

of λn yields αλn:n → 1/2 for n → ∞, because fα,βn → fα for n → ∞ (it will be proved

later) and αλn:n ≈ f−1
α (λn/n) = κ for some κ ∈ (0, 1) (for example κ = 1/2) yield λn =

nκ/(α+ κ(1− α)).

For α = 0.05, Figure 3.6 depicts the modified curves fα,βn for SU procedures for n =

10, 30, 100 together with fα, where β10 = 1.23, β30 = 1.41, β100 = 1.76.

It follows from the monotonicity of the upper bounds b(n, n0|λ) in λ stated in Theorem 3.10

that for a fixed n ∈ N the value of the parameter βn needed to ensure strict FDR control, increases

with increasing parameter λ of an SUD procedure; i.e. larger values for λ lead to larger βn-values.

But for fixed critical values an SUD(λ1) test rejects at least as many hypotheses as an SUD(λ2)

test with the same critical values if λ1 is larger than λ2. Lemma 3.11 shows that critical values

ensuring FDR control for an SD test procedure yield FDR control for an SUD(λ) test for some

smaller λs if the corresponding SU test controls the FDR for larger n0-values.

We apply this result for βn-adjusted critical values (3.28). Although an SU test with critical

values (3.28) and βn optimal for the corresponding SD test does not control the FDR for certain

values of n0, we observed in all our calculations that the pre-chosen α-level is exceeded only for

a certain set of small n0-values, that is, for each n ∈ N there seems to exists an n∗0 ≤ n defined by

(3.15) such that Lemma 3.11 applies.

For example, for α = 0.05 and n = 100, 500, 1000, 2000 the smallest βn-values such that the

SD test with (3.28) controls the FDR are given by βn = 1.34, 1.47, 1.53, 1.58. Due to Lemma 3.11

this results in n∗0 = 29, 134, 271, 565. Hence, an SUD(λn) test with appropriately chosen βn and

λn ≤ 72, 367, 730, 1436 (or respectively λn/n ≤ 0.72, 0.734, 0.73, 0.7185) controls the FDR.

Figure 3.7 shows that an SUD(λn) test at level α = 0.1, 0.05, 0.01 with λn ≈ 0.4n, 0.7n, 0.9n
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Figure 3.7: Maximal values of κ such that an SUD(λn) test with λn/n ≤ κ and optimal βn with

respect to an SD test controls the FDR at level α = 0.01, 0.05, 0.1 (from top to bottom).

and βn optimal for the corresponding SD test controls the FDR for larger n-values. Moreover, our

simulation study for α = 0.05 and larger n-values shows that the upper bound of an SUD(λn)

test with λn = 0.7n and βn ≡ 1 exceeds the α-level only slightly and it seems that the up-

per bound decreases to α, i.e. for n = 5000, 10000, 50000 the maximum upper bound is about

0.05022, 0.05020, 0.05008.

3.4.2 Adjustment of the modified AORC

Realised FDR values for SU tests based on (3.28) in DU(n, n0) models with varying numbers n0

of true null hypotheses have a maximum peak which is taken typically for smaller n0-values (cf.

Figure 3.9). It seems that if we diminish larger critical values (which correspond to FDRs with

smaller n0-values), then we can enlarge smaller ones, such that the corresponding FDR curve is

flatter for most n0-values. For some fixed k ∈ In, we therefore replace the larger critical values

αi:n, i ≥ k, in (3.28) such that they just fulfil the monotonicity condition (A1) with equality. This

corresponds to the adjustment SU procedures proposed in Example 3.2 in Finner et al. [2009]. For

example, we can choose k appropriately equal to n(1 − α) or n(1 − 2α). Then, we search for a

suitable constant β∗n > 0 such that the critical values

αi:n =







iα
n+β∗n−i(1−α) , 1 ≤ i ≤ k − 1,

iαi−1:n/(i− 1), k ≤ i ≤ n
(3.29)

yield FDR control at level α. The underlying rejection curve is given by

fα,β∗n(t) =







fα,β∗n(t), 0 ≤ t ≤ t∗,

t
fα,β∗n

(t∗)

t∗ , t∗ < t ≤ 1

with t∗ = f−1
α,β∗n

((k− 1)/n), cf. Figure 3.8. Note that fα,β∗n(t) for t ∈ (t∗, 1] corresponds a Simes

line with level t∗/fα,β∗n(t∗).
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Figure 3.8: The AORC is red, fα,β∗n(t) for n = 100, k = 90 and β∗n = 1.3 is blue and fα,β∗n(t) for

n = 100, k = 95 and β∗n = 1.41 is green.

Figure 3.9: FDR-values for SU tests with α = 0.05 and n = 100 in DU models based on si-

multaneously βn-adjusted critical values and critical values (3.29) with β∗n = 1.41, k = 95 and

β∗n = 1.3, k = 90 (left graph: from top to bottom in n0 = 10, right graph: from bottom to top in

n0 = 50), the right graph is zoomed.

The critical values (3.29) are always feasible and the optimal β∗n (i.e. the minimum valid β∗n)

is smaller than the corresponding βn of the simultaneous adjustment method with critical values

(3.28). For example, for α = 0.05, n = 100, 1000 and k = 90, 900 we obtain β∗n = 1.3, 1.42 for

an SU test. This results in flatter FDR curves, which are closer to α for larger n0-values than the

corresponding FDR curves of the simultaneous βn-adjustment. For n = 100 and α = 0.05, Figure

3.9 shows realised FDR values for the simultaneous βn-adjustment method with β100 = 1.76 and

for β∗n-adjustment methods with k = 95, β∗n = 1.41, and, k = 90, β∗n = 1.3.

3.4.3 Behaviour of the adjusting parameters

Now we consider the behaviour of the parameters βn and β∗n for different SUD(λ) test proce-

dures. Note that for an SUD(λn)-test the smallest parameter βn yielding strict FDR control is
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Figure 3.10: Optimal parameters βn resp. β∗n (left graph) and βn/n resp. β∗n/n (right graph) for

SU- and SD-tests based on fα,βn and SU test based on (3.29). The curves can be distinguished by

noticing that for all n-values, the optimal βn for an SU test is larger than for an SD test and the

parameter βn for SD is in turn larger than β∗n for SU. In the right graph, the curves corresponding

to SD with βn and to SU with β∗n are nearly identical.

non-decreasing in λn, such that the marginal cases (i.e. SU and SD tests) are a matter of particular

interest. For 1 ≤ n ≤ 2000, the left graph in Figure 3.10 shows the minimum values for βn (or

β∗n, respectively) which have to be used to ensure strict FDR control for SU and SD procedures

based on critical values in (3.28) and SU tests with critical values (3.29) and k = ⌈n(1− 2α)⌉ for

α = 0.05 and varying n. In the right graph of Figure 3.10, the corresponding factors βn/n (or

β∗n/n, respectively) are displayed. Thereby, critical values (3.28) for SD-tests and critical values

(3.29) for SU-tests are nearly identical (lower curves).

A complete characterisation of the asymptotic behaviour of the parameter βn resp. β∗n remains

an interesting open question for the considered adjustment procedures. It is not entirely clear for

SUD tests whether βn and β∗n are bounded or diverge for n → ∞. Note that β∗n ≤ βn for each

SUD procedures with a fixed λn.

Remark 3.19

In Benjamini et al. [2005] (Remark to Definition 7), an SD procedure with the universal adjust-

ment constant βn ≡ 1 was proposed. FDR control in case of independent p-values for this SD

procedure was proven in Gavrilov et al. [2009] making use of special structural properties of SD

tests. More precisely, βn ≥ 1 yields control of the upper bound (3.13) which implies FDR control.

We note that the bound b(n, n0|1) given in (3.7) for the SD procedure with AORC-based adjusted

critical values for βn ≡ 1 can exceed α. For example, setting α = 0.05, n = 50 and n0 = 10

leads to b(n, n0|1) = 0.052.

The next lemma yields a similar result as in Gavrilov et al. [2009] concerning the behaviour

of the adjustment parameter βn yielding control of the upper bound (3.7) for an SD test.

Lemma 3.20

For an SD test with critical values (3.28) and βn ≥ 2 the upper bound (3.7) is not greater than the
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pre-specified level α.

Proof: Let p1, . . . , pi be p-values that are iid uniformly distributed on [0, 1] and let p1:i, . . . , pi:i

be the corresponding order statistics. For simplicity we write αj ≡ αj:n, j ∈ In. Then the upper

bound (3.7) for an SD test can be rewritten as

b(n, n0|1) = n0

n0−1∑

j=1

αn1+j

n1 + j
P(p1:n0−1 ≤ αn1+2, . . . , pj−1:n0−1 ≤ αn1+j , pj:n0−1 > αn1+j+1)

+n0
αn
n

P(p1:n0−1 ≤ αn1+2, . . . , pn0−1:n0−1 ≤ αn).

Noting that
αn1+j

n1 + j
= α

1− αn1+j

n0 − j + βn
for j ∈ In0 ,

the monotonicity property (A1) yields

αn1+j

n1 + j
≤ α

1− αn1+j+1

n0 − j − 1 + βn
for j ∈ In0−1.

Therefore, for βn ≥ 2 we obtain

αn1+j

n1 + j
≤ α

1− αn1+j+1

n0 − j + 1
for j ∈ In0−1.

Furthermore,
αn
n

= α
1− αn
βn

< α
1− αn

1
.

Hence, we get

b(n, n0|1) < αn0

n0−1∑

j=1

1− αn1+j+1

n0 − j + 1
P(p1:n0−1 ≤ αn1+2, . . . , pj−1:n0−1 ≤ αn1+j ,

pj:n0−1 > αn1+j+1)

+αn0
1− αn

1
P(p1:n0−1 ≤ αn1+2, . . . , pn0−1:n0−1 ≤ αn)

= α

n0−1∑

j=1

n0

n0 − j + 1
P(p1:n0−1 ≤ αn1+2, . . . , pj−1:n0−1 ≤ αn1+j ,

pj:n0−1 > αn1+j+1, pn0 > αn1+j+1)

+αn0P(p1:n0−1 ≤ αn1+2, . . . , pn0−1:n0−1 ≤ αn, pn0 > αn)

= A (say).

Setting αn+1 = αn, we obtain

A = α

n0∑

j=1

n0

n0 − j + 1
P(p1:n0−1 ≤ αn1+2, . . . , pj−1:n0−1 ≤ αn1+j , pj:n0−1 > αn1+j+1, pn0 > αn1+j+1).
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Obviously, for each j ∈ In0 the event

{p1:n0−1 ≤ αn1+2, . . . , pj−1:n0−1 ≤ αn1+j , pj:n0−1 > αn1+j+1, pn0 > αn1+j+1}

can be expressed as

{p1:n0 ≤ αn1+2, . . . , pj−1:n0 ≤ αn1+j , pj:n0 > αn1+j+1, pn0 ≥ pj:n0}.

The latter can be expressed in terms of the number Ṽn0 of false rejections which corresponds to an

SD test with critical values (αn1+2, . . . , αn, αn+1), that is,

{Ṽn0 = j − 1, pn0 ≥ pj:n0}.

Hence,

A = α

n0∑

j=1

n0

n0 − j + 1
Pn0,n0(Ṽn0 = j − 1, pn0 ≥ pj:n0)

= α

n0∑

j=1

1

n0 − j + 1

n0∑

i=1

Pn0,n0(Ṽn0 = j − 1, pi ≥ pj:n0)

= α

n0∑

j=1

1

n0 − j + 1

∑

i∈In0 :pi≥pj:n0

Pn0,n0(Ṽn0 = j − 1)

= α

n0∑

j=1

Pn0,n0(Ṽn0 = j − 1).

With this we obtain

b(n, n0|1) < A = α(1− Pn0,n0(Ṽn0 = n0)) < α,

which completes the proof.

�

In order to characterise the behaviour βn for an SU test we first prove two lemmas. The

next lemma yields some results for an SUD test with a unique crossing point between the limiting

rejection curve and the asymptotic distribution function.

Lemma 3.21

Consider DU(n, n0) models with n0/n → ζ, ζ ∈ [0, 1]. Let ϕn, n ∈ N, be SUD(λn) tests based

on rejection curves rn : [0, bn]→ [0, 1] with bn ∈ (0, 1], and suppose there exists a rejection curve

r : [0, b] → [0, 1] with b ∈ (0, 1) such that limn→∞ rn(t) = r(t) for t ∈ [0, b] and limn→∞ bn = b.

Suppose there exists a unique crossing point t∗ζ ∈ [0, b] between r and F∞(t) = 1− ζ + tζ. Then

tn → t∗ζ and Rn/n→ r(t∗ζ) for n→∞ almost surely ,

where tn is the crossing point between rn and F̂n determined by the SUD(λn) test.
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Moreover, if ρn = r−1
n , n ∈ N, and ρ = r−1 fulfil (A1), then the asymptotic upper bound for

the FDR is given by

lim
n→∞

b(n, n0) = ζq(r(t∗ζ)),

where q(t) = ρ(t)/t for t ∈ (0, 1] and q(0) = limt→0 ρ(t)/t.

Proof: For a fixed but arbitrary ǫ > 0 define Aǫ = {t ∈ [0, 1] : |t − t∗ζ | > ǫ}. In order to prove

almost sure convergence of tn we will show that the probability of {tn /∈ Aǫ} increases to 1 for

n→∞.

For a given ǫ > 0 there always exists a δǫ > 0 such that

∀ t ∈ [0, b] ∩Aǫ : |F∞(t)− r(t)| > δǫ, (3.30)

which follows from the assumption that r and F∞ have only one crossing point in [0, b]. It is easy

to show that assumptions of this lemma imply uniform convergence of rn in [0, b], that is,

∃ N1 ∈ N : ∀ n ≥ N1 : ∀ t ∈ [0,min(b, bn)] : |rn(t)− r(t)| < δǫ/3. (3.31)

Then the triangle inequality applying to (3.30) and (3.31) yields

∀ n ≥ N1 : ∀ t ∈ [0,min(b, bn)] ∩Aǫ : |F∞(t)− rn(t)| > 2δǫ/3. (3.32)

Obviously, if bn ≤ b, then tn ∈ [0,min(b, bn)]. If bn > b it holds for ǫ being small enough that

∃ N2 ∈ N : ∀ n ≥ N2 : [b, bn] ⊆ Aǫ if b 6= t∗ζ and [b, bn] ⊆ Acǫ else.

Therefore, (3.31) and monotonicity of rn yield

∀ n ≥ max(N1, N2) : ∀ t ∈ [b, bn] ∩Aǫ : rn(t) ≥ rn(b) ≥ r(b)− δǫ/3. (3.33)

The convergence of bn → b for n→∞ implies

∃ N3 ∈ N : ∀ n ≥ N3 : |F∞(bn)− F∞(b)| < δǫ/3

and hence,

∀ n ≥ N3 : ∀ t ∈ [b, bn] : F∞(t) ≤ F∞(b) + δǫ/3. (3.34)

Setting N4 = max(N1, N2, N3), (3.33), (3.34) and (3.30) imply

∀ n ≥ N4 : ∀ t ∈ [b, bn] ∩Aǫ : |F∞(t)− rn(t)| > δǫ/3.

The latter together with (3.32) yields

∀ n ≥ N4 : ∀ t ∈ [0, bn] ∩Aǫ : |F∞(t)− rn(t)| > δǫ/3. (3.35)

Moreover, the Glivenko-Cantelli Lemma guarantees that supt∈[0,1] |F̂n(t, ω) − F∞(t)| → 0 for

n→∞ almost surely, i.e.

∀ ǫ1 > 0 : ∃ N5 ∈ N : Pn,n0




⋂

n≥N5

{ sup
t∈[0,1]

|F̂n(t, ω)− F∞(t)| < δǫ/3}



 > 1− ǫ1.
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Applying the triangle inequality to (3.35) and |F̂n(t, ω) − F∞(t)| < δǫ/3 in the last expression,

we obtain

Pn,n0




⋂

n≥N5

{ sup
t∈[0,bn]∩Aǫ

|F̂n(t, ω)− rn(t)| > 0}



 > 1− ǫ1.

Altogether we get

∀ ǫ > 0 : ∀ ǫ1 > 0 : ∃ N5 ∈ N : Pn,n0




⋂

n≥N5

{|t∗ζ − tn| < ǫ}



 > 1− ǫ1,

which implies tn → t∗ζ for n→∞ almost surely.

Now, continuity of r and convergence of rn in [0,min(b, bn)] imply Rn/n = rn(tn) → r(t∗ζ)

for n→∞ almost surely.

In the case ρn, n ∈ N, and ρ fulfil (A1), we get ρn(t) → ρ(t) and consequently qn(t) → q(t)

for all t ∈ (0,min(b, bn)] if n → ∞. Due to the definition of qn(0), q(0) and continuity of qn,

q we get qn(0) → q(0). Since 0 ≤ qn(t), q(t) ≤ 1 for t ∈ [0, 1] and qn, q are continuous and

non-decreasing, we obtain that qn → q for n → ∞ uniformly in [0, 1]. Dominated convergence

together with (3.6) yields b(n, n0) → ζq(r(t∗ζ)) almost surely, where b(n, n0) is the upper bound

of the FDR of ϕn.

�

Now it will be shown that for an SUD procedure smaller critical values imply smaller upper

bound for the FDR.

Lemma 3.22

Let r1 and r2 be rejection curves satisfying (A1) and suppose r1(t) ≥ r2(t), t ∈ [0, 1]. Then,

b1(n, n0) ≤ b2(n, n0),

where bi(n, n0) is the upper bound (3.7) for an SUD test based on ri for i = 1, 2.

Proof: It holds ρ1(t) ≤ ρ2(t) and q1(t) ≤ q2(t) for t ∈ [0, 1], where ρi = r−1
i , qi(t) = ρi(t)/t

and qi(0) = limt→0 ρi(t)/t for i = 1, 2. Moreover, for each realisation of p-values the test based

on r2 rejects at least as many hypotheses as the test based on r1. Then formula (3.6) of the upper

bound for an FDR of SUD test yields the result. �

The next lemma shows that for an SU test based on (3.28) βn/n is bounded.

Lemma 3.23

For an SU test with critical values (3.28) the optimal βn is not greater than (1− α)n.

Proof: It is known that FDRn,n0 ≤ α for an SU test based on the Simes rejection curve t/α.

From Lemma 3.22 we obtain that an SU test based on fα,β with some β > 0 controls the FDR if

fα,β(t) ≥ t/α. Note that this condition is sufficient but not necessary. We obtain fα,β(t) ≥ t/α if

and only if β/n ≥ t(1− α)/α for t ∈ (0, α]. Hence, choosing β ≥ (1− α)n yields FDR control

for n ∈ N, i.e. the optimal value of βn has to be less than or equal to (1− α)n. �
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The lemmas considered before allow the following important result concerning the asymptotic

behaviour of the optimal βn.

Lemma 3.24

Let βn > 0 be the minimum value which ensures FDR control of an SU test ϕn with critical values

(3.28) in all possible DU(n, n0) configurations, i.e. the FDR is not greater than α for all n0-values

and is equal to α for at least one n0 ∈ In. Then it holds limn→∞ βn/n = 0 and consequently

limn→∞ fα,βn = fα.

Proof: W.l.o.g. we assume limn→∞ βn/n = c for some c ∈ (0, 1−α], cf. Lemma 3.23 (otherwise

we can take a subsequence with the desired property). Then limn→∞ fα,βn(t) = (1 + c)fα(t).

Lemma 3.21 yields that for n0/n→ ζ ∈ [0, 1] the asymptotic FDR based on (1+ c)fα is given by

lim
n→∞

FDRn,n0 = ζ
α

1 + c− (1 + c)fα(t∗ζ)(1− α)
,

where t∗ζ is the unique crossing point between (1 + c)fα(t) and F∞(t) = 1− ζ + ζt. Obviously,

it holds that t∗ζ ≤ tζ = α(1− ζ)/ζ/(1− α) with tζ being the smallest crossing point between fα
and F∞. Then

lim
n→∞

FDRn,n0 ≤ α/(1 + c) < α for all ζ ∈ [0, 1]. (3.36)

On the other hand, βn is defined such that the FDR equals α for at least one n∗0 = n∗0(n) ∈ In in

a DU model. Hence, there exists a sequence {nk} ∈ N with n∗0(nk)/nk → ζ for some ζ ∈ [α, 1]

and limk→∞ FDRnk,n
∗

0(nk) = α (note that for any n, n0 ∈ N FDRn,n0 = α is possible only for

ζ ≥ α), which contradicts (3.36).

�

The last lemma implies that the parameters βn and β∗n may increase but not faster than o(n)

for SUD test procedures with critical values (3.28) or (3.29), respectively. It is not clear, whether

βn and β∗n diverge or are bounded for SUD tests. For SU tests with critical values (3.28) the next

lemma gives a partial answer.

Lemma 3.25

Let βn be the smallest parameter yielding FDR control for an SU test procedure based on (3.28)

in a DU model. Then, we obtain βn →∞ for n→∞.

Proof: Suppose βn ≤ β for all n ∈ N and some β ∈ (0,∞) and let n0/n → ζ ∈ (α, 1]. It will

be shown that limn→∞ FDRn,n0 > α, which contradicts the definition of βn.

First note that F∞(t) = fα(t) if and only if t ∈ {tζ , 1}. Let t∗ ∈ (tζ , 1). Then the FDR based

on fα,βn can be represented as

FDRn,n0 = En,n0

[
Vn
Rn
|tn ≤ t∗

]

Pn,n0 (tn ≤ t∗) + En,n0

[
Vn
Rn
|tn > t∗

]

Pn,n0 (tn > t∗) ,

where tn is the largest crossing point between F̂n and fα,βn . Similarly as in Lemma 3.21 it can be

proved that conditionally on {tn ≤ t∗} we obtain tn → tζ for n→∞ almost surely and under the
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condition {tn > t∗} we get tn → 1 for n→∞ almost surely. Moreover, {tn ≤ t∗} implies that

Vn
Rn

=
Vn/n

Rn/n
→ ζtζ

1− ζ + ζtζ
= α for n→∞ almost surely

and conditionally on {tn > t∗} we obtain Vn/Rn → ζ for n→∞ almost surely. Then

lim
n→∞

FDRn,n0 = α lim
n→∞

Pn,n0(tn ≤ t∗) + ζ lim
n→∞

Pn,n0(tn > t∗).

We now show that limn→∞ Pn,n0(tn > t∗) > 0, which implies limn→∞ FDRn,n0 > α. For the

largest critical value we have

αn:n =
α

βn/n+ α
≥ α

β/n+ α
,

which implies

Pn,n0(Rn = n) = Pn,n0(Vn = n0) = (αn:n)
n0 ≥

(
α

β/n+ α

)n0

,

hence

lim
n→∞

Pn,n0(Rn = n) ≥ lim
n→∞




1

(
β/α
n + 1

)n





ζn

= e−
β
α
ζ .

From {Rn = n} ≡ {tn = αn:n} and limn→∞ αn:n = 1 we obtain {Rn = n} ⊆ {tn >

t∗} for all larger n-values. Consequently, we get limn→∞ Pn,n0(tn > t∗) ≥ e−
β
α
ζ > 0 and

limn→∞ FDRn,n0 > α, which is the desired contradiction. �

For SUD(λn) tests based on (3.29) with λn ∈ In and k/n→ b > 0 there are some indications

that β∗n may be bounded. For SUD(λn) tests based on (3.28) with λn/n→ κ ∈ [0, 1) it also seems

possible that βn is bounded. But until now there is no proof for these statements.

3.4.4 Multiple-parameter adjustment

Now we consider another possibility to modify the AORC. As mentioned before, it seems that

for an optimal βn larger critical values in (3.28) are too large (i.e. the FDR takes its maximum

typically for smaller n0-values) and smaller critical values are too small (i.e. the FDR for larger

n0-values is typically smaller than α ), cf. Figure 3.9. Therefore, we replace βn by

βn,i = β1,n + β2,n

(
i

n

)β3,n

for suitable values β1,n, β2,n and β3,n, which influence each index i individually. This results in

critical values of the form

αi:n =
iα

n+ βn,i − i(1− α)
, i ∈ In, (3.37)
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Figure 3.11: FDR-values for SU tests with n = 100 under DU configurations based on si-

multaneously β-adjustment with βn = 1.76 (dashed line) and individually βn,i-adjustment with

β1,n = 1.09, β2,n = 1.07 and β3,n = 6 (solid line), the right graph is zoomed.

which are always feasible for β3,n > 1 and β2,n ≤ n(1 − α)/β3,n. Here the term β2,n (i/n)β3,n

leads to a leveling out of the FDR curve. As a criterion for a search algorithm for a suitable triple

(β1,n, β2,n, β3,n) such that FDRn,n0 ≤ α for all n0 ∈ In we can try to minimize

t(β1,n, β2,n, β3,n) =
n∑

n0=⌈n(1−π)⌉

(α− FDRn,n0)

for some π ∈ (0, 1]. For example, we can choose π = 3/4n. Obviously, the three-dimensional

parameter space has to be restricted in order to make computations possible in reasonable time.

For example, β3,n may be restricted to the integers {4, . . . , 8} or fixed in advance. For instance,

β3 = 6 can be taken for n ≤ 500 and α = 0.05. Thereby the search algorithm for the remaining

parameters becomes faster. As an example, Figure 3.11 displays the resulting FDR-values under

DU configurations for n = 100 and β1,n = 1.09, β2,n = 1.07, β3,n = 6 in comparison with those

originating from the simultaneously β-adjustment SU procedure with βn = 1.76. The picture

shows that the FDR is closer to α for n0 ≥ 18 with the refined adjustment.

3.4.5 Exact solving

As outlined at the end of Section 3.2, it is also possible to modify only m largest critical values

for some m ∈ In−1 with an adjustment method such that (3.20) is fulfilled and to try to apply

the recursive scheme (3.19) for n0 > m with g ≡ g∗ in order to determine the remaining critical

values.

Let us consider an SU test with critical values (3.28). For example, SU procedures for n = 90

with β90 = 1.718 and for n = 100 with β100 = 1.76 control the FDR at level α = 0.05. For

n = 90 we obtained that one can choose the m = 13 largest β90-adjusted critical values as

starting values and apply the recursive scheme (3.19) with g ≡ g∗ for the remaining ones, so that

g(n0/90) = 0.05 for n0 = 14, . . . , 100. But for each m ∈ {14, . . . , 87}, the recursive scheme
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(3.19) with n0 ≥ m + 1 does not yield feasible critical values, whereas for m ≥ 88 it does.

Unfortunately, for n = 100, one has to choose at least the m = 96 largest critical values in order

to apply (3.19) with g(n0/100) = 0.05, n0 = m + 1, . . . , 100 successfully. This may illustrate

the sensitivity of the recursive scheme. The other adjustment methods yield similar results so that

it is not necessary to pursue them.

3.5 Iterative method

In this section we consider an iterative method for calculating of critical values for an SU test. Let

α1:n, . . . , αn:n be feasible critical values, fulfilling that FDRn,n0(ϕ
n)≈ α for all n0 ≥ k for some

integer k ≡ k(n, α) ≥ nα, where ϕn is an SU test based on these critical values. For example,

in case of α = 0.05 and n = 100, the right graph in Figure 3.9 suggests that βn-adjusted AORC-

based critical values fulfil this requirement for k = 15 and can therefore be taken as initial values.

Now, we can try to iteratively modify certain critical values in order to reduce the corresponding

distances |α− FDRn,n0(ϕ
n)| even further.

As showed in Section 3.2, the smallest critical value usually does not influence the FDR.

Therefore, we have to identify which critical values have the most impact on FDRn,n0(ϕ
n) for a

given value of n0. We recall that, at least for ζ < 1, the FDP, i.e. the ratio Vn/Rn, convergences

to the asymptotic FDR in DU models with n0/n → ζ. Since p-values under alternatives follow a

Dirac distribution in DU models, we conclude that

FDP =
Vn
Rn

=
Vn

Vn + n1
≈ α.

This leads to Vn ≈ n1α/(1 − α). Then we obtain that about Rn = Vn + n1 ≈ n1/(1 − α)

hypotheses are rejected by an α-exhausting SU test in DU models. Therefore, the critical values

αi:n with i close to n1/(1 − α) are crucial for FDRn,n0(ϕ
n) and accordingly for a given i ∈ In

the critical value αi:n has the most impact on FDRn,n0(ϕ
n) with n0 ≈ n − i(1 − α). In order to

modify FDRn,n0(ϕ
n)-values for all n0 = k, . . . , n, we have to modify critical values with indices

ranging from 1 to i∗ ≡ i∗(n, k, α), which is an integer close to (n− k)/(1− α).

For the derivation of an appropriate iteration scheme, we rewrite the initial critical values in

the form

αi:n =
ici

n− i(1− ci)
= f−1

ci (i/n), i ∈ In, (3.38)

which formally equals (3.1) with a vector of “local FDR levels” c = (c1, . . . , cn). Moreover, we

make use of the notation FDRn,n0(c) for FDRn,n0(ϕ
n), where ϕn is defined via the critical values

given in (3.38). Now, let n0(i) be an integer closest to n− i(1− α) and consider the mapping

c 7→ u(c) = (u1(c), . . . , ui∗(c), ci∗+1, . . . , cn),

where

ui(c) = α
ci

FDRn,n0(i)(c)
, i = 1, . . . , i∗.
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We note that FDRn,n0(u(c)) = FDRn,n0(c) for n0 = 1, . . . , n − i∗. Assume that for fixed,

given constants ci, i = i∗ + 1, . . . , n, there exist some c∗i , i = 1, . . . , i∗, such that the vector

c∗ = (c∗1, . . . , c
∗
i∗ , ci∗+1, . . . , cn) fulfils the fixed point property c∗ = u(c∗). Then we obtain

c∗i = ui(c
∗) = αc∗i /FDRn,n0(c

∗), i = 1, . . . , i∗, which is equivalent to FDRn,n0(c
∗) = α,

n0 = k, . . . , n. Therefore, an iteration scheme for the vector of local FDR levels c, i.e., setting

c(j) = u(c(j−1)), seems to be a promising approach. Clearly, there is no fixed-point theorem

at hand guaranteeing convergence. Moreover, as mentioned in Section 3.2, for a given FDR-

bounding curve (or pre-specified FDR-values) there are not necessarily corresponding feasible

critical values, that is, the formal solution of the target equation (3.22) is not necessarily feasible.

Finally, resulting FDR-values can slightly exceed the given α-level, because the mapping u(c)

does not guarantee that c∗ is approached from below. However, the method seems to work well

and the distances |α − FDRn,n0(ϕ
n)|, n0 = k, . . . , n, on average get reduced by the outlined

iteration method for a suitable number of iterations J ∈ N (say).

In order to describe the method more formally, we set without restriction

i∗ ≡ i∗(n, k, α) = ⌊(n− k)/(1− α)⌋,

and let (α
(0)
1:n, . . . , α

(0)
n:n) be feasible start critical values and α(j)

i:n ≡ α
(0)
i:n for i = i∗ + 1, . . . , n,

j = 1, . . . , J , that is, only the smaller i∗ critical values will be changed. For a modification of

critical values with indices ranging from 1 to i∗, we proceed as given in the following algorithm.

For j from 1 to J do:

1. For i from i∗ to 1 by −1 do:

(a) Determine c(j−1)
i from α

(j−1)
i:n = ic

(j−1)
i /(n− i(1− c(j−1)

i )).

(b) Put c(j)i = αc
(j−1)
i /FDRn,n0(i)(c

(j−1)).

(c) Calculate α(j)
i:n = ic

(j)
i /(n− i(1− c(j)i )).

(d) If (A1) is not fulfilled, then put α(j)
i:n = iα

(j)
i+1:n/(i+ 1).

2. Calculate FDRn,n0(c
(j)), n0 = n− i∗ + 1, . . . , n.

Notice that in the latter algorithm the number n0(i) in the expression FDRn,n0(i)(c
(j−1))

is only loosely defined by setting n0(i) as the integer “closest to n − i(1 − α)”. To be more

precise, one can replace FDRn,n0(i)(c
(j−1)) by a linear interpolation of the two adjacent values

FDRn,⌊n−i(1−α)⌋(c
(j−1)) and FDRn,⌈n−i(1−α)⌉(c

(j−1)).

As a demonstrating example, we choose n = 100, α = 0.05, and the critical values result-

ing from the simultaneous AORC-adjustment with β100 = 1.76 as starting values. The FDR of

the SU test with these starting values takes its maximum in the point n0 = 15, so we choose

k = 15 and consequently i∗ = ⌊85/0.95⌋ = 89. Moreover, we perform J = 50 iterations. Fig-

ure 3.12 shows the resulting FDR values of the SU test with critical values α(50)
1:100, . . . , α

(50)
89:100,

α
(0)
90:100, . . . , α

(0)
100:100 under DU configurations. Here the improvement obtained by the iterative

method becomes obvious.

We tested the iterative method for a series of values of n and α. As initial critical values we

took simultaneous βn-adjusted as well as β∗n-adjusted critical values (cf. Section 3.4). For exam-
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Figure 3.12: FDR-values for SU tests with n = 100 under DU configurations, which are based

on iteratively modified critical values with 50 iterations (solid line) and simultaneously β-adjusted

ones with βn = 1.76 (dashed line), the right graph is zoomed.

ple, for n = 100, 300, 1000, J = 20, 10, 10 iterations based on initial simultaneous βn-adjustment

and J = 10, 2, 1 iterations based on initial β∗n-adjustment gave satisfying results. Typically, β∗n-

adjusted critical values need fewer number of iterations than βn-adjusted critical values. It seems

that the closer starting FDR-values are to α the better the iterative method woks. Unfortunately,

the resulting realised FDR-values under Dirac-uniform configurations typically exceed the given

α-level for some n0 ≥ k. But the actual differences |α− FDRn,n0(ϕ
n)|, n0 ≥ k, seem of negligi-

ble magnitude, i.e., for a suitable number of iterations the observed differences were never greater

than 5 × 10−5. Clearly, in a final step we can decrease the resulting critical values in a suitable

way by a suitable small amount such that all FDR-values are smaller than α.

3.6 Concluding remarks

We have implemented various approaches to construct critical values, which exhaust the given

α-level. Thereby, different methods lead to different sets of critical values and no set uniformly

dominates the others such that no method can be definitively preferred. The choice of the method

may depend on previous knowledge and computational resources.

The FDR bounding curve method described in Section 2.4 seems to be the most attractive.

Because it is a method for which the FDR (or the upper bound for SUD procedure) is explicitly

given, so that, we only have to calculate critical values with the recursive formula (3.19). But the

question, whether these critical values are feasible for a given n, is still open. Nevertheless, this

approach seems to approximate g∗(ζ) = min(α, ζ) very well and computations (especially for a

fixed n ≤ 2000) can be made in reasonable time for SU tests, the critical values of which are also

valid for all corresponding SUD test procedures.

For the other methods we do not have any theoretical proof that the resulting FDR’s are close

to α, but we observed it in all simulations and the asymptotic FDR is equal to α, cf. Section 3.3.
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Moreover, for the adjustment methods in Section 3.4 and an iterative method in Section 3.5 we

can always construct feasible critical values, i.e. we can always find adjusting parameters such

that the FDR is controlled. Note that all theses methods can be combined with exact solving (cf.

Subsection 3.4.5) in order to improve smallest critical values.

Although the FDR of an individual βi,n-adjustment is typically closer to α than the FDR of

a βn- or β∗n-adjustment, computations in this case are distinctively slow, so that we do not rec-

ommend this method for n > 200. Since simultaneous βn- or β∗n-adjustment procedures are very

easy to implement if a suitable βn (or β∗n) is computed, these approaches can be a good alternative

to the FDR bounding curve method. Our investigations show that the FDR of simultaneous βn-

or β∗n-adjustment is close to α if n is large (for example n ≥ 1000 for a βn-adjustment method

and n ≥ 300 for a β∗n-adjustment method) and the computation time thereby is acceptable. More-

over, for the βn-adjustment, the larger critical values there seem to be larger than the ones for the

other procedures, that is, if it is known that the proportion of true null hypotheses is small, then a

βn-adjustment method can be the best.

For the application of an iterative method in Section 3.5 we first have to calculate a βn (or β∗n)

with a simultaneous βn- (or β∗n-) adjustment procedure, which may result in an extended computa-

tion time. But for n ∈ N not too large (for example, n ≤ 1000) the iterative method is reasonable

(especially if the proportion of true null hypotheses is known to be small) and calculation time is

reasonable, too. We recommend this method with simultaneous βn-adjustment critical values as

starting values for smaller values of n (for example n ≤ 300). For 300 ≤ n ≤ 2000, we recom-

mend to use the iterative method in connection with β∗n-adjusted initial critical values, because it

seems that only a few iterations are needed in this case.

If we compare the critical values generated with the methods described before, we observe

that the differences are negligible for most of the critical values except for a small proportion of the

larger ones. Typically, large critical values come into play only if a large proportion of hypotheses

is extremely false with p-values close to zero which is not often the case in practice. Therefore,

we expect that the choice of the method for the determination of critical values should have nearly

no influence on the final results of the test procedure.

For the computation of critical values according to the given procedures, we provide Maple

worksheets under the URL http://www.helmut-finner.de, which can be executed in

reasonable time on a standard desktop computer for n ≤ 2000. Moreover, for SU and SUD(λ)

tests with critical values (3.28) and SU tests based on (3.29), we tabulated the constants βn (β∗n
respectively) for n ≤ 2000, α = 0.01, 0.05, 0.1 and λn ≤ 0.9n, 0.7n, 0.4n.

Finally, we would like to give a recommendation for practical application if the number of

hypotheses n is large (n > 2000). Computing time in this case can be enormous, so that we

recommend the βn- or β∗n-adjustments with some fixed parameter β (or β∗). For example, for

α = 0.05 one may choose βn ∈ [β2000, 2] = [1.58, 2] and λn ≈ 0.7n for an SUD(λn) test and

β∗n ∈ [β2000, 2] = [1.45, 2] for an SU test (for k ≈ n(1 − 2α)) with critical values (3.29) for

k ≈ n(1 − 2α). Although the upper FDR bound can exceed the α-level for these tests for some

DU configurations, the possible exceedance should be negligible. As mentioned before, the FDR
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is asymptotically controlled such that the possible exceedance of the α-level converges to 0 as n

increases.
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Chapter 4

Dependent p-values and multiple test

procedures

Up to now we have considered p-values that fulfil (I1) and optionally (D1) and/or (I2). In statistical

applications these assumptions often do not apply. Especially if independence requirements are

not satisfied, the pre-specified FWER- and/or FDR-level are possibly exceeded.

In this chapter we investigate various types of dependence of test statistics, for which the

FWER and/or the FDR can be be controlled at least asymptotically. In Section 4.1 we review

different types of dependence between test statistics that are commonly used in the literature on

multiple tests controlling the FDR. Then we investigate a somewhat relaxed version of "weak de-

pendence". In Section 4.2 we consider a BPI procedure with the threshold (2.4) and an SDPI test

with the thresholds (2.33) based on a plug-in estimator n̂0 (cf. Chapter 2) and give a condition on

n̂0, for which asymptotic FWER control is ensured. We introduce assumptions concerning the ecdf

of p-values corresponding to true null hypotheses and show that under these assumptions BPI tests

control the FWER at least asymptotically. In Section 4.3 we show that "weak dependence" guar-

antees that a broad class of SUD test procedures (cf. Chapter 3) control the FDR asymptotically

under specific conditions. We discuss various power requirements ensuring asymptotic FDR con-

trol. Section 4.4 deals with the question how weak dependence conditions and/or convergence of

the ecdf of p-values can be proved. We give a condition on covariances of p-values corresponding

to true/false null hypotheses which is equivalent to the convergence of the ecdf of these p-values in

the sense of the Glivenko-Cantelli Theorem, which yields in the case of p-values under nulls some

especial type of weak dependence. Moreover, we discuss different types of dependence fulfilling

this condition. In Section 4.5 we consider an important example of "weak dependence", that is,

block-dependent p-values. In Section 4.6 we are concerned with so-called pairwise comparisons,

one of the most famous multiple hypotheses testing problems. We show that the concept of weak

dependence applies to this problem yielding asymptotic FWER/FDR control. We conclude this

chapter with some simulations for dependent p-values, cf. Section 4.7.

In the case of FWER control under dependence, it is sometimes necessary to restrict attention

to situations, where the number of true hypotheses n0 = n0(n) tends to infinity with n tending
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to infinity. In other words, asymptotic FWER control can only be guaranteed on the restricted

parameter space

Θ∗ = {ϑ ∈ Θ : lim
n→∞

|In,0(ϑ)| =∞}.

4.1 Weak dependence

In recent time, some results have been obtained for different types of dependence. For example,

Benjamini and Yekutieli [2001] introduced the concept of so-called positive regression depen-

dence on subsets (PRDS) as follows.

Definition 4.1

Let X = (X1, . . . , Xn) be a vector of random variables with n ≥ 2. The joint distribution of

X1, . . . , Xn is called positive regression dependent on each one from a subset I ′ ⊆ In, or PRDS

on I ′, if P(X ∈ D|Xi = x) is non-decreasing in x for any increasing set D ∈ Im(X) (i.e.

x ∈ D and y ≥ x imply y ∈ D) and for each i ∈ I ′.

Multivariate normal distributions with positive correlations belong to the set of distributions

satisfying this property. Benjamini and Yekutieli [2001] proved that an LSU test procedure (cf.

Section 1.3) controls the FDR when test statistics are PRDS on each of the test statistics corre-

sponding to true null hypotheses.

A weaker condition than PRDS was given in Finner et al. [2009], that is,

(D2) ∀ ϑ ∈ Θ : ∀ j ∈ In : ∀ i ∈ In,0(ϑ) : Pϑ(Rn ≥ j|pi ≤ t) is non-increasing in t ∈ (0, αj:n].

Among others things, the authors showed that an LSU test controls the FDR if (D2) applies,

cf. Theorem 4.1 in that paper.

Another interesting result concerning FDR control for dependent test statistics can be found

in Storey et al. [2004]. The authors defined weak dependence for p-values in the following way.

(WD1) ∀ t ∈ (0, 1) : lim
n→∞

F̂n,0(t) = F0(t) and lim
n→∞

F̂n,1(t) = F1(t) almost surely

and 0 < F0(t) ≤ t,

where F̂n,0 denotes the ecdf of p-values corresponding to true null hypotheses and F̂n,1 is the ecdf

of p-values corresponding to alternatives. Storey et al. [2004] also introduced a modified LSU test

based on a plug-in estimator for the proportion of true null hypotheses, which works as follows.

In the first step estimate the proportion of true null hypotheses ζn = n0/n by e.g.

ζ̂n =
1− F̂n(λ)

1− λ ,

where λ ∈ (0, 1) is arbitrary but fixed. Then apply an LSU test with α replaced by α/ζ̂n, that is,

an SU test with critical values α̂i:n = iα/(ζ̂nn), i ∈ In. It was proved that the described LSU

plug-in tests control the FDR asymptotically under certain additional assumptions if (WD1) is

fulfilled.
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In general, weak dependence in multiple testing problems can be often characterised by the

requirement

∀ t ∈ (0, 1) : F̂n,0(t)
C−→ F0(t) ≤ t and F̂n,1(t)

C−→ F1(t) (4.1)

for some cdfs Fi : [0, 1] → [0, 1], i = 0, 1. Thereby,
C−→ denotes some type of convergence for

n → ∞ like almost surely (C = a.s.), complete convergence (C = c.c.), in probability (C = P ),

in the Lp norm (C = Lp) or in the sense of the Glivenko-Cantelli theorem (C = GC). Given

a fixed value ϑ ∈ Θ, the proportion of true null hypotheses will be denoted by ζn = n0/n.

Thereby it is assumed that limn→∞ ζn = ζ ∈ [0, 1]. A further simplification appears by assuming

F0(t) = t for all t ∈ [0, 1], which is appropriate if pi, i ∈ In,0, are independently and uniformly

distributed on [0, 1], that is, condition (D1) applies. The nice point by assuming (4.1) is that we

are asymptotically in a mixture model case

F = ζF0 + (1− ζ)F1, (4.2)

which is also referred to as a random effects model. As a consequence, asymptotically the p-values

may be reinterpreted as iid variables with marginal cdf F . This argumentation may be considered

as the main reason why many authors restrict attention to a mixture model for p-values defined via

(4.2). Moreover, assuming iid p-values with marginal cdf given by (4.2) and ignoring any kind of

weak dependence makes life much easier with respect to any error rate control criterion.

In order to get some asymptotic error control it will be shown in this chapter that it often

suffices to relax the weak dependence condition (4.1) to

(WD2) ∀ t ∈ [0, 1] : ∀ ǫ > 0 : lim
n→∞

Pϑ(F̂n,0(t) > t+ ǫ) = 0.

This condition allows that p-values corresponding to true null hypotheses may be dependent but

the limiting ecdf of these p-values is bounded by the cdf of the uniform distribution F = Id.

A random variable Y such that limn→∞ Pϑ(F̂n,0(t) > Y ) = 0 is called asymptotically larger

than F̂n,0(t) in probability, cf. Edgar and Sucheston [1992], p. 117. Then F = Id is the

stochastic upper limit of {F̂n,0(t)}n∈N, written s lim supn→∞ F̂n,0(t), that is, F = Id is the

essential infimum of the set of all random variables which are asymptotically greater than F̂n,0(t)

in probability.

Similarly as in Lemma A.7 it can be proved that (WD2) is equivalent to

∀ ǫ > 0 : lim
n→∞

Pϑ

(

sup
t∈[0,1]

(F̂n,0(t)− t) > ǫ

)

= 0. (4.3)

Condition (4.3) says that F̂n,0 is asymptotically stochastically uniformly bounded by F = Id. An

important special case of (WD2) and/or (4.3) given by

sup
t∈[0,1]

|F̂n,0(t)− t| → 0, n→∞, in probability (4.4)

is often least favourable for the FDR and/or FWER. An extended version of (4.4) is given as

follows. Suppose pi ∼ Gi,0 for i ∈ In,0 with Gi,0(t) ≤ t for all t ∈ [0, 1]. Then the condition

(WD3) ∀ t ∈ [0, 1] : F̂n,0(t)−
1

n0

∑

i∈In,0

Gi,0(t) → 0, n→∞, in probability,
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also implies (WD2). Obviously, if Gi,0(t) = t for i ∈ In,0, i.e. pi ∼ U([0, 1]) for i ∈ In,0,

then (WD3) is equivalent to (4.4). In view of (4.4) and (WD3) weak dependence typically means

that the asymptotic ecdf of a set of dependent p-values pi ∼ Gi,0, i ∈ In,0, coincides with the

asymptotic ecdf of the corresponding set of independent p-values pi ∼ Gi,0, i ∈ In,0.

Sometimes it even suffices to find a unique point t0 ∈ (0, 1) such that

∀ ǫ > 0 : lim
n→∞

Pϑ(F̂n,0(t0) > t0 + ǫ) = 0. (4.5)

4.2 Plug-in tests and asymptotic control of the FWER under weak

dependence

This section deals with asymptotic FWER control of a plug-in test procedure based on an estimator

for the number n0 of true null hypotheses (cf. Chapter 2) for dependent and not necessarily

uniformly distributed p-values. Violation of conditions (D1) and/or (I1) may result in a poor

estimation of n0, exceedance of the FWER-level and/or low power. In the case of independent p-

values being stochastically larger than a uniform variate, estimators for the number n0 of true null

hypotheses tend to be too large such that FWER of a BPI test or an SDPI procedure is controlled,

while the power may be rather small. For example, interval hypotheses or discrete test statistics

yield such kind of p-values. The problem of dependence between null p-values is generally more

serious in terms of FWER control.

Remember that a multiple test procedure ϕ controls the FWER at level α with respect to Θ

if supϑ∈Θ Pϑ(Vn > 0) ≤ α. We say that FWER is asymptotically controlled at level α with

respect to Θ∗ if

∀ ϑ ∈ Θ∗ : lim sup
n→∞

Pϑ(Vn > 0) ≤ α.

For iid uniformly distributed p-values corresponding to true null hypotheses the SLLN implies

that F̂n,0(z) → z for n → ∞ almost surely, uniformly in z ∈ [0, 1]. This yields that estimators

n̂0 given in (2.6) or (2.9) are asymptotically not smaller than n0 and consequently the FWER is

asymptotically controlled. If p-values are dependent, then F̂n,0 does not necessarily converge and

estimates for n0 may behave rather irregularly. It will be shown that the condition

∀ ϑ ∈ Θ∗ : ∀ ǫ > 0 : lim
n→∞

Pϑ

(

n̂0

n0
< 1− ǫ

)

= 0 (4.6)

is sufficient for asymptotic FWER control with respect to Θ∗ for some plug-in tests under weak

dependence. The main result is given in the next theorem.

Theorem 4.2

Let n̂0 be an estimator of n0 satisfying condition (4.6). Then a BPI procedure with threshold (2.4)

and/or an SDPI procedure with critical values (2.33) asymptotically control the FWER on Θ∗ at

the prespecified level α.
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Proof: Let ϑ ∈ Θ∗. For an SDPI test procedure the critical value that has to be compared

with the smallest p-value corresponding to true null hypotheses is not greater than α̂(1)
n1+1:n =

max(α/n̂0, α/n0), where n1 = n − n0. Moreover, the threshold α/n̂0 of a BPI test with

the same estimator n̂0 as in an SDPI test is clearly not greater than α̂
(1)
n1+1:n either. Hence,

Pϑ(Vn = 0) ≥ Pϑ(mini∈In,0 pi > α̂
(1)
n1+1:n) for both procedures. Since assumption (4.6) yields

∀ ǫ > 0 : ∀ δ > 0 : ∃ Nǫ,δ ∈ N : ∀ n ≥ Nǫ,δ : Pϑ

(

n̂0

n0
≥ 1− ǫ

)

≥ 1− δ,

we obtain for a BPI test and an SDPI procedure with the same n̂0 as in a BPI test

Pϑ(Vn = 0) ≥ Pϑ

({

min
i∈In,0

pi ≥ α̂
(1)
n1+1:n

}

∩
{

n̂0

n0
≥ 1− ǫ

})

= Pϑ

({

min
i∈In,0

pi ≥ α̂
(1)
n1+1:n

}

∩ {n̂0 ∈ [(1− ǫ)n0, n0)}
)

+ Pϑ

({

min
i∈In,0

pi ≥ α̂
(1)
n1+1:n

}

∩ {n̂0 ≥ n0}
)

= A (say).

If n̂0 ∈ [(1 − ǫ)n0, n0), then α̂(1)
n1+1:n = α/n̂0 ≤ α/((1 − ǫ)n0). For n̂0 ≥ n0 we obtain that

α̂
(1)
n1+1:n = α/n0. Hence, we get for a BPI test and/or an SDPI procedure

A ≥ Pϑ

({

min
i∈In,0

pi ≥
α

(1− ǫ)n0

}

∩ {n̂0 ∈ [(1− ǫ)n0, n0)}
)

+ Pϑ

({

min
i∈In,0

pi ≥
α

n0

}

∩ {n̂0 ≥ n0}
)

≥ Pϑ

({

min
i∈In,0

pi ≥
α

(1− ǫ)n0

}

∩
{

n̂0

n0
≥ 1− ǫ

})

≥ Pϑ

(

min
i∈In,0

pi ≥
α

(1− ǫ)n0

)

− δ

= 1− Pϑ

(

∃ i ∈ In,0 : pi ≤
α

(1− ǫ)n0

)

− δ

≥ 1−
∑

i∈In,0

Pϑ

(

pi ≤
α

(1− ǫ)n0

)

− δ

≥ 1− α

1− ǫ + δ.

Letting ǫ → 0 and δ → 0 yields Pϑ(Vn = 0) = 1 − FWERϑ ≥ 1 − α and consequently the

assertion follows. �

The next lemma shows that estimators defined in (2.6) or (2.9) fulfil condition (4.6).
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Lemma 4.3

(a) If the ecdf F̂n,0 of all null p-values fulfils (4.5) for t0 = λ ∈ (0, 1), then condition (4.6) holds

for the estimators defined in (2.6) for any fixed κ ∈ R.

(b) Let k = k(n) ∈ In be such that

lim sup
n→∞

k

n
< 1. (4.7)

If the ecdf F̂n,0 of all null p-values fulfils (WD2), then condition (4.6) holds for the estimators

defined in (2.9) for any fixed κ ∈ R.

Proof: Let ϑ ∈ Θ∗.

(a) Condition (4.5) can be rewritten as

∀ ǫ > 0 : ∀ δ > 0 : ∃ Nǫ,δ ∈ N : ∀ n ≥ Nǫ,δ : Pϑ(F̂n,0(λ) < λ+ ǫ) > 1− δ.

Estimators n̂0 as defined in equation (2.6) satisfy

n̂0

n0
≥ n0 − Vn(λ) + κ

n0(1− λ)
=

1− F̂n,0(λ) + κ/n0

1− λ ,

hence for fixed ǫ > 0 and δ > 0 we obtain for n ≥ Nǫ,δ that

1− δ < Pϑ(F̂n,0(λ) < λ+ ǫ)

= Pϑ

(

1− F̂n,0(λ) + κ/n0

1− λ > 1− ǫ− κ/n0

1− λ

)

≤ Pϑ

(

n̂0

n0
> 1− ǫ− κ/n0

1− λ

)

.

Obviously, for each ǫ1 > 0 there exist ǫ > 0 and Nǫ ∈ N such that ǫ1 > (ǫ − κ/n0)/(1 − λ) for

all n ≥ Nǫ, since ϑ ∈ Θ∗, i.e. n0 = n0(n) → ∞ for n → ∞. Then for n ≥ max(Nǫ,δ, Nǫ) we

get

1− δ < Pϑ

(

n̂0

n0
> 1− ǫ− κ/n0

1− λ

)

≤ Pϑ

(

n̂0

n0
> 1− ǫ1

)

,

which implies (4.6).

(b) We divide the proof in two steps, i.e. (i) lim infn→∞(n−k)/n0 ≥ 1; and (ii) lim infn→∞(n−
k)/n0 < 1.

(i) For n̂0 defined in (2.9) we immediately get n̂0/n0 ≥ (n − k + κ)/n0. Hence, (4.6) is

fulfilled.

(ii) W.l.o.g. let k = k(n) = n− n0 + s for an s = s(n) ∈ In0 and let

lim
n→∞

s

n0
= η. (4.8)

Thereby, the limiting value η is always greater than 0 and smaller than 1, because

1 > lim inf
n→∞

n− k
n0

= lim
n→∞

n0 − s
n0

= 1− lim
n→∞

s

n0
= 1− η
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implies η > 0 and

lim sup
n→∞

k

n
= lim sup

n→∞

n− n0 + s

n
= lim sup

n→∞

n− (1− η)n0

n
= 1− (1− η) lim inf

n→∞

n0

n
,

which together with (4.7) leads to (1 − η) lim infn→∞ n0/n > 0 and hence η < 1. Moreover,

pk:n ≥ p0
s:n0

, where p0
s:n0

is the sth smallest p-value corresponding to true null hypotheses. Hence,

n̂0

n0
≥ 1− s/n0 + κ/n0

1− p0
s:n0

.

Note that p0
s:n0

= F̂−1
n,0(s/n0), where F̂−1

n,0(u) = inf{t ∈ [0, 1] : F̂n,0(t) ≥ u}. Condition (WD2)

is equivalent to (4.3), which can be rewritten as

∀ ǫ > 0 : ∀ δ > 0 : ∃ Nǫ,δ ∈ N : ∀ n ≥ Nǫ,δ : Pϑ

(

F̂n,0(t) ≤ t+ ǫ, ∀ t ∈ (0, 1)
)

> 1− δ.

Since F̂n,0(t) ≤ t + ǫ, for all t ∈ (0, 1) implies F̂−1
n,0(u) ≥ inf{t ∈ [0, 1] : t + ǫ ≥ u} =

max(0, u− ǫ) ≥ u− ǫ for all u ∈ (0, 1), we get for each u ∈ (0, 1) that

∀ ǫ > 0 : ∀ δ > 0 : ∃ Nǫ,δ ∈ N : ∀ n ≥ Nǫ,δ : Pϑ

(

F̂−1
n,0(u) ≥ u− ǫ

)

> 1− δ.

Then

1− δ < Pϑ

(

F̂−1
n,0(η) ≥ η − ǫ

)

= Pϑ

(

1− η
1− F̂−1

n,0(η)
≥ 1− ǫ

1− η + ǫ

)

.

Since F̂−1
n,0 is non-decreasing and left-side continuous, limn→∞ ps:n0 = limn→∞ F̂−1

n,0 (s/n0) ≥
F−1
n,0(η). Then for a fixed κ ∈ R we obtain

∀ ǫ1 > 0 : ∃ Nǫ1 ∈ N : ∀ n ≥ Nǫ1 :
1− s/n0 + κ/n0

1− p0
s:n0

+ ǫ1 ≥
1− η

1− F−1
n,0(η)

.

Hence, for all n ≥ max(Nǫ,δ, Nǫ1) we get

1− δ < Pϑ

(

1− η
1− F̂−1

n,0(η)
≥ 1− ǫ

1− η + ǫ

)

≤ Pϑ

(

1− s/n0 + κ/n0

1− p0
s:n0

≥ 1− ǫ

1− η + ǫ
− ǫ1

)

≤ Pϑ

(

n̂0

n0
≥ 1− ǫ

1− η + ǫ
− ǫ1

)

.

For each ǫ2 > 0 there exist ǫ > 0 and ǫ1 > 0 such that ǫ2 > ǫ/(1 − η + ǫ) − ǫ1. Setting

Nǫ2,δ = max(Nǫ,δ, Nǫ1), we get

∀ ǫ2 > 0 : ∀ δ > 0 : ∃ Nǫ2,δ ∈ N : ∀ n ≥ Nǫ2,δ : Pϑ

(

n̂0

n0
> 1− ǫ2

)

> 1− δ.

This immediately yields (4.6). �
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Now we give a specific and maybe somewhat surprising example where condition (WD2)

holds for λ = 0.5. Some simulations for this example can be found in Example 4.32 in Section

4.7.

Example 4.4

Let Xi ∼ N(ϑi, σ
2), i ∈ In, be independent normal random variables and let νS2/σ2 ∼ χ2

ν be

independent of the Xi’s. Consider the multiple-testing problem Hi : ϑi = 0 versus Ki : ϑi > 0,

i ∈ In, with test statistics Ti = Xi/S, i ∈ In. Then T = (T1, . . . , Tn) has a multivariate equi-

correlated t-distribution. Denote the cdf of a univariate (central) t-distribution with ν degrees of

freedom by Ftν and define p-values corresponding to Ti by pi = 1 − Ftν (xi/s). This model was

studied extensively in Finner et al. [2007]; see Example 2.2 and Section 4 in Finner et al. [2007].

Among others, it follows from the derivations in Finner et al. [2007] that the ecdf F̂n,0 of the p-

values under null hypotheses satisfies limn→∞ F̂n,0(0.5) = 0.5 almost surely. Hence, Lemma 4.3

applies for λ = 0.5. We note that F̂n,0(x) does not converge for any x ∈ (0, 1), x 6= 0.5.

4.3 SUD tests and asymptotic FDR control under weak dependence

In Chapter 3 we introduced several multiple test procedures controlling the FDR under indepen-

dence assumptions (I1) and (I2). In this section we consider various SUD tests for "weak depen-

dent" p-values which control the FDR at least asymptotically. Unfortunately, if the asymptotic

crossing point determined by a multiple test ϕn tends to 0, there is neither a positive nor a neg-

ative result concerning asymptotic FDR control. Therefore, we formulate results with respect to

further restrictions on the parameter space Θ guaranteeing an asymptotic threshold larger than 0.

Depending on the applied multiple test procedure we discuss different restrictions on Θ.

Remember that a multiple test procedure ϕ controls the FDR at level α with respect to Θ if

supϑ∈Θ FDRϑ(ϕ) ≤ α, where FDRϑ(ϕ) = Eϑ[Vn/Rn ∨ 1] denotes the actual FDR given ϑ ∈ Θ.

We say that the FDR is asymptotically controlled at level α if

∀ ϑ ∈ Θ : lim sup
n→∞

FDRϑ(ϕ) ≤ α.

Note that for ϑ ∈ Θ with n0(ϑ) = n we have FDRϑ(ϕ) = FWERϑ(ϕ).

It is tempting to suggest that procedures with asymptotic FDR control if the p-values pi,

i ∈ In,0, are independent, also control the FDR under weak dependence. We consider two pos-

sible classes of multiple test procedures, for which weak dependence may allow asymptotic FDR

control.

(i) Let ϕn, n ∈ N, be SUD(λn) tests with λn ∈ In based on some rejection curve r : [0, b]→
[0, 1] with b ∈ (0, 1] such that r(t)/t is non-increasing in t ∈ (0, b]. Moreover, (a) for b < 1

we assume the existence of a unique crossing point tζ ∈ (0, 1] with r(tζ) = F∞(tζ |ζ) for each

ζ ∈ [0, 1), where F∞(t|ζ) = 1− ζ + ζt is the limiting ecdf of p-values in DU(n, n0) models with

n0(n)/n→ ζ; or (b) if b = 1 let lim supn→∞ λn/n < 1 and suppose that there exists a ζ0 ∈ [0, 1)
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such that for each ζ ∈ (ζ0, 1] there exists a unique crossing point tζ between r and F∞(·|ζ) on

[0, 1) while the unique crossing point tζ on [0, 1] is 1 for ζ ∈ [0, ζ0].

(ii) Let ϕn, n ∈ N, be plug-in LSU tests introduced in Storey et al. [2004], that is, LSU tests

based on a random rejection curve r(t) = r(t|ζ̂n(λ)) = ζ̂n(λ)t/α and ζ̂n(λ) = (1− F̂n(λ))/(1−
λ) for a fixed λ ∈ (0, 1). Thereby, a plug-in LSU test rejects all hypotheses if ζ̂n(λ) ≤ α.

Note that LSU tests (cf. Section 1.3) and all SUD procedures based on the AORC considered

in Chapter 3 (cf. Section 3.4) belong to (i). For example, ϕn may be SUD(λn) tests with critical

values given in (3.28) (or (3.29)) for a fixed βn = β > 0 (or β∗n = β > 0, resp.), or ϕn may

be SUD(λn) tests with lim supn→∞ λn/n < 1 based on the AORC (i.e.critical values are given

in (3.1)) or based on the rejection curve r given in Example 3.13 in Section 3.3. Thereby, these

tests control the FDR at least asymptotically if p-values corresponding to true null hypotheses are

independent.

The next theorem shows that tests from both classes (i) and (ii) asymptotically control the

FDR under a suitable condition on a subset of Θ∗ for "weak dependent" test statistics.

Theorem 4.5

Suppose (WD2) is fulfilled and let ϑ ∈ Θ∗ such that n0/n → ζ ∈ [0, 1). Consider a sequence of

multiple test procedures ϕn, where either all ϕn, n ∈ N, correspond to (i) or to (ii). If at least one

of the conditions

Pϑ

(

lim inf
n→∞

Rn
n

> 0

)

= 1, (4.9)

∃ γ > 0 : lim
n→∞

Pϑ

(

Rn
n

> γ

)

= 1 (4.10)

holds , then

lim sup
n→∞

FDRϑ(ϕn) ≤ lim
n→∞

FDRn,n0(ϕn), (4.11)

where FDRn,n0(ϕn) is the FDR of ϕn in a DU(n, n0) model. Hence, asymptotic FDR control in

DU models implies asymptotic FDR control under ϑ.

Proof: First, we consider ϕn given in (ii) in case ζ̂n(λ) ≥ α and ϕn given in (i). Define Bγ,n =

{Rn/n ≥ γ} and Cδ,n = {supt∈[0,1](F̂n,0(t) − t) ≤ δ} for n ∈ N, γ > 0 and δ > 0. Condition

(4.9) and (4.10) imply

∀ ǫ1 > 0 : ∃ γ > 0 : ∃ N1 = N1(ǫ1) ∈ N : ∀ n ≥ N1 : Pϑ(Bγ,n) > 1− ǫ1, (4.12)

where γ = γ(ǫ1) if (4.9) is fulfilled, and γ is fixed and given in (4.10) if (4.10) applies. The

assumption (WD2) together with Lemma A.7 imply that

∀ ǫ2 > 0 : ∀ δ > 0 : ∃ N2 = N2(ǫ2, δ) ∈ N : ∀ n ≥ N2 : Pϑ(Cδ,n) > 1− ǫ2.
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Hence, for arbitrary but fixed ǫ > 0 and δ > 0 there exists a γ > 0 and an N = N(ǫ, δ) ∈ N such

that for all n ≥ N we obtain

FDRϑ(ϕn) ≤
∫

Bγ,n∩Cδ,n

Vn
Rn

dPϑ + ǫ.

Let tn ∈ [0, 1] denote the random crossing point between r and the ecdf of p-values F̂n determined

by ϕn, i.e. r(tn) = F̂n(tn) = Rn/n and ϕn rejects Hi, i ∈ In, if and only if pi ≤ tn. Then

Vn = n0F̂n,0(tn) and Rn = nr(tn). Note that the latter equality does not apply for ϕn defined

in (ii) in case ζ̂n(λ) < α. Since F̂n,0(t) ≤ t + δ in Cδ,n, r(tn) ≥ γ in Bγ and r is increasing, it

follows for all n ≥ N that

FDRϑ(ϕn) ≤
n0

n

∫

Bγ,n∩Cδ,n

tn
r(tn)

dPϑ + ǫ+
δ

γ
. (4.13)

Now we are looking for a non-random upper bound for the function tn/r(tn). In case (i) we obtain

F∞(t|ζ) < r(t) for all t ∈ (tζ , b]∩(0, 1). On the other hand it holds F̂n(t) ≤ F∞(t|n0/n)+n0δ/n

in Cδ,n for all t ∈ [0, 1]. Altogether we get for a β > 0 and sufficiently small δ-values that

F∞(t|n0/n) + n0δ/n < r(t) for t ∈ (tζ + O(δ), b] ∩ (0, 1 − β), hence tn ≤ tζ + O(δ) in Cδ,n.

By noting that t/r(t) is non-decreasing we obtain tn/r(tn) ≤ tζ/r(tζ) + O(δ) in Cδ,n. Remark

3.15 implies ζtζ/r(tζ) = g(ζ), where g(ζ) is the corresponding asymptotic FDR bounding curve.

Moreover, Theorem 3.14 yields g(ζ) = limn→∞ FDRn,n0(ϕn). Then for ϕn as described in (i)

we obtain
tn
r(tn)

≤ 1

ζ
lim
n→∞

FDRn,n0(ϕn) +O(δ) in Cδ,n. (4.14)

In case (ii) we get t/r(t) = t/r(t|ζ̂n(λ)) = α/ζ̂n(λ) = α(1 − λ)/(1 − F̂n(λ)) for all t > 0

and tn/r(tn) ≤ 1 since ζ̂n(λ) ≥ α. Obviously, 1 − F̂n(λ) ≥ n0/n(1 − F̂n,0(λ)) and F̂n,0(λ) ≤
λ+O(δ) inCδ,n. Then tn/r(tn) ≤ min(αn/n0, 1)+O(δ) inCδ,n. By noting that n0/n = ζ+o(1)

we obtain tn/r(tn) ≤ min(α/ζ, 1) + O(δ) in Cδ,n. Since ζ̂n(λ) → ζ for n → ∞ in DU(n, n0)

models, we get limn→∞ FDRn,n0(ϕn) = min(α, ζ), that is, also for ϕn described in (ii) the

inequality (4.14) is fulfilled if ζ̂n(λ) ≥ α.

Then (4.13) and (4.14) imply for (i) and for (ii) (with ζ̂n(λ) ≥ α) that

FDRϑ(ϕn) ≤
n0

n
Pϑ(Bγ,n ∩ Cδ,n)

1

ζ
lim
n→∞

FDRn,n0(ϕn) + ǫ+
δ

γ
+O(δ).

Hence,

lim sup
n→∞

FDRϑ(ϕn) ≤ lim
n→∞

FDRn,n0(ϕn) + ǫ+
δ

γ
+O(δ).

Now (4.11) follows by letting ǫ, δ → 0 and choosing δ = o(γ).

Finally we consider ϕn given in (ii) in case ζ̂n(λ) ≤ α. This immediately implies tn = 1, i.e.

all hypotheses are rejected and FDRϑ = ζ. Similar as before we get ζ̂n(λ) ≥ ζ +O(δ) in Cδ,n for

all n ≥ N , which implies ζ ≤ α. Hence, limn→∞ FDRn,n0(ϕn) = ζ and consequently (4.11) is

fulfilled. �
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Remark 4.6

Let ϕn be a sequence of multiple tests as described in Theorem 4.5. A parameter ϑ ∈ Θ∗ such that

(4.4) is fulfilled and p-values corresponding to alternatives follow a Dirac distribution with point

mass 1 in 0 is an asymptotic LFC for the FDR if all assumptions of Theorem 4.5 apply. Moreover,

for this ϑ equality holds in condition (4.11), that is, limn→∞ FDRϑ(ϕn) = limn→∞ FDRn,n0(ϕn).

Remark 4.7

Conditions (4.9) and (4.10) in Theorem 4.5 do not imply each other. Moreover, both can be re-

placed by the weaker condition (4.12). Another possibility to define a sufficient condition for

asymptotic FDR control is to rewrite (4.9) and/or (4.10) in terms of the crossing point tn deter-

mined by ϕn, that is,

Pϑ

(

lim inf
n→∞

tn > 0
)

= 1 and/or ∃ t∗ > 0 : lim
n→∞

Pϑ (tn > t∗) = 1,

respectively. Note that results in Storey et al. [2004] based on a condition ensuring that the asymp-

totic threshold is larger than 0, cf. Theorem 4 in that paper. In case of SUD(λn) procedures with

lim infn→∞ λn/n = κ > 0 condition (4.9) and/or (4.10) also can be replaced by power require-

ments like

Pϑ

(

∃ t ∈ (0, κ) : lim inf
n→∞

F̂n(t) > r(t)
)

= 1 (4.15)

and/or

∃ t ∈ (0, κ) : lim
n→∞

Pϑ

(

F̂n(t) > r(t)
)

= 1. (4.16)

For SUD(λn) procedures with lim infn→∞ λn/n = 0 (SD tests belong to this class of tests) con-

ditions given in (4.15) and (4.16) seem to be insufficient, because the asymptotic behaviour of

the ecdf F̂n does not characterise the behaviour of smallest p-values. Even if F̂n(t) converges to

some cdf F (t) almost surely for all t ∈ (0, 1), the smallest ordered p-values may be stochastically

considerably larger/smaller than the corresponding ordered statistics coming from n iid random

variables with the marginal cdf F . Smallest p-values are typically irrelevant for SUD tests with

lim infn→∞ λn/n > 0 but they may be crucial for SUD tests with lim infn→∞ λn/n = 0. Unfor-

tunately, even in the case of SU test procedures it is not clear how (4.9), (4.10) or (4.12) can be

proved for SUD(λn) procedures with lim infn→∞ λn/n = 0.

Remark 4.8

If condition (WD2) is fulfilled and smallest ordered p-values with respect to true nulls are stochas-

tically larger than the corresponding ordered p-values coming from iid uniform p-values, then the

FDR may be controlled even if limn→∞ tn = 0. However, it seems there are no arguments for

asymptotic FDR control if the asymptotic crossing point is not bounded away from 0. This is still

an open problem. In any case, if the asymptotic threshold of multiple tests ϕn is 0, ϕn may have

only a negligible gain in power compared to a procedure that controls the FWER.
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For SUD(λn) procedures with limn→∞ λn/n = κ > 0, sufficient conditions for (4.9) and/or

(4.10) can be given as follows. Let F̂n,1 denote the ecdf of p-values corresponding to false hy-

potheses and let limn→∞ n0/n = ζ < 1. Then the conditions

Pϑ

(

∃ t ∈ (0, κ) : lim inf
n→∞

F̂n,1(t) >
r(t)

1− ζ

)

= 1 (4.17)

and

∃ t ∈ (0, κ) : lim
n→∞

Pϑ

(

F̂n,1(t) >
r(t)

1− ζ

)

= 1 (4.18)

imply (4.15) and (4.16), respectively.

If p-values corresponding to alternatives, i.e. pi, i ∈ In,1, are independent, then the extended

Glivenko-Cantelli Theorem (cf. Shorack and Wellner [1986], p. 105) holds, that is,

sup
t∈[0,1]

|F̂n,1(t)−
1

n− n0

∑

i∈In,1

Gi,1(t)| → 0 almost surely, (4.19)

whereGi,1 denotes the cdf of a pi, i ∈ In,1. Therefore, for independent p-values under alternatives,

(4.17) and (4.18) are fulfilled if and only if

Pϑ



∃ t ∈ (0, κ) : lim inf
n→∞

1

n− n0

∑

i∈In,1

Gi,1(t) >
r(t)

1− ζ



 = 1 (4.20)

and

∃ t ∈ (0, κ) : lim
n→∞

Pϑ





1

n− n0

∑

i∈In,1

Gi,1(t) >
r(t)

1− ζ



 = 1, (4.21)

respectively. Since the cdfs Gi,1, i ∈ In,1, are typically unknown, it is hard to envisage how to

verify these conditions in practice. Nevertheless, we give an example where (4.20) and (4.21)

hold, which implies that the lower bound of the asymptotic threshold tn determined by ϕn in

Theorem 4.5 is larger than 0. Moreover, in Section 4.4 we provide a condition under which the

ecdf F̂n,1 convergences in probability in the sense of the Glivenko-Cantelli Theorem. In Sections

4.5 and 4.6 we discuss convergence of the ecdf F̂n,1 for block-dependent p-values and p-values

corresponding to pairwise comparisons, respectively.

Example 4.9

Let Xij ∼ N(ϑi, σ
2), i ∈ In, j ∈ Im, be normally distributed random variables with unknown

mean ϑi and known variance σ2 > 0. Suppose

∃ ϑ > 0 : ∃ η > 0 : lim inf
n→∞

#{i ∈ In,1 : ϑi ≥ ϑ}
n− n0

= η. (4.22)

We consider the multiple-testing problem Hi : ϑi = 0 versus Ki : ϑi > 0, i ∈ In, with test

statistics Ti =
∑m

j=1Xij/(σ
√
m), i ∈ In, and p-values pi = pi(ti) = 1 − Φ(ti), i ∈ In,

where ti is a realisation of Ti and Φ is the standard Gaussian cdf with density φ. For given ϑi,

σ and m, the distribution function of pi is Gi(t) = 1 − Φ(U1−t −
√
mϑi/σ) and the density
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of pi is gi(t) = φ(U1−t −
√
mϑi/σ)/φ(U1−t), where Ut is the tth percentile of the standard

Gaussian distribution and 0 < t < 1 (similar investigations can be found in Hung et al. [1997]).

Note that Gi has an infinite right-hand derivative in 0 if the corresponding ϑi > 0. By setting

Gϑ(t) = 1− Φ(Zt −
√
mϑ/σ) we obtain from (4.22)

lim inf
n→∞

1

n− n0

∑

i∈In,1

Gi(t) ≥ ηGϑ(t) for all t ∈ [0, 1]. (4.23)

Obviously, for any γ ∈ (0, 1] there exists some t′ ∈ (0, 1] such that Gϑ(t) > t/γ for all t ∈ (0, t′).

Therefore, if (4.19) holds for F̂n,1 we obtain (4.20) and (4.21) for each rejection curve r of the

type (i) if r′(0) < ∞. Hence, conditions (4.9) and (4.10) follow for SUD(λn) procedures of the

type (i) with lim infn→∞ λn/n > 0, and Theorem 4.5 applies if (4.22) is fulfilled.

4.4 Sufficient conditions for convergence of ecdfs

An interesting question is how weak dependence conditions and/or convergence of an ecdf of p-

values can be proved. As seen before, the FWER and/or FDR of multiple tests typically become

larger if p-values corresponding to true null hypotheses become stochastically smaller. Therefore,

the case when F̂n,0 converges to an identity function F = Id in some sense is most interesting

with respect to FWER and/or FDR control. Below, we sometimes restrict attention to the case that

pi, i ∈ In,0, are uniformly distributed in [0, 1], i.e. condition (D1) is fulfilled.

The following quadratic mean law of large numbers for dependent random variables given in

Parzen [1960], p. 419, is a useful tool for proving convergence of an ecdf F̂n,i, i = 1, 2, and may

lead to (WD3), (4.9) and/or (4.10), which imply asymptotic FWER and/or FDR control.

Theorem 4.10 (Parzen [1960])

Let {Xn}n∈N be a sequence of real valued random variables with mean 0 and uniformly bounded

variances and let Zn =
∑n

i=1Xi/n. Then Zn → 0 for n → ∞ in the L2 norm if and only if

E[XnZn]→ 0 for n→∞.

Note that for bounded random variables, convergence in the L2 norm is equivalent to conver-

gence in the L1 norm, which is equivalent to convergence in probability. Moreover, if it is known

that E[XnZn] = O(n−q) for some q > 0, then we can conclude that Zn → 0, n → ∞, with

probability 1, cf. Parzen [1960], p. 420. This result is given in the next theorem.

Theorem 4.11 (Parzen [1960])

Under the assumptions of Theorem 4.10 the sequence {Xn}n∈N obeys the SLLN (in the sense that

P(limn→∞ Zn = 0) = 1) if there exist M > 0 and q > 0 such that |E[XnZn]| ≤ M/nq for all

n ∈ N.

Now we apply these two theorems in order to obtain sufficient conditions for the convergence

of the ecdf of p-values corresponding to true null hypotheses. Let t ∈ (0, 1) and Gi,0 be the cdf

of pi, i ∈ In,0 such that 0 ≤ Gi,0(t) ≤ t for t ∈ (0, 1). Setting Xi = I(pi ≤ t) − Gi,0(t),
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i ∈ In,0, for t ∈ (0, 1), we get EXi = 0, Var(Xi) = Gi,0(t)(1 − Gi,0(t)) ≤ 1 and Zn =

F̂n,0(t)− (1/n0)
∑

i∈In,0
Gi,0(t). Then Theorem 4.10 implies that

|F̂n,0(t)−
1

n0

∑

i∈In,0

Gi,0(t)| → 0, n→∞, (4.24)

in probability (and hence (WD3) is fulfilled) if and only if

1

n0

n0
∑

i=1

Cov
(
I(p0

i ≤ t), I(p0
n0
≤ t)

)
→ 0 for n→∞, (4.25)

where p0
1, . . . , p

0
n0

are p-values corresponding to true null hypotheses and n0 = n0(n) → ∞ for

n → ∞. Note that condition (4.25) is equivalent to Var(F̂n,0(t)) → 0, n0 → ∞. Theorem 4.11

implies almost sure convergence in (4.24) if

1

n0
|
n0∑

i=1

Cov
(
I(p0

i ≤ t), I(p0
n0
≤ t)

)
| ≤ O

(
1

nq0

)

for some q > 0. (4.26)

If for each n0 ∈ N the proportion of p0
i , i ∈ In0 , for which Cov(I(p0

i ≤ t), I(p0
n0
≤ t)) 6= 0,

converges to 0 for n → ∞, then we get convergence in probability in (4.24) and consequently

(WD3) follows. This may happen in the case of block-dependent p-values, which will be investi-

gated in Section 4.5 or in case of p-values corresponding to pairwise comparisons problems, see

Section 4.6. Moreover, condition (4.25) allows that all p-values corresponding to true null hy-

potheses may be mutually dependent, but the corresponding covariances have to be small enough.

Autocorrelated test statistics yield such kind of p-values.

Example 4.12

Let X = (X1, . . . , Xn) be a multivariate normally distributed random variable with EϑXi =

ϑi = 0 and a covariance matrix Σ = (σij)i,j∈In such that σij = ρ|i−j| for some ρ ∈ (0, 1). Then

1

n

n∑

i=1

Cov (Xi, Xn) =
1

n

n∑

i=1

ρn−i =
1− ρn−1

n(1− ρ) → 0, n→∞.

For testing Hi : ϑi = 0 versus Ki : ϑi 6= 0, i ∈ In, with test statistics given by X1, . . . , Xn the

latter condition yields (4.25) (and under specific conditions on the marginal cdf of p-values is even

equivalent to (4.25)) if each p-value pi = p(xi), i ∈ In,0, depends only on the realisation of Xi,

cf. Giraitis and Surgailis [1985], Lemma 5 in that paper.

For a set of test statistics (or p-values) with a sparse covariance matrix, i.e. a covariance matrix

populated primarily with zeros, condition (4.25) is satisfied. A further class of p-values fulfilling

(4.25) is given by sets of various mixing random variables like ϕ-, ψ- or α-mixing. Mixing random

variables often ensures that the SLLN holds, which then leads to almost sure convergence in (4.24).

For more information see, for example, Tuyen [1999] or Billingsley [1968], p. 166.

Typically, if we have a set of p-values fulfilling a Central Limit Theorem (CLT) and/or the

SLLN it seems easy to prove asymptotic FWER and/or FDR control. For example, Farcomeni

Asymptotic and Exact Results in Multiple Hypotheses Testing, Veronika Gontscharuk



90 4.4. SUFFICIENT CONDITIONS FOR CONVERGENCE OF ECDFS

[2006] proved that an oracle LSU test, i.e. an SU test with critical values αi:n = αi/n0, i ∈ In,

and a plug-in LSU test asymptotically control the FDR for stationary (and probably associated)

p-values fulfilling different conditions on mixing coefficients of these p-values. The author in-

vestigated the distribution of FDP = Vn/Rn for dependent and independent p-values and proved

that the FDP fulfils a CLT. Although there are no comments about the asymptotic threshold of an

oracle LSU procedure, it seems that Farcomeni [2006] proved asymptotic FDR control assuming

that the asymptotic threshold is bounded away from 0, cf. proof of Theorem 1 in that paper, p.296.

Now we consider the ecdf F̂n,1 of p-values under alternatives.

Remark 4.13

Let n1 = n1(ϑ) = n − n0(ϑ) and p1
i , i ∈ In1 , be p-values corresponding to alternatives, i.e. pi,

i ∈ In,1. Let Gi,1 denote the cdf of p1
i , i ∈ In,1,. If conditions (4.25) and/or (4.26) apply for

p-values corresponding to false hypotheses (i.e. replace n0 by n1 and p0
i by p1

i in (4.25) and/or

(4.26)), then the ecdf F̂n,1 of p-values under alternatives converges in the sense of the extended

Glivenko-Cantelli Theorem (cf. Shorack and Wellner [1986], p. 105), that is,

sup
t∈[0,1]

|F̂n,1(t)−
1

n1

∑

i∈In,1

Gi,1(t)| → 0, n1 →∞, (4.27)

in probability and/or almost surely, respectively.

Convergence given in (4.24) can be sometimes proved by means of U -statistics. U -statistics

were introduced in Hoeffding [1948] as follows.

Definition 4.14

Let X1, . . . , Xn be n independent random variables with values in a measurable space (X ,A)

and let ψ : Xm → R be a symmetric function of m(≤ n) arguments, i.e. ψ(x1, . . . , xm) =

ψ(xi1 , . . . , xim) for all (i1, . . . , im) ∈ ℑm, where ℑm denotes the group of m! permutations of

{1, . . . ,m}. A statistic of the form

Un =

(
n

m

)−1 ∑

1≤i1≤...≤im≤n

ψ(Xi1 , . . . , Xim)

is called an U -statistic with kernel ψ of order m.

If X1, . . . , Xn have the same (cumulative) distribution function F , the corresponding U -

statistic Un is an unbiased estimate of ϑ(F ) defined by

ϑ(F ) = EF (ψ(X1, . . . , Xm)) =

∫

. . .

∫

ψ(x1, . . . , xm)dF (x1) . . . dF (xm).

An important result for U -statistics is the following SLLN introduced in Berk [1966].

Theorem 4.15 (SLLN of U -statistics, Berk [1966])

Let X1, . . . , Xn be independent random variables on a measurable space (X ,A) with the same

distribution function F . Let ψ : Xm → R be a symmetric function of m(≤ n) arguments and
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ψ ∈ L1(F
m), i.e. ϑ(F ) = EFψ(X1, . . . , Xm) < ∞. Then Un → ϑ(F ) almost surely for

n→∞.

For special pairwise comparisons problems we obtain under suitable assumptions on the dis-

tribution of test statistics that the ecdf F̂n,0(t) of p-values corresponding to true null hypotheses

can be represented as a sum of U -statistics with kernels of the form ψ(Xi, Xj) = I(pij ≤ t),

where pij = pij(Xi, Xj) denotes a p-value for testing Hij , i 6= j. Moreover, if the global null hy-

pothesisH0 = ∩ni=1Hi is true the ecdf F̂n,0 may be aU -statistic. The SLLN ofU -statistics implies

almost sure convergence in (4.24) if the ecdf F̂n,0(t) is a sum of a finite number of U -statistics and

the number of independent random variables corresponding to at least one U -statistic increases.

An application of U -statistics will be considered in Section 4.6.

4.5 Block-dependent p-values

In this section we present an important type of dependence of p-values such that the weak de-

pendence condition (WD2) is fulfilled. This allows asymptotic FWER and/or FDR control by a

multiple test, cf. Theorem 4.2 and Theorem 4.5. First, we consider a motivating example. Duncan

[2004] wrote

" It is possible to identify the approximate chromosomal location of major gene as a result

of the phenomenon of recombination. The first principle is that genes on different chro-

mosomes segregate independently, so there can be no linkage between them. The second

principle is that the probability of recombination between two loci on the same chromosome

increases with the physical distance between them, eventually reaching the limiting value

of 1/2, the same probability as for two separate chromosomes. Thus, if a genetic marker is

found to have a low recombination rate with a disease gene, one can infer that the disease

gene must be close to that markers. The basic idea is then to determine the genotypes of

various marker (whose location are known) for various members multiple case families. "

Genome-wide association studies sometimes involve testing hundreds of thousands of single-

nucleotide polymorphisms (SNPs), cf. Finner et al. [2010]. One may divide the whole genome

into small blocks; for instance, each block may include some hundreds of SNPs. It will be assumed

that test statistics within each block may be dependent, and that test statistics from different blocks

are independent, cf. Kang et al. [2009].

A formal description of block-dependence is given as follows. Let k ∈ N and let qki, k ∈ N,

i ∈ Ik, with qki ∈ N be a double array of indexes such that qki ≤ qk+1i for all i ∈ Ik and k ∈ N.

Let

p11, . . . , p1qk1
︸ ︷︷ ︸

1

, p21, . . . , p2qk2
︸ ︷︷ ︸

2

, . . . , pk1, . . . , pkqkk
︸ ︷︷ ︸

k

, (4.28)

be a set of p-values such that for i, j ∈ Ik, s ∈ Iqki
and t ∈ Iqkj

we get that pis and pjt are

independent if i 6= j and they may be dependent for i = j.
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First, we will investigate whether condition (WD2) is fulfilled for block-dependent p-values

described in (4.28). W.l.o.g. we suppose that all p-values correspond to true null hypotheses, that

is, n = n0. Then the ecdf of p-values corresponding to true null hypotheses is given by

F̂n,0(z) =
1

∑k
i=1 qki

k∑

i=1

qki∑

s=1

I(pis ≤ z),

where n0 = n0(k) =
∑k

i=1 qki is the number of all null p-values, i.e. the number of true null

hypotheses. If the number k of blocks is fixed, this may lead to a violation of (WD2). For

example, if pis = ps, i ∈ Iqks
, s ∈ Ik, then F̂n,0(z) = (1/

∑k
i=1 qki)

∑k
s=1 I(ps ≤ z) does not

converge to z for a fixed k. Hence, we restrict our attention to the case k →∞.

The next theorem provides sufficient conditions on block sizes qki, i ∈ Ik, such that the set of

p-values fulfils the weak dependence condition given in (WD3).

Theorem 4.16

If block sizes qki, i ∈ Ik, k ∈ N, fulfil the condition

maxi∈Ik qki
∑k

i=1 qki
−→ 0 for n0 →∞, (4.29)

then we get convergence in probability in (4.24) and consequently the ecdf F̂n,0 of p-values given

in (4.28) fulfils (WD3). Moreover, if there exists some q ∈ [0, 1) such that

max
i∈Ik

qki ≤ O (nq0) , (4.30)

then we obtain almost sure convergence in (4.24) and hence in (WD3).

Proof: Since condition (4.29) and/or (4.30) immediately imply conditions (4.25) and/or (4.26),

Theorem 4.10 and/or Theorem 4.11 yield the assertions. �

Remark 4.17

If p-values given in (4.28) correspond to false hypotheses (i.e. pi, i ∈ In,1, are block-dependent),

then conditions (4.29) and/or (4.30) yield convergence of the ecdf F̂n,1 of p-values under alterna-

tives in the sense of the extended Glivenko-Cantelli Theorem, that is, (4.27) applies in probability

and/or almost surely, respectively.

Condition (4.30) in Theorem 4.16 is equivalent to

maxi∈Ik qki
∑k

i=1 qki
≤ O

(
1

nγ0

)

for some γ > 0. (4.31)

The next theorem gives a weaker condition on block sizes than condition (4.31), which also ensures

the almost sure and even complete convergence in (4.24).

Theorem 4.18

Suppose there exists some γ > 0 such that

maxi∈Ik qki
∑k

i=1 qki
≤ O

(
1

kγ

)

. (4.32)
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Then we obtain complete convergence in (4.24) and hence (WD3) for k →∞.

Proof: We will prove the assertion by applying Theorem A.8, that is, we have to check conditions

(A.2)-(A.5). W.l.o.g. let pi, i ∈ In,0, be uniformly distributed in [0, 1], that is, (D1) is fulfilled.

Define new random variables by

Xki =

qki∑

s=1

I(pis ≤ z)− zqki, z ∈ [0, 1], k ∈ N, i ∈ Ik.

It follows that Xki, i ∈ Ik, are independent and |Xki| ≤ qki for all k ∈ N. Setting ak =
∑k

s=1 qki,

k ∈ N, we get

F̂n,0(z) =
1

ak

k∑

i=1

Xki + z.

Moreover, we define ψ(t) = |t|p+1/s for some p ∈ N, p ≥ 2 and s ≥ 1. Then the condition (A.2)

in Theorem A.8 is fulfilled. Since EXki = 0, we get (A.3) in Theorem A.8. Now we prove (A.4).

It holds

∞∑

k=1

k∑

i=1

E

(

|Xki|p+1/s

a
p+1/s
k

)

≤
∞∑

k=1

k∑

i=1

(

mki
∑k

s=1 qki

)p+1/s

≤
∞∑

k=1

(maxi∈Ik qki)
p−1+1/s

∑k
i=1 qki

(
∑k

s=1 qki

)p+1/s

=
∞∑

k=1

(

maxi∈Ik qki
∑k

s=1 qki

)p−1+1/s

.

Assumption (4.32) implies that the latter expression is finite if

∞∑

k=1

1

kγ(p−1+1/s)
<∞. (4.33)

Obviously, for each γ > 0 there exists a p ∈ N, p ≥ 2, such that γ(p − 1 + 1/s) > 1. Hence,

condition (A.4) is fulfilled. It remains to check (A.5). For r > 0 we get

∞∑

k=1

(
k∑

i=1

E(X2
ki)

a2
k

)2r

≤
∞∑

k=1






∑k
i=1 q

2
ki

(
∑k

s=1 qki

)2






2r

≤
∞∑

k=1






maxi∈Ik qki
∑k

i=1 qki
(
∑k

s=1 qki

)2






2r

≤
∞∑

k=1

(

maxi∈Ik qki
∑k

s=1 qki

)2r

.
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Inequality (4.33) implies that there exists a r > 0 such that the latter expression is finite. Since

all assumptions of Theorem A.8 are fulfilled, it follows that F̂n,0(z) converges in the sense of

the Glivenko-Cantelli Theorem almost surely, while the remaining assertions are an immediate

consequence of Theorem A.9. �

Theorem 4.18 implies the convergence of the ecdf F̂n,0 in the sense of the Glivenko-Cantelli

Theorem if the number of independent blocks k increases. The next remark shows the convergence

of F̂n,0 if n0 increases (note that n0 = n0(n) →∞, n→∞, for all ϑ ∈ Θ∗).

Remark 4.19

Suppose the block lengths qi, i ∈ Ik, are fixed in advance and consider the sequence of p-values

given in (4.28). Consider the ecdf of the first n =
∑k−1

i=1 qi + j p-values with j ∈ Iqk and

k = k(n), that is,

F̂n,0(z) =

∑k−1
i=1 qi

∑k−1
i=1 qi + j

F̂n′,0(z) +
1

∑k−1
i=1 qi + j

j
∑

t=1

I(pkt ≤ z),

where n′ =
∑k−1

i=1 qi. By noting that the second summand is bounded by qk/
∑k

i=1 qi, which

converges to 0 if (4.32) is fulfilled, we get almost sure convergence in (4.24) for n→∞.

In the next remark we give some examples for sets of block sizes fulfilling (4.29) and (4.32).

Remark 4.20

If

max
i∈Ik

qki = O(min
i∈Ik

qki) or max
i∈Ik

qki = o(kmin
i∈Ik

qki),

then condition (4.29) follows. Obviously, if the block sizes are bounded, i.e. there exists some

q ∈ N such that qki ≤ q for i ∈ Ik and k ∈ N, then we get condition (WD3).

Finally, we consider various sets of block-dependent p-values and perform some multiple test

procedures.

Example 4.21

Let

ϑ = 1k ⊗









1

0

1

0









and Σ = Jk ⊗









1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1









, ρ ∈ (0, 1),

where 1k denotes a column vector of length k with entries 1 and Jk is the k × k identity matrix.

Let Xj ∼ Nn(ϑ,Σ), j ∈ Im, be independent and identically distributed with n = n(k) = 4k and

block sizes qik = 4 (if we consider only null p-values, then n0 = 2k and qki = 2). Consider the

multiple testing problem

Hi : ϑi = 0 versus Ki : ϑi 6= 0, i = 1, . . . , n.
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Figure 4.1: Simulated ecdfs F̂n,0s of p-values based on block-dependent autocorrelated normal

random variables corresponding to true null hypotheses with m = 10, n0 = 50 (left graph),

n0 = 100 (middle graph) and n0 = 200 (right graph). Green curves correspond to ρ = 0.1, blue

curves correspond to ρ = 0.5 and red curves correspond to ρ = 0.9 in each graph.

Tests

βn-adjustment LSU plug-in LSU BPI oracle Bonferroni Bonferroni

ρ = 0.1 Rn 47 38 48 9 9 6

Vn 3 1 3 0 0 0

ρ = 0.5 Rn 36 34 36 11 11 8

Vn 2 2 2 0 0 0

ρ = 0.9 Rn 36 28 38 5 5 3

Vn 1 0 2 0 0 0

Table 4.1: Simulation study for block-dependent test statistics in Example 4.21.

In this example, we do not assume that all variances are equal (although we choose all vari-

ances equal to 1 in the simulations) and choose the test statistics Ti =
√
mX̄i/si where X̄i =

(1/m)
∑m

j=1Xij and s2i = 1/(m − 1)
∑m

j=1(Xij − X̄i)
2. We define p-values corresponding to

Ti by Pi = 2Ftm−1(−|Ti|), where Ftν denotes the cdf of a univariate (central) t-distribution with

ν degrees of freedom.

Figure 4.1 illustrates different realisations of the ecdf F̂n,0 of p-values corresponding to true

null hypotheses for n0 = 50, 100, 200 (left, middle and right pictures). We simulate this model

for m = 10 and ρ = 0.1 (almost independence, green curves), ρ = 0.5 (moderate dependence,

blue curves) and ρ = 0.9 (strong dependence, red curves).

Figure 4.2 displays simulated ecdfs of all p-values with n = 100, n0 = 50, m = 10, mi = 4

and ρ = 0.1 (green curve), ρ = 0.5 (blue curve) and ρ = 0.9 (red curve).

Table 4.1 shows the number of all rejected hypotheses Rn and the number of rejected true

null hypotheses Vn for the following tests at the pre-specified level α = 0.05: the βn-adjustment

SU procedure based on (3.28) with β100 = 1.76 (cf. Subsection 3.4.1), the LSU test (cf. Section
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Figure 4.2: Simulated ecdfs F̂ns of all p-values with m = 10, n = 100 and n0 = 50. The green

curve corresponds to ρ = 0.1, the blue curve corresponds to ρ = 0.5 and the red curve corresponds

to ρ = 0.9. The black curve is the AORC with α = 0.05 and the black line is a rejection curve

corresponding to the LSU test with α = 0.05.

1.3), the plug-in LSU test with λ = 0.5, the BPI test with the threshold (2.4) based on (2.6) with

λ = 0.5, the oracle Bonferroni and Bonferroni tests. For example, the βn-adjustment test (LSU

test or plug-in LSU test, resp.) rejects 47 (38 or 48, resp.) hypotheses for ρ = 0.1, 36 (34 or 36,

resp.) hypotheses for ρ = 0.5 and 36 (28 or 38, resp.) for ρ = 0.9.

4.6 Pairwise comparisons

Pairwise comparisons provide further sets of p-values for which the weak dependence condition

(WD2) is fulfilled. An example for a pairwise comparisons problem can be found in Keuls [1952].

He wrote
"In breeding agricultural and horticultural crops it is, in many cases, of much importance to

compare the different selections obtained, e.g. in regard to their productive capacity. This

is usually done in field trials involving these selections. The different plot yields will give us

an impression of the productivity of the selections grown. In order to find out how far such

impressions are reliable, the yield figures are mathematically worked out."

Keuls [1952] considered a trial on white cabbage carried out in 1950 and described the trial as

follows:
"A trial field had been divided into 39 plots, grouped into 3 blocks of 13 plots each. In

each block the 13 varieties to be investigated were planted out (randomized blocks design).

During this trial all plots were treated in exactly the same way. The purpose was to learn

which variety would give the highest gross yield per head of cabbage and which the lowest,

in other words to find approximately the order of the varieties according to gross yield per

cabbage."

Some investigations concerning FDR control for pairwise comparisons can be found in Yekutieli

[2008]. Now we give a formal definition of the pairwise comparisons problem.
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Let Xi : Ω → Xi, i ∈ Ik, denote a sequence of independent random variables and let ϑi ∈ Θ̃

be a suitable parameter corresponding to Xi, i ∈ Ik, as for example ϑi = E(Xi) or ϑi = Var(Xi).

Thereby, Θ̃ may be multidimensional, e.g., Θ̃ ⊆ R
p or Θ̃ may be the set of all positive definite p×p

matrices, or Θ̃ may be non-parametric, e.g., Θ̃ may denote all continuous distribution functions

on R. The entire parameter space is Θ∗ = Θ̃k. A classical model is the k-sample model with

Xi = (Xij : 1 ≤ j ≤ ni), i ∈ Ik, and ni denoting the sample size in group i.

Formally, a pairwise comparisons problem can be written as

Hij : ϑi = ϑj versus Kij : ϑi 6= ϑj , 1 ≤ i < j ≤ k. (4.34)

We restrict attention to tests based on p-values pij = pij(xi, xj) depending only on the realisations

of Xi and Xj , 1 ≤ i < j ≤ k.

To investigate conditions under which null p-values fulfil the weak dependence condition

(WD3), we consider (4.34) more precisely. Let ϑ ∈ Θ∗ be fixed for the moment such that for an

arbitrary but fixed r ∈ N there are exactly r different parameters in the multiple-testing problem

(4.34), i.e. there exist η1, . . . , ηr such that ϑi ∈ {η1, . . . , ηr} for all i ∈ Ik. For a fixed k ∈ N with

r ≤ k, let Qk1, . . . , Qkr be a partition of the index set Ik such that ϑi = ηs if and only if i ∈ Qks.
Hence, Hij is true if and only if i, j ∈ Qks for some s ∈ Ir. Let qks = |Qks| and qks ≤ qk+1,s

for all s ∈ Ir, r ∈ N and k ∈ N. Furthermore, k =
∑r

s=1 qks. Note that pij with i, j ∈ Qks and

s ∈ Ir are p-values corresponding to true null hypotheses. The ecdf of all p-values is given by

F̂n(z) = ζnF̂n,0(z) + (1− ζn)F̂n,1(z),

where

n =
k(k − 1)

2

is the number of all p-values,

ζn =

∑r
s=1 qks(qks − 1)

k(k − 1)

is the proportion of true null hypotheses,

F̂n,0(z) =
2

∑r
s=1 qks(qks − 1)

r∑

s=1

∑

i,j∈Qks

I(pij ≤ z)

is the ecdf of p-values corresponding to true null hypotheses and

F̂n,1(z) =
1

∑

1≤s<t≤r qksqkt

∑

1≤s<t≤r

∑

i∈Qks

∑

j∈Qkt

I(pij ≤ z)

is the ecdf of p-values corresponding to alternatives.

In the next remark we study the asymptotic behaviour of the proportion ζn of true null hy-

potheses under suitable assumptions.
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Remark 4.22

The proportion ζn of true null hypotheses can be rewritten as

ζn =

∑r
s=1 q

2
ks − k

∑r
s=1 q

2
ks − k + 2

∑

1≤s<t≤r qksqkt

=

(

1 + 2

∑

1≤s<t≤r qksqkt
∑r

s=1 q
2
ks − k

)−1

.

By noting that k/(
∑r

s=1 q
2
ks) → 0 for k →∞ if the number r of blocks is fixed, we obtain that the

proportion ζn of true null hypotheses converges to 1/r if maxs∈Ir qks = (1 + o(1))mins∈Ir qks,

k →∞. Moreover, if there exists a γ > 0 such that

lim
k→∞

∑

1≤s<t≤r qksqkt
∑r

s=1 q
2
ks

= γ,

then ζn → (1 + 2γ)−1 for k → ∞. For example, if r ∈ N is fixed, maxs∈Ir qks = (1 +

o(1))mins∈Ir qks, k → ∞, then γ = (r − 1)/2. Another example with r → ∞ is given as

follows. Let qk1 = qk2 = qk, limk→∞ r(k)/qk = 0 and let qks = q ∈ N be fixed for all s ≥ 3 and

k ∈ N. Then
∑

1≤s<t≤r qksqkt
∑r

s=1 q
2
ks

=
q2k + 2(r − 2)qkq +

(
r−2
2

)
q2

2q2k + (r − 2)q2
=

1 +O(r/qk) +O(r2/q2k)

2 +O(r/q2k)
.

The latter converges to γ = 1/2 for k →∞ and consequently ζn → 1/2, k →∞.

The main result of this section shows that the ecdf of p-values corresponding to true null

hypotheses of a pairwise comparisons problem fulfils the weak dependence condition (WD3),

which allows asymptotic FWER and/or FDR control, cf. Theorem 4.2 and Theorem 4.5.

Theorem 4.23

Let qks, k ∈ N, s ∈ Ir, r ∈ N, be a double array of natural numbers with 2 ≤ qks ≤ qk+1s for all

s ∈ Ir, r ∈ N and k ∈ N. Then we obtain convergence in probability in (4.24) and hence (WD3)

applies for the pairwise comparisons problem given in (4.34) . Moreover, if there exists a q ∈ N

such that maxs∈Ir qks ≤ q for all k ∈ N and r ∈ N, then we even get almost sure convergence in

(4.24).

Proof: Convergence in probability, i.e. the first assertion in Theorem 4.23, can be proved (a) by

means of (4.25) or alternatively (b) by proving Var(F̂n,0(z)) → 0 for n0 → ∞. As mentioned in

Section 4.4, both conditions are equivalent.

(a) W.l.o.g. let the block size qk1 = qk−1,1 + 1 for a fixed k ∈ N, i.e. θk = θi = η1 for i ∈ Qk1
and let Qk1 = Qk−1,1 ∪ {k} = {1, . . . , qk1 − 1, k}. Then

n0(i) =
r∑

s=2

(
qks
2

)

+

(
qk1 − 1

2

)

+ i
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denotes the number of p-values corresponding to true null hypotheses related to all comparisons

between X1, . . . , Xk−1 and comparisons of Xk with X1, . . . , Xi for i ∈ Qk1 \ {k} = Iqk1−1, that

is, p-values corresponding to true nulls are given by

puv : u, v ∈ Qks, s ∈ {2, . . . , r} or u, v ∈ Qk1 \ {k} and pjk : j ∈ {1, . . . , i}. (4.35)

For pik, i ∈ Qk1 \ {k}, there are exactly qk1 − 2 + i − 1 p-values pl (say) in (4.35), for which

Cov(pik, pl) 6= 0 is possible, that is, pij , j ∈ Qk1 \ {i, k} and pjk, j ∈ {1, . . . , i − 1}. Hence,

setting n0 = n0(i) for a fixed i ∈ Qk1 \ {k} we get

1

n0

n0∑

j=1

Cov
(
I(p0

j ≤ t), I(p0
n0
≤ t)

)
≤ qk1 + i− 3

∑r
s=2

(
qks

2

)
+

(
qk1−1

2

)
+ i

,

where p0
j , j ∈ In0 , denote p-values corresponding to true null hypotheses and p0

n0
= pik. Noting

that the right-hand side of this expression is maximum for i = qk1 − 1 and n0 = n0(qk1 − 1) =
∑r

s=1 qks(qks − 1)/2, we obtain that the condition

4(qk1 − 2)
∑r

s=1 qks(qks − 1)
→ 0 for k →∞ (4.36)

implies (4.25). Condition (4.36) can be proved by making use of the following consideration. If

maxs∈Ir(qks)→∞ for k →∞, then

4(qk1 − 2)
∑r

s=1 qks(qks − 1)
≤ 4 maxs∈Ir qks

∑r
s=1 qks(qks − 1)

≤ 4

maxs∈Ir qks − 1
= O

(
1

maxs∈Ir qks

)

→ 0

for k → ∞. If there exists some q ∈ N such that maxs∈Ir qks ≤ q for all k ∈ N and r ∈ N, i.e.

r →∞ for k →∞, then

4(qk1 − 2)
∑r

s=1 qks(qks − 1)
≤ 4 maxs∈Ir qks

∑r
s=1 qks(qks − 1)

≤ 2q

n0
≤ 4q

r
= O

(
1

r

)

→ 0

for k →∞, which yields conditions (4.25) and/or (4.26) and hence completes the proof.

(b) Convergence Var(F̂n,0(z)) → 0 for n → ∞ yields that (WD3) is satisfied. Since pij and puv
are independent if i, j ∈ Qks1 , u, v ∈ Qks2 and s1 6= s2, we obtain

Var(F̂n,0(z)) =
1

n0

r∑

s=1

Var




∑

i,j∈Qks

I(pij ≤ z)





=
1

(∑r
s=1

(
qks

2

))2

r∑

s=1

∑

i,j∈Qks

∑

u,v∈Qks

Cov (I(pij ≤ z), I(puv ≤ z)) .
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For a fixed s ∈ Ir exactly 6
(
qks

4

)
covariances in the expression above are equal to zero. Therefore,

Var(F̂n,0(z)) ≤
∑r

s=1

(
qks

2

)2 − 6
∑r

s=1

(
qks

4

)

(∑r
s=1

(
qks

2

))2

=

∑r
s=1 qks(qks − 1)(4qks − 6)

(
∑r

s=1 qks(qks − 1))2

≤ 4 maxs∈Ir qks
∑r

s=1 qks(qks − 1)

(
∑r

s=1 qks(qks − 1))2

=
4 maxs∈Ir qks

∑r
s=1 qks(qks − 1)

.

Obviously, the latter converges to 0, since (4.36) is fulfilled. This implies the desired converges in

probability for n→∞.

�

The next result corresponds to convergence of the ecdf F̂n,1 of p-values under alternatives.

Theorem 4.24

Let qks, k ∈ N, s ∈ Ir, r ∈ N, be a double array of natural numbers with 1 ≤ qks ≤ qk+1,s for all

s ∈ Ir, r ∈ N and k ∈ N. Let n1 = n1(ϑ) = n− n0(ϑ) →∞ if n→∞. Then condition

k
∑

1≤s<t≤r qksqkt
→ 0 for k →∞, (4.37)

implies (4.27) with convergence in probability.

Proof: We prove the statement in Theorem 4.24 (a) by means of (4.25); and (b) by proving

Var(F̂n,1(z)) → 0 for n1 →∞.

(a) It suffices to prove condition (4.25) applying to p-values under alternatives, i.e.

1

n1

n1∑

i=1

Cov
(
I(p1

i ≤ t), I(p1
n1
≤ t)

)
→ 0 for n1 →∞, (4.38)

where p1
i , i ∈ In1 , are p-values under alternatives, i.e. pi, i ∈ In,1. W.l.o.g. let for a fixed

k ∈ N the block size qk1 be equal to qk−1,1 + 1, i.e. θk = θi = η1 for i ∈ Qk1 and let Qk1 =

Qk−1,1 ∪ {k} = {1, . . . , qk1 − 1, k}. Moreover, let Qks = {∑s−1
v=1 qkv, . . . ,

∑s−1
v=1 qkv − 1 + qks}

for s ∈ {2, . . . , r}. Then for i ∈ {1, . . . ,∑r
s=2 qks}

n1(i) =

r∑

2≤s<t≤r

qksqkt +

r∑

s=2

(qk1 − 1)qks + i

denotes the number of p-values corresponding to false hypotheses related to all comparisons be-

tweenX1, . . . , Xk−1 and comparisons ofXk withXj , j ∈ {qk1, . . . , qk1−1+ i}, that is, p-values

corresponding to false hypotheses are given by

puv : u ∈ Qks, v ∈ Qkt, 2 ≤ s < t ≤ r, or u ∈ Qk1 \ {k}, v ∈ Qks, 2 ≤ s ≤ r (4.39)
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and pkj : j ∈ {qk1, . . . , qk1 − 1 + i}.

Let h ∈ {2, . . . , r − 1} and b ∈ {1, . . . , qk,h+1} be such that i =
∑h

s=2 qks + b, that is, h = h(i)

and b = b(i). For p1
n1(i) = pk,qk1−1+i, i ∈ {1, . . . ,

∑r
s=2 qks}, there exist exactly

qk1 + 2
h∑

s=2

qks +
r∑

s=h+2

qks + b− 2

p-values pl (say) in (4.39), for which Cov(pik, pl) 6= 0 is possible, that is, pj qk1−1+i with j ∈ Qks
for s ∈ {2, . . . , r} \ {h + 1} or j ∈ Qk1 \ {k} and pkj , j ∈ Qks with s ∈ {2, . . . , h} or

j ∈ {∑h
s=1 qks, . . . ,

∑h
s=1 qks − 1 + b} ⊆ Qk,h+1. Hence, setting n1 = n1(i) for a fixed

i ∈ {1, . . . ,∑r
s=2 qks} we get

1

n1

n1∑

j=1

Cov
(
I(p1

j ≤ t), I(p1
n1
≤ t)

)
≤ qk1 + 2

∑h
s=2 qks +

∑r
s=h+2 qks + b− 2

∑r
2≤s<t≤r qksqkt +

∑r
s=2(qk1 − 1)qks + i

=
qk1 +

∑h
s=2 qks +

∑r
s=h+2 qks − 2 + i

∑r
2≤s<t≤r qksqkt +

∑r
s=2(qk1 − 1)qks + i

.

Noting that the right-hand side of the expression before is maximum for i =
∑r

s=2 qks (i.e. h =

r − 1 and b = qkr) and n1 = n1(
∑r

s=2 qks) =
∑r

1≤s<t≤r qksqkt, we obtain that the condition

qk1 + 2
∑r−1

s=2 qks + qkr − 2
∑r

1≤s<t≤r qksqkt
→ 0 for k →∞

implies (4.38). Noting that k =
∑r

s=1 qks we get (4.37), which completes the proof.

(b) Now we prove that Var(F̂n,1(z)) → 0 for n → ∞, which implies the assertion in Theorem

4.24. For 1 ≤ s < t ≤ r, i ∈ Qks and j ∈ Qkt there are

qks + qkt − 2 + 2
∑

v∈Ir\{s,t}

qkv

p-values pi, i ∈ In,1, for which Cov(pik, pi) 6= 0 is possible. Then

Var(F̂n,1(z)) ≤
2
∑

1≤s<t≤r qksqkt(
∑r

s=1 qks)
(
∑

1≤s<t≤r qksqkt

)2 =
2
∑r

s=1 qks∑

1≤s<t≤r qksqkt
=

2k
∑

1≤s<t≤r qksqkt
.

Condition (4.37) implies that Var(F̂n,1(z)) → 0 for n1 → ∞ and hence, we get the convergence

in probability in (4.27). �

Example 4.25

If maxs∈Ir qks = mins∈Ir qks(1 + o(1)) or maxs∈Ir qks = o(r(mins∈Ir qks)
2), then condition

(4.27) is always fulfilled. Note that for the case that maxs∈Ir qks = mins∈Ir qks(1 + o(1)) and r

is fixed we get convergence of the proportion ζn of true null hypotheses to 1/r (cf. Remark 4.22)

as well as convergence of F̂n,1 in the Glivenko-Cantelli sense.
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Remark 4.26

Let the number r of different parameters in the pairwise comparisons problem (4.34) be fixed for

all k ∈ N. Let qk1 → ∞ for k → ∞ and qks=1 for all s ∈ {2, . . . , r} and k ∈ N, i.e. we get r

many-one comparisons. If Xi, i ∈ Qk1, are iid for all k ∈ N, then there exists C ∈ (0, 1) such

that

1

n1

n1∑

i=1

Cov
(
I(p1

i ≤ t), I(p1
n1
≤ t)

)
≥ C

qk1 + 2
∑r−1

s=2 qks + qkr − 2
∑r

1≤s<t≤r qksqkt
.

The latter converges to C/(r − 1) > 0 for k → ∞, that is, condition (4.38) is not fulfilled and

consequently the ecdf F̂n,1 does not converge in the sense of the Glivenko-Cantelli Theorem.

Although the convergence in probability of the ecdf F̂n,0 is sufficient for weak dependence,

sometimes it is interesting to know that F̂n,0 converges not only in probability but also almost

surely. The next theorem gives conditions which allow the almost sure convergence by means of

the U -statistics theory.

Theorem 4.27

Let r ∈ N be fixed and qks, k ∈ N, s ∈ Ir, be a double array of natural numbers with 2 ≤ qks ≤
qk+1s for all s ∈ Ir and k ∈ N. Let Xi, i ∈ Qks, be iid for all s ∈ Ir and let pij = h(Xi, Xj) be

the corresponding p-values. Then for each z ∈ [0, 1] we obtain almost sure convergence in (4.24).

Proof: W.l.o.g. let pi, i ∈ In,0, be uniformly distributed in [0, 1], i.e. (D1) is fulfilled. Let

a(q) = q(q − 1), q ≥ 2. The almost sure convergence can be proved by means of U -statistics. By

setting

Uks(z) =
2

a(qks)

∑

i,j∈Qks

I(pij ≤ z),

we obtain

F̂n,0(z) =
1

∑r
s=1 a(qks)

r∑

s=1

a(qks)Uks(z).

Note that Uks(z), s ∈ Ir, are independent U -statistics. Let I ′r ⊂ Ir be such that qks, k ∈ N, are

bounded for all s ∈ I ′r, that is, there exists q ∈ N with qks ≤ q for all k ∈ N and s ∈ I ′r. Then

a(qks)/
∑r

s=1 a(qks) → 0, s ∈ I ′r. Obviously, it holds

F̂n,0(z) ≥
∑

s∈Ir\I′r
a(qks)

∑r
s=1 a(qks)

min
s∈Ir\I′r

Uks(z) = A(z) (say)

and

F̂n,0(z) ≤
ra(q)

∑r
s=1 a(qks)

+

∑

s∈Ir\I′r
a(qks)

∑r
s=1 a(qks)

max
s∈Ir\I′r

Uks(z) = B(z) (say).

Note that ∑

s∈Ir\I′r
a(qks)

∑r
s=1 a(qks)

→ 1 and
ra(q)

∑r
s=1 a(qks)

→ 0 for k →∞.

Moreover, the SLLN of U -statistics (cf. Theorem 4.15) yields for s ∈ Ir \ I ′r (i.e. limk→∞ qks =

∞) that Uks(z) → z, k → ∞, almost surely. Since maximum and minimum of a finite number
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of variables are continuous functions, the random variables A(z) and B(z) converge to z almost

surely. Hence, A(z) ≤ F̂n,0(z) ≤ B(z) implies F̂n,0(z) → z for k →∞ almost surely. �

Finally, we consider a simulation study of p-values corresponding to pairwise comparisons

problems.

Example 4.28

Let Xij , i ∈ Ik, j ∈ Im, be independent normally distributed random variables with unknown

mean ϑi and unknown variance σ2
i > 0. We choose σi = 1, i ∈ Ik, in the simulation. We consider

the pairwise comparisons problem given in (4.34) for various scenarios of means. We utilise (a)

t-tests with a pooled variance, (b) Welch approximate t-tests and (c) Wilcoxon-Mann-Whitney

tests to perform individual tests.

(a) The test statistics of the t-tests are given by T
(1)
uv =

√

m/2(X̄u − X̄v)/s, where X̄i =
1
m

∑m
j=1Xij and s2 = 1

k(m−1)

∑k
i=1

∑m
j=1(Xij − X̄i)

2. Hence, the test statistics have a tk(m−1)-

distribution given that σ2
1 = . . . = σ2

k. Denote the cdf of a univariate (central) t-distribution

with ν degrees of freedom by Ftν and define p-values corresponding to the test statistic T (1)
ij by

P
(1)
ij = 2Ftk(m−1)

(−|T (1)
ij |).

(b) The test statistics of the Welch approximate t-test are given by T (2)
ij =

√
m(X̄i−X̄j)/

√

s2i + s2j

with s2i = 1
m−1

∑m
j=1(Xij − X̄i)

2. Under null hypotheses of equal expectations the distribution

of the Behrens Fisher statistics T (2)
ij , 1 ≤ i < j ≤ k, could be approximated by Student’s t-

distribution with

ν =
(γi + γj)

2

γ2
i /(m− 1) + γ2

j /(m− 1)

degrees of freedom, where γi = σ2
i /m. Since σ2

i , i ∈ Ik, are typically unknown, ν will be

replaced by the following estimate

ν̂ =
(gi + gj)

2

g2
i /(m− 1) + g2

j /(m− 1)
, gi = s2i /m,

cf. Welch [1947]. Then p-values corresponding to T (2)
ij are defined by P (2)

ij = 2Ftν̂ (−|T (2)
ij |).

(c) The test statistics of the Wilcoxon-Mann-Whitney test (also called Wilcoxon rank-sum test)

are given by T (3)
ij = min

(
∑m

r=1

∑m
f=1 I(Xir < Xjf ),

∑m
r=1

∑m
f=1 I(Xir > Xjf )

)

. The exact

distribution of Um,m =
∑m

r=1

∑m
f=1 I(Xir < Xjf ) can be calculated with the following formula

P (Um,r = u) = P (Um−1,r = u− r) m

m+ r
+ P (Um,r−1 = u)

r

m+ r
,

P (Um,r < 0) = P (Um,r > mr) = 0 for r,m ≥ 1,

P (Um,0 = 0) = P (U0,r = 0) = 1 and P (Um,0 > 0) = P (U0,r > 0) = 0 for r,m ≥ 1,

cf. Mann and Whitney [1947]. Denote the cdf of min(Um,m,m
2−Um,m) by FU . Thereby, m2 is

the maximal value of Um,m. The p-values corresponding to T (3)
ij are given by P (3)

ij = FW (T
(3)
ij ).

We also consider randomised p-values which are given by P (4)
ij = FW (T

(3)
ij −1)+Yij [F

W (T
(3)
ij )−
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Figure 4.3: Simulated ecdfs F̂n,0s of p-values corresponding to true null hypotheses with m = 10,

scenario {06, 16, 26} and n0 = 45 (left picture), {010, 110, 210} and n0 = 135 (picture in the

middle), {016, 116, 216} and n0 = 360 (right picture). The ecdf of p-values corresponding to the

t-test is green, to the Welch t-test is blue, to the Wilcoxon-Mann-Whitney test is magenta and to

the Wilcoxon-Mann-Whitney test with randomised p-values is red in each graph.

FW (T
(3)
ij − 1)], where Yij are iid uniformly distributed random variables independent of Xij ,

i ∈ In, j ∈ Im. More information about randomised p-values can be found in Finner et al. [2010].

Setting t0 = 0, a scenario {η1
q1 , . . . , η

r
qr} means ϑqi−1+1 = . . . = ϑqi−1+qi = ηi for i =

1, . . . , r. Hence, the case ϑ1 = ϑ2 = ϑ3 = ϑ4 = ϑ5 = ϑ6 = 0, ϑ7 = ϑ8 = ϑ9 = ϑ10 = ϑ11 =

ϑ12 = 1 and ϑ13 = ϑ14 = ϑ15 = ϑ16 = ϑ17 = ϑ18 = 2 corresponds to {06, 16, 26}.
Figure 4.3 shows simulated ecdfs of p-values corresponding to true null hypotheses for dif-

ferent tests and scenarios. Although, in the case of the t-test, all p-values are dependent, because

of the pooled variance estimate, the ecdf of these p-values (green curves) seems to converge to

the identity function F (t) = t, t ∈ [0, 1]. Figure 4.4 displays simulated ecdfs of all p-values

corresponding to the t-test (green curve), to the Welch t-test (blue curve), to the Wilcoxon-Mann-

Whitney test (magenta curve) and to the Wilcoxon-Mann-Whitney test based on randomised p-

values (red curve). The considered scenario is given by {06, 16, 26} with n = 153, n0 = 45

and m = 10. Table 4.2 shows the number of all rejected hypotheses Rn and the number of re-

jected true null hypotheses Vn for the following tests at the pre-specified level α = 0.05: the

βn-adjustment SU procedure based on (3.28) with β153 = 1.93 (cf. Section 3.4.1), the LSU test

(cf. Section 1.3), the plug-in LSU test with λ = 0.5, the BPI test with the threshold (2.4) based on

(2.6) with λ = 0.5, the oracle Bonferroni and Bonferroni tests. Thereby, BPI, oracle Bonferroni

and Bonferroni tests reject considerable less null hypotheses than the considered SU procedures.

For example, the LSU test (βn-adjustment test resp.) rejects 70 (78 resp.) hypotheses if p-values

correspond to the t-tests, 70 (80 resp.) hypotheses if p-values correspond to the Welch t-tests, 66

(74 resp.) if p-values correspond to the Wilcoxon-Mann-Whitney tests and 71 (74 resp.) in the

case of randomised p-values based on the Wilcoxon-Mann-Whitney tests.

Typically, parametric tests (t-tests, for example) have larger power than non-parametric tests
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Figure 4.4: Simulated ecdfs F̂n of all p-values with m = 10, scenario {06, 16, 26} and n = 153

hypotheses. The ecdf of p-values corresponding to the t-test is green, to the Welch t-test is blue,

to the Wilcoxon-Mann-Whitney test is magenta and to the Wilcoxon-Mann-Whitney test with

randomised p-values is red. The Simes line is given by the black line and the black curve shows

the AORC.

p-values based on

Test t-tests Welch t-tests Wilcoxon tests Wilcoxon tests

(random. p-val.)

Rn Vn Rn Vn Rn Vn Rn Vn

βn-adjustment 78 2 80 3 74 2 74 2

LSU 70 1 70 2 66 2 71 2

plug-in LSU 87 3 86 5 85 5 85 5

BPI 36 0 29 0 27 0 29 0

oracle Bonferroni 36 0 30 0 30 0 32 0

Bonferroni 27 0 22 0 18 0 18 0

Table 4.2: Simulation study for the pairwise comparisons problem in Example 4.28.
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(Wilcoxon-Mann-Whitney tests, for example). On the other hand, a parametric test may lead to a

large number of false rejections if test statistics are not normally distributed. Figure 4.4 and Table

4.2 show that randomised p-values based on Wilcoxon-Mann-Whitney tests (red curve in Figure

4.4) seem to lead to a power that is almost as large as the power of the corresponding p-values

based on the parametric t-tests.

4.7 Simulations of FWER and power for BPI tests

In this section we conduct a simulation study to investigate numerically the FWER control level

and the power of the BPI test in the case of dependent test statistics, cf. Sections 4.5 and 4.6. We

restrict our attention to the BPI test with κ = 1 and critical value α/n̂0 based on the estimator

(2.6). Thereby the BPI test will be compared with the classical Bonferroni test, the corresponding

SD Bonferroni-Holm test and the OB test.

To demonstrate the behaviour of the BPI procedure for dependent p-values we simulate four

different models. In the first two models (block-dependence and pairwise mean comparisons)

we simulate the FWER and the power β as defined in (2.39). In the third example we simulate

an equi-correlated normal model and show that FWER is typically not controlled by the BPI

procedure. The fourth example picks up the situation that is described in Example 4.4. In all

cases the simulations are based on 100000 repetitions for α = 0.05, λ = 0.5, κ = 1, and the

Bonferroni-type critical values that are defined in expression (2.5). Note that the variance of n̂0

typically tends to be larger (possibly much larger) under dependence than under independence.

Moreover, the chance for a type I error heavily depends on the estimate n̂0.

Example 4.29 (Block-dependence, cf. Section 4.5)

Let

ϑ = 125 ⊗









1

1

0

0









and Σ = σ2J25 ⊗ [(1− ρ)J4 + ρ14×4] , ρ ∈ (0, 1),

where 1k denotes a column vector of length k with entries 1, 1q×q denotes a q × q-matrix with

entries 1 and Jk is the identity matrix. We choose σ = 1 in the simulations. LetXj ∼ N100(ϑ,Σ),

j ∈ Im, be independent and identically distributed. Consider the multiple-testing problem

Hi : ϑi = 0 versus Ki : ϑi 6= 0, i = 1, . . . , 100.

In this example, we do not assume that all variances are equal (although we choose all variances

equal to 1 in the simulations) and choose the test statistics Ti =
√
mX̄i/si with X̄i = 1

m

∑m
j=1Xij

and s2i = 1
m−1

∑m
j=1(Xij−X̄i)

2. We define p-values corresponding to Ti by Pi = 2Ftm−1(−|Ti|),
where Ftν denotes the cdf of a univariate (central) t-distribution with ν degrees of freedom.

For illustration, we simulate this model for m = 10, 15, 20 and only three values of ρ, i.e. 0.1

(almost independence), 0.5 (moderate dependence) and 0.9 (strong dependence). Table 4.3 indi-

cates that the BPI procedure controls the FWER at the pre-specified level α for each ρ. Moreover,
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ρ Test Results for m = 10 Results for m = 15 Results for m = 20

FWER β FWER β FWER β

0.1 Bonferroni 0.025 0.103 0.025 0.340 0.025 0.613

OB 0.049 0.160 0.049 0.442 0.049 0.707

BPI 0.049 0.156 0.049 0.437 0.049 0.703

SD 0.026 0.107 0.031 0.368 0.037 0.667

0.5 Bonferroni 0.024 0.103 0.024 0.341 0.025 0.613

OB 0.048 0.160 0.048 0.442 0.049 0.707

BPI 0.048 0.157 0.049 0.437 0.049 0.703

SD 0.026 0.107 0.030 0.369 0.037 0.668

0.9 Bonferroni 0.022 0.103 0.022 0.341 0.021 0.613

OB 0.043 0.160 0.043 0.442 0.042 0.707

BPI 0.043 0.158 0.044 0.437 0.043 0.702

SD 0.023 0.107 0.027 0.369 0.032 0.668

Table 4.3: Simulation study for the block-dependence model in Example 4.29.

FWER and power seem to be nearly independent of ρ. The results for the OB and BPI tests nearly

coincide and there is some gain in power of the BPI compared with the Bonferroni and SD tests.

Example 4.30 (Pairwise mean comparisons, cf. Section 4.6)

Let Xij , i ∈ Ik, j ∈ Im, be independent normally distributed random variables with unknown

mean ϑi and unknown variance σ2 > 0. We choose σ = 1 in the simulations. We consider the

pairwise comparisons problem

Hij : ϑi = ϑj versus Kij : ϑi 6= ϑj , 1 ≤ i < j ≤ k,

for various scenarios of means. The test statistics are given by Tij =
√

m/2(X̄i − X̄j)/s where

X̄i is defined as in Example 4.29 and s2 = 1
k(m−1)

∑k
i=1

∑m
j=1(Xij − X̄i)

2. Hence, the test

statistics have a tk(m−1)-distribution. Denote the cdf of a univariate (central) t-distribution with ν

degrees of freedom by Ftν and define p-values corresponding to Tij by Pij = 2Ftk(m−1)
(−|Tij |).

Setting t0 = 0, a scenario {η1
q1 , . . . , η

k
qk
} means ϑqi−1+1 = . . . = ϑqi−1+qi = ηi for i =

1, . . . , k. Hence, the case ϑ1 = ϑ2 = ϑ3 = 0, ϑ4 = ϑ5 = ϑ6 = ϑ7 = 2 and ϑ8 = ϑ9 = ϑ10 = 4

corresponds to {03, 24, 43}. The simulation results (Table 4.4) provide that the BPI procedure

apparently controls FWER. Note that because of the pooled variance estimate all p-values are

dependent. Although the power of the OB procedure is always larger than the power of the BPI

procedure, the power of the BPI is considerably lager than the power of the Bonferroni test and

SD procedure. Clearly, the gain in power is due to small proportions of null hypotheses.

Example 4.31 (Equi-correlation)

Let Xij = ϑi +
√

1− ρYij +
√
ρY0j , i ∈ In, j ∈ Im, ρ ∈ (0, 1), where Yij ∼ N(0, σ2),
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ϑ-scenario Test Results for m = 3 Results for m = 5 Results for m = 7

FWER β FWER β FWER β

{03, 24, 43}, Bonferroni 0.011 0.323 0.012 0.548 0.012 0.726

k = 10, n = 45, n0 = 12 OB 0.040 0.440 0.042 0.675 0.043 0.835

BPI 0.040 0.417 0.047 0.657 0.050 0.822

SD 0.019 0.348 0.024 0.601 0.029 0.795

{04, 11, 24, 31}, Bonferroni 0.011 0.130 0.012 0.316 0.012 0.466

k = 10, n = 45, n0 = 12 OB 0.038 0.226 0.040 0.432 0.043 0.571

BPI 0.029 0.185 0.035 0.394 0.041 0.546

SD 0.014 0.138 0.017 0.339 0.019 0.500

{04, 14, 24, 34, 44}, Bonferroni 0.007 0.185 0.008 0.349 0.007 0.455

k = 20, n = 190, n0 = 30 OB 0.042 0.285 0.044 0.447 0.043 0.546

BPI 0.022 0.237 0.028 0.414 0.030 0.523

SD 0.009 0.193 0.012 0.367 0.013 0.478

Table 4.4: Simulation study for the pairwise mean comparisons problem in Example 4.30.

i = 0, . . . , n, j ∈ Im, are independent standard normal random variables. We test again

Hi : ϑi = 0 versus Ki : ϑi 6= 0, i ∈ In.

The test statistics and corresponding p-values are defined as in Example 4.29. The simulation is

performed for n = 100, m = 10, σ2 = 1 and ϑi = 0 for 1 ≤ i ≤ 50 and ϑi = 1 otherwise.

Figure 4.5 illustrates the dependence of FWER on ρ for the BPI procedure. The BPI test

controls FWER at most for very small or large values of ρ. For most of the ρ values the FWER

exceeds the pre-specified α-level. The reason is that the variance of the estimator n̂0 seems to be

increasing in ρ. For ρ = 1, it can be easily checked that the FWER is controlled.

Example 4.32 (Multivariate equi-correlated t-distribution)

Finally, we consider the situation described in Example 4.4 with equi-correlated t-distributed test

statistics. As pointed out before, in this special case the empirical distribution function of all

p-values corresponding to true null hypotheses converges in 0.5, i.e. limn→∞ F̂n,0(0.5) = 0.5

almost surely. Therefore, λ = 0.5 is the best choice in order to estimate π̂0. Here we illustrate

the behaviour of the BPI test especially for the situation where nearly all hypotheses are true. Let

n = 50, ν = 15, σ2 = 1, ϑi = 0, i = 1, . . . , n0 and ϑi = 3, i = n0+1, . . . , n, n0 = 20, 48, 49, 50.

Table 4.5 demonstrates that FWER is obviously controlled for all values of n0 that are considered

here. Moreover, the differences between the four tests in FWER and power are more or less

negligible for large values of n0. For n0 = 20 the power of the BPI procedure is close to that of

the OB test and considerably larger than for the Bonferroni and SD tests. Especially for n0 = 49

the power of the BPI test seems a little smaller than for the Bonferroni test. This seems due to the

bias of n̂0, i.e. the expectation of n̂0 is somewhat larger than n0.
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Figure 4.5: Simulated FWER of the BPI test in terms of the correlation coefficient ρ for equi-

correlated normal random variables defined in Example 4.31.

Test Results for n0 = 20 Results for n0 = 48 Results for n0 = 49 Results for

n0 = 50

FWER β FWER β FWER β FWER

Bonferroni 0.018 0.290 0.039 0.290 0.041 0.291 0.041

OB 0.044 0.422 0.041 0.295 0.042 0.294 0.041

BPI 0.044 0.411 0.041 0.292 0.042 0.290 0.041

SD 0.029 0.321 0.040 0.291 0.042 0.292 0.041

Table 4.5: Simulation study for the multivariate equi-correlated t-distribution model in Example

4.32 (Example 4.4).
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4.8 Summary

In this chapter we considered situations where some kind of weak dependence occurs. We inves-

tigated models for which the limiting ecdf of p-values corresponding to true null hypotheses is

asymptotically bounded by the cdf of the uniform distribution F = Id if the number of true null

hypotheses tends to infinity.

In the case of BPI procedures (cf. Chapter 2) we gave a sufficient condition on an estimator

of the number of true null hypotheses ensuring FWER control at least asymptotically. We showed

that the estimators given in (2.6) and (2.9) fulfil the aforementioned condition so that BPI tests,

which control the finite FWER for independent p-values, control the asymptotic FWER for weak

dependent p-values. For estimators defined in (2.6), weak dependence condition (WD2) can be

reduced to condition (4.5), that is, the limiting ecdf of p-values under nulls in the point λ is not

larger than λ. We gave an example for a set of p-values that fulfil (4.5) only for the unique point

λ = 0.5. Note that for FWER control we did not need any additional condition on p-values. Weak

dependence is sufficient for asymptotic FWER control.

For asymptotic FDR control for SUD test procedures, we needed a so-called power assump-

tion guaranteeing that the proportion of rejected hypotheses is asymptotically bounded away from

0. Conditions (4.9) and/or (4.10) yield that the asymptotic FDR of some SUD tests is asymptot-

ically controlled under weak dependence. Unfortunately, it seems to be difficult to prove such

conditions. If the asymptotic crossing point converges to 0, i.e. the proportion of rejected hy-

potheses converges to 0, we do not have any arguments for asymptotic FDR control in this case. It

remains an open problem. However, we considered a specific set of p-values, for which SUD(λn)

procedures with lim infn→∞ λn/n > 0 (SU tests belong to this class) control the FDR asymptot-

ically. On the other hand, SD tests and SUD(λn) tests with limn→∞ λn/n = 0 may violate the

pre-specified FDR-level.

We investigated various methods how convergence of an ecdf of p-values and/or weak de-

pendence can be proved. We gave simple conditions on correlations between p-values which are

equivalent to weak dependence given in (WD3) and/or convergence of the ecdf of p-values under

alternatives in the sense of the Glivenko-Cantelli Theorem. A slightly modified condition implies

even almost sure convergence of the ecdf of p-values corresponding to true/false null hypotheses.

Among others things, we considered different examples for weak dependent p-values like various

mixing models or autocorrelations. Weak dependence can sometimes be proved by means of U -

statistics. The SLLN for U -statistics may imply almost sure convergence of the ecdf of p-values

under nulls, which immediately yields the weak dependence condition (WD3).

For block-dependent p-values, we introduced conditions on block sizes leading to weak de-

pendence. The same conditions that apply to p-values under alternatives yield the convergence

of the ecdf of p-values corresponding to false hypotheses. We considered numerical examples

for block-dependent p-values and performed different multiple test procedures for a fixed set of

p-values. Thereby, tests controlling the FDR are more powerful than procedures controlling the

FWER. Moreover, the βn-adjustment method and the plug-in LSU test rejected the most hypothe-
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ses.

In the case of a pairwise comparison we investigated the behaviour of the proportion of true

null hypotheses. We gave some examples for scenarios of parameters leading to a fixed asymp-

totic proportion of true nulls. We proved that the ecdf of true null hypotheses corresponding to

a comparison problem always fulfils the weak dependence condition (WD3). If the number of

different parameters is bounded and random variables with the same parameter are iid, then we

get the almost sure convergence of the ecdf of true nulls. We presented conditions under which the

ecdf of p-values under alternatives converges in the sense of the Glivenko-Cantelli Theorem. We

considered a numerical example for p-values of a pairwise comparison problem based on different

singular tests. We also performed various multiple tests for a fixed set of p-values. As antici-

pated, test procedure controlling the FDR rejected considerably more hypotheses than procedures

controlling the FWER.

For BPI procedures with the threshold (2.4) based on the estimator given in (2.6) we imple-

mented four numerical examples for dependent p-values, which do not necessarily fulfil the weak

dependence condition. In the case of equi-correlated p-values FWER control failed if the corre-

lation coefficient is not too large and not too small. However, for other dependence structures the

FWER is always controlled.
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Types of convergence

In probability theory, there exist several different notions of convergence of random variables. The

convergence (in one of the senses presented below) of sequences of random variables to some limit

random variable is an important concept in probability theory and its applications to statistics and

stochastic processes.

Throughout the following, we assume that {Xn}n∈N is a sequence of random variables, and

X is a random variable, and all of them are defined on the same probability space (Ω,A,P).

Definition A.1

A sequence {Xn}n∈N of random variables converges in probability to X if

∀ ǫ > 0 : lim
n→∞

P
(
|Xn −X| > ε

)
= 0.

Definition A.2

A sequence {Xn}n∈N converges almost surely to X if

P

(

lim
n→∞

Xn = X
)

= 1.

Definition A.3

A sequence {Xn}n∈N converges in the r-th mean or in the Lr norm toX if E|Xn|r <∞, r ≥ 1,

for all n ∈ N and

lim
n→∞

E (|Xn −X|r) = 0.

Definition A.4 (Hsu and Robbins [1947])

We say that a sequence {Xn}n∈N converges completely to a random variable X if

∀ ǫ > 0 :
∞∑

n=1

P(|Xn −X| > ǫ) <∞.

Corollary A.5

The following implications between the various notions of convergence apply:

• convergence almost surely implies convergence in probability,
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• convergence in the Lr norm implies convergence in probability,

• convergence in the Lr norm implies convergence in the Ls norm, provided that r ≥ s ≥ 1,

• convergence completely implies convergence almost surely.

Consider a sequence of iid random variables {Xn}n∈N defined on a probability space (Ω,A,P)

such that Xn : Ω → R with cumulative distribution function (cdf) F . The empirical cumulative

distribution function (ecdf) for X1, . . . , Xn is defined by

F̂n(x) = F̂n(x, ω) =
1

n

n∑

i=1

I(−∞,x](Xi).

Note that for an arbitrary but fixed x ∈ R, F̂n(x, ·) is a sequence of random variables which

converges to F (x) almost surely by the strong law of large numbers (SLLN), i.e. F̂n(x, ·) → F (x)

pointwise. The Glivenko–Cantelli theorem strengthens this result by proving uniform convergence

of F̂n to F .

Theorem A.6 (Glivenko-Cantelli)

Let {Xn}n∈N be an iid sequence of random variables with distribution function F on R. Then,

‖F̂n − F‖∞ = sup
x∈R

|F̂n(x, ·)− F (x)| → 0 almost surely.

Now we consider a sequence of random variables X1, X2, . . . defined on [0, 1], which are not

necessarily iid, but for which we get F̂n(x, ·) → F (x) in probability for a fixed x ∈ [0, 1]. The

classical Glivenko-Cantelli theorem can be generalised to the case of convergence in probability

in the following way.

Lemma A.7 (Glivenko-Cantelli: convergence in probability)

Let Fn : ([0, 1],Ω) → [0, 1], n ∈ N, be such that Fn(z, ·) is non-decreasing in z for each n ∈ N

and Fn(z, ·) → z, n→∞, in probability for all z ∈ [0, 1]. Then,

sup
z∈[0,1]

|Fn(z, ·)− z| → 0 for n→∞ in probability. (A.1)

Proof: From Fn(z, ·)→ z in probability for all z ∈ [0, 1], we get

∀ z ∈ [0, 1] : ∀ ǫ > 0 : ∀ ǫ1 > 0 : ∃ nz,ǫ,ǫ1 ∈ N : ∀ n ≥ nz,ǫ,ǫ1 :

P (|Fn(z, ·)− z| < ǫ) ≥ 1− ǫ1.

For an arbitrary but fixed k ∈ N and i ∈ {0, . . . , k} we obtain

∀ ǫ > 0 : ∀ ǫ1 > 0 : ∃ ni/k,ǫ,ǫ1 ∈ N : ∀ n ≥ ni/k,ǫ,ǫ1 :

P

(∣

∣

∣

∣

Fn

(

i

k
, ·
)

− i

k

∣

∣

∣

∣

< ǫ

)

≥ 1− ǫ1.
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Setting nkǫ,ǫ1 = maxi∈{0,...,k} ni/k,ǫ,ǫ1 , it follows by applying the Bonferroni inequality that

∀ n ≥ nkǫ,ǫ1 : P

(

max
i∈{0,...,k}

∣

∣

∣

∣

Fn

(

i

k
, ·
)

− i

k

∣

∣

∣

∣

< ǫ

)

≥ 1− (k + 1)ǫ1.

Furthermore, for i ∈ {0, . . . , k − 1} we obtain

sup
z∈[ i

k
, i+1

k ]
(Fn(z, ·)− z) ≤ Fn

(

i+ 1

k
, ·
)

− i

k

=

(

Fn

(

i+ 1

k
, ·
)

− i+ 1

k

)

+
1

k
,

sup
z∈[ i

k
, i+1

k ]
(z − Fn(z, ·)) ≤ i+ 1

k
− Fn

(

i

k
, ·
)

=

(

i

k
− Fn

(

i

k
, ·
))

+
1

k

and

sup
z∈[ i

k
, i+1

k ]
|Fn(z, ·)− z| ≤ max

(∣

∣

∣

∣

Fn

(

i+ 1

k
, ·
)

− i+ 1

k

∣

∣

∣

∣

,

∣

∣

∣

∣

i

k
− Fn

(

i

k
, ·
)∣

∣

∣

∣

)

+
1

k
,

sup
z∈[0,1]

|Fn(z, ·)− z| ≤ max
i∈{0,...,k}

∣

∣

∣

∣

Fn

(

i

k
, ·
)

− i

k

∣

∣

∣

∣

+
1

k
.

Hence,

P

(

sup
z∈[0,1]

|Fn(z, ·)− z| < ǫ

)

≥ P

(

max
i∈{0,...,k}

∣

∣

∣

∣

Fn

(

i

k
, ·
)

− i

k

∣

∣

∣

∣

< ǫ− 1

k

)

.

Then

∀ ǫ > 0 : ∀ k > 1

ǫ
: ∀ ǫ1 > 0 : ∃ nkǫ,ǫ1 ∈ N : ∀ n ≥ nkǫ,ǫ1 :

P

(

sup
z∈[0,1]

|Fn(z, ·)− z| < ǫ

)

≥ 1− (k + 1)ǫ1.

Finally, choosing ǫ1 = δ/(k + 1) for a δ > 0 we get

∀ ǫ > 0 : ∀ δ > 0 : ∃ nǫ,δ ∈ N : ∀ n ≥ nǫ,δ : P

(

sup
z∈[0,1]

|Fn(z, ·)− z| < ǫ

)

≥ 1− δ,

hence the assertion follows. �

The next theorem taken from Hu and Taylor [1997] gives conditions on random variables,

which imply almost sure convergence of weighted sums of these variables.

Theorem A.8 (Hu and Taylor [1997])

Let {Xni}i∈In,n∈N be real-valued random variables such that Xn1, . . . , Xnn are independent for

all n ∈ N. Let {an}n∈N be a sequence of positive real numbers such that an+1 > an and
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limn→∞ an = ∞. Let ψ(t) be a positive, even and continuous function such that
ψ(|t|)
|t|p is an

increasing function of |t|, and
ψ(|t|)
|t|p+1 is a decreasing function of |t|, i.e.,

ψ(|t|)
|t|p ↑ and

ψ(|t|)
|t|p+1

↓ as |t| ↑ (A.2)

for some integer p ≥ 2. Moreover, suppose that

E(Xni) = 0, (A.3)

∞
∑

n=1

n
∑

i=1

Eψ(|Xni|)
ψ(an)

<∞, (A.4)

∞
∑

n=1

(

n
∑

i=1

E(X2
ni)

a2
n

)2k

<∞, (A.5)

where k is a positive integer. Then

1

an

n
∑

i=1

Xni → 0 almost surely. (A.6)

The next theorem given in Sung [2000] shows that different types of convergence are equiva-

lent under certain conditions.

Theorem A.9 (Sung [2000])

Let {Xni}i∈In,n∈N and {an}n∈N be defined as in Theorem A.8. Assume that (A.4) and (A.5) are

fulfilled. Then the following statements are equivalent:

1)
1

an

n
∑

i=1

Xni → 0 in the L1 norm,

2)
1

an

n
∑

i=1

Xni → 0 completely,

3)
1

an

n
∑

i=1

Xni → 0 almost surely,

4)
1

an

n
∑

i=1

Xni → 0 in probability.

The next theorem gives the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality, cf. Massart

[1990] and Dvoretzky et al. [1956].

Theorem A.10 (Dvoretzky et al. [1956])

Let X1, . . . , Xn be iid real valued random variables with the distribution function F and the ecdf

F̂n. Then

∃ K > 0 : ∀ n ∈ N : ∀ ǫ ≥ 0 : P

(

sup
z∈R

|F̂n(z)− F (z)| ≥ ǫ

)

≤ K exp(−2nǫ2).
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Moreover, Massart [1990] proved that K can be chosen to be equal to 2 and K cannot be further

improved.

The next result concerning expected values of non-decreasing functions is taken from Tong

[1980], p. 121.

Lemma A.11 (Tong [1980])

Let Xi, i ∈ In, be independent real valued random variables. Let Fi, i ∈ In, and Gi, i ∈ In, be

cdfs such that

∀ i ∈ In : ∀ x ∈ R : P
Fi(Xi ≥ x) ≥ P

Gi(Xi ≥ x),

where Xi, i ∈ In, has the cdf Fi (or Gi) under the measure P
Fi (or P

Gi , resp.). Let φ : R
n → R

be such that φ(x1, . . . , xn) is non-decreasing in each xi. Then

E
F [φ(X1, . . . , Xn)] ≥ E

G[φ(X1, . . . , Xn)],

where E
F (or E

G) denotes the expected value of φ(X1, . . . , Xn) under the product measure

⊗ni=1P
Fi (or ⊗ni=1P

Gi , resp.).
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