Identifizierung *cis*-regulatorischer Elemente der Transkriptionskontrolle in photosynthetisch aktiven Blattzellen von *Arabidopsis thaliana*

Inaugural-Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Katharina Prusko

aus Heydebreck

Düsseldorf, November 2010

Identifizierung *cis*-regulatorischer Elemente der Transkriptionskontrolle in photosynthetisch aktiven Blattzellen von *Arabidopsis thaliana*

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

> vorgelegt von Katharina Prusko aus Heydebreck

November 2010

Aus dem Institut für Entwicklungs- und Molekularbiologie der Pflanzen

der Heinrich-Heine Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent:Prof. Dr. Peter WesthoffKoreferent:Dr. Daniel Schubert

Tag der mündlichen Prüfung: 17.12.2010

Inhaltsverzeichnis	
Abkürzungen	5
I. Einleitung:	6
I.1. Blattentwicklung und Funktion	6
I.2. Zellspezifisch aktive Sequenzen und <i>cis</i> -Elemente	9
I.3. "Enhancer Trapping" als Werkzeug zur Detektion spezifisch exprimierter Gene	12
I.4. Zielsetzung	15
II. Material / Methoden:	17
II. 1. Material	17
II.1.1.Vektoren und Bakterienstämme	17
II.1.2. Verwendete Primer	18
II.1.3. Datenbanken und Programme	18
II.2. Methoden	19
II.2.1. Isolation von Gesamt-DNA aus Arabidopsis thaliana	19
II.2.2. Isolation flankierender Sequenzen mittels iPCR	19
II.2.3. Sequenzierung der PCR-Produkte und Plasmide	21
II.2.4. Herstellung von Konstrukten mittels "Gateway"-Rekombination	21
II.2.5. Herstellung von Konstrukten mit amplifizierten genomischen Fragmenten	22
II.2.6. "Genome-Walking" in Flaveria bidentis	25
II.2.7. Anzucht von <i>E.coli</i>	25
II.2.8. Transformation von <i>E.coli</i>	26
II.2.9. Reinigung von Nukleinsäuren aus <i>E.coli</i>	26
II.2.10. Anzucht von Agrobakterien	27
II.2.11. Transformation von Agrobakterien	27
II.2.12. Isolation von Plasmid-DNA aus Agrobakterien	27
II.2.13. Anzucht von Arabidopsis	28
II.2.14. Transformation von Arabidopsis	28
II.2.15. Sichtung der "Enhancer Trap"-Bibliothek von T. Jack	29
II.2.16. In situ-Nachweis der β-Glucuronidaseaktivität in transgenen Pflanzen	29
II.2.17. Herstellung von Proteinextrakten für GUS-Fluorimetrie	30
II.2.18. Bestimmung des Gesamtproteingehaltes	30
II.2.19. Messung der ß-Glucuronidaseaktivität in transgenen Pflanzen	30
II.2.20. Nachweis der GFP-Expression in "Enhancer Trap"-Linien	31
III. Ergebnisse:	32
III.1. Überprüfung beschriebener Expressionsmuster in "Enhancer Trap"-Linien mit	
Reportergenexpression im Blatt	32

III.1.1. Linie UCR8: GUS-Expressionsmuster in Leitbündeln und Bündelscheiden	zellen 38
III.1.2. Linie UCR9: GUS-Expression in Leitbündeln und benachbarten Zellen	
III.1.3. Linie UCR10: GUS-Expression in Blattprimordien	40
III.1.4. Linie 1356: GFP-Expression in Bündelscheidenzellen und Schwammparer	nchym
III 1.5. Linia 2442: CED Expression im Delisedennerenehum	41
III.1.5. Linie 2445. GFF-Expression in Jan Bündelscheidenzellen	41
III.1.0. Linie J2111. GFP-Expression in den Bunderscheidenzenen	42
III.1.7. Line 1/44. OFF-Expression init Fansadenparenchym	42
III.2.1 Linia 10057/42: CUS Expression on der adavialen Plattaaita	
III.2.1. Linie 1995//42. GUS-Expression in Deligedennerenshum und einer Zeller	40 ahiaht
oberhalb der unteren Blattepidermis	
III.2.3. Linie 19956/34: GUS-Expression im Palisadenparenchym und einer Zellso oberhalb der unteren Blattepidermis	chicht 49
III.2.4. Linie 31009/26: GUS-Expression an der abaxialen Seite des Blattquerschr	nitts49
III.2.5. Linie 31009/36: GUS-Expression im Palisadenparenchym und Bündelscheidenzellen	50
III.2.6. Linie 19960/50: GUS-Expression im Schwammparenchym	50
III.3. Identifizierung der Insertionspositionen der "Enhancer Trap"-Konstrukte in	51
III 3.1 Position des Ds Elements in Linie UCR8	
III.3.2 Position der Ds-Elements in Linie UCR9	
III 3.3 Position des De Elements in Linie UCR10	
III.3.4 Position des Enhancer Tran" Konstrukts in Linie 2443	
III.3.5. Position des "Enhancer Trap" Konstrukts in Linie 4306	
III.3.6. Position des "Enhancer Trap" Konstrukts in Linie 4370	
III.3.7. Position des "Enhancer Trap" Konstrukts in Linie J2111	
III.3.2 Position des "Enhancer Trap" Konstrukts in Linie 1744	
III.2.0. Desition des "Enhancer Trap" Konstrukts in Linie 1/44	
III.3.10 Position des Enhancer Trap "Konstrukts in Linie 19930/32	
III.3.11 Position des Enhancer Trap ⁴ Konstrukts in Linie 31000/36	
III.4. Überprüfung isolierter flenkierender Seguenzen der Enhanger Tren" Insertier	$\dots \dots $
Vorhandensein von "Enhancer"-Elementen	
III.4.1. Hypothese 1: Der 5'-Bereich eines benachbarten Gens bewirkt Spezifität o Reportergenexpression	ler 60
III.4.1.1. Überprüfung des Stromaufwärtsbereichs des Gens At5g16560 (Linie	
19960/50):	61
III.4.1.2. Überprüfung des Stromaufwärtsbereichs des Gens At4g00720 (Linie:	
19956/32)	62

III.4.1.3. Überprüfung des Stromaufwärtsbereichs des Gens At4g00730 (Linie: 19956/32)	63
III.4.1.4. Stromaufwärtsbereiche der Gene At4g01455 und At4g01460 (Linie: UCR8	3) 63
III.4.2. Hypothese 2: Ein einzelnes benachbartes <i>cis</i> -Element steuert die Expression des Reportergens	3 65
III.4.2.1. Untersuchung der flankierende Sequenz nach den iPCR-Daten aus Linie JR11-2	66
III.4.2.2. Untersuchung der flankierenden Sequenz nach den iPCR-Daten aus Linie UCR8	67
III.5. Überprüfung von Stromaufwärtsbereichen von Genen mit beschriebenen Expressionsmustern im Mesophyll- und Bündelscheidenzellen	68
III.5.1. Untersuchung des SCR 5'-Stromaufwärtsbereichs	68
III.5.2. Untersuchung des CUE1-5'-Stromaufwärtsbereichs	70
III.5.3. Untersuchung des APX2-5'-Stromaufwärtsbereichs	71
III.5.4. Untersuchung des Sultr2;2-Stromaufwärtsbereichs	72
III.5.5. Untersuchung des Sultr3;3-Stromaufwärtsbereichs	73
III.6. Untersuchung des <i>Sultr2;2</i> -Stromaufwärtsbereichs auf das Vorhandensein von "Enhancer"-Elementen	74
III.6.1. Deletionsanalyse des Sultr2;2-Stromaufwärtsbereichs	74
III.6.2. <i>In-situ</i> -Nachweis der GUS-Expression von Deletionskonstrukten des <i>Sultr2,2</i> -Promotors	74
III.6.3. Fluorimetrischer Nachweis der GUS-Aktivität in den <i>Sultr2;2-</i> Deletionskonstrukten	75
III.6.4. Vergleich der 5'-Stromaufwärtssequenzen der Gene Sultr2;2 und Sultr3;3	76
III.6.5. Überprüfung des distalen Fragments des <i>Sultr2;2</i> -Sromaufwärtsbereichs auf "Enhancer -Aktivität	78
III.7. Suche nach Sultr2;2-verwandten Gen in Flaveria bidentis	79
IV. Diskussion	81
IV.1. Identifizierung zell- und gewebespezifischer Expressionsmuster in "Enhancer Trap' Linien in Arabidopsis thaliana	<u>، -</u> 81
IV.2. Überprüfung flankierender Sequenzen der Insertion und der Stromaufwärtsbereiche benachbarter Gene auf das Vorhandensein zellspezifischer "Enhancer"	82
IV.3. Überprüfung von Promotoren bereits beschriebener Gene	86
IV.4. Sulfattransporter: Verwandtschaft, Funktion und Expression	87
IV.5. Differentiell exprimierte Gene in Oryza sativa und Sorghum bicolor	92
V. Zusammenfassung	95
VI. Literatur	97
VII. Anhang1	06

VII.1. Sequenzen der in den iPCR-Reaktionen aus "Enhancer Trap"-Linien isolierten	
Produkte:	106
VII.2. Sulfattransporter- Sequenz aus Flaveria bidentis:	110
VI.3. Verzeichnis der Proteinsequenzen im phylogenetischen Stammbaum	112
VII.4. Verwendete genomische Sequenzen aus Arabidopsis thaliana zur Herstellung vor Konstrukten	on 114

<u>Abkürzungen</u>

Abb.	Abbildung
bp	Basenpaare
BS	Bündelscheidenzellen
°C	Grad Celsius
ca.	circa
cDNA	komplementäre DNA
DNA	Desoxyribonukleinsäure
g	Gramm
GFP	grün- fluoreszierendes Protein (green fluorescent protein)
GUS	β-Glucuronidase
h	Stunde
kb	Kilobasenpaare
1	Liter
LB	Leitbündel
MCS	multiple Klonierungsstelle (multiple cloning site)
μl	Mikroliter
Μ	mol/L
μΜ	mikromol/L
MES	2-(N-Morpholino)-ethansulfonat
mg	Milligramm
Min.	Minute
MS	Murashige & Scoog
MU	4-Methylumbelliferon
MUG	4-Methylumbelliferyl-β-D-Glucuronid
NTP	Nukleosidtriphosphat
p. A.	für die Analyse
PCR	Polymerasekettenreaktion (polymerase chain reaction)
PP	Palisadenparenchym
RubisCO	Ribulosebisphosphat-Carboxylase/Oxygenase
SDS	Natriumdodecylsulfat
Sek.	Sekunde
SP	Schwammparenchym
Tris	Tris-(hydroxymethyl)-aminomethan
TSS	Transkriptionsstartpunkt (transcription starting site)
U	Unit
Upm	Umdrehungen pro Minute
V	Volt
v/v	Volumen pro Volumen
w/v	Gewicht pro Volumen
WT	Wildtyp

I. Einleitung:

I.1. Blattentwicklung und Funktion

Die uns bekannte große Vielfalt der Blattformen und Funktionen ist ein beeindruckendes Ergebnis der Jahrmillionen andauernden Evolution. Auch wenn es Ausnahmen gibt, wie z. B. Blattdornen oder Fangblätter fleischfressender Pflanzen, ist weiterhin die Photosynthese die Hauptaufgabe der meisten Blätter (Efroni et al., 2010). Die Entwicklung dieser Organe, welche die Sonnenenergie nutzen, um aus Kohlendioxyd und Wasser Kohlenhydrate und Sauerstoff zu gewinnen, erfordert eine exakte Steuerung (Braybrook & Kuhlemeier, 2010). Die Blattentwicklung beginnt in der Nähe des Apikalmeristems. Dort finden Zellteilungen in den Tunikaschichten statt und haben die Anlage von meristematischen Bereichen zur Folge, den Blattprimordien. Aus diesen Anlagen entstehen durch weitere Zellteilungen Blätter (Esau, 1953; Sinha, 1999). Inzwischen ist auch bekannt, dass *KNOX*-Gene, die für die Erhaltung der Meristemfunktion notwendig sind, an Orten der Entstehung seitlicher Organe reprimiert sind (Braybrook & Kuhlemeier, 2010).

Um den Aufbau eines typischen einfachen Blatts zu demonstrieren und zu studieren, eignet sich die Modellpflanze Arabidopsis thaliana. Die Blätter dieser Spezies sind recht einfach gebaut, mit einfachen Trichomen besetzt und weisen Spaltöffnungen überwiegend an der unteren Blattseite auf. Die Epidermis umschließt das Innere des Blatts, welches in mehrere Gewebetypen unterteilt werden kann (Abb. 1). Auf der dem Spross zugewandten Seite (adaxial) befindet sich direkt unter der Epidermis das Palisadenparenchym. Die Morphologie dieser Zellen ist namensgebend. Das Gewebe besteht aus vielen dicht nebeneinander gepackten, säulenförmigen, chloroplastenreichen Zellen, zwischen denen es kaum Lufträume gibt. Das Palisadenparenchym kann aus einer bis drei Zellschichten bestehen (Sitte et al., 1998). Weil sie der Sonne direkt zugewandt sind, fangen diese Schichten das meiste Licht auf und sind das wichtigste photosynthetisch aktive Gewebe im Blatt. Unter dem Palisadenparenchym, abaxialen Seite befindet an der des Blatts, sich das Schwammparenchym, welches ein Gewebe aus locker angeordneten Zellen mit vielen Interzellularräumen bildet. In diesem Gewebe findet vor allem der Gasaustausch statt. Das Versorgungssystem in der Pflanze bilden die Leitgefäße. Hier wird Wasser mit Spurenelementen und Mineralstoffen von den Wurzeln bis zu den Blättern transportiert, während Assimilate den umgekehrten Weg zurück zu den Wurzeln nehmen, wo sie bei einigen Pflanzen in Form von Stärke in Knollen (z. B. Kartoffel, Solanum tuberosum) oder

direkt in der Wurzel (Rübe, *Beta vulgaris*) gespeichert werden. Während die Zellen des Xylems die Wasserleitung ermöglichen, leiten die Zellen des Phloems den Pflanzensaft.

Abbildung 1: Schematische Darstellung des Aufbaus eines Blatts von Arabidopsis im Querschnitt.

In Blättern von Arabidopsis ist das Xylem adaxial im Leitbündel lokalisiert, das Phloem abaxial (Dinneny und Yanofsky, 2004). Die Leitbündel sind von einer weiteren Art von spezialisierten Zellen umgeben, den Bündelscheidenzellen. Diese Zellen sind den Leitbündeln direkt benachbart und durch ihre Lage, Morphologie und Stoffwechsel als ein eigener Zelltyp klassifiziert und bilden eine Verbindung zwischen dem Leitgewebe und dem Blattparenchym. In C₃-Pflanzen fallen diese nicht besonders auf, sind aber bereits mehrfach beschrieben worden (Kinsman & Pyke, 1998; Leegood, 2008). Auch Mutanten wie z. B. reticulate leaf mutants zeigen, dass die Bündelscheidenzellen der C3-Pflanzen bereits ein eigener Zelltyp sind (Li et al., 1995; Kinsmann & Pyke, 1998). Eine besondere Spezialisierung zeigen dagegen Blätter einiger C₄-Pflanzen (Sage, 2004). Das Blattgewebe ist bei einigen C₄-Arten deutlich in Mesophyll und Bündelscheidenzellen unterteilt, so dass eine als "Kranzanatomie" bezeichnete Anordnung erkennbar ist. Die Anordnung und Arbeitsteilung dieser Gewebetypen entwickelte sich in der Vorzeit als Strategie um Photorespiration weitgehend zu umgehen. C₄ Pflanzen haben eine effizientere Methode entwickelt CO₂ fixieren, als sie bisher in C₃ Pflanzen zu finden war (Hatch & Slack, 1966). Dabei sind mehrere verschiedene C₄-Photosynthesewege beschrieben worden (Sage, 2004). Das CO₂-fixierende Enzym RubisCO

ist zu einer frühen Zeit entstanden, als die CO₂-Konzentration in der Atmosphäre noch relativ hoch war (Hayes, 1994). Das Enzym ist in der Lage bei CO₂-Mangel auch O₂ als Substrat zu verwenden. Sinkt der CO₂-Partialdruck in den Blättern von C₃-Pflanzen, so wird O₂ unter Verwendung von Energie und Zuckerabbau fixiert. Photorespiration ist die Folge. Um den Verlust der gespeicherten Energie zu vermeiden, wurde die RubisCO in einigen C₄-Pflanzen in die Bündelscheidenzellen verlagert. Die in den Mesophyllzellen exprimierte Phosphoenolpyruvat-Carboxylase (PEPC) hat die Aufgabe der Primärfixierung von CO₂ übernommen. Das fixierte CO2 wird in eine transportfähige Form eingebaut und aus dem Mesophyll in die Bündelscheidenzellen transportiert. Dieses System konzentriert CO2 am Wirkort der RubisCO, wodurch die Photorespiration nahezu völlig unterdrückt werden kann (Ku et al., 1996). Dort wird das CO2 wieder freigesetzt und das Pyruvat wieder zurück in die Mesophyllzellen befördert. In den Bündelscheidenzellen fixiert die RubisCO CO2 in einem sekundären Schritt und arbeitet somit an ihrem Aktivitätsoptimum. Pflanzen des NADP-ME-Typs besitzen einen Chloroplastendimorphismus (Kubicki et al., 1994). In den Bündelscheidenzellen fehlt das Photosystem II, eine wichtige Komponente der Hill-Reaktion. Dies verhindert die Freisetzung von CO2 am Wirkungsort der RubisCO und wirkt ebenfalls der Photorespiration entgegen (Woo et al., 1970). Die Spezifität der Genexpression spielt hier eine wichtige Rolle.

Die Entstehung der Blattpolarität und ihrer Substrukturen ist durch ein Netzwerk von Aktivitäten verschiedener Gene gesteuert (Byrne, 2005; Chitwood et al., 2007) (Abb. 2). Die Identität der adaxialen Seite wird bereits im Blattprimordium festgelegt, durch Expression der Gene PHAN (PHANTASTICA) (Waites und Hudson, 1995), PHB (PHABULOSA) (McConnell et al., 1998), PHV (PHAVOLUTA) (McConnell et al., 2001), REV (REVOLUTA) (Talbert et al., 1995; Otsuga et al., 2001), CNA (CORONA) (Sessa et al., 1998, Green et al., 2005). Werden diese Gene ausgeschaltet, führt dies häufig zu einer fehlerhaften Entwicklung des Blatts. Die Entwicklung der abaxialen Seite wird durch die Funktion von KANADI (Kerstetter et al., 2001), miRNA166 und YABBY (Siegfried et al., 1999) gesteuert. Allerdings konnte gezeigt werden, das YABBY in Maisblättern adaxial exprimiert wird (Chitwood et al., 2007). Die Polarität der Expression von YABBY variiert von Spezies zu Spezies, ist jedoch in der Funktion in der Blattentwicklung konserviert. Neueste Untersuchungen zeigen, dass die Polarität auch durch eine Reihe von Faktoren gesteuert wird, die sich gegenseitig supprimieren (Husbands et al., 2009). In der adaxialen Region des Blattprimordiums wird die mikro-RNA miR390 exprimiert. Diese steuert die Biogenese der TAS3 (TRANS ACTING SIRNA 3) ta-siRNAs welche die Expression von abaxial exprimierten Genen wie miRNA166

in der abaxialen Seite verhindern. In Kombination mit dem Effektorkomplex AGO1 und AGO7 (ARGONAUTE) werden ta-siRNAs und tasiR-ARFs gebildet und die Expression der ARF (AUXIN RESPONSE FAKTOREN)-Faktoren in der adaxialen Seite supprimiert (Allen et al., 2005; Husbands et al., 2009). Die Entwicklung der proximo-distale Achse wird durch *Knox*-Gene gesteuert (Byrne et al., 2001; Chitwood et al., 2007).

Missexpression von Entwicklungsgenen, führt oft zu gravierenden Veränderungen in der Blattmorphologie. Daher ist hier eine zell- und gewebespezifische Expression der Gene notwendig. Mutanten wie *scr* (*scarface*) oder *mp* (*monoptereos*) zeigen, dass es auch Gene gibt, welche die Gefäßentwicklung steuern (Dengler & Kang, 2001).

Abbildung 2: Schematische Darstellung der Interaktionen zwischen Genen bei der Etablierung der adaxialabaxialen Polarität im Blatt von Arabidopsis thaliana. Grün: Interaktionen auf Proteinebene, Schwarz: Interaktionen auf sRNA (small RNA) –Ebene. Gestrichelte Linien zeigen vermutete Interaktionen (Chitwood et al., 2007).

Der MYB-Transkriptionsfaktor APL (ALTERED PHLOEM DEVELOPMENT) legt die Phloemidentität fest (Bonke et al., 2003). Sowohl in der Entwicklung als auch im reifen Blatt gibt es Gene die zell- oder gewebespezifisch exprimiert werden müssen, um die Funktion der Gewebe zu erhalten. Neben der spezifischen Expression der Photosynthesegene in den C₄-Pflanzen und der für die normale Entwicklung essentiellen Gene, gibt es Gene, die zellspezifisch exprimiert werden, um die Versorgung der Zellen mit Nährstoffen und Spurenelementen aufrecht zu erhalten.

I.2. Zellspezifisch aktive Sequenzen und cis-Elemente

Ein typisches eukaryotisches Gen, das irgendwo in einem DNA-Strang zu finden ist und zum Beispiel ein Protein kodiert, enthält eine genaue Information, welche die Zelle benutzt, um ein

funktionsfähiges Protein zu synthetisieren. Genauer betrachtet handelt es sich bei dieser Information jedoch nur um eine konservierte Basenabfolge, die meist mit einem Translationsstart beginnt und einem Translationsstopp endet. Für die Transkriptionsmaschinerie einer Zelle ist die kodierende Einheit des Gens in Abwesenheit seiner flankierenden regulatorischen Sequenzen völlig nutzlos. Erst durch das Vorhandensein einer Reihe von Erkennungssequenzen und Modulen, durch welche festgelegt wird, ob ein Gen abgelesen wird und wie sein räumliches und zeitliches Expressionsmuster gesteuert wird, sowie durch welche Faktoren es aktiviert werden kann, wird die kodierende Einheit zu einem funktionsfähigen Gen (Wray et al., 2003). In der Regel befinden sich die meisten für die Transkription notwendigen Erkennungssequenzen in einigen wenigen Kilobasenpaaren im Stromaufwärtsbereich von Genen. Während die kodierenden Einheiten der Gene in der Evolution sehr konserviert geblieben sind, ist es meist sehr schwierig konservierte Module in den Stromaufwärtsbereichen von Genen zu finden.

Zwei wichtige Komponenten in den Stromaufwärtsbereichen von Genen lassen sich bisher nicht aus der Sequenz herleiten. Eine der beiden Komponenten ist der Kernpromotor. Es handelt sich hierbei um einen Bereich von etwa hundert Basenpaaren im Bereich -60 bis +40 relativ Position des Transkriptionsstartpunkts. Hier befinden sich zur alle Erkennungssequenzen, die für die Bindung der allgemeinen Transkriptionsfaktoren und des RNA-Polymerase II Holoenzymkomplexes notwendig sind. Der Kernpromotor ist in der Lage Expression bewirken (Shahmuradov eine basale zu et al.. 2005). Bei der Transkriptionsinitiation binden die Proteine des Transkriptionskomplexes an den Kernpromotor. Weitere regulatorische Module werden an die Stelle herangezogen, wodurch DNA-Schleifen "Loops" gebildet werden (Abb.3). Weit entfernte "Enhancer" können hierbei herangezogen werden. Ein bekannter Bestandteil des Kernpromotors ist die TATA-Box, die sich im Bereich von -45 bis -25 bp relativ zum Transkriptionsstartpunkt (TSS: transcription starting site) befindet. Allerdings kommt sie nur in 30-50% der bisher bekannten pflanzlichen Promotoren vor (Shahmuradov et al., 2005). In mehr als 80% der Promotoren von Säugetiergenen, die Proteine kodieren, fehlt die TATA-Box ebenfalls (Anish et al., 2009; Sandelin et al., 2007). Gene dieser Art besitzen oft multiple TSS, die zu einer Diversität und Komplexität des Transkriptoms und Proteoms von Säugetieren beitragen (Sandelin et al., 2007). Bei TATA-losen Genen erfolgt die Transkriptionsinitiation an einer Transkriptionsinitiationsregion (Inr: transcription initiation region) in der Nähe des Transkriptionsstartpunktes oder am DPE (downstream promotor element) welches sich Stromaufwärts des TSS befindet.

Die Nächsten 200 bis 300 bp der Stromaufwärtssequenz des Gens beinhalten den proximalen Promotor, welcher Elemente für die Bindung von Transkriptionsfaktoren enthält, sowie Modulen, die Spezifität vermitteln.

Die zweite bedeutende Komponente des Stromaufwärtsbereichs ist der distale Promotor. Hier befinden sich weitere Steuerelemente des Gens, zu denen weitere Bindestellen für Transkriptionsfaktoren zählen. Hier sind "Enhancer" lokalisiert, welche die Genexpression verstärken, sowie "Silencer", durch welche die Genexpression stillgelegt werden kann. Die genaue Lage dieser Elemente ist schwer vorhersagbar. Oft existieren mehrere "Enhancer"-Module im Stromaufwärtsbereich, die unterschiedlich aktiv sein können. Es sind bisher nur wenige "Enhancer"-Elemente bekannt, die eine zell- oder gewebespezifische Expression steuern. In den meisten Fällen sind Sequenzen von mehreren Kilobasenpaaren isoliert worden, die eine zellspezifische Reportergenexpression bewirken können.

Abbildung 3: Prinzip der Transkriptionsinitiation. (Wray et al., 2003). Zusammenlagerung der Transkriptionsmaschinerie an einem Kernpromotor und Wechselwirkung mit "Enhancer"-Elementen unter Ausbildung einer Schleifenstuktur in der DNA.

Nachdem zwei Gene aus *Flaveria trinervia* untersucht worden sind, die differentiell in Mesophyll und Bündelscheidenzellen exprimiert werden, konnten Regionen in den 5'-Stromaufwärtsbereichen dieser Gene gefunden werden, die eine zellspezifische Genexpression steuern. Eines der Gene ist die C₄-Phosphoenolpyruvat-Carboxylase aus *Flaveria trinervia*, die im Blatt mesophyllspezifisch exprimiert wird. Durch Vergleich der C₃-Form des Gens aus *Flaveria pringlei* und anderen verwandten Flaverien konnte im 5'-Stromaufwärtsbereich des Gens ein Bereich gefunden werden, der als MEM1 bezeichnet worden ist (*mesophyll expression module 1*) (Gowik et al., 2004). In der C4-Pflanze *Flaveria* *trinervia* bestand die MEM-Region aus 41 bp. Der Vergleich mit verwandten Pflanzen der Gattung *Flaveria* hat gezeigt, dass dieser Bereich in zwei Module unterteilt werden kann, die je nach Spezies durch eine Sequenz von etwa hundert Basenpaaren getrennt sind. In den C₄-Formen existiert in der MEM-Region ein CACT-Motiv, welches essentiell für die mesophyllspezifische Expression der C₄-Form des Gens ist (Gowik et al., 2004).

Ebenso wurde im Stromaufwärtsbereich des *GLDPA*-Gens (Glycin-decarboxylaseuntereinheit P) ein Bereich gefunden, der genügt, um eine Reportergenexpression in den Bündelscheidenzellen von *Arabidopsis* zu bewirken (Engelmann et al., 2008). Der in sieben Bereiche eingeteilte Promotor enthält im distalen Bereich 1 und 2, in einer Entfernung von etwa 1,5 kb vor dem Transkriptionsstartpunkt Elemente, welche die Transkription verstärken. Die Elemente für Spezifität befinden sich stromaufwärts, in der Nähe des Transkriptionsstartpunktes. Es sind im Fall des *GLDPA*-Promotors noch zusätzliche Versuche notwendig, um den Bereich weiter einzugrenzen.

Bisher sind auch in *Arabidopsis* nur wenige "Enhancer" gefunden worden. Es sind Stromaufwärtsbereiche von ein oder zwei Kilobasenpaaren bekannt, die Zellspezifität steuern. Ein "Enhancer"-Element ist beschrieben worden, der zellspezifische Reportergenexpression im Eiapparat (Eizelle und Synergiden) bewirkt. Der nur 77 bp große Bereich befindet sich zwischen den Genen At4g37530, einer Peroxidase und At4g37540, einem LOB-Domänen Protein (*lateral organ boundaries*) (Yang et al., 2005). Desweiteren ist ein kryptischer "Enhancer" bekannt, der eine Reportergenexpression in Spaltöffnungen steuert (Plesch et al., 2000).

Die Suche nach einem zellspezifischen "Enhancer"-Element ist genauer betrachtet auch eine Suche nach einem zellspezifisch aktiven Transkriptionsfaktor, der an eine Erkennungssequenz bindet und dem Zielgen eine Zellspezifität verleiht, sowie nach einer Erklärung, welches interne oder externe Signal diesen Transkriptionsfaktor zellspezifisch macht.

I.3. "Enhancer Trapping" als Werkzeug zur Detektion spezifisch exprimierter Gene

Die Markierung von Genen mit Hilfe von Reportergenkonstrukten, ist zuerst in *Drosophila* erfolgreich durchgeführt worden, unter der Verwendung des in diesem Organismus natürlich vorkommenden, transponierenden P-Elements (Bellen et al., 1989; Bellen 1999; O'Kaine et al., 1987). Inspiriert von diesem System, wurde ebenfalls eine für Pflanzen verwendbare Methode der Genmarkierung entwickelt (Koncz et al., 1989), die zur Herstellung zahlreicher Reportergenkonstrukte geführt hat (Campisi et al., 1999; Haseloff 1999; Springer 2000). Das

Prinzip der "Enhancer"- Falle basiert auf der Verwendung eines Reportergens mit einem Minimalpromoter. Wird ein Wirtsorganismus, wie zum Beispiel Arabidopsis thaliana transformiert, dann inseriert das Konstrukt stabil ins Genom der Pflanze. Inseriert es in die Nähe eines "Enhancers", so wird die Reporterexpression von diesem aktiviert. Gehört der "Enhancer" zu einem benachbarten Gen, dann wird das Konstrukt im gleichen Muster wie das Gen exprimiert. Ebenso können "Gene Traps" verwendet werden. Der Unterschied zu einem "Enhancer Trap"-Konstrukt bestand darin, dass hier anstatt eines Minimalpromotors vor dem Reportergen, ein 3'-Spleiß-Akzeptor verwendet worden ist. Dieser ermöglicht die Expression des Konstrukts, in Form eines Fusionsproteins, sobald dieses in ein Intron eines Gens inseriert. Außerdem wurden auch sogenannte "Promotor Traps" entwickelt, Reportergenkonstrukte ohne Promotor, die aktiviert werden, sobald die Insertion in ein Exon eines Gens erfolgt (Springer 2000). In Arabidopsis thaliana sind bisher zahlreiche Linien mit spezifischen Expressionsmustern hergestellt worden (Campisi et al., 1999; Geisler et al., 2002). Diese Linien werden verwendet, um spezifisch exprimierte Gene zu finden und vor allem die cis-Elemente, welche diese Expression steuern. Eine stabile Transformation von Pflanzen ist jedoch nicht immer möglich, denn es sind bisher nicht viele Vektorsysteme bekannt. Die Transformation von Arabidopsis ist dagegen vergleichsweise einfach. Genutzt wird hier ein in der Natur vorkommender Weg der Infektion durch ein Bodenbakterium (De la Riva et al., 1998). Agrobacterium tumefaciens ist ein natürlich vorkommender Prokaryot, der Tumore und Wurzelhalsgallen an befallenen Pflanze verursacht. Infizierte Pflanzen bilden Kalli, aus welchen Opine freigesetzt werden. Es handelt sich hierbei um Aminosäuren, die den parasitierenden Bakterien als Kohlenstoff- und Stickstoffquelle dienen. Infiziert werden die Pflanzen meist durch Verletzungen, wie sie z. B. durch Insekten hervorgerufen werden. Dabei dringen die Bakterien an den verletzten Stellen ein und übertragen einen Teil ihrer DNA in die Pflanzenzellen. Möglich wird dies durch das Vorhandensein des Ti-Plasmids (Tumorinduzierendes Plasmid) und der darauf kodierten Vir-Gene (Hooykaas & Shilperoot, 1992). Um dieses Bakterium als Vektor zu nutzen, wurde das Plasmid "entschärft", indem die Tumorgene entfernt wurden. Stattdessen können je nach Verwendungszweck beliebige DNA-Fragmente in die T-DNA-Region eingebaut werden. Meist handelt es sich um Selektionsmarker und ein Reportergen, die es ermöglichen, eine erfolgreiche Transformation zu detektieren. Die Transformation von Arabidopsis ist in der Durchführung einfach. Blühende Arabidopsis-Pflanzen werden in einer Agrobakterienlösung getaucht (Clough & Bent 1998). Ziel der Transformation mit Hilfe dieser "Floral-Dip"-Methode sind die Ovarien.

Das Saatgut dieser Pflanzen kann dann auf das Vorhandensein eines Selektionsmarkers selektiert werden.

Es werden "Enhancer Trap"-Konstrukte verwendet, die sich in ihrem Aufbau sehr voneinander unterscheiden. Einfach strukturierte Konstrukte tragen neben einem Selektionsmarker (oft Kanamycin-, Glufosinat- oder Hygromycin-Resistenzgene) nur ein GUS-Reportergen, vor das ein Minimalpromotor fusioniert worden ist (Abb. 4a). Das Fragment inseriert einmalig in das Genom und bleibt stabil integriert. Das von Poethig & Haseloff verwendete Konstrukt (http://enhancertraps.bio.upenn.edu/) bietet die Möglichkeit der Transaktivierung (Abb. 4b). Neben einem Reportergen und dem Selektionsmarker trägt Konstrukt das ein VP16-GAL4-Fusionsprotein. VP16 ist eine Domäne des Transkriptionsaktivatorproteins VP16 aus Herpes simplex (Sadowski et al., 1988), das unter der Kontrolle des Minimalpromotors steht und die Expression von GAL4 in der Pflanze ermöglicht. GAL4 ist ein Hefetranskriptionsaktivator. Das detektierbare Reportergen steht unter der Kontrolle eines UAS-Moduls (upstream activating sequence), welches einem "Enhancer" entspricht. Hier muss ein benachbarter "Enhancer" zunächst die GAL4-Expression anschalten, die wiederum die Reportergenexpression aktiviert. Wird eine solche "Enhancer Trap"-Linie mit einem Konstrukt transformiert, das vor dem Reportergen ein UAS-Modul trägt, so lässt sich dieses im Muster der Reportergenexpression koexprimieren oder es können Gene gezielt in den exprimierenden Zellen ausgeschaltet werden. In diesem Konstrukt wurde mgfp-5-ER als Reportergen verwendet (Haseloff, 1999). Es ist eine Modifikation des ursprünglich aus der Quallenart Aequora victoria stammenden GFP-Proteins (green fluorescing protein).

Abbildung 4: Schematische Darstellung der zur Herstellung von "Enhancer Trap"-Linien verwendeten Konstrukte. T. Jack (Campisi et al., 1999) (a); S. Poethig/J. Haseloff (http://enhancertraps.bio. upenn.edu/) (b). Ein blauer Pfeil deutet auf die Möglichkeit der Transaktivierung eines zweiten transformierten Konstrukts; P. Springer und R. Martienssen (Springer, 2000; http://genetrap.cshl.org/) (c).

Dem GFP-Protein ist eine Signalsequenz angefügt worden, die es für den Transport in das Endoplasmatische Retikulum bestimmt (Haseloff et al., 1995). Ein kryptisches Intron wurde herausgeschnitten, um ein Fehlspleißen in Pflanzen zu verhindern (Haseloff et al., 1997). Durch eine Modifikation der Proteinsequenz wurden die Fluoreszenzeigenschaften verändert. Die ursprünglichen zwei Anregungsmaxima des GFP-Proteins, bei 395 nm und 475 nm, erreichen im modifizierten Protein die gleiche Amplitude, mit einem Emmissionsmaximum von 509 nm (Siemering et al., 1996).

Die Herstellung von "Enhancer Trap"-Konstrukten mit Hilfe mobiler genetischer Elemente ist eine weitere, jedoch komplizierte Methode (Springer, 2000). Das aus Mais bekannte Ac/Ds-System (Ac: <u>Ac</u>tivator, Ds: <u>Dis</u>sociation; McClintock, 1950) wurde ebenfalls in *Arabidopsis* verwendet, um "Enhancer Trap"-Linien herzustellen. Dafür wurde es so modifiziert, dass es kontrolliert werden kann (Long et al., 1993). Das Ac-Element, welches ein Transposase-Gen trägt, ist hier stabil in das Genom integriert und nur das Ds-Element kann transponieren. Bei diesem Verfahren werden das Ac-Element und das Ds-Element jeweils unter Verwendung einer T-DNA und des Agrobakteriums in *Arabidopsis* transformiert. Es werden dabei zwei Linien hergestellt, die ein stabil im Genom inseriertes Ac oder ein Ds-Element besitzen. Um das Ds-Element (Abb. 4c) zu mobilisieren, werden beide Linien gekreuzt. Anschließende Kreuzungen sind notwendig, um das Ac-Element zu entfernen. Beide Konstrukte enthalten das *IAAH*-Gen (Indolaceamidhydrolase) als Selektionsmarker. Nachkommen dieser Pflanzen, in denen das Ds-Element transponiert ist und das Ac-Gen fehlt, sind NAM (Naphtalenacetamid)-resistent und Kanamycinresistent (Sundaresan et al., 1995).

I.4. Zielsetzung

Das Ziel dieser Arbeit war es, zellspezifische "Enhancer" zu identifizieren, die eine palisadenparenchym-, schwammparenchym- oder bündelscheidenspezifische Expression im Blatt von *Arabidopsis thaliana* steuern. Es wurden dazu zwei Strategien gewählt.

Die erste Strategie war, "Enhancer Trap"-Linien von *Arabidopsis thaliana* zu nutzen, um zellspezifische "Enhancer" zu finden. Dafür wurden "Enhancer Trap"-Linien mit zellspezifischen Reportergen-Expressionsmustern gesucht und die Positionen der "Enhancer Trap"-Insertionen bestimmt. Flankierende Sequenzen des inserierten "Enhancer Traps" sollten auf das Vorhandensein von *cis*-regulatorischen Elementen untersucht werden.

Die zweite Strategie war Promotoren bereits bekannter zellspezifisch exprimierter Gene zu verwenden, um zellspezifische "Enhancer" zu finden.

Flankierende Sequenzen der Insertionsereignisse, sowie bekannte Promotoren sollten mit einem GUS Reportergen fusioniert werden, um die Expressionsmuster zu untersuchen.

Eine klassische Deletionsanalyse wurde gewählt, um die Position des "Enhancers" in einem DNA-Fragment zu bestimmen.

II. Material / Methoden:

II. 1. Material

Die in dieser Arbeit verwendeten Chemikalien waren von p.A.-Qualität. Bezogen wurden

diese von folgenden Firmen:

MERK	(Darmstadt)
AppliChem GmbH	(Darmstadt)
BIOMOL GmbH	(Hamburg)
VWR	(Leuven)
Sigma-Aldrich Chemie GmbH	(Steinheim)
Carl Roth GmbH	(Karlsruhe)
ROTH	(Karlsruhe)
Amersham Biosciences	(Freiburg)

Restriktionsenzyme und modifizierende Enzyme wurden von folgenden Firmen bezogen:

(St. Leon-Rot)
(Mannheim)
(Frankfurt am Main)
(Carlsbad)

II.1.1.Vektoren und Bakterienstämme

Die Klonierung von PCR-Fragmenten erfolgte mit Hilfe des "TOPO TA Cloning Kit" for Sequencing (Invitrogen), sowie des "pJET1.2/blunt GeneJETPCR Cloning Kit" (Fermentas).

Verwendete Vektorplasmide:

pCR [®] 4-TOPO [®]	(Invitrogen)
pCR [®] 2.1- TOPO [®]	(Invitrogen)
pJET1.2/blunt	(Fermentas)
pGEM [®] -T Easy Vektor	(Promega, Madison, USA)
pDONR TM 221	(Invitrogen)
pBI121	(Clontech, Paolo Alto, USA)
pMDC164	(Curtis und Grossniklaus, Plant Physiology 2003)

Verwendete Bakterienstämme:

E. coli:

One Shot [®] Top10	F ⁻ mcrA Δ (mrr-hsdRMS-mcrBC) Φ 80, lacZ Δ M15 Δ lacX74 recA1 araD139 Δ (ara-leu) 7697 galU galK rpsL (Str ^R) endA1 nupG (Invitrogen)	
DH5a	(supE44, Δ lacU169 (Φ 80, lacZ Δ M15), hsdR17 (rk ⁻ mk ⁺), recA1, endA1 gyrA96, thi-1, relA1 (Bethesda Research Laboratories, 1986)	

DB3.1 F-gyrA462 endA1 Δ (sr1-recA) mcrB mrr hsdS20(rB-, mB-) supE44 ara-14 galK2 lacY1 proA2 rpsL20(SmR) xyl-5 λ - leu mtl1 (Invitrogen)

Agrobacterium tumefaciens:

AGL1 (EHA 101, recA::bla, pTIBo542ΔT, Mop+, CbR (Hood et al., 1986; Lazo et al., 1991))

II.1.2. Verwendete Primer

In dieser Arbeit wurden Primer verwendet, die von den Firmen Biolegio (Nijmegen, Niederlande), Invitrogen (Karlsruhe) oder Sigma Aldrich (München) synthetisiert worden sind. Die verwendeten Primer sind in den entsprechenden Kapiteln beschrieben.

II.1.3. Datenbanken und Programme

Die in dieser Arbeit verwendeten Programme und Internetquellen wurden in Tabelle 2 zusammengefasst.

Internetadresse	Beschreibung	
Informationen zu "Enhancer Trap"-Linien und Konstrukten		
http://seeds.nottingham.ac.uk/Nasc/detail/2005/bglines.lasso	NASC (Nottingham Arabidopsis Stock Center)	
	Informationen zu "Enhancer Trap"-Linien	
http://enhancertraps.bio.upenn.edu	Informationen zu Linien von S. Poethig	
http://genetrap.cshl.org/traps.html	Informationen zu Linien von Springer und	
	Martienssen	
Datenbanken, Informationen über Gene		
http://www.arabidopsis.org	TAIR (The Arabidopsis Information Resource)	
http://www.ncbi.nlm.nih.gov	NCBI (National Center for Biotechnology	
	Information)	
http://plants.ensembl.org/	Ensembl Genomes Browser	
http://www.phytozome.net	Phytozome	
http://www.greenphyl.cirad.fr/cgi-bin/greenphyl.cgi	GreenPhyl	
http://signal.salk.edu/cgi-bin/atta	ATGED (Arabidopsis Transcriptome Genomic	
	Express Database)	
http://efp.ucr.edu/	eFP-Viever	
http://sorghumdiversity.org/cgi-	Sorghum-Datenbank	
bin/sorghum/searches/webform/genelocus_search		
Phylogenetische Analyse und Sequenzvergleiche		
http://www.genomatix.de/cgi-bin/dialign/dialign.pl	Genomatix, DiAlign	
http:// http://blast.ncbi.nlm.nih.gov/Blast.cgi	BLAST (Basic Local Alignment Search Tool)	
Sequenzuntersuchungen/Promotoranalyse		
http://www.dna.affrc.go.jp/PLACE	PLACE (Database of Plant Cis-acting	
	Regulatory DNA-Elements)	
http://bioportal.bic.nus.edu.sg/tres/	TRES: TRANSFAC Matrix Scan	
	(Transcription Regulatory Element Search)	
http://www.plantpan.mbc.nctu.edu.tw/	PlantPAN (Plant Promoter Analysis Navigator)	

Tabelle 1: Verwendete Datenbanken und Programme.

DNA-Sequenzen wurden mit dem Programm Vektor NTI 7 analysiert (Invitrogen Life Science Software). Zusätzlich wurde auch das Programm MacMolly®Tetra, Version 3.8, Soft Gene GmbH (Schöneberg et al., 1998) verwendet. Chromatogramme wurden mit dem Programm 4 Peaks Version 1.7.2 ausgewertet (A. Griekspoor & T. Groothius, www.mekentosj.com, 2006).

Die Berechnung des Phylogenetischen Stammbaums der Sulfattransporter wurde von Oliver Deusch (Institut für Ökologische Pflanzenphysiologie) durchgeführt. Das Alignement wurde mit dem Programm MUSCLE erstellt (Edgar, 2004). Zur Erstellung des Stammbaums wurde dabei das Programm PhyML (Guindon et al., 2003) benutzt, unter Verwendung der Maximum-Likelyhood Methode und integrierter Bootstrap-Analyse. Es wurden 1000 Replikate gerechnet. Die Höhe des Bootstrap-Wertes zeigt die Häufigkeit an, mit der ein Ast berechnet worden ist und damit die Nähe der Verwandtschaft. Visualisiert wurde der Stammbaum im Programm FigTree Version 1.1.1 (Tree Figure Drawing Tool, A. Rambaut, Edinburgh)

II.2. Methoden

II.2.1. Isolation von Gesamt-DNA aus Arabidopsis thaliana

Die Isolation von Gesamt-DNA für inverse PCR erfolgte nach Chen & Dellaporta (1994). Etwa 2 g Pflanzenmaterial wurden unter flüssigem Stickstoff aufgeschlossen. Das Pulver wurde in 8 ml Extraktionspuffer (7 M Harnstoff, 0,3 M NaCl, 1 % [w/v] Sarkosyl, 0,02 M EDTA, 0,05 M Tris, pH 8,0) aufgenommen, unter Rühren resuspendiert und in ein SS34-Zentrifugenröhrchen überführt. Die Suspension wurde 5 Min. bei 37°C inkubiert und anschließend mit 8 ml Phenol/Chloroform versetzt. Nach gründlichem Mischen wurden die Proben 10 Min. bei 5000 Upm zentrifugiert, um eine Phasentrennung zu erreichen. Die DNA wurde aus der wässrigen Phase, in einem 30 ml Corex-Röhrchen, mit 8 ml Isopropanol gefällt. Anschließend wurde das Pellet mit 70%igem Ethanol gewaschen, um Salze zu entfernen. Nach Lufttrocknung des Pellets wurde die DNA in 500 μ l Tris-Puffer pH 8,0 rückgelöst. Nach einer anschließenden RNase-Behandlung wurde die DNA mit Phenol/Chloroform gereinigt, gefällt und nach dem Trocknen in 100 μ l 10 mM Tris-Puffer pH 8,0 rückgelöst.

Für die Amplifizierung von langen Fragmenten wurde die DNA nach der Methode von Fulton et al. (1995) isoliert. Für Test-PCRs wurde DNA nach Edwards et al. (1991) isoliert.

II.2.2. Isolation flankierender Sequenzen mittels iPCR

Um die Insertionspositionen der "Enhancer Trap"-Konstrukte zu bestimmen, wurde genomische DNA mit dem entsprechenden Restriktionsenzym geschnitten und anschließend Phenol/Chloroform gereinigt. 500 ng der geschnittenen DNA wurden dann mit der T4-Ligase

in einem Volumen von 250 μ l vier Stunden bei RT ligiert. Die Reaktion wurde durch eine Inkubation für 15 Min. bei 65°C gestoppt und mit 1/10 Volumen 3 M Natriumacetat (pH 6,5) und 3 Volumen 96% Ethanol für eine halbe Stunde bei -70°C gefällt. Das DNA-Pellet wurde einmal mit 70% Ethanol gewaschen, getrocknet und in 15 μ l sterilem H₂O rückgelöst. Je 5 μ l davon wurden in der PCR eingesetzt. Die in Tabelle 2 aufgelisteten Primer wurden verwendet, um die Insertionspositionen der "Enhancer Trap"-Konstrukte in den *Arabidopsis*-Linien zu finden.

Primer	Sequenz 5' \rightarrow 3'	Bemerkungen
	P. Springer	
Primer 5RA	TACCTCGGGTTCGAAATCGATC	
Primer 5FA	ACGGAAACGGGATATACAAAACGG	Primer für die linke
Primer 5FI	GTAGAGCTAGTTTCCCGACCGT	Grenze der T-DNA
Primer 5RI	TACGATAACGGTCGGTACGGG	
	J. Haseloff/ S. Poethig	·
LB1*	TTGATTTATAAGGGATTTTGCCGA	
2443A	CCTTCACCCTCTCCACTGACAG	
LB3*	CCACCCCAGTACATTAAAAACGTC	Primer für die linke
RP3	AGTGAATTAATTCCCGATCTAGTAA	Grenze der T-DNA
RP4	GACACCGCGCGCGATAATTTATCCTA	
FP4	AACCACCATCAAACAGGATTTTCGCCT	
RP1	CACTTCGGCTTCTTCTTGGAGCACTT	
RP2	CGATGGAGGACAGGAGCTTCATTGT	Primer für die rechte
FP1	TTATGATTAGAGTCCCGCAATTATACATT	Grenze der T-DNA
FP2	AACAAAATATAGCGCGCAAACTAGGATA	
T. Jack		
oligo 156 rev	GATCCGTCGTATTTATAGG	Primer für die linke
oligo 155*	ATAACGCTGCGGACATCTAC	Grenze der T-DNA
oligo 86*	TCGGGCCTAACTTTTGGTG	Primer für die rechte
oligo 96*	AGTGCCAAGCTTGCATGC	Grenze der T-DNA

 Tabelle 2: Verwendete Primer zur Identifizierung der Insertionsposition der "Enhancer Trap"-Konstrukte.

 *: Primer, die von den Herstellern der Konstrukte beschrieben worden sind.

Um die Insertionsposition in Linie UCR8 zu bestimmen, wurde die DNA mit der Restriktionsendonuklease Kpn2I (T/CGGA) geschnitten. Für die Positionsbestimmung in Linie UCR10 wurde Bsp68I (TCG/CGA) gewählt. In der ersten iPCR wurden die Primer "5RA" und Primer "5FA" verwendet. Das PCR-Produkt wurde anschließend 1:50 mit bidestillierten Wasser verdünnt. Ein Mikroliter der Verdünnung wurde in der zweiten PCR mit den Primer "5RI" und "5FI" eingesetzt.

Um die Insertionspositionen in den Linien von S. Poethig und J. Haseloff zu bestimmen, wurden je nach Linie unterschiedliche Primerkombinationen verwendet. Die mit EcoRI (G/AATTC) geschnittene und ligierte DNA aus Linie 2443 wurde in der iPCR-Reaktion mit den Primern "2443A" und "LB1" eingesetzt. Die DNA aus Linie 4396 wurde mit BclI (T/GATCA) geschnitten. Für die rechte Grenze der T-DNA wurden in der ersten iPCR-Reaktion die Primer "RP1" und "FP1" verwendet, in der zweiten die Primer "FP2" und "RP2". Um die Positionsbestimmung an der linken Grenze durchzuführen, wurden die Primer Primer "RP3" und "LB1" sowie "FP4" und "RP4" verwendet. Für die Positionsbestimmung in den Linien J2111 und JR11-2 wurde AvaIII (ATG/CAT) gewählt. In der iPCRI wurden "LB1" und "RP3" benutzt, "LB3" und "RP3" in iPCRII.

Zur Bestimmung der Insertionsposition in den Linien von T. Jack wurden die Produkte der ersten iPCR-Reaktion kloniert. Für die Identifizierung der Insertionsposition in Linie 1996/32 wurde die Endonuklease BamHI (G/GATCC) gewählt, um die DNA zu schneiden. Anschließend wurden die iPCR Produkte mit den Primern "oligo 86" und "oligo 96" erzeugt. DNA der Linie 19960/50 wurde mit dem Enzym Taq I (T/CGA) geschnitten, wie auch mit XhoI (C/TCGAG) in einem zweiten Restriktionsansatz. In der iPCR wurden die Primer "oligo 156 rev" sowie "oligo155" verwendet. Die DNA der Linie 31009/36 wurde mit den Restriktionsenzymen AccI und XhoI geschnitten und die Primer "oligo 156 rev" sowie "oligo155" in der iPCR benutzt.

II.2.3. Sequenzierung der PCR-Produkte und Plasmide

PCR-Produkte und Plasmide wurden von der Firma AGOWA (Berlin) sequenziert.

II.2.4. Herstellung von Konstrukten mittels "Gateway"-Rekombination

Um genomische Sequenzen vor das GUS-Gen des pMDC164 und des GpBI121-Vektors zu klonieren wurde das Gateway-Protokoll, wie im Handbuch von Invitrogen beschrieben, befolgt (Version E, 2003). Das System verwendet den Rekombinationsmechanismus aus dem Phagen Lambda (Landy, 1989, Ptashne, 1992). Die Rekombination findet spezifisch an den 15 bp langen att-Stellen statt (attachment). Es können die Rekombinstionsstellen attB (aus E.coli) mit attP (aus Lambda-Phagen) reagieren (BP-Reaktion), sowie attL mit attR (LR-Reaktion). Das Reaktionsvolumen der Rekombinationsansätze wurde halbiert. Primer wurden mit den vorgeschriebenen attB-Rekombinationssequenzen im 5'-Bereich synthetisiert. Die PCR-Produkte wurden über ein 1%-Agarosegel gereinigt und in der BP-Reaktion eingesetzt. Dafür wurde der pDONRTM221-Vektor verwendet (Invitrogen). Die Reaktion wurde für mehrere Stunden oder über Nacht bei RT aufbewahrt. Durch Zugabe von 1 µl Proteinase K wurde die Reaktion gestoppt. Nach Inaktivierung des Enzyms wurden die BP-Reaktionen in DH5a oder TOP10- Zellen mittels Hitzeschock bei 42°C transformiert. Die Plasmide wurden auf Kanamycin selektiert. Für die LR-Reaktion wurde das Konstrukt im pDONRTM221-Vektor linearisiert. Weil der gewählte Eingangsvektor und die Zielvektoren eine Kanamycinresistenz als Selektionsmarker hatten, wurde vor der LR-Reaktion der pDONRTM221-Entry-Klon mit der Endonuklease Eam1105I geschnitten. Dies sollte verhindern, dass in der LR-Reaktion nicht rekombinierte p $DONR^{TM}221$ -Plasmide als Hintergrund wachsen. Der LR-Ansatz wurde mit LR-Klonase-Mix versetzt und mehrere Stunden oder über Nacht bei RT inkubiert. Die Reaktion wurde wie beschrieben gestoppt, in *E.coli* transformiert und selektiert.

II.2.5. Herstellung von Konstrukten mit amplifizierten genomischen Fragmenten

Flankierende Sequenzen der Insertion, sowie Stromaufwärtsbereiche der benachbarten Gene, wurden unter Verwendung der Phusion-Polymerase (Finnzymes, Finland) aus genomischer DNA amplifiziert (Tab.3).

Nr.	Sequenz $5' \rightarrow 3'$	Verwendung
		UCR8
1	AGAAAGCTGGGTATTACCTTCTGTTTTGTCATGTT	Klonierung des 2,9 kb langen Stromauf-
2	AAAAAGCAGGCTTGAAACTCTAGAAGCAACGAG	wärtsbereichs von At4g01455 in pMDC
		164.
3	AAAAAGCAGGCTATTAAAGGTTGCTTCTAGAGT	Klonierung des 6,4 kb langen Stromauf-
4	AGAAAGCTGGGTAATTAGCTTCAACAAAGAAAAAAG	wärtsbereichs von At4g01460 in pMDC
		164.
5	ATT <u>ACCGGT</u> TCTCAGAGGATTGGTGGTGGATAA	Klonierung der 2,9 langen flankieren
6	ATA <u>ATCGAT</u> TTACCTTCTGTTTTGTCATGT	Sequenz der Insertion in pBIMCS3 (mit
		-60+1).
		J2111
7	ATA <u>ATCGAT</u> TATACCGGTAAGATATCCGGGTATCTA	Klonierung des 2 kb langen Stromauf-
8	ATACCCGGGAAATCCCATCAATCAGCTAAG ACCTGG	wärtsbereichs von At5g17850 in pBI121.
		JR11-2
9	ATA <u>ACCGGT</u> AGAAAAAAGAGAAAGTGAAAAGCTTCG	Klonierung der 1 kb langen flankierenden
10	ATAATCGATATGTCTCCGTAGACGTTTTC	Sequenz der Insertion in pBI121MCS2
		(mit -60 +1)
		19956/32/7
11	GGGGACCACTTTGTACAAGAAAGCTGGGTCTTCGCTTTA	Klonierung des 2,7 kb langen Stromauf-
	TTCACCAACC	wärtsbereichs von At4g00720 in pMDC
12	GGGACAAGTTTGTACAAAAAAGCAGGCTTCAAGACTGGC	164
	GCGTGCG	
13	GGGGACCACTTTGTACAAGAAAGCTGGGTAATAAATACA	Klonierung des 1,9 kb langen Stromauf-
	AGAGAAGAAACT	wärtsbereichs von At4g00730 in pMDC
14	GGGGACAAGTTTGTACAAAAAAGCAGGCTAGAGATCTTC	164
	GAGTCATGTTGAC	
		19960/50/1
15	GGGGACAAGTTTGTACAAAAAAGCAGGCTCTCACCGACG	Klonierung des 5,1 kb langen Stromauf-
	TACGTTCGTGTCC	wärtsbereichs von At5g19560 in pMDC
16	GGGGACCACTTTGTACAAGAAAGCTGGGTCTTTCTCTTG	164 und GpBI121
	CTATTGCTGCCAC	
17	ATA <u>GGCGCGCC</u> GATTTTATTCGTTGATTATACAGTAA	Klonierung der 4,3 kb langen
18	TTA <u>GCGATCG</u> CCTAGAAGGTGAAACCAACATTCT	flankierenden Sequenz der Insertion in
		pBIMCS2II

Tabelle 3: Primer zur Amplifizierung flankierender genomischer Sequenzen aus Arabidopsis thaliana.

Zu den amplifizierten Stromaufwärtsbereichen gehörte jeweils die Sequenz stromaufwärts des Translationsstartpukts ATG. Verwendet wurde die isolierte DNA aus dem Wildtyp von *Arabidopsis thaliana* (Columbia). Sequenzen, die in einen Gateway-Eingangsvektor rekombiniert werden sollten, wurden mit Primern amplifiziert, an deren 5'-Enden attB- Sequenzen angefügt worden sind. Teilweise wurden die attB-Sequenzen in zwei aufeinanderfolgenden PCR-Reaktionen angehängt. In der ersten PCR-Reaktion wurde nur ein Teil der attB-Sequenz angehängt, welcher in der zweiten PCR vervollständigt worden ist (Invitrogen, Gateway-Handbuch Version E, 2003). Dies sollte eine unspezifische Bindung des Primers während der PCR-Reaktion vermindern. Die attB-Sequenzen wurden in den folgenden Tabellen unterstrichen. Für die Klonierung von Sequenzen in den pBI-Vektoren wurden Restriktionsschnittstellen verwendet, die an die 5'-Enden der Primersequenzen angehängt worden sind (unterstrichen).

Um die Expressionsmuster bekannter 5'-Stromaufwärtsbereiche von Genen zu überprüfen, die als zell- oder gewebespezifisch exprimiert beschrieben worden sind, wurden die in Tabelle 4 aufgelisteten Primer verwendet. Die Sequenzen wurden aus genomischer DNA des Wildtyps von *Arabidopsis thaliana* (Columbia) amplifiziert.

Nr.	Sequenz $5' \rightarrow 3'$	Verwendung für Amplifizierung:
19	GGGGACAAGTTTGTAGAAAAAAGCAGGCTTCTCTATGAAAAGTG	SCR 5'-Bereich
	GAAATTTACCTGGAA	(Zielvektor:GpBI121)
20	GGGGACCACTTTGTACAAGAAAGCTGGGTGGAGATTGAAGGGTT	
	GTTGGTCGTG	
21	ATA <u>AAGCTT</u> TCTCTATGAAAAGTGGAAATTTACCTGGAA	SCR 5'-Bereich (pBI121)
22	TAT <u>CCCGGG</u> GGAGATTGAAGGGTTGTTGG	
23	ATA <u>GCGATCGC</u> CAAGAAGAGGAAAACCGTTACC	APX2 5'-Bereich (pBI121MCS2II)
24	ATACCCGGGTTTTTTCAAATTCGCTTCCTTCTG	
25	AATCCCGGGCACCACTGTTATCACCTTC	CUE1 5'-Bereich (pBI121)
26	ATAATCGATACGCATTATAACATTT	
27	AAAAAGCTTGCTAATTCTTAGTCATCTTCGTTTGAC	Sultr2;2 5'-Bereich (pBI121)
28	ATACCCGGGTCAGCTCTCTCTCTAGATATATATTAAC	
29	ATA <u>AAGCTT</u> AGAGCCACGCGAATACATTAAC	Sultr3;3 5'-Bereich (pBI121)
30	ATA <u>CCCGGG</u> TTAATTGGTTTTCCTAAGAATTTTTG	

Tabelle 4: Verwendete Primer zur Amplifizierung beschriebener 5'-Genbereiche mit zellspezifischer Expression.

Um Deletionskonstrukte des Stromaufwärtsbereichs des Sulfattransporters *Sultr2;2* zu erstellen (Abb. 70 und Abb. 74), wurden die in Tabelle 5 aufgelisteten Primer benutzt:

Nr.	Sequenz 5'→3'	Verwendung:
31	ATA <u>CCCGGG</u> TCAGCTCTCTCTCTAGATATATATTAAC	Rückprimer für Konstrukte Sa, Sb, Sd und Sf
32	TAA <u>AAGCTT</u> ATGCATCCAAAACATGGCGCCTTCC	Vorwärtsprimer für Konstrukt Sa
33	TTA <u>AAGCTT</u> CTGATCATCTAACATTGTTGGTATGC	Vorwärtsprimer für Konstrukt Sb
34	TTA <u>AAGCTT</u> ATCTCAAGCATGAGTGATAATTTCAAC	Vorwärtsprimer für Konstrukt Sd
35	ATA <u>GGCGCGCC</u> GCATACCAACAATGTTAGATGATCAG	Rückwärtsprimer für Konstrukt Se und
		Teilsequenz im Konstrukt Sf
36	ATT <u>GGCGCGCC</u> GATTGTAGAAATGATTATAACATTC	Vorwärtsprimer für Konstrukt Sf

Tabelle 5: Primer zur Herstellung von Deletionskonstrukten des Sultr2;2- 5'-Bereichs. Unterstrichen wurden die verwendeten Schnittstellen.

Zu Beginn der Arbeiten wurden die isolierten genomischen Sequenzen, welche die "Enhancer Trap"- Konstrukte flankierten, in Gateway-Vektoren kloniert. Aufgrund der geringen Rekombinationseffizienz von Fragmenten einer Größe von mehr als drei Kilobasenpaaren, sowie Resistenzmarkern, unter der Kontrolle eines 35S-Promotors, wurde nach Alternativen gesucht. Dafür ist der pBI121 Vektor modifiziert worden. Um die Klonierung zu erleichtern, wurden Multiple Klonierungsstellen eingefügt (Tab. 6).

Zur Erstellung eines Gateway-kompatiblen Vektors wurde die 1,7 kb lange Gateway-Kassette aus dem Vektor pMDC164, mit den Primern 37 und 38 (Tab. 6), in einer PCR-Reaktion isoliert und aufgereinigt. Der pBI121-Vektor wurde mit den Endonukleasen HindIII und SmaI geschnitten, die Vektorenden mit der Phusion-Polymerase aufgefüllt, das Vektorgerüst gereinigt und das PCR-Fragment in den Vektor ligiert.

Um einen Minimalpromotor (-60+1-Bereich des 35S-Promoters) einzufügen, wurde dieser aus der DNA einer "Enhancer Trap"-Linie von T. Jack amplifiziert (Campisi et al., 1999). Dafür wurden die Primer 39 und Primer 41 für pBI121MCS2 und Primer 40 und 41 für pBI121MCS3 verwendet. Die PCR-Produkte wurden nach Aufreinigung über eine Mini-Säule (Qiagen, Hilden) mit HindIII und XmaI geschnitten und in einen HindIII/XmaI- geschnittenen pBI121-Vektor kloniert. Um den pBI121-Vektor mit Minimalpromotor zusätzlich mit einer MCS auszustatten, in der Endonukleasen schneiden, die eine Erkennungssequenz von acht Basenpaaren besitzen, wurden die die Oligonukleotide 42 und 43 verwendet und in einen HindIII/AscI- geschnittenen pBIMCS2-Vektor ligiert. Hier handelte es sich um Schnittstellen, die aufgrund ihrer Länge, selten in der Pflanzen-DNA schneiden. Um eine MCS (multiple ohne Minimalpromotor einzufügen, wurden zwei komplementäre cloning site) Oligonukleotide synthetisiert, zu einem Doppelstrang zusammengefügt und in den HindIII/XmaI restringierten Vektor ligiert. Der resultierende Vektor pBI121MCS4 wurde unter Verwendung der Oligonukleotide 44 und 45 erstellt. In den pBI121MCSH2BYFP-Vektor wurde die MCS, bestehend aus den Oligonukleotiden 46 und 47 ligiert.

Nr.	Sequenz $5' \rightarrow 3'$	Verwendung/ erstellter Vektor
37	GTGCCAAGCTCTAGTTAATTAAG	Amplifizierung der att-Kasette aus pMDC
38	GAGGCGCGCCAAGCTATCG	164/ GpBI121
39	ATT <u>AAGCTT</u> ACCGGTAGTACTGGCGCGCCCCCACTAT	Amplifizierung des -60+1 Minimalpromotors/
	CCTTCGC	pBI121MCS2 (HindIII/AgeI/Acc113I/AscI)
40	ATT <u>AAGCTT</u> ACCGGTAGTACTAGGCCTCCCACTATCC	Amplifizierung des -60+1 Minimalpromotors/
	TTCGC	pBI121MCS3 (HindIII/AgeI/Acc113I/StuI)
41	ATA <u>CCCGGG</u> TCCTCTCCAAATGAAATGAAC	Rückprimer / pBI121MCS2 und 3
42	<u>AGCTT</u> GCGATCGCGGCCGGCC <u>GG</u>	Erstellung einer MCS / pBI121MCS2II
43	<u>CGCGCC</u> GGCCGGCCGCGATCGC <u>A</u>	(HindIII/AsiSI/FseI/AscI)
44	<u>AGCTT</u> GCGATCGCGGCCGGCCGCGCCCC	Erstellung einer MCS/ pBI121MCS4
45	CCGGGGGCGCCGGCCGGCCGCGATCGCA	(HindIII/AsiSI/FseI/AscI)
46	<u>AGCTT</u> GCGATCGCGGCGCGCCCCCGGG <u>T</u>	Erstellung einer MCS/ pBI121MCSH2BYFP
47	CTAGACCCGGGGGGCGCGCCGCGATCGCA	(AsiSI/AscI/XmaI/XbaI)

Tabelle 6: Oligonukleotide und Primer für Modifizierung des pBI121-Vektors. Unterstrichen wurden die verwendeten Schnittstellen.

Der pBI121 Vektor wurde zunächst mit den Endonukleasen HindIII und SacI restringiert und das Vektorgerüst über ein Agarosegel gereinigt. Die H2BYFP-Kassette wurde an den Schnittstellen XbaI und SacI herausgeschnitten. In einer Triple-Ligation wurden die drei Komponenten über die Kompatiblen enden HindIII, XmaI und SacI ligiert. Weil die HindIII Schnittstelle mehrmals in der H2BYFP-Kassette vorkommt, kann diese für Klonierungen nicht verwendet werden.

II.2.6. "Genome-Walking" in Flaveria bidentis

Um zu überprüfen, ob der nächste Verwandte des *Sultr2;2*-Gens aus *Arabidopsis* in *Flaveria bidentis* im gleichen Muster exprimiert wird, wurde versucht, Stromaufwärtsbereiche des Sulfattransporters aus dieser Pflanze zu isolieren. Basierend auf Kontigs einer Pyrosequenzierung (Gowik & Westhoff unveröffentlicht) wurden genspezifische Primer für "Genome Walking" erstellt. Für den Versuch wurde eine von S. Schulze (Inst. für Entw. und Mol. Biol. d. Pfl.) erstellte DNA-Bibliothek wiederverwendet. Diese Methode basiert auf der Verwendung bekannter genomischer Sequenzen, wie z. B. cDNA-Sequenzen, die genutzt werden, um flankierende unbekannte Sequenzen zu isolieren. Genomische DNA wird mit Enzymen geschnitten, die glatte Enden produzieren. Anschließend wird ein Adaptor bekannter Sequenz ligiert, in dem Bindestellen für Primer liegen. Mit Hilfe von Adaptorprimern und genspezifischen Primern wird die zwischen den Primern vorhandene Sequenz amplifiziert. Die Entstehung unspezifischer Produkte wird durch die Struktur des Adaptors unterdrückt (User Manual, Clontech, Palo Alto USA).

Die in der Tabelle 7 notierten Primer wurden in diesem Versuch verwendet.

Nr.	Sequenz $5' \rightarrow 3'$		
48	TGGTTCAATGAACTTGGATTGAGTCCT		
49	CATCCGCTCTCGTTAGATCACTATC		
Tahell	Tabelle 7: Primer für Genome Walking" in <i>Flaverig bidentis</i>		

Tabelle 7: Primer für "Genome Walking" in *Flaveria bidentis.*

Die PCR-Produkte wurden im pJET2.1 blunt-Vektor kloniert und sequenziert.

II.2.7. Anzucht von E.coli

Für die Vermehrung von *E. coli* –Zellen wurde LB-Medium verwendet (*lysogeny broth*, Bertani 1951, Bertani 2004), hergestellt aus 10 g/l BactoTrypton, 5 g/l Hefe-Extrakt und 10 g/l NaCl, eingestellt auf pH 7,2. Selektionsplatten enthielten zusätzlich 1,5 % Agar-Agar (Serva) und Antibiotikalösungen, die über einen Filter von 0,22 μm Porengröße steril filtriert und dem Medium nach dem Autoklavieren hinzugefügt wurden. Die Selektion der pJET-, TOPO-, und pGEM-Vektoren erfolgte auf LB-Platten, mit 50 μg/ml Ampicilin. Der pBI121Vektor, sowie seine Derivate, wie auch der pMDC164-Vektor, wurden auf LB-Medium mit 50 µg/ml Kanamycin selektiert.

II.2.8. Transformation von E.coli

Für die Klonierung und Vermehrung von Plasmiden wurden chemisch kompetente E.coli Stämme DH5a und DB3.1 verwendet. Diese wurden nach einer Modifikation der Kalziumchloridmethode hergestellt (Cohen et al., 1972) und anschließend in Anlehnung an die Methode von Morrison (1977), bei -80 °C für spätere Verwendung gelagert. Eine Vorkultur von 40 ml SOB-Medium (2 % Bacto-Trypton, 0,5 % Hefe-Extrakt, 10 mM NaCl, 2,5 mM KCl) wurde unter sterilen Bedingungen mit einer Einzelkolonie angeimpft und über Nacht bei 37°C auf einem Schüttler inkubiert. Am nächsten Tag wurde die Hauptkultur angeimpft und bis zu einer OD_{550} von 0,5 inkubiert, was einer Zelldichte von 5×10^7 Zellen/ml entsprach. Die Kultur wurde 10-15 Min. auf Eis abgekühlt. Alle Schritte erfolgten unter sterilen Bedingungen. Die Kultur wurde bei 3000 Upm und 4°C 5 Min. abzentrifugiert und das Sediment in 1/3 Volumen RF1-Medium, bezogen auf das Volumen der Hauptkultur, aufgenommen. Das RF1-Medium setzte sich zusammen aus 100 mM RbCl, 50 mM MnCl₂ x 4H₂O, 10 mM CaCl₂ x 2 H₂O, 15 % (w/v) Glycerin, 30 mM Kaliumacetat und wurde durch einen Filter von 0,22 µM Porengröße sterilfiltriert. Nach einer Inkubation von 15 Min. auf Eis wurde die Suspension erneut abzentrifugiert und in 1/12 Volumen RF2-Medium, bezogen auf das Ausgangsvolumen, resuspendiert. Das RF2-Medium bestand aus 10 mM MOPS (Morpholinopropansulfonsäure), 10 mM RbCl, 75 mM CaCl₂ x 2H₂O und 15 % Glycerin und wurde nach Einstellen des pH-Wertes (pH 6,8) mit verdünnter NaOH-Lösung, ebenfalls sterilfiltriert. Die Suspension wurde 15 Min. auf Eis inkubiert und anschließend in 100 µl Aliquote aufgeteilt, die sofort in flüssigem Stickstoff schockgefroren wurden. Die Lagerung erfolgte bei -80 °C.

Nach Zugabe von Plasmid-DNA wurden die Zellen mehrere Minuten auf Eis inkubiert. Der Hitzeschock erfolgte für 90 Sek. bei einer Temperatur von 42°C im Wasserbad. Danach wurden die Transformationsansätze sofort auf Eis abgekühlt. Nach dem Hitzeschock wurden 400 µl LB-Medium zugegeben und die Zellen eine Stunde zur Aktivierung der Resistenz bei 37°C inkubiert. Die Selektion erfolgte auf LB-Platten mit Antibiotika.

II.2.9. Reinigung von Nukleinsäuren aus E.coli

Plasmid-DNA wurde aus 5 ml LB-Kultur nach dem Prinzip der Alkalischen Lyse isoliert (Birnbiom & Doly, 1979). Die Lösungen I bis III wurden jedoch in einer Zusammensetzung, wie im Jetstar- Protokoll der Firma Genomed beschrieben, verwendet. Lösung I bestand aus

50 mM Tris und 10 mM EDTA (HCl ad pH8,0). Lösung II enthielt 200 mM NaOH und 1.0 % SDS (w/v). Lösung III bestand aus 3,1 M Kaliumacetat (Essigsäure ad pH 5,5). Die Kultur wurde in mehreren Portionen in einem Eppendorfgefäß jeweils 1 Min. bei 13000 Upm in einer Tischzentrifuge sedimentiert und das Pellet in 100 µl Lösung I, die mit 100 µg/ml RNase versetzt worden ist, resuspendiert. Es wurden 200 µl Lösung II hinzugefügt und das Eppendorfgefäß mehrfach invertiert. Bei diesem Schritt erfolgte eine Zellysis, wobei die Suspension klar, aber viskos wurde. Um das Lysat zu neutralisieren, wurden 150 µl Lösung III hinzugefügt und das Eppendorfgefäß mehrfach invertiert. Das hierbei entstandene weiße Präzipitat, welches aus Zellbestandteilen und Proteinen bestand, wurde von der klaren DNA-Lösung durch eine Zentrifugation von 10 Min., bei 13000 Upm und Raumtemperatur getrennt. Der Überstand wurde jeweils in ein neues Eppendorfgefäß übertragen und durch Zugabe von 1/10 Volumen 3 M Natriumacetat und 2,5 Volumen absoluten Ethanol gefällt. Die Proben wurden mehrfach invertiert und 10 Min. bei 13000 Upm abzentrifugiert. Die Plasmid-Pellets wurden einmal mit 70 % igem Ethanol gewaschen, bei RT getrocknet und in 50 µl 1 x TE-Puffer (10 mM Tris, 1mM EDTA, pH8,0) rückgelöst. Für Sequenzierung wurden ausgewählte Klone über Mini-Säulen der Firma Qiagen (Hilden) gereinigt. Plasmide geringerer Kopiezahl wurden zum Teil aus 100 ml LB-Kultur unter Verwendung der Jetstar Plasmid Midi-Säulen (Genomed GmbH, Löhne) isoliert.

II.2.10. Anzucht von Agrobakterien

Für die Anzucht von Agrobakterien wurde entweder das bereits beschriebene LB-Medium oder das YEB-Medium verwendet, bestehend aus 0,5 % Pepton, 0,1 % Hefeextrakt, 0,5 % Fleischextrakt, 0,5 % Saccharose, 2 mM MgSO₄, 2 mM MgCl₂. Nach Transformation des pBI121-Vektors und seiner Derivate in AGL1 erfolgte eine Selektion auf YEB oder LB-Medien mit 30 μg/ml Kanamycin und 50 μg/ml Carbenicillin.

II.2.11. Transformation von Agrobakterien

Die Transformation von Plasmiden in den Agrobakterienstamm AGL1 erfolgte nach dem Elektroporationsprotokoll zum Elector Cell Manipulator® 600 (BTX Inc., USA). Die Zellen wurden auf YEB- oder LB-Selektionsplatten ausgestrichen.

II.2.12. Isolation von Plasmid-DNA aus Agrobakterien

Die Isolation von Plasmid-DNA aus Agrobakterien erfolgte mit dem "Plasmid Miniprep-Kit"(Qiagen). Nachdem ein Aliquot der Kultur für die Lagerung als Stammkultur entnommen worden ist, wurden die Zellen aus den restlichen 5 ml Kultur, in einem Eppendorfgefäß portionsweise sedimentiert. Der Überstand wurde vollständig entfernt und das Bakteriensediment in 250 µl Puffer P1 (mit RNase) resuspendiert. Die Lysis erfolgte durch Zugabe 250 µl Puffer P2. Nach einer Inkubation von 5 Min. bei Raumtemperatur wurde die Lösung durch Zugabe von 500 µl Puffer N3 neutralisiert. Die weiteren Schritte erfolgten wie im Protokoll zum "Plasmid Miniprep-Kit" beschrieben. Eluiert wurde das Plasmid mit 50 µl EB-Puffer, der auf 70°C vorgewärmt wurde. 15 µl des Eluats wurden in einer Restriktionsanalyse verwendet.

II.2.13. Anzucht von Arabidopsis

Das Saatgut wurde vor der Aussaat eine Minute mit 70 % igem Ethanol gewaschen und anschließend 5-10 Minuten in einer 25 %-igen Lösung des Dan Klorix-Hygienereinigers (Colgate Palmolive GmbH, Wien), mit 0,02 % Triton-X 100 sterilisiert. Danach wurde das Saatgut mehrmals mit sterilem bidestiliertem Wasser gewaschen, um die Klorix-Lösung zu entfernen. Die Aussaat erfolgte auf ½ MS-Selektionsplatten, einer Variante des MS-Mediums (Murashige & Skoog, 1962), mit 1% w/v Saccharose, 0,5 g/l MES, 2,35 g/l MS-Salze, 1 % w/v Agar-Agar und 50 mg/l Kanamycin, oder 20 µg/ml Hygromycin. Es wurden 100 mg/l Cefotaxim zur Hemmung des Agrobakterienwachstums hinzugefügt. Zur Brechung der Dormanz wurden die Platten zwei Tage bei 4 °C gelagert und danach in einem Gewebekulturschrank bei Raumtemperatur kultiviert. Nach vierzehn Tagen wurden transgene Keimlinge auf Erde umgesetzt, einer Mischung aus Arabidopsissubstrat/Pietal 1:1 mit *Bacillus thuringiensis*, Floraton, oder Topferde mit Toresa-Mischung. Die Pflanzen wurden in Klimakammern oder im Gewächshaus kultiviert.

II.2.14. Transformation von Arabidopsis

Verwendet wurde der *Arabidopsis thaliana*- Wildtyp, vom Ökotyp Columbia. Die Pflanzen wurden nach der Methode von Clough & Bent (1998) transformiert. Die Agrobakterien wurden entweder in Flüssigkultur angezogen oder auf festen YEB-Medien kultiviert (Logemann et al., 2006). Bei der Flüssigkulturmethode wurden 500 ml YEB-Medium aus einer Vorkultur angeimpft, über Nacht bei 28°C auf einem Schüttler inkubiert und am nächsten Tag in einer Zentrifuge pelletiert. Das Pellet wurde in 500 ml einer frisch angesetzten 5 %igen Saccharoselösung, mit 0,05 % (v/v) Silvet L-77 (Detergens) resuspendiert und blühende *Arabidopsis*-Pflanzen darin getaucht. Für die Kultur auf festen Medien wurden Agrobakterien aus einer Stammkultur gleichmäßig auf drei bis vier YEB-Platten ausgestrichen und drei Tage bei 28°C inkubiert. Der dichte Bakterienrasen wurde anschließend von den Platten abgeschabt und in 30 ml LB-Medium resuspendiert. Die

Suspension wurde dann in nur 120 ml der oben beschriebenen Saccharoselösung vermischt. Die Kultur der Pflanzen erfolgte bis zur Samenernte in der Klimakammer oder im Dachgewächshaus. Das Saatgut wurde sterilisiert und auf Selektionsplatten ausgelegt. Zum Teil wurde die Selektionsdauer verkürzt, indem stratifiziertes Saatgut für 6 h bei Licht, drei Tage im Dunkeln und anschließend für 24 h im Licht aufbewahrt worden ist (Harrison et al., 2006).

II.2.15. Sichtung der "Enhancer Trap"-Bibliothek von T. Jack

Eine Sammlung der "Enhancer Trap"-Pools von T. Jack (Campisi et al., 1999) wurde stichprobenartig durchsucht. Ein Pool enthielt jeweils gemischtes Saatgut von 100 Linien. Es wurde Saatgut von 33 Pools getestet. Aus jedem Pool wurde ein Aliquot Saatgut entnommen und wie bereits beschrieben sterilisiert. Das Saatgut wurde rasterartig im Abstand von 1 cm auf MS-Selektionsmedien mit 50 µg/ml Kanamycin ausgelegt (24- 110 Pflanzen pro Petrischale). Nach zwei Tagen Stratifikation bei 4 °C wurden die Petrischalen in einen Gewebekulturschrank gestellt. Nach der Selektion wurden drei Wochen alte Pflanzen auf GUS-Expression im Blatt getestet, indem Blätter unter sterilen Bedingungen mit Pinzetten entnommen und in Färbelösung übertragen wurden. Positiv getestete Pflanzen wurden auf Erde umgesetzt und bis zur Samenreife kultiviert, um Saatgut zu ernten. Dabei wurden alle Pflanzen umgesetzt, die eine GUS-Expression zeigten, unabhängig davon in welchem Gewebe des Blatts die GUS Färbung zu beobachten war. Während die Pflanzen auf Erde umgesetzt worden sind, wurden von diesen stichprobenartig Pflanzen getestet, die im ersten Test eine gleichmäßige GUS-Expression in der Blattspreite gezeigt haben. Dazu wurden Blätter entnommen und wie nachfolgend beschrieben Querschnitte angefertigt, um die Verteilung der GUS-Färbung auf zellulärer Ebene zu überprüfen. Zeigten diese einen Unterschied in adaxial-abaxialer Seite, so wurde das Saatgut der entsprechenden Pflanzen verwendet, um Pflanzenmaterial für eine DNA -Isolation zu produzieren. Die DNA wurde dann verwendet, um mit Hilfe einer iPCR die Insertionsposition des "Enhancer Trap" -Konstrukts zu finden.

II.2.16. In situ-Nachweis der β-Glucuronidaseaktivität in transgenen Pflanzen

Um die Expression der GUS-Konstrukte in den Blättern von *Arabidopsis* nachzuweisen, wurden ganze Blätter oder mit einer Rasierklinge angefertigte Blattquerschnitte untersucht, sowie teilweise Keimlinge und Wurzeln. Die Aktivität wurde in Anlehnung an die Methode von Jefferson (Jefferson & Kavanagh, 1987) bestimmt. Die Proben wurden in 100-400 µl Inkubationsmedium überführt, bestehend aus 100 mM Na-Phosphat-Puffer, (pH 7,0), 10 mM

EDTA, 0,5 mM K₄Fe(CN)₆, 0,5 mM K₃Fe(CN)₆ 0,1 % Triton X-100 und 1 mM X-Gluc (5-Brom-4-Chlor-3-Indolyl-β-D-Glucuronid). Mit Hilfe einer Vakuumzentrifuge wurde die Lösung infiltriert, indem 10 Mal für 30 Sek. ein leichtes Vakuum angelegt wurde. Anschließend wurden die Proben bei 37°C mehrere Stunden, bis drei Tage, bis zu einer sichtbaren Färbung inkubiert. Gefärbte Präparate wurden mit einer Mischung von Ethanol (3 Teile) und Essigsäure (1 Teil) versetzt und 10 Min. inkubiert, um die Reaktion zu stoppen und das Gewebe zu fixieren. Das Chlorophyll wurde mit 70 %igem Ethanol, das mehrfach gewechselt wurde, entfernt.

II.2.17. Herstellung von Proteinextrakten für GUS-Fluorimetrie

Für den quantitativen Nachweis der GUS-Aktivität wurden Proteinrohextrakte aus Blattmaterial hergestellt. Pro Pflanze wurden zwei bis drei Blätter geerntet, im flüssigen Stickstoff schockgefroren und anschließend mit 150 µl Extraktionspuffer versetzt. Die Zusammensetzung des Extraktionspuffers war: 100 mM Na₂HPO₄ (pH 7,5), 1 mM EDTA, 0,1 % (w/v) Na-Laurylsarcosinat, 0,1 % (w/v) Triton X-100 und 20 % (v/v) Methanol. Die Proben wurden sofort mit Hilfe eines motorbetriebenen Pistills homogenisiert, anschließend 10 Min. bei 4 °C zentrifugiert und der Überstand in ein neues Eppendorfgefäß übertragen. Bis zur Messung wurden die Proben auf Eis gelagert. Längere Lagerung erfolgte bei -80 °C.

II.2.18. Bestimmung des Gesamtproteingehaltes

Die Proteinkonzentration in den Extrakten wurde nach der Bradford-Methode bestimmt (Bradford, 1976). Zur Ermittlung der Proteinkonzentrationen wurde eine Eichkurve aufgenommen. Hierbei wurde Rinderserumalbumin (BSA), in den Konzentrationen 0; 0,1-0,6 mg/ml Extraktionspuffer verwendet. Jeweils 20 µl der BSA-Eichlösungen, sowie der Proteinextrakt-Verdünnungen (1:10 Extraktionspuffer), wurden mit 1 ml Bradford-Lösung gemischt. Nach 10 Minuten wurden die Proben bei 595 nm gegen eine Blindprobe (Extraktionspuffer) gemessen. Gemessen wurden die Proben am Lambda 25 UV/VIS Spektrometer, (Perkin Elmer Instruments Massachusetts, USA) mit dem dazu gehörenden Programm Lambda 25 UV WIN LAB, Version 2.85.04 (Copyright 2000, Perkin Elmer Inc.).

II.2.19. Messung der ß-Glucuronidaseaktivität in transgenen Pflanzen

Um die Expressionstärken der GUS-Konstrukte miteinander vergleichen zu können, wurde die Glucuronidaseaktivität in Proteinrohextrakten von *Arabidopsis*-Blättern gemessen. Die Proteinkonzentration in den isolierten Proteinextrakten wurde auf 0,5 μ g/ μ l mit Extraktionspuffer eingestellt. Das Reaktionsmedium, bestehend aus 200 μ l 1 mM 4-

Methylumbelliferon-β-D-Glucuronid (MUG) im Extraktionspuffer, wurde auf 37°C vorgewärmt. Die Messung wurde durch Zugabe von 10 µg Protein zum Reaktionsmedium gestartet. Um den Verlauf der Reaktion zu dokumentieren, wurden zu fünf Zeitpunkten jeweils Aliquots von 40 µl entnommen und in 960 µl vorgelegtes 0,2 M Na₂CO₃ übertragen, um die Reaktion zu stoppen. Bis zur Messung wurden die Proben dunkel aufbewahrt. Um die Menge an entstandenem Produkt zu bestimmen, wurde eine Eichreihe mit dem Reaktionsprodukt 4-Methylumbelliferon (MU) aufgenommen. Dafür wurden 0; 0,1 µM; 0,5 µM und 1 µM- Eichproben durch Verdünnung einer 10 mM Stammlösung mit 0,2 M Na₂CO₃ hergestellt. Die Messung der Fluoreszenz erfolgte mit dem BIORAD VersaFluorTM – Fluorometer. Für die Anregung wurde ein Filter verwendet, der für Licht der Wellenlänge von 340 - 380 nm passierbar war. Die Emission wurde detektiert unter Verwendung eines Filters, der Fluoreszenz zwischen den Wellenlängen 455 - 465 nm sichtbar machte. Alle gemessenen Werte wurden in dem Programm Excel graphisch aufgetragen, die Enzymaktivität errechnet und in einem Diagramm dargestellt.

II.2.20. Nachweis der GFP-Expression in "Enhancer Trap"-Linien

Der Nachweis der GFP-Expression erfolgte am Fluoreszenz-Mikroskop (Zeiss Axiophot). Hierbei wurde die Eigenschaft des Chromophors genutzt grünes Licht zu emittieren, wenn es mit UV-Licht oder kurzwelligem Blaulicht angeregt wird. Die Aufnahmen wurden mit Hilfe der integrierten Kamera angefertigt (Olympus DP50). Angeregt wurden die Proben mit UV-Licht unter Verwendung von 450 - 490 nm und 395 - 440 nm BP (band pass) Filtern. Um die Chlorophyllfluoreszenz (670-700 nm) zu detektieren, wurden Filtersets verwendet, bei denen gleichzeitig auch die GFP-Fluoreszenz beobachtet werden konnte. Desweiteren wurden Aufnahmen mit einem Filter gemacht, der nur die GFP-Fluoreszenz (510 nm) sichtbar machte.

III. Ergebnisse:

III.1. Überprüfung beschriebener Expressionsmuster in "Enhancer Trap"-Linien mit Reportergenexpression im Blatt

Um Linien zu finden, die eine zellspezifische Reportergenexpression im Blatt zeigen und daher verwendet werden könnten, um zellspezifische "Enhancer" für Palisadenparenchym, Schwammparenchym oder Bündelscheidenzellen zu isolieren, wurden ausgesuchte Linien untersucht, bei denen eine Expression im Blatt beschrieben worden ist. Hierbei wurden "Enhancer Trap"-Linien von drei verschiedenen Herstellern untersucht, die unter Verwendung von vier verschiedenen "Enhancer Trap"-Konstrukten erzeugt worden sind (Sundaresan et al., 1995; Geisler et al., 2002; http://enhancertraps.bio.upenn.edu, 2002). Drei der verwendeten Konstrukte wurden in Abbildung 4 dargestellt. Bei dem vierten verwendeten Konstrukt handelte es sich um ein "Gene Trap"-Konstrukt (GT). In den Tabellen 8, 9 und 10 sind die beobachteten Expressionsmuster in Blättern der untersuchten "Enhancer Trap"-Linien zu finden, im Vergleich mit den in der TAIR-Datenbank beschriebenen Expressionsmustern.

Donor: R. Martienssen, "Enhancer Trap"-Konstrukt: DSE, Reportergen: GUS				
Nr.	Beschriebene Expression	Beobachtete Expression		
cs25504/ ET84	Überall im wachsenden Blatt;	Keine Färbung beobachtet.		
	Mittelrippenregion.			
cs25513/ ET1118	Sprossapex, überall in Blattprimordien und	Sprossapex, Blattprimordien, Leitbündel,		
	Blättern, Petiolen.	Kotyledonen.		
		Unterschied: In Rosettenblättern in Zellen des		
		Mesophylls um Leitbündel herum.		
cs25527/ ET3220	Überall in der Epidermis: Kotyledonen, Blätter.	Epidermis der Kotyledonen und Blätter.		
cs25616/ GT16	Sprossapex, überall, Gefäßsystem, überall im	Im Inneren des Sprossapex, nicht in den Tunika-		
	Blatt.	schichten, nicht in Blattprimordien.		
		Unterschied: Keine Färbung im Gefäßsystem		
cs25620/ GT70	Sprossapex, überall, Blattprimordien, Gefäße,	Gefäße, Trichome.		
	Trichome	Unterschied: GUS-Färbung auch in Kotyledonen,		
		Hypokotyl, auch teilweise im Mesophyll. Keine		
		Färbung in Blattprimordien oder Sprossapex.		
cs25644/ GT2275	Überall im Sprosapex, Blattprimordien, Stipeln,	Keine Färbung beobachtet.		
	Überall in Kotyledonen, Epidermis,			
	Hydathoden.			
cs25512/ ET1099	Im Sprossapex, in Blattprimordien, in	Hydathoden.		
	Hydathoden.	Unterschied: Keine Expression in Sprossapex oder		
		Blattprimordien.		

Tabelle 8: GUS-Expressionsmuster in Blättern untersuchter "Enhancer Trap" und Gene Trap"-Linien von R.Martienssen (http://genetrap.cshl.org/). ET: "Enhancer Trap"-Linie, GT: "Gene Trap"-Linie, cs:Katalognummer bei NASC/ABRC.

In der Tabelle 8 beschriebenen Linien wurden auf ½ MS-Medien mit Kanamycin ausgesät und waren alle transgen. Von jeder Linie wurden vier Pflanzen nach der Selektion, auf Erde umgesetzt, um Blattquerschnitte anzufertigen und um Saatgut zu gewinnen. Nur in der Linie ET3220 konnte das beschriebene Expressionsmuster bestätigt werden. Dort war eine zellspezifische GUS Färbung in Epidermiszellen zu beobachten. Laut Angaben des
Herstellers befindet sich die Insertion an Position 7900542, im Gen At1g22380, einer UDP-Glucose-Glucosyltranferase (http://genetrap.cshl.org/). Die Linie ET1099 zeigte eine zellspezifische GUS-Färbung in den Hydathoden. Erwartet war auch eine Expression im Sprossapex und Blattprimordien, die nicht bestätigt werden konnte. Die Insertionsstelle befindet sich auf Chromosom 3, an Position 3124996, stromaufwärts des Gens At3g10116, eines unbekannten Proteins.

Abbildung 5: Expressionsmuster in untersuchten Linien von R. Martienssen. ET1118 a: Gefärbter Sprossapex im Längsschnitt (Pfeil: Sprossapikalmeristem). ET1118 b: GUS-Färbung in Umgebung eines Leitbündels im Blattquerschnitt. ET3220: GUS-Expression in Epidermis. ET1099 a und b: GUS-Expression in Hydathoden (Pfeile). GT70 a: Blattquerschnitt mit unspezifischer GUS-Färbung. GT70 b: Färbung in Leitbündeln (Pfeile). GT70 c: Gefärbtes Trichom.

Die Insertionspositionen in diesen Linien wurden nicht überprüft, da diese Linien keine für diese Arbeit bedeutenden Expressionsmuster zeigten.

Desweiteren wurden vierzehn UCR-Linien (<u>University</u> of <u>California Riverside</u>) durchmustert, die in Tabelle 9 aufgelistet sind. Die meisten beobachteten Expressionsmuster weichen in Details von den beschriebenen Mustern (Geisler et al., 2002) ab.

	Donor: P. Springer, Ge	visler
Nr.	"Enhancer Trap"-Konstrukt: DSE, Reportergen: GUS, Beschriebene Expression	Beobachtete Expression
cs31309/ UCR1	Reife Trichome, Elongationszone in der	Reife Trichome.
cs31310/ UCR2	Trichome in allen Stadien, Wurzelhaare.	Epidermis der Wurzeln und Haarwurzelzellen Unterschied: nur in frühen Trichomstadien.
cs31311/ UCR3	Schließzellen im Blatt, Gefäße in Wurzeln.	Schließzellen im Blatt. Unterschied: in Adern der Kotyledonen aber nicht in Wurzeln.
cs31312/ UCR4	Stipeln, Elongationszone in Wurzeln.	Stipeln. Unterschied: Mesophyll der Kotyledonen, keine Expression in Wurzeln.
cs31313/ UCR5	Epidermis der Kotyledonen.	Teilweise Epidermis der Kotyledonen. Unterschied: Färbung im Hypokotyl.
cs31314/ UCR6	Kotyledonen und Blattmesophyll.	Kotyledonenrand und Mesophyll. Unterschied: Im reifen Blatt keine Expression.
cs31315/ UCR7	Xylem in Differenzierung.	Keine Färbung beobachtet.
cs31316/ UCR8	Im Phloem der gesamten Pflanze, in Wurzel im Pericykel und Phloem.	Unterschied: Nicht nur im Phloem: In allen Zellen der Leitbündel im Gefäßsystem der ganzen Pflan- ze (Spross und Wurzel) und in Bündelscheiden- zellen.
cs31317/UCR9	Gefäße in der Entwicklung.	Leitbündel im Keimling. Unterschied: Färbung auch im Mesophyll in der Umgebung der Gefäße junger Blätter.
cs31318/ UCR10	Prä-Mittelrippenregion der Blattprimordien.	Entstehende Mittelrippenregion in Blattprimordien.
cs31319/ UCR11	Epidermale Zellen an der Basis der Blattprimordien.	Epidermale Zellen an der Basis der Blattprimordien. Unterschied: Auch in Zellen des Sprossapex.
cs32920/ UCR12	Trichome, Stipeln, Hypokotylgefäße, Grenzen der Petiolen.	Keine Färbung beobachtet.
cs31321/ UCR13	Oberer Teil des Hypokotyls, Petiolen der Kotyledonen und Hydathoden.	Oberer Teil des Hypokotyls, Hydathoden der Kotyledonen, teilweise Petiolen. Unterschied: Mittelrippenbereich der Blätter.
cs31322/UCR14	Hypokotyl und Petiolenadern.	Keine Färbung beobachtet.
cs31323/UCR15	Überall, nicht in Blattprimordien.	Keine Färbung beobachtet.
cs31324/UCR16	Blattspreite, nicht in Gefäßen.	Leichte Färbung um Leitbündel herum.
cs31327/UCR19	Wurzelendodermis, keine Expression im Spross des Keimlings.	Wurzelemdodermis.
cs31329/UCR21	Äußere Schichten des Wurzelzylinders, Leitgefäße	Unterschied: Wurzelspitzen, Meristematische Bereiche der Wurzel

Tabelle 9: GUS-Expressionsmuster in UCR-Linien. Aufgelistet sind die beschriebenen GUS-Expressionsmuster (Geisler et al., 2002) im Vergleich zu den beobachteten. Fett gedruckt dargestellt wurden Nummern der Linien, die für weitere Untersuchung gewählt worden sind.

Elf Linien zeigten die beschriebene Expression, wobei eine Varianz in den Expressionsmustern fast immer zu beobachten war. Die Sammlung der UCR-Linien beinhaltet eine Reihe von Linien, die das GUS-Reportergen zellspezifisch im Blatt exprimieren. In der Abbildung 6 sind Linien zusammengestellt worden, die eine beobachtete GUS-Expression zeigten, jedoch im Rahmen dieser Arbeit nicht weiter untersucht werden sollten.

Die Linien UCR1 und 2 zeigten eine GUS-Expression nur in Trichomen, Linie UCR3 nur in Spaltöffnungen.

Abbildung 6: GUS-Expressionsmuster in den Linien von P. Springer. UCR1: Gefärbtes Trichom. UCR2 a: entstehende Trichome. UCR2 b: GUS-Färbung in Wurzelepidermis. UCR3: Schließzellen. UCR4: Petiolen. UCR5 a: GUS-Expression in Kotyledone. UCR5 b: gefärbtes Hypokotyl. UCR11: Längsschnitt durch ein Sprossapikalmeristem (Pfeil). UCR13: Gefärbte Hydathoden, Mittelrippen und Hypokotyl. UCR13 b: Aufsicht auf gefärbte Mittelrippe. UCR21 a: GUS-Expression im seitlichen Wurzelmeristem. UCR21 b: GUS-Expression in Wurzelspitze. UCR19 a: Gefärbte Endodermis an Grenze zwischen Wurzel und Hypokotyl. UCR19 b: GUS-Expression in Wurzelendodermis.

Über die Linie UCR19 war bisher bekannt, dass die GUS-Expression in der Endodermis zu finden war. Dies konnte auch bestätigt werden. Bisher sind GUS-Expressionsmuster in Keimlingen und Infloreszenzen beschrieben worden, aber nicht in Rosettenblättern (Geisler et al., 2002). Diese Linie wurde untersucht, um zu überprüfen, ob die Bündelscheidenzellen im Blatt, das Äquivalent zu den Endodermiszellen der Wurzel sind und in beiden eine GUS-Expression zu beobachten ist. Es konnte jedoch auch nach drei Tagen Inkubation in der Färbelösung keine GUS-Expression im Blatt beobachtet werden. Das Expressionsmuster war in diesem Fall wurzelspezifisch und die Frage mit Hilfe dieser Linie nicht zu beantworten.

Über die Linie UCR21 ist bisher berichtet worden, dass die GUS-Expression in Leitbündeln der Blätter zu finden war, sowie in den äußeren Schichten des Wurzelzylinders. (Geisler et al., 2002). Das Muster wurde nicht bestätigt. Hier färbten nur meristematische Bereiche in der Wurzel. Im Spross war keine GUS-Färbung zu beobachten.

Aus Mangel an gesuchten Linien, die zellspezifisch im Mesophyll (Palisadenparenchym und Schwammparenchym) von Blättern exprimierten, wurden zunächst drei Linien aus der Sammlung der UCR-Linien für eine nähere Betrachtung ausgewählt. Eine der Linien war UCR10, mit einer GUS-Expression nur in den Blattprimordien. Die zweite Linie war UCR8, mit einer GUS-Expression in Leitbündeln und Bündelscheidenzellen. Als dritte Linie wurde UCR9 gewählt, bei der neben den Leitbündeln, ähnlich wie bei UCR8, die den Leibündeln benachbarten Zellen gefärbt worden sind, wobei die Färbung nicht auf Bündelscheidenzellen begrenzt war.

Neben den hier vorgestellten "Enhancer Trap"-Linien bei denen das Expressionsmuster des GUS-Reportergens beobachtet werden konnte, wurde eine Reihe von "Enhancer Trap"-Linien untersucht, die unter Verwendung eines GFP-Reportergenkonstrukts (Haseloff, 1999) hergestellt worden sind (http://enhancertraps.bio.upenn.edu, 2002). Von den sechzehn untersuchten Linien zeigten nur elf eine zellspezifische Expression in den Geweben des Blatts. Linien, deren Nummern in der Tabelle 10 fett gedruckt dargestellt worden sind, wurden für eine genauere Betrachtung der Expressionsmuster ausgewählt. Linien, deren GFP-Expression dokumentiert werden konnte, sind in Abbildung 10 zusammengestellt. In den folgenden Abbildungen wurde ein Filter zur Darstellung der Chorophyllfluoreszenz verwendet, wobei die GFP-Fluoreszenz gleichzeitig zu beobachten war (Chl/GFP), sowie ein Filter durch den nur die GFP-Fluoreszenz zu sehen war (GFP). Desweiteren wurden Durchlichtbilder (D) aufgenommen, um die Blattmorphologie besser erkennen zu können.

	Donor: I Haseloff/ S. Poethig/ I Ru	nions/ E Truernit
Nr	Enhancer Tran"-Konstrukt: GAI 4-VP16/UAS	Beobachtete Expression
1.11.	GAL4-mgfn5-FR Beschriebene Expression	Beoodemete Expression
N70030/361	Hypokotyl Wurzel Stomata Mesonhyll/Ge-	In Leithündeln sehr hohe Expression Mesonhyll
11/0050/ 501	fäßsystem Keine Expression in der Enidermis	Enidermis
	reifer Blätter. Die Expressionsmuster in F4-	Unterschied: Auch in der Enidermis reifer Blätter
	Pflanzen varijeren	onersented. Aden in der Epidernins feher Diatter.
N70094/ 1356	In Wurzelspitze und Kappe in Hydathoden	In Mesonhyll stärker im Schwammnarenchym
10000 17 1000	Gefäßen und Mesonhvll Enidermis	und um Leithündel herum Wurzelsnitzen
	Hypokotyl Kotyledonen Blattprimordien	Kannen
	Hypokotyl, Rotyledollen, Blattpillioralen.	Unterschied: Keine Expression in Leithündeln
N70095/1361	Leichte Expression im Hypokotyl Kotyledo-	Unterschied: Fluoreszenz nur in Trichomen
10,00957 1501	nen Blättern Gefäßsystem Mesonhyll Wur-	sichtbar
	zeln	Siencour.
N70116/1663	Überall im Spross im Hypokotyl Kotyledonen	Überall schwach im Leitbündel stärkere Fluores-
10,0110,1000	Blättern, Gefäßsystem, Epidermis, im Blatt-	zenz.
	primordium des Keimlings, in der Rosette in	Unterschied: Im Keimling keine Expression.
	der Epidermis. Mesophyll. in reifen Blättern in	
	der Mittelrippenregion.	
N70128/1785	Mesophyll der Kotyledonen und der Rosetten-	Mesophyll, um Leitbündel herum, nicht in
	blätter, in der Meristemregion der Blattprimor-	Epidermis, stärker im Schwammparenchym.
	dien. Schwach im Gefäßsystem	
N70168/ E2443	Gefäßsystem, Hypokotyl, Wurzelkortex, Meso-	In Leitbündel stark, in Palisadenparenchym,
	phyll der Kotyledonen, Hydathoden, Adern	zuweilen auch über der unteren Blattepidermis, in
	Junger Blätter, Mesophyll älterer Blätter	Leitbündel auch in Wurzeln. Teilweise nur in
		Leitbündeln.
N70250/ E4295	Blattprimordien im Keimling, Hydathoden,	Nur sehr schwach sichtbar in Blattprimordien.
	Mesophyll der Rosette, Gefäße.	Unterschied: Keine weitere Expression.
N70252/ E4396	Epidermis der Kotyledonen und Hypokotyl in	Wurzelspitzen, überwiegend Schwamm-
	Keimlingen, schwach in Wurzelhaaren, hell in	parenchym der Rosettenblätter, hell in der Nähe
	Wurzelspitzen. Schwach in Blattprimordien. In	der Leitbündel, schwach in Gefäßen.
	der Rosette im Mesophyll, Gefäßen,	Unterschied: Keine Expression in Wurzelhaaren.
	Hydathoden.	
N70078/1161	Atrichoblasten der Wurzel, im Hypokotyl und	Epidermis, Schließzellen, Wurzelepidermis,
	Epidermis der Kotyledonen.Epidermis der	Blattspitzen, Hydathoden.
	Blätter, Schließzellen, Hydathoden,	
	Blattspitzen.	
N70149/ E1368	Möglicherweise unstabile Expression.	Keine Expression beobachtet.
	Blattränder der Kotyledonen und Blätter.	
	Hydathoden, Epidermis der Rosettenblätter, in	
N701(0/F2207	Brakteen.	
N/0160/ E2207	Nur im Spross, nicht in der wurzel, in	In Epidermis, Schliebzellen, Hydathoden.
	Epidermis, Stomata, Hydathoden, nicht in	Unterschied: auch in Gelaben.
N70265/E4722	Gelaben. In Schließzellen der Ketuledenen schwach in	In Sabliaßzellen und in der Enidermis
N/0203/ E4/22	In Schnebzenen der Kötyledonen, schwach in	In Schlebzenen und in der Epidermis.
	SablioRcallon und Enidermia von	Drimordian night hashashtat
	Besettenblättern und Brekteen	Prinordien ment beobachtet.
N70276/ E4070	Mesonbull Hypokotyl Stingle an	Mesonhull Enidermis Leithündel Hudathadan
11/02/0/ 149/0	Blattprimordien Enidermis Hydathoden	Blattnrimordien Stineln Gefäßen
	Gefäßen	Blaupriniordien, Supeni, Geraben.
12111	Bündelscheidenzellen in Blättern nicht in	Bündelscheidenzellen, möglicherweise teilweise
94111	Leithündeln nicht in Mesonhyll	im Phloem
JR11-2	Schwammarenchym nicht im	Fypression im Schwammparenchym mit dem
9111-2	Palisadennarenchym, nicht in Gefäßen	Alter der Blätter verblassend
1744	Palisadenparenchym, nicht im	Palisadenparenchym
1/17	Schwammarenchym	

Tabelle 10: Beobachtete GFP-Expressionsmuster im Vergleich zu den bekannten Expressionsmustern in "Enhancer Trap"-Linien. Zur Herstellung dieser Linien wurde ein GFP-Reportergenkonstrukt verwendet (Haseloff, 1999), http://enhancertraps.bio.upenn.edu, 2002.

Ergebnisse

Abbildung 7: GFP- Expressionsmuster in "Enhancer Trap"-Linien von S. Poethig und J. Haseloff. 1785: Querschnitt durch ein Blatt mit GFP-Expression im Bereich der Mittelrippe und des Schwamparenchyms. 361: Querschnitt durch ein Blatt mit GFP-Expression im Leitbündel, Epidermis und Mesophyll.1661: GFP-Expression in Epidermis. 1361: Expression in Trichomen. Der Pfeil markiert die Basis des Trichoms. 2207: Expression in Epidermis. 4970 a: Hohe GFP- Expression in allen Zellen eines Blattquerschitts. 4970 b: Geringe GFP-Expression im reifen Blatt der Linie 4770. 4722: GFP-Fluoreszenz in Schließzellen. Chl: Chlorophyll-Filter; GFP: GFP-Filter.

III.1.1. Linie UCR8: GUS-Expressionsmuster in Leitbündeln und Bündelscheidenzellen

Beschrieben wurde die GUS-Expression in der "Enhancer Trap"-Linie UCR8 im reifen Phloem des gesamten Sprosses, sowie im Phloem und Perizykel der Wurzel nach 48 h Färbung (Geisler et al., 2002). Dies konnte nicht bestätigt werden. In den untersuchten "Enhancer Trap"-Pflanzen konnte die Expression dagegen im ganzen Leitbündel beobachtet werden, sowie in den angrenzenden Bündelscheidenzellen (vgl. Abb. 8). Wiederholungen der GUS-Färbung mit Pflanzen aus dem Originalsaatgut und Folgegenerationen zeigten eine starke Varianz in der Expression des Reportergenkonstrukts. Teilweise färbten die Pflanzen nur im Hypokotyl und Leitbahnen der Wurzel, teilweise, wie beschrieben im Phloem der Blätter (Geisler et al., 2002). Die gefärbten Keimlinge und Blätter zeigten nach 8 h bis 20 h eine GUS-Expression im gesamten Leitbündel und Bündelscheidenzellen (Abb. 8).

Abbildung 8: Expressionsmuster des GUS-Reportergens in der "Enhancer Trap"-Linie UCR8. UCR8 a: GUS-Expression im Habitus. UCR8 b: Gefärbtes Blatt in Aufsicht. UCR8 c: Querschnitt durch ein Blatt mit gefärbten Leitbündeln und Bündelscheidenzellen. UCR8 d: Aufsicht auf ein Leitbündel mit teilweise gefärbten Bündelscheidenzellen. UCR8 e: Expressionsmuster im Leitbündel und nicht in den Bündelscheidenzellen.

III.1.2. Linie UCR9: GUS-Expression in Leitbündeln und benachbarten Zellen

Wie in Abbildung 8 zu sehen, zeigten etwa drei Wochen alte Pflanzen der Linie UCR9 ein der Linie UCR8 verwandtes GUS-Expressionsmuster (Abb. 9).

Abbildung 9: GUS-Expression in Leitbündeln und benachbarten Zellen der Linie UCR9. UCR9 a: Habitus mir gefärbten Leitbündeln. UCR9 b: Aufsicht auf ein gefärbtes Leitbündel.

Die Färbung war ebenfalls in den Leitbündeln zu beobachten. Im Unterschied zu dem Expressionmuster der Linie UCR8 war die GUS-Färbung in der Nähe der Adern nicht auf Bündelscheidenzellen begrenzt, sondern zeigte eine gradientenartige Ausbreitung ins Mesophyll.

III.1.3. Linie UCR10: GUS-Expression in Blattprimordien

In Linie UCR10 war die GUS-Expression im Bereich der entstehenden Mittelrippe der Blattprimordien zu beobachten (Abb. 10). Später in der Entwicklung der Blätter konnte eine gerade noch sichtbare GUS-Färbung stellenweise noch im Bereich der Leitbündel beobachtet werden. In allen anderen Teilen der untersuchten Pflanzen war keine GUS-Färbung zu beobachten.

Abbildung 10: "Enhancer Trap"-Line UCR10. Längsschnitt durch eine Sprossspitze mit GUS-Färbung im Bereich der Mittelrippe der Blattprimordien (a). Ein Pfeil markiert die gefärbte Entstehungszone der Mitterrippe. Habitus einer UCR10-Pflanze mit GUS-Färbung im Bereich des Sprossapex (b).

III.1.4. Linie 1356: GFP-Expression in Bündelscheidenzellen und Schwammparenchym

Die GFP-Fluoreszenz konnte in Blattquerschnitten von Pflanzen der Linie 1356 in den Bündelscheidenzellen beobachtet werden. Oft wurde gleichzeitig auch eine verstärkte GFP-Fluoreszenz in den Zellen des Schwammparenchyms detektiert (Abb. 11). Diese Zweiteilung des Expressionsmusters konnte innerhalb eines Blatts beobachtet werden. Eine Aufnahme des Blattquerschnitts wurde unter Durchlicht gemacht, um die Morphologie und Lage der Zellen im Blattquerschnitt als Orientierungshilfe darzustellen (Abb. 11). Hier ist die GFP-Fluoreszenz in den Bündelscheidenzellen und im Schwammparenchym zu sehen.

Abbildung 11: GFP-Expressionsmuster in Linie 1356. Die GFP-Fluoreszenz konnte in Bündelscheidenzellen oder im Schwammparenchym beobachtet werden. D: Durchlicht; Chl: Chlorophyll-Filter; GFP: GFP-Filter.

III.1.5. Linie 2443: GFP-Expression im Palisadenparenchym

In Linie 2443 (Abb. 12) konnte eine GFP-Fluoreszenz im Palisadenparenchym und oft in einer Zellschicht über der unteren Epidermis beobachtet werden. In Leitbündeln war eine besonders hohe Akkumulation des GFP-Proteins zu beobachten. Wie sich herausstellte, war dies nur in den ersten zwei bis drei Blättern der Pflanze zu beobachten. In Blättern, die sich später entwickelten, war die Expression überwiegend im Leitbündel zu finden. Die Übergänge zwischen diesen Expressionsmustern waren nicht scharf begrenzt und variierten je nach Pflanze.

Abbildung 12: GFP-Expression in Linie 2443. Die Expression war im Palisadenparenchym zu finden und häufig auch in einer Zellage über der unteren Epidermis (a, b). GUS-Expression im Leitbündel eines Blattquerschnitts des späten Rosettenstadiums.

III.1.6. Linie J2111: GFP-Expression in den Bündelscheidenzellen

Die Linie J2111 zeigte eine hohe GFP-Expression in den Bündelscheidenzellen und in einigen Strukturen des Leitbündels (Abb. 13). Während Pflanzen der Linien 2443, 4396 und 1744 zuweilen keine GFP-Expression zeigten, konnte in jeder Aussaat der Linie 2111 eine GFP-Expression detektiert werden.

Abbildung 13: GFP- Expression in den Bündelscheidenzellen der Linie J2111. D/GFP: Durchlichtbild mit überlagerter GFP-Expression, Chl/GFP: Aufnahmen mit dem Chlorophyll-Filter. Zu erkennen ist neben der roten Chlorophyllfluoreszenz auch die GFP-Fluoreszenz. GFP: GFP-Filter.

III.1.7. Linie 1744: GFP-Expression im Palisadenparenchym

Pflanzen der Linie 1744 exprimierten GFP im Palisadenparenchym (Abb. 14). Das Saatgut musste mehrfach ausgesät werden, denn nicht in jeder Aussaat zeigten die Pflanzen eine GFP-Expression. Zuweilen exprimierten die Pflanzen einer Aussaat kein GFP oder vereinzelt in Zellen des Palisadenparenchyms. Es ist möglich, dass auch in dieser Linie die Reportergenexpression von äußeren Faktoren bestimmt wird. Es wurden zu verschiedenen Tageszeiten Blätter geerntet und auf GFP-Fluoreszenz überprüft, um eine mögliche tagesabhängige Expression zu beobachten. Es konnte jedoch kein Zusammenhang zwischen Tageszeit und Expressionsstärke beobachtet werden.

Abbildung 14: GFP-Expression im Palisadenparenchym der Linie 1744.

III.1.8. Linie 4396: GFP-Expression im Schwammparenchym

Die GFP-Fluoreszenz in Blattquerschnitten der Linie 4369 war in den ersten getesteten Pflanzen überwiegend im Schwammparenchym beobachtet worden. Pflanzen der Folgegeneration zeigten keine auf das Schwammparenchym begrenzte GFP-Fluoreszenz. Diese war auch in anderen Geweben zu finden. Auch wenn das Expressionsmuster nicht stabil war, wurde die Linie gewählt, um die Position der Insertion zu bestimmen.

Abbildung 15: GFP-Expression in der Linie 4369. Die Fluoreszenz war teilweise im Schwammparenchym zu finden.

III.1.9. Linie JR11-2: GFP-Expression im Schwammparenchym

Die Linie JR11-2 zeigte eine GFP-Expression im Schwammparenchym (Abb. 16). Vor allem in jungen Blättern war eine starke Fluoreszenz zu beobachten. In älteren Rosettenblättern wurde die Fluoreszenz schwächer und sammelte sich zuweilen in den oberen Zellen des Schwammparenchyms.

Abbildung 16: GFP-Expression im Schwammparenchym der Linie JR11-2.

Das GFP-Expressionsmuster im Schwammparenchym der Blätter ist bereits beschrieben worden (Truernit & Hibberd, 2007).

Die Selektion transgener Pflanzen in dieser Linie musste über die beobachtete GFP-Fluoreszenz erfolgen, weil das Kanamycin-Resistenzgen dieser Linie stillgelegt und daher nicht funktionsfähig war.

III.2. Sichtung einer Bibliothek von "Enhancer Trap"- Linien

Um weitere Linien mit spezifischer Reportergenexpression im Palisadenparenchym oder Schwammparenchym zu finden, wurde ein Teil einer "Enhancer Trap"-Sammlung (cs31087) von T. Jack (Campisi et al., 1999) durchsucht. Dabei wurden, wie im Methodenteil beschrieben, 33 Pools stichprobenartig getestet. Insgesamt wurden aus jedem Pool im Durschnitt etwa 130 Samen ausgesät (Tab. 11).

Pool	Anzahl	GUS-	Pool	Anzahl	GUS-	Pool	Anzahl	GUS-
	ausgeleg-	Färbung		ausgeleg-	Färbung		ausgeleg-	Färbung
	ter Samen			ter Samen			ter Samen	
19952	95	10	19963	57	11	19974	173	5
19953	57	4	19964	144	2	19976	201	6
19954	56	3	19965	77	3	19977	187	2
19955	127	13	19966	694	53	19978	89	-
19956	59	9	19967	298	25	19979	104	-
19957	117	10	19968	144	1	31003	56	2
19958	117	17	19969	89	6	31004	78	1
19959	49	3	19970	101	3	31005	157	9
19960	36	7	19971	93	5	31008	104	12
19961	181	22	19972	94	1	31009	249	14
19962	41	8	19973	139	3	31011	108	6
Insgesamt: 4371 Samen ausgelegt.					Pflanzen mi	it GUS-Färb	ung im Bla	tt.

Tabelle 11: Übersicht über die Anzahl der ausgelegten Samen, sowie die Zahl der Pflanzen mit GUS-Färbung im Blatt.

Es wurden insgesamt 4371 Samen ausgelegt. Davon waren 2425 Pflanzen transgen (~55 %). Es handelte sich also nicht um homozygote Linien. Von diesen Pflanzen zeigten im ersten Test nur 276 eine GUS- Expression im Blatt. Eine Zusammenfassung der beobachteten Expressionsmuster von etwa 150 Pflanzen, deren Saatgut geerntet werden konnte, befindet sich in der Tabelle 12.

Pool 19952							
Pfl./ Nr.	Beschreibung	Pfl./ Nr.		Beschreibung			
2/ TJ2	26 h Hydathoden, fleckenartig in Blattspreite	8	/ TJ8	28 h Hydathoden, Flecken			
3/ TJ3	5 h Hydathoden, fleckenartig in Blattspreite	10/	TJ10	46 h Blattadern an der Basis der			
				Hydathoden			
	Pool 19953						
Pfl./ Nr.	Beschreibung	Pfl./ Nr.		Beschreibung			
12 TJ12/	26 h Mittelrippe	14/	TJ14	26 h Flecken, Hydathoden			
13/ TJ13	26 h Blatt überall, auch im Querschnitt.						
Pool 19954							
Pfl./ Nr.	Beschreibung						

-

15/ TJ15	Blattspreite								
			Pool 19	955					
Pfl./ Nr.	Beschreibung		Pfl./ Nr.		Beschreibung				
19/ TJ19	5 h Hydathoden, Flecker		27/ TJ	27	5 h Hydathode	n, Flecken			
22/ TJ22	28 h Blattadern, Flecken		28/ TJ2	28	48 n LB, Blatt, nicht in Mittelrippe				
23/ TJ23	28 h Mittelrippe			29/ TJ	29	26 h Hydathod	en, Flecken		
25/ TJ25	5h Hydathoden, Flecken	l		30/ TJ.	30	28 h Blatt über	all, adaxial im Querschnitt.		
26/ TJ26	26 h Gefäßsystem, Hyda	ithoden							
			Pool 19	956					
Pfl./ Nr.	Beschreibung			Pfl./ Nr.		Beschreibung			
32/ TJ32	Blatt überall in Aufsicht	, im Querschi	nitt:	34/ TJ.	34	Blatt überall in	Aufsicht, im Querschnitt		
	subepidermale Zellschic	hten, PP				PP stärker gefä	irbt als SP		
33/ TJ33	Blatt überall, auch im Q	uerschnitt.		39/ TJ:	39	Blatt überall, in	n Querschnitt LB, Gradient		
Ins Mesophyll									
DC / M	D 1 1		Pool 19	957		D 1 1			
Pfl./ Nr.	Beschreibung			Pfl./ Nr.	07	Beschreibung			
40/ IJ40	Hydathoden und Mittelr	ippe		24/ IJ	8/	Mittelrippe	D		
41/1J41	Hydathoden	· 0 1		35/ IJ	93	Blatt uberall, L	B		
42/ 1J42	Blatt uberall in Aufsicht	, im Querschi	nitt PP	46/ 1J1	03	Blatt uberall			
42/TI42	starker gelardt als SP								
43/1143	nyualiloueli		Decl 10	0.58					
Dfl / Nr	Beschreibung	Dfl / Nr	Beschraib	1938	T	Dfl / Nr	Reschreibung		
63/TI11	Mittelrippe Blattanitza	$\frac{111.}{74}$ TI110	Blatt	шg		111./1NL. 101/TI1/2	Mittelrinne		
64/TI112	Rlatt überall	75/ TI120	Mittelring	۰ ۲		101/ 1J145 102/ T1144	Mittelrinne		
68/TI116	Mittelrippe	75/ TJ120 76/ TJ121	Blatterreit	2		102/11144	Wittenippe		
73/TI118	Mittelrippe	70/ TJ121 70/ TJ124	Blatt über						
/3/13118	Mittemppe	/ <i>3</i> /1J124	Pool 10	050					
Dfl / Nr	Beschreibung		100119	Dfl / Nr	1	Baschraibung			
47/ TI47	Hydathoden Blatt Mitte	elrinne		48/ TL	48	Hydathoden B	lattrand		
	Hydathoden, Diatt, Witt	emppe	Pool19	960	10	Trydathoden, D	lattand		
Pfl / Nr	Beschreihung		100117	200					
50/ TJ50	Blatt ganz in Aufsicht i	m Querschni	tt SP_LB (K	anadi1)					
	,,,,		Pool 19	961					
PfL/Nr.	Beschreibung			Pfl./ Nr.		Beschreibung			
56/ TJ56	Mittelrippe			120/ TJ14	46	Mittelrippe			
			Pool 19	962					
Pfl./ Nr.	Beschreibung	Pfl./ Nr.	Beschreibu	ing	Pfl.	/ Nr. Besc	hreibung		
59/ TJ59	Hydathoden	63/ TJ63	Blattspitze		6	64/ TJ64 Hyda	thoden		
			Pool 19	963					
Pfl./ Nr.	Beschreibung			Pfl./ Nr.		Beschreibung			
66 TJ66/	Blatt überall, Mittelrippe	e		76/ TJ	76	Hydathoden			
68/ TJ68	Blatt überall, Mittelrippe	e weniger							
			Pool 19	966					
Pfl./ Nr.	Beschreibung	Pfl./ Nr.	Beschreibun	g		Pfl./ Nr.	Beschreibung		
137 TJ147/	Blatt überall	12/ TJ224	Blattspreite			24/ TJ23	6 Blattspreite		
140/ TJ148	Blatt überall	14/ TJ226	Blattspreite			25/ TJ23	7 Blattspreite		
	Mittelrippe weniger								
1/ TJ213	Blattspreite	16/ TJ228	Blatt spitze			26/ TJ23	8 Hydathoden/Blattrand		
2 TJ214/	Blattspitze	17/ TJ229	Mittelrippen	region		27/ TJ23	9 Blattspitze		
3/ TJ215	Blattmitte	18/ TJ230	Blattspreite			28/ TJ24) Blattspitze		
4/ TJ216	Blattspreite	19/ TJ231	Blattspitze			29/ TJ24	1 Blattspreite		
5/ TJ217	Blatt,	20/ TJ232	Blattspitze			30/ TJ242	2 Blattspreite		
	Mittelrippengegend								
6/ TJ218	Blattspitze	21/ TJ233	Blattspreite			<u>31/ TJ24</u>	3 Blattspreite		
9/ TJ221	Blattspreite	22/ TJ234	Blattspitze		_	32/ TJ24	Blattspreite		
10/ TJ222	Blattspreite	23/ TJ235	Blattspreite	0(7		33/ TJ24:	Blattspreite		
DCL/DI	D. 1. 1	0.1.01	Pool 19	96/	- 11	DG (N	D 1 1		
Pfl./ Nr.	Beschreibung	211./ Nr.	Beschreibun	g	-	P11./ Nr.	Beschreibung		
166/ TJ150	Blattspitze	34/ TJ246	Blattspitze			39/ TJ25	Blattspitze, Kand		
1/0/ 1J153	Blattspitze	35/ 1J247	Blattspreite		-	40/ 1J252	Blattspitze		
183/ 1J156	Blattspitze	3// 1J249	Blattspitze		-	41/ 1J25:	Biattspitze		
203/ 11163	ыанspreite	38/ 1J250	Diauspitze	060		I			
Dfl / N-	Dagahrait		P001 19	909					
111./ Nr.	Desenreibung								

-

1/TJ164 Blattspreite											
Pool 19970											
Pfl./ Nr.	Beschreibung					Pfl	./ Nr.	В	Beschreibung		
2/ TJ165	Mittelrippe						4/ TJ167	В	lattspreite		
3/ TJ166	Blattspreite						5/ TJ168	M	ittelrippe		
Pool 19973											
PfL/Nr.	Beschreibung	Pfl./	/ Nr.	Besc	hreibung	g		P	fl./ Nr.	Beschreibung	
6/ TJ169	Blattspitze	8	8/ TJ171	Blatt	spitze	0			9/ TJ17	2 LB und Blattspreite	
Pool 19974											
Pfl / Nr	Beschreibung	Pfl /	/ Nr	Besc	hreibung	σ.		Р	fl / Nr	Beschreibung	
11/TI174	Mesophyll teilweise	12	2/ TI175	Blatt	spreite	8			13/ TI1'	76 LB und Mesonhvll	
11, 101, 1	LB	12	2, 10170	Diate	sprene				15/ 151		
Ροοί 19976											
Pfl / Nr	Beschreibung					Pfl	/ Nr	B	eschreibung		
14/ TI177	Blattspitze						16/ T1179	B	latt nicht in	LB	
15/ TI178	Blattspitze						17/ TI180	B	lattsnitze		
10/ 101/0	Diatopitze				Pool 31	003	177 19100		lutispitze		
Pfl / Nr	Beschreibung				100151	Pfl	/ Nr	B	eschreibung		
1	Blattrand						., 141.	M	littelrippe Si	preite	
	Diatifund				Pool 31	004	-	1.11	interrippe, of		
Pfl / Nr	Beschreihung				100151	001					
3	Blattrand										
	Diattitulia				Pool 31	005					
Pfl / Nr	Beschreibung				100151	Pfl	/ Nr	B	Beschreibung		
1 II./ IVI. 4	Blattspreite nicht in M	itteli	rinne			1 11.	10	B	Blattspreite		
	Querschnitt: überall im	Bla	tt				10		anspiene		
5	Blattspitze	Dia					11	B	attspreite		
7	7 Blattspreite						12	B	attspitze		
8	Blattspreite						13	B	attrand LB		
9	Blatt zur Spitze hin nie	cht ir	n LB				15		attraita, ED		
	Ouerschnitt: keine Färl	oung									
	X				Pool 31	008		-			
Pfl./ Nr.	Beschreibung		Pfl./ Nr.	Be	schreibu	ing			Pfl./ Nr.	Beschreibung	
15	Blatt, Mittelrippe		19	9 Hv	dathode	en, Blattspreite		23	Hvdathoden		
16	Blattstiel?		20	0 Mi	ttelrippe	e. Hy	dathoden		24	Hydathoden	
17	Blattrand		2	1 Bla	attspreite	e			25	Mittel-LB	
18	Blattspreite, Hydathod	en	22	2 LB	Spreite	e					
					Pool 31	.009			101		
Pfl./ Nr.	Beschreibung	Pfl./	/ Nr.	Besc	hreibung	g			Pfl./ Nr.	Beschreibung	
26	Blattspreite, im		31	Blatt	spreite.	0			36	Blatt in Aufsicht, im	
	Ouerschitt: PP			Ouer	schnitt:	übe	erall.			Ouerschnitt: PP. LB. BS	
	stärker gefärbt als SP									, , ,	
27	Blattspreite, am Rand		32	Blatt	, in LB				37	Mittelrippengegend,	
	····· r · ···, ·· · ·									Hydathoden	
28	Hydathoden		33 Blatt, Hvdathoden					39	Mittelrippe, Blattadern		
29	Blatt, Hydathoden	34 Blattspreite, Hvdathoden			41	Blattspitze, Gradient					
30	Blatt, Hydathoden	35 Mittelrippengegend.			43	Blattspreite					
		Hydathoden									
Pool 31011											
Pfl./ Nr.	Beschreibung					Pfl	./ Nr.	В	eschreibung		
45	Blatt, Mittelrippe						47	L	B, Hydathod	en	
46	IB						50	Н	vdathoden N	lesonhyll	

Tabelle 12: GUS-Expressionsmuster in Blättern untersuchter "Enhancer Trap"-Linien von T. Jack.

Bei etwa 100 Pflanzen konnte eine Färbung der Blattspreite oder der Blattspitze beobachtet werden. Bei etwa dreißig Pflanzen färbten Hydathoden an den Blattspitzen und Rändern, bei etwa 40 Pflanzen färbten Leitbündel oder die Mittelrippe. Diese Linien wurden nicht alle im Detail untersucht, denn das Ziel dieser Suche war es, Linien mit Expression im Schwammparenchym oder Palisadenparenchym aus dieser Sammlung zu extrahieren. Nur

diese Linien waren für die vorliegende Arbeit von Bedeutung. Eine Übersicht über die Bandbreite der beobachteten GUS-Expressionsmuster befindet sich in Abbildung 17.

Abbildung 17: GUS-Expressionsmuster in Blättern der untersuchten "Enhancer Trap"-Linien. Es wurde GUS-Expression in der gesamten Blattspreite, in Leitbündeln oder in Hydathoden beobachtet in verschiedenen Kombinationen. Um die Linien zu identifizieren, die spezifisch entweder im Palisadenparenchym oder Schwammparenchym exprimierten, wurden Linien gewählt, deren Blattspreite in Aufsicht gleichmäßig gefärbt war. Von diesen Pflanzen wurden nach drei Wochen Kultur auf Erde Querschnitte angefertigt. Sechs Linien, die einen Unterschied in der GUS-Färbung im Schwammparenchym und Palisadenparenchym zeigten, wurden identifiziert. Die Linien spalteten zum Teil in der Folgegeneration auf, wobei entweder nicht transgene Pflanzen beobachtet worden sind, oder unterschiedliche Expressionsmuster. Eine Kontamination des Saatguts durch Saatgut anderer Linien während der Kultur ist nicht auszuschließen, weil aus Platzgründen die Pflanzen auf Multiplatten kultiviert worden sind. Pflanzen, von denen kein Saatgut geerntet werden konnte, weil die Pflanzen nicht überlebten oder im Gewächshaus kein Saatgut gebildet haben, sind in diese Liste nicht aufgeführt. Nur drei ausgewählte Linien, in denen die Insertionsposition bestimmt werden sollte, wurden erneut ausgesät um die Expressionsmuster zu überprüfen und die Pflanzen für DNA-Isolation zu vermehren. Bei den restlichen Linien handelt es sich aufgrund der Zahl, um nicht weiter charakterisierte Linien, die nach Bedarf näher untersucht werden können. Weil jeder Pool gemischtes Saatgut von 100 "Enhancer Trap"-Linien enthielt, war es nicht möglich die beobachteten Expressionsmuster einer bestimmten ursprünglichen Linie zuzuordnen. Zudem waren die GUS-Expressionsmuster in Blättern dieser Linien bisher nicht untersucht worden.

III.2.1. Linie 19957/42: GUS-Expression an der adaxialen Blattseite

In der Linie 19957/42 wurde eine GUS-Expression beobachtet, die überwiegend adaxial zu finden war. Weil die Expression nicht deutlich auf Zellen des Palisadenparenchyms begrenzt war, wurde diese Linie nicht weiter untersucht.

Abbildung 18: GUS-Expression an der adaxialen Blattseite im Blattquerschnitt der Linie 19957/42

III.2.2. Linie 19956/32: GUS-Expression im Palisadenparenchym und einer Zellschicht oberhalb der unteren Blattepidermis

Keimlinge der "Enhancer Trap"-Linie 19956/32 zeigten eine starke GUS-Färbung in der gesamten Blattspreite. Im Hypokotyl und Wurzel konnte keine oder nur leichte GUS-Expression beobachtet werden, während Wurzelspitzen stark angefärbt worden sind

(Abb. 19a). In Blattquerschnitten wurde das zellspezifische Expressionsmuster dieser Line deutlich. Die GUS-Färbung war auf die obere Zellschicht des Palisadenparenchyms begrenzt. Desweiteren war eine Zellschicht an der unteren Epidermis gefärbt (Abb. 19b).

Abbildung 19: GUS-Expression in Linie 19956/32. Die Färbung war im Palisadenparenchym zu beobachten, sowie einer Zellschicht oberhalb der unteren Epidermis.

Aufgrund des zellspezifischen Expressionsmuster wurde diese Linie für eine Positionsbestimmung der "Enhancer Trap"-Insertion gewählt.

III.2.3. Linie 19956/34: GUS-Expression im Palisadenparenchym und einer Zellschicht oberhalb der unteren Blattepidermis

Aus dem Pool 19956 konnte eine weitere Pflanze isoliert werden, die im ersten Test in der gesamten Blattspreite angefärbt worden ist. Nachdem auch hier Querschnitte angefertigt worden sind, konnte ein ähnliches GUS-Expressionsmuster wie in Linie 19956/32 beobachtet werden (Abb. 20). Es ist sehr wahrscheinlich, dass es sich hierbei ursprünglich um Pflanzen einer Linie handelte.

Abbildung 20: GUS-Färbung im Palisadenparenchym der Linie 19956/34. Wie in Linie 19956/32 sind Zellen oberhalb der unteren Blattepidermis angefärbt worden.

III.2.4. Linie 31009/26: GUS-Expression an der abaxialen Seite des Blattquerschnitts.

Etwa drei Wochen alte Pflanzen der Linie 31009/26 färbten nur im Spross. Hier wurde die GUS-Expression in Kotyledonen beobachtet, sowie in der Blattspreite. In jungen Blättern wurde keine GUS-Expression beobachtet, ebenso nicht im Hypokotyl und Wurzeln. Querschnitte, die angefertigt worden sind, zeigten von adaxial nach abaxial einen

abnehmenden GUS-Gradienten (Abb. 21). Eine klare Grenze zwischen Palisadenparenchym und Schwammparenchym fehlte.

Abbildung 21: Pflanzen der Linie 31009/26 (a). Querschnitt durch eine Blattspreite mit überwiegend adaxialer Färbung (b).

III.2.5. Linie 31009/36: GUS-Expression im Palisadenparenchym und Bündelscheidenzellen

Eine kräftige GUS-Färbung zeigte das Palisadenparenchym der Blätter von Pflanzen der Linie 31009/36. Hier Färbten die Blätter in einem etwas späteren Stadium als in der Linie 31009/26. Es konnte beobachtet werden, dass die GUS Expression in einem bestimmten Stadium der Entwicklung des Blatts an der Blattspitze begann. Blätter färbten dabei intensiver als Kotyledonen. In Blattquerschnitten war außerdem zu beobachten, dass vereinzelt auch Bündelscheidenzellen angefärbt worden sind, sowie Strukturen innerhalb des Leitbündels, die vermutlich zum Phloem gehörten.

Abbildung 22: Linie 3109/36 mit Expression im Palisadenparenchym und in Bündelscheidenzellen,

Auch in dieser Linie wurde keine GUS-Färbung im Hypokotyl oder in der Wurzel beobachtet.

III.2.6. Linie 19960/50: GUS-Expression im Schwammparenchym

In der Linie 19960/50 wurde eine GUS-Expression im Schwammparenchym beobachtet (Abb. 23). Die Expression begann bereits im Keimling, wobei im Habitus betrachtet, die Stiele der Kotyledonen und die Sprossspitze mit den entstehenden Blättern gefärbt worden sind. Die GUS-Färbung war im Bereich der Mittelrippe kräftiger als in der Blattspreite. Im

Hypokotyl war keine GUS-Färbung zu beobachten. In der Wurzel färbten nur die Wurzelspitzen.

Abbildung 23: GUS-Expression im Schwammparenchym der Linie 19960/50.

Die Linie wurde gewählt, um die Position der "Enhancer Trap"-Insertion zu bestimmen.

III.3. Identifizierung der Insertionspositionen der "Enhancer Trap"-Konstrukte in ausgewählten "Enhancer Trap"-Linien

Acht der getesteten Linien zeigten eine Reportergenexpression im Palisadenparenchym, oder Bündelscheidenzellen. ein Schwammparenchym Jede Linie repräsentierte Insertionsereignis, bei dem das Reportergenkonstrukt in die Nähe eines oder mehreren "Enhancer"-Elementen inseriert sein muss, wodurch das Reportergen in einem zellspezifischen Muster aktiviert worden ist. Um diese Elemente zu finden, sollten zunächst die Insertionspositionen der "Enhancer Trap"-Konstrukte in jeder ausgesuchten Linie bestimmt werden. Die Positionen wurden, wie im Methodenteil beschrieben, mittels iPCR bestimmt. In den folgenden Abbildungen wurden, zur besseren Orientierung, die in TAIRannotierten Koordinaten der Datenbank Gene eingezeichnet, die jeweils den Transkriptionsstartpunkt und Endpunkt beinhalten. Die Positionen der Translationspunkte wurden im Text beschrieben.

III.3.1. Position des Ds-Elements in Linie UCR8

In Linie UCR8 wurden nur 40 bp flankierender genomischer DNA-Sequenz, am 5'-Rand des "Enhancer Trap"- Konstrukts isoliert, die nach einer Datenbankanalyse dem BAC-Klon F1104 zugeordnet werden konnte (Abb. 24).

Score = 185 (33.8 bits), Expect = 0.034, P = 0.034 Identities = 39/40 (97%), Positives = 39/40 (97%), Strand = Minus / Plus Query: 40 ATTAAAGGTTGCTTCTAGAGTTTGTTCCAACTTTTATATA 1

Sbjct: 6739 ATTAAAGGTTGCTTCTAGAGTTTGTTCCAACTTT-ATATA 6777

Abbildung 24: Vergleich der isolierten Sequenz aus Linie UCR8. 39 bp stimmten mit dem BAC-Klon F1104 überein.

Der BAC-Klon enthielt eine genomische Sequenz des Chromosoms 4. Die Abbildung 25 zeigt

die Position des inserierten "Enhancer Trap"-Konstrukts im chromosomalen Kontext. Es befindet sich zwischen einer Glutamyl-tRNA (At4g01450) und einem bHLH-Transkriptionsfaktor (At4g01460) an der Position 614886 auf Chromosom 4.

Abbildung 25: Position der "Enhancer Trap"-Insertion im Genom der Linie UCR8. Gene in der Umgebung der Insertion wurden schematisch mit ihrer Exonstruktur und Orientierung abgebildet (blau). Zur besseren Übersicht wurden die Positionen der Gene auf dem Chromosom (TAIR) in der Abbildung notiert.

III.3.2. Position der Ds-Elements in Linie UCR9

Das Ergebnis der iPCR, mit DNA aus Linie UCR9, ist in Abbildung 26 dargestellt. Ein Fragment von 94 bp zeigte Übereinstimmung mit dem BAC-Klon K8K14, der einen Teil der Sequenz aus Chromosom 5 beinhaltete (Abb. 27). Die Insertion erfolgte in den untranslatierten Stromaufwärtsbereich, 980 bp vom ATG des NPY3-Proteins (<u>NAKED PINS IN YUC MUTANTS 3</u>) entfernt. Es ist ein an der Auxin-vermittelten Organogenese beteiligtes Protein. In einer Entfernung von etwa 2,5 kb befindet sich ein Cys2/His2-Zinkfingerprotein (AZF1).

Score = Identit	= 436 ties =	(71.5 bits), Expect = 1.6e-13, P = 1.6e-13 94/98 (95%), Positives = 94/98 (95%), Strand = Plus / Plus	
Query:	1	TTTAGGATCAATTCGATGAAATGAAACAAAGACAAGAGGCAAACAAGTGTGGGCTATATT	60
Sbjct:	67656	TTTAGGATCAATTCGATGAAATGAAACAAAGACAAGAGGGCAAAAAAGTGTGGGGCTATATT	67715
Query:	61	GCTGCTGCTACTGCTGCTGCTTTGTGTGTAGTAGACAG 98	
Sbjct:	67716	GCTGCTGCTGCTGCTGCTTTGTGTGTGTAGTAGACAG 67750	
-			

Abbildung 27: Position des inserierten "Enhancer Trap"-Konstrukts in den Stromaufwärtsbereich des Gens At5g67440 in Linie UCR9.

III.3.3. Position des Ds-Elements in Linie UCR10

Ein Insertionsereignis in den kodierenden Bereich eines Gens wurde in Linie UCR10 nachgewiesen. Die isolierte Sequenz stimmte auf einer Länge von 65 bp zu 100% mit einer Sequenz auf dem BAC-Klon T2G17 überein (Abb. 28).

Die Insertion erfolgte 20 bp nach Beginn des zweiten Exons, im Gen At2g20100, eines ethylenregulierten Proteins. Obwohl die Insertion in einen kodierenden Bereich erfolgte, zeigten Pflanzen dieser "Enhancer Trap"- Linie keinen sichtbaren Phänotyp.

Abbildung 29: Insertion des "Enhancer Trap"-Konstrukts in das Gen At2g20100 in Linie UCR10. Die Insertion wurde im zweiten Exon lokalisiert.

III.3.4. Position des "Enhancer Trap"-Konstrukts in Linie 2443

Das inserierte "Enhancer Trap"-Konstrukt wurde in Linie 2443 auf Chromosom 5 (Abb. 31) zwischen einem Glycin-reichen Protein (At5g42635) und einem C2H2-Zinkfingerprotein (At5g52640) gefunden (BAC: MFO20).

```
Score = 729 bits (808),
                   Expect = 0.0
Identities = 404/404 (100%), Gaps = 0/404 (0%)
Strand=Plus/Plus
          AGGTGTATCATAACTACAATAAGTCttttttttCTAGCATTGAAAATTTGCAACAAACTGA
Ouerv 1
                                                         60
          Sbjct 37935 AGGTGTATCATAACTACAATAAGTCTTTTTTTTTGAGCATTGAAAAATTTGCAACAAACTGA
                                                         37994
    61
          ATCCATTTAATAAATTATATCATAGAACCATGCATTAATATTTTAAATGTGTATTATGAC
                                                         120
Query
          37995 ATCCATTTAATAAATTATATCATAGAACCATGCATTAATATTTTAAATGTGTATTATGAC
Sbjct
                                                         380.54
Ouerv 121
          TACTCAGTGTACCCATGTGGTGTGTGTAATATAGTCAAATGTCCTTTTTGATATTTTATTTT
                                                         180
          38055 TACTCAGTGTACCCATGTGGTGTGTAATATAGTCAAATGTCCTTTTTGATATTTTATTTT
Sbjct
                                                         38114
Query
    181
          {\tt GTTGCTTCTCGCATTTTATCTTAAATTAAACATGAGTTGGAGAATGCAAATATTCCATTT
                                                         240
          38115 GTTGCTTCTCGCATTTTATCTTAAATTAAACATGAGTTGGAGAATGCAAATATTCCATTT
                                                         38174
Sbict
                                                         300
Query
     241
          TTTAGAAAGATTTGTATCATTCCCACGTATGTCATCGAGCTCATACATCTCTTTTGCAAA
          Sbjct 38175 TTTAGAAAGATTTGTATCATTCCCACGTATGTCATCGAGCTCATACATCTCTTTTGCAAA
                                                         38234
Query
     301
          ACCCCACGGAACTTCACTTATTATTGAATAACATTTTACATTCTTAACTATCATTCTACA
                                                         360
          38235 ACCCCACGGAACTTCACTTATTATTGAATAACATTTTACATTCTTAACTATCATTCTACA
                                                         38294
Sbjct
Query 361
          TGGTCTAGTGGTTTCGTTAGATGTACAATATTTTTATTACAGCG
                                             404
          Sbjct 38295
          TGGTCTAGTGGTTTCGTTAGATGTACAATATTTTTATTACAGCG
                                             38338
Abbildung 30: Ergebnis der BLAST-Analyse der isolierten Sequenz aus Linie2443.
```


Abbildung 31: Position des inserierten "Enhancer Trap"-Konstrukts in Linie 2443.

Aufgrund der großen Ähnlichkeit zu dem Expressionsmuster in Linie 19956/32 und der Varianz der Expression in Abhängigkeit des Blattstadiums wurde diese Linie nicht weiter untersucht.

III.3.5. Position des "Enhancer Trap"-Konstrukts in Linie 4396

Die Position des für die GFP-Expression im Schwammparenchym der Line 4396 verantwortlichen "Enhancer Trap"-Konstrukts konnte nicht eindeutig bestimmt werden. Eine von zwei isolierten Sequenzen wurde zwischen den Genen At1g77760 (Nitrit-Reduktase1) und At1g77765 (unbekanntes Protein) gefunden, auf dem BAC-Klon T1P2 und damit auf Chromosom 1 (Abb. 32). Die zweite Sequenz wurde einem Abschnitt zwischen den Genen At1g30020 und At1g30030 (Retrotransposon) zugeordnet (Abb. 33).

```
Score = 529 (85.4 bits), Expect = 9.9e-18, P = 9.9e-18
Identities = 109/113 (96%), Positives = 109/113 (96%), Strand = Minus / Plus
    Ouerv:
         96 TTGTCATCACAGCCAACTTAATTTTGTCCGATTCTTTCCCTTCCACCAAGAAT 44
Ouerv:
         Sbjct: 53073 TTGTCATCACCAGCCAACTTAATTTTGTCCGATTCTTTCCCTTCCAAAACAAAT 53125
Abbildung 32: Sequenz 1 mit Übereinstimmung auf BAC-Klon T1P2.
Score = 305 (51.8 bits), Expect = 1.3e-07, P = 1.3e-07
Identities = 61/61 (100%), Positives = 61/61 (100%), Strand = Plus / Plus
       1 CTGAAATTGGAAAAGTCAGAGAAACCCTATTGGAGTCTATACGAAACTTCCAGGAAGTAC 60
Ouerv:
         Sbjct: 47455 CTGAAATTGGAAAAGTCAGAGAAACCCTATTGGAGTCTATACGAAACTTCCAGGAAGTAC 47514
Ouerv:
      61 T 61
Sbjct: 47515 T 47515
Abbildung 33: Sequenz 2 mit Übereinstimmung auf BAC-Klon T32E8.
```

Aufgrund der Varianz des GFP-Expressionsmusters in dieser Linie und zwei isolierten Positionen wurde diese Linie nicht weiter Untersucht.

III.3.6. Position des "Enhancer Trap"-Konstrukts in Linie J2111

In der Linie J2111 mit GFP-Expression in den Bündelscheidenzellen (Abb. 13), wurde das inserierte "Enhancer Trap"-Konstrukt stromaufwärts des unbekannten Gens At5g17847

gefunden. Stromabwärts des Gens befinden sich zwei Kationentauschergene At5g17850 (*CAX8*) und At5g17860 (*CAX7*) (Abb. 34 und 35). Das nächste Stromaufwärts liegende Gen ist At5g17840, welches ein Chaperonprotein kodiert.

```
Score = 795 bits (401), Expect = 0.0
Identities = 454/478 (94%), Gaps = 8/478 (1%)
Strand = Plus / Plus
Query: 75
          {\tt ttttacttgttggaataaacaacatcaattcagtactgaccacatcctttaaattagtt~134}
          Sbjct: 80681 ttttacttgttggaataaacaacatcaattcagtactgaccacatcctttaaattagtt 80740
          tcttatatgtaagttaaccttaaaccggtaactgattacgaaccaaaccggaatatttat 194
Query: 135
Sbjct: 80741 tottatatgtaagttaaccttaaaccggtaactgattacgaaccaaaccggaatatttat 80800
Query: 195
          attattttttccatagttagtggcttaaggaatcagcactaaatactaaatattgctggg\ 254
           Sbjct: 80801 attattttttccatagttagtggcttaaggaatcagcactaaatactaaatattgctggg 80860
Query: 255
          \texttt{tcagctccttatagtaatatttaatttgtggaaaaagcttctaaatttatgtatcctttc 314}
           Sbjct: 80861 tcageteettatagtaatatttaatttgtggaaaaagettetaaatttatgtateettte 80920
Query: 315
          gctaaccctccttcgtcttcctattcttcgcatacgtaatggaaagagaaaatgac 374
          Sbjct: 80921
          g \texttt{ctaaccctccttcgtcttcctattcttcgcatacgtaatggaaaggaaaatgac \ 80980
Query: 375
          gcacagttcatcgtgaagccgacacataagccatttccaaaacccaaatcaccctaaccc\ 434
           Sbjct: 80981 gcacagttcatcgtgaagccgacacataagccatttccaaaacccaaatcaccctaaccc 81040
Query: 435
          caaaacggcaa-----tgacaaacttttttcagattctttatatnnnnnntagtat 486
          Sbjct: 81041 caaaacggcaatgacaaagtgacaaactttttttcagattctttatataaaaaaatagtat 81100
Query: 487
          tcctcaatcctctgnnnnnnngtctctgacgtttgtcttcgtcaggtcttgttaaa 544
          Sbjct: 81101 tcctcaatcctctgtttttttttgtctctgacgtttgtcttcgtcaggtcttgttaaa 81158
Abbildung 34: Das in der iPCR-Isolierte DNA-Fragment aus Linie J2111 zeigte Übereinstimmung mit einer
Sequenz auf dem BAC-Klon MVA3 (BLAST). Diese Sequenz liegt auf Chromosom 5.
```

CAX8 ist ein membrangebundenes Protein mit Kalzium/Natrium-Antiporter-Aktivität. Das Gen wird vor allem im Phloem und in der Epidermis exprimiert und zeigt eine nur leicht höhere Expression in den Bündelscheidenzellen als im Mesophyll (http://efp.ucr.edu/, 2006). Dies entspricht nicht dem beobachteten Expressionsmuster in der "Enhancer Trap"-Linie. Der getestete Stromaufwärtsbereich des *CAX8*-Gens konnte die GUS-Expression im Wildtyp nicht reproduzieren (Abb. 54). Es ist nicht auszuschließen, dass die gesuchten "Enhancer" sich in der distalen Region des untersuchten DNA-Fragments befinden.

Abbildung 35: Position des inserierten "Enhancer Trap"-Konstrukts im Genom der Linie J2111.

Das andere benachbarte Gen ist At5g17840, ein DNAJ-verwandtes Chaperonprotein, welches nach Betrachtung der mRNA-Lokalisation im eFP-Browser ausgeschlossen werden kann.

Das Expressionsmuster dieser "Enhancer Trap"-Linie ist bereits beschrieben worden (Kim et al., 2002). Die Linie trägt das von Haseloff entwickelte "Enhancer Trap"-Konstrukt, welche die Transaktivierung von weiteren UAS (*upstream activating sequence*) -enthaltenden Reportergenen bewirken kann. Wie beschrieben zeigte die "Enhancer Trap"-Linie eine starke GFP Fluoreszenz.

III.3.7. Position des "Enhancer Trap"-Konstrukts in Linie JR11-2

Das GFP-Reporteren wurde im Schwammparenchym der Linie JR11-2 aktiviert. Die in der iPCR isolierte Sequenz stimmte auf einer Länge von 852 bp zu 99% mit der Sequenz des BAC-Klons F11D22 überein (Abb. 36) und damit mit der Sequenz auf Chromosoms 5 (Abb. 37).

```
Score = 1649 bits (832), Expect = 0.0
Identities = 848/852 (99%), Gaps = 1/852 (0%) Strand = Plus / Minus
Query: 76
         tgttttgttgtctttggttctactctccgcactgaatctttcgatcagcgataattgttt 135
         Sbjct: 43430 tgttttgttgtctttggttctactctccgcactgaatctttcgatcagcgataattgttt 43371
Query: 136 ccttcttttgggattttctccttgggtacgaggttctttccttcttttatttgctctgtt 195
         Sbjct: 43370 ccttcttttgggattttctccttgggtacgaggttctttccttcttttatttgctctgtt 43311
Query: 196 tttgagatttggaattgttatcaagtctgacaaaactggtcactaatctttctgggaaat 255
         Sbjct: 43310 tttgagatttggaattgttatcaagtctgacaaaattggtcactaatctttctgggaaat 43251
Query: 256 tgagcatgttcgtgttcttgcatccgtttgactctttttctatgcaaagtctcaaccttt 315
         Sbjct: 43250 tgagcatgttcgtgttcttgcatccgtttgactcttttttctatgcaaagtctcaaccttt 43191
Query: 316 caatagtggaatttattcttatccctaatttctttaccagacctatttttagctaagt 375
         Sbjct: 43190 caatagtggaatttattcttatccctaatttctctttaccagacctatttttagctaagt 43131
Query: 376 ttggttgaatttagaaagtctttgattcatagttgaagagattctctccattaatctttc 435
         Sbjct: 43130 ttggttgaatttagaaagtctttgattcatagttgaagagattctctccattaatctttc 43071
Ouerv: 436 tctgtaatgtgtcagatccactaaaagtaagtaagaaaaagattttgttgtaatgttatt 495
         Sbjct: 43070 tctgtaatgtgtcagatccactaaaagtaagtaagaaaaagattttgttgtaatgttatt 43011
Query: 496 aaatgtgtctttgtagatggaaccagctcaattaatgagatgagatgagaatgttcagct 555
         Sbjct: 43010 aaatgtgtctttgtagatggaaccagctcaattaatgagatgagatgagaatgttcagct 42951
Query: 556 tgcagaagatggctatggcttttactctttgttttttgcctgtttatgctcatttgtgt 615
         Sbjct: 42950 tgcagaagatggctatggcttttactctcttgttttttgcctgtttatgctcatttgtgt 42891
Query: 616 ctccagatgctcaaggtgatgccttttcttacttttcaactgctattttgctgctctcat 675
         Sbjct: 42890 ctccagatgctcaaggtgatgccttttcttacttttcaactgctattttgttgctctcat 42831
Query: 676 ttcttgtttccgtttctggtaatttctgagcttgttcaggttgaagatttaactctatgat 735
         Sbjct: 42830 ttcttgtttcgtttctggtaatttctgagcttgttcaggttgaagatttaactctatgat 42771
```

Ergebnisse

Ouerv:	736	tctttqcttttccattttcaqqqqatqcactqtttqcqttqaqqatctccttacqtqcat	795
20011.	,00		
Shict	42770	tetttaetttteeatttteeagagataetaetattaegagateteetteeagagateteettee	42711
005000	12770		12,11
Ouerv:	796		855
20011.	, , , ,		
shict.	42710		42651
bbjee.	12/10		12001
Ouerv.	856	ttatttgtgatgac-aaaactttgtcacttctctgtaagtttaatgacaactctgaatta	914
20011.	000		521
Shict	42650	ttatttgtgatgacaaaaactttgtcacttctctgtaagtttaatgacaactctgaatta	42591
005000	12000	ecuercycyacyacyacyacaaaaceecycoaceecycaayeecaacyacaaeeecyaaeea	12001
Ouerv:	915	agcaatgttgtt 926	
20011.	510		
shict.	12590	$at_{cast}at_{d}$	
•••••	42330		
Abbildu	ing 36:	Ubereinstimmung der in der IPCK isolierten Sequenz aus JR11-2 mit de	m BAC-KION F18D22

Das "Enhancer Trap"-Konstrukt inserierte in Linie JR11-2 in den Stromaufwärtsbereich des LRR-Proteins (At5g10290) an der Position 3238636 (Abb. 37). Das nächste benachbarte Gen ist die putative Methylesterase (At5g10300). Der Abstand zwischen den beiden Genen beträgt nur etwa 1,5 kb.

Abbildung 37: Position der Insertion in LinieJR11-2.

III.3.8. Position des "Enhancer Trap"-Konstrukts in Linie 1744

Die Lage der "Enhancer Trap"-Insertion auf Chromosom 2 konnte bestätigt werden. Die in der inversen PCR isolierte Sequenz wurde auf dem BAC-Klon F4I18 gefunden (Abb. 38). Das "Enhancer Trap"-Konstrukt inserierte etwa 500 bp Stromaufwärts des Gens At2g45900, das ein bisher unbekanntes Proteins kodiert. Das nächste benachbarte Gen, eine Ubox-Serin/Threonin Proteinkinase, befindet sich über 5 kb entfernt.

```
Score = 688 bits (347), Expect = 0.0
Identities = 347/347 (100%)
Strand = Plus / Minus
Query: 14
        aaaaaagagtatatttctggtgagaagtgggtctactaaatgacacattttgctaaacat 73
        Sbjct: 63915 aaaaaagagtatatttctggtgagaagtgggtctactaaatgacacattttgctaaacat 63856
Ouerv: 74
        ctaccctcqtqcttcqaqcttcttcacctctcqtqatttttctattattattaataaqcqa 133
        Sbjct: 63855 ctaccctcgtgcttcgagcttcttcacctccgtgatttttctattattaataagcga 63796
Ouerv: 134
       agaatgccgcattttatgcgaaaatctggaaataaaaatacttttaaggttttcttttct 193
        Sbjct: 63795 agaatgccgcattttatgcgaaaatctggaaataaaaatacttttaaggttttcttttct 63736
Ouerv: 194
        Query: 254
        tgcattttatcagtagattttcctgttcttgcaagcattggatcagattcttataaggta 313
        Sbjct: 63675 tgcattttatcagtagattttcctgttcttgcaagcattggatcagattcttataaggta 63616
```

HHH

At2g45900

492 bp

5355 hp

At2g45910 Ubox Serin/Threonin Proteinkinase

Die Auswertung von Mikroarraydaten hat gezeigt, dass es mit dem IRX3-Gen (Irregular Xylem3), einer Zellulose-Synthase (At5g17420), koexprimiert wird (Brown et al., 2005). Das Gen wurde im eFP-Browser (http://efp.ucr.edu, 2006) gesucht, um anhand des Vorkommens der Polysomalen mRNA auf das Expressionsmuster schließen zu können. Die mRNA war im Mesophyll lokalisiert, sowie in den Schließzellen. Da hier nicht nach Palisadenparenchym oder Schwammparenchym unterschieden wird, stand das mRNA vorkommen mit dem beobachteten GFP-Expressionsmuster in der "Enhancer Trap"-Linie in keinem Widerspruch. Es wurden verschiedene Primerkombinationen verwendet, um den Stromaufwärtsbereich des Gens zu isolieren, jedoch ohne Erfolg. Daher konnten bisher keine GUS-Konstrukte hergestellt werden.

III.3.9. Position des "Enhancer Trap"-Konstrukts in Linie 19956/32

Nach Auswertung der Sequenz des iPCR-Produktes konnte die Insertionsposition in dieser Linie auf Chromosom 4 gefunden werden (Abb. 40 und 41).

```
Score = 993 bits (501), Expect = 0.0
Identities = 518/526 (98%)
Strand = Plus / Plus
Query: 158
       aacttgaaacgatacagatcccatccaacataacatcatcatctcacagttcgcgttttc 217
       Sbjct: 86978 aacttgaaacgatacagatcccatccaacataacatcatctccacagttcgcgttttc 87037
Query: 218
       Query: 278
       caaacaaaagagtaaagaggggtttccaaaccccagtcaatacccgaaccaccaactc 337
       Sbjct: 87098 caaacaaaaagagtaaagagggggtttccaaaccccagtcaatacccgaaccaactc 87157
Query: 338
       ctccaccgtgatcggacccgaacccttttacgtcgttgtcccatcacggtgacaaaggag 397
       Sbjct: 87158 ctccaccgtgatcggacccgaacccttttacgtcgttgtcccatcacggtgacaaaggag 87217
       Query: 398
       Sbjct: 87218 ttggatctcgcccactcgcgcggttcgttcttgactcgacaccccctcccctagta 87277
```

Ergebnisse

```
Query: 458
                              caagaccnnnnnncaagttatataaaaattcacaattcattaagaaaaagaaacacacg 517
                                                             Sbjct: 87278 caagaccaaaaaaacaagttatataaaaattcacaattcattaagaaaaagaaacacacg 87337
Query: 518
                              cacgcgccagtcttgatcaagatcagctttcgcattgtaaagcggcacgaatcttctgaa \ 577
                              Sbjct: 87338 cacgcgccagtcttgatcaagatcagctttcgcattgtaaagcggcacgaatcttctgaa 87397
Query: 578
                              cggtgcatgatattaggttgttgacagtctccaccgactcaaccgtgagttttgccgttg 637
                              Sbjct: 87398 cggtgcatgatattaggttgttgacagtctccaccgactcaaccgtgagttttgccgttg 87457
Query: 638
                              ggagattgtttacaaggatttgaaacgccactgtcgagagggatcc 683
                              Sbjct: 87458 ggagattgtttacaaggatttgaaacgccactgtcaagagggatcc 87503
Score = 281 bits (142), Expect = 1e-74
Identities = 142/142 (100%)
Strand = Plus / Plus
Query: 1
                              ccagtctgtcaagggaatgacgtggcgcaacgaaaatggcggaatacgtaagccccatat 60
                              Sbjct: 86821 ccagtctgtcaagggaatgacgtggcgcaacgaaaatggcggaatacgtaagccccatat 86880
Query: 61
                              {\tt catg} {
                              Query: 121
                              ttaatgctccacgagagacagc 142
                              Sbjct: 86941 ttaatgctccacgagagacagc 86962
Abbildung 40: Übereinstimmende Basenpaare der isolierten Sequenz mit dem BAC-Klon F6N23. Die beiden
```

scheinbaren Teilsequenzen gehören zu einer Insertionsposition auf Chromosom 4

Hier war das Konstrukt stromabwärts des bereits bekannten Gens *ANTHOCYANINLESS2* (*ANL2*, At4g00730) inseriert (Abb. 41). Das ANL2-Gen kodiert für ein Homöodomänen-Protein der GLABRA2-Gruppe (Kubo et al., 1999). Es reguliert die Akkumulation von Anthocyanen in den subepidermalen Zellschichten des Blatts und steuert gleichzeitig die Wurzelentwicklung. Mutanten zeigen Defekte in der Zellorganisation der Wurzelzellen und lagern keine Anthocyane an der adaxialen Seite des Blatts ein (Kubo et al., 1999). Die Einlagerung der Anthocyane in der abaxialen subepidermalen Zellschicht war in den Mutanten nicht betroffen. Der nächste benachbarte Transkriptionsstartpunkt gehört zu einer Proteinkinase (At4g00720).

Abbildung 41: Insertionsposition des "Enhancer Trap"-Konstrukts in den Stromabwärtsbereich des Gens At4g00730 in Linie 19956/32

III.3.10. Position des "Enhancer Trap"-Konstrukts in Linie 19960/50

In der Linie 19960/50 wurde die Insertion stromaufwärts des KANADII-Gens lokalisiert.

Das Gen besteht aus sechs Exons und kodiert für einen Transkriptionsfaktor mit GARP-Domäne, der abaxial im Blatt exprimiert ist (Kerstetter et al., 2001). In *Arabidopsis* gibt es eine kleine Familie der Kanadi-Proteine (Eshed et al., 2001), die als Antagonisten der Proteine der HD-ZIPIII-Klasse fungieren (Braybrook und Kuhlemeier, 2010). KAN1 reprimiert die Expression von AS2 (ASYMMETRIC LEAVES2) auf der abaxiale Seite (Wu et al., 2008) und ist abaxial in allen seitlichen Organen exprimiert (Kerstetter et al., 2001).

Abbildung 43: Insertionsposition des "Enhancer Trap"-Konstrukts stromabwärts des Gens At5g16560 in Linie 19960/50

III.3.11. Position des "Enhancer Trap"-Konstrukts in Linie 31009/36

In der iPCR konnten Sequenzen isoliert werden, die keine genaue Positionsbestimmung zulassen. So wurden Übereinstimmungen auf Chromosom 1, 2 und 3 gefunden. Hier handelt es sich um Fragmente mobiler Elemente. Die iPCR an der rechten Grenze des "Enhancer Trap"-Konstrukts lieferte bisher kein Produkt.

III.4. Überprüfung isolierter flankierender Sequenzen der "Enhancer Trap"-Insertionen auf Vorhandensein von "Enhancer"-Elementen

III.4.1. Hypothese 1: Der 5'-Bereich eines benachbarten Gens bewirkt Spezifität der Reportergenexpression

Um zu überprüfen, ob der gesuchte "Enhancer", der die zellspezifische Reportergenexpression in einer "Enhancer Trap"-Linie steuert, im Stromaufwärtsbereich eines direkt benachbarten Gens zu finden ist (Abb. 44), wurden die folgend beschriebenen Konstrukte hergestellt.

Abbildung 44: Aktivierung der Expression des inserierten "Enhancer Trap"-Konstrukts durch einen "Enhancer" (E) im Stromaufwärtsbereich eines benachbarten Gens.

III.4.1.1. Überprüfung des Stromaufwärtsbereichs des Gens At5g16560 (Linie 19960/50):

In der Linie 19960/50 war das "Enhancer Trap"-Konstrukt stromaufwärts des Gens At5g16560 (*Kanadi1, KAN1*) inseriert. In Blattquerschnitten konnte eine GUS-Färbung im Schwammparenchym beobachtet werden. Um nach dem Enhancer dieser Reportergenexpression zu suchen, wurde der 5'-Bereich des benachbarten *KAN1*-Gens stromaufwärts des Translationsstartpunktes ATG (Position: 5411092) von etwa fünf Kilobasenpaaren isoliert (Abb. 45) und vor den Translationsstart des GUS-Gens kloniert. Das Fragment wurde in den pMDC164-Vektor mittels Gateway-Reaktion rekombiniert.

Abbildung 45: Überprüfung des KAN1-Stromaufwärtsbereichs auf das Vorhandensein von "Enhancer"-Elementen.

Pflanzen, die mit dem Konstrukt in pMDC164 transformierten wurden, zeigten eine GUS-Expression in den Leitbündeln und in Bündelscheidenzellen. Daneben war auch eine Expression in der Epidermis und im Mesophyll zu beobachten (Abb. 46b). Um zu überprüfen, ob Elemente in der verwendeten T-DNA das Expressionsmuster beeinflussen, wurde der Vektor GpBI121 verwendet, um den Stromaufwärtsbereich des *KAN1*-Gens zu testen. Das Saatgut der gedippten Pflanzen enthielt keine Transformanten. Die Transformation wurde aus Zeitgründen nicht wiederholt. Promotor-Reportergen-Konstrukte haben gezeigt, dass *KAN1*, *KAN2* und *KAN3* eine Phloem-assoziierte Expression zeigen (Emery et al., 2003). Dies stimmt in etwa mit den beobachteten Expressionsmustern überein, auch wenn diese durch die Wirkung des 35S-Promotors überlagert worden sind (Abb. 46b).

Abbildung 46: Expressionsmuster des 5'-Bereichs des *KAN1*-Gens. Verwendet wurde der pMDC164-Vektor. GUS-Färbung in Leitbündel und Bündelscheidenzellen (a). Unspezifische GUS-Färbung im Blattquerschnitt (b).

III.4.1.2. Überprüfung des Stromaufwärtsbereichs des Gens At4g00720 (Linie: 19956/32)

Ebenso wurde mit dem 5'-Bereich des Gens At4g00720 verfahren, um diesen auf die Anwesenheit von zellspezifischen "Enhancern" zu untersuchen. In der "Enhancer Trap"-Linie 19956/32 war das GUS-Expressionsmuster in den subepidermalen Zellschichten zu finden. Der benachbarte 5'-Stromaufwärtsbereich des Gens At4g00720 wurde vor das GUS-Gen des pMDC164-Vektors kloniert (Abb. 47). Dabei wurde der Bereich stromaufwärts des Translationsstartpunktes an Position 297002 amplifiziert.

Abbildung 47: Position der "Enhancer Trap"-Insertion in Linie 19956/32. Der hellblau unterlegte Bereich wurde vor den Translationsstartpunkt des GUS-Gens im pMDC164-Vektor kloniert.

Transgene *Arabidopsis*-Pflanzen zeigten bereits nach wenigen Stunden eine unspezifische GUS-Expression im ganzen Blatt (Abb. 48).

Abbildung 48: Unspezifische GUS-Expression im Blattquerschnitt einer transgenen Pflanze mit dem Konstrukt aus Abb. 47.

III.4.1.3. Überprüfung des Stromaufwärtsbereichs des Gens At4g00730 (Linie: 19956/32)

Weil "Enhancer" bekannter Weise auch eine Fernwirkung haben, wurde auch der Stromaufwärtsbereich des Gens At4g00730 getestet, um zu überprüfen, ob der Promoter des Gens, ein stromabwärts lokalisiertes Konstrukt aktivieren kann (Abb. 49). Hier wurde der Bereich stromaufwärts von ATG (Position: 304103) des Gens At4g00730 amplifiziert.

Abbildung 49: Amplifizierung des potentiellen ANL2-Promotors. Dargestellt ist der amplifizierte DNA-Abschnitt, der zur Herstellung des Konstrukts verwendet worden ist.

Auch dieses Konstrukt konnte die Expression der "Enhancer Trap"-Linie nicht reproduzieren,

wie die Abbildung 50 zeigt.

Abbildung 50: GUS-Färbung im Blattquerschnitt einer transgenen *Arabidopsis*-Pflanze. Getestet wurde das 5'-Fragment des At4g00730-Gens.

III.4.1.4. Stromaufwärtsbereiche der Gene At4g01455 und At4g01460 (Linie: UCR8)

In der Linie UCR8 war das "Enhancer Trap"-Element zwischen den Genen At4g01455 und At4g01460 inseriert. Die Stromaufwärtsbereiche beider Gene, beginnend mit der ersten Base oberhalb von ATG, wurden mittels PCR aus genomischer DNA isoliert und unter Berücksichtigung der Orientierung jeweils vor ein GUS- Gen kloniert (Abb.51).

Abbildung 51: Position der Insertion in Linie UCR8 und Aufbau der hergestellten Konstrukte.

Ergebnisse

Abbildung 52: Expression der im pMDC164 erstellten Konstrukte. Stromaufwärtsbereiche der benachbarten Gene der Insertion in Linie UCR8 wurden verwendet. Stromaufwärtsbereich des Gens At4g01455 (a), des Gens At4g01460 (b).

Der Translationsstartpunkt des Gens At4g01455 befand sich an Position 611932, des Gens At4g01460 an Position 621334 auf Chromosom 4. Es wurde für beide Konstrukte der Gateway-kompatible pMDC164-Vektor verwendet. Die Expression beider GUS-Konstrukte war in allen Geweben des Blatts zu finden (Abb. 52 a und b). Deswegen wurde auf die Anfertigung von Blattquerschnitten verzichtet.

III.4.1.5. Überprüfung des Stromaufwärtsbereich des Gens At5g17850 (Linie: J2111)

Das "Enhancer Trap"-Konstrukt in Linie J2111 wurde zwischen den Genen At5g17840 und At5g17850 gefunden. Um zu überprüfen, ob 5'-Elemente des nächsten annotierten Gens eine bündelscheidenspezifische Expression steuern, wurde der Stromaufwärtsbereich des Gens bis zum nächsten annotierten Gen isoliert und vor ein GUS-Reportergen im pBI121 kloniert. Das Gen At5g17847 war nicht in allen Datenbanken annotiert, daher wurde es nicht berücksichtigt (Abb. 53).

Abbildung 53: Position der "Enhancer Trap"-Insertion in der Linie J2111. Der Stromaufwärtsbereich des Gens At5g17850 wurde zur Herstellung des GUS-Fusionskonstrukts benutzt. Das ATG befindet sich an Position 5899253.

Die Expression des GUS-Konstrukts war in den Leitbündeln zu finden, mit teilweise diffus gefärbten Bündelscheidenzellen (Abb. 54 a, b). Die Expression des GUS-Konstrukts war der beobachteten GFP-Expression vom Muster her ähnlich, aber nicht identisch (vergl. Abb. 13).

Es gab eine Varianz in der GUS-Expressionsstärke in den Einzelpflanzen (Abb. 54 a). Einige Pflanzen färbten nach 23 h, die meisten erst nach drei Tagen Inkubation in der Färbelösung.

Abbildung 54: Expressionsmuster des CAX8-Stromaufwärtsbereichs. Aufsicht auf Blätter mit einer den Leitbündeln folgenden GUS-Färbung (a). Vergrößerte Aufsicht auf ein Leitbündel (b).

Auch wenn bekannt ist, dass "Enhancer" unabhängig von ihrer Orientierung die Genexpression steuern, kann diese durch das Vorhandensein weiterer "Enhancer" oder "Silencer" beeinflusst worden sein. Um dies zu klären, müsste der getestete genomische Bereich in umgekehrter Orientierung oder nur der Bereich stromaufwärts der "Enhancer Trap"-Insertion (vgl. Abb. 53), mit dem GUS-Gen fusioniert werden. Eine weitere Erklärung ist, dass der "Enhancer" nicht erfasst worden ist.

III.4.2. Hypothese 2: Ein einzelnes benachbartes cis-Element steuert die Expression des Reportergens

Um die Hypothese zu überprüfen, dass ein einzelnes der "Enhancer Trap"-Insertion benachbartes "Enhancer"-Element die Expression des Reportergens aktiviert, wurde versucht, das Insertionsereignis zu reproduzieren. Dafür wurden flankierende Sequenzen der "Enhancer Trap"-Insertionsorte isoliert. Diese wurden in der gleichen Orientierung, in der sie sich vor dem "Enhancer Trap"-Konstrukt befanden, vor ein GUS-Gen mit einem Minimalpromotor kloniert und in *Arabidopsis* transformiert.

Abbildung 55: Aktivierung der Expression des "Enhancer Trap"- Konstrukts durch einen einzelnen benachbarten "Enhancer" stromaufwärts des im Kontrukt vorhandenen Minimalpromotors.

III.4.2.1. Untersuchung der flankierende Sequenz nach den iPCR-Daten aus Linie JR11-2

Das inserierte "Enhancer Trap"-Konstrukt befindet sich 530 bp vor dem Translationsstartpunkt des Gens At5g10290 (Abb. 56) an Position 3238171. Das isolierte DNA-Fragment wurde in der gleichen Orientierung, wie es vor dem Enhancer Trap-Konstrukt gefunden wurde, vor das GUS-Gen mit einem Minimalpromotor fusioniert. Dabei enthielt es einen Teil des in der TAIR-Datenbank annotierten UTRs des Gens At5g10290 sowie den intergenischen Bereich bis zum nächsten Translationsstartpunkt an Position 3239684.

Abbildung 56: Position der "Enhancer Trap"-Insertion in der Linie JR11-2 und Aufbau der GUS-Fusionskonstrukts. Verwendet wurde der Vektor pBIMCS2 mit einem Minimalpromotor.

Von den 32 auf GUS-Expression getesteten Pflanzen zeigten zwölf keine sichtbare GUS-Färbung. Von den zwanzig Pflanzen, die GUS exprimierten, zeigten vier Expression in Leitbündeln, neun Expression in Leitbündeln und Hydathoden und sieben nur in Hydathoden (Abb. 57 a, b). Die Blätter wurden über Nacht bis zu drei Tagen in der Färbelösung inkubiert.

Abbildung 57: Expression des Konstrukts des flankierenden Bereichs aus Linie JR11-2. Aufsicht auf gefärbte Blätter mit GUS-Aktivität in Hydathoden und Leitbündeln (a). Vergrößerte Darstellung der Aufsicht auf ein gefärbtes Leitbündel (b).

Dieses Expressionsmuster entsprach nicht dem beobachteten Expressionsmuster des GFP-Reportergens, welches im Schwammparenchym der "Enhancer Trap"-Linie JR11-2 beobachtet werden konnte (vgl. Abb.16). Das Expressionsmuster der Linie JR11-2 konnte nicht reproduziert werden.

III.4.2.2. Untersuchung der flankierenden Sequenz nach den iPCR-Daten aus Linie UCR8

Basierend auf den Daten aus Linie UCR8 wurde ein weiteres Konstrukt erstellt. Hier wurde das Insertionsereignis reproduziert. Um zu verhindern, dass Elemente aus der T-DNA des pMDC164-Vektors die Expression überlagern, wurde der pBIMCS3-Vektor verwendet (Abb. 58).

Abbildung 58: Linie UCR8: Reproduktion des Insertionsereignisses. Blau unterlegt wurde der amplifizierte genomische Bereich, der vor den Minimalpromotor des GUS Gens ligiert worden ist.

Im Gegensatz zu den Konstrukten, die im pMDC164-Vektor erstellt worden sind, zeigten die Konstrukte, die im pBI121-Vektor hergestellt worden sind, keine unspezifische GUS-Aktivität im Mesophyll. Nur vereinzelt wurde in den Pflanzen eine GUS-Expression im Leitbündel beobachtet, mit leichter GUS-Färbung in den Bündelscheiden (Abb. 59 a, b).

Abbildung 59: Expression des GUS-Konstrukts mit flankierender Sequenz der Insertionsposition aus UCR8. Es wurden überwiegend Leitbündel gefärbt (b). Selten wurde eine Färbung in Bündelscheidenzellen beobachtet (a).

Die Blätter wurden 20 - 23 h in der Färbelösung inkubiert. Insgesamt wurden 26 Pflanzen getestet, von denen zwölf keine sichtbare GUS-Expression zeigten. Vierzehn Pflanzen färbten in der Mittelrippe und teilweise in den Leitbündeln. Nur in zwei davon konnte eine leichte Färbung in Bündelscheidenzellen beobachtet werden.

III.4.2.3. Untersuchung der flankierenden Sequenz nach den iPCR-Daten aus Linie 19950/60

Um das in der Linie 19950/60 beobachtete GUS-Expressionsmuster wiederherzustellen wurden etwa vier Kilobasenpaare des flankierenden Bereichs der Insertion isoliert (Abb. 60).

Abbildung 60: Linie 19950/60: Schematische Darstellung der zur Herstellung des Konstrukts verwendeten Region.

Das Fragment wurde in den modifizierten pBI121-Vektor pBI121MCSII ligiert. Es konnte in transgenen Pflanzen auch nach drei Tagen Inkubation in der Färbelösung keine GUS-Expression beobachtet werden.

III.5. Überprüfung von Stromaufwärtsbereichen von Genen mit beschriebenen Expressionsmustern im Mesophyll- und Bündelscheidenzellen

Es sind bereits mehrere "Promotoren" beschrieben worden, deren Expressionsmuster in Bündelscheidenzellen zu finden waren. Die beschriebenen Expressionsmuster der Stromaufwärtsbereiche sollten einzeln überprüft werden.

III.5.1. Untersuchung des SCR 5'-Stromaufwärtsbereichs

Der in der Literatur beschriebene bündelscheidenspezifische *SCR*-Promotor (Wysocka-Diller et al., 2000) wurde unter Verwendung der beschriebenen Primer amplifiziert (Malamy & Benfey, 1997). Der 2414 bp große genomische Bereich enthielt die Stromaufwärtssequenz oberhalb des Translationsstartpunktes ATG des *SCR*-Gens (Abb. 61).

Abbildung 61: Amplifizierung des SCR-5'Stromaufwärtsbereichs. Es wurde die Sequenz stromaufwärts des Translationsstarpunkt ATG an Position 20070550 auf Chromosom 3 amplifiziert. Der Trankriptionsstartpunkt befindet sich 392 bp stromabwärts vom ATG entfernt, an Position 20070158.
Dieser Bereich wurde mittels Gateway-Reaktion in den Gpbi121-Vektor rekombiniert und das GUS-Fusionskonstrukt in *Arabidopsis* transformiert. Transgene Pflanzen wurden auf das Vorhandensein einer GUS-Expression getestet, indem Blätter wie bereits beschrieben in GUS-Färbelösung inkubiert worden sind. Die Expression konnte nach wenigen Stunden im ganzen Blatt beobachtet werden, wobei die Leitbündel am stärksten angefärbt worden sind (Abb. 62 a, c). Dies weicht von der bisherigen Beschreibung des Expressionsmusters ab (Wysocka-Diller et al., 2000). Übereinstimmung mit bisherigen Beobachtungen zeigte sich jedoch in der Wurzel. Dort konnte in den getesteten Pflanzen, wie beschrieben, eine Expression in der Endodermis beobachtet werden (Abb. 62 e).

Abbildung 62: GUS-Expressionsmuster des pSCR::GUS-Konstrukts in Arabidopsis. In den meisten Pflanzen war die GUS-Expression in den Leitbündeln, Bündelscheidenzellen und Mesophyll zu beobachten (a, c). Pflanze mit Bündelscheidenspezifischer Expression (b). GUS-Färbung in der Wurzel (d, e). Gefärbt wurde die Endodermis und das Ruhezentrum (Pfeil).

Im Ruhezentrum der Wurzel war eine in der Stärke variierende, jedoch immer vorhandene GUS-Färbung zu sehen (Abb. 62 d). Um auszuschließen, dass Elemente auf der T-DNA des

Vektors die Expressionsmuster beeinflussen könnten, wurde der SCR-Stromaufwärtsbereich im pBI121-Vektor getestet. Hier war die GUS-Expression im Mesophyll vieler Pflanzen reduziert und überwiegend im Leitbündel zu finden. Bündelscheidenzellen waren nur leicht gefärbt. Doch es färbten auch bei der Verwendung des pBI121-Vektors einzelne Pflanzen im gesamten Blatt. Beide Konstrukte hatten gemeinsam, dass es vereinzelt Pflanzen gab, die das GUS-Reportergen spezifisch in Bündelscheidenzellen exprimierten (Ab. 62 b).

Im Gpbi121-Vektor zeigten nur drei von fünfzehn Pflanzen bündelscheidenspezifische GUS-Expression. Alle anderen zeigten auch Expression im Mesophyll. Pflanzen, die mit dem Konstrukt im pBI121-Vektor transformiert worden sind, exprimierten überwiegend im Leitgewebe, auch wenn einige Pflanzen beobachtet werden konnten, die einem GUS-Expression in allen Geweben des Blattes zeigten.

SCR gehört zu den Transkriptionsfaktoren der GRAS-Proteinfamilie. Es gibt eine Reihe SCR-ähnlicher Proteine, die vor allem in der Wurzel exprimiert sind und dort an der Entwicklung beteiligt sind (Sánchez et al., 2007).

III.5.2. Untersuchung des CUE1-5'-Stromaufwärtsbereichs

Um den Stromaufwärtsbereich des *CUE1*-Gens (Li et al., 1995, Knappe et al., 2003) zu überprüfen, wurde dieser vor das GUS-Gen fusioniert (Abb. 63). Dabei enthielt diese Sequenz einen Teil (310 bp) des ersten Exons, nachdem der Versuch, nur den Stromaufwärtsbereich vor dem Translationsstart ATG (Position: 12588950) zu isolieren, nicht erfolgreich war. Auch in der Literatur wurden Fragmente beschrieben, die einen Teil des ersten Exons enthalten (Knappe et al., 2003).

Abbildung 63: Amplifizierung des potentiellen *CUE1*-Promotors. Das amplifizierte DNA-Fragment enthielt einen Bereich von 422 bp stromabwärts des in der Abbildung annotierten mutmaßlichen Transkriptionsstartpunktes.

Die GUS-Expression war nur in einigen Adern im Leitbündel zu finden, wie auch in einigen Bündelscheidenzellen (Abb. 64 a, b, c). Es wurden zwanzig transgene Pflanzen auf GUS-Expression getestet. In vierzehn von diesen war keine GUS-Expression nachzuweisen. Sechs Pflanzen färbten in einigen Leitbündeln, davon zwei in Bündelscheidenzellen. Eine Pflanze färbte bereits nach acht Stunden. Alle anderen wurden 20-23 h in der Färbelösung inkubiert.

Abbildung 64: GUS-Expression des *AtppT*-Stromaufwärtsbereichs in Arabidopsis. Die Expression war in wenigen Pflanzen im Leitbündel (a) und teilweise in Bündelscheidenzellen (a, b) zu beobachten.

Auch der Stromaufwärtsbereich des *CUE1*-Gens wurde hier mit einem GUS-Gen fusioniert und in *Arabidopsis* transformiert. Es handelt sich hierbei um einen Phosphoenolpyruvat/Phosphat-Translokator (*AtPPT1*). Das Genprodukt sorgt für den Transport von Phosphoenolpyruvat in die Plastiden, welches in den Shikimatweg eingeschleust wird und essentiell für die Blattentwicklung ist (Knappe et al., 2003). Die Expression des Stromaufwärtsbereich wurde bereits beschrieben (Knappe et al., 2003). Junge Blätter exprimierten GUS nur in den Bündelscheidenzellen und nicht im Mesophyll, während ältere Blätter eine Expression im ganzen Blatt zeigten (Knappe et al., 2003). In Mutanten konnte eine Chlorose im Mesophyll beobachtet werden, während Bündelscheidenzellen nicht betroffen waren. Eine Ursache ist die fehlende Expression das *CAB*-Gens im Mesophyll (Li et al., 1995) In diesen Versuchen konnte die GUS-Expression dagegen nur in einzelnen Adern und Bündelscheidenzellen beobachtet werden (Abb. 64).

III.5.3. Untersuchung des APX2-5'-Stromaufwärtsbereichs

Ebenso wurde die Sequenz stromaufwärts des Translationsstarts ATG des APX2-Gens (<u>A</u>scorbat<u>p</u>ero<u>x</u>idase <u>2</u>) vor das GUS-Gen fusioniert.

Abbildung 65: Amplifizierung des Stromaufwärtsbereich des *APX2*-Gens. Der Translationsstartpunkt befindet sich 145 bp Stromabwärts (Position: 2956301) des in der Abbildung annotierten Transkriptinsstartpunkts.

Dieser Stromaufwärtsbereich ist als bündelscheidenspezifisch aktiv beschrieben worden (Fryer et al., 2003). Das Fragment hatte eine Länge von 1407 bp. In der Abbildung 65 wurde die Lage des Gens *APX2* auf Chromosom 3 schematisch dargestellt.

Keine der neunzehn getesteten Pflanzen, die das Konstrukt enthielten, zeigte auch nach drei Tagen Inkubation in der Färbelösung eine sichtbare GUS-Färbung.

III.5.4. Untersuchung des Sultr2;2-Stromaufwärtsbereichs

Desweiteren wurde der bereits vorcharakterisierte Stromaufwärtsbereich des *Sultr2;2*-Gens vor ein GUS-Gen im pbi121-Vektor kloniert (Takahashi et al., 2000).

Abbildung 66: Amplifizierung des Stromaufwärtsbereichs des Gens At1g77990. Amplifiziert wurde der Bereich stromaufwärts von ATG (Position: 29323249) das in einer Entfernung von 142 bp vom annotierten Transkriptionsstartpunkt befindet.

Dieser 3418 bp lange Bereich stromaufwärts des Translationsstartpunktes ATG zeigte das beschriebene Expressionsmuster (Abb. 67). Die Expression wurde in Kotyledonen und in Blättern beobachtet. In Keimlingen des Kotyledonenstadiums konnte vereinzelt bereits GUS-Färbung in entstehenden Primärblättern beobachtet werden. In Hypokotyl wurde keine GUS-Färbung beobachtet. Dagegen zeigten einige Pflanzen teilweise Färbung in Leitungssystem der Wurzel.

Abbildung 67: GUS-Expressionsmuster des *Sultr2;2*-Stromaufwärtsbereichs. GUS-Expression in Kotyledonen von Keimlingen (a). Aufsicht auf ein gefärbtes Blatt mit GUS-Expression in Bündelscheidenzellen (b). Vergrößerter Ausschnitt der Aufsicht auf eine Leitbündel (c). Erkennbar sind die gefärbten Bündelscheidenzellen.

Die ersten Blätter färbten nach bereits vier bis fünf Stunden. Die meisten wurden 20 bis 23 h gefärbt. Es wurden vierzehn Pflanzen getestet. Elf Pflanzen färbten in den

Bündelscheidenzellen, drei zeigten keine GUS-Expression. Das Expressionsmuster des *Sultr2;2*-Stromaufwärtsbereichs wurde bestätigt (Takahashi et al., 2000). Die Expression ist in den Bündelscheidenzellen beobachtet worden. Der *Sultr2;2* Promotor zeigte nur eine geringe Aktivität. Die erste sichtbare Färbung konnte vereinzelt nach etwa fünf Stunden detektiert werden.

III.5.5. Untersuchung des Sultr3;3-Stromaufwärtsbereichs

Die BLAST-Suche hat ergeben, dass das Gen Sb06g030980 aus *Sorghum bicolor*, welches bündelscheidenspezifisch exprimiert ist, das nächste Orthologe des *Sultr3;3*-Gens (At1g23090) ist. Um zu überprüfen, ob der Stromaufwärtsbereich des *Sultr3;3*-Gens ebenfalls eine Bündelscheidenaktivität besitzt, wurden 3356 bp der Sequenz stromaufwärts des Translationspunktes des *Sultr3;3*-Gens isoliert um diese zu untersuchen.

Abbildung 68: Überprüfung der Stromaufwärtsregion des Gens At1g23090. Der Translationsstartpunkt des Gens befindet sich 110 bp hinter dem in der Abbildung annotierten mutmaßlichen Transkriptionsstartpunkt (TAIR).

Das GUS-Konstrukt zeigte eine Aktivität in vereinzelten Bündelscheidenzellen oder in Gruppen von Bündelscheidenzellen in der Blattspreite (Abb.69).

Abbildung 69: GUS-Expressionsmuster des *Sultr3;3*-Stromaufwärtsbereichs. Aufsicht auf ein gefärbtes Rosettenblatt (a). Blattadern mit gefärbten Bündelscheidenzellen (b). Vergrößerte Darstellung von gefärbten Bündelscheidenzellen (c).

Es wurden in diesem Versuch Blätter von fünfzig transgenen Pflanzen auf GUS-Expression getestet. Davon zeigten 37 keine detektierbare GUS-Expression. Dreizehn Pflanzen färbten in Bündelscheidenzellen. Färbungen älterer Rosettenblätter zeigten eine GUS-Expression innerhalb des Leitbündels. Die Blätter wurden 27- 50 h gefärbt.

III.6. Untersuchung des *Sultr2;2*-Stromaufwärtsbereichs auf das Vorhandensein von "Enhancer"-Elementen

Die bündelscheidenspezifische Aktivität des Stromaufwärtsbereichs des *Sultr2;2*-Gens konnte in den vorangegangenen Experimenten bestätigt werden. Folglich enthält dieser Bereich alle Elemente, die zur Aktivierung der bündelscheidenspezifischen Expression notwendig sind. Um diese Elemente zu identifizieren, wurde wie nachfolgend beschrieben, eine klassische Deletionsanalyse durchgeführt, um den Bereich einzugrenzen, in dem sich der bündelscheidenspezifische "Enhancer" befindet.

III.6.1. Deletionsanalyse des Sultr2;2-Stromaufwärtsbereichs

Der 3504 bp lange Stromaufwärtsbereich des *Sultr2;2*-Gens wurde zunächst grob in vier Deletionskonstrukte unterteilt.

Abbildung 70: Deletionskonstrukte der *Sultr2;2* 5'-Stromaufwärtsbereichs. Schematische Zeichnung der angefertigten Deletionskonstrukte; Sa: 2053 bp, Sb: 1338 bp, Sd: 512 bp. S: Sulfattransporter.

Dabei wurde der Stromaufwärtsbereich, wie in Abb. 70 dargestellt, schrittweise vom distalen Ende aus deletiert. Die XmaI-Schnittstelle wurde unmittelbar vor dem ATG des Gens eingefügt und erlaubte die Klonierung in den pBI121-Vektor, sowie seine Derivate.

Die mit PCR aus genomischer DNA amplifizierten Fragmente wurden in den pBI121-Vektor kloniert, in *Arabidopsis* transformiert und die Expressionsmuster des GUS-Fusionskonstrukts überprüft.

III.6.2. In-situ-Nachweis der GUS-Expression von Deletionskonstrukten des Sultr2,2-Promotors

Blätter transgener Pflanzen, die jeweils eines der Deletionskonstrukte enthielten, wurden gefärbt, um die GUS-Expression nachzuweisen. Um die Expressionsmuster in den einzelnen Zelltypen genauer zu untersuchen, wurden Blattquerschnitte angefertigt (Abb. 71).

Abbildung 71: Expressionsmuster des *Sultr2;2* Vollängenpromotors (a, b, c) und des Deletionskonstrukts Sa (d, e, f). Leitbündel in Aufsicht (a, d). Querschnitt durch das Leitbündel (b, e). Längsschnitte in der Nähe eines Leitbündels (c, f).

Die Expression des Sa::GUS-Konstrukts war mit dem *Sultr2;2*::GUS vergleichbar. Pflanzen, die mit dem Sb::GUS-Konstrukt transformiert worden sind, zeigten auch nach drei Tagen Inkubation in der Färbelösung keine sichtbare GUS-Expression. Ebenso zeigte das Konstrukt Sd::GUS keine Expression. Ganze Blätter mit Sa-Konstrukt zeigten teilweise eine Verlagerung der GUS- Färbung ins Leitbündel und eine nicht klar auf die Bündelscheiden begrenzte Färbung, während die GUS-Färbung in Schnitten keine diffuse Färbung zeigte (Abb. 71 d-f).

III.6.3. Fluorimetrischer Nachweis der GUS-Aktivität in den Sultr2; 2-Deletionskonstrukten

Um die GUS-Aktivität der Deletionskonstrukte mit dem Vollängenpromotor des *Sultr2;2*-Gens vergleichen zu können, wurde die Aktivität in Proteinextrakten aus Blättern der Transformanten bestimmt (Abb. 72). Die grafische Auftragung der Aktivität in mmol MU/(mgProtein*min) ist in Abbildung 72 dargestellt. Die Aktivität des Deletionskonstrukts Sa war mit der Aktivität des Vollängen-*Sultr2;2*-Promotor vergleichbar. Die Konstrukte Sb und Sd zeigten keine GUS-Färbung und auch im fluorimetrischen Nachweis war die GUS-Aktivität ähnlich der des Wildtyps. Dargestellt sind die gemessenen GUS-Aktivitäten in nmol MU/(mgProtein*Min.) in einer semi-logarithmischen Auftragung. Der Median ist jeweils mit einer roten Linie markiert. N ist die Anzahl der gemessenen Proben.

Abbildung 72: Quantitative Bestimmung der GUS-Aktivität in Deletionskonstrukten des Sultr2;2-Promotors.

III.6.4. Vergleich der 5'-Stromaufwärtssequenzen der Gene Sultr2;2 und Sultr3;3

Der Sulfattransporter *Sultr2;2* zeigte eine GUS-Expression in Bündelscheidenzellen. Um herauszufinden, wo in dem 3418 bp langem Fragment die *cis*-regulatorischen Elemente liegen, wurden Deletionskonstrukte angefertigt (Abb. 70). Um das Deletionskonstrukt Sa herzustellen, wurden die distalen 1365 bp deletiert. Der verbleibende 2053 große Bereich zeigte weiterhin GUS-Aktivität (Abb. 71 und 72). Die Deletion der nächsten 714 bp im Konstrukt Sb führte zum kompletten Verlust einer sichtbaren und messbaren GUS-Aktivität (Abb. 72). Dies lässt darauf schließen, dass die Elemente für Quantität in einer Entfernung von ca. zwei Kilobasenpaaren vom Translationsstartpunkt des *Sultr2;2*-Gens liegen. In der Abbildung 73 ist ein Ausschnitt des Vergleichs der Stromaufwärtsbereiche des *Sultr2;2*- und des *Sultr3;3*-Gens dargestellt. Dieser enthält die ca. 700 distalen Basenpaare des *Sultr2;2*- Stromaufwärtsbereichs. Farbig unterlegt wurden die Primerbindestellen, mit denen die Deletionskonstrukte erstellt worden sind. An der Position 1457 bis 4188 des Alignments befindet sich die von Mustroph et al. (2009) verwendete Primerbindestelle. Demnach müssen sich alle für eine bündelscheidenspezifische Expression notwendigen "Enhancer"-Elemente stromabwärts dieser Bindestelle befinden.

Sultr221340	GTTCTAATtt	ttttcgtgaa	cacaca <mark>atgc</mark>	atccaaaaca	tggcgccttc
Sultr33 1963	TTTTAAATag ** ***	ttgtcgaaat ** *** *	ctag *		
Sultr221390	<mark>c</mark> attattTTC	AAAATTTTAA	CCATTATTAT	TGA cgggcac	ataacacgAA
sultr331987	TTC ***	AAATTTTGAA *** *** **	GAAATAAGAT * ** **	TTAgtgaatt * * *	gataaaa- <mark>AA</mark> * * **
Sultr221440	TTTGTTGAGT	TGCGTTa <mark>gac</mark>	caaagaatcc	tacgtaccat	aggactatgg
sultr332029	TGTATTTAGT * * ** ***	TGCGTTttgc *****	tcattttaag *	ggattgcaat * * **	tgtcttttgg * * ***
Sultr221490	cattaaagta	gctagtttgg	aggattctgg	tgggtgaaaa	aaagtaaata
Sultr332079	gttg				
Sultr221540	agtgaataag	aattggttca	tagtggaaag	aacaacctat	atgactcatg
Sultr332083					
Sultr221590	cgtagtggaa	agatagagaa	caacttatat	gactcatgcg	tagaccatga
Sultr332083					
Sultr221640	tcgtacgatg	aatagattcc	attggttatg	attataagta	agcaaaattc
Sultr332083					
Sultr221690	caaaacggaa	aaagaaaatg	tggaccgaac	atgcccagtg	accacatcac
Sultr332083					
Sultr221740	atccgttcaa	ttccatattc	ttccatataa	aaagataagg	aaaaagagac
Sultr332083					
Sultr221790	ccaaaaagaa	aagaacaacc	ttatatgcat	aatcaaactt	tcatttgcat
Sultr332083					
Sultr221840	ttctttttca	tcttcgtttt	ccttcgaaat	caattatata	gtatagtgcc
Sultr332083					
Sultr221890	ttctttctcc	aTCAAACCAT	TCTTGTTTTG	TTTGGcaacg	ctgacatctc
Sultr332083		-TCAAACATT ***** *	TTTTGTTTTA * ******	ATTAGttgcc ** * *	gaaatttagt * *
Sultr221940	cacttaaaat	attcgttttg	gatcaaagct	catatatgtt	cttgtgttga
Sultr332122	ttaaattttg	gaaaaatctg * **	cg		
Sultr221990	TGATATTTTG	GATATCGATT	TGTTTgttaa	T	TTTTGAGCAT
Sultr332144	TGATATATGG	GATTGGAATA	TATTTagaat * *** *	gtttttcgtT *	TGTTAATCAA * ** * **
Sultr222031	TTTATTAAGT	ATATACTAGT	TATTAAAtat	taaaaagtac	acgaaatttt
Sultr332194	TTTATTGCTA *****	AAAAACTAAT * * **** *	AATTAAA agt *****	cagtggcagc * *	ctttgtaaat *
Sultr222081	ctgatcatct	aacattgttg	gtatgctaca	atcgcacatt	ttaatatatg
Sultr332244	aagttccaac	tccaggattt	atttcacaaa	atggctgcaa	
	* * *	** **		~ ~ ~ ~	

Abbildung 73: Vergleich der *Sultr2;2-* und *Sultr3;3-*Stromaufwärtsbereiche. Dargestellt ist ein Ausschnitt des Alignments im Bereich der distalen 700 bp des Sa-Deletionskonstrukts. Gelb: Primerbindestellen (vgl. Tab.5). Positionen 1457-1467 des Alignments: Von Mustroph et al. (2009) verwendete Primerbindestelle. Bindestellen für Transkriptionsfaktoren (PLACE-Datenbank): blau: AAACAAA-Motiv, orange: NGATT, violett: GATA, grün: ATATT

Die im Alignment übereinstimmenden Bereiche sind nur wenig konserviert. Diese wurde mit Hilfe der PLACE-Datenbank auf das Vorhandensein von Bindestellen für Transkriptionsfaktoren untersucht. Hier konnten vier verschiedene Bindestellen identifiziert werden. Auf dem minus-Strang beider Sequenzen befindet sich die AAACAAA-Erkennungssequenz. Bis vor kurzem war diese Sequenz nur in Promotoren von Genen gefunden worden, die aus Tieren, Vögeln und Insekten stammten. Inzwischen ist das Motiv auch in Pflanzen gefunden worden. Gene, die unter Sauerstoffmangel aktiviert werden, enthalten die beschriebene Konsensus-Sequenz, zu der es bisher keinen bekannten Transkriptionsfaktor gibt (Mohanty et al., 2005). Sauerstoffmangel kann auftreten, wenn Pflanzen überschwemmt werden. Dann wird die Respiration des Krebs-Zyklus zur Fermentation hin umgestellt. Dabei werden anaerob-induzierbare Gene eingeschaltet (Mohanty et al., 2005).

Der Faktor ROOTMOTIFTAPOX1 bindet an der ATATT-Erkennungssequenz. Dieses Motiv ist Bestandteil des rolD-Promotors aus *Agrobacterium rhizogenes* (Elmayan & Tepfer, 1995).

Der ARR1AT-Faktor (<u>Arabidopsis r</u>esponse <u>r</u>egulator) erkennt das NGATT-Motiv (Sakai et al., 2000). In Arabidopsis konnten vierzehn ARR-homologe identifiziert werden (Sakai et al., 1998). Diese Faktoren bestehen aus einem zweikomponenten-System. Der N-terminale Rezeptor ist an eine Domäne gekoppelt, die das Signal weiterleitet, indem sie im Zellkern als Transkriptionsfaktor wirkt.

Es wurde auch in beiden Sequenzen die GATA-Box gefunden. Dieser Motiv wurde im Zusammenhang mit Lichtregulierten Genen beschrieben und wird von Typ IV-Zinkfinger-Transkriptionsfaktoren gebunden (Teakle et al., 2002).

III.6.5. Überprüfung des distalen Fragments des *Sultr2;2*-Sromaufwärtsbereichs auf "Enhancer - Aktivität

Um zu überprüfen, ob der ca. 700 bp große Bereich im distalen Bereich des Deletionskonstrukts Sa die Funktion eines "Enhancers" besitzt, wurde dieses Fragment vor das GUS-Gen mit Minimalpromoter fusioniert (Abb. 74). Hierzu wurde der Vektor pBI121 MCS2II mit dem -60 +1-Bereich des 35S-Promoters verwendet. Das Konstrukt wurde anschließend unter Verwendung des AGL1-Agrobakterienstamms in *Arabidopsis thaliana* transformiert. Um diesen Bereich mit dem UTR des Gens zu kombinieren wurde das Konstrukt Sf hergestellt (Abb.74). Der Transkriptionsstartpunkt des Gens ist bisher nicht überprüft worden. Daher wurden 349 bp stromaufwärts des Translationsstartpunktes gewählt um das Konstrukt in Kombination mit den distalen 741 bp zu erstellen. Die Sequenz von 349 bp beinhaltete den potentiellen in der TAIR-Datenbank annotierten UTR-Bereich des Gens, sowie zwei TATA-Box-Motive, die sich 118 und 165 bp stromaufwärts des ATG befanden.

Abbildung 74: Überprüfung des distalen Fragments im *Sultr2;2*- Stromaufwärtsbereich auf "Enhancer"-Aktivität.

Die Expressionsmuster und die Aktivität der Konstrukte in transgenen Pflanzen konnten im Rahmen dieser Arbeit nicht mehr ausgewertet werden.

III.7. Suche nach Sultr2;2-verwandten Gen in Flaveria bidentis

Nachdem in *Sorghum* und *Arabidopsis* Sulfattransportergene identifiziert worden sind, die bündelscheidenspezifische Expressionsmuster zeigen, sollte auch in *Flaveria bidentis* nach Sulfattransporter-Sequenzen gesucht werden.

Kontigs (siehe Anhang), die aus den Daten einer 454-Sequenzierung erstellt worden sind (Gowik &Westhoff, unveröffentlicht), wurden verwendet um Primer zu synthetisieren. Die bekannte Sequenz konnte um etwa tausend Basenpaare in den Stromaufwärtsbereich verlängert werden (1098 bp vor dem ATG) (siehe Anhang VII.1). Eine BLAST-Untersuchung zeigt eine Ähnlichkeit mit Sulfattransportern aus anderen Pflanzen, darunter auch *Arabidopsis thaliana* (AST56).

```
>gi|79384401|ref|NM_106448.3| Arabidopsis thaliana AST56; sulfate transmembrane transporter
(AST56) mRNA, complete cds
Length=2203
GENE ID: 844134 AST56 | AST56; sulfate transmembrane transporter
[Arabidopsis thaliana] (10 or fewer PubMed links)
Score = 307 bits (340), Expect = 8e-80
Identities = 559/818 (68%), Gaps = 0/818 (0%)
Strand=Plus/Plus
Query 65
          TGGCACCCTTTGAATTTGGTTCTTGGATGTGCATTCCTCATATTCATCCTCATTACCAGA 124
          Sbjct 908
          Query 125
         CAAATTGGAAAAAAGAACAAGAAATTATTCTGGTTGCCTGCGATTTCCCCCGGTTATATCG 184
            Sbjct 968
          TTTATCGGAAAAAGAAACAATAAGTTGTTTTGGATTCCAGCGATGGCACCGCTAATATCA 1027
Query 185
          GTCATTTTATCGACTCTGATAGTGTATCTAACGAGAGCGGATGAACATGGGGTTAATATC 244
          11 1111111 11
Sbjct 1028
          GTTGTATTAGCAACACTAATAGTGTATTTATCCAATGCTGAGTCACGAGGGGTTAAGATT 1087
Query 245
          ATTAGACATTTTAAAGGAGGACTCAATCCAAGTTCATTGAACCAGTTGGAGTTTAATGGT 304
          Sbict 1088
          GTTAAACACATTAAACCAGGGTTTAACCAGCTTTCAGTTAACCAATTACAATTCAAAAGT 1147
Query 305
          CCACACCTTGGCGAAGTAGCCAAAATCGGCTTCATTTGTGCTATTATTGCATTAACCGAA 364
          Sbjct 1148
         CCACATCTTGGTCAAATCGCCAAAATTGGTCTTATTTCTGCAATCATCGCCCTAACGGAA 1207
```

Query	365	${\tt GCCGTTGCTGTTGGTCGATCTTTTGCATCAATCAGAGGGTATAACTTAGACGGGAACAAT}$	424			
Sbjct	1208	${\tt GCAATCGCAGTGGGAAGATCGTTTGCGACGATCAAAGGATATCGTTTGGATGGGAACAAA}$	1267			
Query	425	GAAATGTTAGCCATGGGCTTTATGAACATTGCTGGATCTATGTCTTCTTGCTATGCTGTC	484			
Sbjct	1268	${\tt GAGATGATGGCTATGGGATTTATGAATATCGCTGGTTCTTTATCTTCTTGCTATGTAGCT$	1327			
Query	485	ACAGGATCTTTTTCGCGAACTGCTGTAAATTTTAGTGCAGGCTGTCAATCTCCAGTATCC	544			
Sbjct	1328	ACCGGGTCTTTCTCAAGAACGGCGGTGAATTTCAGTGCTGGTTGCGAGACGGTGGTTTCA	1387			
Query	545	AACATAGTAATGGCGGTAACCGTGTTCATATCATTGCAAGTGTTAACGAAGCTATTGTAT	604			
Sbjct	1388	AACATTGTAATGGCGATTACAGTGATGATTTCACTAGAAGTTTTGACGAGGTTTCTCTAC	1447			
-						
Query	605	TACACACCTCTTACCATATTAGCATCGATTATCTTGTCTGCGCTTCCCGGATTAATCGAT	664			
Sbjct	1448	TTCACACCAACGGCGATTCTTGCCTCCATAATCCTCTCGGCGCTTCCAGGTCTCATTGAT	1507			
•	665		704			
Query	665	TACAATGAAGCTTATCATATTTGGAAAGTTGATAAAAAGGACTTTCTTGCATGCGCTGGG	/24			
01 +	1 5 0 0		1567			
SDJCt	1208	GTUTUTGGTGUTTTAUAUATTTGGAAAUTUGATAAAUTUGATTTTUTUGTUUTUATTGUU	1201			
0	725		701			
Query	125		/04			
Shiat	1569		1627			
SDJCL	1300	GCCITCITCGGCGTCCTCTTGCCTCCGTCGGGGATA	1027			
Ouery	785	тсатттссаасаттаатссттааттссатаасатссассстасааса	844			
guer j	100		011			
Shict	1628	тсстттссавсавтавтсттсасттсаттавсяссавссаттавсяссстта	1687			
55766	1010		1007			
Ouerv	845					
200-1						
Sbict	1688	TCAAAAACAGATATCTTCGGTGACATAAATCAGTATCC 1725				
Abbildung 75: Ergobnic sinor Plact Sucha mit dar Soguant das Konties 127. Die Sog						

Abbildung 75: Ergebnis einer Blast-Suche mit der Sequenz des Kontigs 127. Die Sequenz hatte eine Ähnlichkeit mit der Sequenz des Sulfattransporters Sultr2;2 aus *Arabidopsis*.

IV. Diskussion

IV.1. Identifizierung zell- und gewebespezifischer Expressionsmuster in "Enhancer Trap"-Linien in *Arabidopsis thaliana*

In dieser Arbeit ist eine Reihe verfügbarer "Enhancer Trap"-Linien untersucht worden, mit zellspezifischen GUS- oder GFP-Reportergenexpressionsmustern im Blatt. Darunter gab es Linien mit Reportergenexpression in den Trichomen (Abb. 6 und 7), in der Epidermis (Abb. 5, 6 und 7), in Spaltöffnungen (Abb. 6 und 7), Hydathoden (5 und 17) und Stipeln (Abb. 6). Für diese Arbeit waren aber Linien mit Reportergenexpression im Mesophyll oder den Bündelscheidenzellen von Bedeutung, denn es sollten "Enhancer" isoliert werden, die in diesen Geweben eine zellspezifische Genexpression steuern. Wie im Ergebnissteil beschrieben, konnten elf Linien gefunden werden, die eine Reportergenexpression in dem Bündelscheidenzellen, im Palisadenzellen und in Zellen des Schwammparenchyms zeigen, von denen einige bereits beschrieben worden sind (Kim et al., 2002; Truernit & Hibberd 2007). Die Linien mit der gesuchten Reportergenexpression in photosynthetisch aktiven Geweben des Blatts machen etwa 1-2 % aller untersuchten Linien aus. Eine leichte Varianz der Expressionsmuster wurde in den meisten "Enhancer Trap"-Linien beobachtet. In einigen Linien kann es damit zu erklären sein, dass mehrere "Enhancer Trap"-Elemente im Genom vorhanden waren. Zu erwähnen ist auch, dass zu Beginn der Arbeit Selektionsmedien verwendet worden sind, die in ihrer Zusammensetzung keine optimale Selektion der transgenen Linien erlaubten. Weil zu Beginn der Arbeiten als homozygot deklarierte "Enhancer Trap"-Linien auf Selektionsmedien ausgesät worden sind und wie erwartet alle ohne Aufspaltung transgen waren, ist dies anfangs unerkannt geblieben. In den Selektionsmedien, auf denen die Pflanzen aufgezogen worden sind, wurde Gelrite als gelierendes Agens verwendet, bei gleichzeitiger Verwendung von 50 mg/l Kanamycin als Selektionsantibiotikum. Wie sich nach späterer Recherche herausstellte, inaktiviert Gelrite Kanamycin zu einem gewissen Anteil, so dass wesentlich höhere Konzentrationen notwendig sind, um einen Selektionseffekt zu erreichen. Die Wirkung von Kanamycin ist abhängig vom verwendeten gelierenden Agens im Selektionsmedium (Laine et al., 2000; Chauvin et al., 2000). Daher wurde für weitere Versuche Agar als festigende Substanz verwendet.

Eine Veränderung der beschriebenen Expressionsmuster im Vergleich zu den beobachteten, kann durch eine Reaktion der Genexpression auf veränderte Bedingungen bewirkt worden sein. Viele Gene werden in ihrer Expression durch Licht, Nährstoffzusammensetzung, Entwicklungsstadium und Stress reguliert. Dieser Effekt ist nicht zu unterschätzen. Bei der Durchsuchung der Bibliothek von "Enhancer Trap"-Linien wurden Linien mit einer zellspezifischen GUS-Expression im Blatt identifiziert. Aus Platz- und Zeitgründen wurde eine "Schnelldurchsuchung" durchgeführt. Dabei wurden mit Sicherheit nicht alle Expressionsmuster erfasst. Weil einzelne Blätter von etwa drei Wochen alten Pflanzen untersucht worden sind, können Expressionsmuster nicht detektiert worden sein, die in frühen oder reifen Blattstadien vorhanden waren. Die auf MS-Medien kultiverten Pflanzen verblieben in einem Miniaturstadium. Erst nach Umsetzen auf Erde entwickelten sich die Pflanzen normal. Bei der Kultur auf MS-Medien können Mangelerscheinungen aufgetreten sein, die zur Aktivierung der Expression von Genen und auch des "Enhancer Trap"-Konstrukts geführt haben, deren Expression in späterer Kultur unter optimalen Bedingungen nicht nachweisbar waren. Auch die Selektion der Pflanzen auf antibiotikahaltigem Medium war notwendig, denn ein großer Teil der Pflanzen war nicht transgen. Alle transgenen Pflanzen vor dem Test auf Erde umzusetzen, war wenig sinnvoll, denn im Schnitt zeigte nur etwa jede zehnte transgene Pflanze eine GUS-Färbung im Blatt und nur eine von 25 Pflanzen eine GUS-Färbung, die für weitere Versuche zu gebrauchen war.

IV.2. Überprüfung flankierender Sequenzen der Insertion und der Stromaufwärtsbereiche benachbarter Gene auf das Vorhandensein zellspezifischer "Enhancer"

Die Stromaufwärtssequenzen der benachbarten Gene der "Enhancer Trap"-Insertionen, welche im pMDC164-Vektor getestet worden sind, zeigten keine Spezifität. Der Versuch, die beobachtete **GUS-Expression** der Linie 19956/32. durch Verwendung der Stromaufwärtsbereiche der benachbarten Gene im Wildtyp zu reproduzieren, war nicht erfolgreich. Es ist möglich, dass der Stromaufwärtsbereich des Shaggy-Gens eine Reportergenexpression verursacht, unspezifische aber die Aktivität des ANL2 (ANTHOCYANINLESS 2)-Stromaufwärtsbereiches kann auch mit dem Einfluss des 35-S-Promotors erklärt werden. Bisherige Untersuchungen zeigten, dass dieser Bereich keine oder nur leichte GUS-Expression aktivieren konnte (Kubo et al., 2008). Weil auch die flankierenden Sequenzen und Stromaufwärtsbereiche der benachbarten Gene der Insertionen in Linien UCR8 und 19969/50, im verwendeten pMDC164-Vektor ebenfalls unspezifische Expressionsmuster gezeigt haben, wurden weitere Versuche mit diesem Vektor eingestellt. Der Vektor besitzt eine Duplikation des 35 S-Promotors, unter dessen Kontrolle sich das Resistenzgen für Hygromycin als Selektionsmarker befindet (Curtis & Grossniklaus, 2003). Es ist inzwischen bekannt, dass der 35S-Promotor die Expression benachbarter DNA-Elemente beeinflussen kann und damit eine Auswirkung auf die Expressionsmuster haben

kann (Zheng et al., 2007, Yoo et al., 2005). Dies kann zu einer Fehlinterpretation von Expressionsmustern führen. Versuche haben gezeigt, dass das Reportergen unter der Kontrolle eines spezifischen Promotors, durch den Einfluss des 35S-Promotors ektopisch exprimiert worden ist (Yoo et al., 2005). Wurde der 35S-Promotor durch einen *mas*-Promotor (Mannopinsynthase) ersetzt, so wurde das Reportergen wieder im Muster des spezifischen Promotors exprimiert (Yoo et al., 2005). In dieser Arbeit war es entscheidend, dass der getestete genomische Bereich nicht durch Elemente auf der T-DNA beeinflusst wird. Daher wurde der pBI121-Vektor für die Erstellung weiterer Konstrukte gewählt. Dieser Vektor besitzt ein Kanamycin-Resistenzgen unter der Kontrolle eines NOS-Promotors (Nopalinsynthase). Dieser hatte bisher keinen nachweisbaren Einfluss auf die Expression des GUS-Gens gehabt (Zheng et al., 2007). Bei der Verwendung des pBI121-Vektors und seiner Derivate konnte keine derartige Hintergrundexpression beobachtet werden.

Es ist beschrieben worden, dass ein Fragment von 6,4 kb, welches neben einem Teil des 3'-Stromabwärtsbereichs auch den größten Teil des kodierenden Bereichs des Gens beinhaltete, die Expression im Wildtyp reproduzieren konnte (Kubo et al, 2008). *ANL2* ist ein komplexes Gen, bestehend aus neun Exons und acht Introns von denen zwei besonders groß sind. Es ist nicht auszuschließen, dass sich ein "Enhancer" in einem Intron befindet.

In situ- Untersuchungen konnten belegen, dass die mRNA-Akkumulation des durch UV-Licht induzierten Gens nicht nur in den subepidermalen Zellen stattfindet, sondern auch in der Epidermis (Kubo et al., 2008). Daher wurde diese Linie nicht weiter untersucht.

Beide Hypothesen, die aufgestellt worden sind, konnten in diesen Versuchen nicht bestätigt werden. Die Hypothese 1 besagte, dass der Stromaufwärtsbereich des benachbarten Gens einer "Enhancer Trap"-Insertion, die Expression steuert (siehe Abb. 44). Die Expressionsmuster konnten unter Verwendung dieser Segmente in GUS-Fusionskonstrukten im Wildtyp nicht reproduziert werden. Eine Erklärung dafür ist, dass "Enhancer" nicht immer im Stromaufwärtsbereich von Genen liegen. Es sind inzwischen mehrere Gene bekannt, deren "Enhancer" nicht vor dem Gen liegen. Ein Beispiel ist der "Enhancer" des *AGAMOUS*-Gens im zweiten Intron (Sieburth & Mereyowitz, 1997; Deyholos & Sieburth, 2000). Auch die "Enhancer"-Elemente des *GLABROUS1*-Gens befinden sich nicht stromaufwärts. Das Gen ist ein myb-Homologes, welches die Initiation der Trichomentwicklung steuert. Während der 5'-Stromaufwärtsbereich eine GUS-Expression in Stipeln aktiviert, konnte gezeigt werden, dass 152 bp im 3'-nichtkodierende Bereich notwendig sind, um eine GUS-Expression in Trichomen zu aktivieren (Larkin et al., 1993). Auch Expression verstärkende Introns wurden

beschrieben (Rose et al, 2008). Diese Promotor-proximalen Introns weisen überrepräsentierte Motive auf. In *Arabidopsis* wurden bisher 21 solcher Introns identifiziert (Rose et al., 2008).

Auch die Hypothese 2, die besagte, dass ein benachbartes "Enhancer"-Element die Zellspezifität steuert, konnte in diesen Versuchen nicht bestätigt werden (siehe Abb. 55). Flankierende Bereiche der Insertionsereignisse waren nicht ausreichend, um die in der "Enhancer Trap"-Linie beobachtete Expression zu reproduzieren. Möglicherweise enthielten die getesteten DNA-Fragmente keine "Enhancer" oder nicht alle zur Aktivierung der Expression des Reportergens notwendigen Elemente.

Die Betrachtung der Expressionsdaten der benachbarten Gene, um vorhersagen zu können ob ein Gen zellspezifisch exprimiert wird, war nicht hilfreich. Ein "Enhancer"-Element, das die zellspezifische Expression eines "Enhancer Trap"-Konstrukts steuert, muss nicht Teil des Promotors eines benachbarten Gens sein. Es sind bereits kryptische "Enhancer"-Elemente identifiziert worden. Diese Elemente steuern nicht die Expression der benachbarten Gene, sondern wirken möglicherweise über weite Distanzen (Yang et al., 2005) (Abb.76).

Abbildung 76: Aktivierung der Expression eines "Enhancer Trap"-Konstrukts durch ein "Enhancer"-Element als der Ferne.

Es ist genauso wahrscheinlich, dass nicht nur Elemente stromaufwärts des "Enhancer Trap"-Konstrukts, sondern auch möglicherweise Elemente stromabwärts notwendig sind, die nicht unbedingt in unmittelbarer Nachbarschaft liegen müssen, um die gesuchte Reportergenexpression wiederherzustellen. In den Konstrukten wurde nur die flankierende Sequenz zu einer Seite der "Enhancer Trap"-Insertion überprüft. Es ist möglich, dass Elemente, die sich auf der anderen Seite der "Enhancer Trap"-Konstrukts befanden und zu einer Aktivierung des Reportergens notwendig waren, in den Konstrukten fehlten (Abb. 77).

Abbildung 77: Aktivierung der Expression eines "Enhancer Trap"-Konstrukts durch Kombination mehrerer benachbarter "Enhancer"-Elemente.

Bisher sind Reportergenkonstrukte vor allem als neue Strategie benutzt worden, um Gene zu markieren. Die meisten genetischen Ansätze, um Gene zu identifizieren, basierten bisher auf der Identifizierung eines mutanten Phänotyps. Schwierig war es, wenn das mutierte Gen ein Entwicklungsgen war, deren Inaktivierung im homozygoten Zustand letale folgen hatte. Die Methode "Enhancer Trap"-Konstrukte zu verwenden, um Gene zu markieren und gleichzeitig "Enhancer"-Elemente aufzuspüren, bietet einige Vorteile. So können mit Hilfe des "Enhancer Trapping" Gene identifiziert werden, die mit herkömmlichen Methoden der Genetik nur schwer zu greifen sind. Durch die Insertion eines "Enhancer Trap"-Konstrukts in die Nähe des Gens bleibt der Organismus vital. Dies ist auch dann der Fall, wenn die Insertion in den transkribierten Bereich des Gens erfolgt. Dabei verhält sich das "Enhancer Trap"-Konstrukt "dominant", das heißt, sein Expressionsmuster kann in einer heterozygoten Pflanze verfolgt werden, sobald ein "Enhancer" in Reichweite ist, der die Reportergenexpression aktivieren kann. Dies gilt auch für redundante Gene. Durch die Markierung eines Gens mit einem Reportergenkonstrukt ist es im optimalen Fall möglich, sein Expressionsmuster zu verfolgen, auch wenn das Ausschalten dieses Gens keinen Phänotyp verursacht. Die Identifizierung von "Enhancern" mit Hilfe dieser Methode erfolgt jedoch meistens durch Zufall, denn die Methode hat auch viele Nachteile. Es wird schwierig, wenn der gesuchte zellspezifische "Enhancer" nicht zu dem markierten Gen gehört, sondern über eine Entfernung von mehreren Kilobasenpaaren mit dem Promotor des benachbarten Gens wechselwirkt. Speziell für die "Markierung" von Genen sind daher "Gene Trap"-Konstrukte entwickelt worden. Für die Suche nach "Enhancer"-Elementen gibt es bisher keine Alternative.

Insgesamt betrachtet ist die Identifizierung von "Enhancer"- Elementen unter Verwendung der "Enhancer Trap"-Methode wenig effizient, was nicht nur die Ergebnisse dieser Arbeit zeigen (Gardner et al., 2008). Oft inserieren mehrere Konstrukte in das Genom, was die Identifizierung der Position, an der sich ein für die beobachtete Reportergenexpression verantwortliches "Enhancer"-Element befindet, erschwert. Aber selbst wenn das "Enhancer Trap"-Konstrukt nur einmal im Genom vorkommt, ist das Problem noch nicht gelöst. Durch die Insertion kommt es oft zu Umstrukturierungen in der DNA, die einen Effekt auf die Expression des Reportergenkonstrukts haben können. Die Identifizierung von "Enhancern" in den flankierender Sequenzen der "Enhancer Trap"-Insertion ist nicht immer erfolgreich und die benachbarten Gene können ein völlig anderes Expressionsmuster haben. Das System, hat auch Nachteile, unabhängig davon, ob ein "Enhancer Trap"-Konstrukt oder "Promotor Trap"-Konstrukt verwendet worden ist (Taylor,1997; Tsugeki and Federoff, 1999; Fobert et al.,

1994). Dieser Nachteil wird besonders deutlich, wenn die Untersuchungen in einem größeren Genom stattfinden, wie zum Beispiel im Säugetiergenom (Durick et al., 1999). Soll ein zellspezifischer "Enhancer" und das dazugehörende Gen isoliert werden, dann versagen "Enhancer Traps". Die Insertionsstelle kann sich leicht 100 kb vom Zielgen befinden. Ebenso kann ein "Enhancer Trap"-Konstrukt aus der Ferne aktiviert werden. Die Suche nach einem "Enhancer"-Element in der Umgebung des "Enhancer Trap"-Konstrukts wird dann ergebnislos verlaufen.

Ein Beispiel dafür ist das *Kanadi1*-Gen. Es ist bekannt, dass dieses Gen abaxial im Blatt exprimiert wird. Die "Enhancer Trap"-Insertion in Linie 19960/50 befindet sich nur 2,5 kb stromaufwärts des *Kanadi1*-Gens. In diesem Paradebeispiel ist die GUS-Expression des "Enhancer Trap"-Konstrukts im gleichen Muster aktiviert worden, wie das Transkript des Gens nachgewiesen wurde (Kerstetter et al., 2001), nämlich abaxial im Blatt. Es ist dennoch nicht der Stromaufwärtsbereich des *Kanadi1*-Gens, der eine GUS-Expression im Schwammparenchym aktivieren kann. Somit konnte auch in dieser Arbeit nicht geklärt werden, welches Element dieses Expressionsmuster verursacht hat und wo es sich befindet. Das "Enhancer"-Element war nicht in der unmittelbaren Nachbarschaft des Konstrukts und auch nicht im Stromaufwärtsbereich des *Kanadi1*-Gens zu finden.

Wenn ein zellspezifischer "Enhancer" in der flankierenden Sequenz eines "Enhancer Trap"-Konstrukts isoliert werden konnte, dann ist zwar ein "kryptischer Enhancer" identifiziert worden, der als Werkzeug verwendet werden kann, um Gene zellspezifisch zu exprimieren, doch seine natürliche Funktion bleibt weiterhin verborgen und das Wissen unvollständig, solange kein Gen identifiziert ist, welches zu diesem Element gehört.

"Enhancer Trap"-Linien mit zellspezifischen Expressionsmustern des Reportergens sind also in erster Linie als Material für morphologische Studien zu betrachten. Desweiteren können diese als Material dienen, um Zellen eines ausgewählten Gewebes zu isolieren. Hier können Zellen, die durch die Expression eines fluoreszierenden Reportergens markiert worden sind, mit geeigneter Technik isoliert werden. Diese können dann in einer Transkriptomanalyse verwendet werden.

Die Suche nach zellspezifischen "Enhancern" unter Verwendung der "Enhancer Trap"-Linien ist ein Spiel mit dem Zufall und bleibt eine Herausforderung.

IV.3. Überprüfung von Promotoren bereits beschriebener Gene

Bereits bekannte Stromaufwärtsbereiche, die beschrieben worden sind, dass sie eine zellspezifische Reportergenexpression steuern können, wurden untersucht.

Pflanzen, die mit dem Konstrukt aus Stromaufwärtsbereich des *APX2*-Gens (Ascorbat-Peroxidase 2), fusioniert mit dem GUS-Reportergen transformiert worden sind, zeigten keine Expression. Dies war möglicherweise damit zu erklären, dass der Promotor durch Stress induziert wird (Fryer et al., 2003). Eine Kombination aus Stress durch hohe Lichtintensität (ab 300 μ mol m⁻² s⁻¹), Wassermangel und einer erhöhten H₂O₂- Konzentration in den Blättern, kann die Expression des Gens innerhalb von 15 Min. aktivieren (Fryer et al., 2003). Es ist beschrieben worden, dass Peroxidasen H₂O₂, welches in Blättern bei Stress entsteht, zu Wasser reduzieren, indem sie es als Elektronon-Donor nutzen (Asada, 1999). Daher wurden die Pflanzen einer Lichtintensität von 630 μ mol m⁻² s⁻¹ für 11/2 h ausgesetzt und anschließend Blätter entnommen und gefärbt. Auch unter Starklicht konnte keine GUS-Expression in den transgenen Pflanzen beobachtet werden. Eine weitere Erklärung könnte sein, dass der Wassergehalt der Blätter zu hoch war, um eine Stressreaktion auszulösen. Dies ist ebenfalls bereits beschrieben worden (Fryer et al., 2003).

Der Stromaufwärtsbereich des *SCR*-Gens (Wysocka-Diller et al., 2000) zeigte nur in einigen wenigen Pflanzen eine bündelscheidenspezifische GUS-Expression. In der Mehrzahl untersuchter Pflanzen war keine Spezifität zu beobachten. In der Wurzel war keine derartige Schwankung in den GUS-Expressionsmustern zu beobachten. Es bleibt die Frage, wodurch das Expressionsmuster unspezifisch geworden ist und warum das gleiche Konstrukt in einzelnen Pflanzen Bündelscheidenspezifität verursachte. Es kann nicht nur durch den Einfluss benachbarter Sequenzen erklärt werden, in deren Nähe das Konstrukt inserierte.

Ein bereits bekannter Stromaufwärtsbereich, der eine bündelscheidenspezifische Reporterexpression aktivieren konnte, gehörte zu einem Sulfattransporter (Takahashi et al., 2000). Dieser Bereich wurde umgehend zur Erstellung von Deletionskonstrukten verwendet, um die Position des "Enhancer"-Elements zu bestimmen. Die Untersuchungen haben gezeigt, dass Elemente, die die Expressionsstärke steuern, in einer 741 bp Sequenz liegen, die sich im Bereich -1338 bis -2053 vor dem Translationsstartpunkt ATG befindet. Auch wenn im Vergleich mit dem Stromaufwärtsbereich des *Sultr3;3*-Gens einige Hinweise auf Bindestellen gefunden worden sind, muss eine weitere Untersuchung dieser Sequenz erfolgen. Es bleibt zu klären, wo sich die Elemente für Spezifität befinden und welche Transkriptionsfaktoren mit diesen Erkennungssequenzen interagieren.

IV.4. Sulfattransporter: Verwandtschaft, Funktion und Expression

Der Sulfattransport beginnt in der Wurzel. Dort wird Sulfat in Form von SO₄²⁻ aufgenommen. Der Transport geht über das Xylem zu den Blättern, wo es in zahlreiche Verbindungen eingebaut wird (Saito, 2004). Ebenso sind Pflanzen in der Lage, Schwefel in Form von H₂S aus der Atmosphäre aufzunehmen (Kopriva, 2006). Schwefel ist es ein Bestandteil der Aminosäuren Cystein und Methionin, vieler Vitamine und Kofaktoren, sowie vieler sekundärer Pflanzenstoffe. Die Schwefelaufnahme durch Pflanzen und Mikroorganismen ist eine wichtige Komponente des Schwefelkreislaufs in der Natur. Tieren fehlt die Fähigkeit

eine wichtige Komponente des Schwefelkreislaufs in der Natur. Tieren fehlt die Fähigkeit anorganischen Schwefel zu verwerten. Sie sind auf Methionin als essentielle Aminosäure und Schwefelquelle angewiesen (Saito, 2004). Die Sulfatassimilation erfolgt nach Aktivierung des Schwefels. Es wird in Form von Adenosin 5^c-Phosphosulfat (APS) gebunden und stufenweise über SO₃²⁻ zu S²⁻ reduziert, bis es schließlich in Cystein eingebaut wird. Während die Sulfatreduktion in Plastiden stattfindet, wird Cystein in Plastiden, Mitochondrien und Cytosol synthetisiert (Leustek et al., 2000). Es ist berichtet worden, dass die Sulfatassimilation und Glutathionsynthese in C₄-Pflanzen kompartimentiert abläuft. In Mais wird SO₄²⁻ in den Chloroplasten der Bündelscheidenzellen reduziert. Dort findet auch die Cysteinsynthese statt (Kopriva et al., 2005). Cystein wird schließlich in alle Kompartimente transportiert, wo es zu Glutathion umgewandelt wird.

Zu den ersten Sulfattransportern, die aus Pflanzen isoliert werden konnten, zählen *SHST1*, *SHST2* und *SHST3* (<u>Stylosanthes hamata <u>sulfate</u> transporter</u>) aus der Leguminose *Stylosanthes hamata* (Smith et al., 1995). Isoliert wurden die cDNAs durch die Komplementation eines mutanten Hefestamms YSD1 (*yeast sulfate transport deletion mutant 1*), der kein Sulfat aufnehmen konnte (Smith et al., 1995). Mit Hilfe des mutanten Hefestammes wurden die aus *S. hamata* isolierten Sulfattransporter auf ihre Fähigkeit Sulfat zu transportieren untersucht. Dazu wurden die komplementierten Hefezellen in einem Medium inkubiert, welches ³⁵S-markiertes SO4²⁻ enthielt, danach vom Medium gereinigt und die Aufnahmerate bestimmt. Es handelte sich bei diesen Sulfattransportern um Transporter mit hoher Affinität zum Substrat. Die Proteinsequenzen zeigten eine signifikante Ähnlichkeit zu konservierten Aminosäuresequenzen aus Pilzen, Pflanzen und Säugetieren (Smith et al., 1995).

Seit dieser Zeit konnten Sulfattransporter in vielen anderen Pflanzenfamilien identifiziert und charakterisiert werden. So wurde aus *Brassica juncea* ein Sulfattransporter isoliert der zu 87% mit *Sultr2,2* aus *Arabidopsis thaliana* identisch ist (Heiss et al., 1998). Für den Vergleich des Sulfattransporters (LAST: *low-affinity sulfate transporter*) wurde der C-Terminale Bereich verwendet, ab der siebten α -Helix beginnt (Heiss et al., 1998).

Über Sulfattransporter in Weizen (Buchner et al., 2010), Reis (Godwin et al., 2003; Buchner et al., 2004) und Gerste ist ebenfalls berichtet worden. Aus Gerste konnte der hochaffine Sulfattransporter *HvST1* isoliert worden (Smith et al., 1997; Rae & Smith, 2002).

Auch zu Sulfattransportern in der Pappel (*Populus tremula x Populus alba*) sind Arbeiten durchgeführt worden. Hier konnten achtzehn Sulfattransporterverwandte Gene isoliert werden, die in den homologen Bereichen zu 80-90 % mit denen aus *Arabidopsis* übereinstimmen (Dürr et al., 2010).

Nachdem die bündelscheidenspezifische Expression des *Sultr2;2*-Stromaufwärtsbereichs (Takahashi et al., 2000) bestätigt werden konnte (vgl. Abb. 25), wurde nach verfügbaren Daten in Hirse (*Sorghum bicolor*) und Reis (*Oryza sativa*) gesucht, ob es auch hier bündelscheidenspezifische Sulfattransporter gibt. In einer Sorghum-Datenbank, die eine Sammlung differentiell exprimierte mRNAs enthielt (Westhoff, unveröffentlicht), wurde ein Sulfattransporter, der bündelscheidenspezifisch exprimiert ist gefunden (counts BS: 27170, M: 36). Um zu überprüfen, in welche der aus *Arabidopsis* bekannten Gruppe dieser Sulfattransporter einzuordnen ist, wurde eine phylogenetischer Stammbaum erstellt. Dafür wurde mit BLAST nach Proteinsequenzen von Sulfattransporter gesucht, in *Oryza sativa, Sorghum bicolor, Populus trichocarpa, Medicago truncatula, Glycin max, Vitis vinifera, Brachypodium distachyon* und *Zea mays.* Ein Verzeichnis der gefundenen Proteinsequenzen befindet sich im Anhang (Tabelle 14). Zudem wurden die bereits charakterisierten Sulfattransporter aus *Hordeum vulgare, Triticum tauschii, Lycopersicon esculentum* und *Stylosanthes hamata* aufgenommen.

In *Arabidopsis* gibt es 14 Sulfattransporter, die in fünf verschiedene Gruppen eingeteilt werden können. Die Einteilung erfolgte nach Sequenzähnlichkeit und Funktion (Hawkesford, 2003). Diese Proteinsequenzen wurden verwendet, um in ausgewählten Pflanzenspezies ähnliche Sulfattransportersequenzen zu finden. Diese Proteinsequenzen wurden genutzt, um den in Abbildung 32 dargestellten Phylogenetischen Stammbaum zu errechnen. So beinhaltet die **Gruppe 1** Sulfattransporter, mit einer hohen Affinität für Sulfat (K_ms: 1,5-10 μ M). In *Arabidopsis* ist *Sultr1.1* in der Wurzel exprimiert, und in den Hydathoden der Blätter. *Sultr1;2* ist wie *Sultr1;1* in der Wurzel zu finden, dort in Wurzelhaaren, Epidermis und Kortex. Im Blatt dagegen ist die Expression in den Schließzellen zu finden. Unter Sulfattmangel akkumulieren in *Arabidopsis* die Genprodukte dieser Gene (Maruyama-Nakashita et al., 2004). Es sind Sulfattransporter mit hoher Affinität zum Sulfat, die unter Sulfatmangel hochreguliert werden. Im Stammbaum wurden die aus *Stylosanthes hamata* bekannten

Sulfattransporter dieser Gruppe zugeordnet, Sowie der Sulfattransporter aus *Hordeum* (HVST1) und *Lycopersicon* (LE2) (Abb.78).

Abbildung 78: Verwandtschaft der Sulfattransporter ausgewählter Spezies. Die verkleinerte Darstellung des Stammbaums befindet sich rechts unten in der Abbildung. Blau gekennzeichnet wurden Sulfattransporterproteine aus *Arabidopsis*, sowie die im Text beschriebenen Sulfattransporter aus *Sorghum*.

Die Sulfattransporter der Gruppe 2 weisen eine niedrige Affinität zum Sulfat auf (*Arabidopsis: Sultr2;1*: 0,41 mM, *Sultr2;2*: 1,2 mM) (Hawkesford, 2003).

Der Sulfattransporter aus *Arabidopsis, Sultr2;2* (At1g77990), befindet sich wie beschrieben (Takahashi et al., 2000) in der Gruppe 2 (Abb. 78). In Blättern von *Arabidopsis* ist dieser Sulfattransporter bündelscheidenspezifisch exprimiert (Abb. 67), während die Expression in Wurzeln im Phloem lokalisiert ist (Takahashi et al., 2000). Das Vorhandensein der *Sultr2;2*-Expression im Phloem der Wurzel weist auf ein Transport des Sulfats über das Phloem hin. Das Vorhandensein des Transporters in den Bündelscheidenzellen deutet darauf hin, dass er hier eine Funktion hat im Transport des Sulfats vom Xylem aus ins Palisadenparenchym und Mesophyll (Buchner et al., 2004). Der Sulfattransporter *Sultr2;1* wird durch Sulfatmangel induziert. An dieser Induktion ist eine Mikro-RNA beteiligt (Kawashima et al., 2009), die wiederum durch den Transkriptionsfaktor SLIM1 (SULPHUR LIMITATION1) reguliert wird (Maruyama-Nakashita et al., 2006).

Die Expressionsmuster von Sulfattransportern der **Gruppe 3** wurden bisher nicht genau beschrieben, jedoch ist bekannt, dass sie blattspezifisch sind (Hawkesford, 2003). Innerhalb dieser Gruppe gibt es mehrere Gene, die Untergruppen bilden. Das aus der Sorghumdatenbank stammende, in *Sorghum* bündelscheidenspezifisch exprimierte Gen Sb06g030980, wurde im Stammbaum der dritten Gruppe der Sulfattransporter zugeteilt. Über diese Gruppe wurde bisher berichtet, dass sie in *Arabidopsis* blattspezifisch exprimiert ist.

Der in dieser Arbeit untersuchte 5'-Bereichs des *Sultr3;3* aus *Arabidopsis* bewirkte in jungen Blättern eine Bündelscheidenspezifität (Abb. 49). Die Bündelscheiden waren dabei nicht durchgehend gefärbt. Es waren einzelne Zellen oder Gruppen von Bündelscheidenzellen gefärbt. Ausgewachsene Rosettenblätter zeigten eine GUS-Expression im Leitbündel.

Die **Gruppe 4** besteht in *Arabidopsis* aus zwei Sulfattransportern. In dieser Gruppe kommen Sulfattransporter vor, die eine Transit-Sequenz für Chloroplasten besitzen (Takahashi et al., 1999a). Allerdings konnte auch gezeigt werden, dass einige Proteine dieser Gruppe im Tonoplasten lokalisiert sind (Kataoka, et al., 2004).

Die **Gruppe 5** besteht aus Sequenzen, die sich deutlich von den anderen Sulfattransportersequenzen unterscheiden (Abb. 78). Die Sequenzen dieser Gene sind mit ca. 450 Aminosäuren kürzer als die Proteinsequenzen der anderen Gruppen, die aus 631-685 Aminosäuren bestehen. Die Verkürzungen fanden am N- und am C-terminalem Ende statt. Auch wenn es konservierte Bereiche gibt unterscheiden sich die Sequenzen von denen anderer Gruppen, was im phylogenetischen Stammbaum besonders deutlich wird (Abb. 78). Es gibt bisher weder Informationen über die Expression dieser Gene, noch über ihre genaue

Funktion. Es wurde bereits spekuliert, dass diese Proteine eine Rolle im Molybdat-Transport spielen könnten (Buchner et al., 2010). Zudem fehlt den Proteinen dieser Gruppe die für Sulfattransporter charakteristische STAS-Domäne (Hawkesford 2003). Schließlich konnte gezeigt werden, dass der Sulfattransporter *Sultr5;2* aus *Arabidopsis* Molybdat transportiert und Hefemutanten nicht komplementieren konnte. Deswegen wurde der Transporter zu MOT1 (Molybdäntransporter 1) umbenannt (Tomasu et al., 2007). Vor kurzem konnte aber auch gezeigt werden, dass der hochaffine Sulfattransporter *SHST1* aus *Stylosanthes hamata*, der zur ersten Gruppe der Sulfattransporter gehört, ebenfalls Molybdat transportieren kann, wie Expressionsversuche in Hefemutanten gezeigt haben (Fitzpatrick et al., 2008)

Die Erstellung des Stammbaums hat es erlaubt, das *Sorghum bicolor* stammende Gen Sb06g03098 phylogenetisch einzuordnen und die Verwandtschaft mit den bisher untersuchten Sulfattransportern aus *Arabidopsis* darzustellen.

Ein Vergleich der Stromaufwärtssequenzen der Sulfattransporter aus der Gruppe 2 und 3 wurde unternommen, um abschätzen zu können, wann die Sulfattransporter aus *Arabidopsis Sultr2;2* und *Sultr3;3* sich in der Evolution von den Sulfattransportern der Gramineen abgespalten haben könnten. Aufgrund der sehr geringen Ähnlichkeit dieser Sequenzen konnten keine zuverlässigen Stammbäume erstellt werden. In der Abbildung 78 erscheinen Sulfattransportersequenzen aus Gräsern in der Gruppe 2 gruppiert auf einem eigenen Unterast. Dies deutet darauf hin, dass diese Gruppe in den Dikotyledonen und Gramineen erst nach der Trennung dieser Taxa entstanden sein muss. In der Gruppe 3 gibt es viele Äste, in denen Sequenzen aus Gramineen und Dikotyledonen gemischt auftreten. Dies lässt darauf schließen, dass diese Gengruppe schon in dem gemeinsamen Vorfahren dieser Pflanzen existiert haben muss.

IV.5. Differentiell exprimierte Gene in Oryza sativa und Sorghum bicolor

Die Suche nach Genen, die in Mesophyll und in den Bündelscheidenzellen von Reis differentiell exprimiert werden, in verfügbaren Daten einer Transkriptomanalyse (Jiao et al., 2009, http://bioinformatics.med.yale.edu/riceatlas/), deckte keine Gene auf, die nennenswert differentiell exprimiert waren. Als in Bündelscheidenzellen spezifisch exprimiert wurden die Gene definiert, deren mRNA in den Bündelscheidenzellen und nicht in Mesophyll (oder um ein vielfaches höher) und in nicht Leitbündeln detektiert worden ist. Als mesophyllspezifisch wurden die Gene definiert, deren Wert für Bündelscheidenzellen bei 0 rpm lag (*reads per milion*). Insgesamt waren die in Reis differentiell exprimierten Gene nur gering exprimiert. Anders dagegen verlief eine Durchsuchung der aus *Sorghum bicolor* bekannten Daten (Gowik

& Westhoff, unveröffentlicht). Die verfügbare Sammlung von Daten wurde hier nach Genen durchmustert, die mindestens zehnfach höher im Mesophyll exprimiert waren, als in Bündelscheiden oder umgekehrt. Dabei wurden alle mRNAs verworfen, deren rpm-Wert unter 20 lag, um Hintergrund auszuschließen. Es waren nach Wahl dieser Kriterien immer noch 177 Gene überwiegend im Mesophyll und 687 Gene überwiegend in Bündelscheidenzellen exprimiert. Dass die Anzahl der differentiell exprimierten Gene höher ist als in C₃-Pflanzen, entspricht etwa der Erwartung, denn der Stoffwechsel der C₄-Pflanzen, zu denen auch Sorghum bicolor gehört, ist auf eine Arbeitsteilung von Bündelscheidenzellen und Mesophyllzellen angewiesen. Daher müssen Enzyme der Photosynthese, Transportproteine, Transkriptionsfaktoren sowie andere notwendige Gene differentiell exprimiert werden. Ein Sulfattransporter, der spezifisch in Bündelscheidenzellen von Reis exprimiert wird, konnte in der Liste der Reis-Gene nicht gefunden werden. In der Reihe der mesophyllspezifisch exprimierten Gene war der Sulfattransporter 3;1 (Os10g28440) zu finden (M: 26,664; BS:0). Die nächsten orthologen Gene aus Arabidopsis sind At3g51895 (Sultr3;1) sowie At4g02700 (Sultr3;2). Im eFP-Browser betrachtet waren die Transkripte dieser Gene überwiegend im Leitbündel, sowie in den Bündelscheidenzellen vorhanden, wobei auch in Schließzellen und Trichomen ein höheres mRNA-Vorkommen verzeichnet worden ist, als im Mesophyll.

Eine Frage war, ob es auch einen Sulfattransporter geben könnte, der im Mesophyll exprimiert ist. Um diese Frage zu beantworten muss betrachtet werden, in welcher Form Sulfat in Blättern transportiert wird. Vielleicht ist es nicht immer notwendig einen Sulfattransporter mesophyllspezifisch zu exprimieren. Wie bereits erwähnt läuft die Sulfatreduktion in C₄-Gräsern kompartimentiert ab. Dies geschieht in den Chloroplasten der Bündelscheidenzellen (Kopriva et al., 2005). Dies belegen auch die bereits erwähnten Daten der Transkriptomanalyse (Gowik & Westhoff, unveröffentlicht). Hier gab es drei Sulfattransportergene, die bündelscheidenspezifisch exprimiert waren, aber nach einem mesophyllspezifisch exprimierten Sulfattransporter suchte man dort vergebens. Nach bisherigen Erkenntnissen wird Sulfat in den Bündelscheidenzellen der C₄-Gräser reduziert. Danach wird Sulfat als Bestandteil von Cystein transportiert, bevor es zu Glutathion umgewandelt wird. In Pflanzen dieser Art scheint es keinen Bedarf zu geben, einen mesophyllspezifischen Sulfattransporter zu exprimieren. Weil jedes der Gene aus Sorghum bicolor in den Daten bereits mit dem Arabidopsis-Genom verglichen worden ist, konnte in der Liste der Arabidopsis-Gene nach Sulfattransportern gesucht werden. Es waren folgende drei Sulfattransportergene gefunden worden: Das Gen Sb01g044100, welches dem Sultr2;1-Gen aus Arabidopsis am ähnlichsten war (B: 33,494 rpm; M: 1,195 rpm), Sb01g046410 mit Ähnlichkeit zu dem Sulfattransporter *Sultr3;1* aus *Arabidopsis* (B: 58,700; M: 0) sowie das Gen Sb06g030980 (B: 630,819 rpm; M: 1,195 rpm), ein dem Sulfattransporter *Sultr3;3* aus *Arabidopsis* ähnliches Gen. Die Kompartimentierung der Sulfatreduktion trifft aber nur auf C₄-Gräser zu. In *Flaveria*, einer Dikotyledonen Pflanze ist die Sulfatreduktion nicht an Bündelscheidenzellen gebunden (Kopriva, 2006). In Reis ist das Produkt des Sulfattransporters 3;1 überwiegend im Mesophyll nachgewiesen worden. Es ist nicht bekannt in welcher Weise die Evolution Einfluss auf die Funktion und Expressionsmuster dieser Sulfattransporter hatte. Zumindest sind die Bündelscheiden durch ihre Lage in direkter Nachbarschaft zu den Leitbündeln die ersten Zellen, die Sulfat, welches aus den Leibündeln in das Blatt transportiert wird, aufnehmen. So sind die Bündelscheiden vermutlich einer höheren Sulfatkonzentration ausgesetzt als die Mesophyllzellen, was zu einer Entwicklung von mehreren Sulfattransportern, die eine Aktivität in Bündelscheidenzellen und Leitbündeln haben, geführt hat.

Ein Grund, die Daten der Transkriptomanalyse mit Vorsicht zu betrachten, ist die Unschärfe bei der Zelltrennung. Hier sind zwar Mesophyll und Bündelscheidenzellen getrennt voneinander untersucht worden, aber die Methode hatte einen Nachteil. Die Bündelscheidenfraktion enthielt immer noch die Leitbündelstränge. Es ist aus den Daten nicht abzulesen, ob ein Gen in den Bündelscheiden oder im Leitbündel selbst exprimiert ist. Sicherlich wird die Mesophyllfraktion auch mit Epidermiszellen, Trichomzellen und Spaltöffnungen kontaminiert gewesen sein. Doch diese machen einen geringeren Anteil aus, als dies im Fall der Bündelscheidenfraktion ist. Für die Frage nach differentiell exprimierten Genen in Mesophyll und Bündelscheide, war dieses Material optimal. Es kann anhand dieser Daten aber nicht unterschieden werden, welche der Gene in den Bündelscheidenzellen und welche davon nur im Leitbündel exprimiert waren. Nach diesen Daten wären 20 % der Gene überwiegend Mesophyll exprimiert worden und 80% im überwiegend in Bündelscheidenzellen. Dann wäre die Bündelscheide ein Ort intensiver Genexpression. Deswegen kann in den Fällen der drei Sulfattransporter nicht mit Sicherheit gesagt werden, ob diese in Bündelscheidenzellen aktiv sind, oder den Transport aus dem Leitgewebe in die Bündelscheiden bewirken und daher im Leitbündel lokalisiert sind. Eine Untersuchung der Stromaufwärtsbereiche dieser Gene müsste durchgeführt werden, um diese Fragen zu klären.

V. Zusammenfassung

Ziel dieser Arbeit war es "Enhancer"-Elemente zu identifizieren, die eine Zell oder gewebespezifische Reportergenexpression in den photosynthetisch aktiven Blattzellen der C3-Pflanze Arabidopsis thaliana aktivieren können. Dazu wurde eine Sammlung von Trap"-Linien nach Reportergenexpression Palisadenparenchym, ...Enhancer in Schwammparenchym sowie in den Bündelscheidenzellen durchsucht. Eine Reihe bereits vorcharakterisierter Linien wurde ebenfalls untersucht, die beschriebenen um Expressionsmuster zu überprüfen. Ausgewählte Linien wurden verwendet, um die Insertionspositionen der "Enhancer Trap"-Konstrukte mit Hilfe der inversen PCR zu bestimmen. Die benachbarten Sequenzen sind auf das Vorhandensein von zellspezifischen "Enhancer"-Elementen überprüft worden. Für diese Experimente ist der pBI121-Vektor angepasst wurden. Um die Klonierung zu erleichtern, wurde eine multiple Klonierungsstelle eingebaut, sowie teilweise ein Minimalpromotor, für die Überprüfung von DNA-Fragmenten ohne nativen Kernpromotor.

Die Suche nach "Enhancer"-Elementen in den untersuchten Linien war bisher wenig erfolgreich. Mehr Erfolg dagegen brachte die Untersuchung bereits bekannter Promotoren. So konnte die bündelscheidenspezifische Aktivität des Sultr2;2-Stromaufwärtsbereichs bestätigt werden. Pflanzen, die mit diesem Konstrukt transformiert worden sind, exprimierten das GUS-Reportergen nur in den Bündelscheidenzellen und nicht im Leitbündel. Um den "Enhancer" zu finden, wurde dieser Stromaufwärtsbereich in vier Deletionskonstrukte eingeteilt. Die Aktivität wird durch etwa 700 bp im Bereich von -2053 bis -1312 bp stromaufwärts von ATG reguliert. Wird dieser Bereich deletiert, findet keine Reportergenexpression mehr statt. Dies lässt darauf schließen, dass dieser Bereich alle notwendigen Elemente für die Quantität der Expression besitzt. Ob jedoch auch Elemente für Spezifität in dieser Region liegen, muss durch weitere Versuche geklärt werden. Ebenso wissenswert ist es, ob diese distale Region in der Lage ist alleine, nur unter Verwendung eines Minimalpromotors, die Expression eines Reportergens spezifisch in den Bündelscheidenzellen zu steuern vermag und ob dieses Fragment auch in Flaveria bidentis die gleiche Expression zeigt.

<u>Summary</u>

The aim of this work was to identify enhancer elements that activate cell or tissue-specific reporter gene expression in photosynthetic active leaf cells of the C₃-plant *Arabidopsis thaliana*. A collection of enhancer trap linens was screened for a reporter gene expression in palisade parenchyma, spongy parenchyma or in the bundle sheath cells. Already pre-characterized lines were also checked for the described expression pattern. Selected lines were used to find the insertion positions of the enhancer trap constructs by inverse PCR. Flanking sequences were investigated for the presence of cell-specific enhancer elements. For these experiments the pBI121 vector was modified. To make cloning more easy a multiple cloning site was added and partially, a minimal promoter was inserted for testing of DNA fragments without a native TATA box.

The search for enhancer elements in these investigated lines was not very successful. More efficient was the investigation of already known promoter sequences. In this case the bundle sheath specific expression patterns of the *Sultr2;2*-upstream sequence was confirmed. Plants that were transformed with this construct expressed the GUS-gene only in bundle sheath cells but not in the vascular bundle. To find the enhancer element responsible for this expression pattern, the upstream region of the *Sultr2;2*-gene was divided in four deletion constructs. The activity is regulated by at least 700 bp in the region -2053 to -1312 upstream of the ATG. If this region was deleted, no reporter gene expression was observed. This leads to the conclusion that all necessary elements for quantity are located in this region. It must be investigated in further experiments if the elements for specificity are also located in this fragment. Also worth knowing is if the fragment alone is sufficient to drive bundle sheath specific expression when it is used together with the minimal promoter and a reporter gene and if this fragment also shows the same expression pattern in *Flaveria bidentis*.

VI. Literatur

Allen E, Xie Z, Gustafson A, Carrington J (2005): microRNA directed phasing during trans-acting siRNA biogenesis in plants. *Cell*, **121**: 207–221.

Anish R, Hossain MB, Jacobson RH, Takada S (2009): Characterization of Transcription from TATA-Less Promoters: Identification of a New Core Promoter Element XCPE2 and Analysis of Factor Requirements. *Public Library of Science ONE*, **4**(4): e5103. doi:10.1371/journal.pone.0005103

Asada K (1999): The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. *Annual Reviews in Plant Physiology and Plant Molecular Biology*, **50**: 601–639

Bellen HJ (1999): Ten years of enhancer detection: Lessons from the fly. *The Plant Cell*, **11**: 2271-2281

Bellen HJ, O'Kane CJ, Wilson C, Grossniklaus U, Pearson RK; Gehring WJ (1989): P-Element-mediated enhancer detection: A versatile method to study development in Drosophila. *Genes & Development*, **3**: 1288-1300

Bertani G (1951): Studies on lysogenesis. I. The mode of phage liberation by lysogenic *Escherichia coli. Journal of Bacteriology*, **62**: 293–300.

Bertani G (2004): Lysogeny at Mid-Twentieth Century: P1, P2 and Other Experimental Systems. *Journal of Bacteriology*, 186 (3): 595–600.

Bonke M, Thitamadee S, Mähönen AP, Hauser MT, Helariutta Y (2003): APL regulates vascular tissue identity in Arabidopsis. *Nature*, **426** (13): 181-186

Bradford MM (1976): A Rapid and Sensitive Method fort the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. *Analytical Biochemistry*, **72**: 248-254

Braybrook SA & Kuhlemeier C (2010): How a Plant Builds Leaves. The Plant Cell, Preview, 22:1006-1018

Brown DM, Zeef LAH, Ellis J, Goodacre R, Turnera SR (2005): Identification of Novel Genes in *Arabidopsis* Involved in Secondary Cell Wall Formation Using Expression Profiling and Reverse Genetics. *The Plant Cell*, **17**: 2281–2295

Buchner P, Parmar S, Kriegel A, Carpentier M, Hawkesford M (2010): The Sulfate Transporter Family in Wheat: Tissue-Specific Gene Expression in Relation to Nutrition. *Molecular Plant*, **3**: 376-389

Buchner P, Takahashi H, Hawkesford J (2004): Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. *Journal of Experimental Botany*, 55: 1765-1773

Byrne ME (2005): Networks in leaf development. Current Opinions in Plant Biology, 8: 59-66

Byrne M, Timmermanns M, Kidner C, Martienssen R (2001): Development of leaf shape. *Current Opinion in Plant Biology*, 4: 38-43

Campisi L, Yang Y, Yi Y, Heilig E, Herman B, Cassista AJ, Allen DW, Xiang H, Jack T (1999): Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. *The Plant Journal*, **17** (6): 699-707

Chen, J & Dellaporta S (1994): Urea-based Plant DNA Miniprep. The Maize Handbook. Springer-Verlag, N. Y., Inc. 526-527

Chitwood DH, Guo M, Nogueira FTS, Timmermans MCP (2007): Establishing leaf polarity: the role of small RNAs and positional signals in the shoot apex. *Development*, 134: 813-823

Clough SJ & Bent AF (1998): Floral dip: a simplified method for *Agrobacterium* mediated transformation of *Arabidopsis thaliana*. *The Plant Journal*, 16: 735-43.

Cohen SN, Chang ACY, Hsu L (1972): Nonchrosomal antibiotic resistance in bacteria: genetic transformation of *Escherichia coli* by R-factor DNA. *Proceedings of the National Academy of Science of the United States of America*, **69:** 2110-2114.

Curtis DM & Grossniklaus U (2003): A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. *Plant Physiology*, **133**: 462-469

De la Riva GA, Gonzáles-Cabrera J, Vázquez-Padrón R, Ayra-Pardo C (1998): Agrobacterium tumefaciens: a natural tool for plant transformation, *Electronic Journal of Biotechnology*, **1** (3), ISSN: 0717-3458; 1-16

Dengler N & Kang J (2001): Vascular patterning and leaf shape. *Current Opinion in Plant Biology*, **4:** 50-56

Deyholos MK & Sieburth LE (2000): Separable Whorl-Specific Expression and Negative Regulation by Enhancer Elements within the *AGAMOUS* Second Intron. *The Plant Cell*, **12**: 1799-1810

Dinneny JR & Yanofsky MF (2004): Vascular Patterning: Xylem or Phloem? Current Biology, 14: 112-114

Dürr J, Bücking H, Mult S, Wildhagen H, Palme K, Rennenberg H, Ditengou F Herschbach C (2010): Seasonal and cell type specific expression of sulfate transporters in the phloem of Populus reveals tree specific characteristics for SO42- storage and mobilization. *Plant Molecular Biology*, **72**: 499-517

Durick K, Mendlein J, Xanthopouls KG (1999): Hunting with Traps: Genome-Wide Strategies for Gene Discovery and Functional Analysis. *Cold Spring Harbor Laboratory Press*, doi:10.1101/gr.9.11.1019, 1019-1025

Edgar RC (2004): MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics*, **32**: 1792–1797

Edwards K, Johnstone C, Thompson C (1991): A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. *Nucleic Acids Research*, **19** (6): 1349

Efroni I, Eshed Y, Lifschitz E (2010): Morphogenesis of Simple and Compound Leaves A Critical Review. *The Plant Cell*, Preview, 22:1019-1032

Elmayan T & Tepfer M (1995): Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. *Transgenic Research*, **4** (6): 388-96.

Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003): Radial Patterning of Arabidopsis Shoots by ClassIII HD-ZIP and KANADI Genes. *Current Biology*, **13**: 1768-1774

Engelmann S, Wiludda C, Burscheidt J, Gowik U, Schlue U, Koczor M, Streubel M, Cossu R, Bauwe H, Westhoff P (2008): The Gene for the P-Subunit of Glycine Decarboxylasefrom the C4 Species *Flaveria trinervia*: Analysis of Transcriptional Control in Transgenic *Flaveria bidentis* (C4) and *Arabidopsis* (C3). *Plant Physiology*, **146**: 1773-1785

Esau K (1953): Plant anatomy, Sec. Ed., John Wiley & Sons.Inc., New York

Federoff NV, Smith DL (1993): A versatile system for detecting transposition in Arabidopsis. *The Plant Journal*, 3: 273-289

Fitzpatrick KL, Tyerman SD, Kaiser BN (2008): Molybdate transport through the plant sulfate transporter SHST1. *FEBS Letters*, **582**: 1508-1513

Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003): Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organization of Arabidopsis leaves. *The Plant Journal*, 33: 691-705

Fu Y, Xu L, Xu B, Yang L, Ling Q, Wang H, Huang H (2007): Genetic Interactions Between Leaf Polarity-Controlling Genes and *ASYMMETRIC LEAVES1* and 2 in *Arabidopsis* Leaf Patterning. *Plant Cell Physiology*, **48** (5): 724-735

Fulton TM, Chunwongse J, Tanksley SD (1995): Microprep Protocol for Extraction of DNA from Tomato and other Herbaceous Plants. *Plant Molecular Biology Reporter*, **13** (3): 207-209

Gardner MJ, Andrew JB, Assie JM, Poethig RS, Haseloff JP, Webb AAR (2008): *GAL4 GFP* enhancer trap lines for analysis of stomatal guard cell development and gene expression. *Journal of Experimental Botany*, doi:10.1093/jxb/ern292, 1-14

Geisler M, Jablonska B, Springer PS (2002): Enhancer Trap Expression Patterns Provide a Novel Teaching Resource. *Plant Physiology*, **130**: 1747-1753

Godwin RM, Rae AL, Carrol BJ, Smith FW (2003): Cloning and characterization of two genes encoding sulfate transporters from rice (*Oryza sativa* L.). *Plant and Soil*, 257: 113-123

Green KA, Prigge MJ, Katzman RB, and Clark SE (2005): CORONA, a member of the class III homeodomain leucine zippergene family in Arabidopsis, regulates stem cell specification and organogenesis. *The Plant Cell*, **17**: 691–704

Guindon S & Gascuel O (2003): A simple, fast and accurate algorithm to estimate larges phylogenies by maximum likelihood. *Systematic Biology*, **52**: 696–704

Harrison SJ, Mott EK, Parsley K, Aspinall S, Gray JC, Cottage A (2006): A rapid and robust method of identifying transformed *Arabidopsis thaliana* seedlings following floral dip transformation. *Plant Methods*, **2**: 19-25

Haseloff J (1999): GFP variants for Multispectral Imaging of Living Cells. *Methods in Cell Biology*, 58: 139-150

Haseloff J & Amos B (1995): GFP in Plants. Trends in Genetic, 11 (8): 328-329

Haseloff J, Siemering KR, Prasher DC, Hodge S (1997): Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. *Proceedings of the National Academy of Science of the United States of America*, 94: 2122-2127

Hatch MD & Slack CR (1966): Photosynthesis by sugarcane leaves. A new carboxylation reaction and the pathway of sugar formation. *Biochemical Journal*, 101: 103-11

Hawkesford MJ (2003): Transporter gene families in plants: the sulphate transporter gene family - redundancy or specialization? *Physiologia Plantarum*, **117**: 155-163

Hayes JM (1994): Global methanotrophy at the Archean-Proterozoic transition. *Early Life of Earth*, New York, *Columbia University Press*: 220-236

Heiss S, Schäfer HJ, Haag-Kerwer A, Rausch T (1999): Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. *Plant Molecular Biology*, **39**: 847-857

Hood E, Helmer GL, Fraley RT and Chilton MD (1986): The hypervirulence of *Agrobacterium tumefaciens* A281 is encoded in a region of pTiBo542 outside of T-DNA. *Journal of Bacteriology*, **168**: 1291-1301

Hooykaas PJJ & and Shilperoort RA (1992): *Agrobacterium* and plant genetic engineering. *Plant Molecular Biology*, 19:15-38

Husbands AY, Chitwood DH, Plavskin Y, Timmermans MCP (2009): Signals and prepatterns: new insights into organ polarity in plants. *Genes & Development*, 23:1986-1997

Izhaki A & Bowman JL (2007): KANADI and Class III HD-Zip Gene Families Regulate Embryo Patterning and Modulate Auxin Flow during Embryogenesis in Arabidopsis. *The Plant Cell*, **19**: 495-508

Jefferson RA & Kavanagh AT (1987): GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. *The EMBO Journal*, 6 (13): 3901-3907

Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T, Clay NK, Ceseranti T, Chen M, Ma L, Holford M, Zhang H, Zhao H, Deng X, Nelson T (2008): A transcriptome atlas of rice cell types uncovers cellular functional and developmental hierarchies. *Nature Genetics*, **41**: 258-263

Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004): Vacuolar Sulfate Transporters Are Essential Determinants Controlling Internal Distribution of Sulfate in Arabidopsis. *The Plant Cell*, **16**: 2693-2704

Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009): Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. *The Plant Journal*, **57**:313-321 Kerstetter RA, Bollmann K, Taylor RA, Bomblies K, Poethig RS (2001): KANADI regulates organ polarity in Arabidopsis. *Nature*, **411**: 706-709

Kim JY, Yuan Z, Cilia M, Khalfan-Jagani Z, Jackson D (2002): Intercellular trafficking of KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis, *Proceedings of the National Academy of Sciences of the United States of America*, **99** (6): 4103-4108

Kinsman EA & Pyke KA (1998): Bundle sheath cells and cell-specific plastid development in *Arabidopsis* leaves. *Development*, 125: 1815-1822

Knappe S, Löttgert T, Schneider A, Voll L, Flügge UI, Fischer K (2003): Characterization of two functional *phosphoenolpyruvate/ phosphate translocator (PPT)* genes in *Arabidopsis - AtPPT1* may be involved in the provision of signals for correct mesophyll development. *The Plant Journal*, **36**: 411-420

Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Körber H, Redei GP, Schell J (1989): High-frequency T-DNA-mediated gene tagging in plants. *Proceedings of the National Academy of Science of the United States of America*, **86**: 8467-8471

Kopriva S (2006): Regulation of Sulfate Assimilation in Arabidopsis and Beyond. *Annals of Botany*, **97**: 479-495

Kopriva S & Koprivova A (2005): Sulfate assimilation and glutathione synthesis in C4 plants. *Photosynthesis Research*, **86**: 363-362

Ku MSB, Kano-Murakami Y, Matusoka M (1996): Evolution und Expression of C4-Photosynthesis Genes. *Plant Physiology*, 111: 949-957

Kubicki A, Steinmüller K, Westhoff P (1994): Differental transcription of plastomeencoded genes in the mesophyll and bundle-sheath chloroplasts of the monocotyledonous NADP-malic enzyme-type C4 plants maize and Sorghum. *Plant Molecular Biology*, **25**: 669-679

Kubo H, Kishi M, Goto K (2008): Expression analysis of *ANTHOCYANINLES2* gene in Arabidopsis, *Plant Science*, 175: 853-857

Kubo H, Peeters AJM, Aarts MGM, Pereira A, Koornneef M (1999): *ANTHOCYANINLESS2*, a Homeobox Gene Affecting Anthocyanin Distribution and Root Development in Arabidopsis. *The Plant Cell*, **11**: 1217–1226

Landy A (1989): Dynamic, Structural, and Regulatory Aspects of Lambda Site-specific Recombination. *Anual Reviews in Biochemistry*, **58**: 913-949.

Larkin JC, Oppenheimer DG, Pollock S, Marks DM (1993): Arabidopsis GLABROUS1 Gene Requires Downstream Sequences for Function. *The Plant Cell*, 5:1739-1748

Lazo GR, Stein PA, Ludwig RA (1991): A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. BioTechnology, 9: 963-967

Leegood RC (2008): Roles of the bundle sheath cells in leaves of C3 plants. *Journal of Experimental Botany*, **59** (7): 1663-1673

Leustek T, Martin MN, Bick JA, Davies JP (2000): Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. *Annual Review of Plant Physiology and Plant Molecular Biology*, **51**: 141–165

Li H, Culligan K, Dixon R, Chory J (1995): CUE1: A mesophyll Cell-Specific Positive Regulator of Light-Controlled Gene-Expression in *Arabidopsis*. *The Plant Cell*, 7: 1599-1610

Logemann E, Birkenbihl RP, Ülker B, Somsich IE (2006): An improved method for preparing Agrobacterium cells that simplifies the *Arabidopsis* transformation protocol. *Plant Methods*, doi:10.1186/1746-4811-2-16, **2**: 16

Long D, Martin M, Sundberg E, Swinburne J, Puangsomlee P, Coupland G (1993): The maize transposable element system Ac/Ds as a mutagen in *Arabidopsis:* Identification of an albino mutation induced by Ds insertion. *Proceedings of the National Academy of Science of the United States of America*, **90:** 10370-10374

Malamy JE & Benfey PN (1997): Analysis of *SCARECROW* expression using a rapid system for assessing transgene expression in *Arabidopsis* roots. *The Plant Journal*, **12**: 957-963

Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004): Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signaling and regulation. *Journal of Experimental Botany*, **55** (404): 1843-1849

Maruyama-Nakashita A., Nakamura Y, Toghe T, Saito K, Takahashi H (2006): Arabidopsis SLIM1 is a central transcriptional regulator of plant sulphur response and metabolism. *The Plant Cell*, **18**: 3235-3251

McClintock B (1950): The origin and beaviour of mutable loci in maize, *Proceedings of the National Academy of Science of the United States of America*, **6**: 344-355

McConnell JR, Barton MK (1998): Leaf polarity and meristem formation in *Arabidopsis*. *Development*, 125: 2935-2942

McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, and Barton MK (2001). Role of *PHABULOSA* and *PHAVOLUTA* in determining radial patterning in shoots. *Nature*, **411**: 709-713

Mohanty B, Krishnan SP, Swarup S, Bajic VB (2005): Detection and preliminary analysis of the motifs in promoters of anaerobically induced genes of different plant species. *Annals of Botany*, **96** (4): 669-681

Morrison DA (1997): Transformation in *Escherichia coli*: Cryogenic Preservation of Competent Cells. *Journal of Bacteriology*, **132** (1): 349-351

Murashige T, Skoog F (1962): A revised medium for rapid growth and bioassays with tobacco cultures. *Physiologia Plantarum*, **15**: 473-497

Mustroph A, Zanetti ME, Jang CJH, Holtan HE, Repetti PP, Galbraith DW, Girke T, Bailey-Serres J (2009): Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. *Proceedings of the National Academy of Sciences of the United States of America*, **106** (44): 18843-18848

O'Kane CJ & Gehring WJ (1987): Detection in situ of genomic regulatory elements in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, **84**: 9123-9127

Otsuga D, De Guzman B, Prigge MJ, Drews GN, and Clark SE (2001): REVOLUTA regulates meristem initiation at lateral positions. *The Plant Journal* 25: 223–236.

Passera C & Ferretti M (1988): Sulphate Uptake by Leaf Mesophyll and Bundle Sheath Cells of Maize Plants. *Biologia Plantarum*, **30** (6): 451-456

Plesch G, Kamann E, Mueller-Roeber B (2000): Cloning of regulatory sequences mediating guard-cell-specific gene expression. *Gene*, 249: 83-89

Ptashne M (1992). A Genetic Switch: Phage (Lambda) and Higher Organisms (Cambridge, MA: Cell Press)

Rae AL & Smith FW (2002): Localisation of expression of a high-affinity sulfate transporter in barley roots. *Planta*, **215**: 565-568

Rose AB, Elfersi T, Parra G, Korf I (2008): Promoter-Proximal Introns in *Arabidopsis thaliana* Are Enriched in Dispersed Signals that Elevate Gene Expression. *The Plant Cell*, **20**: 542-551

Sadowski I, Ma J, Triezenberg S, Ptashne M (1988): Gal4-VP16 is an unusually potent transcriptional activator. *Nature*, 335: 563-566

Sage RF (2004): The evolution of C4 photosynthesis. New Phytologist, 161: 341-370

Saito K (2004): Sulfur Assimilatory Metabolism. The Long and Smelling Road. *Plant Physiology*, 136: 2443-2450

Sakai H, Aoyama T, Bono H, Oka A (1998): Two component response regulators from *Arabidopsis thaliana* contain a putative DNA-binding motif. *Plant Cell Physiology*, **39**: 1232-1239

Sakai H, Aoyama T, Oka A (2000): Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. *The Plant Journal*, 24 (6): 703-711

Sánchez C, Vielba J M, Ferro E, Covelo G, Solé A, Abarca D, De Mier B, Díaz-Sala C (2007): Two *SCARECROW-LIKE* genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species. *Tree Physiology*, **27**: 1459-1470

Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA (2007): Mammalian RNA polymerase II core promoters: insights from genome-wide studies. *Nature Reviews in Genetics*, 8 (6): 424-436

Sessa G, Steindler C, Morelli G, Ruberti I (1998): The *Arabidopsis Athb-8*, -9, and -14 genes are members of a small gene family coding for highly related HD-ZIP proteins. *Plant Molecular Biology* **38**: 609-622.

Shahmuradov IA, Solovyev VV, Gammerman AJ (2005): Plant promoter prediction with confidence estimation. *Nucleic Acids Research*, **33** (3): 1069-1076

Sieburth LE, Mereyowitz EM (1997): Molecular Dissection of the AGAMOUS Control Region Shows That *cis* Elements for Spatial Regulation Are Located Intragenically. *The Plant Cell*, 9: 355-356

Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman J L (1999): Members of the *YABBY* gene family specify abaxial cell fate in *Arabidopsis*. *Development* 126: 4117-4128

Siemering KR, Golbik R, Sever R, Haseloff J, (1996): Mutations that suppress the thermosensitivity of green fluorescent protein. *Current Biology*, 6: 1653-1663

Sinha N (1999): Leaf Development in Angiosperms, Annual Review in Plant Physiology and Plant Molecular Biology, 50: 419-446

Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (1998): Strasburger Lehrbuch der Botanik, Gustav Fischer Verlag, Stuttgart

Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995): Plant members of a family of sulfate transporters reveal functional subtypes. *Proceedings of the National Academy of Sciences of the United States of America*, 92: 9373-9377

Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, Vanden PJ (1997): Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. *The Plant Journal*, **12** (4): 875-884

Springer P (2000): Gene Traps: Tools for Plant Development and Genomics. *The Plant Cell*, **12**: 1007-1020

Sundaresan V, Springer P, Volpe T, Haward S, Jones JDG, Dean C, Ma H, Martienssen R (1995): Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. *Genes & Development*, 9: 1797-1810

Takahashi H, Asanuma W, Saito K (1999a): Cloning of an *Arabidopsis* cDNA encoding a chloroplast localizing sulfate transporter isoform. *Journal of Experimental Botany*, **50**: 1713-1714

Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford M, Saito K (2000): The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in *Arabidopsis thaliana*. *The Plant Journal*, **23** (2): 171-182

Talbert PB, Adler HT, Parks DW, Comai L (1995): The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of *Arabidopsis thaliana*. *Development*, **121:** 2723-2735.

Taylor CB (1997): Promotor fusion analysis: An insufficient measure of gene expression. *The Plant Cell*, 9: 273-275

Teakle GR, Manfield IW, Graham JF, Gilmartin PM (2002): *Arabidopsis thaliana* GATA factors: organisation, expression and DNA-binding characteristics. *Plant Molecular Biology*, **50** (1): 43-57.

Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T (2007): An Arabidopsis thaliana high affinity molybdate transporter required for efficient
uptake of molybdate from soil. *Proceedings of the National Academy of Science of the United States of America*, **104**: 18807–18812

Truernit E & Hibberd JM (2007): Immunogenic tagging of chloroplasts allow their isolation from defined cell types. *The Plant Journal*, **50**: 926-932

Tsugeki R, Federoff NV (1999): Genetic ablation of root cap cells in *Arabidopsis*. *Proceedings of the National Academy of Science of the United States of America*, **96**: 12941-12946

Waites R & Hudson A (1995): *phantastica*: A gene required for dorsoventrality of leaves in *Antirrhinum majus*. *Development*, 121: 2143–2154

Westhoff P & Gowik U (2004): Evolution of C4 Phosphoenolpyruvate Carboxylase. Genes and Proteins: a Case Study with the Genus *Flaveria*. *Annals of Botany*, **93**:13-23

Woo KC, Anderson JM, Boardman NK, Downton WJS, Osmond CB, Thorne SW (1970): Deficiant Photosystem II in Agranal Bundle Sheath Chloroplasts of C4-Plants. *Proceedings of the National Academy of Sciences of the United States of America*, 67 (1): 18-25

Wray GA, Matthew WH, Abouheif E, Balhoff JP, Pizer M, Rockmann MV, Romano LA (2003): The Evolution of Transcriptional Regulation in Eukaryotes. *Molecular Biology and Evolution*, **20** (9): 1377-1419

Wu G, Lin W, Huang T, Poethig RS, Springer PS, Kerstetter RA (2008): KANADI1 regulates adaxial-abaxial polarity in ARABidopsis by directly repression the transcription of *ASYMMETRIC LEAVES2*. Proceedings of the National Academy of Sciences of the United States of America, **105** (42): 16392-16397

Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000): Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. *Development*, **127**: 595-603

Yang W, Jefferson RA, Huttner E, Moore JM, Gagliano WB, Grossniklaus U (2005): An Egg Apparatus-Specific Enhancer of Arabidopsis, Identified by Enhancer Detection, *Plant Physiology*, **139**: 1421–1432

Yoo SY, Bomblies K, Yoo KS, Yang JW, Choi MS Lee JS, Weigel D, Ahn JH (2005): The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. *Planta*, **221** (4): 523-530

Zheng X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song S, Pei Y, Li Y (2007): The cauliflower mosaic virus (CaMV) 35 promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. *Plant Cell Reporter*, **26**: 1195-1203

VII. Anhang

VII.1. Sequenzen der in den iPCR-Reaktionen aus "Enhancer Trap"-Linien isolierten Produkte:

GRAU UNTERLEGT:	Primerbindestellen
GRAU:	T-DNA-Sequenz bis zur Schnittstelle
GRAU, KURSIV:	nicht zugeordnete Sequenz
KURSIV:	T-DNA-Rand
SCHWARZ, FETT:	isolierte flankierende genomische DNA-Sequenz aus Arabidopsis
UNTERSTRICHEN:	Schnittstellen

<u>UCR8:</u>

Restriktionsendonuklease: Kpn21 (T/CCGGA) Primer: PCRII Primer 5FI: 5'-GTAGAGCTAGTTTCCCGACCGT-3' Primer 5RI: 5'-TACGATAACGGTCGGTACGGG-3' Isolierte Sequenz: GTAGAGCTAGTTTCCCGACCGT TTCACCGGGATCCCGTTTTTAATCGGGATGATCCCGTT TCGTTACCGTATTTTCTAATTCGGGATGACTGCAATATGGCCAGCTCCAACTCCCATCCA TAACCACTGAGGCCCAGCCCATGTAAGAAATACCTAGCGAACGCTGCTCTGCCTCTCC CAGGCGGCCAGGCCACCACGAGTAACAGCATCACACTTCACACGCCGCCCACGCCCCA CGCCGGAGTTTATATAAAAGTTGGAACAAACTCTAGAAGCAACCTTTAATCAGGGATGAA AGTAGGATGGGAAAATCCCCGTACCGACCGTTATCGTA

Insertionsposition: 614886, Chromosom 4

<u>UCR9</u>

Restriktionsendonuklease: Kpn2I (T/CCGGA)

Primer: PCRII

Primer 5FI: 5'-GTAGAGCTAGTTTCCCGACCGT-3' Primer 5RI: 5'-TACGATAACGGTCGGTACGGG-3'

Isolierte Sequenz:

UCR10

Restriktionsendonuklease: Bsp 68I (TCG/CGA) Primer: PCRII Primer 5FI: 5'-GTAGAGCTAGTTTCCCGACCGT-3' Primer 5RI: 5'-TACGATAACGGTCGGTACGGG-3' Isolierte Sequenz: GTAGAGCTAGTTTCCCGACCGT TCGTTACCGTATTTCCTAATTCGGGATGACTGCAATATGGCCAGCTCCCAACTCCCATCCA TAACCACTGAGGCCCAGCCCATGTAAGAAATACCTAGCGAACGCTGCTCTC**TCATATAAA**

*GATGAAAGTAGGATGGGAAAAT*CCCGTACCGACCGTTATCGTA Insertionsposition: 8678750, Chromosom 2

<u>1744</u>

Restriktionsendonuklease: AvaIII (ATG/CAT) RP3: 5'-AGTGAATTAATTCCCGATCTAGTAA-3' LB3: 5'-CCACCCCAGTACATTAAAAACGTC-3' Isolierte Sequenz:

<u>2443</u>

Restriktionsendonuklease: EcoRI (G/AATTC) LB1: 5'-TTGATTTATAAGGGATTTTGCCGA-3' 2443 A: 5'-CCTTCACCCTCTCCACTGACAG-3' Isolierte Sequenz:

Insertionsposition: 17078891, Chromosom 5

<u>4369</u>

Restriktionsendonuklease: BclI (T/GATCA) RP2: 5'-CGATGGAGGACAGGAGCTTCATTGT-3' FP2: 5'-AACAAAATATAGCGCGCAAACTAGGATA-3' Isolierte Sequenz: CGATGGAGGACAGGAGCTTCATTGT TGGATCCNGGTTCTCTCCCAAATGAAATGAACTTCC TTATATAGAGGAAGGGTCTTGCGAAGATCCAGTGTTTG**CTGAAATTGGAAAAGTCAGAGA**

AACCCTATTGGAGTCTATACGAAACTTCCAGGAAGTACTAGATTGTCGTTTCCCGCCTTC

Restriktionsendonuklease: AvaIII (ATGCAT) RP4: 5'-GACACCGCGCGCGATAATTTATCCTA-3' LB1: 5'-TTGATTTATAAGGGATTTTGCCGA-3' FP4: 5'-AACCACCATCAAACAGGATTTTCGCCT-3' RP3: 5'-AGTGAATTAATTCCCGATCTAGTAA-3' Isolierte Sequenz:

AACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCA ACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAG AAAAACCACCCCCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCA ATTTGTTTACACCACAATATTGTGGATATATCATTGTGAATAAGCATTGGTATGATCATATTTCT TGTTATTCTTGGTGGAAGGGAAAGAATCGGACAAAATTAAGTTGGCTGTGATGACAAAAA GAGAGAACAAATTAAAAAAAACGGCTGAATAATTGAACCATAATCATATATTATTCGATG ATCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATT ACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACCACATGGTCC TTCTTGAGTTTGTAACAGCTGCTGGGGATTACACATGGCATGGAACTATACAAACATG ATGAGCTTTAAGAGCTCGAATTTCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTA AGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATATTTCTGTTGAATTACGTT AAGCATGTAATAATTAACATGTAATGCATGACGTTATTAT

Bindestelle Für RP4 fehlt in der Sequenz. Insertionsposition: 10531141, Chromosom 1

<u>J2111</u>

Restriktionsendonuklease: AvaIII (ATG/CAT) RP3: 5'-AGTGAATTAATTCCCGATCTAGTAA-3' LB3: 5'-CCACCCCAGTACATTAAAAACGTC-3' Isolierte Sequenz:

CCACCCCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAATTTG TTTACACCACAATATTAGTTGTGAAATAGTTATTTAGTACACGCTGGAATAGTGTACATT AGTACTGACCACATCCTTTAAATTAGTTTCTTATATGTAAGTTAACCTTAAACCGGTAAC **TCAGCACTAAATACTAAATATTGCTGGGTCAGCTCCTTATAGTAATATTTAATTTGTGGA** CGCATACGTAATGGAAAGAGAAAATGACGCACAGTTCATCGTGAAGCCGACACATAAGCC **ATTTCCAAAACCCAAATCACCCTAACCCCAAAACGGCAATGACAAACTTTTTTCAGATTC** TCCTTTAAAAGCTTCGTTTCGAAATTCGATCCCTTTTTTGCTTTTTCATCTTCCAGATAT TAAAAAAGGTCAGTGAAAAATAAAGCTTGAGTTACATGGAATGTATTGGAATCGACGCGA TAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATT CATCTATGTTACTAGATCGGGAATTAATTCACT Insertionsposition: 5898430, Chromosom 5

<u>JR11-2</u>

Restriktionsendonuklease: AvaIII (ATG/CAT) RP3: 5'-AGTGAATTAATTCCCGATCTAGTAA-3' LB3: 5'-CCACCCCAGTACATTAAAAACGTC-3' Isolierte Sequenz:

CCACCCCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAATTTG TTTACACCACAAATGTTTTGTTGTCTTTGGTTCTACTCCGCACTGAATCTTTCGATCA GCGATAATTGTTTCCTTCTTTTGGGATTTTCTCCTTGGGTACGAGGTTCTTTCCTTCTTT TATTTGCTCTGTTTTTGAGATTTGGAATTGTTATCAAGTCTGACAAAACTGGTCACTAAT **CTTTCTGGGAAATTGAGCATGTTCGTGTTCTTGCATCCGTTTGACTCTTTTTCTATGCAA** AGTCTCAACCTTTCAATAGTGGAATTTATTCTTATCCCTAATTTCTCTTTACCAGACCTA **TTTTTAGCTAAGTTTGGTTGAATTTAGAAAGTCTTTGATTCATAGTTGAAGAGATTCTCT TTGTAATGTTATTAAATGTGTCTTTGTAGATGGAACCAGCTCAATTAATGAGATGAGATG** AGAATGTTCAGCTTGCAGAAGATGGCTATGGCTTTTACTCTCTTGTTTTTGCCTGTTTA TGCTCATTTGTGTCTCCAGATGCTCAAGGTGATGCCTTTTCTTACTTTTCAACTGCTATT **TTGCTGCTCTCATTTCTTGTTTCGTTTCTGGTAATTTCTGAGCTTGTTCAGGTTGAAGAT TTAACTCTATGATTCTTTGCTTTTTCCATTTTCAGGGGATGCACTGTTTGCGTTGAGGATC** TCCTTACGTGCATTACCGAATCAGCTAAGTGACTGGAATCAGAACCAAGTTAATCCTTGC ACTTGGTCCCAAGTTATTTGTGATGACAAAACTTTGTCACTTCTCTGTAAGTTTAATGAC AACTCTGAATTAGGCAATGTTGTT

Insertionsposition 3238636, Chromosom 5

<u>19956/32</u>

Restriktionsendonuklease: BamHI (G/GATCC) Oligo 96: 5'-AGTGCCAAGCTTGCATGC-3' Oligo 86: 5'-TCGGGCCTAACTTTTGGTG-3' Isolierte Sequenz:

Insertionsposition: 299202bp, Chromosom 4

<u>19960_50_1:</u>

Restriktionsendonukleasen: TaqI (T/CGA) und XhoI (C/TCGAG) oligo 156 rev: 5' GATCCGTCGTATTTATAGG 3' oligo 155: 5' ATAACGCTGCGGACATCTAC 3' Isolierte Sequenz (TaqI):

ATCCGTCGTATTTATAGGCGAAAGCAATAAACAAATTATTCTAATTCGGAAATCTTTATT **TCGACAAATCATTAATGCCTTGAAAATAAAAATATGATAAAATTGTAAGACTATGTTTATAT ATCAGGAAATTTAAATAAGTGAGATTTTATTC**AATTGTAAATGGCTTCATGT**CCG**GGAAA *AATTTTTTTTCAATTCAAAAAT*GTAGATGTCCGCAGCGTTAT Isolierte Sequenz (XhoI): **GATCCGTCGATTTATAGG**CGAAAGCAATAAACAAATTATTCTAATTCGGAAATCTTTATT TCGACGTGTCTACATTCACGTCCAAATGGGGGGCTTAGATGAGAAACTTCACGATCGC**CTC** GAGAGTATATCTTGGAAAACGATAGTTGAGAAAGGGTAATATTGTCATTCGCTATATTCC AAATATTGGAAGCTTTTTATTTTATTTTGGGATGGTATTTCAATTTGTCTTTTTCACCTT **TCAACAAGTAAACCCATCTATCAATATAATATAAATTATTTTACGGCTAGATTAATTGAT TTCATGTTTTAGTTTATTCGTTTAAACTACTGAAATTTTGATTTCCATAGATAAAGTTGA** AGAATAATAGCAAAATAAATCTTGTTTTCTATCAATTTAGTAGATGAAATTTTCAAATGT AAAGTGTATTTAATAATCGACCAATTTCATAGATGAAAAGCATACAACTTTTAACAATAA AAATTAATACGATTATCATCCATTAAAAACCTTAACAATTTGAGTAATAAATCAAAAACTC AATTGATCTTTAAAATAATAATGTTCACAGATTATCATGAAGAATAATAATTAAAAAATGT TGGAGAAGAGTACAAGAGGAGAGAGAGAATAAAGGGTCGCTCTCTTCTGTCCTATCTAATCT AAAAAAGAGAGAGTGCTTTGATTTTGGTACCC Insertionsposition: 5411092, Chromosom 5

VII.2. Sulfattransporter- Sequenz aus Flaveria bidentis:

Sequenzen der Kontigs 127 und 23495, die für Primerdesign verwendet worden sind:

>Contig127

TTTTACTACAAAAACTGATGCCATCTCTGTGTTGGAAGCTGTTTTTAATTCATTT CACTCCTCATGGCACCCTTTGAATTTGGTTCTTGGATGTGCATTCCTCATATTCA TCCTCATTACCAGACAAATTGGAAAAAAGAACAAGAATTATTCTGGTTGCCTGC GATTTCCCCGGTTATATCGGTCATTTTATCGACTCTGATAGTGTATCTAACGAGA GCGGATGAACATGGGGTTAATATCATTAGACATTTTAAAGGAGGACTCAATCCAA **GTTCATTGAACCAGTTGGAGTTTAATGGTCCACACCTTGGCGAAGTAGCCAAAAT** CGGCTTCATTTGTGCTATTATTGCATTAACCGAAGCCGTTGCTGTTGGTCGATCT TTTGCATCAATCAGAGGGTATAACTTAGACGGGAACAATGAAATGTTAGCCATGG GCTTTATGAACATTGCTGGATCTATGTCTTCTTGCTATGCTGTCACAGGATCTTT **TTCGCGAACTGCTGTAAATTTTAGTGCAGGCTGTCAATCTCCAGTATCCAACATA GTAATGGCGGTAACCGTGTTCATATCATTGCAAGTGTTAACGAAGCTATTGTATT** ACACACCTCTTACCATATTAGCATCGATTATCTTGTCTGCGCGTTCCCGGATTAAT CGATTACAATGAAGCTTATCATATTTGGAAAGTTGATAAAAAGGACTTTCTTGCA TGCGCTGGGGCTTTCTTTGGTGTGCTCTTTGCATCCGTGGAGATTGGTCTTTTGA TTGCTGTGGGTGTTTCATTTGGAAGATTAATCCTTAATTCCATAAGATCGGACGT AGAAGAATTAGGAAGGCTCCCGGGAACAAACATTTTCTGTGACAAAGCACAATAT CCTGGGGTGGTTGATGTTTCAGGTGTTCGCATAATTCGCCTTAACTCTGGCTCAT TTTGTTTTGCCAATGCAAATCCAATTAAGGAAAGGATAACCAAACATCTGACAGA AAAGAATGAGGCAAGGAAACAGATTACTGGAATCATCTTAGACATGTCCAGTGTC **GTCAGCATTGACTCTTCAGGAATTCTGGCGCTAGAAGAAATCCACAAGAAATTGG** TTTCAGAAAACGTACATTTAGCCATCGCCAATCCAAGATGGAAAGTGATCCACAA GCTAAAAGTAGCTGGGTTCGTTGAGAAAGTTGGAAATGATAGTATTTTCCTCACG

>Contig23495

TTTGGGTATCAGCAGGAGCACCTCTGCTTTCAGTGATCCTCTCTACTATCATTGT CTTTGTTTTTAAAGCACAAAACCATGGCATTTCTGTGATTGGAGAATTACAAGAA GGGTTAAATCCACCTTCATGGAACATGTTGCATTTTCATGGAAGTCATATTGGTT TGGTGTTGAAAACTGGTGTCATCACTGGCATCATTTCCCTCACTGAAGGGATTGC TGTAGGAAGAACATTTGCTGCCTTGAAGAATTATCAAGTTGATGGTAACAAAGAA ATGATTGCAATTGGAGTTATGAATGTTGTTGGTTCCACCACTTCATGCTACATCA CTACTGGTGCATTTTCACGGTCAGCCGTGAACCACACGCTGGAGCCAAAACCGC AGTCTCCAACATAATCATGGCTGTGACGGTTATGGTCACACTCCTTTTCTTAATG CCATTGTTTCAGTACACCCCAACCTAGTATTGGGCGCAATCATCGTCACTGCAG TCGTTGGCCTCATCGACATCCCAGCAGCTTACCAAATATGGAAAGTCGATAAATT CGACTTCGTTGTGATGTTATGTGCTTTCTTTGGTGTCATCTTTATATCAGTCCAA GAAGGACTTGCACTTGCTGTCGGGATATCTATATTCAAGATGGTGTTGCAAATGA CGAGGCCTAAAACAGTGGTGTTGGGGAACATACCTGGTACTGACATATTTCGGAA CAAACATCAGTACAAGGATGCTGTATCGATCCCAGGTTTCTTGATCTTGAGTATT CAGGCTCCCATAAGTTTTGCCAACTCTAATTATCTCAATGAAAGGATTATGAGGT GGATACAAGATTATGAAGAGGAAGAACAAACCAAAAGTCATACTGATCTCAGATT CTTAATTATAGATCTTGCTGCTGTAAGTGGCATTGATGCTAATGGAGTGACCTTT TTCCAAGAACTCAGGAGGGTATTGGAGAAGAAGGGTGTTGAGCTTGTACTGGTGA ACCCAGTCGGAGAAGTGATGGAGAAACTGCAAAAAGCANACGGGACTAACGATCT TTTGCAGCCGAATAATC

Nach dem "Genome-Walking"-Experiment zusammengesetzte Sequenz, mit einem Teil des 5'-Bereichs eines isolierten Sulfattransporters aus *Flaveria bidentis*. Unterstrichen wurden die mit der cDNA übereinstimmenden Exons bis zu dem Primer, der in der zweiten PCR verwendet worden ist. Die Primerbindestellen wurden grau unterlegt.

Fett: Translationsstart Grau unterlegt: Primerbindestellen <u>Unterstrichen</u>: Teil der cDNA (Exons)

>SultrFb

TTGAGCAGCAACTGGCTTCTTAATTCTCCAGATCCTCCAGGATTTCTCCCAACAAGTCTTT CAATCAATAAAAGATAATGTCTTTCCTCAAAAGAACACTAGTATGTCTTCTTCATCATTA TCTTCCCAGACGAAACATTCATCTTTTGCACGTGTCGTAGAGATGCTCAGTAGTATATTT CCTGCACTTAATTGGGCTAGAAACTATAAAGCCTCAATGTTCAAGAATGACTTGATTGCT AATTCTTCACCTATACAAACATATATGTGTTTTAAAGTTTCCTTTTTGAAAATAAGCAAATT TCAATTCTTGTATCAAAATGCAAAGAGTAGTTAATGATTTTTTGCAGAGTATCGGATATG **CTGCTTTAGCTAATCTAGATCCTCAGTATGGCCTATGTAAGTTAACAAAACATGGATGTT** TGTTTCTTACACTTTCCACAATTTATTGAATGTTGTTACTTATAATATGCTTATTTGATT GTTGTTCCTCCTTTGATATATGCTGTCATGGGTACTTCACATGAACTAGCCATTGGTCCA **GTAGCTGTGGTGTCACTCCTGATATCATCACTATCACAAAACTAGCTGATCCTGTCACT** GATCCTGCTTCCTACTTGAAACTTGTTTTCACAACTACCTTTTTCGCCGGCACCTTCCAA ATATATGTGTGTGTACATTTATATATATGTCGGTTAATTTAAGTTGTGGGGATATTTCTAAT ATTCTTTCAGGTTAGGTTTCCTGATTGATTTTCTATCGCATGCGGCAATTGTGGGGATTCA TGGCGGGTGCAGCCATAGTTATCGGTCTTCAACAACTCAAGAGTTTATTCGGAATGAGTC ATTTTACTACAAAAACTG**ATG**CCATCTCTGTGTTGGAAGCTGTTTTTAATTCATTTCACT CCTCAGTACGTTAATTAATATTTCCCCCATTACCGTGTTGATTATGTTTCTTCTACAACT TAAGGAAATCTAGCTTATTGTATATTCCTATACGTTTTGCAGTGGCACCCTTTGAATTTG GTTCTTGGATGTGCATTCCTCATATTCATCCTCATTACCAGACAAATTGTGAGTAGATCC ATCAGTTTTGCGAACATCAAATTCATTATTAATTTCTTAAATATTAATTGTCATTGGATG **ATCATTAATTAACTTGATCAAATTAATTAACTCCAATTAATCCAGGGAAAAAAGAACAAG** AAATTATTCTGGTTGCCTGCGATTTCCCCCGGTTATATCGGTCATTTTATCGACTCTGATA **GTGTATCTAACGAGAGCGGAT**GAACATGGGGTTAATATCATTAGACATTTTAAAGG<mark>AGGA</mark> CTCAATCCAAGTTCATTGAACCAGTTGGAGTTTAATGGTCCACACCTTGGCGAAGTAGCC AAAATCGGCTTCATTTGTGCTATTATTGCATTAACCGAAGCCGTTGCTGTTGGTCGATCT TTTGCATCAATCAGAGGGTATAACTTAGACGGGAACAATGAAATGTTAGCCATGGGCTTT ATGAACATTGCTGGATCTATGTCTTCTTGCTATGCTGTCACAGGATCTTTTTCGCGAACT GCTGTAAATTTTAGTGCAGGCTGTCAATCTCCAGTATCCAACATAGTAATGGCGGTAACC **GTGTTCATATCATTGCAAGTGTTAACGAAGCTATTGTATTACACACCTCTTACCATATTA** GCATCGATTATCTTGTCTGCGCTTCCCCGGATTAATCGATTACAATGAAGCTTATCATATT GCATCCGTGGAGATTGGTCTTTTGATTGCTGTGGGTGTTTCATTTGGAAGATTAATCCTT GACAAAGCACAATATCCTGGGGTGGTTGATGTTTCAGGTGTTCGCATAATTCGCCTTAAC **TCTGGCTCATTTTGTTTTGCCAATGCAAATCCAATTAAGGAAAGGATAACCAAACATCTG** ACAGAAAAGAATGAGGCAAGGAAACAGATTACTGGAATCATCTTAGACATGTCCAGTGTC GTCAGCATTGACTCTTCAGGAATTCTGGCGCTAGAAGAAATCCACAAGAAATTGGTTTCA GAAAACGTACATTTAGCCATCGCCAATCCAAGATGGAAAGTGATCCACAAGCTAAAAGTA GCTGGGTTCGTTGAGAAAGTTGGAAATGATAGTATTTTCCTCACGGTTGATGAAGCTGTT **GTATGTATGTATGTATGTATGTATAAACGTATATGTATATTGGCTAAAAAATTGTTGTCA** CTAATTGAAGGACCTATA

VI.3. Verzeichnis der Proteinsequenzen im phylogenetischen Stammbaum

Die Folgende Tabelle enthält die Proteinsequenzen, die zur Erstellung des Phylogenetischen Stammbaums der Sulfattransporter verwendet worden sind. Um die Sequenzen im Stammbaum darstellen zu können, wurden für jede Sequenz kurze Bezeichnungen gewählt.

Arabidopsis thaliana					
Bezeich	nung	Gen, AccNr.	Bezeichn	lung	Gen, AccNr.
>ATS1	1	AtSultr1;1, At4g08620	>ATS33		AtSultr3;3, At1g23090
>ATS12	2	AtSultr1;2, At1g78000	>ATS34		AtSultr3;4, At3g15990
>ATS13	3	AtSultr1;3, At1g22150	>ATS35		AtSultr3;5, At5g19600
>ATS2	1	AtSultr2;1, At5g10180	>ATS41		AtSultr4;1, At5g13550
>ATS22	2	AtSultr2;2, At1g77990	>ATS42		AtSultr4;2, At3g12520
>ATS3	1	AtSultr3;1, At3g51900	>ATS51		AtSultr5;1, At1g80310
>ATS32	2	AtSultr3;2, At4g02700	>ATS52		AtSultr5;2, At2g25680
		Populus t	richocarpo	а	
Bez.	Gen, AccNr.		Bez.	Gen, AccNr.	
>PT12	Pt-SULTR1.2	, POPTR_005s16530.1	>PT33	Pt-SULTR3.3,	, POPTR_0008s12940.2
>PT11	Pt-SULTR1.1	, POPTR_002s09310.1	>PT34	Pt-SULTR3.4,	, POPTR_0010s12190.1
>PT32	Pt-SULTR3.2	, POPTR_0002s05030.1	>PT37	Pt-SULTR3.7,	, POPTR_0001s17960.1
>PT35	Pt-SULTR3.5	, POPTR_0005s23530.1	>PTA	POPTR_0008s	s04930.1
>PT22	Pt-AST56.1, F	OPTR_0002s09300.1	>PTB	POPTR_0010s	s21820.1

>PT36	>PT36 Pt-SULTR3.6, POPTR 0003s05490.1 >PTC POPTR 0006s26210.1					
Medicago				truncatula		
Bezeich	nung	Gen, AccNr.	Beze	ichnung		Gen, AccNr.
>MTA		CU651589_4.1	>MT	F		Medtr3g101180.1
>MTB		Medtr2g008590.1	>MT	G		Medtr6g102060.1
>MTC		AC234703_12.1	>MT	Ή		Medtr7g022760.1
>MTD		Medtr1g083930.1	>MT	Ι		Medtr3g135970.1
>MTE		Medtr3g101160.1				
			Glyci	n max		
Bezeich	nung	Gen, AccNr.	Beze	ichnung		Gen, AccNr.
>GMA		Glyma13g02060.1	>GM	ſF		Glyma18g02240.1
>GMB		Glyma06g11140.1	>GM	IG		Glyma06g11150.1
>GMC		Glyma15g05760.1	>GM	ΙΗ		Glyma02g10590.1
>GMD		Glyma08g19240.1	>GM	Ι		Glyma18g52270.1
>GME		Glyma11g36210.1	>GM	IJ		Glyma08g22300.1
			Vitis v	rinifera		I
Bezeich	nung	Gen, AccNr.	Beze	ichnung		Gen, AccNr.
>VVA		GSVIVT00015271001	>VV	D		GSVIVT00023771001
>VVB		GSVIVT000315001	>VV	E		GSVIVT00029532001
>VVC		GSVIVT00019457001				
		S	orghun	n bicolor		
Bezeich	nung	Gen, AccNr.	Beze	ichnung		Gen, AccNr.
>SBA		Sb01g044090.1	>SBI	<u>H</u>		Sb01g021670.1
>SBB		Sb07g020050.1	>SBI			Sb01g044110.1
>SBC		Sb01g013290.1	>SB.			Sb03g033045.1
>SBD		Sb10g003050.1	>SBI	<u>K</u>		Sb02g013390.1
>SBE		Sb01g046410.1	>SBI			Sb03g029450.1
>SBF		Sb01g044100.1	>SBI	M		Sb01g016450.1
>SBG		Sb06g030980.1	>SBI	N		Sb03g029450.1
		(XM_002448617)	1:			
Dozoich	nuna	Gan Aga Nr	Pozo	<i>m aisiacn</i>	yon	Can Aga Nr
	nung	$\frac{\text{Gen, AccNL}}{\text{Pradi2}\sigma^2 5510.1}$				Bradi5a24170.1
>BDA		Bradi1g62050 1	>BD	r G		Bradi1g51200.1
>BDD		Bradi1g71510.1	>BD	<u>и</u>		Bradi 2g/8350 1
>BDC		Bradi1g74420.1	>BD	II I		Bradi/g08520.1
>BDE		Bradi3g27000 1	>BD	I I		Bradi1g71500 1
* DDL		Diad13627000.1	Oryza	sativa		Diading/1000.1
Bez	Gen	Acc -Nr	01 y2a	Bez	Gen Acc -1	Nr
>OSA	13108	$\frac{1}{8} m00016 (LOC Os089011)$	20.1)	>OSI	13101 m04	210 (LOC Os01941050 1)
>OSB	13103	3 m12867 (LOC Os03g099	$\frac{20.1}{70.4}$	>OSI	13109 m00	489 (LOC Os09g06499 1)
>OSC	13103	3.m01102. (LOC Os03g099	30.)	>OSK	13101.m04	703. (LOC Os01g45830.1)
>OSD	13103	3.m01104. (LOC Os03g099	40.1)	>OSL	13108.m03	257. (LOC Os08g31410.7)
>OSF	13104	4.m05790, (LOC Os04g558	00.1)	>OSM	13103.m00	715. (LOC Os03g06520.1)
>OSG	13106	6.m00494. (LOC Os06g051	60.1)	>OSN	13101.m04	703. (LOC Os01g45830.1)
>OSH	1310	L.m05452, (LOC Os01g521	30.1			
		, , , , , , , , , , , , , , , , , , , ,	Zea	mavs		
Bez.	Gen	AccNr.		Bez.	Gen, Accl	Nr.
>ZMA	131	03.m12867,		>ZMF	GRMZM20	G154211 T01
	(LO	C Os03g09970.4)				_
>ZMB	GRI	MZ2G159632 T01		>ZMG	GRMZM20	G068212 T01
>ZMC	GRI	MZM2G342907_T01		>ZMH	GRMZM20	G426922_T01
>ZMD	GRI	MZM2G080178_T02		>ZMI	GRMZMG	083156_T01
>ZME	GRI	MZM2G042171_T01				

Stylosanthes hamata						
Bez.	Gen, AccNr.	Bez.	Gen, AccNr.			
>SHST1	P53391.1, High affinity ST1	>SHST	3 P53393, Low affinity ST3			
>SHST2	P53392.1, High affinity ST2					
	Hordeun	n vulgare				
Bez.	Gen, AccNr.					
>HVST	CAA65291.1, High affinity sulfate transporter					
1		_				
	Triticum tauschii	(Aegilops	s tauschii)			
Bez.	Gen, AccNr.	Bez.	Gen, AccNr.			
>TT1	CAB42985.1	>TT2	CAB42986.1			
	Lycopersico	n esculen	utum			
Bez.	Gen, AccNr.	Bez.	Gen, AccNr.			
>LE1	AAK27687.1 Sulfat transporter 1	>LE2	AAK27688.1 Sulfat transporter 2			

Tabelle 13.: Verzeichnis der verwendeten Proteinsequenzen im Stammbaum

<u>VII.4. Verwendete genomische Sequenzen aus Arabidopsis thaliana zur Herstellung von Konstrukten</u>

Die Sequenzen wurden in der dargestellten Orientierung vor das GUS-Gen, zum Teil mit Minimalpromotor fusioniert. Die Nummerierung wurde relativ zu dem jeweils benachbarten ATG aufgeführt.

>APX2	Numerierung	g relativ zu	um ATG des (Gens At3g096	540
-1407	CCAAGAAGAG	GAAAACCGTT	ACCAAGGTAA	TCTCAATACT	TGACTTGTTC
-1357	TCTTATCAAC	CGTTTTTGGA	TTGTCTTTGT	TTAGTTACTG	ATTACATTTT
-1307	GATCTGTGGT	TGCATTTCAT	TTGACTTAAC	TTATATTGCA	ATTGTTCTAA
-1257	TTGACTGAGT	TTGTGTATGT	TAAGCTATAC	AATAATCTGT	TCCCCTCTGG
-1207	TTTAGTCTAT	GACTATAGTA	GTCTTTCTTT	ACTAGATCTT	ACCTTTTCTG
-1157	TTCTGAATTG	TGGTCTAGTA	GTTTGTCTTG	TAAATCTGTT	GTGTACGATT
-1107	CTTTGTCTTG	ATATTGATTT	TAGGTTGAGC	TATTAAGCAA	TTGAATCTCT
-1057	TAGCACTTTC	TTGTCCCTTG	TGAAAATTGT	TCTTCATATG	TCCTCTTTTC
-1007	TAACTCCACT	TTGAAATATC	TATTTTTCTT	ACATCAGGAG	GAGGCGTTGG
-957	CAATCAAAGC	AGCAGGCAAG	TCGTGGTACA	AGACTATGAT	CTCCGACAGT
-907	GATTACACCG	AGTTTGATAA	CTTCACCAAA	TGGCTCGGTG	CTAGCCAGTA
-857	ATAATCTCGT	CTGCTTTGGA	ACACTTTCCA	TATTTTAGTC	AAAAGATTTT
-807	GGTTTTTTTA	ATCTGTTTTG	TCTTTGGGTG	TCTGGATATC	AAGTTGAATT
-757	ATGAACAAGT	TTCACTTTTT	TACATCTCCA	TTTCTTACTT	CGCCTTTATC
-707	AGTTTCATTT	ATTTATCTCT	TGCTCCTTCG	TTTCCTATGA	TGATGCTTGT
-657	TATGTTATGA	ACCTACTTAA	AAACAAGCTG	AAGCTTTCTT	TGGTTTACCC
-607	CAGCAGAAAC	ATTAATCAAG	TTCAATTGAT	CAATATGTCG	ATTGATTTAC
-557	TGTTTAAAGG	CATAGTGTGT	CTATCAACCC	TTAAGTCTTT	TTGGTGGATA
-507	GTGAAGCTCA	AACCCAATTC	AAATGTCGAT	CAACCCTAAC	GTTTTTGTGC
-457	TCGATAGTAA	AGCATGAGTA	TAAAAAGAAC	GTCGCTTCTT	CCTACAATCA
-407	CACAGATCAT	TTGAAGCTTT	GATTAGTTGG	TACAACATAC	TCGAGGAATA
-357	CAGAATGACA	CGTGGTGTGT	ATCTGTTGGA	TAAATTTGTA	TTATTCTTCT
-307	TTACTATGGA	TGGTTTCTGG	AAGGCGCGCC	AAGAGTCCTT	CTTTTTCCAT
-257	CTACAAATCA	TGACCGTCCA	TCTCCAAAAG	AAGACTGAAA	CAGTGAAACT
-207	AGAAGCTTCA	TTTTGATCAT	CAGCCAGTTT	TATAAATTGA	TCCGTATACT
-157	AAAGTAACAA	CTACTAGCAC	TTTCTTCTGT	GATCGATCAT	TGTGTTTAAA
-107	CTAAAGGTTT	GTATGTTCTT	GTAATCTTAT	TGATCTCGAT	AGGTTCTCCA
-57	TTCTCTTTAG	GTTTTAAAGC	CTTCAACGAT	TTCCAGAAGG	AAGCGAATTT
-7	GAAAAAAATG				

>CUE	Numerierung	relativ zu	m ATG des G	ens At5g333	20
-969	ACGCATTATA	ACATTTTTGC	CTATTTTTGC	TATTATCAAT	TTTATAAAAT
-919	ATTGATATAT	AGTTTTTAA	ACCGAACTCG	AAAAGAAGAG	TTTAACCTTA
-869	CCTTCAAAAT	ТТТАААААТА	TAATCTAATG	TGTGTGACCT	TATAAACGTT
-819	TATAATATAC	GTATAAGGAT	CATATTGCGT	ATCATTTTAG	ACTTCAAATG
-769	ATGAACCTGC	ATTTGTTGGA	GATGAAGGAT	AAAATTCCAA	AAATAGATTA
-719	GTTAAAGAAT	TTTTTTGCAC	AAAGCCTATT	TTTTTCTTTG	ATGTATGTAA
-669	GCTTATCAAC	TGAGGTTGGT	CAAAAATGGA	TTGAATAAGA	ACATGTCGAC
-619	CATAAACCAA	ATAATTTAGG	TTTTAGATGT	TTTAACACTT	TGCTAGAAGC
-569	CGAGTATATA	TAAAAGGATA	TATGACTCAA	GTTTTAGGAC	CGAATTTTGT
-519	ATAGTTGGTT	TGGATCTCCA	TAATCTCAGA	GCTTGGTGGT	CAAGATTGTG
-469	CCTCGTAACC	TCGTTATCCA	AAAATGAAGT	AGAATGTGAG	TCGAATATCG
-419	TGAATTCGGT	ACCCTCTCGT	TAGCTCATAG	TGCGTTGAAC	CCTTTATCTC
-369	GAATTTGTCA	AAACAAATTG	ATATTTTGTC	GTGAAAAAAA	AAAGTTCAGA
-319	CGAAAAATAG	TGGTCACAAG	TCTTGTTCGA	ATTGATACCC	GAAAAAACAT
-269	CTTAACCAAC	TTAAAGTAAA	AATTTAAAT	CGGAAATTTA	AATATTACCC
-219	TAAAGTTTTA	AAAGGCGGAC	TTTTCAACGA	AGGTTTATGC	TAAGGTTAAA
-169	AAAAATACAG	AAACGCTTTC	TCACATTTCC	ATTTCAATAA	ATATATATCA
-119	GTCGCCACCC	AAATTTCAGA	ATTGCTTCTC	TTAGTATTTG	CTTTCACCAA
-69	CCCACTCGAC	GGAGTCTCCA	ACGCCTTCCT	CCTCATTCTC	CACTCTCACA
-19	CCACCAACTT	CTGATTCCAG	ATCTCAACGA	TGCAAAGCTC	CGCCGTATTC
+22	ТСССТСТСТС	CGTCGCTTCC	ТСТССТАААА	CCACGTCGGC	тстстстссс
+72	CCACCATCCC	ATAACCACCG	CCGCTTCTTC	AAGCGATCTA	AACGTTTCTC
+1.32	CAAATGTTGT	СТСТАТТССТ	ТСТТТАТСТС	GTCGATCTTG	GCGTCTCGCT
+182	TCGTCTGATT	CGCCTCTCCG	TGCTTGGTCC	GGTGTTCCTT	CTCCGATCTC
+242	ТСАСТССТТА	GACACGAATC	GTTTCAGAAC	CGCCGCTACT	GCAGTTCCTG
+282	AAAGTGCTGA	GGAAGGTGAT	AACAGTGGT	00000011101	00110110010
	<u> </u>	001110010111	11101101001		
>SCR	Numerierun	g relativ z	um ATG des (Gens At3g54	220
>SCR -2414	Numerieruno TCTCTATGAA	g relativ z AAGTGGAAAT	um ATG des (TTACCTGGAA	Gens At3g54 GTCCGATTGA	220 GAGGAGAGGA
>SCR -2414 -2364	Numerieruno <u>TCTCTATGAA</u> TTGACCGGAG	g relativ z AAGTGGAAAT AGAGACCGGA	um ATG des (<u>TTACCTGGAA</u> GAAAGATGGG	Gens At3g54 _GTCCGATTGA AGTGAAGGAG	220 GAGGAGAGGA AAGAGATTGG
>SCR -2414 -2364 -2314	Numerierun <u>TCTCTATGAA</u> TTGACCGGAG GAGACGAAGA	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC	um ATG des (TTACCTGGAA GAAAGATGGG GGCGAGAAGA	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT	220 GAGGAGAGGG AAGAGATTGG AATCGGAGTG
>SCR -2414 -2364 -2314 -2264	Numerierun TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA	g relativ z AAGTGGAAAT AGAGACCGGA GTAACCGGAC GGGAAGAGCT	um ATG des (TTACCTGGAA GAAAGATGGG GGCGAGAAGA GATTTGAGAG	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT	220 GAGGAGAGAGA AAGAGATTGG AATCGGAGTG CCAGACTCTG
>SCR -2414 -2364 -2314 -2264 -2214	Numerierund <u>TCTCTATGAA</u> TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGCT CTGTAGGAGT	um ATG des (<u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG	220 GAGGAGAGAGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT
>SCR -2414 -2364 -2314 -2264 -2214 -2164	Numerierund <u>TCTCTATGAA</u> TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGCT CTGTAGGAGT TCCTCTGCAA	um ATG des (<u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG	220 GAGGAGAGAGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114	Numerierund TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA	g relativ z AAGTGGAAAT AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC	um ATG des <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064	Numerierund TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT	g relativ z AAGTGGAAAT AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA	um ATG des (TTACCTGGAA GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014	Numerierund TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964	Numerierund TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TAGAATTATT	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAAGTGCATT
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914	Numerierund TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TAGAATTATT TGTGATTTAC	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTT	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG	220 GAGGAGAGAGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAAGTGCATT AGCATTTCTA
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1864	Numerierund TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TAGAATTATT TGTGATTTAC TTATAGAGAC	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTGATGTTA	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA	220 GAGGAGAGAGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAAGTGCATT AGCATTTCTA TATTAAAATA
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1864 -1814	Numerierund TCTCTATGAA TTGACCGGAAGA GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TAGAATTATT TGTGATTTAC TTATAGAGAC TTTTATATAC	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTGATGTTA TTTCTTAAAA	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAAGTGCATT AGCATTTCTA TATTAAAATA TCCTTAATAT
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1864 -1814 -1764	Numerierund TCTCTATGAA TTGACCGGAAGA GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAT TGTGATTTAC TTATAGAGAC TTTTATATAC CAGTTAAATT	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGAGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTGATGTTA TTTCTTAAAA GAAGATAAAG	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAA	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAACTATGT	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAAGTGCATT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1864 -1814 -1764 -1714	Numerierund TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAT TGTGATTTAC TTATAGAGAC TTTTATATAC CAGTTAAATT ATTTCACATT	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTGATGTTA TTTCTTAAAA GAAGATAAAG TTTTGTGTGTA	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAA AATAGTACAT	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAACTATGT GGTATTCGTT	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAAGTGCATT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1864 -1814 -1764 -1714 -1664	Numerierund TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAC TTATAGAGAC TTTTATATAC CAGTTAAATT ATTTCACATT AAAAATTAAC	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTGATGTTA TTTCTTAAAA GAAGATAAAG TTTTGTGTAT AAATTAAGTC	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAA AATAGTACAT TAAAAGGGCA	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAAACTATGT GGTATTCGTT GAAAAGACTA	220 GAGGAGAGAGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAAGTGCATT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC TTCAAATATG
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1864 -1814 -1764 -1714 -1664 -1614	Numerierund TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAC TTATAGAGAC TTTTATATAC CAGTTAAATT ATTTCACATT AAAAATTAAC GACTTGGAGA	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTCTTAAAA GAAGATAAAG TTTTGTGTAT AAATTAAGTC AAGACATTCA	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAA AATAGTACAT TAAAAGGGCA GCTTTTTACG	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAAACTATGT GGTATTCGTT GAAAAGACTA	220 GAGGAGAGAGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAAGTGCATT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC TTCAAATATG TTCATATTGA
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1864 -1814 -1764 -1714 -1664 -1614 -1564	Numerierun <u>TCTCTATGAA</u> TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAC TTATAGAGAC TTTTATATAC CAGTTAAATT ATTTCACATT AAAAATTAAC GACTTGGAGA GCCGTGTGT	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTGATGTTA TTTCTTAAAA GAAGATAAAG TTTTGTGTAT AAATTAAGTC AAGACATTCA TGTGTTGTGA	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAA AATAGTACAT TAAAAGGGCA GCTTTTTACG AGAGAAGTAA	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAAACTATGT GGTATTCGTT GAAAAGACTA CTGAGAAACT	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAAGTGCATT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC TTCAAATATG TTCATATTGA TTTGAAGTGA
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1964 -1914 -1864 -1814 -1764 -1714 -1664 -1614 -1564 -1514	Numerierund TCTCTATGAA TTGACCGGAAGA GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAT TGTGATTTAC CTTTATAGAGAC TTTTATATAC CAGTTAAATT AATTCACATT AAAAATTAAC GACTTGGAGA GCCGTGTGTT AAAAGGAGAA	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTCTTAAAA GAAGATAAAG TTTTGTGTAT AAATTAAGTC AAGACATTCA TGTGTTGTGA GAAAAATAA	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAA AATAGTACAT TAAAAGGGCA GCTTTTTACG AGAGAAGTAA GATCGTAGAA	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAAACTATGT GAAAAGACTA CTGAGAAACT TAAAAATAA AGCGTGGATG	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC TTCAAATATG TTCAAATATGA TTTGAAGTGA GTTTCTTCTT
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1864 -1814 -1764 -1714 -1664 -1614 -1564 -1514 -1464	Numerierun <u>TCTCTATGAA</u> TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAC TTTTATATAC CAGTTAAATT ATTTCACATT AAAAATTAAC GACTTGGAGA GCCGTGTGTT AAAAGGAGAA GGGTTCACTG	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTCTTAAAA GAAGATAAAG TTTTGTGTGTAT AAATTAAGTC AAGACATTCA TGTGTTGTGA GAAAAAATAA CCATGCGATT	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAA AATAGTACAT TAAAAGGGCA GCTTTTTACG AGAGAAGTAA ATTAAATTGG	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAAACTATGT GGTATTCGTT GAAAAGACTA CTGAGAAACT TAAAAAATAA AGCGTGGATG CCATGGGGCT	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAAGTGCATT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC TTCAAATATG TTCATATTGA GTTTCTTCTT AGTGTTTGAC
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1864 -1814 -1764 -1714 -1664 -1614 -1564 -1514 -144	Numerierun <u>TCTCTATGAA</u> TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAC CTTATAGAGAC TTTTATATAC CAGTTAAATT ATTTCACATT AAAAATTAAC GACTTGGAGA GCCGTGTGTT AAAAGGAGAA GGGTTCACTG GTACAAAAGT	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGAGT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTCTTAAAA GAAGATAAAG TTTTGTGTGTAT AAATTAAGTC AAGACATTCA TGTGTTGTGA GAAAAAATAA CCATGCGATT CTAAAAATTG	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAA AATAGTACAT TAAAAGGGCA GCTTTTTACG AGAGAAGTAA ATTAAATTGG TCAGTCAAAC	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAAACTATGT GGTATTCGTT GAAAAGACTA CTGAGAAACT TAAAAAATAA AGCGTGGATG CCATGGGGCT AGGTCCAAAA	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAAGTGCATT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC TTCAAATATG TTCATATTGA GTTTCTTCTT AGTGTTTGAAG CTTTGTAAGA
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1864 -1814 -1814 -1764 -1714 -1664 -1614 -1564 -1514 -1464 -1414 -1364	Numerierun <u>TCTCTATGAA</u> TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAC TTATAGAGAC TTTTATATAC CAGTTAAATT ATTTCACATT AAAAATTAAC GACTTGGAGA GCCGTGTGTT AAAAGGAGAA GGGTTCACTG GTACAAAAGT AAAATAATA	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGAGT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTCTTAAAA GAAGATAAAG TTTTGTGTAT AAATTAAGTC AAGACATTCA TGTGTTGTGA GAAAAAATAA CCATGCGATT CTAAAAATTG AATAATAGCA	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAA AATAGTACAT TAAAAGGGCA GCTTTTTACG AGAGAAGTAA GATCGTAGAA ATTAAATTGG TCAGTCAAAC AATTTCTAA	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAAACTATGT GAAAAGACTA CTGAGAAACT TAAAAAATAA AGCGTGGATG CCATGGGGCT AGGTCCAAAA AAATTGTTAA	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAGTGCATT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC TTCAAATATG TTCATATTGA GTTTCTTCTT AGTGTTTGAAGA CTTTGTAAGA AAAAGAACA
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1964 -1914 -1864 -1814 -1764 -1714 -1664 -1514 -1514 -1514 -1464 -1414 -1364 -1314	Numerierun <u>TCTCTATGAA</u> TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAC TTATAGAGAC TTTTATATAC CAGTTAAATT ATTTCACATT AAAAATTAAC GACTTGGAGA GCCGTGTGTT AAAAGGAAAA AAAGGGAAAA	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGAGT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTGATGTTA AAACATTTCA GAAGATAAAG TTTTGTGTAT AAATTAAGTC AAGACATTCA TGTGTTGTGA GAAAAATAA CCATGCGATT CTAAAAATTG AATAATAGCA GATGAGGATG	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAA AATAGTACAT TAAAAGGGCA GCTTTTTACG AGAGAAGTAA ATTAAATTGG TCAGTCAAAC AATTTCTAA CAGATGAAAG	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAAACTATGT GAAAAGACTA CTGAGAAACT TAAAAAATAA AGCGTGGGATG CCATGGGGCT AGGTCCAAAA AAATTGTTAA	220 GAGGAGAGAGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TATGTAATGT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC TTCAAATATG TTCATATTGA GTTTCTTCTT AGTGTTTGAAG CTTTGTAAGA AAAAGAACA AACACTAGTT
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1964 -1914 -1864 -1814 -1764 -1714 -1664 -1614 -1564 -1514 -1464 -1414 -1364 -1314 -1264	Numerierund TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTATT TGTGATTTAC CTTTATAGAGAC TTTTATAGAGAC TTTTATATAC CAGTTAAATT AATTCACATT AAAAATAAAC GACTTGGAGA GCCGTGTGTT AAAAGGAGAA GGGTTCACTG GTACAAAAGT AAAAGGAAAA TCAGATTTTA	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTGATGTTA AAACATTTCA TTTGTGTAT AAATTAAGTC AAGACATTCA TGTGTTGTGA GAAAAATAA CCATGCGATT CTAAAAATTG AATAATAGCA GATGAGGATG TCGGGAACTG	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAA AATAGTACAT TAAAAGGGCA GCTTTTTACG AGAGAAGTAA ATTAAATTGG TCAGTCAAAC AATTTTCTAA CAGATGAAAG GGTTTGACA	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAAACTATGT GAAAAGACTA CTGAGAAACT TAAAAAATAA AGCGTGGATG CCATGGGGCT AGGTCCAAAA AAATTGTTAA CAAAATGTCA GTTGGTGTAT	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT AGCATTTCTA TATGTAATAT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC TTCAAATATG TTCAAATATG TTCATATTGA GTTTCTTCTT AGTGTTTGAC CTTTGTAAGA AAAAAGAACA AACACTAGTT GTATGTAATG
>SCR -2414 -2364 -2314 -2264 -2214 -2214 -2164 -2014 -1964 -1914 -1964 -1914 -1864 -1814 -1764 -1714 -1664 -1614 -1554 -1514 -1464 -1414 -1364 -1314 -1264 -1214	Numerierun TCTCTATGAA TTGACCGGAAGA GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAC TGTGATTTAC TTATAGAGAC TTTTATATAC CAGTTAAATT ATTTCACATT AAAAATTAAC GACTTGGAGA GCCGTGTGTT AAAAGGAAAA TCAGATTTTA ACGATTTTA ACGATTTTA	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGACT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTCTTAAAA GAAGATAAAG TTTTGTGTGTAT AAATTAAGTC AAGACATTCA TGTGTTGTGA GAAAAAATAA CCATGCGATT CTAAAAATAGCA GATGAGGATG TCGGGAACTG AAAACATGTG	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAT AGTATTAAAA AATAGTACAT TAAAAGGCA GCTTTTTACG AGAGAAGTAA ATTAAATTGG TCAGTCAAAC AATTTCTAA CAGATGAAAG GGGTTTGACA CATCTTTTC	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA AAACTATGT GAAAAGACTA CTGAGAAACT TAAAAAATAA AGCGTGGATG CCATGGGGCT AGGTCCAAAA AAATTGTTAA CAAAATGTCA GTTGGTGTAT CTTTTTTGTT	220 GAGGAGAGAGGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TATGTAATGT TAGTGCATT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC TTCAAATATG TTCATATTGA GTTTCTTCTT AGTGTTTGAA GTTTCTTCTT AGTGTTTGAAGTA AAAAAGAACA AAAAAGAACA AACACTAGTT GTATGTAATG ATTTACTGTT
>SCR -2414 -2364 -2314 -2264 -2214 -2164 -2114 -2064 -2014 -1964 -1914 -1864 -1914 -1864 -1774 -1774 -1664 -1614 -1554 -1514 -1554 -1514 -1364 -1314 -1264 -1214 -1264 -1214 -1264	Numerierun TCTCTATGAA TTGACCGGAG GAGACGAAGA ATGCGGTGGA CTCACGGAAT TAGATTGTGA AAGGGATAGA TAATGGGCCT TTTAAGGTTT TGTGATTTAC TTTTATATAC CAGTTAAATT ATTTCACATT AAAAATTAAC GACTTGGAGA GCCGTGTGTT AAAAGGAAAA TCAGATTTTA AAAGGGAAAA TCAGATTTTA	g relativ z <u>AAGTGGAAAT</u> AGAGACCGGA GTAACCGGAC GGGAAGAGAGT CTGTAGGAGT TCCTCTGCAA GGAAGAGGAC ATAAACTGTA TTGTTGCCAA TTATAATGTA AAACATTTCA TTTGATGTTA AAACATTTCA AAATTAAGTC AAGACATTCA TGTGTTGTGA GAAAAAATA CCATGCGATT CTAAAAATTG AATAATAGCA GATGAGGATG TCGGGAACTG AAAACATGTG GTCTTGTCCA	um ATG des o <u>TTACCTGGAA</u> GAAAGATGGG GGCGAGAAGA GATTTGAGAG CGCCATTGCC CAAAGCGGAT TTTGTTTATC ACTCTGTAGC ACAGATATTT TGCTATTGCT TTTTTATTTT ATAAATGGTG TTGGATAAAT AGTATTAAAT AGTATTAAAA AATAGTACAT TAAAAGGCA GCTTTTTACG AGAGAAGTAA ATTAAATTGG TCAGTCAAAC AATTTCTAA CAGATGAAAG GGGTTTGACA CATCTTTTC	Gens At3g54 _GTCCGATTGA AGTGAAGGAG CGAGGAAGGT AAGACATACT ATGGACATTG TTTGCTGGTG AGAAACCTTT GCTTTGCCAA GCATTTGGGC AGATATTGTT GGTTTTAATG TTCTAAGATA TTTGGGAAAA ATTGGGAAAA CTGAGAAACTA CTGAGAAAATAA AGCGTGGATG CCATGGGGGCT AGGTCCAAAA AAATTGTTAA CAAAATGTCA GTTGGTGTAT CTTTTTTGTT AGTAAAATGC	220 GAGGAGAGAGA AAGAGATTGG AATCGGAGTG CCAGACTCTG GAATCGCCAT TTGAATGGAT TGATGGGCCT CAAGAGACTT TAGTGAATGT TAGTGCATT AGCATTTCTA TATTAAAATA TCCTTAATAT AGTAAAATAC AAGATCACTC TTCAAATATG TTCATATTGA GTTTCTTCTT AGTGTTTGAAGA AAAAAGAACA AACACTAGTT GTATGTAATG ATTTACTGTT CTTTAATATG

-1064	TTGTCTAAAT	CTTTACTTGG	ATTCCTTTAT	TTTTCTCCTC	TCTTTAGATT
-1014	AGTACGGTTT	AAGGAATACC	ATCTTTCTAA	TTTTAGCACA	AAATTGCAAG
-964	TTGGTGCCCC	ATCTTAGTAA	GCACATCGTA	CCACACTTTG	ATTGTGTGAG
-914	AGACTTCTTC	ATCCCATCTC	TCATACCAAA	CCTAAATCAA	ATGACTAGTG
-864	GTGCAACCTG	CTGACTCCAT	ATGACCATAA	СТААТАААТС	GGTTTATGAA
-814	TCCAACTCAT	GTAGCTCTAT	AGAATAGAAA	CCCATTCATT	TCACATAATG
-764	AACTGAATCT	GACATTTTAT	TTACATCATT	TACTACTCAA	TTTTGTAATT
-714	AGCAAGATCA	TCTTTTTCAT	TATTCAACAA	TTTTGATATT	CCATAATTTA
-664	TTAACTTTGT	CATACATCAT	AATATTCTGA	AATTTTGTTA	TATATTGTAC
-614	CGGTTCCACG	AAATAGAGCT	CTATTATTAT	AGACCAAACA	ААСААААТАТ
-564	TATCTTCTTG	TGGTTAGTTC	GAGAGAGAGG	TCAAGAAGAA	ACGAAATGGA
-514	TCGGCAAACG	GAAGACGTCA	AACACACAAC	GACGAACATT	TTCCGATCAC
-464	CCACCTAATC	TCTTCCCATT	TTTATTATTT	TTCAAAACTC	AAATTAATTA
-414	AGAAGAAAAA	AACAGAAACA	GAGAGAGAAA	GAGTTAAGAT	GAATAGAGAT
-364	AGAAAGAGTC	ATTAAATGTA	CGAAGCGACA	TTCACAATAA	TTCGAAAGGT
-314	GGAAGACGAC	TTAGATACGG	CCAGGCTTCA	CTGTCCTCCT	CGTCCTCCTC
-264	AATTACCCCT	AACCCCTTTT	TCCGGGATTC	ATCTCCAACC	CACATCCTTC
-214	CAAATTCTCA	CCCCCTCACT	GAGTTTTTGC	TTTTTTCTCCT	CATCGGAGAT
-164	CGTGAAGACG	ATCAAGTAAT	TTAAGAATCC	CACCATTGAT	AAAAGAGTCT
-114	AGCTTTTCTA	CTACCAAACC	TTTTTTCTGTT	TGGAAATTTT	CGATTTTGGA
-64	TTTAACCCTT	TTCTTACCTT	ATTTATAACC	ATGCAATCT <u>C</u>	ACGACCAACA
-14	ACCCTTCAAT	CTCCATG			
N G a a a 0	NT				
>Cax8	Numerierung	g relativ zi	ım A'I'G des (Jens At5g1/8	350
-2040	ATACCGGTAA	GATATCCGGG	TATCTAAACC	GAGCCCATAA	ACATCAAAAA
-1990	GGATGGGACG	TGACAGTAAT	CAATAAATTT	GAATTGGACA	AATGGATCCA
-1940	TAAAAAAGAT	TATGGGCCAA	CTTTATCATA	ATGAATGCCC	ATCATCAATT
-1890	ATTTTTGGGA	CATCTTTTTG	GAGTCAGCCT	CTTGTCTAAA	GGTGGACGTC
-1840	GGCTAAAAGT	GTTCACTTTT	AAGATATTTC	AGCTCCAATT	AAAAAGAGTG
-1790	TTTTTAAAAA	AACAATCAGA	CACTAGTCTA	CAACTTTATA	TGTTAAGGCA
-1740	TAAGTTTAAA	TGATAGCTAA	CAATATATAG	ATTAAAGGAT	TTGTTGGTTT
-1690	GATGTTAGAT	AGTATCTGAT	CTCCATGAGT	AAACGAAGAT	TTTTATATCA
-1640	ACTAGAAAAG	GTAAAAACAA	ATATCACCGT	CGAAGGGGAC	GTACACGTAC
-1590	GTGCTGATTC	TTGTGTTAAT	GGATCGCTTC	TACTCACTTA	GCTCTCAAGC
-1540	AATGAATAAC	ATCACAAAAT	AAATGCAAAG	ATGTAAACAA	AAGTAAAGAA
-1490	AAACAAAACG	CGTTTGAAGA	CCGCGTTGCT	CTAAATGACT	CGGTACTTTT
-1440	TTAATATTTG	CAATTCACAC	TCGTAATAAG	TCCTCTTATC	TTTATATTTT
-1390	GTTCGATTTT	ATTTGAAAAA	TTCCCTAAAT	ATTTTTACAA	AAATCGTGTC
-1340	СТАААТССТА	ATCCTTCGAC	CGACTTTCTC	GTTTTAGTAG	TAAAAGTCGA
-1290	CCACACTTTTT	TTTTCTTTC	TTTATTCAGT	CGACCTCATT	ATACAATTAT
-1240	CTTTGTGTGA	CTGTGTGGAG	ТАТАСТАТТА	GTTTCCTCAT	TATTAACTTT
-1190	ATCTTGTCAC	ACTATACTTT	CCTTTTATAT	TAGCTTCTTC	TACTTGTTTC
-1140	TTTCTGTCTT	TTCTTTTTGG	GAACTTTCTC	TTTATGATCG	TGGCTGTCTC
-1090	AATCTATTTG	GAAATTCAAT	ATCCATGTAT	ACTTATTTCT	TAAAATACGT
-1040	TCGAATTAAG	ATGTTTCAGC	TTATATAAAG	GAAGTAATTT	TGAGCTAATA
-990	GAAAGCCAAA	TTATTGAATT	AATTTTTCTCT	TAATTACATT	TCAAGTTATT
-940	CTGCCTTGTG	TAAACTGGAA	GTAACAGAAT	AAAGGCGGTG	GTTGTGGTTT
-890	ATACTCAATT	ACCAATAACT	ATTTCACAAC	TAATAAATT	AGATTAAAAT
-840	GACTGTTATA	GATTAGAGTT	TTACTTGTTG	GAATAAACAA	ACATCAATTC
- / 90	AGTACTGACC	ACATCCTTTA	AATTAGTTTC	TTATATGTAA	GTTAACCTTA
- / 4 0	AACCGGTAAC	TGATTACGAA	CCAAACCGGA	ATATTTATAT	TATTTTTTTCC
-690	ATAGTTAGTG	GCTTAAGGAA	TCAGCACTAA	ATACTAAATA	TTGCTGGGTC
-640	AGCTCCTTAT	AGTAATATTT	AATTTTGTGGA	AAAAGCTTCT	AAATTTATGT
-590	ATCCTTTCGC	TAACCCTCCC	TCCTTCGTCT	TCCTATTCTT	CGCATACGTA
-540	ATGGAAAGAG	AAAA'I'GACGC	ACAGTTCATC	GTGAAGCCGA	CACATAAGCC
-490	ATTTCCAAAA	CCCAAATCAC	CCTAACCCCA	AAACGGCAAT	gacaaagtga

-440	CAAACTTTTT	TCAGATTCTT	TATATAAAAA	AATAGTATTC	CTCAATCCTC
-390	TGTTTTTTTT	TGTCTCTGAC	GTTTGTCTTC	GTCAGGTCTT	GTTAAAGTGT
-340	TTGTTTTGTG	TGTTTGTGGG	TGTTTTCTTC	GCTTCGTCTC	CTTTAAAAGC
-290	TTCGTTTCGA	AATTCGATCC	CTTTTTTGCT	TTTTCATCTT	CCAGATATTA
-240	AAAAAGGTCA	GTGCTTTATC	TTTCTCTTTC	CGCGTATAGT	TCGTGTTTAT
-190	CTAATCTGTT	TTCTTCATGA	TCTGTTCTTA	TGGAGTAAAC	CCATTTATAG
-140	ATTCTCAACA	ATAAACCCAA	ATATCTTCTT	TTTCAATTTG	ACTCTCTGAT
-90	ААААААССАА	ACTTTATCTG	TTTCTTCGTT	TGCTCTGTTC	TGATTTGTTT
-40	CTTTTCGTTT	TTTGTTGAGT	TT <u>CCAGGTCT</u>	TAGCTGATTG	ATG <mark>GGATTTT</mark>
+11	<u>C</u>				
>JR11-2	Numerierund	g relativ zu	ım ATG des (Gens At5g103	300
-1	ATGTCTCCGT	AGACGTTTTC	ͲͲͲͲͲႺႺͲͲϷ	AGGTTCTTTG	СТТСТТТААС
-51	AATAGCGTGA	TAAAGTTGGG	ATATGAGTAT	GACGTTATTA	TTATATAGTG
-101	ATAGTGGGAT	AAGGTTCATA	TACGTTACGC	TGTTAATAAC	TTCTTATGTT
-151	ATGACACATG	TTCAGATTTA	CTAGTCTCCT	CGGTCGGCTG	TTGTATACTT
-201	TTGTATACTT	GTATTTAGAT	ΑΤΑΤΤΤΤΑΑΑ	TAAATAAAGC	AGAATTCTGT
-251	AATCACACTT	AGCTAAATTA	CATTAATTTT	TTTGGACATT	ТААААААТА
-301	TATGAGTACA	TCACAGTTTC	ААТСТААТАА	CGGACCAACA	CATGTAAGAT
-351	TTTGACATCC	GCGATTAGAT	GGACGTAAAA	AAGGCTTAAT	TAACGGAACT
-401	AATTGAACAC	GATAAACACG	TGCCTGTTAA	GTGTTAACCG	ACCTAATCTT
-451	CATATTGATC	TGAGAATCTT	CACAGCTTCC	CTTCCTTCTT	TGAGTCTAGC
-501	CGGCCCATGG	GCCGTGAAAC	ACTGTGACTG	TGACTCTCTT	TTATTGACTC
-551	ATTTTAACCT	TTTCCTTTTG	CCTTTTGGTA	ССААТТТТТА	ACTTTTCCTT
-601	TGTACAGGGA	GATTCGCTTC	CTTTTTTTAG	GCTGGCCATT	TCGTCTTAGT
-651	GAGTGGTGTA	TAGTTGGCCA	TTTCAGTCAG	CTGTATTATA	GCCTCATTGT
-701	CAATGATGTC	GAAAATCATT	ССТСААТТТА	CACAATGGTT	GTCAGGTAAA
-751	AAACAACGAG	AGTTGATAAG	TAGATTTAGG	AGGGAAAAAA	GAAAAAGACA
-801	ATTTAGTTAG	TCTTCTTTTA	CATCCACGTA	ATTAAATAGC	ACATCGTTCC
-851	AAACATCATT	ATCAAAGTTC	ATTAGTTATT	TAGGGAAATT	ACAAGTTGCA
-901	CGGAGAAAAA	GCAGTTCGTG	GACCAACATT	GGACTTTTCT	TTCAGACAAA
-951	GGCCATTAGC	GAGCGAGAGT	GATAATTGCG	AAATTGCCAA	AAAACGCAAA
-1001	GTCTACCACT	AGACAAGAAA	ATCGAAGCTT	TTCACTTTCT	CTTTTTTCT
>JR11-2;	Numerierung	g relativ zu	um ATG des (Gens At5g102	290
-1513	ATGTCTCCGT	AGACGTTTTC	TTTTTGGTTA	AGGTTCTTTG	CTTGTTTGAG
-1463	AATAGCGTGA	TAAAGTTGGG	ATATGAGTAT	GACGTTATTA	TTATATAGTG
-1413	ATAGTGGGAT	AAGGTTCATA	TACGTTACGC	TGTTAATAAC	TTCTTATGTT
-1363	ATGACACATG	TTCAGATTTA	CTAGTCTCCT	CGGTCGGCTG	TTGTATACTT
-1313	TTGTATACTT	GTATTTAGAT	ΑΤΑΤΤΤΤΑΑΑ	TAAATAAAGC	AGAATTCTGT
-1263	AATCACACTT	AGCTAAATTA	CATTAATTTT	TTTGGACATT	ТААААААТА
-1213	TATGAGTACA	TCACAGTTTC	ААТСТААТАА	CGGACCAACA	CATGTAAGAT
-1163	TTTGACATCC	GCGATTAGAT	GGACGTAAAA	AAGGCTTAAT	TAACGGAACT
-1113	AATTGAACAC	GATAAACACG	TGCCTGTTAA	GTGTTAACCG	ACCTAATCTT
-1063	CATATTGATC	TGAGAATCTT	CACAGCTTCC	CTTCCTTCTT	TGAGTCTAGC
-1013	CGGCCCATGG	GCCGTGAAAC	ACTGTGACTG	TGACTCTCTT	TTATTGACTC
-963	ATTTTAACCT	TTTCCTTTTG	CCTTTTGGTA	CCAATTTTTA	ACTTTTCCTT
-913	TGTACAGGGA	GATTCGCTTC	CTTTTTTTAG	GCTGGCCATT	TCGTCTTAGT
-863	GAGTGGTGTA	TAGTTGGCCA	TTTCAGTCAG	CTGTATTATA	GCCTCATTGT
-813	CAATGATGTC	GAAAATCATT	CCTCAATTTA	CACAATGGTT	GTCAGGTAAA
-763	AAACAACGAG	AGTTGATAAG	TAGATTTAGG	AGGGAAAAAA	GAAAAAGACA
-713	ATTTAGTTAG	TCTTCTTTTA	CATCCACGTA	ATTAAATAGC	ACATCGTTCC
-663	AAACATCATT	ATCAAAGTTC	ATTAGTTATT	TAGGGAAATT	ACAAGTTGCA
-613	CGGAGAAAAA	GCAGTTCGTG	GACCAACATT	GGACTTTTCT	TTCAGACAAA
-564	GGCCATTAGC	GAGCGAGAGT	GATAATTGCG	AAATTGCCAA	AAAACGCAAA
-513	GTCTACCACT	AGACAAGAAA	ATCGAAGCTT	TTCACTTTCT	CTTTTTTCTN

-783

-733

-683

-633 -583

-533

Annang						110
4.60						
-463	GTTTTGTTGT	CTTTGGTTCT	ACTCTCCGCA	CTGAATCTTT	CGATCAGCGA	
-413	TAATTGTTTC	CTTCTTTTGG	GATTTTCTCC	TTGGGTACGA	GGTTCTTTCC	
-363	TTCTTTTATT	TGCTCTGTTT	TTGAGATTTG	GAATTGTTAT	CAAGTCTGAC	
-313	AAAATTGGTC	ACTAATCTTT	CTGGGAAATT	GAGCATGTTC	GTGTTCTTGC	
-263	ATCCGTTTGA	CTCTTTTTCT	ATGCAAAGTC	TCAACCTTTC	AATAGTGGAA	
-213	TTTATTCTTA	TCCCTAATTT	CTCTTTACCA	GACCTATTTT	TAGCTAAGTT	
-163	TGGTTGAATT	TAGAAAGTCT	TTGATTCATA	GTTGAAGAGA	TTCTCTCCAT	
-113	TAATCTTTCT	CTGTAATGTG	TCAGATCCAC	TAAAAGTAAG	TAAGAAAAAG	
-63	ATTTTGTTGT	AATGTTATTA	AATGTGTCTT	TGTAGATGGA	ACCAGCTCAA	
-13	TTAATGAGAT	GAGATG				
>Shaqqy;	Numerieruno	g relativ zu	ım ATG des (Gens At4q00	720	
-2733	TCAAGACTGG	CGCGTGCGTG	TGTTTCTTTT	TCTTAATGAA	TTGTGAATTT	
-2683	TTATATAACT	TGTTTTTTTG	GTCTTGTACT	ATGGGAGGGA	GGGGGTGTCG	
-2633	AGTCAAGAAC	GAACCGCGCG	AGTGGGCGAG	ATCCAACTCC	TTTGTCACCG	
-2583	TGATGGGACA	ACGACGTAAA	AGGGTTCGGG	TCCGATCACG	GTGGAGGAGT	
-2533	ТССТССТСС	GGTATTGACT	GGGGTTTGGA	AACCCCCTCT	ТТАСТСТТТТ	
-2483	TGTTTGTGTT	ͲႺͲͲΑͲͲͲͲͲ	ATTATGTAGC	GCGAGTAAGC	CACACGCGTG	
-2433	GGGTGTGTTG	TGGTTAGAAA	ACGCGAACTG	TGAGATGATG	ΑΤGΤΤΑΤGΤΤ	
-2383	GGATGGGATC	TGTATCGTTT	СААСТТАААА		AGCTGTCTCT	
-2333	CGTGGAGCAT	ΤΑΑΑΤΩΤΑΤΤ	TTGCAGGCAT		ТТААТССТАТ	
-2283	ACCTTGTCTC	CTTCCTTTGC	ATGATATGGG	GCTTACGTAT	TCCGCCATTT	
-2233	TCGTTGCGCC	ACGTCATTCC	CTTGACAGAC	TGGTGCGATG	AACCAGACGT	
-2183	TACGCCGTCG	TTTTTCTCCNC	<u>ттстсттст</u>	<u>ттссттстт</u>	<u>тстстттстс</u>	
-2133	AATATGTTGT	ͲͲͲͲϪϪႺͲͲႺ	CAGACAGGAA	AAGAAAAACG	TAAGCAAGTG	
-2083	ΔΑΤΤΤΑΔΑΤΑ	GCTGTACGGT	GGTGGGGCTTT	ATTTTAAAGC	CCTGGCCCGT	
-2033	TATGGCTAAT	GATTCCTAGA	TCTTATAACA	TTAATTGGGC	CTACAACAAT	
-1983	ATCATGTGCC	ΑΨΨΑΨΨΨΑΨΟ	ССФФСАФФФ	GCAAAGACTT	ТАСАТТСАТА	
-1933	CTGCACTAAT	AAGCCCATAA	GGCAAGTGAA	AAATGTCATT	TAATCCCCCA	
-1883	ΑСΤΤΤΟΑΑΑΑ	AATGGTCATT	ΤΤΑΤΑΤΑΤCΑ	ACTTCGTATG	ТССССТТТА	
-1833	AAACATGAAC	TAAAGGTTGA	СТААТТТТТ	AAACATGATC	TTTCGTTGAC	
-1783	CAGACTAAAA	TAGACATGCC	GTTATCAGTC	ATTAACGGAA	CTTCTAATGT	
-1733	СССТТАТСАТ	СССТТААТТ	ТАТТАСТСАА	GTTTCAAATT	GTGGCCATTT	
-1683	ТАААСАТСАА	CTTCTTATT	GGCCATTTAA	AACATGAAGT	AAACGTTGAC	
-1633	ТАССАТТТАА	GACATGAAAA	ATTCGTTGAC	CAGGCCAAAA	TAGACATGTC	
-1583	тттатсаста	GAACCTAGAA	ACTCGTTAAT	GACTGCTAAT	СТАТССАААА	
-1533	CAACGTCGTT	ТСАСААТААТ	CGAAAGAACA	TAAAGATTTT	ттссататса	
-1483	AATTTCCATA	TCAAAAAGTT	TTAAGCAGAA	CCCAAGAACA	ТАСТТТСАТА	
-1433	TAGAGATAAC	CGCAGTGCCA	GTAATTGGAA	GCAAATAAAG	GTGTTTTCGT	
-1383	ͲͲϪͲϪͲϪͲͲͲ	GTTTTAAATT	TTAAAAGGAA	TCATGGAAGC	AAATTGAAGA	
-1333	СТСАТТАТАА	GATTGTTCGT	СТТСТТСАС	CGGTTGTAGA	AATAGATTTG	
-1283	GGGAACTGGA	GTTTCATTTA	GAAAACAATC	CTGATTTTCT	ͲͲႺႺልͲͲልͲͲ	
-1233	СТСААААСАА	AGTCATTTA	GGGATACTAA	TAGAGTCGTT	AACAAGTGAT	
-1183	AATGAATGTT	ATAAGTTCTT	TTAATGAATG	ATGACAACAT	GTTTATTTG	
-1133	GCTTGGTCAA	CGAATTTCTC	ΑΤGTTTTAAA	TGGTAGTTAA	CTCTTAGTTC	
-1083	ΑΤGΤΤΤΑΑΑΑ	TGGCCACATA	TAAAGTCGAT	GTTTAAAATG	ACCACAATTT	
-1033	AAAACTTGAC	TAATAAAGTC	GTTAACGGAT	GATAACAGAA	GTTAGAAGTT	
-983	CCGTTAATGA	CTGATAACGG	CATGTCTATT	TTGGCCTGGT	ТААСБААТАА	
-933	ТСАТСТТТТА	AAAGTTAGTT	AACGTTTAGT	ΤCΑΤGΤΤΤΤΑ	AACGGCAGCA	
-883	TACGAAGTTG	ACGTATAAAA	TGACCATTTT	TTGAAAGTTG	GGGGATTAAT	

TGACATCTTT TCCCATAAGA CAATGGTTCA ATCAGTAATA ACCACATCCT

CATTAACATT CCTCAGATAG TAAACTAACC AATATATGTT TTATTTTACT

TCGTTTCTCA ATCTAATAGA TTACTTGAAT TGTTTATAGA TTACCTCATA GGATGATGAT AATTAATAGT TTAAAATTTT GAACAGAGAC ATTATTAAAA

ATGTCTAAAA ACAGTAAGAA ATTACTAAAA TTATCTGTTG CAGGAGCAAA

AAGAGGGAAG TGGTCAAAGA TGGTCAAATG AAAATAATAC AGTGCCCGCA

TATTCCGCGT GGGCTTAGAT GCAATCATTC AAAACCCCCA AATCCTTTG

-483	CCTAATCCCG	GGATACGTAA	ATAGACAAAC	AATACAGGGG	ТАСТТТАСТА
-433	ATCACAGCTT	GTCGAAATCG	GGCGGATTCA	TCCTAACCCG	TCGGATGAGC
-383	TGCTGCGATA	AATCAACGGT	GAGGAGTCAA	TGTTTGACCA	AAAAAGAGT
-333			AACGAGGCTG	CCATCATTCC	
-283	CACACACACA			CCTCCTCAAC	
203	JCJ J J CCC J J	CAACCTCCAA	CAACAACCAA	CCACATTCTT	
100		GAAGCICGAA	GAAGAACGAA	GGAGAIICII	CCTTTCCCCA
-103	GATITICGI		AICGAAAAAC		GGIIIIGCII
-133	ICGGAGIIAI	ICGAAIIIGA	AAIAICIGAA	ICIGIIGAII	CATTIATICT
-83	CCGCATGAAG	CTGTGTTGGT	GAAGTTTTTC	GGAGATTTAG	GGTTTCTGAG
-33	TTGTTCCTCG	TTT <u>GGTTGGT</u>	GAATAAAGCG	AAGATG	
Nn10	Numeraiera	v volotir -		$r_{ana} = 1 + 4 \sim 0.07$	120
>AII12		J LEIALIV ZU	AIG des (GENE AL4GUU	
-2000	GAGATCTTCG	AGTCATGTTG	ACCIMITACGA		TATTTGTCCT
-1950		GTCATGGCCA	TATTGTTGTC	TCATGGAGAA	ACACITITIGA
-1900	GCCAACAGTC	GGAAAACAAC	CATCACTTAG	CATTITITA	TTTTTAATAC
-1850	TACTATTTTT	TTTTTTGTAA	TTAGTCGAGT	GTACCAATCC	САААТТТААТ
-1800	GGGTATCTTT	CATAACCAAA	AAGAAAAAAG	CACAAAAACA	AAATACTACT
-1750	ACTATACTAT	AATGGTGAAA	CACACATTAC	ATTAGCATTA	ACCGCTATTC
-1700	CTTAAAAGAT	ATATGAGCAG	ACTACAAGGA	AGTACATTTA	AATCAGTGTG
-1650	CTAAGTTTTC	TCAATTATCA	ATCTAATAAT	TGTACTTACA	TAAATTTACC
-1600	AAATCATCTC	ACCATTTAGG	GCATACAATT	TTTGCTCAAT	AATGGAGCTT
-1550	GAAAAGACTA	ATTATAGAAT	GTCTTTTTGG	TTGACACAAG	CTCGCTTCTT
-1500	CATGTCGTTT	ACTTTAAAAA	TTGTAGATTC	TTTCACAACT	TATAAGATTC
-1450	TATAGCCTAT	TTGATTATCC	TTTAGGATGA	TGAGTATAAT	ATCTCAAACT
-1400	ΑΤΑΑΑΑΤΑΑΑ	AATGTTCACA	TCAATAATTG	AAAAAAATG	CATGTATGAA
-1350	TTCACGAAAA	TATGGTTACG	GTTGTGTGTT	GCTGCTAGAC	AAAAGTCTTT
-1300	CATATATTCA	GTTATATTTC	ТТААААСТАА	TCAAAATTGT	TTTATGCAAT
-1250	TTTGGCGAGT	AGAGAGAAAA	AGCGCGTGGG	АТАААТАААС	AAAGGCGTTA
-1200	TAAAAAAAGA	GAAAAAGTCA	ACCGAGTAGT	ТСТССТААСА	GAGTCTCGTG
-1150	CATTCGTAAG	GTTTCCAAGA	GTCCACATAT	СТАТТТСАТС	ΑΤССΤСΤΤΑΑ
-1100	CGTTTTCTCTC		TTCCCCACTC	TTAATTGATT	СССТТСАТАА
-1050					
-1000					
-950		AACCCUAAUCA			
- 900	IAIGIIIAAA	AAGGGIAAIA			
-900	AAAAIGACAA		GGATIIGAAA	TCTAGCATAT	
-000	IACAGIIIIG	GIIIAAGIII			
-800	AAAATTGAA	AGATGTTAAA	ATAGACAAAT	GTCATTAGTT	TGTTCAGATT
- /50	TAGTTATGTT	TTTTAATATAC	AGACAATTAT	ATTAAAATAA	
- /00	GTCAGATCAG	'I''I'A'I'AAAAGA	AAGTCAGTTC	AGTTTTAAGA	CTTAAGTTTG
-650	AGTCTTTTGG	ATTTGAATTT	AATAGATTCA	СТТТТАТТАА	AAATTGTTGA
-600	AACACTTTTT	АААААСТААА	ACATTTGTCA	AAAAATGCAT	ТТААССАААА
-550	AAATGAAAAT	GAAAGGTAGT	AAGTAATAAA	AGAAGAAAAC	ААААТСТААА
-500	AAAGTGTCTT	TAAAATCTCA	AAATTAAAAT	АТАСАААААА	GTACAAGAAA
-450	ATAAAAGAAA	AGGGGGAAAA	AGAGAGTCAA	TATCAACATG	CAAGTGTGAA
-400	TATTAGACTC	TTCTTCTCTC	ATCAGTTACC	CCAAAACTAG	GGTTTACCCA
-350	TTTTCATCAT	CTTCTTCTTC	CCCACATCAC	TCTCTGAAAG	ACAATAAGAG
-300	AGAGAGACAC	ACACACCAAA	AAAAAACCC	CATTGATTTT	TAAGAGAGAG
-250	AGAGAGACTG	AGAACGAAGA	GCAAATGAGA	GAGAAGTTGA	ATCAAATTTC
-200	CGCTTTCGTT	CTCTTTCTCT	CTCCTCCATT	TCAGTAATAA	ACACTCCTTC
-150	CTCTTTAATT	TTTCTGGGTT	TCTTCTTCTT	CCCTCTTTTG	TTGTTTCTGT
-100	GTGATTCAGT	TCTCGATCCA	TCTTTTCGTG	AAAAGTATCA	ATCTTTTAAT
-50	TCTCTAGTTG	TTTGTCAAAT	CTGGTTAGTT	TCTTCTCTTG	TATTTATTTG
+3	ATG	_			
-					
>Kan1	Numerieruno	relativ 7	ım ATG des (Gens At5al65	560
-5205	CCGACGTACC			TATCACACCT	

-5105	AACGAGAATT	ATTGTATACC	AACATTTCAT	TTTTATTCTC	CAGTATTTTT
-5055	TATTCTAAAT	TTTCTTTTAA	ACTTTGATAG	CTCGAATTTC	GCTATAAATT
-5005	TTTCAAAACA	TAAAAAAAGC	ATTAATCTCG	ATGCTTAAAT	TTATGAATCC
-4955	TAAACCGTTG	TTTGGATGTA	TGACATTAAG	TAAGCTATAA	ATTCAAAGTT
-4905	TTTTTTTTTC	CCATTAGTTC	ATTAGTTCAG	AATTAAGAAT	AACATCAATT
-4855	TTTCATTAGC	AAATTGCGCA	TGTAGATTCT	TTCATGCATT	TAAACATGTT
-4805	TGTGTGTTAC	CACAACACCT	AGGATCATGC	ATTCGATTTC	TAATACAATT
-4755	АСАСАААТАА	CAATTTAGAT	GAAGAAACCA	AATGATATTT	CTCTAAATCA
-4705	ACATCTCAAA	CTATGAAAAC	TAATTAAATG	GCATTCTTTC	CCATCTTAAT
-4655	GTGACCTCAC	CGTTCCATTC	CACATATAAT	ΑΑΤΑΑΤΑΑΤΑ	ATAATTTCAG
-4605	TTACACAATT	TCACAATGCT	ACTAATATAA	ATCACTGTAT	TAGCAAAGAT
-4555	CAATGATATG	ATTTTCTATA	TGTGTTCAAA	GTAATTCAAG	TTTTAATTAA
-4505	GCAACCATAA	GAAAAACTCG	CATTTTATAA	TATAATTTTT	GCAAGAAGTT
-4455	TTTTTTTCTT	AAAGTTTCGC	AAGACTTGTT	ΑΤΑΑΤΑΑΤΑ	TAATGGAACC
-4405	ATATATATT	TGCGTTAAAT	TCCAATCTAA	TTGACAATAG	TCAAAACCAT
-4355	ТАААТТААТА	CGAAATACAC	GTAGCAAAAA	GCATAGGGAA	ΑΑΑΤΑΤΑΤΑΑ
-4305	ACTCATAAGA	CATACATGCA	TATGATGGAC	CTACATTAAC	TATCTCTCTA
-4255	AAGTTAGCAA	CTAATCAGTG	GAAGACACGT	GGGTATTAAT	TTGGTAGGAA
-4205	AATAATAGAG	ATCCTGCTAT	ΤΑΑΑΑΤΤΑΤΑ	TATGTTTTTC	TAAAGAAAGT
-4155	TAAACTAAGC	CATTTTTATC	AATTTTCTGT	ATGACCATTC	ATTATGGCCT
-4105	AGTTCCATAT	ATAATGCATA	TATATTTGGC	ATATATCTGC	CTTTTGTACA
-4055	AGGAATATCA	ATTTAACTTC	TTATTAGACA	AGTGGTCTAC	TCTATTTTTT
-4005	TTTGTTTTCT	TGTTCGTAGT	CGTAGGAGAC	TAATCTGCTT	ТАТАТТТТСТ
-3955	TCGAACGTTT	CTTTTGATAT	ΑΑΤΤΤΤΑΑΑΑ	TGTTTTATTT	AATTTGCTTA
-3905	TAACTTTATA	AAGTTTATTA	CACTAATCTT	САТААТАААА	GTTTAGTTTT
-3855	TATATGATGA	АААСАСАААТ	GGAAAAGAGA	AGAGACTAAA	GTTTCCGTCC
-3805	ААААТСТААА	ТСАТААААТТ	ATGATATATT	ТСАСТТСААА	СТСТАТТТАА
-3755	СТБАААСТБА	ΑΤΤΑΤΑCΤΑC	ΑΑΤΤΑΤΑΑΑΑ	ТАТТААТААТ	TTGCATAGAA
-3705	AATAATTCAC	ATAATGATAT	TACAATTTTC	TTAGTAAACT	AATTATATCA
-3705 -3655	AATAATTCAC AATGTTAAGT	ATAATGATAT TTACAAATAA	TACAATTTTC TTACAAAAAA	TTAGTAAACT GTGACTTTTT	ААТТАТАТСА ТСТТТТТААТ
-3705 -3655 -3605	AATAATTCAC AATGTTAAGT TACTTTCACA	ATAATGATAT TTACAAATAA TATTTCATCA	ТАСААТТТТС ТТАСАААААА ТАААСААААА	TTAGTAAACT GTGACTTTTT AGACCAACAC	AATTATATCA TCTTTTTAAT AAACAAATTA
-3705 -3655 -3605 -3555	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA
-3705 -3655 -3605 -3555 -3505	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA
-3705 -3655 -3605 -3555 -3505 -3455	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC	ААТТАТАТСА ТСТТТТТААТ АААСАААТТА АТАТGТАААА САТТАТАААА GTCCTAATCT
-3705 -3655 -3605 -3555 -3505 -3455 -3405	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA	ААТТАТАТСА ТСТТТТТААТ АААСАААТТА АТАТGТАААА САТТАТАААА GTCCTAATCT САААТАТТСТ
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355 -3305	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC	ATAATGATAT TTACAAATAA CCACCCCACC ACTTTTTTAG AACATAATCA TTTCATTCAT TTAAACCAAA TTCAAAACAC	ТАСААТТТТС ТТАСАААААА ТАААСААААА АСАСАСАС	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT
-3705 -3655 -3555 -3505 -3455 -3405 -3355 -3305 -3255	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAA ACACACACAC ATCTAATTAT AAGTCGTAAT CGACTTTGAA ACTCCTAAAA ACACACACAC ACTCCTAAAA AGTGACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA TAATTTTGAC	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355 -3305 -3255 -3205	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACACAC ATCTAATTAT AAGTCGTAAT CGACTTTGAA ACTCCTAAAAA TAAAAACATG AGTGACAACAC AGTGACAACAA	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA TAATTTTGAC CATTCATTT	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACT
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355 -3305 -3255 -3205 -3155	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT GGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAA ACACACACAC ATCTAATTAT AAGTCGTAAT CGACTTTGAA ACTCCTAAAA TAAAAACATG AGTGACAACA TAAAAAACATG AGTGACAACA TAGAACAAAA CTGCGTAAT	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA TAATTTTGAC CATTCATTT TTAATATTT	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACT TTGGATTTT
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3405 -3355 -3255 -3205 -3155 -3105	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT TCTGGAGATA	ATAATGATAT TTACAAATAA CCACCCCACC ACTTTTTTAG AACATAATCA TTTCATTCAT TTAAACCAAA TTCAAAACAC GCCCAACCAT ATTGTTTCCG ATTTTATCCG GAGAATTTGA	TACAATTTTC TTACAAAAAA TAAACAAAAA ACACACACAC ATCTAATTAT AAGTCGTAAT CGACTTTGAA ACTCCTAAAA ACTCCTAAAA AGTGACAACATG AGTGACAACAA TAAAAACATG AGTGACAAAA CTGCGTAAAT TAACGGAAAG	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA TAATTTTGAC CATTCATTTT TTAATATTTT AATAAAACAT	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACT TTGGATTTTT TAGAGCCAAA
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355 -3305 -3255 -3205 -3155 -3105 -3055	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC ATTCAAAACA ACGACTTTAT TCTGGAGATA GTAAAGCTTA	ATAATGATAT TTACAAATAA CCACCCCACC ACTTTTTAG AACATAATCA TTCATAATCA TTCAAAACA GCCCAACCAT ATTGTTTCCG ATTTTATCCG GAGAATTTGA TGTCCTTCGA	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA CATTCATTT TTAATATTTT AATAAAACAT GGGCACAGAA	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACT TTGGATTTTT TAGAGCCAAA TCCGATCAAA
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355 -3255 -3205 -3205 -3155 -3105 -3055 -3005	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT TCTGGAGATA GTAAAGCTTA CGTCAATAAC	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA TAATTTTGAC CATTCATTT TTAATATTTT AATAAAACAT GGGCACAGAA GTTGCTCTCT	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTTGGATTTTT TAGAGCCAAA TCCGATCAAA AGTTTCATAG
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3405 -3355 -3255 -3205 -3155 -3105 -3055 -3005 -2955	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT TCTGGAGATA GTAAAGCTTA CGTCAATAAC TTCCTTTAAT	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA CATTCATTT TAATATTTGAC CATTCATTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTTCATAACC TTGGATTTTT TAGAGCCAAA ACTTTCAATG AGTTTCAATG
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355 -3305 -3255 -3205 -3155 -3105 -3005 -2955 -2905	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT GGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT TCTGGAGATA GTAAAGCTTA CGTCAATAAC TTCCTTTAAT CATGGATCAG	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT TTACAAATAT ATTCAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTCTTCTTGA CATTCATTTT TTAATATTTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA CTTCTGTACT	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTGGATTTTT TAGAGCCAAA TCCGATCAATA AGTTTCAATG TATAGGAATT ACTGTTAAT
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3405 -3355 -3205 -3205 -3155 -3105 -3055 -3005 -2955 -2905 -2855	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC ATTCAAAACA ACGACTTTAT TCTGGAGATA CGTCAATAAC TTCCTTTAAT CATGGATCAG AATGACAATC	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTCTTCTTGA CATTCATTT TTAATATTTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA CTTCTGTACT TTTAAAAAAA	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTTCATAACT TAGAGCCAAA AGTTTCAATA AGTTTCAATG AATAGGAATT ACTGTTAATT AAAAAACATT
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3405 -3355 -3205 -3205 -3105 -3055 -3005 -2955 -2905 -2855 -2805	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT TCTGGAGATA GTAAAGCTTA CGTCAATAAC TTCCTTTAAT CATGGATCAG AATGACAATC TTTCAAAAGT	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA CATTCATTT TAATATTTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA CTTCTGTACT TTTAAAAAAA GACTCATTCA	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTTCATAACT TAGAGCCAAA AGTTTCAATA AGTTTCAATG AATAGGAATT ACTGTTAATT AAAAACATA
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3405 -3355 -3255 -3205 -3155 -3105 -3055 -3005 -2955 -2905 -2855 -2805 -2755	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT CATGGAGATA CGTCAATAAC TTCCTTTAAT CATGGATCAG AATGACAATC TTTCAAAAGT	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA TAATTTTGAC CATTCATTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA CTTCTGTACT TTTAAAAAAA GACTCATTCA GGAGTTAATG	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTTCATAACC TTGGATTTTT TAGAGCCAAA AGTTTCAATG AATAGGAATT ACTGTTAATT GAAAACGAAA AACTCAATTC
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355 -3255 -3205 -3155 -3105 -3005 -2955 -2905 -2855 -2805 -2755 -2705	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT GGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT CATGGAGATA CGTCAATAAC TTCCTTTAAT CATGGATCAG AATGACAATC TTTCAAAAGT ATATGAGTAC CTTGTACCAT	ATAATGATAT TTACAAATAA CCACCCCACC ACTTTTTAG AACATAATCA TTTCATTCAT TTAAACCAAA TTCAAAACAC GCCCAACCAT ATTGTTTCCG ATTTTATCCG GAGAATTTGA TGTCCTTCGA TAAGCCAAAA TAACTAAACA CTAATAGTTT CTTTGGGTAA ATAAATGTAG ATTGCTAGGT TAACTAAAGA	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTTG ACTTTCTTGA CATTCATTT TTAATATTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA CTTCTGTACT TTAAAAAAA GACTCATTCA GGAGTTAATG TAAGTGTACT	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA CATTATAAAA CTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTTCATAACC TTGGATTTTT TAGAGCCAAA ACTTCAATG AATAGGAATT AAAAAACATT GAAAACGAAA AACTCAATCC
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355 -3305 -3255 -3205 -3105 -3105 -3005 -2955 -2905 -2855 -2805 -2855 -2705 -2655	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT GATAATCTGT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT CGTCAATAAC TTCCTTTAAT CATGGATCAG AATGACAATC TTTCAAAAGT ATATGAGTAC CTTGTACCAT TAGAAACCTA	ATAATGATAT TTACAAATAA CCACCCCACC ACTTTTTAG AACATAATCA TTTCATTCAT TTAAACCAAA TTCAAAACAC GCCCAACCAT ATTGTTTCCG ATTTTATCCG GAGAATTTGA TAAGCCAAAA TAACTAAACA CTAATAGTTT CTTTGGGTAA ATAAATGTAG ATTGCTAGGT TAACTAAAGA	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTCTTCTTGA CATTCATTT TTAATATTTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA CTTCTGTACT TTTAAAAAAA GACTCATTCA GGAGTTAATG TAAGTGTATC CTCATTCAAA	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTTCATAACC TTGGATTTTT TAGAGCCAAA ACTCAATG AATTAGAATT GAAAACGAAA AACTCAATTC CTAGGAGTTT
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3455 -3405 -3255 -3205 -3205 -3105 -3055 -3005 -2955 -2905 -2855 -2805 -2755 -2705 -2655 -2605	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT TCTGGAGATA GTAAAGCTTA CGTCAATAAC TTCCTTTAAT CATGGATCAG AATGACAATC TTTCAAAAGT ATATGAGTAC CTTGTACCAT TAGAAACCTA GTATAGCTAG	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA CATTCATTT TAATATATTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA CTTCTGTACT TTTAAAAAAA GACTCATTCA GGAGTTAATG CAAGTGTATC CTCATTCAAA	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTTCATAACT TAGAGCCAAA ACTCAATG AATTTCAATG AAAAACATT GAAAACGAAA AACTCAATTC CTAGGAGTTT AACGTTAGAA
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355 -3205 -3255 -3205 -3155 -3105 -3055 -2955 -2905 -2955 -2855 -2805 -2755 -2705 -2655 -2605 -2555	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT CATGGAGATA GTAAAGCTTA CGTCAATAAC TTCCAAAAGT CATGGATCAG AATGACAATC CTTGTACCAT TAGAAACCTA GTATAGCTAG GATCATAATA	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA CATTCATTT AATATATTTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA CTTCTGTACT TTTAAAAAAA GACTCATTCA GGAGTTAATG CAAGTGTATC CTCATTCAAA TTGAAAATGC GCAGCAAAAC	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTTCATAACT TAGAGCCAAA ACTCTAATT ACAGATCAATG AAAACGAAA AACTCAATC CTAGGAGTTT AACGTTAGAA TTTTTAAATA GTCTAAAAC
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3405 -3355 -3255 -3205 -3155 -3105 -3055 -3005 -2955 -2905 -2955 -2905 -2855 -2805 -2755 -2705 -2655 -2605 -2555 -2505	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT TGGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT CATGGACTAA GTAAAGCTTA CATGGATCAG AATGACAATC TTTCAAAAGT CATGGATCAG AATGACAATC TTTCAAAAGT CATGGATCAG AATGACATA CTTGTACCAT ATATGAGTAC GTATAGCTAG GATCATAATA	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA TAATTTTGAC CATTCATTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA CTTCTGTACT TTAAAAAAA CTTCTGTACT CTCATTCAA GGAGTTAATG CACCATTCAAA GGAGTAATG CACCAAACG CTCATTCAAA	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA GTCCTAATCT CAAATATTCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTTCATAACC TTGGATTTTT TAGAGCCAAA ACTCCAATG AATAGGAATT ACTGTTAATT GAAAACGAAA AACTCAATTC CTAGGAGTTT AACGTTAGAA TTTTTAAATA GTCTAAAAAC TTTATATCTA
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355 -3255 -3205 -3155 -3105 -3055 -3005 -2955 -2905 -2855 -2905 -2855 -2905 -2755 -2705 -2655 -2605 -2555 -2505 -2455	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT GGAAAGTAT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT CAGGACTTTA CATGGAGATA CGTCAATAAC ATGGATCAG AATGACAATC TTTCAAAAGT ATATGAGTAC CTTGTACCAT ATATGAGTAC GATCATAATA GAACATA	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTT ACTTTCTTGA CATTCATTT AATATATTTGAC CATTCATTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA GTTCTGTACT TTAAAAAAA GACTCATTCA GGAGTTAATG GGAGTTAATG CTCATTCAAA TTGAAAATGC GCAGCAAAAC ATAATTAAAA ACGAATAAAA	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA CATTATAAAA CTCCTAATCT CAAATATTCT CAAATATTCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTTCATAACA AGTTTCAATA AGTTTCAATA AAAAACATT AAAAAACATT CAAAACGAAA AACTCAATTC AACGTTAGAA TTTTTAAATA GTCTAAAAAC TTTATATCTA
-3705 -3655 -3605 -3555 -3505 -3455 -3405 -3355 -3255 -3205 -3155 -3105 -3005 -2955 -2905 -2855 -2805 -2855 -2705 -2655 -2605 -2555 -2605 -2555 -2405	AATAATTCAC AATGTTAAGT TACTTTCACA CCCCCCACCC TTTATTTAAA ATTAAGTTAT GATAATCTGT GATAATCTGT ACAAACAAAC TTACTGCAAC ATTCAAAACA ACGACTTTAT CATGGAGATA CGTCAATAAC TTCCTTTAAT CATGGATCAG AATGACAATC TTCCAAAAGT ATATGAGTAC TTCCAAAAGT ATATGAGTAC GTATAGCTAG GATCATAATA GTATAGCAAA GTATAGCAAA ATAAGAAAAA TTAAATTTCC	ATAATGATAT TTACAAATAA TATTTCATCA CCACCCCACC	TACAATTTTC TTACAAAAAA TAAACAAAAAA ACACACAC	TTAGTAAACT GTGACTTTTT AGACCAACAC ACATATATAT CTACAAATAT ATTCAAATTC ATCGTTTAAA TACTCTTCTTGA TAATTTTGAC CATTCATTT TTAATATTTT AATAAAACAT GGGCACAGAA GTTGCTCTCT TAGTTCCCAA GTTGCTCTCT TTAAAAAACAT GGAGTTAATG GGAGTTAATG CTCATTCAAA GGAGTTAATG CTCATTCAAA TTGAAAATGC GCAGCAAAAC ATAATTAAAA ACGAATAAAA	AATTATATCA TCTTTTTAAT AAACAAATTA ATATGTAAAA CATTATAAAA CATTATAAAA CTCCTAATCT CAAATATTCT CAAATATCT TTTTTTCTTG CAATTATACT TATCATAACC TTTCATAACC TTGGATTTTT TAGAGCCAAA ACTCCAATG AATTCAATG AAAACGAATT CAAAACGAAA AACTCAATTC CTAGGAGTTT AACGTTAGAA CTTATACTA CTCACTTAT CTCACTTAT

-2305	GGAGTGAATA	GTTTATTT	ͲͲͲϹͲͲΑႺΑΑ	GACAATTTAA	адааааттад
-2255	AAAAGAGTTA	ттаааттсас	AAGGAATATT	TGGGAGAATG	AAAAGGGAAT
-2205	TAGAAGCAAA		CTTTAGGGTT		ͲႺͲͲͲϪͲͲϪϪ
-2155	CCCAAACAAA				
-2105		Сттсасстат			
-2055					
2005	COMMONICA	TICIIIAIA TACACACCTA	TGACACIIGG		IACGAGGGCA
-2005					AAGAGAAAGA
-1955		GACAATAATT	TUCGTACUTT	TGGAAGGCAA	AACACAGAGT
-1905	TTATATATTC	CAAATTAAAA	GTGGGATAAA	AAAATATAAT	AATTCTTTGA
-1855	CAAAAACATA	CGAATAGTTA	AATACTATTC	AATTTTGTAT	ATTTTTCATT
-1805	ATTTTTCAGT	ATGACATATT	TCTGTTTCAC	AGTAGATAAA	GTCAACTCCA
-1755	TAATTTTTTT	TGTAGAATTA	TAAACGAACA	ATGTGAATGT	AAAAATGTCG
-1705	AGTACAAAGA	AAACAGAAAC	ACTAGAATGC	ATACATTATT	ACATTCGACA
-1655	CAAACAAGTC	AAAAATATAT	ATAAATCTGC	CTAATTTTAT	TTCTTTTCAA
-1605	GTACGTATTT	TAAAGCGACA	TGTATATGAC	TTCGATTTGG	CTCTAATTGA
-1555	TAGACAACAC	AAAACGGTCA	AACAAGTAGC	CGGTTGATAT	TGTAGTCACA
-1505	TCTCTAGGAA	CTAAATGTCT	ATACGAGCTA	TTCATAAACT	CAAGAACGTA
-1455	CTGATATTTA	ATGTATATTT	ATCTCTTTAG	GTATAGTTGA	ACAATCTACG
-1405	GTCAGAAACT	TGAATTTGTT	TGATTCCAAA	ATCGTATAAG	GAATTATTAT
-1355	AATAAGATGT	GAATAGAGAG	TGAAGTGAGA	AGCGAAGAGA	GTGGGGGAGA
-1305	ΑΑΑΤΑΑΑΑΑ	GGAGTCAGAG	AGGACACAGT	CTCTTTCTCT	CTCTCAAGTC
-1255	TCAACATATG	TATCCCGTCG	TCTCCGGGGT	АССААААТСА	AAGCACTCTC
-1205	ͲϹͲͲͲͲͲͲͲΑ	ͲͲͲͲΑͲͲͲͲ	ͲͲͲͲႺႺͲͲΑͲ	AATGAAACTT	ͲͲͲΑͲͲͲΑͲͲ
-1155	TTAGAATAGG	тсттстстт	GTTTTCT	ͲϹͲͲႺͲͲΑͲͲ	ΤΑΤΤΤΑΤΤΤΤΑ
-1105	ΔͲͲͲΔΔͲͲͲͲ	GGCTTTTGCT	TTGACTATAG	ATTAGATAGG	ACAGAAGAGA
-1055					
-1005	J TT J T	ATICICICIC			
-1005		MIGAIAAICI	J TTCTTA		GAICAAIIGA mcamaamccm
-905			ATIGITAAGG	TITIAAIGGA	CARATCGI
-905		AIIGIIAAAA	GIIGIAIGUI		GAAAIIGGIC
-855	GATTATTAAA	TACACTITAC	ATTIGAAAAT	TTCATCTACT	AAATTGATAG
-805	AAAACAAGAT	TTATTTGCT	ATTATTCTTC	AACTITATCT	ATGGAAATCA
- / 55	AAATTTTCAGT	AGTTTAAACG	AATAAACTAA	AACA'I'GAAA'I'	CAATTAATCT
-705	AGCCGTAAAA	TAATTTATAT	TATATTGATA	GATGGGTTTA	CTTGTTGAAA
-655	GGTGAAAAAG	ACAAATTGAA	ATACCATCCC	ААААТААААТ	AAAAAGCTTC
-605	CAATATTTGG	AATATAGCGA	ATGACAATAT	TACCCTTTCT	CAACTATCGT
-555	TTTCCAAGAT	ATACTCTCGA	GGAACAACAT	CTCACACATA	CACATACACA
-505	TACATGTACA	TGAACGAACA	CACATATATC	TCTCTCTCTT	ACCTGTTTTT
-455	AATTTTCCTG	GATTTAGTTT	TATTCCTTTT	TTCTCTTCTG	CCTTTGCTTC
-405	ACAACACACA	TACCTCTCTC	TATCTCTCTC	TTCCTTCTTT	TTCTCTCTCT
-355	CTGCGTCTTA	CTTTGAGCAT	GTTTGTTTCT	TCAAGAAGAT	CATCACTCAA
-305	CTTCTCTCTC	TTCTTCTAAG	CTTCTCTTTA	ACTTCATCTC	TCTCACTTTC
-255	TCCTTTCTTT	CTGAGATATA	GAGAGAGAAA	GAGAACAAAA	ААААТАТСАА
-205	ATCTTTCAGA	CACCCTTTTG	ACTTCTTTGC	CTAAAGAATC	TCTCTGCTTT
-155	CTCTTCTCCT	TAGAGAAAAT	CATTTTAAAT	TCCTAAGCAA	AACCCCAGGA
-105	GAAAAAAAAA	ACAAAAGAAT	AGTCATCATC	ATCATCACCA	TCATCATCCT
-55	TATCATCATC	AACAACTTCA	GTGGCAGCAA	TAGCAAGAGA	AAGGTTTCTT
-5	ТААТТАТС			1110 0111011011	
0	11111111110				
>19960/50	Numerierun	r relativ 7	IM ATC dee (Gens Attala	560
-6807					ᡔᠣᠣ
-6757					
-0131		I I I GI I AGAA	ATTACACTAC	AAICAAATAG	
	CALAATTAAT	ACACAAAAAG		IGATITITAT	ATATAATTAA
- 6007	GCAAAATTTTA	GATTITITC	CTITCTAAAG	AAATATCATT	
-660/	TATTTATAAT	AGCTAAGAAA	AAAATCAGTG	CTAGAATTTT	TATGTTCATT
-6557	AAGATACCAC	ACAAGAAAAC	ACTTTTTCAA	AACCCTCCGA	TAGGGTCGAT
-6507	TATTTCTTAT	ATTCTCCTTA	ATCATTCTCT	CTTTCTCTCT	CTCAATAAGA

-6457	AAAATGAGCA	AATGTTTATT	TCAGTCGAAA	GTTTTTTTTT	TTTTTTTTCT
-6407	CTCTAATGTG	TAGGACAATT	TTTCCATAAT	GGTAACAGAA	TGCAAGAAAC
-6357	ATATGGGTCC	ATTACGAAAA	GATAAATTAA	TATTCAACAT	ACATATAGAC
-6307	AGAGGACGAC	AGCTGGTTTA	TTAGGCAGCT	ATATGAGTCT	TGCCTTTTGC
-6257	CCTACTTGAA	TAATTTTCAC	TAAACACACT	CTTTATTTAT	TTTGTCGATC
-6207	TTTATAACAA	GAATTTATTT	TGAAATCGAA	ATTCGTAATG	AATTTCCGAT
-6157	CTACAACTAC	СААААТАААТ	AATACACTAC	TTAAGTATAA	TTGTATCATG
-6107	ТАТССАААТА	CTTAGACGTT	TATAAAATCT	CCCAGTGGAT	GAAAAAAAAA
-6057	AAGAAAAAAT	CTCCCAGTTT	TCAAATTCAA	CAAACCCTAC	CAAAACCAAG
-6007	CTTCTAAACC	СТАТССТААА	TTAGTGTGCA	TAAAAGAACA	TCTAGCAAGC
-5957	TTATTTGATA	TATATATCCC	AACTAAATTT	TCAAAATAGA	ACCACATCTA
-5907	GAAATTGTAT	AGAAATATAA	GTATATTTGT	TATTCAGTAC	TGCATTTAAA
-5857	TAGAGGAATC	AGTTTTTTAA	AGCATCTAAA	AACTTAATGG	AGTTTTTGTT
-5807	TAATTCAGTT	TCCAATTCTG	ATTTGAATGT	ATTGTTGATC	AATAATAATG
-5757	AGAATATATA	TGGTTGATTG	TTTTTAAATA	TAGCCATCAT	AGTTTGTTTC
-5707	ATTTTTAGAG	AAAACAAGTA	TGGATTTGCT	GCGAATGTTA	TTTGGTTTTG
-5657	CAAGAAATTC	TTCATCTTCT	ACAACCAAAC	CTTTTTTTAG	TTTAAGAGAA
-5607	АААААССТАС	AGCTACATGT	ATTTAACATA	AATTTTACAA	ATCAATTCAT
-5557	CATTCAGGAA	ACAGAAGACA	GTGTGCTTTA	AGATAAGATA	CAGATTTATA
-5507	TATATTACAA	CGAAAGAAAA	ТАААТАААТА	ΑΤΤΤΤΤΤΤΑΑ	AAAAGAAATA
-5457	GAATGTGTGA	CAAAGAGATA	TGAACGTCAA	CGGATTGGTA	GAATCAACGG
-5407	AGACTTTCAT	TCTCCGATAT	ATTCCAAAAA	GGTGTAAATT	ATTAATTTAG
-5357	ACAATATGGA	ACCTCACGTT	CTGTTGGATC	CATTTAATGC	GTGCAGTGAT
-5307	ΑΑΤΤΤΑΤΤΤΤ	ΑΑΤΤΤΤΤΤΤΤ	ΑΤΑΤΑΑΤΤΤΤ	ΑΤΑΤΑΑΑΑΤΟ	AGAAAAGTTA
-5257	АААСААААСА	GCATTAATTG	ТТТААТТАСТ	TGTCATATTG	GATCTCACTC
-5207	ACCGACGTAC	GTTCGTGTCC	ΑΤGCΑΤΤΑΤΑ	TTATCACACG	TTTAAGAGAT
-5157	CCATCTACTC	TGCAATTTAT	TCAGATTTAG	TAATTACGCT	ТТТССТТААТ
-5107	AAACGAGAAT	TATTGTATAC	CAACATTTCA	ТТТТТАТТСТ	CCAGTATTTT
-5057	TTATTCTAAA	TTTTCTTTTA	AACTTTGATA	GCTCGAATTT	CGCTATAAAT
-5007	TTTTCAAAAC	АТААААААА	CATTAATCTC	GATGCTTAAA	TTTATGAATC
-4957	CTAAACCGTT	GTTTGGATGT	ATGACATTAA	GTAAGCTATA	AATTCAAAGT
-4907	TTTTTTTTTTT	CCCATTAGTT	CATTAGTTCA	GAATTAAGAA	TAACATCAAT
-4857	TTTTCATTAG	CAAATTGCGC	ATGTAGATTC	TTTCATGCAT	TTAAACATGT
-4807	TTGTGTGTTA	CCACAACACC	TAGGATCATG	CATTCGATTT	CTAATACAAT
-4757	ТАСАСАААТА	ACAATTTAGA	TGAAGAAACC	AAATGATATT	TCTCTAAATC
-4707	AACATCTCAA	ACTATGAAAA	СТААТТАААТ	GGCATTCTTT	CCCATCTTAA
-4657	TGTGACCTCA	CCGTTCCATT	ССАСАТАТАА	ТААТААТААТ	AATAATTTCA
-4607	GTTACACAAT	TTCACAATGC	ТАСТААТАТА	AATCACTGTA	TTAGCAAAGA
-4557	TCAATGATAT	GATTTTCTAT	ATGTGTTCAA	AGTAATTCAA	GTTTTAATTA
-4507	AGCAACCATA	AGAAAAACTC	GCATTTTATA	ATATAATTTT	TGCAAGAAGT
-4457	TTTTTTTTCT	TAAAGTTTCG	CAAGACTTGT	TATAAATAAT	ATAATGGAAC
-4407	CATATATATT	TTGCGTTAAA	TTCCAATCTA	ATTGACAATA	GTCAAAACCA
-4357	TTAAATTAAT	ACGAAATACA	CGTAGCAAAA	AGCATAGGGA	AAAATATATA
-4307	AACTCATAAG	ACATACATGC	ATATGATGGA	CCTACATTAA	CTATCTCTCT
-4257	AAAGTTAGCA	ACTAATCAGT	GGAAGACACG	TGGGTATTAA	TTTGGTAGGA
-4207	AAATAATAGA	GATCCTGCTA	TTAAAATTAT	ATATGTTTTT	CTAAAGAAAG
-4157	TTAAACTAAG	CCATTTTTAT	CAATTTTCTG	TATGACCATT	CATTATGGCC
-4107	TAGTTCCATA	TATAATGCAT	ATATATTTGG	CATATATCTG	CCTTTTGTAC
-4057	AAGGAATATC	AATTTAACTT	CTTATTAGAC	AAGTGGTCTA	CTCTATTTTT
-4007	TTTTGTTTTC	TTGTTCGTAG	TCGTAGGAGA	CTAATCTGCT	TTATATTTTC
-3957	TTCGAACGTT	TCTTTTGATA	TAATTTTAAA	ATGTTTTATT	TAATTTGCTT
-3907	ATAACTTTAT	AAAGTTTATT	ACACTAATCT	ТСАТААТААА	AGTTTAGTTT
-3857	TTATATGATG	AAAACACAAA	TGGAAAAGAG	AAGAGACTAA	AGTTTCCGTC
-3807	СААААТСТАА	АТСАТААААТ	TATGATATAT	TTCACTTCAA	ACTCTATTTA
-3757	ACTGAAACTG	AATTATACTA	СААТТАТААА	ΑΤΑΤΤΑΑΤΑΑ	TTTGCATAGA
2707	<u>አአአሞአአሞሞሮአ</u>	Сатаатсата	 ጥጥ <u></u> እ	СТТАСТАААС	ͲϪϪͲͲϪͲϪͲϹ

-3657		AAATGTTAAG	TTTACAAATA	ATTACAAAAA	AGTGACTTTT	TTCTTTTTAA
-3607		TTACTTTCAC	ATATTTCATC	АТАААСАААА	AAGACCAACA	CAAACAAATT
-3557		ACCCCCCACC	CCCACCCAC	CACACACACA	CACATATATA	TATATGTAAA
-3507		ΑΤΤΤΑΤΤΤΑΑ	AACTTTTTTA	GATCTAATTA	ТСТАСАААТА	TCATTATAAA
-3457		AATTAAGTTA	TAACATAATC	AAAGTCGTAA	TATTCAAATT	CGTCCTAATC
-3407		TTGGAAAGTA	TTTTCATTCA	TCGACTTTGA	AATCGTTTAA	ACAAATATTC
-3357		TGATAATCTG	TTTAAACCAA	ААСТССТААА	ATACTCTTCT	TTTTTTTCTT
-3307		GACAAACAAA	CTTCAAAACA	СТАААААСАТ	GACTTTCTTG	ACAATTATAC
-3257		TTTACTGCAA	CGCCCAACCA	TAGTGACAAC	ATAATTTTGA	CTATCATAAC
-3207		CATTCAAAAC	AATTGTTTCC	GTAGAACAAA	ACATTCATTT	TTTTCATAAC
-3157		TACGACTTTA	TATTTTATCC	GCTGCGTAAA	TTTAATATTT	TTTGGATTTT
-3107		TTCTGGAGAT	AGAGAATTTG	ATAACGGAAA	GAATAAAACA	TTAGAGCCAA
-3057		AGTAAAGCTT	ATGTCCTTCG	AGAAATTAAT	GGGGCACAGA	ATCCGATCAA
-3007		ACGTCAATAA	CTAAGCCAAA	AATCAAGCTT	CGTTGCTCTC	TAGTTTCAAT
-2957		GTTCCTTTAA	ТТААСТАААС	AGAAAAAGGT	TTAGTTCCCA	ATATAGGAAT
-2907		TCATGGATCA	GCTAATAGTT	TAATACTACT	ACTTCTGTAC	TACTGTTAAT
-2857		TAATGACAAT	CCTTTGGGTA	AGCCTAGGGG	ΤΤΤΤΑΑΑΑΑΑ	АААААААСАТ
-2807		TTTTCAAAAG	ТАТАААТСТА	GCTCGTTGAG	GGACTCATTC	AGAAAACGAA
-2757		AATATGAGTA	CATTGCTAGG	TTTGGAATAT	AGGAGTTAAT	GAACTCAATT
-2707		CCTTGTACCA	ттаастааас	ATAAAAGAAA	ттаастстат	CCTAGGAGTT
-2657		TTAGAAACCT	AACTCAAAAT	TAGGAATGGA	CCTCATTCAA	AAACGTTAGA
-2607		AGTATAGCTA	GGGTTGTTAT	ACTGTTTTTG	ATTGAAAATG	СТТТТАААТ
-2557		АСАТСАТААТ		TTAACTCACA	TGCAGCAAAA	ССТСТААААА
-2507						
-2457						
2107		111111011111	<u> </u>	0101111110		1110
>IICB8	(in	nMDC164)				
/ 001(0	(± 11	Numerierunc	r relativ zu	IM ATC des C	Cens Atda014	155
-2910		TCTCAGAGGA	TTGGTGGATA	ATGACGAGGA	AGAGAAGAAG	CATACCATCT
-2860					GGATATCTTG	
-2810		TTUTTGTGGCC			CAAGCCATAT	ТТАТАСТААА
-2760		ATATGGAGGA	CTTGAAGGTG	AAAAAGGGAT		
-2710		ͲͲͲͲͲϷϹϷϷ	GATATTTGGT		TGCAAAAGGA	
-2660		TTATAAAATG	GAACAGAGGA	AAATGCTCTA	GGCAAAGCTT	AGGCCTTAGA
-2610			CGTCCCCAAT			
-2560					AAAGACIIGA	
-2510			CTCCATCACA		CCATAAACAA	AAAACIIICA
-2460		CAATATCAAC	CARTTARCET			
-2400			CTTACTCATC	CARCATA	TGITAAGIAA	
-2360		1 GGC I IACAG	TACIGAIG	TANAAACACA		TACGIAAICA
-2300					AIIIAIAIIC TATAIAIIC	
-2310		1 IAICIIIGI Ammamcmaaaa				COMPACIANC
-2260		ATTAICIAAA	GAAAIGIIAI			
-2210		AGTCGGATTG	TCGGAATATT	GATTCGTATA	CTAGTTATAT	TTCCTCTAGC
-2160			CAAAGTTTTA	GATATITI	TTGAAATAAA	ACAATAGATT
-2110			GTCTATGCAT	TITITATIAG	TTAATGATAT	AAATTGTAAA
-2060		AGTTAATAAA	AATATATTAA	TACCATTGAT		
-2010		TAATCACAAA	ATGATGTGAT	TATATAAATT		ATTIGATICA
-1960		GTATTAATAA	AAAAAAAATT	TCGTCTGTTC	AATTITTATAA	TGTTTTAGAA
-1910		TCCTTTTGCA	TTGGAACTTT	ACCAAATATT	AGCCACCGTT	TTAGCTAGTT
-1860		TCTTAAAAAA	AATTGAATGC	AGAAAATACT	TATGACATTG	TATATATATG
-1810			AATCCCCCTC	ATTTTATCAT	TTTTATACAA	GTAACACTTG
4		TCGGAATGGC				
-1760		GTGCCTCGTC	CATTAATCCA	ACGATTGATT	ATCTTATGTC	GAGACAAAGC
-1760 -1710		GTGCCTCGTC ATTGGTTCAA	CATTAATCCA TCATGCAAAA	ACGATTGATT TCTACCTTAT	ATCTTATGTC CTATAGCTTT	GAGACAAAGC ATAGTTAATT
-1760 -1710 -1660		GTGCCTCGTC ATTGGTTCAA AAATTTAAAT	CATTAATCCA TCATGCAAAA CCATTTCTTT	ACGATTGATT TCTACCTTAT ATATTGTTTT	ATCTTATGTC CTATAGCTTT TAAAAATAAT	GAGACAAAGC ATAGTTAATT TGATTCATAG
-1760 -1710 -1660 -1610		GTGCCTCGTC ATTGGTTCAA AAATTTAAAT TTACGTCATA	CATTAATCCA TCATGCAAAA CCATTTCTTT CGTTTTTTTG	ACGATTGATT TCTACCTTAT ATATTGTTTT TTTCCTGTAA	ATCTTATGTC CTATAGCTTT TAAAAATAAT CAAATCGGTT	GAGACAAAGC ATAGTTAATT TGATTCATAG TTGCTTTCTT

-1510		TTTGACGCAT	TTCGTTTATA	GAATACTGAT	CCATTTCTCT	TTTCGTGAAA
-1460		TATATGTTTT	CGATCTTGTC	CATTTGCAAA	TACTTTCTAA	TCCACTAACT
-1410		TGAGTTGGAA	TTGTATTAAT	AAATCAACTT	GCTTGTTCTT	TCCATTTTTA
-1360		AAAAGATCTC	ATAACTATTT	TACAATAGTA	TTATCAAAAG	GTGAGCAAAA
-1310		GAAAATTTAC	АААААААСАА	AGTGAGCAAT	ATATAACTAC	ATATATAGTT
-1260		GGTAAACCGG	ACTTTAGGGA	CCAATGAAAT	TTGTAGTGCT	TAAGCGTAAG
-1210		CATTCAGTAA	AAATGAATTA	CGATTAATAT	ATTTGTAGTG	CTTAACCGTA
-1160		AGCAGTCAGT	GAAATTGAAT	TACGATTAGT	ATCTCAAAAG	АТААСТАААА
-1110		GTATATACAT	TTTAGATTTA	TTTGTTTTTT	ATAACTAGAA	GGAGTTTGGG
-1060		TTTAAGCGTT	AATCTTCTCC	ATGGCCCAGG	ATCAGTCTTT	GCTAAAATCT
-1010		TATAAAGACG	TAAAACATCC	GCTCCACCAG	GAATTGAACT	AGGGAGAACT
-960		TTATAGAAAG	ACAATATATA	TAAACAAAAC	ATGCATGATA	TTTTATGTCG
-910		TAAATTCAAT	AATATTGATG	TGGCTGAGGA	AAAGCTCAAT	TATTTTGATG
-860		TCATTGATCA	GTGATCAGTA	ACGGAGTCGT	TTGGTCAATA	AAGAGTTTCA
-810		ATAACCATCA	CCACTTTTTA	CGTGTTGTTA	CTTTATATAT	TAAAATGACT
-760		ACATATAATG	GATTTTCGAC	TTTAATTACT	TTTTAAATAT	ATATGTTATG
-710		CATGAATTAA	GCGGTCGAAA	TCGTATTCTA	GGTGATTCTG	ACATGTGTTC
-660		ATGCTTTCTT	GCTAAAAGAT	AAGAAACTGT	CGTGGGGTTC	GCCATGCAAA
-610		AATGCGAAGC	CATTAAATAT	AATTAAGCAA	ACGCAGCCAA	CGAAGTAAAT
-560		AACCACGAGA	CAATTTCAAA	CATATTTTAT	CACCATAATT	ATCGTCTTTT
-510		TCATTAGTTT	ATGTTTTATT	TTAACCGTTT	TTGTATAAAG	CACACGAATT
-460		CCGTAATTAT	GGCTGCTATA	TAAATTCCAC	GGTCAAACAA	TCAAGCATGT
-410		ACAATACATA	AGATTAAAAT	TCAGCTCATT	AATATTTATT	GGTAGTATGT
-360		GATAAATTTA	TATAACATGT	TTTTTTCTAG	TCACGGATTT	CACGCAACAA
-310		ATGTAGAATT	TGAAACTTAA	CGTGAATCTT	GATTTAAAAT	ATTTATGCAT
-260		TAAATGTATA	GTCAAAATAG	ATCAGGTACA	AAACTTAAAG	TTAAATAAAA
-210		AAATATTCTA	AAGCAAAATA	AAATATCCAT	GATTTGTGAA	TTCATTCAAT
-160		AAGAATGACG	TGGAAAAGAA	GCTCGTCATG	ATTACACATT	CCAAAGTGTC
-110		GTTGTGGGTG	TTATTAGACT	AGTAGTTTTA	CAATAATATC	TCAGTAGCCA
-60		TTAGTTATCT	TGACATCATT	TTAGTCAAAA	AAAAAAAAA	CATGACAAAA
-10		CAGAAGGTAA				
	16 1	kh in MDC1	61)			
>0CI(0	(0,4	Numerierunc	r rolativ zi	IM ATC das (Cons Atda014	160
-6451						<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-6405						
-6351		CTATIIGGGI		ATATAGAATT		TAGCCITATA
-6305		CAACCAAATT		ACCIIGIAII	ATTECT CCCT	TTTTCATCGC TTTTCATCGC
-6251			THE	TTATCCIIG	ALLICICGGI	TITCIATICA
-6205		CARCCACAT	TITATITGA	CCATCCTATT		CTCACTTCTC
-6151		ACCGTGTTAT			GIIGIGACII	
-6105		CTTCACTAAC		AGIIIIACIC	JAJATUGAIC	
-6051			TACATACAA			
-60051						TCIACCAAIA
-5951				CCTCACAAAA		
-5905		ATCTUCATCA			CCCAAAATAA	AGAAGAAGII
-5851		CTACCACCCT	CACACACCCT			
-5805		ATCCACCCAA			CONCCCCTT	
-5751				ͲϹϪͲϪͲϪͲͲϪ		CCCC774CMA
-5705					СААСАФФФА	CAAACCTAAT
-5651						ΟΛΛΛΟΟΙΛΑΙ ΨΨΨΨΔΨΨλλΨ
-5605			TTALCCACCAC	CCCTABACAC		
-5551						
-5505				СПАФФСФАФА		
-5451			CCCGAACACA		CAAAACAACT	
<u> </u>						
-540.5					CAAAAAAAAA	AAACTATICS

-5351	<u>ᠵ</u> ᡎᠵ ᠭ ᡎᡎᠵ ᠵ ᠵ ᡎ	ᡣ᠋ᡎᡎᡎᡎᢧ᠈᠈᠈᠉ᡎ	<u>እእእእእ</u> ~እእለጦ		መ አ አ መ አ መ መ አ አ
5331		CIIIIAAAAI			
-5505	TICAAGACAA	GGAAAAAAA	ACGAAAGCGA	IAGIGGCIAI	GIGGCAAAAA
-5251	GTCTATTCCC	TTGGTACTAA	CACTITICCTG	AGGCTACGAA	GGTCTATCAT
-5205	A'I'GAAGAAAG	AGATAAGATT	CTTCAATTC	ATATTTTTCT	AGCCGTGATT
-5151	TCCATTGGAT	TTGGTGTTGG	AATGGATAAG	ATCTTTTAAA	AAATAAAAA
-5105	ATATATAATC	AATTTATCGT	ATGTAGATAT	AAATTGGATC	ATTTTCTTGT
-5051	CATTATACGA	TTCCTCTGTT	TACGTTGATA	TGTATGTGTC	TGTATATATG
-5005	TATCTAGTAT	TTGATGATTC	ATTAGGAATT	CCAATTCCTT	CATTCATATG
-4951	TGTACGGGAT	AAATATGGAT	ATTTCTATTT	ATACGAAGTT	GTTGGTTCTC
-4905	AGTTTGTCTC	TCTGTGCATG	GGAGAATTTA	CAATAAATTT	GCAGTGGAAT
-4851	CGATGTCTCT	CTATAACATA	TTTACATCGA	TTTAATTTCA	AATAAGTTTT
-4805	TTTTTTTTTA	ACAACAGATG	AAAATAAGAT	ΑΤΑΤΤΤΤΑΑΑ	GAAAGGTAAT
-4751	AACTATGATT	ТААСААААТА	АААССААТАА	CTGGATAAAT	GTAAAGCCAA
-4705	AACCGACCAG	TTACAAAAAG	AACAAGAACT	GTTATAAAAC	ΑΤΑΤΤΤΤΖΑΑ
-4651	ТАААТААА	ТААСАААААТ	CTTATTCGGC	АТССТАТТСТ	ТААААССААТ
-4605	СТТАСТТААА			GAACGCATCA	CAACCAACAA
-4551					
-4505		CTCTACCTAT			
-4303	GGATIACIIA	CICIACGIAI	CTCTCTGATA	CARGANGAAAA	GAGAIAIIGA
-4451		CITATITIGI		GAAAAICIAG	TITIAICGCA
-4405	TTATACTGAA	AATATTATAA	TTTAAAGAGT	ACGGATTGAA	TGATGATAAA
-4351	AAAAAAGTGG	TTTTAAGGTTTT	TAAACAGAAG	AAGGCGCAGT	ATTAAAATAA
-4305	ΑΤΑΑΑΤΑΑΑΑ	ATAGATTTTA	TTACTGTTAT	TCTATCATTC	CGACAAAGTT
-4251	CCGATTAATA	TGTAATTGTC	GAATTTTTTT	TATTTTTCTA	ACGGATTTTT
-4205	GATAAAGTAT	TGTTTTCGGA	ATTTCGTCAG	AATCCCGTCA	AAAAAATTC
-4151	AACCAAACAT	TTCTTTGAAA	ATTTTTGTTG	GAAATGGTTA	TGTTTTCTTG
-4105	TAGTATATTA	ACTATTGTAG	TGTTATAAGT	TTTATCGCAG	AGATATAAAA
-4051	AAAAAACAAT	TACCCTACTT	TTTTTGTAAT	CCTTATATCT	CATTTTTGTA
-4005	CAAAAGGAAC	TCTTGTAGAC	ATCTGCTAAA	AATTATCAGA	AAGAAAAAAA
-3951	AATGTTACAA	GAAAACATTA	TTACCAGTAA	ATTGCCAATA	CAAATATTCA
-3905	AACTATCAGT	TTTGTTTGCA	ACCCTACTTC	CTAGATTTAT	AAGATGCGAG
-3851	ATTAATATTC	AACTTGCTAC	AACCTCGTAT	TATATAATTT	TTGACAGTAA
-3805	СТААТАСАСТ	CTGTGTTTTT	TTATAATTAT	GATATTACTT	TTTTTGAAAT
-3751	AAAATTGAGA	AACAAAACTG	TGAAGGGGAC	GGGGAATCAA	GCATTTGACC
-3705	TCATCGACAA	ATCGACATAA	GGATTTGAGT		ΨĠͲͲĠͲͲĊĊĂ
-3651			TCCAAAACGG		
-3605					
2551	GAIAAAAAAA CTACAAACTC	AIGGIGIIAI mamaaammaa		ATIGIGGAAG	ACIAGCIACA
-300I	GIAGAAACIC		ACTOGATAA	ATTAATAAAC	ACGAIAAAII
-3505	AATAAATTTT	ACCGGTCCCA	AGTCGGGCCA	ATGTAAAAAG	TAACCAAAAT
-3451	CGATAAGATA	ATAAGATAAT	ATTTTTTTG	AAATCCCTAT	ATAAAATTAT
-3405	AGTCCCAATA	ATATTATAA	TTAATAATCA	TAGATCTTAA	GTATATATT
-3351	TAAGACTAAT	TAATTTTTAT	ATGAAATTTT	TGTTCAAAGT	ACAATTACAA
-3305	CTCTTTTTAA	AATATAACTG	GTATGATCTC	TGTTGTACTC	ACATAACTAT
-3251	TTGCGTATTT	GATCTGTCAT	AGTTGATTTT	GTAAAATCTT	TTATTTGAAA
-3205	AAGCATTGCT	AAGATTTGTG	ТАААТАААА	TTGGATTAAA	CTTCATGTTT
-3151	ACGTTTACGT	TCACGTTAAT	GTCGTGGATA	TACAAACACA	ATATATTTG
-3105	AAAAATAAAT	TTAAAAAGTC	AAAGAAAAAT	ААААААСТАА	CATAATTATA
-3051	TATACAAACA	ACAAAGCATA	TAGAAAATTA	ATTAAAAACA	TTTTAAAAAG
-3005	AATATAGTAT	TGTATTTTAC	ATAAATATTT	TTATAAATTA	ATATTTATTA
-2951	ACTTATACGA	TAAATTAATA	AATATTAATT	TATAGGATAA	ATTAATATCA
-2905	СТАТАААТТА	ATAAAATTTC	ATGGTCCCAA	CATTATTAAT	TTATAGAGTT
-2851	TCTACTGTAT	ATGGTTGAGT	GACTTATATG	ATAATCTTGC	ΑΑΤΤΤΤΤΤΑ
-2805	ATGTGGAGAG	TAGATTTACA	AAAATATTAG	ΑΤΤΤΤΑΑΑΑΤ	ТТСТТТССА
-2751			AGGTCCAACC	AAACCATTTC	AAGTCATTT
-2705					
-2651					
-2605			CTCCCC NTT	CCATA ATCALL	
200J	GAAAIAAIGA	ALLLALL	GIGGUUAAII	GUAIAAIGGA	TINDNDIDI

-2551	ТАТАСАСАТА	тттаасттст	СААСТСТАСА	ТСССТТСТСС	AAACAAGTCA
-2505	AATCGAATAA	AGTAAACTGA	GAGACAATTC	ATGGAATTGA	TCTAAACACA
-2451		CCCATTACCA			
-2405					
2905					
-2301	CAMAMMCMAC		GAIGGIACAI	AGAACIAIAA	ATIGIAAAI mmccccmcma
-2305		ATACITACIT	IGACGAIAAA		
-2251	ATGTTACACG	TAGGGAACTA	CCTAAGAAAA	TGTGGTTCGC	GIGICIAAIG
-2205	CAAACTGATT	TCCATTCGAA	CCTATAATGG	CTGAAGAAAT	AGCTATCCAC
-2151	ATATGATATG	TTGATAATGA		AGATATTCTT	GTGTTTAGCT
-2105	AAGTAATATA	ТАААААТТТА	CTCCACTTTT	TTCTCAATTG	GTATGTGACA
-2051	TGCTCTTATT	GGGTGGATAA	TGTACTAGAC	AAAACTTGTA	ATTTTTTTT
-2005	TCTTTATCTA	ТААТААТАТА	AAAACATTTT	GTGTGTTATA	TTTTCATACA
-1951	TCTATTTTCC	TTTCTTCATA	ATTCGTTTGG	CCTATTTTTC	AAATGTAGTC
-1905	TATTCAATTT	TATTAGGTTG	CATGTGAGTT	TTGGACTCAC	TTATGCATGG
-1851	TACAAAATCC	AAGTTCTTAA	AAGACTTTGA	GGTAGAATAA	AAATCTGTAG
-1805	TTTGGGAGAA	GGAAACAAAA	ATAAAAAGGT	AAATTTCTTT	TGGGGGAGAG
-1751	TACTGTTGTT	TGCCCTACAG	ACCAAGGCAC	TGAAATCGAG	TTGGTATTAT
-1705	TAGGATACTT	AACGTTTGGC	ACCCATGGCC	TTGGCCTTGG	CCATGTGCAT
-1651	TGTTCGTCCT	CTTCTTAAAG	GGTACTATTG	TCATTCTTAA	TTTTTATAGC
-1605	ACTAAGTCAA	CACACCATAT	TGGGAAATAC	TTAAAGACCC	ATAATGTACT
-1551	TGTTCTAGCT	CGATTAAAAG	AGAAAAAACA	AAGTAAATGA	AAAGTTGAAG
-1505	TAAAAGACAT	GAAAACCCTT	TTTGGATTGG	AGAAAACTAA	TTCTCTAAAG
-1451	ATAGAAAAGA	AAAAGAGGAA	GAAGCAAGAG	AGGCTTGGTC	TTCTTTTCTG
-1405	ATCCTGAAAC	TGTCTTAATA	AGAGTGAGAA	GTACTGTTCA	TGGAAGACGT
-1351	GTCCCCACCA	AACAAAACTG	TCTTCACTGC	ССТСТТСААТ	ΑΑΤΑСΤΤΤΤΑ
-1305	CGGGACCCCT	CCTAGTCCCA	ACGCACAATC	TCATTGTGTC	TATACAGAGT
-1251					
-1205					
-1151			CCAATCAACC		
_1105					
1051	GAAGAIIIII	GGAIGAIGAI TCTTTTA ACTA		AIAIAIGIIA MAMACAMAAA	CUNTURE
-10JI 1005		TGITTAAGIA	GAAIIAIIII		GIAIIIIAIA
-IUU5			IAICGAAIIC		GICIAICGAA
-951		TTACCAAAGT	AAAATTCGTT	AAGAACAAAA	ATCAAAGAGT
-905	ATTGTCCCGA	AAGAAAATTA	TTTTGAAGGC	CCAAAGAGGA	CAAGGTCATA
-851	AATATTTGAT	CTGGAGGACA	GGACACCCAC	GTATATTTT	GTCCAAAATT
-805	TAGGTTAAAA	AAAGAAGAAG	AAAGGTTATC	TGTTTCACGG	ATTAAATATT
-751	ТААТТААТАА	ТАСАТАСАТА	TATTACTGTA	TGTGTGCGTG	ТААААТАСТА
-705	AATATCGACG	ACTATATATA	TAACTAGATA	ATTTAGCTAT	AGTATAGTAT
-651	TTTTATTTT	CACCCTTGGT	TTTTTTATAC	ATATATGCAC	CGAACCTCTT
-605	CTTCTTCTCT	TCCTCGTCTT	CTCTCCTTTT	ATATATGTGG	AAAACTGCAT
-551	TTATTAAGAA	CAGTTTAGAA	AGTGTCAACC	CCTAAAGGAA	TGTTTTTAGT
-505	TTAGAGGAAA	GAGAGAGAAG	AAGAAGCAGC	AGCAGAAGTT	GTTAATTTGA
-451	AGACTATTTG	AGGAAAGACA	CCTATATCTA	AATACTCAAA	GTTACAAAAA
-405	TATTACTTCA	GAAAACAGTT	CCATTAGAGA	GACTCATAAA	GCTTCTCATG
-351	TAAGCCTCTC	TTGTAATTTA	TTCTCATATA	CAGAATACTG	TTTTGTGCAT
-305	TTACTCTTCT	TCTTCCTCCT	CCTTTCATAT	GATTAACATT	CAATGCAAAA
-251	TTCTTGTAAA	TTCATTTTAC	AATAGCTTAT	CCAAATTCTG	CTACTTTTAT
-205	TATTGTTTCC	TCTCGCTGCG	ACATTCTTTA	TTTCTCATCA	TTTAATGTTC
-151	TCTCCTCGTA	CATCCTCTTT	GTTCTGTCTT	AAGAATTCAC	CTACCAAACC
-105	ATTTATTTCT	CATACCCACT	TTAAGATTTA	GTAGATTTTT	GTTTTCTTGT
-55	CAAAATGGTA	ТССТААААСТ	AATCTCTCTT	GTTTTTTTCT	TTGTTGAAGC
-5	ТААТТ				
-					

>UCR8	(in	pBIMCS3)							
		Numerierung	relativ	zum	ATG	des	Gens	At4g014	455
-1		TTACCTTCTG	TTTTGTCAI	G T	TTTT	FTTTI	TTTT	IGACTAA	AATGATGTCA

-51	AGATAACTAA	TGGCTACTGA	GATATTATTG	TAAAACTACT	AGTCTAATAA
-101	CACCCACAAC	GACACTTTGG	AATGTGTAAT	CATGACGAGC	TTCTTTTCCA
-151	CGTCATTCTT	ATTGAATGAA	TTCACAAATC	ATGGATATTT	TATTTTGCTT
-201	TAGAATATTT	TTTTTATTTAA	CTTTAAGTTT	TGTACCTGAT	CTATTTGAC
-251		ATGCATAAAT TTCTTCCCTC	ATTITAAATC	CTACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
-351	TATICIACAI		AAAICCGIGA		ACAIGIIAIA
401		ACATACIACC		CTCC A DTTTA	
461	A MAAMMAACCC	ACAIGCIIGA		GIGGAAIIIA AAACCCEEAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
-431 501	AIAAIIACGG	AATICGIGIG		AAACGGIIAA	
-501	AAACIAAIGA	AAAAGACGAI	AATTAIGGIG		IIIGAAAIIG
-551	TCTCGTGGTT	ATTACTICG	TTGGCTGCGT		ATATTTAATG
-601	GCTTCGCATT	TTTGCATGGC	GAACCCCACG	ACAGITITCIT	ATCTTTTAGC
-651	AAGAAAGCAT	GAACACATGT	CAGAATCACC	TAGAATACGA	TTTCGACCGC
-701	TTAATTCATG	CATAACATAT	ΑΤΑΤΤΤΑΑΑΑ	AGTAATTAAA	GTCGAAAATC
-751	CATTATATGT	AGTCATTTTA	ATATATAAAG	TAACAACACG	TAAAAAGTGG
-801	TGATGGTTAT	TGAAACTCTT	TATTGACCAA	ACGACTCCGT	TACTGATCAC
-851	TGATCAATGA	САТСААААТА	ATTGAGCTTT	TCCTCAGCCA	CATCAATATT
-901	ATTGAATTTA	CGACATAAAA	TATCATGCAT	GTTTTGTTTA	TATATATTGT
-951	CTTTCTATAA	AGTTCTCCCT	AGTTCAATTC	CTGGTGGAGC	GGATGTTTTA
-1001	CGTCTTTATA	AGATTTTAGC	AAAGACTGAT	CCTGGGCCAT	GGAGAAGATT
-1051	AACGCTTAAA	CCCAAACTCC	TTCTAGTTAT	ААААААСААА	ТАААТСТААА
-1101	ATGTATATAC	TTTTAGTTAT	CTTTTGAGAT	ACTAATCGTA	ATTCAATTTC
-1151	ACTGACTGCT	TACGGTTAAG	CACTACAAAT	ATATTAATCG	TAATTCATTT
-1201	TTACTGAATG	CTTACGCTTA	AGCACTACAA	ATTTCATTGG	TCCCTAAAGT
-1251	CCGGTTTACC	AACTATATAT	GTAGTTATAT	ATTGCTCACT	TTGTTTTTTT
-1301	GTAAATTTTC	TTTTGCTCAC	CTTTTGATAA	TACTATTGTA	AAATAGTTAT
-1351	GAGATCTTTT	TAAAAATGGA	AAGAACAAGC	AAGTTGATTT	ATTAATACAA
-1401	TTCCAACTCA	AGTTAGTGGA	TTAGAAAGTA	TTTGCAAATG	GACAAGATCG
-1451	ААААСАТАТА	TTTCACGAAA	AGAGAAATGG	ATCAGTATTC	TATAAACGAA
-1501	ATGCGTCAAA	AAGCTTGGTC	ATATTGAAGT	TTTGGTCGTT	TATCTTGAAA
-1551	GAGACAATCA	AAGAAAGCAA	AACCGATTTG	TTACAGGAAA	CAAAAAAACG
-1601	TATGACGTAA	CTATGAATCA	ATTATTTTTA	ААААСААТАТ	AAAGAAATGG
-1651	ATTTAAATTT	AATTAACTAT	AAAGCTATAG	ATAAGGTAGA	TTTTGCATGA
-1701	TTGAACCAAT	GCTTTGTCTC	GACATAAGAT	AATCAATCGT	TGGATTAATG
-1751	GACGAGGCAC	CAAGTGTTAC	TTGTATAAAA	ATGATAAAAT	CAGGGGCATT
-1801	GCCATTCCGA	САТАТАТАТА	CAATGTCATA	AGTATTTTCT	GCATTCAATT
-1851	TTTTTTAAGA	AACTAGCTAA	AACGGTGGCT	AATATTTGGT	AAAGTTCCAA
-1901	TGCAAAAGGA	TTCTAAAACA	TTATAAAATT	GAACAGACGA	AATTTTTTTT
-1951	TTATTAATAC	TGAATCAAAT	ATTAGAAAAA	AATTTATATA	ATCACATCAT
-2001	TTTGTGATTA	AGAATTTTTT	ΑΤΑGΤΤΑΑΑΑ	ATCAATGGTA	ТТААТАТАТТ
-2051	TTTATTAACT	TTTACAATTT	ΑΤΑΤCΑΤΤΑΑ	СТААТААААА	ATGCATAGAC
-2101	ΑΑΤΤΤΤΤΑΤΑ	AATCTATTGT	ТТТАТТТСАА	ААААААТАТС	TAAAACTTTG
-2151	ΑͲͲͲΑͲͲΑGG	GCTAGAGGAA	ΑΤΑΤΑΑΩΤΑG	TATACGAATC	AATATTCCGA
-2201		Стттстасс	ͲͲͲͲϪͲϹϹͲϪ	ССТАСТАСТА	
-2251	тттасатаат	TTGCTGGAGA	ATATGGATTA	CCTTTTCTGG	AGGATTCCAA
-2301				тстсттттт т	
-2351			CACACCACCA	CGTATCATT	
-2401					
-2451		CACCCCTTAG			
-2501					
-ZJUI	TIGATGATT	TGAAAGTTTT	LICCITCACT	IGIAICIACA	AATTAAATGA

-2551	ATAAAAATTG	ATCAAGTCTT	TCAAGTCTTT	TTTTTTTTTA	ATTGGCGACC
-2601	TCTAAAGACT	TCTAAGGCCT	AAGCTTTGCC	TAGAGCATTT	TCCTCTGTTC
-2651	CATTTTATAA	TGTTTTAGAA	TCCTTTTGCA	TTGGAATTTT	ACCAAATATC
-2701	TTGTAAAAAA	GAACTTTATA	ATGTTTTAGA	ATCCCTTTTT	CACCTTCAAG
-2751	TCCTCCATAT	TTTACTATAA	ATATGGCTTG	AAAATGAAAT	GAAAAAAAA
-2801	GGCCACAAAA	AAAGCTTTTA	CAAGATATCC	TTTTGTTTTT	ATTTTTTTAT
-2851	CTTTAATCAA	AGATGGTATG	CTTCTTCTCT	TCCTCGTCA <u>T</u>	TATCCACCAA
-2901	TCCTCTGAGA				

>Sultr2;2 Numerierung relativ zum ATG des Gens At1g77990 Unterstrichen und fett: Primerbindestellen, fett und kursiv: von Mustroph et al.(2009), verwendeter Primer

-3418	GCTAATTCTT	AGTCATCTTC	GTTTGAC ATT	ATAAACCATT	ATTTTATAGC
-3368	AATTTTACAT	AAATATATTT	AGATATTGTA	CGCTATTTTA	GATCATATTA
-3318	AAAAAATGCA	TTCTATTTAA	AAATAACCAT	ACTTAAGATT	ATTTATATAT
-3268	ACCGGTATTA	ATAATGTTCT	ATAACATCCT	ACGAAGCATT	CAACGAAGAT
-3218	GATTAAGAAT	TGTGATAACC	ATGTTAGAAA	TTGCGAAAAG	AACAAATCCG
-3168	TACCAACCAG	АААААТАААА	TAATCGATCG	GTTTCTTATA	TTATGAGAGA
-3118	CCAAACGTTT	CAAATTTGTC	GGGGGCATAT	AATCGACTAA	AAATTTTCAG
-3068	GTGCCGCCTA	AAAATGGGTA	ATATATTTAT	CTAGTCAACC	GTTCAGTTTC
-3018	TATACATGAA	TTTTAATCAT	AGTATATGCA	TTTCAATCTG	TAAATTAGTC
-2968	ACGATTATGT	TTGACAAAAA	CAATATTATG	TACGTATGAG	TATGTTAGCT
-2918	TGGTTGGTTA	GAACTCTCGT	CTATAAAGAT	TTTTTTTATTT	ATTAAATAGT
-2868	TTATCGTTTT	GTACCGATGA	ATAAAGTTTA	TAAAAATTAT	TTTGATTGGT
-2818	TGTTCGACAT	CAAGTACCAA	GTAATGTAAC	ATTTGCATGT	AAAATATCAA
-2768	AACATATACT	ACATCATAAG	TTTGCCATCG	CAAACGCTGA	CAAAAAGTAG
-2718	TTTCTTATTT	TATTTTTAAA	TTTTTGTTAA	GGGACAAAAA	GAAGTTTTAA
-2668	TTTAAAGTAT	TTTATAGAGG	TAAAATAATG	TGAAGTGGTC	TTTATGACTA
-2618	AATTTAAACG	CAGCAACCAA	AATTCTTAGA	AATGTTATGT	TTTGTTCGGA
-2568	TCTAAACCAA	CTTTATTCAC	ATGTTTTTAG	TATTTGTTAA	CTCATGATTC
-2518	TATAGAATAA	ТСТАТААСТА	TATTTTATAA	ATAAAGTTCT	GAAGGCACAG
-2468	TTGATGGACG	CGGCCACACG	TAGAATTTGC	CTTTTAGATA	AAGGTCATCA
-2418	TGCATAATGC	GTTATCTCAG	TGAATAGATT	CGTTCGGTGC	ACTGAACAAT
-2368	TGGTTTGGTA	CAGATTAATT	CTTCAGATAT	CGTGAACTAC	AGGAACACCA
-2318	GTGTGGCCAA	AAGCACTATA	TAACGTTCAC	GTACGTCAAA	ATAATTAACC
-2268	GATGAAGTTT	GGTATGTTAA	TAACTTAATA	TAATGAGATA	TATTATAGTC
-2218	TATTTTCCGG	GTGCTTTCCC	CTTTATAATC	TGAAAACAGA	AAAAATATTA
-2168	CACATATATT	TTAGAGTTTA	AGCAAATTTT	CTCACTTTGG	CTGACTTCAT
-2118	TCACACAAAT	TGGTCTTTTT	TTTTTTACTA	ACACTAATGG	TTCTAATTTT
-2068	TTTCGTGAAC	ACACA	TCCAAAACAT	GGCGCCTTCC	ATTATTTTCA
-2018	AAATTTTAAC	CATTATTATT	GACGGGCACA	TAACACGAAT	TTGTTGAGTT
-1968	GCGTTA GACC	AAAGAATCCT	ACGTACC ATA	GGACTATGGC	ATTAAAGTAG
-1918	CTAGTTTGGA	GGATTCTGGT	GGGTGAAAAA	AAGTAAATAA	GTGAATAAGA
-1868	ATTGGTTCAT	AGTGGAAAGA	ACAACCTATA	TGACTCATGC	GTAGTGGAAA
-1818	GATAGAGAAC	AACTTATATG	ACTCATGCGT	AGACCATGAT	CGTACGATGA
-1768	ATAGATTCCA	TTGGTTATGA	TTATAAGTAA	GCAAAATTCC	AAAACGGAAA
-1718	AAGAAAATGT	GGACCGAACA	TGCCCAGTGA	CCACATCACA	TCCGTTCAAT
-1668	TCCATATTCT	TCCATATAAA	AAGATAAGGA	AAAAGAGACC	CAAAAAGAAA
-1618	AGAACAACCT	TATATGCATA	ATCAAACTTT	CATTTGCATT	TCTTTTTCAT

-18	ATCTAGAGAG	AGAGCTGAAT	G		
-68	TAATTTTAAG	TATAAGTTAT	GGATATATAT	GACCAAAAAA	GTTAATATAT
-118	TTATATTCAA	AATTTAGGGC	CAAAGTTTGG	AATTATACTT	ACTTTCTTTC
-168	TATTTTTTCT	ACATACAGTA	AAGTAACAGC	TTTCAATTAT	TGCATATAAA
-218	TCTAATGGTA	ATTTCTAAAG	TCAATATAAA	AAAAAATAG	AGTAATATTT
-268	TCTAAAATAT	CTAATATAAT	GGGACATAAT	TAGGAGTATC	ATTTTTGAAA
-318	ACATAAATTA	TGTATGTATA	TTTGCGAAAA	TCTGACTAAA	TAAGAAAAAG
-368	ATTTTTATAA	TAGAAAAAAG	ATTGTAGAAA	TGATTATAAC	ATTCTAATAA
-418	ATTTTCTAGA	TAAAAGCACA	CAGTTTAAGA	AACCATAAAT	GTTTTATGTT
-468	CATAATTACA	AATTCAGTAT	CCTATAATTC	CCTATGTCTC	GGATTATAAA
-518	AACAAA ATCT	CAAGCATGAG	TGATAATTTC	AAC TATAGTT	TGGCTAAAAA
-568	TTATATCATA	AATCATAATA	ATTAAATTAT	ATAGTCAAAT	TACATGCAGT
-618	CACTTGGAAA	CTTGTTATTT	ATATCGTAGT	CTAATGAGGA	AATAAGAAGG
-668	AGAAACCAGA	ATTTTATTAA	TAATTATTTA	TGTTTTTTCA	CATAAGCATT
-718	GGAAGAAAAA	AAAGATATAC	AACAATTTAT	TGGCTTTACA	AAAAGAAAAA
-768	TAGACCATGA	TTATGCACCA	ACAAATAATT	АСАААСАААА	CAACACATAG
-818	AACTAAAACC	AAATCGAAAA	AAACTATGCA	CTTTTTATAG	AATTCTGAAC
-868	TACG CTAAAA	AAAAAGAAAA	AGAACAAAAA	AAAACTATTT	TCAGTATATT
-918	CGGATAAAAA	CAATTGATTT	ACTGGCATGT	TCTACTATAC	CAGGTAAGTA
-968	CCTCTTGTTG	TATTCATTTT	TTTCTAAGTT	AAACAAAGAA	TATGTACAAT
-1018	TAATATTCTT	CATATTATGA	CCGTGACATA	TTACGACAAA	GCTATCATTC
-1068	CGAGATCACC	АААСААААТА	GTCACAAGAT	AGTACTTATC	TTCACCTGCC
-1118	ATCCATATAA	AATCTCTAAA	AGTATTTCTT	GATTCAGTCA	GCAATGTGTC
-1168	ATAAAATCTC	AAAGACAAAT	GCAGTTTTTC	CCCTTGATCT	TATACGAATG
-1218	CACTCACTTT	TTTACCTCCA	GAGGTTAAGA	TGATTTTATG	AAGGATTAAA
-1268	GTTGAATAGA	AATTTCTTAA	AGAAACGATG	TGATAATTCT	TGTGGTCAGG
-1318	GTATGC TACA	ATCGCACATT	TTAATATATG	TTGCGATCAA	AGTTTGAAAA
-1368	TATTAAATAT	TAAAAAGTAC	ACGAAATTTT	CTGATCATCT	AACATTGTTG
-1418	ATATCGATTT	GTTTGTTAAT	TTTTGAGCAT	TTTATTAAGT	ATATACTAGT
-1468	TTCGTTTTGG	ATCAAAGCTC	ATATATGTTC	TTGTGTTGAT	GATATTTTGG
-1518	TCAAACCATT	CTTGTTTTGT	TTGGCAACGC	TGACATCTCC	ACTTAAAATA
-1568	CTTCGTTTTC	CTTCGAAATC	AATTATATAG	TATAGTGCCT	TCTTTCTCCA

>Sultr3;3 Nummerierung relativ zum ATG des Gens At1g23090

/ DULCLO/ J	Nummerrerui	ig reruct v z		ocno nergat	0000
-3356	A				
-3306	GAGCCACGCG	AATACATTAA	CAAGTGCGCA	ATGTGCATAC	ATTCCAAAAG
-3256	AGTTGGGTAT	CAGATCCTTT	TTCTATGAAT	AACTCCATTC	ATGTCCCGTT
-3206	ACTTTTCCCT	TTTGTTTCTT	TCTTATGATA	TTCTTTTTCA	ATATTTTAAT
-3156	TCGATTTGGC	CTACCAGTAT	CCATACCATT	TATAATATTC	ATTTACTTGT
-3106	ATTATTTGAC	TTCGTGTTCA	CTGCCCTCCC	ATGTGACGTG	GTTCACGTTT
-3056	TCATAGATCA	TTCTCATTTT	TCAGTTATTC	TCTCTTTCAC	ACAATGATTT
-3006	GTTTCGCACC	CAACCAAGAC	AACGTTATAA	GAACTTAAGA	AGAGCAAACC
-2956	ATAAGCATAC	TTAGTTAAGG	TTTTTAACGA	GGACAAGGAA	ACGAGGAAAT
-2906	TAACAGTGCA	TAAAGAATAT	ATAGATACCA	AATGGAATGA	ATGTTTTTTT
-2856	TATATATAAT	TAAATCGAAT	AAATGTTATT	AGTAATAGTA	TTACTAAAAC
-2806	AAAACTGGTG	AAACGAAACA	GAAATGTGAT	TTAAATGGAT	АТААТААСТА
-2756	GAAAATTTGA	TCAAATGCTT	CGTATGATTT	ACCTATAGGC	AAAACGTTCG
-2706	TGTTCGATAC	ААААСТАААА	ACAAAAATCT	TTGAAAAATA	CATTGTTATA
-2656	TCAAGCTAAT	TTTCTAAAGA	TGCGGGAGCT	AGTGGAAATT	GTGATTTCAA
-2606	ACTCCTTGGT	TGATCATTGT	AAAGAATAAG	ААААААААА	CACGATCAGA
-2556	AATCATAATG	AAACCAATGC	TCACTTTTTG	TTCCACCATT	TTTTAGATGG
-2506	ACCCGGTAAC	AATTAGTGGA	TCTAGAATCT	TCAGTTTGGA	TTATAACTTA

-2456	TCGAAAACAG	ͲͲͲϪႺͲϪͲͲͲ	ТСАСТСААТТ	CTGTACATTG	GAATCAATTA
-2406	ТСААСАААТТ	ТСАТТАТАТА	ТАСТТАССТС	ΑΤCΤΤΑΤΤCΤ	тсттаатттс
-2356	TGTTCCGACA	ТАААААААСА	TAGAAACCGA	AATAGATTCA	GTTAGCATTC
-2306	ACTTCTTATT	GAGAAAATAT	GTAGGTTAAA	ATTGTAGGTT	TTTGCCATGC
-2256	ATATTACCGA	CGTAGATAGG	TTTGGTCGGA	ΑͲͲͲͲͲͲϹͲΑ	СТТСТТТААТ
-2206	AAGTTTGGTT	AGATCATTCA	тсттататса	ATATGTAAAG	AATGCTTTTA
-2156	ATTATGGTCG	TTTCGTTTCT	TTCACCAGAA	ACAAGGAATG	TCCGAGATTC
-2106	ΑСТТАТТААА	ΤΤΑΑΤΑΤΑΤΑ	CTTGATCTGA	TTCACACGAA	AAGACAATCT
-2056	TGGAGTATCA	ААСТАТААТА	ТСАСТТАТТА	TACTTTGAAT	TACTAGGAAT
-2006	TTTTATCCTC	CGATTTCATA	ATGATCCTAC	TAACATTGGA	TCACAACAAG
-1956	TTGGCTCGGT	TATGAATTTG	GTTTGCAACA	TATACAGTTT	TTCAACCGCT
-1906	GTTAATTTTA	GTGTTAATCA	ATTATCTTGG	ATAATTGTTG	ATGCAAGATC
-1856	AGACATTATA	TCCATATATA	TAAATATGTT	ATATAGATAT	GTATTAATAT
-1806	CTTTAGCCAA	AGACGATAAG	ТСТААААТСА	TCAACATTTT	TTGTCCGGGT
-1756	CAATGTAACA	АСТААСААСТ	CCTACTGTAG	ACTAGCTAGT	TGGTCGTCTG
-1706	ATCGTCTCTC	TGTTTGTTAG	CGATCTCAAC	GGGTACATGA	ACAGATAGTT
-1656	ATGCATTATT	GATACTCAAA	TTTTCTTAGT	TGTTATGTTT	TTAATATGTA
-1606	ACTAGATTTT	AATCCGCGGT	ACACCGCGGA	GATAATTTAT	TTTTTTAAGT
-1556	ТААТАТАТАТ	AAAAATTTTG	CAAATTATAT	СТАТТТАТАА	ΑΤΤΑΤΤΤΤΤΑ
-1506	TTTTATAGTT	TACAATTGTT	ATTAAGTAAC	GTCCTTCCAA	ACCCGTTCCG
-1456	CCAAACCCGT	CCTGTAAAAA	AAGCTCGCGG	TACCCCGCTA	ATTTAAATTT
-1406	ΑΤΑΑΤΤΑΑΑΑ	TAAATATTTT	ACGGGATTGC	AATTGTGTTT	TAGTTTGTCA
-1356	AACAAAATTT	TGTTTTAAAT	AGTTGTCGAA	ATCTAGTTCA	AATTTTGAAG
-1306	AAATAAGATT	TAGTGAATTG	ATAAAAATG	TATTTAGTTG	CGTTTTGCTC
-1256	ATTTTAAGGG	ATTGCAATTG	TCTTTTGGGT	TGTCAAACAT	TTTTTGTTTT
-1206	AATTAGTTGC	CGAAATTTAG	TTTAAATTTT	GGAAAAATCT	GCGTGATATA
-1156	TGGGATTGGA	ATATATTTAG	AATGTTTTTC	GTTTGTTAAT	CAATTTATTG
-1106	СТААААААСТ	ΑΑΤΑΑΤΤΑΑΑ	AGTCAGTGGC	AGCCTTTGTA	AATAAGTTCC
-1056	AACTCCAGGA	TTTATTTCAC	AAAATGGCTG	CAAAAATGTA	TATATAGATT
-1006	CACCCATTTA	TTTATTATTC	ATAGTATTAT	AGTACTATCT	TCGTGTCTTT
-956	TTACTTGGTG	TTTAAAGTTT	TTGTACACCG	ATTGAATCAT	TTTTAATTTT
-906	ATTTTTTTAA	ACATCAATTT	ΑΤСΤΑΑΤΤΑΑ	CCAATAGAAA	AAATTATCTG
-856	TATATTATAA	ATCATCAAAA	ССААТААААА	AAAACTAATT	AATATTGCAT
-806	ТАААААТТАА	AAACATCATC	TAATTTAGAA	CATTTTTTCC	TACTATAACA
-756	TTAACATCAA	CTAAATACGG	AGAAAACGTT	GTACTGAGGT	TCTTGCATTT
-706	TAAAATTTTG	GAAACTAAGA	ATGTTAAAAA	AATTATGGTT	ACAAATATAT
-656	ATATAGTGTT	ATAATTAGTA	CTTATCGTAC	ТТААТАААА	AGATACTAAT
-606	TAGTTGTTGT	TATATTATTT	ТСТАСААААА	TAAAATCATT	CAACTAAAAT
-556	GTTCTATTTG	TCAGTCGCTT	САСААААСТА	TGCATCTACC	ATACCAGTGA
-506	TCATAATTAT	AAAACTCTGT	TTTTGTTTTT	TGTCTTTACA	ACCACTTAAA
-456	TACGTCATAG	CTATATATGC	ATTATTACAA	GTTCTCAAGG	TGGCGCGCGA
-406	ATGTTTTAAT	ΤΑΑΑΑΤΑΤΤΑ	TGTTTTTCTT	ATGTATTTCA	TCTTTAATCG
-356	AACATAGAAA	ATGTGAAAGA	TTTGGAGCAT	AGACACGAAT	CAGTTTTTTT
-306	TTTTTACACG	AATCAATATT	CATAGGGTAA	ATAATAGACA	AACGCCAACA
-256	ААААААААА	AGAGAAATTC	ACAACGGATT	ATCGGCTCAA	ATTACAAAAC
-206	ААААААААА	TACAGAGACA	ACAGTATACG	TGTAACTTTC	CGAATTTTTT
-156	TTTTTTTCAT	АТСАААААТА	AAAGATAGGC	CAAGATAAGA	CCATTATAAA
-106	ATGTAAAGAC	CGACCCGAAA	TAATACTCAT	GTTTAAATTA	TCAGCAAAGA
-56	GCCAAGAGAG	GAAACATCAC	ACATTGGTGA	CAAAAATTCT	TAGGAAAACC
-6	<u>AATTAA</u> ATG				

<u>Danksagung</u>

Ich danke Herrn Prof. Dr. Peter Westhoff für Betreuung dieser Arbeit, sowie für die Ermöglichung diese Arbeit in seinem Institut anzufertigen.

Die vorliegende Arbeit wurde gefördert durch die Deutsche Forschungsgemeinschaf im Rahmen des Sonderforschungsbereichs 590 der Universität zu Düsseldorf.

Hiermit versichere ich, die vorliegende Arbeit selbstständig und ausschließlich unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

Düsseldorf, den