Evaluation von potentiellen genetischen Prognoseparametern in Keimzelltumoren bei Kindern und Jugendlichen

Dissertation

zur Erlangung des Grades eines Doktors der Medizin
Der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Klaus Pierstorff

2010
Als Inauguraldissertation gedruckt mit Genehmigung der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf
gez.: Univ.-Prof. Dr. med. Joachim Windolf
Dekan
Referent: apl. Prof. Dr. med. Dominik T. Schneider
Korreferent: Prof. Dr. med. Peter Albers
Für meine Eltern
Inhaltsverzeichnis

INHALTSVERZEICHNIS... I
ABBILDUNGSVERZEICHNIS ... II
TABELLENVERZEICHNIS ... III

1 EINLEITUNG .. 1

2 MATERIAL UND METHODEN .. 4

2.1 MATERIAL, GERÄTE UND ZUBEHÖR .. 4
2.2 METHODEN ... 4
 2.2.1 DNA-Gewinnung ... 4
 2.2.2 Comparative Genomische Hybridisierung (CGH) .. 5
2.3 STATISTIK: FALL-KONTROLL-STUDIE (MATCHED-PAIR-ANALYSE): AUSWAHLKRITERIEN......... 12

3 ERGEBNISSE .. 14

3.1 CHROMOSOMALE IMBALANZEN BEI VAGINALEN DOTTERSACKTUMOREN 14
3.2 CGH PROFILE IM RAHMEN DER MATCHED-PAIR PILOTSTUDIE ... 16

4 DISKUSSION ... 24

4.1 CGH-PROFILE VAGINALER DOTTERSACKTUMOREN ENTSPRECHEN DOTTERSACKTUMOREN
 ANDERER LOKALISATION ... 28
4.2 FÜR STATISTISCH RELEVANTE AUSSAGEN IN DER FALL-KONTROLL-STUDIE IST DIE PROBENANZAHL
 ZU GERING .. 31

5 LITERATUR ... 35

6 ANHANG .. 39
Abbildungsverzeichnis

ABBILDUNG 1.1: HISTOLOGISCHES KONZEPT DER KEIMZELLTUMOREN NACH TEILUM.........................3
ABBILDUNG 2.1: TYPISCHES BILD EINER DNA-QUALITÄTSKONTROLLE..4
ABBILDUNG 2.2: DEUTLICHER ZUGEWINN (AMPLIFIKATION) VON CHROMOSOM 12p12...............5
ABBILDUNG 2.3: GELBILD NACH NICK-TRANSLATION...6
ABBILDUNG 2.4: SCHEMatische DARSTELLUNG DER NICK-TRANSLATION.................................6
ABBILDUNG 2.5: KONTROLLE NACH ERSTER AMPLIFIKATION..8
ABBILDUNG 2.6: KONTROLLE NACH THERMO SEQUENASE MARKIERUNG....................................9
ABBILDUNG 3.1: IDEOGRAMM DER VAGINALEN DOTTERSACKTUMOREN15
ABBILDUNG 3.2: PROFI der PATIENTIN V3...15
ABBILDUNG 3.3: SAMMELIDEOGRAMM ALLER 17 AUSGEWERTETEN TUMORPROBEN..............16
ABBILDUNG 3.4: IDEOGRAMM DER 8 TUMOREN VON PATIENTEN 5 JAHRE UND JÜNGER........19
ABBILDUNG 3.5: IDEOGRAMM der 9 TUMOREN VON PATIENTEN 6 JAHRE UND ÄLTER.............19
ABBILDUNG 3.6: IDEOGRAMM der 8 TUMOREN VON PATIENTEN IN ANHALTENDER ERSTREMISSION.20
ABBILDUNG 3.7: IDEOGRAMM der 9 TUMOREN VON PATIENTEN, BEI denen EIN REZIDIV GEFUNDEN
wurde..20
ABBILDUNG 3.8: IDEOGRAMM der 8 TUMOREN, NACH CHEMOTHERAPIE IN ANHALTENDER
ERSTREMISSION..21
ABBILDUNG 3.9: IDEOGRAMM der 5 TUMOREN, die NACH CHEMOTHERAPIE REZIDIVIERT SIND........21
ABBILDUNG 3.10: IDEOGRAMM der 5 TUMOREN VON PATIENTEN ≤5 JAHRE IN ANHALTENDER
ERSTREMISSION..22
ABBILDUNG 3.11: IDEOGRAMM der 3 TUMOREN VON PATIENTEN ≤5 JAHRE MIT BEKANNTEM REZIDIV...22
ABBILDUNG 3.12: IDEOGRAMM der 3 TUMOREN VON PATIENTEN > 5 JAHRE IN ANHALTENDER
ERSTREMISSION..23
ABBILDUNG 3.13: IDEOGRAMM der 6 TUMOREN VON PATIENTEN > 5 JAHRE MIT BEKANNTEM REZIDIV...23
ABBILDUNG 4.1: HÄUFIGKEITSVERTEILUNG der KEIMZELLTUMOREN VERSCHIEDENER LOkalisationen
IN ABHÄNGIGKEIT VOM ALTER..25
ABBILDUNG 4.2: CHROMOSOMALE IMBALANZEN IN KEIMZELLTUMOREN VERSCHIEDENER LOkalisationen
IN ABHÄNGIGKEIT VOM ALTER..26
Tabellenverzeichnis

Tabelle 3.1: ZUGEWINNE UND VERLUSTE DER TUMORPROBEN V1 – V9 ... 14
Tabelle 3.2: DARSTELLUNG ALLER CGH-ERgebnisse sortiert nach Alter, Lokalisation und Outcome ... 18
Tabelle 4.1: REZIDIVE BEI 197 PATIENTEN MIT EXTRAGONADALEN UND EXTRAKRANIALEN KEIMZELLTUMOREN DER MAKEI THERAPIEOPTIMIERUNGSSSTUDIEN ... 25
Tabelle 7.1: DNA-ISOLATION ... 39
Tabelle 7.2: AGAROSE-GEL ... 39
Tabelle 7.3: CGH ... 39
Tabelle 7.4: PRIMER-LIGATION CGH ... 40
Tabelle 7.5: ULS-CGH .. 40
Tabelle 7.6: GERÄTE UND ZUBEHÖR ... 41
Einleitung

1 Einleitung

Im Kindesalter auftretende Tumoren imitieren häufig unreife histologische Strukturen der Embryonalentwicklung und weisen molekularbiologisch Genexpressionsmuster auf, die auch aus dieser frühen Phase der Organogenese stammen. Dieser Beobachtung wird Rechnung getragen, indem diese Tumoren häufig als Blastome bezeichnet und als embryonale Tumoren zusammengefasst werden.

Einleitung

In der Gruppe der embryonalen Tumoren stellen die Keimzelltumoren eine besondere, weil seltene, und sehr heterogene Gruppe dar. Die Inzidenz maligner Keimzelltumoren in Deutschland beträgt 0,6 von 100.000 Kindern (Göbel et al. 2000). Die häufigsten Lokalisationen von Keimzelltumoren bei unter 15-jährigen sind die Ovarien (26%), die Steißbeinregion (24%), die Hoden (18%) und das zentrale Nervensystem (18%). Seltener sind das Mediastinum, der Retroperitonealraum (jeweils 4%) und die Vagina (2%) betroffen (Göbel et al. 2000; Schneider et al. 2004b). Entsprechend des holistischen Konzepts der Histogenese der Keimzelltumoren wird angenommen, dass diese Tumoren ihren Ursprung von einer totipotenten primordialen Keimzelle nehmen. Diese kann entweder in den Gonaden oder nach fehlerhafter Migration an extragonadalen Lokalisationen maligne entarten.

alle oben dargestellten histologischen Differenzierungsformen enthalten können unterschieden. Die ungefähre Altersverteilung und histologische Differenzierung ist in Abbildung 1.1 dargestellt.

2 Material und Methoden

2.1 Material, Geräte und Zubehör

Siehe Tabellen 7.1 – 7.6 im Anhang

2.2 Methoden

2.2.1 DNA-Gewinnung

Für die Untersuchung wurden archivierte formalinfizierte und in Paraffin eingebettete Tumorproben eingesetzt. Das Tumorgewebe wurde in fünf 10 µm dicken Schnitten von formalinfizierten Paraffinblöcken in einem 1,5 µl Eppendorf-Cap gesammelt. Die Entparaffinisierung und Rehydrierung des Gewebes erfolgte mit Xylol, einer absteigenden Ethanolreihe und destilliertem H₂O. Darauf folgte eine dreitägige Proteinase K - Digestion, wobei das entparaffinierte Gewebepelett in 500 µl TE-9, 50 µl 20% SDS und 50 µl Proteinase K (20 mg/ml) gelöst wurde. Nach 24 h Reaktionszeit wurde das Material einmal bezüglich des Fortschrittes der enzymatischen Gewebeszersetzung begutachtet. Bei noch gut sichtbaren Flocken wurden der Suspension noch mal 5-20 µl Proteinase K hinzugefügt. Nach drei Tagen folgte die Phenol-Chloroform Extraktion. In drei Schritten wurden mit Phenol-Chloroform-Isoamylalkohol und reinem Chloroform Proteine durch Denaturierung und Einlagerung in die Inter- und die organische Phase von der DNA getrennt, die sich in der wässrigen Phase sammelte. Dem schloss sich die Alkohol-Präzipitation mit 3M NaAc pH 5,2 bei -80°C für 30 min und 20 min Zentrifugation bei 13.000 rpm an. Nach zweimaligem Waschen mit 70%igem EtOH wurde das entstandene Pelett in 20 µl Lo-TE aufgenommen und bei 37°C über Nacht gelöst. Die Qualitätskontrolle geschah mittels Agarose-Gelelektrophorese, die Konzentrationsmessung mittels UV-Spektroskopie. Im

Abbildung 2.1: typisches Bild einer DNA-Qualitätskontrolle, Referenz (mittig): 1 Kb Plus DNA Ladder
Anschluss wurden noch verunreinigte Proben nach dem Protokoll „Cleanup of Genomic DNA“ aus dem QIAGEN QIAmp DNA Micro Kit gereinigt.

2.2.2 Comparative Genomische Hybridisierung (CGH)

Um Zugewinne oder Verluste chromosomaler DNA im gesamten Tumorgenom sichtbar zu machen, hat sich die Comparative Genomische Hybridisierung (CGH) insbesondere bei in Paraffin archivierten Proben als Screening-Methode bewährt (Kallioniemi et al. 1992).

Weil für eine gute Hybridisierung die Länge der DNA-Fragmente zwischen 200 und 1000 bp liegen sollte, manche Proben aber schon nach der Isolation keine ausreichend hochmolekulare DNA mehr enthielten, wurden je nach Bedarf verschiedene Markierungstechniken eingesetzt. Die einzelnen experimentellen Teilschritte werden daher im Folgenden detailliert dargestellt.
2.2.2.1 Markierungsmethoden

2.2.2.1.1 Nick-Translation

In der Nick-Translation werden die DNA-Fragmente durch eine DNase an statistisch verteilten Stellen unterbrochen. An diesen Strangbrüchen, den „nicks“, werden dann durch eine Polymerase farblich fluoreszierende dUTP’s eingebaut. Bei der Proben-DNA war dieser Farbstoff FITC, bei der Referenz-DNA Texas-Red.

Die optimale Temperatur für diese Reaktion liegt bei 15°C, abgestoppt wird sie durch die Denaturierung der Enzyme bei 70°C für 10 min. Ausreichend hochmolekulare DNA wurde durch Nick-Translation nach dem Protokoll von (Riopel et al. 1998; Perlman et al. 2000; Schneider et al. 2002) markiert. 2000-3000 ng Proben-DNA wurden mit 5 µl A4-Mix, 1 µl „Spectrum Green“ und dH₂O ad 43 µl lichtgeschützt und auf Eis zusammenpipettiert. Als letztes wurden 6 µl DNase I/Polymerase I + 1µl Polymerase I, als Mastermix vorbereitet, zugefügt und sofort bei 15°C die Reaktion gestartet. Die Reaktionszeit wurde in Abhängigkeit

Abbildung 2.3: Bild einer Agarosegelelektrophorese nach Nick-Translation, bei den Proben 1 und 3 wurde die Reaktionszeit verlängert.

Abbildung 2.4: Schematische Darstellung der Nick-Translation
von der mittels Agarose-Gelelektrophorese abgeschätzten Menge und Länge der gewonnenen DNA gewählt, wobei das Minimum, um noch auswertbare Ergebnisse zu erzielen, 12 min war. Die Referenz-DNA, gewonnen aus einer Tonsille eines männlichen Patienten wurde entsprechend behandelt: Pro Ansatz waren es hier 3500 ng DNA, 2,5 µl A4-Mix, 0,5 µl „Spectrum Red“ und dH₂O ad 18 µl. Nach dem Zufügen von ebenfalls 6 µl DNase I/Polymerase I und 1 µl Polymerase I wurde die Referenz-DNA im ersten Durchgang eine Stunde lang „genickt“. Gestoppt wurde die Nick-Translation bei 70°C über 10 min. Anschließend wurden die Proben sofort auf Eis gelegt. Nach einem kurzen Abzentrifugieren wurden 5 µl Probe mit 3 µl Agarose-Laufpuffer (ALP) gemischt und mit der 1 Kb Plus DNA Ladder von Invitrogen auf ein 1,4% Agarose-Gel aufgetragen. Nach 25 min Elektrophorese bei 90 mV wurde die Fragmentlänge der DNA beurteilt. Angestrebt wurden 200-1000 bp. Bei Bedarf wurde die Nick-Translation mit neuem Enzymmix für eine kürzere Zeit neu gestartet. Die Reaktion wurde so lange wiederholt, bis die Fragmente die gewünschte Länge hatten, wobei das Ziel war, möglichst wenig neu zu inkubieren, da jedes Hinzufügen von Enzymen die DNA verdünnte.

2.2.2.1.2 ULS

Da die Markierungsreaktion die DNA in Bezug auf die Länge nicht beeinflusst, wurden Proben mit Fragmentlängen über 1000 bp und die Referenz-DNA zuerst mit einer 1:5000 verdünnten DNase verdaut. Dafür wurden 8000 ng DNA mit 2 µl NP DNase Puffer, 6 µl DNase 1:5000 und dH₂O ad 20 µl bei 37°C verdaut. Die Zeit wurde nach Fragmentlänge gewählt, jedoch nicht länger als 5 min. Kontrolliert wurde der Erfolg durch Gelelektrophorese auf einem 1,4%igem Agarose-Gel mit 2 µl DNA und 2 µl ALP. Bei Fragmentlängen von 200 - 1000 bp wurde die DNA mit dem Qiagen Dye Ex Spin Kit aufgereinigt, in 30 µl EB eluiert und durch UV-Spektrometrie die Konzentration gemessen. Für die Markierungsreaktion wurden 1000 ng DNA mit 2 µl grün, „PlatinumBright 495“ oder Cy3-ULS (Probe), oder rot, „Cy5-ULS“ (Referenz) und labelling solution
ad 20 µl 15 min bei 65°C inkubiert. Zu beachten war hier generell, dass das Verhältnis ULS zu DNA 1 U: 1 µg, bzw. 2 μl: 1 µg betragen sollte, in den 20 µl Reaktionsvolumen minimal 100 ng und maximal 10 µg DNA enthalten waren, und damit die gelöste Proben-DNA eine Mindestkonzentration von 5 ng/µl haben sollte. Das Abstoppen der Reaktion geschah durch Zufügen von PB-Puffer mit dem fünfachen Volumen des Ausgangsvolumens. Es schloss sich wieder eine Qiagen-Reinigung an, bei der die Elution in 45 µl EB vorgenommen wurde.

2.2.2.1.3 Primer-Ligation PCR

Die DNA wird nach einer Digestion durch das Restriktionsenzym MseI mit einem MseLig-21 Primer amplifiziert und in einer zweiten PCR durch Thermo-Sequenase mit dUTP Spectrum Green oder Spectrum Red markiert, wobei wieder der Primer MseLig-21 eingesetzt wird.

Der Ansatz für den MseI-Verdau bestand aus 4 ng DNA, in 2 µl EB-Puffer gelöst, 0,5 µl „10 x buffer One-Phor-All-Plus“, 1 µl MseI (10 U/µl) und 1,5 µl HPLC. Nach drei Stunden in einem Cycler oder Wasserbad bei 37°C wurde das Restriktionsenzym nach Hinzufügen von je 0,5 µl 100 µM MseLig-21 und -12 Primern, 0,5 µl 10 x buffer „One-Phor-All-Plus“ und 1,5 µl HPLC in einem Biometra-Cycler inaktiviert, und gleichzeitig die Annealing-Reaktion gestartet, wobei der Cycler, bei 65°C startend, in Schritten von 1°C/min auf 15°C herunter kühlte. Sobald die 15°C erreicht waren, wurden je 1 µl 10mM ATP und T4-DNA-Ligase (5U/µl) zugegeben. Die Ligation lief über Nacht bei 15°C.

Zur ersten Amplifikation wurden die 10 µl umfassende Ligation in ein 0,2 ml PCR-Tube umgefüllt und mit 3 µl „High fidelity Puffer“, 2 µl 10mM dNTP’s und 35,25 µl HPLC vermengt. Um den MseLig-12 Primer von seinen Bindungsstellen zu lösen, begann der erste PCR-Zyklus mit 4 min 68°C. Dann erst wurde bei konstanter Temperatur innerhalb kürzester Zeit 1 µl high fidelity Polymerase hinzugegeben.
und die 3 minütige Fill-in Reaktion bei 68°C gestartet. Es folgten 10 Zyklen 94°C 40 sec, 57°C 30 sec, 68°C 75 sec und 20 Zyklen 94°C 40 sec, 57°C 30 sec, 68°C 105 sec. Die PCR wurde gestoppt bei 78°C über 5 min, wonach sich der ABI Cycler auf 4°C abkühlte und die Temperatur hielt. Im Anschluss wurden 5 µl der DNA mit 3 µl ALP auf ein 1,5%-iges Agarose-Gel aufgetragen. Hier wurden Fragmentlängen von 300 – 500 bp angestrebt.

In der anschließenden Thermo Sequenase Markierung wurde 1 µl des Produktes aus der ersten Amplifikation mit 0,5 µl MseLig-21 Primer (100 µM), 1 µl dNTP-Mix (10 mM A, C, G; 8,6 mM T), 1,3 µl dUTP Spectrum Green (1 mM) bzw. Spectrum Red (0,1 mM), 3 µl 10 x Thermo Sequenase buffer, 0,4 µl Thermo Sequenase (13U) und 22,7 µl HPLC angesetzt. Der ABI-Cycler wurde programmiert auf 94°C für 1 min, 15 Zyklen 94°C 40 sec, 65°C 30 sec und 72°C 90 sec und 9 Zyklen 94°C 40 sec, 65°C 30 sec und 72°C 120 sec. Die Reaktion wurde bei 72°C über 5 min beendet. Mit 10U MseI wurden anschließend bei 37°C über 2 Stunden die Primer entfernt, und mit dem Dye Ex Spin Kit von Qiagen die markierte DNA aufgereinigt. Die Kontrolle wurde wieder durch eine Gelelektrophorese auf einem 1,5%-igen Agarose-Gel durchgeführt. Wenn die Banden jetzt im Gelbild deutlich sichtbar waren, konnte die DNA für die Hybridisierung gefällt werden. DNA mit Fragmentlängen über 500 bp wurde vorher noch mit 1/5000 verdünnter DNase (2 µl) je nach Länge 3 – 5 min lang bei 37°C verdaut, bis die gewünschte Länge erreicht war.

2.2.2.2 Ko-Präzipitation

Die Ausfällung der markierten DNA geschah bei allen Markierungsmethoden auf die gleiche Art. Referenz- und Proben-DNA wurden isomolar je 1000 ng mit dem 25-fachen an cot-1 DNA vermengt und dann mit einem Zehntelvolumen 3 molaren Natriumacetats pH 5,2 des bisherigen Volumens und dem 2,5 fachen Volumen eiskalten 100% Ethanol des anschließenden Volumens gefällt, indem die Ansätze 1 Stunde bei -80°C gelagert und danach 1 Stunde bei 4°C mit 13000 rpm zentrifugiert wurden. Der verbleibende Überstand wurde vorsichtig abgegossen, das Pellet 2 Mal mit 500 µl 70%igem Ethanol gewaschen, jeweils 5 min

Abbildung 2.4: Kontrolle nach Thermo Sequenase Markierung
abzentrifugiert und, nach Trocknung unter Lichtschutz bei 37°C, in 15µl MMI
mindestens 1 ½ Stunden bei 37°C resuspendiert.

2.2.2.3 Hybridisierung

Hybridisiert wurde die DNA auf Objektträger der Firma Vysis mit Metaphasen
unauffälliger männlicher Lymphozyten.

Begonnen wurde mit der 10 minütigen Denaturierung der Test- und Referenz-DNA
bei 75°C, worauf das Preannealing zur Absättigung hochrepetitiver Sequenzen bei
37°C über 30 min folgte. Die Objektträger tauten 3 min auf und wurden dann nach
5 min in 2xSSC auf dem Schüttler 5 min bei 72°C in einer Formamidlösung
denaturiert. Die Formamidlösung bestand aus 35 ml Formamid, 5 ml 20xSSC 8ml
dH2O, mit 1 M HCl titriert auf pH7 und dH2O ad 50 ml. Wenn mehr als 2
Objektträger gleichzeitig denaturiert wurden, musste die Temperatur pro Präparat
um 0,5°C erhöht werden. Die anschließende Dehydrierung erfolgte in einer
eiskalten, aufsteigenden Ethanolreihe (70% - 90% - 100%) je 3 Minuten auf dem
Schüttler. Nach Trocknen und Beschriften der Metaphasepräparate wurden die 15
µl Probe aufgetragen und luftblasenfrei je ein kleines Deckgläschen aufgelegt,
dessen Ränder mit Fixogum abgedichtet wurden, um ein Vermischen und
Austrocknen der Proben zu verhindern. In einer feuchten Kammer inkubierten die
Präparate bei 37°C über 3 Nächte.

Am vierten Tag folgte die Stringenzwaschung, die nach vorsichtigem Entfernen
des Fixogums, 1-2 min in 2xSSC auf dem Schüttler und vorsichtigem Abschieben
der Deckgläschen in einer 2xSSC Reihe je 5 min 70°C ohne Schütteln, 37°C und
Raumtemperatur mit Schütteln durchgeführt wurde. Die abschließende DAPI-
Gegenfärbung war nach 30 min in einer DAPI-Färbelösung aus 5 µl DAPI und 50
ml 2xSSC abgeschlossen. Die Objektträger wurden noch dreimal mit dH2O
gespült, luftgetrocknet, mit Citifluor und einem großen Deckgläschen luftblasenfrei
eingedeckt und konnten dann, fertig für die Mikroskopie, bei 4°C aufbewahrt
werden.

2.2.2.4 Auswertung

Die Proben wurden an einem Epifluoreszenzmi kroskop von Zeiss mit einer
hochauflösenden Kamera und angeschlossenem PC mit Hilfe der Soft- und
Hardware für „high resolution“ CGH von Cytovision Inc. (Ness et al. 2002)
fotografiert und ausgewertet. Jede Metaphase wurde mit einem FITC, einem

Durch Subtraktion der Hintergrund fluoreszenz wurde das Rot/Grün-Verhältnis für jede einzelne Metaphase auf 1,0 normalisiert. Das Konfidenzintervall wurde auf 95% festgelegt und mit der dynamischen Standardreferenz verglichen, so dass Aberrationen ab ungefähr 5 Mb sichtbar wurden (Kirchhoff et al. 2001). Laut dieser Veröffentlichung korrespondiert die statistische Signifikanz der Ergebnisse bei dieser Methode mit einem P<0,05. Die Profile wurden letztendlich mit Hilfe von Ideogrammen ausgewertet.
Material und Methoden

2.3 Statistik: Fall-Kontroll-Studie (Matched-pair-Analyse):
Auswahlkriterien

Für die Analyse der möglichen prognostischen Aussagekraft von spezifischen chromosomalen Imbalanzen wurde der Ansatz einer Fall-Kontroll-Studie (Matched-Pair-Analyse) gewählt. Dabei wird ein Indexpatient immer anhand definierter Kriterien mit einem Kontrollpatienten verglichen.

Von allen Patienten wurden die Gewebeschnitte erneut von Professor Dr. D. Schneider histologisch begutachtet, zum Teil in Kooperation mit Professor Dr. Dr. h.c. D. Harms, dem Begründer und langjährigen Leiter des Kieler Kindertumorregisters. Proben mit weniger als 75% vitalem Tumorzellanteil oder in den Gewebeschnitten überwiegenden Teratomanteilen wurden ausgeschlossen.

Unter den 199 begutachteten Proben waren somit 151 Proben für die Fall-Kontroll-Studie geeignet. Unter diesen befanden sich 32 Patienten, die im weiteren Verlauf eine Krankheitsprogression oder ein Rezidiv erlitten haben, sowie 117 Kontrollpatienten, die in anhaltender Remission sind.

Diese wurden – wie zuvor in einer internationalen Konferenz mit den amerikanischen und britischen Arbeitsgruppen abgestimmt – in folgende Untergruppen aufgeteilt:
Material und Methoden

A: Kleinkinder bis 5 Jahre, Watch-and-Wait Strategie, keine Chemotherapie
B: Kleinkinder bis 5 Jahre, adjuvante Chemotherapie
C: Kinder und Jugendliche ab 6 Jahren, Watch-and-Wait Strategie, keine Chemotherapie
D: Kinder und Jugendliche ab 6 Jahren, adjuvante Chemotherapie

In diesen vier Gruppen erfolgte eine Paarung entsprechend Histologie, Lokalisation und Studienprotokoll (somit Chemotherapie und Behandlungszeitraum/Studiengeneration). Weitere Parameter wie z.B. das Geschlecht wurden nicht berücksichtigt.

Die Röhrchen wurden nachfolgend mit der Kindertumorregister Einsendenummer identifiziert. Somit bestand eine Verblindung für die biologischen Studien. Das heißt, dass eine Rückführung der Nummern zu individuellen Patienten, klinischen und Verlaufsdaten für die Mitarbeiter des Labors bis zum Abschluss der Analysen unmöglich war. Die Entblindung erfolgte durch den Studienleiter (Schneider) nach Abschluss der experimentellen Arbeiten.
3 Ergebnisse

3.1 Chromosomale Imbalanzen bei vaginalen Dottersacktumoren

Die vaginalen Dottersacktumoren sind als prognostisch sehr günstig anzusehen. Daher wurde die Gruppe der vaginalen Dottersacktumoren als klinisch gesonderte Entität mit besonders günstiger Prognose getrennt analysiert und mit Daten vorangegangener Analysen der Arbeitsgruppe verglichen.

<table>
<thead>
<tr>
<th>Alter</th>
<th>Zugewinne</th>
<th>Verluste</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 Jahr</td>
<td>2, 3p21-pter, 1p34.2-pter, 6q21-qter</td>
<td>16p</td>
</tr>
<tr>
<td><1 Jahr</td>
<td>1q, 2p, 3p</td>
<td>1q31-qter, 3p, 18p, 18q11-q12, 19p, 20, X</td>
</tr>
<tr>
<td></td>
<td>1p32-ppter, 4, 5q11-q31, 6q21-qter, 8p22-ppter, 22</td>
<td></td>
</tr>
<tr>
<td><1 Jahr</td>
<td>1q, 3p, X</td>
<td>1q31-qter, 3, 5q31-q34, 6q1-q21, 20</td>
</tr>
<tr>
<td></td>
<td>1p34.2-ppter, 4, 5q11-q31, 6q22-qter, 22</td>
<td></td>
</tr>
<tr>
<td><1 Jahr</td>
<td>1q, 3, 8</td>
<td>1q, 2q22-qter, 14, 20q</td>
</tr>
<tr>
<td><1 Jahr</td>
<td>1p35-ppter, 16q, 20p</td>
<td>1q, 8q22-qter, 14, 20q</td>
</tr>
<tr>
<td><1 Jahr</td>
<td>2p, 3, 7p, 8, 11q14-qter</td>
<td>6q</td>
</tr>
<tr>
<td><1 Jahr</td>
<td>1q, 2p, 7p, 18p, 20q</td>
<td>-</td>
</tr>
</tbody>
</table>
Abbildung 3.1: Ideogramm der vaginalen Dottersacktumoren (grün = Zugewinn, rot = Verlust von DNA im Tumorgewebe)

Abbildung 3.2: Das Profil der Patientin V3 zeigt Zugewinne an 1q31-qter, 3p, 18p, 18q11-q12, 19p und 20; Verluste an 1p32-pter, 4, 5q11-31, 6q21-qter, 8p22-pter und 22.
3.2 CGH Profile im Rahmen der Matched-Pair Pilotstudie

Im Rahmen dieser Pilotstudie werden Patienten, die ein Rezidiv erlitten haben, mit solchen in anhaltender Erstremission verglichen. Die Patienten sind anhand klinischer und histologischer Kriterien sowie der Therapie gepaart. In diese Pilotstudie wurden Tumorproben von 23 Patienten eingeschlossen, von denen 17 in der CGH mit genügender Qualität ausgewertet werden konnten. In 15 dieser Proben ließen sich chromosomale Imbalanzen nachweisen. Im Durchschnitt fanden sich 4,64 Imbalanzen pro Tumor bei einer Schwankungsbreite von 0 – 11 Imbalanzen pro Tumor. In Abhängigkeit vom Alter waren unterschiedliche Profile zu erkennen. So zeigten die acht Tumoren der unter fünf Jahre alten Patienten Imbalanzen an den Chromosomen 1, 3, 6 und 20. Die Gruppe der Älteren zeigt vor allem 12p-Zugewinne und ist somit vergleichbar mit testikulären Keimzelltumoren Erwachsener.

Im Folgenden sind alle Ergebnisse der in dieser Studie analysierten Tumorproben in einem Ideogramm (Abbildung 3.3) dargestellt. Anschließend werden diese einzeln in der Tabelle 3.2 nach Alter und Therapie sortiert aufgeführt. In den Abbildungen 3.4 und 3.5 sind die Proben unterteilt in acht unter 6-jährige

Abbildung 3.3: Sammelideogramm aller 17 ausgewerteten Tumorproben
Ergebnisse

Patienten und neun 6 Jahre alte und ältere Patienten. Die Abbildungen 3.6 und 3.7 stellen acht nicht rezidivierte Tumoren neun Primärtumoren mit konsekutiven Rezidiven gegenüber. 3.8 und 3.9 unterteilen die Gruppe, die Chemotherapie erhalten hat, nach ihrem klinischen Verlauf. In den Abbildungen 3.10 – 3.13 wird das Outcome in Abhängigkeit vom Alter (≤ 5 Jahre Abb. 3.10 und 3.11; > 5 Jahre Abb. 3.12 und 3.13) gegenübergestellt.

Tabelle 3.2: Darstellung aller CGH - Ergebnisse sortiert nach Alter, Lokalisation und Outcome. (CCR = komplette Remission, REL = Rezidiv/Relaps, 2.CR = komplette Remission nach Rezidiv, DOD = Tod durch die Tumorerkrankung/ Dead of Disease, YST = Dottersacktumor, NS = Nichtseminom/gemischter maligner Keimzelltumor, DYS = Dysgerminom)

<table>
<thead>
<tr>
<th>Alter (J)</th>
<th>Lokalisation</th>
<th>Histologie</th>
<th>Outcome</th>
<th>Zugewinne / Gains</th>
<th>Verluste / Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5 Jahre, watch-and-wait Strategie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>Steißbein</td>
<td>YST</td>
<td>REL/2.CR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>≤ 5 Jahre, Chemotherapie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Steißbein</td>
<td>YST</td>
<td>CCR</td>
<td>1p11-33, 1q, 3p21-ter, 3q25-ter, 6p, 13q32-ter</td>
<td>1p35-ter, 6q22-26, 20p</td>
</tr>
<tr>
<td>1</td>
<td>Steißbein</td>
<td>YST</td>
<td>CCR</td>
<td>2p21-ter, 6p22-ter</td>
<td>1p34.2-ter, 18q22-ter</td>
</tr>
<tr>
<td>1</td>
<td>Steißbein</td>
<td>YST</td>
<td>CCR</td>
<td>1q, 3p21-ter, 10, 11p11-14, 11q, 20</td>
<td>1p, 4, 6q24-ter, 16q</td>
</tr>
<tr>
<td>1</td>
<td>Steißbein</td>
<td>YST</td>
<td>CCR</td>
<td>18q</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Steißbein</td>
<td>YST</td>
<td>Rel/DOD</td>
<td>1q, 20q</td>
<td>1p, 20p</td>
</tr>
<tr>
<td>3</td>
<td>Steißbein</td>
<td>YST</td>
<td>CCR</td>
<td>3, 5, 10q</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Steißbein</td>
<td>YST</td>
<td>Rel/DOD</td>
<td>19q, 20</td>
<td>1p, 4p, 4q11-22, 5q14-23, 6q25-ter, 7q, 11p, 18</td>
</tr>
<tr>
<td>≥ 6 Jahre, watch-and-wait Strategie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ovar</td>
<td>NS</td>
<td>REL/2.CR</td>
<td>1q, 8, 21</td>
<td>1p, 4, 9, 11, 13, 15, 16, 22</td>
</tr>
<tr>
<td>17</td>
<td>Ovar</td>
<td>DYS</td>
<td>REL/2.CR</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>Ovar (Streak)</td>
<td>DYS</td>
<td>REL/2.CR</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>≥ 6 Jahre, Chemotherapie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ovar</td>
<td>NS</td>
<td>CCR</td>
<td>-</td>
<td>13q, 12p</td>
</tr>
<tr>
<td>12</td>
<td>Ovar</td>
<td>NS</td>
<td>CCR</td>
<td>-</td>
<td>16p, 21</td>
</tr>
<tr>
<td>13</td>
<td>Ovar</td>
<td>NS</td>
<td>CCR</td>
<td>12p</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>Ovar</td>
<td>NS</td>
<td>REL/2.CR</td>
<td>8q, 12p</td>
<td>18q22-ter</td>
</tr>
<tr>
<td>16</td>
<td>Ovar</td>
<td>NS</td>
<td>Rel/DOD</td>
<td>3, 8q, 12, 20, 21</td>
<td>8p</td>
</tr>
<tr>
<td>16</td>
<td>Ovar</td>
<td>NS</td>
<td>Rel/DOD</td>
<td>1q, 12p-Ampl., 17q12-21, 21</td>
<td>9p21-ter, 9q31-34, 16, 17p, Xp11-21, Xq</td>
</tr>
</tbody>
</table>
Abbildung 3.4: Ideogramm der 8 Tumoren von Patienten 5 Jahre und jünger

Abbildung 3.5: Ideogramm der 9 Tumoren von Patienten 6 Jahre und älter
Abbildung 3.6: Ideogramm der 8 Tumoren von Patienten in anhaltender Erstremission

Abbildung 3.7: Ideogramm der 9 Tumoren von Patienten mit konsekutivem Rezidiv
Abbildung 3.8: Ideogramm der 8 Tumoren, nach Chemotherapie in anhaltender Erstremission

Abbildung 3.9: Ideogramm der 5 Tumoren, die nach Chemotherapie rezidiviert sind
Abbildung 3.10: Ideogramm der 5 Tumoren von Patienten ≤5 Jahre in anhaltender Erstremission

Abbildung 3.11: Ideogramm der 3 Tumoren von Patienten ≤5 Jahre mit bekanntem Rezidiv
Abbildung 3.12: Ideogramm der 3 Tumoren von Patienten ≥ 6 Jahre in anhaltender Erstremission

Abbildung 3.13: Ideogramm der 6 Tumoren von Patienten ≥6 Jahre mit bekanntem Rezidiv
4 Diskussion

Es ist zu beachten, dass bei diesen Tumoren im Gegensatz z. B. zu Steißbein- oder Mediastinaltumoren ein weniger aggressives chirurgisches Vorgehen möglich erscheint. So kann bei vaginalen Keimzelltumoren nach einer präoperativen Chemotherapie auch bei minimal invasiver und organerhaltender Chirurgie eine langfristige Krankheitsfreiheit erreicht werden (Mauz-Körholz et al. 2000). Im Gegensatz hierzu ist eine inkomplette Resektion bei Steißbein- und Mediastinaltumoren mit einer ungünstigen Prognose behaftet und stellt den
entscheidenden prognostischen Faktor dar (Schneider et al. 2000; Calaminus et al. 2003).

Aus diesen Gründen ist diese prognostisch besonders günstige Kohorte als eigene Studienpopulation getrennt analysiert worden. Die Hypothese war, dass sich diese prognostisch besonders günstigen Tumoren hinsichtlich ihrer zytogenetischen Profile von denen bei Dottersacktumoren anderer Lokalisation unterscheiden würden.

Tabelle 4.1: Rezidive bei 197 Patienten mit extragonadalen und extrakranialen Keimzelltumoren der MAKEI Therapieoptimierungsstudien \(^*\)p<0.04

<table>
<thead>
<tr>
<th>Tumorsitz</th>
<th>Patienten (n)</th>
<th>Rezidive (n)</th>
<th>Rezidive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steißbeinregion</td>
<td>112</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>Vagina</td>
<td>18</td>
<td>0</td>
<td>0*</td>
</tr>
<tr>
<td>Retroperitoneum</td>
<td>25</td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>Mediastinum</td>
<td>37</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>Gesamt</td>
<td>197</td>
<td>42</td>
<td>21</td>
</tr>
</tbody>
</table>

Für die Analyse der Keimzelltumoren anderer Lokalisationen ist mit einer Fall-Kontroll-Studie (Matched-Pair Analyse) ein anderer statistischer Ansatz gewählt worden. Die Patienten für diese Studie wurden auf der Grundlage der Auswertung der Studienakten der MAKEI Studie sowie nach Beurteilung der histopathologischen Präparate am Kieler Kindertumorregister ausgewählt. Die

Abbildung 4.1: Häufigkeitsverteilung der Keimzelltumoren verschiedener Lokalisationen in Abhängigkeit vom Alter (Schneider et al. 2004a)
Unterscheidung entsprechend Alter erfolgte aufgrund der Vorstudien der Arbeitsgruppe, die gezeigt haben, dass sich die genetischen Profile bei malignen Keimzelltumoren in Abhängigkeit vom Alter unterschieden. Dabei zeigt sich sowohl in der Analyse der epidemiologischen Daten (Abbildung 4.1 und 4.2) als auch der genetischen Studien eine Altersgrenze, die für testikuläre und mediastinale Keimzelltumoren bei ca. zehn Jahren, bei ovarialen und ZNS Keimzelltumoren eher bei gut fünf Jahren anzusetzen ist. Daher wurde für die Fall-Kontroll-Studie eine Altersgrenze von 5 Jahren gewählt. Allerdings waren keine Patienten zwischen 5 und 9 Jahren eingeschlossen, so dass auch eine höhere Altersgrenze keine Änderung ergeben hätte.

Innerhalb dieser klinischen und biologischen Untergruppen wurden daraufhin die Proben anhand der Therapiestrategie (watch-and-wait Strategie versus Chemotherapie) und der weiteren prognostisch relevanten klinischen Parameter (Stadium, Resektionsstatus etc.) gepaart. Aufgrund dieser exakten Zuordnung von Indexfällen und Kontrollen kam es jedoch zu einer erheblichen Reduktion der

In der verbleibenden Zahl von insgesamt 14 vaginalen und 23 sonstigen Tumoren gelingt mit der CGH in einem großen Prozentsatz die genetische Charakterisierung mit Darstellung von chromosomalen Imbalanzen. Dabei liegt die Erfolgsquote der CGH mit 74% über den im allgemeinen in der Literatur angegebenen Werten (in der Regel ca. 50% erfolgreiche Analysen) für die Analyse von paraffinisiertem Gewebe mit oft nur schlechter DNA Qualität und entspricht den vorangegangenen Quoten der Arbeitsgruppe (Schneider et al. 2000). Dieses Ergebnis ist Ausdruck der in der Arbeitsgruppe entwickelten Möglichkeit, auch degradierte DNA durch verschiedene Fluoreszenzmarkierungsverfahren erfolgreich zu verarbeiten.
4.1 CGH-Profile vaginaler Dottersacktumoren entsprechen Dottersacktumoren anderer Lokalisation

In dieser prognostisch sehr günstigen Gruppe der Dottersacktumoren wurden Imbalanzen vor allem an den Chromosomen 1, 3, 6 und 20 gefunden. Dieses Muster entspricht im Wesentlichen dem von Dottersacktumoren an anderer Lokalisation wie Hoden, Steißbein und Mediastinum (Schneider et al. 2001; Palmer et al. 2007). Diese zeigen bei unter fünfjährigen Kindern Imbalanzen vor allem an den Chromosomen 1, 6 und 20. Insofern ist mit der hier eingesetzten Methode kein erkennbarer Unterschied zwischen Keimzelltumoren der Vagina oder anderer Lokalisationen hinsichtlich ihrer chromosomalen Konstitution erkennbar.

Daraus kann man im Umkehrschluss aber nicht die Aussage formulieren, dass ein Zugewinn an 3p eine gute Prognose bedeutet.

Die biologische Bedeutung des Zugewinnes am kurzen Arm des Chromosoms 3 in vaginalen Dottersacktumoren bleibt damit pathophysiologisch ungeklärt. Ebenso bleibt die prognostische Aussagekraft unklar, zumal auch Dottersacktumoren anderer Lokalisationen 3p-Zugewinne aufweisen (Schneider et al. 2006; Palmer et al. 2007).

Vaginale Dottersacktumoren sind eine klinisch besondere Entität wegen der guten Prognose selbst bei nicht maximaler chirurgischer Therapie. Genetisch sind sie allerdings nur durch den Zugewinn an 3p von anderen Keimzelltumoren dieser Altersgruppe unterscheidbar – wobei allerdings die insgesamt geringen Fallzahlen zu berücksichtigen sind. Es gibt ansonsten keinen Hinweis auf ein genetisches Profil, das in diesen Tumoren eine besonders günstige Prognose anzeigt. Aufgrund ihrer Besonderheit, dass sie nie mit Teratomen assoziiert sind, ist zu diskutieren, ob sie evtl. einer anderen Histogenese zugrunde liegen als
Keimzelltumoren anderer Lokalisationen und sich zum Beispiel von somatischen Stammzellen und nicht von primordialen Keimzellen ableiten. Die Entsprechung der CGH Profile widerspricht allerdings deutlich dieser Hypothese; vielmehr muss eine gemeinsame Histogenese angenommen werden. In diesem Punkt könnten epigenetische Untersuchungen zum genomischen Imprinting eine weiterführende Klärung dieser Frage ermöglichen; allerdings wäre für diese Untersuchungen das Vorliegen von gefrorenem Frischgewebe die Voraussetzung.
4.2 Für statistisch relevante Aussagen in der Fall-Kontroll-Studie ist die Probenanzahl zu gering

die Kenntnis von einer Dottersacktumorkomponente hilfreich für die Beurteilung des Therapieansprechens sein. So ist bei radiologisch unzureichendem Ansprechen oder evtl. einem Progress bei einem adäquaten Rückgang der AFP-Spiegel von einem growing teratoma auszugehen und statt Fortsetzung der Chemotherapie eine operative Therapie zu wählen (Calaminus et al. 2009).

Aufgrund dieser Erwägungen, die auch den Eltern zu erläutern sind, erscheint also die Entnahme einer diagnostischen Biopsie, auch mit dem Ziel zukünftiger biologischer Analysen gerechtfertigt. Als Zeitpunkt für die Biopsie ist die operative Anlage des zentralen Venenverweilkatheters geeignet, so dass keine zusätzliche Belastung durch weitere Narkosen erforderlich wird. Dieses Vorgehen wird auch in anderen Therapiestudien z.B. in Großbritannien und den USA gewählt.

Im Gegensatz zu den Neuroblastomen ist die Prognose bei Keimzelltumoren des Kindesalters günstiger. Insgesamt ist bei mehr als 85% mit einer langfristigen Heilung zu rechnen (Göbel et al. 2000). Lediglich die Gruppe der jugendlichen Patienten mit metastasierten extragonadalen Keimzelltumoren ist als ungünstig anzusehen, da mit konventioneller Chemotherapie Heilungsraten unter 50% erreicht werden. Insofern ist bei Keimzelltumoren des Kindesalters nicht damit zu rechnen, dass durch genetische Analysen eine Hochrisikogruppe mit extrem ungünstiger Prognose wie z.B. bei Neuroblastomen definiert werden kann; dieses

5 Literatur

6 Anhang

Tabelle 6.1: DNA-Isolation

<table>
<thead>
<tr>
<th>Material</th>
<th>Art.-Nr., Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylol</td>
<td>X-2377, SIGMA-ALDRICH, Steinheim, D</td>
</tr>
<tr>
<td>TE-9</td>
<td>Tris, EDTA, NaCl, dH2O</td>
</tr>
<tr>
<td>Tris</td>
<td>5429.3, CARL-ROTH GmbH, Karlsruhe, D</td>
</tr>
<tr>
<td>NaCl</td>
<td>1.06404.1000, MERCK, Darmstadt, D</td>
</tr>
<tr>
<td>EDTA</td>
<td>EDS, SIGMA-ALDRICH, Steinheim, D</td>
</tr>
<tr>
<td>20% SDS</td>
<td>SDS, HCl, dH2O</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>P2308, SIGMA-ALDRICH, Steinheim, D</td>
</tr>
<tr>
<td>Phenol-Chloroform-Isoamylalkohol 25:24:1</td>
<td>P3803, SIGMA-ALDRICH, Steinheim, D</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.02445.2500, MERCK, Darmstadt, D</td>
</tr>
<tr>
<td>NaAc 500g</td>
<td>S9513, SIGMA-ALDRICH, Steinheim, D</td>
</tr>
<tr>
<td>Lo-TE</td>
<td>Tris, EDTA, dH2O</td>
</tr>
<tr>
<td>EB-Puffer</td>
<td>QiAmp DNA Micro Kit (50)</td>
</tr>
<tr>
<td>Glycerol 100%</td>
<td>G-6279, SIGMA-ALDRICH, Steinheim, D</td>
</tr>
<tr>
<td>1M Tris HCl</td>
<td>36970.02, Serva Elektrophoresis GmbH, Heidelberg, D</td>
</tr>
<tr>
<td>QiAmp DNA Micro Kit (50)</td>
<td>56304, Qiagen, Hilden, D</td>
</tr>
</tbody>
</table>

Tabelle 6.2: Agarose-Gel

<table>
<thead>
<tr>
<th>Material</th>
<th>Art.-Nr., Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE Agarose</td>
<td>840004, Biozym, Hess. Oldendorf, D</td>
</tr>
<tr>
<td>TAE 50x</td>
<td>Tris, Essigsäure, EDTA, dH2O</td>
</tr>
<tr>
<td>ETBr</td>
<td>E-1510, SIGMA-ALDRICH, Steinheim, D</td>
</tr>
<tr>
<td>2xALB</td>
<td>6xALB, dH2O</td>
</tr>
<tr>
<td>6xALB</td>
<td>30% Glycerin, 0,25% Bromphenolblau, 0,25% Xylenecyanol, H2O</td>
</tr>
<tr>
<td>Bromphenolblau-Xylenecyanol solid mixture</td>
<td>18047, SIGMA-ALDRICH, Steinheim, D</td>
</tr>
<tr>
<td>1 Kb Plus DNA Ladder</td>
<td>10787-018, Invitrogen, Karlsruhe, D</td>
</tr>
</tbody>
</table>

Tabelle 6.3: CGH

<table>
<thead>
<tr>
<th>Material</th>
<th>Art.-Nr., Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Polymerase I/DNase I</td>
<td>18162-016, Invitrogen, Karlsruhe, D</td>
</tr>
<tr>
<td>DNA Polymerase I</td>
<td>EP0042, Fermentas, St.Leon-Rot, D</td>
</tr>
<tr>
<td>Spectrum Green dUTP 50nmol</td>
<td>30-803200, Vysis, Wiesbaden, D</td>
</tr>
<tr>
<td>Spectrum Red dUTP 50nmol</td>
<td>30-803400, Vysis, Wiesbaden, D</td>
</tr>
<tr>
<td>A4-Mix</td>
<td>10 mM dATP, dGTP, dCTP, 1 M Tris pH7,8, 1 M MgCl2, 14,3 M Mercaptoethanol, 10 mg/ml BSA</td>
</tr>
<tr>
<td>100mMdNTP Set</td>
<td>10297-018, Invitrogen, Karlsruhe, D</td>
</tr>
<tr>
<td>1M Tris pH 7,8</td>
<td>5429.3, CARL-ROTH GmbH, Karlsruhe, D</td>
</tr>
<tr>
<td>1M MgCl2</td>
<td>8.14733.0500, MERCK, Darmstadt, D</td>
</tr>
<tr>
<td>14,3 M Mercaptoethanol</td>
<td>M3148, SIGMA-ALDRICH, Steinheim, D</td>
</tr>
<tr>
<td>10 mg/ml BSA</td>
<td>A-9647, SIGMA-ALDRICH, Steinheim, D</td>
</tr>
</tbody>
</table>
Tabelle 6.4: Primer-ligation CGH

<table>
<thead>
<tr>
<th>Material</th>
<th>Art.-Nr., Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x buffer One-Phor-All-Plus</td>
<td>27-0901-02, Amersham Biosciences AB (GE Healthcare), München, D</td>
</tr>
<tr>
<td>MseI (50U/µl)</td>
<td>R0525M, BioLabs, Frankfurt a.M., D</td>
</tr>
<tr>
<td>HPLC</td>
<td>1.15333.2500, MERCK, Darmstadt, D</td>
</tr>
<tr>
<td>MseLig-21 Primer (100µM)</td>
<td>MWG-Biotech AG, Ebersberg, D, Liste im Anhang</td>
</tr>
<tr>
<td>MseLig-12 Primer (100µM)</td>
<td></td>
</tr>
<tr>
<td>ATP lithiumsalt 100mM pH 7</td>
<td>1140965, Roche, Basel, CH</td>
</tr>
<tr>
<td>T4-DNA-Ligase (5U/µl)</td>
<td>M02025, BioLabs, Frankfurt a.M., D</td>
</tr>
<tr>
<td>High fidelity Puffer</td>
<td>12140314001, Roche, Basel, CH</td>
</tr>
<tr>
<td>100mMdNTP Set</td>
<td>10297-018, Invitrogen, Karlsruhe, D</td>
</tr>
<tr>
<td>10x Thermo Sequenase Puffer</td>
<td>93-79000, Amersham Biosciences AB (GE Healthcare), München, D</td>
</tr>
<tr>
<td>Thermo Sequenase</td>
<td>93-79802, Amersham Biosciences AB (GE Healthcare), München, D</td>
</tr>
<tr>
<td>DNase</td>
<td>70048020, Roche, Basel, CH</td>
</tr>
<tr>
<td>cot-1 DNA</td>
<td>15279-011, Invitrogen, Karlsruhe, D</td>
</tr>
</tbody>
</table>

Tabelle 6.5: ULS-CGH

<table>
<thead>
<tr>
<th>Material</th>
<th>Art.-Nr., Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP DNase Puffer</td>
<td>500mM Tris pH7,5, 5mM MgCl, 0,5mg/ml BSA</td>
</tr>
<tr>
<td>DNase 1:5000 aus 1mg/ml</td>
<td>70048020, Roche, Basel, CH</td>
</tr>
<tr>
<td>QI Amp DNA Micro Kit (50)</td>
<td>56304, Qiagen, Hilden, D</td>
</tr>
<tr>
<td>Platinum Bright 495</td>
<td>LK025A, KreATECH, Amsterdam, NL</td>
</tr>
<tr>
<td>Cy3-ULS / Cy5-ULS</td>
<td>EA-005, KreATECH, Amsterdam, NL</td>
</tr>
<tr>
<td>labelling solution</td>
<td>LK017A/LK008A, KreATECH, Amsterdam, NL</td>
</tr>
<tr>
<td>PB (Qiagen Purifikation Kit)</td>
<td>19066, Qiagen, Hilden, D</td>
</tr>
<tr>
<td>cot-1 DNA</td>
<td>15279-011, Invitrogen, Karlsruhe, D</td>
</tr>
<tr>
<td>Gerät</td>
<td>Gerätename, Hersteller</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>CGH/FISH- Programm</td>
<td>Cytovision CV 2.8</td>
</tr>
<tr>
<td>Deckgläschen</td>
<td>Welabo 9802</td>
</tr>
<tr>
<td>Elektrophoresekammer</td>
<td>Biometra Standard Power Pack P25, Biometra</td>
</tr>
<tr>
<td>Elektrophorese-Programm</td>
<td>BioRad Fluor-S Multimanager Multianalyst Version 1.1, BioRad Laboratories</td>
</tr>
<tr>
<td>Eppendorfgefäss 1,5ml</td>
<td>Safe Lock 1,5 ml, Eppendorf-Nethele-Hinz GmbH</td>
</tr>
<tr>
<td>Eppendorfgefäss 2,0ml</td>
<td>Safe Lock 2,0 ml, Eppendorf-Nethele-Hinz GmbH</td>
</tr>
<tr>
<td>Filter</td>
<td>Zeiss</td>
</tr>
<tr>
<td>Gelkammer</td>
<td>Wide Mini Sub Cell GT, Bio Rad Laboratories</td>
</tr>
<tr>
<td>gestopfte Pipetten</td>
<td>Pipetman, Gilson</td>
</tr>
<tr>
<td>Kamera</td>
<td>Zeiss</td>
</tr>
<tr>
<td>Küvetten</td>
<td></td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Axioplan 2 Imaging, Zeiss</td>
</tr>
<tr>
<td>Mikrowelle</td>
<td>Micromat, AEG</td>
</tr>
<tr>
<td>PCR-Tubes</td>
<td>PCR 8-Strip Tubes, Eppendorf AG</td>
</tr>
<tr>
<td>Photometer</td>
<td>Bio Photometer, Eppendorf AG</td>
</tr>
<tr>
<td>Pipetten</td>
<td>Tip One Extended Length Filter Tips, Starlab GmbH</td>
</tr>
<tr>
<td>Pipettiergeräte</td>
<td>Eppendorf research</td>
</tr>
<tr>
<td>QuAmp MinElute Säule</td>
<td>QIAamp Min Elute Column, Quiagen</td>
</tr>
<tr>
<td>Quiagen Mikro-Kit</td>
<td>QIAamp DNA Micro Kit, Quiagen</td>
</tr>
<tr>
<td>Septen</td>
<td>Plate Septa 96-Well, Applied Biosystems</td>
</tr>
<tr>
<td>Superfrost Objekträger</td>
<td>Menzel Gläser, Menzel GmbH & Co KG</td>
</tr>
<tr>
<td>Thermomixer</td>
<td>Thermomixer 5436, Eppendorf</td>
</tr>
<tr>
<td>Tiefkühltruhe</td>
<td>Bio Freezer, Forma Scientific</td>
</tr>
<tr>
<td>Trockenblock</td>
<td>556 Trockenblock, Schleicher und Schuell</td>
</tr>
<tr>
<td>UV-Lampe</td>
<td>Fluor-S Multi Imager, Bio Rad Laboratories GmbH</td>
</tr>
<tr>
<td>Vortexer</td>
<td>Vortex- Genie 2, Scientific Industries</td>
</tr>
<tr>
<td>Waage</td>
<td>82047, Kern & Sohn GmbH</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Biofuge fresco, Heraeus</td>
</tr>
<tr>
<td>Schütter</td>
<td>SM 25, Edmund Bühler, Tübingen</td>
</tr>
<tr>
<td>Inkubator 37°C</td>
<td>Heraeus Instruments</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>1.) M20 Lauda 2.) Thermo Haake (DC 10)</td>
</tr>
<tr>
<td>PCR-Maschine</td>
<td>Gene Amp PCR System 2700, Applied Biosystem</td>
</tr>
</tbody>
</table>
Lebenslauf

Persönliche Daten

Name: Klaus Pierstorff
Adresse: Poststraße 27
 41516 Grevenbroich - Wevelinghoven
Geburtsdatum, Ort: 03.10.1977, Düsseldorf

Schullaufbahn

1995 - 1997 Quirinus-Gymnasium Neuss

Ersatzdienst

1997 – 1998 Individuelle Schwerbehindertenbetreuung

Ausbildung

1999-2002 Ausbildung zum Physiotherapeuten
Dorothea C. Erxleben Schule, Bad Oeynhausen
Staatsexamen 09/2002

Studium

1998-1999 Maschinenbau, RWTH Aachen
2002-2008 Humanmedizin, HHU Düsseldorf
Staatsexamen 11/2008

Approbation 27.11.2008

Beruflicher Werdegang

Seit 08.12.2008 Assistentarzt in der Klinik für Kinder - Onkologie,
 -Hämatologie und Klinische Immunologie
 Universitätsklinik Düsseldorf
Zusammenfassung

In der Tumorforschung finden molekularbiologische Untersuchungen neben den klassischen prognostischen Faktoren wie der Tumorlokalisation, dem Tumorstadium, der Höhe von Tumormarkern sowie histopathologischen Befunden eine zunehmende Bedeutung. Genetische Veränderungen können zudem differentialdiagnostisch bedeutsam sein, wenn sie für einen bestimmten Tumor charakteristisch sind. Sie können aber auch entitätenübergreifend für ein gemeinsames Merkmal verschiedener Tumoren stehen, wie z.B. Veränderungen in bestimmten Tumorsignalwegen.

Die hier vorgelegte Arbeit hat das Ziel, mittels Comparativer Genomischer Hybridisierung (CGH) genetische Parameter auf ihre potentielle prognostische Relevanz in Keimzelltumoren des Kindes- und Jugendalters zu prüfen. Dazu wurde zum einen die prognostisch besonders günstige Gruppe der seltenen vaginalen Dottersacktumoren betrachtet, zum anderen als Pilotstudie maligne Keimzelltumoren verschiedener Altersgruppen in einer Fall-Kontrollstudie Rezidiv gegen anhaltende Erstremission evaluiert.

Auffällig ist aber in der Gruppe der vaginalen Dottersacktumoren und der prognostisch günstigen Gruppe der Kleinkinder in der Fall-Kontrollstudie ein Trend zu einem Zugewinn an 3p. Für weiterführende Studien ist die Asservierung von geeigneten Proben und Vergleichsproben im besten Fall natives schockgefrorenes Frischgewebe in höherer Fallzahl essentiell.