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Abstract 

 
Since the release of the yeast whole genome sequence in 1996 and the advances 

in high-throughput technologies, scientists have studied the evolution of the 

yeast Saccharomyces cerevis iae at the genomics level in two major ways: 

comparative genomics and systems biology. Both of these approaches have 

provided important insights into how the yeast genome is organized and how 

networks evolve to achieve phenotypic features. In this thesis, I study these 

issues by analyzing both genomics and networks data.  

 

The major questions I asked and the findings raised by this thesis are as follows: 

First, I studied why there are so many yeast non-coding transcripts (>60%) that 

are transcribed in bi-directional orientation with a coding gene. For some genes, 

notably essential genes, expression when expression is needed is vital, hence 

low noise in expression is favorable. For other genes, noise is necessary for 

coping with environmental stochasticity or for providing dice-like mechanisms 

to control cell fate.  But how is noise in gene expression modulated?  We 

hypothesize that gene orientation may be crucial, as for divergently organized 

gene pairs, expression of one gene could affect the chromatin conformation of a 

neighbouring gene, thereby reducing noise for that gene. Transcription of 

antisense non-coding RNA from a shared promoter is similarly argued to be a 

noise-reduction mechanism. Our stochastic simulation models confirm the 

expectation.  The model correctly predicts: that protein coding genes with 

bi-promoter architecture, including those with a ncRNA partner, have lower 

noise than other genes; divergent gene pairs uniquely have correlated expression 

noise; distance between promoters predicts noise; ncRNA divergent transcripts 

are associated with genes that a priori would be under selection for low noise; 

essential genes reside in divergent orientation more than expected; bi-promoter 

pairs are rare subtelomerically, cluster together and are enriched in essential 

gene clusters.  We conclude that gene orientation and transcription of ncRNAs, 

even if unstable, are candidate modulators of noise levels. 

 

Second, I studied whether ancestrally neighbouring genes still remain 



co-expressed even after they have been separated by chromosomal 

rearrangements. Although there is clear evidence that closely spaced gene pairs 

tend to be highly co-expressed, it is not clear if this co-expression is solely due 

to a mechanistic neighbourhood effect, or if the co-expression is selectively 

favorable. Thanks to the multiple fungi genome sequencing projects, it is now 

possible to answer this question. Using a reconstruction of gene order in an 

ancestral yeast based on parsimony, we found a significant co-expression signal 

for many separated gene pairs. Moreover, even genes that are neighbouring in 

other fungi but were never genomic neighbours in the evolutionary history of 

Saccharomyces cerevisiae  show higher co-expression than expected. We 

conclude that co-expression of neighbouring genes is indeed often favoured by 

natural selection. 

 

Third, I studied how network neighbours influence the evolutionary rate of a 

protein and why. Recently it was shown that the level of protein expression is 

the main predictor of the protein evolution rate. Thus, if two genes have similar 

expression levels, they should also have a similar rate of evolution. We found 

that this can explain the fact that neighbouring gene evolve similarly in most 

biological networks, regardless of the different network topologies. Namely, 

controlling for expression level, neighbouring genes no longer show correlated 

evolution in almost all networks studied. But in co-expression network, even 

controlling for expression abundance as well as for gene essentiality and gene 

length, neighbouring (i.e., co-expressed) genes still co-evolve. This finding 

suggests that both expression level and co-expression influence the rate of 

protein evolution in networks. 

 

Finally, I focused on the phenotypic effect of genetic hubs. Robustness is a 

basic feature of biological networks, and we expect different proteins to make 

different contributions to the overall robustness of the network. In genetic 

interaction networks, when the genetic hubs function abnormally, the offspring 

is expected to exhibit more phenotypic variation (both genetically caused and 

non-genetically caused). We observed that the number of strong negative 

genetic interactions (synthetic lethality) is indeed positively correlated with 

phenotypic variation of the respective single-gene knockouts in yeast. 



Furthermore, there is a high correlation between haploid fitness of the 

knockouts and phenotypic variation. Thus, haploid fitness and genetic 

interactions are two predictors of phenotypic variation in mutants. This further 

suggests that the release of phenotypic variation in mutants is mostly not due to 

a specific buffering function of the mutated gene (as in the case of chaperones, 

e.g., Hsp90), but that compromised function of one part of the network reduces 

the cell’s ability to compensate for sub-optimal pathways elsewhere. 





Zusammenfassung 

 
Die Evolution der Hefe Saccharomyces cerevisiae wurde seit der 

Veröffentlichung der kompletten Genomsequenz 1996 und den Fortschritten in 

Hochdurchsatz-Technologien auf Genomebene hauptsächlich auf zwei Arten 

untersucht: durch vergleichende Genomik und durch Systembiologie. Beide 

Ansätze haben wichtige Einsichten in die Genomorganisation und in die 

Evolution von Netzwerken geliefert. Diese Forschungsthemen bilden auch das 

Thema der vorliegenden Doktorarbeit. Hierzu untersuche ich sowohl Netzwerk- 

als auch genomische Daten. 

 

Die wichtigsten behandelten Fragen sind die folgenden: Zunächst untersuche 

ich die Frage, warum das Hefegenom so viele nicht-kodierende Transkripte 

enthält, die bidirektional mit einem protein-kodierenden Gen abgelesen werden 

(>60%). Für einige Gene, insbesondere für essentielle Gene, ist es lebenswichtig, 

dass Genexpression genau dann stattfindet, wenn sie benötigt wird; für diese 

Gene bietet ein niedriges ‚Expressionsrauschen’ (d.h. Variabilität in 

Genexpression) einen Selektionsvorteil. Andere Gene benötigen 

Expressionsrauschen, um mit stochastischen Umgebungen umzugehen oder um 

Mechanismen für die zelluläre Regulation zu liefern, die nach dem Muster von 

Würfelspielen funktionieren. Aber wie wird Expressionsrauschen vom Genom 

gesteuert? Wir stellen die Hypothese auf, dass Genorientierung hier eine 

entscheidende Rolle spielen könnte: bei divergent transkribierten Genpaaren 

könnte die Expression eines Gens die Chromatin-Konformation des 

benachbarten Gens beeinflussen, wodurch das Expressionsrauschen des zweiten 

Gens vermindert würde. Transkription von nicht-kodierender Antisense-DNS 

ausgehend von einem gemeinsamen Promoter könnte analog zu einer 

Reduzierung des Expressionsrauschens führen. Unsere stochastischen 

Simulationen bestätigen diese Erwartungen. Unser Modell sagt folgende 

Beobachtungen richtig voraus: Protein-kodierende Gene mit bi-promoter 

Architektur, einschließlich solcher mit einem nicht-kodierenden Partner, haben 

ein niedrigeres Expressionsrauschen als andere Gene;  divergente Genpaare 

zeichnen sich durch korreliertes Expressionsrauschen aus; der Abstand 



zwischen Promotoren sagt das Ausmaß an Expressionsrauschen voraus; 

nicht-kodierende RNS involviert in divergente Transkription haben Partnergene, 

von denen a priori erwartet wird, dass niedriges Expressionsrauschen einen 

Selektionsvorteil bietet; essentielle Gene befinden sich öfter in divergenter 

Orientierung als zufällig erwartet; bi-promoter Genpaare treten selten in 

sub-telomeren Regionen auf, bilden Gruppen und treten häufig in essentiellen 

Gengruppen auf. Wir schließen daraus, dass Genorientierung und Transkription 

von nicht-kodierenden RNS, selbst wenn diese instabil sind, mögliche 

Regelungssysteme für das Ausmaß von Expressionsrauschen sind. 

 

Zweitens habe ich untersucht, ob Gene, die in einem Vorläufergenom Nachbarn 

waren, immer noch co-exprimiert sind selbst wenn sie durch genomische 

Umordnungen auseinandergerissen wurden. Es steht außer Frage, dass eng 

benachbarte Genpaare häufig stark co-exprimiert sind; es ist allerdings unklar, 

ob dies lediglich durch rein mechanische Nachbarschafts-Effekte verursacht 

wird, oder ob co-Exprimierung einen Selektionsvorteil bietet. Diese Frage kann 

nun dank mehrerer Pilz-Genomprojekte beantwortet werden. Mit Hilfe einer 

Rekonstruktion der Genanordnung in einer ancestralen Hefespezies konnten wir 

zeigen, dass viele Genpaare auch nach einer genomischen Umordnung noch 

signifikant co-exprimiert sind. Wir fanden weiterhin, dass sogar benachbarte 

Genpaare in anderen Pilzarten – die in der Evolutionsgeschichte der Hefe nie 

benachbart waren – stärker co-exprimiert sind als erwartet. Wir schließen daraus, 

dass co-Expression benachbarter Gene tatsächlich häufig im Einklang mit 

natürlicher Selektion ist. 

 

Drittens habe ich untersucht wie und warum Nachbarn in biologischen 

Netzwerken die Evolutionsrate von Proteinen beeinflussen. Es wurde kürzlich 

gezeigt, dass die Expressionshöhe diejenige Variable ist, die die beste 

Vorhersage der Evolutionsrate ermöglicht. Zwei Gene mit ähnlicher 

Expressionsrate sollten daher auch ähnliche Evolutionsraten zeigen. Wir zeigen 

hier, dass dieser Zusammenhang erklären kann, warum benachbarte Gene in den 

meisten biologischen Netzwerken ähnliche Evolutionsraten haben: wenn wir 

Genexpression herausrechnen, dann verschwindet die Ähnlichkeit der 

Evolutionsraten in fast allen Netzwerken. Eine Ausnahme bildet das 



co-Expressions-Netzwerk, in dem benachbarte Gene immer noch ähnliche 

Evolutionsraten haben nachdem wir die Effekte von Genexpression, 

Gen-Essentialität und Genlänge herausrechnen. Diese Beobachtung legt nahe, 

dass sowohl Expressionshöhe als auch co-Expression die Evolutionsrate in 

Netzwerken beeinflussen. 

 

Schließlich habe ich mich auf den phenotypischen Einfluß von genetischen 

Netzwerk-Achsen (d.h. Genen mit vielen genetischen Interaktionen) 

konzentriert. Robustheit ist eine grundlegende Eigenschaft biologischer 

Netzwerke, und wir erwarten, dass verschiedene Proteine unterschiedlich zur 

Robustheit des Netzwerkes beitragen. Wenn Achsen in genetischen 

Interaktionsnetzwerken ihre normale Funktion verlieren, dann erwartet man 

höhere phänotypische Variabilität in den Nachkommen. Wir beobachten dass 

die Anzahl stark negativer genetischer Interaktionen (synthetische Letalität) 

tatsächlich mit der phänotypischen Variabilität der entsprechenden 

Gen-Knockouts korreliert. Weiterhin finden wir eine starke Korrelation 

zwischen der haploiden Fitness der Knockouts und phänotypischer Variabilität. 

Einerseits tragen also sowohl genetische Interaktionen als auch haploide 

Knockout-Fitness zur Vorhersage phänotypischer Variabilität bei. Daraus folgt 

weiterhin, dass die Freisetzung phänotypischer Variabilität häufig nicht die 

Konsequenz einer spezifischen Pufferfunktion des mutierten Gens ist (so wie 

bei Chaperonen, z.B. Hsp90), sondern dass eine beeinträchtigte Funktion in 

einem Teil des Netzwerkes die Fähigkeit der Zelle reduziert, sub-obtimale 

Reaktionspfade in anderen Teilen des Netzwerkes auszugleichen. 
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CUTs    cryptic unstable transcripts 
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Chapter 1 Introduction 

In this chapter, I will discuss the genetics and life cycle of budding yeast, 

Saccharomyces cerevisiae, which is the main subject of the thesis. After that, I 

will discuss the general genome evolution of S. cerevis iae. Finally, I will 

discuss the evolution of yeast on the network and phenotype levels. 

 

1.1 The genetics of budding yeast 

1.1.1 Saccharomyces cerevisiae: background 
Yeast is one of the oldest domesticated organism in human history: it has been 

used, e.g., in beer brewing since around 6000 B.C.. In the 1960s, budding yeast 

was introduced as a model organism for molecular biology. Today it is widely 

used in food technologies, fermentation industries, environmental technologies 

and healthcare industries. Beyond this, it plays very important roles in 

biological and biochemical research for the following reasons: it can easily be 

cultured and grows rapidly; it can be transformed with genes from other 

genomes (Bonnefoy, Remacle, Fox 2007); and its gene content is known, as the 

complete genome was sequenced in 1996 (Goffeau et al. 1996). 

 

Figure 1-1 represents the phylogenetic position of S. cerevisiae  among yeast 

species. A major division in yeast evolutionary history occurred when a 

common ancestor experienced a whole genome duplication, which happened 

100–150 million years ago (Sugino, Innan 2005), shortly after the divergence of 

the S. cerevisia e lineage from Kluyveromyces lactis . This duplication event 

apparently helped the species in the Saccharomyces complex branch (tagged 

sensu stricto in Figure 1-1) to gain the ability for rapid growth in an anaerobic 

environment and to preferentially ferment glucose by generating alcohol in 

oxygen-rich environments. 

 

1.1.2 The life cycle and mating types of S. cerevisiae 
There are two forms in which yeast cells can survive and grow: haploid and 

diploid (Figure 1-2). The diploid cell is the preferential form of yeast; in this 
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form yeast cells can undergo meiosis. There are two mating types in the haploid 

cell: a and α. The mating of a and α results in an a/α diploid cell, which can live 

in harsher environments. The diploid cells are unable to mate but in stress 

conditions will divide by meiosis into four haploid yeast cells: two a and two α. 

 

 

Figure 1-1 Phylogeny of yeast species with whole genome duplication event 
(WGD) which happened 100~150 Myr ago noted by the black cycle1. 
 

The mating type of S. cerevisiae , which is determined by a single locus MAT, 

only has consequences in haploid cells. In haploid yeast cells, the a cells 

produce an “a-factor”, which prompts the a-cell to approach an α-cell. 

Conversely, α-cells attract a-cells by producing an αfactor.  

 

The locus MAT in a and α cells encodes different proteins. In the a cell it is 

called MATa, and in the α cell it is called MATα. The MATa allele encodes a1, 

which activates the a-specific transcriptional program, and the MATα allele 

encodes the α1 and α2 genes, which activate the α-specific transcriptional 

program and make the a-cell into a α-cell. 

 

The mating type of the yeast cell can be switched, which is an advantage to 
                                                        
1 http://www.genetics.wustl.edu/saccharomycesgenomes/yeast_phylogeny.html 



Chapter 1 Introduction 
 

3 

 

yeast population that could lead of both a-cell and α-cell represent in the 

population (Houston, Simon, Broach 2004). 

 

 

 

Figure 1-2 Life cycle of budding yeast which comes from Wikipedia2. Major 
events in the life cycle: 1. Budding; 2. Conjugation; 3. Spore. 
 

1.2 Yeast genome evolution 

1.2.1 The mechanisms of gene duplication  
Gene duplication refers to the duplication of a large DNA fragment containing a 

gene. The duplicated copy is often regarded as being initially free from selection. 

However, there are several different fates for newly duplicated gene pairs: the 

additional copy may become lost (which is most often the case), maybe via first 

becoming a pseudogene; one copy may gain a new function by 

neo-functionalization; or both copies could share the original function by 

subfunctionalization (Zhang 2003).  

 

There are at least four ways in which a duplicated copy of a gene may arise: 

homologous recombination; retrotransposition; segmental duplication; and 

                                                        
2 http://en.wikipedia.org/wiki/Yeast 
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whole genome duplication.  

 

Homologous recombination (often synonymous with recombination) refers to 

the exchange of highly similar DNA sections with a sister chromosome. This 

process is not only useful for repairing potentially deleterious double-strand 

breaks in DNA, but is also essential in producing new genetic combinations 

during meiosis. Moreover, homologous recombination is a way to facilitate 

horizontal gene transfer between bacteria and viruses (Fall et al. 2007).  

 

A retrotransposon is a type of transposon that is particularly widespread in 

plants. Retrotransposons first transcribe one gene into an mRNA, then the 

mRNA is retrotranscribed to complementary DNA (cDNA) by transposase and 

then inserted into the chromosome somewhere else. The two mechanisms 

generate very different duplicated genes: homologous recombination usually 

produces tandem duplicates with the introns and regulatory sequences of the 

genes retained, while retrotransposition usually produces gene copies that are 

located far away from the original copy and do not contain introns or regulatory 

sequences (Zhang 2003). Therefore retrotransposition often generates 

pseudogenes. 

 

Segmental duplication gives rise to low copy repeats. Although the mechanism 

is not very clear, segmental duplication is reported to be an important 

evolutionary force in primate evolution (Cheung et al . 2003; Bailey, Eichler 

2006). However, its role in yeast evolution is likely to be more limited.  

 

Finally, whole genome duplication is a very different form of generating 

duplicated genes. In whole genome duplications, the genes on each 

chromosome are duplicated. Many of the redundant copies are subsequently lost. 

Although initially whole genome duplication was regarded as very rare in nature, 

whole genome duplications have now been discovered in plants (Maere et al . 

2005; Tuskan et al . 2006; Jaillon et al . 2007; Paterson et al . 2010), fishes 

(Brunet et al . 2006), yeasts (Wolfe, Shields 1997) and basal vertebrates 

(Blomme et al. 2006).  
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1.2.2 Yeast gene order browser (YGOB) 
With the rapid development in sequencing technology, hundreds of genomes 

have been sequenced to date, including more than 20 fungal species. This data 

has facilitated the comparison of genome order, which is of great importance for 

studying the evolutionary history of yeasts. Based on the current gene 

arrangement in the genomes, it is also possible to reconstruct the ancestral gene 

orders. The yeast gene order browser (YOGB)3, which currently contains 

information on the genome arrangement of 11 yeasts, is an extremely useful tool 

in this respect (Byrne, Wolfe 2005). The information in this database is 

manually curated. More than 550 gene pairs that were retained after the 

ancestral whole genome duplication have been identified using this browser 

(Byrne, Wolfe 2005). 

 

A comparison of the gene order of the three yeast species Saccharomyces 

cerevisiae, Saccharomyces castellii  and Candida glabrata  revealed that the 

gene loss process differs at different loci. There is about a 20% loci difference 

in these three species (Scannell et al . 2006). It was also found that the three 

lineages diverged shortly after the whole genome duplication. This lead the 

authors to propose a simple model based on passive complementary gene losses 

to explain the rapid speciation after whole genome duplication (WGD). 

Additionally, YGOB can also be used to assign the content of the ancestral 

genome before speciation. Aligning the gene order of Kluyveromyces 

polysporus to the other post-WGD yeasts showed that the common ancestor 

contained >9,000 genes (Scannell et al. 2007). 

 

The ancestral yeast gene order before the whole genome duplication event was 

constructed based on the integration of the gene order of 11 yeasts. This 

ancestor contained 8 chromosomes and 4703 loci in total. Comparison of the 

ancestral genome information with S. cerevisiae indicates that 124 genes were 

gained during whole genome duplication and 88 loci were lost in S. cerevisiae. 

The function of gained genes is biased towards ethanol production, growth in 

hypoxic environments, or making use of alternative nutrient sources (Gordon, 

                                                        
3 http://wolfe.gen.tcd.ie/ygob/ 
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Byrne, Wolfe 2009).  

 

1.2.3 Whole genome duplication (WGD) in yeast 
Gene duplication is an important evolutionary force that was recognized by 

geneticists in the 1970s, in particular including Susumu Ohno. In his famous 

book “Evolution by Gene Duplication”, he also proposed that polyploidy (whole 

genome duplication) played a particularly important role in evolutionary history 

(Ohno 1970). Not until the completion of sequencing of the first eukaryote 

genome (Goffeau et al . 1996) was it possible to test his hypothesis. In 1997, 

Wolfe and his colleagues aligned the chromosomes of yeast by dot matrices 

(Wolfe, Shields 1997). They found that there are 55 large-scale duplicated 

regions, which in sum contain 376 homologous gene pairs. This was consistent 

with Ohno’s hypothesis. Thus they proposed that Saccharomyces experienced a 

whole genome duplication during its recent evolution (Wolfe, Shields 1997). 

 

Although the large duplicated chromosomal segments provided support for 

whole genome duplication, there was a debate over whether these segments 

were created by WGD or by many independent segment duplications (Friedman, 

Hughes 2001; Piskur 2001). The controversy was not resolved until the 

publication of a genome-wide sequence of a pre-WGD species -- K. waltii  

(Kellis, Birren, Lander 2004). K. waltii contains 8 chromosomes, which is 

exactly half the number of chromosomes in Saccharomyces cerevisiae. Further 

analysis of the genome of K. waltii shows that K. waltii has a 1:2 mapping of 

the genome with Saccharomyces cerevisiae, namely, each chromosome region 

of K. waltii  corresponds to two regions of Saccharomyces cerevis iae (Kellis, 

Birren, Lander 2004).  

 

1.2.4 Models for the retention of duplicated genes 
Two main models have been proposed to explain the process by which a newly 

created duplicated copy is preserved, namely subfunctionalization and 

neofunctionalization. Both are supported by a wide range of literature. 

Subfunctionalization proposes that after duplication, the two genes suffer 

complementary mutations in their regulatory sequences, resulting in each of the 
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copies being able to perform a subset of the original function of the ancestral 

gene. Thus there is no adaptive evolution in the duplicated genes (Force et al . 

1999), although subfunctionalization may typically be followed by an increased 

specialisation of the proteins. Tissue-specific expression of duplicated genes 

and reciprocal degenerative coding-region changes are usually cited as 

examples of separate function (Force et al. 1999).  

 

Conversely, neofunctionalization proposes that one of the two duplicated loci 

retains the ancestral function, while the other copy gains a new function; this is 

usually accompagnied by an increased rate of evolution. After 

neofunctionalisation, it is presumed that the second locus confers a selective 

advantage.  

 

In addition, other models have been suggested to explain the preservation of 

duplicated genes. One model assumes that selection for increased dosage may 

be responsible for the preservation of the duplicated gene (Seoighe, Wolfe 

1999). In another model, both of the copies could perform the required function 

of the ancestral protein but a decrease in gene expression level or coding region 

impairment could lead to the retention of the two copies. This situation is likely 

to exist in particularly small populations (Lynch, Force 2000). Finally, 

deleterious effects of dosage imbalance, e.g., when only some subunits of a 

duplicated protein complex get lost, may hinder the loss of sets of interacting 

proteins (Papp, Pal, Hurst 2003). 

 

1.2.5 The consequences of gene and genome duplication 
The rate of duplication events in the genome is estimated at 0.002 to 0.020 per 

gene per million years, which appears relatively high and underlines the 

importance of duplication events in the evolution of eukaryotes (Lynch, Conery 

2000). Although both of the copies are perhaps created equally, most of the 

duplicated copies are lost fairly rapidly: on average they have a half-life of 1~10 

million years (Lynch, Conery 2000). In addition, there is a rapid divergence of 

expression and regulatory network evolution after gene duplication (Gu, Zhang, 

Huang 2005). The preserved genes become stable in the genome, either by 
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gaining a new function (neofunctionalization) or by inheriting part of the 

function of the ancestral gene (subfunctionalization). 

 

Since the duplication of genes is the main way of gaining novel functions in 

eukaryote evolution, it is critically important to study the consequences of gene 

duplications. Duplicated genes are enriched in several functional categories. In 

both E. coli  and S. cerevisiae, duplicated genes tend to be transcription factors 

and about half of all transcription interactions were gained after duplication 

(Teichmann, Babu 2004).  In protein interaction networks, duplication not only 

increases the number of proteins, but also of interactions (Bergman, Siegal 

2003). What is more, duplicated genes may compensate the function of each 

other, hence increasing the genetic robustness of the system (Gu et al. 2003). 

 

The consequences of small-scale duplications are very different to the 

consequences of whole genome duplications, as whole genome duplication 

provides each gene with an equal chance of evolving new functions. 

Stress-related genes tend to be duplicated in small-scale duplications, while 

growth-related genes do not (Wapinski et al. 2007); however, in whole genome 

duplications this constraint has been circumvented. Moreover, new modules 

rarely arise by gene duplication (Wapinski et al . 2007). A further important 

consequence of whole genome duplication in yeast (perhaps the most important 

consequence) is the increase in glycolytic flux, which provided the post-wgd 

yeast with the ability for rapid glucose fermentation, which in turn improved the 

adaptation to glucose-rich environments (Conant, Wolfe 2007). 

 

1.2.6 Non-random gene order in yeasts 
Although it is generally accepted that genes that form the same operon are 

usually from similar functional categories and thus not randomly distributed in 

prokaryotes (Suyama, Bork 2001), even a decade ago there was little evidence 

that gene order is not random in the eukaryote genome. But the situation has 

changed dramatically in the past ten years due to the effort of geneticists. First 

in yeast, (Cohen et al . 2000), then in human (Lercher, Urrutia, Hurst 2002; 

Semon, Duret 2006), Caenorhabditis elegans  (Roy et al . 2002), Mus musculus 
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(Reymond et al . 2002; Semon, Duret 2006), Rattus n orvegicus (Fukuoka, 

Inaoka, Kohane 2004), Arabidopsis thaliana  (Birnbaum et al . 2003; Williams, 

Bowles 2004; Chen, de Meaux, Lercher 2010), and Plasmodium falciparum  

(Florens et al . 2002), and now in almost every examined eukaryote genome, 

people have found evidence for non-random clustering of genes.  

Understanding the origin and the underlying selective reason for these clusters 

is of considerable importance to both genomics and gene therapy. 

 

The first genome-wide evidence showing that gene order is not random in yeast 

was the paper by Cohen et al. (Cohen et al. 2000). Using whole genome-wide 

cell cycle mRNA expression data, they found that genes on the same 

chromosome show correlated expression patterns. Moreover, they demonstrated 

that adjacent genes also show correlated expression independent of gene 

orientation, while genes located close together on the same chromosome also 

tend to have similar functions. Shortly afterwards, Hurst and colleagues found 

evidence that the co-expression of neighbouring genes cannot fully be 

accounted for by their physical proximity to the promoter region, and thus a 

clear signal of selection on these clusters is seen (Hurst, Williams, Pal 2002). 

Later, through the analysis of a “cleaner” expression dataset that was obtained 

from a large Northern blot study, it was shown that the co-expression domains 

in yeast chromosomes could be as large as 100 kb (Lercher, Hurst 2006). Given 

the fact that gene order is not random in yeast, which factors are more important 

than others in determining the conserved gene order? A systematic examination 

based on a logistic regression model suggested that intergene distance is the 

strongest predictor, then the local density of essential genes and co-regulation, 

followed by co-expression and the recombination rate (Poyatos, Hurst 2007).   

 

1.2.7 Different mechanisms are responsible for the co-expressed 

gene clusters 
Different mechanisms have been proposed to be responsible for the 

non-randomness of gene order. The first one is the null hypothesis, holding that 

only intergenic distance plays a major role. As for recombination, gene pairs 

that are separated by a large distance are more likely to be recombined while 
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gene pairs that are close to each other should be more conserved. Closely linked 

genes are expected to be more conserved than gene pairs that are far away from 

each other. Actually many researchers have observed that intergenic distance is 

a strong predictor of neighbouring gene conservation (Poyatos, Hurst 2007; Tsai 

et a l. 2009). In addition, clusters of essential genes usually have low 

recombination rates and larger clusters are usually found in low recombination 

rate regions, indicating that these clusters are not only physical clusters but also 

genetic clusters (Pal, Hurst 2003). 

 

Another mechanism that has been proposed is the sharing of transcription 

regulatory systems (Kruglyak, Tang 2000). Regardless of orientation, many 

gene pairs could potentially be regulated by just one regulatory motif, and thus 

the transcription of one gene will automatically activate another. Under this 

situation, the adjacent gene pairs show incredibly similar expression profiles.  

Kruglyak and Tang reported several such gene pairs, most of them being related 

to the cell cycle (Kruglyak, Tang 2000). 

 

Furthermore, by comparing the expression profile of genes in more than 80 

experiments, Spellman and Rubin reported that more than 200 groups of 

adjacent genes showed similar expression profiles, accounting for 20% of the 

total number of genes (Spellman, Rubin 2002). This phenomenon led the 

authors to propose that the regulation of chromatin structure plays an important 

role because it cannot be explained by either gene function or homology 

(Spellman, Rubin 2002). As chromatin is not static, transitions between active 

chromatin and inactive chromatin could be an efficient mechanism leading 

neighbouring genes to be highly co-expressed (Poyatos, Hurst 2007; Chen, de 

Meaux, Lercher 2010). In yeast, chromatin remodeling is thought to have a 

major role in the co-expression of neighbouring genes, especially for those for 

which the co-expression level is relatively low (Pearson correlation coefficient 

between 0.2 and 0.4) (Batada, Urrutia, Hurst 2007). 

 

1.2.8 Noise measurement and single molecular technology 
The transcription and translation processes of genes are built from fundamental 
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biochemical reactions, and thus they are stochastic. It is not long since people 

first noticed this point, although even in 1957, Novick and Weiner found that 

the expression of beta-galactosidase varies between cells (Novick, Weiner 

1957). Recently, interest in this topic has increased, one important reason being 

the advances in using fluorescent proteins, e.g., GFP.  Combining fluorescent 

proteins and microscopy, flow cytometry and time-lapse imaging technology, 

different methods have been developed to detect both single mRNA and protein 

molecules. Table 1-1 is a summary of the advantages and disadvantages of 

different methods in this field, modified from a previously published review 

(Raj, van Oudenaarden 2009).  

 

The technology described above has helped to advance our understanding of 

both the benefits and the harmful effects of noise. An excellent example where 

the cell utilizes noisy gene expression to achieve a specific function involves 

odorant receptors. There are over a thousand different odorant receptors in 

different sensory neurons, and it is believed that the mouse developed a simple 

“Monte Carlo” strategy to randomly express a special odorant receptor for each 

cell (Vassar, Ngai, Axel 1993). Another example is the stochastic expression of 

ComK, which is responsible for the competence transitions in Bacillus subtilis: 

noise reduction of this protein could also reduce the number of competent cells 

(Maamar, Raj, Dubnau 2007).  

 

Despite these examples of advantageous noise, is likely that noisy gene 

expression is mostly harmful to organisms. This may be especially true in 

developmental systems, as the accurate implementation of a special 

developmental program at a certain time is crucial. However, the potentially 

harmful effects of noisy gene expression have not yet been fully studied 

experimentally. One well known example is the positive correlation between the 

noise of gene expression and the age of animals (Bahar et al. 2006; Somel et al. 

2006). 

 

1.2.9 Gene order evolved to reduce gene expression noise 
Although several specific examples have been discovered regarding the benefit 
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of noisy gene expression, it was recently shown that the cell uses a 

genome-wide strategy to minimize overall expression noise in both prokaryotes 

and eukaryotes. In E. coli , the gene order is not random because of operon 

structures: genes encoded in the same operon often belong to the same 

metabolic pathway or the same protein complex (Suyama, Bork 2001). Recently, 

Kovacs et al. discovered that even within the same operon, the gene order is still 

not random: enzymes acting first in their metabolic pathway are often located 

close to the 5’ terminus (Kovacs, Hurst, Papp 2009). These authors further 

constructed a theoretical model to show that this arrangement can be explained 

by the minimization of stochastic stalling of metabolism, especially for proteins 

that are expressed at low levels.  

 

Moreover, in yeast, essential genes tend to cluster together (Pal, Hurst 2003; 

Hurst, Pal, Lercher 2004), one indication of the non-randomness of gene order. 

The origin of these clusters is obscure. A model proposed by Batada and Hurst 

shows that these clusters could effectively avoid transcriptional bursting 

because they are located in relatively open chromatin, and thus reduce 

expression noise (Batada, Hurst 2007). Thus, noise control appears to be an 

important force in genomic evolution. 

 

1.3 Yeast networks and phenotypic evolution 

Since none of the proteins or enzymes in the cellular machinery work fully 

independently, pure reductionism, which focuses on individual components and 

protein function, is incapable of providing a meaningful picture of natural 

processes. Since the release of the human genome sequence (Lander et al. 2001; 

Venter et al. 2001), integrated methods based on high-throughput technologies 

have been providing a great opportunity for the systematic investigation of 

cellular function. Among these technologies are microarrays, large-scale tandem 

affinity purification coupled to mass spectrometry (TAP-MS), and two-hybrid 

or protein chips. This increased trend towards the study of interactions is known 

as network biology or systems biology. So far, large amounts of data have been 

accumulated, e.g., on protein–protein and genetic interactions (Breitkreutz et al. 



Chapter 1 Introduction 
 

13 

 

2008) as well as on metabolic networks. Based on the knowledge thus acquired, 

we are also able to predict interactions in newly sequenced species (Jensen et al. 

2009). 

 

To date the best-annotated networks in yeast are the co-expression network, 

protein–protein interaction network, genetic interaction network, metabolic 

network and transcriptional regulatory network. While some signaling pathways 

are available, they are far from combining into a near-complete signaling 

network.   

 

1.3.1 Protein-protein interaction network 
The earliest data on the yeast protein–protein interaction (PPI) network came 

from two large-scale yeast two-hybrid screens. In the first study in 2000, a total 

of 957 interactions were detected involving 1004 proteins (Uetz et al.  2000), 

while the second study identified 4546 interactions among 3278 proteins (Ito et 

al. 2001). Note that the detected interactions do not overlap very much, 

indicating that the complete interaction network is indeed much larger. More 

recently, another two independent studies have greatly increased the number of 

interactions: a protein-fragment complementation assay (PCA) method applied 

to 1124 endogenously expressed proteins revealed as many as 2770 interactions 

(Tarassov et al. 2008), and a "second-generation" high-quality, high-throughput 

yeast two-hybrid screen found another 1809 interactions (of which more than 

1500 are new compared with the previous two investigations) (Yu et al. 2008). 

Protein–protein interaction networks are essentially dynamic during the cell 

cycle, with many new interactions being formed and lost (de Lichtenberg et al. 

2005).  

 

The evolution of the protein–protein interaction network has received much 

interest. Protein complexes, which are aggregates of several proteins working 

together, play a particularly important role in this network evolution. A 

comparative investigation of yeast PPI with PPIs in humans revealed that 90% 

of co-complex membership is conserved during evolution (van Dam, Snel 2008), 

indicating that the evolution of complexes in the protein–protein interaction  
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 network is mainly due to gain and loss of complex members rather than 

network rewiring. Most of the protein complexes originated very early during 

evolution, and gene duplication played an important role in the growth of these 

complexes (Yosef et al. 2009). 

   

1.3.2 Transcriptional regulatory network 
In the cell, the spatial and temporal expression of each gene differs. How does 

the cell control this process? How are the genes that are involved in 

development transcribed at a specific time of the lifecycle? To answer these 

questions, one has to know the exact DNA sequences that determine the 

transcription of a gene and the exact transcription factors that bind to the DNA, 

resulting in transcriptional interactions. Many technologies have been developed 

to detect such interactions; the most used method is the ChIP-chip (or more 

recently ChIP-seq) method. ChIP-chip was developed first in yeast and then 

applied to other organisms. The technology includes several steps, including 

preparation of cross-linked chromatin; chromatin immunoprecipitation; 

amplification and fluorescence labeling of chromatin immunoprecipitation DNA; 

microarray hybridization (or DNA sequencing) and data analysis; and finally, 

validation of the identified binding sites (Kim, Ren 2006).  

 

Today, the known transcriptional network of yeast consists of more than 10,000 

interactions, involving about 150 transcription factors. Different transcription 

factors (TFs) bind to different numbers of target genes: those TFs binding to 

many target genes usually regulate multiple cellular processes, while TFs that 

bind to few target genes specifically regulate one or a few cellular processes 

(Balaji et al. 2006). 

 

1.3.3 Co-expression network 
Gene co-expression networks are often constructed using microarray data. They 

are usually used to predict the function of unknown genes, because genes with 

high co-expression levels are often also functionally related (Luo et a l. 2007; 

Ruan, Dean, Zhang 2010). Two methods are frequently used, employing either 

weighted or unweighted co-expression matrices. In unweighted networks, two 
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genes are linked if their co-expression values are larger than a threshold (hence 

links have no weights and are just either present or absent), whereas in weighted 

networks, the co-expression level is used to weight the link (Zhang, Horvath 

2005). As a consequence, weighted co-expression networks are much larger 

than unweighted networks.  

 

Co-expression networks typically exhibit a scale-free, small-world structure, 

which means that most of the nodes have few connections while a small number 

of nodes has high numbers of interactions. It has been reported that this 

structure can be explained by a purely neutral model under simple assumptions 

about the duplication and loss of genes and of transcription factor binding sites 

(van Noort, Snel, Huynen 2004). 

 

1.3.4 Metabolic network 
Since the advent of molecular biology in the 1950s, biochemists have been 

working on various enzyme activities, accumulating an enormous amount of 

metabolic reaction data. But not until the very late 20th century (1999) were 

genome-scale metabolic reaction maps constructed in a prokaryote, 

Haemophilus influenza (Edwards, Palsson 1999). Then in 2003, the first 

genome-scale metabolic network for a eukaryote (yeast) was released (Forster et 

al. 2003). The network accounted for 708 proteins, corresponding to 1035 

reactions. In total about 16% of yeast genes were included in this metabolic 

network. To date, more than 50 genome-scale metabolic networks of various 

species have been published, including networks of specific human cell types.  

 

What is the use of the constructed metabolic model? One common use is for 

metabolic engineering (Feist, Palsson 2008), which aims to discover new 

metabolic pathways and improve the performance of old pathways. For example, 

S. cerevis iae could be engineered to produce 59 g/l of malate, which is five 

times higher than the amount previously reported (Zelle et al. 2008). The other 

common use is for the study of differences in species-specific networks, in order 

to gain information on network evolution. For instance, a metabolic network 

model of four halophilic archaea has been developed and used to compare 
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phenotypic differences (Falb et al.  2008); a yeast model was used to study the 

adaptation of metabolic networks, indicating that the topological properties of a 

metabolic network may be formed as a byproduct of selection for other 

phenotypes; thus, topological properties per se do not necessarily give selective 

advantages (Papp, Teusink, Notebaart 2009). 

 

a: 

 

b: 

 

 

Figure 1-3 Molecular mechanisms for negative genetic interactions (a) and 
positive genetic interactions (b), edited from (Dixon et al. 2009). 
 

1.3.5 Genetic interaction network 
Genetic interaction refers to an interaction between phenotypic effects of 

mutations (mostly complete knockouts) in two different genes. Three effects are 

possible: no interaction (i.e., the phenotype of the double mutant is as expected - 

a multiplicative combination of the single mutant phenotypes), positive or 
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alleviating interactions (i.e., the double mutant is less impaired than expected), 

and negative or aggravating interactions (i.e., the double mutant is more severly 

impaired than expected). The strongest negative interaction results in synthetic 

lethality.  

 

Most gene pairs show no genetic interaction (Tong et al.  2004). Negative 

genetic interactions arise, e.g., from the disruptive consequences of two 

compensatory pathways, or a situation where each gene contributes to the 

decreased flux of one essential pathway (Dixon et al.  2009) ( Figure 1-3a). 

Positive interactions often occur when two genes share the same protein 

complex, when two genes act in a single non-essential pathway, or when the 

inactivation of gene B decreases the accumulation of the toxic protein product 

caused by the inactivation of gene A (Figure 1-3b). 

 

Researchers have also studied the evolution of genetic interaction networks. 

Comparisons based on both manually curated and high-throughput data of S. 

cerevisiae and S. pombe  revealed that synthetic lethal interactions are strongly 

conserved between distantly related species (Dixon et al. 2008). 

 

1.3.6 The concept of phenotypic capacitors 
Natural environments are subject to unpredictable events, such as rain, wind, or 

extreme temperatures. All organisms living on Earth were capable of adapting 

to these events in their environments, with few phenotypic changes. This 

indicates that living organisms can buffer variation in their environments. 

Furthermore, there is also enormous intrinsic (non-environmental) variation, 

such as genetic differences within populations, and stochastic variations in 

expression arising via gene transcription and translation systems. The buffering 

effect of the system is often believed to stem from the robustness of the 

underlying networks, and the genes that contribute to this kind of robustness are 

called phenotypic capacitors (Masel, Siegal 2009). When a phenotypic capacitor 

is functionally impaired, the organism will become less robust and thus exhibit 

more phenotypic variation (Masel, Siegal 2009). The most famous example of 

this process is the chaperone Hsp90, which targets many signaling transduction 
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proteins. The fact that changing Hsp90’s function leads to more morphological 

variability has been demonstrated in both Drosophila and Arabidopsis 

(Rutherford, Lindquist 1998; Queitsch, Sangster, Lindquist 2002).  

 

Are there also phenotypic capacitors in yeast? Using numerical simulations in 

gene networks, it was predicted that there would be a large set of genes for 

which abnormal function could lead to increased morphological variability 

(Bergman, Siegal 2003). Based on high-throughput morphological phenotyping 

of individual yeast cells following single-gene deletion, more than 300 

phenotypic capacitors were subsequently identified in yeast (Levy, Siegal 

2008). 

 

1.3.7 Network and protein evolution  
Protein evolution is of particular interest to biologists, as proteins form the 

fundamental building blocks of organisms. In the past ten years, much 

information has been gathered on the factors that influence protein evolution 

rates, such as expression level (Pal, Papp, Hurst 2001), recombination rate 

(Rattray, Strathern 2003), mutation rate (Datta, Jinks-Robertson 1995), and 

protein connectivity in networks (von Mering et al. 2002). Among these factors, 

the level of protein expression is thought to be the main contributor to the 

evolutionary rate of the sequence. In yeast, the expression level can explain 

more than 50% of the variation in the synonymous substitution rate and nearly 

half of the variation in the non-synonymous substitution rate (Drummond, Raval, 

Wilke 2006). The underlying reason for this correlation is probably that for 

highly expressed proteins, selection against protein misfolding is increased, as 

for such proteins, the toxicity caused by the aggregation of misfolded proteins 

would be extremely harmful. Thus, selection for increasing translational 

robustness causes proteins with high expression levels to evolve slowly 

(Drummond et al. 2005; Drummond, Wilke 2008). 

 

Different network properties have also been found to influence the rate of 

protein evolution; the most highly studied property is protein connectivity 

(Fraser et al. 2002). A negative correlation was observed between the number of 
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connections in the protein–protein interaction network and evolutionary rate; 

this was assumed to be the result of co-evolution of important interacting sites 

(Fraser et al . 2002). What is more, proteins that are more “central” in the 

network evolve more slowly (Hahn, Kern 2005). 

 

1.3.8 Network and phenotype  
One of the ultimate objectives of network biology is to understand the 

phenotypic consequences of the networks under different environmental stimuli; 

here phenotypic outcome includes cell behavior, nutrition, and the response to 

toxic material. Understanding the network behavior of individual cells would 

also greatly facilitate our understanding of the process of cell–cell signaling and 

multi-cell response.  

 

1.3.9 Understanding phenotypic effects on the network level – 

modules 
Modular structure has been shown to be a common feature of complex networks, 

such as biological networks, the internet and social networks. In the 

protein–protein network, a group of proteins that function together, such as 

protein complexes, can be treated as a module (Hartwell et al. 1999). A module 

might be the basic functional unit of many critical cell events, such as 

chromosome segregation. 

 

Some research groups have highlighted the potential connections between 

modules and the phenotypic features of the cell. In one particular study, 10 

modules that are potentially connected with breast cancer were identified (Niida 

et al.  2009). A further investigation based on the Iterative Clique Enumeration 

algorithm revealed 19 modules that showed expression correlations with tumor 

stage (Shi, Derow, Zhang 2010). Additionally, a robust module network 

including microRNAs was introduced as a potential modulator in cancer cells 

(Bonnet et al . 2010). While these resulst highlight the connection between 

functional modules and phenotypic features of a cell, it is evident that further 

investigations are needed to fully understand the underlying mechanisms.
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Chapter 2 Gene Orientation and 

Non-coding Transcripts Modulate Noise 

Levels 
 

2.1 Project summary 

For some genes, such as essential genes, expression when expression is needed is 

vital, hence low noise is selectively favourable. For others, such as 

stress-response genes, some level of noise is necessary for coping with 

stochasticity.  Noise also provides a dice-like mechanism to enable cell fate 

choice.  But how is noise controlled?  Recent evidence suggests that chromatin 

opening and shutting can be an important mechanism modulating noise.  

Assuming this, we hypothesise that gene orientation may be a key determinant of 

noise.  We suggest that genes in divergent orientation may benefit from the close 

proximity, on the opposite strand, of the promoter of the neighbour, this being 

especially so when the promoters of each gene overlap (bi-promoter genes).  A 

stochastic simulation model confirms the expectation that if expression of one 

gene ensures some resilience to stochastic chromatin shutting of a neighbour (and 

vice versa) noise can be reduced.  The hypothesis has the potential to explain 

why some genes have an antisense non-functional non-coding RNA transcribed 

from a shared promoter. The model correctly predicts that 1) protein coding 

genes with bi-promoter architecture, including those with a ncRNA partner, have 

lower noise than other genes; 2) ncRNA antisense transcripts are associated with 

genes that a priori would be under selection for low noise (essential genes); 3) 

divergent gene pairs have correlated expression noise, while convergent or 

co-oriented gene pairs do not; 4) mean expression noise level of divergent 

transcripts correlates with the distance between the two promoters, 5) essential 

genes reside in divergent orientation more than expected by chance, while 6) 

stress response genes tend not to be divergent.  We conclude that gene 

orientation is an important modulator of noise levels with an impact on gene 
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order evolution. 

 

2.2 Introduction 

Between genetically identical cells we see variation in abundance of any given 

transcript or protein.  This variation is noise in gene expression (Elowitz et al. 

2002; Ozbudak et a l. 2002; Blake et al . 2003; Kaern et al . 2005; Raj, van 

Oudenaarden 2008).  There is also considerable variation between genes in the 

level of noise (Bar-Even et al. 2006; Newman et al. 2006; Sigal et al. 2006). In 

part the between-gene variation in noise, assayed as the coefficient of variation 

(standard deviation/mean across individuals), is accounted for by expression 

level, there being lower noise for more highly expressed genes (Raser, O'Shea 

2004; Bar-Even et al . 2006; Newman et al . 2006; Yin et al . 2009).  Even 

controlling for this, using an abundance corrected noise measure, there remains, 

however, striking variation (Bar-Even et al. 2006; Newman et al. 2006). What are 

the underlying determinants of this abundance-independent variation in noise 

levels between genes and might the variation between genes in their noise levels 

reflect the activity of selection?  

 

For some genes high noise is likely to be significantly deleterious.  In particular, 

essential genes are, by definition, genes for which reductions (but not necessarily 

increases) in dosage are highly deleterious.  Stochastic fluctuation in abundance 

of such proteins is thus likely to be highly deleterious as dose can, by chance, sink 

to fitness-reducing low levels (Fraser et al. 2004).  We should then expect such 

proteins to be under selection to have low noise.  That they do have low noise is 

consistent with such a model (Fraser et al . 2004; Batada, Hurst 2007). 

Haplo-insufficient genes have yet lower noise, as might be expected (Batada, 

Hurst 2007; Lehner 2008).  Conversely noise can be advantageous to some 

degree. Noise, for example, can provide the underlying basis of dice-like 

behaviour necessary for alternative cell fate specification in a genetically uniform 

population of cells (e.g. the developing embryo) (Chang et al. 2008; Choi et al. 

2008). Further, if the environment is stochastic, noisy gene expression can be an 

effective mechanism to cope with uncertainty (Kussell, Leibler 2005; Blake et al. 

2006).  Noise in the expression of metabolic import channels is, for example, 
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potentially advantageous when nutrient availability is fluctuating. It is striking 

that of all metabolic genes, import channels are the most noisy (Zhang, Qian, 

Zhang 2009). Stress response genes are also expected to be high noise genes, 

these also being responsive to an uncertain environment (Lopez-Maury, 

Marguerat, Bahler 2008).  

 

While noise may then be an important target of selection, this leaves the issue of 

how mechanistically noise is modulated.  At the transcript level slow translation 

rates and low mRNA half lives are likely to reduce noise (Blake et al . 2003; 

Kaern et al. 2005; Ramsey et al. 2006; Kar et al. 2009). Much noise modulation is 

probably achieved at the transcriptional control level. TATA controlled genes, in 

particular, tend to be especially noisy (Raser, O'Shea 2004; Blake et al . 2006; 

Field et al. 2008) and expression noise of genes is increased when the binding site 

of GAL1 promoter is moved closer to a TATA-box (Murphy, Balazsi, Collins 

2007). The underlying cause of an association with TATA is unresolved.  The 

high expression variation of TATA-box containing gene may be owing to the 

binding stability of transcription-mediating factor TBP (Blake et al . 2006) or 

related to the high nucleosome occupancy (Field et al. 2008; Tirosh, Barkai 2008), 

suggesting a link to chromatin dynamics. A recent report of the lack of activating 

histone modifications in this region (Choi, Kim 2008; Choi, Kim 2009) supports 

the latter.   

 

The above results go someway to unifying TATA control with chromatin level 

control, also thought to be important in noise modulation (Newman et al. 2006). 

In one striking example (Raj et al . 2006), a pair of genes inserted in tandem 

showed co-ordinated spiking in their gene expression, while the same pair when 

unlinked showed little co-ordination. This result suggests a model whereby 

opening of chromatin permits accessibility to transcription factors.  Regular 

opening and closing of chromatin then leads to co-ordinated expression, and 

correlated noise levels, of neighbours.  Such a model correctly predicts that 

across a genome, controlling for similarity of transcription factor control, linked 

genes show much higher levels of co-expression than do unlinked genes (Batada, 

Urrutia, Hurst 2007). This in turn is related to nucleosome occupancy (Batada, 

Urrutia, Hurst 2007). The magnitude of this effect is noteworthy: two random 
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unlinked genes regulated by the same set of transcription factors show no higher 

co-expression than a pair of linked genes with no similarity in their transcription 

factors (Batada, Urrutia, Hurst 2007). 

 

This class of model has led to the suggestion that the genomic distribution of 

essential genes and chromatin control should co-evolve such that essential genes 

end up clustered into domains with largely open chromatin, thereby ensuring low 

noise and expression when expression is needed (Batada, Hurst 2007). The model 

has some predictive power.  It correctly predicts, for example, that essential 

genes should be rare subtelomerically in yeast, these being domains inconsistent 

with permanently open chromatin. It also correctly predicts nucleosome 

occupancy in domains rich in essential genes and that noise levels of 

non-essential genes should be predicted by the local density of essential genes 

(Batada, Hurst 2007).  Here we extend the logic of chromatin mediated noise 

modulation to propose that modulation of noise by DNA dynamics might affect 

gene pairs differentially dependent on their orientation.  

 

Gene pairs can come in one of three orientations: convergent (), co-oriented 

(or) or divergent ().  These three classes are not equally conserved. 

In human, mouse, and rat bidirectional gene organization tends to be both ancient 

and more conserved than alternative orientations (Trinklein et al. 2004; Sigal et 

al. 2006). Similarly, through the fungi, divergent gene pairs are more conserved 

in orientation than convergent or co-oriented gene pairs (Kensche et al. 2008). In 

some cases of divergent genes the promoter domains overlap.  Here we define 

such bidirectional-promoter genes as those where the nucleosome free region 

(NFR) of the two genes overlap. In Saccharomyces cer evisiae we find, in 

agreement with prior results (Xu et al . 2009), that more than 60% of 

non-overlapping divergent protein coding transcripts share the same promoter 

region.  For convenience we refer to genes with a bidirectional promoter as 

bi-promoter genes. 

 

Bipromoter gene pairs are especially well conserved as a pair. This can be seen 

when comparing the current gene order in Saccharomyces cerevisiae  with that 

seen in the ancestor, prior to the whole genome duplication (Gordon, Byrne, 
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Wolfe 2009).  Comparing bipromoter pairs to divergent but non-bipromoter 

pairs using logistic regression, we find that bipromoter pairs are much better 

conserved as a pair (p = 3 x 10-7), even when controlling for co-expression level 

(p = 0.03) and intergene distance (p = 0.00136), known predictors of pair 

conservation (Hurst, Williams, Pal 2002; Poyatos, Hurst 2007).  This 

conservation may reflect nothing more than the fact that inversions that break up 

bidirectional gene pairs are more likely to disrupt promoter architecture.  

 

Here we note that divergent orientation, bipromoter architecture in particular, is 

peculiar in that it puts in proximity the promoters of the two genes.  This we 

argue may well have consequences for noise levels as for divergent genes the 

transcription, or priming for transcription by PolII loading, makes the 

transcription of the neighbour more likely, either because it might decrease the 

probability that the relevant chromatin stochastically closes or increases the 

probability of it being opened.  That neighbouring genes show co-ordinated 

expression (Batada, Urrutia, Hurst 2007; Raj, van Oudenaarden 2008), that such 

co-ordination is not simply owing to similarity in transcription factors and is 

related to local nucleosome occupancy (Batada, Urrutia, Hurst 2007), while noise 

of a transgene is dependent on the insertion site (Becskei, Kaufmann, van 

Oudenaarden 2005) all point to a coupling between chromatin neighbourhood 

and noise. That transcription affects chromatin status (Li, Carey, Workman 2007) 

suggests in turn that bipromoter genes are unlikely to have uncoupled expression.  

Indeed, in humans, it has been shown that intensive transcription at one locus 

frequently spills over into its physical neighbouring loci (both upstream and 

downstream) resulting in a time lagged burst of expression subsequent to the 

upregulation of the focal gene (Ebisuya et al. 2008). This spill over is thought to 

be at least in part owing to local relaxation of chromatin associated with the 

expression of the focal gene, as evidenced by changes in histone modifications 

(Ebisuya et al . 2008). The same effect is seen in yeast, only here the effect is 

much more highly localized, the spillover extending no further than 3kb (Ebisuya 

et al. 2008) as opposed to 100kb in humans.  

 

Based on these observations, we propose that for bipromoter genes, the gene pair 

acts as it were as a partially self re-inforcing domain of open chromatin. Such 
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bi-promoter domains should, we hypothesise, increase the net likelihood that 

chromatin is open and should thus be conducive to low noise, enabling 

expression when expression is needed. This could explain why some genes have 

non-coding unstable RNAs produced off a bidirectional promoter. Below we start 

by examining the hypothesis by reference to stochastic simulations. 

 

2.3 Materials and methods 

2.3.1 Dataset 
All yeast (Saccharomyces cer evisiae) transcripts as observed by tiling arrays 

under three conditions (YPE, YPD and YPGal) and their genomic coordinates 

were obtained from (Xu et al . 2009). Two transcripts were considered as 

bi-promoter transcripts if they share the same 5’ nucleosome free region (NFR), 

where NFR was defined as a nucleosome deplete region 80bp, according to 

(Xu et al. 2009). These transcripts were defined as divergent (), convergent 

t () or co-oriented ( or) by their coordinates in the genome. 

Essential genes in rich media were downloaded from the web site of the 

Saccharomyces Genome Deletion Project4. Both the yeast gene order (Version 2) 

and genome annotation information were taken from YFOB5. For more than 

2,000 proteins, expression noise data in rich media were obtained from 

(Newman et al . 2006).  We used the distance to median noise level 

(DM_YEPD) in our analysis to get rid of the confounding influence of protein 

abundance. Genes whose promoter contains a TATA-box were derived from a 

large TATA-box gene enquiry experiment (Basehoar, Zanton, Pugh 2004). 

Codon usage bias (FOP) was obtained from (Drummond, Raval, Wilke 2006). 

The relationships between transcription factors (TF) and their target genes were 

derived from the yeast transcriptional regulatory network (Balaji et al . 2006).  

In total, 12873 regulatory interactions were indentified in this network. 

Stress-related genes and growth-related genes were obtained from (Wapinski et 

al. 2007) and co-expression level of adjacent gene pairs as previously reported 

(Batada, Urrutia, Hurst 2007). Haploinsufficent genes were taken from 

                                                        
4 http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html 
5 http://wolfe.gen.tcd.ie/ygob/ 
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(Deutschbauer et al . 2005) and Genes with type I and type II promoters were 

obtained from (Field et al. 2008). 431 type I genes and 565 type II genes were 

included in our analysis. Protein complexes were gained from (Yin et al. 2009).  

 

2.3.2 Data analysis 
Transcripts that share the same 5’ NFR were described in Xu et al . (Xu et al . 

2009). The noise of each protein measured by Newman et al . (Newman et al . 

2006) was used to represent the noise of the transcript. In the comparison of the 

noise of proteins derived from divergent transcripts to the noise of proteins 

without divergent transcripts, transcripts with complex annotations were 

excluded (e.g. the annotation “other”, which means the transcript contains 

multiple open reading frames or is a mixture of non-coding and coding parts). In 

the calculation of the correlation between noise levels of protein pairs, 

transcripts that contain multiple annotation features (e.g. the annotation “other”, 

which means the transcript contains multiple open reading frames or is a 

mixture of non-coding and coding parts) were excluded. In the calculation of the 

correlation between noise level and the distance between transcription start sites, 

we used the mean noise level of the two proteins if the noise of both proteins 

had been measured.  If one gene transcript shares its promoter with a 

non-coding transcript, the noise of this gene was chosen to represent the noise 

of the two transcripts in the calculation. We used the lawstat package in R to 

perform the Brunner-Munzel test (Brunner, Munzel 2000; Hui, Gel, Gastwirth 

2008). 

 

2.3.3 Randomization test of the correlation between noise levels of 

gene pairs. 
Our model predicts that the expression noises of two divergent genes should be 

positively correlated due to the shared chromatin regulation, as chromatin 

regulation processes are responsible for much of the expression noise in yeast 

(Choi, Kim 2008; Choi, Kim 2009). To check if there is a positive correlation 

between expression noise in divergent, convergent and co-oriented gene pairs, 

and to obtain the significance level of any such correlation, we employed a 

randomization procedure. In this we extract the noise level for each protein, 
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orient the gene pairs by their strand location for divergent and convergent gene 

pairs, by their transcription order for co-oriented gene pairs, calculate the 

spearman correlation level for this data, randomize one column of genes 10,000 

times and determine the correlation for each. The significance level of the 

observed correlation is (m+1)/10001 where m is the rank of the true correlation 

compared against the randomizations.  

 

2.3.4 Randomization test to determine whether essential-essential 

gene pairs are more likely to be divergent gene pairs. 
The S. cerevisiae gene order was taken from the Yeast Gene Order Browser6, 

Version 2. The procedure is as follows: 1: count the number of divergent 

essential gene pairs in the S.cerevisiae genome; 2. randomize the position of 

essential genes in each chromosome 1,000 times and calculate the number of 

divergent essential gene pairs for each; 3. The significance level of this number 

is (m+1)/1001, where m is the rank of the true number compared with the 

randomizations. 

 

2.3.5 Method to test to the density of essential genes in different 

gene types. 
To calculate the density of essential genes surrounding essential bi-promoter 

genes and essential non-bi-promoter genes, a +/- 5 gene window was used to 

scan the yeast chromosomes (the S. cer evisiae gene order we used is from 

YGOB, as described above). To avoid biases caused by the fact that essential 

genes tend to be in divergent gene pairs, the direct (+1 and -1) gene neighbours 

were excluded from the scan.  

 

2.3.6 Randomization test of bi-promoter genes show significantly 

lower noise level after control for transcription factor number. 
In order to determine the significant level that bi-promoter genes have lower 

noise than other genes after control for the number of transcription factors (TFs), 

a randomization test was utilized. The procedure as follows: 1). Assume that all 

                                                        
6 http://wolfe.gen.tcd.ie/ygob/ 
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the genes have more than 10 transcription factors have 10 transcription factors. 

2). for each TF categories (1 to 10, there is no bi-promoter genes that have 0 TF 

in our dataset), we calculated the absolute value of difference between the mean 

noise level of bi-promoter genes and other genes (abs (mean noise of 

bi-promoter genes – mean noise of other genes)). 3). sum up the difference of all 

the categories to get the overall difference value. 4). Random assign the noise 

data in each categories and repeat the steps 2) and 3). After randomize the data 

10000 times, we got the significant level of the test (m+1)/10001, where m is 

the rank of the true number compared with the randomizations. 

 

2.3.7 Calculation of the evolutionary rate of non-coding transcripts 
The alignment of non-coding RNAs in 38 S. cere visiae strains and 4 related 

yeast species were obtained from recently published genomic sequencing data 

(Liti et al . 2009). For each transcript alignment, we also obtained the 

downstream 100 bp. Only ncRNAs with clearly mapped end, and only 

downstream sequences without overlap with any annotated features were 

included, resulting in 234 alignments. 

 

For each non-coding transcript alignment and downstream 100 bp alignment, we 

calculated Nucleotide diversity Pi (p) within the S. cerevisiae  population and 

divergence K (the average number of substitutions per site, using the 

Jukes-Cantor model to correct for multiple hits) among 5 yeast species (Rozas, 

Rozas 1999). 

 

2.4 Results 

2.4.1 The stochastic simulation model 
Consider a pair of neighbouring genes.  The promoter of each we presume can 

exist in one of two states, either in open chromatin or closed.  Transcription is 

only possible, we assume, when chromatin is open. Here, note, we ignore the 

possibility that transcription factors might also act to open chromatin. Assuming 

independent behaviour of the two genes, the probability that open chromatin 

closes within a fixed time interval is pc, while the probability closed chromatin 
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opens in po.  If chromatin is open, then transcription is possible, occurring with a 

probability pt.  A transcriptional event results in N proteins before the mRNA is 

lost and protein decays with probability pd.   

 

The novel component of the simulation is to suppose that transcription of one 

gene might alter chromatin dynamics of the other and in turn affect transcription. 

There are two ways (not mutually exclusive) by which transcription of one gene 

might mediate such effects: either by reducing the probability that chromatin of 

the other promoter will shut, if open, or by increasing the probability of the 

chromatin opening if shut.  We model both independently and consider a third 

model combining both. 

 

We start by considering the case where the probability of shutting alone is 

modified (model 1).  We can then define a parameter, i, for the level of 

independence between the genes, such that if one gene is being transcribed the 

probability that chromatin associated with the other gene’s promoter will shut 

will be i.pc.  For i=1, the two genes are perfectly independent (e.g. not 

bidirectional).  For i=0, transcription of one gene holds open the chromatin of 

the other gene, if the chromatin was already open.  In this model, if the 

chromatin of the other gene is closed, it isn’t forced to open by the activity of 

the neighbour. This coupling is hence in the form of resilience to chromatin 

closure.   

 

In the second model, we consider that transcription of one gene increases the 

chances that the promoter of the other is opened if closed, but doesn’t affect the 

probability of closure if open. If one gene is been transcribed, the probability 

that the chromatin of the other gene will open, if closed, is (2- i).pO.  In the 

final model (model 3), we incorporate both effects.  For further details see 

supplementary experimental procedures 1. 

 

For each simulation we follow the chromatin state, the transcriptional state and 

the protein level over 10,000 time units, updating status each time unit.  Noise 

for the protein is defined as the standard deviation in protein level over the time 

course / mean level (note that variation over the time course is equivalent to 



Chapter 2 Gene Orientation and Noise 

31 

 

variation between unsynchronized replicates at any given time).  An analogous 

definition is used for the transcript-level noise.  Co-expression between the 

two genes is the Pearson product moment correlation through the time course of 

the pair.  Chromatin fluctuation is the probability of observing a change in 

chromatin state in a randomly chosen iteration.  

 

In the model in which transcription exclusively increases the chances of closed 

chromatin opening (model 2), in nearly all parameter space increasing 

interdependence (i -> 0) promotes low noise.  Given this, we present in detail 

the less permissive model (model 1).  The results from models 2 and 3 are 

presented in Figures 2-1b and 2-1c. 

 

A typical result for model 1 is presented in Figure 2-1a.  Here pc = po =0.5.  

Note that as the likelihood of coupling decreases so noise goes up and 

co-expression is reduced. More generally, for a variety of parameter values we 

need to consider the correlation between noise level and i.  If, as in figure 1, 

this is positive, then increased coupling, (i->0), ensures reduced noise. We 

consider simulations in which for the two genes all parameters are the same, but 

we vary independently both pc and po over the range 0.05 to 1 under increments 

of 0.05 with 10 replicates for each set of parameter values.  We find that as 

regards transcriptional noise a positive correlation is always seen (Figure 2-2, 

blue points). However, owing to stochasticity in protein degradation this does 

not necessarily translate to protein level noise always decreasing with 

decreasing independence.   

 

We find that protein noise can be increased when the stochastic probability of 

chromatin closure is high and thus most of the time no transcription is 

happening (Figure 2-2, red points). This is largely dependent on pc not being too 

high (Figure 2-3a), as opposed to variation in po (Figure 2-3b). The causality of 

the negative correlation when closure probability is high is intimately related to 

effects on protein abundance.  When closure probabilities are high (and 

transcription rates low), there is a positive correlation between protein 

abundance and protein noise (Figure 2-4), while, when closure rates are lower 

this correlation switches to a negative correlation. This most likely reflects the  
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Figure 2-2 The correlation between noise and independence as a function of the 
ratio of the probabilities of chromatin opening and shutting.  A positive 
correlation indicates decreased noise with increasing inter-dependence. Protein 
noise, red; transcriptional noise, blue. Other parameter values, N=100, pf= 0.9, 
d=0.7.  
 
fact that when closure rates are high, little transcription is seen and protein 

levels can descend to zero, thereby reducing the variance in levels until the next 

transcriptional event. With some degree of coupling between the genes the 

protein abundance level is raised and so noise is raised.  The transcripts are, 

however, rare and lost almost immediately. As in yeast we see a negative 

correlation between protein noise and protein abundance (Newman et al. 2006), 

we surmise that true closure rates are relatively low, predicting a decrease in 

protein noise with increasing coupling. 
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Figure 2-4 The relationship between the correlation between protein noise and 
protein abundance as a function of the probability of chromatin closure.  
 

2.4.2 Noise reduction has abundance-dependent and 

abundance-independent components 
While in the above models we see a robust relationship between coupling and 

noise, much of this effect is likely to be owing to there commonly being lower 

noise for highly abundant proteins.  In the simulations, increased coupling 

increases the abundance of the protein product by permitting a higher 

opportunity for transcription.  This agrees with the prior suggestion that, for 

essential genes, an increase in dose may be beneficial as it both reduces noise 

and moves the mean expression level away from the danger zone, where low 

dose equates to large fitness effects (Choi et al. 2007; Yin et al. 2009). Note too 

that dose sensitive genes, such as essential genes are asymmetrically dose 

sensitive.  While reduction of dosage is very costly (hence they are deemed 

essential) increases in dose do not have any similar effect.  Indeed, it is notable 

that the set of genes for which gross over-expression has a phenotype shows 
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little overlap with the set showing fitness on reduction in dosage (Sopko et al. 

2006).  We conclude that it is likely to be advantageous for some dose 

sensitive genes to be configured in bipromoter architecture as it increases net 

abundance.  

 

Given the above logic, we might also ask whether bipromoter genes are 

expected to have lower noise, even allowing for the increased abundance.  To 

approach this we consider simulations in which we alter abundance by 

modifying factors that affect protein abundance independent of the effects of 

chromatin opening and shutting, and transcriptional bursting.  We can then ask 

whether an independent gene pair (i=1) and a coupled pair (i=0) show different 

noise levels when steady state protein abundance levels are equal owing to 

differences in decay rates (higher for coupled genes).  We find for all three 

models that bipromoter genes still show lower noise levels at any given 

abundance level.  We also consider the possibility that transcripts that result 

from bipromoter activity produce fewer translated proteins than do those from 

independent genes, keeping the decay rates constant.  Again we find that 

controlling for net protein abundance that coupled genes (i=0) have much lower 

noise than do independent ones.  We conclude that noise modulation by 

modification of transcriptional bursting, owing to coupled gene activity, can 

have both abundance-dependent and abundance-independent causality. These 

results are in many regards comparable to those of Cook et al .(Cook, Gerber, 

Tapscott 1998), who, in examining a role for ploidy in noise modulation, 

identify both an abundance-dependent and abundance-independent component 

to noise modulation.  

 

2.4.3 Bi-promoter transcribed genes have low expression noise 
We tested the hypothesis that bi-promoter protein coding genes have low protein 

noise with the help of recently published yeast whole genome transcription data 

(Xu et al . 2009) to define gene orientation and presence of ncRNA, coupled 

with high resolution noise data on rich media provided for over 2000 protein 

coding genes specified by Newman et a l. (Newman et al . 2006). In all, we 

analysed 7,272 well identified transcripts, of which 1,772 are non-coding 



Chapter 2 Gene Orientation and Noise 

37 

 

transcripts (stable unannotated transcripts and cryptic unstable transcripts, SUTs 

and CUTs) which is approximately 25% of all transcripts (Xu et al . 2009). 

Among transcripts with a mapped 5’ nucleosome free region (NFR), 61% of the 

unannotated transcripts and 48% of the protein-coding transcripts initiated 

bidirectionally from shared 5’ NFRs rather than initiating from their own 

promoters (Xu et al. 2009).  

 

Figure 2-5 Genes which share a promoter (5’ NFR) with either a non-coding 
transcript or coding transcript (ORF) show lower expression noise than genes 
without any bi-promoter transcript. 
 

If our hypothesis is correct, protein-coding genes with a bi-promoter 

architecture (shared with either a protein coding gene or a ncRNA) should show 

lower expression noise. As we are not so interested in the hypothesis that 

bipromoter architecture might modify noise through modification of abundance, 

we restrict analysis to abundance corrected noise measures, as defined by 

Newman et al . (Newman et al . 2006).   We also repeated analysis using 
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residuals from a loess regression of noise against abundance and find no 

important differences (data not shown).  After removing the confounding 

transcript types (5'NFR tandem transcript, 3'NFR antisense transcript and 3'NFR 

tandem transcript) annotated by (Xu et al . 2009), we find that protein-coding 

genes with a bi-promoter structure, sharing their 5’ NFR either with a coding 

gene or with a non-coding gene, show significantly lower expression noise than 

the genes that do not have a bi-promoter transcript structure (mean noise of 

bi-promoter genes = 0.33 +/- 0.11; of all non-bi-promoter genes: 1.76 +/- 0.15; 

Brunner-Munzel test p = 4.1x 10-13, Figure 2-5). More generally, divergent 

genes (regardless of their NFR) have lower noise than those in alternative 

configurations (noise of non-divergent genes = 1.50 +/- 0.18, mean noise of 

divergent genes = 0.88 +/- 0.12, Brunner-Munzel test p = 0.0077). By contrast, 

convergent genes don’t show significant differences in noise level compared 

with co-oriented genes (p = 0.68, Brunner-Munzel test).  

 

2.4.4 Noise reduction and divergent ncRNA 
This model not only has applicability in the case where both genes in the pair 

are protein coding.  It also has the potential to explain why some genes have 

antisense non-coding RNA specified from a bi-directional domain. Such 

transcripts are now widely reported.  In yeast, of the unannotated transcripts 

(ncRNA) which have mapped 5’ NFR, 61% are bidirectional initiated from a 

shared promoter region (Xu et al . 2009). Similarly, mapping millions of short 

RNA reads generated from murine embryonic stem cells and other differentiated 

cell types has revealed abundant short transcription start site–associated RNAs, 

many of which are antisense transcripts (Seila et al. 2008). Likewise in humans, 

depletion of the exonucleolytic RNA exosome reveals lots of highly unstable 

RNA of promoter upstream transcripts (Preker et al . 2008). Similar RNAs are 

reported in chicken and Drosophila (Taft et al. 2009).  

 

One model sees these as spurious transcripts, a consequence of illegitimate 

transcription factor activity (Brosius 2005).  Our model suggests a functional 

explanation. For the chromatin to remain open and for noise to be reduced, 

permitting expression when expression is needed, polII priming or transcription 
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of a ncRNA through a promoter on the opposite strand to that of the focal 

protein coding gene would be an efficient mechanism to enable accessibility of 

the promoter domain of the focal gene. As expected, we find that bi-promoter 

protein coding genes have low noise both when they are partnered with a 

protein coding gene (p = 5.0x 10-14 compared with all other genes; 

Brunner-Munzel test), and when the partner is not protein coding (p = 0.0030, 

Figure 2-5).  

 

2.4.5 Is noise more important than co-expression? 
In simulations we find that co-expression is higher when genes are coupled 

(r=-0.86).  While then the above results support the noise model, can we be 

confident that the function of bi-promoter architecture is ever to reduce noise 

rather than to increase co-expression levels?  For the most highly co-expressed 

2% gene pairs it is known that they tend to belong to the same functional class, 

are preserved as a pair over evolutionary time and are enriched in divergent 

orientation (Batada, Urrutia, Hurst 2007).  For these there is little doubt that 

co-expression is functionally relevant.  However, several findings support the 

proposition that noise modification is relevant. First, we see no significant 

correlation between co-expression level and mean noise, neither for divergent 

gene pairs (r = -0.064, p = 0.424), convergent gene pairs (r = -0.1038, p = 

0.152), nor co-oriented gene pairs (r = -0.0672, p = 0.257). We do, nonetheless 

and as expected, find higher co-expression rates for divergent gene pairs 

(divergent gene pairs: mean co-expression =0.140 +/- 0.012; convergent gene 

pairs, mean co-expression: 0.107 +/- 0.010; co-oriented gene pairs: mean 

co-expression: 0.101 +/- 0.009; p = 0.0467 between divergent and convergent; p 

= 0.0019 between divergent and co-oriented and p = 0.333 between convergent 

and co-oriented, Brunner-Munzel test).  

 

Second, co-presence of the product of transcription is unlikely to be the case for 

one class of ncRNA, cyptic unstable transcripts (CUTS), as these tend to be 

rapidly targeted for degradation (Neil et al. 2009; Xu et al . 2009). Importantly 

then, we find that when we consider protein coding genes partnered with CUTs 

through bi-promoters, they too have lower noise than other genes (p=0.012), but 



Evolutionary Systems Biology in Yeast 
 

40 

 

no different from that of protein coding genes partnered with protein coding 

genes in a bi-promoter architecture (p>0.05).   

 

A third line of evidence derives from examination of a class of genes where a 

priori we might know the fellow genes with which they might benefit from 

being co-expressed. The best candidates in this regard are proteins that belong 

to the same protein complex, that do indeed have high co-expression scores with 

fellow members (mean co-expression of genes from same complex: 0.1877 +/- 

0.0026 and mean co-expression of genes from different complexes: 0.0253 +/- 

0.0001, p < 2.2 x 10-16 in Wilcoxon rank sum test) (data from Wang et al. 2009).  

Given the need for transcription when transcription is needed, as expected 

complex-associated genes do indeed have low noise (p = 7.3 x 10-7 

Brunner-Munzel Test). Further, as we would expect, genes specifying proteins 

in a complex tend to have bipromoter architecture more than expected by 

chance (p < 2.2 x 10-16, Fisher's Exact Test), this being true after control for 

essentiality (p < 2.2 x 10-16, Fisher's Exact Test).  While, however, complex 

related genes both have low noise and are found more commonly in bipromoter 

architecture than expected by chance, we find no cases where two genes 

specifying proteins in the same complex are located in the same bi-promoter 

pair. These results strongly suggest that noise modulation above co-expression 

is key to selection on bi-promoter genes.  A very few bi-promoter genes may 

well also benefit from their mutual co-expression, but the more relevant force 

may well be selection for noise modulation. 

 

2.4.6 For noise, orientation of the ncRNA matters 
While above we show that nCRNA in divergent orientation is associated with 

low noise of the protein coding gene, this does not demonstrate that oritentation 

per se  is important.  Is then low noise a general property of genes associated 

with ncRNAs, regardless of orientation, or is the divergent orientation important? 

We find that noise levels of proteins with an ncRNA from the same strand as the 

protein coding gene have higher expression noise than proteins with a ncRNA 

derived from a bidirectional promoter (bi-promoter with ncRNA noise=0.65, 

co-oriented with ncRNA noise=2.07, p=0.036; Brunner-Munzel test). This both 
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supports the hypothesis that the function of bi-promoter ncRNA is to reduce 

noise of the paired protein-coding gene and suggests that noise, rather than 

co-expression, can be the focus of selection. Moreover, genes with ncRNA from 

the same strand as the protein coding gene have higher expression noise than the 

protein coding genes which have a same strand protein coding gene neighbour 

(p = 0.026). This suggests that co-oriented ncRNAs may be a means to increase 

expression noise, a possibility we will not examine further. 

 

Table 2-1 Binding of particular transcription factors cannot explain the low 
noise of bi-promoter genes. The noise level of bi-promoter genes is significantly 
lower than that of other genes both in the case of genes regulated by the same 
common transcription factor, and for those regulated by other transcription 
factors. p-values from Brunner-Munzel tests. 
 

 
Regulated by particular 

TFs 

Regulated by other 

TFs 

Bi-promoter genes 0.09 +/- 0.24 (322) 0.43 +/- 0.12 (1789) 

Non-bi-promoter genes 1.15 +/- 0.26 (568) 1.57 +/- 0.15 (3921) 

p 0.0013 4.0e-08 

 

2.4.7 Results are robust to covariate controls 
The above results are all consistent with our hypothesis but may have 

alternative explanations. Previous analysis of divergent promoters in mammals 

suggests that several particular binding motifs are enriched in bi-promoter 

structures (Lin et al . 2007a) and a particular binding protein, GABP, binds to 

more than 80% percent of divergent promoters (Collins et al. 2007). This raises 

the possibility that differential utilization of transcription factors might explain 

the low noise of bi-promoter genes.  

 

To test this, we take three transcription factors (Balaji et al . 2006) that each 

regulate more than 100 genes and ask whether the mean expression noise of 

bi-promoter genes bound by these three TFs is lower than the noise of other 

genes that are bound by the same TFs. Second, we ask whether the expression 

noise of bi-promoter genes bound exclusively by other TFs (i.e. not the main 

three) is lower than that of non-bi-promoter genes bound exclusively by other 
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TFs. The results show that TF binding cannot explain the low noise in 

bi-promoter genes (Table 2-1). Further, when we control for the number of 

transcription factors regulating a gene, bi-promoter genes still show lower 

expression noise than other genes (p<0.0001 from randomization; Figure 2-6).  

 

 

 

Figure 2-6 Controlling for the number of TFs, bi-promoter genes show lower 
expression noise than other genes. Bi-promoter genes, red; other genes, black. 
Significance determined by randomization with the sum difference 
(non-modular) between the means for each increment on the x-axis being the 
reporting statistic (p<0.0001).  Randomizations preserved for each gene the 
number of transcription factors and randomized noise levels between genes with 
the same number of regulating transcription factors. 
 

The existence of a TATA-box appears to be linked to increased noise levels 

(Raser, O'Shea 2004; Blake et al . 2006; Murphy, Balazsi, Collins 2007; Choi, 
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Kim 2008; Field et a l. 2008). As bi-directional genes in both human and 

Drosophila melanogaster (Trinklein et al . 2004; Yang, Yu 2009) often lack 

TATA control, the result could reflect TATA presence/absence rather than 

bidirectionality per se . In yeast, we find the same bias: of the 2111 protein 

coding genes involved in bi-promoter pairs, only 509 are annotated as 

containing a TATA-box, which is significantly lower compared to other genes (p 

< 2.2e-16, Fisher's Exact Test). 

 

Table 2-2 The low noise of bi-promoter genes cannot be explained by TATA 
boxes. Noise levels of bi-promoter genes are significantly lower than those of 
other genes, both in genes with TATA box containing promoters in TATA-less 
genes. Mean noise+/-standard error (number of genes).  p- values from 
Brunner-Munzel tests. 
 

 TATA box-containing genes TATA-less genes 

Bi-promoter genes 1.01+/-0.25 (509) 0.13+/-0.11 (1602) 

Non-bi-promoter genes 2.71+/-0.27 (1587) 0.70+/-0.12 (2902) 

p-value 2.1e-06 0.0013 

 

We thus compared the noise of bi-promoter TATA-containing genes with that of 

non-bi-promoter TATA-containing genes, and the noise of bi-promoter 

TATA-less genes with that of non-bi-promoter TATA-less genes. As expected, 

TATA is a predictor of noise (e.g. in bi-promoter genes, genes with a TATA-box 

show higher noise levels than genes without a TATA-box, p = 0.0064, 

Brunner-Munzel test). However, this fails to explain the low noise of 

bi-promoter genes: bi-promoter genes have lower noise than non-bi-promoter 

genes even when only considering those genes without a TATA-box; the same 

holds when considering only genes with a TATA-box (Table 2-2).  

 

2.4.8 Type II promoters already are nucleosome free and so don’t 

benefit from bidirectional architecture.  
There are two types of promoter regions: those that favour nucleosomes, and 

those that don’t (Field et al . 2008; Tirosh, Barkai 2008). Genes with 

nucleosome-favoring promoters usually have high expression noise, while genes 

with nucleosome disfavoring promoters usually have low expression noise 
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(Field et al. 2008). How does this relate to gene orientation?  

 

We utilized a prior definition of type I and type II promoters (Field et al. 2008). 

Here a type I promoter is defined as a promoter containing a TATA-box with at 

least 80% of the length of its binding sites covered by nucleosomes. A type II 

promoter is TATA-less with at most 20% of the total length of its binding sites 

covered by nucleosomes. We find that non-bi-promoter genes have higher noise 

than bi-promoter genes when restricting our analysis to nucleosome-favouring 

promoters (>80% occupancy; mean noise =1.81 in bi-promoter genes, 

noise=5.46 in other genes, p = 0.00020, Brunner-Munzel test; Table 2-3). This 

remains true after controlling for gene essentiality (Table 2-3).  

 

Table 2-3 Nucleosome favouring bi-promoter genes have lower noise than 
nucleosome favouring non-bi-promoter genes. In the control for essentiality we 
just examine the non-essentials. p value determined by the Brunner-Munzel test. 
 

  nucleosome favouring nucleosome disfavouring 

bi-promoter  1.81 +/- 0.66 (103) 0.09 +/- 0.30 (233) 

non bi-promoter  5.463+/- 0.698 (328) 0.10+/- 0.17 (331) 

p   0.00020 0.16 

    

control for essentiality  nucleosome favoured nucleosome disfavoured 

bi-promoter  2.491 +/- 0.829 (87) -0.2801 +/- 0.2018 (162) 

non bi-promoter  6.1434 +/- 0.756 (301) 0.188 +/- 0.203 (241) 

p  0.0028 0.065 

 

By contrast, for genes with nucleosome-disfavouring promoters (occupancy 

<20%), we see no evidence for a noise reduction through bi-promoter 

architecture (Table 3).  If Seila et al (Seila et al. 2009) are correct this result is 

to be expected.  They conjecture that RNAPII complexes are simultaneously 

engaged at the boundaries of the nucleosome-depleted region surrounding TSSs 

and that these divergently engaged polymerases could directly reinforce the -1 

and +1 nucleosome positions, effectively enhancing the boundaries of the 

nucleosome-free region, allowing transcription factors access to the promoter 
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(Seila et al. 2009), and maybe further maintaining the “loose” chromatin during 

transcription (Preker et al . 2009) Such genes are, in effect, primed for 

transcription, regardless of orientation: an ‘interrupted form’ of bi-directional 

transcription occurs even if there is no bi-promoter.  For those bi-promoter 

pairs that do not exclude nucleosomes in this manner from the bi-promoter 

region during transcription (type I pairs), dependence between the two genes is 

re-inforced and noise reduced, much as we modelled. If the above picture is true, 

we would expect that the class II (nucleosome-free) genes in non-bidirectional 

orientation should have lower noise than class I genes in the same orientation, 

which indeed we observe (mean noise level is 0.10 +/- 0.17 and 5.46 +/- 0.70, 

respectively. p < 2.2e-16, Brunner-Munzel test; this remains true when 

controlling for gene essentiality). In short, nucleosome depletion and 

bidirectional orientation we suggest to be two alternative mechanisms to ensure 

low noise by resisting stochastic chromatin closure.  

 

2.4.9 Only bi-promoter genes show correlated noise of neighbours  
For any gene we can assay its noise level under a variety of parameter values. 

The simulation suggests that when two genes are coupled (i->0) the noise levels 

of the two proteins across these multiple conditions are correlated.  More 

generally, across all simulations we consider the correlation in protein noise 

between the neighbours for a given value of independence i.  We find this to be 

strongest when coupling is strongest (r=-0.96). Our simulations thus predict that 

the correlation in noise levels between neighbours should be strongest when 

coupling is strongest and hence when genes are divergent. If independence of 

divergent genes is in turn modulated by intergene distance, by the same logic we 

expect for divergent genes the correlation in noise levels to be higher when 

intergene distance is lower. 

 

Confirming these predictions, we find a significant correlation of the noise of 

two divergent transcripts. Conversely, neither convergent nor co-oriented gene 

pairs show correlated noise levels (Spearman rank correlation for divergent 

pairs r = 0.148, p = 0.031 (r = 0.151, p = 0.047 after removing type II genes); 

for convergent pairs r = 0.0089, p = 0.45; for co-oriented pairs r = -0.0008, p = 
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0.51; p-values determined by randomization).  Also as predicted the mean 

noise level of the transcripts in divergent gene pairs is correlated with the 

distance between transcription start sites, a correlation not seen for convergent 

and co-oriented pairs (Spearman rank correlation for divergent pairs r = 0.0936, 

p = 0.0055; for convergent pairs r = -0.0194, p = 0.49; for co-oriented pairs r = 

-0.0282, p = 0.29).  

 

2.4.10 Essential genes tend to be low noise with bi-promoter 

architecture, while the opposite is seen for stress response genes. 
Of all genes, those that are lethal on knockout (i.e., essential) are most likely to 

be under selection for reduced noise levels (Fraser et al . 2004). Conversely, 

stress related genes are thought to be under selection for high noise 

(Lopez-Maury, Marguerat, Bahler 2008).  Many features of essential genes are 

consistent with low noise.  They tend to be highly expressed, but even 

controlling for this they have low noise (Newman et al . 2006; Batada, Hurst 

2007).  Counter-intuitively for highly expressed genes the mRNAs have short 

half lives (Pal, Papp, Hurst 2001), a feature consistent with low noise (Fraser et 

al. 2004).  They tend not to be TATA controlled and reside clustered in 

genomic low noise/open chromatin domains (Batada, Hurst 2007).  

 

If bi-promoter architecture is a mechanism to enable low noise and expression 

when needed, we might also expect such genes to be in divergent or bi-promoter 

orientation more than expected by chance.  This is indeed the case in yeast.  

Of 6600 protein coding genes in yeast, 2627 are divergent with a partner protein 

coding gene.  Of these, 537 (20.4%) are essential, while only 577 (14.5%) of 

the 3973 non-divergent genes are essential.  There is thus enrichment of 

essential genes in the divergent class (p = 4.9 x 10-10, Fisher’s exact test).  

There is a corresponding enrichment of essential genes in gene pairs with 

bi-promoter architecture. Of 2111 genes in bi-promoter organization, 22% are 

essential, while only 649 of 4489 (14.4%) non-bi promoter genes are essential 

(p=5.9 x 10-13, Fisher’s exact test).  An analogous excess in divergent 

orientation has recently been reported in Drosophila (Yang, Yu 2009). 

Moreover, we see more bidirectional pairs of two essentials genes than expected 
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by chance: there are 79 bidirectional essential gene pairs in yeast, this being 

more than ever found in 1000 gene order randomizations, p<0.001). Also as 

expected, haploinsufficent genes tend to be in bipromoter architecture more than 

expected (41% versus 31% of all others; p=0.005). 

 

For stress-related genes, where we expect selection for high noise, we see the 

opposite pattern.  While those that are bi-promoter have lower noise than stress 

related genes in different configurations (mean noise for bi-promoter stress 

genes 1.59 +/- 0.30, for non-bi-promoter stress genes 3.63 +/- 0.27, p=1.6 x 10-8, 

Brunner-Munzel test), stress related genes tend to avoid having a bi-promoter 

architecture. Only 509 (24.1%) bi-promoter genes are stress related, while 1525 

(34.0%) of non-bi-promoter genes are stress related (Fisher's exact test, p = 2.7 

x10-16).  Similarly, stress genes tend not to be in divergent orientation (28% 

divergent, 32.5% non-divergent; p = 0.00024, Fisher’s exact test).  

 

What of the essential genes that are not bi-promoter with another protein coding 

gene? We predict to see more cases of antisense ncRNA than expected by 

chance associated with such genes, if ncRNA is a mechanism of noise reduction. 

This we observe. Of 309 genes with an antisense CUT, 65 (21%) are essential 

genes, while only 624 (14.1%) of 4441 genes without an antisense CUT are 

essential (p = 0.0014, Fisher's exact test).  

 

If there are peculiar features of essential genes (e.g. short half life, low usage of 

optimal codons), can we exclude the possibility that bi-promoter genes have low 

noise just because of this enrichment for essential genes? Mean noise level of 

the 1646 non-essential bi-promoter genes is significant lower than other 

non-essential genes (0.43+/- 0.12 versus 1.83+/- 0.15, p= 5.5x10-12 in 

Brunner-Munzel test). That non-essential genes with bi-promoter control have 

lower expression noise than essential genes (in all orientations) (p = 0.035) 

further suggests that dispensability cannot alone account for the low noise of 

bi-promoter genes.  

 

There must, however, be alternative methods to modulate noise.  Notably, we 

find that the mean noise of bi-promoter essential genes (with either an ncRNA 
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or a protein coding gene partner) is not significantly lower than the noise of 

non-bi-promoter essential genes (0.18+/-0.22 versus 0.22+/- 0.26, p=0.82 in 

Brunner-Munzel test; 0.03+/-0.20 versus 0.29+/-0.30, p = 0.76 after removing 

type II genes). These results are then consistent with bi-promoter architecture 

being a means to reduce noise, but, unsurprisingly, not the only mechanism.   

 

What the other mechanisms might be is not immediately transparent.  For 

example, while essential genes have a shorter mRNA half life than non-essential 

genes (p = 2.8x 10-16, Brunner-Munzel test), the mean mRNA half life for 

bi-promoter essential genes is no different to that of non-bi-promoter essential 

gene (16.65 versus 16.91 respectively: p = 0.25, Brunner-Munzel test).  

Increased usage of codons that specify abundant tRNAs is expected to enable 

fast translation and be associated with high noise. As expected, there is a 

positive correlation between the frequency of optimal codon usage (FOP) and 

expression noise in yeast (r = 0.107, p = 4.6 x 10-07, Spearman's rank 

correlation). However, FOP of bi-promoter essential genes does not differ from 

that of either essential non-bi-promoter genes or essential non-divergent genes 

(p = 0.16 and 0.63, respectively, Brunner-Munzel tests).  

 

2.4.11 Bi-promoter gene pairs and CUTs are rare in noisy 

subtelomeric domains 
Does the fact that bi-promoter gene pairs have low noise affect not only which 

sort of genes are found in this architecture but also where on chromosomes they 

are found?  Previously it was reported that essential genes and non-essential 

genes flanked by a high density of essential genes tend to have low noise 

(Batada, Hurst 2007).  Could it be that non-bi-promoter essential genes tend to 

reside in essential gene clusters, thus giving them low noise?  Alternatively 

might genes requiring low noise not only adopt bi-promoter architecture but 

also aggregate into low noise chromosomal domains? Ignoring genes +1 and -1 

from a focal essential gene (direct neighbours) and then asking about the 

number of essential genes in the flanking 5 genes on either side, we find that 

both bi-promoter essential genes (p=0.022) and bi-promoter non-essential genes 

(p=0.018) have more essential genes in their vicinity than expected by chance 
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(Table 2-4).  Thus bi-promoter genes tend to be enriched in the vicinity of 

essential gene clusters, these having unusually low noise levels (Batada, Hurst 

2007).  Clustering of bipromoter genes doesn’t however fully account for the 

low noise of genes in such domains.  Examining non-bipromoter genes, those 

in essential gene clusters have lower noise than those not in clusters (P=0.0007; 

controlling for essentiality, P=0.01). 

 

Table 2-4  The density of essential genes among the 10 genes flanking focal 
genes.  Here we ignore genes +1 and -1 of a focal gene (direct neighbours).  
 

 Bi-promoter Not bi-promoter p-value 

Essential 0.212 +/- 0.006 0.195 +/- 0.005 0.022 

Not essential 0.188 +/- 0.003 0.180 +/- 0.003 0.018 

p-value 0.00089 0.010  

 

Yeast subtelomeric domains are high-noise domains and are depauperate in 

essential genes (Batada, Hurst 2007).  From the logic that bi-promoter 

architecture is a genomic device to minimize noise, we might expect that genes 

found in subtelomeric domains should be favoured to be high noise genes and 

hence not in a bi-promoter architecture. Considering all genes, 28 of 324 gene 

pairs (8.6%) are bi-promoter in subtelomeric domains (20kb from chromosome 

ends), while 2083 of 6276 (33%) non-subtelomerics are bi-promoter (p<2.2 x 

10-16, Fisher’s exact test).  However, as essential genes tend to be bi-promoter 

and avoid subtelomeric domains, we may be seeing nothing more than the 

biased distribution of essential genes.  Considering only non-essential genes, 

we see the same bias (8% subtelomeric non-essential genes in bi-promoter 

architecture versus 31% non-subtelomeric, p <2.2 x 10-16, Fisher’s exact test).  

We similarly find that bi-promoter CUT associated genes are rare 

subtelomerically (1.2% subtelomeric genes have a bi-promoter CUT compared 

with 4.8% otherwise, p=0.001 Fisher’s exact test; this remains when controlling 

for essentiality of the neighbour, p=0.006).  The high noise of subtelomeric 

genes and the avoidance of subtelomeric domains by bipromoter genes cannot 

explain the low noise of bipromoter genes, as they have low noise even 

compared with genes that are not subtelomeric (P<10-11). 
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Figure 2-7 The phylogenetic relationships of yeasts used in the comparison7.  
 

2.4.12 Non-coding RNAs evolve fast in yeast, suggesting the 

sequence per se is not functional 
Do non-coding transcripts show obvious conservation signals? If the transcribed 

sequence is functional, we expect that it is conserved across different 

evolutionary lineages. The recent literature however reports that many 

non-coding transcripts do not show detectable signs of evolutionary 

conservation. For example, Liang and Li (Liang, Li 2009) studied 383 human 

microRNAs and found that about 30% of them lack sequence conservation 

signals and appear almost free of selection pressures. Using recently released 

yeast population genetics data, we calculated the variation of non-coding 

sequences both within S. cerevisiae and between yeast species (see Figure 2-7). 

We then compared these measures to those of the (presumably non-functional) 

downstream 100bp regions. If the sequence divergence of non-coding 

transcripts is significantly lower than the downstream regions, then this 

indicates evolutionary conservation (Liang, Li 2009). As seen from Figure 2-8, 

the difference between ncRNA and downstream region is not significant in any 

of the 5 comparisons (p>0.05 in each case). Thus, non-coding RNAs and 

downstream untranscribed sequences show very similar diversity and 

divergence. What is more, this appears to be equally true for various subsets of 

non-coding RNAs (for example, in stable annotated transcripts and unstable 

annotated transcripts; data not shown).  

 

                                                        
7 http://www.broadinstitute.org/science/projects/fungal-genome-initiative/fungal-genome-initiative 



Chapter 2 Gene Orientation and Noise 

51 

 

 

 

Figure 2-8 Sequence diversity (Pi) and divergence (K) of non-coding RNAs 
(white bars), compared with non-transcribed un-annotated downstream 100 bp 
seqences (black bars). x-axis labels: cere = diversity within S. cerevisiae; para, 
mika, kudr, baya = divergence between S. cerevisiae and S. paradoxus, S. 
miyake, S. kurowski, and S. bayanus, respectively.  
 

2.5 Discussion 

We have found, via simulation, that if transcription of one gene increases the 

probability of transcription of a neighbour and vice versa, then low noise of 

both is expected across broad and realistic parameter space. We propose that 

divergent gene pairs, bi-promoter gene pairs in particular, are thus expected to 

be low noise genes, even allowing for any effect on protein abundance.  This 

model has striking predictive ability.  Bi-promoter genes are indeed low noise 
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and, as predicted, the noise is modulated by intergene distance.  Similarly, 

bipromoter pairs have correlated noise. The model can predict biases both in 

which genes are or are not in bipromoter architecture (essential/complex genes 

and stress response genes respectively) and which classes of gene should be 

more likely to have ncRNA in bi-promoter architecture.  Indeed, that our 

model can predict noise levels and skew in gene type associated with CUTs, 

strengthens the view that noise control, independent of co-expression 

modulation, is a focus of selection.  The model also predicts that bipromoter 

pairs should be rare subtelomerically as observed, such domains being high 

noise domains.  

 

These results suggest that gene orientation may well be an important feature in 

the control of noise, they also suggest that, as with transcription at SER3 

(Martens, Laprade, Winston 2004), it is the act of transcription, rather than the 

product of transcription, that can be important.  While the CUT associated with 

SER3 (a sense transcript) is associated with control of the expression of the 

downstream gene, we argue that transcription from the opposing strand is an 

effective mechanism for priming a focal sense strand gene for expression and 

hence for reduction in noise. The transcript may well be unwanted, but it 

doesn’t follow that the making of the transcript is without functional relevance. 

This is also supported by the observation that upstream RNA PolII transcripts 

usually cannot be elongated effectively (Core, Waterfall, Lis 2008; Seila et al . 

2009). 

 

We might then also wonder how much expression in protein coding genes from 

bidirectional promoters is to enable noise control rather than produce the protein 

product itself. Such a hypothesis could explain why many relatively highly 

co-expressed neighbours (0.4>r>0.2) in yeast have no functional (GO class) 

similarity (Batada, Urrutia, Hurst 2007).  

 

These findings add to recent evidence that a substantial component of selection 

on gene arrangement within genomes is to modulate noise levels. In yeast the 

clustering of essential genes may be owing to such selection (see also (Keller, 

Knop 2009)).  In bacteria co-linearity, the tendency for genes to appear in the 
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same order in the operon as the proteins are needed in a temporal fashion, 

appears also best explained by the consequences of selection on noise (Kovacs, 

Hurst, Papp 2009; Lovdok et al . 2009).  What remains to be resolved is 

whether noise modulation mediated by changes in gene order/orientation is 

relevant in less compact genomes, such as those of mammals.   
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Chapter 3 Co-expression of Linked Gene 

Pairs Persists Long After  Their  

Separation 
 

3.1 Project summary 

In many organisms, physically linked gene pairs tend to be co-expressed. While 

co-expressed gene clusters appear to be opposed by natural selection in mammals, 

they seem to be under stabilizing selection in yeast. Here, we analysed expression 

patterns of gene pairs that have lost their linkage in the evolution of S. cerevisiae 

since its last common ancestor with K. waltii. We demonstrate that co-expression 

of linked genes is retained long after their separation, and is thus likely to be 

functionally important. Contrary to previous suggestions, functional 

co-expression is not restricted to bi-directional promoters, and cannot be 

explained by gene essentiality alone. 

 

3.2 Introduction 

A gene’s expression pattern is influenced by its genomic location, both in 

prokaryotes and eukaryotes. In prokaryotes, neighbouring genes often form 

operons, resulting in tight co-expression of neighbouring genes. In eukaryotes, 

physically linked gene pairs also show higher co-expression than randomly 

chosen gene pairs (Cohen et al . 2000; Kruglyak, Tang 2000; Lercher, Urrutia, 

Hurst 2002; Williams, Hurst 2002; Lercher, Blumenthal, Hurst 2003; Hurst, Pal, 

Lercher 2004; Singer et al . 2005; Lercher, Hurst 2006; Semon, Duret 2006; 

Batada, Urrutia, Hurst 2007; Kensche et al . 2008). For example, in yeast, 

adjacent gene pairs show correlated expression regardless of their relative 

orientation (Cohen et al . 2000; Kruglyak, Tang 2000), and this co-expression 

relationship spans up to 30 neighbouring genes (Lercher, Hurst 2006). In the 

worm Caenorhabditis elegans, many genes are organized into operons (Lercher, 
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Blumenthal, Hurst 2003). In the mouse genome, both immune system genes and 

tissue specific genes are found to be expressed in clusters (Williams, Hurst 

2002). In the human genome, housekeeping genes also show strong clustering 

(Lercher, Urrutia, Hurst 2002). Such co-expression clusters may be selectively 

favourable in mammals, as they are usually maintained during evolution (Singer 

et al. 2005).  

 

The co-expression of neighbouring genes in prokaryotic operons is conceptually 

simple. In eukaryotes, many mechanisms have been proposed to be responsible 

for the co-expression of closely spaced genes. Neighbouring genes with similar 

functions have lead to the proposal that the co-expression of linked genes may 

be related to gene function (Cohen et al . 2000; Michalak 2008). Neighbouring 

genes that have divergent orientation suggest that bi-directionally active 

promoters are often responsible for the co-expression of divergently transcribed 

neighbouring genes (Cohen et a l. 2000; Kruglyak, Tang 2000; Kensche et al . 

2008). Chromatin structure also likely has an impact on the co-expression of 

closely located genes (Hurst, Pal, Lercher 2004; Batada, Urrutia, Hurst 2007); 

indeed, chromatin remodeling is a major source for the co-expression of linked 

genes (Batada, Urrutia, Hurst 2007). Finally, gene pairs that share the same 

transcription factors, and gene pairs that may be prone to a failure of 

transcription termination (‘transcriptional read-through’) were also reported to 

be responsible for the co-expression of neighbouring genes (Semon, Duret 2006; 

Batada, Urrutia, Hurst 2007; Michalak 2008). 

 

Thus, it appears clear that neighbouring genes tend to be co-expressed. But is 

this co-expression really selectively favourable, or is it solely a mechanistic 

by-product of genomic neighbourhood? If neighbour co-expression is indeed 

functional, then co-expression should be maintained even if the neighbourhood 

is broken up by genomic rearrangements.  In this chapter, we compare the 

effects of current and ancestral gene order on the current gene expression 

patterns. We show that gene pairs which were neighbours in the evolutionary 

past, but are separated now, also show higher co-expression than randomly 

chosen gene pairs. This indicates a significant role of natural selection in the 

co-expression of linked yeast genes. 
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3.3 Materials and methods 

3.3.1 Data source 
The Saccharomyces cer evisiae gene order as well as the ancestral gene order 

were taken from the yeast gene order database (Byrne, Wolfe 2005). We only 

retained genes with known positions in both data sets for further analysis. For 

the genes that retained duplicated copies in the ancestor genome, both of the 

two copies are taken into account for the calculation of co-expression level of 

ancestor neighbouring gene pair. S. cerevisia e genome sequence data was 

downloaded via ftp from the SGD database8. Ancestral gene order from 8 

reconstructed chromosomes were taken from(Gordon, Byrne, Wolfe 2009) and 

the information of gain and lose of neighbourhood of gene pairs in yeast 

phylogeny were taken from (Kensche et al. 2008). 

 

3.3.2 Expression data 
Combined data from 40 time-series microarray experiments was used to 

constructed the 5883 gene pair co-expression relationships (Kafri, Bar-Even, 

Pilpel 2005). For each two genes, we calculate the Pearson correlation 

coefficient of their expression levels across experiments and time points; 

missing values were omitted. For the ancestor genes that have two copies in the 

current genome, the mean correlation values of the two paralogs were used. 

 

3.3.3 Dollo parsimony method to calculate ancestor state of each 

gene pair 
Phylogenetic relationship of 19 yeasts and the neighbouring gene pairs of 

orthologs in these fungi were downloaded from the supplementary file of 

(Kensche et al. 2008). Then we used the Dollo parsimony method from PAUP* 

to calculate the ancestor state of each gene pair (Wilgenbusch, Swofford 2003). 

That method provides us the gain and loss information of each node. 

 

                                                        
8 ftp://genome-ftp.stanford.edu/pub/yeast/ 
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3.4 Results 

3.4.1 Gene order comparison between the reconstructed ancestor 

and the current S. cerevisiae genome 
We used the recently reconstructed gene order of the pre-whole genome 

duplication (pre-WGD) yeast ancestor (Gordon, Byrne, Wolfe 2009), which is 

believed to be about 100~150 million years old (Sugino, Innan 2005). We 

compared the co-expression of the gene pairs which are conserved between the 

two genomes to the co-expression of gene pairs newly formed in S. cerevisiae.  

 

Three possible scenarios exist: (i) If the conserved gene pairs are less likely to 

be co-expressed compared to newly formed gene pairs, then highly 

co-expressed neighbouring gene pairs may be generally disadvantageous, as 

was observed recently in mammals (Liao, Zhang 2008). (ii) If conserved gene 

pairs share similar co-expression profiles with newly formed gene pairs, then 

neighbour co-expression is likely to be largely selectively neutral. (iii) If the 

conserved gene pairs generally show higher co-expression levels compared to 

newly formed gene pairs, then this suggests that neighbour co-expression is 

generally advantageous, as previously suggested (Singer et al . 2005; Semon, 

Duret 2006). 

 

Table 3-1 shows the results of this comparison. For divergently oriented S. 

cerevisiae gene pairs (<- ->), those that were already in this orientation in the 

ancestral genome show higher co-expression compared to newly formed 

divergent gene pairs. No such difference between conserved and new pairs was 

found for convergent or co-oriented gene pairs. This indicates that in yeast, only 

divergent gene pairs are under selection for high co-expression. Surprisingly, 

there is no difference between the co-expression of newly formed divergent gene 

pairs and convergent gene pairs (p = 0.59 comparing new divergent gene pairs 

with conserved convergent gene pairs, and p = 0.59 comparing new divergent 

gene pairs with newly formed convergent gene pairs, Brunner-Munzel tests). 

Thus, divergent gene pairs do not always show higher co-expression compared to 

other types of gene pairs in yeast. 
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Table 3-1 Only divergent gene pairs show higher co-expression in ancient 
compared to new neighbours (p-values from Brunner-Munzel tests) 
 

 Neigbhours in 

ancestor &  

S. cerevisiae 

Neighbours in 

S. cerevisiae only

 

 Mean N mean N p 

divergent 0.14 738 0.11 502 0.00064 

convergent 0.11 708 0.11 561 0.95 

co-oriented 0.084 1140 0.084 1090 0.85 

 

The results further show that highly co-expressed linked gene pairs tend to be 

evolutionarily conserved only for divergent gene pairs. This is likely related to 

the activity of bi-directionally active promoters (‘bipromoters’) (Kruglyak, Tang 

2000). Consistent with this hypothesis, we found that 454 out of 638 bipromoter 

gene pairs (71%) were already present in the ancestral genome, while the same 

is true for only 47% of the non-bipromoter divergent gene pairs. More 

importantly, there is no difference between the co-expression level of conserved 

bipromoter gene pairs and new bipromoter gene pairs. Conversely, conserved 

non-bipromoter gene pairs show higher co-expression compared to newly 

formed non-bipromoter gene pairs.  

 

These results have two important implications. On one hand, they suggest that 

co-expression per se cannot explain the conservation of bipromoter structures; 

this result is consistent with our hypothesis of a role of bipromoters in regulating 

expression noise (see Chapter 2). On the other hand, the results indicate that there 

is a selective advantage for the retention of bi-promoter structure. 

 

For the 2765 ancestrally neighbouring gene pairs that are separated in the 

current genome, there is also a significant difference between their 

co-expression level and 10000 randomly chosen gene pairs (p=5.3x10-6, 

Wilcoxon rank sum test).  That result suggests that the high co-expression 

profile of linked gene in the ancestor genome cannot solely be explained by the 

gene pairs neighbouring in the current genome. but we do not find a significant 
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differences between divergent, convergent and cooriented gene pairs (p = 0.084 

between divergent and convergent pairs, p = 0.13 between divergent and 

cooriented gene pairs and p = 0.70 between cooriented and convergent pairs, 

p-values from Brunner-Munzel tests), that could potentially be explained by the 

hypothesis that chromatin remodeling account for most of the low level gene 

co-expression of linked gene pairs(Batada, Urrutia, Hurst 2007) (after 

separation, the chromatin effect disappears). 

 

3.4.2 Dollo parsimony method results 
The results presented above suggest that at least part of the high co-expression 

level of neighboring yeast gene pairs is due to natural selection. Thus, genes still 

need to be co-expressed when pairs are separated through a genomic 

rearrangement. To further verify this prediction, we used recent data based on 

gene pair conservation across 19 fungi (Kensche et al. 2008). We reconstructed 

the gene order in the common ancestor of these species, using Dollo parsimony 

as implemented in PAUP* (Wilgenbusch, Swofford 2003). 

 

We only analysed genes that were direct neighbours in the ancestral genome, 

but that are now located on different chromosomes, because genes located 

nearby on a yeast chromosome still show similar expression profiles even when 

separated by tens of genes (Lercher, Hurst 2006).  

 

As predicted, separated gene pairs still show slightly higher co-expression 

compared to random gene pairs (Figure 3-1; p = 3.1x10-6, Brunner-Munzel Test). 

Again, there is no difference between the co-expression of divergent, 

convergent and co-oriented ancestral gene pairs after their separation (p = 0.18 

between divergent and convergent pairs, p = 0.32 between divergent and 

co-oriented gene pairs, and p = 0.76 between co-oriented and convergent pairs; 

Brunner-Munzel tests).  

 

If gene neighbourhood is under positive selection for genes that need to be 

co-expressed, then we would further expect that orthologs of co-expressed S. 

cerevisiae genes are more likely to be genomic neighbours in other yeast 
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species; consequently, genes neighbouring in at least one other yeast species but 

neither in S. cerevis iae nor in the common ancestor should show higher 

co-expression than random gene pairs. This is indeed the case (p = 1.2x10-5, 

Brunner-Munzel test). 

 

Figure 3-1 Co-expression of gene pairs neighbouring in the ancestral or current 
genome. Black, 10000 random gene pairs; red, pairs neighbouring in the 
ancestor but separated in S. cer evisiae; blue, pairs only neighbouring in 
S.cerevisiae; green, gene pairs only neighbouring in other yeast species. 
 

3.5 Discussion 

Using ancestral gene order information gained from the yeast gene order 

browser, we confirmed that among neighbouring gene pairs, divergently 

oriented pairs are the ones that were most likely to be conserved during genome 
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evolution (Kensche et al . 2008). This conservation implicates stabilising 

selection on the relative positioning of a subset of the divergently arranged gene 

pairs, most likely because of bi-directional promoters. However, after separation 

of neighbouring gene pairs through genomic rearrangements, we no longer 

found any difference between divergent and convergent or co-oriented gene 

pairs; all three types of ancestrally neighbouring gene pairs show higher than 

expected co-expression in S. cerevisiae after their separation through genomic 

rearrangements. It is possible that the two genes in these co-expressed separated 

pairs had part of their cis-regulatory apparatus in common even before their 

separation, so that co-expression could be partially maintained after the 

rearrangement; conversely, it may be that co-expression was initially lost in the 

rearrangement, and was re-instated through cis-regulatory changes afterwards. 

 

The co-expression of ancestrally neighbouring gene pairs that are now located 

on different chromosomes is sharply reduced compared to the pairs that are 

neighbours in the current yeast genome. This observation is expected, as factors 

such as chromatin remodelling are known to strongly influence the 

co-expression of linked genes in yeast (Batada, Urrutia, Hurst 2007). Thus, 

while part of the neighbour co-expression is likely maintained by natural 

selection, it is likely that a substantial component of neighbour co-expression is 

purely mechanistic. 

 

When discussing the properties of neighbouring gene pairs, these are usually 

classified by their relative orientation into three categories – divergent gene 

pairs (head to head), convergent gene pairs (tail to tail), and co-oriented gene 

pairs. Those three types of gene pairs appear to have different properties – 

divergent gene pairs are the most conserved gene pairs and show stronger 

co-expression than the other two orientations (Kensche et al . 2008). Here we 

show that as far as co-expression is concerned, there are essentially only two 

types of neighbouring gene pairs in the genome – bipromoter gene pairs and 

non-bipromoter gene pairs. Bipromoter gene pairs show strong signals of 

conservation and co-expression, while non-bipromoter gene pairs don’t. After 

separation through genomic rearrangements, ancestral divergent gene pairs no 

longer exhibit higher co-expression compared to other gene pairs, supporting 
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the view that chromatin remodeling dominated the co-expression of most 

neighbouring gene pairs (Batada, Urrutia, Hurst 2007). 

 

In conclusion, we have shown that not only gene neighbourhood in the current 

yeast genome, but also gene order in the ancestral genome is predictive of 

co-expression. This conservation of co-expression is evidence in favour of a 

role for natural selection in the establishment and maintenance of neighbour 

co-expression in yeast, and argues against a purely mechanistic view that 

considers neighbour co-expression as a purely neutral (or even slightly 

deleterious) phenomenon. 
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Chapter 4 The effects of Network 

Neighbours on Protein Evolution 
 

4.1 Project summary 

Interacting proteins may experience similar selection pressures. Thus, we may 

expect that neighbouring proteins in biological interaction networks evolve at 

similar rates. This is indeed the case for co-expression network, protein-protein 

interaction network, metabolic network and genetic interaction networks. 

However, the strongest known predictor of the rate of protein evolution remains 

expression level. Hence, when testing for network effects, expression has to be 

incorporated into the Null model against which we compare our results. We 

found that similar expression levels of neighbours indeed explain their similar 

evolution rates in protein-protein and metabolic networks. In co-expression 

network, on the other hand, neighbouring genes still show similar evolutionary 

rates even after controlling for expression level, gene essentiality and gene length. 

This suggests that both expression level and co-expression shape the rate of 

protein evolution in networks. 

 

4.2 Introduction 

Recently, there has been increased interest in the influence of biological 

networks on protein evolution. Network connectivity, i.e., the number of 

connections that an individual protein has, was the first parameter reported to 

influence protein evolution (Fraser et al. 2002; Fraser, Wall, Hirsh 2003; Jordan, 

Wolf, Koonin 2003; Saeed, Deane 2006; Vitkup, Kharchenko, Wagner 2006).  

A negative correlation between connectivity and evolutionary rate is observed 

not only in protein-protein interaction networks (Fraser et al. 2002; Carlson et al. 

2006), but also in metabolic networks (Vitkup, Kharchenko, Wagner 2006) and 

genetic interaction networks (Costanzo et al. 2010). Another network parameter, 

betweenness, which is an measure of network centrality, was found to correlated 
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with evolution rate in protein-protein interaction networks: proteins with high 

betweenness are more likely to be essential genes and thus evolve more slowly 

(Joy et al. 2005). In the metabolic network of yeast, centrality is also a predictor 

of evolution rate of enzymes (Vitkup, Kharchenko, Wagner 2006). In contrast, 

transcription factors that are more central in the regulatory network were shown 

to evolve faster than other genes (Jovelin, Phillips 2009), indicating that the 

transcription network has dramatically different properties compared to other 

biological networks.  

 

Are there other features in the network that influences protein evolutionary rate? 

Here we studied the relationship between the evolutionary rate of a protein and 

the evolutionary rate of its network neighbours. It has been reported that in the 

protein-protein interaction network, interacting proteins tend to have similar 

evolution rates (Fraser et al. 2002). But we do not know if this conclusion holds 

generally true for all types of biological networks.  

 

If the protein and its network partners co-evolve or co-adapt (Juan, Pazos, 

Valencia 2008), we indeed expect that the proteins show similar rates of 

evolution. For example, in the protein-protein interaction network, interacting 

binding sites usually show co-evolution (Kann et al. 2009). Physically interacting 

human proteins (protein protein interaction network) show stronger signs of 

co-evolution than proteins in the same biochemical pathway (metabolic network) 

(Tillier, Charlebois 2009). In co-expression networks, neighbouring genes are 

often involved in the same biological function, and in genetic interaction 

networks, the mutation of one protein changes the fitness effects of mutations in 

its partners. By comparing the number of substitutions per site between 

interacting proteins, we tested this hypothesis in the yeast protein-protein 

interaction network, co-expression network, metabolic network, genetic 

interaction network, and transcriptional regulatory network.  

 

There is an ongoing debate if the co-evolution of interacting proteins is caused by 

compensatory mutations between binding partners, or if it is simply due to similar 

selective constraints, like those resulting from similar expression levels. An 

investigation of the three-dimensional structures of about 100 yeast proteins 



Chapter 4 Network Neighbours and Protein E volution 
 

67 

 

indicated that buried residues – which are located on a stable interaction surface 

between protein units – are under stronger evolutionary constraints than solvent 

exposed sites (Lin et al . 2007b), even after excluding the effect of expression 

level. Moreover, residues close to the binding sites responsible for 

protein-protein interactions show higher co-evolution signals than residues 

outside the binding region (Kann et al . 2009). However, another analysis 

observed that correlations purely based on the co-evolution of proteins surfaces 

and binding interfaces are not higher than the correlation when considering the 

whole interacting proteins (Hakes et al. 2007).  

 

From an analysis of the evolution rate of each focal protein in the network and 

the mean rate of its neighbours, we show that there is indeed a positive 

correlation in most biological networks. Further, we find that the correlation can 

be explained by shared evolutionary constraints, in particular related to similar 

expression levels. These results support the view that the co-evolution of 

binding sites or functional similarity plays only a minor role in determining 

network effects on protein evolution. Finally, our results suggest that 

co-expression relationships are another factor that influences evolutionary rate 

on the level of biological networks. 

 

4.3 Materials and methods 

4.3.1 Evolutionary rates 
The evolutionary rates of yeast genes (dN and dN/dS) were obtained from the 

comparison of 4 closely related species (Hirsh, Fraser, Wall 2005). 

 

4.3.2 Network data 
All network and other data is for Saccharomyces cerevisiae . For all networks, 

only genes which have evolutionary rate values were taken into account. The 

co-expression network was obtained from a combination of 40 time-series 

microarray experiments (Kafri, Bar-Even, Pilpel 2005). Pearson’s correlation 

coefficient r across all experiments was used as a measure of the co-expression 

level of two genes. Two genes are linked in the resulting co-expression network 
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if their expression profiles are correlated with r >=0.5.  

 

Protein protein interaction data was obtained from the CCSB interactome 

database 9 . To ensure high data quality, literature-based interactions 

(LC-multiple) and co-complex associations for which we are not sure if the two 

proteins are in direct contact with each other (Combined-AP/MS) were not 

included. In total, we got four dataset (CCSB-YI1, Ito-Core, Uetz-Screen and 

Y2H-Union), containing a total of 6273 protein-protein interactions. We built 

the union of these four sets, removing duplicated interactions. This led to 4349 

interactions in the final data set.  

 

A synthetic lethality (strong negative genetic interaction) network was extracted 

from BIOGRID, version 2.0.60 (Breitkreutz et al . 2008). Only interactions 

tagged with “Synthetic Lethality” were used, resulting in a total of 15196 

interactions. After removing duplicate interactions, we obtained a final data set 

of 13030 interactions. Another genetic interaction data set was published by 

(Costanzo et al.). Only interactions below a stringent cutoff were used, resulting 

in a set of 74984 interactions. The yeast metabolic network was obtained from 

(Forster et al . 2003) and compiled according to the procedure previously 

reported (Vitkup, Kharchenko, Wagner 2006). After removing duplicate 

interactions, we got 11179 interactions in our dataset (14283 in the raw data).  

 

4.3.3 Other datasets 
Protein abundance in log phase growth were taken from (Ghaemmaghami et al. 

2003), yeast mRNA expression level was from (Holstege et al. 1998), and CAI 

and dN were obtained from (Hirsh, Fraser, Wall 2005). We used dN to represent 

the evolutionary rate of yeast. Alternatively using dN/dS does not change the 

results. Protein length was calculated based on the protein sequence of 

Saccharomyces cerevisiae (Cherry et al. 1998) via a Perl script. The identity of 

more than 1100 essential genes was download from the Saccharomyces 

Genome Deletion Project web page10. 

                                                        
9 http://interactome.dfci.harvard.edu/index.php?page=home 
10 http://yeastdeletion.stanford.edu/ 
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4.4 Results 

4.4.1 Proteins evolve at similar rates as their network neighbours 
By comparing the differences of evolutionary rate of interacting proteins and 

randomly chosen protein pairs in S. cerevisiae, Fraser et al (Fraser et al. 2002) 

found that interacting proteins have similar evolutionary rates. Since the sample 

size they used was quite small, their observation might not hold true in larger 

networks. Thus, it is important to double check their results using updated 

protein interaction data. In order to ensure that all protein-protein interactions in 

the dataset refer to direct contact between the proteins, protein interactions 

within the same complex but without direct contact were excluded.  

 
We considered each protein in turn as the ‘focal’ protein, and calculated the 

average evolutionary rate across its network neighbours. If adjacent proteins 

show similar evolutionary rates, we would expect a positive correlation between 

the evolutionary rate of the focal protein this neighbour average. We indeed 

found the expected correlation in the protein-protein interaction data (Figure 4-1; 

for dN, r = 0.15, p = 3.7x10-6; for dN /dS, r = 0.14, p = 2.1x10-5). 

 
We thus confirmed that neighbouring proteins in the yeast protein-protein 

interaction network evolve at similar rates. Is this correlation a general feature 

of all biological networks? If all types of interactions impose constraints on 

sequence evolution, this correlation would be expected. To test this hypothesis, 

we used recently published yeast network data, including co-expression data 

(Kafri, Bar-Even, Pilpel 2005), genetic interaction data (Breitkreutz et al. 2008), 

transcription regulation data (Balaji et al. 2006), and metabolic data (Forster et 

al. 2003). After removal of duplicated links, we obtained final datasets with 

14283 interactions in the metabolic network, 12873 interactions in the 

transcription network, 13030 interactions in the synthetic lethal interaction 

network, and 689100 interactions in the co-expression network. Note that for 

our first analysis we only chose synthetic lethal interactions for genetic 

interactions. After that we checked the effects in a much larger data. 
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Figure 4-1 Correlations between the evolutionary rate dN of focal proteins and 
the average rate of their network neighbours. CoEx: co-expression network; GI: 
genetic interaction network; MetI: metabolic network; PPI: protein protein 
interaction network. 
 

As seen in Table 4-1, except for the transcription regulation network, each of 

biological networks has a significant correlation between the evolutionary rates 

of the focal proteins and the average evolutionary rates of their neighbours 

(p<0.01 from comparison to random pairs in each case). These correlations are 

indeed stronger than those seen for the protein-protein interaction network. Thus, 

interacting neighbours evolve at similarly rates for all available biological 

networks, with the sole exception of transcription regulation networks. 

 

For the transcription regulation network, there is no signal of a correlation 

between evolutionary rates of network neighbours (Table 4-1). Thus, there 

appears to be no connection between the sequence evolution of transcription 
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factors and their target genes. Since network rewriting is the main evolutionary 

force of transcription regulation (Ihmels et al . 2005), sequence co-evolution 

between transcription factors and target genes is apparently not a major force of 

transcription network evolution. 

 

Table 4-1 Significant correlations between the evolutionary rate of proteins and 
the average rate of their network neighbours, except for the transcription 
network. 
 

 Pearson’s r 

for dN 

P Pearson’s r 

for dN/dS 

p 

PPI 0.15 3.7x10-6 0.14 2.1x10-5 

SLI 0.18 6.2x10-11 0.16 8.5x10-9 

MetI 0.21 1.6x10-4 0.18 0.0017 

CoEx 0.27 3.0x10-51 0.23 1.5x10-37 

TR -0.02 0.34 -0.02 0.50 

 

4.4.2 The influence of network neighbourhoods on protein 

evolution can largely be explained by expression level 
Although our preliminary analysis shows that in most of the networks, 

neighbouring genes have similar evolution rates, we have to control for 

confounding variables. The first parameter one might think of in this context is 

network connectivity, because in almost all of the networks previous analysis 

found that connectivity (the number of direct neighbours) influences 

evolutionary rates. It was first reported that there is a negative correlation 

between evolution rate and connectivity in the protein-protein interaction 

network (Fraser et al . 2002), although other researchers later noticed that only 

hub protein (those with exceptionally high connectivity) evolve slowly (Jordan, 

Wolf, Koonin 2003). In the metabolic network, based on the analysis of 671 

enzymes, Vitkup et al showed that both highly connected enzymes and enzymes 

with large metabolic fluxes evolve slowly (Vitkup, Kharchenko, Wagner 2006). 

People also found that hubs tend to evolve slowly both in the yeast 

co-expression network (Carlson et al . 2006) and in recently released genetic 

interaction data (Costanzo et al.). For all of the networks analysed here, except 

for the transcription regulation network, we confirmed a negative correlation 
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between connectivity and evolutionary rate dN (Table 4-1).  

 

Table 4-2 Correlation between dN and avergage dN of the neighbours after 
controlling for protein abundance, CAI, mRNA expression and nod number. 
 
dN control for protein 

abundance 

control for 

CAI 

control for mRNA 

expression 

control for 

connectivity 

 Cor r p  Cor r p  Cor r p  Cor r p  

PPI 0.068 0.08 0.031 0.4 0.059 0.08 0.08 0.025 

SLI 0.13 5x10-5 0.10 0.0003 0.14 6x10-7 0.1 4.5x10-7 

MetI 0.014 0.8 -0.040 0.5 0.0034 1 0.03 0.62 

TR -0.013 0.7 -0.023 0.4 -0.017 0.5 -0.005 0.84 

CoEx 0.20 0 0.143 3x10-15 0.17 0 0.2 0 

 

However, these correlations with connectivity are not sufficient to explain the 

observed correlations among network neighbours. After controlling for 

connectivity using partial regression analysis, only the correlation between 

neighbours in the metabolic network became non-significant (Table 4-2). Thus, 

connectivity cannot fully explain why neighbouring proteins have similar 

evolution rate.  

 

The most important factors that determine protein evolutionary rated revealed in 

recent years is expression abundance. Drummond et al  (Drummond, Raval, 

Wilke 2006) observed that, by using principal component analysis, protein 

expression level and abundance nearly explain half of the variation in protein 

evolutionary rate in yeast. So if two proteins co-evolve, it is very likely that 

because they have similar expression level. What is more, An analysis based on 

4,708 protein protein interactions shows that co-evolution of interacting protein 

in protein interaction network are largely not due to the compensatory mutations 

between interface, similar constrains like expression level could account for 

most of this (Hakes et al. 2007). So it is very likely that in most of the networks 

level, expression level play an important role for similar evolutionary rate of 

neighbouring genes. 

 

It is widely accepted that there are three variables that measure aspects of 



Chapter 4 Network Neighbours and Protein E volution 
 

73 

 

protein expression in yeast: mRNA expression level, codon usage bias 

(measured, e.g., as codon adaptation index, CAI), and protein abundance. After 

controlling for expression level using any one of these three factors, both the 

protein-protein interaction network and the metabolic network do not show any 

significant correlations among neighbours anymore. Similarly, the significance 

of the correlation in the genetic interaction network is greatly reduced (Table 

4-2). But in the co-expression network, the correlation between focal protein dN 

and average dN of the neighbours is still highly significant. Moreover, even 

after we control for the other two potential confounding factors, protein length 

and gene essentiality, the correlation in the co-expression network still remains 

significant (p = 0.017 after controlling for protein length and p < 10-15 after 

controlling for protein dispensability). This result highlights the importance of 

co-expression relationships in protein evolution. Recently, it was shown that in 

humans, co-expression also influences protein evolution rate (Vinogradov 

2010).  

 

4.4.3 The correlation between the evolutionary rate of proteins and 

their neighbours is not observed in a large-scale genetic interaction 

network 
In the case of the genetic interaction network, it was not quite clear how much 

of the observed correlation is in fact due to expression level. Thus, we decided 

to corroborate our findings by analysis of a recent large set of genetic 

interaction data released (Costanzo et a l. 2010). Only interactions fulfilling a 

stringent cutoff criterion were used in order to ensure high data quality. If the 

correlation observed above is a general feature of genetic interacting networks, 

we expect to see a corresponding signal in the larger dataset, even if the latter 

includes weaker as well as positive interactions (which were not present in the 

synthetic lethal network analyzed above). But we did not observe any 

significant correlations among evolutionary rates of network neighbours, neither 

for the total network, nor for only the negative interactions (total network: p = 

0.3, Spearman’s r = 0.024; negative network: p = 0.31, r = 0.024). Thus the 

evidence that neighbouring proteins show similar evolutionary rates in genetic 

interaction networks appears not convincing; possibly only synthetic lethal 
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interactions have an influence on protein evolution, while weaker or positive 

interactions do not. 

 

4.5 Discussion 

Neighbouring proteins in different biological networks evolve at similar rates. 

By controlling for other factors that may constrain protein evolution, we have 

shown that network connectivity and expression level are capable of explaining 

this effect in the metabolic network. We also did not find solid evidence of 

correlated evolution among neighbours in the genetic interaction network. In the 

remaining networks, similar expression levels of neighbours alone is sufficient 

to explain the correlated evolutionary rates. Thus, it appears that neighbouring 

genes evolve at similar rates largely because they have similar expression levels. 

These results raise an interesting question, namely, if many factors affecting 

protein evolution actually act through constraints on expression level. From the 

analysis of the co-expression network, we find that co-expression (beyond 

expression level) is also an important factor for protein evolution in yeast.



75 

 

Chapter 5 The Pr edictors of Phenotypic 

Capacitors 

5.1 Project summary 

Many single-gene knockouts result in increased phenotypic (e.g., morphological) 

variability among their offspring. This has been interpreted as an intrinsic 

ability of genes to buffer genetic and environmental variation, as exemplified by 

the chaperone function of Hsp90. Testing five different genomic and network 

variables, we show that only the fitness effect of the haploid knockout and the 

number of genetic interactions are strongly correlated with ‘phenotypic 

potential’. This leads us to suggest that it is not failure of a specific buffering 

function that causes the release of phenotypic variation in mutants; instead, cells 

that are functionally compromised by a mutation are no longer capable of 

compensating for a sub-optimal pathway by either flux re-routing or by 

increased activity of other network components. Furthermore, we demonstrate a 

stronger phenotypic potential of genes involved in essential complexes, which 

again can be traced to stronger fitness effects and more genetic interactions of 

the mutants.  

 

5.2 Introduction 

One of the most fundamental and challenging problems in biology is the 

relationship between genotype and phenotype. Little is known about this 

relationship in most biological systems. The genotype-phenotype relationship is 

complicated by the fact that loss-of-function mutations of some individual genes 

are capable of increasing phenotypic variability in a wide range of traits; such 

genes are termed ‘phenotypic capacitors’ (Rutherford, Lindquist 1998; Hartman, 

Garvik, Hartwell 2001; Mitchell-Olds, Knight 2002; Queitsch, Sangster, 

Lindquist 2002; Bergman, Siegal 2003; Wagner 2003; Suzuki, Nijhout 2006). 

The induced variability may either be due to cryptic genetic variation that is 

released by the mutation (Hermisson, Wagner 2004), or may be 
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non-genetic(Levy, Siegal 2008). Phenotypic capacitors have been discovered in 

many species, including Drosophila, Arabidopsis, Manduca, E. coli and yeast 

(Rutherford, Lindquist 1998; Hartman, Garvik, Hartwell 2001; Queitsch, 

Sangster, Lindquist 2002; Kitano 2004; Cooper et a l. 2006; Suzuki, Nijhout 

2006; Sangster et al. 2008).  

 

Theoretical simulations of complex cellular networks have suggested that most 

genes reveal cryptic genetic variation when functionally compromised 

(Bergman, Siegal 2003). More generally, phenotypic release of hidden genetic 

variation appears to be a generic property of models with epistasis or 

genotype-environment interactions (Hermisson, Wagner 2004) This process 

may even be selectively favourable: an allele for the revelation of cryptic 

genetic variation can invade a population if revelation is sometimes selectively 

favourable (Masel 2005). However, it is unclear if such alleles do in fact exist, 

as phenotypic capacitance can arise as a direct consequence of network structure 

(Bergman, Siegal 2003; Hermisson, Wagner 2004).  

 

The standard model of a phenotypic capacitor is the heat shock protein Hsp90, a 

chaperone that helps many proteins to achieve their correct 3-D structure. This 

assistance in folding likely removes some selective constraints on amino acid 

sequence evolution, as reported for another chaperone, GroEL (Warnecke, 

Hurst 2010). This allows the accumulation of polymorphisms that would 

impede correct protein folding in the absence of the chaperone. Knockout of 

Hsp90 then releases these hidden polymorphisms, resulting in variation in 

protein folding efficiency between genetically different individuals (Milton et al. 

2003). However, the same study reported that – at least in flies – purely 

non-genetic phenotypic variation was not released by Hsp90 knockout. Thus, it 

is currently unclear if phenotypic capacitors differ in their effects on genetic and 

non-genetic variability.  

 

In a recent study, Levy and Siegal examined non-genetic variation among yeast 

cells (Levy, Siegal 2008).  They found more than 300 phenotypic capacitors, 

and reported that many of these had a large number of synthetic lethal 

interactions; at the same time, the authors did not observe strong effects of the 
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knockouts on growth rates. These findings were interpreted as evidence for 

incomplete functional redundancy at multiple levels in the genetic 

architecture(Levy, Siegal 2008). 

 

Thus, theory predicts that (i) phenotypic capacitors should have similar effects 

on genetically and non-genetically caused phenotypic variation (Milton et a l. 

2003); (ii) strong functional impairment of a majority of genes leads to the 

revelation of cryptic genetic variation (Bergman, Siegal 2003; Hermisson, 

Wagner 2004); and (iii) the release of cryptic genetic variation by knockout 

mutations is related to genetic interactions of the mutated gene (Hermisson, 

Wagner 2004). This suggests that phenotypic capacitors that reveal genetically 

caused phenotypic variation should often be genes with severe knockout-effects 

and with many synthetic lethal interactions. Here, we test if these two factors 

can predict ‘phenotypic potential’, i.e., the ability of genes to act as phenotypic 

capacitors for non-genetically caused phenotypic variability.  

 

Many genes perform their biological functions as parts of protein complexes. 

Thus, functional impairment is a consequence of compromised complex 

function rather than an effect of the individual gene. Consistent with this view, 

it was shown that protein complexes contain subunits of similar essentiality 

(Dezso, Oltvai, Barabasi 2003; Fraser, Plotkin 2007; Hart, Lee, Marcotte 2007). 

Similarly, we expect phenotypic potential to be a feature of the protein complex 

rather than of individual subunits. Thus, we also test if essential complexes 

(those containing essential genes) contain more phenotypic capacitors than 

non-essential complexes. 

 

5.3 Methods 

5.3.1 Phenotypic potential 
The knockout of individual genes can cause increased phenotypic variability. 

Here, we used previously published data measuring non-genetically caused 

morphological variation among the offspring of single-gene deletion S. 

cerevisiae strains (Levy, Siegal 2008). This dataset contains measurements of 
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‘phenotypic potential’ (i.e., the amount of variation observed across many 

independent morphological traits in the offspring) for 4683 non-essential genes, 

resulting in the identification of 502 phenotypic capacitors.  

 

5.3.2 Other S. cerevisiae data 
Essential genes were taken from the Saccharomyces genome deletion project 

website11. Membership of 408 protein complexes was obtained from CYC2008 

(Pu et al. 2009), which is based on manual curation. Complexes that contained 

at least one essential gene were termed ‘essential complexes’, while other 

complexes were considered non-essential. Connectivity of proteins in the 

protein-protein interaction network was obtained from  (Levy, Siegal 2008).   

 

5.3.4 Statistics 
Distribution shifts were examined using the Brunner-Munzel test, which is in 

many situations more robust than, e.g., the Wilcoxon rank sum test. Linear 

models were examined using the glm function implemented in R (Ihaka, 

Gentleman 1996). The relative importance of individual predictor variables was 

estimated using the lmg statistic implemented in the relaimpo package for R 

(Grömping 2006); this statistic can be viewed as an average over the 

contribution of the variables in models of different sizes. 95% confidence 

intervals were calculated using bootstrapping. 

 

5.4 Results 

5.4.1 Phenotypic potential is influenced by haploid fitness, genetic 

interactions, and protein length 
Based on the arguments outlined above, we expect phenotypic potential to be 

correlated with the severity of fitness reductions in gene knockouts, and with the 

number of synthetic lethal interactions. Both predictions are indeed confirmed 

by experimental data on non-genetically caused morphological variation(Levy, 

Siegal 2008). We find a significant negative correlation between phenotypic 

potential and haploid fitness (Figure 5-1; Pearson’s r=-0.29, p<10-15), and a 
                                                        
11 http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html 
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significant positive correlation between phenotypic potential and the number of 

synthetic lethal interactions (Figure 5-2; r=0.30, p<10-15; interaction number on 

log-scale). Thus, both haploid fitness and connectivity in the synthetic lethal 

network explain about 9% of the variation in phenotypic potential. 

 

Figure 5-1 Relationship between fitness of the haploid knockout and phenotypic 
potential (Pearson’s r=-0.29, p<10-15). The blue line is a Loess curve fitted to 
the data. 
 

Other variables frequently associated with functional and evolutionary 

properties of yeast genes are expression level, protein length, and the number of 

protein-protein interactions. We find that each of these variables shows a weak 

but statistically significant correlation with phenotypic potential (mRNA 

expression level: r=0.052, p=0.00011; protein length: r=0.056, p=0.00013; 

number of protein-protein interactions: r=0.078, p=6.8x10-5). 
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5.4.2 Other variables do not add to the predictive power of a 

combined model 
We thus have five variables – haploid knockout fitness, synthetic lethal 

interactions, length, expression level, and protein-protein interactions. However, 

it is known that many of these variables are correlated among themselves(Pal, 

Papp, Lercher 2006). Thus, it is possible that only some of these variables are 

directly connected to phenotypic potential; conversely, the effect of other 

variables might be due to a confounding variable among the former set. To 

examine which variables have the strongest explanatory power for variation in 

phenotypic potential, we employed a linear model. 

 
Figure 5-2 Relationship between the number of synthetic lethal interactions and 
phenotypic potential (Pearson’s r=0.30, p<10-15); only genes with at least one 
synthetic lethal interaction are used. The blue line is a Loess curve fitted to the 
data. 
 

The linear model of the form: Phenotypic_potential ~ Haploid_fitness + 

LC_SLI_degree + length + mRNA_expression + AMS_PPI_degree showed that 
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only haploid fitness, the connectivity (degree) in the synthetic lethal interaction 

network, and length contribute independently to the variation of phenotypic 

potential (Table 5-1); mRNA expression level and protein-protein interaction 

connectivity do not add any further significant contributions (p = 0.62 and p = 

0.21, respectively). In fact, both haploid fitness and synthetic lethal interactions 

alone are enough to render the explanatory power of expression level and 

protein-protein interactions insignificant (p > 0.18 in each case). 

 

What is the relative importance of fitness, genetic interactions, and protein 

length for predicting phenotypic potential? As shown in Table 5-1, haploid 

fitness and the number of synthetic lethal interactions explain almost 8.8% and 

4.6% of the variation in phenotypic potential, respectively, while the 

contribution of protein length is minute. Thus, the extent to which a mutant 

increases phenotypic variation is indeed correlated to both the fitness effect of 

the knockout and to the number of severe negative genetic interactions the 

mutated protein has, while other tested variables appear to be unimportant. 

 
Table 5-1 Statistical significance and relative importance of the three significant 
predictor variables for phenotypic potential. ‘Relative importance’ is a measure 
of how much variation in phenotypic potential each variable can explain 
independently (Grömping 2006). 
 

Predictor p (linear model) Relative importance (95% CI) 

Haploid fitness <10-15 8.8% (6.4%-11.9%) 

Synthetic lethal interactions <10-15 4.6% (3.0%-6.8%) 

Length 0.019 0.3% (0.02%-0.98%) 

 

5.4.3 Protein complexes as phenotypic capacitors 
The active cellular agents are often not individual proteins, but rather aggregates 

of different proteins - protein complexes. Thus, mutations of individual 

members of a complex are not functionally independent, but might be 

considered different forms of damage to one functional unit. Consistent with 

this view, it was found that protein complexes are either biased towards 

essential or towards non-essential genes (Dezso, Oltvai, Barabasi 2003; Fraser, 

Plotkin 2007; Hart, Lee, Marcotte 2007); i.e., essentiality is a feature of the 

complex rather than of the individual gene. 
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Figure 5-3 Genes in essential protein complexes have higher phenotypic 
potential than genes not involved in protein complexes or involved in 
non-essential protein complexes. 
 

Essential complexes as those protein complexes that are lethal when severely 

impaired in their function. Most essential complexes contain one or more 

essential genes, and as working definition, we thus term a complex essential if it 

contains at least one essential gene. The protein complex data we used was 

downloaded from CYC2008(Pu et al . 2009), which contains manually curated 

complexes, and is an update of the Munich Information Center of Protein 

Sequences (MIPS) database. We also checked our main results in two recently 

published algorithm-based protein complex data sets (Hart, Lee, Marcotte 2007; 

Wang et al. 2009) and obtained similar results (not shown). 

 

As seen above, phenotypic potential is correlated to the severity of the knockout 

effect for individual proteins. This suggests that essential complexes may often 

act as phenotypic capacitors: if their function is impaired (e.g., by the knockout 

of a non-essential subunit), then this should increase phenotypic variation. 

Consequently, proteins that form part of an essential complex should on average 

have higher phenotypic potential than proteins that are part of non-essential 

protein complexes. As predicted, we found that the mean phenotypic potential 

of non-essential genes is significantly larger for genes in essential complexes 
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(0.827 +/- 0.025) compared to either genes in non-essential complex (0.806 +/- 

0.025, p<10-15 in Brunner-Munzel test) or genes not in any protein complexes 

(0.651 +/- 0.006, p<10-15; see also Figure 5-3).  
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Figure 5-4 The distribution of haploid fitness is shifted towards lower values for genes 
involved in essential complexes (red) compared to non-essential complexes (green) or 
genes outside complexes (blue). 
 

What is more, we found that 18% of phenotypic capacitors (genes with high 

phenotypic potential (Levy, Siegal 2008)) are located in essential rather than 

non-essential complexes, a fraction more than two times higher than expected 

from the proportion of non-phenotypic capacitors (7.9%, p=7.3x10-12, Fisher’s 

exact test). More generally, just as essential genes tend to be located in 

complexes (p=1.2x10-112), the same is true for phenotypic capacitors 

(p=5.6x10-21). But even excluding phenotypic capacitors, genes in essential 

complexes still show higher phenotypic potential (0.618+\-0.0112 vs 0.578+/- 

0.0031 in non-essential complexes, p = 0.0011 in Brunner-Munzel test). Thus, 

essential complexes as functional units tend to have high phenotypic potential.  
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Is this effect of essential complexes independent of knockout fitness and of the 

number of synthetic lethal interactions, which were shown to be important 

predictors of phenotypic potential above? The Haploid knockout fitness (Figure 

5-4) tend to be higher for genes in essential complexes compared to genes in 

non-essential complexes (p=3.3x10-14, Brunner-Munzel test) or genes not 

involved in complexes (p<10-15). However, when we incorporate involvement in 

an essential complex into the general linear model, we find that both haploid 

knockout fitness and the number of synthetic lethal interactions alone are 

sufficient to remove any additional contribution from essential complexes. Thus, 

it appears that the role of essential complexes is mediated entirely through the 

severity of knockout effects and through genetic interactions. In sum, while 

protein complexes form the functional units of the cellular machinery, we can 

predict their influence on the release of phenotypic variation in the same way as 

for proteins that act individually. 

 

5.5 Discussion 

The knockout of a single gene often leads to an increase of phenotypic (e.g., 

morphological) variability, measured as phenotypic potential in the data 

analyzed here (Bergman, Siegal 2003; Levy, Siegal 2008). Consistent with 

theoretical expectations, we find that increased phenotypic potential is 

associated with stronger (haploid) fitness effects of the knockout mutant, as well 

as with an increased number of synthetic lethal interactions. Here, we analyze 

data for non-genetically caused morphological variability. The connection with 

synthetic lethal interactions thus suggests that phenotypic capacitors indeed 

often work on both genetically caused and non-genetically caused phenotypic 

variability, as predicted from theoretical considerations (Milton et al. 2003).  

 

Levy and Siegal (Levy, Siegal 2008) also observed a significant correlation 

between phenotypic potential and both genetic interactions and haploid growth 

rate (see their Figure 3E-F). However, their interpretation differed markedly 

from ours; they did not consider growth rate an important predictor of 
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phenotypic capacity, stating instead that ‘knockouts of these genes do not tend 

to cause severe decreases in growth rate’ (Levy, Siegal 2008). This, however, is 

not surprising: knockout growth rates tend to be bi-modal, with the majority of 

mutants being either (nearly) lethal or showing little reduction in fitness. As 

only non-essential genes can be tested for phenotypic potential, severe decreases 

in growth rate are expected to be rare. 

 

Based on the function of Hsp90, phenotypic capacitors are often viewed as 

having buffering functions; i.e., it is (often implicitly) assumed that selection 

has directly acted on the protein’s ability to mask genetic or environmental 

variation (Masel 2005; Levy, Siegal 2008). Consistent with theoretical 

(Bergman, Siegal 2003) and experimental (Hermisson, Wagner 2004) results, 

increased variability may instead be a general consequence of functional 

impairment in complex cellular networks (Lehar et al . 2008). This may be 

illustrated by a simple example: if flux through a given metabolic pathway can 

be maintained by increased production of the pathway substrate, then small 

variations in the efficiency of pathway enzymes can be compensated. If a 

mutation in an enzyme that feeds the pathway reduces substrate production, 

then the previously ‘cryptic’ variation in pathway efficiency will become 

exposed, resulting in increased phenotypic variability. If a mutation affects the 

efficiency of important cellular processes, then such ‘domino’ effects may 

spread far through the network. If this view is correct, then phenotypic potential 

is not so much a measure of buffering, but rather of functional importance and 

of functional centrality in cellular networks. That phenotypic potential is 

connected with fitness effects of the single-gene knockout supports this notion; 

in this light, Hsp90 appears as an exception rather than a prototypical 

phenotypic capacitor. 

 

The subunits of protein complexes are only functional in combination. 

Accordingly, knockouts of the subunits must be viewed as partial deletions of 

the complexes, which may in many cases still be partially functional. This view 

of complexes as evolutionary and genetic modules of course also applies to the 

concept of phenotypic capacitors. As predicted by this view, we find that 

proteins in essential complexes have higher phenotypic potential then other 
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proteins. Again, this enrichment in phenotypic capacitors can be traced to 

stronger fitness effects and more genetic interactions of these proteins. 
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Chapter 6 Conclusion  
A decade’s accumulation of yeast genomic and high throughput interaction data has 

provided us with an excellent opportunity to study the principles of genome 

organization and its consequences on networks and phenotypes. Through the analysis 

of genome-wide data, in this thesis I reported that the co-expression of local genomic 

gene clusters is not just a result of chromatin effects: even when these gene pairs are 

separated through genomic rearrangements, they still show weak but significant 

similarities in their expression profiles. We interpret this as a clear signal of natural 

selection (Chapter 3).  

 

Furthermore, we show that the underlying principles of local genomic organization go 

well beyond mere co-expression, but have to a substantial part evolved to optimize 

noise levels. This phenomenon could potentially explain the existence of 60% of 

non-coding RNAs in the Saccharomyces cerevisiae  genome (Chapter 2). The role of 

non-coding RNAs in noise reduction indicates the importance of noise control in the 

genome.  

 

Co-expression of genes is not only a local genomic feature, but also an important 

mechanism of genes from different chromosomes to achieve a specific function or 

response to environmental stimulations. In chapter 4 we discovered that co-expression 

relationships also influence constraints on protein evolution: co-expressed partners 

evolve at similar rates. This constraint is independent of mRNA expression levels and 

protein abundances; this is in sharp contrast to the influence of protein-protein 

interactions and metabolic interactions on evolutionary rates.  

 

While cellular interactions can be projected onto different biological networks, it 

appears that genetic interaction networks are closely connected with the phenotypic 

variance of the cell: knocking out the hubs of genetic networks releases more 

phenotypic variation. In addition we also provide evidence that genes in essential 

protein complexes generally have more phenotypic potential. This potential may be due 
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to the fact that knockouts in essential complexes – which make the complexes 

functionally abnormal – almost always cause serious growth defects (chapter 5).  

 

In sum, our analyses of cellular interactions in yeast demonstrate that phenotypic 

features can be at least partly explained from considerations on the network level. 

Although each network provides us with a particular view of functional cells, the cell 

itself is affected by all these networks simultaneously. An important topic for future 

research is then the integration of all network types, in order to better understand the 

influence of molecular interactions on protein evolution and cellular phenotypes. 

Furthermore, bi-directional promoters should represent just one way of controlling 

noise. There must be more mechanisms that contribute to this phenomenon, particularly 

at the level of the transcription regulation network. What these mechanisms are, and the 

phenotypic consequences if these mechanisms fail, also requires further investigation.  
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Appendix Genes with Bi-directional 

promoters in S. cerevisiae 

Table A-1 Protein coding genes which share a promoter with a cryptic unstable 
transcripts (CUTs) (309), compiled based on (Xu et al. 2009). 
YPRWtau4 YOL119C YLR244C YJL128C YGR125W YDR279W YOR014W

YPR196W YOL115W YLR231C YJL115W YGR123C YDR255C YOR005C 

YPR193C YOL057W YLR193C YJL104W YGR119C YDR229W YOR001W

YPR149W YNR061C YLR170C YJL080C YGR111W YOL159C-A  YDR184C 

YPR135W YNR054C YLR167W YJL061W YGR097W YDR183C-A YOL158C 

YPR127W YNR045W YLR166C YJL050W YGR086C YDR084C YOL155C 

YPR067W YNR015W YLR126C YJL011C YGR042W YDR074W YOL153C 

YPR022C YNR006W YLR112W YJL001W YGR036C YDR062W YOL130W

YPL262W YNL299W YLR111W YIL168W YGR017W YDR044W YJR108W 

YPL259C YNL238W YLR069C YIL167W YGL252C YDR028C YJR105W 

YPL249C YNL236W YLR049C YIL165C YGL231C YDR024W YJR097W 

YPL242C YNL209W YLR036C YIL164C YGL162W YDR023W YJR035W 

YPL225W YNL052W YLR032W YIL114C YGL155W YDR012W YJL186W 

YPL186C YMR318C YLR028C YIL112W YGL082W YDL211C YJL171C 

YPL140C YMR312W YLL060C YIL110W YGL078C YDL080C YJL164C 

YPL123C YMR302C YLL059C YIL102C-A YGL035C YDL072C YJL145W 

YPL108W YMR258C YKRCdelta11 YIL086C YFR007W YDL040C YDR497C 

YPL107W YMR230W YKR103W YIL085C YFL017W-A YDL025C YDR473C 

YPL106C YMR211W YKR094C YIL074C YFL013C YCRCdelta6 YDR440W

YPL059W YMR177W YKR088C YIL038C YFL004W YCR090C YDR397C 

YPL051W YMR126C YKR014C YIL035C YER186C YCR072C YDR394W

YPL050C YMR121C YKR010C YHR207C YER183C YCR043C YDR361C 

YPL032C YMR099C YKL219W YHR206W YER176W YCR028C-A YDR349C 

YOR349W YMR036C YKL217W YJR117W YML062C YHL001W YHR076W

YOR346W YMR019W YHR073W-A YGR283C YKL037W YKL178C YHR027C 

YOR316C YMR013C-A YKL160W YER109C YCL041C YER012W YHR073W

YOR310C YMR013C YKL129C YER064C YBR295W YER010C YER163C 

YOR309C YMR002W YKL126W YER056C-A YBR293W YER006W YPL007C 

YOR285W YML086C YKL111C YER020W YBR143C YER002W YDR520C 

YOR250C YML071C YKL110C YER016W YBR115C YEL071W YDR517W

YOR204W YML067C YKL085W YHR123W YML051W YDR541C YDR505C 
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YJR148W YML063W YHL007C YHR088W YML028W YKL218C YDR318W

YLR395C YLR376C YLR332W YLR326W YLR268W YLR262C YLR261C 

YLR249W YGR282C YGR266W YGR240C YGR238C YGR225W YGR204W

YGR158C YGR145W YOR203W YOR179C YOR136W YOR130C YOR114W

YOR108W YOR047C YML005W YLR449W YLR415C YCL043C YMR037C

YDR538W       
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Table A-2 Protein coding genes that share a promoter with a transcription unit that 
contain both coding and non-coding genes (94), compiled based on (Xu et al. 2009). 
YPR144C YPR132W YPR055W YPL115C YOR380W YOR319W YOR223W
YOL097W-A YNR027W YNL142W YNL059C YNL025C YMR117C YML102W

YLR366W YLR364C-A YLR347C YLR204W YLR200W YLR133W YLR125W
YLL018C YKR062W YKR045C YKL138C YKL128C YKL035W YKL023W
YJL117W YJL020C YJL008C YIR036C YIR021W YHR050W YHR031C 
YGR188C YGR110W YGR024C YGL071W YFR034C YFL026W YFL021W
YER033C YEL044W YEL029C YEL012W YDR527W YDR525W-A YDR251W
YDL156W YDL014W YCR044C YCL005W YBR228W YBR187W YBR140C 

YOR187W YOR172W YOR083W YOR036W YHL004W YGR268C YGR255C 
YML007C-A YLR455W YLR435W YLR401C YER120W YER067W YER040W
YLR124W YLR123C YLR122C YLR074C YDR181C YDR163W YDR021W
YJR016C YJL214W YJL198W YJL189W YBL071W-A YAL020C YBL092W

YHR028C YER169W YDR221W     
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Table A-3 Protein coding genes that share a promoter with a stable annotated transcripts 
(SUTs) (276), compiled based on (Xu et al. 2009). 
YPR199C YPL188W YOR070C YNL241C YMR139W YLR264W YKL115C 
YPR198W YPL172C YOR048C YNL216W YMR131C YLR196W YKL100C 
YPR183W YPL159C YOR034C YNL206C YMR123W YLR175W YKL088W
YPR166C YPL157W YOR031W YNL205C YMR068W YLR129W YKL079W
YPR165W YPL139C YOR030W YNL192W YMR067C YLR064W YKL072W
YPR154W YPL042C YOR027W YNL151C YMR065W YLR026C YKL045W
YPR137W YPL038W YOR018W YNL141W YMR064W YLR024C YKL027W
YPR114W YPL030W YOR004W YNL138W YMR063W YLR022C YJR152W 
YPR084W YPL028W YOL148C YNL130C YMR049C YLL020C YJR093C 
YPR080W YOR370C YOL116W YNL116W YMR044W YLL019C YJR085C 
YPR075C YOR353C YOL097C YNL101W YMR038C YLL018C-A YJR080C 
YPR060C YOR350C YOL090W YNL054W YMR029C YLL015W YJR051W 
YPR059C YOR337W YOL088C YNL053W YMR010W YKR087C YJR040W 
YPR058W YOR334W YOL051W YNL029C YML129C YKR077W YJR014W 
YPR034W YOR323C YNR059W YNL024C-A YML105C YKR069W YJR007W 
YPR010C YOR301W YNR055C YMR304W YML072C YKR059W YJL217W 
YPR004C YOR298C-A YNR053C YMR300C YML038C YKR036C YJL197W 
YPL268W YOR279C YNR046W YMR296C YLR454W YKR035C YJL172W 
YPL263C YOR239W YNL323W YMR273C YLR427W YKR028W YJL165C 
YPL249C-A YOR237W YNL298W YMR221C YLR420W YKR026C YJL154C 

YPL247C YOR233W YNL284C YMR203W YLR405W YKR018C YJL148W 
YPL231W YOR144C YNL281W YMR192W YLR353W YKL216W YJL146W 
YPL228W YOR133W YNL265C YMR185W YLR352W YKL184W YJL138C 
YPL220W YOR122C YNL255C YMR165C YLR330W YKL156W YJL125C 
YPL204W YOR121C YNL251C YMR162C YLR293C YKL150W YJL012C 
YPL202C YOR112W YNL246W YMR161W YLR291C YKL116C YIR004W 
YBR242W YBR166C YBR155W YBR127C YBR121C-A YBR121C YBR086C 
YBR052C YBR044C YBR031W YBR028C YBR027C YBR021W YBL095W
YAL007C YHR030C YHR012W YGR262C YGR260W YGR252W YGR235C 

YIL158W YGR107W YER081W YDR165W YGL122C YDR485C YDL137W
YIL156W YGR106C YER080W YDR129C YGL099W YDR454C YDL117W
YIL094C YGR094W YER077C YDR119W YGL092W YDR449C YDL092W
YIL075C YGR061C YER059W YDR069C YGL088W YDR423C YDL084W
YIL044C YGR057C YER027C YDR017C YGL080W YDR341C YDL081C 
YIL008W YGL248W YER026C YDL240W YGL040C YDR338C YDL058W
YHR201C YGL234W YEL002C YDL236W YFR052W YDR337W YDL056W
YHR169W YGL195W YDR529C YDL224C YFR048W YDR319C YDL020C 
YHR084W YGL129C YDR494W YDL192W YFR022W YDR314C YDL019C 
YHR072W YER125W YDR270W YBR260C YFR021W YDR313C YDL013W
YHR068W YER093C YDR258C YBR251W YFR002W YDR304C YCR069W
YHR057C YER082C YDR169C YBR247C YER161C YDR288W YCL054W
YHR046C YBR061C YBR059C YBR053C YER155C YDR280W YCL050C 
YHR042W YBL017C YAR002W YAL059W YER129W YDR275W YCL009C 
YGR166W YGR141W YGR135W YGR127W YGR124W YGR122W YBR069C 
YBL037W       
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Table A-4 Protein coding genes that share a promoter with another coding gene are not 
colored (1441), compiled based on (Xu et al. 2009). 
YPR191W YOR196C YNL078W YLR274W YJR144W YHR065C YFR027W
YPR190C YOR195W YNL074C YLR273C YJR143C YHR059W YFR026C 
YPR189W YOR194C YNL073W YLR267W YJR141W YHR058C YFR019W
YPR188C YOR186C-A YNL062C YLR266C YJR140C YHR049C-A YFR018C 
YPR187W YOR171C YNL061W YLR248W YJR135W-A YHR045W YFR004W
YPR186C YOR169C YNL057W YLR247C YJR135C YHR044C YFR003C 
YPR180W YOR168W YNL049C YLR246W YJR112W YHR040W YFL056C 
YPR179C YOR167C YNL048W YLR245C YJR111C YHR039C-A YFL055W
YPR178W YOR165W YNL041C YLR243W YJR092W YHR035W YFL050C 
YPR176C YOR164C YNL040W YLR242C YJR091C YHR034C YFL049W
YPR175W YOR160W YNL022C YLR240W YJR089W YHR032W-A YFL048C 
YPR174C YOR159C YNL021W YLR239C YJR088C YHR032W YFL047W
YPR153W YOR158W YNL011C YLR234W YJR084W YHR028W-A YFL034W
YPR152C YOR157C YNL010W YLR233C YJR083C YFL034C-A  YHR025W
YPR140W YOR147W YNL002C YLR226W YJR068W YHR024C YFL033C 
YPR139C YOR145C YPR133W-A YLR225C YJR067C YHR020W YFL032W
YNL001W YOR142W YMRWdelta16 YLR219W YJR066W YHR019C YFL031W
YPR133C YOR141C YMR314W YLR218C YJR065C YHR017W YFL027C 
YPR131C YOR140W YMR313C YLR210W YJR063W YHR016C YFL024C 
YPR130C YOR138C YMR288W YLR209C YJR062C YHR010W YFL023W
YPR113W YOR132W YMR287C YLR206W YJR059W YFL021C-A  YHR009C
YPR112C YOR131C YMR286W YLR205C YJR058C YHL029C YFL010C 
YPR108W YOR127W YMR285C YLR203C YJR050W YHL028W YFL009W
YPR107C YOR126C YMR276W YLR202C YJR049C YHL019C YFL002C 
YPR100W YOR099W YMR275C YLR199C YJR046W YHL018W YFL001W
YPR098C YOR098C YMR269W YLR198C YJR045C YHL017W YER173W
YPR097W YOR094W YMR268C YLR190W YJR042W YHL016C YER172C 
YPR096C YOR093C YMR266W YLR189C YJR041C YHL015W YER168C 
YPR095C YOR082C YMR265C YLR185W YJR039W YHL006C YER157W
YPR094W YOR081C YMR262W YLR183C YJR036C YHL005C YER156C 
YPR093C YOR080W YMR261C YLR182W YJR032W YHL003C YER148W
YPR089W YOR079C YMR236W YLR181C YJR031C YHL002W YER147C 
YPR088C YOR077W YMR235C YLR180W YJR022W YGRWdelta31 YER143W
YPR086W YOR076C YMR228W YLR179C YJR021C YGRCdelta20 YER142C 
YPR085C YOR069W YMR227C YLR177W YJR020W YGR278W YER140W
YPR083W YOR067C YMR223W YLR176C YJR018W YGR277C YER139C 
YPR082C YOR065W YMR222C YLR173W YJR013W YGR275W YER127W
YPR062W YOR064C YMR219W YLR172C YJR012C YGR274C YER126C 
YPR061C YOR061W YMR218C YLR148W YJR005W YGR270W YER123W
YPR053C YOR060C YMR217W YLR147C YJR004C YGR269W YER122C 
YPR051W YOR059C YMR216C YLR145W YJLWtau4 YER119C-A  YGR256W
YPR049C YOR039W YMR213W YLR144C YJLWdelta10 YGR217W YER119C 
YPR046W YOR038C YMR212C YLR132C YJL216C YGR216C YER100W
YPR045C YOR035C YMR210W YLR131C YJL215C YGR211W YER099C 
YPR043W YOR034C-A YMR209C YLR107W YJL204C YGR210C YER090W
YPR042C YOR025W YMR198W YLR106C YJL203W YGR208W YER089C 
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YPR040W YOR023C YMR197C YLR096W YJL199C YER088C-A  YGR207C
YPR039W YOR017W YMR191W YLR095C YJL192C YER066C-A  YGR186W
YPR037C YOR016C YMR190C YLR090W YJL191W YGR185C YER051W
YPR026W YOL150C YMR189W YLR089C YJL190C YGR174W-A YER050C 
YPR025C YOL147C YMR188C YLR088W YJL185C YER039C-A  YGR174C
YPR024W YOL146W YMR184W YLR087C YJL180C YGR173W YER039C 
YPR023C YOL145C YMR183C YLR086W YJL179W YER038W-A  YGR172C
YPL272C YOL144W YMR182W-A YLR085C YJL142C YGR149W YER035W
YPL271W YOL143C YMR180C YLR079W YJL141C YGR148C YER034W
YPL246C YOL142W YMR167W YLR078C YJL140W YGR131W YER032W
YPL245W YOL138C YMR166C YLR075W YJL127C YGR130C YER031C 
YPL244C YOL137W YMR160W YLR072W YJL126W YGR129W YER030W
YPL243W YOL135C YMR159C YLR071C YJL123C YGR128C YER029C 
YPL236C YOL133W YMR158W YLR068W YJL122W YGR105W YER019W
YPL235W YOL114C YMR157C YLR067C YJL119C YGR104C YER018C 
YPL234C YOL113W YMR143W YLR066W YJL103C YGR103W YER009W
YPL233W YOL111C YMR142C YLR065C YJL102W YGR102C YER008C 
YPL217C YOL110W YMR138W YLR052W YJL087C YGR099W YER004W
YPL216W YOL108C YMR137C YLR051C YJL086C YGR098C YER003C 
YPL214C YOL107W YMR128W YLR041W YJL085W YGR096W YEL046C 
YPL213W YOL099C YMR127C YLR021W YJL074C YGR095C YEL045C 
YPL212C YOL098C YMR115W YLR020C YJL073W YGR082W YEL039C 
YPL211W YOL094C YMR114C YLR019W YJL072C YGR081C YEL038W
YPL209C YOL093W YMR090W YLR018C YJL071W YGR072W YEL028W
YPL208W YOL087C YMR089C YLR017W YJL063C YGR071C YEL025C 
YPL199C YOL086W-A YMR079W YLR016C YJL062W-A YGR048W YEL024W
YPL198W YOL080C YMR078C YLR015W YJL056C YGR047C YEL023C 
YPL184C YOL078W YMR061W YLR014C YJL055W YGR031W YEL022W
YMR060C YOL077C YPL183W-A YLR009W YJL047C YGR030C YEL019C 
YPL176C YOL076W YMR054W YLR008C YJL046W YGR026W YEL018W
YPL175W YOL073C YMR053C YLR005W YJL035C YGR025W YEL017W
YPL174C YOL072W YMR052C-A YLR004C YJL034W YEL017C-A  YGR021W
YPL173W YOL070C YMR048W YLL062C YJL031C YGR020C YEL016C 
YPL169C YOL069W YMR047C YLL061W YJL030W YGR016W YEL015W
YPL168W YOL062C YMR042W YLL036C YJL019W YGR015C YEL005C 
YPL167C YOL061W YMR041C YLL035W YJL016W YGR006W YEL004W
YPL166W YOL060C YMR035W YLL034C YIR037W YGR005C YDR531W
YPL137C YOL059W YMR034C YLL033W YIR036W-A YGR003W YDR530C
YPL135W YOL038W YMR027W YLL022C YIR033W YDR524C-B  YGR002C
YPL119C YOL038C-A YMR026C YLL021W YIR032C YDR524C-A  YGL246C
YPL118W YOL031C YMR022W YLL017W YIR020C YGL245W YDR515W
YPL114W YOL030W YMR021C YLL016W YIR019C YGL242C YDR514C
YPL105C YOL018C YML128C YLL009C YIR012W YGL241W YDR513W
YPL104W YOL017W YML127W YLL008W YIR011C YGL229C YDR512C
YPL096W YOL016C YML106W  YLL007C YIR009W YGL228W YDR501W
YML107C YOL015W YPL096C-A YLL006W YIR008C YGL226W YDR500C
YPL094C YOL012C YML099C YKR101W YIR003W YGL226C-A YDR492W
YPL093W YOL011W YML098W YKR100C YIR002C YGL221C YDR490C
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YPL077C YOL005C YML097C YKR099W YIL154C YGL220W YDR489W
YPL076W YOL004W YML096W YKR098C YIL153W YGL219C YDR488C
YPL071C YNR043W YML066C YKR090W YIL149C YGL216W YDR483W
YPL070W YNR041C YML065W YKR089C YIL148W YGL213C YDR482C
YPL067C YNR040W YML061C YKR086W YIL143C YGL212W YDR469W
YPL066W YNR039C YML060W YKR085C YIL142W YGL206C YDR468C
YPL064C YNR038W YML049C YKR082W YIL131C YGL205W YDR462W
YPL063W YNR037C YML048W YKR081C YIL130W YDR461C-A  YGL200C
YPL053C YNR032W YML037C YKR064W YIL127C YGL198W YDR460W
YPL052W YNR031C YML036W YKR063C YIL126W YGL193C YDR459C
YPL049C YNR030W YML035C YKR056W YIL107C YGL191W YDR448W
YPL048W YNR029C YML034W YKR055W YLR387C YKL106W YOR275C
YPL046C YNR026C YML032C YKR054C YLR386W YKL106C-A YOR262W
YPL045W YNR025C YML031W YKR050W YLR385C YKL099C YOR261C
YPL040C YNR023W YML025C YKR048C YLR384C YKL098W YOR260W
YPL039W YNR022C YML024W YKR047W YLR383W YKL074C YOR259C
YML023C YNR021W YPL038W-A YKR044W YLR382C YKL073W YOR257W
YPL023C YNR020C YML022W YKR043C YLR375W YKL052C YOR256C
YPL022W YNR008W YML021C YKR025W YLR373C YKL051W YOR252W
YPL019C YNR007C YML020W YKR024C YLR371W YKL048C YOR251C
YPL018W YNR004W YML015C YKR023W YLR370C YKL047W YOR244W
YPL017C YNR003C YML014W YKR022C YLR363W-A YKL036C YOR243C
YPL016W YNL315C YML011C YKR020W YLR363C YKL024C YOR222W
YPL013C YNL314W YML010W YKR019C YLR349W YKL023C-A YOR221C
YPL012W YNL313C YML009W-B YKR007W YLR324W YKL018W YOR220W
YPL011C YNL312W YML007W YKR006C YLR323C YKL018C-A YOR219C
YPL010W YNL310C YLRCdelta27 YKR002W YLR320W YKL016C YOR217W
YDR447C YBR250W YDR182W-A YDL033C YBR130C YDR291W YCL002C 
YDR182W YBR249C YDR444W YDL031W YBR108W YDR289C YCL001W
YDR443C YBR246W YDR179W-A YDL016C YBR107C YDR265W YBR289W
YDR179C YBR245C YDR433W YDL015C YBR103W YDR264C YBR288C
YDR176W YBR237W YDR432W YDL012C YBR102C YDR254W YBR284W
YDR175C YBR236C YDR430C YDL010W YBR096W YDR253C YBR283C
YDR167W YBR235W YDR425W YDL002C YBR095C YDR250C YBR278W
YDR166C YBR234C YDR424C YDL001W YBR071W YDR249C YBR276C
YDR162C YBR233W YCR095W-A YDR412W YBR070C YDR244W YBR274W
YDR152W YBR231C YDR411C YCR095C YBR030W YDR243C YBR273C
YDR151C YDR405W YBR230W-A YCR093W YBR029C YDR220C YBR271W
YDR140W YBR230C YDR404C YCR092C YBR005W YDR219C YBR270C
YDR139C YBR227C YDR392W YCR079W YBR004C YDR204W YBR265W
YDR124W YBR226C YDR391C YCR077C YBR003W YDR202C YBR264C
YDR123C YBR225W YCR075W-A YDR388W YBR002C YDR201W YBR263W
YDR121W YBR224W YCR073W-A YCR075C YBL103C YDR200C YBR262C
YDR120C YBR223C YDR118W-A YDR387C YBL102W YDR197W YBR259W
YDR382W YBR217W YDR381C-A YCR073C YBL093C YDR196C YBR258C
YDR118W YBR216C YDR376W YCR060W YBL091C YDR191W YBR255W
YDR117C YBR212W YDR375C YCR059C YBL090W YDR190C YBR254C
YDR110W YBR211C YDR373W YCR048W YBL072C YIL106W YGL175C
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YDR109C YBR206W YDR372C YCR047C YBL071C-B YIL093C YGL174W
YDR108W YBR205W YCR045W-A YDR371W YBL061C YIL092W YGL173C
YDR107C YBR204C YDR370C YCR036W YBL060W YIL091C YGL172W
YDR103W YBR199W YDR363W YCR035C YBL057C YIL090W YGL167C
YDR101C YBR198C YDR362C YCR020W-B YBL056W YIL077C YGL166W
YDR082W YBR175W YDR358W YCR020C-A YBL051C YIL076W YGL161C
YDR081C YBR173C YDR357C YCR020C YBL050W YIL065C YGL160W
YDR080W YBR171W YDR351W YCR003W YBL047C YIL064W YGL154C
YDR079W YBR170C YDR079C-A YCR002C YBL046W YIL051C YGL153W
YDR350C YBR165W YDR347W YCL064C YBL039C-A YIL050W YGL150C
YDR078C YBR164C YDR346C YCL063W YBL039C YIL047C-A YGL148W
YDR068W YBR151W YDR334W YCL059C YBL038W YIL047C YGL142C
YDR067C YBR150C YDR333C YCL058W-A YBL033C YIL046W-A YGL141W
YDR057W YBR142W YDR330W YCL052C YBL032W YIL042C YGL140C
YDR056C YDR329C YBR141W-A YCL051W YBL028C YIL041W YGL139W
YDR031W YBR141C YDR321W YCL037C YBL027W YIL020C-A YGL131C
YDR030C YBR139W YDR320C-A YCL036W YBL021C YIL020C YGL130W
YDR020C YBR138C YDR316W YCL029C YBL020W YIL019W YGL127C
YDR019C YBR135W YDR315C YCL028W YBL014C YHR200W YGL126W
YDR007W YBR133C YDR296W YCL008C YBL013W YHR199C-A YGL112C 
YDR006C YBR131W YDR295C YCL005W-A YBL010C YHR199C YGL111W
YDR002W YAL013W YHR148W YGL043W YBL009W YHR194W YGL107C
YDR001C YAL005C YHR147C YGL031C YAR008W YHR193C YGL106W
YDL238C YAL003W YHR134W YGL030W YAR007C YHR192W YGL094C
YDL237W YLR423C YHR133C YGL023C YAR003W YHR191C YGL093W
YDL234C YLR422W YHR132W-A YGL022W YAR002C-A YHR189W YGL091C
YDL233W YLR421C YHR132C YGL020C YAL043C YHR188C YGL090W
YDL231C YLR419W YHR119W YGL019W YAL042W YHR187W YGL087C
YDL230W YLR418C YHR118C YGL018C YAL036C YHR186C YGL086W
YDL226C YLR410W YHR117W YGL017W YAL035W YHR167W YGL072C
YDL225W YLR409C YHR116W YGL013C YAL034C YHR166C YGL070C
YDL220C YLR403W YHR115C YGL012W YAL033W YHR159W YGL068W
YDL219W YLR402W YHR113W YGL011C YAL031C YHR158C YGL064C
YDL213C YLR390W YHR112C YGL010W YAL030W YHR154W YGL063W
YDL212W YLR389C YHR108W YGL003C YAL029C YHR153C YGL061C
YDL209C YLR388W YHR107C YGL002W YAL028W YHR152W YGL060W
YDL208W YKL176C YHR083W YFR042W YAL019W-A YHR151C YGL048C
YDL205C YKL175W YHR082C YFR041C YAL019W YHR150W YGL047W
YDL204W YKL174C YHR078W YFR040W YAL014C YHR149C YGL044C
YDL203C YKL173W YHR077C YFR039C YDL097C YDL095W YDL090C
YDL202W YDL197C YDL195W YDL190C YDL189W YDL187C YDL171C
YDL170W YDL166C YDL165W YDL160C YDL159W YDL158C YDL157C
YDL153C YDL150W YDL148C YDL147W YDL144C YDL143W YDL142C
YDL141W YDL121C YDL120W YDL103C YDL102W YDL100C YDL099W
YDL089W YDL083C YDL082W YDL076C YDL075W YDL074C YDL073W
YDL065C YDL064W YDL061C YDL060W YDL052C YDL051W YNL181W
YNL166C YNL165W YNL162W-A YNL163C YNL159C YNL158W YNL156C
YNL155W YNL154C YNL153C YNL152W YNL148C YNL147W YNL143C
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