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Introduction

In this thesis we investigate proper classes of short exact sequences, especially those proper
classes induced by supplement-like and complement-like submodules in the category of left
R-modules over an associative ring R and in the categories of type σ[M ] of left R-modules
subgenerated by a module M .

Proper classes were introduced by Buchsbaum in [9] for an exact category. We use the
axioms given by Mac Lane in [43] for abelian categories (see 3.1).
A proper class P, in an abelian category A defines a closed subbifunctor of the Ext1

A functor
as has been shown by Butler and Horrocks in [10] or by Buan in [8], i.e.

Ext1
P(−,−) ⊆ Ext1

A(−,−) : Aop × A→ Ab,

where Ab denotes the category of abelian groups, and for A,C ∈ A, Ext1
A(C,A) denotes the

class of isomorphism classes of short exact sequences

0→ A→ B → C → 0.

Ext1
A(C,A) together with the Baer sum is an abelian group and for any proper class P,

Ext1
P(C,A) is a subgroup (see [43]). These ideas were the starting point of relative homolo-

gical algebra. Proper classes are investigated by Mishina and Skornyakov in [47], Walker in
[60], Manovcev in [45] and Sklyarenko in [56] for abelian groups, and by Generalov in [27, 28],
Stenström in [57, 58] and Sklyarenko in [55] for module categories.

Supplement and complement submodules induce proper classes. This was noted for abelian
groups by Harrison in [32] and for R-Mod by Stenström and Generalov in [57, 27, 28]. Recently
this investigations were further developed by Al-Takhmann et al. and Mermut in [46, 1].

The first purpose of this thesis is to continue this investigation studying the proper classes
induced by supplements and complements relative to a class of modules C closed under sub-
modules and factor modules. We call such a class a {q, s}-closed class. We obtain some known
results and new ones for special cases of C. For instance, if C is the class of singular modules,
then we obtain the δ-supplements introduced by Zhou in [64]. When C is R-Mod, we recover
the classical supplements and complements. We also consider the case when C is the torsion
class Tτ associated to a hereditary preradical τ or the torsionfree class Fρ associated to a co-
hereditary preradical ρ. Two interesting cases are when C = σ[M ] and C = σf [M ] considered
as {q, s}-closed classes of R-Mod.

After collecting some preliminary results in Chapters 1, 2 and 3 about abelian categories,
proper classes, supplements and complements in a module category, we define, in Chapter 4,
C-supplements.

A submodule K ⊆ N is called C-small if for any submodule X ⊆ N the equality X+K = N
and N/X ∈ C implies that X = N and we write K �C N . The properties of C-small submo-
dules are similar to those of small submodules (see 8.3). We characterize the radical defined
by the reject of the class of simple modules in C. This radical, applied to a module N , is equal
to the sum of all C-small submodules of N . We call a submodule K ⊆ N a C-supplement in
N if there is a submodule K ′ ⊆ N with K +K ′ = N and K ∩K ′ �C K. Then we prove that
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C-supplements induce a proper class. This proper class contains the proper class induced by
the supplements. In [1] Al-Takhman et al. introduced a generalization of supplements using
a radical τ . They call a submodule K ⊆ N a τ -supplement in N if there is a submodule
K ′ ⊆ N such that K+K ′ = N and K∩K ′ ⊆ τ(K). They prove that the proper class induced
by the τ -supplements is the proper class injectively generated by the class of τ -torsionfree
modules, where a proper class P, injectively generated by a class of modules I, consists of
those short exact sequences such that the modules in I are injective with respect to them.
Every supplement is a Rad-supplement for τ = Rad. In the same way C-supplements are
radC-supplements with

τ(N) = radC(N) =
∑
{all C-small submodules of N}

for every module N .
In Chapter 5, dual to the concept of C-small submodules, we call a submodule K ⊆ N

C-essential if for any submodule X ⊆ N the equality X ∩ K = 0 and X ∈ C implies that
X = 0. We write K ⊆Ce N . We characterize the idempotent preradical defined by the trace
of the class of simple modules of C in a module N . This preradical is the intersecction of all
C-essential submodules of N . Next we define C-complements as those submodules K ⊆ N
such that there is a submodule K ′ ⊆ N with K ∩ K ′ = 0 and K ⊕ K ′/K ⊆Ce N/K. We
prove that C-complements induce a proper class. Dual to the τ -supplements, Al-Takhman et
al. introduce in [1] the concept of τ -complements for an idempotent preradical τ . The proper
class induced by the τ -complements is the proper class projectively generated by the class
of τ -torsion modules, where a proper class P, projectively generated by a class of modules
Q, consists of the short exact sequences such that the modules in Q are projective with
respect to them. Complements are Soc-complements for τ = Soc and C-complements are
trC-complements for

τ(N) = trC(N) =
⋂
{all C-essential submodules of N}

for every module N .
The second purpose of this work is to compare, in Chapter 6, the lattice of all proper

classes with the lattice of cotorsion pairs. In [53] Salce introduced a cotorsion pair in the
following way: Take a class A of abelian groups and consider P, the proper class projectively
generated by A. Then he observes that

Div(P) = {X ∈ Mod-Z | Ext(A,X) = 0∀A ∈ A},

where Div(P) is the class of abelian groups D such that every short exact sequence beginning
with D belongs to P. He defines the cotorsion pair cogenerated by A by (⊥Div(P),Div(P)).
In the same way he defines the cotorsion pair generated by a class B of abelian groups by
(Flat(R),Flat(R)⊥) with R the proper class injectively generated by B and Flat(R) the class
of abelian groups G such that every short exact sequence ending at G belongs to R. The
work of Salce on cotorsion pairs was generalized to module categories and abelian categories
and it has been extensively studied. We prove some results which show how some properties
of those proper classes yield information about their associated cotorsion pairs (e.g. 14.22,
14.25). We define a correspondence between the lattice of injectively (projectively) generated
proper classes and the lattice of cotorsion pairs using the construction of Salce. Let P be an
injectively generated proper class in an abelian category. Define

Φ(P) = (Flat(P),Flat(P)⊥).

Φ is an order-reversing correspondence between injectively generated proper classes and cotor-
sion pairs which preserves arbitrary meets. We prove that this correspondence is bijective if
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we restrict Φ to the class of Xu proper classes, these are injectively generated proper classes P,
such that Inj(P) = Flat(P)⊥. For example, in R-Mod the proper class of pure exact sequences
is a Xu proper class when the pure injective and the cotorsion modules coincide.

Finally we consider cotorsion pairs relative to a proper class P as introduced by Hovey
in [37]. We call them P-cotorsion pairs. They are pairs of complete orthogonal classes with
respect to the functor Ext1

P instead of Ext1
A. We show that, like the cotorsion pairs, they

come from injectively (projectively) generated proper classes. Here we define three classes of
objects which correspond to the P-flats, P-divisibles and P-regulars in the absolute case.

Let P and R be two proper classes. An object X is called P-R-flat if every short exact
sequence in P ending at X belongs to R. P-R-divisibles are defined dually. We show that
every P-cotorsion pair is of the form

(⊥P (P-Div-R),P-Div-R)

for a projectively generated proper class R and also of the form

(P-Flat-R, (P-Flat-R)⊥P )

for an injectively generated proper class R, where for a class X ,

X⊥P = Ker (Ext1
P(X ,−)) and ⊥PX = Ker (Ext1

P(−,X )).

We obtain properties of P-R-flats, P-R-divisibles and P-R-regulars and we show that this
classes coincide with known concepts in module theory.

In the Appendix we include the construction of the relative functors ExtnP and the defini-
tions of the homological dimensions relative to a proper class P due to Mac Lane and Alizade
(see [2, 43]).

One can define proper classes in more general categories. The definition of exact categories,
introduced by Quillen in [50], is the reformulation of the axioms of a proper class, where a short
exact sequence in P corresponds to a coflation (f, g) in the exact category. In a preabelian
category Generalov defines a proper class of cokernels (kernels) using some equivalent axioms
to those of Mac Lane (see [29]). In a triangulated category Beligiannis defines a proper class
of triangles using some axioms analogous to those of an exact category (see [4]).
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S(C) the class of simple modules in C, 32
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⋂
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the proper class injectively generated by
{N ∈ σ[M ] | radS(C)(N) = 0}, 33
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Chapter 1

Preliminaries

We will be mainly interested in the category R-Mod of left R-modules over an associative ring
with unit and in categories σ[M ] of left R-modules subgenerated by a module M . However
we provide in this section the background material we make use of in the more general setting
of abelian categories. This methods will be applied in the subsequent sections to our module
categories.

1 Abelian categories

In this section we recall some basic definitions and elementary properties of abelian categories.
For a more comprehensive treatment see [44, Chapter VIII] or [25].

1.1. Abelian categories. A category A is an abelian category if it satisfies the following
axioms:

(Ab1) For every pair of objects X,Y ∈ A, HomA(X,Y ) is an abelian group and the composi-
tion is bilinear.

(Ab2) A has finite direct sums.

(Ab3) Every morphism has a kernel and a cokernel.

(Ab4) Every monomorphism is a kernel and every epimorphism is a cokernel.

Some of the most important features of abelian categories are the method of ”diagram
chasing”, the fact that a morphism which is both a monomorphism and an epimorphism is an
isomorphism, short exact sequences are determined by one of their morphisms and pullbacks
of epimorphisms are epimorphisms. Examples of abelian categories are Ab, R-Mod and σ[M ].

In the subsequent we fix an abelian category A.

1.2. Short exact sequences. A short exact sequence in A is a sequence of objects and
morphisms in A of the form

E : 0→ A
f−→ B

g−→ C → 0

such that f = Ker g and g = Coker f . A morphism of short exact sequences is a tripel
of morphisms (f1, f2, f3) in A making the diagram

0 // A1
//

f1

��

B1
//

f2

��

C1
//

f3

��

0

0 // A2
// B2

// C2
// 0

1



commutative. A short exact sequence E is called split exact (or it splits) if there exists a
morphism f ′ : B → A such that f ′f = idA. Equivalently, there exists a morphism g′ : C → B
such that gg′ = idC .

We recall some basic lemmas. The references at the beginning of each proposition are of
the works where the proofs can be found.

1.3. The five lemma. [41, 8.3.13] Consider a commutative diagram in A with exact rows

A1

f1

��

// A2

f2

��

// A3

f3

��

// A4

f4

��

// A5

f5

��
B1

// B2
// B3

// B4
// B5.

(i) If f1 is an epimorphism and f2 and f4 monomorphisms, then f3 is a monomorphism.

(ii) If f5 is a monomorphism and f2 and f4 epimorphisms, then f3 is an epimorphism.

(iii) If f1, f2, f4, f5 are isomorphisms, so is f3.

1.4. Homotopy lemma. [24, Proposition 3.2] For a commutative diagram in A with exact
rows

A1

��

// A2

��

// A3

��
B1

// B2
// B3,

the following are equivalent:

(a) There exists a morphism A2 → B1 making the upper triangle in the left square commuta-
tive.

(b) There exists a morphism A3 → B2 making the lower triangle in the right square commu-
tative.

1.5. Projectives. An object P ∈ A is called projective if it satisfies the equivalent condi-
tions:

(a) The functor HomA(P,−) is exact.

(b) Ext1
A(P,X) = 0 for all X ∈ A.

The class of all projective objects of A is denoted by Proj(A). The category has enough
projectives if for every object C ∈ A there is an epimorphism

P → C with P ∈ Proj(A).

1.6. Injectives. An object I ∈ A is called injective if it satisfies the equivalent conditions:

(a) The functor HomA(−, I) is exact.

(b) Ext1
A(Y, I) = 0 for all Y ∈ A.

The class of all injective objects of A is denoted by Inj(A). The category has enough injec-
tives if for every object A ∈ A there is a monomorphism

A→ I with I ∈ Inj(A).

2



1.7. (Co-)complete abelian categories. An abelian category A is called complete if A
has arbitrary products and cocomplete if A has arbitrary coproducts.

1.8. Grothendieck categories. An abelian category A is a Grothendieck category if A
admits a generator and direct limits are exact. If A is a Grothendieck category, then every
object in A has an injective hull, i.e. A has enough injectives.

1.9. Locally finitely presented Grothendieck categories. Recall that an object A in
a Grothendieck category A is finitely generated if for any family of subobjects Ai, i ∈ I,
satisfying A =

∑
I Ai, there is a finite subset J ⊆ I such that A =

∑
J Ai. The subcategory

of finitely generated objects is denoted by fg A. The category A is called locally finitely
generated if every object X ∈ A is a direct sum X =

∑
I Xi of finitely generated subobjects

Xi or, equivalently, A posesses a family of finitely generated generators. A finitely generated
object C ∈ A is finitely presented if in every short exact sequence

0→ A→ B → C → 0

in A with B finitely generated, A is also finitely generated. The subcategory of finitely
presented objects is denoted by fp A. The category A is said to be locally finitely presented
if every object X ∈ A is a direct limit lim

→
Xi of finitely presented objects Xi or, equivalently,

A posesses a family of finitely presented generators.

1.10. Locally noetherian categories. An object A in a Grothendieck category A is called
noetherian if the lattice of subobjects of A satisfies the acending chain condition (acc) or,
equivalently, every subobject of A is finitely generated. A Grothendieck category A is locally
noetherian if A has a family of noetherian generators. In this case every object X ∈ A is the
direct sum X =

∑
I Xi of noetherian subobjects Xi. A locally finitely generated Grothendieck

category is locally noetherian iff the direct sum of injective objects is injective. A classical
result due to Matlis says that if A is locally noetherian, then every injective object is a direct
sum of indecomposable injectives.

1.11. The category R-Mod. Let R be an associative ring with unit element. We denote
by R-Mod (Mod-R) the category of unital left (right) R-modules. Morphisms between left
R-modules are written on the left and for two morphisms f : M → N , g : N → K we write
their composition gf . HomR(M,N) denotes the abelian group of morphisms from M to N ,
and EndR(M) is the endomorphism ring of M . E(M) stands for the R-injective hull of M .
R-Mod is a complete and cocomplete locally finitely presented Grothendieck category with a
projective generator R.

1.12. The category σ[M ]. An R-module N is said to be generated by an R-module M
if there exists an epimorphism ϕ : M (Λ) → N for a set Λ. N is said to be subgenerated
by M if N is isomorphic to a submodule of an M -generated module. The full subcategory
of R-Mod whose objects are all R-modules subgenerated by M is denoted by σ[M ]. The
subcategory σ[M ] is closed under direct sums, kernels and cokernels. A module N is called a
subgenerator in σ[M ] if σ[M ] = σ[N ]. If M = R, then σ[M ] = R-Mod. The product of a
family {Nλ}Λ in σ[M ] is denoted by

∏M
Λ Nλ. It is obtained by

M∏
Λ

Nλ = Tr(σ[M ],
∏
Λ

Nλ).

σ[M ] is the smallest full Grothendieck subcategory of R-Mod containing M . An R-module U
is called M -injective if every diagram

0 // K

��

// N

~~}
}

}
}

U

3



can be completed commutatively by a morphism N → U . M -projective modules are defined
dually. A module N ∈ σ[M ] is M -injective iff N is injective in the category σ[M ] but in general
an M -projective module need not be projective in the category σ[M ]. The M-injective hull
of a module N ∈ σ[M ] is given by N̂ = Tr(M,E(N)), where E(N) is the R-injective hull of N .
σ[M ] is locally finitely presented iff for every finitely presented module F ∈ R-Mod and every
morphism f : F → A, with A ∈ σ[M ], there is a factorization of f through a finitely presented
module in σ[M ] (see [49, 1.6]). In general σ[M ] need not have finitely presented modules or
projective modules (see [61, 18.12] and [49, 1.7]). The category σ[M ] is locally noetherian iff
M is locally noetherian, i.e. every finitely generated submodule of M is noetherian (see [61,
27.3] for a characterization of locally noetherian modules).

1.13. The category σf [M ]. We denote by σf [M ] the full subcategory of σ[M ] whose objects
are submodules of finitely M -generated modules. The category σf [R] consist of the submod-
ules of finitely generated R-modules. σf [M ] is closed under finite products, submodules and
factor modules. σf [M ] is an abelian category and contains all finitely generated modules of
σ[M ]. The category σf [M ] is not in general a Grothendieck category.

2 Torsion pairs and preradicals

In this section we recall the definition and some properties of torsion pairs (also called tor-
sion theories) and preradicals in abelian categories. Torsion pairs in abelian categories were
introduced by Dickson in [16]. There is some additional axiom on the abelian category. A is
called subcomplete if the class of subobjects of any object A in A is a set and for any set of
subobjects {Uα}Λ of A, ⊕ΛUα and

∏
ΛA/Uα exist (see also [40]). For our purposes we will

always assume this axiom being closer to a module category, in which we will later concretize
the results of this more general setting.

2.1. Hom-orthogonal classes. For a class of objects A in A we define the classes

A◦ = {X ∈ A | HomA(X,A) = 0},

A• = {Y ∈ A | HomA(A, Y ) = 0}.

2.2. Torsion pairs. A torsion pair in A is a pair (T,F) of classes of objects of A such that

(i) T = F◦,

(ii) F = T•.

If (T,F) is a torsion pair, then T is called the torsion class and F the torsionfree class.
For a torsion pair (T,F) we have that T is closed under factors, extensions and direct sums
and F is closed under extensions, subobjects and products.
For any class of objects A ⊆ A, the pairs

(A◦,A◦•) and (A•◦,A•)

are torsion pairs, called the torsion pair generated and cogenerated by the class A, respec-
tively.

2.3. Preradicals.1 A preradical τ is an endofunctor τ : A→ A such that

(i) for every C ∈ A, τ(C) ⊆ C,

(ii) for every morphism f : C → C ′, τ(f) = f |τ(C): τ(C)→ τ(C ′).

1Preradicals can be defined in more general categories (see [13]).
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This can be expressed in the commutative diagram

τ(C)
τ(f)=f |τ(C) //

� _

��

τ(C ′)� _

��
C

f
// C ′.

2.4. Properties of preradicals. Let τ be a preradical, A ⊆ B and {Ai}I a family of objects
in A. Then

(i) If τ(A) = A, then A ⊆ τ(B).

(ii) If τ(B/A) = 0, then τ(B) ⊆ A.

(iii) τ(⊕IAi) = ⊕Iτ(Ai).

(iv) τ(
∏
I Ai) ⊆

∏
I τ(Ai).

2.5 Definition. A preradical τ is called

idempotent if τ(τ(C)) = τ(C) for all C ∈ A,

radical if τ(C/τ(C)) = 0 for all C ∈ A.

For each preradical τ in A, there is an induced endofunctor

1/τ : A→ A, C 7→ C/τ(C).

2.6. Hereditary preradicals. A preradical τ is called hereditary if it satisfies the equiva-
lent conditions:

(a) τ is left exact.

(b) τ(A) = A ∩ τ(B) for all A ⊆ B.

(c) τ is idempotent and Tτ is closed under subobjects.

2.7. Cohereditary preradicals. A preradical τ is called cohereditary if it satisfies the
equivalent conditions:

(a) 1/τ is right exact.

(b) τ(B/A) = (τ(B) +A)/A for all A ⊆ B.

(c) τ is a radical and Fτ is closed under factors.

(d) τ respects epimorphisms.

Associated to a preradical τ we have two clases of objects of A

Tτ := {X ∈ A | τ(X) = X},

Fτ := {Y ∈ A | τ(Y ) = 0}

the pretorsion class and the pretorsionfree class. Tτ is closed under direct sums and
factors and Fτ is closed under products and subobjects. The pair (Tτ ,Fτ ) is a torsion pair iff
τ is an idempotent radical.

We will show how the closure properties of some classes of modules yield information about
the preradicals associated to them. From now on let A = σ[M ].
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2.8. Classes of modules. Let C be a class of modules in σ[M ]. C is called

s-closed if C is closed under submodules,
q-closed if C is closed under factor modules,
{q,s}-closed if C is s-closed and q-closed,
pretorsion if C is closed under direct sums and is q-closed,
pretorsionfree if C is closed under products and is s-closed,
torsion if C is pretorsion and closed under extensions,
torsionfree if C is pretorsionfree and closed under extensions,
hereditary pretorsion if C is pretorsion and s-closed,
cohereditary pretorsionfree if C is pretorsionfree and q-closed.

2.9. Reject and trace. Let C be a class of modules in σ[M ]. We define two preradicals by
setting for each N ∈ σ[M ]

radC(N) = Rej(N, C) =
⋂
{Ker f | f : N → C, C ∈ C},

trC(N) = Tr(C, N) =
∑
{Im f | f : C → N, C ∈ C}.

2.10. Properties of radC. Let C be a class of modules in σ[M ].

(i) radC is a radical.

(ii) If C is a pretorsionfree class, then radC(N) = 0 iff N ∈ C.

(iii) If C is a torsionfree class, then radC is an idempotent radical.

(iv) If C is a cohereditary pretorsionfree class, then for all K ⊆ N ,

radC(N/K) = (radC(N) +K)/K.

(v) If C is a class of M -injective modules, then radC is an idempotent preradical.

Proof. (i) For every C ∈ C and every morphism f : N/radC(N)→ C, define Uf,C by Ker f =
Uf,C/radC(N). Note that

Uf,C = Ker (N → N/Uf,C) with

N/Uf,C ' f(N/radC(N)) ⊆ C ∈ C,

i.e. Uf,C is the kernel of a morphism from N to C. Therefore

radC(N/radC(N)) = ∩f,C(Uf,C/radC(N)) =

= (∩f,CUf,C)/radC(N) = radC(N)/radC(N) = 0.

(ii) radC(N) = 0 iff N is cogenerated by C. Thus if C is closed under products and sub-
modules every module cogenerated by C belongs to C. Clearly for every module N ∈ C we
have radC(N) = 0.

(iii) Consider the short exact sequence

0→ radC(N)/radC(radC(N))→ N/radC(radC(N))→ N/radC(N)→ 0.

Since radC(radC(N)/radC(radC(N)) = 0 and radC(N/radC(N) = 0,
radC(N/radC(radC(N))) = 0. From 2.4 (ii) it follows that radC(N) ⊆ radC(radC(N)).
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(iv) Since

N/radC(N)
/

(radC(N) +K)/radC(N) ' N/(radC(N) +K)

' N/K
/

(radC(N) +K)/K

and C is closed under factors, radC(N/(radC(N + K))) = 0. From 2.4 (ii) it follows that
radC(N/K) ⊆ (radC(N) +K)/K.

(v) Let f : radC(N)→ C with C ∈ C. Consider the diagram

0 // radC(N)

f

��

i // N

f̄{{v
v

v
v

v

C.

Since C is M -injective, there exist f̄ : N → C such that f = f̄ i. From the definition of
radC(N) follows that f = f̄ i = 0, i.e radC(N) ⊆ radC(radC(N)).

2.11. Properties of trC. Let C be a class of modules in σ[M ].

(i) trC is an idempotent preradical.

(ii) If C is a pretorsion class, then trC(N) = N iff N ∈ C.

(iii) If C is a torsion class, then trC is an idempotent radical.

(iv) If C is a hereditary pretorsion class, then for all K ⊆ N ,

trC(K) = K ∩ trC(N).

(v) If C is a class of projective modules in σ[M ], then trC is a radical.

Proof. (i) Let f : C → N with C ∈ C. Then Im f ⊆ trC(N). Therefore f : C → trC(N), i.e.
Im f ⊆ trC(trC(N)). Thus trC(N) ⊆ trC(trC(N)).

(ii) trC(N) = N iff N is generated by C. If C is closed under direct sums and factors, then
every module generated by C belongs to C. Clearly for every C ∈ C, trC(C) = C.

(iii) Put trC(N/trC(N)) = U/trC(N) and consider the short exact sequence

0→ trC(N)→ U → U/trC(N)→ 0.

Since trC(trC(N)) = trC(N) and

trC(U/trC(N)) = trC(trC(N/trC(N))) = trC(N/trC(N)),

trC(U) = U . From 2.4 (i) follows that U ⊆ trC(N), i.e trC(N/trC(N) = 0.

(iv) Since trC(N) belongs to C, also K∩trC(N). Therefore trC(K∩trC(N)) = K∩trC(N) ⊆
K. From 2.4 (i) follows that K ∩ trC(N) ⊆ trC(K).
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(v) Let f : C → N/trC(N) be any morphism with N ∈ σ[M ] and C ∈ C. Consider the
diagram

C

f

��

f̄

zzu u u u u u

N p
// N/trC(N) // 0.

Since C is projective in σ[M ], there exist f̄ : C → N such that pf̄ = f . Since Im f̄ ⊆ trC(N),
Im f = p(Im f̄) = 0. Therefore trC(N/trC(N)) = 0.
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Chapter 2

Proper classes

3 Proper classes

In this section we introduce the main subject of this work, namely proper classes. Proper
classes were introduced by Buchsbaum in [9]. They have been extensively studied in different
contexts. We refer to [55, 29, 46, 47] for complete surveys and further reading.

Let P be a class of short exact sequences in an abelian category A. If

0→ A
f−→ B

g−→ C → 0

belongs to P, then f is called a P-monomorphism and g a P-epimorphism.

3.1. Proper classes. A class P of short exact sequences in A is called a proper class if it
satisfies the following axioms:

(P1) P is closed under isomorphisms.

(P2) P contains all splitting short exact sequences of A.

(P3) If f and f ′ are P-monomorphisms, then f ′f is a P-monomorphism.

(P4) If f ′f is a P-monomorphism, then f is a P-monomorphism.

(P5) If g and g′ are P-epimorphisms, then g′g is a P-epimorphism.

(P6) If gg′ is a P-epimorphism, then g is a P-epimorphism.

The class of all short exact sequences of A (denoted by Abs) and the class of all split-
ting short exact sequences (denoted by Split) are examples of proper classes. Note that the
intersection of any family of proper classes is again a proper class.

3.2 Remark. Let P be a proper class in A. Note that the axioms (P3) and (P4) imply:

(PB) In every pullback diagram

E′ : 0 // A // B′

��

// C ′

��

// 0

E : 0 // A // B // C // 0

if E belongs to P, then E′ belongs to P. Moreover the axioms (P5) and (P6) imply:
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(PO) In every pushout diagram

E : 0 // A

��

// B

��

// C // 0

E′ : 0 // A′ // B′ // C // 0

if E belongs to P, then E′ belongs to P.

3.3. Proposition. Let P be a class of short exact sequences in an abelian category A. The
following are equivalent:

(a) P is a proper class.

(b) P satisfies the axioms (P1), (P2), (P5), (P6) and (PB).

(c) P satisfies the axioms (P1), (P2), (P3), (P4) and (PO).

Proof. By the Remark 3.2 it follows (a) ⇒ (b) and (a) ⇒ (c). We prove only (b) ⇒ (a). The
proof of (c)⇒ (a) is analogous (see [42, A.1]). We show that if P satisfies (b), then it satisfies
also the axioms (P3) and (P4).

(P4) Let f : A → B and g : B → D be morphisms such that gf is a P-monomorphism.
We can form the pullback diagram

E′ : 0 // A
f // B

g

��

// Coker f

��

// 0

E : 0 // A
gf

// D // Coker gf // 0.

By hypothesis E ∈ P, thus from (PB) follows that E′ ∈ P, i.e. f is a P-monomorphism.

(P3) We use in this proof the following notation. For a pair of morphisms f : X → Y
and g : X → Z we denote by (f, g) : X → Y ⊕ Z, the morphism defined by (f, g)(x) =
(f(x), g(x)) ∈ Y ⊕ Z. And for a pair of morphisms h : Y → X and k : Z → X we denote by
[h, k] : Y ⊕ Z → X, the morphism defined by [h, k](y, z) = h(y) + k(z) ∈ X.
Let f1 : A→ B and f2 : B → D be P-monomorphisms. Set C = Coker f1 and F = Coker f2.
Thus the sequences

E1 : 0→ A
f1−→ B

g1−→ C → 0 and E2 : 0→ B
f2−→ D

g2−→ F → 0

belong to P. From the pushout diagram

E2 : 0 // B

g1

��

f2 // D

g3

��

g2 // F // 0

E′2 : 0 // C
f ′2

// F ′
g′2

// F // 0
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we obtain that E′2 ∈ P. Consider the commutative diagram

0

��

0

��
B

e

��

B

f2

��
0 // C

f // G

h

��

g // D

g3~~}}}}}}}}
g2

��

// 0

0 // C
f ′2

// F ′

��

g′2

// F

��

// 0

0 0

with the lower right square a pullback. The lower row is in P, therefore the sequences

0→ B
e−→ G

h−→ F ′ → 0 and 0→ C
f−→ G

g−→ D → 0

belong to P. Since g2 = g′2g3, the middle row splits, i.e. there exists g : D → G and
f : G → C such that idC = ff , idD = gg and f ′2f = g3g − h. Thus we have an isomorphism
(f, g) : G→ C ⊕D. This yields an isomorphism of short exact sequences

0 // B
e // G

(f,g)

��

h // F ′ // 0

0 // B
(g1,−f2)

// C ⊕D
[f ′2,g3]

// F ′ // 0.

Therefore the lower row belongs to P. Form the pullback diagram

0 // A // B ⊕D

[idB ,0]

��

g1⊕idD// C ⊕D

[idC ,0]

��

// 0

0 // A
f1

// B g1
// C // 0.

Since the lower row belongs to P, the upper row belongs also to P. Thus the composition

B ⊕D g1⊕idD−−−−−→ C ⊕D [f ′2,g3]−−−−→ F ′

is a P-epimorphism. Note that this last composition equals the composition

B ⊕D [f2,idD]−−−−−→ D
g3−→ F ′.

Therefore it is also a P-epimorphism. It follows from (P6) that g3 is a P-epimorphism whose
kernel is f2f1, i.e. f2f1 is a P-monomorphism. This proves (P3).

3.4. ⊕-closed proper classes. A proper class P in a cocomplete abelian category A is called
⊕-closed, if for any family of short exact sequences {Ei}I of P, their direct sum ⊕Ei belongs
to P.

3.5.
∏

-closed proper classes. A proper class P in a complete abelian category A is called∏
-closed, if for any family of short exact sequences {Ei}I of P, their direct product

∏
Ei

belongs to P.
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3.6. Inductively closed proper classes. A proper class P in a Grothendieck category A
is called inductively closed if for any direct system of short exact sequences {Ei}I of P,
their direct limit lim

→
Ei belongs to P. An example of an inductively closed proper class is the

class of all short exact sequences Abs. The intersection of all inductively closed proper classes
containing an arbitrary proper class P is called the inductive closure of P and denoted by
P (see [23]).

3.7. P-injectives. An object I ∈ A is called P-injective if it satisfies the equivalent condi-
tions:

(a) The functor HomA(−, I) is exact on all sequences of P.

(b) Ext1
P(Y, I) = 0 for all Y ∈ A.

(a) means that I is injective with respect to every sequence in P and (b) that every sequence
in P of the form

0→ I → B → Y → 0

splits. The class of all P-injective objects is denoted by Inj(P). Inj(P) is closed under direct
products and direct summands. Every injective object of A is P-injective.

3.8. P-essential extensions. A P-monomorphism A → B is called a P-essential exten-
sion of A if for any subobject A′ ⊆ B from A ∩ A′ = 0 and A ↪→ B/A′ a P-monomorphism
follows that A′ = 0.

3.9. P-injective hull. A P-essential extension A→ J is called a P-injective hull of A if J
is P-injective.

3.10. Proposition. [58, 4.5] If P is an inductively closed proper class with enough P-
injectives, then every object in A has a P-injective hull.

3.11. P-projectives. An object P ∈ A is called P-projective if it satisfies the equivalent
conditions:

(a) The functor HomA(P,−) is exact on all sequences of P.

(b) Ext1
P(P,X) = 0 for all X ∈ A.

(a) means that P is projective with respect to every sequence in P and (b) that every sequence
in P of the form

0→ X → B → P → 0

splits. The class of all P-projective objects is denoted by Proj(P). Proj(P) is closed under
direct sums and direct summands. Every projective object of A is P-projective.

3.12. P-flats. An object Q ∈ A is called P-flat if

Ext1
P(Q,X) = Ext1

A(Q,X) for all X ∈ A,

i.e. every short exact sequence ending at Q belongs to P. We denote the class of all P-flat
objects by Flat(P). Every projective object is P-flat. If the category A has enough projectives,
then an object Q is P-flat iff there is a sequence

0→ A→ P → Q→ 0

in P with P projective.
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3.13. P-divisibles. An object J ∈ A is called P-divisible if

Ext1
P(Y, J) = Ext1

A(Y, J) for all J ∈ A,

i.e. every short exact sequence beginning with J belongs to P. We denote the class of all
P-divisible objects by Div(P). Every injective object is P-divisible. If the category A has
enough injectives, then an object J is P-divisible iff there is a sequence

0→ J → I → C → 0

in P with I injective.

P-flats and P-divisible objects are called P-coprojective and P-coinjective in [55, 46], ω-
flat and ω-divisible in [47, 39] and Q-flat and I-coflat in [61] for the proper class projectively
(injectively) generated by a class of modules Q (I).

3.14. P-regulars. An object T ∈ A is called P-regular if every short exact sequence

0→ A→ T → C → 0

belongs to P, i.e. every short exact sequence with middle term T belongs to P. We denote
the class of all P-regular objects by Reg(P).

In [61] P-regular objects are called Q-regular for the proper class projectively generated
by a class of modules Q and I-coregular for the proper class injectively generated by a class
of modules I.

3.15. The lattice of proper classes. Denote the class of all proper classes in A by ℘A.
There is a partial order in ℘A given by the inclusion

P1 ≤ P2 iff P1 ⊆ P2.

The minimal element is the class Split and the maximal is Abs. For a family of proper classes
{Pλ}λ∈Λ the infimum of the family is given by the intersection

∧Pλ = ∩Pλ.

This is again a proper class (see [43]). The supremum of the family is given by the formula

∨Pλ = ∩{P | ∪Pλ ⊆ P,P proper class}.

(℘A,≤,∨,∧,P0,PA) is a complete (big) lattice1. Following [48] we define some operations with
proper classes. Let P1, P2 ∈ ℘A. We define

(i) P1 ∧ P2 = P1 ∩ P2,

(ii) P1 ∨ P2 = ∩{P | P1 ∪ P2 ⊆ P,P proper class},

(iii) P1 ◦ P2 = {0→ A
f−→ B → C → 0 | f = f1f2, with fi a Pi-mono},

(iv) P1 ∗ P2 given by ExtP1∗P2(C,A) = ExtP1(C,A) + ExtP2(C,A).

In general P1 ◦ P2 and P1 ∗ P2 need no be proper classes. Finally, for a class of short exact
sequences R (not necessarily proper) we define the proper class generated by R as follows:

< R >:= ∩{P | R ⊆ P,P proper class}.
1℘A may not be a set.
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4 Various proper classes

We recall how proper classes can be obtained from left or right exact additive functors between
abelian categories. Let F : A → B be a right or left exact covariant (contravariant) additive
functor between abelian categories. The class of short exact sequences

0→ A→ B → C → 0

in A such that
0→ F (A)→ F (B)→ F (C)→ 0

(0→ F (C)→ F (B)→ F (A)→ 0)

is exact in B is a proper class (see [58]). We consider the case when F is one of the functors
HomA(X,−), HomA(−, X) or X ⊗− and also when F is a left exact preradical τ or the right
exact endofunctor 1/ρ, with ρ a cohereditary preradical of σ[M ].

4.1. Projectively generated proper classes. Let Q be a class of objects of A. For each
object P ∈ Q we have a covariant left exact functor

HomA(P,−) : A→ Ab.

Thus the class of short exact sequences

E : 0→ A→ B → C → 0

in A such that
0→ HomA(P,A)→ HomA(P,B)→ HomA(P,C)→ 0

is exact, is a proper class. The intersection of the proper classes so obtained, running over
the objects P ∈ Q, is called the proper class projectively generated by Q and denoted by
π−1(Q). Equivalently, a short exact sequence E belongs to π−1(Q) iff every object of Q is
projective with respect to E.

Short exact sequences in the category σ[M ] belonging to π−1(Q), the proper class projec-
tively generated by a class Q in σ[M ], are called Q-pure in [61] in analogy with pure exact
sequences. In fact, proper classes are also called purities by some authors (see [58, 27, 47]).

4.2. Proposition. If P is a proper class projectively generated by a class Q, then an object
J ∈ A is P-divisible iff Ext1

A(P, J) = 0 for all P ∈ Q.

Proof. Let P = π−1(Q) be a projectively generated proper class. Suppose that J is P-divisible.
Thus for all P ∈ Q

Ext1
A(P, J) = Ext1

P(P, J) = 0.

Conversely, suppose that J is such that Ext1
A(P, J) = 0 for all P ∈ Q. Let

E : 0→ J → B → C → 0

be a short exact sequence in A and f : Q→ C any morphism with Q ∈ Q. Form the pullback
diagram

E′ : 0 // J // B′

��

// Q

f

��

// 0

E : 0 // J // B // C // 0.

By assumption E′ splits, since Q ∈ Q. Then we find a morphism Q→ B lifting f , i.e. E ∈ P.
This proves that J is P-divisible.
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4.3. The proper class τ-Compl. Let τ be an idempotent preradical in σ[M ] and Tτ its
associated torsion class. We define the proper class

τ -Compl = π−1(Tτ ).

This is the proper class projectively generated by Tτ .

4.4. τ-complements [12, 10.6]. Let τ be an idempotent preradical in σ[M ]. For a submodule
L ⊆ N ∈ σ[M ] the following are equivalent:

(a) Every X ∈ Tτ is projective with respect to the projection N → N/L.

(b) There exists a submodule L′ ⊆ N such that

(i) L ∩ L′ = 0 and

(ii) (L+ L′)/L = τ(N/L).

(c) There exists a submodule L′ ⊆ N such that

(i) L ∩ L′ = 0 and

(ii) (L+ L′)/L ⊇ τ(N/L).

If L satisfies this conditions it is called a τ-complement in N .

4.5. Enough P-projectives. A proper class P is said to have enough P-projectives if
for every object C ∈ A there exist a P-epimorphism

P → C with P ∈ Proj(P).

If P has enough P-projectives, then P is projectively generated (see [55, Proposition 1.1]).

Proper classes with enough projectives are also called projective proper classes (e.g. [55]).

4.6. Injectively generated proper classes. Let I be any class of objects in A. For each
object I ∈ I we have a contravariant left exact functor

HomA(−, I) : A→ Ab.

Thus the class of short exact sequences

0→ A→ B → C → 0

in A such that
0→ HomA(C, I)→ HomA(B, I)→ HomA(A, I)→ 0

is exact, is a proper class. Dual to 4.1, the intersection over the I ∈ I of all proper classes
so obtained is called the proper class injectively generated by I and denoted by ι−1(I). A
short exact sequence E belongs to ι−1(I) iff every object of I is injective with respect to E.

Short exact sequences in the category σ[M ] belonging to ι−1(I), the proper class injectively
generated by a class I in σ[M ], are called I-copure in [61].

4.7. Proposition. If P is a proper class injectively generated by a class I, then an object
Q ∈ A is P-flat iff Ext1

A(Q, I) = 0 for all I ∈ I).

Proof. The proof is dual to 4.2.
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4.8. The proper class τ-Suppl. Let τ be a radical in σ[M ] and Fτ its associated torsionfree
class. We define the proper class

τ -Suppl = ι−1(Fτ ).

This is the proper class injectively generated by Fτ .

4.9. τ-supplements [12, 10.11]. Let τ be a radical in σ[M ]. For a submodule L ⊆ N ∈ σ[M ]
the following are equivalent:

(a) Every X ∈ Fτ is injective with respect to the inclusion L→ N .

(b) There exists a submodule L′ ⊆ N such that

(i) L+ L′ = N and

(ii) L ∩ L′ = τ(L).

(c) There exists a submodule L′ ⊆ N such that

(i) L+ L′ = N and

(ii) L ∩ L′ ⊆ τ(L).

If L satisfies this conditions it is called a τ-supplement in N.

4.10. Enough P-injectives. A proper class P is said to have enough P-injectives if for
every object A ∈ A there exist a P-monomorphism:

A→ I with I ∈ Inj(P).

If P has enough P-injectives, then P is injectively generated.

Proper classes with enough injectives are also called injective proper classes (e.g. [55]).

4.11 Proposition. The intersection of any family of injectively (projectively) generated proper
classes is injectively (projectively) generated.

Proof. Consider {Pλ}Λ a family of injectively generated proper classes. i.e. Pλ = ι−1(Iλ)
with Iλ ⊆ A. We claim that P = ∩Pλ = ι−1(∪Iλ). Since Iλ ⊆ ∪Iλ, then ι−1(∪Iλ) ⊆ ι−1(Iλ)
for every λ ∈ Λ. Thus ι−1(∪Iλ) ⊆ P. Conversely each object in ∪Iλ is contained in one
of the Iλ, thus is injective with respect to each short exact sequence in P ⊆ Pλ. Therefore
P ⊆ ι−1(∪Iλ). The proof for the projectively generated case is analogous.

We turn now our attention to the functor X⊗−. For each R-module X, the tensor product
defines a right exact functor X ⊗− : Mod-R→ Ab.

4.12 Remark. In the more general setting of abelian categories with a tensor product ⊗, i.e.
a monidal category (see [44, §VII]), each object X ∈ A defines a functor X ⊗ − : A → A. If
the functor X ⊗− has a right adjoint, rhom(X,−), then it is right exact. If for every X ∈ A,
X ⊗− has a right adjoint, then C is called a right-closed category. A left-closed category
is defined dually using the functor −⊗X.

Let A be an abelian monoidal category [35].

4.13. Flatly generated proper classes. Let F be a class of objects in A such that the
functor rhom(F,−) is defined for each object F ∈ F [59]. Then we have a covariant right
exact functor F ⊗−. The class of short exact sequences

0→ A→ B → C → 0
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in A such that the sequence

0→ F ⊗A→ F ⊗B → F ⊗ C → 0

is exact for all F ∈ F is proper. This class is called the proper class flatly generated by F
and is denoted by τ−1(F).

A fundamental concept (in both module theory and representation theory) is the proper
class of pure exact sequences. It is based on the existence of a family of finitely presented
generators of the category A and the fact that an object X ∈ A is finitely presented iff
HomA(X,−) commutes with direct limits. This is the case when A is a locally finitely presented
Grothendieck category (see [33, 26]). We assume throughout this section that A is such a
category.

4.14. The Cohn purity. Let fp A be the class of all finitely presented objects of A. The
proper class π−1(fp A) is called the Cohn purity and is denoted by Pure. An element of
Pure is called a pure exact sequence.

4.15. Proposition. Every pure exact sequence is the direct limit of splitting sequences.

Proof. Let E : 0→ A→ B → C → 0 be pure and write C = lim
→
Cj with Cj finitely presented.

For each canonical morphism Ci → lim
→
Cj form the pullback diagram

Ei : 0 // A // Bi

��

// Ci

��

// 0

E : 0 // A // B // C // 0.

The sequences Ei are pure and since Ci is finitely presented, they split. {Ej}I form a direct
system whose direct limit is E.

Thus the Cohn purity Pure is minimal among all inductively closed proper classes.

4.16. Purity in R-Mod [61, 34.5]. Let R be a ring and

E : 0→ A→ B → C → 0

a short exact sequence in R-Mod. The following are equivalent:

(a) The sequence E is pure.

(b) The sequence
0→ F ⊗R A→ F ⊗R B → F ⊗R C → 0

is exact for all finitely presented right (or for all) right R-modules F .

(c) The sequence
0→ HomZ(C,Q)→ HomZ(B,Q)→ HomZ(A,Q)→ 0

with Q = Q/Z

(i) remains exact after applying −⊗R P with P finitely presented or

(ii) it splits in Mod-R.

(d) Every finite system of equations over A which is solvable in B is solvable in A.
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(e) For every commutative diagram

Rn

f

��

g // Rk

��
0 // A // B

with n, k ∈ N, there exist a morphism h : Rk → A such that f = hg.

(f) The sequence E is the direct limit of splitting sequences.

4.17. The proper class Pτ . Let τ be a hereditary preradical in σ[M ]. The class of all short
exact sequences

E : 0→ A→ B → C → 0

such that
τ(E) : 0→ τ(A)→ τ(B)→ τ(C)→ 0

is exact, is a proper class and is denoted by Pτ . Pτ is a proper class by the construction at
the beginning of §4.

4.18. The proper class P1/ρ. Let ρ be a cohereditary preradical in σ[M ]. The class of all
short exact sequences

E : 0→ A→ B → C → 0

such that
1/ρ(E) : 0→ A/ρ(A)→ B/ρ(B)→ C/ρ(C)→ 0

is exact, is a proper class and is denoted by P1/ρ. Since ρ is cohereditary, 1/ρ is a right exact
endofunctor (see 2.7). P1/ρ is a proper class by the construction at the beginning of §4.
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Chapter 3

Proper classes related to
supplements and complements

Supplement and complement submodules induce proper classes. This was noted for abelian
groups in [32] and for R-Mod in [57, 27, 28]. Recently this investigations were continued in
[46, 1].

5 Supplements and complements

In this section we recall the definition of small, essential, closed, coclosed, complement and
supplement submodules. The basic properties of small and essential submodules are listed for
example in [12, 2.2] and [61, 17.3]. They will follow from a more general concept of small and
essential submodules investigated in the next section.

5.1. Small submodules. A submodule K ⊆ N is called small in N if for every submodule
X ⊆ N , the equality K +X = N implies X = N . We denote this by K � N .

5.2. Small epimorphisms. An epimorphism f : N → N ′ is called a small epimorphism
if Ker f � N .

5.3. Supplements. A submodule L ⊆ N is called a supplement in N if there exists a
submodule L′ ⊆ N such that

(i) L+ L′ = N and

(ii) L ∩ L′ � L.

Equivalently, L is minimal in the set of submodules {K ⊆ N | L′ +K = N}.

5.4. Essential submodules. A submodule K ⊆ M is called essential in N if for every
submodule X ⊆ N , the equality K ∩X = 0 implies X = 0. We denote this by K ⊆e N .

5.5. Complements. A submodule L ⊆ N is called a complement in N if there exists a
submodule L′ ⊆ N such that

(i) L ∩ L′ = 0 and

(ii) (L⊕ L′)/L ⊆e N/L.

Equivalently, L is maximal in the set of submodules {K ⊆ N | L′ ∩K = 0}. Note that 5.5
is not the common definition of complement but it is of course equivalent to it. We prefer
this definition because it shows the duality with the supplements (see 5.3). By Zorn’s lemma
every module has a complement.
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5.6. Closed submodules. A submodule K ⊆ N is called closed in N if K has no proper
essential extension in N , i.e. if K ⊆e L ⊆ N , then K = L.

It is well-known that closed submodules and complement submodules coincide (see [12,
1.10]).

5.7. Coclosed submodules. A submodule K ⊆ N is called coclosed in N if for every
submodule X ⊆ K, K/X � N/X implies X = K. We denote this property by K ⊆cc N .

Recall the following lemma from [67].

5.8. Properties of coclosed submodules [67, Lemma A.4]. Let U ⊆ L ⊆ N be submodules
of N .

(i) If U is coclosed in N , then U is coclosed in L.

(ii) If L is coclosed in N , then L/U is coclosed in N/U .

(iii) If U is coclosed in L and L is coclosed in N , then U is coclosed in N .

(iv) If U is coclosed in N and L/U is coclosed in N/U , then L is coclosed in N .

5.9. The proper class Cocls. The class of all short exact sequences in σ[M ]

0→ A
f−→ B → C → 0

such that Im f is coclosed in B is a proper class and it is denoted by Cocls.

Proof. The axioms (P1) and (P2) are easily verified. (P3)-(P6) follow from 5.8.

Using the characterization of Bowe in [7, Theorem 1.2], Zöschinger dualizes E-neat monomor-
phisms in [65, Definition pp.307] and he calls them coneat epimorphisms. (We write Z-coneat
for this). An epimorphism g : B → C is Z-coneat if for every factorization g = βα with β an
small epimorphism (Kerβ is a small submodule), then β is an isomorphism. Then he proves
that.

5.10. Cocls-epimorphisms. [65, Hilfssatz 2.2(a)] An epimorphism
g : B → C is Z-coneat iff Ker f is coclosed in B, i.e. g is a Cocls-epimorphism.

The following is the dual statement of 13.15.

5.11. Cocls-flats. Let C be a module in σ[M ] and suppose that C has a projective cover
f : P → C. The following are equivalent:

(a) C is Cocls-flat.

(b) Every epimorphism Q→ C with Q projective is a Cocls-epimorphism.

(c) The projective cover f of C is a Cocls-epimorphism.

(d) C is projective.

Proof. (a) ⇒ (b), (b) ⇒ (c) and (d) ⇒ (a) are clear.

(c)⇒ (d) Since f is a projective cover, then Ker f � P . By assumption Ker f ⊆cc P , thus
Ker f = 0, i.e. P ' C. Therefore C is projective.

Recall that a module N is called fully non-M -small in σ[M ] if N = radM (N) with M the
class of M -small modules. From the characterization in [12, 8.11] we obtain.
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5.12. Cocls-divisibles. If the module N in σ[M ] is fully non-M -small, then N is Cocls-
divisible.

Proof. Let
0→ N

f−→ B → C → 0

be any short exact sequence. By [12, 8.11], f(N) is coclosed in B, i.e. N is Cocls-divisible.

6 τ-supplements

We have seen that the torsionfree class Fτ associated to a radical τ in σ[M ] induces a proper
class τ -Suppl (see 4.8). In this section we investigate this proper class. The following propo-
sition is a generalization of [46, 3.4.4] where τ = Rad in R-Mod.

6.1. τ-Suppl-injectives. A module I ∈ σ[M ] is τ -Suppl-injective iff I is a direct summand
of a module of the form E ⊕ F with E M -injective and τ(F ) = 0.

Proof. ⇒) Consider the morphism

f : I → Î ⊕ I/τ(I), x 7→ (x, x+ τ(I)).

With Î the injective hull of I in σ[M ]. f is a monomorphism. For if 0 = f(x) = (x, x+ τ(I)),
then x = 0. Moreover f is a τ -Suppl-monomorphism. To see this let Y be a module such
that τ(Y ) = 0 and g : I → Y any morphism. We show that g can be extended to Î ⊕ I/τ(I)
making the diagram

0 // I

g

��

f // Î ⊕ I/τ(I)

ḡ
zzu

u
u

u
u

Y

commutative. Define the morphism ḡ : Î ⊕ I/τ(I) → Y by ḡ(x, y + τ(I)) = g(y). ḡ is
well-defined since if (x, y + τ(I)) = (x′, y′ + τ(I)), then x = x′ and y − y′ ∈ τ(I). Since
τ is a preradical, then g(τ(I)) ⊆ τ(Y ) = 0. Therefore g(y) = g(y′). Clearly ḡf = g. By
assumption I is τ -Suppl-injective, hence f : I → Î ⊕ I/τ(I) splits. Note that Î is M -injective
and τ(I/τ(I)) = 0.
⇐) Since E ⊕ F is τ -Suppl-injective, also every direct summand is so.

In [22] Rad-Suppl-divisibles in the category R-Mod are called absolutely supplemented.
The following is a generalization of [22, 3.1.4] where τ = Rad in R-Mod.

6.2. τ-Suppl-divisibles. Let N be a module in σ[M ]. The following conditions are equiva-
lent:

(a) N is τ -Suppl-divisible.

(b) N is a τ -supplement in every M -injective module I containing N .

(c) N is a τ -supplement in its M -injective hull N̂ .

Proof. (a) ⇒ (b) N τ -Suppl-divisible means that every short exact sequence beginning with
N belongs to τ -Suppl, thus (b) is clear.

(b) ⇒ (c) Is clear.
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(c) ⇒ (a) Let i : N ↪→ H and j : N ↪→ N̂ be the canonical inclusions. Since N̂ is
M -injective, the diagram

0 // N

j

��

i // H

j̄��~
~

~
~

N̂

can be completed commutatively by j̄ : H → N̂ . By assumption, there exists a submodule
N ′ ⊆ N̂ such that N + N ′ = N̂ and N ∩ N ′ = τ(N). We claim that N is a τ -supplement
of j̄−1(N ′). Let h ∈ H, then j̄(h) = n + n′ = j̄(n) + n′ with n ∈ N and n′ ∈ N ′. Therefore
h − n ∈ j̄−1(N ′). Since h = (h − n) + n ∈ j̄−1(N ′) + N , we obtain j̄−1(N ′) + N = H. Note
that N ∩ j̄−1(N ′) ⊆ N ∩N ′ = τ(N). This shows (a).

6.3. Proposition. Every τ -torsion module in σ[M ] is τ -Suppl-divisible.

Proof. Let N be a τ -torsion module. Consider any short exact sequence

E : 0→ N → B → C → 0

and any morphism f : N → F with F ∈ Fτ . Then f = 0. Thus we can extend f trivially
to B. Thus every τ -torsionfree module is injective with respect to E, i.e. E ∈ τ -Suppl and
therefore N is τ -Suppl-divisible.

6.4. Lemma. Let τ be a preradical in R-Mod. Then for every projective module P we have
τ(P ) = τ(R)P .

Proof. Consider the epimorphism f : R(P ) → P given by f((rp)p) =
∑
p rp. This is well-

defined since the sums are finite. Note that f(τ(R(P ))) = f(τ(R)(P )) = τ(R)P . Since τ
is a preradical, then τ(R)P ⊆ τ(P ). From the projectivity of P follows that there exists
g : P → R(P ) such that idP = fg. Therefore τ(P ) = fg(τ(P )) ⊆ f(τ(R(P ))) ⊆ τ(R)P .

The following proposition is a generalization of [46, 3.7.2] where τ = Rad in R-Mod.

6.5. τ-Suppl-flats. Let τ be a radical in R-Mod. If τ(R) = 0, then τ -Suppl-flat modules and
projective modules coincide.

Proof. Let N be a τ -Suppl-flat module. There is an epimorphism f : F → N from a free
module F . Thus F is projective. Consider the following short exact sequence

E : 0→ Ker f → F
f−→ N → 0.

By assumption E ∈ τ -Suppl. Note that τ(Ker f) ⊆ τ(F ). By 6.4 we obtain τ(Ker f) ⊆
τ(F ) = τ(R)F = 0F = 0. Thus Ker f is τ -Suppl-injective. Therefore the sequence E splits
which implies that F ' Ker f ⊕N , i.e. N is projective.

Recall the following definition from [1].

6.6. τ-supplemented modules [1, 2.1]. A module L in σ[M ] is called τ-supplemented if
every submodule of L has a τ -supplement.

6.7. Properties of τ-supplemented modules [1, 2.2]. Let L be a τ -supplemented module
in σ[M ].

(i) Every submodule K ⊆ L with K ∩ τ(L) = 0 is a direct summand. In particular, if
τ(L) = 0, then L is semisimple.

(ii) Every factor module and every direct summand of L is τ -supplemented.
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(iii) L/τ(L) is a semisimple module.

(iv) L = U ⊕N where N is semisimple and τ(U) ⊆e U .

6.8. τ-covers [1, 2.11]. An epimorphism f : P → L is called a τ-cover provided Ker f ⊆
τ(P ). If P is projective in σ[M ], then f is called a projective τ-cover.

6.9. Properties of τ-covers [1, 2.13].

(i) If f : P → L is a projective τ -cover and g : L → N is a τ -cover, then gf : P → N is a
projective τ -cover.

(ii) If each fi : Pi → Li, i ∈ I is a (projective) τ -cover, then the map
⊕Ifi : ⊕IPi → ⊕ILi is a (projective) τ -cover.

6.10. τ-supplemented modules and projective τ-covers [1, 2.14]. Let U ⊆ L ∈ σ[M ].
The following are equivalent:

(a) L/U has a projective τ -cover.

(b) U has a τ -supplement V which has a projective τ -cover.

(c) If V ⊆ L and L = U+V , then U has a τ -supplement V ′ ⊆ V such that V ′ has a projective
τ -cover.

6.11. τ-semiperfect modules. [1, 2.15]. A module L ∈ σ[M ] is called τ-semiperfect
(τ-perfect) if every factor module of L (any direct sum of copies of L) has a projective
τ -cover.

6.12. Characterization of τ-semiperfect modules [1, 2.16]. Let L be a module in σ[M ].
The following are equivalent:

(a) L is τ -semiperfect.

(b) L is τ -supplemented by supplements which have projective τ -covers.

(c) L is amply supplemented by supplements which have projective τ -covers.

6.13. Proposition. Let τ be a hereditary preradical (= left exact) in σ[M ] and L ⊆ N . If
L ⊆ τ(N), then L is a τ -supplement in N .

Proof. Note that L+N = N and L ∩N = L ⊆ τ(N) ∩ L = τ(L). Thus L is a τ -supplement
in N .

7 τ-complements

The torsion class Tτ associated to an idempotent preradical τ in σ[M ] induces a proper class
τ -Compl (see 4.3). In this section we investigate this proper class.

7.1. τ-Compl-projectives. Suppose that σ[M ] has enough projectives. A module N ∈ σ[M ]
is τ -Compl-projective iff N is a direct summand of a module of the form P ⊕ Q with P
projective and τ(Q) = Q.

Proof. ⇒) Let N be τ -Compl-projective. By hypothesis there is an epimorphism π : P → N .
Consider the morphism

f : P ⊕ τ(N)→ N, f(p, n) = π(p) + n.
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Observe that f is an epimorphism. Let Q be a module in Tτ , i.e. τ(Q) = Q and g : Q→ N any
morphism. Since τ is a preradical, g(τ(Q)) ⊆ τ(N). Define ḡ : Q→ P ⊕τ(N) by ḡ(q) = (0, q).
We have g(q) = fḡ(q). This shows that the sequence

0→ Ker f → P ⊕ τ(N)
f−→ N → 0

belongs to τ -Compl. Since N is τ -Compl-projective, the sequence splits, i.e. N is a direct
summand of P ⊕ τ(N).
⇐) Any module of the form P ⊕ Q with P projective and τ(Q) = Q is τ -Compl-projective,
thus also every direct summand is so.

7.2. τ-Compl-divisibles. If every M -injective module in σ[M ] is τ -torsion, then every
τ -Compl-divisible module is M -injective.

Proof. If N is τ -Compl-divisible, then the short exact sequence

0→ N ↪→ N̂ → N̂/N → 0

belongs to τ -Compl. Since N̂ is τ -torsion and the τ -torsion modules are τ -Compl-projective,
the sequence splits, i.e. N is a direct summand of an M -injective module, thus N is also
M -injective.

7.3. Proposition. Every τ -torsionfree module in σ[M ] is τ -Compl-flat.

Proof. Let N be τ -torsionfree. Consider any short exact sequence

E : 0→ A→ B → N → 0

and any morphism f : T → N with T ∈ Tτ . Then f = 0. Thus f can be trivially lifted to
B, i.e. every τ -torsion module is projective with respect to E. Therefore E ∈ τ -Compl. This
means that N is τ -Compl-flat.

For τ = Soc, this implies that every module N with Soc(N) = 0 is Neat-flat.
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Chapter 4

Proper classes related to
C-supplements

In [64] Zhou introduces the concept of δ-small submodules generalizing small submodules. He
developes a theory of generalized perfect, semiperfect and semiregular rings. A submodule
K ⊆ N is called δ-small in N if for every submodule X ⊆ N , the equality K + X = N and
N/X a singular module implies X = N . He denote this by K �δ N . Extending this idea
we introduce the concept of C-small submodules changing the class of singular modules for a
class of modules closed under submodules and factor modules. Such classes of modules are
called open classes in [15] and {q, s}-closed classes in [31].

Throughout this chapter let C be a {q, s}-closed class of modules.

For example, in σ[M ], the class Tτ for a hereditary preradical τ , or the class Fρ for a
cohereditary preradical ρ are {q, s}-closed. In R-Mod, for any R-module the classes σ[M ] and
σf [M ] are {q, s}-closed. Moreover for any class X in σ[M ] closed under isomorphisms and
containing the zero module, the class

X̄ = {X ∈ X | K ⊆ H ⊆ X and H/K ∈ X implies K = H}

is {q, s}-closed (see [31]).

8 C-small submodules

8.1. C-small submodules. A submodule K ⊆ N is called C-small in N if for every sub-
module X ⊆ N , the equality K + X = N and N/X ∈ C implies X = N . We denote this by
K �C N .

For any {q, s}-closed class C ⊆ σ[M ] every small submodule in σ[M ] is C-small. If C =
σ[M ], then the σ[M ]-small submodules are the small submodules in σ[M ]. For any {q, s}-
closed class C ⊆ σ[M ] if N ∈ C, then a submodule K ⊆ N is C-small in N iff K is small in
N .

8.2. Examples of C-small submodules.

(i) If C = S , the class of M -singular modules in σ[M ], then the S -small submodules are the
δ-small submodules in σ[M ] as defined by Zhou in [64]. He proves that for a submodule
K ⊆ N ∈ σ[M ] the following conditions are equivalent (see [64, 1.2]):
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(a) K �δ N .

(b) If X +K = N , then X ⊕Y = N for a projective semisimple submodule Y ⊆ N with
Y ⊆ K.

(c) If X +K = N and N/X is Goldie torsion, then X = K.

(ii) If C = S(σ[M ]), the class of simple modules in σ[M ], then a submodule K ⊆ N ∈ σ[M ]
is S(σ[M ])-small iff K ⊆ Rad(N).

Proof. Let K be a S(σ[M ])-small submodule of N and X ⊆ N any maximal submodule
of N . Suppose K * X, then X + K = N with N/X a simple module. Thus, by
hypothesis X = N , which is a contradiction. Therefore K ⊆ X, i.e. K ⊆ Rad(N).
Conversely, suppose that K ⊆ Rad(N). For any submodule X ⊆ N such that N/X is
simple, X is a maximal submodule of N . Therefore K ⊆ Rad(N) ⊆ X. This implies
X +K = X 6= N , i.e. K is a S(σ[M ])-small submodule of N .

(iii) Let C be either the class of noetherian or artinian modules in σ[M ]. Since every simple
module is noetherian and artinian, a noetherian-small or an artinian-small submodule is
S(σ[M ])-small (see (ii)).

(iv) If C = Fτ , with τ a cohereditary preradical in σ[M ], then a submodule K ⊆ N ∈ σ[M ] is
Fτ -small iff for every submodule X ⊆ N such that X +K = N we have X + τ(N) = N .

Proof. Let K be an Fτ -small submodule of N and X ⊆ N a submodule of N such that
X + K = N . Since τ is a radical and Fτ is closed under factor modules (see 2.7), the
factor module

N/(X + τ(N)) ' N/τ(N)
/

(X + τ(N))/τ(N) ∈ Fτ .

On the other hand N = X+τ(N)+K. Since K is Fτ -small, we must have N = X+τ(N).
Conversely, let X ⊆ N such that X +K = N and N/X ∈ Fτ . Thus by 2.4 (ii), we have
τ(N) ⊆ X. By hypothesis N = X + τ(N) = X, i.e. K is an Fτ -small submodule of
N .

8.3. Properties of C-small submodules. Let K,L and N be modules in σ[M ].

(i) If K ⊆ L ⊆ N , then L�C N iff K �C N and L/K �C N/K.

(ii) If K1,K2 ⊆ N , then K1 +K2 �C N iff K1 �C and K2 �C N .

(iii) If K1, ...,Kn are C-small submodules of N , then K1 + · · ·+Kn is also C-small in N .

(iv) If K �C N and f : N → N ′, then f(K)�C N ′.

(v) If K ⊆ L ⊆ N and L is a direct summand in N , then K �C N iff K �C L.

Proof. (i) ⇒) Suppose that K + X = N and N/X ∈ C. Then L + X = N . Thus, by
assumption X = N , i.e. K �C N . Suppose now that L/K + Y/K = N/K and N/Y ∈ C.
Then L+ Y = N . By assumption Y = N . Thus Y/K = N/K, i.e L/K �C N/K.
⇐) Suppose that L + X = N and N/X ∈ C. Then L/K + (X + K)/K = N/K. Since C is
closed under factor modules, we have that

(N/X)/((X +K)/X) ' N/(X +K) ∈ C.

Then by hypothesis (X + K)/K = N/K. Therefore X + K = N . Now N/X ∈ C implies
X = N . Thus L�C N .
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(ii)⇒) Suppose that K1 +X = N and N/X ∈ C. Then K1 +X +K2 = N . By hypothesis
we must have X = N , i.e. K �C N . Analogous K2 �C N .
⇐) Let now K1 + K2 + Y = N and N/Y ∈ C. Then N/(Y + K2) ∈ C since is a quotient of
N/Y . Then K1 + Y = N . Since K1 is also a C-small submodule of N , we have Y = N , i.e.
K1 +K2 �C N.

(iii) Suppose that (K1+· · ·+Kn)+X = N andN/X ∈ C. The moduleN/(K2+· · ·+Kn)+X
is a factor module of N/X, thus N/(K2 + · · · + Kn) + X ∈ C. since K1 is C-small, we have
(K2 + · · ·+Kn) +X = N . Continuing this way we obtain X = N , i.e. K1 + · · ·+Kn �C N .

(iv) Suppose that f(K) +X = N ′ and N ′/X ∈ C. Then N = K + f−1(X). Consider the
morphism

f̄ : N/f−1(X)→ N ′/X, n+ f−1(X) 7→ f(n) +X.

Note that f̄ is well defined and is a monomorphism. Therefore N/f−1(X) is isomorphic to a
submodule of N ′/X which is in C, thus N/f−1(X) is also in C. Since K is a C-small submodule
of N , we must have f−1(X) = N and therefore K ⊆ f−1(X). Then f(K) ⊆ X and X = N ′

i.e f(K)�C N ′.

(v)⇒) Let H⊕L = N . Suppose K+X = L and L/X ∈ C. Then N = H+L = H+K+X.
Note that N/(H+X) ' K/K∩(H+K) and L/X ' K/X∩K. Thus N/(H+X) is isomorphic
to a factor module of L/X. This implies that N/(H + X) ∈ C. By assumption K �C N ,
therefore N = H +X. Moreover H ∩X ⊆ H ∩ L = 0, i.e. N = H ⊕X. Finally

L = N ∩ L = (H ⊕X) ∩ L = (H ∩ L)⊕X = X.

Which means K �C L.
⇐) This is always true without assuming L being a direct summand and follows from (iv)
with f = i : L ↪→ N the inclusion morphism.

8.4. C-small epimorphisms. An epimorphism f : P → N is called a C-small epimorphism
if Ker f �C P .

8.5. Proposition. An epimorphism f : P → N is C-small iff every (mono) morphism
g : L→ P with fg epimorphism and Coker g ∈ C is an epimorphism.

Proof. ⇒) Let X ⊆ P be such that X + ker f = P and P/X ∈ C. Consider i : X ↪→ P the
canonical inclusion. Then fi is an epimorphism with Coker i ∈ C and by assumption, i is an
epimorphism, i.e. X = P .
⇐) Let p ∈ P . There exists l ∈ L with f(g(l)) = f(p). Therefore p = g(l) + (p − g(l)) ∈
Im g + ker f . Thus P = Im g + ker f and Coker g ∈ C. Since ker f �C P , Im g = P , i.e. g is
an epimorphism.

8.6. Properties of C-small epimorphisms. Let N ,L and P be modules in σ[M ].

(i) If f : P → N and g : N → L are C-small epimorphisms, then gf is a C-small epimor-
phism.

(ii) If each fi : Pi → Ni, i = 1, 2, ..., n is a C-small epimorphism, then

f1 ⊕ · · · ⊕ fn : P1 ⊕ · · · ⊕ Pn → N1 ⊕ · · · ⊕Nn

is a C-small epimorphism.
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Proof. (i) We show that Ker gf �C P . Observe that Ker f ⊆ Ker gf ⊆ P . Since Ker f �C P ,
then in view of 8.3 (i), it is enough to show that

Ker gf/Ker f �C P/Ker f.

Let X ⊆ P such that Ker gf/Ker f+X/Ker f = P/Ker f and P/X ∈ C. Then Ker gf+X = P .
Since f is an epimorphism,

N = f(P ) = f(Ker gf) + f(X) = Ker g + f(X).

On the other hand, N ' P/Ker f and f(X) ' X/Ker f ∩ X = X/Ker f . Thus N/f(X) '
P/Ker f/X/Ker f ' P/X which is in C. Since Ker g �C N , f(X) = N . It follows that X = P .

(ii) It follows from 8.3 (iii).

8.7. Projective C-covers. An epimorphism f : P → N is called a projective C-cover of
N if P is projective in σ[M ] and f is a C-small epimorphism.

8.8. Properties of projective C-covers. Let M be a module. If fi : Pi → Ni, i = 1, ..., n
are projective C-covers, then

f1 ⊕ · · · ⊕ fn : P1 ⊕ · · · ⊕ Pn → N1 ⊕ · · · ⊕Nn

is a projective C-cover.

Proof. It follows from 8.6 (ii).

9 C-supplements

9.1. C-supplements. A submodule L ⊆ N is called a C-supplement in N if there exists a
submodule L′ ⊆ N such that

(i) L+ L′ = N and

(ii) L ∩ L′ �C L.

Observe that if C = σ[M ], then the C-supplement submodules are precisely the supple-
ment submodules and if C is the class of singular modules in R-Mod, then the C-supplement
submodules coincide with the δ-supplement submodules (see [64]).

9.2. The proper class C-Suppl. The class of all short exact sequences in σ[M ]

0→ A
f−→ B → C → 0,

such that Im f is a C-supplement in B, is a proper class and it is denoted by C-Suppl.

Proof. We prove that the axioms (P1)-(P6) of 3.1 are satisfied. To simplify the proof we
assume that the short exact sequences are of the form

0→ A
i−→ B

p−→ B/A→ 0

with i and p the canonical inclusion and projection respectively.
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(P1) Let E ∈ C-Suppl and E′ ' E. There is a commutative diagram

E : 0 // A

f1

��

// B

f2

��

// B/A

f3

��

// 0

E′ : 0 // C // D // D/C // 0

with fi isomorphisms. Since E ∈ C-Suppl, there exists K ′ ⊆ N such that

A+A′ = B and A ∩A′ �C A.

Then

D = f2(B) = f2(A+A′) = f2(A) + f2(A′) = f1(A) + f2(A′) = C + f2(A′).

Set f2(A′) = C ′. We have f1(A∩A′) = C ∩C ′ ⊆ C. From 8.3 (iv) follows that C ∩C ′ �C C.
Hence C is a C-supplement in D, i.e. E′ ∈ C-Suppl.

(P2) Let E be a splitting short exact sequence. E is of the form

E : 0→ A→ A⊕A′ → A′ → 0.

Clearly A is a C-supplement in A⊕A′, i.e. E ∈ C-Suppl.

(P3) Let f and g be C-Suppl-monomorphisms. As agreed f and g are the inclusions in the
diagram

0

��
0 // A

f // B //

g

��

B/A // 0

D

��
D/B

��
0

There exists submodules A′ ⊆ B and B′ ⊆ D such that

A+A′ = B, A ∩A′ �C A and B +B′ = D, B ∩B′ �C B.

We prove that A is a C-supplement of A′ + B′ in D. Note that D = A+ (A′ + B′). Suppose
that X ⊆ A such that A∩ (A′+B′)+X = A and A/X ∈ C. We must show that A = X. Note
first that (B ∩ B′) + X + A′ ⊆ B. Let b ∈ B = A + A′, then b = a + a′ and a = a′′ + b′ + x
with a′′ + b′ ∈ A ∩ (A′ + B′) and x ∈ X. Thus b = a′′ + b′ + x + a′ where a′ ∈ B, i.e.
b ∈ (B ∩B′) +X +A′. Therefore (B ∩B′) +X +A′ = B. We claim that B/(X +A′) is in C.
Observe that

B/(X +A′) = (A+A′)/(X +A′) ⊆ (A+A′ +X)/(X +A′) ' A/(A ∩ (A′ +X)).

The last module is a quotient of A/X, thus in C. Since B∩B′ �C B we must have X+A′ = B.
Note that X + (A ∩ A′) ⊆ A. Let a ∈ A ⊆ B = X + A′, then a = x + a′ with a′ ∈ A ∩ A′.
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Thus X + (A∩A′) = A and A/X ∈ C. Since A∩A′ �C A we must have A = X which proves
that A is a C-supplement in D, i.e. gf is a C-Suppl-monomorphism.

(P4) Suppose that gf is a C-Suppl-monomorphism. We keep the notation of the diagram
above. By assumption A is a C-supplement in D. There exists A′ ⊆ D such that A+A′ = D
and A ∩A′ �C A. We prove that A is a C-supplement of A′ ∩B in B. Note first that

B = D ∩B = (A+A′) ∩B = A+ (A′ ∩B).

Since A∩A′∩B ⊆ A∩A′ �C A, this implies that A∩A′∩B �C A. Hence A is a C-supplement
in B, i.e. f is a C-Suppl-monomorphism.

(P5) Suppose now that g and f are C-Suppl-epimorphisms. Consider the diagram

0

��
D/A

��
0 // A // B

f // B/A //

g

��

0

B/D

��
0

We want to show that D is a C-supplement in B. Since f and g are C-Suppl-epimorphisms
there exist submodules A′ ⊆ B and D′ ⊆ B such that

D/A+D′/A = B/A, D/A ∩D′/A�C D/A and A+A′ = B, A ∩A′ �C A.

We claim that D is a C-supplement of A′ ∩D′ in B. Note that A + (D′ ∩ A′) = D′. To see
this let d′ ∈ D′. Write d′ = a+ a′, then a′ = d′ − a ∈ D′. It follows that

B = D′ +D = A+ (D′ ∩A′) +D = D + (D′ ∩A′).

Now consider the morphism

σ : D/A→ D/(D ∩D′) ' (D +D′)/D′ = B/D′ given by

d+A 7→ d+ (D ∩D′).

σ is a C-small epimorphism, since Kerσ = D ∩D′/A�C D/A. Define the epimorphism

σ : D/(A ∩A′)→ B/(A′ ∩D′), d+ (A ∩A′) 7→ d+ (A′ ∩D′),

and the isomorphisms
α : A/(A ∩A′) ' (A+A′)/A′ = B/A′,

β : B/(A′ ∩D′) ' D′/(A′ ∩D′)⊕A′/(A′ ∩D′) ' B/A′ ⊕B/D′ and

γ : D/(A ∩A′) = A+ (D ∩A′)/(A ∩A′) ' A/(A ∩A′)⊕ (D ∩A′)/(A ∩A′) '

' A/(A ∩A′)⊕D/A.
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Observe that
α⊕ σ : A/(A ∩A′)⊕D/A→ B/A′ ⊕B/D′

is a C-small epimorphism, since

Ker (α⊕ σ) = 0⊕ (D ∩D′)/A�C A/(A ∩A′)⊕D/A.

Then σ = β−1(α⊕ σ)γ is a C-small epimorphism since it is a composition of C-small epimor-
phisms. Thus Kerσ = (D ∩ D′ ∩ A′)/(A ∩ A′) �C D/(A ∩ A′). On the other hand, since
A ∩ A′ �C A, A ∩ A′ �C D. It follows from8.3 (i) that D ∩D′ ∩ A′ �C D. This proves that
D is a C-supplement in B, i.e. gf is a C-Suppl-epimorphism.

(P6) Let gf be a C-Suppl-epimorphism. With the notation of the diagram above we prove
that D/A is a C-supplement in B/A. Since gf is a C-Suppl-epimorphism there exists D′ ⊆ B
such that

D +D′ = B and D ∩D′ �C D.

We prove that D/A is a C-supplement of (D′+A)/A in B/A. Note that D/A+ (D′+A)/A =
B/A. Let X ⊆ D such that (D/A ∩ (D′ + A)/A) + X/A = D/A and D/X ∈ C. Then
D = D ∩ (D′ + A) +X = (D ∩D′) + A+X. Since D/X ∈ C, the quotient D/(X + A) ∈ C.
Since D∩D′ �C D we must have D = X +A = X. Hence D/A∩ (D′+A)/A�C D/A. This
proves that D/A is a C-supplement in B/A, i.e. g is a C-Suppl-epimorphism.

As a corollary of 9.2 we obtain for C = σ[M ] that the supplement submodules induce a
proper class as has been shown by Generalov in [28].

9.3. The proper class Suppl. The class of all short exact sequences in σ[M ]

0→ A
f−→ B → C → 0

such that Im f is a supplement in B is a proper class and it is denoted by Suppl.

9.4. C-Suppl-divisibles. For a module N in σ[M ], the following are equivalent:

(a) N is C-Suppl-divisible.

(b) N is a C-supplement in every M -injective module I containing N .

(c) N is a C-supplement in its M -injective hull N̂ .

Proof. (a) ⇒ (b) and (b) ⇒ (c) are clear.

(c) ⇒ (a) Let i : N ↪→ H and j : N ↪→ N̂ be the canonical inclusions. Since N̂ is
M -injective, the diagram

0 // N

j

��

i // H

f̄��~
~

~
~

N̂

can be completed commutatively by f̄ : H → N̂ . By assumption, there exists a submodule
N ′ ⊆ N̂ such that N + N ′ = N̂ and N ∩ N ′ �C N . We claim that N is a C-supplement of
f−1(N ′). Let h ∈ H, then f(h) = n + n′ = f(n) + n′ with n ∈ N and n′ ∈ N ′. Therefore
h− n ∈ f−1(H ′). Since h = (h− n) + n ∈ f−1(N ′) +N , we obtain f−1(N ′) +N = H. Note
that N ∩ f−1(N ′) ⊆ N ∩N ′ �C N . From 8.3 (i) follows that N ∩ f−1(N ′)�C N , i.e. N is a
C-supplement in H.
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If C = σ[M ], i.e. C-Suppl = Suppl we obtain.

9.5. Suppl-divisibles [22, 3.1.4]. Let N be a module in σ[M ]. The following are equivalent:

(a) N is Suppl-divisible.

(b) N is a supplement in every M -injective module I containing N .

(c) N is a supplement in its M -injective hull N̂ .

10 radS(C)-supplements

10.1. The radical radS(C). Let C be a {q, s}-closed class in σ[M ]. Denote by S(C) the class
of simple modules of C. Put for any N ∈ σ[M ],

radS(C)(N) = Rej(N,S(C)) =
⋂
{Ker f | f : N → S, S ∈ S(C)}.

10.2. Properties of radS(C).

(i) radS(C) is a radical.

(ii) Rad ≤ radS(C).

(iii) radS(C)(N) = N iff N has no nonzero simple factor modules in C.

Proof. (i) It follows from 2.10 (i).

(ii) Is clear.

(iii) ⇒) Suppose that N/K ∈ S(C). Consider p : N → N/K the canonical projection. By
assumption N ⊆ Ker p = K, i.e. N/K = 0.
⇐) Let f : N → S be a morphism with 0 6= S ∈ S(C). Clearly S is a simple factor module of
N in C, thus f = 0, i.e N = Ker f . Therefore N = radS(C)(N).

10.3. radS(C) and C-small submodules. Let N be a module in σ[M ].

(i) radS(C)(N) =
∑
{L ⊆ N | L�C N}.

(ii) radS(C)(N) = N iff every finitely generated submodule of N is C-small in N .

(iii) If every proper submodule of N is contained in a maximal submodule of N , then
radS(C)(N)�C N .

Proof. (i) Let L be a C-small submodule of N and K ⊆ N such that N/K ∈ S(C). Suppose
L * K. Since K is a maximal submodule, then K+L = N . Now N/K is in C, thus L C-small
implies that N = K contradicting the maximality of K. Therefore L ⊆ K.
Now let n ∈ radS(C)(N) and U ⊆ N such that Rn + U = N with N/U ∈ S(C). Suppose
that U 6= N . Take a maximal submodule V of N with U ⊆ V and n /∈ V . Since C is closed
under factor modules, N/V is simple and belongs to C. Thus n ∈ radS(C)(N) ⊆ V which is a
contradiction. Then we must have U = N and therefore Rn a C-small submodule of N .

(ii) ⇒) If radS(C)(N) = N then Rad(N) = N . Thus every finitely generated submodule of
N is in Rad(N) and hence it must be small in N and also C-small.
⇐) Conversely for every x ∈ N , Rx ⊆ N is C-small. Therefore Rx ⊆ radS(C)(N). Thus
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N = radS(C)(N).

(iii) Let radS(C)(N) + X = N with N/X ∈ C. Suppose X 6= N . There is a maximal
submodule U of N containing X. Thus N/U ' (N/X)/(U/X) ∈ C and is simple. Therefore
radS(C)(N) ⊆ U . Then we must have N = U which is a contradiction and so X = N . It
follows that radS(C)(N)�C N .

We consider next the class τ -Suppl for the radical τ = radS(C) (see 4.9).

10.4. The proper class radS(C)-Suppl. The class of all short exact sequences

0→ A
f−→ B → C → 0

such that Im f is a radS(C)-supplement in B is a proper class and it is denoted by radS(C)-Suppl.
By definition

radS(C)-Suppl = ι−1(FradS(C)) = ι−1{N ∈ σ[M ] | radS(C)(N) = 0}.

If C = σ[M ], i.e. radS(C) = Rad we obtain.

10.5. The proper class Co-Neat.

Co-Neat = ι−1{N ∈ σ[M ] | Rad(N) = 0}.

As a consequence of 4.9 we have for τ = Rad:

10.6. Characterization of coneat submodules. [1, 1.14] For a submodule L ⊆ N , the
following are equivalent:

(a) The inclusion L→ N is a Co-Neat-monomorphism.

(b) There exists a submodule L′ ⊆ N such that

(i) L+ L′ = N and

(ii) L ∩ L′ = Rad(L).

(c) There exists a submodule L′ ⊆ N such that

(i) L+ L′ = N and

(ii) L ∩ L′ ⊆ Rad(L).

If the conditions are satisfied, then L is called a Rad-supplement in N .
The relationship between the proper classes radS(C)-Suppl and C-Suppl is analogous to the

one between Suppl and Co-Neat = Rad-Suppl.

10.7. Proposition. Let C be a {q, s}-closed class in σ[M ]. For any module M ,

C-Suppl ⊆ radS(C)-Suppl.

Proof. If L is a C-supplement of N , then there is a submodule L′ ⊆ N such that L+ L′ = N
and L∩L′ �C L. By 10.3 (i), the submodule radS(C)(L) is the sum of all C-small submodules
of L, therefore L ∩ L′ ⊆ radS(C)(L), i.e. L is a radS(C)-supplement in N .

Thus we get in case C = σ[M ]:

10.8. Proposition [46, 3.4.1]. For any module M ,

Suppl ⊆ Co-Neat ⊆ ι−1{all (semi-)simple modules in σ[M ]}.
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10.9. C-Suppl-flats. Let C be a {q, s}-closed class of modules in R-Mod. If radS(C)(R) = 0,
then every C-Suppl-flat module is projective.

Proof. Follows from 6.5.

In case C = R-Mod we obtain.

10.10. Suppl-flats [46, 3.7.2]. If Rad(R) = 0, then every Suppl-flat module is projective.

10.11. radS(C) and (C-)supplements. Let K be a submodule of N .

(i) If radS(C)(K)� K, then K is a C-supplement in N iff K is a supplement.

(ii) If radS(C)(K)�C K, then K is a C-supplement in N iff K is a radS(C)-supplement.

(iii) If radS(C)(N) = N , then every finitely generated submodule of N has a C-supplement in
N .

Proof. (i) It is clear that supplements are always C-supplements. Conversely, if K is a C-
supplement, there exists K ′ ⊆ N with K + K ′ = N and K ∩ K ′ �C K. Then K ∩ K ′ ⊆
radS(C)(K)� K. Therefore K ∩K ′ � K, i.e. K is a supplement in N .

(ii) ⇒) Follows from 10.7.
⇐) Let now K be a radS(C)-supplement in N . Then there exist K ′ ⊆ N with K + K ′ = N
and K ∩K ′ = radS(C)(K) which, by assumption, is C-small in K, thus K ∩K ′ �C K, i.e. K
is a C-supplement in N .

(iii) Let K ⊆ N be a finitely generated submodule. Then, by 10.3 (ii), K is C-small. Thus
K +N = N and K ∩N = K �C N , i.e N is a C-supplement of K.

10.12. C-coclosed submodules. A submodule L ⊆ N in σ[M ] is called a C-coclosed
submodule of N if for every submodule X ⊆ N , L/X �C N/X implies X = L.

10.13. Lemma. Let C be a {q, s}-closed class of modules in σ[M ] closed under products. A
C-small submodule L of a module N is a radS(C)-supplement in N iff radS(C)(L) = L.

Proof. Let L�C N . If L is a radS(C)-supplement in N , then there exists a submodule L′ ⊆ N
such that L + L′ = N and L ∩ L′ = radS(C)(L). Since L �C N , L′ = N provided N/L′ is in
C. Suppose we have N/L′ ∈ C. Then L′ = N and hence L = L ∩N = radS(C)(L). To prove
that N/L′ ∈ C note that

N/L′ = (L+ L′)/L′ ' L/L ∩ L′ = L/radS(C)(L).

Thus radS(C)(N/L′) = 0. It follows from 2.10 (ii) that N/L′ ∈ C.
Conversely, suppose that L �C N and radS(C)(L) = L. Then L + N = N and L ∩N = L =
radS(C)(L), i.e. L is a radS(C)-supplement in N .

10.14. C-coclosed and radS(C)-supplement submodules. Let C be a {q, s}-closed class
of modules in σ[M ] closed under products. The following are equivalent:

(a) Every nonzero radS(C)-supplement in a module in σ[M ] is a C-coclosed submodule.

(b) Every nonzero C-small submodule of any module in σ[M ] has a maximal submodule.
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Proof. (a) ⇒ (b) If L �C N and L = Rad(L) ⊆ radS(C)(L), then radS(C)(L) = L. Thus, by
10.13, L is a radS(C)-supplement in N . But, by hypothesis, L is C-coclosed in N and hence not
C-small. This is a contradiction, thus Rad(L) 6= L, i.e. L has at least one maximal submodule.

(b) ⇒ (a) Let L be a radS(C)-supplement in N ∈ σ[M ]. For any submodule U ⊆ L ⊆ N ,
L/U is a radS(C)-supplement in N/U , since in the commutative diagram

0 // L //

��

N //

��

N/L // 0

0 // L/U // N/U // N/L // 0,

the first row is a short exact sequence in radS(C)-Suppl. Thus, by 3.1 (P5) and (P6), the
bottom row belongs also to radS(C)-Suppl, i.e. L/U is a radS(C)-supplement in N/U . Suppose
now that L/U �C N/U , then radS(C)(L/U) = L/U by 10.13. By hypothesis L/U has a
maximal submodule. Hence L/U 6�C N/U for all U ⊆ L implies that L is C-coclosed in
N .

Recall that a module N ∈ σ[M ] is called M-small if N � L for some L ∈ σ[M ]. Equiva-
lently, N � N̂ , where N̂ is the M -injective hull of N (see 1.12). For C = σ[M ] we obtain.

10.15. Coneat and coclosed submodules. [1, 1.16] Let M be a module. The following are
equivalent:

(a) Every nonzero coneat submodule of a module in σ[M ] is a coclosed submodule.

(b) Every nonzero M -small module in σ[M ] is a Max module (resp. has a maximal submod-
ule).

10.16. C-hollow modules. A module N ∈ σ[M ] is called C-hollow if every proper submod-
ule of N is C-small in N .

10.17 Proposition. Let C be a {q, s}-closed class of modules in σ[M ]. If N ∈ σ[M ] is
C-hollow, then N/K is C-hollow for every K ⊆ N .

Proof. Let H/K ⊆ N/K be a proper submodule. Then H is a proper submodule of N . Then,
by assumption, H is a C-small submodule of N . By Proposition 8.3 (i), H/K is C-small in
N/K. Therefore N/K is C-hollow.

10.18 Proposition. Let C be a {q, s}-closed class of modules in σ[M ]. If N =
∑
i∈I Ni with

Ni C-hollow. Then N/radS(C)(N) is semisimple.

Proof. We have N/radS(C)(N) =
∑
i∈I(Ni + radS(C)(N))/radS(C)(N). On the other hand,

(Ni+radS(C)(N))/radS(C)(N) ' Ni/(radS(C)(N)∩Ni) which is a simple module or zero since
for a proper submodule Ki/(radS(C)(N) ∩ Ni) ⊆ Ni/(radS(C)(N) ∩ Ni) we have that Ki is
C-small thus Ki ⊆ radS(C)(N). Therefore N/radS(C)(N) is semisimple.

10.19 Proposition. Let C be a {q, s}-closed class of modules in σ[M ]. If N/radS(C)(N) is
semisimple and radS(C)(N) �C N , then every proper submodule K of N with N/K ∈ C is
contained in a maximal submodule.

Proof. Let K ⊆ N be a proper submodule such that N/K ∈ C and
p : N −→ N/radS(C)(N) the canonical projection. Since radS(C)(N) �C N we have p(K) 6=
N/radS(C)(N). Therefore p(U) is contained in a maximal submodule X ⊆ N/radS(C)(N).
Then U is contained in the maximal submodule p−1(X) ⊆ N .
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The following special cases of radS(C) are of interest.

10.20. The radicals α, β, γ, δ. We denote by

α = radS(I ) for I the class of M -injective modules,

β = radS(P) for P the class of M -projective modules,

γ = radS(M ) for M the class of M -small modules,

δ = radS(S ) for S the class of M -singular modules.

In the category σ[M ] the class of simple modules splits into four disjoint classes, namely

S(I ) ∩ S(P), S(I ) ∩ S(S ), S(M ) ∩ S(P), and S(M ) ∩ S(S ).

More precisely.

10.21. Lemma [17, 12, 4.2, 8.2].

(i) A simple module in σ[M ] is either M -injective or M -small.

(ii) A simple module in σ[M ] is either M -projective or M -singular.

Proof. Let S be a simple module in σ[M ].
(i) Suppose that S is not M -injective. Then S 6= Ŝ. Let X ⊆ Ŝ such that S +X = Ŝ. Since
S ⊆e Ŝ, then S ∩X 6= 0. Thus S ⊆ X. Therefore X = Ŝ, i.e. S is small in its injective hull
and so it is M -small.

(ii) Suppose that S is not M -singular. Consider a short exact sequence

0→ A→ B → S → 0.

Note that the maximal submodule A is not essential in B, thus it is a direct summand.
Therefore the sequence splits, i.e. S is M -projective.

We fix some notation:

K �γ N if K is an M -small submodule of N ,

K �δ N if K is an S -small submodule of N .

10.22. Properties of α, β, γ, δ.

(i) Rad = α ∩ γ = β ∩ δ,

(ii) α is an idempotent radical.

(iii) β(N) ⊇ ∩{L ⊆ N | L maximal and direct summand}.

(iv) γ(N) =
∑
{L ⊆ N | L�γ N}.

(v) δ(N) =
∑
{L ⊆ N | L�δ N}.

Proof. (i) It follows from 10.21.

(ii) It follows from 2.10 (v).

(iii) Let f : N → S with S ∈ S(P). Let L = Ker f , then L is a maximal submodule of N
and a direct summand. This proves the assertion.
(iv) and (v) follow from 10.3 (i).
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For σ, τ radicals in σ[M ] we have always that

(σ ∩ τ)-Suppl ⊆ σ-Suppl ∩ τ -Suppl.

For the other inclusion we need the following concepts.

10.23. Diuniform modules (see [51, Definition 42]). A module N ∈ σ[M ] is called diu-
niform if K ∩ L = 0 implies K = 0 or L = 0 with K and L fully invariant submodules of
N .

10.24. Proposition. Let σ, τ be radicals in σ[M ]. Consider the following conditions:

(a) Every module in Fσ∩τ is diuniform.

(b) Fσ∩τ = Fσ ∪ Fτ .

(c) (σ ∩ τ)-Suppl=σ-Suppl ∩ τ -Suppl.

Then (a) ⇒ (b) ⇒ (c).

Proof. (a) ⇒ (b) It is clear that Fσ ∪ Fτ ⊆ Fσ∩τ . Let X ∈ Fσ∩τ . Then (σ ∩ τ)(X) = 0. Thus
by assumption σ(X) = 0 or τ(X) = 0, i.e. X ∈ Fσ ∪ Fτ .

(b) ⇒ (c) By definition (σ ∩ τ)-Suppl=ι−1(Fσ∩τ ). From the proof of 4.11 it follows that
σ-Suppl ∩ τ -Suppl=ι−1(Fσ) ∩ ι−1(Fτ ) = ι−1(Fσ ∪ Fτ ). Thus by assumption ι−1(Fσ∩τ ) =
ι−1(Fσ ∪ Fτ ).

10.25. GCO modules (see [17]). A module M is called a GCO-module if every singular
simple module is M -injective or M -projective. Equivalently, M is a GCO-module iff every
M -singular simple module is M -injective (see [17, 16.4]).

We obtain a new characterization of GCO-modules:

10.26. Proposition. Let M be a module. The following conditions are equivalent:

(a) M is a GCO-module,

(b) α ≤ δ,

(c) α-Suppl ⊆ δ-Suppl.

Proof. (a)⇒ (b) By assumption S(S ) ⊆ S(I ), thus for every moduleN , α(N) = radS(I )(N) ⊆
radS(S )(N) = δ(N).

(b) ⇒ (c) Is clear.

(c) ⇒ (a) Let S be a simple M -singular module. Since S is simple, then α(S) = 0 or
α(S) = S. Suppose first α(S) = 0, then S is cogenerated by the simple M -injective modules,
hence S is M -injective.
Now suppose that α(S) = S. Then the short exact sequence

0→ S → Ŝ → Ŝ/S → 0

belongs to α-Suppl. Therefore it belongs also to δ-Suppl, i.e. there exists a submodule S′ ⊆ Ŝ
such that S+S′ = Ŝ and S ∩S′ = δ(S). Since S is M -singular, δ(S) = 0. But S ⊆e Ŝ implies
S′ = 0 and thus S = Ŝ, i.e. S is M -injective.
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10.27. Proposition. Let M be a module. Consider the following conditions:

(a) every M -injective simple module is M -singular,

(b) δ ≤ α,

(c) δ-Suppl ⊆ α-Suppl.

Then (a) ⇒ (b) ⇒ (c).

Proof. (a)⇒ (b) By assumption S(I ) ⊆ S(S ), thus for every moduleN , δ(N) = radS(S )(N) ⊆
radS(I )(N) = α(N).

(b) ⇒ (c) Is clear.
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Chapter 5

Proper classes related to
C-complements

In this chapter we consider the dual notion to C-small submodules and C-supplements. As
above, C is a {q, s}-closed class of modules.

11 C-essential submodules

11.1. C-essential submodules. A submodule K ⊆ N is called a C-essential submodule of
N if for every submodule X ⊆ N , the equality K ∩ X = 0 and X ∈ C implies X = 0. We
denote this by K ⊆Ce N .

For any {q, s}-closed class C in σ[M ] every essential submodule is C-essential. If C = σ[M ],
then the σ[M ]-essential submodules are the essential submodules in σ[M ]. For any {q, s}-
closed class C in σ[M ], if N ∈ C, then a submodule K ⊆ N is C-essential in N iff K is essential
in N .

11.2. Examples of C-essential submodules.

(i) If C = S(σ[M ]), the class of simple modules in σ[M ], then a submodule K ⊆ N is
S(σ[M ])-essential iff Soc(N) ⊆ K.

Proof. Let K be a S(σ[M ])-essential submodule of N and S any simple submodule
of N . Suppose that S * K, then S ∩ K = 0. Thus, by hypothesis, S = 0, which
is a contradiction. Therefore S ⊆ K, i.e. Soc(N) ⊆ K. Conversely, suppose that
Soc(N) ⊆ K. For any submodule X ⊆ N such that X ∩K = 0 with X simple, we have
X ⊆ Soc(N) ⊆ K. Therefore 0 = X ∩K = X, i.e. K is a S(σ[M ])-essential submodule
of N .

(ii) Let C be either the class of noetherian or artinian modules in σ[M ]. Since every sim-
ple module is noetherian and artinian, a noetherian-essential or an artinian-essential
submodule is S(σ[M ])-essential (see (i)).

(iii) If C = Tτ , with τ a hereditary preradical in σ[M ], then a submodule K ⊆ N ∈ σ[M ] is
Tτ -essential iff for every submodule X ⊆ N such that X ∩K = 0 we have X ∩ τ(N) = 0.

Proof. Let K be a Tτ -essential submodule of N and X ⊆ N a submodule of N such that
X ∩K = 0. Since τ is an idempotent preradical and Tτ is closed under submodules (see
2.6), the submodule

X ∩ τ(N) ∈ Tτ .
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On the other hand X∩τ(N)∩K = 0. Since K is Tτ -essential, we must have X∩τ(N) = 0.
Conversely, let X ⊆ N be a submodule such that X ∩ K = 0 and X ∈ Tτ . Thus by
2.4 (i), we have X ⊆ τ(N). By hypotheis, 0 = X ∩ τ(N) = X, i.e. K is a Tτ -essential
submodule of N .

11.3. Properties of C-essential submodules. Let K,L and N be modules in σ[M ].

(i) If K ⊆ L ⊆ N , then K ⊆Ce N iff K ⊆Ce L and L ⊆Ce N .

(ii) If L ⊆Ce N and f : H → N , then f−1(L) ⊆Ce H.

(iii) If K1 ⊆Ce L1 ⊆ N and K2 ⊆Ce L2 ⊆ N , then K1 ∩K2 ⊆Ce L1 ∩ L2.

(iv) If Ki ⊆Ce Ni for each i ∈ I, then ⊕IKi ⊆Ce ⊕INi.

Proof. (i) ⇒) Let X ⊆ L such that X ∩K = 0 and X ∈ C. By assumption K ⊆Ce N which
implies X = 0. Hence K ⊆Ce L. Let Y ⊆ N such that Y ∩ L = 0 and Y ∈ C. Then
K ∩ Y = K ∩ Y ∩ L = 0. Since K ⊆Ce N , Y = 0, i.e. L ⊆Ce N .
⇐) Let X ⊆ N such that X ∩K = 0 and X ∈ C. Then L ∩X ∩K = 0 and L ∩X ∈ C. Since
K ⊆Ce L, then L ∩X = 0. From L ⊆Ce N follows that X = 0, i.e. K ⊆Ce N .

(ii) Let X ⊆ H such that X ∩ f−1(L) = 0 and X ∈ C. Note that f(X) ∩ N = 0.
Since L ⊆Ce N and f(X) ∈ C, f(X) = 0. Therefore X ⊆ Ker f ⊆ f−1(L). It follows that
X = X ∩ f−1(L) = 0, i.e. f−1(L) ⊆Ce H.

(iii) Let X ⊆ L1 ∩L2 such that X ∩K1 ∩K2 = 0 and X ∈ C. Since X ∩K1 ⊆ L2 and C is
closed under submodules, then X ∩K1 ∈ C. From K2 ⊆Ce L2 follows that X ∩K1 = 0. Since
K1 ⊆Ce L1, then X = 0. Therefore K1 ∩K2 ⊆Ce L1 ∩ L2.

(iv) We proof first that if K1 ⊆Ce L1 and K2 ⊆Ce L2, then K1⊕K2 ⊆Ce L1⊕L2. By (ii) for
the projection L1⊕L2 → L1, follows that K1⊕L2 ⊆Ce L1⊕L2. Analogous L1⊕K2 ⊆Ce L1⊕L2.
Then

K1 ⊕K2 = (K1 ⊕ L2) ∩ (L1 ⊕K2) ⊆Ce L1 ⊕ L2

This also shows that the result is true for any finite family of sumodules Ki ⊆Ce Li ⊆ N .
Let X ⊆ ⊕INi be in C. If X 6= 0, there exists 0 6= x ∈ ⊕nj=1Nij since this is a finite sum,
⊕nj=1Kij ⊆Ce ⊕nj=1Nij , then we must have Rx∩⊕nj=1Kij 6= 0. Therefore 0 6= Rx∩⊕nj=1Kij ⊆
X ∩ ⊕INi. Thus ⊕IKi ⊆Ce ⊕INi.

11.4. C-essential monomorphisms. A monomorphism f : N → J is called a C-essential
monomorphism if Im f ⊆Ce J .

11.5. Proposition. A monomorphism f : N → J is C-essential iff each morphism h : J → H
with hf a monomorphism and Kerh ∈ C is a monomorphism.

Proof. ⇒) Let x ∈ Kerh ∩ Im f . Then 0 = h(x) = h(f(j)) for a j ∈ J . Since hf is mono,
j = 0, i.e. x = f(j) = 0. This implies Kerh ∩ Im f = 0. By assumption, Im f is C-essential,
thus Kerh = 0.
⇐) Let X ⊆ J such that X ∩ Im f = 0 and X ∈ C. Consider the canonical projection
p : J → J/X. Note that Ker p = X. The composition pf is a monomorphism. Then, by
assumption, p is a monomorphism, i.e. X = 0. This means that Im f ⊆Ce J .
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12 C-complements

12.1. C-complements. A submodule L ⊆ N is called a C-complement in N if there exists
a submodule L′ ⊆ N such that

(i) L ∩ L′ = 0 and

(ii) (L+ L′)/L ⊆Ce N/L.

12.2. The proper class C-Compl. The class of all short exact sequences in σ[M ]

0→ A
f−→ B → C → 0

such that Im f is a C-complement in B is a proper class and it is denoted by C-Complσ[M ].

Proof. We prove that the axioms (P1)-(P6) of 3.1 are satisfied. We keep the convention that
short exact sequences are of the form

0→ A
i−→ B

p−→ B/A→ 0

with i and p the canonical inclusion and projection, respectively.

(P1) Let E ∈ C-Compl and E′ ' E. There is a commutative diagram

E : 0 // A

f1

��

// B

f2

��

// B/A

f3

��

// 0

E′ : 0 // C // D // D/C // 0

with fi isomorphisms. Since E ∈ C-Compl, there exists A′ ⊆ B such that

A ∩A′ = 0 and (A+A′)/A ⊆Ce B/A.

Then
C ∩ f2(A′) = f1(A) ∩ f2(A′) = f2(A) ∩ f2(A′) = f2(A ∩A′) = 0.

Set C ′ = f2(A′). We need to show that (C + C ′)/C ⊆Ce D/C. Let X/C ⊆ D/C such that
(C + C ′)/C ∩X/C = 0 and X/C ∈ C. Then

(C + C ′) ∩X = C.

Since f2 is an isomorphism,

f2(A) = f2(A+A′) ∩ f2(f−1
2 (X)) = f2((A+A′) ∩ f−1

2 (X)).

It follows that (A+ A′) ∩ f−1
2 (X) = A. On the oder hand f−1

2 (X)/A ∈ C since f−1
2 (X)/A '

X/C which is in C. By assumption (A + A′)/A ⊆Ce B/A, thus f−1
2 (X)/A = 0. Therefore

X/C = 0, i.e. (C + C ′)/C ⊆Ce D/C. This shows that E′ ∈ C.

(P2) Let E be a split short exact sequence. E is of the form

0→ A→ A⊕A′ → A′ → 0.

Then A ∩ A′ = 0 and (A ⊕ A′)/A ' A′ ⊆Ce A′. Thus A is a C-complement in A ⊕ A′, i.e.
E ∈ C-Compl.
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(P3) Let f and g be C-Compl-monomorphisms. Consider the diagram

0

��
0 // A

f // B //

g

��

B/A // 0

D

��
D/B

��
0

There exist submodules A′ ⊆ B and B′ ⊆ D such that

A ∩A′ = 0, (A⊕A′)/A ⊆Ce B/A and B ∩B′ = 0, (B ⊕B′)/B ⊆Ce D/B.

We prove that A is a C-complement of A′ + B′ in D. Note that A ∩ (A′ + B′) = 0. On the
other hand

(B ⊕B′)/A/B/A ' (B ⊕B′)/B ⊆Ce D/B ' D/A/B/A.

From 11.3 (ii) follows that (B ⊕B′)/A ⊆Ce D/A. Observe that

(B ⊕B′)/B = B/A⊕ (A+B′)/A and

(A+A′ +B′)/A = (A+A′)/A⊕ (A+B′)/A.

Since (A+A′)/A ⊆Ce B/A and (A+B′)/A ⊆Ce (A+B′)/A, it follows from 11.3 (iv) that

(A+A′)/A⊕ (A+B′)/A ⊆Ce B/A⊕ (A+B′)/A = (B ⊕B′)/A ⊆Ce D/A.

Therefore (A+A′ +B′)/A ⊆Ce D/A, i.e. gf is a C-Compl-epimorphism.

(P4) Let gf be a C-Compl-monomorphism. Keep the notation of the diagram above. There
exists a submodule A′ ⊆ D such that

A ∩A′ = 0 and (A⊕A′)/A ⊆Ce D/A.

We claim that A is a C-complement of A′∩B in B. Note that A∩(A′∩B) = 0. Let X/A ⊆ B/A
such that [A+ (A′ ∩A)]/A ∩X/A = 0 and X/A ∈ C. Then

A = [A+ (A′ ∩B)] ∩X = (A+A′) ∩ (X ∩B).

Since (X ∩B)/A = X/A ∈ C, X = X ∩B = A, i.e.

[A+ (A′ ∩B)]/A ⊆Ce B/A.

This proves that f is a C-Compl-monomorphism.
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(P5) Suppose that g and f are C-Compl-epimorphisms. Consider the diagram

0

��
D/A

��
0 // A // B

f // B/A //

g

��

0

B/D

��
0.

There exist submodules D′/A ⊆ B/A and A′ ⊆ B such that

D/A ∩D′/A = 0, (D +D′)/A/D/A ⊆Ce B/A/D/A and

A ∩A′ = 0, (A+A′)/A ⊆Ce B/A.

We show that D is a C-complement of D′∩A′ in B. From 11.3 (ii) follows that (D+D′)/D ⊆Ce
B/D (we will use this later). First observe that D∩D′ = A, then D∩D′∩A′ = A∩A′ = 0. Let
X ⊆ B such that [D+ (D′ ∩A′)]/D∩X/D = 0 and X/D ∈ C. Thus [D+ (D′ ∩A′)]∩X = D.
Therefore

D + (D′ ∩A′ ∩X) = [D + (D′ ∩A′)] ∩X = D.

This implies that D′ ∩ A′ ∩ X ⊆ D, then D′ ∩ A′ ∩ X ⊆ D ∩ D′ = A. On the other hand
(A + A′) ∩ (D′ ∩X) = A + (D′ ∩ A′ ∩X) = A. Thus (A + A′)/A ∩ (D′ ∩X)/A = 0. Since
(A + A′)/A ⊆Ce B/A, D′ ∩X = A provided (D′ ∩X)/A is in C. Suppose we have this, then
(D + D′) ∩ X = D + (D′ ∩ X) = D + A = D. Therefore (D + D′)/D ∩ X/D = 0. Since
(D + D′)/D ⊆Ce B/D and X/D ∈ C, then X = D, i.e. gf is a C-Compl-epimorphism. It
remains only to prove that (D′ ∩X)/A is in C. Observe that

(X ∩D′)/A = (X ∩D′)/(D ∩D′) ' [(X ∩D′) +D]/D ⊆ X/D.

By assumption, X/D is in C, thus also every submodule. This completes the proof.

(P6) Let gf be a C-Compl-epimorphism. With the notation above we prove that D/A is
a C-complement in B/A. By assumption, there is a submodule D′ ⊆ B such that

D ∩D′ = 0 and (D +D′)/D ⊆Ce B/D.

We claim thatD/A is a C-complemet of (D′+A)/A inB/A. Observe thatD/A∩(D′+A)/A = 0
and

[D/A+ (D′ +A)/A]/D/A = [(D +D′)/A]/D/A '

' (D +D′)/D ⊆Ce B/D ' B/A/D/A

which proves that g is a C-Compl-epimorphism.

As a corollary we obtain for C = σ[M ] that complement submodules induce a proper class
(see [27]).
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12.3. The proper class Compl. The class of all short exact sequences in σ[M ]

0→ A
f−→ B → C → 0

such that Im f is a complement in B is a proper class and it is denoted by Compl.

12.4. C-closed submodules. A submodule K ⊆ N is called C-closed in N if whenever
K ⊆Ce H ⊆ N , then K = H, i.e. K has no proper C-essential extension in N .

If C = σ[M ], then the C-closed submodules are the closed submodules. It is well known that
a submodule K ⊆ N is a complement iff it is closed. Since a complement is a C-complement
we obtain that C-complements always exist but they are not always C-closed. However we can
prove that if K ⊆ N is C-closed then K is a C-complement in N . In order to do that we will
need the following definition.

12.5. Definition. Let K ⊆ N . We say that the submodule K ⊆ N has the property (∗) in
N if for every H ⊆Ce N with K ⊆ H we have H/K ⊆Ce N/K.

12.6. Proposition. Consider the following conditions for a submodule K of N :

(a) K is C-closed in N .

(b) K has the property (∗) in N .

(c) K is a C-complement in N .

Then (a) ⇒ (b) ⇒ (c).

Proof. (a) ⇒ (b) Suppose K is C-closed. Let K ⊆ H ⊆Ce N . If X ⊆ N is such that
X/K ∩H/K = 0 with X/K ∈ C. Then X ∩H = K. Since H is a C-essential submodule of
N it follows from 11.3 (iii) that K = X ∩H ⊆Ce X. This implies by assuption that K = X.
Thus H/K ⊆Ce N/K.

(b)⇒ (c) Suppose now that K has the property (∗) in N . Let K ′ be a complement of K in
N . Then K⊕K ′ ⊆e N implying K⊕K ′ ⊆Ce N . Then, by asumption, (K⊕K ′)/K ⊆Ce N/K,
i.e. K is a C-complement in N .

In the case C = σ[M ] the conditions (a)-(c) are equivalent. For the general implication (c)
⇒ (a) we need some maximality condition on K, which we don’t know.

13 trS(C)-complements

13.1. The idempotent preradical trS(C). Let C be a {q, s}-closed class of modules in σ[M ]
and S(C) the class of simple modules in C. For any N ∈ σ[M ] put

trS(C)(N) = Tr(S(C), N) =
∑
{Im f | f : S → N, S ∈ S(C)}.

13.2. Properties of trS(C).

(i) trS(C) is an idempotent preradical.

(ii) trS(C) ≤ Soc.

(iii) trS(C)(N) = 0 iff N has no nontrivial simple submodules in C.
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Proof. (i) Follows from 2.11 (i).

(ii) Is clear.

(iii) For any f : S → N with S ∈ S(C), Im f ' S. Thus if N has no nontrivial simple
submodules in C we must have f = 0. Conversely if S ⊆ N belongs to C, then S ⊆ trS(C)(N) =
0.

13.3 Lemma. Let C be a {q, s}-closed class of modules in σ[M ] and S a simple module. If S
is subgenerated by C, then S ∈ C.

Proof. Let S be a simple module subgenerated by C and Ŝ ist M -injective hull. Consider the
C-generated module

L := Tr(C, Ŝ) =
∑
{f(C) | f : C → Ŝ, C ∈ C}.

Since S is C-subgenerated, S ⊆ L ⊆ Ŝ. S is an essential submodule of Ŝ, therefore S ⊆e L.
Since S 6= 0 and L is C-generated, there is a nonzero morphism f : C → L for some C ∈ C,
hence f(C) ∩ S 6= 0. It follows that S ⊆ f(C), i.e. S is a subfactor module of C, therefore
S ∈ C.

13.4. trS(C) and C-essential submodules. Let C be a {q, s}-closed class and N be a module
in σ[M ]. Then

trS(C)(N) =
⋂
{K ⊆ N | K ⊆Ce N}.

Proof. Let S be submodule of N such that S ∈ S(C) and K ⊆Ce N . Then S ∩ K 6= 0. S
simple implies that S ⊆ K, hence we have the inclusion ” ⊆ ”.
For the other inclusion note that⋂

{K ⊆ N | K ⊆Ce N} ⊆
⋂
{K ⊆ N | K ⊆e N} = Soc(N).

Therefore ∩{K ⊆ N | K ⊆Ce N} is a semisimple module. Consider the submodule U =∑
{K ⊆ N | K ∈ C}. Then we have clearly that U ⊆Ce N . Then ∩{K ⊆ N | K ⊆Ce N} ⊆ U .

If S is a simple submodule of ∩{K ⊆ N | K ⊆Ce N}, then S is a submodule of a finite sum of
submodules of U which are in C. Therefore, by 13.3, S is in C. This completes the proof.

We consider next the class τ -Compl for the idempotent preradical τ = trS(C) (see 4.4).

13.5. The proper class trS(C)-Compl. The class of all short exact sequences

0→ A
f−→ B → C → 0

such that f(A) is a trS(C)-complement in B is a proper class and it is denoted by trS(C)-Compl.
By definition

trS(C)-Compl = π−1(TtrS(C)) = π−1{N ∈ σ[M ] | trS(C)(N) = N}.

If C = σ[M ], i.e. trS(C) = Soc, we obtain:

13.6. The proper class Neat.

Neat = π−1{all (semi-)simple modules in σ[M ]} =

= π−1{N ∈ σ[M ] | Soc(N) = N}.
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For τ = Soc we obtain from 4.4:

13.7. Characterization of neat submodules. For a submodule L ⊆ N , the following are
equivalent:

(a) The inclusion L→ N is a Neat-monomorphism.

(b) There exists a submodule L′ ⊆ N such that

(i) L ∩ L′ = 0 and

(ii) L⊕ L′/L = Soc(N/L).

(c) There exists a submodule L′ ⊆ N such that

(i) L ∩ L′ = 0 and

(ii) L⊕ L′/L ⊇ Soc(N/L).

If the conditions are satisfied, then L is called a Soc-complement in N .

13.8 Remark. In [21, pp. 39] Enochs defines a different concept of a neat morphism in
the category of R-modules over an integral domain R. (We write E-neat for this concept to
avoid confusion with the neat concept of 13.6). He calls a morphism f : A → B E-neat if
for every proper submodule D ⊆ F of any module F and any morphism g : D → A there
exist a submodule D′ ⊆ F and a morphism g : D′ → B such that D ( D′ and fg = gi,
where i : D ↪→ D′ is the canonical inclusion. Then he calls a submodule A ⊆ B E-neat if the
canonical inclusion A ↪→ B is a E-neat morphism. In [7, Example (4) pp. 4] Bowe points out
that over any ring R a submodule A ⊆ B of an R-module B is E-neat iff A has no proper
essential extension in B, i.e. A is closed (= complement) in B. In [7, Theorem 1.2] Bowe
gives some equivalent conditions for a morphism to be E-neat. In particular a monomorphism
f is E-neat iff for every factorization f = βα with α an essential monomorphism, α is an
isomorphism. The two concepts coincide iff R is a C-ring (see [27, Theorem 5]), i.e. the
E-neat monomorphisms (= Compl-monomorphisms) and the Neat-monomorphisms coincide
iff R is a C-ring.

The relationship between the proper classes trS(C)-Compl and C-Compl is analogous to the
one between Compl and Neat = Soc-Compl.

13.9. Proposition. Let C be a {q, s}-closed class of modules in σ[M ]. For any module M

C-Compl ⊆ trS(C)-Compl.

Proof. If L is a C-complement of N , then there is a submodule L′ ⊆ N such that L ∩ L′ = 0
and L ⊕ L′/L ⊆Ce N/L. By 13.4, the submodule trS(C)(N/L) is the intersection of all C-
essential submodules of N/L, therefore L⊕L′/L ⊇ trS(C)(N/L), i.e. L is a trS(C)-complement
in N .

In case C = σ[M ] we obtain the result [57, corollary of Proposition 5]:

13.10. Proposition. For any module M ,

Compl ⊆ Neat.

13.11. trS(C) and (C-)complements. Let C be a {q, s}-closed class of modules in σ[M ]. Let
K be a submodule of N .

(i) If trS(C)(N/K) ⊆e N/K, then K is a C-complement in N iff K is a complement.
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(ii) If trS(C)(N/K) ⊆Ce N/K, then K is a C-complement in N iff K is a trS(C)-complement.

Proof. (i) It is clear that complements are always C-complements. Conversely, if K is a
C-complement in N , then there exists a submodule K ′ ⊆ N such that K ∩ K ′ = 0 and
K⊕K ′/K ⊆e N/K. Then trS(C)(N/K) ⊆ K⊕K ′/K. This implies that K⊕K ′/K ⊆e N/K,
i.e. K is a complement in N .

(ii) ⇒) Follows from 13.9.
⇐) If K is a trS(C)-complement then there exists a submodule K ′ ⊆ N such that K ∩K ′ = 0
and trS(C)(N/K) ⊆ K⊕K ′/K. Since trS(C)(N/K) ⊆Ce N/K, then by 11.3 (i) K⊕K ′/K ⊆Ce
N/K, i.e K is a C-complement.

13.12. C-singular modules. A module N in σ[M ] is called C-singular if N ' B/A with
A ⊆Ce B ∈ σ[M ].

The class of C-singular modules is closed under submodules, direct sums and factor mod-
ules. A module N ∈ σ[M ] is called non-C-singular if N has no nonzero C-singular submod-
ules.

13.13. C-Compl-flats. If the module N is non-C-singular, then N is C-Compl-flat.

Proof. Let
0→ A→ B → N → 0

be any short exact sequence. Suppose that A is not a C-complement in B. Thus, by 12.6, A is
not C-closed in B. Then there exists B′ ⊆ B such that A ⊆Ce B′ and A 6= B′. By definition
B′/A is C-singular and 0 6= B′/A ⊆ B/A ' N . But this contradicts that N is non-C-singular,
thus A must be a C-complement in B, i.e. N is C-Compl-flat.

As a corollary we obtain for C = σ[M ]:

13.14. Compl-flats. If the module N ∈ σ[M ] is non-M -singular, then N is Compl-flat.

Since closed submodules and complement submodules coincide, we have the following char-
acterization of the Compl-divisible modules.

13.15. Compl-divisibles [22, 4.1.4]. Let N be a module in σ[M ]. The following are equiva-
lent:

(a) N is Compl-divisible.

(b) N is a complement in every M -injective module I containing N .

(c) N is a complement in its M -injective hull N̂ .

(d) N is M -injective.

The following lemma generalizes [12, 4.3].

13.16. Lemma. Let M be a module.

(i) Every C-singular module is a submodule of an M -generated C-singular module.

(ii) Every finitely generated C-singular module belongs to σ[M/L] for some L ⊆Ce M .

(iii) {M/K | K ⊆Ce M} is a generating set for the M -generated C-singular modules.
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Proof. (i) Let K ⊆Ce L ∈ σ[M ]. The M -injective hull L̂ of L is M -generated and L ⊆e L̂.
Since essential submodules are C-essential, by 11.3 (i), K ⊆Ce L̂. Hence L/K ⊆ L̂/K.

(ii) A finitely generated C-singular module is of the form N/K for a finitely generated
N ∈ σ[M ] and K ⊆Ce N . N is a C-essential submodule of a finitely M -generated module Ñ ,
i.e. there exists an epimorphism g : Mk → Ñ , k ∈ N and U := g−1(N) and V := g−1(K)
are C-essential submodules of Mk. Let εi : M → Mk be the canonical inclusions. Then
L := ∩i≤kε−1

i (V ) is a C-essential submodule of M and Lk is contained in the kernel of the
composition

U
g−→ N → N/K.

This implies that N/K ∈ σ[M/L].

(iii) follows from (ii).

We call a module N ∈ σ[M ], C-semiartinian if for every nonzero factor N/K of N ,
trS(C)(N/K) 6= 0 (see [17, 3.12]).

13.17. C-closed and trS(C)-complement submodules. For a module M , the following are
equivalent:

(a) Every trS(C)-complement of M is C-closed.

(b) A submodule of M is C-closed iff it is a trS(C)-complement.

(c) For every L ∈ σ[M ], trS(C)-complements of L are C-closed.

(d) For every C-essential submodule U ⊆M , trS(C)(M/U) 6= 0.

(e) Every C-singular module is C-semiartinian.

Proof. (a) ⇔ (b) Is clear since C-closed submodules are C-complements and these are trS(C)-
complements.

(c) ⇒ (a) Is obvious.

(a) ⇒ (d) Let U ⊆Ce M be a proper submodule. Then U is not C-closed and hence not a
trS(C)-complement. Thus there is a morphism g : S →M/U where S is simple and in C, that
can not be extended to a morphism S → M . In particular, this implies that Im g 6= 0 and
trS(C)(M/U) 6= 0.

(d)⇒ (e). Let U ⊆ V ⊆M . If U ⊆Ce M , then V ⊆Ce M and by (d), for every factor M/V
of M/U , trS(C)(M/V ) 6= 0, i.e. M/U is C-semiartinian. By 13.16, the set {M/U | U ⊆Ce M}
is a generating set for all the C-singular M -generated modules and every C-singular module is
a submodule of an M -generated C-singular module. Thus, since for every proper factor M/V
of M/U , trS(C)(M/V ) 6= 0, this is also true for all C-singular modules.

(e) ⇒ (c). Let K ⊆ L be a trS(C)-complement in L and suppose that it has a proper
C-essential extension K ⊆ L. Then K/K is a C-singular module and hence, by assumption,
contains a simple submodule in C, S = N/K where K ⊆Ce N ⊆ K. Since K is a trS(C)-
complement, it follows that the morphism N → N/K = S splits. This contradicts K ⊆Ce N ,
showing that K is C-closed in L.

For C = σ[M ] we obtain as a collorary.

13.18. Neat and closed submodules [1, 1.9]. For a module M the following are equivalent:
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(a) Every neat submodule of M is closed.

(b) A submodule of M is closed iff it is neat.

(c) For every L ∈ σ[M ], closed submodules of L are neat.

(d) For every essential submodule U ⊆M , Soc(M/U) 6= 0.

(e) Every M -singular module is semiartinian.

In [62] Wu called a ring R, an SAP-ring if every simple R-module is absolutely pure, i.e.
Pure-divisible. We extend his characterization of SAP-rings (see [62, 3.1]) to those modules
M such that every simple module in σ[M ] is P-divisible for a projectively generated proper
class P and we obtain a characterization of cosemisimple modules.

13.19. Proposition. Let P be a proper class projectively generated by a class Q of modules
in σ[M ]. The following are equivalent:

(a) Every simple module is P-divisible.

(b) Rad(K) = Rad(N) ∩ K for every submodule K of any module N ∈ σ[M ] such that
N/K ∈ Q.

Proof. (a) ⇒ (b) Let K be a submodule of N such that N/K ∈ Q and K0 any maximal
submodule of K. Consider the following pushout diagram:

0 // K

��

// N

��

// N/K // 0

0 // K/K0
// N ′ // N/K // 0.

Since K/K0 is simple, by hypothesis, it is P-divisible, hence the bottom sequence belongs to P.
Since N/K ∈ Q and P is projectively generated by Q, we can find a morphism f0 : N → K/K0

such that f0(K) = K/K0. Therefore Ker f0 ∩K = K0. Thus for every maximal submodule
K0 of K we find a maximal submodule N0 = Ker f0 of N such that N0 ∩K = K0. On the
other hand if N1 is a maximal submodule of N , then K ⊆ N1 or K + N1 = N . In the last
case, (K+N1)/N1 ' K/K∩N1 is a simple module, therefore K∩N1 is a maximal submodule
of K. It follows that Rad(K) = (∩Nα)∩K = Rad(N)∩K, with α running over the maximal
submodules Nα of N .

(b) ⇒ (a) Let S be a simple module,

0→ S → B → C → 0

a short exact sequence in σ[M ] and f : Q → C any morphism with Q ∈ Q. Consider the
following pullback diagram:

0 // S // B′

��

// Q

f

��

// 0

0 // S // B // C // 0.

By hypothesis Rad(B′) ∩ S = Rad(S) = 0. Suppose that Rad(B′) 6= 0. Then there is a
maximal submodule K of B′ such that B′ = S ⊕K. If Rad(B′) = 0, then S is not a small
submodule of B′, thus there is a proper submodule H ⊂ B′ such that B′ = S ⊕H. In both
cases the top sequence of the above diagram splits. Thus there is a morphism Q → B which
lifts f , i.e. the bottom sequence belongs to P. This proves that S is P-divisible.
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As a corollary for σ[M ] = R-Mod and Q the class of finitely presented modules, i.e. P is
the class of pure exact sequences, we obtain the characterization of SAP-rings by Wu:

13.20. SAP-rings [62, 3.1]. Let R be a ring. The following are equivalent:

(a) R is a SAP-ring.

(b) Rad(K) = Rad(N) ∩K for every submodule K of any module N ∈ σ[M ] such that N/K
is finitely presented.

Recall that a module M is cosemisimple iff every simple module in σ[M ] is M -injective,
i.e. Split-divisible. Thus for P = Split the proper class of split exact sequences which is
projectively generated by σ[M ], we obtain:

13.21. Cosemisimple modules. Let M be a module. The following are equivalent:

(a) M is cosemisimple.

(b) Rad(K) = Rad(N) ∩K for every submodule K of any module N ∈ σ[M ], i.e. Rad is a
hereditary preradical.

Dually we prove when the simple modules are P-flat for an injectively generated proper
class.

13.22. Proposition. Let P be a proper class injectively generated by a class I of modules in
σ[M ]. The following are equivalent:

(a) Every simple module is P-flat.

(b) Soc(N/K) = (Soc(N) +K)/K for every K submodule of any module N such that K ∈ I.

Proof. (a) ⇒ (b) Let K be a submodule of N such that K ∈ I and H0/K any simple
submodule of N/K. Consider the following pullback diagram:

0 // K // N ′

��

// H0/K

��

// 0

0 // K // N // N/K // 0.

Since H0/K is a simple module, by hypothesis, it is P-flat. Thus the top sequence belongs to
P. Since K ∈ I and P is injectively generated by I, we can find a morphism f0 : H0/K → N
such that (f0(H0/K) +K)/K = H0/K. Therefore for every simple submodule H0/K of N/K
we find a simple submodule N0 = f0(H0/K) of N such that (N0 + K)/K = H0/K. On the
other hand, for every simple submodule H of N , the module (H+K)/K is zero or isomorphic
to it, hence simple. It follows that

Soc(N/K) = ((
∑

Hα) +K)/K = (Soc(N) +K)/K,

with Hα running over the simple submodules of N .

(b) ⇒ (a) Let S be a simple module,

0→ A→ B → S → 0

a short exact sequence and f : A → I any morphism with I ∈ I. Consider the following
pushout diagram:

0 // A

f

��

// B

��

// S // 0

0 // I // B′ // S // 0.
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By hypothesis, S ' B′/I = Soc(B′/I) = (Soc(B′) + I)/I, thus B′ = Soc(B′) + I. Therefore
there is a simple submodule T ⊆ B′ such that T * I, i.e. B′ = T ⊕ I, otherwise every simple
submodule of B′ is contained in I, which would imply I = B′ contradicting the maximality of
I. It follows that the bottom sequence splits, thus we can find a morphism B → I extending
f , i.e. the top sequence belongs to P. This proves that S is P-flat.

In [52] Ramamurthi called a ring R, an SF-ring if every simple R-module is flat. As a
corollary of 13.22 for σ[M ] = R-Mod and P = Pure, the class of pure exact sequences, which
is injectively generated by the pure injective modules, we obtain:

13.23. SF-rings. Let R be a ring. The following are equivalent:

(a) R is a SF-ring.

(b) Soc(N/K) = (Soc(N) + K)/K for every K submodule of any module N such that K is
pure injective.

Recall that a module M is semisimple iff every simple module in σ[M ] is projective. Thus
for P = Split the proper class of split exact sequences, which is injectively generated by σ[M ],
we obtain:

13.24. Semisimple modules. Let M be a module. The following are equivalent:

(a) M is semisimple.

(b) Soc(N/K) = (Soc(N) +K)/K for every K submodule of any module N ∈ σ[M ], i.e. Soc
is a cohereditary preradical.
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Chapter 6

Cotorsion pairs related to proper
classes

14 Cotorsion pairs, covers and envelopes

In this section we recall the definition and some basic properties of cotorsion pairs (also called
cotorsion theories), covers and envelopes. Cotorsion pairs for abelian groups were introduced
by Salce in [53]. They can be easily extended to abelian categories and also to more general
categories (see [5]). In this section let A be an abelian category. We associate to each proper
class in an abelian category A a cotorsion pair in A, which defines a correspondence between
the class of all proper classes of A and the class of all cotorsion pairs of A. This correspondence
is bijective if it is restricted to the class of Xu proper classes, which we introduce in this section.

14.1. Ext-orthogonal classes. Let D be a class of objects of an abelian category A. We
define the classes

⊥D = {X ∈ A | Ext1
A(X,D) = 0},

D⊥ = {X ∈ A | Ext1
A(D, X) = 0}.

14.2. Cotorsion pairs. A pair (F , C) of classes of objects of A is called a cotorsion pair if

(i) F = ⊥C,

(ii) C = F⊥.

In a cotorsion pair (F , C), the class C is called the cotorsion class and F the cotorsion
free class. The class F is closed under extensions, direct summands and contains all projective
objects. The class C is closed under extensions, direct summands and contains all injective
objects.
For any class of objects D ⊆ A the pairs

(⊥D, (⊥D)⊥) and (⊥(D⊥),D⊥)

are cotorsion pairs called, the cotorsion pair generated and cogenerated by the class D
respectively. Examples of cotorsion pairs are (Proj(A),A), (A, Inj(A)). These are called the
trivial cotorsion pairs. A non-trivial example is the pair (Flat,Cot), the flat cotorsion pair
in R-Mod.

14.3. Covers and envelopes. Let X be a class of objects of A. A morphism X → C with
X ∈ X is an X -precover of C if the map HomA(X ′, X) → HomA(X ′, C) is surjective for all
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X ′ ∈ X . This can be expressed by the diagram

X ′

~~|
|

|
|

��
X // C.

An X -precover f : X → C is an X -cover of C if every h ∈ End(X) such that fh = f is an
automorphism. A class X ⊆ A is a precover class (cover class) if every object C ∈ A has
an X -precover (X -cover). An X -precover of C, f : X → C, is called special provided that f
is an epimorphism and Ker f ∈ X⊥.

Let Y be a class of objects of A. A morphism g : A→ Y with Y ∈ Y is a Y-preenvelope of
A if the map HomA(Y, Y ′)→ HomA(A, Y ′) is surjective for all Y ′ ∈ Y. This can be expressed
by the diagram

A

��

// Y

~~|
|

|
|

Y ′.

A Y-preenvelope g : A → Y is a Y-envelope of A if every h ∈ End(Y ) such that hg = g is
an automorphism. A class Y ⊆ A is a preenvelope class (envelope class) if every object
A ∈ A has a Y-preenvelope (Y-envelope). A Y-preenvelope of A, g : Y → A, is called special
provided that g is a monomorphism and Coker g ∈ ⊥Y.

14.4. Lemma [5, V.3.3]. Let (F , C) be a cotorsion pair in an abelian category A with enough
injectives and projectives. The following are equivalent:

(a) Every object in A has a special F-precover.

(b) Every object in A has a special C-preenvelope.

If (F , C) satisfies the conditions in 14.4, then the cotorsion pair is called complete.

14.5. Wakamatsu’s lemma. Let X ⊆ A be a class of objects closed under extensions.

(i) If g : A→ X is an X -envelope of A, then g is special.

(ii) If f : X → C is an X -cover of C, then f is special.

14.6. The lattice of cotorsion pairs. The class of all cotorsion pairs is partially ordered
by inclusion of the second component, i.e.

(F1, C1) ≤ (F2, C2) iff C1 ⊆ C2
or equivalently if and only if F2 ⊆ F1 (see [30]). The minimal element is (A, Inj(A)) and the
maximal (Proj(A),A). The infimum of a family {(Fi, Ci)}I is given by

∧I(Fi, Ci) = (⊥(∩ICi),∩ICi)

and the supremum by
∨I(Fi, Ci) = (∩IFi), (∩IFi)⊥).

14.7. The maps Φ and Ψ. Let P be a proper class of short exact sequences in an abelian
category A. We define

Φ(P) = (⊥(Flat(P)⊥),Flat(P)⊥)

which assings to P the cotorsion pair cogenerated by Flat(P) (see 3.12).
Let R be a proper class of short exact sequences in A. We define

Ψ(R) = (⊥Div(R), (⊥Div(R))⊥)

which assings to R the cotorsion pair generated by Div(R).
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14.8. Lemma. Let P be an injectively generated proper class in A. Then

Flat(P) = ⊥(Flat(P)⊥).

Proof. To prove this, note that every P-injective object I is in Flat(P)⊥, since for a P-flat
object Q we have

Ext1
A(Q, I) = Ext1

P(Q, I) = 0.

Now if Q ∈ ⊥(Flat(P)⊥), then Ext1
A(Q, I) = 0 for all I ∈ Flat(P)⊥ and in particular this is true

for all P-injective objects I. Thus in view of 4.7, Q is P-flat, i.e. Flat(P) = ⊥(Flat(P)⊥).

With a dual argument we obtain.

14.9. Lemma. Let R be a projectively generated proper class in A. Then

Div(R) = (⊥Div(R))⊥.

This implies that for every injectively generated proper classs P, Flat(P) is the first term of
a cotorsion pair, namely Φ(P) = (Flat(P),Flat(P)⊥) and for a projectively generated proper
class R, Div(R) is the second term of a cotorsion pair Ψ(R) = (⊥Div(R),Div(R)).

14.10. Φ and Ψ properties. Let P1,P2 and {Pi}I be injectively generated proper classes
and R1,R2 and {Ri}I projectively generated proper classes in A.

(i) If P1 ⊆ P2, then Φ(P1) ⊇ Φ(P2).

(ii) If R1 ⊆ R2, then Ψ(R1) ⊆ Ψ(R2).

(iii) Φ(∧IPi) = ∨IΦ(Pi).

(iv) Ψ(∧IRi) = ∧IΦ(Ri).

(v) Φ(Split) = (Proj(A),A) = Ψ(Abs).

(vi) Φ(Abs) = (A, Inj(A)) = Ψ(Split).

(vii) Φ(Pure) = (Flat,Cot).

Proof. (i) P1 ⊆ P2 implies Flat(P1) ⊆ Flat(P2), hence

Φ(P1) = (Flat(P1),Flat(P1)⊥) ⊇ (Flat(P2),Flat(P2)⊥) = Φ(P2).

(ii) R1 ⊆ R2 implies Div(R1) ⊆ Div(R2), hence

Ψ(R1) = (⊥Div(R1),Div(R1)) ⊆ (⊥Div(R2),Div(R2)) = Ψ(R2).

(iii) By definition,

Φ(∧IPi) = Φ(∩IPi) = (Flat(∩IPi),Flat(∩IPi)⊥) and

∨IΦ(Pi) = ∨I(Flat(Pi),Flat(Pi)⊥) = (∩IFlat(Pi), (∩IFlat(Pi))⊥).

We show that Flat(∩IPi) = ∩IFlat(Pi). Let X ∈ Flat(∩IPi) and Ji ∈ Inj(Pi) for i ∈ I. Then

Ext1
A(X, Ji) = Ext1

∩Pi(X, Ji) ⊆ Ext1
Pi(X, Ji) = 0.

From 4.7 it follows that X ∈ Flat(Pi). Since i was arbitrary, X ∈ ∩IFlat(Pi). Conversely, let
X ∈ ∩IFlat(Pi) and J ∈ Inj(∩IPi). Then, for all i ∈ I,

Ext1
A(X, J) = Ext1

Pi(X, J), therefore
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Ext1
A(X,J) = ∩IExt1

Pi(X, J) = Ext1
∩Pi(X, J) = 0.

Again from 4.7 it follows that X ∈ Flat(∩IPi). This proves (iii).

(iv) By definition,

Ψ(∧IRi) = Ψ(∩IRi) = (⊥Div(∩IRi),Div(∩IRi)) and

∧IΨ(Ri) = ∧I(⊥Div(Ri),Div(Ri)) = (⊥(∩IDiv(Ri)),∩IDiv(Ri)).

We show that Div(∩IRi) = ∩IDiv(Ri). Let X ∈ Div(∩IRi) and Pi ∈ Proj(Ri) for i ∈ I.
Then

Ext1
A(Pi, X) = Ext1

∩Ri(Pi, X) ⊆ Ext1
Ri(Pi, X) = 0.

It follows from 4.2 that X ∈ Div(Ri). Since i was arbitrary, X ∈ ∩IDiv(Ri). Conversely, let
X ∈ ∩IDiv(Ri) and P ∈ Proj(∩IRi). Then, for all i ∈ I,

Ext1
A(P,X) = Ext1

Ri(P,X), therefore

Ext1
A(P,X) = ∩IExt1

Ri(P,X) = Ext1
∩Ri(P,X) = 0.

Again from 4.2 it follows that X ∈ Div(∩IRi). This proves (iv).

(v)-(vii) are clear.

14.11. Proposition. Every cotorsion pair in A is of the form (Flat(P),Flat(P)⊥) for an
injectively generated proper class P.

Proof. Let (X ,Y) be a cotorsion pair. Set P = ι−1(Y). Then we need to show that Flat(P) =
X . Take X ∈ X and any short exact sequence

E : 0→ A→ B → X → 0.

To prove that E ∈ P consider any morphism A→ Y with Y ∈ Y. By building a pushout we
obtain the commutative diagram

0 // A

��

// B

��

// X // 0

0 // Y // B′ // X // 0.

Thus the lower row splits and we can find a morphism B → Y which extends A → Y . This
implies that E ∈ P and therefore X ∈ Flat(P).
Conversely, let P ∈ Flat(P). Then any short exact sequence

0→ Y → B → P → 0

with Y ∈ Y belongs to P and the elements of Y are P-injectives, thus the sequence splits, i.e.
P ∈ X .

14.12. Proposition. Every cotorsion pair in A is of the form (⊥Div(R),Div(R)) for a
projectively generated proper class R.

Proof. Let (F , C) be a cotorsion pair. Set R = π−1(F). Dual to 14.11 one proves that
(F , C) = (⊥Div(R),Div(R)).
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14.13. The maps Φ̃ and Ψ̃. We define for every cotorsion pair (F , C) in A the maps

Φ̃(F , C) = ι−1(C) and

Ψ̃(F , C) = π−1(F).

Φ̃ assings to each cotorsion pair an injectively generated proper class and Ψ̃ a projectively
generated proper class.

14.14. Properties of Φ̃ and Ψ̃. Let (F1, C1) and (F2, C2) be cotorsion pairs in A.

(i) If (F1, C1) ⊆ (F2, C2), then Φ̃(F1, C1) ⊇ Φ̃(F2, C2).

(ii) If (F1, C1) ⊆ (F2, C2), then Ψ̃(F1, C1) ⊆ Ψ̃(F2, C2).

(iii) Φ̃(∨I(Fi, Ci)) ⊆ ∧IΦ̃(Fi, Ci).

(iv) Ψ̃(∧I(Fi, Ci)) ⊆ ∧IΨ̃(Fi, Ci).

(v) Φ̃(Proj(A),A) = Split = Ψ̃(A, Inj(A)).

(vi) Φ̃(A, Inj(A)) = Abs = Ψ̃(Proj(A),A).

Proof. (i) (F1, C1) ⊆ (F2, C2) iff C1 ⊆ C2. Therefore

Φ̃(F2, C2) = ι−1(C2) ⊆ ι−1(C1) = Φ̃(F1, C1).

(ii) (F1, C1) ⊆ (F2, C2) iff F2 ⊆ F1. Therefore

Ψ̃(F1, C1) = π−1(F1) ⊆ π−1(F2) = Ψ̃(F2, C2).

(iii) By definition, Φ̃(∨I(Fi, Ci)) = Φ̃(∩IFi, (∩IFi)⊥) = ι−1((∩IFi)⊥) and

∧IΦ̃(Fi, Ci) = ∧Iι−1(Ci) = ∩Iι−1(Ci).

We must show that ι−1((∩IFi)⊥) ⊆ ∩Iι−1(Ci). Note that for each i ∈ I,

Ci = F⊥i ⊆ (∩IFi)⊥.

Thus ι−1((∩IFi)⊥) ⊆ ι−1(F⊥i ) = ι−1(Ci). Therefore ι−1((∩IFi)⊥) ⊆ ∩Iι−1(Ci).

(iv) By definition,

Ψ̃(∧I(Fi, Ci)) = Ψ̃(⊥(∩ICi),∩ICi) = π−1(⊥(∩ICi)) and

∧IΨ̃(Fi, Ci) = ∧Iπ−1(Fi) = ∩Iπ−1(Fi).

We must show π−1(⊥(∩ICi)) ⊆ ∩Iπ−1(Fi). For each i ∈ I

Fi = ⊥Ci ⊆ ⊥(∩ICi).

Thus π−1(⊥(∩ICi)) ⊆ π−1(⊥Ci) = π−1(Fi). Hence π−1(⊥(∩ICi)) ⊆ ∩Iπ−1(Fi).

(v) and (vi) are easy to verify.

14.15. Proposition. Let (F , C) be a cotorsion pair, P = ι−1(I) a proper class injectively
generated by a class of objects I and R = π−1(Q) a proper class projectively generated by a
class of objects Q.
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(i) Φ(Φ̃(F , C)) = (F , C).

(ii) Ψ(Ψ̃(F , C)) = (F , C).

(iii) Φ̃(Φ(P)) ⊆ P.

(iv) Ψ̃(Ψ(R)) ⊆ R.

Proof. (i) Φ(Φ̃(F , C)) = Φ(ι−1(C)) = (Flat(ι−1(C)), (Flat(ι−1(C))⊥). By the proof of 14.11,
F = Flat(ι−1(C)).

(ii) Ψ(Ψ̃(F , C)) = Ψ(π−1(F)) = (⊥Div(π−1(F)),Div(π−1(F)). By the proof of 14.12,
C = Div(π−1(F)).

(iii) Φ̃(Φ(P)) = Φ̃(Flat(P),Flat(P)⊥) = ι−1(Flat(P)⊥). Since I ⊆ Flat(P)⊥, ι−1(Flat(P)⊥) ⊆
ι−1(I) = P.

(iv) Ψ̃(Ψ(R)) = Ψ̃(⊥Div(R),Div(R)) = π−1(⊥Div(R)). SinceQ ⊆ ⊥Div(R), π−1(⊥Div(R)) ⊆
π−1(Q) = R.

In [34] Herzog and Rothmaler call a ring R a Xu ring if every cotorsion module is pure
injective, i.e. Inj(Pure) = Flat⊥. This suggests the following definition.

14.16. Xu proper classes. An injectively generated proper class P in A is called a Xu
proper class if

Inj(P) = Flat(P)⊥.

For example, the proper class Abs, the class of all short exact seqences in an abelian
category A, is a Xu proper class. The following proposition is a generalization of [63, 3.5.1]
where P = Pure in R-Mod. There it was proved when Pure is a Xu proper class.

14.17. Characterization of Xu proper classes. Let P be an injectively generated proper
class and suppose that every object N in A has a P-injective hull P(N). The following are
equivalent:

(a) P is a Xu proper class.

(b) Inj(P) is closed under extensions.

(c) For every object N , P(N)/N ∈ Flat(P).

Proof. The proof in [63, 3.5.1] also holds here.

14.18. Lemma. If P is a Xu proper class in A, then Φ̃(Φ(P)) = P.

Proof. Note that P = ι−1(I) = ι−1(Inj(P)) = ι−1(Flat(P)⊥) = Φ̃(Φ(P)).

14.19. Lemma. For every cotorsion pair (F , C), Φ̃(F , C) is a Xu proper class.

Proof. By definition Φ̃(F , C) = ι−1(C). Note that Flat(ι−1(C))⊥ = F⊥ = C ⊆ Inj(ι−1(C))
where the first equality follows from 14.11. By 4.7, Inj(ι−1(C)) ⊆ Flat(ι−1(C))⊥. Therefore
Flat(ι−1(C))⊥ = Inj(ι−1(C)), i.e. ι−1(C) is a Xu proper class.

14.20. Proposition. Φ is a bijective correspondence between the class of all Xu proper classes
in A and the class of all cotorsion pairs in A.

Proof. From 14.15 (i), 14.18 and 14.19 follows that Φ and Φ̃ are inverse correspondences.
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We recall a corollary from [18] to see how the properties of P imply the existence of
Flat(P)-covers.

14.21. Proposition [18, Corollary 10]. Let R be a ring and C a class of pure injective
modules. Then every module has a ⊥C-cover.

14.22. Proposition. Let P be an injectively generated proper class in R-Mod. If P is
inductively closed, then every module has a Flat(P)-cover.

Proof. Let P be an inductively closed proper class in R-Mod, then Pure ⊆ P. This implies
that Inj(P) ⊆ Inj(S) = pure injectives. Since ⊥Inj(P) = Flat(P), then the result follows from
14.21.

In this context let us recall the following theorem due to Bican et al. in [6].

14.23. Proposition [6, Theorem 6]. Let P be a proper class projectively generated by a set
of finitely presented modules over any ring. Then every module has a Flat(P)-cover.

Note that both 14.21 and 14.23 imply the existence of flat covers for all modules over any
ring.

14.24 Example. Let R = Z. Then every Z-module has a Flat(Compl)-cover. The class
of Flat(Compl) abelian groups coincide with the class of flat abelian groups (= torsionfree).
Thus we obtain the known result that every abelian group has a torsionfree-cover (see [19]).

Proof. We show that the proper class Compl in Z-Mod satisfies the hypothesis of Proposition
14.22. By [46, 4.1.1] the proper class Compl is injectively generated by the simple groups
Z/Zp, p prime. By [46, 4.4.4] the proper class Compl is the inductive closure of the proper
class Suppl, thus Compl is inductively closed (see Definition 3.6). Therefore the result follows
from 14.22. An abelian group G belongs to Flat(Compl) iff G ' F/K, with F a free abelian
group and K a complement in F (see 3.12). On the other hand, an abelian group H is flat
iff H ' D/L with D a free abelian group and L a pure subgroup of D. The complement
subgroups are precisely the neat subgroups (see [46, 4.1.1]). Since pure subgroups are neat
and a neat subgroup of a torsionfree abelian group (in particular a free abelian group) is pure
(see [38, Theorem 14]), the classes Flat(Compl) and Flat coincide.

Let τ be a left exact radical of σ[M ] and Fτ the torsionfree class. We consider the cotorsion
pair (Flat(P),Flat(P)⊥) associated to the proper class P = ι−1(Fτ ) = τ -Suppl. Recall that a
module X ∈ σ[M ] is called τ -semiperfect if every factor module of X has a projective τ -cover
see [1, 2.15].

14.25. Proposition. Let τ be a left exact radical and P = ι−1(Fτ ). If every P-injective
module is τ -semiperfect, then (Flat(P),Flat(P)⊥) is a complete cotorsion pair.

Proof. We prove that every module X ∈ σ[M ] has a special Flat(P)⊥-preenvelope. We have
the following sequence in P,

0→ X
i−→ X̂ ⊕X/τ(X)→ Coker i→ 0

where i is defined as in the proof of 6.1 with X̂ ⊕ X/τ(X) a P-injective module. Thus
X̂ ⊕X/τ(X) ∈ Flat(P)⊥. In order for this sequence to be a special Flat(P)⊥-preenvelope we
must show Coker i ∈ Flat(P). Let

0→ K → P → Coker i→ 0
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be the τ -projective cover of Coker i. This sequence belongs to P (see 6.13). Consider any
short exact sequence E ending at Coker i and the following pullback diagram

0

��
K

��
0 // A // B′

��

// P

��

// 0

E : 0 // A // B // Coker i //

��

0

0

Since P is projective the upper row splits. It follows from 3.1 (P6) that the morphism B →
Coker i is a P-epimorphism, thus E ∈ P. This proves that Coker i ∈ Flat(P).

15 P-cotorsion pairs

In [37] Hovey introduced the notion of cotorsion pairs relative to a proper class. They are
defined as complete orthogonal classes with respect to the functor Ext1

P instead of Ext1
A.

15.1. Ext1
P-orthogonal classes. Let P be a proper class of short exact sequences and D a

class of objects in A. We define the classes

⊥PD = {X ∈ A | Ext1
P(X,D) = 0},

D⊥P = {X ∈ A | Ext1
P(D, X) = 0}.

15.2. P-cotorsion pairs. A pair (F , C) of classes of objects of A is called a P-cotorsion
pair if

(i) F = ⊥PC,

(ii) C = F⊥P .

Clearly the pairs (Proj(P),A) and (A, Inj(P)) are P-cotorsion pairs and for any class D ⊆ A
the pairs

(⊥PD, (⊥PD)⊥P ) and (⊥P (D⊥P ),D⊥P )

are P-cotorsion pairs, called the P-cotorsion pair generated and cogenerated by the class
D respectively.
Let P be a proper class in an abelian category A and X a class of objects of A. We say that
the class X is closed under P-extensions if in every short exact sequence of P

0→ A→ B → C → 0

such that A and C belong to X , B belongs also to X .

15.3. Proposition. If (F , C) is a P-cotorsion pair, then:

(i) F and C are closed under P-extensions.
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(ii) F and C are closed under summands.

(iii) F contains all P-projectives and C all the P-injectives.

Proof. (i) By [43, XII.5.1], for an object Y ∈ C and X ∈ F there are exact sequences of abelian
groups

· · · → HomA(A, Y )→ Ext1
P(C, Y )→ Ext1

P(B, Y )→ Ext1
P(A, Y )→ · · ·

· · · → HomA(X,C)→ Ext1
P(X,A)→ Ext1

P(X,B)→ Ext1
P(X,C)→ · · ·

Thus (i) follows easily.

(ii) Ext1
P(−,−) is an additive functor.

(iii) Is clear.

One may ask when a cotorsion pair (X ,Y) (Abs-cotorsion pair) in an abelian category A is
a P-cotorsion pair for a given proper class P. This is the case when Ext1

P(X,Y ) = Ext1
A(X,Y )

for X ∈ X and Y ∈ Y. Thus if X ⊆ Flat(P) and Y ⊆ Div(P), (X ,Y) is a P-cotorsion pair iff
it is an Abs-cotorsion pair.

In [55] Sklyarenko introduced the concepts of modules of flat type and of pure type relative
to a proper class P. A module C is called of flat type relative to P if for all A ∈ R-Mod

ExtP(C,A) ⊆ ExtPure(C,A),

i.e. every short exact sequence in P endig at C belongs to Pure (= pure exact sequences).
Analogously a module A is called of pure type relative to P if every short exact sequence
in P begining with A belongs to Pure. Based on this idea we introduce P-R-flat and P-R-
divisible objects.

15.4. P-R-flats. Let P and R be proper classes in an abelian category A. An object Q ∈ A
is called P-R-flat if for all A ∈ A

Ext1
P(Q,A) ⊆ Ext1

R(Q,A).

This means that every short exact sequence

0→ A→ B → Q→ 0

in P ending at Q belongs toR. We denote the class of all P-R-flats by P-Flat-R. IfR = Pure,
then we call a P-Pure-flat object an object of flat type relative to P and we denote the class
of all objects of flat type relative to P by FT(P).

15.5. Examples of P-R-flats.

(i) A=P-Flat-Abs=Split-Flat-R=P-Flat-P.

(ii) Flat(R)=Abs-Flat-R.

(iii) Flat=Abs-Flat-Pure.

(iv) Proj(P)=P-Flat-Split.

(v) Proj(A)=Abs-Flat-Split.

(vi) FT(P)=P-Flat-Pure.
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15.6. C-Compl-R-flat modules. Let C be a {q, s}-closed class, Q be a module in σ[M ]
and R a proper class in σ[M ]. If every C-singular factor module of Q is R-flat, then Q is
C-Compl-R-flat.

Proof. Let
0→ A→ B → Q→ 0

be a short exact sequence in C-Compl, i.e. there exists a submodule A′ ⊆ B such that
A ∩ A′ = 0 and A ⊕ A′/A ⊆Ce B/A ' Q. Then, by 11.3 (ii), A ⊕ A′ ⊆Ce B. Note that
B/A ⊕ A′ ' B/A

/
A ⊕ A′/A is isomorphic to a C-singular factor module of Q which, by

hypothesis, is R-flat. Consider the following commutative diagram

0 // A

i

��

// B // Q

��

// 0

0 // A⊕A′
j

// B // B/A⊕A′ // 0

with i and j the canonical inclusions. Since B/A⊕A′ is R-flat, the lower row belongs to R. On
the other hand, i is an split monomorphism, thus it is also an R-monomorphism. Therefore
the morphism A→ B must be an R-monomorphism, i.e. Q is C-Compl-R-flat.

The following proposition is a generalization of [55, Proposition 10.2, Lemma 10.1, Corol-
lary 10.2, Proposition 10.3] where P is any proper class and R = Pure in R-Mod.

15.7. Properties of P-R-flat objects. Let P and R be proper classes in an abelian category
A.

(i) P-Flat-R∩ Flat(P) ⊆ Flat(R).

(ii) If R ⊆ P, then P-Flat-R∩ Flat(P) = Flat(R).

(iii) If the sequence
0→ A→ B → C → 0

belongs to P, then A,C ∈ P-Flat-R implies B ∈ P-Flat-R.

(iv) If the sequence
0→ A→ B → C → 0

belongs to R, then B ∈ P-Flat-R implies C ∈ P-Flat-R.

(v) Q1 ⊕Q2 ∈ P-Flat-R iff Q1, Q2 ∈ P-Flat-R.

(vi) Suppose A is cocomplete. If R is
⊕

-closed and Q =
⊕

I Qi, then Q ∈ P-Flat-R iff each
Qi ∈ P-Flat-R.

(vii) Suposse A is a Grothendieck category. If R is inductively closed, then the direct limit of
P-R-flats is P-R-flat.

(viii) Every object of A is P-R-flat iff P ⊆ R.

Proof. (i) Let Q ∈ P-Flat-R∩ Flat(P). Then for every X ∈ C

Ext1
A(Q,X) = Ext1

P(Q,X) ⊆ Ext1
R(Q,X).

Thus Q ∈ Flat(R).
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(ii) Let Q ∈ Flat(R). Then

Ext1
A(Q,X) = Ext1

R(Q,X) ⊆ Ext1
P(Q,X).

Thus Q ∈ Flat(P). Clearly
Ext1

P(Q,X) ⊆ Ext1
R(Q,X).

Thus Q ∈ P-Flat-R.

(iii) Let
0→ X → Y

g−→ B → 0

be a short exact sequence in P. Consider the composition

X ↪→ g−1(A) ↪→ Y.

Since this composition is a P-monomorphism, from 3.1 (P4), it follows that X ↪→ g−1(A) is a
P-monomorphism. Since A ∈ P-Flat-R, the short exact sequence

0→ X ↪→ g−1(A)
g|g−1(A)−−−−−→ A→ 0

belongs to R. On the other hand, the composition Y → B → C is a P-epimorphism, by 3.1
(P5). Then, since C ∈ P-Flat-R, the sequence

0→ g−1(A) ↪→ Y → C → 0

belongs toR. Finally, by 3.1 (P3), the compositionX ↪→ g−1(A) ↪→ Y is anR-monomorphism,
i.e. B ∈ P-Flat-R.

(iv) Let B ∈ P-Flat-R and
0→ X → Y → C → 0

any short exact sequence in P. Consider the pullback diagram

E′ : 0 // X // Y ′

��

// B

��

// 0

E : 0 // X // Y // C // 0.

Note that E ∈ P implies E′ ∈ P. Since B ∈ P-Flat-R, the sequence E′ belongs to R. By
assumption B → C is an R-epimorphism. It follows from 3.1 (P5) and (P6) that Y → C is
an R-epimorphism, i.e. C ∈ P-Flat-R.

(v) ⇒) Since the splitting sequence

0→ Q1 → Q1 ⊕Q2 → Q2 → 0

belongs to R, by (iv), it follows that Q2 ∈ P-Flat-R. Analogously Q1 ∈ P-Flat-R.
⇐) It follows from (iii).

(vi) ⇒) Since the splitting sequence

0→
⊕
i6=j

Qi → Q→ Qj → 0
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belongs to R, it follows by (iv) that Qj ∈ P-Flat-R.
⇐) Let

E : 0→ A→ B
g−→ Q→ 0

be a short exact sequence in P. For each i ∈ I the composition

A ↪→ g−1(Qi) ↪→ B

is a P-monomorphism, thus from 3.1 (P4) follows that A ↪→ g−1(Qi) is a P-monomorphism,
i.e. the short exact sequence

Ei : 0→ A→ g−1(Qi)
g|g−1(Qi)−−−−−−→ Qi → 0

belongs to P. Since Qi ∈ P-Flat-R, Ei ∈ R. By assumption R is
⊕

-closed, thus⊕
i

Ei : 0→
⊕
I

A→
⊕
I

g−1(Qi)→ Q→ 0

belongs to R. The R-epimorphism of
⊕

iEi is the composition⊕
I

g−1(Qi)→ B → Q.

Thus, by 3.1 (P6), the morphism B → Q is an R-epimorphism, i.e. E ∈ R.

(vii) Let
E : 0→ A→ B → Q→ 0

be a short exact sequence in P and Q = lim
→
Qi with Qi ∈ P-Flat-R . For each canonical

morphism Qi → lim
→
Qi form the pullback diagram

Ei : 0 // A // Bi

��

// Qi

��

// 0

E : 0 // A // B // Q // 0.

The sequences Ei ∈ P and since Qi ∈ P-Flat-R, Ei ∈ R. {Ei}I forms a direct system whose
direct limit is E. Since R is inductively closed, E ∈ R.

(viii) ⇒) Is clear since every short exact sequence in P belongs to R.
⇐) Is also clear.

15.8. Proposition. Let R be an injectively generated proper class and P any proper class.
Then Q ∈ P-Flat-R iff Ext1

P(Q,X) = 0 for all X ∈ Inj(R), i.e. ⊥P Inj(R)=P-Flat-R.

Proof. ⇒) Clearly if Q ∈ P-Flat-R and X ∈ Inj(R), then Ext1
P(Q,X) ⊆ Ext1

R(Q,X) = 0.
⇐) Suppose that Q is such that Ext1

P(Q,X) = 0 for all X ∈ Inj(R). Consider any short exact
sequence in P ending at Q,

0→ A→ B → Q→ 0,

and a morphism f : A→ X for X ∈ Inj(R). Form the pushout diagram

E : 0 // A

f

��

// B

��

// Q // 0

E′ : 0 // X // B′ // Q // 0.

The sequence E′ belongs also to P. By assumption E′ splits, thus there exists a morphism
B → X extending f . This means that X is injective with respect to E. Thus E ∈ R.
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15.9. Corollary. Let R be an injectively generated proper class and P any proper class. Then

P-Flat-R = ⊥P ((P-Flat-R)⊥P ).

Proof. Clearly P-Flat-R ⊆ ⊥P ((P-Flat-R)⊥P ). For the other inclusion note that Inj(R) ⊆
(P-Flat-R)⊥P . For if X ∈ Inj(R) and Q ∈ P-Flat-R, then

Ext1
P(Q,X) ⊆ Ext1

R(Q,X) = 0.

Therefore ⊥P ((P-Flat-R)⊥P ) ⊆ ⊥P Inj(R) = P-Flat-R.

15.10. Proposition. Let P be a proper class of short exact sequences. Every P-cotorsion
pair is of the form (P-Flat-R, (P-Flat-R)⊥P ) for some injectively generated proper class R.

Proof. Let (X ,Y) be a P-cotorsion pair. Set R = ι−1(Y). We show that X = P-Flat-R. Take
X ∈ X and a short exact sequence

0→ A→ B → X → 0

in P. If f : A→ Y is a morphism with Y ∈ Y, form the pushout diagram

E : 0 // A

f

��

// B

��

// X // 0

E′ : 0 // Y // B′ // X // 0.

By assumption the sequence E′ splits, thus we can find a morphism B → Y which extends f .
Thus E ∈ R, i.e. X ∈ P-Flat-R.
Conversely, if X ∈ P-Flat-R. Since the elements of Y are R-injectives, for every Y ∈ Y

Ext1
P(X,Y ) ⊆ Ext1

R(X,Y ) = 0,

thus X ∈ X .

For each proper class P in a locally finitely presented Grothendieck category A, we obtain
a ”classical” P-cotorsion pair

(FT(P),FT(P)⊥P ) = (P-Flat-Pure, (P-Flat-Pure)⊥P )

with Pure the class of pure short exact sequences. If P = Abs, then we recover the Flat-
Cotorsion pair (Flat,Cot).

15.11. P-R-divisibles. Let P and R be proper classes in an abelian category A. An object
J ∈ A is called P-R-divisible if for all C ∈ A

Ext1
P(C, J) ⊆ Ext1

R(C, J).

This means that every short exact sequence

0→ J → B → C → 0

in P beginning with J belongs to R. We denote the class of all P-R-divisibles by P-Div-R. If
R = Pure we use the name of object of pure type relative to P for a P-Pure-divisible object
and we denote the class of all objects of pure type relative to P by PT(P).

15.12. Examples of P-R-divisibles.

(i) A=P-Div-Abs=Split-Div-R=P-Div-P.
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(ii) Div(R)=Abs-Div-R.

(iii) AP=Abs-Div-Pure.

(iv) Inj(P)=P-Div-Split.

(v) Inj(A)=Abs-Div-Split.

(vi) PT(P)=P-Div-Pure.

15.13. C-Suppl-R-divisible modules. Let C be a {q, s}-closed class, J be a module in
σ[M ] and R a proper class in σ[M ]. If every C-small submodule of J is R-divisible, then J is
C-Suppl-R-divisible.

Proof. Let
0→ J → B → C → 0

be a short exact sequence in C-Suppl, i.e. there exists a submodule J ′ ⊆ B such that J+J ′ = B
and J ∩ J ′ �C J . Consider the following commutative diagram

0 // J ∩ J ′

��

// B
p // B/J ∩ J ′

q

��

// 0

0 // J // B // C ' B/J // 0

with p and q the canonical projections. By hypothesis J ∩ J ′ is R-divisible, i.e. the top row
belongs to R. Since q is an split epimorphism, it is also an R-epimorphism. Therefore the
morphism B → C must be an R-epimorphism, i.e. J is C-Suppl-R-divisible.

The following proposition is a generalization of [55, Lemma 10.4, Corollary 10.5, Proposi-
tion 10.7, Proposition 10.8] where P is any proper class and R = Pure in R-Mod.

15.14. Properties of P-R-divisible objects. Let P and R be proper classes in an abelian
category A.

(i) P-Div-R∩Div(P) ⊆ Div(R).

(ii) If R ⊆ P, then P-Div-R∩Div(P) = Div(R).

(iii) If the sequence
0→ A→ B → C → 0

belongs to P, then A,C ∈ P-Div-R implies B ∈ P-Div-R.

(iv) If the sequence
0→ A→ B → C → 0

belongs to R and B ∈ P-Div-R, then A ∈ P-Div-R.

(v) J1 ⊕ J2 ∈ P-Div-R iff J1, J2 ∈ P-Div-R.

(vi) Suppose A is a Grothendieck category. If R is inductively closed and

A1 ⊆ A2 ⊆ · · · ⊆ Aλ ⊆ · · ·

is a chain of P-submodules of A = ∪ΛAλ. Then if each Aλ is P-R-divisible, so is A.

(vii) Suppose A is a Grothendieck category. If R is inductively closed and J =
⊕

I Ji, then J
is P-R-divisible iff every Ji is P-R-divisible.
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(viii) Suppose A is complete. If R is
∏

-closed and J =
∏
I Ji, then J is P-R-divisible iff every

Ji is P-R-divisible.

(ix) Every object of A is P-R-divisible iff P ⊆ R.

Proof. (i) Let A ∈ P-Div-R∩Div(P). For every C ∈ A,

Ext1
A(C,A) = Ext1

P(C,A) ⊆ Ext1
R(C,A).

Therefore C ∈ Div(R).

(ii) Let A ∈ Div(R), then for every C ∈ A

Ext1
A(C,A) = Ext1

R(C,A) ⊆ Ext1
P(C,A).

Thus A ∈ Div(P). Clearly Ext1
P(C,A) ⊆ Ext1

R(C,A). Thus A ∈ P-Div-R.

(iii) Let 0→ B → X → Y → 0 be a short exact sequence in P. Consider the composition

X � X/A � X/B ' Y.

Since this composition is a P-epimorphism, it follows from 3.1 (P6) that X/A � Y is a
P-epimorphism. Since B/A ' C ∈ P-Div-R, the sequence

0→ C ' B/A ↪→ X/A � X/B ' Y → 0

belongs to R. On the other hand, by 3.1 (P3), the composition A → B → X is a P-
monomorphism. Then, since A ∈ P-Div-R, the sequence

0→ A→ X → X/A→ 0

belongs to R. Finally, by 3.1 (P5), the composition X � X/A � Y is an R-epimorphism, i.e.
B ∈ P-Div-R.

(iv) Let
E : 0→ A→ X → Y → 0

be a short exact sequence in P. Consider the pushout diagram

E : 0 // A

��

// X

��

// Y // 0

E′ : 0 // B // X ′ // Y // 0.

Then E′ ∈ P. Since B ∈ P-Div-R, then E′ ∈ R. By assumption the morphism A→ B is an
R-monomorphism, thus, by 3.1 (P3) and (P4), it follows that A→ X is an R-monomorphism,
i.e. A ∈ P-Div-R.

(v) ⇒) The split exact sequence

0→ J1 → J1 ⊕ J2 → J2 → 0

belongs to R. By (iv), it follows that J1 ∈ P-Div-R. Analogous J2 ∈ P-Div-R.
⇐) It follows from (iii).

(vi) Let
E : 0→ A→ X → Y → 0
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be a short exact sequence in P. For each λ ∈ Λ the composition Aλ ↪→ A ↪→ X is, by 3.1
(P3), a P-monomorphism, i.e. the sequence

Eλ : 0→ Aλ → X → X/Aλ → 0

belongs to P. Since Aλ ∈ P-Div-R, Eλ ∈ R. Since R is inductively closed, lim
→
Eλ = E ∈ R,

i.e. A ∈ P-Div-R.

(vii) ⇒) Follows from (v).
⇐) Let

E : 0→ J → B → C → 0

be a short exact sequence in P. For each finite subset K ⊆ I, it follows from (v) that
⊕

K Jk
is P-R-divisible. Since

J =
⊕
I

Ji =
⋃
K⊆I

(
⊕
K

Jk),

the assertion follows from (vi).

(viii) ⇒) For each k ∈ I the split sequence

0→ Jk →
∏
I

Ji →
∏
i6=k

Ji → 0

belongs to P. Thus, from (iv), it follows that Jk ∈ P-Div-R.
⇐) Let

E : 0→ J → B → C → 0

be a short exact sequence in P. For each k ∈ I the composition

B � B/
∏
i6=k

Ji � B/J ' C

is a P-epimorphism. Thus, by 3.1 (P6), the morphism B/
∏
i6=k Ji � C is a P-epimorphism,

i.e. the short exact sequence

Ek : 0→ Jk ' J/
∏
i6=k

Ji → B/
∏
i6=k

Ji → C → 0

belongs to P. Since Jk ∈ P-Div-R, Ek ∈ R. By assumption R is
∏

-closed, therefore the
sequence ∏

I

Ek : 0→ J →
∏
I

(B/
∏
i6=k

Ji)→
∏
I

C → 0

belongs to R. Finally the R-monomorphism of
∏
I Ek is the composition

J → B →
∏
I

(B/
∏
i6=k

Ji).

Thus, by 3.1 (P4), the morphism J → B is an R-monomorphism, i.e. E ∈ R.

(ix) ⇒) Is clear since every short exact sequence in P belongs to R.
⇐) Is also clear.

15.15. Proposition. Let R be a projectively generated proper class and P any proper class.
Then J ∈ P-Div-R iff Ext1

P(X, J) = 0 for all X ∈ Proj(R), i.e. Proj(R)⊥P=P-Div-R.
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Proof. ⇒) Clearly, if J ∈ P-Div-R and X ∈ Proj(R), then Ext1
P(X, J) ⊆ Ext1

R(X, J) = 0.
⇐) Suppose that J is such that Ext1

P(X, J) = 0 for all X ∈ Proj(R). Consider any short
exact sequence in P beginning with J ,

0→ J → B → C → 0,

and a morphism f : X → C for X ∈ Proj(R). Form the pullback diagram

E′ : 0 // J // B′

��

// X

f

��

// 0

E : 0 // J // B // C // 0.

The sequence E′ belongs also to P. By assumption E′ splits, thus there exist a morphism
X → B lifting f . This means that X is projective with respect to E. Thus E ∈ R.

15.16. Corollary. Let R be a projectively generated proper class. Then

P-Div-R = (⊥P (P-Div-R))⊥P .

Proof. Clearly P-Div-R ⊆ (⊥P (P-Div-R))⊥P . For the other inclusion note that Proj(R) ⊆
⊥P (P-Div-R). For, if X ∈ Proj(R) and J ∈ P-Div-R, then

Ext1
P(X, J) ⊆ Ext1

R(X, J) = 0.

Therefore (⊥P (P-Div-R))⊥P ⊆ Proj(R)⊥P = P-Div-R.

15.17. Proposition. Let P be a proper class. Every P-cotorsion pair is of the form (⊥P (P-
Div-R), P-Div-R) for some projectively generated proper class R.

Proof. Let (X ,Y) be a P-cotorsion pair. Set R = π−1(X ). We show that Y = P-Div-R. Take
Y ∈ Y and a short exact sequence

0→ Y → B → C → 0

in P. If f : X → C is a morphism with X ∈ X , form the pullback diagram

E′ : 0 // Y // B′

��

// X

f

��

// 0

E : 0 // Y // B // C // 0.

By assumption the sequence E′ splits, thus we can find a morphism X → B which lifts f .
Thus E ∈ R, i.e. Y ∈ P-Div-R.
Conversely, if Y ∈ P-Div-R. Since the elements of X are R-projectives, for every X ∈ X ,

Ext1
P(X,Y ) ⊆ Ext1

R(X,Y ) = 0,

thus Y ∈ Y.

In [61] Wisbauer studied Q-regular and I-coregular modules in the category σ[M ] for a
projectively generated proper class P = π−1(Q) and an injectively generated proper class
P = ι−1(I) (see 3.14). The definition of a P-regular module can be rephrased by saying that
every short exact sequence in Abs with the middle module T belongs to P. Extending this
approach we introduce P-R-regular objects.
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15.18. P-R-regular objects. Let P and R be proper classes. An object T ∈ A is called
P-R-regular if every short exact sequence

0→ A→ T → C → 0

in P belongs to R.

15.19. Examples of P-R-regular objects. Let P and R be proper classes.

(i) In an abelian category A, every object of A is P-P-regular, P-Abs-regular and Split-R-
regular.

Proof. By definition, an object T ∈ A is P-R-regular if every short exact sequence in P
with middle term T belongs to R. Thus it is clear that T is P-P-regular. Since every
short exact sequence P is contained in Abs, T is P-Abs-regular. Since the proper class
Split is contained in any proper class R, T is Split-R-regular.

(ii) In σ[M ] a module is Abs-Split-regular iff it is semisimple.

Proof. A module N in σ[M ] is semisimple iff every submodule K ⊆ N is a direct sum-
mand iff every short exact sequence

0→ K → N → N/K → 0

belongs to Split iff T is Abs-Split-regular.

(iii) In R-Mod a module is Compl-Split-regular iff it is extending (see [12, §7]).

Proof. By definition a module N in R-Mod is extending iff every complement (= closed)
submodule K ⊆ N is a direct summand iff every short exact sequence in Compl

0→ K → N → N/K → 0

belongs to Split iff N is Compl-Split-regular.

(iv) In [14] Crivei investigates a similar question introducing P-extending and P-lifting mod-
ules for an arbitrary proper class P. A module N is called P-extending if every submod-
ule K of N has an essential extension L such that L is a P-submodule of N . Equivalently
N is P-extending iff every closed (=complement) submodule of N is a P-submodule of
N . That is, every short exact sequence in Compl with middle module N belongs to P
(see [14, 2.3]).
In R-Mod a module is Compl-P-regular iff it is P-extending (see [14, 2.3]).

Proof. Let P be a proper class in R-Mod. By definition a module N in R-Mod is P-
extending iff every complement (= closed) submodule K ⊆ N is a P-submodule of N iff
every short exact sequence in ComplR-Mod

0→ K → N → N/K → 0

belongs to P iff N is Compl-P-regular.

(v) In R-Mod the module N is amply supplemented and Suppl-Split-regular iff N is amply
supplemented and Cocls-Split-regular iff N is lifting (see [12, 22.3]).
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Proof. By [12, 22.3], a module N in R-Mod is lifting iff N is amply supplemented and
every coclosed submodule K ⊆ N is a direct summand iff N is amply supplemented and
every supplement K ⊆ N is a direct summand iff N is amply supplemented and every
short exact sequence in Cocls or in Suppl

0→ K → N → N/K → 0

splits iff N is amply supplemented and Cocls-Split-regular or Suppl-Split-regular.

(vi) In R-Mod a module is Compl-Pure-regular iff it is purely extending (see [11, Lemma
1.1]).

Proof. By [11, Lemma 1.1] a module N in R-Mod is purely extending iff every com-
plement (= closed) submodule K ⊆ N is pure in N iff every short exact sequence in
Compl

0→ K → N → N/K → 0

belongs to Pure iff N is Compl-Pure-regular.

(vii) In σ[M ] a module is Abs-Pure-regular iff it is regular (see [61, §37]).

Proof. This is just the definition of a regular module in σ[M ].

(viii) In R-Mod if the ring R is noetherian and the module N is flat, then N is Cocls-Pure-
regular iff N is Pure-Cocls-regular (see [66, Satz 3.4(b)]).

Proof. By [66, Satz 3.4(b)] if the ring R is noetherian and the module N is flat, then the
coclosed submodules and the pure submodules of N coincide. Thus every short exact
sequence

0→ K → N → N/K → 0

belongs to Pure iff it belongs to Cocls, i.e. N is Pure-Cocls-regular iff N is Cocls-Pure-
regular.

(ix) Every module in σ[M ] is Co-Neat-Cocls-regular iff every non-zero M -small module in
σ[M ] is a Max module (has a maximal submodule) (see [1, 1.16]).

Proof. By [1, 1.16], every non-zero M -small module N is a Max module iff every non-zero
coneat submodule K is coclosed in N iff every short exact sequence in Co-Neat

0→ K → N → N/K → 0

belongs to Cocls iff N is Co-Neat-Cocls-regular.

15.20. Properties of P-R-regular objects.

(i) If the sequence
0→ T ′ → T → T ′′ → 0

belongs to P and T is P-R-regular, then T ′ and T ′′ are P-R-regular.

(ii) If R = π−1(Q), then T is P-R-regular iff every Q ∈ Q is projective with respect to all
P-epimorphisms T → C.

(iii) If R = ι−1(I), then T is P-R-regular iff every I ∈ I is injective with respect to all
P-monomorphisms A→ T .
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(iv) If T is P-R-flat, then T is P-R-regular iff every P-factor of T is P-R-flat.

(v) If T is P-R-divisible, then T is P-R-regular iff every P-subobject of T is P-R-divisible.

(vi) Every object of A is P-R-regular iff P ⊆ R.

Proof. (i) Let
0→ A→ T ′ → C → 0

be a short exact sequence in P. The composition

A→ T ′ → T

is a P-monomorphism. Since T is P-R-regular, this composition is an R-monomorphism.
Thus from 3.1 (P4) follows that A→ T ′ is an R-monomorphism, i.e. T ′ is P-R-regular.
A similar argument using that the composition T → T ′′ → C is a P-epimorphism shows hat
T ′′ is P-R-regular.

(ii) ⇒) Let
0→ A→ T → C → 0

be a short exact sequence in P and Q → C any morphism with Q ∈ Q. Form the pullback
diagram

E′ : 0 // A // T ′

��

// Q

��

// 0

E : 0 // A // T // C // 0.
By assumption the sequence E belongs to R, thus E′ belongs also to R. Since Q is R-
projective, then the sequence E′ splits. Therefore there is a morphism Q→ T lifting Q→ C,
i.e. Q is projective with respect to the P-epimorphism T → C.
⇐) In the pullback diagram above, the sequence E belongs, by definition, to R = π−1(Q) iff
every Q is projective with respect to it.

(iii) The proof is dual to (ii).

(iv) ⇒) Let T ′′ be a P-factor object of T , i.e. there is a P-epimorphism T → T ′′. Let

E : 0→ A→ B → T ′′ → 0

be a short exact sequence in P. Form the pullback diagram

E′ : 0 // A // B′

��

// T

��

// 0

E : 0 // A // B // T ′′ // 0.

Since T is P-R-regular, then the epimorphism T → T ′′ is an R-epimorphism. Also T is
P-R-flat, thus the sequence E′ belongs to R. Thus, by 3.1 (P5) and (P6), the epimorphism
B → T ′′ is an R-epimorphism, i.e. T ′′ is P-R-flat.
⇐) Let

E : 0→ A→ T → C → 0
be a short exact sequence in P. By assumption C is P-R-flat, then E ∈ R, i.e. T is P-R-
regular.

(v) The proof is dual to (iv).

(vi) ⇒ Is clear since every short exact sequence in P belongs to R.
⇐ Is also clear.
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16 Covers and envelopes relative to a proper class.

We now turn our attention to relative aproximations by introducing (pre)covers and (pre)envelopes
relative to a proper class P. These notions were considered in [3] for the category of finitely
generated Λ-modules over an artin algebra Λ.

16.1. Covers and envelopes relative to P. Let X be a class of objects of A and P a
proper class. An X -precover relative to P of an object C ∈ A is a short exact sequence

E : 0→ A→ X
f−→ C → 0

in P with X ∈ X such that the map HomA(X ′, X)→ HomA(X,C) is surjective for all X ′ ∈ X .
This can be expressed by the diagram

X ′

~~|
|

|
|

��
0 // A // X // C // 0.

An X -precover relative to P is an X -cover relative to P of C if every h ∈ End(X) such
that fh = f is an automorphism. A class X is a P-precover class (P-cover class) if every
object C ∈ A has an X -precover (X -cover) relative to P. An X -precover E of C relative to P
is called special if Ker f ∈ X⊥P .

Let Y be a class of objects of A and P a proper class. A Y-preenvelope relative to P
of an object A ∈ A is a short exact sequence

E : 0→ A
g−→ Y → C → 0

in P with Y ∈ Y such that the map HomA(Y, Y ′)→ HomA(A, Y ′) is surjective for all Y ′ ∈ Y.
This can be expressed by the diagram

0 // A

��

// Y

~~|
|

|
|

// C // 0

Y ′.

A Y-preenvelope relative to P is a Y-envelope relative to P of A if every h ∈ End(Y )
such that hg = g is an automorphism. A class Y is a P-preenvelope class (P-envelope
class) if every object A ∈ A has a Y-preenvelope (Y-envelope) relative to P. A Y-preenvelope
E of A relative to P is called special if Coker g ∈ ⊥PY.

16.2 Remark. Let A be locally finitely presented Grothendieck category. It was proved in
[54, 4.5] that every object X in A has a pure injective envelope. Thus the class Inj(Pure) is a
Pure-envelope class.

16.3. Proposition. Let P = ι−1(I) be a proper class injectively generated by a class I
in an abelian category A and Y a class in A closed under isomorphisms. The following are
equivalent:

(a) Y is a P-envelope class.

(b) Y is an envelope class and Inj(P) ⊆ Y.

Proof. (a) ⇒ (b) It is clear that Y is an envelope class. Let I be a P-injective object in A.
By hypothesis, I has a Y-envelope relative to P

E : 0→ I
i−→ Y → C → 0.
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Since E belongs to P and I is P-injective, the sequence E splits. Thus I is a direct summand
of Y . Consider the composition Y

p−→ I
i−→ Y , with p the canonical projection. Note that

ipi = i. Since E is a Y-envelope relative to P, ip must be an isomorphism, thus i is also an
isomorphism, i.e. I ' Y . Therefore Inj(P) ⊆ Y.

(b) ⇒ (a) Let A be an object of A. By hypothesis, A has a Y-envelope i : A → Y .
Complete i to a short exact sequence

E : 0→ A
i−→ Y → Coker i→ 0.

Let I be an object of I and f : A → I any morphism. Since Inj(P) ⊆ Y and E is an Y-
envelope of A, there is a morphism f : Y → I such that fi = f . This implies that E belongs
to P. Thus E is a Y-envelope relative to P of A.

Dually we obtain.

16.4. Proposition. Let P = π−1(Q) be a proper class projectively generated by a class Q
in an abelian category A and X a class in A closed under isomorphisms. The following are
equivalent:

(a) X is a P-cover class.

(b) X is a cover class and Proj(P) ⊆ X .

16.5. Lemma. Let P be a proper class in an abelian category A with enough P-projectives
and P-injectives and (F , C) a P-cotorsion pair. The following are equivalent:

(a) Every object of A has a special F-precover relative to P.

(b) Every object of A has a special C-preenvelope relative to P.

Proof. (a) ⇒ (b) Let X be any object of A. Since P has enough P-injectives, there is a short
exact sequence in P

0→ X → I → C → 0

with I P-injective. Since Inj(P) ⊆ C, I ∈ C. By hypothesis, C has a special F-precover
relative to P

0→ K → F → C → 0.

Consider the following commutative diagram with all rows and columns in P

0

��

0

��
K

��

K

��
0 // X // I ′

��

// F

��

// 0

0 // X // I

��

// C //

��

0

0 0.

Since K and I are in C and C is closed under P-extensions (15.3 (i)), I ′ ∈ C. Thus

0→ X → I ′ → F → 0
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is a special C-preenvelope relative to P of X.

(b) ⇒ (a) is dual.

The following is a relative version of Wakamatsu’s Lemma.

16.6. Relative Wakamatsu’s lemma. Let A be an abelian category and X a class of objects
of A closed under P-extensions.

(i) If EA : 0→ A→ XA → YA → 0 is an X -envelope of A relative to P, then EA is special.

(ii) If EC : 0→ YC → XC → C → 0 is an X -cover of C relative to P, then EC is special.

Proof. (i) Let
E : 0→ X → B → YA → 0

be a short exact sequence in P with X ∈ X . Consider the following commutative pullback
diagram with all rows and columns in P

0

��

0

��
X

��

X

��
0 // A // X ′A

��

// B

��

// 0

0 // A // XA

��

// YA //

��

0

0 0.

Since X and XA are in X and X is P-extension closed, X ′A must be in X . By hypothesis, EA
is a X -envelope relative to P of A, thus we can find a morphism XA → X ′A which yields the
following diagram commutative

0 // A // XA

��

// YA //

��

0

0 // A // X ′A

��

// B

��

// 0

0 // A // XA
// YA // 0.

Since EA is an X -envelope relative to P, the composition

XA → X ′A → XA

is an isomorphism. Thus the composition

YA → B → YA

is the identity of YA. This implies that the sequence E splits, therefore YA ∈ ⊥PX .

(ii) is dual.
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Recall that a P-cotorsion pair (F , C) in an abelian category A is called complete if every
object of A has a special F-precover relative to P and a special C-preenvelope relative to P. In
[37] Hovey proved, using the small object argument of Quillen [36, Section 2.1], that every small
P-cotorsion pair in a Grothendieck category is complete provided transfinite compositions of
P-monomorphisms are P-monomorphisms.

16.7. Transfinite compositions. Let {(Aα)α<λ, (jα,β)α<β<λ} be a direct system in a co-
complete abelian category A indexed by an ordinal λ and such that lim

→ α<γAα → Aγ is an
isomorphism for each γ < λ. The morphism

f : A0 → lim
→ α<λAα,

is called the transfinite composition of the morphisms jα,α+1 : Aα → Aα+1.

16.8. Small P-cotorsion pairs. Let A be a complete and cocomplete abelian category and P
a proper class such that transfinite composition of P-monomorphisms are P-monomorphisms.
A P-cotorsion pair (F , C) is called small if the following conditions hold:

(i) There is a set {Ui} of objects in F such that P is projectively generated by {Ui}.

(ii) (F , C) is cogenerated by a set, i.e. there is a set G of objects in F such that C = G⊥P .

(iii) For each G ∈ G, there is a P-monomorphism iG with cokernel G such that, if an object
X is injective with respect to all iG, G ∈ G, then X ∈ C .

The set of morphisms iG together with the morphisms 0 → Ui is referred to as a set of
generating monomorphisms of (F , C).

16.9. Proposition [37, 6.5]. Let A be a Grothendieck category and P a proper class such that
transfinite composition of P-monomorphisms are P-monomorphisms. Let I be a set of P-
monomorphisms in A. Then I is a set of generating monomorphisms for a small P-cotorsion
pair iff the following conditions hold:

(i) I contains the morphisms 0→ Ui for some set {Ui} which projectively generates P.

(ii) For every object X ∈ A such that X is injective with respect to all i ∈ I, we have
Ext1

P(Coker j,X) = 0 for all j ∈ I.

Furthermore, in this case, C is the class of all X such that X is injective with respect to all
i ∈ I, F is the smallest class containing the cokernels of the morphisms of I that is closed
under summands and transfinite extensions, and (F , C) is complete.

16.10. Corollary [37, 6.6]. Let A be a Grothendieck category and P a proper class such
that transfinite composition of P-monomorphisms are P-monomorphisms. Then every small
P-cotorsion pair is complete.
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Appendix

17 The functor ExtnP.

Throughout this section let A be an abelian category and P a proper class.

17.1. Morphisms of short exact sequences. A morphism of short exact sequences
in P, Γ : E → E′ is a triple Γ = (α, β, γ) of morphisms in A such that the diagram

E : 0 // A //

α

��

B //

β

��

C //

γ

��

0

E′ : 0 // A′ // B′ // C ′ // 0

is commutative.

17.2. Congruence of short exact sequences. Two short exact sequences in P beginning
with A and ending at C

E : 0→ A→ B → C → 0 and E′ : 0→ A→ B′ → C → 0

are congruent if there is a morphism (1A, β, 1C) : E → E′. We write E ≡ E′.

Note that the morphism β must be an isomorphism. Thus ” ≡ ” is an equivalence relation
on the set of short exact sequences in P beginning with A and ending at C.
Let α : A → A′ be a morphism and E : 0 → A → B → C → 0 ∈ P. We define αE to be the
short exact sequence obtained from the pushout diagram

E : 0 // A //

α

��

B //

��

C // 0

αE : 0 // A′ // B′ // C // 0.

By 3.1 (P5) and (P6), αE belongs to P. Dually, for γ : C ′ → C we define Eγ to be the short
exact sequence obtained from the pullback diagram

Eγ : 0 // A // B′ //

��

C ′ //

γ

��

0

E : 0 // A // B // C // 0.

By 3.1 (P3) and (P4), Eγ belongs to P. The sequences αE and Eγ are unique up to congru-
ence.
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17.3. Diagonal and codiagonal morphism. Denote by i1, i2 : Y → Y ⊕ Y the canonical
inclusions. We denote by ∇Y : Y ⊕ Y → Y the morphism which renders

Y
i1 // Y ⊕ Y

∇
���
�
� Y

i2oo

Y Y Y

commutative. We call ∇Y the codiagonal morphism. Dually denote π1, π2 : X ⊕ X → X
the canonical projections. We denote by ∆X : X → X ⊕X the morphism which renders

X X

∆

���
�
� X

X X ⊕X
π1oo π2 // X

commutative. We call ∆X the diagonal morphism.

17.4. The Baer sum. Given two short exact sequences in P

Ei : 0→ Ai → Bi → Ci → 0

i = 1, 2 we define their direct sum to be the short exact sequence

E1 ⊕ E2 : 0→ A1 ⊕A2 → B1 ⊕B2 → C1 ⊕ C2 → 0.

By [43, XII.4.1], E1 ⊕ E2 belongs to P. Now let E1 and E2 be short exact sequences in P
beginning with A and ending at C. The Baer sum of E1 and E2 is given by the formula

E1 + E2 = ∇A(E1 ⊕ E2)∆C .

Clearly E1 + E2 belongs to P.

17.5. Ext1
P(C,A). Denote by Ext1

P(C,A) the congruence class of short exact sequences in P
beginning with A and ending at C. We have the following properties:

(i) Ext1
P(C,A) is an abelian group,

(1) the sum is given by the Baer sum,
(2) for E ∈ Ext1

P(C,A) the inverse is (−1A)E,
(3) the zero element is the class of the split sequence

0→ A→ A⊕ C → C → 0,

(ii) for α : A′ → A and γ : C ′ → C we have the identities

α(E1 + E2) ≡ αE1 + αE2 , (E1 + E2)γ ≡ E1γ + E2γ,

(iii) for α1, α2 : A→ A′ and γ1, γ2 : C ′ → C we have the identities

(α1 + α2)E ≡ α1E + α2E , E(γ1 + γ2) ≡ Eγ1 + Eγ2.

This means that Ext1
P(−,−) : Aop × A→ Ab is a bifunctor from Aop × A to the category Ab

of abelian groups and the morphisms

α∗ : Ext1
P(C,A)→ Ext1

P(C,A′), E 7→ αE

γ∗ : Ext1
P(C,A)→ Ext1

P(C ′, A), E 7→ Eγ

are abelian group morphisms.
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17.6. P-proper n-fold exact sequences. An n-fold exact sequence

S : 0→ A = Bn → Bn−1 → Bn−2 → · · · → B0 → C = B−1 → 0

is called P-proper if for all i = 0, ..., n− 1 the sequence

0→ Ker (Bi+1 → Bi)→ Bi → Im (Bi → Bi−1)→ 0

belongs to P.

17.7. The Yoneda composite. Consider a P-proper n-fold exact sequence beginning with
A and ending at K

S : 0→ A→ Bn−1 → Bn−2 → · · · → B0 → K → 0

and a P-proper m-fold exact sequence beginning with K and ending at C

T : 0→ K → B′m−1 → B′m−2 → · · · → B′0 → C → 0.

This two sequences may be glued together by the composite morphism

ω : B0 → K → B′m−1

to give a P-proper (n+m)-fold exact sequence S ◦ T called the Yoneda composite of S and
T

S ◦ T : 0→ A→ Bn−1 → · · · → B0
ω−→ B′m−1 → · · · → B′0 → C → 0.

This composition is associative. We can write any P-proper n-fold exact sequence S as the
composition of n short exact sequences in P

Ei : 0→ Ker(Bi−1 → Bi−2)→ Bi−1 → Im(Bi−1 → Bi−2)→ 0

in the form S = En ◦ En−1 ◦ · · · ◦ E1. The Ei are unique up to isomorphism.

17.8. Morphisms of P-proper n-fold exact sequences. A morphism Γ : S → S′ of
P-proper n-fold exact sequences is an (n+ 2)-tuple Γ = (α, αn−1, . . . , α0, γ) of morphisms in
C such that the diagram

S : 0 // A //

α

��

Bn−1
//

αn−1

��

Bn−2
//

αn−2

��

// · · · // B0
//

α0

��

C //

γ

��

0

S′ : 0 // A′ // B′n−1
// B′n−2

// · · · // B′0 // C ′ // 0

is commutative.

17.9. Congruence of P-proper n-fold exact sequences. Two P-proper n-fold exact
sequences S, S′ beginning with A and ending at C are cogruent if given a factorization of
S = En ◦ En−1 ◦ · · · ◦ E1, S′ can be obtained from S by a finite sequence of replacements of
the following types:

(i) Replace any Ei by a congruent short exact sequence in P,

(ii) replace any pair of successive factors of the form E′′β ◦ E′ by E′′ ◦ βE′,

(iii) replace any pair of successive factors of the form E′′ ◦ βE′ by E′′β ◦ E′.

We write S ≡ S′.
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The relation ” ≡ ” is an equivalence relation on the set of P-proper n-fold exact sequences
beginning with A and ending at C.

17.10. Composite with morphisms. Let α : A→ A′, γ : C ′ → C and

S : 0→ A→ Bn−1 → Bn−2 → · · · → B0 → C → 0

a P-proper n-fold exact sequence. We define the P-proper n-fold exact sequences αS and Sγ
by

αS = α(En ◦ En−1 ◦ · · · ◦ E1) = (αEn) ◦ En−1 ◦ · · · ◦ E1,

Sγ = (En ◦ En−1 ◦ · · · ◦ E1)γ = En ◦ En−1 ◦ · · · ◦ (E1γ).

This formulas define morphisms of P-proper n-fold exact sequences

(α, αn−1, · · · , α0, 1C) : S → αS and (1A, γn−1, · · · , γ0, γ) : Sγ → S.

Any morphism Γ = (α, αn−1, . . . , α0, γ) : S → S′ yields a congruence

αS ≡ S′γ.

17.11. The Baer sum of P-proper n-fold exact sequences. Two P-proper n-fold exact
sequences S and T have a direct sum

S ⊕ T : 0→ A⊕A′ → Bn−1 ⊕B′n−1 → · · · → B0 ⊕B′0 → C ⊕ C ′ → 0.

If S ≡ S′ and T ≡ T ′, then S ⊕ T ≡ S′ ⊕ T ′. We define the Baer sum of S and T , both
beginning with A and ending at C, by the formula

S + T = ∇A(S ⊕ T )∆C .

17.12. ExtnP(C,A). Let n > 1. Denote by ExtnP(C,A) the congruence class of P-proper
n-fold exact sequences beginning with A and ending at C. We have the following properties:

(i) ExtnP(C,A) is an abelian group,

(1) the sum is given by the Baer sum,

(2) for S ∈ ExtnP(C,A) the inverse is (−1A)S,

(3) the zero element is the class of the P-proper n-fold sequence

0→ A
1A−−→ A→ 0→ · · · → 0→ C

1C−−→ C → 0.

This makes ExtnP(−,−) : Aop × A → Ab a bifunctor from Aop × A to the category Ab of
abelian groups.
We have defined for each n > 1 the functors ExtnP(−,−). For n = 1, Ext1

P(−,−) was already
defined in 17.5 and for n = 0 we set Ext0

P(−,−) = HomA(−,−).

17.13. Long exact sequences induced by ExtnP . Let

E : 0→ A→ B → C → 0

be a short exact sequence in P and G any object of A. There exist two exact sequences of
abelian groups

· · · → Extn−1
P (A,G)→ ExtnP(C,G)→ ExtnP(B,G)→ ExtnP(A,G)→ · · ·

· · · → Extn−1
P (G,C)→ ExtnP(G,A)→ ExtnP(G,B)→ ExtnP(G,C)→ · · ·

Proof. See [43, XII.5.1].

80



18 P-dimensions

18.1. P-projective and P-injective dimensions (see [2]). The P-projective dimension
of an object C ∈ A is defined by

P-proj.dim.C = min {n | Extn+1
P (C,A) = 0 for all A ∈ A}.

The P-injective dimension of an object A ∈ C is defined by

P-inj.dim.A = min {n | Extn+1
P (C,A) = 0 for all C ∈ A}.

If there is no such n, we put P-proj.dim.C =∞ respectively P-inj.dim.C =∞.
The global dimension of the proper class P is defined by

gl.dim.P = sup{P-proj.dim.C | C ∈ A} = sup{P-inj.dim.A | A ∈ A}.

18.2. P-proper complexes. A sequence

· · · → X−1
δ−1−−→ X0

δ0−→ X1
δ1−→ X2 → · · ·

(not necessarly exact) is called a P-proper complex if for all n ∈ Z, δnδn−1 = 0 and the
sequence

0→ Ker δn → Xn → Im δn → 0

belongs to P.

18.3. P-projective resolutions. A P-projective resolution of an object C ∈ A is a
P-proper complex

· · · → P−1 → P0 → C → 0

with each Pi ∈ Proj(P).

18.4. P-injective resolutions. A P-injective resolution of an object A ∈ A is a P-proper
complex

0→ A→ I0 → I1 → · · ·

with each Ii ∈ Inj(P).

If P is a projective proper class, then each object X ∈ A has a P-projective resolution.
Dually, if P is an injective proper class, then each object X ∈ A has a P-injective resolution.

18.5. Proposition. Let P be a projective proper class in A. The following are equivalent for
an object C ∈ A:

(a) P-proj.dim.C ≤ n

(b) any P-proper sequence

0→ Cn → Pn−1 → Pn−2 → · · · → P0 → C → 0

with all Pi P-projective has the first term Cn P-projective,

(c) C has a P-projective resolution of length n:

0→ Pn → Pn−1 → Pn−2 → · · · → P0 → C → 0.

Proof. See [43, VII.1].
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18.6. Proposition. Let P be an injective proper class in A. The following are equivalent for
an object A ∈ A:

(a) P-inj.dim.A ≤ n

(b) any P-proper sequence

0→ A→ I0 → I1 → · · · → In−1 → An → 0

with all Ii P-injective has the last term An P-injective,

(c) A has a P-injective resolution of length n

0→ A→ I0 → I1 → · · · → In−1 → In → 0.

Proof. See [43, VII.1].

18.7. P-thick subcategories. A subcategory T of A is called P-thick if it is closed under
retracts and whenever two out of three entries in a short exact sequence of P are in T so is
the third.

18.8. Gorenstein proper classes. Let P be a projective and injective proper class. P is
called a Gorenstein proper class if the objects of finite P-projective dimension and the
objects of finite P-injective dimension coincide.

18.9 Proposition. Let P be a Gorenstein proper class. Then the class of objects of finite
P-projective dimension (= finite P-injective dimension) is a P-thick subcategory of A.

Proof. Let
0→ A→ B → C → 0

be a short exact sequence in P. For every X ∈ A there is a long exact sequence

· · · → ExtiP(C,X)→ ExtiP(B,X)→ ExtiP(A,X)→ Exti+1
P (C,X)→ · · ·

It is clear that if two of A,B,C have finite P-projective dimension, then so does the third.

18.10 Example. Let R be an Iwanaga-Gorenstein ring i.e. R is left and right noetherian and
R has finite self-injective dimension on both the left and the right. It is known that over such
rings the modules of finite projective dimension coincide with the modules of finite injective
dimension [20]. In this case we take P to be all short exact sequences, thus P-projective
(-injective) means projective (injective).
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