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Zusammefassung
Die Entwicklung eines Generalized-Active-Space (GAS) Coupled-Cluster (CC) Programmes für die 
Anwendung in der relativistischen Elektronenstrukturtheorie steht im Mittelpunkt dieser Arbeit. 
Anwendungen an kleinen molekularen Systemen, welche schwere Elemente enthalten, 
nummerische Untersuchungen der Grenzen des gegenwärtigen Ansatzes und Näherungsmodelle, 
welche ebenfalls in dieser Arbeit präsentiert werden, stellen natürliche Erweiterungen zu diesem 
Punkt dar. Die Entwicklung des General-Order CC Programmes wurde hierbei in drei 
aufeinanderfolgenden Ausführungsschritten durchgeführt. Bei dem ersten handelt es sich um die 
Verwirklichung einer Schnittstelle zwischen dem LUCIA Programm und dem DIRAC
Programmpaket. Diese Schnittstelle ermöglicht es, mit dem nichtrelativistischen GAS CC 
Programm von Jeppe Olsen Rechnungen im relativistischen, spinfreien Formalismus des DIRAC
Programmpaketes durchzuführen. Der zweite Schritt umfasst die Adaptierung eines 
konfigurationswechselwirkungsbasierten (CI) General-Order CC Programmes auf den 
vollrelativistischen Formalismus. Mit diesem Programm konnten somit die ersten Rechnungen 
präsentiert werden, welche iterative Dreifachanregungen (CCSDT) im vollrelativistischen Rahmen 
beinhalten. Im letzten Schritt wurde die Implementierung eines effizienten, vollrelativistischen GAS 
CC Programmes, welches auf den Eigenschaften von Kommutatoren beruht, umgesetzt. Mit Hilfe 
dieses neuen, effizienten Programmes war es möglich, eine umfangreiche Behandlung der 
Korrelation, bei der die CC Hierarchie erst bei den vollen iterativen Vierfachanregungen
(CCSDTQ) abgeschnitten wurde, zu betreiben. Dies überschreitet deutlich die Möglichkeiten 
bereits existierender Programme. Alle drei in dieser Arbeit entwickelten Programme erlauben als 
einen Spezialfall eine zustandsselektive (SS) Multireferenz (MR) CC Entwicklung durchzuführen. 
Auf dieser Basis war es daher nicht nur möglich, die ersten SSMRCC Rechnungen im 
vollrelativistischen Formalismus durchzuführen, sondern darüber hinaus auch die CC Entwicklung 
bis zu vollständig iterativen Dreifachanregungen (MRCCSDT) fortzuführen. Desweiteren wurden 
mehrere Näherungen, welche auf umgedrehten Kramersprojektion, unvollständigen formalen 
Modellräumen (CC(nm)) und angenäherten Core-Valenzkorrelationsmodellen beruhen, in die neuen 
Programme integriert. Ziel dieser Näherungen ist es, die Rechenzeit bei gleichbleibender 
Genauigkeit signifikant zu vermindern. Alle Programme, die in dieser Arbeit entwickelt wurden,
werden in der Zukunft als Teil des DIRAC Programmpakets der wissenschaftlichen Gemeinschaft 
zur Verfügung stehen.

Die Anwendungen, welche in dieser Arbeit präsentiert wurden, befassen sich mit der genauen 
Ermittlung spektroskopischer Eigenschaften kleiner Moleküle mit schweren Elementen in ihren 
Grund- und elektronisch angeregten Zuständen. Hierbei konnte durch späteres Abschneiden der CC 
Hierarchie und durch Anwendung des GAS Konzeptes in Rechnungen mit extensiven,
unkontrahierten Basissätzen eine hohe Genauigkeit erzielt werden. Um die Einsatzmöglichkeiten 
der realisierten Programme zu untersuchen und um spektroskopische Daten zu erhalten, wurden 
mehrere Vergleichsstudien an den HBr, BiH und LiCs Molekülen durchgeführt. Für LiCs wurden 
neben den elektronischen Eigenschafen des elektronischen Grundzustandes auch 
skalarrelativistische- und Spin-Bahn Effekte auf diesen umfassend untersucht. Anhand von präzisen 
CC und CI Potentialflächen und daraus abgeleiteter vibronischer Spektren konnte für das RbYb 
Molekül ein verbessertes Laser-getriebenes Zwei-Schritt Schema zur experimentellen Präparation 
des Moleküls in seinem rovibronischen Grundzustand ausgehend von ultrakalten Rb und Yb 
Atomen aufgestellt werden. In den Arbeiten am molekularen Kation (RbBa)+ wurde der Einfluss 
energetisch niedrigliegender Ba 6s15d1 Zustände auf einen möglichen Ladungstransfermechanismus 
unter Beteiligung strahlungsloser Prozesse in Stoßexperimenten ultrakalter Rb Atome und Ba+

Ionen herausgestrichen.
Darüber hinaus wurden umfassende, systematische Studien über die Auswirkungen der 
Basisatzgröße, das Abschneidens des virtuellen Raums und der Korrelation von Elektronen des 
äußeren Cores an den HBr und LiCs Molekülen durchgeführt. Intention dieser Studien war es,
herauszuarbeiten, wie bei zukünftigen Rechnungen an molekularen Systemen mit schweren Atomen 
eine systematische Verbesserung der Ergebnisse zu erlangen ist, ohne sich dabei gefälliger 
Fehlerkompensation zu bedienen.





Summary

The development of a generalized active space (GAS) coupled-cluster (CC) code for the

use in relativistic electronic-structure theory is in the center of this thesis. Application

to small molecular systems containing heavy elements along numerical investigation of

the limitations of the current approach and approximative schemes also presented in this

work have all been natural extensions of this center. The development and implemen-

tation of the general order coupled-cluster codes was performed in three separate steps.

The first step comprised the implementation of an interface of the LUCIA code to the

DIRAC program package. This interface allowed to perform calculations within the rel-

ativistic spin-free framework of DIRAC using the non-relativistic generalized active space

coupled-cluster code of Jeppe Olsen. The second step was the adaptation of a general

order coupled-cluster code based on configuration-interaction expansions to the fully rela-

tivistic framework. With this code the first coupled-cluster calculations including iterative

triples (CCSDT) in the fully relativistic framework could be presented. The final step en-

compassed the implementation of an efficient generalized active space coupled-cluster code

in the four-component framework based on the property of commutators. With the new

efficient code extensive correlation treatment outperforming previous implementations

has been demonstrated by truncating the coupled-cluster hierarchy at the fully iterative

quadruples (CCSDTQ). All the methods described above can, as a special case, perform

a state-selective multireference coupled-cluster expansion. The first of its kind, in a fully

relativistic framework, were performed with these codes. Moreover, the first multiref-

erence calculations containing fully iterative triples (MRCCSDT) have been performed.

Several approximation methods based on the flipping of the Kramers projection, incom-

plete formal model spaces (CC(nm)) and approximative core-valence correlation schemes

have been implemented. These aim at a reduction of the computational time while still

maintaining the accuracy. The newly implemented codes will be made available to the

scientific community in a future release of the DIRAC program package.

The applications presented in this thesis are concerned with an accurate determina-

tion of ground- and excited-state spectroscopic properties of small molecules containing

heavy elements. Very high accuracy was achieved in this context by extending the trun-

cation in the coupled-cluster hierarchy, applying the concept of generalized active spaces



and making use of extensive uncontracted basis sets. Several benchmark studies have

been performed on the molecules HBr, BiH and LiCs to demonstrate the capabilities of

the implemented methods and to obtain accurate spectroscopic data. For LiCs scalar-

relativistic and spin-orbit effects on the ground state were studied comprehensively along

with electric properties. On the basis of accurate CC and CI potential energy curves

and the derived vibrational data a revised laser-driven two-step mechanism was proposed

to prepare RbYb molecules in their rovibronic ground state under laboratory conditions

using ultracold Rb and Yb atoms. In the studies of the molecular cation (RbBa)+ it has

been discussed how the energetically low-lying Ba 6s15d1 states could possibly contribute

to a non-radiative charge-transfer mechanism in collision experiments of ultracold Rb

atoms and Ba+ ions.

Extensive systematic studies of the effect of basis set size, truncation of virtual space

along with outer-core correlation have been conducted for the molecules HBr and LiCs,

demonstrating how systematic improvement of theoretical studies of molecular systems

containing heavy atoms can be achieved. These studies will thus help to guide future

calculations to systematically improve towards the right answer for the right reason.
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Introduction

The understanding and solution of classic and quantized many-body equations has been at

the core of theoretical physics and chemistry since the emergence of classical Newtonian

physics and even more with the development of quantum mechanics in the early 20th

century and still today presents a formidable challenge to the various communities. The

solutions presented to these equations have rarely been in a closed algebraic form except

for the simplest cases or when special starting conditions are applied. For the most parts

an approximative form or not a closed form has been put forward in an attempt to solve

these coupled partial differential equations with a given accuracy and precision. The more

elegant of these methods have a systematic way of increasing the accuracy and precision

to an, in principle, arbitrary level. One of these methods, namely the coupled-cluster

method, has been the focus of this work.

The theory of relativity and the attempt to combine this with quantum mechanics

gave rise to another more fundamental problem, namely, the formulation of the exact

quantized many-body equations. The first Lorentz invariant one-particle quantized equa-

tion was the Klein-Gordon equation which can be used to describe spin-0 particles like

pions [1]. Not much later P.A.M. Dirac formulated his famous equation [2], bearing his

name, describing spin-1
2

particles. However, the extension from one-particle 1 equation

to a proper many-body equation has proven exceedingly difficult and to date no proper

Hamiltonians has been formulated. This has lead to the formulation of effective many-

body Hamiltonians as the Dirac-Coulomb Hamiltonian and the likes. Unlike for the

solution of these equations there is no way of improving the Hamiltonian in a systematic

manner until, in principle, the exact one is found.

In the last decades with the rapid development of fast and large computers with

ample computational power has enabled numerical investigations of the various approxi-

1In the Dirac hole theory there is no true one-particle equation.
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2 Introduction

mative solutions. In the quantum chemistry community there are two main branches. The

ab initio branch which with its systematic methods like perturbation theory, configuration

interaction (CI) and coupled cluster (CC) has shown that chemical accuracy2 is possible

with higher level of approximation. These methods unfortunately have a steep scaling

with regards to the approximation level of the hierarchy. Therefore, chemical accuracy

and going to higher levels in the hierarchy is only possible for small molecules. The other

branch include methods like Density Functional Theory (DFT) and Molecular Mechanics

(MM) which have a much more favorable scaling with respect to system size. They can-

not, however, yield exact results since they rely on external parameters. Attempts have

been made to combine the two branches in hybrid methods like the DFT/MRCI to try

and get the best of both branches or embedding schemes like QM/MM methods for very

large molecules where only a small part of the molecule is of interest.

For the ab initio methods it has become customary to truncate these methods at

the second order, due to the steep scaling, thereby making the familiar methods like MP2,

CISD and CCSD. In recent years the size extensive method CCSD and approximations

of this like CC2 and RI-CC2 have gained much attention in the calculation of medium

sized molecules. Very recent developments in the screening of integrals for the MP2

method have enabled linear scaling with regards to system size thus making this method

available to large and very large molecules. These lower-order approximation methods

are, however, not what is desired if one is looking for chemical accuracy. The fastest

converging of these methods with respect to the excitation level is the coupled-cluster

method. The coupled-cluster method has therefore also received the greatest attention

when it comes to reaching chemical accuracy. The direct implementation of higher-order

methods has, however, proven to be rather demanding due to the rapid increase of the

number of matrix elements to be programmed and debugged. It is, however, obvious that

general order programs cannot be generated by explicit programming of matrix elements

to all but the very lightest of elements. To make methods of general order it is therefore

necessary to develop a completely different strategy where one avoids these explicit matrix

elements and instead focuses on the general contraction of operators. Such codes have,

however, been scarce and have not until recently been developed in the non-relativistic

framework [3–6] and are yet to be distributed to a wider audience than the developers

2Chemical accuracy defined as 1 kcal/mol in thermochemistry.
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and collaborators of these.

The work presented in this thesis is a general-order coupled-cluster code adapted

to relativistic framework based on the Dirac-Coulomb Hamiltonian. Besides being of

general order the code also incorporates the generalized active space (GAS) concept.

The GAS is a generalization of the complete active space (CAS) or restricted active

space (RAS) and enables a completely free division of Kramers pairs3 into subspaces

of Kramers pairs and any desired (and allowed) excitation between these. This very

general way of allowing and restricting excitations between Kramers pairs also makes the

program able to perform state-selective multireference coupled-cluster calculations making

this the first general-order coupled-cluster and multireference coupled-cluster program for

the relativistic framework. The calculations presented in this thesis have therefore also

been novel since these types of calculations have not previously been possible with existing

codes. The programs have primarily been developed to calculate highly accurate potential

energy surfaces where these are needed. An example of this kind of application is in the

field of ultracold molecules where several molecules have been examined. With methods

and programs capable of performing extensive correlation treatments well-defined error

bars for a given calculation can be found. This is of great importance to enhance the

predictive power of the calculations. Good error bars are at the moment only known for

closed-shell molecules of the first and second row4 and only until the CCSD(T) level. An

investigation with molecules including heavy elements is therefore needed to guide the

calculations.

Layout of this thesis

The thesis can be divided into three parts:

I The first part is concerned with developing the physical framework that we are work-

ing in. This means introducing relativistic effects, relativistic quantum chemistry

and the different types of multireference coupled-cluster correlation methods. This

part lays the foundation for the development.

II In the second part the programs, their concepts and their implementation is pre-

sented. The development of quantum chemistry codes will be sketched and new

3In the non-relativistic framework this would be orbitals.
4From Li to Ar.
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approximation methods proposed.

III In the final part applications of the newly implemented codes along with interesting

investigations on ultracold molecules is shown. Finally, a critical numerical look is

taken at the usual approximations done for molecules containing heavy elements.



Chapter 1

Heavy Elements

The aim of this chapter is to give the unfamiliar reader to relativistic contributions of

electron structure theory a short overview of the effects of scalar relativity, spin-orbit and

other smaller effects on atoms and molecules. The chapter is written to show when inad-

equacies will arise in the non-relativistic Hamiltonian and then a more accurate Hamil-

tonian like the Dirac-Coulomb or others will be needed. The chapter is written from a

primarily phenomenological viewpoint and is meant to be readable even without a deeper

understanding of the underlying equations and methods. The equations are therefore par-

tially saved for later in the theory section on relativity in chapter 2 though not completely

and the reader is therefore encouraged to study the book from W. Greiner Relativistic

quantum mechanics [1] for a thorough introduction to the Dirac equation. The exten-

sion to atomic and molecular many-body equation and the methods of solving these is

very well covered in the book from Dyall and Fægri Introduction to Relativistic Quantum

Chemistry [7] or the older book by Moss Advanced Molecular Quantum Mechanics [8].

The more interested reader would be referred to Pyykkö’s paper [9] on the various rel-

ativistic effects and the more contemporary books from Dyall and Fægri [7] and Reiher

and Wolf [10] which also cover recent developments in the field of relativistic quantum

chemistry. These three sources contains all the main material written in this chapter and

would all serve as a very good introduction to relativistic effects in atoms and molecules.

Firstly we will briefly look at where heavy elements used in physics an chemistry

which has been relevant for this work before proceeding to the relativistic effects.

5
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1.1 Heavy Elements in Physics and Chemistry

The primary function of this section is to give an example of where heavy elements are

used in physics and chemistry. The focus will be on uses where highly accurate potential

surfaces are needed and the on calculations done in this work.

A prime example is in the rapidly developing field of cold and ultra cold molecules

where very accurate potential energy curves are needed to interpret lines in spectra and

to find possible mechanisms to reach the rovibronic ground state or the knowledge of

electric properties for trapping or further manipulations. Several molecules like the LiCs,

RbYb and RbBa+ presented in Sections 9.3, 9.6, 9.4 and 9.5 have been examined in this

field which was inspired by a recent/ongoing collaboration with the group of Axel Görlitz

which does experiments in this field.

Other very active fields of research are in the actinide chemistry where the 5f elec-

trons make for very interesting and complicated chemistry. Here one often finds a multi-

configurational character of the wave function and would therefore also be an obvious area

of application of the multireference coupled-cluster method. The complexity of many of

the molecules is however a study on its own and therefore beyond the scope of this thesis.

Another important, though not so active, field is the chemistry of the p block el-

ements. Since these have the largest spin-orbit splitting in the periodic system these

are ideal for the a priori inclusion of spin-orbit coupling which comes naturally in the

4-component framework. Work on these systems is presented in Sections 9.1, 9.2 and 9.6.

An explanation for why the p-block elements have the largest spin-orbit splitting can be

found in Section 1.2.1.3.

1.1.1 Ultra Cold Molecules

A large fraction of investigated systems in the (ultra-)cold molecular sciences is comprised

by alkali metal diatomics like the LiCs, see Sections 9.3 and 9.6. These alkali dimers were

the first to gain attention since there was already a prior knowledge of how to cool these

atoms for a later production of a molecule and because these molecules often exhibit a

dipole moment which makes them suitable for a later manipulation.

A new class of hetero-nuclear diatomics like the RbYb, see Section 9.4, may be

trapped due to their unpaired electron(s) and manipulated using magnetic fields [11].
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They are, for example, promising candidates for an experimental search for a perma-

nent electric dipole moment of the electron or for producing lattice-spin models [12] for

quantum computing.

Other classes of charged hetero-nuclear diatomics like the RbBa+ formed from an al-

kali and an alkaline earth metal. With a charged molecule intermolecular charge-transfer

processes could be studied. Other interesting fields of research would be study of meso-

scopic molecular ions in Bose-Einstein condensates (BEC) [13] where the BEC is doped

with few ions. This will have a longer range potential of C4/r
4 than the van der Waals

interaction of C6/r
6 that is seen in the neutral hetero-nuclear molecules.

A number of groundbreaking achievements has been reported from the field of cold

and ultra-cold molecules, and ongoing investigations bear the potential for yet further

findings of fundamental importance [14]. These range from the production of BECs [15]

to the striving for a controlled chemistry at the quantum level [16] and the possibility of

testing, e.g., fundamental symmetries in nature through measurements of a postulated

electric dipole moment (EDM) of an electron [17, 18] or the space-time variation of fun-

damental constants such as the fine-structure constant α [19,20]. The experimental work

for producing (ultra-)cold molecules has to the date been conducted in a variety of ways,

such as photoassociation (PA) [21], buffer gas cooling (sympathetic cooling) [22], Stark

deceleration of polar molecules via time-modulated electric fields [23] and magnetically

tunable Feshbach resonances [24].

Theoretical contributions to the field of (ultra-)cold molecules are of value in many

different respects. Among the most important is the determination of accurate molecular

potential energy curves (PECs) of ground and relevant electronically excited states. These

potentials are often required to be known both at short and long range [21]. At long range,

atom-atom interactions are typically evaluated by perturbation theory, whereas at short

range advanced methods of molecular electronic structure theory come into play. In

addition to the spectral constants which may be extracted directly from the short-range

potentials (equilibrium bond lengths, harmonic vibrational frequencies, dissociation and

excitation energies) [25–27], vibrational states and Franck-Condon factors (FCFs) [28],

molecule formation rates [29], and electric properties such as permanent EDM [30, 31],

transition dipole moments [32], and static polarizabilities are of interest and have been

determined by theoretical methods.
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1.2 Relativistic Effects in Atoms and Molecules

This section is written to show what effect the most dominant relativistic contributions

have on atoms and the molecular structure. These effects are ”independent” of which

Hamiltonian is used and will therefore be discussed from a Hamiltonian more resembling

the one known from the Schrödinger equation namely the Breit-Pauli Hamiltonian.

1.2.1 Primary Concepts

Much of quantum chemistry has primarily been concerned about solving the time inde-

pendent many-body electronic Schrödinger equation1 for molecules consisting of the first

two rows of atoms. The equation comes from the time dependent many-body Schrödinger

equation where time has been factorized out and then the Born-Oppenheimer approxima-

tion has been invoked to separate electronic and nuclear coordinates to a final equation

for electrons in a static electric field of nuclear charges. The equation is easily generalized

to any molecule and the Hamiltonian can in it’s most general form be written as

Ĥ = T̂ + V =
N∑
i

1

2m
p̂2

i −
N∑
i

M∑
A

ZA

riA

+
N∑

j>i

1

rij

(1.1)

where the first term is the kinetic energy of the electrons, second the Coulomb

interaction of electrons and nuclei and finally the electron-electron Coulomb interaction.

The most obvious thing missing from the equation is any reference to spin. Therefore

an additional postulate of spin is needed2. While this Hamiltonian can give accurate

spectroscopic prediction for the light elements it will fail for electronic transitions between

states with different spin (since these will always be trivially zero) and it will also fail

already in the prediction of the ground state of many heavy atoms and molecules. An

example of such a failure to predict the correct state is seen in the BiH molecule which is

due to incorrect prediction of the Bi ground state. The correct ground state of BiH is 0+

and not the 3Σ− predicted from non-relativistic theory. Calculations on the BiH molecule

is presented in Section 9.2.

1Hereon just the Schrödinger equation
2In the limit of lim c → ∞ for the Dirac equation the Schrödinger equation can be recovered in a two

component form (spinor) where spin is naturally included. This is the Lévy-Leblond equation [33]
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To compare with the Schrödinger equation I choose the Breit-Pauli Hamiltonian,

which can be constructed either by a Foldy-Wouthuysen transformation or an elimination

of the small component, this Hamiltonian is correct to O(c−2) and contains the most

important relativistic effects3. With the elimination of the small component the Breit-

Pauli Hamiltonian can be written in a form more comparable to the Schrödinger equation

in 1.1

ĤBP =
N∑
i

[
1

2m
p̂2

i −
1

8m3c2
p̂4

i −
M∑
A

(ZA

riA

+
π�2ZA

2m2c2
δ(riA) +

ZA

2m2c2r3
iA

si · li
)]

(1.2)

+
N∑

j>i

[
1

rij

− 1

m2c2r3
ij

(si + 2sj) · rij × pi −
π�2

m2c2
δ(rij)

− 1

2m2c2

( 1

rij

pi · pj +
1

r3
ij

(rij(rij · pj) · pi

)
− 8π

3m2c2
(si · sj)δ(rij)

+
1

m2c2

((si · sj)

r3
ij

− 3(si · rij)(sj · rij)

r5
ij

)]

where one finds additional one- and two-electron contributions. The most important

of these additional contributions are the three extra one-electron terms which are the

mass-velocity, Darwin and the spin-orbit term, respectively, in line one of Eq. 1.2. The

additional two-electron terms are spin-same- and spin-other-orbit, Darwin, retarded orbit-

orbit interaction, Fermi contact and the spin-spin dipole interaction.

The mass-velocity and the one- and two-electron Darwin terms are together referred

to as the scalar relativistic effects. These together with the one-electron spin-orbit and

spin-same-orbit terms originate from the Coulomb interaction. The spin-dependent part

of the Gaunt interaction gives the spin-other-orbit, Fermi contact and the spin-spin dipole

terms. The spin-free part of the Gaunt term is partially canceled by the gauge term from

the Breit interaction but still leaves the first part of the retarded orbit-orbit interaction.

The second part comes from the gauge term4. To the order O(c−2) the gauge term does

not contain any spin-dependent terms. All these additional terms arise from the picture

change when going from the Dirac picture to the Schrödinger picture [34].

3This is the more modern derivation of the Breit-Pauli Hamiltonian. Originally the Pauli Hamiltonian

was constructed by Pauli before the Dirac equation was formulated.
4Both the Gaunt and the gauge term do contain more terms, like a two-electron Darwin term, which

however cancels
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1.2.1.1 Direct and Indirect Relativistic Effects

Going from the Schrödinger equation to a relativistic Hamiltonian a plethora of additional

terms appears as shown in Eq. 1.2. The contribution from these additional terms are

called the direct relativistic effects. However, due to the direct effects on each electron, the

potential (screening) of all other electrons changes and this change is called the indirect

relativistic effect. Which effect dominates is very dependent on the angular momentum

l of the sub-shell since the higher angular momentum shell does not penetrate the core

region like the lower ones do [35].

While the direct relativistic effects cause contraction and stabilization of the atomic

orbitals, this effect is really only important for the s and p orbitals since only these have

significant probability density close to the core region where the direct effects are large.

d and f orbitals, on the other hand, have only very little direct relativistic effects since

they do not penetrate the core region. These direct effects originate primarily from the

one-electron scalar relativistic effects which can in Eq. 1.2 be seen to be very localized in

and around the core region.

The indirect effects will come from both the contraction of the core orbitals but even

more important contraction of semi-core/valence orbitals. The contraction of the core s

and p orbitals only have small destabilization influence on the valence s and p since these

have their radial maximum well outside the core region. The d and f orbitals will not

experience any significant effect of the core contraction since they lie outside the core. d

and f orbitals will, however, experience a strong destabilization from contracted orbitals

with a radial maximum in the same region as the d and f orbitals which in particular

are the s and p orbitals in the semi-core/valence region [35]. Hence the relativistically

contracted s and p orbitals will cause an indirect destabilization of valence electrons

whereas the d and f orbitals will actually cause an indirect stabilization due to a poorer

shielding of the nuclei.

To summarize the s orbital is dominated by direct relativistic effects and will there-

fore contract and be stabilized. For the p orbitals the direct and the indirect contributions

approximately cancel. If one looks at the p1/2 and p3/2 subshells of the p orbital it is then

seen that the p1/2 has a larger dynamic effects than the p3/2 which means that there usu-

ally will be a small contraction and stabilization of the p1/2 and opposite the p3/2. The d
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and f orbitals are dominated by the indirect relativistic effects and will therefore always

expand and be destabilized.

1.2.1.2 Scalar Relativistic Effects

The scalar relativistic contributions come primarily from the one-electron Darwin and

the mass-velocity term. As is seen from Eq. 1.2 and mentioned in Section 1.2.1.1 they

affect primarily orbitals with significant electron density in and around the nuclei and

hence will therefore primarily affect the s orbitals which are contracted and stabilized.

The scalar relativistic effects can have a large influence on the bond length as shown for

LiCs in Section 9.3 which involves a σ bond. While scalar relativistic effects change the

magnitude of a bond it, however, does not alter the symmetry since no mixing of states

with different spins are involved. This means it can easily be included in a non-relativistic

code either directly or as a perturbation. This is discussed further in section 2. Since

the largest part of the bond contraction comes from the dynamics and not the orbital

contraction [34–37] non-relativistic orbitals can therefore be used for light elements. This

stabilization of the s orbitals is often called the ”inert pair” effect since even in the valence

shell for the heavy p block elements the s orbitals helps to stabilize the n − 2 oxidation

state of an n electron valence system.

That the Darwin and mass-velocity term are the most significant scalar relativistic

contributions comes from the fact that they are the lowest order corrections. The mass-

velocity is the lowest order correction of the kinetic energy and the Darwin term to the

external charge distribution, which is here the nuclear charge. The Darwin potential is

furthermore related to the Zitterbewegung which causes a smearing of the charge in the

Pauli representation of the of the Compton wavelength λc = �/mc.

1.2.1.3 Spin-Orbit Effects

With the inclusion of spin-orbit effect a lift of degeneracy in all orbitals with l > 0 is

experienced which splits into two degenerate subshells depending on the spin s being

parallel or anti-parallel with the angular momentum l. These new subshells then depend

on the total angular momentum j according to
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j = l + s. (1.3)

The p orbitals then split into a p1/2 and a p3/2 subshells where the p1/2 is lower in

energy than the p3/2 which is evident from the sign of the one-electron spin-orbit operator

in the Breit-Pauli Hamiltonian in Eq. 1.2. Likewise is the d orbital split into d3/2 and

d5/2 and the f into f5/2 and f7/2 where the lowest j value is lowest in energy.

Like with the scalar relativistic effects it is also the one-electron term that dominates

the spin-orbit splitting and again does the penetration of the orbital play the largest role

in the size of the spin-orbit splitting. While one naively might expect, from the expression

of the one-electron spin-orbit term in Eq. 1.2, that the spin-orbit splitting would increase

with increasing angular momentum l since the angular integral l · s increases this is,

however, not the case. The reason for this is the radial part of the spin-orbit coupling

that decreases dramatically with increasing l due to the inability of orbitals of higher

angular momentum to penetrate the core region. Hence one therefore see the opposite

with the largest spin-orbit splitting in the p block and the smallest in the f block.

The one-electron spin-orbit operator scales approximately as Z4 [38] and is thus of

increasing importance for heavy elements5. The scaling of the two-electron spin-orbit

terms are however not so clear. The one-electron originate from the interaction with

the nuclei while the two-electron is caused by the motion of the other electrons. This

difference is also seen in the importance of the various spin-orbit terms with increasing Z.

For the light elements the relative error is significantly larger when not including the two-

electron spin-orbit terms than for the heavy elements. This occurs because the one- and

two-electron spin-orbit splitting is closer in size for the light element than for the heavy

ones. For the heavy elements the one-electron term is the dominating term so while the

two-electron term also increases with Z its relative size to the one-electron terms decreases.

The absolute error made by not including the two-electron term, of course, increases with

Z thereby making it essential for accurate calculations.

5For a comparison of light and heavy elements with this scaling the comparison always has to be

between the same shell.



Chapter 2

Dirac Equation and Effective

Many-Body Hamiltonians

The first part of this chapter will be kept rather short and only gives a very short overview

of parts of relativistic quantum mechanics. This is primarily done since there already exist

many good text books on the subjects touched upon here. For a rigorous introduction to

the Dirac equation the excellent book by Greiner [1] would be highly recommended. For

a slightly faster introduction the book by Moss [8], Messiah [39], or Schweber [40] would

be recommended where the last one contains also a bit of a historical introduction. Going

beyond the Dirac equation for a single electron to atoms and molecules the book by Dyall

and Fægri [7] would be highly recommended. Other books here would also include the

first of the two volume book by Schwerdtfeger [41] and Reiher and Wolf [10].

2.1 The Dirac Equation and It’s Usage in Electronic

Structure Theory

The Dirac equation [2] was first proposed by P. A. M. Dirac in 1928 in an attempt to find

a covariant form of the free particle time dependent Schrödinger equation

ı�
∂Ψ

∂t
= ĤΨ =

3∑
i

p̂2
i

2m0

Ψ (2.1)

13
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with a positive definite probability density, a problem that had occurred with the

Klein-Gordon equation. At the time neither the charge density nor the fact that the Klein-

Gordon equation was completely useless for electrons, since it describes spin-0 particles,

was known. Although not accepted at once due to difficulties in interpretation it soon

showed to have predictive power not seen before with the discovery of the anti-particle of

the electron, namely the positron, in 1932 [42].

First thought to only have very little influence on atoms and molecules, except for

the core electrons of heavy elements, it was not until much later, in the seventies, that

this was shown to not be the case. In the seventies more systematic studies pioneered by

P. Pyykkö, K. Pitzer and J. P. Desclaux showed that relativistic effects did indeed have

a significant influence on the valence of heavy atoms and therefore also on the bonding of

these. Very nice reviews on this subject written by Pyykkö can be found in [9] and Pitzer

in [43] plus a complete tabulation of all atoms in [44] by Desclaux.

Today it is recognized that for accurate calculations of heavy elements codes includ-

ing relativistic effects are needed. In the past two to three decades there has therefore

been a large effort in developing codes for this purpose. Some of the codes developed

are MOLFDIR [45], MOLCAS [46], SPOCK [47, 48], TURBOMOLE [49], CIDBG [50],

SOCI [51], MAGIC [52], ACES II [53], GAMESS [54, 55], CIPSI [56] and DIRAC [57]

which all in one form or another can either include relativistic contributions or is directly

based on the Dirac equation.

2.1.1 The Dirac Equation

The derivation of the Dirac equation will follow the historical approach though many of

the intermediate steps will be left out and only the main features will be kept in.

Because the free-particle time-dependent Schrödinger equation contains second deriva-

tives with respect to space and first derivatives with respect to time it treats time and

space on different footing unlike the Lorentz transformation. It is then obvious that the

time-dependent Schrödinger equation (2.1) is not Lorentz invariant. Because of the asym-

metry between time and space it will be necessary to formulate a new equation to combine

special relativity and quantum mechanics. The search is therefore for an equation which is

of first derivative in both time and space to ensure Lorentz invariance. Hence an equation
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of the form

ı�
∂Ψ

∂t
= ĤΨ

[�c

ı

(
α̂1

∂

∂x1
+ α̂2

∂

∂x2
+ α̂3

∂

∂x3

)
+ β̂m0c

2
]
Ψ (2.2)

where the coefficients α̂i and β̂ is to be decided. As already indicated in Eq. 2.2 the

coefficients are not simple numbers but matrices which means Ψ cannot be a simple scalar

but must be column vector. By analyzing the algebra of α̂i and β̂ it can be shown that

this is anticommutative and that the minimum dimension of the matrices which fulfill

this algebra will be four. Hence Ψ will then be a four-vector or four-component vector

and methods derived directly from the Dirac equation will be four-component methods 1.

In the standard representation α̂i and β̂ take the form

α̂i =

⎛
⎝ 0 σ̂i

σ̂i 0

⎞
⎠ , i = 1, 2, 3; β̂ =

⎛
⎝ 1 0

0 −1

⎞
⎠ (2.3)

where σ̂i are the Pauli matrices and 1 is here a 2 × 2 unit matrix. With the Pauli

matrices

σ̂1 =

⎛
⎝ 0 1

1 0

⎞
⎠ ; σ̂2 =

⎛
⎝ 0 −i

i 0

⎞
⎠ ; σ̂3 =

⎛
⎝ 1 0

0 −1

⎞
⎠ . (2.4)

Since we are normally as a start interested in looking for stationary states which are

eigenfunctions of a time independent Hamiltonian we will separate off the time dependent

part. Since the form of Eq. 2.2 is the same as for the time dependent Schrödinger equation

(2.1) the separation follows analogously

Ψ(	r, t) = Ψ(	r)θ(t) (2.5)

where the temporal part is

θ(t) = eEt/ı�. (2.6)

1It can be debated if a method which makes a transformation that block diagonalizes the Dirac

equation can be called a four-component method since to solve the equations there only the components

in a given block will be necessary. The author here prefers that any method based directly on the Dirac

equation is a four-component method.
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We furthermore notice the Eq. 2.2 will then have a positive definite probability

density

ρ(x) = Ψ†(x)Ψ(x) > 0 (2.7)

since there is no time coordinate or derivative entering the density. This also means

we can be sure to have stationary states in any inertial reference frame as long as the

Hamiltonian is Lorentz invariant despite the fact that the Lorentz transformation mixes

space and time. With the separation of the temporal coordinate Eq. 2.2 transforms into

the time independent free Dirac equation

εΨ(x) = ĤΨ(x) = (cα̂ · p̂ + m0c
2β̂)Ψ(x) (2.8)

which is seen to be a regular eigenvalue problem. The solutions to Eq. 2.8 are

ε = ±Ep, Ep = c
√

p̂2 + m2
0c

2 (2.9)

which is recognized as the relativistic energy from the special relativity theory and

is then conserved. The ±Ep in Eq. 2.9 suggests that the spectrum of the momentum

eigenstates will have positive and negative eigenvalues as shown in Figure 2.1. The con-

tinuum spectrum of the Dirac equation in Figure 2.1 is a general feature of this and we

will always have these solutions below −mc2 and above mc2 in addition to any discrete

solutions in between for bound states. The negative energy solutions shown in Eq. 2.9

and Figure 2.1 are connected with particles of the same mass but opposite charge of the

electron, hence the positron. This means the Dirac equation can describe both electrons

and positrons only depending on the sign of the charge and the two solutions are related

by a charge conjugation. The later discovery of the positron [42] has been seen as one of

the great success of Dirac equation and opened the door for the anti-particles and that

these can be described in the same equation as the particle. The Dirac equation therefore

also immediately gives a lower bound of 2mc2 for the pair creation phenomenon where an

electron and a positron is spontaneously created.

The four-component wave function, which can describe both electrons or positrons,

we will divide into two bispinors of a large and a small component
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Figure 2.1: The spectrum of the free Dirac equation
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⎛
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⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ ΨL(r, t)

ΨS(r, t)

⎞
⎠ . (2.10)

If we then want to describe electrons (as we do) and we are not in the ultra-

relativistic case (meaning p � mc) the large component will be the dominant part of

the wave function, hence the large component. For positrons one could also define a large

component but in the context of this thesis and in general in quantum chemistry we are

interested in the electronic structure and the large component will therefore always refer

to the electronic part.

Having an infinite number of negative energy solutions immediately presents a prob-

lem when there is any interaction with a radiation field (see Eq. 2.11) since this will

connect the positive and negative energy states. This interaction will give an infinite

transition probability from the positive to the negative energy continuum meaning any

state would immediately make a spontaneous emission of photons as the energy would

go to minus infinity. This of course is not a physically acceptable solution since it would

mean that there would be no stable matter in contrast to observation. We furthermore
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observe that if we have more than one particle it will be possible to make an infinite

number of degenerate states where one particle is excited to a positive energy state and

another de-excited to the negative energy state. Therefore the system would dissolve into

the two continua. This last problem is usually called continuum dissolution [58] or Brown-

Ravenhall disease [59]. To overcome these problems the vacuum has to be redefined and

a normal-ordered Hamiltonian has to be used in a similar way also done in QED [7].

2.1.2 Many-Body Hamiltonians

The extension of the free particle Dirac equation 2.8 to a to a particle in an external

electromagnetic field proceeds with the regular minimal coupling scheme for an electro-

magnetic interaction

p → p − qA E → E + qφ (2.11)

where the external scalar φ and vector A potentials are introduced. Introducing

Eq. 2.11 into the Eq. 2.8 gives the Hamiltonian for the interaction of an electron with an

external field

Ĥ = cα̂ · p̂ + mc2β̂ + ecα̂ · Â − eφ (2.12)

In electronic structure theory we are, however, interested in a many-body Hamilto-

nian and not just a single particle in an electric field. While the extension from one to

many particles is straight forward for the Schrödinger equation this is not so for the Dirac

equation and to date no exact equation has been formulated. We will therefore make due

with an approximative equation like the Dirac-Coulomb equation, which is the one that

has been used in the calculations for this thesis, or the extension Dirac-Coulomb-Breit.

These two equations are both formulated within the Born-Oppenheimer approximation

where the nuclear coordinates have been separated off and what remains to solve is the

electronic equation. The stationary nuclei will then only enter the electronic equation as a

generator of a stationary electric field, i.e. the nuclei will be viewed as a classical particle

while the electrons remains quantum mechanical. For a hydrogen-like system this would
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make φ of Eq. 2.12 the regular nuclear Coulomb potential of Z/riA
2. The Hamiltonian

for the hydrogen-like atom then becomes

Ĥ = cα̂ · p̂ + mc2β̂ − eZ/riA (2.13)

where we notice the vector potential disappear since the nucleus only enters as a

static electric field. This is a consequence of the Born-Oppenheimer approximation. The

Hamiltonian for the hydrogen-like system is seen to be easy to generalize for many non-

interacting electrons and will therefore be used as part of the one-electron operator in

the Dirac-Coulomb and Dirac-Coulomb-Breit equations describing the kinetic energy and

external field. By invoking the Born-Oppenheimer approximation and using Eq. 2.13 for

the one-electron part we have fixed the reference frame to the Born-Oppenheimer frames

where only the center of origin of the coordinate system can be moved or the axis rotated.

If we had chosen a coordinate system moving relative to the Born-Oppenheimer frames

the one-electron equation in 2.13 would also then have to be extended by the vector

potential A from the minimal coupling in 2.11 and to be made Lorentz invariant. We are

therefore limited to the Born-Oppenheimer frames.

The extension from the hydrogen-like atom to helium-like atoms is not trivial since

the regular Coulomb potential is not Lorentz invariant because it is an instantaneous

interaction which does not account for the finite transmission speed of the interaction.

Hence the Coulomb interaction has to be extended by retardation terms which account for

the finite interaction speed of c for electromagnetic interactions. We will therefore limit the

discussion to only include an approximate interaction known as the Breit interaction [60]

which is valid for low energies. The Breit interaction can in the Coulomb gauge be written

as

VBreit =
q1q2

4πε0

( 1

r12

− α̂1 · α̂2

2r12

− 1

2

(α̂1 · r12)(α̂2 · r12)

r3
12

)
+ O(c−4) (2.14)

where the first term is the regular Coulomb interaction, second the Gaunt [61] and

lastly the gauge term3. This electromagnetic interaction is correct to the order O(c−2)

2In actuality a point nucleus is not employed since it contains a singularity at the center. In DIRAC a

nucleus spanned by two Gaussians is used instead.
3The gauge term does not appear in Feynman gauge but does in Coulomb gauge and is hence named

the gauge term.
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and in actual quantum chemical calculations does not appear to be the limiting factor

for the accuracy. It can be shown that the Coulomb interaction contains spin-same-orbit

term (see Eq. 1.2) while the Gaunt term is needed for the spin-other-orbit term [62]. The

one-electron spin-orbit term is contained in the one-electron operator from Eq. 2.13.

With the one-electron and two-electron operator we can write the Dirac-Coulomb

Hamiltonian as used in the calculation presented

ĤDC =
∑

i

(cα̂i · p̂i + mc2β̂ +
∑

A

V̂ nuc
iA ) +

1

2

∑
i�=j

1

rij

(2.15)

where the nuclei is no longer a point charge. Including the Gaunt term is possible

at the Hartree-Fock level (see Section 9.5) but at the moment no transformed integrals

are available so the spin-other-orbit term cannot be included at the correlated level. As

we shall see in Section 9 that although the Dirac-Coulomb Hamiltonian does not contain

any retardation effects it is capable of giving very accurate predictions for molecular

structures and properties when used in conjunction with large basis sets and high level

ab initio methods.

2.1.3 Dyall’s Spin-Free Hamiltonian

As shown in Section 1.2.1 we can separate relativistic contributions into scalar relativistic

and spin-orbit contributions. While spin-orbit interaction mixes spin and space thereby

losing the spin symmetry, scalar relativistic does not do this. A spin-free Hamiltonian

could therefore be interesting to assess the magnitude of the spin-orbit coupling and scalar

relativistic contributions which can be done by comparing with results from the Dirac-

Coulomb Hamiltonian in Eq. 2.15 and with a Lévy-Leblond Hamiltonian (see Section

4.2.3). Such a comparison has been made for the LiCs molecule in Section 9.3 where it is

found that while scalar relativistic effects are absolutely essential for a correct description

of the ground state, spin-orbit contributions are minimal. That spin-orbit contributions

can be very small for the ground state is also seen for the RbYb and (RbBa)+ in Sections

9.4 and 9.5, respectively. A spin-free Hamiltonian will furthermore have the advantage

that the regular point group symmetry can be used, is significantly cheaper to use in

calculations, as will be shown in Sections 2.2.1 and 7, and easier to implement (see Section

6.1). Extensions to include spin-orbit a posteriori could be done by diagonalizing an
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effective spin-orbit operator in the basis of the spin-free states. This could be a way to

save computational power if the spin-orbit contribution is small.

The spin-free Hamiltonian we will focus on is the one suggested by Kutzelnigg

[63] and Dyall [7, 64] which consists of a similarity transformation of the Dirac-Coulomb

Hamiltonian to a Hamiltonian where there is an exact separation of spin-dependent and

spin-independent terms. Let us start from the Dirac equation written in the bispinor form

shown in Eq. 2.10

⎛
⎝ V̂ cσ̂ · p̂

cσ̂ · p̂ V̂ − 2mc2

⎞
⎠

⎛
⎝ ψL

ψS

⎞
⎠ = E

⎛
⎝ ψL

ψS

⎞
⎠ , (2.16)

where α̂ is written with the Pauli matrices from 2.3. To perform the transformation

we insert

τ̂ =

⎛
⎝ 1 0

0 (α/2)(σ̂ · p)

⎞
⎠ (2.17)

into a Hamiltonian h̃D

h̃D = τ̂hDτ̂ (2.18)

which can rigorously be separated into a spin-free and a spin-dependent part

h̃D =

⎛
⎝ V̂ T̂

T̂ (α2/4)(p · V̂ p) − T̂

⎞
⎠ +

⎛
⎝ 0 0

0 (α2/4)ıσ · (pV̂ ) × p

⎞
⎠ . (2.19)

by applying the Dirac identity

(σ̂ · u)(σ̂ · v) = u · v + ıσ̂ · u × v. (2.20)

Where in Eq. 2.19 the kinetic energy operator T = p2/(2m) is inserted. The spin-free

Dirac Hamiltonian is now obtained by omitting the second term on the right-hand side

of Eq. 2.19 which contains the spin-orbit operator in the lower right block. This choice

of transformation leads to the following equation:

(h̃sf
D + g̃C,sf

1,2 )Ψ̃ = G̃EΨ̃ (2.21)

with

h̃sf
D =

⎛
⎝ V̂ T̂

T̂ (α2/4)(p · V̂ p) − T̂

⎞
⎠ (2.22)
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g̃C,sf
1,2 =

(
P+

1 P−
1

)⎛
⎝ 1

r12

α2

4
p2 · 1

r12
p2

α2

4
p1(

1
r12

)p1
α2

16
p2[p1 · 1

r12
p1]p2

⎞
⎠

⎛
⎝ P+

1

P−
1

⎞
⎠ , (2.23)

where h̃sf
D is the spin-free one-electron Hamiltonian and g̃C,sf

1,2 the corresponding spin-free

two-electron Hamiltonian. G̃, P+
k , and P−

k denote a metric and the projectors onto the

large and small component parts of the wave function, respectively

G̃ =

⎛
⎝ 1 0

0 α
2
T

⎞
⎠ , P+

k =

⎛
⎝ 1 0

0 0

⎞
⎠ , P−

k =

⎛
⎝ 0 0

0 1

⎞
⎠ . (2.24)

This transformation does not require any expansion parameter for the separation and is

therefore exact. As there is no unique separation scheme, the results obtained in different

spin-orbit free formalisms may differ in principle [65], although in many practical cases

this appears to be of no importance [66]. Hence, we expect the spectroscopic properties

derived with the spin-free Dirac-Coulomb equation to be similar to those obtained from

a unitary-transformed Dirac equation (without spin-orbit) to infinite order. The price

paid for the exact decomposition is that the solutions of the spin-free Dirac-Coulomb

equations still have four components. This makes the Self-Consistent-Field step compu-

tationally more expensive than standard “scalar”-relativistic approaches that neglect the

small component. However, the spin-free Dirac-Coulomb equations have the same spin-

factorization as in the non-relativistic case. Therefore, a non-relativistic correlation code

based on regular point group symmetry can be used with a set of orbitals optimized in the

spin-free Dirac-Coulomb framework. Since the computational demand of highly accurate

calculations on small heavy-element compounds is dominated by the dynamic correlation

step, the four-component Self-Consistent-Field calculations and integral transformations

do not lead to significant increases of the total computation time. On the contrary the

savings done using the spin-free Dirac-Coulomb over the Dirac-Coulomb Hamiltonian are

very significant in particular when going to higher than coupled cluster single doubles

as will be seen in Sections 2.2.1 and 7. This spin-free Hamiltonian has been used in the

implementation of the spin-free general order coupled cluster code in Section 6.4 and in

almost all applications presented in this thesis in Section 9.
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2.2 Symmetry of the Dirac-Coulomb Hamiltonian

Group theory has proven to be a very powerful tool in physics and chemistry giving great

insight into the system just by knowing its symmetry. In this way group theory can

help to exploit the symmetry by giving selection rules or block diagonalization just from

knowing the irreducible representation of the spinors and wave function. Therefore in

calculations symmetry is able to greatly reduce the computation time since the problem

can be reduced to smaller blocks which individually can be diagonalized much faster. Due

to the spin-orbit mixing of spin and space, we lose the very simple yet important spin

symmetry in the relativistic case. To regain some of the lost symmetry blocking from the

spin symmetry, we will introduce the time reversal symmetry and show how this can be

used for a formalism in conjunction with double group symmetry.

2.2.1 Time Reversal Symmetry

I will in this section first try to show how time reversal symmetry can be used to relate

spinors. With these relations I will try to introduce auxiliary quantum numbers and

operators. These operators, although they do have meaning, are not observables and are

there to aid the formalism and illustrate the additional work that has to be done going from

a non-relativistic or spin-free Hamiltonian to the Dirac-Coulomb Hamiltonian. I will show

how we in this formalism easily can arrive at a minimum number of elementary operators

which then has to be multiplied by some integral or amplitude. This formalism will then be

used on the Dirac-Coulomb Hamiltonian along with also the time reversal properties of the

integrals to show how the Hamiltonian is constructed at an upper level of the implemented

code. Although Section 3 is a large coupled cluster section the generalization of the cluster

operators will be done is this section. For the most part the following section will be kept

in the second quantization language. For the reader unfamiliar with this language I would

recommend the book by Helgaker, Jørgensen and Olsen [67] for a solid background on

this and the book by Dyall and Fægri [7] for the extension to the relativistic framework.

The work done in these sections are to a large degree new development I have derived for

my thesis and published in [68].
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2.2.1.1 Time Reversal Symmetry and Spinors

In the absence of external magnetic fields the time reversal operator K̂ will commute with

the Dirac-Coulomb Hamiltonian and the one particle Dirac operator, and K̂ can therefore

be used as a symmetry operator. Since a time-reversal operation leaves positions invariant

but changes signs of velocities and momenta

K̂rK̂ = r K̂pK̂ = −p (2.25)

K̂ will be a antiunitary operator

K̂c = c∗K̂ K̂† = K̂−1. (2.26)

The phase is usually chosen such that the time reversal operator has the following

form

K̂ = ıΣ̂yK̂0 = −ı

⎛
⎝ σ̂y 0

0 σ̂y

⎞
⎠ K̂0 (2.27)

where σ̂y is the usual Pauli spin matrix and K̂0 a complex conjugation operator.

It can be shown that the time-reversal operator transforms a spinor φp as

K̂φp = φp̄ K̂φp̄ = −φp (2.28)

The spinor φp̄ is then the time-reversed conjugate of φp. These spinors can be shown

to be linearly independent and hence can be orthonormalized

〈φp̄|φp〉 = 0. (2.29)

The pair (φp, φp̄) is then said to form a Kramers pair and φp and φp̄ is denoted the

unbarred and barred spinor, respectively. For the fermion case (odd number of electrons)

the Kramers pair (φp, φp̄) form a degenerate pair: Kramers’ theorem [69] state that in

systems of half-integer spin the energy levels are at least doubly degenerate and any

degeneracy even-fold.
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The Kramers pairs will in the following be used as the spinor basis. By working in a

basis of Kramers-paired spinors we can recover part of the computational savings the now

lost spin symmetry would otherwise give. This will furthermore also allow us to develop a

formalism based on excitations between barred and unbarred spinors and approximations

to these. The notion of Kramers-restricted will then be used for any method where the

spinors will appear as Kramers pairs.

In the language of second quantization, Eq.(2.28) can be written as relations for

creation-operators

K̂a†
p = a†

p̄K̂ K̂a†
p̄ = −a†

pK̂ (2.30)

and by taking the adjoints of the relations in Eq.(2.30) and using Eq.(2.26) one

obtains the relations for the corresponding annihilation operators

K̂ap = ap̄K̂ K̂ap̄ = −apK̂ (2.31)

The operator K̂ being an antiunitary operator is not an observable and will not

have a corresponding eigenvalue K.

An auxiliary quantum number Mk can, however, be introduced to classify the dif-

ferent spinors of a Kramers pair. Mk is introduced as the relativistic equivalent to the

non-relativistic projection of spin Ms and is therefore also referred to the Kramers pro-

jection of the spinors4. To define Mk we introduce the Kramers projection operator

K̂z =
1

2
(
∑

p

a†
pap −

∑
p̄

a†
p̄ap̄) (2.32)

The value Mk of the Kramers projection for an occupation number vector |0〉 is then

defined as

K̂z|0〉 = Mk|0〉 (2.33)

and the change ΔMk of Kramers projection of a product of creation and annihilation

operators Ô is defined as the eigenvalue

[K̂z, ÔN,ΔMk
] = ΔMkÔN,ΔMk

(2.34)

4Notice in general will a many particle wave function not have a well defined Kramers projection.
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provided Ô has a well-defined change in Kramers projection. We will in Section 2.2.1.3

elaborate more on the meaning of this. As ΔMk denotes the change of Kramers projection

it is also called the Kramers flip. The value of ΔMk is thus 1
2

for a†
p and ap̄ whereas ΔMk

is −1
2

for a†
p̄ and ap

In the next subsection we will discuss Kramers projections for strings of creation

and annihilation operators.

2.2.1.2 Time Reversal and the Elementary Operator Strings

With the knowledge of the transformation properties of the creation and annihilation

operators, general operators can be considered. For an operator string we are interested in

the change of the Kramers projection. For this we introduce the notation of an elementary

operator class Ô(N,ΔMk) where N is the particle rank and ΔMk is the change in Kramers

projection. Although this does not uniquely define a main particle operator class (except

for N = ±ΔMk) it will later serve to divide general main particle operators classes into

sets of operator division classes to construct new approximative schemes. An elementary

one-particle operator string a†
paq belongs to operator division class Ô1,0 since we annihilate

and create an unbarred spinor. The other possible one-particle operator strings are

a†
p̄aq ∈ Ô1,−1 a†

paq̄ ∈ Ô1,1 a†
p̄aq̄ ∈ Ô1,0 (2.35)

where we observe also a flipping of the Kramers projection. For a general operator

string containing N c and N̄ c unbarred and barred creation operators, respectively, and

Na and N̄a unbarred and barred annihilation operators, respectively, one obtains

ΔMk = 1
2
(N c − N̄ c + N̄a − Na) (2.36)

N = 1
2
(N c + N̄ c + N̄a + Na). (2.37)

Conservation of the number of electrons requires

N c + N̄ c = Na + N̄a. (2.38)

In this way any elementary particle operator string can be placed into an operator

division class depending on the particle rank N and the Kramers flip ΔMk.
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2.2.1.3 From a General Operator to a Kramers Restricted Operator

Before moving to the Hamilton- or the cluster operator we will first briefly show how an

operator written in the general Kramers unrestricted form may be written in the Kramers

restricted form. Using upper case letters for general (barred and unbarred) spinors and

assuming that the dimension of the spinor basis is 2N , a general Kramers unrestricted

one-particle operator has the form

Ô1 =
2N∑
PQ

OPQa†
P aQ (2.39)

Assuming time reversal symmetry for the one-particle operator in Eq. 2.39 we can

then write Ô1 in the one-particle operator in the Kramers restricted form.

Ô1 =
N∑
pq

(Opqa
†
paq + Op̄q̄a

†
p̄aq̄ + Op̄qa

†
p̄aq + Opq̄a

†
paq̄) (2.40)

We see that the Kramers restricted one-particle operator is the sum of all possible

operator classes

Ô1 =
1∑

ΔMk=−1

Ô1,ΔMk
(2.41)

Likewise we can rewrite an two-particle operator from the Kramers unrestricted

form

Ô2 =
1

2

2N∑
PQRS

(PQ|RS)a†
P a†

RaSaQ (2.42)

to the Kramers restricted form

Ô2 =
1

2

N∑
pqrs

(pq|rs)a†
pa

†
rasaq + (p̄q|rs)a†

p̄a
†
rasaq + (pq̄|rs)a†

pa
†
rasaq̄ + (pq|r̄s)a†

pa
†
r̄asaq

+(pq|rs̄)a†
pa

†
ras̄aq + (p̄q̄|rs)a†

p̄a
†
rasaq̄ + (p̄q|r̄s)a†

p̄a
†
r̄asaq + (p̄q|rs̄)a†

p̄a
†
ras̄aq

+(pq̄|r̄s)a†
pa

†
r̄asaq̄ + (pq̄|rs̄)a†

pa
†
ras̄aq̄ + (pq|r̄s̄)a†

pa
†
r̄as̄aq + (p̄q̄|r̄s)a†

p̄a
†
r̄asaq̄

+(p̄q̄|rs̄)a†
p̄a

†
ras̄aq̄ + (p̄q|r̄s̄)a†

p̄a
†
r̄as̄aq + (pq̄|r̄s̄)a†

pa
†
r̄as̄aq̄ + (p̄q̄|r̄s̄)a†

p̄a
†
r̄as̄aq̄ (2.43)

Following this recipe any n-particle operator can easily be written using time reversal

symmetry and can always be decomposed into operator division classes of elementary

operator strings
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ÔN =
N∑

ΔMk=−N

ÔN,ΔMk
. (2.44)

This decomposition is not restricted to normal-ordered particle operators strings but

will work for any operator string and can therefore also be used for the cluster operators

as encountered in 2.2.2. The auxiliary quantum number Mk will therefore serve to define

restricted excitation manifolds of cluster operators which leads additional ways to define

other approximation schemes in the truncation of CC hierarchy (see Section 8.1).

If an operator, like the Dirac-Coulomb Hamiltonian or the cluster operator, consists

of several different particle number operators one can write equation 2.44 as

Ô =
Nmax∑

N=Nmin

ÔN =
Nmax∑

N=Nmin

N∑
ΔMk=−N

ÔN,ΔMk
(2.45)

or if one is only interested in a given ΔMk one can write

Ô =
Nmax∑

ΔMk=−Nmax

ÔΔMk
=

Nmax∑
ΔMk=−Nmax

Nmax∑
N≥|ΔMk|≥Nmin

ÔN,ΔMk
(2.46)

In Eq. 2.43 we observe that several elementary operator strings within a given

operator division class can be related by anti commutation and a renaming of indices. In

the operator division class Ô2,−1 the two elementary operator strings

a†
p̄a

†
rasaq ∧ a†

pa
†
r̄asaq (2.47)

are seen to be related. Since it is advantages to calculate only the minimum number

elementary operator strings we will bring about a reduction in the number of elementary

operator strings by making use of the interchanging of integration variables, the anti

commutation relationship of second quantized operators and a renaming of indices. As

an example we take the two-particle operator from the Hamiltonian from Eq. 2.43 which

can be written as
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Ô+2 =
1

2

N∑
pqrs

(pq̄|rs̄)a†
pa

†
ras̄aq̄

Ô+1 =
N∑

pqrs

((pq̄|rs)a†
pa

†
rasaq̄ + (pq̄|r̄s̄)a†

pa
†
r̄as̄aq̄)

Ô0 =
1

2

N∑
pqrs

((pq|rs)a†
pa

†
rasaq + (p̄q̄|r̄s̄)a†

p̄a
†
r̄as̄aq̄ + 2((pq|r̄s̄) − (ps̄|r̄q))a†

pa
†
r̄as̄aq)

Ô−1 =
N∑

pqrs

((p̄q|rs)a†
p̄a

†
rasaq + (p̄q|r̄s̄)a†

p̄a
†
r̄as̄aq))

Ô−2 =
1

2

N∑
pqrs

(p̄q|r̄s)a†
p̄a

†
r̄asaq (2.48)

when written in the form shown in Eq. 2.46 and where we have made use of integral

symmetry shown in Eq. 2.57.

By writing an operator in the above form shown in Eq. 2.48, we obtain a bijective

mapping between the operator strings and the string representation of what we will define

as the main operator class. This can also be seen by adding the number of barred and

unbarred indices for a given operator division class ÔN,ΔMk
using Eqs. 2.36 and 2.38. By

doing this a main operator class can then be uniquely defined

ÔN,ΔMk,Mub
(2.49)

where

Mub =
N c + Na

2
− N̄ c + N̄a

2
(2.50)

and where we have introduced a second difference between operators under time

reversal symmetry, namely the difference between the number of barred and unbarred

operators.

It can then easily be shown that the minimum number of main operator classes for

a given operator ÔN will be

DN,ΔMk,Mub
= (N + 1)(N + 2) − (N + 1) = (N + 1)2 (2.51)
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by using the Eq. 2.36 and the constraints in 2.38. We see that by writing an N-

electron operator in the main operator class form we have reduced the number of types

of operator strings from 22N to (N + 1)2. In the real and complex groups (see Section

2.2.3) this is further reduced to (N + 1)2 − N2/2 since the odd flipping of the Kramers

projection falls out due to symmetry. This however is still significantly above the (N +1)

seen in the non-relativistic framework.

We notice that even though the motivation was writing a number conserving op-

erator in the main operator class form this form also work for any string of elementary

operators with a small extension. On can therefore introduce the change in the number

of particles

ΔN =
N c + N̄ c

2
− Na + N̄a

2
(2.52)

to give a general main class form

ÔN,ΔMk,Mub,ΔN (2.53)

for any operator string. If the ΔN is omitted we assume it is zero and therefore a

regular particle operator.

2.2.1.4 Time Reversal Symmetry and the Dirac-Coulomb Hamiltonian

We will now examine how the formalism of main operator classes ÔN,ΔMk,Mub
may be used

to rewrite relativistic Hamiltonians, in particular the Dirac-Coulomb Hamiltonian, in a

compact form. By using symmetry relations of integrals and operators, the complexity of

the Hamiltonian will be significantly reduced. Specifically, we shall demonstrate that a

simple addition of integrals leads to significant simplifications compared to our previously

reported CC [70] and the CI [71–73] algorithms.

The Dirac-Coulomb Hamiltonian is in the Kramers unrestricted form

Ĥ =
2N∑
PQ

hPQa†
P aQ +

1

2

2N∑
PQRS

(PQ|RS)a†
P a†

RaSaQ (2.54)

This Hamiltonian can be simplified using the Kramers restricted basis. By using

that K̂ commutes with the Hamiltonian and ĥ and is antiunitary, see Eqs. 2.26 and 2.28,

one obtains for the one-electron integrals
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hp̄,q̄ = 〈φ̄p|ĥ|φ̄q〉 = 〈K̂φp|ĥ|K̂φq〉 = 〈φp|K̂†ĥK̂|φq〉∗ = 〈φp|ĥ|φq〉∗ = h∗
p,q = hq,p (2.55)

and

hp̄,q = 〈φ̄p|ĥ|φq〉 = 〈K̂φp|ĥ|φq〉 = 〈φp|K̂†ĥK̂K̂†|φq〉∗ (2.56)

= 〈φp|ĥK̂†|φq〉∗ = −〈φp|ĥ|φ̄q〉∗ = −h∗
p,q̄ = −hq̄,p

By using time reversal symmetry we can half the number of integrals needed and

by exploiting that ĥ is a Hermitian operator we can further half the number of integrals,

so all in all only one fourth of the one electron integrals are needed.

Reducing the number of two-particle integrals is of significantly larger interest since

this will give much larger computational savings. These integrals can, just like the one-

particle integrals, be reduced by a factor of four. This is most elegantly done by using

the Kramers permutation operator as shown in [7]. The following relations for the two

particle integrals can then be shown

(pq|rs) = (pq|s̄r̄) = (q̄p̄|rs) = (q̄p̄|s̄r̄)

(p̄q|rs) = (p̄q|s̄r̄) = −(q̄p|rs) = −(q̄p|s̄r̄)

(p̄q|r̄s) = −(p̄q|s̄r) = −(q̄p|r̄s) = (q̄p|s̄r)

(p̄q|rs̄) = −(p̄q|sr̄) = −(q̄p|rs̄) = (q̄p|sr̄) (2.57)

By inserting Eqs. 2.56 and 2.57 in Eq. 2.54, using the elementary anticommutation

relations of creation and annihilation operators and reordering the terms according to N

and ΔMk as shown in Eq. 2.48 one obtains

Ĥ =
2∑

ΔMK=−2

ĤΔMK
(2.58)
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with

Ĥ+2 =
1

2

N∑
pqrs

(pq̄|rs̄)a†
pa

†
ras̄aq̄

Ĥ+1 =
N∑
pq

hpq̄a
†
paq̄ +

N∑
pqrs

((pq̄|rs)a†
pa

†
rasaq̄ + (pq̄|r̄s̄)a†

pa
†
r̄as̄aq̄)

Ĥ0 =
N∑
pq

hpqa
†
paq + hp̄q̄a

†
p̄aq̄ (2.59)

+
1

2

N∑
pqrs

((pq|rs)a†
pa

†
rasaq + (p̄q̄|r̄s̄)a†

p̄a
†
r̄as̄aq̄ + 2((pq|r̄s̄) − (ps̄|r̄q))a†

pa
†
r̄as̄aq)

Ĥ−1 =
N∑
pq

hp̄qa
†
p̄aq +

N∑
pqrs

((p̄q|rs)a†
p̄a

†
rasaq + (p̄q|r̄s̄)a†

p̄a
†
r̄as̄aq))

Ĥ−2 =
1

2

N∑
pqrs

(p̄q|r̄s)a†
p̄a

†
r̄asaq (2.60)

By combining the integrals as (pq|r̄s̄) − (ps̄|r̄q) for the operator a†
pa

†
r̄as̄aq we have

accomplished a reduction in the number of operator strings in comparison to previous

CC [70] and CI [71–73].

2.2.2 Kramers Restricted Coupled Cluster

We will now turn to the single reference coupled cluster theory and show what happens to

the basic equations when applying time reversal symmetry. In the coupled cluster theory

the wave function is parametrized by an exponential ansatz

|CC〉 = exp(T̂ )|HF 〉 (2.61)

working on an N-particle reference function. In the similarity transformed coupled

cluster the energy and amplitude equations become

〈HF | exp(−T̂ )Ĥ exp(T̂ )|HF 〉 = E (2.62)

〈μ| exp(−T̂ )Ĥ exp(T̂ )|HF 〉 = 〈μ| exp(−T̂ )E exp(T̂ )|HF 〉 = 0 (2.63)

respectively.
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The operator T̂ is restricted to excitations from spinors occupied in |HF 〉 to spinors

unoccupied in |HF 〉. The inclusion of all such excitations into T̂ leads to the full coupled-

cluster model which solves the Schrödinger equations in the defined one-electron basis.

However, the operator T̂ is typically restricted compared to the full operator. The stan-

dard form of such truncations is to include into T̂ all excitations up to a given maximum

excitation level m ≤ N

T̂ =
m∑

i=1

T̂i (2.64)

where T̂i is an m-fold excitation operator. The operator T̂i is a general i-fold excitation

operator

T̂i =
∑

μ

tμiτ̂μi (2.65)

where τ̂μi is an elementary i-fold excitation operator and tμi is the corresponding ampli-

tude. Consider as an example the case where at most double excitations are included,

m = 2. Using the standard notation of I, J and A, B for occupied and virtual spinors,

respectively, and using 2O and 2V the number of occupied and virtual spinors, respec-

tively, the Kramers unrestricted single- and double excitation coupled cluster operators

are

T̂1 =
∑

μ

t1μτ̂1μ =

2O,2V∑
I,A

tAI τ̂A
I (2.66)

T̂2 =
∑

μ

t2μτ̂2μ =

2O,2V∑
I≤J,A≤B

tAB
IJ τ̂AB

IJ

The above form contains the independent coupled cluster coefficients, for example tAB
IJ

with I ≤ J,A ≤ B. It is sometimes convenient to introduce forms of the coupled cluster

operators where the sums instead are over unrestricted indices. The double excitation

operator may then be expressed as

T̂2 =
∑

μ

t2μτ̂2μ =

2O,2V∑
I≤J,A≤B

tAB
IJ τ̂AB

IJ (2.67)

=
1

4

2O,2V∑
IJ,AB

tAB
IJ τ̂AB

IJ

where the additional amplitudes are related to the independent amplitudes by simple sign

changes, depending on the number of permutations

−TBA
IJ = −TAB

JI = TBA
JI = TAB

IJ (2.68)
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Introducing the division of the spinors into barred and unbarred, and assuming that

the number of barred spinors equals the number of unbarred spinors in both the occupied

and virtual spaces, the single- and double- excitations operators become

T̂1 =

O,V∑
i,a

(tai τ̂
a
i + taī τ̂

a
ī + tāi τ̂

ā
i + tāī τ̂

ā
ī ) (2.69)

T̂2 =
1

4

O,V∑
ij,ab

(tab
ij τ̂ab

ij + 2tab
īj τ̂ab

īj + 2tab
ij̄ τ̂ab

ij̄ + 2tāb
ij τ̂ āb

ij (2.70)

+2tab̄
ij τ̂ab̄

ij + tab
īj̄ τ̂ab

īj̄ + 4tāb
īj τ̂ āb

īj + 4tab̄
īj τ̂ab̄

īj

+4tāb
ij̄ τ̂ āb

ij̄ + 4tab̄
ij̄ τ̂ab̄

ij̄ + tāb̄
ij τ̂ āb̄

ij + 2tāb
īj̄ τ̂ āb

īj̄

+2tab̄
īj̄ τ̂ab̄

īj̄ + 2tāb̄
īj τ̂ āb̄

īj + 2tāb̄
ij̄ τ̂ āb̄

ij̄ + tāb̄
īj̄ τ̂ āb̄

īj̄ )

The coupled cluster excitation operators may be divided into the main operator class

form, just as the operators in the Hamiltonian, 2.49, which again will lead to a reduction

in the number of operator strings to be considered. For example, the T̂2 cluster operator

may be split into a sum of five operators, each with a specific ΔMk form

T̂2,+2 =
1

4

N,V∑
ij,ab

tab
īj̄ τ̂ab

īj̄

T̂2,+1 =
1

2

N,V∑
ij,ab

(tāb
īj̄ + tbāj̄ī )τ̂

āb
īj̄ + (tab

īj + tbajī )τ̂
ab
īj =

N,V∑
ij,ab

tāb
īj̄ τ̂ āb

īj̄ + tab
īj τ̂ab

īj

T̂2,0 =
1

4

N,V∑
ij,ab

tab
ij τ̂ab

ij + tāb̄
īj̄ τ̂ āb̄

īj̄ + 4(tāb
īj + tbājī − tbāīj − tāb

jī )τ̂
āb
īj

=
1

4

N,V∑
ij,ab

tab
ij τ̂ab

ij + tāb̄
īj̄ τ̂ āb̄

īj̄ + 16tāb
īj τ̂ āb

īj

T̂2,−1 =
1

2

N,V∑
ij,ab

(tāb̄
īj + tb̄ājī )τ̂

āb̄
īj + (tāb

ij + tbāji )τ̂
āb
ij =

N,V∑
ij,ab

tāb̄
īj τ̂ āb̄

īj + tāb
ij τ̂ āb

ij

T̂2,−2 =
1

4

N,V∑
ij,ab

tāb̄
ij τ̂ āb̄

ij (2.71)

where it has been used that pure excitation operators commutes and that the am-

plitudes are antisymmetric with respect to index interchange, Eq. 2.68.
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Assuming that the reference single determinant is a closed-shell determinant con-

sisting of Kramers pairs, further reduction in the number of amplitudes can be reached by

requiring that K̂ commutes with T̂ . We then get the familiar relations shown in [74, 75]

between amplitudes of T̂1 and T̂2 with different number of barred/unbarred indices and

different Kramers projection.

tai = tā
∗

ī tāi = −ta
∗

ī (2.72)

tab
ij = tāb̄∗

īj̄ tāb̄
ij = tab∗

īj̄ tāb
īj = tab̄∗

ij̄ tab̄
ij = −tāb∗

īj̄ (2.73)

These relations are easily generalized to operators with higher particle rank since

the time-reversal symmetry for an amplitude depends on the values of N, ΔMk and Mub

for the corresponding operator as

tN,ΔMk,Mub
= (−1)|ΔMk|t∗N,−ΔMk,−Mub

(2.74)

where tN,ΔMk,Mub
is the amplitude for the main cluster operator class τ̂N,ΔMk,Mub

.

In the current implementation the time reversal symmetry between the amplitudes is

not exploited. It should be noted that in the open-shell case by not demanding that K̂

commutes with T̂ will lead to Kramers contamination which shares similarities to the

non-relativistic spin contamination5. Instead, demanding Eq. 2.74 also to be valid in the

open-shell case will lead to a Kramers adapted formalism which will be non-commutative

since there will be at least one cluster operator which will not be a pure excitation oper-

ator. In the Kramers adapted case we will then no longer see a truncation of the nested

commutators after the fourth order but instead after the eighth order.

Dividing the cluster operator into the operator division class form also opens up for

an alternative truncation of the coupled cluster hierarchy namely one based not only on the

excitation level m, as shown in Eq. 2.64, but also in ΔMk. Here the possibility has been

5We keep in mind that the many-particle wave function will not have a well-defined Kramers projection

and therefore only similarities.
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implemented to truncate T̂ at excitation level and Kramers flip, hence at T̂m≤N,|ΔMk|≤m.

The truncation with ΔMk is taken at ±ΔMk to conserve the time reversal symmetry of the

wave function. This kind of approximation would be particularly interesting for molecules

with small spin-orbit contributions. Although implemented a numerical investigation of

this additional approximation has not yet been undertaken. This type of approximation

will be discussed in more detail in Section 8.1

2.2.3 Double Group Symmetry

In the relativistic theory spin and space (j = l+s) have been combined. We can therefore

no longer use the regular point groups since these only contains operations on space. We

must therefore use the double point groups which is a group constructed from the direct

product of the non-relativistic point group and the evident subgroup {E, Ē} where Ē

represents a rotation through 2π and E a rotation through 4π. While the order of the

group is 2n, the number of irreps in the double group is not necessarily doubled. The

extension gives rise to a new set of irreps which are called fermion irreps. These change

sign under the Ē operation and therefore describe half-integer j values. The regular point

group irreps are the boson irreps and describe integer j values. Another consequence that

follows from the fact that each element does not form a class of its own is that the double

groups in general are non-abelian. Therefore special care has to be taken when doing a

symmetry multiplication which gives an added complication to the regular point groups

implemented in quantum chemistry packages.

Taking also time reversal symmetry into account it can be shown that for the Hamil-

tonian:

• Groups with only quaternion fermion irreps, all integrals are nonzero and complex

• Groups with only complex fermion irreps, all integrals with an odd number of bars

are zero and the rest complex

• Groups with only real fermion irreps, all integrals with an odd number of bars are

zero and the rest real

This means for non-quaternion groups ĤΔMk=±1 will be zero thereby halving the

minimum number of integrals and significantly reducing the number of main operator
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classes. The commutator driven coupled cluster program (see Section 6.3) is at the present

state limited to the real binary double groups (D�
2h, D

�
2 and C�

2v). This is currently be-

ing extended to the complex-valued double groups (C�
2h, C

�
2 , C

�
s ) which has already been

accomplished for the CI-driven coupled cluster in Section 6.2. Since the molecules of

interest to be treated with highly correlated methods typically show high symmetry it is

advantageous to start with the real groups.

2.2.3.1 Additional Blocking from Time-Reversal Symmetry

As long as the spinor φp̄ and its time-reversed conjugate of φp belong to different irre-

ducible representation it is easy to see that working in a basis of Kramers pairs will give

an additional symmetry blocking. If, however, they belong to the same irreducible rep-

resentation, the reduction is not obvious since the double point group does not offer any

blocking. It can, however, be shown that there exists a unitary transformation of the

spinors in a Kramers paired basis that will block diagonalize these even when belonging

to the same irreducible representation. The example for this blocking is taken from [7]

and will only here be shown in an abridged form.

We will reduce the problem to the diagonalization of a 2 × 2 matrix since this is

sufficient to get the block diagonalization of a single Kramers pair. A generalization of

this example will then lead to a block diagonalization of all Kramers pairs. For clarity we

will only do this for an operator that is symmetric under time reversal symmetry

Ω̂ = K̂Ω̂K̂−1 (2.75)

since the operators we are interested in here are symmetric. The operator Ω̂ is then

Ω̂ =

⎛
⎝ Ωpq Ωpq̄

Ωp̄q Ωp̄q̄

⎞
⎠ =

⎛
⎝ Ωpq Ωpq̄

−Ω∗
pq̄ Ω∗

pq

⎞
⎠ (2.76)

where the relations derived in Eqs. 2.55 and 2.56 have been used. It is seen that

the operator Ω̂ in Eq. 2.76 can be diagonalized by the quaternion unitary matrix

û =
1√
2

⎛
⎝ 1 j

j 1

⎞
⎠ (2.77)
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giving

û†Ω̂û =

⎛
⎝ Ωpq + Ωpq̄j 0

0 Ω∗
pq − Ω∗

pq̄j

⎞
⎠ =

⎛
⎝ Q 0

0 −kQk

⎞
⎠ (2.78)

where Q is a quaternion number. The eigenvalue is now seen to be degenerate as

they should be according to Kramers’ theorem [69] (see Section 2.2.1.1) and a symmetry

blocking of the matrix Ω̂ is accomplished.

2.3 Basis Sets

A fundamental step in quantum chemistry is the expansion of the wave function in a

(finite) set of known functions and thereby transforming the partial differential problem

to a matrix problem. The expansion in Gaussian type orbitals with fast evaluation of

integrals has made it possible to approach a complete expansion of the wave function in

a systematic way. This whole machinery developed in the non-relativistic framework we

would like to take over to the relativistic framework. There are, however, some questions

arising, namely how should the expansion for the small component be done since there

does not seem to be a straight-forward approach from non-relativistic theory. Second

the contracted non-relativistic basis sets are grouped after l. However, we know that all

orbitals with l > 0 are split by spin-orbit interaction (see Section 1.2.1.3) where the l+1/2

and l − 1/2 components contract/expand differently. This means their radial maximum

are shifted away from each other. The question is then whether the contracted basis set

approach will still work or whether it needs to be modified. These issues will briefly be

elucidated in the following two sections. An excellent discussion of these problems by

Dyall and Fægri can be found in [7] and [76] which goes into significantly more detail

than what is presented here.

2.3.1 Kinetic Balance

The early four-component results had sometimes shown unpredictable results where the

energy was very basis set dependent. This was traced back to how the expansions for the

large and the small component was individually done. To have stable results it has been
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shown that the expansion for the large and the small component should be performed in

a balanced way, a way called kinetic balance [77]. To illustrate how this is done we take a

part of Eq. 2.16 and rearrange it such that we can find a relation between the large and

the small component

ψS = (E − V + 2mc2)−1c(σ̂ · p̂)ψL. (2.79)

If it is now assumed that the kinetic energy is significantly smaller than 2mc2, i.e.

we have E − V � 2mc2, Eq. 2.79 can be written as

ψS = (2mc)−1(σ̂ · p̂)ψL. (2.80)

Eq. 2.80 is then the equation for the kinetic balance between the large and the small

component. We here see that the two bispinors then will be related though the kinetic

energy operator σ̂ · p̂. With the kinetic balance it can be shown that the kinetic energy

approaches the non-relativistic limit in a correct fashion [7] and that the kinetic energy

is a maximum [78].

We, however, also notice that when the large component is expanded in Gaussians

the number of small component functions is significantly larger. This is seen by using a

differential operator on a p-type spherical Gaussian

d

dr
re−ηr2

= (1 − 2ηr2)e−ηr2

(2.81)

giving and s- and d-type spherical Gaussian. So, despite the fact that the small

component is localized close to the nuclei and does not contribute much to the chemistry,

the kinetic balance requires that the basis set for the small component is significantly

larger than that of the large component. We also notice that the exponents are the same

and if they are left so we say we have restricted kinetic balance. This restricted kinetic

balance has been used in all calculation presented in this thesis.

Furthermore we also see that when an exponent of an s- and d-type Gaussian are the

same they will both create a p-type Gaussian with the same exponent and hence create

linear dependency in the basis set of the small component. It is therefore necessary to be

able to eliminate potential linear dependencies that may arise from the kinetic balance in
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the small component. This linear dependency in the small component can however also

be exploited to reduce the number of functions for the small component by deliberately

choosing the exponent of functions of angular momentum l and l+2 to be the same. This

for instance is done in the family and dual family basis sets and the linear dependencies

are then removed whereby the number of functions for the small component is reduced.

2.3.2 Uncontracted Basis Sets

Working with primitive Gaussian were in non-relativistic calculations found to take up

an excess amount of disk space since the number of Gaussians needed, in comparison to,

for instance Slater type orbitals, was greatly increased. To circumvent this problem of

having large data files to be handled and stored, two approaches were put forward. One

was the direct approach where the data is recomputed when needed and hence not stored

on disk (for a review see [79]) the other one is to ”compress” the data by contracting the

Gaussians as discussed in [80]. With the contracted Gaussians several primitive Gaussians

are combined to one single function by a fixed linear combination which thereby reduces

the dimension of the Fock matrix.

As mentioned in the introduction to this section, this contraction scheme is done

for each l value individually. However, in the relativistic framework it would then be

unclear how this contraction should be performed, if contracted after l, since all orbitals

with l > 0 are split by spin-orbit interaction with components having different radial

functions. An alternative could be a contraction after j. This, however, creates an

”additional” basis set compared to the l contracted which will be almost identical for light

elements and could therefore cause linear dependencies or numerical instability [7]. It has

furthermore been demonstrated that even for one-electron systems the straight-forward

scheme where first the large component is contracted and then the kinetic balance is

applied to get a contracted small component is problematic [81]. We are therefore left

with using uncontracted basis sets which has been employed in all calculations throughout

this thesis.



Chapter 3

Coupled-Cluster Theory

The coupled-cluster method represents the most successful approach to accurate many-

electron molecular wave functions. This is due to it being size-extensive and having a faster

convergence with respect to the excitation level than the CI approach. The coupled-cluster

method is however a single-reference approach and it therefore requires the problem at

hand to be fairly accurately described by a single determinant wave function. Wave

functions with degenerate or near degenerate cannot be described or if possible at least

very slow convergence with higher order is observed [67].

Molecules containing heavy elements often has these degeneracies or near degenera-

cies due to their partly filled p-, d- and f-shells1. The extension of the single-reference

coupled-cluster wave function to a multireference wave function is, unlike CI, not a

straightforward matter and to date no consensus has been reached on which way of extend-

ing is the preferred one. These extensions along with the single-reference coupled-cluster

has been the topic of many larger review papers like [82–84]. The approach presented

in this work is the state-selective multireference coupled-cluster method. The author

has however also spent a significant amount of time studying other types of multirefer-

ence coupled-cluster methods and has therefore also included the derivation of the two

common branches of multireference coupled-cluster methods in some detail in a different

way than normally presented. This has in part been done to show the relationship be-

tween the various methods and how they can be derived from a common framework of

1What is degenerate or near degenerate may differ depending on taking a non-relativistic approach to

a relativistic one. An example of this is BiH which has been calculated in this work.

41
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effective Hamiltonians. A framework which is also shared by multireference perturbation

theory [85].

3.1 Coupled-Cluster Theory

In this chapter the elementary equations will be derived for the single-reference coupled-

cluster wave function and its most known multireference and pseudo multireference exten-

sions. A brief discussion on the pro and cons will also be given to highlight the difficulty

in extending the single-reference coupled-cluster method to a multireference method but

also to give a perspective of what could and should be improved for a given extension for

it being the method of choice.

The starting point for any of these correlation models is the independent-particle

model. This model is in our case always the Hartree-Fock (HF) or Dirac-Coulomb Hartree-

Fock (DCHF) model which describes the uncorrelated motion of the electrons. The corre-

lated methods are a refinement of this model where the correlated motion of the electrons

is carried out in virtual excitations from occupied to unoccupied spinors2. Each excita-

tion is then associated with an amplitude which gives the probability that a particular

excitation will occur as a result of a given electron-electron interaction. In the CI method

this probability would be represented by the linear coefficients Ci from the variationally

optimized linear combination of Slater determinants

|C〉 =
∑

i

Ci|i〉. (3.1)

In the coupled-cluster method one obtains the Ci coefficients indirectly by the non-linear

coupled-cluster amplitudes tμ from

|CC〉 =
[∏

μ

(1 + tμτ̂μ)
]
|HF 〉. (3.2)

In Section 3.1.1 it will be seen that unlike in the CI method the excitations in the coupled-

cluster method can lead to the same determinant so in the coupled-cluster method one can

not only talk about excitations but also the processes of excitations. The understanding

of these processes for excitations can lead to effective approximations of the coupled clus-

ter hierarchy3, appropriate choices of multireference expansions but more fundamentally

2Non-relativistic this would be spin orbitals
3like CC2 and CCSD(T)
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the way the correlated electrons interact with each other. This last part gives meaning

to questions like ’Will the interaction of two electrons be better described via a double

excitation of both electrons or from the interaction of the already excited electrons in spe-

cific virtual spinors’ or ’Will four electron interactions predominantly be from the direct

excitation all four electron, the pairwise excitation and interaction or from interaction

one at a time in four given virtual spinors4’. The answer to the first of these questions

can be found by comparing the amplitude tab
ij to the product of tai t

b
j, where i,j,k. . . de-

notes occupied spinors and a,b,c. . . unoccupied. The second question is found likewise by

comparing tabcd
ijkl to tab

ij tcdkl and tai t
b
jt

c
kt

d
l , respectively. What is in general found here is that

double excitation in both cases is very important and, as will be evident in 3.1.1.4, is key

to the success of the coupled-cluster method.

3.1.1 Single-Reference Coupled Cluster

3.1.1.1 Recent Developments for the Single-Reference Coupled-Cluster Method

The single-reference coupled-cluster has proven very successful in systems dominated by

a single determinant and it’s hierarchy has been extensively investigated in [4,67,86–88].

Despite a faster order by order convergence than the CI method the convergence is still

rather slow and higher than doubles is needed for very accurate potential energy surfaces.

A goal in quantum chemistry has for a long time been to reach chemical accuracy which

is defined to be 1 kcal mol−1. This however has turned out to be a not so easy task since

not only does this require higher excitations but also very large basis sets due to the slow

convergence also in the one-particle sector [89].

The large expense of trying to achieve chemical accuracy for light closed-shell molecules

is shown in [90] where it is there demonstrated the need for very large basis sets and higher-

order correlation treatment to achieve this accuracy. For the convergence of the basis sets

there exists an estimate of this convergence to the basis set limit of X−3, where X is the

cardinal number in the correlation-consistent basis sets from Dunning [91–93]. Although

there is not a similar estimate for the excitation level of the cluster operator, schemes

for extrapolating the correlation contribution has been proposed [94–97] with very good

success. These extrapolation methods consist of large series of calculations where the

4This would be spin orbital in non-relativistic theory
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basis set cardinal number is successively increased first for the Hartree-Fock calculation,

then the same is repeated for the first step in the coupled-cluster hierarchy CCSD onto

CCSD(T), CCSDT and further until a limit for the basis set cardinal number is found.

This limit is typically the limit of the computational hardware or a simple time limit due

to the large increase in timings with every step. From these smaller calculations the result

of a larger calculation is then extrapolated which will have a higher accuracy and preci-

sion than the performed calculations. So far this has only really been developed for the

first-row elements and to extend this scheme to heavy elements extrapolation with respect

to outer-core/inner-valence correlation effects needs to be carefully looked at. The need

for outer-core/inner-valence polarization/correlation is demonstrated for molecules con-

taining atoms from the second row in [98] and from all application sections in this thesis

(see Section 9) it is obvious that this only increases with nuclear charge. The extrapo-

lation schemes, of course, also require, in the development, very accurate experimental

data which is harder to come by for the heavy elements.

Since higher excitations has turned out to be necessary and that including excitations

higher than either full iterative triples or perturbative triples the need for general order

program arose. This is also partly due to the fact that explicit programming of the various

matrix elements for higher than triples is rather cumbersome and difficult to debug.

Two such general-order programs have recently been presented in the non-relativistic

framework. One by M. Kállay et al. [5,6] and by J. Olsen [3,99] where the codes from J.

Olsen have served as the basis for the development of this work.

3.1.1.2 Formal Development of Single-Reference Coupled Cluster

Before the formal development of the coupled-cluster theory can proceed a few definitions

of spinor and Kramers pair indices have to be given. The convention chosen here is

i, j, k, l, . . . will designate spinors which are initially occupied in the reference determinant.

a, b, c, d, . . . will be reserved for the initially unoccupied spinors. Few mixed or general

indices m, n, o, p, . . . will be used. The Greek indices μ, ν will be the label for a general-

order excitation operator.

The effect of any correlation operator working on any state can be written as

|〉 → (1 + tμτ̂μ)|〉 (3.3)
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where τ̂μ is a general excitation operator and tμ the associated amplitude. If one then

forms the product of such correlation operator working on a given reference the coupled-

cluster wave function appears

|CC〉 =
[∏

μ

(1 + tμτ̂μ)
]
|HF 〉. (3.4)

This wave function not only describes the correlation effect by excitations like the CI wave

function in Eq. 3.1 but also by processes coming from the products of τ̂μ in the wave

function. Another very important aspect of this product form is that this immediately

leads to a size-extensive formalism (see Section 3.1.1.4) for any-order truncation5. This

means for two non-interacting subsystems the energy is additive separable6 and the wave

operator multiplicative separable. From a computational viewpoint this means compound

and fragments will calculated with the same accuracy in the limit of non-interacting

systems and there will be a ”comparable accuracy” with increasing system size.

Due to the fact that the excitation operators τ̂μ and τ̂ν always excite from a set of

occupied spinors these operators will commute

[τ̂μ, τ̂ν ] = 0 (3.5)

and using the fact that two excitations cannot excite from the same occupied spinor

τ̂μτ̂μ = 0 (3.6)

one can do the following expansion of 3.4

|CC〉 =
(
1 +

∑
μ

tμτ̂μ +
∑
μν

tμtν τ̂μτ̂ν + . . .
)
|HF 〉 (3.7)

|CC〉 = |HF 〉 +
∑

μ

tμ|μ〉 +
∑
μν

tμtν |μν〉 + . . . (3.8)

keeping in mind there will be no τ̂μτ̂μ from the product form. It is seen from Eq. 3.8 that

the determinants |μν〉 can be reached in several different ways either the direct way or in

a product form

|μν〉 = τ̂μν |HF 〉 = τ̂μτ̂ν |HF 〉. (3.9)

5Any exact wave function is also size-extensive.
6For the energy alone this is also called size-consistency and is needed for the correlation energy at a

given truncation level to be proportional to system size.
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Therefore we cannot associate an amplitude and excitation operator to a single determi-

nant since both amplitude and operator will also be part of other determinants. This

therefore leads to processes of ways a determinant can be reached. An example could be

the triples amplitude

ttotal
μνη = tμνη + tμνtη + tμtνη + · · · + tμtνtη (3.10)

which is comprised of the direct triple amplitude, products of double excitations with a

single excitation and of three single excitations. The amplitude tμνη is here called the

connected cluster amplitude and the products disconnected cluster amplitudes.

The most known form for the coupled-cluster wave function is, however, not the

product form but the exponential one. From Eq. 3.6 one sees that the correlation operator

in Eq. 3.3 can also be written in the exponential form

1 + tμτ̂μ = exp(tμτ̂μ) =
∞∑

n=0

1

n!
(tμτ̂μ)n (3.11)

since all quadratic and higher order vanishes due to Eq. 3.6 and due to the commutation

of the cluster operators in Eq. 3.5 we can use the exponential relation for commutative

operators

exp(Â) exp(B̂) = exp(Â + B̂). (3.12)

The familiar exponential ansatz then comes when one writes the cluster operator like

T̂ =
∑

μ

tμτ̂μ (3.13)

and inserts it with Eq. 3.11 in Eq. 3.4 to get

|CC〉 = exp(T̂ )|HF 〉 (3.14)

The regular coupled-cluster hierarchy is introduced by dividing the T̂ from Eq. 3.13 into

operators consisting of single, double, triple and so on excitation operators

T̂ = T̂1 + T̂2 + . . . + T̂N . (3.15)

3.1.1.3 Solving the Coupled-Cluster Equations

From Eq. 3.8 it is seen that τ̂μ gives contributions to not only to determinants of the

same excitation level as τ̂μ but also to all higher determinants from the FCI wave function
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and that even a truncation at a given level in the coupled-cluster hierarchy will still yield

contributions from all determinants. This means a variational treatment of the coupled-

cluster equations would be a major undertaking since it would entail all determinants of

the FCI wave function with also higher products of variational parameters. The number

of parameters would for the truncated coupled-cluster be smaller than the FCI but still

involve all determinants. The full coupled-cluster (FCC) wave function would still have

the same number of parameters as the FCI wave function. It is therefore obvious that

the coupled-cluster wave function will not be solved variationally7 and another approach

is needed.

The given equation to be solved is written as

Ĥ exp(T̂ )|HF 〉 = E exp(T̂ )|HF 〉 (3.16)

and is then projected onto the reference determinant and the projection manifold

〈μ| = 〈HF |τ̂ †
μ. (3.17)

The unlinked coupled-cluster equations8 for the energy and the amplitudes then become

〈HF |Ĥ exp(T̂ )|HF 〉 = E (3.18)

〈μ|Ĥ exp(T̂ )|HF 〉 = E〈μ| exp(T̂ )|HF 〉 = 0 (3.19)

The more common form is the linked coupled-cluster equations or also called similarity

transformed coupled-cluster where Eq. 3.16 is multiplied by exp(−T̂ ) to give

exp(−T̂ )Ĥ exp(T̂ )|HF 〉 = E exp(−T̂ ) exp(T̂ )|HF 〉 = E|HF 〉 (3.20)

Here one can view exp(−T̂ )Ĥ exp(T̂ ) as an effective non-Hermitian similarity transformed

Hamiltonian working on a model state. Doing again the projection with Eq. 3.17 on Eq.

3.20 the energy and amplitude equation then becomes

〈HF | exp(−T̂ )Ĥ exp(T̂ )|HF 〉 = E (3.21)

〈μ| exp(−T̂ )Ĥ exp(T̂ )|HF 〉 = 〈μ| exp(−T̂ )E exp(T̂ )|HF 〉 = 0 (3.22)

7This can be done but only for small systems
8This terminology comes from perturbation theory and refers to the appearance of unlinked diagrams

in the perturbation theory.
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Despite different appearance the result of the two approaches are the same if the excitation

manifold is closed under deexcitations, see also Section 5.1.1. In this work the focus has

been on the linked coupled-cluster equations so therefore will only it be discussed further.

An argument and a possible algorithm for the unlinked case will be discussed in Section

6.2.2 for the CI driven coupled-cluster algorithm.

The coupled-cluster energy is only directly determined by double excitations

E = 〈HF | exp(−T̂ )Ĥ exp(T̂ )|HF 〉 = 〈HF |Ĥ exp(T̂ )|HF 〉 (3.23)

= 〈HF |Ĥ
(
1 + T̂2 +

1

2
T̂ 2

1

)
|HF 〉 (3.24)

since the Hamilton operator is a two-particle operator and the single excitations drop out

due to Brillouin’s theorem. The higher-order excitations only give an indirect contribution

to the energy.

For the amplitude equation the similarity-transformed Hamiltonian is expanded with the

Baker-Campbell-Hausdorff (BCH) expansion

exp(−T̂ )Ĥ exp(T̂ ) = Ĥ + [Ĥ, T̂ ] +
1

2
[[Ĥ, T̂ ], T̂ ] (3.25)

+
1

6
[[[Ĥ, T̂ ], T̂ ], T̂ ] +

1

24
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ]. (3.26)

This expansion terminates after the fourth order since the Hamiltonian is a two-particle

operator9 and every commutator reduces the deexcitation rank of this by 1
2

down to zero.

This termination after fourth order we will see being important for the CI-based

coupled-cluster code in Section 6.2.2 where it will be evident that for this type of imple-

mentation the linked coupled-cluster equations are preferred. For the commutator-based

coupled-cluster program this can of course only be valid for the linked coupled-cluster

equations since it is the only case commutators appear. A preference for the linked over

the unlinked coupled-cluster equations is, however, not as evident. From a implementa-

tion viewpoint the linked coupled-cluster equations may seem simpler since there will only

appear up to the fourth order commutator and from this only a definite number of ways

these can be ordered. This means there are steps where all cases can be programmed

explicitly. A further elucidation of this will be shown in Section 6.3.

9This is then a rank 2 operator.
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3.1.1.4 Why does Coupled Cluster Perform better than Configuration Inter-

action?

While the CI and the coupled-cluster method has the same scaling of OnV n+2, where O

represents the occupied spinors and V the unoccupied spinors in the reference determinant

and n is the largest excitation level included in the hierarchy10, the performance of the

two methods is very different. For correlation of few electrons the difference is small,

which is demonstrated in Section 9.1 for HBr, but the difference between the CI and the

coupled-cluster method increases with the number of electrons correlated11, also shown

in Section 9.1.

This increasing difference between truncated CI and coupled-cluster with system

size stems from the fact that coupled-cluster is size-extensive and CI not. This means

coupled-cluster at a given truncation level can give comparable good calculations12 for

small systems as well as large systems while CI cannot. For CI to deliver the same result

for a large system as for a small one the truncation in the CI expansion will necessarily

have to be larger for the large system than for the small one. Exactly how much higher

in the hierarchy can, however, not be said. This means getting very exact atomization

energies with CI will be difficult since the subsystems are calculated with higher accuracy

than the compound system. In turn this also translates into heavy element calculations

and large molecules where many electrons have to be correlated. The usefulness of the CI

method would be questionable, since it would rarely be possible to increase the hierarchy

so much it would be in competition with the coupled-cluster method.

The natural question of course also arises to why does the coupled cluster method

perform better than the CI method. This can be seen by comparing the CI hierarchy to

10This is under the assumption of O, V � n.
11It should be noted that the difference between CISD and CCSD, of course, will be greater than the

multireference calculations presented in Section 9.1 since the CISD and CCSD calculations will be further

from FCI.
12Comparable good calculations is a rather vague term since size-extensivity is not really defined for

large but not periodic systems [100]. The problem with these systems is that there can not be any

counting arguments used or no limits taken since the system cannot be divided into any repeating units.

Although only defined for an infinite insulating periodic system the concept does seem to hold some value

even for molecular systems. However coupled cluster will also like CI degrade in accuracy with increasing

system size, just not as fast.
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the cluster operators in Eq. 3.13

Ĉ0 = 1 (3.27)

Ĉ1 = T̂1 (3.28)

Ĉ2 = T̂2 +
1

2!
T̂ 2

1 (3.29)

Ĉ3 = T̂3 + T̂1T̂2 +
1

3!
T̂ 3

1 (3.30)

Ĉ4 = T̂4 + T̂1T̂3 +
1

2!
T̂ 2

2 +
1

2!
T̂ 2

1 T̂2 +
1

4!
T̂ 4

1 . (3.31)

Where when compared to the CCSD amplitude equation

〈μ1|Ĥ|HF 〉 + 〈μ1|[Ĥ, T̂1]|HF 〉 + 〈μ1|[Ĥ, T̂2]|HF 〉 +
1

2!
〈μ1|[[Ĥ, T̂1], T̂1]|HF 〉

+ 〈μ1|[[Ĥ, T̂1], T̂2]|HF 〉 +
1

3!
〈μ1|[[[Ĥ, T̂1], T̂1], T̂1]|HF 〉 = 0 (3.32)

〈μ2|Ĥ|HF 〉 + 〈μ2|[Ĥ, T̂1]|HF 〉 + 〈μ2|[Ĥ, T̂2]|HF 〉 +
1

2!
〈μ2|[[Ĥ, T̂1], T̂1]|HF 〉

+ 〈μ2|[[Ĥ, T̂1], T̂2]|HF 〉 +
1

2!
〈μ2|[[Ĥ, T̂2], T̂2]|HF 〉 +

1

3!
〈μ2|[[[Ĥ, T̂1], T̂1], T̂1]|HF 〉

+
1

2!
〈μ2|[[[Ĥ, T̂1], T̂1], T̂2]|HF 〉 +

1

4!
〈μ2|[[[[Ĥ, T̂1], T̂1], T̂1], T̂1]|HF 〉 = 0 (3.33)

it is seen that in these equations not only do T̂1 and T̂2 appear linearly but also as products.

Products, which first appear later compared in the CI hierarchy. So even if these products

do not give the exact triples or quadruples they do give a very good approximation of

these. So despite the fact that the truncated coupled-cluster equations do not give exact

single, doubles,. . . , it does give weight to all determinants and a very good approximate

contribution to the nearest higher excited determinants in the CI hierarchy. This is much

more important than delivering the exact CI coefficients at any given order and that is

really why the coupled-cluster method is so successful.

Of these products T̂ 2
2 is particularly important since this term will typically give the

vast contribution to the very important quadruples excitations and this with a scaling of

O2N4 in comparison to the full T4 with O4N6. In general will the disconnected amplitudes

from T̂ n
2 give the most important contribution to the higher CI hierarchy but still with
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only the O2N4 scaling which is a tremendous saving in comparison with the effort that

would have to be put into a CI calculation. This is also most likely the term which is the

dominating factor in the good scaling of coupled-cluster with respect to system size.

Triples contributions, on the other hand, are not that well described by CCSD since

T̂3 is there the most important excitation operator. The triples contribution is, however,

significantly smaller than the doubles and normally around the same size as the quadruples

in the CI hierarchy. This means the triples will normally13 only give a small contribution

in a CI calculation. To be better than CCSD one would have to go to CISDTQ, and

this would only be slightly better since the majority of the quadruples contribution is

already in the CCSD calculation. In general CI will need an excitation level of plus two in

comparison to the coupled-cluster excitation level since all odd excitation levels normally

only give around the same contribution as the next even excitation level14.

3.1.2 Model Spaces and Effective Hamiltonians

The purpose of this section is to introduce the concepts of model spaces, effective Hamil-

tonians, wave operators plus building a common framework to be able to make short

derivations of the Hilbert-space and Fock-space coupled-cluster methods. The section

will be very general and can be used for any method where one would try to construct

only a part of the full spectrum with an effective operator working on some reference model

states. This will also serve in showing the similarity in the development of any multirefer-

ence perturbation or coupled-cluster theory since the only difference is the ansatz for the

wave operator. The consequence of choosing wave operators with different properties such

as conserving commutations relations, state independent, norm- and symmetry conserv-

ing and Hermiticity is explored extensively in two rather exhausting but very rewarding

articles by V. Hurtubise and K. F. Freed [101, 102]. In [101, 102] it is also shown that

13Triples can be important in systems where correlation dramatically changes the electron density

where then additional orbital relaxation comes in via the triples.
14This only seems to hold for smaller molecules since it can be shown that any truncated CI calculation

contribution to the correlation energy will tend to zero when the number of electrons goes to infinity [67].

This has been shown for when the number of non-interacting systems will go to infinity and this will also

be true in the case of interacting systems since CI is not size-consistent. For coupled-cluster on the other

hand the correlation energy remains constant due to size-consistency in the non-interacting case. It is

however not exactly clear what happens in the case of interacting systems.
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despite there being an infinite number of ways to construct the wave operator there is

however a final number of classifications of these.

The idea of effective Hamiltonians is built on partitioning the full space into a model

space and an orthogonal complementary space designated P- and Q-space, respectively.

With this partitioning a space of low dimension P is generated where an effective operator

can be diagonalized and give the exact eigenvalues of the full problem for any state in the

model space. This effective operator only operates in the model space but brings in all

the contributions from the complementary Q-space. So instead of solving the full problem

for all states the problem is reduced to only solving it for those inside the model space.

3.1.2.1 General Framework for Effective Hamiltonians

An effective Hamiltonian Ĥeff is defined to operate in a model space P0 of finite dimension

spanned by reference model functions |φμ,0〉 and there generate the exact eigenvalues Eμ

for the full problem for all states μ in the model space P 15

Ĥeff |φμ,0〉 = Eμ|φμ,0〉 μ ∈ P. (3.34)

This is a very general definition and would also include the similarity transformed coupled-

cluster in Eq. 3.20 where the effective Hamiltonian

Ĥeff = exp(−T̂ )Ĥ exp(T̂ ) (3.35)

would operate on the reference model space |HF 〉 to generate the exact eigenvalue E

exp(−T̂ )Ĥ exp(T̂ )|HF 〉 = Ĥeff |HF 〉 = E|HF 〉 (3.36)

in this model space.

The wave operator k̂ is defined as the operator that transform the reference model

eigenstates |φμ,0〉 to the exact eigenstates |φμ〉

k̂|φμ,0〉 = |φμ〉 μ ∈ P. (3.37)

Here it should be noted that k̂ is only defined for the model space and will not give any

information on the complementary Q-space.

15Notice it does not matter if it is here written P or P0 since we will later demand that there will be a

bijective mapping between these two model spaces. So no function in P will be linearly independent of

P0 and vice versa.
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We will furthermore assume that there exists a bijective mapping between the refer-

ence model space |φμ,0〉 and the exact states |φμ〉. This means there will also exist another

linear operator l̂ that maps the exact states back onto the reference states in the model

space

l̂|φμ〉 = |φμ,0〉 μ ∈ P (3.38)

which again only operates inside the model space.

At the same time we will also define the projection operators for the reference eigen-

functions and the exact ones for both the P- and Q-space. For the reference eigenfunctions

the projectors will be denoted P̂0 and Q̂0 for the projection onto the model space and the

complementary space, respectively. Likewise will the projectors from the exact eigenfunc-

tions be denoted P̂ and Q̂. These will be written in the common way

P̂0 =
n∑
μ

|φ̄μ,0〉〈φμ,0|

Q̂0 =
∑
ν>n

|φ̄ν,0〉〈φν,0|

P̂ =
n∑
μ

|φ̄μ〉〈φμ|

Q̂ =
∑
ν>n

|φ̄ν〉〈φν | (3.39)

where |φμ,0〉 is a reference model space determinant, n is the size of the model space

and φ̄ shows there may be a difference between left and right eigenvectors, when using

a bi-orthogonal expansion, which is dependent on the choice of k̂, l̂. The projectors are

related through

P̂0 + Q̂0 = 1̂. (3.40)

The remaining projectors and relations can be written likewise.

A few relations between the projectors and the wave operators can be derived to

illustrate that the wave operator only operates inside the model space.

k̂P̂0 = k̂ = P̂ k̂ (3.41)

k̂Q̂0 = 0 = Q̂k̂ (3.42)
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l̂P̂ = l̂ = P̂0l̂ (3.43)

l̂Q̂ = 0 = Q̂0l̂ (3.44)

l̂k̂ = P̂0 (3.45)

k̂l̂ = P̂ (3.46)

These equations follow directly from the definitions of the mappings. Eqs. 3.45 and 3.46

follow from Eqs. 3.37 and 3.38. From these two equations it is also seen that l̂ is both a

left and a right inverse of k̂ and vice versa.

The effective Hamiltonian in the reference model space will then be

Ĥeff |φμ,0〉 = l̂Ĥk̂|φμ,0〉 = Eμ|φμ,0〉 μ ∈ P. (3.47)

There will from this effective Hamiltonian be an infinite number of different ways to

generate it. The various properties this effective Hamiltonian will get are depending on

the wave operator k̂ and its inverse l̂. The numerable choices and properties can be found

in [101]. With a quick glance back at the single-reference coupled-cluster it is seen that

the wave operator k̂ in this case of a one-dimensional model space becomes exp(T̂ ) and

its inverse l̂ is exp(−T̂ ) in the similarity transformed case. From this it is also clear that

the effective Hamiltonian for the linked coupled-cluster will not be a Hermitian16 since

(exp(T̂ ))† �= exp(−T̂ ). (3.48)

For the unlinked coupled-cluster the wave operator is the same but the inverse is just the

projection operator P0.

The effective Hamiltonian presented in Eqs. 3.34 and 3.47 can also be viewed as a

similarity transformation of the complete Hamiltonian

Ĥsim = ω̂−1Ĥω̂ (3.49)

which block diagonalizes the complete Hamiltonian in a P- and Q-space like17

Ĥsim = P̂0ĤsimP̂0 + Q̂0ĤsimQ̂0. (3.50)

16For an Hermitian effective Hamiltonian the transformation should be unitary. For the coupled-cluster

method this would lead to the unitary coupled-cluster method.
17This formulation could also be used to decouple the large and the small component in the Dirac

equation.
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The only part of 3.50 that is used for the effective Hamiltonian is then

Ĥeff = P̂0ĤsimP̂0 (3.51)

which gives the exact eigenvalues for the states in the model space when diagonalized.

The actual wave operator that is being looked for will the be of the form

ω̂ = Ω̂P̂0 (3.52)

so that only an Ω̂ ansatz and an inverse have to be found.

3.1.3 Hilbert-Space Coupled Cluster

In the author’s opinion the Hilbert-space coupled-cluster formulation is from an algebraic

viewpoint by far the most elegant and appealing since it offers a natural extension of the

single-reference coupled-cluster method. This, however, does not necessarily matter for

the performance of the method since despite its elegance it is a rather difficult method to

work with in practice and causes great convergence problems of the model space due to

intruder states.

The method was the second of the genuine multireference coupled-cluster methods

to be proposed after the Fock-space coupled-cluster method (see Section 3.1.4). This was

done in 1981 by B. Jeziorski and H. J. Monkhorst [103]. Although proposed some time

ago only few codes have been developed and most calculations presented have been on

very small systems since it was quickly realized that it was very difficult, if not often

impossible, to converge the model space. In recent developments this intruder state

problem has been solved by introducing a buffer-space between the model space and the

complementary space [104]. This, however, introduces indirect corrections to the states in

the model space which cannot be solved by increasing the correlation level. To counter-

act this correction an extrapolation method has been proposed [104] in a similar way also

done for Fock-space coupled cluster.

3.1.3.1 Formal Development of Hilbert-Space Coupled Cluster

The derivation of the working equations will here be kept to a minimum since this is mostly

for comparing the working equations with the equations later derived in 3.1.5.1. The
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discussion of incomplete reference spaces, the appearance of connected and disconnected

diagrams18 will be left for the interested reader in [103]. The notation will be the same

as in Sections 3.1.1.2 and 3.1.2.1.

The Hilbert-space coupled-cluster is a Bloch type of effective Hamiltonian which

means it will be in the 2a (K, L) category from [101]. It will have unity normalized

reference right eigenvectors and a non-Hermitian effective Hamiltonian. The true right

eigenvectors are, however, not normalized and a normalization factor comes in. It is also

worth noticing that there has been chosen the bi-orthonormality condition

〈φ̄μ,0|φν,0〉 = 〈φμ,0|φ̄ν,0〉 = 0 (3.53)

where the left and right eigenvectors are normalized on each other. This is typically part

of what is called intermediate normalization where the rest is shown in Eq. 3.56.

The ansatz for the wave operator will here be

k̂ = Ω̂P̂0 =
∑

μ

Ω̂μP̂μ =
∑

μ

exp(T̂μ)P̂μ μ ∈ P (3.54)

where it is seen that every reference function in the model space has its own exponential

expansion exp(T̂μ). This is in the author’s opinion the most straight forward extension

of the single-reference coupled-cluster method since it easily seen to reduce to the single-

reference coupled-cluster method when the dimension of the model space is one. This

proposal of a separate wave operator for each state in the model space makes this a

state-universal approach. The inverse operator is here just the product of the projection

operators of the model spaces

l̂ = P̂0P̂ =
n∑
μν

|φμ,0〉〈φμ,0|φν〉〈φν | μ, ν ∈ P (3.55)

which means for a one dimensional model space that the coupled-cluster energy equations

3.18 and 3.21 are recovered. With the intermediate normalization of the wave function

〈φμ,0|φν〉 = δμν (3.56)

18A theory with only connected diagrams or with cancellation of all disconnected diagrams is size-

extensive. The diagrammatical technique stems from perturbation theory.



3.1 Coupled-Cluster Theory 57

the inverse operator takes the form

l̂ =
n∑
μ

|φμ,0〉〈φμ| μ ∈ P (3.57)

and the wave operator becomes idempotent

k̂2 =
∑
μν

|φμ〉〈φμ,0|φν〉〈φν,0| =
∑

μ

|φμ〉〈φμ,0| = k̂. (3.58)

It should also be noted that the excitation operator T̂μ does not create any excita-

tions inside the model space only to the outside so each state becomes a Fermi vacuum.

These choices of wave operators can also be confirmed to satisfy the equations 3.41 to

3.46. The interaction of the states inside the model space comes in by diagonalizing the

effective Hamiltonian in the model space. This means any exact state in the model space

can be written as

|φν〉 =
∑

μ

cνμ exp(T̂μ)|φμ,0〉 μ, ν ∈ P (3.59)

The amplitudes are determined by projecting against the Bloch equation. The Bloch

equation can easily be derived from the exact equation

Ĥ|φμ〉 = Ĥk̂|φμ,0〉 = Eμ|φμ〉 = Eμk̂|φμ,0〉 (3.60)

by multiplying with the wave operator from left

k̂Ĥ|φμ〉 = k̂Ĥk̂|φμ,0〉 = Eμk̂|φμ〉 = Eμk̂
2|φμ,0〉 (3.61)

and using the idempotency of the wave operator in Eq. 3.58 the Bloch equation appears

k̂Ĥk̂ = Ĥk̂. (3.62)

Multiplying the Bloch equation 3.62 by |φμ,0〉 from the right and by exp(−T̂μ) from

the left and then projecting against all determinants in the complementary space Q yields

〈φμ,0|τ̂μ exp(−T̂μ)k̂Ĥk̂|φμ,0〉 = 〈φμ,0|τ̂μ exp(−T̂μ)Ĥk̂|φμ,0〉 (3.63)

〈φμ,0|τ̂μ exp(−T̂μ)
∑

ν

exp(T̂ν)P̂νĤ
∑

η

exp(T̂η)P̂η|φμ,0〉 =

〈φμ,0|τ̂μ exp(−T̂μ)Ĥ
∑

ν

exp(T̂ν)P̂ν |φμ,0〉 (3.64)
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∑
ν �=μ

〈φμ,0|τ̂μ exp(−T̂μ) exp(T̂ν)|φν,0〉〈φν,0| exp(−T̂μ)Ĥ exp(T̂μ)|φν,0〉 =

〈φμ,0|τ̂μ exp(−T̂μ)Ĥ exp(T̂μ)|φμ,0〉. (3.65)

It is again noted that this expression will reduce to the linked coupled-cluster equations in

Section 3.1.1.2 for a model space with a dimension of one since the left-hand side becomes

zero. But what also is evident from Eq. 3.65 is the fact that all states in the model space

have to be optimized simultaneously since the amplitudes of all the other states tν in

the model space are included in optimizing the state tμ. This makes the procedure more

cumbersome and very sensitive to any problems in the optimization step since all other

states will be directly affected by this. Since it is often not possible to converge the states

in the model space due to intruders, the development of the Hilbert space coupled-cluster

has been scarce and mostly dominated by pilot codes.

A recent flavor of the Hilbert-space coupled-cluster method dubbed Mukherjee cou-

pled cluster has been proposed where a resolution of identity is inserted into Eq. 3.65

between exp(−T̂μ) and the effective Hamiltonian. This, however, leaves the equations

under-determined. By imposing a condition on the equations, the under-determinedness

can be resolved. This variant has received more attention and codes have been devel-

oped [105,106] with significant success.

3.1.4 Fock-Space Coupled Cluster

The first genuine multireference coupled-cluster approach to be proposed was done in

1975 by D. Mukherjee, R. K. Moitra and A. Mukhopadhyay [107] and has been the

most successful since then. This approach assumes the same wave operator for the whole

model space, unlike the Hilbert space coupled-cluster which has a separate wave operator

for each state in the model space. This assumption then makes the Fock-space coupled

cluster a valence-universal approach. This is also the only approach along with the state-

selective multireference coupled-cluster method which has been adapted to the relativistic

framework [108, 109] and also for non-relativistic codes to include higher than doubles

excitations [110]. The state-selective multireference coupled-cluster method presented

in this work is, however, the only one to have both relativity and higher than double

excitations included simultaneously. While the initial formulation which is presented here

suffers from having to start from a closed shell molecule, the intermediate Fock-Space
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coupled-cluster method and mixed sector presented in [109,111] is capable of starting from

a quasi closed-shell molecule making the sector of interest closer to the starting sector.

The idea of the mixed sector approach is in particular aimed at heavy elements where

spin-orbit splitting can give quasi closed shells such as p1/2 and d3/2 and will therefore

only work if the spin-orbit splitting is sufficiently large.

3.1.4.1 Formal Development of Fock-Space Coupled Cluster

Before the algebraic development of the Fock-Space Coupled-Cluster method can com-

mence there is first a need to extend the conventions of notation from Section 3.1.1.2.

To understand this notation the particle-hole formalism will first be introduced. The

particle-hole formalism can be used when there exists a preferred reference determinant

for a redefinition of the vacuum to this reference determinant, which will now be referred

to as the Fermi vacuum. The annihilation operators of the reference determinant will be

called hole creation operators and creation operators hole annihilation operator. For the

annihilation and creation of the unoccupied virtuals these will retain their usual name,

namely annihilation and creation of particles. To extend this preferred reference to a mul-

tireference formalism a model space, that will be called the valence orbitals, consisting of

active holes and particles will be defined. The letters ī, j̄, k̄, l̄, . . . will designate inactive

holes and ā, b̄, c̄, d̄, . . . the inactive particles. The Greek letters ι, κ, λ . . . will be reserved

for active holes and α, β, γ . . . for active particles. The set of active and inactive particles

(holes) combined is symbolized by the letters i, j, k, l, . . . ( a, b, c, d, . . . ) as shown in Sec-

tion 3.1.1.2. Additionally the letters ¯̄i, ¯̄j, ¯̄k, ¯̄l, . . . will be for inactive holes and all valence

levels (active holes and particles) and correspondingly ¯̄a, ¯̄b, ¯̄c, ¯̄d, . . . will be for inactive

particles and all valence levels. The valence levels are the active holes and particles. For

general indices m, n, o, p, . . . will still be used and μ, ν for general order excitations. This

division is also illustrated in Figure 3.1. The reason for adding these many new indices

which are combinations of the inactive and active particles and holes is to create shorter

and more compact looking equations.

The Fock-space coupled-cluster method is also of the type (K, L) category from [101].

While not directly a Bloch type of effective Hamiltonian since several model spaces have

to be considered simultaneously19, the Bloch equation 3.62 will, however, be used in the

19In practice this will be successively in an embedding scheme.
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Figure 3.1: The indices for the Fock-space coupled-cluster method.
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derivation. The need to consider several model spaces also within same the same fixed

N-electron Hilbert space, but with different number of active holes and particles, stems

from the insistence of valence universality and will become clear later.

Unlike in the state-universal Hilbert-space coupled-cluster method in Section 3.1.3

where several vacua, one for each state in the model space are defined, we will in the

valence-universal Fock-space coupled-cluster method assume a common vacuum for all

states in the model space. The consequence of just one vacuum for all states results in

having to include in the model space all determinants corresponding to a variable number

of electrons. For a complete model space all determinants from zero to the number of

valence levels have to be taken into consideration. Here, the number of valence levels (Nv)

are

Nv = Nah + Nap (3.66)

the sum of the number of active holes (Nah) and particles (Nap). With the variable number

of electrons we see that this coupled-cluster method is no longer confined to a N-particle

Hilbert space like the other methods but will move in the Fock space. This also means

that not only will the neutral atom or molecule be calculated but also ionized and electron

attached states as well.

With the single vacuum also follows just one wave operator. The ansatz in Fock-

space coupled cluster for the wave operator is

k̂ = Ω̂P̂0 = {exp(Ŝ)}P̂0 (3.67)

where the curly braces indicate that the cluster operator Ŝ20 is normal ordered and P̂0

projects onto all states in the Fock space model space. The cluster operator in the Fock-

space coupled-cluster method has the same expansion as shown in Eq. 3.15, however, a

different form

ŜN =
1

(n!)2

∑
¯̄a,¯̄b,...̄̄i,¯̄j,...

′s¯̄a,¯̄b,...
¯̄i,¯̄j,...

¯̄a†¯̄b† . . . ¯̄j†¯̄i† (3.68)

where the summation runs not just over the hole and particle (i, j, . . . , a, a . . . ) indices

separated but also includes the active holes. The prime, however, indicates that no exci-

tation within the model space is taking place. Furthermore, as it is seen from Figure 3.1,

the double barred indices overlap within the valence which could lead to possible contrac-

tion amongst the cluster operators i.e. a non-commutative formalism. This, however, has

20In the Fock-space coupled-cluster method the cluster operator is normally designated with Ŝ.
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been resolved by using a normal-ordered ansatz for the cluster operator [112] where all

annihilation operators appear to the right of the creation operators with respect to the

Fermi vacuum.

To get to a set of working equations we will separate the projection operator P̂0 into

sectors depending on the number of valence indices (n)

P̂0 = P̂
(0)
0 + P̂

(1)
0 + P̂

(2)
0 + . . . P̂

(Nv)
0 . (3.69)

Each of these n-valence sectors can be further divided depending on the number of particle

k and hole l valence indices

P̂
(n)
0 =

n∑
k=0

n−k∑
l=0

P̂
(k,l)
0 (3.70)

and each P̂
(k,l)
0 will then project onto a space where k particles and l holes have been

created in the valence space. This same sector structure can also be applied to the cluster

operator Ŝ. For a truncated coupled cluster scheme at a given level n, the general structure

of the cluster operator in this sector form then becomes

Ŝ(n) =
n∑

k=0

n−k∑
l=0

Ŝ(k,l) =
n∑

k=0

n−k∑
l=0

( k∑
i=0

l∑
j=0

Ŝ(i,j)
)

(3.71)

where it is noticed that the cluster operator has a part in all sectors up to n. We notice

here that although the (0, 0) and (1, 1) sectors are different they belong to the same N

electron Hilbert space and the (1, 1) sector contains in fact just the singly excited states

in the model space of the (0, 0) sector. Likewise the (2, 2) sector will then comprised of

the doubly excited states of the (0, 0) sector. There, furthermore, exists a hierarchical

structure for the cluster operator

Ŝ(p,q)P̂
(i,j)
0 = 0 ∀ p > i ∨ q > j. (3.72)

The structure in Eq. 3.72 is quite evident since a cluster operator from the sector

(p, q) will contain p annihilation operators in the active particle space and q creation

operators in the active hole space. If the projection operator does not allow for enough

annihilation or creation in a given active space, the contribution will be trivially zero as

shown by Eq. 3.72. From Eq. 3.71 it can be seen that if the truncation of the cluster

operator at n is smaller than the number of levels in the valence space Nv we will be

working with an incomplete model space since we will then not consider sectors higher
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than n. This also means that to reach higher sectors in Fock-space coupled cluster higher

excitation levels from the cluster operator are needed. These are at the moment only

implemented up to triples in the non-relativistic framework [110].

With the sector structure in place and using the intermediate normalization (see Eq.

3.56) and the wave operator ansatz in Eq. 3.67 we can write the Fock-space equations

Ĥ{exp(Ŝ)}P̂0 = {exp(Ŝ)}P̂0Ĥ
eff P̂0 (3.73)

which has been written with a slight modification to the Bloch equation in 3.62

k̂l̂Ĥk̂ = Ĥk̂ (3.74)

and in terms of the effective operator in Eq. 3.47. Written in terms of the sectors Eq.

3.73 can be written as

Ĥ{exp(Ŝ(k,l))}P̂ (k,l)
0 = {exp(Ŝ(k,l))}P̂ (k,l)

0 Ĥeff P̂
(k,l)
0 (3.75)

where Ŝ(k,l) is defined in Eq. 3.71 and P̂
(k,l)
0 in Eq. 3.70. The Bloch equation for the

Fock-space coupled-cluster equations in Eq. 3.75 is solved by projecting onto the comple-

mentary space

Q̂
(k,l)
0 Ĥ{exp(Ŝ(k,l))}P̂ (k,l)

0 = Q̂
(k,l)
0 {exp(Ŝ(k,l))}P̂ (k,l)

0 Ĥeff P̂
(k,l)
0 . (3.76)

Normally the (0, 0) sector is separated off by a similarity transformation. This, however,

is not done here.

Looking a little closer at the equations to be solved in Eq. 3.76 it becomes evident

that certain sectors are under-determined, i.e. the number of amplitudes is greater than

the number of equations. An example of this is the (1, 1) sector

〈φā
ι |Ŝ|φα

ι 〉 = 〈φā
ι |
∑
b̄β

sb̄
β b̄†β +

∑
b̄βκ

sb̄κ
βκb̄

†κ†κβ|φα
ι 〉 = sā

α + sāκ
ακ (3.77)

where it is seen that from one equation we get two undetermined amplitudes. To solve

this problem it is noticed that the amplitude sā
α also appears in the lower (1, 0) sector

〈φā|Ŝ|φα〉 = 〈φā|
∑
b̄β

sb̄
β b̄†βŜ|φα〉 = sā

α (3.78)

which is then used again in the higher sector in Eq. 3.77 so that the number of equations

and amplitudes in the (1, 1) sector becomes identical. The sā
α amplitudes in Eq. 3.77 is
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then referred to as spectator amplitudes since they are not optimized in that equation.

By solving the Fock-space equations in this way one arrives at the subsystem embedding

scheme [113]. In the subsystem embedding scheme all sectors are solved individually and

all sectors lying lower than the (n, m) sector must be solved before the (n, m) sector. By

solving the Fock-space coupled-cluster equation sector by sector we get an unrelaxed set

of equations where the influence on sā
α of taking in sāν

αν is neglected in the above exam-

ple. For getting the influence on the amplitudes in the (1,0) sector (sā
α) of including the

(1,1) sector (sāν
αν) one would have to solve all the Fock-space equations simultaneously.

This simultaneous solution has, however, proven to be numerically more unstable than

the sector-by-sector solution. The subsystem embedding scheme is, however, not with-

out convergence problems and can be very difficult to converge on an entire potential

energy surface. It has furthermore been very difficult to get to sectors beyond k, l > 2

due to convergence problems in lower sectors and because of the need to include higher

excitations. To alleviate these problems the intermediate Hamiltonian approach has been

put forward (results can be seen in [109,111]) where a buffer space is introduced into the

model space with an approximate interaction. To recover this approximate interaction

the extrapolated Fock-space coupled cluster was put forward [114].

Besides the problems with convergence and reaching higher sectors, the orbital space

used in all sectors is the same, meaning that the same orbital space will have to be

able to describe not only neutral but also charged states from electron attachment and

detachment (particles and holes in the valence). This means a very flexible basis set will

have to be used since the differences between neutral and charged states can be significant.

Hence a slower convergence with respect to basis set size could be expected. A second, but

connected problem, is the subsystem embedding scheme where spectator amplitudes taken

from other sectors appear in higher sectors. The results of the higher sectors then depend

on how well the amplitudes in the lower sector have been determined. A propagation

of errors though the sectors is then expected. An error which is expected to be closely

connected to how well the basis set is able to describe the various neutral and charged

sectors of Fock space. Reaching higher sectors therefore seems to be exceedingly difficult

and it will be immensely difficult to extend the methods beyond the k, l > 2 sectors. A

further problem to this extension of sectors is the need to include higher excitations where

the scaling of the coupled-cluster method at some point also will become problematic. If
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larger model spaces are considered along with higher excitations then the scaling factor,

i.e. the number of times a calculation in a (k, l) sector have to be performed, will also

prove to be a bottleneck of the method. This in particular if the mixed sector approach

cannot be used and the starting sector and the sector of interest lie far apart.

Despite these concerns by the author about the Fock-space coupled-cluster method

it is to date the most successful of the multireference coupled-cluster methods for both

the ground and excited states. The applicability of the method at present state does not

appear to be universal but on the systems where it can be used it is very accurate.

3.1.5 State-Selective Multireference Coupled Cluster

The state-selective multireference coupled-cluster method that will be focused on is the

method suggested by Oliphant and Adamowicz [115, 116] in 1991. This method can be

considered a special case of the more general generalized active space coupled-cluster

method discussed in Section 5 and the publications [30,68, 117]. The idea of the method

is to retain some of the simplicity of the single-reference coupled-cluster method and try

to avoid some of the difficulties described for the multireference coupled-cluster methods

in Sections 3.1.3 and 3.1.4. The way this has been accomplished is very similar to how

a multireference configuration interaction method could be formulated. While the mul-

tireference configuration interaction method would be a genuine multireference method,

the state-selective multireference coupled-cluster method is not. The method is a pseudo

multireference method since it is not invariant to the chosen Fermi vacuum. As already

mentioned in Section 3.1.1.1 this method has received a great deal of attention in the

non-relativistic framework where also general-order codes have been developed [3,5,6,99].

The extension of this method21 to the spin-free and fully relativistic framework has been

the central theme in my Ph.D. work. With this method we have also been the first to

publish fully relativistic coupled-cluster calculations with fully iterative triples and soon

also quadruples and multireference calculations with fully iterative triples as can be seen

in Section 9.2.

21Actually it is the more general generalized active space coupled-cluster method.
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3.1.5.1 Formal Development of State-Selective Multireference Coupled-Cluster

The formal development of the state-selective multireference coupled-cluster method is

like the similarity-transformed single-reference coupled-cluster method in 3.1.1.2. Hence

the wave operator will then be the same as in Eq. 3.35, the truncation scheme will,

however, not follow the scheme indicated in Eq. 3.15, where the truncation of the cluster

operator follows a certain excitation level. It will instead include those higher excitations

that would make it look like there existed several reference determinants all with a given

level of truncation of the cluster operator.

To explain how the different truncation scheme of the cluster operator works we

will have to introduce the some of the indices also used for the Fock-space coupled-

cluster method in Section 3.1.4.1. From Figure 3.1 we will use the indices ī, j̄, k̄, l̄, . . .

and ā, b̄, c̄, d̄, . . . for the inactive holes and particles, respectively. For the active holes and

particles we will use ι, κ, λ . . . and α, β, γ . . . , respectively. The combined set of active

and inactive particles (holes) is symbolized by the letters i, j, k, l, . . . ( a, b, c, d, . . . ) as

shown in Section 3.1.1.2.

The derivation of the equations will be done in a way that illustrates the idea behind

the method. The way presented is perhaps not the simplest but in the author’s opinion

more illustrative than other derivations and the connection to the Hilbert-space coupled-

cluster method is clearer. The aim of the method is to create a formal model space but

retain the simplicity of the single-reference coupled-cluster method. To formally create

a method that resembles the Hilbert-space coupled-cluster method in Section 3.1.3 but

without making a Fermi vacuum for each individual state in the model space. Hence to

get away from the Hilbert space ansatz for the wave operator in Eq. 3.54 where every

reference has its own wave operator to one common wave operator for all states in the

model space. This means having just one Fermi vacuum like Fock-space coupled-cluster

method but wanting to stay within the Hilbert space. For this one can pursue a variant

of the single-reference coupled-cluster method where the cluster operator is partitioned

into an internal and an external part

T̂ = T̂ int + T̂ ext. (3.79)

The internal part T̂ int will then only contain valence indices (see Figure 3.1) while the

external T̂ ext will contain at least one inactive hole or particle index. To show how we
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from the division of the cluster operator in Eq. 3.79 immediately get to a multireference

like method we can write

|φ〉 = exp(T̂ )|φ0〉 = exp(T̂ int + T̂ ext)|φ0〉 = exp(T̂ ext) exp(T̂ int)|φ0〉 = exp(T̂ ext)|φint
0 〉
(3.80)

where it is seen exp(T̂ int) generates the formal reference |φint
0 〉 and a single cluster operator

exp(T̂ ext) is used for the entire formal model space. exp(T̂ ext) in this picture then works as

a formal wave operator. In the separation of T̂ int and T̂ ext we have used that the cluster

operator for the single-reference coupled cluster is commutative (see Eq. 3.5) since it

is a pure excitation operator. With the same wave operator as in the single-reference

coupled-cluster method22 we will then have commutation between T̂ int and T̂ ext

[T̂ int, T̂ ext] = 0. (3.81)

The exact form of the internal cluster operator will be

T̂ int =
M∑

p=1

T̂ int
p = T̂ int

1 + T̂ int
2 + · · · + T̂ int

M M = min(Nah, Nap) (3.82)

which is the part that creates all possible excitations inside the valence space. Nah and

Nap are here the number of active holes and particles, respectively. The T̂ int in Eq. 3.82

will in the state-selective multireference coupled-cluster method not be truncated but

used in its entirety. In the generalized active space coupled-cluster method discussed in

Section 5 and as shown in Section 8.2 truncations of T̂ int makes it possible to create the

CC(nm) methods [118].

As an example, the T̂ int
2 operator will then be

T̂ int
2 =

1

4

Nah,Nap∑
ικ,αβ

T̂αβ
ικ =

1

4

Nah,Nap∑
ικ,αβ

tαβ
ικ τ̂αβ

ικ (3.83)

in terms of amplitude tαβ
ικ multiplied by second quantized excitation operator τ̂αβ

ικ . The

external cluster operator can then be written as

T̂ ext = T̂ − T̂ int (3.84)

which contains the remaining excitations. We notice here that, unlike in the Hilbert-

space coupled-cluster method, we here have a formal wave operator that also contains

22Notice the wave operator is the same as the single-reference coupled-cluster method while the formal

wave operator is exp(T̂ ext).
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excitations in the valence space though always at least one inactive index, but still only

one for all formal references. The expansion of the external cluster operator is written a

little differently

T̂ ext =

Nah+Nih∑
p=1

T̂ ext
p = T̂ ext

1 + T̂ ext
2 + · · · + T̂ ext

Nah+Nih
(3.85)

where Nih is the number of inactive holes23 and the excitation level x of T̂ ext
x refers to the

maximum number of either inactive hole or particle indices (see Figure 3.1). By choosing

to divide the external cluster operator in a way that the index x no longer refers to the

excitation level but to the maximum number of either inactive hole or particle indices,

the operator T̂ ext
x then becomes a sum of excitation operators of different excitation level.

At a given level of truncation M we then do not get the equality in Eq. 3.79

T̂M �= T̂ int
M + T̂ ext

M (3.86)

since T̂ int
M is not truncated and therefore always written as T̂ int which can contain excita-

tions greater than M . The external cluster operator T̂ ext
M will contain excitations greater

than M , namely the sum of the internal and external excitations. The external excitation

operator can then be written as

τ̂ ext = (1 + τ̂ int)τ̂ in = (1 + τ̂ int)

Nah+Nih∑
p

τ̂ in
p (3.87)

where the inactive excitation operator τ̂ in is a sum of two excitation operators

τ̂ in = τ̂ap,ip
ih + τ̂ ip

ah (3.88)

which all contain at least one inactive index. Here ap and ip denote the number of active

and inactive particle indices, respectively. We see with T̂ ext
x written this way we get a

complete parametrization of all possible configurations. The truncation of the cluster

operator in the state-selective multireference coupled-cluster method is then truncated in

T̂ ext. A truncation at T̂ ext
2 would then give a MRCCSD calculation. The amplitude for

the external cluster operator can then more easily be found when the external excitation

operator in Eq. 3.87 is written out in it entirety.

With this division of the cluster operator from the single-reference coupled-cluster

method we have achieved to formulate a formal reference with a formal wave operator

23We notice Nah + Nih is equal to the total number of holes i.e. electrons.
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Figure 3.2: Example of a MRCCSD space for the state-selective multireference coupled-cluster method

...
...

N  inactive particles

N  inactive holes

2 active holes

2 active particles

O

V

which resembles a multireference coupled-cluster method. The difference is that the formal

wave operator now contains excitations inside the formal model space and that in the

truncation of this higher internal excitations combined with external are present since the

truncation is in the maximal number of either inactive hole or particle indices24.

To illustrate how the final cluster operator will look like in a state-selective multiref-

erence coupled-cluster calculation, I will give a small example of a MRCCSD calculation.

In this example we will have No inactive holes, two active holes, two active particles and

Nv number of inactive particles as illustrated in Figure 3.2.

The internal cluster operator is seen to have up to double excitations since the

minimum of active holes or particles is two (see Eq. 3.82). The double excitations will

24Total number of inactive indices can be larger, the individual not.
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take the same form as shown in Eq. 3.83 which along with the single excitations will give

T̂ int = T̂ int
1 + T̂ int

2 =
∑
ι,α

T̂α
ι +

1

4

∑
ικ,αβ

T̂αβ
ικ (3.89)

Finding the external excitation operator we first use Eq. 3.88 to find the inactive

excitation operator τ̂ in. We here see that the maximum number of inactive indices is two

since the truncation is done at the singles doubles level and the number of active particles

is also two. The inactive excitation operator then becomes

τ̂ in = τ̂ in
1 + τ̂ in

2 (3.90)

where τ̂ in
1 is

τ̂ in
1 =

∑
ī,α

τ̂α
ī +

∑
ī,ā

τ̂ ā
ī +

∑
ι,ā

τ̂ ā
ι =

∑
ī,a

τ̂a
ī +

∑
ι,ā

τ̂ ā
ι (3.91)

and τ̂ in
2

τ̂ in
2 =

1

4

∑
īj̄,αβ

τ̂αβ
īj̄

+
1

2

∑
īj̄,αā

τ̂αā
īj̄ +

1

4

∑
īj̄,āb̄

τ̂ āb̄
īj̄ +

1

4

∑
ικ,āb̄

τ̂ āb̄
ικ =

1

4

∑
īj̄,ab

τ̂ab
īj̄ +

1

4

∑
ικ,āb̄

τ̂ āb̄
ικ (3.92)

where it has been possible to combine some of the indices due to the fact that the internal

excitation level equals the external. Building the external excitation operator

τ̂ ext = (1 + τ̂ int
1 + τ̂ int

2 )(τ̂ in
1 + τ̂ in

2 ) (3.93)

we will collect these in parts of excitations from the reference determinant. We see that

in this case we will have a maximum of fourfold excitations

τ̂ ext
1 = τ̂ in

1 (3.94)

τ̂ ext
2 = τ̂ in

2 + τ̂ int
1 τ̂ in

1 (3.95)

τ̂ ext
3 = τ̂ int

1 τ̂ in
2 + τ̂ int

2 τ̂ in
1 (3.96)

τ̂ ext
4 = τ̂ int

2 τ̂ in
2 (3.97)

where all excitations higher than two are made up of products of the inactive and internal

excitations. Knowing the external excitation operator, the amplitudes for this can then

also be written down. I will here just show one example of this for the double excitation

of Eq. 3.95

T̂ ext
2 =

1

4

∑
īj̄,ab

T̂ ab
īj̄ +

1

4

∑
ικ,āb̄

T̂ āb̄
ικ +

∑
īι,αa

T̂αa
īι +

1

2

∑
ικ,αā

T̂αā
ικ (3.98)



3.1 Coupled-Cluster Theory 71

where we notice that the only thing missing in the external doubles is the internal doubles

excitations. Adding the internal and external cluster operator we then find the cluster

operator to be

T̂ = T̂1 + T̂2 + T̂αβā
ικī

+ T̂αāb̄
ικī + T̂αβā

ῑij̄
+ T̂αāb̄

ῑij̄ + T̂αβāb̄
ικīj̄

(3.99)

where we notice that we have an additional term (T̂αāb̄
ῑij̄ ) compared to the original papers

from Oliphant and Adamowicz [115,116] which is because they only considered two refer-

ence determinants. The observation made in Eq. 3.99 that the complete T̂1 and T̂2 appear

in the final expression for the cluster operator is a general observation for a MRCCSD. All

higher cluster operators will then also only appear as products of internal and external

excitations where the maximum excitation level will be the sum of the maximal internal

and external level. These higher terms in the cluster operator will then also appear in the

projection manifold (see Eq. 3.17) to give a fully determined set of equations.

The terms in Eq. 3.99 do have a meaningful explanation in a formal multireference

coupled-cluster formalism and do show many similarities to the genuine multireference

coupled-cluster methods, here in particular the Hilbert-space coupled-cluster method.

T̂αβā
ικī

and T̂αβāb̄
ικīj̄

is the orbital relaxation and correlation of a doubly excited determinant

from the reference determinant. T̂αāb̄
ῑij̄ is the correlation of a singly excited determinant.

The orbital relaxation of this is in T̂2. The two remaining terms describe the cross corre-

lation and relaxation of the inactive holes and the valence. The relation to multireference

configuration interaction is also immediately noted from Eq. 3.99 where we see that

the multireference configuration interaction wave function will just be 1 + T̂ where the

amplitudes have to be replaced with the CI coefficients.

The extension of the state-selective multireference coupled-cluster method presented

here to a fully relativistic framework all happens by extending the cluster operator to

include flipping of the Kramers projection as shown in Section 2.2.2. The formalism

itself does not change, so conclusions drawn at the non-relativistic level are therefore

expected to carry over to the fully relativistic framework. The method has shown itself

as numerically stable for both ground and excited states [118–121]. We here notice that

unlike the genuine multireference coupled-cluster methods either a linear response or

equation-of-motion module must be used to get the excited states since the method,

like the single-reference coupled-cluster method, is a ground-state method. The obvious

drawback of the method is the lack of invariance to the Fermi vacuum which means the
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results will be dependent of which reference determinant is chosen for a coupled-cluster

expansion. This lack of Fermi invariance leads to symmetry breaking of the wave function.

In the non-relativistic framework it has been shown that this can lead to larger overlaps

between different states25 and spin projection errors compared to other multireference

coupled cluster methods [122]. A yet unaddressed problem connected with the equation

length will be dealt with in Section 7.1 where it will be shown that this can be problematic,

in particular in the relativistic case.

25Unlike MRCI, MRCC or CC will not necessarily give exactly orthogonal states except in the limit of

FCC. The overlap is just a measure of the accuracy of the wave function.



Chapter 4

DIRAC Program Package

This chapter is primarily meant to give non-experts a little bit of an insight into what goes

into making a new module in a program package and how the modules therein are linked

together. The second function of this chapter is also to document what other modules

may have been used and to which purpose.

Before any correlation code can be used it will need one or more external pro-

grams/modules to calculate the starting conditions for the code since this is not present

in a correlation code. This will typically be a program/module to do a Hartree-Fock cal-

culation and subsequently an integral transformation step to deliver the needed integrals

for the correlation code. Sometimes one may opt for a stand alone code with an interface

to one or more programs that can deliver the needed information. This however is not

the path chosen for the code presented in this work. This code has become a module,

named ARDUCCA1, in the larger quantum chemistry package DIRAC [57].

4.1 DIRAC

The DIRAC program computes molecular properties using relativistic quantum chemical

methods. It is named after P. A. M. Dirac2, the father of relativistic electronic structure

theory. The DIRAC program code is distributed freely to academic researchers and can be

obtained by contacting Hans Jørgen Aagaard Jensen. A new release for DIRAC2008 [57]

1AaRhus DÜsseldorf Coupled Cluster Algorithm
2P.A.M. DIRAC : Program for Atomic and Molecular Direct Iterative Relativistic All-electron Calcu-

lations
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is now available. The program consists of many modules bundled together in one program

package which can be used as one or as stand-alone modules. The modules used in this

thesis are the Dirac-Hartree-Fock module [123, 124], MOLTRA - Integral transformation

module, RELCCSD [74,125] - Coupled cluster module and the LUCIAREL [71,72] module

which is a GAS CI module. A variety of different Hamiltonians is also available and

has been used in this work like the Dirac-Coulomb- , a spin-free- [64] and the Lévy-

Leblond [33] Hamiltonian. All these and my usage of them will be very briefly described

in the subsequent subsections. For a more complete list of modules both released and

unreleased, their documentation plus contact informations the reader is encouraged to

visit the DIRAC wiki page at http://wiki.chem.vu.nl/dirac/index.php/Dirac Program .

This program suite has served as the basis for the further development of the non-

relativistic GAS coupled cluster code from Jeppe Olsen [99]. The developments done in

this thesis is therefore now a module in DIRAC and will at some point in the future be

released for users. At the moment, however, the program resides on the developers version

until a final version can be released.

4.2 The Hamiltonians

To elucidate various relativistic effects like the ones shown in Section 9.3 a set of different

Hamiltonians has been employed. This has been done by performing the same type of

correlation calculation but employing different types of Hamiltonians.

4.2.1 The Dirac-Coulomb Hamiltonian

The Dirac-Coulomb Hamiltonian (see also Sections 2.1.2 and 2.2.1.4) is the standard

Hamiltonian in relativistic electronic structure theory and is a 4-component Hamilto-

nian containing the most important relativistic effects. In this Hamiltonian the electron-

electron interaction is approximated by the usual Coulomb interaction known from non-

relativistic quantum mechanics. Additionally, the Born-Oppenheimer approximation is

also used so the electron-nuclei interaction is then just a static field. The Dirac-Coulomb

Hamiltonian, however, contains the scalar relativistic effects like the Darwin and the mass-

velocity term but also spin-orbit coupling in the form of the spin-same-orbit term. For
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a more correct electron-electron interaction the Dirac-Coulomb-Breit Hamiltonian would

be the next step where an additional current-current interaction and a gauge term [7]

is added to the electron-electron interaction. At the moment only the current-current

interaction, also known as the Gaunt interaction [61], can be used at the DCHF level.

Work is being done to also have transformed integrals of this. A correlation code for the

Dirac-Coulomb Hamiltonian has been the final goal of this thesis and will be presented in

Sections 9.2 and 9.1. These correlation codes are, however, more complicated and cum-

bersome than the ones presented for the spin-free- and the Lévy-Leblond Hamiltonian.

The additional complication stems from the spin-orbit contribution which requires much

additional work in implementing but also in the use of the codes. The inherent problem

is described in further details in Sections 7 and 2.2.1.

4.2.2 The Spin-Free Hamiltonian

The spin-free Hamiltonian in DIRAC is the one presented by Dyall in [64]. The separation

of the Hamiltonian into a spin-free and a spin-dependent part is not unique [65] but there

does not appear to be any significant differences between the different ways of partitioning

the Hamiltonian [66]. In Dyall’s formalism the spin-dependent part is neglected keeping

just the scalar relativistic part and neglecting the spin-orbit part. In practice this has

the advantage that spin and space can again be separated just like in the non-relativistic

framework. This means, with an interface, a non-relativistic correlation code can used

which is what has been described in Sections 6.1 and 9.3. In the correlation step, for

the coupled cluster, this has the advantage that the cluster operator no longer flips the

Kramers projection as shown in Sections 9.1, 9.2 and 7, reducing the number of amplitudes

and connections. The disadvantage of this Hamiltonian, is of course, that it cannot be

used on systems where the spin-orbit contribution becomes significant. It can, however,

be employed for many systems used in the field of cold and ultra-cold molecules with

very good accuracy. In these systems the electronic ground state typically exhibits 0+

symmetry and is well separated from the electronically excited states at the equilibrium

geometry. Hence, the inaccuracy of the correlation treatment and basis set deficiencies by

far outweighs spin-orbit effects. The spin-orbit contribution can therefore be estimated by

doing a CCSD using the Dirac-Coulomb Hamiltonian and then adding this correction to

the spin-free curve since the changes introduced by spin-orbit interaction in these systems
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will be almost independent of basis-set size and correlation level as seen in Sections 9.1

and 9.3.

4.2.3 The Lévy-Leblond Hamiltonian

The Lévy-Leblond Hamiltonian [33] is the non-relativistic limit of the Dirac-Coulomb

Hamiltonian which then includes spin but not spin-orbit or any other relativistic contri-

butions. With the interface for the spin-free Hamiltonian, the Lévy-Leblond Hamiltonian

can immediately also be used. This Hamiltonian has only been used when trying to assess

scalar relativistic contributions as shown in Section 9.3.

With these three Hamiltonians it is possible to assess the scalar relativistic and

spin-orbit contributions like shown in Section 9.3. These contributions are however not

completely decoupled, like a perturbation, since the relativistic effects are optimized along

with all other effects. Using each Hamiltonian however does give a very good insight into

the different contributions.

4.3 The Modules

The modules that is briefly presented in the following sections are just a few of the modules

in DIRAC but these are the ones that have been used in this thesis and not programmed

by the author. The Dirac-Fock and the integral transformation module MOLTRA have

of course been used extensively since these are the two first steps before any correlation

calculation can begin.

4.3.1 Dirac-Fock

The Dirac-Fock [124] has always been the first step done in any calculation presented

in this thesis and corresponds to the Hartree-Fock step in a non-relativistic framework.

This is also the only part of the code that has four-components like the Dirac-equation

and usually also the only step where all electrons and virtuals are treated. Since the

Dirac-Fock operator is not bounded from below the electronic ground state can thus be

viewed as an excited state in the spectrum of the Dirac-Coulomb Hamiltonian. The usual
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minimization procedure from the variational principle cannot be applied and is replaced

by a minmax procedure [126].

4.3.2 MOLTRA

This module transforms integrals from the scalar AO basis to integrals in the molecular

spinor basis and thereby provides the integrals for the correlation code. This is a rather

time consuming step due to heavy I/O with writing both the transformed and half-

transformed integrals to disc. This step is largely increased for the 4-component methods,

due to the very large basis set needed for the small component which in turn is needed

for kinetic balance of the basis set (see Section 2.3.1).

4.3.3 RELCCSD

RELCCSD [74,125] is a coupled-cluster module capable of performing CCSD and CCSD(T)

calculations using all the different types of Hamiltonians described in 4.2. Since the matrix

elements are here explicitly programmed it is therefore faster in doing CCSD calculations

than the more general order code programmed by the author. It is, however, limited

to this and the CCSD(T) calculations. This module has been very useful for the larger

LiCs calculations presented in Section 9.6 but also for debugging of the general-order

coupled-cluster code.

4.3.4 LUCIAREL

LUCIAREL [71, 72] is a general-order CI code which also includes the GAS concept

as shown in Sections 9.4 and 9.5. This is an adaptation of the non-relativistic code by

Olsen [127] to the relativistic framework. This code is the forerunner to the first relativistic

version of the GAS coupled-cluster (see Sections 6.2 and 9.1) since the latter is driven by

a modified version of this CI-code done by the author. The code has also been used for

comparisons of CI and CC calculations like those shown in Section 9.1 and for applications

on molecules used in the ultra-cold regime like RbYb and (RbBa)+ as shown in Sections

9.4 and 9.5, respectively.
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Chapter 5

Concepts of the Codes

With a general code capable of higher excitations a host of new concepts needs to be

introduced. This chapter will mainly focus on introducing these. These concepts were first

introduced1 for the non-relativistic general-order Configuration Interaction (CI) program

LUCIA [127] by Jeppe Olsen. A multireference configuration interaction (MRCI) and

a state selective multireference coupled-cluster method can be formulated in the same

framework which can be seen by the close relation between these methods as shown in

Section 3.1.5. The concepts from the generalized active space CI can then be taken over

to the generalized active space coupled-cluster method.

5.1 Concepts in ARDUCCA

The concepts of the Generalized Active Space (GAS), excitation class formalism, string

based operators and the evaluation of these are independent of the code being non-

relativistic, spin-free or fully relativistic. The only things changing between these three

are the number of integrals and the number of classes rather than the concept. They will

therefore be introduced here first since this is a common integral part of all the codes

presented in Section 6.

1In these codes
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5.1.1 Generalized Active Space (GAS)

The standard two-fold partitioning of the spinor space into occupied unoccupied parts is

not sufficient to define, for example, the state-selective multireference expansions origi-

nally suggested by Adamowicz [115, 116] and shown in Section 6.3. One of the possible

strategies for obtaining more general expansions functions is the Generalized Active Space

(GAS) approach which has been developed both for CI and CC methods. In the GAS

approach, the spinor space is first divided into a number of subspaces. This is a general-

ization of the more familiar Complete Active Space (CAS) and Restricted Active Space

(RAS) approaches which allows for completely free choice of subspaces and excitations

between these. This allows for complex and physically motivated truncation schemes of

the cluster operator like the CC(nm) [118] presented in Section 8.2 and variations of this

like the ones shown for the GASCI in Sections 9.4 and 9.5.

In the current context of coupled-cluster expansions with commuting excitation

operators, the subspaces are required to contain only occupied or virtual Kramers pairs.

To exploit time reversal symmetry and restrictions, it is in the following further assumed

that each subspace consists of pairs of barred and unbarred spinors. An example of such a

partitioning of the spinor space is illustrated in Figure 5.1 where occupied and unoccupied

spinor spaces are divided into two subspaces each.

Excitations from the occupied to the unoccupied spinor spaces are next specified,

and a set of commuting excitation operators defining the CC expansion is thereby defined.

The corresponding coupled-cluster equations will be manifestly size-extensive provided the

excitation manifold is closed under deexcitation. An excitation manifold is closed under

deexcitation if for any pair of excitation operators Ô1, Ô2 there is another excitation

operator Ô3 in the manifold such that Ô†
1Ô2|HF 〉 = Ô3|HF 〉 [67].

The GAS is a very useful concept which can help to reduce the computational cost

and still make very accurate calculations [5,118] by selecting the Kramers pair subspaces

so that the most important amplitudes are included. Due to the large flexibility it can,

however, be difficult to make a direct comparison to the regular CC hierarchy without

larger comparative studies. Important special cases the of GAS CC expansions are the

state-selective multireference coupled-cluster method [115,116] and the CC(nm) approach

[118], see Sections 3.1.5 and 8.2, respectively. Other approaches of the GAS concept have
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Figure 5.1: Example of division of occupied and unoccupied Kramers pairs into subspaces for the

generalized active space coupled-cluster method

also been in use for the GAS CI codes and are presented in Sections 9.4 and 9.5.

5.1.2 Excitation Class Formalism and String Based Operators

In this section we will try to make the connection between the main operator classes and

the generalized active space. The aim will be to show how the main operator classes

can be divided into strings or classes when the orbital space is divided. This is the final

division and the strings/classes are the entities programmed in the code and which drive

it. The entries in these strings represent the number of second-quantized operators in a

given generalized active space and will be explained in greater detail below.

To illustrate how a main operator class splits into several classes we will start out

by the simplest example possible, namely the division of the Kramers pair space into two

Kramers pair subspaces with the Ô1,0,1 main operator class. When dividing the Kramers
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pair space into Kramers pair subspaces we see we will need to define another operator

class since the sum over the indices for the main operator class will be restricted. First

we will therefore examine what happens to a main operator class when the Kramers pair

space is divided into two Kramers pair subspaces. We will here focus on the operator since

the integral or amplitude follows from the operator due to the indexing of the amplitude

or integral being the same. Therefore omitting the integral for the Ô1,0,1 main operator

class we see that by dividing our Kramers pairs into occupied and virtuals the Ô1,0,1 main

operator class will split into four terms

N∑
p,q

a†
paq =

m∑
p

m∑
q

a†
paq +

N∑
p>m

N∑
q>m

a†
paq +

m∑
p

N∑
q>m

a†
paq +

N∑
p>m

m∑
q

a†
paq N > m (5.1)

where the first m spinors would be in the first subspace (occupied) and the remaining

N − m in the second subspace (virtual).

Before generalizing this splitting of the Kramers pairs into subspaces we see that

from the first division into occupied and virtuals we can extract information like the down

rank of a class and whether it is a hole or particle that will be contracted in the reduction

of the class. This is shown for the Ô1,0,1 main operator class in Table 5.1. Knowing the

down rank of a class it is immediately possible to find the minimum and maximum number

of commutators in the Baker-Cambell-Hausdorff (BCH) expansion which is also shown

for Ô1,0,1 in Table 5.1. The general rule is zero commutators for down rank zero and a

minimum of one and maximum of two times the down rank for all other possible down

ranks. Since, for a linked formalism, each commutator will reduce the down rank of the

Hamiltonian a minimum of one half and a maximum of the down rank. This immediately

helps to identify the number cluster operator classes there has to be looped over in Section

6.3. It should be noted that since the cluster operator is a pure excitation operator it

will have a down rank of zero and therefore for the single division of Kramers pairs into

occupied and virtuals will leave the main operator class and the class identical.
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Table 5.1: The splitting of the main operator class Ô1,0,1 into classes when dividing the Kramers pair

space into occupied m and virtuals N − m. The down rank and the number of holes or particles that

needs to be contracted to reduce the rank to zero and the number of commutators needed for this is

shown.

Operator Rank Hole Particle # Commutators
m∑
p

m∑
q

a†
paq

1
2

1 0 1

N∑
p>m

N∑
q>m

a†
paq

1
2

0 1 1

m∑
p

N∑
q>m

a†
paq 1 1 1 1-2

N∑
p>m

m∑
q

a†
paq 0 0 0 0

The operator classes will be written in the CAAB (creator alpha, creator beta,

annihilator alpha, annihilator beta)2 form which is a string of second-quantized operators

which represents a given class. The length of such string will be the number of generalized

active spaces multiplied by four (NGAS × 4), where NGAS is the number of generalized

active spaces and the entries denotes the number of second-quantized operators of a given

type that will be in a given GAS. The CAAB form will for the Ô1,0,1, shown in Eq. 5.1,

be written as

m∑
p

m∑
q

a†
paq +

N∑
p>m

N∑
q>m

a†
paq +

m∑
p

N∑
q>m

a†
paq +

N∑
p>m

m∑
q

a†
paq (5.2)

CA 1 0 0 1 1 0 0 1

CB 0 0 0 0 0 0 0 0

AA 1 0 0 1 0 1 1 0

AB 0 0 0 0 0 0 0 0 (5.3)

where in the line with CA is the number of unbarred (alpha) creation operators in a GAS,

CB the number of barred (beta) creation operators and AA and AB the unbarred and

barred annihilation operators. Above each string the corresponding algebraic expression

2In the fully relativistic case this will then be creator unbarred, creator barred, annihilator unbarred,

annihilator barred.
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is written to highlight the connection between these. We see that the indices have been

dropped in the CAAB form so we can no longer for ÔN≥2 see which two indices belong

to the same electron. This can be seen by writing the operator Ô2,0,2 in the CAAB form

CA 2 0 0 2 2 0 0 2 2 0 0 2 1 1 1 1 1 1

CB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AA 2 0 0 2 0 2 2 0 1 1 1 1 0 2 2 0 1 1

AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0(5.4)

where we find nine operators instead of the expected 16 from the sums in Eq. 5.1, which

stems from dropping the connection to the indices and instead introducing a canonical

ordering. The connection to Eq. 5.1 becomes apparent when writing the CAAB operator

CA 2 0

CB 0 0

AA 1 1

AB 0 0 (5.5)

as the sums of two operators (here for the Hamiltonian)

m,N∑
prs≤m,q>m

a†
pa

†
rasaq +

m,N∑
pqr≤m,s>m

a†
pa

†
rasaq N > m (5.6)

where in the first term the index q belongs to the second GAS whereas in the second

it is the index s. If the integral is included and the anti-commutation relationship of

second-quantized operators is applied along with a renaming of indices, it is seen that the

CAAB operator in Eq. 5.5 is equal to

m,N∑
prq≤m,s>m

((pq|rs) − (ps|rq))a†
pa

†
rasaq (5.7)

so the indices for the same electron can come in as an exchange integral. This does not

happen to the cluster operator in the first division of spinors into occupied and virtuals

since it is a deexcitation rank zero operator.

In the GAS formalism the Kramers pairs can be divided into any number of GASs.

It is therefore of interest to know the number of operators in the CAAB form. This can
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give information on code design and an easy comparison between relativistic and non-

relativistic string-based methods. If there is a single overall excitation level in all GASs

the number of classes in the CAAB form from a general main operator class can the be

shown to be

NCAAB =

⎛
⎝ NGAS + N c − 1

NGAS − 1

⎞
⎠×

⎛
⎝ NGAS + N̄ c − 1

NGAS − 1

⎞
⎠×

⎛
⎝ NGAS + Na − 1

NGAS − 1

⎞
⎠×

⎛
⎝ NGAS + N̄a − 1

NGAS − 1

⎞
⎠

(5.8)

where NCAAB is the number of classes in the CAAB form, NGAS the number of GASs and

N c, N̄ c, Na, N̄a the number of unbarred and barred creation and annihilation operators,

respectively, as defined in Eq. 2.36. These classes, written in the CAAB form, can then

be written as

ÔN,ΔMk,Mub
=

NGAS∑
2Ni=1

Ŝ2Ni
N,ΔMk,Mub

x1 ≥ x2 ≥ . . . ≥ xN (5.9)

where 2Ni is the number of indices summed over in (N c, N̄ c, Na, N̄a) order and in all xi

(like N c) every successive index inside xi is smaller or equal to the one before. Taking

the above example for Ô2,0,2 it can then be written as

Ô2,0,2 =

NGAS∑
a1a2c1c2=1

Ŝa1a2c1c2
2,0,2 a1 ≥ a2 c1 ≥ c2. (5.10)

For higher operators like Ô4,2,1, the operator classes in the CAAB form can then also

easily be found

Ô4,2,1 =

NGAS∑
a1a2a3b1c1c2d1d2=1

Ŝa1a2a3b1c1c2d1d2
4,2,1 a1 ≥ a2 ≥ a3 c1 ≥ c2 d1 ≥ d2 (5.11)

which appear in a four-particle interaction. We have here for clarity named the indices

(an, bn, cn, dn) for the indices appearing in (N c, N̄ c, Na, N̄a). As it can be seen the number

of classes of operators increases rapidly with NGAS and the excitation level. To utilize the

full capacity of the GAS concept it is, for the code design, therefore important to have a

fast evaluation of which Hamiltonian operator class a given cluster operator class can be

contracted with.

Since the cluster operator is a pure excitation operator it has a down rank of zero

we can abridge the CAAB form shown in Eq. 5.9 to

T̂N,ΔMk,Mub
=

NGV +NGO∑
NCi=NGO+1

NGO∑
NAi=1

T̂NCi+NAi
N,ΔMk,Mub

x1 ≥ x2 ≥ . . . ≥ xNx (5.12)
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where NGO denotes the GASs with the occupied Kramers pairs and NGV the virtual and

the summation has been split into the number of creator indices NCi and annihilator

indices NAi. With this restriction of the loops for the elementary operator, the number

of cluster operators in the CAAB form is significantly lower than the general operator in

the CAAB form for the same particle rank. This can be seen by comparing Eq. 5.8 with

NCAABT =

⎛
⎝ NGV + N c − 1

NGV − 1

⎞
⎠×

⎛
⎝ NGV + N̄ c − 1

NGV − 1

⎞
⎠×

⎛
⎝ NGO + Na − 1

NGO − 1

⎞
⎠×

⎛
⎝ NGO + N̄a − 1

NGO − 1

⎞
⎠

(5.13)

since NGAS = NGV +NGO. The cluster operator can, however, contain higher than double

excitations and, as can be seen from Table 6.1, therefore also contain more classes than

the Hamiltonian.

The GAS concept, however, also allows that a cluster operator T̂n can be truncated

in certain GASs which is needed to perform for instance a state-selective multireference

coupled-cluster calculation. This, however, does not change the CAAB form in Eq. 5.12.

Since such a truncation occurs in the main operator class form it does however put a

restriction on the indices. Therefore the main operator class form for a truncated operator

has to be extended with NGAS indices to show the truncation of the sums. We will

then write a truncated main cluster operator class as T̂NGAS
N,ΔMk,Mub

where the NGAS indices

denotes the maximum number of holes or particles in a given GAS (depending on occupied

or virtual). These indices are written as NGAS = (GAS1, GAS2, . . . , GASN) and the

restriction for the number of elementary operators in a given GASJ

(

Ni∑
o=1

ô ∈ GASJ) ≤ NGAS(J) (5.14)

where ô is either a creation or annihilation operator of a CAAB operator and Ni the total

number of these. The truncated main operator class will then get the following CAAB

form

T̂NGAS
N,ΔMk,Mub

=

NGV +NGO∑
NCi=NGO+1

NGO∑
NAi=1

T̂NCi+NAi,NGAS

N,ΔMk,Mub
xi x1 ≥ x2 ≥ . . . ≥ xNx (5.15)

where the NGAS indices give a restriction on the number of occupied or virtual indices in

a given GAS.

The general scheme of dividing operators can then be summarized

Ô ⊇ ÔN ⊇ ÔN,ΔMk
� ÔN,ΔMk,Mub

⊇ Ŝ2Ni
N,ΔMk,Mub

(5.16)
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where every division forms a subset of operators from the previous. The approximations

from the truncation in the regular hierarchy of the cluster operator T̂ are done at the Ô

level giving a sum of T̂N operators. The ΔMk truncation scheme is done at the operator

division level ÔN,ΔMk
whereas the restriction from input is done at the main operator level

ÔN,ΔMk,Mub
which finally determines the classes and the structure of the CAAB operators

Ŝ2Ni
N,ΔMk,Mub

.



88 5 Concepts of the Codes



Chapter 6

Computational Structure

In this chapter I will first start out by giving a documentation of the algorithm of the codes

and what changes are needed for an adaptation to the relativistic framework. Further,

three sections have been introduced to explain why the linked coupled-cluster formalism

(see Section 3.1.1.3) is preferred in the CI-driven coupled-cluster code, a solution for

a reduction of overhead in the commutator-based coupled-cluster and how the integral

handling works. The second part of the chapter is devoted to the documentation of the

input to both the spin-free and the fully relativistic codes.

Currently the ARDUCCA module is residing on a branch of the developers version

of the DIRAC [57] program package. On this branch there exist three general order spin-

free coupled-cluster programs and two fully relativistic programs. The spin-free coupled-

cluster code works via an interface to the spin-free integrals. The inner workings of these

codes will not be discussed here since this work originates from Jeppe Olsen [3, 99] and

this discussion would furthermore be duplicated in the description of the fully relativistic

codes. The fully relativistic codes will be discussed in greater detail in Sections 6.2 and

6.3 where the algorithm for two of the spin-free codes also will become evident.

6.1 Documentation of Spin-Free Coupled-Cluster Code

The implementation of the spin-free coupled-cluster codes is primarily a technical issue

of writing an interface to fetch spin-free integrals from the DIRAC program. We have

in Section 2.1.3 seen that Dyall’s spin-free Hamiltonian has the same spin factorization

89
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as a non-relativistic Hamiltonian and regular point group symmetry can be used. This

means that at the correlated level the only difference in the Hamiltonian is the addition

of one- and two-electron scalar relativistic integrals to the regular one- and two-electron

integrals. At the correlated level there will then be no difference in the structure of the

Hamiltonian and the cluster operator classes1. A non-relativistic code can therefore be

interfaced directly by just fetching the new integrals. For the implementation of the spin-

free coupled-cluster code a regular DIRAC input has been interfaced for the input and

transfer of information on common blocks along with the appropriate integrals2.

6.2 Documentation of CI-based Coupled-Cluster Code

The documentation of the CI-driven coupled-cluster code will follow the one also presented

in [70] but will have some additional comments. As was seen in the input in Section 6.4 this

type of coupled-cluster approach requires an extended vector and the reason for that will

be shown in Section 6.2.1. Since this uses the CI-Hamiltonian which is not as compactly

programmed as the CC-Hamiltonian in Eq. 2.59, some additional main operator classes

are here present. The method can use the first two approximations shown in Section 8

but not the last since defining the mixed core-valence correlation approximation is not

straight forward with two different set of cluster operators. This code is, however, the less

efficient of the two and the mixed core-valence correlation approximation would therefore

not be applicable anyway. The work with adding the non-relativistic code to the program

and getting the external setup will not be described as is the change to double group

symmetry and the adaptation to 64 bits systems3.

The current implementation treats the real-valued and some of the complex-valued

double groups (C∗
2h, C∗

2 , and C∗
s ). This means complex algebra has been added throughout

the non-relativistic code. This is done by splitting all vectors into a real and an imaginary

part and then handling these separately. The complex algebra is only used if the double

point group belongs to the complex-valued double groups which was not the case previ-

1It will be the same main operator classes used.
2It is in fact an interface to the whole of the LUCIA code [127]. This means that in the spin-free case

there is also a GAS CI code like the LUCITA module [128] included. The CI-driven coupled-cluster code

is here using the ARDUCCA CI code.
3This is heavily inspired by the adaptation on the trunk performed by Stefan Knecht.
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ously for the underlying CI code. The remaining groups, the so-called quaternion-matrix

groups (C∗
i and C∗

1), require modifications in the configuration-interaction program [72]

and are not implemented yet, see Section 2.2.3 for definition of the groups.

6.2.1 Implementation of the CI-based Coupled-Cluster Code

The essential quantity to be evaluated in the course of a coupled-cluster optimization is

the coupled-cluster vector function Ωμ for a given element μ of the excitation manifold:

Ωμ =
〈
μ
∣∣∣e−T̂ ĤeT̂

∣∣∣Ref
〉

(6.1)

The cluster operators T̂ =
∑
m

T̂m are now generalized to the relativistic framework, which

entails the possibility of flipping the Kramers projection along with the excitation as

shown in Section 2.2.2.

The evaluation of the CC vector function proceeds in an analogous fashion as de-

scribed in reference [3], where the CC vector function is obtained in four steps which

are based on CI expansions and string manipulations. Although this formalism is rather

inefficient, it allows the generation of a general relativistic CC code by reusing much of

the code which has previously been developed for relativistic CI [72, 73]. Furthermore,

the developed code may be used in calculations where only a small number of electrons

is correlated, and provides a test code for the more advanced and efficient relativistic CC

codes presented in Section 6.3.

In the following, we first consider the general features of this CI-based vector function

implementation as also mentioned in reference [3] and then review the four required steps

in the evaluation where in both cases some additional information will be added to the

published version in [70].

As we only have to consider terms inside the projection manifold 〈μ| this means

e−T̂ ĤeT̂ |Ref〉 can be restricted to this. Seeing that e−T̂ contains the identity operator,

which does not increase the excitation of the state it is acting on, the configuration space

spanned by ĤeT̂ |Ref〉 must be restricted to the space of the projection manifold 〈μ|.
Since the Hamiltonian is an operator with a maximum de-excitation (down) rank of 2,

this implies that the evaluation of Ĥ acting on eT̂ |Ref〉 has to be determined in a space

with a maximum excitation level increased by 2 relative to the excitation manifold. In
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Figure 6.1: Reduced linear transformation step for the CI-based evaluation of the CC vector function.

cext is a reference vector from the extended space which is projected onto a reduced space σred defined

by the CC excitation manifold.

the ĤeT̂ |Ref〉 step the space is then reduced to the one spanned by 〈μ|. For example,

in a CCSD calculation the expression eT̂ |Ref〉 can be restricted to at most quadruple

excitations. We illustrate the linear transformation step ĤeT̂ |Ref〉 in Figure 6.1 where

we see Ĥ working on a extended vector eT̂ |Ref〉.

The computational scaling of this procedure is given as On+2 V n+2 where O is the

number of occupied spinors, V the number of virtual spinors and n is the highest CC

excitation level in the calculation. This is to be compared to a CC implementation with an

optimal scaling as On V n+2 such as the commutator driven implementation in Section 6.3.

The higher scaling of the CI-based coupled cluster is caused by the Hamiltonian being used

on an extended vector. This reduced efficiency therefore limits the number of electrons

which may be correlated (roughly up to 10 or 12) and the size of the employed one-particle

basis sets (roughly up to triple-zeta quality). Due to the use of the efficient direct CI

technique based on Generalized Active Space expansions [72, 73] fairly large calculations

with more than 1×108 Slater determinants in the extended space are nevertheless possible.

In the following, I will describe the relativistic implementation focusing on the in-

dividual steps required for the CC vector function. These steps are also shown in Figure

6.2 along with the setup routines and the iterative procedure.

Step 1:

|a〉 = eT̂ |Ref〉, expansion of the reference vector.

|a〉 =

(∑
n=0

1

n!
T̂ n

)
|Ref〉

= |Ref〉 + T̂ |Ref〉 +
1

2!
T̂
{

T̂ |Ref〉
}

+
1

3!
. . . (6.2)
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Figure 6.2: Overview of the CI-driven coupled-cluster code.
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The expansion is carried out by invoking the routines for calculating a CI sigma vector

repeatedly, i.e. once for each term T̂ working on a vector. The loop structure of this

routine then becomes

COPY |Ref〉 TO |a〉, |Temp1〉
loop {N = 1, 4}

1
N

T̂ |Temp1〉= |Temp2〉
ADD |Temp2〉 TO |a〉
COPY |Temp2〉 TO |Temp1〉

end loop[N]

where the successive building up of the coupled-cluster wave function in |a〉 with the help

of two additional vectors is seen. Since these vectors are also stored in core this algorithm

requires additional memory to be allocated. In each of these steps, the contraction is not

performed with integrals, however, but with the CC amplitudes of the current iteration.

Since the CI sigma vector previously only used the Hamiltonian operator classes this has

been extended to also use the cluster operator classes of different sizes with corresponding

amplitudes. This means a looping over more than |ΔMK | > 2 in the sigma vector call as

for the Hamiltonian but up to the maximum excitation level M

σ =

ΔMK=+M∑
ΔMK=−M

σΔMK (6.3)

The expansion in step 1 is otherwise truncated when the highest excitation level has

been reached which may couple to the excitation manifold, in line with the arguments

in the above discussion (Section 6.2.1). This first step is the most expensive one in the

algorithm due to the use of the extended cluster operator. The input for the extended

cluster operator is given in the third space under the keyword .GASSPC (see Section 6.4).

Step 2:

|b〉 = Ĥ |a〉: linear transformation of the expanded reference vector.

This step again corresponds to the calculation of a linear transformation (CI sigma

vector) of the expanded reference vector |a〉. The contraction is now carried out with

integrals over Kramers-paired spinors which are classified according to main operator

classes and the associated change of the auxiliary quantum number MK . The excitation

class formalism does not only define the structure of the Hamiltonian operator (with a
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ΔMK range of {+2, . . . ,−2}) but is also used in the definition of the cluster excitation

operators in Eq. 2.70.

A relativistic sigma vector therefore consists of a sum of five contributions according

to

σ =

ΔMK=+2∑
ΔMK=−2

σΔMK (6.4)

with a sample contribution corresponding to the partition ΔMK = +1 decomposed into

1- and 2-electrons parts

σ+1(T †, T †) =
∑
ij

∑
S

〈
T †|a†

i |S†
〉∑

S

〈
T †|aj|S

†〉
·hij · CS,S

+
∑
i≥k
lj

∑
S

〈
T †|a†

ia
†
kal|S†

〉∑
S

〈
T †|aj|S

†〉

·
[(

ij|kl
)
−

(
kj|il

)]
· CS,S

+
∑

ik
l≥j

∑
S

〈
T †|a†

i |S†
〉∑

S

〈
T †|a†

k
alaj|S

†〉

·
[(

li|jk
)
−

(
ji|lk

)]
· CS,S (6.5)

where S† denotes a string of unbarred creation operators. A full account of the sigma

vector partitions is given in reference [71]. We here notice that the CI-coefficients CS,S

are in fact a linear combination of the amplitudes found in step 1.

As discussed above, the vector ĤeT̂ |Ref〉 should be in the space of at most n-fold

excitations whereas eT̂ |Ref〉 may be in the space of n+2-fold excitations. The operation

count of this step thus scales as On+2V n+2 like in step 1.

The efficiency of the direct CI steps in terms of required computer memory benefits

from the batching of coefficients in the linear transformation steps. In terms of speed,

the string-based CI algorithm [73,129] allows for the treatment of large expansions as no

explicit comparison of configurations/occupations is carried out and higher than double

excitations are treated on the same footing as double excitations.

Step 3:

|c〉 = e−T̂ |b〉, expansion of the transformed reference vector.

|c〉 =

(∑
n=0

(−1)n

n!
T̂ n

)
|b〉

= |b〉 − T̂ |b〉 +
1

2!
T̂
{

T̂ |b〉
}
− 1

3!
. . . (6.6)



96 6 Computational Structure

The expansion is carried out in complete analogy with step 1. It is assured that the

expansion is restricted to the excitation manifold 〈μ| and will therefore have the regular

scaling of OnV n+2.

Step 4:

Ωμ = 〈μ|c〉, evaluation of transition density matrix elements.

Ωμ =
〈
Ref

∣∣τ̂ †
μ

∣∣ c〉
The projection of the excitation manifold 〈μ| against the expanded transformed reference

vector |c〉 corresponds to the calculation of transition density matrix elements and yields

the CC vector function. Employing the concise implementation described in references

[72] and [73] the evaluation becomes equivalent to the calculation of CI sigma vectors,

where instead of a contraction with integrals a contraction with expansion coefficients is

performed. For the present case, the left-hand vector of expansion coefficients is a unit

vector. As this step is carried out in the space of at most n-fold excitations, it scales as

OnV n+2 and is therefore significantly faster than step 1 and 2.

6.2.2 The Unlinked Coupled-Cluster formalism for the CI-based

Coupled-Cluster

Looking at the four steps for the implementation in Section 6.2.1 of the CI-driven gener-

alized active space coupled cluster it is seen that if the third step is left out we end in the

unlinked coupled-cluster formalism. The vector function generated in this way is shown

in Eq. 3.19 where we see that exp(−T̂ ) is not present. While it in principle should be

straight forward to omit step 3 and then evaluate the transition density matrix element

Ωμ = 〈μ|b〉 this, however, has other consequences. The most important consequence is

that the loop structure in step 1 does not truncate after four but after M + 2 where M

is the highest excitation in the actual calculation space since only in this way can we be

sure to have included all possible connections to the projection manifold4. When doing

state-selective multireference coupled-cluster calculations we will often include higher re-

stricted excitations than doubles meaning the truncation of the loop in step one would

come much later. Since step 1 is the costly step this would mean a slowdown of the code

if an unlinked approach was attempted which is why it has not been pursued.

4Of course in the limit of FCC this will also be M .
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6.3 Documentation of the Commutator-Based Coupled-

Cluster Code

The documentation of the commutator-based coupled-cluster code will mainly focus on the

algorithm itself. In many steps it will not be evident from the documentation what changes

has been needed in the individual subroutines since this would be much too technical and

unmanageable to present without showing many of the subroutines explicitly themselves.

This also applies to many of the setup routines where the additional new Hamiltonian

and cluster operator classes are being constructed and the more technical routines for

input/common block transfer for the getting the correct information from the other DIRAC

modules. A complete overview of the commutator-driven coupled-cluster code is shown

in Figure 6.3. It is here noted that the external setup routines are in parts different from

those used in the CI-driven coupled-cluster code (see Figure 6.2) since there is no doubling

of certain main operator classes for the Hamiltonian here. The major new routines like

the integral fetcher and the handling of these will, however, be presented in some detail

since a completely new routine was here needed and because it can be presented in a

standalone way. Furthermore, an example of optimization of the code will be given where

it is shown in Section 6.3.1 how to eliminate overhead in the setup of the equations.

Further optimization like a reduction of the memory requirement to around one third was

done but will also be too technical to show even if this was the step that enabled the

code to be used in large-scale calculations (+500 × 106 amplitudes) on standard Linux

machines. Further options for memory reduction, besides batching, are also presented in

Section 6.3.1.

The solution of the coupled-cluster equations is most effectively realized by using it-

erative algorithms that rely on repeated evaluations of the coupled-cluster vector function

for given coupled-cluster operators T̂

Ωμ = 〈HF |τ̂ †
μ exp(−T̂ )Ĥ exp(T̂ )|HF 〉 (6.7)

The relativistic Hamiltonian contains at most two-body operators and has therefore at

most four elementary operators that may be contracted with the T̂ -operator. The Baker-

Cambell-Hausdorff expansion of the similarity transformed Hamiltonian exp(−T̂ )Ĥ exp(T̂ )
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terminates therefore after four commutators and so we have

Ωμ =

〈HF |τ̂ †
μ(Ĥ + [Ĥ, T̂ ] +

1

2
[[Ĥ, T̂ ], T̂ ] +

1

6
[[[Ĥ, T̂ ], T̂ ], T̂ ] +

1

24
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ])|HF 〉

(6.8)

A central part of the development of coupled-cluster programs is the development of

efficient algorithms for the evaluation of the coupled-cluster vector function. We will now

sketch our implementation of this evaluation for the general Kramers-restricted relativis-

tic coupled-cluster method. A central feature of our code is the use of general algorithms

that allows arbitrary excitation levels and subdivisions of the spaces of occupied and un-

occupied spinors. Furthermore, the use of algorithms that exhibits optimal scaling with

respect to the number of occupied and virtual orbitals and that relies on matrix multi-

plications for the innermost loops, produces an efficient code that allows the calculations

combining large excitation levels and spinor bases. The current relativistic code is in this

way in line with the recent developments of general coupled-cluster methods. Although

the scalings of the various terms are identical to the optimal scalings, the prefactors of

the various terms are currently not optimal, as the various terms are not collected in the

optimal way.

Another central feature of the code is the use of second-quantized operators and

their commutation relationship. In the outer loops, this is used to find the possible

contractions between classes of the Hamiltonian and classes of one or several T-operators

and to reduce these connections to the smallest possible number. In the inner loops,

second quantization is used to re-express the various terms in a form that allows the use

of matrix multiplication to evaluate these terms.

A sign of the generality of the code is that no significant changes in the loop structure

were needed for adapting the non-relativistic code [99] to the relativistic framework, only

extra classes of operators and coupled-cluster amplitudes needed to be added to the

arrays describing these terms. However, considerable work was required to adapt for the

occurrence of complex rather than real algebra, the use of double group rather than point

group symmetry as well as to interface to another program for generating integrals and

for fetching of these sorted integrals in an efficient way. Minor changes were necessary in

many subroutines for including double group symmetry and the additional classes while
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some subroutines needed an almost complete rewrite. It was, however, here realized that

no explicit looping over vectors of different Mk for the ΔMk flipping was needed as it is

done in the CI codes [71, 72]. Instead, the Hamiltonian and cluster operator classes with

ΔMk �= 0 are directly included in the contraction scheme from the non-relativistic code

like any operator class with ΔMk = 0 and therefore no further loop structure was needed.

The algorithm relies on the division of the Hamiltonian and coupled-cluster operator

into different classes. So, the highest level of the program consists of loops over such classes

and all terms belonging to given classes of these operators are treated simultaneously.

Neglecting all the logistics related to ensuring that the right data are in memory when

needed, the overall structure of the program is

loop {Classes of H}
Rank H → Min,Max ncomm

loop {Number of commutators: ncomm}
loop {ncomm classes of T}

Find all possible contractions of the current classes of H and ncomm T operators

loop {Contractions}
Get optimal order of parts of contraction, reorder operators

loop {Parts of contraction}
Perform part of contraction

end loop[Parts of contraction]

end loop[Contractions]

end loop[ncomm classes of T classes]

end loop[Number of commutators]

end loop[Classes of H]

This loop structure can be divided into three parts: The setup of equations for given

classes of operators, optimum solution of equations and calculation of vector functions.

These three parts along with a schematical overview of the code is seen in Figure 6.3. The

external setup of the classes works as described in Sections 2.2.1 and 5.1.2. The sorting

of the integrals according to the Hamiltonian classes is the same as in the CI codes, the

fetching of these integrals for the construction of the inactive Fock matrix and for the

Hamiltonian is for the two electron integrals the same and described in more details in

Section 6.3.2. The equation setup along with the optimum solution to these along with
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Figure 6.3: Overview of the commutator-driven coupled-cluster code.
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the execution of the solution will in the following be discussed as it has been used in the

applications presented in Section 9.2. In Section 6.3.1 another way to setup the equation

to avoid bottlenecks in this region will be presented.

The largest number of non-vanishing commutators associated with a given class of

the Hamiltonian is twice the down-rank of this class of operators, so only operators with

down rank 2 gives rise to non-vanishing four-fold commutators. All commutators are

formally projected by a determinant 〈HF |τ̂μi. Therefore, in addition to ensuring that a

given combination of Hamiltonian class and classes of T-operators is non-vanishing, only

such combinations that lead to operators within the operator manifold of T̂ are evaluated.

Assume now that we have a class of the Hamiltonian Ĥc and M classes of T̂ ,

T̂i1 , . . . , TiM that produce a non-vanishing M-fold nested commutator [. . . , [ĤC , T̂i1 ] . . . , T̂iM ].

Non-vanishing terms in the nested commutator occur only from the match of down-

operators, i.e. creation of occupied spinors and annihilation of unoccupied spinors in

the Hamiltonian, with up-operators, i.e. annihilation of occupied spinors and creation

of unoccupied spinors, in the coupled-cluster wave operator. Furthermore, as the oper-

ator defined by the nested commutator acts on the reference state, all down-operators

in the Hamiltonian must be matched by up-operators in the cluster operators. Finally,

to ensure that all of the commutators in the nested commutator are non vanishing, each

cluster operator must have at least one elementary operator matched by an operator in the

Hamiltonian. A nested commutator may thus be evaluated by taking all possible matches

between the elementary operators in the Hamiltonian and the wave operator. Borrowing

from the language of many-body physics, a match of down-operators (creation of occupied

spinors and annihilation of unoccupied spinors) with the corresponding up-operators (an-

nihilation of occupied spinors and creation of unoccupied spinors) is called a contraction

and we will denote such a contraction of operators A, B as AB. Note that we have not

discussed any signs connected with the transposition of the elementary operators, but we

will return to this. As an example of the evaluation of a nested commutator we consider

the commutator of the Hamiltonian main operator class (Ĥ2,0,2) containing four unbarred

virtual indices

Ĥ4v =
1

2

∑
abcd

(ad|bc)a†
aa

†
bacad (6.9)
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and two double excitations of unbarred spinors

T̂i1 = T̂i2 =
1

4

∑
ijab

tab
ij a†

aa
†
baiaj (6.10)

The commutator [[Ĥ4v, T̂i1 ], T̂i2 ] may then be written as the sum of all possible combina-

tions of connections

[[Ĥ4v, T̂i1 ], T̂i2 ]

=
1

32

∑
abcd,i′j′a′b′,i”j”a”b”

(ad|bc)ta′b′
i′j′ t

a”b”
i”j” [a†

aa
†
bacad, a

†
a′a

†
b′ai′aj′ ], a

†
a”a

†
b”ai”aj”]

=
1

32

∑
abcd,i′j′a′b′,i”j”a”b”

(ad|bc)ta′b′
i′j′ t

a”b”
i”j” a†

aa
†
bacada

†
a′a

†
b′ai′aj′a

†
a”a

†
b”ai”aj”

+
1

32

∑
abcd,i′j′a′b′,i”j”a”b”

(ad|bc)ta′b′
i′j′ t

a”b”
i”j” a†

aa
†
bacada

†
a′a

†
b′ai′aj′a

†
a”a

†
b”ai”aj”

+
1

32

∑
abcd,i′j′a′b′,i”j”a”b”

(ad|bc)ta′b′
i′j′ t

a”b”
i”j” a†

aa
†
bacada

†
a′a

†
b′ai′aj′a

†
a”a

†
b”ai”aj”

+
1

32

∑
abcd,i′j′a′b′,i”j”a”b”

(ad|bc)ta′b′
i′j′ t

a”b”
i”j” a†

aa
†
bacada

†
a′a

†
b′ai′aj′a

†
a”a

†
b”ai”aj”

+
1

32

∑
abcd,i′j′a′b′,i”j”a”b”

(ad|bc)ta′b′
i′j′ t

a”b”
i”j” a†

aa
†
bacada

†
a′a

†
b′ai′aj′a

†
a”a

†
b”ai”aj”

+
1

32

∑
abcd,i′j′a′b′,i”j”a”b”

(ad|bc)ta′b′
i′j′ t

a”b”
i”j” a†

aa
†
bacada

†
a′a

†
b′ai′aj′a

†
a”a

†
b”ai”aj”

+
1

32

∑
abcd,i′j′a′b′,i”j”a”b”

(ad|bc)ta′b′
i′j′ t

a”b”
i”j” a†

aa
†
bacada

†
a′a

†
b′ai′aj′a

†
a”a

†
b”ai”aj”

+
1

32

∑
abcd,i′j′a′b′,i”j”a”b”

(ad|bc)ta′b′
i′j′ t

a”b”
i”j” a†

aa
†
bacada

†
a′a

†
b′ai′aj′a

†
a”a

†
b”ai”aj” (6.11)

The above eight terms are not independent. By using the anti-commutation relations

of the elementary operators and the antisymmetry of the coupled-cluster amplitudes under

the permutation of indices, it is straightforward to show that the nested commutator of

Eq. 6.11 reduces to a single term

[[Ĥ4v, T̂i1 ], T̂i2 ]

=
1

4

∑
abcd,i′j′a′b′,i”j”a”b”

(ad|bc)ta′b′
i′j′ t

a”b”
i”j” a†

aa
†
bacada

†
a′a

†
b′ai′aj′a

†
a”a

†
b”ai”aj” (6.12)

To evaluate the nested commutator, we then calculate the number of transpositions

of elementary operators required to bring the operators to be contracted next to each
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other, and use the parity of this permutation as the overall sign. In Eq. 6.12 there

are three elementary operators between the operators to be contracted giving an overall

sign of minus 1. The nested commutator is finally evaluated by removing the contracted

operators and replacing the pair of indices by a common index for each match. The nested

commutator of Eq. 6.12 therefore becomes

[[Ĥ4v, T̂i1 ], T̂i2 ]

=
1

4

∑
ab,i′j′b′,i”j”b”

(
∑
cd

(ad|bc)tdb′
i′j′t

cb”
i”j”)a

†
aa

†
ba

†
b′ai′aj′a

†
b”ai”aj” (6.13)

The nested commutator [[Ĥ4v, T̂i1 ], T̂i2 ] is a four-body operator with the factors determined

by a matrix multiplication of Hamiltonian integrals and T-amplitudes. Note, however,

that both the creation or the annihilation indices occur as free summations, although

the operators may be required—and are stored—as matrices with ascending indices. In

Eq. 6.13, the indices corresponding to occupied spinors are not included in the matrix

operations, and it is therefore trivial to impose an ascending order of these

[[Ĥ4v, T̂i1 ], T̂i2 ]

=
∑

ab′b′b”,i′<j′,i”<j”

(
∑
cd

(ad|bc)tdb′
i′j′t

cb”
i”j”)a

†
aa

†
ba

†
b′ai′aj′a

†
b”ai”aj” (6.14)

giving a matrix multiplication of integrals and amplitudes as stored in the code.

Above we have considered the two identical cluster operators as can also be seen

from Eq. 6.10. In case of non-identical cluster operators, the ordering of the contraction

of the operators will be changed if this reduces the operational count. The ordering of

the operators will then be chosen such that the inner most contraction contains the most

elements.

These three steps where an equation is set up, arranged and solved is then done for

every possible fully connected combination of Hamiltonian and cluster operator classes.

Since the form of the equations is not fixed, like in a regular CCSD code where the matrix

elements are explicitly programmed, this allows for an easy implementation of truncation

schemes since one here only needs to define the cluster operator classes in the external

setup. Here in the internal part we will just try to find the possible equations and calculate

these. The approach to finding these is described in more detail in Section 6.3.1 where it

is seen that all combinations are tried. Thus all possible equations are included regardless
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of the structure of the cluster operator. Since the number of possible equations always

match the number of amplitudes regardless of how the cluster operator is truncated this

ensures that the equation system will always be fully determined.

6.3.1 Solution to a Bottleneck in the Equation Setup

As mentioned in Section 6.3, all possible combinations of the Hamiltonian and cluster oper-

ator classes are tried in the setup for the vector function. We will here examine the scaling,

if we do an elementary search for the vector function, with respect to the number of GAS

in the non-relativistic and fully relativistic case for the real groups. Since the number of

combinations is the largest for the four-fold commutators we will focus on these. The loop

structure originally suggested is as displayed below where the first part with the equation

setup is shown in more details and the rest suppressed.

loop {DO IH=1,NHTP ← H classes}
Lower Commutators

IF RANK(IH)=2

loop {DO IT1=1,NTTP ← T classes}
[IH,IT1]=O1 ← Contraction

loop {DO IT2=IT1,NTTP ← T classes}
[O1,IT2]=O2 ← Contraction

loop {DO IT3=IT2,NTTP ← T classes}
[O2,IT3]=O3 ← Contraction

loop {DO IT4=IT3,NTTP ← T classes}
[O3,IT4]=O4 ← Contraction

IF O4 ∈ μ → Check if Fully Connected

IF Fully Connected → Calculate contribution

end loop[IT4]

end loop[IT3]

end loop[IT2]

end loop[IT1]

end loop[IH]
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We here simply loop over all classes of the Hamiltonian and the cluster operators and

if the resultant class belongs inside the projection manifold and is fully connected it is

calculated. In this way we have guaranteed that all possible equations will be searched

and only the needed calculated. The problem is, however, we here try all combinations

of equations where, in fact, only few of these are needed.

As we see from Figure 6.3 this set up of equations is done in each iteration. The

equations from one iteration to the next of course do not change so this is in principle a

redundant step to repeat in every iteration. This however is not a problem as long as the

number of classes remain small. When one attempts to do a state-selective multireference

coupled-cluster calculation this, however, will not be the case. This is due to the increased

number of generalized active spaces and excitation level as can be seen in Table 6.1 and

is discussed in Section 5.1.2. We here find that the number of classes grows dramatically

and can give large overheads that are independent of calculation size, but depend just on

calculation type.

Table 6.1: Number of Hamiltonian and cluster operator classes in the non-relativistic and fully relativis-

tic case for various types of calculations and generalized active spaces. For the T classes the maximum

number is here listed.

# H classes # T classes # H classes rel # T classes rel

Method NGAS NHTP NTTP NHTP NTTP

CCSD 2 42 5 68 13

CCSDT 2 42 9 68 29

CC(62) 4 488 398 720 1848

CC(62) 5 1125 942 1625 4256

CCSDTQ 5 1125 492 1625 2244

From the loop structure of the equation setup we see that the number of contractions

between the operator strings representing the classes to be performed is NHTP×NTTP4/8

which then has to be compared against NTTP to see if the resultant contraction is inside

the projection manifold. Let us start with the evaluation of the non-relativistic case and
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the CC(62) method with four GAS. As we see from Table 6.1, we will then have 1.5×1012

number of contractions which then has to be compared against the 398 cluster operator

classes which is still possible in a reasonable amount of time. In the relativistic case we

here find 1× 1015 number of contractions which has to be compared against 1848 cluster

operator classes. From this we clearly see that if we want to fully exploit the GAS concept

and use many GAS with higher excitations we need to find a way to setup the equations

significantly faster since the CC(62) with 5 GAS is completely out of reach with 6.7×1016

possible contractions which should be compared against 4256 cluster operator classes5.

A fast equations setup along with the removal of the equation setup in the iterative

procedure has been programmed. Inside the iterative procedure the needed equations are

now just read in, arranged and calculated. The fast equation setup relies on a systematic

generation of the nested commutator and on the generation of the cluster operator classes.

The new algorithm for this is presented below:

Find Rank H

Find and Store Connection for Rank Zero H

Find All Rank Reducing T’s for given H

loop {DO IH=1,NHTP ← H classes}
IF RANK(IH)=1

loop {DO IT1=1,NTTP ← T classes}
[IH,IT1]=O1 ← Contraction

IF RANK(O1) = 0 ← Store Connections for One Commutator

end loop[IT1]

IF RANK(IH)>1

loop {DO IT1=1,NTTPcon ← Only Rank Reducing T classes}
[IH,IT1]=O1 ← Contraction

IF RANK(O1) = 0 ← Store Connections for One Commutator

Find Excitation level of O1

If Second Contraction Possible ← Store operator O1

end loop[IT1]

5From Section 5.1.2 we see that with increased number of GASs the length of the string representing

a class grows, thereby giving an additional slowdown for more GASs. Hence, double the number of GAS

doubles the length of the string representing a class.
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end loop[IH]

loop {DO IH=1,NHTP ← H classes}
IF RANK(IH)=2

loop {DO IT2=IT1,NTTPcon ← Only Rank Reducing T classes}
[O1,IT2]=O2 ← Contraction

IF RANK(O2) = 0 ← Store Connections for Two Commutators

end loop[IT2]

IF RANK(IH)>2

loop {DO IT2=IT1,NTTPcon ← Only Rank Reducing T classes}
[O1,IT2]=O2 ← Contraction

IF RANK(O2) = 0 ← Store Connections for Two Commutators

Find Excitation level of O2

If Third Contraction Possible ← Store operator O2

end loop[IT2]

end loop[IH]

loop {DO IH=1,NHTP ← H classes}
IF RANK(IH)=3

loop {DO IT3=IT2,NTTPcon ← Only Rank Reducing T classes}
[O2,IT3]=O3 ← Contraction

IF RANK(O3) = 0 ← Store Connections for Three Commutators

end loop[IT3]

IF RANK(IH)>3

loop {DO IT3=IT2,NTTPcon ← Only Rank Reducing T classes}
[O2,IT3]=O3 ← Contraction

IF RANK(O3) = 0 ← Store Connections for Three Commutators

Find Excitation level of O3

If Fourth Contraction Possible ← Store operator O3

end loop[IT3]

end loop[IH]

loop {DO IH=1,NHTP ← H classes}
IF RANK(IH)=4

loop {DO IT4=IT3,NTTPcon ← Only Rank Reducing T classes}
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[O3,IT4]=O4 ← Contraction

IF RANK(O4) = 0 ← Store Connections for Four Commutators

end loop[IT3]

end loop[IH]

From the algorithm above we see we build the commutators successively by transferring

the possible operators over to the next contraction. While it may look similar to the

algorithm for the four-fold nested commutators there are here many reductions in the

building of further commutators being made, i.e. eliminating contracted operators where

further contractions will not be inside the projection manifold or completely reduce the

rank. The reductions come about in only looping over rank-reducing cluster operators

classes for a given Hamiltonian class which also includes already contracted Hamiltonian

classes. This furthermore also ensures that all stored operators with up to two commu-

tators will be fully connected. We here also note that the more GASs included the more

cluster operator classes can reduce the rank of a given Hamiltonian class but since the

number of zeros/small numbers increase the percentage of rank-reducing operators will

go down, i.e. giving greater savings with more GASs. The insistence on a continual rank

reduction helps to ensure that the resultant operator will be fully connected for up to

two commutators. Furthermore the sorting of the cluster operator in excitation level and

Kramers flip is used to reduce comparison in the projection manifold by only comparing

against same excitation level and Kramers flip6 and to eliminate intermediate operator

classes (O1-3) which cannot stay inside the projection manifold since the following clus-

ter operator classes will take it outside. Large reductions were here also introduced by

performing contractions of the string representation in a different fashion where no neg-

ative number can appear. With all the equations known these can be taken outside the

iterative procedure of the code to give the code structure shown in Figure 6.4 where also

the number of equations passed down to the optimum solution step has been significantly

reduced. This has made it possible to find the equations for all the GAS setups shown in

Table 6.1 in a reasonable amount of time.

6Hence the same elementary operator class (see Section 2.2.1.2).
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Figure 6.4: Overview of the commutator-driven coupled-cluster code with an efficient equation genera-

tion.
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6.3.2 Integral Handling

After the integral transformation step where the integrals have been transformed from the

AO to the MO basis (see Section 4.3.2) these are written to disk in an i,j,k,l sorting fashion.

While this sorting is easy to deal with it is not practical for the codes used here since

it is difficult to get a reduction in the number of integrals stored in core and a resorting

of the integrals is therefore needed. In section 2.2.1 it was shown how an operator can

be divided into the main operator class form and later in Section 5.1.2 this division was

extended to the classes. Since only integrals belonging to a given Hamiltonian class will

appear when this Hamiltonian class is being calculated this can be used to have a sorted

list of integrals and to reduce the number of integrals stored in core.

At the moment the sorting of integrals is proceeding in the same fashion as the one

developed for the GASCI routines. An algorithm for this sorting is shown in [72]. This

means the two fully relativistic coupled-cluster codes share this sorting despite the fact

that the commutator-driven coupled-cluster code has a different treatment of the Ĥ2,0,1

main operator class. In the Hamiltonian main operator classes Ĥ2,0,0 and Ĥ2,0,2 where

there are either four unbarred or barred indices, the integrals are stored as Coulomb minus

exchange while the other classes are stored separately. This also includes Ĥ2,0,1 which is

why in the commutator-driven coupled-cluster code two integrals are fetched instead of

one for this class. In this way the Ĥ2,0,1 main operator class is also fetched as Coulomb

minus exchange just from two different CI-Hamiltonian classes. The sorting in the Ĥ2,0,0,

Ĥ2,0,2, Ĥ2,2,0 and Ĥ2,−2,0 classes is such that so we here have indices l>j and k>i while this

is not the case for the Ĥ2,0,1 class meaning a different fetching of these is necessary and

described in the algorithm below. Since the particle-hole formalism is used we here work

with modified one-electron integrals. These are instead the elements of the inactive Fock

matrix and, as seen in Figure 6.4, generated in the external setup. The construction of the

inactive Fock matrix uses the new integral fetcher and is stored in memory throughout7.

As can be seen from the loop structure for the equation generation in Section 6.3.1, the

outer loop is always over the Hamiltonian classes. With the sorting of the integrals one

can therefore significantly reduce the number of integrals stored in core by storing all

the integrals on disk and then just reading in the class of integrals needed for a given

7This could also be written to disk and just read in when the one-electron Hamiltonian classes are

looped over.
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Hamiltonian class. This way one would never need to store more integrals in core than

needed for the largest Hamiltonian class. For this to work a new sorting of the Ĥ2,0,1

main operator class would be needed, so these would also be stored as Coulomb minus

exchange, to make the reduction in the number of integrals and an easier readin. Because

this is not yet implemented all integrals are at the moment stored in core.

The integral fetching at the moment includes a few redundant steps although these

do not significantly influence the performance. The fetching of two-electron integrals

is performed as shown in the algorithm below where the only information needed are

the indices of the integral and the number of bars. The one-electron integrals are just

taken from the inactive Fock matrix. Due to the different sorting of some of the classes,

differences in the fetching of these was necessary.

Map indices to GAS

Reorder indices (except for Ĥ2,0,1)

Calculate class and offset

Calculate offset in class and absolute offset

Fetch integral

For the mapping of the orbital indices to a GAS a loop over the number of GAS

is performed for the mapping. This is the only loop structure in the integral fetcher.

Everything else follows from one-line formulas with the use of arrays set up in the integral

sorting step and from the input. The reordering of indices is done since integrals for

these classes are stored as Coulomb minus exchange only once, i.e. not with the indices

switched, and a sign is therefore also introduced. A correct ordering to the sorting is

needed to be able to identify the integral in the calculation of the class. Here the class is

calculated again depending on the sorting. For the Ĥ2,0,1 class both types for a Coulomb

minus exchange fetching is identified. The offset is calculated via an array setup in the

integral sorting step. An offset inside a class is calculated and an absolute offset is found

by adding the offset from the class. With the absolute offset we have the position of the

integral(s) on the array and can find this/these. What is not seen from the algorithm

above is that the way to calculate classes and offset is quite different for the different

sorting. This means the integral fetcher is in fact more like a combination of two fetchers

with the same overall structure but for differently sorted integrals. An added complication
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is the fact that trivially zero integrals8 are not stored giving a slightly different fetching

depending on indices being equal or not. Despite a fast integral fetching this could be

improved by a better integral sorting.

Since a simple reading in of integrals for a given class could be done in the first loop

of the code, only these integrals would be needed in core. A step like this would free up

a lot of memory from the integrals. With a sorting of the integrals as done for the Ĥ2,0,1

just as Coulomb minus exchange the fetching of the integrals could be done in a much

simpler and faster way which would improve the overall performance of the code since

this is a time consuming due to the many integrals required in large scale calculations.

6.4 Documentation of the Usage of ARDUCCA Mod-

ule

Since the spin-free and the fully relativistic codes are two separate entities9 they require

separate input. These inputs will be described in the following sections.

6.4.1 Documentation of Input of the Spin-Free ARDUCCA Mod-

ule

The ARDUCCA module in DIRAC10 is called in the wave function section as

**WAVE FUNCTION

.ARDUCCA

and all ARDUCCA specific input are under

*ARDUCCA

8From Coulomb minus exchange
9They do of course share some routines but never ones with any common blocks.

10For a complete input description of the visit the DIRAC wiki page at

http://wiki.chem.vu.nl/dirac/index.php/
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The inputs will be divided into essential and optional but only those needed for the

coupled-cluster runs are here included. The input is often followed by a specification of

the keyword. Certain inputs will have to be specified before others which will be clear

from the loop structure. The essential inputs are:

.INIWFC

WFTYP

WFTYP options are DHFSCF for closed shell reference and OSHSCF for open shell.

.CITYPE

GASCI

GASCI is for general expansion. Here standard blackbox CCSD input could be explicitly

programmed.

.NACTEL

NELEC

NELEC is the number of electrons in the correlation step.

.MULTIP

MS2

MS2 is the spin multiplicity times two of the wave function.

.GASSHE

NGAS

loop {1,NGAS}
A,B, . . . , NIRREP

end loop[NGAS]
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NGAS is the number of generalized active spaces. A,B, . . . , NIRREP is the number of

orbitals in each symmetry (separated by comma) of each GAS (one GAS per line). Notice

the order of the irreps is determined by the generator input for the point group in the

.MOL file (see http://wiki.chem.vu.nl/dirac/index.php/ )

.GASSPC

NSEQCALC

loop {1,NSEQCALC}
loop {1,NGAS}

MINOCC MAXOCC

end loop[NGAS]

end loop[NSEQCALC]

NSEQCALC is the number of sequential calculations. For coupled-cluster calculations this

is a minimum of two for the commutator driven and three for the CI-driven coupled-cluster

code. MINOCC and MAXOCC is the minimum and maximum accumulated occupation

in each GAS for each calculation. For any coupled-cluster calculation the first one must

be a single determinant. For the CI-driven coupled-cluster code the second calculation is

the extended space while the third is the actual space, see Section 6.2.1 for more details

on this.

.SEQUEN

loop {1,NSEQCALC}
loop {1,NCALC}

CALCTYP,NITER,TDEF

end loop[NCALC]

end loop[NSEQCALC]

NCALC is the number of calculations with the given accumulated occupation in the

sequential calculation. CALCTYP is the type of calculation, options are CI or GEN CC

for a GASCI or GASCC type of calculations, respectively. NITER is the maximum

number of iterations and TDEF is the T defining space for the cluster operator. In

normal calculations TDEF equals two. Notice in the CI-driven this will be different to

the actual space.
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.NEWCCV

Is an optional keyword and will start the commutator driven coupled-cluster code. The

default in the spin-free case is the CI-driven. To reach the last type of general-order

coupled-cluster code one has to hardwire it in the code.

.CCLR

NROOT A,NROOT B,. . . ,NROOT NIRREP

Activates the linear response module. This works with the CI-driven coupled-cluster code.

NROOT X specifies the number of roots in a given irrep X.

6.4.2 Documentation of Input of the Fully Relativistic ARDUCCA

Module

The fully relativistic coupled-cluster codes is currently residing behind the MCSCF mod-

ule [130] together with the LUCIAREL module [71–73]. Because of this the input for the

coupled-cluster codes is in the wave function section

**WAVE FUNCTIONS

.KRMCSCF

All coupled-cluster inputs are under the MCSCF input so we have

*KRMCSCF

The input will resemble the ones shown in Section 6.4.1 for the spin-free case since the

fully relativistic codes are adaptations of the spin-free codes. The inputs from the spin-free

case will therefore in large parts be the same in the relativistic case and I will therefore

restrict the documentation of keywords to new or changed keywords from the spin-free

case. As some might notice there is no restart keyword this is because I have made an

automated restart that commences if the file CCAMP is present. The inputs are:

.CI PROGRAM
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CIMOD

The options for CIMOD are LUCIAREL and GOSCI where LUCIAREL is the option to

choose for the coupled-cluster runs.

.INACTIVE

NINAC

where NINAC is the number of occupied Kramers pairs not to be taken into account in

the correlation treatment. This keyword replaces .NACTEL in the spin-free case. Further

replacement is done with .GASSH which replaces .GASSHE but the structure of this input

is otherwise preserved.

.MK2REF

IMK2

.MK2REF replaces .MULTIP and IMK2 is two times the Kramers projection of the ref-

erence.

.MK2DEL

DELMK2

DELMK2 denotes the maximal flipping of the Kramers projection. This gives the possi-

bility of doing approximation in the Kramers flip as described in Section 8.1.

.CCONCI

.CCONCI replaces .NEWCCV in the spin-free case. Notice the default in the fully rela-

tivistic case is the commutator-driven coupled-cluster code and .CCONCI will start the

CI-driven coupled-cluster code.

.SYMMETRY

IIRREP

IIRREP specifies the symmetry.
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.MAX MACRO

NMACRO

NMACRO specifies the number of macro iteration done in a calculation. Notice this is

only in conjunction with the MCSCF module itself i.e. this has been zero throughout this

thesis.

.CIONLY

give the possibility to skip the integral sorting step performed before every run11. This

is mostly used for different types of calculations at a given internuclear distance or for

restarted calculations.

.INOCOVA

INUM

INUM determines the number mixing of the active and inactive hole indices as described

in Section 8.3.

.CCEX E

NROOT A,NROOT B,. . . ,NROOT NIRREP

.CCEX E activates the linear response module. This module is implemented but not

debugged.

6.4.3 Sample Input

This section will be concerned with giving a realistic sample input for the fully relativistic

generalized active space coupled-cluster method from the keywords shown in Section 6.4.

I will here also briefly comment on how to use two of the approximations presented in

Section 8. The input will be restricted to only *KRMCSCF and the commutator driven

coupled-cluster code.

11It is the same for all types of calculations since they use the same Hamiltonian.
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The example chosen is a state-selective multireference coupled-cluster setup for the

BiH molecule in a cc-pVTZ basis with a truncation of the virtual space of 5.6 Eh. The

inactive holes are the 5d electrons on Bi and the active holes consist of the occupied 6s6p

on Bi and 1s on H. For the active particles the unoccupied 6p on Bi is chosen. This then

makes it a CC(62) calculation12.

*KRMCSCF

.CI PROGRAM

LUCIAREL

States modules to use.

.INACTIVE

34

The KR-MCSCF module calls the MOLTRA module (see Section 4.3.2) which freezes 34

Kramers pairs.

.GASSH

4

5

3

2

54

Four GA spaces with 5 Kramers pairs in the first space (5d on Bi), three in the second

(occupied 6s6p on Bi and 1s on H), two in the third (unoccupied 6p on Bi) and 54 Kramers

pairs in the last space.

.GASSPC

12Notice no higher than hextuple excitations can be present due to the number of active particles.
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2

10 10

16 16

16 16

16 16

8 10

10 16

14 16

16 16

Two calculations with minimum and maximum occupation in each GA space. First calcu-

lation defines reference determinant second the calculation the type. For the calculation

up to two holes are allowed among the inactive holes (8 10), six holes/particles among the

active holes and particles(10 16) and two particles among the inactive particles (14 16).

The last line (16 16) ensures that all electrons are limited to the given Kramers pairs.

.SEQUEN

1

CI,50

1

GEN CC,70,2

The sequential execution of the calculations. 1 CI calculation with a maximum of 50

iterations in the first GA space. 1 coupled-cluster calculation with a maximum of 70

iterations where the defining space for the cluster operator is the second GAS.

.MK2REF

0
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Kramers projection of the reference.

.MK2DEL

6

Maximal Kramers flip equals highest included excitation.

.SYMMETRY

1

In symmetry one.

.MAX MACRO

0

Do not do MCSCF.

To make approximations in the Kramers flip the value for .MK2DEL would be

reduced and all cluster operators with a higher Kramers flip would be discarded.

The CC(nm) approximation can be invoked by increasing the accumulated occupa-

tion for .GASSPC. For a CC(42) one would then have

.GASSPC

2

10 10

16 16

16 16

16 16

8 10

12 16

14 16

16 16

where (10 16) is replaced by (12 16).
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Relativistic vs. Non-Relativistic

Coupled Cluster

The coupled-cluster method being the most successful method for accurate ab initio cal-

culations in quantum chemistry to date has seen surprisingly little adaptation from the

non-relativistic to the relativistic framework. This in particular since the need for methods

which can handle open-shell systems with large static and dynamic correlation is there in

many cases needed, like in the actinides and lanthanides. Like with many other methods

the adaptation to the relativistic framework, i.e. the inclusion of spin-orbit interaction is

often done a posteriori with an effective spin-orbit operator. This means diagonalizing an

effective operator in a set of spin-free states. While this way has the advantage of lower

computational costs, accurate calculations can be difficult to perform when the spin-orbit

splitting is large or when there is a significant difference in the charge distribution of the

various components split by the spin-orbit interaction. As is evident from Section 2.2.2

the costly part in including relativistic effects is the inclusion of the spin-orbit operator.

The effect on the coupled-cluster equations will in this section be discussed to show the

additional cost involved in running calculations where spin-orbit is included a priori . In

Section 2.2.2 it was shown that the number of main operator classes increased quadrati-

cally instead of linearly in the cluster hierarchy when including the spin-orbit interaction.

The discussion will be more qualitative and not focused on exact scaling and prefactors for

higher order coupled cluster but more on the processes leading to higher prefactors. This

will be kept in the context of a Kramers restricted coupled-cluster formalism as presented

in Section 2.2.2.
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7.1 Theory and Application

In a paper by Visscher et al. [74] it was shown that for a Kramers restricted CCSD where

time reversal symmetry of the amplitudes was used (see Eq. 2.74) the floating point

operation was increased by a maximum of 32 in comparison to a spin-free CCSD provided

there existed at least one two-fold element of symmetry like C2. Having such an element

it would mean we would be in the real and complex groups (see Section 2.2.3). For the

real groups the complex algebra could be omitted giving a reduction of 4 and thereby

only being 8 times more expensive. For the quaternion groups the expense would be

significantly higher since here we would also have an odd Kramers flip which was omitted

in the above analysis. As outlined below higher order coupled cluster would be expected

to have an even higher increase in the floating points operations since we would there have

many more connections between Hamiltonian and cluster operator classes not present in

the non-relativistic framework. This implies that the ratio between the prefactors of a

spin-free and spin-dependent coupled cluster would increase with increasing excitation

level.

From Section 2.2.1.3 we have seen that the number of main operator classes increase

quadratic with the excitation level in the fully relativistic case while only linear in the

non-relativistic case. From this we clearly see that the number of amplitudes increase at a

greater rate with every increase in the coupled-cluster hierarchy since the difference in the

number of main operator classes increases. We see that for the T̂1 operator the number of

amplitudes are doubled in comparison to the non-relativistic case while for the T̂2 there is

a more than fourfold increase in the number of amplitudes. A second bottleneck with the

introduction of these many additional classes of amplitudes is the number of connections

in Eq. 7.1 since there is a large increase in the number of possible contractions due to the

Kramers flips of the cluster operators.

〈μ| exp(−T̂ )Ĥ exp(T̂ )|HF 〉 (7.1)

The problem of connections can be viewed as an combinatorial problem where the number

of combinations increase with the excitation level of the cluster operator. This increase

comes from the fact that more combinations of lower order main operator classes will

appear in the highest main operator class with each increase in excitation level. Thus

giving a larger vector function.
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Both of these problems becomes very evident when a state-selective multireference

coupled-cluster [115, 116] as described in Section 3.1.5 with higher internal excitations is

performed and shown in Table 9.2. Here the problems is more the number of connections

than the number of amplitudes since up to 6 fold internal excitations has here been

included. These problems are similar to what has also been observed for CI when going

from the non-relativistic framework to the relativistic one namely that the CI matrix is

no longer as sparse as in the non-relativistic case since no block diagonalization after MK

can be performed like MS in the non-relativistic case. In coupled-cluster we here observe

a large increase in the equation length per amplitude from both higher excitations and

the Kramers flip which is seen by a larger vector function. This means for a given element

in μ in the projection manifold the number of non-zero terms in Eq. 7.1 will be increased

since there is an increased number of excitation operators and these can be combined

with different Kramers flip. Therefore one needs to consider not only the number of

amplitudes but also the excitation levels and the Kramers flip when trying to assess the

computational timings. This need for selected higher excitations in the state-selective

multireference coupled-cluster is a severe bottleneck from an application viewpoint since

the number of contractions needed increase dramatically with the size of the formal model

space and is a problem that is made significantly worse in the fully relativistic regime.

A number of approximation schemes has therefore been suggested to reduce the highest

excitation levels in the model space but still trying to retain the accuracy. These different

methods are presented in Section 8.
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Chapter 8

Approximation Schemes

The development of efficient algorithms for accurate calculations along with sensible ap-

proximations is really the center of all many-body theories and a balance between the

effort of performing the calculation and the accuracy has to be found. Systematic ap-

proximations are therefore essential not only to see if the approximation is good but also

to have the exact value as the limit. The approximation schemes proposed here is an

alternative to the state-selective multireference coupled-cluster method and can be used

as standalone approximation or combined in any way desired. In Sections 7 and 2.2.2

we found that extending the generalized active space coupled-cluster method to the fully

relativistic framework has increased the computational cost of running calculations with

this method significantly. To extend the applicability of the method to larger systems a

sensible set of approximations to reduce the cost of calculations without compromising

the accuracy has been introduced, although not yet numerically tested. The aim here has

been to utilize the generalized active space concept to reduce the number of high excita-

tion operators in the cluster operator, to include the expensive of spin-orbit as efficient

as possible and going to more than one heavy center. The methods will here only be

discussed since no numerical investigation of these has so far been undertaken.

8.1 Restriction of Kramers Flip

The inclusion of spin-orbit in a rigorous fashion has lead to a cluster operator which

does a flipping of the Kramers projection as shown in Section 2.2.2. This has greatly
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increased the number of amplitudes but also the equation length of the coupled cluster

amplitude equations discussed in Section 7. Since the cluster operators with ΔMk �= 0 is

introduced to describe the spin-orbit coupling an approximation in the truncation of the

cluster operator not only in the regular excitation hierarchy but also in the Kramers flip

so

|ΔMk| < M (8.1)

where M is the truncation in the cluster hierarchy is here proposed. A reduced

coupling scheme for the spin-orbit contribution where the maximum Kramers flip is re-

duced would eliminate the higher excitation operator with large Kramers flip that appears

in the state-selective multireference coupled-cluster method. One would here then still

retain the most important amplitudes but get a significant reduction in the number of

amplitudes and connections and the simultaneous truncation in the projection manifold.

This could appear to be a promising way to go since in CC theory we do not get the exact

amplitudes until the limit of FCC is reached and the change in the remaining amplitudes

introduced by the operators with the very high Kramers flip is expected to be very small.

At ±ΔMk = 2 the most important one- and two-electron spin-orbit contributions will

be in. From Eq. 2.74 we see that truncation the cluster operator at ±ΔMk < M we

conserve the time reversal properties of the coupled-cluster wave function since an elimi-

nated amplitude and its time reversed conjugate is simultaneously removed. This type of

approximation is implemented but not yet explored. An input example can be found in

Section 6.4.3 of this approximation.

8.2 CC(nm)

The starting point for the GAS is the single-reference coupled-cluster theory which divides

the spin-orbital space into a hole- and a particle-space where the cluster operator creates

holes in the former and particles in the latter. These spaces we will abridge to HS for

hole space and PS for particle space.

The HS and PS may now in the GAS approach be further subdivided as shown in

Figure 8.1. Here the most physically intuitive division has been shown where the orbitals
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has been divided into 6 subspaces but where only 4 of these are included in the correlation

step1. It is in this division made possible to exclude the inner core and the very high-lying

virtual Kramers pairs which is something that is usually done in at least heavy element

calculations. The active holes are here denoted HS-1 and inactive HS-2. HS-1 will then

typically contain Kramers pairs which contributes most to the non-dynamical correlation

like the valence electrons (or at least part of them) and HS-2 will then contain the outer-

core/inner-valence electrons where static correlation is of less importance. The particle

space is likewise divided into an active particle space PS-1 and an inactive particle space

PS-2. PS-1 will then contain the unoccupied Kramers pairs which gives the strongest

correlation effect for HS-1 and PS-2 will then contain the remaining inactive virtuals.

The cluster operator and thereby also the projection manifold may now be truncated

by setting restrictions on the minimum and maximum accumulated number of holes and

particles created in each subspace. For an example of such truncations of the cluster

operator one could imagine using the following restrictions: HS-2 a maximum of two

holes, HS-1 a maximum of 6 holes, PS-1 a maximum of 6 particles and PS-2 a maximum

of 2 particles. This would following the CC(nm) notation be a CC(82) calculation where

n is the maximum number of hole indices2 and m is the maximum number of inactive

particle indices. This notation work fine as long as the number of active/inactive indices

are the same for the hole- and particle spaces. Since there will not be discussed any

calculations here where this is not the case the author will refrain for trying to find a

general notation for all GAS setups.

Doing a CAS calculation with two external indices i.e. a state-selective multiref-

erence coupled-cluster single doubles for the system shown in Figure 8.1 the restrictions

would be as follows: HS-2 a maximum of two holes, HS-1 a maximum of 10 holes, PS-1

a maximum of 10 particles and PS-2 a maximum of 2 particles. This would then be a

CC(122) calculation. Instead of doing a complete expansion in the active space an incom-

plete expansion like the CC(82) could then be employed instead. Making an incomplete

expansion of the formal modelspace is exactly what the CC(nm) approximation aims at

doing. The advantage of the CC(nm) approach is that it eliminates the highest excitations

1Notice this elimination of inner core and high-lying virtuals is in fact done in the integral trans-

formation step. These are here only included to show that we do not correlate all electrons for heavy

elements.
2Equal to the maximum excitation level.
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Figure 8.1: Example of a division of the hole and particle space into active and inactive hole and particle

spaces for the generalized active space coupled cluster

HS−2 : Inactive holes 

HS−1 : Active holes

PS−1 : Active particles

PS−2 : Inactive particles

Frozen H

Deleted P



8.3 Mixed Core-Valence Correlation Approximations 129

in the cluster operator thereby significantly reducing the number of amplitudes but also

reducing the size of the vector function associated with increases in the excitation level.

This type of approximation has in the non-relativistic framework shown to be very good

and to come close to the state-selective multireference coupled-cluster method for both

ground and excited states [5,118] and is therefore expected to carry over to the relativistic

framework.

The CC(nm) approximation is immediately available for a generalized active space

coupled-cluster program, just like the state-selective multireference coupled-cluster method,

since the division of holes and particle spaces and arbitrary excitations between them is

possible. Further approximations like dividing the active hole and particle space into

two and having different number of holes and particles in these could be another way

to eliminate most of the highest excitations in both the CC(nm) approximation and in

the state-selective multireference coupled-cluster method. Another variant where only one

hole is allowed in the inactive hole space and two particle in the inactive particle space has

been used in the MRCI calculations for RbYb and (RbBa)+ calculations shown in Sections

9.4 and 9.5, respectively. In this way one get the polarization of the outer-core (inactive

holes) and correlation of the valence electrons (active holes). Due to the great flexibility of

the generalized active space approach many more divisions of suborbital spaces could be

envisaged which could be directly aimed at a specific system. The numerical experience

with many of these setups still remain largely unexplored and larger systematic studies

of this would in the future be necessary.

8.3 Mixed Core-Valence Correlation Approximations

for Generalized Active Space Coupled-Cluster Method

I will now discuss approximation is primarily aimed at multiple heavy center calculations

where there are many electrons in the inner-valence/outer-core and at the same time a

need for a multireference expansion of the valence electrons. It can however just as well

be used in somewhat larger molecules where one would also have many core electrons

which would have to be correlated to achieve highly accurate results.

The approximation stems from the realization that for accurate spectroscopic values
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the outer-core electrons will have to be correlated as shown for LiCs and BiH in Sections

9.3 and 9.2, respectively. The outer-core correlation, however, rarely needs a higher than

doubles for the error to be smaller than the error remaining from the basis set or correlation

of the valence electrons, see Section 9.6 for the importance of outer-core correlation. This

combined with the fact that the Kramers pairs included in the first particle space (PS-1)

is usually the most important correlating orbitals for the first hole space (HS-1) but not

for the second hole space (HS-2) and higher combined excitations of (HS-1) and (HS-2)

is also small. What this approximation seeks to do is eliminate combined high excitation

from the first and second hole space to the first and second particle space since these will

grow dramatically if one has a large HS-2 and at the same time many orbitals in PS-1 and

PS-2. This is a case one will often encounter in heavy element calculations with multiple

heavy centers and half filled shells. With this approximation it should be possible to

get the outer-core contribution without having to truncate the higher excitations for the

valence electrons in HS-1 and compromising on the accuracy. In case double excitations

from the core should not suffice the approximation is implemented in a systematic way

so higher excitations from HS-2 can the be included.

While the CC(nm) approximation truncates not only the higher excitations of the

outer-core electrons but also the much more important valence electrons and still re-

tains many of the combined high excitations from HS-1 and HS-2 to PS-1 and PS-2 this

approximations seeks to eliminate the latter while still having higher excitations in the

valence space. This means a step away from the input based on the accumulated number

of electrons to a post selection of cluster operators. The approximation presented here

these combined excitations between hole and particle spaces can also be eliminated for

the CC(nm) approximation.

An example for such an approximation could be done for the Bi dimer where it

would be expected that for an accurate description one would put the 5d in HS-2 and the

occupied 6s6p in HS-1 and the unoccupied 6p in PS-1. With this division it is seen that

a state-selective multireference single doubles would correspond to a CC(82). While with

a CC(nm) approximation this could be reduced to a CC(72) to a CC(32) the question

of whether it is sensible to reduce the higher excitations in the formal incomplete model

space remains. The problem with the CC(nm) approximation is that the important higher

excitations in the valence space are being truncated and the highest excitations will still
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contain double excitations from the outer-core. These will only give a minor contribution

but will dominate the calculation time since the number of electrons in the outer-core

is large and many virtuals will have to be included in PS-2. These higher excitations

where there are double excitations from the outer-core therefore need to be eliminated to

make calculations like these tractable. The higher excitations in the formal model space

(complete or incomplete) will however be sought to be retained. This will be done by

setting a limit on how high an excitation a HS-2 index can occur. By setting this at

R < 8 then the highest excitations with mixed core-valence indices in the CC(82) will

disappear and thereby significantly reduce the number of amplitudes and contractions.

In this way we can retain the high excitations in the formal model space and at the same

time eliminate the highest excitations without much loss on accuracy. This approximation

is then equal to neglecting core-valence correlation of the highest excited configurations

of the formal model space which is expected not to significantly influence all other well

separated configurations in the formal model space. Since we would rarely try to calculate

many excited states in the formal model space the restriction R would then likely most

often be set to four since at least all doubly excited configurations in the formal model

space would then have core-valence correlation included.

8.4 Summary and Outlook

In this chapter three separate approximations have been presented. The reduction in

the Kramers flip of the cluster operator, the incomplete formal model space approach

(CC(nm)) and an approximation for the core-valence correlation in the model space. The

three approximations is programmed so they can be used in combination or as standalone

approximations and will all have a different way of eliminating cluster operator with a

high excitation level. Elimination after ΔMk will be suitable of if spin-orbit is small while

the CC(nm) approximation will be important if we are dealing with a large formal model

space and reduction in the core-valence correlation will be essential for multiple heavy

centers or larger systems.
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Chapter 9

Calculations

The implemented generalized active space coupled-cluster method presented over various

chapters in this thesis have been applied to a variety of dimers. The objective has been

to determine spectroscopic and electric properties of the ground state and to provide

benchmark data for more approximate methods such as MRCI. While the applications

can be grouped into two namely the p-block elements, as presented in Sections 9.1 and 9.2,

and ultracold molecules, shown in Sections 9.3, 9.4 and 9.5, the methods used for these

have varied a great deal. I have here decided to group the sections after molecule and not

after method used. The methods used will become clear in the individual sections where

the discussion will also contain performance of methods but not the methods themselves.

All methods implemented in Sections 6.1, 6.2 and 6.3 are employed in the calculations.

For the RbYb and (RbBa)+ molecules the parallel MRCI code [131] in DIRAC [57] has

been used for the excited states.

The performance of the spin-free generalized active space coupled-cluster method

is presented along with the LiCs calculations in Section 9.3. Coupled cluster based on

configuration interaction expansions is shown together with result on HBr in Section 9.1

and the commutator driven coupled-cluster calculations has been performed on BiH in

Section 9.2. The calculations on RbYb (Section 9.4) and (RbBa)+ (Section 9.5) the

calculations have been carried out using the parallel MRCI code LUCIAREL [72,73,131]

and the RELCCSD code [74,125] and been pure application projects. The final application

in Section 9.6 is an examination of the importance of including lowerlying electrons in the

correlation calculation and the basis set requirements that follows from it.

133



134 9 Calculations

9.1 HBr

We presented the initial implementation of a determinant-based general-order coupled-

cluster method which fully accounts for relativistic effects within the four-component

framework in Section 6.2. The method opens the way for the treatment of multirefer-

ence problems through a state-selective expansion of the model space. The evaluation of

the coupled-cluster vector function is carried out via relativistic configuration interaction

expansions. The implementation is based on a large-scale configuration interaction tech-

nique, which may efficiently treat long determinant expansions of more than 108 terms.

We demonstrate the capabilities of the new method in calculations of complete potential

energy curves of the HBr molecule. The inclusion of spin-orbit interaction and higher ex-

citations than coupled cluster double excitations, either by multireference model spaces or

the inclusion of full iterative triple excitations, lead to highly accurate results for spectral

constants of HBr.

9.1.1 Introduction

In this section, we present the first relativistic general-order coupled cluster method which

moreover is capable of treating multireference problems and molecules with an arbitrary

number of unpaired electrons. The essential idea is to generalize a non-relativistic variant

of state-specific MRCC to the relativistic formalism, which retains the advantages of the

single-reference approach and which allows for a flexible definition and robust treatment

of MR expansions.

In the Section 3.1.5 we have reviewed this state-selective multireference approach

and in Section 2 the underlying relativistic theory of our implementation. Sections 2.1.3

and 6.1 give a detailed account on the implementation of the method, and in Section

9.1.2 we present an initial application. We unfold some of the capabilities of the new

method in this application. Some aspects, however, like the treatment of a large number

of unpaired electrons in the reference state, have been demonstrated successfully with the

non-relativistic precursor method [4] and for the relativistic case will be left for future

work.
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9.1.2 Application to the HBr Molecule

To demonstrate that our newly implemented method is operational and to outline its po-

tential we discuss an initial application to a diatomic molecule and calculate full potential

energy curves of the ground state at various levels of theory and computational demand.

This investigation therefore does not aim at highest precision for the obtained quantities.

9.1.2.1 Objective and Setup

The spectroscopic properties of the HBr molecule are significantly influenced by rela-

tivistic effects and electron correlation. Furthermore, this molecule is heavy enough to

elucidate these effects and small enough to keep the computational demand of this pi-

lot study limited. In particular, we investigate the importance of spin-orbit interaction

by comparing with the 4-component spin-orbit free formalism of Dyall [64]. In work

published [30, 132] we have interfaced the original non-relativistic CC program to this 4-

component spin-orbit free formalism. Here, the transformed molecular integrals are struc-

turally equivalent to a set of integrals in a scalar relativistic (one-component) framework

such as the Douglas-Kroll-Hess formulation [133–135], but the Hamiltonian for obtaining

the integrals remains 4-component. The corresponding CC calculations are thus based on

non-relativistic point-group symmetry. Moreover, a proper description of the dissociation

of the molecule requires the inclusion of higher excitations, which are studied also by ex-

ploiting multireference approaches. We finally compare our results to MRCI calculations

carried out with the spin-orbit free program LUCITA [66] and the fully relativistic program

LUCIAREL [72, 73] where the same basis sets and active orbital spaces are used as in the

corresponding CC calculations.

We use two different uncontracted basis sets, in the following denoted as DZ and

TZ. The smaller set DZ consists of the sp-pvdz set from the MOLFDIR suite in the

DIRAC program package [136] for Br (15s12p6d) and H (4s1p). The larger set TZ is

the relativistic finite nucleus optimized triple zeta basis set including valence-correlating

functions for Br (23s16p10d1f) and the cc-pVTZ of the MOLCAS5 package [137] for H

(5s2p1d). Virtual orbitals beyond an energy of 10 a.u. are discarded which does not

comprise a mentionable approximation here. All calculations are performed with the

Dirac-Coulomb Hamiltonian, i.e., without two-electron contributions of spin-other-orbit
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type (Gaunt term). As Visscher et al. [138] have shown for HBr, the influence of these

lacking terms on the properties studied here is at least one order of magnitude smaller

than the errors we will discuss.

We correlate 6 and 8 electrons occupying σ1/2, a π1/2, and a π3/2 orbital formed from

the atomic valence orbitals of Br (4p) and H (1s), and in addition Br (4s) in the case of

8 electrons, respectively, in the reference state. A spin-orbit free benchmark calculation

including the Br d electrons (18 electrons in total) and full triple excitations is also carried

out to elucidate the effect of core-electron correlation. A fully relativistic CCSDT with 18

correlated electrons is feasible in principle with our current implementation, but has not

been carried out due to extensive memory and computing time requirements. We perform

single-reference (SR) and multireference calculations, where the latter are defined by a

Complete Active Space (CAS) expansion with 6 (8) electrons in 4 (5) orbitals. The

correlating orbital is the antibonding σ∗
1/2 with bromine and hydrogen contributions. All

calculations are performed in the (double) point group C
(∗)
2v .

9.1.2.2 Results and Discussion

The results for the equilibrium bond length, the harmonic vibrational frequency, and

the dissociation energy for various CC models and Hamiltonians are compiled in Table

9.1. The molecular bond is well described at all computational levels with very small

deviations from experiment. For both basis sets the multireference treatment stretches the

bond as does the inclusion of higher excitations in the calculation including full iterative

triples (CCSDT) and MR models (MRCCSD). The same stretching is observed when

spin-orbit interaction is included which is due to a weakening of the bond by a reduced

σ-bonding character of the bonding valence p orbital on bromine. Increasing the basis set

from DZ to TZ reduces the bond length and brings it closer to the experimental value.

Correlating the 4s electrons results in a slight stretching of the bond which is compensated

when the Br d electrons are included (CCSDT (18)). The bond contraction is caused by

allowing for excitations out of the diffuse Br d orbitals. Spin-orbit coupling will lead to

a bond elongation which almost exactly compensates for the final minute deviation of

−0.0002 Å from the experimental value. However, we expect that the error from basis

set incompleteness or the basis set superposition error (BSSE) with the TZ set are in the

same order of magnitude.
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Table 9.1: Spectral constants of HBr using various CC models and the corresponding CI models with

(SO) and without (SOF) spin-orbit interaction, single-reference and multireference (MR), and correlating

(n) electrons.

Method Re [Å] ωe [cm−1] De [eV]

DZ SOF CCSD (6) 1.4148 2705.7 4.19

DZ SOF MRCISD (6) 1.4164 2693.7 3.86

DZ SOF MRCCSD (6) 1.4162 2691.1 3.88

DZ SO CCSD (6) 1.4153 2697.8 4.05

DZ SO CCSDT (6) 1.4159 2690.8 3.74

DZ SO MRCISD (6) 1.4173 2678.7 3.72

DZ SO MRCCSD (6) 1.4173 2685.2 3.73

TZ SOF MRCISD (6) 1.4145 2675.1 4.04

TZ SOF MRCCSD (6) 1.4148 2675.1 4.05

TZ SO MRCISD (6) 1.4151 2668.4 3.90

TZ SO MRCCSD (6) 1.4154 2668.0 3.90

TZ SOF MRCISD (8) 1.4180 2641.4 3.90

TZ SOF MRCCSD (8) 1.4192 2637.1 3.90

TZ SOF CCSDT (8) 1.4178 2647.3 3.96

TZ SO MRCISD (8) 1.4187 2634.9 3.77

TZ SO MRCCSD (8) 1.4193 2630.6 3.76

TZ SOF CCSDT (18) 1.4142 2663.9 4.01

TZ SOF CCSDT (18) +ΔSO 1.4143 2657.4 3.77

Exp. [139] 1.41444 2648.975 3.92

apVTZ SO CCSD(T) (26) [140] 1.408 2706 3.92
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For most of the calculations, an elongation of the bond is accompanied by a reduction

of the harmonic frequency. The multireference methods produce in general somewhat

lower harmonic frequencies than the corresponding single-reference method. Spin-orbit

coupling reduces the harmonic frequency by 7 cm−1 in the TZ basis and by 6 cm−1 in

the DZ basis. In the strive for harmonic frequencies with an accuracy of a few cm−1,

spin-orbit coupling is thus required even for a closed-shell molecule like HBr.

Whereas the difference between MRCI and MRCC calculations is negligible for the

small number of 6 correlated electrons, it becomes more pronounced when 8 electrons

are correlated, and here the harmonic frequency is the property which is most affected

(−4 cm−1). The error of 15 cm−1 observed for the SOF CCSDT (18) calculation is

explained to a large part by the neglect of spin-orbit interaction, and finally also by basis

set incompleteness or the BSSE which increases the harmonic frequency.

The largest differences between the various calculations are observed for the dissoci-

ation energy. Clearly, single-reference CCSD treatments do not yield satisfactory results

as they give too high energies for the separated atoms. The multireference calculations

decrease the dissociation energy significantly. We illustrate the effect of the multirefer-

Figure 9.1: Potential curves of the ground state of HBr neglecting (SOF) and including (SO) spin-orbit

interaction. The energy offset is −2605 EH .
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ence treatment on full potential curves in Figure 9.1 where the difference between the

single- and multireference methods becomes obvious. The inclusion of higher excitations

can of course also be achieved by increasing the general excitation level to full triples,

as shown in Table 9.1. This calculation is more expensive computationally, though, than

the MRCCSD run and does not give a higher accuracy. Addressing spin-orbit interaction,

the decrease in dissociation energy has two sources: First, as already mentioned, there is

a bond weakening due to the increased π character of the bonding spinor, and second,

the spin-orbit splitting lowers the energy of the bromine ground state in the atomic limit.

The latter effect is the dominating.

The dissociation energy varies strongly with the extent of the basis set and the num-

ber of correlated electrons. Clearly, for obtaining the right answer for the right reason,

a large basis set has to be used and at least 18 electrons have to be correlated. The

dissociation energy resulting from the TZ SOF CCSDT (18) calculation is too high by

roughly 0.1 eV. The increase of the dissociation energy through core-electron correlation

is also found by Styszyński [140] at the CCSD(T) level (see also Table 9.1 for one refer-

ence calculation). However, spin-orbit interaction (as reported here) and a counterpoise

correction [138] decrease the dissociation energy in this order of magnitude.

For a final comparison with experiment, we add a spin-orbit shift (+ΔSO) to the

properties obtained with the TZ SOF CCSDT (18) model which is the difference between

the values with and without spin-orbit interaction at TZ MRCCSD(8) level. The bond

length and vibrational frequency are now in excellent agreement with experiment, but the

dissociation energy is slightly too low most likely due to remaining correlation (number

of electrons) and basis set errors.

All of the calculations have been performed in serial on a Linux cluster equipped

with Pentium IV Xeon 2.4 GHz processors, except for TZ SO MRCCSD(8) for which we

required a machine with more core memory (IBM Regatta Power 4+). A single-point

calculation at TZ SO MRCCSD(6) level which included about 36 × 106 terms in the ex-

tended CI space finished in one to two days with an allocation of roughly 3 GB of core

memory. The spin-orbit free calculations TZ SOF CCSDT(18) were slightly less demand-

ing, computationally. When correlating 8 electrons including spin-orbit interaction (TZ

SO MRCCSD(8), 224×106 terms in the extended space) the demand increased to 1 week

runtime and roughly 12 GB of allocated core memory.
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9.1.3 Conclusions and Outlook

We present the initial implementation of a fully relativistic CC method which allows for

multireference expansions and higher than CC double excitations. The current version

is very general with respect to the definition of multireference spaces by means of the

GAS technique, but it lacks optimal efficiency due to the CI-driven CC vector function

evaluation. In a showcase application we demonstrate its applicability in the dissociation

problem of the HBr molecule. Here, we show the effect of including spin-orbit interac-

tion and higher excitations in calculations of full potential energy curves of the electronic

ground state. When using multireference expansions and a basis set of triple-zeta qual-

ity, the final results for spectral properties of the molecule are in close agreement with

experiment. The method is prepared for the application to heavy-element systems with

a large number of open shells such as small actinide molecules.

For the treatment of systems where a large number of electrons needs to be cor-

related, i.e. exceeding about 10 to 12, the efficiency bottleneck forces us to alter the

algorithm for evaluating the CC vector function. In current work, we are generalizing

a commutator-driven evaluation of the CC vector function as implemented for the non-

relativistic case by Olsen [99] to the relativistic framework. This method will exhibit the

optimal scaling of On V n+2 as do conventional CC implementations and will open for the

more accurate treatment of heavy-element compounds with a large number of correlated

electrons and extensive basis sets.

The Kramers-restricted approach pursued here does not account for the time-reversal

symmetry relations between CC amplitudes. We are currently exploring the implemen-

tation of various schemes for accounting for time-reversal symmetry at the many-particle

level in general open-shell CC theory. A fully Kramers-symmetry adapted formulation

entails a non-commuting CC formalism and will be implemented for a newly-developed

suite of general contraction methods [99] including CC models.

We are furthermore exploring the calculation of excited states of different double

group symmetry representation than the ground state, where a re-definition of the Fermi

vacuum via relativistic MCSCF calculations yields the desired reference state. For the

calculation of excited states of the same symmetry as the ground state, we are considering

an initial implementation of linear response theory as it is utilized in the DIRAC program
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package for Hartree-Fock and MCSCF wave functions.

9.2 BiH

In this section we present the initial calculations of a string-based general-order coupled-

cluster method which fully accounts for relativistic effects within the four-component

framework. This method opens the way for the treatment of multireference problems

through a state-selective expansion of the model space as described in Section 3.1.5.

The evaluation of the coupled-cluster vector function is done by considering contractions

of elementary second quantized operators, see Section 6.3. The capabilities of the new

commutator-driven coupled-cluster method is demonstrated on BiH where the effects of

multireference expansions with both doubles and triples excitations into the virtuals plus

the regular coupled-cluster hierarchy up to full quadruples are compared. The importance

of core-correlation is shown for accurate calculations.

To demonstrate our newly implemented correctly scaling coupled-cluster code we

have chosen the BiH molecule. In a Russel-Saunders coupling picture the electronic

ground state is the 0+ component of a 3Σ− state with σ2σ2π2. Since Bi is a heavy

element, a j − j coupling scheme might be more appropriate where the lowest occupation

would correspond to a σ2
1/2σ

2
1/2π

2
1/2 configuration, but also smaller contributions from

σ2
1/2σ

2
1/2π

2
3/2 and σ2

1/2π
2
1/2π

2
3/2 are to be expected. Here we will show that we can calculate

with various GAS setups but also can go beyond the first reported CI-driven coupled-

cluster method in [70] and Section 9.1 to real production calculation with many electrons

and large basis sets for heavy elements.

9.2.1 Objective and Computational Details

The spectroscopic properties of BiH are influenced by both relativity and electron corre-

lation. As will be seen, the number of electrons correlated is also of significant impor-

tance. Additionally one would expect that a multireference expansion which includes the

remaining unoccupied 6p-orbitals on BiH would give a better description along the poten-

tial curve. This indicates that BiH would be a good candidate for a show case calculation

where significantly higher accuracy than previously possible can be achieved. The aim,
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however, has not been to go to maximal accuracy but still to demonstrate a significantly

improvement in the correlation step in comparison to previous codes [70].

We have throughout used an uncontracted cc-pVTZ from the MOLCAS6 package

[46] for H (5s2p1d) and an uncontracted cc-pCVTZ from [141,142] for Bi (30s26p17d13f1g).

The truncation of the virtual spinors has in one set of calculations been set at 5.6 Eh and

another higher one at 27 Eh, where in the latter all correlating functions for the (5d) on

Bi have been taken into account in the correlation step. All spinors beyond these cutoffs

are discarded in the correlation step since these will primarily be core correlating. All

calculations presented have been performed with the Dirac-Coulomb Hamiltonian and all

correlation calculations have been started from a closed-shell Dirac-Fock calculation.

We performed calculations in which either 6 or 16 electrons were correlated. In the

former the 6 electrons occupying a σ1/2, a σ1/2 and a π1/2 orbital formed from the atomic

valence orbitals of Bi (6s, 6p) and H (1s) are correlated. In the calculations correlating 16

electrons the (5d) on Bi has also been included. Both single-reference and multireference

calculations were carried out where in the latter a Complete Active Space (CAS) CC

expansion with 6 electrons in 5 Kramers pairs (σ1/2σ1/2π1/2π
2
3/2π

2
3/2) was performed. In

principle the same approximative scheme to the full CAS as shown in [118] with the

CC(nm) approximations (see Section 8.2) could be used. This type of approximations

would, however, go beyond the scope of an initial application. In the 16 electron case

the calculations have been restricted to singe-reference calculations but the full iterative

triples have been included for a CCSDT calculation.

9.2.2 Results and Discussion

The results for the equilibrium bond length and the harmonic frequency for the various

CC models and number of electrons are compiled in Table 9.2. It is seen that for both

6 and 16 electrons correlated the effect of increasing the correlation level is smaller than

expected with only a change in the bond distance in the third digit after the comma. The

change in harmonic frequency is around 13 cm−1 going from CCSD to CCSDTQ with

6 electrons correlated. For 16 electrons correlated the change is slightly larger with 17

cm−1 from the CCSD to the CCSDT model for both levels of truncation of the spinors

in the virtual space. The usual trends for a covalent bond is observed, in the regular CC
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hierarchy, in the 6 electrons case with the slight increase in bond length with increased

correlation and the simultaneous decrease in harmonic frequency due to the better long

range description. In the 16 electrons case a similar trend is found when comparing CCSD

and CCSD(T)/CCSDT results, however, when going from CCSD(T) to CCSDT only a

minimal difference in the spectroscopic values is observed.

Going from single-reference to the state selective multireference model one observes

the expected trend with a longer bond length and lower harmonic frequency. The dif-

ference is here larger when going from CCSD to the MRCCSD(6in5) than going from

CCSDT to MRCCSDT(6in5) which is to be expected. The MRCCSD(6in5) seems to

overestimate the importance of the unoccupied p-orbitals and thereby produce a too long

bond and too low in frequency. Something that is corrected by the MRCCSDT(6in5) or

the CCSDT which yields results that are almost identical to the CCSDTQ result despite

only have one fourth or one-twentieth of the amplitudes, see Table 9.3.

The most noticeable change in the spectroscopic values occurs when going from 6 to

16 electrons correlated. Here we observe a large contraction of the bond of around 0.03Å

and an increase of about 25 to 30 cm−1 in the harmonic frequency depending on the model

chosen for the low cutoff of the virtual spinors. In the 6 electrons case we find that the

harmonic frequency is a little too low whereas it is slightly too high when correlating 16

electrons with the low cutoff if the experimental value is taken to be 1699 cm−1 [155] (see

Table 9.2). Increasing the number of correlated electrons the bond length at the same

time goes from being 0.01Å longer than the experimental ones of around 1.81Å to being

0.02Å shorter. The problem here is likely due to the 5d electrons on Bi which can cause

larger bond contractions even if the used basis sets are of the same quality (see Sections

9.6 and 9.3). The outcome from this is a noticeable BSSE when correlating the lowerlying

d electrons on Bi. This would in parts explain the large contraction of the bond and the

increased harmonic frequency with the low cutoff. This imbalance is expected to diminish

with increased basis set size and, as can be seen, a higher truncation of virtuals which

includes all correlating functions for the 5d electrons on Bi. With the higher truncation

of the virtual spinors we see the bond length increases by around 0.01Å and the harmonic

frequency decreases by around 10 cm−1. The correction here is in the same direction as

a counterpoise correction would be and thereby showing the need to include higher lying

spinors. The inclusion of these additional spinors, however, comes at a steep price. When
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Table 9.2: Spectroscopic properties of the BiH molecule with different approaches and various excitation

levels in coupled-cluster treatments using the uncontracted cc-pCVTZ basis set [141, 142] for Bi and

an uncontracted cc-pVTZ [46] for H. For the calculations marked with ∗ the truncation of the virtual

spectrum has been performed at 27 Eh and the rest at 5.6 Eh. The second column (corr. el.) denotes

the number of explicitly correlated electrons.

Method corr. el. Re[Å] ωe [cm−1]

CCSD 6 1.8225 1691.2

CCSD(T) 6 1.8241 1681.9

CCSDT 6 1.8245 1678.7

CCSDTQ 6 1.8246 1678.1

MRCCSD(6in5) 6 1.8261 1673.5

MRCCSDT(6in5) 6 1.8247 1677.8

CCSD 16 1.7919 1721.7

CCSD(T) 16 1.7934 1704.6

CCSDT 16 1.7932 1704.3

CCSD∗ 16 1.8004 1713.2

CCSD(T)∗ 16 1.8030 1694.6

CCSDT∗ 16 1.8028 1694.2

CCSD(T)/MRCIS [143] 24/6 1.800 1716

CISD [144,145] 6 1.90 1619

MRD-CI [146] 6 1.867 1632

SICCI [147] 6 1.868 1584

EXP. [148] 1635.73

EXP. [149] 1.811 1699.5

EXP. [150] 1.818 1677

EXP. [151] 1.819 1656.93

EXP. [152] 1699.517

EXP. [153] 1699.521

EXP. [154] 1.80867 1697.62

EXP. [155] 1.809 1698.9
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Table 9.3: Number of amplitudes for a given calculation. For the calculations marked with ∗ the

truncation of the virtual spectrum has been performed at 27 Eh and the rest at 5.6 Eh. The second

column (corr. el.) denotes the number of explicitly correlated electrons.

Method corr. el. Amplitudes

CCSD 6 47040

CCSDT 6 2326240

CCSDTQ 6 48909700

MRCCSD(6in5) 6 620677

MRCCSDT(6in5) 6 12870037

CCSD 16 374080

CCSDT 16 64191680

CCSDT∗ 16 259716240

looking at Table 9.3 we see the number of amplitudes for the CCSDT is four times larger

for the high cutoff compared to the low cutoff of the virtual spinors. From large scale CI

calculations it is known that increasing the basis set from TZ to the QZ can increase the

bond length up to 0.01Å [131]. These calculation are, however, not directly transferable

since these do not include all correlating functions for the 5d electrons on Bi but a small

increase is, however, to be expected also for the coupled-cluster calculations. Although

the primary goal of this study has not been to achieve highly accurate spectroscopic values

we do see that including all correlating functions and increasing the excitation level we

have obtained spectroscopic results that are in very good agreement with experiment.

9.2.3 Summary and Prospects

We present calculations from a newly implemented correctly scaling fully relativistic

general-order CC method which also allows for doing state-selective multireference coupled-

cluster expansion (see Section 6.3). The current version is completely general with the

definition of the multireference expansion due to the GAS setup. Although the code can

be used for production calculations it however still need optimization to be very efficient,



146 9 Calculations

this goes in particularly when extending the number of GASs. This is, however, a signifi-

cant step in comparison to the previously reported CI-driven CC method in [70] since both

the number of correlated electrons and the basis set size can be significantly increased.

At the present state with this new code it should be possible to routinely do calculations

with more than 100 million amplitudes. Larger calculations with +500 million has also

shown to be feasible on standard Linux clusters.

At the moment work is being done on extending the code to include also the complex

groups so systems with lower symmetry can be handled. The possibility to start from a

MCSCF [130] instead of a HF reference is also pursued since both options are included

in the DIRAC [57] program package. This would be very significant when tackling more

complex system like the actinides or other systems with open shell where a good reference

is needed.

Calculations with the approximations such as a reduced coupling scheme for the

Kramers flip and the CC(nm) scheme of GAS setups are being investigated along with

other approximation schemes to reduce the number of amplitudes and connections without

compromising the accuracy.

9.3 LiCs

Aimed at obtaining complete and highly accurate potential energy surfaces for molecules

containing heavy elements we present calculations from the general-order spin-free coupled-

cluster method (see Section 3.1.5) which can be applied in the framework of the spin-free

Dirac formalism presented in Section 2.1.3. As an initial application we present a sys-

tematic study of electron correlation and relativistic effects on spectroscopic and electric

properties of the LiCs molecule in its electronic ground state. In particular, we closely

investigate the importance of excitations higher than coupled cluster doubles, spin-free

and spin-dependent relativistic effects, and the correlation of outer-core electrons on the

equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the

dipole moment and the static electric dipole polarizability. We demonstrate that our im-

plementation shown in Section 6.1 allows for highly accurate calculations not only in the

bonding region but also along the complete potential curve. The quality of our results is

demonstrated by a vibrational analysis where an almost complete set of vibrational levels
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has been calculated accurately.

9.3.1 Introduction

Research in the field of cold and ultracold molecules is currently exhibiting rapid progress

and expansion [14]. Beyond groundbreaking applications as the production of Bose-

Einstein Condensates (BEC) [156], the investigation of collision processes of atoms and

molecules at ultracold temperatures is of key importance for the development of con-

trolled reactions [16] and for the possibility of testing fundamental symmetries in na-

ture, e.g. through measurements of the electron’s postulated electric dipole moment

(EDM) [17,18]. Heteronuclear alkali diatomics such as LiCs, KCs, NaCs, BaLi and selected

molecules formed from alkali and lanthanide atoms (e.g. RbYb [11,157]) appear to be par-

ticularly suited for the study of dipole-dipole interactions and electric-field control [158] in

the ultracold regime, since they exhibit large molecular electric dipole moments. Among

these molecules, the largest dipole moment has been predicted for the LiCs molecule [159]

with a value of around 5.5 D for the 1Σ+ electronic ground state. Recently, ultracold

LiCs molecules have been produced in the electronic ground state through photoassocia-

tion in a two-species magneto-optical trap [160]. Since then it has also been shown that

it was possible to produce LiCs in the rovibrational ground state [161] and to perform

spectroscopy on the excited states [162].

The understanding of collision processes requires the knowledge of accurate short-

range (molecular) potential-energy curves. In a recent high-resolution Fourier-transform

spectroscopical investigation [163], short-range potentials for the LiCs singlet and triplet

ground states have been derived from experimental data and compared to the most recent

ab-initio calculations [159] using configuration interaction (CI) theory. These calculations

has been made with a large core pseudopotential. Therefore, the accuracy of the obtained

spectral constants for the electronic states should be tested against high-level quantum-

chemical calculations. Today, such high-accuracy electronic potentials for heavy-element

molecules can be obtained by coupled cluster theory in fully relativistic all-electron cal-

culations [70,108].

Diatomic molecules formed from group 1 and group 2 atoms are characterized by

electronic ground states with very small contributions from spin-orbit interaction. For
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these Σ states, the dominating relativistic effects are instead scalar-relativistic contribu-

tions such as the mass-velocity and Darwin terms as also discussed in Section 1.2.1. These

scalar relativistic effects are important for determining the shape and spatial extent of

the orbitals and thereby the molecular bonding, and must therefore also be included for

accurate descriptions of potential curves.

In this section, we present ground-state potential energy curves and molecular elec-

tric properties of the LiCs molecule by applying a relativistic general-order coupled clus-

ter approach. The method [3, 4] has been interfaced to a local version of the relativistic

4-component program package DIRAC [57]. It is capable of treating scalar-relativistic

effects on the basis of the 4-component spin-free Dirac equation through an exact sep-

aration of spin-free and spin-orbit contributions [64]. The spin-free formalism which

we denote SFDC (Spin-Free Dirac-Coulomb) has previously been interfaced to CI ap-

proaches [27, 66] and is similar to scalar-relativistic methods like the Douglas-Kroll-Hess

(DKH) approach [134,135] taken to the infinite order in its expansion parameter. Electron

correlation can be treated at very high accuracy by the general-order CC implementa-

tion, and we report calculations up to the level of full iterative Triple (T) excitations, i.e.

with the coupled cluster model CCSDT. Moreover, the implementation allows for simu-

lating multireference expansions by including higher excitations within a selected internal

one-particle space which lead to further improvements in the obtainable accuracy of the

spectroscopic properties.

The work presented in this section covers the following aspects:

• We show that spin-orbit interaction is negligible in the ground-state properties of

LiCs, and we discuss scalar-relativistic contributions to the bonding by comparing

the calculated properties with a Lévy-Leblond (LL) Hamiltonian [33] to the spin-free

Hamiltonian results.

• We study contributions from higher-order excitations systematically both in spin-

free and spin-dependent calculations. The inclusion of the full iterative triples is

discussed in spin-free applications. We furthermore discuss the influence of the

number of correlated electrons and the counterpoise (CP) correction to correct for

the basis set superposition error (BSSE).
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• With an accurate potential curve obtained at the CCSDT level we perform a vibra-

tional analysis and present the vibrational states. This is also compared with the

vibrational states obtained from a CCSD(T) curve.

• Last, we calculate the ground-state dipole moment function and the static electric

dipole polarizability and show the necessity of including higher-order excitations in

the wave operator.

Particular emphasis in this section put on the CC determination of molecular proper-

ties for which accurate complete potential energy curves are required. The sections are

structured as follows: In the following section, we describe the computational details of

our study and refers to Sections 2 and 6.1 for theoretical and implementational aspects,

respectively . We continue with the application section and finally conclude on the most

important findings of this investigation.

9.3.2 Methodological and Computational Details

The type of CC implementation discussed here is described in detail in references [3, 4]

for the non-relativistic case. The implementation supports arbitrary excitation levels up

to Full CC expansions. The MR approach is based on the idea of retaining particle and

hole spaces in the active one-particle space (State-Selective approach, see also [115] and

Section 3.1.5). If we consider for example the multireference space which is important in

the current context: three configurations which are obtained by exciting 0,1,2 electrons

from a bonding orbital to an antibonding orbital. An active space is defined containing

the bonding orbital as the occupied active space and the antibonding orbital as the unoc-

cupied space. The dynamic correlation from the configuration with two electrons in the

antibonding orbital is then included as fourfold excitations combining the double excita-

tion from the bonding to the antibonding active orbitals with a general double excitation.

In this fashion, a commutative operator manifold is retained leading to the simplifications

of standard single-reference coupled cluster methods.

The current implementation evaluates the CC vector function using an approach

based on string-manipulations [99] that is significantly more efficient than the one based

on CI expansions (in [3, 4]) .
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The CC vector function

fμ =
〈
μ
∣∣∣e−T̂ ĤeT̂

∣∣∣REF
〉

with μ the excitation manifold and |REF〉 the reference state is determined by considering

the joint evaluation of the Hamiltonian and the CC exponential on the reference state

ĤeT̂ |REF〉 .

This step can be carried out without resorting to excitation spaces beyond that of the

excitation manifold of T̂ . This procedure leads to the same scaling of CC implementations

as the traditional approaches containing explicit code for each excitation level.

The multireference coupled cluster presented here does not exploit the full poten-

tial of the implemented approach. The commutator-driven coupled-cluster presented in

Section 6.3 can perform CC expansions which are based on ambiguous numbers of ac-

tive spaces and their occupations. This allows for more general and elaborate correlation

treatments, e.g. performing restricted instead of complete valence space multireference

expansions.

9.3.2.1 Computational Details

A series of calculations using our new implementation within the DIRAC program pack-

age [57] has been performed to assess the contribution of scalar relativistic effects, spin-

orbit coupling, and electron correlation on the bond distance, harmonic frequency, disso-

ciation energy, permanent electric dipole moment and static electric dipole polarizability

of the LiCs molecule. For the assessment of spin-orbit contributions we compare with re-

sults obtained with the DIRAC module RELCCSD [74, 125]. Restricted DCHF calculations,

either in LL- or SF- approximation or without approximation, were used for the complete

potential curves.

We employ an uncontracted ANO-RCC basis set from the MOLCAS [46] package

containing {26s22p15d4f} functions on Cs and {14s9p4d3f1g} functions on Li for the large

component. This basis set was chosen since it not only contains functions for an accurate

correlation description but also diffuse functions to give accurate dipole moments with

several exponents ranging from to 10−1 to 10−2 on both Cs and Li. Small component

functions are obtained within the restricted kinetic balance prescription [77, 81]. The
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effect of the small component is approximated by including Coulombic interaction of

atomic small component densities [164]. The calculations are carried out by truncating

the virtual orbital space at 17 au. unless stated otherwise. Orbitals above this threshold

can be considered core correlating and therefore will only give a relative energy shift if the

Cs atomic core electrons were correlated, but will have very little influence on the shape

of the potential curves. The cutoff has been tested at the CCSD and MRCCSD level with

22 electrons correlated and found to be of sufficient accuracy. We correct for the basis

set superposition error (BSSE) by applying a counterpoise (CP) correction [165]. The

dissociation energies were obtained as the difference between the energy of the molecule

and the energies of the isolated atoms, and the harmonic frequencies were obtained by

numerical differentiation. The reduced mass has been calculated from the standard atomic

weights.

The ground-state dipole moment was calculated by applying a finite electric field (see

Appendix A) of varying strength along the bond axis (chosen as z). The field strengths

chosen here were ±0.001, ±0.002, ±0.004 au. From the seven points a polynomial fit to the

total field-dependent energy was made to find the dipole moment at a given internuclear

distance. All coupled cluster energies were converged to residual errors smaller by at

least five orders of magnitude than the energy changes due to the external field. The

static electric dipole polarizability was calculated along the bond α‖ in a similar fashion

because in the case of LiCs the polarizability tensor is diagonal due to the high symmetry

of the system. Being the second derivative of the applied electric field the accuracy of

the polarizability is therefore lower than that of the dipole moment, but even more so

because additional diffuse functions would have to be added to the basis set to obtain

highly accurate values for this property. Since the static polarizability is only calculated

along the bond the need for diffuse functions is diminished due to a sharing of the basis

functions of the two atoms which would not be the case perpendicular to the bond. We

therefore consider these accurate calculations of the parallel polarizability component α‖.
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9.3.3 Results

9.3.3.1 Spectroscopic Properties

The chemical bond of the LiCs molecule can be described qualitatively by considering only

the σ bond formed from the 6s orbital on Cs and the 2s on Li, resulting in a 1Σ+ ground

state. Correlation of the energetically close-lying Cs 5p and 5s electrons (10 electrons

in total) will give a significant improvement on the description of the bond. Further

improvement is expected when correlating the 1s electrons of Li (12 electrons in total)

and for very accurate calculations also the outer-core 4d electrons of Cs (22 electrons in

total) and including higher excitations in the wave function. The results are compiled in

Table 9.4 and we will now discuss these in detail.

Table 9.4: Spectroscopic properties of the LiCs molecule with dif-

ferent approaches and various excitation levels in coupled cluster

treatments using the uncontracted ANO-RCC basis set. LL de-

notes Lévy-Leblond, SF spin-free and no label denotes the fully

relativistic Dirac-Coulomb Hamiltonian which includes spin-orbit

interaction. cp- designates counterpoise corrected values. The sec-

ond column (corr. el.) denotes the number of explicitly correlated

electrons.

Method corr. el. Re[Å] ωe [cm−1] De [eV]

DCHF-LL 0 3.9872 167.506

DCHF-SF 0 3.9247 170.303

DCHF 0 3.9244 171.084

CCSD-LL 2 3.9017 189.197 0.8042

CCSD-SF 2 3.8548 175.169 0.7664

CCSD 2 3.8538 175.256 0.7667

CCSD-LL 10 3.7707 182.339 0.7150

CCSD-SF 10 3.7191 183.953 0.6822

CCSD 10 3.7180 184.183 0.6828

cp-CCSD 10 3.7300 183.593 0.6741

MRCCSD(10in6)-SF 10 3.7245 182.459 0.6910

Continued on next page



9.3 LiCs 153

Table 9.4 – continued from previous page

Method corr. el. Re[Å] ωe [cm−1] De [eV]

CCSD(T)-SF 10 3.6937 183.349 0.7188

CCSD(T) 10 3.6926 183.577 0.7194

cp-CCSD(T) 10 3.7063 182.923 0.7097

CCSDT-SF 10 3.6963 182.908 0.7200

CCSD-LL 12 3.7606 183.226 0.7111

CCSD-SF 12 3.7087 184.893 0.6781

CCSD 12 3.7075 185.004 0.6785

cp-CCSD 12 3.7199 184.550 0.6694

CCSD(T)-SF 12 3.6823 184.219 0.7217

CCSD(T) 12 3.6810 184.334 0.7222

cp-CCSD(T) 12 3.6952 183.810 0.7120

CCSDT-SF 12 3.6848 183.676 0.7235

CCSD-LL 22 3.7487 183.616 0.7217

CCSD-SF 22 3.6949 185.425 0.6896

CCSD 22 3.6937 185.549 0.6901

cp-CCSD 22 3.7174 184.659 0.6663

MRCCSD(22in12)-SF 22 3.6997 184.147 0.6988

CCSD(T)-SF 22 3.6667 184.787 0.7364

CCSD(T) 22 3.6655 184.917 0.7369

cp-CCSD(T) 22 3.6916 183.859 0.7115

CCSD+2g1 22 3.6925 185.914

CCSD(T)+2g 22 3.6622 185.561

Exp. [163] 3.6681 0.728

CIPSI [166] 3.615 187.1

CIPSI [159] 3.604 0.717

MELD [167] 3.65 183 0.72

1Cs augmented with 2g functions with exponents of 0.555649375 and 0.28536000
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9.3.3.1.1 Effects of number of correlated electrons The most striking trend in

the system is the large bond contraction upon correlating the electrons. The trend shows

up already including two electrons so we have studied this by using a low cutoff value for

the virtual orbitals, employing a more elaborate correlation scheme allowed by the GAS

setup, and a Mulliken population analysis, see Table 9.5. Our finding is that this decrease

in bond length stems from moving density from predominantly the delocalized bonding

orbital into the more diffuse and localized low-lying 3px and 3py orbitals on Li but not

the 3pz thereby making the molecule more ionic. Including all virtuals in the two-electron

calculation however gives a too long bond and an overbinding which shows the need for

core-polarization or correlation for accurate spectroscopic values as seen in Table 9.4.

While it appears to be relatively easy to obtain a qualitatively correct picture it is

however significantly more difficult to get an accurate picture. In Table 9.4 the demand for

correlating the energetically underlying electrons is evident due to the large contraction of

the bond and change in harmonic frequency. By correlating 10 electrons the overbinding

observed for the correlation of 2 electrons has disappeared. Correlating the 1s on Li has

a smaller but still very significant effect.

The effect of outer-core correlation in general is small compared to the correlation

effect as such though not negligible and about one tenth of scalar-relativistic contributions.

At a first glance the correlation of the 4d on Cs seems more important than inclusion of

the 1s on Li. However, after correcting for the BSSE it is found to be only up to one third

Table 9.5: Analysis of the decreasing bond distance and harmonic frequency from correlating 2 electrons.

Method virtual space Re[Å] ωe [cm−1] De [eV]

CCSD-SF σ∗ 4.02 145.2 0.092

CCSD-SF σ∗2p(Li) 3.98 149.4 0.186

CCSD-SF σ∗2p(Li)3p(Li) 3.77 181.5 0.548

CCSD-SF σ∗2p(Li)3px3py(Li) 3.73 184.7 0.439

CCSD-SF σ∗2p(Li)3px(Li) 3.84 168.2 0.266

CCSD-SF σ∗2p(Li)3pz(Li) 4.01 152.5 0.226
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Figure 9.2: Comparison of 10 and 22 electrons correlated at CCSD level. The shifted energies are given

as (total energy) + 7793.0 Eh (CCSD 10) and (total energy) + 7793.2025 Eh (CCSD 22), respectively.
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of the latter. Augmenting the basis set on Cs with 2 additional g functions does not seem

to alleviate this rather large CP correction which primarily stems from the lack of core-

correlating functions. The importance and saturation of the outer-core correlation on Cs

is currently under investigation [168] and preliminary results are presented in Section 9.6.

The effect, before a CP correction, on the shape of the potential curves and therefore also

the harmonic frequency, is rather small around equilibrium but gives sizeable contributions

at longer range, giving corrections of 1.3 cm−1. This change is consistent with a slight

increase in steepness of the potential curve when dissociating (see Figure 9.2). With the

CP correction this visible difference disappears.

Had the dissociation energy been calculated by separating the atoms this overbinding

for the 2 electrons case would not have been visible. We would then see an increase in the

dissociation energy which can be explained by the better description of the system near

the equilibrium bond distance compared to the separated atoms, an inequality which is

engrained in any single-reference method, especially when it as here is based on a restricted

DCHF determinant. Whereas the restricted DCHF determinant is the dominant part

of the wave function at equilibrium, it is at dissociation only about 50 % of the wave

function consisting of the two doublet atomic states coupled to singlet spin. This would

make higher excitations very important not just for obtaining highly accurate complete

potential curves but also for accurate dissociation energies. As the dissociation energies
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are obtained from molecular energies at the equilibrium and the atomic energies, these

are not affected by the erroneous dissociation of the restricted DCHF calculations. In

fact, the atomic energies are in general more accurate than the molecular energies so the

dissociation energies are in general expected to converge from below. The dissociation

energy is, however, still strongly influenced by the level of correlation

and the CP correction. The trend in the dissociation energy with increased correla-

tion level is here opposite of what is seen when calculating it from a curve since here the

atomic calculations are better than the molecular ones, an artifact that diminishes with

an improving description of electron correlation.

9.3.3.1.2 Relativistic effects in LiCs To assess and compare the magnitude of

relativistic effects in LiCs three different approaches have been used. First, in order

to find the non-relativistic energy a correlation treatment at the CCSD level using the

Lévy-Leblond Hamiltonian has been carried out. For determining the scalar-relativistic

contribution a spin-free calculation has been performed at the same correlation level. The

effects of spin-orbit coupling have been investigated by comparing with corresponding

results from RELCCSD. We report all these calculations correlating 10, 12, and 22 electrons

in Table 9.4, so the importance of outer-core correlation can also be evaluated.

As expected, the bond is contracted considerably when including scalar-relativistic

effects since the predominantly bonding 6s orbital on the Cs atom is contracted. At

the non-relativistic level the potential curves are wider due to the larger spatial extent

of the 6s on Cs. Hence, the harmonic frequencies are reduced by almost 2 cm−1 (see

Figure 9.3). The dissociation energy is around 0.02 eV larger for the non-relativistic case

than for the spin-free case. This is consistent with a Mulliken population analysis which

shows an increase in the population of the 6s on Cs and subsequently a decrease of the

2s population on Li in the bonding orbital, and opposite for the antibonding, when going

from the non-relativistic to the spin-free method around the equilibrium bond distance.

The difference in dissociation energy then comes from the fact that the 2s on Li is lower in

energy than the 6s on Cs. The inclusion of spin-orbit coupling on the other hand has, as

expected, only little effect on any of the properties in question here which is clearly visible

by comparing CCSD-SF and CCSD calculations from Figure 9.3 where the two curves are

just horizontally linear displacements of each other. The very good agreement between
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Figure 9.3: Comparison of the non-relativistic, the spin-free and the full relativistic curves at CCSD level

with 10 electrons correlated. The shifted energies are given as (total energy) + 7561.623 Eh (CCSD-LL

10), (total energy)+7793.0 Eh (CCSD-SF 10) and (total energy)+7794.849 Eh (CCSD 10), respectively.
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CCSD-SF and CCSD is explained since in the sense of perturbation theory, spin-orbit

contributions only enter to second order by coupling of the 1Σ+
0 ground state to excited

triplet states.

9.3.3.1.3 Effect of higher correlation treatment The effect of more extensive

correlation treatment will be examined under several aspects. First, the effect of increasing

the excitation level from doubles (CCSD) to perturbative triples (CCSD(T)) and to the

full iterative triples (CCSDT) is studied. All comparisons have been carried out at the

levels of correlating 10, 12, and 22 electrons and neglecting spin-orbit contributions. In

addition, we investigate the effect of going from a single-reference to a multireference CC

expansion though only at the 10 and 22 electrons level.

Due to the relatively weak bond in the system an extensive correlation treatment

is needed. This is evident from the results in Table 9.4 where it can be seen that there

still are sizeable differences of −0.02 to −0.03 Å in the bond length, 0.04 eV in disso-

ciation energy but only −0.5 to −1.0 cm−1 in harmonic frequency between the CCSD

and the perturbative and full iterative triples for 10, 12, and 22 electrons. The sign of

these results is consistent with our above statements that the bond is contracted with

increased correlation. The potential curve is slightly widened since the better correla-
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Figure 9.4: Comparison of the spin-free correlation methods for 10 electrons. The shifted energies

are given as (total energy) + 7792.997 Eh (CCSD), (total energy) + 7792.996 Eh (MRCCSD) and

(total energy) + 7794.65 Eh (CCSD(T)), respectively.
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tion description decreases the unphysical hump observed in the bondbreaking region for

single-reference methods and thereby yields a more balanced description on the whole

curve. The CCSD(T) seems to perform very well in and around the equilibrium region

and there gives results that are significantly better than CCSD and comparable with the

full iterative triples values. But when dissociating the CCSD(T) shows unphysical behav-

ior due to the breakdown of the perturbative estimate of the triples. This deficiency also

becomes evident in the later vibrational analysis where only few vibrational states can

be calculated accurately. The dissociation energy can, however, also here be calculated

from atomic energies for both CCSD(T) and cp-CCSD(T) calculations, see Table 9.4.

When extending the single-reference CCSD to the minimal CAS-space MRCCSD(10in6)

for 10 electrons the small increase in correlation hardly changes the bond length, but the

curve is slightly widened in the bondbreaking region (Figure 9.4) due the inclusion of the

most dominant excitations for a correct dissociation. This extension in terms also results

in an increase of the dissociation energy due to the balanced description the MRCCSD

provides for the whole curve when the most important configurations are included in the

CAS space. The same trend is also observed for the 22 electrons case.
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9.3.3.1.4 Vibrational analysis With accurate potential curves it is possible to achieve

not only precise harmonic frequencies and thereby accurate zero-point vibrational ener-

gies but also to do a further analysis of the excited vibrational states. For this analysis

we have used version 8.0 of the program LEVEL [28]. Since we wanted to obtain many

vibrational states of the electronic potential we have based the analysis on the CCSDT-SF

10 and CCSDT-SF 12 curves as these curves yield accurate values for all spectroscopic

properties, in particular because the dissociation energy only shows minor changes when

calculated from the atoms in comparison to a stretching of the bond. If the dissociation

energy is calculated from stretching the bond we find a dissociation energy in eV of 0.7344

and 0.7394 of the CCSDT-SF 10 and CCSDT-SF 12 which is comparable to the values

in Table 9.4 of 0.7200 and 0.7235 respectively. The inclusion of full iterative triple exci-

tations is important for a balanced description of the system along the entire potential

curve, especially the bond-breaking region and further out.

Figure 9.5: Change in relative spacing, shown in Table 9.6, defined as Δ2Gν+1 = G(ν+3/2) - G(ν+1/2).
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The vibrational states from the CCSDT-SF 10 and CCSDT-SF 12 curves are pre-

sented in Table 9.6. These are seen to be slightly lower, like the harmonic frequency, than

the corresponding states from CCSD(T) 22 also in Table 9.6, for which only the first few

states are reproduced reliably. We observe the expected trend of a decreasing separa-

tion of vibrational states with vibrational quantum number which is shown in Figure 9.5.

However, only for the CCSDT curves do we continue to see the separation decreasing all
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Table 9.6: Relative spacing of vibrational states calculated with LEV EL8.0 [28] from respectively the

CCSDT-SF 10, CCSDT-SF 12, and CCSD(T) 22 potential curves. At ν = 0 the zero-point energy is

given. The relative spacing is defined as ΔGν+1/2 = G(ν + 1) - G(ν) and given in cm−1

ν CCSDT-SF 10 CCSDT-SF 12 CCSD(T) 22 ν CCSDT-SF 10 CCSDT-SF 12

0 90.694 91.088 91.699 29 113.522 114.862

1 180.020 180.813 182.046 30 110.450 111.758

2 178.059 178.851 180.142 31 107.320 108.588

3 176.090 176.874 178.214 32 104.119 105.339

4 174.104 174.872 176.255 33 100.832 102.005

5 172.090 172.835 174.244 34 97.445 98.561

6 170.070 170.764 172.197 35 93.936 94.989

7 168.047 168.661 170.201 36 90.279 91.264

8 166.001 166.518 168.431 37 86.451 87.364

9 163.917 164.343 166.996 38 82.437 83.269

10 161.806 162.177 39 78.207 78.951

11 159.675 160.062 40 73.716 74.367

12 157.517 157.983 41 68.907 69.453

13 155.320 155.907 42 63.705 64.136

14 153.094 153.795 43 58.027 58.327

15 150.851 151.647 44 51.815 51.964

16 148.584 149.459 45 45.234 45.219

17 146.285 147.232 46 39.025 38.884

18 143.933 144.963 47 34.052 33.861

19 141.522 142.632 48 29.734 29.519

20 139.028 140.217 49 25.362 25.139

21 136.438 137.698 50 20.789 20.565

22 133.753 135.064 51 15.659 15.420

23 130.988 132.335 52 10.686 10.351

24 128.173 129.543 53 7.900 7.415

25 125.326 126.711 54 5.078 5.058

26 122.440 123.831 55 2.468 2.727

27 119.508 120.896 56 1.516 1.464

28 116.538 117.908
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the way up to ν = 44 where the decrease of separation is 12.7% of the relative distance

between ν = 44 and ν = 43. For CCSD(T) this already happens at ν = 5. Higher-lying

vibrational states from the CCSD(T) 22 curve are moreover very sensitive to the input

parameters of the fitting program since no complete curve could be calculated.

To obtain many reliable vibrational states it is necessary to have an accurate and

balanced potential energy curve which only comes about from the CCSDT level or higher.

The small difference between the CCSDT-SF 10 and CCSDT-SF 12 vibrational states

suggests that including the 1s electrons on Li in the correlation treatment only has a minor

effect on the vibrational levels even though the effect on the bond length is significant.

Figure 9.5 reproduces the expected trend from a molecular potential very well up

to ν = 47. Beyond this some unsystematic behavior is observed. Δ2Gν+1, defined as

(ΔG(ν+3/2)−ΔG(ν+1/2), is dominated by the first anharmonicity up to around ν = 30.

Here at around 1.6 ∗ Re the bond-breaking region is entered and therefore large changes

in the electronic wave function as well as in the potential energy surface are observed.

In this region Δ2Gν+1 grows rapidly and higher anharmonicities dominate. This growth

continues until Δ2Gν+1 is comparable to the relative distance of the vibrational states

(ΔGν+1/2 defined as G(ν + 1) - G(ν)) thereafter it rapidly decreases again, as expected.

To eliminate the remaining unsystematic behavior one would have to increase the number

of points at very long range since small changes in the potential energy curve will here

cause large changes in Δ2Gν+1.

To come even closer to a complete curve with reliable high vibrational levels one

would also require a CCSDTQ treatment or a multireference treatment with at least full

iterative triples included. This would reduce the non-parallelity error and lead to a further

reduction of the difference in dissociation energies calculated from the supermolecular and

the atomic approach.

9.3.3.2 Electric Properties

The final results for the electric properties have been obtained at the CCSDT level cor-

relating 10 electrons since this was found to give the desired accuracy.

9.3.3.2.1 Dipole Moment Function At and below equilibrium distance (6.0 bohr

and 7.0 bohr) there is no significant difference in the dipole moment at the CCSD level for
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Figure 9.6: CCSDT-SF 10 dipole moment curve in Debye. Also shown are results from CCSD-SF 10,

CCSD-SF 22, and CCSD(T)-SF 10 calculations

0

1

2

3

4

5

6

7

6 7 8 9 10 11 12 13 14 15

μ [D]

R [bohr]

♦ : CCSDT-SF 10
+ : CCSD-SF 10
� : CCSD-SF 22
× : CCSD(T)-SF 10

♦ ♦ ♦ ♦ ♦♦ ♦ ♦ ♦
♦

♦

♦

♦
♦

♦

+

+

+
+

+

+

+

+

+

+

�
�

�

×
×

× ×
×

×

×

×
×

×

correlating 10 or 22 electrons (roughly 0.1% difference), see Figure 9.6. At longer distance

(10 bohr) the difference increases to 1% which is still smaller than the expected residual

errors in our calculations. A significantly larger contribution was found by going from

CCSD to CCSDT which is consistent with the general knowledge about dipole moments

in other molecules [169]: In addition to the excitations required to describe electron

correlation, combined excitations for describing the relaxation of the wave function to the

external field are needed, emphasizing the importance of the full triple excitations. At the

CCSDT level and at a distance of 6.0 bohr the difference amounts to 6.8% which increases

slightly to 7.6% at 7.0 bohr. In the bondbreaking region CCSD significantly overshoots

the dipole moment giving a difference of 28.8% at 10 bohr, which is attributed to the

poor description CCSD gives in the bondbreaking region. The maximum absolute value

of the dipole moment function is found at 8.504 bohr for CCSDT-SF 10 with a strength of

5.969 Debye. The CCSD(T) model, also pictured in Figure 9.6, does well until the bond-

breaking region where the description of the potential energy curve also deteriorates.

Unlike CCSD and CCSDT, the CCSD(T) model does not provide a qualitatively correct

complete curve which is inferred from the increasing dipole moment at 14 bohr.

9.3.3.2.2 Static electric dipole polarizability As mentioned in Section 9.3.2.1 the

static electric dipole polarizability is significantly more difficult to calculate accurately
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Figure 9.7: CCSDT-SF 10 parallel static electric dipole polarizability curve in Atomic units. Also shown

are results from CCSD-SF 10, CCSD-SF 22, and CCSD(T)-SF 10 calculations
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than the dipole moment since the property is more sensitive to the basis set used. With

an improving correlation treatment the static electric dipole polarizability will usually

increase but the effect of increased correlation is often difficult to assess because of the

interplay with the basis set. Here we will, however, only improve the correlation level

since the parallel component α‖ is already available when the polynomial fit to the dipole

moment has been made and because we do not calculate the static electric dipole polariz-

ability perpendicular to the bond α⊥. The perpendicular polarizability is not calculated

since the basis set used is only suited for the parallel component.

If we again compare the CCSD and CCSD(T) with the CCSDT value in Figure 9.7

at short range we find there is only little dependence on the correlation level for α‖ and

the number of electrons correlated. The difference is only 1 − 4% between CCSD and

CCSDT and the core electrons only play a minor role of around 1% so we expect that

additional correlation will not change the static electric dipole polarizability anymore.

The CCSD(T) values around equilibrium differ by less than 1 a.u. from the CCSDT

values. This difference, however, increases to 73 a.u. at a distance of 10 bohr, and at

longer range the CCSD(T) curve again shows unphysical behavior. A polynomial fit of

the calculated points reveals a maximum of 1344 a.u. at 10.76 bohr and a value of 598

a.u. at the equilibrium bond distance for the model CCSDT-SF 10.
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9.3.3.3 Comparison with Literature Values

Comparing what we consider the most reliable result for bond length and harmonic fre-

quency, namely the cp-CCSD(T) 12 result, with previously calculated results (see Table

9.4) we observe that the calculated bond distance of 3.6952 Å is about 0.08 Å longer than

the latest reported results [166] and [159] whereas the earlier value in [167] is closer at

around 0.04 Å. Those results were all obtained using atomic pseudopotentials and Config-

uration Interaction (CI) techniques for correlating two valence electrons whereas we have

employed all-electron calculations and coupled-cluster for correlation. This has opened

for the possibility to not only explore effects of relativity and higher excitations but also

the core-valence correlation in a systematic way. Due to this series of coupled-cluster cal-

culations we believe to have achieved a significantly higher accuracy on the spectroscopic

properties examined than previously reported from theory. Our present results are closer

to a recent experimental result [163] of 3.6681 Å from laser-induced fluorescence Fourier-

transform spectroscopy. The remaining difference between the calculated bond distance

and the experimental one is primarily due to basis set insufficiency. The calculated bond

distance will approach the experimental when the size of the basis set is increased and a

higher truncation value for the virtual space is used [168].

For the harmonic frequency the differences between most recent theoretical results

[166] and our cp-CCSD(T) 12 value of 183.8 cm−1 amount to roughly 3 cm−1. This

difference is rather small but still appears to be larger than the corrections that would

be expected from higher correlation treatment and larger basis sets [168]. We therefore

consider our cp-CCSD(T) 12 value an accurate prediction for the vibrational frequency

which is not reported in the experimental work in reference [163]. The harmonic frequency

can to a large extent be reproduced from a two-electron correlated calculation as shown

in Table 9.5. Since the harmonic frequency is only very little influenced by the excitation

level in the cluster model or the number of electrons correlated it is not surprising that

the difference in the vibrational analysis between CCSDT-SF 10 and CCSDT-SF 12 is

minor.

The dissociation energies from [159] and [167] of 0.717 eV and 0.72 eV respectively

both lie close to the experimental value in [163] of 0.728 eV, and [167] is in perfect

agreement with the value 0.72 eV cited in [170]. These values are also in very good

agreement with the dissociation energy De in Table 9.4 found in this work where the
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counterpoise corrected CCSD(T) with 12 electrons of 0.712 eV would be considered the

best value we found due to the lack of correlating functions for the 4d electrons on Cs.

From Table 9.4 it is also evident that higher excitations play a significant role in

obtaining a correct dissociation energy. Inclusion of full iterative triples increases the

dissociation energy De to around the experimental value but it is expected that full

iterative quadruples will be necessary to come to a more definite conclusion.

The absolute maximum value for the dipole found here at a nuclear displacement of

8.504 bohr is slightly longer than the 8.33 bohr found in reference [159] but with almost

exactly the same strength. Since the CCSD model predicts an absolute maximum both

larger and at longer bond length than the CCSDT model we expect that the CISD model

would exhibit a similar behavior if more than the absolute minimum number of electrons

were correlated. The dipole moment at the equilibrium distance is found to be 5.447 Debye

(CCSDT-SF 10) which is also in good agreement with the results of both reference [159] of

5.462 Debye and reference [167] of 5.48 Debye. The vibrationally averaged dipole moment

of 5.440 Debye is found to be close to the value at the equilibrium bond distance since

the rovibronic wave function for the ground state is coinciding with a linear part of the

dipole moment curve. The calculated static electric dipole polarizability also agrees with

other recently calculated results in reference [171] of 597 a.u. both with respect to the

internuclear distance and the maximum property value where we find the polarizability

to be 598 a.u. both at the equilibrium bond distance as well for vibrationally averaged

polarizability with the CCSDT-SF 10 model.

9.3.4 Conclusion and Outlook

In this study of the ground-state properties of the LiCs molecule we demonstrate the

capability of our relativistic all-electron quantum-chemical methodology to yield highly

accurate complete potential energy curves. We therefore go beyond other approaches

applied to cold and ultracold molecules which typically employ small numbers of explicitly

correlated electrons and effective core potentials.

In particular, we report on the implementation of a GAS coupled cluster in the

spin-free Dirac formalism for large-scale electron correlation calculations on molecular

ground states. It is demonstrated that the spin-free Dirac framework gives significant im-
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provements over non-relativistic approaches for certain types of molecules, where electron

correlation effects by far outweigh spin-orbit contributions. As in the present case, we

obtain results of high accuracy.

In order to obtain accurate spectroscopic properties of LiCs the level of correlation

treatment exceeds Coupled Cluster Singles and Doubles. In the case of the harmonic

frequency and the equilibrium bond distance the CCSD(T) model suffices if no further

vibrational analysis is needed. However, due to the breakdown of the perturbative triples

correction in the bond-breaking region CCSD(T) cannot yield a full potential curve. Here

we demonstrate that the full iterative triple excitations or a multireference approach

yield a balanced description. The various trends in the correlation treatment like the

contraction of the bond with a shift from delocalized to more localized bond, the change in

dissociation energy with increased correlation treatment and, moreover, small variations

in the harmonic frequency have been explained. Besides this a thorough comparison

between results obtained in the non-relativistic, the spin-free and the fully relativistic

regime has been made.

We demonstrate a greater accuracy on the entire potential energy curve in com-

parison to other methods for both spectroscopic and electric properties. This is corrobo-

rated by obtaining proper atomic limits for the electric properties upon dissociating the

molecule. The dipole moment tends to zero and the polarizability goes towards the sum

of the atomic polarizabilities of 401 au. for Cs [172] and 164 au. for Li [173, 174]. The

quality of the potential curve is in addition confirmed by a complete vibrational analysis.

The importance of an extensive correlation treatment is also demonstrated for the

dipole moment, where CCSD gives a very poor description in the region of the maximum

dipole moment. The parallel component α‖ of the static electric dipole polarizability,

however, turns out to be much less sensitive to electron correlation with this basis set.

Besides having accurate potential surfaces for electronic ground states there would be

a great interest in having these also for excited states. This is currently under development

using linear response theory. For molecules with large spin-orbit contributions a fully

relativistic version of the CI-driven spin-free code has been implemented [70] and a more

efficient commutator-driven implementation is under development [68].
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9.4 RbYb

We present high-level four-component coupled cluster and multireference configuration in-

teraction calculations of potential energy curves, dipole moment, Franck-Condon factors

and spectroscopic constants of the newly formed RbYb molecule. From finite-field calcu-

lations we obtain an electric dipole moment for RbYb of almost 1 Debye. In combination

with its magnetic dipole moment this makes RbYb an excellent candidate for trapping

and for studying dipolar interaction in the ultracold regime. Significant Franck-Condon

factors are found between the rovibronic ground state and the lowest rovibrational levels

of the first excited 2Σ+
1/2 state but also between a broad range of rovibrational levels of the

2Π1/2 and 2Π3/2 states. This allows for several two-step approaches to reach the rovibronic

ground state after initial photoassociation.

9.4.1 Introduction

A number of groundbreaking achievements has been reported from the field of cold and ul-

tracold molecules, and ongoing investigations bear the potential for yet further findings of

fundamental importance [14]. These range from the production of Bose-Einstein conden-

sates (BECs) [15] to the striving for a controlled chemistry at the quantum level [16] and

the possibility of testing, e.g., fundamental symmetries in nature through measurements

of a postulated electric dipole moment (EDM) of an electron [17, 18] or the space-time

variation of fundamental constants such as the fine-structure constant α [19, 20]. The

experimental work for producing (ultra-)cold molecules has to the date been conducted

in a variety of ways, such as photoassociation (PA) [21], buffer gas cooling (sympathetic

cooling) [22], Stark deceleration of polar molecules via time-modulated electric fields [23]

and magnetically tunable Feshbach resonances [24].

Theoretical contributions to the field of (ultra-)cold molecules are of value in many

different respects. Among the most important is the determination of accurate molecular

potential energy curves (PECs) of ground and relevant electronically excited states. These

potentials are often required to be known both at short and long range [21]. At long range,

atom-atom interactions are typically evaluated by perturbation theory, whereas at short

range advanced methods of molecular electronic structure theory come into play. In
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addition to the spectral constants which may be extracted directly from the short-range

potentials (equilibrium bond lengths, harmonic vibrational

frequencies, dissociation and excitation energies) [25–27], vibrational states and

Franck-Condon factors (FCFs) [28], molecule formation rates [29], and electric properties

such as permanent EDM [30,31], transition dipole moments [32], and static polarizabilities

are of interest and have been determined by theoretical methods.

A large fraction of investigated systems in the (ultra-)cold molecular sciences is

comprised by alkali metal diatomics. The RbYb molecule belongs to a new class of

heteronuclear diatomics that due to their unpaired electron(s) may be trapped and ma-

nipulated using magnetic fields [11]. They are, for example, promising candidates for

an experimental search for a permanent electric dipole moment of the electron or for

producing lattice-spin models [12] for quantum computing. Recently, the thermalization

of various bosonic and fermionic Yb isotopes through collisions with ultracold Rb has

been shown, giving first insights into the long-range behavior of the RbYb potential [175].

Based on this work, the controlled production of electronically excited RbYb∗ molecules

by single-photon photoassociation techniques has been demonstrated [11], and continued

efforts include the conservative trapping of the Rb-Yb mixture. Ultimately, the investiga-

tions aim at a molecular BEC with adjustable dipolar interaction and a new approach to

measuring the electron EDM. The prospects have motivated us to explore the electronic

structure of the RbYb molecule with reliable and accurate relativistic electronic structure

methods.

In this section we present, to the best of our knowledge, the first theoretical investi-

gation of the RbYb molecule. The focus of this investigation has been on a simultaneously

accurate description of the ground and lowest electronically excited states and to propose

possible ways for a photoassociation process leading to the rovibronic ground state. Since

two heavy atoms are involved we apply quantum-chemical methods which treat electron

correlation and relativistic effects on the same footing. Relativistic coupled cluster and

configuration interaction approaches are used in a complementary fashion, the details of

which are described in the following section. In the main body of the section (Section

9.4.3) we outline a way of achieving high accuracy by first a systematic study of the

ground and excited states of the atoms and, in addition, of the electronic ground state

of the molecule. Based on these results, a final multireference (MR) CI model expansion
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is chosen which can deliver accurate spectroscopic values for the states in question. We

present and discuss electronic molecular potentials obtained with this MRCI model and

point to possible pathways to the rovibronic ground state based on the derived FCFs. We

furthermore present the computed dipole moment function of the ground state showing

that RbYb also possesses a substantial electric dipole moment along with a magnetic

dipole moment due to the unpaired electron. In the final section we summarize and draw

conclusions.

9.4.2 Theory and Computational Details

9.4.2.1 Hamiltonian Operators

The spectroscopic properties of RbYb are expected to be significantly influenced by rela-

tivistic effects and electron correlation. For the ground state 2Σ+
1/2 scalar-relativistic effects

cause a large contraction and stabilization of the 6s spinors on Yb and a smaller one of

the 5s spinors on Rb. For the lowest excited states we expect a significant spin-orbit

splitting for Rb5p1(2P3/2,1/2) and a large spin-orbit coupling (SOC) for Yb6s16p1(3P2,1,0)

and Yb6s16p1(1P1). We have therefore decided to carry out this theoretical investigation

in the more rigorous 4-component framework using the Dirac-Coulomb (DC) Hamilto-

nian for calculations including excited states and Dyall’s spin-free Hamiltonian [64] for

ground-state-only calculations. To correctly describe the SOC of the excited states the

DC Hamiltonian suffices since it contains the leading spin-orbit terms for heavy elements,

namely the one-electron spin-orbit and the two-electron spin-same-orbit terms. The effect

of the spin-other-orbit term which is derived from the Gaunt operator and is therefore

not included in the DC Hamiltonian has been examined at the SCF level. It was found

that the change in the splitting of the Rb5p(P3/2,1/2) and Yb6p(P3/2,1/2) levels decreased by

0.72 and 19.8 cm−1, respectively. This reduction amounts to a change for Rb5p(P3/2,1/2) of

1.7% and Yb6p(P3/2,1/2) of 1% which is still below the accuracy we can typically achieve

for relative energies. Including the full Breit interaction has been shown to have only

little influence on the excitation energies of Yb [176] and on the alkali metal atoms in

general. [177]
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9.4.2.2 Correlation Methods and Setup

For the study of ground-state spectroscopic and electric properties we employed the

RELCCSD module [74, 125] in the DIRAC quantum chemistry program package [57] which

can perform CCSD and CCSD(T) calculations. The dominant relativistic contributions

to the ground state are scalar relativistic. We therefore applied Dyall’s spin-free Hamil-

tonian [64] in the coupled cluster calculations. Dirac-Coulomb Hartree-Fock (DCHF)

calculations were performed with an averaging of three electrons in two Kramers pairs

(3in2) consisting of the Rb 5s and Yb 6s spinors. Additional test calculations were carried

out in a spin-dependent framework employing either a (3in2) or (3in5) averaging. In the

latter DCHF setup three electrons were distributed among five Kramers pairs consisting

of the Rb 5s and Yb 6s6p spinors. These ground-state coupled cluster calculations served

as a benchmark for the corresponding MRCI calculations.

The calculation of excited-state wave functions and vertical as well as adiabatic

excitation energies has been performed with the relativistic large-scale MRCI program

LUCIAREL [71–73]. Like in the CIDBG [50] and SOCI [51] in the COLUMBUS code, double

group symmetry is used. The recent parallel implementation [131] of LUCIAREL has opened

for the possibility to treat larger CI expansions (> 108 determinants) within a reasonable

time frame on standard Linux-based clusters which has also been demonstrated for the

SOCI program. [178]

The CI program LUCIAREL operates on the basis of a fully variational treatment of

any spin-dependent two- or four-component Hamiltonian that is available in the present

developer version of the DIRAC package [57]. It furthermore takes advantage of the concept

of generalized active spaces (GAS) [71] to define suitable orbital spaces thereby allowing

for arbitrary occupation constraints. Molecular spinors based on a true two- or four-

component framework can be obtained from either all-electron self-consistent field (SCF),

Kramers-restricted multi-configurational self-consistent field (KR-MCSCF) [130] or nat-

ural MP2 spinor [179] calculations. The string-driven MRCI [71–73, 127] as well as the

MRCC [3,5,30,68,70] methods are an alternative to the Tensor Contraction Engine [180]

in generation of higher-order methods or code for more complex calculations.

To obtain accurate excitation energies the initial DCHF step was performed with

a (3in5) averaging of states. A (3in8) averaging, where the Rb 5p spinors are included,
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was not possible along the entire potential energy curve due to strong mixing with the

Yb 5d spinors. The Rb 5p spinors were, however, included in the correlation step in

a (3in8) MRCI excitation scheme that is in the following dubbed as S6 (3in8) SD. Our

notation follows the scheme “GAS I (GAS II) GAS III” and is most easily explained by an

example: “S6 (3in8) SD” means that at most 1 hole among the 6 electrons in 3 Kramers

pairs (in this case: Rb 4p spinors) is allowed, 3 electrons are distributed in 8 Kramers

pairs in all possible ways (plus of course excitations from GAS I to GAS II), and finally

that all possible single and double excitations into GAS III Kramers pairs are generated

from the reference configurations obeying the constraints put on GAS I and GAS II. As

discussed in more detail in Section 9.4.3.1, the inclusion of the Rb 4p spinors is required

in the correlation step to obtain a good description of the lowest three atomic channels.

In addition to our thorough investigation of the four lowest molecular electronic

states of RbYb, we show in Figure 9.8 a qualitative picture of the low-lying molecular elec-

Figure 9.8: Sørensen et al. JPCA 2009; Qualitative picture of the potential energy curves of the molecu-

lar electronic states constituting the lower electronic spectrum of RbYb. Correlating atomic dissociation

channels for the states are labeled. The computational level is CI SDT3 (see text for more details).
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tronic spectrum including respective atomic dissociation channels. In these calculations,

denoted as SDT3 which corresponds to a Full CI calculation with three electrons, we trun-

cated the space of virtual spinors at 2.0 Eh. It should be noted that the Rb4d1(2D5/2,3/2)

states should be below the Yb6s16p1(3P2) states in the atomic limit which is not the case

here due to the choice of DCHF averaging.

As full linear symmetry is not available yet in the present LUCIAREL implementation

the calculations have been carried out in the Abelian sub double group C∗
2. The assignment

of the Ω quantum number for each individual electronic state has been accomplished by

means of calculating the expectation value for the one-electron operator ĵz = l̂z + ŝz. This

option has become available with the very recent implementation of a general CI property

module [181] capable of treating basically any one-electron operator that is implemented

in the DIRAC program package [57].

9.4.2.3 Basis Sets and Number of Correlated Electrons

All calculations were performed using uncontracted basis sets. For the ground-state cou-

pled cluster calculations the aug-cc-pVTZ basis set for Yb (30s24p16d13f4g2h) [182] from

Gomes and Dyall was chosen. It includes correlating functions for outer- and inner-valence

shells down to the Yb 4f and polarizing functions for these. For Rb (29s21p15d2f) [183]

Dyall’s aug-cc-pVTZ basis set which includes correlating and polarizing functions down

to Rb 4s4p was used. For a description of the general procedure of how to derive these

functions see for example Ref. [184]. In the following this basis set will be referred to as

(ext bas).

The effect of changing the number of correlated electrons has been examined at the

CCSD and CCSD(T) levels. Either nine electrons from the Rb 4p5s and Yb 6s spinors

were treated explicitly in the correlation step or 23 electrons where the Yb 4f spinors were

then included in addition. As shown in Sections 9.4.3.1 and 9.4.3.2, the differential effects

of correlating the Yb 4f electrons were found to be minor. In contrast, the correlation of

the Rb 4p electrons had significant impact on the energy separation of the atomic levels

and on the equilibrium distance of the molecular ground state. We therefore decided to

correlate nine electrons (Rb 4p5s and Yb 6s) in the MRCI calculations.

For the MRCI calculations the core-polarizing functions for both atoms were omitted

since no electric properties were calculated. This reduced the size of the basis set (min bas)
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to (30s24p16d13f3g1h) for Yb and (28s20p14d1f) for Rb. The truncation value for

the virtual spinors in all correlated calculations was kept at 7.8 Eh since this threshold

includes all polarizing functions and, on the other hand, was still tractable for the MRCI

calculations. Spinors above this threshold are primarily core-correlating and will therefore

only give minor contributions to valence spectroscopic values and electric properties.

9.4.2.4 Dipole Moment

The ground-state dipole moment was calculated by applying a finite electric field of vary-

ing strength along the bond axis (chosen as z). The field strengths considered here were

±0.0001, ±0.0002, ±0.0004 Ehe−1bohr−1. From these seven points a polynomial fit to

the total field-dependent energy was made to find the numerical derivative and thereby

also the dipole moment at a given internuclear distance. This was done at the CCSD and

CCSD(T) levels of theory with 23 explicitly correlated electrons.

9.4.2.5 Spectroscopic Values and Franck-Condon Factors

A polynomial fitting procedure with exponents ranging from -1 to +4 was used to fit

the electronic ground- and excited-state potentials around their respective minima. Spec-

troscopic constants have then been determined by solving a one-dimensional Schrödinger

equation of nuclear motion using a reduced mass calculated from isotopic abundance [185].

The harmonic frequency has been calculated from the second derivative at the minimum.

Vibrational wave function, eigenvalues and FCFs have been computed with the program

LEVEL 8.0 by LeRoy [28].

9.4.2.6 Counterpoise Correction

As RbYb is a van der Waals complex and therefore the ground state is very weakly bound

by dispersion forces, the basis set superposition error (BSSE) may play a significant role

in determining spectroscopic values even in large and balanced basis sets [89,186] due to

the slow convergence towards basis set saturation. This artifact has been examined by a

counterpoise (CP) correction as suggested by Boys and Bernardi [165] for both ground and

excited states which is the correct way of evaluating differential quantities [89, 187, 188].
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The BSSE is defined in the usual manner

BSSE(R) = EA(AB)(R) + EB(AB)(R) − EA − EB (9.1)

where EA(AB)(R) and EB(AB)(R) are the monomer energies obtained in the full dimer

basis (AB) at a given distance (R) and EA and EB are the monomer energies in their

respective basis. Every point on the potential energy curve is thereby CP corrected. The

CP correction has been shown to be a very good estimate for the BSSE in medium to large

basis sets and to provide a smooth convergence of properties to the complete basis set

limit [189,190]. Despite the apparent ease to eliminate a basis set incompleteness artifact

one should, however, be careful in relying on this form of error compensation since a CP

correction will not improve the overall basis.

9.4.3 Results and Discussion

9.4.3.1 Qualitative Molecular Electronic Spectrum and Atomic Calculations

Table 9.7 gives an overview over the atomic configurations and terms as well as the

associated molecular states in the Λ − S coupling picture that are expected to form the

lower part of the electronic spectrum of RbYb. The energetically close-lying valence-

electronic Yb 6s and 6p shells as well as the valence-electronic Rb 5s and low-lying Rb

5p, 4d, 6s and 6p shells suggest a large variety of excited states with angular momentum

projection greater than zero within an energetic range of ≈ 25000 cm−1. As these states

are affected by spin-orbit interaction to first order in a perturbation theory sense and as

ytterbium is a heavy atom, the corresponding splittings and mixings are expected to be

sizeable. We provide in Figure 9.8 a qualitative survey of all molecular states correlating to

the three lowest atomic channels listed in Table 9.7. Comparing the atomic-like excitation

energies, computed at the CI SDT3 level of theory with the experimentally available data

we find a large deviation of ≈ 2000 − 3000 cm−1 for the lowest P channels of both

Rb and Yb. In contrast, the splitting among the various J-states is reproduced rather

well. These results indicate that spin-dependent effects are taken into account properly

whereas significant parts of the differential electron correlation are missing at this level of

calculation. As we in the present study turn our main attention to the ground and three

lowest excited states of RbYb which are of particular importance for the experimental PA
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Table 9.7: A selection of molecular electronic states in the Λ−S coupling picture and associated atomic

dissociation channels in an energy range of ≈ 25000 cm−1. Molecular electronic states correlating to

atomic channels with intra-atomic Yb f − d excitations, e.g. Yb4f135d16s2 are not considered.

Atomic (2S+1)LJ Molecular (2S+1)ΛΩ

Rb5s1(2S1/2) + Yb6s2(1S0)
2Σ+

1/2

Rb5p1(2P3/2,1/2) + Yb6s2(1S0)
2Π3/2,1/2,

2Σ+
1/2

Rb5s1(2S1/2) + Yb6s16p1(3P2,1,0)
4Π5/2,3/2,1/2,−1/2,

2Π3/2,1/2,
4Σ+

3/2,1/2,
2Σ+

1/2

Rb4d1(2D5/2,3/2) + Yb6s2(1S0)
2Δ5/2,3/2,

2Π3/2,1/2,
2Σ+

1/2

Rb6s1(2S1/2) + Yb6s2(1S0)
2Σ+

1/2

Rb5s1(2S1/2) + Yb6s15d1(3D3,2,1)
4Δ7/2,5/2,3/2,1/2,

2Δ5/2,3/2,
4Π5/2,3/2,1/2,−1/2,

2Π3/2,1/2

4Σ+
3/2,1/2,

2Σ+
1/2

Rb6p1(2P3/2,1/2) + Yb6s2(1S0)
2Π3/2,1/2,

2Σ+
1/2

Rb5s1(2S1/2) + Yb6s16p1(1P1)
2Π3/2,1/2,

2Σ+
1/2

process, [11] we further investigated the effect of correlating the outer-core Rb 4p shell on

the excitation energies. Since alkali atoms are known to have easily polarizable cores we

expect a considerable influence here.

Our calculated atomic and atomic-like excitation energies Te for the lowest Rb 5s−5p

transitions are compiled in Table 9.8 and atomic Yb 6s − 6p transitions in Table 9.9. If

core-valence polarization from the Rb 4p shell is neglected in the calculation of the lowest

Rb 5s − 5p transition, not only a considerable underestimation of the excitation energies

of almost 2000 cm−1 is found as indicated in Table 9.8 for the atomic S1 (one electron

CI) and quasi-molecular SDT3 calculations. It also yields a too small fine-structure split-

ting of the (2P3/2,1/2) state of 183(2) cm−1 in comparison with the measured splitting of

237.6 cm−1. However, taking into account single excitations from the outer-core Rb 4p

shell (S6 (1in4) SD) results in a significant improvement towards the experimental values.

Excitation energies and the fine-structure splitting differ from the experimental data by

about 40 - 60 cm−1and 15 cm−1, respectively.
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Table 9.8: Atomic and atomic-like (values taken at R = 30 bohr) excitation energies Te in cm−1 for

the lowest Rb5s1(2S1/2) → Rb5p1(2P3/2,1/2) transitions calculated at the MRCI S1, S6 (1in4) SD, SDT3,

and S6 (3in8) SD levels, respectively. Details on the computational levels are given in the text.

J = 0.5 J = 0.5 J = 1.5

Method / Te [cm−1] Ω = 0.5 Ω = 0.5 Ω = 1.5 Ω = 0.5

S1 0 10692 10875 10875

S6 (1in4) SD 0 12636 12857 12857

SDT3 0 10708 10890 10892

S6 (3in8) SD 0 12662 12879 12883

experiment [191] 0 12578.95 12816.55 12816.55

What about Te for the Rb 5p excitation computed at the quasi-atomic limit (R= 30

bohr) applying our MRCI S6 (3in8) SD model? It can be seen from Table 9.8 that in the

atomic limit the excitation energies are slightly shifted to higher energies by about 22-26

cm−1 yet yielding an excellent spin-orbit splitting of 218 cm−1. The excitation energies

are in very good agreement with the experimental data exhibiting a maximum deviation

of 83 cm−1 for the lower 2 0.5 state and compare well to the two-component MRCI results

of Lim et al. [192] using energy-consistent pseudopotentials. Furthermore, the energetic

difference of only 4 cm−1 between the sublevels of the J = 1.5 atomic channel indicates

that we are almost in the atomic limit at an internuclear distance of 30 bohr.

As a prospect for future studies on this system we show our atomic MRCI calcula-

tions on the Yb atom where we studied the relevance of taking into account core-valence

polarization from the Yb 4f and 5p shells. If only the two Yb 6s valence electrons are

correlated (denoted as S2) transition energies for the respective Yb 6s − 6p excitation

are consistently too low by around 18%. The inclusion of the Yb 4f electrons in the

correlation step (S14 (2in4) SD) yields some improvement. However, only upon explic-

itly treating core-valence polarization from the Yb 5p shell (S20 (2in4) SD) we obtain

excitation energies which are in good agreement with the experimental data. A further

improvement is achieved by extending the active space to comprise the Yb 6s, 6p and 5d
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shells (S20 (2in9) SD). In this case, the deviations from the experimental values are less

than 60 cm−1, and the fine-structure splitting is very well reproduced.

Summarizing, the SDT3 level is insufficient for an accurate description even of the

four lowest-lying dissociation channels (Rb 5s1 + Yb 6s2 and Rb 5p1 + Yb 6s2). It may

thus be used only for obtaining a qualitative overview. In contrast, the S6 (3in8) SD

scheme reproduces the energetic splitting of these levels very well. Yb excitations do

not play a major role in the atomic channels that correlate with the four lowest-lying

molecular states relevant for the PA process. We thus conclude that our chosen MRCI

S6 (3in8) SD model should provide a reliable description of the long-range behavior of

these states in the RbYb molecule.

Table 9.9: Atomic excitation energies Te in cm−1 for the lowest Yb6s2(0S0) → Yb6s16p1(3P2,1,0) tran-

sitions calculated at the MRCI S2, S14 (2in4) SD, S20 (2in4) SD and S20 (2in9) SD levels, respectively.

Details on the computational levels are given in the text.

Method / Te [cm−1] J = 0 J = 0 J = 1 J = 2

S2 0 14209 14865 16362

S14 (2in4) SD 0 15497 16164 17734

S20 (2in4) SD 0 17233 17931 19611

S20 (2in9) SD 0 17346 18034 19722

experiment [191] 0 17288.44 17992.01 19710.39

9.4.3.2 Ground State Potential

The electronic ground state of RbYb exhibits a shallow potential shape (see Figure 9.9)

that is a characteristic feature of a van der Waals molecule. Since the ground state is very

sensitive to the DCHF averaging of the spinors and to the level of electron correlation,

the simultaneously correct description of both ground and excited states becomes a com-

plicated matter. Changes in the DCHF averaging or the correlation treatment can lead

to large variations of the spectroscopic constants, here in particular the equilibrium bond
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Figure 9.9: Sørensen et al. JPCA 2009; Potential energy curves of the four lowest-lying molecular

electronic states of RbYb. Atomic dissociation channels for the states are shown. The computational

level is S6 (3in8) SD (see text for more details).
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distance. These differences may result in a substantial change of FCFs between ground

and excited states.

We therefore first examined the ground state of RbYb with the coupled-cluster

method to provide a benchmark for the MRCI calculations. The aim here was to find

the effect of outer-core polarization/correlation of the Yb 4f and Rb 4p. This has been

done by varying the number of explicitly correlated electrons from three to nine and

to 23. Results of these calibration calculations are compiled in Table 9.10. Comparing

those results it becomes evident that after a CP correction the effect of including the

Rb 4p electrons on the bond length is more than one magnitude larger than including

Yb 4f as the bond contracts from 9.18 bohr (CP-CCSD(T), three electrons correlated)

to 8.94 bohr (CP-CCSD(T), nine electrons correlated) and 8.93 bohr (CP-CCSD(T), 23

electrons correlated). The correlation of the Yb 4f electrons does, nevertheless, have an

effect comparable to the inclusion of the Rb 4p electrons on the harmonic frequency and
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Table 9.10: Spectroscopic values for the 1 0.5 ground state calculated at the CCSD and CCSD(T) level

with three, nine and 23 explicitly correlated electrons and with CP corrected values.

Method corr. el. Re[bohr] ωe [cm−1] De [cm−1]

CCSD-SF 3 9.30 26.278 606

CP-CCSD-SF 3 9.30 26.257 605

CCSD(T)-SF 3 9.18 28.941 818

CP-CCSD(T)-SF 3 9.18 28.923 816

CCSD-SF 9 9.20 24.814 600

CP-CCSD-SF 9 9.22 24.554 588

CCSD(T)-SF 9 8.93 29.724 820

CP-CCSD(T)-SF 9 8.94 29.462 804

CCSD-SF 23 9.15 24.186 742

CP-CCSD-SF 23 9.23 22.882 674

CCSD(T)-SF 23 8.86 28.990 870

CP-CCSD(T)-SF 23 8.93 28.196 749

the dissociation energy in reducing both. These changes are, however, of little importance

for the present investigation and, furthermore, the polarization of Yb 4f plays a minor

role in the lowest-lying excited states for the molecule (see Section 9.4.3.1). Therefore,

we decided not to include the Yb 4f in the MRCI calculations. Another reason to omit

the Yb 4f is the large CP correction which shows that with this particular basis set and

truncation of virtuals we did not yet come close enough to basis set saturation for the Yb

4f shell. The otherwise minor CP correction for the three and nine electron CCSD and

CCSD(T) calculations indicates that we have a balanced basis set.

The perturbative triples, on the other hand, have a substantial impact on the spec-

troscopic parameters. We therefore restrict the following discussion to results obtained

at the CCSD(T) level. A comparison of the spin-free CCSD(T) correlating nine electrons

with corresponding calculations including SOC (Table 9.11) shows that spin-dependent

terms are of minor importance for the ground-state spectroscopic parameters. In contrast,
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Table 9.11: Spectroscopic values for the 1 0.5 ground state calculated at the CCSD and CCSD(T) level

with nine explicitly correlated electrons and including SOC. The spinor basis was derived from average-

of-configurations DCHF calculations, distributing either three electrons in two Kramers pairs (3in2) or

three electrons in five Kramers pairs (3in5). A CP-correction was not applied.

Method basis set (av. in DCHF) corr. el. Re[bohr] ωe [cm−1] De [cm−1]

CCSD-SOC min bas (3in2) 9 9.25 24.073 591

CCSD(T)-SOC min bas (3in2) 9 8.98 28.620 795

CCSD-SOC min bas (3in5) 9 9.15 25.572 654

CCSD(T)-SOC min bas (3in5) 9 8.89 30.214 828

CCSD-SOC ext bas (3in2) 9 9.17 24.969 603

CCSD(T)-SOC ext bas (3in2) 9 8.90 29.888 826

CCSD-SOC ext bas (3in5) 9 9.08 26.443 670

CCSD(T)-SOC ext bas (3in5) 9 8.82 31.321 868

both the choice of the basis set and one-particle spinor basis have a significant effect on

the equilibrium distance and dissociation energy. Augmentation of the basis set by polar-

ization functions on both atoms (ext bas) leads to a bond contraction as well as to a bond

strengthening. Similar trends are found when the Yb 6p shell is included in the spinor

optimization step. Although the CCSD(T) calculations based on a (3in5) averaged spinor

basis yield the most attractive potential, the results need to be regarded with caution

because of the use of a single-reference method. This choice of one-particle basis is more

appropriate for a multireference correlation approach.

The MRCI results for the ground state (Table 9.12) reproduce very well the spec-

troscopic values derived from the CCSD(T) calculations. We find a slightly shorter bond

and a higher dissociation energy of 844 cm−1 in relation to the CP-CCSD(T)-SF value of

804 cm−1(Table 9.10). Typically, CCSD(T) is expected to result in larger binding energies

than CI. A thorough analysis of the MRCI wave function reveals, however, substantial

multi-configurational character. The leading configuration consists of a doubly occupied

Yb 6s Kramers pair and a bonding orbital composed of Rb 5s and Yb 6p1/2. In addi-
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Table 9.12: Spectroscopic constants for the ground and three lowest excited states (Ω designation) of

RbYb calculated at the MRCI S6 (3in8) SD level with nine explicitly correlated electrons. CP corrected

values are given in the lower part of the table.

state Λ − Σa Re[bohr] ωe [cm−1] De [cm−1] Tv [cm−1] Te [cm−1]

1 0.5 2Σ+ 8.85 29.751 865 0 0

2 0.5 2Π 7.40 69.294 7735 7387 5794

1 1.5 2Π 7.43 69.322 7164 8104 6581

3 0.5 2Σ+ 8.43 52.789 4423 9431 9326

1 0.5 (CP) 2Σ+ 8.88 29.458 844 0 0

2 0.5 (CP) 2Π 7.40 69.441 7688 7441 5819

1 1.5 (CP) 2Π 7.44 69.181 7131 8153 6592

3 0.5 (CP) 2Σ+ 8.44 52.284 4388 9451 9339

a leading Λ − Σ configuration

tion, large coefficients are found for single excitations from the bonding orbital as well as

double excitations from the Yb 6s shell. The simultaneous occurrence of polarizing and

correlating excitations are indicative of the importance of triples as observed in the CC

calculations.

From the benchmark calculations on the molecular ground state in connection with

a balanced description of the atomic limit (see Table 9.8) we conclude that with the chosen

MRCI setup high accuracy can be achieved both for ground and low-lying excited states.

9.4.3.3 Excited State Potentials

We now discuss in more detail the lower part of the electronic excitation spectrum of the

RbYb molecule. Figure 9.9 displays the calculated potential energy curves for the three

lowest excited states corresponding to the atomic Rb 5p3/2,1/2 and Yb 6s2
1/2 dissociation

channels. The results for the spectroscopic constants of these states are compiled in Table

9.12 where data is listed with and without a CP correction, respectively.
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The three electronically excited states can be divided into two classes as illustrated

in Figure 9.9. The second state with Ω quantum number 0.5 (denoted in the following by

2 0.5) and the lowest state with Ω = 1.5 (1 1.5) display a similar shape with pronounced

potential wells centered around 7.40 bohr (2 0.5) and 7.44 bohr (1 1.5), respectively, and

a harmonic frequency ωe of ca. 69 cm−1 derived from the CP-corrected data. Both states

are deeply bound with a De of 7688 cm−1 and 7131 cm−1, respectively, whereas the 3

0.5 excited state has a considerably lower binding energy of 4388 cm−1. We find for

the latter excited state an equilibrium bond length Re of 8.44 bohr that is significantly

longer compared to the excited states mentioned afore but much closer to the minimum

internuclear distance of the ground state. This geometric shift is furthermore in agreement

with a small difference of ≈ 112 cm−1 between the vertical Tv and adiabatic Te excitation

energies compared to the much larger difference for the other two states.

Comparison of the CP-corrected excited-state spectroscopic constants with their

uncorrected counterparts in Table 9.12 reveals that the excited-state bond distances are

less sensitive to basis set superposition errors than the ground-state bond distance. The

RbYb bond in the ground state, e.g., decontracts by ≈ 0.03 bohr upon CP correction

whereas the largest shift for an excited state is found to be around 0.01 bohr. Moreover,

the adiabatic transition energies Te are hardly affected by the CP correction with changes

of the order of 10 − 20 cm−1.

9.4.3.4 Vibrational Overlaps

Nemitz proposed a two-step mechanism for the production of ultracold RbYb molecules

in the rovibronic ground state [193]. Initially, the molecule is prepared in a highly excited

rovibrational level close to the dissociation limit of the electronic ground state. Inter-

action of the molecule with laser light of two different wavelengths promotes RbYb in

a first step to some vibrational level of an electronically excited state correlating with

the Rb(2P ) + Yb(1S) atomic levels from which the population is pumped down in a

second step to the rovibronic ground state of the molecule. For experimental realization

of this scheme, knowledge of the vibrational overlaps between the electronically excited-

and ground-state potential wells is of utmost importance. We expect that the dominat-

ing difference for a transition probability will be the FCF since all transitions are dipole

allowed. We have therefore computed FCFs between vibrational wave functions of the



9.4 RbYb 183

Figure 9.10: Sørensen et al. JPCA 2009; The highest and lowest vibrational states for the electronic

ground state.
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electronic ground state and those of the three lowest electronically excited states. These

calculations were performed for the 87Rb and 176Yb isotopes since these are favorably

employed in experiment [11].

In Table 9.13 selected FCFs between the rovibronic ground state (1 0.5, v = 0) and

vibrational levels of the electronically excited states are listed. (Complete tables of the

FCFs are available upon request.) As may be expected from the small geometrical shift

between the 1 0.5 and 3 0.5 potential energy wells (see Section 9.4.3.3), large Franck-

Condon overlaps for the lowest vibrational levels of the 3 0.5 state are obtained. For the

first excited 2 0.5 as well as the 1 1.5 state significant FCFs are observed for a wide range

of vibrational states due to the large spatial extent of the electronic ground state as the

maximum amplitude of the v = 0 wave function coincides approximately with the outer

turning points of these excited-state vibrational wave functions.

FCFs between the calculated highest vibrational state (v = 69) of the electronic
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Table 9.13: Selected Franck-Condon factors between the rovibronic ground state and vibrationally

excited states (v) of the electronically excited states of 87Rb176Yb.

State v Δ E [cm−1] FC factor

1 0.5 – 2 0.5 0 5839 3.4D-11

1 0.5 – 2 0.5 1 5908 7.8D-10

1 0.5 – 2 0.5 2 5976 8.9D-09

1 0.5 – 2 0.5 14 6777 7.1D-03

1 0.5 – 2 0.5 15 6842 1.1D-02

1 0.5 – 2 0.5 16 6907 1.7D-02

1 0.5 – 2 0.5 23 7357 7.5D-02

1 0.5 – 2 0.5 24 7421 7.8D-02

1 0.5 – 2 0.5 25 7484 7.7D-02

1 0.5 – 2 0.5 35 8105 1.2D-02

1 0.5 – 2 0.5 36 8165 8.1D-03

1 0.5 – 2 0.5 37 8226 5.6D-03

1 0.5 – 1 1.5 0 6612 1.0D-10

1 0.5 – 1 1.5 1 6681 2.2D-09

1 0.5 – 1 1.5 2 6749 2.4D-08

1 0.5 – 1 1.5 13 7483 6.4D-03

1 0.5 – 1 1.5 14 7549 1.1D-02

1 0.5 – 1 1.5 15 7614 1.6D-02

1 0.5 – 1 1.5 22 8063 7.6D-02

1 0.5 – 1 1.5 23 8127 7.9D-02

1 0.5 – 1 1.5 24 8190 7.8D-02

1 0.5 – 1 1.5 34 8810 1.2D-02

1 0.5 – 1 1.5 35 8870 8.1D-03

1 0.5 – 1 1.5 36 8931 5.5D-03

1 0.5 – 3 0.5 0 9350 1.5D-01

1 0.5 – 3 0.5 1 9403 2.3D-01

1 0.5 – 3 0.5 2 9454 2.3D-01

1 0.5 – 3 0.5 3 9506 1.7D-01

1 0.5 – 3 0.5 4 9557 1.0D-01

1 0.5 – 3 0.5 12 9964 1.2D-04

1 0.5 – 3 0.5 13 10014 3.9D-05

1 0.5 – 3 0.5 14 10064 1.3D-05

1 0.5 – 3 0.5 20 10359 8.0D-09

1 0.5 – 3 0.5 21 10407 2.2D-09

1 0.5 – 3 0.5 22 10456 5.7D-10
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Table 9.14: Selected Franck-Condon factors between the highest excited vibrational state (v = 69)

of the electronic ground state and vibrationally excited states (v) of the electronically excited states of
87Rb176Yb.

State v Δ E [cm−1] FC factor

1 0.5 – 2 0.5 0 5007 1.7D-04

1 0.5 – 2 0.5 1 5076 4.9D-05

1 0.5 – 2 0.5 2 5144 3.1D-05

1 0.5 – 2 0.5 14 5945 1.2D-05

1 0.5 – 2 0.5 15 6010 1.5D-05

1 0.5 – 2 0.5 16 6075 4.3D-05

1 0.5 – 2 0.5 37 7394 3.4D-05

1 0.5 – 2 0.5 38 7454 3.5D-06

1 0.5 – 2 0.5 39 7515 1.4D-05

1 0.5 – 1 1.5 0 5780 1.9D-04

1 0.5 – 1 1.5 1 5848 1.5D-05

1 0.5 – 1 1.5 2 5917 7.1D-05

1 0.5 – 1 1.5 13 6651 2.8D-05

1 0.5 – 1 1.5 14 6716 4.1D-06

1 0.5 – 1 1.5 15 6782 4.5D-05

1 0.5 – 1 1.5 37 8159 3.4D-06

1 0.5 – 1 1.5 38 8219 1.4D-05

1 0.5 – 1 1.5 39 8279 3.7D-05

1 0.5 – 3 0.5 0 8518 9.6D-15

1 0.5 – 3 0.5 1 8570 5.8D-14

1 0.5 – 3 0.5 2 8622 5.1D-16

1 0.5 – 3 0.5 12 9132 2.7D-05

1 0.5 – 3 0.5 13 9182 3.3D-05

1 0.5 – 3 0.5 14 9231 7.9D-06

1 0.5 – 3 0.5 20 9527 1.4D-04

1 0.5 – 3 0.5 21 9575 2.0D-05

1 0.5 – 3 0.5 22 9623 6.3D-05



186 9 Calculations

Figure 9.11: Sørensen et al. JPCA 2009; CCSD(T) and CCSD dipole moment curve in Debye with 23

explicitly correlated electrons. The vibrationally averaged dipole moment for CCSD and CCSD(T) is

found to be 0.761 and 0.985 Debye, respectively.
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ground state were found to be on the order of 10−4 to 10−6 for the 2 0.5 , 1 1.5 , and

3 0.5 electronic states as shown in Table 9.14. Contrary to the situation for the 2 0.5

and 1 1.5 states, none of the vibrational levels of the 3 0.5 state has non-negligible FCFs

with the v = 0 and v = 69 levels of the electronic ground state at the same time. This

is, however, a requirement for an effective experimental excitation/deexcitation process.

The difficulty in determining which state will have the largest combined Franck-Condon

overlap with both the highest and lowest vibrational state of the electronic ground state

is demonstrated in Figure 9.10 where the difference in these two vibrational states are

clearly visible.

Our findings thus support a postulated two-step scheme mentioned afore aiming at

reaching the lowest rovibrational level of the electronic ground state [193]. However, we

propose to use either the 2 0.5 or 1 1.5 state as intermediate for this process.

9.4.3.5 Dipole Moment

Besides having a magnetic dipole moment from an unpaired electron, RbYb also exhibits

an electric dipole moment of around 1 Debye as illustrated in Figure 9.11. A fit of

the CCSD and CCSD(T) dipole moment curves results in an electric dipole moment of
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0.763 and 0.987 Debye, respectively, at the equilibrium bond distance. A slight decrease of

around 0.01 Debye is observed if the CP correction is added to the ground state as reported

in Table 9.15. It should be noted that in these cases the dipole moment has not been CP-

corrected but has been evaluated at the CP-corrected equilibrium bond distance. In Table

9.15 we have also listed the vibrationally averaged dipole moment which is only slightly

lower despite the large variation shown by the dipole moment across the rovibrational

ground state.

Table 9.15: Dipole moments at Re (μe) and the vibrationally averaged dipole moment μv for the CCSD

and CCSD(T) levels of theory with 23 explicitly correlated electrons and with CP corrected values.

Method μe [D] μv [D]

CCSD-SF 0.763 0.761

CP-CCSD-SF 0.751 0.747

CCSD(T)-SF 0.987 0.985

CP-CCSD(T)-SF 0.977 0.974

9.4.4 Summary and Conclusions

In this study we demonstrate the capability of our relativistic all-electron quantum-

chemical methodology to yield accurate ground and excited states on this new and chal-

lenging system by approaching the problem in a systematic way. We show that with our

chosen MRCI model we are not only able to obtain excellent atomic data but we are also

able to get close to the accurate CCSD(T) data around the equilibrium bond distance

of the ground state. We furthermore report spectroscopic constants and Franck-Condon

factors for ground and excited states.

Our coupled cluster calculations indicate that RbYb possesses a substantial dipole

moment of almost 1 Debye thus making it an excellent candidate for the study of dipole-

dipole interactions and considering its magnetic dipole moment making it accessible to

magneto-optical trapping. Strongest candidates for reaching the rovibronic ground state

via a two-step procedure (after the initial photoassociation), judging from the determined



188 9 Calculations

Franck-Condon factors, appear to be the two lowest excited electronic states. For these

two states we find reasonable Franck-Condon factors both for the absorption and for

the emission simultaneously. We therefore propose the following two-color process. The

longer wavelength laser should excite the molecule to levels with vibrational quantum

numbers in the range of v = 15−35 in either the 2 0.5 or 1 1.5 potential wells followed by

stimulated emission to the rovibronic ground state. This mechanism will give the largest

combined Franck-Condon overlap. This picture can, however, change depending on how

well the ground state is determined. For example, a shorter equilibrium bond distance for

the ground state would favor the first two excited states whereas a longer would favor the

third excited state. We have therefore performed high-level coupled cluster benchmark

studies using a varying number of correlated electrons to calibrate our results.

The inclusion of higher excited states in this molecule necessitates core polarization

from Yb 4f5p as these correlate to the atomic Yb6s16p1(3P2,1,0) channels thereby dra-

matically increasing the computational demand of the problem. Moreover, an accurate

description of the Rb4d1(2D5/2,3/2) atomic limit which will lie in between the Yb6s16p1(3P1,0)

and Yb6s16p1(3P2) channels would require additional higher angular momentum functions

to be included in the basis set on Rb. Furthermore, Yb 4f − 5d excitations need to be

taken into account which are extremely difficult to compute properly. From the method-

ological aspect one would here also come to the limit of CI because with 31 explicitly

correlated electrons size-extensivity errors would likely become sizeable. A change to a

size-extensive method would then be desirable. Such an approach is currently being inves-

tigated by extending the newly implemented general-order four-component multireference

coupled cluster [68] to allow for the treatment of excited states.

9.5 (RbBa)+

Collisions of ultracold Ba+ ions on a Rb Bose-Einstein condensate have been suggested as

a possible benchmark system for ultracold ion-neutral collision experiments, however, a

priori knowledge of the possible processes is desirable. For this purpose we here present

high-level four-component coupled-cluster and multireference configuration interaction

calculations of potential energy curves, dipole moment, and spectroscopic constants of

the experimentally interesting low-lying electronic states of the (RbBa)+ molecule. Our
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results show significant avoided crossings between the 3Σ+
1,0− Rb + Ba+ entrance channels

and low-lying charge transfer 3Π1,0− states of the Rb+ and Ba6s15d1(3D) atomic channels,

indicating that a fast non-radiative charge transfer could be possible. For the ground

state population analysis shows that the ground state deviates significantly from a pure

Rb+ + Ba interaction but instead a partially covalent polar bond is formed. This finding

is corroborated by the electric dipole moment which is found only to be 4.5 D at the

equilibrium bond distance, compared with the 14 D for a pure Rb+ + Ba interaction,

thereby supporting the view of a partial charge transfer between the two atoms.

9.5.1 Introduction

The study of reactive collisions at very low temperatures is a promising new direction

in the field of cold and ultracold quantum matter. This temperature regime comprises

a unique environment to investigate, i.a., the quantum mechanical details of chemical

reactions, ultimately aiming at a controlled chemistry at the quantum level [16]. Other

interesting prospects concern the possibility of testing fundamental symmetries in nature

[17,18] or the space-time independence of electron and nuclear masses [20].

Ion-neutral interactions are distinguished from neutral-neutral collisions in that the

interaction of the former is long-range, in general leading to large collision cross Sections

[194] and entailing the possibility of charge transfer between the collision partners [195].

Quite a number of experimental and theoretical studies of ion-neutral reactions exist, but

the low-energy regime has only been addressed recently, e.g. in references [194,196,197].

Due to the complexity of the level of ab-initio electronic-structure calculations needed

for determining the accurate short-range potentials, most of these studies considered

few-electron systems. The limited number of investigations on many-electron systems

involving a cationic reaction partner, such as the studies on (NaNa)+ and (NaCa)+ [195,

198], employ rather approximate potentials involving parameters taken from experiment.

Also other aspects of ion-neutral collisions beside the charge-transfer processes have

received attention. The formation of a postulated mesoscopic molecular bound state

arising from a single trapped ion in a sea of ultracold atoms [199] comprises an intriguing

finding. In this context, the collision kinetics and electronic potential energy curves of

the molecular benchmark system (RbBa)+, starting from a Ba+ ion that interacts with a
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Bose-Einstein condensate of neutral Rb atoms, are of great interest [200]. The (RbBa)+

system is valence isoelectronic with the (MgK)+, (MgCs)+, and (NaCa)+ systems which

have been considered in earlier experiments [198, 201, 202]. The associated theoretical

investigations were mainly carried out using large-core pseudopotentials and neglecting

spin-orbit coupling. In these systems, the lowest-lying electronic states are characterized

as Σ states, which is also true for the (RbBa)+ molecular ion [27] and most likely also

for another heavier species of interest, (MgCs)+. The neglect of spin-orbit interaction is

reasonable in the determination of such Σ states, since it affects these states only through

higher-order couplings to excited states of different angular momentum projection onto the

internuclear axis. For the (RbBa)+ molecular ion, however, electronic states of projection

Λ > 0 play a role for the lowest dissociation channels to the different atomic fragments [27].

An understanding of experiments involving the lower dissociation channels of (RbBa)+

which come to lie in an energy window of about 2 eV, therefore necessitates inclusion of

spin-orbit interaction in the electronic-structure calculations.

The objective of this study has been to investigate the electronic excited states lying

close to the Rb + Ba+ entrance channel and expected to have a complicated distance

dependence, to form a firm basis for design of ultracold collision experiments for this

system. One aim here was the search for possible charge transfer mechanism from Rb

to Ba+ by a characterization of the excited states. Another closely related aim was

the search for metastable excited states which could be used for creating a mesoscopic

molecular bound state with the Rb Bose-Einstein condensate. To obtain this objective

we extend an earlier

scalar relativistic study [27] to also include the spin-orbit interaction, which we will

show to be imperative for an understanding of the charge transfer mechanisms in (RbBa)+

at ultracold experimental conditions.

Since two heavy atoms are involved we apply quantum-chemical methods which treat

electron correlation and relativistic effects on the same footing. Relativistic coupled-

cluster and configuration interaction approaches are used in a complementary fashion,

the details of which are described in the following section. In the main body of the

section (Section 9.5.3) we achieve high accuracy by first a systematic study of the ground

and excited states of the atoms and, in addition, of the electronic ground state of the

molecule. Based on these results, a final multireference configuration interaction (MRCI)
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model expansion is chosen which can deliver accurate spectroscopic values for the states

in question and describe well the relevant avoided crossings of the potential curves. We

present and discuss electronic molecular potentials obtained with the MRCI model and

point to possible radiative as well as non-radiative charge transfer processes which can

occur. We also investigate the ground state dipole moment as a function of distance to

visualize effects of any covalent character in the ground state. In the final section we

summarize and draw conclusions.

9.5.2 Theory and Computational Details

9.5.2.1 Hamiltonian Operator

Atomic excitation energies along with ionization potentials suggest a rich manifold of low-

lying excited states with angular momentum projection greater than zero in the region

around the Rb5s1 + Ba+
6s1 entrance channel. This was confirmed by the calculations

in a previous study [27] where the nine lowest-lying molecular electronic states of the

(RbBa)+ ion were calculated employing a spin-free Hamiltonian. These spin-free states

will split into their Ω components upon taking into consideration spin-orbit coupling.

Since these high angular momentum states are possible candidates for a charge transfer

from Ba+ to Rb, which could be lead to a transition to the electronic ground state, it

is therefore essential to account properly for the various Ω components of these higher

angular momentum states to aid the interpretation of ongoing experiments [200]. We

therefore here extend the spin-free investigation to account for spin-orbit interactions

in the rigorous four-component Dirac-Coulomb framework. All classes of two-electron

integrals were included, also the integrals involving four small-component indices and

spin-orbit, except where otherwise noted.

9.5.2.2 Correlation Methods and Setup

In the study of the ground state properties we used the RELCCSD module [74,125] which can

perform coupled-cluster single doubles (CCSD) and perturbative triples (CCSD(T)) cal-

culations and is available in the DIRAC08 quantum chemistry program package [57]. Since

the dominant relativistic contribution for the ground state of (RbBa)+ is scalar relativis-

tic we employed the computationally cheaper spin-free Dirac-Coulomb Hamiltonian by
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Table 9.16: Spectroscopic values for the Ω = 0+ ground state calculated at the spin-dependent MRCI

S12 (2in13) SD level in comparison to CC results, both at the spin-free (SF) and spin-dependent levels,

and results from earlier spin-free MRCI SF-SD16 (2in7) SD where an ANO-RCC basis was used and with

a truncation of the virtual space at 5 Eh. Counterpoise corrections (“cp-” prefix) have also been tested.

Method Re[bohr] ωe [cm−1] De [cm−1]

SF-SD16 (2in7) SD [27] 8.75 54.327 5509

S12 (2in13) SD 8.72 51.773 5055

SF-CCSD 8.80 52.171 4887

CCSD 8.80 52.187 4886

SF-CCSD(T) 8.75 52.785 5035

CCSD(T) 8.75 52.799 5034

cp-SF-CCSD 8.81 52.145 4877

cp-CCSD 8.80 52.161 4876

cp-SF-CCSD(T) 8.76 52.755 5023

cp-CCSD(T) 8.76 52.768 5022

Dyall [64] in the ground-state calculations. This was checked against the Dirac-Coulomb

(DC) Hamiltonian as shown in Table 9.16, and the spin-orbit effect on the ground state

potential was found to be well within the expected error bounds for the spectroscopic

properties. We therefore consistently used the spin-free Hamiltonian for the ground-state

calculations since the time consuming part in the CCSD and CCSD(T) with the DC

Hamiltonian is the flipping of the Kramers projection to describe the in this case negligi-

ble spin-orbit contribution to the electronic potential. Along the entire potential energy

curve we used closed-shell spin-free Dirac-Coulomb Hartree Fock (SF-DCHF) for the gen-

eration of molecular spinors. This was employed since the ground state is dominated by

a single determinant. The CCSD(T) furthermore served to validate the quality of the

MRCI calculations.

In the coupled-cluster and MRCI treatments we decided to correlate the valence and

outer core electrons, i.e. the 4p shell on Rb+ and the 5p and 6s shells on Ba. Recent

studies on LiCs [30] (see also Sections 9.3 and 9.6) showed that the correlation of the core

4d shell on Cs had very little impact on the spectroscopic values, and this would then be

expected also to be the case for the 3d shell on Rb and the 4d shell on Ba. The LiCs
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study also showed that the energetically lower-lying 5s outer core on Cs contracted the

bond by about 0.02 bohr which is expected to carry over for the outer core 4s Rb and 5s

Ba.

Ground- and excited-state wave functions along with vertical and adiabatic excita-

tion energies have been calculated with the recently parallelized [131] relativistic double

group large-scale MRCI program LUCIAREL [71–73]. This code is able to routinely han-

dle large CI expansions (> 109 determinants) on standard Linux-based clusters. This

CI program will be made available in the forthcoming release of the DIRAC program

package. By exploiting the generalized active space (GAS) concept in the CI, a flexible

correlation treatment is possible. The orbital space can be divided into any number of

sub-orbital spaces and any restrictions can be imposed on the allowed excitations between

these sub-orbital spaces. The molecular spinors can in the developers version of DIRAC

be obtained from either DCHF, Kramers-restricted multi-configurational self-consistent-

field (KR-MCSCF), [130] or natural MP2 spinors [179]. We found that the best way to

obtain accurate excitation energies in this case was to start from a closed-shell DCHF.

The Ω quantum number for a given electronic state has been assigned by calculating the

expectation value for the ĵz operator [203].

In the MRCI calculations we included the Rb 5s5p and the Ba 5d6s6p spinors (of

which only Ba 6s is formally occupied in the ground state) in the active space, yielding

a distribution of two valence electrons in 13 Kramers pairs. Single holes in the Rb 4p

and Ba 5p shells were included to describe outer-core polarization, and single and doubles

into the energy selected virtual spinors (see Section 9.5.2.3) were included to account for

dynamic correlation. In our notation we dub this computational scheme S12 (2in13) SD

which follows the notation of GAS1 (GAS2) GAS3 laid out in earlier publications [204].

9.5.2.3 Basis Sets and Basis Set Superposition Error

All calculations were performed using uncontracted scalar Gaussian type orbitals (GTO)

large component basis sets. The small component basis functions were generated by

restricted kinetic balance condition [205]. For all the ground-state coupled cluster calcu-

lations we used extended TZ basis sets by Dyall [206]. For Rb the (29s21p15d2f) basis set

is his TZ basis set extended with his correlating and polarizing functions for the valence

and the 4s4p shells, since this choice of basis set has been shown to perform well in a
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recently published paper on RbYb [204]. For Ba we added Dyall’s correlating and polar-

izing functions for the valence and the 5s5p shells to form an (31s25p18d3f) extended TZ

basis set. The polarizing functions were added to ensure accurate dipole moments for the

electronic ground state.

For the MRCI calculations, where the focus was on proper treatment of all low-

lying excited states, we followed the scheme in Ref. [207], and the Ba basis set was

further augmented with one diffuse d, f , and g function with exponents of 0.036645714,

0.3000341, and 0.76354824, respectively, in the MRCI treatment. This was done in order

to properly describe excitations to the Ba 5d shell which plays a crucial role in the charge

transfer from Rb to Ba+ and could enable a transition to electronic ground state. The

polarizing functions were, on the other hand, not included since no electric properties

were calculated with the MRCI. This setup results in a total of (28s20p14d1f) for Rb and

(30s24p18d3f1g) for Ba. This basis set has been used in all MRCI calculations.

Table 9.17: Spectroscopic values for the Ω = 0+ ground state calculated with the spin-free (SF) CCSD

and CCSD(T) methods, with an energy truncation threshold for active virtual spinors at 18 and 42

Hartree, and using the Visscher small component approximation [164].

Method Virtuals truncation Re[bohr] ωe [cm−1]

SF-CCSD 18 8.8027 52.179

SF-CCSD 42 8.8025 52.179

SF-CCSD(T) 18 8.7528 52.794

SF-CCSD(T) 42 8.7526 52.795

The threshold for the truncation of the virtual spinors in all the correlated calcula-

tions was set at 18 Hartree. The validity of this choice was checked for the ground state at

the CCSD and CCSD(T) levels using the approximation to the small-component density

by Visscher [164]. To this end, complete potential energy curves with a truncation of

the virtuals at 42 Hartree were also constructed. As seen from the results in Table 9.17

the truncation errors in the spectroscopic parameters derived from these calculations are

more than a factor of 100 smaller than the difference between CCSD and CCSD(T).
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Table 9.18: A selection of molecular electronic states in the Λ − S coupling picture and associated

atomic dissociation channels in an energy range of up to ≈ 14000 cm−1.

Atomic (2S+1)LJ Molecular (2S+1)ΛΩ

Rb+
5s0 (1S0) + Ba6s2 (1S0)

1Σ+
0+

Rb5s1 (2S1/2) + Ba+
6s1 (2S1/2)

3Σ+
1,0− , 1Σ+

0+

Rb+
5s0 (1S0) + Ba6s15d1 (3D1,2,3)

3Δ3,2,1,
3Π2,1,0+,0− , 3Σ+

1,0−

Rb+
5s0 (1S0) + Ba6s15d1 (1D2)

1Δ2,
1Π1,

1Σ+
0+

Rb+
5s0 (1S0) + Ba6s16p1 (3P0,1,2)

3Π2,1,0+,0− , 3Σ+
1,0−

The basis set superposition error (BSSE) in the electronic ground state was ac-

counted for by applying the counterpoise (CP) correction as suggested by Boys and

Bernardi [165] (see also Section 9.4.2.6).

9.5.2.4 Dipole Moments

Dipole moments along the ground state potential energy curve were calculated using the

finite-field technique where we varied the electric field along the bond axis (chosen as z).

For the dipole moment a seven-point numerical derivative has in previous publications

[30, 204] been shown not to be the limiting factor for the accuracy of the dipole moment

and will therefore also be used here. The field strengths used were ±0.0001, ±0.0002,

and ±0.0004 Eh e−1 bohr−1 to form the numerical derivative of the energy with respect to

electric field taken at zero field strength. The origin of the molecular coordinate system

was chosen to lie in the center of mass. In this way we could calculate the dipole moment

at different internuclear distances with the WFFIT program from Sadlej [208], and this

has been done at the CCSD and CCSD(T) levels of theory for the ground state.

9.5.3 Results

Table 9.18 compiles the atomic configurations and terms as well as their corresponding

molecular states that form the lower part of the electronic spectrum of the (RbBa)+

molecular ion up to ≈ 14000 cm−1 above the ground state. These molecular states

include also the Σ states correlated with the entrance channel for the envisaged collision
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experiments involving an ultracold ionized trapped barium atom and a Bose-Einstein

condensate of neutral rubidium atoms. In the following we shall elaborate on our results

for all the molecular states located below the entrance channel plus d channels associated

with the Rb+
5s0(

1S0) + Ba6s15d1(3D1,2,3 ; 1D2) atomic limits listed in Table 9.18. As our

results discussed in Section 9.5.3.3 show, notable interactions between electronic states of

the same Ω quantum number are observed for the molecular states correlating with these

channels. It is therefore anticipated that radiative as well as non-radiative transitions will

play a crucial role in the charge transfer process from Rb + Ba+ to Rb+ + Ba and of the

life time of the different states in the excited state manifold.

9.5.3.1 Atomic Calculations and Ionization Potentials

Table 9.19 compiles our results of atomic and atomic-like excitation energies of the low-

est Ba atomic transitions as well as previous theoretical work and experimental data.

Comparisons of our atomic MRCI S6 (2in9) SD and the atomic-like molecular MRCI

S12 (2in13) SD results show that the dissociation limit is reached at an internuclear sepa-

ration of 50 bohr. From previous studies on transition metals it is known that ns2(n-1)dm

→ ns1(n-1)dm+1 excitations are difficult to describe in general within an MRCI approach

because of the slow convergence of the dynamical electron correlation contributions [209].

Multireference CC approaches, such as for example the Fock-space CCSD (FSCCSD) or

the intermediate Hamiltonian IHFSCCSD methods [108, 210, 211], are better at describ-

ing dynamical electron correlation energies. They are therefore expected to yield closer

agreement with experiments, as the results in Table 9.19 confirm. In view of these diffi-

culties for MRCI the deviations of our computed 3D and 1D excitation energies from the

experimental values on the order of a few 100 cm−1 are satisfactory. The fine-structure

splittings of these terms are even reproduced within a few tens of cm−1(see Table 9.19).

Furthermore, the good agreement of our calculated Ba6s16p1(3P) energies to experiments

shows that the chosen basis set and correlation treatment are adequate.

In addition to the energetic location of the low-lying neutral Ba channels, the differ-

ential ionization potential of Rb and Ba is of vital importance for an unbiased description

of the (RbBa)+ molecular states. Our computed ΔIP (IP(Ba)-IP(Rb)) value of 8454 cm−1

is in excellent agreement with experiment (8344 cm−1) [213]. This ΔIP was calculated

as the excitation energy in the atomic-like limit at 50 bohr of a molecular calculation.
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The Ba+ + Rb entrance channel is thus placed only slightly below the Ba6s15p1(3D1) +

Rb+
5s0 atomic channel. This is in contrast to the lighter homologs (NaCa)+, (MgK)+ and

(MgCs)+ where the corresponding energy gap is much larger.

9.5.3.2 Ground State Potential

In Table 9.16 we report our calculated MRCI spectroscopic constants for the 1Σ+
0+ ground

state of (RbBa)+ and compare with values derived from our four-component CCSD and

CCSD(T) calculations. In agreement with the findings of an earlier study on RbYb [204],

counterpoise correction has only a minor effect on the spectroscopic constants of the

ground state. Inspecting Table 9.16, it is comforting that the present spin-dependent

MRCI S12 (2in13) SD approach compares favorably to the more sophisticated CCSD(T)

method. The deviation of 0.03 bohr in the equilibrium bond distance Re is small for such

Table 9.19: Excitation energies T in cm−1 for the lowest Ba6s2(1S0) → Ba6s15d1(3D1,2,3), Ba6s2(1S0) →
Ba6s15d1(1D2) and Ba6s2(1S0) → Ba6s16p1(3P0,1,2), electronic transitions calculated at the atomic MRCI

S6 (2in9) SD and atomic-like S12 (2in13) SD (molecular calculation; values taken at R = 50 bohr) levels.

The active space in the atomic calculation includes the same Ba shells and the same truncation threshold

for the virtual spinors as in the molecular case. Details on the molecular computational level are given in

the text. The MRCI results are compared to previous theoretical and experimental data. In the atomic-

like “J states” (Ω) the individual Mj components are almost degenerate at R = 50 bohr with deviations

on the order of 4 − 8 cm−1 from the lowest to highest Mj component. We here show the energies of the

lowest Mj values in the table.

1S0
3D1,2,3

1D2
3P0,1,2

Method J = 0 J = 1 J = 2 J = 3 J = 2 J = 0 J = 1 J = 2

Experiment [212] 0 9034 9216 9597 11395 12266 12637 13515

Atomic calculations

S6 (2in9) SD 0 8627 8809 9175 11197 12732 13091 13944

FSCCSD [210] 0 9075 9260 9639 11621 12423 12802 13793

IHFSCCSD [210] 0 9117 9296 9677 11426 12397 12728 13610

Molecular calculation at R = 50 bohr

S12 (2in13) SD 0 8619 8812 9174 11198 12736 13109 13936
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a weakly-bound molecular ion with Re = 8.75 bohr. Moreover, the harmonic frequency

ωe as well as the dissociation energy De agree perfectly with the CCSD(T) values. The

differences between the spin-free and spin-dependent MRCI results are mainly attributed

to AO basis set effects since in the spin-free case an ANO-RCC basis set with a trun-

cation of the virtual space at 5 Eh was used. As could be expected for a ”Σ“ state,

spin-orbit coupling hardly affects the calculated spectroscopic parameters as seen for the

coupled cluster calculations. In contrast we see a substantial contraction of the equilib-

rium distance and an increase of the dissociation energy by about 150 cm−1 when triple

excitations are included perturbatively in the coupled cluster treatment. This finding is

in line with what has also been observed for other weakly bound systems like LiCs [30]

and RbYb [204] (see also Sections 9.3 and 9.4, respectively) where a CCSD treatment was

also found to be insufficient.

In the MRCI expansion the ground state is dominated by the reference determinant

which has a CI coefficient of 0.94 around equilibrium. A Mulliken population analysis of

the underlying DCHF wave function reveals that the highest occupied molecular orbital

(HOMO) is not a purely atomic Ba 6s Kramers pair, the Ba 6s spinors are populated

by 1.5 electrons. Roughly 0.4 electrons have been transferred to a Rb σ-type orbital.

The remaining 0.1 electrons reside in the Ba 5dσ that is also involved in the binding.

The second largest CI coefficient of about -0.1 is found for the double excitation to the

lowest unoccupied molecular orbital (LUMO), which the Mulliken population analysis

again reveals to be significantly mixed. The LUMO is composed of Rb 5s(0.613), Ba

6pz(0.209), 6s(0.150), and 5dxx, 5dyy(0.011). We furthermore see many single and double

excitations to molecular spinors which are made up of Rb 5s and 5p and Ba 6s, 6p,

and 5d atomic spinors. This large mixing of the atomic spinors is what leads to the

choice of including all these spinors in the active space of the MRCI calculations and why

we are confident that the MRCI with this active space performs well for the low-lying

states. Upon dissociation we observe that the HOMO becomes more and more atomic

and localizes on Ba.

The mixing with the Rb 5s and 5p in HOMO also means that the ground-state

potential cannot be considered to be just a charge – induced dipole 1/R4 interaction

between Rb+ and Ba but that there is a significant amount of the valence electron density

residing on the Rb atom. The charge transfer is perhaps not so large that one would talk
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about a bond in a chemical sense but we find that the bond is significantly stronger than

what would be expected from a charge-induced dipole interaction. With a dissociation

energy of around 5000 cm−1 (see Table 9.16) this is in fact directly comparable to the

dissociation energy of the LiCs alkali dimer where De is measured to 5875.455 cm−1 [163].

The picture of a partially covalent polar bond is also confirmed by the dipole moment

which is significantly influenced by the charge distribution in the molecule (see Section

9.5.3.4).

9.5.3.3 Excited State Potentials

In contrast to the ground state, accounting for spin-orbit coupling in the excited states

clearly yields a more complex picture for the potential energy curves of the electronic

excited states of the molecular ion (RbBa)+ compared to the spin-free calculations [27].

The avoided crossings between the 3Σ+
0−-3Π0− states and the 3Σ+

1 -3Π1 states are easily

discernible in Figure 9.12 and in the enlargement of the critical region in Figure 9.13. Of

course, in the spin-free calculations all these curves cross, and it is thus evident that proper

treatment of spin-orbit coupling is mandatory for explanation and prediction of outcomes

of ultracold reactive collisions of Ba+ on a Rb Bose-Einstein condensate. An even more

pronounced avoided crossing between the 1Σ+ of the entrance channel and the 1Σ+ of

the Ba6s15d1(1D) channel is also visually identifiable in Figure 9.12. Unlike the above

mentioned avoided crossings this one would also be present in a non-relativistic or scalar

relativistic calculation. The spin-orbit splitting of the calculated scalar-relativistic states

is sizeable, in particular for the 3Δ and 3Π states which are split into their Ω = 1, 2, 3 and

Ω = 0+, 0−, 1, 2 components (see Figure 9.12 and Table 9.20). This splitting of the 3Δ

and 3Π into their Ω components is of 250 and 80 cm−1, respectively, at the ground state

equilibrium bond distance. While some of the Ω components are degenerate in the atomic

limit because they belong to the same atomic J level, the molecular field gives a spin-

orbit splitting also of these components. The 3Σ+ state originating from the Ba6s15d1(3D)

channel exhibits very irregular behavior due to avoided crossings, and it is therefore not

meaningful to give an estimate of the molecular spin-orbit splitting of this state.

Most of the electronically excited states exhibit strong multi-configurational charac-

ter and are thus more difficult to describe in a molecular orbital picture. We will therefore

discuss their electronic structure in a more qualitative way. The lowest excited Ω = 0−
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Table 9.20: Spectroscopic constants for the ground and lowest excited states (Ω designation) of (RbBa)+

calculated at the MRCI S12 (2in13) SD level with 14 explicitly correlated electrons.

State Ω Λ − Sa Re [bohr] ωe [cm−1] De [cm−1] Tv [cm−1] Te [cm−1]

1 0+ 1Σ+ 8.72 52 5055 0 0

2 0− 3Σ+ 9.22 45 6889 6711 6621

3 1 3Σ+ 9.22 45 6871 6737 6638

4 0+ 3Π 8.28 52 5899 7865 7775

5 0− 3Π 8.40 53 5980 7939 7878

6 1 3Π 8.28 56 5742 8022 7932

7 2 3Π 8.28 52 6702 8109 7156

8 1 3Δ 9.22 43 4302 9653 9556

9 2 3Δ 9.22 43 4500 9809 9721

10 3 3Δ 9.22 43 4157 10165 10064

11 2 1Δ 9.22 43 5887 10440 10365

12 1 3Σ+ 9.22 37 2258 12047 11963

13 0− 3Σ+ 9.03 44 2216 12053 12005

14 0+ 1Σ+ 9.77 39 - 13030 12601

15 1 1Π 9.72 40 3566 13112 12687

a leading Λ − S projection

and Ω = 1 states all correlate to a 3Σ+ state in the Λ-S representation (see Table 9.18). In

the dissociation limit their electronic structure corresponds to Ba+ + Rb. At shorter nu-

clear distances more and more Ba6s15d1
σ
(3D) character is mixed in. In the Franck-Condon

region the wave function has nearly equal contributions from these two configurations. At

about 7.75 bohr the 3Σ+ components undergo an avoided crossing with the Ω = 0− and

Ω = 1 of a 3Π state (see Figure 9.13). The 3Π state has a significantly shorter equilibrium

distance than the other states originating from the Ba6s15d1(3D) + Rb+ channel (see Table

9.20). This can be traced back to the strong admixture of Ba 6pπ and Rb 5pπ character

into the Ba 5dπ spinor.

The non-adiabatic interaction between the 3Σ+ and 3Π states is anticipated to have

significant impact on the charge-transfer process. In the entrance channel the system
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is prepared initially in a highly excited vibrational level of the 3Σ+ potential. At short

internuclear separation the non-adiabatic interaction yields a finite probability for a non-

radiative transition to the 3Π potential which in turn can relax to the electronic ground

state by emission of a photon.

At an internuclear distance of 15 to 16 bohr we see the 1Σ+ of the entrance channel

crossing the Ω = 0+ of a 3Π state (see Figure 9.12). While formally it would not be

allowed for two Ω = 0+ state to cross it appears that for this charge transfer process the

non-adiabatic coupling matrix element or off diagonal element between the two states is

so small we cannot visibly see any effect of it. A clear avoided crossing in the 12 to 13

bohr range between the 1Σ+ and the higher lying Ω = 0+ of a 1Σ+ from the Ba6s15d1(1D)

but also Ω = 0+ of a 3Π of the Ba6s16p1(3P) is observed. These avoided crossing help

making the 1Σ+ of the entrance channel a metastable state which is in contrast to what

is observed in the lighter homologs where this is a dissociative state.

The remaining states correlating with the 3D channel are dominated by configu-

rations in which the Ba 6dσ spinor is singly occupied. As seen from Table 9.20 the Ω

components of the 3Δ state are markedly split by spin-orbit, but exhibit equal equilib-

rium distances, indicating no differential spin-orbit coupling to other sΛ states.

9.5.3.4 Dipole Moment

Finally, we show in Figure 9.14 the dipole moment curve of the molecular ground state

of (RbBa)+ calculated at the four-component CCSD(T) level with origin at the center

of mass. The corresponding curve at the CCSD level (not shown) is almost identical,

supporting that the CCSD(T) curve is converged. For a charge distribution correspond-

ing purely to Rb+ and Ba a dipole moment of around 14 Debye could be expected at an

internuclear separation of 8.75 bohr (see Fig. 9.14). Due to a partial electron transfer

from Ba to Rb+ (cf. discussion in Section 9.5.3.2), the dipole moment of the electronic

ground state is significantly lower at the equilibrium distance. As seen in Table 9.21 we

find a vibrationally averaged dipole moment of 4.53 Debye at the counterpoise corrected

CCSD(T) level. Since the dipole moment function is almost linear around the rovibra-

tional ground state we only see a minor difference between the vibrationally averaged

dipole moment and the dipole moment taken at the electronic equilibrium distance as
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Figure 9.14: Four-component CCSD(T) dipole moment curve (in Debye) of the molecular ground state

with calculated with 14 explicitly correlated electrons. The straight line (blue) indicates the asymptotic

limit of the dipole moment μ for a charged system in the center-of-mass coordinates.
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shown in Table 9.21. It should be noted that in perfect agreement with the theory, an

asymptotic behavior of the dipole moment is obtained for large internuclear distances.

9.5.4 Summary and Prospects

In an earlier study on the valence isoelectronic system (NaCa)+ of (RbBa)+, a radiative

lifetime of charge transfer in the order of 104 s to 106 s for the A 1Σ+ to the X 1Σ+ is

found by Makarov et. al [198]. The A 1Σ+ (and most likely also the a 3Σ+) electronic

states of (NaCa)+ are thus very long-lived metastable species. This occurs since there is

no close lying P states mixing into the excited Σ states, making both radiative transitions

electric dipole forbidden and for the a 3Σ+ also spin forbidden. This is in great contrast

to what is observed in (RbBa)+. The non-adiabatic interaction in the short range of

the potential (see Figure 9.13) between the 3Σ+
1,0− and 3Π1,0− states is expected to lead

to a non-radiative charge transfer from the 3Σ+
1,0− entrance channel to the 3Π1,0− states.

While transition from the 3Π1,0− states to the ground state in (RbBa)+ is also in a scalar-

relativistic approximation electric dipole and spin forbidden, the large mixing of the Ba

5dπ with the close lying Ba 6pπ and Rb 5pπ spinors induced by spin-orbit coupling will

greatly decrease the radiative lifetime.
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Table 9.21: Dipole moments at Re (μe) and the vibrationally averaged dipole moment μv for the CCSD

and CCSD(T) levels of theory and with counterpoise (cp) corrected values.

Method μe [D] μv [D]

SF-CCSD 4.528 4.550

cp-SF-CCSD 4.533 4.556

SF-CCSD(T) 4.507 4.528

cp-SF-CCSD(T) 4.514 4.534

The expected fast non-radiative charge transfer to the 3Π1,0− states may not be ex-

perimentally desirable since it will irreversibly ’destroy’ the Ba ion. Furthermore the

shorter lifetime of the 3Π1,0− states may not be long enough to consider the states

metastable for all experiments in question [200]. With the transition dipole moments

it would be possible to go from the present qualitative analysis to more quantitative pre-

dictions of life times. This is clearly of interest, and this has prompted us to start the

development of a MRCI transition dipole moment module [181]. Since Ba is a special

case among the alkaline earth metals with its low lying D shell it presents a unique op-

portunity to study non-radiative charge transfer processes in the excited state manifold

thereby making (RbBa)+ experimentally very interesting.

The (RbBa)+ ground state is found to form a partially covalent polar bond stronger

than expected. While the dissociation energy is comparable to the LiCs alkali dimer the

harmonic frequency is only one third of the LiCs value, showing that the two bonds are

significantly different. The broader (RbBa)+ potential shows the longer ranging charge

induced dipole interaction against the neutral dissociation of LiCs. We furthermore show

that the electronic ground state possesses a dipole moment significantly smaller than what

a charge-dipole interaction would lead one to expect. We attribute this finding to a partial

charge transfer from Ba to Rb+.

In this study we demonstrate the capability of our relativistic all-electron quantum-

chemical methodology to yield accurate ground and excited states. We show that these

methods are capable of handling both neutral and complex ionized systems from the

atomic limit all the way in the short range potential. This is seen from the accurate
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differential ionization potential ΔIP, atomic excitation energies and fine structure splitting

but it is primarily the ability to handle the complicated excited state potentials of highly

multi-configurational character. We show that with our chosen MRCI model we can

handle the above along with reproducing the accurate CCSD(T) data for the spectroscopic

properties of the ground state.

9.6 HBr and LiCs

Although HBr and LiCs have been examined extensively in Sections 9.3 and 9.1 there how-

ever appeared for the author unanswered questions on how to systematically approach the

exact result for a given Hamiltonian with the usual approximations done for calculations

on heavy elements. The author therefore undertook the task of examining what kind of

accuracy should be expected with a given basis set, truncation of virtual space, correla-

tion level and how the interplay between these and the number of correlated electrons in

two very different systems containing a heavy element. LiCs with a large bond length

and dipole moment and low harmonic frequency and dissociation energy and HBr with

a small bond length and dipole moment but high harmonic frequency and dissociation

energy. Since the largest counterpoise correction is on the heavy atom these systems also

differ in that Cs becomes the positive part of the dipole while Br becomes the negative

part. This has meant some spectroscopic properties can be calculated with a higher accu-

racy on one molecule compared to the other and the other way around. The calculations

presented in this section are all unpublished calculations. All comparisons have been per-

formed at the CCSD(T) level of theory since the trend of the correlation methods are the

same and CCSD(T) is the most accurate method used in this section.

9.6.1 Introduction

The development of algorithms for accurate and efficient description of both relativistic

effects and correlation has received large attention over the past decades. The need for

robust and simultaneous treatment of both spin-orbit and correlation effects has been

nowhere more evident than in the actinides. However, the need for highly accurate po-

tential of simpler heavy dimers in the expanding field of ultra cold molecules has also

created a demand for methods which can perform an extensive correlation treatment.
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In the non-relativistic framework extensive work has been done in finding the esti-

mation of error bars from systematic calculations on small closed-shell dimers [67,87,90].

The studies have been carried out by systematically extending the basis set and the level

of correlation for a test set of molecules thereby enabling a statistical investigation of

the performance of a correlation method and basis set. For the lightest elements a com-

prehensive review of this can be found in [67] where all standard ab initio methods and

basis sets have been examined. In this systematic investigation it is clearly seen that the

most efficient many-body theory in electronic structure theory today is the coupled-cluster

(CC) model. It has, in combination with extensive large one-particle basis sets [87,90], for

the light elements shown to give and unprecedented accuracy. Here smaller relativistic

effects has become the dominant error. This has been further carried over to the sec-

ond row [98] where, however, it was significantly more difficult to achieve the same kind

of accuracy since core-correlation become important and the one-particle and N-particle

sectors needed to be increased. A trend that would be expected to carry on to the rows

below thus making highly accurate calculations on heavy elements extremely expensive.

The aim of this study is to systematically investigate two known systems (HBr and

LiCs) to make an estimate of the performance of the correlation treatment, the basis

set and the additional approximations used in the calculation of heavy elements like the

truncation of the virtual space and outer-core correlation. This will be done for the ground

state of these molecules where the number of electrons, the basis set, truncation of virtual

space and correlation level will be varied. In this way a systematic examination of the

interplay between the basis set, truncation of virtual space and the number of correlated

electrons is particularly sought for since it was observed for LiCs in Section 9.3.3.1.1 that

a large basis set superposition error (BSSE) was introduced when correlating the outer

core electrons. What will be attempted is to establish a systematic way to improve the

calculated results within the usual approximations done for calculations and to examine

where the truncation of the virtual space should be performed for a balanced description

in a given basis set.

9.6.2 Computational Details

For the study of ground-state spectroscopic properties we employed the RELCCSD mod-

ule [74, 125] in the DIRAC quantum chemistry program package [57] which can perform
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CCSD and CCSD(T) calculations. Although the dominant relativistic contributions to

the ground state are scalar relativistic, the full Dirac-Coulomb Hamiltonian has been used

throughout since the dissociation energy of HBr is very dependent on spin-orbit effects as

previously discussed (see Table 9.1).

In the calculation of the LiCs molecule in Section 9.3 it was seen that correlating

up to 12 electrons the BSSE remains small. Including the lowerlying 4d electrons in

the correlation step to a total of 22 electrons the BSSE rises dramatically and becomes

comparable to correlation and relativistic effects. The BSSE in the 22 electron case

becomes so large that without a counterpoise correction [165] (cp) the result is far of

the experimental one [163]. The 12 electron LiCs calculation will hereafter be called the

valence calculation and the 22 electron core-valence calculation. The question then arises

whether core-valence calculations can be made without having to resort a CP-correction

giving corrections one- to two magnitudes larger than what appears to be the effect of

correlating the 4d electrons. For HBr the result of including the lowerlying 3d electrons

on the other hand appears to bring an improvement of the result as seen in Table 9.1.

The BSSE was, however, not examined in that case but will be here. In the HBr case it

has therefore been chosen to correlate 8 and 18 electrons which will also here be called

valence and core-valence correlation, respectively.

All calculations were performed using uncontracted basis sets. For the ground-state

coupled-cluster calculations the cc-pVXZ and aug-cc-pVXZ (X=D-Q) basis sets have been

used for all valence correlation calculations where the Br basis was taken from [141,142],

Cs [206] and H and Li both from [91]. For the core-valence correlation calculations

the correlating functions for the lowerlying d electrons were included creating the cc-

pCVXZ and aug-cc-pCVXZ (X=D-Q) basis sets. The small-component basis functions

were generated by restricted kinetic balance condition [205] and the approximate small-

component density according to Visscher [164] was employed. In the following, the aug-

cc-pVXZ will be abbreviated as XZ and the aug-cc-pVXZ basis sets as AXZ.

The counterpoise correction has been performed in the same fashion shown in Section

9.4.2.6 where special care has been taken to include all virtuals on the ghost atom also

present in the molecular calculation. Performing the counterpoise correction in this way

helps to ensure a balanced description when a truncation in the virtual space is performed.

The truncation (in Eh) of the virtual space can therefore differ slightly between molecular



9.6 HBr and LiCs 209

Table 9.22: Values of the truncation threshold of the virtual space in Eh with all correlating functions

for HBr and LiCs in a given basis set. The augmented basis sets was truncated at the same level as the

regular basis set since the augmenting functions were all below the correlating functions. The value given

is the energy of the highest (min) included and the lowest (max) not included orbital. Due to gaps in

the virtual space for small basis sets this is not completely systematic.

LiCs HBr

Basis min max min max

DZ 12.7 19.3 30.1 48.9

TZ 10.5 15.2 34.2 36.6

QZ 24.5 29.4 65.6 76.5

and atom with ghost basis since orbitals can move in the virtual spectrum depending

on them being for an atom or a ghost. The total number of occupied plus unoccupied

spinors has therefore been sought to remain constant for molecular and atom plus ghost

calculations. This means including also the previously occupied virtuals on the ghost

atom and still eliminating the not included virtuals from the molecular calculation.

For the study of the truncation of the virtuals space two sets of calculations have

been conducted in each basis set and separately counterpoise corrected with atomic and

atomic plus ghost calculations. One set of calculations has been performed with a fixed

truncation of the virtual space for both the valence and the core-valence calculations. This

fixed truncation has been the lowest one used in all calculations which for HBr was set at

14.5 Eh and for LiCs at 13.2 Eh which is still significantly larger than most calculations

presented but, as we will see, not sufficient when including core-valence correlation. The

higher truncation was set so that all correlating functions for the core-valence calculation

would be included. As is seen from Table 9.22 the level where the virtual space is truncated

increases significantly with the size of the basis set. A set of calculations for the valence

and the core-valence have been performed at this level.

9.6.3 Results

The investigation will proceed along three lines. First, the counterpoise correction will

be examined as a function of the basis set and truncation of the virtual space for the
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spectroscopic values. Second, the outer-core contribution will be scrutinized and, finally,

the difference to experiment for the various calculations will be looked at. All calculations

along with the spectroscopic data for LiCs is presented in the Tables 9.23, 9.24 ,9.25 and

9.26 and for HBr in Tables 9.27, 9.28, 9.29 and 9.30. The tables are arranged after, first,

the truncation of the virtual space and, second, the number of correlated electrons.

9.6.3.1 Effect of Counterpoise Correction

To examine the effect of the BSSE all curves have been counterpoise corrected. The effect

of the counterpoise correction on the various spectroscopic properties presented in the

previous tables will here be compared. The comparison is throughout this section made

at the CCSD(T) level and presented as uncorrected data minus counterpoise corrected

data (CCSD(T) - cp-CCSD(T)). We note here that the curves with the high and low

cutoff of the virtual space for LiCs will always coincide for the basis sets DZ to ATZ since

this is the same set of data because only one set of calculations has been performed. This

was done because the low truncation of the virtual space here included all correlating

functions for the 4d electrons.

In Figures 9.15 and 9.16 the effect of the counterpoise correction on the equilibrium

bond distance is shown for LiCs and HBr, respectively. In the two figures we see the ex-

pected trend that fewer correlated electrons with the same truncation of the virtual space

gives a smaller counterpoise correction. For LiCs the difference in counterpoise correction

on the equilibrium bond distance for the valence and core-valence correlation calculations

is seen to increase as the basis set increases until ATZ. At QZ we see a that the calcu-

lations with a high virtual cutoff approach each other and ΔRe tends to zero. For the

low cutoff the valence calculation remains more or less constant whereas the core-valence

calculation has an increased counterpoise correction. For HBr we see the opposite trend

with a slight decrease in the difference between the valence and core-valence calculations

as the basis set increases. While for the smaller basis sets the difference between the high

and low cutoff is very small here and remains so for the valence calculations it increases

again for the large QZ basis set and above for the core-valence calculations. Another

noticeable trend is the counterpoise correction with respect to adding polarizing func-

tions. We here see an opposite effect for LiCs and HBr. For LiCs the added polarizing

functions significantly decrease the counterpoise correction while for HBr a small increase
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Table 9.23: LiCs with 12 correlated electrons and low truncation of the virtual space with and without

counterpoise correction.

Method Basis corr. el. Re [Å] ωe [cm−1] De [eV]

CCSD DZ 12 3.7111 180.915 0.630391

CCSD(T) DZ 12 3.7000 179.566 0.659989

cp-CCSD DZ 12 3.7440 178.321 0.608658

cp-CCSD(T) DZ 12 3.7367 176.613 0.636326

CCSD ADZ 12 3.7299 182.247 0.641527

CCSD(T) ADZ 12 3.7172 180.504 0.675867

cp-CCSD ADZ 12 3.7397 182.235 0.634362

cp-CCSD(T) ADZ 12 3.7287 180.464 0.667736

CCSD TZ 12 3.7136 182.462 0.665653

CCSD(T) TZ 12 3.6905 181.275 0.703407

cp-CCSD TZ 12 3.7271 182.261 0.656290

cp-CCSD(T) TZ 12 3.7068 180.974 0.692386

CCSD ATZ 12 3.7134 183.879 0.670428

CCSD(T) ATZ 12 3.6887 183.039 0.711259

cp-CCSD ATZ 12 3.7211 184.136 0.664992

cp-CCSD(T) ATZ 12 3.6974 183.301 0.705242

CCSD QZ 12 3.7093 183.923 0.675220

CCSD(T) QZ 12 3.6806 183.524 0.717607

cp-CCSD QZ 12 3.7182 184.006 0.669693

cp-CCSD(T) QZ 12 3.6909 183.591 0.711228

CCSD AQZ 12 3.7074 184.457 0.677612

CCSD(T) AQZ 12 3.6787 184.181 0.722920

cp-CCSD AQZ 12 3.7169 184.860 0.672148

cp-CCSD(T) AQZ 12 3.6890 184.502 0.716030
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Table 9.24: LiCs with 22 correlated electrons and a low truncation of the virtual space with and without

counterpoise correction.

Method Basis corr. el. Re [Å] ωe [cm−1] De [eV]

CCSD DZ 22 3.7083 181.164 0.6270767

CCSD(T) DZ 22 3.6950 179.766 0.6607280

cp-CCSD DZ 22 3.7411 178.646 0.6055171

cp-CCSD(T) DZ 22 3.7324 176.815 0.6368037

CCSD ADZ 22 3.7270 182.420 0.6393937

CCSD(T) ADZ 22 3.7124 180.617 0.6769989

cp-CCSD ADZ 22 3.7376 182.420 0.6314317

cp-CCSD(T) ADZ 22 3.7249 180.582 0.6679756

CCSD TZ 22 3.7045 182.922 0.6627914

CCSD(T) TZ 22 3.6785 181.698 0.7055677

cp-CCSD TZ 22 3.7214 182.686 0.6516538

cp-CCSD(T) TZ 22 3.6987 181.320 0.6925008

CCSD ATZ 22 3.7051 184.534 0.6690328

CCSD(T) ATZ 22 3.6777 183.680 0.7149266

cp-CCSD ATZ 22 3.7160 184.523 0.6602190

cp-CCSD(T) ATZ 22 3.6899 183.633 0.7052394

CCSD QZ 22 3.6960 184.153 0.6747570

CCSD(T) QZ 22 3.6639 183.829 0.7225186

cp-CCSD QZ 22 3.7122 184.492 0.6649228

cp-CCSD(T) QZ 22 3.6825 183.967 0.7114463

CCSD AQZ 22 3.6942 185.797 0.6809440

CCSD(T) AQZ 22 3.6625 185.583 0.7316544

cp-CCSD AQZ 22 3.7111 185.189 0.6672104

cp-CCSD(T) AQZ 22 3.6809 184.797 0.7168895
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Table 9.25: LiCs with 12 correlated electrons and a high truncation of the virtual space with and

without counterpoise correction. For the DZ to ATZ basis sets the high and low truncation of the virtual

space is the same. The DZ to ATZ results are presented in Table 9.23

Method Basis corr. el. Re [Å] ωe [cm−1] De [eV]

CCSD QZ 12 3.7094 184.453 0.6737991

CCSD(T) QZ 12 3.6811 184.012 0.7165511

cp-CCSD QZ 12 3.7154 184.242 0.6700085

cp-CCSD(T) QZ 12 3.6883 183.702 0.7120068

CCSD AQZ 12 3.7114 185.048 0.6743941

CCSD(T) AQZ 12 3.6833 184.655 0.7199434

cp-CCSD AQZ 12 3.7140 185.119 0.6724648

cp-CCSD(T) AQZ 12 3.6864 184.727 0.7167787

Table 9.26: LiCs with 22 correlated electrons and a high truncation of the virtual space with and

without counterpoise correction. For the DZ to ATZ basis sets the high and low truncation of the virtual

space is the same. The DZ to ATZ results are presented in Table 9.24

Method Basis corr. el. Re [Å] ωe [cm−1] De [eV]

CCSD QZ 22 3.7021 184.903 0.6694411

CCSD(T) QZ 22 3.6709 184.476 0.7174802

cp-CCSD QZ 22 3.7089 184.761 0.6651172

cp-CCSD(T) QZ 22 3.6791 184.218 0.7123373

CCSD AQZ 22 3.7040 185.562 0.6708654

CCSD(T) AQZ 22 3.6731 185.162 0.7215820

cp-CCSD AQZ 22 3.7079 185.479 0.6674069

cp-CCSD(T) AQZ 22 3.6777 185.067 0.7177452



214 9 Calculations

Table 9.27: HBr with 8 correlated electrons and a low truncation of the virtual space with and without

counterpoise correction.

Method Basis corr. el. Re [Å] ωe [cm−1] De [eV]

CCSD DZ 8 1.4159 2690.099 3.6009407

CCSD(T) DZ 8 1.4170 2677.282 3.6435767

CP-CCSD DZ 8 1.4237 2651.521 3.4993334

CP-CCSD(T) DZ 8 1.4255 2635.273 3.5259419

CCSD ADZ 8 1.4193 2670.590 3.6887266

CCSD(T) ADZ 8 1.4210 2654.731 3.7351609

CP-CCSD ADZ 8 1.4290 2621.656 3.5669283

CP-CCSD(T) ADZ 8 1.4315 2601.303 3.5981243

CCSD TZ 8 1.4156 2663.658 3.7424313

CCSD(T) TZ 8 1.4175 2646.030 3.7960169

CP-CCSD TZ 8 1.4189 2655.761 3.6959814

CP-CCSD(T) TZ 8 1.4211 2636.330 3.7394716

CCSD ATZ 8 1.4166 2662.994 3.7736408

CCSD(T) ATZ 8 1.4189 2643.204 3.8280453

CP-CCSD ATZ 8 1.4209 2640.843 3.7093131

CP-CCSD(T) ATZ 8 1.4235 2619.205 3.7512819

CCSD QZ 8 1.4163 2667.558 3.7947671

CCSD(T) QZ 8 1.4186 2647.598 3.8535865

CP-CCSD QZ 8 1.4181 2659.449 3.7789573

CP-CCSD(T) QZ 8 1.4206 2638.769 3.8211233

CCSD AQZ 8 1.4168 2664.722 3.8137377

CCSD(T) AQZ 8 1.4193 2643.724 3.8934783

CP-CCSD AQZ 8 1.4185 2656.193 3.7901999

CP-CCSD(T) AQZ 8 1.4212 2634.442 3.8335860
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Table 9.28: HBr with 18 correlated electrons and a low truncation of the virtual space with and without

counterpoise correction.

Method Basis corr. el. Re [Å] ωe [cm−1] De [eV]

CCSD DZ 18 1.4123 2697.133 3.620734

CCSD(T) DZ 18 1.4135 2682.940 3.659243

CP-CCSD DZ 18 1.4218 2656.543 3.503317

CP-CCSD(T) DZ 18 1.4237 2638.621 3.532030

CCSD ADZ 18 1.4154 2681.066 3.709291

CCSD(T) ADZ 18 1.4171 2663.829 3.761653

CP-CCSD ADZ 18 1.4270 2626.857 3.572145

CP-CCSD(T) ADZ 18 1.4297 2604.778 3.605242

CCSD TZ 18 1.4101 2681.894 3.783206

CCSD(T) TZ 18 1.4123 2660.259 3.851281

CP-CCSD TZ 18 1.4138 2666.594 3.707477

CP-CCSD(T) TZ 18 1.4165 2642.382 3.755416

CCSD ATZ 18 1.4108 2688.696 3.816584

CCSD(T) ATZ 18 1.4134 2664.950 3.884838

CP-CCSD ATZ 18 1.4158 2655.098 3.721208

CP-CCSD(T) ATZ 18 1.4188 2628.323 3.767230

CCSD QZ 18 1.4080 2706.805 3.877238

CCSD(T) QZ 18 1.4106 2682.957 3.938597

CP-CCSD QZ 18 1.4122 2680.170 3.792638

CP-CCSD(T) QZ 18 1.4151 2655.494 3.846258

CCSD AQZ 18 1.4077 2715.914 3.890690

CCSD(T) AQZ 18 1.4105 2691.333 3.972083

CP-CCSD AQZ 18 1.4132 2665.160 3.803505

CP-CCSD(T) AQZ 18 1.4163 2642.570 3.850965
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Table 9.29: HBr with 8 correlated electrons and a high truncation of the virtual space with and without

counterpoise correction.

Method Basis corr. el. Re [Å] ωe [cm−1] De [eV]

CCSD DZ 8 1.4157 2690.596 3.6019945

CCSD(T) DZ 8 1.4169 2677.726 3.6446836

CP-CCSD DZ 8 1.4236 2651.993 3.5003872

CP-CCSD(T) DZ 8 1.4253 2635.681 3.5270487

CCSD ADZ 8 1.4191 2670.963 3.6895759

CCSD(T) ADZ 8 1.4208 2655.018 3.7360886

CP-CCSD ADZ 8 1.4288 2622.005 3.5678049

CP-CCSD(T) ADZ 8 1.4313 2601.591 3.5991064

CCSD TZ 8 1.4155 2664.127 3.7428765

CCSD(T) TZ 8 1.4174 2646.449 3.7964947

CP-CCSD TZ 8 1.4181 2583.882 3.6959912

CP-CCSD(T) TZ 8 1.4210 2636.739 3.7401127

CCSD ATZ 8 1.4165 2663.180 3.7739378

CCSD(T) ATZ 8 1.4188 2643.337 3.8283480

CP-CCSD ATZ 8 1.4208 2641.113 3.7097733

CP-CCSD(T) ATZ 8 1.4234 2619.411 3.7518568

CCSD QZ 8 1.4162 2667.995 3.7951229

CCSD(T) QZ 8 1.4185 2647.983 3.8540764

CP-CCSD QZ 8 1.4181 2659.427 3.7647821

CP-CCSD(T) QZ 8 1.4204 2639.128 3.8217221

CCSD AQZ 8 1.4167 2670.027 3.81386118

CCSD(T) AQZ 8 1.4193 2653.310 3.86654158

CP-CCSD AQZ 8 1.4184 2655.876 3.79072061

CP-CCSD(T) AQZ 8 1.4211 2634.034 3.83417363
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Table 9.30: HBr with 18 correlated electrons and a high truncation of the virtual space with and without

counterpoise correction.

Method Basis corr. el. Re [Å] ωe [cm−1] De [eV]

CCSD DZ 18 1.4108 2702.511 3.6110

CCSD(T) DZ 18 1.4122 2686.047 3.6523

CP-CCSD DZ 18 1.4204 2660.875 3.5020

CP-CCSD(T) DZ 18 1.4226 2640.528 3.5331

CCSD ADZ 18 1.4140 2684.633 3.6999

CCSD(T) ADZ 18 1.4159 2665.000 3.7556

CP-CCSD ADZ 18 1.4256 2631.347 3.5711

CP-CCSD(T) ADZ 18 1.4285 2606.710 3.6063

CCSD TZ 18 1.4093 2680.702 3.7621

CCSD(T) TZ 18 1.4116 2658.044 3.8310

CP-CCSD TZ 18 1.4135 2664.575 3.7065

CP-CCSD(T) TZ 18 1.4162 2639.857 3.7554

CCSD ATZ 18 1.4103 2680.281 3.7921

CCSD(T) ATZ 18 1.4130 2655.373 3.8613

CP-CCSD ATZ 18 1.4154 2654.576 3.7207

CP-CCSD(T) ATZ 18 1.4185 2627.327 3.7675

CCSD QZ 18 1.4094 2685.136 3.8226

CCSD(T) QZ 18 1.4121 2659.579 3.8849

CP-CCSD QZ 18 1.4118 2676.364 3.7927

CP-CCSD(T) QZ 18 1.4148 2650.017 3.8475

CCSD AQZ 18 1.4100 2682.994 3.8252

CCSD(T) AQZ 18 1.4129 2656.461 3.9078

CP-CCSD AQZ 18 1.4122 2670.425 3.8038

CP-CCSD(T) AQZ 18 1.4154 2646.197 3.8525
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Figure 9.15: The effect of a counterpoise correction on the bond length as a function of the basis set

size for LiCs with 12 and 22 electrons explicitly correlated and a high and low truncation of the virtual

space. The comparison has been made at the CCSD(T) level and performed as uncorrected data minus

counterpoise corrected data (CCSD(T) - cp-CCSD(T)).
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Figure 9.16: The effect of a counterpoise correction on the bond length as a function of the basis set

size for HBr with 8 and 18 electrons explicitly correlated and a high and low truncation of the virtual

space. The comparison has been made at the CCSD(T) level and performed as uncorrected data minus

counterpoise corrected data (CCSD(T) - cp-CCSD(T)).
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is observed. This opposite trend is expected to be caused by the significant difference in

bondlength between LiCs and HBr. The polarizing functions stabilizes both the atomic

and molecular calculations and would normally give an increase in the counterpoise cor-

rection, as seen for HBr, since these additional polarizing functions on the ghost atom

would help to reduce the energy of the other atom. In LiCs the opposite is observed

where the counterpoise correction decreases with the inclusion of augmenting functions.

This decrease in counterpoise correction is due to the large bond length in LiCs where

the polarizing function has stabilized the atom and the ghost atom is too far away for the

ghost polarizing functions to have a significant effect on the stabilized atom.

The Figures 9.17 and 9.18 show the effect of the counterpoise correction on the

harmonic frequency. For LiCs we see that this correction is less than 0.5 cm−1 except

for the DZ basis set where it amounts to 3 cm−1 and for the core-valence correlation

calculation in the AQZ basis set with the low cutoff. It is again here seen that correlating

the outer-core with fixed cutoff of the virtual space will lead to larger BSSE errors for larger

basis sets. As is seen from Figure 9.29 the difference between the calculated harmonic

frequency in the various basis sets is for LiCs small and the counterpoise correction could

therefore also be expected to be small. The counterpoise correction of the harmonic

frequency for HBr is around one magnitude larger than for LiCs. For HBr it is again seen

that including polarizing functions increases the counterpoise correction which otherwise

decrease with increasing cardinal number for the basis set. For the valence correlation

calculation there is not any noticeable difference in the counterpoise correction except for

the AQZ basis set. For the core-valence correlation calculation the difference between the

high and the low cutoff becomes noticeable at the ATZ level and increases with basis set

size. The counterpoise correction at the AQZ level for the low cutoff is in fact larger than

in the DZ basis set. The core-valence calculation with the high cutoff instead approach

the counterpoise correction for the valence correlation calculations.

The dissociation energy is a direct measure for the size of the counterpoise correction

since the change here is identical to the size of the counterpoise correction on the energy

when neglecting the differential change in the counterpoise correction on the bond length.

For LiCs we see in Figure 9.19 the same pattern as before where the counterpoise correction

for the calculation with the high truncation of the virtual space decreases when including

polarizing functions and with increasing basis set size. Again the valence and core-valence
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Figure 9.17: The effect of a counterpoise correction on the harmonic frequency as a function of the

basis set size for LiCs with 12 and 22 electrons explicitly correlated and a high and low truncation of the

virtual space. The comparison has been made at the CCSD(T) level and performed as uncorrected data

minus counterpoise corrected data (CCSD(T) - cp-CCSD(T)).
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Figure 9.18: The effect of a counterpoise correction on the harmonic frequency as a function of the

basis set size for HBr with 8 and 18 electrons explicitly correlated and a high and low truncation of the

virtual space. The comparison has been made at the CCSD(T) level and performed as uncorrected data

minus counterpoise corrected data (CCSD(T) - cp-CCSD(T)).
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Figure 9.19: The effect of a counterpoise correction on the dissociation energy as a function of the

basis set size for LiCs with 12 and 22 electrons explicitly correlated and a high and low truncation of the

virtual space. The comparison has been made at the CCSD(T) level and performed as uncorrected data

minus counterpoise corrected data (CCSD(T) - cp-CCSD(T)).
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Figure 9.20: The effect of a counterpoise correction on the dissociation energy as a function of the basis

set size for HBr with 8 and 18 electrons explicitly correlated and a high and low truncation of the virtual

space. The comparison has been made at the CCSD(T) level and performed as uncorrected data minus

counterpoise corrected data (CCSD(T) - cp-CCSD(T)).
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calculations with the high cutoff approach each other with increasing basis set size. For

the calculations with the low cutoff we clearly see that increasing the basis set above ATZ

does not diminish the counterpoise correction. For the core-valence calculations with the

low cutoff the counterpoise correction again increases with the larger basis sets, which is

in line with what has also been observed for the other spectroscopic properties. For HBr

we see by comparing Figures 9.19 and 9.20 that the counterpoise correction is around

one magnitude larger than for LiCs which is due to the significantly shorter bond of the

HBr molecule. This is due to the counterpoise correction being dependant on distance.

The counterpoise correction is observed to be decreasing with the distance since the basis

functions on the ghost atom will at greater distance no longer be able help better the

description of the atom. HBr shows the same trend for the dissociation energy as also

seen for the bond distance and harmonic frequency where the polarizing functions increase

the counterpoise correction and the core-valence correlation calculation with the low cutoff

shows large corrections also for the large basis sets.

9.6.3.2 Core Contribution

In the first calculations with the spin-free coupled-cluster method carried out by the author

[132] it was, to the author’s surprise, seen that the contribution on the spectroscopic

properties from the lowerlying 4d shell on Cs was very large. These calculations, however,

showed unsystematic behavior with respect to increased correlation since the basis set

used was simply insufficient. Later in [30] and also shown in Table 9.4 it was seen that

this large contribution from the 4d shell on Cs in fact comes from the BSSE and would

disappear when including a counterpoise correction. On the other hand, analyzing the

results for HBr presented in [70] and Table 9.1 it is not offhand noticed whether the

contribution from the 3d electrons on Br is overestimated. This could be the case since

the truncation of the virtual space was there set at 10 Eh, so lower than the low truncation

of the virtual space presented here and therefore the correlating functions for Br would

not be included.

In Section 9.6.3.1 it was seen that including these lowerlying d electrons created a

larger counterpoise correction and these could only be safely included when also increasing

the cutoff of the virtual space. The objective here has been to determine the contribution

of the d electrons are on the spectroscopic properties. In the figures in this section this
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Figure 9.21: The effect of outer-core correlation on the bond length as a function of the basis set size for

LiCs with (cp) and without a counterpoise correction and a high and low truncation of the virtual space.

The comparison has been made at the CCSD(T) level and performed by subtracting the core-valence

calculation results from the same type of valence calculations which then gives the effect of correlating

the d electrons.
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Figure 9.22: The effect of outer-core correlation on the bond length as a function of the basis set size for

HBr with (cp) and without a counterpoise correction and a high and low truncation of the virtual space.

The comparison has been made at the CCSD(T) level and performed by subtracting the core-valence

calculation results from the same type of valence calculations which then gives the effect of correlating

the d electrons.
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will be examined by subtracting core-valence calculation results from the same type of

valence calculations to find the effect of correlating the d electrons has on the spectroscopic

properties. This has been done both for the calculations with and without counterpoise

correction. The influence of the lowerlying d electrons on the bond length for LiCs and

HBr is presented in Figures 9.21 and 9.22, respectively. We here see that the influence

from the d electrons increases with increased basis set and that the contribution is always

reduced by a counterpoise correction. It is also noticeable how close the counterpoise

corrected curves are despite the different truncation of the virtual orbitals for both LiCs

and HBr. For both LiCs and HBr it is seen that the difference between the counterpoise

corrected curve and the not counterpoise corrected curve increases with the basis set size

for the low cutoff while for the high cutoff they again approach each other. It is also noted

that the contribution from the d electrons on LiCs is about twice that for HBr and that

the polarization functions only play a minor role unlike for the BSSE.

The changes in the harmonic frequency from including core-correlation is displayed

in Figures 9.23 and 9.24. For LiCs, when including the counterpoise correction, this

correction is, as expected, small and is stable around -0.3 to -0.4 cm−1 for the basis sets

larger than TZ. It is again here seen that low truncation of the virtual space in the AQZ

basis causes a larger shift in the harmonic frequency. For HBr the influence of the 3d

electrons is around 10 cm−1 but but not completely converged with respect to basis set

size. The low cutoff of the virtual space is for HBr giving an increasing exaggerated

influence of the 3d electrons to the harmonic frequency when the basis set is increased.

From Figure 9.25 we see that with the low cutoff of the virtual space the importance

of the outer-core correlation on the dissociation energy increases with increased basis set

size. From the counterpoise corrected values we, however, see that this is due to an in-

creased BSSE and with a counterpoise correction the importance of outer-core correlation

drops around one magnitude in size. As could be expected we here also see a large dis-

crepancy between the high and the low cutoff of the virtual for the calculations without

a counterpoise correction. The counterpoise correction, however, seems to recover the

importance of the outer-core correlation regardless of the truncation of the virtual space.

For HBr in Figure 9.26 the trend is very similar to LiCs where the calculation with the

low cutoff of the virtual space sees an increase in the importance of outer-core correlation

with increasing basis set size. This effect of outer-core correlation is also seen for the
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Figure 9.23: The effect of outer-core correlation on the harmonic frequency as a function of the basis

set size for LiCs with (cp) and without a counterpoise correction and a high and low truncation of the

virtual space. The comparison has been made at the CCSD(T) level and performed by subtracting the

core-valence calculation results from the same type of valence calculations which then gives the effect of

correlating the d electrons.
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Figure 9.24: The effect of outer-core correlation on the harmonic frequency as a function of the basis

set size for HBr with (cp) and without a counterpoise correction and a high and low truncation of the

virtual space. The comparison has been made at the CCSD(T) level and performed by subtracting the

core-valence calculation results from the same type of valence calculations which then gives the effect of

correlating the d electrons.

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

 0

DZ ADZ TZ ATZ QZ AQZ

Δω
 
[
c
m
−
1
]

Basis Set

cp high
high

cp low
low



226 9 Calculations

Figure 9.25: The effect of outer-core correlation on the dissociation energy as a function of the basis

set size for LiCs with (cp) and without a counterpoise correction and a high and low truncation of the

virtual space. The comparison has been made at the CCSD(T) level and performed by subtracting the

core-valence calculation results from the same type of valence calculations which then gives the effect of

correlating the d electrons.
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Figure 9.26: The effect of outer-core correlation on the dissociation energy as a function of the basis

set size for HBr with (cp) and without a counterpoise correction and a high and low truncation of the

virtual space. The comparison has been made at the CCSD(T) level and performed by subtracting the

core-valence calculation results from the same type of valence calculations which then gives the effect of

correlating the d electrons.
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counterpoise corrected values though much smaller but still around one magnitude larger

than for LiCs.

9.6.3.3 Comparison to Experiment

Although the aim of this study is not to provide accurate spectroscopic data from theory,

but rather how data can be produced, it is of large interest to compare the various

calculations to the experimental values to see how the CCSD(T) method converges with

respect to basis set size, truncation of the virtual space and number of correlated electrons.

The difference to experiment will be given as calculated minus experimental value.

In Figure 9.27, where the difference to experiment for the bond length is displayed

for LiCs, we see that we approach the experimental value from the top when increasing the

basis set except for the core-valence correlation calculation with the low cutoff. To obtain

a very accurate bond length with errors below 0.01Å many variables have to be considered.

For the calculations with the high cutoff it is seen that the counterpoise correction can be

reduced to an error below 0.01Å when the largest basis sets are used. The inclusion of the

4d electrons in the correlation treatment is absolutely essential since the contribution from

these are around 0.01Å. To reduce the residual error below 0.01Å one must consider an

even larger basis1 with an even higher cutoff of the virtuals along with a higher truncation

in the coupled-cluster hierarchy and correlation of the 4d electrons. Here correlation will

most likely give the largest contribution based on the large difference between the CCSD

and the CCSD(T) results. For HBr the determination of the bond length with an error

bar below 0.01Å is significantly easier and clearly demonstrated in Figure 9.28. In Figure

9.28 we see little variation with respect to basis set size, however, significant improvement

can be made by including the 3d electrons into the correlation treatment where the error

bars can be reduced below 0.005Å. While the absolute error in the bond length for HBr

is significantly smaller than in LiCs the relative error is around the same size.

Since there is no experimental harmonic frequency available the harmonic frequency

for LiCs has been plotted without subtracting these. A clear trend where the harmonic

frequency is increasing with the size of the basis set is observed though the spread between

the calculations also increases when neglecting the large spread at the DZ basis set level.

1These are not available.
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Figure 9.27: The difference to experiment on the bond length as a function of the basis set size for LiCs

with and without a counterpoise correction and a high (h) and low (l) truncation of the virtual space for

12 and 22 electrons correlated. The comparison has been made at the CCSD(T) level and performed by

subtracting the experimental value from the calculated.
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Figure 9.28: The difference to experiment on the bond length as a function of the basis set size for HBr

with and without a counterpoise correction and a high (h) and low (l) truncation of the virtual space for

8 and 18 electrons correlated. The comparison has been made at the CCSD(T) level and performed by

subtracting the experimental value from the calculated.
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Figure 9.29: The harmonic frequency as a function of the basis set size for LiCs with and without a

counterpoise correction and a high (h) and low (l) truncation of the virtual space for 12 and 22 electrons

correlated performed at the CCSD(T) level of theory. No comparison to experiment has been made since

no experimental value is known.
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Figure 9.30: The difference to experiment on the harmonic frequency as a function of the basis set

size for HBr with and without a counterpoise correction and a high (h) and low (l) truncation of the

virtual space for 8 and 18 electrons correlated. The comparison has been made at the CCSD(T) level

and performed by subtracting the experimental value from the calculated.
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This is the opposite trend of what is seen when increasing the cluster hierarchy, see

Tables 9.23, 9.24 ,9.25 and 9.26. The only type of calculation to show some irregular

behavior is the core-valence calculation with the low cutoff of the virtual space which is

not surprising since these calculations clearly overestimate the contribution from the 4d

electrons as seen in Sections 9.6.3.1 and 9.6.3.2. The accuracy in the determination of the

harmonic frequency for HBr is around one magnitude lower than that of LiCs as seen in

Figure 9.30. It is clearly seen from Figure 9.30 that the counterpoise correction reduces

the harmonic frequency and even for the large basis sets gives a contribution of around

10 cm−1 for the calculations with the high cutoff. For the valence correlation calculations

no noticeable difference is observed between the high and low cutoff of the virtual space

while the opposite is observed for the core-valence calculations.

The dissociation energy of LiCs is displayed in Figure 9.31 where we clearly see that

the difference to the experimental value decreases with increasing basis set size. Again

it is seen that the core-valence calculation with the low cutoff overshoots the dissocia-

tion energy but this is recovered well by the counterpoise correction. Here only minor

differences are observed between the valence- and core-valence calculations with the high

cutoff. For HBr we, one the other hand, see larger contributions from outer-core correla-

tion as observed in Figure 9.32. Again the counterpoise correction has a very significant

influence on the dissociation energy which, however, diminishes with increasing basis set

size for the calculations with the high cutoff. Again it is seen that there is hardly any

difference observed between the counterpoise correction from the high and low truncation

of the virtual space.

9.6.4 Conclusion and Outlook

In this study the interplay between basis set, truncation of virtual space and number

of correlated electrons has been examined in a systematic fashion on two very different

molecules LiCs and HBr. It is shown that the errors in the calculations can be controlled

when extending the basis set size of the calculation but that these extension errors are

closely related to the truncation of the virtual space in particular when core-valence

correlation is taken into consideration.
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Figure 9.31: The difference to experiment on the dissociation energy as a function of the basis set size

for LiCs with and without a counterpoise correction and a high (h) and low (l) truncation of the virtual

space for 12 and 22 electrons correlated. The comparison has been made at the CCSD(T) level and

performed by subtracting the experimental value from the calculated.
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Figure 9.32: The difference to experiment on the dissociation energy as a function of the basis set

size for HBr with and without a counterpoise correction and a high (h) and low (l) truncation of the

virtual space for 8 and 18 electrons correlated. The comparison has been made at the CCSD(T) level

and performed by subtracting the experimental value from the calculated.
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The BSSE is shown to be a persistent problem in performing accurate calculations.

It increases with the number of correlated electrons. Increasing the cardinal number of the

basis set without also increasing the truncation of the virtual space appears to be viable

when only correlating the valence electrons provided that the truncation of the virtual

space is set high enough2. When including core-valence correlation the BSSE can in the

large basis (AQZ) in fact be larger than in the small basis sets. An improvement can only

be achieved when the cardinal number of the basis set along with the truncation of the

virtual space is increased. The augmentation of the basis set with polarizing functions

can both increase or diminish the BSSE depending on the system. Since the by far largest

counterpoise correction happens on the heavy center an augmentation of the basis set can

the reduce the BSSE provided the bond distance to the heavy center is large. This is a

case often seen in weakly bound systems. The BSSE, however, is visibly reduced when

increasing the cardinal number of the basis set along with an increase in the truncation

of the virtual space.

The outer-core contribution to the spectroscopic properties have proven very dif-

ficult, but not impossible, to capture. It is clearly demonstrated that when including

lowerlying d electrons the truncation of the virtual space will have to be significantly

increased in comparison to a valence only calculation. Furthermore all core-correlating

functions should be included in the correlation treatment otherwise the importance of the

outer-core will be grossly overestimated. While the contribution from the outer-core is

small it is clearly essential to include when trying to achieve high accuracy though the

cost in calculation time of doing so will dramatically increase.

Throughout a counterpoise correction has been made for all calculations at their

given level of theory, basis set, truncation of virtual space and number of correlated

electrons. What is very notable is how well this correction is capable of recovering the

large BSSE that occurs for the core-valence calculation with the low cutoff so that the

spectroscopic properties that can be directly derived from the shape of the potential energy

curve. There do, however, appear to be limits for how much can be recovered which is

seen in the difference between the counterpoise corrected core-valence calculations with

2This is a little vague formulation since even lower truncation of the virtual space, which is often

seen in the literature, would have to be performed to see how accurate this statement is. It is definitely

possible that the same behavior as for the core-valence calculations with the low cutoff would be observed

if the truncation of the virtual space would be lower than what is used here.
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the high and low cutoff. This difference is, nevertheless, smaller than the counterpoise

correction itself even for the high cutoff. While the counterpoise correction works very well

for the spectroscopic properties depending on the shape of the potential energy surface it

should not be relied on to correct for basis set insufficiencies since it will not improve the

wave function and any properties derived from it.

In the comparison to experiment for the CCSD(T) method it is clear that there

still remains a difference to experiment larger than what is seen for the light elements.

This difference is expected to be primarily from correlation and to a lesser extent finite

basis set differences and approximations from the Hamiltonian since the difference between

CCSD(T) and CCSD is large in these systems. Increasing the correlation level would be an

enormous undertaking considering the scaling of the coupled-cluster hierarchy of OnV n+2

and the many virtual spinors that need to be included for a balanced and guarantied

better description than the CCSD(T) model. In the largest calculations performed here

for HBr a total of 398 virtual spinors was included in the correlation step and another 174

virtuals still were left out from the truncation of the virtual space. For the LiCs the one-

particle basis was even larger, namely 514 included virtual spinors and another 266 virtual

spinors left out. Including this many virtual spinors and at the same time increasing the

correlation level would be extremely time consuming task. Therefore a better selection of

the virtual spinors than just the elementary cutoff at a energy threshold should be sought

after to reduce the size of the calculation and still retain the accuracy provided by the

basis set since brute force does not appear to be feasible. That not all virtuals give any

significant contribution has already been seen in Table 9.17 for the (RbBa)+ molecule

where it was seen that including more virtuals did not give any significant change to

the spectroscopic properties. A way to select virtuals has already been presented in the

non-relativistic framework. There the virtuals were selected from an MP2 natural orbital

(NO) occupation number calculation [214]. Recently this approach was implemented in

the fully relativistic framework [179] in DIRAC. This way of selecting is expected also to

work for core-valence correlation calculations since the correlation of the outer-core would

also show up in the MP2 NO. The truncation of the virtual space would then follow from

the magnitude of the MP2 NO’s.
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Summary and Outlook

Summarizing, this work combines the development of new codes with potential of provid-

ing results with unprecedented accuracy and precision, approximation methods to reduce

the computational costs and a numerical investigation that will help guide the direction

of highly accurate calculations towards a systematic improvement. Several examples of

application have been shown on a large variety of molecular heavy-element compounds

in their ground state. Although the implementation was the central goal from the onset

further method development was achieved along with large scale applications.

The major achievements of this work is the implementation of the commutator-

driven coupled-cluster code in the fully relativistic framework since this code has pushed

the boundaries of the accuracy of correlation codes significantly further. This has been

demonstrated in large-scale calculations even without having to push the code to the

hardware limit of standard Linux clusters. Optimization of the code to reduce certain

bottlenecks has given significant speed up and reduction in memory requirement. The im-

plementation of the CI-driven coupled-cluster code has provided a simple and flexible test

program for further developments of other approximations to the usual coupled-cluster

hierarchy or the state-selective multireference coupled-cluster method. The spin-free pro-

grams have proven to be a valuable tool for an accurate determination of spectroscopic

values for species with a Σ ground state.

Finding a way to systematically improve the result is essential when dealing with

general-order codes since the pitfalls are plentiful and high accuracy and precision can

only be achieved by knowing the errors in the calculation and knowing in which direction

to go to improve these. The demonstration on how to reduce errors, their interplay and

the magnitude of these is the cornerstone for a better employment of the developed codes.

Knowing the errors in the basis set, truncation of the virtual space and core cor-
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relation, improvements in the correlation treatment can be addressed. Several schemes

for approximations which can be used alone or in conjunction with others have been pro-

posed and implemented. These approximations are expected to be a regular part of future

applications once a numerical testing has been performed.

Interesting side projects in applications in the field of ultracold molecules have been

performed. Here a way of reaching the rovibronic ground state via a two-step procedure

was proposed for RbYb after an initial photoassociation. A non-radiative charge-transfer

mechanism in the collision process of a Ba+ ion and a Rb atom at very low temperatures

yielding a Ba atom and a Rb+ ion has been outlined qualitatively on the basis of the

computed electronic excitation spectrum of the (RbBa)+ molecular ion.

What remains to be done is further optimization of the commutator-driven coupled-

cluster code. Here the collection of terms will need improvement for a more efficient code

and along with a new sorting of integrals the memory demands would be significantly

reduced.

A numerical investigation of the various approximation methods and for which

classes of molecules these approximations can give significant reduction in computational

timings without compromising the accuracy.

What will be in store for the future is the possibility to achieve higher accuracy

in the calculation of properties on molecules containing heavy elements. Knowing the

limitations of the approximations schemes and having a systematic way of ensuring an

improved result will greatly enhance the predicative powers of the method. By extending

the Dirac-Coulomb Hamiltonian with the Breit term along with a linear response module

this accuracy and predicative power could also encompass the excited states.



Appendix A

Finite-Field Dipole Moment

The response of a molecular system to a weak external electric field ε can be treated as

a perturbation to the field-free case. If the energy is expanded in a Taylor series around

the field-free case

E(ε) = E(ε = 0) +
dE

dε

∣∣∣∣
ε=0

ε +
1

2

d2E

dε2

∣∣∣∣
ε=0

ε2 + . . . , (A.1)

the first derivative of the energy E with respect to the external electric field ε taken at ε = 0

is the static dipole moment of the molecule. Likewise can the second derivative be related

to the static polarizability and higher derivatives to higher-order (hyper-)polarizabilities.

With the finite-field technique these analytical derivatives are approximated by a

numerical derivative. To this end a small external electric field of varying field strength is

applied and then a series of energy calculations is performed with these fields. By apply-

ing fields in various directions higher-order numerical derivatives can also be determined

though these are not as accurate as the analytical ones.

The advantage of the derivative technique is that it holds also for approximate

wavefunctions, which are typically dealt with in quantum chemistry, unlike the evaluation

of properties by calculating expectation values in the Hellmann-Feynman theorem which

differ from the correct value by the wave function force. [215]
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no label denotes the fully relativistic Dirac-Coulomb Hamiltonian which in-

cludes spin-orbit interaction. cp- designates counterpoise corrected values.

The second column (corr. el.) denotes the number of explicitly correlated

electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.5 Analysis of the decreasing bond distance and harmonic frequency from

correlating 2 electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.6 Relative spacing of vibrational states calculated with LEV EL8.0 [28] from

respectively the CCSDT-SF 10, CCSDT-SF 12, and CCSD(T) 22 potential

curves. At ν = 0 the zero-point energy is given. The relative spacing is

defined as ΔGν+1/2 = G(ν + 1) - G(ν) and given in cm−1 . . . . . . . . . . 160

9.7 A selection of molecular electronic states in the Λ − S coupling picture

and associated atomic dissociation channels in an energy range of ≈ 25000

cm−1. Molecular electronic states correlating to atomic channels with intra-

atomic Yb f − d excitations, e.g. Yb4f135d16s2 are not considered. . . . . . . 175

9.8 Atomic and atomic-like (values taken at R = 30 bohr) excitation energies

Te in cm−1 for the lowest Rb5s1(2S1/2) → Rb5p1(2P3/2,1/2) transitions cal-

culated at the MRCI S1, S6 (1in4) SD, SDT3, and S6 (3in8) SD levels,

respectively. Details on the computational levels are given in the text. . . . 176

9.9 Atomic excitation energies Te in cm−1 for the lowest Yb6s2(0S0) → Yb6s16p1(3P2,1,0)

transitions calculated at the MRCI S2, S14 (2in4) SD, S20 (2in4) SD and

S20 (2in9) SD levels, respectively. Details on the computational levels are

given in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.10 Spectroscopic values for the 1 0.5 ground state calculated at the CCSD and

CCSD(T) level with three, nine and 23 explicitly correlated electrons and

with CP corrected values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



240 List of Tables

9.11 Spectroscopic values for the 1 0.5 ground state calculated at the CCSD

and CCSD(T) level with nine explicitly correlated electrons and including

SOC. The spinor basis was derived from average-of-configurations DCHF

calculations, distributing either three electrons in two Kramers pairs (3in2)

or three electrons in five Kramers pairs (3in5). A CP-correction was not

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.12 Spectroscopic constants for the ground and three lowest excited states (Ω

designation) of RbYb calculated at the MRCI S6 (3in8) SD level with nine

explicitly correlated electrons. CP corrected values are given in the lower

part of the table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.13 Selected Franck-Condon factors between the rovibronic ground state and vi-

brationally excited states (v) of the electronically excited states of 87Rb176Yb.

184

9.14 Selected Franck-Condon factors between the highest excited vibrational

state (v = 69) of the electronic ground state and vibrationally excited

states (v) of the electronically excited states of 87Rb176Yb. . . . . . . . . . 185

9.15 Dipole moments at Re (μe) and the vibrationally averaged dipole moment

μv for the CCSD and CCSD(T) levels of theory with 23 explicitly correlated

electrons and with CP corrected values. . . . . . . . . . . . . . . . . . . . . 187

9.16 Spectroscopic values for the Ω = 0+ ground state calculated at the spin-

dependent MRCI S12 (2in13) SD level in comparison to CC results, both at

the spin-free (SF) and spin-dependent levels, and results from earlier spin-

free MRCI SF-SD16 (2in7) SD where an ANO-RCC basis was used and

with a truncation of the virtual space at 5 Eh. Counterpoise corrections

(“cp-” prefix) have also been tested. . . . . . . . . . . . . . . . . . . . . . . 192

9.17 Spectroscopic values for the Ω = 0+ ground state calculated with the spin-

free (SF) CCSD and CCSD(T) methods, with an energy truncation thresh-

old for active virtual spinors at 18 and 42 Hartree, and using the Visscher

small component approximation [164]. . . . . . . . . . . . . . . . . . . . . 194



List of Tables 241

9.18 A selection of molecular electronic states in the Λ − S coupling picture

and associated atomic dissociation channels in an energy range of up to

≈ 14000 cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.19 Excitation energies T in cm−1 for the lowest Ba6s2(1S0) → Ba6s15d1(3D1,2,3),

Ba6s2(1S0) → Ba6s15d1(1D2) and Ba6s2(1S0) → Ba6s16p1(3P0,1,2), electronic

transitions calculated at the atomic MRCI S6 (2in9) SD and atomic-like

S12 (2in13) SD (molecular calculation; values taken at R = 50 bohr) levels.

The active space in the atomic calculation includes the same Ba shells and

the same truncation threshold for the virtual spinors as in the molecular

case. Details on the molecular computational level are given in the text.

The MRCI results are compared to previous theoretical and experimental

data. In the atomic-like “J states” (Ω) the individual Mj components are

almost degenerate at R = 50 bohr with deviations on the order of 4 − 8

cm−1 from the lowest to highest Mj component. We here show the energies

of the lowest Mj values in the table. . . . . . . . . . . . . . . . . . . . . . . 197

9.20 Spectroscopic constants for the ground and lowest excited states (Ω desig-

nation) of (RbBa)+ calculated at the MRCI S12 (2in13) SD level with 14

explicitly correlated electrons. . . . . . . . . . . . . . . . . . . . . . . . . . 202

9.21 Dipole moments at Re (μe) and the vibrationally averaged dipole moment

μv for the CCSD and CCSD(T) levels of theory and with counterpoise (cp)

corrected values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.22 Values of the truncation threshold of the virtual space in Eh with all cor-

relating functions for HBr and LiCs in a given basis set. The augmented

basis sets was truncated at the same level as the regular basis set since the

augmenting functions were all below the correlating functions. The value

given is the energy of the highest (min) included and the lowest (max) not

included orbital. Due to gaps in the virtual space for small basis sets this

is not completely systematic. . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9.23 LiCs with 12 correlated electrons and low truncation of the virtual space

with and without counterpoise correction. . . . . . . . . . . . . . . . . . . 211

9.24 LiCs with 22 correlated electrons and a low truncation of the virtual space

with and without counterpoise correction. . . . . . . . . . . . . . . . . . . 212



242 List of Tables

9.25 LiCs with 12 correlated electrons and a high truncation of the virtual space

with and without counterpoise correction. For the DZ to ATZ basis sets

the high and low truncation of the virtual space is the same. The DZ to

ATZ results are presented in Table 9.23 . . . . . . . . . . . . . . . . . . . . 213

9.26 LiCs with 22 correlated electrons and a high truncation of the virtual space

with and without counterpoise correction. For the DZ to ATZ basis sets

the high and low truncation of the virtual space is the same. The DZ to

ATZ results are presented in Table 9.24 . . . . . . . . . . . . . . . . . . . . 213

9.27 HBr with 8 correlated electrons and a low truncation of the virtual space

with and without counterpoise correction. . . . . . . . . . . . . . . . . . . 214

9.28 HBr with 18 correlated electrons and a low truncation of the virtual space

with and without counterpoise correction. . . . . . . . . . . . . . . . . . . 215

9.29 HBr with 8 correlated electrons and a high truncation of the virtual space

with and without counterpoise correction. . . . . . . . . . . . . . . . . . . 216

9.30 HBr with 18 correlated electrons and a high truncation of the virtual space

with and without counterpoise correction. . . . . . . . . . . . . . . . . . . 217



List of Figures

2.1 The spectrum of the free Dirac equation . . . . . . . . . . . . . . . . . . . 17

3.1 The indices for the Fock-space coupled-cluster method. . . . . . . . . . . . 60

3.2 Example of a MRCCSD space for the state-selective multireference coupled-

cluster method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Example of division of occupied and unoccupied Kramers pairs into sub-

spaces for the generalized active space coupled-cluster method . . . . . . . 81

6.1 Reduced linear transformation. . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Overview of the CI-driven coupled-cluster code. . . . . . . . . . . . . . . . 93

6.3 Overview of the commutator-driven coupled-cluster code. . . . . . . . . . . 100

6.4 Overview of the commutator-driven coupled-cluster code with an efficient

equation generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 Example of a division of the hole and particle space into active and inactive

hole and particle spaces for the generalized active space coupled cluster . . 128

9.1 Potential curves of the ground state of HBr neglecting (SOF) and including

(SO) spin-orbit interaction. The energy offset is −2605 EH . . . . . . . . . . 138

9.2 Comparison of 10 and 22 electrons correlated at CCSD level. The shifted

energies are given as (total energy)+7793.0 Eh (CCSD 10) and (total energy)+

7793.2025 Eh (CCSD 22), respectively. . . . . . . . . . . . . . . . . . . . . 155

243



244 List of Figures

9.3 Comparison of the non-relativistic, the spin-free and the full relativistic

curves at CCSD level with 10 electrons correlated. The shifted energies

are given as (total energy) + 7561.623 Eh (CCSD-LL 10), (total energy) +

7793.0 Eh (CCSD-SF 10) and (total energy) + 7794.849 Eh (CCSD 10),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.4 Comparison of the spin-free correlation methods for 10 electrons. The

shifted energies are given as (total energy)+7792.997 Eh (CCSD), (total energy)+

7792.996 Eh (MRCCSD) and (total energy) + 7794.65 Eh (CCSD(T)), re-

spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.5 Change in relative spacing, shown in Table 9.6, defined as Δ2Gν+1 = G(ν+

3/2) - G(ν + 1/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.6 CCSDT-SF 10 dipole moment curve in Debye. Also shown are results from

CCSD-SF 10, CCSD-SF 22, and CCSD(T)-SF 10 calculations . . . . . . . 162

9.7 CCSDT-SF 10 parallel static electric dipole polarizability curve in Atomic

units. Also shown are results from CCSD-SF 10, CCSD-SF 22, and CCSD(T)-

SF 10 calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.8 Sørensen et al. JPCA 2009; Qualitative picture of the potential energy

curves of the molecular electronic states constituting the lower electronic

spectrum of RbYb. Correlating atomic dissociation channels for the states

are labeled. The computational level is CI SDT3 (see text for more details).171

9.9 Sørensen et al. JPCA 2009; Potential energy curves of the four lowest-lying

molecular electronic states of RbYb. Atomic dissociation channels for the

states are shown. The computational level is S6 (3in8) SD (see text for

more details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.10 Sørensen et al. JPCA 2009; The highest and lowest vibrational states for

the electronic ground state. . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.11 Sørensen et al. JPCA 2009; CCSD(T) and CCSD dipole moment curve in

Debye with 23 explicitly correlated electrons. The vibrationally averaged

dipole moment for CCSD and CCSD(T) is found to be 0.761 and 0.985

Debye, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



List of Figures 245

9.12 Potential energy curves of the ground and low-lying states (Ω designation)

of (RbBa)+ computed at the four-component MRCI S12 (2in13) SD level

(see text for more details). Atomic dissociation channels for the states are

indicated in the picture (see Table 9.18 for details). . . . . . . . . . . . . . 200

9.13 Close up of the avoided crossings between the 3Σ+
1,0− Rb + Ba+ entrance

channels and and low-lying charge transfer 3Π1,0− states of the Rb+ and

Ba6s15d1(3D) atomic channels. . . . . . . . . . . . . . . . . . . . . . . . . . 201

9.14 Four-component CCSD(T) dipole moment curve (in Debye) of the molecu-

lar ground state with calculated with 14 explicitly correlated electrons. The

straight line (blue) indicates the asymptotic limit of the dipole moment μ

for a charged system in the center-of-mass coordinates. . . . . . . . . . . . 204

9.15 The effect of a counterpoise correction on the bond length as a function

of the basis set size for LiCs with 12 and 22 electrons explicitly correlated

and a high and low truncation of the virtual space. The comparison has

been made at the CCSD(T) level and performed as uncorrected data minus

counterpoise corrected data (CCSD(T) - cp-CCSD(T)). . . . . . . . . . . . 218

9.16 The effect of a counterpoise correction on the bond length as a function

of the basis set size for HBr with 8 and 18 electrons explicitly correlated

and a high and low truncation of the virtual space. The comparison has

been made at the CCSD(T) level and performed as uncorrected data minus

counterpoise corrected data (CCSD(T) - cp-CCSD(T)). . . . . . . . . . . . 218

9.17 The effect of a counterpoise correction on the harmonic frequency as a

function of the basis set size for LiCs with 12 and 22 electrons explicitly

correlated and a high and low truncation of the virtual space. The compar-

ison has been made at the CCSD(T) level and performed as uncorrected

data minus counterpoise corrected data (CCSD(T) - cp-CCSD(T)). . . . . 220

9.18 The effect of a counterpoise correction on the harmonic frequency as a

function of the basis set size for HBr with 8 and 18 electrons explicitly cor-

related and a high and low truncation of the virtual space. The comparison

has been made at the CCSD(T) level and performed as uncorrected data

minus counterpoise corrected data (CCSD(T) - cp-CCSD(T)). . . . . . . . 220



246 List of Figures

9.19 The effect of a counterpoise correction on the dissociation energy as a

function of the basis set size for LiCs with 12 and 22 electrons explicitly

correlated and a high and low truncation of the virtual space. The compar-

ison has been made at the CCSD(T) level and performed as uncorrected

data minus counterpoise corrected data (CCSD(T) - cp-CCSD(T)). . . . . 221

9.20 The effect of a counterpoise correction on the dissociation energy as a func-

tion of the basis set size for HBr with 8 and 18 electrons explicitly correlated

and a high and low truncation of the virtual space. The comparison has

been made at the CCSD(T) level and performed as uncorrected data minus

counterpoise corrected data (CCSD(T) - cp-CCSD(T)). . . . . . . . . . . . 221

9.21 The effect of outer-core correlation on the bond length as a function of the

basis set size for LiCs with (cp) and without a counterpoise correction and

a high and low truncation of the virtual space. The comparison has been

made at the CCSD(T) level and performed by subtracting the core-valence

calculation results from the same type of valence calculations which then

gives the effect of correlating the d electrons. . . . . . . . . . . . . . . . . . 223

9.22 The effect of outer-core correlation on the bond length as a function of the

basis set size for HBr with (cp) and without a counterpoise correction and

a high and low truncation of the virtual space. The comparison has been

made at the CCSD(T) level and performed by subtracting the core-valence

calculation results from the same type of valence calculations which then

gives the effect of correlating the d electrons. . . . . . . . . . . . . . . . . . 223

9.23 The effect of outer-core correlation on the harmonic frequency as a function

of the basis set size for LiCs with (cp) and without a counterpoise correction

and a high and low truncation of the virtual space. The comparison has

been made at the CCSD(T) level and performed by subtracting the core-

valence calculation results from the same type of valence calculations which

then gives the effect of correlating the d electrons. . . . . . . . . . . . . . . 225



List of Figures 247

9.24 The effect of outer-core correlation on the harmonic frequency as a function

of the basis set size for HBr with (cp) and without a counterpoise correction

and a high and low truncation of the virtual space. The comparison has

been made at the CCSD(T) level and performed by subtracting the core-

valence calculation results from the same type of valence calculations which

then gives the effect of correlating the d electrons. . . . . . . . . . . . . . . 225

9.25 The effect of outer-core correlation on the dissociation energy as a function

of the basis set size for LiCs with (cp) and without a counterpoise correction

and a high and low truncation of the virtual space. The comparison has

been made at the CCSD(T) level and performed by subtracting the core-

valence calculation results from the same type of valence calculations which

then gives the effect of correlating the d electrons. . . . . . . . . . . . . . . 226

9.26 The effect of outer-core correlation on the dissociation energy as a function

of the basis set size for HBr with (cp) and without a counterpoise correction

and a high and low truncation of the virtual space. The comparison has

been made at the CCSD(T) level and performed by subtracting the core-

valence calculation results from the same type of valence calculations which

then gives the effect of correlating the d electrons. . . . . . . . . . . . . . . 226

9.27 The difference to experiment on the bond length as a function of the basis

set size for LiCs with and without a counterpoise correction and a high (h)

and low (l) truncation of the virtual space for 12 and 22 electrons correlated.

The comparison has been made at the CCSD(T) level and performed by

subtracting the experimental value from the calculated. . . . . . . . . . . . 228

9.28 The difference to experiment on the bond length as a function of the basis

set size for HBr with and without a counterpoise correction and a high (h)

and low (l) truncation of the virtual space for 8 and 18 electrons correlated.

The comparison has been made at the CCSD(T) level and performed by

subtracting the experimental value from the calculated. . . . . . . . . . . . 228



248 List of Figures

9.29 The harmonic frequency as a function of the basis set size for LiCs with

and without a counterpoise correction and a high (h) and low (l) truncation

of the virtual space for 12 and 22 electrons correlated performed at the

CCSD(T) level of theory. No comparison to experiment has been made

since no experimental value is known. . . . . . . . . . . . . . . . . . . . . . 229

9.30 The difference to experiment on the harmonic frequency as a function of

the basis set size for HBr with and without a counterpoise correction and

a high (h) and low (l) truncation of the virtual space for 8 and 18 electrons

correlated. The comparison has been made at the CCSD(T) level and

performed by subtracting the experimental value from the calculated. . . . 229

9.31 The difference to experiment on the dissociation energy as a function of the

basis set size for LiCs with and without a counterpoise correction and a

high (h) and low (l) truncation of the virtual space for 12 and 22 electrons

correlated. The comparison has been made at the CCSD(T) level and

performed by subtracting the experimental value from the calculated. . . . 231

9.32 The difference to experiment on the dissociation energy as a function of

the basis set size for HBr with and without a counterpoise correction and

a high (h) and low (l) truncation of the virtual space for 8 and 18 electrons

correlated. The comparison has been made at the CCSD(T) level and

performed by subtracting the experimental value from the calculated. . . . 231



Bibliography

[1] W. Greiner. Relativistic Quantum Mechanics. Springer, Berlin [et. al], 2000.

[2] P A M Dirac. The Quantum Theory of the Electron. Proc. Roy. Soc. 117, 610

(1928).

[3] J Olsen. The initial implementation and applications of a general active space

coupled cluster method. J. Chem. Phys. 113, 7140 (2000).

[4] J W Krogh and J Olsen. A general coupled cluster study of the N2 molecule. Chem.

Phys. Lett. 344, 578 (2001).
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[118] A Köhn and J Olsen. Coupled-cluster with active space selected higher amplitudes:

Performance of seminatural orbitals for ground and excited state calculations. J.

Chem. Phys. 125, 174110 (2006).
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[138] L Visscher, J Styszyński, and W C Nieuwpoort. Relativistic and correlation effects

on molecular properties. 2. The hydrogen halides HF, HCl, HBr, HI, and HAt. J.

Chem. Phys. 105, 1987 (1996).

[139] K P Huber and G Herzberg. Molecular Spectra and Molecular Structure, IV, Con-

stants of Diatomic Molecules. Van Nostrand Reinhold Company, New York, London,

Melbourne, 1979.
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