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Summary

Within the scope of this thesis, comprehensive experimental studies on interspecies inter-

actions between 87Rb and various isotopes of Yb at temperatures in the µK regime have

been performed. The interactions between Yb and 87Rb manifested themselves through

interspecies thermalization and – in the case of 174Yb and 87Rb – through phase separation.

Both, Yb and Rb, are well suited for the application of laser cooling, and quantum

degeneracy has been reached for Yb as well as for Rb [1, 2]. In the context of mixtures

of ultracold atoms, the combination of Yb and Rb is an interesting system, which has

not been investigated so far. Due to the availability of several stable Yb isotopes, Bose-

Bose mixtures as well as Bose-Fermi mixtures can be realized. The goal of the research

project within which this PhD thesis has been carried out is the production of ultracold

heteronuclear YbRb molecules in such a quantum degenerate mixture. YbRb molecules are

an interesting system with significantly different physical properties than the alkali-alkali

combinations, which are investigated in most experiments [3, 4, 5, 6]: YbRb molecules

posses an electric as well as a magnetic dipole moment, which can for example be exploited

for the study of spin lattice models [7].

Experiments described within this thesis were carried out at an apparatus, which has

been used in previous studies on mixtures of Yb and Rb [8, 9, 10, 11]. However, the

experiments presented here, required a significant improvement in stability and precision

of the existing setup. Hence, in the course of this work, a number of components were

changed or added to the existing system: Large parts of the laser systems were redesigned

and improved detection methods were introduced to the experimental setup.

Due to the particular magnetic properties of Rb and Yb, a unique combination of trap-

ping potentials, which allows for independent trapping and manipulation of ultracold 87Rb

and Yb atoms was used. The combined trap setup consisted of a Ioffe-Pritchard-type mag-

netic trap (MT) for 87Rb and a bichromatic optical dipole trap (BIODT) for Yb. In the

experimental sequence, Yb was pre-cooled in a MOT and transferred to the conservative

BIODT. Subsequently, 87Rb was prepared and evaporatively cooled in the MT. As a result,

atomic samples consisting of typically ≈ 107 87Rb atoms at a temperature of ≈ 1µK and,

depending on the isotope, (0.3 . . . 1.5)× 105 Yb atoms at temperatures of 5 . . . 8µK, were

produced.

After the two atom clouds were brought into contact, thermalization of Yb with the

colder 87Rb cloud was observed. Measurements of the thermalization rate were performed

using 87Rb and the Yb isotopes 170Yb, 172Yb, 173Yb, 174Yb and 176Yb, allowing the com-

parison of their relative scattering properties. Two Yb isotopes exhibited exceptional char-

acteristics in combination with 87Rb: On the one hand, almost no thermalization between
170Yb and 87Rb could be observed. Based on a quantitative analysis of thermalization data,

the interspecies scattering length for this isotope combination could be determined to be
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|a87−170| = 6.6+3.5
−2.9a0. On the other hand, 174Yb atoms thermalized almost instantaneously

with the colder 87Rb atoms, indicating a large elastic interspecies cross section.

In addition, we have observed phase separation in a mixture of 174Yb and 87Rb for

certain trap geometries.

Phase separation has been studied before in mixtures of ultracold gases [12, 13, 14].

However, in contrast to those experiments, which are performed with degenerate quantum

gases, phase separation between 174Yb and 87Rb as described in this PhD work is observed

with purely thermal samples at temperatures in the µK regime.

For a quantitative understanding of the observed phase separation between 174Yb and
87Rb, it was essential, to have detailed knowledge of the characteristic parameters of the

involved trapping potentials. With the knowledge of measured of trap frequencies for the

MT and the BIODT, it was possible to simulate the potentials corresponding to the exper-

imental situation. Interspecies interaction was accounted for by an additional interaction

potential, which, in a first approach, was assumed to have a linear dependence on the 87Rb

density.

The quantitative results on the interaction potential are interpreted in terms of two-body

scattering properties of the respective atoms. A ”naive“ mean field approach and thermal

averaging of the energy dependent scattering length lead to conclusions inconsistent with

experimental observations.

In the light of this discrepancy between observations and theory, possible experimental

issues, which may lead to incorrect results for the interspecies interaction potential were

carefully analyzed. Subsequently, the validity of the standard mean field theory in the

present case was discussed on the basis of a simple comparison of relevant length scales. A

more sophisticated theoretical model, which involves nonlinear density dependent correc-

tions to the interaction potential, was introduced. Based on this approach, a low energy

s-wave interspecies scattering length for 174Yb and 87Rb, a87−174 = 4710+3970
−1520 a0 could

be inferred. Furthermore, the description of the observed phase separation by diffusion

dynamics and three-body recombination, as proposed by E. Tiesinga and S. Maxwell from

the atomic theory group at NIST [15], is discussed.

The experimental results presented in this PhD thesis, allow conclusions on the YbRb

ground state molecular potential and the energetic positions of weakly bound levels. In

this context, E. Tiesinga and S. Maxwell [15] determined a Lennard-Jones potential, which

quantitatively reproduces the experimental observations.

The experimental studies on interspecies interaction between different Yb isotopes and
87Rb, which are described in the present PhD work, have greatly increased the knowledge

of low energy properties of the respective mixtures. This is a major step towards the

long term goal of this research project, which is the production of ultracold rovibronic

ground state YbRb molecules. The future developments required to achieve this goal can

be divided into two areas: One will be the continuation of studies on the YbRb molecular

potentials, which already resulted in the successful production of excited state YbRb*

molecules by photoassociation [16]. The other will be to realize a quantum degenerate

mixture of both species, which would be an ideal starting point for the creation of ground

state YbRb molecules. Based on new insights on the low energy scattering properties of
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Yb and 87Rb, a promising pathway towards a combined degenerate mixture of 87Rb and

Yb has been developed.





Zusammenfassung

Im Rahmen dieser Doktorarbeit wurden umfassende experimentelle Untersuchungen zu

heteronuklearen Wechselwirkungen zwischen 87Rb und verschiedenen Yb Isotopen im

µK-Temperaturbereich durchgeführt. Die Wechselwirkung zwischen beiden Atomsorten

äußerte sich dabei durch Thermalisierung und – im Fall von 174Yb und 87Rb – durch

Phasenseparation beider Spezies.

Sowohl Yb als auch Rb sind gut geeinet für die Anwendung von Laserkühlverfahren. Das

Regime der Quantenentartung wurde daher mit beiden Elementen bereits realisiert. [1, 2].

Das bislang noch nicht näher untersuchte System Yb-Rb is eine interessante Elementkom-

bination mit vielseitigen Perspektiven im Bereich der ultrakalten gemischten Gase. Auf-

grund der Verfügbarkeit 7 stabiler Ytterbiumisotope sind sowohl Boson-Boson- als auch

Fermion-Boson-Gemische realisierbar. Zudem stellen ultrakalte YbRb Moleküle ein viel

versprechendes System mit deutlich unterschiedlichen physikalischen Eigenschaften im Ver-

gleich zu den in bisherigen in Experimenten untersuchten Alkali-Alkali-Kombinationen dar

[3, 4, 5, 6]: YbRb Moleküle besitzen sowohl ein elektrisches als auch ein magnetisches

Dipolmoment, was z.B. Untersuchungen zu Spin-Gitter-Modellen erlaubt.

Die in dieser Arbeit beschriebenen Experimente wurden an einer bereits früher eingeset-

zten Apparatur durchgeführt [8, 9, 10, 11], die jedoch in Bezug auf Stabilität und Präzision

signifikant verbessert wurde. In diesem Zusammenhang wurden während dieser Arbeit

zahlreiche Komponenten, wie etwa große Teile des Lasersystems neu aufgebaut.

Eine Besonderheit des Systems Yb-Rb ist die Kombination einer diamagnetischen (Yb)

mit einer paramagnetischen (Rb) Spezies. Die unterschiedlichen magnetischen Eigen-

schaften erlauben eine Kombination von Fallenpotentialen, die eine (weitgehend) un-

abhängige Kontrolle über beide Atomsorten ermöglicht. Die kombinierte Falle besteht aus

einer Ioffe-Pritchard Magnetfalle für 87Rb und einer bichromatischen otpischen Diopolfalle

(BIODT) für Yb. Im typischen Experimentierablauf wird Yb zunächst in einer magneto-

optischen Falle vorgekühlt und schließlich in die BIODT geladen. Anschließend wird 87Rb

in die Magnetfalle geladen und evaporativ gekühlt. Damit können in der kombinierte Falle

gleichzeitig ≈ 107 87Rb Atome bei Temperaturen von ≈ 1µK und, je nach verwendetem

Isotop, (0.3 . . . 1.5)× 105 Yb Atome bei 5 . . . 8µK präpariert werden.

Nachdem beide Atomwolken in räumlichen Kontakt gebracht werden, thermalisiert Yb

mit den kälteren 87Rb Atomen. Im Rahmen der vorliegenden Arbeit wurden Thermal-

isierungsraten zwischen 87Rb und den Yb-Isotopen 170Yb, 172Yb, 173Yb, 174Yb und 176Yb

im Temperaturbereich unterhalb von 10µK gemessen, woraus man Rückschlüsse auf rel-

ative Streueigenschaften der jeweiligen Yb-Isotope ziehen kann. Dabei wiesen zwei Yb-

Isotope außergewöhnliche Eigenschaften auf: Zum einen konnte nahezu keinerlei Ther-

malisierung zwischen 170Yb und 87Rb beobachtet werden. Eine quantitative Analyse

dieser Daten erlaubt die Abschätzung der s-Wellen Streulänge für diese beiden Spezies
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zu |a87−170| = 6.6+3.5
−2.9 a0. Zum anderen themalisierten 174Yb Atome nahezu instantan mit

den kälteren 87Rb Atomen, was auf einen großen elastischen Streuquerschnitt hindeutet.

Darüber hinaus konnte in bei veränderter Fallengeometrie Phasenseparation zwischen
174Yb und 87Rb beobachtet werden.

Im Feld der gemischten ultrakalten Quantengase wurde Phasenseparation bereits in ver-

schiedenen Systemen untersucht [12, 13, 14]. Im Gegensatz zu diesen Experimenten, die

alle im quantenentarten Regime durchgeführt wurden, trat die im Rahmen dieser Arbeit

beschriebene Phasenseparation zwischen thermischen Atomwolken bei Temperaturen im

µK-Bereich auf.

Für ein quantitavies Verständnis der beobachteten Effekte ist die genaue Kenntnis der

harmonischen Eigenschaften aller beteiligter Fallenpotentiale nötig. Mit Hilfe ausführlicher

Messungen zu Fallenfrequenzen der Magnetfalle und der BIODT war es möglich, Mod-

ellpotentiale zu simulieren, die die experimentelle Situation beschreiben. Die Wechsel-

wirkung auf 174Yb durch die 87Rb Atome wurde dabei als zusätzliches repulsives Wech-

selwirkungspotential angenommen, das in erster Näherung proportional zur 87Rb-Dichte

ist.

Quantitative Ergebnisse zum heteronuklearen Wechselwirkungspotential zwischen 174Yb

und 87Rb konnten in Bezug auf Zweikörper-Stoßparameter interpretiert werden. Ein

“naiver” Mean-Field Ansatz führte bei thermischer Mittelung der energieabhängigen

Streulänge dabei jedoch zu Ergebnissen, die den experimentellen Beobachtungen wider-

sprachen.

Im Zusammenhang mit dieser Unstimmigkeit, wurden zunächst mögliche experimentelle

Probleme untersucht, die zu falschen Ergebnissen für das gemessene Wechselwirkungspo-

tential führen könnten. Zudem wurde die Gültigkeit der Mean-Field Theorie im vor-

liegenden Fall von großen Streulängen bei gleichzeitig hohen 87Rb-Dichten diskutiert

und ein nichtlinearer Korrekturterm eingeführt. Dieser berücksichtigt dichteabhängige

Mehrteilchen-Wechselwirkungen. Mit Hilfe dieser Korrektur ergibt sich schließlich eine

heteronukleare s-Wellen Streulänge zwischen 174Yb und 87Rb von a87−174 = 4710+3970
−1520 a0.

Eine weitere theoretische Beschreibung der beobachteten Phasenseparation wurde von

E. Tiesinga und S. Maxwell [15] aus der theoretischen Atomphysik-Gruppe am NIST

vorgeschlagen: Sie beruht auf einem Diffusions-Modell und Dreikörperverlusten und wird

im Rahmen dieser Arbeit ebenfalls diskutiert.

Die experimentellen Ergebnisse dieser Arbeit lassen Rückschlüsse auf das Grundzu-

standspotential des YbRb Moleküls und auf Bindungsenergien schwach gebundener

Zustände zu. In diesem Zusammenhang haben E. Tiesinga und S. Maxwell [15] ein

Lennard-Jones Potential berechnet, das die hier vorgestellten experimentellen Befunde ko-

rrekt wiedergibt.

Die im Zusammenhang mit der vorliegenden Arbeit durchgeführten Untersuchungen

führten zu einer Reihe von neuen Erkenntnissen über die Wechselwirkungen zwischen

verschiedenen Yb-Isotopen und 87Rb. Diese Informationen können entscheidend dazu

beitragen, das langfristige Ziel dieses Forschungsvorhabens, nämlich die Produktion von

ultrakalten YbRb Molekülen im Grundzustand, zu erreichen. Die dazu nötigen weiteren

Entwicklungen beziehen sich zum einen auf die Fortsetzung der experimentellen Unter-
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suchungen der YbRb Molekülpotentiale, die bereits zur erfolgreichen Erzeugung angeregter

YbRb* Moleküle durch Photoassoziation geführt haben [16]. Zum anderen besteht die Auf-

gabe, ein kombiniertes Quantengas zu erzeugen, da dieses einen idealen Ausgangspunkt

für die Erzeugung von YbRb-Grundzustandsmolekülen darstellt. Ein möglicher Weg zur

gemeinsamen Quantenentartung von Yb und 87Rb wird am Ende dieser Arbeit aufgezeigt.
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1
Introduction

The work presented here was carried out within a research project, whose long term goal

is the creation of ultracold rovibrational ground state molecules of ytterbium (Yb) and

rubidium (Rb). Detailed studies on the interaction between 87Rb and various isotopes

of Yb are required to achieve this goal. This PhD work focuses on the effect of phase

separation between 174Yb and 87Rb resulting from strong interspecies interactions between

these isotopes.

The following chapter motivates the present work by briefly introducing the field of ul-

tracold atoms and molecules with special emphasis on the system YbRb. In addition, it

focuses on interactions in two-component quantum gases and places the present experi-

ments in the context of current developments.

Ultracold atoms and molecules

Since the first observation of slowing [17, 18] and cooling [19] of sodium atoms by the use

of lasers in the 1980s, the field of ultracold atoms and molecules has virtually exploded.

In 1997, the Nobel Prize was awarded to Claude Cohen- Tannoudji, William Phillips and

Steven Chu for the development of techniques of laser cooling [20]. In the meantime,

additional cooling methods were designed, which led to temperatures in the nano-Kelvin

(nK) regime, where macroscopic quantum phenomena could be explored experimentally.

The most prominent effect in this regime is the Bose-Einstein condensation (BEC), a new

state of matter made accessible through the success of laser cooling and trapping. It was

experimentally realized in 1995 [2, 21, 22]. Consequently, Eric Cornell, Wolfgang Ketterle

and Carl Wieman were awarded the Nobel Price in Physics in 2001 “for the achievement

of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental

studies of the properties of the condensates” [23].

Ever since the field of ultracold atomic gases has developed, there has been great interest

in adapting the success of measurements on ultracold atoms to the field of (heteronuclear)

molecules, which offers exciting new possibilities:

First of all, ultracold molecules provide an ideal platform for ultrahigh-resolution molec-

ular spectroscopy. Due to the low temperatures and long coherence times, molecular tran-

sitions can be studied at the highest spectral resolution limited only by the natural lifetimes

of relevant molecular energy levels [24]. This increases the knowledge of molecular struc-

ture, which is crucial for understanding and control of dynamics in the emerging field of
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cold molecule chemistry (see below). Additionally, the high resolution capability offers pos-

sibilities for stringent tests of fundamental physical laws and symmetries: Measurements

on nuclear spin-dependent parity violation related to weak interactions between electrons

and nucleons [25] as well as tests on possible changes of the fine structure constant [26]

are proposed using ultracold molecules. Furthermore, experiments on the presence (and

magnitude) of an elementary permanent electron dipole moment (EDM) make use of the

large internal electric field in polar molecules. Ongoing EDM measurements use a beam of

YbF molecules [27], a recent proposal discusses the system of ultracold YbRb [28], whose

properties are investigated in the present PhD work.

Due to the large electric dipole moment of most heteronuclear molecules, they also allow

the extension of recently achieved atomic dipolar quantum gases [29] with a relatively

weak magnetic dipolar interaction to the molecular regime [30, 31], where electric dipolar

interaction can be very strong. This points towards the possibility of manipulating the

strong and long-range dipole-dipole interactions between molecules with external electric

fields and simulating condensed matter systems.

In addition, paramagnetic heteronuclear molecules , e.g. YbRb, stored in optical lattices,

provide the potential of realizing lattice-spin models, which were proposed as the basis for

a new class of quantum computation [32, 7].

Finally, experiments with ultracold molecules allow fundamental insights into how chem-

ical reaction processes may be governed by quantum mechanics. For example, as molecules

are prepared in their lowest electronic, vibrational and rotational ground state, the only

possible degree of freedom left is the orientation of the nuclear spin, which then plays an

important role in molecular collisions. This allows quantum-state selective measurements

of elastic, inelastic, and chemically reactive collisions: Recent studies using a mixture of

ultracold Cs2 molecules and Cs atoms in defined hyperfine sublevels report on the ob-

servation of a controllable exchange process [5] between the constituents. The control

parameter in these experiments is the magnetic field, which changes the two-body inter-

action through a Feshbach resonance. As a result, it determines, whether the exchange

reaction is endoenergetic or exoenergetic. An independent experiment demonstrates, that

the chemical reaction 2 40K87Rb →40K2 + 87Rb2 using ultracold rovibronic ground-state
40K87Rb molecules shows a clear dependence on quantum statistics, angular momentum

barriers, and threshold laws [33].

Note that the highlighted examples only represent a tiny fraction of experimental and

theoretical studies in the growing field of ultracold molecules. A more comprehensive

presentation of recent developments can be found in the review article by Carr et al. [34].

In the context of ultracold molecules, the alkali-rare earth system YbRb is an inter-

esting combination with significantly different physical properties than the alkali-alkali

combinations investigated in most experiments: Besides its strong dipolar character, the

paramagnetic 2Σ1/2 ground state would allow stable ground state YbRb molecules to be

held in a magnetic trap.

All of the experiments described above require an effcient method of creating ultracold

molecules, preferably in the rovibrational ground state. An overview of the different ap-

proaches to this problem is presented in [35]. Unlike many atomic species, molecules can



1 Introduction 3

not be cooled and trapped using the methods of laser cooling, due to their complex inter-

nal structure. The most promising method for ultracold molecule production, which also

represents one of the the long term goals of the experiment described in this PhD work, is

to apply the well known techniques of laser cooling to the corresponding constituent atoms

and subsequently connect them to molecules. The latter can be achieved either by the use

of magnetically tunable Feshbach resonances [36] or by photoassociation [37]. After the

application of these methods to an ultracold gas of atoms, the resulting diatomic molecules

are typically in a high rotational, extremely weakly bound state. It is then a considerable

challenge to efficiently transfer these molecules to the desired low-lying rovibronic states

without allowing the binding energy to heat the gas. The method of stimulated Raman

adiabatic passage (STIRAP) [38], which is a two-photon process, allows a coherent trans-

fer to defined quantum states. Recently, ultracold rovibronic ground state molecules of

Rb2 [3], Cs2 [4] and KRb[6] have successfully been created using the described path.

Interactions in two-component quantum gases – phase separation

An important step towards the experimental realization of ultracold molecules is the pro-

duction of an ultracold mixture. However, this is not only a technological step, as the study

of ultracold gases consisting of more than one component has been one of the intriguing

developments in the field of ultracold atomic gases. It enables the study of Bose-Bose,

Fermi-Bose, and Fermi- Fermi mixtures. The interactions, which determine the stability

and the dynamics of the mixed-gas system, can be tuned by changing the combination of

atomic species or by using magnetic and optical Feshbach resonances.

One aspect in experiments with mixed quantum systems is the occurrence of phase

separation, which, in the case of a thermal mixture of 174Yb and 87Rb, is also the major

scientific matter of the PhD work presented here. Generally, the problem of miscibility or

phase separation of two different components in a thermal system is related to the question,

whether the interspecies interaction energy is small or large compared to the thermal energy

kBT . The experiments discussed in the following, however, are performed in the regime

of quantum degeneracy, where the thermal energy plays a minor role with respect to

particle interactions. Thus, the condition for phase separation depends on the interspecies

interaction energy in the mixed system in comparison to the (intra-species) interactions

of the respective constituents in the separated phases. The following paragraphs briefly

summarize the developments in experiments with ultracold mixtures with special emphasis

on the observation of phase separation.

Soon after the experimental realization of BECs in 1995, first degenerate mixtures con-

sisting of 87Rb atoms in the |F = 1,mF = −1〉 and |2, 2〉 spin states, trapped in magnetic

potentials were investigated experimentally [39] and theoretically [40]. These experiments

demonstrated the possibility of producing long-lived multiple condensate systems. They

also showed, that the condensate wave function is dramatically affected by the presence

of interspecies interactions. In subsequent studies on 87Rb |1,−1〉 - |2, 1〉 BEC mixtures,

spatial separation was observed and the relative phase between both condensates [12, 41]

was measured. Further experiments on partially condensed spin mixtures of 87Rb exhibited
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dramatic transient nondiffusive spin polarizations, which were attributed to longitudinal

spin waves [42].

More recent studies involving a quantum degenerate mixture of 85Rb and 87Rb atoms in

optical traps also exhibit interesting physics related to phase separation [13]: Depending

on the relative intra- and interspecies interaction, which can be controlled by a magnet-

ically tunable Feshbach resonance, the dual BEC showed either miscible or immiscible

behavior. The latter lead to a dramatic spatial separation of the two species, resulting in

counterintuitive density distributions: The robust formation of multiple, non-overlapped,

single-species BEC “cloudlets” were observed, which was theoretically explained by the

onset of modulation instability during the transition from the miscible to the immiscible

phase [43].

The effect of phase separation was also observed in a strongly interacting Bose-Fermi

mixture created from a two-component Fermi mixture with population imbalance. The

experiment is based a degenerate gas of fermionic 6Li atoms [44, 14] in the BEC-BCS

crossover regime at a Feshbach resonance. On the “BEC-side” of the Feshbach resonance,

the fermions with different spin polarization become bound as molecular Li2 bosons and

form a BEC. Depending on the initial population imbalance, the spatial distribution is rep-

resented by a core of Bose condensed Li2 dimers surrounded by a shell of normal unpaired

fermions, indicating strong interactions between the two components.

Another important step in the field of two-component quantum gases was the production

and study of a degenerate mixture composed by two Bose-Einstein condensates of different

atomic species, 41K and 87Rb [45, 46]. Simultaneous condensation is achieved by means

of two-species sympathetic cooling in a magnetic trap and strong interspecies interactions

could be observed.

This thesis

The experiments presented in this thesis have been performed within a research project

involving the study of ultracold mixtures of Rb and Yb. Both atomic species are well

suited for the application of laser cooling, and quantum degeneracy has been reached for

Yb as well as for Rb [1, 2]. As discussed above, ultracold heteronuclar YbRb molecules are

promised to be an interesting system, mainly due to their strong (electric and magnetic)

dipolar character.

The pathway to ultracold YbRb molecules, which will be followed in the present ex-

periment, requires the preparation of spatially overlapping clouds of ultracold Yb and Rb

atoms. For efficient production of rovibronic ground state YbRb molecules it is planned

to perform two consecutive two-photon processes. The first step in this direction, i.e.

the formation of excited state YbRb* molecules by photoassociation, has already been

successfully observed at the present apparatus [16] at higher temperatures.

Due to the particular magnetic properties of Rb and Yb, a unique combination of trap-

ping potentials, which allows for independent trapping and manipulation of ultracold 87Rb

and Yb atoms is implemented in the experimental setup. The combined trap consists of

a Ioffe-Pritchard-type magnetic trap (MT) for 87Rb and a bichromatic optical dipole trap
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for Yb. The present approach for the simultaneous preparation of 87Rb and Yb at tem-

peratures low enough to reach quantum degeneracy involves sympathetic cooling of Yb by

evaporatively cooled 87Rb atoms. This method has been successfully demonstrated in a

previous work [9] in the temperature regime of 20 . . . 50µK for different Yb isotopes.

Within the present thesis, interactions of 87Rb and Yb have been investigated at tem-

peratures of 1 . . . 5µK, where the underlying scattering properties differ significantly from

results obtained at higher temperatures. In order to enter successfully into this temper-

ature regime, the experimental setup required a significant improvement in stability and

precision. Hence, large parts of the laser- and atom imaging system have been redesigned

in the course of this work.

The main scientific results of this PhD work are comprehensive studies on phase separa-

tion between 174Yb and 87Rb in the µK regime. Analysis of the experimental observations

required accurate modeling of the trapping potentials in order to extract quantitative

results on the interspecies interaction. These results can be related to the 174Yb 87Rb in-

terspecies s-wave scattering length, using an approach, which not only describes mean field

effects but also includes multiple-particle interactions. In contrast to the phase separation

experiments in other systems, which are performed with degenerate quantum gases (see

above), phase separation between 174Yb and 87Rb as described in this PhD work is ob-

served with purely thermal samples at temperatures in the µK regime. To our knowledge,

this phenomenon has not yet been observed in this regime before.

Furthermore, thermalization measurements in the 1 . . . 5µK regime using 87Rb and var-

ious isotopes of Yb have been performed, allowing the comparison of relative scattering

properties between the respective species.

Conclusions from the presents studies on interspecies interactions between 87Rb and

Yb have been used for model calculations on the Yb Rb molecular ground state potential.

E. Tiesinga and S. Maxwell from the atomic theory group at NIST [15] determined

a Lennard-Jones potential, which quantitatively reproduces the present experimental

observations. This knowledge will significantly help to provide a strategy for the controlled

transfer of excited state YbRb* molecules to a selected ground state that will be developed

in future work of the group.

This thesis is organized as follows: Chapter 2 gives an introduction to the collision theory

with a special emphasis on the low temperature aspect of these interactions and Chap. 3

provides the theoretical background for the laser cooling and trapping techniques employed.

The experimental setup used in this PhD work including the vacuum chamber, the laser

systems and the atom detection system is described in Chap. 4. Chapter 5 introduces the

unique combination of magnetic and optical trapping potential present in these experiments

and outlines the experimental procedure for simultaneous preparation of ultracold 87Rb and

Yb. Detailed measurements required for a comprehensive characterization of the trapping

potentials are described in Chap. 6, before the following Chap. 7 and 8 focus on the central

interspecies interaction experiments: Chapter 7 describes thermalization experiments in the

1 . . . 5µK range using 87Rb and various Yb isotopes and Chap. 8 presents measurements,

data analysis and interpretation of phase separation experiments between 87Rb and 174Yb.
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The results of these studies are summarized and discussed in Chap. 9 and Chap. 10 closes

with proposals for the future development of the research project.



2
Atom-atom interaction in dilute ultracold

gases

Interactions in ultracold gases manifest themselves through collisions between particles.

Hence, collision physics plays a crucial role in understanding the properties of ultracold

gases. First, collisions ensure thermalization in trapped atomic samples, which is essential

for successful evaporative cooling (see Sec. 3.2.2). Furthermore, sympathetic colling, i.e.

thermalization of one atomic species with another, as described in Chap. 7 is based on

interspecies collisions. Finally, strong interaction effects like the observed phase separation

of 87Rb and 174Yb (see Chap. 8) are directly related to the respective collisional parameters.

In dilute ultracold gases, temperatures do not exceed a few µK and densities are below

1015 cm−3. Here, the intrinsically elaborate quantum mechanical description of collisions

becomes relatively simple: Despite an arbitrarily complex atom-atom interaction poten-

tial, a single parameter sufficiently characterizes the scattering properties of the gas (see

Sec. 2.1.4). In addition, to the lowest order, only two-body collisions have to be taken into

account due to the low density.

The following section gives a basic introduction to collision physics with a special empha-

sis on the low temperature aspect of these interactions. In particular the essential concept

of scattering length will be introduced and different aspects of low energy scattering are

discussed with the help of a simple model potential. Subsequently, two-body collision prop-

erties are extended to a mean-field potential describing the macroscopic behavior of atomic

clouds. This chapter ends with a basic introduction of Feshbach resonances and inelastic

collisions.

The following approach is based on [47, 48, 49], further details of scattering theory can

be found in [50, 51].

2.1 Basic principles of scattering theory

2.1.1 Definition of the scattering problem

Here we consider a non-relativistic, elastic collision process between two particles with

position vectors ~r1 and ~r2 and masses m1 and m2, interacting through the scalar potential

V (~r1, ~r2). By transforming the collision process into the center of mass system, the problem

is reduced to an effective single-particle process: A particle with reduced massmr =
m1m2

m1+m2
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is scattered by the potential V (~r) = V (~r1 − ~r2). In this coordinate system, the problem is

defined by the relative velocity ~v, the relative momentum ~p = mr~v and the relative wave

vector ~k = ~p/~ with k = |~k|.
The incident particle is described by a wave packet ψ(~r), consisting of a superposition

of plane waves ei
~k~r. For the case of elastic scattering, the problem is defined by the time

independent Schrödinger equation

(
~
2

2mr

~∇2 + V (~r)

)

ψ~k(~r) = Ekψ~k(~r) , (2.1)

where Ek = ~k2/(2mr) is a well defined positive energy and the potential V (~r) → 0 for

|~r| → ∞. Outside the range of V (~r), the asymptotic solution consists of two components:

lim
|~r|→∞

ψ~k(~r) ∝ e−i~k~r + fk(θ, φ)
eikr

r
. (2.2)

The plane wave e−i~k~r represents the unperturbed transmitted part of the incident wave and

fk(θ, φ)
eikr

r is a scattered spherical wave. The scattering amplitude fk(θ, φ) depends on the

relative wave vector of the particle, and generally on the azimuthal and polar angles θ and

φ. Experimentally more accessible parameters are the differential and total scattering cross

section. The differential cross section dσ
dΩ defines the number of particles dn scattered per

unit time into the solid angle Ω about the direction (θ, φ) relative to the incident particle

flux Fi:

dn

dΩ
= Fi

dσ

dΩ
(k, θ, φ) . (2.3)

The scattering amplitude connects the scattering wave function ( 2.2) with the experimen-

tally observable differential and total scattering cross section:

dσ

dΩ
(k, θ, φ) = |fk(θ, φ)|2 and σtot(k) =

∫

|fk(θ, φ)|2 dΩ . (2.4)

2.1.2 Partial wave expansion

In general, the exact determination of the scattering amplitude fk(θ, φ) requires the solution

of the three dimensional Schrödinger equation, which is rather complex except for very

particular cases. The situation is considerably simplified for the case of a spherically

symmetric potential V (~r) = V (r). From symmetry arguments, it is clear that in this

case the scattering amplitude depends only on the angle θ between the incident direction

and the observation direction. To take advantage of the symmetry of the problem, it is

convenient to expand the incident and scattered wave functions in a basis set of spherical

harmonic functions Ylm(θ, φ). In the given φ-independent case, these functions are reduced

to Legendre polynomials Pl(cos θ) depending on the angular momentum quantum number

l. Using the ansatz

ψ~k(~r) =
∞∑

ℓ=0

uk,ℓ(r)

r
Pℓ(cos θ) , (2.5)
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the Schrödinger equation for the radial wave function uk,ℓ(r) is given by

− ~
2

2mµ

d2

dr2
uk,ℓ(r) +

(

− Ek + V (r) +
~
2ℓ(ℓ+ 1)

2mrr2
︸ ︷︷ ︸

≡Veff

)

uk,ℓ(r) = 0 . (2.6)

Note that the effective potential Veff includes a centrifugal term, which describes the sys-

tem’s rotational energy.

The far-field asymptotic solution for the scattering wave is obtained by performing a

partial wave expansion of the incoming plane wave e−i~k~r in Eq. 2.2 and comparing the

coefficients of Eq. 2.5 and 2.2 in the r → ∞ limit. A detailed description of this approach

can be found in [49, 52]. The following asymptotic solution for the scattering wave function

is obtained:

lim
|~r|→∞

ψ~k(~r) =
1

k

∞∑

ℓ=0

Pℓ(cos θ)Aℓ

(

(−1)l+1 e
−ikr

r
+ e2iδℓ(k)

eikr

r

)

. (2.7)

This description represents again a superposition of the incident and outgoing wave function

for each of the partial waves ℓ = 0, 1, 2, . . . . The outgoing wave function differs from the

free particle case (V (r) = 0) only by a phase shift δℓ. Hence, in the far field, the collision

process is fully described by the scattering phase δℓ for each partial wave. The coefficients

Aℓ have to be chosen so that at large distances this function has the asymptotic form of

Eq. 2.2 (see e. g. [53] for details on this derivation). As a result, the scattering amplitude

in partial wave expansion can be written as:

f(k, θ) =
1

2ik

∑

ℓ

(2ℓ+ 1)
(

e2iδℓ(k) − 1
)

Pℓ(cos θ) (2.8)

=
1

k

∑

ℓ

(2ℓ+ 1) e2iδℓ(k) sin δℓ(k)Pℓ(cos θ) . (2.9)

Finally the total scattering cross section can be obtained by integrating over all scattering

angles:

σtot(k) =
∑

ℓ

σℓ(k) =
4π

k2

∑

ℓ

(2ℓ+ 1) sin2 δℓ(k) . (2.10)

The maximum contribution of each partial wave to the total scattering cross section is

σℓ,max. = 4π(2ℓ+ 1)/k2 . (2.11)

This value is reached for sin2 δℓ(k) = 1 in the so-called unitarity limit.

The partial wave expansion reduces the scattering problem to the determination of the

scattering phase for each angular momentum contribution. The situation is further sim-

plified for ultracold collisions (k → 0), where all contributions to the scattering amplitude

except the s-wave (ℓ = 0) vanish (see Sec. 2.1.4).
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The scattering amplitude (2.9) for pure s-wave collisions (ℓ = 0) can be separated in its

real and imaginary part according to:

f0(k) =
1

k
e2iδ0(k) sin δ0(k)

⇒ Im
1

f0(k)
= −k and Re

1

f0(k)
= k cot δ0(k) . (2.12)

From the last two equations it follows immediately that the s-wave scattering amplitude

can be rewritten as

f0(k) =
1

g0(k)− ik
, (2.13)

where the function g0(k) = k cot δ0(k). This expression for the scattering amplitude will

be used to derive the energy dependence of the s-wave scattering cross-section in Sec. 2.3.

2.1.3 Identical particles

The previous discussion is based on distinguishable particles assuming that the two scat-

tering diagrams of Fig. 2.1, corresponding to a scattering amplitude f(k, θ) and f(k, π−θ),
respectively, could be discriminated. For the case of identical particles, however, the two

q

p - q

Figure 2.1: Two scattering processes

leading to the same final state for in-

distinguishable particles.

processes result in the same scattering state. Taking into account the (anti)symmetrisation

principle for bosons (fermions), the ansatz for the scattering wave function (2.2) has to

satisfiy the condition Ψ(~r1, ~r2) = ǫ ·Ψ(~r2, ~r1) with ǫ = +1 (ǫ = −1) for bosons (fermions):

ψ~k(~r) ∝ ei
~k~r + ǫe−i~k~r +

(

f(k, θ) + ǫf(k, π − θ)
)eikr

r
. (2.14)

The differential cross section then reads

dσ

dΩ
= |f(k, θ) + ǫf(k, π − θ)| , (2.15)

where θ varies in this case between 0 and π/2. The Legendre polynomials have to be

multiplied by (−1)l under particle commutation leading to destructive interference off

all odd (even) partial wave contributions for bosons (fermions). he (anti)symmetrization

principle therefore doubles the contribution of the even partial waves for bosons (the odd

partial waves for fermions) and cancels the contribution of the odd ones (the even ones for
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fermions):

bosons : σtot =
8π

k2

∑

ℓ even

(2ℓ+ 1) sin2 δℓ(k) (2.16)

fermions : σtot =
8π

k2

∑

ℓ odd

(2ℓ+ 1) sin2 δℓ(k) (2.17)

2.1.4 The low energy limit

Suppression of higher partial waves

For the partial wave ℓ = 0, the potential entering into the Schrödinger equation (2.6) is

simply the interatomic potential V (r) with a long range part typically described by a term

−Cn/r
n. For higher partial waves, this potential is superimposed by the centrifugal term

~
2l(l + 1)/(2mrr

2), resulting in an effective potential

Veff(r) = −Cn

rn
+

~
2ℓ(ℓ+ 1)

2mrr2
. (2.18)

At large particle distances, the interaction between two ground state atoms in the electronic

S-state is limited to Van-der-Waals interaction. The Van-der-Waals interaction results from

a short-lived spontaneous electric dipole moment in one atom creating a matching dipole

moment in the other, thus leading to an attractive force. The corresponding potential

scales with the inter atomic distance r as C6/r6, where C6 is the so called C6 dispersion

coefficient1. Values for the C6 coefficient can be obtained from theoretical calculations

based on the molecular potentials [54] or by comparison of theoretical predictions with

experimental results [55, 56, 57].

The potential (2.18) represents a centrifugal barrier at r = rc for approximating particles:

If the approaching unbound atoms do not have sufficient energy to cross the barrier, they

will be repelled before they can reach the interaction region of V (r) for r < rc. The

centrifugal barrier height is given by

Ec(ℓ) = 2

(
~
2ℓ(ℓ+ 1)

6mr

)3/2

C
−1/2
6 . (2.19)

Quantitatively, the highest contributing partial wave ℓmax can by determined from [58]

Ec(ℓmax) =
3

2
kBT, (2.20)

assuming a mean collision energy 3
2kBT .

1The C6 dispersion coefficient is usually given in atomic units [a.u.]. It can be converted into the SI-system

by C6 [SI] = C6 [a.u.]
e2a5

0

4πε0
with the elementary charge e and the Bohr radius a0.
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Figure 2.2: Effective potential Veff ac-

cording to Eq. 2.18 (black), consist-

ing of the pure van-der-Waals potential

(red) and the centrifugal term (blue).

Calculations are based on an 174Yb -
87Rb collision (C6 = 3186 a.u.) with

angular momentum ℓ = 1 resulting in a

centrifugal barrier height Ec ≈ 63µK.

Centrifugal barrier in the system Yb-Rb For the case of Rb and Yb, the respective C6

dispersion coefficients are given by

CRb
6 = (4703± 9) a.u. [56] and CYb

6 = (1932± 30) a.u. [57] .

However, an exact value for the C6 coefficient of the YbRb ground state molecular potential

is so far unknown. Photoassociation experiments [16] performed at this apparatus probe

only the excited state and the ab-initio potentials do not extend to long ranges [59]. Hence

an approximation based on [60] is used to determine the interspecies dispersion coefficient:

CYbRb
6 ≈ 1

2

√

CYb
6 CRb

6

(
∆EYb +∆ERb√

∆EYb∆ERb

)

≈ 3186 a.u. . (2.21)

Here, ∆EYb,Rb represent the energies of the main electronic transitions (Yb: 1S0 → 1P1

transition with ∆EYb = hc/399 nm, Rb: D1- and D2 line with ∆ERb = hc/1

2
(780 nm+795 nm)).

Using this approximation for CYbRb
6 , Fig. 2.2 shows a calculation of the effective potential

Veff for 174Yb - 87Rb p-wave (ℓ = 1) collisions. The Yb-Rb centrifugal barrier height (2.19)

gives a p-wave (ℓ = 1) and d-wave (ℓ = 2) threshold of Ec(ℓ = 1)/kB ≈ 63µK and

Ec(ℓ = 2)/kB ≈ 326µK. At collision energies below these thresholds, the respective partial

waves do not contribute to the scattering amplitude. All relevant experiments described

in the scope of this thesis are carried out at temperatures below 10µK, where Eq. 2.20

results in ℓmax < 0.51. Hence, in this regime, only the s-wave contributes significantly to

the scattering process, while all other partial waves do not overcome the centrifugal barrier.

Shape resonances An exception to the situation described above occurs for so called

shape resonances : For ℓ 6= 0, it is possible, that quasi-bound states exist in the potential

well close to r = 0. There will then be a scattering resonance if the incident relative

particle has an energy close to the energy of such a quasi-bound state. The particle is

able to tunnel through the centrifugal barrier and couple to the quasi-bound state. These

shape resonances may enhance strongly the contribution of ℓ 6= 0 partial waves in an energy

domain where a pure ℓ = 0 scattering would be expected [47].



2.1. Basic principles of scattering theory 13

s-Wave scattering – the scattering length

In the regime of pure s-wave collisions, the scattering cross section (2.10) for distinguishable

particles is given by

σ0(k) =
4π

k2
sin2 δ0(k) . (2.22)

For low energies (relative wave vector k → 0), the scattering phase shift scales as δℓ ∝ k2ℓ+1

[48, 49], resulting in an s-wave phase shift proportional to k. Hence the low energy limit

for the scattering cross section is k-independent and can be written as

σ0 = 4πa2 with a = − lim
k→0

tan δ0(k)

k
. (2.23)

The parameter a is hereby defined as the (s-wave) scattering length. Its physical meaning

is related to the zero crossing of the scattered radial wave function uk,0(r) (see definition

in Eq. 2.5), which has the form uk,0(r) ∝ sin(kr + δ0(k)) outside the interaction region of

V (r). For kr ≪ 1, uk,0(r) has the form of a straight line:

uk,0(r) ∝ kr cos δ0(k) + sin δ0(k) . (2.24)

This line crosses the axis of abscissa at

r0 = −tan δ0(k)

k
. (2.25)

Hence the scattering length a corresponds to the zero crossing of the (asymptotic) radial

wave function for k → 0. In this description, the scattering potential V (r) simply leads to

a phase shift of the (asymptotic) wave function in the radial direction. A pure repulsive

potential always results in a positive scattering length, as the probability distribution

is reduced within the potential region. The situation for an attractive potential with

increasing potential depth is discussed on the basis of Fig. 2.3: A weak attractive potential

without any bound state shifts the radial wave function in the negative direction, leading

to a negative scattering length (a). For the case, that the potential supports a bound

state, which coincides with the dissociation limit, the horizontal asymptote of uk,0(r) leads

to a diverging scattering length (b). The radial wave function is ”bent“ stronger for

deeper potentials, resulting in positive values for a (c). Despite the attractive interatomic

potential, the process of s-wave scattering can be seen as an effective repulsion of the

particles. Finally, a further increase of the potential depth may also result in a vanishing

scattering length (d).

Generally, the scattering length is of great importance in the physics of ultracold gases,

as it describes the elastic interaction between atoms an thus determines their collective

behavior in a simple and intuitive way. Its sign and magnitude defines the characteristic

properties of degenerate quantum gases [62]. Furthermore, for certain atomic species,

(almost) arbitrary values of the scattering length for trapped atoms can be adjusted using

magnetically tunable Feshbach resonances, which provides new possibilities in ultracold

physics [63].
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Figure 2.3: Qualitative characteristics of the scattering length for an attractive scattering

potential in relation to the zero crossing of the asymptotic radial wave function: (a) If

the potential does not support a bound state, the scattering length is negative. (b) It

diverges for the case, that a bound state coincides with the dissociation limit. (c) Deeper

potentials result in stronger ”bending“ of the wave function uk,0(r), which is represented

by the blue line, leading to positive- or (d) zero scattering length. Adapted from [61].

2.2 Scattering by a square well potential

The example of scattering by a square well potential allows deeper insight in potential

scattering, especially at low collision energies. This problem can be solved analytically

for the different scattering parameters and illustrates many characteristic properties of

scattering by attractive potentials at low energies.

2.2.1 Solution for scattering phases δℓ(k)

The square well potential is defined by

V (r) =

{

−V0 for r < R0 and

0 for r ≥ R0 ,
(2.26)

where R0 defines the range of V (r). The solution of this problem can be found in various

quantum mechanics textbooks, a very detailed approach is presented in [52]. The square

well can support Nb bound states, where Nb is given by

Nb =

[

1

π

√

2mrV0R2
0

~2
− 1

2

]

. (2.27)

The symbol [x] represents the next integer greater than or equal to x. Hence, the potential

depth has to be at least

Vmin =
π2~2

8mrR2
0

(2.28)

in order to support one bound state. Scattering by this potential is possible only for

particles with energy E > 0. The stationary solution of the free particle problem (V (r) =
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dependence of the s-wave scat-
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4π(ℓ + 1)/k2. At low energies

(see inset), the scattering cross

section reaches the limit 4πa2.

0) obtained from the Schrödinger equation (Eq. 2.6) is given by a linear combination

of spherical Bessel jℓ(kR0) and von Neumann functions nℓ(kR0). Within the potential

(r < R0), the only regular solution is the spherical Bessel function. At the distance

r = R0, boundary conditions for the inside- and outside wave functions have to be met.

The asymptotic (r → ∞) phase shift between the unperturbed and the scattered solution

is a direct consequence of this boundary condition [52]:

δℓ(k) = arctan

(
kj′ℓ(kR0)jℓ(k0R0)− k0j

′
ℓ(k0R0)jℓ(kR0)

kn′ℓ(kR0)jℓ(k0R0)− k0j′ℓ(k0R0)nℓ(kR0

)

. (2.29)

Here, k =
√

2mrE/~2 is the relative wave vector outside the potential (r ≥ R0),

k0 =
√

2mr(E + V0)/~2 is the wave vector for r < R0 and the dash ′ denotes the derivative
with respect to the complete argument. The following discussion will be focused on pure

s-wave scattering. In this regime, the scattering phase shift given by

δ0(k) = arctan

(
k tan k0R0

k0

)

− kR0 . (2.30)

Figure 2.4 shows the energy dependence of the s-wave scattering cross section calculated

according to to Eq. 2.30. The energy E is given in units of temperature T using the

following conversion: k =
√

2mrE/~2 =
√

2mrkBT/~2. The scattering cross section

shows an oscillation between zero and the corresponding unitarity limit 4π(ℓ + 1)/k2.

This behavior is known as the ”Ramsauer-Townsend effect“ [50] and can be understood

in relation to the scattering phase. Each time the incident relative particle energy is such

that an integer multiple of half the wavelength fits inside the potential region, no scattering

occurs. In that case, the solutions for the wave with and without potential have an integer

phase shift of π and the scattering cross-section vanishes. In between, the phase shift

reaches odd multiples of π/2 which corresponds to unitarity scattering (see Eq. 2.11).

Note that in the temperature regime shown in Fig. 2.4, higher partial waves (ℓ > 0)

significantly contribute to the scattering amplitude. However, as they show a similar

temperature dependence as the s-wave, they are excluded from this plot. At low scattering
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temperatures, all ℓ > 0 partial waves tend towards zero with an energy dependence k4ℓ

(Wigner threshold law, [48]). For sufficiently small values of k, only the s-wave remains,

reaching the constant limit 4πa2, where a represents the scattering length.

In the case of scattering by a square well potential, the s-wave scattering length can be

derived analytically: using the definition Eq. 2.23 and Eq. 2.30, it is given by

a = − lim
k→0

tan δ0(k)

k
=

square well

(

1− tan k0R0

k0R0

)

R0 (2.31)

2.2.2 Zero energy resonances

Keeping in mind that k0 =
√

2mr(E + V0)/~2, Eq. 2.31 shows that the scattering length

periodically diverges depending on the potential depth V0. The condition for these poles

is:

k0R0 = (n− 1

2
)π , n ∈ N

⇒ V0 =
π2~2

8mrR2
0

(2n− 1)2 = Vmin (2n− 1)2 , n ∈ N (2.32)

This relation shows, that the position of the resonance poles coincide with a potential

depth which supports exactly n bound states.

Generally, the energies Eb of bound states are obtained by solving the Schrödinger equa-

tion (2.6). In the present case of a square well potential, Eb is determined by the following

equation [64]:

√

2mr|Eb|
~2

= −
√

2mr(V0 − |Eb|)
~2

cot

(√

2mr(V0 − |Eb|)
~2

)

(2.33)

Figure 2.5 shows the scattering lengths and the energetic positions of bound states as a

function of the potential depth V0, calculated according to Eq. 2.31 and Eq. 2.33. The

potential depth as well as the binding energies are displayed in units of Vmin, the scattering

length in units of R0. This plot reconfirms the characteristic behavior of a, which has

been discussed in terms of the zero crossing of the asymptotic radial wave function in

Sec. 2.1.4: If no bound state is supported by the potential ( V0 < Vmin), the scattering

length is negative. Just before the condition (2.32) is reached, a is large and negative and

the potential is said to have a virtual state close to the dissociation energy. The scattering

length has a pole with a change in sign as a new bound state enters the square well. As

the potential depth is further increased, the scattering length remains positive and finally

becomes zero, before the potential supports an additional bound state.

The behavior is repeated for each new bound state, which is related to the more general

Levinson’s theorem [48]. It connects the number of bound states of a given potential with

the low energy limit of the scattering phase: δℓ(k = 0) = (n + 1/2ξ0)π. Here, n is the

number of bound s-states and ξ0 = 0 except at a potential depth coinciding with a bound

state at Eb = 0, where ξ0 = 1.
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tential depth in units of Vmin = π2
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2
0). Each time a new bound state enters the

spectrum, the scattering length diverges.

The resonances leading to a pole in the s-wave scattering length are known as zero energy

resonances. Note that despite the diverging scattering length, the scattering cross section

is still limited to 4π/k2 by the unitarity limit.

In the region of large positive scattering lengths, which is related to a weakly bound

state, the binding energy Eb of this state can be directly connected to the s-wave scattering

length. The two equations 2.33 and 2.31 lead to the relation:

Eb
∼= ~

2

2mra2
(2.34)

Although this result is explicitly obtained here for the square well potential, it is valid

generally [65].

Mass dependent zero energy resonances

In the previous discussion, the condition (2.32) for poles in the scattering length is met by

altering the potential depth V0. The same characteristic behavior of a is also obtained for

fixed V0 and a variation of the reduced mass mr. This situation is experimentally realized

for collisions between one atomic species with different isotope of another species.

Figure 2.6 shows calculated scattering length using a square well potential and the species
87Rb and xYb with a varied Yb isotope mass x. In this model, the potential depth is chosen

to support 6 bound states for 87Rb-174Yb with the last bound state close to zero resulting
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a square well potential with 6 bound
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in a large scattering length a87−174 for this combination. In the presence of a zero energy

resonance, the interspecies scattering length a87−x can take on arbitrary values depending

on the Yb isotope mass x. Of course, a continuous mass scaling is not possible in this

system due to the discrete mass numbers of Yb isotopes (indicated by the black dots in

Fig. 2.6).

Note that this basic square well potential calculation only qualitatively illustrates the

characteristic relation between aYbRb and the relative mass mr. The parameters of this

model potential do not represent the ”real“ system (e.g. the real number of bound states

nb ≫ 6, see Chap. 9). They are chosen to give results qualitatively matching the observa-

tions on Rb-Yb interaction described in this thesis. Chap. 9 discusses experimental results

presented here with respect to more sophisticated calculations based on realistic Yb-Rb

ground state molecular potentials.

2.3 Temperature dependence at low energies

In the previous general approach, presented in Sec. 2.1.4, the s-wave scattering cross section

σ0(k) =
4π

k2
sin2 δ0(k) (2.35)

is given only in the limit k → 0:

σ0 = 4πa2 (2.36)

with a = − lim
k→0

tan δ0(k)

k
. (2.37)

In the interesting regime of low but non-zero energies, the general temperature depen-

dence of the s-wave scattering cross-section can be approximated, which is discussed in the

following.

In order to abide to the definition of the scattering length (2.37), which implies the limit

k → 0, we define a new parameter, the energy dependent scattering length aE according
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to

aE(k) = −tan δ0(k)

k
⇔ a = lim

k→0
ae(k) . (2.38)

Constant scattering length

Equation 2.36 represents a zero-order approximation of the scattering cross section for

k → 0. Using the basic assumption of an energy independent scattering length aE(k) = a

as a first approach, the scattering cross section (2.35) becomes k-dependent:

σ
(1)
0 (k) =

4πa2

k2a2 + 1
(2.39)

Effective range expansion

A more sophisticated approximation for the temperature dependence is based on the effec-

tive range expansion of the scattering amplitude [48, 50]. Starting point is the scattering

amplitude in the form of Eq. 2.13. It can be shown that g0(k) = k cot δ0(k) is analytical

over a wide range of collision energies provided the potential V (r) vanishes faster than

∝ 1/r5 [51]. Hence, for small collision energies g0(k) can be expanded in even powers of k:

g0(k) = − 1

aE(k)
= k cot δ0(k) ≈ c0 + c1k

2 + · · · . (2.40)

Here, the first parameter can be identified as c0 = −1/a (see the definition of the scattering

length in Eq. 2.37) and c1 ≡ 1/2reff includes the effective range reff :

1

aE(k)
≈ −1

a
+

1

2
reffk

2 + · · · . (2.41)

Including the effective range expansion in the scattering cross section for low energies, one

obtains:

σ
(2)
0 (k) =

4πa2

k2a2 + (12k
2reffa− 1)2

(2.42)

In a basic picture, the effective range expansion term is a second order correction to the

scattering phase shift, reducing or enlarging the ”effective width“ of the potential.

The effective range parameter reff generally depends on the specific potential. For the

case of a square well potential, reff = R0−R3
0/(3a

2) can be found analytically. In contrast,

the van der Waals interaction potential −C6/r
6 requires a more sophisticated approach.

Both a semi-classical approximation [65] and, independently, a quantum-defect theory

approach [66] obtain the following relation for reff to the C6 coefficient and the scattering

length a:

reff =

√
2β6
3

[

Γ
(
1
4

)

Γ
(
3
4

) − 2
√
2β6
a

+
Γ
(
3
4

)

Γ
(
1
4

)
4β26
a2

]

. (2.43)



20 2 Atom-atom interaction in dilute ultracold gases

0 2000 4000 6000 8000 10000

- 400

-20000

0

200

400

- 400

400

a
[a

]
E

0

temperature [µK]

full solution
effective range

temperature [µK]

0.1 1 10 100 1000 10000

0

1

2

3

4 ap
2

4 a
a k + 1

p
2

2 2

4 ap
2

effective range

full solution

s
0
[1

0
c
m

]
-1

2
2

0 2000 4000 6000 8000 10000

10000

0

-10000

20000

- 200

0 1000 0 10
-40000

40000

10000

20000

30000

2

4

6

8

10

0

0.001 0.1 1010
-5

4 ap
2

0

100 1000 10000

temperature [µK]

temperature [µK]

a
[a

]
E

0
s

0
[1

0
c
m

]
-1

2
2

(a)    a= lima =E 100a0
k 0→

(b)    a= lima =E 10000 a0
k 0→

(c) (d)

Figure 2.7: Calculated temperature dependent scattering lengths aE (a,b) and s-wave

cross sections σ0 (c,d) for a square well potential with R0 = 100 a0 and 100 bound states.

V0 is chosen to yield zero energy scattering length a ≈ 100 a0 for (a, c) and a ≈ 10000 a0
for (b, d). See text for details.

In this representation, β6 = (2mrC6/~
2)1/4, Γ(x) is the Gamma function and reff , a, β6

and C6 are given in atomic unit. Note that for a→ 0, the effective range parameter given

by (2.43) diverges, which indicates that this approximation is limited to large values of a.

In the experimentally typical regime of 50 a0 < a <∞, and for a wide parameter range of

C6 and mr, Eq. 2.43 yields effective range parameters reff ≈ 100 . . . 250 a0.

Square well potential

The example of scattering by a square well potential allows the discussion of different

approximations for the low energy scattering parameters as described above: Figure 2.7

(a, b) compares the calculated temperature dependencies of aE(k) for the square well

potential (R0 = 100 a0) with the effective range solution. Sub-figures (c, d) show different

orders of approximation (Eq. 2.36, 2.39, 2.42) and the exact solution (2.30) for the s-wave

scattering cross section. These results are based on a model potential with a potential

depth V0 chosen to set the last bound state energetically far from (a, c) or close to (b,

d) the dissociation energy. The latter case simulates the situation close to a zero energy

resonance. As a result, the zero energy scattering length a = lim
k→0

ae(k) ≈ 100 a0 in the
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case (a, c) and a ≈ 10000 a0 for (b, d).

These calculations reconfirm, that the effective range approximation simulates the low

energy part of aE(k) very well for a zero energy resonance (large a, Fig. 2.7 (b)), while it

fails for smaller a (a). In terms of the scattering cross section, none of the different approx-

imations reproduces the Ramsauer-Townsend oscillations occurring at higher temperatures

(see Chap 2.2.1). At lower temperatures and small a, the inclusion of the effective range

provides a much better agreement than the first order approximation σ
(1)
0 (k) from Eq. 2.39.

For large a, both approximations σ
(1)
0 (k) and σ

(2)
0 (k) eventually reach the unitarity limit

4π/k2.

2.4 Pseudo potential and mean field theory

The previous sections already highlighted the importance of the scattering length, which

characterizes the interaction between two atoms at low energies. It also plays a key role in

the statistical physics description of cold gases, which is discussed in the following:

The Fermi pseudo potential The aim of the method of pseudo potentials is to replace the

”real“ interatomic potential responsible for low-energy collisions by an effective potential,

which correctly reproduces the scattering properties. The simplest interaction between two

particles is the contact interaction given by the potential

V (~r) = g δ(~r) . (2.44)

Here, δ(~r) represents the 3-dimensional delta-function depending on the relative position

vector ~r. A formally unambiguous way to describe the contact interaction in scattering

theory is to use the so called Fermi pseudo-potential [67]

V (~r)Ψ(~r) = g δ(~r)
∂

∂r
(rΨ(~r)) , (2.45)

which leads to the following cases depending on the form of Ψ(~r):

V (~r)Ψ(~r) =

{

gΨ(0)δ(~r) if Ψ(~r) is regular in r = 0 ,

g
(
∂u
∂r

)

r=0
δ(~r) if Ψ(~r) is of the form Ψ(~r) = u(~r)

r .
(2.46)

The solution of the Schrödinger equation including the pseudo potential (2.45) results in

a relation between the pseudo potential and the s-wave scattering length [47]:

g =
4π~2a

m
(2.47)

This result is valid for distinguishable particles with equal mass m. Using the description

by the pseudo potential, low energy collisions depend only on the scattering length and

not on the detailed interatomic potential. Hence, two interatomic potentials corresponding

to the same scattering length lead to the same scattering properties, although they may

have completely different microscopic properties, even for the case that one is attractive

and the other one repulsive.
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Mean field theory Given the case that the gas is in the dilute regime (n|a|3 ≪ 1) where

n represents the spatial density), and assuming it is cold enough that the limit (2.23) is

valid, the two-body description using the pseudo potential can be extended to determine

the collective behavior of the gas. In the ultracold, dilute regime, the thermal de Broglie

wavelength is on the order of the interparticle separation and much larger than the potential

range. Therefore, the atoms ”probe“ an effective interaction integrated over many particles.

This interaction has the form of a contact potential and can be correctly described by the

pseudo potential given in Eq. 2.45. The additional potential energy on a given particle

created by the presence of all other particles with density n is then simply:

U = g n =
4π~2an

m
. (2.48)

A detailed derivation of this result based on a refractive index approach can be found in

[47].

The mean field concept has proven to be very successful and describes many features of

Bose- Einstein condensates (BECs). The particle interaction term (2.44) is simply included

in the Schrödinger equation resulting in the well known Gross-Pitaevskii equation [68] for

Bose- Einstein condensates:

[

− ~
2

2mr
∇2 + Vtrap(~r) + 2g|ψ(~r)|2

]

ψ(~r) = i~
∂

∂t
ψ(~r). (2.49)

Note that ψ(~r) represents here the BEC wave function. The collective behavior of a BEC

described by this equation is governed by the scattering length a: a positive scattering

length results in an effective repulsion of the atoms , whereas a negative scattering length

leads to attraction and eventually the collapse of the BEC2.

The treatment of atom-atom interaction by the mean field potential is a simple descrip-

tion of intrinsically complex effects. Hence, its application requires careful consideration,

which is pointed out by the following remarks:

• The pseudo potential defined above correctly reproduces the far field scattering phase

when it is used to replaces the exact interatomic potential in scattering events in the

limit k → 0. It can not be used as a real potential between atoms.

• In contrast to the scattering cross section σ0, there is no directly correspon-

dent unitarity limit for the mean field pseudo potential: The scattering length

a = lim
k→0

− tan δ0(k)/k can take on values between ±∞ and directly enters the pseudo

potential. However, if the underlying condition (n|a|3 ≪ 1) is violated for large values

of a, the description by the mean field theory based on a two-body pseudo potential

is questionable.

• For low energies, the scattering length can be replaced by the energy dependent form

aE(k), using e.g. the effective range expansion (2.41). Hence the pseudo potential

2A BEC with attractive interactions can exist in a trap for a limited particle number and has been

observed e.g. with 7Li, which has a negative scattering length [69].
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becomes energy dependent [67, 70]:

VE(~r, k) =
4π~2aE(k)

m
δ(~r)

∂

∂r
r . (2.50)

Note that in this description k represents the relative wave vector long before and

long after the scattering event. The change in k during the interaction process, which

(in a simple classical picture) results from the atoms moving in the ”real“ interatomic

potentials is not relevant in this approach.

2.5 Feshbach resonances

Resonance enhancement of collision cross sections depends on the existence of bound- or

metastable states. While a weakly bound molecular state is responsible for zero energy

resonances (see Sec. 2.2.2), the metastable state may be described in terms of tunneling

across a potential energy barrier (shape resonances, see Sec. 2.1.4) or coupling a bound

level of a subsystem to its environment. The latter effect is known as Feshbach resonances

and its basic physical properties can be understood in the following way: Figure 2.8 illus-

trates the two channel situation including a molecular potential Vbg(r), which represents

an energetically open channel in a collision process with small collision energy E. In ad-

e
n
e
rg

y

interparticle distance r

0
coupling

entrance channel

closed channel

EEc

V (r)bg

V (r)c

B Figure 2.8: Basic mechanism of

Feshbach resonances: The effect

occurs when two atoms colliding at

energy E in the entrance channel

Vbg resonantly couple to a molec-

ular bound state with energy Ec

supported by the closed channel.

Magnetic shifting of the molecular

potentials with respect to each

other allows the adjustment of the

coupling.

dition, the potential Vc(r) representing the closed channel3 is required, as it can support

bound molecular states near the energy threshold of the open channel. A Feshbach res-

onance occurs when the bound molecular state in the closed channel comes energetically

into resonance with the scattering state in the open channel.

For the case that the magnetic moment of the involved channels are different, their

energy difference can be controlled via a magnetic field. This leads to a magnetically tuned

3A channel is closed, if the total (kinetic and internal) energy of the colliding particles is lower than the

internal energy for the collision on the closed channel.
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Feshbach resonance. In this case, the scattering length aFb(B) depends on the magnetic

field B according to [71]

aFb(B) = abg

(

1− ∆

B −B0

)

. (2.51)

Here abg is the background scattering length associated with Rbg(r), which gives the off-

resonant value. The parameter B0 denotes the resonance position, where the scattering

length diverges (a → ±∞), and the parameter ∆ is the resonance width. Experimentally

accessible magnetic fields reach up to B0 ≈ 1000G and the resonance width ∆, which

strongly depend on the coupling strength between the scattering and resonance state, is

typically in the range of ∆ = 0.01 . . . 10G [72].

Typical experimental methods used to detected Feshbach resonances include inelastic loss

spectroscopy [73], which makes use of the strong 3-body recombination rate dependence on

the scattering length (see Sec. 2.6). Furthermore, the change of elastic collision properties

(e.g. the thermalization rate [74]) or radiatively induced trap loss [75] around a Feshbach

resonance can be observed. All methods described here require temperatures in the regime

of a few µK in order to observe a clear resonant structure.

Tuning the scattering length close to a Feshbach resonance enables many fascinating

experiments with ultra-cold atoms [73]. More details on recent developments in this field

can be found in the review article [72].

2.6 Inelastic collisions

Besides elastic scattering, which is discussed above, inelastic collisions determine the prop-

erties of ultracold gases significantly. In inelastic collision processes, internal energy of the

scattering particles is converted to kinetic energy. This additional energy is usually suffi-

cient for the colliding atoms to leave the trapping potential in ultracold atom experiments.

The probability of a scattering event in a gaseous cloud of atoms apparently depends on

the density. In the density regime of n = 1012 . . . 1015 typically achieved in ultracold atomic

samples, three inelastic processes have to be considered:

Background gas collisions Each collision process of cooled and trapped atoms with atoms

from the ”hot“ background gas (Tbg ≈ 300K) directly leads to atom loss from the trap-

ping potential. The background-limited lifetime τbg at a given pressure p [mbar] can be

approximated by the relation τbg ≈ 1.3 × 10−8/p [76]. Hence, vacuum conditions with

p < 10−10mbar are required to achieve lifetimes of several minutes.

Two-body spin- and dipolar relaxation In magnetic potentials, trapped atoms are not

residing in the energetically lowest state (see Sec. 3.2.1). Hence, collisions between atoms

can be accompanied by a transition into energetically more favorable levels: One or both

atoms flip their spin and the Zeeman-energy is converted into kinetic energy. Depending on

the coupling mechanism, this inelastic process is either called spin relaxation [77] (collision

between atoms in different mF sub levels) or dipolar relaxation [78] (higher order coupling
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between spin and angular momentum during the collision). Both processes may result in

loss of atoms from a magnetic trap (spin-flip to an untrapped state) and heating of the

atomic sample. The rate for spin relaxation and dipolar relaxation collisions depends on

the density n with event rates in alkali atoms typically on the order of γsr ≈ n · 10−11 cm3/s,

and γdr ≈ n · 10−15 cm3/s respectively.

If the atomic sample is spin polarized (all atoms residing in the same spin state), spin

relaxation is suppressed and the significantly less frequently occurring dipolar relaxation

remains. In optical dipole potentials (see Sec. 3.2.3), atoms can be trapped in their lowest

hyperfine level, which completely prevents inelastic tws-body loss.

In the case of Yb in the 61S0 ground state, spin- and dipolar relaxation processes are

intrinsically suppressed as no electronic spin is present.

Three-body recombination The event of three trapped atoms being close enough to

interact, offers another possibility for an inelastic process: Two atoms form a weakly bound

molecule and the third takes up the excess binding energy of the molecule. The probability

for a three-body event scales with the square of the density and the rate constants for

this process depend strongly on the details of the interaction potential. However, for

the recombination to a weakly bound s level, a universal relation between the event rate

constant αrec and the s-wave scattering length a is given by

αrec ≈ C
~a4

m
. (2.52)

Here, C is a dimensionless factor, which is predicted to be in the range between 1 and

≈70 [79, 80]. For typical experimental values of the scattering length a ≈ 100 a0, three-

body recombination plays a role only for very dense samples (n = 1014 . . . 1015), since

the event rates are typically very small (γrec = n2αrec ≈ n2 · 10−29 cm6/s). The situation

however drastically changes for larger scattering length: Close to Feshbach resonances or

zero energy resonances (see Sec. 2.5 and 2.2.2), three-body recombination is the dominating

loss mechanism.
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Preparation of ultracold atomic samples

This chapter briefly describes the relevant methods of cooling gaseous atoms down to

temperatures in the nK regime and trapping them in optical and magnetic potentials.

It includes the basic principles of laser cooling and their application in Zeeman slowers

and magneto optical traps (MOTs). These methods are used as a first cooling stage in

the present experiment, where temperatures in the several 10 . . . 100µK-range are reached.

Furthermore, this section discusses conservative traps that are created by magnetic- and

optical dipole potentials. These potentials are used in the main experiments presented in

the scope of this work. For a quantitative analysis of the observed effects, it is crucial

to have detailed knowledge and control of the trapping potentials which are theoretically

described in this section.

The following approach does not make the claim to be complete, it rather focuses on the

basic methods used in the present experiments. For an extensive derivation of this theory

and a more detailed description of its applications, see e.g. [76, 81].

3.1 Principles of laser cooling

The basic idea of laser cooling is that photon scattering transfers momentumd in ~~k in-

crements to atoms. The wave vector ~k with magnitude |~k| = k = 2π/λ depends on the

wavelength λ of the involved light field. If enough photons are scattered, the atomic veloc-

ity can be changed significantly as a result of the scattering force F that depends on the

scattering rate Γ [76]:

~F = ~~k Γ with Γ =
γ

2

s0

1 + s0 + (2δ/γ)2
. (3.1)

Here, γ = 1/τ is the natural line width of the excited atomic state, determined by its lifetime

τ . The saturation parameter s0 = I/Isat is connected to the incident light intensity I and

the saturation intensity Isat = (πhcγ)/(3λ3). The scattering rate Γ also depends on the

detuning

δ = δ0 − ~k · ~v − µ′B
~

= ω − ω0 − ~k · ~v − µ′B
~

, (3.2)

which generally consists of three contributions: δ0 = ω − ω0 is the frequency difference

between the laser light frequency ω with respect to the atomic resonance frequency ω0.
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For atoms in motion, the Doppler shift −~k · ~v has to be taken into account, whereas the

term −µ′B/~ considers the Zeeman shift in the presence of a magnetic field with magnitude

B. The Zeeman shift of the relevant atomic transition depends on the effective magnetic

moment µ′ = (geme − ggmg)µB consisting of the Landé g-factors gi and the magnetic

quantum numbers mi of the involved ground- and excited atomic state (µ0 is the Bohr

magneton).

The scattering rate Γ and hence the force on the atoms saturate for high intensities

I ≫ Isat and zero detuning δ = 0 at maximum values of Γmax = γ/2 and ~Fmax = ~~k γ/2.

The model which is sketched here assumes an ideal two-level system with a closed cycling

transition that allows for continuously repeated absorption- and spontaneous emission cy-

cles. In the experiment, the complex level structure of atoms often requires additional

repumper lasers, that prevent atoms from leaving the cycling transition (see Sec. 4.2.1 and

Sec. 5.3.1).

3.1.1 Zeeman slowers

Historically, the first steps in the field of laser cooling involved the one-dimensional deceler-

ation of an atomic beam using the scattering force [82, 83, 17]. In this configuration, a laser

beam is directed opposite to an atomic beam, which results in a maximum deceleration

|amax| =
Fmax

m
=

~k

m

γ

2
(3.3)

of atoms with mass m. In order to achieve maximum deceleration, the used light frequency

has to be kept on resonance with the atomic transition during the slowing process at

all times. As can be seen from Eq. 3.2, the velocity-dependent Doppler-shift has to be

accounted for.

The basic idea of a Zeeman-slower is, to use a spatially varying magnetic field to compen-

sate the Doppler-shift while atoms are being slowed. For atoms moving in the z-direction,

this condition is given by

δ = ω − ω0 − ~k · ~v − µ′B
~

= ω − ω0 + kv(z)− µ′B(z)

~

!
= 0 . (3.4)

At a given initial atom velocity v0, the deceleration with magnitude |amax| leads to a tra-

jectory according to v(z) =
√

v20 − 2|amax|z. Under this condition, the required magnetic

field has the form

B(z) = − ~

µ′
(ω0 − ω − kv(z)) =

~

µ′

(

δ0 + k
√

v20 − 2a0z

)

. (3.5)

This solution describes a Zeeman slower with an increasing field geometry, as it is used in

our experimental setup. In this configuration, the laser is operated at a detuning δ0 = −kv0,
in order to be on resonance with fast atoms of velocity v0 entering the Zeeman slower at

zero magnetic field. In order to address only a transition between defined Zeeman sub-

states, polarized light is used. In the increasing field geometry, the effective magnetic

moment µ′ of the slowing transition has to be negative. This leads to a decrease of the
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Figure 3.1: Velocity dependence

of the optical damping forces

for one-dimensional optical mo-

lasses. The blue lines show

the individual forces from each

beam, while the red line is their
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the linear behavior that results

in a pure damping force over a

restricted velocity range.

transition frequency along the slower that compensates for the decreasing Doppler shift of

the decelerated atoms.

Experimentally, atomic properties as well as parameters like the maximum initial velocity

v0 and minimum final velocity vend determine the required magnetic field B(z), the initial

detuning δ0 and the length L of a Zeeman slower. The typical atom deceleration is in the

range of |a| = 104 . . . 105 m/s2. Atoms are slowed from initial velocities of v0 = 100 . . . 300m/s

to final values of vend = 5 . . . 30m/s over a distance of L = 30 . . . 100 cm. Details on the

parameters of the Zeeman slowers used in the present experiment can be found in [84, 8, 9].

3.1.2 Optical molasses and magneto optical trap (MOT)

With three mutually orthogonal intersecting laser beams a region of space can form an

optical molasses of atoms [85]. The essential idea is that in the optical molasses, atoms

experience a force proportional to the velocity which can be considered a viscous damp-

ing force. Although this force can not actually trap atoms, it can cool them: in a one-

dimensional view, the forces from the two counter propagating light beams are added to

give the total force ~Fom = ~F+ + ~F− with the individual forces

~F± = ~~k±
γ

2

s0

1 + s0 +
(
2(δ0∓kv)

γ

)2 . (3.6)

For small velocities, a linear approximation is justified and the total force ~Fom can be

written as

~Fom ≈ 8~k2δ0 · s0 · ~v

γ
(

1 + s0 + (2δ0/γ)2
)2 = −β~v . (3.7)

For the case of red detuned laser beams (δ0 < 0), this force points in the opposite direction

of the atomic velocity and therefore viscously damps the atomic motion. This process is

referred to as Doppler cooling of atoms. Figure 3.1 shows the velocity dependence of the

individual forces (blue) and the resulting force (red) for s0 = 2 and a detuning δ0 = −γ.
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Figure 3.2: Schematic arrangement for an Yb MOT in the one-dimensional case. Adapted

from [9].

The dashed line shows how this force corresponds to a pure damping force over a restricted

velocity range. around zero. Doppler cooling is limited by a heating process resulting from

the randomness of momentum steps the atoms undergo with each emission or absorption.

The competition between this heating and the damping force leads to an equilibrium

temperature, called Doppler temperature or Doppler cooling limit [76]:

TD =
~γ

2kB
. (3.8)

This temperature limit depends only on the transition line width and is typically on the

order of ≈ 100µK. Further details and a more extensive approach on the theory of optical

molasses can be found in [86, 87, 88]

It is a small step from optical molasses to the magneto-optic trap (MOT). With the

addition of a magnetic quadrupole field, typically applied using a pair of anti-Helmholtz

coils, an optical molasses can be cleverly arranged so that the net photon scattering always

adds up to drive the atoms into the trapping region. Figure 3.2 describes the basic principle

of a one dimensional MOT in the case of Yb. Here, the MOT transition uses the ground

state |1S0, J = 0〉 and the excited state |1P1, J = 1〉. In the presence of a linear magnetic

field B(z) = B0z, the latter splits into three Zeeman sub-states with magnetic quantum

number mJ = −1, 0, 1. Circularly polarized light with opposite orientation is used in the

counter propagating laser beams to address defined magnetic sub-states. Additionally,

the MOT beams are red detuned (δ0 < 0) with respect to the atomic transition at zero

magnetic field (represented by the dashed line in Fig. 3.2). Because of the Zeeman shift,

the excited state with mJ = 1 (mJ = −1) is shifted up (down) for B > 0. At the position

z > 0 (z < 0) in Fig. 3.2, the magnetic field therefore tunes the ∆m = −1 (∆m = +1)

transition closer to resonance and the ∆m = +1 (∆m = −1) transition further out of
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resonance. Hence, at a position z > 0 (z < 0) more light is scattered from the σ− beam

(σ+ beam), driving the atoms towards the trap center. In this configuration, the scattering

force results in ~FMOT = ~F+ + ~F− with the individual contributions

~F± = ~~k±
γ

2

s0

1 + s0 +
(
2(δ0∓kv±(µ′B0/~)z)

γ

)2 . (3.9)

Analogous to Eq. 3.7, a linear approximation for small velocities and position displacements

(|~k~v|, |(µ′B0/~)z| ≪ |δ0|) is applied, which gives the total force [76]

~FMOT ≈ 8~k2δ0 · s0 · ~v

γ
(

1 + s0 + (2δ0/γ)2
)2 +

µ′B0

~

8~kδ0 · s0 · ~r

γ
(

1 + s0 + (2δ0/γ)2
)2

= −β~v − κ~r . (3.10)

In addition to the velocity dependent damping force, a position dependent trapping force

is present in the MOT.

The dissipative force ~FMOT is able to capture all atoms in a MOT that are slower than

a maximum capture velocity vc. Assuming a constant maximum acceleration amax = ~kγ/2

across the MOT diameter 2rc, which is defined by the beam radii rc, vc is given by[76]:

vc =

√

2 rc~kγ

m
(3.11)

In general, MOTs can be loaded from a background gas of thermal atoms. However, only

a tiny fraction of the atoms in a thermal Maxwell Boltzmann velocity distribution feature

velocities within the maximum capture range. Therefore, many experiments – including

the one presented in the scope of this thesis – use Zeeman slowers to increase the fraction

of trappable atoms.

As a result, up to 1010 atoms can be trapped in a MOT at peak densities of 1011cm−3. For

the density distribution, it is important do distinguish between two different regimes [89]: In

the limit of small atom numbers (often called temperature limited regime), atom interactions

can be neglected. In this regime, the atomic spatial and momentum distributions are close

to Gaussian and are characterized by the temperature and the trap spring constant κ.

On the contrary, in the limit of large atom numbers (density limited regime), interactions

between atoms play an important role as the reabsorption of scattered atoms (radiation

trapping) [90] causes a repulsive force between them. At a certain atomic density, the

outward radiation pressure of the fluorescence light balances the confining forces of the

trapping laser beams. In this regime, a further increase of the number of trapped atoms

leads to larger atoms clouds, but not to higher peak densities.

For the case that the MOT is not operated on a cycling transition, this density limit

can be overcome. In the configuration of a so called dark SPOT MOT [91], atoms in the

trap center are optically pumped into a “dark” hyperfine level that is not addressed by the

trapping beams. In this “dark” region, repulsive forces between atoms due to rescattered

radiation are suppressed and trap loss due to excited state collisions is reduced. The present
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experiment uses such a dark SPOT MOT configuration for 87Rb in order to achieve higher

peak densities (see Sec. 4.2.1 and 5.3.1).

The temperature limit in a MOT is the Doppler temperature, which is typically in the

regime of ≈ 100 µK. However, more advanced cooling methods like polarization gradient

cooling [92, 93] are able to provide lower temperatures, at least for some atomic species.

Further details on laser cooling techniques and magneto-optic traps can be found in [94,

89, 95].

3.2 Conservative traps for neutral atoms

Generally, the MOT is a universal tool in cold atom physics. Many experiments can be

performed directly in the MOT (e.g. photoassociation spectroscopy as in our previous

work [16]) but more often the MOT is used nowadays as a tool for loading conservative

type traps. In these traps, limitations in temperature and density due to scattering of

near-resonant light are overcome. The following describes two types of conservative type

traps, which are used in the present experiment: The (purely) magnetic trap (MT) uses the

interaction of neutral atoms with the gradient of a static magnetic field. This interaction

can form a trapping potential in the absence of lasers [96, 97]. It relies however on the

atom’s state-dependent magnetic moment and therefore limits the applicability of magnetic

traps to atoms with a paramagnetic ground state. On the contrary, the optical dipole trap

(ODT) is based on the electric dipole interaction of atoms with far-detuned light and can

be used for any atomic species. Inhomogeneous light fields, realized for example by the

focus of a high power laser beam, create the corresponding trapping potential [98]. Atoms

trapped in conservative traps can be further cooled to the nK regime by the method of

evaporative cooling, which is also described in this section.

3.2.1 Magnetic traps

The energy shift of an atom with magnetic moment ~µ residing in a spin state |F,mF 〉 in

the presence of a magnetic field ~B is given by:

∆E = −~µ ~B = gF mF µB | ~B|. (3.12)

Here, gF is the Landé g-factor of the state with a total angular momentum quantum

number F and mF is the magnetic quantum number. Atoms are generally trapped in a

potential minimum. For atomic states |F,mF 〉 with gF mF > 0 (gF mF < 0), a potential

energy minimum coincides with a magnetic field minimum (maximum). According to this,

atoms in the corresponding states are called low field seeker (high field seeker). Maxwell’s

equations fundamentally allow only magnetic field minima in free space [99]. Hence, only

atoms in low field seeking states (gF mF > 0) are trapped by static magnetic traps. On

the contrary, mF = 0 states as well as strong field seeking states (gF mF < 0) are not

trapped. In order to suppress atom loss from a MT, uncontrolled transitions between

Zeeman sub-states of trapped atoms have to be avoided. The probability of these so called

Majorana-spin-flips increases for small magnetic fields, where the atoms’ quantization axes
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is not able to follow the external magnetic field adiabatically [100]. Thus, stable magnetic

traps require a magnetic field with nonzero magnitude all across the trapping region.

The magnetic field configuration realized in a Ioffe-Pritchard-trap [101] fulfills the re-

quirements stated above. In our experiment, the corresponding magnetic fields are created

by coils arranged in a clover-leave-configuration [102]. Details on the experimental imple-

mentation can be found in [8, 9]. The magnetic field configuration is characterized by an

offset B0, a radial field gradient B′ and an axial field curvature B′′ [97]:

~B(~r) = B0






0

0

1




+B′






x

−y
0




+

B′′

2






−xz
−yz

z2 − 1
2(x

2 + y2)




 . (3.13)

This results in the following trapping potential:

UMT(~r) = µ|B(~r)| = (3.14)

µ

√
(

B0 +
B′′

4
(2z2 − x2 − y2)

)2

+

(

B′y +
B′′

2
yz

)2

+

(

B′x− B′′

2
xz

)2

.

For the case of small energies, a harmonic approximation of this potential leads to:

UMT,harm(~r) = µB0 +
µ

2

[(
B′2

B0
− B′′

2

)
(
x2 + y2

)
+B′′z2

]

. (3.15)

Figure 3.3 (a) illustrates the MT potential calculated according to Eq. 3.14 for 87Rb in the

ground state |F = 1,mF = −1〉-sublevel using a typical experimental field configuration.

(a) shows the potential in the x-z-plane and Fig. 3.3 (b) compares radial and axial cuts of

UMT (red) with the harmonic approximation UMT,harm (blue dashed). In the z-direction,

UMT is intrinsically harmonic, while in the x,y-directions, the harmonic regime is limited to

energies kBT ≪ µB0. The magnetic potential in harmonic approximation is characterized

by the trap frequencies

ωx = ωy =

√

µ

m

(
B′2

B0
− B′′

2

)

and ωz =

√
µ

m
B′′ . (3.16)

In general, the density distribution n(~r) of a thermal atomic cloud with a temperature T

in the presence of a potential U(~r) is given by [67]:

n(~r) = n0 exp

(

−U(~r)

kBT

)

. (3.17)

The peak density n0 is determined by the normalization condition
∫

n(~r) d3r
!
= N , (3.18)

where N is the atom number. For the case of the magnetic potential in harmonic approxi-

mation, this leads to a Gaussian density distribution

nMT,harm(~r) = n0 exp

(

−Uharm(~r)

kBT

)

= n0 exp

(

− x2

2σ2x
− y2

2σ2y
− z2

2σ2z

)

, (3.19)
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Figure 3.3: Calculated 87Rb MT potential for typical experimental values: B0 = 0.81G,

B′ = 138G/cm and B′′ = 224G/cm2. (a) shows the x-z-plane, while (b) compares radial

and axial cuts of UMT (red) with the harmonic approximaton UMT,harm (blue dashed).

characterized by the 1/
√
e-widths

σx = σy =

√
√
√
√

kBT

µ
(
B′2

B0
− B′′

2

) =
1

ωx

√

kBT

m
and σz =

√

kBT

µB′′ =
1

ωz

√

kBT

m
.

(3.20)

The peak density of an atomic cloud with N atoms trapped in this potential is given by

n0 =
N

(2π)
3/2 σxσyσz

. (3.21)

The present trap configuration, which is displayed in Fig. 3.3, leads to an elongated, cigar

shaped atom cloud with an aspect ratio of σz/σx,y ≈ 10.

3.2.2 Evaporative cooling

Evaporative cooling is an effective method to reach the nK regime as it is not subject

to limitations induced by near resonant light. It was used for the first time with spin-

polarized hydrogen [103] and finally led to the observation of Bose-Einstein condensation

of alkali atoms (87Rb:[2], 23Na: [22], 7Li: [21]). The essential idea is that by clever control

of the trap depth, hot atoms can be preferentially ejected and the remaining atoms will

rethermalize at a lower temperature. Figure 3.4 demonstrates this method for to a cloud

of atoms in thermal equilibrium at an initial temperature T1. Its thermal energy E follows
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Figure 3.4: Principle of evaporative cooling. Starting from a thermal equilibrium T1 (a),

hot atoms with E > Ecut are ejected (b). Finally, the system rethermalizes at a lower

temperature T2 < T1 (c). From [9].

the Maxwell-Boltzmann distribution [67]:

f(E)dE ∝
√
E e−E/kBT1 dE (3.22)

For evaporative cooling, atoms with an energy E > Ecut are removed from the trap, leaving

behind a thermal disequilibrium (b). Finally, elastic collisions lead to a rethermalization

of the system resulting in a lower temperature T2 < T1. The evaporation rate per atom

depends on the density n, the elastic scattering cross section σ0, the mean thermal velocity

〈v〉 and the parameter η = Ecut/(kBT ) [104]:

τ−1
evap =

Ṅ

N
= n 〈v〉σ0 η e−η (3.23)

In a trap with finite potential depth, atoms with energies above the trap depth are per-

manently created by elastic collisions leading to a continuous evaporation (so called plain

evaporation). However, as the temperature decreases, less atoms with sufficient energy are

produced and plain evaporation is suppressed. Quantitatively, the parameter η increases

and the evaporation rate (Eq. 3.23) exponentially decreases. Hence, in order to effectively

reduce the temperature, the trap depth has to be reduced keeping η constant (forced evap-

oration). The efficiency of evaporative cooling, which is defined as the relative temperature

reduction over relative atom loss rate (Ṫ/T/Ṅ/N), depends only on the parameter η. If the

trap depth is reduced slowly enough (η large), it is possible that the atom density rises

despite atom loss. For the case that the increase in density is large enough, the elastic

collision rate Γ
el
∝ n 〈v〉 ∝ nT 1/2 increases despite the temperature reduction. Thus, the

evaporation efficiency increases during the cooling process, which is called runaway evap-

oration. However, the maximum duration of an evaporation ramp is limited by atom loss

processes such as background gas collisions or inelastic two- and three-body collisions (see

Sec. 2.6). Therefore, if the evaporation ramp is too slow, the evaporative cooling rate is

compensated by atom loss and heating processes. The timing sequence of an evaporation

ramp is typically optimized experimentally.

For efficient cooling, the number of elastic collisions has to exceed the inelastic collision

rate by many times over (Γ
el
/Γ

inel
≫ 100). For low energies, the ratio Γ

el
/Γ

inel
decreases
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Figure 3.5: Principle of radio frequency induced evaporation of 87Rb in the |5S1/2, F = 1〉
ground state. Note that gF = −1/2. The red lines indicate the Zeeman energy shift of

the mF sub states as a function of the atom position in the trap. Only atoms with high

enough thermal energies reach the position, where they are in resonance with the radio

frequency photon. Here, a transition to an untrapped spin state is induced and the atoms

are removed from the trap. Adapted from [9].

(see [9] for details), which limits the minimum temperature to a level where Γ
el
/Γ

inel
≈ 1:

kBTmin =
πmΓ2

inel

16σ20
(3.24)

As this temperature limit depends on the scatting cross section, effective evaporative cool-

ing is restricted to certain atomic species and isotopes with amenable scattering properties.

Radio frequency induced evaporation In magnetic traps, atoms with an energy above a

certain threshold can be removed by inducing a transition to a non trappable spin state.

The position dependence of the Zeeman shift for the individual sub-states is shown in

Fig. 3.5 for the case of 87Rb in the ground state. Transitions between spin states are

induced by applying an alternating electro-magnetic field with a frequency ν
RF

in the radio

frequency (RF) range. The resonance condition

ν
RF

(

~B(~r)
)

=
gF µB

| ~B(~r)|
h

(3.25)

is connected to the potential energy through Eth = gF mF µB
| ~B(~r)|. Only atoms with a

thermal energy that is larger than this threshold energy come into resonance with the RF

field while oscillating in the trap and thus, transitions to untrapped spin states are induced.

This allows an energy selective removal of “hot” atoms from the trap. The parameter η is

connected to the induced radio frequency ν
RF

through

η =
|mF |h νRf − |gF mF µBB0|

kBT
=

|mF |h (νRF − νRF0)

kBT
, (3.26)

which includes the magnetic field offset B0 = h νRF0/µB, that defines the bottom of the

trap. Experimentally, the ratio frequency ν
RF

is continuously reduced during an evapora-

tion ramp keeping η constant.
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Note that RF induced evaporation in a MT selectively removes energetic atoms without

varying the trapping potential. In contrast, lowering the height of the trapping potential

in an optical trap (see below) is accompanied by a weaker confinement. This lowers the

density slowing down the evaporation process.

3.2.3 Optical dipole traps

The basic idea of optical dipole traps is based on the interaction of atoms with inhomo-

geneous light fields. The optical dipole force arises from the dispersive interaction of the

induced atomic dipole moment with the intensity gradient of the light field. In a simple

oscillator model [105], an electric field

~E(~r, t) = ~eE(~r)eiωt + ~eE∗(~r)e−iωt (3.27)

with polarization vector ~e and frequency ω induces an atomic dipole moment

~p(~r, t) = α(ωL) ~E(~r) . (3.28)

Here, α is the complex polarizability. The interaction potential of the induced dipole

moment ~p with the driving field ~E is given by

Udip = −1

2
〈~p ~E〉 = −Re(α)| ~E(~r)|2 = − 1

2ε0c
Re(α)I(~r) , (3.29)

where the angular brackets denote the time average over the rapidly oscillating terms. The

dipole potential is hence proportional to the light intensity I(~r) = 2ε0c| ~E(~r)|2 and the real

part of the complex polarizability. This parameter describes the in-phase component of

the dipole oscillation being responsible for the dispersive properties of the interaction. The

conservative dipole force is in turn proportional to the intensity gradient of the driving

field:

~Fdip(~r) = −∇Udip(~r) =
1

2ε0c
Re(α)∇I(~r) . (3.30)

The accompanying photon scattering rate is given by

Γsc =
Pabs

~ω
=

1

~ε0c
Im(α)I(~r) . (3.31)

It is proportional to the light intensity and the imaginary part of the polarizability, which

describes the out-of-phase component of the dipole oscillation. The dipole potential (3.29)

and the scattering rate (3.31) are the main quantities, which determine the properties of a

dipole trap.

A Lorentz’s model of a classical oscillator can be used to calculate the complex polariz-

ability (see [105] for details):

α(ωL) = 6πε0c
3 γ/ω2

0

ω2
0 − ω2 − i

(
ω3/ω2

0

)
γ
. (3.32)
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The model is based on an ideal two-level atomic system, where ω0 is the oscillation eigen-

frequency corresponding to the optical transition frequency. The classical damping rate

γ corresponds to the spontaneous decay rate of the excited level. In a full quantum me-

chanical approach, γ is replaced by the dipole matrix element between ground and excited

state. However, for the relevant case of large detuning |δ| = |ω−ω0| ≫ γ and a small scat-

tering rate Γsc ≪ γ, the classical result (3.32) provides an excellent approximation for the

quantum-mechanical oscillator. Thus, the dipole potential (3.29) and the corresponding

scattering rate (3.31) are given by

Udip(~r) = −3πc2

2ω3
0

(
γ

ω0 − ω
+

γ

ω0 + ω

)

I(~r) , (3.33)

Γsc(~r) =
3πc2

2~ω3
0

(
ω

ω0

)3( γ

ω0 − ω
+

γ

ω0 + ω

)2

I(~r) . (3.34)

The basic physics of dipole trapping in far-detuned laser fields can be understood on the

basis of these two equations.

Experimentally, the sign of the detuning δ = ω − ω0 determines the nature of this

potential: Below an atomic resonance (“red” detuning, δ < 0), the dipole potential is

negative and the interaction thus attracts atoms into the light field. Potential minima are

therefore found at positions with maximum intensity. Above resonance (“blue”detuning,

δ > 0) the dipole interaction repels atoms out of the field, and potential minima correspond

to intensity minima.

In the case of small detuning δ ≪ ω0, the second term in the equations 3.33 and 3.34 can

be neglected, leading to the so called rotating-wave approximation. Under this assumption,

the dipole potential scales as I/δ, whereas the scattering rate scales as I/δ2. As photon

scattering is accompanied by a heating rate (see below), optical dipole traps usually use

large detunings and high intensities to keep the scattering rate as low as possible for a

given potential depth.

Note that the conservative optical dipole force and the dissipative scattering force, which

was introduced in Sec. 3.1, both originate from interaction of a light field with atoms.

Which force has the dominating effect, depends on the actual parameters: If the light

field is a plane wave, the dipole force vanishes as ∇I(~r) = 0. For inhomogeneous light

fields (∇I(~r) 6= 0), the dominating force depends on the detuning δ: The scattering force

can be neglected, if δ ≫ γ which is typically used in optical dipole traps. A general

theoretical approach on the atom-light interaction using optical Bloch equations can be

found in [106, 81, 76]. In a quantum mechanical description, the dipole potential is created

by an intensity-dependent shift of atomic energy levels (“dressed atom picture”, [107]),

which is induced by the coupling of the light field to the atom.

Multi-level atoms

In real atoms, a multitude of electronic transitions are possible, including complex fine-

and hyperfine structure. The main consequence is that the dipole potential in general
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depends on the particular sub-structure of the atom and all electronic states coupling to

the ground state have to be taken into account. In terms of the oscillator model discussed

before, multi-level atoms can be described by state-dependent atomic polarizabilities. The

dressed atom picture sums over dipole matrix elements between the ground state and all

possible excited states for the calculation of the ground state energy shift [105].

However, the situation simplifies, if the light field detuning with respect to all relevant

transitions exceeds their fine- and hyperfine structure splitting (δ0 ≫ ∆FS ≫ ∆HFS). This

case applies to the experimental situation described in the scope of this thesis. Fine-,

hyperfine-, and magnetic substructure can be neglected and the multi-level problem is

reduced to simply summing up the light shift potenials corresponding to transitions to all

relevant atomic levels. The dipole potential and the scattering rate are then given by

Udip(~r) =
∑

i

−3πc2

2ω3
0i

(
γi

ω0i − ω
+

γi
ω0i + ω

)

I(~r) and (3.35)

Γsc(~r) =
∑

i

3πc2

2~ω3
0i

(
ωL

ω0i

)3( γi
ω0i − ω

+
γi

ω0i + ω

)2

I(~r) , (3.36)

with transition frequencies ω0i and line widths γi of all relevant atomic transitions.

For atomic states with fine structure splitting, the individual contributions of each fine

structure transition are weighted by the corresponding oscillator strength in order to cal-

culate a mean effective transition frequency and line width according to

ω0i =
∑

j

fj ω0j

fj
und γi =

∑

j

fj γj
fj

. (3.37)

The oscillator strengths fj of the individual fine structure transitions can be calculated for

allowed electric dipole transition according to [108]

fi =
me c ǫ0 λ

2

2π e2
gi
gj
Aij with gi,j = 2Ji,j + 1 . (3.38)

Here, the weighting factors gi(j) are related to the ground state (excited state) angular

momenta Ji(j) and Aij ≡ γ is the transition probability. Due to the much smaller energy

shifts, hyperfine splitting is not taken into account:

Dominant contributions for the dipole potential (3.35) and the scattering rate (3.36) are

characterized by large line widths and small detuning with respect to the light field.

Red detuned dipole traps

The dipole force points towards intensity maxima if the light field is tuned below the atomic

transition frequency (“red” detuning). Therefore, already the focus of a red detuned laser

beam constitutes a stable dipole trap for atoms. The spatial intensity distribution of a

focused Gaussian beam with power P propagating in the z-direction is described by

I(r, z) =
2P

πw2(z)
exp

(

− 2r2

w2(z)

)

, (3.39)
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where r denotes the radial coordinate (r2 = x2 + y2). The 1/e2 radius w(z) depends on the

axial coordinate z via

w(z) = w0

√

1 +

(
z

zR

)2

. (3.40)

The laser beam is characterized by the minimum radius w0, which is called the beam waist

and the Rayleigh length zR = πw2
0/λ. This length depends on the wavelength λ and describes

the distance from the focus along the z-axis, where the beam radius reaches the magnitude

w0

√
2. The maximum intensity in the focus is given by

I0 =
2P

πw2
0

. (3.41)

The resulting dipole potential created by a focused “red” detuned laser beam can be

calculated from equations 3.35, 3.39 and 3.40:

Udip(r, z) = U0
1

1− (z/zR)
2 exp



− 2r2

w2
0

(

1 + (z/zR)
2
)



 with (3.42)

U0 =
∑

i

−3πc2

2ω3
0i

(
γi

ω0i − ω
+

γi
ω0i + ω

)

I0 . (3.43)

The potential in the trap center U0 = UODT(0, 0) is called trap depth. Figure 3.6 (a) shows

the 1/e2 radius of a focused laser beam and the resulting optical dipole potential for Yb for

typical experimental beam parameters.

If the thermal energy kBT of an atomic ensemble is much smaller than the trap depth

U0 , the extension of the atomic sample is radially small compared to the beam waist and

axially small compared to the Rayleigh range. In this case, the optical potential can be

well approximated by a simple cylindrically symmetric harmonic oscillator

UODT,harm(r, z) = −U0

(

1− 2

(
r

w0

)2

−
(
z

zR

)2
)

. (3.44)

Figure 3.6 (b) compares radial and axial cuts of the calculated potential UODT (red line)

with the harmonic approximation UODT,harm (blue dashed line).

In the harmonic approximation, the oscillation frequencies of a trapped atom are given

by

ωr =

√

4U0

mw2
0

and ωz =

√

2U0

mz2R
(3.45)

in radial and axial direction respectively. In the case of the harmonic approximation, the

density distribution of a thermal cloud of N atoms is Gaussian:

nODT(~r) = n0 exp

(

−UODT,harm(~r)− U0

kBT

)

= n0 exp

(

− r2

2σ2r
− z2

2σ2z

)

(3.46)
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Figure 3.6: Red detuned optical dipole trap created by a focused Gaussian laser beam:

(a) shows the 1/e2 radius around the focus and the resulting optical potential for Yb for

typical experimental values: λ = 532 nm, P = 3W, w0 = 15µm. (b) compares radial and

axial cuts of the potential UODT (red) with the harmonic approximation UODT,harm (blue

dashed).

The characteristic radial and axial 1/e2-widths are

σr =

√

w2
0kBT

4U0
=

1

ωr

√

kBT

m
and σz =

√

z2RkBT

2U0
=

1

ωz

√

kBT

m
(3.47)

and the peak density is given by

n0 =
N

(2π)
3/2 σ2rσz

. (3.48)

For optical dipole traps created by a red detuned focused laser beam, the axial confinement

typically exceeds the radial confinement by a large factor, as zR ≫ w0. The aspect ratio

σz
σr

=
ωr

ωz
=
zR
w0

√
2 =

w0

λ
π
√
2 (3.49)

depends only on the beam waist w0 and the wavelength λ. In the present experiment, the

chosen parameters lead to nearly one-dimensional density distributions with aspect ratios

on the order of σr/σz ≈ 1/100.

Light induced heating mechanisms

Heating by the trap light is an issue of particular importance for optical dipole trapping. A

fundamental source of heating is the spontaneous scattering of trap photons, which due to
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its random nature causes fluctuations of the scattering force. Each photon absorption- and

re-emission process is accompanied by a momentum transfer from a photon to an atom.

This increases the system energy in increments of the so called recoil energy,

ER =
~
2k2

2m
, (3.50)

which can be related to the so-called recoil temperature by:

TR =
2ER

kB
=

~
2k2

kBm
; (3.51)

Both absorption and spontaneous re-emission processes show fluctuations and thus both

contribute to the total heating power, which is defined as the mean thermal energy change
˙̄Eth [105]:

Pheat =
˙̄Eth = 2ER〈Γsc〉 = kBTR〈Γsc〉 . (3.52)

This heating power is proportional to the mean scattering rate 〈Γsc〉.
In thermal equilibrium, the mean kinetic energy per atom in a three-dimensional trap

is Ēkin = 3kBT/2. In a harmonic trapping potential, the potential energy is equal to the

kinetic energy and thus the mean thermal energy is given by Ēth = Ēkin + Ēpot = 3kBT .

Using this relation between mean energy and temperature, the heating power resulting

from photon scattering can be reexpressed as a heating rate

Ṫheat =
1

3

˙̄Eth

kB
=

1

3
TR〈Γsc〉 . (3.53)

describing the corresponding increase of temperature with time.

In a dipole trap created by a red detuned focused laser beam, the maximum scattering

rate 〈Γsc,max〉 = 〈Γsc〉(I0 = 2P/πw2
0
) is present in the focus leading to a maximum heating

rate Ṫheat,max = 1/3TR 〈Γsc,max〉. In multi-level atoms, the total heating rate is calculated

by summing up the individual contributions according to Eq. 3.36. Here, the respective

transition-dependent recoil temperatures have to be taken into account:

Ṫheat,max =
1

3

∑

i

TR,i 〈Γsc,max〉i

=
1

3

∑

i

~
2k2i
kBm

3πc2

2~ω3
0i

(
ω

ω0i

)3( γi
ω0i − ω

+
γi

ω0i + ω

)2 2P

πw2
0

(3.54)

Evaporative cooling in optical dipole traps

Generally, forced evaporative cooling in optical dipole traps is achieved by adiabatically

ramping down the trapping beam power. In contrast to RF induced evaporation in mag-

netic traps, this not only lowers the trap depth, but also weakens the confinement. The

method of evaporative cooling however requires high densities to assure fast thermaliza-

tion rates. While this effect is disadvantageous for evaporative cooling in optical dipole
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traps, the fact that arbitrary atomic states can be optically trapped, turns out to be an

advantage.

Effective evaporative cooling requires, that the ratio between inelastic collisions causing

losses and heating, and elastic collisions providing thermalization and evaporation, has

to be large. In dipole traps, inelastic processes can be suppressed when the particles

are prepared in their energetically lowest magnetic state. By using large laser detunings

with respect to strong atomic transitions, heating effects caused by the trap light can be

practically eliminated.

The use of dipole traps consisting of two crossed red detuned laser beams enhances

the confinement in all three dimensions and allows effective evaporative cooling. In this

configuration, an all optical formation of a BEC has been accomplished for the first time in
87Rb [109]. More importantly, optical dipole traps are used to reach quantum degeneracy

in elements that are not trappable in magnetic potentials. For an overview see [110].

Different isotopes of Yb are also cooled to quantum degeneracy using all optical methods

[1, 111].





4
Apparatus

This chapter describes the apparatus, that was used for the experiments described in the

present work. The complete setup is arranged on three optical tables: two of them host

the laser systems designed for cooling and trapping of 87Rb and Yb and the third one

supports the the main vacuum chamber and the laser systems for the optical dipole traps.

In addition, the relevant methods of atom detection and data processing are presented

here. This apparatus was used in previous experiments and detailed technical description

can be found in [8, 9, 11]. However, the experiments presented here, have required a

significant improvement in stability and precision compared to the previous setup. Hence,

in the course of this work, a number of components were changed or added to the existing

system: Large parts of the laser systems were redesigned, which is described in Sec. 4.2.

Additionally, improved detection methods as detailed in Sec. 4.3 were introduced to the

experimental setup.

4.1 Vacuum system

All experiments presented here are performed inside the main vacuum chamber, which

is illustrated in Fig. 4.1. It has a wheel-shaped geometry with 10 windows in a radial

arrangement and 2 additional axial windows. The windows provide optical access for the

Zeeman-slower, MOT- and optical dipole trap laser beams, as well as for the atom detection

systems. Atom ovens, which prepare the Yb and Rb atoms in a gaseous form, are connected

to the central chamber by the corresponding Zeeman-slower tubes. The Rb oven operates

at a temperature of ≈ 120 ◦C, while Yb needs ≈ 430 ◦C to provide enough atom flux for

the Zeeman-slower.

Vacuum Ultracold atom experiments have to be carried out in an ultra high vacuum

environment, as collisions with energetic atoms from the background gas lead to rapid

atom loss in the ultracold sample (see Sec. 2.6). The pressure in the main chamber is

at a level of ≈ 10−11 mbar, which is maintained by a titanium sublimation pump and an

additional ion-getter pump. Both oven sections are also equipped with ion-getter pumps

that keep the pressure at a level of < 10−9 mbar, when the atom ovens are operating.

Differential pumping tubes are connecting the ovens with the Zeeman slower tubes, allowing

to maintain pressure difference of ≈ 3 orders of magnitude.
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Figure 4.1: (a) schematic diagram (adapted from [9]) and (b) photograph of the main

vacuum setup

Magnetic field Water cooled coils are attached to the main chamber and the Zeeman

slower tubes providing the magnetic fields necessary for cooling and trapping of both

atomic species. The 3-dimensional gradient field required for the MOT (see Sec. 3.1) is

created by a single-sided configuration of two coils. The calculated field gradients in the

trap center are (∂B/∂z)/I = 0.44 G/cmA in axial direction and(∂B/∂r)/I = 0.22 G/cmA in

radial direction [9] for a given current I through the coils. Typical MOT currents used

in the present experiments are 5. . . 90A. The magnetic trap (MT) potential for Rb is

generated by additional coils arranged in a clover-leave-geometry (see [8] for details). At

a current of 235A, the resulting axial field curvature is B′′ = 231G/cm2, the radial field

gradient is B′ = 133G/cm and typical offset fields are on the order of B0 = 0.8 G (see

Sec. 3.2.1).

In addition to the MOT and MT coils, three pairs of compensation coils are attached

to the vacuum chamber. They provide variable and nearly homogeneous magnetic fields

in all three dimensions and are used for various purposes: First, they serve to compensate

unwanted stray magnetic field caused by the earth magnetic field, the ion pumps and the

Zeeman slowers. Second, additional magnetic fields created by the compensation coils shift

the spatial position of zero magnetic field in the MOT or the minimum magnetic field in

the MT. This allows a controlled movement of the trapped atoms. The accessible range is

in the order of several mm for the Rb MOT and ≈ 1mm for the MT, where movement is

restricted to radial directions. Finally, defined magnetic quantization fields for absorptive

or dispersive imaging of the atomic clouds are also provided by the compensation coils.

The current of all coils is independently controlled by the experiment control system.
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Fast switching is provided either by insulated gate bipolar transistors (IGBTs) or high

power MOS-FETs. Ring down circuits, which are integrated in the system to avoid large

electromagnetic induction voltages, determine the minimum switching times to ≈ 1ms.

4.2 Laser systems

This section describes the laser systems required for cooling and trapping of 87Rb and Yb

atoms. It focuses on changes of various components, that occurred in the course of this

work: For the Rb MOT lasers, an improved stabilization system was implemented in the

existing setup. In addition, the “green” 556 nm light generation, which is used for the Yb

MOT, was changed from the previously used dye laser to a frequency doubling system of

1112 nm light. Finally,the optical system used for the Yb BIODT was partly redesigned

and the pointing stability- and pointing control system was highly improved.

4.2.1 Rb Cooling and trapping

The Zeeman-slower and the MOT for 87Rb are operated on the atomic 87Rb D2-line at

780nm. The main transition for cooling and trapping uses the 52S1/2 ground state hyperfine

level |F = 2〉 and the 52P3/2 excited state hyperfine level |F ′ = 3〉, which is shown in

Fig. 4.2. In different experimental stages, a variable MOT laser detuning δ0 of 0 . . . 60MHz

with respect to the |F = 2〉 → |F ′ = 3〉-transition is used. To maintain the necessary

cycling transition for the 87Rb-MOT, an additional repumper is required. Although the

selection rule ∆F = 0,±1 prevents atoms, to enter the ground state |F = 1〉 level, off-

resonant excitation to the |F ′ = 2〉 state can allow some atoms to end up in this level,

removing them from the cycle. The repumper returns these atoms to the |F = 2〉 state

through optical pumping so that they reenter the MOT cycle. In the present configuration,

we work with two independent repumping beams. One of them is partially blocked by an

obstacle to create a dark region for the dark-spot MOT configuration (see Sec. 5.3.1).

The other one, denoted as repumper 2 is unchanged and provides repumping light for all

trapped atoms.

The laser for the Zeeman-slower is detuned by -626 MHz with respect to the |F =

2〉 → |F ′ = 3〉-transition to compensate the Doppler shift for the fast atoms entering the

increasing-field-slower. A separate repumper laser is also needed here. In addition to that,

a beam denoted as depumper, which is resonant with the |F = 2〉 → |F ′ = 2〉 is needed, to
prepare the atoms in a defined spin state for the MT. Furthermore, beams for the imaging

system are required. Resonant imaging is carried out on the |F = 2〉 → |F ′ = 3〉 transition,
while for off-resonant dark contrast imaging the slower repumper is used (see Sec.: 4.3.3).

All relevant atomic levels and the laser beams for the 87RbMOT are summarized in Fig. 4.2.

Light generation The light required for the 87Rb MOT is created by 4 diode lasers

(diodes: Sharp GH0781JA2C, 120 mW, 784 nm). Two of them are designed as external

cavity master diode lasers (ECDL) in Littrow-configuration [112] and are independently

frequency-stabilized to atomic 87Rb transitions. The other two lasers are injected with
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Figure 4.2: Diagram of relevant atomic levels and laser beams used in the present exper-

imental setup for 87Rb cooling, trapping and detection.

≈ 100µW derived from one of the master lasers and act as high power slave lasers. In order

to generate the different beams described above, light frequency shifting is achieved with

acousto-optic modulators (AOM). All laser beams can be switched on an off by mechanical

beam shutters. Controllable AOMs provide fast switching, as well as power or frequency

adjustments. The laser system for the Rb MOT was originally designed in a previous work

and a detailed description can be found in [8]. However, in the course of this work some

modifications were made and an updated scheme of the laser system is shown in Fig. 4.3

Frequency stabilization The MOT master and the repumper laser use an independent

spectroscopy and frequency stabilization systems. The lock signal for each laser is generated

by spectroscopy on the D2-transition in a Rb vapor cell. This signal is then fed back through

a PI-loop to a controllable, frequency selective element of the laser. In the course of this

work, both spectroscopy systems were changed from a configuration described as dichroic-

atomic-vapor laser lock (DVALL) in [113], to Doppler-free saturation spectroscopy [114].

The DWALL-method directly provided a dispersive lock signal. However, this signal was

subject to long term temperature-dependent offset drifts and hence did not provide enough

stability. In the improved spectroscopy configuration, the branches of the laser beams

entering the spectroscopy cells, are frequency-modulated by AOMs (in Fig.4.3: AOM 4

and 5). Absorption-signals are generated by photodiodes which measure the power of the

laser beams going through the vapor cells. Through demodulation with lock-in amplifiers,

dispersive lock signals are produced. Fig. 4.4 shows both the absorption spectra and the

demodulated lock signals used to frequency stabilize the MOT master and the repumper

laser. The measured linewidths of the lock signals for the MOT master laser and the

repumper are ≈ 9MHz and ≈ 14MHz, respectively. The difference to the natural linewidth



4.2. Laser systems 49

_

AOM

AO
M

AO
M

AO
M

AO
M

AO
M

AOM

AOM

re
p
u
m

p
e
r

M
O

T
m

a
s
te

r

im
a
g
in

g

depumper
-133

2x(+181)
MOT repumper

-84,4

repumper spectroscopy
2x(+181)

2
x
(-

2
4

5
)

7

6

9

1

8

2
4

3

MOT
-106

M
O

T
s
la

v
e

in
je

c
ti
o

n
2

x
(+

9
0

..
.+

1
1

5
)

s
lo

w
e

r 
s
la

v
e

in
je

c
ti
o

n

s
lo

w
e

r

s
lo

w
e

r 
re

p
u

m
p

e
r

re
p
u
m

p
e
r

M
O

T

6
0
 m

W

1
1
 m

W

3
0
 m

W
 +

 r
e
p
u
m

p
e
r 

5
 m

W

s
lo

w
e
r

M
O

T
s
la

v
e

s
lo

w
e
r

s
la

v
e

AO
MMOT master spectroscopy

2x(+68)

5

imaging

w
a
v
e
-

m
e
te

r

R
b
 v

a
p
o
u
r 

c
e
ll

M
O

T
m

a
s
te

r
s
p
e
c
tr

o
s
c
o
p
y

_

R
b
 v

a
p
o
u
r 

c
e
ll

re
p
u
m

p
e
r

s
p
e
c
tr

o
s
c
o
p
y

1
5
-s

te
p

in
d
e
x
in

g
m

o
u
n
t

2
x
(+

1
8

1
)

M
O

T
re

p
u

m
p

e
r 

2

re
p
u
m

p
e
r 

2

2
 m

W

d
e
p
u
m

p
e
r

3
0
0
 µ

W

4
0
0
 µ

W
 (

a
b
s
o
rp

ti
o
n
) 

o
r

8
0
0
 µ

W
 (

d
a
rk

 c
o
n
tr

a
s
t)

mirror/
beam splitter

flip mirror

lens

mechanical
beam shutter

optical fiber

photodiode

lock signal

l/4-plate

l/2-plate

AOM

polarising beam
splitter cube

optical
isolator

acousto-optic
modulator

Figure 4.3: Laser system for 87Rb.



50 4 Apparatus

F‘=1 (1/2) 2 (1/3) (2/3) 3 F‘=0 (0/1) 1 (0/2) (1/2) 2

lo
c
k
 s

ig
n

a
l 
[V

]

lo
c
k
 s

ig
n

a
l 
[V

]

a
b

s
o

rp
ti
o

n
 s

ig
n

a
l 
[a

rb
. 

u
.]

a
b

s
o

rp
ti
o

n
 s

ig
n

a
l 
[a

rb
. 

u
.]

frequency [Mhz] frequency [Mhz]

Figure 4.4: Absorption spectra (black) and lock signals (red) for (a) the MOT master

(F = 2) and (b) the repumper (F = 1) laser frequency stabilization. The hyperfine

structure of the 87Rb 52P3/2-level is well resolved and the peaks are labeled by the total

angular momentum quantum number F ′ of the excited state. Additionally, so-called

crossover peaks are located in the center between two hyperfine peaks and result from

the characteristic spectroscopy method used here. They are labeled by (i/j), where i, j

relate to the involved hyperfine levels. See [114] for details. The gray areas indicate the

peaks used for laser frequency stabilization. The frequency axes are calibrated by the

outermost peaks in each spectrum.

of this transition, which is γ/2π = 6.06 MHz [115] results from saturation- and pressure-

broadening effects. Due to the lock-in technology used here, the lock signals are free of

offset drifts and are less susceptible to temperature changes.

The lock signals are passed to PI-loops and the resulting signals control the position of

the external grating of the lasers through a piezo-crystal. Thus, frequency stabilization can

be achieved as the external cavity, consisting of the laser diode and the grating, determines

the actual laser frequency [112]. The bandwidth of the total locking loop however is

limited by mechanical resonances of the external grating setup, that occur at acoustical

frequencies in the range of ≈ 1 kHz. It turned out, that acoustical noise, for example

created by mechanical beam shutters positioned on the same optical table as the lasers,

led to short term laser frequency instabilities. Especially for the MOT master laser, which

generates the light for resonant atom imaging, the lock system was not fast enough under

mechanical noise.

To address this, the MOT master laser frequency stabilization has been refurbished to

include two stages: The first stage is bandwidth limited by an electronic low-pass filter

to ≈ 100 Hz and controls the external grating as described above. This stage provides

long term stabilization and is able to compensate for large externally induced frequency
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displacements. For the second stage, the lock signal is additionally used to control the

MOT laser diode current, which is also a frequency selective parameter. The bandwidth

of the diode current closed loop control is not subject to mechanical oscillations and can

therefore be much higher, providing an improved short term stability. In the present setup,

the bandwidth is limited to ≈ 5 kHz by the lock-in amplifier output lowpass, which results

in sufficient short term frequency stability.

A quantitative estimation of the frequency stability can be made using the spectroscopy

signals of the lasers in the locked state. For the repumper laser, a frequency stability of

≈ ±2.5MHz is reached at a timescale of seconds, while the two stage MOT master system

provides stability of ≈ ±0.85 MHz.

Configuration of cooling laser beams The light generated by the MOT slave laser is

split into 6 beams with beam diameters expanded to ≈ 15 mm before they enter the main

vacuum chamber. The MOT repumper beam is superimposed to one of the MOT beams

at the vacuum chamber. An obstacle is introduced into the repumping beam, to create the

dark inner region for the dark spot-MOT (see Sec. 5.3.1).

The slower beam with the superimposed slower repumper is expanded to ≈ 30mm before

it enters the Zemann-slower and it is focused to the nozzle, where the atoms leave the Rb

oven. The additional depumper- and repumper 2 beams are independently guided to the

main chamber. In order to improve the pointing stability, the imaging light is guided

through a optical single mode fiber while all other beams travel to the vacuum chamber

through free space. The power of all independent beams entering the vacuum chamber, is

specified in Fig. 4.3.

4.2.2 Yb MOT

In the present experimental configuration, the ytterbium MOT uses the atomic Yb 1S0
→ 3P1 intercombination line at 555.8 nm for cooling and trapping. Unlike in 87Rb, there
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are virtually no losses to other states and therefore no additional repumper is required.

The intercombination transition is semi-forbidden, as it involves an electronic spin change

from a singlet to a triplet configuration. This leads to a quite narrow line width of γ556 =

2π × 181 kHz [116].

The Zeeman-slower for Yb uses the 1S0 → 1P1 transition at 398.9 nm. This transition

has a line width of γ399 = 2π × 28 MHz and allows a fast deceleration of the atoms in the

slower. Resonant imaging of Yb atoms is also performed at this wavelength. A diagram

of the relevant atomic levels of Yb and the laser beams used for the Yb MOT and for Yb

detection is shown in Fig. 4.5. In the course of this work, we were able to cool and trap
173Yb in a MOT for the first time in the existing experimental setup, hence the necessary

requirements for this specific isotope are highlighted in the following.

399 nm light

At 399 nm, two laser beams with different frequencies are required: First, the imaging

beam, which is resonant with the Yb 1S0 → 1P1 transition and second, the slower beam

which is shifted by ≈ 584 MHz with respect to this transition. As in Rb, this detuning

compensates the Doppler shift for the fast atoms entering the increasing field Zeeman

slower.

Light generation The laser light at 399 nm is generated by a diode laser system in master-

slave configuration (master diode: Nichia NDHV310ACAEI, 399 nm, 30mW; slave diode:

Nichia NDHV310APC, 401 nm, 60mW). The master ECDL, whose setup is identical to



4.2. Laser systems 53

(a) (b)
F’=

3
2

171
Yb

F’=
5
2

173
Yb

170
Yb

172
Yb

174
Yb

176
Yb

F’=
1
2

171
Yb

F’=
7
2

173
Yb

frequency [Mhz]

lo
c
k

s
ig

n
a
l 
[V

]
fl
u
o
re

s
c
e
n
c
e
 s

ig
n
a
l 
[a

rb
. 
u
.]

lo
c
k

s
ig

n
a
l 
[V

]
fl
u
o
re

s
c
e
n
c
e
 s

ig
n
a
l 
[a

rb
. 
u
.]

frequency [Mhz]

172
Yb

F’=
7
2

173
Yb

Figure 4.7: Fluorescence spectra in natural isotopic mixture of Yb (black) and lock signals

(blue) for the 399 nm master laser frequency stabilization. The peaks are labeled by

the corresponding Yb isotope and in the case of fermionic isotopes by the excited state

hyperfine level. (a) Linear polarization is used. (b) Circular polarization leads to a relative

intensity change of the fermionic lines. Adapted from [9].

the Rb MOT master and repumper laser, is frequency stabilized to a spectroscopy signal.

A small portion of its light is injected into the slave laser, acting simply like an amplifier,

which produces ≈ 12mW of usable light for the slower. Another branch of the master laser

beam, which is frequency-shifted to the 1S0 → 1P1 transition and guided through a single

mode optical fiber, is used for Yb imaging. In the current configuration, 500 µW of light

are present after the fiber. A schematic of the 399 nm laser system is shown in Fig. 4.6.

Further details on the 399 nm laser system can be found in [9, 11].

Spectroscopy at 399 nm For the 399 nm master laser frequency stabilization we carry

out fluorescence spectroscopy on an collimated atomic Yb beam in a separate vacuum

chamber [9]. The use of a simple vapor cell, similar to the Rb spectroscopy, is impractical

for Yb due to its low vapor pressure at accessible temperatures. To generate a lock signal,

the spectroscopy laser beam is frequency modulated and the fluorescence signal, which is

recorded by a photo-multiplier tube (PMT), is demodulated by a lock-in amplifier. Like in

the Rb repumper stabilization setup, the lock signal controls the external grating position

of the 399 nm master laser to stabilize its frequency. The resulting frequency stability is

≈ 7 MHz on a timescale in the order of seconds. An additional diode-current lock, as

implemented for the Rb MOT master laser is not required here, because the large natural

line width of γ399 = 2π × 28.0 MHz [116] allows a less accurate frequency stabilization.

Furthermore, no mechanical beam shutters, which could induce short term instabilities,

are located on the same optical table as the 399 nm lasers. The fluorescence spectrum and

the corresponding lock signal is shown in Fig. 4.7. The measured line widths are on the

order of ≈ 50 MHz, determined by Doppler-broadening due to nonzero transversal atom

velocities in the slightly diverging atomic beam. The large number of observed lines in
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the fluorescence spectrum is due to the individual isotopes in the natural isotope mix.

Additionally, for fermionic isotopes, the hyperfine structure of the 1P1 excited state is

resolved. By changing the polarization of the spectroscopy light from linear (Fig 4.7 (a))

to circular (Fig 4.7 (b)), we observe a change in the relative intensity of the fermionic lines

with respect to the bosonic lines. This effect is related to the angular dependence of the

fluorescence of the Yb atoms. For circular polarization, the lines resulting from 172Yb and
173Yb |F ′ = 7/2〉 can be resolved.

The 399 nm master laser can be frequency stabilized to lines of 4 bosonic isotopes (170Yb,
172Yb, 174Yb and 176Yb) and 2 fermionic isotopes (171Yb, |F ′ = 3/2〉 and 173Yb |F ′ = 7/2〉).
In the Zeeman-slower, only the corresponding isotope is addressed and filtered out of the

natural isotopic mixture for further cooling and trapping in the MOT.

556 nm light

In the course of this work, the generation of light at 556 nm used for the MOT transition

in Yb, was changed from a dye laser system to a configuration, where light at 1112 nm is

frequency doubled to 556 nm. The infrared light is produced by a 1 W fiber laser (Ko-

heras Boostik BoY10PztS, specified line width: < 40 kHz) and sent through a periodically

poled lithium niobate (PPLN) crystal in a single pass configuration. The PPLN crystal is

temperature stabilized to ≈ 180 ◦C and it is located at a focus of the 1112 nm light. For

maximum conversion efficiency, the beam parameters are carefully adjusted to match the

geometric properties of the PPLN crystal. Residual infrared light is separated from the

556 nm beam after the crystal by a dichroic mirror and sent to a beam block. With this

setup, which is shown in Fig. 4.8, ≈ 25 mW of green light are produced.

In the 556 nm laser system, beams for spectroscopy and the wavemeter are branched
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of, before the light is sent to the vacuum chamber. AOM 2 shifts the spectroscopy light,

which is stabilized to the 1S0 → 1P1-transition, by +97 MHz and frequency modulates

it for lock-in detection. The additional AOM 1 is only used for fermionic isotopes (see

below). The frequency shifts of AOM 1 and AOM 3 is compensated by AOM 3, which

has a frequency range of +88 . . .+100Mhz leading to an adjustable MOT light detuning

of δ0 = −9 . . .+3MHz. AOM 3 is also used for fast switching and is part of an adjustable

power stabilization system, which additionally consists of a photodiode and a PI-loop

control. For the power stabilization, residual light, which leaks through one of the mirrors,

is used. The PI-loop electronic compares the photodiode level to the set point given by the

experiment control system. It acts on the power input of AOM 3 to stabilize the 556 nm

Yb MOT light power to an adjustable level.

Frequency stabilization We use the fluorescence signal of the Yb 1S0 → 3P1 intercombi-

nation transition to stabilize the 556 nm light frequency. The spectroscopy is performed on

the same atomic beam, which is used for the 399 nm diode laser. The green light, however

enters the spectroscopy vacuum chamber through a different window and fluorescence is

detected by an additional PMT. The observed peaks in the Yb 1S0 → 3P1 spectrum have

a line width of ≈ 5MHZ. Although the atomic beam is further collimated before it enters

the 556 nm spectroscopy region, Doppler broadening is still the dominating line-broadening

effect here. When the laser is stabilized using the green spectroscopy signal, the stability

is better than ±0.08 MHz. The dispersive lock signal is generated by the same frequency

modulation technique, which is used for the Rb lasers and for the 399 nm diode laser. The

lock signal is sent to the internal piezo of the 1112 nm fiber laser, which controls its wave-

length in a range of 18 pm when the full voltage range of 0. . . 200V is used. This translates

to a total scan range of ≈ 8.7GHz for the 556 nm light, allowing the 1S0 → 3P1-lines of all

isotopes to be observed in a single sweep. A recorded spectrum with magnified regions, that

are relevant for frequency stabilization on the fermionic isotopes is shown in Fig. 4.9. In

addition to the isotope shift and hyperfine splitting of fermionic isotopes, Zeeman-splitting

of the fermionic lines can be resolved in this spectrum. The Zeeman-splitting results from

a well-defined magnetic field, which is created by a permanent magnet sitting on top of the

spectroscopy vacuum chamber. The field vectors are aligned with the atomic beam axis

and with the polarization vector of the linearly polarized spectroscopy light. The addi-

tional magnetic field provides a well defined quantization axis and splits the spectroscopic

lines into well separated Zeeman components.

Note, that for the states used in the following description, Russel-Saunders (or L - S)

coupling of the individual orbital angular momenta and spins of the Yb 6s electrons can be

used [118]. In the case of bosonic isotopes, the situation is simple: The 1S0 ground-state

has total angular momentum J = 0 and lacks magnetic sub-structure. In contrast, the

J = 1 excited state has a magnetic moment with magnitude and the magnetic sub-states

mJ = ±1 acquire a Zeeman shifted energy relative to the mJ = 0 sub-state. However,

in the present configuration only the unshifted π-transition with a spin-change ∆mj = 0

is driven by the spectroscopy light and no additional peaks appear. Hence, in order to

frequency stabilize the 556 nm laser for cooling and trapping of bosonic Yb isotopes, the
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[117]). (a) shows the full sweep, while (b) and (c) are zoomed regions relevant for fre-

quency stabilization on the fermionic isotopes.
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corresponding spectroscopy peaks can be directly used.

For fermionic isotopes, the situation is more complex, as a nonzero nuclear angular

momentum leads to hyperfine splitting into states with total spin F . In the presence of a

weak magnetic field1, these states are split into sub-levels mF with an energy shift [119]

EZ = mF gF µB
B, (4.1)

with the Bohr Magneton µ
B
and the hyperfine-structure Lande g-Factor

gF = gJ
F (F + 1) + J (J + 1)− I (I + 1)

2F (F + 1)

− gI
me

mp

F (F + 1) + I (I + 1)− J (J + 1)

2F (F + 1)
. (4.2)

Here, I and J are the total nuclear- and electronic angular momentum quantum numbers,

while me and mp are the electron- and proton mass. Values for the nuclear g-factor gI can

be found in the literature and under the approximation that the electron g-factor gs = 2,

the fine-structure Lande g-Factor is

gJ ≈ 1 +
J (J + 1)− L (L+ 1) + S (S + 1)

2 J (J + 1)
, (4.3)

with L and S being the orbital angular momentum- and spin quantum numbers of the

corresponding level.

Figure 4.10 summarizes the quantum-numbers, the Lande-g-factors and the resulting

Zeeman-splitting of levels relevant for 171Yb and 173Yb frequency stabilization. Values for

the nuclear g-factor gI are taken from [116]. Note that for the ground-state, the first term

in Eq. 4.2 vanishes and the second term is small due to the electron-proton mass-ratio of

≈ 1/1836. Hence, the ground-state Zeeman-splitting is negligible.

Under the conditions described here, the spectrum shown in Fig. 4.9 can be explained

as followed. For π-light, the 173Yb |F ′ = 7/2〉-level splits into 6 equally separated Zeeman-

lines (see Fig. 4.9 (b)) with a mean frequency difference of ≈ 66MHz. According to Eq. 4.1,

this line separation can be attributed to a magnetic field with magnitude B0 ≈ 110Gauss.

The 171Yb |F ′ = 1/2〉-level is energy shifted by 255.1 MHz [117] from the center of the
173Yb |F ′ = 7/2〉-manifold. The magnetic field with magnitude B0 leads to a splitting

into two lines separated by ≈ 308MHz (measured separation: ≈ 305MHz). In the present

configuration, the 171Yb |F ′ = 1/2,m′
F = −1/2〉-line coincides with the |F ′ = 7/2,m′

F =

3/2〉-line leading to a increased joint peak, which is used for frequency stabilization on
173Yb. The frequency difference of ≈ −100 MHz to the center of the 173Yb |F ′ = 7/2〉-
manifold is compensated by an additional AOM (in Fig. 4.8: AOM 1), which is operated

at +100MHz, when 173Yb is addressed.

Cooling and trapping of 171Yb uses the 3P1 |F ′ = 3/2〉-level, which splits into 2 Zeeman-

lines separated by ≈ 154 MHz at the presence of a magnetic field with magnitude B0

1This description is valid only for the case, where the Zeeman energy EZ is small compared to the

energetic separation of hyperfine levels. Here, ~I and ~J are strongly coupled to ~F , which precesses around

the external magnetic field axis, resulting in linear Zeeman effect [119]
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Figure 4.10: Zeeman-splitting of the levels relevant for 171Yb and 173Yb frequency sta-

bilization. Note that the relative energy shifts of excited state levels are drawn to scale.

Black arrows indicate π-transitions, red and blue arrows show σ+ and σ− transitions.

(measured separation: ≈ 155 MHz). The 556 nm light is frequency stabilized on the |F ′ =
3/2,mF = 1/2〉-line and AOM 1 is run at +77MHz to compensate for the Zeeman-shift.

In total, the Yb MOT can be operated with all stable Yb isotopes except 168Yb (relative

abundance only 0.13% [116]). Switching between the different isotopes only requires,

to change the 556 nm- and the 399 nm light frequency stabilization to the corresponding

spectroscopy lines.

Configuration of the MOT and slowing beams

The 556 nm MOT light is split into three beams with beam diameters of ≈ 8 mm, which

are then retro-reflected to complete the trap. This configuration complicates the process

of adjusting the MOT, but it makes the best use of the limited amount of ≈ 15 mW of

stabilized power. The Yb Zeeman-slower is operated with ≈ 12mW of blue light at 399 nm,

which is expanded to a beam diameter of ≈ 15 mm and focused onto the Yb oven nozzle.

Blue Yb imaging light is superimposed to the 87Rb imaging beam by a dichroic mirror to

allow maximum flexibility in the imaging system (see Sec. 4.3 for details). All three beams

described here can be independently switched on and off with mechanical beam shutters

located on the optical table, which hosts the vacuum chamber.

4.2.3 Optical dipole trap

The bichromatic optical dipole trap (BIODT) used in this experiment provides the optical

potentials for cold Yb and Rb atoms and is a powerful tool that allows independent trapping

and manipulation of the two species. Details on the bichromatic approach as well as

calculations and model potentials can be found in Chap. 5 and 6.

This section describes the experimental realization of the optical potentials.
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Requirements

The BIODT consists of two parallel superimposed laser beams at 532 nm and 1064 nm,

with the following beam parameter:

• 532 nm beam

– Gaussian beam waist w0: ≈ 15 µm

– maximum light power: ≈ 3.5W, minimum light power: ≈ 35 mW

– relative power stability: better than 1% within the total range

• 1064 nm beam

– Gaussian beam waist w0: ≈ 15 µm

– maximum light power: ≈ 200 mW, minimum light power: ≈ 10 mW

– relative power stability: better than 1% within the total range

• relative lateral position control: ≈ 1 µm accuracy

• relative lateral position stability: < 1 µm within the total power range

Setup

The light for the BIODT is generated by a diode pumped solid state (DPSS) laser (Coherent

Verdi V10, 10W, 532 nm) and a fiber laser (IPG PYL-20M-LP, 20W, 1064 nm). The

complete laser system for the BIODT is outlined in Fig. 4.11.

The optical system for the infrared beam at 1064 nm was originally designed in a previous

work and details can be found in [9]. It is left unchanged for the present experiments.

In contrast, the system for the green ODT at 532 nm was completely redesigned in the

course of this work, in order to improve pointing- and power stability. As the 532 nm DPSS

laser, which is located on the vacuum chamber table, produces more output than used in

the present configuration, part of the light is branched of by a polarizing beam-splitter

cube and sent to a beam dump. The beam diameter is first reduced by a telescope to a col-

limated beam that matches the geometric properties of the switching AOM and the power

control electro optic modulator (EOM). Afterwards, the beam aspect ratio is adjusted with

a telescope consisting of cylindrical lenses. By precisely changing their distance with a mi-

crometer translation stage, it is also possible to compensate astigmatism. In the next stage,

the beam radius is magnified to ≈ 5.5 mm, before it is focused into the vacuum chamber

by a f = 500 mm-achromatic lens. One of the lenses in the magnifying telescope is also

mounted on a micrometer translation stage, which allows precise adjustment of the axial

focal position in the vacuum chamber. Under the assumption of Gaussian beam shapes,

the specified beam radii wL lead to a rough estimation of the beam waist w0 ≈ 15 µm,

according to w0 = λ f/π wL [120]. A more precise determination of the beam parameters

is presented in Sec. 6.1.2.

In the 532 nm ODT optical system, the AOM (Isomet 1205C-2) is only used for fast beam

turn-off only, as power adjustment with this AOM led to uncontrollable beam pointing

instabilities. We clearly observed a power dependent angle deviation of the beam with
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Figure 4.11: Laser system for the BIODT and electronic equipment for position- and

power-stabilization.

respect to the optical axis. One solution to this problem, which is realized in the 1064 nm

ODT system, is placing the AOM in the beam’s focus. In this configuration, the focal point

inside the vacuum chamber is an optical image of the focus inside the AOM. Therefore,

angle deviations are compensated in a first order approximation for this exact point. In

the green system, however, increased light absorption in the AOM crystal leads to thermal

lensing effects for high optical densities, which excludes the option of using a focal point

inside the 532 nm AOM.

In order to overcome this problem, we use an EOM (Linos LM 0202 VIS 5W), which

is placed between two crossed thin-film polarizing cubes (Linos G335-713), to control the

532 nm power. This setup provides a measured extinction ratio of >1/200, meeting the

specified requirements. For power stabilization, a photodiode, which is placed behind one

of the mirrors, is used. An electronic circuit compares this value with a set point given

by the experimental control board and a PI loop sends the resulting signal to the power

control EOM. With this setup, a relative stability of better than 1% within the total range

is provided. An identical power stabilization system is implemented in the 1064 nm ODT

beam setup leading to similar results.

Position stabilization

As stated above, a continuous operation of the BIODT requires, that the beam foci are

superimposed with a relative lateral stability of < 1 µm. However, a free running system
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Figure 4.12: Wiring scheme of the 4-

quadrant photodiode used for the

532 nm ODT beam position stabiliza-

tion. The dashed circles indicate a com-

plete beam displacement to one of the

diodes d2 or d3 leading to a maximum

horizontal position-signal of ±12 V.

is subject to both short term instabilities such as mechanical vibrations or acoustical noise

and long term drifts caused for example by thermal expansion of the whole setup.

In order to achieve the required stability, an active position stabilization system for both

the 532 nm and the 1064 nm beams is implemented in the BIODT setup, which is shown in

Fig. 4.11. Additionally, we included a piezo-driven position control for one of the beams,

giving us the possibility, to adjust the relative beam position on a µm-level. The present

configuration is a redesign of the original setup described in [9] with improved long-term

stability and independence of the BIODT beam power. As the optical part is unchanged

compared to the work of Tassy [9], I will emphasize the electronic part of the present

system.

After the vacuum chamber, the beams are independently imaged on two 4-quadrant

photodiodes (Hamamatsu S6695-01, 2x2mm active area, 15 µm gap) to monitor their

position. A careful adjustment procedure ensures, that the exact position of the focal

plane and with it the center of the trapping potential is imaged on the 4-quadrant odiodes.

The 4-quadrant photodiodes are rotated by 45◦ in a plane perpendicular to the beam

axes. The difference signal of two opposit diodes is generated electronically, in order

to create horizontal and vertical beam-position signals (see Fig. 4.12). The gain of this

first stage is adjusted to span ±12 V, when the light with maximum power is completely

directed on one or the other of the oppositely arranged diodes (represented by the dashed

circles in Fig. 4.12). When the optical power of the ODT beams is modified, the position-

signals generated by the 4-quadrant photodiodes and hence the overall gain in the PI loop

control changes. We observed, that especially for low BIODT powers (down to 1% of

the original magnitude), the position lock did not provide enough stability, causing the

beams to drift apart. To compensate for that, we implemented a gain-control stage in

the position stabilization, which controls the signal gain depending on the used optical

power in the ODT beams. This gain-control works as a divider and it is realized digitally

with a LabView-based progam on a PC. For fast input and output, we use a National

Instruments I/O-card (NI PCI-6229), which provides 16Bit analog-digital- and digital-

analog-conversion at a total speed of 250 kS/s. The gain control simultaneously runs for 4

channels (2 directions for each ODT beam) and uses the power detection photodiode signal

of each beam as a divider for the respective beam position signal. An actual signal delay

of ≈ 100 µs is introduced by the digital gain-control stage. The maximum gain (minimum

divisor) is limited, to avoid large amplification of signals with small signal-to-noise ratios.
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After the gain-control and a PI-loop electronic stage, the signals are used to control

the corresponding axis of piezo-equipped mirror mounts (in Fig. 4.11: PM1 and PM2),

which determine the radial ODT beam focal position inside the vacuum chamber. We

use Thorlabs KC1-T-PZ mirror mounts, which provide ±18 arcsec piezo adjustment at

an input voltage range of 0 . . . 150 V (an amplification stage matches the signals to this

voltage range). The stabilization system keeps the imaged focal points of the beams at the

center of the 4-quadrant detector and thus the lateral trap positiosn at a fixed point. The

bandwidth of this feedback loop is limited by mechanical oscillations of the piezo-mounted

mirrors to ≈ 200 Hz. However, in the present configuration we electronically limit the

bandwidth to ≈ 10 Hz, which is sufficient to compensate relevant pointing instabilities.

The bandwidth limitation however enables us to increase the DC gain and at the same

time prevent the system from oscillating.

The actual position stability can simply be estimated from the beam position signal

provided by the 4-quadrant phododiodes: Assuming a beam radius of ≈ 12 µm (the focus

is reduced by a factor 3/4 by the imaging system), and the maximum detector signal of

12V, which is generated, when the beam is completely displaced to one of the diodes, the

4-quadrant phododiode output voltage can be translated into a position. In the present

case, this estimate implies a short term stability on the order of ±0.1 µm for both ODT

beams. A day-to-day long term drift of < 1µm is observed, which provides enough stability

for a convenient operation of the experiment.

Position control The accuracy required to adjust the relative ODT beam position ex-

ceeds the precision, which is achieved by mechanical tuning on the corresponding mirror

mounts. Hence, a piezo-driven position control system is included in the BIODT position

stabilization system. One of the mirrors in the 532 nm beam stabilization imaging path

is piezo-equipped (in Fig. 4.11: PM3), which allows a precise beam position adjusting

on a sub-µm level. When the angle of PM3 is changed, the beam is dislocated from the

4-quadrant photodiode center. The position stabilization loop compensates this through

PM1, leading to an effective lateral 532 nm ODT displacement inside the vacuum chamber.

We measured the actual position of atom clouds trapped in the 532 nm ODT as a function

of the corresponding piezo voltage on PM3, which is shown in Fig. 4.13. The ODT position

is determined with absorption images that provide a resolution of ≈ 5 µm. The total dis-

placement range is limited to ≈ 60 µm, determined by the maximum adjustment range of

PM1. A pre-adjustment to this level is possible by mechanical tuning on the corresponding

axis on PM3. Within this range, the beam position depends linearly on the corresponding

piezo voltage, which is indicated by the red line in Fig. 4.13. The sensitivity of this position

control is ≈ 1.1 µm/V horizontally and ≈ 0.88 µm/V vertically. The discrepancy between

the two axes can be explained by asymmetries in the optical system caused by imperfect

alignment. The piezo voltage is controlled at a level of ≈ 0.1V, leading to a mean position

accuracy of ≪ 1µm for both directions.
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Figure 4.13: Measured (a) horizontal and (b) vertical 532 nm ODT positions as a function

of the corresponding piezo voltage on PM3. Outside the linear regions (indicated by the

red lines), the beam displacement on the 4-quadrant photodiode can not be compensated

by PM1, which limits the position adjustment range.

4.3 Atom detection

The basic data obtained in our experiments, is the density distribution of ultracold Rb and

Yb clouds. All further atomic cloud parameters, like atom number or temperature, are

determined by elaborate analysis of these raw data. In order to gain the information about

the atomic density distributions, optical methods are used. In general, interaction of atoms

with a beam of light involves three processes, which are relevant for our detection schemes:

absorption of photons, spontaneous re-emission of photons, and shifting the phase of the

transmitted light. These properties are used in absorptive, fluorescence, and dispersive

imaging methods, respectively.

In the following, the present configuration of the imaging system is described and the

different imaging methods are introduced. Further information on technical details can be

found in [8, 9]. In the course of this work, simultaneous imaging of both atomic species was

performed for the first time in the existing setup. Furthermore, the method of dark contrast

imaging was included in the setup, allowing the detection of high-density Rb clouds.

4.3.1 Imaging system

The imaging system used in the present experimental setup is shown in Fig. 4.14. It includes

a photodiode and a PMT, which continuously monitor the Rb- and Yb MOT fluorescence

and two cameras used for MOT alignment. Most importantly, the imaging system consists

of three main charge-coupled-device (CCD) cameras used for atom detection in the actual

experiments. Table 4.1 summarizes the camera and imaging properties as well as their

operation methods in the present experiments. Camera 3 has a different imaging scale

than the other cameras and is able to image significantly larger clouds of atoms. In order

to use this camera, an additional mirror is placed in the imaging path of camera 1. For
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Figure 4.14: Schematic diagram of the atom detection system.

camera 1 camera 2 camera 3

model
Finger Lakes Instrumen-

tation MaxCam 7-E
ABS Jena UK1117 ABS Jena UK1117

CCD resolution 764×512 pixel 768×576 pixel 768×576 pixel

effective pixel

size
4.37× 4.37 µm/pixel 5.83× 5.83 µm/pixel 20.3× 20.3 µm/pixel

imaging region 3.34× 2.24 mm 4.48× 3.34 mm 15.6× 11.7 mm

imaging method
absorption,

dark contrast
absorption fluorescence

atomic species Yb/Rb Yb/Rb Rb

Table 4.1: Cameras and imaging properties used in the present experimental configura-

tion.

precise focusing of this imaging path, the first lens in the imaging system is mounted on a

micrometer translation stage. Camera 2 is also mounted on a micrometer translation stage,

which allows precise alignment of the horizontal imaging path. Imaging light at 399 nm

and 780 nm, used for absorptive or dispersive imaging of Yb and Rb, is sent to the main

chamber through single mode optical fibers before the two light fields are superimposed

by a dichroic mirror. For imaging of either Yb or Rb by both cameras, the corresponding

imaging beam is split into two branches by a beam splitting cube. On the other hand, if

simultaneous imaging of both atomic species is performed, the beam splitting cube, which

is mounted on a magnetic base is replaced by a dichroic mirror. It separates the 399 nm

beam from the 780 nm beam. In this configuration, the Yb cloud is imaged in the horizontal

plane by camera 2, while camera 1 images Rb in the vertical plane.



4.3. Atom detection 65

4.3.2 Fluorescence imaging

For fluorescence imaging, resonant light is illuminating the atoms and the scattered light

is detected. The scattering rate of an atom (given already in Eq.3.1) can be written as:

Γ =
s0 γ/2

1 + s0 + δ̂2
. (4.4)

Here, the detuning δ̂ = ω−ω0

γ/2 of the laser light with frequency ω from the atomic resonance

frequency ω0 is given in units of half line widths γ/2. A total number of N atoms scatter

light with a power N~ω0Γ. Hence, by measuring the light power, which is scattered into a

defined solid angle with a calibrated phododiode or camera, it is possible to determine the

original atom number.

In the present experiment, we use camera 3 for fluorescence imaging for temperature

measurements of large and hot 87Rb clouds trapped in the MT. Furthermore, 87Rb atom

number calibration also makes use of fluorescence images (see Sec. 4.3.5). We illuminate

the atoms for a period of 100 µK with light from the MOT beams, which is tuned to

resonance (δ̂ = 0). The camera is triggered to take a picture with an exposure time that

covers the illumination time. An additional picture without atoms is subtracted from the

bright picture for background reduction. Note that resonant imaging of 87Rb is performed

using the |F = 2〉 → |F ′ = 3〉 transition of the D2 line. In the majority of experiments,

however, the 87Rb atoms reside in the |F = 1〉 ground state sublevel. Hence the repumper

2 beam is turned on for 0.7ms before taking the first image in order to optically pump all
87Rb atoms into the |F = 2〉 hyperfine level.

4.3.3 Absorptive and dispersive imaging

The method of absorption imaging uses resonant probe light and measures the absorption

by the atomic cloud (see Fig. 4.15). On the other hand, for dark-contrast imaging, off

resonant probe light is used and the phase-shift caused by the atoms is detected. In a

general description, a cloud of atoms with density n(x, y, z) attenuates and phase-shifts

probe light with an incident amplitude E0(x, y), which propagates in the z-direction in the

following way [121]:

E(x, y) = e−OD(x,y)/2 · E0(x, y) e
i φ(x,y). (4.5)

The optical density OD(x, y) and the phase shift φ(x, y) depend on the column density

ñ(x, y) =
∫
n(x, y, z)dz and the resonant cross section σ0 according to

OD(x, y) = ñ(x, y) · σ0
1

1 + δ̂2
= ñ(x, y) · σλ (4.6)

φ(x, y) = −ñ(x, y) · σ0
δ̂

2(1 + δ̂2)
. (4.7)
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Figure 4.15: Scheme of the absorptive and dispersive imaging. Resonant light is absorbed

by the atom cloud and the residual light is imaged onto the camera plane (absorption

imaging). For dark contrast imaging, off-resonant light is used and an opaque spot is

introduced a focus of the imaging light to block unscattered light. The remaining scattered

light is imaged on the camera plane.

a) Absorption imaging For resonant probe light with an incident intensity I0(x, y) , the

measured intensity after passing the atoms is

〈Ia(x, y)〉 = |E(x, y)|2 = I0(x, y) · e−OD(x,y) . (4.8)

In order to determine the integrated column density ñ(x, y) across the image and reduce

background noise effects, more than one single image is collected: For absorption imaging,

we measure an image of the probe light after passing through the atoms (≡ Ia(x, y)),

a probe light image without atoms (≡ I0(x, y)), and a background image (≡ Ibg(x, y)).

According to Eq. 4.6 and Eq. 4.8, these single images are processed as followed to obtain

the density distribution:

ñ(x, y) =
1

σλ
OD(x, y) =

δ̂=0
− 1

σ0
ln
Ia(x, y)− Ibg(x, y)

I0(x, y)− Ibg(x, y)
(4.9)

In our experimental cycle, ≈ 400µW of resonant imaging light for 87Rb and Yb is turned on

for 100µs, and the three single images are taken consecutively within ≈ 5 s. The wait time

between the single images is required to download the image data to the data acquisition

PC. Absorption imaging is used in the present experiment for temperature and density

distribution measurements of both atomic species. Note that analogously to the procedure

for fluorescence imaging, 87Rb atoms have to be optically pumped into the |F = 2〉 >
ground state hyperfine level in order to be in resonance with the imaging light field.

A typical false color absorption image of ≈ 8 × 106 87Rb atoms at a temperature of

≈ 900 nK is shown in Fig. 4.16 (a). This image is taken 30ms after the MT potential is

switched off. During this time, a ballistic expansion occurs leading to the observed density

distribution. The method of absorption imaging is sensitive enough to detect as few as

≈ 104 Yb atoms trapped in the BIODT potential and extract their density distribution.

However, when the optical density of the atomic sample becomes too large, like in high

density 87Rb clouds, absorption images become impractical for the following reasons: First,

the signal-to-noise-radio in the light distribution Ia(x, y) decreases and saturation effects

occur, as the incident probe light gets almost completely absorbed by the atoms. Second,

probe light diffraction effects can not be avoided when the sample density is high, leading

to artifacts in the measured image.
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Figure 4.16: False color (a) absorption- and (b) dark-contrast image of ≈ 8 × 106 87Rb

atoms at a temperature of ≈ 900nK. The absorption image is taken after 30ms of ballistic

cloud expansion, while the dark contrast image shows the initial cloud distribution in the

MT potential.

b) Dark ground imaging The method of dark ground imaging uses a small opaque object,

placed in the Fourier plane of the imaging system, to filter out unscattered probe light. In

the experimental setup, this is realized by a gold spot with diameter of ≈ 500 µm, which

is sputtered on a glass plate. The glass plate is mounted on a micrometer translation

stage, allowing the opaque spot to be precisely placed in a focus of the imaging beam

(see Fig. 4.15). To illustrate the method of dark ground imaging, the probe light field

after passing through the atoms is separated into a scattered and an unscattered light field

according to:

E(x, y)) = e−OD(x,y)/2E0(x, y) · ei φ(x,y) = E0(x, y) + ∆E(x, y). (4.10)

Blocking of the unscattered light gives the dark-ground signal:

〈Idg(x, y)〉 = |E(x, y) − E0(x, y)|2

= I0(x, y)
(

1 + e−OD(x,y) − 2e−OD(x,y)/2 cosφ
)

≃
φ→0

I0(x, y)
(

1 + e−OD(x,y) + e−OD(x,y)/2(φ2 − 2)
)

(4.11)

For small phase shifts, the dark ground signal is quadratic in φ.

For dark contrast images, we obtain the actual dark ground distribution Idg(x, y) and a

background image Ibg(x, y). The images are processed as follows, to obtain a signal, which

is proportional to the density distribution:

ñ(x, y) = cdg ·
√

Idg(x, y)− Ibg(x, y) (4.12)

The magnitude of the proportionality constant cdg, which depends on σ0 and δ̂ is not

required in the present experiments, as this method is not used for absolute atom number
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determination. For dark contrast imaging we also prepare the 87Rb atoms in the |F = 2〉 >
ground state sublevel. Successively, ≈ 800 µW of light, which is detuned from resonance

by ≈ 6.2GHz is used to illuminate the atoms for 100µs. We are able to image 87Rb atoms

at peak densities of up to 1014 cm−3, while they are still trapped in the MT potential. A

typical intra-trap dark contrast image is shown in Fig. 4.16 (b).

The possibility of simultaneously taking intra-trap images of both atomic species allows

direct observation of interspecies interaction processes (see Chap. 8).

4.3.4 Temperature determination

Under the assumption of a harmonic trapping potential, the density distribution n(x, y, z)

of an atomic cloud as well as the corresponding column density ñ(y, z) is Gaussian:

ñ(y, z) =

∫

n(x, y, z)dx = n0
√
2πσx exp

(

− y2

2σ2y
− z2

2σ2z

)

. (4.13)

The cloud dimensions σi (i = x, y, z) depend on the respective trapping frequencies ωi and

the temperature T :

σi(t) =

√

kBT

mω2
i

, i = x, y, z (4.14)

Without any trapping potential, ballistic expansion occurs and the cloud size as a function

of the time of flight (TOF) is given by [121]:

σi(tTOF) =

√

σi(0)2 +
kBT

m
t2TOF =

√

kBT

mω2
i

+
kBT

m
t2TOF , i = x, y, z (4.15)

with the initial cloud size σi(0). For tTOF ≫ ω−1
i , the cloud size is independent of the

initial size or shape and expands linearly in time.

For temperature measurements, the atom cloud is imaged after a defined TOF and its

size is determined by applying a two-dimensional Gaussian fit to the data. When several

images with a varied TOF are taken, Eq. 4.15 can be used as a fitting function for the

measured time-dependent cloud sizes. The temperature and the initial cloud size σi(0)

can be extracted from this fit. This method is well known and accurate, but it requires

5. . . 8 data points for a single temperature measurement. As this is experimentally time-

consuming, the majority of the temperature data presented here, was obtained with a

single-image method. To discuss this approach, Eq. 4.15 is rewritten in the following way:

T =
m

kB

σi(tTOF)
2

1/ω2
i + t2

. (4.16)

An exact temperature determination requires the knowledge of the trap frequencies ωi.

However, for a long TOF (tTOF ≫ ω−1
i ), the term 1/ω2

i can be neglected in Eq. 4.16 al-

lowing temperature determination, even when the trap frequencies are not exactly known.
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In the experiments presented here, the radial trap frequencies for 87Rb are in the range

of 2π × 140 . . . 2π × 1000 Hz, while the radial Yb trap frequencies are ≈ 2π × 1000 Hz.

Under these assumptions, the error caused by neglecting the term 1/ω2
i in Eq. 4.16 becomes

<1% after a time of flight tTOF >1.1ms for Yb and tTOF >8ms for 87Rb. Experimen-

tally, images used for single-shot temperature measuremtns were taken at a TOF of 3.5ms

for Yb and 30ms for 87Rb, justifying the described approximation. The dominant uncer-

tainty in temperature measurements is the error of the Gaussian fit to the atomic density

distribution.

4.3.5 Atom number calibration

Generally, the number of atoms N can be extracted from an absorption image by summing

the measured optical density over all camera pixels. From Eq. 4.9 follows

N =
A

σλ

∑

pixel

ln
Ia(x, y)− Ibg(x, y)

I0(x, y)− Ibg(x, y)
, (4.17)

where A is the area in the atomic cloud that corresponds to one camera pixel. This sum

depends on the cross-section σλ = σ0/(1 + δ̂2), which includes the saturation intensity Isat
via σ0 = ~ω0γ/(2Isat). In the case of multi-level atoms, the saturation intensity Isat of a

specific transition generally depends on probe light polarization, the magnetic quantum

number of the atom and the orientation of the magnetic field.

For absorptive imaging of Yb, we use the 1S0 → 1P1-transition, which (for bosonic

isotopes2) leads to the simplest case: The Clebsch-Gordan coefficients for the σ+-, σ−- and
π- transition are identical and hence the resonant cross-section is independent of the probe

light polarization. Thus, under the assumption of small laser linewidth (γlaser < γatom),

atom number calibration can be reliably carried out using absorption images.

Imaging light for 87Rb clouds is resonant with the |52S1/2 F= 2〉 → |52P3/2 F′ = 3〉
transition, where the transition strength for σ+- and σ−-transitions differ by a factor of

15 [76]. In the experimental setup, we use σ+-polarized light and apply a small magnetic

field parallel to the probe light propagation axis. However, this configuration is subject

to uncontrolled stray magnetic fields and it is very sensitive to imperfect light polariza-

tion. Light with the wrong polarization is absorbed much less by the atoms leading to an

underestimation of the actual atom number.

Hence, we calibrate the 87Rb absorption images using a different method based on flu-

orescence images. This method was applied in a previous work by Nemitz [11] and is not

subject to the limitations stated above. The scattering rate of an atom, given in Eq. 4.4

can be rewritten in the form

Γ =
s0 γ/2

1 + s0 + δ̂2
=

1

1 + Ieff
I

γ

2
with Ieff = (1 + δ̂2)Isat. (4.18)

2Due to their non-vanishing nuclear magnetic moment, fermionic Yb isotopes have a more complex

substructure. Ultimately, this leads to an underestimation in the detected atom number. However, the

present experiments do not require an exact atom number calibration for fermionic Yb isotopes and this

method is used as an rough approximation.
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Figure 4.17: (a) Measured fluorescence image pixel sums as a function of the imaging

light power and extrapolated pixel count (red line). In this series, ≈ 107 87Rb atoms at a

temperature of ≈ 1 µK are imaged after 30ms of ballistic cloud expansion. (b) Resulting

calibration factors for absorption images together with their weighted mean (red line).

If the incident intensity is high compared to the saturation intensity, the scattering

rate will saturate at a maximum of Γmax = γ/2. Any detuning δ̂ from resonance simply

increases the effective saturation intensity Ieff , while leaving the characteristic shape of

the saturation curve intact. Imperfect light polarization, which include different Clebsch-

Gordan coefficients for the specific transition, can be treated in the same way. The total

number of photons scattered by N atoms over a time t, which are detected by the camera

is given by

Ncam = a ·Ntot · t = a ·N 1

1 + Ieff
I

γ

2
· t . (4.19)

Here, a is a calibration factor that includes the solid angle of the imaging system, window

and lens transmissions and the CCD’s quantum efficiency at the corresponding wavelength.

Those quantities have been measured by Nemitz and details can be found in [11]. For an

absolute atom number calibration, a series of fluorescence images at different probe light

intensities is obtained and the resulting saturation curve is fitted using Eq. 4.19. The

extrapolated atom number for I → ∞ is extracted from this fit. Figure 4.17 (a) shows

typical saturation data together with the fit (black line) and the extrapolated pixel count

(red line, error indicated by dashed red lines). Subsequently after each series with fluo-

rescence images, absorption images of 87Rb at the same experimental conditions are taken

to obtain a corresponding atom number calibration factor. The calibration measurements

are performed at ≈ 1µK after a TOF of 30ms, matching typical parameters of the present

experiments. We tested the dependency of obtained calibration factors on the 87Rb atom

number in a range of 5 × 106 . . . 2.5 × 107, which is shown in Fig. 4.17 (b). Within their

error bars, the scaling factors are atom number independent and the weighted mean of

these data points results in a calibration factor of 123.6 ± 10.6 (indicated by the red line
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in Fig. 4.17 (b)). This factor directly converts the sum of all optical density values in an

absorption image into a 87Rb atom number.

4.4 Experiment control

The experiment is controlled by a computer-based control system that was developed in

the course of a previous work (details can be found in [11]). It consists of a PC with three

National Instruments I/O boards (2× NI PCI-6229 M-series, each with 32 digital channels;

1× NI PCI-6723, 32 analog channels, 13 bit resolution) and an electronic connection board.

The control system includes switching and power adjustment of laser beams and magnetic

coils as well as triggering of the different imaging cameras.

The control software is LabView-based and allows the direct control over all experimental

parameters (steady state mode). In addition, it is possible to program and run sequences of

different experimental states at an output rate of 50 kHz (pattern mode). Typical sequences

of experiments presented in this work consist of up to 40 single parameter states and take

up to 50 s.





5
Preparation of ultracold 87Rb and Yb in

independent conservative potentials

The experimental investigations described in this thesis are carried out in an ultracold

atom trap that allows for independent trapping and manipulation of ultracold 87Rb and Yb

atoms. The combined trap setup consists of a Ioffe-Pritchard-type magnetic trap (MT) for
87Rb and a bichromatic optical dipole trap (BIODT) for Yb. In the experimental sequence,

Yb is pre-cooled in a MOT and transferred to the conservative BIODT. Subsequently,
87Rb is prepared and evaporatively cooled in the MT until the two species are brought into

contact.

This section briefly describes the bichromatic approach and its realization. Furthermore,

it highlights the experimental methods used to simultaneously prepare ultracold Yb and
87Rb in their respective trapping potentials.

5.1 Independent trapping – the bichromatic idea

Almost all experiments that investigate heteronuclear interactions in ultracold mixtures

use pure magnetic [122, 123] or pure optical traps [124, 125]. In either case, both atomic

species are trapped in the same potential, which requires similar interactions with the used

light- or magnetic fields for both species. Furthermore the flexibility in experiments, that

probe interspecies interactions is limited.

The configuration presented here, is designed to widen the possibilities for the study

of ultracold mixtures by providing independent trapping potentials for the used elements
87Rb and Yb. More specifically, each atomic species does not interact with the trapping

potential used for the other one (to the lowest order) and vice versa. This is possible due

to the different magnetic characteristics: 87Rb is an alkali atom with paramagnetic ground

state whereas the rare earth metal Yb has a diamagnetic ground state. Hence, Yb does

not interact with the magnetic field used for 87Rb trapping, fulfilling the requirements for

independent trapping. On the other hand, magnetically trapped 87Rb atoms are generally

affected by the light fields used for optical trapping of Yb. However, a cleverly arranged

configuration of two optical dipole traps minimizes the effect on 87Rb.

The bichromatic optical dipole trap (BIODT) used in our experimental setup is based

on the fact that the magnitude and the sign of the dipole potential depend on the detuning

of the trapping light frequency with respect to the main atomic transition (see Sec. 3.2.3).
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Figure 5.1: Principle of the bichromatic optical dipole trap (BIODT). By superposition

of two light fields with carefully chosen wavelength, two attractive potentials add up to a

trapping potential for Yb. Due to its different main transition frequency, attractive and

repulsive light fields cancel for 87Rb. (a) outlines the basic principle and (b) shows cal-

culated BIODT potentials for Yb (top) and Rb (bottom) using the following parameters:

beam waists w532 = w1064 = 15 µm; beam powers: P532 = 340mW, P1064 = 0.382 · I532

Furthermore, in the limit of low excitation, dipole potentials created by more than one light

field add up linearly to a total optical potential. Figure 5.1 (a) illustrates the basic idea

for the case of a bichomatic single beam trap. The trapping laser wavelength are chosen

to be 532 nm and 1064 nm. They are both “red” detuned from the main Yb transition

wavelength of 399 nm. Hence, each beam focus forms an attractive potential for Yb and

their superposition adds up to an even stronger trap. For 87Rb, the 1064 nm light creates

an attractive potential as well, as it is “‘red” detuned from the main 87Rb transition

wavelength of 780 nm. In contrast, the 532 nm laser is “blue” detuned with respect to this

transition, leading to a repulsive potential for 87Rb. By choosing the same beam waist for

both trapping beams and carefully adjusting the correct power ratio, both potentials cancel

in the trap center, which is shown in Fig. 5.1 (b). Note that for a power ratio resulting in

optimum potential cancellation for 87Rb (P1064 = 0.382 · P532 for equal beam waists), the

1064 nm ODT contributes only ≈ 1/5 to the total potential for Yb. Thus, small changes of

the ODT beam power ratio have great effect on the 87Rb potential while leaving the Yb

trap practically unmodified.

The calculated potentials shown in Fig. 5.1 (b) demonstrate the limitation of this method:

For equal beam waists w0, the Rayleigh lengths zR,i = πw2
0/λi, (i = 1, 2) of the trapping

beams differ by a factor of 2 for λ1 = 532 nm and λ2 = 1064 nm. This restricts the region

of perfect potential cancellation for 87Rb to the trap center. Outside the focus, attractive

as well as repulsive regions for 87Rb can not be avoided. Experimentally, this plays an

important role and detailed potential calculations are presented in Sec. 6.2.
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A related scheme, which uses only a bichromatic light field for the independent adjust-

ment of the trapping strength for two species was proposed by Onforio et al. [126]. Similar

BIODT potentials were also used in previous experiments at this apparatus [9]. A detailed

discussion on the conceptual design of the BIODT can also be found in the thesis of Tassy

[9].

In contrast to the previous measurements, the BIODT is reduced by a factor of ≈ 10

during the experimental sequence to achieve maximum potential cancellation for 87Rb and

minimize the influence of perturbing parts of the potential (see Chap. 7). In addition to

that, for the study of phase separation (see Chap. 8), the relative trapping beam powers

are adjusted in a way to intentionally create either repulsive or attractive potentials for
87Rb. This allows a flexible and well-defined control of the 87Rb density at the Yb cloud

position.

5.2 Preparation of Yb atoms in the BIODT potentials

In the present configuration, the beam waists of the dipole trapping beam are set to a value

of ≈ 15 µm and the maximum available light powers are P532 ≈ 3.5W and P1064 ≈ 0.2W.

These parameters lead to a calculated BIODT trap depth of U0/kB ≈ 550 µK.

In order to load atoms into this rather shallow BIODT potential, they are initially

prepared and precooled in a MOT operating at the intercombination transition for Yb.

For an efficient transfer, this process is split into two phases: First, the MOT is operated

at parameters optimized for fast loading of atoms from the Zeeman slower. Second, the

parameters are continuously changed to a compressed MOT state, where the density is

increased and the temperature is reduced. Simultaneously, the BIODT is ramped up to its

maximum potential depth and finally the MOT is turned off. In the next step, the BIODT

potential is successively decreased by a total factor of ≈ 10 in order to minimize its effect

on 87Rb

5.2.1 “Green” Yb MOT

The “green” MOT used for Yb is operated on the 1S0 → 3P1 intercombination line at

555.8 nm. Due to its narrow line width of γ556 = 2π × 181 kHz [116], the theoretically

obtainable Doppler temperature (Eq. 3.8) is as low as TD = 4.4µK. However, the drawback

of the low scattering rate is that the maximum capture velocity (Eq. 3.11) is only 6.1m/s

assuming MOT beam radii of ≈ 4mm. The Zeeman slower that feeds the MOT is hence

designed for a final velocity of 5 m/s [9]. It operates on the 11S0→1P1 transition at 398.9nm.

The broader line width of γ399 = 2π×28MHz allows for a much faster deceleration than the

green transition, where a Zeeman slower would require an impractical length. Figure 5.2

shows a typical loading and decay curve and a photograph of a 174Yb MOT. The “green”

MOT fluorescence, which is recorded with a photomultiplier tube is proportional to the

atom number. Typical MOT loading times are in the order of seconds and as the 1S0 → 3P1

MOT transition is a closed cycling transition without any branching to other states, the

MOT decay time – after turning off the Zeeman slower – is dominated by losses induced
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Figure 5.2: (a) Loading and decay curve and (b) photograph of a 174Yb MOT operated

on the “green” transition at 556 nm. The MOT lifetime is predominantly determined by

background gas collisions, which results in a large decay time.

by background gas collisions (see Sec. 2.6). Due to the low pressure of ≈ 10−12 mbar

this leads to exceptionally large MOT lifetimes > 1minute, depending on the MOT beam

adjustment.

For an efficient loading from the Zeeman-Slower we use a MOT laser detuning of

δ0 ≈ −4MHz (≡ −22.5γ) and a small magnetic field gradient of 4.4G/cm radially and

2.2G/cm axially. The maximum available 556 nm MOT light of 15mW is distributed over

three retro reflected MOT beams with beam diameters of ≈ 8mm. Due to additional losses

in the optical system, the measured beam powers right in front of the vacuum chamber are

≈ 4mW for the radial beams and ≈ 2mW for the axial beams. The total peak intensity

over all beams is ≈ 600 Is in the MOT region. The MOT loading time depends on the used

Yb isotope, as the atom flux in the Zeeman slower is determined by the relative isotopic

abundance in the natural mix. Accordingly, the actual MOT loading phase in the experi-

mental sequence ranges from 10 s (174,172Yb) up to 30 s (170Yb). Even longer loading times

are impractical in the experimental cycle and do not yield larger BIODT atom numbers

as soon as the density limited MOT regime is reached. Temperatures after the loading

stage are in the range of several 100µK and the atom number is 1 . . . 2× 107 depending on

the isotope. The MOT size is approximated by fitting a Gaussian shaped function to the

observed density distribution. The 1/e2-radius is ≈ 1.2mm and the calculated peak density

is 3 . . . 6× 109 cm−3 .

5.2.2 Transfer to the BIODT

The BIODT beam powers are ramped from zero to their maximum values of P532 ≈ 3.5W

and P1064 ≈ 0.2W within 1 s at the end of the MOT loading phase. Simply turning off the

MOT, however, does not provide enough atoms in the BIODT potential. For an efficient

transfer to the BIODT, larger MOT densities and lower temperatures are required.
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These conditions are achieved by linearly ramping the MOT parameters within 100ms

to a final compressed and cooled MOT state: The magnetic field gradient for the MOT

is increased to 40G/cm radially and 20G/cm axially. This results in a stronger MOT con-

finement. Simultaneously, the MOT detuning is ramped to δ0 ≈ −0.5MHz (≡ −2.8γ) and

the light power is linearly decreased to 0.1mW, leading to a final intensity of ≈ 4 Is. Due

to the lower photon scattering rate, the MOT temperature is significantly reduced under

these conditions. The theory of Doppler cooling predicts a linear temperature dependence

on the trapping light intensity [86]:

T (I) =
~ γ2

8 kB δ0

(

1 +
I

Is
+ 4

δ20
γ2

)

(5.1)

Previous measurements on the “green” MOT presented in [9] are in qualitative agreement

with this temperature dependence.

As a result from the MOT parameter change, the MOT size is reduced to a 1/e2-radius

of ≈ 0.19mm. Since almost no atoms are lost due to the compression of the MOT,

the density is increased to 1 . . . 2 × 1011 cm−3. We observe MOT temperatures in the

range of 20 . . . 50 µK depending on the actual MOT alignment. No significantly different

temperatures are measured for bosonic and fermionic isotopes. This is in agreement with

previous observations [9], where the effect of polarization gradient cooling for fermionic

Yb is only observed at higher MOT light intensities. The general difference between the

lowest obtainable temperatures and the theoretically predicted Doppler temperature can

be explained by an imperfect MOT alignment that leads to imbalances in the light forces

affecting the atoms in the MOT. The observed MOT temperatures are very similar to the

temperatures in other Yb MOT experiments operating on the 556 nm transition [127, 128].

Subsequently after the MOT compression, this stage is held for 10ms before the Yb

MOT and slower lasers are turned off.

The settings used for the Yb atom transfer to the BIODT potentials are optimized

experimentally, to obtain the best transfer efficiency which is shown in Fig. 5.3 for the

most important parameters: In Fig. 5.3 (a), the initial laser detuning used in the MOT

loading phase is changed and the optimum value is indicated by the dashed line. Figure 5.3

(b) and (c) demonstrate the optimization for the detuning and light power at the end of the

parameter ramp described above. The fixed parameters in the respective measurement are

set to their optimum value. Note that for zero final MOT power, atoms are still transfered

to the BIODT, as the trapping lasers are already on during the “green” MOT ramp. In

addition to the settings presented in Fig. 5.3, further parameters including the “green”

MOT ramp time and the relative MOT position with respect to the BIODT potentials

are also experimentally optimized. Due to long term drifts in the experimental setup, this

process is repeated on a regular (≈weekly) basis ensuring a constant Yb atom number in

the BIODT potentials.

5.2.3 BIODT ramp down

Depending on the Yb isotope, we initially trap about 0.5 . . . 1× 106 atoms in the BIODT.

After ≈ 1 s of plain evaporation, the Yb cloud has reached its equilibrium temperature of
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Figure 5.3: Measured 174Yb atom number in the BIODT as a function of different “green”

MOT settings. The dashed lines indicate the values typically used in the present experi-

ments.

≈ 40 µK. Assuming ideal Gaussian beams with beam waists w0 = 15 µm, the calculated

trap frequencies of the BIODT potential for P532 ≈ 3.5W and P1064 ≈ 0.2W are ωr ≈
2π× 3.4 kHz radially and ωz ≈ 2π× 28 Hz axially. An atomic cloud with a temperature of

≈ 40 µK has 1/e2-radii of σr ≈ 4.0 µm radially and σr ≈ 490 µm axially and the calculated

peak density is 3 . . . 6 × 1013 cm−3. The lifetime in the BIODT of ≈ 40 s is limited by

background gas collisions and three-body collisions.

After the BIODT loading phase, we prepare an ensemble of typically 107 87Rb atoms

at a temperature of ≈ 1, 5 µK in the MT, spatially separated from the Yb, which is

still trapped in the BIODT (see below). During this process, which takes ≈ 35 s, we

ramp down the power of the 532 nm ODT beam to a final level of P532 = 340mW and

P1064 = 90 . . . 120mW. This minimizes perturbations on the 87Rb due to imperfections of

the BIODT optical potential. The 532 nm ODT beam is ramped down in two stages which

is illustrated in Fig.5.4. After a holding time of ≈ 8 s, the power is linearly reduced to 30%

of the original value within 9 s. This setting is kept constant for another 18 s before the

second linear ramp to its final level is applied within 500ms. The 1064 nm ODT is reduced

to its final setting in a similar way. In two-species experiments, the cloud of cold 87Rb, is

moved on top of the Yb cloud simultaneously to the final BIODT ramp (see Fig.5.4).

The gradual reduction of the BIODT trap depth leads effectively to forced evaporative

cooling and thus the Yb temperatures and atom numbers are lowered. This process is

isotope dependent as it is connected to the respective atom-atom scattering cross section

(see Sec. 3.2.2). Typical final Yb temperatures are summarized in Tab. 5.1 together with

the zero energy s-wave scattering length a of the respective Yb isotope. This data is taken

immediately after the final BIODT ramp down with no 87Rb present. Qualitatively, a

large scattering length |a| allows a more efficient evaporation as the rethermalization rate

is higher and thus the temperatures, which can be achieved by plain evaporation are lower.
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Figure 5.4: Experimental sequence of the different Yb and 87Rb atom preparation phases.

Yb atoms are loaded in at MOT (upper graph) and transferred to the BIODT potentials

(lower graphs). 87Rb atoms are prepared in the MT while simultaneously the BIODT

potentials are ramped to their final value. Subsequently, both species are brought into

contact for interaction experiments.

isotope Tfinal s-wave scatterin length a [57]
170Yb ≈ 7µK (64± 2) a0
172Yb ≈ 6µK (−599± 64) a0
173Yb ≈ 6µK (199± 2) a0
174Yb ≈ 5µK (105± 2) a0
176Yb ≈ 8µK (−24± 4) a0

Table 5.1: Typical temperatures and atom numbers of different Yb isotopes after the

BIODT ramp down to its final level

However, recent calculations based on two-color photoassociation spectroscopy of Yb atoms

show a strong energy dependence of the scattering cross section σ(E), especially for 171Yb

and 176Yb [57], which leads to a more complex situation.

Note that the distinctive form of the ramp down is optimized for 174Yb, which shows

strong interspecies interaction with 87Rb. In typical interspecies experiments, a cloud of

≈ 1×107 87Rb atoms at a temperature of TRb ≈ 1.5µK is brought into contact with 174Yb

immediately after the final BIODT ramp. We observe almost instantaneous thermalization

of 174Yb with the colder 87Rb (see Chap. 7). Using this effect, the final BIODT ramp is

designed to be non-adiabatic with respect to the 174Yb temperature. Due to the fast ramp,

thermal disequilibrium in 174Yb is created, which is resolved by thermalization with the

cold 87Rb cloud present at the end of the final ramp. Experimentally, we confirmed that

this form of the BIODT ramp down leads to significantly higher 174Yb atom numbers than

a slow adiabatic ramp to the identical final level.
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The final 1064 nm ODT power is also optimized experimentally in order to have minimum

perturbing effects on 87Rb (see Chap. 7). Due to the intrinsically small contribution of

the 1064 nm light to the total BIODT for Yb, there are no significant changes to the Yb

trapping potential.

For P532 = 340mW and P1064 = 110mW and equal beam waists w0 = 15 µm the

calculated trap depth is U0/kB ≈ 60µK and trap frequencies are ωr ≈ 2π×1.1kHz radially

and ωz ≈ 2π × 11 Hz axially. A typical cloud of 2 × 105 174Yb atoms at 5µK in this

potential has 1/e2-radii of σr ≈ 4.2 µm radially and σr ≈ 460 µm axially at a peak density

of 1.3× 1013 cm−3.

The numbers given here result from calculations based on ideal BIODT potential ge-

ometries and beam adjustment. A careful experimental trapping potential characterization

resulting from trap frequency measurements is presented in Chap. 6.

5.3 Preparation of 87Rb in the MT potential

While Yb is “stored” in the BIODT potential, a cloud of cold 87Rb atoms in the |F =

1,mF = −1〉-state is prepared in the MT potential (see Fig. 5.4). This process involves the

accumulation of 87Rb in a MOT, the transfer to the MT and finally RF induced evaporative

cooling to temperatures of ≈ 1µK. Due to the diamagnetic ground state, Yb is not affected

by the magnetic fields used during the different stages of the 87Rb preparation. However,

when the 87Rb MOT spatially overlaps the Yb BIODT potentials, we observe strong Yb

atom loss. This is explained by light induced inelastic collisions between excited 87Rb- and

ground state Yb atoms. To avoid this loss mechanism, the 87Rb MOT is loaded ≈ 2mm

away from the Yb trap. The MT center is also spatially separated from the Yb atoms,

which allows preparation of cold 87Rb without interfering with the Yb cloud.

5.3.1 87Rb loading process

Similar to the Yb sequence, the 87Rb loading process is divided into different phases:

First, MOT parameters are chosen that allow efficient loading from the Zeeman slower.

Afterwards, the atom density is increased by switching to a dark SPOTMOT configuration.

Temperature reduction is achieved in a subsequent optical molasses phase. Finally, 87Rb

atoms are optically pumped to the the |F = 1,mF = −1〉 state and the MT fields are

turned on.

MOT loading phase

The MOT for 87Rb uses the |52S1/2, F = 2〉 → |52P3/2, |F ′ = 3〉 transition at 780 nm,

which has a line width of γ780 = 2π×6.1MHz resulting in a Doppler temperature of 146µK.

An additional repumper laser operating on the F = 1〉 → F ′ = 2〉 transition is required to

maintain a continuous cooling cycle (see Sec. 4.2.1).

Experimentally, we use ≈ 4mW of light power for each of the 4 radial- and ≈ 2mW for

the 2 axial MOT beams. The beam diameters of ≈ 15mm lead to a calculated total light
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Figure 5.5: Photograph of a few 109 87Rb

atoms trapped in a MOT. The MOT size

is significantly larger than the “green” Yb

MOT shown in Fig. 5.2. Note that the

color of the near infrared 780 nm light scat-

tered by the 87Rb atoms is reproduced in-

correctly in this image.

intensity in the MOT center of ≈ 14 Is. In the loading phase, the MOT laser detuning is

set to −3 γ and magnetic field gradients are 26G/cm radially and 13G/cm axially. The MOT

is loaded from a Zeeman slower designed for final atom velocities of 20m/s, which is well

below the maximum MOT capture velocity vc ≈ 60m/s. The 87Rb MOT, which is shown in

Fig. 5.5, reaches its equilibrium atom number of ≈ 3×109 already 3 . . . 5 s after it is turned

on. However, the equilibrium state strongly depends on the actual beam alignment. Thus,

the loading phase is aborted after a defined loading time of 1. . . 2 s in order to ensure a

constant atom number over different experimental cycles. During the loading phase, the

MOT density changes from the temperature limited regime to the density limited regime

(see Sec. 3.1). In this transition phase, the MOT temperature depends on the absolute

atom number and density as TMOT ∝ N1/3 · n2/3 [95]. Typically, the temperature after

1. . . 2 s of MOT loading is in the range of 1mK [8] and the atomic density is ≈ 1010 cm−3.

The MOT center in the loading phase is spatially shifted from the BIODT position by an

additional offset magnetic field. Due to the large MOT beam radii, the MOT is operational

over a range of several millimeters, without a change in the beam alignment.

Dark SPOT MOT

The present experimental configuration includes two separate 87Rb repumping beams. The

beam denoted as repumper 2 in Fig. 4.3 illuminates the complete MOT volume whereas

the main 87Rb repumper has a dark center. This dark region has a diameter of ≈ 7mm

and it is created by an opaque obstacle in the beam path which is imaged to the center of

the vacuum chamber. Figure 5.6 illustrates the optical path and shows a photograph of

the repumping beam close to the main chamber.

During the MOT loading phase, both repumping beams are turned on to achieve max-

imum loading rate. For lower temperatures and higher peak densities we turn off re-

pumper 2 switching to a dark SPOT MOT configuration. Simultaneously, the Zeeman

slower is turned off and the resulting change in the magnetic field is compensated by addi-

tional offset fields. Subsequently, the MOT is moved to the MT position by a 50ms long,

linear ramp of the magnetic compensation fields. At this stage, the density is increased to

4 . . . 8× 1011 cm−3 and the temperature is slightly reduced to ≈ 500 µK.
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Figure 5.6: (a) Schematic of the optical beam path and (b) photograph of the 87Rb MOT

repumper. The dark inner region is created by a bolt head soldered to a thin wire, which

is imaged to the trap center.

Optical molasses

For further cooling of the atomic sample, a short optical molasses phase is included in the

the 87Rb preparation process. To achieve this, the MOT magnetic fields are turned off after

the atoms have been moved to the final position. To avoid the combination of uncontrolled

magnetic fields and near-resonant trapping light in the turn-off process, the MOT lasers

are blocked for 2ms while the current in the MOT coils decays. Within the next 5ms,

the MOT laser detuning δ0 is linearly ramped to −10 γ, which leads to measured 87Rb

temperatures of only 50 . . . 80 µK. The observation of sub-Doppler temperatures result

from polarization-gradient cooling mechanisms present for 87Rb. Unlike Doppler-cooling,

the temperature obtained by this cooling mechanism decreases when the detuning increases

[93]:

Tpg ∝ I

δ0
(5.2)

A reduction of the trapping laser power I is experimentally not possible in our setup, as

it is accompanied by a movement of the light beams originating from the power control

AOM. However, simultaneously to the MOT detuning shift, we ramp down the repumping

beam to ≈ 1% of its original power, which also reduces the photon scattering rate.

The measured 1/e2 cloud radii after the optical molasses phase are ≈ 2mm, matching

the volume of the MT.

Transfer to the MT

87Rb atoms in the MT are trapped in the |F = 1,mF = −1〉 state1. For an efficient transfer

to the MT, we selectively populate this state by optically pumping the 87Rb atoms using

the depumper laser (see Sec. 4.2.1). This σ− polarized field, which is resonant with the

|52S1/2, F = 2〉 → |52P3/2, F
′ = 2〉 is turned on for 200µs, after the MOT lasers are

switched off. Simultaneously, the magnetic fields creating the MT potential are activated.

1The 87Rb |F = 1,mF = −1〉 state has a smaller magnetic-dipolar decay-rate constant compared to the

|F = 2,mF = 2〉 state [129] leading to an increased lifetime of atoms in the trap.
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The radial confinement of the MT is initially loosened in order to better match the present
87Rb cloud parameters by increasing the magnetic offset field B0 in the Ioffe-Pritchard

geometry, which reduces the radial trap frequencies (see Eq. 3.16 in Sec. 3.2.1). Within

a 100ms linear ramp, the MT potential is subsequently changed from this initial loading

configuration to a radially tighter potential, which is used for the evaporative cooling

process (see below). Measured trap frequencies in the MT are ωr ≈ 2π × 134 Hz radially

and ωz ≈ 2π × 13.7 Hz axially (see Sec. 6.1.1 for details). Due to adiabatic compression

[130] and imperfect mode matching of the trapping potentials, the 87Rb temperature is

increased by the MT loading process to 160 . . . 180 µK and observed atom numbers are

≈ 7 × 108. The 87Rb cloud in this potential has a 1/e2-radii of σr ≈ 0.29mm radially and

σr ≈ 3.0mm axially and a peak density of ≈ 1.4× 1012 cm−3.

5.3.2 Evaporative cooling of 87Rb and MT position shift

In order to prepare 87Rb atoms at a temperature of ≈ 1 µK for interspecies interaction

experiments as described in this work, we use the method of RF induced evaporative cooling

(see Sec. 3.2.2). The stepwise experimental optimization of the evaporation ramp was part

of a Bachelor’s thesis carried out at this apparatus and a detailed description can be found

in [131]. The actual RF ramp sequence used in the present experiments together with

measured temperatures, atom numbers and calculated peak densities is shown in Fig. 5.7.

After 4 s of plain evaporation, the RF is gradually reduced from 27MHz to 900 kHz at a

measured trap bottom B0 = h νRF0/µ with νRF0 ≈ 550 kHz. Within a total time of 31 s,

the temperature and the number of 87Rb atoms is reduced to ≈ 1 µK and 1 . . . 1.5 × 107,

depending on the starting conditions. Simultaneously, the 1/e2 cloud radii are shrunk to

σr ≈ 22µmm radially and σr ≈ 230µm axially and the 87Rb density is increased from

≈ 1.4× 1012 cm−3 to 4 . . . 6× 1013 cm−3.

Note that by further reducing the RF to ≈ 650 kHz within 1 . . . 8 s, large Bose-Einstein

condensates of 87Rb in the |F = 1,mF = −1〉 state can reliably be produced. Measured

transition temperatures are ≈ 300 . . . 400 nK and a condensate typically consists of 1 . . . 2×
106 atoms. However, besides the 87Rb MT trap frequency measurement (see Sec. 6.1.1),

characteristic properties of BECs are neither studied nor used within the scope of this

work. Detailed investigations on BECs produced at this apparatus, which consist of 87Rb

atoms in the |F = 2,mF = 2〉 state are presented in [8].

Creating spatial overlap between 87Rb and Yb In order to avoid contact between mag-

netically trapped 87Rb and Yb in the BIODT during the preparation process, the MT

center is initially located at a position, which is ≈ 0.9mm radially shifted from the Yb

cloud. However, for the interspecies interaction experiments presented here, the MT is

moved to the Yb position after the RF evaporation ramp (see Fig. 5.4).

Experimentally, the MT position is controlled by the horizontal and vertical magnetic

compensation field settings. The actual dependence of the MT position on the magnetic

field is carefully calibrated for the horizontal and vertical axes to a precision of ≈ 5µm [9].

For the majority of the present experiments, the MT is moved within 500 ms to the
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Figure 5.7: Experimentally optimized RF induced evaporation ramp, measured 87Rb

temperatures and atom numbers and calculated peak densities.

BIODT position. The RF is kept at a constant level of 900 kHz during this process and

the trap bottom at the final position is experimentally adjusted to equal the initial value.

Without the presence of BIODT potentials, we do not observe any significant change in

the 87Rb temperature or atom number induced by the position shift compared to a steady

MT.

However, due to imperfect potential cancellation of the BIODT for 87Rb, adiabatic

heating leads to 87Rb temperatures of 1.5 . . . 2µK as soon as the 87Rb cloud overlaps with

the BIODT. As the 87Rb temperature increase strongly depends on the exact BIODT

potential form, this effect is used to experimentally adjust the BIODT beam alignment

and the relative beam powers (see Sec. 7.1).

In summary, the sequential loading and preparation of Yb in the BIODT and 87Rb in the

MT provides independently trapped cold samples of 1 . . . 2 × 105 Yb atoms at 5 . . . 10µK

and 1 . . . 1.5 × 107 87Rb atoms at ≈ 1 µK. These atoms are then used for interspecies

interaction studies as described in Chap. 7 and Chap. 8.



6
Trap characterization and modelling of

potentials

For a quantitative understanding of the experiments described in Chap. 7 and Chap. 8, it is

essential, to know the characteristic parameters of the involved trapping potentials. With

the knowledge of measured trap frequencies for the MT and the BIODT, it is possible to

simulate the model potentials correspondent to the experimental situation.

This chapter describes the trap frequency measurements of both the magnetic and optical

potentials. Furthermore, the procedure which is used to determine the trapping potentials

from these measurements is laid out and the simulated potentials for different trapping

configurations are shown.

6.1 Trap parameter measurements

Conservative potentials in cold atom experiments are typically characterized by a harmonic

approximation which is valid at low energies (see Sec. 3.2). The experimental determina-

tion of trap frequencies is a simple and direct way to gain information on this harmonic part

of the potentials. In the following, two different methods of trap frequency measurements

and the conclusions for the respective potentials are described: In the MT, we directly

observe oscillations of an initially deflected 87Rb cloud. In combination with a measure-

ment of the offset magnetic field at the trap bottom, the MT parameters are completely

characterized. In contrast, the BIODT trap frequencies are determined using a parametric

heating technique. These measurements are performed for different trapping geometries

both with 174Yb and 87Rb, in order to achieve comprehensive information on the BIODT

potentials.

6.1.1 Trapping parameters of the MT

Trap frequencies

The trap frequency measurement of the MT is based on the idea of directly observing

the collective 87Rb atom oscillations in the harmonic regime. In order to probe the har-

monic region around the trap center, low temperatures and small oscillation amplitudes

are required. Experimentally, it is also important to determine the MT parameters at
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the location relevant for further measurements. They slightly depend on the MT center

position, which is probably related to off-axis effects.

In order to fulfill these conditions, the following experimental sequence is used: A 87Rb

BEC is created by preparing a cloud of 87Rb in the MT and extending the “standard” RF

evaporation ramp (see Sec. 5.3.2) by 1 s to a lower final radio frequency of ≈ 100 kHz above

the trap bottom. Simultaneously, the radial MT position is smoothly moved close to the

BIODT position using an S-ramp. Finally, the MT center is displaced to the actual BIODT

position by applying a hard step to the magnetic compensation fields. This nonadiabatic

trap-“jump” collectively excites the 87Rb atoms in the trap leading to radial harmonic

oscillations. The actual “jump”-distance is experimentally optimized to ≈ 7µm. In order

to measure the axial trap frequency, the trap center is smoothly displaced from the trap

center in the axial direction and subsequently set back by a hard step. Axial displacement

is achieved by creating an axial magnetic field gradient using the axial compensation fields.

Note that the MT trap frequency measurements take place in the absence of the BIODT

potentials.

The oscillations of the 87Rb cloud can be described by a damped oscillation, depending

on the amplitude A, the damping time constant τ , the trap frequency ω and a phase shift

φ.

∆x(t) = Ae−t/τ sin(ωt+ φ) . (6.1)

The damping is attributed to dephasing as a result of the anharmonicity in the trapping

potential that smears out the collective cloud movement. Due to the small amplitude,

the oscillation inside the trap takes place on a level beyond the resolution of the present

imaging system. However, when the atoms are released from the trap after a defined

oscillation time, the trajectory depends on the initial velocity v0(t), which is subject to the

same oscillatory behavior:

v0(t) = ∆ẋ(t) = Ae−t/τ

(

ω cos(ωt+ φ)− 1

τ
sin(ωt+ φ)

)

= A′ e−t/τ sin(ωt+ φ̂) .

(6.2)

As a result, the position of the cloud center after a free expansion tTOF is given by

∆xTOF(t) ≈ v0(t) · tTOF = Â e−t/τ sin(ωt+ φ̂) , (6.3)

under the assumption, that the initial cloud displacement ∆x(t) can be neglected. Ex-

perimentally, the cloud is released from the trap after a variable holding time t and an

absorption image is taken after tTOF = 30ms of ballistic expansion. From the absorption

images, the center of the cloud is determined. Figure 6.1 (a, b) shows the horizontal and

axial oscillations of the cloud center. For the radial measurement, data is taken for an

oscillation time 0 . . . 100ms and camera 1 and camera 2 (see Sec. 4.3) are simultaneously

used to determine horizontal and vertical trap frequencies. Due to the lower trap frequency,

the axial measurement uses oscillations times 0 . . . 400ms.
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Figure 6.1: (a, b) Trap frequency measurements of 87Rb in the MT: Horizontal and axial

cloud positions as a function of the oscillation time together with a fit to the data. (c)

Determination of the trap bottom: Plotted is the steady state number of 87Rb atoms in

the MT as a function of the value νf of a fixed radio frequency irradiating the atoms.

The trap bottom is defined as the lowest value of νf for which atom loss is observed. The

dashed line is a guide to the eye.

For a quantitative analysis, the measured cloud positions are fitted to Eq. 6.3 with

Â, τ , ω and φ̂ as free parameters. The extracted trap frequencies are summarized in

Tab. 6.1 together with results from a previous measurement at this apparatus [9]. The small

difference between horizontal and vertical trap frequencies is attributed to an imperfect

magnetic field geometry of the Ioffe-Pritchard type MT. Note that for further potential

calculations, the mean radial trap frequency ωr =
√
ωx ωy is used.

Trap bottom and MT parameters

An important parameter in a Ioffe-Pritchard type MT is the magnetic offset field B0,

as it defines the strength of the radial confinement and the radial trap frequency (see
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parameter present result result from [9]

horizontal trap frequency ωy/2π [Hz] 137.9± 0.14 176.0± 0.8

vertical trap frequency ωx/2π [Hz] 131.2± 0.19 175.9± 1.5

mean radial trap frequency ωr/2π [Hz] 134.5± 0.23 176.0± 0.7

axial trap frequency ωz/2π [Hz] 13.72± 0.07 13.47± 0.09

magnetic field offset B0 [G] 0, 79± 0, 01 0, 50± 0, 02

radial field gradient B′ [G/cm] 133± 1 138± 1

axial field curvature B′′ [G/cm2] 231± 2 224± 3

Table 6.1: Measured trap frequencies and calculated MT parameters for 87Rb atoms in

the |F = 1,mF = -1〉 state. The results are compared to previous measurements at this

apparatus.

Eq. 3.16 in Sec. 3.2.1). The present configuration allows a variable adjustment of the so-

called trap bottom B0 by the axial compensation fields. Its magnitude can be determined

experimentally (see Fig. 6.1). Together with the trap frequencies, all parameters defining

the MT potentials can be deduced.

For a trap bottom measurement, a sample of ≈ 1µK cold 87Rb atoms is prepared in the

MT and the radio frequency is ramped from zero to a defined final value νf within 500ms.

For the case that the radio frequency νf = µB0/h is in resonance with atoms at the trap

center, atom loss is observed. Figure 6.1 (c) shows the 87Rb atom number as a function of

the final RF setting νf . Atom loss is observed for νf > 550±5 kHz, resulting in a calculated

magnetic offset field B0 = 0.8± 0.01G.

The radial field gradient B′ and the axial field curvature B′′ of the present MT are

calculated according to Eq. 3.16 and are presented in Tab. 6.1. Note that in comparison

to a previous measurement [9], the present configuration is characterized by a significantly

larger magnetic offset field resulting in smaller radial trap frequencies. The radial trap

frequency as well as B′ and B′′ are slightly disagreeing with previous measurements, due

to a different position of the magnetic trap center.

6.1.2 Trapping parameters of the BIODT

In order to obtain detailed information on the BIODT potentials, trap frequency measure-

ments with 174Yb in the “green” (532 nm) and the “infrared” (1064 nm) ODT as well as

in the BIODT are carried out for different beam power ratios. In addition, the 1064 nm

ODT- and the BIODT trap frequencies were determined using 87Rb. The measurement

conditions are chosen to match typical experimental configurations described in Chap. 7

and Chap. 8.

a) Trap frequency measurements using 174Yb

For trap frequency measurements we prepare a cold sample of 174Yb in the respective

ODT/BIODT potential using the combined Yb-Rb-preparation sequence described in

Chap. 5. In order to probe the harmonic part of the potential, the 174Yb atoms are
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sympathetically cooled by 87Rb to temperatures of 1 . . . 2µK, well below the temperatures

obtained by evaporative cooling (see Chap. 7 for details). For trap frequency measurements

the Rb atoms are removed.

Radial direction In contrast to the MT trap frequency measurement, a direct observation

of the radially oscillating atomic cloud is experimentally impractical for the BIODT in the

present configuration. The main difficulty is, to excite an oscillation at a well-determined

starting time.

Instead, the radial BIODT trap frequencies are measured using the parametric excitation

method [132]. According to the classical description of a parametrically driven harmonic

oscillator, the equation for the parametric oscillations can be written as [133]

ẍ(t) + ω2(t)x(t) = 0, (6.4)

where ω(t) represents the time-dependent frequency of the oscillator. For parametric exci-

tation, a modulated frequency according to

ω(t) = ω0(1 +A sin(ωmt)) , (6.5)

with the natural frequency of the oscillator ω0, the modulation frequency ωm and the

modulation amplitude A is assumed. When the modulation frequency ωm is close to twice

the trap frequency 2ω0 or close to subharmonic frequencies 2ω0/n (n ∈ N), the energy of

the oscillator increases exponentially. The presence of damping in the oscillation introduces

a threshold for the modulation amplitude A, which has to be exceeded, for the resonant

enhancement to occur. This result also holds in a fully quantum mechanical description.

[134].

Experimentally, the ODT beam power is modulated with a variable modulation fre-

quency. When this frequency equals twice the trap frequency 2ω0 or subharmonics 2ω0/n,

trapped atoms are heated and eventually lost from the atom trap.

For trap frequency measurements using 174Yb, we modulate the ODT beams for 2 s

and subsequently determine the 174Yb temperature1. We use the single-image method as

described in Sec. 4.3.4 for temperature determination. Parametric heating is observed in

the range between 300Hz and 2500Hz and the temperature peaks can be assigned to twice

the trap frequency and one subharmonic frequency. The modulation amplitude is experi-

mentally optimized in order to detect resonance peaks in the 174Yb temperature without

major atom loss. This limits the influence of anharmonic contributions to the trap fre-

quency measurement, as the atomic clouds remains “deep” in the trapping potential. We

use a modulation depth of ≈ 4% around the main parametric resonance at twice the trap

frequency 2ω0 and ≈ 8% for the weaker resonance at ω0. Figure 6.2 (a) shows trap fre-

quency measurements of the single-color ODTs and the BIODT. Each of the measurements

consists of several frequency sweeps with a total number of 50 . . . 110 single data points.

For the temperature plots, the data is scaled by the modulation depth and the relative

1For measurements in the BIODT, only the 532 nm beam is modulated, which still determines the BIODT

trap frequency.
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used trap beam radial measurement axial

element type power peak 1 [Hz] peak 2 [Hz] ωr/2π [Hz] ωz/2π [Hz]

174Yb
532 nm

ODT

P532 = 343mW

P1064 = 0
960± 48 1945± 103 964± 44 7.5± 0.49

1064 nm

ODT

P532 = 0

P1064 = 135mW
539± 20 1074± 57 538± 19 7.4± 0.43

BIODT
P532 = 343mW

P1064 = 88mW
1039± 20 2092± 64 1040± 19 9.3± 0.22

BIODT
P532 = 343mW

P1064 = 118mW
1091± 24 2165± 61 1089± 22 10.5± 0.16

87Rb
1064 nm

ODT

P532 = 0

P1064 = 135mW
– – 2922± 191 1461± 96 20.0± 0.77

BIODT
P532 = 172mW

P1064 = 135mW
1247± 64 2418± 177 1239± 60 – –

BIODT
P532 = 229mW

P1064 = 135mW
1093± 37 2231± 154 1094± 36 – –

BIODT
P532 = 343mW

P1064 = 135mW
801± 39 – – 801± 39 – –

Table 6.2: Summarized results for ODT/BIODT trap frequency measurements.

offset is adjusted. Error bars of the individual data points include uncertainties from the

temperature determination as well as shot-to-shot fluctuations. Gaussian shaped fitting

functions are used to extract resonance frequencies, which are summarized in Tab. 6.2.

Determination of axial trap frequencies from the cloud size Axial trap frequencies for

the ODT/BIODT can directly be determined from the axial 174Yb cloud size σz of atomic

samples at known temperature T according to

ωz =
1

σz

√

kBT

m
. (6.6)

Due to the low axial trap frequencies ωz/ωr = σr/σz ≈ 1/100 (see Eq. 3.49), the axial

cloud size σz(tTOF) after a time tTOF of ballistic expansion does not differ significantly

from the initial cloud size σz(0), if tTOF is small. For tTOF = 3.5ms, as it is used for
174Yb temperature measurements in the present experiments, the relative cloud expansion

is approximated to be < 3% of the initial cloud size, which is still below the fitting

uncertainties of the axial cloud size.

The measured axial trap frequencies slightly depend on the present 174Yb temperature,

which is demonstrated in Fig. 6.2 (b). This effect is attributed to anharmonicities of

the trapping potentials that increasingly contribute for higher temperatures. The flatter

potential on the outside results in disproportionately larger cloud sizes and thus an under-

estimation of the trap frequencies. To account for this, the measured trap frequencies are

linearly extrapolated to zero temperature. Figure 6.2 (b) shows the respective linear fit
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Figure 6.2: (a) radial- and (b) axial trap frequency measurements of the 532 nm ODT,

the 1064 nm ODT and the BIODT using 174Yb.
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Figure 6.3: Radial trap frequency measurements of the 1064 nm ODT and the BIODT

using 87Rb.

(red lines) together with the 95% confidence interval (dashed red lines). Results for the

different trap geometries are summarized in Tab. 6.2.

b) Trap frequency measurements using 87Rb

Additional trap frequency measurements of the 1064 nm ODT and the BIODT are per-

formed using 87Rb in order to complement the 174Yb results. Measurements of the “pure”

532 nm ODT are impossible, as this light field does not yield an attractive potential for
87Rb.

For radial trap frequency measurements, a 87Rb cloud at a temperature of 1 . . . 2µK

is prepared in the MT and successively moved to the BIODT potential. The transfer to

the optical potential is subject to heating due to adiabatic compression to temperatures

of 3 . . . 6µK depending on the actual trapping geometry. The MT is turned off and after

a short time of 1 s of plain evaporation the ODT/BIODT beam power is modulated for

2 s. Unlike for 174Yb, no further cooling method is available for 87Rb, in order to lower the

initial temperature in the optical potentials. Figure 6.3 shows 87Rb temperatures and atom

numbers as a function of the modulation frequency for two different trapping geometries.

Due to the initially higher temperatures with respect to the trap depth, parametric

heating is inevitably accompanied by atom loss. Note that for the “pure” 1064 nm ODT,

no peak at the first subharmonic of 2ωr is observed at the used modulation depth. In

addition to the measurements presented in Fig. 6.3, the trap frequencies of two additional



6.1. Trap parameter measurements 93

BIODT configurations are determined using 87Rb. The quantitative analysis of the data

is carried out analogously to the 174Yb measurements and the results are also summarized

in Tab. 6.2.

In contrast to the 174Yb trap frequency measurement, the data obtained with 87Rb is

not useful to determine the axial trap frequency. The cloud expansion during the TOF

used for the 87Rb temperature determination (tTOF = 10 . . . 30ms) can not be neglected

compared to the initial cloud size. Hence, dark contrast intratrap images of 87Rb at a

known temperature of ≈ 5µK are used to extract the axial trap frequency. This additional

measurement is performed for the 1064 nm ODT only and the result is included in Tab. 6.2.

c) Systematic effects

According to the classical theory of parametric heating [133], the displacement of an oscil-

lator x(t) and hence the energy E(t) ∝ x2(t) increases exponentially with time in the case

of a parametric resonance:

x(t) ∝ et/T and E(t) ∝ e2t/T . (6.7)

Here, T = 2π/ωm represents the modulation period. In order to insert a constant amount

of energy in the system, the modulation time tmod in a parametric heating experiment

should be adjusted to include a constant number of oscillation periods: tmod ∝ 1/ωm. The

measurements presented here, however, are carried out at a constant modulation time.

Experimentally, this does not change the measured position of parametric resonances, but

it affects the relative weighting of the data points around a resonance. The influence on

the peak shape increases with the peak width. Hence, this effect is taken into account

in the data analysis by including a peak width dependent error in the final error budget

presented in Tab. 6.2.

Another systematic effect is attributed to the anharmonicity of the actual trapping

potential. Its influence depends on the atomic temperature compared to the trap depth

U0, which significantly differs for measurements with 174Yb and 87Rb: Due to the possibility

of sympathetic cooling, the 174Yb experiments are carried out at kBTYb/U0 = 4 . . . 6%,

whereas the 87Rb clouds are characterized by kBTRb/U0 = 9 . . . 15%2. For a quantitative

analysis, the (amplitude dependent) radial oscillation frequency in the full potential is

calculated as a function of the ratio of the praticel energy E and the trap depth U0 in

a one-dimensional model potential corresponding to the radial potential at the axial trap

center. This is illustrated in Fig. 6.4 (a). In contrast to the harmonic potential, the

oscillation frequency decreases for higher particle energies in a Gaussian-shape potential,

which mimicks the potential in a single-beam optical trap.

The energy distribution of a thermal atomic cloud is generally given by the Maxwell

Boltzmann energy distribution [67]:

N(E)dE ∝ E2 e−E/kBT dE (6.8)

2These numbers are calculated assuming a beam waist w0 = 15µm.
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Figure 6.4: One-dimensional approximation of anharmonic effects for trap frequency mea-

surements. (a) Calculated oscillation frequency dependence on the relative particle energy.

(b) Comparison between the harmonic- and the Gaussian-shape potential and Maxwell

Boltzmann energy distribution N(E)dE for different cloud temperatures

Figure 6.4 (b) shows calculated Maxwell Boltzmann energy distributions N(E)dE for

kBT/U0 = 5% and kBT/U0 = 10%. Combining this distribution with the calculated

energy dependence of the oscillation frequency, one obtains a distribution of oscillation

frequencies. For kBT/U0 = 5%, the peak of this distribution is shifted by ≈ 0.5% with

respect to the harmonic oscillation frequency and for kBT/U0 = 10% by ≈ 2% .

In the three-dimensional optical potential, the radial oscillation frequency also depends

on the axial position, which can be taken into account by the following approximation: The

light intensity I(z) of a Gaussian beam decreases for |z| > 0 as w(z) increases according

to Eq. 3.40 and at the Rayleigh length z = zR = πw2
0/λ, the intensity is reduced by half.

The radial oscillation frequency ωr depends on the intensity as ωr ∝
√

I(z). Making use

of the fact, that trap frequency measurements are typically carried out with atom clouds

with an axial size σz/zR ≈ 15% for 174Yb and σz/zR ≈ 25% for 87Rb, one can estimate

that, the radial oscillation frequency varys at level of ≈ 1% for 174Yb and ≈ 4% for 87Rb.

In summary, the anharmonicity of the trapping potential affects the ODT/BIODT trap

frequency measurements performed with 174Yb on a level beyond the experimental uncer-

tainty. Due to the higher temperatures with respect to the trap depth, the 87Rb measure-

ment results tend to produce slightly lower values than the actual harmonic trap frequency.

However, the rough approximations presented here are not sophisticated enough to pro-

vide a correction factor for the 87Rb data. Hence, the limits set by this approximation are

treated as errors and for the calculation of the BIODT potential parameters the results

obtained with 174Yb are used.

d) Determination of beam parameters

Beam waist In general, the intensity distribution around the focus of a Gaussian laser

beam is completely described by one single parameter, the beam waist w0. This parameter
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can be calculated with the knowledge of the radial trap frequency ωr. It follows from a

solution of equations (3.45), (3.43) and (3.41):

w0 =

√

4U0

mω2
r

with (6.9)

U0 =
∑

i

−3πc2

2ω3
0i

(
γi

ω0i − ω
+

γi
ω0i + ω

)
2P

πw2
0

. (6.10)

This calculation, however, involves the theoretical determination of the optical dipole po-

tential U0 = Udip(~r = 0). According to the descriptions on multi-level atoms in Sec. 3.2.3,

the optical dipole potential is given as the sum of the individual contributions of all rele-

vant atomic levels. For atomic states with fine structure splitting, the contributions of each

fine structure transition are weighted by the corresponding oscillator strength in order to

calculate a mean effective transition frequency and line width. A detailed discussion on

relevant atomic levels included in the calculation for the case of 87Rb and Yb can be found

in [9]. All atomic transitions, which contribute to the total dipole potential by more than

1% of the major transition are summarized in Tab. 6.3.

Using the radial trap frequency measurements with 174Yb for the individual ODTs and

the BIODT, the following beam waists for the 532 nm- and 1064 nm ODT beams are

obtained:

w532ODT = (15.78± 0.20)µm

w1064ODT = (14.71± 0.25)µm

Validity of trap frequency results Figure 6.5 (a) shows measured trap frequencies of the

532 nm ODT and the BIODT obtained with 174Yb as a function of the 1064 nm ODT power.

This plot also includes calculated trap frequencies using the specified beam parameters. For

the BIODT, the trap frequency is determined by the individual trap frequencies according

to

ωBIODT
i =

√
(
ω532ODT
i

)2
+
(
ω1064ODT
i

)2
i = r, z . (6.11)

A comparison of measured 1064 nm ODT and BIODT radial trap frequencies using 87Rb

and calculations based on w532 = 15.78µm and w1064 = (14.71± 0.25))µm is displayed in

Fig. 6.5 (b). The small deviation, especially for the “pure” 1064 nm ODT, can be attributed

to the larger contribution of anharmonic effects present for the 87Rb experiments (see

discussion above).

Rayleigh length For a Gaussian beam, the Raleigh length zR is determined by the beam

waist according to zR = πw2
0/λ and the axial trap frequency is related to the Raleigh length

through

ωz = ωr
w0√
2 zR

= ωr
λ

π
√
2w0

. (6.12)
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87Rb

excited transition transition line oscillator

state wavelength probability width strength

λvac [nm] Aij [s
−1] ≡ γ γ/2π [Hz] fi

52P3/2 780,237 3, 81 · 107 6, 06 · 106 0,695

52P1/2 794,975 3, 61 · 107 5, 75 · 106 0,342

62P3/2 420,295 1, 77 · 106 2, 82 · 105 9, 37 · 10−3

62P1/2 421,669 1, 50 · 106 2, 39 · 105 4, 00 · 10−3

effective effective effective

excited transition transition line

state wavelength probability width

λ̄vac [nm] Āij [s
−1] ≡ γ̄ γ/2π [Hz]

52P 785.037 3, 74 · 107 5, 96 · 106
62P 420.705 1, 69 · 106 2, 69 · 105

Yb

excited transition transition line

state wavelength probability width

λvac [nm] Aij [s
−1] ≡ γ γ/2π [Hz]

61P1 398,910 1, 76 · 108 2, 80 · 107
71P1 246,521 9, 10 · 107 1, 45 · 107

6(7/2, 5/2)1 346,534 6, 20 · 107 9, 87 · 106
4f135d6s2 267,272 1, 18 · 107 1, 88 · 106
63P1 555,798 1, 14 · 106 1, 81 · 105

Table 6.3: Relevant ground state transitions in 87Rb and Yb used for the BIODT po-

tential calculations. Wavelength λvac from [135, 136], Aki from [135] and fi calculated

according to (3.38). Effective λ̄vac and Āki for the n2P3/2 (1/2) (n = 5, 6) fine structure

doublets in 87Rb are calculated according to (3.37).

Experimentally, however, deviations of the trapping laser beam from a “perfect” Gaussian

beam and astigmatism effects can lead to an increased Rayleigh length for a given beam

waist, which we will characterize by an axial expansion factor fr according to:

zR,exp = fR · πw
2
0

λ
. (6.13)

The axial expansion factor fR can be determined by comparing measured axial trap fre-

quencies with results obtained from Eq. 6.12. Using the data from axial trap frequency

measurements with 174Yb for the individual ODTs, the expansion factors are:

fR,532 = 0.96± 0.07

fR,1064 = 1.19± 0.07 .

The axial trap frequency measurement performed with 87Rb for the 1064 nm ODT leads

to fR,1064 = 1.34± 0.07.
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Figure 6.5: Measured radial ODT/BIODT trap frequencies for different trapping geome-

tries using (a) 174Yb and (b) 87Rb and comparison to calculations based on the specified

trap parameters.

While the results for the 532 nm ODT are consistent with a Gaussian beam, the 1064 nm

ODT beam is obviously not a perfect Gaussian beam as its experimentally determined

Rayleigh length is ≈ 20% larger than expected.

6.2 Model potentials

With the knowledge of experimentally obtained MT and BIODT parameters, it is possible

to model the potentials of various trapping configurations both for 87Rb and Yb. Density

distributions of thermal atomic clouds in the presence of these potentials can in turn be

calculated according to Eq. 3.17 and Eq. 3.18.

General approach In the most general case, the total potentials for 87Rb and Yb are

given by:

URb
tot = URb

MT + URb
532ODT + URb

1064ODT + URb
grav (6.14)

UYb
tot = UYb

532ODT + UYb
1064ODT + UYb

grav (6.15)

The magnetic potential URb
MT is specified by Eq. 3.14 and the parameters presented in

Sec. 6.1.1. For the calculation of optical potentials U i
532ODT and U i

1064ODT (i = Rb, Yb),

Eq. 3.40 is used including beam parameters given in Sec. 6.1.2. For this calculation, the

atomic transitions presented in Tab. 6.3 are taken into account. The gravitational potential

is given by U i
grav = mi · g · x (i = Rb, Yb), where g is the gravitational acceleration and x

represents the vertical direction. Note that experimentally the optical axis of both ODT

beams as well as the weak axis of the MT potential are aligned with the horizontal (z)

axes. Figure 6.6 shows calculated potentials URb
tot and UYb

tot for the case that all individual

potential centers spatially coincide. The BIODT beam powers in this plot are chosen to

P532 = 343mW, P1064 = 115mW, which results in almost perfect cancellation for 87Rb.
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Rb Yb

Figure 6.6: Calculated potentials for Rb and Yb for a BIODT power adjustment of al-

most perfect potential cancellation for Rb: P532 = 343mW, P1064 = 115mW. Three-

dimensional diagram of the x-z-plane and radial and axial cuts of the respective potentials.

Resulting from unequal waists of the individual ODT beams, an absolute perfect potential

cancellation in the trap center, as depicted in Fig. 5.1 of Sec. 5.1 can not be achieved in

our real experimental situation. Note that the actual ODT beam power ratio is optimized

experimentally as will be described in Sec. 7.1.2.

Harmonic approximation Due to the low 87Rb temperatures (kBTRb ≪ µB0) in the

relevant experiments, the use of the harmonic MT approximation (Eq. 3.15) for URb
MT is

justified. Furthermore, the ODT potentials for Yb UYb
532ODT and UYb

1064ODT can be replaced

by the harmonic form (3.44) for Yb temperatures well below the total trap depth (kBTYb ≪
U0). The use of harmonic approximations for the 87Rb BIODT potentials URb

532ODT and

URb
1064ODT depend on the actual trapping geometry and are discussed in detail for the

respective cases (see Sec. 8.2.1).

Gravity The presence of the gravitational potential leads to small displacements of trap

centers and trapped atom clouds. However, for the experiments presented in the scope of

this thesis, the influence of gravity is negligible for the following reasons:

• Within the harmonic regime, the linear gravitational potential generally does not

alter the shape of the potential, but leads only to a shift of the trap center denoted

as “gravitational sag”. The trapping frequencies remain constant.

• Due to the strong radial confinement of the optical potentials, the gravitational sag for

Yb is small compared to the cloud dimensions: For typical experimental parameters

(P532 = 343mW, P1064 = 115mW), the radial cloud displacement is ≈ 0.2µm, which

is equivalent to ≈ 4% of the 1/e2-diameter of an Yb cloud at a temperature of 1.5µK.

• During interspecies interaction experiments with 87Rb and 174Yb (see Chap. 8), the

relative BIODT beam powers are adjusted in a way to create an attractive potentials

for 87Rb (P532 = 343mW, P1064 = 135mW). The 87Rb cloud trapped in this BIODT
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potential is shifted by ≈ 0.3µm, due to the gravitational potential. The gravity

related relative displacement of the 87Rb- and the simultaneously trapped 174Yb

cloud is well below the accuracy achieved in the spatial overlap of both ODT beams.

• For interspecies interaction experiments, the MT position is experimentally optimized

to achieve maximum overlap of the 87Rb- and the Yb cloud. The gravitational sag

of ≈ 14µm for 87Rb trapped in the MT is hereby compensated by additional offset

fields. Unlike the situation present in Fig. 6.6, the MT center does then not spatially

coincide with the BIODT center.

As a result, the gravitational potential is omitted in further model potentials, which leads to

a cylindrically symmetric trapping geometry for the important case of spatially overlapping

potentials.
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Interspecies interaction I: thermalization

While Chap. 5 describes the successive preparation 87Rb and Yb in their independent

trapping potentials, the following chapter focuses on elastic interactions between the two

species, which lead to thermalization of various Yb isotopes with the colder 87Rb cloud.

The first part of the chapter describes the dependence of the thermalization process on

relative alignment and power ratio of the ODT beams. These effects are used in the day-to-

day alignment process in order to provide stable experimental conditions. The second part

of this chapter is devoted to thermalization rate measurements which have been performed

with 5 different Yb isotopes. These measurements allow for a determination of the isotope-

dependence of the scattering cross section between Yb and 87Rb.

7.1 Basic properties of ultracold Yb-Rb mixtures in the

combined trap

Starting point The experiments described in the following are based on the preparation

process for 87Rb and Yb as described in Chap. 5. As a starting point for interspecies

interaction experiments, the successive loading sequence provides 0.3 . . . 2× 105 Yb atoms

at a temperature of 5 . . . 8µK and 1 . . . 1.5×107 87Rb atoms at ≈ 1µK. After the individual

preparation of these two ultracold clouds, the 87Rb atom cloud is moved by the use of a

500ms long, S-shaped MT ramp to the BIODT position. Due to adiabatic heating resulting

from residual optical potentials, the 87Rb temperature is slightly increased to ≈ 1.5µ K as

soon as the 87Rb cloud overlaps with the BIODT.

Isotopic dependence Elastic interactions between 87Rb and Yb manifest themselves in

thermalization of the two species: Depending on the BIODT light power ratio and -

alignment and the Yb isotope, the Yb temperature decreases reaching approximately the
87Rb temperature. The isotope 174Yb plays an outstanding role compared to the other

Yb isotopes as it is characterized by an exceptionally large elastic cross section with 87Rb

in the present temperature range. Under the conditions of our experiments, this results

in almost instantaneous thermalization with 87Rb. Studies on the relative alignment and

power ratio of the ODT beams are hence typically performed with this Yb isotope.
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7.1.1 Thermalization model

Sympathetic cooling of Yb by colder 87Rb can be described by a simple thermalization

model [9]. This model is used for qualitative conclusions related to the influence of relative

alignment and power ratio of the ODT beams. In addition, the data analysis of measured

thermalization rates described in Sec. 7.2 is also based on this model.

When Yb is brought into contact with 87Rb (temperature: TRb, atom number NRb), the

temporal evolution of its temperature TYb is given by:

dTYb

dt
= −γth ·∆T + Ṫ heat

Yb with ∆T = TYb − TRb (7.1)

Here,γth is the thermalization rate and Ṫ heat
Yb is a constant heating rate of Yb, which is

predominantly caused by scattering of ODT light. For the conditions of the experiments

described in this and the following chapter, it is experimentally determined to be (175 ±
16) nK/s (see Sec. 7.2.2). Note that Eq. 7.1 assumes a constant 87Rb atom number and

temperature, independent of the presence of Yb. Experimentally, no additional heating of
87Rb due to the presence of Yb could be found, which is explained by the large atom number

difference NRb ≫ NYb. However, during the quantitative thermalization measurements

described in Sec. 7.2, a small constant 87Rb heating rate is observed, which is accounted

for in the respective data analysis.

The thermalization rate γth is directly proportional to the elastic collision rate γcoll. It

depends on the number of collisions α required for thermalization and on a mass-dependent

reduction factor ξ [137, 138]:

γth =
ξ

α
· γcoll with ξ =

4mYbmRb

(mYb +mRb)2
≈ 0, 89 . (7.2)

The collision rate γcoll = nYbRb σtotYbRb v̄YbRb is connected to the total elastic collision

cross-section σtotYbRb by:

σtotYbRb =
α

ξ

γth
nYbRb · v̄YbRb

. (7.3)

Here,

v̄YbRb =

√

8kB
π

(
TYb

mYb
+
TRb

mRb

)

(7.4)

is the mean thermal relative velocity of the two species and

nYbRb =

(
1

NYb
+

1

NRb

)∫

nYb(~r)nRb(~r) d
3~r (7.5)

is the overlap density. It depends on the density distribution of both atomic clouds and

their relative spatial overlap. The absolute value of this quantity is difficult to determine

for the present geometry of the potential. Very small deviations from the assumed trapping

potential may lead to dramatic changes of the 87Rb density, in particular for conditions
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where the light shifts of the two light fields almost cancel for 87Rb. However, for the given

case of NRb ≫ NYb, the overlap density can be approximated as

nYbRb ≈ NRb · fg, (7.6)

with a proportionality factor fg that takes into account the details of the trap geometry.

In summary, the thermalization process described by this model has the following prop-

erties:

• Under the assumption of a negligible heating rate (Ṫ heating
Yb ≪ ṪYb), the Yb tempera-

ture exponentially approaches the 87Rb temperature with a time constant τth = 1/γth.

• A significant Yb heating rate slows the thermalization process and the equilibrium

state ∆TYb/dt = 0 is characterized by a nonzero temperature difference between the

two species:

∆T =
Ṫ heating
Yb

γth
. (7.7)

• The thermalization rate γth depends on the isotope-dependent 87Rb-Yb scattering

properties and the overlap integral nYbRb. In a qualitative picture, nYbRb is pro-

portional to the 87Rb density at the position of the Yb cloud. Experimentally, this

parameter strongly depends on the ODT beam alignment and the power ratio.

7.1.2 Influence of trap parameters on the thermalization

a) BIODT light power ratio

In order to study the influence of the BIODT light power ratio, 87Rb and 174Yb atoms

are prepared and brought into contact as described above. After a defined contact time

of tcontact = 300ms, the temperature of both atomic species is simultaneously determined.

During the contact time, the RF used for 87Rb evaporative cooling remains on. The final

532 nm ODT power is kept at a constant level of P532 = 343mW, while the 1064 nm ODT

power P1064 is varied in a range of 65 . . . 95mW. Figure 7.1 shows measured temperatures

and atom numbers of 87Rb and 174Yb as a function of P1064.

Below a threshold level of P1064 ≈ 80mW, the 174Yb temperature remains at a level

independent on the presence of 87Rb (indicated by the dashed line in Fig. 7.1). This

temperature is slightly lower than the initial 174Yb temperature, which is related to plain

evaporative cooling during the contact time tcontact = 300ms. For P1064 greater than this

threshold , 174Yb thermalizes with the colder 87Rb cloud and reaches its temperature.

Furthermore, an increase in P1064 is accompanied by a slight 87Rb temperature rising and
174Yb atom loss. Above P1064 ≈ 100mW, almost no 174Yb atoms are left after the contact

time tcontact = 300ms

The qualitative results of this experiment can be understood using calculated model

potentials and density distributions1: By increasing P1064, the BIODT potential is grad-

1The model potentials used here include the harmonic approximation for URb

MT according to Eq. 3.15

and the “full” form of the BIODT potentials U i

532ODT and U i

1064ODT (i = Rb, Yb) according to Eq. 3.40.

Gravity is neglected, which in total results in a clyindrical symmetric potential.
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Figure 7.1: Measured 87Rb and 174Yb temperatures and atom numbers depending on

the 1064 nm ODT Power. The gray areas indicate the optimized 1064 nm BIODT power

used for further experiments. The data is obtained at the following parameters: P532 =

343mW, tcontact = 300ms.

ually changed from being repulsive to being attractive for 87Rb in the trap center. This

is illustrated in Fig. 7.2. At P1064 = 70mW (Fig. 7.2 (a)), the attractive effect of the

1064 nm light is not strong enough to compensate the 532 nm ODT potential and a repul-

sive residual 532 nm ODT potential remains. As a result, the 87Rb atoms are arranged in

a hollow cylinder around the trap center, where the 174Yb cloud is located. This is shown

in Fig. 7.2 (c), which presents axial cuts of calculated Rb and Yb density distributions for

TRb,Yb = 1.5µK for different settings of P1064.

At P1064 = 120mW (Fig. 7.2 (b)), however, the 1064 nm ODT overcompensates the

repulsive effect of the 532 nm light and creates a small “dimple” for 87Rb at the trap

center. As a result, the calculated 87Rb density at the trap center rises by up to 6 orders

of magnitude during an increase of the 1064 nm ODT power from 70mW to 120mW (see

Fig. 7.3). Note that in the transition region between a repulsive and an attractive potential

for 87Rb, the calculated density nRb strongly depends on the ODT beam waists w532ODT,

w1064ODT used for the model potential. As a result, uncertainties in these parameters lead

to large errors for nRb up to one order of magnitude. Furthermore, deviations of the actual

potential from our model due to imperfect experimental conditions, like non-Gaussian

beam shapes, have to be considered. Hence, only a limited quantitative analysis involving

the 87Rb density is possible in this trapping geometry. However, qualitative conclusions

based on these calculations are well justified, in particular if properties of different Yb

isotopes are compared.

The experimental data shows, that the 87Rb density reached at P1064 ≈ 88mW is high

enough to sympathetically cool the 174Yb cloud within the chosen contact time tcontact =

300ms. For further increase of the 87Rb density, the thermalization process is accompanied

by rapid atom loss of 174Yb, resulting from inelastic three-body collisions. For 87Rb, no

additional loss is observed, which is related to the much higher atom number NRb ≫ NYb.
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Figure 7.2: (a, b) Calculated potentials for 87Rb for different settings of the 1064 nm

ODT power. (c-h) Axial cuts of calculated density distributions for both species at

TRb,Yb = 1.5µK. Note that the scales in this series of plots can not be compared directly

as they are chosen to match the peak density in each plot.
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Figure 7.3: Calculated 87Rb peak density

NRb in the trap center (r = 0, z = 0)

for TRb = 1.5µK and NRb = 107. The

calculations strongly depend on the used

ODT beam waists w532ODT, w1064ODT. Er-

rors of nRb resulting from uncertainties of

w532ODT, w1064ODT are approximately one

order of magnitude.

This particular behavior of 174Yb is due to peculiarities of the interatomic potential (and

will be detailed in Sec. 8.4.2). All other Yb isotope do not exhibit atom loss due to the

presence of 87Rb. The slight 87Rb temperature increase is related to adiabatic heating

caused by the increasingly attractive potential for 87Rb.
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Ideal BIODT power ratio The results from the measurements described here, are used

to optimize the BIODT light power ratio experimentally. For a fixed 532 nm ODT power

of P532 = 343mW, the ideal setting for P1064 is on the order of ≈ 88mW for 174Yb, as

indicated by the gray areas in Fig. 7.1. Here, the 87Rb density at the position of the
174Yb cloud is high enough to warrant complete thermalization. At the same time, no

significant 174Yb atom loss caused by 87Rb is observed for this 1064 nm ODT power. The

measurements for BIODT power optimization as presented in this section are generally

performed after the relative ODT beam position is adjusted to the best possible overlap

(see below).

Due to the different scattering properties with 87Rb, the BIODT light power ratio re-

quired for thermalization depends on the specific Yb isotope, and is for each case deter-

mined experimentally.

The BIODT light power optimization is part of the daily adjustment routine, in or-

der to ensure constant conditions for further experiments described in Sec. 7.2 and

Chap. 8. Figure 7.4 shows experimentally optimized 1064 nm ODT powers P1064,ideal

(P532 = 343mW= const.) as a function of the day of measurement. All experiments

BIODT
trap frequency
measuremtns

Figure 7.4: Experimentally

determined 1064 nm powers

P1064,ideal optimized for ther-

malization of 174Yb and 87Rb

using a fixed 532 nm power of

P532 = 343mW. Within the

relevant period for experiments

described in Chap. 8, a slight

drift from 80mW to95mW is

observed.

are performed using 174Yb. Within a time range of several weeks, we observe a slight drift

of the ideal power ratio. This is related to long term changes in the 532 nm ODT beam

parameters caused by the switching AOM (see Sec. 4.2.3). Taking this into account, the

experimentally determined ODT parameters presented in Sec. 6.1.2 are strictly speaking

only valid at the day of the frequency measurement. However, the information obtained by

this long term analysis is used as a correction factor for the comparison of data measured

at different dates.

Note that the experimentally determined BIODT power ratio of P1064/P532 ≈ 0.26 is sig-

nificantly below the calculated power ratio required for maximum potential cancellation

for 87Rb in the trap center. This trapping geometry, as shown in Fig. 6.6 in Sec. 6.2

is characterized by P1064/P532 ≈ 0.34 . This result is in good agreement with data from

previous measurements [9], that were performed using different BIODT beams and signif-

icantly higher absolute ODT powers. For this trapping geometry, the calculated power
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Figure 7.5: Measured 87Rb and 174Yb temperatures and atom numbers depending on

the relative BIODT beam alignment. The data is obtained at the following parameters:

P532 = 343mW, P1064 = 88mW.

ratio of P1064/P532 ≈ 0.39 for 87Rb potential cancellation differs from the experimentally

determined ratio of P1064/P532 ≈ 0.29 , that provides the lowest 174Yb temperatures. In a

qualitative picture, enough contact between the atom clouds of both species is provided

for thermalization, although a residual repulsive potential for 87Rb is present.

b) BIODT beam alignment

Radial BIODT alignment The relative position of the individual ODT beams at the trap

center is a crucial parameter for experiments in the BIODT potential. Hence, the present

setup includes an active stabilization and -control system for the relative radial BIODT

position. This system allows the spatial manipulation of the optical trapping potentials

on a µm level. However, a direct determination of the radial beam positions by imaging

of the atoms trapped in the individual ODTs is limited by the resolution of the present

imaging systems to ≈ 5µm. For a BIODT beam alignment beyond this level, we make use

of its influence on the thermalization process between trapped 87Rb and 174Yb atoms.

In analogy to the experiments focused on the BIODT power ratio, both atomic species

atoms are prepared and brought into contact for a fixed contact time tcontact = 300ms.

Subsequently, we determine the temperature and atom number of the trapped 87Rb and
174Yb atoms. The radial 532 nm ODT beam position is manipulated independently in the

horizontal and vertical direction using the active position control system. Figure 7.5 shows

measured 87Rb and 174Yb data as a function of the relative horizontal ODT displacement.

This series of measurements is performed at BIODT powers P532 = 343mW and P1064 =

88mW, which lead to full thermalization of the 174Yb cloud with the 87Rb cloud for

perfectly overlapping optical potentials. If the BIODT beams are gradually separated, the

following effects are observed:

• The 87Rb temperature increases and the atom number is significantly reduced.
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Figure 7.6: Calculated (a) model potentials and (b,c) density distributions for different

beam displacement settings dx = 0µm, 2µm, 5µm. (b) shows densities nRb and nYb in

the x − z plane at y = 0 and (c) along the x-axis (y = z = 0). Scales are individually

adjusted to 0...nRbMAX and 0...nYbMAX. Used parameters: P532 = 343mW P1064 =

88mW, TRb = TYb = 1.5µm.

• Sympathetic cooling of the 174Yb cloud is suppressed.

Model potentials and density distributions calculated for different beam displacements of

dx = 0µm, 2µm, 5µm, as displayed in Fig. 7.6, describe the experimental situation:

When the ODT beams are radially displaced, the total potential for 87Rb contains

stronger repulsive as well as attractive regions. The 87Rb cloud is arranged in the at-

tractive parts (see Fig. 7.6 (b,c)) of the potential, which leads to heating due to adiabatic

compression. As the RF used for evaporative cooling of 87Rb in the MT is still present

during this experimental phase, hot 87Rb atoms are removed from the trap and a temper-

ature increase is ultimately translated into atom loss. Simultaneously, the spatial overlap
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between the 87Rb- and 174Yb cloud is reduced, as the BIODT beam displacement dx is

increased. As the overlap density is reduced, thermalization between both species deceler-

ates (see Eq. 7.3 and 7.2). Calculation of the individual density distributions show, that for

dx > 5µm, both atom clouds are basically located next to each other without contact. This

results in an increased temperature difference after a fixed contact time tcontact = 300ms.

The relative BIODT beam alignment is experimentally adjusted to achieve the lowest
87Rb and 174Yb temperatures and maximum 87Rb atom numbers (indicated by the gray

area in Fig. 7.5). Horizontal and vertical axis are optimized individually in order to find

the global maximum in this two-dimensional parameter space. This adjustment procedure

is included in the daily routine preceding further experiments.

Beam alignment at lower 1064 nm ODT power When the experiments on the relative

BIODT beam alignment are performed at lower 1064 nm ODT power, the observed results

significantly differ from the results described above. Figure 7.7 presents data obtained

at P532 = 343mW and P1064 = 80mW. 87Rb exhibits the same characteristics as in

= 80mW

P = 343mW

P
532

1064

Figure 7.7: Measured 87Rb and 174Yb temperatures and atom numbers depending on

the relative BIODT beam alignment. The data is obtained at the following parameters:

P532 = 343mW, P1064 = 80mW.

experiments performed at P1064 = 88mW: A clear minimum in 87Rb temperature and

maximum in atom number is observed, which coincides with the case of best possible

overlap of the individual ODT beam foci. However, at this BIODT power configuration,

the 87Rb density at the 174Yb cloud position is not sufficient to provide full thermalization of
174Yb (see also Fig. 7.1). For a relative beam displacement 3µm< |dx| < 7µm however, the
174Yb atoms are sympathetically cooled to the 87Rb temperature. This effect is related to

the overlap of both atom clouds depending on the relative ODT position at this light power

ratio. For a more quantitative description, the overlap density nYbRb is calculated according

to Eq. 7.5 using the present trapping parameters. These calculations are displayed in

Fig. 7.8 for P1064 = 80mW (black) and P1064 = 88mW (gray). At a trapping geometry
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Figure 7.8: Calculated overlap

density nYbRb according to

Eq. 7.5 as a function of the

relative ODT beam displace-

ment dx. Used parameters:

P532 = 343mW, P1064 = 80mW

(black), P1064 = 88mW (gray)

TRb = 1.5µK, NRb = 107,

TYb = 3µK, NYb = 2× 105.

corresponding to the experiments presented in Fig. 7.7 (P1064 = 80mW), the overlap

density increases for |dx| > 0 and reaches its maxima at |dx| ≈ 4µm. For larger beam

displacements, the overlap density trends to zero. Taking this into consideration, the

observed 174Yb temperature dependence can be qualitatively explained: While the overlap

density for perfectly superimposed beams is not sufficient to provide full thermalization of
174Yb with colder 87Rb within the chosen contact time tcontact = 300ms, thermalization is

achieved around the calculated overlap density maxima at |dx| ≈ 4µm. For higher 1064 nm

powers (P1064 = 88mW), the overlap shows a less distinctive structure at a generally

higher level. Here, enough overlap between the clouds for full thermalization is present

in the complete range |dx| < 5µm matching the results described in Fig. 7.5. Note that

absolute calculated values of nYbRb are subject to large error bars related to uncertainties

in the model potentials. The qualitative characteristics of nYbRb and the relative results

for different trapping geometries, however, are not significantly affected by this.

Axial BIODT alignment The axial focus positions of the ODT beams are determined

by analyzing the axial position of Yb clouds trapped in the individual ODTs. They are

adjusted on a level of ≈ 25µm by moving lenses in the respective optical systems, that are

mounted on micrometer translation stages (see Sec. 4.2.3). Due to the elongated trapping

geometry, and resulting axial cloud dimensions in the order of several 100µm, the precision

achieved by this adjustment procedure is sufficient for the relevant experiments.

7.2 Thermalization rate studies

The following describes thermalization rate measurements performed with 87Rb and 5

different isotopes of Yb. A quantitative analysis of the dynamics of this process allows

conclusions on relative scattering properties of the respective species. In the case of 170Yb

and 87Rb, we could also estimate an absolute value of the interspecies scattering length



7.2. Thermalization rate studies 111

7.2.1 Experiment

For measurements of the thermalization rate, the two atom clouds are prepared in their

individual trapping potentials as described in Chap. 5. The ideal BIODT parameters are

adjusted as described in Sec. 7.1.2. After the Yb atoms are brought into contact with

the colder 87Rb atoms, their temperature is determined as a function of a defined contact

time tcontact. Additional measurements of Yb without the presence of 87Rb are performed

in order to clearly isolate interspecies interaction effects. In order to have a well defined

starting point for the thermalization, the 87Rb atoms are moved to the Yb cloud position

using a 500ms long, linear magnetic field ramp. During the contact period, the RF is

turned off to avoid 87Rb atom loss induced by evaporation. Depending on the Yb isotope,

the maximum contact time varies from 120ms (174Yb) to 3000ms (170Yb). Temperatures of

the individual species are determined from single images (see Sec. 4.3.4) after well-defined

ballistic expansion times tTOF = 3.5ms for Yb and tTOF = 30ms for 87Rb.

a) Yb isotopes 172Yb, 173Yb and 176Yb

Figure 7.9 shows typical thermalization curves for the isotopes 172Yb, 173Yb, 176Yb with
87Rb. It includes temperatures of Yb, measured with (black) and without (blue) the

presence of 87Rb and measured 87Rb temperatures (red) as well as the corresponding atom

numbers. The thermalization process has the following general characteristics:

• When initially colder 87Rb atoms are present during the measurement, the Yb atoms

are sympathetically cooled. The 87Rb temperature is reached after a characteristic

contact time, which depends on the Yb isotope.

• Without the presence of 87Rb, the Yb atoms constantly remain at their initial temper-

ature, which is indicated by the dashed blue line in Fig. 7.9. Temperature differences

between the individual Yb isotopes are related to their different single-species scat-

tering properties [57], which determine the efficiency of evaporative cooling in the

BIODT (see Sec. 5.2.3).

• Yb isotopes with fast thermalization rates, i.e. 173Yb and 176Yb, are significantly

cooled by 87Rb already at tcontact = 0. This is consistent with the fact that the

effective contact between the two species is established before the 87Rb cloud reaches

its final position due to the finite size of the atomic clouds.

• The 87Rb atoms are subject to a small constant heating rate of ṪRb
heat ≈ 500 nK/s,

attributed to photon scattering and position noise of the BIODT. The measured

heating rate is taken into account for quantitative data analysis using a linear fit for

the 87Rb temperature.

• Atom numbers of 87Rb and Yb remain constant during the thermalization process,

clearly indicating the effect of sympathetic cooling of Yb by colder Rb. The ob-

served atom loss in 172Yb, is related to increased three-body losses due to the large

(intraspecies) scattering length |a172| = 599 a0 [57].
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Figure 7.9: Thermalization curves of 87Rb and 172Yb, 173Yb, 176Yb. Left side: Tempera-

tures of Yb with (black) and without (blue) the presence of 87Rb and 87Rb temperatures

(red) as a function of contact time. An exponential fit according to Eq. 7.9 to the Yb

temperature (black line) and a linear fit to the 87Rb temperature (red line) is included.

Right side: corresponding atom numbers.
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Figure 7.10: Thermalization curves of 87Rb and 174Yb, 170Yb. While 174Yb shows almost

instantaneous thermalization with 87Rb, no thermalization between 170Yb and 87Rb is

observed.

b) Yb isotopes 174Yb and 170Yb

The isotopes 174Yb and 170Yb play an exceptional role regarding thermalization with 87Rb,

which is shown in Fig. 7.10.

174Yb atoms thermalize almost instantaneously with the colder 87Rb atoms, indicating a

large interspecies scattering length. Results from phase separation experiments performed

with this isotope clearly confirm this conclusion (see Chap. 8). The dynamics of the

thermalization process can not be resolved in the current experimental setup as it is already

finished at tcontact = 20ms. For tcontact < 20ms, no reliable data can be obtained with our

experimental procedure.

On the contrary, in the described trapping geometry, 170Yb shows no thermalization with
87Rb at all. Its temperature remains constant at the initial level of ≈ 4.1µK, independent

of the presence of 87Rb atoms.
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Figure 7.11: Heating rate

measurement of 174Yb in the

BIODT. Temperatures and

atom numbers (inset) are de-

termined after thermalization

with 87Rb and removal of 87Rb

as a function of an additional

hold time. The red line indicates

a linear fit to the data, which

yields Ṫ heat

Yb = (176± 15) nK/s.

7.2.2 Quantitative data analysis

The quantitative analysis of thermalization data is based on the thermalization model

described in Sec. 7.1.1. According to Eq. 7.1, the time dependence of the Yb temperature

is generally defined by:

dTYb

dt
= −γth ·∆T + Ṫ heat

Yb with ∆T = TYb − TRb (7.8)

Assuming a linear time dependence of the Rb temperature, TRb ≡ TRb(t) = TRb,0+ Ṫ
heat
Rb t,

consistent with experimental observation, the differential equation Eq. 7.8 is solved by the

following function for TYb(t):

TYb(t) = TRb,0 + Ṫ heat
Rb t+

Ṫ heat
Yb − Ṫ heat

Rb

γth
+ C e−γtht . (7.9)

Here, C is a free constant factor. In order to use Eq. 7.9 as a fitting function for the Yb tem-

perature data, the parameters TRb,0, Ṫ
heat
Yb and Ṫ heat

Yb have to be determined. While TRb,0

and Ṫ heat
Rb are extracted from a linear fit to the 87Rb temperature data in each thermal-

ization series, the Yb heating rate Ṫ heat
Yb is determined from an independent measurement:

After a fixed contact time tcontact = 300ms, where 174Yb atoms are sympathetically cooled

to the 87Rb temperature, the 87Rb atoms are removed and the 174Yb temperature is mea-

sured as a function of an additional hold time thold. Fig. 7.11 shows 174Yb temperatures

and corresponding atom numbers as a function of thold together with a linear fit, which

yields a constant heating rate of Ṫ heat
Yb = (175± 16) nK/s. This heating rate is equal for all

Yb isotopes as it results from photon scattering in the BIODT (see Sec. 3.2.3) and from

laser intensity noise and beam-pointing fluctuations [139].

For the extraction of relative scattering properties from thermalization experiments de-

scribed above, two different methods are used:

a) Direct Fit The first method uses Eq. 7.9 as a fitting function with the free parameters

C and γth in order to extract the thermalization rate γth from the Yb temperature data.
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Equations 7.2 and 7.3 generally connect the thermalization rate γth with the scattering

cross section:

γth =
ξ

α
nYbRb · v̄YbRb · σtotYbRb (7.10)

This method is a first order approximation, as it assumes a constant thermalization rate

γth during the thermalization process. It neglects changes in the mean relative velocity

v̄YbRb, which in the present experiments decreases by 5 . . . 15% during the thermalization,

depending on the 87Rb- and Yb temperatures. In addition, it does not take into account

possible temperature dependent variations of the overlap density nYbRb during the thermal-

ization process. However, this method still provides good comparability of thermalization

properties for different Yb isotopes, as the discussed simplifications are similar for all mea-

sured thermalization curves. Fits to the Yb temperature data according to this method are

included in Fig. 7.9 and results for extracted thermalization rates are presented in Tab. 7.1.

b) Initial cooling rate The second method for the extraction of quantitative results from

thermalization measurements is adapted from [9]: Fist, an exponential curve is fitted to

the Yb temperature data. For further analysis, only the initial cooling rate

Ṫ cool
Yb =

dTYb

dt

∣
∣
∣
∣
t=0

(7.11)

at tcontact = 0 is used to determine γth. For
170Yb-87Rb thermalization data, a linear fit is

used, which directly yields the respective slope.

This method has the following advantages: At the beginning of each thermalization

series, the temperature difference between Yb and 87Rb, which is included in the ther-

malization model, is large, minimizing the influence of absolute errors in the Yb and
87Rb temperature determination. Furthermore, this procedure reduces effects connected

to changes in v̄YbRb and nYbRb at increased contact times. Results based on this method

are also included in Tab. 7.1.

Method b) yields somewhat larger error bars then method a) and generally gives

10 . . . 20% larger results for γth. Within their uncertainties, however, both data analy-

sis methods are consistent.

7.2.3 Relative isotope-dependent scattering properties

Thermalization measurements as described above are performed at a BIODT power ratio,

which provides reliable thermalization between 172Yb, 173Yb, 176Yb and 87Rb at low 87Rb

temperatures. As discussed in Sec. 7.1.2, the BIODT potentials are typically set to be

in the transition regime between a repulsive and an attractive potential for 87Rb. In this

trapping geometry, it is impossible to reliably determine 87Rb densities in the trap center.

Thus, due to the unknown absolute overlap density, it is unfeasible to derive absolute

scattering cross sections from the measured thermalization rates γth according to Eq. 7.10.

However, for the case of NRb ≫ NYb, the overlap density can be approximated as

nYbRb ≈ NRb · fg, (7.12)
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Yb mass thermalization rate γth [s−1] β [10−6 m−1]

number method a) method b) method a) method b)

170
(0.15± 4.73)

×10−3

(0.53± 5.48)

×10−3

(0.5± 25.5)

×10−3

(1.6± 81.0)

×10−3

172 1.78± 0.22 2.35± 0.40 6.4± 0.78 8.19± 1.39

173 13.2± 2.5 17.9± 12.7 56.6± 12.2 75.5± 52.1

176 5.60± 0.86 6.79± 2.26 19.4± 3.0 22.6± 7.5

Table 7.1: Comparison of extracted thermalization rates γth and scattering parameters

β ∝ σtotYbRb from thermalization experiments with 87Rb and 170Yb, 172Yb, 173Yb, 176Yb

(see Fig. 7.9 and 7.10) using the two analysis methods (see text).

with an unknown proportionality factor fg depending on the trap geometry. In order to

compare relative collision properties for different Yb isotopes, it is convenient, to define a

scattering parameter

β =
γth

v̄YbRb ·NRb
. (7.13)

Under the reasonable assumption, that the geometric parameters (which are included in

fg) are comparable for all datasets, this quantity is proportional to σtotYbRb. Hence, it is

possible to compare relative interspecies scattering properties of different Yb isotopes with
87Rb.

Thermalization rate measurements performed with the same isotope combination on

different days show, that results somewhat depend on the specific BIODT beam adjustment

and light power settings. Hence, to ensure relative comparability of the data, the data for

different Yb isotopes were either taken in consecutive measurements with fixed conditions

or the results are scaled with respect to a calibration measurement using 172Yb, which is

performed each time the measurement conditions are changed.

Table 7.1 summarizes results from thermalization rate measurements using 87Rb and the

Yb isotopes 170Yb, 172Yb, 173Yb, 176Yb. A comparison of magnitudes for β ∝ σtotYbRb

shows, that the scattering cross section rises for increasing Yb isotope mass numbers from
170Yb to 173Yb. 174Yb continues this trend as it exhibits even larger interaction with 87Rb

resulting in almost instantaneous thermalization and, depending on the 87Rb density, phase

separation between the two species (see Chap. 8). The scattering cross section for 176Yb

and 87Rb is in the range between 172Yb - 87Rb and 173Yb - 87Rb (see also Sec. 9.2).

Detailed discussion on 170Yb - 87Rb

The isotope combination 170Yb - 87Rb plays an outstanding role, as no interaction between

the two species can be observed at the trapping geometry used here, which quantitatively

yields a parameter β87−170 consistent with zero.
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Figure 7.12: Thermalization curves of 87Rb and 170Yb, measured at significantly higher
87Rb densities due to increased 1064 nm ODT power P1064 ≈ 120mW.

Comparison with 172Yb The parameter β87−170 ∝ σtotYbRb for 170Yb-87Rb, as obtained

from thermalization measurements, is smaller by a factor of at least 280 compared to

β87−172. Using the relation σ0 = 4πa2 , which connects the scattering cross section σ0 in the

low energy limit with the s-wave scattering length a (see Sec. 2.1.4), the interspecies s-wave

scattering length |a87−170| is thus by a factor of at least 17 smaller compared to |a87−172|.
This comparison with 172Yb is made, as 172Yb shows the next weakest elastic interaction

with 87Rb among the Yb isotopes used in this work. This indicates an extraordinarily

small absolute value for |a87−170|.

Thermalization measurements of 170Yb at higher 87Rb density All thermalization mea-

surements discussed so far are performed at typical BIODT power settings of P1064 ≈
88mW and P532 = 343mW.

As discussed in 7.1.2, the 87Rb density is significantly increased for larger values of P1064,

where the repulsive 532 nm ODT potential is overcompensated by the 1064 nm ODT (see

Fig. 7.2), leading to stronger 87Rb confinement. As the thermalization rate is linear in

the 87Rb density, we have repeated the measurements with 170Yb under these conditions

in order to be able to detect even smaller cross sections. For these measurements, the

BIODT power settings were P1064 ≈ 120mW and P532 = 343mW. Measured 170Yb and
87Rb temperatures as a function of the contact time are shown in Fig. 7.12. In this

trapping geometry, the 87Rb temperature is generally higher due to adiabatic compression

in the effectively attractive BIODT potential. The main result is the observation of slow

thermalization of 170Yb with colder 87Rb. Both data analysis methods described above

yield consistent thermalization rates: a) γth = 0.37 ± 0.12 s−1, b) γth = 0.42 ± 0.40 s−1.

Note that the result obtained from method a) may be subject to additional systematic

uncertainties, as it does not take into account changes in the overlap density nYbRb and

the mean relative velocity v̄YbRb during the thermalization process (see discussion above).

In the present case of an effectively attractive BIODT potential for 87Rb, it is possible
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to estimate the Yb-Rb overlap integral nYbRb according to Eq. 7.5. Through Eq. 7.3, this

allows conclusions on the absolute magnitude of σtotYbRb and thus on |a87−170| for this

isotope combination. Note that nYbRb strongly depends on the BIODT beam parameters

used in the model potential, which leads to large uncertainties in the resulting quantities.

A detailed analysis of the 87Rb density error, which depends on identical experimental

uncertainties, is presented in Sec. 8.2.1. Using the measured thermalization rate, the low

energy s-wave scattering length between 170Yb and 87Rb can be approximated as

|a170−87| = 6.6+3.5
−2.9 a0 .

This result includes uncertainties from γth and, dominantly, from the overlap integral

nYbRb. Both parameters might be subject to additional systematic effects due to the in-

sufficient control of the trapping potentials or imperfect description of the thermalization

process (see discussion above). Taking this into account, the absolute value for the inter-

species length between 170Yb and 87Rb presented here has to be taken as a first approx-

imation. However, the obtained value is consistent with the results on relative scattering

properties, as for the isotope combinations 172Yb-87Rb, 173Yb-87Rb and 176Yb-87Rb, scat-

tering lengths in the range of 100 . . . 300 a0 are expected. These predictions are based on

a theoretical analysis of the NIST group [15], which is discussed in Sec. 9.2.
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Interspecies interaction II: phase separation

This chapter discusses the observation of phase separation in a thermal mixture of 174Yb

and 87Rb which is the major scientific result of the PhD work presented here. A careful

analysis of this effect allows quantitative conclusions on the interaction between 174Yb and
87Rb.

The following describes the experimental sequence and shows typical data from these

measurements. It discusses temperature and atom number measurements relevant for the

understanding of the observed phase separation process. Furthermore, the data analysis

which includes modeling of the interaction potentials and the fitting procedure is presented:

The first approach assumes a linear relation between the interaction and the 87Rb density.

On the basis of this quantitative analysis, the next part of this chapter focuses on systematic

tests performed in order to study the influence of different experimental parameters on the

interaction between 174Yb and 87Rb.

Subsequently, the quantitative results on the interaction potential are interpreted in

terms two-body scattering properties of the respective atoms. A ”naive“ mean field ap-

proach and thermal averaging of the energy dependent scattering length lead to conclusions

inconsistent with experimental observations.

In the light of this discrepancy between observations and theory, the following part dis-

cusses possible experimental issues, which may lead to incorrect results for the interspecies

interaction potential. Subsequently, the validity of the standard mean field theory in the

present case is discussed on the basis of a simple comparison of relevant length scales. Fi-

nally, a more sophisticated theoretical model, which involves nonlinear density dependent

corrections to the interaction potential, is introduced and results for the interpsecies s-wave

scattering length are presented.

8.1 Phase separation experiments

Starting point The experiments described in the following are based on the experimental

situation discussed in Chap. 7: 174Yb and 87Rb atoms are loaded and prepared in their

individual trapping potentials and brought into contact. Within a fixed contact time

tcontact = 300ms, the 174Yb cloud is sympathetically cooled to the 87Rb temperature

TRb ≈ 1.5µK. Atom numbers at this experimental stage are determined to be NRb ≈ 107

and NYb = 1.5 . . . 2 × 105 . The ideal BIODT beam power ratio and the beam alignment

is adjusted as described in sections 7.1.2 and 7.1.2.
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Figure 8.1: False color intra-trap images of 87Rb and 174Yb clouds at BIODT beam

powers P532 = 343mW and P1064 = 135mW. The 87Rb atom number increases from (a)

≈ 7.0× 105 to (b) ≈ 3.6× 106and to (c) ≈ 6.9× 106. (c) displays the radially integrated

density in the relevant regions in a combined plot.

Increase of 87Rb confinement Subsequently after the thermalization process, we increase

the 1064 nm ODT power within 100ms to a level of 120. . . 145mW creating an attractive

potential for 87Rb. The 532 nm ODT power is kept at a constant level of P532 = 343mW.

A calculated model potential for 87Rb and density distributions for both species have been

shown in the previous chapter in Fig. 7.2 for the case of P1064 = 120mW. In this trapping

geometry, both the 87Rb cloud and the axially larger 174Yb clouds are overlapping in the

trap center and the 87Rb density at the 174Yb cloud position is increased to ≈ 1014 cm−3.

Due to adiabatic compression [130], the 1064 nm ODT power ramp up is accompanied by

an increase in the 87Rb temperature to 2 . . . 3.5µK.

Observation of phase separation After the increase of the 87Rb density, we observe a

spatial separation of the two species, which depends on the number of 87Rb atoms, the
87Rb density distribution and the temperature (see below). If the optical- and the magnetic

traps are perfectly overlapping, the cloud of 174Yb is separated into two parts enclosing

the shorter 87Rb atomic cloud which is located in the center of the trapping potentials. An

inverse effect on the 87Rb cloud, i.e. an axial compression is expected to be much weaker

due to the significantly smaller 174Yb atom number. Hence it is beyond the detection

resolution of our experiment.

Unless otherwise stated, the phase separation is detected by taking images of the indi-

vidual atom clouds 20ms after the 1064 nm ODT power ramp up is completed. In order to

obtain information on 87Rb and 174Yb density distributions and their relative orientation,

we simultaneously image both atom clouds inside the trap using absorption imaging for
174Yb and the method of dark contrast imaging for 87Rb (see Sec. 4.3.3 for details on

imaging techniques). A typical series of simultaneously created intra-trap images is shown
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Figure 8.2: TOF-series of 174Yb under phase separation conditions (BIODT beam pow-

ers: P532 = 343mW and P1064 = 135mW). The temperature is extracted from the

expansion of the radial cloud size σy according to Eq. 4.15.

in Fig. 8.1. In this series, we varied the 87Rb atom number through well-defined atom

loss induced by an RF sweep with controlled RF amplitude after the thermalization of

the two atomic species (see Sec. 8.3.1). In Fig. 8.1 (c), the radial sum of pixels of both

images is combined in a single plot pointing out the relative spatial configuration of the

atom clouds. This data demonstrates a clear correlation between the 87Rb density and the
174Yb distribution: In a simple picture, the 174Yb atoms are repelled from the position of

highest 87Rb density implying a repulsive interaction potential between the two species,

which acts in addition to the external trapping potentials.

Note that the 87Rb cloud is imaged in the horizontal plane using camera 1 whereas
174Yb is imaged by camera 2 in the vertical plane (see Fig. 4.14). The relative axial

positions in the respective images are calibrated by analyzing additional images of 87Rb

clouds simultaneously taken with both cameras.

Temperature 87Rb temperatures and atom numbers are extracted from additional ab-

sorption images taken after a controlled TOF. In order to determine the temperature of
174Yb, we analyze the radial size of atom clouds imaged after a defined TOF as indi-

cated in Fig. 8.2. This figure shows a series of 174Yb images with an increasing TOF

tTOF = 1.5 . . . 3.5ms using an experimental configuration, where phase separation occurs.

The radial cloud sizes are determined by summing pixels in the axial direction and fitting

a one-dimensional Gaussian curve to this data. A fit to the obtained 1/
√
e-radii σr accord-

ing to Eq. 4.15 results in a temperature TYb = 2.03 ± 0.10µK. The corresponding 87Rb

temperature in this series is ≈ 2.1µK.

We compared the temperatures of both species under conditions, which lead to phase

separation for different 87Rb temperatures, which is shown in Fig. 8.3. In this series, the
87Rb temperature is adjusted within a range of 2.5 . . . 7µK by a variation of the final RF
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Figure 8.3: Measured 87Rb and 174Yb

temperatures for different settings of the

final radio frequency level used for evapo-

rative cooling of 87Rb.

level before both atomic clouds are brought into contact. In order to determine the individ-

ual temperatures of both species, single images at tTOF = 3.5ms (174Yb) and tTOF = 30ms

(87Rb) are analyzed according to the description in Sec. 4.3.4. The data experimentally

confirms, that TRb = TYb ≡ T is a valid assumption for phase separation measurements.

This result is related to the nearly instantaneous thermalization of 87Rb and 174Yb at the

present 87Rb density.

174Yb atom loss The observed effect of phase separation between the two atomic species

is accompanied by a rapid loss of 174Yb atoms. This is attributed to inelastic collisions with
87Rb due to the strong interspecies interaction [79]. In order to quantitatively analyze this

effect, an additional holding time after the final 1064 nm ODT power ramp up is introduced

in the experimental sequence. Figure 8.4 shows intra-trap images and extracted 174Yb atom

numbers at the configuration, where phase separation occurs, as a function of the holding

time. The 174Yb atom loss 1/e-time-constant is ≈ 210 ms for typical 87Rb peak densities

of ≈ 3× 1014 cm−3. For 87Rb, the atom number remains at an almost constant level (see

inset in Fig. 8.4). A comparison with data from experiments without 174Yb shows, that

no additional loss which is attributed to the presence of 174Yb can be observed.

The effect of 174Yb atom loss at phase separation conditions is discussed in detail in

Sec. 8.4.2. The following quantitative analysis of phase separation data, however, does not

take 174Yb atom loss into account.

8.2 Quantitative data analysis – a basic linear approach

In the following, we will develop a simple model which describes the observed phase sep-

aration quantitatively. In this model, the experimentally discovered phase separation of
174Yb and 87Rb is treated as a result of an additional interaction potential on 174Yb. This

potential UYbRb(~r, T ) is created by the interaction with the 87Rb atoms and in this first
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Figure 8.4: (a) False color intra-trap images and (b) extracted 174Yb atom numbers as

a function of the holding time at phase separation conditions. An exponential fit to the

data yields a 1/e-decay time of τ ≈ 210ms. The inset in (b) shows the corresponding 87Rb

atom number. Note that the lack of complete phase separation at 300ms and 400ms is

attributed to fluctuations in the radial ODT beam alignment.

order approach is assumed to be proportional to the 87Rb density distribution nRb(~r, T ):

UYbRb(~r, T ) = nRb(~r, T ) · Ũ(T ) (8.1)

Here, Ũ(T ) represents a normalized interaction parameter which may depend on the tem-

perature T .

In the following, the calculated model potential for 87Rb and the resulting density dis-

tribution nRb(~r, T ) is discussed for the given experimental situation. The interaction term

UYbRb(~r, T ) is subsequently included in the total potential for 174Yb. For a quantitative

analysis of the observed effect, modeled density distributions resulting from the total po-

tential for 174Yb are used as a fitting function for measured 174Yb density distributions.

Consequently, this allows the extraction of Ũ(T ).

8.2.1 87Rb model potential and density distribution

The total potential for 87Rb at BIODT beam powers typically used for phase separation

measurements (P532 = 343mW and P1064 = 135mW) is characterized by the compara-

tively flat MT contribution and a small, approximately 12µK deep dimple created by the

BIODT part (see Fig. 8.5 (a, b)). The model potentials shown here include the harmonic

approximation for URb
MT according to Eq. 3.15 and the “full” form of the BIODT potentials

URb
532ODT and URb

1064ODT according to Eq. 3.42:

URb
tot = URb

MT + URb
532ODT + URb

1064ODT (8.2)

UYb
tot = UYb

532ODT + UYb
1064ODT (8.3)
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T =2.5 µK, N = 10Rb Rb

7

-50

0

50

x @µmD

-500

0

500

z @µmD

0

20

(a) (b)

(c)

full potential harmonic approximation

Figure 8.5: Calculated 87Rb potentials URb
tot and density distributions nRb at parameters

typically used for phase separation measurements: P532 = 343mW and P1064 = 135mW.

(a) shows the x-z-plane, whereas (b) compares radial and axial cuts of URb
tot (red) with

the harmonic approximation URb

tot,harm. (blue dashed). (c) compares density distributions

at TRb = 2.5µK and NRb = 107 using URb
tot (red) and URb

tot,harm. (blue dashed).

The density distribution n(~r, T ) of a thermal cloud trapped in any potential U(~r) at a

defined temperature T is generally given by Eq. 3.17 and 3.18. This calculation, however,

involves the volume integral of U(~r), which in the present case can only be solved numer-

ically. In order to determine an analytical fitting function, however, the representation of

the interaction potential according to Eq. 8.1 requires an analytic form of n(~r). This is

achieved by a harmonic approximation of URb
tot , resulting in a Gaussian shaped 87Rb density

distribution.

At the trap center, the potential URb
tot can be approximated by a harmonic potential

according to

URb
harm.(r, z) =

1

2
mRbω

2
rr

2 +
1

2
mRbω

2
zz

2 . (8.4)

For the given BIODT configuration, the calculated radial and axial trap frequencies are

ωr = 2π× 863Hz and ωz = 2π× 23.9Hz. As shown in Fig. 8.5 (b), the harmonic potential

(blue dashed line) matches the central part of the “BIODT dimple”, but differs significantly

from the full form of URb
tot (red line) in the radially outer regions, which are dominated by
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the MT potential. The imperfect description of URb
tot by the harmonic approximation is

also reflected in calculated density distributions, which are presented in Fig. 8.5 (c) for a

typical 87Rb temperature of TRb = 2.5µK and a 87Rb atom number NRb = 107: Although

the shapes of both distributions are nearly identical, the absolute calculated peak densities

vary by a factor of ≈ 2.8. From a physical point of view, this difference is attributed to the

fact that for the given trapping geometry and 87Rb temperature, a significant fraction of

the 87Rb atoms are located outside the “BIODT dimple”, which is not taken into account

by the harmonic potential approximation.

In order to compensate for this insufficient description by the harmonic potential, a

temperature dependent correction factor for the density is introduced:

f̂(T ) =
nRb
harm.(~r = 0, T )

nRb
tot(~r = 0, T )

(8.5)

This factor compares calculated 87Rb densities in the trap center using the full potential

URb
tot and the harmonic approximation URb

tot,harm. The corrected 87Rb density distribution

n̂Rb(~r, T ) consequently includes f̂(T ) according to

n̂Rb(~r, T ) =
1

f̂(T )
· nRb

harm.(~r, T ) . (8.6)

Figure 8.6 (a) shows calculated values of f̂(T ) at the present trapping geometry for

T = 0 . . . 4.5µK together with a fit using a polynomial of degree 4 (red line). At low tem-
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Figure 8.6: (a) Correction factors for the 87Rb density depending on the temperature for

P532 = 343mW and P1064 = 135mW. (b,c) Comparison of cuts along the radial and axial

direction of resulting density distributions using URb
tot and URb

tot,harm. including f̂(T ) for

TRb = 2.5µK and NRb = 107.
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peratures T < 1µK, f̂(T ) can be neglected in density distribution calculations, whereas

for typical temperatures used in the present experiments (T = 2 . . . 3.5µK), it plays a

significant role. The increase of f̂(T ) with temperature is due to the fact that more and

more 87Rb atoms are accumulated outside the harmonic region in the trap center. How-

ever, by including f̂(T ), calculated Gaussian shaped 87Rb density distributions n̂Rb(~r, T )

using the harmonic potential according to Eq. 8.4, describe the experimental situation with

sufficient accuracy as illustrated in Fig. 8.6 (b,c). Over the complete trapping region, the

density distributions agree within 5% of the 87Rb peak density. They differ slightly in

the radial direction for z = 0 and |r| > 5µm, where n̂Rb(~r, T ) tends to underestimate the

“real” 87Rb density. In phase separation measurements however, the 174Yb cloud is split

into two parts, which are axially separated by the 87Rb cloud located in the trap center.

These experiments probe the parts of the interaction potential, where both clouds overlap.

Hence, the relevant regions are typically located at axial positions |z| > 100 . . . 200µm. In

this region, n̂Rb(~r, T ) differs from the density distribution based on the full potential URb
tot

at a level below < 2% of the 87Rb peak density.

Note that for different BIODT beam powers, the temperature dependent correction

factor f̂(T ) changes. For a quantitative analysis of the data, f̂(T ) is calculated each time

using the respective trapping parameters.

Absolute 87Rb density

The calculation of absolute values for the 87Rb peak density n0,Rb at a given temperature T

strongly depends on the BIODT beam parameters used in the model potential (see discus-

sion in Sec. 7.1.2). As a result, uncertainties in the BIODT beam waists w532 and w1064 are

the dominating contribution for the error of n0,Rb
1. Additionally, the experimental deter-

mination of the 87Rb atom number is subject to systematic uncertainties (see Sec. 4.3.5).

Table 8.1 summarizes the error budget of the 87Rb peak density n0,Rb assuming a 5% error

in the 87Rb temperature on a 10% error in the atom number. For the determination of the

total error σtotn , the error contributions σin resulting from the uncertainties of the respective

parameters i (i = w532, w1064, T,NRb) are calculated independently. Consequently, σtotn is

obtained according to [140]:

σtotn

n0,Rb
=

√
∑

i

σin
n0,Rb

with i = w532, w1064, T,NRb (8.7)

This model calculation uses only one set of typical experimental parameters. Further

analysis however shows, that within the relevant range of BIODT beam powers and 87Rb

temperatures, the final relative error bars of +85%
−61% for the 87Rb density are practically

unchanged.

From a physical point of view, the large error bars for n0,Rb result from the fact, that

the BIODT consists of two potentials with small uncertainties in their parameters. In

1Beam waists are obtained from trap frequency measurements (see Sec. 6.1.2), assuming perfect Gaussian

beam shapes. Possible deviations from this case are not accounted for in the respective error bars. However,

the relevant parameter for 87Rb density calculations is the relative error of both ODT beam waists, which

can be well assumed to be in the specified error range.
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calculated absolute relative
value & 87Rb density error error

parameter error [1014 cm−3] contribution contribution

532 nm ODT beam waist w532 15.78+0.20
−0.20 µm 2.73 +1.01

−0.85
+37%
−31%

1064 nm ODT beam waist w1064 14.71+0.25
−0.25 µm 2.73 +1.94

−1.23
+71%
−45%

87Rb atom number NRb 1+0.10
−0.10 × 107 2.73 +0.27

−0.27
+10%
−10%

87Rb temperature T 2.5+0.13
−0.13 µK 2.73 +0.54

−0.43
+20%
−16%

87Rb density n0,Rb and total error σtot
n

: 2.73 +2.32
−1.66

+85%
−61%

Table 8.1: Error budged for determination of the 87Rb density for typical BIODT pa-

rameters used in phase separation experiments: P532 = 343mW and P1064 = 135mW

the case of 87Rb, a repulsive and attractive contribution are added resulting in a small

attractive total potential. This process strongly increases the relative uncertainty in the

BIODT potential, which is used for calculations of n0,Rb.

Note that the relative comparability of data based on constant trapping geometry is not

subject to the large errors in the absolute 87Rb density. For fixed BIODT parameters,

the relative errors only involve uncertainties from 87Rb temperature and atom number

determinations.

8.2.2 174Yb potential and density distribution including the interaction term

The total potential for 174Yb including the interaction term UYbRb(~r, T ) is given by

UYb
tot (~r, T ) = UYb

BIODT(~r, T ) + UYbRb(~r, T )

= UYb
BIODT(~r, T ) +

1

f̂(T )
· nRb

harm.(~r, T ) · Ũ(T ) . (8.8)

This representation uses the Gaussian shaped form for the 87Rb density distribution ac-

cording to Eq. 8.6. For a more convenient description, the magnitude of the interaction

potential in the trap center,

U0 ≡ UYbRb(~r = 0, T ) , (8.9)

is introduced. Figure. 8.7 (a-d) shows calculated axial cuts of the 174Yb potentials and the

resulting density distributions for a cloud of NYb = 105 174Yb atoms at T = 2.5µK. The

plots (a) and (b) present the unperturbed case, while in (c) an interaction potential UYbRb,

proportional to the 87Rb density distribution at T = 2.5µK and with a maximum value

of U0/kB = 12µK is added to the BIODT potential. The resulting 174Yb distribution is

shown in (d). In addition, Figure. 8.7 (e) illustrates 174Yb distributions in the r-z-plane
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Figure 8.7: Calculated axial potentials (a, c) and density distributions (b, d, e) for 174Yb

for T = 2.5µK and NYb = 105. For a direct comparison, the calculated 87Rb density

distribution at T = 2.5µK is included in (d, e).

at T = 2.5µK for increasing interaction potentials U0/kB = 0 . . . 12µK. Subfigures (d)

and (e) also contain calculated 87Rb density distributions, allowing a direct comparison

of the two distributions. The model potentials used in these calculations include the full

form of UYb
532ODT and UYb

1064ODT according to Eq. 3.40 and the Gaussian shaped 174Yb-87Rb

interaction potential as discussed above. Calculated 174Yb density distributions presented

here, qualitatively match the observations from phase separation measurements: For an

increasing repulsive interaction potential, the 174Yb density in the trap center is reduced.

Finally, the cloud is separated into two parts that are axially well separated from each

other, enclosing the 87Rb cloud in the trap center.

8.2.3 Quantitative analysis of the interspecies interaction

In order to quantitatively characterize the interaction potential between 174Yb and 87Rb,

we use the calculated 174Yb density distribution as a fitting function on the experimental
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data. The magnitude of Ũ(T ) is a free parameter, while the temperature and the 87Rb

density distribution are experimentally determined.

a) Auxiliary fitting function

The 174Yb density distribution in phase separation measurements is identified by intra-trap

images of the atomic cloud. At the present temperatures of ≈ 2.5µK, the radial dimension

of atomic cloud (1/e2-radius σr ≈ 3µm) is beyond the resolution of our imaging system (see

Sec. 4.3.1). As a result, the image of the 174Yb cloud extends radially over a range of only

a few pixels (see Fig. 8.9), which does not allow the extraction of any usable information

on the density distribution in this direction. Hence, the pixel values are summed over

the relevant range in the radial direction, resulting in an integrated linear density, which

depends only on the axial coordinate z.

In order to compare this data with calculated density distributions, the linear density

n̂Yb(z) of the model distribution has to be calculated by integrating over the radial direc-

tion:

n̂Yb(z) =

∞∫

0

nYb(~r) · 2πrdr =
∞∫

0

n0 · exp
(

−U
Yb
tot (~r, T )

kBT

)

· 2πrdr (8.10)

This equation includes the volume integral in cylindrical coordinates assuming axial sym-

metry and Eq. 3.17. However, for UYb
tot (~r, T ) according to Eq. 8.8, this integral can not be

solved analytically. Therefore, Eq. 8.10 can not be used as an analytic fitting function for

the data.

In order to solve this problem, an auxiliary fitting function is introduced, that matches

the relevant characteristics of the “real” function (8.10) and is analytic. In the automated

fitting process, the auxiliary function is used and subsequently the corresponding parame-

ters of n̂Yb(z) are determined.

Due to the cylindrical symmetry of the density distribution, the distribution of nYb(~r)

along the z-axis, nYb(r = 0, z) exhibits similar characteristics as the integral
∫∞
0 nYb(~r) ·

2πrdr. Hence, nYb(r = 0, z) is used as an auxiliary fitting function for the data. However,

depending on the magnitude of the interaction potential U0 included in UYb
tot (~r, T ) and the

temperature T , the shapes of both functions do not exactly match in the relevant region.

Hence, a scaling factor ξ(U0, T ), which takes this into account, is introduced according to:

∞∫

0

nYb(~r, U0) · 2πrdr = const. · nYb(r = 0, z, ξ(U0, T ) · U0) . (8.11)

Note that the right side of this equation also includes a constant factor that adjusts the

absolute magnitude of both functions2. Figure 8.8 shows both the auxiliary function in-

cluding the correction factor ξ(U0, T ) (red line) and the “real” 174Yb density distribu-

tion (8.10) (black dots) for increasing values of U0. Within the relevant parameter range

2The unit of this factor is m2 in order to match the left side of Eq. 8.11, which represents the physical

meaning of a linear density.
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Figure 8.8: Comparison of the auxiliary fitting function nYb(r = 0, z, ξ(U0, T ) · U0) (red

line) and
∫
∞

0
nYb(~r, U0)·2πrdr (black dots) for different values of the interaction potential

U0 at a fixed temperature T = 2.5µK

(T = 1 . . . 7µK, U0/kB = 0 . . . 25µK), the values of ξ(U0, T ) are determined by numeri-

cally solving the integral in Eq. 8.10 and comparing this data with the auxiliary function

nYb(r = 0, z). Subsequently, a two-dimensional polynomial fit with a maximum order of 2

in T and U0 is applied to the data for ξ(U0, T ) in order to obtain an analytical correlation

between the auxiliary fitting function and n̂Yb(z) according to (8.10). Typical values of

the correction factor ξ(U0, T ) are in the range of 0.6 . . . 0.8 and the fit deviates from the

numerically calculated values of ξ(U0, T ) by less than 2% across the relevant parameter

range for T and U0.

The extraction of the interaction potential magnitude U0 based on 174Yb density distri-

butions from phase separation measurements includes two steps: First, the data is fitted

using the auxiliary function nYb(r = 0, z), which yields a parameter U0,fit. The peak

interaction potential U0 is then determined by solving the equation

U0,fit = ξ(U0, T ) · U0 , (8.12)

where T acts as a fixed parameter, which is obtained experimentally.

The validity of this indirect determination of U0 has been verified by numerically creating

test data for variable parameter sets and using the fitting procedure described above.

b) Fitting procedure

The following section summarizes the fitting procedure used for the phase separation mea-

surements, including the methods described above.

The experimental data are based on intra-trap images of the 174Yb cloud. By summing

over relevant pixel values in the radial direction, a 1-dimensional distribution of linear

densities along the z-axis is obtained. Figure 8.9 illustrates this step according to three

typical examples. The background level of all data sets is adjusted by averaging pixel
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values within a defined region, where no 174Yb atoms are present. This mean background

value is then subtracted from all pixel values of the respective data set.

Fitting parameters The fitting function used for this data is given by Eq. 8.11, and with

the use of (8.8), (6.15) and (3.17), it can be written as

nYb(r=0, z,∆z1,∆z2, T, U0,fit) = n̂0 · exp
(

−U
Yb
tot (r=0, z, . . . )

kBT

)

with

UYb
tot (r=0, z, . . . ) = UYb

532ODT(r=0, z−∆z1−∆z2, T ) + UYb
1064ODT(r=0, z−∆z1, T )

+
n̂Rb(r=0, z−∆z1, T )

n̂Rb(r=0, z=0, T )
· U0,fit . (8.13)

It includes a variable amplitude (here: n̂0) and a free parameter ∆z1, which is used to

determine the center of the interaction potential in the z-direction.

As shown in Fig. 8.9, the summed density distributions are typically not perfectly sym-

metric in the z-direction. This effect is attributed to an imperfect axial alignment of the

two independent ODT beams (see Sec. 7.1.2) and residual relative movement of the two

clouds. It results in axially different positions of the 87Rb- and 174Yb cloud centers as the

(attractive) potential for 87Rb is defined by the 1064 nm ODT beam whereas the 174Yb

potential is dominated by the 532 nm ODT beam. In order to take this into account, the

relative axial position of the optical potentials is treated as an additional free parameter

∆z2 in the fit.

The only other free fitting parameter is the interaction potential magnitude U0,fit, which

determines the shape of the 174Yb density distribution in the center region.

On the contrary, the temperature T included in the fit is extracted from the correspond-

ing 87Rb image (see discussion in Sec. 8.1) and acts as a fixed parameter.

Automated fitting routine A set of data from multiple 174Yb images can be processed

in an automated fitting routine using the programming language Mathematica 5. The

determination of the optimum fitting parameters is based on a nonlinear least square

algorithm using a method according to Levenberg-Marquardt [141, 142].

Figure 8.9 shows typical examples of experimental data and the corresponding fit to-

gether with the residual of the fit. These data sets all originate from a series of phase

separation experiments, where the 87Rb atom number was changed in a controlled way,

while the temperature was kept approximately constant. As the 87Rb atom number is in-

creased from 1.7×106 in Fig. 8.9 (a) to 3.9×106 in (b) and 9.8×106 in (c), the magnitude

of the peak interaction potential U0 also increases. As a result, a greater number of 174Yb

atoms are repelled from the center region of the trap, creating a larger and larger dip in

the integrated density distribution.

The quality of the fit can be estimated by the χ2-test, which compares all n measured

data pointsmi with the corresponding values hi calculated by the fitting function according
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Figure 8.9: Illustration of the fitting procedure according to 3 typical examples.
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to [140]

χ2 =
n∑

i=1

(hi −mi)
2

σ2i
. (8.14)

Here, σi ≡ σ represents the (constant) error of each data point, which in the present case

is estimated by calculating the standard deviation of the data points in the background

region, where no 174Yb atoms are present. It is convenient to define the reduced χ2 as

χ2
ν = χ2/ν (where ν is the number of degrees of freedom), with the general expectation

value 〈χ2
ν〉 = 1. Typical fits on 174Yb distributions as displayed in Fig. 8.9 yield reduced

χ2-values χ2
ν = 1.0 ± 0.1, indicating that the fitting function describes the experimental

data very well.

Statistical error of the fitting parameters The statistical error of the magnitude of the

interaction potential U0 obtained by the described fitting routine is determined in a first

order approximation using the signal-to-noise ratio of the respective data set. This quantity

itself is calculated as σ/max(hi) and results in typical relative errors for U0 on the order

of 10 . . . 20%.

Note that generally, errors in fitting parameters are obtained by finding the change in

each parameter to produce a change of χ2 of 1 from the minimum value after reoptimizing

the fit. This method is manually applied to selected test data sets and the resulting error

bars for U0 are consistent with the results from the signal-to-noise method. Due to its

complexity, however, this more sophisticated approach is not implemented in the auto-

mated fitting routine. Taking into consideration, that the dominating error contribution

for further analysis of this data is given by the large uncertainty in the 87Rb density (see

Sec. 8.2.1), this simplification seems legitimate.

8.3 Results and Systematic tests

This section describes the quantitative results from phase separation measurements with
174Yb and 87Rb. According to the fitting method described above, the magnitude of

the interaction potential is extracted from 174Yb density distributions based on intra-trap

images.

The interaction potential according to Eq. 8.1 assumes a linear dependence on the 87Rb

density. This prediction is tested experimentally using several series of data with controlled
87Rb atom numbers at fixed temperatures. These results are combined in order to obtain

a final value for the normalized interaction parameter Ũ(T ).

Additional data sets probe the temperature dependence of the interaction in a range of

1.5 . . . 6.5µK. Furthermore, experiments are performed using pure optical potentials and
87Rb in the |F = 2,mF = 2〉 > spin state. Finally, the properties of different Yb isotopes

are tested under conditions, where phase separation occurs with 174Yb.
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8.3.1 Density dependence

The quantitative analysis of phase separation experiments as described in the previous

section is based on the basic assumption, that the interaction potential affecting the 174Yb

atoms is directly proportional to the 87Rb density:

UYbRb(~r, T ) = nRb(~r, T ) · Ũ(T ) (8.15)

This dependency is experimentally tested by several different methods:

a) Variation of the 87Rb confinement: As described in Sec. 7.1.2, the 87Rb density in

the trap center strongly depends on the power ratio of the two ODT beams. Using a fixed

power level of 343mW for the 532 nm ODT beam, the 87Rb density in phase separation

experiments is controlled by changing the 1064 nm ODT beam power at the end of the

final ramp up within a range of 100 . . . 145mW. This experimental sequence is illustrated

in Fig. 8.11 (a), further details can also be found in Sec. 8.1. Figure 8.10 shows combined

results of 6 different data sets for U0 and the respective measured temperature TRb as a

function of the present 87Rb density nRb. The results are in qualitative agreement with the
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Figure 8.10: (a) Fitted interaction potential magnitudes U0 depending on the present
87Rb density. This plot combines 6 data sets, which are characterized by different colors.

Note that the absolute 87Rb density is subject to large error bars of +85%
−61%. The dashed line

indicates P1064 ≈ 115mW. Data points below this level are additionaly liable to relative

errors, as the total 87Rb potential tends to be unclearly defined for lower 1064 nm ODT

powers. (b) Corresponding measured 87Rb temperatures.

assumed proportionality. However, the following experimental issues for these data sets

have to be carefully considered:

• The 87Rb density in the trap center is calculated for each data point in Fig. 8.10

using the measured 87Rb temperature and -atom number and the model potential

based on the particular BIODT beam powers. As discussed in Sec. 8.2.1, the error

bars of this quantity are large due to uncertainties in the BIODT beam waists.
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• Despite the large errors of nRb, the relative comparability of these data points is

valid, as long as the respective BIODT beam powers lead to defined attractive op-

tical potentials for 87Rb. For lower 1064 nm ODT powers (indicated by the gray

area in Fig. 8.10), the 87Rb potential is closer to the case, where the effects of the

attractive 1064 nm beam and the repulsive 532 nm beam cancel (see Fig. 7.2). In

this regime, the calculated 87Rb density in the trap center is even more sensitive

to the underlying beam parameters. Furthermore, experimental imperfections such

as relative misalignment of the ODT beams tend to have greater relative effect on

measured values of U0 for lower 1064 nm ODT powers. As a result, data points be-

low P1064 ≈ 115mW exhibit larger spread. Hence, they are not included in further

quantitative analysis.

• In the experimental sequence used for phase separation measurements, the 87Rb tem-

perature rises within the 1064 nm ODT power ramp up due to adiabatic compression

(see Sec. 8.1) to a level, which depends on the final 1064 nm ODT power. Hence,

altering the 1064 nm ODT power within a series of measurements simultaneously

changes T . As shown in Fig. 8.10 (b), the temperature connected to the present data

sets ranges from ≈ 1.5µK for low 1064 nm ODT power settings up to ≈ 3.1µK for

high 1064 nm ODT powers and 87Rb densities.

In summary, the variation of the final 1064 nm ODT power in phase separation measure-

ments provides an experimentally simple way to change the 87Rb density in the trap center

and the results qualitatively confirm the assumed linear nRb-dependence of the interspecies

interaction potential. Especially for lower 1064 nm ODT beam powers, however, the present
87Rb density is subject to increased relative fluctuations and its absolute determination

leads to large error bars. Furthermore, altering the final 1064 nm ODT power simultane-

ously changes a second experimental parameter, namely the temperature of both atomic

species.

b) Variation of the 87Rb atom number Since for large 87Rb densities the clouds are

already separated, the 174Yb only probes the 87Rb density at the edge, which is lower

than the peak density. Hence, deviations of the linearity cannot be observed for large
87Rb densities (using the method described above) alone. In order to overcome these

limitations, an experimental sequence is designed, which exclusively changes the 87Rb

density while leaving all other experimental parameters constant. The basic idea is, to

include a controlled 87Rb atom loss procedure without interfering with the temperature and

the 174Yb atoms right before phase separation conditions are established. This approach

is realized by the following sequence, which is illustrated in Fig. 8.11 (b):

Starting from the point, where both species are in contact and the interspecies thermal-

ization process is finished, the 1064 nm ODT power is not directly ramped up to create the

experimental situation required for phase separation measurements. Instead, we ramp the

1064 nm ODT beam power down to 0 within 50ms, leaving behind only the MT and the

523 nm ODT, which represents a repulsive potential for the 87Rb atoms. This ramp down

temporarily separates the two atomic species, allowing a controlled removal of 87Rb with-
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Figure 8.11: Comparison of different experimental procedures used to control the 87Rb

density in phase separation measurements. (a) Sequence used for variation of the 87Rb

confinement; (b) sequence for variation of the 87Rb atom number.

out significantly affecting the present 174Yb atoms. The 87Rb atom loss itself is induced

by a 5ms long RF sweep from 900 kHz to 0. As this RF sweep takes place on a time scale

much smaller than required for effective rethermalization of atoms in an evaporative cool-

ing ramp, the temperature of the ensemble remains approximately constant. This is also

confirmed experimentally. The RF sweep can rather be seen as an non-adiabatic removal

of 87Rb atoms of all energy classes. The fraction of 87Rb atoms removed from the trap

is determined by the RF amplitude used during the sweep. Subsequently, the RF is set

back to its original level and phase separation conditions are achieved by ramping up the

1064 nm ODT beam power to a fixed level.

Resulting peak interaction potentials U0 and measured temperatures are shown as a

function of the 87Rb atom number in Fig. 8.12. This plot includes typical data, which is

obtained using the following experimental parameters for the phase separation measure-

ments: P532 = 343mW, P1064 = 143mW. As shown in Fig. 8.12 (b), the data is taken at

a temperature of 3.3± 0.2µK, independent of the actual 87Rb atom number. The dashed

red line in Fig. 8.12 (a) indicates the direct proportionality between U0 and the 87Rb

atom number, which itself is proportional to nRb for the given case where all other exper-

imental parameters are kept constant. Hence, the assumption on the interaction potential

UYbRb ∝ nRb as given in Eq. 8.15 is qualitatively verified within the uncertainties of the

present measurements.

8.3.2 Temperature dependence

The results from density tests presented in the previous section do not show a significant

temperature dependence of the normalized interaction parameter Ũ(T ) within the probed
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(a) (b)

Figure 8.12: Fitted (a) interaction potential magnitudes U0 and (b) corresponding tem-

peratures depending on the 87Rb density The dashed red line indicates the direct propor-

tionality.

temperature range of T = 1.5 . . . 3.5µK (see Sec. 8.3.4). The different temperatures in

these measurements, however, result from variations in the trapping potentials present in

the respective experiments.

In order to obtain better defined information on the temperature characteristics, we per-

formed additional phase separation measurements at different temperature settings using

fixed parameters for the trapping potentials. The 87Rb temperature is controlled by a

variation of the final RF level νRF before both atomic clouds are brought into contact. Af-

ter the thermalization time, conditions for phase separation measurements are created by

ramping up the 1064 nm ODT power to a fixed level. A change of νRF = 2.0 . . . 0.65MHz

reduces the temperature TRb = TYb ≡ T during phase separation experiments from ≈ 7µK

to ≈ 2.5µK. In general, a temperature reduction obtained by further evaporative cooling

is accompanied by a loss of atoms. In the present case, the 87Rb atom number ranges from

≈ 3.5× 107 at 7µK to ≈ 5× 106 at 2µK. Nonetheless, the peak 87Rb density in the trap

center rises during the temperature decrease from ≈ 1× 1014 cm−3 to ≈ 2× 1014 cm−3.

Using the present trapping geometry, the temperature range for phase separation mea-

surements is limited due to the following experimental issues: The lowest obtainable 87Rb

temperatures are limited by the temperature increase due to adiabatic compression to

≈ 2µK. Lowering the total potential for 87Rb would reduce the temperature, but this

would also lead to a more sensitive experimental situation and larger statistical spread

in the fitted interaction parameters (see Sec. 8.3.1). On the other hand, the qualitative

analysis of phase separation measurements at higher temperatures is limited as the 87Rb

density lowers below a treshold level. At T > 7 . . . 8µK, the reduction of the 174Yb density

in the trap center due to the repulsive interaction with the 87Rb cloud becomes hard to

detect at the given signal-to-noise ratio. As a result, the fitting routine yields unreliable

and strongly fluctuating results.

Figure 8.13 shows extracted normalized interaction parameters Ũ(T ) as a function of the
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Figure 8.13: Extracted normal-

ized interaction parameters as a

function of corresponding mea-

sured temperature. This plot

combines results obtained with

different 1064 nm ODT power

settings and shows the mean

(red line) and standard devia-

tion (dashed res lines) of all data

points.

measured temperature within 2µK< T < 7µK. Each data point is obtained by dividing

fitted values of U0 by the corresponding calculated 87Rb peak density nRb. The majority

of the data included in this plot results from phase separation measurements performed

at a final 1064 nm ODT power P1064 = 143mW. Additional sets using P1064 = 126mW

complement this experimental series. Error bars of the individual data points contain

fitting uncertainties and take into account the statistical spread. They do not include the

uncertainty of nRb, as it is irrelevant for a relative comparison of the data. The red line in

Fig. 8.13 indicates the weighted mean of all data points and the dashed red lines represent

the standard deviation.

The most important conclusion of these measurements is, that phase separation between
87Rb and 174Yb is unambiguously observed at temperatures up to ≈ 7µK . Furthermore,

the results for U0 do not show a significant temperature dependence in the range of T =

2.5 . . . 7µK within experimental uncertainties. Despite the slight overall increase between

3µK and 4µK, the distribution of data points is consistent with a temperature independent

interaction potential.

Note that the additional temperature dependence measurements are performed after

a complete readjustment of the BIODT optical system. It is probable, that this process

involved changes of the ODT beam parameters on a significant level. Although the results of

these complementary measurements are consistent with results from original experiments,

they are not included in the final value for Ũ(T ) presented in Sec. 8.3.4. The relative

comparability of the results based on these separate experiments, however is still justified.

8.3.3 Pure optical potentials

All results presented in this section so far are based on experiments using the BIODT

potentials as well as the MT potential. Additional measurements described in the following

show, that the effect of phase separation is also observed when the MT is turned off.

Omitting the MT alters the conditions used for the qualitative analysis of the data.

Hence, adapting the calculated model potentials to the new experimental situation probes
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their validity and robustness under parameter changes.

Furthermore, the pure optical approach probes the interaction between 87Rb and 174Yb

under a small variation of the magnetic field. In the trap center, the magnetic field is

changed by the amount of the offset B0 ≈ 0.8 G (see Sec. 4.1), when the MT is turned off.

Experimentally, phase separation measurements in pure optical potential are based on

the sequence for 87Rb atom number series (see Sec. 8.3.1 and Fig. 8.11 (b)). After the

final 1064 nm ODT power ramp up, the MT is shut down within 5ms. This situation

is then kept constant for a total holding time of 70ms before images of both the 174Yb-

and the 87Rb cloud are taken. The RF used for evaporative cooling of 87Rb is turned off

simultaneously with the MT.

During the ramp down of the magnetic potential, all (high energetic) 87Rb atom located

outside the potential “dimple” created by the BIODT are lost from the trap. At the

present BIODT parameters P532 = 343mW and P1064 = 143mW, the 87Rb atom number

is reduced by a factor of ≈ 2.1. Simultaneously, the measured temperature of the remaining
87Rb atoms is decreased to ≈ 1.6µK by plane evaporation. In a rough description, turning

off the MT can be seen as a hard step in an evaporative cooling ramp.

The analysis of data from these measurements is nearly equivalent to the usual procedure.

The main difference is, that the correction factor (8.5) for the 87Rb density, which takes into

account 87Rb atoms located outside the “BIDOT dimple”, is omitted in the calculation of

the fitting function. As only the optical potentials are present, the harmonic approximation

for the 87Rb density given in Eq. 8.4 describes the situation with sufficient accuracy.

Phase separation measurements using pure optical potential involved 2 series with varied
87Rb atom numbers at fixed ODT parameters P532 = 343mW and P1064 = 143mW.

Extracted normalized interaction parameters Ũ(T ) are consistent with the results based

on measurements with the both optical and magnetic potentials. At the given accuracy

level, no effect of the magnetic field change on interaction properties between 87Rb and
174Yb can be observed. Hence, the data is included in the combined results shown in

Fig. 8.14 (data points labeled (1)).

8.3.4 Combined results for Ũ(T )

On the basis of a linear dependence between UYbRb(~r, T ) and nRb(~r, T ), the normalized

interaction parameter Ũ(T ) = UYbRb(~r, T )/nRb(~r, T ) generally describes the interaction

energy of 87Rb and 174Yb atoms at a given temperature T . It can be extracted from the

present data by dividing fitted values of U0 by the corresponding measured 87Rb peak

density nRb. Figure 8.14 combines results for Ũ from different experimental series as a

function of the mean temperature of the respective series. Data points labeled as (2)

and (4) originate from 87Rb density tests according to method b) described in Sec. 8.3.1

with fixed final 1064 nm ODT beam powers P1064 = 126mW and P1064 = 143mW. Lower

mean temperatures in (2) compared to (4) are connected to the smaller 87Rb temperature

increase during the 1064 nm ODT power ramp up. The results (1) are based on 87Rb atom

number series using pure optical potentials without the MT potential (see Sec. 8.3.3).

Finally the blue data point (3) combines results from density tests according to method
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(1) (2) (3) (4)
Figure 8.14: Combined results for Ũ(T )

depending on the mean temperature of the

corresponding series. See text for details.

b) described in Sec. 8.3.1 for P1064 > 115mW. Data point (3), originating from the series,

where the 1064 nm ODT power is altered, has a larger error bar in the x-direction, due to

the temperature variation within this data set.

In general, the error bars of the individual results take into account fitting errors of

individual data points and the statistical spread of data points within the respective mea-

surement series. In order to compare the relative results from the individual series, the

systematic error of the absolute 87Rb density is not included in the data points shown in

Fig. 8.14.

As results from data sets with different temperature overlap within their error bars,

they have been combined to give a single mean value of the interaction parameter Ũ(T ) .

Indicated by the red line in Fig. 8.14, the weighted mean of the results presented here is

〈Ũ(T )〉 = 8.06× 10−14 µK/cm−3. Taking the large error of +85%
−61% of nRb into account, the

normalized interaction parameter results in

〈Ũ(T)〉 = (8.06 +12.7
−4.06)× 10−14 µK/cm−3

for the given temperature range of T = 1.5 . . . 3.5µK.

Note that a total number of 80 single measurements from 6 series according to method

a) in Sec. 8.3.1 and 6 series according to method b) contribute to this result. The fact that

measurements performed with different experimental parameters yield consistent results,

indicates that the underlying model potentials used for the extraction of this data describe

the experimental situation correctly.

8.3.5 87Rb in the F = 2 spin state

Another way to learn more about the nature of the strong interaction between 87Rb and
174Yb is to change the hyperfine state occupied by the 87Rb atoms. Besides the |52S1/2,
F = 1,mF = −1〉 state, which is used in the majority of experiments presented here, the

|52S1/2, F = 2,mF = 2〉 state is also a low field seeking and hence magnetically trappable

state for 87Rb atoms (see Sec. 3.2.1). Figure 8.15 illustrates ground state potentials of

YbRb molecules involving the 87Rb ground state hyperfine splitting. Comparing interac-
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Figure 8.15: Basic diagram of YbRb molecular ground state potentials. In this first order

approximation, the 87Rb ground state hyperfine splitting translates in a simple energy

shift of the molecular potential without changing its shape. Feshbach resonances are only

possible in the lower hyperfine state. Only atoms in this state could resonantly couple

to a closed bound level belonging to an energetically higher molecular potential. If no

Feshbach resonances are involved, interaction properties are determined by the energy

position of the molecular bound state closest to the dissociation limit. This parameter

itself depends on the potential characteristics, which can be probed by phase separation

measurements using different 87Rb hyperfine levels.

tion properties of 87Rb and 174Yb using different 87Rb hyperfine states probes two effects:

First, the involvement of a Feshbach resonance in the interspecies interaction is tested, as

it is only possible in the lower |F = 1,mF = −1〉 hyperfine state3. Second, information

obtained by these experiments allows conclusions on the relative form of the molecular

potentials, which are distinguished by the 87Rb hyperfine level. A first order approxima-

tion, as illustrated in Fig. 8.15 assumes, that the molecular potential connected to the
87Rb |F = 2,mF = 2〉 state is simply shifted in energy by the amount of the atomic 87Rb

hyperfine splitting with respect to the |F = 1,mF = −1〉 potential. However, higher order

effects like coupling to excited state potentials could slightly change the potential. In this

case, the relative energetic position of the last molecular bound state with the dissocia-

tion limit, could be different, leading to a dramatic change in the 87Rb-174Yb interaction

properties.

Experimentally, 87Rb atoms are prepared in the |F = 2,mF = 2〉 state by turning on

the repumper 2 laser for 50µs during the MT loading phase (see Sec. 5.3 for details on

the 87Rb preparation process). As this light is resonant with the |F = 2〉 → |F ′ = 3〉
transition of the D2 line, it optically pumps the 87Rb atoms into the desired state. The

3In the system YbRb, Feshbach resonances are generally suppressed, as the lowest order coupling mech-

anism requires a selection rule ∆mF = 0 between the entry channel and the closed channel. Due to the

absence of magnetic moment in (bosonic) Yb in the ground state, this condition can not be fulfilled.
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dard deviation (dashed res lines) of all

data points as well as the combined re-

sults of all experiments using 87Rb in

the |F = 1,mF = −1〉 state is shown.

correct mF -sublevel is preferentially populated using a defined circular light polarization

with respect to the magnetic field direction. This parameter is optimized experimentally

in order to obtain the maximum 87Rb atom number in the MT. Nonetheless, the resulting
87Rb atom number in the |F = 2,mF = 2〉 state is a factor of ≈ 2 smaller compared to

corresponding |F = 1,mF = −1〉 state experiments.

We performed different series of phase separation measurements with varied 1064 nm

ODT powers and 87Rb temperatures using 87Rb in the |F = 2,mF = 2〉 state. Phase

separation of 87Rb and 174Yb is clearly observed. The quantitative data analysis takes into

account the different magnetic potential, which especially in the axial direction leads to

significantly higher confinement of the 87Rb cloud. Figure 8.16 presents combined results

of extracted normalized interaction parameters Ũ(T ) using |F = 2,mF = 2〉 state 87Rb

atoms. The data covers a temperature range of 2.7 . . . 4µK, arising from varied optical

potential parameters or final RF levels during the individual measurements. The weighted

mean value of these results including their standard deviation overlaps with the combined

results of measurements with 87Rb in the |F = 1,mF = −1〉 state.
Hence, our experimental results indicate that the adiabatic potentials for 87RbF=1

174Yb

and 87RbF=2
174Yb are identical. The assumption, that both molecular potentials are

simply shifted in energy by the amount of the atomic 87Rb ground state hyperfine splitting

seems correct. In addition, it can be ruled out, that Feshbach resonances play an important

role for the observed extraordinarily strong interaction.

8.3.6 Different Yb isotopes

The interaction properties of 87Rb and Yb strongly depend on the respective Yb isotope,

which is experimentally demonstrated in thermalization measurements of both species (see

Sec. 7.2 and [9]). This behavior is attributed to mass-dependent changes in the xYb87Rb

ground state molecular potential and hence the energetic position of its last bound state.

As indicated by thermalization measurements in the temperature range below 10µK, the

interaction between 174Yb and 87Rb is exceptionally large compared to all other trappable
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Yb isotopes. As a result, the effect of phase separation of the two species is only observed

with 174Yb. Experiments performed at conditions resulting in phase separation of 174Yb

and 87Rb do not show any sign of phase separation when the isotopes 172Yb, 173Yb and
176Yb are used. The isotopes 170Yb and 171Yb are not explicitly tested under phase separa-

tion conditions, as thermalization measurements with 87Rb already demonstrate negligibly

small interaction between these species and 87Rb (see Sec. 7.2). Figure 8.17 compares
173Yb and 174Yb intratrap images resulting from identical experimental conditions. This
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Figure 8.17: False color intratrap images

of 173Yb and 174Yb clouds under identi-

cal experimental conditions: BIODT beam

powers P532 = 343mW and P1064 =

143mW; 87Rb atom number NRb ≈ 9 ×
106; 87Rb temperature TRb = TYb ≡ T ≈
3.3µK.

data is taken as an example for the described situation and is representative for all other

Yb isotopes used in the present experiments.

8.4 Theoretical interpretation of 174Yb - 87Rb phase separation

8.4.1 ”Naive“ mean field approach

A basic zero order approach to infer a fundamental scattering parameter from the ob-

served interaction potential is to apply the standard mean-field s-wave interaction potential

(Eq. 2.48):

UYbRb(~r, T ) = nRb(~r) · Ũ(T ) = nRb(~r, T ) ·
4π~2a

2mr
. (8.16)

The interspecies scattering length a can directly be obtained using the combined result

for the normalized interaction parameter 〈Ũ(T )〉 = (8.06 +12.7
−4.06) × 10−14 µK/cm−3, given

above. The temperature independent mean field approach (8.16) leads to the enormous

s-wave scattering length of

a = (29100 +45800

−14500
) a0 ,

where a0 is the Bohr radius.
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Temperature dependence – thermal averaging

So far, the interpretation of the observed phase separation between 147Yb and 87Rb assumes

a temperature independent interaction potential. Following a more careful treatment (e.g.

according to [143]), the scattering length a in Eq. 8.16 is replaced by the energy dependent

effective range expansion (see Sec. 2.3)

1

aE(k)
≈ −1

a
+

1

2
reffk

2 ⇐⇒ aE(k) =
a

1− 1
2k

2reffa
(8.17)

The effective range parameter reff depends on a and can be obtained using Eq. 2.43. In

the system of 174Yb and 87Rb, reff ≈ 218 a0 for a → ∞. Assuming TYb = TRb ≡ T , the

relative wave vector k is connected to the temperature T via E = kBT = ~
2k2/(2mr).

Thus, the interaction potential becomes energy dependent:

UYbRb(~r, E) = nRb(~r) ·
4π~2aE(E)

2mr
= nRb(~r) ·

4π~2

2mr

a

1− mrE
~2

reffa
. (8.18)

The mean interaction between the atomic clouds of 174Yb and 87Rb is obtained by averaging

over all present relative collision energies E [15]. The thermal energy distribution at a

defined temperature T is given by the Maxwell-Boltzmann distribution [67]

f(E, T ) dE =
2

√

π(kBT )3

√
E e

− E
kBT dE . (8.19)

Hence, the mean effective scattering length and the corresponding mean interaction poten-

tial are determined by the following integral:

〈aE〉(T ) =
2

√

π(kBT )3

∫ ∞

0

√
E e

− E
kBT · a

1− mrE
~2

reffa
dE and (8.20)

〈UYbRb〉(~r, T ) = nRb(~r) ·
4π~2〈aE〉(T )

2mr
(8.21)

Note that this approach assumes that collisions with all possible relative particle energies

contribute to the effective potential. The integral (8.20) must be taken as a principal part in

order to properly treat the singularity at E = ~
2/(reffamr). Furthermore, at temperatures

T . 0.5µK, the thermal distribution (8.19) is inappropriate, as the 87Rb atoms will be

Bose condensed in this temperature regime.

Figure 8.18 (a) shows the temperature dependence of aE(kBT ) and (b) of the effec-

tive scattering length 〈aE〉(T ) for different values of the zero energy limit a. The most

prominent feature of aE(kBT ) is the singularity at E = kBT~
2/(reffamr), where the scat-

tering length changes sign. The larger the scattering length a, the closer this divergence

moves toward zero energy. Note, that in general, the effective range theory underlying

these calculations works very well at large scattering length, even across the divergence

(see Sec. 2.3). The result from this temperature dependence of aE(kBT ) is, that at finite

temperature, the averaged effective scattering length 〈aE〉(T ) includes a significant contri-

bution from negative scattering lengths. Depending on the zero energy scattering length
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Figure 8.18: (a) Calculated temperature dependence of aE(kBT ) according to Eq. 8.17

for the system of 174Yb and 87Rb and different zero energy scattering lengths a. (b)

Averaged mean effective scattering length 〈aE〉(T ) (Eq. 8.20) as a function of the atomic

sample temperature TYb = TRb ≡ T assuming corresponding values for a.

a, the mean effective interaction even changes from being repulsive (〈aE〉 > 0) to being

attractive (〈aE〉 > 0) as the temperature T increases.

In the temperature regime T = 2 . . . 6µK, we observe phase separation of 174Yb and
87Rb, which can be attributed to a repulsive interaction potential. As described above, the

quantitative analysis of this data based on the mean field approach, yields a corresponding

mean averaged scattering length 〈aE〉 = (29100 +45800
−14500 ) a0. However, Fig. 8.18 (b) clearly

shows, that no zero energy scattering length a can be found, which is consistent with this

result: Experimental observations indicate a strong and temperature independent repulsive

interaction in the range of 2 . . . 6µK. Qualitatively, this only occurs for a < 1500 a0.

However, assuming such a value for a, 〈aE〉 would have to be 1000 a0 . . . 2500 a0 in the

relevant temperature regime, disagreeing by a factor of ≈ 20 with experimental results.

The discrepancy between observations and this theoretical model can be related to the

following issues:

• Experimental issues: Large values for the interaction potential underlying the

phase separation of 174Yb and 87Rb could be attributed to an underestimation of

the 87Rb density. In contrast to the reliable and accurate temperature measurement,

this quantity is generally more difficult to determine (see Sec. 8.2.1). Furthermore,

the effect of strong 174Yb loss present in the phase separation experiments could also

lead to an overestimation of the repulsive interaction potential. These topics are

discussed in the following Sec. 8.4.2.

• Theoretical issues: Under the assumption of an evidently large 174Yb - 87Rb inter-

species scattering length a, the basic model based on mean field theory and effective

scattering length is questionable. Based on a simple comparison of relevant length

scales, Sec. 8.5 discusses the applicability of the standard mean field approach and
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introduces a higher order correction. However, a complete theoretical description of

the present observations goes beyond the scope of this thesis.

8.4.2 Experimental considerations

a) 87Rb density determination

The correct determination of the 87Rb density plays an important role for the interpretation

of the observed phase separation effect between 174Yb and 87Rb, as this parameter directly

enters the mean field interaction potential (see Eq. 8.16). Error bars for this quantity, which

is calculated using measured 87Rb atom numbers and the respective model potentials are

generally large: detailed considerations described in Sec. 8.2.1 result in final relative error

bars of +85%
−61% for nRb.

The following approach independently provides an upper limit for the 87Rb density at the

present experiments: The line of argument is based on the fact, that all phase separation

experiments are performed with thermal 87Rb clouds. Indeed, quantum degeneracy of
87Rb in the described experiments can be ruled out experimentally. In general, the regime

of quantum degeneracy is reached, when the mean thermal de Broglie wavelength, λdB =

h/
√
2πmkB T approaches the mean inter atomic distance d = n−1/3. Quantitatively, the

BEC transition temperature Tc is given by [62]

nλ3dB = ζ

(
3

2

)

⇐⇒ kBTc ≈ 3.31
~
2n2/3

m
. (8.22)

Here, ζ(x) is the Riemann Zeta function with ζ(3/2) ≈ 2.612. Figure 8.19 shows the inverse

function of Eq. 8.22, i.e. the 87Rb density n required for quantum degeneracy as a function

of the temperature, together with measured peak densities at different phase separation

experiments. 87Rb densities above the blue line lead to the formation of a BEC, while

below this line, the cloud is in the thermal regime.
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Figure 8.19: Calculated temperature de-

pendence of critical 87Rb density neces-

sary for quantum degeneracy together with

measured 87Rb densities.

The measurement performed at the lowest temperature of ≈ 1.6µK exhibit 87Rb densi-

ties, which are only a factor of ≈ 2 below quantum degeneracy. Hence, an underestimation
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of the 87Rb density by more than a factor of ≈ 2 in the data analysis of phase sepa-

ration experiments is impossible, as all observed 87Rb clouds clearly show pure thermal

characteristics.

In summary, for the case that the standard 87Rb density determination method fails

on a level beyond the obtained error bars, these considerations provide a hard limit for

the maximum possible 87Rb density. Consequently, the lower limit for the interaction

parameter is results in Ũmin = 3.7× 10−14 µK/cm−3.

b) 174Yb atom loss

As described in Sec. 8.1, the observed effect of phase separation is accompanied with 174Yb

atom loss, which is related to inelastic three-body collisions with 87Rb due to the strong

interspecies interaction (see Sec. 2.6). The measured 174Yb atom loss 1/e-time-constant is

≈ 210 ms for typical 87Rb peak densities of ≈ 3× 1014 cm−3.

In principle, large interspecies losses could also lead to a spatial atom distribution which

is very similar to the one observed in the present experiments. The reduction of the
174Yb density at the position of maximum 87Rb density (see Fig. 8.1 (c)) could result

from the local removal of 174Yb atoms in the trap center by inelastic collisions with 87Rb.

The following section discusses the possibility of loss-induced separation of the two clouds

taking into account different experimental consideration.

174Yb Loss rate at phase separation conditions The measured loss rate under phase

separation conditions is characterized by a 1/e-time-constant of ≈ 210 ms.

In the case of pure loss-induced separation, however, all 174Yb atoms would be lost after

less than half an oscillation period of the atoms in this trap (at least under experimental

conditions, where the 174Yb density drops to almost zero at the location of the 87Rb

cloud). At a measured axial trap frequency of ωz/2π = νz ≈ 10.5Hz, this time span is

below 50ms, contradicting the data presented above, where phase separation is still clearly

observed after a holding time of up to 500ms (see Fig. 8.4). Hence, pure loss-induced

separation of the two clouds is not compatible with our observations.

Assuming a repulsive potential with magnitude U0 for 174Yb in the trap center, caused

by the presence of 87Rb atoms, the total radial potential for 174Yb has the form of a double

well potential. Even for small values of U0, the axial trap frequency in each of the wells is

larger than νz for U0 = 0, which is illustrated in Fig. 8.20. Note that for U0/kB < 2µK, no

clear double well exists, hence a description by trap frequencies in the individual wells fails.

In this case, the system is defined by the optical trapping potentials and their respective

trap frequencies.

This additional discussion shows, that the original considerations comparing loss time

constants and trap frequencies are still valid for the case of an additional repulsive inter-

action potential.

174Yb loss rate at lower 87Rb densities Experiments performed in order to adjust the

optimum BIODT power ratio for thermalization of both species also exhibit strong 174Yb
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atom loss, when the 87Rb density is increased (see Fig. 7.1 in Sec. 7.1.2). As already

mentioned, these losses can be attributed to inelastic three-body collisions involving either

one 174Yb and two 87Rb atoms or collisions with one 87Rb and two 174Yb atoms. The rate

coefficients for these two processes, α1 and α2, can in general be different, with one process

dominating over the other. The event rate for an 174Yb atom to be involved in a three

body event, is therefore given by

LYb = 2nRbnYbα1 + n2Rbα2 = nRb(2nYbα1 + nRbα2) . (8.23)

The factor of 2 in the first term is related to the loss of 2 174Yb atoms caused by an

Yb-Yb-Rb event. Assuming the rate coefficients α1 and α2 to be in the same range, the

dominating process is governed by the density ratio of the two species.
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Figure 8.21 shows 174Yb atom loss N/N0 in thermalization experiments, measured after

a fixed contact time tcontact = 300ms as a function of the calculated 87Rb density nRb in

the trap center. The assumption TYb = TRb is valid for nRb > 109 . . . 1010 cm−3. The

temperature increases from ≈ 1.1µK at nRb = 1010 cm−3 to ≈ 1.5µK at nRb = 1012 cm−3.

In this range, the corresponding 174Yb density nYb ≈ 1013 cm−3 is slightly decreasing as

the temperature changes. In the regime of thermalization experiments, nYb > nRb, hence
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for comparable loss coefficients and under the rough approximation of constant 174Yb

density, Eq. 8.23 yields a linear dependence on the 87Rb density: LYb ≈ 2nYbnRbα1.

The red line represents a fit to the data according to N/N0 = exp(−c nRb), where c

is the only fitting parameter. This yields an approximate value for the rate coefficients

α1 = c/(2 tcontact nYb) ≈ 1 × 10−24 cm6/s. Using Eq. 2.52 with the constant C = 1, the

interspecies scattering length |a| at T ≈ 1.5µK, related to the observed three-body loss

rate α1 results in

|a| ≈
(α1mr

C~

) 1

4 ≈ 3500 a0 . (8.24)

Note that this rough approximation gives lower limits for α1 and |a| as it neglects the

reduced densities of both species outside the trap center.

Phase separation experiments are performed at 87Rb densities, which are 2 . . . 3 orders of

magnitude larger than 87Rb densities during thermalization measurements. Still assuming

a loss rate ∝ α1nRb, the 1/e-time-constant for 174Yb atom loss would be in the range of

τ ≈ 2ms. Hence all atoms would be lost after the same contact time tcontact = 300ms. In

this regime, nRb > nYb, which increases the second term in Eq. 8.23, enhancing the loss

rate even more. The measured atom loss time constant at phase separation conditions,

however, τ ≈ 210 ms, yields remaining 174Yb atoms N(t = 300 ms)/N0 ≈ 0.24, which is

included in Fig 8.21. This result clearly states, that the observed phase separation is not

dominantly loss-induced. On the contrary, 174Yb atom loss is greatly suppressed, as the

overlap between both atom clouds is reduced due to the repulsive interspecies interaction

potential leading to phase separation.

Radial distortion in 174Yb clouds Another indication, that the interaction between 87Rb

and 174Yb involves a repulsive potential, comes from experiments performed with radially

misaligned BIODT beams. According to Sec. 7.1.2, the relative BIODT beam alignment

dr is experimentally adjusted to achieve the lowest 87Rb and 174Yb temperatures and

maximum 87Rb atom numbers after both species are brought into contact for a thermal-

ization time of 300ms. Figure 8.22 (a) shows false color images of 176Yb after a fixed TOF

tTOF = 3.5ms as a function of the relative radial beam displacement dr. A clear temper-

ature minimum, indicated by the tightest cloud distribution can be detected for perfect

beam alignment. An identical experimental series using 174Yb is presented in Fig. 8.22

(b). In addition to the expected temperature dependence, the 174Yb density distributions

exhibit a non-Gaussian, ”banana-shaped“ characteristic, depending on dr. This behav-

ior can be attributed to the presence of 87Rb, which is respectively located at the inside

position of the bent 174Yb cloud. After simultaneously switching off all potentials before

the TOF, the ballistic 174Yb cloud expansion is distorted by the repulsive force from the
87Rb atoms, leading to the observed density distributions. These observations verify the

presence of a repulsive interaction potential, as they could not be explained by three-body

loss processes.

Summary The different experimental observations discussed above doubtlessly verify that

phase separation of 174Yb and 87Rb is dominantly resulting from a repulsive interaction
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Figure 8.22: Comparison of false color (a) 176Yb and (b) 174Yb images after thermal-

ization depending on the relative radial beam displacement. The 174Yb clouds for

|dr| ≥ 2 . . . 4µm clearly show distortions attributed to repulsive interactions with the

present 87Rb atoms.

potential between the two species. Still, the effect of 174Yb loss contributing to the observed

spatial density distributions is hard to quantify and may lead to an overestimation of the

normalized interaction parameter Ũ(T ) extracted from this data.

8.5 Corrections to the mean field theory

8.5.1 Comparison of relevant length scales

As discussed in Sec. 2.4, the mean field theory describes the collective behavior of gases in

the ultracold, dilute regime. It is based on the assumption, that the interparticle separation

d = 1/n3 is much larger than the range of interatomic forces: In this regime, the effective

interaction between particles is dominated by two body s-wave scattering. Here, the scat-

tering length a defines the low energy scattering cross section σ0 = 4πa2 (see Sec. 2.1.4),

which determines the range of interparticle interaction. Hence, the condition for the mean

field description of a gaseous system is

n|a|3 ≪ 1 ⇐⇒ |a| ≪ d (8.25)
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Table 8.2 shows relevant length scales for our experiments, where phase separation between
174Yb and 87Rb was observed. Note, that the relative de Broglie wavelength λdB,r =

relative interspecies de Broglie

wavelength (TRb = TYb ≈ 3 µK)
λdB,r ≈ 2400

87Rb atom-atom distance (for

nRb = (2.0+1.7
−1.2)× 1014 cm−3)

dRb = n
−1/3
Rb 3200 +1200

−600

interspecies scattering length

according to Eq. 8.16
a 29100 +45800

−14500

Table 8.2: Characteristic length scales for the typical phase separation measurement con-

ditions. All parameters are given in atomic units.

h/
√
2πmr kB T is related to the center of mass system describing a 174Yb-87Rb collision

with reduced mass mr =
mYbmRb

mYb+mRb
. The interspecies scattering length a is calculated from

results of phase separation measurements on the basis of the temperature independent

mean field approach described in Sec. 8.4.1.

The comparison of length scales shows, that the assumption (Eq. 8.25) is clearly violated,

since a≫ dRb, if we assume the results from the mean field theory (Eq. 8.16) to be correct.

In this regime, the basic mean field theory becomes invalid, as higher order effects, like three

body (and ultimately n-body) collisions significantly contribute to the effective interaction.

8.5.2 The LHY correction

Lee, Huang and Yang. [144] have first investigated corrections to the mean field theory for

larger values of na3. Their calculation is related to the ground state energy of a Bose gas

consisting of N particles. This approach uses hard sphere interactions between the atoms

where the s-wave scattering length a equals the hard sphere radius4. The correction term,

which is denoted as the LHY -term, is the first order in a power series expansion of the

parameter
√
na3:

E0

N
=

4π~2na

m

[

1 +
128

15
√
π

√
na3 +O(na3)

]

(8.26)

Without the correction, Eq. 8.26 reproduces the standard mean field energy. From a

physical point of view, the additional average particle energy is related to quantum depletion

of the Bose gas: This is the fraction of the many-body wave function which cannot be

represented by the macroscopic single particle wave function. In a homogeneous BEC, it

consists of admixtures of higher momentum states into the ground state of the system.

Quantum depletion is related to strong interactions and has been observed with a BEC

of Na atoms [145]. Beyond mean field effects connected to the LHY-correction also alter

the compressibility of strongly interacting Bose gases [146]. Higher order terms, which add

4This implies a > 0.
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to the series in Eq. 8.26, are attributed to three-body (and higher order) collision pseudo

potentials and depend on the respective interatomic potential [147].

The additional energy ELHY related to the LHY term in Eq. 8.26 becomes significant as

the scattering length a becomes comparable to the mean interatomic separation d = 1/n3,

which is shown in Fig. 8.23. Although this regime strictly speaking violates the assumptions
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Figure 8.23: Calculated additional energy

ELHY related to the LHY term in Eq. 8.26

given in units of the mean field energy

4π~2na/m as a function of on the ratio

between the scattering length a and the mean

interatomic distance d = 1/n3.

underlying the mean field description, in the case of the energy per particle, the universal

LHY term in Eq. 8.26 correctly reproduces results from a diffuse Monte Carlo simulation

on the BEC ground state energy up to d/a ≈ 0.6 [148]. The work of Braaten et al. [149]

extends beyond-mean-field corrections based on the power series in Eq. 8.26 to various

properties of the Bose gas: For example, the interaction energy becomes:

U =
4π~2na

m

[

1 +
128

15
√
π

√
na3 +O(na3)

]

= E0 + ELHY +O(na3) (8.27)

Inclusion in the present data analysis

Fitting process Data analysis from phase separation measurements as described in

Sec. 8.2, is based on the basic assumption of an interaction potential, which is directly

proportional to the 87Rb density nRb.

An inclusion of the LHY-correction, alters the form of the interaction potential

UYbRb(~r, T ) involved in the fitting function according to

UYbRb,LHY(~r, T ) =
4π~2anRb(~r, T )

2mr

[

1 +
128

15
√
π
a
3/2 (nRb(~r, T ))

1/2

]

(8.28)

As the 87Rb density distribution is approximated by a Gaussian with radial width σz (see

Sec. 8.2.1), the altered interaction potential is qualitatively given by

UYbRb,LHY(r = 0, z) ∝ c1exp

(

− z2

2σ2z

)

+ c2exp

(

−3

2

z2

2σ2z

)

. (8.29)

Hence, UYbRb,LHY(r = 0, z) is simply a sum of the original function and another Gaussian

shaped function with reduced width, depending on the relation between the parameters c1
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scattering lengths a and aLHY are
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Figure 8.25: Fitted interaction potential magnitudes U0 depending on the 87Rb density.

A linear fit (a) using the standard mean field potential yields a scattering length a ≈
35000 a0, while the LHY correction (b) leads to a ≈ 5100 a0.

and c2. As shown in Fig. 8.24 for our experimental parameters, the shape of UYbRb,LHY(r =

0, z) does not significantly differ from UYbRb(r = 0, z), which is linear in nRb(~r).

The LHY correction is included in the fitting function used to extract interaction po-

tential magnitudes U0. As expected from the qualitative considerations discussed above,

the results at lower nRb are almost unchanged ( c1 > c2 in Eq. 8.29), while at high 87Rb

densities, typically 20% . . . 30% larger values for U0 are obtained.

Quantitative results Figure 8.25 compares results for U0 from typical experimental data

with fixed temperature T ≈ 3.3µK using (a) the standard mean field approach and (b)

the nonlinear LHY correction. The red line represents a fit used to obtain the respective

interspecies scattering length a, (a) without and (b) with the LHY-correction term. The

large difference of extracted scattering lengths is related to the 87Rb density of up to

nRb = 2×1014cm−3, which corresponds to a mean interatomic distance d = 1/n3 ≈ 3200a0.
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In this parameter regime of n and a, the LHY term plays a dominating role.

The modified data analysis including the LHY-correction is applied to 6 experimental

series with varied 87Rb density, that are obtained according to method b) described in

Sec. 8.3.1. This data includes various trapping potential parameters and temperatures

T = 1.5 . . . 3.5µK and represents the main contribution to the combined result for Ũ(T ),

in Sec. 8.3.4.

Results from all relevant experimental series yield consistent results within their error

bars. The combined result for the interspecies scattering length in the temperature regime

T = 1.5 . . . 3.5µK is

aLHY = (4710 +3970

−1520
) a0 .

This number includes fitting uncertainties as well as the large error of +85%
−61% for nRb, which

is treated the following way: As the fitting function and hence the results for U0 in each

data point depend on the underlying 87Rb density, a simple error propagation calculation is

incorrect in this case. Therefore, the fitting process is repeated assuming lower and upper

bounds for nRb and the individual results for aLHY are treated as its uncertainty limits.

Temperature dependence and the LHY approach The original calculations underlying

the LHY approach [144], assume the limit k → 0, which is experimentally achieved in BEC

systems. At low but nonzero temperatures, the effective range expansion can be used to

describe the temperature dependence of the scattering length (see Sec. 2.3):

1

aE(k)
≈ −1

a
+

1

2
reffk

2 ⇐⇒ aE(k) =
a

1− 1
2k

2reffa
(8.30)

In the LHY potential, the scattering length a can not simply be replaced by its energy

dependent counterpart aE(k): Assuming a positive scattering length a, aE(k) becomes

negative for k >
√

1/2reffa (a negative scattering length remains negative for all values

of k). The LHY term, however gives imaginary results for a < 0. This is not surprising

taking into account the assumptions underlying the LHY approach: The LHY expansion

is originally based on interactions between hard spheres with radius R0 = a, which intrin-

sically postulates a > 0. The LHY correction simply does not describe interactions with

a < 0.

The publication of Fu et al. [150] presents a modified Gross-Pitaevskii (GP) equation

including both quantum fluctuation (i.e. the LHY term) and temperature dependence

corrections. This calculation – namely the approximation made before Eq. 10 in [150] – is

valid only for k2 ≪ 1/2reffa. Hence, it does not extend to a region, where aE(k) becomes

negative.

8.5.3 Diffusion model

In collaboration with E. Tiesinga and S. Maxwell from the atomic theory group at NIST

[15], a diffusion model described in the following was developed. I takes into account the

dynamics of a thermal 174Yb atom in a cloud of 87Rb resulting from diffusion assuming a
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large elastic cross section. In connection with local three-body loss of 174Yb, this approach

qualitatively reproduces the 174Yb density distribution experimentally observed at phase

separation conditions:

While pure mean field theory does not provide a satisfactory explanation for the observed

phase separation, the results do suggest that the interactions between 87Rb and 174Yb are

strong and that the elastic cross section is large. Correspondingly, the mean free path of

a thermal 174Yb atom in a cloud of 87Rb will be much smaller than the size of the cloud.

Thus, the trapped system can be modeled using the time-dependent diffusion equation

including loss due to three-body recombination. The diffusion equation is

ṅ(~r, t) = −∇ ·~j(~r, t)−K3n
2
Rb(~r)n(~r, t), (8.31)

where n(~r, t) is the 174Yb distribution, K3 is the three-body loss rate coefficient, nRb(~r)

is the 87Rb density, which will be assumed to follow a Boltzmann distribution and is

independent of time, and the current density is

~j(~r, t) = −kBTτ(~r)
m

∇n(~r, t) + τ(~r)

m
(∇V (~r))n(~r, t), (8.32)

which describes diffusion and drift. Here τ(~r) is the spatially dependent mean collision

time and m is the 174Yb mass.

The mean collision time is determined by Yb+Yb and Yb+Rb collisions and satis-

fies τ(~r)−1 = τYbRb(~r)
−1 + τYbYb(~r)

−1. Here τYbRb(~r)
−1 = 〈vrelσYbRb〉nRb(~r), where

σYbRb is the interspecies collision cross section, and vrel is the relative velocity. The

angle brackets represent a thermal average. Similarly, self-diffusion is governed by

τYbYb(~r)
−1 = 〈vrel−YbσYbYb〉n(~r).

By looking for the solution n(~r, t) = e−Γtn(~r), the diffusion equation becomes an eigen-

value equation for Γ. The smallest eigenvalue corresponds to the longest lived eigenfunc-

tion. This eigenfunction is the spatial distribution that would be observed in an experiment

at long times. For K3 = 0 in a trap deep compared to the temperature, this solution is a

Boltzmann distribution, nYb ∝ e−V (~r)/kBT , with Γ = 0.

Rather than solving the full 3-D equation including the self-diffusion, which depends on

the Yb density and is nonlinear, the equation is reduced to 1-D. The reduction is justified

by the cylindrical symmetry of the cigar-shaped trapping potential, taken to be harmonic,

and the larger radial extent of the 87Rb cloud and have simplified the treatment of self-

diffusion. Then the radial distribution of the Yb is independent of axial position and is

gaussian. For simplicity, an axially uniform distribution of 174Yb in τYbYb(~r) is substituted

and the radial distribution is taken to be the same as that for 87Rb, thus turning τ(~r) into

a separable function of radial and axial coordinates and removing the nonlinearity. Finally,

the transverse (x, y) coordinates are integrated to obtain the 1-D equation. After the trap

geometry has been set, the adjustable inputs to the theory are 〈vrelσYbRb〉, the three-body

rate coefficient K3, and the approximation used for the Yb density in the collision time.

Because the interactions appear to be stronger than has been seen in any other thermal

gas, the interspecies cross section is taken to be unitarity limited, σYbRb = 4π~2/(µvrel)
2.

Then the collision time can be computed analytically.In this simulation a temperature of
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Figure 8.26: Asymptotic lifetime of trapped 174Yb versus the Rb+Rb+Yb 3-body loss

rate coefficient, K3. Inset shows the axial profile of 174Yb for varying K3 (thin blue

lines). The thick red profile is the Boltzmann distribution for 174Yb. Pink points are

the 87Rb distribution. Lines connect key points on the lifetime plot to the corresponding

distribution in the inset. From [15].

T = 3µK and a peak density of nRb(0) = 3 × 1014cm−3 is used resulting in τYbRb(~0) =

5.7µs. The Yb+Yb cross section is σYbYb = 7× 10−11 cm2 and is constant over the range

of energies here [57]. A density of 1013 cm−3 174Yb atoms gives τYbYb = 6.1 ms.

Figure 8.26 shows solutions of the 1-D equation, giving the lifetime 1/Γ of the longest

lived eigenfunction and the eigenfunctions for a range of values of K3. For small K3, the
174Yb distribution is roughly gaussian and the lifetime is ∝ 1/K3. With increasing K3,

a kink in the lifetime occurs where the 174Yb is excluded from the 87Rb. The reduced

overlap of the clouds results in a weaker dependence of lifetime on K3. The next longest-

lived diffusion mode has a lifetime that is nearly ten times shorter.

For a 3-body rate coefficient of ≈ 10−25cm6s−1, 1/Γ ≈ 200 ms and the 174Yb distribution

peaks around 320 µm from the center of the trap. This is consistent with the measured

locations of the maxima shown in Fig. ??. As a test of the limitations of our model, τYbYb

is decreased to 0.1 × 6.1 ms and a 40% increase in lifetime is observed. Increasing τYbYb

causes no significant effect. Hence, improving the treatment of self-diffusion would only

modestly improve the accuracy of the model.

The coefficient K3 is also constrained by a unitarity condition. This imposes a maximum

thermally averaged K3 which is ∝ T−2 and is ≈ 6 × 10−25 cm6s−1 at 3 µK. The value

reported above is consistent with this limit. One may ask whether the model constrains

the interspecies scattering length. We have assumed that 〈vrelσYbRb〉 is given by the value

at unitarity, which at T = 3 µK implies a scattering length with magnitude > 1000a0.

However, if we choose a smaller cross section, a reduced K3 allows 1/Γ = 200 ms. Thus,
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a bound on the scattering length can not be extracted. If lifetimes are measured under

more conditions, for example, by varying the 87Rb density, then it will be possible extract

a cross section and K3.

In conclusion, a pure mean-field model cannot fit the observations quantitatively, al-

though it suggests that the interspecies interactions are large. A diffusive model including

the effects of three-body recombination can reproduce the experimental observations with

physically reasonable parameters. However, a thermally averaged scattering length with a

magnitude of ∼ 103a0 gives a mean-field potential comparable to kBT , so that a complete

understanding will require the inclusion of both a mean field and the diffusion dynamics.
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Conclusion and interpretation of Rb-Yb

interaction results

The previous chapters 7 and 8 described experiments characterizing the interaction of

different Yb isotopes with 87Rb at temperatures in the low 10µK range. The most promi-

nent feature, which I have investigated, is the large repulsive interaction between 174Yb

and 87Rb leading to phase separation of the two species in a thermal mixture.

The first part of the following chapter summarizes the results from 174Yb - 87Rb phase

separation measurements, which represent the essential outcome of the PhD work presented

here.

The second part of this chapter introduces theoretical model calculations on the YbRb

molecular ground state potential based on the experimental results presented in this PhD

thesis. E. Tiesinga and S. Maxwell from the atomic theory group at NIST [15] determined

a Lennard-Jones potential, which quantitatively reproduces the experimental observations.

9.1 Conclusive results of 174Yb - 87Rb phase separation

measurements

As described in Chap. 8, we experimentally observe phase separation in a thermal mixture

of 174Yb and 87Rb. The occurrence of phase separation depends on the number of 87Rb

atoms, the 87Rb density distribution and the temperature. This effect is clearly observed

in a temperature regime T = 2 . . . 6µK (see Sec. 8.3.2) and it is independent of the 87Rb

ground state hyperfine level (see Sec. 8.3.5).

Phase separation of 174Yb and 87Rb is accompanied by rapid 174Yb atom loss, which

is discussed in detail in Sec. 8.4.2: It’s contribution to the spatial atom distribution ob-

served in the present experiments can not be fully quantified. Purely loss-induced phase

separation, however, can be excluded.

A basic qualitative interpretation of the data assumes a repulsive interaction potential

between 174Yb and 87Rb, which is given by the standard mean-field s-wave interaction

potential with large positive scattering length a. In a temperature dependent approach,

the scattering length a is replaced by the energy dependent effective range expansion

aE(k) (see Sec. 8.4.1). The mean effective interaction potential is obtained by thermal

averaging over all possible collision energies. Results from this approach are inconsistent
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with experimental observations.

As described in Sec. 8.5.1, a comparison of relevant length scales clearly shows, that

theoretical models beyond the simple mean field description are required to correctly treat

the observed phase separation between 174Yb and 87Rb.

The LHY correction extends the mean field theory into a regime of larger interactions

and higher densities. An inclusion of the LHY correction in the quantitative data analysis

is discussed in Sec. 8.5.2 and yields an interspecies scattering length of

aLHY = (4710 +3970

−1520
) a0 .

The LHY correction term successfully describes effects like quantum depletion, which are

attributed to large interactions in Bose Einstein condensates [145] in the limit k → 0. It’s

complete validity in the present case, where the scattering length exceeds the interatomic

distance d = 1/n−3 is still questionable. Furthermore, the case of finite temperatures

beyond the point, where aE(k) diverges and changes its sign is not taken into account by

this approach. A proper treatment of higher order effects emerging in this regimes will

require theories that differ much more substantially from the mean field description.

Assuming that the elastic cross section between 174Yb and 87Rb is large, the mean free

path of a thermal 174Yb atom in a cloud of 87Rb will be much smaller than the size of

the cloud. Thus, the trapped system can be modeled using the time-dependent diffusion

equation including loss due to three-body recombination. A diffusive model including the

effects of three-body recombination, which is developed by E. Tiesinga and S. Maxwell

[15] and described in detail in Sec. 8.5.3 can reproduce the experimental observations with

physically reasonable parameters. However, for a quantitative description of the observed

phase separation by diffusion and three-body recombination, further experimental and

theoretical investigations are needed.

While a complete theoretical understanding of the observed phase separation will re-

quire the inclusion of both a repulsive potential and the diffusion dynamics, the results

presented here are the first observation of phase separation in a thermal mixture of ultra-

cold atoms. Our analysis indicates that the scattering length between 174Yb and 87Rb is

the largest interspecies scattering length in any mixture of ultracold atoms investigated to

date (magnetically tunable Feshbach resonances excluded).

9.2 Conclusions on the Yb Rb molecular ground state potential

On the basis of the results regarding the low energy scattering properties of different Yb

isotopes and 87Rb, which are presented in this PhD thesis, E. Tiesinga and S. Maxwell have

calculated a model potential for the Yb Rb molecular ground state [15]. These calculations

are based on a Lennard-Jones potential and a semiclassical approximation according to

[151], in order to compute the zero-energy s-wave scattering lengths.

As described in Sec. 2.2.2 the low energy interaction between atoms is determined by

the energetic position of the bound states close to the dissociation limit. Hence, scattering

experiments allow conclusions mainly on the long range part of the interatomic potential,
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which can be well approximated by a Lennard-Jones potential:

ULJ(r) ∝
Cn

rn
− C6

r6
(9.1)

The first term with a high power of n (here: n = 12) describes the Pauli repulsion at short

ranges due to overlapping electron orbitals and the r−6 term describes attraction at long

ranges (van der Waals force, see Sec. 2.1.4).

The C6 dispersion coefficient used in this calculation is C6 ≈ 2740 ± 140 a.u.. It is

determined using the dynamic polarizability at imaginary frequencies of Yb (and Rb) [15].

This method gives a slightly lower value than the approximation based on [60], which is

presented in Sec. 2.2.2.

The input parameters for the model potentials based on the present experimental results

are:

• The interspecies s-wave scattering length |a87−170| is below ≈ 10 a0.

• The interspecies s-wave scattering length between 87Rb and 174Yb is large and posi-

tive (a87−174 > 3000 a0) , indicating a zero-energy resonance for this isotope combi-

nation.

Calculations indicate, that potentials supporting 60 . . . 70 bound states can reproduce these

experimental observations. Table. 9.1 summarizes calculated interspecies scattering length

and binding energies (EB/h in units of MHz) of the three bound states closest to the

dissociation limit. The underlying model potential supports 63 bound states for all isotope

combinations except 87Rb-174Yb and 87Rb-176Yb, where one more bound state enters the

potential. These calculated result are shown in Fig. 9.1 as a function of the reduced mass

mr =
mYbmRb

mYb+mRb
. Note that although the blue lines indicate a continuous distribution, only

the black and/or red dots are physical.

The characteristics of the scattering length and binding energies qualitatively match the

situation discussed in Sec. 2.2.2 on the basis of a square well potential: Generally, a change

in the reduced mass alters the position of the last bound states in the potential. The larger

the binding energy of the last bound state, the smaller is the scattering length. Finally, a

crosses zero and just before a new bound state enters the potential, a becomes large and

negative. In this case, the potential is said to have a virtual state close to the dissociation

energy.

The scattering length diverges and changes sign as a new bound state enters the Lennard

Jones potential. In the case of Yb-Rb, the zero energy resonance, which is indicated by

the dashed blue line in Fig. 9.1, is located at a reduced mass mr slightly below the 87Rb-
174Yb point leading to a large and positive a for this combination. In the case of a bound

state close to resonance, its binding energy Eb is related to the scattering length through

Eq. 2.34:

Eb
∼= ~

2

2mra2
(9.2)

Using the calculated 87Rb-174Yb scattering length a = 7355 a0, the binding energy of the

last bound state Eb/h ≈ 570Hz is extremely low.
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Rb Yb scattering number of 1st bound 2nd bound 3rd bound

isotope isotope length [a0] bound states state [MHz] state [MHz] state [MHz]

85 168 227.6 63 1.4 304.1 1769.4

85 170 140.5 63 7.0 402.2 2066.3

85 171 118.3 63 11.6 457.2 2223.9

85 172 101.0 63 17.7 516.3 2387.3

85 173 85.9 63 25.4 579.6 2556.9

85 174 71.9 63 34.8 647.1 2732.1

85 176 42.6 63 59.5 794.8 3100.7

87 168 42.8 63 59.3 794.0 3098.5

87 170 -2.4 63 96.0 975.6 3529.0

87 171 -41.2 63 118.6 1074.5 3754.8

87 172 -113.9 63 144.1 1178.5 3987.2

87 173 -330.0 63 172.6 1287.8 4226.9

87 174 7355.2 64 0.0 204.3 1402.4

87 176 255.9 64 1.2 277.4 1647.6

Table 9.1: Calculated interspecies scattering length and binding energies based on a

Lennard Jones model potential, which qualitatively reproduces our experimental obser-

vations [15].

At even larger values of the reduced mass, the binding energy increases again, reproduc-

ing the situation below mr = 56.5 u.

Comparison with measured relative scattering properties Calculated interspecies s-wave

scattering length based on the model potential discussed here can be used to infer low

energy scattering cross sections according to

σ0 = 4πa2 . (9.3)

It allows a qualitative comparison with experimental results on relative scattering prop-

erties between 87Rb and various Yb isotopes, which are obtained from thermalization

measurements as described in Sec. 7.2.

Thermalization measurements are performed in the low µK regime, where the assump-

tion of pure s-wave scattering is well justified (see discussion in Sec. 2.1.4). Due to unknown

absolute interspecies overlap densities, no absolute scattering cross sections could be ex-

tracted from measured thermalization rates. However, the determination of a scattering

parameter β ∝ σtotYbRb allows conclusions on relative scattering properties of different

Yb isotopes with 87Rb. Figure 9.2 compares calculated scattering cross sections based on

the model potential with experimental results C · β ∝ σtotYbRb for different Yb isotopes,

where the constant C is chosen to fit the theoretical data. Note that due to the smaller

uncertainties, results for β obtained with data analysis method a) from thermalization rate

studies (see Sec. 7.2.2) are chosen for this comparison.

The theoretical model, which is purely based on measured scattering properties of 170Yb

- 87Rb and 174Yb - 87Rb, correctly reproduces measured relative scattering cross sections
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Figure 9.1: Graphic representation of the calculated result presented in Tab. 9.1 as a

function of the reduced mass (given in atomic mass units u).
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Figure 9.2: Calculated elastic scattering

cross section σtot as a function of the

reduced mass (red line) together with

experimental results from thermalization

measurements with 87Rb and 170Yb,
172Yb, 173Yb, 176Yb. Note that the ex-

perimental data points, which are ob-

tained using method a) described in

Sec. 7.2.2, include a free common scaling

factor chosen to match the theoretical re-

sults.

for the combinations 172Yb - 87Rb, 173Yb - 87Rb and 176Yb - 87Rb within their experimental

uncertainties. This supports the theoretical model and the underlying assumptions for the

YbRb molecular potential.
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Outlook on future experiments

The experimental studies on interspecies interaction between different Yb isotopes and
87Rb, which are described in this PhD work, have greatly increased the knowledge of low

energy properties of this novel mixture. This is a major step towards the long term goal of

this research project, which is the production of ultracold YbRb molecules in the rovibronic

ground state. The future developments required to achieve this goal can be divided into

two areas: One will be the continuation of studies on the YbRb molecular potentials,

which already resulted in the successful production of excited state YbRb* molecules by

photoassociation [16]. The other will be to realize a quantum degenerate mixture of both

species, which would be an ideal starting point for the creation of ground state YbRb

molecules.

The following chapter briefly outlines the consequential future developments of this re-

search project on the basis of present experimental results. First, it focuses on two color

photoassociation spectroscopy on the YbRb molecular ground state potential. The second

part of this chapter summarizes the present developments on efficient cooling of Yb and

points out a promising pathway towards a combined degenerate mixture of Rb and Yb.

10.1 Two-color photoassociation spectroscopy

The current plan for the formation of rovibronic ground state molecules consisting of Rb

and Yb involves two consecutive tow-photon processes, which is illustrated in Fig. 10.1

(a). The first two-photon process involves a transition to an excited YbRb* molecular

state (1) followed by de-excitation to a high-lying vibrational level of the electronic ground

state (2). The second process ((3) and (4)) then couples this state to the rovibrational

molecular ground state through an intermediate excited state in a lower vibrational level.

Note that this complex scheme is necessary, as the efficient production of ground state

molecules requires good Franck-Condon overlap between the nuclear wave functions for

all molecular transitions. The simplified Franck-Condon principle states, that transitions

between different electronic states can be driven most efficiently without directly changing

interatomic distance and kinetic energy at the turning points. These conditions are met by

“vertical” transitions in Fig. 10.1 (a). A detailed theoretical discussion of possible routes

towards absolute ground state YbRb molecules can be found in [11].

The first experimental step in this direction, i.e. the formation of excited state YbRb*

molecules by photoassociation, has already been observed successfully in our apparatus [16].
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Figure 10.1: (a) Possible scheme for production of YbRb rovibronic ground state

molecules: (1) A well-defined excited YbRb* molecular state is accessed with the first

photon. Step (2), connects this state with molecules in the stable but weakly bound

vibrational level of the ground state. This will be the first two-photon process. A second

tow-photon scheme (3) involves a more deeply bound excited molecular state with good

Franck-Condon overlap to the absolute ground state (4). (b) Trap loss photoassociation

spectrum from a combined MOT of 87Rb and 174Yb, correspondent to step (1). Assigned

peaks are labeled by their vibrational quantum number relative to the level closest to the

dissociation limit. Adapted from [11].

Detailed knowledge on YbRb molecular ground state potentials and the energetic positions

of weakly bound states is the first thing that is required in order to accomplish the first tow-

photon process. Experimental results described within this PhD work allow predictions for

the energies of weakly bound states of different Yb and Rb isotopic combinations through a

calculated model potential (see Chap. 9 and [15]). The direct observation of the respective

molecular levels using two-color photoassociation spectroscopy, which is currently being

prepared, will represent an independent measurement, which complements and tests the

current results on a highly improved accuracy level.

Photoassociation spectroscopy

Photoassociation spectroscopy of YbRb* molecules was performed in a combined MOT

consisting of 87Rb and 174Yb (176Yb) atoms at temperatures in the range of several 100µK.

We have been using a photoassociation laser at frequencies slightly below the 795 nm D1

transition from the rubidium ground state to the 52P1/2 state. In that experiment, spectra

were taken by monitoring the reduction of trap fluorescence due to molecule formation and

subsequent loss from the trap. Fig. 10.1 (b) shows parts of the resulting photoassociation

spectrum for 174Yb as a function of the frequency detuning ∆PA from the atomic 87Rb

D1 transition. The individual lines could be clearly attributed to high vibrational levels

of the molecular potential with a dissociation limit equal to the ground state of 174Yb

and the excited 52P1/2 state of 87Rb. For this potential, an accurate long-range dispersion
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coefficient C6 = 5700± 100 a.u. could be extracted from the experimental data.

Autler Townes spectroscopy

The next step will be a study of the molecular YbRb ground state by Autler-Townes

spectroscopy. The use of Autler-Townes spectroscopy [152] makes it possible, to spectro-

scopically probe a level that is not directly accessible from the initial state. This method

is based on the AC stark effect, which leads to splitting of atomic energy levels in the

presence of a (strong) light field, depending on its intensity the frequency detuning from a

coupling transition.

Experimentally, the photoassociation laser is operated on resonance for a transition

between the unbound ground state continuum and a bound excited molecular state as

described above. An additional Raman laser is then used to couple this state with a

(weakly) bound level of the molecular ground state (corresponding to transition (2) in

Fig. 10.1 (a)). When the Raman laser is resonant (or close to resonance) with the bound-

bound transition, it will induce Autler-Townes splitting of the original photoassociation

transition into two components. The splitting between the components ∆νAT is identical

to the Rabi frequency Ω, which depends on the frequency νR and intensity IR of the Raman

laser and the bound-bound transition rate Γbb according to [153]

∆νAT =
Ω

2π
=

√

3c2IRΓbb

16π3hν3R
. (10.1)

Autler-Townes spectroscopy in combination with photoassociation has been performed

e.g. in the triplet system of magnetooptically trapped 6Li [153]. In this experimental

scheme, the Raman laser is tuned on resonance with the bound-bound transition and

the photoassociation laser is scanned. Transition rates could be inferred from measured

Autler-Townes splittings of the trap loss peaks.

For the identification of ground state vibrational levels, two-color photoassociation spec-

troscopy in our experimental setup, will first require a variation of the standard scheme:

The photoassociation laser will be set on resonance with a vibrational line, resulting in

constant trap loss due to excited state YbRb* molecule production. Then, the Raman

laser will be scanned. When it is in resonance (or close to resonance) with a bound-bound

transition, reduction in the trap loss will be observed, as it shifts the photoassociation laser

out of resonance from the original transition.

The required light power for the Raman laser can be roughly approximated using

Eq. 10.1. In order to observe a significant reduction of trap loss, the Autler-Townes split-

ting should be on the order of the measured line width of the photoassociation lines, which

is ≈ 30MHz [11]. The bound-bound transition rate Γbb is approximated as

Γbb = Γatom · fFC, (10.2)

where Γatom is the atomic 87Rb D1 transition rate. The Franck-Condon factor fFC depends

on the overlap of the nuclear wave functions ψn and ψ′
n of the initial and final state of the
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molecular transition according to fFC = |〈ψn|ψ′
n〉|2. Assuming a combined Yb-Rb MOT

diameter of ≈0.4mm [11] and a photoassociation laser beam of identical size, the required

Raman laser power PR is roughly given by

PR ≈ 0.1 mW

fFC
. (10.3)

Hence, for perfect overlap of the nuclear wave functions of the bound-bound molecular

transition (fFC = 1), only 0.1mW of Raman laser light would be required to obtain a

significant Autler-Townes splitting. Assuming (more realistic) Franck-Condon factors of

10−2 to 10−3, the Raman laser power should be in the range of several 10 . . . 100mW.

Based on the simplified Franck-Condon principle, the energy range of most easily acces-

sible bound levels in the molecular ground state can be approximated: Assuming “vertical”

transitions between the classical outer turning points (r = r′) in the long range approxi-

mation of the potential, the relation between binding energies in the ground and excited

state, E and E′, is given by:

E(r) =
C6

r6
and E′(r′) =

C ′
6

r′6
⇐⇒
r=r′

E =
C6

C ′
6

· E′ ≈ 0.5 · E′ . (10.4)

Here, the known dispersion coefficients of the ground and excited state molecular potentials

are included. In a qualitative description, this result means, that for an excited state level

with binding energy E′ the best Franck-Condonon overlap is realized for a ground state

level of halve the excited state binding energy. Generally, this simple “rule of thumb”

can be helpful in the choice of excited state levels suited for two-photon photoassociation

spectroscopy.

In order to probe the energetic position of calculated molecular ground state levels

presented in Tab. 9.1, which are in the regime E < h · 5GHz, an excited state level very

close to the atomic resonance should be chosen. In terms of good Franck-Condon overlap,

the strong ∆ν = −4 line at ∆PA ≈ −13GHz in the 174Yb-87Rb mixture (see Fig. 10.1 (b))

could be an appropriate candidate for the study of the bound ground state levels closest

to the dissociation energy. However, further experimental issues, e.g. 87Rb loss due to

Rb-Rb molecule creation, which preferably occurs close to the atomic resonance, have to

be considered. Above ∆PA ≈ −10GHz, the strong photoassociation laser is too close to the

atomic 87Rb D1-transition causing sufficient heating and depletion of the rubidium trap to

obscure the photoassociation lines.

A detailed discussion on possible candidate lines suited for the first two-photon process

to create ground state YbRb molecules is given in [11].

10.2 Combined Yb Rb quantum gas

The realization of a combined quantum gas consisting of a 87Rb BEC and a Yb BEC or a

Yb degenerate Fermi-gas will open new possibilities for interspecies studies in this mixture.
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While large condensates of 87Rb (NRb ≈ 106) can reliably be produced in our apparatus,

quantum degeneracy has not been observed for Yb. The present approach involves sym-

pathetic cooling of Yb trapped in the BIODT by magnetically trapped and evaporatively

cooled 87Rb.

In the course of this thesis, new insights on physical parameters of the system Yb-87Rb

as well as on intrinsic technical limitations of the current experimental setup have been

gained. This additional knowledge leads to the conclusion, that successful sympathetic

cooling of Yb to the regime of quantum degeneracy, is very hard to achieve with our

current approach. The reasons are discussed in this section a possible alternative route

towards a YbRb-double BEC using a novel trapping geometry for Yb is sketched

10.2.1 Yb BEC by sympathetic cooling?

In cold trapped gases, the transition from the thermal regime to the regime of quantum

degeneracy can be clearly observed, when a stable BEC is produced. The transition to

Bose Einstein condensation typically creates a region of dramatically increased density in

a trapped cloud, which leads to a bimodal density distribution with a characteristic “BEC-

peak”, when it is imaged after a defined time of ballistic expansion (see e.g. [121, 62]). On

the contrary, degenerate Fermi gases are experimentally much harder to distinguish from

the thermal sample [154]. Hence, our present experimental studies on the achievement of

lower Yb temperatures have so far focused on bosonic Yb isotopes.

Table 10.1 summarizes relevant physical properties of Yb-87Rb mixtures and states re-

sultant obstacles for the creation of an Yb BEC by means of sympathetic cooling with
87Rb. This roundup shows, that either the low energy scattering properties of each Yb

isotope itself or its interaction with 87Rb prevents the formation of a stable BEC using the

present approach.

Besides these physical aspects, further studies with 176Yb and 87Rb have demonstrated,

that the present experimental setup makes it difficult to gain sufficient control over the

trapping geometry, to reach the BEC transition temperature for 176Yb. This isotope has

a negative scattering length and an emerging BEC would collapse instantly due to the

effective attractive atom-atom interaction in the cloud. Hence, temperature dependent
176Yb atom loss from the trap could indicate quantum degeneracy for this isotope.

The experimental sequence used in these studies is based on the thermalization mea-

surements presented in Chap. 7. The BIODT potentials were gradually reduced, while the

forced evaporation ramp for 87Rb was continued. We were able to produce 176Yb clouds

consisting of ≈ 5×104 atoms at temperatures of 300 . . . 400 nK, while 87Rb formed a BEC.

Calculated transition temperatures for 176Yb in the present trapping geometry, however,

are still lower by a factor of 3 to 4. Increasing the confinement for 176Yb by using higher

BIODT powers generally led to higher 87Rb temperatures and 87Rb atom loss. Although

these studies showed promising results, they led to the following conclusion: In the current

experimental setup, the level of control over the BIODT beam parameters is not sufficient,

to simultaneously reduce disturbances of the potential for 87Rb while providing enough

confinement for 176Yb and maintaining contact between both species.
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Yb boson/ relative aYb−Yb |aYb−87Rb| obstacles for Yb-87Rb double BEC

isotope fermion abundance1 [a0]
2 [a0]

3 through sympathetic cooling

168Yb b 0.13% 252± 3 43
low relative abundance; small in-

terspecies scattering length

170Yb b 3.05% 64± 2 <10

insufficent thermalization with
87Rb due to very small inter-

species scattering length

171Yb f 14.3% −2.8± 3.6 41
fermion; small interspecies scat-

tering length

172Yb b 21.9% −599± 64 114

(large) negative intraspecies scat-

tering length ⇒ BEC unstable;

(intraspecies) three body loss

173Yb f 16.1% 199± 2 330

fermion; (however, possible can-

didate for degenerate bose-fermi

mixture, due to reasonably large

intraspecies scattering length)

174Yb b 31.8% 105± 2 >3000

large interspecies interaction

⇒ phase separation; strong

(interspecies) three body loss

176Yb b 12.7% −24± 4 256
negative intraspecies scattering

length ⇒ BEC unstable

1 from [116]
2 from [57]
3 for 170Yb and 174Yb: measured values; otherwise: calculated as described in Chap. 9 and [15]

Table 10.1: Summary of physical Yb-87Rb properties relevant for the creation of a com-

bined quantum gas through sympathetic cooling.

10.2.2 A novel approach for a combined trap

In order to circumvent the technical and physical problems that have been encountered

in the course of this thesis, we have developed a new strategy for the creation of mixed

quantum gases with Yb and Rb which will be implemented in the near future. This strategy

involves a single-color crossed beam optical dipole trap, the independent creation of Yb and

Rb quantum gases and subsequent realization of a spatial overlap of the two independent

traps.

Near-resonant “green” trap for Yb

As discussed in Sec. 5.1, the basic idea of the bichromatic ODT is, to provide independent

trapping potentials for Yb, without affecting the 87Rb atoms. However, even for perfect

Gaussian ODT beams with equal waists, this condition is fulfilled only in the trap center

due to the different Raleigh lengths. Experimentally, the control of the size and the spatial
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Figure 10.2: (a) Calculated trap depths U0/kB and (b) heating rates for Yb for a single

beam ODT with detuning ∆λ from the “green” 555.8 nm intercombination transition in

Yb. Beam parameters: waist w0 = 15µm and light power P556 = 20mW. The gray

lines indicate BIODT parameters in the present experiments: For comparable trap depth

U0/kB ≈ 60µK, the corresponding heating rate is increased by a factor of ≈ 10.

overlap of the two ODT beams involves a high level of complexity.

The particular electronic level structure of Yb, however, allows for a similar independent

trapping approach, using only a single beam ODT. Due to the narrow line width of γ556 =

2π × 181 kHz of the 1S0 → 3P1 intercombination line at 555.8 nm, a light field, which is

tuned close to the “red” side of this transition, creates a strong dipole potential whereas

photon scattering is on a reasonably low level (see Eqn. 3.33 and 3.34)

Figure 10.2 shows calculated trap depths and heating rates as a function of the detuning

of the trap light from the 1S0 → 3P1 transition for a single beam trap with beam waist

w0 = 15µm and light power of only P556 = 20mW. A trap depth of U0/kB ≈ 60µK,

which is equal to the value in the experiments presented here, is obtained at a detuning

∆λ ≈ 0.15 nm from resonance. At this detuning, the heating rate is by a factor of ≈ 10

larger than the current BIODT, but still small enough to avoid significant Yb heating

within the required times scales. Due to the much lower light power P556 = 20mW, the

repulsive optical potential for 87Rb is greatly reduced to only kB × 4µK.

In parallel to the writing of this thesis, different Yb isotopes were successfully trapped in

such a near-resonant ODT. A DPSS laser pumped dye laser served as a source for ≈ 20mW

of 556 nm light, which was superimposed on the 532 nm ODT beam (see Fig. 4.11 for a

schematic of the current laser system). Yb atoms were first prepared in a strong 532 nm

ODT, before they were transferred to the near-resonant trap with a transfer efficiency of ≈
70%. Sympathetic cooling and phase separation between 174Yb and 87Rb could be observed

in this potential geometry. The preparation of a 87Rb BEC in a phase separated mixture

with 174Yb demonstrated, that interspecies contact is maintained even at temperatures low

enougth to reach quantum degeneracy in 87Rb. In this experiment, the light power of the
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Figure 10.3: (a) Possible implementation of a crossed ODT in the existing experimental

setup. The axial windows of the vacuum chamber allow for a maximum trap angle

α ≈ 23◦. (b) Calculated horizontal cut of the potential Ucrossed for this geometry assuming

identical trap depths U0/kB ≈ 26µK for the individual single beam potentials and beam

waists w0 = 15µm.

near-resonant ODT was reduced to levels below 2mW. However, no indications of quantum

degeneracy for 174Yb or 176Yb could been observed during these preliminary experiments,

probably due to the weak confinement in the single beam near-resonant ODT leading to

low Yb transition temperatures.

Crossed beam ODT

As discussed in Sec. 3.2.3, the use of dipole traps consisting of two crossed red detuned

laser beams enhances the confinement in all three dimensions. This trapping configuration,

which allows for effective evaporative cooling of trapped atoms, is used in many cold atom

experiments. As a result, the all optical formation of quantum degenerated gases in crossed

dipole traps is now an established technique (see e.g.[110]), which has also successfully been

applied to different Yb isotopes by the group in Kyoto [1, 111].

While a crossed geometry for the BIODT which has been used so far, would be an

experimentally very challenging task, the implementation of a single color “green” ODT

for Yb should be straightforward. In the existing experimental setup, both ODT beams of

the crossed trap will enter the vacuum chamber trough of the axial windows, as illustrated

in Fig. 10.3 (a). Due to the geometry of the vacuum chamber, the maximum angle between

the two ODT beams will then be limited to α ≈ 23◦. Fig. 10.3 (b) shows a horizontal cut

of the resulting trapping potential for Yb. The calculation is based on two identical single

beam ODTs with trap depths U0/kB ≈ 26µK and beam waists w0 = 15µm. Trapping

parameters of crossed beam ODTs with different trap angles α are summarized in Tab. 10.2

and compared to a single beam ODT with identical trap depth.

These model calculations clearly show, that in the crossed ODT geometry, even for

small beam angles α, the axial trap frequency ωz and hence the axial confinement is
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beam parameters: single crossed beam trap

λ = 532 nm; w0 = 15µm; beam with beam angle

Ptotal = 340mW; trap α = 5◦ α = 10◦ α = 23◦

trap depth U0/kB ≈ 52µK

axial trap freq. ωz/(2π) [Hz] 8.4 47 93 211

radial trap freq. ω̄r/(2π) [Hz]1 1055 1054 1053 1044

aspect ratio σz/σ̄r = ω̄r/ωz 125 23 11 4.9

relative trap volume 2 V = σzσ̄
2
r 1 0.18 0.09 0.04

relative density 23 n ∝ 1/V 1 5.5 11 24

1 geometric mean of both radial trap frequencies ω̄r =
√
ωxωy

2 compared to the single beam trap
3 assuming identical atom numbers and temperatures

Table 10.2: Comparison of calculated trapping parameters between a single beam ODT

and a crossed beam trap with different trap angles α.

dramatically increased. The aspect ratio σz/σ̄r = ω̄r/ωz of an atomic cloud trapped in

the respective potentials is changed from a nearly 1-dimensional geometry in the single

beam trap to a “cigar shaped” geometry in crossed ODTs. Consequently, the trap volume

is reduced, which, under the assumption of identical atom numbers and temperatures,

results in significantly larger atom densities n ∝ 1/V compared to a single beam trap.

For the creation of degenerate quantum gases by means of evaporative cooling, an in-

crease in the atom density has two major advantages: First, the method of evaporative

cooling becomes more efficient, as the thermalization rate (Eq. 3.23) is directly proportional

to n. Second, the transition temperature for Bose Einstein condensation also depends on

the density (see Eq. 8.22): Tc ∝ n2/3.

Towards a combined Yb-87Rb BEC

In the present experimental setup, the creation of a combined Yb-87Rb BEC could be

realized by an approach, which includes a near-resonant crossed beam “green” ODT as

described above: As shown in Fig. 10.3 (a), one arm of the crossed trap will consist of

a superposition of the (far detuned) 532 nm ODT with P532 > 3W and a small portion

(P556a ≈ 1mW ) of the near-resonant 556 nm ODT (∆λ ≈ 0.15 nm). Preliminary measure-

ments have demonstrated, that the strong 532 nm ODT potential is required for efficient

transfer of Yb atoms from the MOT to the near-resonant 556 nm ODT. The second arm,

which will be created by another 556 nm light field with P556b ≈ 20mW, increases the axial

confinement of the trapped atoms. Subsequently, after loading Yb atoms from the MOT,

forced evaporative cooling of Yb will be realized by ramping down the light powers P532

to 0 and P556b to ≈ 1mW . After this evaporation ramp, which should result in a Yb BEC

for appropriate Yb isotopes, the crossed ODT will be created by two near-resonant beams

with identical power. In analogy to the present experiments (see Chap. 5), 87Rb atoms can
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then independently be prepared and evaporatively cooled to quantum degeneracy in the

spatially separated MT, while Yb is stored in the optical potentials. Finally, interaction

between both quantum degenerate species can be studied by spatially superimposing both

atomic clouds.

The most promising Yb isotope for creating a combined BEC with 87Rb, will be 170Yb,

due to its small scattering length with 87Rb. The realization of a Yb-87Rb Bose-Fermi

mixture could be achieved with 173Yb, which is better suited for evaporative cooling than
171Yb.

Note that this proposed experimental sequence only roughly sketches the pathway to-

wards a combined quantum gas consisting of Yb and 87Rb. Many parameters, e.g. the

evaporation ramp and the actual ODT beam parameters will have to be optimized exper-

imentally. However, preliminary measurements using the near-resonant “green” ODT and

the successful use of crossed ODT geometries in numerous cold atom experiment indicate,

that a combination of both techniques will be a very promising approach.
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[10] S. Tassy, N. Nemitz, F. Baumer, C. Höhl, A. Batär, and A. Görlitz, Sympathetic cooling in a mixture

of diamagnetic and paramagnetic atoms, Preprint-Archiv arXiv:0709.0827 (2007).

[11] N. Nemitz, Production and spectroscopy of ultracold YbRb* molecules, Ph.D. thesis, Universität

Düsseldorf (2008).

[12] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Dynamics of Component

Separation in a Binary Mixture of Bose-Einstein Condensates, Phys. Rev. Lett. 81, 1539– (1998).

[13] S. B. Papp, J. M. Pino, and C. E. Wieman, Tunable Miscibility in a Dual-Species Bose-Einstein

Condensate, Phys. Rev. Lett. 101, 040402– (2008).

[14] Y. Shin, A. Schirotzek, C. H. Schunck, and W. Ketterle, Realization of a Strongly Interacting Bose-

Fermi Mixture from a Two-Component Fermi Gas, Phys. Rev. Lett. 101, 070404– (2008).

[15] S. E. Maxwell and E. Tiesinga, Ultracold Rb + Yb collisions and near-threshold bound states, in

preparation (2010).

[16] N. Nemitz, F. Baumer, F. Münchow, S. Tassy, and A. Gorlitz, Production of heteronuclear molecules

in an electronically excited state by photoassociation in a mixture of ultracold Yb and Rb, Phys. Rev.

A 79, 061403–4 (2009).

[17] J. V. Prodan, W. D. Phillips, and H. Metcalf, Laser Production of a Very Slow Monoenergetic Atomic

Beam, Phys. Rev. Lett. 49, 1149 (1982).

[18] W. Phillips and H. Metcalf, Laser Deceleration of an Atomic Beam, Phys. Rev. Lett. 48, 596–599

(1982).



176 Bibliography

[19] W. D. Phillips, Nobel Lecture: Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70, 721–

(1998).

[20] The Official Web Site of the Nobel Foundation, The Nobel Prize in Physics 1997, URL

http://nobelprize.org/nobel_prizes/physics/laureates/1997/index.html.

[21] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein Condensation

in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett. 75, 1687 (1995).

[22] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and

W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett. 75, 3969

(1995).

[23] The Official Web Site of the Nobel Foundation, The Nobel Prize in Physics 2001, URL

http://nobelprize.org/nobel_prizes/physics/laureates/2001/index.html.

[24] S. Y. T. van de Meerakker, N. Vanhaecke, M. P. J. van der Loo, G. C. Groenenboom, and G. Meijer,

Direct Measurement of the Radiative Lifetime of Vibrationally Excited OH Radicals, Phys. Rev. Lett.

95, 013003– (2005).

[25] D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow, and M. G. Kozlov, Using Molecules to Measure

Nuclear Spin-Dependent Parity Violation, Phys. Rev. Lett. 100, 023003– (2008).

[26] E. R. Hudson, H. J. Lewandowski, B. C. Sawyer, and J. Ye, Cold Molecule Spectroscopy for Con-

straining the Evolution of the Fine Structure Constant, Phys. Rev. Lett. 96, 143004– (2006).

[27] J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Measurement of the Electron Electric

Dipole Moment Using YbF Molecules, Phys. Rev. Lett. 89, 023003– (2002).

[28] E. R. Meyer and J. L. Bohn, Electron electric-dipole-moment searches based on alkali-metal- or

alkaline-earth-metal-bearing molecules, Phys. Rev. A 80, 042508– (2009).

[29] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi,

and M. Ueda, d-Wave Collapse and Explosion of a Dipolar Bose-Einstein Condensate, Phys. Rev.

Lett. 101, 080401– (2008).

[30] M. Baranov, L. Dobrek, K. Goral, L. Santos, and M. Lewenstein, Ultracold dipolar gases – a challenge

for experiments and theory, Physica Scripta T102, 74–81 (2002).
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[80] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, Three-Body Recombination at Large

Scattering Lengths in an Ultracold Atomic Gas, Phys. Rev. Lett. 91, 123201– (2003).

[81] P. Meystre, Atom Optics (Springer–Verlag, New York, 2001).
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meiner Familie und all meinen Freunden, die mich während meiner Promotion unterstützt
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habe ich zu Beginn meiner Promotion das “Handwerk” im experimentellen Umgang

mit kalten Atomen gelernt. Zudem hat die gemeinsame Arbeit mit ihnen extrem viel

Spaß gemacht.

• Gleiches gilt auch für Frank Münchow, meinen Mitstreiter, als es um die entscheiden-

den Experimente ging. Mit gutem Teamwork haben wir auch einige experimentelle

Durststrecken überstanden. Nicht unerwähnt bleiben sollen natürlich auch seine
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