Klinisch-radiologische Ergebnisse eines modularen zementfreien Endoprothesensystems mit XLPE/Keramik-Gleitpaarung

Dissertation
zur Erlangung des Grades eines Doktors der Medizin
der Medizinischen Fakultät der Heinrich-Heine-Universität
Düsseldorf

vorgelegt von
Michael Behringer
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AP</td>
<td>anterior-posterior</td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass-Index</td>
</tr>
<tr>
<td>Bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>BCG</td>
<td>Bacille Calmette-Guérin</td>
</tr>
<tr>
<td>Ca.</td>
<td>Circa</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Assisted Design</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>DPI</td>
<td>Dots Per Inch</td>
</tr>
<tr>
<td>GHz</td>
<td>Gigahertz</td>
</tr>
<tr>
<td>Gpa</td>
<td>Eine Milliarde Pascal</td>
</tr>
<tr>
<td>HMWP</td>
<td>high molecular weight polyethylene</td>
</tr>
<tr>
<td>H-TEP</td>
<td>Hüft-Totalendoprothese</td>
</tr>
<tr>
<td>HV</td>
<td>Vickershärte</td>
</tr>
<tr>
<td>HXLPE</td>
<td>Highly-Crosslinked-Polyethylene</td>
</tr>
<tr>
<td>HO</td>
<td>Heterotope Ossifikationen</td>
</tr>
<tr>
<td>KE</td>
<td>Keramik</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte</td>
</tr>
<tr>
<td>MPa</td>
<td>Eine Millionen Pascal</td>
</tr>
<tr>
<td>Mrad</td>
<td>Mega Rad</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>OP</td>
<td>Operation</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylen</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>ROM</td>
<td>Range of Motion</td>
</tr>
<tr>
<td>S-ROM®</td>
<td>Sivash-Range of Motion</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged Image File Format</td>
</tr>
<tr>
<td>UHMWPE</td>
<td>Ultra high molecular weight polyethylene</td>
</tr>
<tr>
<td>2D</td>
<td>2-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>3-dimensional</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

1 Einleitung .. 6
 1.1 Entwicklung der Hüftendoprothetik .. 6
 1.2 Fragestellung .. 9
2 Material und Methoden ... 12
 2.1 Die Duraloc®-Pfanne ... 12
 2.2 Das Marathon™-Inlay ... 13
 2.3 Der Biolox® Kopf ... 16
 2.4 Der S–ROM® Schaft ... 18
 2.5 Patientenkollektiv ... 21
 2.5.1 Software zur Erfassung der klinischen Daten 21
 2.5.2 Geschlechterverteilung ... 22
 2.5.3 Alter der Patienten zum Operationszeitpunkt 23
 2.5.4 Body Mass Index .. 23
 2.5.5 Operationsseite .. 24
 2.5.6 Diagnoseverteilung ... 24
 2.5.7 Voroperationen ... 24
 2.5.8 Einschränkung durch andere Gelenke .. 25
 2.5.9 Chronische Medikation ... 26
 2.5.10 Harris Hip Score (HHS) ... 26
 2.6 Operation .. 34
 2.6.1 Präoperative Planung ... 34
 2.6.2 Instrumentarium ... 36
 2.6.3 Operationstechnik ... 37
 2.6.4 Operateure ... 39
 2.6.5 Autologe, heterotope Knochentransplantation (Knochenplastik) ... 40
 2.6.6 Intraoperative Komplikationen .. 40
 2.6.7 Blutverlust .. 41
 2.6.8 Sekundärimplantationen .. 42
 2.7 Implantate .. 42
 2.7.1 Pfannendurchmesser .. 42
 2.7.2 Anteverision ... 43
 2.7.3 Inklination .. 44
 2.7.4 Schraubenanzahl ... 44
 2.7.5 Inlayform .. 45
 2.7.6 Prothesenkopfgröße .. 45
1 Einleitung

1.1 Entwicklung der Hüftendoprothetik

Eine weitere Modifikation erfuhr die moderne HTEP durch die Einführung modularer Implantatsysteme. Diese ermöglichen dem Operateur intraoperativ die einzelnen Prothesenkomponenten je nach Bedarf und individuellen anatomischen Verhältnissen frei miteinander zu kombinieren.

In den frühen 1970er Jahren wurde in Europa die Keramik-Keramik Gleitpaarung eingeführt (27), bei welcher Steckköpfe und Keramik-Inlays zur Anwendung ka-

Die bereits zuvor erwähnten Keramik-Kugelköpfe wurden erstmals in den 1970er Jahren eingesetzt um den Polyethylenverschleiß zu minimieren (27). Da die abriebassozierte aseptische Prothesenlockerung bis heute eine entscheidende Rolle für die Verkürzung der Implantatstandzeit spielt, wird das Design und das Material der Gleitpaarungskomponenten seither weiterentwickelt.

1.2 Fragestellung

Unabhängig von der Art der Gelenkerkrankung hat die endoprothetische Versorgung stets das Ziel, bestehende Schmerzen und Bewegungseinschränkungen langfristig zu beseitigen und die Mobilität des Patienten zu erhalten. Hierzu sind nicht nur die B eschwerden des betroffenen Hüftgelenkes zu zählen, sondern auch die damit assoziierten Beeinträchtigungen anderer Strukturen des Skelettsystems. Letztlich geht es um eine Verbesserung der Lebensqualität und dem
Vermeiden der Folgen einer langfristigen Immobilisation der betroffenen Patienten und Patientinnen.

Die Qualität eines chirurgischen Verfahrens oder eines bestimmten Prothesenmodells ist an genau diesen Operationszielen zu messen. Es ist jedoch zu beachten, dass viele verschiedene Faktoren das Untersuchungsergebnis beeinflussen können. Um eine valide und reliable Aussage treffen zu können, sollte daher versucht werden möglichst viele Einflussfaktoren zu kontrollieren. Grundvoraussetzung ist dabei sicherlich, dass es sich in allen Fällen um eine und dieselbe Implantatkombination handelt.

Für die in der vorliegenden Arbeit untersuchte Prothesenkombination aus S-ROM® Schaft, Marathon™-Inlay und Duraloc®-Pfanne liegen in der Literatur nach unserem Wissen bislang keine relevanten Daten in Bezug auf klinische und radiologische Ergebnisse vor.

Für die Quantifizierung der funktionellen und klinischen Aspekte eignet sich der von Harris 1967 eingeführte Score (sog. Harris Hip Score) (147). Dieser erfasst mit seinen zehn verschiedenen Items wichtige Aspekte der oben genannten Lebensqualität. In Bezug auf die untersuchte Prothesenpaarung stellt sich folgende Frage:

- Wie stark lässt sich das klinische Befinden der Patienten/-innen durch die Implantation des definierten Prothesensystems verbessern?
- Welchen Einfluss hat die Operation auf die einzelnen Komponenten des Harris Hip-Scores?

Für den langfristigen Erfolg der Endoprothese sind nach den Daten der wissenschaftlichen Literatur verschiedene Faktoren von Bedeutung. Zum einen spielt offenbar die Belastung des Implantates durch die körperliche Aktivität der Patienten/-innen eine Rolle (32; 53), zum anderen wird die symptomfreie Standzeit durch die Elastizität des Gelenkersatzes beeinflusst. Neben hochwertigen Materialien (12; 139) ist dabei eine osteolysefreie feste knöcherne Integration von entscheidender Bedeutung (6; 142). Über die partikelassozierte Osteolyse stehen Belastung, knöcherne Integration und die Materiaeleigenschaften in direktem Zusammenhang (6; 53; 142). Die subjektiv deskriptive und die normativ analytische radiologische Nachuntersuchung sollen daher folgende Fragen klären:
Einleitung

- Wie ist das Abriebverhalten der definierten Keramik–XLPE–Gleitpaarung?
- Welche Faktoren beeinflussen den XLPE-Verschleiß?
- Wie oft lassen sich Veränderungen in der Knochendichte im Bereich des Implantatlagers beobachten?
- Lassen sich Lageveränderungen der Implantate im Verlauf feststellen?
- In welchem Zusammenhang stehen klinische und radiologische Befunde?
2 Material und Methoden

2.1 Die Duraloc®-Pfanne

Die Duraloc® Produktserie zeichnet sich durch eine maximierte Kongruenz zwischen der Metallschale und dem Polyethyleninlay aus, wodurch dieses auch im Bereich der Kuppel vollständig auf der Metallschale aufliegt. Die daraus resultierende gleichmäßige Verteilung der eingeleiteten Kraft führt letztlich über eine Reduktion der Kontaktspannung und der Pfannenrandbelastung zur Minderung der Verschleißerscheinungen (34; 93).

Insgesamt stehen sechs verschiedene Pfannenausführungen zur Verfügung, welche sich im Wesentlichen durch die Art ihrer Verankerungsmöglichkeiten unterscheiden.

Tabelle 1: Varianten der Duraloc® Produktserie [Duraloc Cup, designed for success]

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Eigenschaften</th>
<th>Größen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duraloc® 100 Series</td>
<td>No hole, porous coated</td>
<td>48-66mm</td>
</tr>
<tr>
<td>Duraloc® 300 Series</td>
<td>No hole, porous coated, tri-spiked</td>
<td>48-74mm</td>
</tr>
<tr>
<td>Duraloc® 400 Series</td>
<td>No hole, porous coated, finned</td>
<td>48-66mm</td>
</tr>
<tr>
<td>Duraloc® Sector</td>
<td>Porous coated, cluster hole</td>
<td>48-66mm</td>
</tr>
<tr>
<td>Duraloc® 1200 Series</td>
<td>Porous coated, multi-hole</td>
<td>48-74mm</td>
</tr>
<tr>
<td>Duraloc® Bantam</td>
<td>Porous coated, small diameter, multi-hole</td>
<td>38-46mm</td>
</tr>
</tbody>
</table>

Während die Duraloc® 100-, 300- und 400-Serien keine Schraubenlöcher für die zusätzliche Verankerung durch Pfahlschrauben aufweisen, finden sich bei den anderen Implantaten mehrere Bohrungen. Der Vorteil solcher multi-hole Pfannen liegt darin, dass sie intraoperativ eine hohe Flexibilität bei der Verankerung der Prothese bieten, sie bergen jedoch die Gefahr einer verstärkten Migration von Abriebpartikeln in das Acetabulum.

Die Duraloc-Pfanne vom Typ Sector stellt in diesem Zusammenhang einen geeigneten Kompromiss dar und bietet mit ihren drei Befestigungslöchern, welche wahlweise kranial oder kaudal positioniert werden können, eine ausreichende Flexibilität bei der Verankerung, ohne die Metallschale dabei zu weit zum Acetabulum zu öffnen.

2.2 Das Marathon™-Inlay

Das Marathon™-Inlay besteht aus einem Polyethylen mit ultrahohem Molekulargewicht (UHMWPE), welches durch die Bestrahlung mit 5 M rad (Gammastrahlung) verdichtet wird (siehe Abbildung 4). Damit liegt die angewandte Strahlendosis um 1-3 Mrad höher als bei herkömmlichen Verfahren und führt so nach Herstellerangaben über eine stärkere Quervernetzung (XLPE) zu geringeren Abriebwerten (33). Eine weitere Erhöhung der Bestrahlungsintensität soll die Abriebfestigkeit hingegen nur gering verbessern und mit einer negativen Beeinflussung der übrigen physikalischen Polyethyleneigenschaften wie der Homogenität des Werkstoffs, Ermüdungs-, Zug- und Bruchfestigkeit verbunden sein (34; 113).
Das verwendete Ausgangsmaterial, UHMWPE, wurde oft fälschlicherweise als „high-density“ Polyethylen bezeichnet. Von diesem unterscheidet es sich jedoch maßgeblich durch sein höheres Molekulargewicht ($2-6 \times 10^6$ g/mol vs. $0,05-0,2 \times 10^6$ g/mol). Die Dichte der Marathon™-Inlays (0,930 - 0,945 g/cm3) ist hingegen eher im Bereich der low density Polyethylene (0,925 – 0,935 g/cm3) anzusiedeln (97).

Material und Methoden

Abbildung 5: Marathon™-Inlay mit Verpackung (92)

Neben dem neutralen Inlay stehen dem Operateur wahlweise auch 10°- beziehungsweise 20°-Inlays zur Verfügung, welche je nach anatomischer Gegebenheit die Luxationsgefahr der Hüftprothese senken können. Im Sinne einer optimalen Ausrichtung ist es darüber hinaus möglich, die Lippe des Polyethyleninlay je nach Luxationsneigung frei zu rotieren und zu verankern.

Zur festen Verankerung des Inlays in der Metallschale dienen ein Sicherungsring und sechs sogenannte Antirotationsvorrichtungen. Die Kombination beider Systeme führt zur Minimierung von Mikrobewegungen und kann über diesen Weg zu einer weiteren Reduktion von Verschleißerscheinungen führen (32), der sonst auf der pfannenzugewandten Seite auftreten würde (74; 114).
Tabelle 2: Varianten der Marathon™-Produktserie

<table>
<thead>
<tr>
<th>Grad</th>
<th>Innendurchmesser</th>
<th>Offset</th>
<th>Ø Schale</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>28 mm</td>
<td>Nein</td>
<td>48-66 mm</td>
</tr>
<tr>
<td>0°</td>
<td>32 mm</td>
<td>Nein</td>
<td>52-66 mm</td>
</tr>
<tr>
<td>10°</td>
<td>28 mm</td>
<td>Nein</td>
<td>48-66 mm</td>
</tr>
<tr>
<td>10°</td>
<td>32 mm</td>
<td>Nein</td>
<td>52-66 mm</td>
</tr>
<tr>
<td>0° + 4</td>
<td>28 mm</td>
<td>Ja</td>
<td>48-66 mm</td>
</tr>
<tr>
<td>0° + 4</td>
<td>32 mm</td>
<td>Ja</td>
<td>52-66 mm</td>
</tr>
<tr>
<td>LPW</td>
<td>28 mm</td>
<td>Nein</td>
<td>48-66 mm</td>
</tr>
<tr>
<td>LPW</td>
<td>32 mm</td>
<td>Nein</td>
<td>52-66 mm</td>
</tr>
<tr>
<td>20°</td>
<td>28 mm</td>
<td>Nein</td>
<td>48-66 mm</td>
</tr>
</tbody>
</table>

Alle Marathon™-Inlay-Varianten weisen eine Mindestpolyethyldicke von 6 mm auf. Diese Eigenschaft ist von Bedeutung, da geringere Inlay-Wanddicken zu plastischen Verformungen durch Kaltfluss führen und mehrfach für höhere Abriebraten und vermehrte Ermüdungsbrüchen verantwortlich gemacht wurden (7; 65; 94).

2.3 Der Biolox® Kopf

Die starke chemische Bindung zwischen den Aluminium- und Sauerstoffatomen sorgt für die inerte Materialeigenschaft der Keramikköpfe und verhindert so die Korrosion der Implantate im Körper. Auch die Widerstandsfähigkeit gegen Beschädigungen der glatten Kugeloberfläche ist auf die starke I onenbindung zurückzuführen.

Für die Verbindung zwischen Prothesenhals und Biolox®-Kopf wird, wie auch bei anderen Steckkopfsystemen, ein Morsekegel verwendet. Die Kraftübertragung bei diesem Befestigungsmechanismus wird über Haftreibung aufgebaut und be-
nötigt damit keine zusätzlichen Arretierungsmechanismen. Da ein einfaches Aufstecken des Kopfes ausreicht, wird hier die Bezeichnung des Steckkopfes verwendet.

Biolox®-Köpfe aus Aluminiumoxid (BIOLOX® forte) werden in drei verschiedenen Durchmessersgrößen angeboten (28 mm, 32 mm, 36 mm). Der Konus beträgt bei allen Ausführungen 12/14.

Tabelle 3: Materialeigenschaften der Biolox®-Keramik-Köpfe (21)

<table>
<thead>
<tr>
<th>Wert</th>
<th>Einheit</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>Vol.-%</td>
<td>> 99,8¹</td>
<td>0,14</td>
</tr>
<tr>
<td>Dichte</td>
<td>g/cm³</td>
<td>3,97</td>
<td>0,00</td>
</tr>
<tr>
<td>Korngröße Al₂O₃</td>
<td>Mm</td>
<td>1,750</td>
<td>0,076</td>
</tr>
<tr>
<td>4-Punkt-Biegefestigkeit²</td>
<td>MPa</td>
<td>631</td>
<td>38</td>
</tr>
<tr>
<td>E-Modul³</td>
<td>GPa</td>
<td>407</td>
<td>1</td>
</tr>
<tr>
<td>Risszähigkeit KIC⁴</td>
<td>MPa m¹/²</td>
<td>3,2</td>
<td>0,4</td>
</tr>
<tr>
<td>Härte HV1⁵</td>
<td>GPa</td>
<td>20</td>
<td>-</td>
</tr>
</tbody>
</table>

¹ Die restlichen Vol.-% bestehen aus weiteren Oxiden
² Gibt die ermittelte Kraft wieder, die nötig ist, um einen beidseitig gelagerten, definierten, quaderförmigen Prüfkörper, durch eine an zwei nebeneinander liegenden Stellen aufgelegte Prüfkraft zu zerbrechen.
³ Materialkennwert aus der Werkstofftechnik, der den Zusammenhang zwischen Spannung und Dehnung bei der Verformung eines festen Körpers bei linear elastischem Verhalten beschreibt.
⁴ Unter Risszähigkeit versteht man den Widerstand eines Werkstoffs gegen einsetzende Rissausbreitung; KIC ist der entsprechende Werkstoffkennwert.
⁵ Die Vickershärte (HV) entspricht dem Verhältnis von Prüfkraft in Newton zur Eindruckoberfläche in Millimetern multipliziert mit dem Faktor 0,1891.

2.4 Der S–ROM® Schaft

Bei dem S-ROM®-System handelt es sich um eine modulare Prothese aus Titan, für die zementfreie Implantation. Durch eine große Auswahl an unterschiedlichen Modulkonfigurationen eignet sich die Prothese sowohl für die Primärversorgung, als auch für die Revisionschirurgie.
Der im distalen Bereich polierte Schaft weist 0,5 mm – 0,625 mm hohe Erhebungen auf, um über eine Keilverzahnung ausreichend Halt und Rotationsstabilität im diaphysären Knochen zu gewährleisten. Eine koronale Schlitzung des Schaf tes führt darüber hinaus zu einer verminderten Steifigkeit und reduziert die Kraft einleitung über das distale Ende. Eine weitere Besonderheit der S-ROM®-Prothese liegt in der Möglichkeit die Lateralisation (sog. horizontales off-set) und die Beinlänge (sog. Vertikales off-set) unabhängig voneinander zu beeinflussen. Soll letztere unverändert bleiben, der Abstand des Trochanter major zum Dreh zentrums des Hüf gelenkes jedoch lateralisiert werden, stehen dem Operateur vier verschiedene Offsetvariationen des Schaft halses (+4mm, +6mm, +8mm, +12mm) zur Verfügung. Eine geringgradige Veränderung der Beinlänge bei gleichbleibender Lateralisation ist neben der Prothesenhalslänge oder der Wahl des Kugelkopfes beim SROM-Schaft auch über die Wahl der einzelnen Hülsen größen möglich. Dieses Vorgehen wird auch als „sleeve up“ bzw. „sleeve down“ Technik bezeichnet (siehe Abbildung 9).
Abbildung 9: Beeinflussung der Beinlänge über die "sleeve up" bzw. "sleeve down" Technik (36)

Sollen sowohl Beinlänge als auch das Offset in einem Schritt verändert werden, ist dies über die Auswahl der Halslänge möglich. Drei Standardhalslängen von 30 mm, 36 mm und 42 mm werden hierfür bereitgestellt.

Für jeden Standardschaft werden bis zu zehn verschiedene Hülsenvariationen angeboten, die es ermöglichen die metaphysäre Verankerung den individuellen anatomischen Gegebenheiten des/der Patienten/ -in anzupassen. Die Buchstaben B, D und F kodieren dabei drei verschiedene Konusgrößen, welche drei, fünf oder sieben Millimeter zum gewählten Schaftdurchmesser addieren. Die Angaben „small“, „large“ oder „XX-large“ beziehen sich hingegen auf die Größe des Hülsenfortsatzes und entsprechen einer seitlichen Ausladung von 9,5 mm, 13,5 mm beziehungsweise 17,5 mm. Um eine tiefe knöcherne Integration des Implantates zu fördern weisen alle Hülsenmodelle eine poröse Oberflächenstruktur auf. Dabei stehen mit dem ZTT™ porous coating und dem ZT™ HA (hydroxyapatite) coating zwei verschiedene Varianten zur Verfügung. Kleine Abstufungen an der Unterseite des Hülsenfortsatzes dienen zur gleichmäßigen Kraftüberleitung auf den anliegenden Knochen (siehe Abbildung 9). Über diese Konstruktion wird versucht, die Knochendichte in diesem Bereich konstant zu halten.

Für einen festen Halt zwischen Schaft und Hüse sorgt eine konusförmige Verbindung, deren Stärke unter B elastung z unimmt und damit Mikrobewegungen zwischen den Komponenten vermindert (156). Intraoperativ können an dieser Stelle über ei ne freie Schaftrotation etw aige Rotationsfehler im Schenkelhals im Sinne von der metaphysären Befestigung der Prothese unabhängige Achsenkor-
Material und Methoden

2.5 Patientenkollektiv

Von Anfang 2002 bis Ende 2007 wurden an der Klinik für Orthopädie und orthopädische Chirurgie des Universitätsklinikums Düsseldorf insgesamt 115 Patienten/-innen operiert, welche die gesuchte Implantatpaarung aufwiesen (zementfreier Prothesenschaft vom Typ S-ROM®, Keramik-Kugelkopf, XLPE-Inlay vom Typ Marathon™, zementfreie Pfannenkomponente vom Typ Duraloc®). Folgende Einschlusskriterien wurden angewandt:

1. Es musste eine detaillierte prä-, intra- und postoperative Dokumentation vorliegen und mindestens eine Nachuntersuchung dokumentiert worden sein, die nach sechs Wochen oder später durchgeführt wurde.

2. Es musste eine postoperative Röntgenaufnahme des gesamten Beckens im anteriore-posterioren Strahlengang (Beckenübersichtsaufnahme) verfügbar sein und eine Vergleichsaufnahme, die nach sechs Wochen oder später aufgenommen wurde.

Unter Anwendung dieser Kriterien eigneten sich 96 Patienten/-innen für die vorliegende Arbeit. 14 Patienten/-innen wurden beidseitig versorgt, so dass insgesamt 110 Hüftendoprothesen untersucht wurden.

2.5.1 Software zur Erfassung der klinischen Daten

2.5.1.1 Hard- und Software

Zur Dokumentation der klinischen prä- und posoperativen Untersuchungsergebnisse (siehe Kapitel 2.8) wurde die Datenbankgestützte Software „Falk Hüfte-Win32“ der Firma Falk – b.i.g. (Beratung in Gesundheitsfragen, Lübeck Deutschland) verwendet. Die vom Hersteller angegebenen Hardwarevoraussetzungen und die technischen Daten des verwendeten Computers sind in der Tabelle 4 zu entnehmen.
Material und Methoden

Tabelle 4: Empfohlene und verwendete Hardware und Software

<table>
<thead>
<tr>
<th>Hard- und Software</th>
<th>Empfohlen</th>
<th>Verwendet</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Prozessortaktung</td>
<td>233 MHz oder höher</td>
<td>751 MHz</td>
</tr>
<tr>
<td>Prozessorart</td>
<td>Pentium</td>
<td>Pentium III</td>
</tr>
<tr>
<td>Arbeitsspeicher</td>
<td>32MB (Windows NT: 64MB)</td>
<td>256MB</td>
</tr>
<tr>
<td>Betriebssystem</td>
<td>Windows 95, 98, NT 4.0</td>
<td>Windows 2000</td>
</tr>
<tr>
<td>Festplattenspeicherplatz</td>
<td>200MB</td>
<td>18,6 GB</td>
</tr>
</tbody>
</table>

2.5.1.2 Dokumentationsmodule

2.5.2 Geschlechterverteilung

![Abbildung 10: Geschlechterverteilung](image-url)
2.5.3 Alter der Patienten zum Operationszeitpunkt
Das durchschnittliche Operationsalter lag bei 46,8 Jahren (SD: 14,67). Die jüngste Patientin war zum Operationszeitpunkt 16 Jahre und der älteste Patient 76 Jahre alt. Die detaillierte Altersverteilung wird in Abbildung 10 dargestellt.

Abbildung 11: Alter der Patienten/-innen bei Operation

2.5.4 Body Mass Index

Abbildung 12: Body Mass Index der Patienten/-innen
2.5.5 Operationsseite
Die Aufteilung der Operationsseite im untersuchten Patientenkollektiv war nahezu ausgeglichen. Von 110 eingebrachten Totalendoprothesen wurden 56 auf der rechten Seite und 54 auf der linken Seite implantiert. Bei den beidseitig versorgten Patienten/-innen (n = 14) wurde in acht Fällen zuerst die rechte Seite und bei sechs Patienten/-innen zuerst die linke Seite operiert.

2.5.6 Diagnoseverteilung
Bei 46 der 110 Hüften (42%) war eine primäre Coxarthrose Grund für die prothetische Hüftgelenkversorgung. 37-mal (34%) lag der Operation die Diagnose einer Hüftkopfnekrose zugrunde und in 22 weiteren Fällen (20%) führte eine Dysplasiecoxarthrose zur Operationsindikation. Die übrigen fünf Patienten/-innen wurden in der Kategorie „Verschiedene“ zusammengefasst. Darunter fielen eine Säuglingscoxitis, zwei Arthrodesen, eine posttraumatische Arthrose nach Acetabulumfraktur und ein Zustand nach Keramik – Kopfbruch bei liegender Prothese.

Abbildung 13: Diagnoseverteilung

2.5.7 Voroperationen
Da ein Einfluss früherer Operationen am Hüftgelenk auf den intra- oder postoperativen Verlauf der endoprothetischen Versorgung denkbar ist, wurden alle Voroperationen dieser Art anamnestisiert. Standardmäßig wurden dabei Eingriffe im Bereich des Femurs zur Korrektur von Fehlstellungen (Osteotomien), operative Versteifungen des Hüftgelenkes (Arthrodesen) und prothetische Versorgungen (siehe Kapitel 0) registriert. Aber auch Resektionen des Hüftkopfes im Sinne ei-
ner Girdlestone Situation1 wurden erfasst. Andere Voroperationen wurden in der Kategorie „Sonstige“ zusammengefasst. Für das untersuchte Patientenkollektiv ergaben sich folgende Werte:

Tabelle 5: Voroperationen

<table>
<thead>
<tr>
<th>Voroperationen</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td>84</td>
<td>76,36%</td>
</tr>
<tr>
<td>Osteotomie</td>
<td>13</td>
<td>11,82%</td>
</tr>
<tr>
<td>Arthrodese</td>
<td>2</td>
<td>1,82%</td>
</tr>
<tr>
<td>Girdelstone</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Prothetische Versorgung</td>
<td>3</td>
<td>2,73%</td>
</tr>
<tr>
<td>Sonstige</td>
<td>4</td>
<td>3,64%</td>
</tr>
</tbody>
</table>

Unter die Kategorie Sonstige fielen im untersuchten Patientenkollektiv eine Osteosynthese, eine Acetabuloplastik, eine mit Schrauben versorgte Schenkelhalsfraktur und eine Synovektomie.

Ein Einfluss der genannten Voroperationen auf intraoperative Komplikationen (siehe Kapitel 2.6.6) oder die Pannenorientierung (siehe Kapitel 2.7.2 und 0) konnte allerdings nicht gefunden werden. Zum Einfluss der Voroperationen auf den Harris Hip Score siehe Ergebnisdarstellung in Kapitel 3.2.1.

2.5.8 Einschränkung durch andere Gelenke

Das rechte Kniegelenk war 17-mal leicht und 11-mal stark in seiner Funktion beinträchtigt. Ähnlich oft fanden sich Einschränkungen am linken Kniegelenk (n = 18, bzw. n = 7). Die Sprunggelenke waren auf der rechten Seite 11-mal leicht und 9-mal stark beinträchtigt und auf der linken Seite 13-mal leicht und 6mal stark.

1 Beschreibt einen Zustand nach Entfernung einer infizierten HTEP bei nicht möglichem Prothesenwechsel, wobei sich der Trochanter minor in der Hüftpfanne und der Trochanter major an der Beckenschaufel abstützt (126).

Tabelle 6: Beeinträchtigung anderer Gelenke der unteren Extremität

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechtes Kniegelenk</td>
<td>17</td>
<td>11</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Linkes Kniegelenk</td>
<td>18</td>
<td>7</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Rechtes Sprunggelenk</td>
<td>11</td>
<td>9</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Linkes Sprunggelenk</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Kontralaterales Hüftgelenk</td>
<td>19</td>
<td>18</td>
<td>30</td>
<td>67</td>
</tr>
</tbody>
</table>

2.5.9 Chronische Medikation
Chronische Medikationen der Patienten/-innen wurden erfassst. Vorrangig war hier das Ziel, Präparate zu identifizieren, die über eine Beeinflussung der Knochenmineralisation das langfristige Ergebnis der Operation beeinträchtigen könnten (Steroide) (84; 89; 118). Darüber hinaus wurde auch die chronische Einnahme nicht steroidaler, entzündungshemmender Medikamente erfasst (NSAID), da diese laut Literatur möglicherweise einen Effekt auf die heterotopen Ossifikationen haben könnten (50; 52; 155). In knapp 21% der Fälle nahmen die Patienten NSAID und in fast 16% Steroide ein.

Tabelle 7: Chronische Medikation

<table>
<thead>
<tr>
<th>Medikamente</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAID</td>
<td>23</td>
<td>20,91%</td>
</tr>
<tr>
<td>Steroide</td>
<td>16</td>
<td>15,55%</td>
</tr>
</tbody>
</table>

2.5.10 Harris Hip Score (HHS)
Die international verbreitete Ratingskala\(^2\) für klinische und funktionelle Parameter, der Harris Hip Score (69), wurde auch in dieser Studie angewandt, um die hüftbedingten Bewegungs- und Alltagseinschränkungen der Patienten/-innen in

\(^2\) Ratingskalen gehören zu den Intervallskalen.
Material und Methoden

Quantität und Qualität zu erfassen. Er basiert neben der Messung der Gelenk-
beweglichkeit (siehe Kapitel 2.5.10.2) auf einem Fragenkatalog mit acht weiteren
Punkten. Hierbei spielen die empfundenen Schmerzen, die mögliche Gehleis-
tung, eventuell benötigte Gehhilfen und die Ausprägung eines hinkenden Gang-
bildes eine große Rolle. Aber auch die Frage, ob die Patienten/-innen den öffent-
lichen Verkehr nutzen können, oder wie gut sie Treppen steigen, Schuhe binden
und sitzen können, werden in die Bewertung mit einbezogen. Ergänzt werden
diese Punkte durch Aussagen über hüftassoziierte Deformitäten, wie Kontraktu-
ren oder Einklängendifferenzen. Eine det aillierte B eschreibung des Harris-Hip
Scores befindet sich im Anhang.

In der vorliegenden Arbeit wurden die einzelnen Bereiche des genannten Score-
Systems nach inhaltlichen Gesichtspunkten in vier verschiedene Kategorien
gruppiert. Während die vom Patienten empfundenen Schmerzen und das evtl.
durch Schmerzen eingeschränkte Sitzen eine eigene Kategorie ausmachte, wur-
den der Bezeichnung „Beweglichkeit“ die gemessenen Freiheitsgrade (ROM) und
das Schuhe Schnüren untergeordnet. Die Punkte Gehleistung, benötigte Gehhil-
fen, das Gangbild und die Fähigkeit Treppen zu steigen wurden unter der Fähigkeit
öffentliche Verkehrsmittel zu nutzen in der Kategorie „Mobilität“ zusammenge-
fasst. Die vierte Gruppe mit der Bezeichnung „Deformität“ beinhaltete die Bein-
längendifferenzen und etwaige Kontrakturen des betroffenen Hüftgelenkes.

Da die maximal erreichbare Punktzahl in einzelnen Teilbereichen variiert, ergibt
sich folgende Gewichtung. Mit 44 möglichen Punkten stehen die von dem/der
Patient/-in empfundenen Schmerzen an erster Stelle. Danach folgen mit jeweils
11 Punkten die Gehleistung, das Gangbild und möglicherweise benötigte Gehhil-
fen. Für ein komplett freies Gelenkspiel werden fünf Punkte vergeben. Maximal
vier Punkte können für das problemfreie Sitzen, Treppensteigen und Schuhe
schnüren erreicht werden. Gleichviele Punkte werden vergeben, wenn im betrof-
fenen Gelenk keine Kontraktur vorliegt. Für die Fähigkeit öffentliche Verkehrsmitt-
el zu nutzen wird maximal ein Punkt berechnet. Insgesamt ergibt sich daraus ein
maximal erreichbarer Gesamtscore von 100. Anhand dieses Summenwertes
wurden die Patienten/-innen wie folgt bewertet:

1. Sehr gut: 90-100 Punkte
2. Gut: 89 – 80 Punkte
3. Befriedigend: 70 – 79 Punkte
4. Unbefriedigend: weniger als 70 Punkte.
Abbildung 14: Präoperativ erfasster Harris Hip Score in Prozent (blau) der maximal erreichbaren Punktzahl (hellblau).

Berechnet man die jeweiligen Mittelwerte für die genannten Faktoren des HHS, so zeigt sich, dass insbesondere die Schmerzen präoperativ relativ stark ausgeprägt waren. Der Mittelwert lag hier bei 12,64 von 44 möglichen Punkten (SD: 5,36). Aus der Gruppe, in der maximal 11 Punkte erreicht werden konnten, war das Gangbild im Durchschnitt am stärksten beeinträchtigt und wies einen mittleren Punktewert von 4,89 (SD: 3,27) auf. Aber auch die Gehleistung wurde durch die verschiedenen Hüftgelenkserkrankungen stark reduziert. Hier lag der Mittelwert bei 5,15 (SD: 2,30). Nur geringgradig besser waren die präoperativ erfassten Daten bezüglich der benötigten Gehhilfen. Mit einem Wert von 6,46 (SD: 3,51) wurden hier im Mittel 43% der maximalen Punktezahl erreicht.

Unter den Faktoren, für welche von Harris maximal vier Punkte vorgesehen waren, zeigte sich die größte Beeinträchtigung beim Treppensteigen (MW: 1,64; SD: 0,63). Eine vergleichbare Beeinträchtigung fand sich jedoch auch in der Fähigkeit des Schuheschnürens (MW: 1,98; SD: 0,43). Hier konnten nur 50% der maximalen Punkte erzielt werden. Die Sitzdauer in Abhängigkeit von der Stuhlhöhe war aus dieser Gruppe am geringsten beeinträchtigt. Der mittlere Punktewert lag hier bei 2,11 (SD: 0,65).

Veränderungen in der physiologischen Gelenkstellung (Kontrakturen) fanden sich im untersuchten Patientenkollektiv vergleichsweise selten, so dass hier mit einem Mittelwert von 3,81 (SD: 0,46) über 90% des möglichen Punktewertes erreicht wurde. Da ein Großteil der präoperativ untersuchten Patienten/-innen auch in der Lage war, öffentliche Verkehrsmittel zu nutzen, wurde in 96 von 110 unter-
suchten Hüftgelenken der hierfür vorgesehene Punkt vergeben (MW: 0,87; SD: 0,33).

Basierend auf dem oben genannten Bewertungssystem zeigt sich, dass alle untersuchten Hüftgelenke präoperativ mit „unbefriedigend“ zu bewerten waren.

Abbildung 15: Präoperativ erfasster Haaris Hip Score

2.5.10.1 Schmerzen
Der oben angegebene Mittelwert für die präoperativ empfundenen Schmerzen ergibt sich aus folgender Verteilung:

Tabelle 8: Präoperativ empfundene Schmerzen

<table>
<thead>
<tr>
<th>Schmerzausprägung</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Schmerzen</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Gelegentlich leichte Schmerzen</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Leichte Schmerzen</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Mäßige Schmerzen</td>
<td>34</td>
<td>30,9%</td>
</tr>
<tr>
<td>Starke Schmerzen</td>
<td>71</td>
<td>64,55%</td>
</tr>
<tr>
<td>Sehr starke Schmerzen/ Gehunfähig</td>
<td>5</td>
<td>4,55%</td>
</tr>
</tbody>
</table>

Dies zeigt, dass bei allen operierten Patienten vor der Operation mindestens mäßige Schmerzen vorlagen. Bei mehr als zwei Drittel (69,1%) der operierten Hüftgelenke fanden sich starke bis sehr starke Schmerzen.

Bei fast allen Patienten war die Zeit, die sie maximal auf einem Stuhl sitzen konnten auf eine halbe Stunde reduziert und bei drei von diesen war dies sogar unab-

Tabelle 9: Präoperative Beeinträchtigung des Sitzens

<table>
<thead>
<tr>
<th>Sitzen</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länger als 1h, unabhängig von der Höhe des Stuhls</td>
<td>9</td>
<td>8,18%</td>
</tr>
<tr>
<td>Ca. ½ h nur auf hohen Stühlen</td>
<td>98</td>
<td>89,09%</td>
</tr>
<tr>
<td>Weniger als ½ h, unabhängig von der Höhe des Stuhls</td>
<td>3</td>
<td>2,73%</td>
</tr>
</tbody>
</table>

2.5.10.2 Beweglichkeit

Abbildung 16: Präoperativ erfasster Bewegungsumfang

Tabelle 10: Präoperative Beeinträchtigung des Schuhebindens

<table>
<thead>
<tr>
<th>Schuheschnüren</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Probleme möglich</td>
<td>2</td>
<td>1,82%</td>
</tr>
<tr>
<td>Schwierig</td>
<td>105</td>
<td>95,45%</td>
</tr>
<tr>
<td>Kein Schuheschnüren möglich</td>
<td>3</td>
<td>2,73%</td>
</tr>
</tbody>
</table>

2.5.10.3 Mobilität

Im Folgenden werden die einzelnen Aspekte des Harris-Hip-Scores besprochen, welche Aussagen über die Mobilität der Patienten machen. Dazu gehören nach der vorgenommenen Einteilung (s.o.) die Gehleistung, benötigte Gehhilfen, das Gangbild und die Fähigkeit Treppen und öffentliche Verkehrsmittel zu nutzen. Die Verteilung der jeweiligen Merkmalsausprägungen im untersuchten Patientenkollektiv ist den folgenden Tabellen zu entnehmen.

Tabelle 11: Präoperativ verwendete Gehhilfen

<table>
<thead>
<tr>
<th>Gehhilfe</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne</td>
<td>32</td>
<td>29,09%</td>
</tr>
<tr>
<td>Ein Stock bei längeren Strecken</td>
<td>26</td>
<td>23,64%</td>
</tr>
<tr>
<td>Ein Stock ständig</td>
<td>17</td>
<td>15,45%</td>
</tr>
<tr>
<td>Eine Unterarmgehstütze</td>
<td>23</td>
<td>20,91%</td>
</tr>
<tr>
<td>Zwei Stöcke</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Zwei Unterarmgehstützen</td>
<td>12</td>
<td>10,91%</td>
</tr>
</tbody>
</table>

Circa ein Drittel (29,09%) der Patienten brauchte präoperativ keine Gehhilfe. Fast jeder Vierte (23,64%) nutzte hingegen einen Stock bei längeren Strecken und 15,45% der Patienten nahm ihn, unabhängig von der Gehdistanz, zur ständigen Unterstützung mit. Die e inseitige Nutzung ei ner Unterarmgehstütze wurde vor dem Gelenkersatz von jedem fünften Patienten (20,91%) in Anspruch genom-
men, wohingegen nur jeder Zehnte (10,91%) zwei Unterarmgehstützen benötigte.

Tabelle 12: Präoperative Beeinträchtigung des Gangbildes

<table>
<thead>
<tr>
<th>Hinken</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kein Hinken</td>
<td>7</td>
<td>6,36%</td>
</tr>
<tr>
<td>Leichtes Hinken</td>
<td>27</td>
<td>24,55%</td>
</tr>
<tr>
<td>Mäßiges Hinken</td>
<td>49</td>
<td>44,55%</td>
</tr>
<tr>
<td>Starkes Hinken</td>
<td>27</td>
<td>24,55%</td>
</tr>
</tbody>
</table>

Nur bei sieben (6,36%) der pathologisch veränderten Hüftgelenke fand sich keine Beeinträchtigung des Gangbildes. In 27 weiteren Fällen (24,55%) zeigte sich ein leichtes Hinken. Die übrigen Hüftgelenke (n=76) wiesen ein mäßiges (44,55%) oder starkes (24,55%) Hinken auf.

Tabelle 13: Präoperative Beeinträchtigung der Gehleistung

<table>
<thead>
<tr>
<th>Gehleistung</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbegrenzt</td>
<td>3</td>
<td>2,73%</td>
</tr>
<tr>
<td>Ca. 600m</td>
<td>25</td>
<td>22,73%</td>
</tr>
<tr>
<td>200m – 300m</td>
<td>58</td>
<td>52,73%</td>
</tr>
<tr>
<td>Nur im Haus</td>
<td>22</td>
<td>20%</td>
</tr>
<tr>
<td>Gehunfähig</td>
<td>2</td>
<td>1,82%</td>
</tr>
</tbody>
</table>

Die maximale Gehdistanz war im untersuchten Patientenkollektiv nur bei drei (2,73%) der erkrankten Hüften unbegrenzt. Circa 600 m Wegstrecke konnte in 22,73% der Fälle zurückgelegt werden. Etwas mehr als die Hälfte (52,73%) der Hüftkrankungen bezeichnete die Gehleistung als stark, dass die maximale Gehleistung auf 200-300 m reduziert wurde; jeder fünfte Patient (20%) konnte sich aufgrund seiner Hüftbeschwerden nur im Haus bewegen.

Zwei der untersuchten Patienten (1,82%) waren vor der Operation komplett gehunfähig.
Material und Methoden

Tabelle 14: Präoperative Beeinträchtigung des Treppensteigens

<table>
<thead>
<tr>
<th>Treppensteigen</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal, ohne Geländer</td>
<td>2</td>
<td>1,82%</td>
</tr>
<tr>
<td>Normal, mit Geländer</td>
<td>67</td>
<td>60,91%</td>
</tr>
<tr>
<td>Schwierig</td>
<td>38</td>
<td>34,55%</td>
</tr>
<tr>
<td>Kein Treppensteigen möglich</td>
<td>3</td>
<td>2,73%</td>
</tr>
</tbody>
</table>

Die für die Mobilität und Unabhängigkeit des Patienten ebenfalls für den Alltag sehr wichtige Fähigkeit Treppenstufen zu bewältigen, wurde vor der Operation in nur zwei Fällen (1,82%) als normal (ohne Geländer) bewertet. Die Zuhilfenahme des Geländers war in 67 Fällen (60,91%) notwendig, um die Treppenstufen zu überwinden. 38 mal wurde das Treppensteigen von den Patienten als schwierig empfunden. In drei Fällen (2,73%) war die Nutzung der Treppen gar nicht möglich.

Tabelle 15: Präoperative Fähigkeit öffentliche Verkehrsmittel zu nutzen

<table>
<thead>
<tr>
<th>Nutzung öffentlicher Verkehrsmittel</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ein-/Aussteigen möglich</td>
<td>96</td>
<td>87,27%</td>
</tr>
<tr>
<td>Ein-/Aussteigen nicht möglich</td>
<td>14</td>
<td>12,73%</td>
</tr>
</tbody>
</table>

Die Frage, ob die Nutzung öffentlicher Verkehrsmittel trotz Beschwerden möglich ist, wurde von den Patienten 96 mal (87,27%) mit ja und 14 mal mit nein (12,73%) beantwortet.

2.5.10.4 Deformitäten

Tabelle 16: Kontrakturen und Beinlängendifferenzen

<table>
<thead>
<tr>
<th>Deformität</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixierte Adduktionskontraktur >10°</td>
<td>4</td>
<td>3,67%</td>
</tr>
<tr>
<td>Fixierte Rotationskontraktur >10°</td>
<td>8</td>
<td>7,27%</td>
</tr>
<tr>
<td>Fixierte Beinlängendifferenz >3cm</td>
<td>3</td>
<td>2,73%</td>
</tr>
<tr>
<td>Fixierte Beugekontraktur</td>
<td>4</td>
<td>3,67%</td>
</tr>
</tbody>
</table>

2.6 Operation

2.6.1 Präoperative Planung

Für die Bestimmung der zu implantierenden Schaftgröße wurden in allen Fällen Röntgen-Aufnahmen verwendet, welche auf die anteriore, posteriore und laterale Röntgenaufnahmen aufgelegt werden können. Diese Schablonen wurden von den Prothesenherstellern in den jeweiligen Größenabstufungen der Implantate zur Verfügung gestellt. Um den Vergrößerungsfaktor zu berücksichtigen, der bei den Röntgenaufnahmen durch den Film-Fokusabstand entsteht, liegt der Maßstab dieser Folien bei 1:1,15.

Die Planung begann mit der Feststellung der femoralen Markraumweite an drei verschiedenen Stellen um den erforderlichen distalen Schaftdurchmesser zu bestimmen. Anschließend folgte die Ermittlung der geeigneten Halslänge, wobei

Abbildung 17: Präoperative Planung der Hüftpfanne mit Hilfe von Röntgenschablonen (35)
2.6.2 Instrumentarium

Das Präparations- und Implantationsinstrumentarium für die Hüftpfanne bestand aus folgenden Komponenten:

1. Quickset-Acetabulum-Fräerschaft (Hudson-Anschluss)
2. Nach Größe abgestufte Fräskörbe (Quickset – Acetabulum – Fräskörbe)
3. Pfanneneinschläger mit Metallgriff, gerade
4. Universal PE – Einschläger
5. Probeinlay (Duraloc® - Testinlay mit Gewindeschaft)
6. Probepfannen (Duraloc® - Größentester)
7. Ausrichtungshilfe (Duraloc® - Acetabulum – Ausrichtungslehre)
8. Sechskant – Schraubendreher mit Kardangelenk
9. Schraubenhalteklemmen
10. APEX-Locherverschluss
11. Duraloc® - Tiefenmesslehre

Das Präparations- und Implantationsinstrumentarium für den Schaft bestand aus folgenden Komponenten:

1. Nach Größe abgestufte distale und proximale Fräser
2. Verschiedene Probeschäfte, Probenhälse, Probehülsen und Probeköpfe
3. Verschiedene Konusgrößen für die einzelnen Probeschäfte
4. Einschlaginstrument zur Implantation der Hüle (S-ROM® - Hülsenimpaktor)
5. S-ROM® - Pin-Einschläger
6. Einschlaginstrument zur Implantation des Prothesenschaftes (S-ROM® - Schaftimpaktor)
7. S-ROM®-Hudson Verlängerung und Adapter von Zimmer auf Hudson
8. S-ROM® - Femurresektionsschablone
9. Vorbohrer
10. Kastenmeißel
11. Verschiedene Kalkar-Fräser
12. S-ROM®-Fräsrahmen und Fräsgehäuse
13. Kugelextraktor
14. S-ROM® Schaft/ Hülsentrenner
15. Verschiedene Ausschlaginstrumente (S-ROM® Schaftausschläger, S-ROM® Probierhülsenausschläger
Sowohl für die Implantation der Hüftpfanne, als auch für den Prothesenschaft kamen eine oszillierende Säge mit verschiedenen Sägeblättern und eine Bohrmaschine und die dazu gehörende Bohrhülse (3,8 mm) und ein Bohreinsatz (3,8 mm) zur Anwendung.

2.6.3 Operationstechnik

Anschließend wurde die Gelenkkapsel entlang des Schenkelhalses freipräpariert, in Längsrichtung gespalten und dann reseziert. Es folgte die Hüftgelenkluxation und die Schenkelhalsosteotomie kurz oberhalb des Trochanter minor und die Lagerung der betroffenen Extremität in Außenrotation und Adduktion. Danach wurde eine Synovektomie bis zur Psoassehne durchgeführt und eine Entfernung von acetabulärem Weichteil- und Labrumgewebe sowie Osteotomie und Resektion von funktionsbehindernden Pfannenrandosteophyten vorgenommen. Das Acetabulum wurde dann, mit dem kleinsten Fräskopf (Durchmesser: 42 mm oder alternativ 44 mm) beginnend, in 45° Abduktion (Sagittalebene) und 15°-20° Anteverision (Transversalebene) aufgefräst (siehe Abbildung 19). Dieser Vorgang wurde mit schrittweise größeren Fräsern durchgeführt, bis sich gesunder, blutender subchondraler Knochen darstellt. Um ein optimales Press-Fit zu erzielen wurde das Acetabulum 2 mm kleiner aufgefräst, als die später einzusetzende Pfanne.
Material und Methoden

Abbildung 19: Einbringen der Fräße in 45° Inklination (links) und 15°-20° Anteversion (rechts) (34)

Im Anschluss folgte die Vorbereitung des metaphysären Knochens für das Einbringen der Prothesenhülse. Die Präparation des konischen Hülsenanteils und des Hülsenfortsatzes erfolgt dabei nacheinander. Zuerst wurde der konische Anteil und danach der Hülsenfortsatz vorbereitet. Da die Richtung, in welcher der Hülsenfortsatz implantiert wird, frei gewählt werden kann, wurde er so positioniert, dass er einen bestmöglichen knöchernen Halt hatte.
War der proximale Femur präpariert, konnte die Probeprothese eingebracht werden. Die Hülsenoberkante diente nun als Richtlinie für die endgültige Resektion, um so eine freie Einstellung der Rotation des Prothesenhalses zu ermöglichen. Bei unveränderter Anteversion des Prothesenhalses (entsprechend 0° im Verhältnis zum Prothesenschaft) kann auf den letzten Resektionsschritt verzichtet werden. Durch diese Hülse (sleeve) wurde dann eine den anatomischen und biomechanischen Gegebenheiten entsprechende Probeprothese eingeführt und nach Reposition auf Beweglichkeit geprüft. Bestanden bei der intraoperativen dynamischen Untersuchung des Hüftgelenkes trotz korrekter Implantatpositionierung Luxationstendenzen, konnten alternativ 10°- bzw. 20° Marathon™-Pfanneninlays (siehe Tabelle 2) verwendet werden. Hierdurch kann über eine bessere Prothesenkopfüberdachung die Luxationsgefahr reduziert werden.

Bei sicherem Gelenkspiel wurde erneut luxiert und nach Entfernung der Probeimplantate die Originalprothese eingebracht. Zeigte auch diese nach Reposition keinerlei Luxationsgefährdung, erfolgte abschließend zur Verbesserung der muskulären Vorspannung, die Rekonstruktion der Vastus-Gluteus-Schlinge und dann ein schichtweiser Wundverschluss.

2.6.4 Operateure
Um den Einfluss der Operateure auf das kurz- und langfristige Operationsergebnis bestimmen zu können wurde allen Datensätzen die jeweiligen Kürzel der Operateure hinzugefügt.

Die Implantation der 110 Hüftendoprothesen wurde von sieben verschiedenen Operateuren durchgeführt, wobei sich 103 der Eingriffe auf drei Operateure verteilt.
2.6.5 Autologe, heterotope Knochentransplantation (Knochenplastik)

Tabelle 17: Lokalisation der Knochenplastiken

<table>
<thead>
<tr>
<th>Lokalisation</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfannenboden</td>
<td>50</td>
<td>45,45%</td>
</tr>
<tr>
<td>Pfannendach</td>
<td>4</td>
<td>3,64%</td>
</tr>
<tr>
<td>Pfannenboden und Pfannendach</td>
<td>3</td>
<td>2,73%</td>
</tr>
<tr>
<td>Sonstige</td>
<td>1</td>
<td>0,91%</td>
</tr>
</tbody>
</table>

2.6.6 Intraoperative Komplikationen

Die intraoperativen Komplikationen wurden aufgeteilt in solche die bei der Implantation der Pfanne auftraten und andere die prothesenschaftbezogen waren. Bei Ersteren wurde unterschieden zwischen:

Beide den intraoperativen Komplikationen die den Prothesenschaft betrafen wurde eine vergleichbare Gliederung vorgenommen:

- Pass-Sitz (form fit) nur schwer zu erzielen.
- Schaftfissur.
- Schaftfraktur.
- Sonstige.

Bei zwei Operationen war der Pass-Sitz des Schaftes erschwert. Fissuren im proximalen Femur traten intraoperativ insgesamt sechsmal auf, während es bei keiner der 110 Hüftoperationen zu einer Fraktur des Oberschenkelknochens kam.

2.6.7 Blutverlust
Der intraoperative Blutverlust wurde aus den Anaesthesie-Operationsprotokollen übernommen und diese in Milliliter notiert (in Milliliter). Er lag im Mittel bei 636 cm³ (SD: 331,7).

Tabelle 18: Durchschnittlicher intraoperativer Blutverlust

<table>
<thead>
<tr>
<th>Blutverlust</th>
<th>cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchschnittlich</td>
<td>636,4</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>331,7</td>
</tr>
<tr>
<td>Min</td>
<td>100</td>
</tr>
<tr>
<td>Max</td>
<td>3000</td>
</tr>
</tbody>
</table>
2.6.8 Sekundärimplantationen
Wenn es sich bei einer geplanten Operation nicht um eine Primärimplantation handelte, wurde dies vermerkt. Während es sich bei 107 (97,27%) der insgesamt 110 operierten Hüften um eine Primärversorgung handelte, wurde das Hüftgelenk in 3 Fällen (2,73%) sekundär nach auswärtiger Voroperation ersetzt.

Bei diesen Operationen handelte es sich einmal um einen Zustand nach Hüffluxation bei liegendem Oberflächenersatz mit postoperativer Femoralis- und Ischiadicusparese, einmal um eine Prothesenlockerung (Schaft und Pfanne) und einmal um einen Keramik-Kopfbruch mit Konusbeschädigung bei zementfreier Hüft-TEP.

2.7 Implantate
Bei allen untersuchten Patienten/-innen wurde die folgende Prothesenkombination implantiert:

- zementfreier Prothesenschaft vom Typ S-ROM®,
- Al₂O₃-Keramik-Kugelkopf,
- XLPE-Inlay vom Typ Marathon™,
- zementfreie Pfannenkomponente vom Typ Duraloc®

2.7.1 Pfannendurchmesser
Im vorliegenden Patientenkollektiv wurden neun verschiedene Pfannendurchmesser implantiert. Das Spektrum erstreckt sich somit, mit Ausnahme der Größe 64, über alle angebotenen Größenvarianten (siehe Tabelle 1, Abbildung 21). Die 52er Pfanne kam bei 34 der insgesamt 110 TEPs zur Anwendung und stellt damit in dieser Gruppe die am häufigsten eingebrachte Pfanne dar. An zweiter und dritter Stelle folgen die Größen 54 mm (22 Implantate) und 48 mm (21 Implantate). Die Pfannen mit einem Durchmesser von 50 mm (12 Implantate), 56 mm und 58 mm (je acht Implantate) wurden deutlich seltener implantiert. Größen über 60 mm machten zusammen nur fünf Prothesen aus, wobei die 64er Pfanne wie oben angedeutet nicht verwendet wurde.
Abbildung 21: Verteilung der verschiedenen Pfannendurchmesser

2.7.2 Anteversion

Abbildung 22: Anteversion der implantierten Hüftpfannen; empfohlene Inklination rot hinterlegt (5-25°)
2.7.3 Inklination

Abbildung 23: Anteversion der implantierten Hüftpfannen; Empfohlene Anteversion (40° +/- 10°) rot hinterlegt

2.7.4 Schraubenanzahl
Bei allen untersuchten Hüftendoprothesen wurde die acetabuläre Komponente mit Hilfe von Pfahlschrauben zur Erhöhung der Primärstabilität im Os Ileum fixiert. Für die dominierende Mehrheit von 99 Patienten / -innen (90%) wurden zwei Schrauben für die Pfannenbefestigung eingebracht. In sieben Fällen (6%) reichte eine Schraube aus und bei vier (4%) Patienten / -innen wurden drei Schrauben verwendet.
2.7.5 Inlayform
80 der 110 implantierten Marathon™-Inlays waren von neutraler Form, während es sich in 30 Fällen um Inlays mit einer 10°-Randerhöhung („Lippe“) handelte. Die Nutzung eines 20°-Inlays war bei keiner der analysierten Patienten/-innen notwendig.

2.7.6 Prothesenkopfgröße
Von den insgesamt drei verfügbaren Prothesenkopfgrößen kamen zwei Varianten zur Anwendung. Dabei handelte es sich um die Durchmesser 28 mm und 32 mm, während der größte Prothesenkopf bei keinem/-der operierten Patienten/-innen implantiert wurde. Laut Herstellerangaben beträgt der minimale Pfannendurchmesser, der zur Verwendung eines 32er Kugelkopfes eingesetzt werden darf 52 mm. Bei kleineren Pfannendurchmessern muss hingegen ein 28 mm Kugelkopf verwendet werden, da sonst aufgrund des dünnwandigen Polyethylen mit hohen Inlay-Verschleißraten gerechnet werden muss.

Der 32er Kopf wurde bei 73% (n = 80) und die kleinere Variante bei 27% (n = 30) der chirurgischen Eingriffe verwendet.

Während alle männlichen Patienten mit einer Ausnahme 32 mm-große Steckköpfe erhielten, entschied sich der Operateur aufgrund des kleineren Pfannendurchmessers bei den Frauen 29mal für die kleinere und 28mal für die größere Durchmesservariante.
2.7.7 Hülsengröße und Hülsenform

2.7.8 Schaftgröße
Bei 96,36% der implantierten Totalendoprothesen wurden Standardschaftlängen verwendet. Nur in vier Fällen war die Wahl einer Sondergröße in Form eines verlängerten Schaftes notwendig, um die gewünschte Stabilität zu erreichen, welche in der Kategorie „Sonstige“ zusammengefasst wurden.

Aus dem Sortiment der verschiedenen Schaftkonfigurationen mit einer Standardlänge wurden bis auf den 24x19 - Schaft alle Modelle angewandt. Die Variante mit einem proximalen Durchmesser von 18 mm und einem distalen von 13 mm (18x13) wurde insgesamt am häufigsten implantiert (n = 42). Annähernd gleich oft kam das Durchmesserverhältnis von 16 mm proximal zu 11 mm distal zur Anwendung. Die Schaftgrößen 14 x 9 (n = 16) und 20 x 15 (n = 11) wurden dagegen deutlich seltener eingebracht.

In nur einer einzigen Modulzusammenstellung wurde der proximale Durchmesser von 22 mm gewählt (22x17).

Abbildung 27: Verteilung der implantierten Schaftkonfigurationen

2.8 Postoperative Untersuchung
Bei Entlassung aus der stationären Behandlung folgte eine zweite Untersuchung. In diesem Rahmen wurde unter anderem abschließend die Wundheilung beurteilt und schriftlich festgehalten, wie die post operative Entlastung des versorgten Hüftgelenkes zu gestalten war.
2.8.1 Wundheilung
Mit einer Ausnahme zeigten alle Hüftendoprothesen im postoperativen Verlauf eine unauflößbare Wundheilung. Bei der genannten Ausnahme handelte es sich um eine geringgradige und oberflächliche Wundheilungsstörung, die nach adäquater nicht-operativer Therapie schnell zur Abheilung gebracht werden konnte.

2.8.2 Entlastung

Tabelle 19: Entlastung

<table>
<thead>
<tr>
<th>Entlastungsform</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% Entlastung für 6 Wochen</td>
<td>64</td>
<td>58,18%</td>
</tr>
<tr>
<td>50% Entlastung für 12 Wochen</td>
<td>19</td>
<td>17,27%</td>
</tr>
<tr>
<td>Bodenkontakt ohne Belastung 6 Wochen</td>
<td>14</td>
<td>12,73%</td>
</tr>
<tr>
<td>Bodenkontakt ohne Belastung 12 Wochen</td>
<td>10</td>
<td>9,09%</td>
</tr>
<tr>
<td>Vollständige Entlastung 6 Wochen</td>
<td>3</td>
<td>2,73%</td>
</tr>
<tr>
<td>Vollständige Entlastung 12 Wochen</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

2.9 Klinische Nachuntersuchung

2.9.1 Nachuntersuchungszeitraum
Im Datenbanksystem (siehe Kapitel 2.5.1.2) wurden die Nachuntersuchungen der Patienten/-innen zeitlich fünf verschiedenen Gruppen zugeordnet:

1. Postoperativ
2. Sechs Monate postoperativ
3. Zwölf Monate postoperativ
4. Zwei Jahre postoperativ
5. Vier Jahre postoperativ

Da die Patienten/-innen nicht genau zu diesen Zeitpunkten untersucht wurden, sondern die Nachuntersuchungsabstände mehr oder weniger stark von den empfohlenen Träumen abwichen war es notwendig, weiter gefasste Intervalle zu definieren.
<table>
<thead>
<tr>
<th>Nachuntersuchung</th>
<th>Von</th>
<th>Bis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postoperativ</td>
<td>5 Tage</td>
<td>42 Tage</td>
</tr>
<tr>
<td>6 Monate postoperativ</td>
<td>6 Wochen</td>
<td>8 Monate</td>
</tr>
<tr>
<td>12 Monate postoperativ</td>
<td>8 Monate</td>
<td>16 Monate</td>
</tr>
<tr>
<td>2 Jahre postoperativ</td>
<td>18 Monate</td>
<td>38 Monate</td>
</tr>
<tr>
<td>4 Jahre postoperativ</td>
<td>42 Monate</td>
<td>51 Monate</td>
</tr>
</tbody>
</table>

Insgesamt ergibt sich daraus ein durchschnittlicher Nachuntersuchungszeitraum von 17,42 Monaten (SD: 13,38) für alle Patienten / -innen.

Als jeweils letztes „follow-up“ wurde die Untersuchung definiert, welche einen vollständigen Harris-Hip-Score aufwies. Spätere Wiedervorstellungen ohne Erfüllung dieses Kriteriums wurden in der vorliegenden Arbeit nicht berücksichtigt.

2.9.2 Harris-Hip-Score
Wie bei der oben beschriebenen präoperativen Eingangsuntersuchung, war der Harris-Hip-Score auch Bestandteil der einzelnen Nachuntersuchungen. Aufgrund der zum Teil sehr lückenhaften Dokumentation in Bezug auf dieses Bewertungssystem musste auf die jeweils letzte, gut dokumentierte Nachuntersuchung zurückgegriffen werden (siehe Kapitel 2.9.1).

2.9.3 Implantatabhängige Komplikationen
Alle aufgetretenen Komplikationen, welche auf die Prothese zurückzuführen waren, wurden im jeweiligen Nachuntersuchungsprotokoll dokumentiert. Um eine statistische Auswertung zu ermöglichen, erfolgte eine Einteilung in Gruppen:
Material und Methoden

- Schmerzen unklarer Genese.
- Fraktur Femur.
- Fraktur Acetabulum.
- Luxation Kopf.
- Septische Arthritis.

Implantatabhängige Komplikationen, die keiner der oben genannten Gruppen zugeordnet werden konnten, wurden in der Kategorie Sonstige zusammengefasst.

2.9.4 Behandlung der Komplikationen
Bei der Behandlung der implantatabhängigen Komplikationen wurden fünf definierte Vorgehensweisen unterschieden. Alle davon abweichenden Verfahren wurden der Gruppe „Sonstige“ zugeordnet:

- Konservativ.
- Austausch Inlay.
- Revision Schaft.
- Austausch Kopf.
- Revision Pfanne.
- Sonstige.

2.9.5 Implantatunabhängige Komplikationen
Für den Fall, dass ein Patient im Rahmen des Untersuchungszeitraumes verstarben sollte, wurde dies den implantatunabhängigen Komplikationen zugeordnet und dementsprechend dokumentiert. Aber auch andere denkbare Komplikationen, welche nicht auf die Prothese zurückzuführen waren, wie beispielsweise ein Autounfall, fielen unter diese Kategorie.

2.10 Radiologische Nachuntersuchung
Material und Methoden

rät und die zugrunde liegende Bildqualität lassen sich aus dem Datensatz herauslesen.

Tabelle 21: DICOM – File Header (Auszug)

<table>
<thead>
<tr>
<th>Tag Description</th>
<th>VR</th>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Application Entity Title</td>
<td>VR: AE</td>
<td>Length: 14</td>
<td>Value: MagicView 300</td>
</tr>
<tr>
<td>Study Date</td>
<td>VR: DA</td>
<td>Length: 8</td>
<td>Value: 20060127</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>VR: DA</td>
<td>Length: 8</td>
<td>Value: 20060127</td>
</tr>
<tr>
<td>Study Time</td>
<td>VR: TM</td>
<td>Length: 14</td>
<td>Value: 132052.100000</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>VR: LO</td>
<td>Length: 8</td>
<td>Value: SIEMENS</td>
</tr>
<tr>
<td>Institution Name</td>
<td>VR: LO</td>
<td>Length: 26</td>
<td>Value: H.H.Univ.Duesseldorf Ortho</td>
</tr>
<tr>
<td>Referring Physician’s Name</td>
<td>VR: PN</td>
<td>Length: 0</td>
<td>Value: Anonymisiert</td>
</tr>
<tr>
<td>Manufacturer's Model Name</td>
<td>VR: LO</td>
<td>Length: 16</td>
<td>Value: DIGIS-CAN_2C_PLUS</td>
</tr>
<tr>
<td></td>
<td>VR: LO</td>
<td>Length: 14</td>
<td>Value: SPI RELEASE 1</td>
</tr>
<tr>
<td></td>
<td>VR: LO</td>
<td>Length: 12</td>
<td>Value: SIEMENS MED</td>
</tr>
<tr>
<td></td>
<td>VR: LO</td>
<td>Length: 6</td>
<td>Value: SIENET</td>
</tr>
<tr>
<td>Patient’s Name</td>
<td>VR: PN</td>
<td>Length: 26</td>
<td>Value: Anonymisiert</td>
</tr>
<tr>
<td>Patient ID</td>
<td>VR: LO</td>
<td>Length: 8</td>
<td>Value: Anonymisiert</td>
</tr>
<tr>
<td>Patient’s Birth Date</td>
<td>VR: DA</td>
<td>Length: 8</td>
<td>Value: Anonymisiert</td>
</tr>
<tr>
<td>Patient’s Sex</td>
<td>VR: CS</td>
<td>Length: 2</td>
<td>Value: F</td>
</tr>
<tr>
<td>Contrast/Bolus Agent</td>
<td>VR: LO</td>
<td>Length: 4</td>
<td>Value: NONE</td>
</tr>
<tr>
<td>Body Part Examined</td>
<td>VR: CS</td>
<td>Length: 0</td>
<td>Value: BECKEN</td>
</tr>
<tr>
<td>Comments</td>
<td>VR: LO</td>
<td>Length: 8</td>
<td>Value: post OP</td>
</tr>
<tr>
<td>Samples per Pixel</td>
<td>VR: US</td>
<td>Length: 2</td>
<td>Value: 1</td>
</tr>
<tr>
<td>Photometric Interpretation</td>
<td>VR: CS</td>
<td>Length: 12</td>
<td>Value: MONOCHROME2</td>
</tr>
<tr>
<td>Image Dimensions</td>
<td>VR: SS</td>
<td>Length: 2</td>
<td>Value: 2</td>
</tr>
<tr>
<td>Rows</td>
<td>VR: US</td>
<td>Length: 2</td>
<td>Value: 1760</td>
</tr>
<tr>
<td>Columns</td>
<td>VR: US</td>
<td>Length: 2</td>
<td>Value: 2136</td>
</tr>
<tr>
<td>Pixel Spacing</td>
<td>VR: DS</td>
<td>Length: 8</td>
<td>Value: 0.20.2</td>
</tr>
<tr>
<td>Image Format</td>
<td>VR: SH</td>
<td>Length: 4</td>
<td>Value: RECT</td>
</tr>
<tr>
<td>Manipulated Image</td>
<td>VR: LO</td>
<td>Length: 10</td>
<td>Value: NO/ROTATE</td>
</tr>
<tr>
<td>Bits Allocated</td>
<td>VR: US</td>
<td>Length: 2</td>
<td>Value: 16</td>
</tr>
<tr>
<td>Bits Stored</td>
<td>VR: US</td>
<td>Length: 2</td>
<td>Value: 10</td>
</tr>
<tr>
<td>High Bit</td>
<td>VR: US</td>
<td>Length: 2</td>
<td>Value: 9</td>
</tr>
<tr>
<td>Pixel Representation</td>
<td>VR: US</td>
<td>Length: 2</td>
<td>Value: 0</td>
</tr>
</tbody>
</table>

VR = Value Representation; AE = Application Entity; DA = Date; TM = Time; LO = Long String (Zeichenkette von maximal 64 Zeichen); PN = Person Name (Zeichenkette von maximal 64 Zeichen)
2.10.1 Deskriptive Röntgenanalyse
Im Rahmen der deskriptiven Röntgenanalyse wurden die Beckenübersichtsaufnahmen der Nachuntersuchungen mit dem unmittelbar postoperativen Bild verglichen. Für die Darstellung der DICOM Files wurde der Sante DICOM Viewer FREE (Version 1.1.7.) der Firma Santesoft verwendet.

Die Implantate und das umliegende Knochengewebe wurden dabei auf periprothetische acetabuläre und femorale Knochenveränderungen untersucht. Darüber hinaus wurden etwaige Lageveränderungen kontrolliert und das umliegende Weichteilgewebe in Bezug auf periartikuläre heterotope Ossifikationen begutachtet.

2.10.1.1 Hypertrophie

Für die Beschreibung von Strukturveränderungen im acetabulären Bereich wurde die Einteilung nach De Lee und Charnley (31) verwendet. Hierbei wird die Pfanne in drei Bereiche eingeteilt (siehe Abbildung 28) die ebenfalls einer genauen Ortsbestimmung dienen.
2.10.1.2 Atrophie
Um weitere Rückschlüsse auf eine prothesenbedingte Veränderung der lokalen Kraftverteilung im Knochengewebe zu ermöglichen, wurden neben den oben genannten S klerose- und Knochenneubildungen auch atrophische Prozesse berücksichtigt. Hierfür wurden die einzelnen Röntgenbilder auf Bereiche mit erhöhter Transparenz (Osteopenie) untersucht und mit dem unmittelbar postoperativ aufgenommenen Bild verglichen.

Bei Auffälligkeiten der periprothetischen Knochenmineralisation im Sinne einer Osteopenie wurden auch diese zur Dokumentation den jeweiligen Grünzonen oder den drei acetabulären Bereichen zugeordnet.

2.10.1.3 Lysesäume
Um die femorale und acetabuläre Osteointegration zu beurteilen wurden die Röntgenbilder der Nachuntersuchung auf mögliche Lysesäume untersucht. Für diese Begutachtung der Knochen-Implantat-Grenze wurde die gesamte Zirkumferenz des Prothesenschaftes und der Pflanne auf bandförmige Transparenzveränderungen überprüft und den bereits beschriebenen femoralen und acetabulären Zonen zugewiesen.

Die Beurteilung der Relevanz für die Stabilität der Prothese folgte in einem weiteren Schritt (siehe Kapitel 2.10.1.5).
2.10.1.4 Lokale Osteolysen
Die radiologische Beschreibung lokaler Osteolysen im Bereich des Prothesenschaftes und der Pfanne wurde ebenfalls anhand der Einteilung von DeLee u. Charnley vorgenommen (s.o.) und die Verteilung entsprechend der vorgegebenen Zonen durchgeführt.

2.10.1.5 Pfannenintegration
Anhand der beobachteten Ausprägung von Lysesäumen (siehe 2.10.1.3) wurde in diesem Schritt die Bedeutung für die knöcherne Integration bzw. Stabilität der Pfanne beurteilt. Dazu wurden die Veränderungen in drei Gruppen eingeteilt:

- **optimal** (keine Lysesäume bzw. stabile Lyse in einer Zone, keine Lageveränderung)
- **stabil** (Lysen oder Säume in 2-3 Zonen, aber keine Änderung der Lage seit der letzten Kontrolluntersuchung)
- **instabil** (progressive Lyse oder Lysesäume in 2 bzw. 3 Zonen oder offensichtliche Pfannenwanderung seit der letzten Untersuchung)

2.10.1.6 Sockelbildung im Bereich der distalen Spitze
Nach Engh et al. wurden Kortikalisverdickung am distalen Ende des Prothesenschaftes im Sinne einer Sockelbildung in eine stabile und eine instabile Variante eingeteilt. Stand die Knochenneubildung in Kontakt mit dem distalen Schaftanteil, ohne, dass neu aufgetretene radiographische Aufhellungen oder reaktive Linien zu beobachten waren, wurde dies als stabil gewertet. Waren hingegen Aufhellungen und eine, das distale Schaftende umgreifende Linie sichtbar, galt die Sockelbildung als Instabilitätszeichen.

Basierend auf dieser Annahme wurde auch in der vorliegenden Arbeit der periprothetische Knochen um die Schaftspitze auf dieses Phänomen untersucht und dokumentiert.

2.10.1.7 Punktförmige Knochenbildung an der S-ROM®-Hülse
2.10.1.8 Lageveränderung des Schaftes
Die Lage des Schaftes im Sinne einer Varus- oder Valgusstellung, wurde am postoperativen Bild bestimmt. Veränderungen dieser initialen Orientierung wurde in den Folgeaufnahmen, als Zeichen einer Prothesenlockerung (120), zu den jeweiligen Nachuntersuchungsterminen überprüft und dokumentiert. Um Projektionsartefakte durch Röntgenaufnahmen unterschiedlicher Rotation auszuschließen, wurden auf fällige Befunde durch Aufnahmen im seitlichen Strahlengang verifiziert beziehungsweise verworfen.

2.10.1.9 Lageveränderung der Pfanne
Die Veränderung der Pfannenposition im Verhältnis zur postoperativen Aufnahme wurde mithilfe definierter radiologischer Landmarken im Verhältnis zur medialen und lateralen Prothesenkante bestimmt. Die Einteilung der Lageveränderung erfolgt wie dargestellt:

- unverändert zur unmittelbaren postoperativen Aufnahme.
- Wanderung weniger als zwei Millimeter.
- Wanderung mehr als zwei Millimeter.
- Kein vergleichbares Röntgenbild verfügbar.

2.10.1.10 Periartikuläre Ossifikation
Um langsam fortschreitende Verknöcherungen im einkulmumfassenden Weich- teilmantel zu erfassen, wurde das periartikuläre Gewebe auf umschriebene Transparenzerhöhungen röntgenologisch untersucht und jeweils mit präoperativen Bildern verglichen. Durch dieses Vorgehen wird verhindert, dass präexistente Osteophyten und Knochenreste als HO fehlinterpretiert werden (47).

Die Ausprägung der heterotopen Ossifikationen wurde entsprechend der Einteilung nach Brooker (siehe Abbildung 29) dokumentiert (17), welche sich international durchgesetzt hat (47):
1. **Grad I**: Vereinzelte Knocheninseln im periartikulären Weichteilgewebe.
2. **Grad II**: Knöcherne Ausziehungen vom Os ileum und/oder des Trochantor majors mit einem Mindestabstand von mehr als einem Zentimeter zueinander.
3. **Grad I II**: Knöcherne Ausziehungen vom Os ileum und/oder des Trochantor majors mit einem Abstand von weniger als einem Zentimeter zueinander.
4. **Grad IV**: Ankylose.

Abbildung 29: Einteilung der periartikulären heterotopen Ossifikationen nach Brooker, aus (17)

2.10.2 Computer-assistierte Verschleißanalyse

2.10.2.1 Hard- und Software

Material und Methoden

Tabelle 22: Empfohlene und verwendete Hardware und Software

<table>
<thead>
<tr>
<th>Hard- und Software</th>
<th>Empfohlen</th>
<th>Verwendet</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Prozessortaktung</td>
<td>1 GHz</td>
<td>1,8 GHz (x2)</td>
</tr>
<tr>
<td>Prozessorart</td>
<td>Multiprozessor</td>
<td>AMD Athlon X2-Dual-Core TK-55</td>
</tr>
<tr>
<td>Arbeitsspeicher</td>
<td>500 MB RAM</td>
<td>3454 MB RAM</td>
</tr>
<tr>
<td>Betriebssystem</td>
<td>Windows XP</td>
<td>Windows Vista</td>
</tr>
</tbody>
</table>

Das Programm ist in der Lage sowohl TIFF, als auch DICOM – Files zu lesen und auszuwerten. Die in der vorliegenden Studie verwendeten DICOM Bilder weisen jedoch ein veraltetes Format auf, welches aus dem aktuellen DICOM Standard entfernt wurden, so dass eine Softwareerweiterung erforderlich war, um die Kompatibilität herzustellen (105). Auf Anfrage beim Hersteller wurde diese Erweiterung programmiert und zum Download zur Verfügung gestellt (Hip Analysis Suite Demo Version 8.0.4.1 (Application only), zuletzt aktualisiert am 11. April 2008).

2.10.2.2 Analyseverfahren

Die Röntgenbilder wurden m it ei nem Bildbetrachtungsprogramm (Sienet Magic View 300) aus dem Archivsystem geöffnet und als DICOM-File in einem eigenen Patientenordner gespeichert.
Vor Durchführung der eigentlichen Analyse wurde die Software anhand einer Beckenübersichtsaufnahme kalibriert. Bei diesem Vorgang wurde die eingegebene Prothesenkopfgröße (in Millimeter) mit einer durch drei Punkte definierten Kreisgröße vom Programm abgeglichen und die Informationen in Form einer Kalibrierungsdatei im jeweiligen Patientenordner abgelegt. Auf diese Datei wurde von der Software in den weiteren Analyseschritten zurückgegriffen, so dass eine einmalige Kalibrierung der Software pro Patientenordner ausreichend war.

Nach Auswahl des 2D – Analyseverfahrens wurde das Röntgenbild der letzten Nachuntersuchung geöffnet. Dann folgte durch die Markierung des jeweils tiefsten Punktes der rechten und linken Tuberositas Ischiadicum die Definition einer Referenzlinie, die es dem Programm ermöglicht, Haltungsasymmetrien in der Frontalebene bei der Berechnung auszugleichen.

Die berechneten Implantatpositionen stellte die Software am Ende der Analyse in Form von Linien dar, welche automatisch über das Röntgenbild gelegt wurden. Hierdurch ist es dem Untersucher möglich, eventuelle Abweichungen zu erkennen und gegebenenfalls auf Korrekturfunktionen zurückzugreifen.

Stimmten die berechneten Formen mit den Prothesenkonturen auf dem Röntgenbild überein, wurde das unmittelbar postoperative Referenzbild geöffnet, mit welchem dann in gleicher Weise verfahren wurde.

Abbildung 30: Prothesenerkennung (Linien) nach Kontrastanalyse

Nach Abschluss der kompletten Analyse wurden die berechneten Verschleißergebnisse in einem separaten Fenster angezeigt. Darüber hinaus legte das Programm eine Textdatei an (HIPWEAR.TXT), die neben diesen Verschleißwerten die Daten aller übrigen Messvorgänge enthielt. Dazu gehörten insgesamt über 50 Einzelwerte. Einen Auszug zeigt Tabelle 23.

Tabelle 23: Elemente der HIPWEAR.TXT Datei (Auszug)

<table>
<thead>
<tr>
<th>Elementbezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>File name</td>
<td>Name des postoperativen DICOM – Files (Name/ Datum)</td>
</tr>
<tr>
<td>Date analyzed</td>
<td>Datum der durchgeführten Messung (MM:DD:YYYY)</td>
</tr>
<tr>
<td>Time analyzed</td>
<td>Uhrzeit der durchgeführten Messung (hh:mm AM/PM)</td>
</tr>
<tr>
<td>Side</td>
<td>Operationsseite (left/ right)</td>
</tr>
<tr>
<td>Head Size</td>
<td>Prothesenkopfdurchmesser (mm)</td>
</tr>
<tr>
<td>Follow-up X-ray</td>
<td>Datum der Nachuntersuchung (MM:DD:YYYY)</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Elementbezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Displace Angle</td>
<td>Richtungsangabe der Kopfmigration aus dem Pfannenzentrum (Grad)</td>
</tr>
<tr>
<td>Vector Displace</td>
<td>Größenangabe der Kopfmigration aus dem Pfannenzentrum (mm)</td>
</tr>
<tr>
<td>Cup major axis angle</td>
<td>Inklination der Pfanneneingangsebene (Grad)</td>
</tr>
<tr>
<td>Rotation angle</td>
<td>Anteversionswinkel der Pfanneneingangsebene (Grad)</td>
</tr>
<tr>
<td>Follow-up vector wear (2D)</td>
<td>Zweidimensionale Verschleißangabe (mm)</td>
</tr>
<tr>
<td>Follow-up vector wear angle (2D)</td>
<td>Richtungsangabe des Abriebvektors (Grad)</td>
</tr>
<tr>
<td>2D AP volumetric wear</td>
<td>Aus der 2D Analyse be rechnerter volumetrischer Abrieb (mm³)</td>
</tr>
<tr>
<td>Reference Angle (AP only)</td>
<td>Gibt den Winkel zwischen Tuberositas-Referenzlinie und dem Röntgenbildrand wider</td>
</tr>
<tr>
<td>Follow-up AP beta angle</td>
<td>Gibt den Winkel zwischen Pfanne und Abriebvektor wider</td>
</tr>
</tbody>
</table>

2.11 Statistische Meßverfahren

Unter Berücksichtigung der Skalenniveaus und der Normalverteilungsverletzung einiger Variablen wurde bei der Überprüfung der Lagedifferenzen zweier Datensätze der Wilcoxon-Test für gepaarte Stichproben durchgeführt.

Auch um die Unterschiede zwischen Rangsummen in zwei Gruppen zu überprüfen, wurde aus oben genannten Gründen mit dem Mann-Whitney U-Test ein nichtparametrisches Verfahren verwendet.
3 Ergebnisse

3.1 Radiologische Untersuchung

3.1.1 Computer-assistierte Verschleißanalyse
Die Verschleißanalyse zeigte einen durchschnittlichen zweidimensionalen Abriebwert von 0,249 mm pro Jahr (SD: 0,19). Der niedrigste Wert lag insgesamt bei 0,03 mm/ Jahr und der höchste bei 0,909 mm/ Jahr. Dabei beschrieben die Werte eine mit der Zeit deutlich abnehmende Verschleißkinetik. Im ersten Jahr lag der Abrieb bei 0,384 mm/ Jahr (SD: 0,2), während er in späteren Nachuntersuchungen einen Mittelwert von 0,14 mm/ Jahr (SD: 0,1; Max: 0,69 mm/ Jahr; Min: 0,03 mm/ Jahr) aufwies.

Abbildung 31: 2D-Abriebwerte pro Jahr, links: Unabhängig vom Nachuntersuchungsintervall (Gesamt); mitte: Nur Implantate mit einem Nachuntersuchungsintervall von weniger als einem Jahr (Follow-up < 1 Jahr); rechts: Nur Implantate mit einem Nachuntersuchungsintervall von mehr als einem Jahr (Follow-up > 1 Jahr)

Um die Beziehung zwischen der Nachuntersuchungszeit (unabhängige Variable) und der jährlichen Abriebrate (abhängige Variable) festzustellen, wurde eine Regressionsanalyse durchgeführt. Auch wenn die Voraussetzungen einer Normalverteilung der Abriebwerte für diese Berechnungen nicht vorlagen (Shapiro-Wilk- und Kolmogorov-Smirnov-Test p<0,01), so gibt die damit mögliche graphische Darstellung jedoch ein besseres visuelles Verständnis über die Kinetik des Verschleißes. Darüber hinaus zeigten sogenannte Monte-Carlo-Versuche\(^3\), dass die Konsequenzen solcher Voraussetzungsverletzungen für die Anwendung, von

\(^3\) Monte-Carlo-Studien wurden insbesondere verwendet, um zu prüfen, wie auf der Normalverteilung basierende Tests auf Verletzung der Normalverteilungsvoraussetzung für die analysierten Variablen in der Grundgesamtheit reagieren (149).
Ergebnisse

auf Normalverteilung basierenden Verfahren, oftmals weniger bedeutsam sind, als dies zunächst vermutet wurde. Der sich dabei ergebende Koeffizient nach Pearson von $r = -0.58$ ($p<0.001$) entspricht einer mäßigen Korrelation. Die Regressionsgleichung lautet: Verschleiß [mm/Jahr] = $0.5781 - 0.305 \times \log_{10}(x)$.

Verwendet man anstelle des Korrelationskoeffizient nach Spearman, der keine normalverteilte Stichprobe voraussetzt, ergibt sich ein vergleichbares Ergebnis. Der Korrelationskoeffizient liegt hier bei $r = -0.68$ ($p<0.001$) und beschreibt damit ebenfalls eine mäßige Korrelation.

Abbildung 32: Regressionsanalyse des 2D-Abriebes

Die von der H ip A nalysis Suite S oftware berechneten v olumetrischen V erschleißwerte ergaben ein vergleichbares Bild. Auch hier waren die berechneten Werte nicht normalverteilt (Shapiro-Wilk- und Kolmogorov-Smirnov-Test $p<0.01$). Innerhalb des ersten Jahres lag der Abrieb bei 144,049 mm³ (SD: 146) während er bei späteren Nachuntersuchungen im Mittel bei 60,028 mm³ (SD: 78,7) lag. Der größte Abriebwert lag bei 662,949 mm³ und der niedrigste Wert bei 0,057 mm³. Unter Berücksichtigung aller Nachuntersuchungen, also respektive der ersten zwölf Monate, betrug der mittlere volumetrische Verschleiß 97,455 mm³ (SD: 121,14).
Die Regressionsanalyse für die volumetrischen Abriebwerte ergab ein Korrelationskoeffizient nach Pearson von $r = -0,33$ ($p<0,001$). (siehe Abbildung 34). Die Regressionsgleichung lautet $y = 214,8388 - 108,6383\cdot\log_{10}(x)$.

Die Verwendung des Korrelationskoeffizienten nach Spearman (s.o.) ergab $-0,32$ ($p<0,01$) was bedeutet, dass diese Werte in einem mittleren korrelationsstatistischen Zusammenhang stehn. Die hohen jährlichen Verschleißraten nehmen demnach auch beim volumetrischen Abrieb im postoperativen Verlauf kontinuierlich ab.
Um den in der Literatur beschriebenen Einfluss anthropometrischer Daten (152) sowie der Pfannenorientierung (101; 121) und der Prothesenkopfgröße (16; 152) auf das Abriebverhalten des Marathoninlays zu prüfen wurde die jeweilige Korrelation berechnet. Die sehr niedrigen Koeffizienten machen deutlich, dass keiner der potentiellen Einflussfaktoren das Ausmaß des gefundenen Abriebes erklären konnte (siehe Tabelle 24).

Tabelle 24: Einflussfaktoren auf den jährlichen Verschleiß; angegeben sind die Korrelationskoeffizienten nach Spearman

<table>
<thead>
<tr>
<th>Variable</th>
<th>LV/ Jahr [mm]</th>
<th>VV/ Jahr [mm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>0,06</td>
<td>0,03</td>
</tr>
<tr>
<td>Alter [Jahre]</td>
<td>0,04</td>
<td>-0,05</td>
</tr>
<tr>
<td>Körpergewicht [kg]</td>
<td>0,15</td>
<td>-0,15</td>
</tr>
<tr>
<td>Inklination [Grad]</td>
<td>-0,11</td>
<td>0,07</td>
</tr>
<tr>
<td>Anteversion [Grad]</td>
<td>0,15</td>
<td>0,1</td>
</tr>
<tr>
<td>Prothesenkopf [mm]</td>
<td>0,08</td>
<td>0,02</td>
</tr>
</tbody>
</table>

LV= linearer Verschleiß; VV= volumetrischer Verschleiß; * = p <0,05
3.1.2 Deskriptive Röntgenanalyse

3.1.2.1 Hypertrophie

Abbildung 35: Hypertrophie eingeteilt nach Gruen (37) und DeLee und Charnley (18)

3.1.2.2 Atrophie
Atrophische Knochenveränderungen wie sie in Kapitel 2.10.1.1 beschrieben werden zeigten sich ebenfalls vorrangig im Bereich des Trochantor major (n = 17). Als zweithäufigste Lokalisation, mit insgesamt vier auffälligen Befunden, folgte die siebte Zone nach Gruen.

Im Pfannenbereich konnte in keiner Zone knochenatrophische Prozesse gefunden werden.
3.1.2.3 **Lysesäume**

23 der 110 untersuchten Hüftendoprothesen zeigten in den Nachuntersuchungen im Schaftbereich Transparenzveränderungen entlang der Knochen-Implantatgrenze. Die am häufigsten betroffene Region entsprach der Gruen-Zone 1 (n = 6). Danach folgten die Zonen 2 und 7 (je n = 4) und die Zonen 5 und 4 (je n = 3) in denen auffällige Knochenbefunde gezählt werden konnten. Mit insgesamt vier beobachteten Dichteveränderungen waren die Zonen 3 und 6 seltener betroffen.

Im Bereich der Hüftpfanne fanden sich die meisten Auffälligkeiten im Bereich der Zone III nach DeLee und Charnley. Hier waren es 14 Fälle mit Knochenveränderungen, während es in Zone I bei 11 Prothesen zu schmalen Saumbildungen kam. Zone I war mit vier dokumentierten Befunden deutlich seltener betroffen.
Ergebnisse

Abbildung 37: Lysesäume eingeteilt nach Gruen (41) und DeLee und Charnley (20)

Es ist jedoch zu betonen, dass in der Mehrzahl der analysierten Bilder die Lysesäume unter dem in der Literatur als kritische Grenze angesehenen Wert von 2mm lag (150). Bis zu diesem Wert kann es sich bei den röntgenographischen Befunden auch um physiologische Befunde handeln, die durch eine Interposition von fibrösem Gewebe verursacht und häufig von einem sklerotischen Saum begleitet werden (siehe Abbildung 38).

Abbildung 38: AP-Röntgenaufnahme einer Duralocpfanne 15 Tage postoperativ (links) und 13 Monate postoperativ (rechts) mit periprothetischer Aufhellungszone <2mm Breite.

Berücksichtigte man vor diesem Hintergrund lediglich die periprothetischen Veränderungen die mit über 2mm als pathologisch interpretiert werden konnten, so zeigte sich eine deutlich abweichende Befundlage.
Im Schaftbereich blieben unter diesen Voraussetzungen insgesamt 6 Lysesäume übrig, die sich über die von Gruen definierten Zonen 1 bis 3 und der Zone 7 verteilt. An der Knochenimplantatgrenze im Bereich der Hüftpfanne fanden sich keine Lysesäume die über der kritischen Marke von 2mm lagen.

Abbildung 39: Lysesäume >2mm Breite, eingeteilt nach Gruen (41) und DeLee und Charnley (20)

3.1.2.4 Lokale Osteolysen

Lokale Osteolysen fanden sich insgesamt deutlich seltener als die oben beschriebenen linearen Lysezeichen. Die einzige diesbezügliche Auffälligkeit lag im Schaftbereich in Zone 7 nach Gruen (66) (siehe Abbildung 40). Im periprothetischen Knochengewebe der Prothesenpfanne zeigte sich im untersuchten Patientenkollektiv dagegen keine fokale Osteolyse.

Abbildung 40: Fokale Osteolyse in der siebten Zone nach Gruen.
3.1.2.5 Pfannenintegration
Keine der untersuchten Hüftendoprothesen zeigte im Pfannenbereich eine Lyse von über zwei Millimeter Breite. Damit ist die Pfannenintegration in allen 110 vorliegenden Fällen mit optimal zu bewerten.

Lysen oder Säume in 2-3 Zonen, ohne Änderung der Lage seit der letzten Kontrolluntersuchung oder Zeichen einer Instabilität bei progressiven Lysen oder Lysesäumen in mehr als zwei Zonen, wie es in Kapitel 2.10.1.9 beschrieben wurde, trat in keinem der untersuchten Fälle auf. Auch offensichtliche Pfannenwanderungen konnten im Vergleich zur jeweiligen Voruntersuchung nicht gefunden werden.

3.1.2.6 Sockelbildung im Bereich der distalen Spitze
In 11 Fällen konnte eine Sockelbildung an der distalen Schaftspitze beobachtet werden, während 35 Prothesen diesbezüglich unauffällig waren. Die übrigen 64 Prothesen konnten aufgrund eines zu hoch gewählten Bildausschnittes der Röntgenaufnahme nicht auf dieses Phänomen hin untersucht werden. In allen 11 Fällen stand die kortikale Knochenneubildung in Verbindung mit dem distalen Schaftanteil. Da weder radiographische Aufhellungen beziehungsweise Zeichen reaktiver Linien zu beobachten waren, wurden alle Sockelbildungen nach Engh et al. als stabil gewertet.

3.1.2.7 Punktförmige Knochenbildung an der S-ROM® Hülse
Die S-ROM-spezifischen Grenzzonenveränderungen im Punktförmigen Knochenneubildungen im Sleeve-Bereich konnten insgesamt 71-mal beobachtet werden. Davon befanden sich 42 an der lateralen und 29 an der medialen Hülsenkante. In zwanzig Fällen waren hierbei sowohl die mediale, als auch die laterale Seite betroffen.

3.1.2.8 Lageveränderung des Schaftes
In sechs Fällen konnte im Verlauf der einzelnen Nachuntersuchungen ein Absinken des Schaftes beobachtet werden. Die in der Literatur als kritische Grenze bezeichnete Absenkung von mehr als 2mm wurde jedoch nur in einem Fall (19mm) überschritten (44). Dabei kam es zu einer deutlichen Valgusverkippping des Schaftes innerhalb der Femurdiaphyse (siehe Abbildung 41). Sowohl die Absenkung des Schaftes, als auch dessen Verkippping konnten in der zweiten Ebene (lateraler Strahlengang) verifiziert werden.
3.1.2.9 Lageveränderung der Pfanne
Die Lage der einzelnen Prothesenpfannen war bei allen Patienten unverändert zum unmittelbar postoperativ aufgenommenen Röntgenbild. Eine Lageveränderung der Pfanne konnte damit bei keinem Patienten festgestellt werden.

3.1.2.10 Periartikuläre Ossifikation
87 der 110 untersuchten Hüftgelenke zeigten im vorliegenden Nachuntersuchungsintervall von 17 Monaten keine periartikulären Ossifikationen. Unter den 23 auffälligen Hüften waren sieben als Grad I nach Brooker einzuteilen, 14 als Grad II und zwei Fälle als Grad III. Keine der untersuchten Hüften zeigte die stärkste von Brooker beschriebene Ausprägung einer periartikulären Ossifikation (Grad IV).
Um die Bedeutung einer chronischen Einnahme von nichtsteroidalen Antirheumatika (NSAR) auf die Entwicklung der periartikulären Ossifikationen zu überprüfen, wurde ein Mann-Whitney U-Test durchgeführt. Dabei wurden die Rangsummen für beide Gruppen gebildet und diese auf signifikante Unterschiede untersucht. Die Ergebnisse sind in folgender Tabelle dargestellt.

Tabelle 25: Einfluss chronischer NSAR-Einnahme auf die Entwicklung periprothetischer Ossifikationen

<table>
<thead>
<tr>
<th>Variable</th>
<th>Ossifikationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS kNSAR</td>
<td>4941,5</td>
</tr>
<tr>
<td>RS cNSAR</td>
<td>1163,5</td>
</tr>
<tr>
<td>U</td>
<td>887,5</td>
</tr>
<tr>
<td>Z</td>
<td>0,831</td>
</tr>
<tr>
<td>p-Niveau</td>
<td>0,406</td>
</tr>
<tr>
<td>Gültige N kNSAR</td>
<td>87</td>
</tr>
<tr>
<td>Gültige N cNSAR</td>
<td>23</td>
</tr>
<tr>
<td>2*eins. exakt p</td>
<td>0,409</td>
</tr>
</tbody>
</table>

Abbildung 42: Periartikuläre Ossifikationen eingeteilt nach Brooker (17)
Bei dargestelltem p-Niveau von mehr als 0,05 lässt sich aus diesen Daten ableiten, dass die Entstehung periartikulärer Ossifikationen bei den 23 Patienten mit chronischer NSAR-Einnahme nicht wesentlich beeinflusst wurde.

3.2 Klinische Nachuntersuchung

3.2.1 Harris-Hip-Score

Tabelle 26: Prä- und postoperative Einzelwerte des Harris-Hip-Scores

<table>
<thead>
<tr>
<th>Element</th>
<th>Präoperativer Wert</th>
<th>Postoperativer Wert</th>
<th>Prozentuale Verbesserung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmerzen</td>
<td>12,64</td>
<td>40,8</td>
<td>222,88%*</td>
</tr>
<tr>
<td>Gehhilfe</td>
<td>6,46</td>
<td>10,04</td>
<td>55,42%*</td>
</tr>
<tr>
<td>Hinken</td>
<td>4,89</td>
<td>9,21</td>
<td>88,29%*</td>
</tr>
<tr>
<td>Gehleistung</td>
<td>5,15</td>
<td>10,27</td>
<td>99,29%*</td>
</tr>
<tr>
<td>ROM</td>
<td>3,26</td>
<td>4,1</td>
<td>25,77%*</td>
</tr>
<tr>
<td>Treppen</td>
<td>1,64</td>
<td>3,7</td>
<td>126,11%*</td>
</tr>
<tr>
<td>Sitzen</td>
<td>2,11</td>
<td>3,84</td>
<td>81,9%*</td>
</tr>
<tr>
<td>Schuheschnüren</td>
<td>1,98</td>
<td>3,8</td>
<td>91,74%*</td>
</tr>
<tr>
<td>Kontrakturn</td>
<td>3,81</td>
<td>3,99</td>
<td>4,77%*</td>
</tr>
<tr>
<td>Öffentlicher Verkehr</td>
<td>0,87</td>
<td>0,98</td>
<td>12,5%*</td>
</tr>
<tr>
<td>Gesamt</td>
<td>42,82</td>
<td>90,73</td>
<td>111,89%*</td>
</tr>
</tbody>
</table>

* = p<0,01

Vergleicht man die einzelnen Teilelemente des Harris-Hip-Scores in Bezug auf die prozentualen Verbesserungen, so weisen die von den Patienten/-innen empfundenen Schmerzen die stärkste positive Veränderung auf. Der durchschnittliche präoperative Wert von 12,64 Punkten, welcher „starken“ bis „mäßig starken Schmerzen“ entspricht, konnte auf einen postoperativen Mittelwert von 40,8 angehoben werden. Dieser ist auf der von Harris angegebenen Skala im Bereich von „gelegentlich leichten Schmerzen“ einzuordnen.
Auch die Fähigkeit Treppen zu nutzen wurde nach Implantation der Hüftprothese bei vielen Patienten/innen deutlich verbessert. Der Ausgangswert von 1,64 Punkten konnte hier auf 3,4 Punkte erhöht werden, was einer prozentualen Verbesserung von 51,59% entspricht.

Abbildung 43: Postoperativ erfasster Harris-Hip-Score (blau) in Prozent der maximal erreichbaren Punktzahl (hellblau).

Bewertet man die Gesamtpunkte nach dem in Kapitel 2.5.10 beschriebenen System, so weisen postoperativ 74% der prothetisch versorgten Hüftgelenke ein sehr guten (90-100 Punkte) Harris-Hip-Score auf. Weitere 20% entsprechen einem guten (80-89 Punkte) und 2% einem befriedigenden (70-79 Punkte) Punktewert. Nur in 4% der Fälle war das klinische Ergebnis mit unbefriedigend zu bewerten.
Eine durchgeführte Regressionsanalyse für die Parameter des maximalen Nachuntersuchungszeitraumes und des Harris-Hip-Score Ergebnisses zeigte keinen signifikanten Zusammenhang zwischen diesen beiden Werten (Pearsons Korrelationskoeffizient: $r=0,12; \ p=0,27$). Eine graphische Darstellung beider Parameter findet sich in Abbildung 45. Unter Berücksichtigung der Normalverteilungsverletzung wurde darüber hinaus der Rangkorrelationskoeffizient nach Spearman durchgeführt, der mit einem Wert von $r=0,15 \ (p>0,05)$ ein vergleichbares Ergebnis liefert wie der zuvor genannte parametrische Test nach Pearson. Daraus lässt sich ablesen, dass die oben dar gestellten positiven Veränderungen des Harris-Hip-Scores bereits im ersten Nachuntersuchungsintervall (siehe Kapitel 2.9.1) erzielt wurden.
Um Faktoren zu identifizieren, welche neben der prothetischen Versorgung einen Einfluss auf die mithilfe Harris-Hip-Score erfassten klinischen Befunde hatten, wurden verschiedene Parameter auf ihre Korrelation mit dem HHS überprüft.

Dabei zeigte die statistische Auswertung eine signifikant schwach negative Korrelation von $r = -0.29$ (<0.05) zwischen dem Body-Mass-Index und dem Harris-Hip-Score. Einen vergleichbaren Koeffizienten ($r = -0.24$) für den Einfluss auf die klinischen Parameter zeigte auch das Körpergewicht und das Alter der Patienten ($p<0.05$).

Keinen statistisch gesicherten Einfluss auf die klinischen Werte (HHS) zeigten dagegen die Abriebwerte (in Millimeter) und die Pfannenorientierung (Inklination/Anteversion). Auch V oroperationen hatten im untersuchten Patientenkollektiv keinen Einfluss auf den postoperativen Harris-Hip-Score (Mann-Whitney U-Test; $p > 0.05$).
Tabelle 27: Einflussfaktoren auf den Harris-Hip-Score (HHS), angegeben sind die Korrelationskoeffizienten nach Spearman

<table>
<thead>
<tr>
<th>Variable</th>
<th>HHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verschleiß/ Jahr [mm]</td>
<td>-0,15</td>
</tr>
<tr>
<td>Volumetrischer Verschleiß/ Jahr [mm³/Jahr]</td>
<td>0,06</td>
</tr>
<tr>
<td>BMI</td>
<td>-0,29*</td>
</tr>
<tr>
<td>Alter [Jahre]</td>
<td>-0,2*</td>
</tr>
<tr>
<td>Körpergewicht [kg]</td>
<td>-0,24*</td>
</tr>
<tr>
<td>Inklination [Grad]</td>
<td>-0,08</td>
</tr>
<tr>
<td>Anteversion [Grad]</td>
<td>0,01</td>
</tr>
<tr>
<td>Prothesenkopf [mm]</td>
<td>0,07</td>
</tr>
</tbody>
</table>

*= p<0,05; HHS= Harris-Hip-Score; BMI= Body-Mass-Index; mm= Millimeter; LV= linearer Verschleiß; VV= volumetrischer Verschleiß

Um zu überprüfen, ob das kurz- und langfristige klinische Ergebnis, gemessen am Harris – Hip – Score durch den Operateur beeinflusst wird, wurde eine einfaktorielle ANOVA durchgeführt. Ein Signifikanzniveau von p = 0,59 zeigte, dass diese unabhängige Variable keinen Einfluss auf das klinische Operationsoutcome hatte.
Abbildung 46: Abhängigkeit der klinischen Untersuchungsergebnisse vom Operateur (ANOVA)

3.2.1.1 Schmerzen
Während präoperativ alle Patienten mäßige, starke oder sehr starke Schmerzen aufwiesen, macht diese Gruppe postoperativ zusammen weniger als drei Prozent aus. Die überwiegende Mehrheit der Patienten (>90%) gaben bei der längsten Nachuntersuchung an, keine, oder nur gelegentlich leichte Schmerzen im operierten Gelenk zu verspüren.

Tabelle 28: Postoperativ empfundene Schmerzen

<table>
<thead>
<tr>
<th>Schmerzausprägung</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Schmerzen</td>
<td>57</td>
<td>51,82%</td>
</tr>
<tr>
<td>Gelegentlich leichte Schmerzen</td>
<td>43</td>
<td>39,09%</td>
</tr>
<tr>
<td>Leichte Schmerzen</td>
<td>7</td>
<td>6,36%</td>
</tr>
<tr>
<td>Mäßige Schmerzen</td>
<td>2</td>
<td>1,82%</td>
</tr>
<tr>
<td>Starke Schmerzen</td>
<td>1</td>
<td>0,91%</td>
</tr>
<tr>
<td>Sehr starke Schmerzen/ Gehunfähig</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

Auch die präoperativ beschriebene Beeinträchtigung der Sitzdauer in Abhängigkeit von der Sitzhöhe konnte nach dem durchschnittlichen Nachuntersu-
Ergebnisse

Tabelle 29: Postoperative Beeinträchtigung des Sitzens

<table>
<thead>
<tr>
<th>Sitzen</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länger als 1h, unabhängig von der Höhe des Stuhls</td>
<td>102</td>
<td>92,73%</td>
</tr>
<tr>
<td>Ca. ½ h nur auf hohen Stühlen</td>
<td>7</td>
<td>6,36%</td>
</tr>
<tr>
<td>Weniger als ½ h, unabhängig von der Höhe des Stuhls</td>
<td>1</td>
<td>0,91%</td>
</tr>
</tbody>
</table>

3.2.1.2 Beweglichkeit

Für die einzelnen Freiheitsgrade der prothetisch versorgten Hüfte wurde jeweils der höchste, im Verlauf der Nachuntersuchungen gemessene Wert notiert. Dieser betrug im Mittel in der untersuchten Patientengruppe für die Flexion/Extension 100,23° (SD: 14,83), für die Abduktion/Adduktion 47,41° (SD: 12,68) und für die Rotation 49,23° (SD: 15,61). Gemesen an den theoretischen maximalen Bewegungsumfängen (siehe Kapitel 2.5.10.2) ergibt sich daraus eine Einschränkung von 29,77° in der Sagittalebene, von 22,59° in der Frontalebene und von 30,77° um die Drehachse.

Abbildung 47: Postoperativ erfasster Bewegungsumfang

Damit führte die Implantation der definierten Prothesenkombination zu einer signifikanten (Wilcoxon-Test für gepaarte Stichproben) Verbesserung des Bewegungsumfangs.
gungsumfanges in allen drei Freiheitsgraden. Unter diesen erfuhr die Rotationsfähigkeit mit einer Steigerung des Bewegungsumfangs um 95,12% (von 25,23° auf 49,23°) die stärkste positive Beeinflussung. Im Bereich der Abdunktion und Adduktion konnte der Ausgangswert um 52,49% (von 31,09° auf 47,41°) und in der Flexion und Extension zusammen um 21,42% (von 82,55° auf 100,23°) verbessert werden.

Tabelle 30: Prä- und Postoperative Bewegungsumfänge

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexion/ Extension</td>
<td>82,55</td>
<td>100,23</td>
<td>21,42*</td>
</tr>
<tr>
<td>Abdunktion/ Adduktion</td>
<td>31,09</td>
<td>47,41</td>
<td>52,49*</td>
</tr>
<tr>
<td>Innenrotation/ Außenrotation</td>
<td>25,23</td>
<td>49,23</td>
<td>95,12*</td>
</tr>
</tbody>
</table>

*p < 0,01

Schwierigkeiten beim Schuhe schnüren wurden postoperativ insgesamt noch bei sieben der versorgten Hüften angegeben und in zwei Fällen war das Binden der Schuhe auch nach der Operation nicht möglich. Für 101 Patienten stellte das Binden der Schuhe beim zuletzt erfassten Harris-Hip-Score hingegen keine Probleme mehr dar.

Tabelle 31: Postoperative Beeinträchtigung des Schuhebindens

<table>
<thead>
<tr>
<th>Schuhe schnüren</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Probleme möglich</td>
<td>101</td>
<td>91,82%</td>
</tr>
<tr>
<td>Schwierig</td>
<td>7</td>
<td>6,36%</td>
</tr>
<tr>
<td>Kein Schuhsschnüren möglich</td>
<td>2</td>
<td>1,82%</td>
</tr>
</tbody>
</table>

3.2.1.3 Mobilität

Wie eingangs für die klinische Nachuntersuchung beschrieben, verbesserten sich nach prothetischer Versorgung auch alle, der Mobilität zugehörigen Teilspektete des Harris-Hip-Scores. Die dort angegebenen arithmetischen Mittelwerte und prozentualen Verbesserungen ergeben sich aus den folgenden Verteilungen der Einzelwerte.
Tabelle 32: Postoperativ verwendete Gehhilfen

<table>
<thead>
<tr>
<th>Gehhilfe</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne</td>
<td>90</td>
<td>81,82%</td>
</tr>
<tr>
<td>Ein Stock bei längeren Strecken</td>
<td>16</td>
<td>14,55%</td>
</tr>
<tr>
<td>Ein Stock ständig</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eine Unterarmgehstütze</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zwei Stöcke</td>
<td>1</td>
<td>0,91%</td>
</tr>
<tr>
<td>Zwei Unterarmgehstützen</td>
<td>3</td>
<td>2,73%</td>
</tr>
</tbody>
</table>

Über 95% der operierten Patienten brauchten nach prothetischer Versorgung keine Gehhilfe, oder nutzten einen Gehstock bei längeren Strecken. In einem Fall wurden zur Entlastung des künstlichen Hüftgelenkes zwei Gehstöcke verwendet und bei drei weiteren Fällen waren zwei Unterarmgehstützen erforderlich.

Tabelle 33: Postoperative Beeinträchtigung des Gangbildes

<table>
<thead>
<tr>
<th>Hinken</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kein Hinken</td>
<td>50</td>
<td>45,45%</td>
</tr>
<tr>
<td>Leichtes Hinken</td>
<td>56</td>
<td>50,91%</td>
</tr>
<tr>
<td>Mäßiges Hinken</td>
<td>3</td>
<td>2,73%</td>
</tr>
<tr>
<td>Starkes Hinken</td>
<td>1</td>
<td>0,91%</td>
</tr>
</tbody>
</table>

Auch zeigte über 95% der Patienten nach der Operation ein unauffälliges, beziehungsweise nur leicht beeinträchtigtes Gangbild. Mäßiges Hinken war bei drei der nachuntersuchten Hüften erkennbar und in einem Fall musste das Gangbild als stark beeinträchtigt bewertet werden.

Tabelle 34: Postoperative Beeinträchtigung der Gehleistung

<table>
<thead>
<tr>
<th>Gehleistung</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbegrenzt</td>
<td>90</td>
<td>81,82%</td>
</tr>
<tr>
<td>Ca. 600m</td>
<td>16</td>
<td>14,55%</td>
</tr>
<tr>
<td>200m – 300m</td>
<td>2</td>
<td>1,82%</td>
</tr>
<tr>
<td>Nur im Haus</td>
<td>1</td>
<td>0,91%</td>
</tr>
<tr>
<td>Gehunfähig</td>
<td>1</td>
<td>0,91%</td>
</tr>
</tbody>
</table>
Die deutliche Verbesserung der Gehleistung von 46% bezogen auf den präoperativen Wert (s.o.) ergibt sich aus der Verteilung der in der Tabelle dargestellten Einzelwerte. 90 der operierten Hüftgelenke beeinträchtigten die Patienten so gering, dass ihre maximale Gehleistung unbegrenzt war. Zusammen mit der vergleichsweise geringen Reduzierung dieser auf circa 600m, war die Gehleistung bei über 95% des gesamten Patientenkollektivs nicht oder nur gering eingeschränkt. Zweimal bedingte das klinische Beschwerdebild eine maximale Gehleistung von 200-300m, einmal eine auf das Haus begrenzte Mobilität und einmal die komplette Gehunfähigkeit. Zusammen machen diese deutlichen Beeinträchtigungen 3,64% von allen operierten Hüftgelenken aus.

Tabelle 35: Postoperative Beeinträchtigung des Treppensteigens

<table>
<thead>
<tr>
<th>Treppensteigen</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal, ohne Geländer</td>
<td>97</td>
<td>88,18%</td>
</tr>
<tr>
<td>Normal, mit Geländer</td>
<td>7</td>
<td>6,36%</td>
</tr>
<tr>
<td>Schwierig</td>
<td>5</td>
<td>4,55%</td>
</tr>
<tr>
<td>Kein Treppensteigen möglich</td>
<td>1</td>
<td>0,91%</td>
</tr>
</tbody>
</table>

104 der nachuntersuchten Hüftprothesen ermöglichten den Patienten ein normales Treppensteigen, wobei dafür nur in sieben Fällen ein Geländer zur Hilfe genommen werden musste. Schwer fiel die Nutzung der Treppen nur in fünf Fällen und einem Patienten war auch nach der Operation kein Treppensteigen möglich.

Tabelle 36: Postoperative Fähigkeit öffentliche Verkehrsmittel zu nutzen

<table>
<thead>
<tr>
<th>Nutzung öffentlicher Verkehrsmittel</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ein-/Aussteigen möglich</td>
<td>108</td>
<td>98,18%</td>
</tr>
<tr>
<td>Ein-/Aussteigen nicht möglich</td>
<td>2</td>
<td>1,82%</td>
</tr>
</tbody>
</table>

Mit nur zwei Ausnahmen, waren alle Patienten nach der Operation in der Lage öffentliche Verkehrsmittel zu nutzen.

3.2.1.4 **Deformität**

Bis auf eine Deformität konnten alle präoperativer fassten biomechanischen Normabweichungen im Rahmen der Operation korrigiert werden. Bei dieser einen Ausnahme handelte es sich um eine postoperativ fortbestehende Rotationskontraktur von mehr als zehn Grad.
Tabelle 37: Postoperative Kontrakturen und Beinlängendifferenzen

<table>
<thead>
<tr>
<th>Deformität</th>
<th>Anzahl der Hüften</th>
<th>Anteil am gesamten Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine fixierte Adduktionskontraktur >10°</td>
<td>110</td>
<td>100%</td>
</tr>
<tr>
<td>Keine fixierte Rotationskontraktur >10°</td>
<td>110</td>
<td>100%</td>
</tr>
<tr>
<td>Keine fixierte Beinlängendifferenz >3cm</td>
<td>109</td>
<td>99,09%</td>
</tr>
<tr>
<td>Keine fixierte Beugekontraktur >30°</td>
<td>110</td>
<td>100%</td>
</tr>
</tbody>
</table>

3.2.2 Implantatabhängige Komplikationen

Von den in Kapitel 2.9.3 dargestellten Gruppen, wurde die Komplikation „Schmerzen unklarer Genese“ mit insgesamt 14 Fällen am häufigsten dokumentiert. In keinem dieser Fälle war eine operative Therapie erforderlich.

Ebenfalls unter der Kategorie Sonstige wurden zwei neurologische Komplikationen dokumentiert, welche im ersten Nachuntersuchungsintervall (siehe Kapitel 2.9.1) diagnostiziert wurden. In beiden Fällen handelte es sich dabei um transiente Hyposensibilitäten am lateralen Fußrand, welche ohne spezifische Therapie folgenlos ausheilten. Eine postoperativ dokumentierte ipsilaterale Beinschwellung und eine Bursitis trochanterica konnte mit konservativen Therapiemitteln zur Ausheilung gebracht werden.
Abbildung 48: Operationsabhängige Komplikationen und ihre Therapieform (konservativ vs. operativ)

3.2.3 Implantat-unabhängige Komplikationen

3.3 Zusammenhang zwischen PE-Abrieb und Osteolysen
Um die Bedeutung der in der vorliegenden Arbeit erfassten Abriebwerte für die osteolytischen Befunde der deskriptiven Röntgenanalyse abschätzen zu können, wurde der Mann-Whitney U-Test durchgeführt. Als mögliche Einflussgrößen für die gefundenen Lysesäume und fokalen Osteolysen des Schaftbereiches wurden die verschiedenen Abriebwerte der Martell-Software eingesetzt (linear und volumetrisch). Um dabei auch die Bedeutung der Verschleißkinetik für die Osteolysen abschätzen zu können, wurden die jährlichen Abriebwerte mit in die Berechnung einbezogen (siehe Tabelle 38).

Es konnte gezeigt werden, dass die insgesamt sieben osteolytischen Knochenveränderungen nicht auf die generierte Abriebpartikelmenge zurückzuführen waren.
Tabelle 38: Zusammenschießen zwischen PE-Abrieb und Osteolysen

<table>
<thead>
<tr>
<th>Variable</th>
<th>LV</th>
<th>LV/ Jahr</th>
<th>VV</th>
<th>VV/ Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS keine Osteolysen</td>
<td>5768</td>
<td>5878</td>
<td>5803</td>
<td>5854</td>
</tr>
<tr>
<td>RS Osteolysen*</td>
<td>337</td>
<td>227</td>
<td>302</td>
<td>251</td>
</tr>
<tr>
<td>U</td>
<td>203</td>
<td>212</td>
<td>238</td>
<td>236</td>
</tr>
<tr>
<td>Z</td>
<td>-0,853</td>
<td>0,725</td>
<td>-0,352</td>
<td>0,38</td>
</tr>
<tr>
<td>p-Niveau</td>
<td>0,393</td>
<td>0,469</td>
<td>0,725</td>
<td>0,703</td>
</tr>
<tr>
<td>Gültige N keine Osteolysen</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Gültige N Osteolysen*</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2*eins. exakt p</td>
<td>0,408</td>
<td>0,484</td>
<td>0,738</td>
<td>0,717</td>
</tr>
</tbody>
</table>

LV= lineärer Verschleiß; VV= volumetrischer Verschleiß; * = Osteolysen in mind. einer Zone

Da die Förderung der Osteoklastenaktivität durch chronische Steroideinnahme sich negativ auf die knöcherne Implantatintegration auswirken könnte (84; 89; 118), wurde auch diese Größe hinsichtlich ihrer Bedeutung für die gefundenen Osteolysen untersucht. Die beiden dichotomisierten Variablen standen jedoch im untersuchten Patientenkollektiv in keinem Zusammenhang. Keiner der fünf Patienten mit auffälligem periprothetischem Knochenbefund gehörte zu den insgesamt 15 Patienten mit chronischer Steroideinnahme.

3.4 Zusammenhang zwischen Osteolysen und dem HHS

Zur Klärung der Frage, ob die Osteolysen sich ihrerseits negativ auf die klinischen Befunde der Patienten auswirkten, wurde ein Homogenitätstest durchgeführt. Hierbei wurde aufgrund der fehlenden Normalverteilung der beiden Parameter und dem dichotomen Charakter des Osteolysenparameters der Mann-Whitney U-Test angewandt.
Dabei zeigte sich, dass die jeweiligen mittels Harris-Hip-Score erfassten klinischen Befunde nicht von dem Osteolyseausmaß beeinträchtigt wurden.

4 Diskussion
4.1 Verschleißanalyse
Mit Hilfe der semi-automatisierten, computerassistierten Röntgenanalyse konnte im untersuchten Patientenkollektiv für die XLPE-Al2O3-Gleitpaarung ein zweiphasiger Verschleißverlauf gemessen werden, der sich in eine erste Phase mit ausgeprägtem (0,38mm / Jahr SD: 0,2) und eine darauffolgende Phase mit deutlich reduziertem Verschleiß einteilen lässt (0,14mm / Jahr; SD: 0,1). Derartige Abriebmuster sind in der Literatur bereits für verschiedene Implantatkombinationen beschrieben worden. So berichten Myanishi et al. bei einer Zirkonium-HXLPE-Gleitpaarung über eine verstärkte lineare Penetration des Prothesenkopfes von 0,37mm/ Jahr (SD: 0,25) innerhalb der ersten zwölf Monate nach der Operation und über einen geringeren Wert von durchschnittlich 0,06 mm / Jahr in späteren Untersuchungen (116). Auch die von Glyn-Jones et al. gefundenen Abriebwerte lagen für hoch vernetzte P olyethyleninlays zu Beginn der Untersuchung mit 0,21mm / Jahr (SD: 0,15) am höchsten und verringerten sich im weiteren Verlauf um den Faktor 3,6 (58). Als Ursache für diese anfänglich gesteigerten Abriebwerte vermutet man eine Überlagerung des eigentlichen Verschleißes durch eine über die Zeit nachlassende plastische Inlay-Verformung unter mechanischer Last (bedding-in, Kaltfluss) (11; 78; 91).

Berücksichtigt man vor diesem Hintergrund ausschließlich die Werte, die frühestens ein Jahr nach Implantation gemessen wurden (0,14 mm / Jahr) und vergleicht diese mit den Daten anderen Studien, welche den Abrieb des gleichen Inlays mithilfe der Hip-Analysis-Suite kontrollierten, dann zeigt sich, dass die dort dokumentierten Werte um 0,11 mm – 0,13 mm niedriger liegen. Unter diesen Studien fanden Engh et al. mit 0,01 mm (SD: 0,07) den geringsten jährlichen Verschleiß für das genannte HXLPE Inlay (45). Der von Heisel et al. beschriebene Abrieb von 0,02 mm / Jahr (SD: 0,1) (70) und der von Bitsch et al. beschriebene Wert von 0,03 mm/Jahr (SD: 0,47) lagen nur wenig höher (11). Auch eine Studie von Hopper et al., in welcher ein anderes Analyseverfahren eingesetzt
wurde (Sychterz) lag der Abrieb mit 0,08 mm pro Jahr zwar bereits deutlich höher, blieb aber unter den Werten der vorliegenden Verschleißanalyse (71). All diesen Studien ist gemein, dass ihr durchschnittliches Follow up außerhalb des kritischen Zeitkorridors von zwei Jahren für die bedding-in Phase lag (s.o.). Die Diskrepanz zwischen den in der Literatur beschriebenen und den selbst ermittelten Werten könnte demnach auf eine länger als ein Jahr dauernde Verformungen des Marathoninlays hindeuten. Somit wäre auch der Wert von 0,14 mm pro Jahr durch Bedding-in Phänomene überlagert und der tatsächliche Abrieb niedriger. Die Ergebnisse einer Arbeit von Wroblewsi et al., in der vergleichbare Gleitpartner untersucht wurden (XLPE Inlay / Al₂O₃-Köpfe), stützen diese These: Während nach 10 – 11 Jahren eine mittlere lineare Penetration von 0,02 mm ermittelt wurde, lagen die jährlichen Penetrationsraten im ersten Jahr mit 0,7 mm und im zweiten Jahr mit 0,22 mm deutlich höher (164).

Für XLPE-Inlays anderer Hersteller, wie dem Crossfire™ Inlay der Firma Stryker (Mahwah, New Jersey), wurden hingegen trotz längerer Nachuntersuchungszeit von zwei bis drei Jahren, mit 0,12 mm / Jahr ähnlich hohe Abriebwerte gefunden wie in der vorliegenden Arbeit (107). Was in dieser von Martell durchgeführten Studie zum vergleichsweise hohen Verschleiß geführt hat, bleibt jedoch unbeantwortet.

Tabelle 40: Kontrollierte und nicht kontrollierte Studien mit in-vivo Verschleißanalyse verschiedener HXLPE-Inlays.

<table>
<thead>
<tr>
<th>Studie</th>
<th>Inlay</th>
<th>Kopf</th>
<th>Methode</th>
<th>N (Hüften)</th>
<th>NI [Jahre]</th>
<th>LV/ Jahr [mm] (<1Jahr)</th>
<th>LV/ Jahr [mm] (>1Jahr)</th>
<th>VV/ Jahr [mm²] (<1Jahr)</th>
<th>VV/ Jahr [mm²] (>1Jahr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shia et al. 2009 (143)</td>
<td>Longevity+</td>
<td>CoCr</td>
<td>Hip Analysis suite</td>
<td>70</td>
<td>4</td>
<td>k.A.</td>
<td>0,026 (SD: 0,135)</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Bitsch et al. 2008 (11)</td>
<td>Marathon+</td>
<td>k.A.</td>
<td>Hip Analysis Suite</td>
<td>32</td>
<td>5,75</td>
<td>0,031 (SD: 0,047)</td>
<td>15,5 (SD: 15,9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enduron</td>
<td>k.A.</td>
<td>Hip Analysis Suite</td>
<td>24</td>
<td>5,83</td>
<td>0,104 (SD: 0,094)</td>
<td>55,5 (SD: 54,1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miyanishi et al. 2007 (116)</td>
<td>Aeonian+</td>
<td>Zr</td>
<td>Vector Works</td>
<td>95</td>
<td>2,3</td>
<td>0,37 (SD: 0,25)</td>
<td>0,06 (SD: 0,19)</td>
<td>130,4 (SD: 129,9)</td>
<td>32,4 (SD: 82,0)</td>
</tr>
<tr>
<td></td>
<td>Kyocera</td>
<td></td>
<td></td>
<td>20</td>
<td>4,2</td>
<td>0,29 (SD: 0,21)</td>
<td>0,14 (SD: 0,19)</td>
<td>139 (SD: 85,3)</td>
<td>78,8 (SD: 62,7)</td>
</tr>
<tr>
<td>Triclot et al. 2007 (151)</td>
<td>Durasul+</td>
<td>CoCr</td>
<td>Hip Analysis Suite</td>
<td>102</td>
<td>4,9</td>
<td>0,025 (SD: 0,128)</td>
<td>29,29 (SD: 44,08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulene</td>
<td></td>
<td>Hip Analysis Suite</td>
<td></td>
<td></td>
<td>0,106 (SD: 0,109)</td>
<td>53,32 (SD: 48,68)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engh et al. 2006 (45)</td>
<td>Marathon+</td>
<td>CoCr</td>
<td>Hip Analysis Suite</td>
<td>116</td>
<td>5,7</td>
<td>0,01 (SD: 0,07)</td>
<td>5 (SD: 22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enduron</td>
<td></td>
<td>Hip Analysis Suite</td>
<td>114</td>
<td>5,7</td>
<td>0,19 (SD: 0,12)</td>
<td>107 (SD: 76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bragdon et al., 2006 (16)</td>
<td>Durasul+</td>
<td>CoCr</td>
<td>Hip Analysis Suite</td>
<td>74</td>
<td>3,75</td>
<td>0,03 (SD: 0,1)</td>
<td>0,025 (SD: 0,099)</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td></td>
<td>Konventio-</td>
<td></td>
<td>Hip Analysis Suite</td>
<td>58</td>
<td>3,75</td>
<td>0,154 (SD: 0,9)</td>
<td>0,144 (SD: 0,191)</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Manning et al. 2005</td>
<td>Longevity+ /</td>
<td>CoCr</td>
<td>Hip Analysis</td>
<td>70</td>
<td>2,6</td>
<td>0,012 (SD: 0,01)</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Studie</td>
<td>Inlay</td>
<td>Kopf</td>
<td>Methode</td>
<td>N (Hüften)</td>
<td>NI [Jahre]</td>
<td>LV/ Jahr [mm] (<1Jahr)</td>
<td>LV/ Jahr [mm] (>1Jahr)</td>
<td>VV/ Jahr [mm³] (<1Jahr)</td>
<td>VV/ Jahr [mm³] (>1Jahr)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>(103)</td>
<td>Konventionell</td>
<td>Suite</td>
<td></td>
<td>111</td>
<td>4</td>
<td>0,176 (SD: 0,054)</td>
<td>k.A.</td>
<td>k.A.</td>
<td></td>
</tr>
<tr>
<td>Dorr et al. 2005 (39)</td>
<td>Durasul+ CoCr</td>
<td>Sychterz</td>
<td></td>
<td>37</td>
<td>5</td>
<td>0,074 (SD: 0,07)</td>
<td>0,029 (SD: 0,02)</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td></td>
<td>Sulene</td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td>0,151 (SD: 0,167)</td>
<td>0,065 (SD: 0,026)</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Heisel et al. 2004 (70)</td>
<td>Marathon+ CoCr, Ceramic</td>
<td>Hip-Analysis-Suite</td>
<td>34</td>
<td>2,75</td>
<td></td>
<td>0,02 (SD: 0,1)</td>
<td>17,0 (SD: 19,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enduron</td>
<td></td>
<td></td>
<td>24</td>
<td>3</td>
<td>0,13 (SD: 0,1)</td>
<td>87,6 (SD: 79,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martell et al. (107)</td>
<td>Crossfire+ CoCr</td>
<td>Hip-Analysis-Suite</td>
<td>24</td>
<td>2-3</td>
<td></td>
<td>0,12 (SD: 0,05)</td>
<td>62,07 (SD: 34,15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N2/Vac</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td>0,2 (SD: 0,1)</td>
<td>90,89 (SD: 52,74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hopper et al. (71)</td>
<td>Marathon+ CoCr</td>
<td>Hip-Analysis-Suite</td>
<td>48</td>
<td>2</td>
<td></td>
<td>0,08 (SD: 0,24)</td>
<td>k.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enduron</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>0,18 (SD: 0,20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wrobelwski et al. (164)</td>
<td>HXLPE Al₂O₃</td>
<td>Methode nach Griffith (64)</td>
<td>12</td>
<td>6,42</td>
<td></td>
<td>0,7 (SD: k.A.)</td>
<td>0,02 (SD: k.A.)</td>
<td>k.A.</td>
<td></td>
</tr>
</tbody>
</table>

* = HXLPE-Inlays; k.A. = keine Angaben

Welchen Einfluss das Prothesenkopfmaterial auf die gefundenen Abriebwerte hat, ist aufgrund der fehlenden Kontrollgruppe in der vorliegenden Arbeit ebenfalls nur hypothetisch zu beantworten. Aufgrund der Literaturlage ist jedoch zu vermuten, dass die Friktionseigenschaften und damit die Abriebresistenz der untersuchten Gleitpaarung durch die in Kapitel 2.3 beschriebenen Materialeigenschaften des Biolox®-Kopfes weiter verbessert wurden. So untersuchten Galvin et al. in einer Simulatorstudie aus dem Jahr 2008 neben CoCr-Köpfen und Prothesenköpfen mit einer keramikähnlichen Beschichtung auch die Reibungseigenschaften der hier untersuchten Biolox®forte-Köpfe (54). Die Analyse konnte zeigen, dass der für den Verschleiß entscheidende Frikionsfaktor für die Al2O3 Köpfe am niedrigsten lag. Auch Ranawat et al., welche in zwei parallelisierten Stichproben Abriebdifferenzen zwischen Metall- und Keramikköpfen untersuchten konnten zeigen, dass der lineare Verschleiß in Keramikkollektiv mit 0,13 mm/Jahr signifikant niedriger lag, als im Metallkollektiv (0,17 mm/Jahr) (130). Fischer et al., die ebenfalls das Abriebverhalten von Biolox®-Köpfen mit dem von CoCr-Köpfen verglichen, fanden sogar eine um 50% geringere „steady-state“-Abriebrate für das von ihnen untersuchte und mit Keramikköpfen versorgte Patientenkollektiv (51).

Da mit der finiter Prothesenkombination, unter der Voraussetzung konstanter Materialeigenschaften nach Fertigung, die Belastbarkeit konstant gehalten wird, sind die Gründe für Unterschiede im Verschleiß in der jeweiligen Belastungshöhe zu suchen (siehe Abbildung 49). So liegt es beispielsweise nahe, dass Patienten mit einem hohen Körpergewicht über stärkere Reibungskräfte im künstlichen Hüftgelenk größere Abriebwerte aufweisen, als solche mit niedrigem Gewicht. Diese Überlegung wird durch Studien gestützt, welche beim Gehen resultierenden Kräfte am Hüftgelenk untersuchten, da die ermittelten intraartikulären Belastungen und damit die Elastizität des Inlays, zwischen dem 1,8 bis 4,3fachen des Körpergewichtes lagen (75). Die statistische Analyse der Daten aus dem untersuchten Patientenkollektiv zeigte für das kurze Nachuntersu-

Abbildung 50: Durchschnittliche Verschleißraten mit 95% Konfidenzintervall aus (51)
Diskussion

Sollte ein solcher Zusammenhang dennoch bestehen, bleibt die Frage nach der Relevanz für die Praxis, denn oft diktiert die anatomischen Voraussetzungen der Patientenhüfte die Pfannenorientierung mehr als der jeweilige Operateur. Dies zeigt sich in einer aktuellen Studie von Reize et al., bei der die Erfahrung der Operateure keinen signifikanten Einfluss auf die zu erzielende Pfannenorient-
tierung hatte (131). 59% der 85 implantierten Hüften wurden bei dieser Studie aufgrund der unterschiedlichen Hüftgeometrien außerhalb der sicheren Zone von Lewinnek (96) (40° Inklination, SD: 10°; 15° Anteversion, SD: 10°) implantiert. Auch Bosker et al. konnten zeigen, dass die vom Operateur geplante Pfannenorientierung oft nicht mit der später gemessenen tatsächlichen Position übereinstimmt und folgern daraus: „[…] that freehand placement of the acetabular component is not a reliable method.” (14).

Da sich die direkte Erfassung der körperlichen Aktivität über lange Nachuntersuchungszeiträume als außerordentlich schwer darstellt, sind auch indirekte Methoden denkbar. So entdeckten Devane et al. und Woolson et al. bei ihren Metall-Kopf-Kollektiven einen Zusammenhang zwischen Patientenalter und PE-Abrieb
und vermuteten die abnehmende körperliche Aktivität mit zunehmendem Lebensalter als Ursache für diese Erscheinung (37; 162). Die berechnete Korrelation zwischen Patientenalter und linearer Penetration \(r = 0,04 \) bzw. dem volumetrischen Verschleiß \(r = -0,05 \) für das hier untersuchte Patientenkollektiv macht deutlich, dass dieser Rückschluss als allgemeingültige Regel nicht belastbar ist. Auch Schmalzried et al. fanden zwar einen statistisch signifikanten Zusammenhang zwischen den beiden Parametern, betonten jedoch die ausgeprägte Standardabweichung von über 3000 Schritten pro Tag (141).

vier verschiedene computergestützte Verschleißanalyseprogramme (Martell, HyperOrtho™, View Pro-X™ und Roman™) und kamen zu dem Ergebnis, dass die „Martell-Methode“ unter den Konkurrenzprodukten die geringste Präzision aufweist. Als wahrscheinliche Ursache für dieses Ergebnis geben die Forscher Probleme im Kantenerkennungsalgorithmus der Software an. Darüber hinaus fiel auf, dass die gemessenen jährlichen Abriebraten der Martellsoftware in der Einzelbildanalyse um das doppelte höher lagen, als die der anderen Programme. Gleiches gilt für die Standardabweichung der Werte, die ebenfalls um den Faktor Zwei größer war: Martell: 0.24 (SD 0.19); HyperOrtho™, 0.12 (SD 0.08); View Pro-X™, 0.12 (SD 0.06); Roman™, 0.12 (SD 0.07). Auch bei der Bildpaaranalyse waren die via Hip-Analysis-Suite™ ermittelten Werte mit Abstand am höchsten: Martell, 0.35 (SD 0.22); HyperOrtho™, 0.15 (SD 0.13); View Pro-X™, 0.11 (SD 0.06); Roman™, 0.11 (SD 0.07).

Auch Dora et al. weisen darauf hin, dass insbesondere bei der Erfassung von kleinen Mengen an PE-Verschleiß präzisere Verfahren zur Anwendung kommen müssen und stellen in dem kürzlich veröffentlichten Artikel eine neue Messmethode vor, welches im Vergleich mit der Hip-Analysis-Suite™ (+/-0.84 mm) eine signifikant (p < 0,001) höhere Präzision aufwies (+/-0.15 mm) (38). Bei diesem Verfahren wird ein automatisch generierter Algorithmus genutzt, der anhand eines CAD-Modells der Prothese von einer Software erstellt wird.

In zukünftigen Verschleißstudien sollte aus den vorgelegten Gründen neben einer durchschnittlichen Nachuntersuchungszeit von mindestens drei Jahren neue Messmethoden wie die Roman Software oder das von Dora et al. vorgestellte Prinzip zur Anwendung kommen.
4.2 Deskriptive Röntgenanalyse

Vollständig die Knochen-Implantatgrenze umfassende Aufhellingen konnten ebenfalls bei keinem Patienten gefunden werden. Einzelne Veränderungen des periprothetischen Knochengewebes im Sinne umfäriger Aufhellingen wurden im Schaftbereich jedoch bei 23 der 110 Hüften gefunden und im pfannenumgebenden Knochengewebe in insgesamt 29 Fällen. Wurde berücksichtigt, dass Säume bis 2mm auch als physiologische Adaptation, durch Interposition von fibrösem Gewebe in Erscheinung treten können (150), dann zeigte sich, dass lediglich bei fünf Patienten (4,55 %) die Knochendichteänderung im Schaftbereich als pathologisch zu bewerten war. Die Lysesäume an der Pfannenrückseite lagen hingegen alle unter dem kritischen Bereich von 2mm. Dies mag dar auf zurückzuführen sein, dass Komplikationen im acetabulären Bereich, aus bislang noch ungeklärtem Grund dazu tendieren später einzutreten, als die femoralen (150). Doch auch in schmalen Säumen können sich über die Zeit Abriebpartikel anhäufen und eine reaktive Antwort der Histiozyten hervorrufen (s.u.). Wie viele der übrigen Auffälligkeiten (95,45 %) also im weiteren Verlauf einen progressiven Charakter zeigen und die physiopathologische Grenze von zw ei Millimetern überschreiten werden, ist in Folgeuntersuchungen zu klären. Da sich die Verschleißpartikel, wie Elfick et al. zeigen konnten, homogen um die gesamte Prothese verteilen, sind pathologische Erweiterungen der Säume in allen Zonen möglich (42).
Die sich unter Ausschluss der oben genannten subpathologischen Befunde darstellenden Zahlen für Ly sesäume an der Knochen-Implantatgrenze sind durchaus mit den im der Literatur für das Marathon®-Inlay beschriebenen Daten vergleichbar. So berichten Bitsch et al. in einer aktuellen Vergleichsstudie, dass bei den von ihnen untersuchten 32 Implantaten mit Marathon®-Inlay keine Osteolyse gefunden werden konnten (11). Dagegen wies jedes dritte Implantat (30%) mit konventionellem Enduron®-Inlay in mindestens einer Zone einen osteolytischen Befund auf. Insgesamt drei Untersucher analysierten dabei unabhängig voneinander die jeweiligen Röntgenbilder der einzelnen Nachuntersuchungen. Das durchschnittliche Follow-up-Intervall dieser Studie lag bei 5,75 Jahren. Zu vergleichbaren Ergebnissen bezüglich prominenter Osteolysen kam auch Engh et al., der ebenfalls das beschriebene Marathon®-Inlay mit dem konventionellen Enduron®-Inlay in Hinblick auf Verschleiß (siehe Kapitel 0) und Osteolysen verglich (45). Auch in dieser Untersuchung lag neben dem Abrieb die Zahl der identifizierten Osteolysen nach 5,7 Jahren in der Gruppe mit Marathon®-Inlay versorgter Patienten deutlich niedriger (24%), als im Enduron®-Kollektiv (57,8%).

Abriebmenge von 10^9 Partikel / Gramm notwendig ist um eine entsprechende Reaktion auszulösen (42). Die zudem in Kapitel 3.1.1 aufgezeigten bedding-in-Überlagerung der gemessenen Verschleißwerte macht es unmöglich, anhand der vorliegenden Daten die beschriebene Dosis-Wirkungsbeziehung oder eine kritische Grenze für die Entstehung von Osteolysen auszumachen.

Die mit der Phagocytose von Abriebpartikeln induzierten proinflammatorischen Cytokine (TNF alpha, IL-1b, PG E2, Cytokin IL-6) führen zu einer erhöhten Expression des RANK- (receptor activator of NFkB) Liganden (137). Dieser bindet an einem Rezeptor (RANK) auf der Oberfläche der Osteoklastenvorläuferzellen und spielt für die Differenzierung und Reifung dieser Zellen eine entscheidende Rolle (72). Als natürlicher Antagonist wirkt der lösliche Rezeptor Osteoprotegerin (OPG) der ebenso den RANK-Liganden bindet und dadurch den RANK-Rezeptor der Vorläuferzellen konkurriert (145). Eine Beeinflussung dieses Antagonisten durch Abriebteilchen mit Verschiebung des RANK/OPG-Gleichgewichtes und resultierendem Knochenabbau wird diskutiert (127). Zudem ist seit kürze-
rem bekannt, dass der Abrieb die protektive Wirkung antiosteoklastogenetischen Cytokine, wie dem γ-Interferon hemmt und damit die Differenzierung von Makrophagen zu Osteoklasten fördert (129).

Abbildung 51: Zelluläre und Molekulare Regulation der Osteoklastogenese und der Einfluss von Abriebpartikeln (aus (127))

konventionellen Inlays und damit möglicherweise stärkere Reaktionen von Immunzellen bedingen (115). Eine dar aus resultierende Häufung osteolytischer Befunde spiegelt sich in den oben beschriebenen Vergleichsstudien allerdings nicht wider und kann auch durch die eigens erhobenen Osteolysehäufigkeiten nicht bestätigt werden. Aber selbst bei gleich starker Reaktion des Körpers auf die kleineren HXLPE-Partikel, könnte deren Migrationsfähigkeit zumindest einen Teil der erfassten Osteolyseverteilung über die Prothesengrenzfläche erklären. So schreiben Elfick et al.: „The ability of particles to migrate away from their point of origin was found to be inversely proportional to their size. “ (42). Demnach sind möglicherweise selbst die dokumentierten Osteolysen in Zone 3 nach Gruen durch Reaktionen auf generierte XLPE-Partikel zurückzuführen.

Neben den Öffnungen zur fakultativen Schraubenverankerungen einer press-fit-Pfanne, könnten aber auch die Fixationsschrauben selbst durch Mikrobewegungen gegen die Prothesenpfanne die Knochenresorption provozieren (114), denn auch die dabei entstehenden Metallpartikel sind in der Lage die oben beschriebenen Osteoklastenaktivierung anzustoßen (9). Gleiches ist auch für die Friktion zwischen dem Prothesenschaft und der S-ROM®-Hülse denkbar, was eine Schwachstelle der modularen Systeme darstellen würde. Christie et al., welche dieser Frage nachgingen und insgesamt 159 Hüftprothesen über 5,3 Jahre na-
Diskussion

...chuntersuchten, konnten allerdings keine erhöhte Osteolysehäufigkeit bei S-ROM®-Prothesen im Vergleich zu nichtmodularen Systemen finden (26). Auch die Ergebnisse der vorliegenden Studie unterstützen mit nur einer lokalen Osteolyse im femoralen Knochewebe die Befunde von Christie et al. Ob die in der vorliegenden Studie gefundenen fokalen und saumförmigen Osteolysen im Schaftbereich auf Metall- oder, wie oben angedeutet, aus dem Pfannenbereich migrierte XLPE-Partikel zurückzuführen sind, kann nicht beantwortet werden.

Die dargestellten Zusammenhänge machen deutlich, dass die Entstehung von Osteolysen multifaktoriell bedingt und nicht alleine auf den PE-Abrieb zurückzuführen ist. Zu diesem Ergebnis kommen auch Jacobs et al. und fassen diesen Punkt mit folgenden Worten zusammen: "Volumetric wear rates alone, however, do not completely predict the osteolytic potential that is also a function of particle
Diskussion

Die Diskussion beinhaltet eine Analyse der Ergebnisse in Hinblick auf die Komposition, die Größe, die Morphologie und andere Partikelcharakteristika. Hostfaktoren, einschließlich unterschiedlicher先天性reaktivität zu Trägerprodukten und adaptiven Immunantworten, bleiben wichtig, aber noch nicht vollständig definiert.” (79).

Betrachtete man die im postoperativen Verlauf erfassten Veränderungen der periprothetischen Knochenmineralisation, so spiegeln diese die aus geprägten Knochenumbauprozesse wider, welche aus den veränderten biomechanischen Krafteinleitungen resultieren (135). So fand sich die Mehrzahl der hypertrophischen Befunde kranial der Prothesenpfanne in Zone I nach DeLee und Charnley (31), während im femoralen Bereich meist die Zone 1 nach Gruen betroffen war. Atrophische Umbauprozesse konzentrierten sich hingegen auf den proximalen Femur (Zone 1 und 7 nach Gruen) (66). Diese Ergebnisse decken sich mit den in der Literatur angegebenen Lokalisationen für knöcherne Umbauprozesse. So berichten Cameron et al., welche die Knochendichte nach S-ROM Implantation mittels dualer Röntgenabsorptiometrie (DEXA) erfassten, dass die proximalen Femuranteile (Gruen Zone 1 und 7) einen Verlust an Knochendichte von 2% -14% aufwiesen, während distale Diaphysenbereiche (Gruen Zone 3 und 4) nur minimale Änderungen präsentierten (19). Darüber hinaus kamen die Autoren zu dem Ergebnis, dass die subjektive radiographische Interpretation der Knochendichte weitestgehend mit den DEXA Befunden übereinstimmte. Auch in der zuvor von Rosenthal et al. durchgeführte Studie waren die proximalen Femurbereiche stärker von der Knochendemineralisierung betroffen als die distalen Zonen (134).

Üblicherweise sind am proximalen Femur Verluste von 10% bis 45% der periprothetischen Knochenmasse zu erwarten, wobei die Reaktion des Organismus vom jeweiligen Schaftdesign und der Art der proximalen Fixierung abhängt (90).

Nur in vier Fällen (3,6%) konnte in Zone 7 nach Gruen (66) eine Atrophie des Knochensgewebes identifiziert werden. Dieses Ergebnis bestätigt die vom Hersteller angegebene Verbesserung der Krafteinleitung durch die abgestufte Geometrie des Hülsenfortsatzes.

4.3 Klinische Nachuntersuchungsergebnisse
Die Ergebnisse der klinischen Nachuntersuchungen zeigen, dass die Implantation der definierten Hüftendoprothese die Lebensqualität der Patienten, gemessen am Harris-Hip-Score, insgesamt, aber auch in allen Teilbereichen signifikant verbessern konnte. Der durchschnittliche postoperative Gesamtscore von 90,73 Punkten (SD: 10) entspricht einem guten bis sehr guten klinischen Befund. Der präoperative Wert von 42,82 Punkten konnte damit um 112 % verbessert werden. Besonders positiv wirkte sich die endoprothetische Versorgung dabei auf die empfundenen Schmerzen (64 %ige Verbesserung), die Fähigkeit Treppen zu steigen (52 %ige Verbesserung) und auf die Gehleistung (47 %ige Verbesserung) aus. Hervorzuheben ist außerdem, dass die Verbesserung des klinischen Befundes in keinem korrelationsstatistischen Zusammenhang zum Nachuntersuchungszeitraum stand. Die positiven Veränderungen stellten sich demnach bereits in den ersten postoperativen Nachuntersuchungen ein, welche im Mittel nach 4,83 Monaten (SD: 2,22) durchgeführt wurde.

Der Abgleich des Harris-Hip-Score mit anderen Studien zeigt, dass die klinischen Ergebnisse der vorliegenden Studie mit einer Gesamtverbesserung von 113 % mit denen der in der Literatur für das S-ROM System dargestellten Befunde vergleichbar sind.

Betrachtet man die im Nachuntersuchungszeitraum aufgetretenen Komplikationen, so zeigt sich, dass der Großteil dieser von transientem Charakter war bzw. mit konservativen Therapiemitteln zur Ausheilung gebracht werden konnten (n = 18; 16,3 %). Nur in drei Fällen (2,7 %) war eine Operation und in nur einem dieser Fälle (0,9 %) ein Austausch von Implantatkomponenten (Inlay und Prothe-
Zusammenfassung

Der postoperativ erreichte Harris-Hip-Score von durchschnittlich 91 Punkten (SD: 10) ist mit gut bis sehr gut zu bewerten. Bezogen auf den Ausgangswert von 43

<table>
<thead>
<tr>
<th>Initiale Diagnose</th>
<th>Springer et al. (148) (n = 1100)</th>
<th>Vorliegende Studie (n = 110)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N [%]</td>
<td>N [%]</td>
</tr>
<tr>
<td>Aseptische Lockerung</td>
<td>498 [45]</td>
<td>0 [0]</td>
</tr>
<tr>
<td>Instabilität</td>
<td>172 [16]</td>
<td>0 [0]</td>
</tr>
<tr>
<td>Osteolyse/ Verschleiß</td>
<td>172 [16]</td>
<td>0 [0]</td>
</tr>
<tr>
<td>Tiefe periprothetische Infektion</td>
<td>118 [11]</td>
<td>1 [0,9]</td>
</tr>
<tr>
<td>Periprothetische Fraktur</td>
<td>63 [6]</td>
<td>0 [0]</td>
</tr>
<tr>
<td>Sonstige</td>
<td>77 [7]</td>
<td>2 [1,8]</td>
</tr>
<tr>
<td>Mittlere Nachuntersuchungszeit</td>
<td>6 Jahre</td>
<td>1,7 Jahre</td>
</tr>
</tbody>
</table>
Punkten ergibt sich eine prozentuale Verbesserung von 113\%, welche auch in anderen klinischen Studien zur S-ROM-Prothese zu finden ist.

Da das angewandte Verschleißanalyseverfahren (Hip-Analysis-Suite) wie auch andere in-vivo Methoden nicht zwischen Bedding-in und eigentlichem Verschleiß differenzieren kann, ergab sich ein zweiphasiger Verschleißverlauf, wie er bereits in der Literatur für verschiedene Inlays beschrieben wurde. In den ersten 12 Monaten betrug er im Durchschnitt 0,384 mm / Jahr (SD: 0,2) und danach 0,14 mm / Jahr (SD: 0,1). Der aus in-vitro Studien abgeleitete Zeitraum für Bedding-in Phänomene von bis zu drei Jahren lässt vermuten, dass auch ein Teil der später erfassten Verschleißwerte (> 1 Jahr postoperativ) durch Inlayverformungen überlagert ist. Dies spiegelt sich auch im Abgleich mit anderen Studien wider, welche einen längeren Nachuntersuchungszeitraum aufwiesen. Als Ursache für die ausgeprägte Standardabweichung, welche auch in allen vergleichbaren Untersuchungen gefunden wurde, kommen Mängel in der Softwarepräzision, eine Veränderung der Friktionseigenschaften der Gleitpartner, die operative Verlagerung des Drehzentrums und Aktivitätsunterschiede zwischen den Patienten in Frage.

Nur fünf Patienten zeigten im Nachuntersuchungsverlauf radiographische Veränderungen im Sinne einer pathologischen Osteolyse (>2 mm Breite) und in nur einem Fall kam es zur Absenkung des Schaftes (um 19 mm). Alle übrigen Prothesen zeigten über den gesamten Zeitraum eine feste knöcherne Integration.

Zusammenfassend kann gesagt werden, dass die XLPE-Keramik-Gleitpaarung zementfreier Implantate am Hüftgelenk gute Kurzzeitergebnisse zeigten. Langzeitergebnisse stehen noch aus und müssen an statistisch ausreichend hohen Patientenkollektiven verifiziert werden.
6 Abbildungsverzeichnis

ABBILDUNG 1: RÖNTGENAUFNAHME EINER DER VON PHILIP WILES (MIDDLESEX HOSPITAL, LONDON, UK) KONSTRUIERTEN & IMPLANTIERTEN HÜFT-TOTAL-ENDOPROTHESE AUS DEM JAHR 1938 (146) .. 6
ABBILDUNG 2: JOHN CHARNLEY (2) .. 7
ABBILDUNG 3: DURALOC®-PFANNE MIT POROCOAT® OBERFLÄCHE (34) ... 12
ABBILDUNG 4: HERSTELLUNGSPROZESS DES MARATHON™-INLAYS (NACH (33)) 14
ABBILDUNG 5: MARATHON™-INLAY MIT VERPACKUNG (92) ... 15
ABBILDUNG 6: BIOLOX®FORTE KERAMIK - KUGELKÖPFE (1) .. 17
ABBILDUNG 7: VAN-DER-WAALS-KRÄFTE ZWISCHEN WASSER UND ALUMINIUMOXIDGITTER (20) .. 17
ABBILDUNG 8: S-ROM®-PROTHESE MIT KERAMIkkOPF (3) .. 19
ABBILDUNG 9: BEFLUSSUNG DER BEINLÄNGE ÜBER DIE "SLEEVE UP" BZW. "SLEEVE DOWN" TECHNIK (36) ... 20
ABBILDUNG 10: GESCHLECHTERVERTEILUNG .. 22
ABBILDUNG 11: ALTER DER PATIENTEN/ -INNEN BEI OPERATION ... 23
ABBILDUNG 12: BODY MASS INDEX DER PATIENTEN/ -INNEN .. 23
ABBILDUNG 13: DIAGNOSEVERTEILUNG .. 24
ABBILDUNG 14: PRÄOPERATIV ERFASTER HARRIS HIP SCORE IN PROZENT (BLAU) DER MAXIMAL ERREICHBAREN PUNKTZAHL (HELLBLAU) .. 28
ABBILDUNG 15: PRÄOPERATIV ERFASTER HAARIS HIP SCORE ... 29
ABBILDUNG 16: PRÄOPERATIV ERFASTER BEWEGUNGSUMFANG .. 30
ABBILDUNG 17: PRÄOPERATIVE PLANUNG DER HÜFTPFANNE MIT HILFE VON RÖNTGENSCHABLONEN (35) .. 35
ABBILDUNG 18: ANTEROLATERALER ZUGANG NACH BAUER. INCISION DER FASCIA LATA (LINKS), SEPARATION VON GLUTEALER- UND VASTUS-MUSKULATUR (MITTE), DARSTELLUNG DES HÜFTGelenkes (RECHTS). (8) .. 37
ABBILDUNG 19: EINBRINGEN DER FRÄßE IN 45° INKLINATION (LINKS) UND 15°-20° ANTEVERSION (RECHTS) (34) .. 38
ABBILDUNG 20: VERTEILUNG DER EINGRIFFE AUF DIE OPERATEURE ... 40
ABBILDUNG 21: VERTEILUNG DER VERSCHIEDENEN PFANNENDURCHMESSER 43
ABBILDUNG 22: ANTEVERSION DER IMPLANTIERTEN HÜFTPFANNEN; EMPFOHLENNE INKLINATION ROT HINTERLEGT (5-25°) .. 43
ABBILDUNG 23: ANTEVERSION DER IMPLANTIERTEN HÜFTPFANNEN; EMPFOHLENE ANTEVERSION (40° +/-10°) ROT HINTERLEGT 44
ABBILDUNG 24: ANZAHL DER VERWENDETEN SCHRAUBEN .. 45
ABBILDUNG 25: GRÖßENVERTEILUNG DER IMPLANTIERTEN PROTHESE KÖPFE IN ABHÄNGIGKEIT VOM GESCHLECHT, BEZÖGEN AUF 110 IMPLANTIERTEN PROTHESEN. 46
ABBILDUNG 26: VERTEILUNG DER IMPLANTIERTEN HÜLSENKONFIGURATIONEN 46
ABBILDUNG 27: VERTEILUNG DER IMPLANTIERTEN SCHAFTKONFIGURATIONEN 47
ABBILDUNG 28: GRÜNE ZONEN UND ACETABULÄRE Einteilung nach De Lee und Charnley 53
ABBILDUNG 29: Einteilung der periartikulären heterotopen Ossifikationen nach Brooker, aus (17) .. 56
ABBILDUNG 30: PROTHESENERKENNUNG (LINIEN) NACH KONTRASTANALYSE 59
ABBILDUNG 31: 2D-ABRIEBWerte PRO JAHR, LINKS: UNABHÄNGIG VOM NACHUNTERSUCHUNGSINTERVALL (GESAMT); MITTE: NUR IMPLANTATE MIT EINEM NACHUNTERSUCHUNGSINTERVALL VON WENIGER ALS EINEM JAHR (FOLLOW-UP < JAHR); RECHTS: NUR IMPLANTATE MIT EINEM NACHUNTERSUCHUNGSINTERVALL VON MEHR ALS EINEM JAHR (FOLLOW-UP >1JAHR) ... 61
ABBILDUNG 32: REGRESSIONSANALYSE DES 2D-ABRIEBS .. 62
Abbildungsverzeichnis

Abbildung 33: 2D-volumetrische-Abriebwerte pro Jahr, links: Unabhängig vom Nachuntersuchungsintervall (Gesamt); mittig: Nur Implantate mit einem Nachuntersuchungsintervall von weniger als einem Jahr (Follow-up < 1 Jahr); rechts: Nur Implantate mit einem Nachuntersuchungsintervall von über einem Jahr (Follow-up > 1 Jahr). ... 63
Abbildung 34: Regressionsanalyse des 2D-volumetrischen Abriebs 64
Abbildung 35: Hypertrophie eingeteilt nach Gruen (37) und DeLee und Charnley (18) ... 65
Abbildung 36: Atrophie eingeteilt nach Gruen (37) und DeLee und Charnley (18) ... 66
Abbildung 37: Lysesäume eingeteilt nach Gruen (41) und DeLee und Charnley (20). 67
Abbildung 38: AP-Röntgenaufnahme einer Duralocpfanne 15 Tage postoperativ (links) und 13 Monate postoperativ (rechts) mit periprosthetischer Aufhellungszone < 2mm Breite ... 67
Abbildung 39: Lysesäume > 2mm Breite, eingeteilt nach Gruen (41) und DeLee und Charnley (20). ... 68
Abbildung 40: Lokale Osteolyse in der siebten Zone nach Gruen. 68
Abbildung 41: Absinken eines Prothesenschaftes um 19 mm (links: postOP, mitte: 12 Tage postOP, rechts: 28 Monate postOP). Dargestellt ist jeweils die Oberkante des Trochanter minor (lange gelbe Linie) und des Sleeves (kurze gelbe Linien) .. 70
Abbildung 42: Periartikuläre Ossifikationen eingeteilt nach Brooker (17) 71
Abbildung 43: Postoperativ erfasster Harris-Hip-Score (blau) in Prozent der maximal erreichbaren Punktzahl (hellblau) ... 73
Abbildung 44: Bewertung des postoperativen Harris-Hip-Scores 74
Abbildung 45: HHS in Abhängigkeit vom Nachuntersuchungszeitraum 75
Abbildung 46: Abhängigkeit der klinischen Untersuchungsergebnisse vom Operateur (ANOVA) .. 77
Abbildung 47: Postoperativ erfasster Bewegungsumfang 78
Abbildung 48: Operationsabhängige Komplikationen und ihre Therapieform (konservativ vs. operativ) ... 83
Abbildung 49: Modell zur Ursache und Wirkung des Polyethylenabriebes 86
Abbildung 50: Durchschnittliche Verschleißraten mit 95% Konfidenzintervall aus (51) .. 92
Abbildung 51: Zelluläre und Molekulare Regulation der Osteoklastogenese und der Einfuss von Abriebpartikeln (aus (127)) ... 100
Abbildung 52: Prozentuale Verbesserungen des Harris-Hip-Scores durch die Implantation einer S-ROM®-Prothese .. 105
7 Tabellenverzeichnis

TABELLE 1: VARIANTEN DER DURALOC® PRODUKTSERIE [DURALOC CUP, DESIGNED FOR SUCCESS] .. 13
TABELLE 2: VARIANTEN DER MARATHONTM-PRODUKTSERIE ... 16
TABELLE 3: MATERIALEIGENSCHAFTEN DER BIOLOX®-KERAMIK-KÖPFE (21) .. 18
TABELLE 4: EMPFOHLENENE UND VERWENDETE HARDWARE UND SOFTWARE .. 22
TABELLE 5: VOROPERATIONEN .. 25
TABELLE 6: BEEINTRÄCHTIGUNG ANDERER GELENKE DER UNTEREN EXTREMITÄT ... 26
TABELLE 7: CHRONISCHE MEDIKATION ... 26
TABELLE 8: PRÄOPERATIV EMPFUNDENE SCHMERZEN .. 29
TABELLE 9: PRÄOPERATIVE BEEINTRÄCHTIGUNG DES SITZENS .. 30
TABELLE 10: PRÄOPERATIVE BEEINTRÄCHTIGUNG DES SCHUHEBINDENS ... 31
TABELLE 11: PRÄOPERATIV VERWENDETE GEHHILFEN ... 31
TABELLE 12: PRÄOPERATIVE BEEINTRÄCHTIGUNG DES GANGBILDES .. 32
TABELLE 13: PRÄOPERATIVE BEEINTRÄCHTIGUNG DER GEHLEISTUNG ... 32
TABELLE 14: PRÄOPERATIVE BEEINTRÄCHTIGUNG DES TREPPENSTEIGENS ... 33
TABELLE 15: PRÄOPERATIVE Fähigkeit öffentliche Verkehrsmittel zu nutzen .. 33
TABELLE 16: KONTRAKTUREN UND BEINLÄNGENDIFFERENZEN ... 34
TABELLE 17: LOKALISATION DER KNOCHENPLASTIKEN ... 40
TABELLE 18: DURCHSCHNITTLICHER INTRAOPERATIVER BLUTVERLUST .. 41
TABELLE 19: ENTLASTUNG .. 48
TABELLE 20: NACHUNTERSUCHUNGSENTWICKLUNG ... 49
TABELLE 21: DIOCOM – FILE HEADER (AUSZUG) ... 51
TABELLE 22: EINFLUSSFAKTOREN AUF DEN JÄHRLICHEN VERSCHLEISS; ANGEGEBEN SIND DIE KORRELATIONSKOEFFIZIENTEN NACH SPEARMAN .. 64
TABELLE 23: EINFLUSS CHRONISCHER NSAR-EINNAHME AUF DIE ENTWICKLUNG periprothetischer Ossifikationen... 71
TABELLE 24: EINFLUSSFAKTOREN AUF DEN HARRIS-HIP-SCORE (HHS), ANGEGEBEN SIND DIE KORRELATIONSKOEFFIZIENTEN NACH SPEARMAN ... 76
TABELLE 25: EINFLUSS CHRONISCHER NSAR-EINNAHME AUF DIE ENTWICKLUNG periprothetischer Ossifikationen... 77
TABELLE 26: POSTOPERATIVE EINZELWERTE DES HARRIS-HIP-SCORES ... 78
TABELLE 27: POSTOPERATIVE EINZELWERTE DES HARRIS-HIP-SCORE (HHS), ANGEGEBEN SIND DIE KORRELATIONSKOEFFIZIENTEN NACH SPEARMAN ... 79
TABELLE 28: POSTOPERATIV EMPFUNDENE SCHMERZEN .. 80
TABELLE 29: POSTOPERATIVE BEEINTRÄCHTIGUNG DES SITZENS .. 80
TABELLE 30: POSTOPERATIVE BEEINTRÄCHTIGUNG DES TREPPENSTEIGENS ... 80
TABELLE 31: POSTOPERATIVE BEEINTRÄCHTIGUNG DES SCHUHEBINDENS ... 80
TABELLE 32: POSTOPERATIVE BEEINTRÄCHTIGUNG DES GANGBILDES ... 80
TABELLE 33: POSTOPERATIVE BEEINTRÄCHTIGUNG DER GEHLEISTUNG ... 80
TABELLE 34: POSTOPERATIVE BEEINTRÄCHTIGUNG DES TREPPENSTEIGENS ... 81
TABELLE 35: POSTOPERATIVE BEEINTRÄCHTIGUNG DES SCHUHEBINDENS ... 81
TABELLE 36: POSTOPERATIVE BEEINTRÄCHTIGUNG DES GANGBILDES ... 81
TABELLE 37: POSTOPERATIVE BEEINTRÄCHTIGUNG DER GEHLEISTUNG ... 82
TABELLE 38: ZUSAMMENHANG ZWISCHEN PE-ABRIEB UND OSTEOLYSEN ... 82
TABELLE 39: ZUSAMMENHANG ZWISCHEN OSTEOLYSEN UND DEM HHS ... 84
TABELLE 40: KONTROLLIERTE UND NICHT KONTROLLIERTE STUDIEN MIT IN-VIVO VERSCHLEISSANALYSE VERSCHIEDENER HXLPE-INLAYS ... 89
Literaturverzeichnis

1. BIOLOX® forte Kugelkopf – Der Keramik-Standard [Online].
 http://www.plusorthopedics.de/image.php?id=7096, Acess
 Date: 20/12/2008 Last Update: 2007.

2. John Charnley [Online].
 http://www.kneeandhipsurgery.co.uk/photos/image037.jpg, Acess
 Date: Last Update: 10/10/2008.

 http://www.injigateway.com/images/SROM_stem_logo.jpg, Acess
 Date: Last Update: 13/11/2008.

33. **DePuy.** Marathon(TM) hochvernetztes PE. Produktbeschreibung. 1-18. 2001. Sulzbach; Bürmoos; Spreitenbach; Leeds, DePuy Orthopädie GmbH.

46. Estok DM, Bragdon CR, Plank GR, Huang A, Muratoglu OK and Harris WH. The measurement of creep in ultrahigh molecular weight polye-

58. **Glyn-Jones S, Saac S, Hauptfleisch J, McLardy-Smith P, Murray DW and Singh H.** Does highly cross-linked polyethylene wear less than con-

64. **Griffith MJ, Seidenstein MK, Williams D and Charnley J.** Socket wear in Charnley low friction arthroplasty of the hip (Reprinted from Clin Orthop

76. **Illgen RL, Forsythe TM, Pike JW, Laurent MP and Blanchard CR.**

83. Jasty MJ, Floyd WE, Schiller AL, Goldring SR and Harris WH. Loca-
lized Osteolysis in Stable, Nonseptic Total Hip-Replacement. *Journal of

84. Jia D, O'Brien CA, Stewart SA, Manolagas SC and Weinstein RS. Glu-
cocorticoids act directly on osteoclasts to increase their life span and re-

85. Jones LC and Hungerford DS. Cement Disease. *Clinical Orthopaedics

86. Judet R, Siguier M, Brumpt B and Judet T. Non-Cemented Total Hip

87. Kadoya Y, Kobayashi A and Ohashi H. Wear and osteolysis in total joint

88. Kawanabe K, Liang B, Ise K and Nakamura T. Comparison of Polyethy-
lene Wear against Alumina and Zirconia Heads in Cemented Total Hip
Arthroplasty. In: Bioceramics and Alternative Bearings in Joint Arthroplas-

89. Kim HJ, Zhao H, Kitaura H, Bhattacharyya S, Brewer JA, Muglia LJ,
Ross FP and Teitelbaum SL. Glucocorticoids suppress bone formation

96. **Lewinnek GE, Lewis JL, Tarr R, Compere CL and Zimmerman JR.**

http://ortho.biomed.imaging.home.comcast.net/~ortho.biomed.imaging/faq.htm, Acess Date:01/10/2008 Last Update: 10/05/2007.

105. Martell, J. M., Internet Communication , Subject: Non Compliant DICOM Tags, 2008

149. **StatSoft, Inc.** STATISTICA für Windows [Software für Datenanalyse].

9 Anhang

9.1 Modifizierter Harris Hip Score

<table>
<thead>
<tr>
<th>Schmerzen</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Schmerzen</td>
<td>44</td>
</tr>
<tr>
<td>Gelegentlich leichte Schmerzen</td>
<td>40</td>
</tr>
<tr>
<td>Leichte Schmerzen</td>
<td>30</td>
</tr>
<tr>
<td>Mäßige Schmerzen</td>
<td>20</td>
</tr>
<tr>
<td>Starke Schmerzen</td>
<td>10</td>
</tr>
<tr>
<td>Sehr starke Schmerzen / Gehfähig</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hinken</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kein Hinken</td>
<td>11</td>
</tr>
<tr>
<td>Leichtes Hinken</td>
<td>8</td>
</tr>
<tr>
<td>Mäßiges Hinken</td>
<td>5</td>
</tr>
<tr>
<td>Starkes Hinken</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gehhilfe</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne</td>
<td>11</td>
</tr>
<tr>
<td>Ein Stock bei längeren Strecken</td>
<td>7</td>
</tr>
<tr>
<td>Ein Stock ständig</td>
<td>5</td>
</tr>
<tr>
<td>Eine Unterarmgehstütze</td>
<td>4</td>
</tr>
<tr>
<td>Zwei Stöcke</td>
<td>2</td>
</tr>
<tr>
<td>Zwei Unterarmgehstützen</td>
<td>0</td>
</tr>
<tr>
<td>Gehfähig</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gehleistung</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbegrenzt</td>
<td>11</td>
</tr>
<tr>
<td>Ca. 600m</td>
<td>8</td>
</tr>
<tr>
<td>200m – 300m</td>
<td>5</td>
</tr>
<tr>
<td>Nur im Haus</td>
<td>2</td>
</tr>
<tr>
<td>Gehfähig</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treppensteigen</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal, ohne Geländer</td>
<td>4</td>
</tr>
<tr>
<td>Normal, mit Geländer</td>
<td>2</td>
</tr>
<tr>
<td>Schwierig</td>
<td>1</td>
</tr>
<tr>
<td>Kein Treppensteigen möglich</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schuheschnüren</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Probleme möglich</td>
<td>4</td>
</tr>
<tr>
<td>Schwierig</td>
<td>2</td>
</tr>
<tr>
<td>Kein Schuhschnüren möglich</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Punkte</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Sitzen</td>
<td></td>
</tr>
<tr>
<td>Länger als 1h, unabhängig von der Höhe des Stuhls</td>
<td>4</td>
</tr>
<tr>
<td>Ca. ½ h nur auf hohen Stühlen</td>
<td>2</td>
</tr>
<tr>
<td>Weniger als ½ h, unabhängig von der Höhe des Stuhls</td>
<td>0</td>
</tr>
<tr>
<td>Benutzung öffentlicher Verkehrsmittel</td>
<td></td>
</tr>
<tr>
<td>Ein-/ Aussteigen möglich</td>
<td>1</td>
</tr>
<tr>
<td>Ein-/ Aussteigen nicht möglich</td>
<td>0</td>
</tr>
<tr>
<td>Kontraktionen</td>
<td></td>
</tr>
<tr>
<td>Keine fixierte Adduktionskontraktur >10°</td>
<td>1</td>
</tr>
<tr>
<td>Keine fixierte Rotationskontraktur >10°</td>
<td>1</td>
</tr>
<tr>
<td>Keine fixierte Beinlängendifferenz >3cm</td>
<td>1</td>
</tr>
<tr>
<td>Keine fixierte Beugekontraktur > 30°</td>
<td>1</td>
</tr>
<tr>
<td>Totaler Bewegungsumfang</td>
<td></td>
</tr>
<tr>
<td>300° - 210°</td>
<td>6</td>
</tr>
<tr>
<td>209° - 160°</td>
<td>5</td>
</tr>
<tr>
<td>159° - 100°</td>
<td>4</td>
</tr>
<tr>
<td>99° - 60°</td>
<td>3</td>
</tr>
<tr>
<td>59° - 30°</td>
<td>2</td>
</tr>
<tr>
<td>29° - 0°</td>
<td>0</td>
</tr>
</tbody>
</table>
Lebenslauf

Name: Michael Behringer

Anschrift: Am Stadtweiher 5
40699 Erkrath

Geburtsdatum: 27.06.1978

Geburtsort: Neuss

Eltern: Peter Behringer
Doris Behringer

Geschwister: Eine jüngere Schwester
Ein älterer Bruder

Schulbildung: 01.08.1984 – 31.07.1988 (Grundschule Hochdahl, Wilbeck)
01.08.1988 – 31.07.1995 (Gymnasium Hochdahl)
01.08.1995 – 12.06.1998 (Kollegscheule Kickweg, Düsseldorf)

Schulabschluss: Allgemeine Hochschulreife

Berufsausbildung: 01.08.1995 – 12.06.1998 Staatlich geprüfter Freizeitsportleiter

Medizinstudium: Immatrikulation: 99/00 (HHU-Düsseldorf)
31.08.2001 Ärztliche Vorprüfung
28.08.2003 Erster Abschnitt der ärztlichen Prüfung
05.09.2005 Zweiter Abschnitt der ärztlichen Prüfung
17.10.2005 – 15.09.2006 Praktisches Jahr an der HHU-Düsseldorf
07.11.2006 Dritter Abschnitt der ärztlichen Prüfung

Promotionsarbeit: Seit 01.03.2007 an der orthopädischen Klinik des
Universitätsklinikums Düsseldorf

Aktuelle Tätigkeit: Seit 01.10.2007 wissenschaftlicher Mitarbeiter am Institut für
Trainingswissenschaft und Sportinformatik der
Deutschen Sporthochschule Köln
Klinisch-radiologische Ergebnisse eines modularen zementfreien Endoprothesensystems mit XLPE/Keramik-Gleitpaarung
vorgelegt von Michael Behringer

Zusammenfassung

Der postoperativ erreichte Harris-Hip-Score von durchschnittlich 91 Punkten (SD: 10) ist mit gut bis sehr gut zu bewerten. Bezogen auf den Ausgangswert von 43 Punkten ergibt sich eine prozentuale Verbesserung von 113%, welche auch in anderen klinischen Studien zur S-ROM-Prothese zu finden ist.

Da das angewandte Verschleißanalyseverfahren (Hip-Analysis-Suite) wie auch andere in-vivo Methoden nicht zwischen Bedding-in und eigentlichem Verschleiß differenzieren kann, ergab sich ein zweiphasiger Verschleißverlauf, wie er bereits in der Literatur für verschiedene Inlays beschrieben wurde. In den ersten 12 Monaten betrug er im Durchschnitt 0,384 mm / Jahr (SD: 0,2) und danach 0,14 mm / Jahr (SD: 0,1). Der aus in-vitro Studien abgeleitete Zeitraum für Bedding-in Phänomene von bis zu drei Jahren lässt vermuten, dass auch ein Teil der später erfassten Verschleißwerte (> 1 Jahr postoperativ) durch Inlayverformungen überlagert ist. Dies spiegelt sich auch im Abgleich mit anderen Studien wider, welche einen längeren Nachuntersuchungszeitraum aufwiesen. Als Ursache für die ausgeprägte Standardabweichung, welche auch in allen vergleichbaren Untersuchungen gefunden wurde, kommen Mängel in der Softwarepräzision, eine Veränderung der Friktionseigenschaften der Gleitpartner, die operative Verlagerung des Drehzentrums und Aktivitätsunterschiede zwischen den Patienten in Frage.

Nur fünf Patienten zeigten im Nachuntersuchungsverlauf radiographische Veränderungen im Sinne einer pathologischen Osteolyse (>2 mm Breite) und in nur einem Fall kam es zur Absenklung des Schaftes (um 19 mm). Alle übrigen Prothesen zeigten über den gesamten Zeitraum eine feste knöcherne Integration.

Zusammenfassend kann gesagt werden, dass die XLPE-Keramik-Gleitpaarung zementfreier Implantate am Hüftgelenk gute Kurzzeitergebnisse zeigten. Langzeitergebnisse stehen noch aus und müssen an statistisch ausreichend hohen Patientenkollektiven verifiziert werden.

Universitätsklinikum Düsseldorf
Stellv. Direktor: Prof.-Dr. M. Jüger
Tel. (02 11) 81-1 85 80 • Fax: (02 11) 81-1 65 93
E-Mail: jueger@med.uni-duesseldorf.de
Hausanschrift: Kothenstraße 10 • D-40225 Düsseldorf
Postfach 10 10 07 • D-40001 Düsseldorf
16.4.2007