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STRUCTURE OF CLOSED LINEAR TRANSLATION INVARIANT SUBSPACES
OF A(E) AND KERNELS OF ANALYTIC CONVOLUTION OPERATORS

‘ Reinhold Meise
Mathematisches Institut der Universitat Diisseldorf

Let A(C) denote the vector space of all entire functions on €, endowed with the
. compact-open -topology. Every continuous linear functional p on A(E) induces a
continuous linear map Tu on A(C) by

’ Tu(f) S uw,f(z+w) >, FEA(L).

These operators are called convolution operators and can also be regarded as
.differential operators of infinite order with constant coefficients. From this
point of view, the structure of ker Tu has already been investigated by Ritt [18]
in 1917. A first answer to the more general question about the structure of the
closed 11near translation invariant subspaces of A(L) was given by Schwartz [19].
Concerning the rep}esentation of the elements of ker Tu'by exponential monomials,
Gelfond [9], Dickson [4] and Ehrenpreis [8] showed that{ for every convolution
operator Tu on A(C), ker Tu has a .finite dimensional decomposition for which the
finite dimensional blocks are spanned by exponential polynomials.

.The aim of the present note is to report on some progress concerning the study of
such questions which has been made by the work of Berenstein and Taylor [1],[2],
Taylor [21], the author [15] and Meise and Schwerdtfeger [16]. Even though the
results are rather general, we restrict our attention here to the special situa-
tion introduced above since this allows a clear exposition of the ideas without
too many technicalities. For a more general survey on part of this work~(dp to
1980) we refer to the article of Berénstein and Taylor [3]. "

This report is divided in three sections. In the first one, we introduce the con-
volution operators on A(C) and show that the question on the structure of the clo-
sed linear translation invariant subspaces of A(L) is equivalent ~up to duality -to
the structure of the quotients of the space Exp(C) of entire functions of exponen-
tial type by its closed ideals. In section 2 we explain how a result of Schwartz
[19] on closed ideals in Exp(C) and the minimum modulus theorém, together with

- the approach of Berenstein and Taylor [1], Tead to a fairly explicit model for
Exp(€)/1, where I is a closed non-zero ideal with infinite codimension. Then

we describe in section 3 how an observation of the author [15] can be used to

. derive from this model the following result: Every infinite dimensional closed
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linear proper subspace W of A(L) which is translation invariant has a Schauder
basis consisting of exponential polynomials., With respect to this basis W is iso-
morphic to a nuclear power series space of infinite type. W is a complemented sub-
space of A(L). Since this applies,in particular, to the kernels of convolution ope-
ratofs, it shows that the finite dimensional decombosition of ker Tu mentioned
above actually comes from grouping a certain Schauder basis. The model of

Exp(€)/1 obtained so far is then applied to derive, for a certain class of convolu-
tion operators T w a necessary cond1t1on that the exponent1a] monomials form a
basis of ker T Conc1ud1ng we use th1s condition to get some examples,

1. INTRODUCTION AND FORMULATION OF THE PROBLEM

1.1 CONVOLUTION OPERATORS ON A(€)

By A(C) we denote the spaée of all entire functions on C,endowed with ‘the usual

~ compact-open topology. The strong dual of A(L) will be denoted by A(T)gs its ele-
ments will be called analytic functionals. _

If u is an analytic functional, then it is easy to check that u induces a con-
tinuous linear operator Tu on A(C) by the following definition

(1) TAF) = 2w <u  f(zew) >, z€C, FEA(T).

These operators are called convolution ope}ators. They can also be characterized
as those continuous linear operators on A(L) which commute with all the transla-

tion operators T, T f(-+a) , a€C, If feA(L) has the Taylor expansion

f(z) = 2 f " .and if we put W, =< u,z >, n€ No s then one can show that, for
n=o0
all zetC,

T o1 n+k)! K
(2) f)iz] = Emgnf’ ~kzo nZO Le a2k,

Hence every convolution operator can be regarded as.a differential operator of
infinite order with constant coefficients,

1.2 THE CONVOLUTION ALGEBRA (A(E)B,*) AND THE FOURIER-BOREL ISOMORPHISM

If uwand v are analytic functionals, we define their convolution product
ux vEA(L)" by

. © ' |
(1) <urv,f > 1= §f ( E$+rli Vai)s
o nso " k+§=n LTk
Where f(z) = Z f 2" and B, = < u,z" >,V T < v,zn > .‘It is easy to cﬁeck

n=o n

that (A(c)é,*) is a commutative locally convex algebra with unit and that



Closed linear trans/atibn invariant subspaces of A({) 333

(2) ) c< pu*v,f >A(E) =< uev,fA >A(€2)’
where & : (z,W) & fztw).
In order to remark that the algebra A(E)l; is isomorphic to an algebraof functions,
we put
Exp(L) = {FE€A(L) | there exists A>0 with sup If(z)le'mZl < o0}
z€el
and endow Exp(L) with its natural inductive Timit topology. It is easy to see

that Exp(L) is a commutative locally convex algebra with unit and that the
“Fourier-Borel"” map F : A((C)“J - Exp(C), defined by

(3) F(u)lz] := < uw,ezw >, z€l, ueA(L);,
is a topological algebra isomorphism. Obviously we have for all z€(©
(4) Fwlzl = § w2,

. n=o0

1.3 THE PROBLEM

Our aim is to get a satisfactory description of the kernel of a given convolution
operator T . In the special case that Tu is a differential operator, everybody
knows how to do this. In the more general situation, the same method also provides
certain elements in ker Tu' We introduce the following notation:

If peA(T)', u+0, is given, then we put V(u) := {a€C | F(u)lal = 0},
For a€V(u) we denote by m, the multiplicity of the zero a of F(u). Hence we have
() : (M) : and 0<
F(w)'v/(a) = 0 for 0<j<m, and F(u) (a)#0. For a€V(u) and 0<j<m, ve
denote by Ej a the so-called exponential monomials
. Jpaz
'Ej,a : 2 H e ",
From 1.2(3),we get for'all z€C and all k€N,
1 Fw )izl = <u
This implies for a€V(n) and 0<j <my that

k w>.

eZ

Jea(z+w)

(Ej,a)[Z] = <uw,(z+w) >

g

S
= ) (ﬂ)zk Jgd2 <1J.W,wk¢'-zaw >

k=0 |
- ki (§)23e22r () (K)1a] = 0
=0 |

and hence Ej’aeker Tu' Note that ‘ .
E = {Ej,al aevV(u), ij<ma}
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is a free set. The fﬁnctions,in span(E) are called exponential solutions {or ex-

ponential pblynomials) of the convolution operator Tu

We remark that, for every f€span(E) (resp. ker T ) and every a€l, the function

(f) is again in span (E) (resp. ker Tu)’ j.e. span(E) and ker Tu are translation

1nvar1ant linear subspaces of A(T). Hence we have the following two natural

questions: ' '

(a JIs it possible to obtain all elements of ker T from the exponential mono-
mials by a certain procedure?

Or more generaliy: .

{b) How can one describe the structure of the closed linear translation invariant
subspaces of A(L)?

It is classical to attack these questions by applying duality theory to get a
different interpretation. As the first observation, we note that every convolu-
tion operator is the adjoint of a muitiplication operator.

1.4 LEMYA, For uEA( )! define M, o AD) > AC)]) By Mu(v) = W*v . Then

tM = T if we identify (A(C) ) with A(L).

PROOF, For Jje NO, et e(J) denote the ana]yt1c funct1ona] satisfying -
< E(J) > = 6 p forallne N . Then it follows from 1.2(1) that for

fizo { f, 2" we have
n=o =

< ‘Mu(f),s(j) >= < f,M#(e(j)} > =< f;u* g(j) > =

: v n+j)!
Z, f 3rr(";jyr M- J nto Fres S?fﬁ?%’“n'

n=j 0

By 1.1(2), this implies

tMu(f)[z] -

[
ho~18
A
=
—
~h
-
‘o
—
g
=
\'
~
=

- I 2 T )2 = T(F)121,

ty _
_and hence ‘Mu = Tu'

1,5 PROPOSITION, Let W be a elosed linear subspace of A(C). Then W is translation
Tnvariant zf and only if Wt is an ideal in the convolution algebra (A(L )b,*)

PROOF Assume that W is .translation invariant. Since, for every fe€A(L), we have

-+h ‘f . . . .
Tim ~£——7%~i-l-= f' in the topology of A(L), we see that feW implies that
h-0 ‘ L ’
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f(“) is in W for all n€ N, Hence we get for each uEW‘L and each feW with

f(z) = } fnz",that for all neN_,
n=o 0

(1) 0= e sa ey, T Lol z ) Ly

K=o n+kk-

By 1.2(1), it follows that,for each ve A(L)",

< wev,f >

T ¢ nl oo
nzo n (k+§=n RIS

Y V5

(2) LB (ed)Hy s Tt

k=0 j=0
.5 §k+3 )
- J—ZO E f:k+‘]“'k

Hence W' is a closed ideal in (A(C)S,*).

To prove the converse, let us assume that W is an ideal in A(L). Ther we get from
1.4 that,for all pewt, all feW and all a€t,

0 =< wx 8, ,f > = < Méa(u),f > =< u,Téa(f) > =< u,ra(f) >

Hence T, (f) is in w = W for all a €C, i.e. W is translation invariant.

1.6 REFORMULATION OF THE PROBLEM

Since A(C) is a nuclear Fréchet space, well-known duality results show that, for
each closed linear subspace W of A(L),

(1) ‘ W= e ()Y,

Applying the Fourier-Bore1.isomorphism,we get

(2) W (Exp(B)/F(HY) ),

Hence it follows from 1.5 that - up to the computation of a dual space - question
1.3(b) is equivalent to determining the quotient of the algebra Exp(L) by a closed

ideal. In case that W = ker Tu,it follows from 1.4 that F(NL) = F(Im(Mui),which
is the closure of the principal ideal F(yu)-Exp(L).

In the next section,we shall see that this reformulation has the advantage'that
" we can apply results from complex analysis to study the quotient spaces Exp(C)/I,
where I is a closed ideal in Exp(t)

2. THE MAIN TOOLS

In order to derive a fairly explicit description of Exp(L)/I for all closed .ideals .
I in Exp(C), we use some (rather special) properties of the ideals and the
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solutions of Tu are dense in ker Tu.

Proof. a) We may assume I = f Exp(C), where f# 0. Since IC:I]oc and since Iloc is
closed, it suffices to show Iloc‘;l; to prove this, let g€ I]oc be given. The con-
siderations in 2.1 show that g = h«f for some h € A(€). Obviously, it suffices to
show h€Exp(C). At this point, we remark that, from 2.3 and g€Exp(L), we obtain
positive numbers D and M such that “

it,, "Dy
sup Ih(rné e < M for all large n€ N .
t€(0,2n]

This and the estimate on n given in 2.3, together with an application of the
‘maximum principle to the annulus {z€C | o Izl < rn+1}, show that h € Exp(C).

b) Since the Fourier-Borel transform is a topological algebra isomorphism, we gét
from 1.4 and part a) that tTu = Mu is injective and that imtTu = 1im Mu is closed.
Hence the surjectivity of Tu is a consequence of a classical result of Dieudonng
and Schwartz (see Horvath [10],p. 308). ‘

By the Hahn-Banach theorem, the Tinear subspace E of the exponential solutions of
Tu is dense in ker Tu iff ET = (kern Tu)l. Since im tTu = im Mu is closed, it
suffices to prove Elcim Mu; so let v€E+, Then, for all aeV(u) = V(F(u)) and
05j<%, '

‘ jaz by a" ¥ (n+i)! Vn+j on
cviEet = Loy gt (o)) s

n=0

0 =< V’Ej,a >

Fv)9(a),

and this shows F(v)E€ I]OC(F(u)Exp(G)) = F(u)Exp(€). Hence there exists AEA(T)!
With v = uxd =M (A), f.e. veinh = EY

Now we are ready to sketch how to obtain a fairly explicit model for Exp(C)/1,
following the approach of Berenstein and Taylor [1]; it suffices to consider the
closed non-zero ideals I of Exp(C) which are of infinite codimension.

2.5 THE STRUCTURE OF Exp(€)/I

Let I be a closed ideal in Exp(C) which is different from {0} and Exp(m). We de-
fine p : Exp(L) - a;UZ&) (':)a/Ia by o(f) := ([f]a+1a)a€V(I)‘ It is easy to see that
ker p = I]oc and since I = I]oc by 2.2, this gives ker p = 1. At this point the
structure of Exp(L)/I will be clear if im p, as a locally convex space, is
described in such a way that p : Exp(C) » im p'is a topological homomorphism. We
will do this in several steps. ’ '

(1) The sTowly decreasing property

By 2.2b), we have I & I

loc(fl’fz): where we can assunie f;+0. In viey of 2.4b),
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we shall assume from now on that V(I) is infinite. Because of 2.3, we can choose
"£>0, C>0 and B>0 such that
(i) -each component S of

S(f ,fz;s,C) = {z€C | If (z)lzd-lfz(z)]2 < (& exp(- Clzl))?}

is bounded and satisfies diam S < B suplz| and,
‘ Z€S

(i) such that for each component S of S(fl,fz;e,C);

suplzl < B(inflzl) +

ZES Z€S

. As we shall see later, this is the appropriate extension of the slowly decreasing
condition of Berenstem and Tay]or [11, p. 130.

(2) Labeh’ng the components of $(f1,fy3e,C)

By our assumption, V(I) is an infinite discrete subset of L contained in
S(fl,fz;s,C). Hence (i) of (1) implies that S(fl,fz;s,C) has infinitely many com-
ponents S with SNV(I)#p. We label these components by natural numbers in such a
way that the sequence «, defined by °‘j 1= igg lz|, is non-decreasing.

‘ J
(3) The Banach spaces'(Ej,I s

Let A°°(SJ.) dehote the space of all bounded holomorphic functions on S., endowed

with thenorm | || : f» sup lf(z)l. Put E = T CD/I and define
: a€s nV(I) '

([g]a+la)a€sjnv( ) It is easy to see that P; is sur-

ll(_l

Py A(S)->E byp(g)

jective. Hence we can endow EJ- with the corresponding quotient norm, i.e. with the
norm ' :

b :oninfligh o - Iej(g) =
RS

(4) The spaces k(y,F)

let F = (FJ.,II -"j)jel\l be a sequence of Banach spaces and let y denote an increa- '
sing unbounded sequence of non—negative real numbers. Then we define

"AY~ .
k(y,F):= {xeT F | there ex1sts A>0 such that sup llx Il J < o)
j=1 JEN

and endow k{y,F) with its natural inductive limit topo]ogy' _
If dim FJ. < for all jEN, then it is easy to check that k(y,F) is a (DFS)-
'space, i.e. the strong dual of a Fréchet-Schwartz space, ’

(5) The semi-local interpolation theorem

Let g denote a holomorphic function on S(fl,fz;e,C)‘ such that, for some B>0,
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sup{lg(z)le-BIZI | z€S(f1’,f2;e,C)} < «, Then there exists G € Exp(L) with
[g), - (8], €I, for all a€V(1).
For a proof of this resuit we refer. to Berenstein and Taylor [1], p. 120.
(6) The map p : Exp(C) - k(«,E)

Let E = (E ,ll i, ) jeN denote the sequence of finite dimensional Banach spaces
introduced 1n (3 ), and let « denote the sequence introduced in (2). If, for some
positive numbers A and D,f € Exp(L) satisfies the estimate |f(z)l < AeDIZI for all
z€C, then, by the definition of a,

. Do,
NF1S.0 - <Ae J for all jE N, whence
J p*® S.) =
J
"DQ-
sup llo; (1S, )u e J<A
JeENW ’

At this point the map p defined at the beginning can be considered as a map of
Exp(L) into k{a,E) , given by p(f) = (pj(flsj))jeN. Moreover, the above esti-
mates show that p is continuous. Since Exp(L) and k(a,E) are (DFS)-spaces, the
open mapping theorem for (LF)-spaces applies, and p is an open map iff it is
surjective. o o

To prove the surjectivity of p, let x = (xj’jEN €k(a,E) be given. Then there.

-Dax -
exist A,D>0 with sup x4l je J < A. By the definition of I I; and by (i) of
JeN
(1), this implies the existence of gjeAm(Sj) such that pj(gj) = %5 and

Do
tol < 2he 9 < 2ae”Bl1?) for a1t zes,,
R\ (Sj) J
Hence the function g€A(S (fl,fz,e C)), defined by gIS =.9; for jEN and giS = 0
for the components S of S(fl,fz,s C) with SaV(I) = Q, satisfies the hypotheses of
the semi-Tocal interpolation theorem (5) and, by (5), there is GEExXp(L) with
o(G) = x. ‘ '

Thus, we have d]ready sketched the proof of the following result:

2.6 THEOREM. Let I be a non-zero closed ideal of Exp(L) with infinite codimen—
ston. Then Exp({€)/1is zsomorphw to k(a,E} . ’

In ‘order to derive more information from Theorem 2.6, Berenstein and Taylor (1]
used Newton 1nterpo1at1on to introduce equivalent norms | ln oh the spaces E,,

In this way, they obtained a represeéntation of Exp{C)/I as a Space of scalar se-
quences, But the norms [il Ill are computed by divided differences. and, using this
representation,it is d1ff1cu1t to discover special structura1 properties. That
Exp(C)/1 really has a very special structure follows from a remark of the author
[15] which will be described in the next section.
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3. SOLUTION OF THE PROBLEM

If we want to derive the s,o]dtion of the problem posed in 1.3 from the results
presented in section 2, we need some more preparations.

3.1 POWER SERIES SPACES OF INFINITE TYPE

vLet Yy be an increasing unbounded sequence of non-negative real numbers, and let
(F NS IJ)JGN be a sequence of Banach spaces. For 1<p<w, we define the

spaces Afo(y,F) by

p = . - RN AN 28 V)
A(Y,TF) k {xEjT:[; Fy Inr,p(x)‘ (jzl(lllelJe )F)H'F < for.all r>0}.

Obkus]y, ( »F) is a Fréchet space under the canonical norm system (nr p)r>o'

If (F sl uj) = (€,11) for all JEN, then we write AP(y) instead of AP(y,F) .

Afo(y) is called a power series space of infinite type. We remark that, by the
Grothendieck Pietsch criterion (see Pietsch [171,6.1), Afo(y) is nuclear if and
only if sup _‘?_Q(.Qill o, If Afo(y) is nuclear, then Afo(y) = Ai(y) for all

JjEN ¥ . '
pP>q€ [1,).
By the work of Dubinsky {51, Vogt [22],[23] and Vogt and Wagner [24],[25], the
(stable) nuclear power series spaces of infinite type are a class of Fréchet
spaces the structural properhes of wh1ch are very well understood., We will make
use of this fact later on.

-

3.2 CONSTRUCTION DF A SCHAUDER BASIS

Let W#A(C) denote a closed linear subspace of A(L) which is translation invari-
"~ ant and infinite dimensional. By 1.5 and 1.2, I := F(wl) is a closed ideal in
Exp(L) of 1'nf1'h1'te codimension. By 2.2, I = Iloc(fl,fz) for appropriate
fl,fZGExp(E) fl*O Hence all the hypotheses of 2.5 are satisfied. Using the no-
tation. 1ntroduced in 2.5, we define now, for all a€V(I) and 0<k<ma, elements
k aew tk aeI and yk aek(o(,li) in the fo]]owmg way:

. 1 _k az
K,a * zb—»k—,-ze » 2€C

(1) e
(2) ty , : £ 28 (a), FeExp(e)

(3) Yk.a has germ 0 at every b€V(I), b+a, and at a it is the germ [(z-a)k]a.
) ’ . .

C]early, tk belongs to It. Since F : (C)' - Exp(C) is an isomorphism and,
F(NJ‘ )», we have tF(I"') = Wt = W, Because of )

(e}
- 1 n_
< F(tk,a)’“ > =< tk,a’F( Z T Mnek® = < 8 ol >
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for all weA(L)', we get

(4) tF( k al = ek a’

and hence ek aew 0bv1ously Yy, aeE if a€V(I)nS and if we identify E with
its canonical’ image in k(a,E) .

Next, identifying Exp(£)/I with k(a,E)} (by the map given by Theorem 2.6) as well
s (Exp(£)/1)" with 1% it is immediate that

(5) : t pWk,a) = 81,k8a,b"

In [15], it isshown that one can find a Hilbert norm llj on EJ., j€ N, such that,
with T := (Ej’”j)jel\l , the locally convex space k{a,E) is identical with

- o Aoy 2 1/2
k“(a, E) = {xele'l' E; | there exists A>0 @ (J(Ix;le Ny <w
, j= R

under its natural inductive 1imit topology. Putting
‘ . N
Fj iz span{tk,a {0<k<my, aEV(I)nSj}cI s

it follows from (5), and from the remark that {y, .|O<k<m, a€eVv(I)ns,) is a. -
basis of EJ., that Fj can be interpreted as the dual of the Hilbert space (EJ.,I lj).
If we denote by “3 the dual norm of (Ej’“j)’ then (Fj,ilj) is a Hilbert space,
too. Now let F := (F ,||J)J€N; we remark that, by Theorem 2.6, the map
o1 B(a,F) - Exp(L)],

defined by

‘b((EJ)JeN) [f] := le < EJaf > f€ExD(c)a
gives an isomorphism between A (a,F) and .
As we have exp1a1ned in [15], one can now get a basis in Az(a F) in the following
way: Choose an orthonormal basis (hk )k p in (F -,ll -) (‘j = dim FJ. = dim Ej)
for each JEN and identify hk with its canonical image in Az(a,l-') . Then
((hk J)k l)JEN is an'absolute basis in A (a,F) . If we denote by 8 the sequence
h1ch is obtained by repeatmg each number oy Ny -times and if we write the ele-

ments of A _(B) as ((E_;k J)k 1)J€]N » then the map A Aw( g) = Aoo(a’]F) , defined by

ALC(Ey J)k S)jen) 21 kzll &, 5M, 3
is an isomorphism. '

‘ ’ n. :
0f course, we can assume that the orthonormal basis (hk )le of (F R )‘ is ob-
tained from the basis {‘c.k a | 0<k<m R aEV(I)nSJ} by Gram-Schmdt orthonorma-
Tization. Since b gives an 1somorph1sm from I* to W and since (4) holds, we have
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sketched the complete proof of the following theorem answering question 1.3(b):

3.3 THEOREM,. Let W be a proper closed linear subspace of A(C) which is transia-
tion twvariant and infinite dimensional. Then W has a Schauder basis consisting
of exponential polynomials with respect to which W is isomorphic to a nuclear

power series space of infinite type.

- In the special case W = ker Tu,u4=0, the considerations in 3.2 give the following
result which,up to a certain extent,answers question 1.3(a) and which improves
previous representation theorems of Dickson [4], Gelfond [9] and Ehrenpreis [8]
(see also Berenstein and Taylor {1], Thm., 9).

3.4 THEQREM. Let Tu be a non-zero convolution operator on A(L) for which ker T
18 infinite dimensional. Then there exist a partition (vj)jEN of WF(u)), Linear

combinations f j? l<k<n; : - 1), of the functions

= ) (m
3 a
€V,
| a VJ |
{z]eaZ [0<1 <ma,a€Vj} for each jJE N, and an exponent sequence o such that the

following holds:

n,
For every family E = ((Ek,j)kil)jeN of complex numbers which satisfies

n,
2.0 lEk,j”e < for all r>0, the series
j=1 k=1 . "j
o 1 i kedid

eonverges normally to an element of Ker Tu, and every f€ker Tu has a unique re-
presentation of this type. In particular, Ker Tu t6 tsomorphic to a nuclear power
series space of infinite type.

To show that the structural properties derived so far have further implications,
we now indicate how they can be used, together with the splitting theorem of
Vogt [22] and an observation of [15], to give a new proof of the following result
which, by 1.5, is equivalent to Taylor [21], thm. 5.1.

3.5 THEOREM. Every closed linear translation invariant subspace W of A(C) i3 com-
plemented., In particular, every non-zero convolution operator on A(L) has a
complemented kernel. ‘

Sketch of the proof. If W = ker Tu’ where u is a non-zero convolution operator,
then W is complemented whenever dim W<, But if dim W = =, then 2,4b) shows that
we have the following exact sequence of Fréchet spaces

. T
(%) , 0 —> W 1 A(L) —E5 A(T) —> 0.

By Theorem 3.4, W is a power series space of infinite type. Since A((B)mAj‘o(n),
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the sequence (*) splits by Vogt [22], thm. 7.1; hence W is complemented. If W is
an arbitrary translation invariant closed linear subspace, then we may assume
W+A(C) and dim W = o, From 2.2b), it follows that there exist non-zero analytic
functionals pnand vwith W= (ker Tu) n (ker Tv)’ and consequently

= ker(T fker T ) By the previous argument, ker T is compiemented, Hence W is
compTemented if ker (T lker T ) is complemented in ker Tu But this follows from
the structure of ker Tu as descmbed in 3.2 and an eTementar‘y lemma. For details,
we refer to [15].

Remark. a) Results on the structure of the closed Tinear translation invariant
subspaces (reSpT the kernels of convolution operators) analogous to those given
in the theorems 3.3, 3.4 and 3.5 can also be obtained for Fréchet spaces A of
entire functions different from A(€). This has been demonstrated in [15] and,
more generally, in Meise and Schwerdtfeger [16].

b) A different proof of the fact that every non-zero convolution operator T on
A(L) has a complemented kernel ‘was given by Schwerdtfeger [20]. He used resu]ts
of Gelfond [9] and Dickson (4] to show that ker Tu has property (@), which is
sufficient for the application of the splitting theorem of Vogt [22].

The answer to question 1.3(a) which we have given in Theorem 3.4 is not yet com-
plete, since it does not exclude that already the exponential monomials

{zkeaz | O_<_k<ma, a€V(F(u))} form a Schauder basis of ker Tu for every convolu-
tion operator Tu on A(L). However, as classical results of Leont'ev [12] indicate
this is not true in general. To conclude, let us show now how the model of ker Tu
obtained so far can.be used to derive a simple necessary condition which leads to
examples of convolution operators Tu for which the exp‘o‘nenti‘al monomials do not
form a Schauder basis of ker Tu' :

3.6 DEDUCTION OF A NECESSARY CONDITION -

Let T be a non-zero convolution operator on A(C) for wh1ch ker T is infinite
d1mens1ona1 and for which the exponential monomials {z kgaz | O<k<m,,a€V(F(u))}
form a Schauder basis of ker Tu We put W = ker T e = F(u)Exp(L) and use the
notation introduced in 2.5 and 3.2, In 3.2, we have 1nd1cated that, by F, ker T
is isomorphic to A2(0(,IF) Hence it follows from 3.2(4) that
{tk a |0<k<m »a€V(F(u ))} is a Schauder basis of Az(a, F) . Again in 3.2 we have
remarked that k(cx, ) = k (cx,E) and, by the same arguments, we get

1 \ .
AZ(Q,F) = A (a,E') , where E' = ((Ej’| Bi)p)jep + It 15 easy to check that, by

™ V. . ‘, - N :

< (X, iljen (‘yJ)JEN >t jél\l < XY > g the space k(a,E) .k(u,E ) is the
dual space of A (a,l-:') Hence 3.2(5) implies that, with respect to this duality,
the system {yk a} is the system of coefficient functionals of thebasis {tk a}. _



344 A R. Meise
 We claim:

(1) There exists D>0 such that sup sup sup Ity l'“yk N -e-Daj <o,
- JENa€V; oskam, JUK,a

where'V i= V(F(u)) nS

In order to prove this c1a1m, we first remark that, because of the nuc]eamty of
(a F) = A (a,E') and the basis theorem of Dynin and Mityagin [6], {tk } is an
absolute basis. Ar‘guing by contradiction, we assume that (1) does not ho]d Then,

for every n€N there exist j(n),a(n)€V ) and 05k(n)<,ma(n) with

Jn
kn),a(m'3(n) - Mi(n),a(n)li(n) 2 SP(20%(p))-
W1thout Toss of generality we can assume that (j(n ))nE}N is strictly increasing.

N, . . =
Next, for each ng we choose xJ( )EE (n) with 1Ix. (n)"J( n) 1 and

't

lltk(n),a(h)llé(n) = tk(n),a(n)(x (n )) Then we define yE;g]—\JE by

) for all ne N and Y; =0 for all JEMNS U {J(n)} It is

Yjny = X ()exp( ®3(n neN

)
easy to check that yeAl(a,E') . Since we have

"y (n),a(n )(Y)I ",1Yk(n),a(n)) = Y (n)»a(m) Y30n) Wi (ny,a(n)! 3(n)

- "tk<n),a(n>”j(n>“yk(n),a(n>"j(n)exP<‘"“s(n>) 2 exp{n(p))
for each n€ N, the system {tk a} cannot be an absolute basis.

Now let us assume that, in addition to the hypotheses made so far, we also have

the following:
-Ea,
{2) There ex1sts E>0 such that sup (d1am S ) ‘] J < o, Where m. := max (ma~1).
JEN ‘ aEVJ.

We note that, for the functions PRI (z-'a)k (05k<mé,a€Vj), we. have
b .

1= tk’a(pj(wk,a)) < tk,a'ﬁ "pj(“’k,a)"j < lltk,alljlltpk’all

AT(s;)
. k
< lltk,a"& max(1l,(diam SJ.) E
Hence (2) implies the existence of E>0 with
o / Eaj
inf dnf inf lltk aII' > 03

JEN aevj o<k<m,
together with (1), this gives:

(3) There exists F>0 such that sup sup sup Ny allse J ¢ o,
‘ JeN aEV o<k<m TKad



Closed linear trans/aﬁon invariant subspaces of A(C) 345

~ Hence B := {y, a [ ng‘éma,aGV(F(u))} is a bounded subset of k(o,E) . Since
Pt Exp(€) » k(a,E) is a surjective topological homomorphism by 2.5(6), there
exists a bounded set M in Exp(L) with b(M) = B and consequently:

(4) There exists F>0 such that for each a € V(F(u)) and each 05k<nia one can
find fk’aEExp(B) with p(f K, a) ® Y¢,a and

sup sup suplf‘k al(z)le < o,
aeV(F(u)) O<k<m, z€C

Now we have proved the following proposition:

3.7 PROPOSITION, Let Tu derote a non-zero convolution'opemtor on A(T) for which
ker Tu is infinite dimensional and which has the following property:

There exist positive numbers &, C and E such that, for every component S bf‘
« { (zet| lF(u)[z]I < ee®12ly uith SNV(F(W)) £ 8, we have

(diam S) exp(— E sup 121) < E, where mg := max{m,-1|a€SnV(F(u))}.

k az

S
Then, if the ea:ponentwl monomzals {z°e" | 0<k <m, ,a EV(F ( 1)} form a Schauder

basis of ker Tu“ assertion 3.6(4) holds.

Remark. a) From the estimates noted in 2.5(1), it follows easily that the hypo-
thesis (#) in 3.7 is satisfied whenever sup{m | a € V(F(u))} < o,

b) It is possible to show that 3.6(4) is equwalent to the fact that the multi-
plicity variety of the ideal F(n)Exp(C). is an interpolating variety in the nota-
tion of Berenstein and Taylor [1]., In view of this, it follows from Berenstein
and Taylor [1], thm. 4,and some additional considerations that, under the hypo-
theses of 3.7, the following assertions are equivalent:

{i) The exponential monomial's form a Schauder basis of ker T

(i1) - 3.6(4) holds;
(my)

a
F{u.! K §a2~
m, ! €

a

(ii1) there ex1sts A>0 with inf Al‘al >

a€V(F(w))

The necessary condition given in 3,7 looks rather complicated; however, it is
easy to derive the following simple explicit condition from it.

3.8 COROLLARY. Let Tu denote a convolution operator on A(L) which satisfies the
hypotheses of Proposition 3.7, If the exponential monomials
{zkeaZ |0 5k<ma,a€_V(F( w)) form a Sehauder basis of ker T w then there exists

F>0 such that inf - dist(a,V(F(u))Na}e Flal o,

a€V(F(w))
PROOF. From 3.7 we get a positive number F such that, for each a € V(F(w)), there
exists faeEXp(E) with the properties sup sup |f (z)le'F'Zl5A<m, fa(a)= 1

a€V(F(u)) z€C



346 R Meise

and fa(b) = 0 for all beV(F(un))~{a}. Now fix a€V(F(u)) and choose b€ V(F(u))
with |b-al = dist(a,V(F(u))~{a}). Without loss of generality, we can assume
~Ib-al < 1. Letting D denote the unit disk, we define g: D-C by g{w) 1= (atw).

Then we have g(0) = fb(a) =0 and ligl _ < A sup eF!a+WI = AeFeFIaI. Now the
' (D) jwi<l :

Flal’ and hence
Flal
}

Schwaré Temma implies Ig{w)l < lwlAeFe
' 1=f,(b) = g(b-a) < Ib-alhe’e

whence the desired condi%ion. ‘

Finally we show how Corollary 3.8 can be used to construct examples of convolu-

tion operators Tu for which the exponential monomials do not form a Schauder

basis. This-is done by jiggling the zeros of certain functions (see Berenstein
and Taylor [1],p. 120). '

3.9 EXAMPLE. Let fE€Exp(C) be a function for which V(f) is infinite and for which
o k 2
omy =2 for all a€V(f), e.g. f@z) = (kzs Té%TT) . Label the elements of V(f) by

(ak)kEN in such a way that (lakl)k€N is non-decreasing., Next, choose a
sequence (ck)kElN of complex numbers with the following properties: -
1
(1) (sk)kew eAm(lak”:
(2) nk|>0'mraﬂ keN,
[-~]

3) Vgl <1,
(3) KZI fk f

(4) V(F)n (a+e, D) = {a}
2
o z-(ak+ck) : '
and put g : z+ f(2) ;TE”TE{"" for z€ C~V(f), Since m_ =2 for all kEN,
= Tk
g defines an entire function and, in view of our choice, it is not difficult to
show that g€Exp(L). Obviously, V(g) = V(f)u {ak+eﬁ |kEN}, and every zero of g

is simple. Hence it follows from (1) and Corollary 3.8 that the exponential mono-
. mials do not form a Schauder basis in ker Tu if we'put u = F'l(g).

By Example 3.9, it is clear that, as a general answer to question 1.3(a),
Theorem 3.4 1is optimal.
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elements of Exp(C) which we will now recall.

2,1 LOCALIZATION OF IDEALS

For a€l, we denote by Ga the ring of germs of holomorphic¢ functions at a. If I
is an ideal in Exp(C), then I denotes the ideal generated by the canon1ca1 image
of I in G> The 1oca11zat1on I]OC of the ideal I is def1ned as

= {f€Exp(L) | [f], €1, for an a€t),

where [f]a denotes the germ of f at a. It is easy to check that I is a closed

ideal in Exp(L) which contains I, ‘ mn

Since every non-zero ideal in ©, is of the form [(z-a)]aaIa for a sujtable

m, € No » the non-zero localized ideals I = I]oc are completely determined by the

set V(I) := {a€Cl | ma>0} and the numbers M. a€V(I). As an example, let us Took
at the ideal I(fy,...,f,) generated by fseeesfy in Exp(C). For its localization

I]oc(fl""’fn)’ it is easy to see that

loc

V(I]oc(fl)-.n,fn)) = {aGE I fj(\a) =0 for lfjfn}
§nd that my equals the minimum of the order of the zeros of the functions fj at a.

In the following theorem we state the special property of the ideals in Exp(L)
which we are going to use. The theorem is due to Schwartz [19] and Ehrenpreis
[71; for a proof, we refer to [7], sect. 6, or to Kelleher and Taylor [11], where
rather general extensions of this resu1t are presented.

2.2 THEQREM. a) Every closed ideal in EXp(C) <s localized.
b) For every closed ideal 1 in Exp(L), there exist f15fp €EXp(L) such that

I= I1°C(f1,f2). |
Besides Theorem 2.2, we shall use the following property of the non-zero func-

tions in Exp(f), which can be derived from the minimum modulus theorem (see e.g,
Levin {13],1,§8).

2.3 PROPOSITION. For every fEExp(E), f+0, there ewict ¢>0, C>0.and (r) on
with 2n<r <2mH such that, for all Zarge neN, we have
-Cr
inf rf(rne )I > &e
t€[0,2n]

Using some functional analysis, it is easy to conclude, from this property, the
following classical result on analytic convolution operators, due to Ehrenpreis
[7] and Malgrange [14]; it already gives a partial answer to 1.3(a).

2,4 PROPOSITION. a) Every principal ideal in Exp(L) s closed.
b) Every mon-sera_convolution operator T, ts surjective, and the exponential




