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Abstract

Iflasma physics for nuclear fusion deals with a many par-
ticle system in sophisticated geometry and under the in-
fluence of t?oundary conditions. Thus one will never re-
ath 2 detailed and complete theoretical understanding
o'f such a complicated system. However, statistical phy-
:{cs (')ﬂ”erfs a description for mean values and probability
tlllsetr}ibultxons? w.hich can be used. In this contribution
non_ewf;'gr.mcxplc?s of. equi.librium thermodynamics and
ideali;l::i ibrium kinetics .wxll be reviewed for plasmas in
s sxtua.txcfns, l.eavmg the more realistic but com-
fr ated calculations in the presence of tokamak geome-
dgc i;nrd wgllts to subs?quent presentations. In the intro-

roblei,nfarf ) th'e' various pl?.srfla. states are catalogued.
toucheq inosethbrmm st:,atxstxcal mechanics are briefly
See 11 o ec. I. Tl'le main part of this paper begins in
hierarc’h .erei tlfe kmetu-: theory starting from BBGKY
Pl };13 elucidated with the Vlasov, Landau-Fokker-
comey »L:ndBalescu-T:,enard equations as the main out-
bon a;e o ;I;eiampmg .and‘ the linear dis;')ersi'on func-
o waves as applications. Then a kinetic theory

Particles, is discussed. T i
Stmmary, . The paper is concluded by a short

L INTRODUCTION

A ,
ca pl:ﬁ?pi?:s‘?ts of many particles and thus a statisti-
several point nhls adequate. When aiming for the latter,
irst, we has ave to be clarified before getting started.
Potons Of ve to sl?emfy the species, e.g. electrons and
@ pat | course, in general more species, e.g. neutrals,
i 2 the dynamics. When we consider a fully io-

ze
Plasma, we can . N oo
the Sajyq' equ;tion estimate the region of validity by

Mle 21 (m,\3/2
e o - ~Eif(kaT.
T g (27) K3 (kpT, )26 Bl 2T

N 2410 (TR BT [em™). (1)
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resulting in a wave-kinetic equation for quasi- -

This formula follows from equilibrium statistical mecha-
nics. The meaning of the various symbols is as fol-
lows: 7,77, particle number densities of electrons,
singly ionized ions, and neutrals, respectively; g, sta-
tistical weight factors; kp, Boltzmann constant kp =
1.3807 - 10~¢rg/K; T., electron temperature; 1, elec-
tron mass; E;, ionisation energy. From (1) we conclude
that for sufficiently high temperatures (kpT, > E;) the
system will be in the fully jonized state. Next, we have to
decide whether a relativistic and/or quantum-mechanical
consideration is appropriate.~” Again the (electron) tem-
perature is one of the main parameters. Relativistic ef-
fects become important when (as an estimate of order of
magnitude) v2/¢ > 0.05, where v, = (kgTe/m)'/* is
the electron thermal velacity and c is the speed of light.
Quantum effects become significant when the thermal de-
Broglie wavelength A = A/(m.vi) of electrons exceeds
the mean particle distance Ay % a3, 1f the latter con-
dition is not satisfied we call the plasma classical. In a
classical non-relativistic fully jonized plasma the interac-
tions are governed by the electrostatic Coulomb potential,
If on the average the interaction energy is small compa-
red to the kinetic energy, the system is close to the ideal
gas, and the plasma s called ideal. Using the electron De-
bye length Ap. = (ks T/ 4rne?)!/? for a classical plasma,
the ideality condition means 7, > 1. In a quantum
plasma, on the other hand, a characteristic value for the
Kinetic energy of an electron is A?/(2m);). I the lat-
ter is much larger than e/}, we have an ideal quantum
plasma. Note that a classical ideal plasma requires (for
fixed temperature T.) small densities ne, whereas in the
quantum case we require for the ideal situation large den-

sities.

The Debye length plays a crucial role within plasma phy-
sics. The plasma does not show only the irregular (chao-
tic) motion of individual particles, but is also able to
exhibit collective behavior® such as waves and nonlinear
coherent structures. A good parameter to characterize
the collective appearence is the number of particles in
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the Debye sphere,
A= ‘%”nxg , @

where Ap can be either the electron Debye length Ap, or
(following from an analogous definition) the ion Debye
lenth Ap;. Very often /\52 = )\Bi + 1\5% is used as a defi-
nition for the socalled total Debye length Ap. In order to
have a feeling of the characteristic quantities we can use

Apelem] % 7.43 % 10% (ToileV]/neslem™]) . (3)

Let us now make a few preliminary remarks about coll-
ective behavior. First, comparing the mean potential
energy (for a classical non-relativistic plasma) ~ n'/%e?
with the mean kinetic energy ~ kgT' we obvious get the
result that for A 3> 1 the contribution of the kinetic
energy dominates on the average. ’

Secondly, solving the Poisson equation
V2o % —4med() + 4relne exp(ep/kpT) — neo)  (4)

for the potential produced by an (quite immobile) ion at
position 7 = 0 in the presence of (rather mobile) Boltz-
mann distributed electrons, we find in the linear limit
exp(ew/kpT.) ~ 1 + exp/kgT.] the Debye potential

() = Zexp(-r/p.) ()

as a solution of (4). In other words, the Coulomb po-
tential of an ion is screened by the surrounding electrons
such that over distances larger than Ap. the potential
(approximately) disappears. Thus, a plasma of macro-
scopic dimesion L » Mp, is quasi-neutral. But it is
also clear that this shielding mechanism can only work
when the mean particle distance ), is smaller than ) D,
Le. A > 1. This means that the whole scenario is con-
sistent. From the thermal velocity v, and the Debye
length Ap. we can construct a characteristic frequency
Wpe = Vie/Ape (and in a similar way ‘the ion plasma fre-
quency wy;). The total plasma frequency wy, is often de-
fined through w? = w2, + wh. To get a feeling for the
orders of magnitudes we write

wpe[rad/s] ~ 5.64 x 10*(n.[em=)2. (6)

To compare this (collective) frequency with the frequency
for individual processes, we have to define a collision fre-
quency, i.e. the inverse mean time for (90°) deflections
due to inter-particle collisions. Of course, there is a pro-
blem involved here since (without screening) the (Cou-
lomb) potential is a long-range potential. For an estimate
we shall use the Debye length as the effective interaction
distance. For A > 1 we have many particles in the Debye
sphere. They rarely suffer strongly deflections and more
often are only slightly deflected by weak collisions, The
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question is which process is more effective, and some sim-
ple considerations suggest that the frequent small angle
scattering processes sum up to a larger effect compared
with the not so frequent strong collisions. Anyway, we
can estimate the collision frequency v, via

v, NlnANI
o SR TR U

for a classical non-relativistic ideal plasma.

Kinetic theory, or more general equilibrium-and non-
equilibrium statistical mechanics, means to provide a
more profound formalism to be used as a tool for cak
culating the above mentioned individual and collective
processes in detail, and some more as, e.g., transport co-
efficients. In doing that it is necessary to decide which
system to deal with, and once the decision took 'pla',ce,
to have a physical intuition being necessary for gulda{xce
through awful algebraic manipulations. In the f011<?w1ng
we outline the principles of kinetic theory for a simple
plasma in a simple (not tokamak) geometry, in order to
give a taste of the principle procedure. More advanced
and applied cases will be presented in subsequent lectures
by other authors.

I STATISTICAL MECHANICS IN THERMAL
EQUILIBRIUM ' .

For large systems with a huge number of par‘t;ides we e
generally interested in mean values and not.m‘the ‘dﬁ;
led microscopic information which would be impassible

handle.® In the classical description we define the @‘_’eftg:
value of a quantity F, which depends on al! coordinate!
g and generalized momenta fi; of particles ? = Lol

as .
(F)=/d°”qaﬂNPFP, | ®

where p is the weight function which in generfxl depi‘;isl
on coordinates, momenta, and time. The 6N.d1m}e3n51ode)
space is called T-space. In [-space, a system ( rgfrbm
describes a curve, The density p in I'-space follovs

the Liouville equation

dp - . t)
'5 - {H, P}:

; : ' ‘ -Neymal
its quantummechanical analogue js the Voti? derin
equation for the density operator. B}lt' 10.5 “sla‘;mas it
the following only classical non-re!a.tmstxc 5; t
A>1.In(9),{..,...} is the Poisson bracket.
omplicated part®
ossible £0 07
hermal 69
since

The Liouville equation is an extremly co
differential equation whose solution is 1mp!
tain in the general case. The assumption of t
librium simplifies the situation considerably,
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we assume Op/0t = § = 0, and the remaining equation
{H,p} = 0 has, e.g., the canonical distibution

1
P= RNz (10)

as a solution. Here, § = kT =1/8, and Z is the parti-
tion function

1
Z = h—am/--/ds’vpd“qe“’” (11)
.1
gy [ [ @0 ntade

where the latter expression is an obvious generalization
for 2N particles (e.g. N electrons and N protons). For
the canonical distribution the link to standard (equili-
brium) thermodynamics is straightforward via the free
energy

F=-6lnZ (12)
once the Hamiltoniax is specified, e.g.
N 9 2 N
1 p;i PP 1 e
H=_C {_l + ..i] += {——-——-—.. =
22 |me 2% ;-G
: J

< ]— i (13)

+ =3 - - -’
14~ & %.Ilo,v—qkl

Where is the problem? There is no principal difficulty
since we can formulate the free energy F (as an integral)
a,n‘d then have access to the well-developed thermodyna-
Tic fOrmalism which allows to calculate all the thermody-
Lamic (equilibrium) quantities in integral form, However,
there appears a huge technical problem when we want to
evaluate the integrals explicitly. The reason is the (al-
teady simplified) interaction energy which in each term

€Pends on two coordinates and forbids factorization of
the multiple integrals. Let us demonstrate this for the

or

act
Q" ;=/d3Nrexp [—ﬂz%] , (14)
iJ
where
2 :
b= (15)
desi Ir" =T; l ' .
'Enates the Coulomb interaction between like partic-
. [Note thay - as in the case of an ideal gas ~ the inte-
ilr;l S over the momenta can be exactly evaluated since the
et energy s additive.] Statistical mechanics suggests

to write
@'= [ e [la+f) (16)
i

in
et‘i?l‘ms of Mayer functions fi = exp(—Bi;) — 1, and
Tmense problem is to calculate the cluster integrals

bl:%/"-/dsh...daﬁznﬁj. (17)
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Of course, it is not possible to evaluate all these integrals,
and very sophisticated diagram techniques (and transfor-
mations to irreducible cluster integrals, etc.) have been
developed to obtain physically relevant results, We can-
not report on this immense literature here (see, e.g., Ref,
3). Let us make only two remarks. :

First, when determining the equation of state, one ob-

1% 1 1

—_—r]

NesT, T g, (18)
which shows that the corrections to the ideal gas appro-
ximation are of order A~! for A » 1. This is expected
since A~! measures the ratio of average potential and
kinetic energies.

tains

Secondly, the statistical formulation also allows to calcu-
late probability functions for dependent variables as, e.g.,
the electric microfield E(7) = YN | E;(F, ;) through

W)= / / $[E-B@) oy (1)

Again, a huge literature exists on this important topic,
since the results are very important for interpretation of
diagnostic measurements via line shapes. The simplest
result, coming out of the very crude Holtsmark approxi-
mation, reads

2 [ .
w(p) = ;T—E/; zsing e~@/O" gy, (20).

where the magnitude E of the electric field has been
normalized by the mean field Ey, i.e. B = E/Ey, and
W(E) = 4rE*W(E) has been used.

III. NON-EQUILIBRIUM KINETIC THEORY
FOR PARTICLES

Starting from the Liouville equation (9) we want to derive
a kinetic equation, .. a closed equation for the one-

particle distribution function'®~**
@ = i)
= N, / Lar... Pand®p... Lon p(21)

where o designates the species of the particlfe under con-
sideration. This (normalized) function describes the: pro-
bability of finding a particle of species: « at postion ¢
with momentum # at time t. In a similar way one can
define multiple-particle distribution functions, e.g. the
two-particle distributions

Ne(No —1) / Pg... Landps... dEpnp,(22)

oo
2

U

]

NN / £o... Fovdp... Lo ()

af
2
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The generalizations are obvious. Also the change from
# = m¥'to ¥ as variable is trivial. The idea is to obtain the
kinetic equation for the one-particle distribution function
by integrating the Liouville equation over the irrelevant
coordinates and momenta. And again the procedure is
not trivial since we get a hierarchy of coupled equations.
Let us elucidate this important point a little bit more in
detail.

Introducing the Liouville operator

N
d e 0 8
L = - Q‘)‘--———__J___‘-.__‘.
;[’ 03 m;8g; o5
N j-1
199 0 _ 0y ;0
L m oy w=lHY @

for particles in an external potential ¢ and with interac-
tion potential

€i€;
G~ |’
we get a one-particle propagator L") and an interaction
contribution L®. The latter depends on coordinates of
two particles in a non-separable manner. It causes the

main problems. Note that the Liouville equation can be
written in the form

¢i; = (25)

dp
Now integrating (26) over all the coordinates and mo-
menta of the other particles, exept § and 7, of the par-

ticle under consideration, we obtain after some straight-
forward manipulations

%f*(§,351) = LY f2(&, B5t)

+ ¥ [ fndn 1 6,565 @)
f=ei

where 0; = 3/8t. Here and in the following we omit
some indices when no confusion is expected. Also, the
L-operators follow from (24) in a straightforward man-
ner. Obviously, because of the inter-particle interactions,
this equation for f contains the two-particle distribution
function /. The latter we split into two parts:

(G, 01, G, Tt) = (@0, 95 8) (G, 53 )

+gaﬁ(61351162162;t)% (28)
where the first contribution on the r.hs. is the domi-
natmg' one in dilute gases, when particles approximately
move independently, and the second contribution measuy-

res the correlation. In a similar way, we can define the
triple correlation function via

=PRI PP PR+ 14 g ()
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In all following discussions we shall assume g** » 0,
meaning that close clusters of three particles are very
rare. This assumption is consistent with previous con-
siderations since A(~ n="/%) > 1 is good for dilute sy-
stems. By the assumption ¢*#” & ( we close the BBGKY
(Bogoliubov, Born, Green, Kirkwood, Yvon) hierarchy
which expresses the fact that the equation for f; contains
f2, the equation for f; contains fs, and so on. But still
we have not succeeded in a kinetic equation, since our
present state of calculation has produced the following
coupled set of equations

%f*(q 1) = L7f*(qo;t)

+ ) / &2 LY £°(G, i) ()
B=ed i
Yy / &2 L2868 (31, 51,8, i (30

=e,i

0:g°P (1, %, Gy Ty t) = (LS + LE)g*# (1, B, i)
+ nggaﬁ(ﬁ,ﬁl@z,gz;t)

+ Z / &3 [Ly a(‘fh51;t)gﬁ7(§2,52,§3,5a;t)
y=ed ¥

(31)
+ L5 P (h, o 1)g™ (G, B, s o3 2)

b (LT Lo )0 T i)

+ LE @ Bt (B, Bait).

Note that we have introduced the symbol &° o We
integration over position and velocity of particle 2 -
have to eliminate g®® in order to get oue'closed sl(ims
tion for f*. Besides mathematical also physical Pr_‘; here
rise if we proceed in a straightforward manner (‘31) for
exists any). Suppose we would be able to solve d( )
g°°. Then the correlation function would de'pt?n ;u aly
whole time-history (which in complete detail is aoﬂe Y
not relevant). Kinetic regime means that the :'onall.‘/
tion function depends on its variables only funct

9 to indicate

. . y
through the one-particle distribution functions; form )
32
#2(8) (O (
s can be 3PP

Now let us discuss which a.pproximation o
lied to the system (30) and (31).14'17 The .ﬁrst 2pP i
xXimation is due to Vlasov: We close equation roxima”
rectly by putting ¢ = 0. In the second aPI;u -
tion, due to Landau, we neglect in (31) for s

! . jbutions
ling (¢ < f=£#) all terms which contan contrl
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of parﬁcle 3. Then (31) simpilifies to

[oc- 15 - 18] ¢ = L £, ) (@Bt (39)
The third and most advanced ansétz is due to Balescu,
Lenard, and Guernsey. Screening.contributions of the

third particle are taken into account when (31) is appro-
ximated by :

6015~ 18] 4% = 182 (a0, 250) (G st

+ 2 [ G506 )

y=e .
B - I T
+ Ly fﬁ(%vz;t)gw(q:,‘Uu%vajt)]- (34)

Note that in all cases we shall arrive at 2 kinetic equation
of the form

Bf* (G, 03;2) = L3 (1, 9;1)

+ Z /daqzdauzll;’zﬁ fa(q‘l’ 'a‘l;t)fp(q‘b ‘Ug;t)

B=e,i

+ K°{f*(t)}. . . (35)

A. The Vlasov equation

?exe, we have K = 0 and (‘30) can be rewritten in the
ollowing form;

a'fa —~ af“ € 1 ~ -
ot + o £ + ;{: [z‘l-)‘l X B(ql)+EU
+ B %— ~0, " (36)
) A o :

Where i : o o )

e:lt:re,m Ehe electrostatic approximation (V X E =0,

ﬁe]df%al B and external Ey) the selfconsistent electric
follows from Poisson’s equation -

V‘E =4 Z 9ﬁ/d3v1fﬁ(61)61;>t)' B (37)

P=e,i

3.;}11; iZl ::OV equat_iOI}S takes care of the collective effects
00g rany actly valid in the limit A — co. Because of: the
Move unie Dature O_f the interaction potential, particles
edther:r the action of the electric field produced by

Tasoy g, strong binary reflections are small (- 0). The

0 the quation expresses the fact that in the limit A —
many small influences of all the other particles can

“Minate over th o
i er due to close
Meraction), are strong deflections (du

TRAN ) :
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B. The Landau-Fokker-Planck equation

When solving (33) we have to remember our physical im-
plication (32). One can estimate that over times of the
order 7, = max(wp"e‘,wfl), i.e. the mean time for a col-
lision process, the initial correlations disappear. And in
kinetic theory we are not interested the relaxation phe-
nomena on an atomic scale. In this brief summary we
cannot present the details of the algebra, but summarize

the result for the non-vanishing collision integral
i}

o _ ‘ 1
K* = ﬂg;i%eief,ln Ap dav2m—a EEGW@
(38)
1 0 -1 0
2 et e B PG e
[ma Bor,  mp 6vz,‘] Fo(@ 5 ) f7(q1, B 1)
where s
Gunld) = T2 5 (39

is the Landau tensor. Several comments are in order.
First, we have used § = ¥ — 7 and have introduced
InAp as the average Coulomb logarithm,

) lnAB = ln ________3)\DkB(Te + T')
o 2e?

Secondly during the algebraic manipulations the diver-
gent integral

o
Aap(0,00) i= 27re§,e’ﬁ/; dkE (4

(40)

appears. The divergence for k — oo originates from
gmall distances in the Coulomb potential when the weak
coupling approximation fails anyhow. We have used
ke & 3kpTa/é2, since e%/3kgT, is the collision pa-
rameter for 90° deflections. Finally, the divergence for
k — 0, corresponding to large distances in the Coulomb
potential, originates from the fact that the shielding is not
taken appropriately. We can either introduce a cut-off at
kmin & 1/Ap or replace in the evaluation of the correspon-
ding integrals the Coulomb potential by a (static) Debye
potential in an ad hoc manner. Balescu and Lenard have
carried out the latter idea in a mathematically rigorous

manger.
C. The Balescu-Lenard equation

Using the form (34) a mathematically rather sophistica-
ted and physically profound procedure leads to the colli-

sion operator

K=o / £ Q5,5") - (B - B EFE), (42)
m;

where »
o kk (k) S (-7 43)
Q = 87!' /dak"‘lé(l-co,’-cv . 17)'2 [ ('U v )]7 (
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and (k) is the Fourier transform of the potential. When
comparing with the Landau-Fokker-Planck collision term
we clearly see that they agree for e~ 14 1/k%)%,. Here

3._, _a-'
C=1_Z%2lk. gf_’/_v_dav
j

k-t-w
is the dispersion function, and the limit mentioned above
corresponds to the static limit. The latter is equivalent
to the Debye shielding. The Balescu-Lenard equation is
more precise than the static limit: it takes care of the
dynamical shielding of particles.

(44)

We conclude this section by a short remark explaining
why the kinetic equations with weak collision terms are
called “of the Fokker-Planck type”. The reason is that
these equations can be written in the form

4G - 9, -ty + S0a0s 1), ()

where A and B correspond to (At) and (AFAD) in a
usual Fokker-Planck type derivation. Finally, although
the collision terms may be small they are important for
(linear) transport.

IT1. WAVES AND COLLISIONLESS DAMPING
IN THE VLASOV APPROACH

The collective interaction described by the Vlasov equa-
tion produces extremly important phenomena in plasmas:
waves, instabilities and Landau damping?®. Let us com-
ment on these phenomena here by sketching the deri-
vation of a dispersion relation and its solutions (in the

electrostatic limit). Linearizing the Vlasov equation by
assuming -

f(é‘,'b’;t) =f0(i)+fl(§.7a;t): (46)

where fo is the equilibrium distribution function which

may depend on constants of motion, we obtain for the
perturbation

Qfi+5-Vf, - mieﬁl Bafy =0, (47)

V-E= -47re/dauf1. (48)

This is written for the electrons when we can consider the
ions as a smeared-out background. Now a principal point
has to be made. If we would solve the linear equations
(47) and (48) by Fourier transformation we would get
the wrong (i.e. a misleading) answer. The reason js that
the Fourier transform contains a lot of false modes which
do not appear in a correct solution of the initial value
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problem. The latter is exactly what we have; We want
to find out how an initial perturbation evolves, that isto
say, whether it is amplified, damped, or disperses away.
After Laplace transformation

F(p,¥) = /:o (@ t)edt, - {49)

o+ioo
=g [ o @
we obtain from (47) and (48)
a fod
 (ptikve)F(p,5) - %Eu(p)avi:; A(#0), (1)
ikEy,(p) = —4me / F (p,13')33v, l (52)

where we have introduced the abbreviation G(u) =
[ dv, dv; fi(u = v, v,,v.;0) and a similar symbol g or’
ginating from fo.

Combing both we obtain

/+°° 6 g,
dne [ o ptiku (53)

Ny
k) duku—1p

Eu(p).= -

which after backtransformation looks like _

G+100
L Bupedp.
278 J5ioo

Ep(t) =
In evaluating this expression we have to know the C:I:_ta‘:l“;
for integration which is described by the Laplace bas b0
form in the initial value problem. In & nutshell ‘1711 s
be larger than Rp, where p, designates the .smg(54) ar
of Ey.(p) as given by (53). Then the s&lmlutnonh o
easiest be obtained by functional analysis methocs
t —+ co we obtain

By(t) ~ Res(p) exp(pt). (85)

it e Jargest 168
Note that the p used here is the pole 'w1th th;: I?il;g;sersl' "
part. For its evaluation we have to discuss the
relation '
o Wl [dg du__q  (50)
e [
dau cov
This has to be evaluated along the socalled Land?

d
pe define

tour. In the complex u-plane, the_p ath has(;lt; uiontom'
in such a way that all poles ip/k lie above

voL.25 MAR !



For a Maxwellian equilibrium distribution and low dam-
ping (7/wr & 1) we can obtain from (56) the famous
Landau damping rate

s

12 1
YR =l (g) (kApe)~3 exp [——

2 3
2(k/\De) - '2'] .
(57)
The physical understanding of this Landau damping due
to phase mixing actually is not so difficult, but many pre-
sentations in books are misleading. During the summer

school these ideas have_ been worked out in more detail.

Let us here mention another point.'® Usually, for a Max-
wellian the integral in (56) is traced back to the socalled
Zfunction (or G-function)

1 [t e

ﬁ -00 C'—p
and the asymptotic behaviors of Z are well-known. Just

't<_> present one example. For an electron-ion plasma the
dispersion relation looks like

GO=2(-() = dp,  (58)

2

Roepe) e, )
zvtc 2Uti

and for w > wpe and w/k > vy, the solution is
Wk, (14 38°3,), (60)

?.e. electron plasma waves. Other examples will be found
In the various contributions to this volume.

So fa{‘ we have presented a general outline for developing
the kinetic theory of particles. We succeeded only in elu-
Cidating some steps for simple geometries. The whole
area of drift-kinetic and gyro-kinetic descriptions, being
most valid for tokamaks, 223 has not been touched (be-

¢ause of space limitations) and is left to subsequent pre-
Sentations, :

VL. KINETIC DESCRIPTION OF WAVES IN
AK AND STRONG TURBULENCE

N°‘f" We want to emphasize another point. Once waves are
€xated in a turbulent medium (and of course in principle
one first has to specify what we mean by turbulence), one
May consider them as quasi-particles. Let us now discuss

% one coiild develop a statistical description of random
luteracting waves, 24-27

Let us start from 5 Fourier-transformed one-field equation

::'iltlg valid up o second order in amplitudes. We formally
e

Be(t) + gy =% T AL (). ()

E‘+E"=E
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Such an equation can be obtained for example by itera-
ting a kinetic equation. The field ¢; is in general stocha-
stic (or has at least a stochastic component) and therefore
in the turbulent case a statistical description is adequate.
In what follows we use the compact notation of the strong
turbulence theory which is also known under the name
“direct interaction approximation (DIA)”. Let us group
together the variables {E,-,t,-} — {1} and introduce the
operators

L(12) = (O +iwg) 6 (i~ ta) O, (62)

E
N(l 2 3) = Ax“:,iaa (t1 - tz) 8 (tl - ta) 6”1122“:3 . (63)
With the convention of summation (integration) over re-

peated indices, Eq. (61) can be written as

1

L(12)9(2) + 5N(123)¢(2)¢(3) =0.  (64)
In statistical mechanics, the hierarchy problem related
with Eq. (64) is well-known. When deriving from Eq. (64)
an equation for the double-correlation function

(19) = {$(1)9(2) = (¢, () by, (a)),  (65)

the latter will be determined by the triple-correlation
function,

D@4 +3NE28E3H=0, ()
and so on,

L(12)2485) + -;—N(l 93)(2345)=0. (67)

When the triple-correlation function is set to zero we ob-
tain the linear theory. Since the latter is not of interest
here, a higher truncation level is needed. Fo'r ceqtere.d
moments [{i) = 0] a quasi-Gaussian approximation I8
known in weak-turbulence theory,

234 =138+ AN H+1423). 6)

Here we shall also use (68) for truncation at the “level
four”. Inserting the expression (68) into Eq. (66) we ?b-
tain an equation for the triple-correlation (2 4 5) which

we have to solve:
L(12)(245) + N(123)(24)(3 5 =0. (69)

Note that N(1 2 3)(2 34 5) =10 [(see Eq. (64) after
averaging and for centered moments}, and the symmetry

N(123)=N(132) (70)

has been used. Now, an additional assumption of the DIA
comes into play: When solving for (245) weusea rfl:-
normalized tesolvent g instead of the linear resolvent L™
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Furthermore, we symmetrisize with respect to “particles”
1,2, and 3:

(123)= — g(LE)N(645)(24)(35)
~ g(26)N(64 5)(14)(3-5)
- g(36)N(645)(24)(15). (1)
T hese are the main assumptions of the DIA; the deﬁnit.ion
of g will be given below, after some outlook on the general
strategy. Lo
Inserting (71) into Eq. (66) leads to
e - %N(l 6.3)g(6 T)N(7 5 2)(3 5)
~ SNE3)ETING 52)(6 5} (24)
= %N(l 23)g(4 T)N(7 5 6)(3 5)(2 6). (72)

This is a closed equation for the second moment (within
the DIA). When looking at Eq. (72) from the physical
point of view it is natural to define the terms in the curly
brackets on the left-hand-side of Eq. (72) as the renor-
malized propagator, i.e. '

L1 2) - g—l(l 2) = L1 2) . .
- %N(l 6 3)9(6 IN(T 5 2)(3 5)

- %N(l 6 3)4(3 IN(7 52)(6 5)

| = L(12)+3(19). - (78)
Thus, we write Eq. (72) in the f;)rm | . '
TN =eIFEY, ()

t

where

F(51) = %N(l 23)N(5 67)3 6)(2 n )

is the so-called random noise source, Obviously the re-
solvent g follows from : '

B0 +302628) =1, @)

‘which is a complicated integral équa.tioh.
Let us now distinguish between two time-scales,
1 '
T=t1—tz,T='2-(i1+t2), .M
for the correlation function and assume that ‘the depven;

dence on Tcan be treated in an adiabatic manner. Le.,

if we Fourier-transform (with respect to 7) a product, we
use for ' |

Oty ty) = / daA (1) Bliats) * (18)
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‘We are riow in a position to write for th? 1‘?

C@m=/m@@wM 

= /dta [A (7'13 =1 - ts,T'l'%Tsz)]

1
X [B ('T32 = t3 - tg,T - 5 Tla)]

= /dta{A (7'13;T)B(T32’T) ‘

1 A (ns, T
+ §T323 (732, T) —-(E"—)

1
- 57'13/1 (ra, T) —=—~

= 21r/dw {AW(T)BW(T)
1 0A(T) 0B,(T)

T et
-1_8Aw(T) an(T)} e—;'w‘r . (79)
2 oT dw

Thus we can write .
1 i0A, 0B, i0A,0B, (&)
a0 S At 35 ST 7T v

where we have dropped the additional argument T

Using this -rule (and approximation) when Fourier
transforming Eq. (72), we can write

1 . Bk o (4 =t
MY=-3 3 AeAh bt
" Eythg=hy=h

x(#), (1)) + {Fa 0 B} . (81

Here, we have defined for homogeneous turbulence
1y = g5, (h—t2) &, (82
(83)

i

(12) = {(#)g, (b~ ta) o, 20

ot
again the T-dependence is suppressed. The corresp
ding Fourier-transforms are

. 4
L, = % / dr ¢(#")e(r), @

1 ; 85)
G = 57 / dr ¢7gy(r)- (
By the Faltungstheorem we obtain from (81)

. . v (86)
Thu == Ay -A’S:fz/ gt el

k—k! k'
ft_hand-side
of Eq. (74) '

co : 81)
% / dr ¢“7{L(1 2) + B(1 2)] (2 3) (

. a. L I-}"‘,—"?"
NI [Ta%’a,ﬁ(““"ﬂ‘% +Bg.0) fo)

voLzs MaR ¥



We have neglected the w-derivative of Iy , as a higher-
order effect in the propagator. In the same way, one
obtains for the right-hand-side of Eq. (74)

1 . T ~
ﬂ/d-r € g(3 4)F(4 1) ~ 2”9-131,—WFE,.—w51?3,-E1’
(88)
where

1 N 2
— . 1 - - = o -
kl

= Fﬁxwéﬁa .-1:1 * (89)

Combing all the results found so far, we can formulate
the wave-kinetic equation within the DIA:

10 s
7+ (it i+ 2) B
(90)

_1 A%
2g--h "~ Z dw (Ail_':_,?l) IE’,MII?;—E' w—w'*
F

Om? point we have to remember: w is the Fourier-variable
conjugate to 7, i.e. the fast variable, and thus it is natural
to assume w to be real. On the slow time-scale T' the
$pectral density [; , varies due to the imaginary parts of
w,;l and ZEM,. '

For weak-turbulence we assume
Iie'hw NI ] ‘%1 § (w - %(w’:l)) ! (91)

1
9. ~ ~
B W) 0 76w —Rlwg)) ()

o obtain from Eq. (91)
Or| ¢ 1 -2(wp) | 6 I}
. / Phyd (k- Ty — Fa)d [Rluwg — w5, ~95)]

i

AP

+ 7 [ b8 - o) (Rl g, ~ )]
R PV P APY

LT OMPTIPIO (%)

;I;E:: 5 Xle standard weak-turbulence wave-kinetic equa-
shou.ld ctually, the self-damping, described by. B
usyal] sase - b'y assumption - the sign-convention s
ting Lasjlfmed in standard weak-turbulence theory- As
sible fore;;hm Eq',(92): the “damping term &” is respon-
ithin th ¢ physically reasonable decay of correlations.

& weak turbulence theory this is an assumption.
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Within a Hamiltonian description of DIA it appears self-
consistently.

We do not introduce here the adiabatic density of waves
which would allow an elegant Hamiltonian formulation.
For our purposes it is sufficient to use the | ¢ IE or for
example in the case of drift waves C := (1+4?) | ¢ [
With the latter the more symmetric form ¢

3:0; - 29(&);)0;
- f Phydhgb(F — o~ B)o(wg ~ g, — ) (99)

X(l + kz){aE,,E,CExGEz + bE "

P
k1 jky GE? Gi’. + bza.’:x Gi-:l G;:}

is obtained where

o= (R A, (09)
B o= (LHR) L+ RDAE AR L (96)
satisfy the relation
of 5 =—0hn o) (97)
V. SUMMARY

In this contribution we have outlined the basic princip-
les for a statistical description of plasmas, The equati-
ons developed here work very well in simple geometries
where such effects as particle trapping, particle drifts,
and plasma wall interactions can be neglected. Howe-
ver, for tokamaks exactly the latter may be dominant,
and therefore by similar arguments as presented above
the relevant statistical description has to be developed.
It is known as neoclassical, drift-kinetic, and gyro-kinetic
descriptions, being valid in different parameter regions.
The following list of references is not complete at all. It
contains some references (from a personal point of view)
which might be useful for a first penetration into this
field. After that, of course, one should closely follow the
actual literature which appears in the journals. The ty-
pes of plasmas are classified in many textbooks, the lite-
rature on equilibrium statistical mechanics is huge, and
for the kinetic theory of particles the monographs by Ba-
lescu are highly recommended. Wave kinetics is usually
less emphasized in textbooks. Many relevant hints can
be found in the Handbook of Plasmaphysics.? Finally,
for actual calculations the “plasma formulary” is highly

recommended.”
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