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Abstract

This thesis continues the work on symmetry reduction for model checking in B.
It picks up the idea of translating states into graphs, such that symmetric states
correspond exactly to isomorphic graphs. This reduces the orbit problem in symme-
try reduction to the graph isomorphism problem. The graph isomorphism problem
is a well-studied mathematical problem, although a polynomial time algorithm to
solve it has yet to be found.

However, existing tools are capable of detecting isomorphic graphs via graph
canonicalisation very efficiently. One of these tools, named NAUTY, is integrated
through an interface into the PROB model checker. This new way of applying graph
canonicalisation in model checking is then compared empirically with the already
existing symmetry reduction approaches in PROB.






Zusammenfassung

Diese Doktorarbeit setzt die Arbeit iiber Symmetriereduktion fiir Modelchecking in
B fort. Sie nimmt die Idee auf, Zustdnde in Graphen zu iibersetzen, sodass sym-
metrische Zustande genau isomorphen Graphen entsprechen. Dies reduziert das
Orbit Problem in Symmetriereduktion auf das Graph Isomorphie Problem. Das
Graph Isomorphie Problem ist ein gut studiertes mathematisches Problem, obwohl
ein polynomialer Algorithmus zur Losung dieses Problems erst noch gefunden wer-
den muss.

Jedoch gibt es Werkzeuge, die fahig sind isomorphe Graphen mittels Graph Nor-
malisierung zu entdecken. Eines dieser Werkzeuge heifit NAUTY und wird iiber ein
Interface in den PROB Model Checker integriert. Dieser neue Weg die Graph Nor-
malisierung in Model Checking anzuwenden, wird dann mit den bereits existierenden
Methoden zur Symmetriereduktion in PROB verglichen.
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Chapter O

Introduction

In today’s world, we are surrounded by technology almost 24/7. We are woken up
by a radio-controlled alarm clock, and while the coffee machine does its magic, other
electronic gadgets make sure that our shower water has the right temperature. Our
car guides us around the rush hour traffic, hopefully, and its electronically-enhanced
brakes work as well as ever. Those who rather take the train to work are happy
that the computer-aided signal controls ensure that only one train occupies the same
space at the same point in time. Having arrived at work, the lift takes us to the right
floor, and our office is already nicely pre-heated by the running PCs. In many daily
situations, we more or less rely on technology, and its failure can lead to anything
from mild annoyance (by having a cold coffee in the morning), to a fatal car or train
accident. Although we may have missed all that, because our alarm clock failed...

Generally, we expect (and, indeed, depend on) everything working, even if we do
not understand - or just forget - how all these everyday devices work. Technology
has become too complex in many cases to be fully understood by a single human,
anyway. Consequently, errors are easily made during its development. The software
for the train signal controls may miss a safety-critical feature, or an error in the
program code can bring the controls to a standstill - and at best, all trains, too. This
example shows two different kinds of error that can be introduced in any complex
hard- or software system, during its development. First, errors can be made during
the design phase, such as a missing feature, and secondly during its implementation
phase, such as a part not being properly fixed to a car, or an uncaught exception in
the program code of a software application. The development of complex systems
with a formal method can help to prevent these causes of errors. In the following,
we will mostly refer to software systems, although formal methods have also been
successfully used in hardware development. The usage of formal methods during
the design of software can help structure the whole process by allowing the designer
to first concentrate on the main features, called abstract specification, then stepwise
add more details to the specification, to finally reach a concrete specification with
all necessary design features. From that point on, formal methods are even more
helpful, since further refinement, i.e. the translation from abstract data structures to
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implementable ones, can be partly automated, and also proven correct, with regard
to the specification. The resulting implementation can be translated automatically
into program code that has been proven to meet the specification, so that errors of
the second type cannot occur. We have to make several assumptions here, such as
the tools for proving the correctness, the translation to and compiling of program
code, all work correctly. We further assume that the underlying hardware works
correctly, and is not affected by cosmic rays, electro-magnetic interference, etc.

No matter what assumptions we make about the environment, proving the cor-
rectness of a specification, also called model, is still an involved task. Even if 95%
of the proofs can be done automatically by a prover, some user intervention is still
needed to do the rest of the proofs, which can be very time-consuming. So, is there
a way to verify a model without significant user intervention? Yes, there is, and it is
called model checking, a completely different approach from mathematical proofs.

We are going to explain the basics of model checking in Chapter 1, and then
concentrate on the B-method [1]. We will briefly demonstrate modelling with B,
and what proving the correctness of a model means. Then we will concentrate on
model checking of B models, and introduce PROB - a tool for animating and model
checking B models.

The main focus of this thesis is on symmetry reduction in B. In Chapter 2, we
want to provide a motivation for this topic. We will explain why symmetry reduction
and the B language go well together. This thesis improves a symmetry reduction
approach [56], that puts the symmetry of B-states into a direct relationship with the
isomorphism of graphs. We will explain in Chapter 2 some mathematical background
on symmetry, and especially how B-states can be transformed into graphs.

Knowing how B-states can be interpreted as graphs, we introduce in Chapter 3,
NAUTY [42], a tool developed by B. D. McKay to help solving graph isomorphism
and related problems. We will explain how NAUTY works from a mathematical
point of view, and also give a brief insight into the data structures used by NAUTY.
Our work includes a mechanism to translate graphs resulting from B-states into the
notation used by NAUTY. We implemented an interface between NAUTY and PROB,
to allow communication between the two tools. This makes it possible for PROB to
detect symmetries, with the help of NAUTY. We describe in detail the functionality
of the interface, then we finish Chapter 3 with an overview on related work.

In Chapter 4, we want to present some empirical results. Symmetry reduction in
B with NAUTY improves on the previous work by E. Turner et al. [56], and so we will
draw a comparison. We will also compare our approach with the work of Leuschel
and Massart [40] on ”Efficient approximate verification of B via symmetry markers”
and the work of Leuschel et al.[39] on ”Symmetry reduction for B by permutation
flooding.” Finally, in Chapter 5, we will draw some conclusions and give ideas on
future work.



Chapter 1

Model Checking

1.1 Basics of Modelling

Model checking is one way to find errors in a software system; while the (usually too
complex) software system is not checked for errors, a much simpler specification of
it, is. A specification is a model of a software system that also describes the correct
behaviour of the system.

The process of model checking is automated by a model checking tool, which
searches each state the system can be in (also called the state space of the model),
for violations of the specification. This obviously works only for finite state spaces.
Since most systems have an infinite number of states, the system parameters - such
as the domain of a variable, for example - are limited by the model checking tool.
Within those boundaries, it can be verified that a model fulfils the specification. It
is important to note that if the specification itself is not correct, or is incomplete,
then nothing can be said about the behaviour of the real system.

The idea of model checking is quite intuitive: The correct behaviour of the model
is checked in each and every reachable state, starting from the initial state. Before
we can reason anything about a complex system, though, we first need to have the
appropriate model for it. A model is a simplified description of the real system that
is ideally easy enough to understand, but complex enough to explain the behaviour
of the real system.

For example, we all learned in chemistry lessons to first regard atoms as balls.
That is a very simple model, and easy enough to be understood by children. This
model, though, cannot explain why solid salt does not conduct electricity, but why
salt dissolved in water does. To understand this behaviour, we had to learn about
the more complicated model of an atom that has a positively-charged nucleus, with
several orbits of negatively-charged electrons. Only this model allowed us to under-
stand how free electrons occur in salt water, so that it can conduct electricity.

In software engineering, it is very important to be able to model the state of a
system. For instance, if we model software that controls the movements of a lift, then
we need to describe the position of the cabin. It is necessary to know its position
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to decide if the lift is still in a correct state, after the cabin moves another floor up.
This example gives us another property that we need to be able to describe: The
behaviour of the system in time. To move a cabin from the first to the third floor,
it must first go through the second floor.

A Kripke structure is such a model that can describe the state and the temporal
behaviour of a system. We give a formal description of a Kripke structure:

Definition 1.1 A Kripke structure K is a tuple K = (S5, Sy, R, AP, L), where
1. S is a finite set of states
2. Sp is the set of initial states
3. RC S x S is a relation
4. AP is a set of atomic propositions

5. L : § — 247 is a function, that labels each state with the set of atomic
propositions true in that state.

Let’s have the Kripke structure K = (S5, S, R, AP, L) describing a system. A
path in M is an infinite sequence of states, T = sy, s1, . .. such that (s;, s;11) € R for
every ¢ > 0. The requirements of a system are written in temporal logic formulas,
such as CTL* formulas. In CTL*, there are two types of formulas, state formulas
and path formulas. The notation

K,s=f

means that the formula f holds in the state s of K, and the notation
Kok

means that f holds in some state along the path 7 in K.

Example 1.2 Let’s take as example the description of a security door, that consists
of two subsequent doors d; and dy, such that there is, at most, one door open at
all times. In the initial state, both doors are closed. Figure 1.1 is a graphical
representation of the state space.

We can translate the informal description of the security door into a Kripke
structure K = (S, S, R, AP, L) with:

S = {s0, 81, 8}

So={s1}

R = {(s0,81), (51, %), (81, 82), (82, 81) }

AP ={dl =op,dl = cl,d2 = op,d2 = cl}

L(so) = {op, cl}, L(s1) = {cl, cl}, L(s2) = {cl, op}
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cl, cl

op, cl cl, op

Figure 1.1: State graph

An example for a path 7 in K is:
™ = 81,50, 51,52, 51,50y - - -
Let’s consider the formula f := ‘d1l = op° A ‘dy = c¢l* then we have

K,ssEf and
KorkJ

The formula f is obviously true in the state sy, and with sy there is a state on the
path 7 such that f holds.

For further details of temporal logic, especially CTL*, see [13]. The CTL* for-
mulas can be automatically verified by a model checker. In most cases it is required
that a model is deadlock free. Consequently, the transition relation R in the re-
spective Kripke structure must be a total relation, that means for each state s € S,
there is a state s’ € § such that (s,s’ € R). In the following, a Kripke structure
always has a total relation.

1.2 Modelling with B

The B-method is a method for systematic development of large software systems.
It was invented by Jean-Raymond Abrial [1] and has been used for a variety of
safety-critical systems all over the world. One example is the Meteor project, the
implementation of the driverless Paris Métro Line 14. The B-method is supported
by a number of tools such as Atelier-B [53], the B-toolkit [6] or PROB [36]. Atelier-
B and B-Toolkit both allow the mathematical proof of the correctness of software
developed with B, and an automated translation from B to programming language
code (mainly C). PROB is a different kind of tool in that it provides validation
through model checking rather than proofs, and also gives the user the possibility
to animate his model. For a more complete list of tools supporting B, see [35].
The development of a large system is broken down by using abstract machines
as building blocks of the specification, and the refinement of abstract machines. An
abstract machine, also called B-model or just model in the following, is written in
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Abstract Machine Notation, abbreviated AMN, which is a mathematic framework
based on set theory and predicate logic.

Using set theory and predicate logic allows an abstract and systematic software
development. The refinement aspect of the B-method allows, first to stepwise add
more and more details of the real system to the specification, and then to refine the
data structures within a specification such that they can easily be translated to a
programming language, such as C. That means a software system, or a part of a
software system, is developed throughout a chain of models, starting from a very
abstract specification and finishing with a concrete model, that can be translated
into code. The process of software development with B is depicted in Figure 1.2.
Here we have an abstract machine M0.mch which is refined by the machine M1.ref.
A number of further refinements finally leads to the machine MI.imp on the so-called
B0 level. At this level, only a subset of B constructs can be used, which are directly
implementable in program code.

Momeh | FOrmal
Spec

J] Refinement

More
Mlref | detailed
Spec

«++ Refinement

Very Code Generator
detailed = Code
Spec

MLimp

BO

Figure 1.2: Development in B

Since B models are developed systematically using mathematical constructs, it
is possible to mathematically prove that each refinement and therefore the resulting
program code meets its specification.
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In the following, we want to briefly explain the main parts of a B-model with
a small example describing a database for a course enrollment. For a deeper intro-
duction into modelling with B, see [49].

MACHINE Course

SETS
Student

CONSTANTS

mar_num

PROPERTIES
max_num = 20

VARIABLES
class

INVARIANT
class C Student N
card(class) < max_num

INITIALISATION
class = ()

OPERATIONS
enroll(s) =
PRE
s € Student N
s & class N
card(class) < max_num
THEN
class = class U {s}
END:

~

out «— leave(s)

PRE
s € class

THEN
class = class — {s} ||
out == s

END

END

The keywords in upper case have the following function:

e MACHINE: Introduces the name of the model, here course. Alternatively the
keyword MODEL can be used.
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e SETS: Sets define new datatypes, that can be used throughout the model.
There are two types of sets: The enumerated sets and the deferred sets. Enu-
merated sets have their elements given explicitly. For deferred sets this is not
the case, their definition is deferred to a later stage in the modelling process.
In the example there is one deferred set named Student.

e CONSTANTS: Declares the constants used in the machine. The example has
one constant, maxr_num.

e PROPERTIES: Determines the properties of the sets and constants. In the
example we have mar_num = 20.

e VARIABLES: The variables define the state of a model. In this case we have
just the variable class, to keep track of the students that take part in the
course.

e INVARIANT: The invariant is a very important part of a model. It has for a
model a similar function as temporal logic formulas have for a Kripke structure,
in that it expresses the requirements of the modelled system. Secondly, the
invariant gives the datatypes for each variable. All invariant conditions have
to be met in every state of the model. In the example, we have the variable
class as a subset of Student, and the condition that the size of the class cannot
exceed the value 20, which is given through the constant max_num.

o INITIALISATION: Gives the initial state of the model. All variables need to
be initialised here.

e OPERATIONS: Together with the initialisation, the operations describe the
behaviour of the model. There are two operations in the example: One for
enrolling a student, where the student is given by the input parameter s,
and one for a student leaving the class. An operation can also have output
parameters, such as the parameter out of the operation leave(s). Usually, an
operation has preconditions, introduced by the keyword PRE. An operation
executed under these conditions should preserve the invariant'. Indeed, if the
operation enroll(s) is executed to add another student to the course under the
condition that the course is not yet full (card(class) < maz_num), then the
invariant card(class) < maz_num is preserved. The preconditions also give
the type of any input parameters of the operation, such as s € Student for
the parameter of the enroll(s) operation. The keyword THEN introduces the
action of an operation. In the example, the operation [eave(s) removes one
student from the class and gives that student as output. The symbol || in the
operation means that both actions are executed in parallel. Each operation is
finished with the keyword END. The last END denotes the end of the model.

! An operation can be called outside its preconditions, but in that case, there is no guarantee of
correct behaviour of the model.
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For a large specification, it is usually advisable to divide it up into smaller parts,
and model each part separately. This way a large system becomes more manageable
and also allows several people to work on it at the same time. The B-language
supports this kind of development by supplying several keywords for structuring.
There are four of these keywords in the B-language, that allow the import of one
machine to another. To do so the line

KEYWORD machine_name

is inserted usually after the machine name. We want to give an overview here, for
more details about structuring with B, see again [49]. Let’s have in the following a
machine M1 that is imported somehow by a machine M?2.

e INCLUDES: This is the most frequently used structuring keyword. it means
that all information of the included machine M1, is now part of the including
machine M2. Sets and constants can be directly used in M2, and the invariant
can refer to variables from M1. M2 can also call all the operations of M1
within its operations. In order to make an operation of M1 an operation of
M?2 though, an additional keyword PROMOTES is used. The machine M2
then contains the line

PROMOTES name_of _operation_of _M 1.

Any operation in that line is now an operation of M2, just as its original
operations.

e EXTENDS: Has the same effect as an INCLUDES clause with all operations
promoted. So this keyword just saves a bit of typing.

e SEES: This clause allows only read access of M2 to M1. That means that M2
cannot change the state of M1 by calling its operations as for the INCLUDES
clause. The only operations of M1 that M2 can call are so called query
operations, which give back only a value of a variable, but do not change the
state. Sets and constants can be read as before, but the invariant of M2 cannot
have the variables of M1 in its predicates.

e USES: Has almost the same properties as the SEES clause. The only difference
is that the invariant of M2 can refer to the variables of M1. This clause is
used when the state of machine M2 depends on the state of machine M 1.

1.2.1 Proving Machine Consistency

One of the main advantages of using B for modelling, is the possibility to mathe-
matically prove the consistency of a model. Proving consistency means essentially
two things: First, if a model has parameters, sets or constants with constraints on
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the parameters and properties of the sets and constants, then we must show that
such parameters, sets and constants exist. We also need to prove that there are
values for the model’s variables that fulfil the invariant. This is to show that there
are no contradictions in the constraints, properties and invariant. Secondly we need
to show that the initialisation establishes and the operations preserve the invariant.
Usually the consistency proof of the operations is the hardest. We will give an ex-
ample for such a, so called proof obligation, for an operation of our Course example
further below.

First, we want to give a summary of the proof obligations for a model. Let p be
the parameters of a model and C' the set of constraints of those parameters. Let St
be the sets, k the constants and B the properties of those sets and constants. Let
further v be the set of machine variables and I the invariant. We have the following
existential proofs:

1. dp.C - there are parameters that fulfil the constraints,

2. C = (45t,k.B) - given the constraints, there are sets and constants that fulfil
the properties,

3. C' N B = dJuv.l - given the constraints and properties, there are values for the
variables, such that they fulfil the invariant.

The second set of proof obligations are towards the consistency of the initialisa-
tion and the operations. Before we list those, we need some notation taken from [49].

Definition 1.3 Let S be a statement and P a predicate, then the notation [S]P
denotes the weakest precondition for S to achieve P.

That means [S]P is a predicate, which is true in all those states, such that
executing S always leads to a state where P is true. This notation is needed in the
proof obligations for the operations consistency. If S is an operation statement and
I the invariant, then for each operation we need to show that the predicate [S]I is
true before the operation is executed.

Let C' again be the constraints of the parameters and B the properties of the
sets and constants. Let I be the invariant, P the preconditions of an operation and
T and S the respective statements of the initialisation and operation, then we have
the following proof obligations:

4. C N B = [T]I - given the constraints and properties, it follows the weakest
precondition, such that executing the initialisation fulfils the invariant.

5. BAC NI NP = [S]I - given the constraints, properties invariant and pre-
conditions of the operation being true in a state, it follows that the weakest
precondition [S]/ is true in that state.
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Both proof obligations say that executing the initialisation or the operation re-
spectively, leads to a state where the invariant is still true. So, by proving those
obligations respectively for the initialisation and every operation, we show that the
invariant holds in every state. All obligations together prove the consistency of a
model.

We take as example the operation enroll(s) from the machine Course above.
The machine has no parameters and therefore no constraints, so the constraints C
are trivially true. There is just one property of the constant max_num, so we have
mazx_num = 20 for the properties B. The invariant states that the variable class
is a subset of the deferred set Student. The precondition of the operation indicates
that the element given as parameter to the operation must be an element of the set
Student and the number of students in the class is limited by the constant max_num.
The statement S of the operation adds the element s to the class. In short we have:

C: true

B: mazr_num = 20

I:  class C Student A card(class) < maz_num

P:  se€ Student A\ s & class A card(class) < max_num
S class := class U {s}

The proof obligation for the operation enroll(s) looks as follows:

true A\ (maz—_num = 20) A (class C Student N\ card(class) < maz_num)
A (s € Student N\ s & class A card(class) < mazr_num,)
= [class == class U {s}|(class C Student N card(class) < maz_num)

Substituting the variable class in the invariant according to the statement leads to

true A\ (maz—_num = 20) A (class C Student N\ card(class) < maz_num)
A (s € Student N\ s & class A card(class) < mazr_num)
= (class U {s} C Student A card(class U{s}) < mazr_num)

Since we have class C Student as invariant and s € Student as precondition of the
operation, it follows that class U {s} is a subset of Student. Therefore the first part
of the invariant is fulfilled when executing the operation enroll(s).

Now let’s look at the second part. We have
card(class U {s}) = card(class) + card({s}),

since s is not yet in class because of the precondition of the operation. The cardi-
nality of a set with one element is of course 1, so we have

card(class U {s}) = card(class) + 1
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Now we use the fact from the precondition, that card(class) is truly smaller than
max_num, so that card(class) + 1 is still smaller or at most equal to mazx_num.
Consequently we have

card(class U {s}) < mazx_num

which proves that the invariant still holds after adding one student to the class, i.e.
executing enroll(s).

Proving all obligations by hand would be quite tedious. Fortunately, tools have
been developed, such as AtelierB [53] or the B-toolkit [6], that can do most of
this work. Unfortunately, unlike our example, proofs can get so complex that user
intervention is still necessary when using automatic provers. Model checking is
another approach to verify a model and can be done completely automatically.
Later in this chapter, we will discuss this approach further.

1.2.2 Refinement

The concept of refinement allows an incremental software development starting with
an abstract specification and then stepwise adding more and more details in each
refined model, resulting in a chain of refinements, that ends with the stage where
executable code can be generated automatically. The process of refinement can be
roughly divided in two parts. The first part of the refinement chain usually involves
developing a more accurate description of the requested software product. In the
second part are then the abstract data structures and non-deterministic statements
of the model translated to concrete implementable data structures and determin-
istic instructions. In order to do so, there are a few additional constructs for B-
refinements such as the sequential execution of statements or the introduction of
local variables.

The following model is a refinement of the Course Machine in Section 1.2. Since
the example is very small, we did several steps at once in the refinement. We
decided to add another variable sz to store the number of students in the class, we
substituted the preconditions of the operation with concrete if-statements and we
replaced the parallel statements with sequential statements.

REFINEMENT
CourseR

REFINES
Course

VARIABLES
class,
sz

INVARIANT
sz € INN
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card(class) = sz
sz < mar_num

INITIALISATION
class = §;
sz =10

OPERATIONS

~

enroll(s)
IF
s € Student N
s & class N
sz < mar_num
THEN
class = class U {s};
sz =38z +1
END:

~

out «— leave(s)

IF
s € class

THEN
class = class — {s};
sz = sz — 1;
out == s

END

END

A correct refinement behaves in the same manner as the specification does. That
means that any sequence of operations that can be executed in the specification
within preconditions, can also be executed in the refinement [11]. We can easily
see that the refinement of the Course machine fulfils this requirement. For a more
detailed introduction to refinement, see [49], and for a more formal description, see
137].

1.3 The ProB Model Checker

For model checking of B-specifications there is currently just one tool available,
which is called PROB [36]. PROB is written in Prolog [50] and has a TclTk [54]
user interface, which allows the user to edit his model directly in PROB. The user
can do much more than just editing and then model checking a specification with
PRrOB, though. The PROB tool allows animation of a specification, which means
the user can click on any enabled operation in the Enabled Operation field, see
Figure 1.3, to walk through the state space manually.
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ProB 1.3.0-BETA7: [Course.mch]

File Edit Animate Verify Analyse Preferences Debug Fles Help

E—

MACHINE Course N
SETS Student
CONSTANTE max_num
PROPERTIES max_num = 20
VARIABLES class
INVARIANT <lass <: Student & card({class) <= max_num
INITIALISATION class := {}
OPERATIONS
enroll(s) =
PRE s : Student & card(class) < max_num
THEN class := class ./ {s]
END;

out <-- leave(s) =
FRE s : class
THEN ¢lass := ¢lass - {s} || out := s
END
END

~d |~/

o] 7| State Properties =T EnabledOperations [ History |
invariant_ok enroll{ Student1) initialise_machine
max_num = 20 enroll{ Student2) setup_constants
class = {} enroll( Student3)
BACKTRACK

1% et - 7 -]/

Figure 1.3: Screenshot ProB

This way, the user can gain a much better understanding of his model. Ad-
ditionally, the user also has the possibility to visualise the state space that has
been encountered, through clicking on the enabled operations. ProB uses the graph
drawing package dot [5] for visualisation.

In Figure 1.4, we can see part of the state space of the Course machine from
Section 1.2, after setting up the constants, initialising the machine and enrolling
Student2 into the class. States that have been visited are visualised with green
borders, and states that have been encountered, but not visited, are visualised with
a red border. The current state, here class = {Student2}, is especially visualised
with a green double border polygon. An arrow going from one state to another is
labelled with the operation (including parameters), that leads to the next state.
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[ file://fhome/spermann/NewProB/examples/B/Corinna/Thesis/Course.ps - KGhostViey —| [0 X

Datei Bearbeiten Ansicht Einstellungen Hilfe
@ e g_)%{loo% - '(;J% D €y €3 €
/R ;
)
n = /'.'
F LY
-nin-l N v/
]
setup_constants
= ( max_num=20 )
“"‘-._______‘_..—""
initialise_machine
' 3 -
{ class={}
emwolli Studentl) [enroll(Student? jleave( Smdent?)- =Smdent? “emoll(Smdent3)
i)
class = [ Student] | || class= {Studentz]/ﬂ class = [Smudent3 ]
e
enrolliStudent]) 1olliStudent3 )
class = [Smdent ], Student? | class = [ Student? Smdent3 |
Sete 1 vonl

Figure 1.4: Encountered State Space

We now want to decribe the model checking algorithm PROB uses.
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Algorithm 1.4[ProB Model Checking Algorithm]

Input: An abstract machine M
1. Queue := {root} ; Visited := {root}; SGraph := {root}
2. while Queue is not empty do

3. if random(1l) < « then
state := pop_from_front(Queue); /* depth-first */

else
state := pop_from_end(Queue); /* breadth-first */
end if
4. if error(state) then

return counter-example trace in SGraph from root to state

5. else
for all succ,Op such that state —>%p succ do
SGraph := SGraph U {state —¢,, succ}
if succ ¢ Visited then
add succ to front of Queue
Visited := Visited U {succ}
end if
end for
end if

6. od

7. return ok

The algorithm takes an abstract machine M as input, and returns either ok when
there is no error in the model, or the trace from the root node to an error state. An
error state can mean one of three things: The state is in violation of the invariant, or
is a deadlock state, or is both of the above. The PROB user can decide if deadlocks
are regarded as erroneous, or not.

First, the algorithm initialises three variables used throughout the model check-
ing process. We have the variable Queue for states that have been encountered, but
not evaluated yet. Evaluation of a state means that it has been model checked, and
all its successor states have been computed. The second variable, Visited, holds all
states that are in the queue, or have been evaluated already. The third variable,
SGraph, contains the visited state space; that means, all the visited states, together
with the transitions between them. This allows the creation of traces to erroneous
states, whenever they occur.
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At the beginning, all variables contain just the root node. The root node is a
pseudo state that serves as a starting point for the model checking algorithm, and
is therefore always a correct state.

The while loop starting in step 2 is executed as long as there are states in the
variable Queue to be evaluated. The randomisation in the next step is not strictly
necessary for model checking, since it only decides, depending on the user defined
value a, whether the algorithm takes more of a breadth-first or depth-first strategy.
This helps to find potential errors more quickly, see [38]. When picking a state from
the front of the queue, a depth-first search strategy is chosen, and when a state
from the end of the queue is picked, then the algorithm takes a breath-first search
approach. Generally, error states are encountered quickest when both strategies are
mixed equally.

In the next step, the algorithm makes use of a function error(state), which
decides whether the state picked in step 3 is an error state or not. As mentioned
earlier, an error state can be an invariant violation, a deadlock or both, depending
on the user’s choice. If an error state is encountered, then the algorithm returns,
and gives as output the trace from the root node to the error state. This trace is
visible for the user as a sequence of operations in the History window of the PROB
tool. The user can also view the history to the error state graphically in PROB?. If
the state is not an error state, then the algorithm continues with step 5.

In step 5, all successor states are first computed and added to the state graph
SGraph. Then all successor states that have not been visited yet, are added to the
front of the Queue and also marked as visited states, because once a state is in the
Queue it will be evaluated by the algorithm. Once all states are evaluated and no
error state has been encountered, the algorithm returns with ok, stating that the
machine is correct.

We mentioned above that the algorithm uses a mixture of a breadth-first and
depth-first strategy for efficiency reasons. This of course only matters, if a model
contains errors or deadlocks.® Usually an error is one of two types: Either it is an
error in an operation, so that it occurs in most states reached by executing this
operation, or it is an error (such as a deadlock) that arises when the machine is
animated for long enough. In the first case, it is best to try out all operations for
all their arguments systematically, which is reflected by a breadth-first search. The
second case, when an error occurs in some long path of consecutive states, calls for a
depth-first search strategy. Neither strategy works well for both kind of errors, but
from experience mixing them equally leads to the best result. For more information
on this and the PROB tool in general, see [38].

’In PROB the user chooses the tab Animate — View — History to Current State
3That is, if the user has chosen to find deadlocks.
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1.4 Discussion: Model Checking versus Mathe-
matical Proof

Model checking is a completely automated method to verify the correctness of a
model. However, is it really the same as a mathematical proof in B? The answer is
no, as the following example shows:

MACHINE Unreachable
VARIABLES z
INVARIANT z € IN
INITIALISATION z =1

OPERATIONS
Increment =

T =+ 1

Decrement =
PRE

The machine has one variable 7, which is a natural number* and two operations,
one for incrementing and one for decrementing x. When we run this machine in
the PROB model checker, then there will be no errors found. Yet we cannot prove
the correctness using B’s proof schema performing an induction! More precisely,
we cannot verify that the decrement operation always holds the invariant. This
is because the precondition of the operation is x # 1. So, if we had a state with
x = 0, then the decrement operation could be executed and we would end in the

state where x = —1, which violates the invariant x € IN. That means that, from a
mathematical point of view, the model is not correct. On the other hand the error
state with £ = —1 can never be reached, because the machine is initialised with

x = 1. Consequently, if a counter of a rocket launcher was specified with this model,
nothing would go wrong as long it was initialised in the same way.

The question here is, if the initialisation belongs to the model, or not. More
generally, we have to ask how unreachable states should be treated. When proving
the correctness mathematically, there is no distinction made between reachable and
unreachable states. This is why the proof of the intuitively correct model, above,
failed. If we want to make this distinction and decide that only reachable states
concern us, then the unreachable states can get in the way of a mathematical proof.

4The notation INmeans in B the set of non-negative integers
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Model checking works better in this situation, because it only deals with the reach-
able state space. Of course, we then have to regard the initialisation as part of the
model, and any implementation has to initialise its variables in a respective manner.®

5The question above has a bit of a philosophical nature, and could explain why theses with a
related topic are written to obtain a doctor degree in philosophy in many countries.



Chapter 2

Symmetry

2.1 Motivation

Model checking is a very friendly way of verifying a specification. A system designer
only has to press a button, and the model checker does all the work for him. The
remaining question is how long that might take. Indeed, the size of the state space
grows exponentially with the number of state variables. Since a standard model
checker has to go though the entire state space, the time for model checking also
increases exponentially. This is known as the state space explosion problem in model
checking. Consequently, there is a great incentive to reduce the state space somehow,
and there have been various approaches developed in order to do so. Those meth-
ods include partial order reduction [21], symbolic model checking [44] or symmetry
reduction [28]. For a nice summary of the most popular methods, see [55].

In this thesis, we want to concentrate on symmetry reduction, because symme-
tries arise naturally in B models. We will explain shortly why that is, but first
we want to explain intuitively what we mean by symmetry with regard to model
checking. When we look again at the state space of the security door example from
Section 1.1 in Figure 2.1, then we see, by drawing a vertical axis through state s,
that the state space is symmetric. This type of symmetry, though, is not very useful,
because we have to develop the entire state space in order to find such symmetries,
which is what we just wanted to avoid.

|
@)=

op, cl cl, cl cl, op

Figure 2.1: State graph from security door example
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Let’s have a closer look at the states, instead. We see that the two states sy =
(d1 = op,d2 = ¢l) and s, = (d1 = cl, d2 = op) are somewhat similar. Swapping
around the numbering of the doors in sy leads directly to state sy and vice versa. In
fact, we don’t need to know which door is the first or second one to reason about the
system. All we wanted to specify is a two door system such that, at most, one door
is open at all times. Since there is just a set of doors and no distinction between
individual doors, we have to verify the requirement only for one of the two states.
For the other state it follows by swapping d1 with d2. This kind of symmetry is
far more useful, because it can be applied during the exploration of the state space.
When encountering a new state s, it is checked first, if that state emerges from an
already explored state by exchanging interchangeable elements. If this is the case,
then s no longer needs to be verified.

We now want to explain how symmetry arises in B. Let’s take for example the

following B-machine, modelling a very simple database of members of a club, with
two operations for persons to join or leave the club.

MACHINE Club

SETS
Person

VARIABLES
member

INVARIANT
member C Person

INITIALISATION
member = §)
OPERATIONS
join(p) =
PRE
p € Person A
p & member
THEN

member := member U {p}
END:

leave(p) =
PRE
p € member
THEN
member := member — {p}
END
END
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The machine contains one deferred set Person. That means, the cardinality of
the set is not specified, and its elements are not enumerated (and are given no name).
Consequently, neither within the invariant nor within the operations, can the model
refer to a specific element of that set. We assign a cardinality to the deferred set,
and the set is instantiated, e.g. Person = {pl, p2,p3}. This is done because we
need to make the state space finite in order to be able to decide via model checking,
if the model is correct. For this instantiation, the state space of the model would
look as depicted in Figure 2.2.

root

initialise_machine

leave(p1) leave(p2) leave(p3)

join(p1) join(p2) Join(p3)

Sq
member = {p3}

leave(p2) leave(p3) leave(pl) leave(p3) leave(pl) leave(p2)

join(p1) join(p3) join(p2)

S7
member = {p2, p3}

join(p2)  join(pl) join

(»
member = {pl, p3}

leave(p2)

n3) join(p2)

member = {pl, p2, p3}

Figure 2.2: State space of the club machine

join(pl)

We can see that the states so, s3 and s, are symmetric, in that

1. the states can be transformed into each other by permuting the elements of
the set Person;

2. if one of the states satisfies (respectively violates) the invariant, then any of
the other states must also satisfy (respectively violate) the invariant;

3. if one of the states can perform a sequence of operations, then any other state
can perform a similar sequence of transitions, possibly substituting operation



2.1. Motivation 23

arguments in the same way that the state values were permuted. For exam-
ple, state s can perform leave(pl), state 3 can be obtained from state sy by
replacing pl with p2 and indeed, state s3 can perform leave(p2).

The same is true for the states ss, ss and s;. Consequently, the state space can be
reduced as in Figure 2.3.

root

initialise_machine
\l

~
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—~
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@
—~
S|
—_
—
—
@
Iy
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—~
=
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@
Iy
IS]
ca
—~
=
w
=

member = {pl, p2, p3}

Figure 2.3: State space of the club machine with symmetry

Let’s have a closer look at the new state space. The state space is now reduced
to a set of representative states, which are the states 1,2,4 and 8 from the original
state graph. We can see that, for example the transitions join(pl) and join(p2)
performed directly after the initialisation, lead to state s2 = (member = {pl}).
This is because the elements of the set Person are interchangeable, so that both
transitions lead to the same representative state.

Even for this small example, we have already halved the number of states that
need to be considered. The number of transitions is indirectly reduced through
the reduction of the number of states. Note that in Figure 2.2 we had each edge
representing a transition in each direction. We will explain in Section 2.3 why the
suggested state space reduction is sound. Beforehand, we need some mathematical
background described in the next section.
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2.2 Mathematical Background to Symmetry

Symmetry and group theory are very closely related. Indeed, mathematical groups
are often used to express symmetries. Because of this close relationship, we need
to introduce a few definitions and notations from group theory. We’ve taken the
following mathematical definitions from [4].

Definition 2.1 A group is a set G together with a multiplication o on G, which
satisfies three axioms:

1. The multiplication is associative, that is, (x o y) 0o 2 = z o (y o 2) for any three
elements z,y, 2 in G.

2. There is an element e in G, such that toe =12 = eox for every z in G. The
element e is called identity element.

3. Each element z of G has a so called inverse !, which belongs to the set G

and satisfies t ' oz =e=xo0z7 "

Definition 2.2 A subgroup H of a group G, is a subset of G, which itself forms a
group under the multiplication of G, we write H < G.

Definition 2.3 Let X = {x, ..., z,} be a subset of a group G then, (z, ..., z,)
denotes the smallest subgroup of G containing {1, ..., z,}. The subgroup is gen-
erated by X . If the subgroup equals to G itself then X is called a set of generators

for G.

For this work we are particularly interested in permutation groups. A permuta-
tion of a finite set X is a bijection from X onto itself, a : X — X. The set of all
permutations of X form a group Sx under the composition of functions. This group
has as identity element e the permutation, that does not exchange any element of X.

Example 2.4 Let’s take the set of integers S = {1,2,3,4,5,6}. The function
a:q{1,2,3,4,5} — {1,2,3,4,5} with {1 —-4,2—23—54—1,5—6,6+ 3} is
a permutation of S. It is

123456
1492516 3|

This notation from Example 2.4 can be shortened by using cyclic notation. The
permutation « in cyclic notation is written as

a = (14)(356).

Inside each pair of brackets, an element is sent to the element following it, and the
final element is sent to the first. Which means, 1 is sent to 4 and 4 is sent to 1, 3 is
sent to 5, 5 to 6, and 6 to 3. Elements that don’t occur in the cyclic notation remain
unchanged. A permutation, that can be described inside a single pair of brackets,
is called a cyclic permutation. Any permutation can be written as a set of cyclic
permutations. We say that the permutation is in cyclic notation.
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Definition 2.5 The permutation group over the set of the first n positive integers
is called the symmetric group of degree n, and denoted S,.

Example 2.6 The group S 23, = S3 has the identity element
[1 23
““l1 23|
and the following group elements:
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
21 3 ({13 2|13 1232 1|2 31]|
In cyclic notation we have S5 = {e, (12), (23), (132), (13), (123)}

Permutation groups can be used to describe symmetries on geometric objects.

Example 2.7 The group

{12 3] e 20} e

is a subgroup of Ss, since e is in G and the elements a = (132) and g = (123) are
inverse of each other. The concatenation oo § = (132) o (123), where 3 is applied
first, gives, 1 is sent to 2 by 4 and 2 is sent back to 1 by «, 2 is sent to 3 by # and 3
is sent back to 2 by «a, 3 is sent to 1 by § and 1 is sent back to 3 by a, so a0 =¢
is indeed the identity. All other concatenations of two elements in G are in G, too,
so (G is a group.

If we consider the set X = {1,2,3} as numbering for the edges of a regular
triangle, then the group G is exactly the set of permutations of X, that describes all
symmetric triangles under rotation around the triangles midpoint M, see Figure 2.4.

13 3 — 2 2 ¥—— 1 13
Figure 2.4: Rotational symmetry of a triangle

The reflections on a line between the midpoint M and any triangle vertex can be
described with the transpositions (12), (13) and (23). Those transpositions together
with the elements of the group G build the group S3. So we see that S3 describes
all symmetries in a triangle. That is to say, all elements in S3 preserve the structure
of a triangle.



26 Chapter 2.  Symmetry

The concept of symmetry described with permutation groups can also be applied
to Kripke structures. Definitions in the following are adapted from Section 14 of [13].

Definition 2.8 Let K = (S5, S, R, AP, L) be a Kripke structure. A permutation «
of § is called an automorphism of the Kripke structure K, if and only if o keeps the
transition relation R C S x S. That means, o meets the following condition:

($1,8) € R = (a(s1),a(s2)) € R Vs1,8 € 85.

Let G be a permutation group on S, then G is an automorphism group of K, if and
only if every permutation o € G is an automorphism of K.

Definition 2.8 does not refer to the labelling function L of the Kripke structure,
but only to the transition relation R. Automorphism groups that also leave the
labelling unchanged are called invariance groups.

Definition 2.9 Let G be an automorphism group of the Kripke structure K =
(5,8, R, AP, L). Then G is an invariance group for an atomic proposition p € AP,
if and only if the following condition holds:

Vae G)(VseS)(peLis)<pe Llal(s)))

We say that p is invariant under G. We call G an invariance group, if every atomic
proposition in AP is invariant under G.

Example 2.10 Let’s continue Example 1.2. There we had the Kripke structure
K = (5,5, R, AP, L) describing a security door, with:

S = {s0, 81, 8}

So = {81}

R = {(s0,51), (51, %), (51, 82), (82, 81) }

AP ={dl =op,dl = cl,d2 = op,d2 = cl}

L(so) = {op, cl}, L(s1) = {cl, cl}, L(sy) = {cl, op}

Let a be a permutation on the set of states S, that exchanges sy with sy and
leaves s; fixed. If we look at the graphical representation of the Kripke structure
K in Figure 1.1 from Example 1.2, we see intuitively that « is an automorphism.
To prove this intuition, we have to show, that for each transition (s;, s;) € R, with
i,j €0,...,2, there is a transition (a(s;),a(s;)) € R, with 4,7 € 0,...,2. We are
going to take the transition (sp, $1) as example, all other transitions can be examined
in a similar way. For the transition (sy, $1), we have (a(sp), a(s1)) = (2, s1), which
is a transition in R. The same can be observed for all transitions in R, so « is
an automorphism of K. Since applying « twice results in the identity, we have the
automorphism group G = (e, «) for K. This group is also an invariance group, since
both states sy and s, are labelled with op and cl.
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We haven’t explained yet how the symmetry within Kripke structures can help
to reduce the effort in model checking. Before we do this, we need one more concept
from group theory:

Definition 2.11 Let X be aset z € X, and G a permutation group on X. The set
of all images a(z), as « varies through G, is called the orbit of z and written Gz:

Gr ={a(z) | v € G}
The set of orbits are equivalence classes under the relation
z ~ vy, if Ja € G such that a(z) = y.

Each equivalence class Gz can be represented by one representative rep(Gz) of Gx.

Applying this concept to Kripke structures, we can reduce the model to its
quotient model, flattening all states in one orbit to their representative state.

Definition 2.12 Let K = (5,5, R, AP, L) be a Kripke structure and G an invari-
ance group on S. The quotient model of K is a tuple Q¢ = (5,852, R, AP, L)
where

1. S¢ ={Gz |z € S}, is the set of orbits of S,

2. 8% ={Gz | z € §°} is the set of orbits, that have an initial state as represen-
tative,

3. Re ={(Gz,Gy) | (z,y € R)} is the transition relation,

4. L is the labelling function and given by Lo (Gz) = L(rep(Gx)).

Since @ is an invariance group, R and L are independent of the chosen repre-
sentative.

Example 2.13 We want to take once again our security door example. We've
already shown that the group G = (e, a), where a exchanges the states sy and s,
is an invariance group on K. Now, the orbits are {sp, s2} and {s;}. We take sy and
s as the representatives and obtain the quotient model, see Figure 2.5.

Example 2.14 Let’s now look at the slightly larger Club example. We assume
again that the deferred set Person is instantiated as a set with three elements.
Consequently, we have a finite set of states, and we can represent the machine with
the following Kripke structure K:
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:
(===

op, cl cl, cl

Figure 2.5: Quotient model of security door example

S = {817 52, 83, 84, S5, S64 57, 88}7
SO = {81}7
R=A{
(51,82), (51, 83), (51, 84),
(82, 51), (52, 85), (82 86),
(835 51), (835 85), (83, 57),
(845 51), (85 86), (84, 57),
(855 52), (855 83), (85, 88),
(86, 52), (S5 84), (S5, 58),
(‘977 S3>7 (‘977 S4>7 (‘977 S()a
(885 55), (585 56), (s, 57)
12
AP =/{
card(member) = 0,
card(member) =1,
card(member) = 2,
card(member) = 3
I3
L(s1) = { card(member) =0}, L(s2) = { card(member) =1},
L(s3) = { card(member) = 1}, L(ss) = { card(member) =1},
L(ss) = { card(member) =2}, L(ss) = { card(member) =2},
L(s7) = { card(member) =2}, L(ss) = { card(member) =3}

In order to apply symmetry reduction, we are only interested in those auto-
morphisms that also leave the labelling invariant. That means, we need to find
the invariance group G of K. We discussed earlier how elements of deferred sets
can be exchanged with one another. This is where we want to start looking for
automorphisms.

In the Kripke structure, see Figure 2.6, there is no reference to any concrete
element. The Kripke structure only reflects how many elements are in the set-
variable member. It seems that we can just swap the states s, and s3, but this does
not lead to an automorphism.

Let a be the permutation that swaps s with s3, and leaves all other states fixed.
This permutation is not an automorphism of the Kripke structure K, since the
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Y
card(member)

card(member) card(member)

card(member)

card(member) = card(member) = card(member)

‘
0 |

card(member)

Figure 2.6: Kripke structure of the club machine

transitions
(a(s2), (s6)) = (83, 86) and (a(s2), a(s6)) = (52, 57)

are not part of the relation R of K.

However, if we exchange the states sg and s; as well, then we do indeed get an
automorphism. When we look at the labelling of those two states, we see that they
are the same. So the exchange of two elements of the deferred set did lead us to an
automorphism, after all. Since the other states are not permuted, this automorphism
is already an element of our invariance group G. In the same fashion, we get another
two automorphisms, one by swapping s2 with s4, and s5 with s7, and another by
swapping s3 with s4, and s5 with s6. So, apart from the identity, we have now the
following three automorphisms:

(1 2 3 45 6 7 8]
“=l1324576s|" @06

1 23456 78
B=114327655s|=@0ED

1 23456 78
T=1124365 78| G006
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There are more automorphisms of the Kripke structure as we can infer from the
symmetric structure of the state space, see Figure 2.6, but none of them leaves the
labelling invariant. So the group

G: {6,@,5,7}

1s our invariance group.

Now let’s calculate the orbit for each state. For the state s;, the orbit contains
only the element s; itself, since all automorphisms in G map s; onto itself. In the
case of s, the situation is more interesting. The state s, is mapped to s3 by «, to
s, by 3, and to s2 itself by v, so the orbit of s, is the set {s, s3,5,}. Below we list
the orbit for each state:

Gs1: &

GSQ 852,83, 8
GS3 852,83, 8
GS4 852,83, 8
Gss S5, 86, St
Gsg : S5, 86, St
GS7 . 85,86, 57
GSS oS8

The listing shows that we have four equivalence classes, namely: {s;}, {s2, s3, 84},
{ss, s6, 57}, and {sg}. Choosing exactly one representative of each equivalence class
leads to a reduced state space, see Figure 2.7.

The quotient model of K is Qg = (S¢, S, R, AP, Lg) where:

SG = {Gsl, GSQ, G85, GSS},

S(C)v‘ = {Gsl}a

R={
(GSl, GSQ),
(GSQ, G81>,<G82, GS5),
(GS5, G82>,<G85, GSS),
(GSS, G85>

2
AP ={
card(member) =0
card( ) =1
card(member) = 2,
( ) =3

card(member

Lo(Gsy) = L(s1) = { card(member) =0 },
Lo(Gsy) = L(sg) = { card(member) =1 },
Lo(Gss) = L(ss) = { card(member) =2 },
Lo(Gss) = L(ss) = { card(member) =3 },
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v

G,S’l

0

(1 S¢ 2
card(member) =1

9,

(TSr

0

card(member) = 3

Figure 2.7: Quotient model of the Kripke structure K

Unlike our little examples, the reduction from the model to the quotient model
can be quite respectable, so that model checking of the quotient model needs far
less resources. The following Theorem states that model checking of a model is
equivalent to model checking of the quotient model.

Theorem 2.15 Let K = (5,5, R, AP, L) be a Kripke structure, G be an automor-
phism group of K, and f be a CTL* formula. If G is an invariance group for all the
atomic propositions p occurring in f, then

K.skEfe Ko Grl=f

where K¢ is the quotient model corresponding to K.

For a proof of this theorem, see [13] chapter 14.

We haven’t yet discussed how easy or difficult it is to apply symmetry during
model checking. The modification of the model checking algorithm is fairly straight
forward. Instead of exploring every single state s, each state is mapped by a function
¢ to the unique representative state ¢(s) of the orbit it belongs to, see [28]. So we
need to calculate the orbit relation to determine ¢. This leads us to the so called
orbit problem, which asks in our case, if two states belong to the same orbit. We
give a formal definition of this problem.
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Definition 2.16 Let G be a group acting on the set {1,2,...,n}, which has a finite
set of generators. Let D be a set and z,y € D" two n-dimensional vectors. The
question, whether there exists a permutation o € G such that y = a(z), is called
the orbit problem.

Another related mathematical problem is the Graph Isomorphism problem. We
will reduce the orbit problem of symmetry reduction to the Graph Isomorphism
problem in Section 2.4. Therefore we want to introduce here some definitions from
graph theory adapted from [18].

Definition 2.17 A graph is an ordered pair G = (V, F), that consists of a finite set
V' of vertices and a finite set £ = V x V of edges. A graph is called a (un-)directed
graph, if the pairs of vertices in £ are (un-)ordered pairs.

Unless stated otherwise, a graph is always a directed graph in the following.

Definition 2.18 Two graphs G; = (Vi, Ey) and Gy = ( Vs, Es) are isomorphic if
there is a bijection f : V3 — V5 such that

(z,y) € By if and only if (f(z),f(y)) € B,

where (z,y) and (f(z),f(y)) are ordered pairs. The mapping f is said to be an
1somorphism between G and Gy, We will also use the notation Gy = Gy for
isomorphic graphs. Furthermore, if G; = G5 then f is called an automorphism of

Gi.

The set of automorphisms of a graph G form a group under the operation of
function composition, which we will denote Aut(G). Below we present an example
for two isomorphic graphs.

Example 2.19

eaL et

Figure 2.8: Two isomophic graphs

The function f =
H in Figure 2.8.

1 2
2 0 b i fz > is an isomorphism between the graphs G and
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The question if two given graphs are isomorphic is known as the Graph Isomor-
phism problem. The complexity of the orbit problem and the Graph Isomorphism
problem are related by the following Theorem.

Theorem 2.20 The orbit problem is as hard as the Graph Isomorphism problem.

A proof is given in [13] chapter 14. The Graph Isomorphism problem is in the
NP complexity class, but not known to be NP-complete. So the same is true for the
orbit problem and it is therefore just as mathematically challenging. Consequently,
the computational effort required to find symmetries within large state spaces can
be quite high.

2.3 Soundness of State Space Reduction

Now we want to outline why this state space reduction is sound. Let f be a permu-
tation function over the deferred sets of a machine such that only elements of the
same deferred set are permuted. We have to show, essentially, that for any state s
and its permuted state f(s), the truth value of a predicate P in s is the same as in
f(s).

Let’s now formalise the definition of f and the above statement about f. In order
to do so, we will adapt some notations and definitions from [39] and conclude with the
Theorem and Corollary presented there. Variables and constants in B-expressions
and predicates, have as values some basic or nested data structures. There are only
three types of basic data structures. First there are atoms, i.e. elements of deferred
or enumerated sets, which includes integers or Boolean values. Then we also have
pairs of values or sets of values. Any other data structure can be constructed out of
these basic types. For example, a relation, which is very often used in B-models, is
just a set of pairs. In the following, we want to represent the constants and variables
of a machine by a vector of variables V := (v1,...,v,). So, constants are simply
regarded as variables that don’t change their value.

We will also use some notation taken from [37]. Any B operation operating
on the variables V with input values z and output values y has a normal form
characterised by a predicate P(z, V, V' y), where V' are the variables after the
execution of the operation. The normal form assumes that an operation has only
guards instead of predicates. Guards allow the execution of an operation only when
they are satisfied. As a reminder for the reader, an operation with preconditions
can always be executed, but there is no guaranteed behaviour of a machine if one of
its operations is called outside its preconditions. Guarded operations are also called
events. Any B operation of the form X «— op(Y') with input values z and output
values y corresponds to an event denoted by op.z.y. Characterising a B operation
as a predicate gives rise to a labelled transition relation on states. Two states s and
s’ of a machine M are related by an event op.x.y, when the predicate P(a,s,s’, b)

holds. We then write s =) 5"
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We continue now with the definition of a permutation function over a set of
disjoint sets:

Definition 2.21 Let DS be a set of disjoint sets. A permutation f over DS is a total
bijection from UgepsS to UsepsS such that V.S € DS we have {f(s) | s € S} = S.

The deferred sets in a B machine are disjoint, so we can use this definition to
define a permutation function for a B machine.

Definition 2.22 Let M be a B machine with deferred sets DSy,..., DSy and enu-
merated sets ESi, ..., ES,,. A function f is called a permutation for M if and only
if it is a permutation over DSj, ..., DS, and leaves any other basic datatypes, such
as integers, Boolean values or values of the enumerated sets ESy, ..., ES,, fixed, i.e.

fle)=a if v € Z orz e BOOLor x € ES; for some j € {1,...,m}.

We extend the definition of f by lifting f to pairs of values and sets of values as
follows:

f@—y)=[flz)—f(y)
f<{$17"'7$n}> = {f<$1 77f($n>}

We further lift f to state vectors by defining

f<<’l}1, R vk>) = <f<1}1), s ,f('Uk)>

Example 2.23 Let’s consider the Club machine with its deferred set Person =

{p1, p2, p3} and a permutation function f with f = {ps — ps3, p3 — p2}. Applying f
to the state s5 = (member = {p1, p2}) we have:

f((member)) = (f({p1, p2})) = {f (p1), f(p2)})) = ({p1, p31)-

We’ve now defined a permutation function, and we need to prove that it preserves
the evaluation of any expression or predicate. Before we state the respective theorem,
we need a few more notations. In the following, we represent a state by a substitution
of variables with respective values. Let V = (vy,...,v,) be the vector of variables
and C = (¢y,...,c,) the vector of the respective values in some B expression or
predicate, then we represent the state as a substitution of the form

Vi=Cl=[v,...,0:=c1,..., ¢

The variables in V' can be state variables, machine constants, quantified variables
and local operation variables. To denote the value of an expression £ in a state
[V := (], we write

E[V = (C].
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The type of this value is constructed from the sets of the machine. In a similar way
we express the Boolean value of a predicate P in a state [V := C] with

PV :=C].

The B-language has various set operators, but most of them are defined with more
basic operators and/or set comprehension. For example, the subset operator can be
written as

SCT<=Va(zeS=zeT).

Consequently, we can concentrate on the core expression and predicate syntax as it
is defined in [1]. This core syntax is shown in Figure 2.9 and Figure 2.10.

E = Var
| Enum P:= PAP
| (B,B) | -P
| ExFE | EFE=F
| IP(E) | Vaz.(zeS=P)
| {z |z €S AP} | EFcFE
| E(E)
Figure 2.9: Core syntax for expressions Figure 2.10: Core syntax for predicates

Theorem 2.24 For any expression F, predicate P, state [V := (] and permutation
function f:

fE[V = C]) = E[V := f(C)]

PV :=C] < PV :=f(C)]
Proof 2.25 The proof of the theorem can be done by induction over expression and
predicate terms. The induction is mutual, since expressions may contain predicates,
and vice versa. We want to present a few cases of the induction. Those cases not

shown are proven in a similar way. First we consider the base case where FE is an
enumerated value ev:

flev[V = ()
= f(ev) ev has no free variables
= ev f leaves enumerated values fized

= ev[V:=f(C)] ev has no free variables
The case of a membership predicate makes use of the injectivity of f:

(E1e€ E2)[V = f(C)]

E1[V = f(C)] € E2[V = f(C)] substitution distributes
f(EL1[V = C]) € f(E2[V := C]) induction hypothesis
E1]V = C]| e E2[V := (] [ is injective

&
&
&
& (Ele E2)[V = (]
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The case of set comprehension makes use of the mutual induction:

{z |z € SAP}V :=C]

= {z|xzeS[V:=C]AP[V:=C]} substitution distributes
= {z ]z e S[V:=f(C)] APV :=f(C)} induction hypothesis
= {z |z € SAPHV:=f(C0)] substitution distributes
= f{z|ze SAP}HV :=C)) induction hypothesis

The case of a predicate with universal quantification

(V- (zeS= P)[V:=f(C)
& Vo -(ze SV :=f(C)= PV :=[f(C)]) substitution distributes
& Vo (reS[V:=Cl= PV:=C) induction hypothesis
& (Vo-(reS=P)V:=C|

Corollary 2.26 From Theorem 2.24 we can conclude that every state permutation
f for a B machine M satisfies

VseS:skE=1Tif andonly if f(s) =1
Vsi €8, Vs €8s =0y 52 f(51) =0 payr0 f(52),

where S is the set of states, and I the invariant of M.

We explained so far what kind of symmetries we are looking for, and showed
that reducing the state space using those symmetries is sound. We can now start to
describe how we approach this. In the next section we want to introduce an essential
part of our method to find symmetries, the graphical representation of B-states.

2.4 Viewing States as Graphs

Since deferred sets are used frequently in B models, we also have symmetries arising
very frequently. The question, now, is: How do we detect those symmetries during
model checking? We have developed a method to do so, in [56] and improved the
idea in [51]. An essential point of our approach is the translation of individual states
of a B machine into state graphs. This is what we are going to explain in this section.

Indeed, binary relations are at the heart of the B method, and are used to
represent more complicated data structures (functions, sequences). Binary relations
can be translated into directed coloured graphs in a natural way, thus translating
the orbit problem of symmetry reduction into the Graph Isomorphism problem (see
also [14, 45] or Section 14.4.1 of [13]). The idea does not sound so beneficial, because
we already know from Section 2.2 that both problems have the same complexity.
However, the graphs constructed from states are much smaller than a complete state
graph of a model, so the computational effort is much lower in practice.

Any state consists of the models set of variables associated with certain values.
Such values in B are either elements of basic sets (including Boolean values and
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integers), sets of values, ordered pairs, relations or combinations of those data types.
Let us first discuss the simple data types.

For a variable v whose value sy is an element of a set S, so sp € 5, we have
the graph in Figure 2.11. The value of the variable is described by a vertex, and

SOQL D root

Figure 2.11: Graph for an atom

the variable itself is represented by an edge labelled with the name of the variable
pointing to a special root vertex.

Is the value of the variable a set {so,...,s,} € 5, then we have the graph as
shown in Figure 2.12. Here, we have, for each element of the set {so,...,s.}, a

’ OKD root
WO

Figure 2.12: Graph for a set

vertex in the graphical representation. From each vertex there is an edge, labelled
with the name of the variable, pointing to the root vertex. In both state graphs,
the edges indicate the connection between the variable and its value in a particular
state.

For a relation v € § < T, the graphical representation is slightly different, in
that the root vertex is not truly needed. The graph for a state where the value of the
variable v is a set of pairs {(so, f), .-, (Sn, tm)} € S x T is depicted in Figure 2.13
below:

D 100t
0O @t
SnOT’:.tm

Figure 2.13: Graph for a relation

In this graph, the value of the relation, v, is represented by edges that indicate
specific ordered pairs, whose edge labels denote the variable they encode. Note
the colouring of the vertices: Fach deferred set is assigned its own unique colour.
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Furthermore, all elements of enumerated sets, as well as all other non-symmetric
elementary datavalues (integers, booleans), get their own unique colour. An ordered
pair can be regarded as a relation with a single pair, so there is not need for another
graphical representation. Full details about the translation of basic data structures
to graphs have been presented in [56].

For more complicated, nested data types, we have to introduce intermediary
vertices into the graph - one for each nested value.

Example 2.27 Let v be a variable whose value is a set containing sets: {{so}, {s1, s2}}.
The respective graph is depicted in Figure 2.14.

D T00t
V( N
To . ‘ I

$61_t0T $61_t0/4 \$6l_t0
O O

O

So S1 52

Figure 2.14: Graph for a set of sets

We give another example for a more complex data structure further below, but
first we want to discuss the algorithm to construct those graphs. The basic idea
is to compose individual graphs that represent each value of a variable in a state,
to obtain the state graph. The algorithm to construct the state graphs has been
presented in [55]. However, the current implementation of the algorithm presented
there is slightly different, therefore we want to present here a refined version, which
also corrects an old implementation in a few points. The algorithm takes a B-state
as input and creates for each variable a subgraph representing its value. Unlike the
presentation of the algorithm in [55], in the current implementation those subgraphs
share vertices of atomic elements that occur as part of the data structure of several
variables, see 2.15.

Example 2.28 Let’s have a model with two deferred sets A, B and two variables
S and T, where S C Aand T'€ A < B. Let s = (S = {z1, 20,23}, R = {(21, 11)})
be a state of the model. The graphical representation of the state s would look
as depicted in Figure 2.15. We can see that the vertex z; has been reused for
representing the relation R.

Next, we want to describe the algorithm as it is implemented in PROB 1.3.1.
There are likely to be some optimisations in future versions. The algorithm is sep-
arated into several sub-algorithms according to their function. The main algorithm
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Figure 2.15: Graph for the state s = (S = {z1, m, 13}, R = {(21, 1) })

state_graph calls var_graph with the parameter ‘root for the parent vertex and a
variable-value pair of the state. Then the algorithm var_graph calls the algorithm
for creating an atom, a set or a relation depending on the data structure of the value.
As mentioned earlier, all data structures in B can be constructed from atoms, sets
or relations.

Algorithm 2.29(state_graph(state))

Input: A State value state

1.

2.

// Setup vertex colours using global variables

global dsets := { DSy, ..., DS,}; // deferred sets used in the machine

. global esets := {ESy, ..., ESy,}; // enumerated sets used in the machine

global dcol := an injection from {0,...,n} to a set of colours, Colours
global zcol := any element from Colours — ran(dcol);
global used_col := ran(dcol) U {xcol};

global element_rep := {}; // relation of elements to their vertex in the graph
// representation

. // Draw graph

for all variable-value pairs such that (v, var) in state do
var—_graph(‘root‘, v, val) ;
end for
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In order to remember the atomic elements (and their representative) that have been
added to the graph already, we have introduced the variable element_rep to hold
pairs consisting of atomic elements and their corresponding vertex in the graph.
The denotation of the other global variables we took from [55]. The variables dsets
and esets denote the sets of deferred- and enumerated sets in a model, respectively.
Further we have an injective function dcol, giving each deferred set a unique colour.
The variable zcol is given some unused colour to be reserved for vertices in X. The
set of used colours is hold in the variable used_colours.

Algorithm 2.30][assign_colour(val, vertex)]

Input: B value, val, and corresponding vertex, vertexr

1. if val is empty set then
assign vertex with colour ¢ € Colours \ used_col;

2. else if 3.5, such that S, € dsets A val € S, then
assign vertex with colour dcol(p);

3. else if 3.5, such that S, € esets A val € S, then
assign vertex with colour ¢ € Colours \ used_col;
used_col := used_col U {c};

>

else  // wal is nested, so use colour for vertices in X
assign vertex with colour zcol;

5. end if

The algorithm assign_colour(val, vertex) takes a B-value and the corresponding ver-
tex in the graphical representation as input, and assigns the vertex the respective
colour. If the B-value is an element of a deferred set, then its vertex gets the colour
of that deferred set. In case of an element of an enumerated set, the vertex gets a
new colour that hasn’t been used yet. For nested values the predefined colour zcol
is used.

Algorithm 2.31[var_graph(Vyerent, v, val )]

Input: Vertex Vpgrent, and variable v, with value val

1. if wal is a set then
set( Viparent, v, val);

2. else if val is an atom then
atom( Vparent, v, val);

3. else if val is a relation then
relation( Vyarent, v, val);
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4. else
// wal is a pair
val :== {wval}; // new value has same graph
relation( Vygrent, v, val)

5. end if

We want to describe next, the implementation of the sub-algorithms that construct
the graphical representation of atoms, sets and relations. Each algorithm takes
the parent vertex parent, a variable v and its value val as input parameters. In
case of an atom, such as v = wvaly the algorithm is fairly simple. Depending on
whether the atomic element wvaly has been represented before in the graph, i.e.
valp € dom(element_rep), during the construction of some other data structure,
the algorithm either draws an edge from an existing vertex to the parent vertex, or
creates a new vertex V,q,, assigns it a colour and draws an edge from V,,, to the
vertex parent, see also Figure 2.11.

Algorithm 2.32[atom(Vyarent, v, val)

Input: Vertex Vigent, and variable v, with value val = val

1. if wvaly is in the domain of element_rep then
Draw edge, element_rep(val) s parent;

2. else
Create vertex Viyu;
assign_colour(valy, Viay);
v
Draw edg@, V'ualo = parent

3. end if

For creating a set, the algorithm set does consider several cases. A special case is
when the set is empty and the parent is root. This case often occurs when a set
variable is initialised. Step 1 of the algorithm treats that case, by drawing an edge,
labelled with the name of the variable, from root back to root. Note, that step 1
handles only the case when the parent vertex of an empty set is the root vertex.
When the empty set is part of a nested data structure, it is handled like an atom
within such a structure in step 3. Step 2 to 6 take each element wval; of val and
create a new vertex V,,. for that element, unless it already has a representation.
A newly created vertex gets a colour by calling the algorithm assign_colour. If the
parent vertex of V,,;, is the root vertex, then an edge, labelled with the name of the
variable v, is drawn from V. to root. Is root not the parent vertex of V,,, then the
edge from V,,, to its parent vertex gets the label $to_el. This special label is only
used when the value of the variable v is a nested data structure and the algorithm
set has been called recursively to construct that nested data structure. When an
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element val; of val is not an atom or the empty set, then the algorithm var_graph
is called recursively in step 5, with an V,,;, as parent vertex, the variable v, and the
set element val; as its value.

Algorithm 2.33[set(Vyarent, v, val )]

Input: Vertex Vuen, and variable v, with value val = {val, ..., val,}

1. if val is empty and root is parent then
Draw edge, root + root; // self loop

2. else
forall0 <:<ndo

3. if val; is not in the domain of element_rep then
Create vertex V4, such that if V4, is not an atom or the empty set,
then V,u, € X;
assign_colour(val;, V,a,);
add pair (val;, Vya,) to element_rep

else
Set Vi, = element_rep(val;);
end if
4. if Vpgrent = 100t then

Draw edge, V'uali '1) Vpar@nt;
else // different edge label for nested data structure

Draw edge, Vi, $Ito—_§l Vparent;
end if
5. if val; is not an atom or the empty set then
var—_graph( Vo, , v, val;);
end if
6. end for
7. end if

When creating the graphical representation for a relation, there are again several
cases to consider: The case when the relation is empty is treated the same way
as we discussed for an empty set. Now, each element of a pair in a relation can
either be an atom or not, and if it is an atom, it might have been represented in
the graph through another data structure already. The algorithm relation starts
with a loop going through all pairs (val;, val;) of the relation. Steps 3 and 4 decide
independent from each other, if there needs to be a vertex created for the elements
val; and wval; respectively, or if an existing vertex can be taken for the remaining
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steps. The next step draws an edge from the vertex representing val; to the vertex
representing val;, if the parent vertex is the root vertex. If the parent vertex is not
root, then there are edges constructed from the vertices val; and val; to the parent
vertex parent. The edge from wval; to the parent vertex has the label $from and the
edge from wval; to the parent vertex has the label $to_el. The different labels are
used to distinguish between the first and second element of a pair. This construction
is necessary if a relation is part of a nested data structure, to avoid the occurrence
of false symmetries. Note that we have also used the label $to_el for sets earlier.
We did this to reduce the number of different edge labels. When we explain the
translation from state graphs to vertex-coloured graphs in Section 3.4, we will see
why reducing the number of edge labels is an advantage. Also, note that for a
relation the root vertex is not used. Similar as for drawing a set, for any element of
a pair of the relation that is not an atom or the empty set, the algorithm var_graph
is called recursively for that element.

Algorithm 2.34[relation(Vyarent, v, val )]

Input: Vertex V,gent, and variable v, with the value
val = {(valy, valy), ..., (val,_1,val,)}

1. if val is empty then
if empty set is not in the domain of element_rep then
Create vertex le{}
assign_colour(val, Vialy, )
add pair (val;, le{}) to element_rep

v
= Vpar@nt ;

Draw edge, V,
else

Draw edge, element_rep({}) — Viarent;
end if

end if

al{}

2. for all (val;, val;) € val do

3. if wal; is not in the domain of element_rep then
Create vertex V4, such that if V,,, is not an atom or the empty set,
then V,u, € X;

assign_colour(val;, Vya,);
add pair (val;, Vya,) to element_rep

else
Set Vi, = element_rep(val;);
end if
4. if val; is not in the domain of element_rep then

Create vertex Vi, such that if V4, is not an atom or the empty set,
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then V,u, € X;
assign_colour (val;, Vi );
add pair (valj, Vuay) to element_rep

else
Set Vi, = element_rep(val;);
end if

5. if Vpgrent = 100t then
Draw edge, Vi, o valy )
else // Viparent is not 'root’

$from el_to
Draw edgesa V'Uali 'f—> Vpar@nt7 V'ualj $'2> parent ;
end if
6. if val; is not an atom or the empty set then
var—graph( V., v, val;);
end if
7. if val; is not an atom or the empty set then
var—_graph( Vyay,, v, val;);
end if
8. end for

The following Theorem, taken from [55], states the correctness of the algorithm
state_graph(state) presented there. For a proof refer to [55]. We have the algorithm
refined here in favour of clarity, but the correctness proof still applies to concept. In
order to proof the correctness of the refinement and therefore the implementation
used by PROB we intend to formal specify the algorithm in B in future work.

Theorem 2.35 For any two states, s and s’, s is symmetric to s’ if and only if
state_graph(s) is isomorphic to state_graph(s’).

Note that the algorithm to create a graph from a state is just to have a working
concept. There might be other representations that are easier to create, or construct
smaller graphs. We now want to go through the algorithm with an example state,
and construct stepwise the respective graph.

Example 2.36 Let’s take a model M with two deferred sets A and B, and variables
Q € IP(A) and R € A« B. Let s be a valid state of M, where

§ = (Q = {{}, {a1}7 {a27 a4}}7R = {(ala b1>7 (a27 b2>}>

First, the algorithm state_graph(s) with state s as the parameter is called. This
assigns a colour the deferred sets A and B, and initialises the remaining global
variables accordingly. Then the algorithm calls the sub-algorithm wvar_graph for
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each variable-value pair of the state and root as the parent vertex. Let’s start with
the variable-value pair (v, val) = (Q,{{},{a1}, {a2,a4}}), then the function call is

’Uar_gmph(‘root‘, Qa {{}7 {a1}7 {a27 a4}}>;

Since (@ is a set, the algorithm calls the function

SetCT’OOt‘a Q7 {{}7 {a1}7 {a27 a4}}>;

The set () is not empty, and there have been no vertices created in the graph yet,
except for root, so the algorithm creates a vertex for the first element in (). The first
element valy = {} of @ is the empty set, therefore the algorithm creates a special
vertex for the empty set and assigns it an unused colour. Then an edge labelled
with @) is drawn from the new vertex to the parent vertex root, see Figure 2.16.

root
[]

o

Empty_Set

Figure 2.16: Graph for @ = {{}}

The next element val; = {a;} is constructed as follows. Since {a;} is not the
empty set or an atom, an intermediary vertex V,q, is created, coloured with the
reserved colour zcol. Step 3 of the set algorithm draws an edge labelled with ) from
that vertex to its parent vertex root. The last step then calls var_graph recursively:

var—graph( Voa, , val, {a1 }});

Since val; is a set, the algorithm calls the function

set(Viay, val, {a1}});

Now we have to construct the graph for a simple set. For each element in that
set, here only a;, there is a vertex created, coloured with the colour assigned to the
deferred set A. The edge going from the vertex representing z; to the parent vertex
Vi, gets the label $to_el, since the parent vertex is not the root node. Similar steps
are repeated for the last element val, = {as, a4} in ). The graphical representation
for the set () is depicted in Figure 2.17

The algorithm continues with constructing the graphical representation of the
relation R and calls

var—graph('root’, R = { (a1, b1), (az, b2)}});
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root
L]

o 4

O O

Empt Set val2 valg
$to_el| $to_el $to_el

ap as ay
Figure 2.17: Graph for @ = {{},{a1},{a, as}}

Since R is a relation, the algorithm now calls
relation("root’, R = {(a1, b1), (az, b2)} });

Starting with the pair a;, b1, the algorithm first decides, if the atoms a; and b, have
been represented in the graph before or not. Since a; already has been created,
there is no new vertex needed for that element. For the element b; though, there is
a new vertex created, which is assigned the colour of the deferred set B. Now the
algorithm draws an edge labelled with R, from the vertex representing a; to the new
vertex representing b;. The same steps are done for the second pair (ag, by), and we
finally obtain the graphical representation for the state s as depicted in Figure 2.18.

root
[]

P

o O O

Empty_Set Vialy Vaty
$to_el $to_el $to_el
OO0 @
bl a b2 a9 aq4

Figure 2.18: Graph for s = (Q = {{},{a1},{a2, aa}}, R = {(a1, bn), (a2, b2)})

The algorithm translates states into graphs, such that symmetric states are rep-
resented by isomorphic graphs, and states that are not symmetric are represented
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by non-isomorphic graphs.

We now want to show intuitively how symmetric states can be detected through
their graphical representation. Let’s go back to the example club model to make this
concept more clear. This machine has a variable member that contains elements of
the deferred set Person. We compare the graphical representation of the symmetric
states

sl = (member = {pl,p2}) and
s2 = (member = {pl, p3}).

In both cases, we have to graphically represent a simple set with two elements. The
respective graphs for the states s1 and s2 are depicted in Figure 2.19.

D root D root
membm/ \member membm/ \member
pl p2 pl p3
state sl state s2

Figure 2.19: Graphical representation of two symmetric states

The labellings on the vertices are only for clarity in the picture, but what matters
is the colouring of the vertices here. Since the elements of the set-variable member
are elements of a deferred set, the respective vertices all get the same colour. We
can see that the two graphs are isomorphic. Indeed exchanging the deferred set
element p2 with p3 gives an isomorphism between the states sl and s2. In this
example, we have only one type of label on the edges, so it does not affect the
isomorphism relation. Generally, we have to consider different labels on edges as
differently coloured edges in the graph. We will come back to this later in Section 3.4.

Let’s now take two non-symmetric states and compare their graphical represen-
tations. We have

sl = (member = {pl,p2}) and
$3 = (member = {pl, p2, p3}).

with their graphical representations in Figure 2.20.
These two graphs are clearly not isomorphic, since the graph to state s3 has an
edge and a vertex more than the graph to state s1.
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D root D root

membe1/ \member memb%znibNember
|

pl P2 pl P2 p3

state sl state s3

Figure 2.20: Graphical representation of two non-symmetric states



Chapter 3

Using NAUTY to detect Symmetry
for B

We've seen so far how states can be translated into state graphs. In this chapter we
will introduce NAUTY, which we use to calculate a so-called canonical form for any
state graph. We then show how the model checking algorithm is modified to make
use of that information. Finally, we will describe how the tools PROB and NAUTY
work together in practice.

3.1 The NAuUTY Toolset

We want to give an introduction into the NAUTY toolset, explain what it is, what
it can do and how we are going to use it. For further details see the NAUTY User’s
Guide [42]. For the mathematical terminology used in this section review Sec-
tion 2.2. The name nauty is short for the phrase mo automorphisms, yes? This
phrase already gives an idea what NAUTY has been developed for. NAUTYs devel-
oper Brendan D. McKay wrote a tool for determining the automorphism group of
a vertex-coloured graph. It computes the size of the automorphism group, a set of
generators and the orbits of that group. However, we are making use of a powerful
side feature of NAUTY, which is its ability to test graphs for isomorphism by calcu-
lating a canonical form. The idea, in order to decide if two graphs are isomorphic,
is to calculate an isomorph graph, called canonical form, for each of them, and see
if those are the same. The respective isomorphic graphs are represented in a way so
that this is easy to decide. This representation is called a certificate, which is unique
for each isomorphism class of graphs. We will explain how the canonical form and
its respective certificate are calculated in Section 3.3.

Now we want to concentrate on how NAUTY works with regard to our interface,
and how it represents graphs. NAUTY comes with numerous options to modify its
behaviour and performance. Most of them we left at their default values, which is
the safest way to work with NAUTY. One of the options we really do need to set
is the Boolean variable digraph, which tells NAUTY that it has to handle directed
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graphs when it is set. NAUTY also uses its own data structures in order to represent
graphs. The first is called setword and just an unsigned integer with either 16, 32 or
64 bits. The size of setword depends on the parameter WORDSIZE. This parameter
is set at the compile time of NAUTY either manually as a command-line parameter
or automatically to the size of a long int. Usually, the value for WORDSIZE will
be 32. The next data structure is called set, and is used to represent a subset of
a graphs vertices V = {0,1,...,n — 1}, where n is the number of vertices in the
graph. A set is written as an array of setwords, and the bits are numbered from 0 to
n — 1. Unnumbered bits always have the value 0. Any numbered bit i € 0,...,n—1
is set to 1, if and only if vertex ¢ is element of that set.

Example 3.1 Let’s say we have a graph with 40 vertices, and the predefined size
of a setword is 32. We want to describe the set of vertices adjacent to vertex v = 0,
which is, say, {2,33,39}. In order to represent all 40 vertices, we need two setwords
arranged as array to build the set.

/foo10--091]1 0 -« 0 1 0 -+ 0]
0123 - 32| 33 34 --- 38 39 40
first setword second setword

Generally, the smallest number m of setwords in the array is chosen such that
WORDSIZE * m > n.

Indeed in the example we have 32 % 2 > 40.

NAUTY has two different ways of representing graphs: The first is called sparse
form and uses the type sparsegraph, and the second is called packed form and uses
the type graph. We decided to use the packed form for representing graphs, because
its generally more space efficient for our state graphs. The space needed for the
packed form depends only on the number of vertices in a graph, whereas for the
sparse form it also depends on the number of edges. The sparse representation is
more efficient for large sparse graphs, which we usually don’t encounter, see Ap-
pendix C. Another advantage of the packed form is that the number of bytes used
to store a graph does not depend on the size of a long integer. If the size of a long
integer is larger, then there are simply less setwords needed to represent a graph.
This pays off for architectures that use 64 bits for representing a long integer, instead
of 32 bits.

We want to explain just the packed form here. This representation is quite
intuitive, when we consider a graphs adjacency matrix. Each row in an adjacency
matrix can be written as an array of m setwords building one set. The whole matrix
can then be stored in n sets or equivalent m x n setwords. Let’s take a graph with
40 vertices and its adjacency matrix given as:

a1 Q12 - Q140
g1 Q22 -+ (240

aq0,1 A40,2 " (40,40
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The information of that graph is stored in the following array of setwords, where
setwords are separated by vertical bars for visibility:

[ a1 a2 v G132 | ai 33 -+ 041,40 0O -~ 0 |
az1 Q22 -+ (232 | az33 -+ 0240 0 0 |
Q40,1 Q402 - 040,32 | Q40,33 (40,40 0O --- 0 ]

As we can see, the above matrix is stored in 2 * 40 = 80 setwords.

3.2 Notations from Graph Theory

Before we explain in detail how the canonical form is calculated, we need a few
more notations and definitions, which we take from McKay’s article Practical graph
isomorphism [43].

If not stated otherwise, V' denotes the set {0,1,2,...,n}. We denote with G( V')
the set of vertex-coloured directed graphs with vertex set V.

Definition 3.2 Le G € G(V). A partition of the set V is a set of disjoint non-
empty subsets of V' whose union is v. An ordered partition of V is a sequence
[Vi, Va, ..., V], such that { V3, Vs, ..., V;.} is a partition of V.

If not stated otherwise in the following, a partition is always an ordered partition.
The set of (ordered) partitions of V' will be denoted by II( V). The elements of a
partition 7w € II( V') are called its cells. A cell of cardinality one, is a trivial cell. If
every cell of a partition 7 is trivial, then 7 is said to be a discrete partition, while if
there is only one cell, 7 is the unit partition.

Definition 3.3 Let 7,7 € II( V') be two ordered partitions. We say, v is finer than
mif:

1. every cell ¢[i] of 9 is subset of some cell 7[i] of 7, and

2. if uw € wliy] and v € 7[5 with i, < g1, then u € ¥[ip] and v € P[] for some
ig,jg with Zé S jg.
We write ¢ < 7. Under the same conditions, we say that 7 is coarser that ).

Example 3.4 Let G = (V,E) be a graph with the vertex set V = {0,1,2,3,4}.
The partition

Y= [{0}7 {2}7 {17374}]

is finer than

™= [{0}7 {1727374}]7

but the partition [{2},{1,3,4},{0}] is not finer than 7, because the blocks are out
of order, with respect to 7.
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The set II( V) forms a lattice under the partial order <. It follows that for any
two partitions mp, 79 € II( V), there is a unique coarsest partition 7 which is finer
than 7, and 79, and a unique finest partition 7 which is coarser than 7w, and ms.
This fact is needed for the correctness of the algorithm calculating the canonical
form, see [43].

Definition 3.5 Let 7y, m € II(V) be two partitions, then the coarsest partition
7, which is finer than m; and 79, is denoted as m; A o, and the finest partition 7 ,
which is coarser than m; and s, is denoted as 7 V ms.

We will need the following definition for in- and out-degree of a vertex v, with
respect to a subset of V:

Definition 3.6 For G € G(V), v € V and W C V, we define the in-degree of v,
denoted as dy, (v, W), to be the number of vertices in W, which have an edge going
to v, and the out-degree, denoted by dyy: (v, W), to be the number of vertices in W,
which have an edge going from v to it.

Example 3.7 Let’s take the graph G with V = {0,1,2,3} in Figure 3.1 as an
example. Let W = {0,2} be a subset of V and v = 1 then dyu(v, W) = 2 and

0 1
/

O

3 2

Figure 3.1: A vertex-coloured graph

din (v, W) = 0, since there is one edge going from vertex 1 to vertex 0 and vertex 2
each, but there are no edges from an element in W to v. Looking at v = 3, gives us
dout(v, W) = 0 and d;, (v, W) = 2, since there is no edge going from v to an element
in W, but two edges going from elements in W to v.

For the algorithm that calculates the canonical form, we need the following
definition:

Definition 3.8 Let G € G( V). A partition = € II(V) is equitable with respect to
G if, for all cells Wy, Wy € m and for all v, vs € W) we have

dm(’Ul, WQ) = dm(’U2, W2) and dout(vl, W2) = dout(’U2, W2)-
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This definition says that all vertices in any given cell of an equitable partition
7w cannot be distinguished by the in- or out-degree with respect to any cell in 7.
On the other hand, if a partition is not equitable, then it contains a cell whose
vertices can be distinguished in that fashion. The algorithm, which we will describe
later in this chapter, uses this distinction to break up the cells of a partition into
smaller cells. By sorting the cells in a certain way the algorithm defines stepwise
a unique ordering on the vertices. This ordering defines an automorphism of the
respective graph, such that by applying this automorphism to the graph we obtain
its canonical form. The canonical form is a unique representative of an isomorphism
class of graphs. Before we get to the details of the algorithm, we want to give an
example of an equitable partition in order to make the concept more clear.

Example 3.9 We take again the graph G from Example 3.7. Let m = [{0,2}{1, 3}]
be a partition with the cells W) = {0,2} and W,y = {1, 3} containing the black and
white vertices, respectively. If 7y is equitable, then we would have the following
cases

din(v, W1) is the same for all vertices v € W,
din(v, W1) is the same for all vertices v € W,
din(v, Ws) is the same for all vertices v € W)

din(v, W3) is the same for all vertices v € W,

for d;, and respectively for d,,. We have d;, (0, Wy) = di,, (2, Wi) = 0 for the first
case, but di, (1, Wy) = 0+£2 = d;,,(3, Wy) for the second case, and therefore we
already know that 7 is not equitable, without looking at the other cases.

Let’s take as another example m = [{0,2},{1},{3}] as a partition of V. Let
Wy =4{0,2}, Wy = {1} and W3 = {3}, We consider the non-trivial cell W; = {0,2}
first, and test for the property in Definition 3.8 for all cells in 75, including W itself.
We have:

din (0, W1) = din(2, W1) =0
din (0, W) = din(2, W) =1
din (0, W3) = din (2, W3) =0

and

Aout (0, W1) = dous (2, W1) =0
dout (0, Wa) = dout(2, Wa) = 0
Aout (0, W3) = doue (2, W3) = 1.
So for all V;, i € {1,2,3} the property in Definition 3.8 holds. For trivial cells, like

Vo = {1}, the property in Definition 3.8 is obviously true for each cell V; € .
Therefore the partition 7y is equitable.

In the next section, we want to describe the algorithm for calculating the canon-
ical form, and its mathematical background.
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3.3 The Canonical Form

The graph isomorphism problem is the problem of determining whether two finite
graphs are isomorphic. It is not known if this problem is solvable in polynomial
time, or if it belongs to the NP-complete class of problems. There are many graph
classes with a polynomial-time algorithm to solve the graph isomorphism problem,
for example, trees [3, 33] and planar graphs [27]. This suggests that the graph iso-
morphism problem might be polynomial in general. However, so far, Babai and Luks

have developed the best algorithm, which has a runtime of 200V (" 19m) {41 general
graphs with n vertices [31]. In practice, though, an algorithm developed by Bren-
dan D. McKay, which he described in his article Practical Graph Isomorphism [43]
is widely used, and has been implemented in the NAUTY package [42].

The goal of a graph isomorphism algorithm is to classify graphs such that two
graphs belong to the same class, if and only if the two graphs are isomorphic. It is
easy to find properties that two isomorphic graphs need to have. For example, two
isomorphic graphs must obviously have the same number of vertices. The challenging
part is to find properties that are sufficient to determine if two graphs are isomorphic,
that are also easy to compute with computer aid.

McKay’s graph isomorphism algorithm computes a canonical form to determine
isomorphisms. As mentioned earlier, this canonical form is a unique representative
of an isomorphism class of graphs. That means, by computing the canonical form for
two graphs, say G; and Gs, respectively, we can decide whether G; and Gy belong
to the same isomorphism class, i.e. they are isomorphic or not.

The algorithm by McKay therefore implements a function that calculates to a
given vertex-coloured graph its canonical form. We want to give a formal definition
of such a function, which is called a canonical label.

Definition 3.10 A canonical label is a map C : G(V) x II(V) — G(V), such that
forany G € G(V), 7 € II(V) and v € S,, we have:

(Cl) Cc(G,m) =G

(C2) C(G",7n")=C(G,n)

(C3) If C(G,n") = C(G, ), then 77 = 7° for some § € Aut(G).

This definition takes some partition 7 of the vertices V into account. The par-

tition 7 corresponds to the vertex-colouring of the graph. That means, vertices are
in the same cell of 7, if and only if they have the same colour. The following The-

orem states that we can use the definition of a canonical label to solve the graph
isomorphism problem on vertex-coloured graphs.

Theorem 3.11 Let Gy, Gy € G(V), m € II(V) and v € S,,. Then it is
C(Gl,Tf) = C(Gg,ﬂ"y>

if and only if there is a permutation § € S, such that Gy = G and 7 = 7.
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For a proof of this Theorem, see [43].

A very simple way to define a canonical label is to take a function that reorders
the vertices of a graph, such that reading the adjacency matrix row by row' gives
the smallest number. For vertex-coloured graphs, we rearrange only vertices within
cells. The resulting binary number would be a certificate for an isomorphism class of
graphs. This certificate though is not very practical, because the number of possible
vertex-orderings grows exponentially with the number of vertices in a graph. McKay
has developed an algorithm that uses the structural properties of a graph to calculate
a canonical form. Because of this, his algorithm has to consider only a subset of the
vertex-orderings.

In the following, we describe a simplified version of the algorithm by McKay, see
also [34]. We call it the canonical labelling algorithm, since the algorithm defines a
relabelling on the vertices to obtain the canonical form. For more details and proofs
of correctness, refer to [43]. First we want to look at the part of the algorithm
that uses the structure of the graph to reorder the vertices. Given a graph G
and an initial partition 7, the procedure tries to distinguish vertices of one cell by
the number of ingoing/outgoing edges from/to another cell. In other words, the
procedure calculates an equitable partition, which is finer than 7. The algorithm
for this procedure we call refine in the following.

The refine-algorithm takes a graph G € G(V), a partition = € II( V') and returns
the unique coarsest equitable partition £(7) finer than 7:

Algorithm 3.12 refine(G, )
Input: G € G(V), 7 € II(V)
Output: &(7)

1. Set £ equal to 7
2. Let § be a list containing the cells of £.
3. while S # ) do

4. remove a cell T from the list S;

5. for all cells [i] of £ do

6. create a list L and set L[j] = {v € £[i] : din(v, T) = 5} for each j;
7. if there is more than one non-empty set in L, then
8. replace the cell £[i] with the non-empty sets in L, in the order of the

index 7,7 =0,1,....n — 1;

9. add the non-empty sets on L to the end of the list S.

Ireading column by column is also feasible
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10. end if
11.  end for
12.  for all cells £J[i] of € do
13. create a list L and set L[j] = {v € &[i] : dow(v, T) = j} for each j;
14. repeat steps 7 to 10;
15.  end for
16. end while
17. Return &.

We want to go through the algorithm with an example.

Example 3.13 Let’s pick the graph G = (V, E) with V = {0,1,2,3} and the
partition = = [{0,2}{1, 3}], such that it appears as depicted in Figure 3.2.

1.
2.

3.

0 1
/

O

3 2

Figure 3.2: Graph with initial partition = = [{0,2}{1, 3}]

The first step of the algorithm sets & = 7.
The set S is initialised with the cells of &: S = [{0,2}{1, 3}].

The first cell T = {0,2} is taken from S. For the first element £[0] = {0, 2}
in & a list L, as in step 6, is created. The list L contains for each index
J,j €0,...,3 the set of vertices in £[0], which have exactly j edges going from
any vertex in 7' to them. Since for both vertices in £[0] there are no edges
from any vertex in 7' to either of them, the list L looks as follows:

L= [{072}7 {}7 {}7 {}]

There is only one non-empty set in the list, so the algorithm goes directly to the
next element £[1] = {1,3} in . Here we have d;,(1, T) = 0 and d;,,(3, T') = 2,
SO

L= [{1}7 {}7 {3}7 {}]
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Now there are two non-empty sets in L, and therefore the cell {1,3} in ¢ is
replaced with the two non-empty sets in the order they occur in L. The cells
{1} and {3} are also added to the end of the list S. We have

¢ = [{0,2},{3},{1}] and
S =[{1,3}, {1}, {3}]

The same procedure is now repeated with the new &, while the list created in
step 13 contains now for each index j,j € 0,...,3 the set of vertices in £Ji],
which have exactly j edges going to any vertex in 7. Since there are no cells
split up in this step, the algorithm continues with the next element in S.

4. The next element in S is 7 = {1,3}. For the first element £[0] = {0,2} in &
we get in step 6

L= [{}7 {072}7 {}7 {}]

So the cell £[0] is not split up further by 7. The two remaining cells in € are
already trivial cells and cannot be split up further. In the algorithm, the list
L has only one non-empty element for these cells. Therefore, £ and the set S
are not changed in steps 5 to 11. Steps 12 to 15 give no changes again.

5. Continuing with the last two elements in S gives no further splits, and the
algorithm finishes with the output of the equitable partition

§(m) = [{0,2}, {3}, {1}].

After refining a partition once, we will usually not obtain a discrete partition.
That means the vertex-ordering is not uniquely determined yet. The canonical
labelling algorithm now takes the first non-discrete cell ¢ of the refined partition
and splits it into two cells. One cell containing a single vertex and the other the
remaining vertices. The resulting partition is then refined again. This procedure is
done for all vertices in c.

Given a graph G with a partition 7, we will use the notation Num, (G) to denote
the binary number obtained by reading the adjacency matrix of G' row by row, and
we write Cert(G) for the minimum number returned by the canonical labelling
algorithm. We present the canonical labelling algorithm below:

Algorithm 3.14 label(G, )
Input: G € G(V), 7 € II(V)
Output: Cert(G)

1. Refine 7 to an equitable partition: ., = refine(rw).

2. if 7, is discrete, then
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3. compute Numy, (G)
4. if Num.,,(G) is smallest number so far, then
Cert(G) = Numg,, (G)
end if
5. else
6.  take first non-discrete cell V; in 7o, = [V, ..., Vo1, Vi, Vigr, ..o, Vi

7. for all vertices v € V; do
create a new partition

= [Vi,..., Vic, {v}, V;\{v}, Vji1,..., V4]

label(G,my).
end for

8. end if

9. Return Cert(G).

Example 3.15 Let’s take the Graph G from Example 3.13 and the initial partition
m = [{0,2},{1,3}] as input for Algorithm 3.14:

0 1
/

O

3 2

Figure 3.3: Graph with initial partition = = [{0,2}{1, 3}]

1. In the first step, the partition 7 is refined to an equitable partition. From
Example 3.13 we already know that the refined partition is

meg = [{0,2}, {3}, {1}].

2. The refined partition is not discrete, so the first non-discrete cell is taken,
which is V; = {0, 2}.
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3. Now, for each vertex in V; a new partition is created:

mo = [{0}, {2}, {1}, {3}]
m = [{2}, {0}, {1}, {3}],

and the algorithm label is called recursively for both partitions

label( G, o),
label (G, m3).

Since both partitions are discrete, the numbers Numg,(G) and Num,,(G) are
computed, from their respective adjacency matrices, which are:

m| 02 1 3 ml 2 0 1 3
00001 210001
210001 00001
171101 171101
310000 310000

Reading each matrix row by row and we obtain:

Numy,(G) = 0001000111010000 and
Numy,(G) = 0001000111010000

Both numbers are the same in this case and the algorithm returns the certifi-
cate

Cert(G) = Numy,(G) = 0001000111010000.

Note that the algorithm does not truly know about the vertex coloring of a
graph. This information is given by the initial partition, and therefore the sequence
of colours must be the same for each graph.

We’ve seen in this section how the canonical form, i.e certificate, can be calcu-
lated for vertex-coloured graphs. The state graphs though, that we computed in
Section 2.4 are vertex- and edge-coloured graphs. Therefore, what we need to do, is
to transform those graphs into vertex-coloured graphs. That is our aim in the next
section.

3.4 Transforming Graphs for NAUTY

To decide whether two graphs are isomorphic, we have implemented in [56] a pro-
cedure to compute a canonical form. This implementation was done in Prolog, and
was an extension of the core algorithm of [43] for vertex- and edge-coloured graphs.
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Now we use the implementation of the canonical labelling algorithm from the
NAUTY package [42] directly. Since NAUTY can handle only vertex-coloured graphs,
we need to transform our vertex- and edge-coloured state graphs into graphs with
labels only on the vertices. We took inspiration from the NAUTY User’s Guide [42].
We will first explain our transformation, and then prove its correctness.

Let’s consider the following machine, which describes a simple database for a
company’s staff. It stores only two sets of information: The set of staff that are also
members of the staff council, and the marital status of each member of staff.

MACHINE Personnel

SETS
NAME;
MARITAL_STATUS = {single, married}

VARIABLES
staff _council
status

INVARIANT
staff _council € IP(NAME) A
status € NAME — MARITAL_STATUS

INITTALISATION
staff _council == 0 ||
status := NAME x {single}

OPERATIONS
add_to_council(nn) =
PRE nn € NAME A nn & staff _council
THEN staff _council := staff _council U {nn}
END;

?

del_from_council(nn) =
PRE nn € NAME N nn € staff _council
THEN staff _council := staff _council — {nn}
END:;

?

change_status(nn) =
PRE nn : NAME
THEN
IF status(nn) = single THEN
status(nn) := married
ELSE
status(nn) := single
END
END
END
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The machine has a deferred set NAME, an enumerated set MARITAL_STATUS,
a set variable, staff _council, that stores the members of the staff council, and a
relation status, which gives the marital status of each employee. The database is
initialised with an empty staff council and every employee defined as single, by
default. Furthermore, the machine has three operations for adding and deleting
members from the staff council, and updating the marital status of an employee. A
valid state of this machine is

member = {name2, name3},
status = {(namel — single), (name2 — married),
(name3 — single)}

We have already seen in Section 2.4 how such a state is transformed into a graph
with labels on both vertices and edges, yielding the graph in Fig. 3.4.

root

O

memberT ‘Xmember
namel name name3
O O O
statNtaMtus
O O

single married

Figure 3.4: State Graph representation

The labels on the vertices and edges are transformed into colours, so that vertices
corresponding to the same deferred set get the same colour. Vertices corresponding
to an enumerated set in the B-machine get a different colour for each vertex. Con-
sidering that the set NAME is deferred, we get the vertex- and edge-coloured graph
in Fig. 3.5. We used solid and dashed directed edges to distinguish the set variable
member from the relation status.

Now we need to transform the vertex- and edge-coloured graph ¢ into an only
vertex-coloured graph g, before it can be handed over to NAUTY. The NAUTY User’s
Guide [42] suggests in Chapter 12, a method describing how an edge-coloured graph
can be transformed into a vertex-coloured graph. We implemented a simpler version,
because it is easier to prove its correctness. We want to describe our adapted method
here now. For each colour (different label) on the edges, there is a layer with all
vertices of ¢ constructed. Vertices in ¢ that originate from the same vertex in g,
are connected with directed edges in each direction. Now, a layer in g represents an
edge colour in g, and all those edges in g with that colour are added to that layer,
connecting the respective vertices. That means, each layer in ¢ copies the vertices
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Figure 3.5: State Graph represented as vertex- and edge coloured graph ¢

of g, and the edges of one particular colour. Vertices in different layers though, have
always a different colour. The layered graph g is depicted in Figure 3.6.

‘/\
O e e e e O

A

E N B [
Figure 3.6: State Graph represented as vertex coloured graph g

We gave the vertices in each layer a different shape, to differ the vertices of the
layers, but still showing which vertex in g comes from which vertex in g¢.

We are providing now a more formal description of this transformation. Let
g = (V,Cy, Cg, L, E) the original vertex- and edge-coloured graph, with Cy and
Cg the colours of the vertices and edges respectively, L: N — (' a vertex labelling
function, and £ C Cg x N x N. Then g = (V, Cy, E, L) is the layered graph, with
respective sets of vertices, colours on the vertices and edges, and labelling function.
Let ng be the number of colours on the edges of g. For each u € V there are u; € V,
where 1 = 1,...,ng, such that {(u;, wit1), (wir1,u;) |1 =1,...,ng} C FE holds.

In each layer of the graph g there is an u; € IA/,@' €1,...,ng, being a duplicate
of u € V. Every such u; gets a colour depending on the colour of v € V in the
original graph and 7, the number of the layer in g.

There is now one layer for each colour on the edges of g. The edges with colour
one are inserted in layer one, edges with colour two in layer two, and so on, connect-
ing the respective vertices of the original graph g. For example, let ¢ = (u,v) € E
have colour 02, then the corresponding edge is inserted in g in layer 2, from vertex
Uy to vertex vy. So we have (ug, ) € E.

In general, for every e = (u,v) € E with colour 7,7 € 1,..., ng there is an edge
(ui, v;) € E , where u; is the corresponding vertex to w and v; is the corresponding
vertex to v in layer i. The edges in g are no longer coloured as the corresponding
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ones in ¢. Finally we get a vertex, but no longer edge-coloured graph, so it can now
be handled by NAUTY.

Correctness of Encoding Edge Colours as Vertex Colours

We now want to formalise the transformation and prove its correctness. We only for-
malise and prove the transformation of an edge-coloured graph into a vertex-coloured
graph. The extension to a vertex- and edge-coloured graph is straightforward.

Definition 3.16

e An edge-coloured graph is a tuple (V, C, ) where V is a set of vertices, C a
set of colours, and £ C C'x V x V.

e A vertex-coloured graph is a tuple (V, C', L, E) where V is a set of vertices,
C' a set of colours, L: V — (' a vertex labeling function, and £ C V x V.

Given an edge-coloured (respective vertex-coloured) graph ¢, we denote by vert(g)
the set of vertices of g.

Definition 3.17 Let V and V' be two sets of vertices and 7 a bijection between V
and V’. The bijection 7 can be applied to an edge-coloured graph g = (V, C, E)
as follows:

w(g)=(V' C,E"), where V'={n(v)|ve V} and
E'={(c,m(n),m(w)) | (¢, nn, 1) € E}.

The bijection 7 can be applied to a vertex-coloured graph ¢ = (V,C, L, E) as
follows:

w(g)=(V',C,L',E"), where ={n(v)|veV},
VUG V:L(r(v)) = L(v) and
= {(m(v1), (1)) | (v1,12) € E}.

Two edge-coloured (resp. vertex-coloured) graphs ¢, g2 are said to be isomorphic
if and only if there exists a bijective function 7 between vert(g;) and vert(g2) such
that T(gl) = Oo.

We now show how to formally translate an edge-coloured graph into a vertex-
coloured graph, encoding every edge-colour as a level in the vertex-coloured graph.
We use the following definition:

Definition 3.18 Let ¢ = (V,C, E) be an edge-coloured graph. We denote by
level(g) the vertex-coloured graph (V x C, C, L*, E*), where

o L*((v,c)) = cforall (v,e)e VxC,
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o X ={((v,¢),(v,c)) |ve VAe,deCNec# '} U{((n,c),(va,¢)) | v,10 €
VAce CA(c,v,1) € E}

Note that for a vertex- and edge-coloured graph ¢, the colour of a vertex in
level(g) indeed also depends on the colour of the respective vertex v in g.

Proposition 3.19 Let g, ¢’ be two edge-coloured graphs. If ¢ and ¢’ are isomorphic
then level(g) and level(g’) are isomorphic.

Proof 3.20 First, obviously ¢ and ¢’ must have the same set of colours. Let g =
(V,C,E)y and ¢ = (V',C,E"). Let 7 be a bijection between V and V' such that
7w(g) = ¢’. We now construct m; such that

mi((v,¢)) = (w(v), c) for all (v,¢c) e V x C.

This function is a bijection between V x C' and V' x C. In order to see this, we
only need to show that 7; is injective, since it is a function between finite sets. Let
level(g) = (V x C,C, L*, E*) and (v, ¢1), (w0, c2) be two vertices in level(g). We
assume that the images under m; hold m;((vi, ¢;)) = 7 ((v2, ¢2)) and show then that
the preimages must be the same, too. It is

mi((vi, a1)) = m((v2, €2))

(m(v1), c1) = (w(v2), c2) (definition of ;)
w(v1) = 7(ve) and ¢ = ¢

v =1 and ¢ = ¢ (7 is bijection)
(’Ul, Cl> = (’1}2, CQ).

R

It follows that 7; is injective and therefore a bijective function. We now claim
mi(level(g)) = level(g').

Let m(level(g)) = (V'x C, C, Ly, ES), and level(w(g)) = (V'x C,C, L', E"™). We
need to show L'* = L and E) = E'*.

We start with proving that L™ = LJ:
For all v € V and ¢ € C we have

L'((v',¢c)) = ¢ (definition of L)
and

L3 ((v',¢)) = Li((m(v),c)) for some v

L (m((v, ¢))) (definition of ;)
L*((v, ¢)) (Definition 3.17)
= c (Definition 3.18).
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Finally we need to show Ejy = E'*:

We have
ES = {(m((v,¢),m((v,c))|veV AN ec,deC N c# U
{(mi((v1,¢)),m((w,¢))) v, ;o €V AN ceC N (c,u,v) € E}
= {((r(v),c),(x(v), ) JveV ANec,deCNc#d}U
{((m(v1), ¢), (w(12),¢)) | vi,va € VAcE C A(ec,v,nn) € B}
E™ = {((v,¢),(v,c") Jve V' ANe,d e C} U
{((v],¢), (v}, c)) | vj,vh € VINece CA(c, v, v) € E'}.

Since 7 is a bijection, we have

{((m(v),¢),(m(v), ) |ve VAe,d e CN c#c'}
= {((v,¢),(v,c)) |ve V' Ae,d € CN c# '}

and furthermore, because of 7(g) = ¢’, we have (¢, v, v}) € E" implies that for some
vy, 1 it is (¢, vy, 1) € E and v) = 7w(vy) and vy = w(vy). Hence ES = E’*. O

For showing the opposite direction, we need the following Lemma which says that if
a vertex (v, ¢) is mapped onto a vertex (v’, ¢) under 7, then for any colour ¢’ € C,
the corresponding vertex (v, ¢’) is mapped to the corresponding vertex (v, ¢’) with
the same v'.

Lemma 3.21 Let 7 be a permutation such that w(level(g)) = level(g’). Let
level(g) = (V x C,C,L,E) and level(g") = (V' x C,C,L',E'). Then for any
ve V.,ve Vand ce C, we have:

w((v,¢)) = (v, c) =V.(d € C=n((v,d)=(V,)).

Proof 3.22 If we have only one colour then ¢’ = ¢, and the property is obvious. Let’s
have more than one colour, and ¢’ € C any colour with ¢’ # ¢. By Definition 3.18
we know that for any ¢": ((v/,¢), (v', ') € E" as well as ((v,¢), (v, ")) € E. We
also know by Definition 3.18 that (v’, ¢’) is the only successor s of (v/, ¢) with colour
¢’. Because Definition 3.17 we have that

(m((v, ¢),7((n, ")) € &/

and also

L(x((v, ")) = L((v, ¢')) = ¢,

Our assumption was that 7((v, ¢)) = (v, ¢) and we just figured that s is the only
successor of (v', ¢) with colour ¢. Hence 7((v, ¢’)) as another successor of the vertex
7w((v, c) = (v, ¢) with colour ¢/ must be identical to s. O
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Proposition 3.23 Let ¢, ¢’ be two edge-coloured graphs. The graphs g and ¢’ are
isomorphic if level(g) and level(g’) are isomorphic.

Proof 3.24 Let level(g) = (Vx C, C, L*, E*) and level(¢') = (V'x C, C, L', E"*).
Let 7; be a bijection between V x C and V' x C.

First, by Definition 3.17 we know that L'(m;((v, ¢))) = L((v, ¢)) = ¢, that means,
mi((v, ¢)) = (v, ¢) for some v’ € V’'. We define a bijection 7w between V and V' by
w(v) = v', v € V. This definition is well defined, because it is m;((v, ¢)) = (v', ¢),
and with Lemma 3.21 it follows that

mi((v,c)) = (v, ) forall ¢ € C.

We want to prove that 7(g) = ¢’. We already have a bijection 7 between the sets
of vertices of ¢ and ¢’ defined. So all we need to show is that for any edge between
two vertices vy, vy in E with colour c, there is an edge with colour ¢ between the
respective vertices 7w(v1) and 7(wvs) in £’ and vice versa. We have by Definition 3.18
that for any (c, v, ) € FE, there is an edge ((v1,¢), (w2, ¢)) € E*. Since level(g)
and level(g') are isomorphic, the edge (7;(v1, ¢), mi(v2, ¢)) is in E”*. We know that

(mi(vy, ¢), m (v, ) = ((v], ¢), (v, c)) for some vy, vy € V' (3.1)

Since we defined 7 such that v; = 7(v;) and v} = 7(w,), we get by applying Defini-
tion 3.18, that (¢, 7(v1),7(n)) € E'.
The reverse statement follows with similar arguments. Indeed,

(e, m(w), () € B = ((x(n1), ¢)(m(m), c)) € B (Def.3.18)

With the definition of © and the properties of 7; following from Definition 3.17, we
get

((m(vn), o) (m(w2), €)) = ((v1, ), (w3, ¢))

= (m(vy,¢),m(va, c)) for some vy, vy € V.

Again, since 7; is an isomorphism, we have ((vy,c), (w2, ¢)) € E*. It follows that
(¢, v, v9) € F from Definition 3.17. 0

We've shown and proven correct the translation of vertex- and edge-coloured
graphs to vertex-coloured graphs. NAUTY can now calculate the canonical form of
those graphs and find those that are isomorphic. Isomorphic graphs correspond to
symmetric B states, so that with this information, only one state of each symmetry
class needs to be explored. In the next section, we describe how the graph canon-
icalisation is integrated into the model checking algorithm, in order to achieve a
reduction of the state space.
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3.5 The Model Checking Algorithm

We now formalise our modified model checking algorithm and show how symme-
try detection via graph isomorphism has been integrated into the model checking.
Algorithm 3.25 has been adapted from [56].

Algorithm 3.25[Model Checking with Symmetry Reduction |

Input: An abstract machine M
1. Queue := {root}; Canon := {}; SGraph = {}
2. while Queue is not empty do

3. ifrandom(l) < « then
state := pop_from_front(Queue); /* depth-first */

else
state := pop_from_end(Queue); /* breadth-first */
end if
4. if error(state) then

return counter-example trace in SGraph from root to state

5. else
for all succ,Op such that state —>%p succ do
sg := nauty—_canon(G(succ))
if 35 such that (sg,s) € Canon then
SGraph := SGraph U {state —¢, s}
else
add succ to front of Queue
Canon := Canon U {(sg, succ) }
SGraph := SGraph U {state —{,, succ}
end if
end for
end if

6. od

7. return ok

Step 1 initialises the variables. The variable Queue stores the states with transitions
yet to be explored, and is initialised with root. The root node is not a real state of the
machine, and only there as starting point. Canon records canonical forms of states
already reached, along with the corresponding state. It is an empty set, initially.
The variable SGraph stores the visited state space, so that traces to occurring error
states can be produced. This variable is also initialised with root. The steps 2 to
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4 are the same as for the ordinary model checking algorithm in Section 1.3. Step
5 calculates to all successor states of a state their canonical form. The function
G converts a state of a B machine into a labelled, directed graph, as explained in
Section 2.4. The function nauty_canon computes a canonical form for such a graph
using NAUTY, as explained earlier. If the canonical form of a state graph is already
in Canon then the respective state is just added to SGraph. Otherwise that state
is also added to the Queue and its canonical form to the set Canon. This is done
for all successor states. As long as the Queue is not empty, the algorithm continues
searching the state space.

Example 3.26 We want to take the machine Personnel from Section 3.4 as an
example, to explain the model checking algorithm in more detail with respect to the
canonicalisation. We assume that the cardinality of deferred sets is three. After step
1, the variables Queue and SGraph store the root node, while the variable Canon is
empty.

The algorithm enters the while loop, since Queue is not empty, and takes the
only node, the root node, from the Queue of unexplored states. The root node is not
an error state, so the algorithm now computes all successor states of the root node,
which in this case is only the state after the initialisation of the machine. Then the
canonical form of the state graph of the initial state is computed, with the function
nauty_canon. Since Canon is empty so far, this canonical form is not in Canon, and
therefore the initial state is added to Queue, its canonical form is stored in Canon
together with the initial state. The root node together with a directed edge to the
initial state, is added to SGraph.

Now there is the initial state in Queue, so the algorithm continues with exploring
the initial state. The algorithm checks if the initial state satisfies the invariant with
the error() function. We have

staff _council = ) € IP(NAME) and
status = {(NAME1, single), (NAME?2, single), ( NAME3, single)}
€ NAME — MARITAL_STATUS,

so the invariant is true.

Again, the algorithm looks at all successor states. The successor states are all
those states, that can be reached with the execution of an operation exactly once.
The operation add_to_staff _council(nn) can be executed for each element in the
deferred set NAME. Since card(NAME) = 3, we have three possible operation calls.
The operation del_from_staff _council(nn) cannot be executed in the initial state,
since the variable staff _council is empty in this state, therefore the precondition of
the operation is not satisfied. The operation change_status has again three possible
executions. Altogether, this gives us six successor states from the initial state.

For each successor state, the canonical form is computed, and compared with
the already existing canonical forms in the variable Canon. Let’s look at the state
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graph for the state

s1 = (staff —council = { NAMFE1},
status = {(NAME1, single), (NAME?2, single), (NAME3, single)})

in comparison with the graph for the initial state

init = (staff —_council = {},
status = {(NAME1, single), (NAME?2, single), (NAME3, single)})
and the respective corresponding vertex-coloured graph, that is fed to NAUTY.
state s1 initial state
root single root single
7 / ?\ - el 9\

staff _council status status status status  status status

- | e | N
O O O O O O
NAME1 NAME? NAMES3 NAME1 NAME? NAMES3

o & e e e O o6 e o o

A

- .‘K.//./. . ."<\././.

Figure 3.7: State graphs of not isomorphic state s1 and initial state and correspond-
ing vertex-coloured graphs

We can see that the graphs are not isomorphic, and therefore the canonical forms
will be different. Consequently, the state sl is added to Queue, its canonical form
together with s1 is stored in Canon, and a new node for s1 and an edge going from
the initial state to s1, is added to SGraph.

Now the algorithm proceeds to the next state, e.g.

s2 = (staff —council = { NAME2},
status = {(NAME1, single), (NAME?2, single), (NAME3, single)}).

This state is reached from the initial state by executing add_to_staff _council(NAME?2).
Again, the canonical form is computed and compared with each canonical form
stored in Canon. We have now the canonical forms of the initial state init and s1
in Canon. Let’s compare the corresponding graphs of s1 and s2 as in Fig. 3.8.

These two graphs are isomorphic and will produce the same canonical form. The
algorithm adds only a node for state s2 and an edge from init to s2 to SGraph, but
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state s1 state s2

root single root single
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Figure 3.8: State graphs of isomorphic states s1 and s2 and corresponding vertex-
coloured graphs

no element to the variables Canon and Queue. The algorithm continues with the
next state s3, following the execution of add_to_staff _council(NAME3). This state
is again isomorphic to s1 and therefore not added to Queue.

Another set of isomorphic states is produced by executing change_status after
the initialisation for each element in the deferred set NAME. The state s4 belongs
to this new isomorphism class:

s4 = (staff _council = {,
status = {(NAME1, married), (NAME?2, single), (NAME3, single)}).

The graphical representation for the state is depicted in Figure 3.9.

This graph is not isomorphic to any of the previous graphs, and therefore the
new canonical form - together with the corresponding state s4, is added to Canon,
and s4 is added to Queue.

After considering all successor states of the init state, the graph of the so far
explored model, SGraph, is shown in Figure 3.10 and we have the states sl and s4
in the variable Queue.

If we used the model checking algorithm without symmetry, then at this stage
we would obtain the graph of the explored model as in Figure 3.11 and six successor
states in the queue of states to be explored rather than only two.

The algorithm continues now with model checking of one of the two states in
Queue, depending on the value of the random function and the value of a. If the
state is an error state, then the algorithm returns the trace from the root node to
that state, and continues with adding the successor states to SGraph otherwise.

We have seen in the example, how easily the state space is reduced by using
symmetry. We have implemented this algorithm within PROB, and we provide
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Figure 3.9: State graph of state s4 and corresponding vertex-coloured graph
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add_ to_counczl(NAME'l)\ change_status(NAME'l)

Figure 3.10: Explored state space after initialisation with symmetry

empirical results later in Chapter 4.

3.6 The Interface between NAUTY and PROB

We have explained so far how states can be translated to vertex-coloured graphs,
so that NAUTY can calculate a canonical form to detect symmetric states. We also
discussed how symmetry is applied in the model checking algorithm. In this section
we want to explain how NAUTY has been integrated into PROB from a technical
point of view. PROB does the translation from states to vertex-coloured graphs.
NAUTY takes a vertex-coloured graph and computes the canonical form for that
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root

initialise_machine

//\

add_to_council(NAME3) change_status NAME'3)

add_to_counczl(N ME?2) (mge_status N<ME2)
add_to_council(NAME1) change_jtatus(NAMEl)

Figure 3.11: Explored state space after initialisation without symmetry

graph. However, NAUTY has very specific and complex data structures to handle
graphs, so that PROB cannot communicate its translated graphs directly to NAUTY
and NAUTY cannot just hand back the canonical forms to PROB. What we need
is an interface that can build a graph in NAUTY’s format from PROB’s input and
handle each canonical form that NAUTY calculates for each graph. The idea is, that
PROB first transfers the data of a graph, piece by piece, with simple function calls
to the interface. Then the interface calls NAUTY to calculate the canonical form
to that graph, and compares it to previously stored canonical forms. All that the
interface needs to tell PROB, is whether that canonical form has been encountered
before, or not. Figure 3.12 graphically shows the function of the interface we have
implemented.

d h
ProB function calls send grap
T
— T~ | Interface NAUTY
state —— graph ~_ -—

return canonical form

symmetry class
existed; yes/no

Figure 3.12: Functionality of the Interface
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We want to describe the interface now, in a bit more detail. The interface has
a set of C-functions, that can be called by PROB to transfer information. Those
functions are listed below:

void prob_init(void);

void prob_set_number_of _colours(int number_of _colours);
void prob_start_graph(int number_of _nodes);

void prob_add_edge(int from,int to);

void prob_set_colour_of _node(int node, int colour);

int prob_exists_graph(void);

void prob_free_storage(void);

The prefix prob_ in each function name indicates that this function is called
from PROB. Those functions that take a parameter, call another function with the
same name without the prefix prob_ . This separation was done, because it is easier
to send only simple data structures, such as interger values, from PROB to the
interface and vice versa. Consequently, the parameters and output values of those
functions called by PROB need to be basic data structures or void. In order to store
the information, though, the internal functions take more complex data structures
as parameters. The source code for each of these functions can be found in the file
internal_functions.c in Appendix A.3. The source code for the functions called by
PRrROB are in the file interface.c in Appendix A.1.

During a model checking process, the first two functions, prob_init(void) and
prob_set_number_of_colours(int number_of_colours), are called only once. The
function prob_init(void) allocates memory and initialises a set of variables used
throughout the program. PROB then transfers information about how many colours
are going to be needed during the model checking of a machine, by calling the
function prob_set_number_of_colours(int number_of_colours). Then, the function
prob_start_graph(int number_of_nodes) is called. This function takes the number
of vertices, also called nodes in the source code, as input from PROB. It allocates
memory and initialises variables for working with a particular graph G. The most
important variables initialised here are those for storing the graph G, called global_g
in the source code, and its canonical form, global_canong. The canonical form is
just a different representation of the graph and therefore has the same data format
as the graph. We described this format, which is used by NAUTY, in Section 3.1.
Also important is the encoding of the initial partition. The variable cell_list stores
for each colour the set of vertices with that colour, and therefore contains the infor-
mation for the initial partition. Though strictly not necessary, the sizes of each cell
are stored for easier reference in another variable, called cell_sizes. Note that the
functions prob_init(void) and prob_set_number_of_colours(int number_of_colours)
need to be called before prob_start_graph(int number_of_nodes) in order for the
initialisations to take place.
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When all related variables are initialised, PROB can start transferring the data
for edges and vertex colours of the graph to the interface, by using the functions
prob_add_edge(int from, int to) and prob_set_colour_of_node(int node, int colour).
All information is encoded in the form of integer values. The latter function takes
a vertex and its colour, and stores it according to its colour, in the appropriate
cell within cell_list. The variable cell_list is just one long array of integers, and
the cells are separated by an offset. After the colour of a vertex has been set, all
outgoing edges from that vertex are added, one by one, to the graph with the function
prob_add_edge(int from,int to). This function takes two vertices, that are joined
by an edge, as input parameters. It calls the internal function add_edge(...), which
uses some functions from NAUTY to make the respective changes to the variable
global_g.

Once all the data for a graph has been transferred and stored in a NAUTY friendly
format, PROB wants to know, if the symmetry class of the graph G has been
encountered before, or not. In order to answer this question, PROB calls the only
function with a return value, int prob_exists_graph(void). Now, before NAUTY is
called within this function to calculate the canonical form, there are various NAUTY
options and parameters set. Most important for our purpose are the NAUTY options
options.digraph and options.getcanon. Those options need to be set to TRUFE, since
our graphs are directed graphs and we want NAUTY to calculate the canonical form.

We also implemented a function to check if all vertices in G have been given a
colour. In cases where a vertex has no colour assigned, it gets the default colour 0.
This makes sure that NAUTY works correctly.? When all vertices have been given a
colour, the initial partition can be set. NAUTY has two parameters, *lab and xptn, to
represent this information. The parameter xlab stores the vertices of G in the order
of the cells, while *ptn indicates where the end of one cell is. An internal function
named set_label assigns those variables the correct values according to the colouring
information stored in the variable cell_list. With all parameters set, NAUTY can be
called to calculate the canonical form. The function call looks as follows:

nauty(global_g, lab, ptn, NULL, orbits,& options, & stats, workspace,
100*MAXM, m, global_n, global_canong);

For more information on the individual parameters, see NAUTY User’s Guide [42].
The resulting canonical form is stored in the variable global_canong. Previously
calculated canonical forms have been stored in a binary tree.®> Now the interface
tries to insert the canonical form in the binary search tree, by calling its function
insert_canon, found in the file graph_tree.c, see Appendix A.4. If the same canonical
form is found in the tree, then that means that the respective symmetry class of G
has been encountered before, and the function just returns with a positive value.
Otherwise, the new canonical form is inserted in the tree, and returns with a negative

2If vertices are not given a colour through PROB, then this can lead to a large initial partition,
which in turn can cause a long runtime.
3Canonical labels are binary strings, so defining a lexicographic ordering is straightforward.
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value. So, a positive value tells PROB, that the symmetry class of G is already
evaluated and therefore the state represented by G does not need to be checked
anymore. A negative value indicates that PROB has some more work to do on the
respective state. When PROB has finished model checking a machine, then it calls
a tidying routine to clean up allocated memory. The following example shows a
listing of function calls as they could be called by PROB:

Example 3.27

prob_init();

prob_set_number_of _colours(230);

prob_start_graph(2);
prob_set_colour_of _node(0,6);
prob_add_edge(0, 1);
prob_set_colour_of _node(1,6);
prob_ezists_graph();

prob_free_storage();

Note that the canonical form is stored together with the number of vertices
and the sizes of each cell for each colour, where empty cells have the size 0. This
additional information to the canonical form is necessary, because the canonical
form depends on the initial partition. We discussed in Section 3.3, that the ordering
of the colours must be the same, when graphs are tested for isomorphism. Now,
even though the sequence of colours is fixed at the beginning for all graphs, we can
have two graphs that use different colours, but still end up with the same initial
partition and the same adjacency matrix. In order to distinguish such graphs we
need to compare for each colour the number of vertices with that colour, i.e. the
information stored in the variable cell_sizes.

Example 3.28 Let’s consider the two graphs depicted in Figure 3.13 and assume
the sequence of colours is [‘black’, ‘grey’, ‘white'].

® 0 -0 ® O—O
0 1 2 0 1 2

Figure 3.13: Non isomorphic graphs with same canonical form

Clearly both graphs have the same initial partition and the same adjacency matrix:
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g1t {0}7 {172} g2t {0}7 {172}

gl 01 2 @l 0 1 2
0] 0 0 1 0] 0 0 1
11001 1l 001
210 00 200 0 0

This would lead to the same canonical form, and we would falsely report that these
graphs are isomorphic. Those two graphs can only be distinguished, when we apply
a generalised definition of the initial partition. Namely, by including the empty cells.
Then we have the partitions

g1 {0}7{172}7{} g2 : {0}7{}7{172}

When we now compare the size of each cell of ¢ with the size of the respective
cell in gy, we see that cell 2 of ¢; contains two vertices while cell 2 of g, is empty.
Consequently ¢; and ¢, are discovered as non-isomorphic.

This comparison has been implemented in the function compare_to_internal in
the file graph_tree.c, see Appendix A.4. Generally, a new graph G is compared to an
already stored graph, first by the number of vertices, then by the sizes of the cells in
the generalised initial partition and lastly by its canonical form. If all comparisons
turn out to be equal, then the symmetry class of the graph G has been encountered
before. The interface indicates this to PROB with a respective return value.

3.7 Related Work

3.7.1 Muryp

Protocols are very important tools used for communication over networks. They
provide a set of rules, such as "If the line is free, a device can start sending packets”,
to allow a controlled and successful interaction between devices. However, designing
such a protocol is somewhat difficult, since the designer has to consider numerous
dependencies within the protocol and unusual conditions in which the protocol can
be used. Errors are made easily during design and a simulation of the protocol can
filter out only certain types of errors effectively. Those errors, that occur in some odd
circumstances and non-deterministically are not reliably found by simulation. This
is where formal verification could help, and the reason why Mury [19], a protocol
description language and verifier, has been developed in 1992 and enhanced since.
Mury was designed to be simple, while supporting non-deterministic scalable
descriptions. It uses a set of integrated guarded commands to describe a system,
which is inspired by Misra’s Unity language [12]. A guarded command consists of a
condition, i.e. Boolean expression, and a sequence of actions. A Mury description
contains a set of invariants separately. Those invariants are Boolean expressions
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constraining the variables. Each invariant needs to be true in every state. The
description is compiled by the Mury complier to a C++ verifier program, which is
then used to verify the description by searching its state space. The verification is
similar to model checking in B in that the state space is searched with breadth-first
or depth-first search for states that violate any invariant, or are a deadlock state.
For any error found, there is an error message, and the trace of transitions to that
erroneous state is generated.

Symmetry has been introduced to the Mury description language by a data type
called scalarset [28]. User defined data types are each represented by a range of
integers. Whenever the integer values of a particular range don’t matter throughout
the Mury description, that range can be replaced by a scalarset. Therefore elements
of a scalarset can be permuted, without changing the behaviour of the Mury de-
scription. For example, consider a three node cluster as part of a specification for
a data centre. Then it’s of no importance which individual machine responds to a
data request, what matters is that one does.

Scalarsets are restricted to those operations that don’t refer to a particular ele-
ment of a scalarset and also don’t imply an ordering on the scalarset. That means
elements of a scalarset can be compared for equality or inequality, but not with the
binary operators ">’ or '<’. A loop that iterates over all elements of a scalarset is
feasible, but not a conditional statement that depends on a particular element of a
scalarset. The Mury compiler notifies the user when a symmetry breaking operation
is used. So the user gets a feedback, if he introduced a scalarset in the wrong place.
Similar to B, the state space can be reduced to its quotient model and therefore
achieve savings of the state space of over 90%, see the Section ”Practical Results”
in [19].

3.7.2 The Model Checker Spin

SPIN is a very efficient and widely-used model checker developed by G. J. Holz-
mann [24]. It takes specifications written in the Process Meta Language Promela [22],
and verifies correctness claims expressed in LTL [48]. The algorithm used for model
checking is an improved depth-first search algorithm [26]. SPIN uses various meth-
ods to optimise the model checking process by reducing the state space and memory
consumption. Those methods include partial order reduction [46], state compres-
sion [25] and bitstate hashing [23].

The extension of SPIN with the symmetry reduction package SymmSPIN [9] adds
to the list of optimisation methods in SPIN. The idea by Ip and Dill [28] of introduc-
ing scalarsets as a new data type to the Mury description language, has been picked
up and adjusted for the integration into SPIN. In fact, the SymmSPIN package does
not use a new data type for scalarsets but the data type byte. So, in SymmSPIN
scalarsets are represented by a range of integers 0..n — 1, where n < 256. This is
done in order to avoid modifications of SPIN’s Promela parser. Symmetry is also not
described within a Promela specification itself, but in an additional file supplied by
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the user.

However, in order to find representatives for symmetry classes, SymmSPIN uses
some heuristics, as described in Bosnacki et al. [10], which leads to four different
strategies we will mention later in this section. Any state can be represented by a
state vector, which is just an array containing the values of all state variables. By
introducing a lexicographic ordering on the state vectors, one can define representa-
tives, as done in [28]. The state vector is separated in two parts. On the first part,
the minimal representative, i.e. canonical form according to the lexicographical or-
dering, is calculated. Of all permutations that lead to the canonical form, there is
one arbitrary permutation picked to induce a permutation on the second part of the
state vector. That means the second part is normalised after the first part. Since
the permutation is chosen arbitrarily, there might be several representatives of one
symmetry class stored throughout the model checking process.

The first of the four strategies works essentially as described above, but with
one modification: The variables of the state vector are heuristically sorted in a way
that reduce the number of permutations, after canonicalising the first part of the
state vector. This strategy is also called the sorted strategy. The second strategy,
called segmented strategy, considers all permutations after canonicalising the first
part, and takes the permutation of that set that leads to the smallest state vector.
With this permutation, the second part is canonicalised, and we obtain a canonical
form. Compared to the sorted strategy, the segmented strategy needs less memory;,
since only one canonical form needs to be stored, rather than potentially several
normalised forms. On the other hand, calculating the canonical form needs more
computation time. The other two strategies are variants of the sorted and segmented
strategies.

Rather than splitting the state vector, it is also possible to apply a canonical
function to the whole state vector. This strategy is called the full strategy. Bosnacki
et al. used this strategy as reference in their empirical results. They show that each
of their strategies can lead to the best reduction, where at least one always outper-
forms the full strategy in their experiments. Compared to using no symmetry, they
achieved significant reductions. This suggests to fully integrate symmetry reduction
into the SPIN model checker.

3.7.3 RuleBase

RULEBASE is a model checker developed by the IBM Haifa Research Laboratory [8].
It has been especially designed for the formal verification of hardware, but it has
been successfully applied also in protocol verification. RULEBASE uses an enhanced
version of the symbolic model checker SMV [44]. The specification language of
SMV is CTL, which is difficult to understand by ordinary designers. In order to im-
prove usability, RULEBASE comes with its own specification language, called Sugar.
Sugar is based on CTL, but it is far easier to understand by non-experts. Indeed,
RULEBASE has been developed with usability and industrial practicality in mind. It
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offers various analysis and debugging tools. Noteworthy here is RULEBASE’s support
for finding formulas that hold from a model checking perspective, but are meaning-
less from the design perspective. An example taken from [8], could be the formula
"if @ and then b, ¢ must hold”. Now, if the sequence "a and then b” never happens,
then the whole formula passes model checking in every state, but is irrelevant over-
all. To identify such formulas, RULEBASE gives warnings and also allows the user
to re-translate a formula to natural language. This gives the user the opportunity
to find out, if the formulas express what he intended.

However, RULEBASE does not just aim to be an easy to use model checking tool,
but also offers various reduction methods to reduce time and memory consumption.
Generally, the state space explosion problem is addressed by using binary decision
diagrams (BDDs) in symbolic model checking. So RULEBASE, being based on the
symbolic model checker SMV, makes use of that. For large systems though the use
of BDDs is still not sufficient to make model checking feasible. The idea of symmetry
reduction, which is very successfully used with other model checkers, is more diffi-
cult to apply in symbolic model checking, because of the symbolic representations.
Nevertheless Barner and Grumberg [7] managed to integrate symmetry reduction
into the RULEBASE model checker by using under-approximation. That means, after
encountering a new state, there is only a subset of successor states explored. So,
instead of calculating representatives for each symmetry class, a set of representa-
tives is picked as new states are encountered. This choice is not done randomly,
though, but by using symmetry information supplied by the user. The algorithm
can prove that a given system does not meet its specification, and therefore provide
a falsification. Under certain circumstances it can also verify a model.

Experiments suggest that respectable savings in time, and often memory, are
achieved with this method. Unfortunately the savings depend, to a large degree, on
the input of symmetry information from the user. This is also true for the use of
scalarsets in Mury, and SPIN with the SymmSPIN package.

3.7.4 The Alloy Analyser

The language ALLOY [29] is a very small modelling language based on Z [52]. It
was designed to be easy to read and write, but with sufficient expressiveness and
the possibility of automated analysis. The idea of automatic verification is inspired
by model checking. However, the respective tool for ALLOY, called ALLOY ANAL-
YSER [30], is based on propositional satisfiability (SAT) solving. An ALLOY model
is translated to a Boolean formula written in conjunctive normal form (CNF). The
Boolean formula is passed to the ALLOY ANALYSER’s integrated SAT solver to find
variable values, such that the formula evaluates to true. Such a set of variable
values is said to be an instance of the model. An instance can either be a proof
that a certain property of the model holds, or it can serve as a counter-example and
show that a property does not hold. Based on the formula, the instance is trans-
lated back to values of variables and constants of the model. The SAT problem is
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an NP-complete problem, so the scope for each variable and constant in a model
should be fairly small.

Applying symmetry during the verification of an ALLOY model works a little
different to the methods described in the previous sections. There, we had more
or less complex methods to find canonical- or normal forms for a symmetry class
of states. Now, the most expensive step the ALLOY ANALYSER has to perform, is
to find solutions to a Boolean formula. So, the idea here is to avoid searching for
symmetric solutions. This can be done by adding symmetry-breaking predicates [15]
to the Boolean formula, before it is given to the SAT solver. The ALLOY language
allows to infer symmetry information from the data structures used in a model.
Consequently there is no need for the user to supply any symmetry information. This
information is then used to construct partial symmetry-breaking predicates. Partial
symmetry-breaking predicates are chosen, such that at least one instance for each
symmetry class is found, but maybe more. The idea is to pick those predicates, that
lead to a small number of instances, without adding too much computation effort
for finding solutions to the Boolean formula.

There are various case studies showing the successful application of this method.
Two examples are "The design and implementation of an intentional naming sys-
tem” [2] and ”Tsafe: Building a trusted computing base for air traffic control” [17].

3.7.5 More Symmetry Reduction for B

In this subsection, we want to discuss related work towards symmetry reduction
for B. There have been three different attempts to use symmetry to combat the
state space explosion problem of B models in particular. We have seen in Sec-
tion 2.4 how B-states can be represented as vertex- and edge-coloured graphs.
The first attempt to use symmetry for B models was an implementation of the
canonical labelling algorithm, as described in Section 3.3, for vertex- and edge-
coloured graphs in Prolog. The details of this work are described in the article
“Symmetry Reduced Model Checking for B, [56]. We will compare this work with
our new approach using NAUTY in Chapter 4.

Symmetry Reduction by Permutation Flooding

The Permutation Flooding approach works differently from classical symmetry re-
duction, in that there is no need for the calculation of a representative for each
symmetry class. Instead, whenever a new state is encountered during model check-
ing, a set of symmetric states is calculated, by permuting the elements of deferred
sets?, and then added to the set of already evaluated states. Therefore, only the one
new encountered state needs to be model checked, but not all its symmetric states
as well.

4Under certain circumstances, elements of enumerated sets can also be permuted, see [39)].
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Example 3.29 Let’s take again the personnel machine from Section 3.4. The execu-
tion of the operation add_to_council(NAME1) after the initialization of the machine
leads to the state:

s1 = (staff —council = { NAMFE1},
status = {(NAME1, single), (NAME?2, single), (NAME3, single)}).

Permuting the elements of the deferred set NAME, which shall have a cardinality
of three, we get two symmetric states:

s2 = (staff —council = { NAME2},
status = {(NAME1, single), (NAME?2, single), (NAME3, single)})

and

$3 = (staff —_council = {NAME3},
status = {(NAME1, single), (NAME?2, single), (NAME3, single)}).

In a similar manner, the execution the operation change_status(NAME1) after the
initialization leads to:

s4 = (staff —council = {},
status = {(NAME1, married), (NAME?2, single), (NAME3, single)}),

where permuting the elements of the deferred set NAME again gives the symmetric
states:

s2 = (staff —council = {},
status = {(NAME1, single), (NAME2, married), (NAME3, single)})

and

$3 = (staff —council = {},
status = {(NAME1, single), (NAME?2, single), (NAME3, married)}).

Looking at the resulting state space in Figure 3.14, at first glance it seems that we
only saved the execution of some transitions which have been replaced by a permu-
tation operation. However, the states found though permutation of elements of the
deferred set NAME are considered as already visited, that means they don’t have
to be model checked and they don’t have their subsequent transitions computed,
which leads to a big saving in computation time.

Generally, this approach has the following advantages over model checking with-
out symmetry:
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Figure 3.14: Explored state space

e The states calculated by permuting elements of deferred sets don’t have to be
model checked.

e There is no need for the calculation of successor states for permuted states.

e The calculation of the permutation function is simple, even for more complex
data structures, see [39] for more details.

The obvious disadvantage is that there can be many permutations of elements of
deferred sets creating a rather large number of symmetric states. Compared to
exhaustive model checking, where every state is encountered anyway, there is nothing
lost, but compared to the method described in this thesis, the 'looding’ of the state
space is quite an overhead. We will compare both methods in more detail later in
Chapter 4.

Symmetry Reduction using Symmetry Markers

The main problem in Symmetry Reduction is to find a function that always decides
correctly, whether two states are symmetric or not, and is also easy to compute.
The Symmetry Marker approach [40] slightly weakens the correctness requirement
in favour of speed. The idea is to define a hash function, that assigns a hash value to
each state, such that symmetric states are guaranteed to get the same hash value and
non-symmetric states get different hash values with a very high likelihood. Before a
state is analysed, there is a hash value computed for that state, so that if a previously
encountered state had the same hash value then the current state does not need to
be analysed further. The assumption is that non-symmetric states get different
hash values. Since this is not necessarily the case in practice, the method is an
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approximate verification method. That means, it cannot guarantee the correctness
of a model but allows a falsification.

The idea of approximation has been successfully used by Holzmann’s bistate
hashing technique [23]. The Symmetry Marker approach takes this idea, but replaces
the hash values by a symmetry marker for each encountered state. The structure of a
marker is more complicated than a hash value, because it also integrates the notation
of symmetry. The modified model checking algorithm then stores the symmetry
markers instead of the state. Any newly encountered state is only checked, if its
marker has not been stored before. Similar to hash values, two symmetric states
have always the same hash marker, but it is possible that non-symmetric states
falsely get the same marker, too. In the event of such a collision, some of the state
space may not be checked.

The main source for symmetries in B are deferred sets. Consequently, they play
an important role in the definition of the marking function. Indeed, the main idea
of the marking function is to replace the deferred set elements of an encountered
state by so-called vertex invariants. Vertex invariants are known in graph theory as
functions, that label the vertices of a graph, such that symmetrical vertices obtain
the same value. Simple examples for vertex invariants on graphs are the in-degree
and out-degree functions. Generalising the idea of those two function leads to a
vertex invariant for deferred set elements in B. A formal description of how this idea
is implemented can be found in [40]. We just want to give an overview here. The

following notations are taken from [40]. We describe a state s as a vector (cy, ..., ¢,)
containing the values of its variables and constants vy,..., v, in a fixed order. A
sequence is described by (...) and we use the notation {| ... |} for multisets. The

data structures of all variables in a state are analysed, and for each deferred set
element, all possible paths are calculated that lead to that element within those
data structures. We obtain a multiset of paths. Now, the marker is the set of
variable-value pairs, where each occurrence of a deferred set element in a value is
replaced by the respective multiset of paths.

Example 3.30 We describe here an example taken from [40]. Let’s have a machine
with the deferred set D = {d;, do} and variables ¢ and r, where ¢ € D and r C Dx D.
We take the state s = (di,{(di, dz)}) and calculate its symmetry marker. The
graphical representation of s is depicted in Figure 3.15. We have the variable value
pairs ¢ — dy and r — {(d;, d2)}. Let m be a function, that maps, depending on the
state, to each element of a deferred set its multiset of paths. Then we have:

ms(dr) = {| {c), (r, el, left) |}
ms(dy) = {| (r, el, right) |}.

Replacing each deferred set element in s by its multiset of paths, gives us the sym-
metry marker for the state s:

(Al ey, (el deft) [} L (£] Ce), (ry el deft) [}, {1 (r, el might) 13) 13 ).
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d1 d2

Figure 3.15: Graphical representation of state s

Note that a set, like the set of pairs {(dy, dy)}, is also written as a multiset in the
marker. This makes the symmetry marker more precise.

We now consider the state s, = (d, {(dz, d1)}). This state is symmetric to s,
by permuting the elements d; and dy. Let’s see if its symmetry marker agrees with
that. The graphical representation of s, is depicted in Figure 3.16.

/
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O

d1 d2

Figure 3.16: Graphical representation of state s,

We have,

ms, (di) = {| (r, el, right) |}
m82<d2> = {| <C>7 <7n7 el, left> |}7

and the symmetry marker for s, is

(Al e, (el deft) [} {1 (£] Ce), (el deft) [}, 4] (ry el might) [3) 13 )
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which is the same as for s.

The graphical representation of the state here is only to give an understanding
on how the symmetry markers are calculated. The method does not calculate state
graphs as described in Section 2.4.

In Example 3.30, the symmetry markers of two states indicated correctly that
the states are symmetric. This means that the state encountered second, would not
need to be checked anymore and none of its successor states either in order to verify
the model. Generally, states that are symmetric are also indicated as symmetric by
their symmetry markers. However, it is possible to have non-symmetric states that
have the same symmetry marker, as the following example shows.

Example 3.31 Let’s have now a deferred set with three elements, D = {d;, ds, ds},
and a relation r € D x D. We consider the non-symmetric states

s1 = ({(di, d2), (da, d3), (d3, dr)}) and
s2 = ({(di, d2), (da, dy), (d3, d3)}).

Figure 3.17 shows the graphical representation of both states and the multiset
of paths for each deferred set element in both states.
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( {| {r,el, left), (r, el, right) |} me, (dy)
ms, (da) = {| (r, el, left), (r, el, right) |} My, (da)
( {| {r,el, left), (r, el, right) |} M, (d3)

(r,el,left), (r,el, right) |}

{l
{I {rel, left), (r, el, right) |}
{I {rel, left), (r, el, right) |}

Figure 3.17: Non-symmetric states with the same marker

We can see that the multisets are all the same for each deferred set element in both
states. Observe that in both states, the relation r has the same number of pairs.
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When replacing the deferred set elements with their respective multisets of paths,
we yield the same marker for s; and ss.

We've just seen that collisions can already occur in a very small example. A
way to get around this problem, is to declare the deferred set as an enumerated set,
but then of course there would be less symmetry in the model. There is obviously
a tradeoff between speed and precision.

We want to apply now the symmetry marker approach to the personnel machine
from Section 3.4.

Example 3.32 Let’s look at two states of the personnel machine and compare their
symmetry markers. Executing the of the operation add_to_council(NAME1) after
the initialization of the machine leads to the state:
s1 = (staff —council = { NAMFE1},
status = {(NAME1, single), (NAME?2, single), (NAME3, single)}),

whereas executing the the operation add_to_council(NAME?2) leads to the state:

s2 = (staff —council = { NAME2},
status = {(NAME1, single), (NAME?2, single), (NAME3, single)}).

We calculate the symmetry markers for both states. For s; we have:

ms, (NAME1) = {| (staff _council, el), (status, el, left) |},
ms, (NAME?2) = {| (status, el, left) |},
ms, (NAME3) = {| (status, el, left) |}.

So the symmetry marker for s is:

({] (staff —council, el), (status, el, left) |},

{I ({| (staff _council, el), (status, el, left) |}, single),
({| (status, el, left) |}, single),

({| (status, el, left) |}, single) |} ).

For s, we have:

ms,(NAME1) = {| (status, el, left) |},
ms,(NAME?2) = {| (staff _council, el), (status, el, left) |},
ms,(NAME3) = {| (status, el, left) |},

and the symmetry marker for s, is:

({]| (staff —council, el), (status, el, left) |},

{I ({] (status, el, left) |}, single),
({] (staff —council, el), (status, el, left) |}, single),
(

{| (status, el, left) |}, single) |} ).
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In a multiset the order of the elements is irrelevant. Consequently, both symmetry
markers are the same, and indicate that the two states are symmetric. Therefore
only one of those two states is evaluated further in the model checking algorithm.

Leuschel and Massart [40] proved that the method works correctly for falsifica-
tion, and they also list under which conditions it is precise. Experiments show that
there are very few collisions in practice.



Chapter 4

Empirical Results

In the following, we give the results of some runtime experiments. The tests were
conducted under Debian Linux on a AMD Dual Core 3800+, 2GHz system with
PrOB 1.2.7.

We have compared the new approach using NAUTY for symmetry reduction, ab-
breviated as nausym in the tables and the following, with the other symmetry meth-
ods. These are the permutation flooding [39] method, abbreviated flood, described in
Section 3.7.5 and the approximate symmetry marker method [40], abbreviated hash,
also described in Section 3.7.5, as well as a former implementation of the canonical
labelling algorithm in Prolog [56] abbreviated canon in the following. Runtime re-
sults presented in the respective articles of the methods may differ, since different
computer architectures were used. As baseline we have also conducted experiments
with PROB, where symmetry reduction was disabled, abbreviated with wo.

We have used a variety of B specifications in our experiments. The machines
are mostly the same as in ”Efficient approximate verification of B via symmetry
markers” [40], in order to give a better comparison to previous work. We want
to describe each machine briefly before we present and analyse our results. Each
machine is also given in Appendix 5.

1. The machine scheduler(O is a specification of a process scheduling system on
a single resource taken from [37]. The process identifiers are elements of a
deferred set, and the state of each process can be either idle, ready or active.
Since a single resource is modelled, the invariant states that there can be at
most one active process.

2. schedulerl is a refinement of scheduler0 and also taken from [37].

3. RussianPostalPuzzle specifies a cryptographic puzzle [20]. The problem of the
puzzle is sending a valuable item in a box safely by post. The box is passed
by the postal workers to the recipient only if the postal worker does not have
a key to open it and knows that there won’t be a key sent in the post. The
keys and padlocks in the specification are modelled by a deferred set.
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4. USB_4FEndpoints is a specification of a USB transfer protocol designed by
ClearSy, a French company that specialises in developing safety-critical sys-
tems. The protocol is described as a tuple (host, device endpoint, transfer
type), while the invariant allows only one transfer at a time for any endpoint.
The endpoints are described by a subset of natural numbers, and a deferred
set models the set of all possible transfers.

5. TokenRing models a network ring of servers. A server that requests to send
needs to get the token first, before it can do so. The token moves around all
servers unless one server is in the critical state of sending. The set of servers
is modelled with a deferred set.

6. Dining is a model of the Dining Philosophers Problem. The classical problem
has five philosophers on a round table with one fork between two philosophers.
In order to eat any philosopher needs two forks. The model describes the
philosophers and the forks with deferred sets. Two constant bijections between
the philosophers and the forks assign each philosopher a fork to his left, and
to his right, respectively. The model generalises the classical problem in that
it allows a bigger or smaller table of philosophers (minimum two), or even
several round tables that are independent from each other.

7. Towns is a model from [49]. It keeps track of motorways being built to link
the towns to each other. The set of towns is given as parameter and the roads
are described as a relation between the set of towns.

4.1 Analysis of the results

4.1.1 Comparison between Symmetry Reduction Methods
for B

We have partitioned the machines into two tables: Table 4.1 contains those experi-
ments where all symmetry reduction methods examined the same number of states,
column states (sym), and Table 4.2 contains those experiments where the symmetry
reduction methods differed in the number of states examined. Hence, Table 4.1 con-
tains only a single column for the number of states model checked by all symmetry
methods, whereas Table 4.2 contains one column per method. In our experiments,
we have varied the cardinality of the deferred sets in order to study the effect of
symmetry reduction with increasing size of the deferred sets. The cardinality used
is shown in the first column labelled with card. Runtimes are expressed in seconds;
Table 4.1 contains columns for the speedup of Symmetry Reduction using NAUTY
compared the other methods, where a value above 1 means that nausym is faster.
We also took the machines scheduler0O, schedulerl, RussianPostalPuzzle and
TokenRing and put the runtimes for each method in dependence of the cardinality
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Table 4.1: Empirical Results I

Runtimes of Symmetry Methods Speedup
card | states | states WO flood hash canon nausym WO flood | hash | canon
(wo) | (sym) 39 | 40 | [56] 39 | [a0] | [56]
scheduler0
2 16 10 0,04 0,03 0,03 0,05 0,03 1,3 0,9 0,9 1,4
3 55 17 0,23 0,08 0,08 0,16 0,09 2,5 0,9 0,8 1,8
4 190 26 1,10 0,24 0,17 0,60 0,21 5,4 1,1 0,8 2,9
5 649 37 5,10 0,94 0,33 2,76 0,41 12,4 2,3 0,8 6,7
6 2188 50 23,08 6,11 0,61 17,12 0,76 30,5 8,1 0,8 22,7
7 7291 65 115,01 55,07 1,00 139,05 1,28 89,9 43,0 0,8 108,7
schedulerl
2 27 14 0,06 0,04 0,03 0,26 0,05 1,2 0,7 0,7 5,12
3 145 29 0,46 0,12 0,10 1,29 0,16 2,0 0,8 0,7 8,08
4 825 51 3,36 0,43 0,25 6,27 0,39 8,6 1,1 0,6 16,03
5 5201 81 27,13 2,28 0,54 35,56 0,84 32,4 2,7 0,7 42,42
6 37009 120 333,82 35,71 0,96 674,26 1,61 207,9 | 22,2 0,6 419,93
7 - 169 * * 1,66 * 2,80 - - 0,6 -
10 - 386 * * 6,51 * 11,37 - - 0,6 -
15 - 1041 * * 35,67 * 67,08 - - 0,5 -
20 - 2171 * * 141,96 * 257,16 - - 0,6 -
RussianPostalPuzzle
1 15 15 0,03 0,03 0,03 0,07 0,06 0,5 0,5 0,5 1,1
2 81 48 0,21 0,14 0,13 0,42 0,25 0,8 0,6 0,5 1,7
3 441 119 1,40 0,54 0,43 2,20 0,81 1,7 0,7 0,5 2,7
4 2325 248 9,36 2,37 1,14 11,53 2,23 4,2 1,1 0,5 5,2
5 11985 459 64,52 15,91 2,58 63,97 5,567 11,6 2,9 0,5 11,5
USB_4Endpoints

1 29 29 0,21 0,21 0,23 24,67 1,14 0,2 0,2 0,2 21,7
2 694 355 10,69 5,80 7,74 547,17 21,97 0,5 0,3 0,4 24,9
3 16906 3013 1533,54 | 265,19 | 208,40 * 297,43 5,2 0,9 0,7 -

* means test has been cancelled or not done, because of excessive runtime

Table 4.2: Empirical Results II (where the methods calculate different number of states)

number of states Runtime of Symmetry Methods
card WO flood | hash | canon | nausym WO flood hash canon | nausym
9] | [40] | [56] 39 | o] | [56
Token Ring
2 35 19 19 35 19 0,07 0,06 0,05 0,11 0,07
3 295 60 60 148 60 0,49 0,19 0,16 0,65 0,22
4 3097 174 141 646 174 6,57 1,44 0,46 6,47 0,86
5 38521 480 278 2248 480 175,61 42,90 0,97 61,98 2,96
6 - - 495 8460 1252 * * 2,09 921,79 9,90
7 - - 816 - 3160 * * 4,27 * 33,86
Dining
2 21 8 7 11 8 0,07 0,05 0,04 0,06 0,05
3 337 13 11 29 13 1,50 0,18 0,08 0,27 0,10
4 17713 48 17 165 48 145,53 18,13 0,15 3,39 0,54
Towns
2 17 11 11 11 11 0,34 0,20 0,21 0,24 0,21
3 513 105 105 105 105 67,78 13,45 13,73 15,68 13,93
4 65537 | 3045 | 3011 - 3045 * 1721,73 | 1748,45 * 1732,03

* means test has been cancelled or not done, because of excessive runtime
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of the respective deferred set into diagrams, see Figure 4.1 to Figure 4.4. We chose
a logarithmic scale for the runtime.
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Figure 4.1: Runtimes for scheduler0
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Figure 4.2: Runtimes for schedulerl

nausym vs. wo: We can see that for very small cardinalities of the deferred
set, the runtimes for each symmetry method or even without symmetry do not
differ much in most cases. Except for machines like USB_4FEndpoints, where the
runtime exceeds reasonable timeperiods already for cardinality greater than three.
The greater the cardinality of the deferred sets, the greater is also the speedup of
nausym, compared to using no symmetry (see speedup wo). For a cardinality of
five, using nausym is already more than ten times faster for all four machines.

nausym vs. canon: We can see that in every instance, our new implemen-
tation is more efficient than canon from [56]. Sometimes the difference is dra-
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Figure 4.4: Runtimes for TokenRing

matic, exceeding two orders of magnitude. Recall that the method canon, has the
same mathematical foundation as our new method: The B-states are translated into
vertex- and edge-coloured graphs and a canonical form is computed, to decide if the
respective state has been computed already or not - see Sections 2.4 and 3.3, or
[56]. However, for canon the standard canonical labelling algorithm was extended
to vertex- and edge-coloured graphs, and implemented in Prolog. For nausym, we
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transform the state graphs into vertex-coloured graphs as explained in Section 3.4,
and then apply NAUTY. When we first applied symmetry reduction with canoni-
cal labelling in the approach canon, it was disappointingly slow and, therefore, the
question was if this was due to the method based on graph isomorphism, or the
implementation. Now we can answer this question and say that the disappoint-
ing runtime results were due to the implementation. Probably part of the blame
goes to the implementation in Prolog, the other part is that the canonical labelling
algorithm itself in canon did not include many of the optimisations and years of
refinement that make NAUTY such an effective tool.

nausym vs. flood: The method flood employs a different approach to sym-
metry reduction, called permutation flooding, see Section 3.7.5 and [39]. For small
cardinalities, it behaves similar - sometimes even slightly better, than nausym. How-
ever, for higher cardinalities the flooding of the state space often induces too big
an overhead; meaning that the new approach is generally faster and much more
scalable, compare, e.g., the runtimes for schedulerl or TokenRing. The runtime
diagrams in Figure 4.1 to Figure 4.4 state this behaviour graphically.

nausym vs. hash: The only method which outruns symmetry reduction using
NAUTY is the symmetry marker method (hash), see 3.7.5 and [40]. Indeed, it is the
only other method that scales well for all examples, see Table 4.1 and Table 4.2.
The figures, especially Figure 4.1, show how well both methods scale with increasing
cardinality of the deferred set. The runtime curve of nausym is just slightly above
the runtime graph of hash. The two curves run almost parallel, even for higher
cardinalities on the logarithmic scale. The method hash is about twice as fast as
nausym in all four examples from Table 4.1 for most cardinalities. Although it is
precise for these examples, symmetry reduction with symmetry markers is generally
not an exact method; it uses a hash function that does not guarantee that non-
isomorphic states are always detected as non-isomorphic. That means that error
states of a machine could potentially be missed. This can be seen in Table 4.2: the
method hash often computes less states than required to exhaustively model check
the B machine. In fact, Table 4.2 shows that the number of states computed by
each method differs. Permutation flooding and nausym inspect the same number of
states, see Figure 4.5, which is the minimum number for a correct model checking.’

4.1.2 Analysis of the State Space Reduction

We have now compared our approach with the other symmetry reduction methods
for B, and, by contrast, using no symmetry reduction at all. We now want to
discuss the state space reduction when symmetry is used. In those cases where the
symmetry marker method is exact, all symmetry methods have the same number of
states to model check. The permutation flooding approach is a special case, because
even though the number of states that need to be model checked is the same as for

IThe Prolog implementation of the canonical labelling algorithm does not detect symmetric
states that arise during the constant setup phase, therefore more states need to be model checked.
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the other symmetry methods, it generates states through permutation of elements
of the deferred sets, so that the state space itself is not reduced. For the scheduler0
example we have depicted in Figure 4.5, the size of the state space, and in Figure 4.6
the number of transitions, in dependency of the cardinality of the deferred set. For
this example, the symmetry marker approach is exact, so we have the same graph
for the three methods denoted as hash, canon and nausym. As explained above, the
size of the state space for permutation flooding is the same as for model checking
without symmetry, so there is one graph for both cases together. The number of
states are presented on a logarithmic scale. We can see clearly that the state space
grows exponentially with the size of input, i.e. the cardinality of the deferred set.
When using either of the classical symmetry reduction methods, the resulting graph
can be approximated by a cubic polynomial. In most cases, the growth of the state
space can be approximated by a low degree polynomial function, such as quadratic
or cubic. Of course, we have to keep in mind that some models do not allow much
symmetry reduction. In those cases, a different approach is recommended.
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Figure 4.5: Size of State Space for scheduler(

4.1.3 Analysis of the Graph Canonicalisation Time

Symmetry reduction using NAUTY showed good results compared to the other sym-
metry reduction methods in PROB, and we asked ourselves if this is generally the
case. After using the method for some time within PROB, we found a model that
takes longer to model check using symmetry reduction with NAUTY than using no
symmetry at all. This machine models the TicTacToe game, see Appendix B.8.
The following two reasons could explain this behaviour: The first cause is that
some models do not make much use of deferred sets, which are essential for the
occurrence of symmetry. Consequently, the reduction of the state space is not that
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great, so that the overhead for the calculation of the canonical form becomes too
massive compared to the achieved state space reduction. The second reason for bad
performance of nausym lies in the size and structure of the graphs constructed from
B-states. When calculating the canonical form, the algorithm starts with an initial
partition of the vertex set according to the colouring of the vertices. The smaller
the cells in the initial partition are, the fewer calculations are needed to find the
canonical form. However, if the initial partition contains a very large cell, or several
large cells, then the calculation of the canonical form can take a considerable amount
of time and space in memory, because of the enlarging search tree, which can slow
the computation down even further, depending on the available system memory.
Since a canonical form needs to be calculated for every encountered state during
model checking, the computation time can add up very quickly to a considerable
amount.

In the case for the TicTacToe model, we encountered timeouts during the cal-
culation of the successor states for a particular state. This is also when NAUTY is
called, so that PROB can decide which of those states needs to be evaluated further.
The timeout we had set in the PROB preferences was ten seconds. We set this
timeout to make model checking feasible, overall. In Table 4.3% we can also see that
the other symmetry reduction methods took more than two minutes to model check.
Note that we have chosen not to treat deadlocks as errors, because the end of each
game is a deadlock - but not an error.

We figure that this model is not so well-suited for symmetry reduction. When we
analysed a model of the TicTacToe game that expresses less symmetries of the game
in that the rotational symmetries are omitted. The runtime results for model check-
ing of this model are much better, see Table 4.4. We used PROB’s ComputeCoverage

2For computing the results we used the same system as before but with PROB 1.3.1 which has
some new optimisations compared to PROB 1.2.7
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Table 4.3: Results of the TicTacToe_Sym model

wo | flood | hash nausym
[39] | [40] [51]
STATES 5480 | 5480 | 1401 *
TIME in sec | 518,6 | 138,3 | 139,2 | TIMEOUT

Table 4.4: Results of the TicTacToe_SimplerSym model

wo | flood | hash | nausym
[39] | [40] | [5]]
STATES 5480 | 5480 | 1450 | 1450
TIME in sec | 97,6 | 26,6 | 26,7 | 29,1

function for both models to find out the number of states that have been visited.
Both models encounter the same number of states when no symmetry is used. So
the overall state space of the second model is not smaller, compared to the first
one, but the model checking time is greatly reduced for each method. Now the
time needed by nausym is less that three seconds more than that for hash, which
is within a similar scale compared to our other experiments. The reason for the
difference in the model checking time we found is the complexity of the states. The
graphs representing the states of the TicTacToe_Sym model turned out to be much
more complex than those of the TicTacToe_SimplerSym model. An example of such
a graph is depicted in Figure 4.7. This graph has still labels, i.e. colours on the
edges, so the only vertex-coloured graph, which is handed to NAUTY, is even larger.
Surprisingly the model that describes all the symmetries of the TicTacToe game is
much slower to model check with any of PROBs symmetry reduction methods. This
is due to the complex states, which have to be represented in some kind for every
method by the model checker. The example shows very well that the time needed
for model checking in general, depends very much on the modelling.

4.1.4 Size of State Graphs

In our experiments, we also evaluated how big the graphs representing states are
for our examples, see Appendix C. With state graphs, we mean here those that
are handled by NAUTY. That is, the original vertex- and edge-coloured state graph
produced by PROB has been transformed to a vertex-coloured graph as described in
Section 2.4. In Figure 4.8 in the left graph, we depicted the results for the machine
scheduler0, for increasing cardinality of the deferred set. It shows the number of
graphs in dependency of the number of vertices for an individual graph. The state
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Figure 4.7: One state graph of TicTacToe_Sym model produced by PROB

graphs for this example are not very big, and the number of graphs for cardinality
seven are still reasonable. Our runtime results from Table 4.1 suggest that NAUTY
handles those graphs very easily. The right graph of Figure 4.8 shows the results for
various machines with cardinality three of the deferred set, if not stated otherwise in
the caption of the graph. Although the graphs are a bit larger, and many more states
are encountered for some machines, the runtimes are still very good. For example,
for the USB4_FEndpoints machine, there are more than 800 graphs with 45 vertices
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Figure 4.8: Size of state graphs for scheduler0 (with varying cardinality) and for
varying B machines

each, but the runtime is still only 1.14 seconds, see Table 4.1. Note that all runtime
results also include PROB’s model checking and interpretation of the B machine.
From our experience, we deduce that most models produce state graphs with less
than 100 vertices, which can be handled well by NAUTY. The model presented in
the Section 4.1.3 seems to be a rare exception. The layered structure of the graphs
handed to NAUTY might also help NAUTY to calculate a canonical form. Indeed, in
each layer, the vertices are coloured differently. That means the cells in the initial
partition are, at most, as large as the number of vertices in a single layer. The
smaller the cells in the initial partition are, the better the performance of NAUTY.
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Conclusions and Future Work

This thesis continues the work in symmetry reduction via graph canonicalisation, for
model checking in B. The pioneering work on this topic was done by E. Turner [55].
His work is a proof of concept and made a further exploration of the method inter-
esting. Now, this thesis takes this foundation and adds an important building block,
by using NAUTY [42] for calculating canonical labels of graphs representing B-states.
NAUTY has been developed and improved by its authors over years, and its algo-
rithms for graph canonicalisation use optimisations, that haven’t been used in the
implementation of the algorithm by E. Turner. The use of this efficient tool has led
to a breakthrough in terms of practicality. Symmetry reduction via canonical form
using NAUTY is now the first choice of precise symmetry reduction methods in the
PROB toolset. Empirical results presented in this thesis show the vast improvement
to the previous implementation of the canonical labelling algorithm. Consequently,
the old implementation is no longer available in release 1.3.0 (or later) of PROB.
Our technique is generally much more effective than permutation flooding [39] and
therefore the preferred choice. The only symmetry reduction method that is still
faster, is the approximate method using symmetry markers by Leuschel and Mas-
sart [40]. However our technique scales equally well for most models, while being
fully precise. In cases where symmetry reduction using NAUTY for the graph canon-
icalisation takes too long, we can still choose another symmetry reduction method,
or even go the other way round and use the approximate but fast Symmetry Marker
method first - and, only in cases where this method found no errors, then use sym-
metry reduction with NAUTY to make sure that a hash collision did not lead to a
wrong result.

We also want to mention here, that since Leuschel and Plagge have developed a
translation of Z models into B in [47], and an LTL model checker for PROB in [41],
so our method is also applicable to Z and for LTL model checking.

In research, there is always margin for improvement, or some unexplored idea
that can be beneficial. We want to discuss here a few ideas to be investigated in
future work.

An important part of the symmetry reduction method described in this thesis,
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is the translation of vertex- and edge-coloured graphs to vertex-coloured graphs, so
that they can be fed to NAUTY. In the following, we describe an idea on how to
reduce the size of the resulting vertex-coloured graphs. In Section 3.4 we described
how the vertex- and edge-coloured graphs representing states can be transformed to
only vertex-coloured graphs, so that they can be fed to NAUTY. Each edge colour
has been represented by a layer of duplicated vertices of the original graph. If a
model has many data structures, so that the graphical representation of a state has
many labels on the edges, then the respective vertex-coloured graph has the same
number of layers. This leads to a fairly large vertex-coloured graph, in comparison
to the vertex- and edge-coloured graph constructed from a state. In order to reduce
the size of those graphs the NAUTY user’s guide [42] suggests placing several colours
in one layer. We want to explain the idea, together with an example.

Example 5.1 Let’s take the following graph with only four vertices, but three
different colours on the edges.

Figure 5.1: A vertex- and edge-coloured graph

With the transformation of Section 3.4, the layered vertex-coloured graph would
look like:

Figure 5.2: The transformed vertex-coloured graph

Each edge-colour has its separate layer, as indicated in Figure 5.2. Now, given
that each colour is internally represented by an integer, we take the binary represen-
tation of that integer as indication in which layers a colour is represented. The least
significant bit is related to the lowest layer, i.e. layer 1, and so on. That means for
our example that, colour 1 gets represented in layer 1, colour 2 in layer 2 and colour
3 in layer 1 and 2. Consequently the vertex-coloured graph has now one layer less.
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Generally, if we have k colours, we need [log2k] + 1 layers instead of & layers as
before. Implementing this transformation would achieve quite a considerable saving
in the size of the graph. On the other hand, we cannot say if it would save any sig-
nificant computation time, since the graphs are more dense in the individual layers.

Another idea for improvement could be to replace NAUTY with another tool.
Related tools are sAuCY [16] and BLISS [32]. SAuUCY though does not compute a
canonical label, so it does not serve our purpose. BLISS on the other hand does,
and it performs particularly well for large sparse graphs. Large sparse graphs are
graphs with relatively few ”1's” in their adjacency matrix. For these graphs BLISS
clearly outperforms NAUTY, see [32]. However BLISS can also handle other types of
graphs well. Its performance for dense and highly regular graphs, which occur often
in combinatorial problems, is similar or better than the performance of NAUTY. We
need to investigate how well BLISS would perform with our graphs. The vertex-
coloured graphs are usually not very dense, and have some structure due to their
layered representation. Both indicates that BLISS would handle our graphs very well.

A very recent idea is to make a slight change to the model checking algorithm,
using symmetry reduction, see Section 3.5. The current implementation does cal-
culate the canonical form for all successor states of a state s. Those states that
are symmetric to some previously encountered state are not considered further, but
also not saved in any way. That means, if another path in the state space leads to
such a state again, then its canonical form needs to be calculated again, too. This
could be avoided by saving every encountered state in the same way as it is done
for the ordinary model checking algorithm without symmetry. There, a hash value
is computed and saved for each state. This is done so that the algorithm detects a
loop of transitions in the state space and does not run endlessly in such a loop.

When there is a canonical form calculated for each state before it is evaluated
further, then this also prevents the model checking algorithm from going into an
endless loop. Therefore, saving another hash value for each encountered state isn’t
necessary. However, if we do it anyway, then we could save calculating the canonical
form several times for one state. This means, rather than calculating a canonical
form for essentially each transition in the reduced state space, we have to do so only
once for each encountered state. The overhead for calculating and saving a hash
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value for each state, could pay off for models that have many transitions, compared
to their number of states. Indeed, the machine USB4_FEndpoints, which we used
for our empirical results, is such a model. A first experiment showed that model
checking of this particular model was five times faster. We will have to evaluate this
idea in future work, before we can draw general conclusions.

The last suggestion we wish to make on future work, is on translating states
into graphs. In Section 2.4 we explained the currently implemented algorithm. This
algorithm is just a proof of concept, and there might be better representations of
states as graphs. We want to describe here one possible improvement.

The current algorithm creates intermediary vertices for nested data structures.
Those vertices all get the same colour, so far. Considering that NAUTY performs best
when the initial partition of a graph has small cells, this is probably not the best
solution. FEach intermediate vertice comes from a certain data structure. Taking
this into account we could group the vertices together accordingly and give each
group a different colour. This way, symmetries are still preserved, but the cells of
the initial partition are smaller.

Next to improving the algorithm, we also remain to prove that our algorithm is
actually correct. That means, our implementation translates states into graphs such
that states are symmetric, if and only if the respective state graphs are isomorphic.
In order to show this, we intend to specify the algorithm in B and then refine
this specification to an implementation. If we prove the correctness of each step of
refinement with, for example, Atelier-B [53], then we prove also the correctness of
the implementation. This implementation might be very different from our current
algorithm.



Appendix A

Code of Interface between NAUTY

and PROB

We list the code here that is called by PROB. Note that the code has been edited
to fit on the page. Code that was only used for experimenting and debugging has

been mostly omitted.

A.1 Functions called by PrRoB

#include "interface.h"

void prob_init(void);

void prob_set_number_of_colours(int num_of_col);
void prob_start_graph(int number_of_nodes);

void prob_add_edge(int from, int to);

void prob_set_colour_of_node(int node, int colour);
int prob_exists_graph(void);

void prob_free_storage(void);

int global_n;
int global_m;

graph *global_g;

graph *global_canong;

int global_number_of_colours;

int *global_cell_sizes;

int *global_is_set; // to mark which node has
int *cell_list;

got a colour
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int tree_node_counter;
struct Node *store_tree; // to initialize with NULL pointer (needed for insert())

/* variables to check the program flow
*/

short is_storage_free = TRUE;

short is_init = FALSE;

short is_set_num_colour = FALSE;

short is_start_graph = FALSE;

void prob_init(void){

/* start with new state space only if old states (graphs) are
* removed && is_set_num_colour
*/

if (is_storage_free){

/* initialisation of all global variables except
* global_number_of_colours = 1; set extra with
* prob_set_number of colours
*/

global_g = NULL;

global_canong = NULL;

global_n = 0O;

global_m = O;

cell_list = NULL;

global_is_set = NULL;

tree_node_counter = 1; // start counting number of stored graphs with 1

store_tree = NULL;

/* size must be at least n, the maximum number of cells the number of cells
* of each graph is not used here as array size but MAXN, since the memory
* for global_cell_sizes is only once allocated, if this is changed in
* future versions, also functions that use the size of the array
* global_cell_sizes must be changed

*/
global_cell_sizes = malloc(sizeof(int) * MAXN);
if(global_cell_sizes){ // size of each cell is set O
init_cell_sizes(global_cell_sizes, MAXN);
}
else{
printf("Error in prob_init: memory could not be allocated! \n");
return;
}
is_init = TRUE; // successful initialisation
is_storage_free = FALSE;
}
else{

printf ("ERROR in prob_init: old storage space needs to be freed, before"
"initialisation! Run function prob_free_storage and"
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"prob_set_number_of_colours first \n");

/* call from ProB and get the number of number of colours, if parameter <= 0 or
* > MAXN then prints error message and returns
*/

void prob_set_number_of_colours(int num_of_col){

global_number_of_colours = get_number_of_colours(num_of_col);

if (global_number_of_colours > MAXN){
printf ("Error: number of colours is too big!");
printf ("Rerun prob_set_number_of_colours with a number <= %d!", MAXN);
return; // number of colours not set

is_set_num_colour = TRUE;

void prob_start_graph(int number_of_nodes){

/* all variables need to be initialized before use
*/

if(is_init && is_set_num_colour){

/* if MAXN is not set by nauty then n can be up to INT_MAX
*/
if ( (MAXN > O && number_of_nodes <= MAXN) ||
(MAXN == 0 && number_of_nodes <= INT_MAX) ){
global_n = number_of_nodes;
global_m = (global_n + WORDSIZE - 1) / WORDSIZE;

/* free global_g since it may be used before (NULL if not)
*/

free(global_g);

global_g = start_graph(global_n);

/* allocate memory for canong like for g as is will contain an
* isomorphic graph to g
*/

free(global_canong);

global_canong = start_graph(global_n);

/* size of each cell is set to O
*/
init_cell_sizes(global_cell_sizes, MAXN);

/* initialize cell_list for each graph new -> free cell_list
* each cell can contain max. n vertices, which are nat. numbers

*/
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free(cell_list);
cell_list = malloc( sizeof(int) * global_number_of_colours * global_n );

if (cell_list){
init_cell(global_n, global_number_of_colours, cell_list);

b
else{
printf ("Error in prob_start_graph: no memory allocated for"
"cell_list. Run prob_set_number_of_colours and then"
"prob_init. \n");
b

free(global_is_set);
global_is_set = malloc( (sizeof(int)) * global_m);

int i=0;

for(i=0; i<global_m; i++){ // all vertices have no colour yet
global_is_set[i]=0;
}

/* entries that exceed the number of vertices are set to 1
*/
for(i=global_n; i<global_m * WORDSIZE; i++){

set_node(i, global_is_set);

b
is_start_graph = TRUE; // successful memory allocation for graph
b
else{
printf("Error in prob_start_graph: number_of_nodes %d is too big \n",
number_of_nodes) ;
b
b
else{
printf ("ERROR in prob_start_graph: storage space needs to be initialised"
"before use! and number of colours has to be set run function"
"prob_init and prob_set_number_of_colours first \n");
b

void prob_add_edge(int from, int to){

/* memory for graph needs be allocated before an edge can be added
*/
if (is_start_graph){
add_edge (from, to, global_g, global_n); // global_n= number_of_nodes
b
else{
printf ("ERROR in prob_add_edge: memory for graph needs be allocated before"
"an edge can be added! Run function prob_start_graph first. \n");
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void prob_set_colour_of_node(int node, int colour){

if (is_start_graph && is_set_num_colour ){
if(colour < global_number_of_colours){
set_colour_of_node(global_n, colour, node, cell_list, global_cell_sizes);

}
else{
printf ("Error in prob_set_colour_of_node: num. for colour (%d) too big!"
"Number must be < %d\n", colour, global_number_of_colours);
}
}
elseq{
printf ("ERROR in prob_set_colour_of_node: graph does not exist or number of
"colours is not set! Run function prob_start_graph and"
"prob_set_number_of_colours first \n");
}

/* ProB calls this function to test, if a state has been encountered before.

* The NAUTY library is called to calculate the canonical label of the respective
* graph.

*/

int prob_exists_graph(void){

if (is_start_graph){
int exists = -1; // set to error value

/* The nauty parameter m is a value such that an array of m setwords is
* sufficient to hold n bits. The type setword is defined in nauty.h. The
* number of bits in a setword is WORDSIZE, which is 16, 32 or 64.
x Here we calculate m = ceiling(n/WORDSIZE)
*/
int m = (global_n + WORDSIZE - 1) / WORDSIZE;

/* lab holds the initial order of the vertices and ptn holds where a cell ends
*/
int 1lab[MAXN], ptn[MAXN], orbits[MAXN];

static DEFAULTOPTIONS_GRAPH(options);
statsblk stats;
setword workspace [100*MAXM] ; // need more workspace for better speed

/* Default options are set by the DEFAULTOPTIONS_GRAPH macro above.
* Here we change those options that we want to be different from the
* defaults. writeautoms=TRUE causes automorphisms to be written.

*/
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options.getcanon = TRUE;
options.digraph = TRUE;

if (global_number_of_colours > 1){
/* variables lab and ptn need to be set manually
*/
options.defaultptn = FALSE; // set initial partition manually

/* check if every node has a colour; give colour O if not

*/
int i = 0;
while (i<m){
if(global_is_set[i] !'= -1){ // -1 = 111... in binary
printf ("not all vertices have a colour set! \n");
printf("give colour O to vertices without colour! \n");
int k= O;
for(k=0; k<global_n; k++){
has_colour(k,cell_list, global_cell_sizes, global_n,
global_number_of_colours );
}
break; // while
}
it++;
}
int k= O;

/* set nauty variables lab and ptn
*/
set_label(lab, ptn, cell_list, global_n, global_number_of_colours );

b

else if(global_number_of_colours == 1){
/* partition with unit partition, i.e. one colour don’t need to set lab
* and ptn
*/

options.defaultptn = TRUE;
/* need to set the variable global_cell_sizes
*/
global_cell_sizes[0] = global_n; // all vertices have colour 0O

}
else{
printf("Error: the number of cells in initial partition is not set \n");

}

/* The following optional call verifies that we are linking
* to compatible versions of the nauty routines.
*/

nauty_check (WORDSIZE,m,global_n,NAUTYVERSIONID) ;

/* call the NAUTY library
*/
nauty(global_g,lab,ptn,NULL,orbits,&options,&stats, workspace,100*MAXM,m,
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global_n,global_canong);

/* insert canonical form of graph in tree, if canonical form is not in the
* tree yet; returns O if canonical form is already in tree, 1 if it is
* inserted, -1 otherwise
* variable global_cell_sizes has been set with set_colour_of_node or
* manually if there is only one cell.

*/
exists = insert_canon(global_canong, global_cell_sizes, &store_tree,
global_n);
return exists;
b
elseq{
printf ("ERROR in prob_exists_graph: memory for graph needs be allocated"
"before existence can be checked! Run function prob_start_graph()"
"first \n");
b
return -1; // returns before here

/* free all allocated memory and set pointers to NULL
*/

void prob_free_storage(void){
if (!is_storage_free){
free_tree(&store_tree);

free(global_g);
global_g = NULL;

free(global_canong) ;
global_canong = NULL;

free(global_cell_sizes);
global_cell_sizes = NULL;

free(cell_list);
cell_list = NULL;

free(global_is_set);
global_is_set = NULL;

is_storage_free = TRUE;

/* will need to initialise variables again for next problem
*/

is_init = FALSE;

is_set_num_colour = FALSE;

is_start_graph = FALSE;
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else{
printf ("storage is free, initialize new with prob_init()\n");

}

A.2 Interface Header

#include<stdlib.h>
#include<limits.h>

#define MAXN 200*WORDSIZE // Define this before including nauty.h
#define ERROR_VALUE -20
#define TRACE_VERSION FALSE

#include "nauty22/nauty.h" // which includes <stdio.h> and other system files

struct Node{

unsigned int number_of_nodes;
int tree_node_number;

int *cell_sizes;

unsigned int *label;

struct Node *left;

struct Node *right;

};

/* variables

*/

extern int check_number_of_nodes;
extern int check_number_of_colours;
extern int check_m;

extern int global_n;

extern int global_m;

extern graph *global_g;

extern graph *global_canong;

extern int global_number_of_colours;
extern int *global_cell_sizes;
extern int *global_is_set;

extern struct Node *store_tree;

/* functions called by ProB not added here
*/

/* functions needed to build and work with graphs
*/

int get_number_of_colours(int n_o_p);

graph* start_graph(int number_of_nodes);

void initGraph(graph *g, int n);

int add_edge(int origin, int dest, graph *g, int n);
void set_node(int node, int is_set[]);
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int init_cell(int number_of_nodes, int number_of_colours, int *cell_list);

void init_cell_sizes(int *cell_sizes, int length);

int set_colour_of_node(int number_of_nodes, int colour, int node, int *cell_list,

int *cell_sizes);

int has_colour(int node, int *cell_list, int *cell_sizes, int number_of_nodes,
int number_of_colours);

void set_label(int *lab, int *ptn, int *cell_list, int number_of_nodes,
int number_of_colours);

/* functions needed to build the storage tree
*/
int compare(graph *canonl, graph *canon2, int n);
int compare_to_internal (unsigned int *canon, int *cell_sizes, int n,
struct Node *internalNode) ;
int insert_canon(unsigned int *canon, int *cell_sizes, struct Node **treeNode,
int n);
void copy_label (unsigned int *canon, unsigned int *label, int n);
void copy_cell_sizes();
void free_tree(struct Node **treeNode);

A.3 Internal Functions

The file internal_functions.c contains the functions that do all the work within the
interface.

#include "interface.h" // includes nauty.h,

int check_number_of_nodes = O;
int check_number_of_colours = 0;
int check_m = 0;

int *global_is_set; // to mark which node has got a colour

/* takes the number of vertices and allocates the memory for a graph with that
* number of vertices initializes graph with the empty graph
*/

graph* start_graph(int number_of_nodes){

/* m-number of unsigned ints to hold number_of_nodes bits
*/
int m = (number_of_nodes + WORDSIZE - 1) / WORDSIZE;

/* When interface gets a new graph as input, the value of

* the global variables check_number_of_nodes and check_m need to be changed

* as the number of vertices, and theref. m, of the new graph may be different
*/

check_number_of_nodes = number_of_nodes;

check_m = m;
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graph *temp = malloc( (sizeof (graph)) * number_of_nodes * m);

/* return NULL-pointer and error message if no memory is allocated

*/

if (1temp){
printf ("in start_graph: no memory to allocate");
return NULL;

b

/* initialise graph with empty graph with n vertices
*/

initGraph(temp, number_of_nodes);

return temp; // malloc( (sizeof (graph)) * number_of_nodes * m);

/* initialize the adgjacency matrix of the graph with zeros used in start_graph()
*/
void initGraph(graph *g, int n){

int m,v;
set *gv;

m = (n + WORDSIZE - 1) / WORDSIZE;

for (v = 0; v < n; ++v) {
gv = GRAPHROW(g,v,m);
EMPTYSET (gv,m) ;

/* add an edge to the the graph *g
*/
int add_edge(int origin, int dest, graph *g, int n){

int m = (n + WORDSIZE - 1) / WORDSIZE;

/* origin and dest are two vertices of the graph, therefore they must be a
* number between 0 and n-1
*/
if(origin<O || dest <0 || origin>=n || dest>=n){
printf ("error: origin or dest are not between 0 and %d \n", n-1);
return -1;
}
else{
set *gv;
gv = GRAPHROW(g,origin,m);

ADDELEMENT (gv, dest¥n);
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b
return O;
b
/* compares two canonical forms in packed form, (adjacency matrix stored as an
x array of integers; see nauty users guide)
* need n to finish loop; n must be greater than O;
* assumes that both graphs have the same number of vertices, i.e. canonical
* forms have the same length
* returns O if graphs are isomorphic
x 1 if first canonical label (label of a new graph) is bigger than the second
*x one (stored graph)
x -1 if first canonical label (label of a new graph) is smaller than stored one
*/

int compare(graph *canonl, graph *canon2, int n){

/* compare status; O for equal, 1 for canonl > canon2, 2 for canonl < canon2
*/
int comp = ERROR_VALUE;

if (canonl && canon2){
int m = (n + WORDSIZE - 1) / WORDSIZE;
int k = 0;

/* for every node n g has m sets that need to be considered as one row
*/
while(k < n*m){

int 1=0;
for(1=0; 1<m; 1++){ // consider one row
if (canoni [k+1] == canon2[k+1]){ // consider one setword
comp = 0;
}
elsed{
if (canonil [k+1] > canon2[k+1]){
comp = 1;
}
elsed{
comp = -1;
}
/* return after first difference in canonical labels is found
*/

return comp;

k=k+m;
}
}
elseq{
printf ("error in compare: one parameter is Nullpointer \n");
return ERROR_VALUE; // -20
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}
/* 0 if no error occurred, like n*m <= 0, and canonical forms are equal
*/

return comp;

/* functions to calculate the partition

*/

/* get the number of colours supplied by ProB;
* returns -1 if parameter <=0 and error message
*/
int get_number_of_colours(int number_of_colours){
if (number_of _colours <= 0){
printf ("Error in Function get_number_of_colours:
"parameter number_of_colours = J%d must be > O \n", number_of_colours);
return -1;

b
else{
/* When interface gets a new graph as input, the value of
* the global variable check_number_of_colours needs to be changed
* as the number of colours of the new graph may be different
*/
check_number_of_colours = number_of_colours;
return number_of_colours;
b

/* initialize the list with the cells with invalid -1-entries to distinguish from
* valid entries (node numbers) later
*/

int init_cell(int number_of_nodes, int number_of_colours, int *cell_list){

/* return -1 and error message if number_of_nodes or number_of_colours < 1
*/
if (number_of _nodes < 1 || number_of_colours < 1){
printf ("Error in init_cell: number of vertices is Y%d number of colours
"is %d, both parameters must be must be > 0 \n",
number_of_nodes, number_of_colours );
return -1;

}

if (cell_list){
int j;
for(j=0; j<number_of_nodes*number_of_colours; j++){
cell list[j] = -1;
}
}
else{
printf ("third parameter cell_list is Nullpointer \n");
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return -1;

return 0; // function worked correctly

/* inserts a node into the cell list according to the number of the colour

* initial cell_list: cell_list[nodes_with_colour 0 -1 .. -1]|
* nodes_with_colour 2 -1 ...-1 | ... | nodes_with_colour num_of_col-1, -1 ...-1]
*/

int set_colour_of_node(int number_of_nodes, int colour, int node, int *cell_list,
int *cell_sizes){

/* return -1 and error message if node is not in correct interval
*/
if(node < O || node >= number_of_nodes){
printf ("error in set_colour_of_node: number of node is %d "
"but must between 0 and %d", node, number_of_nodes-1);
return -1;
b
/* return -1 and error message if colour < 0
*/
if (colour < 0 ){
printf ("error in set_colour_of_node: colour is %d but must be >= 0 ",
colour) ;
return -1;

int j=0;
/* offset = colour*number_of_nodes
* search for first empty place in cell: offset + already stored vertices of
* the same colour
*/
while( cell_list[colour*number_of_nodes + j] >= 0){
Jj++s
b

cell_list[colour*number_of_nodes + j] = node; // store node

/* a node got the colour int colour, so the number of vertices with that
* colour is increased by one, therefor also the size of the respective cell
*/

cell_sizes[colour] = cell_sizes[colour]+1;
/* mark that this node has been coloured
*/

set_node(node, global_is_set);

return 0; // function worked correctly
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/* marks a node that has been coloured
*/

void set_node(int node, int is_set[]){

int array_index = node/WORDSIZE;
int bit_index = node % WORDSIZE;
int bit_mask = 1<<bit_index;

is_set[array_index] = is_set[array_index] | bit_mask ;

/* if node has a colour then the number is returned otherwise colour O is given
* to that node
*/
int has_colour(int node, int *cell_list, int *cell_sizes, int number_of_nodes,
int number_of_colours){

/* return -1 and error message if node is not in correct interval
*/
if(node < 0 || node >= number_of_nodes){
printf ("error in has_colour: number of node is %d "
" but must between O and %d \n", node, number_of_nodes-1);
return -1;

int i, j, offset;

/* search in cell_list cell after cell

*/
for(i=0; i<number_of_colours; i++){
offset = i*number_of_nodes; // next cell
for(j=0; j<number_of_nodes; j++){
if(cell_list[offset+j] == node){ // node is in cell i, so has colour i
return i;
}
}
}
/* node is not in cell list
*/
set_colour_of_node (number_of_nodes, 0, node, cell_list, cell_sizes);
return 0; // node has now colour O;

}

/* set *lab and *ptn manually in case options.defaultptn = FALSE
*/
void set_label(int *lab, int *ptn, int *cell_list, int number_of_nodes,
int number_of_colours){

int i,j, lab_index, offset;
lab_index = 0; // index to fill *1lab
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for(i=0; i< number_of_nodes-1; i++){ // default partition
ptnl[i] = NAUTY_INFINITY;
}
ptn[number_of_nodes-1] = 0; // last elem. of xlab is always end of
// a cell

for(i=0; i<number_of_colours; i++){
offset = i*number_of_nodes; // next cell
for(j=0; j<number_of_nodes; j++){
if(cell_list[offset+j] >= 0){ // node of cell is put into *lab
lab[lab_index] = cell_list[offset+j];
lab_index++;

}
}
/* indicates where end of one cell (vertices with same colour) is
*/
ptn[lab_index-1] = O;
}
/* lab_index == number_of_nodes otherwise not all or to many vertices have

* been copied into *lab

* lab_index starts with O, but is incremented once more after last node has

* been inserted

*/

if (! (lab_index == number_of_nodes)){

printf ("Error: In function set_label: number of vertices in *lab: J%d, must"

"be the same as the total number of vertices: %d \n", lab_index,
number_of_nodes) ;

/* initialize the array with the cell sizes with O
*/

void init_cell_sizes(int *cell_sizes, int length){

int i=0;

for(i=0; i<length; i++){
cell_sizes[i] = 0;

}

A.4 Storing the Canonical Forms

For each symmetry class of graphs, there is the canonical form of one graph stored
in a binary tree, together with the number of vertices and the sizes of each cell
of the respective graph. The file graph_tree.c contains functions to insert newly
encountered graphs in the binary tree.
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#include "interface.h"
#include<stdio.h>
#include<stdlib.h>

int tree_node_counter;

/%

* ¥ ¥ X X %

*/

compares new graph (with n vertices) with an already stored graph

returns O if new graph equal to the stored graph in the tree,

1 if number of vertices, the first unequal cell of initial partition or
canonical label of new graph is bigger than the stored omne

-1 if number of vertices, the first unequal cell of initial partition or
canonical label of new graph is smaller than the stored omne

ERROR_VALUE if an error occurred

int compare_to_internal (unsigned int *canon, int *cell_sizes, int n,

struct Node *internallNode){
if (internalNode){

/* compare first the number of vertices of the new graph and stored graph
* only if they are equal then the canonical forms need to be compared
*/

if(n > internalNode->number_of_nodes){

// new value is bigger
return 1;
b
else if(n < internalNode->number_of_nodes){
// new value is smaller
return -1;

b

else{

/* number of vertices are equal when program comes here

* size of cell_sizes is MAXN for static memory allocation and will be
* the number of colours in the interface version with dynamic memory
* allocation

* global_number_of_colours is the maximum number of colours that can
* occur in any graph, so compare only so many colours

*/

int i;

for(i=0;i<global_number_of_colours;i++){

if (cell_sizes[i] > internalNode->cell_sizes[i]) {
// new value is bigger
return 1;
}
else if(cell_sizes[i] < internalNode->cell_sizes[i]) {
// new value is smaller
return -1;
}

// else continue for loop
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/* both graphs have same number of vertices: n and same cell sizes for
*x each colour; have to compare canonical labels (label is pointer)
*/

return compare(canon, internalNode->label, n);

b
b
elseq{
printf ("Error: internalNode is Nullpointer; can’t compare");
return ERROR_VALUE;
b
return ERROR_VALUE; // should return before program gets here

/* insert canonical form of graph in tree, if canonical form is not in the tree
* yet returns number of tree node if canonical form is already in tree,
* negative of number of tree node if it is newly inserted, O otherwise
*/
int insert_canon(unsigned int *canon, int *cell_sizes, struct Node **treeNode,
int n_local){

int m_local = (n_local + WORDSIZE - 1) / WORDSIZE;
int compare_graph = ERROR_VALUE; // initialized with error value

/* canonical form yet to be found or inserted in tree
*/

int insert = 0;

/* insert new node here (*treeNode os still pointer)
*/
if (xtreeNode == NULL){

/* {n , &cell_sizes, &label, NULL, NULL};
*/

*treeNode = (struct Node*) malloc(sizeof (struct Node));

/* the label is like the graph itself an adjacency matrix stored in a
* 1-dim array
*/
unsigned int *label =
(unsigned int*) malloc(sizeof (graph) * n_local * m_local);

/* the local number of cells is maximum n_local, but the number for the
* colour can be bigger, so use MAXN as for cell sizes
*/

int *sizes = (int*) malloc( sizeof (int) * MAXN);
if (xtreeNode && label && sizes){ // memory allocated

/* size of each cell is default 0 -> initialise allocated memory with
* zeroes

*/
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init_cell_sizes(sizes, n_local);

/* initialise label (which is a graph) with empty graph with n_local
* vertices

*/

initGraph(label, n_local);

/* store the canonical form as label
*/
copy_label(canon, label, n_local);

/* store number of vertices with same colour for each colour
*/

copy_cell_sizes(cell_sizes, sizes, global_number_of_colours);

/* give any node (graph) in state space a number, if there are already
*x more than INT_MAX states (graphs) then vertices get number INT_MAX
*/

if (tree_node_counter < INT_MAX){

(¥treeNode)->tree_node_number = tree_node_counter;
tree_node_counter++;

b
else{
printf ("Warning: number of stored graphs exceeds INT_MAX; "
"all following vertices have number INT_MAX");
(¥treeNode)->tree_node_number = INT_MAX;
b

(*treeNode)->number_of_nodes = n_local;
(xtreeNode)->label = label;
(xtreeNode)->cell_sizes = sizes;
(xtreeNode)->left=NULL;
(¥treeNode)->right=NULL;

/* canonical form is correctly inserted
*x save the number of that node (negative for not existing before)
*/

insert = (-1) * ((xtreeNode)->tree_node_number);

}
else{
printf("in insert_canon: no memory \n");
}
}
else{

compare_graph = compare_to_internal (canon, cell_sizes, n_local, *treeNode);
switch(compare_graph){
case 0: /* canonical form is already in tree (exists = TRUE)
* return the number of that node (positive)
*/
insert = (*treeNode)->tree_node_number;
break;
case 1: /* go down left branch
* use pointer because treeNode->left is changed
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*/
insert = insert_canon(canon, cell_sizes, &((*treeNode)->left),
n_local);
break;
case -1: /* go down right branch
*/
insert = insert_canon(canon, cell_sizes, &((xtreeNode)->right),
n_local);
break;
default: printf("error during comparison in function insert_canon");
break;

}

/* return tree node number, if canonical form was already in the tree and
* negative tree node number, if it was inserted; O indicates error
*/

return insert;

/* needed in insert_canon to store the cell_sizes of the current graph
* the parameter n must be the number of vertices of that graph otherwise the
* cell sizes may not be stored correctly

*/
void copy_cell_sizes(int *cell_sizes, int *sizes, int n){
int k = 0;
while(k < n){ // for max. every node one cell
sizes[k] = cell_sizesl[k];
k++;
}
}

/* needed in insert_canon to store the canonical form as label
*/

void copy_label (unsigned int *canon, unsigned int *label, int n){

int m = (n + WORDSIZE - 1) / WORDSIZE;
int k 0;

/* for every node n g has m sets that need to be considered as one row
*/
while(k < n*m){

int 1=0;

for(1=0; 1<m; 1++){ // consider one row
label[k+1] = canonl[k+1]; // consider one setword

}

k=k+m;
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/* free memory that is stored in the tree
*/

void free_tree(struct Node **treelNode){
if (*treeNode != NULL){

struct Node *pleft;
struct Node *pright;

pleft = (xtreeNode)->left; // pointers to subtrees
pright = (*treeNode)->right;

free_tree(&pleft); // call function for subtrees
free_tree(&pright);

/* can free headnode when subtrees are freed;
* (pleft == NULL && pright == NULL)
*x makes sure that subtrees are empty (not strictly necessary)
*/
if (!pleft && !pright){
free((*treeNode)->cell_sizes);
(¥treeNode)->cell_sizes = NULL;

free((*¥treeNode)->label);
(¥treeNode)->label = NULL;

free(*xtreeNode) ;

*treeNode = NULL;
counter++;

A.5 The main Function

The file testing.c contains the main() function, and a list of simulated function calls.
This file is used to test the interface, without having to integrate it into PROB.

// includes nauty.h
#include "interface.h"

int main(int argc, char *argv[])

{

/* example run; function calls have been automatically generated during model
* checking of schedulerO.mch. The interface was compiled with
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* #define TRACE_VERSION TRUE in the interface header file. The function calls
* were written into a file called schedulerO_testl.c. The listing for testing
* here is only a small extract of that file.
*/

int exists = O;

prob_init();

prob_set_number_of_colours(230);

prob_start_graph(2);
prob_set_colour_of_node(0, 0);
prob_set_colour_of_node(l, 17);
prob_add_edge(1, 0);
prob_exists_graph(Q);

prob_start_graph(40);
prob_set_colour_of_node(0, 5);
prob_add_edge(0, 8);
prob_set_colour_of_node(8, 6);
prob_add_edge(28, 18);
prob_add_edge(28, 38);
prob_add_edge(28, 22);

/...

prob_exists_graph(Q);

prob_start_graph(50);
prob_set_colour_of_node(0, 0);
prob_add_edge(0, 10);
prob_set_colour_of_node(10, 1);
prob_add_edge(10, 0);
prob_add_edge (10, 20);
prob_set_colour_of_node(20, 2);
prob_add_edge (20, 10);
prob_add_edge (20, 30);
prob_set_colour_of_node(30, 3);
/]

prob_exists_graph(Q);

/] ...
prob_free_storage();

return O;

}
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Machines used for Empirical
Results

B.1 Scheduler0

MACHINE schedulerQ

SETS
PROC ;
STATE = {idle, ready, active}

VARIABLES proc, pst

DEFINITIONS
scope_PROC == 1..5;
/¥ scope_PROC?2 == pl,p2,p3; */
ASSERT_LTLO == “G([new] = X e(del))*;

ASSERT_LTL1 == “G([del] = X e(new))*;

ASSERT_LTL2 == “G([enter] = X e(leave))*;

ASSERT_LTL3 == “G([leave] = X e(enter))*
INVARIANT

proc : IP(PROC) A

pst - proc — STATE A

/¥ card(q | q € proc A pst(q) = active) <17/
card(pst—[{active}]) <1

INITTALISATION

proc := ||
pst =

OPERATIONS
new(p) =
PRE
p € PROC — proc
THEN
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pst(p) = idle ||
proc := proc U p
END;

del(p) =

PRE
p € PROC A /* should really be p € proc; to avoid undefined pst(p) */
pst(p) = idle

THEN
proc == proc — {p} ||
pst = {p} <apst

END:

ready(p) =
PRE

p € PROC A [*should really be p € proc; to avoid undefined pst(p) */
pst(p) = idle

THEN
pst(p) := ready

END:

enter(p) =

PRE
p € PROC A
pst(p) = ready N
/*q | q € proc A pst(q) = active =0 */
pst~[{active}] = 0

THEN
pst(p) := active

END:

leave(p) =

PRE
p € PROC A
pst(p) = active

THEN
pst(p) = idle

END

END

B.2 Schedulerl

REFINEMENT schedulerl
REFINES schedulerO
DEFINITIONS
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scope_PROC == 1..5;
ASSERT_LTL == “G([new] — X e(del))“

VARIABLES proc, readyq, activep, activef, idleset

INVARIANT
proc € IP(PROC) A
readyq € seq(PROC) A
activep € PROC A
activef € BOOL N
idleset € IP(PROC)

INITIALISATION
proc =0 ||
readyq := 0 ||
activep :€ PROC' ||
activef := FALSE ||
idleset := ff

OPERATIONS
new(p) =
PRE
p € PROC — proc
THEN
idleset := idleset U {p} ||

proc := proc U {p}
END:

del(p) =
PRE
p € PROC A
p € idleset
THEN
proc := proc — {p} ||
idleset := idleset — {p}
END:

o~

ready(p)
PRE

p € idleset
THEN
readyq := readyq «— p ||
idleset := idleset — {p}
END:

enter(p) =
PRE
p € PROC A

readyq # [| A
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p = first(readyq) N

activef = FALSE
THEN

activep :==p ||

readyq := tail(readyq) ||

activef := TRUE
END:

o~

leave(p)

PRE
p € PROC A
activef = TRUE N
p = activep

THEN
idleset := idleset U{p} ||
activef := FALSE

END

END

B.3 Russian_Postal Puzzle

MACHINE RussianPostalPuzzle

SETS

KeylDs;

PERSONS = {natasha, boris}
DEFINITIONS

scope_KeylDs == 1..3;
GOAL == (padlocks = 0 A box_contains_gem = TRUE A hasbox = natasha)

VARIABLES
keysforsale, hasbox, padlocks, has_keys, bor_contains_gem

INVARIANT
keysforsale € IP(KeyIDs) N\
hasbox € PERSONS A
padlocks C KeylDs N
has_keys € PERSONS — POW (KeyIDs) A
box_contains—_gem € BOOL

INITIALISATION
keysforsale := KeyIDs ||
hasbox := boris ||
padlocks == § ||
has_keys := {natasha — @, boris — P} ||
box_contains_gem := TRUFE
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OPERATIONS
buy_padlock_and_key(keyid, person)
PRE
keyid € keysforsale N
person € PERSONS A
person = hasbox
THEN
has_keys(person) := has_keys(person) U {keyid} ||
keysforsale := keysforsale — {keyid}
END:

o~

add_padlock (keyid, person) =
PRE
keyid € KeylDs A
person € PERSONS A
person = hasbox N
keyid € has_keys(person) A
keyid + padlocks
THEN
padlocks := padlocks U { keyid }
END:

o~

remove_padlock (keyid, person)

PRE

keyid € KeylDs A

person € PERSONS A

person = hasbox N

keyid € padlocks N

keyid € has_keys(person)
THEN

padlocks := padlocks — keyid
END;

send_box(from, to) =

PRE
from € PERSONS A
from = hasbox A
to € PERSONS A
to # hasbox

THEN
IF padlocks = ) THEN

box_contains_gem = FALSE

END ||
hasbox := to

END

END



B.4. USB_4 Endpoints 129

B.4 USB_4 Endpoints

/* In this model, we describe USB transfers in an abstract way:

USB protocol is described in term of transfers as a n-tuple: (host, device endpoint, transfer
type). Transfers begin and terminate. Contraints are:

- control transfers only occur on endpoint #0

- IBI transfers occur on endpoinr #1 to #15

- only one transfer at a time for any endpoint

"/
MACHINE USB

SETS

USB_TRANSFER_TYPE = {
BULK_TRANSFER,
CONTROL_TRANSFER,
INTERRUPT_TRANSFER,
ISOCHRONOUS_TRANSFER

};

TRANSFERS /* Set of all possible transfers */

CONSTANTS
ENDPOINTS

PROPERTIES
ENDPOINTS = 0.4 /* AN ENDPOINTS : IP(NAT) */

VARIABLES
transfers, /* list of all transfers initiated since last power on reset */
transfer_type, /* type of transfer between host and device */
transfer_endpoint, /* device endpoint used for the transfer between host and device */
transfer_completed /* indicates if a transfer has terminated or is pending */

DEFINITIONS
scope_TRANSFERS ==1..2

INVARIANT
transfers C TRANSFERS N
transfer_type € transfers +— USB_TRANSFER_TYPE N
transfer_endpoint € transfers + ENDPOINTS A
transfer_completed € transfers +— BOOL N

/* Structural: a transfer has a type, an end point associated and a completion status */
Vir.(tr € transfers =

tr € dom(transfer_type) A

tr € dom(transfer_endpoint) A

tr € dom(transfer_completed)) A

/* Endpoint 0 is only used for control transfers */
transfer_type ' [{ CONTROL_TRANSFER}] = transfer_endpoint ' [{0}]
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INITIALISATION
transfers := 0 ||
transfer_type := 0 ||
transfer_endpoint :== @ ||
transfer_completed := {

OPERATIONS
initiate_control_transfer =

ANY tr WHERE
tr € TRANSFERS — transfers A
/* Can initiate a control transfer only if there is no pending control transfer */
transfer_type '[{ CONTROL_TRANSFER}] N

transfer_completed " [{ FALSE}] =

THEN
transfers := transfers U {tr} ||
transfer_type = transfer_type <+ {tr — CONTROL_TRANSFER} ||
transfer_endpoint := transfer_endpoint < {tr — 0} ||
transfer_completed := transfer_completed < {tr — FALSE'}

END;

initiate_bulk_transfer =
ANYtr,epWHERE
tr € TRANSFERS — transfers A
ep € ENDPOINTS — {0} A
/* Can initiate a bulk transfer for an endpoint of a device only if there is no pending
transfer for this endpoint */
transfer_endpoint ' [{ep}] N transfer_completed ' [{ FALSE}] =
THEN
transfers := transfers U {tr} ||
transfer_type = transfer_type < {tr — BULK_TRANSFER} ||
transfer_endpoint := transfer_endpoint < {tr — ep} ||
transfer_completed := transfer_completed < {tr — FALSE'}
END:

initiate_interrupt_transfer =
ANY tr,ep WHERE
tr € TRANSFERS — transfers A
ep € ENDPOINTS — {0} A
/* Can initiate an interrupt transfer for an endpoint of a device only if there is no
pending transfer for this endpoint */
transfer_endpoint — [{ep}] N transfer_completed ' [{ FALSE}] =
THEN
transfers := transfers U {tr} ||
transfer_type := transfer_type < {tr — INTERRUPT_TRANSFER} ||
transfer_endpoint := transfer_endpoint < {tr — ep} ||
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transfer_completed := transfer_completed < {tr — FALSE}
END;

initiate_isochronous_transfer =

ANY tr,ep WHERE
tr € TRANSFERS — transfers N
ep € ENDPOINTS — {0} A
/* Can initiate a isochronous transfer for an endpoint of a device only if there is no
pending transfer for this endpoint */
transfer_endpoint— [{ep}] N transfer_completed ' [{ FALSE}] =

THEN
transfers := transfers U {tr} ||
transfer_type = transfer_type < {tr — ISOCHRONOUS_TRANSFER} ||
transfer_endpoint := transfer_endpoint < {tr — ep} ||
transfer_completed := transfer_completed < {tr — FALSE}

END;

terminate_control_transfer =

ANY tr WHERE
tr € transfers A
transfer_type(tr) = CONTROL_TRANSFER N
transfer_endpoint(tr) =0 A
transfer_completed(tr) = FALSE

THEN
transfer_completed(tr) := TRUE

END:

terminate_bulk_transfer =

ANY tr WHERE
tr € transfers A
transfer_type(tr) = BULK_TRANSFER N
transfer_endpoint(tr) € 1..15 A
transfer_completed(tr) = FALSE

THEN
transfer_completed(tr) := TRUE

END:

terminate_interrupt_transfer =

ANY tr WHERE
tr € transfers A
transfer_type(tr) = INTERRUPT_TRANSFER A
transfer_endpoint(tr) € 1..15 A
transfer_completed(tr) = FALSE

THEN
transfer_completed(tr) := TRUE

END:



132 Appendiz B. Machines used for Empirical Results

terminate_isochronous_transfer =

ANY tr WHERE
tr € transfers A
transfer_type(tr) = ISOCHRONOUS_TRANSFER A
transfer_endpoint(tr) € 1..15 A
transfer_completed(tr) = FALSE

THEN
transfer_completed(tr) := TRUE

END:

configure_endpoint0 = skip; /*introduced in USB_1.ref */
configure_IBI _endpoint = skip; /*introduced in USB_1.ref */
deconfigure_IBI_endpoint = skip; /*introduced in USB_1l.ref */

initiate_setup_transaction = skip; /*eventintroduced in USB_2 */
end_setup_transaction = skip; /*eventintroduced in USB_2 */
initiate_data_transaction_control_transfer = skip; /*event introduced in USB_2 */
end_data_transaction_control_transfer = skip; /*event introduced in USB_2 */
initiate_status_transaction = skip; /*event introduced in USB_2 */
end_status_transaction = skip; /*event introduced in USB_2 */

initiate_data; ransaction_interrupt_transfer = skip; /*event introduced in USB_2 */
end_data_transaction_interrupt_transfer = skip; /*event introduced in USB_2 */

initiate_data_transaction_bulk_transfer = skip; /*event introduced in USB_2 */
end_data_transaction_bulk_transfer = skip; /*event introduced in USB_2 */

initiate_data_transaction_isochronous—_transfer = skip; /*event introduced in USB_2*/
end_data_transaction_isochronous_transfer = skip; /*event introduced in USB_2 */

issue_packet_in_interrupt_transaction = skip; /*eventintroducedinUSB_3 */
issue_packet_data_interrupt_transaction = skip; /*eventintroducedinUSB_3 */
issue_packet_ack_interrupt_transaction = skip; /* eventintroducedinUSB_3 */
issue_packet_nack_interrupt_transaction = skip; /*eventintroducedinUSB_3 */
issue_packet_stall_interrupt_transaction = skip; /*eventintroducedinUSB_3 */

issue_packet_in_isochronous—_transaction = skip; /*eventintroducedinUSB_3 */
issue_packet_data—_in_isochronous_transaction = skip; /*eventintroducedinUSB_3 */
issue_packet_out_isochronous—transaction = skip; /*eventintroducedinUSB_3 */
issue_packet_data_out_isochronous—transaction = skip; /*eventintroducedinUSB_3 */

issue_packet_in_bulk_transaction = skip; /*eventintroducedinUSB_3 */
issue_packet_out_bulk_transaction = skip; /*eventintroducedinUSB_3 */
issue_packet_data_bulk_transaction = skip; /*eventintroducedinUSB_3 */

issue_packet_sof = skip; /*eventintroducedinUSB_3 */
receive—_transaction_packet = skip; /*introducedinUSB_4 */
receive_sof _packet = skip /*introducedinUSB_4 */
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END

B.5 Token Ring

MACHINE TokenRing

SETS
Servers

DEFINITIONS
scope_Servers == 1..5;

ASSERT_LTL ==" G([Release] = X {in_critical = f})”

CONSTANTS
next

PROPERTIES
next : Servers — Servers

VARIABLES
token,
requests,
in_critical

INVARIANT
token € Servers A
requests C Servers N
in_critical C Servers

INITIALISATION
token :€ Servers ||
requests ;== ||
in_critical :== 0

OPERATIONS
MoveToken =
PRE in_critical = {)
THEN token := next(token)
END:

ClientRequest(s) =
PRE s € Servers A s & requests
THEN requests := requests U {s}
END:
GrantRequest(s) =
PRE s = token A in_critical = f§
THEN in_critical := {s}
END:
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Release(s) =
PRE s € in_critical
THEN in_critical := in_critical — {s}
END

END

B.6 Dining

MACHINE Dining

SETS
Phil;
Forks
DEFINITIONS
scope_Phil == 1..5;
scope_Forks == 1..5

CONSTANTS
[Fork,
rFork

PROPERTIES
[Fork : Phil — Forks N
rFork : Phil — Forks N
Y pp.(pp € Phil = [Fork(pp) #+ rFork(pp))

VARIABLES
taken

INVARIANT
taken € Forks + Phil N\
Vax.(xx € dom(taken) = (IFork(taken(xx)) = xx V rFork(taken(xx)) = xx))

INITIALISATION
taken =

OPERATIONS
TakeLeftFork(p, f) =
PRE p € Phil A f € Forks A f ¢ dom(taken) A [Fork(p) = f
THEN taken(f) :=p
END:

TakeRightFork(p, f) =
PRE p € Phil A f € Forks A f ¢ dom(taken) A rFork(p) = f
THEN taken(f) :=p
END:

DropFork(p, f) =
PRE p € Phil AN f € Forks \ f € dom(taken) A taken(f) =p
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THEN taken := {f} < taken
END

END

B.7 Towns

MACHINE Towns(TOWN)

SETS
ANSWER = {connected, notconnected }

VARIABLES
roads

INVARIANT
roads € TOWN «— TOWN

INITIALISATION
roads := 0

OPERATIONS
link(tt1, t2) =
PRE it1 € TOWN A tt2 € TOWN
THEN roads := roads U {tt1 — tt2}
END:

o~

ans «— connectedquery(ttl, tt2)
PRE tt1 € TOWN A tt2 € TOWN
THEN

IF tt1 +— tt2 € closurel(roads U roads=1) v (tt1 = tt2)

THEN ans := connected
ELSE ans := notconnected
END

END

END

B.8 TicTacToe_Sym

MACHINE TicTacToe_Sym

SETS NC ={0,X};
Rows; /* top, middle, bottom */
Cols /* left, middle, right */

DEFINITIONS

win_vert_horiz(ox) == 3(re, r).(rc € RowCol A r € Pos A
Ve.(c € Pos = (re,r, c) € dom(board) A board(re,r, c) = ox));

win_diagl(ox) == (rc).(rc € RowCol A
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Ve.(c € Pos = (rc, ¢, ¢) € dom(board) N board(rc, c, c) = ox));
win_diag2(ox) == (re, p1, p2).(rc € RowCol A pl € Pos A p2 € Pos A\

{p1,p2} = Pos — middleN

(re,pl, p2) € dom(board) A board(rc,pl,p2) = ox A

(re,p2,pl) € dom(board) A board(rc,p2,pl) = ox A

(rc, middle, middle) € dom(board) A board(rc, middle, middle) = ox);

win(ox) == (win_vert_horiz(ox)orwin_diag1(ox)orwin_diag2(ox));
GOAL == win_vert_horiz(X)
CONSTANTS
middle,
other
PROPERTIES

middle € Pos N\

card(Pos) = 3 A
card(RowCol) = 2 N\

other ={0— X, X — O}

VARIABLES
turn,
board

INVARIANT

turn € {0, X} A

board € RowCol x Pos * Pos +~ NC
INITIALISATION

board :== 9 ||

turn = X

OPERATIONS
Win(oz) =
PRE
turn = ox A win(ox)
THEN
skip
END:

o~

Put(ne, e, re2,r, )
PRE
turn = nc A =(win(other(nc))) A (re,r, ¢) & dom(board) N rc2 + rc
THEN
board := board <+ {(rc,r, ¢) — ne, (re2, ¢, r) — nc} ||
turn := other(turn)
END
END
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B.9 TicTacToe_SimplerSym

MACHINE TicTacToe_SimplerSym
/*  Rows can be swapped by symmetry in this model; similarly Columns; but not
rows against columns */

SETS
NC ={0,X},
Rows; /* top, middle, bottom */
Cols /* left, middle, right */

DEFINITIONS
win_vert(ox) == 3(r).(r € Rows A
Ve.(c € Cols = (r,c) € dom(board) A board(r,c) = ox));
win_horiz(ox) == I(c).(c € Cols N
Vr.(r € Rows = (r,c) € dom(board) A board(r,c) = ox));
win_diag(ox) == 3A(rl, r2, c1, ¢2).({rl,r2} = Rows — {middleR} A

cl, c2 = Cols — {middleC} A

(rl, cl) € dom(board) A board(rl,cl) = ox A

(r2, c2) € dom(board) A board(r2,c2) = ox A

(middleR, middleC) € dom(board) A board(middleR, middleC) = ox);

win(ox) == (win—vert(ox) orwin_horiz(ox) orwin_diag(ox));
GOAL == win_vert_horiz(X);
CONSTANTS
middleR,
middleC,
other
PROPERTIES

middleR € Rows A

card(Rows) = 3 A

middleC € Cols A card(Cols) =3 A
other ={0 — X, X — O}

VARIABLES
turn,
board

INVARIANT

turn € {0, X} A

board € Rows x Cols + NC
INITIALISATION

board := ||

turn = X

OPERATIONS
Win_Vert(ox) =
PRE
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turn = other(ox) A win_vert(ox)
THEN

skip
END:

Win_Horiz(oz) =
PRE
turn = other(ozx) A win_horiz(ox)
THEN
skip
END:

Win_Diag(ox) =
PRE
turn = other(ozx) A win_diag(ox)
THEN
skip
END:

Put(ne,r,c) =

PRE
turn = nc A —~(win(other(nc))) A (r, ¢) ¢ dom(board)

THEN
board(r, c) := turn ||
turn := other(turn)

END

END



Appendix C

Additional Empirical Results

Table C.1 shows for various machines, the number of graphs encountered for the
given cardinality of the deferred set. Then, for each machine, the number of graphs
in the rightmost column is broken down, according to the number of vertices. The
average number of edges is listed in the second rightmost column. For example, we
had 94 graphs calculated for the scheduleri, with cardinality three of the deferred
set in the machine. Of those graphs, three graphs have 45 vertices - and, on average,
81 edges.

Table C.1: Empirical Results III

Card. | Number of Vertices | Number of Edges (average) | Number of Graphs
3 scheduler 0 59
4 6,0 2
6 8,0 10
8 12,0 8
10 14,3 19
12 18,0 15
14 20,0 5
3 schedulerl 94
20 37,0 11
25 46,0 29
30 55,0 33
35 63,7 12
40 71,7 6
45 81,0 3
2 RussianPostalPuzzle 105
40 72,0 4
45 80,6 101
1 USB_4Endpoints 838
6 5,0 1
35 65,0 31
45 81,0 806
3 Token Ring 183
3 3,0 6
16 30,9 66
20 36,7 111
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Table C.2 shows for the machine scheduler(, the number of graphs encountered for
the given cardinality of the deferred set. The number of graphs is broken down as
in Table C.1.

Table C.2: Empirical Results IV

Card. | Number of Vertices | Number of Edges (average) | Number of Graphs
2 scheduler0 23
4 6,0 2
6 8,0 9
8 12,0 3
10 14,0 9
3 59
4 6,0 2
6 8,0 10
8 12,0 8
10 14,3 19
12 18,0 15
14 20,0 5
4 121
4 6,0 2
6 8,0 11
8 12,0 9
10 14,7 27
12 18,2 30
14 21,5 30
16 24,0 12
5 216
4 6,0 2
6 8,0 12
8 12,0 10
10 14,7 30
12 18,5 40
14 21,8 52
16 25,2 49
18 28,0 21
6 351
4 6,0 2
6 8,0 13
8 12,0 11
10 14,7 33
12 18,5 44
14 22,0 65
16 25,5 79
18 29,1 72
20 32,0 32
7 533
4 6,0 2
6 8,0 14
8 12,0 12
10 14,7 36
12 18,5 48
14 22,0 71
16 25,8 95
18 29,4 111
20 33,0 99
22 36,0 45
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