74

James Kitbury, Diisseldorf
Parsing and Machine Translation

My remarks here are notintended for experts incomputational linguistics
but rather for translators who are involved in practical work and who are
interested in machine translation (MT) as one aspect of computational

linguistics. 1 will begin with some elementary points and touch on more
difficult issues later.

A definition of parsing is complicated by the fact that the word is used in
severaldistinct senses. Parsing is generally acknowledged to involvethe
syntactic decomposition of complex linguistic forms into their constituent
phrases and words, thereby producing a syntactic representation in the
form of a tree or some other formal structure. In recent years the first

sense of parsing has been extended to include the production of a
semantic representation of some kind.

Although not all investigators agree, parsing in the sense of syntactic
analysis is generally viewed as a prerequisite both to semantic analysis
and to MT. Differences in syntax, such as those involving features of
word order, can correlate with differences in meaning that must be
capturedin atranslation. Whether or not parsinginthe sense of semantic
analysisconstitutes aprerequisiteto MT dependsonone's understanding
of semantics and on specificfeatures of the source andtarget languages.
Obviously, the meaning conveyed by atextinthe source language must
also, in some clear sense, be conveyed by the translation in the target
language. Syntactic parsing alone does not guarantee such atransfer of
meaning, so at least some semantic analysis is necessary.

Ontheotherhand, a "complete”
orevendesirable forMT. Weofte
itcomplete[y. Considerthe follo

semantic analysisis not always necessary
ncantranslate atextwithoutunderstanding
wing passage from a German newspaper.
(1) Ein russisches Kampfflugzeug hat gestern [...] einen georgischen
Hubschrauber abgeschossen, Beide Piloten kamen ums Leben.

A Russian fighter aircraft [...] shot down a Georgian helicopter
yesterday. Both pilots lost their lives.

Ittakes some ingenuity onthe partofthe readerto recognize that the pilot

75 Parsing and Machine Translation

of the fighter plane probably is not dead, since he just shot the helicopter
down, and that the helicopter must therefore have had two pilots. No
existing commercial system for MT can handle such problems; where
understanding of this sort is necessary fortranslation, currently available
MT systems simply fail. Some advanced systems under development in
research projects seek to simulate such aspects of text understanding.
But fortunately in this example, we don't have to identify the referent of
German <beide»; we simply use English «both» and retain the ambiguity
which an "adequate" semantic analysis could be expected to resolve.

Whether or not it includes semantics, parsing in the sense that is directly
relevant to MT constitutes analysis in algorithmic steps that can be
implemented in computer programs. Parsing inthe sense of the cognitive
processes that goonin people's heads when they understand language
may be quite different from the algorithmic model we assume; we know
too little about such processes and whether they can be modelled with
the algorithmic manipulation of symbols. Algorithms themselves are
finite sequences of explicit operations that can be carried out in a finite
number of steps to solve some explicitly defined problem. We can view
a recipe for baking a cake as an informal algorithm, although it normally
is not stated in a way that would allow us to implement it on a computer.

It should be intuitively clearthatthe syntactic parsing of a natural language
involves information about the syntax of that particular language as well
as information concerning strategies for finding the structure of a given
sentence. InMT systems up tothe 1870'sthese two kinds of information,
now distinguished as declarative and proceduralinformation, respectively,
were mixed together in single, integrated packages such as the Aug-
mented Transition Networks of William Woods. Beginning in the decade
that followed, linguists following Martin Kay soughtto separate these two
kinds ofinformation in computational linguistic systems. A view emerged
around 1980 according to which grammatical information about a particular
language should be stated in a declarative formalism, i.e. a special
formal language, which in turn is interpreted by a procedurally-based
algorithm. In this sense we can say that a parser is a special program
which interprets the grammatical description of alanguage as aknowledge
base in order to analyze particular sentences.

James Kilbury 7

The advantage ofthis division of labour is considerable. Since the parser
isindependent of particular languages, we can use the same parser with
a new grammar to translate from a new source language. On the other
hand, if we want to translate not only from but also into a given language,
weneedageneratoraswellasa parser, and if we are clever enough, _we
may be able to design a language-independent program for generation
that interprets the same grammars as our parser.

I'have said that a parser interprets a grammar formalism and that theilat'ter
is the special formal language in which an explicit grammatical description
isstated, A simple such formalismisthat forcontext-free grammars. Th‘ese
distinguish between phrasal categories (such assentence) and Iexpal
categories (such asverb). In its most primitive form, a lexicon simply lists
words and matches them with their lexical categories. Syntax rule.es are
stated with a single phrasal category to the left and one or more Ie.xncal or
phrasal categories to the right of anarrow. Inthe examples for parsing, the
following set of context-free syntax rules will serve as our grammar:
(@S -> NPVP

(BYNP - PropN

(C)NP - Det N

(d)VP s v

(e)VP > VNP

The category symbols employed are abbreviations for «sentence», <noun

phrase», «erb phrase», ‘Proper noun», «determiner, qouns, and «verb»,
in the order of their appearance.

Although the rules stated here are highly simplified and cover only a
smallpart of English syntax, they nevertheless serve toillustrate the type
of grammar rules that can be interpreted by the parsing algorithms | shall
discuss. A genuine problem lies in the fact that these rules represent
grammatical categories as atoms which bear no grammatical features

such number and which fail to capture relations like that of agreement
between a finite verb ang its subject.

In conjunction with the notion of unificationgrammar introduced by Martin’
Kay around 1980, grammatical categories have come tobe widely regarded

as complex informational structures that can be represented as feature
structures such as the following:

77 Parsing and Machine Translation

(3)[category: noun
number: singula
agreementy]
person: third

This represents a noun bearing the agreement features of singular
number and third person. Within feature structures, features may have
either atoms or other complex feature structures astheirvalues. Features
such as agreement with complex values serve to bundle packages of
grammatical information that belong together. The rules of a unification
_grammar, in this case PATR-Il as developed by Stuart Shieber and
others, can then refer to this bundled information:

(4) S > NP VP: <NP agreement> = <VP agreement>

Here the capital letters denote feature structures corresponding to gram-
matical categories, and the equation states that these feature structures
are to share certain specifications. Such equations involve unification,
which constitutes the only information-combining operation ofunification
grammar and which is based on the principle that information in feature
structures can be added but never changed within an analysis. The
context-free base of unification grammar allows us to profit from the
latter's expressive power although we use the same parsing algorithms
thatwere deve|opedforcontext-free grammars. Unification, which allows
no information to be changed during the course of the analysis of a
sentence, inturn guarantees that we canuse & declaratively formulated
grammarwith procedurally different parsing algorithms precisely because
the grammar does not contain of depend on procedural information.

Now we can look at several concrete procedural strategies for syn'tactic
analysis. First consider the analysis of a sentence represented in the
following tree:

(8) s
< b
Pu!pN \i’/\NP

James Kiibury 78

The tree consists of nodes labelled with syntactic categories or words
and connected to each other by edges. Terminal nodes, or leaves, of the
tree are labelled with words, and the other nodes with syntactic categories.
Nonterminal nodes directly above leaves are labelled with lexical
categories, and other nonterminal nodes with phrasal categories. The
edges in this tree have been numbered so that we can refer to them
simply. Moreover, we can say that a node has the same number as the
edge leading downward to it. This is useful in order to distinguish node
1 from node 7, both of which are labelled withNP in this tree. The root of
the tree is that node into which no edge leads,

The first strategy is top-down depth-first (TDDF) and begins with the
expectation that the given input string to be analyzed, here «Jack ate the
apple», is in fact a sentence. The parser then attempts to verify this
hypothesis. In order to carry out this verification, the algorithm uses a
stack, which behaves like a stack of papers on your desk: only the top
elementofthe stackis visible at any moment, and you can pop (<take off:)

symbols from the stack in their order from top to bottom, or else push
(«putr) symbols on the stack.

Our TDDF parser first has the stack [S] because it expects a sentence.
Using rule a from the grammar in (2) above, it then pops S from the stack
and pushes VP and NP in that order onto the stack, which then appears
as [NP VP]. Now the parser looks atthe top symbol, NP, and finds the two
rules b and ¢ which expand it. Qur parser takes rule b, pops NP, and
pushes PropN, so that the stack now appears as[PropN VP]. The current
word «Jack in the input string happens to be a proper noun, so PropN is
popped from the stack, leaving [VP]. Now VP can be expanded using
eitherruledore. OQur parser has bad luck with its choice thistime, because
it goes looking for a verb according to rule d, and «ate» is a verb. After the
pops and pushes the stack is empty, so the analysis of the input string
should be finished, but instead the substring ¢he apple» still needs to be
analyzed as part of the sentence, So the parser is stuck in a dead end.

What the parser needs here is a systematic way to backirack. Any child
knows howto getout ofa maze, or labyrinth, ifthereis a way out: You need
lots of string and a piece of chalk; you tie the string somewhere and take
the other end with You so you know where you have been; whenever the

79 Parsing and Machine Translatlon

path splits and you have to make a choice, you mark the path you select
so that you can try the others if your choice later proves to be wrong.

Using this technique the parser can restore the stack[VP] as it was after
Jack> was analyzed. Now VP is popped from the stack and the symbols V
and NP from the right side of rule e are pushed in reverse order, giving[V
NP]. Then V canbe popped whenthe lexical entry for «ate> is found, and the
stack [NP] resultswhen ¢he apples isleftasthe remainderoftheinputstring.
Parsing terminates successfully when the stack and the remainder of the
input string are both empty. The parser keeps a record of the successful
choices it has made in the course of the analysis, and the result can be
reported in the form of the tree in (5). The complete analysis isgiven in (6):

Input string stack opetration

[Jack ate the apple] Is] pop S & push VP and NP by a
[Jack ate the apple] [NP VP] pop NP & push PropN by b
[Jack ate the apple] [PropN VP] shift & pop PropN

[ate the apple] [VP] pop VP & push V by d

[ate the apple] I\ shift & pop V

[the apple] (1 backtrack

[ate the apple] [VP] pop VP & push NP and Vby e
[ate the apple] [VNP] shift & pop V

[the apple] [NP] pop NP & push PropN by b
[the apple] [PropN] backtrack

[the apple] [NP] pop NP & push N and Det by ¢
[the apple] [Det N] shift & pop Det

[apple] [N} shift & pop N

[9]
Aproblem arises for the TDDF parser if linguists decide to add a rule like
that of (7) to the grammar to account for relative clauses:

(7YNP -->NP S

Ifthe parser is given a grammar with such a rule and any ungrammatical
sentence asinput, it fails toreject the inputandinstead continues for ever
with attempts to expand the NP of the right-hand side of this rule with the
same rule in which it is contained, so that NP is popped and S and NP
are pushed without ever stopping. This means that a grammarian writing
agrammarto be used witha TDDF parser must avoid writing rules of this
left-recursive form.

Other strategies like that of a bottom-up shift-reduce (BUSR) parser
avoidthis restriction. Whereasthe TDDF search fora successful analysis

James Kilbury 80

is directed (or "driven”) by the grammar, with BUSR it is driven by the
input string itself. The parser begins with an empty processing stack and
without any syntactic expectation. Lexical categories are pushed onto
the stack in shift operations on the basis of lexical entries, while reduce
operations pop the symbols of the right-hand side of a rule (in reverse
order) and push the symbol on the left-hand side of the same rule. A
successful parse has the steps shown in (8)

input string stack operation

[Jack ate the apple] [1 shift Jack & push PropN
fate the apple] [PropN] pop PropN & push NP by b
[ate the apple] [NP] shift ate & push V

[the apple] [V NP] -

shift the & push Det
[apple] [Det V NP] shift apple & push N
[NDetVNP] pop N and Det & push NP by ¢
[NP VNP] pop NP and V & push VP by e

[VP NP] pop VP and NP & push Sby a
8] -

———t bt s

Since the remainder of the input string is empty and only S is left on the
stack, the input has been analyzed as a sentence. The part of the table
with dots «...» shows where the parser gets into a dead end by the
incorrect choice of a rule for reduction, and then has to backtrack.

Notice that the parser wouldjustas wellhave analyzedthe input string «the
apple» aloneas a nounphrase, sothatthe BUSR strategy does not depend
on having the correct expectation, as TDDF does. BUSR winds up making
a lot of bad rule choices for reductions exactly because it maintains no
expectations about what will come next, as TDDF does. A good strategy
should be grammar-driven and data-driven at the same time and in such
a way that the two kinds of information complement each other.

A left-corner (LC) strategy in fact combines the advantages of both TDDF
and BUSR. | shall omit the formal presentation with stacks here. An LC
parsertakes the first word «Jacks ofthe input string and recognizes PropN
as the left corner, or first symbol on the right-hand side, of rule b. Since
there areno further symbols on the right-hand side of b, the parsergetsan
NP. This in turn is the left corner of rule a, sothat a VP is now needed in
ordertoget an S. The next word «ate» gives the parser a V, which by rules
dand eis the left corner of 4 VP, (Note that we again have a chaice with

81 Parsing and Machine Translation

the VP rules. A sensible grammar, of course, willinclude information about
subcategorization and the ditference between intransitive and transitive
verbs, which helpsto solvethis problem.) The analysis continues and finds
the NP which is needed by the VP which is needed to get an S.

The performance of a LC parser is greatly improved if it has a top-down
filter, which says, for example, thatthe PropNwe getfrom «Jack> notonly
isthe left corner of an NP but furthermore thatthis PropN, because of rule
a, can in turn be the beginning of an S.

The LC strategy yieldsa highly efficient algorithm for syntacticparsing, and
experts in the field of cognitive linguistics say that there is, in fact, muchto
suggest that humans use a similar strategy in their processes of language
understanding. This is all the more remarkable since the LC strategy
simply depends on the abstract formalism of context-free grammars and
incorporates no special principles involving natural, as opposed to formal,
languages. More recently developed strategies, such as head-driven
parsing, depend crucially on specifically linguistic notions such as the
head, or central constituent, of an endocentric syntactic construction.
Current research is seeking to develop parsers that can switch flexibly
between strategies, depending on the immediate problem to be solved.

We have seen that all three of the strategies presented can reach dead
ends because of incorrect rule choices, which in principle are unavoidable
because of structural ambiguity in natural language. So in the familiar
example <Aboy saw the girl withatelescope», syntactic information cannot
tell us whether the girl who was seen was one who had a telescope, or
whether the boy who saw the girl did so with the use of a telescope.
Backtracking provides one solution tothisproblem, An alternative appears
in the form of the chart, which was introduced - again, by Martin Kay - as
a special data structure that allows a parser to store all the information
about alternative analyses that accumulates during parsing.

Up to now | have said nothing about semantic parsing. The latter is
normally taken to be syntactic parsing together with the transiation of an
input string into an expression in some logical formalism; this logical
expression is then viewed as the semantic representation of the input
string. So, given lexical semantic representations like those in (9)

James Kitbury 82

(9)every forallx :if P(x) then Q(x)
baby baby'
cries cry'

substitution of the expression baby' for P in the semantic representation
for every gives the representation dor all x : if baby'(x) then Q(x)» for the
noun phrase «every baby», and the subsequent substitution of «cry" for
Qinthe laftergives the representation dor all x:if baby'(x) then cry'(x)> as
the result of the semantic analysis of the sentence «Every baby cries.
None ofthistechnique, developed mainly by Richard Montague, depends
on the strategy for syntactic parsing that is employed - it works with any
of them. What it does depend on is the principle of compositionality,
which says that the meaning of a phrase or complex form is determined
exclusively by the meanings ofthe constituents that make up the complex
torm. Compositionality can be neatly implemented using the techniques

of unification grammar, and the logical formulas can be encoded as
feature structures.

But compositionality holds only in part, because of phrasal lexemes, and
this points to the first major area of problems in parsing: In order to parse
a sentence we have to get the lexical entries of the words making it up.
When a parser analyzes the sentence <ntelligence has a lot to do with
fiexibilitys, it needs a lexicon that puts the idiosyncratic, nontransparent
meaning of <have a lot to do with> in an appropriate place where the

information can be found. This is an aspect of lexical representation that
still poses problems.

Another difficulty arises when the parser finds words in the input string
for which there are no appropriate entries in the lexicon. In the most
fortunate case, that of overt gaps, there is no entry at all for some
particular word, and the parser at least knows that information is missing
sothatitcantry itsbestonthe basis of contextual information. Far worse

is the situation in which the parser must conclude that its lexicon indeed
* contains one or more entries for the given input word but that rione of
these entries fits the Present context, and thus that the word is a case of
covert gaps. Such lexical gaps are not merely a technical problem that
can be solved with bigger dictionaries but rather reflect an essential
feature of language: languages change and adapt their lexica to the

a3 Parsing and Machine Translation

needs of users confronted with constantly changing situations in the
world.

Evenif the giveninput word isno clear case of agap, it may be extremely
difficult - even for a human linguist - to decide which of the senses listed
for a word in fact matches the occurrence in a particular context. And if
humans can't make such decisions after reflection, the MT systems can
hardly be expected to perform better.

Parsing can be complicated by other problems which are ultimately
connected with the lexicon. If a text to be translated contains typing
errors, we would like these to be recognized as such rather than being
treated as new and unknown words. More serious are the cases where
the author of the text has suffered a lapse and written something which
is meaningful but which he simply didn't intend. Good human translators
catch this, and computers don't.

Of course, there are special problems in syntax that cause difficulties for
parsers. Many of these involve cases of so-called long-distance
fiependencies, in which one constituent is removed from another which
it grammatically depends on. Examples, involving topicalization (with
parasitic gaps) and gapping, respectively, appear in (10):
(10) Corn some people use [corn] merely to feed pigs with [corn].
Alice wants to visit Barbara, and Susan [wants to visit] Jane.

Computational linguists like such problems very much and direct a lot of
engery at solvingthem- muchinthe spiritofthe Nasrudin story ofthe man
who has lost his key and searches for it under the street lamp, not
because he expects it there, but because there is more light. The real
challenges for parsing lie in meaning and the lexicon, not in odd corners
of syntax.

The success of automatic parsing, like that of MT in general, depends
greatly on its concrete aims and tasks. The most successiul example of
automatic MT is probably the TAUM-METEQ project at the University of
Montreal, which developed a system employed practically to translate
daily weather reports from Englishinto French, Thistranslation workwas
so mechanical and tedious that human translators nearly went mad after

James Kiibury 84

doing it for several months. An attempt was later made to adapt the
system to the domain of aircraft repair manuals; this could have been
very useful, but the attempt failed.

Automatic MT-is most successful with relatively dull and unimportant
textsthat mostpeople wouldn't want to read very long. Forthe forseeable
future, MT systerfis will probably remain the useful assistants and
apprentices of human translators ratherthan becomingtheircompetitors.

The potential of automatic MT should not be underestimated, however.
ltis easy to fall prey to an argumentum ad ignoratiam, supposing that that
which we consider difficult or beyond ourimagination, isin fact technically
impossible. A new attempt to make an adaptation of TAUM-METEQO
might be much more successful, and people might then want touse such
an automatic MT system practically even if it had serious defects.

The automatic translation of aircraft repair manuals would confront us
with a new problem. It is unrealistic to suppose that editing could avoid
all errors in the translations, but errors could lead to accidents and the
loss of human life. Moreover, a system that could translate the repair
manuals of commercial aircraft could undoubtedly be used with the
manuals of weapon systems, and this would be a great advantage for
people who are in the business of exporting modern weapons. So it is not
enough just to ask in general whether automatic MT is possible or not;

instead we must look at specific applications and ask ourselves whether
these are desirable and acceptable.

