Untersuchungen zum Einfluss von Infrarot-A Strahlung auf die Genexpression in humanen dermalen Fibroblasten

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

> vorgelegt von Christian Calles aus Düsseldorf

Düsseldorf, Oktober 2009

Aus dem Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf gGmbH. Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf.

Referent: Prof. Dr. J. Krutmann

Koreferent: Prof. Dr. R. Wagner

Tag der mündlichen Prüfung: 10. Dezember 2009

DANKSAGUNG

Bei Prof. Dr. J. Krutmann möchte ich mich dafür bedanken, dass er mir diese Arbeit am Institut für umweltmedizinische Forschung ermöglichte, bei Peet Schroeder für die super Betreuung über die ganze Zeit und der ganzen Arbeitsgruppe für das nun seit Jahren anhaltende erstklassige Arbeitsklima.

Prof. Dr. R. Wagner danke ich für die bereitwillige Übernahme des Koreferates.

Inhaltsverzeichnis

1	Einl	leitung		1
	1.1	Infrarot A (IRA) und das solare Spektrum		1
	1.2	Photobiologische Effekte nicht-ionisierender Strahlung		2
	1.3	Aufbau & Struktur der menschlichen Haut		4
		1.3.1 Die extrazelluläre Matrix (ECM) der Dermis und die Rolle von M	a-	
		$trixmetalloproteinas en \ldots \ldots$		5
	1.4	Intrinsische Hautalterung		8
	1.5	Extrinsische Hautalterung durch Lichteinflüsse: Photoaging		8
		1.5.1 Biologische Effekte von Infrarotstrahlung in der menschlichen H	aut	9
	1.6	Bedeutung von reaktiven Sauerstoffspezies in lichtinduzierten Alterung	s-	
		prozessen		11
	1.7	Fragestellung		14
2	Mat	terial und Methoden		15
	2.1	Zellkultur primärer humaner Hautzellen		15
		2.1.1 Präparation primärer humaner dermaler Fibroblasten		16
		2.1.2 Medien und Lösungen für die Zellkultur		16
	2.2	Strahlungsquellen und Bestrahlung von Zellkulturen		16
		2.2.1 IRA-Bestrahlungsdosis		17
	2.3	Behandlung von Zellkulturen mit Inhibitoren und Antioxidantien		18
	2.4	Isolation der RNS		19
	2.5	Microarray-Analysen mit dem Affymetrix HG-U133A Array System		19
		2.5.1 Aufarbeitung der Proben, Amplifizierung und Hybridisierung a	uf	
		den Microarrays		19
		2.5.2 Normalisierung der Expressions-Rohdaten		20
		2.5.3 Hierarchisches <i>Clustering</i>		21
		2.5.4 Filterstrategie zur Identifizierung durch IRA-Bestrahlung differen	n-	
		tiell regulierter Gene		21
		2.5.5 Gene Ontology Clustering		22
		2.5.6 in silico-Promotor-Analysen \ldots \ldots \ldots \ldots \ldots \ldots		22
	2.6	Realtime-PCR		28
		2.6.1 Durchführung der cDNS-Synthese und realtime-PCR		28
		2.6.2 Primerdesign für die <i>realtime</i> -PCR		29
		2.6.3 Primersequenzen für die <i>realtime</i> -PCR		30
	2.7	Western-Blot		31
		2.7.1 SDS-Gelelektrophorese		31
		2.7.2 Western-Blot \ldots		31
		2.7.3 Puffer und Lösungen für Western-Blot und Gelelektrophorese		33
		2.7.4 Dokumentation und Quantifizierung		33

3 Ergebnisse		ebnisse	35	
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Infrarot-A-Strahlung reguliert eine Vielzahl von Genen in humanen derma- len Fibroblasten	$35 \\ 40 \\ 40 \\ 43 \\ 43 \\ 44 \\ 46 \\ 49 \\ 52$	
_				
4	Disk 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Vergleich der Reaktion von Fibroblasten verschiedener Spender auf IRAEinfluss von IRA auf die extrazelluläre MatrixDie Rolle von Calcium in der IRA-AntwortBeteiligung der Stress-Signalwege an der zellulären Reaktion auf IRAEinfluss von IRA auf die Expression von Genen der Apoptose und zugehöriger SignalwegeIRA-induzierte SignalwegeFunktionelle Relevanz von ROS in der IRA-induzierten GenregulationTranskriptionsfaktoren in der IRA-AntwortUbereinstimmungen zwischen IRA-regulierten Genen und beschriebenenIRA-EffektenÄhnlichkeiten und Unterschiede zwischen IRA- und UV-bedingten Effekten	 59 59 59 60 61 61 61 63 64 64 64 	
5	Zusa	ammenfassung	66	
6	Sum	imary	67	
7	Lite	ratur	68	
8	Abk	ürzungen	76	
9	Anh 9.1 9.2 9.3	ang Gesamtliste aller IRA-regulierten Gene aus den Microarray-Analysen Häufigkeitsverteilung der <i>predicted</i> Transkriptionsfaktor-Bindestellen Funktionelles Clustering auf Basis der <i>Gene Ontology</i> -Klassifizierungen	80 80 97 102	

Abbildungsverzeichnis

1.1	Das elektromagnetische Spektrum der Sonne	2
1.2	Schematischer Aufbau der menschlichen Haut	6
1.3	Schematische Darstellung der extrazellulären Matrix	7
1.4	Eindringtiefen solarer Strahlung in die menschliche Haut	11
1.5	IRA-induzierte mtROS-Bildung verändert die Genexpression	13
2.1	Emissionsspektrum der IRA-Lampe	18
2.2	RNS-Qualitätskontrolle mittels Agilent Bioanalyzer	20
2.3	Probenamplifizierung für Affymetrix Microarrays	25
2.4	Normalisierung von Expressionsprofilen	26
2.5	Aufbau des Affymetrix HG-U133A Microarray	27
3.1	Hierarchisches <i>Clustering</i> der Expressionsprofile	36
3.2	Realtime-PCR ausgewählter Gene nach IRA-Bestrahlung	42
3.3	Western-Blot ausgewählter Proteine nach IRA-Bestrahlung	45
3.4	Genexpression nach IRA-Bestrahlung und Inhibitorbehandlung	48
3.5	Einfluss der Inkubation mit Antioxidantien auf die IRA-induzierte Genre-	
	gulation	50
3.6	Beteiligung von ROS und Signalwegen an der IRA-Genantwort	51
3.7	Transkriptionsfaktorkandidaten der IRA-Antwort	55
4.1	Schema der IRA-induzierten Genregulation	63

Tabellenverzeichnis

2.1	Pipettierschema zur Herstellung cDNS-Synthesemix 1	28
2.2	Pipettierschema zur Herstellung cDNS-Synthesemix 2	28
2.3	PCR-Programm zur Synthese von cDNS	29
2.4	Pipettierschema für die <i>realtime</i> -PCR	29
2.5	PCR-Programm für die <i>realtime</i> -PCR	29
2.6	Primer Sequenzen für die <i>realtime</i> -PCR	30
2.7	Liste der für Western-Blots verwendeten Antikörper	32
3.1	Auswahl der durch IRA-Bestrahlung regulierten Gene	37
3.2	IRA-beeinflußte Prozesse und zugehörige Gene	38
3.3	Einfluss von Signalwegen auf die IRA-induzierte Genexpression.	47
3.4	IRA-spezifische Transkriptionsfaktor-Bindestellen	52
9.1	Vollständige Liste der IRA-regulierten Transkripte	80
0.0		

1 Einleitung

1.1 Infrarot A (IRA) und das solare Spektrum

Die auf der Erdoberfläche eintreffende, durch die Atmosphäre gefilterte Strahlung der Sonne besteht aus den Bereichen der ultravioletten (UV) Strahlung (Wellenlänge (λ) = 290 nm -400 nm), dem sichtbaren Licht (VIS, $\lambda = 400 - 760$ nm) und der Infrarotstrahlung (IR, $\lambda = 760 \,\mathrm{nm} - 1 \,\mathrm{mm}$) (Kochevar *et al.*, 2008; Endres & Fritsch, 1997). Die UV-Strahlung unterteilt sich in UVB ($\lambda = 290 - 320 \,\mathrm{nm}$) und UVA ($\lambda = 320 - 400 \,\mathrm{nm}$). Die IR-Strahlung umfasst drei Bereiche: Infrarot A (IRA, $\lambda = 760 - 1440 \,\mathrm{nm}$), Infrarot B (IRB, $\lambda = 1440 - 3000 \,\mathrm{nm}$) und Infrarot C (IRC, $\lambda = 3000 \,\mathrm{nm} - 1 \,\mathrm{mm}$). Die Photonenenergie der Strahlung nimmt mit steigender Wellenlänge ab, so dass UV-Strahlung wesentlich energiereicher als IR-Strahlung ist (Kochevar et al., 2008). Betrachtet man jedoch die Gesamtenergiemenge, die die Erdoberfläche erreicht, zeigt sich ein anderes Bild. So besteht die Strahlenbelastung nur zu 6.8% aus UV (0.5% UVB, 6.3% UVA) und zu 38.9% aus sichtbarem Licht. Die IR-Strahlung macht dagegen einen Anteil von 54,3 % der auf der Erde auftretenden Sonnenstrahlung aus, wobei dem IRA-Wellenlängenbereich alleine ca. 30 % zukommen (Kochevar et al., 2008). Die tatsächliche Dosis und Zusammensetzung der Sonnenenergie welche die Haut erreicht ist von mehreren Faktoren abhängig: Von der Ozonschicht, der Position der Sonne, dem Breiten- und Längengrad, der Bewölkung sowie der Bodenreflexion. Auf diesen Parametern basierend sei angemerkt, dass sich die Gesamtkomposition des Sonnenlichts, z.B. im Hinblick auf die UV- zu IR-Ratio, über den Tagesverlauf hin ändert. An einem Sommertag in mitteleuropäischen Breiten macht diese Gesamtenergie der Sonnenexposition auf der menschlichen Haut ca. 2400 J/cm² aus (Quelle: Landesumweltamt Baden-Württemberg), die durchschnittliche IRA-Strahlendosis an einem Julitag in München beträgt 75 J/cm² pro Stunde (Quelle: Deutscher Wetterdienst) (Schieke et al., 2003).

Abbildung 1.1: Das elektromagnetische Spektrum der Sonne. Abbildung verändert nach Schieke *et al.* (2003).

1.2 Photobiologische Effekte nicht-ionisierender Strahlung

Wenn Photonen der Sonnenstrahlung die Hautoberfläche erreichen, müssen eine ganze Reihe von Schritten erfolgen, damit die Strahlungsenergie in biologische Effekte transformiert wird. Zunächst muss die Strahlung bis in die entsprechende Hautschicht penetrieren, in der sie von den entsprechenden Molekülen absorbiert wird. Diese Moleküle werden als Chromophore bezeichnet. Die Chromophore gehen in einen angeregten Zustand über, indem die absorbierte Energie dazu dient, ein Elektron auf ein höheres Energieniveau zu bringen. Photochemische Reaktionen können dann die angeregten Chromophore zu Photoprodukten weiterkonvertieren. Die angeregten Chromophore oder Photoproduktmoleküle stimulieren nun zelluläre Signaltransduktionswege, die zu biochemischen Veränderungen führen, die sich zu zellulären Effekten summieren, z.B. zu Prozessen wie Proliferation, die Sekretion von Zytokinen oder die Induktion von Apoptose, welche als akute Antwort der Hautzellen beobachtet werden kann. Eine ähnliche Kaskade ist ebenfalls verantwortlich für Reaktionen auf chronische Strahlungseinwirkung, wie z.B. die Faltenbildung bei der Lichtalterung der Haut. Elektromagnetische Strahlung wird als Welle bestehend aus oszillierenden elektrischen und magnetischen Feldern angesehen, die zueinander und zur Ausbreitungsrichtung jeweils im rechten Winkel stehen. Zusätzlich zum Wellencharakter kann man die elektromagnetische Strahlung als Strom von diskreten Energiepaketen auffassen, welche man als Photonen bezeichnet. Die Energiemenge in einem Photon ist direkt proportional zur Frequenz der Strahlung und umgekehrt proportional zur Wellenlänge der Strahlung. Aufgrund der vergleichsweise geringeren Energie verursachen Photonen von Wellenlängen größer als das sichtbare Licht in der Regel keine direkten photochemischen Reaktionen (zur Übersicht siehe Kochevar et al. (2008)). Wenn Sonnenstrahlung auf die Haut trifft wird ein Teil der Strahlung reemittiert (reflektiert und gestreut), ein Teil wird von Chromophoren in den verschiedenen Schichten absorbiert und ein weiterer Teil wird inwärts zu Absorptions-sensitiven Schichten weitergeleitet. Ein sehr geringer Teil der absorbierten Strahlung wird auch als Fluoreszenz mit größerer Wellenlänge reemittiert. Die Absorption und Streuung der Strahlung in der menschlichen Haut ist von Wellenlänge zu Wellenlänge verschieden (siehe auch Abb. 1.4). Nach der Absorption der Energie eines Photons tritt das Chromophor in einen angeregten Zustand. Eine solche Anregung in den sogenannten Singulett-Zustand existiert nur für wenige Nanosekunden. Das Molekül kehrt entweder durch Emittieren von Lichtenergie (Fluoreszenz) oder durch Abstrahlung von Wärme über verstärkte Molekülbewegung in den Grundzustand zurück, ein Vorgang der interne Umwandlung genannt wird. Alternativ kann der angeregte Singulettzustand auch zu einer chemischen Reaktion führen in der ein Photoprodukt gebildet wird, indem das angeregte Molekül z.B. ein Elektron abgibt und zum Radikal wird oder eine kovalente Bindung eingeht oder eine solche Bindung bricht. Eine weitere Möglichkeit besteht darin, dass das Molekül aus dem Singulett-Zustand in einen anderen angeregten Zustand mit geringerem Energieniveau übergeht, den angeregten Triplettzustand. Man spricht hier vom Intersystem-Crossing. Die Singulett- und Triplett-Anregungszustände unterscheiden sich im Elektronenspin eines Elektronenpaars innerhalb eines Orbitals. Wenn der Spin der beiden Elektonen in einem Orbital entgegengesetzt ist, spricht man von einem Singulett Zustand, wenn der Elektronenspin bei beiden gleich ist, ist es ein Triplett-Zustand. Der Triplett-Zustand ist stabiler und kann bis zu einigen Mikrosekunden lang existieren. Der Triplett-Zustand kann wiederum Licht emmitieren (Phosphoreszenz), eine chemische Reaktion eingehen oder durch Intersystem-Crossing in den Singulett-Grundzustand zurückkehren (Kochevar et al., 2008). Eine Besonderheit ist jedoch das zunächst eher unreaktive Sauerstoffmolekül, dass im unangeregten Grundzustand zwei ungepaarte Elektronen in einem Triplett-Zustand mit parallelem Spin besitzt und erst bei Aktivierung zu einer reaktiven Sauerstoffspezies mit Singulett-Anregungszustand und antiparallelem Elektronenspin wird (Elstner, 1990). Aufgrund der geringeren Photonenenergie im Vergleich zur UV-Strahlung, wurde der IRA-Strahlung zunächst auch kein weiterer Effekt als die reine Hitzeinduktion in biologischen Systemen zugesprochen. Diese Sichtweise wird aber durch neuere Beobachtungen nach und nach erweitert. Endogene Chromophore in den Zellen, auch als *Photosensitizer* bezeichnet, wie z.B. Porphyrine, Flavine und mitochondrielle Zytochrome sind aufgrund ihrer speziellen molekularen Charakteristik in der Lage, strahlungsabsorbierte Energie auf ein nahegelegenes Molekül zu übertragen, welches sich in einem sogenannten Triplett Grundzustand befindet (Amat et al., 2004). Eines der wenigen Moleküle, die diesen Grundzustand besitzen, ist der Sauerstoff. Als Resultat dieses Energietransfers von Photosensitizern hin zum Sauerstoff werden reaktive Sauerstoffspezies (ROS) und insbesondere Superoxidradikalanion gebildet. Für diese Reaktionen scheint auch die Photonenenergie im IRA-Bereich auszureichen. Unterstützt wird diese These durch Beobachtungen, dass z.B. die Zytochrom c-Oxidase, ein ebensolches Chromophor aus der mitochondrialen Atmungskette, Strahlung im IRA-Bereich absorbiert (Karu et al., 2001) und IRA-Bestrahlung zur Bildung von mitochondrialem ROS in humanen dermalen Fibroblasten führt (Schroeder et al., 2007). Manche Erklärungsansätze zur Wirkung von IRA gehen jedoch noch weiter, denn zusätzlich zu der Eigenschaft von Licht, durch Absorption Moleküle in einen angeregten Zustand zu versetzen, d.h. eine Elektronenanregung zu verursachen, müssen auch die elektrischen Eigenschaften dieser

Strahlung berücksichtigt werden. Wie aus der Definiton von elektromagnetischer Strahlung hervorgeht, ist ein intensiv oszillierendes elektrisches Feld mit den Photonen im sichtbaren und IR-Bereich assoziiert. Dieses Feld des IR-Strahls würde daher zu einem elektrischen Stromfluss führen, wenn freie Elektronen im Medium vorhanden sind. Dieser elektrische Stromfluss würde dann zur Absorption von Energie und der Umwandlung in Wärme führen. Die elektrische Komponente von elektromagnetischer Energie soll somit auch einen Effekt auf dipolare Moleküle besitzen wie z.B. auf Enzyme, Ionenpumpen, Zellmembranen und Organellen oder auch Nukleotide (Amat *et al.*, 2004). Daher würde sich dieser Effekt auch auf Membranpotentiale auswirken und auf diese Weise die für IRA beschriebenen Effekte auslösen können (siehe auch Kapitel 1.5.1 und 1.6).

1.3 Aufbau & Struktur der menschlichen Haut

Die Haut ist mit einer Oberfläche von bis zu 2 m^2 und einer Masse von bis zu 3 kg eines der größten Organe des Menschen. Sie besteht aus zwei fest miteinander verzahnten Schichten, der Oberhaut (Epidermis) und der Lederhaut (Dermis), sowie der Unterhaut (Subcutis). Die Haut kann als ein komplexes Organ betrachtet werden, welches vielfältige Funktionen zu erfüllen hat. Die wichtigste Funktion der Haut ist die sogenannte (physikalische) Barrierefunktion, also dem Schutz vor Austausch von Gas und Wasser mit der Umwelt, um Austrocknung und das Eindringen nicht körpereigener Substanzen zu kontrollierenn. Auch der Schutz vor mechanischen Beanspruchungen ist eine Primäraufgabe der Haut. Epidermis und Dermis sind miteinander starkt verzahnt (siehe Abbildung 1.2) was für ein hohes Maß an Resistenz gegen Dehnung sorgt. Die untereinander verwobenen Proteinstrukturen der extrazellulären Matrix (ECM) in der Dermis, hauptsächlich aufgebaut aus Kollagen und anderen Makromolekülen (siehe Kapitel 1.3.1), sorgen für die hohe Elastizität bei gleichzeitig hoher Stabilität und Belastbarkeit (Fritsch, 2004; Freedberg et al., 2003). Die Haut trägt auch maßgeblich zur Thermoregulation des Körpers bei. Eingelagertes Fett in der Subcutis isoliert den Körper gegen Kälte, die in der Dermis sitzenden Schweißdrüsen dagegen ermöglichen die aktive Kühlung über Schweissabsonderung und Verdunstungskälte. Zum Schutz vor Belastungen der Sonnenstrahlung, insbesondere der energiereicheren UV-Strahlung, kann die Haut das Ausmaß ihrer Pigmentierung erhöhen. Die Melanozyten synthetisieren das im UV-Bereich absorbierende Melanin, welches dann in den Keratinozyten einlagert wird. Ein Schutz vor Mikroorganismen stellt auch das mit einem pH-Wert von 5,5 saure aber trockene Milieu der Hornschicht dar. Abbildung 1.2 zeigt den Aufbau der Haut und ihrer verschiedenen Schichten. Vorherrschender Zelltyp in der Epidermis sind die Keratinozyten mit einem Anteil von rund 90 %. Durch Einlagerung von Keratin und anderen Filamenten sind diese Epithelzellen in der Lage, sich in Horn umzuwandeln, das von der obersten Schicht der Epidermis, der Hornhaut (dem Stratum corneum) als Hornschuppen abgestoßen wird. Die Zellneubildung der Keratinozyten erfolgt über Amplifikationszellen die von Stammzellen in der Epidermis gebildet werden. Bei der Zellteilung bleibt eine der beiden Tochterzellen als Stammzelle erhalten, während die andere Tochterzelle zur Amplifikationszelle wird und zum Keratinozyten differenziert, der innerhalb von etwa 30 Tagen von der Basis der Epidermis bis zur Oberfläche wandert und durch den Prozess der Verhornung letztendlich abstirbt (Campbell & Reece, 2003; Kochevar et al., 2008). Die Stamm- und Amplifikationszellen sitzen in der untersten Schicht der Epidermis, dem Stratum basale oberhalb der Basallamina, welche die stark verzahnende Grenzschicht zwischen Epidermis und Dermis bildet. In das Stratum spinosum eingebettet finden sich weitere Zelltypen der Epidermis, die Langerhans-Zellen und die bereits erwähnten Melanozyten. Vom *Stratum basale* migrieren die Keratinocyten durch das Stratum spinosum und das Stratum granulosum zum Stratum corneum. Der hierbei durchlaufene Differenzierungsprozess der Keratinozyten führt zur Entstehung von sogenannten Korneozyten. Korneozyten entstehen unter Abflachen in der Zellform mit Verlust von Wasser sowie dem Zellkern und der Organellen, sowie einer massiven Einlagerung von Keratinen. In biologischer Sichtweise handelt es sich um tote Zellen, die das Stratum corneum als äußerste Schicht der Epidermis bilden. Neben der Epidermis haftet auch die Dermis an der Basallamina. Die Keratinozyten des Stratum basale sind über Ankerfilamente mit der Basallamina direkt verbunden. In der Dermis dagegen besteht die Verankerung mit der Basallamina über Ankerfibrillen über die extrazelluläre Matrix. Der Hauptzelltyp der Dermis sind die Fibroblasten, die vereinzelt in einem Fasergeflecht, der extrazellulären Matrix (ECM) sitzen (siehe auch Kapitel 1.3.1) und keinen dichten Zellverband bilden. Hauptbestandteil der ECM ist das Kollagen, elastische Fasern wie das Elastin und das Fibrillin sowie Glykosaminglykane und Proteoglykane (Fritsch, 2004). Zu einem weiteren Teil besteht die Dermis auch aus Blutgefäßen, Nerven, Schweißdrüsen und den Haarwurzeln. Unterhalb der Dermis, in der Subcutis, finden sich die Fettzellen.

1.3.1 Die extrazelluläre Matrix (ECM) der Dermis und die Rolle von Matrixmetalloproteinasen

Die eng miteinander verwandten Proteine der Kollagenfamilie sind die Hauptkomponente des fibrillären Bindegewebes und die häufigsten extrazellulären Proteine des menschlichen Körpers (Kochevar et al., 2008). Die physiologische Rolle der Kollagenfasern in der Haut besteht darin, ihr Zugfestigkeit zu verleihen, um so als Schutzorgan gegen externe Traumata zu dienen. Die Kollagenfibern machen ungefähr 80 % des Trockengewichtes der Dermis aus (Kochevar *et al.*, 2008). Das am häufigsten vorhandene Kollagen ist vom Typ I, bestehend aus einer Tripelhelix aus drei umeinander verwundenen α -Ketten, die sich zu parallel angelagerten Fibrillen anordnen, aus denen die Kollagen-Fasern aufgebaut sind. Zusätzliche Stabilität wird durch kovalente Verknüpfung der Kollagenfasern untereinander durch sogenannte Cross-links erreicht, wodurch die Kollagen-Fasern in die Lage versetzt werden, die benötigte Zugfähigkeit auszubilden. Desweiteren besteht die extrazelluläre Matrix aus elastischen Fasern, die für die Dehnbarkeit sorgen, auch wenn sie mengenäßig zum dominierenden Kollagen eher eine untergeordnete Komponente der ECM darstellen. Elastische Fasern bestehen aus zwei Komponenten: Die Hauptkomponente ist das Protein Elastin, was von mikrofibrillären Strukturen umgeben ist, die aus einer Vielzahl von Proteinen bestehen. Die größten und vielleicht auch wichtigsten mikrofibrillären Proteine sind die Fibrilline. Diese 350-kd großen Glykoproteine bilden den integralen Bestandteil der Mikrofibrillenstruktur. Weitere Proteine der Mikrofibrillen sind unter anderem die Latent $TGF-\beta$ -bindenden Proteine, die Fibuline, die Lysyloxidasen und die Emiline. Fibronektin, ein Glykoprotein, vermittelt die Anhaftung der Fibroblastenzellen der Dermis, die ein Großteil der extrazellulären Matrix-Proteine produzieren, an das Kollagen der ECM unter Beteiligung der Integrin-Rezeptoren (Leiss et al., 2008). Ein weiterer Bestandteil der extrazellulären Matrix sind die Proteoglykane mit ihrer Fähigkeit, Proteine zu binden und Protein-Protein-Wechselwirkungen oder auch Enzymaktivitäten zu verändern. Proteoglykane, aufgebaut aus einem Proteinteil und einer Disaccharidkomponente, fungieren

Abbildung 1.2: Schematischer Aufbau der menschlichen Haut. Die drei Schichten der Haut, Oberhaut (Epidermis), Lederhaut (Dermis) und Unterhaut (Subcutis), dargestellt mit den zugehörigen Substrukturen. Abbildung verändert nach medOCT (medOCT group, 2006).

unter anderem auch als Schnittstelle zwischen der Plasmamembran der Zellen und der extrazellulären Umgebung, indem sie z.B. Wachstumsfaktoren, Zytokine und Komponenten der ECM binden.

Die Matrixmetalloproteinasen (MMPs) zählen zur Familie der zinkabhängigen Metalloendopeptidasen. Man unterscheidet mehr als 20 verschiedenen MMPs. Die Hauptfunktion der MMPs besteht aus dem Ab- und Umbau der Proteine der extrazellulären Matrix. Die Fibroblasten in der Dermis exprimieren insbesondere die MMPs -1, -2, -3, -13 und -14, die jeweils unterschiedliche Substratspezifitäten aufweisen und in den extrazellulären Raum sezerniert werden, wo sie aus inaktiven Pro-Formen in die aktiven Varianten übergehen. Dann erfolgt der Abbau des jeweiligen Substrats, z.B. von bereits denaturiertem Kollagen durch MMP-13 (Hijova, 2005). Für das Aufrechterhalten des Kollagengleichgewichtes in der ECM ist eine strikte Regulation der sezernierten Peptidasen nötig. Dies erfolgt durch eine ebenfalls stark kontrollierte Expression der entsprechenden MMP-Inhibitoren, den sogenannten TIMPs (*tissue inhibitors of metalloproteinases*). TIMPs sind in der Lage, MMPs über die Bindung an diese zu inaktivieren. Bei den TIMPs handelt es sich eben-

Abbildung 1.3: Schematische Darstellung der extrazellulären Matrix. Die ECM besteht in wesentlichen Teilen aus Kollagenfasern, Proteoglykanen sowie in weitaus geringeren Anteilen aus Elastizität vermittelnden Elastinen. Abbildung verändert nach Campbell & Reece (2005).

falls um eine eigene Proteinfamilie mit jeweils unterschiedlichen Bindespezifitäten für die diversen MMPs (Lambert et al., 2004).

Eine besondere Rolle bei pathologischen Prozessen kommt MMP-1 zu, denn sowohl in der lichtinduzierten Hautalterung, als auch in der Tumorentwicklung kommt es zum Abbau der fibrillären Kollagene vom Typ I, II, III, VII, VIII und X durch MMP-1, das aufgrund seiner entsprechenden Substratspezifität in der Lage ist, diese wesentlichen Bestandteile der Bindegewebsstrukturen in der Dermis abzubauen (Woessner & Nagase, 2000). Die unbalancierten MMP-Aktivitäten jedoch führen zur Proteolyse der Matrixproteine, ein Prozess den man als einer der wichtigsten pathophysiologischen Faktoren in der extrinsischen Hautalterung auffasst (siehe Kapitel 1.5). Die erhöhte Expression von MMPs ohne eine gleichzeitige Erhöhung der TIMP-Expression führt zum Abbau des fibrillären Kollagens und zerstört somit das fragile Gleichgewicht der strukturellen Integrität der Dermis. In einem gewissen Ausmaß kann solch einer Schädigung der ECM mittels einer erhöhten Produktion von Kollagen selbst entgegnet werden (Brenneisen *et al.*, 2002; Fisher *et al.*, 2002, 1997), jedoch kommt es bei der Lichtalterung der Haut auch zumeist zu einer verringerten Kollagen-Neusynthese (Buechner *et al.*, 2008). Die Konsequenz des Kollagenabbaus aufgrund der erhöhten MMP-1-Expression bedeutet bei der Lichtalterung eine verstärkte Faltenbildung (Gilchrest & Krutmann, 2006). In der Tumorentwicklung führt dieses zu einer vereinfachten Metastasierung und zu einem verstärkten invasiven Wachstum aufgrund der Degradierung des den Tumor umgebenden Gewebes (Lemaitre & D'Armiento, 2006).

1.4 Intrinsische Hautalterung

Alterung ist ein Prozess der fortschreitenden Abnahme in der maximalen Leistungsfähigkeit und Reservekapazität aller Organe im Körper inklusive der Haut. Alterung tritt auf zellulärer Ebene auf, und setzt sich sowohl aus einem genetischen Programm als auch aus einer Anhäufung von Schäden hervorgerufen durch von aussen bedingten Einflüssen zusammen. Säugetierzellen sind nur zu einer limitierten Anzahl von Zellteilungen in der Lage und arrestieren danach unwiederbringlich in einem Zustand der als replikative Seneszenz bekannt ist. Diese Tatsache hat zu der Schlussfolgerung geführt, dass sich Alterung in multizellulären Organismen als ein Protektionsmechanismus gegen Krebs entwickelt hat, denn sie verhindert das unlimitierte und vermutlich unregulierte Wachstum von Zellen, deren DNS über ihre Lebenszeit fortwährend geschädigt wurde. Die Alterungsprozesse, die unabhängig von äusseren Einflüssen ablaufen, bezeichnet man als intrinsische, chronologische Alterung. In der menschlichen Haut führt die intrinsische Alterung zu funktionellen Verlusten. Es kommt zu einem flacher ausfallenden Grad der Verzahnung der dermal-/epidermalen Verbindungsschicht, einer Abnahme der Zellzahlen sowie der Dicke und des Volumens der Haut. Intrinsisch gealterte Haut ist rauer und trockener, schlaffer und unelastischer, zeigt eine erniedrigte Vaskularisierung und erholt sich schlechter von Verletzungen. Es kommt zu alterungsbedingtem Verlust der elastischen Fasern und des dermalen Kollagens. Dies resultiert in der Ausbildung eines feinen Faltenmusters. Auch die intrinsische Hautalterung führt zur Ausbildung eines feinen Faltenmusters durch den altersbedingten Verlust der elastischen Fasern und des dermalen Kollagens, jedoch unterscheiden sich diese feinen Falten deutlich von denen die durch Lichtalterung der Haut entstehen, wo das makroskopische Bild eine wesentlich stärkere Ausbildung weitaus groberer Falten und tiefer Furchen zeigt (Yaar, 2006).

Eine der maßgeblichen Theorien des Alterns sagt aus, dass eine Anhäufung von Schäden an den Biomolekülen inklusive der DNS auftritt, die mit der Zeit immer schlechter repariert und behoben werden können. Diese akkumulierenden Schäden sind das Resultat von freien Radikalen und auch die Haut ist über den aeroben Metabolismus kontinuierlich dem oxidativen Stress der hierbei gebildeten reaktiven Sauerstoffspezies (ROS) ausgesetzt.

1.5 Extrinsische Hautalterung durch Lichteinflüsse: Photoaging

Lichtalterung der Haut (Photoaging) äußert sich durch eine Störung der Barrierefunktion, Pigmentierungsänderungen, ein Nachlassen der Hautelastizität und eine gesteigerte Faltenbildung. Diese Symptome werden unter anderem durch Degradation des Kollagens der extrazellulären Matrix ausgelöst. Die molekularen Mechanismen der Matrix-Degradation sind in Kapitel 1.3.1 beschrieben. Die vorzeitig auftretende Alterung der Haut durch Umwelteinflüsse bekommt im Hintergrund des veränderten Freizeitverhaltens in der westlichen Welt und der demographischen Entwicklung hin zu einer immer längeren Lebensspanne eine zunehmende gesundheits- und gesellschaftsspolitische Bedeutung.

Es konnte vielfach gezeigt werden, dass die chronisch erhöhte Expression von MMP-1, hauptverantwortlich für die Faltenbildung in der lichtgealterten Haut, durch verschiedene Wellenlängenbereiche des Sonnenlichts hervorgerufen wird. So ist UVA-Strahlung in humanen Fibroblasten in der Lage, die Expression von MMP-1 zu erhöhen (Wlaschek *et al.*, 1994), wobei die UVA-induzierte Bildung von ROS als Auslöser dieses Prozesses postuliert wird (Scharffetter-Kochanek *et al.*, 1993). Die Rolle von ROS in lichtinduzierten Alterungsprozessen wird weiter in Kapitel 1.6 beschrieben. Auch UVB-Strahlung ist in der Lage die Expression von MMP-1 in Hautzellen zu induzieren. Girolamo *et al.* konnten diesen Mechanismus in der Hornhaut des menschlichen Auges nachweisen (Girolamo *et al.*, 2005). Auch Proteine sind vom oxidativen Schaden beeinflusst. Lichtgealterte Haut zeigt eine Anhäufung von oxidierten, geschädigten Proteinen in den oberen Bereichen der Dermis (Kochevar *et al.*, 2008). Kontinuierlich erhöhte Produktion von ROS schädigt auch die mitochondriale DNS (mtDNS). Lichtgeschädigte Haut zeigt eine höhere Mutationshäufigkeit als sonnengeschützt Haut auf und es kommt zu einer Akkumulierung von großen mtDNS Deletionen (Reimann *et al.*, 2008; Trifunovic *et al.*, 2004).

Die Absorption der Sonnenstrahlung in der menschlichen Haut verläuft nicht linear zum Energiegehalt der Photonen entsprechender Wellenlänge. In gesunder Haut penetriert nur ein sehr geringer Anteil von UVB in tiefere Hautschichten als die Epidermis. UVA hingegen erreicht die Dermis in grösserem Ausmaß, doch IRA widerum dringt sogar bis in das subkutane Gewebe ein. Ungefähr 50 % der IRA Strahlung, die auf die Haut auftrifft, wird in der Dermis absorbiert.

1.5.1 Biologische Effekte von Infrarotstrahlung in der menschlichen Haut

Uber die Bedeutung von Infrarotstrahlung in Bezug zur vorzeitigen Hautalterung wurde bereits vor über 20 Jahren diskutiert. Kligman (1982) war die Erste, die zeigen konnte, dass UV-induzierte Hautschädigung in Meerschweinchen durch IR-Strahlung noch weiter verstärkt werden konnte, was dazu führte, dass sie auch den Effekt von IR alleine beobachtete. In ihren Untersuchungen führte IR zu Elastose, wobei IR zur Produktion von vielen feinen, federartigen Fasern und einem starken Anstieg der aus Glykoproteinen bestehenden gelartigen Grundsubstanz in der Dermis führte, Beobachtungen die man auch beim Menschen in aktinisch geschädigter Haut macht. Hieraus schlussfolgerte sie, dass IR zur Lichtalterung der Haut beiträgt. Von diesen Beobachtungen dauerte es 20 Jahre, bis der erste Einblick in den zugrunde liegenden Mechanismus der IR-induzierten Hautschädigung gewonnen werden konnte. Schieke et al. (2002) zeigten, dass geringe, physiologisch relevante Dosen von IRA zu einer Induktion von MMP-1 in humanen dermalen Fibroblasten in vitro führten. Aktuelle in vivo Studien haben nun bestätigt, dass IRA-Bestrahlung zur Aufregulation der MMP-1-Expression in der menschlichen Haut führt (Schroeder et al., 2008b). Es wurde gezeigt, dass Bestrahlung mit physiologisch relevanten Dosen von wassergefiltertem IRA zur Aufregulation von MMP-1 auf mRNS- und Protein-Ebene in bestrahlten Hautarealen im Vergleich zu unbestrahlter Haut aus den selben Individuen führt (Schroeder et al., 2008b). Der durch IRA-induzierte Signalweg, der für die Induktion von MMP-1 verantwortlich ist, läuft unter Aktivierung der mitogen-aktivierten Protein-Kinasen (MAPKinasen) ab. Die Aktivierung dieser Kinasen erfolgt ebenfalls in der UVA- und UVB-induzierten Signaltransduktion. Bei den MAPKinasen handelt es sich um eine Familie von Proteinkinasen, die in der Signaltransduktion eukaryotischer Zellen eine zentrale Rolle spielen. Diese Kinasen leiten ein durch eine extrazelluläre Noxe ausgelöstes Signal durch Phosphorylierung weiterer Proteine vom betreffenden Rezeptor zu den Transkriptionsfaktoren weiter (zur Ubersicht: Seger & Krebs (1995)). Hierfür sind die MAPKinasen im Allgemeinen zu sogenannten MAPKinasekaskaden in Reihe geschaltet. Ausgangspunkt ist meist eine rezeptorabhängige GTPase (z.B. Ras), welche sogenannte MAPKKKs (MAPKinasekinasekinasen) (z.B. Raf) aktiviert. Diese MAPKKKs aktivieren dann wiederum MAPKKs (MAPKinasekinasen) (z.B. MEK1). Die durch MAPKKs aktivierten MAPKs können verschiedene Transkriptionsfaktoren aktivieren, welche dann letztendlich im Zellkern an die DNS binden können und zur Genregulation beitragen. Drei voneinander verschiedene MAPK-Signalwege wurden charakterisiert: ERK1/2 (durch extrazelluläres Signal regulierte Kinasen 1 + 2), p38 und JNK1/2/3 (c-Jun NH₂-terminale Kinasen 1, 2 + 3). Diese drei Kinasen werden alle durch Phosphorylierung von Threoninund Tyrosin-Resten ihres Threonin-X-Tyrosin-Motivs im sogenannten Aktivierungs-Loop aktiviert. ERK1/2, die JNKs und p38 sind an der Regulation von globalen zentralen Prozessen wie Proliferation, Differenzierung und Apoptose beteiligt. Proproliferative Signale, z.B. die Bindung von EGF (Epidermal Growth Factor) an den EGFR (Epidermal Growth Factor Receptor), führen zu einer Aktivierung von ERK1/2 (Seger & Krebs, 1995). ERK1/2 wird auch als eine Stresskinase bezeichnet, da sie insbesondere bei zellulärem Stress wie z.B. bei gesteigerten Mengen von ROS aktiviert wird. Erhöhte zelluläre ROS-Mengen wurden als direkte Folge von UVA-Strahlung nachgewiesen und sind so in der Lage MAPKinasen zu aktivieren (Grether-Beck et al., 1997). Mittels der Aktivierung von ein und denselben MAPKinasen können eine Vielzahl auch gegensätzlicher Prozesse wie die Proliferation der Zellen oder die Reaktion auf exogenen Stress induziert werden. Die Spezifität der Signaltransduktion für einen bestimmten Reiz ergibt sich erst durch das Zusammenspiel der MAPKinasen und weiterer zellulärer Signalwege. MAPKinasen können von Phosphatasen durch Dephosphorylierung deaktiviert werden (Ellinger-Ziegelbauer et al. (1997), zur Übersicht: Neel & Tonks (1997)). Mittels dieses Mechanismus ist die Phosphorylierung der MAPKinasen ein reversibler Prozess, der eine schnelle Anpassung des Signalflusses ermöglicht. Schieke et al. (2002) konnten zeigen, dass ERK1/2 und p38 durch IRA-Bestrahlung in dermalen Fibroblasten aktiviert werden und eine Inhibierung der ERK1/2-Aktivierung dem IRA-induzierten Anstieg der MMP-1-Expression entgegensteht. Obwohl der Fokus der bisherigen Untersuchungen der molekularen Effekte von IRA auf der Expression und Regulation von MMP-1 gelegen hat, legt die Beteiligung der MAPK-Aktivierung nahe, dass auch die Regulation weiterer Gene betroffen ist. Zusätzlich zum Einfluss von IRA auf MMP-1, sind einige weitere zelluläre und physiologische Antworten auf IRA-Bestrahlung bekannt. Kim et al. (2006) zeigten, dass IRA an der Regulation der Neoangiogenese in der menschlichen Haut beteiligt ist, denn IRA verändert die Balance zwischen dem angiogenen Induktor VEGF (vaskulärer endothelialer Wachstumsfaktor) und dem angiogenem Inhibitor TSP-2 (Kim et al., 2006). Interessanterweise ist eine erhöhte Neoangiogenese ebenfalls eine prominente Eigenschaft lichtgealterter Haut (Yaar, 2006). Es wurde weiterhin gezeigt, dass IRA zu einer Abnahme an epidermaler Proliferation, verringerter Dichte an Langerhans Zellen und Kontakt-Uberempfindlichkeitsreaktion in Mäusen führt (Danno & Sugie, 1996).

Abbildung 1.4: Eindringtiefen solarer Strahlung in die menschliche Haut. Die Eindringtiefen verschiedener Strahlungsbereiche sind in Abhängigkeit der unterschiedlichen Absorption in den verschiedenen Hautschichten sehr heterogen. IRA besitzt die grösste Eindringtiefe. Abbildung verändert nach Krutmann & Gilchrest (2006).

Eine weitere Arbeit derselben Gruppe deutet daraufhin, dass IRA auch die Wundheilung über Änderung der Level von TGF- β 1 (Transforming Growth Factor beta 1) und MMP2 (Danno *et al.*, 2001) beeinflusst. Darüberhinaus gibt es eine Arbeit, die über eine erhöhte Expression an Ferritin auf Proteinebene berichtet (Applegate *et al.*, 2000). Die Aktivierung dieses Verteidigungssystems in der menschlichen Haut spiegelt vermutlich die zelluläre Antwort auf die oxidativen Prozesse wieder, die durch IRA induziert werden (siehe auch Kapitel 1.6). Frank *et al.* (2004) beobachteten, dass IRA apoptotische Signalwege beeinflusst, insbesondere den mitochondrialen Weg der Apoptose (Frank *et al.*, 2004) unter Beeinflussung von p53 durch IRA (Frank *et al.*, 2006).

1.6 Bedeutung von reaktiven Sauerstoffspezies in lichtinduzierten Alterungsprozessen

Reaktive Sauerstoffspezies (ROS) sind, wie im oberen Abschnitt bereits erwähnt, Auslöser von Signaltransduktion über den MAPK Weg. Mehrere Studien zeigten, dass ROS zu einer Inaktivierung der Protein-Tyrosin Phosphatasen (PTPs) führt, indem der konservierte Cysteinrest im aktiven Zentrum der PTPs oxidiert wird und somit in Folge zu einer Erhöhung der Phosphorylierung/Aktivierung der Kinasen führt (Chiarugi, 2005).

In aktuellen Studien konnte nun gezeigt werden, dass in den dermalen Fibroblasten ROS durch IRA-Bestrahlung gebildet werden und diese die IRA-induzierte MMP-

1-Aufregulation vermitteln (Schroeder et al., 2007). Nach IRA-Bestrahlung stieg der zelluläre ROS-Spiegel an und es trat eine Störung des zellulären Glutathion-(GSH) Gleichgewichts auf. GSH kann vor oxidativem Schaden schützen oder diesen reparieren und als Konsequenz daraus selbst oxidiert werden, wobei es Glutathion-Dimere (GS-SG) bildet. IRA-Bestrahlung führt zu einer signifikanten Verschiebung des GSH/GSSG-Gleichgewichts hin zur oxidierten Form (Schroeder et al., 2007). Die IRA-induzierte ROS-Produktion ist auch von funktioneller Relevanz, denn Schroeder et al. (2007) zeigten auch, dass durch Steigerung des zellulären GSH-Gehaltes über die Supplementierung der Zellen mit N-Acetylcystein (NAC) die IRA-induzierte Aufregulation von MMP-1 abgeschwächt werden konnte. Es konnte gezeigt werden, dass in den Mitochondrien gebildete ROS das initiale Ereignis nach IRA-Bestrahlung sind und zur erhöhten Transkription und Translation des MMP-1-Gens über die Aktivierung der MAPKinasen ERK1/2 führt (Schieke et al., 2002; Schroeder et al., 2007). Der Einfluss von IRA auf die Mitochondrien wurde durch die Beobachtung untermauert, dass IRA von Komponenten der mitochondriellen Atmungskette absorbiert wird (Karu et al., 2001). Dieses könnte zu einer Störung des mitochondriellen Elektronenflusses führen, für die bekannt ist, dass sie zu einer erhöhten Produktion von mitochondriellem ROS führt. Solch eine Störung der mitochondriellen Funktion kann wiederum sogenannte retrograde Signalprozesse auslösen, die die nukleäre Genexpression steuern (Butow & Avadhani, 2004). Das Auslösen einer solchen Signalantwort vom Mitochondrium zum Nukleus unterscheidet sich die IRA-Antwort deutlich von denen andere Noxen einschließlich UVA und UVB. Die spezifische Rolle von mitochondriellen ROS im zellulären Redox-Signalfluss und in retrograden mitochondriellen Signalwegen wird durch neue Hinweise unterstrichen. Es erscheint nun heute so, dass ROS nicht nur Schaden-verursachende Nebenprodukte der Atmung sind, sondern auch ein wichtiger Faktor in der zellulären Signaltransduktion, insbesondere im retrograden mitochondriellem Signalfluss (Karu, 2008). Die primäre reaktive Sauerstoffspezies, welche in den Mitochondrien gebildet wird, ist das Superoxidradikalanion, welches zu H₂O₂ umgewandelt wird, entweder durch spontane Dismutation oder von der Enzymfamilie der Superoxiddismutasen (SOD) (Liochev & Fridovich, 2007). Das Mitochondrium spielt eine wichtige Rolle in der Calcium-Speicherung und der Ca²⁺-Homöostase. Diese Organellen können das in ihnen gespeicherte Ca²⁺ freisetzen, um die lokale Konzentration in subzellulären Regionen zu erhöhen und somit verschiedene Prozesse wie mitochondrielle Proliferation und mitochodrielle retrograde Regulation als Antwort auf verstärkte ROS-Akkumulation auszulösen (Camello-Almaraz et al., 2006). Veränderungen im Calciumtransport nach Laserbestrahlung im IRA-Bereich wurde bereits für Spermienzellen beschrieben (Lubart et al., 1997). Somit kann man von einem multifaktoriellen Cross-Talk zwischen Calciumionen, dem mitochondriellem Membranpotential und ROS mit den Mitochondrien in zentraler Position für die zelluläre IRA-Antwort ausgehen (Karu, 2008).

Tatsächlich ist die Induktion der mitochondriellen ROS-Bildung hochspezifisch im Vergleich zur UV-Strahlung: Die von UVA und UVB induzierte Expression von MMP-1 wird weder von der Verwendung von Antioxidantien beeinflußt, die sich spezifisch in den Mitochondrien anreichern (MitoQ), noch durch Veränderung der Funktionalität oder der Masse der Komponenten der mitochondriellen Atmungskette. Währenddessen wird die IRA-Antwort durch all diese beschriebenen Strategien substantiell verändert (Schroeder *et al.*, 2007). Kürzliche Fortschritte im Verständnis der UVA-Antwort unterstützen diese Beobachtungen, da hier die Elektronentransportsysteme der Plasmamembran anstelle der mitochondriellen Atmungskette als essentiell für die UVA induzierte ROS-Bildung identi-

Abbildung 1.5: IRA-induzierte mtROS-Bildung verändert die Genexpression. Die IRA-induzierte Bildung von mitochondrialem ROS führt zur Veränderung der Genexpression. Mögliche Mechanismen der Signaltransduktion Abbildung verändert und erweitert nach Schroeder *et al.* (2008a).

fiziert wurden (Schauen *et al.*, 2007). Obwohl Schieke *et al.* (2002) zeigen konnte, dass ein deutlicher Unterschied in der Induktion von MMP-1 zwischen IRA-Bestrahlung und einer milden Hitzeschockbehandlung ($42 \,^{\circ}$ C) in dermalen Fibroblasten besteht, berichteten -Shin *et al.* (2008), dass die Kultivierung von HaCat Zellen bei $44 \,^{\circ}$ C zu einer erhöhten MMP-1- und MMP-9 Expression führte. Sie beobachteten weiterhin, dass neben der mitochondriellen Atmungskette Enzyme wie die NADPH-Oxidase und Xanthin-Oxidase diesen Hitzeschock-vermittelten Effekt modulieren.

1.7 Fragestellung

Die menschliche Haut ist, wenn sie dem natürlichen Sonnenlicht ausgesetzt ist, neben der UV-Strahlung und dem sichtbaren Bereich in einem großen Maße auch der Infrarot-A-Strahlung ausgesetzt, die vor allen Dingen in der Dermis absorbiert wird. Verschiedene Effekte für IRA wurden beschrieben: neben einigen vorteilhaften, therapeutischen Ansätzen (Horwitz et al., 1999; Danno et al., 2001) zeigen mehrere Berichte einen schädlichen Einfluss von IRA insbesondere in Bezug auf die Haut (Schroeder et al., 2008a; Schieke et al., 2003; Zastrow et al., 2009; Kim et al., 2005). Ein besonderes Gewicht hat hierbei die IRA-induzierte Störung des dermalen Kollagen-Equilibriums, durch die Aufregulation der Matrixmetalloproteinase 1 (MMP-1) (Schroeder et al., 2007, 2008b; Kim et al., 2006) und Abregulation des Kollagens Coll α 1 (Buechner *et al.*, 2008; Schroeder *et al.*, 2007, 2008b). Mechanistisch gesehen wurde diskutiert, dass das Mitochondrium den Photoakzeptor für IRA beherbergt (Karu et al., 2001, 2004; Karu, 2008) und es konnte kürzlich gezeigt werden, dass IRA die mitochondrielle Produktion von reaktiven Sauerstoffspezies in Abhängigkeit von der mitochondrialen Atmungskette stimuliert. Diese Ergebnisse unterstreichen, dass es sich bei IRA um eine potente Noxe handelt, die die Haut beeinträchtigt und dass sich die Wirkungsweise und der Mechanismus deutlich von UVA und UVB unterscheidet (Krutmann & Schroeder, 2009). Diese Resultate in Verbindung mit den Beobachtungen von weiteren Arbeitsgruppen führten zu der Hypothese, dass der Einfluss von IRA auf die Genexpression weit über die bisher beschriebenen Zielgene hinausgeht. Das Ziel dieser Arbeit war es, weitere Ziele der IRA-induzierten Genregulation ausfindig zu machen und weitere Einblicke in die involvierten Signaltransduktionswege zu erhalten, die in der zellulären Antwort auf diesen wichtigen Teil des Sonnenspektrums beteiligt sind. Dieses Ziel wurde verfolgt mit dem Einsatz von RNS-Microarrays und anschließender bioinformatischer Analyse. Die hieraus hervorgehenden primären Resultate konnten mit Hilfe von zusätzlichen, unabhängigen biochemischen und molekularbiologischen Techniken bestätigt werden. Als Modellsystem für diese Untersuchungen dienen primäre humane dermale Fibroblasten verschiedener Spender.

2 Material und Methoden

Sämtliche verwendeten Chemikalien entsprechen, sofern nicht anders angegeben, dem Reinheitsgrad "pro Analysis". Für alle Lösungen wurde mit einer hauseigenen Anlage hergestelltes deionisiertes Wasser verwendet. Die Entsalzungsanlage der Firma Millipore liefert Wasser mit einer Leitfähigkeit von ca. $0.1 \,\mu$ S. Im Folgenden wird dieses Wasser als H₂O_{deion} bezeichnet.

2.1 Zellkultur primärer humaner Hautzellen

Das Ausgangsmaterial für die Präparation von primären Hautzellen sind Vorhäute von 5bis 15-Jährigen, die bei Zirkumzision anfallen. Diese Vorhäute wurden nach der Operation in Medium für die Keratinozytenkultur bei 4 °C gelagert, da aus den Vorhäuten ebenfalls Keratinozytenzellen gewonnen werden, die jedoch nicht Gegenstand der hier vorgestellten Untersuchungen sind. Die Präparation der Zellen erfolgte innerhalb weniger Tage nach Entnahme der Vorhaut.

Alle Zellkulturarbeiten und die Präparation von primären Zellen wurden unter Sterilwerkbänken durchgeführt. Die Kultivierung aller Zelltypen erfolgte in Inkubatoren von Typ HeraCell der Firma Heraeus bei $37 \,^{\circ}$ C und $5 \,^{\circ}$ CO₂. Verbrauchsmaterialien wie Zellkulturflaschen und - Schalen (unbeschichtet) stammten von der Firma Greiner-bio-one und wurden je nach Versuch in unterschiedlichen Größen eingesetzt. Experimente mit primären dermalen Fibroblasten wurden bis zur Passage 10 durchgeführt. Für die *in vitro* Experimente wurden Fibroblasten von drei verschiedenen Spendern verwendet, die im folgenden als F1, F2 und F3 bezeichnet werden.

Zentrifugationen zum Pelletieren von Zellsuspensionen erfolgten, sofern nicht anders angegeben, bei RT für 5 min bei 1200 rpm (Heraeus Megafuge 3.0R mit Schwenkrotor) in sterilen Einweggefäßen.

Um primäre Zellen über lange Zeiträume zu lagern, wurden Aliquots früher Passagen hergestellt. Dafür wurden die Zellen einer konfluenten Zellkulturflasche mit 175 cm² Grundfläche nach dem Ablösen mit Trypsin und Waschen mit PBS in 1,5 ml Einfriermedium (siehe Abschnitt 2.1.2) resuspendiert und zunächst für 24 h in einer Kryobox mit Isopropanolfüllung bei -80 °C gelagert. Nach diesem langsamen Einfrierprozess erfolgt die Langzeitlagerung in flüssigem Stickstoff. Auf diese Weise gelagerte Aliquots (je 1,5 ml in geeignetem Gefäß, z.B. CryoTube, Nunc) können über mehrere Jahre gelagert und mit ca. 35 ml Medium wieder in eine Kulturflasche von 175 cm² Grundfläche gesät werden.

2.1.1 Präparation primärer humaner dermaler Fibroblasten

Um das Risiko von Kontaminationen zu verringern werden zu präparierende Vorhäute zunächst für 2 min vollständig mit Gentamycin-PBS bedeckt. Die Präparation primärer humaner dermaler Fibroblasten beginnt mit der Entfernung des Unterhautfettgewebes der Vorhaut. Der verbleibende Rest wird in Stücke von ca. 2 x 2 mm geschnitten. Etwa 10 bis 15 solcher Stücke werden mit der Seite der Dermis nach unten in eine 100 mm Kulturschale gelegt. Ohne Schalendeckel trocken die Ränder der Hautstücke nach 10 bis 15 min am Boden der Schale fest, so dass sie beim Bedecken mit 15 ml Medium nicht aufschwimmen. Nach ca. 1 bis 2 Wochen beginnen die Fibroblasten an der Rändern der Dermis auszuwachsen. Die Hautstücke können nun entfernt werden und die verbleibenden Fibroblasten weiter kultiviert werden.

2.1.2 Medien und Lösungen für die Zellkultur

Als Medium für die Kultur von primäreren humanen dermalen Fibroblasten wurde verwendet:

- EARLE'S MEM (1x), PAA Laboratories GmbH
- 10 % FCS (Foetal Bovine Serum), GIBCO Invitrogen GmbH
- 1 % L-Glutamine 200 mM (100x), GIBCO Invitrogen GmbH
- 1 % Antibiotic-Antimycotic, Penicillin G 10000 units/ml, Streptomycin 10000 $\mu \rm g/ml,$ Amphotericin B 25 $\mu \rm g/ml,$ GIBCO Invitrogen GmbH

Für die Kultur von Fibroblasten unter wachstumsfaktorfreien Bedingungen wurde das Medium ohne den Zusatz von $10\,\%$ FCS eingesetzt.

Die Einfriermedien zur Lagerung der Zellen in flüssigem Stickstoff enthalten 50 % des jeweiligen Mediums, 25 % FCS und 25 % Glycerin.

Weitere Lösungen und Reagenzien:

- PBS-Puffer, D-PBS frei von $CaCl_2$ und $MgCl_2$, GIBCO Invitrogen GmbH
- Trypsin-EDTA (1x) in HBSS, GIBCO Invitrogen GmbH
- Dispase-PBS, 0.2 mg/ml Dispase, $5 \mu \text{g/ml}$ Gentamycin, in PBS
- Gentamycin-PBS, $20 \,\mu \text{g/ml}$ Gentamycin in PBS

2.2 Strahlungsquellen und Bestrahlung von Zellkulturen

Als IRA-Strahlungsquelle wurden wassergefilterte IRA-Lampen, Modell 500 H der Firma (Hydrosun Medizintechnik GmbH, Müllheim, Germany) verwendet. Das Emissionsspektrum dieser Lampe ist in Abb. 2.1 dargestellt.

Die für Bestrahlungsexperimente eingesetzten Zellen befanden sich alle zwischen den Passagen 5 und 10 und wurden vor einer Behandlung zu 100% Konfluenz kultiviert.

Wenigstens 24 Stunden vor einer IRA-Bestrahlung wurde das Medium gegen Serumfreies MEM gewechselt, da die im FCS enthaltenen Wachstumsfaktoren die selben Signaltransduktionswege beeinflussen können, die in der zellulären Antwort auf die Infrarotbestrahlung beteiligt sind.

Alle Bestrahlungen von Zellen wurden nicht in Medium sondern in PBS durchgeführt. Dies ist erforderlich, da die Bestrahlung im Zellkulturmedium zur Bildung reaktiver Sauerstoffspezies führt, welche die durch die Bestrahlung ausgelösten Signaltransduktionsprozesse beeinflussen können (Mahns *et al.*, 2003).

Zu Beginn einer IRA-Bestrahlung sind alle Zellen mit dem für die eingesetzte Kulturschale geeigneten Volumen PBS bedeckt. Für die 60 mm Schalen sind dies 5 ml PBS, für die 100 mm Kulturschalen 10 ml. Im Verlauf der IRA-Bestrahlung erwärmt sich die Lösung in der Kulturschale, und um diese konstant bei 37°C zu halten, wurden die Schalen zur Bestrahlung auf eine wassergekühlte Thermoplatte (Oehmen Laborbedarf, Essen) gestellt, die an ein temperierbares Wasserbad (Thermo Haake GmbH, Karlsruhe, Germany) angeschlossen war. Desweiteren wurde zu jeder bestrahlten Probe eine zum Schein bestrahlte Kontrolle (bezeichnet als sham) unter ansonsten gleichen Versuchsbedingungen mitgeführt. Diese Kontrollen werden im weiteren als sham bezeichnet. Die sham-Proben wurden für den Bestrahlungszeitraum der Probe ebenfalls mit dem entsprechenden Volumen PBS überschichtet und anstatt unter den IRA-Strahler lichtgeschützt auf einer Wärmeplatte der Firma bei 37°C gestellt. Weiterhin wurden alle Bestrahlungen ohne Deckel der Kulturschalen, also unter semisterilen Bedingungen durchgeführt. Nach der Bestrahlung wurde das PBS wieder abgesaugt und die Zellen entsprechend der jeweilig gewünschten Postinkubationszeit bei $37 \,^{\circ}$ C und $5 \,\%$ CO₂ in Serum-freiem MEM-Medium kultiviert.

2.2.1 IRA-Bestrahlungsdosis

Die Kontrolle der Strahlungsdosis erfolgte mit Hilfe eines IRA-Dosimeters Modell HBM1 der Firma Hydrosun Medizintechnik (Müllheim, Deutschland). Nach Bestimmung der Momentanleistung pro Fläche in mW/cm² für die jeweilige IRA-Lampe in den Abständen 20 und 40 cm wurde über die Dauer der Bestrahlung die Gesamt-Bestrahlungsenergie bestimmt. Mit folgender IRA-Dosis wurden die Bestrahlungen durchgeführt:

• 860 J/cm², entsprechend einer Bestrahlungszeit von 40 min bei 20 cm Abstand zum IRA-Strahler für die *in vitro*-Experimente mit den humanen dermalen Fibroblasten in Zellkultur.

Abbildung 2.1: Emissionsspektrum der IRA-Lampe. Das Emissionsspektrum der wassergefilterten IRA-Lampe H 500 der Firma Hydrosun wurde laut Herstellerangaben mit einem Spektralphotometer an der FH München aufgezeichnet. (übernommen von Hydrosun Medizintechnik, Müllheim)

2.3 Behandlung von Zellkulturen mit Inhibitoren und Antioxidantien

Für die Inhibitor-Behandlung wurden die Zellen 1 h vor der IRA-Bestrahlung und 24 h nach der Bestrahlung mit dem jeweiligen Inhibitor gelöst im Medium unter oben beschriebenen Bedingungen im Brutschrank kultiviert. Folgende End-Konzentrationen im Medium wurden eigesetzt:

- 20 μ M ERK1/2-Inhibitor PD98059 (Calbiochem Biosciences; La Jolla, CA)
- 10 μ M p38-Inhibitor SB203580 (Calbiochem Biosciences; La Jolla, CA)
- 4 μ M JNK-Inhibitor II SP600125 (Calbiochem Biosciences; La Jolla, CA)
- 20 μ M PI3K-Inhibitor LY294002 (Calbiochem Biosciences; La Jolla, CA)
- 1 μ M Cyclosporin A (Sigma-Aldrich, Taufkirchen)
- 25 μ M STAT3-Inhibitor
peptid (Calbiochem Biosciences; La Jolla, CA)

Die Inhibitoren PD98059, SB203580, SP600125 und LY294002 wurden in DMSO gelöst das STAT3-Inhibitorpeptid in $H_2O_{deion.}$ und Cyclosporin A in Ethanol. Die Konzentrationen der Lösungsmittel im Medium waren niemals höher als 0,1%. Bei den Bestrahlungsexperimenten wurden jeweils immer Lösungsmittelkontrollen mitgeführt.

Die Fibroblastenzellen wurden mit einer Endkonzentration im Medium von 20 mM der Antioxidantien N-Acetylcystein (NAC, Sigma-Aldrich, Taufkirchen) und 100 nM MitoQ (freundliche Gabe von Michael P. Murphy, Cambridge, United Kingdom) 24 h vor und nach der Bestrahlung im Brutschrank kultiviert. NAC wurde in einer Stammlösung von 1M in $H_2O_{deion.}$ angesetzt und mit KOH auf einen pH-Wert von 7,6 eingestellt und im Anschluß sterilfiltriert. MitoQ wurde in sterilem DMSO gelöst und je nach Verwendung in verschiedenen Konzentrationen angesetzt.

2.4 Isolation der RNS

Die Isolation von RNS aus Fibroblasten erfolgte mittels des Kits NucleoSpin RNA II (Macherey-Nagel, Düren). Für die Präparation von RNS aus einer Fibroblastenkultur in einer 60 mm-Kulturschale wurden zur Lyse der Zellen 350 μ l Lysispuffer RA1 gegeben. Für die Präparation aus einer 100 mm-Schale wurde 700 μ l RA1 Lysispuffer verwendet. Nach erfolgter Zelllyse wurde nach dem Protokoll des Herstellers verfahren. Das Ergebnis dieser Extraktion war RNS mit einer Konzentration von 1 bis $2 \,\mu g / \mu$ l. Die Konzentrationsbestimmung erfolgte in einem Photometer (BioPhotometer, Eppendorf) und UV-durchlässigen Einwegküvetten vom Typ UV-Küvette mikro (Brand). Bei der RNS-Präparation, die für die Microarray-Analysen eingesetzt wurde und hohe RNS-Ausbeuten von mindestens 9 μ g Gesamtmenge in einem Volumen von maximal 10 μ l erforderte, wurde die Konzentrationsbestimmung mittels des Nanodrop ND-1000 Spektralphotometers (Peqlab Biotechnologie GmbH, Erlangen) durchgeführt, das nur 1 μ l der RNS zur Konzentrationsbestimmung benötigt.

2.5 Microarray-Analysen mit dem Affymetrix HG-U133A Array System

2.5.1 Aufarbeitung der Proben, Amplifizierung und Hybridisierung auf den Microarrays

Die RNS wurde wie oben beschrieben nach Anleitung des Herstellers extrahiert. Die Qualität und Reinheit der präparierten RNS wurde unter Verwendung des Agilent Bioanalyzer 2100 Systems (Agilent Technologies, Palo Alto, Kalifornien) bestimmt. Im Agilent Bioanalyzer wird nach dem Prinzip der Kapillarelektrophorese die isolierte Gesamt-RNS der Größe nach in ihre Fragmente aufgetrennt. Als Kriterium für die Integrität der analysierten RNS dienen der Quotient der 28S- zur 18S-rRNS. Die intakte ribosomale RNS erreicht einen maximalen Quotienten von 2,0 (siehe Abb. 2.2). Es wurden nur Proben verwendet, die ein 28S/18S rRNS-Verhältnis von über 1,8 besaßen.

Die RNS wurde dann zur Synthese der Erst- und Zweitstrang-cDNS unter Verwendung des Affymetrix One-Cycle cDNA Synthesis Kits (Affymetrix UK Ltd, High Wycombe,UK) verwendet. Im Anschluss erfolgte ein Wasch- und Reinigungsschritt mit Hilfe des GeneChip Sample Cleanup Kits (Affymetrix). Die Vorgehensweise erfolgte jeweils nach den Vorgaben des Herstellers. Für die in vitro Transkription der cDNS zu biotinylierter cRNS wurde das IVT Labeling Kit (Affymetrix) eingesetzt. Nach weiterer Aufreinigung und anschließender Fragmentierung, beides erfolgt nach Herstellerangaben mit Hilfe des (GeneChip Sample Cleanup Kit, Affymetrix), und einer weiteren Qualitäts- und Reinheitskontrolle mit dem Agilent Bioanalyzer 2100 System wurden 9 μ g der Biotin markierten cRNS auf dem Affymetrix HG-U133A Microarray hybridisiert. Die Hybridisierung und

2 Material und Methoden

das anschließende Scannen der Microarrays erfolgte nach Herstellerangaben und wurde von der *Affymetrix Core Facility* des Biologisch-medizinischen Forschungszentrums der Heinrich-Heine-Universität Düsseldorf durchgeführt.

Abbildung 2.2: RNS-Qualitätskontrolle mittels Agilent Bioanalyzer Qualitätskontrolle der isolierten RNS mittels des Agilent Bioanalyzer 2100 Systems. Beispielgraph einer RNS-Präparation mit guter Qualität. Das Verhältnis der 18S rRNS zu 28S rRNS Peaks liegt bei 2 und es sind keine Degradationsprodukte erkennbar.

2.5.2 Normalisierung der Expressions-Rohdaten

Die hybridisierten Microarrays wurden unter Verwendung der *Microarray Suite* (MAS)-Software (Affymetrix) eingescannt und die die Rohdaten enthaltenen *.cel*-Dateien wurden mit der frei verfügbaren statistischen Softwareumgebung R in der Version 2.0.1 normalisiert. Hierfür wurde das *Affy package* des *BioConductor* Projekts verwendet (Gautier *et al.*, 2004).

Bei dem zur Normalisierung der Daten angewandten Algorithmus handelt es sich um die *robust multichip average* (RMA) Methode (Bolstadt *et al.*, 2003). Erst durch die Normalisierung, dem Angleichen der Gesamtintensitätsverteilung zwischen den jeweils zueinander gehörenden Microarrays, werden die Arrays miteinander vergleichbar (siehe Abb. 2.4). Es zeigte sich, dass getrennte Normalisierungsvorgänge für die Fibroblastenzellen der verschiedenen Spender zu Resultaten mit höheren Übereinstimmungen (größere Anzahl gemeinsam regulierter Gene) in der weiteren Auswertung führten. Aus diesem Grund kam dieses Verfahren zur Anwendung.

2.5.3 Hierarchisches Clustering

Beim hierarchischen *Clustering* handelt es sich um eine aggregative *Clustering*-Methode, d.h. es wird analysiert, wie ähnlich oder verschieden zwei Gruppen voneinander sind, z.B. die Genexpressionsprofile zweier Proben. Als Ergebnis erhält man ein Baumdiagramm, dessen Knotenpunkte die auftretenden *Cluster* repräsentieren. Im Ideallfall würde man einen Baum mit zwei Hauptästen erhalten, an einem Ast die Expressionsprofile der behandelten Proben, am anderen Ast die Kontrollproben.

Die hierarchische Clustering-Analyse wurde unter Verwendung der BRB-Array Tools Version 3.2.3 durchgeführt, entwickelt von Dr. Richard Simons und Amy Peng Lam (http://linus.nci.nih.gov/BRB-ArrayTools.html). Hierfür wurden die normalisierten Genexpressionsdaten aller Arrays in das BRB-Array Tools Programm eingeladen und das hierarchische Sample-Clustering mit den vorgegebenen Einstellungen centered correlation und average linkage durchgeführt. Die Einstellung centered correlation bedeutet die Verwendung der Pearson-Korrelation als Distanzmaß für den Vergleich zweier Expressionsprofile. Unter der Einstellung linkage definiert man das Distanzmaß, wenn im weiteren Verlauf des hierarchischen Clusterings die Distanz zwischen zwei Clustern bestehend aus mehreren Objekten mit verschiedenen Distanzen zueinander bestimmt werden muss. Mit der Einstellung average linkage wählt man, dass der Durchschnitt aller Einzelentfernungen bzw. -Differenzen zwischen allen Objektpaaren der zu untersuchenden Cluster als Distanzmaß verwendet wird. Im Gegensatz dazu bewirkt die Option complete linkage, dass die maximale Entfernung und single linkage, dass die kürzeste Distanz zwischen zwei Objektpaaren als Gesamt-Distanzmaß zwischen den zwei Clustern verwendet wird.

2.5.4 Filterstrategie zur Identifizierung durch IRA-Bestrahlung differentiell regulierter Gene

Zur Identifizierung der durch Infrarot A differentiell regulierten Gene in den *in vitro* Experimenten mit den Fibroblasten in Zellkultur kam folgende Filterstrategie zum Einsatz: Das zu einem jeweiligen Gen gehörende Transkript wurde als reguliert betrachtet, wenn es in wenigstens 3 der insgesamt 9 IRA-Bestrahlungspaare, bestehend aus IRA-bestrahlter Probe und zugehöriger *sham*-Kontrolle auf- bzw. abreguliert war. Ein Transkript wurde als reguliert betrachtet wenn das Verhältnis der zur Basis 2 logarithmisierten Expressions-Intensitätswerte IRA-bestrahlten Probe zur *sham*-Kontrolle wenigstens 2 für aufregulierte Transkripte beträgt oder 0,5 für abregulierte Transkripte. Dies entspricht einer Auf- bzw. Abregulation um wenigstens den Faktor 2. Weitergehend wurde ein Transkript als differentiell exprimiert angesehen, wenn es eine Änderung in den *present-/absent-calls* von *absent* nach *present* oder von *present* nach *absent* zwischen Probe und Kontrolle gibt. Bei den *absent-calls* handelt es sich um in den Rohdaten der Microarrays ent-haltenen Informationen bezüglich eventuell vorhandener falsch positiver Hybridisierung

bei den einzelnen für ein Transkript stehenden Probe Sets. Ein Probe Set besteht aus 20 Proben-Paaren, die sich jeweils aus einer *Perfect Match* und einer *Mismatch* Oligonukleotidsequenz zusammensetzen. Diese sind komplementär zu Bereichen der Zielsequenz und fest auf den Microarray gespottet. Zur Vergabe der Absent- und Present-Calls wird nun das Verhältnis der an die Perfect Match- gegenüber den an die Mismatch-Sequenz gebundenen biotinylierten Oligonukleotide aus der auf den Microarray hybridisierten Probe herangezogen. Sind mehr Perfect Match- als Mismatch-Hybridisierungen vorhanden, so wird ein Present-Call vergeben. Überwiegen die Mismatch-Bindungen, so wird ein Absent-*Call* vergeben. Bei einem sehr schwach exprimierten Transkript wird man wenig bis gar keine Perfect Match-Bindungen des eigentlichen Transkriptes erhalten und unspezifische Bindungen von ähnlichen Sequenzen, die auch an die entsprechenden Mismatch-Sequenzen binden, werden überwiegen. Kommt es nach IRA-Bestrahlung aber z.B. zu einer Aufregulation des Transkriptes, so werden nun die an die Perfect Match-Sequenzen gebundenen Oligonukleotide gegenüber den Mismatch gebundenen unspezifischen überwiegen, und es kommt zu einem Wechsel der Calls von Absent nach Present zwischen Kontrolle und IRA-bestrahlter Probe. Somit wurde ein Wechsel in den Calls von Absent nach Present bzw. von Present nach Absent nach Bestrahlung durch IRA als weiteres Kriterium für die Regulation des jeweiligen Transkriptes gewertet.

2.5.5 Gene Ontology Clustering

Die Unigene-Nummern der gesamte Liste der differentiell exprimierten Gene in primären humanen dermalen Fibroblasten nach IRA Bestrahlung wurden als Ausgangsdaten für das BiNGO Version 1.1 (Maere et al., 2005)-Plugin der Cytoscape Version 2.2 Software (Shannon et al., 2003) verwendet. Das Gene Ontology (GO) Clustering (Gene, 2004) wurde für die Kategorien GO Biological Process, GO Molecular Function und GO Cellular Component durchgeführt, wobei der Cluster der differentiell expremierten Gene gegen alle insgesamt vorhandenen Annotationen getestet wurde, was zu einer Tabelle von Gene Ontology-Klassen führte, in der alle GO-Klassen aufgeführt sind, die im zu untersuchten Cluster gefunden wurden mitsamt der Anzahl Gene innerhalb dieser Klasse und ihrer zugehörigen Unigene Nummern.

2.5.6 in silico-Promotor-Analysen

Für die insilicoPromotor-Analyse der durch IRA-Bestrahlung regulierten Gene wurde die Mamalian Promotor Database (MPromDb, zu finden unter http://bioinformatics.med.ohio-state.edu/MPromDb/) verwendet (Sun et al., 2006). Es wurde geprüft, für welche der IRA-regulierten Gene Einträge mit den hypothetischen Transkriptionsfaktorbindestellen (predicted transcription factor binding sites, abgekürzt: PTF) ausgehend von den Konsensus-Sequenzen vorhanden waren und diese wurden getrennt nach auf- und abregulierten Genen auf den lokalen PC heruntergeladen. Weiterhin wurden zwei Kontrollgruppen gebildet. Die eine Kontrollgruppe enthielt nicht IRA-regulierte Gene, für die in allen Expressionsprofilen present calls vergeben wurden. Die zweite Kontrollgruppe bestand ebenfalls aus nicht durch IRA-regulierten Genen, die aber in allen Profilen einen absent call aufwiesen. Die Größe der Kontrollgruppen wurde denen der auf- bzw. abregulierten Gene angepasst. Als nächster Schritt wurde ermittelt, in wievielen Fällen eine spezifische Transkriptionsfaktorbindestelle in den jeweiligen Gruppen vorkommt. Kam eine der hypothetischen Bindestellen innerhalb der Promotorsequenz eines Gens mehrfach vor, so wurde sie zur Bestimmung der Gesamthäufigkeit trotzdem nur einfach gewertet. Zur Ermittlung der Gesamthäufigkeiten der PTFs wurde folgendes Skript programmiert in *Perl* (Active Perl Version 5.8.8. for Windows, Active State, Vancouver BC) verwendet:

```
#!/usr/bin/perl
use strict;
my dir = shift \text{ or die "Usage: count_names dir_name\n";}
opendir(DIR,$dir) or die "Can't open $dir$!\n";
my %gencount;
while (defined (my $file=readdir(DIR))) {
if (file = (.*, ..., ..., ..., ..., ...)
open(FILE, "<$dir/$file") or die "Can't open file $dir/file\n";
my %gens;
while (my line = \langle FILE \rangle) {
chomp $line;
next until length($line);
my @values = split("t",$line);
gens{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscript{subscrip{
foreach my $gen (keys %gens) {
if ($gencount{$gen}) {
gencount \{gen\} ++;
 }
else {
gencount \{gen\} = 1;
 }
open (OUT, ">$dir\_count.txt");
print OUT "Gens for directory $dir\n";
foreach my $gen (keys %gencount) {
print OUT "$gen\t$gencount{$gen}\n";
 ł
close OUT;
```

Um in einer der Gruppen verstärkt vorhandene Transkriptionsfaktorbindestellen zu identifizieren, wurde die Häufigkeit der einzelnen PTFs nun gruppenweise verglichen. Während ein Großteil der PTFs eine gleichmäßige Verteilung zwischen den vier Gruppen zeigte (siehe Gesamtliste der PTF-Häufigkeiten im Anhang), traten manche PTFs nur gezielt in einigen der Gruppen auf. So gab es PTFs, die ausschließlich in einer oder beiden Gruppen mit den IRA-regulierten Genen auftraten, in manchen Fällen zusätzlich auch in der Kontrollgruppe mit den dauerhaft nicht exprimierten oder in der Expression nicht detektierbaren Genen (*absent calls*). Diese PTFs waren jedoch niemals in der Kontrollgruppe mit den nicht-IRA-regulierten, aber dauerhaft aktiven Genen (*present calls*) zu finden.

2 Material und Methoden

Daher kamen diese zu den entsprechenden PTFs zugehörigen Transkriptionsfaktoren als mögliche Transkriptionsfaktor-Kadidaten der IRA-Antwort in Betracht, während auch der umgekehrte Fall von PTFs zu beobachten war, die ausschließlich bei den nicht-IRA-regulierten, immer konstitutiv exprimierten Genen auftraten, die für die IRA-Antwort somit keine Rolle spielen.

Abbildung 2.3: Probenamplifizierung für Affymetrix Microarrays. Das Schema zeigt die Amplifizierungsschritte und Probenaufbereitung für die Affymetrix Microarrays mittels der ebenfalls von Affymetrix vertriebenen Synthese- und Reinigungs-Kits. (übernommen von Affymetrix)

2 Material und Methoden

Abbildung 2.4: Normalisierung von Expressionsprofilen Aufgetragen ist die Verteilung der Fluoreszenzintensitäten verschiedener Expressionsprofile vor und nach dem Normalisierungsprozess. Der Median und die Varianz der Signalintensitäten der verschiedenen Expressionsprofile wird angeglichen und macht die unterschiedlichen Expressionsprofile miteinander vergleichbar.

Abbildung 2.5: Aufbau der Probe Sets auf dem Affymetrix HG-U133A Microarray. Ein Probe Set besteht aus 20 Probe-Paaren, die jeweils aus einer Perfect Match- und einer Mismatch Oligonukleotidsequenz gegenüber der Zielsequenz bestehen. Die von der Affymetrix MAS Software vergebenen Present- bzw. Absent-Calls ergeben sich aus dem Verhältnis von Perfect Match zu Mismatch gebundenen, biotinylierten Oligonukleotiden aus der Zielsequenz bezogen auf ein Probe Set. (überarbeitet nach Affymterix)

2.6 Realtime-PCR

Die *realtime*-PCR ist eine semiquantitative PCR mit vorhergehender reverser Transkription. Das Ausgangsmaterial für die *realtime*-PCR stellt die gesamte RNS der Zellen dar, diese wird durch reverse Transkription in cDNS umgeschrieben (Siehe Kapitel 2.4). Bei dieser Methode enthält der PCR-Ansatz einen fluoreszierenden Farbstoff (SYBR Green, Invitrogen), welcher unter Zunahme der Fluoreszenzintensität in doppelsträngige DNS interkaliert. Die Synthese des Amplifikates korreliert daher mit dem Ansteigen der Fluoreszenzintensität von Zyklus zu Zyklus. Dadurch wird die relative Quantifizierung nach der so genannten $\Delta\Delta$ -CT Methode möglich (Siehe Kapitel 2.6.1). Als PCR-Gerät wurde hierbei ein ABI PRISM 7000 der Firma Applied Biosystems verwendet. Die Aufzeichnung der Rohdaten und die nachfolgende Analyse erfolgte mit der Software ABI PRISM 7000 SDS 1.1, (ebenfalls Applied Biosystems).

2.6.1 Durchführung der cDNS-Synthese und realtime-PCR

Für die Synthese der cDNS wurden jeweils 100 ng RNS eingesetzt. Die Durchführung der cDNS-Synthese und der realtime-PCR ist im folgenden in tabellarischer Form dargestellt:

Tabelle 2.1: Pipettierschema zur Herstehung cDNS-Synthesemix I	
Volumen in μ l	Substanz
1	Random Primer (Invitrogen)
1	$10 \mathrm{mM} \mathrm{dNTP} \mathrm{Mix} \mathrm{(Invitrogen)}$
7	H_2O für die PCR (Invitrogen)
3	RNS (100 ng)
5 min Denaturierung bei 65 °C, dann 4 °C	

 Tabelle 2.1: Pipettierschema zur Herstellung cDNS-Synthesemix 1

|--|

Volumen in μ l	Substanz
4	5 x 1Strag Synthesepuffer (Invitrogen)
2	$100 \mathrm{mM}$ DTT
1	RNAse-Out (Invitrogen)
$2 \min$ Inkubation bei $37 ^{\circ}\text{C}$	

Jeder Ansatz zur cDNS-Synthese beinhaltete 12 μ l cDNS-Synthesemix 1, 7 μ l cDNS-Synthesemix 2 und 1 μ l M-MLV Reverse Transkriptase (Invitrogen). Das Programm zur Synthese von cDNS ist in Tabelle 2.3 dargestellt.
T in °C	Zeit in min		
25	10		
37	50		
70	15		
4	∞		

Tabelle 2.3: PCR-Program	m zur Synthese von cDNS
--------------------------	-------------------------

Tabelle 2.4: Fibetherschema für die <i>realitme</i> -PC	Tabelle 2.4	: Pip	ettierschema	für d	ie <i>realtime</i> -PC
--	-------------	-------	--------------	-------	------------------------

Volumen in μ l	Substanz
12,5	Sybr Green PCR-Mix (inklusive ROX passiv Fluorochrom, Invitrogen)
1	Primer fwd
1	Primer rev
7,5	H_2O für die PCR (Invitrogen)
3	cDNS

Tabelle 2.5: PCR-Programm für die realtime-PCR

T in °C	Zeit in sec				
94	20				
55	20				
72	30				
40 Zyklen					

2.6.2 Primerdesign für die realtime-PCR

Als Ausgangspunkt dienten die Identifikationsnummern (Accession-Nr.) für die mRNS Sequenzen der regulierten Transkripte auf den Microarrays, die für die Verifizierung mittels realtime-PCR ausgewählt wurde. Die Primer wurden mit Hilfe der frei im Internet verfügbaren Software Primer3 (http://frodo.wi.mit.edu) hergestellt, wobei die Lage der Primer-Bindungssequenzen so gewählt wurde, dass sie intronüberspannend waren. Desweiteren wurde ebenfalls über die Verwendung der Blast-Software (http://www.ncbi.gov) überprüft, dass es keine weitere möglichen Bindungsstellen im menschlichen Genom gibt, was von den gewählten Primern ebenfalls amplifiziert werden könnte. Mit dieser Vorgehensweise wurden Primer generiert, welche spezifisch die gewünschte cDNS, jedoch keine genomische DNS amplifizieren konnten. Die Produktgrösse des Amplifikates sollte zwischen 100 und 150 Nukleotiden Länge betragen, die Primer zwischen 18 und 23 Nukleotide Länge besitzen und der Schmelzpunkt-Wert (Tm) der Primer zwischen 57° und 63° Celsius betragen. Mittels der ABI PRISM 7000 PCR-Maschine wurden nach erfolgtem PCR-Lauf Schmelzkurven der PCR-Produkte der jeweiligen Primerpaare durchgeführt und somit kontrolliert, dass nur ein spezifisches Amplifikationsprodukt entstanden ist.

2 Material und Methoden

2.6.3 Primersequenzen für die realtime-PCR

Alle Primer wurden durch die Firma Operon synthetisiert und im Reinheitsgrad "Salt-Free" bestellt.

Name	Sequenz	Produkt- länge	mRNS- Identifika- tions-Nr.
18s-rRNS forw	5'-GCC GCT AGA GGT GAA ATT CTT G-3'	66 bp	NR003286
18s-rRNS rev	5'-CAT TCT TGG CAA ATG CTT TCG-3'	66 bp	NR003286
ATP1B1 forw	5'-TGG CTA CAA AGA GGG CAA AC-3'	138 bp	NM001677
ATP1B1 rew	5'-CAC TGA ACG GGA AGG ACA TT-3'	138 bp	NM001677
BAD forw	5'-CGG AGG ATG AGT GAC GAG TT-3'	123 bp	U66879
BAD rew	5'-CCA CCA GGA CTG GAA GAC TC-3'	123 bp	U66879
BAX forw	5'-GGG GAC GAA CTG GAC AGT AA-3'	122 bp	NM004324
BAX rew	5'-CAG TTG AAG TTG CCG TCA GA-3'	122 bp	NM004324
FASTK forw	5'-AGT GGT ACG CAG CCA GGA T-3'	128 bp	AK023141
FASTK rew	5'-ACG CAC AAT CAG AGC ATG AG-3'	128 bp	AK023141
FN1 forw	5'-ATG ATG AGG TGC ACG TGT GT-3'	$135 \mathrm{\ bp}$	AJ276395
FN1 rew	5'-CTC TTC ATG ACG CTT GTG GA-3'	$135 \mathrm{\ bp}$	AJ276395
IL6ST forw	5'-TGA ACG AGG GGA AGA AAA TG-3'	120 bp	NM002184
IL6ST rew	5'-GTT TTG CTT TGC AATC AGC A-3'	120 bp	NM002184
ITPR2 forw	5'-CAG GCT CTG GAC AGA AAT CC -3'	108 bp	NM002223
ITPR2 rew	5'-AAT TCC ATT GTC AGG GCA AA -3'	108 bp	NM002223
ITPR3 forw	5'-AAC TAC CTG GCT GCT GAG GA -3'	131 bp	D26351
ITPR3 rew	5'-GCC ACC AGG CAG TAC TTG AT -3'	131 bp	D26351
PIK3R3 forw	5'-AGC CTG TGG AAA TGG CAT AG-3'	$127 \mathrm{bp}$	BC021622
PIK3R3 rew	5'-CTC TCA TGA AGG AGG CCA AG-3'	127 bp	BC021622
PIP5K1B forw	5'-AAG GAT GAG AAG CGG GAT TT-3'	14 bp	U78581
PIP5K1B rew	5'-AAT TGT GGT TGC CAA GGA AG-3'	14 bp	U78581
STAT3 forw	5'-CGA GCA GCT GAC TAC ACT GG-3'	106 bp	BC000627
STAT3 rew	5'-CTT GCC AGC CAT GTT TTC TT-3'	106 bp	BC000627
TNFRSF6B forw	5'-GAC AAG GTG CTG GCT GTG T-3'	127 bp	AK000485
TNFRS6B rew	5'-GGT CTG TGC ACG TCT GTG AG-3'	127 bp	AK000485
VCAM1 forw	5'-AAG ATG GTC GTG ATC CTT GG-3'	$138 \mathrm{\ bp}$	NM001078
VCAM1 rew	5'-GGT GCT GCA AGT CAA TGA GA-3'	138 bp	NM001078

2.7 Western-Blot

Für die Western-Blot-Analyse wurden Gesamtzell-Lysate verwendet. Bei der Herstellung von Zeitreihen über wenige Stunden wurde auf eine Proteinbestimmung verzichtet und zu erntende Proben jeweils in einem identischen Volumen 2x Auftragspuffer direkt lysiert. Hierbei wurden zum Lysieren von konfluenten Fibroblasten Zellkulturen in 60 mm Kulturschalen 150 μ l, in 100 mm Kulturschalen 300 μ l Auftragspuffer eingesetzt. Die mit Auftragspuffer bedeckten Zellen wurden danach mit mit einem sterilen Kratzer möglichst sauber von der Kulturschale entfernt und bei 95 °C für 5 min denaturiert.

2.7.1 SDS-Gelelektrophorese

Die SDS-Gelelektrophorese nach Laemmli (Laemmli, 1970) ist eine denaturierende Gelelektrophorese in einem diskontinuierlichen Polyacrylamid-Gel. Die aufzutrennende Probe wurde hierbei zunächst in einem 3 %igen Sammelgel konzentriert und dann in einem 12 %igen Trenngel gemäß der Größe ihrer Komponenten aufgetrennt. Als Elektrophoresekammer wurde das Modell Novex Mini-Cell der Firma Invitrogen verwendet. Die Durchführung erfolgte nach Sambrook (Sambrook *et al.*, 1989). Die Elektrophorese wurde spannungsreguliert bei ca. 180 V bis zum Erreichen der gewünschten Auftrennung durchgeführt. Die Kontrolle der gewünschten Auftrennung war durch den Einsatz farbig vorgefärbter Proteinstandards (PeqGold Protein Marker IV, Peqlab) möglich.

Trenngel:	Sammelgel:
$380\mathrm{mM}$ Tris HCl pH 8,8	$125\mathrm{mM}$ Tris HCl pH 6,8
12% Acrylamid/Bisacrylamid $(30/0,8)$	3 % Acrylamid/Bisacrylamid (30/0,8)
0,1% SDS	$0,1~\%~{ m SDS}$
0,1% TEMED	0,1% TEMED
0,1% APS	0,1% APS

2.7.2 Western-Blot

Beim Western-Blot wurden Proteine aus dem Gel einer Gelelektrophorese heraus auf eine Membran übertragen und dort immunologisch nachgewiesen. Es wurden Nitrozellulose-Membranen (Schleicher&Schuell Biosciences) der Porengröße $0,2\,\mu$ m in Verbindung mit einer Blotkammer vom Typ Fast-Blot (Biometra) verwendet. Der Aufbau war dabei folgender: Kathode, Blotpapier (Blotting Paper 2 mm, Schleicher&Schuell Biosciences), Gel, Nitrozellulose-Membran, Blotpapier, Anode. Vor dem Aufbau der Aparatur wurden die Blotpapiere und die Membranen in Transfer-Puffer inkubiert. Für den Protein-Transfer wurde die Aparatur 80 min lang stromstärkereguliert bei 100 mA betrieben (100 mA pro 7 x 8 cm Membran).

2 Material und Methoden

Der Ablauf des Western-Blots mit immunologischem Nachweis war dabei stets folgender:

- Blockieren nicht mit Protein gesättigter Membran
regionen mit 5% Milchpulver in TBST (min. 1 h)
- Inkubation mit Erstantikörper über Nacht bei 4 °C auf Schüttler
- 1x Spülen mit TBST
- 3x Waschen mit TBST (je ca. 5 min)
- Inkubation mit Zweitantikörper (ca. 1 h)
- 1x Spülen mit TBST
- 3x Waschen mit TBST (je ca. 5 min)
- Inkubation mit Chemiluminiszenzreagenz (5-10 min)

Zur Kontrolle eines gleichmäßigen Proteintransfers wurden die Membranen vor dem Blockieren mit Ponceau S gefärbt. Die Membranen können vor dem Blockieren durch mehrmaliges Waschen mit TBST wieder entfärbt werden.

Alle verwendeten Erst- und Zweitantikörper, sowie ihre Eigenschaften, fasst Tabelle 2.7 zusammen. Die eingesetzten Antikörper wurden entsprechend Herstellerangaben entweder in 5% Milchpulver in TBST oder in 5% BSA in TBST angesetzt.

Nach erfolgter Belichtung können Erst- und Zweitantikörper wieder von der Membran entfernt werden, um weitere Erstantikörper einzusetzen. Dieser Vorgang wird als Stripping bezeichnet. Das Stripping erfolgt durch Inkubation der Membran in Stripping-Puffer bei 55 °C unter schütteln. Je nach aufgetragener Proteinmenge erfolgt diese Inkubation für 15 bis 30 min. Die im Stripping-Puffer enthaltenen Detergenzien wurden durch gründliches Waschen der Membran mit TBST wieder entfernt, z.B. drei mal ca. 40 min. Die Waschschritte wurden bis zur Geruchsfreiheit der Membran wiederholt.

Erstantikorper			
Antikörper	Spezies	Hersteller	Verdünnung
Aktin A5441	Maus	Sigma	1/80.000
GAPDH ab9484	Maus	Abcam	1/60.000
IP_3 Rezeptor 407143	Kaninchen	Calbiochem	1/250
Lamin A+C ab8984	Maus	Abcam	1/250
PI-3-Kinase 528107	Maus	Calbiochem	1/1000
STAT3 $ab5073$	Ziege	Abcam	1/2000
Zweitantikörper			
Antikörper	Spezies	Hersteller	Verdünnung
HRP-anti Ziege A5420	Kaninchen	Sigma	1/1000
HRP-anti Maus P0260	Kaninchen	DakoCytomation	1/1000

Tabelle 2.7: Liste der für Western-Blots verwendeten Antikörper

2.7.3 Puffer und Lösungen für Western-Blot und Gelelektrophorese

Alle Puffer und Lösungen wurden mit $H_2O_{deion.}$ angesetzt und, sofern nicht anders angegeben, bei Raumtemperatur gelagert.

2x Auftragspuffer:	4x Auftragspuffer:
125 mM Tris HCl	500 mM Tris HCl
4 % SDS	16 % SDS
20 % Glycerin	30 % Glycerin
100 mM DTT	400 mM DTT
0,01 % Bromphenolblau	0,02 % Bromphenolblau
pH 6,8	pH 6,8
10x Laemmli Gelelektrophorese-Puffer:	10x TBS-Puffer:
2 M Tris	1,5 M NaCl
0,2 mM Glycin	0,5 M Tris
1 % SDS	pH 7,6
TBST-Puffer: 0,15 M NaCl 0,05 M Tris 0,1 % Tween 20	Ponceau S Lösung: 0,1 % Ponceau S 5 % Essigsäure
Transfer-Puffer:	Stripping-Puffer:
20 % Methanol	$100 \text{ mM } \beta$ -Mercaptoethanol
50 mM Tris	60 mM Tris
40 mM Glycin	2 % SDS
0,037 % SDS	pH 6,8

2.7.4 Dokumentation und Quantifizierung

Die Dokumentation der Chemilumineszenz erfolgte mittels einer digitalen Geldokumentationsanlage vom Typ FluorChem 8900 der Firma Alpha Innotech. Als Substrat für die an die Zweitantikörper gekoppelte Meerrettichperoxidase diente das ChemiGlow West Substrat der Firma Biozym.

2 Material und Methoden

3 Ergebnisse

3.1 Infrarot-A-Strahlung reguliert eine Vielzahl von Genen in humanen dermalen Fibroblasten

Um nach IRA-Bestrahlung differentiell regulierte Gene zu identifizieren, wurden ein Satz von neun voneinander unabhängigen Probenpaaren analysiert (IRA-bestrahlt (860 J/cm^2) versus sham). Hierfür wurden primäre humane dermale Fibroblasten von drei verschiedenen Spendern verwendet (im weiteren als F1 bis F3 bezeichnet). Für einen ersten Eindruck der von den Microarray Experimenten gelieferten Daten wurde ein unüberwachtes hierarchisches *Clustering* durchgeführt, basierend auf allen 22.283 auf den Arrays vorhandenen Transkripten (Affymetrix HGU133A Microarrays (Dalma-Weiszhausz *et al.*, 2006)). Das aus dieser Analyse resultierende Dendogramm (siehe Abb. 3.1) zeigt eine heterogene Verteilung der *sham*-Kontrollen und IRA-bestrahlten Proben mit einer näheren Beziehung von Proben eines Spenders als innerhalb einer Behandlungsgruppe (IRA-bestrahlt bzw. *sham*).

Um trotz dieser interindividuellen Unterschiede neue IRA-regulierte Gene identifizieren zu können, wurde ein Selektionsalgorithmus angewendet, bei dem die Transkripte ausgewählt wurden, die in wenigstens drei unabhängigen Experimenten einheitlich reguliert waren (siehe auch Kapitel 2.5.4). Dieser Filterprozess lieferte 250 aufregulierte Transkripte und 349 abregulierte Transkripte zum analysierten Zeitpunkt von 24 Stunden nach der IRA-Bestrahlung (siehe Anhang unter Abschnitt 9.1).

Abbildung 3.1: Hierarchisches *Clustering* der Expressionsprofile. Das Clustering der gesamten Genexpressionsprofile von allen 18 Proben wurde ausgehend von den vollständigen *Probe Set*-Listen durchgeführt. Im Dendogramm (Einstellung: *average linkage, centered correlation*) bezeichnen F1, F2 und F3 Zellen von verschiedenen Spendern, A, B und C repräsentieren verschiedene Bestrahlungsexperimente; IRA sind die Infrarot-A-bestrahlten Proben, *sham* die entsprechenden schein-behandelten Kontrollen.

Tabelle 3.1: Auswahl der durch IRA Bestrahlung regulierten Gene. Zusammenfassung von differentiell exprimierten Genen nach IRA-Bestrahlung. Die in der Tabelle aufgeführten Gene wurden für weiterführende realtime-PCR Experimente ausgewählt aufgrund ihres Bezugs zu Alterungsprozessen, Kontrolle der Apoptose oder einer wahrscheinlichen Beteiligung im Calcium-abhängigem retrograden mitochondrialem Signalfluß. + oder - mit zugehöriger Zahl zeigt an, wie oft diese Gene in den neun unabhängigen Microarray- Experimenten auf- oder abreguliert sind.

Ref_ID	Unigene- Nr.	x-fach regu-	Gen	Symbol	Gene Ontology - Biologische	In der Literatur beschriebene Funktion
		liert			Funktion	
201242_s_at	Hs.78629	-3	ATPase, Na ⁺ -/K ⁺ - transporting, beta 1 polypeptide	ATP1B1	Kaliumionen Transport // Natriumionen Transport	im Alter moduliert im Rattenhirn (Dencher <i>et al.</i> , 2007). Es erhöht die Produktion von mitochodriellem ROS und reguliert die intrazelluläre Ca ²⁺ - Konzentration (Xie & Cai, 2003).
209364_at	Hs.76366	+3	BCL2-antagonist of cell death	BAD	Induktion der Apoptose	ROS-moduliertes Zellüberleben über den PI3Kinase-/AKT-Weg ist direkt reguliert über das proapoptotische BAD-Protein (Clerkin <i>et al.</i> , 2008)
211833_s_at	Hs.159428	-3	BCL2-associated X pro- tein	BAX	negative Re- gulation von Überlebens- Genprodukten // Induktion der Apoptose	BAX und BAK regulieren ITPR1 und Calcium-Ausfluss aus dem ER (Oakes et al., 2005). Abregulation auf Prote- inebene und Aktivierung der Translo- kation nach IRA-Bestrahlung (Frank et al., 2004)
214114_x_at	Hs.75087	+3	FAST kinase	FASTK	Induktion der Apoptose durch extrazelluläre Signale	FAST inhibiert UV- induzierte Apop- tose (Li <i>et al.</i> , 2004).
214701_s_at	Hs.418138	-4	Fibronectin 1	FN1	Zellbewegung // Signaltransduk- tion	Protein der extrazellulären Matrix, involviert in Zelladhäsion, Migra- tion, Wundheilung, abreguliert über glykosilierte Endprodukte (Molina- ri <i>et al.</i> , 2008). Fibronektin ist Teil eines Netzwerkes von Proteinen im Zusammenhang mit Langlebigkeit und Alterungs-bezogenen Krankhei- ten (Wolfson <i>et al.</i> , 2009).
204863_s_at	Hs.71968	-3	Interleukin 6 signal trans- ducer (gp130, oncostatin M receptor)	IL6ST	Zelloberflächen Rezeptor ge- koppelte Signal transduktion // Immunantwort	IL6 induziert VEGF-Expression via IL6ST und ERK (Omori <i>et al.</i> , 2004). Der lösliche IL-6-Rezeptor induziert Ca ²⁺ -Ströme und verändert selek- tiv die Chemokin-Expression in hu- manen dermalen Fibroblasten (Spörri <i>et al.</i> , 1999). IL6 vermittelt die UVA-bedingte Induktion von MMP-1 (Wenk <i>et al.</i> , 2004).
202662_s_at	Hs.512235	-3	Inositol 1,4,5-triphosphate receptor, type 2	ITPR2	Calciumkanäle	Phosphoinositol abhängiger Calcium- Transport vom ER zum Zytosol. Cy- tochrom C, welches aus den Mito- chondrien nach IRA-Bestrahlung frei- gesetzt wird (Frank <i>et al.</i> , 2004), bindet an IP ₃ -Rezeptoren und am- plifiziert so die Calcium-Freisetzung
201187_s_at	Hs.77515	-3	Inositol 1,4,5-triphosphate receptor, type 3	ITPR3	Calciumkanäle	(Beenning et al., 2003). Phosphoinositol abhängiger Calcium- Transport vom ER zum Zytosol. Cy- tochrom C, welches aus den Mito- chondrien nach IRA-Bestrahlung frei- gesetzt wird (Frank et al., 2004), bindet an IP ₃ -Rezeptoren und am- plifiziert so die Calcium-Freisetzung (Boehning et al., 2003)
202743_at	Hs.372548	-3	Phosphoinositide-3-kinase, regulatory subunit, poly- peptide 3 (p55, gamma)	PIK3R3		DIE PI3Kinase ist reguliert in MnSOD-überexprimierenden <i>C.elegans</i> und <i>Drosophila daf-2-</i> Mutanten (Curtis <i>et al.</i> , 2007). PI3K agiert anti-apoptotisch über den AKT-Signal-Pfad und ist ein wichtiger intrazellulärer Regulator von epidermaler Homöostase und Reparatur (Pankow <i>et al.</i> , 2006).
217477_at	Hs.297604	-4	Phosphatidylinositol-4- phosphate 5-kinase, type I, beta	PIP5K1B		Die PIP5Kinase ist involviert im Phosphoinositol-Signalweg. Alterung erniedrigt den PIP ₂ -Gehalt der Zel- len, aber hat keinen Effekt auf die Ak- tivitiät von Phosphoinositid-Kinasen (Zambrzycka, 2004).
208992_s_at	Hs.421342	+4	Signal transducer and ac- tivator of transcription 3	STAT3	Akute Phase Ant- wort	STAT3 ist reguliert in MnSOD- überexprimierenden <i>C.elegans</i> und <i>Drosophila</i> daf-2-Mutanten (Curtis et al., 2007). Die PI3Kinase agiert anti-apoptotisch über den AKT- Signal-Pfad und ist ein wichtiger in- trazellulärer Regulator von epiderma- ler Homöostase und Reparatur (Pan- kow et al., 2006).

Ref_ID	Unigene- Nr.	x-fach regu- liert	Gen	Symbol	Gene Ontology - Biologische Funktion	In der Literatur beschriebene Funktion
213829_x_at	Hs.348183	+4	Tumor necrosis factor re- ceptor superfamily, mem- ber 6b, decoy	TNFRSF6B	Anti-Apoptose // Onkogenese	Es wirkt anti-apoptotisch und ist stark exprimiert in Krebszellen. Indu- ziert transkriptionelle Aufregulation von Adhäsionsmolekülen wie VCAM- 1 und IL-8 (Yang <i>et al.</i> , 2005).
203868_s_at	Hs.109225	-3	Vascular cell adhesion mo- lecule 1	VCAM1	Zell-Zell Adhäsion	VCAM-1 spielt eine Rolle in der Wundheilung und Angiogenese. Es ist aufreguliert in oxidativ gestressten, alten Ratten, (Zou <i>et al.</i> , 2006).

Um die zelluläre Antwort gegenüber IRA besser zu verstehen, wurden als nächster Schritt die Transkriptomdaten nach ihrer Funktion gruppiert. Dies erfolgte unter Verwendung von aus der *Gene Ontology*(GO)-Klassifizierung abgeleiteten Kategorien. Diese Analyse lieferte vier Gruppen von IRA-regulierten Genen, auf den der Fokus der weiteren Untersuchungen gerichtet wurde:

- (i) Metabolismus der extrazellulären Matrix (ECM),
- (ii) Gene der Calcium-Homöostase,
- (iii) Stress-Signalwege,
- (iv) Regulation der Apoptose und daran beteiligter Signalprozesse.

Tabelle 3.2: IRA-beeinflußte Prozesse und zugehörige Gene. Untergeordnete Klassen von IRA beeinflußten Prozessen und der darin involvierten Gene basierend auf Gene Ontology *Clustering.*

Gen	Symbol	Regulation durch IRA	Ref_ID	Unigene- Nr.	Gene Ontology - Biologische Funktion
Extrazelluläre Matrix					
cadherin 10, type 2 (T2-cadherin)	CDH10	AB	220115_s_at	Hs.92489	homophile Zelladhäsion
carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein)	CEACAM1	AB	211883_x_at	Hs.512682	Immunantwort
carcinoembryonic antigen-related cell adhesion molecule 4	CEACAM4	AUF	207205_at	Hs.12	
cholinergic receptor, nicotinic, be- ta polypeptide 3	CHRNB3	AUF	207859_s_at	Hs.96094	Synaptische Transmission
chromosome 1 open reading frame 38	C1orf38	AUF	210785_s_at	Hs.10649	Zelladhäsion
collagen, type I, alpha 1	COL1A1	AUF	202312_s_at	Hs.172928	epidermale Differentierung
collagen, type VIII, alpha 1	COL8A1	AB	214587_at	Hs.114599	somatische Muskel Entwicklung
fibronectin 1	FN1	AB	214701_s_at	Hs.418138	Zellbeweglichkeit // Signaltrans- duktion
glutamate receptor, ionotropic, N- methyl D-aspartate 2C	GRIN2C	AB	217573_at	Hs.436980	Ionentransport
integrin, alpha 10	ITGA10	AUF	206766_at	Hs.158237	Integrin-vermittelter Signalweg // Zell-Matrix Adhäsion
integrin, beta 5	ITGB5	AUF	214021_x_at	Hs.149846	Integrin-vermittelter Signalweg // Zell-Matrix Adhäsion
matrix metalloproteinase 1 (in- terstitial collagenase)	MMP1	AUF	204475_at	Hs.83169	Kollagen Katabolismus
neuroligin 1	NLGN1	AB	205893_at	Hs.71132	Calcium-abhängige Zell-Zell Adhäsion
neuroligin 4	NLGN4	AUF	207703_at	Hs.21107	Zelladhäsion
protocadherin LKC	PC-LKC	AB	220186_s_at	Hs.4205	homophile Zelladhäsion
sialic acid binding Ig-like lectin 7	SIGLEC7	AUF	216537_s_at	Hs.274470	Zelladhäsion
sialoadhesin	SN	AB	44673_at	Hs.31869	heterophile Zelladhäsion // Zell- Matrix Adhäsion
spondin 1, (f-spondin) extracellu- lar matrix protein	SPON1	AUF	209436_at	Hs.5378	
vascular cell adhesion molecule 1	VCAM1	AB	203868_s_at	Hs.109225	Zell-Zell Adhäsion
vascular endothelial growth factor B	VEGFB	AUF	203683_s_at	Hs.78781	positive Regulation der Zellprolife- ration
vesicle-associated membrane pro- tein 2 (synaptobrevin 2)	VAMP2	AUF	201557_at	Hs.25348	nicht selektiver Vesikel Transport
Calciumionen-Signalfluss					
ATPase, Ca++ transporting, plasma membrane 4	ATP2B4	AB	205410_s_at	Hs.343522	Kationen Transport // Calcium Io- nen Transport
ATPase, Na+/K+ transporting, beta 1 polypeptide	ATP1B1	AB	201242_s_at	Hs.78629	Kalium Ionen Transport // Natri- um Ionen Transport
cadherin 10, type 2 (T2-cadherin)	CDH10	AB	220115_s_at	Hs.92489	homophile Zelladhäsion
calcium-binding tyrosine-(Y)- phosphorylation regulated (fi- brousheathin 2)	CABYR	AB	219928_s_at	Hs.511983	
calponin 1, basic, smooth muscle	CNN1	AB	203951_at	Hs.21223	smooth muscle contraction
casein beta	CSN2	AB	207951_at	Hs.2242	Calcium Ionen Transport
chemokine (C-C motif) ligand 2	CCL2	AUF	216598_s_at	Hs.303649	Calcium Ionen Homeostase // JAK- STAT Kaskade

$3.1 \ Infrarot-A-Strahlung \ reguliert \ eine \ Vielzahl \ von \ Genen \ in \ humanen \ dermalen \ Fibroblasten$

Gen	Symbol	Regulation	Ref_ID	Unigene-	Gene Ontology - Biologische
	-	durch IRA		Nr.	Funktion
chloride channel 3	CLCN3	AUF	201733_at	Hs.372528	Chlorid Transport
inositol 1,4,5-triphosphate recep-	ITPR2	AB	202662_s_at	Hs.512235	Calcium Kanäle
inositol 1,4,5-triphosphate recep- tor, type 3	ITPR3	AB	201187_s_at	Hs.77515	Calcium Kanäle
neuroligin 1	NLGN1	AB	205893_at	Hs.71132	Calcium-abhängige Zell-Zell
phosphatidylinositol-4-phosphate	PIP5K1B	AB	217477_at	Hs.297604	Adhasion
phosphatidylinositol-4-phosphate	PIP5K1C	AUF	212518_at	Hs.282177	
5-kinase, type I, gamma phosphoinositide-3-kinase, regu-	PIK3R3	AB	202743_at	Hs.372548	
latory subunit, polypeptide 3 (p55, gamma)					
protein tyrosine phosphatase, re- ceptor type, D	PTPRD	AB	214043_at	Hs.323079	Transmembranrezeptor Protein Ty- rosinphosphatase Signalweg
sodium channel, voltage-gated,	SCN10A	AB	208578_at	Hs.250443	Natrium Ionen Transport
tachykinin receptor 1	TACR1	AB	208048_at	Hs.1080	G-Protein Signalfluss, gekoppelt an IP3 second messenger
transient receptor potential ca- tion channel, subfamily V, mem- ber 2	TRPV2	AB	219282_s_at	Hs.279746	Kationen Transport
Stress-Signalweg					
carcinoembryonic antigen-related cell adhesion molecule 1 (biliary	CEACAM1	AB	211883_x_at	Hs.512682	Immunantwort
caspase recruitment domain fami-	CARD10	AUF	210026_s_at	Hs.57973	Aktivierung der NF-kappaB-
ly, member 10 chemokine (C-C motif) ligand 2	CCL2	AUF	216598_s_at	Hs.303649	Calcium Ionen Homeostase // JAK-
chemokine (C-X3-C motif) ligand	CX3CL1	AB	823_at	Hs.80420	STAT Kaskade Immunantwort // Zell-Zell Signal-
1 chemokine (C-X-C motif) ligand 6	CXCL6	AUF	206336 at	Hs.164021	fluss // Zelladhäsion inflammatorische Antwort // Che-
(granulocyte chemotactic protein 2)					motaxis
chemokine (C-X-C motif) ligand 9	CXCL9	AUF	203915_at	Hs.77367	Zell-Zell Signalfluss // Chemotaxis
gamma-glutamyltransferase 1	GGT1	AB	207131_x_at	Hs.352119	Glutathion Biosynthese
IL2-inducible T-cell kinase	ITK	AB	211339_s_at	Hs.211576	Zellverteidigungs Antwort // intra-
inhibitor of kappa light polypepti- de gene enhancer in B-cells, kina-	IKBKG	AUF	36004_at	Hs.43505	regulation of transcription // in- duction of apoptosis
se gamma	IENA10	AB	208261 x at	He 282275	Verteidiguns Antwort
interleukin 1 receptor-like 1 li-	ILIRLILG	AUF	203201_A_at 203679_at	Hs.446686	Zell-Zell Signalfluss
gand	II top	4.115			
interleukin 12B	IL12B	AUF	207901_at	Hs.674	Regulation der Cytokin Biosynthe- se // JAK-STAT Kaskade
interleukin 16 (lymphocyte che- moattractant factor)	IL16	AB	209827_s_at	Hs.170359	intrazelluläre Signalkaskade
interleukin 6 signal transducer (gp130, oncostatin M receptor)	IL6ST	AB	204863_s_at	Hs.71968	Zelloberflächen Rezeptor gekoppel- te Signaltransduktion // Immun-
lymphocyte antigen 6 complex, lo-	LY6H	AB	206773_at	Hs.159590	antwort Zellverteidigungs Antwort
cus H mannan-binding lectin serine pro-	MASP1	AUF	206449_s_at	Hs.89983	Komplement Aktivierung
tease 1 mitogen-activated protein kinase	MAP3K8	AB	205027_s_at	Hs.432453	Zellwachstum und/oder Mainte-
kinase kinase 8 mitogen-activated protein kinase	MAP4K5	AB	211081_s_at	Hs.246970	nance Proteinkinase Kaskade // Aktivi-
kinase kinase kinase 5	STAT2	AUE	208002 c. at	He 491249	rung von JNK
transcription 3	TYNDOL	AUF	208992_s_at	IIS.421342	Akute-r hase Antwort
(endoplasmic reticulum)	TANDC4	AUF	208957_at	Hs.154023	der Redox Homeostase
toll-like receptor 4	TLR4	AB	221060_s_at	Hs.174312	Aktivierung der NF-kappaB- inducing Kinase // Regulation der IL-6 Biosynthese
B-cell CLL/lymphoma 2	BCL2	AB	203685_at	Hs.79241	Anti-Apoptose // Regulation des Zellzvklus
BCL2 binding component 3	BBC3	AUF	211692_s_at	Hs.87246	· · · · ·
BCL2-antagonist of cell death	BAD	AUF	209364_at	Hs.76366	Induktion der Apoptose
BCL2-associated X protein	BAX	AB	208478_s_at	Hs.159428	negative Regulation von Survival-
BCL6 co-repressor	BCOR	AB	219433_at	Hs.186424	Genprodukten
caspase recruitment domain fami-	CARD10	AUF	210026_s_at	Hs.57973	Aktivierung der NF-kappaB-
ly, member 10	CASDI		011000	II. 0400	inducing Kinase // Apoptose
caspase 1, apoptosis-related cy- steine protease (interleukin 1, be- ta, convertase)	CASPI	AB	211368_s_at	Hs.2490	Signaltransduktion // Apoptose
caspase 7, apoptosis-related cy-	CASP7	AB	207181_s_at	Hs.9216	apoptotisches Programm
Fas (TNFRSF6) associated factor	FAF1	AB	218080_x_at	Hs.12899	Apoptose
FAST kinase	FASTK	AUF	214114_x_at	Hs.75087	Induktion der Apoptose durch ex-
tumor necrosis factor receptor su-	TNFRSF6B	AUF	213829_x_at	Hs.348183	Anti-Apoptose // Oncogenese
perfamily, member 6b, decoy					

3.2 Metabolismus der ECM

In den letzten Jahren lag der Fokus der untersuchten IRA-induzierten Effekte auf Ebene der extrazellulären Matrix der Haut. Es ist daher nicht überraschend, dass die aus den Microarray-Analysen gewonnenen Daten die bereits gut etablierten Effekte von IRA auf Gene der ECM (z.B. MMP-1 und Col1A1 (Buechner et al., 2008; Schroeder et al., 2008b; Kim et al., 2006) um zusätzliche Gene erweitert. Im Detail wurden 21 nach IRA-Behandlung differentiell regulierte Gene gefunden, die eine Relevanz für die extrazelluläre Matrix aufwiesen. Um diese Ergebnisse mit einer zweiten unabhängigen Untersuchungsmethode zu validieren, wurden zwei IR-regulierte Gene, Fibronektin (FN1) und vaskuläres Zelladhäsionsmolekül 1 (VCAM-1) ausgewählt und ihre Regulation durch IRA in neuen, unabhängigen Experimenten mittels realtime-PCR-Analyse untersucht. Mit diesem Ansatz konnte die Abregulation beider Gene nach IRA-Behandlung bestätigt werden (siehe Abb. 3.2 A & B). Fibronektin 1 ist ein Strukturprotein der extrazellulären Matrix und an Zelladhäsion, Migration und Wundheilung beteiligt. Es ist gezeigt worden, dass Fibronektin 1 auch in gealterten humanen dermalen Fibroblasten vermindert exprimiert wird (Molinari et al., 2008), und dies ebenfalls in lichtgealterten HaCat-Zellen der Fall ist (Lee *et al.*, 2005). Das Adhäsionsmolekül VCAM-1 ist ebenfalls an Zelladhäsion, Migration und der Wundheilung beteiligt und es wurde in oxidativ gestresstem altem Gewebe differentiell exprimiert gefunden (Zou et al., 2006). Die Modifikation der ECM durch IRA wird durch weitere Daten aus den Microarrays unterstützt, die eine Regulation von Integrinen (ITGA10, ITGB5) zeigen (siehe Tabelle 3.2) denen auch eine Rolle in der Lichtalterung zugeschrieben wird (Püschel et al., 1995). Cadherin CDH10, ein Protein welches Calcium-abhängig die Zell-Zell-Adhäsion vermittelt, wurde ebenfalls nach IRA-Bestrahlung vermindert exprimiert vorgefunden, was in Übereinstimmung mit den Daten von Molinari et al. (2008) (Abregulation von Cadherinen im Alterungsprozeß) auf eine weitere Beteiligung von IRA an der Lichtalterung der Haut hindeutet.

3.3 Calciumionen-Homöostase

Die funktionale *Clustering*-Analyse lieferte 18 zu dieser Kategorie gehörende Gene. Um die Rolle von IRA in der Regulation Calcium-abhängiger Prozesse zu bestätigen, wurden 5 dieser Gene ausgewählt (ATP1B1, ITPR2, ITPR3, PIK3R3, PIP5K1B). In neuen, unabhängigen Experimenten wurde die Expression dieser fühf Gene nach IRA Bestrahlung mittels realtime-PCR analysiert (siehe Abb. 3.2 C bis G). In allen 5 Fällen konnten die Resultate der Microarray-Untersuchung bestätigt werden. Ein wichtiges Protein im Phosphoinositol-Signalweg ist die Phosphatidylinositol-4-phosphat-5-kinase (PIP5K1B), welche den IP₃-Vorläufer Phosphatidylinositol-4,5-bisphosphat (PIP₂) (Weernink *et al.*, 2004) synthetisiert. Das PIP5K1B-Transkript war nach IRA-Bestrahlung vermindert exprimiert (siehe Abb. 3.2 G). Es konnte gezeigt werden, dass gealtertes Gewebe über erniedrigte Mengen von PIP₂ verfügt (Zambrzycka, 2004) und dieser physiologische Zustand aus einer andauernden, chronischen Abregulation der PIP5-Kinase resultiert. Inositol-1,4,5-triphosphat-Rezeptoren vom Typ 2 und 3 (ITPR2 and ITPR3), beide abreguliert nach IRA (siehe Abb. 3.2 D und E,) sind verantwortlich für den Phosphoinositol-(IP₃)-abhängigen Calcium-Transport vom endoplasmatischen Retikulum zum Zytosol. Gene, die für die wichtigen Komponenten der Calcium-Transportwege codieren, inklusive der IP₃-Rezeptoren, regulieren über ihre Expression die Calciumionen-Beladung der ER-Lagerstätten (Kuo et al., 1997). Weitere Hinweise auf die Beteiligung des Calciumbedingten Phosphatidylinositol-Signalflusses nach IRA-Bestrahlung liefert die Abregulation der Phosphoinositid-3-Kinase (PIK3R3) (siehe Abb. 3.2 F). Für PIK3R3 wurde gezeigt, dass sie eine wichtige Rolle in der epidermalen Homöostase und Reparatur spielt (Pankow et al., 2006). Neben diesen fühf hier aufgeführten Genen liefern die Microarraydaten zusätzliche Unterstützung für die Beteiligung von Calciumflüssen und zugehörigen Signalprozessen, denn IRA verändert die Expression von weiteren Genen, die (i) für die Bindung von Calcium, und dem (transmembranen) Calciumtransport zuständig sind: Chemokin (C-C Motiv) Ligand 2 (CCL2), Ca²⁺-transportierende ATPase (ATP2B4), Casein beta (CSN2) oder Calponin 1 (CNN1) (siehe Tabelle 3.2); (ii) Gene, die eine Rolle im Phosphat-Metabolismus und der Phosphat-abhängigen Signaltransduktion spielen: Phosphatidylinositol-4-phosphat-5-kinase, Typ I, beta (PIP5K1B), Tachykinin Rezeptor 1 (TACR1), Phosphatidylserinrezeptor (PTDSR), Proteintyrosinphosphatase Rezeptor (PTPRD) und die PI3Kinase (PIK3R3); oder (iii) andere aktive Transportsysteme, welche eine Verbindung zur Calcium-Homöostase aufweisen (Lamb et al., 1999): so ist der Chloridionen-Kanal CLCN3 nach IRA-Bestrahlung aufreguliert.

Abbildung 3.2: Realtime-PCR ausgewählter Gene nach IRA-Bestrahlung. Infrarot A-induzierte Genexpressionsänderungen von aus den 4 Kategorien ausgewählten Genen, gemessen mittels realtime PCR. Für jedes Gen wurden die relativen mRNS-Level entsprechend zur 18S rRNS-Transkriptmenge normalisiert, welches als housekeeping-Gen betrachtet wurde. Die differentielle Expression nach IRA (rote Balken) im Vergleich zu den auf den Faktor 1 gesetzten entsprechenden sham-Kontrollen (weisse Balken) sind für die ECM Gene FN1 (A) und VCAM-1 (B), für die Gene ATP1B1 (C), ITPR2 (D), ITPR3 (E), PIK3R3 (F) und PIP5K1B (G) aus dem Calcium-Signalweg, für die zum Stress-Signalfluss gehörenden Gene IL6ST (H) und STAT3 (I), sowie für die Apoptose-regulierenden Gene BAD (J), BAX (K), FASTK (L) und TN-FRSF6B (M) aufgeführt. Die Fibroblasten wurden mit 860 J/cm² IRA bestrahlt und 24 h nach der Bestrahlung geerntet. Die Daten sind Mittelwerte \pm SEM von wenigstens 9 unabhängigen Experimenten. * Signifikant unterschiedlich zur entsprechenden sham-Kontrolle (p < 0.05).

3.4 Stress-Signalwege

3.4 Stress-Signalwege

Bisherige Publikationen über den IRA-Effekt legen nahe, dass die zelluläre Antwort darauf Stress-Signalwege einhaltet (Shibata et al., 2008; Schieke et al., 2002). In Ubereinstimmung mit diesen Beobachtungen stehen viele der mittels Microarray-Technik identifizierten IRA-regulierten Gene in enger Beziehung zu Stress-Signalpfaden oder sind sogar ein Teil von diesen. Die Analyse der Arraydaten unter dem Aspekt des Stress-Signalflusses lieferte 21 IRA-regulierte Gene, die einen Bezug zu dieser Kategorie aufwiesen. Für diese Gruppe von Genen wurden ebenfalls in neuen und zusätzlichen Experimenten die Expression zweier Gene nach IRA mittels realtime-PCR überprüft. Die verminderte Expression des interleukin 6-signaltransducer (IL6ST) wurde durch diesen unabhängigen Ansatz bestätigt, ebenso wie die erhöhte Expression des transcriptionfactor-signaltransducer-and-activator-of-transkription-3 (STAT3) (siehe Abb.3.2 H und I). Innerhalb der IRA-regulierten Gene wurden weiterhin Gene der zellulären Immunantwort gefunden, z.B. Interleukine (IL12B, IL16) und Chemokin-Liganden (CCL2, CX4CL1, CXCL6, CXCL9). Diese sind dafür bekannt, andere Signalwege zu beeinflussen, so wie z.B. der IRA-regulierte Chemokin-Ligand 2 (CCL2), der sowohl die STAT3-Kaskade als auch die Calcium-Homöostase beeinflußt (Sakamoto et al., 2007; Biswas & Sodhi, 2002; Kok et al., 2009). Diese Ergebnisse gehen konform mit der erst kürzlich beschriebenen Beteiligung von Interleukinen und Chemokin-Liganden am anti-inflammatorischen Effekt von IRA, z.B. angewandt in der Therapie von rheumatoider Arthritis (Shibata et al., 2008). Darüber hinaus beobachteten Shibata *et al.* (2008) eine Beteiligung des NF- κ B Signalweges am anti-inflammatorischen Effekt von IRA. Auch die in dieser Arbeit durchgeführten Microarray-Analysen identifizierten IRA-regulierte Gene, die in Bezug zu NF- κ B stehen (CARD10, TLR4, IKBKG). Unter den IRA-regulierten Genen, die sich in der Stress-Signalfluß Kategorie befinden, sind auch solche, welche eine Rolle in der antioxidativen Verteidigung der Zelle spielen, jedoch ohne dass hierbei ein konsistentes Regulationsmuster erkennbar wäre; während das im ER-lokalisierte, eine Thioredoxin-Domäne enthaltene Protein 4 (TXNDC4), das nach IRA aufreguliert ist, zu mehr antioxidativer Kapazität führen würde, ist die Gamma-Glutamyltransferase 1 (GGT1) abreguliert, was die antioxidative Verteidigung vermindert.

3.5 Regulation der Apoptose

Es wird diskutiert, dass IRA mit apoptotischen Prozessen der Zelle wechselwirkt. IRA-Strahlung vermittelt einen anti-apoptotischen Effekt, obwohl zunächst frühe Apoptose-Ereignisse initiiert werden (Menezes *et al.*, 1998; Frank *et al.*, 2004, 2006; Jantschitsch *et al.*, 2008). Die Microarray-Daten unterstützen diese Ergebnisse: Es wurden 11 Gene mit einem Bezug zur Apoptose durch IRA reguliert gefunden. Zur Bestätigung der Array-Daten wurden vier Gene ausgewählt und ihre veränderte Expression nach IRA-Behandlung in neuen, unabhängigen Experimenten mittels *realtime*-PCR untersucht. Tatsächlich bestätigten die wiederholten Bestrahlungs-Experimente die Microarray-Befunde in allen Fällen. BAD, der BCL2-Zelltod-Antagonist, zeigte eine erhöhte Expression nach IRA, während die Expression des BCL2-assoziierten X-Proteins (BAX) vermindert war (siehe Abb. 3.2 J und K). Beide Gene dienen als pro-apoptotische Aktivatoren durch die Bindung von BCL-2, dessen Zelltod-Repressor-Aktivität hierdurch umgekehrt wird. Auch BAX ist eng mit den IRA-beeinflussten Calcium-Signalwegen quervernetzt. BAX reguliert den Phosphoinositol-Rezeptor und somit den Calcium-Ausstrom aus dem endoplasmatischen Retikulum (Oakes *et al.*, 2005). Die Expression der FAST-Kinase (FASTK) und des Tumor-Nekrosefaktor-Rezeptor Superfamilie-6-Köders (TNFRSF6B) konnte in beiden Fällen durch die *realtime*-PCR Experimente als aufreguliert nach IRA bestätigt werden (siehe Abb. 3.2 L und M). TNFRSF6B fungiert als Köder-Rezeptor, der mit den Zelltod Rezeptoren um Ligandenbindung in Wettbewerb steht, und daher antiapoptotisch wirkt. TNFRSF6B ist stark exprimiert in Krebszellen, wo es die Aufregulation von IL-8 und Adhäsionsmoleküle wie das vaskuläre Zelladhäsionsmolekül 1 (VCAM-1) bewirkt (Yang *et al.*, 2005). FASTK ist ein Überlebensprotein, das die UV-induzierte Apoptose inhibiert (Li *et al.*, 2004). Die Aufregulation von FASTK durch IRA-Bestrahlung trägt somit vermutlich ebenfalls zum anti-apoptotischen Effekt bei.

3.6 Einfluss der zellulären IRA-Antwort auf die Proteinexpression

Um zu untersuchen, ob sich die IRA-induzierten Veränderungen auf Ebene der Genexpression auch auf die Proteinexpression auswirken, wurden mittels Western Blot-Technik exemplarisch die Expression von transkriptionell IRA-regulierten Genen (ITPR3, PI3K und STAT3) zusätzlich auf der Proteinebene analysiert. Hierfür wurden Zellen mit einer Dosis von 860 J/cm² IRA bestrahlt und Gesamtzell-Lysate direkt nach der Bestrahlung, sowie 12 h, 24h, 48h und 72h später geerntet und mittels spezifischer Antikörper die relative Proteinmenge im Vergleich zur entsprechenden sham-behandelten Kontrollprobe verglichen. In Analogie zu den *realtime*-PCR-Experimenten kommt es auch hier im zeitlichen Verlauf zu einer Abnahme der Proteinmenge von ITPR3 und PI3K, sowie zu einer Zunahme der STAT3-Proteinmenge bei den IRA-bestrahlten Proben (siehe Abb. 3.3). Darüberhinaus lässt sich bei STAT3 nach IRA-Bestrahlung eine Bandenverschiebung beobachten, was für eine posttranslationale Proteinmodifikation in Folge der IRA-Bestrahlung sprechen könnte.

Abbildung 3.3: Western-Blot ausgewählter Proteine nach IRA-Bestrahlung. IRAinduzierte Veränderungen der Genexpression manifestieren sich auch auf der Proteinebene. Western-Blots mit Zeitreihen von Proteinlysaten aus *sham*- und IRA-bestrahlten (860 J/cm²), primären dermalen humanen Fibroblasten wurden direkt (0h), 12h, 24h, 48h und 72h nach der IRA-Bestrahlung) geerntet und immundetektiert mit spezifischen Antikörpern gegen den IP₃-Rezeptor, die PI3Kinase und STAT3-Gesamtprotein. Als Ladekontrolle dienten je nach Proteingröße Lamin A+C, Aktin und GAPDH. Die Daten sind eine repräsentative Abbildung von zwei verschiedenen Experimenten.

3.7 Die zelluläre IRA-Antwort läuft über verschiedene Signalwege

Um die zelluläre Antwort auf IRA weiter aufzuklären, wurden die möglicherweise beteiligten Signalwege analysiert, indem spezifische Inhibitoren für die in Verdacht stehenden Signaltransduktionspfade eingesetzt wurden, so dass ihr Einfluss auf die IRA-induzierte Regulation der Genexpression untersucht werden konnte. Die Resultate bestätigen, dass IRA mehrere Signalwege in humanen dermalen Fibroblasten beeinflusst. MAPKinase Signalfluss über ERK1/2 wurde bereits als funktional relevant für die IRA-bedingte Änderung der MMP-1-Expression beschrieben (Schieke *et al.*, 2002). Mit den hier dargestellten Experimenten ließ sich bestätigen, dass ERK1/2 ein wichtiger Faktor in der zellulären IRA-Antwort ist, da sich die Regulation durch IRA bis auf zwei Ausnahmen in allen untersuchten Genen als ERK1/2-abhängig darstellte. Die Verwendung von PD98059 (siehe Abb. 3.4 A, D, G und J), einem wirkungsvollen Inhibitor von MEK1/2, die in diesem Signalweg direkt oberhalb von ERK1/2 gelegen ist, setzte die IRA-abhängige Veränderung der Genexpression von fast allen untersuchten Genen ausser Kraft (ATP1B1, BAX, BAD, FASTK, FN1, ITPR3, IL6ST, PIK3R3, PIK5K1B, STAT3, TNFRSF6B) mit Ausnahme von FN1 und VCAM-1.

Die MAPKinase p38 wird als Reaktion auf IRA-Bestrahlung phosphoryliert (Schieke *et al.*, 2002), doch die Rolle in der Veränderung der IRA-induzierten Genantwort ist bisher nicht weiter untersucht worden. Der Einsatz des p38-Inhibitors SB203580 (siehe Abb. 3.4 A, D, G und J) führt zu einer Änderung der Expression von beinahe allen untersuchten IRA-modulierten Genen (ATP1B1, BAX, BAD, FASTK, ITPR3, IL6ST, PIK3R3, PIK5K1B, STAT3, TNFRSF6B, VCAM-1) bis auf Fibronektin (FN1) als einzige Ausnahme.

Die JNK- und ERK-Signalwege führen in Kombination zur Aktivierung des Transkriptionsfaktors AP-1, welcher als Hauptaktivator des MMP-1-Promotors bekannt ist (Borden & Heller 1997). Inhibierung von JNK mittels SP600125 (Abb. 3.4 A, D, G und J) führte zu einer Veränderung in der IRA-Regulation von 8 Genen: BAD, FASTK, FN1, IL6ST, ITPR3, PIK3R3, STAT3, TNFRSF6B, während die von IRA-bedingte Regulation von 4 Genen unbeeinflußt blieb (ATP1B1, BAX, PIK5K1B, VCAM-1).

Die hier gewonnenen Daten zu einer Beteiligung des Calcium- und IP3-Signalflusses in der zellulären IRA-Antwort, veranlasste dazu, diese Signalwege mit zwei Ansätzen zu untersuchen. Die PI3Kinase wurde unter Verwendung von LY284002 inhibiert, zur Inhibierung der Calcium-induzierten Signale wurde Cyclosporin A dem Medium vor und nach IRA-Bestrahlung hinzugegeben. Die Blockade der PI3Kinase mit LY294002 (siehe Abb. 3.4 B, E, H und K) verändert den IRA-Effekt der meisten analysierten Gene (BAX, BAD, FASTK, FN1, ITPR3, IL6ST, PIK3R3, PIK5K1B, STAT3, VCAM-1) bis auf TNFRSF6B und ATP1B1. Behandlung mit Cyclosporin A (siehe Abb. 3.4 B, E, H und K) hatte einen weitreichenden Einfluß auf die IRA-induzierte Genexpression der in den Experimenten untersuchten Gene. Interessanterweise verhielt sich nur die IRA-induzierte Abregulation von PIK3R3 unverändert bei Cyclosporin A-Zugabe.

Der vierte Bereich der Signal-Komplexe, der analysiert wurde, war die IL6-Signalkaskade. Der Einsatz eines Inhibitor-Peptids für STAT3 (siehe Abb. 3.4 F, I und L) moduliert die IRA-induzierten Veränderungen der Genexpression für viele (ATP1B1, BAX, BAD, FASTK, FN1, PIK5K1B, STAT3, TNFRSF6B, VCAM-1), aber nicht alle untersuchten Gene, da die Regulation von IL6ST, ITPR3 und PIK3R3 unverändert blieb. Wie in Tabelle 3.3 zusammengefasst, zeigen die Ergebnisse, dass IRA tief in die zellulären Signaltransduktionswege eingreift. Die Regulation von drei der zwölf untersuchten Gene (BAD, FASTK, STAT3) war von der Inhibierung jeder der untersuchten Signalwege betroffen.

Tabelle 3.3: Einfluss von Signalwegen auf die IRA-induzierte Genexpression. Überblick über die Beteiligung verschiedener Signalwege in der durch IRA hervorgerufenen Genregulation. Die Behandlung einer Probe mit entsprechendem Inhibitor, welche die IRAabhängige Genexpression aufhebt ist mit + markiert. IRA-abhängige Modulation der Genexpression, die von der Inhibitorbehandlung unabhängig war, ist mit - markiert.

Inhibierung des IRA-Effekts durch									
		MAPK		CALCIUM		STAT3			
regulierte Gene	ERK-Inhib.	p38-Inhib.	JNK-Inhib.	PI3K-Inhib.	Cyclosporin	STAT3			
	PD98059	SB203580	SP600125	LY284002	А	InhibPeptid			
ECM									
FN1	-	-	+	+	+	+			
VCAM1	-	+	-	+	+	+			
Calcium									
ATP1B1	+	+	-	-	+	+			
ITPR3	+	+	+	+	+	-			
PIK3P3	+	+	+	+	-	-			
PIP5K1B	+	+	-	+	+	+			
Stress									
IL6ST	+	+	+	+	+	-			
STAT3	+	+	+	+	+	+			
Apoptose									
BAD	+	+	+	+	+	+			
BAX	+	+	-	+	+	+			
FASTK	+	+	+	+	+	+			
TNFRSF6B	+	+	+	-	+	+			

Abbildung 3.4: Kinase-Inhibitoren greifen differentiell in die IRA-induzierte Genexpression ein. Messungen der mRNS der hier aufgeführten Gene 24 h nach IRA-Bestrahlung (860 J/cm²) in Zell-Lysaten, die mit dem jeweiligen Inhibitor behandelt oder nicht behandelt (rote Balken) wurden. Die Expression der ECM-Gene (A bis C), der Gene des Calcium-Signalweges (D bis F), der Stressantwort-Gene (G bis I) und der Apoptose-Gene (J bis L) wurde nach IRA-Bestrahlung kombiniert mit Inhibitorbehandlung analysiert. Die Zellen wurden entweder mit 20 μ M ERK1/2-Inhibitor PD98059 (graue Balken in A, D, G, J), 10 μ M p38-Inhibitor SB203580 (weisse Balken A, D, G, E) 4 μ M JNK-Inhibitor II SP600125 (schwarze Balken, A, D, G, J), 20 μ M PI3K-Inhibitor LY294002 (blaue Balken, B, E, H, K) 1 μ M Cyclosprin A (grüne Balken, B, E, H, K), oder 25 μ M STAT3-Inhibitor-Peptid (gelbe Balken, F, I, L) 1 Stunde vor und 24 h nach der Bestrahlung behandelt. Die Daten sind Mittelwerte oder Mittelwerte \pm SEM.

3.8 Der Einfluss von ROS in der IRA-induzierten Genregulation

Bisherige Studien zeigten, dass die Bildung von ROS ein frühzeitiger Effekt der IRA-Bestrahlung ist und dass diese erhöhte Belsastung der Zellen mit ROS funktional relevant ist für den IRA-Effekt auf die MMP-1-Expression (Schroeder *et al.*, 2007). Die Verwendung von Antioxidantien verringert die Aufregulation von MMP-1 nach IRA-Bestrahlung und reduziert den Phosphorylierungs-Status der MAP-Kinasen ERK1/2, die am retrograden mitochondrialen Signalfluss beteiligt sind (Schroeder *et al.*, 2007, 2008b). Hier wurde nun untersucht, wie eine Vorbehandlung der Fibroblasten mit zwei verschiedenen Antioxidantien die IRA-Effekte beeinflusst. N-Acetyl-Cystein (NAC), ein Cystein-Donor erhöht den intrazellulären Glutathion-Level und erhöht somit in Folge die antioxidative Verteidigung der gesamten Zelle (Schroeder *et al.*, 2007), während MitoQ, ein Chinon, welches sich zielgerichtet in den Mitochondrien anlagert und dort spezifisch ROS, die in den Mitochondrien entstehen, abfängt (Tauskela, 2007).

Eine Verstärkung der antioxidativen Verteidigung der Zellen über die Präinkubation mit NAC wirkt dem IRA-Effekt bei allen zwölf untersuchten Genen entgegen (siehe Abb. 3.5). Interessanterweise führte die Verwendung von MitoQ nicht zu solch einem umfassenden Schutz, die IRA-bedingte Regulation in der Genexpression von FN1, ATP1B1, IL6ST und BAX wurden durch MitoQ nicht gegenteilig verändert. Die IRA-bedingte Abregulation der FN1- und IL6ST-Expression wurde sogar noch verstärkt (siehe Abb. 3.5A und C).

Abbildung 3.5: Einfluß der Inkubation mit Antioxidantien auf die IRA-induzierte Genregulation. Antioxidantien verändern die IRA-induzierte Genexpression. Messung des relativen mRNS-Gehaltes der aufgeführten Gene 24h nach IRA-Bestrahlung (860 J/cm²) in Lysat von Zellen, die mit 20 mM N-Acetylcystein (NAC) (graue Balken), 100 nM MitoQ (schwarze Balken) oder ohne Antioxidantien-Zugabe (rote Balken) 24h vor und nach der Bestrahlung behandelt wurden für Gene der extrazellulären Matrix (A), des Calcium-Signalweges (B), der Stressantwort (C), und der Apoptose-Regulation (D). Die Daten sind Mittelwerte oder Mittelwerte \pm SEM.

Abbildung 3.6: Reaktive Sauerstoffspezies (ROS) und unterschiedliche Signalwege sind involviert in die IRA-induzierte Regulation der Genexpression. Zusammenfassung der Ergebnisse abgeleitet aus den Inhibtor- und Antioxidantien-Versuchen aus den Abbildungen 3.4 und 3.5. mtROS (rot) zeigt, dass aus dem Mitochondrium stammendes ROS ein Rolle im IRA-Signalweg spielt, die mit dem mitochondriellen Antioxidanz MitoQ unterbunden werden kann. ROS (blau), steht für den globalen Einfluss von ubiquitär in den Zellen auftretenden radikalen Sauerstoff-Spezies, falls diesen mit dem Antioxidanz NAC entgegengewirkt werden konnte. Durch unterschiedliche Signalwegkombinationen regulierte Gene und Gengruppen sind von A bis I gruppiert.

3.9 in silico-Promotor-Analyse der IRA-regulierten Gene

Als weiterer Schritt für einen tieferen Einblick in die Genregulation nach IRA-Behandlung wurden die Promotor-Regionen IRA-regulierter Gene nach Bindestellen von Transkriptionsfaktor-Kandidaten durchleuchtet, welche das Verständnis der Zusammenhänge zwischen den IRA-regulierten Genen und den beteiligten Signaltransduktionswegen erweitern können. Mit der unter Material & Methoden beschriebenen Herangehensweise konnte eine kleine Gruppe von Transkriptionsfaktor-Kandidaten für die IRA-Antwort ermittelt werden.

Die vorhergesagten DNS-Bindungsstellen dieser Faktoren waren zum einen bei IRAregulierten Genen vorhanden. Zum anderen konnte man die Bindestellen dieser Faktoren auch noch in der *absent*-Gruppe finden. Bei der *absent*-Gruppe handelt es sich um Gene, die in Fibroblasten im Normalzustand nicht aktiv sind, oder um Gene, die aufgrund von zu geringer Transkriptions-Aktivität auf den Microarrays nicht zu detektieren waren und daher keine Aussage über ihre IRA-Regulierbarkeit getroffen werden konnte. Die transkriptionsfaktor-Bindestellen sind somit nur bei IRA-regulierten Genen (a), unabhängig vom IRA-Stimulus dauerhaft nicht exprimierten Genen (b) und bei Genen, bei denen man keine Aussage über die IRA-Regulierbarkeit treffen kann, vorzufinden.

Im Gegensatz dazu kommen die in den oben genannten Gruppen vorkommenden Bindungsstellen nicht in der *present*-Gruppe vor, die aus dauerhaft exprimierten, aber von IRA-nicht-beeinflussten Genen besteht. Somit kommen die zugehörigen Transkriptionsfaktoren für eine Beteiligung in der IRA-Genatnwort in Frage.

Die Häufigkeitsverteilungen der auffälligen Transkriptionsfaktor-Bindestellen sind in Tabelle 3.4 und Abbildung 3.7 dargestellt, die Häufigkeitsverteilung aller PTFs in den Gruppen findet sich im Anhang unter 9.2.

Tabelle 3.4: IRA-spezifische Transkriptionsfaktor-Bindestellen Aufgeführt sind die Transkriptionsfaktor-Bindestellen mit einer spezifischen Verteilung zwischen den vier Gen-Gruppen.

Transkrip-	PTF-	Häufig-	keiten		Konsensus-	Gene AUF	Gene AB	Gene ABSENT	Gene	
tionsfaktor	AUF	AB	ABSENT	PRESENT	Bindungsmotiv				PRESENT	
PTFs nur in den AUFREGULIERT, ABREGULIERT und ABSENT Gruppen vorhanden										
ZIC2_01	11	14	16	0	GGGGTGGTC	PPAT	GAMT	ATP6VOC		
						IKBKG	APP	MAP4		
						CYP3A4	C19orf6	MPRS18B		
						GEMIN4	PMVK	LAMC2		
						COL1A1	VCAM1	CLDN7		
						LRP8	GRIN2C	NDST1 OAS1		
						B3GNT1	USP5	MDC1 CDH15		
						MCRS1	FAF1	LPL36AL		
							GCAT	COL5A1		
							CDK5	S100A9		
							TACR	CDK10		
							KIF2C	ACTN2		
							PSCD4	C12orf2		
							Hs468490	KCTD17		
							LHCGB			
1	1					1	1 2110 010	1		

Transkrip-	PTF-	Häufig-	keiten		Konsensus-	Gene AUF	Gene AB	Gene ABSENT	Gene
tionsfaktor	AUF	AB	ABSENT	PRESENT	Bindungsmotiv				PRESENT
USF_C	27	19	31	0	GCACĞTGG	STAT3 PPAT MGC29875 VAMP2 ARD1 HES1 MAFF ADRB2 GOT1 ABCC3 MVK 8D6A PC- CA LRP8 TIAM1 SOAT1 RERE RPC32 TOLLIP TIMM10 DAXX SPON1 PELP1 MUC1 AKAP1 CGI-63 KIAA0409	GAMT CDH10 RPC32 APP Clorf33 NUP98 GRIN2C GALNT2 HKE2 AK3 HHEX MAP2K7 CDK5 PAO_SMOX EHD1 GART PSCD4 SBB126 KLHL7 SCAMP1	APEH DUSP3 EFNA1 CRMP1 IKB- KAP CLDN7 POLR2L UM- PS PER1 SERPINA1 STAT5A TGFB1 PTK2B LGALS9 NOTCH3 ARRB2 HES1 ARRB2 HES1 ARID4A CDK10 THBD HBA1 MFNG PDE2A ZNF202 C11orf13 KIAA0971 MGC20875 FLJ20097 PO- FUT2 c11orf10 MGC3113	
CREBATF_Q	6 10	18	14	0	TGACGTCAC	STAT3 VAMP2 MAFF BTG3 MVK CLCN3 ARG2 PFAS HIST1H4H ZFP36L1	CD2AP FN1 ELOVL5 FLJ10581 RNMTL1 KIAA0674 C19orf6 IFRD1 SLC31A1 NUP98 SKIL ATP1B1 CNN1 AP2B1 SF1 B4GALT4 WHSCIL1 HS3ST3A1 Hs.293563 FLJ12666	ATP6VOC DUSP1 TM4SF2 HCFC1 HTF9C IKBKAP CLDN7 UMPS PER1 MEF2D ARF4L THBD GPSM ZZEF1	
TCF1P_Q6	7	7	9	0	AACCCGAC	FLJ21172 MAFF 8D6A HGMA1 RHEB AP- BA2BP	IGF1R APP HIST1H2BD GRIN2C GALNT2 BT- BEB1_KLF9	RAB6A BST2 RHEB CDH3 LAD1 KLF9 CDH163 RBM19 PO- FUT2	
CREBP1_01	5	7	4	0	TTACGTAA	ZFP36L1 PPAT VAMP2 MASP1 TUB- GCP5 ZFP36L1	EIF5A IL6ST INHBC TLR4 AK3 ZW10 BT- BEB1_KLF9 EIF5A	PER1 KLF9 VSNL1 T3JAM	
POU1F1_Q6	13	17	0	0	АТСААТАААТ	PPAT AND-1 GPD2 SFRS8 8D6A FOS KIAA0116 EXOSC7 RPC32 JAK1 SPON1 AP- BA2BP CDV-1 LOH11CR2A	CDH10 RPC32 IFRD1 TCEB1 VCAM1 ATP7A SGPL1 C8orf1 HFE PPM1G BTBEB1 KLF9 DNAJC8 FLJ23142 C18orf9 15E1.2		
PTFs nur in	ı den A	UFREG	ULIERT u	nd den AB	SENT Gruppen vorh	anden			
EGR_Q6	6	0	5	0	GTGGGGGGGAC	GATA6 CIZ1 GEMIN4 RRP41 JAK1 PELP1		HCFC1 TN- FAIP2 STK10 ARRB2 MGC3113	
GATA1_05	7	0	7	0	TGTTATCAGC	IKBKG DLK1 RFX5 HES1 ITGA10 TIAM1 TOLLIP		CDH1 LPL36AL HES1 CDK10 FANCA THBD ZNF42	

3 Ergebnisse

Transkrip-	PTF-	Häufig-	keiten		Konsensus-	Gene AUF	Gene AB	Gene ABSENT	Gene
tionsfaktor	AUF	AB	ABSENT	PRESENT	Bindungsmotiv				PRESENT
PTFs nur ir AP4_Q6	0	7	10	0	ENT Gruppen vorhar CACAGCTGGT	lden	FN1 IFRD1 MAP2K7 TCFL4 MLX FLJ21106 BAX BCOR	DUSP1 PRG1 HCFC1 CLDN7 ITM2A PDG- FRB ARID4A HPGD ELF3 EFNA1	
MYB_Q3	0	7	9	0	CAACTGACCCT		IGF1R C14orf133 USP5 USP39 ACTC ROD1 Hs468490 LHCGR	MAP4 PO- DXL TN- FAIP2 NINJ1 ARHGEF1 PDGFRB NF- YA C11orf13 MGC33214	
HELIOSA_02	0	9	0	0	TTTTTCCTTAA		KLF5 GALNT2 C8orf1 GCAT AP2B1 ITIH5 ROD1 FLJ23142 SCRN3 15E1.2		
PTFs nur in LEF1_O6	$1 \text{ der } \mathbf{A}$	0 BSENT	Gruppe vo 13	orhanden 0	CCCTTTGAAG			NMT1 MY-	
			10					BL2 ND- FUA2 SEL1L VAMP8 ITM2A PPP2R1B NOTCH4 COL5A1 S100A9 NFKBIE C12orf2 MGC3113	
NFMUE1_Q6	0	0	11	0	AGATGGCCG			DUSP1 RAB6A STAT5A LSP1 FANCA NFYA GPSM KCTD17	
USF_Q6	0	0	6	0	GCCACGTGAC			ATP6VOC PER1 ACTN2 CLCN6 UROS RBM19	
PTFs nur in	ı der Pl	RESENT	Gruppe v	vorhanden					
GATA6_01	18	19	0	22	AAAGATAAGG	PPAT FLJ21172 LDLR HES1 AND-1 MRE11A MASP1 PPP2R4 PCCA NKX3-1 CXCL6 APC10 ANAPC10 POLR1C TIMM10 NPAT CNNM2 LOH11CR2A ZFP36L1	PTPN14 SMC4L1 ZNF228 C190rf6 IFRD1 ATP7A KLF5 SLC19A2 NUP98 CSNK2A1 C80rf1 TOX SAS BAX PREP NPTX2 RNF146 dactylidin ZFX		
TATA_C	0	16	0	12	GCTATAAAAG		FLJ21168 KIAA0674 C14orf133 RBBP2 SLC31A1 HIST1H2BD EFNB2 HHEX ZW10 PPIG EGFR GEMIN6 DVS27 C90RF26 ANP32E FLJ22087 ABC1 15E1.2		TALGN PIGV DDX5 RHOA HSPCB PTTG1IP LAPTM4A HSPA98 MA- PRE1 SCRN1 C14orf92
SP1_Q4_01	0	0	0	5	GGCCCCGCCCCCT				FLJ14154 CFL1 ARF1 KARS KIAA0152

Transkrip-	PTF-	Häufig-	keiten		Konsensus-	Gene AUF	Gene AB	Gene ABSENT	Gene
tionsfaktor	AUF	AB	ABSENT	PRESENT	Bindungsmotiv				PRESENT
NFE2_01	0	0	0	6	TGCTGAGTCAC				HSPCB MA- TR3 LD- HA SOD1 SPOCK2 HSPA9B
NRF1_Q6	0	0	0	8	CGCATGCGCA				CAPNS1 KHDRBS1 ABCF1 DAD1 SART1 LD- HA ACTR!A MGC5508

Abbildung 3.7: Transkriptionsfaktorkandidaten der IRA-Antwort. Die Kandidaten sind abgeleitet aus den Transkriptionsfaktorbindestellen (PTFs), die in keinem Fall in der nicht durch IRA-regulierten Kontrollgruppe von konstitutiv exprimierten Genen auftauchen. A) PTFs nur bei aufregulierten, abregulierten und *absent* Genen vorhanden. B) PTFs nur bei aufregulierten und *absent* Genen. C) PTFs nur bei abregulierten und *absent* Genen.

Die Bindestellen für die Transkriptionsfaktoren ZIC2_01, USF_C, CREBATF_Q6, TCF1P_Q6, CREBP1_01 and POU1F_Q6 wurden nur in den Gruppen von durch IRA auf- oder abregulierten Genen gefunden; darüber hinaus auch in der Gruppe von Genen, bei deren Auswertung der Arraydaten ein *absent call* ermittelt wurde. Die Bindestellen für EGR_Q6 und GATA1_05 konnten nur in der der Gruppe mit Aufregulation und in der *absent call*-Gruppe gefunden werden. P4_Q6-, MYB_Q3- und HELIO-SA_02-Bindestellen sind nur bei abregulierten- oder *absent*-Genen vorhanden (siehe Abb. 3.7). Darüber hinaus lieferte die *in silico*-Promotor-Analyse auch Bindestellen, die nur in der Gruppe der *absent*-Gene auftraten (LEF1_Q6, NFMUE1_Q6, USF_Q6) und es gab auch Transkriptionsfaktor-Bindestellen, welche nur in der Gruppe der nicht durch IRA-regulierten Gene, die dauerhaft exprimiert werden (*present call*), zu beobachten waren (GATA6_01, TATA_C, SP1_Q4_01, NFE2_01, NRF1_Q6).

USF-Transkriptionsfaktoren besitzen eine Rolle in der UV-induzierten Genantwort (Corre *et al.*, 2004) und sind Schlüsselregulatoren der Stress- und Immunantwort sowie von Zellzyklus und Proliferation; zelluläre Prozesse, die auch von IRA-regulierten Genen gesteuert werden. Darüber hinaus wird die Bindung von USF-Proteinen an die DNS von den Kinasen p38 und PI3K gesteuert (Corre *et al.*, 2004; Nowak *et al.*, 2005), beides wichtige Signalwege der IRA-Antwort, wie die Kinase-Inhibitor-Experimente zeigen. Die Promotor-Region des Transkriptionsfaktors STAT3 besitzt eine vorhergesagte USF_C-Bindungsstelle und die Inhibitorexperimente zeigten, dass die IRA-induzierte Expression von STAT3 durch p38- und PI3K-Inhibitoren moduliert werden kann.

Die Transkriptionsfaktoren der CREB-Familie vermitteln die UVB-induzierte COX2-Expression, welche über den p38-Signalweg abläuft (Tang *et al.*, 2001). Für CREB-Faktoren wurden Bindestellen bei den IRA-regulierten Genen von STAT3, IL6ST und ATP1B1 gefunden. Die Regulation der Na⁺/K⁺-ATPase-alpha-1-Expression durch CREB über cAMP wurde auch in der Literatur beschrieben (LaPensee *et al.*, 2008).

Der Transkriptionsfaktor POU1, welcher ebenfalls mittels der p38 MAPKinase aktiviert wird (de Guise *et al.*, 2006), schützt vor apoptotischem Zelltod (Quentien *et al.*, 2006). POU1 könnte daher als Vermittler der antiapoptotischen Genantwort fungieren, welche nach IRA Bestrahlung auftritt. In der Promotor-Region des durch IRA-abregulierten Gens VCAM-1 findet sich eine vorhergesagte Bindungsstelle für POU1. Die Inhibitorexperimente (siehe Abb. 3.4) zeigen eine Abhängigkeit der IRA-Regulation von VCAM-1 über den p38-Weg, was die These einer VCAM-1-Regulation nach IR über den POU-Faktor unterstützen würde. Mutationen in diesem Transkriptionsfaktor stehen auch in Bezug zur Langlebigkeit in Mäusen (Holzenberger *et al.*, 2004), so dass eine durch IRA chronisch veränderte Aktivierung von POU1 ebenfalls Einfluss auf die Alterung der in diesem Fall betroffenen Fibroblasten nehmen könnte.

TCF-Transkriptionsfaktoren sind bekannt für ihre Rolle bei der Bildung von Tumoren (Roose & Clevers, 1999). Die Aktivierung von TCF1 wird verstärkt durch die Faktoren STAT3 und AP-1 (Leu *et al.*, 2001), die beide eine wichtige Rolle im Infrarot A-induzierten Signalfluß zu spielen scheinen, wie es die Daten dieser Arbeit und die Studien zur Aufregulation von MMP-1 (Schieke *et al.*, 2002; Schroeder *et al.*, 2007, 2008b) nahelegen.

Die oberhalb des EGR-Faktors gelegenen Signalwege beinhalten ERK1/2, Calciumionen, die PI3Kinase und Oncostatin M als Teil des IL6-/STAT3-Weges (Beidelschies *et al.*, 2008; Valdés *et al.*, 2007; Böing *et al.*, 2006). Zusätzlich zu der Verbindung mit diesen Signalwegen, die alle an der IRA-Antwort beteiligt sind, ist EGR auch an der ROS-Bildung

beteiligt und induziert die ROS-abhängige Inhibierung der Na^+/K^+ -ATPase-Aktivität (Bek *et al.*, 2003), die als Gen selbst durch IRA transkriptionell reguliert ist.

GATA1 ist involviert in die Zellzyklus-Regulation (Dubart *et al.*, 1996) und die Expression dieses Faktors steht in Abhängigkeit von ROS (Nagata *et al.*, 2007) und eine direkte Bindung an STAT3 wurde beschrieben (Ezoe *et al.*, 2005). Somit würde sich GATA1 als IRA-induzierter Transkriptionsfaktor gut in das Gesamtbild der zellulären Antwort einfügen.

Für die Myb-Transkriptionsfaktoren wurde eine Beteiligung in Wundheilungsprozessen beschrieben (Kopecki *et al.*, 2007). Der Faktor b-Myb fungiert als Repressor des Matrixgens COL1A1 (Cicchillitti *et al.*, 2004). Für c-Myb ist die Steuerung der Degradation über die p38-MAP-Kinase beschrieben (Pani & Ferrari, 2008) und darüber hinaus reguliert c-Myb die Transkription des Inositolphosphat Rezeptors Typ 1 (Afroze *et al.*, 2007). Somit lässt sich auch für die Myb-Transkriptionsfaktoren sagen, dass im Vergleich der Prozesse, an denen Myb beteiligt ist und den Genen, die Myb reguliert, mit den Effekten und regulierten Genen von IRA Übereinstimmungen zu verzeichnen sind, so dass es sich auch bei Myb um einen aussichtsreichen Transkriptionsfaktor-Kandidaten, der an der IRA-Antwort beteiligt sein könnte, handelt.

3 Ergebnisse

4 Diskussion

4.1 Vergleich der Reaktion von Fibroblasten verschiedener Spender auf IRA

Der Vergleich der gesamten Expressionsprofile von verschiedenen IRA-bestrahlten Fibroblastenzellen mitsamt entsprechender *sham*-Kontrollen von verschiedenen Spendern mittels hierarchischem *Clustering* deutet auf stark interindividuelle Unterschiede zwischen den verschiedenen Spendern hin, die auch den Effekt von IRA beeinflussen. Diese Ergebnisse bestätigen die Beobachtung, dass verschiedene Individuen nicht gleich auf den IRA-Stimulus reagieren (Schroeder *et al.*, 2008b). Die Veränderungen in der Genexpression, welche durch IRA induziert werden, hat die selbe Größenordnung, wie es für andere Strahlungsarten gegenüber Fibroblasten gezeigt wurde (Boerma *et al.*, 2006). Somit sollte IRA in Analogie zur UV-Strahlung sowohl vom genregulatorischen Potential betrachtet, als auch von der alltäglichen Exposition durch den großen Anteil von IRA im natürlichen Sonnenlicht (siehe Abschnitt 1.1) her gesehen, als eine relevante Noxe betrachtet werden, die zu substantiellen Veränderungen in der Genexpression von Haut-Fibroblasten führen kann.

4.2 Einfluss von IRA auf die extrazelluläre Matrix

Es ist gezeigt worden, dass das Matrixprotein Fibronektin 1 auch in gealterten humanen dermalen Fibroblasten vermindert exprimiert wird (Molinari *et al.*, 2008), und dies ebenfalls in lichtgealterten HaCat Zellen der Fall ist (Lee *et al.*, 2005). Das Adhäsionsmolekül VCAM-1 ist ebenfalls an Zelladhäsion, Migration und der Wundheilung beteiligt und es wurde in oxidativ gestresstem altem Gewebe differentiell exprimiert gefunden (Zou *et al.*, 2006). Das hier vorliegende Ergebnis der Abregulation von FN1 und VCAM-1 durch IRA unterstützt die Schlussfolgerung, dass es sich bei IRA um einen wichtigen Faktor in der Lichtalterung der Haut handelt.

Zusammengefasst unterstützen diese Ergebnisse die Annahme, dass IRA-Strahlung an den lichtalterungsbedingten Veränderungen der extrazellulären Matrix beteiligt ist.

4.3 Die Rolle von Calcium in der IRA-Antwort

Es wurde bereits vermutet, dass IRA-Strahlung die zelluläre Calcium Homöostase und davon abhängige Signalprozesse beeinflusst. Lubart *et al.* (1997) haben demonstriert, dass die Verwendung eines Lasers im IRA-Bereich die Calcium Homöostase von Mitochondrien in Sperma verändert. In unserer Arbeitsgruppe konnte bereits gezeigt werden (Schroeder *et al.*, 2007), dass IRA zu einem erhöhten Level an mitochondrialem ROS führt, welcher bekannterweise als Auslöser von Calcium-Strömen und der Initiation von Calcium-abhängigem Signalfluss dient (Biswas *et al.*, 1999, 2005; Rosenstock *et al.*, 2004; Ichas *et al.*, 1997).

Die Expression der Na⁺/K⁺-ATPase ATP1B1 ist nach IRA-Behandlung erniedrigt. ATP1B1 erhöht die Produktion von mitochondrialem ROS und reguliert den intrazellulären Calcium-Fluss (Xie & Cai, 2003) und ist somit ein Kandidat, der wahrscheinlich in den frühen Ereignissen der zellulären IRA-Antwort eine Rolle spielt. Im Zusammenhang mit Alterungsprozessen wird von einer Abnahme der Na⁺/K⁺-ATPase-Aktivität berichtet, die durch oxidativen Stress hervorgerufen wird (Chakraborty *et al.*, 2003). Darüber hinaus wurde eine verringerte Expression der Na⁺/K⁺-ATPase in gealterten Zellen vorgefunden (Dencher *et al.*, 2007).

Daher könnten IRA-induzierte Calciumsignal-Flüsse ebenfalls eine kompensatorische Abregulation der beteiligten Calciumkanäle hervorrufen. Beide IP₃-Rezeptoren werden durch Bindung von Zytochrom C moduliert (Boehning *et al.*, 2003), welches vom Mitochondrium nach IRA-Bestrahlung freigesetzt wird (Frank *et al.*, 2004).

Darüber hinaus fand man die PI3Kinase in *C.elegans* welche MnSOD überexprimierten und Drosophila *daf-2*-Mutanten, welche über eine erhöhte Lebensspanne verfügen, diametral entgegengesetzt gegenüber dem Einfluss von IRA reguliert (Curtis *et al.*, 2007); es kommt in diesen beiden Modellorganismen der verzögerten Alterung zur Aufregulation von PI3K, währenddessen IRA zu einer Abregulation der Expression führt.

Zusammengenommen weisen die Daten aus den Microarrays und den PCR-Experimenten unterstützt durch Hinweise aus der Literatur deutlich darauf hin, dass Calcium- und Calcium-abhänginge-Signaltransduktion in der zellulären IRA-Antwort eine Rolle spielt.

4.4 Beteiligung der Stress-Signalwege an der zellulären Reaktion auf IRA

Die verminderte Expression von IL6ST deutet auf eine Beteiligung des IL-6-Signalflusses in der IRA-Antwort hin. IL6ST spielt eine wichtige Rolle in der Neoangiogenese, da es die IL6-induzierte VEGF-Expression zusammen mit ERK1/2 vermittelt (Omori *et al.*, 2004). Der IL6-Weg könnte weitere Querverbindungen zu den IRA-induzierten Signalprozessen aufweisen, da der nicht-membran-assoziierte IL6-Rezeptor Calciumionen-Fluss induziert und selektiv die Chemokin-Expression in humanen dermalen Fibroblasten moduliert (Spörri *et al.*, 1999). Die Idee einer IL6-Beteiligung wird weiter unterstützt durch den Einfluss von IRA auf STAT3, ein wichtiges Ziel des IL6-Signalweges. Schädliche Effekte für die Haut wurden auch durch Aktivierung von STAT3 beschrieben (Aziz *et al.*, 2007) und STAT3 ist zudem auch ein Ziel der IRA-induzierbaren MAPKinase ERK1/2 (Chung *et al.*, 1997) sowie des retrograden mitochondrialen mTOR-Weges (Schieke & Finkel, 2006; Yokogami *et al.*, 2000), die weitere mögliche Querverbindungen zu IRA-Signalprozessen darstellen könnten.

4.5 Einfluss von IRA auf die Expression von Genen der Apoptose und zugehöriger Signalwege

Aufgrund der Komplexität der durch IRA-Strahlung regulierten Apoptose-assoziierten Gene, ist es schwer, auf einen eindeutig anti-apoptotischen IRA-Effekt auf Fibroblasten zu schließen. Die IRA-induzierte Abregulation von BAX kann als anti-apoptotischer Effekt betrachtet werden, aber auf der anderen Seite die Aufregulation von BAD als pro-apoptotisch. Interessanterweise reguliert die ROS-induzierte Modulation des Zellüberlebens über den PI3Kinase-/AKT-Pfad auf direktem Wege BAD (Clerkin et al., 2008), was den Apoptose-modulierenden IRA-Effekt mit der erhöhten ROS-Menge nach Bestrahlung verbindet (Schroeder et al., 2007). Die IRA-induzierte Regulation der vier in der realtime-PCR untersuchten Gene BAX, BAD, FASTK und TNFRSF6B deutet auf einen heterogenen Effekt von IRA auf die Apoptose hin. Dieser heterogene Effekt deckt sich mit den Ergebnissen von Frank et al. (2004), die durch IRA-gesteuerte, zunächst frühe apoptotische Ereignisse beobachteten, obwohl die Apoptose auf späteren Stufen blockiert ist. Die Microarray-Daten zeigen ebenfalls eine Abregulation von Caspasen (CASP-1, CASP-7) und darüber hinaus noch eine verminderte Expression eines weiteren pro-apoptotischen Gens FAF1 (Fas assoziierter Faktor 1), was daher die Idee, dass IRA Einfluss auf das Fortschreiten der Apoptose nehmen kann, unterstützt.

4.6 IRA-induzierte Signalwege

Die in den *realtime*-PCR-Experimenten analysierten Gene sind in ihrer Regulation durch IRA ebenfalls von der Mehrzahl der mit Hilfe der verschiedenen Inhibitoren untersuchten Signalwege beeinflusst und die Diversität der Beteiligungsmuster der verschiedenen Signalwege unterstreicht, dass es sich bei der zellulären IRA-Antwort um eine global auf die Fibroblastenzellen wirkende Reaktion handelt. Neben der bereits bekannten Rolle der MAP-Kinasen ERK1/2 für die Aufregulation von MMP-1 konnte hier gezeigt werden, dass dieser Signalweg eine Rolle in der IRA-abhängigen Regulation weiterer Gene spielt und es wurde zum ersten Mal gezeigt, dass der p38-, der JNK-, PI3K/AKT-, und der STAT3-Pfad ebenso wie Calcium-vermittelter Signalfluss stark an der IRA-Genantwort beteiligt sind.

4.7 Funktionelle Relevanz von ROS in der IRA-induzierten Genregulation

Mechanistisch betrachtet, zeigen die hier aufgeführten Daten, dass die Mitochondrien in Bezug auf die IRA-Antwort ein dominanter Faktor sind, aber der IRA-induzierte Signalfluss und die resultierenden Änderungen der Genexpression nicht alleine auf die Mitochondrien zurückzuführen sind. Es konnte vielmehr in dieser Arbeit zum ersten Mal gezeigt werden, dass IRA-Bestrahlung über den Effekt auf das mitochondrielle ROS hinaus zu zusätzlichem, ROS-abhängigem Signalfluss führt. Dieser zusätzliche durch ROS hervorgerufene Signalfluss ist unabhängig vom Mitochondrium und konnte somit nicht durch Behandlung mit dem sich in den Mitochondrien anreichernden Antioxidanz MitoQ gestoppt werden. Eine Behandlung der Zellen mit NAC war hingegen in der Lage diesen IRA-induzierten Signalfluss zu verändern. Dies veranlasst zu der Vermutung, dass neben der mitochondriellen Elektronentransportkette (Krutmann & Schroeder, 2009; Karu, 2008) wenigstens ein weiteres IRA-Chromophor in einem anderen Kompartiment der Zelle existieren muss. Da aber das globale Auftreten von ROS in allen untersuchten Genen für die IRA-induzierte Genregulation nötig war, liegt der Verdacht nahe, dass es sich bei den zusätzlichem IRA-Chromophor um weitere ROS- generierende Systeme der Zelle handeln könnte, wie z.B. die Familie der NADPH-Oxidasen. Diese Spekulation wird dadurch gestützt, dass die Mitglieder der NADPH-Oxidase Proteinfamilie wie auch die IRA-absorbierende mitochondrielle Cytochrom C Oxidase (Karu, 2008) in den Mitochondrien Kupferionen in ihrem katalytischen Zentrum besitzen (Morré *et al.*, 2008) und somit ein ähnlicher ROS-generierender Mechanismus denkbar wäre.

Abbildung 4.1: Schema der IRA-induzierten Genregulation.

4.8 Transkriptionsfaktoren in der IRA-Antwort

Zusammengefasst lässt sich sagen, dass der Abgleich mit den Ergebnissen der Signalkinasen-Inhibitorexperimente und weiteren Befunden aus der Literatur eine Beteiligung der Transkriptionsfaktor-Kandidaten aus der *in silico*-Analyse in der IRA-Antwort sehr plausibel erscheinen lässt, so dass ein direkter Beweis der Beteiligung dieser Faktoren über DNS-Bindungsstudien und Reportergen-Assays in zukünftigen Experimenten sehr erfolgversprechend erscheint.

4.9 Übereinstimmungen zwischen IRA-regulierten Genen und beschriebenen IRA-Effekten

Verschiedene Effekte von IRA wurden bisher in der Literatur beschrieben, ein weiterer Einblick in die dahinter liegenden molekularen Mechanismen existierte jedoch nur in Teilen. Die Ergebnisse dieser Arbeit liefern einen ersten Einblick in einige dieser Phänomene und zudem zusätzliche Einsicht in bereits etablierte IRA-Effekte. Bezüglich des Lichtalterungseffekts von IRA in der Haut fokussierten sich bisherige Untersuchungen auf die Störung des dermalen Kollagengleichgewichts (Schroeder *et al.*, 2007, 2008b; Kim *et al.*, 2006; Buechner *et al.*, 2008). Die in dieser Arbeit gewonnenen Daten zeigen, dass IRA darüber hinaus die Expression von weiteren Genen der extrazellulären Matrix wie Fibronektin 1, Integrine und anderer Proteine, welche den Zell-Matrix-Kontakt vermitteln, beeinflusst. Zur bereits beschriebenen Regulation der Angiogenese durch IRA (Kim *et al.*, 2006) lassen sich daran direkt funktionell beteiligte Gene wie VCAM-1 zuordnen, welche durch IRA reguliert sind, sowie weitere IRA-regulierte Gene, die sich für Aufrechterhalten und Organisation der ECM und Vermittlung des Zell-Matrix-Kontaktes verantwortlich zeigen (siehe oben), welche zudem auch für bei der Regulation der Angiogenese eine Rolle spielen.

Die therapeutische Anwendung von IRA beinhaltet den Einsatz zur Stimulation der kutanen Wundheilung (Danno *et al.*, 2001). Zusätzlich zur bekannten Beteiligung von MMP-9 konnten hier neue IRA regulierte Gene identifiziert werden, die bei der Zelladhäsion und der Zellmigration beteiligt sind und somit wahrscheinlich in der durch IRA-beschleunigten Wundheilung eine Rolle spielen. Die Behandlung von rheumatoider Arthritis profitiert vom anti-inflammatorischen Effekt von IRA (Shibata *et al.*, 2008). Die hier aufgeführten Daten zum IRA-Effekt des IL6/STAT3-Stressantwort-Weges und der Regulation von Chemokin-Liganden könnte einen mechanistischen Einblick in den IRA-gesteuerten, antiinflammatorischen Effekt liefern. Im Hinblick auf die Wechselwirkung von IRA mit der UV-induzierten Apoptose (Menezes *et al.*, 1998; Jantschitsch *et al.*, 2008) konnte eine Aufregulation der anti-apoptotischen Gene FASTK und TNFRSF6B gezeigt werden und die Abregulation von weiteren Genen die an apoptotischen Prozessen oder am Zellzyklus und der Proliferationskontrolle beteiligt sind.

4.10 Ähnlichkeiten und Unterschiede zwischen IRA- und UV-bedingten Effekten

Bei Betrachtung der biologischen Endpunkte wie der Aufregulaton von MMP-1 bei gleichzeitiger Erniedrigung der Coll α 1-Expression sind einige Ähnlichkeiten zwischen IRA und UV zu verzeichnen. Der mechanistische Einblick in die photochemischen und photobiologischen Prozesse der verschiedenen Strahlungsbereiche und die beteiligten Signalwege macht jedoch deutlich, dass sie substantiell voneinander verschieden sind (Krutmann & Schroeder, 2009). Dies wird dadurch unterstützt, dass sechs der in dieser Arbeit identifizierten IRA-regulierten Gene durch UV-Strahlung in genau entgegengesetzer Art reguliert wurden. Während nach IRA-Bestrahlung eine verminderte Expression von IL6ST, FN1 und BAX zu beobachten war, führt UVB hingegen zu einer verstärkten Expression dieser
Gene (Enk *et al.*, 2006; Chen *et al.*, 2008). IRA verursacht eine verstärkte BAD, STAT3 und TNFRSF6B Expression, UVB jedoch führt zu einer Abregulation der Expression dieser Gene (Enk *et al.*, 2006; Sano *et al.*, 2005; Maeda *et al.*, 2001).

Auf der Ebene der Genexpression ist es somit nicht überraschend, dass ein Teil der IRAregulierten Gene bereits ebenfalls durch UV Strahlung reguliert beschrieben worden sind. Diese Tatsache macht noch einmal deutlich, dass IRA eine wichtige Noxe ist, die gemeinsame Endpunkte mit UV besitzt, z.B. die Abregulation von FN1, ATP1A1 und TN-FRSF6 (Lee *et al.*, 2005). Die Expression von VCAM-1 wird explizit als unbeeinflusst von UVA und UVB beschrieben (Heckmann *et al.*, 1994), IRA hingegen führte jedoch, wie in dieser Arbeit gezeigt, zu einer signifikant verminderten VCAM-1-Expression. Zusätzlich wurden hier sechs weitere IRA-regulierte Gene identifiziert (ATP1B1, FASTK, ITPR2, ITPR3, PIK3R3, PIP5K1B), für die keine veränderte Expression nach UV-Behandlung beschrieben wurde. Zusammengefasst zeigen diese Ergebnisse, dass IRA-Bestrahlung zu einer spezifischen zellulären Reaktion in den dermalen Fibroblasten führt, die sich trotz teilweise überlappender Endpunkte wie der Aufregulation von MMP-1 mechanistisch und funktionell von der Reaktion auf UV-Strahlung unterscheidet.

5 Zusammenfassung

Infrarot A-Strahlung (IRA, $\lambda = 760 - 1440$ nm) ist ein maßgeblicher Bestandteil der Sonnenstrahlung und führt ähnlich wie ultraviolette (UV) Strahlung zur Lichtalterung in der menschlichen Haut durch erhöhte Expression der Matrixmetalloproteinase 1 (MMP-1) in humanen dermalen Fibroblasten. Dieser genregulatorische Effekt resultiert aus der IRAinduzierten Aktivierung des pleiotropischen MAPKinase ERK1/2 Signalweges, was zur in dieser Arbeit belegten Hypothese führte, dass die zelluläre Reaktion auf IRA-Exposition weit über die Aufregulation von MMP-1 hinaus reicht. In der hier vorliegenden Arbeit wurden daher die IRA-induzierten Veränderungen des Transkriptoms in primären humanen dermalen Fibroblasten untersucht.

Microarray-Analysen zeigten 599 Transkripte durch physiologisch relevante Dosen an IRA in primären humanen Hautfibroblasten reguliert. Das IRA-induzierte Transkriptom unterscheidet sich deutlich von den Anderungen die durch UVB oder UVA im gleichen Zelltyp induziert werden. IRA-responsive Gene gehörten unter anderem zu folgenden vier Kategorien: Extrazelluläre Matrix, Calcium-Homöostase, Stress und Apoptose. Diese Ergebnisse wurden durch realtime-PCR-Analysen bestätigt, die die IRA-induzierte Regulation von 13 Genen aus den vier Kategorien in allen Fällen bestätigte. Unter Verwendung von chemischen Inhibitoren bekannter zellulärer Signaltransduktionswege konnte gezeigt werden, dass neben ERK1/2- auch die weiteren MAPKinasen p38 und JNK an der IRA-Antwort beteiligt sind, und dass darüberhinaus auch die PI3K/AKT-, STAT3-, IL-6- und Calcium-vermittelten Signalwege eine funktionelle Relevanz für die IRA-Genantwort besitzen. Es konnte gezeigt werden, dass ein maßgeblicher Teil dieser Genregulation und der beteiligten Signalwege durch mitochondrielle und in geringerem Ausmaß auch durch nicht-mitochondrielle Produktion von reaktiven Sauerstoffspezien ausgelöst wird, da bei der Zugabe von MitoQ, einem sich mitochondriell anreicherndem Antioxidanz, die Mehrzahl der untersuchten IRA-induzierten Genexpressionsveränderungen unterbunden werden konnten. Diese Arbeit charakterisiert IRA-Strahlung als einen potenten Regulator der Genexpression in menschlichen Hautzellen.

Bei der zellulären IRA-Antwort in Fibroblasten handelt es sich um eine spezifische Reaktion, die sich trotz teilweise überlappender biologischer Endpunkte deutlich von der Reaktion auf andere Noxen des elektromagnetischen Spektrums unterscheidet. Die hier erstmals identifizierten IRA-regulierten Gene sind von entscheidender Wichtigkeit für die Homöostase der menschlichen Haut. Die in dieser Arbeit gewonnenen Expressionsdaten bestätigen und vertiefen die Erkenntnis, dass die von IRA induzierten Veränderungen der Genexpression zur vorzeitigen Hautalterung beitragen und die Aufklärung der Vielzahl an der IRA-Antwort beteiligten Gene und Signalwege weist daraufhin, dass weitere durch IRA-ausgelöste biologische Effekte in der menschlichen Haut zu erwarten sind.

6 Summary

Infrared A radiation (IRA, $\lambda = 760 - 1440$ nm)is a major part of natural sunlight. Similar to ultraviolet (UV) radiation, IRA leads to light induced ageing of human skin, mainly caused by increased expression of matrixmetalloproteinase 1 (MMP-1) in human dermal fibroblasts. As increased expression of MMP-1 resulted from IRA induced activation of pleiotropic MAPkinase ERK1/2 signaling pathway, this led to the hypothesis proved in this thesis that the cellular reaction to IRA exposition reaches far beyond the upregulation of MMP-1. Therefore this study focused on the IRA induced changes of the transcriptome of human primary dermal fibroblasts.

Microarray-analysis showed 599 transcripts being regulated by physiological relevant doses of IRA in primary human dermal fibroblasts. The IRA induced transcriptome clearly differs from the changes induced by UVB or UVA in the same celltype. IRA responsive genes, among others, fell into these four categories: extracellular matrix, calcium homeostasis, stress and apoptosis. These results were verified by realtime-PCR analysis, confirming the IRA induced regulation of thirteen genes from all four categories in all cases. With the use of chemical inhibitors of known cellular signal transduction pathways it could be shown that besides ERK 1/2 the other MAPkinases p38 and JNK were involved in the IRA response as well. Furthermore it could be shown that PI3K/AKT-, STAT3-, IL6- and calcium mediated signaling has a functional relevance for the IRA gene response. Additionally, the results of this work point out that a major part of this gene regulation and involved signaling is dependent on the production of reactive oxygen species (ROS) in the mitochondria and to a lesser extent to non-mitochondrial ROS production, as application of MitoQ, a mitochondrium targeted antioxidant could abrogate most of the IRA induced gene expression modulation. This work characterizes IRA radiation as a potent regulator of gene expression in human skin cells.

The cellular IRA response in fibroblasts is a specific reaction, which besides partially overlapping endpoints clearly differs from the reaction to other noxae from the electromagnetic spectra. The IRA regulated genes identified for the first time within this work are of crucial importance for skin homeostasis. The gene expression data gained by this work confirms and deepens the insight that IRA induced gene expression changes account for premature skin ageing. Elucidation of the multitude genes and signaling pathways involved in the IRA response points towards further IRA triggered biological effects that can be expected to occur in human skin.

7 Literatur

- Afroze, T, Sadi, AM, Momen, MA, Gu, S, Heximer, S & Husain, M (2007). c-Myb-dependent inositol 1,4,5-trisphosphate receptor type-1 expression in vascular smooth muscle cells. *Arterioscler Thromb Vasc Biol*, 27(6), 1305–1311.
- Amat, A, Rigau, J, Waynant, RW, Ilev, IK & Anders, JJ (2004). The electric field induced by light can explain cellular responses to electromagnetic energy: A hypothesis of mechanism. J Photochem Photobiol B:Biology, 82, 152–160.
- Applegate, LA, Scaletta, C, Panizzon, R, Frenk, E, Hohlfeld, P & Schwarzkopf, S (2000). Induction of the putative protective protein ferritin by infrared radiation: implications in skin repair. Int J Mol Med, 5, 247–251.
- Aziz, MH, Manoharan, HT & Verma, AK (2007). Protein kinase C epsilon, which sensitizes skin to sun's UV radiation-induced cutaneous damage and development of squamous cell carcinomas, associates with Stat3. *Cancer Res*, 67(3), 1385–1394.
- Beidelschies, MA, Huang, H, McMullen, MR, Smith, MV, Islam, AS, Goldberg, VM, Chen, X, Nagy, LE & Greenfield, EM (2008). Stimulation of macrophage TNFalpha production by orthopaedic wear particles requires activation of the ERK1/2/Egr-1 and NF-kappaB pathways but is independent of p38 and JNK. J Cell Physiol, 217(3), 652–666.
- Bek, MJ, Reinhardt, HC, Fischer, KG, Hirsch, JR, Hupfer, C, Dayal, E & Pavenstädt, H (2003). Up-regulation of early growth response gene-1 via the CXCR3 receptor induces reactive oxygen species and inhibits Na+/K+-ATPase activity in an immortalized human proximal tubule cell line. J Immunol, 170(2), 931–940.
- Böing, I, Stross, C, Radtke, S, Lippok, BE, Heinrich, PC & Hermanns, HM (2006). Oncostatin M-induced activation of stress-activated MAP kinases depends on tyrosine 861 in the OSM receptor and requires Jak1 but not Src kinases. *Cell Signal*, 18(1), 50–61.
- Biswas, G, Adebanjo, OA, Freedman, BD, Anandatheerthavarada, HK, Vijayasarathy, C, Zaidi, M, Kotlikoff, M & Avadhani, NG (1999). Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. *EMBO J*, 18(3), 522–533.
- Biswas, G, Guha, M & Avadhani, NG (2005). Mitochondria-to-nucleus stress signaling in mammalian cells: nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. *Gene*, 354, 132–139.
- Biswas, SK & Sodhi, A (2002). Tyrosine phosphorylation-mediated signal transduction in MCP-1-induced macrophage activation: role for receptor dimerization, focal adhesion protein complex and JAK/STAT pathway. *Int Immunopharmacol*, 2(8), 1095–1107.
- Boehning, D, Patterson, RL, Sedaghat, L, Glebova, NO, Kurosaki, T & SH, SH Snyder (2003). Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol, 5(12), 1051–1061.
- Boerma, M, Burton, GR, Wang, J, Fink, LM, Jr, RE McGehee & Hauer-Jensen, M (2006). Comparative expression profiling in primary and immortalized endothelial cells: changes in gene expression in response to hydroxy methylglutaryl-coenzyme A reductase inhibition. *Blood Coagul Fibrinolysis*, 17(3), 173–180.

- Bolstadt, BM, Irizarry, RA, Åstrand, M & Speed, TF (2003). A comparison of normalization methods for high desity oligoncleotide array data based on variance and bias. *Bioinformatics*, 19(2), 185–193.
- Brenneisen, P., Sies, H. & Scharffetter-Kochanek, K. (2002). Ultraviolet-B irradiation and matrix metalloproteinases: from induction via signaling to initial events. Ann. N. Y. Acad. Sci., 973, 31–43.
- Buechner, N, Schroeder, P, Jakob, S, Kunze, K, Maresch, T, Calles, C, Krutmann, J & Haendeler (2008). Changes of MMP-1 and collagen type Ialpha1 by UVA, UVB and IRA are differentially regulated by Trx-1. *Exp Gerontol*, 43(7), 633–637.
- Butow, RA & Avadhani, NG (2004). Mitochondrial signaling: the retrograde response. *Mol Cell*, 14, 1–15.
- Camello-Almaraz, C, Gomez-Pinilla, PJ, Pozo, M & Camello, PJ (2006). Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol, 291, C1082–C1088.
- Campbell & Reece (2003). *Anatomie*, Band 8. Auflage. Springer Verlag, Berlin, Heidelberg, New York.
- Campbell & Reece (2005). *Biology*, Band Seventh edition. The Benjamin Cummings Publishing Company Inc.
- Chakraborty, H, Sen, P, Sur, A, Chatterjee, U & Chakrabarti, S (2003). Age-related oxidative inactivation of Na+, K+-ATPase in rat brain crude synaptosomes. *Exp Gerontol*, 38(6), 705–710.
- Chen, W, Kang, J, Xia, J, Li, Y, Yang, B, Chen, B, Sun, W, Song, X, Xiang, W, Wang, X, Wang, F, Wan, Y & Bi, Z (2008). p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts. *Int J Mol Med.*, 21(5), 645–653.
- Chiarugi, P (2005). PTPs versus PTKs: the redox side of the coin. *Free Radic Res.*, 39(4), 353–364.
- Chung, J, Uchida, E, Grammer, TC & Blenis, J (1997). STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. *Mol Cell Biol*, 17(11), 6508–6516.
- Cicchillitti, L, Jimenez, SA, Sala, A & Saitta, B (2004). B-Myb acts as a repressor of human COL1A1 collagen gene expression by interacting with Sp1 and CBF factors in scleroderma fibroblasts. *Biochem J*, 378(2), 609–616.
- Clerkin, JS, Naughton, R, Quiney, C & Cotter, TG (2008). Mechanisms of ROS modulated cell survival during carcinogenesis. *Cancer Lett*, 266(1), 30–36.
- Corre, S, Primot, A, Sviderskaya, E, Bennett, DC, Vaulont, S, Goding, CR & Galibert, MD (2004). UV-induced expression of key component of the tanning process, the POMC and MC1R genes, is dependent on the p-38-activated upstream stimulating factor-1 (USF-1). J Biol Chem, 279(49), 51226–51233.
- Curtis, C, Landis, GN, Folk, D, Wehr, NB, Hoe, N, Waskar, M, Abdueva, D, Skvortsov, D, Ford, D, Luu, A, Badrinath, A, Levine, RL, Bradley, TJ, Tavaré, S & Tower, J (2007).
 Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. *Genome Biol*, 8(12), R262.
- Dalma-Weiszhausz, DD, Warrington, J, Tanimoto, EY & Miyada, CG (2006). The affymetrix GeneChip platform: an overview. *Methods Enzymol*, 410, 3–28.
- Danno, K, Mori, N, Toda, K, T, T Kobayashi & Utani, A (2001). Near infrared irradiation stimulates cutaneous wound repair: Laboratory experiments on possible mechanisms. *Photodermatol Photoimmunol Photomed*, 17, 261–265.

- Danno, K & Sugie, N (1996). Effects of near-infrared radiation on the epidermal proliferation and cutaneous immune function in mice. *Photodermatol Photoimmunol Photomed*, 12(6), 233–236.
- de Guise, C, Lacerte, A, Rafiei, S, Reynaud, R, Roy, M, Brue, T & Lebrun, JJ (2006). Activin inhibits the human Pit-1 gene promoter through the p38 kinase pathway in a Smad-independent manner. *Endocrinology*, 147(9), 4351–4362.
- Dencher, NA, Frenzel, M, Reifschneider, NH, Sugawa, M & Krause, F (2007). Proteome alterations in rat mitochondria caused by aging. Ann N Y Acad Sci, 1100, 291–298.
- Dubart, A, Roméo, PH, Vainchenker, W & Dumenil, D (1996). Constitutive expression of GATA-1 interferes with the cell-cycle regulation. *Blood*, 87(9), 3711–3721.
- Ellinger-Ziegelbauer, H., Brown, K., Kelly, K. & Siebenlist, U. (1997). Direct activation of the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by an inducible mitogen-activated protein Kinase/ERK kinase kinase 3 (MEKK) derivative. J. Biol. Chem., 272(5), 2668–2674.
- Elstner, E (1990). Der Sauerstoff: Biochemie, Biologie, Medizin. BI-Wissenschaftsverlag, Mannheim, Wien, Zürich.
- Endres, L & Fritsch, P (1997). Physikalische Grundlagen, Lichtquellen, Dosimetrie. In: Krutmann, J., Hönigsmann, H.(Hrsg.): Handbuch der dermatologischen Phototherapie und Photodiagnostik., Band 2. Auflage. Springer, Berlin.
- Enk, CD, Jacob-Hirsch, J, Gal, H, Verbovetski, I, Amariglio, N, Mevorach, D, Ingber, A, Givol, D, Rechavi, G & Hochberg, M (2006). The UVB-induced gene expression profile of human epidermis in vivo is different from that of cultured keratinocytes. *Oncogene*, 25, 2601–2614.
- Ezoe, S, Matsumura, I, Gale, K, Satoh, Y, Ishikawa, J, Mizuki, M, Takahashi, S, Minegishi, N, Nakajima, K, Yamamoto, M, Enver, T & Kanakura, Y (2005). GATA transcription factors inhibit cytokine-dependent growth and survival of a hematopoietic cell line through the inhibition of STAT3 activity. J Biol Chem, 280(13), 13163–13170.
- Fisher, GJ, Kang, S, Varani, J, Bata-Csorgo, Z, Wan, Y, Datta, S & Voorhees, JJ (2002). Mechanisms of photoaging and chronological skin aging. Arch Dermatol, 138(11), 1462–1470.
- Fisher, GJ, Wang, ZQ, Datta, SC, Varani, J, Kang, S & Voorhees, JJ (1997). Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med, 337(20), 1419–1428.
- Frank, S, Menezes, S, Coster, C Lebreton-De, Oster, M, Dubertret, L & Coulomb, B (2006). Infrared radiation induces the p53 signalling pathway: role in infrared prevention of ultraviolet B toxicity. *Exp. Dermatol*, 15, 130–137.
- Frank, S, Oliver, L, Coster, C Lebreton-De, Moreau, C, Lecabellec, M-T, Laurence, M, Vallette, FM, Dubertret, L & Coulomb, B (2004). Infrared Radiation Affects the Mitochondrial Pathway of Apoptosis in Human Fibroblasts. J Invest Dermatol, S. 823–831.
- Freedberg, I., Eisen, A., Wolff, K., Austen, K., Goldsmith, L. & Katz, S. (2003). *Fitzpatrick's Dermatology in General Medicine*, Band 6th edition. Mc Graw Hill, New York.
- Fritsch, P. (2004). Dermatologie und Venerologie Lehrbuch und Atlas, Band 2. Auflage. Springer, Berlin.
- Gautier, Laurent, Cope, Leslie, Bolstad, Benjamin M. & Irizarry, Rafael A. (2004). Affy: analysis of Affymetrix GeneChip data at the probe level. *Bioinformatics*, 20(3), 307–315.
- Gene, Ontology Consortium (2004). The Gene Ontology (GO) database and informatics resource. *Nucleic Acids Research, Database Issue*, 32, D258–D261.
- Gilchrest, B.A. & Krutmann, J. (2006). Photoaging. Springer, Heidelberg New York.

- Girolamo, N. Di, Coroneo, M. & Wakefield, D. (2005). Epidermal growth factor receptor signaling is partially responsible for the increased matrix metalloproteinase-1 expression in ocular epithelial cells after UVB radiation. Am. J. Pathol., 167(2), 489–503.
- Grether-Beck, S., Buettner, R. & Krutmann, J. (1997). Ultraviolet A radiation-induced expression of human genes: molecular and photobiological mechanisms. *Biol. Chem.*, 378(11), 1231–1236.
- Heckmann, M, Eberlein-König, B, Wollenberg, A, Przybilla, B & Plewig, G (1994). Ultraviolet-A radiation induces adhesion molecule expression on human dermal microvascular endothelial cells. Br J Dermatol, 131(3), 311–318.
- Hijova, E. (2005). Matrix metalloproteinases: their biological functions and clinical implications. *Bratisl. Lek. Listy*, 106(3), 127–132.
- Holzenberger, M, Kappeler, L & Filho, C De Magalhaes (2004). IGF-1 signaling and aging. Exp Gerontol, 39(11-12), 1761–1764.
- Horwitz, LR, Burke, TJ & Carnegie, D (1999). Augmentation of wound healing using monochromatic infrared energy. Exploration of a new technology for wound mangement. Adv Wound Care, 12, 35–40.
- Ichas, F, Jouaville, LS & Mazat, JP (1997). Mitochondria are exitable organelles capable of generating and conveying electrical and calcium signals. *Cell*, 89, 1145–1153.
- Jantschitsch, C, Majewski, S, Maeda, A, Schwarz, T & Schwarz, A (2008). Infrared Radiation Confers Resistance to UV-Induced Apoptosis Via Reduction of DNA Damage and Upregulation of Antiapoptotic Proteins. J Invest Dermatol, S. [Epub ahead of print].
- Karu, TI (2008). Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. *Photochem Photobiol*, 84(5), 1091–1099.
- Karu, TI, Pyatibrat, LV & Afanasyeva, NI (2004). A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. *Photochem Photobiol*, 80(2), 366–372.
- Karu, TI, Pyatibrat, LV & Kalendo, GS (2001). Cell attachment modulation by radiation from a pulsed light diode (lambda = 820 nm) and various chemicals. *Lasers Surg Med*, 28(3), 227–236.
- Kim, HH, Lee, MJ, Lee, SR, Kim, KH, Cho, KH, Eun, HC & Chung, JH (2005). Augmentation of UV-induced skin wrinkling by infrared irradiation in hairless mice. Mech Ageing Dev, 126(11), 1170–1177.
- Kim, MS, Kim, YK, Cho, KH & Chung, JH (2006). Regulation of type I procollagen and MMP-1 expression after single or repeated exposure to infrared radiation in human skin. *Mech Ageing Dev*, 127(12), 875–882.
- Kligman, LH (1982). The role of integrin binding sites in fibronectin matrix assembly in vivo. Arch Dermatol Res, 272(3-4), 229–238.
- Kochevar, IE, Taylor, CR & Krutmann, J (2008). Fundamentals of cutaneous photobiology and photoimmunology. In: Wolff, K., Goldsmith, L.A., Katz, S., Gilchrest, B., Paller, A.S., Lefell, D.J. (Eds.), Fitapatrick's Dermatology in General Medicine, Band 7. Auflage. McGraw-Hill, New York.
- Kok, SH, Hong, CY, Kuo, MY, Wang, CC, Hou, KL, Lin, YT, Galson, DL & Lin, SK (2009). Oncostatin M-induced CCL2 transcription in osteoblastic cells is mediated by multiple levels of STAT-1 and STAT-3 signaling: An implication for the pathogenesis of arthritis. *Arthritis Rheum*, 60(5), 1451–1462.
- Kopecki, Z, Luchetti, MM, Adams, DH, Strudwick, X, Mantamadiotis, T, Stoppacciaro, A, Gabrielli, A, Ramsay, RG & Cowin, AJ (2007). Collagen loss and impaired wound healing is associated with c-Myb deficiency. J Pathol, 211(3), 351–361.

Krutmann, J & Gilchrest, BA (2006). Photoaging of skin. In: Gilchrest, B., Krutmann, J. (Eds.), Skin Aging. Springer-Verlag, Berlin/Heidelberg.

Krutmann, J & Schroeder, P (2009). JIDSP.

- Kuo, TH, Liu, BF, Yu, Y, Wuytack, F, Raeymaekers, L & Tsang, W (1997). Co-ordinated regulation of the plasma membrane calcium pump and the sarco(endo)plasmic reticular calcium pump gene expression by Ca2+. Cell Calcium, 21(6), 399–408.
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.
- Lamb, FS, Clayton, GH, Liu, BX, Smith, RL, Barna, TJ & Schutte, BC (1999). Expression of CLCN voltage-gated chloride channel genes in human blood vessels. J Mol Cell Cardiol, 31(3), 657–66.
- Lambert, E., Dasse, E., Haye, B. & Petitfrere, E. (2004). TIMPs as multifacial proteins. Crit Rev. Oncol. Hematol., 49(3), 187–198.
- LaPensee, CR, Hugo, ER & Ben-Jonathan, N (2008). Insulin stimulates interleukin-6 expression and release in LS14 human adipocytes through multiple signaling pathways. *Endocrinology*, 149(11), 5415–5422.
- Lee, K.M., Lee, J.G., Seo, E.Y., Lee, W.H., Nam, Y.H., Yang, J.M., Kee, S.H., Seo, Y.J., Park, J.K., Kim, C.D. & Lee, J.H. (2005). Analysis of genes responding to ultraviolet B irradiation of HaCaT keratinocytes using a cDNA microarray. *British Journal of Dermatology*, 152, 52–59.
- Leiss, M, Beckmann, K, Girós, A, Costell, M & Fässler, R (2008). The role of integrin binding sites in fibronectin matrix assembly in vivo. *Curr Opin Cell Biol*, 20(5), 502–507.
- Lemaitre, V. & D'Armiento, J. (2006). Matrix metalloproteinases in development and disease. Birth Defects Res. C. Embryo. Today, 78(1), 1–10.
- Leu, JI, Crissey, MA, Leu, JP, Ciliberto, G & Taub, R (2001). Interleukin-6-induced STAT3 and AP-1 amplify hepatocyte nuclear factor 1-mediated transactivation of hepatic genes, an adaptive response to liver injury. *Mol Cell Biol*, 21(2), 414–424.
- Li, W, Kedersha, N, Chen, S, Gilks, N, Lee, G & Anderson, P (2004). FAST is a BCL-X(L)-associated mitochondrial protein. *Biochem Biophys Res Commun*, 318(1), 95–102.
- Liochev, SI & Fridovich, I (2007). The effects of superoxide dismutase on H2O2 formation. Free Radic Biol Med, 42(10), 1465–1469.
- Lubart, R, Friedmann, H, Sinyakov, M, Cohen, N & Breitbart, H (1997). Changes in calcium transport in mammalian sperm mitochondria and plasma membranes caused by 780 nm irradiation. *Lasers Surg. Med*, 21(5), 493–499.
- Maeda, T, Hao, C & Tron, VA (2001). Ultraviolet light (UV) regulation of the TNF family decoy receptors DcR2 and DcR3 in human keratinocytes. *Cutan Med Surg.*, 5(4), 294–298.
- Maere, Steven, Heymans, Karel & Kuiper, Martin (2005). BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. *Bioinformatics*, 21(16), 3448–3449.
- Mahns, A., Melchheier, I., Suschek, C. V., Sies, H. & Klotz, L. O. (2003). Irradiation of cells with ultraviolet-A (320-400 nm) in the presence of cell culture medium elicits biological effects due to extracellular generation of hydrogen peroxide. *Free Radic. Res.*, 37(4), 391–397.
- medOCT group (2006). Der Aufbau der Haut medOCT-group at the Centre of biomedical Technology and Physics, Medical University Vienna, siehe: http://www.medoct.at/

- Menezes, S, Coulomb, B, Lebreton, C & Dubertret, L (1998). Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. J Invest Dermatol, 111(4), 629–633.
- Molinari, J, Ruszova, E, Velebny, V & Robert, L (2008). Effect of advanced glycation endproducts on gene expression profiles of human dermal fibroblasts. *Biogerontology*, 9(3), 177–182.
- Morré, DJ, Jiang, Z, Marjanovic, M, Orczyk, J & Morré, DM (2008). Response of the regulatory oscillatory behavior of copperII-containing ECTO-NOX proteins and of CuIICl2 in solution to electromagnetic fields. J Inorg Biochem., 102(9), 1812–1818.
- Nagata, M, Arimitsu, N, Ito, T & Sekimizu, K (2007). Antioxidant N-acetyl-L-cysteine inhibits erythropoietin-induced differentiation of erythroid progenitors derived from mouse fetal liver. *Cell Biol Int*, 31(3), 252–256.
- Neel, B. G. & Tonks, N. K. (1997). Protein tyrosine phosphatases in signal transduction. *Curr. Opin. Cell Biol.*, 9(2), 193–204.
- Nowak, M, Helleboid-Chapman, A, Jakel, H, Martin, G, Duran-Sandoval, D, Staels, B, Rubin, EM, Pennacchio, LA, Taskinen, MR, Fruchart-Najib, J & Fruchart, JC (2005). Insulin-mediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway: role of upstream stimulatory factor. *Mol Cell Biol*, 25(4), 1537–1548.
- Oakes, SA, Scorrano, L, Opferman, JT, Bassik, MC, Nishino, M, Pozzan, T & Korsmeyer, SJ (2005). Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. *Proc Natl Acad Sci*, 102(1).
- Omori, K, Naruishi, K, Nishimura, F, Yamada-Naruishi, N & Takashiba, S (2004). High glucose enhances interleukin-6-induced vascular endothelial growth factor 165 expression via activation of gp130-mediated p44/42 MAPK-CCAAT/enhancer binding protein signaling in gingival fibroblasts. J Biol Chem, 279(8), 6643–6649.
- Pani, E & Ferrari, S (2008). p38MAPK delta controls c-Myb degradation in response to stress. Blood Cells Mol Dis, 40(3), 288–394.
- Pankow, S, Bamberger, C, Klippel, A & Werner, S (2006). Regulation of epidermal homeostasis and repair by phosphoinositide 3-kinase. J Cell Sci, 119(19), 4033–4046.
- Püschel, HU, Chang, J, Müller, PK & Brinckmann, J (1995). Attachment of intrinsically and extrinsically aged fibroblasts on collagen and fibronectin. J Photochem Photobiol B, 27(1), 39–46.
- Quentien, MH, Barlier, A, Franc, JL, Pellegrini, I, Brue, T & Enjalbert, A (2006). Pituitary transcription factors: from congenital deficiencies to gene therapy. *Neuroendocrinol*, 18(9), 633–642.
- Reimann, V, Krämer, U, Sugiri, D, Schroeder, P, Hoffmann, B, Medve-Koenigs, K, Jöckel, KH, Ranft, U & Krutmann, J (2008). Sunbed use induces the photoaging-associated mitochondrial common deletion. J Invest Dermatol, 128(5), 1294–1297.
- Roose, J & Clevers, H (1999). TCF transcription factors: molecular switches in carcinogenesis. Biochim Biophys Acta, 1424(2-3), M23–37.
- Rosenstock, TR, Carvalho, AC, Jurkiewicz, A, Frussa-Filho, R & Smaili, SS (2004). Mitochondrial calcium, oxidative stress and apoptosis in a neurodegenerative disease model induced by 3-nitropropionic acid. J Neurochem, 88(5), 1220–1228.
- Sakamoto, T, Ishibashi, T & Maruyama, Y (2007). Role of Ca(2+)influx in tissue factor expression in monocyte adhesion to endothelial cells. J Atheroscler Thromb, 14(3), 109–115.
- Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989). *Molecular cloning: A laboratory manual.*, Band second edition. Cold Spring habor Laboratory, New York.

- Sano, S, Chan, KS, Kira, M, Kataoka, K, Takagi, S, Tarutani, M, Itami, S, Kiguchi, K, Yokoi, M, Sugasawa, K, Mori, T, Hanaoka, F, Takeda, J & DiGiovanni, J (2005). Signal transducer and activator of transcription 3 is a key regulator of keratinocyte survival and proliferation following UV irradiation. *Cancer Res.*, 65(13), 5720–5729.
- Scharffetter-Kochanek, K., Wlaschek, M., Briviba, K. & Sies, H. (1993). Singlet oxygen induces collagenase expression in human skin fibroblasts. *FEBS Lett.*, 331(3), 304–306.
- Schauen, M, Hornig-Do, HT, Schomberg, S, Herrmann, G & Wiesner, RJ (2007). Mitochondrial electron transport chain activity is not involved in ultraviolet A (UVA)-induced cell death. Free Radic Biol Med, 42, 499–509.
- Schieke, SM & Finkel, T (2006). Mitochondrial signaling, TOR, and life span. Biol Chem, 387(10-11), 1357–1361.
- Schieke, SM, Schroeder, P & Krutmann, J (2003). Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms. *Photodermatol Photoimmunol Photomed*, 19, 228–234.
- Schieke, SM, Stege, H, Kürten, V, Grether-Beck, S, Sies, H & Krutmann, J (2002). Infrared-A radiation-induced matrix metalloproteinase 1 expression is mediated through extracellular signal-regulated kinase 1/2 activation in human dermal fibroblasts. J Invest Dermatol, 119, 1323–1329.
- Schroeder, P, Haendeler, J & Krutmann, J (2008). The role of near infrared radiation in photoaging of the skin. *Exp Gerontol*, 43(7), 629–632.
- Schroeder, P, Lademann, J, Darvin, ME, Stege, H, Marks, C, Bruhnke, S & Krutmann, J (2008). Infrared radiation-induced matrix metalloproteinase in human skin: implications for protection. J Invest Dermatol, 128(10), 2491–2497.
- Schroeder, P, Pohl, C, Calles, C, Marks, C, Wild, S & Krutmann, J (2007). Cellular response to infrared radiation involves retrograde mitochondrial signaling. *Free Radic Biol Med*, 43(1), 138–135.
- Seger, R. & Krebs, E. G. (1995). The MAPK signaling cascade. FASEB J., 9(9), 726–735.
- Shannon, Paul, Markiel, Andrew, Ozier, Owen, Baliga, Nitin S., Wang, Jonathan T., Ramage, Daniel, Amin, Nada, Schwikowski, Benno & Ideker, Trey (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. *Genome Research*, 13, 2498–2504.
- Shibata, Y, Araki, H, Oshitani, T, Imaoka, A, Matsui, M, Miyazawa, K & Abiko, Y (2008). Effects of linear polarized infrared light irradiation on the transcriptional regulation of IL-8 expression in IL-1beta-stimulated human rheumatoid synoviocytes involves phosphorylation of the NF-kappaB RelA subunit. J Photochem Photobiol B, S. [Epub ahead of print].
- Shin, MH, Moon, YJ, Seo, JE, Lee, Y, Kim, KH & Chung, JH (2008). Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP-1 and MMP-9 expression. *Free Radic Biol Med*, 44, 635–645.
- Spörri, B, Müller, KM, Wiesmann, U & Bickel, M (1999). Soluble IL-6 receptor induces calcium flux and selectively modulates chemokine expression in human dermal fibroblasts. *Int Immunol*, 11(7), 1053–1058.
- Sun, H, Palaniswamy, S, Pohar, T, Jin, V & Davuluri, RV (2006). MPromDb: An integrated resource for annotation and visualization of mammalian gene promoters and ChIP-chip experimental data. *Nucleic Acids Research, Database Issue*, 34, D98–D103.
- Tang, Q, Chen, W, Gonzales, MS, Finch, J, Inoue, H & Bowden, GT (2001). Role of cyclic AMP responsive element in the UVB induction of cyclooxygenase-2 transcription in human keratinocytes. Oncogene, 20(37), 5164–5172.

Tauskela, JS (2007). MitoQ-a mitochondria-targeted antioxidant. IDrugs, 10(6), 399-412.

- Trifunovic, A, Wredenberg, A, Falkenberg, M, Spelbrink, JN, Rovio, AT, Bruder, CE, Bohlooly, YM, Gidlöf, S, Oldfors, A, Wibom, R, Törnell, J, Jacobs, HT & Larsson, NG (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. *Nature*, 27(429), 417–423.
- Valdés, JA, Hidalgo, J, Galaz, JL, Puentes, N, Silva, M, Jaimovich, E & Carrasco, MA (2007). NF-kappaB activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals. Am J Physiol Cell Physiol, 292(5), C1960–1970.
- Weernink, PA Oude, Schmidt, M & Jakobs, KH (2004). Regulation and cellular roles of phosphoinositide 5-kinases. *Eur J Pharmacol*, 500(1-3), 87–99.
- Wenk, J, Schüller, J, Hinrichs, C, Syrovets, T, Azoitei, N, Podda, M, Wlaschek, M, Brenneisen, P, Schneider, LA, Sabiwalsky, A, Peters, T, Sulyok, S, Dissemond, J, Schauen, M, Krieg, T, Wirth, T, Simmet, T & Scharffetter-Kochanek, K (2004). verexpression of phospholipid-hydroperoxide glutathione peroxidase in human dermal fibroblasts abrogates UVA irradiation-induced expression of interstitial collagenase/matrix metalloproteinase-1 by suppression of phosphatidylcholine hydroperoxide-mediated NFkappaB activation and interleukin-6 release. J Biol Chem., 279(44), 45634–45642.
- Wlaschek, M., Heinen, G., Poswig, A., Schwarz, A., Krieg, T. & Scharffetter-Kochanek, K. (1994). UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6. *Photochem. Photobiol.*, 59(5), 550–556.
- Woessner, JF & Nagase, H (2000). *Matrix metalloproteinases and TIMPs*, Band Seventh edition. Oxford University Press, New York.
- Wolfson, M, Budovsky, A, Tacutu, R & Fraifeld, V (2009). The signaling hubs at the crossroad of longevity and age-related disease networks. *Int J Biochem Cell Biol.*, 41(3), 516–520.
- Xie, Z & Cai, T (2003). Na+-K+–ATPase-mediated signal transduction: from protein interaction to cellular function. *Mol Interv*, 3(3), 157–168.
- Yaar, M (2006). Clinical and histological features of intrinsic versus extrinsic skin aging. In: Gilchrest, B., Krutmann, J. (Eds.), Skin Aging. Springer-Verlag, Berlin/Heidelberg.
- Yang, CR, Hsieh, SL, Ho, FM & Lin, WW (2005). Decoy receptor 3 increases monocyte adhesion to endothelial cells via NF-kappa B-dependent up-regulation of intercellular adhesion molecule-1, VCAM-1, and IL-8 expression. J Immunol, 174(3), 1647–1656.
- Yokogami, K, Wakisaka, S, Avruch, J & Reeves, SA (2000). Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. *Curr Biol*, 10(1), 47–50.
- Zambrzycka, A (2004). Aging decreases phosphatidylinositol-4,5-bisphosphate level but has no effect on activities of phosphoinositide kinases. *Pol J Pharmacol*, 56(5), 651–654.
- Zastrow, L, Groth, N, Klein, F, Kockott, D, Lademann, J, Renneberg, R & Ferrero, L (2009). The missing link–light-induced (280-1600 nm) free radical formation in human skin. Skin Pharmacol Physiol., 22(1), 31–44.
- Zou, Y, Yoon, S, Jung, KJ, Kim, CH, Son, TG, Kim, MS, Kim, YJ, Lee, J, Yu, BP & Chung, HY (2006). Upregulation of aortic adhesion molecules during aging. J Gerontol A Biol Sci Med Sci, 61(3), 232–244.

8 Abkürzungen

ΔP_1	Activator Protein 1
APS	Ammoniumperoxydisulfat
ATPaso	Adonosintriphosphataso
ATP2R4	ATPase C_{2++} transporting plasma membrane 4
RAD	BCI 2 associated agonist of coll doubth
BAV	BCL2-associated agonist of ten death
DAA	DOL2-associated A Flotenii D coll CLL /lymphome 2
	D-cell CLL/lymphoma 2
	bovine Serum Albumin
CAMP CADD10	zykliscnes Adenosinmonophosphat
CARDIU CACD 1	Caspase recruitment domain family, member 10
CASP-1	Caspase 1
CASP-7	Caspase 7
CDH10	Cadherin 10, Typ 2
cDNS	copy-Desoxyribonukleinsäure
CEACAM-1	Carcinoembryonic antigen-related cell adhesion molecule 1
CCL2	Chemokin (C-C Motiv) Ligand 2
ClCN3	Chloride Channel 3
CNN1	Calponin 1
$\rm CO_2$	Kohlenstoffdioxid
$ColI\alpha 1$	Kollagen, Typ I, alpha 1
CREB	cAMP responsive element binding protein
CREBATF	CREB/ATF Bindestelle
CREBP1	CREB binding protein
CSN2	Kasein beta
CT	Amplifiezierungszyklen pro Zeit
CX4CL1	Chemokin (C-X-4 Motiv) Ligand 1
CXCL6	Chemokin (C-X-4CMotiv) Ligand 6
CXCL9	Chemokin (C-X-4CMotiv) Ligand 9
daf-2	abnormal DAuer Formation 2
DMSO	Dimethylsulfoxid
DNS	Desoxyribonukleinsäure
DTT	Dithiothreitol
ECM	extrazelluläre Matrix
EDTA	Ethylendiamintetraessigsäure
EGF	Epidermal Growth Factor
EGR	Early Growth Response
EGFR	Epidermal Growth Factor Receptor
ERK1/2	Extracellular Signal-regulated Kinases $1 + 2$
ER	Endoplasmatisches Retikulum
FASTK	Fas-aktivierte Serin/Threonin kinase
FASIK	Fas-aktivierte Serin/ I freonin kinase

FCS	Fetal Calf Serum
FN1	Fibronektin 1
Fos	Proto-oncogene Protein c-fos
GAPDH	Glyceraldehyd-3-Phosphat-Dehydrogenase
GATA	GATA-binding Protein
GGT1	Gamma-Glutamyltransferase 1
GO	Gene Ontology
GSH	Glutathion
GSSG	Glutathiondimer (mit Disulfidbrücke)
GTP	Guanosintriphosphat
GTPase	Guanosintriphosphatase
H_2O_2	Wasserstoffperoxid
HBSS	Hanks' balanced Salt Solution
HELIOS	IKAROS family zinc finger 2(Helios)
HRP	Horseradish Peroxidase
IKbetaKG	Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase ga
IL6ST	Interleukin 6 Signal Transducer
IP_3	Inositol-1,4,5-trisphosphat
IR	Infrarot, bzw. infrarote Strahlung
IRA	Infrarot A
IRB	Infrarot B
IRC	Infrarot C
ITGA10	Integrin, alpha 10
ITGB5	Integrin beta 5
ITPR2	Inositol-1,4,5-triphosphat-Rezeptor, Typ 3
ITPR3	Inositol-1,4,5-triphosphat-Rezeptor, Typ 3
JNK1/2	c-Jun NH2-terminale Kinasen $1 + 2$
Jun	C-Jun-amino-terminal Kinase-interacting Protein
LEF1	Lymphoid enhancer-binding factor 1
MAPK	Mitogen-Activated Protein Kinase
MAPKK	Mitogen-Activated Protein Kinase Kinase
MAPKKK	Mitogen-Activated Protein Kinase Kinase Kinase
MEK	Mitogen-Activated Protein Kinase
MEKK	Mitogen-Activated protein Kinase Kinase
MEM	Minimal Essential Medium
MitoQ	sich gezielt in den Mitochondrien anreicherndes Coenzym Q10
MMP	Matrixmetalloproteinase
MnSOD	Mangan-Superoxid-Dismutase
mRNS	Messenger Ribonukleinsäure
mTOR	Mammalian target of rapamycin
Myb	v-myb myeloblastosis viral oncogene homolog (avian)
NAC	N-Acetyl-Cystein
NADPH	${ m Nicotinamidaden indinukleotid phosphat}$
Na^+/K^+ -ATPase	Na+/K+ transporting ATPase
$NF-\kappa B$	Nuclear factor- κB
NFE2	Nnuclear factor (erythroid-derived 2)
NFMUE	Nukleärer Transkriptionsfaktor mue
NRF1	Nuclear respiratory factor 1

P4	Transkriptionsfaktor P4
p38	Mitogen-Activated Protein Kinase p38
p53	Tumor Protein 53
PBS	Phosphatgepufferte Salzlösung
PCR	Polymerase Chain Reaction
PI3K	Phosphatidyl-Inositol-3-Kinase
PIK3R3	Phosphoinositid-3-kinase, regulatorische Subunit 3
PIP_2	Phosphatidylinositol-4,5-bisphosphat
PIP5K1B	Phosphatidylinositol-4-phosphat 5-kinase, Typ I, beta
POU1	POU-Domäne bindender Transkriptionsfaktor 1
PP2A	Proteinphosphatase-2A
PTDRD	Proteintyrosinphosphatase Rezeptor
PTDSR	Phosphatidylserinrezeptor
PTF	predicted transcription factor binding site
PTP	Protein-Tyrosin-Phosphatase
Raf	Raf Kinase
Ras	GTPase NRas
RMA	robust multichip average
RNS	Ribonukleinsäure
ROS	Reactive Oxygen Species
rpm	Umdrehungen pro Minute (rounds per minute)
rRNS	ribosomale Ribonukleinsäure
RT	Raumtemperatur
STAT3	Signal Transducer and Activator of Transcription 3
SDS	Sodiumdodekylsulfat
SOD	Superoxiddismutase
SP1	Sp1 Transkriptionsfaktor
TACR1	Tachykinin Rezeptor 1
TATA	Tata-Transkriptionsfaktorbindestelle
TBS	Tris-gepufferte Salszlösung
TBST	Trisgepufferte Salzlösung mit Tween 20
TCF	Hepatocyte nuclear factor 4, alpha (auch HNF4A)
TEMED	N.N.N'.N'-Tetramethylethylendiamin
TF	Transkriptionsfaktor
TGFbeta	Transforming Growth Factor, beta 1
TIMP	Tissue Inhibitor of Metalloproteinases
TLR4	Toll-like Rezeptor 4
TM	Schmelztemperatur (Tmeperature of melting)
TNFRSF6B	Tumor-Nekrosis-Faktor-Rezeptor Superfamilie. Mitglied 6b. Köder
Tris	Tris(hydroxymethyl)-aminomethan
TSP2	Thrombospondin 2
TXNDC4	Endoplasmatisches Retikulum-Protein 44
USF	Upstream Transkriptionsfaktor
UV	ultraviolett, bzw. Ultraviolette Strahlung
UVA	ultraviolett A, bzw. ultraviolette Strahlung A (320 - 400 nm)
UVB	ultraviolett B, bzw. ultraviolette Strahlung B (280 - 320 nm)
VIS	sichtbares Licht
VCAM-1	Vaskuläres Zell-Adhäsionsmolekül 1

 $\operatorname{ZIC2}$

Zic family member 2

Die Roh-Daten und die normalisierten Genexpressions-Werte für alle in dieser Arbeit beschriebenen Microarray-Experimente wurden in der *NCBI Gene Expression Omnibus*-Datenbank hinterlegt und sind zugänglich über die *GEO-Series* Zugangs-Nummer GSE17046 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17046). Diese Expressionsdaten sind ausserdem auch auf dem zu dieser Arbeit gehörenden Datenträger enthalten.

9.1 Gesamtliste aller IRA-regulierten Gene aus den Microarray-Analysen

Tabelle 9.1: Vollständige Liste der IRA-regulierten Transkripte. Aufregulierte Transkripte nach IRA (A), bei x von 9 Fällen aufreguliert. Abregulierte Transkripte (B), in x von 9 Experimenten abreguliert.

A					
Ref_ID	Unigen-Nr.	x-fach REGU-	Gen	Symbol	Gene Ontology - Biological Function
		LIERT			
209215_at	Hs.157145	5	tetracycline transporter-like pro-	TETRAN	small molecule trans-
			tein		port
220052_s_at	Hs.7797	5	TERF1 (TRF1)-interacting	TINF2	telomerase-dependent
			nuclear factor 2		telomere maintenance
204699_s_at	Hs.194754	5	hypothetical protein MGC29875	MGC29875	
222079_at	Hs.98416	5	Homo sapiens transcribed se- quences	_	
204282_s_at	Hs.57969	4	phenylalanine-tRNA synthetase	FARS1	phenylalanyl-tRNA
			1 (mitochondrial)		aminoacylation
208992_s_at	Hs.421342	4	signal transducer and activator of	STAT3	acute-phase response
	**		transcription 3		
209434_s_at	Hs.311625	4	phosphoribosyl pyrophosphate	PPAT	purine base biosynthe-
010505	II 10040	4	amidotransferase	<u>(1 (20</u>	SIS
210785_s_at	HS.10649	4	me 38	Clori38	cell adhesion
213659_at	Hs.355015	4	zinc finger protein 75 (D8C6)	ZNF75	regulation of transcrip-
					tion, DNA-dependent
214525_x_at	Hs.279843	4	mutL homolog 3 (E. coli)	MLH3	mismatch repair
216199_s_at	Hs.390428	4	mitogen-activated protein kinase	MAP3K4	activation of MAPKK
	** ***		kinase kinase 4		// JNK cascade
220048_at	Hs.58346	4	ectodysplasin 1, anhidrotic recep-	EDAR	cell differentiation
221029 s at	Hs 306051	4	wingless-type MMTV integration	WNT5B	frizzled-2 signaling
22102010100	115.000001	1	site family, member 5B	MILLIOD .	pathway
207703_at	Hs.21107	4	neuroligin 4	NLGN4	cell adhesion
207901_at	Hs.674	4	interleukin 12B	IL12B	regulation of cytokine
					biosynthesis // JAK-
					STAT cascade
213107_at	Hs.252550	4	Traf2 and NCK interacting kina-	KIAA0551	protein kinase cascade
			se		
213829_x_at	Hs.348183	4	tumor necrosis factor receptor su-	TNFRSF6B	anti-apoptosis // onco-
			perfamily, member 6b, decoy		genesis

Ref_ID	Unigen-Nr.	x-fach REGU-	Gen	Symbol	Gene Ontology - Biological Function
214021_x_at	Hs.149846	4	integrin, beta 5	ITGB5	integrin-mediated sig- naling pathway // cell- matrix adhesion
214421_x_at	Hs.418127	4	cytochrome P450, family 2, sub-	CYP2C9	electron transport
216026_s_at	Hs.436458	4	polymerase (DNA directed), ep-	POLE	DNA repair
36004_at	Hs.43505	4	inhibitor of kappa light polypep- tide gene enhancer in B-cells, kinase gamma	IKBKG	regulation of transcrip- tion // induction of apoptosis
209560_s_at	Hs.169228	4	delta-like 1 homolog (Drosophila)	DLK1	
209169_at	Hs.5422	4	glycoprotein M6B	GPM6B	
211692_s_at	Hs.87246	4	BCL2 binding component 3	BBC3	
209229_s_at	Hs.411875	4	KIAA1115 protein	KIAA1115	
219581_at	Hs.335550	4	hypothetical protein MGC2776	MGC2776	
219419_at	Hs.444642	4	hypothetical protein FLJ21172	FLJ21172	
222143_s_at	Hs.271931	4	hypothetical protein FLJ22405	FLJ22405	
217928_s_at	Hs.128218	4	chromosome 11 open reading fra- me 23	C11orf23	
215226_at	Hs.321583	4	Homo sapiens cDNA FLJ20779 fis, clone COL05077		
215825_at	Hs.283819	4	Homo sapiens clone 24487 mRNA sequence	_	
215756_at	Hs.293928	4	Homo sapiens cDNA FLJ14231 fis, clone NT2RP3004470.	—	
201230_s_at	Hs.241558	3	ariadne homolog 2 (Drosophila)	ARIH2	development
201557_at	Hs.25348	3	vesicle-associated membrane pro- tein 2 (synaptobrevin 2)	VAMP2	nonselective vesicle transport
201799_s_at	Hs.24734	3	oxysterol binding protein	OSBP	steroid metabolism //
202067_s_at	Hs.213289	3	low density lipoprotein receptor (familial hypercholesterolemia)	LDLR	endocytosis /// lipid transport /
202183_s_at	Hs.119324	3	kinesin family member 22	KIF22	mitosis
202494_at	Hs.22516	3	peptidylprolyl isomerase E (cy- clophilin E)	PPIE	protein folding
202964_s_at	Hs.166891	3	regulatory factor X, 5 (influences HLA class II expression)	RFX5	transcription from Pol II promoter // not re- corded
203025_at	Hs.433291	3	ARD1 homolog, N- acetyltransferase (S. cerevisiae)	ARD1	DNA packaging
203090_at	Hs.118684	3	stromal cell-derived factor 2	SDF2	protein amino acid gly-
203394_s_at	Hs.250666	3	hairy and enhancer of split 1, (Drosophila)	HES1	regulation of transcrip- tion_DNA-dependent
203416_at	Hs.443057	3	CD53 antigen	CD53	antimicrobial humoral response (sensu Inver- tebrata)
203679_at	Hs.446686	3	interleukin 1 receptor-like 1 li- gand	IL1RL1LG	cell-cell signaling
203844_at	Hs.421597	3	von Hippel-Lindau syndrome	VHL	negative regulation of cell proliferation
204310_s_at	Hs.78518	3	natriuretic peptide receptor B/guanylate cyclase B	NPR2	cGMP biosynthesis
204475_at	Hs.83169	3	matrix metalloproteinase 1 (in-	MMP1	collagen catabolism
204727_at	Hs.385998	3	AND-1 protein	AND-1	regulation of transcrip-
205193_at	Hs.460889	3	v-maf musculoaponeurotic fibro- sarcoma oncogene homolog F (avian)	MAFF	regulation of transcrip- tion
205395_s_at	Hs.20555	3	MRE11 meiotic recombination 11 homolog A (S. cerevisiae)	MRE11A	double-strand break re- pair via nonhomolo- gous end-joining /
205998_x_at	Hs.442527	3	cytochrome P450, family 3, sub- family A, polypeptide 4	CYP3A4	electron transport /
206170_at	Hs.2551	3	adrenergic, beta-2-, receptor, sur- face	ADRB2	adenylate cyclase acti- vation

Ref_ID	Unigen-Nr.	x-fach REGU-	Gen	Symbol	Gene Ontology - Biological Function
206449_s_at	Hs.89983	3	mannan-binding lectin serine	MASP1	complement activation
206452_x_at	Hs.400740	3	protein phosphatase 2A, regula- tory subunit B' (PR 53)	PPP2R4	protein amino acid de- phosphorylation
206474_at	Hs.258536	3	PCTAIRE protein kinase 2	PCTK2	regulation of cell cycle
206766_at	Hs.158237	3	integrin, alpha 10	ITGA10	integrin-mediated sig- naling pathway // cell- matrix adhesion
206857_s_at	Hs.407482	3	FK506 binding protein 1B, 12.6 kDa	FKBP1B	protein folding
207135_at	Hs.424980	3	5-hydroxytryptamine (serotonin) receptor 2A	HTR2A	synaptic transmission // serotonin receptor signaling pathway
207851_s_at	Hs.438669	3	insulin receptor	INSR	signal transduction
207859_s_at	Hs.96094	3	cholinergic receptor, nicotinic, beta polypeptide 3	CHRNB3	synaptic transmission
208064_s_at	Hs.298923	3	sialyltransferase 8C	SIAT8C	carbohydrate metabo- lism
208240_s_at	Hs.278954	3	fibroblast growth factor 1 (acidic)	FGF1	cell-cell signaling
208813_at	Hs.597	3	glutamic-oxaloacetic transami- nase 1, soluble	GOT1	amino acid metabolism
209190_s_at	Hs.511896	3	diaphanous homolog 1 (Droso- phila)	DIAPH1	hearing
209424_s_at	Hs.49598	3	alpha-methylacyl-CoA racemase	AMACR	metabolism
209454_s_at	Hs.203846	3	TEA domain family member 3	TEAD3	regulation of transcrip- tion from Pol II promo- ter
209919_x_at	Hs.352119	3	gamma-glutamyltransferase 1	GGT1	glutathione biosynthe- sis
210002_at	Hs.50924	3	GATA binding protein 6	GATA6	muscle development // regulation of transcrip- tion
210007_s_at	Hs.108646	3	glycerol-3-phosphate dehydro- genase 2 (mitochondrial)	GPD2	electron transport // glycerol-3-phosphate metabolism
212156_at	Hs.417482	3	vacuolar protein sorting 39 (yeast)	VPS39	intracellular protein transport
212980_at	Hs.122440	3	AHA1, activator of heat shock 90kDa protein ATPase homolog 2 (yeast)	AHSA2	transport
213654_at	Hs.26782	3	TAF5-like RNA polymerase II,	TAF5L	transcription from Pol II promoter
213732_at	Hs.371282	3	transcription factor 3 (E2A im- munoglobulin enhancer binding factors E12/E47)	TCF3	cell growth and/or maintenance
213977_s_at	Hs.23476	3	Cip1-interacting zinc finger pro- tein	CIZ1	regulation of cell cycle
214114_x_at	Hs.75087	3	FAST kinase	FASTK	induction of apoptosis by extracellular signals
214710_s_at	Hs.23960	3	cyclin B1	CCNB1	G2/M transition of mitotic cell cycle
214731_at	Hs.131736	3	neural precursor cell expressed, developmentally down-regulated 5	NEDD5	cell cycle
214876_s_at	Hs.370420	3	tubulin, gamma complex associa- ted protein 5	TUBGCP5	microtubule nucleation
214979_at	Hs.90786	3	ATP-binding cassette, sub-family C (CFTR/MRP), member 3	ABCC3	transport
215425_at	Hs.77311	3	BTG family, member 3	BTG3	regulation of cell cycle
215535_s_at	Hs.409230	3	1-acylglycerol-3-phosphate O- acyltransferase 1	AGPAT1	phospholipid metabo- lism
216537_s_at	Hs.274470	3	sialic acid binding Ig-like lectin 7	SIGLEC7	cell adhesion
217099_s_at	Hs.302421	3	gem (nuclear organelle) associa- ted protein 4	GEMIN4	rRNA processing
36907_at	Hs.130607	3	mevalonate kinase (mevalonic aciduria)	MVK	isoprenoid biosynthesis

Ref_ID	Unigen-Nr.	x-fach	Gen	Symbol	Gene Ontology -
		REGU- LIERT			Biological Function
37278_at	Hs.409911	3	tafazzin	TAZ	muscle contraction // oncogenesis
91684_g_at	Hs.343589	3	exosome complex exonuclease RRP41	RRP41	rRNA processing
177_at	Hs.380819	3	phospholipase D1,	PLD1	phospholipid metabo- lism
202407_s_at	Hs.312927	3	PRP31 pre-mRNA processing factor 31 homolog (yeast)	PRPF31	
202312_s_at	Hs.172928	3	collagen, type I, alpha 1	COL1A1	epidermal differentiati-
202580_x_at	Hs.511941	3	forkhead box M1	FOXM1	transcription from Pol
					II promoter // respon- se to oxidative stress
202775_s_at	Hs.213739	3	splicing factor, arginine/serine-	SFRS8	nuclear mRNA spli-
202799_at	Hs.317335	3	ClpP caseinolytic protease, ATP-	CLPP	proteolysis and pepti-
			dependent, proteolytic subunit homolog (E. coli)		dolysis
202870_s_at	Hs.82906	3	CDC20 cell division cycle 20 ho- molog (S. cerevisiae)	CDC20	regulation of cell cycle
202955_s_at	Hs.94631	3	brefeldin A-inhibited guanine nucleotide-exchange protein 1	BIG1	exocytosis
218529_at	Hs.333427	3	8D6 antigen	8D6A	cell-cell signaling //
					positive regulation of cell proliferation
219162_s_at	Hs.418450	3	mitochondrial ribosomal protein	MRPL11	protein biosynthesis
203683_s_at	Hs.78781	3	vascular endothelial growth fac- tor B	VEGFB	positive regulation of cell proliferation
203860_at	Hs.80741	3	propionyl Coenzyme A car- boxylase alpha polypeptide	PCCA	fatty acid metabolism
204641_at	Hs.153704	3	NIMA (never in mitosis gene a)-	NEK2	regulation of mitosis //
204010 at	Ha 408152	9	related kinase 2		meiosis
204919_at 205141_at	Hs 283749	3	ribonuclease BNase A family 4	RNASE4	mBNA cleavage
205282_at	Hs.410784	3	low density lipoprotein receptor-	LRP8	signal transduction //
			related protein 8, apolipoprotein e receptor		lipid metabolism
206316_s_at	Hs.300559	3	kinetochore associated 1	KNTC1	mitotic checkpoin// cell cycle
206613_s_at	Hs.153088	3	TATA box binding protein (TBP)-associated factor	TAF1A	transcription from Pol II promoter
207455_at	Hs.2411	3	purinergic receptor P2Y, G- protein coupled, 1	P2RY1	G-protein signaling, coupled to IP3 second
	II 1 1 1 1 1 0 0 0				messenger
208957_at	Hs.154023	3	(endoplasmic reticulum)	TXNDC4	electron transport // regulation of redox ho- meostasis
209172_s_at	Hs.77204	3	centromere protein F, 350/400ka (mitosin)	CENPF	DNA replication and chromosome cycle
209189_at	Hs.25647	3	v-fos FBJ murine osteosarcoma	FOS	cell growth and/or maintenance
209364_at	Hs.76366	3	BCL2-antagonist of cell death	BAD	induction of apoptosis
209706_at	Hs.55999	3	NK3 transcription factor related,	NKX3-1	regulation of transcrip-
210026 s at	Hs 57973	3	locus 1 (Drosophila)	CABD10	tion, DNA-dependent
21002015140	110.01010		mily, member 10		kappaB-inducing kinase // apoptosis
210160_at	Hs.93354	3	platelet-activating factor acetyl-	PAFAH1B2	cell motility // lipid ca-
			unit 30kDa		
210255_at	Hs.100669	3	RAD51-like 1 (S. cerevisiae)	RAD51L1	meiotic recombination // DNA repair
211022_s_at	Hs.440734	3	alpha thalassemia/mental retar- dation syndrome X-linked	ATRX	DNA repair //// DNA recombination // DNA
212627 a at	Hs 95/717	3	KIAA0116 protein	KIA A0116	rBNA processing
Laravar_s_at	110.201111	0	THILIDITO PLOTEIN	1211/10110	interne processing

Ref_ID	Unigen-Nr.	x-fach REGU- LIERT	Gen	Symbol	Gene Ontology - Biological Function
213020_at	Hs.124436	3	golgi SNAP receptor complex member 1	GOSR1	ER to Golgi transport
213135_at	Hs.115176	3	T-cell lymphoma invasion and metastasis 1	TIAM1	intracellular signaling cascade
214006_s_at	Hs.77719	3	gamma-glutamyl carboxylase	GGCX	protein modification // blood coagulation
214649_s_at	Hs.181326	3	myotubularin related protein 2	MTMR2	protein amino acid de- phosphorylation
216598_s_at	Hs.303649	3	chemokine (C-C motif) ligand 2	CCL2	calcium ion homeosta- sis // JAK-STAT cas- cade
221561_at	Hs.446331	3	sterol O-acyltransferase	SOAT1	circulation //choleste- rol metabolism
221643_s_at	Hs.194369	3	arginine-glutamic acid dipeptide (RE) repeats	RERE	regulation of transcrip- tion, DNA-dependent
201733_at	Hs.372528	3	chloride channel 3	CLCN3	chloride transport
203915_at	Hs.77367	3	chemokine (C-X-C motif) ligand 9	CXCL9	cell-cell signaling // chemotaxis
203945_at	Hs.172851	3	arginase, type II	ARG2	urea cycle // nitric oxi- de biosynthesis // argi- nine catabolism
204043_at	Hs.417948	3	"transcobalamin II; macrocytic anemia"	TCN2	vitamin B12 transport
204371_s_at	Hs.91142	3	KH-type splicing regulatory pro- tein (FUSE binding protein 2)	KHSRP	mRNA splicing
204742_s_at	Hs.168625	3	androgen-induced proliferation inhibitor	APRIN	cell proliferation
206038_s_at	Hs.378877	3	nuclear receptor subfamily 2, group C, member 2	NR2C2	regulation of transcrip- tion, DNA-dependent // neurogenesis
206167_s_at	Hs.250830	3	Rho GTPase activating protein 6	ARHGAP6	Rho protein signal transduction // actin filament polymeriza- tion
206336_at	Hs.164021	3	chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic pro- tein 2)	CXCL6	inflammatory response // chemotaxis
219326_s_at	Hs.173203	3	UDP-GlcNAc:betaGal beta-1,3- N-acetylglucosaminyltransferase 1	B3GNT1	protein amino acid gly- cosylation
206654_s_at	Hs.282387	3	polymerase (RNA) III (DNA di- rected) (32kD)	RPC32	regulation of transcrip- tion from Pol III pro- moter
207845_s_at	Hs.410760	3	anaphase-promoting complex subunit 10	APC10	G2/M transition of mitotic cell cycle
208443_x_at	Hs.55967	3	short stature homeobox 2	SHOX2	regulation of transcrip- tion, DNA-dependent // neurogenesis
209317_at	Hs.5409	3	polymerase (RNA) I polypeptide C, 30kDa	POLR1C	transcription from Pol I promoter
210094_s_at	Hs.72249	3	par-3 partitioning defective 3 ho- molog (C. elegans)	PARD3	intracellular signaling cascade //asymmetric cytokinesis
210457_x_at	Hs.57301	3	high mobility group AT-hook 1	HMGA1	regulation of transcrip- tion, DNA-dependent
213409_s_at	Hs.279903	3	Ras homolog enriched in brain	RHEB	small GTPase media- ted signal transduction
214377_s_at	Hs.436004	3	Janus kinase 1 (a protein tyrosine kinase)	JAK1	protein amino acid phosphorylation
215541_s_at	Hs.511896	3	diaphanous homolog 1 (Droso- phila)	DIAPH1	hearing
217315_s_at	Hs.165296	3	kallikrein 13	KLK13	proteolysis and pepti- dolysis
217930_s_at	Hs.25413	3	toll interacting protein	TOLLIP	cell-cell signaling
218408_at	Hs.235750	3	translocase of inner mitochondri- al membrane 10 homolog (yeast)	TIMM10	protein targeting //mitochondrial trans- location

Ref_ID	Unigen-Nr.	x-fach	Gen	Symbol	Gene Ontology -
		REGU- LIERT			Biological Function
218902_at	Hs.311559	3	Notch homolog 1, translocation- associated (Drosophila)	NOTCH1	development // signal transduction
220186_s_at	Hs.4205	3	protocadherin LKC	PC-LKC	homophilic cell adhesi-
222377_at	Hs.454480	3	T-box 10	TBX10	regulation of transcrip- tion from Pol II promo- ter
37793_r_at	Hs.125244	3	RAD51-like 3 (S. cerevisiae)	RAD51L3	base-excision repair
201035_s_at	Hs.8110	3	L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain	HADHSC	
201763_s_at	Hs.336916	3	death-associated protein 6	DAXX	
201767_s_at	Hs.12124	3	elaC homolog 2 (E. coli)	ELAC2	
201883_s_at	Hs.396798	3	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypepti- de 1	B4GALT1	
202556_s_at	Hs.25313	3	microspherule protein 1	MCRS1	
203661_s_at	Hs.374849	3	tropomodulin 1	TMOD1	
203755_at	Hs.36708	3	BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast)	BUB1B	
204633_s_at	Hs.109058	3	ribosomal protein S6 kinase, 90kDa, polypeptide 5	RPS6KA5	
205296_at	Hs.87	3	retinoblastoma-like 1 (p107)	RBL1	
206816_s_at	Hs.256747	3	sperm associated antigen 8	SPAG8	
208960_s_at	Hs.285313	3	core promoter element binding protein	COPEB	
208961_s_at	Hs.285313	3	core promoter element binding protein	COPEB	
209436_at	Hs.5378	3	spondin 1, (f-spondin) extracellu- lar matrix protein	SPON1	
209556_at	Hs.121870	3	neurochondrin	NCDN	
210720_s_at	Hs.324104	3	amyloid beta (A4) precursor protein-binding, family A, mem- ber 2 binding protein	APBA2BP	
210837_s_at	Hs.28482	3	phosphodiesterase 4D, cAMP- specific	PDE4D	
211584_s_at	Hs.89385	3	nuclear protein, ataxia- telangiectasia locus	NPAT	
212108_at	Hs.76591	3	expressed in T-cells and eosino- phils in atopic dermatitis	ETEA	
213302_at	Hs.88139	3	phosphoribosylformylglycinamidin synthase (FGAR amidotrans- ferase)	e PFAS	
213338_at	Hs.35861	3	Ras-induced senescence 1	RIS1	
213435_at	Hs.412327	3	SATB family member 2	SATB2	
215354_s_at	Hs.409251	3	proline and glutamic acid rich nuclear protein	PELP1	
217765_at	Hs.272736	3	nuclear receptor binding protein	NRBP	
218000_s_at	Hs.82101	3	pleckstrin homology-like domain, family A, member 1	PHLDA1	
218176_at	Hs.306123	3	melanoma antigen, family F, 1	MAGEF1	
219437_s_at	Hs.402727	3	nasopharyngeal carcinoma susceptibility protein	LZ16	
219822_at	Hs.348472	3	mitochondrial translational re- lease factor 1	MTRFI	
221427_s_at	Hs.143601	3	cyclin L2	CCNL2	
221629_x_at	Hs.521931	3	brain protein 16	LOC51236	
221657_s_at	Hs.125037	3	ankyrin repeat and SOUS box- containing 6	ASB0	
41160_at	Hs.178728	3	metnyl-OpG binding domain pro- tein 3	MRD3	
201770_at	Hs.173255	3	small nuclear ribonucleoprotein polypeptide A	SNRPA	
203096_s_at	Hs.373588	3	PDZ domain containing guani- ne nucleotide exchange factor (GEF) 1	PDZGEF1	
203653_s_at	Hs.966	3	coilin	COIL	
206818_s_at	Hs.438588	3	cyclin M2	CNNM2	

Ref_ID	Unigen-Nr.	x-fach	Gen	Symbol	Gene Ontology -
		REGU-			Biological Function
		LIERT			
207205_at	Hs.12	3	carcinoembryonic antigen-related	CEACAM4	
			cell adhesion molecule 4		
207847_s_at	Hs.89603	3	mucin 1, transmembrane	MUC1	
208180_s_at	Hs.421737	3	histone 1, H4h	HIST1H4H	
209459_s_at	Hs.283675	3	NPD009 protein	NPD009	
210062_s_at	Hs.19585	3	KRAB-zinc finger protein SZF1-	SZF1	
			1		
210625_s_at	Hs.78921	3	A kinase (PRKA) anchor protein	AKAP1	
			1		
212518_at	Hs.282177	3	phosphatidylinositol-4-	PIP5K1C	
			phosphate 5-kinase, type I,		
			gamma		
210870_s_at	Hs.458373	3	epilepsy, progressive myoclonus	EPM2A	
			type 2A, Lafora disease (laforin)		
211364_at	Hs.459541	3	methylthioadenosine phospho-	MTAP	
			rylase		
211782_at	Hs.303154	3	iduronate 2-sulfatase (Hunter	IDS	
			syndrome)		
217432_s_at	Hs.303154	3	iduronate 2-sulfatase (Hunter	IDS	
			syndrome)		
220885_s_at	Hs.434229	3	centromere protein J	CENPJ	
64432_at	Hs.333120	3	carnitine deficiency-associated	CDV-1	
			gene expressed in ventricle 1		
212336_at	Hs.437422	3	erythrocyte membrane protein	EPB41L1	
		-	band 4.1-like 1	DEDGD	
212723_at	Hs.72660	3	phosphatidylserine receptor	PTDSR	
205011_at	Hs.152944	3	loss of heterozygosity, 11, chro-	LOH11CR2A	
200400	TT 10,100		mosomal region 2, gene A	CCT of	
206468_s_at	Hs.19469	3	CGI-01 protein	CGI-01	
218664_at	Hs.183646	3	nuclear receptor binding factor 1	CGI-63	
210706_s_at	Hs.30524	3	ring finger protein 24	RNF24	
221873_at	Hs.374355	3	zinc finger protein 143 (clone	ZNF143	regulation of transcrip-
			pHZ-1)		tion from Pol II promo-
010014+	II- 050402	9	-in a fire man and a in 210	ZNE910	ter
219514_s_at	ns.200495	3	zinc inger protein 219	ZINF 219	tion DNA dependent
203085 at	He 108130	2	zine finger protein 212	ZNE212	tion, DIVA-dependent
203985_at	По 288622	3	zine finger protein cubfemily 1A	ZNF212	
200472_at	118.300022	5	4 (Fos)	ZINFINIA4	
211065 at	He 85155	2	zinc finger protein 36 C3H type	ZFP36L1	
211305_at	115.00100	5	like 1	211 5011	
213221 s at	Hs 306864	3	KIA A0781 protein	KIAA0781	protein amino acid
210221_5_40	115.500004			1 min 10101	phosphorylation
214231 s at	Hs 405457	3	KIAA0564 protein	KIAA0564	phosphorylation
2120120140 212487 at	Hs 396047	3	KIA A0553 protein	KIA A0553	
212380 at	Hs 202331	3	KIA A0082 protein	KIAA0082	
206102 at	Hs 360033	3	KIAA0186 gene product	KIAA0186	
215232 at	Hs.471906	3	KIAA0672 gene product	KIAA0672	
212911 at	Hs.9059	3	KIAA0962 protein	KIAA0962	electron transport
52837 at	Hs.6829	3	KIAA1644 protein	KIAA1644	
203171 s at	Hs.511948	3	KIAA0409 protein	KIAA0409	
209256 s at	Hs 192966	3	KIAA0265 protein	KIAA0265	
212710 at	Hs.380639	3	hypothetical protein		
		-	DKFZp434G2311		
220295_x_at	Hs.445098	3	hypothetical protein FLJ20354	FLJ20354	intracellular signaling
		-			cascade
58994_at	Hs.269592	3	putative NFkB activating protein	FLJ20241	
218951_s_at	Hs.378766	3	hypothetical protein FLJ11323	FLJ11323	intracellular signaling
			· · · · · · · · · · · · · · · · · · ·		cascade
206650_at	Hs.274356	3	hypothetical protein FLJ10547	FLJ10547	
215792_s_at	Hs.261134	3	hypothetical protein FLJ10737	FLJ10737	
221591_s_at	Hs.404323	3	hypothetical protein FLJ10156	FLJ10156	
220112_at	Hs.84560	3	hypothetical protein FLJ11795	FLJ11795	
209672_s_at	Hs.387140	3	hypothetical protein FLJ20323	FLJ20323	
220390_at	Hs.147377	3	hypothetical protein FLJ23598	FLJ23598	
221425_s_at	Hs.449291	3	hypothetical protein MGC4276	MGC4276	
	_		similar to CG8198	-	
221895_at	Hs.190043	3	hypothetical protein MGC26706	MGC26706	

$9.1\,$ Gesamtliste aller IRA-regulierten Gene aus den Microarray-Analysen

Ref_ID	Unigen-Nr.	x-fach	Gen	Symbol	Gene Ontology - Biological Function
		LIERT			Biological Function
212342_at	Hs.82719	3	hypothetical protein MGC21416	MGC21416	
213367_at	Hs.407782	3	hypothetical protein LOC155060	LOC155060	
213195_at	Hs.434386	3	hypothetical protein LOC201229	LOC201229	
32502_at	Hs.6748	3	hypothetical protein PP1665	PP1665	
216012_at	Hs.159901	3	tial sequence.	_	
210703_at	Hs.419083	3	Homo sapiens PRO2259 mRNA, complete cds	_	
215445_x_at	Hs.100516	3	Homo sapiens clone 23605 mRNA sequence	_	
218280_x_at	Hs.417332	3	Homo sapiens similar to H2B histone family, member F (LOC350696) mRNA	_	
215604_x_at	Hs.443532	3	Homo sapiens cDNA FLJ13721 fis, clone PLACE2000450.		
216212_s_at	Hs.509389	3	Homo sapiens transcribed se- quences	—	
217629_at	Hs.446662	3	Homo sapiens transcribed se- quence with strong similarity to protein ref.NP 057175.1	_	
206274_s_at	Hs.512855	3	Homo sapiens medulloblastoma antigen MU-MB-2.42 mRNA, partial cds		
217052_x_at	Hs.444689	3	Homo sapiens cDNA FLJ14046 fis, clone HEMBA1006461.	—	
218183_at	Hs.7765	3	chromosome 16 open reading fra- me 5	C16orf5	
203550_s_at	Hs.348308	3	chromosome 1 open reading fra- me 2	C1orf2	
218572_at	Hs.279761	3	chromosome 14 open reading fra- me 123	C14orf123	
218578_at	Hs.259502	3	chromosome 1 open reading fra- me 28	C1orf28	
216374_at	-//-	3	—	_	
217393_x_at	//	3			
216606_x_at	//	3		—	
221717_at	//	3			
214131_at	Hs.145010	-5	chromosome Y open reading fra-	CYorf15B	
204291 at	Hs 29878	-5	KIAA0335 gene product	KIA A0335	
44669_at	Hs.356460	-5	Homo sapiens LOC163182 (LOC163182) mBNA	_	
201072_s_at	Hs.162086	-4	SWI/SNF related, matrix assoc., actin dep. reg. of chromatin, sub-	SMARCC1	chromatin assem- bly/disassembly
201602 c of	Ha 226025	4	family c,1	FCP1	nogulation of transcorin
201095_S_at	H 100540	-4	early growth response 1	CDLE1	tion, DNA-dependent
202046_s_at	Hs.102548	-4	ding factor 1	GRLFI	transcription
205354_at	Hs.81131	-4	guanidinoacetate N- methyltransferase	GAMT	muscle contraction // creatine biosynthesis
205503_at	Hs.512667	-4	protein tyrosine phosphatase, non-receptor type 14	PTPN14	protein amino acid de- phosphorylation
206108_s_at	Hs.6891	-4	splicing factor, arginine/serine- rich 6	SFRS6	nuclear mRNA spli- cing, via spliceosome
207732_s_at	Hs.11101	-4	discs, large homolog 3 (neuroendocrine-dlg, Droso- phila)	DLG3	negative regulation of cell proliferation
209936_at	Hs.439480	-4	RNA binding motif protein 5	RBM5	RNA processing // ne- gative regulation of cell cycle
213501_at	Hs.379991	-4	acyl-Coenzyme A oxidase 1, pal- mitoyl	ACOX1	electron transport // fatty acid beta- oxidation
214298_x_at	Hs.90998	-4	septin 6	38961	cytokinesis // cell cycle
214314_s_at	Hs.158688	-4	translation initiation factor IF2	IF2	regulation of transla- tional initiation

Ref_ID	Unigen-Nr.	x-fach	Gen	Symbol	Gene Ontology -
		LIERT			Biological Function
215623_x_at	Hs.50758	-4	SMC4 structural maintenance of chromosomes 4-like 1 (yeast)	SMC4L1	mitotic chromosome condensation // cell cycle
217547_x_at	Hs.264345	-4	TRAF6-inhibitory zinc finger protein	TIZ	regulation of transcrip- tion, DNA-dependent
220115_s_at	Hs.92489	-4	cadherin 10, type 2 (T2-cadherin)	CDH10	homophilic cell adhesi-
203593_at	Hs.374340	-4	CD2-associated protein	CD2AP	protein complex assem- bly
205359_at	Hs.419136	-4	A kinase (PRKA) anchor protein 6	AKAP6	protein targeting
209717_at	Hs.387251	-4	ecotropic viral integration site 5	EVI5	development // cell proliferation
210198_s_at	Hs.1787	-4	proteolipid protein 1	PLP1	synaptic transmission
213899_at	Hs.144906	-4	methionyl aminopeptidase 2	METAP2	protein modification
214587_at	Hs.114599	-4	collagen, type VIII, alpha 1	COL8A1	somatic muscle deve- lopment
214701_s_at	Hs.418138	-4	fibronectin 1	FN1	cell motility // signal transduction
215643_at	Hs.187319	-4	sema domain, immunoglobulin domain (Ig), short basic domain, (semaphorin) 3D	SEMA3D	neurogenesis
216938_x_at	Hs.73893	-4	dopamine receptor D2	DRD2	signal transduction // dopamine receptor
219746_at	Hs.440523	-4	D4, zinc and double PHD fingers, family 3	DPF3	regulation of transcrip- tion, DNA-dependent
36830_at	Hs.68583	-4	mitochondrial intermediate pep- tidase	MIPEP	proteolysis and pepti- dolysis // mitochondri- al processing
206046_at	Hs.432317	-4	a disintegrin and metalloprotein- ase domain 23	ADAM23	central nervous system development // proteo- lysis and peptidolysis
206653_at	Hs.282387	-4	polymerase (RNA) III (DNA di- rected) (32kD)	RPC32	regulation of transcrip- tion from Pol III pro- moter
208441_at	Hs.239176	-4	insulin-like growth factor 1 recep- tor	IGF1R	signal transduction // anti-apoptosis
211815_s_at	Hs.87726	-4	golgi associated, gamma adaptin ear containing, ARF binding pro- tein 3	GGA3	intracellular protein transport // intra- Golgi transport
202970_at	Hs.173135	-4	dual-specificity tyrosine-(Y)- phosphorylation regulated kinase 2	DYRK2	
205231_s_at	Hs.458373	-4	epilepsy, progressive myoclonus type 2A, Lafora disease (laforin)	EPM2A	
210852_s_at	Hs.433075	-4	aminoadipate-semialdehyde syn- thase	AASS	
214953_s_at	Hs.177486	-4	amyloid beta (A4) precursor pro- tein (protease nexin-II, Alzhei- mer disease)	APP	
215082_at	Hs.343667	-4	ELOVL family member 5, elon- gation of long chain fatty acids	ELOVL5	
217477_at	Hs.297604	-4	phosphatidylinositol-4- phosphate 5-kinase, type I, beta	PIP5K1B	
219577_s_at	Hs.134514	-4	ATP-binding cassette, sub-family A (ABC1), member 7	ABCA7	
219860_at	Hs.246845	-4	lymphocyte antigen 6 complex, locus G5C	LY6G5C	
221290_s_at	Hs.454758	-4	melanoma ubiquitous mutated protein	MUM-1	
203724_s_at	Hs.7972	-4	rap2 interacting protein x	RIPX	
217427_s_at	Hs.415735	-4	HIR histone cell cycle regulation defective homolog A (S. cerevi-	HIRA	
220290 at	Hs 128738	-4	absent in melanoma 1-like	AIM1L	
222237_s_at	Hs.48589	-4	zinc finger protein 228	ZNF228	regulation of transcrip- tion, DNA-dependent

Ref_ID	Unigen-Nr.	x-fach	Gen	Symbol	Gene Ontology -
		REGU-			Biological Function
204000	II. 4051.00	LIERT		1.0.011.4055	
206900_x_at	Hs.407162	-4	hypothetical protein BC014148	LOC114977	
204665_at	Hs.24808	-4	hypothetical protein FLJ21168	FLJ21168	intro collulor ginnoling
218858_at	HS.87729	-4	nypotnetical protein FLJ12428	FLJ12428	intracellular signaling
219441 s at	Hs 413386	-4	hypothetical protein FLI23119	FLJ23119	cascade
212323 s at	Hs.194737	-4	hypothetical protein FLJ10619	FLJ10619	
218993_at	Hs.182729	-4	putative RNA methyltransferase	FLJ10581	
222250_s_at	Hs.385548	-4	DKFZP434B168 protein		
220853_at	Hs.278931	-4	PRO0159 protein	PRO0159	
76897_s_at	Hs.522351	-4	KIAA0674 protein	KIAA0674	protein folding
213984_at	Hs.31921	-4	KIAA0648 protein	KIAA0648	
214098_at	Hs.21554	-4	KIAA1107 protein	KIAA1107	
216110_x_at	Hs.470604	-4	Homo sapiens cDNA FLJ14080 fis, clone HEMBB1002152.	_	
216153_x_at	Hs.459631	-4	Homo sapiens cDNA FLJ12835 fis, clone NT2RP2003165.	—	
215221_at	Hs.306758	-4	Homo sapiens cDNA: FLJ21411 fis_clone_COL03986		
216155_at	Hs.306686	-4	Homo sapiens cDNA: FLJ20890		
215447 of	Ha 516579	4	ns, clone ADKA03323		
210447_at	115.010078	-4	DKFZp586J0323"		
213986_s_at	Hs.380962	-4	chromosome 19 open reading fra- me 6	C19orf6	
215985_at	Hs.153618	-4	Homo sapiens cDNA FLJ30561 fis. clone BRAWH2004580.	—	
215999_at	Hs.454698	-4	chromosome 17 open reading fra-	C17orf1A	
218431_at	Hs.16157	-4	chromosome 14 open reading fra-	C14orf133	
219164_s_at	Hs.168241	-4	me 133 chromosome 14 open reading fra-	C14orf103	
015400			me 103		
217406_at		-4		_	
21/313_at	Ha 402607	-4			netoin biographogia
201950_s_at	115.402097	-0	factor 4 gamma, 3	EIF 4G5	protein biosynthesis
201998_at	Hs.2554	-3	sialyltransferase 1 (beta- galactoside alpha-2,6- cialyltransferaço)	SIAT1	humoral immune re- sponse // protein ami-
202040_s_at	Hs.76272	-3	retinoblastoma binding protein 2	RBBP2	transcription from Pol
202147_s_at	Hs.7879	-3	interferon-related developmental	IFRD1	myoblast cell fate de-
000000 -+	IL- 495100	2	regulator 1	TOPD1	termination
202825_at	ns.455109	-0	(SIII), polypeptide 1 (15kDa, elongin C)	ICEDI	tion from Pol II promo-
203359_s_at	Hs.78221	-3	c-myc binding protein	MYCBP	regulation of transcrip-
					tion, DNA-dependent
203515_s_at	Hs.30954	-3	phosphomevalonate kinase	PMVK	cholesterol biosynthe-
203868_s_at	Hs.109225	-3	vascular cell adhesion molecule 1	VCAM1	cell-cell adhesion
203870_at	Hs.109268	-3	ubiquitin specific protease 46	USP46	ubiquitin-dependent
203971_at	Hs.414471	-3	solute carrier family 31 (copper	SLC31A1	copper ion transport
204863 e at	Hs 71968	-3	interleukin 6 signal transducer	IL6ST	cell surface recentor
204005_5_at	113.11300	-0	(gp130, oncostatin M receptor)	11001	linked signal transduc- tion // immune re-
205197_s_at	Hs.606	-3	ATPase, Cu++ transporting, al- pha polypeptide (Menkes syndro-	ATP7A	metal ion transport
			me)		
205865_at	Hs.437783	-3	dead ringer-like 1 (Drosophila)	DRIL1	regulation of transcrip- tion, DNA-dependent
205893_at	Hs.71132	-3	neuroligin 1	NLGN1	calcium-dependent cell-cell adhesion
206472_s_at	Hs.287362	-3	transducin-like enhancer of split	TLE3	regulation of transcrip-
			3 (E(sp1) homolog, Drosophila)		tion, DNA-dependent

Ref_ID	Unigen-Nr.	x-fach	Gen Symbol		Gene Ontology -
		REGU- LIERT			Biological Function
206734_at	Hs.105940	-3	jerky homolog-like (mouse)	JRKL	central nervous system development
206773_at	Hs.159590	-3	lymphocyte antigen 6 complex, locus H	LY6H	cellular defense respon- se
207131_x_at	Hs.352119	-3	gamma-glutamyltransferase 1	GGT1	glutathione biosynthe- sis
207181_s_at	Hs.9216	-3	caspase 7, apoptosis-related cy- steine protease	CASP7	apoptotic program
207687_at	Hs.374664	-3	inhibin, beta C	INHBC	cell growth and/or maintenance
203215_s_at	Hs.118483	-3	myosin VI	MYO6	hearing
207780_at	Hs.3232	-3	cylicin, basic protein of sperm head cytoskeleton 2	CYLC2	spermatogenesis
208403_x_at	Hs.42712	-3	MAX protein	MAX	transcription from Pol II promoter // oncoge- nesis
208741_at	Hs.23964	-3	sin3-associated polypeptide, 18kDa	SAP18	regulation of transcrip- tion from Pol II promo- ter
209212_s_at	Hs.84728	-3	Kruppel-like factor 5 (intestinal)	KLF5	transcription from Pol II promoter
209681_at	Hs.30246	-3	solute carrier family 19 (thiamine transporter), member 2	SLC19A2	small molecule trans- port
209827_s_at	Hs.170359	-3	interleukin 16 (lymphocyte che- moattractant factor)	IL16	intracellular signaling cascade
209911_x_at	Hs.180779	-3	histone 1, H2bd	HIST1H2BD	nucleosome assembly
209964_s_at	Hs.108447	-3	spinocerebellar ataxia 7 (olivo- pontocerebellar atrophy with re- tinal degeneration)	SCA7	nuclear organization and biogenesis
210042_s_at	Hs.252549	-3	cathepsin Z	CTSZ	proteolysis and pepti- dolysis
210210_at	Hs.14891	-3	myelin protein zero-like 1	MPZL1	transmembrane recep- tor protein tyrosine kinase signaling path- way
210461_s_at	Hs.442540	-3	actin binding LIM protein 1	ABLIM1	cytoskeleton organiza- tion and biogenesis
210651_s_at	Hs.125124	-3	EphB2	EPHB2	signal transduction // oncogenesis
210665_at	Hs.102301	-3	tissue factor pathway inhibitor (lipoprotein-associated coagula- tion inhibitor)	TFPI	blood coagulation
210793_s_at	Hs.112255	-3	nucleoporin 98kDa	NUP98	intracellular protein transport // protein- nucleus import
210930_s_at	Hs.446352	-3	v-erb-b2 erythroblastic leukemia viral oncogene homolog 2,	ERBB2	cell growth and/or maintenance // onco- genesis
210985_s_at	Hs.371696	-3	nuclear antigen Sp100	SP100	regulation of transcrip- tion, DNA-dependent
211081_s_at	Hs.246970	-3	mitogen-activated protein kinase kinase kinase kinase 5	MAP4K5	protein kinase cascade // activation of JUNK
211356_x_at	Hs.23581	-3	leptin receptor	LEPR	energy reserve metabo- lism
211594_s_at	Hs.288936	-3	mitochondrial ribosomal protein L9	MRPL9	protein biosynthesis
211883_x_at	Hs.512682	-3	carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein)	CEACAM1	immune response
212073_at	Hs.446484	-3	casein kinase 2, alpha 1 polypep- tide	CSNK2A1	signal transduction
212321_at	Hs.186613	-3	sphingosine-1-phosphate lyase 1	SGPL1	amino acid metabolism
213209_at	Hs.131846	-3	TAF6-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor	TAF6L	chromatin modeling // tregulation of trans- cription from Pol II promoter
213252 at	Hs 146233	-3	neuralized-like (Drosophila)	NEURL	neurogenesis

Ref_ID	Unigen-Nr.	x-fach	Gen	Symbol	Gene Ontology -
		REGU- LIERT			Biological Function
217573_at	Hs.436980	-3	glutamate receptor, ionotropic, N-methyl D-aspartate 2C	GRIN2C	ion transport
217591_at	Hs.272108	-3	SKI-like	SKIL	cell differentiation // cell growth and/or maintenance
217787_s_at	Hs.307582	-3	UDP-N-acetyl-alpha-D-	GALNT2	O-linked glycosylation
			galactosamine:polypeptide N- acetylgalactosaminyltransferase 2		
217799_x_at	Hs.372758	-3	ubiquitin-conjugating enzyme E2H (UBC8 homolog, yeast)	UBE2H	ubiquitin cycle
218202_x_at	Hs.203559	-3	mitochondrial ribosomal protein L44	MRPL44	RNA processing
219077_s_at	Hs.519	-3	WW domain containing oxidore- ductase	WWOX	steroid metabolism
220735_s_at	Hs.30443	-3	sentrin/SUMO-specific protease	SENP7	protein sumoylation
221060_s_at	Hs.174312	-3	toll-like receptor 4	TLR4	activation of NF-
					kappaB-inducing kinase // regulation of
221840_at	Hs.437980	-3	protein tyrosine phosphatase, re-	PTPRE	protein amino acid de-
			ceptor type, E		phosphorylation
222029_x_at	Hs.446374	-3	HLA class II region expressed ge- ne KE2	HKE2	protein folding
1316_at	Hs.724	-3	thyroid hormone receptor, alpha	THRA	regulation of transcrip- tion, DNA-dependent
201242_s_at	Hs.78629	-3	ATPase, Na+/K+ transporting, beta 1 polypeptide	ATP1B1	potassium ion trans- port // sodium ion transport
201838_s_at	Hs.6232	-3	SPTF-associated factor 65 gam-	STAF65	regulation of transcrip- tion_DNA-dependent
202056_at	Hs.161008	-3	karvopherin alpha 1 (importin al-	KPNA1	intracellular protein
			pha 5)		transport // regulation of DNA recombination nt
202669_s_at	Hs.30942	-3	ephrin-B2	EFNB2	neurogenesis // cell- cell signaling
203279_at	Hs.154332	-3	ER degradation enhancer, man- nosidase alpha-like 1	EDEM1	
203567_s_at	Hs.511746	-3	tripartite motif-containing 38	TRIM38	
203741_s_at	Hs.172199	-3	adenylate cyclase 7	ADCY7	cAMP biosynthesis
203932_at	Hs.1162	-3	major histocompatibility com- plex, class II, DM beta	HLA-DMB	immune response
203951_at	Hs.21223	-3	calponin 1, basic, smooth muscle	CNN1	smooth muscle con- traction
204024_at	Hs.436445	-3	chromosome 8 open reading fra- me 1	C8orf1	germ-cell development // meiosis
204044_at	Hs.335116	-3	quinolinate phosphoribosyltrans- ferase	QPRT	synaptic transmission // energy pathways //
204347_at	Hs.10862	-3	adenylate kinase 3	AK3	nucleobase, nucleoside, nucleotide and nucleic acid metabolism
204530_s_at	Hs.439767	-3	thymus high mobility group box protein TOX	TOX	regulation of transcrip- tion, DNA-dependent
204689_at	Hs.118651	-3	hematopoietically expressed ho- meobox	HHEX	regulation of transcrip- tion, DNA-dependent
204812_at	Hs.13512	-3	ZW10 homolog, centrome- re/kinetochore protein (Droso- phila)	ZW10	mitotic checkpoint / cell cycle
205027_s_at	Hs.432453	-3	mitogen-activated protein kinase kinase kinase 8	MAP3K8	cell growth and/or maintenance
205410_s_at	Hs.343522	-3	ATPase, Ca++ transporting, plasma membrane 4	ATP2B4	cation transport // cal- cium ion transport
203227_s_at	Hs.50984	-3	sarcoma amplified sequence	SAS	positive regulation of cell proliferation
203377_s_at	Hs.116674	-3	cell division cycle 40 homolog (yeast)	CDC40	mRNA splicing

Ref_ID	Unigen-Nr.	x-fach	Gen	Symbol	Gene Ontology -
		REGU- LIERT			Biological Function
205799_s_at	Hs.239106	-3	solute carrier family 3	SLC3A1	carbohydrate metabo-
					lism // L-cystine trans- port
205934_at	Hs.153322	-3	phospholipase C-like 1	PLCL1	lipid metabolism
205964_at	Hs.324978	-3	zinc finger protein 426	ZNF426	regulation of transcrip-
					tion, DNA-dependent
206031_s_at	Hs.3759	-3	ubiquitin specific protease 5 (iso-	USP5	ubiquitin-dependent
206086 y at	Uo 022205	9	peptidase T)	ПЕЕ	iron ion homoostoois
200080_X_at	He 2242	-3	casein beta	CSN2	calcium ion transport
201951_at	Hs 107474	-3	NGFI-A binding protein 1	NAB1	regulation of transcrip-
200041_3_40	113.101414	-0	(EGR1 binding protein 1)	T(TD)	tion, DNA-dependent
208261_x_at	Hs.282275	-3	interferon, alpha 10	IFNA10	defense response
208478_s_at	Hs.159428	-3	BCL2-associated X protein	BAX	negative regulation of
					survival gene products
208578_at	Hs.250443	-3	sodium channel, voltage-gated, type X, alpha	SCN10A	sodium ion transport
208995_s_at	Hs.77965	-3	peptidyl-prolyl isomerase G (cy- clophilin G)	PPIG	mRNA splicing
209211_at	Hs.84728	-3	Kruppel-like factor 5 (intestinal)	KLF5	regulation of transcrip-
200220	II. 000.40			CERTA	tion, DNA-dependent
209238_at	Hs.82240	-3	syntaxin 3A	STX3A	intracellular protein
					transport // neuro-
209781 s at	Hs.13565	-3	KH domain containing BNA	KHDBBS3	spermatogenesis
20010120200	115110000		binding, signal transduction asso-		opermategenesis
	TT 110000		ciated 3	MADOM	
209951_s_at	Hs.110299	-3	mitogen-activated protein kinase kinase 7	MAP2K7	response to stress
210271_at	Hs.322431	-3	neurogenic differentiation 2	NEUROD2	regulation of transcrip-
					tion from Pol II promo-
011000	II 115054			DACEA	ter
211263_s_at	Hs.117874	-3	paired basic amino acid cleaving	PACE4	cell-cell signaling //
			system 4		dolvsis
211339_s_at	Hs.211576	-3	IL2-inducible T-cell kinase	ITK	cellular defense respon-
					se // intracellular sig-
201187 g at	Ho 77515	2	inegital 1.4.5 triphogphata regar	ITDD9	Calaium abannala
201187_s_at	IIS. 77515	-0	tor, type 3	IIFRO	Calcium channels
202662_s_at	Hs.512235	-3	inositol 1,4,5-triphosphate recep-	ITPR2	Calcium channels
			tor, type 2		
211551_at	Hs.77432	-3	epidermal growth factor receptor	EGFR	EGF receptor signaling
					pathway // cell prolife-
211822 c of	He 150/28	2	BCI 2 associated X protein	BAY	ration
211055_8_at	115.159420	-5	BCH2-associated X protein	DAA	survival gene products
					// induction of apopto-
					sis
213552_at	Hs.183006	-3	glucuronyl C5-epimerase	GLCE	heparan sulfate proteo-
		-			glycan biosynthesis
213704_at	Hs.78948	-3	Rab geranylgeranyltransferase,	RABGGTB	protein modification
214474 at	He 50732	_3	protein kinase AMP-activated	PRKAB2	signal transduction //
2144(4-at	115.00732	-5	beta 2 non-catalytic subunit		fatty acid biosynthesis
216809_at	Hs.444230	-3	cylicin, basic protein of sperm	CYLC1	spermatogenesis
			head cytoskeleton 1		
217829_s_at	Hs.12820	-3	ubiquitin specific protease 39	USP39	spliceosome assembly
218080_x_at	Hs.12899	-3	Fas (TNFRSF6) associated fac-	FAF1	apoptosis
219226_at	Hs.416108	-3	CDC2-related protein kinase 7	CRK7	protein amino acid
			· · · · · · · · · · · · · · · · · · ·		phosphorylation
219282_s_at	Hs.279746	-3	transient receptor potential ca-	TRPV2	cation transport
			tion channel, subfamily V, mem-		
220460 at	Ha 47961	2	Der 2	SI COLA14	ion transnert
220400_at	115.47201	-0	anion transporter), member 14	SLUZIA14	ion transport

Ref_ID	Unigen-Nr.	x-fach REGU-	Gen	Symbol	Gene Ontology - Biological Function
		LIERT			Diological I anotion
221006_s_at	Hs.67619	-3	sorting nexin family member 27	SNX27	intracellular protein transport// intracellu- lar signaling cascade
221238_at	Hs.282204	-3	nucleosomal binding protein 1	NSBP1	regulation of transcrip- tion, DNA-dependent
320_at	Hs.301636	-3	peroxisomal biogenesis factor 6	PEX6	protein-peroxisome targeting
36475_at	Hs.54609	-3	glycine C-acetyltransferase (2- amino-3-ketobutyrate coenzyme A ligase)	GCAT	heme biosynthesis
37950_at	Hs.433986	-3	prolyl endopeptidase	PREP	proteolysis and pepti- dolysis
44673_at	Hs.31869	-3	sialoadhesin	SN	heterophilic cell adhe- sion // cell-matrix ad- hesion
823_at	Hs.80420	-3	chemokine (C-X3-C motif) li- gand 1	CX3CL1	immune response // cell-cell signaling // cell adhesion
200913_at	Hs.17883	-3	protein phosphatase 1G (former- ly 2C), magnesium-dependent, gamma isoform	PPM1G	cell cycle arrest
202085_at	Hs.75608	-3	tight junction protein 2 (zona oc- cludens 2)	TJP2	intracellular signaling cascade
202464_s_at	Hs.195471	-3	6-phosphofructo-2- kinase/fructose-2,6- biphosphatase 3	PFKFB3	metabolism // fructose 2,6-bisphosphate meta- bolism
203458_at	Hs.301540	-3	sepiapterin reductase (7,8- dihydrobiopterin:NADP+ oxido- reductase)	SPR	metabolism // te- trahydrobiopterin biosynthesis
203543_s_at	Hs.150557	-3	basic transcription element bin- ding protein 1	BTEB1	regulation of transcrip- tion from Pol II promo- ter
203685_at	Hs.79241	-3	B-cell CLL/lymphoma 2	BCL2	anti-apoptosis // regu- lation of cell cycle
203700_s_at	Hs.436020	-3	deiodinase, iodothyronine, type II	DIO2	thyroid hormone gene- ration
204247_s_at	Hs.166071	-3	cyclin-dependent kinase 5	CDK5	cell cycle
205132_at	Hs.118127	-3	actin, alpha, cardiac muscle	ACTC	muscle development
208048_at	Hs.1080	-3	tachykinin receptor 1	TACR1	G-protein signaling, coupled to IP3 second messenger
208306_x_at	Hs.308026	-3	major histocompatibility com- plex, class II, DR beta 3	HLA-DRB3	signal transduction
211368_s_at	Hs.2490	-3	caspase 1, apoptosis-related cy- steine protease (interleukin 1, be- ta, convertase)	CASP1	signal transduction // apoptosis
211519_s_at	Hs.69360	-3	kinesin family member 2C	KIF2C	mitosis // cell prolife- ration
211780_x_at	Hs.74617	-3	dynactin 1 (p150, glued homolog, Drosophila)	DCTN1	mitosis // neurogenesis
212172_at	Hs.294008	-3	adenylate kinase 2	AK2	
213479_at	Hs.3281	-3	neuronal pentraxin II	NPTX2	regulation of synapse // heterophilic cell ad- hesion
213805_at	Hs.19385	-3	abhydrolase domain containing 5	ABHD5	proteolysis and pepti- dolysis // inferred from electronic annotation
214043_at	Hs.323079	-3	protein tyrosine phosphatase, receptor type, D	PTPRD	transmembrane recep- tor protein tyrosine phosphatase signaling pathway
222187_x_at	Hs.48549	-3	Ras-GTPase-activating protein SH3-domain-binding protein	G3BP	protein-nucleus import // RAS protein signal transduction
50400_at	Hs.292503	-3	peroxisomal N1-acetyl- spermine/spermidine oxidase	PAO	electron transport
200612_s_at	Hs.370123	-3	adaptor-related protein complex 2, beta 1 subunit	AP2B1	

Ref_ID	Unigen-Nr.	x-fach REGU-	Gen	Symbol	Gene Ontology - Biological Function
202743_at	Hs.372548	-3	phosphoinositide-3-kinase, regu- latory subunit, polypeptide 3	PIK3R3	
201122_x_at	Hs.310621	-3	(p55, gamma) eukaryotic translation initiation	EIF5A	
201813 c at	He 115740	2	tactor 5A	TBC1D5	
201813_s_at 202062_s_at	Hs.181300	-3	sel-1 suppressor of lin-12-like (C.	SEL1L	
			elegans)		
205001_s_at	Hs.99120	-3	DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked	DDX3Y	
205559_s_at	Hs.288931	-3	proprotein convertase subtili- sin/kexin type 5	PCSK5	
208241_at	Hs.172816	-3	neuregulin 1	NRG1	
209037_s_at	Hs.155119	-3	EH-domain containing 1	EHD1	
209754_s_at	Hs.11355	-3	thymopoietin	TMPO	
210005_at	Hs.82285	-3	phosphoribosylglycinamide formyltransferase	GART	
210172_at	Hs.440835	-3	splicing factor 1	SF1	
210540_s_at	Hs.13225	-3	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypepti- de 4	B4GALT4	
210867_at	Hs.20423	-3	CCR4-NOT transcription com- plex, subunit 4	CNOT4	
211521_s_at	Hs.7189	-3	pleckstrin homology, Sec7 and coiled-coil domains 4	PSCD4	
212490_at	Hs.433540	-3	DnaJ (Hsp40) homolog, subfami- ly C, member 8	DNAJC8	
213332_at	Hs.293896	-3	placenta-specific 3	PLAC3	
214707_x_at	Hs.97393	-3	Alstrom syndrome 1	ALMS1	
215987_at	Hs.373588	-3	PDZ domain containing guani- ne nucleotide exchange factor (GEF) 1	PDZGEF1	
219064_at	Hs.245326	-3	inter-alpha trypsin inhibitor hea- vy chain precursor 5	ITIH5	
219194_at	Hs.444359	-3	sema domain, immunoglobulin domain (Ig)	SEMA4G	
219376_at	Hs.126280	-3	hypothetical protein FLJ23393	FLJ23393	
219433_at	Hs.186424	-3	BCL6 co-repressor	BCOR	
219509_at	Hs.238756	-3	myozenin 1	MYOZ1	
219539_at	Hs.143818	-3	gem (nuclear organelle) associa- ted protein 6	GEMIN6	
219928_s_at	Hs.511983	-3	calcium-binding tyrosine-(Y)- phosphorylation regulated (fibrousheathin 2)	CABYR	
219938_s_at	Hs.413501	-3	proline-serine-threonine phos- phatase interacting protein 2	PSTPIP2	
220238_s_at	Hs.376793	-3	SBBI26 protein	SBBI26	
221430_s_at	Hs.267120	-3	dactylidin	—	
39582_at	Hs.386952	-3	cylindromatosis (turban tumor syndrome)	CYLD	
203106_s_at	Hs.413840	-3	vacuolar protein sorting 41 (yeast)	VPS41	
200988_s_at	Hs.152978	-3	"proteasome (prosome, macro- pain) activator subunit 3 (PA28 gamma; Ki)"	PSME3	
204491_at	Hs.28482	-3	phosphodiesterase 4D, cAMP- specific	PDE4D	
207357_s_at	Hs.13785	-3	UDP-N-acetyl-alpha-D- galactosamine:polypeptide N- acetylgalactosaminyltransferase 10	GALNT10	
209399_at	Hs.371350	-3	holocarboxylase synthetase	HLCS	
209821_at	Hs.348390	-3	DVS27-related protein	DVS27	
210286_s_at	Hs.250072	-3	solute carrier family 4, sodium bicarbonate cotransporter, mem- ber 7	SLC4A7	

$9.1\,$ Gesamtliste aller IRA-regulierten Gene aus den Microarray-Analysen

Ref_ID	Unigen-Nr.	x-fach	Gen	Symbol	Gene Ontology -
		REGU- LIERT			Biological Function
212106_at	Hs.76591	-3	expressed in T-cells and eosino- phils in atopic dermatitis	ETEA	
212379_at	Hs.82285	-3	phosphoribosylglycinamide	GART	
			formyltransferase		
212425_at	Hs.31218	-3	secretory carrier membrane pro- tein 1	SCAMP1	
213572_s_at	Hs.381167	-3	serine (or cysteine) proteinase	SERPINB1	
			inhibitor, clade B (ovalbumin), member 1		
213815_x_at	Hs.128425	-3	NY-REN-24 antigen	NY-REN-24	
214417_s_at	Hs.81073	-3	POD1 regulator of differentiation	FETUB POD1	
214097_s_at	пѕ.574054	-0	1 (S. pombe)	RODI	
215529_x_at	Hs.322903	-3	disco-interacting protein 2 (Dro- sophila) homolog	DIP2	
215566_x_at	Hs.413781	-3	lysophospholipase II	LYPLA2	
216352_x_at	Hs.283794	-3	protocadherin gamma subfamily C, 3	PCDHGC3	
217909_s_at	Hs.383019	-3	transcription factor-like 4	TCFL4	
218173_s_at	Hs.415895	-3	Wolf-Hirschhorn syndrome can- didate 1-like 1	WHSC1L1	
218255_s_at	Hs.247186	-3	fibrosin 1	FBS1	
219870_at	Hs.189813	-3	activating transcription factor 7 interacting protein 2	ATF7IP2	
219985_at	Hs.462270	-3	heparan sulfate (glucosamine) 3- O-sulfotransferase 3A1	HS3ST3A1	
220171_x_at	Hs.283709	-3	lipopolysaccharide specific response-7 protein	LSR7	
220944_at	Hs.58356	-3	peptidoglycan recognition	PGLYRPIbeta	
212839_s_at	Hs.288178	-3	Sjogren syndrome antigen A2	SSA2	
			(60kDa, ribonucleoprotein auto- antigen SS-A/Ro)		
39313_at	Hs.275999	-3	protein kinase, lysine deficient 1	PRKWNK1	
201943_s_at	Hs.5057	-3	carboxypeptidase D	CPD	
203742_s_at	Hs.512707	-3	thymine-DNA glycosylase	TDG	
205298_s_at	Hs.91813	-3	butyrophilin, subfamily 2, mem- ber A2	BTN2A2	
208103_s_at	Hs.385913	-3	acidic (leucine-rich) nucle-	ANP32E	
			ar phosphoprotein 32 family, member E		
212306_at	Hs.108614	-3	cytoplasmic linker associated protein 2	CLASP2	
205855_at	Hs.157035	-3	zinc finger protein 197	ZNF197	
210282_at	Hs.315241	-3	zinc finger protein 198	ZNF198	
216983_s_at	Hs.279855	-3	zinc finger protein 224	ZNF224	regulation of transcrip- tion, DNA-dependent
50376_at	Hs.24545	-3	zinc finger protein 444	ZNF444	
78330_at	Hs.174193	-3	zinc finger protein 335	ZNF335	
214678_x_at	Hs.2074	-3	zinc finger protein, X-linked	ZFX	regulation of transcrip- tion, DNA-dependent
213934_s_at	Hs.376810	-3	zinc finger protein 23 (KOX 16)	ZNF23	regulation of transcrip- tion, DNA-dependent
214878_at	Hs.512718	-3	zinc finger protein 37a (KOX 21)	ZNF37A	regulation of transcrip- tion, DNA-dependent
215012_at	Hs.188662	-3	zinc finger protein 451	ZNF451	
217649_at	Hs.406096	-3	zinc finger protein 216	ZNF216	
210876_at	Hs.518908	-3	Human lipocortin (LIP) 2 pseu- dogene mRNA, complete cds-like region.		
202972_s_at	Hs.442818	-3	family with sequence similarity 13, member A1	FAM13A1	
202128_at	Hs.434432	-3	KIAA0317 gene product	KIAA0317	ubiquitin cycle
203051_at	Hs.22109	-3	KIAA0945 protein	KIAA0945	
212289_at	Hs.388877	-3	KIAA0874 protein	KIAA0874	
214943_s_at	Hs.511939	-3	KIAA0117 protein	KIAA0117	
215651_at	Hs.306864	-3	KIAA0781 protein	KIAA0781	protein amino acid phosphorylation

Ref_ID	Unigen-Nr.	x-fach	Gen	Symbol	Gene Ontology -
		REGU-			Biological Function
		LIERT			
200616_s_at	Hs.181418	-3	KIAA0152 gene product	KIAA0152	
212427_at	Hs.445255	-3	KIAA0368 protein	KIAA0368	
212548_s_at	Hs.169600	-3	KIAA0826 protein	KIAA0826	
215584_at	Hs.428547	-3	HECT type E3 ubiquitin ligase	KIAA0322	ubiquitin cycle
215750_at	Hs.474916	-3	KIAA1659 protein	KIAA1659	
216775_at	Hs.135457	-3	KIAA1350 protein	KIAA1350	
215331_at	Hs.225968	-3	KIAA1000 protein	KIAA1000	
221874_at	Hs.104696	-3	KIAA1324 protein	KIAA1324	
209912_s_at	HS.505758	-3	KIAA0415 gene product	KIAA0415	
213271_s_at	HS.348982	-3	KIAAIII/ protein	KIAAIII <i>i</i>	
207734_at	HS.272794	-3	hypothetical protein FLJ20340	LAX EL 111140	witamin D2 biggentha
205224_at	ns.57558	-5	nypotnetical protein FLJ11149	ГLJ11149	vitamin B2 biosynthe-
213381 at	Hs 279639	_3	hypothetical protein FL 131737	FL131737	515
219558 at	Hs 371148	-3	hypothetical protein FL 120986	FL120986	cation transport
220720 x at	Hs.287640	-3	hypothetical protein FLJ14346	FLJ14346	
221986 s at	Hs.246875	-3	hypothetical protein FLJ20059	FLJ20059	
205584_at	Hs.169078	-3	hypothetical protein FLJ23018	FLJ23018	
218910_at	Hs.319088	-3	hypothetical protein FLJ10375	FLJ10375	
219234_x_at	Hs.20999	-3	hypothetical protein FLJ23142	FLJ23142	
219846_at	Hs.399846	-3	hypothetical protein FLJ20203	FLJ20203	
219980_at	Hs.407155	-3	hypothetical protein FLJ21106	FLJ21106	
220137_at	Hs.333157	-3	hypothetical protein FLJ20674	FLJ20674	
220348_at	Hs.287872	-3	hypothetical protein FLJ14106	FLJ14106	
220453_at	Hs.263081	-3	hypothetical protein FLJ20320	FLJ20320	
52285_f_at	Hs.236940	-3	hypothetical protein FLJ12542	FLJ12542	
65493_at	Hs.17230	-3	hypothetical protein FLJ22087	FLJ22087	
220908_at	Hs.383206	-3	hypothetical protein FLJ32855	FLJ32855	
206441_s_at	Hs.351327	-3	hypothetical protein FLJ20452	FLJ20452	
213703_at	Hs.446532	-3	hypothetical protein LOC150759	LOC150759	
213372_at	Hs.368305	-3	hypothetical protein LOC152559	LOC152559	
219387_at	Hs.254122	-3	hypothetical protein LOC55580	LOC55580	
205310_at	Hs.128702	-3	hypothetical protein 20D7-FC4	20D7-FC4	
214711_at	Hs.441127	-3	hypothetical protein 15E1.2	15E1.2	
222120_at	Hs.132227	-3	hypothetical protein MGC13138	MGC13138	regulation of transcrip-
F 0010	TT 1 MOOO				tion
58916_at	Hs.17296	-3	hypothetical protein MGC2376	MGC2376	potassium ion trans-
204225 -+	IL- 000074	2	han athetical must in MCC1C005	MOOLCOP	port
204225_at	Hs.222874	-3	hypothetical protein MGC16025	MGC16025	
218042_s_at	HS.430913	-3	hypothetical protein MGC2217	MGC2217 MCC12008	tuongonintion
222208_s_at	He 22/127	-5	hypothetical protein MGC13098	HSPC100	transcription
210000_at	He 11506	-3	Human clone 23580 mRNA se-		
212751_a0	115.11000	-5	quence		
217446 x at	Hs.274517	-3	Homo sapiens similar to F-box		
	110.211011	, s	domain containing protein fami-		
			ly member		
216751_at	Hs.306715	-3	Homo sapiens LOC284041	_	
			(LOC284041), mRNA		
213089_at	Hs.166361	-3	Homo sapiens LOC340111	—	
			(LOC340111), mRNA		
214983_at	Hs.433656	-3	Homo sapiens LOC347571	—	
			(LOC347571), mRNA		
213804_at	Hs.182577	-3	Homo sapiens cDNA FLJ35942	—	
	**	-	fis, clone TESTI2011712.		
215029_at	Hs.293563	-3	"Homo sapiens mRNA; cDNA	—	
			DKFZp586E2317 (from clone		
015057 -+	II- 00002	9	DKFZp586E2317)"		
215057_at	HS.92683	-3	house appressed mDNA from	—	
			chromosome Y		
215191 at	Hs 278648	-3	Homo sapiens cDNA FL 114085		
210101_00	115.210040	-0	fis. clone HEMBB1002534		
215306 at	Hs.468490	-3	"Homo sapiens mRNA: cDNA		
		-	DKFZp586N2020 (from clone		
			DKFZp586N2020)"		

9.2	Häufigkeitsverteilung	der	predicted	Transkriptionsfaktor-Bindestellen
-----	-----------------------	-----	-----------	-----------------------------------

Ref_ID Unigen-Nr. x-fach Gen Sy	ymbol	Gene Ontology -
REGU-		Biological Function
LIERT		
216147_at Hs.306504 -3 "Homo sapiens mRNA; cDNA —	-	
DKFZp761L23121 (from clone		
DKFZp761L23121)"		
216783_at Hs.306815 -3 Homo sapiens cDNA: FLJ21899 —	-	
fis, clone HEP03467		
60794_f_at Hs.408934 -3 Homo sapiens cDNA clone —	-	
IMAGE:6653606, partial cds		
222326_at Hs.432534 -3 Homo sapiens transcribed se	-	
quences		
215545_at Hs.469871 -3 Homo sapiens cDNA FLJ14123 —	-	
fis, clone MAMMA1002155.		
215555-at Hs.273099 -3 Homo sapiens cDNA FLJ13712 -	-	
hs, clone PLACE2000394.		
217695_x_at Hs.343402 -3 Homo sapiens transcribed se	-	
quence with weak similarity to		
protein ref:NP_060312.1		
215608_at Hs.439648 -3 Homo sapiens transcribed se	-	
quence with weak similarity to		
protein ref:NP_060312.1		
221988_at Hs.515232 -3 Homo sapiens transcribed se-	-	
quence with moderate similarity		
to protein ref:NP_0/1431.1		
221790_at Hs.494313 -3 Homo sapiens mRNA full length —	-	
CE 1620057		
GE 1050957 222180 at He 225720 2 Home capiene aDNA EL 11/122		
$\begin{bmatrix} 222100_at \\ 115.225729 \\ -5 \\ fs clone MAMMA1002033 \\ \hline \end{bmatrix}$	_	
216176 at He 206802 2 Home series aDNA: EL 121600		
210170_at 115.500002 -5 110110 Sapiens CDNA. FL521050 —		
212100 at Hs 437433 -3 chromosome 16 open reading fra-	16orf34	
me 34	1001134	
215241 at Hs 91791 -3 chromosome 11 open reading fra- C1	11orf25	
me 25	1101120	
220688 s at Hs.463797 -3 chromosome 1 open reading fra-	1orf33	
me 33		
222344_at Hs.508741 -3 chromosome 5 open reading fra- C5	5orf13	
me 13	-	
211074_at -3 — —	-	
216437_at -3 — —	_	
216443_at -3 — —	_	
216557_x_at -3	_	
207755_at -3 — —	-	

9.2 Häufigkeitsverteilung der predicted Transkriptionsfaktor-Bindestellen

Tabelle 9.2: Gesamtübersicht Transkriptionsfaktor-Bindestellen-Häufigkeiten. Verteilung der Transkriptionsfaktor-Bindestellen bei IRA-regulierten und nicht-regulierten Genen, die in der Promoterdatenbank MPromDB annotiert sind. Die angegebenen Häufigkeiten beziehen sich auf das Vorkommen bei x Genen.

predicted trans-	AUFREGULIERT	ABREGULIERT	unreguliert ABSENT	unreguliert PRESENT
cription factor				
binding sites				
V\$ZTA_Q2	0	1	0	0
V\$ZIC3_01	10	7	10	10
V\$ZIC2_01	11	14	16	0
V\$ZIC1_01	10	7	10	10
V\$ZF5_B	0	1	0	0
V\$ZF5_01	103	116	108	112
V\$YY1_Q6	18	20	18	36
V\$XPF1_Q6	13	16	15	11

predicted trans-	AUFREGULIERT	ABREGULIERT	unreguliert ABSENT	unreguliert PRESENT
cription factor			_	_
binding sites				
V\$XFD3_01	0	0	0	1
V\$XFD2_01	1	0	0	0
V\$VMYB_02	1	3	1	0
V\$VMYB_01	0	0	1	0
V\$VBP_01	2	0	1	0
V\$USF2_Q6	97	94	113	91
V\$USF_Q6	2	1	6	4
V\$USF_C	27	19	31	0
V\$TTF1_Q6	2	4	2	4
V\$TST1_01	0	0	0	1
V\$TITF1_Q3	2	3	2	4
V\$TGIF_01	10	7	7	7
V\$TFIII_Q6	88	92	105	90
V\$TFIIA_Q6	0	1	0	2
V\$TEL2_Q6	11	9	14	10
V\$TEF1_Q6	146	158	153	144
V\$TEF_Q6	0	0	2	1
$VTCF4_Q5$	56	41	49	44
V\$TCF1P_Q6	7	7	9	0
V\$TCF11_01	5	4	8	4
V\$TBP_Q6	87	102	78	72
V\$TBP_01	56	65	57	53
V\$TATA_C	8	16	4	12
V\$TANTIGEN_B	1	2	0	0
V\$TAL1_Q6	13	11	14	12
V\$STRA13_01	1	2	1	0
V\$STAT6_02	36	55	47	46
V\$STAT5A_04	142	157	150	143
V\$STAT5A_01	1	1	1	0
V\$STAT4_01	111	111	96	101
V\$STAT3_02	127	149	147	132
V\$STAT1_03	40	42	47	47
V\$STAT_Q6	0	1	3	1
V\$STAT_01	6	11	6	8
V\$SRY_02	2	1	0	0
V\$SRY_01	142	156	151	142
V\$SREBP1_Q6	117	126	127	123
V\$SREBP1_02	4	4	4	1
VOSREBPI_UI	2	2	3	0
VOSREDF_QO	<u> </u>	ə 40	2	1
VOSP1_Q0_01	34	40	58	03
VOSPI_Q0	2	J 1	<u></u>	1 E
V\$SF1_Q4_01	1	61	50	5
V#SF1_Q2_01		01	17	02
VOSF 1_01	21	23	1	20
V\$SOX5_01	20	0	10	17
V\$SOX3_01	141	157	142	130
V\$SMAD3 O6	141	26	25	133
V\$SMAD O6 01	0	0	0	2
V\$SMAD 06	42	41	39	35
V\$SF1 06	73	75	86	82
V\$S8_01		1	0	0
V\$RFX Q6	10	13	20	25
V\$PU1_Q6	92	97	95	94
V\$POU6F1_01	2	1	0	0
V\$POU3F2_02	1	5	2	2
V\$POU1F1_Q6	13	17	7	3
V\$PITX2_Q2	30	44	36	35
V\$PEA3_Q6	141	155	146	138
V\$PBX1_03	5	4	5	5
V\$PBX1_01	10	6	8	8
V\$PBX_Q3	0	1	0	0
V\$PAX6_Q2	0	0	1	0
V\$PAX4_03	1	1	2	1
V\$PAX4_02	0	1	0	0
V\$PAX2_02	38	35	37	36

9.2 Häufigkeitsverteilung der predicted Transkriptionsfaktor-Bindestellen

predicted trans-	AUFREGULIERT	ABREGULIERT	unreguliert ABSENT	unreguliert PRESENT
cription factor			_	_
binding sites				
V\$PAX_Q6	1	0	1	0
V\$PADS C	10	16	14	16
V@D52 DECA	10	10	2	10
V #F 55_DECA-	0	2	5	2
MER_Q2	-	_	-	-
V\$P53_02	3	7	5	0
V\$OSF2_Q6	45	45	39	43
V\$OCT1_Q6	0	0	1	0
V\$OCT1_Q5_01	6	4	6	2
V\$OCT1 B	12	15	14	9
V\$0CT1.07	2	1	2	2
VCCT1 06	1	1	2	2
V\$0C11_00	1	0	0	0
V\$UCT_Q6	6	4	6	2
V\$NRF2_Q4	0	0	0	1
V\$NRF2_01	1	2	4	2
V\$NRF1_Q6	2	6	8	8
V\$NKX62_Q2	3	5	6	1
V\$NKX3A 01	1	3	2	0
V\$NKX25.02		202	- 18	28
VENEV25 01	100	197	10	100
V ØINIXA20_01	129	101	120	120
V \$INKX22_01	2	4	6	1
V\$NFY_Q6_01	0	0	1	1
V\$NFY_Q6	1	0	1	0
V\$NFY_C	0	0	0	1
V\$NFY_01	2	0	1	0
V\$NFMUE1_Q6	7	3	11	0
V\$NFKB O6 01	1	1	0	0
V\$NEKB O6		2	1	0
V DIVI KD_Q0	2	5	1	0
V\$NFKB_C	1	0	0	0
V\$NFKAPPAB-	4	10	4	2
65_01				
V\$NFKAPPAB-	5	3	1	1
50_01				
V\$NFKAPPAB_01	4	10	4	2
V\$NFE2_01	2	0	0	6
V\$NFAT O6	8	5	7	7
V\$NFAT 04 01	2	3	3	6
VeMZE1 02	2	5	5	0
	1	0	0	0
V\$MZF1_01	57	72	18	70
V\$MYO-	112	111	127	114
GENIN_Q6				
V\$MYOD_Q6	8	5	9	2
V\$MYOD_01	1	1	1	2
V\$MYCMAX B	2	0	2	4
V\$MYC O2	83	83		83
V [®] MVP O6	2	1	2	2
VONVD OF OI	<u>ປ</u>	1	<u> </u>	0 74
V \$MIYB_Q5_01	12	90	80	(4
V\$MYB_Q3	5	7	9	0
V\$MSX1_01	19	23	23	10
V\$MEIS1_01	0	2	2	1
V\$MEF2_Q6_01	2	2	3	1
V\$MEF2_Q6	50	54	43	35
V\$MAZ Q6	110	131	131	115
V\$MAE O6 01	1	0	0	3
Verver 01	26	41	20	20
	20	41	32	32
V\$LPOLYA_B	32	37	43	45
V\$LMO2COM_02	16	25	26	20
V\$LMO2COM_01	2	1	1	2
V\$LHX3_01	12	12	6	6
V\$LFA1_Q6	41	49	59	50
V\$LEF1TCF1_O4	1	2	0	3
V\$LEF1 O6	4	2	13	7
V\$LEF1 O2	146	157	158	147
VELDD1 OC	140	107	100	190
V STRLIGO	123	124	130	120
V\$KROX_Q6	7	6	8	2
V\$IRF1_Q6	115	125	103	108
V\$IRF_Q6_01	5	5	2	3
V\$IPF1_Q4	0	1	1	1

predicted trans-	AUFREGULIERT	ABREGULIERT	unreguliert ABSENT	unreguliert PRESENT
cription factor			_	_
binding sites				
V\$IK3_01	0	1	0	0
V\$ICSBP_Q6	1	1	1	0
V\$HSF2_01	3	1	1	1
V\$HSF1_01	1	1	0	0
V\$HP1SITE-	0	0	0	1
FACTOR_Q6				
V\$HOXA4_Q2	48	46	33	42
V\$HOXA3_01	14	9	16	9
V\$HNF6_Q6	2	0	0	0
V\$HNF4_DR1_Q3	0	2	0	0
V\$HNF3B_01	0	0	0	1
V\$HNF3-	45	49	49	45
ALPHA_Q6				
V\$HMX1_01	2	2	1	1
V\$HMGIY_Q6	113	117	109	103
V\$HLF_01	2	0	1	0
V\$HFH3_01	1	0	1	0
V\$HFH1_01	2	0	2	0
V\$HELIOSA_02	2	9	3	0
V\$HEB_Q6	48	51	66	58
V\$GEN_INI3_B	43	52	63	35
V\$GEN_INI2_B	89	101	97	75
V\$GEN_INI_B	43	52	63	35
V\$GATA6_01	18	19	6	22
V\$GATA4_Q3	2	0	1	1
V\$GATA3_03	4	4	2	6
V\$GATA3 02	2	4	5	5
V\$GATA3 01	24	18	16	25
V\$GATA2_03	2	4	5	5
V\$GATA2 02	2	4	5	5
V\$GATA2 01		1	4	1
V\$GATA1.06		2	0	3
V\$GATA1.05	7	2	7	3
V\$GATA1_04	1	0	0	0
V\$GATA1.02	1	0	0	2
V\$GATA1_01	3	4	2	6
V\$GATA O6	94	90	89	96
V\$GATA C	0	2	3	3
V\$FBEAC4 01	0	0	1	0
V\$FOXO4_01	3	2	1	1
V\$FOX01.01	46	36	36	38
V\$FOXM1_01	86	88	81	90
V\$FOXD3.01	2	0	1	2
V\$EVI1.06	10	22	12	10
V\$EVI1_05	0	1	0	0
V\$EVI1_03	0	1	0	0
V\$EVI1_02	0	2	1	1
V\$ETS2 B	0	0	1	0
V\$ETS O6	53	57	61	53
V\$ETS O4	0	4	3	5
V\$ETE O6	104	133	110	121
V\$EN1_01	68	61	56	57
V\$ELK1.02	0	0	1	0
V\$ELF1_06	2	1	2	1
V\$ECB3.01	0	0	1	0
V&ECP O6	6	0	5	2
VEEDOX OG	0	6	15	3
V\$EBE OS	<i>3</i> 0	4	10	<i> </i> 1
VOEDF_Q0	0	4	2	1
V\$F9F4DD9 01	U 00	1	1	1
V\$F2F4DF2_01	<u>44</u> 0	20 5	20	21
V 0122F 4DF 1_01	<i>サ</i>	0 0F	1	0
V \$E2F IDP2_01	22	20	20	21
V DE2F IDP1KB_UI	20	10	20	10
V \$E2F IDP1_01	1	25	20	21
V \$E2F1_Q0_U1	1	U F		U 4
V \$E2F1_Q6	9	5	1	4
və£2r1_Q4_01	4	1	<u> </u>	U
9.2 Häufigkeitsverteilung der predicted Transkriptionsfaktor-Bindestellen

predicted trans-	AUFREGULIERT	ABREGULIERT	unreguliert ABSENT	unreguliert PRESENT
cription factor				
binding sites				
V\$E2F1_Q4	14	16	14	23
V\$E2F1_Q3	9	5	7	4
V\$E2F_Q6	9	5	7	4
V\$E2F Q4	9	5	7	4
V\$E2F Q3 01	4	1	3	0
V\$E2F Q3		5	7	4
V\$E2F_Q3	133	1/8	136	144
V¢E2F_Q2	20	140	20	199
V\$E2F_02	101	15	20	10
V\$E2A_Q0	101	90	123	108
V JEZA_QZ	20	21	20	50
V\$E12_Q6	0	1	1	
V\$DTYPEPA_B	2	0	0	1
V\$DELTAEF1_01	1	1	2	0
V\$DBP_Q6	88	103	89	100
V\$CREL_01	7	8	11	12
V\$CREBP1-	22	30	26	19
CJUN_01				
V\$CREBP1_Q2	0	0	1	0
V\$CREBP1_01	5	7	4	0
V\$CREBATF_Q6	10	18	14	4
V\$CREB_Q4_01	1	1	2	1
V\$CREB_Q4	0	0	1	0
V\$CREB_Q3	83	94	79	81
V\$CREB_Q2	0	1	0	1
V\$CREB_02	0	0	0	1
V\$CREB_01	18	23	18	13
V\$CP2_01	7	5	3	5
V\$COREBINDING-	61	66	53	39
FACTOR_Q6				
V\$CIZ 01	11	10	12	10
V\$CHCH 01	130	154	144	141
V\$CETS1P54_01	0	0	0	1
V\$CETS1P54_02	8	6	6	8
V\$CETS168_06	74	68	88	72
V\$CEBD	0	1	1	0
CAMMA O6	0	I	I	0
VCEDDA 01	0	0	1	0
V\$CEBFA_01	0	0	1	0
VOCEDP_Q0	1	4	3	0
V\$CEBP_Q2_01	0	0	0	0
V\$CEBP_01	0	0	1	0
V\$CDXA_02	126	150	123	118
V\$CDXA_01	101	118	94	84
V\$CDX2_Q5	1	0	0	0
V\$CAP_01	89	99	90	79
V\$CACBINDING-	42	35	48	32
PROTEIN_Q6				
V\$CAAT_01	3	2	6	3
V\$BARBIE_01	0	0	0	1
V\$BACH2_01	0	0	1	0
V\$ATF6_01	14	11	14	15
V\$ATF1_Q6	0	2	1	1
V\$ATF_B	1	1	2	0
V\$ATATA_B	1	1	2	1
V\$AREB6_04	86	98	89	77
V\$AREB6_03	0	0	3	0
V\$AREB6_01	1	0	0	0
V\$AP4_Q6_01	34	28	47	33
V\$AP4 06	4	7	10	0
V\$AP4 05	3	1	3	
V\$AP3 O6	42	55	28	25
V\$AP2BEP 01	115	117	125	100
V\$AP2	110	10		109
	2.0	19	20	20
	E 4	60	60	
	54	00	69	(4
ALFIIA_UI	9	1	1	1
V DAP2_Q0_01	3	1	1	
v\$AP2_Q6	4	1	3	U U

predicted trans-	AUFREGULIERT	ABREGULIERT	unreguliert ABSENT	unreguliert PRESENT
cription factor				
binding sites				
V\$AP1FJ_Q2	1	0	2	1
V\$AP1_Q6_01	30	38	29	27
V\$AP1_Q6	5	5	7	6
V\$AP1_Q4_01	31	38	29	27
V\$AP1_Q4	2	1	3	2
V\$AP1_Q2_01	17	12	13	15
V\$AP1_Q2	4	0	2	4
V\$AP1_C	8	10	14	9
V\$AP1_01	0	0	1	0
V\$AML1_Q6	148	160	156	149
V\$AML1_01	148	160	156	149
V\$ALPHACP1_01	1	4	1	4
V\$AHRHIF_Q6	5	5	2	2
V\$AHR_Q5	1	2	2	2
V\$AFP1_Q6	0	1	0	1
V\$ACAAT_B	18	13	13	7

Die Auflistungen der jeweiligen PTFs zugehörig den einzelnen IRA-regulierten Genen und nicht regulierten Kontroll-Genen finden sich auf dem zu dieser Arbeit gehörenden Datenträger.

9.3 Funktionelles Clustering auf Basis der Gene Ontology-Klassifizierungen

Die vollständigen Daten des *Gene Ontology*-Clusterings für alle annotierten IRAregulierten Gene der verwendeten Microarrays finden sich auf dem zu dieser Arbeit gehörenden Datenträger.

Eidesstattliche Erklärung

Die hier vorgelegte Dissertation habe ich eigenständig und ohne unerlaubte Hilfe angefertigt. Die Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche unternommen.

Düsseldorf, Oktober 2009

Christian Calles