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1. Introduction 

1.1. Gastrointestinal tract 

 

The human gastrointestinal tract (GI tract) is a complex system of organs in mammalian 

species fulfilling ingestion, digestion, absorption, and defecation as major functions. 

Morphologically the gastrointestinal tract comprises esophagus, stomach, small and large 

intestine, and ends with the rectum. Most chemical digestion takes place in the small intestine. 

The digestive enzymes that are active there are predominantly secreted by the pancreas and 

enter the small intestine via the hepato-pancreatic duct. Nutrient digestion within the small 

intestine produces a mixture of monosaccharides, small peptides, amino acids, fatty acids, and 

monoglycerides. The final digestion and absorption of these substances occurs in the villi 

which line the inner surface of the small intestine. Incorporated in the plasma membrane of 

the microvilli are a number of enzymes that complete digestion. That means that the first pass 

of a nutritional substance takes place in the duodenum. The low molecular weight products of 

enzymatic digestion are directed into blood or lymph fluid by membrane-bound transport. The 

small intestine is the site where most of the nutrients from ingested food are absorbed. It is 

divided into three structural parts: duodenum, jejunum and ileum. Also the large intestine is 

divided into three parts: cecum, colon and rectum (L.C. Junqueira and J. Carneiro, 1996). 

 

Fig. 1.1. Stucture of intestinal 

villi. The inner wall of the small 

intestine is covered by numerous 

folds of mucous membrane (plicae 

circulares). The entire luminal 

surface has villi, small projections 

of mucosa. The villi are lined with 

simple columnar epithelial cells 

(enterocytes). The cells have an 

apical brush border, also known as 

microvilli. Both villi and microvilli 

function to increase the surface 

area for greater absorption. 

 

Interestingly, cancer of the small intestine is relatively rare compared to other gastrointestinal 

malignancies such as gastric cancer (stomach cancer) and colorectal cancer. Duodenal cancer 
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has more in common with stomach cancer, while cancer of the jejunum and ileum has more in 

common with colorectal cancer (www.who.int/mediacentre/factsheets/fs297/en/). 

Since the major site of digestion is localised in the small intestine (90% of the total nutritional 

substances are absorbed in this region of the gut), the metabolism of pro-carcinogens in 

duodenal epithelial cells and the modulatory effect of dietary flavonols are in focus for our 

experiments. 

 

1.2. Polycyclic aromatic hydrocarbons (PAH) are environmental contamination 

 

PAH are formed during the burning of coal, oil, gas, wood, rubbish or other organic 

substances like tobacco. PAHs are ubiquitous environmental contaminants, and there are 

some natural sources, such as forest fires and volcanoes. PAHs are also found in foods. 

Studies have shown that most food intake of PAHs comes from cereals, oils and fats. Human 

exposure to PAH occurs by intake of contaminated vegetables and by consumption of foods 

that have been broiled (B.K. Larsson et al., 1983). Benzo[a]pyrene (B[a]P) is a five-ring PAH 

and is a potent and best investigated carcinogen, acting as initiator and promotor (R.E. Albert 

et al., 1991). B[a]P was determined in 1933 to be the component of coal tar responsible for 

the first recognized occupation-associated cancers, the sooty warts (cancers of the scrotum) 

suffered by chimney sweeps in 18th century England. This carcinogen is a widespread 

contaminant in the human and animal environment. H.A. Hattermer-Frey et al. (1991) showed 

that humans are exposed to B[a]P from air, water and food whereas 97 % of the human 

exposure occurs from the food chain. For example, the ingested weekly dose of B[a]P from 

charcoal-broiled meat and smokes food has been estimated to vary between 0.01 and 

4.0 µg/person (P.L. Lioy et al, 1988). B[a]P is a pro-carcinogen, meaning that it has to be 

enzymatically activated to the ultimate mutagen, (+)benzo[a]pyrene-7,8 dihydrodiol-9,10 

epoxide by a phase I enzyme such as CYP1A1. The diol epoxide covalently binds to DNA as 

shown in fig. 1.2. K. Alexandrov et al. (1996) was able to detect benzo[a]pyrene diolepoxide-

DNA adduct formation in human colon mucosa by means of HPLC analysis. These results 

indicate that in the duodenum the fast phase II enzyme-mediated detoxification and 

elimination of B[a]P could cause a lower cancer risk (fig. 1.2.). 
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Fig. 1.2. Metabolism and 

activation of benzo[a]pyrene.  

B[a]P is initially converted 

mainly by CYP1A1 or CYP1B1 

into the 7,8-epoxide. This 

epoxide is a substrate of 

microsomal epoxide hydrolase 

(mEH), which produces the 7,8-

dihydrodiol. Further epoxidation 

at the vicinal double bond 

catalysed by CYP1A1, 

CYP1B1, CYP3A4 or 

cyclooxygenase (COX) 

generates the ultimate genotoxic 

B[a]P-dihydrodiol-epoxid which 

reacts with nucleophilic sites of 

DNA to form DNA adducts. 

Glutathione S-transferase (GST) 

catalyse the formation of 

glutathione conjugates and 

enhances elimination of 

conjugated species from the 

cell. 

 

1.3. Chemo-prevention by secondary plant components  

 

More than 8,000 phytochemicals have been identified in fruits, vegetables and grains (R.H. 

Liu et al., 2003; A. Kale et al., 2008; Y.J. Moon et a., 2005). The polyphenolic flavonoids are 

the most abundant phytochemicals in our diet and provide much of the flavour and colour to 

fruits and vegetables. Flavonoids are the most important pigments for flower coloration 

producing yellow or red/blue pigmentation in petals. Those colours are a mean to attract 

pollinator animals. They also protect plants from attacks by microbes and insects. They are 

formed from the combination of derivatives synthesised from phenylalanine, delivered via the 

shikimic acid pathway, and acetic acid. The structure of the flavonoids is based on the 

flavonoid nucleus which consists of three phenolic rings referred to as the A, B, and C rings 

(fig.1.3.; J. Kühnau et al., 1976). The benzene ring A is condensed with a six-member ring 
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(B), which carries a phenyl substituent (C) in the 2-position. Ring B may be a heterocyclic 

pyran, which yields flavanols (catechins) and anthocyanidins, or pyrone, which yields 

flavonols, flavones, and flavanones (S. Aisling et al., 2002). Flavonoids are the most abundant 

polyphenols in our diets. They can be divided into several classes according to the degree of 

oxidation of ring B and to the position of ring C : flavones, flavonols, isoflavones, 

anthocyanins, flavanols, anthocyanidins and flavanones.  
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The most abundant flavonoids are the flavonols quercetin and kaempferol, which exist as a 

variety of glycosides or in their aglycone form. Quercetin occurrs in onion, lovage leave and 

in paring of many fruits like e.g. apple and red grape. Kaempferol also occurs in cranberries, 

grapefruit, ginkgo and in grapes. The aglycone forms of quercetin and kaempferol are similar 

in structure, differing only by one hydroxyl-group in the C-ring (fig 1.4.).  

 



  5      

O

OH

OH

O

OH

OH

OH

 

O

OH

OH

O

OH

OH

 

Quercetin Kaempferol 

Fig. 1.4. The structures of both flavonols quercetin and kaempferol. The aglycone forms of 

quercetin and kaempferol are similar in structure, differing only by one hydroxy group in the C-ring. 

 

Studies have shown that quercetin and kaempferol are absorbed by the human gut (P.C. 

Hollman et al., 1997). The flavonol quercetin can be detected in the plasma of non-

supplemented humans at concentrations between 0.5 µM - 13 µM (G. Paganga et al., 1997). 

Quercetin glycosides are cleaved by intestinal microflora before absorption through the colon 

barrier but intact glycosides can be absorbed in the small intestine (A. Scalbert et al., 2000; 

P.C. Hollman et al., 1995; P.C. Hollman et al., 1997). After absorption, the aglycone is 

rapidly conjugated to form glucuronides. There is further evidence that the flavonol 

glucoronides are deconjugated by β-glucuronidase during cellular absorption in the liver, 

meaning quercetin and possibly kaempferol aglycones may be taken up at the cellular level. 

Therefore, in vitro addition of quercetin and kaempferol aglycones to human cell lines at 

levels normally found in plasma after a meal closely mimics the in vivo condition (M.L. 

Ackland et al., 2005). S.P. Boyle et al. (2000) observed that an increased plasma level of 

quercetin after a meal of onions was accompanied by increased resistance to strand breaks of 

lymphocyte DNA and by decreased levels of some oxidative metabolites in the urine. Both 

flavonols are ligands of the aryl hydrocarbon receptor (H.P. Ciolino et al., 1999). Quercetin 

acts as an antagonist and consequently inhibits other ligands of AhR e.g. B[a]P, and aflatoxin 

B1 by altering the expression of CYP1A1, 1A2 and 1B1. This inhibition results in reduced 

B[a]P-DNA adduct formation (Z.C. Kang et al., 1999). Kaempferol also prevents CYP1A1 

gene transcription induced by the prototypical AhR ligand, TCDD (H.P. Ciolino et al., 1999). 

Plant secondary components like flavonoids have biological activity that may be beneficial to 

health. For instance, these polyphenolic compounds scavenge free radicals and pose 

antioxidant, anti-thrombotic and anti-carcinogenic activities.  
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1.4. Aryl hydrocarcon receptor (AhR)-pathway  

 

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor which belongs 

to the basic-helix-loop-helix (bHLH)/PAS family of heterodimeric transcriptional regulators. 

The term PAS comes from the first letter of each of the three founding members of the 

family: PER, ARNT, and SIM. ARNT, the AhR nuclear translocator, was originally identified 

as a protein that was essential for normal signal transduction by the AhR (E.C. Hoffman et al., 

1991). In these proteins, the PAS domain includes two imperfect repetitions of 50 amino 

acids, PAS-A and PAS-B. It functions as a surface for both homotypic interactions with other 

PAS proteins and heterotypic interactions with cellular chaperones, such as the 90-kDa heat 

shock protein (Hsp90). The HLH domains participate in homotypic dimerisation between two 

bHLH-PAS proteins, and they position the basic regions to allow specific contacts within the 

major groove of target regulatory elements found in DNA and their transcriptionally active 

domains are localised within their C-terminal ends (fig.1.5; Z.Y. Gu et al. 2000). The 

bHLH/PAS proteins are involved in the control of diverse physiological processes such as 

circadian rhythms, organ development, neurogenesis, metabolism and in the stress response to 

hypoxia (Z.Y. Gu et al., 2000; R. Barouki et al., 2007).  

 

Fig. 1.5. Aryl hydrocarbon receptor functional domains. The location of functional domains is 

indicated by bars (modified after J. Mimura et al., 2003). 

 

The AhR is known to mediate most of the toxic and carcinogenic effects of a wide variety of 

environmental contaminants such as PAHs e.g. B[a]P and TCDD. In its non-active form, the 

AhR is localised in the cytoplasm as a complex with the molecular chaperone Hsp90, the 

Hsp90-interacting protein p23 and the AhR interacting protein AiP, also known as ARA9 or 

XAP2 (T. Ikuta et al., 2004). Upon ligand binding, the receptor complex translocates to the 

nucleus, where the AhR protein dissociates from its chaperone complex and binds to the 

heterodimer partner ARNT (aryl hydrocarbon nuclear translocator). This heterodimer now 

binds to a partially characterized set of co-activators and/or co-repressors and the resulting 
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complex interacts with consensus regulatory sequences (xenobiotic response elements, XREs) 

located upstream in the promoter of target genes (such as CYP1A1, 1A2, 1B1 and AhRR; see 

fig. 1.5.). Once transcriptional regulation has occurred, the AhR is exported to the cytosol and 

degraded by the proteasome.  

 

Fig. 1.5. Transcriptional regulation of target genes by the aryl hydrocarbon receptor (AhR). The 

ligand binds the cytosolic AhR ligand-binding subunit, which undergoes a transformation or 

activation process involving several steps: translocation in the nucleus; release of a molecular 

chaperone complex containing at least Hsp90, AiP and p23; and dimerisation with a protein partner, 

the ARNT. This heterodimer interacts with regulatory DNA sequences (known as xenobiotic-

responsive element; XRE) located upstream in the promoter of target genes and stimulate the 

transcription of genes in the cytochrome P450 CYP1 family CYP1A1 as well as of several Phase II 

detoxification genes. Also the AhR repressor is a target gene of the AhR. AhRR acts as a negative 

regulator of AhR signaling by competing with AhR for dimerising with ARNT and binding to the 

XRE sequence (modified after R. Barouki et al., 2007). 

 

Besides cytochromes P450, the aryl hydrocarbon receptor repressor (AhRR) is also a target 

gene of the AhR. AhRR acts as a negative regulator of AhR signaling by competing with AhR 

for dimerising with ARNT and binding to the XRE sequence (J. Mimura et al., 1999). It also 

contains a DNA-binding (bHLH) and a dimerisation (PAS-A) domain, but lacks PAS-B and 

Q-rich domains. Similar to ARNT, the AhRR possesses no ligand-binding site (T. Haarmann-

Stemmann et al., 2006; T. Baba et al., 2001; Y. Kikuchi et al., 2003; B.R. Evans et al., 2005). 

Y. Tsuchiya et al. (2003) and K. Gradin et al. (1999) observed that only high cellular levels of 

AhRR were able to negatively regulate the AhR-pathway; however, lower expression levels 
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of AhRR do not affect the activated AhR-pathway. Furthermore, it is proposed that either 

ARNT or the AhRR recruits a corepressor that harbors histone deacetylase activities (T. 

Haarmann-Stemmann et al., 2006). This indicates that the AhRR plays an important role in 

the regulation of the AhR-pathway. 

 

The intracellular localization of AhR may be regulated by the masking and unmasking of the 

nuclear localization signal (NLS) and the leucine-rich nuclear export signal (NES) by some 

interacting proteins (as shown in fig. 1.6.). The intracellular distribution of nucleo-

cytoplasmic shuttling proteins is determined by the balance between nuclear import and 

export activity. Also phosphorylation or dephosphorylation of the AhR regulates its 

intracellular distribution, especially at sites close to the NLS or the NES, which results in 

spatial- and temporal-specific gene regulation mediated by the transcription factors (T. Ikuta 

et al., 2004; D.A. Jans et al., 1996; E. Le Ferrec et al., 2002). The protein kinase C (PKC) 

might be essential for both XRE binding and for the transcriptional activation of the CYP1A1 

gene (Y.H. Chen et al., 1996; K.W. Bock et al., 2006). PKC-dependent phosphorylation may 

promote or at least stabilise AhR/ARNT/XRE complex formation, resulting in accelerated 

transcription.  

 

Fig. 1.6. The mechanism of ligand-

dependent activation of AhR. The 

steric hindrance masking of AhR-NLS 

with two molecules of Hsp90 is essential 

for cytoplasmic retention of AhR 

(modified from T. Ikuta et al., 2004). 

 

The high degree of conservation of the Ah-receptor among species, its constitutive pattern of 

expression during development and in adult tissues and the phenotypic alterations found in 

mice lacking AhR expression, have provided strong support for the involvement of the AhR 

in cell physiological functions independent of xenobiotic metabolism e.g. cell proliferation, 

cells development and differentiation (R. Barouki et al., 2007; P.A. Harper et al., 2006). AhR 

signaling also includes cross-talk with e.g. a number of protein kinases (as already shown 
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above) and other signaling-pathways like the Nrf2-pathway (P.A. Harper et al., 2006; A. Puga 

et al., 2005; C. Köhle et al., 2006; D.B. Carlson et al., 2002).  

 

Fig. 1.7. Schematic diagram 

illustrating Nrf2 as downstream 

target of the AhR. The schema 

shows that the AhR-XRE activation 

induces phase I enzymes and the 

expression of Nrf2, which in turn 

activates phase II detoxifying 

enzymes (modified after W. Miao et 

al., 2005). 
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Interestingly, XREs were also identified in the regulatory region of the Nrf2 gene what leads 

to the assertion that the Nrf2- and AhR- pathways are directly coupled. This cross-talk 

between these biotransformation systems greatly facilitates detoxification and protection 

against oxidative/electrophile stress and is intensely investigated in efforts for chemo-

protection of cancer and degenerative diseases (fig. 1.7.). 

 

1.5. NF-E2-related factor 2 (Nrf2-)-pathway 

 

NF-E2-related factor 2 (Nrf2) is a member of the CNC (cap‘n’collar) transcription factor 

family (K. Tong et al., 2006). It contains a C-terminal basic leucine zipper structure that 

facilitates dimerisation and DNA binding (P. Mio et al, 1994). Under basal conditions Nrf2 is 

bound to Kelch-like ECH-associated protein 1 (Keap1; a sulfhydryl-rich protein which is 

oxidised by oxidative/electrophile stress) in the cytoplasm due to an interaction between a 

single Nrf2 protein and a Keap1 dimer (X. Yu et al., 2005). Keap1 serves as a substrate linker 

protein for interaction of the Cul3-based E3-ubiquitin ligase complex with Nrf2 leading to 

ubiquitination of Nrf2 and proteosomal degradation (S. Cullinan et al., 2004). Exposure to 

endogenous activators like reactive oxygen species (ROS), reactive nitrogen species, lipid 

aldehydes or exogenous agents like heavy metals and electrophilic xenobiotics leads to 

dissociation of Nrf2 from Keap1 thereby rescuing Nrf2 from proteasomal degradation and 

allowing for entry into the nucleus. Additionally, involving secondary sensor proteins and the 

activation of protein kinase signaling pathways (MAPK-, JNK-, PKC- and PI3K-pathway), it 
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results in phosphorylation of Nrf2 which enhances stability and/or release from Keap1 (W.O. 

Osburn et al., 2008). Nrf2 translocates to the nucleus, and associates with small Maf proteins 

(MARE-binding components; H. Motohashi et al., 2004). After recruiting transcription co-

activators to help remodel chromatin structures and facilitate formation of basal transcription 

machinery (Z. Sun et al., 2009; K. Ohta et al., 2007; H. Motohashi et al., 2004), the 

heterodimers bind to antioxidant response element (ARE) and activate the transcription of 

phase II enzymes like NQO1, GST, GCS (X.L. Tan et al., 2009; C. Köhle et al., 2006; see fig. 

1.8.).  

 

 

Fig. 1.8. The Nrf2 signaling pathway. Keap1 is a key regulator of the Nrf2-signaling pathway and 

serves as a molecular switch to turn on and off the Nrf2-mediated antioxidant response. Under basal 

conditions, Keap1, functioning as an E3 ubiquitin ligase, constantly targets Nrf2 for ubiquitination 

and degradation. As a consequence, there are minimal levels of Nrf2. Oxidative stress like ROS or 

chemopreventive compounds inhibit activity of the Keap1–Cul3–Roc1 E3 ubiquitin ligase. Nrf2 

dissociates of from Keap1 and translocates into the nucleus. Additionally, the activation and 

stabilisation of Nrf2 involves phosphorylation by multiple cellular kinase pathways like that of 

MAPK, PKC, PI3K and JNK. Finally, Nrf2 heterodimerise with small Maf and other transcription 

factors and bind as a complex to the ARE, leading to enhanced expression of phase II genes 

(modified after A. Lau et al., 2008; W.O. Osburn et al., 2008; X.L. Tan et al., 2009).  
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Since the expression of GST and NQO1 enzymes is decreased in Nrf2-deficient mice (N0), 

they are highly susceptible to B[a]P- induced forestomach tumorigenesis (M. Ramos-Gomez 

et al. 2001). In a follow-up study a clearly increased level of BaP-DNA adducts in the 

forestomach mucosa in N0 mice compared to that of wildtyp mice was observed. These 

increased levels of BaP adducts were positively correlated with tumor burden (M. Ramos-

Gomez et al. 2003). These results indicate that an efficient coupling of Phase I and II is very 

important to attenuate e.g. the CYP-mediated generation of ROS of and electrophilic 

metabolites and to reduce the cancer development.  

 

1.6. Aims of the study 

 

The fundamental subject of this study is to determine the modulatory influence of 

phytochemicals on the PAH detoxification by cooperative regulation signaling pathways in 

duodenal and colon derived cell lines. Since the major site of absorption of potential pro-

carcinogens is localised in the small intestine or rather in the duodenum (90% of the total 

intake), the metabolism of dietary substances or contaminants in duodenal epithelial cells 

were in our focus. It must be pointed out that cancer of the small intestine is relatively rare 

compared to other gastrointestinal malignancies such as gastric cancer (stomach cancer) and 

colorectal cancer.  

 

B[a]P which is a well known PAH, is found in broiled meat and smokes food and contributes 

to colon cancer. The adaptive function of the AhR in detoxification of xenobiotics also plays 

an important role in the bioactivation of pro-carcinogens like B[a]P, in particular by induction 

of CYP1 enzymes. Because of this an efficient and rapid elimination of potent substances 

depends on the connection of phase I and II enzymes. W. Miao et al. (2005) demonstrated that 

the Nrf2-ARE and AhR-XRE pathways directly cross-talk. XREs were identified in the 

regulatory region of the Nrf2. These biotransformation systems greatly facilitates 

detoxification and protection against oxidative/electrophile stress. This coupling could be the 

key mechanistic to avoid degenerative diseases and support chemo-protection of cancer (C. 

Köhle et al., 2006). Furthermore, other regulatory members of these pathways like the AhR 

repressor (AhRR) or the AhR interacting protein (AiP) could also play an important role in 

the controlling and stimulation of the effectively elimination of xenobiotics in the small 

intestine. In addition, the World Cancer Research Fund report (1997) declared that there is 

enough evidence to support an inverse association between dietary fruit and vegetable intake 
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and several cancers including colorectal cancer. Also in recent epidemiologic studies it could 

be shown that flavonoid intake is associated with reduced risk of colorectal cancer (E. 

Theodoratou et al., 2007).  

 

Since the phytochemicals quercetin and kaempferol are mainly present in leafy vegetables, 

apples, onions and berries and they are the most abundant flavonoids in foods which bind to 

the AhR (H.P. Ciolino et al., 1999), we decided to investigate their modulatory effect on the 

B[a]P-induced AhR- and Nrf2-pathway in duodenum and colon derived cell lines. This 

modulatory effect could occur on different cellular levles like the transcription, translation or 

activation of proteins. Therefore, we focused on the transcriptional, protein and enzymatic 

activity level by means of TaqMan PCR, Westernblots and EROD assay. Since we used 

duodenal and colon derived cell lines, we were able to distinguish possible tissue dependent 

differences which are suggestive of the reason of the high colorectal risk. So far, there are no 

investigations available in duodenal cell lines which examined possible regulatory pathway-

differences. 
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2. Experimental 

2.2. Chemicals 

Acrylamide (40%)       Amresco, Solon, Ohio, USA 

Agarose        Biozym, Oldendorf, Germany 

Ammoniumperoxodisulfate (APS)     Sigma, Steinheim, Germany 

Benzo[a]pyrene (B[a]P)     Sigma, Steinheim, Germany 

Bromophenol blue       Sigma, Steinheim, Germany 

Chloroform        Merck, Darmstadt, Germany 

DEPC        Armin Baack, Schwerin, Germany 

Dicoumarol       Sigma, Steinheim, Germany 

D-Glucose       Invitrogen, Paisley, UK 

Di-methyl sulfoxid (DMSO)     Sigma, Steinheim, Germany 

Ethanol       Merck, Darmstadt, Germany 

Ethoxyresorufin      Sigma, Steinheim, Germany 

Ethylene diamine tetra-acetic acid (EDTA)    Merck, Darmstadt, Germany 

Glycerol        Sigma, Steinheim, Germany 

Glycine        AppliChem, Darmstadt, Germany 

Hydrogen peroxide (30%)      Sigma, Steinheim, Germany 

Isopropanol        Merck, Darmstadt, Germany 

Kaempferol       Fluka, Buchs, Switzerland 

2-Mercaptoethanol       Sigma, Steinheim, Germany 

MgCl2 Solution (PCR reagent)    Sigma, Steinheim, Germany 

Quercetin-dihydrate      Fluka, Buchs, Switzerland 

Sodium dodecyl sulfate (SDS)     Sigma, Steinheim, Germany 

Tetramethylethylenediamine (TEMED)    Riedel-de Haën, Seelze, Germany 

tert.-Butylhydrochinon     Fluka, Buchs, Switzerland 

Tris-hydroxymethyl-aminomethane (Tris)    Merck, Darmstadt, Germany 

Tween 20        Sigma, Steinheim, Germany 

 

Other standard laboratory chemicals were purchased in p.a. quality from Sigma-Aldrich, 

(Taufkirchen, Germany), Merck (Darmstadt, Germany) and Riedel-de Haën (Seelze, 

Germany). 
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Chemicals for molecular biology 

dNTPs       Stratagene, La Jolla, CA, USA 

Random-primer      New England Biolabs, Beverly, MA, USA 

 

Buffers and solutions 

Phosphate buffered saline (PBS)    Invitrogen, Paisley, UK 

QIAzol Lysis Reagent    Quiagen, Hilden, the Netherlands 

Neutral red       Biochrom, Berlin, Germany 

T-PER Tissue Protein Extraction Reagent  Pierce, Rockford, USA 

Amersham ECL Advance Western Blotting 

Detection Reagent ECL RPN2209   GE Healthcare, Munich, Germany 

 

Antibodies, enzymes and other proteins 

Alpha-tubulin antibody    Cell signaling, Boston, USA 

Antibody CYP1A1 (1A-03)    Santa Cruz, Heidelberg, Germany 

AHRR polyclonal antibody (A01)   Abcam, Cambridge, USA 

Goat-anti-mouse IgG, peroxidase-conjugated  Santa Cruz, Heidelberg, Germany 

Goat-anti-rabbit IgG, peroxidase-conjugated  Cell signaling, Boston, USA 

Milk powder       Roth, Karlsruhe, Germany 

MMLV Reverse Transcriptase (incl. buffer)  Stratagene, La Jolla, CA, USA 

Pre-stained-protein-ladder page ruler MBI   Fermentas, St. Leon-Roth, Germany 

MagicMark™ XP Standard    Invitrogen, Paisley, UK 

Spectra Multicolor broad range protein ladder Fermentas, St. Leon-Roth, Germany 

 

Kits 

BC Assay: Protein Quantitation Kit   Interchem, Montluçon Cedex, France 

 

Consumables 

Protan-nitrocellulose-membrane    Schleicher and Schuell, Dassel, Germany 

Cell culture flask     Nunc, Roskilde, Denmark 

96 well culture clear plates  Costar (VWR International, Bruchsal, Germany) 

96 well culture clear bottom black plates   Costar (VWR International, Bruchsal, 

Germany) 

Cryo tubes      Roth, Karlsruhe, Germany 
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Reagent and centrifuge tubes, pipettes, tips,  

scrapers and filter (0,2 μm)     Sarstedt, Nürnbrecht, Germany 

Micropistil      Armin Baack, Schwerin, Germany 

 

Cell lines 

HuTu-80      Cell line service, Eppelheim, Germany 

IEC-6        DSMZ, Braunschweig, Germany 

CaCo-2      Cell line service, Eppelheim, Germany 

 

Cell culture medium 

IEC-6: 

45% Dulbecco's MEM (4.5 g/l glucose) and 45% RPMI 1640 + 10% FCS + 0.1 U/ml insulin 

+ 1% penicillin-streptomycin-solution 

HuTu-80: 

DMEM: Ham's F12 medium supplemented with 2 mM L-glutamine and 10% FCS + 1% 

penicillin-streptomycin-solution 

CaCo-2: 

DMEM (high glucose) +10% FCS +1% L-Glutamine + 1% non-essential amino acids 

(NEAA) +1% penicillin-streptomycin-solution  

 

All cell culture media were purchased in sterile conditions from Invitrogen.  

 

Solution for cell culture 

Fetal bovine serum     Biochrom, Berlin, Germany  

Insulin solution from bovine pancreas  Sigma-Aldrich, Steinheim, Germany 

L-glutamine 200mM (100x)     Invitrogen, Paisley, UK 

MEM amino acids solution (50x)    Invitrogen, Paisley, UK 

Penicillin-streptomycin-solution   Invitrogen, Paisley, UK 

Trypsin-EDTA (1x)     Invitrogen, Paisley, UK 

 

TaqMan® Real time PCR 

All solutions, probes and consumables for the TaqMan® real time PCR were purchased from 

Applied Biosystems, Foster City, CA 94404, USA. 

 



  16      

TaqMan® Real time PCR solutions  

TaqMan® Universal PCR Master Mix, No UNG 4364343 

 

TaqMan® Real time PCR probes 

Housekeeping target genes 

GAPDH, human      4352934E 

GAPDH, rat      4352338E 

Human target genes 

AhR       Hs00169233_m1 

AhRR       Hs00324967_m1 

ARNT       Hs00231048_m1 

CYP 1A1      Hs00153120_m1 

CYP 1A2      Hs00167927_m1 

CYP 1B1      Hs00164383_m1 

NFE2L2 /Nrf2     Hs00975960_m1 

GCS       Hs00892604_m1 

AiP       Hs00610222_m1 

Rat target genes 

AhR       Rn00565750_m1 

AhRR       Rn01537441_m1 

ARNT       Rn00562847_m1 

CYP 1A1      Rn00487218_m1 

CYP 1A2      Rn00561082_m1 

CYP 1B1      Rn00564055_m1 

NFE2L2/ Nrf2     Rn00477784_m1 

GCLC (GCS)      Rn00563101_m1 

AiP       Rn00597273_m1 

 

Instruments 

Blotting-chamber TE Series Biotech   Hoefer Pharmacia Biotech, San Francisco, 

USA 

SE 260 Mini-Vertical electrophoresis-unit   GE Healthcare, Munich, Germany 

Thermocycler       Biometra, Göttingen, Germany 
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Nanodrop 1000 Spectrophotometer   Nano Drop technologies, Wilmington, 

Delaware, USA 

7500 Real Time PCR System    Applied Biosystems, Darmstadt, Germany 

ChemiLux imager 1400  Intas Science Imaging Instruments GmbH, 

Göttingen, Germany 

Microtiter shaker MTS2    IKA, Staufen, Germany 

KMO 2 basic IKAMAG®    IKA, Staufen, Germany 

Minishaker MS 2     IKA, Wilmington, USA 

SpectrafluorPlus     Tecan, Crailsheim, Germany 

Heraeus Biofuge fresco    Kendro, Hanau, Germany 

Genius microbalance     Sartorius AG, Göttingen, Germany 

Megafuge 1.0R     Kendro, Hanau, Germany 

Thermo Bench HeraSafe    Kendro, Hanau, Germany 

Tumbling Tables WT17    Biometra, Göttingen, Germany 

 

Software 

WinCam 2.1       Cybertech, Berlin, Germany 

GraphPad Prism 5  GraphPad Software, Inc., San Diego, CA 

92130 USA 

Service provider 

Microarray analysis  Laboratory for Genomics and 

Immunoregulation Program Unit 

Molecular Immune & Cell Biology 

LIMES (Life and Medical Sciences 

Bonn), University of Bonn 
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2.2.   Methods 

 

Cell culture 

IEC-6 cells (rat normal small intestine; ACC 111) were grown in 45 % Dulbecco’s Modified 

Eagle Medium (D-MEM) (4.5 g/l glucose) and 45 % RPMI 1640 containing 10 % FCS, 

0.1 U/ml insulin and 1 % penicillin/streptomycin. 

HuTu-80 cells (human duodenal adenocarcinoma; KC-2/HuTu-80) were grown in D-

MEM/F-12 (1:1) with L-glutamine, 15 mM HEPES containing 10 % FCS and 1 % 

penicillin/streptomycin. 

CaCo-2 cells (human colorectal adenocarcinoma) were grown in D-MEM (high glucose: 

4.5 g/l) containing 10 % FCS, 1 % L-glutamine, 1 % non-essential amino acids (NEAA) and 

1 % penicillin/streptomycin. 

 

All cell lines were cultivated at 37 °C in an atmosphere with 5 % CO2 and the adherent, 

epithelial cells grown as monolayer. To split the confluent monolayer, the growth-medium 

was removed and the cells washed with a solution containing 1 ml 0.05 % trypsin and 0.2 g/l 

EDTA. The trypsin/EDTA solution was removed and 5 ml of fresh trypsin/EDTA solution 

were added anew. Then the cultures were incubated at 37°C (for up to 10 minutes) until the 

cells detached from the flask. The digesting process was stopped by adding growth-medium 

containing 30 % FCS. The cells were transferred into a 15 ml tube, centrifuged at 102 x g for 

5 minutes and the supernatant was aspirated. The cell pellet was washed with 5 ml fresh 

growth-medium and after a second centrifugation step, IEC-6 and HuTu-80 cells were seeded 

out at 1 x106 cells/ 75 cm2 flask. CaCo-2 cells were seeded out at 3-4 x 106 cells/ 75 cm2 

flask. In order to avoid cellular senescence, all experiments were performed using cells with 

no more than five passages. 

 

For preserving a pool of cells, 3 x106 cells were added in 1.5 ml freezing medium (growth-

medium containing 10 % FCS and 10 % DMSO), transferred into a cryovial and placed on ice 

immediately. Afterwards, the cryovial was frozen during 24 hours at -20°C, subsequently for 

24 hours at -70°C and finally stored in liquid nitrogen.  

 

To resuscitate the deep frozen cells, the cryovial was placed into a 37°C water-bath until the 

medium was re-thawed. The cells were then diluted in 10-fold volume of warm culture 

medium, centrifuged at 102 x g for 5 minutes and the supernatant was removed. The cell 
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pellet was washed with 5 ml fresh culture medium and after a second centrifugation step; the 

cell pellet was re-suspended in 1 ml fresh culture medium and transferred into a culture flask. 

 

Neutral-red cytotoxicity assay 

The ability of healthy cells to accumulate neutral-red into their lysosomes was used to 

estimate a non-cytotoxic concentration of the substances to be tested. The neutral-red 

accumulation assay was performed according to the method of E. Borenfreund et al. (1988). 

Briefly, 7.5 x103 (IEC-6 or HuTu-80) or 15 x103 (CaCo-2) cells were seeded in each of the 

96-well plate. 48 h after seeding, cells in each column were incubated with different 

concentrations of the tested substance for further 48 hours. After treatment, the medium was 

exchanged for one containing neutral-red (80 µg/ml) and the cells were incubated for further 3 

hours. The medium was removed and the cells were washed three times with PBS to remove 

the non-incorporated excess dye. To bring the accumulated neutral red in the cells into 

solution, 200 µl ‘de-stain solution’ (50 % ethanol, 1 % acetic acid, and 49 % distilled water) 

were added to the cells, which were then incubated for 20 minutes while gently agitated. The 

absorbance of the solution in each well was measured at 540 nm with untreated cells as 

controls using a 96-well plate Tecan spectrophotometer.  

 

Exposure of cells to the testing chemicals 

Forty-eight hours after seeding (see above), the cells were incubated as described for further 

48 hours with different concentrations of B[a]P (0.01-10 μM) or the flavonoids quercetin or 

kaempferol (0.5-10 μM). For the combination experiments each flavonoid (10 μM) was added 

30 minutes before B[a]P (1 or 10 μM; see fig. 2.1.). Since the solvent used for preparation of 

the stem solutions must not affect the expression of the studied genes by itself, the final 

concentration of DMSO was set to 0.1 % (v/v) (fig. 2.2.).  

 

0 h 48 h
confluent monolayer

RNA-isolation

TaqMan®-PCR

30’ pre-incubation with flavonoids

BaP

Cytotoxicity assay

EROD assay/
Westernblot

0 h 48 h
confluent monolayer

RNA-isolation

TaqMan®-PCR

30’ pre-incubation with flavonoids

BaP

Cytotoxicity assay

EROD assay/
Westernblot

 

Fig. 2.1. Scheme of the experimental treatment of the cell lines and subsequent analyses. 
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After incubation, total RNA was isolated from the treated and untreated confluent cells by the 

QIAzol Lysis Reagent (phenol-chloroform method). The cell monolayer was lysed directly in 

the 75 cm2 culture flask by adding 5 ml of the QIAzol. The samples were lysed with QIAzol 

at room temperature for at least 5 minutes. A 1 ml aliquot was thereafter vigorously mixed 

with 0.2 ml chloroform for 15 seconds, settled 2-3 minutes at room temperature and 

centrifuged for 15 minutes at 12,000 x g at 4°C. A 330 μl aliquot of the aqueous colourless 

upper phase was transferred to a fresh tube, mixed with 0.5 ml isopropanol, settled at room 

temperature for 10 min and centrifuged for 10 minutes at 12000 x g at 4°C. The supernatant 

was removed and the pellet was washed with 750 µl 75 % ethanol and centrifuged at 7500 x g 

for 5 minutes at 4°C. In order to obtain optimal RNA purity parameters a second “cleaning” 

step phase with ethanol was performed, the supernatant was then removed and the RNA pellet 

air dried and re-suspended in 20 µl DEPC water. 
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Fig. 2.2. The diagrams show the influence of 

DMSO on IEC-6, HuTu.80 and CaCo-2 cells 

in different concentrations. The expression is 

normalised to that of the medium grown cells.

Results are expressed as mean values ± standard 

deviation (n = 3). 
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MV SD MV SD MV SD MV SD

AhR 1,11 0,25 1,00 0,23 1,33 0,11 1,15 0,29
AhRR 1,02 0,14 0,99 0,12 1,21 0,53 1,42 0,16
ARNT 1,09 0,07 1,00 0,07 1,40 0,13 1,51 0,17

Nrf2 0,94 0,09 0,84 0,05 1,10 0,12 1,00 0,32
CYP1A1 1,72 1,39 1,98 1,74 1,42 0,70 5,27 3,43
CYP1B1 0,93 0,20 1,08 0,48 0,97 0,24 1,22 0,24

AhR 0,93 0,42 0,74 0,17 0,80 0,19 1,49 0,17
AhRR 0,72 0,31 0,60 0,45 0,94 0,67 1,19 0,80
ARNT 0,85 0,34 0,88 0,36 0,79 0,20 1,14 0,46

Nrf2 0,79 0,16 0,69 0,31 0,56 0,18 0,98 0,18
CYP1A1 1,31 0,67 1,05 0,44 0,61 0,24 0,48 0,34
CYP1B1 1,36 0,50 1,10 0,44 1,21 0,50 1,92 1,12

AhR 1,31 0,80 1,08 0,25 1,02 0,39 1,35 0,63
AhRR 1,24 0,51 1,16 0,31 1,19 0,41 1,59 0,56
ARNT 0,95 0,18 1,17 0,24 1,09 0,40 1,25 0,56

Nrf2 1,12 0,33 1,01 0,27 1,08 0,39 1,16 0,52
CYP1A1 0,82 0,10 0,91 0,15 0,83 0,18 0,94 0,36
CYP1A2 0,68 0,16 1,01 0,25 0,73 0,33 0,40 0,22
CYP1B1 1,10 0,39 0,90 0,12 0,87 0,23 0,98 0,51

HuTu-80

CaCo-2

0,05% 0,10% 0,50% 1%

IEC-6

 

Table 2.1. Relative values of the detected gene expression related to the expression of GAPDH 

(x1000). Shown are the mean value (MV) and the standard deviation (SD). 

 

Determination of the RNA-concentration and purity 

To prevent a saturation of the reverse transcription reaction and thus to ensure reproducible 

results, standardised amounts of RNA were reverse transcribed. Therefore, the concentration 

of total RNA was measured using the Nanodrop Spectrophotometer ND 1000 according to the 

instructions of the manufacturer.  

Only high-purity RNA (OD ratios: 260/280 = 1.9-2.0 and 260/230 = 2.0-2.2) was further used 

for conventional RT-PCR. 

 

Reverse transcription 

Standard reverse transcription was carried out on 5 μg high-purity DNaseI-treated RNA. For 

doing this, total RNA (5 µg in 19.7 µl DEPC water) was digested by 2 units of DNase-I for 10 

minutes at 37°C. After the addition of EDTA (5 mM) to the sample (for protecting RNA from 

heat degradation), the enzyme was inactivated by heating the mixture for 10 minutes at 75°C. 

Then EDTA was neutralised by adding 5 mM MgCl2.  

For the reverse transcription reaction random priming was performed by incubating the 

reaction-mixture at 65°C for 5 minutes and then cooling it down to room temperature within 

10 minutes. For reverse transcription, dNTPs and reverse transcriptase were added to the 

random priming- reaction mixture (see table below). To prevent RNA-degradation, the 

reaction mixture also contained 1 μl of RNase Block Ribonuclease Inhibitor. The reaction-



  22      

mixture was incubated at 37°C for one hour, and then the transcriptase was inactivated by 

heating the mixture to 90°C for 5 minutes. 

 

 

Fig. 2.3. TaqMan amplifiation 

curve for GAPDH of 

contaminated total RNA. To 

exclude false gene expression 

measurements caused by DNA 

contamination isolated RNA 

was incubated with DNaseI 

before starting the reverse 

transcription of RNA into 

DNA. 

 

DNaseI -RNA mixture 

19,7 µl RNA(5 µg) 

1 µl DNaseI 

2,3 µl DNaseI-buffer 

 

Random priming reaction mixture 

300 ng random primer (100 ng / μl) 

 

Reverse transcriptase reaction mixture 

5 μl 10x RT-buffer 

2 μl 100 mM dNTPs 

1 μl MMLV-reverse-transcriptase 

1μl RNase blocking reagent 

 

Human and rat TaqMan® probes for AhR, AhRR, ARNT, Nrf2, CYP1A1, CYP1A2, 

CYP1B1 and GADPH (as control housekeeping gene), were used for relative mRNA 

quantification by real-time PCR as described below. 
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TaqMan® Real Time PCR 

The relative quantification is based on the expression levels of a target gene versus a reference 

gene (an untreated control). The ΔΔCt method was used to calculate the expression of the 

genes in relation to a housekeeping gene (GAPDH) and every experiment was replicated three 

times.   

Fig. 2.4. The typical TaqMan 

amplification curves after 40 

cycles: 

• Plateau phase (a) 

• Linear phase (b) 

• Exponential (geometric phase) (c) 

• Background (d) 

• Baseline (e) 

 

 

The measured amount of RNA from the gene of interest is divided by the amount of RNA 

from a housekeeping gene measured in the same sample to normalise a possible variation in 

the amount and quality of RNA among different samples.  

 

Protein isolation 

The efficiency of three methods for isolation of proteins from IEC-6 cells was evaluated. For 

doing this, cells were incubated 48 hours with either B[a]P (10 µM), DMSO (0.1%) or 

growth-medium. Then the cells were treated according to one of the following methods: 

 

T-PER Lysis-buffer SDS-buffer 
 Cells were scratched  
 admitted in 200 µl  
 30 minutes incubation 
 centrifuged at 10,000rpm 
 supernatant transferred in 

eppendorf tube 

 cells lysed in 1ml solution 
 cells were scratched 
 centrifuged at 13,000rpm 
 supernatant transferred in 

eppendorf tube 

 Cells were scratched  
 admitted in 200 µl  
 suspension transferred in 

eppendorf tube 
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Lysis-buffer: 

50 mM Tris-HCl, pH 7,5 

0,05% Triton X-100 

0,5% IGEPAL (NP 40) 

150 mM NaCl 

1 mM EDTA 

50 mM NaF 

1 mM Na3VO4 

 

y = 0,8077x + 0,2165

R2 = 0,9825

y = 0,8182x + 0,2043

R2 = 0,9854

y = 0,7993x + 0,2043

R2 = 0,9944
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Fig. 2.5. Compatibility/interference testing 

of the isolation buffers, T-PER and Lysis-

buffer. To exclude a buffer-mediated false 

determination of protein concentration we 

measured the absorbance (optical density; 

OD) of different concentrations of diluted 

bovine albumin dissolved in T-PER, lysis-

buffer or water. Shown is the standard curve 

of both used buffer. Results are expressed as 

mean values ± S.D.  

 

None of the tested buffers interfered with the protein concentration BC assay. Approximately, 

20 µg protein of each sample were separated electrophoretically (as described below) by a 

SDS-PAGE (10%) and stained with the commassie-blue for 30 minutes. 
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T-PER

M    D   10 M    D   10 M    D   10

Lysis-buffer SDS-bufferT-PER

M    D   10 M    D   10 M    D   10

Lysis-buffer SDS-bufferT-PER

M    D   10 M    D   10 M    D   10

Lysis-buffer SDS-buffer

Fig. 2.6. SDS-PAGE gel stained with the 

commassie-blue solution shows the 

amount of the total protein. Untreated and 

treated IEC-6 cells were isolated by means 

of T-PER reagent, lysis- or SDS-buffer. 

20 µg of the total protein were separated 

electrophoretically and stained with the 

commassie-blue. M= untreated cells (growth 

in medium); D= 0,1% DMSO treated cells; 

10= 10 µM B[a]P treated cells. 

 

 
To control the amount of isolated protein the samples were then blotted and examined for 

CYP1A1 and α-tubulin. 
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Fig. 2.7. The immuno-

detection of CYP1A1 and α-

tubulin. Untreated and 

treated IEC-6 cells were 

isolated by means of T-PER 

reagent, lysis- or SDS-buffer. 

20 µg of the total protein 

were used of the western blot 

analysis. M= untreated cells 

(growth in medium); D= 

0,1% DMSO treated cells; 

10= 10 µM B[a]P treated cell

s 

 

Based on the results, T-PER solution was used for further experiment because of its good out-

come efficiency and handle easiness. However, in order to enhance the protein concentration, 

the protocol was modified (as described below). 

 

Total cell-lysate protein isolation 

After 48 hours exposure to either B[a]P, quercetin or kaempferol (alone or in combination), 

the cells were trypsinised and immediately kept on ice. The detached cells were then 
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centrifuged at 102 x g for 5 minutes at 4°C, the supernatant was removed and the pellet was 

washed with 5 ml ice-cold PBS. The supernatant was removed and the cell pellet was re-

suspended in 1 ml ice-cold PBS. The sample was centrifuged anew at 10,000 rpm for 10 

minutes and subsequently the supernatant was removed. The cell pellet was homogenised 

with the appropriate amount of T-PER, settled for 30 minutes and centrifuged at 10,000 rpm 

for 5 minutes to precipitate the cell debris. The supernatant was finally collected and the 

protein content was determined by the BC assay (see below). 

 

Determination of the total protein concentration of cell-lysates 

The quantification of the total cellular CYP1A1 expression (see below) requires the 

application of well-defined protein-amounts in the separation-steps upstream of the 

immunological detection. The total cell-lysate protein concentration was determined by BC 

Assay (Protein Quantisation small Kit) with bovine serum albumin as standard. 

A 20 µl aliquot of the total cell-lysate protein (1:10 and 1:100 dilutions), as well as of each of 

the protein standards were pipetted three times into a 96-microplate well. The BC Assay 

Working Reagent (WR) was prepared by adding 1 part of reagent B to 50 parts of reagent A. 

200 µl of the WR were added to each well and the plate was incubated at 37°C for 30 

minutes. After cooling the plate to RT, the absorbance (optical density; OD) was measured at 

570 nm using a Tecan SpectrafluorPlus spectrophotometer. 

 

SDS polyacrylamide gel-electrophoresis (SDS-PAGE) 

As a prerequisite for immuno-detection, the total cell-lysate proteins were separated by a 

discontinuous, denaturing gel-electrophoresis with SDS as detergent according to U.K. 

Laemmli (1970). 

 

SDS-sample-buffer: 

125,5 mM Tris 

0,289 mM bromophenol blue 

0,138 mM SDS 

40% (v / v) glycerol 

10% (v / v) 2-mercaptoethanol (=5,704 mM) 
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Preparation of samples 

The total cell-lysate protein was diluted in T-PER Tissue Protein Extraction Reagent and then 

1:1 mixed with SDS sample-buffer (U.K. Laemmli, 1970) resulting in a final protein content 

of 50 μg for each sample. Samples were boiled for 5 minutes and afterwards kept on ice.  

 

Standards 

As a standard for the identification of CYP1A1 expression in the target cells, liver-

microsomes from rats (previously exposed to 3-methylcholanthrene; see P.H. Roos et al., 

2002), were used. The latter were enriched in CYP1A1, although the absolute CYP1A1-

content being unknown. In the following, this preparation is referred to as “3-MC standard”. 

On each gel, 0.01 and 0.02 μg of standard-protein were added. 

  

Molecular weight-marker 

As a molecular weight marker for the immunological protein-detection, 4 μl of the Pre-

Stained-Protein-Ladder Page Ruler protein mixture and 4 µl of the MagicMark™ XP Western 

Protein Standard were added for each electrophoresis run. 

 

Preparation of gels 

SE 260 Mini-Vertical Unit were used to prepare discontinuous 10 x 10.5 cm gels with either 

10 or 7.5 % stacking gel and 10 % separating gel, according to U.K. Laemmli (1970). The 

following buffers and solutions were used: 

 

Acrylamide A: 

3,5 M acrylamide 

29,2 mM methylene-bis-acrylamide 

 

Seperating-gel buffer: 

750 mM Tris-HCl, pH 8,8 

 

Acrylamide B: 

3,5 M acrylamide 

43,46 mM methylene-bis-acrylamide 
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Stacking-gel buffer: 

250 mM Tris-HCl, pH 6,8 

 

Ammonium peroxodisulfate solution (APS, freshly prepared): 

0,3 M ammonium peroxodisulfate 

 

SDS-solution: 

10 % SDS in H2O 

 

The separating and stacking gels were prepared from the fore mentioned solutions (see table 

1.2.), de-gassed by means of a water jet pump and polymerised by the addition of TEMED 

and APS-solution. Usually, 4 or 10 gels were poured at once and were used within 4 weeks 

after preparation. 

 

Separating gel  

10% gel 7,5% gel

 stacking gel 

acrylamide A 3,5 ml 2,65 ml acrylamide B 720 μl 

separating gel buffer 4,5 ml 4,5 ml stacking-gel buffer 1,875 ml 

SDS-solution 180 μl 180 μl SDS-solution 37,5 μl 

destilled water 613 μl 1,5 ml destilled water 1,06 μl 

 to start the polymerisation: 

TEMED 19 μl TEMED 7,5 μl 

APS-solution 150 μl APS-solution 50 μl 

 

Gel electrophoresis 

The separation of total cell-lysate proteins was performed in the SE 260 Mini-Vertical 

electrophoresis-unit from GE healthcare. Gels were run with a constant voltage of 160 V 

using the following running-buffer: 

 

Running-buffer 

25 mM Tris-HCl, pH 8,3 

190 mM glycine 

3,5 mM SDS 
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Blotting-procedure 

The electrophoretically separated proteins were immediately transferred to a Protan 

nitrocellulose-membrane by electroblotting (1 h, 400 mA) using the wet-blotting chamber TE 

Series Biotech and the Tris-glycine-methanol-buffer according to H. Towbin et al. (1979). 

 

Blotting buffer 

37,5 mM Tris pH 8,3 

0,2 M glycine 

13,3 % (v/v) methanol 

 

Immuno detection 

After blotting, the membrane was incubated 30 minutes in blocking solution, washed three 

times with PBS-Tween buffer (PBST) and over-night incubated with the primary antibody for 

CYP1A1 (1:1000 dilution) in PBST containing 10 % milk at 4°C under gentle agitation.  

Then, the bolts were washed three times with PBST buffer and incubated 1 h with the goat 

anti-mouse IgG- horseradish peroxidase-conjugated secondary antibody (1:3000 dilution). 

The blots were then washed with PBST and bands were visualized using an enhanced ECL™ 

Western Blotting Detection Reagents (GE-Healthcare, Amersham). 

To confirm equal protein loading in each well, all blots were controlled by a subsequent 

incubation with an α-tubulin antibody. For doing so, all blots were washed with distilled 

water for 5 minutes and incubated in stripping solution (0.2 M NaOH) for 5 min followed by 

another 5 minutes washing step with distilled water. After that, the blots were blocked in a 

10 % milk PBST solution for at least 30 minutes and the blots were then incubated with the 

primary rabbit α-tubulin antibody (1:3000) over-night at 4°C under gentle agitation. Goat 

anti-rabbit IgG horseradish peroxidase-conjugated antibody was used as a secondary 

antibody. 

 

PBS-Tween (PBST) 

0,1 % Tween 20 (v/v) in PBS  

 

Blocking solution 

10 % (w/v) milk powder in PBS 
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EROD activity 

The ethoxyresorufin-O-deethylase assay was performed according to A. Behrens et al. (1998) 

in 96-well plates with modifications. In brief, after exposure with B[a]P, quercetin,  

kaempferol or in combination, the medium was removed and the cells were washed twice 

with pre-heated to 37°C PBS. The cells were then incubated with 8 µM ethoxyresorufin and 

9 µM dicoumarol in 200 µl PBS. For kinetic determinations of the enzymatic activity, the 

emitted fluorescence was measured at 37°C each 5 minutes during a 30 minutes period in a 

plate spectrometer Tecan Spectral Plus (excitation 510 nm / emission 590 nm). Afterwards, 

the cells were washed again twice with PBS and 20 µl 0,1% Triton-X 100 were added to the 

cells and frozen by -70°C for at leased 10 minutes. The enzymatic activity was related to the 

protein content of each well, performed by the BC assay. 

 

Microarray analysis 

Microarray analysis provides an insight into the RNA expression of 22,525 genes and offers 

hints of possible relevant signal pathways within the analysed cell line. Since the IEC-6 cells 

are rare used for detoxification analysing of substances we also send isolated RNA of 

untreated and treated IEC-6 cells for microarray analysis to the University of Bonn (see 

Service provider). 
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3. Results 

3.1. Effects of B[a]P and flavonoids on Caco-2 cells  
 

3.1.1. Cytotoxicity of B[a]P and flavonoids on the CaCo-2 cell line  

 
We used the neutral red (NR) and the protein content assay (BCA method) in order to 

determine a non cytotoxic concentration range of the carcinogen B[a]P and the flavonoids 

quercetin (Q) and kaempferol (K). The combination of the two methods applied to the same 

cells provides two distinct parameters of cell survival in the culture system. Living cells take 

up the neutral red dye and accumulate it within their lysosomes. Since dead cells can still be 

attached to the plate, the protein content and NR-stained cells are not necessarily overlapping 

(E. Borenfreund et al., 1988; G. Ciapetti et al., 1996; G. Fotakis et al., 2006). 

 
Fig. 3.1. presents the dose-response curves for the cell viability and the protein content after 

48 hours incubation with each of the substances (0-50 µM). B[a]P-treated cells showed a 

cytotoxic effect (fig. 3.1.a). Viability decreased to 70 % - 78 % (P < 0.05) and the protein 

content to 60 % - 89 % (P > 0.05) of the control after B[a]P treatment in the concentration 

range 1-10 µM. Quercetin, but not kaempferol, showed a cytotoxic effect in the neutral red 

assay with concentrations > 10 µM (93±3 % compared to the control; fig. 3.1.b and c). Cells 

exposed to 25 µM of each of the flavonols presented a significant difference in the 

accumulation of the dye (76.2±16 % with Q; 75±31.6 % with K) or in their protein content 

(79.3±21 % with Q; 81.5±35.1 % with K) compared to the control. However, CaCo-2 cells 

showed clear cytotoxic effects after exposure to 50 µM of any of the flavonols: viability 

31.4±32.3 % and 8.8±2.2 %; protein content 17.4±7.8 % and 25.2±14.2 % of the control 

value, with either quercetin or kaempferol, respectively. 

 
Effect of benzo[a]pyrene, quercetin and kaempferol on cell viability and protein content 
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Fig. 3.1. Cytotoxicity of B[a]P and flavonoids in 

the CaCo-2 cell line. CaCo-2 cells were incubated 

with varying concentrations of benzo[a]prene (a), 

quercetin (b) and kaempferol (c) for 48 h, and then 

neutral red accumulation and BCA protein staining 

were measured. Results are expressed as 

percentage of control values ± S.D. (n = at least 3, 

P < 0.05. One sample Student’s t-test). Values 

significantly different from the control are marked 

with an asterisk (red asterisks for the neutral red 

assay, blue asterisks for the BCA protein assay). 
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To characterise the modulation of the cytotoxic B[a]P-induced effect by the flavonoids in this 

cell line we combined 10 µM B[a]P with either 10 or 25 µM of each flavonoid. With the 

combination 10 µM B[a]P + 10 µM Q or K CaCo-2 cells showed a viability of 58.9±10.7 % 

and 56±9.2 % of the control, respectively. The protein content decreased to 80.1±33.1 % and 

76.4±20.3 % of the control, respectively. The combination 10 µM B[a]P + 25 µM Q or K 

reduced the amount of living cells in the NR assay to 28.4±14.7 % (B[a]P + Q) and 

15.1±3.1 % (B[a]P + K) compared to 0.1% DMSO. In a similar way, the protein content sunk 

to 38.7±15 %(B[a]P + Q) and 42.1±20.6 % (B[a]P + K) of the control (fig 3.2. a and b). In 

CaCo-2 cells, the combination 10 µM B[a]P + 25 µM Q or K was as toxic as the positive 

control  (3 % H2O2 for 48 h). Furthermore, we obtanied a good correlation between NR assay 

and protein content of the treated cells before staining, providing a qualitative evaluation of 

the results (fig. 3.3.).  

 

In conclusion, because of its slight cytotoxicity, we were able to use B[a]P alone in 

concentrations up to 50 µM for 48 hours in the Caco-2 cells. The flavonoids could be used in 

a concentration of up to 25 µM. For the combination experiments only 10 µM B[a]P and 

10 µM of the flavonols showed a slight cytotoxic effect.  
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Effect of B[a]P in combination with quercetin or kaempferol on viability and protein content 
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Fig. 3.2. Cytotoxicity of B[a]P in combination with quercetin or kaempferol in CaCo-2 cells. 

CaCo-2 cells were incubated with varying concentrations of benzo[a]prene combined with quercetin 

(a) or kaempferol (b) for 48 h, and then neutral red accumulation and protein content were measured. 

Results are expressed as percentage of control values ± S.D. (n ≥ 3, P < 0.05. One sample Student’s t-

test). Values significantly different from the control are marked with an asterisk (red asterisks for the 

neutral red assay, blue asterisks for the BCA protein assay). 

 
 

Kaempferol 
0.1 % DMSO 10 µM  25 µM 50 µM 

Quercetin 
10 µM B[a]P 10 µM 25 µM 50 µM 

 
Fig. 3.3. Micrographs of treated CaCo-2 cells showing the cytotoxic effect of the tested 

substances. See text for details. 
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3.1.2. Effects of B[a]P, Q and K on gene expression in CaCo-2 cells: kinetics 

 

The effect of B[a]P, Q and K on the gene expression of the members of the AhR- and Nrf2-

pathways is clearly time-dependent. Because of this, CaCo-2 cells were incubated for 4, 24 

and 48 hours with 10 µM of each of the substances. Gene expression was measured by semi-

quantitative TaqMan® Real time PCR. 

 

After 4 hours, exposure to B[a]P caused a rapid induction of almost all detected members of 

the fore mentioned pathways (e.g. CYPs, AhR, Nrf2, GCS and ARNT), an effect that was still 

observed after 48h of exposure. AhR mRNA was induced approximately 4-fold of the control 

level. Also, Nrf2 expression was induced up to 3-fold of the DMSO control. The transcription 

of the CYPs 1A1, 1A2 and 1B1 genes was strongly induced by B[a]P, being even ~70-fold of 

the control. The expression of the ARNT mRNA was not affected by the carcinogen, whilst 

the AhRR mRNA transcription seemed to be slightly induced after 4h incubation although it 

was reduced at later time-points (fig. 3.4.a).  

 

Quercetin induced the AhRR mRNA expression about 2 fold of the control after 48h while 

AhR gene transcription seemed to be slightly induced at all time-points, i.e. between 4h and 

24h. Only the expression of CYP1A2 mRNA showed a clear induction by 10 µM Q 

(fig.3.4.b). As shown in fig 3.4.c, kaempferol induced only the transcription of CYPs. 

CYP1A1 and CYP1B1 were increased 6.7- and 2.2-fold, respectively, already after 4h. This 

effect was even stronger after longer exposure times. After 48h incubation CYP1A1 and -1B1 

mRNA expression reached an induction of 81.8- and ~10-fold of the DMSO control, 

respectively. The transcription of the CYP1A2 gene was induced 15- and 5-fold of the control 

after 4 and 48h incubation.  

 

In conclusion, both flavonols and B[a]P were able to influence the gene expression of 

members of the AhR- and the Nrf2-pathways which is visible already after 4h of exposure. 

However, the strongest effect was seen after incubation for 48 hours. Considering also the 

results of the cytotoxicity assays, this lead us to use an 48 hour incubation time for further 

experiments.  
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Time dependent gene expression pattern in CaCo-2 cells upon exposure to B[a]P and flavonoids 
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Fig. 3.4. Time dependent effect of B[a]P (a), 

quercetin (b) or kaempferol (c) on the gene 

expression pattern in CaCo-2 cells. 

Cells were treated with 10 µM of the indicated 

substances for 4, 24 and 48 hours. The mRNA of 

the members of the AhR- and Nrf2-pathways was 

determined by real-time TaqMan® PCR. The 

amount of transcripts was related to GAPDH 

mRNA and normalised to DMSO-treated cells 

(DMSO =1). For the analysis the 2-ΔΔCt method 

was used (n = 1). 

 

3.1.3. Effects of B[a]P, Q and K on gene expression in CaCo-2 cells: dose response 

 

B[a]P, quercetin and kaempferol are known ligands of the AhR; nevertheless, an effective 

concentration of any of these substances varies between different cell lines. Additionally, 

since we tried to use concentrations which are present in ordinary human foods (weekly B[a]P 

intake vary between 0.01 and 4.0 µg/person; K. Alexandrov et al., 1996; S. H. Lioy et al., 

1988), we treated CaCo-2 cells for 48 hours with B[a]P in a concentration range from 0.01 to 

10 µM (as shown in fig. 3.5.a). Furthermore, we also used experimental “high” concentrations 

of B[a]P (10 µM-50 µM, fig 3.5.b) to confirm the effect of the carcinogen. 

 

From the 3 compounds studied, B[a]P had the strongest effect on the expression of the CYPs. 

The transcription of CYP1A1 was induced 1.6-fold of the control by a concentration as low as 

0.03 µM B[a]P, whilst 3µM of the PAH showed a maximal induction effect amounting to 80-
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fold of the control level. In a similar way, CYP1B1 gene transcription was induced to 1.6- and 

~40-fold of the control cells (DMSO) with 0.01 and 10 µM B[a]P, respectively, while the 

expression of CYP1A2 increased 3.4- and 8.4-fold of the control with 1 and 10 µM of the 

carcinogen. Likewise, the AhR mRNA expression was induced by 3 µM B[a]P (2-fold of the 

control). Also, Nrf2 and GCS expression appeared to be slightly induced by concentrations up 

to 3 µM B[a]P. ARNT mRNA levels seemed to be slightly reduced. Interestingly, 1 µM B[a]P 

reduced the expression of the AhRR mRNA to 50 % of the DMSO control level. As shown in 

fig 3.5.b, maximal induction or suppression effects by B[a]P were achieved by a 

concentration of 10 µM, i.e. higher concentrations of 25 and 50µM showed no further 

increase or decrease, respectively. 

 

CaCo-2 cells were incubated with 10 and 25 µM of each flavonoid in order to assess effects 

on expression profiles. As shown in fig 3.5.c, quercetin and kaempferol induced the 

expression of CYPs, too. The CYP1A1 mRNA transcription was induced by both flavonoids 

(334.1-fold with Q and 14.2-fold of the control level with K). CYP1B1 showed a similar 

effect (14.2- fold of the control level with Q and 2.1-fold with K). In this experiment, 10µM 

of either flavonol obviously resulted in a stronger induction of CYP1A1 and CYP1B1 in 

comparison to a concentration of 25 µM. Similarly, quercetin increased the level of the 

CYP1A2 transcript (~14-fold of the control level). In contrast, kaempferol obviously did not 

modulate the transcription of CYP1A2 in this experiment. The other members of the AhR and 

Nrf2 pathways studied here were not affected by the flavonoids. 

 

In conclusion, B[a]P clearly affected the expression of the AhR, AhRR and CYPs in a 

concentration of at least 1 µM, reaching a maximum with 10 µM. The synthesis of CYP and 

AhR transcripts was increased, but the expression of AhRR mRNA was reduced to 50 % of 

the control. Higher concentrations of B[a]P did not show a stronger effect. On the other hand, 

the flavonoids induced clearly only the expression of CYPs. 10µM of either quercetin or 

kaempferol showed a stronger induction effect than 25 µM did. The reason for this result 

could be the stronger cytotoxic effect of the flavonoids at this concentration (fig. 3.1.b and c).  
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Normalised gene expression pattern induced by varying concentrations of B[a]P, quercetin 
and kaempferol 
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c Fig. 3.5. Effect of B[a]P, quercetin or 

kaempferol on the gene expression pattern in 

CaCo-2 cells. Relative gene expression in CaCo-2 

cells after incubation with different concentrations 

of B[a]P (a and b) or the flavonoids (c). Gene 

expression of both pathway members was 

measured by real-time TaqMan® PCR. The gene 

expression was normalised to that of control cells 

treated with 0,1% DMSO (DMSO =1) and the 

relative fluorescence of the transcribed genes was 

related to that of the house-keeping gene GAPDH. 

The 2-ΔΔCt method was used for the analysis. The 

columns represent one experiment. 

 

3.1.4. Influence of quercetin and kaempferol on the B[a]P-induced gene expression 

 

For the combination experiments, we used 1 or 10µM B[a]P plus 10 µM of either flavonoid 

(see the results of the concentration-dependent and cytotoxicity trials). 10 µM B[a]P 

significantly induced the transcription of AhR (1.7-fold ±0.6 of the control). 1 µM B[a]P, 

quercetin or kaempferol alone did not influence the AhR mRNA expression. The combination 

of 1 and 10 µM B[a]P + Q did not show any increase of the AhR transcript (fig. 3.6.a). 

However, the combination of 1 and 10 µM B[a]P + K trended to increase the AhR expression, 

compared to kaempferol alone. 
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B[a]P lead to a decrease of the AhRR transcript level in a concentration-dependent manner 

(0,4-fold ±0,1 with 1 µM and 0,2-fold ±0,01 with 10 µM B[a]P), whilst quercetin induced the 

AhRR expression (1,5-fold ±0,3 of the control). On the contrary, kaempferol did not show 

any effect on the AhRR mRNA transcript. Both flavonoids, however, counteracted the 

suppression effect elicited by B[a]P on AhRR expression. This is also true for Kaempferol 

which alone did not influence AhRR transcript levels. 

 

B[a]P led to a significant concentration-dependent reduction of the ARNT mRNA expression 

as well (0,7-fold ±0,04 of the DMSO control). Quercetin showed a similar effect (0,7-fold 

±0,07 of the control) which was enhanced when combined with B[a]P (0,6-fold ±0,03 of the 

DMSO). Kaempferol by itself did not clearly change the ARNT transcript and also did not 

influence the B[a]P-mediated decrease in ARNT mRNA (0,8-fold ±0,1 of the control level). 

Both, B[a]P and the flavonoids alone or in combination did not show any noticeable effect on 

the AhR-interacting protein AiP at all.  

 

Interestingly, B[a]P and quercetin considerably increased the transcription of CYP1A1(86-

fold ±26 with 10 µM B[a]P and 91-fold ±15 with Q of the DMSO control), CYP1B1 (39-fold 

±19 and 11-fold ±7 of the control, respectively) and CYP1A2 (20-fold ±13 and 8-fold ±4 of 

the control, respectively). On the other hand, kaempferol showed no effect on the expression 

of CYP1A2 and CYP1B1 (fig. 3.6.e and f). 

 

The combination 1 µM B[a]P + Q presented a tendency to additively induce CYP1A1 

transcription, reaching a maximum of about 109-fold ±32.8 of the DMSO level (which, 

however, was not significantly higher than the expression induced by quercetin alone, see 

above). So, this combination had a stronger effect than 1 µM B[a]P alone on the expression of 

CYP1A1 (fig. 3.6.e). Even though kaempferol reduced CYP1A1 transcript, it did not 

counteract the induction by 10 µM B[a]P (93-fold ±19 of the control vs. 86-fold ±24 for 

B[a]P alone). Additionally, both flavonols slightly reduced the B[a]P-induced expression of 

CYP1A2 (4.5-fold ±1.4 of DMSO with B[a]P + Q and 8-fold ±5,7 of the control with B[a]P + 

K). Furthermore, 10 µM B[a]P + Q led to an enhancement of CYP1B1 expression but it did 

not reach the expression level induced by 10 µM B[a]P alone (29-fold ±12.7 of the control 

level). On the other hand, B[a]P + K did not show any difference in the CYP1B1 expression 

compared to the induction by B[a]P alone. 
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The second transcription factor, Nrf2 as well as its target gene GCS were induced by 10 µM 

B[a]P (1.4-fold ±0.1 and1.3-fold ±0.3 of the control, respectively), yet, the flavonols exhibited 

no clear effect on the expression of these genes. In the combination experiments, neither 

B[a]P + Q nor B[a]P + K showed a reduction of the B[a]P-induced Nrf2 transcription. The 

GCS expression presented a similar reduction tendency, but without statistical significance 

(Nrf2: 1.1-fold ±0.05 with B[a]P + Q and 1.1-fold ±0.04 of the control with B[a]P + K; GCS: 

1-fold ±0.1 with B[a]P + Q and 1.2-fold ± 0.2 of the control with B[a]P + K, fig. 3.6.c and d). 

 

Summarised, the carcinogen increased the expression of the CYPs in a concentration-

dependent manner in CaCo-2 cells. The transcripts of GCS and the two transcription factors, 

AhR and Nrf2, were clearly induced by 10 µM B[a]P. However, this PAH showed a 

concentration-dependent suppression of AhRR and ARNT in CaCo-2 cells. Quercetin 

distinctly enhanced the expression of the CYPs and AhRR, but reduced the transcription of 

ARNT, as 10 µM B[a]P did. On the contrary, kaempferol by itself showed no effect at all. In 

the combination experiments we observed a mixture of modulatory effects on the gene 

expression. B[a]P + Q exhibited a clear antagonistic effect on the Nrf2 expression and a 

similar tendency was observed on the GCS transcript. An additive stimulating effect was 

noticed in the expression of the CYPs. However, the combination of B[a]P with quercetin 

showed an additive inhibition on ARNT mRNA levels and a counteracted activity on AhRR 

expression. Though, B[a]P + K showed only a counteracted activity on the AhRR transcript. 

 

Influence of quercetin and kaempferol on the B[a]P-induced gene expression 
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Fig. 3.6. Effect of quercetin or kaempferol on the B[a]P-induced gene expression. 

Relative gene expression in CaCo-2 cells after incubation with 1 or 10µM B[a]P, 10µM of each 

flavonoids or a combination of B[a]P plus either flavonoids. Gene expression for members of both 

pathway was measured by real-time TaqMan® PCR. The gene expression was normalised to that of the 

0,1% DMSO control and the relative fluorescence of the PCR products was related to that of the house-

keeping gene GAPDH. The 2-ΔΔCt method was used for the analysis. Results are expressed as mean 

values ± S.D. (n ≥ 3, P < 0.05). Values significantly different from the control are marked with an 

asterisk (One sample Student’s t-test). An asterisk over a column shows a significant difference 

compared to DMSO (DMSO = 1) whilst significant differences between the substances are shown over 

the bonds (Unpaired Student’s t-test).  

 

3.1.5. Influence of quercetin and kaempferol on the B[a]P-induced protein expression 

 

B[a]P is a strong inducer of the expression of CYP1A1 protein (J. Chung et al. 2007;  P.H. 

Roos et al. 2002; Y. Shimizu et al. 2000; M. Till et al. 1999). By western blot analysis we also 

showed a clear concentration-dependent induction of CYP1A1 protein by B[a]P in CaCo-2 

cells after 48 hours incubation. In comparison to mRNA expression (see table 3.1.), DMSO 

did not induce the synthesis of CYP1A1 protein. Both 10 µM quercetin and B[a]P induced the 
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transcription of CYP1A1. However, the induction effect on the protein expression was not so 

high with Q. 
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0,00230,00430,00270,00500,00890,01010,00290,00490,0116MV
AhRR

10,107,366,647,743,5510,8619,4018,5712,97SD

39,6333,2535,0531,5727,5835,8651,5737,3427,74MV
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10µM 
B[a]P+ 
10µM K

1µM 
B[a]P+ 
10µM K
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B[a]P+ 
10µM Q
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B[a]P+ 
10µM Q

10µM K10µM Q
10µM 
B[a]P

1µM 
B[a]P

DMSOCaCo-2

 

Table 3.1. Relative values of the detected gene expression related to the expression of GAPDH 

(x1000). Note that the values are not normalized on the levels of control cells, i.e. they do not 

constitute induction factors such as in the figures shown before. Shown are the mean values (MV) 

and the standard deviations (SD). 

 

In the combination experiments, quercetin tends to exert an additional stimulation on 

induction of CYP1A1 protein by 1 µM B[a]P (fig. 3.7.a, c and table 3.2.) while there is no 

further stimulation at 10µM B[a]P. On the other hand, kaempferol showed no effect on the 

expression of the CYP1A1 protein (fig. 3.7.b and c). Nevertheless, kaempferol exerted an 

antagonistic effect, tending to reduce the CYP1A1 induction by 10µM B[a]P (fig. 3.7.c). 

  

Since B[a]P reduced the transcription of AhRR and the flavonoids slightly antagonised  this 

effect, we looked for a possible modulation of the AhRR protein expression by means of 

western blot analyses. As shown in fig. 3.7.a and b, the detected AhRR protein in the CaCo-2 

cells was too faint to be quantified.  

 

Summarising, B[a]P as well as quercetin clearly induced the expression of CYP1A1, while 

kaempferol alone had no apparent effect on the synthesis of this protein. Interestingly, unlike 
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kaempferol which reduced the B[a]P-induced expression of CYP1A1, the combination Q plus 

B[a]P showed an enhanced CYP expression. In the western blot analysis, AhRR protein was 

hardly detectable. We conclude that AhRR protein did not play an important role in the 

modulation of CYP1A1 expression by the flavonoids in CaCo-2 cells.  

 

Influence of quercetin and kaempferol on the B[a]P-induced protein expression 
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Fig. 3.7. CYP1A1 protein expression induced 

by B[a]P, flavonoids or the combination of 

both. 50 µg of the total protein were analysed by 

western blot and quantified with the WinCam 

program. For each blot, the luminosity of each 

lane was related to that of α-tubulin (n = 3). 

Results are expressed as mean values ± S.D. (n ≥ 

3, P < 0.05.  Unpaired Student’s t-test). 

 

DMSO 1µM BaP 10µM BaP 10µM K
1µM B[a]P   
+10µM K

10µM B[a]P 
+10µM K

10µM Q
1µM B[a]P 
+10µM Q

10µM B[a]P 
+10µM Q

Mean value
0,002 0,230 0,854 0,008 0,237 0,536 0,191 0,432 0,710

Standard 
deviation

0,002 0,116 0,172 0,007 0,121 0,215 0,091 0,158 0,079
 

Table 3.2. Relative values of CYP1A1 expression related to the content of α-tubulin. 

Shown are the mean values (MV) and the standard deviations (SD). 
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3.1.6. Effect of B[a]P, quercetin and kaempferol on the CYP1-dependent EROD 

activity in CaCo-2 cells 

 

The ethoxyresorufin-O-deethylase (EROD) assay is a common method to determine the 

metabolic activity of CYP1A1, 1A2 and 1B1. In accordance with the mRNA and protein 

expression results, DMSO- (control) and kaempferol-treated cells revealed no EROD activity 

(fig. 3.8.a and b). CaCo-2 cells treated with 1 µM B[a]P exhibited clear EROD activity. Also, 

cells treated with 10µM quercetin showed a similar induction of CYP activity (fig 3.8.a). 

Comparatively, 10 µM quercetin did not modify the EROD-activity of 1 µM B[a]P-exposed 

cells (fig 3.8.a and c). Though, 10 µM kaempferol plus 1 µM B[a]P-treated cells showed a 

significant reduction of the EROD activity. 

 

Effect of B[a]P, quercetin and kaempferol on the enzymatic EROD activity in CaCo-2 cells 
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Fig. 3.8. Effect of quercetin or kaempferol on 

the B[a]P-induced EROD activity in CaCo-2 

cells. CYP activity after 48 hours incubation with 

1 µM B[a]P, 10 µM of each flavonoids or in 

combination was detected by the EROD assay. 

Note that unlike K (which partially antagonised 

the inductive effect of B[a]P; b), Q and the PAH 

induced the enzymatic activity (a). Mean values 

± S.D. are calculated from 18 individual 

measurements. The EROD activity is normalised 

to the DMSO-induced activity (C). Results are expressed as means ± S.D. (n ≥ 3, P < 0.05. One 

sample Student’s t-test). Values significantly different from the control are marked with an asterisk. 

An asterisk over a column shows a significant difference compared to DMSO whilst significant 

differences between the substances are shown over the bonds (Unpaired Student’s t-test). 
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3.1.7. Modulation of the B[a]P-induced CYP1A1 gene and protein expression by 

quercetin and kaempferol related to the EROD activity in CaCo-2 cells 

 

Kaempferol and quercetin are known ligands of the AhR. Even though both flavonols have a 

similar structure, they showed different modulatory activity which was already described. 

Kaempferol did not exert any influence on the AhR- and Nrf2-pathway in the CaCo-2 cells. 

However, quercetin and B[a]P showed similar effects on the gene and protein expression. In 

figure 3.9., the clearly distinguishable differences of the modulatory activity of the flavonoids 

on CYP1A1 are summarised. 

 

Modulation of the B[a]P-induced CYP1A1 gene and protein expression by quercetin and kaempferol 

related to the EROD activity in CaCo-2 cells 
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Since kaempferol by itself did not induce the gene or protein expression of CYP1A1 at all, 

EROD activity was not detected in kaempferol treated CaCo-2 cells. B[a]P induced EROD 

activity as well as CYP1A1 gene expression. Kaempferol was not able to interfere in the 

B[a]P-induced gene or protein expression but it reduced clearly the CYP-dependent EROD 

activity (fig. 3.9.a). On the contrary, quercetin caused a similar increase in EROD activity 

compared to B[a]P treated cells; however, it caused a stronger increase of CYP1A1 

transcription compared to that induced by B[a]P. Interestingly, quercetin in combination with 

B[a]P exhibited a similar CYP1A1 mRNA transcription compared to quercetin alone, whilst 
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Fig. 3.9. Effect of kaempferol (a) and quercetin (b) on the CYP1A1 gene and protein expression 

related to the EROD activity in CaCo-2 cells. Blue Symbols represent the mRNA expression and red 

symbols represent the protein expression. Circle: 0,1 % DMSO; triangle: 10 µM kaempferol/quercetin; 

square: 1µM B[a]P plus K/Q; diamond: 1µM B[a]P. Unlike quercetin, kaempferol, alone or combined with 

B[a]P did not affect the mRNA or protein expression but reduced clearly the B[a]P-induced EROD activity 

of the CYPs. 
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the CYP1A1 level was clearly increased without enhancement of the enzymatic activity (fig. 

3.9.b).  

3.2. Effects of B[a]P and flavonoids on IEC-6 cells  

3.2.1. Cytotoxicity of B[a]P and flavonoids on the IEC-6 cell line  
 

As already described for CaCo-2 cells, a non cytotoxic concentration range for B[a]P and the 

flavonoids was also determined for cells of the rat duodenal cell line IEC-6. As shown in 

figure 3.10., the dose-response curves evinced a slight but significant cytotoxic effect on the 

IEC-6 cells. Viability sunk from 91±2.1 % to a minimum of 79.8 ±7.3 % and protein content 

from 79±4.6 % to 82 ±30 % of the control after treatment with 0.1 to 1µM B[a]P, 

respectively. Quercetin, but not kaempferol, showed a toxic effect at 10 µM in the neutral red 

assay (97±7.3 % compared to the control). Cells exposed to 25 µM of any of the flavonols 

presented a clear cytotoxic effect visualised by the accumulation of the dye (86±8.6 % with 

Q; 90.2±7.7 % with K) or in their protein content (81.3±22.8 % with Q; 61.6±17.3 % with K) 

compared to the control. IEC-6 cells showed strong cytotoxic effects after exposure to 50 µM 

of any of the flavonols: with quercetin viability and protein content drop to 7.5±0.4 % and 

9.8±1.1 % of the control; with kaempferol cell survival and protein content sunk to 

7.7.±0.9 % and 9.2±1.9 % of the control value, respectively. 

 

Effect of benz[a]pyrene, quercetin and kaempferol on cell viability and protein content
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Fig. 3.10.  Cytotoxicity of B[a]P and 

flavonoids in the IEC-6 cell line. Cells were 

incubated with varying concentrations of B[a]P 

(a), Q (b) and K (c) for 48 h.  Results are 

expressed as percentage of control values ± S.D. 

(n ≥ 3, P < 0.05. One sample Student’s t-test). 

Significance is marked with an asterisk (red 

asterisks for the neutral red assay, blue asterisks 

for the BCA protein assay). Kaempferol
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With the combination 10 µM B[a]P + 10 µM Q or K, the IEC-6 cells showed a viability of 

84.7±25.6 % and 85.1±7.9 % compared to the control, respectively. The protein content 

showed a reduction of 44.5±4.5 % and 61.7±3 % of the control, respectively. The 

combination of 10 µM B[a]P + 25 µM Q or K reduced the amount of living cells in the NR 

assay to 7±1.3 % (B[a]P+Q) and 7.6±2 % (B[a]P+K) compared to 0.1% DMSO. In a similar 

way, the protein content sunk to 4.4±0.4 %(B[a]P+Q) and 5.2±7.3 % (B[a]P+K) of the control 

(fig 3.11.a and b). As in CaCo-2 cells, the combination of 10 µM B[a]P + 25 µM Q or K was 

as toxic as the positive control  (3 % H2O2 for 48 hours) in IEC-6 cells. 

 

Effect of B[a]P in combination with quercetin or kaempferol on viability and protein content 
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Fig. 3.11. Cytotoxicity of B[a]P in combination with quercetin or kaempferol in IEC-6 cells. 

IEC-6 cells were incubated with varying concentrations of benzo[a]pyrene combined with quercetin 

(a) or kaempferol (b) for 48 h. Afterwards, the neutral red accumulation and BCA protein staining 

were measured. Results are expressed as percentage of control values ± S.D. (n ≥ 3, P < 0.05, one 

sample Student’s t-test). Values significantly different from the control are marked with an asterisk 

(red asterisks for the neutral red assay, blue asterisks for the BCA protein assay). 
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In conclusion, IEC-6 and CaCo-2 cells showed similar cytotoxic responses when exposed to 

B[a]P and the flavonoids. We were able to use B[a]P alone in a concentration up to 50 µM for 

48 hours. The flavonoids alone could be used in a concentration of up to 25 µM. For the 

combination experiments we used 10 µM B[a]P and 10 µM of the flavonols which showed 

only a slight cytotoxic effect.  

 

3.2.2. Time-dependent gene expression pattern in IEC-6 cells 

 

We applied B[a]P, quercetin or kaempferol (10µM each) at different time points in order to 

detect possible previous effects on the expression of the examined genes. After 4 hours 

incubation B[a]P elicited a rapid induction of the expression of AhRR, CYP1A1 and 

CYP1B1, an effect that was still observed at the 48 hours time-point. The transcript of AhRR 

was increased after 4 hours incubation 3-fold ±1.8 of the DMSO control and was still 

observed after 48 hours (4.7-fold ±3.3 of the control). On the other hand, CYP1A1 expression 

exhibited a strong enhancement by B[a]P amounting to 812.4-fold ±165.5 of the control 

which subsequently decreased to 321.7-fold ±218.5 of the control after 48 hours. In contrast, 

the expression of CYP1B1 was increased after 4 hours of B[a]P-induction (3.3-fold ±1.8 of 

the control level) and to 7.6-fold ±1.7 of the DMSO control after 48 hours incubation. The 

other members of the pathways showed no clear effect of B[a]P on their expression (fig 

3.12.a). 

 

Quercetin induced different alterations in the gene expression pattern in comparison to B[a]P. 

As shown in fig. 3.12.b, the AhR transcript was induced 3.3-fold of the control after 48 hours. 

In this experiment the expression of AhRR was also strongly increased already after 4 hours 

(21.4-fold of the DMSO) and sunk after 48 hours of incubation to the level of the control. On 

the other hand, ARNT was only slightly induced after 4 hours (1.9-fold of the control) and 

further increased to a level of 3.3-fold of the DMSO control. Also, the expression levels of 

Nrf2 and CYP1B1 were increased after 4 hours (3.9-fold and 3.1-fold of the control, 

respectively) and 48 hours of incubation (4.9-fold and 3.9-fold of the DMSO, respectively). In 

contrast, CYP1A1 and AiP transcripts exhibited a strong increase after 4 hours of exposure 

(48-fold and 18.5-fold of the DMSO, respectively). There was no detectable CYP1A1 

transcript after 48 hours incubation. The expression of AiP was still observed at this time-

point but was decreased 3.4-fold of the control level. The GCS transcript level was not 

influenced by quercetin. 
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Kaempferol elicited a clear induction on the expression of AhR (4-fold of the control at the 4 

hour time-point), which reached a maximum after 24 hours of treatment (5.8-fold of the 

DMSO level) and a minimum after 48 hours (1.6-fold of the DMSO). On the other hand, the 

AhRR and the AiP transcripts were increased only at the 24 hours time-point (11-fold and 

4.6-fold of the control). CYP1B1 induction resembled the AhRR and AiP expression patterns. 

CYP1B1 was clearly induced by kaempferol after 4 and 48 hours (1.6-fold of the control on 

both time-points) and reached a maximum of 10-fold of the DMSO control after 24 hours of 

the treatment. On the other hand, the ARNT transcript showed a time-dependent induction 

(1.8-fold of the control at 24 hours and 3.5-fold of the DMSO-control after 48 hours the 

treatment). Both, Nrf2 and CYP1A1 were induced at the 4 hours time-point (5.8-fold and 4.8-

fold of the control, respectively). After 24 hours of treatment Nrf2 mRNA expression was 

enhanced to13.7-fold of the control. The CYP1A1 transcript sunk to 3.3-fold of the DMSO 

level at the same time-point. After 48 hours, the expression of Nrf2 dropped to 2.8-fold of the 

DMSO control and CYP1A1 mRNA was not detectable in this experiment. The GCS 

expression did not seem to be affected by kaempferol. 

 
Time-dependent alterations in gene expression pattern in IEC-6 cells 

in response to treatment 
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c Fig. 3.12. Time dependent effect of B[a]P (a), 

quercetin (b) or kaempferol (c) on the gene 

expression pattern in IEC-6 cells. The cells 

were treated with 10 µM of the indicated 

substances for 4, 24 and 48 hours. The mRNA 

levels were determined by real-time TaqMan® 

PCR. The amount of transcripts was related to 

GAPDH and normalised to DMSO (DMSO =1). 

For the analysis the 2-ΔΔCt method was used (n = 1; 

Column with error bars: n = 2). 
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Summarising, B[a]P clearly induced the expression of CYP1A1, CYP1B1 and AhRR. This 

enhanced expression was also maintained after 48 hours of exposure. The other members of 

the AhR pathway were unaffected by the carcinogen. Quercetin increased the transcript levels 

of CYP1A1, AhRR and AiP at the 4 hour time-point followed by a strong decrease in 

expression levels after 48 hour treatment. The expression of AhR, ARNT, CYP1B1 and Nrf2 

was induced, reaching a slightly stronger level at later time-points. However, kaempferol 

strongly induced the expression of AhR, AhRR, Nrf2, CYP1B1 and AiP after 24 hours. The 

transcripts of AhR, Nrf2 and CYP1B1 were still increased at the 48 hour measurement. 

CYP1A1 mRNA reached its maximal expression at early time-points and sunk to no 

detectable levels later on. The transcription of ARNT showed a time-dependent increase by 

kaempferol. 

 

Since the B[a]P-induced gene expression effect was at its highest level at the 48 hours time-

point, we chose this incubation period to explore the modulatory effect of flavonoids in IEC-6 

cells, too. 

 

3.2.3. Assessing an effective concentration of B[a]P, quercetin and kaempferol for the 

studies with IEC-6 cells 

 

Since no data on the effects of B[a]P and flavonoids on the AhR- and Nrf2-pathways in IEC-6 

cells are available, we looked for an effective concentration of each of these substances in this 

cell line. As already described in paragraph 3.3, we tested CaCo-2 cells with B[a]P in a 

concentration range from 0.01 to 10 µM as well as with experimental “high” concentrations 

of 10, 25 and 50 µM (see fig. 3.13.a and b). Furthermore, H.P. Ciolino et al. (1999) already 

showed that quercetin (0.5 µM) and kaempferol (5 µM) affected the expression of CYP1A1 in 

MCF-7 cells. Therefore, we incubated the IEC-6 cells with the flavonoids in a concentration 

range from 0.5 to 50 µM. 

 

As shown in fig 3.13.a and b, B[a]P slightly reduced the expression of AhR (0.7-fold ±0.2 of 

the control with 10 µM and 0.4-fold ±0.3 of the control with 50 µM). On the other hand, the 

transcription of AhRR was clearly induced by 10 µM B[a]P (2.6-fold ±0.8 of the DMSO 

level). However, the expression of ARNT, Nrf2 and GCS did not seem to be affected by 

B[a]P at all. CYP1A1 and CYP1B1 are strongly induced by B[a]P even at comparatively low 

concentrations. Exposure to 0.01 µM B[a]P results in a 5-fold ±2.7 and 1.5-fold ±0.2 increase 
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compared to control cells, respectively. The induction of these two CYPs reached a maximum 

with 1µM B[a]P (224-fold ±18 and 8.8-fold ±1.7 of the DMSO control, respectively). The 

large difference in the induction factor between CYP1A1 and CYP1B1 is explained by the 

higher constitutive expression level of CYP1B1 compared to CYP1A1. As shown in fig. 

3.13.b, additional effects of B[a]P, whether inducing or inhibitory, did not seem to be exerted 

by concentrations higher than 10 µM.  

 

As already seen in the CaCo-2 cells, also quercetin induced the expression of CYP1A1 and 

CYP1B1 mRNA at a concentration of 10 µM in the rat cell line (3.9-fold ±2.5 and 1.4-fold 

±0.3 of the control, respectively). On the other hand, other members of the AhR-pathways 

like AhRR were unaffected even with higher concentrations of this flavonoid (fig. 3.13.c and 

d). In contrast, kaempferol did not seem to affect clearly the expression of any of the studied 

genes in the IEC-6 cells (fig. 3.13.e and f). 

 

Normalised gene expression pattern induced by B[a]P, quercetin and kaempferol in IEC-6 cells 
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Fig. 3.13. Effect of B[a]P, quercetin or kaempferol on the gene expression pattern in IEC-6 cells. 

Relative gene expression in IEC-6 cells after incubation with different concentrations of B[a]P (a and 

b) or the flavonoids (c) for 48h. Gene expression was measured by real-time TaqMan® PCR. The 

gene expression was normalised to that of control cells (0,1% DMSO) and the fluorescence signals of 

the transcripts were related to that of the house-keeping gene GAPDH. The 2-ΔΔCt method was used for 

the analysis. The columns represent at least two experiments (One sample Student’s t-test). 

 

In conclusion, B[a]P clearly affected the expression of the AhR, AhRR and the cytochromes 

P450 CYP1A1 and CYP1B1 in IEC-6 cells in a concentration of at least 0.01 µM, reaching a 

maximum at 1 µM. Higher concentrations of B[a]P did not show any further effect. The levels 

of CYPs and AhRR transcripts were increased, but the expression of AhR mRNA was 

reduced to ~50 % of the control by B[a]P. On the other hand, quercetin clearly induced the 

expression of CYPs only at concentrations >10µM. Since quercetin caused a cytotoxic effect 

(see paragraph 3.2.) we decided to utilise no higher concentration than 10 µM. Kaempferol by 

itself did not show any significant effect on the IEC-6 cells after 48 hours incubation although 

CYP1A1 expression appears slightly increased.  

 

3.2.4. Influence of quercetin and kaempferol on the B[a]P-induced gene expression 

 

For the combination experiments, we used 1 or 10µM B[a]P plus 10 µM of each flavonoid in 

IEC-6 cells, which allowed us to compare the modulatory effects of the flavonols on 

expression patterns in  these and also in CaCo-2 cells. As shown in fig 3.14., B[a]P 

significantly reduced the expression of AhR in a concentration dependent fashion (0.8-fold 

±0.1 and 0.7-fold ±0.2 of the control at 1µM and 10 µM, respectively). Quercetin and 

kaempferol did not affect the expression of the AhR mRNA. The B[a]P-induced reduction 

seemed to be slightly enhanced when combined with either flavonoid (0,6-fold ±0,2 of the 
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control with 10 µM B[a]P + Q and 0.7-fold ±0.1 of  DMSO with 10 µM B[a]P + K). On the 

contrary, the transcript of AhRR was significantly increased by the carcinogen (3.1-fold ±0.7 

with 1 µM and 3.5-fold ±1.4 with 10 µM of the DMSO level). Quercetin alone slightly but 

significantly induced the expression of the AhRR, too (1.1-fold ±0.1 of the control). 

Kaempferol did not affect the expression of this gene. Interestingly, the expression of AhRR 

mRNA seemed to be enhanced when either flavonoids were combined with 1 µM B[a]P (3.5-

fold ±1.1 with 1 µM B[a]P + Q and 3.8-fold ±0.9 with 1 µM B[a]P + K of the DMSO level). 

However, Q or K showed a tendency to reduce the 10 µM B[a]P-induced AhRR expression 

(3.3-fold ±0.9 or 3.3-fold ±0.6 of the control, respectively). 

 

The expression of ARNT seemed to be unaffected by B[a]P, the flavonoids or the 

combination of both. The AiP transcript was not modulated by B[a]P, either. However, 

quercetin alone trended to reduce the expression of the AiP mRNA. The combination of 

B[a]P + Q slightly reduced the transcription of AiP (0.8-fold ±0.1 of the control with 1 and 

10 µM B[a]P + Q). On the other hand, kaempferol itself significantly reduced the AiP 

transcript (0.9-fold ±0.07 of the DMSO, fig. 3.14.a and b), whilst when combined with B[a]P 

this flavonoid did not show any effect. 

 

While 1 µM B[a]P caused a 248-fold ±109 increase in CYP1A1 transcript compared with that 

of DMSO-treated cells, either flavonols alone showed no clear effect on the expression of this 

mRNA (fig. 3.14. c and d). 10µM B[a]P did not further increase the induction (315-fold ±175 

of the control). Interestingly, the combination of B[a]P + Q slightly enhanced the CYP1A1 

transcription in a concentration-dependent manner, whilst B[a]P + K showed a clear effect 

compared to that of 1 µM B[a]P (576-fold ±225 vs. 248-fold ±109). 10 µM B[a]P + 10 µM K 

caused a similar increase on CYP1A1 transcript (571-fold ±250 of the control). 

 

The PAH elicited in IEC-6 cells also a concentration-dependent increase in the amount of 

CYP1B1 mRNA by 4.6-fold ±2.1 with 1 µM and 6.4-fold ±2.8 with 10 µM B[a]P of the 

DMSO level. The flavonoids had no effect on CYP1B1 mRNA. B[a]P combined with the 

flavonoids showed a similar induction effects on the expression of CYP1B1 as observed also 

on the CYP1A1 mRNA. In a spite of no statistical significance, B[a]P + Q trended to enhance 

the CYP1B1 transcript further, reaching a maximum with 1 µM B[a]P + Q (7.3-fold ±0.4 of 

the control and 6.6-fold ±1 of the DMSO with 10 µM B[a]P + Q). Also, B[a]P + K showed a 

tendency to stronger induce the expression of CYP1B1, reaching a maximum of 8.3-fold 
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±0.005 of the DMSO level with 1 µM B[a]P + K and 7.1-fold ±0.7 of the control with 10 µM 

B[a]P + K. 

 

As shown in fig 3.14.c and d B[a]P, quercetin and kaempferol alone did not influence the 

expression of Nrf2 and GCS mRNA. However, both genes were significantly induced when 

the carcinogen and kaempferol were combined in comparison to the amount of transcripts 

elicited by this flavonol alone. 1 µM B[a]P + K significantly enhanced the amount of GCS 

mRNA (~1.5-fold ±0.2 of the control) compared to 1µM B[a]P treated cells (0.9±0.4 of the 

control; 1.1±0.4 of the DMSO with 10 µM B[a]P). Also, B[a]P + Q significantly increased the 

amount the of Nrf2 transcripts compared to that of quercetin treated cells (~1.5-fold ±0.2 of 

the control). On the other hand, B[a]P-treated cells exhibit no increased Nrf2 expression 

(0.9±0.7 of the control with 1 µM B[a]P and 1.4±0.85 of the DMSO with 10 µM B[a]P). 

 

In conclusion, B[a]P increased the expression of AhRR and CYPs. The amount of AhR 

transcript showed a slight concentration-dependent decrease by B[a]P. The other members of 

the pathways were unaffected by the PAH. Quercetin and kaempferol did not present a clear 

and strong effect on the gene expressions after 48 hours incubation. Quercetin caused a low 

but significant induction on the AhRR and CYP1B1 transcripts. On the other hand, 

kaempferol significantly reduced the expression of AiP. In the combination experiments, both 

flavonoids trended to a suppression of AhR and AiP (only by B[a]P + Q) transcription and a 

synergistic stimulation on the expression of CYP1A1, 1B1, Nrf2 and GCS in the IEC-6 cell 

line. 
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Fig. 3.14. Effect of quercetin and kaempferol on the B[a]P-induced gene expression. 

Relative gene expression in IEC-6 cells after incubation with 1 or 10µM B[a]P, 10µM of each flavonoids or a 

combination of B[a]P plus either flavonoids. Gene expression of members of both pathway was measured by 

TaqMan® PCR. The gene expression was normalised to that of 0,1% DMSO and the relative fluorescence of 

the transcribed genes was related to that of the house-keeping gene GAPDH. The 2-ΔΔCt method was used for 

the analysis. Results are expressed as M.V. ± S.D. (n ≥ 3, P < 0.05). Values significantly different from the 

control are marked with an asterisk (One sample Student’s t-test). An asterisk over a column shows a 

significant difference compared to DMSO-treated control cells whilst significant differences between the 

substances are shown above the bonds (unpaired Student’s t-test). 

 

3.2.5. Influence of quercetin and kaempferol on the B[a]P-induced protein expression 

 

Chemicals can affect gene transcription, stabilise mRNA or induce a faster degradation of 

transcripts. Also, the amount of the protein does not necessarily correspond to the amount of 

its mRNA. Because of this, we looked for a possible modulation of the CYP1A1 and AhRR 

protein expression by means of western blot analysis.  
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6,245,053,458,959,663,3311,016,5612,08SD

63,3659,9154,3951,2457,3347,9963,0254,0461,52MV
AiP

65,1853,8126,4032,5939,6733,2167,6682,4956,17SD

258,64255,55197,33200,72135,82121,09199,70228,02139,69MV
GCS

31,9813,0963,6125,2327,0555,47125,8488,4122,37SD

476,70587,29480,62513,1156,2993,99359,00380,2146,47MV
CYP1B1

6,127,293,625,390,020,114,082,250,01SD

14,7912,2510,837,530,040,099,108,660,04MV
CYP1A1

200,69266,69202,96236,28186,58132,34179,0282,87148,27SD

919,93810,16883,55732,77432,31385,38659,40718,15396,76MV
Nrf2

30,0527,5311,0829,5538,4431,7327,9411,3029,24SD

144,02133,21125,47126,3199,0583,40110,37116,5093,05MV
ARNT

18,9715,8711,6114,0710,2111,3719,155,458,98SD

88,6688,2586,8378,5424,6825,8170,1073,5522,76MV
AhRR

9,428,8515,276,19197,87436,8923,5221,1928,84SD

78,4890,6672,6278,65159,14243,8858,3170,8575,48MV
AhR

10µM 
B[a]P+ 
10µM K

1µM 
B[a]P+ 
10µM K

10µM 
B[a]P+ 
10µM Q

1µM 
B[a]P+ 
10µM Q

10µM K10µM Q
10µM 
B[a]P

1µM 
B[a]P

DMSOIEC-6

6,245,053,458,959,663,3311,016,5612,08SD

63,3659,9154,3951,2457,3347,9963,0254,0461,52MV
AiP

65,1853,8126,4032,5939,6733,2167,6682,4956,17SD

258,64255,55197,33200,72135,82121,09199,70228,02139,69MV
GCS

31,9813,0963,6125,2327,0555,47125,8488,4122,37SD

476,70587,29480,62513,1156,2993,99359,00380,2146,47MV
CYP1B1

6,127,293,625,390,020,114,082,250,01SD

14,7912,2510,837,530,040,099,108,660,04MV
CYP1A1

200,69266,69202,96236,28186,58132,34179,0282,87148,27SD

919,93810,16883,55732,77432,31385,38659,40718,15396,76MV
Nrf2

30,0527,5311,0829,5538,4431,7327,9411,3029,24SD

144,02133,21125,47126,3199,0583,40110,37116,5093,05MV
ARNT

18,9715,8711,6114,0710,2111,3719,155,458,98SD

88,6688,2586,8378,5424,6825,8170,1073,5522,76MV
AhRR

9,428,8515,276,19197,87436,8923,5221,1928,84SD

78,4890,6672,6278,65159,14243,8858,3170,8575,48MV
AhR

10µM 
B[a]P+ 
10µM K

1µM 
B[a]P+ 
10µM K

10µM 
B[a]P+ 
10µM Q

1µM 
B[a]P+ 
10µM Q

10µM K10µM Q
10µM 
B[a]P

1µM 
B[a]P

DMSOIEC-6

Table 3.3. Relative transcript levels of the studied genes in IEC-6 cells related to the expression 

of GAPDH only (x1000). Note that the values are not normalized on the levels of control cells, i.e. 

they do not constitute induction factors such as in the figures shown before. Shown are mean values 

(MV) and standard deviations (SD). 
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Fig. 3.15. Western blot analysis of CYP1A1 and AhRR protein expression in IEC-6 cells. 

IEC-6 cells were treated for 48 hours with B[a]P, flavonoids or the combination of both. Each lane 

was loaded with 50 µg of the total protein lysate. CYP1A1 and AhRR protein as well as α-tubulin 

were analysed by means of immuno-blotting.  

 

As shown in fig. 3.15., faint bands of CYP1A1 protein were detected on western blots of 

treated IEC-6 cells. In comparison to the mRNA expression (see table 3.3.), DMSO-, 
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quercetin- and kaempferol-treated cells showed no detectable expression of the enzyme. Yet, 

B[a]P, B[a]P + Q and B[a]P + K-treated cells showed induction of this protein (fig 3.15.a). On 

the other hand, AhRR protein bands were detected in all samples. The inaccurate signals 

reached hardly the threshold of detection, making a semi-quantitative determination of the 

AhRR protein content difficult.  

 

3.2.6. Effect of B[a]P, quercetin and kaempferol on the enzymatic EROD activity in    

   IEC-6 cells 

 

According to the low CYP1A1 mRNA and protein expression, IEC-6 cells revealed marginal 

EROD activity (fig. 3.16. and table 3.4.), which was considerably lower than in CaCo-2 cells 

(table 3.4.). However, 7-ethoxyresorufin is a well known substrate for the CYP1 family 

additionally including CYP1B1 and CYP1A2. As shown in table 3.3., the amount of CYP1B1 

mRNA was appreciably higher than the amount of CYP1A1 mRNA in the IEC-6 cells. 

Noticeably, the amount of CYP1B1 protein (or an active form of this enzyme) was very low 

in comparison to its mRNA, as inferred by the marginal EROD activity present in these cells.  
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Fig. 3.16. Effect of quercetin or kaempferol on 

the B[a]P-induced CYP activity in IEC-6 cells. 

CYP activity after 48 hours incubation with 1 µM 

B[a]P, 10 µM of each flavonoids or in 

combination was detected by the EROD assay. 

The EROD activity is normalised to the DMSO-

induced activity. Results are expressed as mean 

values ± S.D. (n ≥ 3, P < 0.05.Unpaired Student’s 

t-test).  

IEC-6 DMSO 1µM B[a]P Q
1µM B[a]P+ 

10µM Q
K

1µM B[a]P+ 
10µM K

MV 0,079 0,060 0,187 0,552 0,352 0,151
SD 0,463 0,421 0,103 0,296 0,232 0,107

CaCo-2 DMSO 1µM B[a]P Q
1µM B[a]P+ 

10µM Q
K

1µM B[a]P+ 
10µM K

MV 0,580 6,372 6,139 6,036 0,553 3,491
SD 0,385 2,560 2,240 1,330 0,427 1,591  

Table. 3.4. EROD activity in IEC-6 cells compared to CaCo-2 cells. Activities are expressed as 

pmol resorufin/mg protein*min (mean values ± S.D). 
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3.2.7. Gene expression profiling of B[a]P and flavonoid treated IEC-6 cells by 

microarrays  

 

In addition to semi-quantitative TaqMan® Real time PCR analysis, we also analysed gene 

expression profiles in IEC-6 cells. Therefore, RNA of untreated and B[a]P-, quercetin and 

kaempferol treated IEC-6 cells was purified for microarray analysis. The analyses were 

performed by Laboratory for Genomics and Immunoregulation Program Unit Molecular 

Immune & Cell Biology LIMES (Life and Medical Sciences Bonn, University of Bonn) by 

using an Illumina-Chip (RatRef-12 Expression BeadChip) which provides insight into the 

RNA expression of 22,525 genes and offers hints of possible relevant signal pathways within 

the analysed cell line.  

 

The results show that the number of differentially expressed genes, defined by an 1.5-fold up- 

or down-regulation, differs largely between B[a]P and the flavonoids. Interestingly, much 

more genes are influenced in their expression by quercetin compared to B[a]P:  

 

 B[a]P (%) Q (%) 

differentially expressed genes 121 (0.54) 953 (4.23) 

up-regulated genes 85 (0.38) 546 (2.42) 

down-regulated genes 36 (0.16) 407 (1.81) 

Differentially expressed genes modulated by B[a]P and quercetin compared to that of  0.1% 

DMSO control. The gene expression differences were analysis by variance analysis-ANOVA, listed 

are differences which reached >1.5-fold-changes vs. control, adjusted p-value <0.05. 

 

The microarray show that CYP1A1 and CYP1B1 are among the first 5 strongest up-regulated 

genes by B[a]P-treatment of IEC-6 cells. Highest induction was found for Aldh3a1 which is 

also known to be regulated by the AhR but which was not further investigated here. Other 

regulated genes concern components of cell cycle regulation, transcriptional and translational 

control. These genes are not of direct concern for this work but the informations can be used 

for further studies on B[a]P and flavonoid effects in IEC-6 cells. In the discussion we mention 

a couple of analysed genes which could play a role in the modulatory regulation by B[a]P and 

flavonoids in this cell line. 
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3.3. Effects of B[a]P and flavonoids on HuTu-80 cells  
 

3.3.1. Cytotoxicity of B[a]P and flavonoids on the HuTu-80 cell line  

 

Although the HuTu-80 cell line derives from human duodenal carcinoma cells, it is rarely 

used as a model for studying physiological or pharmacological phenomena related to the 

small intestine. Consequently, there is a lack of pharmacological data regarding this cell line. 

Because of this, we had to gain some basic information on the cells. First, we determined non- 

cytotoxic concentrations of B[a]P and the flavonoids to be used for subsequent experiments. 

For this aim, we used the neutral red and BCA protein assays. 

 

Effect of B[a]P, quercetin and kaempferol on HuTu-80 cell viability and protein content 
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Similar to the results obtained with the other cell lines, the dose-response curve (fig. 3.17.a) 

evinced a slight but significant cytotoxic effect on the HuTu-80 cells elicited by B[a]P 

(viability sunk to 79.5±7.7 % and protein content to 75.5±15 % of the control after treatment 

with 0.3µM B[a]P). Cells exposed to 10 µM quercetin (Q) presented a clearly significant 
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Fig. 3.17. Cytotoxicity of B[a]P and flavonoids 

in the HuTu-80 cell line. Cells were incubated 

with varying concentrations of B[a]P (a), Q (b) 

and K (c) for 48h.  Results are expressed as 

percentage of control values ± S.D. (n ≥ 3, P < 

0.05. One sample Student’s t-test). Significance 

is marked with an asterisk (red asterisks for the 

neutral red assay, blue asterisks for the BCA 

protein assay). 
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decrease in the accumulation of the dye or in their protein content (75.7±13 and 74±20.5 % 

compared to the control, respectively). In contrast, 10 µM kaempferol (K) did not show a 

clear cytotoxic effect (viability of 98±13 % of the control) but a significant reduced protein 

content of 91±10 % of the DMSO control. After 48 hours exposure to 25 µM Q cell viability 

and protein content significantly sunk to 48 ±15 % and 27.5±11.5 % of the control, 

respectively. 25 µM K caused only a significant decrease on the protein content compared to 

0.1 % DMSO treated cells (63±15.5 %) and the viability was not clearly reduced (74±30.8 % 

of the control). Compared to the other tested cell lines, HuTu-80 cells also showed cytotoxic 

effects after exposure to 50 µM of any of the flavonols (viability 15.5±2.2 % and 16.6±5 %; 

protein content 1.2±2.6 % and 10.7±8.1 % of the control value, with either quercetin or 

kaempferol, respectively). 

With the combination 10 µM B[a]P + 10 µM Q or K, HuTu-80 cells showed no significant 

cytotoxic effects (cell viability 90.5±28.1 % and 100.2±8.3 %; protein content 95.4±41.1 % 

and 116±5.7 % of the control, respectively). An increase to 25 µM Q or K in the combination 

with 10 µM B[a]P, however, reduced the amount of living cells assessed by the NR assay to 

12.5±5 % (B[a]P+Q) and 11.8±2.7 % (B[a]P+K) compared to the 0.1 % DMSO control. In a 

similar way, the protein content sunk to1.6±1.2 % (B[a]P+Q) and 3±6 % (B[a]P+K) of the 

control (fig 3.18.a and b). Also, this combination was as toxic as the positive control (3 % 

H2O2 for 48 hours). 

Effect of B[a]P in combination with one of the flavonoids on the viability and protein content 
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Fig. 3.18. Cytotoxicity of B[a]P in combination with quercetin or kaempferol in HuTu-80 cells. 

Cells were incubated with varying concentrations of benzo[a]pyrene combined with quercetin (a) or 

kaempferol (b) for 48h. Afterwards, the neutral red accumulation and BCA protein staining were 

measured. Results are expressed as percentage of control values ± S.D. (n ≥ 3, P < 0.05; one sample 

Student’s t-test). Values significantly different from the control are marked with an asterisk (red 

asterisks for the neutral red assay, blue asterisks for the BCA protein assay). 
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In conclusion, HuTu-80 cells showed a similar cytotoxic response to the substances as CaCo-

2 and IEC-6. We were able to use B[a]P alone in a concentration up to 50 µM for 48 hours. 

The flavonoids alone could be used in a concentration of up to 25 µM. For the combination 

experiments only 10 µM B[a]P and 10 µM of the flavonols showed no cytotoxic effects.  

 

3.3.2. Time-dependent gene expression pattern in HuTu-80 cells 

 

We applied 10µM of each substance to study time-dependent effects on gene expression. 

After 4 hours of exposure, B[a]P trended to inhibit the expression of all detected genes which 

seemed to recover to the control level (0.1% DMSO) after 48 hours (fig. 3.19.a). 10 µM 

quercetin caused a time-dependent gene expression pattern (fig. 3.19.b). The expression of all 

genes at the 4 hours time-point showed a clear reduction and was increased at the later time-

points. Nevertheless, CYP1A1 transcript seemed to be increased at the 4 hours measurement 

but recovered to the control level at the 48 hours time-point. In contrast, kaempferol caused a 

time-dependent decrease on AhRR, Nrf2, CYP1A1 and AiP transcripts. The amount of 

ARNT, CYP1B1 and GCS transcripts were increased by this flavonol at the 48 hours time-

point. Only the expression of AhR was clearly induced at all time-points (fig. 3.19.c). 

 

To retain comparability of all the experiments with the different cell lines, we decided to use 

48 hours incubation with the substances in HuTu-80 cells, too. 

 

Time dependent alterations in gene expression pattern in HuTu-80 cells  

in response to B[a]P and flavonoids 
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Fig. 3.19. Time dependent gene expression 

pattern after 48 hours incubation of B[a]P 

(a), quercetin (b) and kaempferol (c). 

HuTu-80 cells were treated with 10 µM of the 

indicated substances for 4, 24 and 48 hours. 

The mRNA of the members of the AhR- and 

Nrf2-pathways was determined by real-time 

TaqMan® PCR. The amount of transcripts 

was related to GAPDH mRNA and 

normalised to those of the DMSO treated 

control cells (set to 1). For the analysis the 2-

ΔΔCt method was used (n = 1). 

 

3.3.3. Assessing effective concentrations of B[a]P, quercetin and kaempferol for studies 

with HuTu-80 cells 

 

As shown in fig. 3.20.a, B[a]P did not reveal any clear effect on gene expression in the HuTu-

80 cells after 48 hours incubation with all concentrations tested. The very low expression 

level of all the genes in this cell line (see table 3.5.) and the high variation in the results 

aggravates a statistical analysis. Also the responses of the cells to B[a]P exposure are rather 

low. Only the expression of CYP1B1 trended to be slightly induced by B[a]P while the 

amount of AhRR mRNA seemed to be reduced. Even higher concentrations of B[a]P (fig. 

3.20.b) did not show a clear effect on the gene transcription. 

 

HuTu-80 cells treated with 5 or 10 µM quercetin trended to increase the expression of almost 

all genes (~2-fold of the DMSO control). With the exception of CYP1B1 which was not 

affected (fig 3.20.c). 25 µM quercetin caused a induction on the gene expression compared to 

the transcription in B[a]P-treated cells, although the amount of the CYP1A1 and CYP1B1 

mRNA in this experiment was reduced. Maximal induction of AhR, AhRR, ARNT and GCS 

by kaempferol was achieved at concentrations of 5 or 10 µM (~2-fold of the control level, fig. 

3.20.e and f). An effect on the expression of the CYPs was not clearly observed by this 

flavonol. 
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Assessing effective concentrations of B[a]P, quercetin and kaempferol for HuTu-80 cells 

AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
al

si
ed

 g
en

e 
ex

p
re

ss
io

n
(r

el
at

ed
 t

o
 G

A
P

D
H

)

0,0

0,5

1,0

1,5

2,0

2,5

0,01µM  
0,03µM 
0,1µM  
0,3µM 
1µM 
3µM 
10µM 

a

* *
*

AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
al

si
ed

 g
en

e 
ex

p
re

ss
io

n
(r

el
at

ed
 t

o
 G

A
P

D
H

)

0,0

0,5

1,0

1,5

2,0

2,5

0,01µM  
0,03µM 
0,1µM  
0,3µM 
1µM 
3µM 
10µM 

a

* *
*

 
AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
al

is
ed

 g
en

e
 e

xp
re

ss
io

n
(r

e
la

te
d

 t
o

 G
A

P
D

H
 x

10
00

)

0,0

0,5

1,0

1,5

2,0

2,5

3,0
10µM  
25µM 
50µM 

b

AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
al

is
ed

 g
en

e
 e

xp
re

ss
io

n
(r

e
la

te
d

 t
o

 G
A

P
D

H
 x

10
00

)

0,0

0,5

1,0

1,5

2,0

2,5

3,0
10µM  
25µM 
50µM 

b

 

AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
a

lis
e

d
 g

en
e 

ex
p

re
ss

io
n

(r
el

at
ed

 t
o

 G
A

P
D

H
)

0

1

2

3

4

5

6

0,5µM 
2µM 
5µM 
10µM 

c

AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
a

lis
e

d
 g

en
e 

ex
p

re
ss

io
n

(r
el

at
ed

 t
o

 G
A

P
D

H
)

0

1

2

3

4

5

6

0,5µM 
2µM 
5µM 
10µM 

c

 
AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
a

lis
ed

 g
en

e 
ex

p
re

ss
io

n
(r

e
la

te
d

 t
o

 G
A

P
D

H
)

0

1

2

3

4

5

10µM  
25µM 

d

AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
a

lis
ed

 g
en

e 
ex

p
re

ss
io

n
(r

e
la

te
d

 t
o

 G
A

P
D

H
)

0

1

2

3

4

5

10µM  
25µM 

d

 

AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
al

is
ed

 g
en

e 
ex

p
re

ss
io

n
(r

el
at

ed
 t

o
 G

A
P

D
H

)

0,0

0,5

1,0

1,5

2,0

2,5
0,5µM 
2µM 
5µM 
10µM 

e

AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
al

is
ed

 g
en

e 
ex

p
re

ss
io

n
(r

el
at

ed
 t

o
 G

A
P

D
H

)

0,0

0,5

1,0

1,5

2,0

2,5
0,5µM 
2µM 
5µM 
10µM 

e

AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
al

is
ed

 g
en

e 
ex

p
re

ss
io

n
(r

el
at

e
d

 t
o

 G
A

P
D

H
)

0,0

0,5

1,0

1,5

2,0

2,5
10µM 
25µM  

f

AhR

AhRR

ARNT
Nrf2

CYP1A
1

CYP1B
1

GCS

n
o

rm
al

is
ed

 g
en

e 
ex

p
re

ss
io

n
(r

el
at

e
d

 t
o

 G
A

P
D

H
)

0,0

0,5

1,0

1,5

2,0

2,5
10µM 
25µM  

f

 

Fig. 3.20. Effect of B[a]P, quercetin or kaempferol on the gene expression pattern in HuTu-80 

cells. Relative gene expression in HuTu-80 cells after incubation with different concentrations of 

B[a]P (a, b), quercetin (c, d) or kaempferol (e, f). Gene expression of members of both pathways was 

measured by real-time TaqMan® PCR. The gene expression was normalised to that of DMSO treated 

controll cells (set to 1) and the relative fluorescence was related to that achieved with the house-

keeping gene GAPDH. The 2-ΔΔCt method was used for the analysis (n = 1. Columns with error bars: n 

≥ 2; one sample Student’s t-test). 
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Table 3.5. Relative values of gene expression data related to the expression of GAPDH (x1000). 

Note that the values are not normalized on the levels of control cells, i.e. they do not constitute 

induction factors such as in the figures shown before. Shown are mean values (MV) and standard 

deviations (SD). 

 

With the exception of ARNT, Nrf2 and GCS genes, the very low gene expression level of the 

members of the AhR- and Nrf2-pathway prohibited us to draw any clear conclusions about 

the effects of B[a]P, quercetin and kaempferol in the HuTu-80 cells. Anyhow, B[a]P showed 

no clear effect on the gene expression of AhR and Nrf2 pathway members. On the other hand, 

quercetin and kaempferol seemed to induce slightly the expression of ARNT and GCS 

mRNA. Quercetin also increased the amount of Nrf2 transcript in the HuTu-80 cell line. 

 

3.3.4. Influence of quercetin and kaempferol on the B[a]P-induced gene expression 

 

Since HuTu-80 cells showed a very low expression of the genes of the AhR and Nrf2 

pathways, we tested the cells only once with combinations of B[a]P and each flavonol only in 

order to check whether the cells respond to the combination by possible synergistic effects. 

All measurements concerning B[a]P or flavonoid-dependent effects on gene expression are 

summarised in the figures 3.21. and 3.22. 

 

As already shown, B[a]P did not modify clearly the expression of any gene of both pathways. 

Quercetin alone significantly induced the amount of Nrf2 and GCS transcripts, while this 
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flavonol trended to increase the expression of ARNT and AhR. In addition, kaempferol 

trended to induce the expression of AhR, ARNT, CYP1A1 and GCS mRNA (fig. 3.21.a and 

fig. 3.22.). In the combination experiment, we could observe a tendency of inhibition of both 

flavonoids on the ARNT transcript. However, the expression of Nrf2 showed stimulation by 

kaempferol or to reach a similar induction as in the quercetin-treated cells. 

 

Influence of quercetin and kaempferol on the B[a]P-induced gene expression 
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Fig. 3.21. Effect of quercetin and kaempferol on the B[a]P-induced gene expression. 

Relative gene expression in HuTu-80 cells after incubation with 1 or 10µM B[a]P, 10µM of each 

flavonoids or a combination of B[a]P plus either flavonoid. Gene expression was measured by 

TaqMan® PCR. Expression levels were related to that of the house-keeping gene GAPDH and 

normalised to that of DMSO treated control cells. The 2-ΔΔCt method was used for the analysis. Results 

are expressed as means ± S.D. (n ≥ 3, P < 0.05 single substances experiments; columns without error 

bars: n = 1). Values significantly different from the control are marked with an asterisk (one sample 

Student’s t-test).  
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Scatter plot of the normalised gene expression of AhR, Nrf2, GCS and CYP1A1 
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Fig. 3.22. Scatter plot diagram of AhR, Nrf2, GCS and CYP1A1 expression influenced by 

B[a]P, quercetin and kaempferol in HuTu-80 cells. Each point represents the mean value of at least 

three normalised measurements of at least four experiments.  

 

 

Influence of quercetin and kaempferol on the B[a]P-induced protein expression 
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Fig. 3.23. Western blot analysis of CYP1A1 protein expression in the HuTu-80 cell line. HuTu-

80 cells were treated for 48 hours with B[a]P, flavonoids or the combination of both. Each lane was 

loaded with 50 µg of the total protein lysate. CYP1A1 protein as well as α-tubulin were analysed by 

means of immuno-blotting. 
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In line with the very low transcript level, we could not detect any CYP1A1 protein by means 

of western blots analysis (fig. 3.23.) as well as any EROD activity.  

3.4. Comparison between duodenum and colon derived cell lines 
 

3.4.1. Differences in the AhR-/ Nrf2-pathway ratio between duodenal and colon derived 

tested cell lines 

 

To detect a possible difference in the mechanism of the metabolic response in the tested cell 

lines, we calculated the ratio of the mRNA levels of the receptors Nrf2 and AhR and of their 

specific target genes GCS, CYP1A1 and CYP1B1. 

  

As table 3.6. shows, the ratio Nrf2/AhR in CaCo-2 cells was unaffected by the tested 

substances, with higher amounts of AhR mRNA compared to Nrf2 mRNA. Interestingly, both 

duodenal cell lines, IEC-6 and HuTu-80, showed a higher constitutive level of Nrf2 than of 

AhR mRNA in comparison to CaCo-2 cells. While in HuTu-80 cells 10 µMB[a]P induced a 

shift in favour of the Nrf2 transcript as a result of a significant induction on the transcription 

of this gene (Nrf2/AhR ratio 17.5; see fig. 3.24.a and 3.21.b), in IEC-6 cells this shift was due 

to the significant inhibition on the transcription of AhR mRNA (Nrf2/AhR ratio 11.3 see 

fig.3.24.a and 3.14.a). Although the flavonoids increased the amount of AhR mRNA in both 

duodenal cell lines, yet the level of Nrf2 transcript was higher. In HuTu-80 cells, quercetin 

alone increased the transcription of AhR, decreasing the Nrf2/AhR ratio to 7.2, whilst when 

combined with 10 µM B[a]P this ratio seemed to revert to 9.5, perhaps due to a partially 

agonist effect of the flavonoid. However, B[a]P + Q did not modify the Nrf2/AhR ratio in 

IEC-6 cells compared to B[a]P alone. In both duodenal cell lines, kaempferol increased the 

AhR transcript, whilst B[a]P plus kaempferol did not show any clear partial agonist effect 

(fig. 3.24.b). Thus, the Nrf2-pathway seems to play a more important role in the duodenal 

cells compared to the colon derived cell line. 

 

3.4.2. Difference in the GCS/CYP ratio between duodenal and colon derived tested cell 

lines 

 

In CaCo-2 cells, we observed a notably lower GCS/CYP1A1 ratio in comparison to the 

duodenal derived cell lines (20.7 for CaCo-2, compared to 132.7 and 3885.5 for HuTu-80 and 

IEC-6 cells, respectively). The expression of CYPs was strongly increased by either B[a]P, 
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quercetin and the combination of B[a]P plus each of both flavonoids. Kaempferol alone did 

not increase the level of CYPs mRNA. 

 

3.4.3. Difference in the expression of CYP1A1 and CYP1B1 between duodenal and 

colon derived tested cell lines 

 

It is possible that CYP1A1 plays a more important role in CaCo-2 cells than CYP1B1 does. 

For example, the GCS/CYP1A1 ratio drops from 20.7 (with DMSO) to 0.3 (with 10 µM 

B[a]P; i. e. a factor of 69), whilst the GCS/CYP1B1 ratio sunk from 114.4 (with DMSO) to 

4.1 (with 10 µM B[a]P; i.e. a factor of 28; fig. 3.24.c and d). IEC-6 and HuTu-80 cells 

showed a clear increase of CYP mRNAs induced by B[a]P or in combination with each 

flavonoid.  

 

34,2024,6159,9741,3346,11172,7129,7927,9841,59HuTu-80

0,540,442,410,410,391,290,560,603,01IEC-6

4,2213,7757,014,685,8810,574,1412,09114,36CaCo-2

GCS/CYP1B1

165,0870,33223,61130,33178,901176,8793,96108,13132,70HuTu-80

17,4920,863732,5818,2126,671378,1921,9426,333885,48IEC-6

0,330,5618,810,240,220,320,310,5920,67CaCo-2

GCS/CYP1A1

15,5218,588,749,5112,827,2417,4914,8013,11HuTu-80

11,728,942,7212,179,321,5811,3110,145,26IEC-6

0,180,210,170,200,220,180,190,210,22CaCo-2

Nrf2/AhR

10µM 
B[a]P+ 
10µM K

1µM 
B[a]P+ 
10µM K

10µM K
10µM 

B[a]P+ 
10µM Q

1µM 
B[a]P+ 
10µM Q

10µM Q
10µM 
B[a]P

1µM 
B[a]P

DMSO

34,2024,6159,9741,3346,11172,7129,7927,9841,59HuTu-80

0,540,442,410,410,391,290,560,603,01IEC-6

4,2213,7757,014,685,8810,574,1412,09114,36CaCo-2

GCS/CYP1B1

165,0870,33223,61130,33178,901176,8793,96108,13132,70HuTu-80

17,4920,863732,5818,2126,671378,1921,9426,333885,48IEC-6

0,330,5618,810,240,220,320,310,5920,67CaCo-2

GCS/CYP1A1

15,5218,588,749,5112,827,2417,4914,8013,11HuTu-80

11,728,942,7212,179,321,5811,3110,145,26IEC-6

0,180,210,170,200,220,180,190,210,22CaCo-2

Nrf2/AhR

10µM 
B[a]P+ 
10µM K

1µM 
B[a]P+ 
10µM K

10µM K
10µM 

B[a]P+ 
10µM Q

1µM 
B[a]P+ 
10µM Q

10µM Q
10µM 
B[a]P

1µM 
B[a]P

DMSO

Table 3.6. Transcription factor and target gene expression ratios in the different cell lines. 

 

Gene expression ratio after 48 hours in CaCo-2, IEC-6 and HuTu-80 cell line 
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GCS/CYP1A1 ratio
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Fig. 3.24. Gene expression ratio in CaCo-2, 

IEC-6 and HuTu-80 cells.  Expression values of 

transcription factors and of their target genes 

related to GAPDH were used (not normalized to 

control cells).  

 

Noticeably, CYP1B1 was the dominant transcript compared to CYP1A1 in both duodenal cell 

lines (CYP1B1 = 0.1 and CYP1A1 = 0.03 in HuTu-80 cells; CYP1B1 = 46.5 and CYP1A1 = 

0.04 in IEC-6 cells). IEC-6 cells exhibit a very strong increase in the expression of CYP1B1 

by the substances (e.g. GCS/CYP1B1 ratio sunk from 3 in DMSO treated control cells to 0.6 

in cells treated with 10 µM B[a]P). However, CYP1B1 mRNA did not seem to be translated 

to result in an equal protein level (fig. 3.24.e and f). On the other hand, GCS is a target gene 

of the transcription factor Nrf2 and is not affected by AhR (Kampkötter A., personal 
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communication). Interestingly, the duodenal derived cell lines showed a constitutive higher 

amount of GCS mRNA (see above). 

 

3.5. Effect of ethoxyquin and tert.-butylhydroquinone on the gene expression in IEC-6, 

CaCo-2 and HuTu-80 cell lines 

 

To appreciate the modulatory activity of the flavonols on the B[a]P-induced affects we tried 

to distinguish the gene expression pattern in both cell lines using the selective Nrf2 activator 

ethoxyquin (EQ) and the AhR/Nrf2 activator tert-butylhydroquinone (tBHQ) as described by 

C. Köhle et al. 2006 and W. Miao et al. 2004. We incubated both cell lines for 48 hours with 

2.5 and 12.5 µM EQ as well with 2 and 10 µM tBHQ (W. Miao et al. 2004). Afterwards, we 

determined the mRNA levels of the examined genes by real time-RT-PCR. 
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Fig. 3.25. Effect of ethoxyquin (EQ) and tert.- 

butylhydroquinone (tBHQ) on the gene 

expression pattern in IEC-6, HuTu-80 and 

CaCo-2 cells. Gene expression of AhR- and 

Nrf2-pathway members was measured by 

TaqMan® PCR. The amount of transcripts was 

related to GAPDH and normalised to DMSO 

(DMSO =1). The 2-ΔΔCt method was used for the 

analysis. Results are expressed as means ± S.D. 

(n ≥ 1) Each column represents the mean value 

of at least two normalised measurements. 
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In IEC-6 cells, EQ induced clearly the expression of AhRR and CYP1B1 in a concentration-

dependent manner. Likewise, the transcripts of GCS, ARNT and Nrf2 were slightly increased. 

In HuTu-80 cells, this antioxidant trended to decrease the expression of Nrf2, GCS and 

CYP1B1. In the CaCo-2 cell line, the CYP1A1 transcript was strongly increased in a 

concentration-dependent manner by ethoxyquin, whilst Nrf2, GCS and CYP1B1 only trended 

to be enhanced. Comparatively, the AhR/Nrf2 activator tert.-butylhydroquinone trended to 

increase the expression CYP1B1 in the duodenal cell lines and CYP1A1 in CaCo-2 cells. In 

HuTu-80 cells, tBHQ trended to reduce also the AhR transcript, however, the other genes of 

the pathway seemed to be unaffected by this antioxidant in the three cell lines. 
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4. Discussion 
 

Colorectal carcinomas are the third most common form of cancer and the second leading 

cause of cancer-related death in the Western world with 655,000 deaths worldwide per year; 

www.who.int/mediacentre/factsheets/fs297/en/). In comparison, there were only 2,750 cases 

of duodenal carcinoma reported to the National Cancer Database from 1985 to 1995. It is 

postulated that a major cause for these malignancies is a diet rich in fat, refined carbohydrates 

and animal protein, combined with low physical activity. Genetic susceptibility appears to be 

involved in less than five per cent of cases. The WHO World Cancer Report (2003) provides 

clear evidence that action on smoking, diet and infections can prevent one third of cancers and 

another third could be cured. 

 

Plant secondary metabolites like flavonoids have biological activity that may be beneficial to 

health. For instance, these polyphenolic compounds scavenge free oxidative radicals and pose 

antioxidant, anti-thrombotic and anti-carcinogenic activities. The small intestine, as the first 

site of exposure to xenobiotics, is an important site of metabolism of flavonoids. 

4.1. The role of the AhR- and Nrf2-pathways in duodenum 

 

The aryl hydrocarbon receptor (AhR) pathway plays an important role in developmental, 

physiological and detoxification functions. Phase-I enzymes like CYP-1A1, -1A2 and -1B1 

are target genes of the AhR receptor pathway. The transcription factor NF-E2-related factor-2 

(Nrf2) is known as to be very effective in protecting the cell against oxidative/electrophile 

stress. Its target genes are phase II enzymes like NQO1 (NADPH dehydrogenase quinone-1), 

GST (gluthation-S-transferase) and UGT (UDP-glucuronosyltransferase). These two 

pathways are functionally connected. W. Miao et al. (2005) demonstrated that Nrf2 gene 

transcription is directly modulated by AhR activation. In the gastrointestinal tract AhR–Nrf2 

interaction may facilitate detoxification by efficiently coupling Phase I and II xenobiotic-

metabolising enzymes (C. Köhle et al., 2006; B. Ebert et al., 2006).  

 

In duodenal epithelial cells dietary assimilated PAH (polycyclic aromatic hydrocarbons; e.g. 

benzo[a]pyrene; B[a]P) activates the AhR-pathway and causes an increase in the expression 

of CYP1A1 and CYP1B1 (P.H. Roos et al., 2002;  A. Quaroni et al., 1981). CYP1A1 is 

known to metabolise B[a]P to a reactive epoxid which induces cancer by forming DNA 

adducts. Animal studies have shown that dietary intake of B[a]P causes increased incidence of 
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tumours at several sites, particularly in the gastrointestinal tract (A.J. Triolo et al., 1977). A 

fast detoxification of reactive metabolites by phase II enzymes is important to avoid DNA-

adduct formation and subsequent cancer development. The coupled AhR and Nrf2 gene 

batteries could play an important role in the duodenum and it could be the reason for the 

lower cancer risk in this intestinal region.  

 

Dietary phytochemicals like the flavonoids quercetin and kaempferol have a positive 

influence on the detoxification of carcinogens and provide protection against chemical 

carcinogenesis (Y. Moon et al., 2005; R. Cermak et al., 2006; M. Murray et al., 2006). 

Flavonoids are mostly present as glycosides in which one or more carbohydrate groups are 

bound to phenolic groups by glycosidic linkage (K. Murota et al., 2003). Even though 

glycosylated flavonoids could be absorbed in the small intestine, the deglycosylated fraction 

is absorbed more efficiently in the duodenum after de-conjugation by β-glucuronidase (A.J. 

Day et al., 1998; K. Murota et al., 2002). Once in cytosol, the flavonoids interact with 

transcription factors like AhR and Nrf2, among others.  

 

4.2. Duodenal cell line models 

 

First, the molecular background and the limitations of duodenal cell line models will be 

discussed. In our experiments we showed a high expression of CYP1A1 in CaCo-2 cells. 

Both, CYP-1A2 and -1B1 were constitutively expressed and further induced by B[a]P and 

quercetin. CYP1A1 protein was clearly detected by immunoblots and we observed a B[a]P- 

and quercetin-induced CYP activity by means of the EROD assay. Thus, CaCo-2 cells proved 

to be a suitable tool to characterise the modulatory effects of B[a]P, quercetin and kaempferol 

on the AhR-dependent gene and protein expression. However, these cells differed in their 

gene and protein expression profile from duodenal cells.  

 

CaCo-2 monolayers are often used as a human model for intestinal absorption and 

metabolism. This human colon derived cell line morphologically resembles small-intestinal 

cells because they also present typical small-intestine micro-villous hydrolases and nutrient 

transporters in culture for longer periods (H.P. Hauri et al., 1985; M. Rousset et al., 1989; S. 

Howell et al., 1992). However, the limitations of the CaCo-2 cell model have been already 

demonstrated in several publications. For example, there are significant differences in gene 

expression patterns of phase I and II enzymes between CaCo-2 cells and human duodenal 
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enterocytes (D. Sun et al., 2002). Additionally, N. Petri et al. (2003) showed that CaCo-2 cells 

had a significantly lower LPH (lactase-phlorizin hydrolase) activity compared to that of the 

human small intestine. Another difference is the expression of CYP3A4, which is the 

predominant isoform in the small intestine (Q. Zang et al., 1999; M.F. Paine et al., 1997; D. 

Sun et al., 2002; M.F. Paine et al., 2006), whilst in CaCo-2 cells the expression of this enzyme 

is by far lower (A. Lampen et al., 1998 and D. Sun et al., 2002). RT-PCR of human duodenal 

enterocytes revealed the expression of CYP1-A1, -1B1, -2C, -2D6, -2E1, -3A4, and -3A5 

mRNAs. Comparatively, CYP-1A2, -2A6, -2A7, -2B6, -2F1, -3A7, and -4B1 mRNAs were 

not detected. Interestingly, when probed by immunoblots, only CYP3A4 and -2C proteins 

were detected whilst CYP-1B1, -2E1, -2D6, and -3A5 proteins were not (L.S. Kaminsky et 

al., 2003; X. Ding et al., 2003). CYP1A1 protein or catalytic activity was undetectable or very 

low (K.F. Windmill et al., 1997; K.S. Lown et al., 1997; P.G. Pearson and L.W. Wienkers, 

2008), and its expression was probably inducible rather than constitutive (J. Buchthal et al., 

1995; M.F. Paine et al., 1999).  

 

We also showed that duodenal HuTu-80 cells constitutively expressed CYP-1B1 and -1A1 

mRNA and that B[a]P and quercetin did not increase their expression. Compared to CaCo-2 

cell line, HuTu-80 cells exhibited very low levels of CYP1A1 transcripts, so that CYP1A1 

protein could not be detected even in B[a]P-treated cells. Correspondingly, we could not 

detect any EROD activity in this human duodenal cell line, which is another difference when 

compared to the human duodenum in vivo. In line with our results, A. Lampen et al. in 1998 

demonstrated that human HuTu-80 and rat IEC-6 duodenum derived cell lines show neither 

CYP-1A1, -1A2 and -1B1 enzymatic activity nor gene or protein expression. 

 

Our results show that in contrast to the HuTu-80 cells IEC-6 cells constitutively expressed 

CYP-1B1 and -1A1 mRNA and that B[a]P and quercetin increased their expression. L.S. 

Kaminsiky et al. (2003) described that CYP1A1 is not constitutively expressed in vivo in the 

rat small intestine, but is the most prominent inducible CYP isoform. Also, treatment of rats 

with phenobarbital/naphtoflavon induced CYP-dependent EROD activity in the rat duodenum 

(N. Hernández-Martínez et al., 2007). Also, P.H. Roos et al. (2002 and 2004) demonstrated 

that PAH induced the expression of CYP1A1 in rat and minipig duodenal cells. In our 

experiments, the duodenal rat cell line showed a slight CYP1A1 protein expression but no 

CYP activity. In contrast to the in vivo situation, CYP1B1 and not CYP1A1 seemed to be the 
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predominant CYP isoform in this cell line (L.S. Kaminski et al., 2003; D. Mitschke et al., 

2008).  

4.3. Cytotoxicity of B[a]P, quercetin and kaempferol on the intestinal cell line 

 

Benzo[a]pyrene is a well known AhR ligand and the susceptibility to B[a]P mediated CYP 

induction varies strongly in different cell lines. On the other hand, it is already known that the 

passage number of cell lines is an important factor which affects the cell response to diverse 

substances (D.W. Hamilton et al., 2005; B. Ebert et al., 2007). As a human intestine model, 

CaCo-2 cells are often used for studying the effect of compounds present in the diet such as 

xenobiotics like TCDD (2,3,7,8-tetrachlordibenzodioxin) and phytochemicals like quercetin 

and kaempferol. For our experiments we used CaCo-2 cells at passages from 39 to 48 and 

HuTu-80 cells at passages 31 to 38. Unfortunately, the provider was not able to give us 

information about the number of passages of the IEC-6 cells, as also stated by a number of 

other authors (G. Agullo et al., 1994; S. Kuo et al., 1996; C. Pohl et al., 2006). 

 

By means of the accumulation of the neutral red dye we did not observe any cytotoxic effect 

of 50 µM B[a]P after 48h incubation in CaCo-2 cells. Consistent with our results, N. Sugihara 

et al. (2007) did not observe a cytotoxic effect in these same cells after 72h incubation with 

50 µM B[a]P as judged by the MTT method. Comparatively, in RTL-W1 cells (fish liver cell 

line) K. Schirmer et al. (2000) showed a small but significant decline in cell viability after 48h 

exposure to 10 µM B[a]P, whilst B.D. Jeffy et al. (2000) showed that 1 µM B[a]P was 

cytotoxic in MCF-7 cells after 72h incubation.  

 

To our knowledge, IEC-6 and HuTu-80 cell lines have not been tested for cell survival after 

incubation with B[a]P. As described for CaCo-2 cells, B[a]P exerted no cytotoxic effect after 

48h incubation. 

 

Flavonoids are the most abundant phytochemicals in our diet. Among these, quercetin and 

kaempferol are often used for studying the effects of flavonols on different pathways and cell 

mechanisms. Cytotoxic effects of these substances have been analysed. The use of different 

cell lines and different methods renders it difficult to select a non-cytotoxic concentration of 

them for our the own investigations (e.g. Q. Zang et al., 2009; V. Soares et al., 2006; E.H. 

Rodgers et al., 1998; L. Valerio J., 2001).  
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In CaCo-2 cells we observed a strong cytotoxic effect of quercetin and kaempferol (25 μM) 

after 48h incubation. Also, C. Pohl et al. (2006) and S. Kuo et al. (1996) observed a 

significant cytotoxic effect of 50 µM quercetin (IC50 = 45 µM) after 48h of exposure. 

Accordingly, G. Agullo et al. (1994) showed that 15 µM quercetin caused a rapid decrease in 

lactate release and a fall in the cellular ATP concentration after 48 hours exposure. 

Comparatively, M.J. Van Erk et al. (2005) did not see cytotoxic effects of quercetin (5-

50 µM) after 48h incubation in these same cells, as judged by trypan blue accumulation. 

 

HuTu-80 cell line is rarely used for toxicological studies in particular as a model for studying 

the AhR- or Nrf2-pathway, so that only limited data on cytotoxicity are available. For 

instance, M.L. Ackland et al. (2005; the only paper we found regarding this cell line and 

cytotoxicity) described that after 72 hours treatment with 5 µM quercetin or 10 µM 

kaempferol the HuTu-80 cell proliferation was significantly reduced, with a stronger effect 

exerted by quercetin than by kaempferol. Accordingly, we showed that quercetin caused a 

concentration-dependent reduction on cell survival after 48 hours incubation. Additionally, 

50 µM kaempferol strongly reduced the cell viability after 48 hour treatment, too, although 

this effect was not as strong as with quercetin. Interestingly, the cytotoxicity on CaCo-2, IEC-

6 and HuTu-80 cells showed a similar susceptibility to B[a]P, quercetin and kaempferol. In 

regard to IEC-6 cells, we showed that after 48 hours of exposure to 50 µM kaempferol almost 

90 % of the cells died. A similar effect was observed by S. Kuo et al. (1996). It is important to 

note that in the Salmonella typhimurium test quercetin is genotoxic and that kaempferol is 

hydroxylated to quercetin by CYP1. That means that non-toxic flavonoids which are 

metabolised by CYPs could exhibit cytotoxicity at a later time point (R. Arroo et al., 2009). 

 

In our experiments, the combination 10 µM B[a]P plus 25 µM of each flavonol showed the 

strongest cytotoxicity effect on the treated cells. In sharp contrast to our results, K. Hyun-Jung 

et al. (2000) observed in HepG2 cells (human hepatocellular carcinoma) that 51.7 µM 

quercetin and 42.7 µM kaempferol reduced the toxicity induced by B[a]P. However, it must 

be noted that these authors pre-incubated the cells with varying concentrations of flavonoids 

for 18 h. The cells were then incubated for another 72 h with either flavonoids and 4 µM 

B[a]P. It must also be pointed out that HepG2 cells seem to be susceptible to B[a]P. For 

instance, S.Y. Park et al. (2006) showed that after 24 hours even very low concentrations of 

this PAH (≤1 µM) caused strong cytotoxicity. Interestingly, compared to the cells we used, 

flavonoids like quercetin exert a lower cytotoxic effect in the human hepatocellular cell line 
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(C.A. Musonda et al., 1998). On the other hand, the pre-incubation time with the flavonols in 

the experiments of K. Hyun-Jung was substantially longer and the chosen B[a]P concentration 

was lower than ours. Furthermore, J. Kinjo et al. (2006) showed that HepG2 cells were 

protected against the cytotoxicity exerted by tert.-butyl hydroperoxide (3h exposure) when the 

cells were pre-incubated for 1 hour with 35 µM quercetin or 72 µM kaempferol (EC50 values). 

These results emphasised that there are obvious tissue-specific differences in the cytotoxicity 

of flavonoids which are probably due to the particular molecular machinery handling the 

compounds in these cells. Therefore, the incubation conditions and analytical methods used to 

measure cytotoxicity have to be critical compared. 

 

4.4. Kinetics of effects elicited by B[a]P, quercetin and kaempferol: Definition of 

suitable time points for our studies 

 

We selected 4, 24 and 48 hours incubation time points for setting an effective concentration of 

B[a]P, quercetin and kaempferol in order to get an idea of the time-dependent effect of the 

individual compounds on the gene expression of the members of the AhR/Nrf2 pathway in the 

tested cell lines. We showed, for instance, that 10 µM B[a]P clearly induced the expression of 

CYP transcripts in CaCo-2 and IEC-6 cells after 4 hour exposure (fig. 3.4. and 3.13). A 

similar effect was observed by T. Walle et al. (2007) on CYP1A1 gen-expression in HepG2 

after 6 hours incubation with 1 µM B[a]P. As already noted, the expression of most of the 

genes modulated by the AhR- or Nrf2-pathway are expressed at very low levels by HuTu-80 

cells, which required more time (48h) for showing any effect exerted by the flavonoids and 

the carcinogen. For instance, only higher concentrations of B[a]P tended to induce CYP1B1 

and AhR expression in these cells. 

 

Quercetin (10 µM) clearly increased the expression of AhRR and CYP1A2 genes after 48 

hours in CaCo-2 cells. Comparatively, H.P. Ciolino et al. (1999) observed a rapid increase in 

CYP1A1 transcript after 12h of treatment with 0.5 µM quercetin in MCF-7. Kaempferol 

rapidly (4h incubation) induced the expression of CYP in our experiments, reaching the 

strongest signal after 48 hours. Also the human duodenal cell line exhibited a maximal effect 

of both flavonoids after 48 hours incubation. IEC-6 treated cells showed induction of AhRR, 

CYP1A1 and AiP gene expression after 4 hours incubation whilst kaempferol induced the 

expression of several genes at its highest after 24h incubation.  
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In several studies it has been shown that PAH and flavonoids modulate either the mRNA, the 

protein level or the activity of cytochromes P450 (or all of these parameters), especially of 

CYP1A1. So far, these effects were observed in different cell lines (H.P. Ciolino et al., 1999; 

T. Walle et al., 2006; S. Plöttner et al., 2008), or at different time-points or the cells were 

incubated with different AhR-agonists or phytochemicals (C. Bonnesen et al., 2001; M.F. 

Yueh et al., 2002; C. Pohl et al., 2006). Because of this heterogeneity in method designs, it 

proved to be difficult to compare our results with other studies. We decided to stimulate both 

cell lines for 48 hours with B[a]P or flavonoids (10 µM each) since this concentration did 

exert a clear effect on the gene expression and higher concentrations of any of these 

substances did not show additional effects. This allowed us to compare the modulatory effects 

of the flavonols on both cell lines and, on the other hand, the 48 hours incubation allowed us 

to detect a clear protein expression of CYPs and a possible corresponding EROD activity as 

described by H.P. Ciolino et al. (1999), Y. Sakai et al. (2006) and S. Plöttner et al. (2008).  

 

4.5. Modulatory effect of quercetin and kaempferol on the B[a]P-induced effects 

 

Interestingly, in CaCo-2 and IEC-6 cells quercetin and kaempferol induced different 

mechanisms to modulate the B[a]P-induced gene expression. Attention should be paid to the 

fundamental varieties of the two cell lines derived from different tissues. For instance, B[a]P-

induced a time-dependent reduction of AhRR expression in CaCo-2 (fig. 3.4.a) and a time-

dependent induction in IEC-6 cells (fig. 3.12.a).  

 

Our results proved that in CaCo-2 cells B[a]P activates the AhR and induced the expression 

of CYP as target genes. Since CYP1A1 transcription is induced after 48 hours we could also 

detect CYP1A1 active protein which is able to metabolise 7-ethoxyresorufin. Simultaneously, 

the amount of AhRR and ARNT mRNA was reduced and the amount of the AhR and Nrf2 

transcript was increased. This pathway induction is very important to reach an effective 

detoxification. For example, CYP1A1 activates B[a]P to a reactive metabolite and ROS could 

be produced during an abortive catalytic cycle (R. Barouki et al., 2001). The increasing 

oxidative stress would cause a reduction of ARNT transcription or would increase a 

proteosomal degradation of ARNT, as described by H. Choi et al. (2008). Because of this, 

AhR could miss its dimerisation partner and the CYP induction would be reduced at later time 

points. This regulatory loop also explains the decline of EROD activity after 72 hour 

incubation in the publication of Y. Sakai et al. (2006).  
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Quercetin and kaempferol are ligands of the AhR (H.P. Ciolino et al. 1999) and in several 

studies it was shown that quercetin induced the CYP1A1 expression; however, kaempferol 

did not cause any effect on CYP1A1 transcription (H.P. Ciolino et al. 1999; C. Pohl et al. 

2006).  

 

Our experiments showed that quercetin increased the amount of CYP1A1, 1B1, 1A2 and 

AhRR transcripts after 48 hour incubation. On the other hand, S. Tanigawa et al. (2007) and 

P. Yao et al. (2007) observed that quercetin caused an effectively Nrf2/ARE-mediated activity 

and increased the transcription of phase II enzymes like NOQ1 or HO-1 (NAD(P)H 

dehydrogenase (quinone) 1 or Heme oxygenase 1). According to our results, however, in 

CaCo-2 cells the Nrf2-pathway does not seem to play an important role as the AhR-pathway. 

The ratio of the two transcription factors clarified the main focus of metabolism in this cell 

line. Interestingly, the AhRR is one of the lowest expressed members of the AhR-pathway. In 

our experiments quercetin caused an increase of the repressor transcript. This confirmed that 

the repressor is a target gene of the AhR transcription factor. On the other hand, the low 

expression level of AhRR does not affect the activated AhR-pathway. In line with our 

observations, Y. Tsuchiya et al. (2003) and K. Gradin et al. (1999) observed that only a high 

expression level of AhRR was really able to negatively regulate the AhR-pathway.  

 

We observed that B[a]P and quercetin alone or in combination reduced the amount of ARNT 

transcripts significantly. We suggest that the metabolic CYP1A1 activity caused an increase 

of ROS which negatively regulated the expression of ARNT, the dimerisation partner of AhR. 

Comparatively, H. Choi et al. (2008) described that the polyphenol curcumin inhibited HIF-

1α via ROS-dependent degradation of ARNT. On the other hand, G.N. Kim et al. (2009) 

showed that quercetin could act as an antioxidant in HepG2 cells when treated with quercetin 

for 30 min, but it acted as a pro-oxidant when  the cells were incubated for longer periods (12 

and 24 h). This result supports our hypothesis that quercetin is a ligand of AhR, induces the 

CYP expression and causes the synthesis of active CYP proteins (see western blots and 

EROD activity results). Quercetin is metabolised by CYP (T. Walle et al. 2004) and in this 

way ROS accumulate and inhibit the ARNT expression. Contrastingly, quercetin activated the 

HIF-1α- pathway in HepG2 cells by stabilising the HIF-1α protein. Since ARNT is also the 

heterodimeric partner of this gene regulatory protein the expression of ARNT seemed not to 

be reduced by this flavonoid. The results of J. Wilson et al. (2002) do not fit to our 

observation. Interestingly, C. Pohl et al. (2006) showed that CaCo-2 cells exposed to 
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quercetin showed a lower CYP1A1 mRNA induction than when exposed to TCDD and had 

no EROD activity. These results are in contrast to our observations and also to that of H.P. 

Ciolino et al. (1999).  

 

Fig. 4.1. Inhibition of ARNT transcription by increased ROS accumulation in CaCo-2 cells. The 

ligand binds the cytosolic AhR ligand-binding subunit, which undergoes a transformation or activation 

process involving several steps: translocation in the nucleus; release of a molecular chaperone 

complex containing at least Hsp90, AiP and p23, and dimerisation with a protein partner, ARNT. This 

heterodimer interacts with regulatory DNA sequences located upstream in the promoter of target genes 

and stimulate the transcription of genes in the CYP1A1. Quercetin is metabolised by CYP, 

simultaneously, ROS accumulates and inhibits the ARNT expression. 

 

B[a]P and quercetin alone increased the expression of CYP1 especially that of CYP1A1 in 

human colon cell line. On the one hand we observed that in the combination experiments 

quercetin caused a slight additive stimulation on the expression of the CYPs (similar to D. 

Puppala et al., 2006). On the other hand, the B[a]P-mediated increased expression of Nrf2 and 

its target gene GCS tended to be antagonistically reduced. This confirms that the main 

modulating and effective target of flavonoids is the AhR-pathway in CaCo-2 cells. 

Surprisingly, the EROD activity was not proportionally increased to the induced amount of 

CYP protein. C. Pohl et al. (2006) illustrated that quercetin decreased the TCDD- induced 

EROD activity in CaCo-2 cells. This supports the idea that besides acting in transcriptional 

activation quercetin modulates the enzymatic properties of CYP (see fig. 3.9.b). However, 

other researchers showed that quercetin acted as an antagonist or did not affect the induction 

by TCDD (T. Walle et al., 2007; S.W. Allen et al., 2001).  
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In contrast, kaempferol alone influenced neither the gene nor the protein expression nor the 

EROD activity in our experiments. We did not identify this flavonoid as an agonist of the 

AhR. Interestingly, our results exhibit that this flavonol reduced the metabolic activity of 

CYP shown by our EROD assay results (fig. 3.8.b and 3.9.a). Kaempferol acted in a different 

way as quercetin, but it also inhibited the B[a]P-mediated activity of CYP1A1. On the other 

hand, there are a lot of evidences that kaempferol binds to the AhR, abolishes TCDD-induced 

XRE binding and decreases the TCDD-induced CYP1A1 transcription (H.P. Ciolino et al., 

1999; R. Mukai et al., 2009). These differences in the modulatory activity of both flavonoids 

seemed to depend on the used cell line model and on the pre-incubation time. 

 

Interestingly, the additive stimulation of the CYP1A1 induction offers evidence that quercetin 

acted as a ligand of the AhR in CaCo-2 cells, but it bound to a different binding site of the 

AhR as B[a]P did. Kaempferol could bind also on a different binding site of the AhR, but it 

did not modulate the B[a]P-activated AhR in colon derived cells. Both flavonoids reduced the 

CYP activity in a different dimension and may thus modulate the formation kinetics toxic 

metabolites and carcinogens in that way. F. Iori et al. (2005) showed that the amount of 

hydroxyl groups was important to get trapped into a polar pocket in proximity to the heme site 

of CYPs. Ligands presenting structures less crowded by hydroxyl substituents accommodate 

deeper into the binding site. Compared to quercetin, kaempferol has a similar polyphenolic 

structure but misses one hydroxyl group. Because of this, kaempferol is able to affect the 

enzymatic structure stronger and in a different way as quercetin does. The observation of F. 

Ioris et al. (2005) is in line with our results in the human colon cell line. 

 

Also, in the rat cell line B[a]P caused a clear induction of the CYPs and the AhRR. The level 

of AhRR was as high as the level of the AhR after induction with B[a]P or flavonoids. We 

were able to detect very slight bands of the repressor protein by means of western blots, but 

the repressor protein did not reduce the high induction of CYP1A1 and the enormous 

expression of CYP1B1. Compared to the expression of CYP in CaCo-2 cells, IEC-6 showed a 

similar amount of induced CYP1A1 transcripts and a ~ 400 fold higher amount of CYP1B1 

mRNA. Even with a strong transcriptional activity the amount of translated protein was still 

very low (see fig. 3.15) and the EROD activity was undetectable. A. Lampen et al. (1998) 

suggested that IEC-6 and HuTu-80 cells neither expressed CYP mRNA nor protein and he 

also could not detect any metabolic activity. On the other hand, he did not incubate the cells 

with PAH to induce CYP transcription. So, he analysed the cell lines for constitutively 
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expressed CYPs. It is known that human and rat CYP1A2 show only 75% homology that 

cause different amino acid structure (V.A. Eagling et al., 1998). Also, the size of the AhR-

protein can differ dramatically between species and strains of mice (Y.Z. Gu et al., 2000). The 

AhR-dependent sensitivity to toxic substances also differs between varying species (K.W. 

Bock et al. 2006). This variability could explain our observed differences in gene and protein 

pattern of the human and rat derived cell line. This possible species- or/and tissue dependent 

strategy of detoxification, elimination or avoiding toxification of xenobiotica also shows 

different evolutionary adaptation to their environment. P.H. Roos et al. (2004) observed that 

the PAH-mediated induction of CYP1A1 differs in a tissue-specific and dose-dependent 

manner in duodenum, liver and kidney of minipigs and rats. The rapid detoxification and 

elimination of xenobiotics can avoid an accumulation of potential carcinogens in the cell, 

DNA damage and cancer development. Adaptive mechanism like increasing the transcription 

of an enzyme has to occur in the right time. Our results pointed out that both tested substances 

caused induction of gene expression at earlier time-points. This could explain why IEC-6 

showed a different gene and protein pattern induced by B[a]P, quercetin or kaempferol after 

48 hours incubation. Further investigations could give information about early degradation of 

proteins or time-depended inhibition of translation in the rat duodenal cell line. 

 

Besides the receptor level, the induced AhR activity also depends on phosphorylation of the 

receptor by the protein kinase C (PKC) (Y.H. Chen et al., 1996; Y.C. Cho et al., 2004; L. 

Cocco et al., 1992). It is also described that the accumulation and the activity of Nrf2 depends 

on phosphorylation, too. The PKC has been shown to interfere with Nrf2 binding to Keap1 

(T. Nguyen et al., 2003) which supports an enhanced Nrf2-acitivty. Noticeably, the Nrf2-

pathway is a major pathway modulated by B[a]P in duodenal cell lines especially in the IEC-

6. Our results showed that members of the Nrf2-pathway dominated over other members of 

the AhR pathway after 48 hours incubation (table 3.5.) and this could lead to a faster 

elimination of reactive metabolites. X.L. Tan et al. (2009) suggested in his review that Nrf2 

was responsible for phase II gene expression but not for phase I induction.  

 

In order to dissect the gene expression pattern exerted by flavonols on the B[a]P-induced 

effects we exposed both cell lines to the selective Nrf2 activator ethoxyquin (EQ) and the 

AhR/Nrf2 mixed activator tert-butylhydroquinone (tBHQ) as described by C. Köhle et al. 

(2006) and W. Miao et al. (2004). However, there is evidence that AhR- and Nrf2-pathways 

are coupled (C. Köhle et al., 2007 and S. Sin et al., 2007) meaning that Nrf2 is a target gene 
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of the AhR-pathway and/or the other way around. By activating these coupled pathways, we 

expected that either EQ or tBHQ should induce the expression of the target genes (excepting 

that of ARNT). If in these intestine cell lines Nrf2 is not coupled with the AhR-pathway, then 

EQ would only increase the expression of GCS. In our experiments EQ strongly increased 

only the CYP1A1 transcript whilst the AhR mRNA was not induced. On the other hand, the 

mix-activator tBHQ caused a similar gene expression pattern in the cell lines. We can point 

out that these substances caused similar inductive effects which differed from those exerted 

by B[a]P, quercetin or kaempferol. Since tBHQ is known as a ligand of AhR it is not 

remarkable that it induced the CYP expression (W. Miao et al., 2004 and C. Köhle et al., 

2006). In contrast, EQ first has to be activated by CYPs to an electrophilic metabolite to act as 

a specific Nrf2 ligand. This means also that CYP expression has to be induced. T.M. Buetler 

et al. (1995) showed that EQ actually increased CYP transcription. These results agree with 

our observations. 

 

Furthermore, phosphatidylinositol 3-kinase (PI3K) also has been identified to be essential for 

the nuclear translocation of Nrf2 and for Nrf2 DNA binding. PI3K also phosphorylates the 

CCAAT/enhancer binding protein-β (C/EBP- β), inducing its translocation to the nucleus and 

binding to the CCAAT sequence of C/EBP- β response element with XRE, in conjunction 

with Nrf2 binding to ARE (X.L. Tan et al., 2009; I.J. Cho et al., 2003). That finding also 

supports the idea of an AhR-independent CYP1B1 induction in the IEC-6 cells. Furthermore, 

G. Agullo et al. (1997) reported about a quercetin and kaempferol-dependent inhibition of 

PI3K activity. It explains our results with the flavonoids in this cell line. In agreement with 

our hypothesis and our observations, B[a]P also induces the PI3K activity (S.L. Tannheimer 

et al., 1998). That means that B[a]P could cause an AhR-independent CYP expression even 

with an inhibited AhR-pathway by AhRR.   

 

After 48 hours of B[a]P exposure, we could not detect any EROD activity in IEC-6 cells 

although the expression of CYP1B1 reached a high level. This result indicates that there could 

be a lack of stabilisation factors of the CYP1B1 mRNA, a fast degradation of the transcripts, 

an inhibition of the translation or a fast inactivation and degradation of the CYP protein that 

could explain our observation. Further investigations are needed to understand the regulatory 

mechanism in the IEC-6 cell line. Z.C. Kang et al. (1999) and M.Y. Heo et al. (2001) reported 

that quercetin inhibits the protein kinase C resulting in inhibition of the AhR activity. It 

explains our observation that neither quercetin nor kaempferol strongly induced the CYP 
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expression or other members of the pathways in the IEC-6 cells. On the other hand, quercetin 

and kaempferol are known inhibitors of protein kinase A (PKA), but the same researchers 

also observed that both flavonoids induced the cAMP-dependent PKA (W.S. da-Silva et al. 

2007 and J.T. Sanderson et al. 2004). E. Eliasson et al. (1992) showed that a PKA-dependent 

phosphorylation of CYP2E1 leads to its degradation. It is not know that this is also the case 

for CYP1-enzymes but it could be the cause in the IEC-6 cell line (B. Oesch-Bartlomowiczet 

al., 2002). This could also explain the missed EROD activity.  

 

Another possibility is the inhibition of translation by the PI3K/Akt-dependent activation of 

the mTOR-pathway. The mTORC1 complex (composed of mTOR, Raptor, mLST8/GβL and 

PRAS40) plays a role in the regulation of translation by means of activation of two key 

proteins, 4E-BP1 and S6K1. 4E-BP1 interacts with eIF4E and inhibits recruiting 40S 

ribosomal subunits to the 5' end of mRNAs and represses translation. Active S6K1 can in turn 

stimulate the initiation of protein synthesis through activation of S6 Ribosomal protein (a 

component of the ribosome) and other components of the translational machinery. The 

activated mTORC1 complex phosphorylates this key proteins what results in the initiation of 

translation. This mTOC1-mediated activation of protein translation is inhibited by suppressor 

protein TSC1/TSC2. The PI3K-activited Akt/PKB phosphorylates the TSC1/TSC2 and 

activates indirectly the mTORC1 which causes an induction of protein synthesis. Quercetin 

and kaempferol are able to inhibit the PI3K (as already noted above) and caused an inhibition 

of protein synthesis. Microarray analysis provides an insight into the expression of many 

genes in the untreated and treated IEC-6 cells. In contrast to our hypothesis, our microarray 

results offer no clear evidence for a possible mechanism in this cell line which leads to the 

inhibition of CYP1B1 and CYP1A1 translation to avoid an accumulation of reactive 

metabolites (fig. 4.2.). For example, the PTEN-mediated dephosphorylation could inhibit Akt-

mediated mTORC1 activation in IEC-6. This hypothesis has to be examined experimentally 

by means of western blots analysis and gene silencing using siRNA in combination with CYP 

protein and activity analysis (EROD). 

 



  84      

m
TOR

Akt

PTEN
TCS1

TSC2
PI3

K

0

200

400

600

800

1000
0.1% DMSO
3µM B[a]P
10µM Q
10µM K

Q
u

an
tr

ile
 o

f 
n

o
rm

al
is

ed
 v

al
u

es

 

Fig. 4.2. Result of microarray 

analysis of untreated and treated 

IEC-6 cells. Cells were incubated 

with B[a]P, Q or K for 48h. The 

isolated total RNA was analysed be 

means of microarray assay. The mean 

value ± standard deviations of three 

independent experiments are depicted. 

 

Fig. 4.3. Overview of the cross-talking pathways in the IEC-6 cells. PKC and PI3K are important 

for the activation of the Nrf2-pathway. The phosphorylation of Nrf2 by the PKC is necessary for Nrf2 

release from Keap1. The phosphorylation by PI3K has been identified to be essential for the nuclear 

translocation of Nrf2 and the binding of the Nrf2-complex to DNA. PI3K is also a key protein in the 

regulation of the mTORC1-mediated protein synthesis and the C/EBP-β-mediated cytochrome P450 

1A1 and 1B1 transcription. Also, the phosphorylation of the AhR by PKC is essential for the 

dimerisation with ARNT and DNA binding. The flavonoids Q and K and also B[a]P are interacting 

with the transcription factors and protein kinases. 
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4.6. Cell line models in comparison to the in vivo situation 

 

The human duodenal cell line, HuTu-80, exhibits low gene expression levels concerning 

AhR- and Nrf2-pathway components in comparison to IEC-6 and CaCo-2 cells. Especially, 

the gene expression level of AhR, AhRR and CYPs (member of the AhR-pathway) is very 

low in this cell line. Noticeably, the expression of Nrf2, ARNT and GCS is approximately 10- 

to 100-times higher than that of the AhR-pathway members. Even after incubation with 

B[a]P, quercetin or kaempferol we could not detect any induced CYP expression. Similar to 

the observations in the IEC-6 cells, we observed a tendency of enhanced expression of Nrf2 

and GCS after treatment with the chemicals. To our knowledge, we are the first who 

investigate the relevance of the coupled AhR- and Nrf2-pathway in human duodenal cell 

lines. J.S. Petrick et al. (2007) evidenced that the AhR-pathway plays a secondary role in the 

elimination of xenobiotics in the murine duodenum. It seemed that the Nrf2- followed by the 

PXR-pathway pre-dominates the signal transduction in the mouse duodenum. Also M.K. 

Shelby et al. (2006) described that the Nrf2-pathway in rat duodenum predominates over the 

AhR-pathway. Our results in the IEC-6 cells agree with these observations. Also, in human 

duodenal tissue it was demonstrated that the AhR-pathway seemed to be a secondary pathway 

(Q.Y. Zang et al., 1999; D. Sun et al., 2002; L.S. Kaminsky et al., 2003). By contrast, oral 

intake of particle-bound PAH led to an increase of the enzymatic capacity through induction 

of CYP1A1 in the duodenal cells of minipigs (P.H. Roos et al., 2004). N. Hernández-Matínez 

et al. (2007) and D. Mitschke et al. (2008) detected a slight constitutive CYP1A1 protein 

expression in rat duodenum. After treatment with phenobarbital/naphtoflavone the CYP1A1 

protein expression was enhanced and also the EROD activity became noticeable. These 

observations were made in wistar and wistar-HAN rats. We have no information about the rat 

stem origin of the IEC-6 cell line. For example, S. Yasuo et al. (2007) recognised that there 

are differences in gene expression profiles and physiology between different rat stems. This 

could be an explanation for the difference in cellular regulation. Nevertheless, we should keep 

in mind that isolated and immortalised cells cannot behave like a whole organism. 

Furthermore, studying the regulatory mechanism in IEC-6 cells seems to provide important 

information about cellular protection mechanism against possible carcinogens. 

 

Gene expression profiles obtained by means of microarray analysis showed that CYP2C9, 

2C18 and 3A4 are the highest expressed CYP genes in human duodenum (D. Sun et al., 

2002). However, the CaCo-2 cell line showed a different CYP expression profile and 
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CYP3A4 was much lower compared to that in the human tissue (D. Sun et al., 2002; Q.Y. 

Zang et al., 1999). On the contrary, the AhR-pathway seemed to play an important role in the 

metabolism and elimination of xenobiotics in CaCo-2 cells. Induced CYP1A1 protein was 

detected in human small intestine biopsy samples (J. Buchthal et al., 1995; M.F. Paine et al. 

1999). However, the biopsy results often derived from jejunum and they misrepresent the real 

situation in the human duodenum. Since the distribution of CYP showed a specific expression 

profile along the intestinal segments of the rat and also a remarkable inter-individual 

variability (D. Mitschke et al., 2008) we can not really exclude the HuTu-80 cell line as a 

model for human duodenal cells. Further, there is enough evidence that CaCo-2 cells are a 

good model for studies on the regulation of the AhR-pathway. However, CaCo-2 cells can not 

be used as a human duodenal cell line model.  

 

It was shown by several groups that CYP1A1 expression is inducible in human duodenum (J. 

Buchthal et al., 1994 ; M.F. Paine et al., 1998; T.N. Johnson et al., 2008) . These observations 

are in contrast to our results obtained with the human duodenal cell line. Interestingly, both 

duodenal derived cell lines studied exhibit a similar regulation profile. Further investigations 

about the PXR-pathway and protein expression analysis of member of the Nrf2-pathway in 

the HuTu-80 and IEC-6 cells are necessary to prove our hypothesis that for example 

phosphorylation via PKC and PI3K could play a role in the regulation of gene expression or a 

specific regulation of the mTOR-Complex which modulates the protein synthesis and to 

understand the molecular mechanism of cell protection by flavonoids.  
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5. Summary 

 

Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is considered a widespread 

pollutant and carcinogen. It acts as a ligand of the AhR and induces the gene expression of 

CYP1A1. This induction of CYP1A1 is an initial step in chemical-induced carcinogenesis. 

Flavonoids like quercetin and kaempferol which are present in human diet and absorbed in the 

small intestine can modulate this transcriptional and enzymatic activation. Since an efficient 

and rapid elimination of toxic substances depends on the coupling of phase I and II enzymes, 

the balance of their activities determines the extent of adverse effects with degenerative 

diseases and cancer as endpoints, for example. We studied, at the transcriptional, protein and 

enzymatic activity level, the modulatory effect of flavonoids on the B[a]P-induced expression 

of components and target genes of the AhR- and Nrf2-pathway in human and rat duodenum 

(HuTu-80 and IEC-6, respectively) and human colon (CaCo-2) derived cell lines. Noticeably, 

the phase I metabolism induced via the AhR-pathway seemed to play an important role in 

CaCo-2 cell line compared to HuTu-80 or IEC-6 cells. B[a]P and quercetin induced the 

CYP1A1 gene expression and protein levels as well its enzymatic activity. However, 

kaempferol did not affect any member of AhR- and Nrf2- pathways by itself. Interestingly, 

both flavonoids inhibited the B[a]P-induced CYP activity. This points out that the 

phytochemicals were able to modulate the kinetics of reactive metabolite formation and of 

carcinogen activation. Simultaneously, the ARNT transcription was even stronger reduced by 

B[a]P plus each flavonoid which is probably due to CYP-mediated ROS production. This 

feedback mechanism would also result diminished formation of reactive metabolites. In 

contrast to the CaCo-2 cells, the phase II metabolism via Nrf2-pathway seemed to play an 

important role in rat and human duodenal cell lines. In spite of the high B[a]P-mediated 

induction of CYP1B1 and CYP1A1 gene expression, slight protein expression and no EROD 

activity were detected in IEC-6 cells. Also in combination with each flavonoid, the CYP gene 

and protein expression was unaffected. It is concluded that the absence of CYP1 protein 

results in limited capability to generate toxic/reactive metabolites. On the other hand, the Nrf2 

and GCS gene expression was increased by B[a]P and enhanced in combination with 

quercetin or kaempferol in IEC-6 cells. Furthermore, the high expression level of the Nrf2-

pathway compounds suggested a fast elimination of xenobiotics via induced phase II 

activities. However, HuTu-80 cells generally exhibited very low gene expression of the 

studied receptor pathway components and enzymes. This fact prohibited us to draw any clear 

conclusions about the effects of B[a]P, quercetin and kaempferol in human duodenal cells. 



  88      

6. Zusammenfassung 

 

B[a]P, ein polyzyklischer aromatischer Kohlenwasserstoff, ist ein in der Umwelt weit 

verbreitetes Karzinogen. Es fungiert als Ligand des AhR und induziert dadurch z.B. die 

CYP1A1 Genexpression. Diese Induktion ist der Ausgangspunkt für die chemisch induzierte 

Karzinogenese. Die in pflanzlicher Nahrung vorkommenden Flavonoide wie Quercetin und 

Kaempferol hingegen können diese transkriptionelle und die resultierende enzymatische 

Aktivität modulieren. Da eine effiziente und schnelle Elimination von toxischen Substanzen 

von der Verknüpfung des Phase I und II Stoffwechsels abhängt, stellt sie eine Art 

Schlüsselmechanismus hinsichtlich des Ausmaßes adverser Effekte dar. Daher kann sie als 

Ansatzpunkt für Präventivmaßnahmen gegen degenerative Erkrankungen oder die 

Krebsentstehung genutzt werden. 

Wir haben auf Transkript-, Protein- und Enzymaktivitätsebene die Modulationsfähigkeit von 

Flavonoiden auf die B[a]P induzierte Expression von Komponenten und Zielgenen des AhR- 

und Nrf2-Signaltransduktionsweges in verschiedenen Darmzelllinien untersucht: HuTu-80 

und IEC-6 aus dem Duodenum von Menschen bzw. Ratte sowie CaCo-2 aus dem 

menschlichem Kolon. Die Aktivierung des Phase I Metabolismus über den AhR-

Siganltransduktionsweg ist in den Kolonzellen (CaCo-2) wesentlich höher als in den beiden 

Duodenumzelllinie (HuTu-80 und IEC-6). Sowohl B[a]P als auch Quercetin induzierten die 

CYP1A1 Gen- und Proteinexpression sowie auch dessen Enzymaktivität. Kaempferol alleine 

hingegen nahm keinen Einfluss auf die Expression von Komponenten der AhR- und Nrf2-

Signaltransduktionswege. Beide Flavonoide vermindern die B[a]P induzierte EROD-

Aktivität. Dies zeigt, dass sekundärer Pflanzenstoffe die Kinetik zur Bildung von toxischen 

Metaboliten und der Karzinogen-Aktivierung modulieren können. Gleichzeitig war die 

Transkription von ARNT durch die Kombination aus B[a]P und Flavonoid noch stärker 

reduziert, welche vermutlich aus der CYP bedingte ROS Produktion resultierte. Diese 

Rückkopplung kann somit zusätzlich zu einer verminderten Bildung reaktiver Metabolite 

führen. Im Gegensatz zu den CaCo-2 Zellen, zeigten die Duodenumzelllinien eine stärkere 

Aktivierung des über den Nrf2-Siganltransduktionsweg induzierten Phase II Metabolismus, 

dem in diesen Zellen offenbar eine wichtigere Rolle zukommt. Trotz der starken Induktion 

der CYP1B1 und CYP1A1 Genexpression waren nur geringe Mengen von CYP1A1- Protein 

und zudem keine EROD-Aktivität in den IEC-6 Zellen zu detektieren. Beide Flavonoide 

zeigten in den IEC6-Zellen keinen Effekt auf die CYP-Induktion durch B[a]P. Das Fehlen 

von CYP1 Proteinen hat vermutlich eine reduzierte Produktion toxischer Metaboliten zur 
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Folge. Andererseits wurde die Nrf2 und GCS Genexpression durch B[a]P erhöht und in 

Kombination mit Quercetin oder Kaempferol noch weiter verstärkt. Darüber hinaus deutet der 

hohe Expressionslevel der am Nrf2-Siganltransduktionsweges beteiligten Komponenten auf 

eine schnellere Elimination von Xenobiotika hin. Die HuTu-80 Zellen weisen generell einen 

geringen Genexpressionslevel der untersuchten Komponenten auf, der es uns nicht möglich 

macht klare Schlussfolgerungen über die Wirkungen von B[a]P, Quercetin und Kaempferol in 

humanen Duodenalzellen zu ziehen. 
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