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RECENT DEVELOPMENTS IN SOLITON THEORY WITH APPLICATIONS TO PLASMAS

K. H. Spatschek

Fachbereich Physik, Universitdt Essen,

ABSTRACT: After a short general discussion
of integrable systems possesing soliton solu-
tions, the importance of the soliton concept in
plasma physics is reviewed. Specific problems,
such as existence of finite amplitude localized
waQes and their multi-dimensional stability are
also considered. The paper is concluded by a

short examination of related problems of multi-

dimensional convective motion.

I. INTRODUCTION

The observation of a solitary wave on the
surface of water by Scott—Russell1 is now under-
stood to be the first known study of nonlinear
waves. Since then several hundreds of papers ap-
peared which used the soliton concept in ex-
plaining physical phenomena in many branches of

physicsz.

The interesting properties of a soliton
can be most easily understood by discussing a
simple example, the Korteweg-de Vries (Kdv)

equation3,

3¢7+%9"y+—i—?‘2}“0’; (1.1)

which in an approximate way determines, e. g.,
the normalized surface elongation ¢ of a nonli-
near wave in shallow water. Besides the time de-
rivative, dispersive and nonlinear terms appear.
The dispersive term reveals the linear disper-

sion4
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for shallow water waves in systems of depth h,
under the action of a gravitational field (q).
The nonlinear term has its origin in the convec-
tive derivative appearing in the equation of mo-
tion. (Note that in Eq. (I.l), and in the fol-
lowing, we use non-dimensional quantities.)
Looking for stationary localized solutions of

Eq. (I.1) in the moving frame, one finds

4= suk&[%len(x_%_”]. (I.3)

Several features are interesting: (i) For
this solution all physically relevant quantities
are localized in space:; this is the reason for
calling it a solitary wave. (ii) Amplitude,
width, and velocity are correlated; this is ty-
pical for solutions of the KAV equation.

(iii) When applied to the observations of Scott-
Russell, this solution explains in a surprising-
ly simple and accurate way the reported data on

velocity, height, etc.

However, the balance of dispersive and non-
linear effects in producing a stationary solu-
tion is not the only interesting aspect of the
KdV equation. First, numerical solutions5 of the
initial value problem (I.1l) showed that (I.3) is
a quite fundamental solution which always ap-
peared besides oscillatory contributions. (This
statement is a little bit oversimplified since
also n-soliton solutions can appear; we do not
go into the details here.) Secondly, and most

interesting, when numerical solutions were pro-



duced for colliding solitary waves (head on as
well as overtaking collisions), essentially the
solitary waves came out of the interaction pro-
cess with unchanged forms; only a phase shift
occured. That was the reason for calling soli-
tary waves of stable form solitons. Nowadays,
the distinction between solitary waves (which
might be unstable during collisions) and soli-
tons is not so strictly in use and therefore

we shall not insist on the difference in termi-

nology here.

Theoretically, all these features of the
KdV-equation are now well-understood. Contribu-
tions by Lax6 and others lead to a break-through
in the year 1967 when Gardner et al7 were able
to solve the initial value problem (I,1) by the
socalled inverse scattering method (ISM). Using
the initial distribution ¢(x,0) as a potential
for an ordinary Schrodinger scattering problem,
the scattering data at t = o are well-defined.
By linear ordinary differential equations the
scattering data at time t follow, from which the
"potential" ¢(x,t) can be recqnstructed. Later—.
on, many authors, expecially Zakharov and Sha-
bat8 as well as Ablowitz et al9 were able to ge-
neralize the scattering problem in order to co-
ver many more one-dimensional nonlinear equa-
tionslo which are now solvable by the ISM. It
should also be mentioned, that recently11 the
ISM has been further generalized to solve some
two-dimensional nonlinear equations. Much pro-
gress is expected in this area during the next
years. We cannot summarize the details of the
important and extremely interesting recent de-

velopments here because of space limitations.

Before concentrating on applications in
plasma physics we briefly mention applications
in other fields in order to demonstrate the very
similar aspects appearing everywhere in nonli-

near physics.
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In fluid theory, the reductive perturbation
method was developed and various nonlinear model
equations could be derived. When reconsidering
for example the water wave problem, we have now
a clear picture12 not only for shallow water
waves but also for systems with arbitrary depth.
In addition, not only one-dimensional situations
have been treated. As two limits, besides the

13

more general Davey-Stewartson-equations ~, we

mention the cubic nonlinear Schrddinger equation

for deep water14,

L@ - F+ Vg -Ipltg -0, 1)

and the Kadomtsev-Petviashvili equation for

shallow water15
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The, e.g, one-dimensional, solutions of these
two limiting equations (I.4,5) are physically
quite different. The soliton solution (I.3) of
Eq. (I.5) is a solitary pulse of the surface

elongation, whereas the stationary solution of

Eq. (I.4),

B, = 37, sech (g x)explig*t) (.6

is a localized solution for the envelope of a
wave. A localized envelope can be produced by
the modulational instability16 Note also that
the amplitude-width-velocity-relations are dif-

ferent from (I.3), and a nonlinear frequency

shift (ﬁ:) appears.

In biophysics, among different approaches
to the problem of energy and charge transport on
the molecular level, solitons are of increasing
interest17. The solitons can propagate in mole-
cular systems over comparatively large distances
without changing their form and allow us to ex-
plain the high efficiency of energy and charge

transfer. For example, Davydov and.coworkersl8
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have worked out a theory for proton motion along
one-dimensional chains, called Bernal-Fowler fi-
laments. Let us simplify the discussion by con-
sidering a quasi-one-dimensional ordered chain
of water molecules formed by hydrogen bonds and
resembling the structure of ice. An important
property of the hydrogen bond is that the pro-
ton potential energy curve in the hydrogen bonds
has the form of a well with two minima corre--
sponding to equilibrium positions of a proton.
Usually in such a system there are defects which
can propagate and there are essentially enough
reorientations such that always enough protons
can start their motion along the chain. This
picture leads, in the continuum limit, to the
following mathematical model19 for the posi-
tion u of the hydrogen atom between two oxygen
atoms which might deviate from their equili-

brium positions by p,
2 L9t L w* X
% u-ctlu -, (1’7»")“' + - Qu=0, (1.7
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Here, u is the equilibrium poéition of the hy~
drogen atom and the constants e v, mo,no, m,
M, and % can be found in the literature19,

Egs. (I.7,8) are two coupled nonlinear Klein-
Gordon-equations which posses stationary solita-
ry wave solutions in the form of kinks forlu and
single humps for p. The latter are known numeri-
cally and recently, their stabi;ity has been

proved analytically.19

In condensed matter physics the sine-Gor-

don equation is of importance. The study of so-
liton dynamics in connection with, e.g., large

20 has shown that the

Josephson tunnel junctions
latter could support the resonant propagation
of a soliton (fluxon) trapped in the junction.
The soliton being a 271-jump in the phase diffe-

rence (@) across the insulating barrier which

separates the two superconductors and has been

observed in the current voltage characteristic
of the junction2O Numerical studies have re-
vealed that configurations with bunched solitons
vlay an important role in explaining the dyna-
mics of the motion, the current voltage charac-
teristic, power output, etc. Restricted to nar-
row junctions and thin enough oxide layers to
permit quantum-mechanical tunneling, the basic
Josephson equations can be combined with Maxwell
equations to yield, in general, a perturbed
sine-Gordon equation. Applying some further ap-
proximations for the enerqgy stored within one
London penetration depth of the superconducting
metal as well as the externally applied bias-
current; one arrives (in dimersionless form) at

the sine-Gordon equation

2 %
- = S I.9
U p -0 p=smg. (-9
A stationary solution of Eq. (I.9) is the kink

+ xt vt
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The last model mentioned in this context

originates from nonlinear optics. The propaga-

tion of coherent optical pulses in a two-level
(or many level) system is described by the Max-
well equations togeﬁher with the Schrodinger
equation for the medium (e.g., two-level atoms,
where the restriction to two levels follows
from some resonance condition). The theory re-

sults in the socalled Maxwell-Bloch equations21

’
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The first equation describes the electromagne-

o (1.12)
V2,

tic wave with slowly varying envelope e,and
phase ¢, where on the r. h. s. the excitation

and de-excitation within the two-level system



is covered by the time derivative of the polari-
zation. 9, is the frequency, and Aw is the fre-
quency mismatch between the wave and the level
difference. n0 is the number of atoms, po the
dipole moment, and the average is over the mis-
match Aw originating from Doppler shifts due to
thermal motion. v, and v, are measures of the
relative populations of levels 1 and 2, respec-
tively. If the thermal motion of the atoms is

neglected, and introducing the abbreviation
t
/
é(xnf)=f%£(xl\‘«')4f , (1.14)
-

one arrives at the sine-Gordon equation in

light-cone coordinates,

P (1.15)

’()?a,cﬁl =tsng
where the z sign characterizes an amplifying or
attenuating medium, respectively., Note that
(I.15) can be transformed into the form (I.9),
and thus the soliton solution (I.10) is here al-~
so relevant. It describes the stable propagation

of an optical pulse through the medium,

Many other models for soliton propagation

exist. Besides the fields mentioned already, ap-

plications in astroghxsicszz, particle ghzsic52§

statistical and mathematical Dhysic524 are well-

known.

II. SOLITONS IN PLASMAS

In an unmagnetized plasma basically two
electrostatic normal modes occur: the ion-acous-
tic and the Langmuir oscillations, In the follow-
ing we shall study the nonlinear versions of
these modes including modifications due to ex-
ternal magnetic fields. In magnetized plasmas
many more modes exist; this aspect will be brief-

ly touched on in Sec. IV.

a, The ion-acoustic soliton

For small B (= 4nneTe/B’) the mode is pure-
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ly longitudinal and may be described by the

fluid equations for ions,

Qén.,v.(,,_ﬁ)_o/ (11.1)

- B 2 I; -
QU + VY +Vp+_an 0/ i

together with Poisson's equation,
Vig = explg)-n, (I1.3)

where a Boltzmann distribution for the electrons
has been assumed. Note that lengths are norma-
lized by the electron Debye length, times are
measured in inverse ion plasma frequencies, and
the potential # is normalized by T./e. The para-
meter Q = Qi/wpi takes care of an external ma-

gnetic field (in z-direction) through the ion

gyrofrequency Qi'

First, for deriving a small-amplitude, sim-
ple model from Egs. (II. 1-3) one can apply the

25

reductive perturbation technique to arrive for

2 = o at the Kadomtsev-Petviashvili equationl5

x
3
9¢n+ % an +ndn+ %IV;M&’- 0, -

and for © ~ 1 at the Zakharov-Kuznetsov equa-

tionzs,

’()en + %Q’n + n2n+g(4+_f2_“)2VJ_‘n-0,<n.s>

In the intermediate region, 9 << 1, the follow-

ing model equation is valid,27

-1 2
9¢n, + % 9:71 +th 9‘11_\‘%(2:4»_()_")9‘2n.a(n.e)

Let us first discuss the theoretical pre-
dictions following from these equations in one
space dimension. Obviously, in this case all the
conclusions discussed in connection with the
KdV-equation should be true for ion-acoustic

waves. And indeed, in a series of experiments,
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Ikezi and coworkers28 were able to verify expe-
rimentally the predicted amplitude-width rela-
tion, form stability during collisions, number
of solitons, etc. Discrepancies between the

theoretical predictions and the experimental

data are only in details and are due to finite
ion temperatures and deviations from the elec-

tron Boltzmann distribution.

For finite amplitudes, the asymptotically

‘valid (for amplitudes tending to zero) reductive
perturbation theory cannot be applied. The sta-
tionary (in a moving frame) and one-dimensional
solutions of the basic equations (II.1-3) can be

obtained from29

‘_“.‘Z = exp(;ﬁ) —(4 - %)-4/‘; (I1.7)

where M is the Mach number (velocity of the so-
liton measured in terms of the ion-acoustic
speed). The r. h. s. of Eq. (II.7) can be writ-
ten in terms of a g-derivative of the socalled
Sagdeev potential (- dv/dg), where the potential

| ®
V=1-explg)+ Mz'['f-(’l "%) ].(11.8)

A simple interpretation3o (x interpreted as
"time" and 4 as "position")shows that the exis-
tence region of solitons can be discussed iﬁ the
same way as the motion of a classical particle
in a potential well. The result is that for

1 <M< 1.6 finite amplitude ion acoustic soli-

tons can be obtained by simple integration.

The analogy with the motion of a classical
particle in a potential well allows us to pre-
dict the effect of small dissipation. A classi-
cal particle will be decelerated, meaning that
after reflection it will not reach its starting
position again. The same is true for the poten-
tial 4, and therefore shock solutions are expec-

ted.

The finite amplitude theory for ion-acous-
tic solitons will be limited in application,
since at large potential humps ions will be re-
flected. This process can be considered also as
an effective damping mechanism, since reflected
ions carry away energy from the wave. Again
shock solutions appear. When estimating the am-
plitudes of potential humps which are necessary
to create asymmetries due to reflection of many
ions, we find that symmetric relative density

humps with

%""; > 0.% ' (11.9)

are unlikely to be observed. This is consistent

with experimental data.
The problem of existenhce of multi-dimen-
sional ion-acoustic solitons and their stabili-

ty will be discussed in Sec. III.b.

b. The Langmuir soliton

The coupled set of wave equation

1'.6geEfle‘?_V"(V"-E')'(ne’oE (I1.10)
=0,

and plasma response

on, + V-(n;v) =0 (11.11)

+ O ’ -
— - Pl

o v + -V x-Vg, (11.12)

Vén, » Vg - VIEI*, (11.13)

4 2 (11.14)
sVg=n.-n;

is a quite general basis for investigating non-
linear Langmuir waves. This model uses a two-
timescale formalism where the timescales are
separated by e = 2(me/3mi)‘/1, and a hydrodyna-
mic plasma response through the electrons

{mass Mg, density ne) and the ions (mass my,

density n;, velocity v;):; 4 is the ambipolar



potential. For magnetic-field-free situations,
the low-frequency field is electrostatic. Fur-
thermore, because of their large mobility, elec-
trons react to the forces via a Boltzmann dis-
tribution. For simplicity, we have neglected the
ion temperature T;. For M < (”I‘i/’[‘e)l/2 the ions
are also approximately Boltzmann distributed and
the model (II.10-14) breaks down. Note also that
all times have been nondimensionalized by

{E‘Ae. Other units are (l6nn0Te)l/z for the
electric field and Te/e for the potential, and

q = (mecz/vte) -1. Note that the coupling bet-
ween the hf field and the plasma is due to the

31

¢ f ponderomotive force (~ - ¥IE|?). The latter

arises because of the radiation pressure,

In the past, many simplified models have
been derived, since the time dependent
Egqs. (II.10-14) are very difficult to handle.
For example, when a static response is assumed;

i.e.,

n-1 «- [EI* (11.15)
in the small amplitude limit, &hen a cubic non-
linear Schrsodinger equation is obtained from

Eq. (II.1l0). Rudakov32 discussed such a model
and presented a single-humped one-dimensional
soliton solution for the electric field E, A

very important model has been developed by Zak-

V-‘(f L P+ V?):V(ch)p)/ (I1.16)
(3 - P)me = T*17pl"

(11.17)
where ¢ is the envelope of the hf electrostatic
potential. In contrast to (II.15), the plasma
response is now dynamic.
s 34 . )
Nishikawa et al generalized this result
for ion perturbations moving close to ion-acous-

tic speed. The ion response then becomes of
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first order in the pump amplitude and hence non-
linear. The plasma response is then described by
a Kdv-type equation, modified by the ponderomo-
tive force. Other scalings, resulting in diffe-
rent model equations, have been presented by va-

rious authors35.

Let us concentrate in the following on one
aspect: the stationary one-dimensional soliton
solutions of Egs. (II.10-14). Using the results
of the asymptotic theorys mentioned above, one

finds for small amplitudes(n - o) and M » o
” o

Ex~2 (4—M°)/1lswulx, (11.18)

g --ZM"(”—M‘)-’/L‘ZZ'.Sed\,Ler, (I1.19)

whereas for n *» 0 and M * 1 one has

Ex [81'% 61”(»1"_1)]4,2%7)( Junh,zx , (11.20)

¢'¥ —é»lz'se.ck"rlx (I1.21)
In the latter case, only along the path

t,.,3 -2

7' M‘-i-b (M -1) (11.22)

the soliton solutions exist. Accepting single

humped (in E) solutions for M = o and E-solitons
with one node for M » 1 and n * O, Wwe are con-
fronted with the problem what happens for finite
M and n, For that, one has to solve the nonline-

ar eigenvalue problem36

(11.23)

UE = ’L’*E-['I—exp(ﬁ-E")]E ,
%9:¢=QKP(¢'EI)"(M_‘AZ_—_Z7)#L ’
which follows from Eqs. (II.10-14): n® and M
play the role of the eigenvalues. We apply boun-
dary conditions for localized solutions; E, @> o
for x » + «. The results of the calculations are

rather surprising: one should note however that

qualitatively similar features also occur in the
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small-amplitude sonic mode137. First, the eigen-
value spectrum is discrete and not continuous

as assumed in all previous finite amplitude
theories. That means that solitons exist only
for specific M-n-relations. Secondly, the soli-
ton solutions for M > o are of the Nishikawa et
3134 type, i.e., E has one (or more than one)
node. Thirdly, bands of eigenvalues exist; the
bands can be consequently numbered by the num-
ber of g-oscillations inbetween two neighbour-
ing maxima and minima of E. The bands with more
d-oscillations occur closer to M = o. Fourthly,
the distance between the maximum and minimum of
E increases with the number of #g-oscillations
inbetween them. This leads to the following pic-
ture for the transition to M = o solitons: As

M - o, the minimum of E moves out at infinity

and 4 -~ o.

In all the results, the ambipolar poten-
tial 4 has a (mainly negative) solitary wave
structure. For very large amplitudes, thereby
the validity of the present theory will be limi-
ted. Deviations from the Boltzmann distribution
and the occurrence of reflected electrons by the
negative potential could produce an ion rich re-
gion behind the negative potential and no symme-
tric solutions will exist. Such large amplitude
effects become important when the potential dif-
ference is on the order of the electron tempera-
ture Te/e, and are responsible for weak double

39 have discussed

1ayers38, Hasegawa and Sato
theoretically the existence of a negative poten-
tial solitary wave structure and the consequent
formation of a double layer even when the drift
velocity is smaller than the electron thermal

velocity (vde < v, ). The peak of the potential

te
can exceed the electron temperature Te/e. It
should be noted that this structure is physical-
ly quite different from the socalled strong

double layer: a necessary condition for the lat-

ter is the existence of a super-thermal electron

drift. Another question is whether really a sta-

tionary double layer exists. And indeed, the po-
sitive {(asymmetric) potential will stay only
until the ions respond to it. Hence, the weak
double layer will last only within the ion iner-
tia time scale, and such a time evolution is
clearly seen in the numerical simulation of Sato
and Okuda4o. A weak double layer becomes unsta-

ble with respect to the excitation of ion acous-

tic solitons.

IITI. THE STABILITY PROBLEM

a. Plane Solitons

So far we have discussed models of ion-
acoustic and Langmuir solitons and their statio-
nary one-dimensional solutions. Now we investi-

gate the stability properties of the latter.

Let us start with the ion-acoustic soli-
tons. In the weak amplitude one-dimensional 1li-
mit everything is clear: the solitons are stable
since they are described in by a K4V equation.
However, in the finite amplitude case [ see
Egs. (II.1-3)] even in one dimension no stabili-
ty proof exists, although solitons are expected
to be stable. Since the multi-dimensional gene-
ralizations of the KAV equation are known [ see
Egs. (II.4-5)], we can answer the question
whether the one-dimensional stability is pre-
served when two-dimensional distortions are al-
lowed for. It was shownls'41 that the Kadomtsev-
Petviashvili equation (for @ = Q) leads to
transversely stable plane soliton solutions. On
the other hand, for very strong magnetic fields,

15,42

plane solitons are unstable . Recently, the

transition from stable to unstable behavior was
43
computed and for a ld-solution of the form

— 2 2
n, = 6n° sech®nx, a threshold QTN n in Q was

found. For Q > QT instability occurs.

We now discuss in more detail the corre-
sponding problem for the Langmuir soliton. With-
in the static approximation in one dimension

everything is clear in the weak amplitude limit:



the solitons are stable since they are described
by the integrable cubic nonlinear Schroddinger
equation. However, already for M = 1, even in
one dimension no stability proof exists if
Poisson's equation becomes important44. Let us
therefore concentrate in the following on the
two models: the nonlinear Schrédinger equation
and the Zakharov equations (II.16,17), A trans-
verse instability, first discussed by Zakharov
and Rubenchik45, can be derived from complemen-
tary variational principles46, The latter allow
to calculate the growth rate y in the whole un-
stable (transverse) wavenumber k-regime. For

example, for the scalar, cubic nonlinear Schro-

dinger equation

69&’ + T4y 4 Y|y =0 ,  (IInD

with 14 soliton solution ¢_i= ¢_ exp(in;t), we

have46
L “Lalli.la>
Y = Sw ” , (111.2)
<aip>=p Sall'la
2 . -<{all.H, H la)> (111.3)
§o=mf » ’
where H_ = - v o wé + n; , H_=H_ - 2®;: and

M is the set of functions ¢ for which

< ¢lH_l¢ >< o. Evaluating (III.2,3) we find in-
stability for k < f? ng with a quite large ma-
ximum growth rate (y ~ mpe)‘ However, the iat—
ter is significantly reduced wher the dynamic
ion response is taken into account. In addition,
the maximum growth rate is shifted towards smal-

ler k-values.47

We now investigate the nonlinear evolution
of the transverse instability. The standard me-
thod is that of Newell and whitehead48, which
is widely used in fluid dynamics to investigate
the onset of turbulence via successive instabi-
lities. Janssen and Rasmussen49 used a slightly
different perturbation scheme which gives es-

sentially the same results. One can consider k
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as the critical parameter: for k < kc = V3 ng
instability sets in. Applying the Newell-White-
head procedure one finds near the threshold for

the amplitude @4 of the unstable mode49

aﬁbp - rl'ﬁ ~[5L'¢Iz¢ = o . (II1T.4)

Thus, in contrast to many other instabilities,
the transverse instability is not quenched by
nonlinear effects. Instead, nonlinearities tend
to enhance the crowth rate of the linearly un-

stable mode.

This is not unexpected since a col-

33.50 should occur. (Note, however, that

lapse
many collapse arguments are not applicable when
periodic boundary conditions are imposed in the
transverse direction.) We can not go into the
details of all the collapse arguments but dis-
cuss only qualitatively the multidimensional

behavior of the solutions of the cubic nonline-

ar Schrddinger equation. From the invariant

I1 =J|'YIL0LvX , (III1.5)

where v(= 1,2,3) is the dimension, we find the
scaling ¥* ~ 1™V, whereas the dispersive term

in Eq. (III.1) scales like L7’

Thus for v > 2,
dispersion cannot hold a nonlinear collapsing
state. Of course, these rough arguments have to
be verified by theoretical considerations33’50.
The same results can be derived for the Zakha-
rov equations (II.16,17), as long as the ions
move with subsonic velocities. In the static
limit, when time derivatives can be neglected
in the ion equation, the collapse is mathemati-
cally proved in general. However, for the full

Zakharov equations, variational estimates were

obtained and self-similar solutions were found.

At the final stage of the collapse, elec-
tron nonlinearities could become essential and

wave particle interaction has to be taken into
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account. Recently, in a very interesting par-

ticle simulation51

the two-dimensional collapse
of Langmuir waves was studied. Cavity compres-
sion for an initial distribution satisfying the
sufficient criteria for collapse was really
found. The cavity shrinks and after some limit-
ing size is reached (=~ 6Ae) Landau damping be-
comes important. Theﬁ the energy of the oscil-
lations captured in the collapsing cavity is
almost totally transmitted to electrons, The
absorption is a fast process and the wave ener-
gy is mainly transferred to fast electrons, as
can be seen from the tail in the velocity dis-
tribution function. When the same computations
were performed for different ion masses, the
collapse time turned out to practically inde-
pendent on the mass ratio; this means that the
collapse is subsonic. Thus Zakharov's idea of
collapse plays an important role in plasma tur-
bulence, since it presents a very effective me-
chanism of energy absorption for long wavelength
(kxa << 1) via modulational instability and col-

lapse.

b. Multi-dimensional Solitons

The preceding discussion for plane waves
showed that most plasma solitons are transverse-
ly unstable. This initiated the search for sta-
ble solitons in three dimensions. One is first
tempted to look for two- and three-dimensional
solutions of the cubic nonlinear Schrddinger
equation or the Zakharov equations. However, the
collapse argument and some additional calcula-
tion552 gquickly show that these solutions are
also unstable. (The 3d solution is even longitu-
dinally unstable.) There exists a simple way out
of this dilemma: if we improve the cubic Schro-
dinger model we find that the instability argu-
ments do not apply anymore. The models discussed
so far resulted from small amplitude theories.
I1f we generalize them to finite amplitudes, we
obtain the exponential nonlinear Schrddinger

equation (for standing solitons) or a nonlinear

Schrbdinger equation coupled to the full hydro-
dynamic equations for the ions (in the general
case). In the latter situation, the 2f-part of
the electron density is calculated by a Boltz-
mann distribution including the ponderomotive
force and ambipolar potential. For reason of
demonstration we choose here the first model:
all the conclusions will also hold for the more

complicated (and more realistic) second model.

The stationary spherically symmetric solu-
tions of the exponential nonlinear Schrddinger

equation
(9B +VVE - Vx (E)
t[1-exp(-E-E*)]E =0

(I1I.6)

can be written in the form

-E,=G(f’)€x|o (Cvf{;)?_ (III.7)

The localized functions G(r) are known53 nume-
rically; we now comment on their stability and
give the final result of a corresponding calcu-

1ation54.

A necessary and sufficient condition for
stability of a spherically symmetric (three-
dimensional) envelope soliton (III.7) (with
respect to longitudinal and transversal elec-
trostatic as well as electromagnetic perturba-

tions) 1is

});LL N >0 , (111.8)

where N is the plasmon number
o
N = fatr' r’*G" . (111.9)
0

For the proof of the sufficient part a
Liapunov functional has been constructed: the
necessary part follows from variational prin-
ciples. One can show analytically that the de-

rivative of N with respect to n® changes sign



when n’ is increased from small values (where

3 2 N <0) to larger n? values. Numerical cal-
culations clearly show that a critical value

nz ~ 0.10125 exists such that for n® > nz soli-
tons are stable. The existence of such a thre-
shold can be interpreted in the same way as in
particle physics: below né a lower energy state
than the soliton exists such that a decay of a
soliton can occur. From the cubic nonlinear
Schrodinger equation it is also clear that for

n? - O spherical solitons are unstable.

We should briefly mention why the collapse
argument does not apply. The reason is that the
invariant I, is not negative for a spherical
soliton,which, according to Refs. 33 and 55 is
necessary to find the collapse. Thus one should

not expect that type of a collapse here,

The amplitudes (~ n) for stable three-di~
mensional envelope solitons can be still small
enough not to violate some of the basic assump-
tions underlying their physical model, such as,
e. g., neglection of Landau damping. At the cri-
tical value Nes the radius of ﬁhe soliton is
larger than ten electron Debye lengths: for much
larger n’-values, one has to take into account
various dissipation mechanisms. There exist,
however, some arguments53 that for a spherically
symmetric case the actual damping rate willvbe

significantly reduced as compared with the one-

dimensional case.

For ion-acoustic solitons, the situation is

41’52: The two-dimensional so-

slightly different
lutions of the Kadomtsev-Petviashvili equation
(1I1.5) are stable, whereas in three dimensions
no stable soliton solutions of Eq. (II.5) exist.
(The gquestion of stable finite-amplitude soli-
tons in three dimensions is still open.) The
two—dimensional (cylindrical) soliton solutions

of the Zakharov-Kuznetsov equation (II.6) are

unstable (with respect to z-perturbations)
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whereas spherical solutions of Eq. (II.6) are

stable,

Thus for both, ion acoustic and Langmuir
oscillations, stable three-dimensional soliton
solutions exist. It is also clearly expected
that similar statements can be made for other

types of solitary waves in plasmas.

IV. VORTEX SOLITONS

Finally we mention some soliton models in
plasmas which are essentially two-dimensional
and no one-dimensional counterparts exist.
These are plasma vortices originating from low-
frequency modes in magnetized plasmas. Three
modes are typical: the zero frequency electro-
static convective ce1156 and the magnetostatic
modesS7 in homogeneous plasmas as well as the
finite frequency drift mode53 in inhomogeneous
plasmas. These modes are believed to be very
important in explaining anomalous (particle

and heat) transport in magnetized plasma556_59.

The convective cell mode is a zero-fre-
quency, electrostatic mode involving only par-
ticle motion and perturbations perpendicular to
the external magnetic field. When the damping
rate is small, the electric field of this mode
appears to be almost 4. c¢. in time. The disper-

sion relation is
. 2
W = - (,/«,,-"ﬁ,/('h- .Q_;I/AJP.'L) P (Iv.1)

where the ion viscosity is related through

u, = nli/nomi to Braginskii's resistivity

n- = 0.3 noTivi/Qi’. The ion gyrofrequency is
2, and wpl is the ion plasma frequency. The
convective cell mode has a similar electric
field polarization as the extra-ordinary
mode. Although electrostatic, the convective

cells are almost incompressible. In fact, one

has



102

dw; ~ Qg | &ne %/\: A Q_,{d_«/].(xv.z)

m, |~ Wpe, | My

Calculating the damping of the convective cell
one finds that the convective cell, if excited,
can have a very long life time. The quasi-
steady-state cells, expecially the large ones,
can therefore cause macroscopic plasma convec-
tion and large scale transport because of their
capability of mixing various regions of the

plasma.

If a density gradient is present, one must

add to the right hand side of (IV.2) the term

ﬁ/ 3
_._E/’ 42 /e r.V V-L g (1v.3)
/A,‘ D 1; /
where ;D = (c Te/e B )% x ¥en n is the diama-
gnetic drift velocity originating from the non-
uniform spatial distribution of the gyro-orbits.
The additional term (IV.3) can become important
if (1 + Qiz/mpiz)<ni/vi) > k’AiZlen, where
L, = Iv&n nal—l is the density scale-length, In
this case, the density fluctuation can no longer
be neglected, and one expects fhe particle mo-
tion along the magnetic field to become signi-

ficant because of flux conservation.

The electron drift wave has exactly the
same ion motion as the convective cells, Ho&—
ever, since perturbations along the external
magnetic field are no longer precluded, elec-
trons can move along the field lines to main-
tain equilibrium. For laxl >> |az? >
(me/mi)‘/zlaxl one obtains from the z-component
of the electron momentum equation Boltzmann
distribu;ed electrons. The dispersion relation

for the electron driftwave is

E-U?D -1 :/‘h 9:'
1+ k‘/\:_' + i_:'g:'

(1v.4)

where p_ = (Te/mi)’/’/ﬂi is the ion gyroradius

defined in terms of the electron pressure. (When'

electron collisions are included in the z-com-
ponent of the momentum equation, the socalled
drift-dissipative instability can appear.) The
ions in the driftwaves also execute convective
cell motion, thus the expressions for ;il are
the same in both cases. The parallel motion of
the electrons can short out any large-scale
electric fields (associated with large vorti-
ces) in a bounded system. Thus, one does not
expect that the convective motion induced by

drift waves leads to large diffusion similar

to that of the convective cells.

In contrast to the convective cells, the
magnetostatic mode is purely electromagnetic.
Furthermore, the particle motion is mainly
along the external field. Although the magne-
tostatic mode was first explicitly identified
by considering electron fluid motion, it is
actually a magnetohydrodynamic mode derivable
from MHD equations including finite conducti-
vity and electron inertia. Its dispersion re-

lation is

2
v + M £,

W= -t (Iv.5)
A+ kfc/wpe

Like the convective cell mode, the magnetosta-
tic mode is purely damped. However, here the
electric field vector is polarized like the
ordinary mode. There is no linear perpendicu-
lar particle dynamics directly associated with
the magnetostatic mode:; this is because of

N
E, = O. However, any particle is now free to

1

move perpendicular to B0 along the perturbed
magnetic field. Thus, the perpendicular motion
of the electrons participating in the magneto-
static mode is of second order. Hence, the dif-
fusion due to the magnetostatic mode is usually
unimportant. However, since it is the high
energy electrons which contribute to the ma-

gnetostatic mode diffusion, one expects en-

hanced heat loss in the presence of this mode.



Having some real applications in mind, we
here concentrate on the nonlinear ¢f quasi-
twodimensional electrostatic description in an
inhomogeneous plasma with weak magnetic shear58.
In that case, perturbations along the external
magnetic field are not precluded and electrons
can move along the magnetic field lines to main-
tain equilibrium. (Therefore the description is
called quasi-twodimensional - in a plane perpen-

dicular to the external magnetic field.)

Let us assume that the shear is not very
strong so that the ion motion can be considered
as two-dimensional (in the plane perpendicular
to the magnetic field). Furthermore, assuming
Te >> Ti’ the ions can be treated within the
cold fluid description. Then the ion momentum
and density equations combine,

Vg
ln,n,, =/-b,' —B?'—T ,(1V.6)
()

where the convective derivative is to lowest or-

(VB
de\ B, Q2; n,

der

d 9

—z_—._—

0(t % ‘ V . (Iv.7)

Fi
& x
™

If one takes the limit of small resistivity with
a finite magnetic shear, the z-component of the

electron momentum equation yields

n A e’¢ (1v.8)
710 1:; ’

Substituting the Boltzmann distribution into
Eq. (IV.6) one obtains a nonlinear equation for

¢, the socalled Hasegawa-Mima equation58

9"<VL¢ —¢) (1v.9)
-[(vgx2)- V(7' -tun) - VR,

where the electrostatic potential ¢ is norma-
lized by Te/e, the length unit is the ion Lar-

mor radius Py = cs/ni, the time is measured in
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-1 - _ 2 . . . N
Qi and u = ui/pSQi is a normalized viscosi-

tyel. The Hasegawa-Mima equation is analogous
to the two-dimensional incompressible, invis-
cid, neutral, and homogeneous fluid dynamics

when the adiabatic shielding of the electrons

and the drift velocity (due to inhomogeneity)

are neglected.

For ¢ = o, the Hasegawa-Mima equation con-

serves the energy
A 2 L]
E=de[(v¢) +¢ - (1Iv.10)
and the (potential) enstrophy.

W= [d* [(vp)*+ V@] .

When a large number of modes are present the
dynamics is strongly mixing in the ﬁk phase
space. We are not interested in these aspects
here, but look for a steady solution

é = g{x-ut,y) in a frame moving with a con-
stant velocity u in the x-direction. Such a
solution has been found62 for the geophysical
version of Eq. (IV.9) and is often called mo-
don. One divides the £(=x-ut), y plane into
two parts by a circle of radius a with its
center at the point £ = y = o. Assuming that ¢

satisfies in each region

VL¢ =‘F¢ + 9'4 ’ (Iv.12)

where f and g are step fugctions, one finds
from Eq. (IV.9) the explicit solution for #&.
It is required that across the circle

r = (£2+yz)'/’= a, the quantities ¢ and V &

are continuous and that at infinity ¢ vanishes.

Numerical solutions63 of the dynamical
evolution of this solution show that drift wave
vortices behave like solitons in two-dimensio-
nal interaction. In fact, after both, head-on

and overtaking collisions, these vortices re-
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cover asymptotically their initial shapes at
the end of the interaction. An analytical proof
of this behavior is still missing; however pre-

liminary results64

of linear stability calcula-
tions (for small perturbations) seem to confirm

the stable behavior.

V. CONCLUDING REMARKS

In this short review on recent developments
in soliton theory with application to plasmas
not all the important aspects of soliton theory
could be mentioned. Also the reference list is
by no means complete. To demonstrate this lack
of completeness we just mention two examples:
soliton formation because of relativistic mass

5 and perturbed soliton systems.66 The

variation6
latter area is extremely important since in rea-
lity various effects (e, g., damping, inhomoge-
neity, boundary conditions, etc.) will perturb
ideal model systems. Then one is confronted with
the following questions: Is the soliton concept
still important? Do solitons behave like "par-
ticles" even when external forces, radiation due
to acceleration, etc. are taken into account?

Partially, some answers already exist but much

has still to be done in the future.
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