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Zusammenfassung

Naturstoffe, womit Metabolite des Sekundirstoffwechsels gemeint sind, stellen die grof3te Quelle an
chemischer Diversitdt als Ausgangsprodukte fiir die Entwicklung neuer Pharmazeutika dar.
Traditionell den Hauptanteil in der medizinischen Anwendung tragen Pflanzenextrakte. Dennoch
sind bisher nur wenige mongolische Arzneipflanzen, die dem einzigartigen mongolischen Okosystem

entstammen, phytochemisch untersucht.

Das Thema der vorliegenden Arbeit war die Isolierung wund Strukturaufkliung der
Sekundidrmetabolite von Arzneipflanzen und die darauf folgende Untersuchung der
pharmakologischen Wirksamkeit. Zur Auftrennung und Aufreinigung der Reinsubstanzen aus den
Extrakten kamen unterschiedliche moderne Chromatographiesysteme zur Anwendung. Die
Strukturaufkldrung erfolgte auf der Basis intensiver ein- und zweidimensionaler NMR und

massenspektrometrischer Daten.

Zwei mongolische Arzneipflanzen (Scorzonera radiata und Dianthus versicolor) sowie eine
chinesische Arzneipflanze (Psoralea corylifolia) wurden als biologische Quellen fiir die Bearbeitung
im Rahmen dieser Dissertation ausgewihlt. Die isolierten Reinsubstanzen aus diesen Pflanzen sind
in Tabelle 5.1 zusammengefasst. Einige der Naturstoffe zeigten viel versprechende biologische

Aktivitdaten und werden fiir weitere pharmakologische Untersuchungen in Betracht gezogen.

Scorzonera radiata

Die mongolische Arzneipflanze Scorzonera radiata wurde in der Gegend um Ulan Bator in der
Mongolei gesammelt. Chromatographische Aufreinigung des Extrakts aus oberirdischen Teilen der
Pflanze erbrachte fiinf neue Dihydrostilbene, zwei neue Flavonoide, ein neues Chinasdurederivat
sowie zwanzig bekannte Naturstoffe, darunter acht Chinasdurederivate, vier Flavonoide, zwei
Cumarinderivate, fiinf einfache Benzoesdurederivate und ein  Monoterpenglykosid.
Scorzodihydrostilbenes A-E und die isolierten Chinasdurederivate zeigten im DPPH Assay
antioxidative Eigenschaften. Die antioxidativen Aktivititen der Scorzodihydrostilbene A und E

waren stiarker als die des bekannten antioxidativen, natiirlich vorkommenden Stilbens Resveratrol.



Keine dieser Substanzen zeigte Zytotoxizitit gegeniiber den Tumorzelllinien H4IIE und L5178Y
oder Inhibierung von 24 ausgesuchten Proteinkinasen. Nach Hydrolyse der Dihydrostilbenderivate
hemmte das Aglykon von Scorzodihydrostilbene A (ASDSA) das Uberleben von Rattenleberzellen
der Zelllinie H4IIE. Nach Stimulation durch unterschiedliche Konzentrationen von TNF-a erhohte
ASDSA auflerdem konzentrationsabhingig die durch TNF-o vermittelte Zytotoxizitit von H4IIE
Zellen.

Dianthus versicolor

Die mongolische Arzneipflanze Dianthus versicolor wurde in der Region um Ulan Bator in der
Mongolei gesammelt. Der methanolische Extrakt der oberirdischen teile der Pflanze lieferte sieben
bekannte Inhaltsstoffe, zwei Lignane, vier Triterpene und ein Steroid. Die untersuchten Substanzen

entwickelten leichte Zytotoxizitdt gegen die L5178Y Zelllinie und 24 Proteinkinasen.

Psoralea corylifolia

Samen der Pflanze Psoralea corylifolia wurden nach chromatographischer Aufreinigung drei
Cumarine, darunter zwei neue, 7,2'.4'-trihydroxy-3-arylcumarin und Psoracumestan, sechzehn
bekannte prenylierte Flavonoide und ein Meroterpen gewonnen. Die isolierten Metabolite wurden
auf ihre Zytotoxizitit gegeniiber H4IIE, Hct-116 und C6 Zelllinien sowie antioxidative
Eigenschaften im TEAC Assay hin untersucht. Auf Basis dieser Ergebnisse wurden
Struktur-Wirkungs-Beziehungen ermittelt. Die aktiven Naturstoffe wurden weiterhin untersucht auf
ihr apoptotischen und nekrotischen Charakter, um den Wirkmechanismus nédher zu beleuchten Des

weiteren wurden einige Metabolite auf ihre Inhibierung auf Proteinkinasen iiberpriift.
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Introduction

1. Introduction

1.1. The significance of the study

1.1.1. Importance of medicinal plants in drug discovery

Plants have been used as the essential element of traditional medicine systems to serve people all
over the world for thousands of years [Samuelsson, 2004]. An evaluation of the World Health
Organization validated that these ethical medical systems continue to play an important role in the
primary health care of about 80% of the world’s residents [Farnsworth et al., 1985]. Globally, at least
119 compounds derived from 90 plant species can be considered as important drugs. 74% of these
substances were found by the chemical studies through the isolation of the bioactive compounds

from plants used in traditional medicine [Newman et al., 2000].

In the early nineteenth century, isolating the active compounds from extracts was involved for the
use of medicinal plants [Kinghorn, 2001]. Up to the 30’s of last century, a series of natural products
isolated from plants became clinical agents and a number of that is still in use today [Kong et al.,
2003]. More recently, isolation and characterization of pharmacologically active compounds from
medicinal plants for drug discovery continue and become more efficient by applying the new

technologies.

Nowadays there is a renewed interest in investigating plants for medically useful compounds, with
some of the leading pharmaceutical and research institutions involved in this search. More than 50%
of the 25 best-selling drugs worldwide were related directly to natural products. In 1990’s, 61% of
anticancer agents approved were natural products and their derivatives [Cragg et al., 1997]. In the
same period, among the projects performed by the top twenty international pharmaceutical
companies, more than 80% of the compounds involved were from microorganisms and natural
products. Moreover, approximately 40% of the projects at the clinical test and pre-clinical test stage

were correlated to natural products [Liu, 2000].
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1.1.2. Plant natural products as drugs

Drug discovery from medicinal plants led to the isolation of early drugs, such as quinine from
Cinchona bark, morphine and codeine from the opium poppy, and digoxin from Digitalis leaves, in
addition to atropine and scopolamine from the family Solanaceae, some of which are still in clinical
use [Kong et al., 2003; Butler, 2004]. Plant natural products exhibit the major impact as templates or

direct treatment in the treatment of cancers and anti-infective aspects [Newman et al., 2000].

Artemisinin is a sesquiterpene endoperoxide isolated from the shrub Artemisia annua which had
been used for centuries as a traditional chinese antimalarial medicine (named Qinghaosu). Using the
base structure of artemisinin, many semi-synthetic compounds were made with the aim of optimizing
the pharmacology of the base molecule. Now, artemisinin-based combination therapies are generally

considered as the best current treatment for malaria [Clark, 1996].

Ephedrine was obtained as a pure substance from Ephedra sinica which had been known in
traditional Chinese medicine for millennia as treatment for asthmatic and other bronchial conditions.
It has been demonstrated that ephedrine can cause elevation of blood pressure, plus inotropic and
chronotropic actions of the heart. Following regulatory approval, it became the first in a very long
line of bronchodilator agents. Ephedrine significantly affected blood pressure due to its effects on
cardiac output and on release of other sympathomimetic amines; one now has available related
structures that are specific blockers of such activities on cardiac tissue and are excellent ‘reducers of

hypertension’.

Morphine and codeine were isolated from the latex of the opium poppy (Papaver somniferum) for
the conquest of pain. The crude extract of opium contains about a quarter of its weight as opium
alkaloids with up to 20 more distinct alkaloids including thebaine, papaverine and noscapine. Some

close relative substances are also prepared for use in cough syrups.

Cancer is the most dangerous disease to human beings, while plants have a long history of use in the

treatment of cancer. Amongst the best known are vinca alkaloids, vinblastine and vincristine,
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isolated from Catharanthus roseus, the Madagascan periwinkle. C. roseus was used by various
cultures as a source of hypoglycemic agents [Pezzuto, 1997]. Vinblastine and vincristine (also known
as leurocristine) are anti-mitotic drugs used to treat lung, breast, testicular cancer, and leukemia.

Since the 1950’s, vinblastine has increased the survival rate of childhood leukemia by 80%.

Podophyllotoxin was isolated as the anti-tumor agent from the rhizome of American mayapple,
Podophyllum peltatum. This non-alkaloid toxin of the lignan family is also present in various other
species of the genus Podophyllum. These plants were medicinal used by early American and Asian
cultures to treat skin cancers and warts at length [Cragg ef al., 1994]. The two clinically-active agents,
etoposide and teniposide, were subsequently synthesized from the naturally occurring epimer
(epipodophyllotoxin) of podophyllotoxin. Etoposide phosphate is an inhibitor of the enzyme
topoisomerase II and is used to treat malignancies, such as lung, testicular cancer, lymphoma and

leukemia. Teniposide is mainly used in the treatment of childhood acute lymphocytic leukemia.

Camptothecin was isolated from the bark and stem of the Chinese native ornamental tree
Camptotheca acuminate. It is a cytotoxic quinoline alkaloid inhibiting the DNA enzyme
topoisomerase I specifically [Wall et al., 1966]. Due to the adverse drug reaction, such as the severe
bladder toxicity, two modified analogues, topotecan (Hycamptin®) and irinotecan (Camptosar®),
have been approved and are used in cancer chemotherapy today. Topotecan is mainly used for the

treatment of ovarian and lung cancer, while irinotecan is used to treat colon cancer.

Paclitaxel (Taxol®) as a complex diterpene was isolated from the bark of the pacific yew tree, Taxus
brevifolia. In history, several native American tribes used the yew tree of Taxus species for some
non-cancerous conditions [Newman et al., 2000]. Today, paclitaxel is a mitotic inhibitor used to treat
lung, ovarian, breast cancer. Together with its active analog, docetaxal, paclitaxel forms the drug

category of the taxanes.
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Figure 1.1 Plant natural products as drugs

1.2. Phenolic Compounds

Phenolic compounds of plant origin constitute one of the most numerous and ubiquitous groups of
plant secondary metabolites. They have a wide variety of functions, including defense against
herbivores, pathogens aggression, or other sources of injury; as structural components of cell walls;
as protection from ultraviolet radiation; as pigments; and as signaling molecules [Bravo, 1998].
Phenolic compounds are attracting increasing attention due to their reputed beneficial effects on
human health protection. They are reported to play a role in the prevention of cardiovascular disease,
cancer, diabetes mellitus, and neurodegenerative disease [Scalbert ef al., 2005]. Particularly for the

4
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diseases associated with oxidative stress, polyphenols inhibit oxidation of cholesterol and formation
of low-density lipoprotein (LDL) particles that are involved in atherosclerosis [Marrugat et al., 2004].
Phenolic compounds are also found in many medicinal plants, they modulate the activity of a wide
range of enzymes and cell receptors [Manach et al., 2004]. The main groups of polyphenols are:

flavonoids, phenolic acids, stilbenes and lignans.

Flavonoids are the most abundant polyphenols and are divided into 6 subclasses according to the
oxidation state of the central pyran ring. More than 7000 flavonoids have been identified in plants,
and the list is constantly increasing [Harborne and Williams, 2000]. This is because of the occurrence
of numerous substitution patterns in which primary substituents can themselves be substituented,

sometimes yielding highly complex structures [D'Archivio et al., 2007].

Flavonoids are most commonly known for their antioxidant activity. However, it is already
established that thay make some contribution to disease resistance, such as against cancer and heart
disease, and are the result of other mechanisms [Ververidis et al., 2007]. Flavonoids have been
referred to as “nature’s biological response modifiers” because of strong experimental evidence of
their inherent ability to modify the body's reaction to allergens, viruses, andcarcinogens [ Yamamoto

and Gaynor, 2001].

Phenolic acids can be classified into benzoic acid derivatives and cinnamic acid derivatives.
Hydroxycinnamic acids are more common than hydroxybenzoic acid, and consist mainly of
p-coumaric, caffeic, ferulic, and sinapic acids. These compounds are mostly found as glycosylated

derivatives or esters of quinic acid, shikimic acid, and tartaric acid [Manach et al., 2004].

Stilbenes are products from a cinnamoyl-CoA starter unit, which is a phytoalexin produced by plants
when under attack by pathogens, such as bacteria or fungi, or to a variety of stress conditions
[Delmas et al., 2006]. The best known stilbene is resveratrol, which has assumed greater relevance in
recent years with antioxidant, anti-inflammatory, cancer preventative, and beneficial cardiovascular
properties [Roupe et al., 2006]. Resveratrol has also been shown to extend the life span of several

short-living species of animals [Baur and Sinclair, 2006].
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Lignans are one of the major classes of phytoestrogens and also act as antioxidants, which are
derived from phenylalanine. The interest in lignans and their synthetic derivatives is growing
because of potential applications in cancer chemotherapy and various other pharmacological effects

[Saleem et al., 2005].

However, when incorporated at high doses, plant phenols may also be negative for human health or
even toxic. It is important to study the potential risk of these compounds which involves a detailed
analysis of their resorption, metabolism as well as structure activity studies. Based on such a detailed

analysis a scientifically sound evaluation of the beneficial properties as well as of their risk potential

will be possible.
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Figure 1.2 Phenolic compounds of plant origin
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1.3. Herbs of traditional Mongolian medicine

Traditional Mongolian medicine was introduced by Tibetan Lamaists, and developed over many
years among the Mongolian people. Herbs are the mainstay (about 72%) of Mongolian traditional
medicine. Various medicinal plants and herbal prescriptions were used to prevent and cure human

and animal diseases.

Mongolia mainly consists of steppes and has an extreme continental climate, which provide specific
habitat for plants. There are 854 species of plants (about 32 % of total estimated Mongolian vascular
plants) utilized as folk medicine in Mongolia, including 280 species containing alkaloids, 238
species containing flavanoids, 65 species containing cumarins, and 232 saponin-bearing plants

[Gubanov, 1996].

However, only very few ancient literature about Mongolian plants remaines today, and modern
investigations, such as phytochemical studies, for Mongolian plants were scarcely conducted. On the
other hand, the worldwide information about Mongolian plants was scanty, due to most publications
being in Mongolian or Russian [KLETTER et al., 2008]. So far just three books with regard to
Mongolian medicinal plants for traditional use have been published in English [Ligaa, 1994; Grubov,
2001; Boldsaikhan, 2004]. Consequently, there is a need to research on those fragile natural
resources as a promising scientific task, and to prove the efficacy of the traditional medication which

can be considered for a potential drug discovery.

1.4. Aim of the present study

The investigation on medicinal plants intends searching for new and bioactive natural products;
studying the chemical diversity and chemical ecology; explaining the substances which play roles in
medical use of plants; as well as their pharmacological targets. This study is focused on the isolation
and characterization of biologically active secondary metabolites from Mongolian and Chinese
medicine plant extracts. The isolated compounds were evaluated for their cytotoxic and antioxidant

activities. Cytotoxicity was studied in vitro using mouse lymphoma (L5178Y), rat hepatoma
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(H41IE), human colon carcinoma (HCT116) and rat glioma (C6) cell lines and with 24 protein
kinases. Some characteristic compounds were further investigated to understand the induced
mechanism of cell death, such as apoptosis and necrosis, by Apo-ONE, LDH and SEAP assay.
Antioxidant activity was determined by DPPH and TEAC assay. Different chromatographic
techniques were used for the isolation of biologically active compounds like TLC, CC, or

semi-preparative HPLC.
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2. Material and Methods

2.1. Biological material

Aerial parts of Mongolian medicinal plants Scorzonera radiata and Dianthus versicolor were
collected in July 2004 in Khandgait am forest, Ulaanbaatar region, Mongolia. The plants were
identified by Prof. Sc. D. Sh. Darijmaa (Mongolian State University of Education). Voucher
specimens have been deposited in the herbarium section of the Department of Organic and Food

Chemistry, National University of Mongolia, Ulaanbaatar, Mongolia.
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Figure 2.1 The map of mongolia

2.1.1. Scorzonera radiata

Taxomony

Phylum: Magnoliophyta

Class: Magnoliopsida

Order: Asterales

Family: Asteraceae

Genus: Scorzonera

Species: Scorzonera radiata Fisch.
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2.1.2. Dianthus versicolor

Taxomony

Phylum: Magnoliophyta

Class: Magnoliopsida

Order: Caryophyllales

Family: Caryophyllaceae

Genus: Dianthus

Species: Dianthus versicolor Fisch.

2.1.3. Psoralea corylifolia

Taxomony

Phylum: Magnoliophyta

Class: Magnoliopsida

Order: Fabales

Family: Fabaceae

Subfamily: Faboideae

Genus: Psoralea

Species: Psoralea corylifolia Linn.

Seeds of Chinese medicine plant Psoralea corylifolia were bought in September 2006 from
Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., Hangzhou, China. The plant material of
Psoralea corylifolia was extracted in the working group of Prof. Yijia Lou (Institute of Parmacology

and Toxicology, Zhejiang University, China) by Mr. Zhigiang Wang.

2.2. Laboratory chemicals

2.2.1. General laboratory chemicals

Acetic acid Merck
Anisaldehyde (4-methoxybenzaldehyde) Merck
(-)-2-butanol Merck
Hydrochloric acid Merck
Potassium hydroxide Merck
ortho-phosphoric acid 85% (p.a.) Merck
Sulphuric acid, conc. Merck
Trifloroacetic acid (TFA) Merck

10
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2.2.2. Solvents

2.2.2.1. General solvents:

Acetone
Acetonitrile
Dichloromethane
Ethanol

Ethyl acetate
Hexane
Methanol

The solvents were purchased from the Institute of Chemistry, University of Duesseldorf. They were

distilled before using and special grade were used for spectroscopic measurements.

2.2.2.2. Solvents for HPLC:
Methanol was LiChroSolv HPLC (Merck), nano-pure water (distilled and heavy metals free water)
was obtained by passing distilled water through nano- and ionexchange filter cells (Barnstead,

France).

2.2.2.3. Solvents for optical rotation:

Chloroform spectral grade Sigma
Methanol spectral grade Sigma

2.2.2.4. Solvents for NMR:
Deuterated methanol, chloroform, dimethylsulfoxide, water (Uvasol, Merck) were used for NMR

measurements.

2.2.3. Chromatography

Pre-coated TLC plates (Aluminium, Silica Gel 60 F,s4, Merck
layer thickness 0.2mm)

Silica Gel 60, 40—63 um mesh size Merck
Pre-coated TLC plates (Aluminium, RP-18, Fyss S, Merck
layer thickness 0.25mm)

RP-18, 40-63 um mesh size Merck
Amberlit XAD. Diaion PH 20, Dowex MCI Gel Merck

Sephadex LH 20, 25-100 ym mesh size Merck

11
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2.3. Laboratory instruments

12

General instruments

Analytical balances MC-1

Half-micro and analytical balance MC-1
pH-meter inoLab, pH-Electrode Sen Tix 21
Desiccator

Hot plate and magnetic stirrer: IKA-Combimag RCH
Glass ware

Drying Oven ET6130

Ultra sonicator RK 510H

UV-Lamp (254 and 366 nm)

Rotary evaporator

Vacuum pump CVC 2000

Centrifuge Pico

Nitrogen generator UHPN 3001

Air generator ZA 20

Fraction collector Retriever 11

Lyvac GT2 (Freeze dryer)

Vacuum pump Trivag D10E (Freeze dryer)
SPD 111V (Speedvac)

Cooling trap RVT 400 (Speedvac)
Vacuum pump VLP 80 (Speedvac)
Syringe

Mill

Magnetic stirrer

Semipreparative HPLC

Pump: L-7100

Detector: UV-L7400 (Photodiode array detector)

Printer: Chromato-Intergartor D-2000

Column: Eurospher 100-C18, [10 gm; 300 mm x 8 mm]
Pre-column: Eurospher 100-C18, [10 gm; 30 mm x 8 mm]

Analytical HPLC

Pump: P 580A LPG

Autosampler: ASI-100T (injection volume = 20 uL)
Detector: UVD 340S (Photodiode array detector)

Column oven: STH 585

Column: Eurospher 100-C18, [5 ym; 125 mm x 4 mm)]
Pre-column: Vertex column, Eurospher 100-5 C18 [5-4 mm]
Software: Chromeleon (V. 6.30)

Sartorious
Sartorious

WTW

Glaswerk Werthein
Janke & Kunkel KG
Schott Duran
Heraeus

Bandelin

Camag

Biichi Rotavapor R-200
Vacuubrand
Heraeus

Nitrox

WGA

ISCO

Steris

Leybold

Savant

Savant

Savant

Hamilton 1701 RSN
Molinex 354
Variomag Multipoint HP
Behrotest PH 10-Set

Merck/Hitachi
Merck/Hitachi
Merck/Hitachi
Knauer
Knauer

Dionex
Dionex
Dionex
Dionex
Knauer
Knauer
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HPLC-MS
Analytical HPLC: Agilent 1100 series (Photodiode array detector) Agilent
MS: Finigan LCQ-DECA Thermoquest
Ionizer: ESI and APCI Thermoquest
Vacuum pump: Edwards 30 BOC
Column: Eurospher 100-C18, [5 ym; 227 mm X 2 mm)] Knauer
Pre-column: Vertex column, Eurospher 100-5 C18 [5—4 mm)] Knauer
NMR
DRX-500 Bruker
ARX-400 Bruker
DMX-600 Bruker

2.4. Chromatographic methods

The general features of the molecule that are helpful to ascertain the isolation process include

solubility, acid-base properties, stability, and molecular size.

2.4.1. Thin layer chromatography (TLC)

Analytical TLC was applied in the detection and monitoring of compounds through a separation
process, and was used to optimize solvent systems for column chromatography. It has use also in the
biological evaluation of antioxidant metabolites. TLC was performed on pre-coated TLC plates with
silica gel 60 F,s4 (layer thickness 0.2 mm, E. Merck, Darmstadt, Germany) with ethyl acetate :
formic acid : water (85:10:5) as mobile phase. The band separation on the TLC describing the
separation of compounds was detected under UV absorbance at 254 nm (fluorescence absorption)
and 366 nm (fluorescence), followed by spraying the TLC plates with anisaldehyde-H,SO,4 reagent
and subsequent heating at 110 °C. TLC was conducted prior to further work to track the identity of

each fraction and the qualitative purity of the isolated compounds.

Anisaldehyde-H,SO4 Spray Reagent (Per 100 mL)

Methanol: 85 mL

Glacial Acetic Acid (100%): 10 mL

Sulphuric acid, conc.: SmL (added slowly)

Anisaldehyde: 0.5 mL

The reagent was stored in an amber-coloured bottle and kept refrigerated until use.

13
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2.4.2. Column chromatography (CC)

Open column chromatography plays an important role in the separation of compounds from natural
product extracts. The separation takes place through selective distribution of the components
between a mobile phase and a stationary phase. Different choice of packing material and mobile
phase can be applied depending on the class of compounds or fractions. Several types of separation

processes involved in this study.

Silica Gel is regarded as a typical polar sorbent and has a weakly acidic surface. Polar compounds
containing carboxylic or hydroxyl group are strongly absorbed on silica gel. It was only used for few

lipophilic fractions.

Reversed phase C;g (RP-18, ODS) is chemically modified silica gel with octadecasilylchloride. It is
retentive for nonpolar compounds, and is ideal for various types of hydrophilic natural product

isolation. RP-18 has great reproducibility of packing material performance.

Diol is prepared by treating silica gel with the chloroalkoxysilane containing two hydroxyl function
groups. It was utilized for the intermediate polarity natural product isolation. Diol also has better

reproducibility comparing to standard normal-phase chromatography.

Sephadex® LLH-20 is prepared by crosslinking water-soluble dextran with epichlorohydrin to be
size-exclusion stationary phase. The separation is on the basis of molecular size and shape of the
analyte molecules, accordingly molecules elute in order of decreasing size. It is particularly ideal for
labile natural products and for removal of chlorophyll from plant extracts. Sephadex® LH-20 usually
does not adsorb compounds irreversibly, and can be used for several experiments without the need

for regeneration.

Diaion® HP-20 is a grade of polyaromatic adsorbent resin based on crosslinked polystyrenic matrix.
The resin is a relatively large particle size bead (250-850 um), which is a good alternative for the

substances which give poor separation and recovery on silica-based materials. It especially is useful

14
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for desalting.

2.4.3. Low-pressure liquid chromatography (LPLC)

Positive pressure was applied to the top of the column to accelerate the flow rate and achieve better

resolution in LPLC. It uses particle size in the 40—-60 um range.

Flash chromatography is the liquid column chromatography (CC) under a pressure. The column

was a silica gel 60 GFs4 prepacked column (18 cm), and the pressure was supplied by an air pump.

Lobar®, ready-to-use glass column is filled with LiChroprep® RP18, 4063 um packing. A pump
which can deliver a smooth and constant flow of solvent is involved for Lobar® column. The run

time of LPLC is reduced considerably compared to that of open column chromatography.

2.4.4. Semi-preparative high-performance liquid chromatography (HPLC)

HPLC is a robust, versatile, and usually rapid technique to purify compounds from complex mixtures.
The reversed-phase C;g chromatography was used as the exclusive stationary phase of HPLC in this
study. All samples for semi-preparative HPLC must be analyzed thoroughly and pretreated to make
the separation optimal and maintain the life-span of the HPLC system. The eluant used in
semi-preparative HPLC comprises a mixture of nanopure water and methanol. The isocratic
conditions were always the premier, even the only choice to achieve separations. 50 puL of
approximately 40 mg/mL solution of the substance was injected for each time. The flow rate was
stabilized at 5 mL/min, and the paper speed of the recorder was 5 mm/min. The eluted peaks were

collected respectively by manual work based on the records of a UV-vis detector.

2.4.5. Analytical high-performance liquid chromatography (DAD-HPLC)

Analytical HPLC which is a HPLC coupled to a PDA (photodiode array) detector, is extremely
useful for the analysis of natural products containing chromophores, such as phenolic compounds. It

can help to analyze individual HPLC peaks, and to obtain complete UV spectrum of individual

15
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components. The HPLC retention time and the UV spectrum for any component (HPLC peak) can be
characteristic of certain compounds. The whole system was run by a sophisticated software
(Chromeleon® Version 6.30) that allows building up of spectral libraries for reference compounds

and automated compound search.

The conditions of analytical HPLC:

Flow rate: 1 mL/min

Injection volume: 20 uL.

Sample concentration: ca. 0.1 mg/mL

Column temperature: 20 °C

UV detection wavelengths: 235, 254, 280, and 340 nm

For a standard method, the gradient eluant was composed by 0.15% phosphoric acid in nanopure

water (pH 2.0) and methanol, which was showed in Table 2.1.

Table 2.1 Standard gradient for analytical HPLC
Time (min) Acidic water (%) Methanol (%)

0 90 10
5 90 10
35 0 100
45 0 100
50 0 10
60 0 10

2.5. Mass spectroscopy (MS)

Mass spectroscopy (MS) is an analytical technique for the determination of the elemental
composition of a molecule and for elucidating the chemical structures of molecules. These include
identifying unknown compounds, determining the isotopic composition of elements in a molecule,
and determining the structure of a compound by observing its fragmentation The MS principle
consists of ionizing chemical compounds to generate charged molecules or molecule fragments and

measurement of their mass-to-charge ratio (m/z).
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2.5.1. HPLC-MS

HPLC-MS refers to the coupling of an HPLC with a mass spectrometer (MS), which combines the
chemical separating power of LC with the ability of a mass spectrometer to selectively detect and
confirm molecular identity. It provides information on the molecular weight as well as on the
fragmentation pattern of the analyte molecules. Consequently the separated sample emerging from
the column can be identified on the basis of its mass spectral data. Electrospray (ESI) and

atmospheric pressure chemical ionization (APCI) are the two interfaces used for LC-MS.

The conditions of HPLC-MS:

Flow rate: 0.4 mL/min

Injection volume: 10 uL.

Sample concentration: ca. 0.1 mg/mL

Column temperature: room temperature

UV detection wavelengths: 235, 254, 280, and 340 nm

For a standard LC-ESI-MS-MS measurement, the gradient eluant was composed by 0.1% formic
acid in nanopure water and acetonitrile, which was showed in Table 2.2. The samples were dissolved

in water and methanol.

Table 2.2 Standard gradient for HPLC-MS
Time (min) Acidic water (%) Acetonitrile (%)

0 90 10
5 90 10
35 0 100
45 0 100
50 0 10
60 0 10

2.5.2. Electron spray ionization mass spectroscopy (ESIMS)

In ESI method, a solution of a substance is sprayed through a capillary into a chamber. Charged
droplets are produced by an applied potential of a few kV, and in the following are driven by the
electric field to move into the pre-analyser region. ESIMS is a powerful analytical method, because it

allows one to analyse the molecular ions of polar and higher molecular compounds in aqueous

17
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solution.

2.5.3. Electron impact mass spectroscopy (EIMS)

From the direct inlet, a fine and persistent beam of molecules streams into the ion source where it
intersects perpendicularly with an electron beam. The interaction between the electrons and the
neutral molecules generates positively charged molecular ions. EIMS was the alternative ionization
procedure to LC-ESIMS for the natural products which have no chromophore, for instance
triterpenes, and the compounds which did not yield a molecular ion or the intensity was too low

under ESI conditions.

EIl mass spectra were measured on a Finnigan MAT 8430 mass spectrometer in Institut fiir

Anorganische Chemie und Strukturchemie, Heinrich-Heine Universitit, Diisseldorf.

2.5.4. High resolution mass spectroscopy (HRMS)

High resolution is achieved by passing the ion beam through an electrostatic analyzer before it enters
the magnetic sector. In such a double focusing mass spectrometer, ion masses can be measured with
an accuracy of about 1 ppm. With measurement of this accuracy, the atomic composition of the
molecular ions can be determined. HRESIMS spectra were determined on a ThermoFinnigan
LTQ-Orbitrap FT-ESIMS. Measurements were processed by Dr. RuAngelie Edrada-Ebel at
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow,

U.K..

2.6. Nuclear magnetic resonance spectroscopy (NMR)

The NMR phenomenon is based on the fact that nuclei of atoms have magnetic properties that can be
utilized to yield chemical information. NMR spectroscopy is a preeminent technique for determining
the structures of organic compounds. Of all the spectroscopic methods, it is the only one for which a

complete analysis and interpretation of the entire spectrum is normally expected.
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The NMR spectra were measured at Institut fiir Anorganische Chemie und Strukturchemie,
Heinrich-Heine Universitit, Diisseldorf with ARX-500 spectrometer (Bruker). For better analysis,
some spectra were measured by Dr. Victor Wray with Bruker DPX 300, ARX 400, or DMX 600
NMR spectrometers at Helmholtz Centre for Infection Research, Braunschweig. All attached NMR
spectra were processed using MestReNova V5.2.2.. Methanol-d4, dimetyl sulfoxide-ds (DMSO-d),
CDCl;5 and D,0O were used as solvents depending on the solubility of the samples and the effect of
solvents. Residual solvent signals were used as internal standards (reference signal). The chemical

shifts (o) values were given in ppm and the coupling constants (/) in Hertz (Hz).

2.7. Optical activity

The rotation of plane-polarized light is known as optical activity. Rotation to the right is given a
positive value, rotation to the left a negative one. Optical rotations were recorded on a Perkin-Elmer
241 MC polarimeter. The substance was stored in a 0.5 mL cuvette with 1 dm length. [a]ZOD is the

specific optical rotation at the wavelength of the solium D-line, 589 nm, at a temperature of 20 °C.

2.8. Hydrolysis of the dihydrostilbene glucoside

An acid catalysed hydrolysis reaction was used to split the glucosides to aglycones and glucoses. A
solution of dihydrostilbene derivative (2 mg) was hydrolysed with 2 mL 1% HCI under reflux for 1.5

hours

2.9. Procedure for isolation of secondary metabolites from medicinal plants

2.9.1. Isolation of secondary metabolites from Scorzonera radiata

The air-dried, powdered plant material of S. radiata (300 g) was extracted exhaustively by
maceration with MeOH (3 x 400 mL) at room temperature. The total extract was concentrated to

dryness under vacuum. The concentrated solids (32.0 g) were reconstituted with 100 mL of
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MeOH/H,O0 (3:7) and then partitioned successively with hexane (5 x 100 mL), EtOAc (5 x 100 mL),
and n-BuOH (5 x 100 mL) to give the hexane, EtOAc, n-BuOH, and aqueous fractions.

Aliquot amounts of the EtOAc fractions of the MeOH extract derived from the aerial parts of S.
radiata (1.98 g) were separated by HP-20 resin CC with gradient elution using H,O and MeOH as
solvents to afford 10 fractions. Compounds 1 (34.7 mg, 0.018% yield) and 2 (55.3 mg, 0.028% yield)
were separated by Sephadex LH-20 CC using MeOH as mobile phase. Compounds 3 (14.1 mg,
0.007% yield), 4 (3.4 mg, 0.002% yield), and 5 (1.1 mg, 0.0006% yield) were purified by

semipreparative HPLC utilizing RP-18 as stationary phase and mixtures of MeOH/H,O as solvent.

EtOAc extract of S. Radiata (aerial part) 1.98 g

|HP—20 MeOH/H,0 (10% - 100%)

!

Fraction 4 Fraction 5 Fraction7
216.9 mg 817.3 mg 242.6 mg
| Sephadex LH-20 Sephadex LH-20 Sephadex LH-20
l 10017” MeOH 100% MeOH 100% MeOH
Scorzodihydrostilbene A Fraction 4 A
34.7 mg 43.8 mg Fraction 4 Scorzodihydrostilbene B
Semipreparetive HPLC | . 25.8 mg 55.3 mg
MeOH:H,0=30:70 Fraction 3 Semipreparetive HPLC
raction MeOH:H,0=20:80
155.0 mg =
Scorzodihydrostilbene C  Scorzodihydrostilbene A RP18 l
14.1 mg 14.5 mg MeOH:H,0=25:75 Scorzodihydrostilbene C

R

Scorzodihydrostilbene A Fraction 3  Scorzodihydrostilbene B Fraction 5

77.4 mg 6.4 mg 31.3 mg 21.1 mg
Semipreparetive HPLC Semipreparetive HPLC
MeOH:H,0=35:65 MeOH:H,0=28:72
Scorzodihydrostilbene D Scorzodihydrostilbene E
3.4 mg 1.1 mg

20



Materials and Methods

EtOAc extract of S. Radiata (aerial part) 1.98 g
| HP-20 MeOH/H,0 (10% - 100%)

!

}

!

}

Fraction 1 Fraction 4 Fraction 5 Fraction 7
240.5 mg 216.9 mg 817.3 mg 242.6 mg
Sep ha;iex LH-20 Sephadex LH-20 Sephadex LH-20 | Sephadex LH-20
100% MeOH 100% MeOH 100% MeOH 100% MeOH l
Arbutin  Quinic acid | ' ' . .
Q Fraction 5 Fraction 3 Fraction 5 Fraction 7 Fraction 3 Fraction 4
23.6 mg 155.0 mg 57.4mg 403.0 mg -> mg -> mg
Semipreparetive Silica gel RPI18 Diol Semipreparetive
HPLC DCM:MeOH=90:10]  MeOH:H,0%35:65 DCM:MeOH=90:10 HPLC RP18
MeOH:H,0=25:75 MeOH:H,0=35:65 MeQH:H,0=35:65
Lol l
Piceol Umbelliferone Fraction 2 3,5-Dicatfeoylquinic
8.5 m; 6.4 m, 16.7 m acid D ranto
4-Hydroxybenzoic lanceoloside A ¢ g ) ¢ 242 .0m Umbelliferone  Macroantoin G
d 6.8 m Semipreparetive -umg 3.5m 9.8 mg
aci .8 mg HPLC 5 mg
2.5 mg MeOH:H,0=40:60
3,3'5,5',7- Macroantoin G &
pentahydroflavanone ~ Macroantoin F
1.9 mg 7.0 mg
n-BuOH extract of S. Radiata (aerial part) 4.2 g
Sephadex LH-20
100% MeOH
Fraction 2 Fraction 5 Fraction 6 Fraction 10
506.1 mg 133.3 mg 316.3 mg 21.0 mg

MPLC RP18
MeOH/H,0 (2(%-100%)

Fraction 2
9.6 mg
Semipreparative
HPLIC

MeOH:H,p =5:95

Staphylionoside D
3.0 mg

Sephadex LH-2

Sephaflex LH-20

Semiprepjrative

100% MeOH

4

1000 MeOH

Fraction 5 Fraction 9 Rutin
16.9 mg 128.3 mg 121.2 mg Isoorientin
Semiprepdrative Iobar RP18 5.1 mg
HPL MeOH[H,0 (30%-50%)
MeOH:H,0[= 10:90 t
A l
Scorzonerin B Fraction 7 Kaempferol-3-rutinoside
1.3 mg 16.7 mg 32.9 mg
Semiprepagative
HPLQ
l MeOH:H,O f 36:64 J
Violanthin Scorzonerin A Scorzonerin B
3.1 mg 7.0 mg 0.9 mg
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n-BuOH extract of S. Radiata (aerial part) 4.2 g

Sephadex LH-20
100% MeOH
l l l |
Fraction 3 Fraction 6 Chlorogenic acid 3,5-Dicaffeoyl- Fraction 15
1749.7 mg 316.3 mg 240.1 mg epi-quinic acid 34.3 mg
Sephadex LH-20 103.2 m
Sephadex LH-20 g Semiprerarati
100% MeOH 100% MeOH R
MeOH:H,P = 5:95
Fraction 5 Fraction 7 Fraction 7
raction raction
12.7 m; ; ;
238.3 mg 263.9 mg | ®  Semipreparative
HP20 HP20 MeOHH0 = J0: 70 4,5-Dicaffeoyl- 4,5-Dicaffeoyl
MeOH/H,0 (10%|- 100%) MeOH/H,O (10% - 100%) epi-quinic acid  quinic acid
5-p-Coumaroyl 5-p-Coumaroyl 3.1 mg 3.0mg
quinic acid (E) quinic acid (Z)
v v 0.6 mg 0.6 mg
Arbutin ~ Piceoside Fraction 7 Arbutin Fraction 4 Scorzodihydrostilbene A
1414mg 133mg 519mg 124.6mg 33.4mg 8.0 mg
RPIB HP-20
MeOH/H,0 (5% - 50% MeOH/H,0 (0% - 100%)
Scorzodihydrostilbene B Skimmin
14.0 mg 4.4 mg
2.9.2. Isolation of secondary metabolites from Dianthus versicolor
EtOAc extract of D. Versicolor (6.52 g)
Sephadex LH-20
100% MeOH
Fraction 5 Fraction 6
2599.5 mg 1704.7 mg
Sephadex LH-20
100% % \—l
Fraction 6 Fraction 2
486.9 mg 572.2 mg
Silica gel Sephadex LH-20
Hexan:DCM (3:1, DCM, MeOH) 100% MeOH
Lupeol Pseudotaraxasterol f-sitosterol Ptiloepoxide Fraction 17 Fraction 4 Fraction 6
77.9 mg 39.0 mg 7.6 mg 6.3 mg 42.7 mg 190.8 mg 88.0 mg
Silica gel Silica gel Silica gel
DCM:MeOH = 98:2 Hexan:EtOAc = 55:45 Hexan:EtOAc = 65:35
Fraction 2 Taraxasterol  (-)-Arctigenin Piceol (-)-Matairesinol
15.1 mg 7.4 mg 763mg  21.5mg 88.2 mg

Semipreparative HPLC
MeOH:H,0 = 50:50

11a,13-Dihydro desacyl cynaropicrin-(4-
hydroxytiglate)

}

New compound
0.4 mg

1.3 mg
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2.9.3. Isolation of secondary metabolites from Psoralea corylifolia

EtOAc extract of P. Corylifolia (seeds) 5.43 g

Sephadex LH-20
100% MeOH

4 Y l Y
Fraction 5 Fraction 8 Fraction 10 Fraction 11
1056.8 mg 106.9 mg 631.9 mg 356.9 mg
Sephadex LH-20 Sefhadex LH-20 Diol Hebane:EtOAC Si%‘g‘éel’\‘d :gﬁzo
100% MeOH 1p0% MeOH (70:30, 60:40, 40:60, 30:70, EtOAC)
A 17‘1
Bakuchiol Fraction 4 Psoralidin Isobavachalcone
323.5mg 76.6 mg - . 27.1 mg 297.0 mg
Diol H ELOA Psoralidin Fraction 13
10 exane: C
(70:30, 60:40, 50:50, EtOAc) 342 mg 96.1 mg
Sephadex LH-20
l l l l 100% MeOH
Corylin Bavachin Neobavaisoflavone 8-Prenyldaidzein Fraction 3
24 mg 15.0 mg 33.7 mg 4.1 mg 10.7 mg

l

Semipreparative HPLC
MeOH:H,0 = 50:50

7,2' A'-trihydroxy-3- Corylifol C
arylcoumarin 24 mg

0.6 mg

EtOAc extract of P. Corylifolia (seeds) 5.43 g

Sephadex LH-20
100% MeOH
Fraction 10
631.9 mg .
Diol Hexane:EtOAc
| (70:30, 60:40, 40:60, 30:70, EtOAc)
Fraction 2 Fraction 4 Broussochalcone B Fraction 8 Fraction 9
16.7 mg (6.9mg) (16.5mg) 32.2 mg 38.9 mg
Semipreparative HPLC
Semipreparative HPLC MeOH:H,( =75:25 RP-18 RP-18

MeOH:H,0 = 80|20

I

MeOH:H,0=70:30

MeOH:H,0=60:40

Bavachromene New coumestrol
0.9 mg 0.4 mg . |
Bavachalcone Fraction 1 Fraction 2 Xanthoangelol — Psorachalcone A Fraction 3
9.0 mg 6.0 mg 19.4 mg 1.8 mg 6.8 mg (2.4mg)
Isobavachromene Semipreparati
. : preparative HPLC ) )
1.8 mg Semipreparative HPLC MeOH:H.O = 60:40 Semipreparative HPLC

Bakuchalcone
2.3 mg

MeOH:H,0 = 55:45

|

6-Prenylnaringenin

=

Isowighteone

(3.7mg) 0.5 mg

MeOH:H,0 = 65:35

Wighteone
0.4 mg
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2.10.Biological assays

2.10.1. Antioxidant activity

2.10.1.1.Radical-scavenging activity by DPPH

Qualitative analysis of radical-scavenging activity of the extracts and fractions was carried out by
spraying the TLC plates after development in an appropriate solvent system (EtOAc/HCO,H/H,0,
85:10:5) with 1% 2,2-diphenyl-1-picrylhydrazyl (DPPH) reagent. Active components were observed

as yellow bands against a violet background.

To quantify the antioxidative capacity, absorption at 517 nm was determined after a test sample
dissolved in 10 uLL of MeOH had reacted with 490 ul. DPPH solution (100 uM) at room
temperature. Incubation time was 5 min. Prior to measurement, the difference in absorption between
a DPPH blank solution and the positive control (propylgallate, 100 uM) was determined. This
difference was then taken as 100% antioxidative activity. The percent antioxidative activity could be
calculated from the difference in absorption between the test sample at 100 uM and the DPPH blank

as follows: [Tsevegsuren et al., 2007]

aa (%) = [(Ag — Ap)/(Ap — Apos)] X 100

where aa = % antioxidative activity in comparison with the positive control, Ag = absorption of
DPPH solution as blank, Ap = absorption of test sample, and Ap,s = absorption of positive control
(propylgallate). Measurements were performed in triplicate, and ICsy values were calculated by

linear regression.

2.10.1.2. TEAC-assay

TROLOX equivalent antioxidative capacity (TEAC) was measured spectro-photometrically
analysing the decolourisation of a stable radical cation ABTS
(2,27-azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid)) at 734 nm in comparison to the synthetic
antioxidant TROLOX [Re et al., 1999]. Absorption was measured after 4 min of mixing the isolated

compound with the ABTS solution.
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2.10.2. Inhibition of different protein kinases

The inhibitory profile of test compounds was determined using 24 protein kinases. The compounds
were firstly tested at one concentration (1 x 10™® g/mL) in singlicate. ICs, values were further
measured by testing 10 concentrations of selected compounds in the range of 1 x 107 g/mL to 3 X

107" g/mL in singlicate.

A radiometric protein kinase assay (*°PanQinase® Activity Assay) was used for measuring the kinase
activity of the 24 protein kinases. All kinase assays were performed in 96-well FlashPlates  from
Perkin Elmer/NEN (Boston, MA, USA) in a 50 uL reaction volume. The reaction cocktail was

pipetted in 4 steps in the following order:

20 uL of assay buffer

5 uL of ATP solution (in H,O)

5 uL of test compound (in 10 % DMSO)

10 uL of substrate / 10 uLL of enzyme solution (premixed)

The assay for all enzymes contained 60 mM HEPES-NaOH, pH 7.5, 3 mM MgCl,, 3 mM MnCl,, 3
uM Na-orthovanadate, 1.2 mM DTT, 50 ug/mL PEGygp00, 1 uM [7—3 3P]—ATP (approx. 5 x 10° cpm

per well).

All protein kinases were expressed in Sf9 insect cells as human recombinant GST-fusion proteins or
His-tagged proteins by means of the baculovirus expression system. For the 24 kinases the following

amounts of enzyme and substrate were used per well:
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Kinase Kinase Kinase Substrate Substrate
Lot# ng/50 uL ng/50 uLL

AKTI1 7 100 GSK3(14-27) (Lot 006) 1000
ARKS5 2 100 RBER-CHKtide (Lot 14.1) 1000
Aurora-A 4 50 tetra (LRRWSLG) 500
Aurora-B 7 50 tetra (LRRWSLG) 250
AXL 3 100 Poly (Glu, Tyr)s.; 125
B-RAF VE 1 20 MEKI1 KM (Lot 021) 250
CDK2/CycA 5 100 RBER-CHKtide (Lot 14.1) 1000
CDK4/CycD1 6 50 RBER-CHKtide (Lot 14.1) 1000
CK2-alphal 3 200 Casein 1000
COoT 17 400 RBER-CHKtide (Lot 14.1) 1000
EGF-R 15 10 Poly (Glu, Tyr)s,; 125
EPHB4 SP006 10 Poly (Glu, Tyr)4.; 125
ERBB2 12 100 Poly (Glu, Tyr)4.; 125
FAK 7 200 Poly (Glu, Tyr)4.; 125
IGF1-R 12 20 Poly (Glu, Tyr)s.; 125
INS-R 5 25 Poly (Ala, Glu, Lys, Tyr)e:2:5.1 125
MET SPO11 100 Poly (Ala, Glu, Lys, Tyr)e:2:5.1 125
PDGFR-beta 12 100 Poly (Ala, Glu, Lys, Tyr)e:2:5:1 125
PLK1 11 50 RBER-CHKtide (Lot 14.1) 2000
PRK1 SP002 100 Histone H2B 1000
SAK 2 200 p38-alphaKRKR (Lot 003) 2000
SRC SP004 10 Poly (Glu, Tyr)s.; 125
TIE2 7 200 Poly (Glu, Tyr)s.; 250
VEGF-R2 14 10 Poly (Glu, Tyr)s.; 125

The reaction cocktails were incubated at 30 °C for 80 minutes. The reaction was stopped with 50 uL
of 2 % (v/v) H3POy, plates were aspirated and washed two times with 200 uL of 0.9 % (v/v) NaCl.
Incorporation of *°P; was determined with a microplate scintillation counter (Microbeta Trilux,

Wallac).

The median value of the counts in column 1 and 2 of each assay plate (n = 8) was defined as “low
control” and “high control” respectively. This value reflects unspecific binding of radioactivity to the
plate in the absence of a protein kinase but in the presence of the substrate. The difference between
high and low control was taken as 100 % activity. The residual activity (in %) for each well of a

particular plate was calculated by using the following formula:

Res. Activity (%) = 100 x [(cpm of compound — low control) / (high control — low control)]
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The residual activities for each concentration and the compound ICsy values were calculated using

Quattro Workflow V2.1.0.9.

2.10.3. Determination of cytotoxicity

2.10.3.1. L5178Y mouse lymphoma cells

The cytotoxicity tests aganst L5178Y mouse lymphoma cells were carried out using the MTT assay
by Prof. W.E.G. Miiller at Mainz University, Germany, and compared to that of untreated controls
[Carmichael et al., 1987]. From the test samples, stock solutions in ethanol 96% (v/v) were prepared.
Exponentially growing cells were harvested, counted and diluted appropriately. Of the cell
suspension, 50 uL. containing 3750 cells were pipette into 96-well microtiter plates. Subsequently, 50
uL of a solution of the test samples containing the appropriate concentration was added to each well.
The concentration range was 3 and 10 yg/mL. The small amount of ethanol present in the wells did
not affect the experiments. The test plates were incubated at 37 °C with 5% CO, for 72 hrs. A
solution of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was prepared at 5
mg/mL in phosphate buffered saline (PBS; 1.5 mM KH,POy, 6.5 mM Na,HPO,, 137 mM NaCl, 2.7
mM KCI; pH 7.4) and from this solution, 20 uL. was pipetted into each well. The yellow MTT
penetrates the healthy living cells and in the presence of mitochondrial dehydrogenases, MTT is
transformed to its blue formazan complex. After an incubation period of 3 hours and 45 minutes at
37 °C in a humidified incubator with 5% CO,, the medium was centrifuged (15 min, 20 °C, 210 x g)
with 200 uL DMSO, the cells were lysed to liberate the formed formazan products. After thorough
mixing, the absorbance was measured at 520 nm using a scanning microtiter-well spectrophotometer.
The colour intensity is correlated with the number of healthy living cells. Cell survival was

calculated using the formula:

(absorbance of treated cells — absorbance of culture medium)

Survival (%) = 100
urvival (%) X (absorbance of untreated cells — absorbance of culture medium)

All experiments were carried out in triplicates and repeated three times. As controls, media with

0.1% EGMME/DMSO were included in the experiments.
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PBS buffer, PH 7.4:
1.5 mM KH2P02
6.5 mM Na,HPO,
137 mM NaCl
2.7 mM KCl

2.10.3.2. H4IIE rat hepatoma, Hct-116 human colon carcinoma and C6 rat glioma cells
The cytotoxicity tests aganst H4IIE rat hepatoma cells, Hct-116 human colon carcinoma cells and C6
rat glioma cells were carried out in the working group of Dr. Wim Witjen (Institute of Toxicology,

Heinrich-Heine Universitit, Diisseldorf) by Dipl. Biol. Sven Ruhl and Mr. Christian Limper.

Tumor cell lines were grown in DMEM medium containing 4.5 g/L. glucose and 2 mmol/L
L-glutamine, supplemented with fetal bovine serum (FBS): metabolically active H4IIE rat hepatoma
cells (10%) and rat C6 glioma cells (5%); Hct-116 human colon carcinoma cells were grown in
RPMI medium containing 10% FCS. The cell culture medium contained 100 units/mL penicillin and
100 pg/mL streptomycin and was changed twice per week. The cells were maintained in a

humidified atmosphere at 37 °C with 5% CO,.

The effect of isolated compounds on cell viability was determined using the MTT assay according to
a modified protocol of [Mosmann, 1983]. Cells were plated on 96-multiwell plates with 1 x 104 x
10* cells/well depending on the used cell line. The cells were allowed to attach for 24 h and then
treated with different concentrations of the isolated compound for 24 h. After this treatment the
medium was changed and the cells were incubated for 2 h under cell culture conditions with 20
ug/ml MTT. After this incubation time the cells were lysed with 50% ethanol/49% water/1% acetic
acid. The concentration of reduced MTT as a marker for cell viability was measured photometrically

(560 nm).

2.10.4. Determination of apoptotic cell death (Apo-ONE assay)

Caspase-3/7-activity was measured using the Apo—ONE® homogeneous caspase 3/7 assay (Promega)
according to the manufacturer’s protocol. Briefly, 50000 cells/well were plated on 96-multiwell
plates, allowed to attach for 24 h and treated with tested compounds for 24 h. Then, 50 uL of
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Apo-ONE Caspase-3/7-reagent was added and the increase in fluorescence was measured at 37 °C
for 3 h (excitation: 485 nm, emission: 535 nm). Apoptotic cell death was further investigated by
visualizing nuclear fragmentation using Hoechst 33342 staining essentially as described by [Michels

et al., 2006].

2.10.5. Determination of necrotic cell death (LDH assay)

The activity of the cellular enzyme lactate dehydrogenase (LDH) in the cell culture medium was
taken as marker for necrotic cell death (membrane disruption). 10.000 cells/well were plated on 96
well plates and allowed to grow for 24 h. The compounds were added for 24 h, then LDH activity in
the supernatant was detected using the LDH Cytotoxicity detection Assay® (Promega) according to
the instruction of the manufacturer. To 50 uLL of supernatant a defined concentration of LDH
substrate (tetrazolium salt) was added. The formation of the reaction product (formazan) was
monitored in a Wallac Victor 1420 multichannel reader (490 nm and 590 nm). Results are given as
“% of maximal LDH activity” +/— SD. Maximal LDH activity (=100% necrotic cells) was reached
by addition of 5 uL cell lysis reagent, minimal LDH activity (=0% necrotic cells) was defined as

value of untreated cells. The viability of the corresponding cells was detected using the MTT assay.

2.10.6. Determination of NF-kB inhibiting activity

The NF-kB inhibiting assay was carried out by Dr. Yvonni Chovolou at Institut for Toxicology,

Heinrich-Heine University, Diisseldorf.

Cell transfection: H4IIE were stably transfected with HiFect (Amaxa) transfection reagent according
to manufacture's protocol. Briefly, H4IIE cells were seeded at a density of 1.5 x 10° per 35 mm petri
dish and incubated overnight. Cells were transfected with 1.6 ug pNF-kB-secreted embryonic
alkaline phosphatase (SEAP) and 0.4 ug pTKHyg by using 10 uL HiFect® (Amaxa) transfection
reagent in 1 mL serum free DMEM medium. 48 h after transfection, cells were split 1:5 into 100 mm
petri dishes and stably transfected cell clones (H41IE-SEAP) were selected with 400 ug/mL

hygromycin.
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Reporter gene assay: HAIIE-SEAP cells were seeded at a density of 2 x 10° cells per 24-well plates
and incubated for 48 h. Cells were preincubated with various concentrations of each tested
compound for 3 h and then stimulated with 4 ng/mL tumor necrosis factor-alpha (TNF-a) for 24 h.
Activity of the reporter enzyme (SEAP) in the medium was measured using a
chemiluminescence-based detection method. In brief, 30 uL conditioned cell culture medium was
mixed with 30 uL of 1 x dilution buffer (50 mM Tris, 150 mM NaCl, pH 7.4) and incubated for 30
min at 65 °C to heat inactivate endogenous alkaline phosphatase activity. Samples were mixed with
30 uL assay buffer (2 M diethanolamine, 28 mM L-homoarginine) and 30 uLL CSPD substrate
(Tropix). After 15 min incubation at dark, SEAP activity was measured in a plate luminometer
(Victor 1420, Wallac). In each experiment it was verified that inhibition of NFkB-dependent SEAP
activity was not due to cytotoxic effects by MTT assay essentially as described in the section

“Determination of cell viability”.
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3. Results

3.1. Compounds isolated from the Mongolian medicinal plant Scorzonera radiata

Scorzonera is a genus of the family Asteraceae that includes more than 150 species, which are
distributed in the temperate zones of Eurasia [Tulin et al., 1976; Malyschev and Peschkova, 1979;
Mabberley, 1997]. Eleven species of Scorzonera are found on the Mongolian plateau, two of which
are endemic [Grubov, 1982; Gubanov, 1996; Liu et al., 2001]. Most of the Mongolian Scorzonera
spp. are used in traditional medicine and as forage for livestock, especially in desert regions [Sancher
et al., 2003]. Scorzonera radiata Fisch. (Asteraceae) is a typical mesophyte and a perennial
herbaceous rosette plant, which is widely distributed in Hangai, Douria, Kobodo, Mongolia-Altai,
and East-Mongolia [Liu et al., 2002]. It grows at an elevation between 900 and 1800 m above sea
level, on rubble slopes, in underbrush, in forest fringe, in meadow, and in the gravel zone of
floodplains. All parts of the plant are used in Mongolian folk medicine for the treatment of poisonous
ulcers, for fever caused by bacterial and viral infections, and for its diuretic and galactagogue

properties [Ligaa, 1996; He, 2004].

No phytochemical studies have been reported for S. radiata, although other species of this genus
have been studied extensively, resulting in the isolation of sesquiterpenes, [Oksiiz et al., 1990;
MacLeod and Ames, 1991; Bryanskii et al., 1992; Zidorn et al., 2000; Li et al., 2004; Tsevegsuren et
al., 2007] lignans, [Bryanskii et al., 1992; Tolstikhina et al., 1999] neolignans, [Tolstikhina et al.,
1988; Tolstikhina and Semenov, 1998] phenolic acids, [Zidorn et al., 2005; Tsevegsuren et al., 2007]
triterpene derivatives, [Tolstikhina et al., 1988; Oksiiz et al., 1990; Menichini ef al., 1994] stilbene
derivatives, [Zidorn et al., 2000; Zidorn et al., 2002; Zidorn et al., 2003; Sari et al., 2007]
dihydroisocoumarins, [Paraschos et al., 2001; Sari et al., 2007] and flavonoids [Menichini et al.,

1994].

The study of the Mongolian medicinal plant Scorzonera radiata resulted in the isolation of five new
dihydrostilbene derivatives (1-5), ten quinic acid derivatives (6-15), seven flavonoids (16-22), two

coumarins (23,24), five phenolic compounds (25-29), and one norsesquiterpenoid glycoside (30).

31



Results

32

OH
OH
HO
MITAC,
o) O OH
R

tyrolobibenzyl C. R = OH

scorzoerzincanin tyrolobibenzyl E. R = O-g-glucosyl
OH
R, tyrolobibenzyl A. Ry =H, R, = H
HOM tyrolobibenzyl B. Ry = OH, R, = H
HO SH 0] J R1  tyrolobibenzyl D. Ry = H, R, = S-apiosyl
d - O tyrolobibenzyl F. R4 = O-g-glucosyl, R, = H

Figure 3.1 Reported stilbene derivatives isolated previously from the genus Scorzonera



Results

3.1.1. Scorzodihydrostilbene A (1, new compound)

OH
4" 6“5!!
HO © 1
HO N

3!1 2 OH
Molecular formula: Cy3H230q9
Molecular weight: 464.46
Amount: 34.7 mg

Compound 1, obtained as a pale yellow solid, was shown to have the molecular formula C,3H,301¢
as determined by HRESIMS (m/z 482.2021 [M + NH,]"). The '"H NMR spectrum measured in
CD;0OD (Figure 3.2) showed a pair of doublets with coupling constants of 8.8 Hz typical of
ortho-coupled aromatic protons (H-4 and H-5). In the aromatic region, further resonances indicative
for an ABX system [dy 6.64 (d, J = 1.6 Hz), 6.66 (d, J = 7.9 Hz), and 6.55 (dd, J = 7.9 and 1.6 Hz)]
were observed, which were assigned to a 1,3,4-trisubstituted phenyl unit. Two methyl resonances (dy
3.77 and 2.31) indicated an aromatic O-methyl group and a methyl ketone function. From the 'H
NMR spectrum, along with analysis of the °C NMR data (Figure 3.5), two aromatic rings, two
methylene groups (dy 2.70, m), and one sugar unit (dg 4.76-3.33, m) were inferred to be present. The
assignments were supported by analysis of the 'H-'H COSY (Figure 3.6) and HMBC (Figure
3.8-3.10) spectra of 1. Assignment of the O-methyl group at C-3' was determined from the HMBC
cross-peak of the methyl singlet at oy 3.77 with Jc 148.7, which further correlated with the
meta-coupled proton at dy.s 6.66 that was part of the ABX system. The methyl singlet at oy 2.31
gave a cross-peak with the carbonyl carbon at dc 208.7 and the aromatic carbon at dc.; 135.5,
respectively. In the HMBC spectrum, carbons C-1' and C-2 correlated with methylene protons Ha
and HP at oy 2.70, which in turn showed HMBC connectivities with C-1 (0 135.5)/C-3 (6 152.4) and
C-2' (0 113.3)/C-6' (6 121.9), respectively. These HMBC correlations allowed the carbon and proton

assignments of the dihydrostilbene framework in compound 1.
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The f-glucose moiety was evident from the 'H NMR resonances of four oxymethine protons at dy
3.40, 3.36, 3.34, and 3.33, together with one pair of methylene protons at dy 3.85 and 3.66 for H,-6"
and an anomeric proton at dy 4.76. By inspection of the BC NMR spectrum, these resonances were
in agreement with four oxymethine resonances at dc 78.2, 78.1, 74.9, and 71.4; one methylene cabon
at oc 62.7; and an anomeric carbon at dc 103.7, all of which are characteristic of a f-glucopyranose
unit. Butanolysis followed by capillary glc of the trimethylsilylated (—)-2-butyl derivatives
established the sugar as f-D-glucose. The assignments for the glucose moiety were corroborated by
analysis of the 'H-'"H COSY and HMBC spectra of 1. Attachment of the glucose at C-6 was deduced
from the HMBC correlation between the anomeric proton H-1" and the oxygenated aromatic carbon
(C-6) at oc 147.8, which in turn gave two cross-peaks with H-4 at oy 6.79 and H-5 at dy 6.97,
respectively. Moreover, H-5 correlated with C-1, and H-4 correlated with C-2 as observed in the
HMBC spectrum. The connectivity of the glucose to C-6 of ring B was also evident from the "*C
NMR chemical shift of the C-6-oxygenated carbon, which was shielded at dc 147.8 compared to
tyrolobibenzyl C, which has a free OH group at C-6 (d¢c 150.4) [Zidorn et al., 2000]. The chemical
shift of C-3 (dc 152.4) bearing an OH group was deshielded compared to tyrolobibenzyl C (d¢ 150.5),

which is substituted with a glucose moiety at this position.
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Figure 3.2 "H NMR spectrum of compound 1
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Table 3.1 NMR spectroscopic data of compound 1 (CD;0D, 500 MHz)

Position oc Oy (mult., Jin Hz) COSY HMBC
1 135.5,qC

2 126.5, qC

3 152.4, qC

4 117.1,CH 6.79,d (8.8) 5 C2,C6

5 116.4,CH 6.97,d(8.8) 4 C1,C3,C6
6 147.8, qC

7 208.7, qC

8 33.1,CH; 2.31,s C1,C7

o 31.3,CH, 2.70, m" B CB, C1’

B 36.5,CH, 2.70, m“ o Ca, C2', C6'
I 135.2,qC

2 113.3,CH 6.64,d (1.6) C4', Co'
3 148.7, qC

4’ 145.6, qC

5 116.0,CH 6.66,d (7.9) 6’ C1’, C3'
6’ 121.9,CH 6.55,dd (79,1.6) 5' C2', c4'
7' 56.3,CH; 3.77,s C3’

1" 103.7,CH 4.76,d (7.6) 2" C6

2" 749,CH 3.36, m" 1" Cc4"

3" 78.2,CH  3.40, m"

4" 71.4,CH 334, m"

5" 78.1,CH  3.33, m‘ 6"a,6"b C1",C3"
6"a 62.7,CH, 3.85,dd (12.0,1.3) 6'b,5"

6'"b 3.66,dd (12.0,5.4) 6"a, 5"

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.2. Scorzodihydrostilbene B (2, new compound)

Compound 2 was isolated as a pale yellow solid with the molecular formula Cy4H300,9, as
determined by HRESIMS (m/z 496.2177 [M + NH,4]"), indicating the presence of an additional CHj

group compared to 1. Compound 2 is a derivative of 1, which was deduced from inspection of the 'H

OH O
4" €5|| "
HO O
HO N
3 2'OH

Molecular formula:
Molecular weight:
Amount:

Co4H30010
478.49
55.3 mg

and >C NMR spectra of 2 (Figure 3.13 and 3.14), which are almost superimposable to those of 1.

The only obvious difference in the NMR spectra between 1 and 2 was observed for the second
O-methyl resonance at dy 3.75 in the 'H NMR spectrum of 2. This methoxy group was assigned at
C-4' of ring A as suggested by the HMBC spectrum of 2. This assignment was corroborated by the
3.1 ppm downfield shift of the C-4' resonance of 2 as compared to that of 1. Moreover the

resonances for H-5' were shifted downfield by 0.14 ppm compared to that of 1, because of the

inductive effect of the methoxy group at C-4'.
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Figure 3.11 HPLC chromatogram and UV spectrum of compound 2




Results

Yao72#470 RT: 1389 AV: 1 NL: 1.50E8 ~
T: + CESI $id=25.00 Full ms [ 100.00-1000.00] |0
31

[2M + NH,]*

o738

Relative Abundance

3180

ATES||s021 s 72741 7512 7769 6227 8591 9296 97169787

4132 5074 6335 6545

3190 5550

Yao72#468 RT: 1385 AV: 1 NL: 367E7
T: - cESI$id=25.00 Full ms [ 100.00-1000.00]

" 4175
o M- H]
O [2M - H
§7 _H 9554
H
2 OH
£ . on -H o O
3 o HO'
Ho 4784 956.3
a% 3147
1634 9573
1614|1645 2550 31s| 7 375 swre  ames|T S223 5794 6315 €529 7172 7652 sss |82
Y
mz
.
Figure 3.12 ESI-MS spectrum of compound 2
to ws poggas . S8Bo BREERNGIeNIIeNEEEEy @
33 38 palisn g¥ 3300 alRindatlatibasty 2
YN A \/ N N TS |

4Il, 5"

T T T T T T T T
7.05 7.00 6.95 6.90 6.85_ 6.8) 6.75 6.70 6.65 6.60
1 (ppm)

1"

1.01— ;:

1.00—T
206—
20—

6.0 5.5 5.0 5 4.0 3.5 3.0 2.5 2.0

4.
1 (ppm)

Figure 3.13 '"H NMR spectrum of compound 2



Results

(udd) 13

r& ,,m e ,” a. v ,,). W ,, .,. ,,H ,,H
| 3 Le
S i K
L6EL1E~ O _ Ls - i - . 5 e el
y2L0°€E — © , Lo
e16r9e — [ooy
m N\

T892 g
LPEE'95 ~ oo} e eefiom oo+ & o
989595

29929 —

60

2 (ppn)

269¢€°LL —
L1006V, —
Zv90°'8L —~
vv—m.wn 7

72

¥599°€0} —

€cereLl
88v9€LL %
LySyoLL
SrLVLLL A

€86L°121 —
L62¥'92L —

110

120
1 (ppm)

T
130

208¥'GE} ~
€969'9¢}

T
140

L9€8LY)
PSSP
0€1Z°054 -
o0zsezsh 7

150

Figure 3.14 °C NMR spectrum of compound 2

1629°80C —

I
)

Figure 3.15 '"H-'H COSY spectrum of compound 2

42



Results

TR IH.I’J ljl

| i L IlH‘ I

Y
Figure 3.16 HMQC spectrum of compound 2
W .
: HB/Ca.
H2'/CB* HB'/C e
g g Ha/CB
: ° HB/C2'
S O Hp/CB._~
- vog - HB/C2Z  H8/C1
b H8'/C4
° HivCs N, Hacr .
:ge e ¥ _ Ha/Cc1'
/ Ha/C3
H7'/C3'
H8/C7
H5/C7 1

£2 (p)

Figure 3.17 HMBC spectrum of compound 2

[ 100

F110

130

140

£1 (ppm)

1 (ppm)

43



Results

44

OH OH
H
0]
C2' ) k110
[co) (ST =) L
= CeX
] H5'/C ol 120
@0 : H2'/C6'
(:ﬁ) ' 135
H5/C 1

Figure 3.18 HMBC spectrum of the aromatic region of compound 2

£1 (ppm)



Results

Table 3.2 NMR spectroscopic data of compound 2 (CD;0D, 500 MHz)

Position oc oy (mult., Jin Hz) COSY HMBC
1 135.5,qC

2 126.4, qC

3 152.4,qC

4 117.1,CH 6.80,d (8.8) 5 C2,C3,C6
5 116.5,CH 6.97,d(8.8) 4 C1,C3,C6
6 147.8, qC

7 208.5, qC

8 33.1,CH; 2.32,s C1,C7

o 31.1,CH, 2.71,m" B Cp,C1,C1',C3
B 36.5,CH, 2.75, m‘ o Coa, C2, C2', C6’
I 136.7, qC

2 113.6,CH 6.68,d(1.9) C4', Co’

3 150.2, qC

4’ 148.7, qC

5 113.1,CH 6.80,d (8.2) 6 C1', C3', C6'
6’ 121.8,CH 6.66,dd (8.2,1.9) 5’ Cp, C2', C4'
7' 56.6,CH; 3.76,s Cc3’

g’ 56.3,CH; 3.75,s Cc4'

1" 103.7,CH 4.76,d (7.6) 2" C6, C5”

2" 749,CH 3.37,m‘ 1" C1", C3"

3" 782,CH  3.40, m" Cc2", C4"

4" 714,CH 3.34,m‘ Cc3”

5" 78.1,CH  3.33, m‘ 6"a,6"p C1”,C3"
6"a 62.7,CH, 3.85,dd (12.0,0.6) 6"b,5" C4"

6'b 3.66,dd (12.0,5.1) 6"a,5" C4",C5"

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.



Results

3.1.3. Scorzodihydrostilbene C (3, new compound)

OH OH
e
1II
S N
Molecular formula: C1H»0g
Molecular weight: 434.44
Amount: 14.1 mg

Congener 3 was obtained from the aerial parts of S. radiata as a pale yellow solid showing the
molecular formula Cy,Hy60y9, as determined from the positive HRESI mass spectrum (m/z 457.1469
[M + Na]"). The main difference in the NMR spectra of 3 compared to those of 1 and 2 was observed
with regard to the proton and carbon signals of the A-ring. The '"H NMR spectrum of 3 (Figure 3.21)
exhibited signals for the A-ring protons, which are typical of an AA'BB' system instead of an ABX
system as present in compounds 1 and 2. These differences in the 'H NMR spectrum are mirrored by
equally clear differences in the '>°C NMR spectrum of 3 (Figure 3.22) compared to those of 1 and 2.
Attachment of the f-glucose moiety to ring B at C-6 rather than at C-3 (as found for the known
compound tyrolobibenzyl C) was confirmed on the basis of the HMBC cross-peak of the anomeric
proton (H-1") at oy 4.76 with the aromatic carbon C-6 at ¢ 147.8. Compared with tyrolobibenzyl C,
compound 3 differs from the latter only by the linkage of the f-glucose moiety in ring B [Zidorn et

al., 2000].
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Figure 3.19 HPLC chromatogram and UV spectrum of compound 3

46



Results

6.9705
6.9528
6.9354
6.9187

=l

—6.7723

AN

Ya0312#469 RT: 1351 AV: 1 NL: 1.83€7

T: + ¢ ESI 5id=25.00 Full ms [ 100.00-1000.00)
1005 OH 252
o0 OH
0] 2730
» 7% +
3™ [M + NH,]
8§ 603 + 4
H OH
550: o) on 4520
PE +
b o nol |70 [2M + NH,]
4 - +
& 2 HO s IM + Na] s
203 1611
1451 e 8907
103 2 || 4891 5 6793
21 | Jirea 204 ey aus ss | || | stes %P2 w3 esas (|0 7313 7m0 sase 8887[[8915 @241 gese
L e R e e B e e e
1 150 200 250 300 35 400 450 SO0 S50 600 650 700 750 80 80 %00 950 1000
mz
Yao313#467 RT. 1347 AV: 1 NL 63966
T:- cESI 5id=25.00 Full ms [ 100.00-1000.00]
212 OH
1003
0] O
o0 -H
e
e LT Mo
2 s0g -
¢ 3 HO 4331
I 2M - HT
= 303 [ - ]
2703
203 165.1 m2 01 870
o] 12 a2 o 4
310 { 1660 207.1 2478]|2731 3428 3763 4130 Lot S531 5600 6288 6749 7029 7249 7934 8219 210 9673
R T B B e T B i T s e e e e
1 150 200 250 300 350 400 450 500 S50 b 7 800 80 %0 80 1000
mz

Figure 3.20 ESI-MS spectrum of compound 3

6.6594
6.6426

_~4.7648
- 4.7498

_~3.8624
~-3.8380

_~3.6592
3.6453
3.6351
3.3964

Y
/

2.7091
2.6889
26718
2.6634

/
X

2.3353

6.0

4.5
1 (ppm)

Figure 3.21 '"H NMR spectrum of compound 3

47



Results

48

208.6527

o v © -0 ~ O

8L RS2 58 893
IS R 5o w8 8838
S N N~ S¥ S8 ~R8S
88 % 83 88 te¢

L
VA
N\

2‘,‘ 6’ 3|, 5|

N — (6]

103.7179

1Il

78.2765
78.1326

— 74.9543
—71.4330

L

5l|

|2,

3u‘ ‘

62.7057

—36.2323
— 33.0894

"\-31.4346

180

T T T T T T T
170 160 150 140 130 120 110
1 (ppm)

T
100

90

Figure 3.22 *C NMR spectrum of compound 3

130.1739
116.8001
116.0945
115.7782

L
X

2|, 61

103.4314

77.9914
77.8483
—74.6689
—71.1467

L

62.4188

—35.9470
—32.8045

-31.1518

T
200

T
190

T
180

T T T T T T T
170 160 150 140 130 120 110
1 (ppm)

T
100

T
90

T T
80 k()

Figure 3.23 DEPT spectrum of compound 3



Results

OH

OH o OH Waill . f ™
H R O Nt < 2l
Po 0 ; |

OHN__ "5

Figure 3.24 ROESY spectrum of compound 3

Table 3.3 NMR spectroscopic data of compound 3 (CDs;0D, 500 MHz)

Position oc Oy (mult., Jin Hz) ROESY
1 135.5,qC

2 126.6, qC

3 152.4,qC

4 117.1,CH 6.78,d (8.8)

5 116.4,CH 6.96,d (8.8) 1”

6 147.8, qC

7 208.6, qC

8 33.1,CH; 2.33,s 3,5
o 31.4,CH, 2.66, m"

B 36.2,CH, 2.69, m" 2,6
1 134.6, qC

2! 130.5,CH 6.93,d (8.5) B

3 116.1,CH 6.65,d (8.5) 8

4 156.5, qC

5' 116.1,CH 6.65,d (8.5) 8

6' 130.5,CH 6.93,d (8.5) B

1” 103.7,CH 4.76,d (7.6) 5,3", 5"
2" 749,CH 3.37,m‘

3" 78.3,CH  3.40, m" 1", 5"
4" 714,CH 3.34,m‘

5" 78.1,CH  3.33, m‘ 1", 3"
6"a 62.7,CH, 3.85,dd (12.0, 1.3)

6'"b 3.65,dd (12.0,5.1)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.4. Scorzodihydrostilbene D (4, new compound)

OH
4" 6“ "
H |Q| 5" -0 1
O
3+ 2"OH
Molecular formula: C,4H300q¢
Molecular weight: 478.49
Amount: 3.4 mg

Congener 4 was obtained as a pale yellow solid with the molecular formula C,4H3001, as indicated
from the negative HRESI mass spectrum (m/z 523.1819 [M — H + HCOOH]"), which was identical
to the molecular formula of 2. The compounds differed only with regard to the position of
attachment of the glucose unit on ring B. An aromatic proton at oy 7.13 (H-4) showed a HMBC
correlation with C-2 (¢ 130.8), which implied the B-ring of 4 to be different from that of 2. The
attachment of the f-glucose moiety of compound 4 was inferred to be at C-3 rather than at C-6 as
previously observed for 2, which was confirmed from the ROESY correlation of the anomeric proton
(H-1") at oy 4.80 with H-4 at oy 7.13 (Figure 3.27). The presence of the glucose substituent at C-3
was also indicated by the downfield shift of H-4 by —0.33 ppm and the upfield shift of H-5 by +0.32
ppm, compared to the respective signals in the '"H NMR spectrum of compound 2. Furthermore,
when the *C NMR data of 4 were compared to those of 2, the C-1, C-3, and C-5 signals of 4 were
shifted upfield by +3.1, +1.7, and +1.7 ppm, while the C-2, C-4, and C-6 signals were shifted
downfield by —4.4, 2.5, and —-2.5 ppm, respectively, which implied that glycosylation had occurred
at C-3 instead of at C-6.
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Table 3.4 NMR spectroscopic data of compound 4 (CD;0D, 500 MHz)

Position oc Oy (mult., Jin Hz) ROESY
1 132.4,qC

2 130.8, qC

3 150.7, qC

4 119.6,CH 7.13,d(8.8) 1"
5 114.8,CH 6.65,d(8.8)

6 150.3, qC

7 208.4, qC

8 33.1,CH; 2.29,s

o 30.9,CH, 2.88, m" 2.78, m"

B 37.1,CH, 2.78, m"

1 137.0, qC

2! 114.0,CH 6.72,d(1.9) 7,8
3 150.4, qC

4 148.7, qC

5' 113.2,CH 6.81,d(7.9) 8’
6' 122.0,CH 6.70,dd (7.9,1.9)

7' 56.6,CH; 3.77,s 2
8’ 56.5,CH; 3.77,s 5
1" 103.8,CH 4.80,d (7.6) 4
2" 753,CH 3.44,dd (9.1, 8.5)

3" 78.5,CH 3.49,dd (9.1,7.3)

4" 71.5,CH 3.38, m’

5" 782,CH 3.38, m’

6"a 62.7,CH, 3.88,dd (12.0,1.6)

6'"b 3.70,dd (12.0, 5.4)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.5. Scorzodihydrostilbene E (5, new compound)

5 O 211 3"
O OH
&%y oo OH
O 56" 4"
OH
|7
© ®]
|7'
OH
s
1"
O 50765
Molecular formula: C46Hs54090
Molecular weight: 926.91
Amount: 1.1 mg

Compound 5 was isolated as a pale yellow solid. Its molecular formula was determined as C4cHs4050
by HRESIMS (m/z 949.3101 [M + Na]*). Compound 5 was a dimer of 1, which was inferred from
inspection of the '"H NMR (Figure 3.30) and mass spectra of 5. Only one set of NMR resonances was
displayed in the '"H NMR spectrum of 5, indicating that it was a symmetrical dimer. The only
difference in the 'H NMR spectrum of 5 compared to 1 was observed with regard to a pair of
doublets [dy 6.54 (d, J = 1.9 Hz) and 6.53 (d, J = 1.9 Hz)] resonating close to each other instead of
an ABX system in the aromatic region. The resonances of the two doublets were assigned to H-2' and
H-6', which exhibited direct correlations to carbons at dc 111.6 (C-2") and 124.1 (C-6'), as shown in
the HMQC spectrum of S§. The nature and position of the linkage between the two monomers was
determined from the HMBC spectrum (Figure 3) and "°C chemical shifts. The strong cross peak
observed between dc 130.5 (C-5') and dy 6.53 (H-6'), which further correlated with C-2' (dc 111.6)
and C-4' (¢ 148.4) of ring A, and the deshielding of the aromatic ring carbons C-5', C-4', C-6', and
C-3' by —-14.5, -2.8, -2.2, and -2.6 ppm, respectively, compared to the signals in the BC NMR

spectrum of 1, were indicative of a symmetrical dimer linked through C-5'.
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Table 3.5 NMR spectroscopic data of compound 5 (CD;0D, 500 MHz)

Position oc oy (mult., Jin Hz) COSY ROESY HMBC
1 136.1, qC

2 126.9, qC

3 152.7,qC

4 117.2,CH 6.83,d (8.8) 5 C2,C6

5 116.7,CH 7.01,d (8.8) 4 1" C1,C3

6 147.9, qC

7 208.6, qC

8 344,CH; 2.21,s

o 31.4,CH, 2.78, m" C1,Cr

B 36.5,CH, 2.78, m" 2,6 C2

I 131.7,qC

2 111.6,CH 6.54,d (1.9) 7, CB, C3', C4', C6'
3 151.3,qC

4’ 148.4, qC

5 130.5, qC

6’ 124.1,CH 6.53,d(1.9) B CB, C2', C4', C5'
7' 56.3,CH; 3.75,s 2! C3’

1" 104.0,CH 4.73,d (7.8) 2" 5,3",5" C6

2" 75.0,CH 3.33,m" 1"

3" 78.2,CH 3.38, m" 1" c4”

4" 714,CH 3.31,m"

5" 78.0,CH  3.30, m“ 1”,6"a, 6"b C1",C3"
6'"a 62.6,CH, 3.80,dd (12.0,2.1) 6'b 5"

6'b 3.63,dd (12.0,5.3) 6"a 5"

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.6. Quinic acid (6, known compound)

OH

O 4
Aok
HO'7 12 13

OH OH

Molecular formula:
Molecular weight:
Amount:

C7H 1,06
192.17
19.3 mg

Compound 6 was isolated as colourless needles without any UV absorption. The ESI mass spectrum
showed a negative pseudomolecular ion peak at m/z 191 (Figure 3.36). The 'H NMR spectrum of 6
(Figure 3.37) displayed three oxymethine protons at oy 4.04, 3.91, and 3.45, together with two pairs
of sp> methylene protons at dy 1.95/1.86 and 1.96/1.77 for H,-2 and Ha-6, respectively. By inspection
of the °*C NMR spectrum (Figure 3.38), these resonances were in agreement with three oxymethine
resonances at oc 67.4, 70.8, and 75.6; two sp3 methylenes at dc 37.8 and 41.1; an oxygenated
quaternary carbon at dc 77.5; and a carboxyl resonance at d¢c 181.8, all of which were characteristic

of quinic acid. Comparing the data of (-)-quinic acid with that of compound 6, both compounds

were identical [Flores-Parra et al., 1989].
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Figure 3.39 'H-'H COSY spectrum of compound 6

Table 3.6 NMR spectroscopic data of compound 6 (D,0O, 500 MHz)

Quinic acid (DMSO) Compound 6
[Flores-Parra et al., 1989]
Position Jc oy (mult., J in Hz) dc oy (mult., J in Hz)
1 74.7,qC 775,qC
2eq 37.6,CH, 1.7,dd(13,3.3) 37.8,CH, 2.10,dd (14.9,3.4)
2ax 1.6,dd (13,3.3) 2.02,dd (14.8, 3.6)
3 69.3,CH 3.8,td(3.3,2.2) 67.4,CH 4.20,ddd (3.5,3.5,3.4)
4 748,CH 3.2,dd (7.8,2.2) 75.6,CH 3.60,dd (9.3,3.3)
5 669,CH 3.7,td (7.8,4) 70.8,CH 4.07,ddd (10.6, 9.4, 4.6)
6cq 40.7,CH, 1.8,dd (13,4) 41.1,CH, 2.12,dd (13.4,4.7)
6. 1.7,dd (13, 7.8) 1.92, dd (13.4, 10.9)
7 175.8, qC 181.8, qC
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3.1.7. Chlorogenic acid (7, known compound)

OH OH
Molecular formula: Ci6H1309
Molecular weight: 354.31
Amount: 240.1 mg

Compound 7 was isolated as an amorphous solid. It had UV absorption at Ay.x 218, 242, and 326 nm
(Figure 3.40), which were typical for caffeic acid derivatives. The molecular weight of 7 was
determined as 354 by ion peaks found in ESIMS spectrum at m/z 355 [M + H]" and m/z 353 [M —
H]™ (Figure 3.41). The aliphatic region of the 'H NMR spectrum was comparable to that of
compound 6, however in the aromatic region, resonances for an ABX system at oy 7.04 (d, J = 2.2
Hz), 6.76 (d, J = 8.2 Hz) and 6.94 (dd, J = 8.2, 2.2 Hz), as well as a pair of doublet with coupling
constants of 15.8 Hz were observed. Along with the analysis of mass and UV spectrum, a caffeic
acid unit was indicated to be present. Compound 7 was identified to be chlorogenic acid by

comparing 'H NMR and MS data with those of reference [Pauli ez al., 1998].

YWo60721 #2 SRAB6-9-1 UV_vis 4
700 mAU WVL340 i 89 ak #00%

1 114,772 o Chbrogensifl re 998.94

0o+ T
’ ] l ] l ] |
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T T T T T
0.0 10,0 20,0 30,0 40,0 50,0 60,0

Figure 3.40 HPLC chromatogram and UV spectrum of compound 7
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Figure 3.43 'H-'H COSY spectrum of compound 7

Table 3.7 NMR spectroscopic data of compound 7 (CD3;0OD)

Chlorogenic acid
[Pauli ez al., 1998]

Compound 7

Position oy (mult., J in Hz) Oy (mult., J in Hz)
2ax 2.166,dd (14.2,5.1) 2.14,dd (14.5,2.8)
2eq 2.047,ddd (14.2,3.3,2.3) 1.96,brd (14.5)

3 4.165,dt(5.1,3.3,3.2) 4.11,brd (3.2)

4 3.721,dd (9.5, 3.6) 3.67,dd (9.5,3.2)

5 5.336,ddd (11.2,9.5,4.5) 5.36,ddd (11.0, 10.1, 4.7)
6cq 2.232,ddd (13.3,4.5,2.3) 2.12, m"

(O 2.063, dd (13.3,9.7) 2.01, brd (12.6)

2 7.040,d (2.1) 7.04,d (2.2)

5 6.772,d (8.2) 6.76,d (8.2)

6 6.938,dd (8.2,2.1) 6.94,dd (8.2,2.2)

7' 7.550,d (15.9) 7.56,d (15.8)

8’ 6.251,d (15.9) 6.28,d (15.8)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.

£1 (ppm)
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3.1.8. 3,5-Dicaffeoylquinic acid (8, known compound)

Molecular formula: CysH»4015
Molecular weight: 516.45
Amount: 242.0 mg

Compound 8 was obtained as a yellowish amorphous solid, and its molecular weight was determined
to be 516 by ESIMS ion peaks at m/z 517 [M + H]|" and m/z 515 [M — H]~ (Figure 3.46). Its UV
spectrum (Figure 3.45) displayed maximal absorption at 220, 243, and 328 nm indicating the
presence of caffeic acid moiety. The 'H (Figure 3.44) and '*C NMR (Figure 3.47) spectra of 8
showed two methylenes, three oxygenated protons and a carbonyl carbon at 0 177.3, which were
assigned for a qunic acid unit. In addition, the presence of two trans-caffeoyl groups was indicated
by the observation of two ABX systems and two frans-olefinic protons. The above spectral data were
consistent with those of 3,5-dicaffeoylquinic acid [Wald et al., 1989; Pauli et al., 1998]. Thus,

compound 8 was concluded to be 3,5-dicaffeoylquinic acid.
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Figure 3.44 '"H NMR spectrum of compound 8
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Table 3.8 NMR spectroscopic data of compound 8 (CDs;0D, 500 MHz)

3,5-Dicaffeoylquinic acid Compound 8
[Wald et al., 1989; Pauli et al., 1998]

Position dc oy (mult., J in Hz) dc oy (mult., J in Hz)
1 74.79, qC 74.68, qC
2.x 37.79, CH, 2.311,dd (13.8,4.0) 37.60,CH, 2.32,dd (13.6,3.2)
2eq 2.156,ddd (13.8, 7.0, 1.5) 2.19,dd (13.9, 6.3)
3 72.64, CH 5.421,dt (7.0, 4.0, 3.3) 72.50, CH 5.44,td (6.6, 3.5)
4 70.83, CH 3.963,dd (7.5, 3.3) 71.98,CH 4.00,dd (7.6, 3.2)
5 72.13,CH 5.378,ddd (7.5,7.5,4.2) 72.07, CH 5.41,t(6.7)
6cq 36.08, CH, 2.237,ddd (14.0,4.2,1.5) 3593,CH, 2.24,m"
6.x 2.197,dd (14.0,7.5) 222, m"
7 177.42,qC 177.32,qC
1’ 128.02, qC 127.83,qC
2! 116.53,CH  7.059,d (2.1) 116.43,CH 7.06,brs
3 147.22,qC 147.23,qC
4! 149.51,qC 149.46, qC
5 116.53,CH  6.776,d (8.2) 115.49,CH 6.78,d (8.2)
6’ 123.00,CH  6.966,dd (8.2,2.1) 123.05,CH 6.94,td (7.9, 1.6)
7 147.02,CH  7.610,d (15.9) 146.64,CH 17.61,d (15.8)
8’ 11537,CH  6.338,d(15.9) 115.10,CH 6.34,d (15.8)
9’ 168.88, qC 168.86, qC
1" 127.89, qC 127.73,qC
2" 116.53,CH  7.054,d (2.1) 116.43,CH 7.06,brs
3" 147.22,qC 147.02, qC
4" 149.42, qC 149.38, qC
5" 115.69,CH  6.774,d (8.2) 115.21,CH 6.77,d (8.2)
6" 122.94,CH  6.956,dd (8.2,2.1) 12298, CH 6.94,td (7.9, 1.6)
7" 146.73,CH  7.568,d (15.9) 146.64,CH 7.57,d (15.8)
8" 115.27,CH  6.255,d(15.9) 115.02,CH 6.26,d (15.8)
9" 168.43, qC 168.37, qC

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.9. 3,5-Dicaffeoyl-epi-quinic acid (9, known compound)

Molecular formula: CysH24015
Molecular weight: 516.45
Amount: 103.2 mg

Compound 9 was obtained as a yellowish amorphous solid ([01*p : —=113.0°) with a UV maximal
absorption at 218, 243, and 329 nm. The molecular weight 516 was established by ESIMS (Figure
3.49). The 'H and "*C NMR spectra of 9 (Table 3.1) exhibited signals for two caffeic acids and a
quinic acid moiety indicating a structure silimar to that of 8 except for the quinic acid moiety. In the
ROESY spectrum (Figure 3.52), the proton at 6 3.89 (H-4) gave two cross-peaks with the protons at
0 5.53 (H-3) and ¢ 5.37 (H-5) respectively. This observation indicated proton H-4 is in the axial
orientation. Comparing with the 'H and >C NMR data of the reference compound, 9 was concluded

to be 3,5-dicaffeoyl-epi-quinic acid which is an epimer of 8 [Kim and Lee, 2005].
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Figure 3.48 '"H NMR spectrum of compound 9
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Figure 3.50 ESI-MS spectrum of compound 9
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Table 3.9 NMR spectroscopic data of compound 9 (CD;0D, 500 MHz)

3,5-Dicaffeoyl-epi-quinic acid Compound 9
[Kim and Lee, 2005]
Position oc Oy (mult., J in Hz) oc oy (mult., J in Hz)
76.3, qC 76, qC
40.6, CH, 2.11, m 40.5,CH, 2.10, m"

72.4,CH 5.55,dt (10.0, 5.8) 72.5,CH  5.53,ddd (10.4,9.8,5.4)
73.0, CH 3.91,dd (9.9,3.4) 73,CH 3.89,dd (9.8, 3.5)

)
B

&
B

e - - NV S VR SR
=]

744,CH  539,m 74,CH  5.37,dt(3.5,3.2)
» 375,CH,  228,dd(15.2,34) 37.5,CH, 2.26,dd(15.1,3.2)
ax 2.04,m 2.06, m*

181.3,qC 181.5,qC

' 127.8,qC 128.0, qC

2 1152,CH  7.06,d (2.0) 115.0,CH  7.05,d (1.9)

3 146.8, qC 146.4, qC

4 149.2, qC 149.5, qC

5 1164,CH  6.78,d (8.2) 116.1,CH  6.77,d (8.2)

6 1229,CH  6.96,dd (8.2,2.0)  1227,CH 6.94,dd (8.2, 1.9)

7 146.6,CH  7.59,d (15.8) 146.5,CH  7.58,d (15.8)

8’ 1154,CH  6.31,d (15.8) 1153,CH  6.30,d (15.8)

9' 169.0, qC 169.0, qC

1" 128.0, qC 128.0, qC

2" 1152,CH  7.08,d (2.0) 1150,CH 7.07,d (1.9)

3" 146.9, qC 146.4, qC

4" 149.4, qC 149.5, qC

5" 1164,CH  6.78,d (8.2) 116.1,CH  6.77,d (8.2)

6" 1229,CH  6.97,dd (82,2.0)  1227,CH 6.96,dd (8.2, 1.9)

7" 146.6,CH  7.62,d (15.8) 146.5,CH  7.60,d (15.8)

8" 1159,CH  6.43,d (15.8) 1155,CH  6.40,d (15.8)

9" 169.4, qC 169.3, qC

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.10. Macroantoin G (10, known compound)

Molecular formula:
Molecular weight:
Amount:

Compound 10 was isolated as a yellow amorphous powder ([0]*°p : —68°) with the molecular weight
530 deduced from ESIMS spectrum (Figure 3.54). The UV spectrum of 10 showed maximal
absorption at 204, 219, and 330 nm. The 'H NMR spectra of 10 (Figure 3.55) suggested the presence
of one quinic acid and two caffeoyl moieties. Those resonances were remarkably similar to those of
compound 8 but with an additional O-methyl group. Assignment of the O-methyl group at C-7 was
determined from the HMBC cross-peak (Figure 3.56) of the methyl singlet at oy 3.74 with the
carbonyl carbon at dc 175.4. This assignment was also testified by the 1.9 ppm upfield shift of the
C-7 resonance of 10 as compared to that of 8. Compound 10 was identical with the known compound

macroantoin G [Zhang et al., 2000].
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Figure 3.54 ESI-MS spectrum of compound 10
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Table 3.10 NMR spectroscopic data of compound 10 (CD;OD, 600 MHz)

Macroantoin G
[Zhang et al., 2000]

Compound 10

Position Jc oy (mult., J in Hz) dc oy (mult., J in Hz)
1 74.64, qC 74.3,qC

2eq 36.78,CH, 2.19,m 35.5,CH, 2.38,dd (13.3,4.1)
2ax 2.20,dd (13.3, 8.5)
3ax 72.08,CH 535, m 715,CH  5.44,dt(7.8,4.2,3.7)
4 o 69.81,CH  3.98,dd (6.77,3.17) 69.7,CH  4.02,dd (6.5, 3.1)
Seq 7198,CH 541,m 719,CH  5.35,ddd (8.1, 6.5, 3.9)
6cq 35.63,CH, 221,m 36.5,CH, 2.35,dd (13.2,7.1)
6ax 2.23,dd (13.8,3.6)
7 175.59, qC 175.4,qC

8 53.03, CH; 529 3.74,s

Iy 127.56, qC 127.8,qC

2' 115.14,CH 7.06,d (2.0) 1149,CH 7.11,d (2.4)

3 146.65, qC 146.7, qC

4 149.56, qC 149.4, qC

5 116.46,CH 6.79,d (8.17) 116.4,CH 6.83,d(8.2)

6’ 123.05,CH 6.96,dd (8.17,2.0) 1229,CH 7.01,dd (8.2,2.4)

7' 147.37,CH 7.54,d (15.92) 147.7,CH 7.66,d (15.9)

8’ 114.81,CH 6.21,d (15.92) 115.3,CH 6.38,d (15.9)

9 167.98, qC 168.7, qC

1 127.81, qC 127.4,qC

2" 115.14,CH 7.06,d (2.0) 1149,CH 7.10,d (2.4)

3" 146.65, qC 146.7, qC

4" 149.40, qC 149.4,qC

5" 116.45,CH 6.76,d (8.12) 1164,CH 6.82,d(8.2)

6" 122.99,CH 6.93,dd (8.12,2.0) 1229,CH 7.01,dd (8.2,2.4)
7" 147.09,CH 7.62,d (15.89) 147.3,CH 7.59,d (15.9)

8" 11538, CH 6.33,d (15.89) 114.8,CH 6.26,d (15.9)

9" 168.73, qC 167.9, qC

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.11. 4,5-Dicaffeoylquinic acid (11, known compound)

O 8" 4"
9"\1u 3“OH
Q 6524 ' OH OH
7 o) 7' )
HO™ 353 19 /T3
OH oHo” & "\__oH

Molecular formula: CysH»4015
Molecular weight: 516.45
Amount: 3.0 mg

Compound 11 was isolated as a yellowish amorphous solid ([a]*’p : —=74°) with UV absorbances at
Amax 219, 244, and 329 nm (Figure 3.58). Its molecular weight 516 was deduced from the ESIMS
spectrum (Figure 3.59). The '"H NMR spectrum (Figure 3.60) of 11 exhibited one quinic acid and two
caffeoyl moieties. The assignments and the configuration of the quinic acid moiety were determined
by analysis of the 'H-'"H COSY (Figure 3.61) and ROESY (Figure 3.62) spectra of 11. The proton
resonances at dy 5.09 and 5.69 were assigned to H-4 and H-5 respectively. When comparing the 'H
NMR data of 11 to those of quinic acid, downfield shift for H-4 by —1.49 ppm and for H-5 by —1.62
ppm were observed, respectively, which implied that the attachments of the two caffeoyl units were
at carbon 4 and 5. From above results, compound 11 was identified as 4,5-dicaffeoylquinic acid

[Pauli et al., 1998].

0 0Peak #500 %
% 3,5-Dtaffeoythha 997.55

328.7

Figure 3.58 UV spectrum of compound 11
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Table 3.11 NMR spectroscopic data of compound 11 (CDs;0D, 500 MHz)
4,5-Dicaffeoylquinic acid ~ Compound 11
[Pauli et al., 1998]

Position oy (mult., J in Hz) Oy (mult., J in Hz)
2ax 2.287,dd (14.2,3.3) 2.26,dd (14.5,2.8)
2eq 2.100, ddd (14.2, 5.1, 2.0) 1.98,dt (14.5,2.2)
3eq 4.359,dt(3.3,3.1) 4.29,dt (3.2,2.8)
4. 5.103,dd (9.1, 3.1) 5.09,dd (10.4,3.2)
Sax 5.620, ddd (13.3, 4.8, 2.0) 5.69, dt (6.6, 10.4)
6cq 2.272,ddd (13.3,4.8,2.0) 2.16, m“

6ax 2.214,dd (13.3,9.6) 2.16, m“

2 7.013,d (2.1) 7.00,d (2.1)

5' 6.740,d (8.3) 6.72,d (8.2)

6 6.913,dd (8.3,2.1) 6.89,dd (8.2,2.1)
7' 7.587,d (15.9) 7.57,d (15.9)

8’ 6.271,d (15.9) 6.25,d (15.9)

2" 6.993,d (2.1) 6.98,d (2.1)

5" 6.726,d (8.3) 6.72,d (8.1)

6" 6.890, dd (8.3, 2.1) 6.87,dd (8.1, 2.1)
7" 7.507,d (15.9) 7.49,d (15.8)

8" 6.179,d (15.9) 6.18,d (15.8)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.12. 4,5-Dicaffeoyl-epi-quinic acid (12, new compound)

5" 6"
4" 7Il O
HO 3" 1u \ 8" O 7' 6'
HO %o o} ®
5
4 OH
HO 79 2713
OH OH OH
Molecular formula: CysH»4015
Molecular weight: 516.45
Amount: 3.1 mg

Compound 12 was obtained as an amorphous solid. The molecular formula was determined as
C15H,401, from the HRESIMS data (m/z 517.1341 [M + H]"). The UV spectrum of 12 showed
absorption maxima at 325, 243 and 218 nm typical of a caffeic acid derivative. The 'H NMR data
were very similar to those of 11 for the caffeic acid moieties, but differed from known compounds
with regard to the signals of the quinic acid moiety [Pauli et al., 1998; Lin ef al., 1999]. The 'H
NMR spectrum of 12 (Figure 3.65) showed two pairs of doublets with coupling constants of 15.9 Hz
indicative of trans olefinic protons found in hydroxy cinnamic acids. In the aromatic region,
resonances for two ABX systems [oy 7.05 (d, J = 2.1 Hz), 6.78 (d, J = 8.1 Hz) and 6.92 (dd, J = 8.1,
2.1 Hz); and oy 7.09 (d, J = 2.2 Hz), 6.80 (d, J = 8.2 Hz) and 6.97 (dd, J = 8.2, 2.2 Hz)] were
observed, which were assigned to two 1,3,4-trisubstituted phenyl units. From these observations,
along with the analysis of the ?C NMR data, two caffeic acid moieties were inferred to be present.
The assignments were further supported by analysis of the ROESY spectrum of 12 (Figure 3.67).
The protons at d 7.05 (H-2") and 7.09 (H-2"") gave ROESY cross-peaks with the olefinic protons at dy
7.55 (H-7') and 7.62 (H-7"). The presence of the quinic acid moiety was indicated by '"H NMR
resonances of three oxymethine protons at oy 5.67 (ddd, J = 8.6, 4.1, 3.3 Hz), 5.24 (dd, J = 6.1, 3.0
Hz) and 4.16 (ddd, J = 5.6, 5.4, 5.3 Hz), together with two pairs of sp3 methylene protons at dy
2.22/2.10 and 2.11/2.08 for H,-6 and H,-2, respectively. All of the latter are characteristic of a quinic
acid unit, with regard to their multiplicity and coupling patterns. The assignments of the protons of
the quinic acid nucleus were corroborated by analysis of the 'H-'H COSY (Figure 3.66) and ROESY
spectra of 12. The attachments of the two caffeoyl moieties at C-4 and C-5 of quinic acid part were

deduced from the HMBC correlation of H-4 and H-35, respectively, with their ester carbonyl carbons
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(C-9" and C-9") at d¢ 168.3. The deshielded resonances of two oxymethine protons in the quinic acid
nucleus at oy 5.67 (H-5) and 5.24 (H-4) implied acylation of the hydroxyl group at these positions as
earlier reported for other naturally occurring quinic acid derivatives [Pauli et al., 1998; Lin et al.,
1999]. From these observations, the structure of 12 was initially thought to be the known compound
11. However, the 'H NMR spectrum of 12 showed slightly but distinctly different peak patterns of
the quinic acid unit compared to the known 11 [dy3 4.29, (dt, J = 3.2, 2.8 Hz), dy4 5.09, (dd, J =
10.4, 3.2 Hz) and dy.s 5.69, (dt, J = 6.6, 10.4 Hz)], which was also isolated from this plant. The
structure of the known 11 had been ascertained by a detailed comparison of the physical and spectral

data with those of the literature [Pauli et al., 1998].

Thus, we assumed that compound 12 is a conformational isomer of 11. To elucidate the conformation
of 12, comprehensive NMR studies were undertaken. Firstly, a ROESY experiment was recorded and
the data, together with the magnitude of the coupling constants and data from the COSY spectrum,
compared to the known 11. No clear ROESY cross-peaks from the oxymethine proton H-4 (6 5.24)
to any of the sp3 methylene protons H-2 (6 2.11 and 2.08) or H-6 (0 2.22 and 2.10) were evident
compared to those found for 11, which suggested that H-4 is equatorial compared to its axial position
in the known compound. Moreover, the physical properties (solubility, optical rotation) of 12 were
different from those of the known 11. Like other epi-quinic acid derivatives [Kim and Lee, 2005], 12
is of limited solubility in methanol, while the known derivative is freely soluble in the same solvent.
Conformational isomers of quinic acid have been investigated thoroughly, and three principal
structures have been confirmed, namely (-)-quinic acid, (-)-epiquinic acid and (+)-quinic acid [Kim
and Lee, 2005]. The negative optical rotation of 12 of [a]ZOD : —32° eliminates the probability of a
(+)-quinic acid derivative and the magnitude differs from that of the known 11 ([a]ZOD : —74°). Taken
together these data indicate 12 contains the epi-isomer of quinic acid and is 4,5-dicaffeoyl-epi-quinic

acid.

However the coupling constants in the "H NMR spectrum of 12 measured at 600 MHz were not in
agreement with a single chair-like conformation as shown. A detailed study [Flores-Parra et al., 1989;
Eliel and Ramirez, 1997] disclosed that quinic acid moiety exists as two conformers in rapid
equilibrium. Therefore the 'H NMR of 12 was measured at low temperature (300 °K, 273 °K and
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253 °K). Although the spectra recorded for 12 were not absolutely unambiguous, it did appear that
lowering the temperature from 300 °K to 253 °K caused a broaching of the signals of H-4 and H-3 of
the major isomer. This implied the molecule exists as an equilibrium mixture of various
(approximately 3) conformations at room temperature. This would rationalize the ‘“unusual”

couplings observed for H-3 (ddd, J = 5.6, 5.4, 5.3 Hz).

3 Rgsm ar nsfl re0 %
’ % Chbrogensfil re 998.05

Figure 3.63 UV spectrum of compound 12
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Figure 3.64 ESI-MS spectrum of compound 12
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Figure 3.69 NMR spectroscopic data of compound 12 (CD;0D, 600 MHz)

Position dc Oy (mult., J in Hz) COSY ROESY HMBC

1 75.5,qC

2 2.11, m* 3

2u 380, CHy 2.08,dd (13.1,5.3) 3 6a

3, 679.CH  4.16,ddd (5.6,54,53) 2eq 2004 C1,C5

4 72.8,CH  5.24,dd (6.1,3.0) 3,5 C3, CY’

5eq 70.0,CH  5.67,ddd (8.6,4.1,33) 4,6, 64 C1, C6, CY”
6 2.22,dd (13.2, 4.1) 5

6a 397, Ch, 2.10, m* 5 2

7 182.0, qC

I 127.8, qC

2 1150,CH  7.09,d (2.2) 6 C4', C6', CT'
3 146.7, qC

4 149.6, qC

5 116.5,CH  6.80,d (8.2) 6 Cl', C3', C4’
6 123.1,CH  6.97,dd (8.2,2.2) 2,5 C2', C4', CT'
7 147.1,CH  7.62,d (15.9) 8’ 2,6 C2', C6', CY’
8" 115.1,CH  6.34,d (15.9) 7 1, Cy’

9 168.3, qC

1 127.8, qC

27 1150,CH  7.05,d (2.1) 6" C4", C6", C7"
37 146.7, qC

47 149.6, qC

57 1165,CH  6.78,d (8.1) 6" C1", C3", C4"
6" 123.1,CH  6.92,dd (8.1, 2.1) 27, 5" C2", C4", CT"
77 147.1,CH  7.55,d (15.9) 8" 276" C2",C6", C9"
8" 115.1,CH  6.28,d (15.9) 7" C1", C9"

9" 168.3, qC

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.13. 5-p-Coumaroylquinic acid (trans) (13, known compound)

Molecular formula: C6H;50g
Molecular weight: 338.31
Amount: 0.6 mg

Compound 13 was isolated as an amorphous solid and had a molecular weight of 338 as deduced
from the ESIMS spectrum (Figure 3.71). It had UV absorbances at Ay.x 205, 210, and 308 nm
(Figure 3.70) indicative of the presence of p-coumaric acid moiety as the sole chromophore. In the
'H NMR spectrum of 13 (Figure 3.72), the olefinic protons showed a J value of 16.0 Hz indicating
the p-coumaric acid moiety had a trans-configuration. Corroborating 'H NMR resonances with
'H-'H COSY spectrum (Figure 3.73) of 13, the observation in the high field suggested the presence
of a quinic acid aliphatic ring system. The '"H NMR data of 13 agreed well with that of reference

compound, thus 13 was assigned to be 5-p-coumaroylquinic acid (¢frans) [Lu et al., 2000].

Beak #20 %

% No spectra brary hts found!

Figure 3.70 UV spectrum of compound 13
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Figure 3.73 'H-'H COSY spectrum of compound 13

Table 3.12 NMR spectroscopic data of compound 13 (CDs;OD, 500 MHz)

5-p-coumaroylquinic acid (trans)  Compound 13
[Lu et al., 2000]

Position Oy (mult., J in Hz) Oy (mult., J in Hz)

2 2.29-2.01, m 2.11,dd (13.3,3.2)
1.93,d (12.6)

3 3.90,d (3.1) 4.07,d (3.2)

4 3.77,dd (8.6, 3.0) 3.59,dd (9.8,3.2)

5 533, m 5.36, m*

6 2.29-2.01, m 2.08, m*; 1.97, m"

2 7.48,d (8.6) 7.45,d (8.5)

3 6.84,d (8.6) 6.79,d (8.5)

5 6.84,d (8.6) 6.79,d (8.5)

6’ 7.48,d (8.6) 7.45,d (8.5)

7 7.65,d (16.0) 7.63,d (16.1)

8” 6.34,d (16.0) 6.35,d (16.1)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.14. 5-p-Coumaroylquinic acid (cis) (14, known compound)

8!/7 " 6'
0 6.5°4 %5
)X\'mOH3 OH
Ho" 1 2 13

OH OH
Molecular formula: Ci6H;50g
Molecular weight: 338.31
Amount: 0.6 mg

Compound 14 was obtained as an amorphous solid. It had the same molecular weight and UV
absorbances as compound 13 (Figure 3.76 and Figure 3.75). Compound 14 was further established as
5-p-coumaroylquinic acid (cis) by '"H NMR of 14 (Figure 3.74) which showed that the olefinic
protons had a smaller J value of 12.6 Hz compared with the J value (16.0 Hz) in 13. It was relatively
unstable and readily converted to the trans isomer 13. From the above observations and through
comparison with the literature it was confirmed that compound 14 was 5-p-coumaroylquinic acid

(cis) [Lu et al., 2000].
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Figure 3.74 '"H NMR spectrum of compound 14
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Figure 3.76 ESI-MS spectrum of compound 14

Table 3.13 NMR spectroscopic data of compound 14 (CDs;OD, 500 MHz)

5-p-coumaroylquinic acid (cis)

Compound 14

[Lu et al., 2000]

Position Oy (mult., J in Hz) oy (mult., J in Hz)

2 2.33-1.99, m 2.14,dd (13.3,3.2)
1.93,d (12.6)

3 4.27,d (3.1) 4.09,d (3.2)

4 371, m 3.66,dd (9.8,3.2)

5 5.37,brs 5.38, m“

6 2.33-1.99, m 2.06, m*; 1.99, m"

2 7.63,d (8.2) 7.61,d (8.5)

3 6.76,d (8.2) 6.73,d (8.5)

5 6.76,d (8.2) 6.73,d (8.5)

6 7.63,d (8.2) 7.61,d (8.5)

T 6.83,d (12.7) 6.83,d (12.6)

8” 5.79,d (12.7) 5.80,d (12.6)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.15. Isoorientin (15, known compound)

3 O?-I O
Molecular formula: C,1H20014
Molecular weight: 448.38
Amount: 5.1 mg

Compound 15 was isolated as a yellow amorphous solid. The UV spectrum of 15 (Figure 3.77)
exhibited absorption maxima at 211, 270, and 349 nm which were the same as those of isoorientin.
Its ESI mass spectrum showed pseudomolecular ion peak [M + H]" at m/z 449 and [M — H]™ at m/z
447 (Figure 3.78). The 'H NMR spectrum of 15 showed an ABX system at dy 7.35 (br s), 6.88 (d,
8.4 Hz) and 7.36 (d, J = 8.4 Hz), respectively, and two singlet signals (dy 6.52 and 6.47) in the
aromatic region. The assignments were further supported by analysis of the 'H-'H COSY (Figure
3.80), HMBC (Figure 3.81) and HMQC (Figure 3.82) spectra of 15. The attachment of the glucose at
C-6 was deduced from the HMBC correlation between C-6 (6 108.8) and the anomeric proton H-1",
which in turn gave two cross-peaks with C-5 at 6 161.7 and C-7 at 6 164.9, respectively. Thus

compound 15 was doubtless assigned to be isoorientin [Kumazawa et al., 2000].
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Figure 3.77 HPLC chromatogram and UV spectrum of compound 15
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Table 3.14 NMR spectroscopic data of compound 15 (CDs;OD, 500 MHz)

Isoorientin (DMSO) Compound 15
[Kumazawa et al., 2000]
Position ¢ Oy (mult., J in Hz) oc oy (mult., J in Hz)
2 163.6, qC 165.8, qC
3 102.7,CH 6.67,s 103.4,CH 6.53,s
4 181.7, qC 183.7, qC
5 160.6, qC 161.7, qC
6 108.8, qC 108.8, qC
7 163.2, qC 164.9, qC
8 934,CH 6.48,s 947,CH 647,s
9 156.1, qC 158.3, qC
10 103.3, qC 104.7, qC
ik 121.4, qC 123.1, qC
2! 113.2,CH 7.40,d (2.3) 113.7,CH 7.35,brs
3! 145.7, qC 146.6, qC
4 149.6, qC 150.6, qC
5 116.0,CH 6.89,d (8.2) 116.5,CH 6.88,d (8.4)
6’ 118.8,CH 7.42,dd (8.2,2.3) 1199,CH 7.36,brd (8.4)
1” 73.0,CH  4.58,d(9.8) 75.1,CH  4.89,d(9.9)
2" 70.5,CH  4.07,dd (10.2,9.8) 722,CH 4.17,dd (9.1, 8.9)
3" 789,CH  3.19,dd (10.2, 8.5) 79.6,CH 3.47,m
4" 70.2,CH  3.12,dd (8.5, 8.9) 714,CH 347,m
5" 814,CH 3.17,ddd (8.9,6.1,1.8) 82.1,CH 3.4l1,m
6" 61.4,CH, 3.68,dd, (11.3,1.8) 62.5,CH, 3.87,dd(12.1,2.2)

3.40,dd (11.3,6.1) 3.73,dd, (12.1,5.4)
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3.1.16. Scorzonerin A (16, new compound)

Molecular formula: Cy7H30014
Molecular weight: 578.52
Amount: 7.0 mg

Compound 16 was isolated as a yellow amorphous solid. Its molecular formula was determined as
C27H30014 by HRESIMS (m/z 579.1708 [M + H]"). The UV spectrum of 16 showed absorption
maxima at 335, 272 and 215nm, and closely resembled that of isovitexin. The 'H (Figure 3.85) and
Be (Figure 3.86) NMR spectra of 16 confirmed the presence of a flavone glycoside characterized by
an AA'BB’ system with signals at g 6.97 (d, J = 8.0 Hz, H-3" and H-5")/6¢ 117.2 (C-3" and C-5') and
ou 7.88 (d, J = 8.0 Hz, H-2" and H-6")/6c 129.5 (C-2' and C-6), and a further aromatic proton signal
at oy 6.62 (s, H-3)/dc 103.6. The identity of the two sugar units followed from the magnitude of the
vicinal coupling constants determined from the 1D 'H and connectivities from the 2D COSY and
TOCSY (Figure 3.87) spectra. In the 'H-"H COSY spectrum, a cross-peak was observed between the
anomeric proton at oy 4.90 (d, J = 9.8 Hz) and the broad triplet at 0 4.57, corresponding to H-2",
which was further coupled to the double doublet of H-3" at 3.60 ppm. Hence all three protons are in
axial positions of a B-galactopyranose ring system that is evident from the small vicinal couplings to
H-4" that clearly distinguish it from a B-glucopyranose system found in violanthin [Carnat et al.,
1998]. Similarly the magnitude of the vicinal coupling constants and chemical shifts of the second
sugar unit, with the anomeric proton at 5.33 ppm, indicated this was a rhamnopyranose system.
Currently we assume that the rhamnose has an o anomeric configuration and the absolute
configuration of the galactose and rhamnose units are D and L, respectively. The linkage of the sugar
moieties to the flavone aglycone were established from HMBC data (Figure 3.88). The anomeric
proton at oy 4.90 of the galactose moiety showed a HMBC correlation with C-6 (d¢ 109.9) in ring A
of the flavone and two hydroxylated carbons C-5 at oc 161.5 and C-7 at dc 166.8, respectively, thus
establishing the C-glycosidic linkage at C-6 of the flavone nucleus. The second anomeric proton at
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oy 5.33 belonging to the rhamnose moiety gave a HMBC cross-peak with the hydroxylated carbon at
oc 166.8 (C-7), the oxygen-bearing carbon C-9 (¢ 155.9) and C-8 (d¢ 104.4) respectively, indicating
that the rhamnose moiety was bound to C-8 via a C-glycosidic linkage, similar to violanthin
[Carnat et al., 1998]. Thus compound 16 is considered to be

apigenin-6-C-f-D-galactopyranosyl-8-C-a-L-6-rhamnopyranoside and given the trivial name

scorzonerin A.
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Figure 3.83 HPLC chromatogram and UV spectrum of compound 16
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Table 3.15 NMR spectroscopic data of compound 16 (CD;OD, 500 MHz)

Position oc Oy (mult., J in Hz) TOCSY HMBC
2 165.7, qC
3 103.6,CH 6.62,s C1,Cl10
4 183.9, qC
5 161.5,qC
6 109.9, qC
7 166.8, qC
8 104.4, qC
9 155.9,qC
10 104.1, qC
Iy 123.2,qC
2! 117.2,CH 7.88,d (8.2)
3’ 129.5,CH 6.97,d (8.2)
4’ 163.1, qC
5! 129.5,CH 6.97,d (8.2)
6 117.2,CH 7.88,d (8.2)
1" Galactosyl ~ 75.6,CH  4.90,d (9.8) 2", 3", 4" C5, C6, C7
2" Galactosyl ~ 70.0,CH  4.57,brt 17,3", 4"
3" Galactosyl ~ 77.0,CH  3.60,dd (9.1,2.1) 1",2",4"
4" Galactosyl ~ 71.3,CH  4.00,d (2.4) 17,2", 3", 5", 6"
5" Galactosyl ~ 80.8, CH  3.67,t(5.5) 4", 6"
6" Galactosyl 628, CH, 3.78, m% 3.76,m* 5"
1" Rhamnosyl 77.4,CH  5.33,s C7,C8, C9

2" Rhamnosyl 74.0, CH 4.10,br s

3" Rhamnosyl 76.3,CH  3.72,brd (9.0)
4" Rhamnosyl 73.9,CH  3.63,t(9.0)

5" Rhamnosyl 79.1,CH  3.56,dq (8.8, 5.8)
6" Rhamnosyl 18.5,CH; 1.44,d (5.8)

“ Overlapping signals assigned by "H-'"H COSY and HMBC spectra without designating multiplicity.
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3.1.17. Scorzonerin B (17, new compound)

Molecular formula: Cy7H30014
Molecular weight: 578.52
Amount: 0.9 mg

Compound 17 was isolated as a yellow amorphous solid with a molecular formular of C,7H30O14
from the HRESIMS (m/z 579.1708 [M + H]"). The UV spectrum of 17 showed absorption maxima at
335,272 and 215 nm similar to compound 16. In the aromatic region of the "H NMR spectrum of 17
(Figure 3.92), an AA'BB’ system at dg 7.83 (d, J = 8.8 Hz, H-2' and H-6') and 6.94 (d, J = 8.8 Hz,
H-3" and H-5") and one singlet signal at oy 6.53 (H-6) were observed, characteristic of an apigenine
moiety. In the upfield region, two anomeric protons were presented at og4.92 (d, J = 9.9 Hz) and
5.29 (br s), which differed from the chemical shifts of anomeric protons of O-glycosides that are
usually observed at oy 5—6 ppm [Hesse et al., 1997]. Along with the molecular weight and the
residual resonances of the 'H and *C NMR spectrum, two carbon bound sugar units were inferred to
be present. The connections between the flavone aglycone and the sugar moieties were determined
by ROESY (Figure 3.93) and HMBC (Figure 3.94) spectra. The aromatic proton at dy 7.83 (H2" and
H6') gave a ROESY cross-peak with the anomeric proton of the rhamnose moiety at dy 5.29, which
further correlated with the oxygen-bearing carbon C-2 at d¢ 156.9 and C-3 at d¢ 105.8 in the HMBC
spectrum, thus establishing the linkage of the rhamnose moiety at C-3 of the flavone core.
Attachment of the glucose moiety was determined from the HMBC cross-peaks of the anomeric
proton at oy 4.92 (d, J = 9.9 Hz) with the oxygen-bearing carbon C-9 at ¢ 162.0 and C-8 at J¢c 110.8

in ring A, respectively, which indicated that the glucose unit was attached to C-8 via a C-glycosidic
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bond. This was corroborated from the chemical shifts of the *C NMR spectrum of 17 and
comparison with the ?C NMR data of the reference compound vitexin [Tomczyk et al., 2002]. From
these data, we tentative conclude that 17 is
apigenin-3-C-a-L-6-rhamnopyranosyl-8-C-4-D-glucopyranoside, to which we assigned the trivial

name scorzonerin B.
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Figure 3.90 HPLC chromatogram and UV spectrum of compound 17
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Results

Table 3.16 NMR spectroscopic data of compound 17 (CDs;OD, 500 MHz)

Position oc Oy (mult., J in Hz) ROESY HMBC
2 156.9 qC
3 105.8 qC
4 qc“
5 165.1 qC
6 103.0CH 6.53s
7 165.5qC
8 110.8 qC
9 162.0 qC
10 102.3 qC
1 123.0qC 6"
2! 1292 CH 7.83d(8.8)
3 1176 CH 6.94d (8.8)
4 163.9 qC
5’ 1176 CH 6.94d (8.8)
6’ 1292 CH 7.83d(8.8)
1" Glucosyl 755CH  4.92d(9.9) C8,C9
2" Glucosyl 71.8CH  4.48dd(9.9,9.2)
3" Glucosyl 80.7CH  3.48dd (9.2,9.1)
4" Glucosyl 71.6 CH  3.59dd (9.7,9.1)
5" Glucosyl 823CH 3.40ddd (9.7,4.7,2.2)
6" Glucosyl 628 CH, 3.86dd(12.1,2.2)

3.78 dd (12.1,4.7)

1" Rhamnosyl 769CH  5.29brs C2,C3,C4
2" Rhamnosyl 742CH  4.12d (3.0)
3" Rhamnosyl 77.1CH  3.69dd (9.1, 3.0)
4" Rhamnosyl 74.1CH  3.63t(9.1)
5" Rhamnosyl 79.0CH  3.55dq (9.1, 6.1)
6" Rhamnosyl 184 CH; 1.40d (6.1) Iy

“ Due to the low amount of compound, no *C NMR signal could be obtained
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3.1.18. Kaempferol-3-rutinoside (18, known compound)

Molecular formula: Cy7H30015
Molecular weight: 594.52
Amount: 32.9 mg

Compound 18 was isolated as yellow powder. The UV spectrum of 18 exhibited absorption maxima
at 266 and 348 nm in accordance with a flavonol derivative. A pseudomolecular ion [M + H]" at m/z
595 and fragment ions [F + H]" at m/z 449 and 287 were obtained in the positive ion ESI mass
spectrum of 18 (Figure 3.96) corresponding to kaempferol-hexose-deoxyhexose. The aromatic region
of the '"H NMR spectrum of 18 (Figure 3.97) showed an AA'BB’ system at ¢ 8.05 (dd, J = 8.8, 1.9 Hz)
and 6.88 (dd, J = 8.8, 1.9 Hz), and a 2H AX system at 6 6.39 (d, / =2.2 Hz) and 6 6.19 (d, J = 2.2 Hz)
in accordance to kaempferol aglycone. Assignments of the 13C resonances belonging to the aglycone,
as well as the inter-residual connections, were determined by the HMBC (Figure 3.100) and HMQC
(Figure 3.99) experiment. The HMBC crosspeak at ¢ 5.11/135.2 (H-1"/C-3) confirmed the linkage
between the glucopyranose unit and the aglycone at the 3-hydroxyl. The interglycosidic linkage
between the a-rhamnopyranosyl and the glucopyranose was determined to be at the 6"”-hydroxyl by
the crosspeak at 0 4.50/68.3 (H-1""/C-6") observed in the HMBC spectrum. Compound 18 was

identical with the known compound kaempferol-3-rutinoside [Slimestad et al., 2008].
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Table 3.17 NMR spectroscopic data of compound 18 (CDs;OD, 500 MHz)

Kaempferol (DMSO) Compound 18
[Slimestad et al., 2008]

Position ¢ oy (mult., J in Hz) oc Oy (mult., J in Hz)
2 156.93, qC 159.1, qC
3 133.29, qC 135.2, qC
4 177.47, qC
5 161.27, qC 162.7, qC
6 98.80,CH  6.19,d (2.1) 998,CH 6.19,d(2.2)
7 164.20, qC 166.4, qC
8 93.82,CH 6.40,d (2.1) 947,CH 6.39,d(2.2)
9 156.56, qC 158.3, qC
10 104.07, qC 105.2, qC
1 120.96, qC 122.4,qC
2 130.96,CH 7.97,d (8.9) 132.0,CH 8.05,dd (8.8, 1.9)
3 115.17,CH 6.87,d (8.9) 115.8,CH 6.88,dd (8.8,1.9)
4 159.99, qC 161.2,qC
5 115.17,CH 6.87,d (8.9) 115.8,CH 6.88,dd (8.8,1.9)
6’ 130.96,CH 7.97,d (8.9) 132.0,CH 8.05,dd (8.8, 1.9)
1" Glucosyl 101.40,CH 5.30,d (7.6) 104.2,CH 5.11,d (7.6)
2" Glucosyl 7425,CH 3.20,m 755,CH 341, m‘
3" Glucosyl 7582,CH 331,m 78.0,CH 342, m‘
4" Glucosyl 70.00,CH 3.04,m 712,CH 324, m‘
5" Glucosyl 76.44,CH 321,m 77.1,CH  3.37,m‘
6" Glucosyl 66.96, CH, 3.67,dd(11.4,1.8) 683,CH, 3.80,d(11.2)

3.26, m

1" Rhamnosyl 101.84, CH 4.36,d (1.8) 102.0,CH 4.50,s
2" Rhamnosyl 70.37,CH  3.37,m 71.9,CH 3.62,dd (1.6, 1.6)
3" Rhamnosyl 70.67,CH  3.33,m 72.0,CH 3.51,dd (9.5,3.2)
4" Rhamnosyl 7191,CH  3.07,t(9.4) 73.5,CH 3.27,m‘
5" Rhamnosyl 68.34,CH  3.25,m 69.3,CH 3.45 m‘
6" Rhamnosyl 17.81,CH; 0.97,d (6.3) 17.5,CH; 1.11,d (6.3)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.19. Rutin (19, known compound)

Molecular formula:
Molecular weight:

Amount:

Cy7H30016
610.52
121.2 mg

Compound 19 was isolated as yellow powders. It has UV absorbance of typical flavonol derivatives

at Amax 206, 256 and 357 nm. Compound 19 showed a positive pseudomolecular ion peak [M + H]" at

m/z 611 and a negative pseudomolecular ion peak [M — H]™ at m/z 609 (Figure 3.102) suggesting the

molecular weight m/z 610. The "H NMR spectrum of 19 (Figure 3.103) exhibited different signals for

the B-ring protons compared to those of 18, which are an ABX spin system [dg 7.66 (d, J = 1.9 Hz),

6.86 (d, J = 8.5 Hz) and 7.62 (dd, J = 8.5, 1.9 Hz)] instead of an AA'BB’ system as present in 18.

Comparison of the '"H NMR spectrum and the MS fragmentations of compound 19 with that of rutin

confirmed that both compounds were identical [Khalifa et al., 1983].
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Figure 3.101 HPLC chromatogram and UV spectrum of compound 19
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Table 3.18 NMR spectroscopic data of compound 19 (DMSO-dg, 500 MHz)

T
6

T T T T
5 3 2 1
2 (ppm)

Rutin Compound 19
[Khalifa ef al., 1983]

Position Oy (mult., J in Hz) oy (mult., J in Hz)
6, CH 6.17, s 6.14, s
8,CH 6.36, s 6.34, s
2',CH 7.50, s 7.51,brs
5, CH 6.80, s 6.82,d (8.5)
6', CH 7.50, br s 7.53,brd (8.5)
1" Glucosyl, CH 5.30,brs 5.31,d (6.9)
2" Glucosyl, CH 3.04-3.37, m"
3" Glucosyl, CH 3.04-3.37, m"
4" Glucosyl, CH 3.04-3.37, m"
5" Glucosyl, CH 3.04-3.37, m"
6" Glucosyl, CH, 3.68, brd (10.8)
1" Rhamnosyl, CH  4.40, s 4.37,brs
2"" Rhamnosyl, CH 3.04-3.37, m"
3"”" Rhamnosyl, CH 3.04-3.37, m"
4" Rhamnosyl, CH 3.04-3.37, m"
5" Rhamnosyl, CH 3.04-3.37, m"
6" Rhamnosyl, CH; 1.03, s 0.98,d (6.0)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.

f1 (ppm)
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3.1.20. 3,3',5,5',7-Pentahydroxyflavanone (20, known compound)

OH
9"
Ho 7.8 02,8 &
1 6 OH
OH O
Molecular formula: Cy5H;,04
Molecular weight: 304.25
Amount: 1.9 mg

Compound 20 was isolated as pale yellow needles. The UV spectrum of 20 (Figure 3.106) showed
absorption maxima at 204, 216 and 289 nm. ESI mass spectrum (Figure 3.107) displayed the ion
peak at m/z 304. The '"H NMR spectrum of 20 (Figure 3.105) indicated two doublets with coupling
constants of 1.6 Hz indicating a pair of meta-coupling aromatic protons. Other pair of doublet [dy
4.96 (d, J = 11.0 Hz) and 4.47 (d, J = 11.0 Hz)] were observed in the upper field which are the
typical signals for the frans H-2 and H-3 of dihydroflavonol. The singlet signal for two protons was
indicated for an AA’ system (H-2' and H-6"). Comparison of the 'H NMR data with those reported

for 3,3',5,5',7-pentahydroxyflavanone proved both compounds to be identical [Ding et al., 1997].
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Table 3.19 NMR spectroscopic data of compound 20 (DMSO, 500 MHz)

3,3',5,5,7-pentahydroxyflavanone
[Ding et al., 1997]

Compound 20

Position Oy (mult., J in Hz) oy (mult., J in Hz)
2,CH 4.98,d (11.1) 4.96,d (11.0)
3,CH 4.50,dd (11.1, 6.0) 4.47,d (11.0)

6, CH 5.86,d (2.0) 5.84,d (1.6)

8, CH 5.91,d (2.0) 5.89,d (1.6)

2' CH 6.74, s 6.73, s

4 CH 6.87,s 6.86, s

6', CH 6.74, s 6.73, s

5-OH 11.90, s 11.89,s
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3.1.21. Umbelliferone (21, known compound)

514
6 X3

HO789020

Molecular formula: CyoHcO5
Molecular weight: 162.14
Amount: 9.9 mg

Compound 21 was isolated as an amorphous solid. The coumarin nature of 21 was deduced from UV
maximal absorption at 217 and 324 nm (Figure 3.109). Compound 21 had a molecular weight of 162,
as derived from the ESIMS measurement which showed the ion peak at m/z 161 [M — H]". (Figure
3.110) The 'H NMR spectrum of 21 (Figure 3.108) revealed a pair of doublet with coupling
constants of 9.5 Hz, characteristic of an o,B-unsaturated ketone of a coumarin ring. The residual
resonances indicative for an ABX system [dyg 6.69 (d, J = 2.2 Hz), 6.78 (dd, J = 8.5 and 2.2 Hz) and
7.44 (d, J = 8.5 Hz)] were observed indicating the presence of a trisubstituted aromatic ring. Along

with its molecular weight, compound 21 was identical to those of umbelliferone [Jeong et al., 2006].
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Figure 3.108 '"H NMR spectrum of compound 21
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Figure 3.110 ESI-MS spectrum of compound 21

Table 3.20 NMR spectroscopic data of compound 21 (CDs;OD, 500 MHz)

Umbelliferone Compound 21
[Jeong et al., 2006]

Position Oy (mult., J in Hz) Oy (mult., J in Hz)
3,CH 6.15,d (9.5) 6.16,d (9.5)
4,CH 7.85,d (9.5) 7.83,d (9.5)
5, CH 7.50,d (8.4) 7.44,d (8.5)
6, CH 6.84,dd (8.4,2.2) 6.78,dd (8.5, 2.2)
8, CH 6.74,d (2.2) 6.69,d (2.2)
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3.1.22. Skimmin (22, known compound)

m
Hﬂ 9°0'2°0

Molecular formula: C5H;603
Molecular weight: 324.28
Amount: 4.4 mg

Compound 22 was obtained as an amorphous solid. The UV spectrum exhibited a maximal
absorption at 317 nm. (Figure 3.112) The ESIMS spectrum of 22 (Figure 3.113) showed molecular
jon peak at m/z 324. The 'H NMR data of 22 (Figure 3.111) were very similar to those of 21 in the
aromatic region. However the presence of an additional sugar moiety was indicated by an anomeric
proton signal at oy 5.03 and the proton signals from dy 3.90 to 3.39 comparing to 21. The HMBC
spectrum (Figure 3.115) confirmed the sugar linkage by a cross peak between C-7 (6 161.9) and the
anomeric proton of glucose. Compound 22 was identified as skimmin through comparison of its

spectral data with the previously published ones [Khalil ez al., 2003].
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Figure 3.111 '"H NMR spectrum of compound 22
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Figure 3.112 HPLC chromatogram and UV spectrum of compound 22
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Figure 3.113 ESI-MS spectrum of compound 22
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Figure 3.115 HMBC spectrum of compound 22
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Table 3.21 NMR spectroscopic data of compound 22 (CDs;OD, 500 MHz)

skimmin (Pyridine-ds) Compound 22
[Khalil et al., 2003]

Position oc Oy (mult., J in Hz) oc oy (mult., J in Hz)
2 162.6, qC 162.9, qC
3 112.8,CH 6.30,d (9.6) 114.0,CH 6.28,d (9.5)
4 144.5,CH 7.62,d (9.6) 1452,CH 7.89,d (9.8)
5 129.3,CH 7.37,d (8.8) 130.1,CH 7.55,dd (7.6, 1.9)
6 113.7,CH 7.17,dd (8.4,2.4) 115.0,CH 7.08,dd (7.5, 2.1)
7 161.4, qC 161.9, qC
8 103.0,CH 7.23,d (2.4) 104.7,CH 7.07,d (1.9)
9 155.9, qC 156.5, qC
10 111.9,qC 115.1, qC
1’ 99.6,CH  5.69,d (7.6) 101.6,CH 5.03,dd (5.6, 2.1)
2' 73.5,CH 745,CH  3.48,dd (6.2,2.1)
3 774, CH 775,CH  3.48,dd (6.2,2.1)
4 69.6, CH 71.0,CH 339,m
5 76.7, CH 781,CH 3.51,m
6’ 60.8, CH, 62.1,CH, 3.90,dd (12.0,2.2)

3.70,dd (12.3,5.7)

£1 (ppm)
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3.1.23. Piceol (23, known compound)

O 7-8
1
4
OH
Molecular formula: CsHgO,
Molecular weight: 136.15
Amount: 8.5 mg

Compound 23 was isolated as an amorphous solid with UV absorbances at Ay.x 221 and 277 nm.
(Figure 3.116) The ESIMS spectrum (Figure 3.117) showed a pseudomolecular ion peak at m/z 135
[M — H] (negative). The 'H (Figure 3.118), °C (Figure 3.119) and DEPT NMR (Figure 3.120)
spectra of 23 exhibited an AA'BB’ system [dy 7.88 (d, J = 8.5 Hz); oc 132.1 and 6.83 (d, J = 8.5 Hz);
oc 116.2] and a methyl ketone function [dy 2.51, d¢c 26.3]. According to these data and through

comparison with the literature [Pouchert, 1992], compound 23 was concluded to be piceol.

Ywi SRAES5-4- uv_vis 9
160 TR0 — oedet ieass | peak 100%
' T No spectra brary hts found!
i 276.8
100
221
50—: 1204\ 5
] nm
20 ol |
0.0 100 20,0 300 400 500 60,0 200 250 300 350 400 450 500 550 59°f

Figure 3.116 HPLC chromatogram and UV spectrum of compound 23

20250 #410 RT: 11.47 AV: 1 NL: 181E6
T: - cESIsid=25.00 Full ms [ 100.00-1000.00]

100 200 300 400 500 600 700 800 900 1000

Figure 3.117 ESI-MS spectrum of compound 23
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Figure 3.120 DEPT spectrum of compound 23

Table 3.22 NMR spectroscopic data of compound 23 (CDs;OD, 500 MHz)

Piceol (acetone-dp)

[Kametani et al., 2007]

Compound 23

Position Jc Oy (mult., J in Hz) dc oy (mult., J in Hz)
1 130.5,qC 130.2, qC

2 131.5,CH 7.89,d (8.8) 132.1,CH 7.88,d (8.5)

3 1159,CH 6.92,d (8.8) 116.2,CH 6.83,d (8.5)

4 162.6, qC 164.0, qC

5 1159,CH 6.92,d (8.8) 116.2,CH 6.83,d (8.5)

6 131.5,CH 7.89,d (8.8) 132.1,CH 7.88,d (8.5)

7 196.2, qC 199.5, qC

8 26.3,CH; 249,s 26.3,CH; 2.51,s
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3.1.24. Piceoside (24, known compound)

O 8
1
2
OH 3
) ﬂ“' €5 0° V2
075 ©
Molecular formula: C14H;304
Molecular weight: 298.29
Amount: 13.3 mg

Compound 24 was obtained as an amorphous solid and has UV absorptions at Ayax 214 and 265 nm.
(Figure 3.122) The molecular weight of compound 24 was determined from the ESI mass spectrum
as 298. (Figure 3.124) The "H NMR spectral data of 24 (Figure 3.121) were very similar to those of
23 with an additional sugar unit. The assignment of the glucose moiety at C-4 was determined from
the HMBC cross-peak (Figure 3.123) of the anomeric proton at oy 5.02 (d, J = 7.6 Hz) with ¢ 163.0.
The methyl singlet at oy 2.55 gave a cross-peak with the carbonyl carbon at dc7 199.4 and the
aromatic carbon at dc.; 132.5, respectively. Compound 24 was identified as piceoside [Karikas et al.,

1987].
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Figure 3.121 'H NMR spectrum of compound 24
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Figure 3.123 HMBC spectrum of compound 24
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Figure 3.124 ESI-MS spectrum of compound 24

Table 3.23 NMR spectroscopic data of compound 24 (CDs;OD, 500 MHz)

Piceoside (D,0) Compound 24
[Karikas et al., 1987]
Position Jc Oy (mult., J in Hz) dc oy (mult., J in Hz)
1 qC 132.5, qC
2 131.0,CH 7.8-7.9,d (8.2) 131.6,CH 7.96,d (9.1)
3 116.1,CH 7.0-7.1,d (8.2) 117.1,CH 7.15,d (8.8)
4 157.4, C 163.0, qC
5 116.1,CH 7.0-7.1,d (8.2) 117.1,CH 7.15,d (8.8)
6 131.0,CH 7.8-7.9,d (8.2) 131.6,CH 7.96,d (9.1)
7 qC 199.4, qC
8 26.0,CH; 247,s 26.2,CH; 2.55,s
1 99.5, CH 5.0,d 101.5,CH 5.02,d (7.6)
2! 72.9, CH 3.3-4.8, m 74.5, CH 3.48, m*
3’ 76.2, CH 3.3-4.8, m 77.7, CH 3.48, m*
4’ 69.4, CH 3.3-4.8, m 71.2, CH 3.40, m*
5' 75.5,CH 3.3-4.8, m 78.2, CH 3.48, m*
(3 60.6,CH, 3.3-48,m 62.2,CH, 3.89,d(12.0,2.2)

3.69,d(12.3,5.7)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.25. 4-Hydroxybenzoic acid (25, known compound)

O.ZOH
1
5
4
OH
Molecular formula: C;HcO5
Molecular weight: 138.12
Amount: 2.5 mg

Compound 25 was isolated as an amorphous solid. It has UV absorbances at Ay, 210 and 255 nm.
(Figure 3.126) The EIMS spectrum showed a pseudomolecular ion peak at m/z 138 [M]*. (Figure
3.127) Fragment ions were observed at m/z 121, 83, 57 and 43, respectively, representing a
p-hydroxybenzoic acid skeleton. The "H NMR spectrum (Figure 3.125) exhibited a para-substituted
phenyl ring containing two pairs of ortho-coupled proton at oy 7.85 (d, J = 8.5 Hz) and 6.77 (d, J =
8.5 Hz). From the above data and through comparison with the literature, compound 25 was

confirmed to be 4-hydroxybenzoic acid [Scott, 1970].
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Figure 3.125 'H NMR spectrum of compound 25
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Figure 3.126 HPLC chromatogram and UV spectrum of compound 25
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Figure 3.127 EI-MS spectrum of compound 25

Table 3.24 NMR spectroscopic data of compound 25 (CDs;OD, 500 MHz)

4-Hydroxybenzoic acid (DMSO-d;)
[Scott, 1970]

Compound 25

Position Oy (mult., J in Hz) Oy (mult., J in Hz)
2,CH 7.98,dd (8.7,2.4) 7.85,d (8.5)
3,CH 6.96,dd (8.7,2.4) 6.77,d (8.5)
5,CH 6.96,dd (8.7,2.4) 6.77,d (8.5)
6, CH 7.98,dd (8.7,2.4) 7.85,d (8.5)
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3.1.26. Arbutin (26, known compound)

OH
1
6 2
OH 2
HO "0
3

r 2"0OH
Molecular formula: C12H;607
Molecular weight: 272.25
Amount: 173.7 mg

Compound 26 was obtained as a colourless crystal showing the molecular weight of 272 in ESI mass
spectrum. (Figure 3.130) The 'H (Figure 3.128) and BC NMR (Figure 3.131) spectra of 26 exhibited
an AA'BB’ system [dy 6.90 (d, J = 9.0 Hz) and d¢ 119.1; dy 6.72 (d, J = 9.0 Hz) and J¢ 121.3] and a
sugar moiety. From the HMBC spectrum of 26 (Figure 3.132), a correlation was noticed between the
anomeric proton at ¢ 4.82 (H-1") and the carbon (6 154.1) of the para-hydroxyphenol residue,
establishing that the glucosidic bond is between C-4 and C-1". The 'H and '*C NMR spectra were

identical to those of arbutin [Perry et al., 1996].
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Figure 3.128 'H NMR spectrum of compound 26
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Figure 3.129 HPLC chromatogram and UV spectrum of compound 26
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Figure 3.132 HMBC spectrum of compound 26
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Table 3.25 NMR spectroscopic data of compound 26 (D,0O, 500 MHz)

Arbutin Compound 26
[Perry et al., 1996]
Position oc Oy (mult., J in Hz) oc oy (mult., J in Hz)
1 153.2, qC 153.3, qC
2 121.3,CH 7.06,d (9) 121.3,CH 7.04,d (9.0)
3 119.1,CH 6.88,d (9) 119.1,CH 6.85,d (9.0)
4 154.1, qC 154.1, qC
5 119.1,CH 6.88,d (9) 119.1,CH 6.85,d (9.0)
6 121.3,CH 7.06,d (9) 121.3,CH 7.04,d (9.0)
1’ 104.2,CH 4.97,d (7) 104.2,CH 4.95,d(7.6)
2! 75.8, CH 75.8,CH  3.54, m"
3 78.9, CH 789,CH  3.58, m"
4! 72.3, CH 72.3,CH  3.48,m"
5 78.4, CH 784,CH  3.54, m"
6’ 63.4,CH, 3.93,dd(12,2) 63.4,CH, 3.91,dd(12.3,1.9)
3.77,dd (12, 5) 3.74,dd (12.3,5.4)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.1.27. Lanceoloside A (27, known compound)

Compound 27 was isolated as an amorphous solid with the molecular weight of 392 determined by
ESIMS analysis (Figure 3.134). The UV spectrum (Figure 3.133) showed an absorption maximum at
215 and 258 nm. From 'H NMR spectrum of 27 (Figure 3.135), a p-hydroxybenzoyl group [7.74 (2H,
ortho); 6.75 (2H, meta)] and a p-hydroxyphenoxy group [6.59 (2H, ortho); 6.85 (2H, meta)] were
observed. The °C and DEPT NMR spectra of 27 (Figure 3.136) had signals for 19 carbon atoms
among which were one ketone carbonyl, eight aromatic methines, four quaternary sp> carbons (three

bearing an oxygen), and six sp> methines (each carrying an oxygen substituent). Compound 27 was

OH
1"

6" 2"

5" 3"

4' 6 5 O5

Molecular formula: C19H500Og
Molecular weight: 392.36
Amount: 6.8 mg

identified as lanceoloside A [Pegnyemb et al., 1998].
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Figure 3.133 HPLC chromatogram and UV spectrum of compound 27
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Figure 3.134 ESI-MS spectrum of compound 27
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Figure 3.137 DEPT spectrum of compound 27
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Table 3.26 NMR spectroscopic data of compound 27 (CDs;OD, 500 MHz)

Lanceoloside A (Me,CO-dy) Compound 27
[Pegnyemb et al., 1998]

Position oc Oy (mult., J in Hz) oc oy (mult., J in Hz)

1 153.5, qC 152.4, qC

2 1189,CH 695, m 117.5,CH 6.85,d (8.8)

3 116.3,CH 6.66, m 116.0,CH 6.59,d (8.8)

4 151.9, qC 150.0, qC

5 116.3,CH 6.66, m 116.0,CH 6.59,d (8.8)

6 1189,CH 695, m 117.5,CH 6.85,d (8.8)

1 103.1,CH 4.80,d (7.3) 101.4,CH 4.70,d (7.6)

2 74.6, CH 3.56, m 732,CH  3.22,t(8.8)

3 77.8, CH 3.60, m 76.5,CH  3.28,t(8.8)

4 71.5, CH 3.58, m 703,CH  3.20,t(8.8)

5 75.0, CH 3.80, m 73.8,CH  3.62,dt (8.5, 1.6)

6’ 64.7,CH, 4.70,dd (9.5,2.3) 63.6,CH, 4.54,dd(11.7,1.6)
4.34,dd (9.5, 2.3) 4.10,dd (11.7,7.6)

1" 162.8, qC 165.6, qC

2" 116.0,CH 694, m 115.4,CH 6.75,d (8.8)

3" 1325,CH 792, m 1314,CH 7.74,d (8.8)

4" 116.8, qC 117.5, qC

5" 1325,CH 792, m 1314,CH 7.74,d (8.8)

6" 116.0,CH 694, m 115.4,CH 6.75,d (8.8)

7" 196.4, qC 165.6, qC
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3.1.28. Staphylionoside D (28, known compound)

HIO-|O 9 qr
3 2'OH
Molecular formula: C9H3003
Molecular weight: 386.44
Amount: 3.0 mg

Compound 28 was isolated as an amorphous solid. The UV spectrum (Figure 3.138) exhibited a
maximal absorption as 235 nm. The 'H (Figure 3.139) and BC NMR (Figure 3.140) spectra of 28
showed signals indicating four methyl, two methylene, two methine and three sp3 quaternary carbons,
suggesting that 28 had a skeleton same as that of staphylionoside D. In the HMBC (Figure 3.143),
the 'H-"C long-range correlations between the anomeric proton at & = 4.43 (H-1') and the
oxymethine carbon at 0 = 72.6 (C-3) suggested that the glucosyl unit was linked with C-3 via oxygen.
The presence of the allenic moiety was confirmed further by HMBC correlations from the proton at ¢
= 5.82 (H-8) to carbon at J = 120.1 (C-6). The relative stereochemistry of 28 was determined by
ROESY experiments as shown in Figure 3.142. Compound 28 was identical with the known

compound staphylionoside D [Wang et al., 2005; Yu et al., 2005].
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Figure 3.138 UV spectrum of compound 28
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Table 3.27 NMR spectroscopic data of compound 28 (CDs;OD, 500 MHz)

Staphylionoside D Compound 28
[Yu et al., 2005]
Position oc Oy (mult., J in Hz) oc oy (mult., J in Hz)
1 37.0,qC 37.0,qC
2 46.7,CH, 2.10,ddd (13, 4, 2), 48.1,CH, 2.08,ddd (12.7,4.1, 2.0),
1.47,dd (13, 13) 1.46,dd (12.2, 12.2)
7277,CH  4.35,dddd(13,13,4,4) 72.6,CH 4.34,m‘
4 48.2,CH, 2.38,ddd (13, 4,2), 46.6,CH, 2.36,ddd (13.2,4.0,2.1),
1.46,dd (13, 13) 1.46,dd (13.1, 11.3)
5 724, qC 72.4,qC
6 120.2, qC 120.1, qC
7 200.9, qC 211.5,qC
8 101.2,CH 5.83,s 101.2,CH 5.82,s
9 211.5,qC 201.0, qC
10 26.6,CH; 2.19,s 26.3,CH; 2.18,s
11 29.5,CH; 1.38,s 294,CH; 1.38,s
12 323,CH; 1.16,s 323,CH; 1.15,s
13 309,CH; 1.39,s 30.8,CH; 1.39,s
1’ 102.8,CH 4.46,d (8) 102.7,CH 4.43,d(7.8)
2' 75.2,CH  3.16,dd (9, 8) 75.1,CH  3.14,dd (9.1, 7.8)
3 78.2, CH 782,CH  3.36, m"
4 71.7, CH 717,CH 331, m"
5 77.9, CH 779,CH  3.30, m"
6’ 62.8,CH  3.88,dd (12, 2), 62.8,CH 3.87,dd (12.2,1.9),
3.69,dd (12, 5) 3.68,dd (12.0,5.1)

“ Overlapped signals assigned by '"H-"H COSY, HMBC, and HMQC spectra without designating multiplicity. ® A time-dependent H/D
exchange was observed for this signal in CD;OD. The original singlet decreased in intensity, while all other signals remained

unchanged.
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3.1.29. Bioactivity test results for the compounds isolated from Scorzonera radiata

Radical-scavenging activity of the five new dihydrostilbene derivatives (1-5) and the isolated quinic
acid derivatives (7-13) was assessed using the DPPH assay. As a reference compound, the well
known naturally occurring antioxidative stilbene resveratrol was included. ICsy values were
determined for each of these compounds and are presented in Table 3.28. Compounds 1 and § were

more active than resveratrol or compounds 2—4.

The five new dihydrostilbene derivatives (1-5) and their aglycones were measured for inhibiting cell
viability by MTT or neutral red assay (Figure 3.144) in H4IIE rat hepatoma cells to determine their
cytotoxicity. Then those compounds were principally evaluated the TNF dependent NF-kB activation
by SEAP-Assay in H4IIE cells (Figure 3.145-Figure 3.147). The aglycone of 1, the only active

compound, was further tested for caspase 3/7 stimulating activity (Figure 3.148).

Scorzodihydrostilbene A and B (1 and 2) were also tested for cytotoxicity toward the mouse
lymphoma cell line (L5178Y), and showed 102.8% and 96.1% growth inhibition respectively.

Neither of them was active when assayed at a concentration of 10 ug/mL.

Three dihydrostilbene derivatives (1-3), three quinic acid derivatives (7-9) and 25 were further
evaluated for their protein kinase inhibitory profiles. The results are presented as residual activity in
percent related to the 100% controls and shown in Table 3.29. Compound 2, 8, 9 and 25 were
selected for ICsy determination since they showed an inhibition of > 40 % at a concentration of 1
ug/mL with at least one of the 24 kinases. The ICsy values in molar concentrations are exhibited in

Table 3.30.
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Table 3.28 1Cs, values of dihydrostilbene derivatives, quinic acid derivatives and resveratrol in

DPPH assay

compound ICs (uM)
scorzodihydrostilbene A (1) 105.51
scorzodihydrostilbene B (2) 663.13
scorzodihydrostilbene C (3) 486.38
scorzodihydrostilbene D (4) 730.99
scorzodihydrostilbene E (5) 102.90
resveratrol 149.52
chlorogenic acid (7) 48.69
3,5-dicaffeoylquinic acid (8) 41.46
3,5-dicaffeoyl-epi-quinic acid (9) 40.40
macroantoin G (10) 41.27
4,5-dicaffeoylquinic acid (11) 42.23

4,5-dicaffeoyl-epi-quinic acid (12) 40.55
5-p-coumaroylquinic acid (trans) (13) 378.21

MTT assay
140
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Figure 3.144 Cell viability of scorzodihydrostilbene derivatives in H41IE
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Figure 3.146 Inhibition of TNF-a induced activation of NF-kB by dihydrostilbene derivatives
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Table 3.29 Selectivity profiling of seven compounds isolated from Scorzonera radiata using 24
protein kinases

Residual activities (% of control activity)

Compound 1 2% 3 7 8 9% 25%
AKTI 97 9 72 95 51 8 96
ARKS 94 95 101 96 89 90 94
Aurora-A 97 95 89 8 66 49 93
Aurora-B 8 59 82 74 28 29 93
AXL 99 96 103 83 43 76 99
B-RAF-VE 104 121 111 99 75 102 99
CDK2/CycA 98 96 103 115 80 96 110
CDK4/CycDl 116 75 92 100 42 74 113
CK2-alphal 104 95 100 97 75 80 104
COT 9 95 8 99 74 95 94
% | EGF-R o4 92 98 103 27 55 72
£ | EPHB4 95 88 100 89 28 63 74
< | ERBB2 9 87 91 99 61 90 78
2 | FaK 9 94 96 88 80 8 90
£ | IGFIR 94 90 100 92 10 40 6l
INS-R 99 99 97 103 34 41 101
MET 94 91 94 110 69 78 96
PDGFR-beta 92 95 97 97 68 74 98
PLKI 9% 89 103 97 75 83 99
PRK 9 90 88 80 62 69 86
SAK 110 115 122 82 8 14 109
SRC 99 83 102 8 23 60 45
TIE2 99 99 94 102 13 S0 72
VEGF-R2 90 84 90 84 13 48 64
ICs 8 59 72 74 8 14 45

*showing at least 40 % inhibition at 1 ug/mL with at least one of 24 kinases
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Table 3.30 ICs, profiling of four selected compounds using 24 protein kinases (variable highest
molar concentration)
ICsy values (M)
scorzodihydro- 3,5-dicaffeoyl- 3,5-dicaffeoyl-epi- piceol (25)
stilbene B (2)  quinic acid (8) quinic acid (9)

AKTI A 7.2E-06 1.1E-05 A
ARKS A 4.8E-06 7.4E-06 A
Aurora-A A 3.0E-06 2.4E-06 A
Aurora-B A 9.4E-07 2.0E-06 A
AXL A 1.4E-06 3.6E-06 A
B-RAF-VE A 3.7E-06 1.7E-05 A
CDK2/CycA A 6.5E-06 1.3E-05 A
CDK4/CycD1 A 2.3E-06 4.9E-06 A
CK2-alphal A 5.5E-06 8.0E-06 A

., | coT A 8.5E-06 7.8E-06 A

§ TIE2 A 1.2E-06 1.6E-06 A

‘2 | EGF-R A 7.1E-07 3.1E-06 1.9E-05

£ | EPHB4 A 1.2E-06 3.9E-06 A

S | ERBB2 A 2.6E-06 9.1E-06 A

A | FAK A 5.0E-06 1.2E-05 A
IGF1-R A 3.8E-07 1.9E-06 1.6E-05
INS-R A 1.1E-06 1.7E-06 A
MET A 2.0E-06 3.3E-06 A
PDGFR-beta A 2.4E-06 3.4E-06 A
PLK1 A 4.9E-06 6.6E-06 A
PRK1 A 2.9E-06 5.3E-06 A
SAK A 3.5B-07 5.4E-07 A
SRC A 7.4E-07 4.0E-06 1.1E-05
VEGF-R2 A 4.5B-07 2.4E-06 2.5E-05

A above maximal molar assay concentration of compound
moderately active

- active
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3.2. Compounds isolated from the Mongolian medicinal plant Dianthus versicolor

Dianthus versicolor Fisch. ex Link (Caryophyllaceae) is also a Mongolian folk medicinal plant. This

plant is used as a diuretic, as an anti-inflammatory agent, and in the treatment of urinary infections,

carbuncles, and carcinomas [Ma et al., 2009]. In the previous phytochemical studies of Dianthus spp,

saponins, flavonoids, and glycosides have been reported as the main constituents of this genus.

Especially many bioactive saponins have been investigated which are shown in Figure 3.149 [Hikino

et al., 1984; Li et al., 1993; Li et al., 1994]. So far only few studies have been done for the species

Dianthus versicolor [Boguslavskaya et al., 1983; Ma et al., 2009]. In our research for biologically

active metabolites from the Mongolia medicinal plant D. versicolor, two lignans (29, 30) and several

triterpenoids (31-34) were isolated.

compound Ri R, R; R; Rjs
dianosides H H H H H H
dianosides G H H H Glc Glc
dianosides A Gc H H H H
azukisaponin 1V Glc H H H Gl
dianosides B Glc H H Glc Glc
hainanenside H H OH H H
dianchinenoside D H H OH H Gl
dianchinenosidle C H Glc OH H H
dianchinenoside A Ara H OH H H
dianchinenoside B Xyl H OH H H

Figure 3.149 Some saponins isolated from the genus Dianthus
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3.2.1. (-)-Matairesinol (29, known compound)

Molecular formula: CyoH2,0¢
Molecular weight: 358.39
Amount: 88.2 mg

Compound 29 was obtained as an amorphous solid, and shown to have the molecular weight 358 as
determined by ESI mass spectrum (Figure 3.151). The UV spectrum of 29 (Figure 3.150) exhibited
absorption maxima at 211, 228, and 281 nm. The "H (Figure 3.152) and *C NMR (Figure 3.153)
spectra of 29 showed resonances for two ABX systems [dy 6.81 (d, J = 7.9 Hz), 6.60 (d, /= 1.9 Hz)
and 6.59 (dd, J =7.9, 1.9 Hz); and 6y 6.79 (d, J = 8.0), 6.50 (dd, J = 8.0, 1.9 Hz) and 6.40 (d, /= 1.9
Hz)] in the aromatic region, which were assigned to two 1,3,4-trisubstituted phenyl units. Two
methyl resonances at dy 3.80 and 3.79 indicated two O-methyl functions. From the observations in
the aliphatic region, along with the analysis of the DEPT (Figure 3.154) and 'H-'"H COSY spectra of
29 (Figure 3.155), three methylene groups and two methane groups were presented. The attachment
of two O-methyl groups at C-3 and C-3' were shown from the HMBC cross-peaks (Figure 3.157) of
the methyl singlet at dy 3.80 and 3.79 with d¢ 146.67 and 146.55, respectively. The NMR data and
[(x]20D [-92 (¢ 0.10, MeOH)] value of compound 29 were in good agreement with those of

(-)-matairesinol [ Youssef and Frahm, 1995], which is one of the well known lignans.

feak #20%
’ % Catechh 962.86

AFSETE I

Figure 3.150 UV spectrum of compound 29
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Table 3.31 NMR spectroscopic data of compound 29 (CDCls, 500 MHz)

(-)-Matairesinol
[Youssef and Frahm, 1995]

Compound 29

Position oc Oy (mult., J in Hz) oc oy (mult., J in Hz)

1 129.73, qC 129.74, qC

2 111.51,CH 6.58,d 11143,CH 6.60,d (1.9)

3 146.70, qC 146.67, qC

4 144.52, qC 144.49, qC

5 114.40,CH 6.78,d 11436, CH 6.81,d(7.9)

6 122.03,CH 6.57,dd 122.04,CH 6.59,dd (7.9, 1.9)

7 3455,CH, 292,m 34.54,CH, 2.94,dd (14.0,5.3)
2.84, m 2.86, dd (14.0,7.1)

8 46.53,CH  2.50,m 46.53,CH  2.53,m"

9 178.77, qC 178.79, qC

10 55.81,CH; 3.79,s 55.80,CH; 3.80,s

Iy 129.50, qC 129.51,qC

2! 11097, CH 6.38,d 110.89,CH 6.40,d (1.9)

3’ 146.59, qC 146.55, qC

4 144.39, qC 144.36, qC

5! 114.08, CH 6.76,d 114.03,CH 6.79,d (8.0)

6 121.28,CH 6.48,dd 121.29,CH 6.50, dd (8.0, 1.9)

7 3827,CH, 2.57,m 38.28,CH, 2.56, m"

8’ 4097,CH 242,m 4095,CH 246, m"

9’ 71.30,qC 4.12,dd 71.32,qC  4.14,dd (9.1,7.3)
3.85,dd 3.88,dd (9.1,7.3)

10’ 55.76,CH; 3.78,s 55.74,CH; 3.79,s

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.2.2. (-)-Arctigenin (30, known compound)

Molecular formula:
Molecular weight:
Amount:

C21H2406
372.41

76.3 mg

Compound 30 was isolated as an amorphous solid with UV absorbances at A,x 218 and 283 nm. The

ESI mass spectrum (Figure 3.161) showed the molecular weight was 372, indicating the presence of

an additional CH;3 group compared to 29. The 'H (Figure 3.159) and °C NMR spectra of 30 were

almost superimposable to those of 29. The obvious difference in the NMR spectra between 30 and 29

was observed for the third O-methyl resonance at dy 3.83 (H-11") in the '"H NMR spectrum of 30.

The attachment of the methoxy group at C-4' was deduced from the HMBC correlation (Figure 3.160)

of H3-11" with C-4" at dc 147.9. The optical rotation of 30 was determined to be [a]ZOD =26 (c 0.10,

MeOH). From the above data and through comparison with those of the literature [Xie et al., 2003] it

was confirmed that compound 30 was (—)-arctigenin.
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Figure 3.158 HPLC chromatogram and UV spectrum of compound 30
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Figure 3.161 ESI-MS spectrum of compound 30

(—)-Arctigenin Compound 30
[Xie et al., 2003]
Position oc Oy (mult., J in Hz) oc Oy (mult., J in Hz)
1 129.5, qC 129.6, qC
2 111.6,CH 6.64,d (1.94) 111.8,CH 6.62,d (1.9)
3 146.7, qC 147.0, qC
4 144.6, qC 144.8, qC
5 114.1,CH 6.83,d (7.99) 114.1,CH 6.80,d (7.9)
6 122.1,CH 6.61,dd (7.99,1.94) 122.1,CH 6.59,dd (7.9, 1.9)
7 345,CH, 292,m 34.6,CH, 2.93,dd(14.2,5.4)
2,87,dd (14.2, 6.6)

8 46.6,CH  2.66, m 46.7,CH 2.61l,m"
9 178.7, qC 179.0, qC
10 55.8,CH; 3.8l,s 55.5,CH; 3.79,s
ik 130.5, qC 130.5, qC
2' 111.9,CH 6.46,d (1.94) 111.9,CH 6.45,d (1.9)
3 149.1, qC 149.2, qC
4 147.9, qC 147.9, qC
5' 111.4,CH 6.75,d (8.19) 111.3,CH 6.73,d (7.9)
6’ 120.6,CH 6.55,dd (8.19,1.94) 120.6,CH 6.53,dd (7.9, 1.9)
7 38.2,CH, 2.55,m 384,CH, 2.55,m"
8’ 41.0,CH 245 m 41.0,CH 249, m"
9 71.3,qC 4.13,dd (9.18,7.24) 71.4,qC 4.12,dd (9.2,7.3)

3.88,dd (9.18, 7.28) 3.86,dd (9.2, 7.3)
10’ 55.8,CH; 3.82,s 55.5,CH; 3.79,s
11’ 559,CH; 3.85,s 564,CH; 3.83,s

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.2.3. Lupeol (31, known compound)

Molecular formula:
Molecular weight:

Amount:

C30H500
426.72
77.9 mg

Compound 31 was obtained as white crystal needles. The EI mass spectrum (Figure 3.162) showed

the molecular ion peak at m/z 426 [M]" indicating the molecular weight as 426. The BC NMR

(Figure 3.164) and DEPT spectra (Figure 3.166) revealed 30 carbons including seven methyls,

eleven methylenes, six methines and six quaternary carbons. The 'H NMR spectrum exhibited one

oxymethine proton at dy 3.20, which was assigned to be H-3. A pair of germinal coupled olefinic

protons was observed at dy 4.69 and 4.56 indicating the presence of a carbon-carbon double bond. In

comparison with the '"H and >C NMR data of the literature [Aratanechemuge et al., 2004],

compound 31 was identified as lupeol.
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Results

Table 3.33 NMR spectroscopic data of compound 31 (CDCls, 500 MHz)

Lupeol (CD;0D)
[Aratanechemuge et al., 2004]

Compound 31

Position oc oy (mult., J in Hz) oc oy (mult., J in Hz)
1 38.7,CH, 1.65, m;0.90, m 387,CH, 0.90-1.92, m"

2 274,CH, 1.67,m;1.59, m 274,CH, 0.90-1.92, m"

3 79.0, CH 3.20,dd (11.5,5.03) 79.0, CH 3.19,dd (11.4,5.0)
4 38.8,qC 38.8,qC

5 55.3,CH 0.68, m 55.3,CH 0.68, m”

6 18.3,CH,  1.50, m; 1.40, m 183,CH, 0.90-1.92, m"

7 343,CH, 142,m;1.32,m 343,CH, 0.90-1.92, m"

8 40.8, qC 40.8, qC

9 50.4, CH 1.29, m 50.4, CH 0.90-1.92, m“

10 37.1,qC 37.2,qC

11 209,CH, 1.40,m; 1.20, m 209,CH, 0.90-1.92, m"

12 25.1,CH, 1.68, m; 1.07, m 251,CH, 0.90-1.92, m"

13 38.1, CH 1.68, m 38.0, CH 0.90-1.92, m“

14 42.8,qC 42.8,qC

15 27.4,CH,  1.68, m; 1.00, m 274,CH, 0.90-1.92, m"

16 35.6,CH, 1.48,m;1.37, m 35.6,CH, 0.90-1.92, m"

17 429, qC 43.0,qC

18 48.3,CH 1.37, m 48.3,CH 0.90-1.92, m“

19 47.9,CH 2.38,ddd (11.0, 11.0,5.6)  48.0, CH 2.38,ddd (11.0, 11.0, 6.0)
20 150.9, qC 151.0, qC

21 298,CH, 192, m;1.37,m 29.8,CH, 0.90-1.92, m"

22 399,CH, 1.37,m;1.19,m 40.0,CH, 0.90-1.92, m"

23 279,CH; 0.97,s 28.0,CH; 0.97,s

24 154,CH; 0.76,s 154,CH; 0.76,s

25 16.1,CH;  0.83,s 16.1,CH; 0.83,s

26 159,CH; 1.03,s 16.0,CH;  1.03,s

27 145,CH; 09%,s 145,CH; 09%4,s

28 179,CH; 0.79,s 18.0,CH; 0.79,s

29 109.3,CH, 4.67,brs;4.54,brs 109.3,CH, 4.69,d (2.2);4.56,brs
30 19.3,CH; 1.68,s 193,CH; 1.68,s

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.2.4. Taraxasterol (32, known compound)

Molecular formula: C;30H;500
Molecular weight: 426.72
Amount: 7.4 mg

Compound 32 was obtained as white crystal needles. The EI-MS mass spectrum (Figure 3.168)
showed a molecular ion peak at m/z 426 [M]*. The "H NMR spectrum (Figure 3.169) of compound
32 exhibited the signal of seven tertiary methyls between 0.76 and 1.02 ppm. An oxymethine at dy
3.20 (dd, J = 11.7, 5.0 Hz) was observed, which was assigned to be H-3. As in 31, a pair of geminal
coupled olefinic protons [dy 4.62 (t, J = 2.2 Hz) and 4.60 (t, J = 2.2 Hz)] was also present in 32.
Comparison of the "H NMR data and molecular weight of compound 32 with those of taraxasterol
[Reynolds et al., 1986] indicated that both compounds were identical.
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Table 3.34 NMR spectroscopic data of compound 32 (CDCls, 500 MHz)

Taraxasterol Compound 32
[Reynolds et al., 1986]

Position oy (mult., J in Hz) Oy (mult., J in Hz)

1 1.73,d; 0.95, t 0.95-1.73, m*

2 1.63,d; 1.59, q 0.95-1.73, m*

3 3.20,dd 3.20,dd (11.7,5.0)

5 0.70 0.69, m"

6 1.52,d; 1.38,q 0.95-1.73, m*

7 1.39, m; 1.35, m 0.95-1.73, m*

9 1.33 0.95-1.73, m*

11 1.54,d; 1.28,q 0.95-1.73, m*

12 1.69,d; 1.10,q 0.95-1.73, m*

13 1.60, t 0.95-1.73, m*

15 1.68, t; 0.96, d 0.95-1.73, m*

16 1.25,d; 1.16,t 0.95-1.73, m*

18 0.97,t 0.95-1.73, m*

19 2.11, m 2.09, m"

21 2.45, m; 2.20, m 2.44, m“ 2.19, m"

22 1.41, m; 1.37, m 0.95-1.73, m*

23 097, s 0.97, s

24 0.76, s 0.76, s

25 0.85,s 0.85, s

26 1.02, s 1.02, s

27 0.94, s 0.93, s

28 0.86, s 0.85, s

29 1.02,d 1.01,d 4.4)

30 4.61, m 4.62,1(2.2),
4.60,1t(2.2)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.2.5. Pseudotaraxasterol (33, known compound)

Molecular formula: C;30H;500
Molecular weight: 426.72
Amount: 39.0 mg

Compound 33 was isolated as white crystals. The GC-MS mass spectrum (Figure 3.171) showed the
molecular ion peak at m/z 426 [M]*, which was the same as compound 31 and 32. The 'H NMR
spectrum (Figure 3.172) of compound 33 exhibited the signals of eight tertiary methyls between 0.74
and 1.63 ppm and an oxymethine at dy 3.20 in the aliphatic region. In the BC NMR spectrum (Figure
3.173) of 33, 30 carbons resonances were observed including two olefinic carbons at dc 139.8 and
118.9. Along with the analysis of the DEPT NMR spectrum (Figure 3.175), nine methylenes, seven
methines and six quaternary carbons were indicated. According to these data and through comparison
with the literature [Reynolds et al., 1986], compound 33 was concluded to be pseudotaraxasterol,

which was a derivative of compound 32.
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Results

Table 3.35 NMR spectroscopic data of compound 33 (CDCls, 500 MHz)

Pseudotaraxasterol
[Reynolds et al., 1986]

Compound 33

Position oc Oy (mult., J in Hz) oc Oy (mult., J in Hz)
1 38.8,CH, 1.73,d;0.95,t 387,CH, 0.95-1.78, m"
2 274,CH, 1.64,d;1.58,q 274,CH, 0.95-1.78, m”
3 79.0,CH  3.19,dd 79.0,CH  3.20, m“

4 38.9,qC 38.9,qC

5 553,CH 0.70 553,CH 0.69, m"

6 183,CH, 1.52,d;1.38,q 18.3,CH, 0.95-1.78, m*
7 343,CH, 1.41,m;1.37, m 342,CH, 0.95-1.78, m”
8 41.1,qC 41.1,qC

9 504,CH 1.30,d 504,CH 0.95-1.78, m"
10 37.1,qC 37.2,qC

11 21.6,CH, 1.58,d;1.26,q 21.6,CH, 0.95-1.78, m”
12 27.6,CH, 1.62,d;1.23,q 27.6,CH, 0.95-1.78, m”
13 39.2,CH 1.61,t 39.2,CH 0.95-1.78, m"
14 42.3,qC 42.3,qC

15 27.0,CH, 1.78,t1.01,d 27.0,CH, 0.95-1.78, m“
16 36.7,CH, 1.31,d;1.21,t 36.7,CH, 0.95-1.78, m”
17 34.4,qC 34.4,qC

18 4877,CH  1.04,t 4877,CH  0.95-1.78, m*
19 363,CH 1.57,m 363,CH 0.95-1.78, m”
20 139.8, qC 139.9, qC

21 1189,CH 5.25,d 118.9,CH 5.26,d (6.9)
22 422,CH, 1.72,d;1.56,d 422,CH, 0.95-1.78, m*
23 28.0,CH; 0.98,s 28.0,CH; 0.98,d (2.2)
24 154,CH; 0.78,s 15.4,CH; 0.76,s

25 16.3,CH; 0.86,s 16.3,CH; 0.85,s

26 16.1,CH; 1.04,s 16.0,CH; 1.04,s

27 148,CH; 0.95,s 14.7,CH; 0.94,s

28 17.7,CH; 0.73,s 17.7,CH; 0.74,s

29 225,CH; 0.99,d 22.5,CH; 1.00,d (2.5)
30 217,CH; 1.64,m 21.6,CH; 1.63,s

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.2.6. Ptiloepoxide (34, known compound)

Molecular formula: C39H430,
Molecular weight: 440.70
Amount: 6.3 mg

Compound 34 was isolated as a white solid. The GC-MS mass spectrum (Figure 3.177) exhibited the
molecular ion peak at m/z 440 [M]*. The '"H NMR data (Figure 3.178) of compound 33 were
comparable to those of compound 34 with the exception of the presence of two oxymethine protons
[0n 3.47 (d, J = 4.4 Hz) and 2.91 (d, J = 4.4 Hz)]. The *C NMR spectrum (Figure 3.179) showed 30
carbons including seven tertiary methyls, nine methylenes, eight methines and six quaternary carbons.
From the presence of two oxygenated carbons at dc 151.2 and 112.0, along with the molecular
weight, an epoxide ring was inferred to be present. In the 'H-'H cosy spectrum of 34 (Figure
3.181), the proton at dy.; 3.47 gave a cross-peak with the proton at dy.»; 2.91, and this correlation
also comfirmed the oxygen linkage between C-21 and C-22 of the epoxy ring. In comparison with
the literature data [Menichini et al., 1996], compound 34 was identified as ptiloepoxide which was

an epoxide derivative of 32.
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Table 3.36 NMR spectroscopic data of compound 34 (CDCls, 500 MHz)

Ptiloepoxide Compound 34

[Menichini et al., 1996]
Position oc Oy (mult., J in Hz) oc oy (mult., J in Hz)
1 38.7,CH, 1.73,0.90 38.7,CH, 0.90-1.75, m"
2 274,CH, 1.65 274,CH, 0.90-1.75, m"
3 78.9, CH 3.20,dd (10.7,5.4)  79.0, CH 3.20,dd (11.4,4.7)
4 38.9,qC 38.8,qC
5 55.3,CH 0.71 55.3,CH 0.69, m"
6 183,CH, 145 18.3,CH, 0.90-1.75, m"
7 341,CH, 1.37 34.1,CH, 0.90-1.75, m"
8 41.0, qC 41.0, qC
9 50.4, CH 1.30 50.4, CH 0.90-1.75, m*
10 37.1,qC 37.1,qC
11 214,CH, 1.58 214,CH, 0.90-1.75, m"
12 262,CH, 1.55 26.2,CH, 0.90-1.75, m"
13 37.9,CH 1.63 37.9,CH 0.90-1.75, m*
14 422, qC 42.2,qC
15 26.5,CH, 1.75,1.05 26.5,CH, 0.90-1.75, m"
16 33.6,CH, 1.72,1.20 336,CH, 0.90-1.75, m"
17 36.3,qC 36.3, qC
18 42.1, CH 1.40 42.1, CH 0.90-1.75, m*
19 36.2, CH 2.00,q(7.9,6.7) 36.1, CH 2.00, br t (6.9)
20 151.2, qC 151.4, qC
21 56.1, CH 3.47,d (4.6) 56.1, CH 347,d4.4)
22 64.0, CH 2.90,d (4.6) 64.0, CH 291,d4.4)
23 28.0,CH; 0.97,s 28.0,CH; 097,s
24 154,CH; 0.77,s 154,CH; 0.76,s
25 16.2,CH; 0.84,s 16.2,CH; 0.84,s
26 16.0, CH; 1.02, s 16.0, CH; 1.02, s
27 14.8,CH; 0.95,s 148,CH; 0.95,s
28 15.1,CH; 0.81,s 15.1,CH; 0.81,s
29 27.2, CH; 1.05,d (6.7) 27.2, CH; 1.05,d (6.6)
30 112.0,CH, 5.06,brs;4.87,brs 112.0,CH, 5.06, brs;4.87,brs

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.2.7. p-Sitosterol (35, known compound)

Molecular formula: Cy9H500
Molecular weight: 414.71
Amount: 7.6 mg

Compound 35 was isolated as white crystal needles. The EIMS mass spectrum (Figure 3.182)
showed a molecular ion peak at m/z 414 [M]*. The 'H NMR spectrum (Figure 3.183) of compound
35 exhibited the signal of six methyls between Jy 0.68 and 1.01 and an oxymethine at oy 3.52. Most
of those methyl groups coupled with their neighbouring protons characterizing a steroide skeleton.
From NMR data and EIMS compound 35 was assigned as f-sitosterol [Kojima et al., 1990] which

was presented in many plants.
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Figure 3.182 EI-MS spectrum of compound 35
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Figure 3.183 'H NMR spectrum of compound 35

Table 3.37 NMR spectroscopic data of compound 35 (CDCls, 500 MHz)

Position

[-Sitosterol
[Kojima et al., 1990]

Compound 35

Oy (mult., J in Hz)

Oy (mult., J in Hz)

3

6

18
19
21
26
27
29

352, m
5.35,m
0.68, s
1.01,s
0.92,d (6.5)
0.83,d (6.5)
0.81,d (6.5)
0.84,t(7.5)

3.52, m"

5.35, d-like (5.0)
0.68, s

1.01,s

0.92,d (6.5)
0.83,d (7.1)
0.81,d (6.9)
0.85,d (7.6)

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.
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3.2.8. Bioactivity test results for compounds isolated from Dianthus versicolor
Lupeol (31), (—)-matairesinol (29) and (—)-arctigenin (30) were evaluated for their protein kinase
inhibitory profiles, which are shown in Table 3.38. Lupeol was also subjected to bioassays aimed to

determine its cytotoxicity. The results are shown in Table 3.39.

Table 3.38 Selectivity profiling of three compounds isolated from Dianthus versicolor using 24
protein kinases

Residual activities (% of control activity) | ICsy values (g/mL)
Compound  (—)-matairesinol (—)-arctigenin Lupeol Lupeol
(29) 30) 3D €2
AKT1 100 107 96 >1E-05
ARKS5 103 101 99 >1E-05
Aurora-A 120 104 84 >1E-05
Aurora-B 96 97 84 >1E-05
AXL 91 104
B-RAF-VE 111 105 93 >1E-05
CDK2/CycA 100 96 81 >1E-05
CDK4/CycD1 86 118 89 >1E-05
CK2-alphal 109 95 82 >1E-05
COoT 109 107 84 4.0E-06
EGF-R 97 91 61 1.5E-06
@ | EPHB4 94 86 82 >1E-05
£ | ERBB2 108 92 94 >1E-05
< | FAK 103 107 91 8.8E-06
2 | IGF1-R 101 89 65 1.1E-06
£ | INS-R 108 105 94 >1E-05
MET 98 102 92 >1E-05
PDGFR-beta 101 101 96 >1E-05
PLK1 117 115 105 >1E-05
PRK1 102 98
SAK 114 102 103 >1E-05
SRC 95 77 54 1.4E-06
TIE2 101 88 110 5.9E-06
VEGF-R2 93 84 87 2.8E-06
VEGF-R3 90 6.5E-06
FLT3 89 >1E-05
1Cs 86 77
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Table 3.39 Cytotoxicity results of lupeol against L5178Y

compound % growth inhibition

3ug/mlL 10 ug/mL
lupeol (31) 86.8 84.1
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3.3. Compounds isolated from the medicinal plant Psoralea corylifolia

3.3.1. Isobavachalcone (36, known compound)

Molecular formula: CooH2004
Molecular weight: 324.37
Amount: 297.0 mg

Compound 36 was isolated as yellow crystal needles. The UV spectrum (Figure 3.184) resembled
that of a chalcone (Amax 209 and 372 nm). The ESI mass spectrum (Figure 3.185) gave signals
corresponding to a compound with the molecular weight 324. The "H NMR spectrum (Figure 3.186)
of 36 showed an AA'BB’ system at 6 7.56 (dd, J = 8.5, 1.9 Hz) and 6.88 (dd, J = 8.5, 1.9 Hz), a pair
of trans-olefinic protons at 6 7.84 (d, J = 15.4 Hz) and 7.46 (d, J = 15.4 Hz), and two ortho-coupled
aromatic protons in the aromatic region. The presence of a prenyl group was deduced from the
proton signals in the up-field region and from 'H-'H COSY spectrum (Figure 3.189). From these
observation, along with the BC NMR (Figure 3.187) and DEPT data (Figure 3.188), compound 36

was found to be identical to isobavachalcone [Pistelli et al., 1996].

YW070512 #4 F10-82.3 LV _VIS 4
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)
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371.7

209.2

o4+
' ] | ] | ] | ]
. 200 250 300 350 400 450 500 550 598

T T T T T
0.0 10,0 20,0 30,0 40,0 50,0 60.0

Figure 3.184 HPLC chromatogram and UV spectrum of compound 36
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Figure 3.189 'H-'"H COSY spectrum of compound 36

Table 3.40 NMR spectroscopic data of compound 36 (CDCls, 500 MHz)

Isobavachalcone (CD;0D) Compound 36
[Pistelli et al., 1996]

Position oc Oy (mult., J in Hz) oc Oy (mult., J in Hz)
1 114.5, qC 114.0, qC
2 163.7, qC 161.5, qC
3 116.6, qC 114.1, qC
4 165.0, qC 163.9, qC
5 108.3,CH 6.43,d (8.9) 107.7,CH 6.42,d (9.1)
6 1304,CH 7.83,d (8.9) 129.2,CH 7.72,d (9.1)
a 118.6,CH 7.61,d (15.2) 118.1,CH 7.46,d (15.4)
B 145.3,CH 7.78,d (15.4) 144.0,CH 7.84,d (15.4)
i 127.9, qC 127.9, qC
2 131.7,CH 7.60,d (8.6) 130.5,CH 7.56,d (8.5)
3 117.0,CH 6.84,d (8.6) 116.0,CH 6.88,d (8.5)
4 161.4, qC 157.8, qC
5 117.0,CH 6.84,d (8.6) 116.0,CH 6.88,d (8.5)
6’ 131.7,CH 7.60,d (8.6) 130.5,CH 7.56,d (8.5)
1” 225,CH, 335, m 21.8,CH, 3.49,d(7.3)
2" 123.6,CH 5.23, t-like m 121.1,CH 5.30,tqq (7.3, 1.6, 1.3)
3" 131.9,qC 136.0, qC
4" 179,CH; 1.66,brs 18.0,CH; 1.78,d(1.3)
5" 259,CH; 1.78,brs 258,CH; 1.84,brs
C=0 193.7 192.1
C2-OH 13.85,s
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3.3.2. Isobavachromene (37, known compound)

Molecular formula: CyoH;304
Molecular weight: 322.35
Amount: 1.8 mg

Compound 37 was isolated as a yellow solid with UV absorption maxima at Ayax 206, 231 and 374
nm. (Figure 3.191) The ESI mass spectrum (Figure 3.192) of 37 suggested the molecular weight as
322. The 'H NMR spectrum (Figure 3.190) of 37 was closely related to that of 36, except for the
presence of gem-dimethylpyran ring instead of the prenyl group in 36. This was indicated by the
signals of cis-ethylenic protons at ¢ 6.76 (d, J = 10 Hz) and 5.59 (d, J = 10 Hz), and two methyl
protons at ¢ 1.47 (s). On the basis of above evidences and comparison of the reported spectral data

[Lee et al., 2005], compound 37 was identified as isobavachromene.
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Figure 3.190 'H NMR spectrum of compound 37
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Figure 3.191 HPLC chromatogram and UV spectrum of compound 37
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Figure 3.192 ESI-MS spectrum of compound 37

Table 3.41 NMR spectroscopic data of compound 37 (CDCls, 500 MHz)

Isobavachromene = Compound 37
[Lee et al., 2005]

Position 0y (mult., Jin Hz)  Jy (mult., J in Hz)

5 6.38,d (8.8) 6.38,d (8.8)

6 7.71,d (8.8) 7.71,d (8.8)

a 7.43,d (15.2) 7.44,d (15.5)

B 7.83,d (15.2) 7.84,d (15.5)

2 7.56,d (8.4) 7.57,d (8.5)

3 6.88,d (8.4) 6.88,d (8.5)

5 6.88,d (8.4) 6.88,d (8.5)

6’ 7.56,d (8.4) 7.57,d (8.5)

1" 6.75,d (10.4) 6.76,d (10.1)

2" 5.59,d (10.4) 5.59,d (10.1)

4" 1.47,s 147,s

5" 1.47,s 147,s

C2'-OH 13.76, s
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3.3.3. Psorachalcone A (38, known compound)

Molecular formula: CyoH»00Os5
Molecular weight: 340.37
Amount: 6.8 mg

Compound 38 was obtained as a yellow amorphous solid. The ESI-MS spectrum (Figure 3.194) of
38 exhibited a negative pseudomolecular ion peak at m/z 339 [M — H]". It had UV absorption at Ayax
207, 228 and 372 nm. (Figure 3.193) The "H NMR spectrum (Figure 3.195) of 37 showed a chalcone
skeleton as 36 and a 2-hydroxy-3-methyl-3-butenyl group. This five carbon side chain was
determined by the following 'H NMR data: one proton triplet at 6 4.38 assigned to the methine
proton at 2", three protons singlet at ¢ 1.82 (CH3-5") and two singlets at 0 4.79 and 4.70 as-signed to
the exomethylene (CH,-4"). The above NMR data together with the ESIMS data confirmed

compound 38 to be psorachalcone A [ElSohly et al., 2001].

Beak #9090 %
’ % No spectra brary hts found!

372.6

Figure 3.193 UV spectrum of compound 38
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Table 3.42 NMR spectroscopic data of compound 38 (CDs;OD, 500 MHz)

Psorachalcone A (DMSO-dj) Compound 38
[ElSohly et al., 2001]
Position Oy (mult., J in Hz) Oy (mult., J in Hz)
5 6.42,d (8.9) 6.42,d (8.8)
6 8.02,d (8.9) 7.85,d (8.8)
o 7.78-7.72, m 7.61,d (15.1)
B 7.78-7.72, m 7.77,d (15.1)
2 7.78-7.72, m 7.60,d (8.5)
3’ 6.83,d (8.5) 6.83,d (8.5)
5 6.83,d (8.5) 6.83,d (8.5)
6 7.78-7.72, m 7.60, d (8.5)
1" 2.82,dd (13, 6.7);2.72,dd (13,6.9) 3.05,dd (13.6,5.7); 2.87, dd (13.6, 7.6)
2" 4.27,1(6.9) 4.38, brt (6.6)
4" 4.62,brs; 4.58,brs 4.79, br s; 4.70, br s
5" 1.73, s 1.82,s
C2-OH 14.06,s

8.0
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3.3.4. Bakuchalcone (39, known compound)

Molecular formula: CyoH»0Os5
Molecular weight: 340.37
Amount: 2.3 mg

Compound 39 was obtained as pale yellow needles. In the ESI-MS spectrum (Figure 3.198), the
molecular ion at 341 [M + H]" gave its molecular weight as 340. Its chalcone structure was indicated
by the UV bands at 373 and 208 nm. (Figure 3.197) The '"H NMR spectrum (Figure 3.199) of 39
showed two singlets at 0 1.27 and 1.23 for gem dimethyl protons. The signal at ¢ 3.14 showed the
presence of two benzylic protons. Along with a methane proton appearing at 6 4.80, those
observations were characteristic of a dihydrobenzofuran ring. The residual "H NMR resonances were
closely related to those of compound 37. Based on the above data and the comparison of the

reference [Gupta et al., 1982], compound 39 was concluded to be bakuchalcone.

Beak #D20 %
’ % No spectra brary hts found!
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Figure 3.197 UV spectrum of compound 39
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Table 3.43 NMR spectroscopic data of compound 39 (Me,CO-ds, 500 MHz)

Bakuchalcone Compound 39
[Gupta et al., 1982]
Position Oy (mult., J in Hz) oc oy (mult., J in Hz)
1 118.3, qC
2 162.0, qC
3 115.0, qC
4 168.1, qC
5 6.33,d (8) 102.3,CH 6.38,d (8.8)
6 7.98,d (8) 133.1,CH 8.08,d (8.8)
a 7.73,s 128.9,CH 7.74,d (15.4)
B 7.73,s 1452,CH 7.82,d (15.4)
ik 127.3, qC
2 7.65,d (7.5) 131.8,CH 7.72,d (8.5)
3 6.89,d (7.5) 116.8,CH 6.91,d (8.5)
4' 161.4,qC
5 6.89,d (7.5) 116.8,CH 6.91,d (8.5)
6’ 7.65,d (7.5) 131.8,CH 7.72,d (8.5)
1" 3.1,d 27.8,CH, 3.14,dd (17.0,9.5)
2" 4.75,t 713,CH  4.80,dd (9.8, 8.2)
3" 925, qC
4" 1.25,s 259,CH; 1.27,s
5" 1.25,s 254,CH; 1.23,s
C=0 193.0
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3.3.5. Xanthoangelol (40, known compound)

Molecular formula: Cy5sH304
Molecular weight: 392.49
Amount: 1.8 mg

Compound 40 was isolated as yellow needles with UV absorption at An.x 371 and 207 nm. (Figure
3.200) The ESI-MS spectrum (Figure 3.201) of 40 exhibited a negative pseudomolecular ion peak at
miz 391 [M — H]". In the 'H NMR spectrum (Figure 3.202) of 40, the coupling patterns and the
chemical shift of the most protons were quite similar to those of 36, except for the presence of a
typical geranyl moiety 3",8"-dimethy-octa-2",7"-dienyl. Since compound 40 exhibited identical
spectral data (UV, MS and 'H NMR) to the literature values [Baba et al., 1990], 40 was identified as

xanthoangelol.
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Figure 3.200 HPLC chromatogram and UV spectrum of compound 40
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Figure 3.202 '"H NMR spectrum of compound 40
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Figure 3.203 'H-'"H COSY spectrum of compound 40

Table 3.44 NMR spectroscopic data of compound 40 (CD;OD, 500 MHz)

Xanthoangelol (CDCl;)  Compound 40
[Baba et al., 1990]
Position Oy (mult., J in Hz) oy (mult., J in Hz)
5 6.47,d (8.8) 6.42,d (8.8)
6 7.66, d (8.8) 7.82,d (8.8)
o 7.43,d (15.4) 7.61,d (15.4)
B 7.81,d (15.4) 7.78,d (15.4)
2! 7.52,d (8.6) 7.60, d (8.6)
3 6.89,d (8.6) 6.83,d (8.6)
5 6.89,d (8.6) 6.83,d (8.6)
6’ 7.52,d (8.6) 7.60, d (8.6)
1" 3.41,d (7.0) 3.32, m*
2" 5.30, t (7.0) 5.23,t(6.9)
4" 1.81,s 1.77, s
5" 201, m 1.95,t(6.9)
6" 2.05, m 2.04, dt (7.3, 6.6)
7" 5.07, m 5.05,tq (7.3, 1.3)
9" 1.57, s 1.54, s
10" 1.65, s 1.59, s

“ Overlapped signals assigned by 'H-'"H COSY, HMBC, and HMQC spectra without designating multiplicity.

£1 (ppm)
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3.3.6. Corylifol C (41, known compound)

Molecular formula: CyoH;505
Molecular weight: 338.35
Amount: 2.4 mg

Compound 41 was obtained as a yellow amorphous powder. The molecular weight of 41 was
determined as 338 by ESI-MS spectrum (Figure 3.206). It had UV absorption at Ay 204, 258 and
402 nm. The "H NMR spectrum of 41 (Figure 3.204) showed an ABX system at oy 7.59 (d, J = 1.9
Hz), 6.94 (d, J = 8.2 Hz) and 7.40 (dd, J = 8.2, 1.9 Hz). The presence of a singlet proton signal at ¢
6.61 instead of the two frans-olefinic proton signals of 36 was observed indicating that 41 was a
flavone. Comparison of the "H NMR data with those reported for corylifol C [Yin et al., 2004]

proved both compounds were identical.
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Figure 3.204 'H NMR spectrum of compound 41
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Figure 3.205 HPLC chromatogram and UV spectrum of compound 41
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Figure 3.206 ESI-MS spectrum of compound 41

Table 3.45 NMR spectroscopic data of compound 41 (CD;COCD3, 500 MHz)

Corylifol C
[Yin et al., 2004]

Compound 41

Position  Jy (mult., J in Hz)

oy (mult., J in Hz)

3 6.64, s

5 7.46,d (8.4)

6 6.82,d (8.4)

2 7.60, d (2.0)

5 6.95,d (8.3)

6’ 7.42,dd (8.3, 2.0)
1" 3.56,d (7.4)

2" 5.41, t-like (7.4)
4" 1.88,s

5" 1.68, s

6.61,s

7.43,d (8.2)
6.81,d (8.2)
7.59,d (1.9)
6.94,d (8.2)
7.40,dd (8.2, 1.9)
3.55,brd (6.9)
5.39,1tq (7.3, 1.3)
1.86, s

1.67,s




Results

3.3.7. Broussochalcone B (42, known compound)

Molecular formula: CooH2004
Molecular weight: 324.37
Amount: 16.5 mg

Compound 42 was isolated as a yellow amorphous powder. Its molecular weight was determined as
324 from the ESI-MS spectrum (Figure 3.208). The UV absorptions at 211, 231 and 377 nm were
suggestive of a chalcone skeleton. The '"H NMR spectrum of 42 (Figure 3.209) displayed signals for
four aromatic protons which form an AA'BB’ system at ¢ 7.59 (d, J = 8.5 Hz) and 6.84 (d, J = 8.5
Hz). In its 'H NMR, two doublet at ¢ 7.75 and 7.54 (each, d, J = 15.5 Hz) were assigned to the AB
system of a chalcone, and the presence of a prenyl group was observed in the up-field region. The
remaining two aromatic proton singlets at 6 7.72 and 6.29 were located in ring A. From these
observation, along with the analysis of the '*C (Figure 3.210) and DEPT (Figure 3.211) NMR data,

compound 42 appeared to be identical with broussochalcone B [Yin et al., 2004].

WVL:340 nm
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Figure 3.207 HPLC chromatogram and UV spectrum of compound 42
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Table 3.46 NMR spectroscopic data of compound 42 (CDs;OD, 500 MHz)

Bavachalcone (CDCl;) Compound 42
[Yin et al., 2004]

Position oc Oy (mult., J in Hz) oc Oy (mult., J in Hz)
1 113.2, qC 114.3, qC
2 163.9, qC 164.4, qC
3 99.2,qC 6.44,s 103.3,CH 6.29,s
4 164.9, qC 165.8, qC
5 121.6, CH 122.0,qC
6 129.6,CH 7.59,s 132.1,CH 7.72,s
a 117.6,CH 7.43,d (15.4) 118.5,CH 7.54,d (15.5)
B 144.0,CH 7.83,d (15.4) 1454,CH 7.75,d (15.5)
ik 127.2, qC 127.9, qC
2! 130.4,CH 7.55,d (8.5) 131.7,CH 7.59,d (8.5)
3 116.0,CH 6.90,d (8.5) 116.9,CH 6.84,d (8.5)
4 158.4, qC 161.5, qC
5 116.0,CH 6.90,d (8.5) 116.9,CH 6.84,d (8.5)
6’ 1304,CH 7.55,d (8.5) 131.7,CH 7.59,d (8.5)
1" 28.2,CH, 3.26,d(7.0) 289,CH, 3.26,brd(7.3)
2" 122.0,CH 5.28,brt(7.1) 124.0,CH 5.32,1qq (7.3, 1.6, 1.3)
3" 132.8,qC 133.2,qC
4" 18.0,CH; 1.78,s 179,CH; 1.75,brs
5" 259,CH; 1.74,s 259,CH; 1.74,brs
C=0 191.7,qC 193.5

4-OCH; 55.8,CH;
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3.3.8. Bavachromene (43, known compound)

Molecular formula: CyoH;304
Molecular weight: 322.35
Amount: 0.9 mg

Compound 43 was isolated as a yellow powder. It had UV absorbances at Ayax 224, 240 and 387 nm.
(Figure 3.212) The ESIMS spectrum of 43 (Figure 3.213) exhibited the molecular ion peak at m/z
321 [M - H]". The 'H NMR spectrum of 43 (Figure 3.214) was closely related to that of 42, except
for the presence of a 2,2-dimethylpyran ring. This was deduced from the 6H singlet at 6 1.43 due to
the gem-dimethyl group and from the two ortho-coupled aromatic protons at é 6.45 (d, J = 9.8 Hz)
and 5.66 (d, J = 9.8 Hz) assignable to H-1"" and H-2"", respectively. The assignments were further
supported by analysis of the HMBC (Figure 3.216) and HMQC (Figure 3.215) spectra of 43. From
those above observations and comparison with the reference compound [Lee et al., 2005], compound

43 was concluded to be bavachromene.
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Figure 3.212 HPLC chromatogram and UV spectrum of compound 43
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Table 3.47 NMR spectroscopic data of compound 43 (CDs;OD, 500 MHz)

Isobavachromene” (CDCl3) Compound 43
[Lee et al., 2005]

Position Jc oy (mult., J in Hz) dc Oy (mult., J in Hz)
1 109.4, gC 131.7, qC
2 159.7, qC 166.9, qC
3 114.1, CH 104.8,CH 6.24,s
4 160.9, qC 161.4,qC
5 108.3,CH 6.38,d (8.8) 114.6, qC
6 130.6,CH  7.71,d (8.8) 129.1,CH 7.81,s
o 117.9,CH 7.43,d(15.2) 117.9,CH 7.64,d (15.5)
B 144.1,CH 7.83,d(15.2) 145.8,CH 7.81,d (15.5)
1’ 127.8,qC 127.4,qC
2! 130.6,CH  7.56,d (8.4) 131.7,CH 7.64,d (8.5)
3! 116.0,CH 6.88,d (8.4) 116.8,CH 6.84,d (8.5)
4 158.0, qC 161.6, qC
5' 116.0,CH 6.88,d (8.4) 116.8,CH 6.84,d (8.5)
6 130.6,CH  7.56,d (8.4) 131.7,CH 7.64,d (8.5)
1" 1159,CH, 6.75,d(10.4) 121.9,CH 6.45,d (9.8)
2" 128.1,CH  5.59,d (10.4) 129.4,CH 5.66,d (9.8)
3" 778, qC 78.8, qC
4" 28.4, CHy 1.47,s 28.5,CH; 1.43,s
5" 28.4, CHy 1.47,s 28.5,CH; 1.43,s
C=0 192.1 193.3, qC

“ No available NMR data of bavachromene were obtained, so a closely related compound was used to compare.
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3.3.9. Bavachalcone (44, known compound)

Molecular formula: Cy1H» 04
Molecular weight: 338.40
Amount: 9.0 mg

Compound 44 was obtained as a yellow amorphous powder with UV maximal absorption at 211, 237
and 377 nm. (Figure 3.217) The molecular weight of 44 was 338 by ESIMS (Figure 3.218) at m/z
339 [M + H]" indicating the presence of an additional CH3 group compared to 42. The '"H NMR
spectrum (Figure 3.219) of 44 was almost superimposable to those of 42. The additional O-methyl
resonance was deduced from the singlet proton signal at § 3.86 in the '"H NMR spectrum, and was
assigned at C-4 as suggested by the HMBC spectrum of 44. (Figure 3.221) Compound 44 was
identified as bavachalcone through comparison of its spectral data with the previously published one

[Yin et al., 2004].
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Figure 3.217 HPLC chromatogram and UV spectrum of compound 44
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Table 3.48 NMR spectroscopic data of compound 44 (CDs;OD, 500 MHz)

Bavachalcone (CDCl5) Compound 44
[Yin et al., 2004]
Position Jc Oy (mult., J in Hz) dc oy (mult., J in Hz)
1 113.2,qC 114.4,qC
2 163.9, qC 165.9,qC
3 99.2, CH 6.44,s 99.8, CH 6.44, s
4 164.9, qC 165.2, qC
5 121.6,qC 122.8, CH
6 129.6,CH 7.59,s 131.0,CH 7.73,s
7 55.8, CH; 56.0,CH; 3.86,s
o 117.6,CH 7.43,d(15.4) 118.0,CH 7.54,d (15.5)
B 144.0,CH 7.83,d(15.4) 145.5,CH 7.77,d (15.5)
1’ 127.2,qC 127.5,qC
2! 130.4,CH 7.55,d(8.5) 131.6,CH 7.59,d (8.5)
3’ 116.0,CH 6.90,d (8.5) 116.7,CH 6.83,d (8.5)
4’ 158.4, qC 161.5,qC
5' 116.0,CH 6.90,d (8.5) 116.7,CH 6.83,d (8.5)
6 130.4,CH 7.55,d(8.5) 131.6,CH 7.59,d (8.5)
1" 28.2,CH, 3.26,d(7.0) 28.9,CH, 3.25,brd (7.3)
2" 122.0,CH 5.28,brt (7.0) 123.6,CH 5.27,1q (7.3, 1.3)
3" 132.8, qC 133.1, qC
4" 18.0,CH; 1.78,s 17.6,CH; 1.74,brs
5" 259,CH; 1.74,s 2577,CH; 1.73,brs
C=0 191.7 193.4
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3.3.10. Bavachin (45, known compound)

Molecular formula:
Molecular weight:
Amount:

Cr0H2004
324.37
15.0 mg

Compound 45 was isolated as a yellow amorphous powder. It had UV absorbances at Am.x 222, 237

and 279 nm (Figure 3.222) indicating a typical flavanone. The ESI mass spectrum (Figure 3.223) of

45 showed the pseudomolecular ion peak at m/z 325 [M + H]*. The "H NMR spectrum (Figure 3.224)

of 45 exhibited a pair of geminal coupled protons at ¢ 3.20 (dd, J = 17.0, 13.2 Hz) and 2.65 (dd, J =

17.0, 2.8 Hz) and an oxygenated proton at ¢ 5.37 (dd, J = 13.2, 2.8 Hz) assigned to be H,-3 and H-2

of flavanone. Moreover, one oxymethine (C-2), one methylene (C-3) and one carbonyl (C-4) carbon

were found in the *C NMR (Figure 3.225) and DEPT (Figure 3.226) spectra of 45. Those above

observations confirmed the flavanone skeleton of compound 45. Through comparison with the

literature [Lee et al., 2005] it was concluded that compound 45 was bavachin.
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Figure 3.222 HPLC chromatogram and UV spectrum of compound 45
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Table 3.49 NMR spectroscopic data of compound 45 (CDs;OD, 500 MHz)

Bavachinin® (CDCls) Compound 45
[Lee et al., 2005]
Position oc oy (mult., J in Hz) oc Oy (mult., J in Hz)
2 79.8, CH 5.38,dd (13.2, 2.8) 81.0, CH 5.31,dd (13.2, 2.8)
3 44.0,CH, 3.04,dd (16.8,13.2);2.78,dd (16.8,2.8) 45.0,CH, 3.00,dd (17.0, 13.2); 2.64, dd (17.0, 2.8)
4 191.5, qC 193.7, qC
5 127.1,CH 7.68,s 128.4,CH 7.54,s
6 124.9, qC 124.8, qC
7 164.3, qC 164.8, qC
8 98.8, CH 6.44, s 103.1,CH 6.33,s
9 162.4, qC 163.9, qC
10 113.8, qC 114.5, qC
I 130.8, qC 131.5, qC
2! 127.9,CH 7.34,d (8.4) 129.0,CH 7.30,d (8.5)
3 115.7,CH 6.90,d (8.4) 116.3,CH 6.80,d (8.5)
4 156.3, qC 158.9, qC
5 115.7,CH 6.90,d (8.4) 116.3,CH 6.80,d (8.5)
6' 127.9,CH 7.34,d (8.4) 129.0,CH 7.30,d (8.5)
1" 278,CH, 3.24,d(7.2) 28.4,CH, 3.21,brd(7.3)
2" 121.7,CH 5.27,t(7.2) 123.2,CH 5.28,dt (7.3, 1.3)
3" 133.1,qC 133.7,qC
4" 258,CH; 1.74,s 17.8,CH; 1.74,s
5" 17.7,CH; 1.69,s 26.0,CH; 1.69,s

“ No available NMR data of bavachin were obtained, so a closely related compound was used to compare.
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3.3.11. 6-Prenylnaringenin (46, known compound)

Molecular formula: CyoH»00Os5
Molecular weight: 340.37
Amount: 3.7 mg

Compound 46 was isolated as a yellow amorphous powder. It yielded a UV spectrum (Figure 3.228)
with maximum absorbances at 220, 224 and 295 nm which was similar to that of 45. The molecular
weight of 46 was determined as 340 by ESI mass spectrum (Figure 3.231), indicating the presence of
an additional OH group compared to 45. The 'H (Figure 3.229) and BC NMR spectra of 46 were
closely related to those of 45 except for the third hydroxyl group. A singlet proton at ¢ 12.42 was
observed in the 'H NMR spectrum assigned to the OH group at C-5. The chemical shift of this signal
was shifted downfield by approximately 2 ppm compared to the common region of hydroxyl group
because of the forming of the hydrogen bonding with the carbonyl group at C-4. The attachment of
the OH group was also confirmed by the HMBC spectrum (Figure 3.230) of 46. Comparison of
compound 46 with 6-prenylnaringenin [Stevens et al., 1997], proved both compounds to be

identical.
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Figure 3.228 HPLC chromatogram and UV spectrum of compound 46
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Figure 3.231 ESI-MS spectrum of compound 46

Table 3.50 NMR spectroscopic data of compound 46 (DMSO-ds, 500 MHz)

6-Prenylnaringenin Compound 46
[Stevens et al., 1997]
Position oc oy (mult., J in Hz) oc oy (mult., J in Hz)
2ax 78.3, CH 5.39,dd (12.7,2.9)  782,CH  5.37,dd (12.6,2.8)
3ax 42.0,CH, 3.22,dd(17.1,12.7) CH)," 3.20,dd (17.1, 12.9)
3eq 2.78,dd (17.1, 3.0) 2.65,dd (17.1,2.8)
4 196.4, qC 196.0, qC
5 160.53, qC 160.6, qC
6 107.5, qC 107.5, qC
7 164.2, qC 164.6, qC
8 94.3, CH 597, s 944,CH 5092,s
9 160.49, qC qC*
10 101.6, qC 101.3, qC
ik 129.0, qC 129.0, qC
2 128.2,CH  7.30,d (8.5) 128.2,CH 7.29,d (8.5)
3 115.1,CH  6.79,d (8.4) 115.0,CH 6.78,d (8.5)
4 157.7, qC 157.6, qC
5 115.1,CH  6.79,d (8.4) 115.0,CH 6.78,d (8.5)
6’ 128.2,CH  7.30,d (8.5) 128.2,CH 17.29,d (8.5)
1" 20.6,CH, 3.11,d(7.1) CH," 3.09, brd (6.9)
2" 122.6,CH  5.13,t(7.1) 122.6,CH 5.11,br t (6.9)
3" 130.2, qC 130.2, qC
4" 17.6,CH; 1.69,s 17.6,CH; 1.68,s
5" 254,CH; 1.6l1,s 253,CH; 1.59,s
C5-OH 12.41,s 12.42,s

“ Due to the low amount of compound, no *C NMR signal could be obtained
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3.3.12. Neobavaisoflavone (47, known compound)

Molecular formula: CyoH 304
Molecular weight: 322.35
Amount: 33.7 mg

Compound 47 was obtained as a yellow amorphous powder. It had the molecular weight as 322
determined by ESIMS (Figure 3.234). It showed UV maximal absorbances at 209 and 249 nm
(Figure 3.233). The 'H NMR spectrum (Figure 3.232) of 47 indicated the signals of two
1,3,4-trisubstituted benzene rings and a typical proton signal at  8.09 (s) assignable for the H-2 of
isoflavonoid. Along with the analysis of the °C NMR (Figure 3.235) and DEPT data (Figure 3.236),
it was inferred that compound 47 had characteristic 3’-alkyl-4',7-dihydroxyisoflavone features. In the
HMBC spectrum (Figure 3.237) of 47, the strong correlations between H,-1" and the carbon signals
at 0 128.4 (C-3") and 155.7 (C-4"), respectively, suggested the prenyl moiety was attached to C-3'. On
the basis of above evidences and comparison with the literature [Saxena and Bhadoria, 1990;

Nkengfack et al., 1994], compound 47 was identified to be neobavaisoflavone.
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Figure 3.232 '"H NMR spectrum of compound 47
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Figure 3.233 HPLC chromatogram and UV spectrum of compound 47
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Table 3.51 NMR spectroscopic data of compound 47 (DMSO-ds, 500 MHz)

Neobavaisoflavone Compound 47
[Saxena and Bhadoria, 1990]
[Nkengfack et al., 1994]
Position oc oy (mult., J in Hz) oc Oy (mult., J in Hz)
2 155.7,CH  8.06,s 153.1,CH 8.09,s
3 125.5, qC 125.4, qC
4 175.8, qC 175.8, qC
5 128.4,CH  8.34,dd (10) 128.4,CH 8.05,d (8.8)
6 1154,CH  7.0,dd (10) 115.6,CH 6.98,dd (8.8,2.2)
7 163.2, qC 163.1, qC
8 103.1,CH 7.45,m 103.1,CH 6.88,d (2.2)
9 158.8, qC 158.7, qC
10 118.6, qC 118.5, qC
ik 124.5, qC 124.4, qC
2 1284,CH 7,m 131.2,CH 7.34,d (2.1)
3 125.0, qC 128.4, qC
4 153.0, qC 155.7, qC
5 1156,CH 7,m 1154,CH 6.87,d (8.2)
6’ 131.2,CH 7.12,m 128.4,CH 7.27,dd (8.2,2.1)
1” 25.0, CH, 3.34,d(7) 29.1,CH, 3.35,d(7.3)
2" 123.8,CH 5.24,t 123.7,CH 5.37,brt(7.3)
3" 132.2,qC 132.3,qC
4" 17.9, CH; 1.72, s 17.8,CH; 1.71,s
5" 29.0, CH; 1.72, s 259,CH; 1.69,s
C7-OH 9.65, s
C4'-OH 8.39,s
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3.3.13. Corylin (48, known compound)

Molecular formula: CyoH;604
Molecular weight: 320.34
Amount: 2.4 mg

Compound 48 was obtained as a yellow amorphous powder. Its molecular weight was deduced as
320 from the ESI mass data (Figure 3.240). The UV spectrum (Figure 3.239) of 48 showed
absorbances at Am,x 249 and 303 nm implying an isoflavone skeleton. This skeleton was further
supported by the "H (Figure 3.238) and "°C (Figure 3.241) NMR spectra of 48, which were similar to
those of 47. The 6H singlet at oy 1.42/0¢ 28.2 and an ortho-coupled doublet at oy 6.40/0¢ 122.2 and
ou 5.71/0c 131.7, respectively, indicated the presence of a 2,2-dimethylpyran moiety. From the above
spectroscopic data of compound 48 and comparison with those of corylin [Nkengfack ef al., 1994],

both compounds were found to be identical.
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Table 3.52 NMR spectroscopic data of compound 48 (500 MHz)

Corylin (CD;COCD3) Compound 48
[Nkengfack et al., 1994]
Position oc oy (mult., J in Hz) oc Oy (mult., J in Hz)
(DMSO-dy) (CD;0D)
2 1534,CH 8.18,s 153.5, CH 8.13,s
3 122.0, qC 123.5, qC
4 175.6, qC 175.0, qC
5 128.5,CH  8.10,d (8.7) 127.6, CH 8.02,d (8.8)
6 11577,CH 7.0,dd (8.7, 2.2) 116.1, CH 6.90, dd (8.8, 2.2)
7 158.8, qC 164.5, qC*
8 103.0,CH 6.89,d (2.2) 102.5, CH 6.80,d (2.2)
9 163.2, qC 158.1, C*
10 115.7, qC 117.0, qC
ik 122.9, qC 125.0, qC
2 1289,CH 7.31,d (2.3) 127.4, CH 7.19,d (1.9)
3 121.9, qC 121.0, qC
4 153.4, qC 152.6, qC
5 1229,CH 6.78,d (8.2) 116.0, CH 6.77,d (8.2)
6’ 131.8§,CH 7.36,dd (8.2,2.2) 130.1,CH 7.26,dd (8.2,2.2)
1" 116.6,CH, 6.44,d (10) 122.2,CH, 6.40,d (9.8)
2" 130.5,CH 5.73,d (10) 131.7, CH 5.71,d (9.8)
3" 77.0, qC 76.7, qC
4" 282,CH; 14l,s 28.2, CH; 142, s
5" 282,CH; 14l,s 28.2, CH; 142,s

“The '*C NMR assignment was corrected and confirmed by 2D NMR.
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3.3.14. 8-Prenyldaidzein (49, known compound)

Molecular formula: CyoH;304
Molecular weight: 322.35
Amount: 4.1 mg

Compound 49 was isolated as a yellow amorphous powder. The ESI-MS spectrum (Figure 3.244) of
49 showed a negative pseudomolecular ion peak at m/z 321 [M — H]". The UV spectrum (Figure
3.242) of 49 exhibited intense maximum at 203, 252 and 306 nm, which was characteristic of an
isoflavone. In the "H NMR spectrum (Figure 3.243), H-2 appeared as a singlet at dy 8.24. Signals at
0 1.83 (s), 1.65 (s), 3.57 (br d, J = 7.3 Hz), and 5.28 (tqq, J = 7.3, 1.6, 1.3 Hz) indicated the presence
of a 3,3-dimethylally group. The attachment of the prenyl moiety at C-8 was confirmed by the
HMBC spectrum (Figure 3.245) of 49 and the two ortho-coupled aromatic protons (0 7.92 and 7.02)
of A-ring. Comparing to the NMR data of the reference compound [Hakamatsuka et al., 1991],

compound 49 was confirmed to be 8-prenyldaidzein.
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Figure 3.242 HPLC chromatogram and UV spectrum of compound 49
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Figure 3.243 'H NMR spectrum of compound 49

Table 3.53 NMR spectroscopic data of compound 49 (CD;COCD3, 500 MHz)

8-Prenyldaidzein Compound 49
[Hakamatsuka et al., 1991]

Position Oy (mult., J in Hz) oc oy (mult., J in Hz)
2 8.29, s 1532,CH 8.24,s
3 130.8, qC
4 176.1, qC
5 7.97,d (8.6) 125.3,CH 7.92,d (8.8)
6 7.08, d (8.6) 116.4,CH 7.02,d (8.8)
7 159.9, qC
8 116.4, qC
9 156.6, qC
10 118.8, qC
1 124.7, qC
2 7.54,d (8.5) 132.0,CH 7.48,dd (8.5)
3 6.94,d (8.5) 115.8,CH 6.88,dd (8.5)
4 158.0, qC
5 6.94,d (8.5) 115.8,CH 6.88,dd (8.5)
6’ 7.54,d (8.5) 132.0,CH 7.48,dd (8.5)
1” 3.63,d (7.3) , CH, 3.57,brd (7.3)
2" 5.34,brt(7.3) 122.4,CH 5.28,tqq (7.3, 1.6, 1.3)
3" 132.6, qC
4" 1.88, s 17.8,CH; 1.83,s
5" 1.71, s 25.8,CH; 1.65,s
C7-OH 9.43,s
C4'-OH 8.41,s
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Figure 3.244 ESI-MS spectrum of compound 49
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3.3.15. Wighteone (50, known compound)

Molecular formula: CyoH;505
Molecular weight: 338.35
Amount: 0.4 mg

Compound 50 was obtained as pale yellow needles. The ESI-MS spectrum (Figure 3.248) revealed a
pseudomolecular ion peak at m/z 337 [M — H]". The UV spectrum (Figure 3.247) of 50 showed
absorption maximum at 202, 204 and 267 nm suggesting a typical isoflavone. The 'H NMR
spectrum (Figure 3.246) of 50 exhibited the presence of 4”,5"”-dimethylallyl group, AA'BB’ aromatic
protons assignable to the B-ring and a characteristic proton signal at 0 8.08 (H-2). The prenyl group
was found to be located at C-6 by comparison of 'H NMR chemical shifts of H-8 with those of
related prenyl isoflavones. From above analysis, compound 50 was identified to be wighteone

[Kinoshita et al., 1990].

©OoONTOPO®
OCRLOMO =5 ©
COQ0DD OIS
@OONNNNNN

mmmmmmmmm

8.0942
_~7.4560
"\-7.4385
_6.8945
-6.8773

6.4950

_~3.3709
~\-3.3569
—1.7807
— 1.6409

5" | 4n
3
5
o
2 6'
| 8
LY
)

T T T T T T T T T T T
8.0 7.5 7.0 6.5 6.0 55 5.0 1.5 1.0 35 2.0 2.5 2.0
1 (ppm)

Figure 3.246 '"H NMR spectrum of compound 50
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Figure 3.248 ESI-MS spectrum of compound 50

Table 3.54 NMR spectroscopic data of compound 50 (CD;COCD3, 500 MHz)

Position

Wighteone (DMSO-dj)
[Kinoshita et al., 1990]

Compound 50

Oy (mult., J in Hz)

oy (mult., J in Hz)

8.10, s
6.49, s
7.44,d (8.5)
6.89,d (8.5)
6.89,d (8.5)
7.44,d (8.5)
3.35,brd (8)
5.27,brt (8)
1.66, s
1.78, s

8.08, s

6.49, s

7.44,d (8.5)
6.88,d (8.5)
6.88,d (8.5)
7.44,d (8.5)
3.35,brd (7.1)
5.28,1q (7.1, 1.6)
1.63,s

1.77, s
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3.3.16. Isowighteone (51, known compound)

Molecular formula: CyoH;30s5
Molecular weight: 338.35
Amount: 0.4 mg

Compound 51 was obtained as a yellow powder and exhibited UV absorption maximum at 211 and
261 nm (Figure 3.250), which were similar to those of 50. The molecular weight of 51 determined
from the ESI-MS data (Figure 3.251) was the same as 50 deducing compound 51 was an isomer of
50. In the '"H NMR spectrum (Figure 3.249) of 51, an ABX spin system [¢ 7.32 (d, J = 2.2 Hz), 6.87
(d, J = 8.2 Hz) and 7.25 (dd, J = 8.2, 2.2 Hz)] was observed instead of an AA'BB’ system in 50.
Furthermore, a pair of meta-coupled aromatic protons [0 6.33 (d, J = 2.1 Hz) and 6.22 (d, J = 2.1 Hz)]
was found for A-ring. Comparing the NMR data of compound 51 with those of isowighteone

[Tanaka et al., 1997], it was revealed that two compounds were identical.
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Figure 3.251 ESI-MS spectrum of compound 51

Table 3.55 NMR spectroscopic data of compound 51 (CD;COCD3, 500 MHz)

Isowighteone Compound 51
[Tanaka et al., 1997]
Position oy (mult., J in Hz) Oy (mult., J in Hz)
2 8.12,s 8.03,s

6.28,d (2)
6.41,d (2)
7.36,d (2)
6.89,d (8)
7.27,dd (8.2)
3.36,d (7)
5.38, t-like m
1.72,brs
1.73,brs

6.22,d (2.1)
6.33,d (2.1)
7.32,d(2.2)
6.87,d (8.2)
7.25,dd (8.2,2.2)
3.35,brd (7.1)
5.36,tq (7.1, 1.3)
1.70, s

1.72,s
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3.3.17. 7,2’ 4'-Trihydroxy-3-arylcoumarin (52, new compound)

Molecular formula: Cy5H;00s5
Molecular weight: 270.24
Amount: 0.6 mg

Compound 52 was isolated as an amorphous powder, and was shown to have the molecular formula
Ci5HjoOs as determined by HRESIMS data (m/z 271.0609 [M + HJ"). The UV spectrum of 52
(Figure 3.252) showed absorption maxima at 204, 218 and 248 nm, typical of a coumarin nucleus.
The '"H NMR spectrum of 52 (Figure 3.253) exhibited two ABX system [¢ 7.89 (d, J = 8.8 Hz), 6.85
(dd, J = 8.8,2.2 Hz) and 6.72 (d, J = 2.2 Hz); 6 6.99 (d, J/ = 1.9 Hz), 6.83 (dd, J = 8.8, 1.9 Hz) and
6.80 (d, J = 8.8 Hz)], which were further supported by analysis of the 'H-'H COSY spectrum of 52
(Figure 3.254). Moreover in the aromatic region, resonance for a proton singlet at dy 8.05 was
observed. Comparing the '"H NMR and mass spectra of 52 with those of the known compound
7,2'-dihydroxy-4'-methoxy-3-arylcoumarin indicated the subtraction of a CHs group for 52. This
difference was corroborated by the upfield shift of the H-3" and H-5' resonances of 52, because of the
disappearance of the inductive effect of the methoxy group at C-4'. From these results, the structure

of compound 52 was concluded to be 7,2',4'-trihydroxy-3-arylcoumarin.
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Figure 3.252 HPLC chromatogram and UV spectrum of compound 52
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Figure 3.255 ESI-MS spectrum of compound 52

Table 3.56 NMR spectroscopic data of compound 52 (CDs;OD, 500 MHz)
Compound 52 COSY
Position  dy (mult., J in Hz)
4 8.05,s
5 7.98,d (8.8) 6
6 6.85,dd (8.8,2.2) 5,8
8 6.72,d (2.2) 6
3 6.99, d (1.9) 5’
5’ 6.83,dd (8.8,1.9) 3.6
6’ 6.80, d (8.8) 5
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3.3.18. Psoralidin (53, known compound)

Molecular formula: CyoH;605
Molecular weight: 336.34
Amount: 61.3 mg

Compound 53 was isolated as a white amorphous powder. Its molecular weight was deduced from
the ESI mass spectrum (Figure 3.259). The UV spectrum (Figure 3.256) of 53 exhibited absorption
bands at Ap.x 208, 244 and 347 nm consistent with the coumestan chromophore. The '"H NMR
spectrum (Figure 3.257) of 53 displayed an ABX system [0 7.66 (d, J = 8.2 Hz), 6.92 (dd, J = 8.2,
1.9 Hz) and 7.16 (d, J = 1.9 Hz)], two aromatic singlets (6 7.60 and 6.91) and one prenyl moiety. The
BC NMR spectrum (Figure 3.258) of 53 revealed 20 carbon signals which were sorted into five
aromatic methines, nine aromatic quaternary carbons, one carbonyl group, two olefinic carbons, two
methyls and one methylene. The attachment of the prenyl group at C-2 was indicated from the
HMBC correlations (Figure 3.260) of H-1" with C-1 and C-2 respectivly. According to these data and
through comparison with the literature [Yang et al., 1996], compound 53 was concluded to be

psoralidin.
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Figure 3.256 HPLC chromatogram and UV spectrum of compound 53
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Table 3.57 NMR spectroscopic data of compound 53 (DMSO-ds, 500 MHz)

Psoralidin Compound 53

[Yang et al., 1996]
Position oc Oy (mult., J in Hz) oc oy (mult., J in Hz)
1 121.3,CH 7.62,s 121.0,CH 7.60, s
2 126.4, qC 126.4, qC
3 158.9, qC 158.9, qC
4 102.7,CH 6.92,s 1024,CH 691,s
6 157.6, qC 157.7, qC
7 120.8,CH 7.68,d (8.4) 120.5,CH 7.66,d (8.2)
8 1142,CH 6.93,dd (8.4,1.9) 113.9,CH 6.92,dd (8.2,1.9)
9 156.9, qC 156.9, qC
10 99.0,CH 7.17,d(1.9) 98.7,CH 7.16,d(1.9)
11 152.8, qC 152.8, qC
12 103.8, qC 103.8, qC
13 159.4, qC 159.5, qC
14 101.9, qC 101.9, qC
15 113.9, qC 114.7, qC
16 155.9, qC 155.9, qC
1’ 278,CH, 3.32,brt(7.1) 275,CH, 3.30,d(7.6)
2! 122.0,CH 5.35,m 121.7,CH 5.34,t(7.6)
3 132.4, qC 132.5, qC
4! 17.6,CH; 1.70,s 17.77,CH; 1.69,s
5 258,CH; 1.74,s 25.6,CH; 1.73,s
C3-OH 10.73, s
C9-OH 10.00, s
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3.3.19. Psoracoumestan (54, new compound)

Molecular formula: CyoH 1405
Molecular weight: 334.32
Amount: 0.4 mg

Compound 54 was obtained as colorless needles with the molecular formula C,0H;40s, as determined
by HRESIMS (m/z 335.0909 [M + H]"). The UV spectrum (Figure 3.261) indicated a coumestan
structure, with absorption maxima at 207, 250 and 368 nm. The '"H NMR spectrum of 54 showed one
2,2-dimethylchromene ring indicated by the signals at ¢ 1.44 (s, CH3 x 2), 6.62 (d, J = 9.9 Hz) and
5.92 (d, J = 9.9 Hz). In addition, resonances for an ABX system [0 7.70 (d, J = 8.2 Hz), 6.95 (br d, J
= 8.6 Hz) and 7.16 (br s)] and two singlet protons at ¢ 7.78 and 6.96 were observed, which implied
the 2,2-dimethylchromene ring of 54 must be located at either C-2 or C-8. The substitution pattern of
these functional groups was determined by comparison of the '"H NMR data of 54 with other
coumestan derivatives, such as psoralidin (53) [Yang et al., 1996] and sophoracoumestan A (Figure
3.264) [Komatsu et al., 1981]. If the 2,2-dimethylchromene ring is located at C-8, the proton signals
of the ABX spin system of 54 would be similar to those of H-1, H-2 and H-4 in sophoracoumestan A.
However, such signals of 54 were almost identical to those of H-7, H-8 and H-10 in psoralidin.
Therefore, 2,2-dimethylchromene was located at C-2, which was corroborated by the 0.18 ppm
downfield shift of the H-1 resonance of 54 as compared to that of psoralidin. Moreover, psoralidin
(83) was also isolated from the same extract, and is considered to be the precursor of 54 in the
biosynthetic pathway, which supported the structure of 54. From above spectral data and

biosynthetic considerations, the structure of compound 54 was concluded to be psoracoumestan.
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Table 3.58 NMR spectroscopic data of compound 54 (DMSO-dg, 500 MHz)

Compound 54
Position  dy (mult., J in Hz)
1 7.78, s
4 6.96, s
7 7.70,d (8.2)
8 6.95,brd (8.6)
10 7.16, brs
1 6.62,d (9.9)
2! 5.92,d (9.9)
4’ 1.44,s
5' 1.44,s

54 sophoracoumestan A
Figure 3.264 The structure of compound 54 and sophoracoumestan A
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3.3.20. Bakuchiol (55, known compound)

Molecular formula: CsH2,O
Molecular weight: 256.38
Amount: 323.5 mg

Compound 55 was obtained as oil with UV absorption maximum at 209 and 261 nm (Figure 3.265).
The 'H NMR spectrum (Figure 3.266) of 55 showed the presence of a set of trans double bond and
an AA'BB’ spin system in the down-field. Along with BC NMR (Figure 3.267) and DEPT (Figure
3.268) spectra, six olefinic carbons, three methyls, two methylenes and one quaternary carbon were
deduced. The assignments were further supported by analysis of the 'H-'H COSY (Figure 3.270) and
HMBC spectra (Figure 3.269) of 55. A pair of geminal coupled olefinic proton at § 5.04 and 5.01
gave COSY cross-peaks with the olefinic methine at ¢ 5.88 (dd, J = 17.3, 10.7 Hz) indicating a
terminal double bond. The attachment of this group at C-9 was shown from the HMBC cross-peaks
of the signal at dy 5.88 (H-17) with the methylene at dc 41.3 (C-10) and the olefinic methine at d¢
135.8 (C-7), respectively. Comparison of the 'H and '*C NMR resonances of bakuchiol [Labbe e al.,

1996] with those of compound 55 indicated that both compounds were identical.
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Figure 3.265 HPLC chromatogram and UV spectrum of compound 55
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Figure 3.270 'H-'"H COSY spectrum of compound 55

Table 3.59 NMR spectroscopic data of compound 55 (CDCls, 500 MHz)

Bakuchiol Compound 55
[Labbe et al., 1996]
Position oc oy (mult., J in Hz) oc Oy (mult., J in Hz)
1 131.7, qC 131.3,qC
2 1274,CH 7.22,d(7.2) 127.3,CH  7.25,d (8.5)
3 1154,CH 6.74,d(7.2) 1153,CH 6.77,d (8.5)
4 154.5, qC 154.6, qC
5 1154,CH 6.74,d(7.2) 1153,CH 6.77,d (8.5)
6 1274,CH 7.22,d(7.2) 127.3,CH  7.25,d (8.5)
7 1359,CH 6.23,d (16.2) 126.5,CH 6.25,d (16.3)
8 126.5,CH  6.03,d (16.2) 135.8, CH* 6.06, d (16.3)
9 42.5,qC 42.5,qC
10 413,CH, 193,m 41.3, CH, 1.49, m
11 233,CH, 147,m 23.2, CH, 1.96, dd (16.4, 7.3)
12 124.8,CH  5.09, bt 124.8,CH  5.11,1q (7.3, 1.6)
13 131.4, qC 130.9, qC
14 17.77,CH;  1.65,s 17.6, CH; 1.58, br s
15 25.77,CH; 1.56,s 25.7, CH; 1.68, br s
16 234,CH; 1.17,s 23.3, CH; 1.20, s
17 146.0,CH 5.86,dd (17.3,10.9) 1459,CH 5.88,dd (17.3, 10.7)
18 111.9,CH, 4.98, m 111.9,CH, 5.04,dd (10.7, 1.3); 5.01,dd (17.3, 1.3)

“The '*C NMR assignment was corrected and confirmed by 2D NMR.
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3.3.21. Bioactivity test results for compounds isolated from Psoralea corylifolia

All isolated compounds from Psoralea corylifolia (26—4S) were tested for their cytotoxic activities
by MTT-assay on H4IIE, Hct-116, and C6 cell lines. The ECsy values are exhibited in Table 3.60.
Some of them were further determined for their apoptotic potentials and necrotic potentials by
ApoONE assay (caspase 3/7 assay) and LDH-assay respectively (Figure 3.271 and Figure 3.272).
Moreover, some compounds were also measured in TEAC-assay for monitoring the antioxidant

capacity which is exhibited in Figure 3.273.

Twelve isolated compounds were also evaluated for their protein kinase inhibitory profiles. The
results are presented as residual activity in Table 3.61. Seven compounds which showed an inhibition
of > 40 % with at least one kinase were selected for ICsy determination. The data are shown in Table

3.62.

Table 3.60 ECsp (uM) in MTT-assay (H41IIE) for the isolated compounds from Psoralea corylifolia

compound ECs¢ (uM)

H4IIE (24 h) HA4IIE (48h) Hct116 Co6
isobavachalcon (36) 50 18
isobavachromene (37) 22 22
psorachalcone A (38) > 50 >50 >50
bakuchalcone (39) > 50 >50 >50
xanthoangelol (40) 40 27 35
corylifol C (41) > 50 >50 >50
broussochalcone B (42) 12 9
bavachromene (43) 35 17 50
bavachalcone (44) 10 10
bavachin (45) 35 35
6-prenylnaringenin (46) 23 25 36
neobavaisoflavone (47) 170 125
corylin (48) 38 37.5  >50
8-prenyldaidzein (49) n.d. n.d.
wighteone (50) 48 41 > 50
isowighteone (51) 22 17 30
7,2",4'-trihydroxy-3-arylcoumarin (52) 48 48 > 50
psoralidin (53) 30 10
psoracoumestan (54) > 50 >50 >50
bakuchiol (55) 12 8
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Figure 3.271 Apoptosis result (ApoONE caspase 3/7 assay) in 25 uM for 24 h of some isolated

compounds from Psoralea corylifolia
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Figure 3.272 Necrosis results (LDH assay) in 25 uM for 24 h of some isolated compounds from
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Figure 3.273 Results of TEAC-Assay for the isolated compounds from Psoralea corylifolia
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Table 3.61 Selectivity profiling of compounds isolated from Psoralea corylifolia using 24 protein

kinases

Residual activities (% of control activity)

Compound 36* 38 40* 41* 42 44* 45 46 47 49* 53* S55%
AKT1 97 98 98 90 69 74 105 99 107 75 108 107
ARKS 66 99 95 75 99 104 110 96 93 97 95 108
Aurora-A 40 80 64 47 76 77 81 73 75 107 87 59
Aurora-B 68 73 49 33 69 70 8 71 8 T3 62 75
AXL 92 98 76 93 &5 101 9% 89
B-RAF-VE 156 103 109 84 96 106 120 102 134 107 107 142
CDK2/CycA 101 101 111 82 99 116 95 98 105 98 95 98
CDK4/CycD1 88 104 66 68 96 53 96 94 98 74 115 84
CK2-alphal 104 98 104 8 90 92 101 93 106 103 95 107
COT 111 102 106 87 100 94 99 101 106 100 99 &5
EGF-R 72 77 82 27 69 79 91 84 95 56 T2 87

¢ | EPHB4 115 8 8 71 8 83 106 87 92 75 74 105
g ERBB2 104 83 78 66 89 82 96 8 60 84 99 103
i FAK 121 83 109 81 101 92 109 108 117 92 97 102
% IGF1-R 116 88 106 58 95 104 103 110 93 65 79 96
& | INS-R 83 97 91 55 93 8 100 8 98 93 &9 113
MET 8 98 79 75 82 91 95 88 101 101 89 80
PDGFR-beta 8 90 8 60 76 72 92 94 92 94 87 93
PLK1 97 112 100 96 104 116 109 101 90 92 80 82
PRK1 99 106 69 98 103 100 101 81
SAK 109 101 109 42 91 118 106 101 111 93 74 103
SRC 130 84 81 34 84 81 101 99 92 53 57 107
TIE2 97 8 81 37 8 93 106 97 107 62 57 114
VEGF-R2 100 81 79 52 64 67 91 89 101 67 67 92
VEGF-R3 113 108 115 109
FLT3 68 90 93 53
ICsp 73 49 27 64 53 71 53 57

*showing at least 40 % inhibition at 1 ug/mL with at least one of 24 kinases
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Table 3.62 ICs, profiling of four selected compounds using 24 protein kinases (variable highest
molar concentration)

ICsy values (M)

36 40 41 44 49 53 55
AKT1 A A 2.3E-05 A A A A
ARKS5 A A 8.7E-06 A A A A
Aurora-A 1.9E-06 4.3E-06 3.0E-06 8.4E-06 2.2E-05 A 3.5E-06
Aurora-B 1.6E-06 4.1E-06 2.1E-06 1.1E-05 2.0E-05 A 3.8E-06

AXL 2.0E-05 6.4E-06 1.6E-05 A A
B-RAF-VE A A 4.5E-06 A A A A
CDK2/CycA A A 1.2E-05 A A A A
CDK4/CycD1 7.8E-06 A 6.2E-06 2.3E-05 A A A
CK2-alphal A A 2.4E-05 A A A A
COoT 6.2E-06 A 1.3E-05 A A A A
o | TIE2 7.8E-06 A 2.3E-06 1.6E-05 2.7E-05 A A
§ EGF-R 5.1E-06 4.4E-06 1.2E-06 4.4E-06 5.9E-06 2.7E-05 4.2E-06
%2 | EPHB4 A A 5.1E-06 2.1E-05 2.6E-05 A A
'E ERBB2 A 1.1E-05 4.2E-06 1.3E-05 2.3E-05 A A
§ FAK A A 1.1E-05 A A A A
A IGF1-R A 2.2E-05 3.6E-06 A 7.0E-06 A 8.7E-06
INS-R A A 3.1E-06 2.2E-05 A A A
MET A A 6.0E-06 2.5E-05 A A A
PDGFR-beta A A 4.5E-06 8.3E-06 A A A
PLK1 A A 9.5E-06 A A A A

PRK1 2.3E-05 4.7E-06 1.8E-05 A A
SAK 5.5E-06 2.0E-05 1.6E-06 2.0E-05 5.4E-06 A 8.7E-06
SRC A 2.3E-05 1.8E-06 2.1E-05 7.8E-06 A A
VEGF-R2 5.8E-06 1.6E-05 3.0E-06 1.3E-05 1.2E-05 A A
VEGF-R3 7.8E-06 A
FLT3 3.4E-06 9.4E-06

A above maximal molar assay concentration of compound
moderately active

- active
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4. Discussion

4.1. Metabolites isolated from the Mongolian medicinal plant Scorzonera radiata

4.1.1. Biosynthesis of dihydrostilbene derivatices

So far only seven stilbene derivatives were reported from Scorzonera spp. [Wang et al., 2009].
Among those, six were isolated from S. humilis as dihydrostilbene glycosides [Zidorn et al., 2003],
and the residual one is a stilbene from S. fomentosa [Sari et al., 2007]. The dihydrostilbene

derivatives from S. humilis are closely related to scorzodihydrostilbenes A-E (1-5).

Stilbenes are natural products in which a cinnamoyl-CoA C¢Cs precursor from the shikimate
pathway has acted as a starter unit. 4-Hydroxycinnamoyl-CoA is chain extended with three
molecules of malonyl-CoA. This initially gives a polyketide chain, which is folded according to the
nature of the enzyme responsible. Then it allows aldol reaction catalysed by stilbene synthase to
occur thus generating an aromatic ring. The carbonyl carbon of the cinnamoyl group is incorporated
into the aromatic ring [Dewick, 2001]. Alike compounds 1-5, all the reported stilbene derivatives
from Scorzonera spp. have a carbonyl function in B-ring introduced by malonyl-CoA. However, in
general a decarboxylation reaction takes place during which the terminal carboxyl of stilbenes is lost,
like in resveratrol [Dewick, 2001]. Thus it is suggested that the acetyl group substituting the B-ring is
introduced afterwards. Based on above hypothesis, the supposed biosynthetic pathway of the new
dihydrostilbene derivatives of S. radiata is suggested in Figure 4.1. Moreover, the biosynthetic

relationships of scorzodihydrostilbenes A-E are shown in Figure 4.2.
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Figure 4.1 Suggested biosynthetic pathway of scorzodihydrostilbene C (3)
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Based on the supposed biosynthetic pathway of the dihydrostilbenes and the obtained compounds,
several unknown dihydrostilbenes are suggested to exist as secondary metabolites of S. radiata
which are shown in Figure 4.3. If the phytochemical study for S. radiata can be continued and there
is enough amount of plant material, those conjectural dihydrostilbenes are expected to be found in
the extract. This is in respect that the undiscovered compounds follow the same biosynthetic pathway

as the found ones or that they are precursors of the found ones.

OH
OH OH O
NADPH SAM o~
(hydroxylation) (methylation)

OH O
aglycone of . . aglycone of
scorzodihydrostilbene C an unfound intermediate scorzodihydrostilbene A

glucosylation glucosylation + UDPglucose
(glucosylation)
- H - OH
oH OH Glc o O o Glc o O
coslicosa il otae
OH O
Glc/O ©

OH O

isomer of
an unfound dihydrostilbene an unfound dihydrostilbene scorzodihydrostilbene A

Figure 4.3 So far undiscovered dihydrostilbene derivatives

4.1.2. Biosynthesis of quinic acid derivatices

Quinic acid is a fairly common natural product found in the free form or as esters. It is
biosynthesized by the shikimate pathway. This pathway begins with a coupling of
phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate to give the seven-carbon
3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP). Elimination of phosphoric acid from
DAHP followed by an intramolecular aldol reaction generates the first carboxylic intermediate
3-dehydroquinic acid. Reduction of 3-dehydroquinic acid leads to quinic acid [Dewick, 2001]. This

process is shown in Figure 4.4.
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In this study, two unusual epiquinic acid derivatives were obtained including a new one. Due to the
fact that epimers of quinic acid derivatives are studied rarely, the biosynthetic pathway has never
been published. Here we suggest the possible reactions for forming epiquinic acid. There are two
possibilities. The first one is that an epimer of 3-dehydroquinic acid is generated as a bi-product
when aldol reaction occurs to produce 3-dehydroquinic acid, and then this is reduced to form
epiquinic acid. The second is that the starting compound, D-erythrose, is replaced by D-threose. The
latter reactions are exactly the same one as the regular one. These two pathways are also presented in
Figure 4.4. However, it has not been confirmed, and more studies are necessary in order to

understand the biosynthesis pathway.

PEP

Gl COH CO
P< /& ? 2l HO, COH HO, COoH
aldoltype O aldol-type
reaction PO) —HOP |-| ) react|on NADH
H NAD+ R
L/&q HO" ™ OH - HO OH
OH OH O g
- ini i —)-quinic aci
D-erythrose 4-P DAHP aldol-type 3-dehydroquinic acid q
reaction
HO_ COoH HO, CO,H HO, CO,H
= o=
0~ > OH HO' > NoH  HO™ OH
OH OH OH

3-dehydro-epi-quinic acid epiquinic acid
PO HO, COZH

Ho“‘
OH
D-threose 4-P

Figure 4.4 Suggested biosynthetic pathway of epiquinic ac:1d

The biosynthetic relationship of all isolated quinic acid derivatives from S. radiata is shown in
Figure 4.5. On the basis of obtained quinic acids and the biosynthetic pathway, several epiquinic acid
derivatives are suspected to be present as metabolites of S. radiata, which have not been found so far.
It is considered that the epiquinic acid derivatives must occur in S. radiata as very minor components,

because those epimers are not distributed as widely as the normal ones. This is the reason for the fact
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that so far only few epiquinic acid derivatives were isolated as natural products.

—
< C X
o} o}
0 0 o 0

oH OH OH
HO
OH OH HO OH OH
+ p-coumaric acid
5-p-coumaroyl- \ (egterification) 5-p-coumaroyl-
quinic acid (cis) quinic acid (trans)
(14) o) (13)
HO, OH
HO™ ™" ~OH
OH

(-)-quinic acid (6)
+ caffeic acid

(esterification)
0 O—caffeoyl
OH
HO
OH OH

chlorogenic acid (7)
(5-caffeoylquinic acid)

f N

0 O—caffeoyl 0 O—caffeoyl

OH (I)
HO OH HO OH OH caffeoyl
“caffeoyl
3,5-dicaffeoylquinic acid (8) 4,5-dicaffeoylquinic acid (11)
(methylation) J (methylation)

0 O—caffeoyl 0 O—caffeoyl

OH O

) ~0 |
OH OH OH caffeoyl

“caffeoyl

macroantoin F

macroantoin G (10)
(was detected)

OH

OH

HOﬁOH OH
0L

O~ OH

+ p-coumaric acid
(esterification)

o)
HO, )—OH

O
' (not be found in nature)

OH
epiquinic acid
+ caffeic acid
(esterification)

OH
HO OH

0 OHO\caffeoyI

5-dicaffeoyl-epi-quinic acid
(not be found in nature)

[\

O—caffeoyl
HO OH HO

OH  caffeoyl

ON
o OHO\ca freoyl O~ "OH ‘“caffeoyl

3,5-dicaffeoyl-
epi-quinic acid (9)

4 ,5-dicaffeoyl-
epi-quinic acid (12)

(methylation) l (methylation)

O—caffeoyl OH  caffeoyl
HO OH HO (0}
“caffeoyl

@) C!)O\caffeoyl @) C!)

(not be found in nature)  (not be found in nature)
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4.1.3. Relationship between secondary metabolites from Mongolian S. radiata and the

nature and climate of Mongolia

Mongolian medicinal plants S. radiata were collected in the Ulaanbaatar region of Mongolia, which
has an extreme continental climate with long, cold winters and short summers. The country averages
257 cloudless days a year, and it is usually at the center of a region of high atmospheric pressure.
Ulaanbaatar lies at 1351 meters above sea level in the valley of the river Tuul Gol. Located in the
relatively well-watered north, it receives an annual average of 31 centimeters of precipitation, almost
all of which falls in July and in August. Ulaanbaatar has an average annual temperature of —2.9 °C

and a frost-free period extending on the average from mid-June to late August [Worden et al., 1991].

Mongolia's weather is characterized by extreme variability and short-term unpredictability in the
summer, and the multiyear averages conceal wide variations in precipitation, dates of frosts, and
occurrences of spring dust storms. Such weather poses severe challenges to animal and plant survival.
Plant yields fluctuate widely and unpredictably as a result of the amount and the timing of rain and

the dates of killing frosts [Worden et al., 1991].

As a result of the high, cold, and dry climate conditions, the plants growing in that area may have
inimitable biosynthetic pathways and enzymatic reaction systems making the plants to adapt to the
ecotypic environment. Consequently the Mongolian plants sometimes can metabolize the natural

products with distinct configuration and prominent biological activities.

In the phytochemical study for S. radiata, five dihydrostilbenes, ten quinic acid derivatives, six
flavonoids, two coumarins, five simple benzoic acids, and one monoterpene were obtained. Most of
those compounds are present in their glycosidic form. From the amount of the isolated compounds,
along with analysis by DAD-HPLC of the crude extract of S. radiata (Figure 4.6—4.9), quinic acid
derivatives were concluded to be the principal components of the secondary metabolites, particularly
chlorogenic acid (approx. 33% of the crude extract) and 3,5-dicaffeoylquinic acid (approx. 22%).
Additionally, dihydrostilbenes (approx. 10%) and flavonoids (approx. 14%) were also found to be

the essential metabolites of S. radiata. Except minor terpenes, approximately 90% metabolites were
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phenolic compounds which were likewise produced by the shikimate pathway.
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Figure 4.6 DAD-HPLC chromatogram of n-BuOH fraction of S. radiata aerial parts
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Figure 4.7 DAD-HPLC chromatogram of EtOAc fraction of S. radiata aerial parts
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Figure 4.8 DAD-HPLC chromatogram of n-hexan fraction of S. radiata aerial parts
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Figure 4.9 DAD-HPLC chromatogram of water fraction of S. radiata aerial parts
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4.1.3.1. Quinic acid derivatives

The great proportion of caffeoylquinic acids in Scorzonera spp. was proven by a chemotaxonomic
investigation indicated that Scorzonera provides about 180 mg/kg caffeoylquinic acids with little or
none of other conjugates [Clifford, 1999]. Furthermore the accumulation of quinic acid derivatives is
probably on account of the stress of Mongolian rigorous environment. It was reported that apple tree
adaptation to cold climate was found to be associated with a high level of chlorogenic acid [Solecka,
1997]. Hereby cold stress might increase the production of caffeoylquinic acids. In addition,
chlorogenic acid may be induced in response to wounding or to feeding by herbivores, and then act
directly as defence compounds or may serve as precursor for the wound-induced polyphenolic
barriers [Dixon and Paiva, 1995]. In Mongolia, the strong storms and the activity of herbivores are

common stress factors for plants.

4.1.3.2. Dihydrostilbenes

Since the related dihydrostilbene derivatives were only found from S. humilis previously, these
congeners were inferred to be the characteristic secondary metabolites of some species of Scorzonera.
From the chemotaxonomic point of view, this also implied that S. radiata has a closer taxonomic

relationship with S. humilis compared to the other Scorzonera spp..

Many phenylpropanoids exhibit a broad range of antimicrobial activities and are therefore believed
to help the plant fight microbial diseases. Such compounds can be classified as phytoalexins [Dixon
et al., 2002]. Plants naturally resistant to pathogens may have inherented higher phenolic contents
resulting from higher activity of the enzymes responsible for phenolic synthesis [Solecka, 1997].
Stilbene biosynthetic genes and metabolites are also induced by wounding and fungal infection, and
by the protective plant activator, laminarin [Sandermann Jr, 2004]. It is considered that the
dihydrostilbenes (1-5) play a similar rule as the well-known stilbene phytoalexin resveratrol
provided by a grapevine SS gene [Dixon, 2001], resulting in plants with increased resistance to the

fungal pathogen.
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4.1.3.3. Flavonoids

Flavones can increase in concentration in response to high light irradiation, and help attenuate the
amount of light reaching the photosynthetic cells. It was reported that UV irradiation induces the
synthesis of flavonoids particularly kaempferol derivatives. These UV-absorbing compounds are
thought to provide a means of protection against UV-B damage and subsequent cell death by
protecting DNA from dimerization and breakage [Dixon and Paiva, 1995]. S. radiata was collected
from a high latitude and high elevation area with a chiefly sunny sky, which provides exceeding UV
irradiation. This might be the reason that a high percentage of flavones especially kaempferol

derivatives was found in the extract of S. radiata.

4.1.3.4. Multiple phytoalexins and stereoisomers

3,5-dicaffeoyl-epi-quinic acid (9) and 4,5-dicaffeoyl-epi-quinic acid (12) were isolated as the
stereoisomers of 3,5-dicaffeoylquinic acid (8) and 4,5-dicaffeoylquinic acid (11) respectively. The
epimers of quinic acid derivatives are not commonly occurring in nature. As phytoalexins it is
interesting to understand the reason that the plants synthesize a pair of isomers. So far it is still
unclear whether the accumulation of different but structurally related phytoalexins in a plant is
important for resistance or is insurance for survival. It has been reported that stereoisomers of a
phytoalexin can markedly differ in antifungal activity. It was suggested that the conjugates of some
phytoalexins may be very important for the rapid release of free phytoalexin after infection, and that
they may not be synthesized or hydrolyzed as quickly in the presence of stereoisomers unnatural to
the host. This is an exciting area of investigation that requires a thorough understanding of

phytoalexin biosynthesis, factors influencing accumulation, and mode of action [Ku¢, 1995].

4.1.4. Acid catalysis of the acetyl group in deuterated methanol

During '"H NMR measurements of the new dihydrostilbene derivatives, it was observed that the
signal of the acetyl protons disappeared when the compound was kept in deuteromethanol for one
day. Obviously, an exchange of the a-carbonyl protons occurred through the formation of the enol,
which might have been mediated by traces of acid or base. The fact that the H/D exchange was not

observed in deuterated DMSO indicates that the acidity of deuteromethanol is crucial to enolization
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and redeuteration [Clayden et al., 2001]. The potential reaction is shown in Figure 4.10. The
noncommittal catalyzer could also be involved by the uncleaned and residual acid when cleaning the

used NMR tubes.

0 ® OH ®  OH
B B T
R” “CHs R"CcH, R CH,
: ®
D
0 ® 0 o o
) L N G R
R” “CDs R” “CH,D R®CH,
D

Figure 4.10 Acid catalysis of the acetyl group in deuterated methanol

When the stilbenes were exposed to deuteromethanol for a shorter period (hours), mono-deuteration
became evident from a triplet of the group with a characteristic coupling constant of J = 2.0 Hz
[Hesse et al., 1997]. The original singlet decreased in intensity and new signals corresponding to
CH;D and CHD, appeared at high-field, while all other signals remained unchanged. The
time-dependent H/D exchange was observed in their mass and "H NMR spectra, which are displayed

in Figure 4.11 and Figure 4.12
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Figure 4.11 ESI-MS spectrum comparison of the aglycone of compound 1
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Figure 4.12 The time-dependent H/D exchange of '"H NMR spectra for compound 1
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4.1.5. Structure—activity relationships of dihydrostilbenes and quinic acid derivatives in

the antioxidant assay

According to the results of scorzodihydrostilbene A-E (1-5) and resveratrol, the well-known
antioxidative stilbene, compounds 1 and § were more active than resveratrol or compounds 2—4.
Methoxy substitution at the ortho position relative to an OH group (C-4') of the phenol moiety as
found for 1 and 5 induced an increase in the scavenging reaction. The electron-donating methoxy
group allows stabilization of the resulting aryloxy radical through electron delocalization after
hydrogen donation by the OH group [Rice-Evans et al., 1996]. The structure—activity relationships
of the phenolic compounds were also comfirmed by theoretical studies, which indicated that the O—H
bond dissociation enthalpy (BDE) value is reduced by an ortho substitution of a methoxy group, and
the weaker the OH bond, the faster the reaction with free radicals [Wright et al., 2001; Ordoudi et al.,

2006].

The caffeoyl quinic acid congeners were considerably more active than 5-p-coumaroylquinic acid,
since phenolic compounds exhibits vicinal OH groups have a higher radical scavenging activity than
monohydroxylated isomers (p-coumaric acid) [Rice-Evans et al., 1996]. The antioxidant efficiency
of chlorogenic acid was found to be weaker than those of the dicaffeoylquinic acids.
4,5-Dicaffeoyl-epi-quinic acid (12) and 3,5-dicaffeoyl-epi-quinic acid (9) exhibited slightly stronger
antioxidant activities compared to 4,5-dicaffeoylquinic acid (11) and 3,5-dicaffeoylquinic acid (8),
respectively. Macroantoin G presented similar ICsy values in DPPH assay when compared to
3,5-dicaffeoylquinic acid, thus methoxylation of the carboxyl group of the quinic acid moiety did not

decrease the radical scavenging activity.
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4.1.6. Structure-—activity relationships of cytotoxicity of new dihydrostilbenes and their
aglycones
Scorzodihydrostilbenes A-E (1-5) showed no cytotoxicity against either L5178Y or H4IIE cells.
After hydrolysis, except for the aglycone of scorzodihydrostilbene A (ASDSA), none of other
dihydrostilbene aglycones exhibited cytotoxicity in H4IIE cells which was assessed by neutral red
assay. Even if those dihydrostilbenes or their aglycones were stimulated by TNF, there was still no
significant suppresion of TNF-dependent NF-kB activation. However when ASDSA was stimulated
with different concentrations of TNF, it enhanced TNF-mediated cytotoxicity against H41IE cells in a
dose-dependent manner, of which pretreatment of H4IIE cells with 20 uM ASDSA lead to a
significant enhanced TNF-mediated cytotoxicity. The same experiment was determined for the
aglycones of scorzodihydrostilbene B—E, but there was no difference in cytotoxicity as measured by
neutral red assay. The aglycones showed stronger activity than glucosides, because they are
lipophilic and pass easy through the cell membranes. Moreover ASDSA was more active than other
aglycones, which was a result of the combination of a hydroxy function and its ortho-substituent

methoxy group at C-4" and C-3' respectivly.

ASDSA was selected as the only active compound for further test. It induced a dose-dependent
caspase 3/7 activation for the apoptotic potential. When H4IIE-SEAP cells with ASDSA were
stimulated with 5 ng/ml TNF, the results were expressed as fold activity of the control and enhanced

TNF-mediated cytotoxicity by inducing apoptotic cell death.

Isolated dihydrostilbene derivatives (1-5) did not show cytotoxicity as intense as the stilbene
resveratrol. Nevertheless in the previous discussion, scorzodihydrostilbene A and E did show better
antioxidant activity than resveratrol in DPPH assay. It has been reported that the majority of naturally
ocurring antioxidants have cytotoxicity in vitro as known for resveratrol, flavonoids and carotenoids.

It will be interesting to find out the mechanism and relationship of this.
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4.2. Metabolites isolated from the Mongolian medicinal plant Dianthus versicolor

For the genus Dianthus, the majority of the reported secondary metabolites were saponins. However,
the study for the cytotoxic fractions of D. versicolor, a plant growing in the same area as S. radiata,
only yielded two lignans (29 and 30) and several triterpenes (31-34). The remainder fractions

contained known triterpenes as shown by LC-MS and TLC analysis.

(-)-Matairesinol (29) and (-)-arctigenin (30) showed trivial activity inhibiting 24 protein kinases,
and 30 exhibited slightly stronger activity than 29. Nevertheless in the previous research, both
lignans, especially 30, have been reported to cause cell growth inhibition in human gastric
adenocarcinoma cells and mouse hepatoma cells [Kang et al., 2007], and to show antiproliferative
activity [Matsumoto er al., 2006]. Additionally, these two lignans as naturally occurring
phytoestrogens have potential health benefits in man particularly against hormone-dependent

diseases such as breast and prostate cancers and osteoporosis [Rowland et al., 2003].

Lupeol (31) is found in many medicinal plants and has been investigated for its various
pharmacological properties. In this study, lupeol exhibited moderate activity in the protein kinase
inhibitory assays, but trifling activity against mouse lymphoma cell L5178Y. However, the
compound has been shown to have strong anti-inflammatory and antimutagenic activity in vitro and
in vivo [Geetha and Varalakshmi, 2001], and to inhibit the activities of protein kinases [Hasmeda et
al., 1999], serine proteases [Hodges et al., 2003] and DNA topoisomerase II [Wada et al., 2001].
Lupeol has also been reported to induce differentiation and to inhibit the cell growth of human
leukemia [Aratanechemuge et al., 2004] and prostate cancer cells [Saleem et al., 2005], and mouse
skin carcinogenesis [Saleem et al., 2004], while it did not affect the growth of human melanoma cell
lines [You et al., 2003]. In conclusion, there are still a lot of work to be done for studying the

potential selectivity and mechanism of different tumor cell lines.
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4.3. Metabolites isolated from the medicinal plant Psoralea corylifolia

4.3.1. Biosynthetic relationships of isolated compounds from P. corylifolia

As a noted medicinal plant, P. corylifolia has been investigated extensively. However, in our study,
sixteen prenylated flavonoids and three coumarins including two new ones were isolated. All of
those are biosynthetically related compounds. The biosynthetic relationships are displayed in Figure

4.13-Figure 4.17.
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Figure 4.13 Biosynthetic relationship of isolated flavonoids
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Figure 4.16 Biosynthetic relationship of isolated isoflavonoids
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Figure 4.17 Biosynthetic relationship of isolated coumarins
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4.3.2. Structure—activity relationships of the cytotoxic activity of the isolated

compounds from P. corylifolia

Compound 42, 45 and 55 were the most active ones, while 37, 46 and 51 were also quite active.
Moreover, compound 40, 43, 44, 48 and 53 displayed mild cytotoxicity. When comparing the results
of different classes of flavonoid derivatives (chalcone, flavone, flavanone and isoflavone), it was
deduced that no direct correlation between the class of flavonoids and the intensity of the
cytotoxicity could be observed. Compounds 4246 showed relatively stronger activity, which
indicated that the substituting position of prenyl moiety at C-6 on A-ring of chalcones and flavanones
was important for activity. For flavanones (45 and 46) and isoflavones (47-51), OH groups at C-5
and C-7 enhanced the activity compared to the monosubstituted OH group at C-7. The formation of
2,2-dimethylchromene ring by a prenyl moiety and an ortho hydroxyl group also increased the

cytotoxicity of the compound in most cases.

The activity of compound 51 and 55 increased approximately eight times with regard to caspase 3/7
compared to the blank, when incubated with 25 uM of them for 24 hours. Compound 36, 40, 43, 45,
46, 48, 50 and 52 raised the relative fluorescence units about three to five times. These results
revealed that the above mentioned compounds affected caspase 3/7 activity to induce apoptotic cell

death.

4.4. Structure-activity relationships of all tested compounds in the protein kinase

assay

The 22 compounds showed different activities against the 24 protein kinases tested. None of the
compounds inhibited all kinases to full extent. Compound 1, 3, 7, 29, 30, 38, 42 and 45-47 showed
no significant inhibitory potency against any of the 24 protein kinases. Compound 2, 8, 9, 25, 31, 36,
40, 41, 44, 49, 53 and 55 showed inhibition of > 40% for at least one of the 24 kinases when tested at
1 x 107° g/mL, but they were still not active enough for further evaluation when applying the criteria

of the industrial partner ProQinase.

266



Discussion

Nevertheless among those compounds 8, 9 and 41 were the most active ones when comparing the
ICsp values of them to those of other tested compounds. It can be explained by the ortho-dihydroxy
structure in the aromatic ring which confers high stability to the electrons through H-bond formation.
8 and 9 had even much smaller 1Cs, values than 41 as a result of a larger number of hydroxyl groups

in the benzene ring compared to 41.

For the flavonoid derivatives (36, 38, 40-42, 44-47 and 49), compound 38, the only one without
prenyl group, showed the lowest activity suggesting that a substitution of prenyl group can improve
the inhibiting activity. Compounds 36, 40, 41, 44 and 49 were more active compared to the other
derivatives. This observation indicated that the substituting position of the prenyl moiety at C-8 gave
stronger inhibitory activity than the substituting position at either C-6 or C-3'. Compounds 45 and 46
exhibited less activity in comparison to other flavonoids which suggests that flavanones are not as
active as flavones, chalcones or isoflavones in the protein kinase assay. The reason for that could be
that the double bond between C-2 and C-3 in conjugation with the ketone function at C-4 is
responsible for the electronic delocalization starting from the C ring of flavonoids [Leopoldini et al.,

2004].

In the three new dihydrostilbenes (1-3), 2 was the most active compound which is different to the
antioxidant and cytotoxic results discussed above. The reason and mechanism are not clear, and more
studies are necessary. Moreover, there was a big gap of activity from 7 to 8 or 9. This was also

dissimilar to the antioxidant and presumed results, however it was still acceptable.
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5. Summary

Natural products, also known as secondary metabolites, have been the major sources of chemical
diversity of starting materials for driving drug discovery over the past century. The vast majority of
traditionally used crude drugs have been plant-derived extracts. However, only very few Mongolian
medicinal plants nurtured by unique ecosystem of Mongolia have been studied phytochemically so

far.

The subject of this study was the isolation and structural elucidation of the secondary metabolites
from medicinal plants, followed by the evaluation of their pharmocological potential. Various
modern chromatographic techniques were used for separation and purification of the natural products
from the crude extract. The structures were unambiguously elucidated on the basis of one- and

two-dimensional NMR and mass spectrometric data.

Two Mongolian medicinal plants (Scorzonera radiata and Dianthus versicolor) and one Chinese
medicinal plant (Psoralea corylifolia) have been selected as biological sources in this study. The
compounds that have been isolated and structurally elucidated from those plants are summarized in
Table 5.1. Some of them showed promising biological activities and considered for further

pharmacological studies.

5.1. Scorzonera radiata

The Mongolian medicinal plant Scorzonera radiata was collected in Ulaanbaatar region of Mongolia.
Chromatographic separation of a crude extract obtained from aerial parts of the plant yielded five
new dihydrostilbenes, two new flavonoids, one new quinic acid derivative, as well as twenty known
compounds including eight quinic acid derivatives, four flavonoids, two coumarins, five simple
benzoic acids, and one monoterpene glycoside. Scorzodihydrostilbene A—E and the isolated quinic
acid derivatives exhibited antioxidative activity when analyzed in the DPPH assay. For
scorzodihydrostilbene A and E the antioxidant activities were stronger than that of the well-known
naturally occurring stilbene antioxidant resveratrol. However, none of those compounds showed
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cytotoxicity inhibiting either tumour cells (H41IE and L5178Y) or 24 selected protein kinases. After
hydrolysis for the dihydrostilbene derivatives, the aglycone of scorzodihydrostilbene A (ASDSA)
reduced cell viability in H41IE rat hepatoma cells. Moreover, when ASDSA was stimulated with
different concentrations of TNF-q, it significantly enhanced TNF-mediated cytotoxicity against

H4IIE cells in a dose-dependent manner.

5.2. Dianthus versicolor

The medicinal plant Dianthus versicolor was collected in Ulaanbaatar region of Mongolia. The
MeOH extract of the aerial parts of the plant was subjected with column chromatography to afford
seven known compounds including two lignans, four triterpenes and one steroid. The tested

compound showed moderate cytotoxic activity against L5178Y cells or 24 protein kinases.

5.3. Psoralea corylifolia

The seeds of plant Psoralea corylifolia were collected and extracted in China. The crude MeOH
extract was separated chromatographically to obtain three coumarins including two new ones,
7,2' 4'-trihydroxy-3-arylcoumarin and psoracoumestan, sixteen known prenylated flavonoids and one
meroterpene. The isolated compounds were evaluated for cytotoxic activity inhibiting H4IIE,
Hct-116, and C6 cells lines, and for antioxidant capacity in TEAC assay. The structure—activity
relationships were studied on the basis of these results. The active compounds were further
investigated for their apoptotic and necrotic potential to understand the action mechanism.

Additionally some selected compounds were also tested for their protein kinase inhibitory profiles.
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Table 5.1 List of isolated compounds

Name Structure Source Note

T
Scorzodihydrostilbene A Scorzonera new
1 radiata
OH
AN e )
"Po o

T
Scorzodihydrostilbene B Scorzonera new
2) radiata
OH
. o O OH
HIQ|O O

OH
Scorzodihydrostilbene C Scorzonera new
(®)] radiata
OH
A=y )
Hﬂo @)

Scorzodihydrostilbene D OH Scorzonera

ne
4) M radiata v
HOHO 0]
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Scorzodihydrostilbene E Scorzonera
) new
5 radiata
. . . Scorzonera
(—)-Quinic acid (6) ) known
radiata
. . Scorzonera
Chlorogenic acid (7) ) known
radiata
OH
3,5-Dicaffeoylquinic acid WOH Scorzonera
HO . known
8 radiata
OH O AN OH
OH
1) OH
3,5—D1caffe.oyl—epz—qu1mc HO H Scorz?nera Known
acid (9) 5 oH radiata
O~ OH X
O OH
HO 0]
N OH
HO 0 g
Macroantoin G (10) HO OH corz?nera known
radiata
e O OH
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0 OH
N\
4,5—chaffe(i)1/1qulmc acid o) e} 5 OH OH Scor;@;ra Known
11) HO Y radiata
OH OHO
HO‘Q—\\_(O O
4,5-Dicaffeoyl-epi-quinic 0 = Scorzonera
) HO O o) . new
acid (12) radiata
HO
OH OH OH
OH
. . \
5-p-Coumaroylquinic o Scorzonera
) 0 ) known
acid (trans) (13) @) radiata
OH
HO
OH OH
.. O
5-p—C(.)um2‘Lr0quu1mc . {@ Scorz.onera Knowil
acid (cis) (14) w radiata
. Scorzonera
Isoorientin (15) . known
radiata
. Scorzonera
Scorzonerin A (16) ) new
radiata
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Scorzonerin B (17) corz?nera new
radiata
Kaempferol-3-rutinoside o~ JOH Scorzonera
) known
(18) radiata
OH Scorzonera
Rutin (19) o~ JoH . known
radiata
0]
HO 0
@) OH
HO
OH
3,3',5,5',7-Pentahydroxyfl OH
avanone (20) @\
HO Scorzonera K
OH radiata nown
OH
OH
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N S
Umbelliferone (21) m cor;onera known
HO o X0 radiata
OH N
Skimmin (22) Ho& m SCOrZonera o vwn
HO 0 0" Yo radiata
OH
0)
) Scorzonera
Piceol (23) . known
radiata
OH
(0)
S
Piceoside (24) OH corwonera  hown
/&/ radiata
HO
HO o 0]
Os_OH
4-Hydroxybenzoic acid Scorzonera Known
(25) radiata
OH
OH
S
Arbutin (26) OH © cor;onera known
0 radiata
H
A
OH
S
Lanceoloside A (27) cor;onera known
radiata
S
Staphylionoside D (28) corz?nera known
radiata
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Dianthus

(—)-Matairesinol (29) } known
versicolor
Dianth
(-)Arctigenin (30) ARIAS nown
versicolor
Dianth
Lupeol (31) la’? us known
versicolor
Dianth
Taraxasterol (32) laflt us known
versicolor
Dianth
Pseudotaraxasterol (33) lafl us known
versicolor
Dianth
Ptiloepoxide (34) lafl 1w known
versicolor
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Dianth
p-Sitosterol (35) la’? i known
versicolor
| OH
‘ Psoralea
Isobavachalcone (36) HO OH o known
O | corylifolia
0]
0] OH P /
Isobavachromene (37) | sor‘a e(,l known
corylifolia
0]
HO O OH Peoral
Psorachalcone A (38) HO OH sorfz ec,l known
O | corylifolia
0]
HO
OH
0 O Psoralea
Bakuchalcone (39) OH o known
O | corylifolia
0]
P
Xanthoangelol (40) sor'alec'z known
corylifolia
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P [
Corylifol C (41) coiigjl‘oel?a known
0]
OH
HO OH O Psoral
Broussochalcone B (42) O | SO;,‘; el‘,l known
_ corylifolia
0]
OH
0] OH O P /
Bavachromene (43) | sorfz e‘,l known
S corylifolia
0]
OH
| g
0] OH P
Bavachalcone (44) O | so;;llelc'z known
_ corylifolia
@)
OH
HO O \\‘©/
Bavachin (45) ' Pso;;llelc'z known
_ corylifolia
@)
OH
HO O \\\‘©/ P
6-Prenylnaringenin (46) so;;llelc'l known
_ corylifolia
OH O
HO 0]
) O | _ Psoralea
Neobavaisoflavone (47) O conylifolia known
© OH
P [
Corylin (48) O CO“:; lrl ;Ojfa known
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Psoral
8-Prenyldaidzein (49) sorfz e‘,l known
corylifolia
Psoral
Wighteone (50) sorfz e‘,l known
corylifolia
P
Isowighteone (51) sor'alec'z known
corylifolia
7,2",4"-Tri -3- O
2!, r1hyqroxy 3-arylc _ Psor‘alec‘z new
oumarin (52) O corylifolia
HO OH
HO O o._0O
& P
Psoralidin (53) soralea 4 wn
_ ) corylifolia
OH
O O 0._0
N Pz Psoral
Psoracoumestan (54) sorfz e‘,l new
e} O corylifolia
OH
P
Bakuchiol (55) soralea ) own
corylifolia
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[alp
approx.
ASDSA
br

CC
CoA
COSY
d
DAD-HPLC
dd

ddd
DEPT
DMSO
DNA
DPPH
ECs
e.g.

El

ESI

et al.
EtOAc
FBS
FCS

H,O
HCOH
HMBC
HMQC
HPLC
HRMS

ICso
LC-MS
LDH

MeOD
MeOH
mg
MHz
min

specific rotation at the sodium D-line
approximately

aglycone of scorzodihydrostilbene A
broad signal

column chromatography

coenzyme A

correlation spectroscopy

doublet

HPLC with diodenarray detector
double of doublets

double double of doublets

distortionless enhancement by polarization transfer

dimethyl sulphoxide

deoxyribonucleic acid
2,2-diphenyl-1-picrylhydrazyl

half maximal effective concentration
exempli gratia (for the sake of example)
electron impact

electro spray ionization

et alia (and others)

ethyl acetate

fetal bovine serum

fetal calf serum

gram

water

formic acid

heteronuclear multiple bond connectivity
heteronuclear multiple quantum coherence
high performance liquid chromatography
high resolution mass spectroscopy

hertz

half maximal inhibitory concentration
liquid chromatography-mass spectrometer
lactate dehydrogenase

molarity

multiplet

deuterated methanol

methanol

milligram

megahertz

minute



Abbreviations

mL
MS
MTT
mlz

ug

MW
NADPH
n-BuOH
n.d.
NF-xB
ng

nm
NMR
NOE

ppm

ROESY
RP

SAM
SDSA
SEAP
Si

TEAC
TFA
TLC
TNF
TOCSY
Uuv

millilitre

mass spectroscopy
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
mass per charge

microgram

microliter

molecular weight

nicotinamide adenine dinucleotide phosphate
n-butanol

not determined

nuclear factor kappa-light-chain-enhancer of activated B cells
nanogram

nanometer

nuclear magnetic resonance

Nuclear Overhauser Effect

part per million

quartet

rotating frame overhauser enhancement spectroscopy
reversed phase

singlet

S-adenosyl methionine

scorzodihydrostilbene A

pNF-kB-secreted embryonic alkaline phosphatase
silica

triplet

TROLOX equivalent antioxidative capacity
trifluoroacetic acid

thin layer chromatography

tumor necrosis factor

total correlation spectroscopy

ultra-violet
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