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Abstract

The various types of nonlinear wave solutions in plasmas are reviewed. First, the generation, pro-
pagation, and stability of solitary waves are demonstrated for some simple examples. Then, rele-
vanb wo- and three-dimensional models for Langmuir solitons are proposed and investigated, The
collapse as an effective dissipation mechanism in plasmas is discussed in detail. Finally, simple
models of two-dimensional vortex motion and their consequences are considered.

1. Introduction
1.1. Nonlinear Physies

The nonlinear nature of physics — with perhaps basic quantum mechanics as the only
exception [1] — is very challenging for most of the physicists. Nonlinear phenomena are
very fundamental in many areas of natural sciences. Today, big computers make it
possible to attack problems which previously were considered as untractable. The use of
computers and the numerical results stimulated many new analytical ideas in nonlinear
physics and very effective mathematical tools have been developed meanwhile, For
solitons, we shall present many impressible examples for that development.

Historically, several milestones can be identified : First, the detection of a solitary
water wave by Scorr-RusseLy [2] in 1844, This was the first reported observation of g
quite stable localized nonlinear wave. Scott-Russell started his report on solitery waves
in shallow water with the words: “This is a most beautiful and extraordinary pheno-
menon: the first day I saw it was the happiest of my life.” Lateron, he continues: “It is
now known as the solitary wave of translation.” That was — looking back — the day
of birth of a solitary wave. It stimulated for many decades the research on nonlinear
wave propagation, By a solitary wave we now mean a nonlinear localized wave; to day,
the word soliton is often used — without further restriction — when solitary waves are
meant.

After the year 1844 many researchers tried to work out the theoretical basis for the
nonlinear wave phenomena. Nonlinear wave models were proposed but the mathematical
understanding of the wave dynamics remained difficult. The numerical experiments of
Farmr, Pasra, and Unam [3] in the year 1965 induced a change. The authors originally
wanted to prove thermalization because of nonlinear coupling in a mass-spring-system.
In a one-dimensional system they first excited a long-wavelength mode. The numerical
results, however, showed no tendency towards thermalization. Although lower modes
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have been excited, the system returned to its (nearly) original state of excitation after a
finite time.

Related to this work are the results of the numerical as well as analytical investigations
of ZaBUskY and Kruskar [4] as well as GARDNER, GREENE, KRUSKAL and MIvRa [5].
ZArUsKY and KRUSKAL introduced the notation soliton for nonlinearly stable localized
waves. They solved the initial value problem of the Korteweg-deVries equation numeri-
cally and found that solitons are created out of initial destributions of quite arbitrary
shape. The break-through reported in the work of GARDNER et al. [56] was the analytic’
solution of the initial value problem of the Korteweg-deVries equation, This idea was
lateron generalized and initiated a huge amount of work in the soliton ares. Before dis-
cussing these findings, and their conelusions for plasmas, in greater details, we have to
mention another aspect of nonlinear physics.

Nonlinear (ordinary) differential equations show another fundamental phenomenon,
which is investigated in these days all over the world. The phenomenon is described as
deterministic chaos. We should mention GRossMaNy and THOMAE [6] or FEreENBAUM
[7] who invented a quite general route to chaos besides many others, In this context it is
important to note that deterministic nonlinear equations can have chaotic solutions,

Deterministic chaos and solitons can be considered today as the two structural ele-
ments of nonlinear physics [8]. Although the words “deterministic” and “chaotic” seem
to contradict each other we have learned during the past years that solutions of deter-
ministic equations can become unpredictable for certain ranges of the control parameter.
The best-known modelin this respect is the Lorenz model. Tt consists of & set of three
coupled nonlinear ordinary differential equations. Another well-known example is the
Duffing equation. Characteristic for the driverl and damped nonlinear oscillatory systems
is the period doubling at certain fixed values of the control parameter. Because of non-
linear interactions, frequency doubling (higher harmonics) might be more expected, but
in damped systems the appearence of subharmonics with 1 /2, 1/4, ete. of the driving
. frequency is the more surprising but characteristic behavior [9, 10).

One could think that chaos and solitons have nothing to do with each other since chaos
is mostly discussed for ordinary differential equations (and discrete mappings) whereas
solitons appear as solutions of nonlinear partial differential equations. However, this is
niot true. We know already from instabilities (e.g., the Benard instability) that ordinary
differential equations and mappings are considered as reduced models for the more com-
plex phenomena in partial differential equations. In addition, recent numerical results of
Moox etal.[11] show that driven and damped nonlinear Schrodinger systems posses both
structural elements: solitons and chaos. Depending on a control parameter (driving
force) such a Schrodinger system is either chaotic (with bursts) or non-chaotic with soli-
ton solutions. Solitons are generated from an unstable situation and they are the counter-
parts of laminar solutions (limit cycles) in ordinary differential equations, Details will be
given below. Let us now discuss the principal results for a typical example, A plane wave
solution can become modulationally unstable with respect to long-wavelength per-
turbations. The modulational instability causes envelope bunching and the generation
of localized waves finally results in solitons, In the meanwhile, there are many partial
differential equations known which have stable, coherent, pulse-like, localized solutions,
-whose nonlinear interaction is particle-like. The particle-like behavior is very surprising
since nonlinear differential equations do not obey a superposition prineiple.

Another fact is very important: solitary waves, if they exist for a certain system, are
being formed out of any initial distribution. Let us consider as another example a
plasma with & sound-like initial pulse. The latter decays in the course of time into com-
pletely predictable ion-acousticsolitary waves. Solitary waves can therefore be considered
as the elementary excitations of a nonlinear gystem,

The appearence of solitons is a universal feature in practically all areas of physics and
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even in situations which are sometimes not thought of to be physical. The universal
nature of soliton physics becomes also transparent when one finds that physically quite
different and unconnected phenomena are deseribed by the same or similar nonlinear
equations, e.g., s Korteweg-de Vries (KdV), or a cubic nonlinear Schrodinger (NLS), or
& sine-Gordon (SG) equation.

1.2, Some General Properties of Solitons

Before considering some special properties of solitons in plasmas, we shall summarize
some of the general aspects. In order to be able to pinpoint also quantitative pecularities
we choose the celibrated KdV equation as the example for demonstration, The KdV
equation describes the propagation in one-dimensional, weakly dispersive systems, i.e.,
for surface waves in shallow water, long waves in anharmonic Jattices, magnetohydro-
dynamic waves, and ion-acoustic waves in plasmas; it is written in the form

Wy + @ty - Uy = 0, (1)

This nonlinear partial differential equation determines the evolution in time ¢ and (one-

dimensional) space « of & wave with normalized amplitude . It contains a nonlinesr

term auw, and a dispersive term 4,,,. In this case, only the combination of the latter

two allows the specific soliton features: the dispersive term alone would cause broadening

whereas the nonlinear term alone would always result in steepening and wave breaking.
The one-soliton solution of (1) is given by

% = (3v/a) sech® [0.50' 2(x — vf) + B], (2)

where » > 0 and b are arbitrary parameters. It is evident that amplitude, width, and
velocity are related. The bigger the amplitude, the faster the soliton and the smaller its
width. The significance of the solution (2) follows from the universal property that every
(one-dimensional) initial distribution will evolve in time into (at least) one soliton (plus
radiation). This universal behavior is analogous in iniportance to, e.g., the period-doub-
ling route to deterministic chaos. Becauseof the property that solitons self-organize these
nonlinear waves are fundamental in physics. In addition, we have already implicitly
assumed that solitary waves are stable entities in the sense that they are stable even
againsb strong nonlinear interactions. Thiscan be shown for the interaction of two solitons
through overtaking collisions as well as for head-on collisions. Due to the lack of & super-
position in the nonlinear regime, the reappearence of the two unchanged forms of the
solitons is only asymptotically true (2, { > +o0). But practically this is not a severe
restriction because of the exponentially decaying slopes of each soliton.

The stability property just mentioned is very essential. And indeed, the rigorous
definition of a solifon demands the complete stability of a pulse-like localized wave even
as & result of nonlinear interaction. This has to be seen in contrast to the less stringent
definition of a solitary wave. The latter should also be localized (in its physically relevant
quantities like energy, momentum density etc.) but stability during collisions is not
required. Sometimes it is simply not known; thus & solitary wave may be a soliton. A so-
liton, indeed, is always a solitary wave. However, in these days many people do not
insist on the difference innotation. Onereason is that sometimes we know from computer
solutions that a localized wave has soliton character (during interaction) but a rigorous
mathematicel proof is still missing. Another reason may be that the word soliton is much
more attractive than the more specialized term solitary wave originally introduced by
Scorr RusseLL [2]. In the following we do not insist in an unambiguous terminology.

A
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The last discussion leads us to the question: What is known analytically about soli-
tons? And indeed, the soliton-bearing equations also analytically show a quite universal
behavior. The discovery of that general aspect originated back to ABLOWITZ et al. [12]
as well as GARDNER et al. [5]. It is known as the inverse scattering tramsform (IST) which
strongly resembles the (linear) Fourier transformation for solving linear partial differen-
tial equations. When using the (linear) Fourier transformation method we solve the
initial value problem by integration. First (i), the spectrum w(k, 0) of the initial wave
amplitude u(z, 0) is calculated. Then (ii), by means of the (linear) dispersion relation,
the spectrum u(k, ¢) at time ¢ is derived. Finally (iii), by inverse Fourier transformation
the wave amplitude u(z, ) at time # is obtained. This is the well-known procedure to
handle linear partial differential equations. ARLOWITZ et al. [12] showed that the inverse
scattering transform is a (generalized) Fourier analysis for nonlinear problems. However,
this procedure is mathematically much more complicated than the (linear) Fourier
transform method. In the case of the KdV equation it is still relatively simple: Starting
with one initial wave profile u(w, 0) we have first (i) to solve a Schrédinger scattering
problem with a potential identical to the initial profile. The scattering data (reflection
and transmission coefficients as well as the discrete eigenvalues) can be calculated by
standard procedures. In the next step (ii), the time development of the scattering data
can be obtained from ordinary differential equations. Finally (iii), scattering data at
time £ allow to reconstruct the potential at time ¢, which is the solution u(®, £). All three
steps are in general highly non-trivial but do not involve a new mathematical technique,

It is interesting to note that every discrete eigenvalue of the Schrddinger problem
corresponds to & soliton and the discrete spectrum is time-independent. Furthermore, &
(well-behaved) one-dimensional Schrodinger potential problem always has a discrete
eigenvalue; this proves the appearence of solitons out of any initially localized wave
profile, The IST is & very fascinating method to solve nonlinear partial differential
equations, It has already been generalized considerably. A very difficult task is to solve
higher dimensional problems[13}for finite systems; here much is left to do in the future.

2, Specific Properties of Solitons in Unmagnetized Plasma

In an unmagnetized plasma, basically two electrostatic normal modes ocour: the ion-
acoustic and the Langmuir oscillations, The nondinear jon acoustic wave obeys, in the
one-dimensional, small-amplitude limit, a KdV equation. Obviously, then all the con-
clusions discussed in connection with the KAV equation should be true for ion-acoustic
waves, And indeed, in a series of experiments, TkEzr et al. [14] were able to verify ex-
perimentally the predicted amplitude-width-relation and the form stability during
collisions. In addition, a finite amplitude theory shows that the existence region of ion-
acoustic solifons can be discussed in the same way as the motion of a clagsical particle in
a potential well (Sagdeev potential),

All his supports that the ion-acoustic soliton is one of the best-understood classical
solitons, But the soliton concept is by no means complete. When applying the soliton
theory to the real world we immediately face a problem. One has to take into account
the second and third space dimension, and little is known for these physically relevant
but mathematically complicated cases. From the KADpoMTSEV-PETVIASHVIII equation
[15] one can conclude that, at least, one-dimensional stability is preserved when two-
dimensional distortions are allowed for, Experimentally, the existence of stable multi-
dimensional jon-acoustic solitons seems to be guaranteed ; their complete theory is still
missing. Only in the case of the Zaxuarov-Kuzxumsov equation [16] a stability proof
exists,

A completely different picture is true for Langmuir waves; this basically new scenario
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will now be explained in more detail. We shall see that qualitatively new aspects of
dissipation and turbulence will occur. In these days it seems to be common sense [17]
that Langmuir turbulence does not consist of an ensemble of weakly interacting plas-
mons. Langmuir turbulence is not weak, but also completely different to turbulence of
incompressible fluids [18]. The well-known model of weak turbulence leads to & Langmuir
condensate, i.e., the energy is concentrated in the small wavenumber regime. Then, a
modulational instability can take place and regions of lowered plasma, density, so called
cavitons, are created. Cavitons can trap the high-frequency Langmuir osecillations and
the local energy density can become very high.

So far the scenario fits very well into the soliton concept. Via the modulational in-
stability one-dimensional solitons are formed. The latter consist of density cavities
(cavitons) with trapped radiation, The modulational instability is a quite universal
mechanism for soliton generation: if initially the threshold for modulational instability
is not yet reached the weak turbulence mechanisms will lead to a condensate and finally
modulational instability always can occur, It is important to note that a Langmuir soli-
ton is not just a localized nonlinear Langmuir oscillation; it is always accompanied by
a density variation.

The Langmuir solitons (cavitons) are the structural elements of Langmuir turbulence.
For their dynamical behavior two basically different scenarios exist. In the first one,
proposed and developed by Zakharov, all cavitons' collapse very rapidly. During the
collapse (phase one) they do not loose energy. The collapse is a multi-dimensional non-
linear instability of Langmuir solitons, At the final stage of the collapse, when the dia-
meter of the caviton is of the order of a few Debye lengths, the energy of the Langmuir
oscillations is transfered to the particles and the density depression with the trapped
Langmuir oscillations burns out, This results in a very effective dissipation mechanism
at small wave numbers %. It has to be seen in comparison o Landau damping which
only occurs at large & (k4p 2= 0.5, where 4y is the electron Debye length).

The other model proposed for strong Langmuir turbulence assumes long-living quasi-
stationary cavitons to exist. Then a statistical theory of turbulence, based on cavitons,
can be developed. Thus, the stability of Langmuir solitons (cavitons) becomes the central
topic of a turbulence theory in plasmas, The two scenarios mentioned above will ob-
viously lead to different conclusions regarding the macroscopic properties of Langmuir
turbulence.

Langmuir solitons can be deseribed by & set of two coupled equations which have been
first derived by Zaxzarov [19]:

pe |ig, + 2 WAV | = <2 7 . [8a 7], 3)
2 2n4
1
2 —p 272 — 2 2
92m — 6,27%n, 5. " IT P (4)

In these equations, w, is the electron plasma frequency, n, is the (constant) equilibrium
density, on the (quasi-neutral) change of the particle density because of the radiation
Pressure, and ¥ is the envelope of the electrostatic potential. The electric field is then
written in the form

= % [V exp (—iwyt) + c.c.]. | (5)

The jon-acoustic velocity is ¢, = (T';fm;U2, where T, is the electron temperature and u;
is the ion mass, The two equations (3) and (4) represent a good model for small field
amplitudes (|V'¥/nT, < 1) and negligible damping (%, < 1). The frequency of a
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Langmuir wave can be written as

o 3 21 2 on

o0~y 14 it + 221, ®
where the fifst two terms result from the linear dispersion relation. The last term origi-
nates from the coupling of the density with the high-frequency oscillations, The fre-
quency of the Langmuir wave is, via the plasma frequency, density-dependent; the
density has also the (small) contribution én which represents the reaction due to the
radiation pressure (Miller force; ponderomotion force) of the high-frequency oscillations,
The most general formula for the radiation pressure in plasmas was presented by Kare-
MAN [20]. In the present case.of an unmagnetized plasma with w, ~ w, one obtains

Tow M

A better understanding of the averaged equations (3) and (4) can be gained in the
following way. From Maxwell’s equations for the electric field E we obtain

1 4 .
= 8B + VXV XE + —= [1y + dn,] 8y, = 0. (8)
C [

Here, the electron density # is the sum of three terms: an averaged density n,, & low-
frequency disturbance dn,, and a high-frequency contribution ;. Higher harmonics

(2wy, ...) are neglected. The high-frequency electron velocity v, follows from the line-
arized momentum balance,

o, + v}, —=——E, (9)

where v, is the electron thermal velocity. Using Eq. (9) in Eq. (8), one gets, within the
WXKB approximation with E ~ 1/2F exp (—iwg#) + c.c.,

e 4B + V2E — QV XV X E ~ $nE = 0. (10)

This equation has been written in dimensionless form [times are measured V§/w,m

lengths in ]/3 Ap, potential in T,/e, density in n), and the electric field is measured in
(16xn,T,)*2, whereas the velocities are in units of ¢y = (T'ofm;)12]. The parameter ¢ is
2 3m;)? and the parameter'Q is equal to (mee?(3T,)"1 > 1. To determine the low-
frequency density response 6z, we use & Boltzmann distribution of the electrons. The
Boltzmann distribution has to bemodified by the ponderomotive potential, Thus we have

VB = V® — Vin (1 + on,). (11)
The ambipolar potential @ is coupled via the Poisson equation
% Vi = ém, — om; (12)

to the changes in the ion density. The latter follows from the particle and momentum
balance of the ions, i.e.,

0y + V+ (nivy) = 0, (13)
3,0‘ 4+ v; V’D; = — VP, (14-)
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Using the scaling of -, &V — 7, dn, & Ony ~ on, B, v; ~ e, B ~ ¢, we obtain the
Zzkharov equations

10, + V2B — QV X V XE — $nE = 0, (15)
B%n — V%m = V2 | B, (16)

Since in non-relativistic plasmas @ is a large parameter, it is reasonable to rewrite Eq. (15)
in the form

VXV XE = -%(z'a,E+ VP*E — nE). (17)

Expanding E in terms of powers of Q-1

E=P¥4oF o, (18)

we obtain to lowest order
VXV XE, =i, V¥ + 720¥ — su Py, (19)

The solvability condition for E, demands the divergence of the right-hand side of
Eq. (19) to vanish. Then we have in dimensionless form

Ve [GoF¥ + VWY — VW] = 0, (20)
together with
0%n — Vn = V2 |7¥P)2, (21)

The system of equations (20) and (21) is, when written in dimensiona] form, identical to
the equations (3) and (4).

All these considerations lead to a better understanding of the Zakharov equations (3)
and (4), including the knowledge of the limitations of validity, Let us draw some more
conclusions using the Zakharov model,

Within the quasi-stationary approximation

0i20n <L ¢,2V%n ' (22)
we obtain a balance between kinetic and ponderomotive pressure,
. ‘
on ~ — i (23)

1677,

Within this approximation, the Zakharov equations (3) and (4) simplify to one equation
of the Schrodinger type,

3 ()
72 |10, W + = 2[72 = _—__p___._|7 PRy
[z@t 2 (Dplp !p] 3 OTB [l !{jl YI]. (24:)

This equation is simple enough to demonstrate the modulationa] instability. We rewrite
Eq. (24) in the form

V-[50, V¥ + pVV¥ + ¢ [PPR PPl =0, (25)
where p = (3/2) w,dp® and ¢ = w,[32nn,T,
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First, it is obvious, that Eq. (25) has the exact solution

V¥, = 4 exp (—ivt) & (26)
with .
» = —qd®, (27)

We clearly see that » is a nonlinear frequency shift. The solution (26) describes a Lang-

muir wave of constant amplitude in space, If we disturb this wave, introducing the
notation

VY = [X(x, t) + i ¥ (», )] exp (—int) &, (28)

we get two coupled equations for X and Y. In linearized form, with X ~ cos (Kx — 1)
and ¥ ~sin (Kz — £f) we obtain the dispersion relation

2° = pK¥(pK* — 294?). (29)

Instability (2 < 0} follows for certain values pg > 0. If we recall the definitions for P
and ¢, we see that pg > 0 is true in our case. Then Eq. (29) yields

0 <K < (2[pyt 4 (30)

for instability. Inserting the coefficients, and going back to the dimensional case, we get
the condition for modulational instability,

[P o[
24:7577/0713

> K22, (31)

The maximum growth rate is

=Y _ 3
Tous = gt |V 32
for the wavenumber
_ V) 1
Kooy = (@B T Ayt (33)

Several conclusions can be drawn from this consideration: Langmuir oscillations of
constant amplitude are modulationally unstable, The constant amplitude breaks into
long-wavelengths (small K2p) packets. These results were obtained within & quasi-
stationary approximation, which is valid under the condition (22). If we estimate both

sides of the inequality (22) by introducing the maximum growth rate (32) and the K-value
(33), then we obtain

Ve m,
32xn,T, < m (34)

Inequality (34) means that the quasi-stationary approximation is appropriate to small
energy densities. From the condition (30) for modulational instability we have the
consistency relation

K21D2<<7n”’-*. (35)
i
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Obviously, the regions of validity (34) and (35) can (and should also) be obtained from
direct dimensional arguments, For the cubic nonlinesr Schrédinger equation we can
introduce a characteristic time 7 with 72 ~ wp K2Ap% ~ o |V, [2[167n, T, If we insert
this ino the inequality (22), we immediately obtain (34) and (35). Analytically, most is
known about the behaviour of nonlinear Langmuir waves in the quasi-static approxima-
tion. If we consider the equivalent vectorial form of Eq. (25), i.e.

0,8 4 pVE + QVX VX E + q |E2E =0, (36)

we get the more convenient type of a nonlinear Schridinger equation, Of course, its
divergence agress with Eq. (25). For one-dimensional electric fields E, this equation is
the standard cubic nonlinear Schrodinger equation. Without loss of generality we can
take p = ¢ = 1. The spatially one-dimensional cubic nonlinear Schrodinger equation
can be solved by the inverseseattering transform method as it has been shown by Zaxna-
R0V and SHABAT [21). The one-soliton solutions of

0,8 + VE 4 |ERE =0 (37)
are
E =12y sech (1z) ¢ = G(x; 5) o' (38)

They are one-dimensionally stable. For later generalizations it is meaningful to put the
stability criterion into a form which can be used for other situations, too, Accordingly we
write [22]

Ez—gfdx(ﬁ > 0. (39)

One recognizes immediately that the solution (38) fulfills the criterion (39). Physically,
the criterion (39) means that in the stable case the plasmon number should increase with
the nonlinear frequency shift. However, a transverse (2d) instability occurs. For the
latter, a variational principle could be derived [23]. One gets for the growth the rate y of
the transverse instability,

—(e|H | a)

2= _— 40
wae @IE0 “
Here, H, and H._ are Schrédinger operators defined through
dé
Ho=——+ BG4, (41)
H =H, - 26, (42)

where % is the wavenumber of the transverse perturbation. Evaluations of the principle

(40) lead to [24] y = 2k, for small k. A cutoff k, = ]/3 7 oceurs; the system is stable for &
> k. A typical (maximum) growth rate is of the order wye. However, there are some
Physical objections against this mathematically correct result [26]. The ions cannot
follow such a fast modulation because of their huge inertia. And indeed, better models
and appropriate evaluations, e.g., based on the Zakharov equations, showed that (i)
although the unstable & region is not significantly changed, (ii) the magnitude of the
maximum growth rate of the transverse instability is drastically reduced [26]. (A similar
argument holds, of course, for the modulational instability, However, there we assume
small K from the beginning and therefore we do not contradict the quasi-static approxi-
mation.)
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Summarizing the results obtained so far we can state the following: One-dimensional
solitons are stable under the influence of one-dimensional perturbations. Within the
Schrédinger equation model, the inverse scattering method of Zakharov and Shabat
proves the creation of solitons out of any well-behaved initial distribution., For more
complex models, numerical solutions show that parametric instabilities can result in
solitons. One-dimensional solitons are unstable for transverse perturbations, The

characteristic length I, for the break-up into transverse filaments is of the order of
magnitude

Iy~ Ap(16mm,T, | BJ2), (43)

The multi-dimensional formation of localized structures initiates the question whether
the final states of & modulational instability are stable multi-dimensional solitons. This
problem has been intensively investigated during the past years. A fundamental ides
originates from ZAKHAROV [17]. He has presented & qualitative as well as quantitative
picture of an instability in higher space dimensions. Within the quasi-static approxima-
tion (i.e., the cubic nonlinear Schrédinger equation) one has the constant of motion

I = [ |ER dY, (44)
where i(= 1, 2, 8) is the dimension of space. Thus, Eq. (44) leads to the scaling

B ~ L, (45)
with & characteristic length L. On the other hand, for the cubic nonlinear Schrddinger
equation the dispersive term scales like L2 and therefore for i = 2 the dispersion cannot
hold & collapsing state. Of course, this qualitative argument was analytically proved.

Quite general is the following argument based on a virial theorem [17, 27]. In the sim-
plest case of the scalar cubic nonlinear Schrodinger equation

W08+ VE + |ERE =0, (46)
we have the constant of motion.

I, = f dir (j VE|2 — -;- [E]‘). {47)
The result

[dir 2 1B >0 (48)
follows for I, < 0, e.g,, in three space dimensions, from

fr4 |B|? dr < B3I + Oyt + Oy, (49)

0

where Oy and C, are constants,

In addition, self-similar solutions exist which demonstrate the collapse explicitly. They
also indicate that the singularity might occur earlier then estimated from the virial
theorem. In the spherically symmetric three-dimensional situation, the self-similar
solution for & has the form [28]

B, t) o~ %S (%) (50)
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where & := (1, — ¢)1/2, The function § is the solution of an ordinary nonlinear differential
equation. In the two-dimensional case, the self-similar solution has a logarithmic de-
pendence [29]

E(r,t) = % R (%) g int) &)
where
§:= [t — t)f[—alog (t, — £)]ju

and

0 = r2/4(t, — &) — g—[log (¢ — 07,

The constant a is positive and is determined through the initial values.

There exists no exact proof of the collapse for the Zakharov equations, but numerical
solutions constitute a firm basis for the collapse. In addition, we have time-asymptotic
seli-similar solutions (if the supersonic assumption is adequate; see below).

When we use a rough estimate for the sign of 7, we find that I, < 0in the quasi-static
approximation provided

&
leﬁﬂoT

> K%,2. (62)

This agrees quite well with the condition for the modulational instability, One can thus
expect that the structures created by a modulational instability can directly collapse.
The suificient criterion for a Langmuir wave collapse doesnot exclude at all the possible
existence of non-collapsing, stable, multi-dimensional Langmuir solitons. Let us elabo-
rate a little bit more on this point. For the cubic nonlinear Schrodinger equation (or its
weakly nonlinear generalizations), the invariant I, vanishes for two-dimensiona) (2d)
solitons in two space dimensions. Nevertheless, the collapse argument can still be used in
this case to demonstrate instability, The reason is that in the neighbourhood of every 2d
Langmuir soliton we can find infinitesimally close states for which the invariant 7, has
the correct sign for a collapse. The situation is completely different for three space di-
mensions (3d). Here, the collapse argument cannot be used at all for 3d Langmuir
solitons since the invariants for existing 3d solitons are positive, A short caleulation
yields
i—2
4—1

I, = 7 I, (53)

where 4 is the space dimension and I; > 0, Nevertheless, we were able to show by
variational principles that 3d Langmuir solitons are unstable in the weakly nonlinear
regime [29]. When applying the direct Liapunov method we find that the Hamiltonian
is not bounded from below in three space dimensions, Estimates with the help of the.
Hélder inequality yield

[ Bt d < 20002713, (54)
4
Bdndy £ —1(Z,5 + Z,s), 55)
f Y VE {2z, + Zy) (
f Bt dz dy dz < const. ,V%(Z, 5 + Zys+ Z, 5%, (66)

where Z;,, = [ |dBdx;f2 d'r, for the dimension i = 1, 2, 3.
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From there we obtain for the Hamiltonian in, e.g., one space dimension
H=I,2> Zyy — 2Zé{?113’2 = ~13, (57)

L.e., stability of one-dimensional solitons. In three space dimensions, a rough inflationary
analysis can be used to support instability arguments. An exact caleulation was per-
formed by Larpkr and SpATSCHEX [30].

All the previous investigations are valid for small energy densities, They show that
Langmuir oscillations are trapped within density depressions. We have used a quasi-
static approximation which is valid in the small amplitude limit, However, when the
collapse sets in, the local energy density becomes larger and the quasi-static approxi-
mation breaks down. In the regime being complementary to (22), i.e.,

|[4%) ny
16T, > m; (©8)

& supersonic gpproximation can be used. Thus, when the estimate (38) is true in the
center of the cavity, weinvestigate the further development with the help of the equations:

3 w
2 [ — ey} P 7,
4 (7;3,‘]’ + ) wplp % !p) = 2no v (67@17?), (59)
80 = —— PP (60)
¢ Iﬁnm; )

Qualitative arguments and numerical solutions show that the collapse progresses, Espe-

cially time-asymptotic self-similar solutions provide a firm basis for that hypothesis,
For example we have

1 .
¥ = Ty V@ exp [é [ 244, (61)
G
on = W, (62)

where
E=rlh— 1)1, A1) = oflts — 1),

and & = 2fi. For self-similar solutions we have to argue that arbitrary initial distributions
will finally show theself-similar behavior during the course of time, Numerical solutions
will help to give an answer to that question and indeed there are many solutions known
which support the self-similar behavior.

The (supersonic) equations (59) and (60) have the constant of motion

_ 3}»1)2 an Mg .
L= [ e + g v + g} 63

here @ has to be calculated from

1

¢=- 167m,

14'4E8 (64)
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This invariant I, indicates for collapsing solutions the scaling
on

A cJ I
et S (65)
144
2~ K22 L
no( V) ~ K23, T (66)
If we start with a state of the degree of turbulence
Wy _ |V} g
T,  16an,T, (Kolo)* <1, (67)
we can estimate the spatial width of the caviton by
1 neT, U2
lo N—KT ~ lD I:—W;] D (68)
At later times, during the collapse the spatial width will decrease, The integrals
I = f [VPP2 dr (69)
and I, remain constant. From I; we can conclude
K\ npT\M2
~ ) o h 3 — .
W oW () it (" ™

We can eliminate from here, Eq. (70), and Eq. (65), which describes the scaling of én/n,,
the characteristic spatial width at a later time. At the time when W ~ n,T', We obtain a
relatively small density depression

n Wo 13
e~ < "

These qualitative arguments lead to the conclusion that during the time-development
of the collapse, from energy densities W < (mq/m;) n,T, to W ~ nyT,, the scaling of the
density depression dn changes: initially, we have dnjny ~ — W/n,T,, but later onfn,
remains small, i.e., dnfn, < 1, even when W a nyT,. Numerical calculations confirm this
behavior. In the course of development of the collapse ion inertis effects become im-
portant and the above scaling applies.

For high energy densities (W ~ n,T,, én/n, < 1) Landau damping becomes important.
For smaller diameters, the effective KA, values increase and Landau damping can no
longer be ignored. The energy of high-frequency waves with w/K = v, is transfered to
the particles and appears as kinetic energy of fast electrons, The cavity burns out. We
can estimate the characteristic widths of the cavities (when this effects sets in) by the
following way. Particles travelling through the cavity in the time 7' = 2m/w, are in reso-
nance with the oscillations and are highly accelerated. Approximately, if the velocity is
less than twice the thermal velocity v;, Landau damping becomes important. The esti-
mate LT < 2v;, yields L S 64, which is in agreement with simulation results, Theempty
cavity (the density depression) survives for some longer time because of ion inertia
effects, Finally, the cavity breaks up into ion-sound. This last period is only possible
to observe in numerical calculations.

The whole scenario leads to an effective dissipation mechanism of (initially) small
K-values, Via the modulational instability, long-wavelength perturbations evolve into
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cavities. The latter collapse and burn out. This has to be seen in addition to the usual
linear Landau damping for large K-values, The problem of Langmuir condensation is
thereby solved.

Lengmuir condensation is an artifact of the weak turbulence theory. Let us repeat
just a few arguments for its occurence, If we define the plasmon number n, through

4
(Fr¥g) = "772% MyGypets (72)

then the weak turbulence kinetic description yields the constant of motion

N := [ dkn, = const. (73)
On the other hand, the free energy

B:=w, [ (kAp)? ny dk (74)
decreases, i.e.,

d

EZE = 0. (75)

The two results (73) and (75) obviously result in a condensation of the plasmons at
k — 0, for increasing time.

If the condition W/neT, > k%A, is satistied, a modulational instability can appear and
the effective dissipation mechanism (described above) can take place. This situation now
resembles the classical picture of hydrodynamic turbulence. Using dimensional argu-
ments, with an inertial region between small  at the source and large & for dissipation,
we can assume a constant energy flux in k-space, ie., |B,[2 k%7 ~ const., where 1 is
the space dimension. The characteristic coupling time 7 can be obtained from the self-
similar solutions of the collapse. There we have the combination (z — %o)[(te — )% of
variables [compare the Eqs. (61) and (62)] leading to v ~ &~¥/%, We therefore have the
spectral energy distribution B2 ~ k-2 for strong Langmuir turbulence.

The other scenario of strong Langmuir turbulence consists of long-living cavitons
which can be considered as the building blocks of a statistical theory. But let us first
answer the question how it is possible that long-living stable Langmuir solitons can
exist. For the answer to this question we have to go back to the various models, e.g.,
the equations (3) and (4). As has been mentioned already, the models considered so far
are not valid for W ~ n,T,. If we want to investigate the behavior for larger energy
densities we have to repair that defect by taking into account various phenomena: Landau
damping, electron nonlinearities, modifications of the dispersion relation, ion non-
linearities, etc. To demonstrate that such changes can completely change the qualitative
picture we choose the following example. If we still use the quasi-static approximation in
Eqs. (10)—(14), we obtain

2
6—nmexp( —’—Vﬂ—-)—-l,

Ty 162, (76)

and thereby the following equation for the envelope ¥,

1 2
o & o) -2 [on ) 1) o] 0.
¢
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For reasons of demonstration we use the equivalent, dimensionless, exponentially non-
linear Schrédinger equation

i8E + V7 E — Q7 XV XE + [1 — exp (—|E[%)] E = 0. (78)

Let us first consider spatially three-dimensional situstions. If we assume spherical

symmetry (and disregard electric field configurations with an asymmetry of E at r = 0)

H
we can write

E = G(r) exp [in%] #, (79)

where G follows from an ordinary nonlinear differential equation. The stability investi-

. gations'result for “longitudinal” (ie., only r-dependent perturbations) in a criterion
similar to (39),

0
g drr2G? > 0. _ (80)
In Fig. 1, the plasmon number ¥ is plotted versus the frequency shift 5% One can con-
clude that for 42 = 0.1 the solitons are stable, Additional calculations show that arbi-
trary 6- and g-dependent perturbations do.not lead to & stability boundary beyond (80).
Therefore, the criterion (80) demonstrates the existence of finite amplitude stable three-
dimensional envelope solitons. These results can be generalized for the more complex
system of equations (10)—(14), with criterion (80) as the general result. When investigat-
ing spatially two-dimensionsl situations, a significant difference oceurs. Let us take for
example the two-dimensional scalar exponentially nonlinear Schrédinger equation.
Assuming cylindrical symmetry for the stationary solitons, one finds that the threshold
in amplitude vanishes and solitons of small amplitudes are stable with respect to longi-
tudinal perturbations. This is a mathematically as well as physically quite remarkable
result, : '

The existence of stable envelope solitons under realistic conditions, such as Landau
damping, external sources, higher dispersion effects, ion nonlinearities ete. is very diffi-
cult to prove. Because of the very fundamental problems, most cases could not be in-

60y
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Fig. 1. Plasmon number N as a function of the nonlinear frequency shift 42 for the non.
linear Schrédinger equation
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vestigated analytically so far. But it seems true that existing stable (non-collapsing)
three-dimensional Langmuir solitons have to exceed & threshold in amplitude. This is a
very basic argument against their natural appearence via the modulational instability.

To make the things absolutely clear: Stable multi-dimensional solitons can exist but it
they are thought to be created by & modulatianal instability, the resulting cavities will
collapse before exceeding the amplitude threshold. This is so since the modulational
instability sets in for small amplitudes, i.e., W < n,T,, and then the balance of hydro-
dynamic and ponderomotive pressure leads to collapsing solutions. When the local energy
density increases, i.e., W/nyT', > m,/m;, ion inertia effects may play a dominating role
and the problem becomes essentially non-stationary. The ion inertia causes a continuous
decrease of the caviton diameter (central collapse) and does not allow new stationary
states [18]. The whole scenario changes, however, if the solitons can be generated in a
different way. Then, an ensemble of partially collapsing and partially stable cavitons
seems to be appropriate.

In this connection the question of dimensionality should be re-considered. The situa-
tion is now clear for one and three space dimensions: One-dimensional Langmuir
solitons are one-dimensionally stable and transversely unstable; however, strictly one-
dimensional states are quite unrealistic. Three-dimensional Langmuir solitons are only
stable if their amplitudes are above a certain threshold. That is the reason why it is
unlikely to expect their generation via a modulational instability. Two-dimensional
Langmuir solitons are longitudinally stable for arbitrary small amplitudes. Therefore
they can be reached via a modulational instability. However, two-dimensional solitons
are transversely (and three-dimensionally) unstable. This has some consequences for
two-dimensional simulations, There may beno central collapse but a dangereous angular
instability. This raises the question how much energy may be transfered fo the particles.

Before concluding this section let us compare with numerical calelations and real
experiments, Numerically, two different procedures have been used to get some general
insight into the dynamical behavior. Firstly, the Zakharov equations (3) and (4) have
been solved numerically when Landau damping is included. The disadvantage of this
procedure i3 that other effects (e.g., higher nonlinearities) are not included. In addition,
Landau damping could only be included within a crude model. Nevertheless, part of the
numeries shows & quite remarkable agreement with the theoretical predictions [32),
Collapsing cavities were observed in a parametrically pumped system. Very rapidly,
they are detuned in phase from the driver (phase decoupling and wavenumber changes
because of density variations are very pronounced), The results show approximately
the predicted self-similar behavior. Fast electrons are generated. However, very often
artificial mess ratios m,/m; are used to shorten the computational times. This simpli-
fication can be dangereous since the ion inertial region, which is important for the collapse,
might be underestimated. Another important point is that for the collapse the spatial
grid size shonld not be to large.

In principle better, but of course more time-consuming, are particle in cell simulations.
Typical [33] two-dimensional computations have 642, X 644, grids.~Then the minimal
wavenumber is

by = 202 107, @)

and the typical length L is 64 Debye lengths large. A minimal particle number is required
to reduce the thermal fluctuations. A typical value is (at least) 20 particles per Debye
zone. That results in a total number of 10° particles in the system. Nowadays, this num-
ber can be handled with modern computers. Let us review some of the interesting si-
mulation results of Anrsimov eb al. [33]. These authors start with initial distributions
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which satisfy the collapse criterion I, < 0, Furthermore, the electron and ion distri-
butions are prescribed separately at ¢ = 0. In the electron distribution we have to in-
clude the high-frequency oscillations whereas the (otherwise quasi-neutral) ion modu-
lations (described by an ion-acoustic distribution with modifications due to the pondero-
motive force) describe the radiation trapping. Thus, one uses

g = g + 0n -+ Onm,, (82)
n; = ng -+ On, (83)
% 7
on, = g (cos T - cos 7}2)’ (84)
Qmw 2n;
on = g (cos I + cos _LE) (85)
For the reasons mentioned above
V¥ = dmedn, (86)
and
on 144k
o 16an,T, ®7)

The last two relations determine &, The condition I, < 0 leads to the threshold condition
& > 0.01. The simulation results confirm in principle most of the theoretical predictions.
On the time-scale of an inverse jon plasma frequency the maximum amplitude of the
electric field grows, Localized cavitons with decreasing widths are generated. At £ ~ Wyt
the caviton burns out. The amplitude of the electric field decreases and the field: energy
is transfered to the particles via Landau damping. Real experiments for soliton gene-
ration, propagation, and collapse have been performed by two groups: NEziaw et al. [34]
at the Kurchatov institute and Woxa et al. [35] at UCLA: Three principle regions were
observed : (i) Observations of stable one-dimensional Langmuir solitons, if the transverse
instability is quenched by small lateral dimensions (2z/L > k,). (This result stimulated
the conclusion that some strongly turbulent systems might be equivalent to one-di-
mensional contigurations as far as the soliton concept is concerned.) (ii) Non-reproducable
situations with many spikes in the electric field intensity. The spikes disappear and are
created again (in the characteristic collapse time) and support in their dynamical be-
havior the basic influence of ion inertia during the dynamical phase. (iii) Reproducable
generations of cavitons with subsequent collapses. It seems to the author that these
various observations reveal the different stages at the route to chaos in & complex non-
linear dynamical system.

Summarizing, we can conclude that theory, numerics, and experiments support the
idea of the collapse as the essential mechanism of strong Langmuir turbulence. How-
ever, one should remember that very often in the numerics, as well as in experiments,
special initial conditions are prepared and it is by no means clear whether the collapse is
a dissipation mechanism at the hundred percent level. It cannot be excluded that in
strong Langmuir turbulence also localized fields with quite stable properties might

exist; they will contribute to the various phenomena and may be describable by a sta-
tistical theory.

3 Fortschr. Phys, 35 (1987) 7
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3. Vortices in Magnetized Plasmas

Compared to a plasma without an external magnetic field, in a magnetized plasma a
huge number of eigenmodes exists. Of course, for each of them one could develop a non-
linear theory which would be of practical interest. However, from the principal point
of view, many of the calculations would be quite similar and are therefore not of utmost
interest since they do not lead to qualitatively new results. There is however one pheno-
menon which definitely deserves & more detailed consideration. Because of the E X B
drift, in & magnetized plasma vortices with finite angular momentum can exist, The
pioneering work in this direction originates back from QxuDA and DAWSON [36], as well
as Hasueawa and Mima [37].

Generally, in fluids vortices are well-known but because of their quite complicated
dynamics we do not have a complete theory for vortex existence and dynamics. The sim-
plest example is the two-dimensional Navier-Stokes model

[0 +v Plo=—Pp, (88)
When incompressibility is also assumed,
V.o=0. (89)

Because of two-dimensionality and incompressibility, the velocity » can be derived from
a velocity potential ¥,

v=r¥x3, (90}
Taking the curl of Eq. (88) we immediately obtain
8V — PP x4 PR = 0, 1)

It is obvious that in a magnetized plasms because of the dominating E X B drift [see
Eq. (90)] an equation similar to Eq. (90) can be derived for the electrostatic potential, A
detailed derivation will be presented below. The corresponding nonlinear model equation
is known in plasma physics as ““convective cell equation”. For a deeper physical under-
standing of its nature we first have to discuss some basic principles. :

In the 1978 paper of ORUDA and Dawsox [36] it wes shown that collective effects can
cause & Bohm-like scaling of the diffusion coefficient. Within a linear theory, it is now
straightforward to derive & new mode, the so called Okuda-Dawson mode, which is
responsible for that behavior. Allowing for finite parallel wavenumbers k,, we have

2 k32 2
ww-ﬁ(l-}-k). (92)

Following Okuda and Dawson one can calculate the thermal energy density associated

with that mode by applying the fluctuation-dissipation-theorem. Within a test-particle
model, the diffusion coefficient D then scales for 2, > w,; like

1
D, (93)

which is the Bohm scaling. The numerical factor in the Bohm formula, i.e.,

1 ¢l

Drgps (94)



Fortschr. Phys, 35 (1987) 7 509

cannot be reproduced by these arguments. That raises the question, how the order of
magnitude of the diffusion coefficient can be understood at all.

To answer this question, let us briefly review the results of the classical driftwave
turbulence theory. The usually accepted driftwave model assumes that for sufficiently
small Larmor radii the E X B convection of the particle density and the vorticity

W = cl?0/B (95)
are the dominating mechanisms, Introducing the 2d operator

L= =P Ly, (96)
with an anti-hermitean part Ly, due to electron dissipation, we have

[L+ L1 3@ + 2 VO X VLO + 08,8 + 9,0 = 0. | (97)

Here, y; designates the ion-dissipation because of ion-ion collisions, ion-neutral collisions,
ion Landau damping, etc. ; v, is the drift velocity. Further details can be found in Refs,
[38] and [39]; in addition we shall derive the nonlinear terms later by simple arguments.
Many authors have produced numerical results for the model (97). A typical procedure
starts withafinitenumber (e.g., 128?) of Fourier components inthe two-dimensional space.
The thereby truncated discrete model shows many interesting and important aspects.
Let us here concentrate on one of them. If we debune the instability (universal mode) the
short wavelength fluctuations disappear very rapidly because of the ion-ion collisional
viscosity. However one finds large scale structures, as can be seen in the numerical
simulations of McWizriams [40] and Horron [39]. In the results of Horton, clearly
monopolar as well as dipolar vortices appear. Without stressing to much attention on the
similarity to the generation mechanism of structures in Langmuir turbulence, it is fas-
cinating to see here also spatially localized structures appearing. To work this out a little
bit more, let us investigate some simple but concrete models.

Prrviasavini (41], as well as HasEGAwa and Miva [37] haveshownthata strong simi-
larity exists between nonlinear driftwaves in plasmas and Rossby waves in the atmo-
sphere. In the simplest case we can distinguish between the case with a strong tempe-
rature gradient, described by the Petviashvili equation

By(1 — 7%) @ -+ 00,6 — % V428, = 0, (98)

and the case with a strong density inhomogeneity, described by the Hasegawa-Mims,
equation

8l — 72) B + (2 X VD) . P20 — 0,0, = 0. (99)

It is important to note that in a dissipationless situation Eq. (97) agrees with Eq. (99).

A slightly more general model, although without temperature inhomogeneities, has
been derived by Barusov et al. [42]. This model consists of three coupled equations [43]
of the form

o +AX VD V400 =0, (100)

6tv+ﬁ><l7¢-l77)=6%82(¢~—n), (101)
(] .

7P = (VD X 2) - VP — .9, (102)

3%
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The first equation (100) is the continuity equation for the electron density » (in units n,),
where » is the parallel (to the external magnetic tield) electron velocity [in ¢, = (T',/m;)!/2],
and the drift motion in the perpendicular direction. In the latter direction the E XB
drift dominates. The second equation (101) is the ion momentum balance, parallel to
£ = By/B,; the parameter 4 depends on the scaling as discussed below. If 6 = 1, as will
be the case for the units used below, on the right-hand side of Eq, (101) the large ion-to-
electron mass ratio appears. The third equation (102) expresses, in the quasi-neutral
situation, V- j = 0, i.e, the charge continuity. In that equation the ion polarization
drift dominates. In writing Egs. (100)—(102) we have assumed 2; € wyy, and the trans-
versal lengths, as well as the z-coordinates, are measured in units of 0s = G,/£2;, Further-
more, the electrostatic potential & is measured in units of T',[e. It is interesting to note
that for the different units: v in v,, and z in Vy[82; whereas the other units are unchanged,
the system of equations (100)— (102) is invariant except for the change 6 = m,/m,. Then
the order of magnitude factor on the right-hand side of Eq. (101) disappears. In the

striotly two-dimensional case (9, = 0) the model (100)—(102) reduces to the convective
cell equation.

2V = VO X 4. V70, (103)

which is identical to the 2d Navier-Stokes equation (91). In that case n v (m,/m;) 2P
# 0; this is typical for convective cells. In the case 8, == 0 we get from Eq, (101), for
¢ == 1, the driftwave scaling & = # and therefore from Eqgs. (100) and (102) the (homo-
geneous) Hasegawa-Mima equation

0l— 7Y B =i xVD. PP, - (104)

Its inhomogeneous generalization (change ¢ — ~®) has been presented already in the
form (89). [Of course, the system of equations (100)—(102) can be generalized to the in-
homogeneous situation, without any difficulty. An additional term 40,P has to be added
to the left-hand side of Eq. (100).] Except the two scalings mentioned above a third one is
known which corresponds to the Dawson-Okuda mode. We then have

n & 70, (105)

In this case, the model (100)—(102) can be reduced to two coupled equations which have
been discussed by BAzEsov et al. [42].

In all cases stationary vortex solutions exist. The monopolar and dipolar vortices
can be constructed in the same way as in the atmospheric caleulations. There is no need
at this stage to present the explicit analytical expressions which include Bessel functions.
Let us only mention one important relation. The velocity region for the nonlinear so-
lutions is complementary to the regime of linear phase velocites. If the latter are in the
region 0 < v,;, < v, then the velocities u of the vortices are < 0oru > v Two prinei-
pal questions arise at; this stage: Are the vortices stable entities and how are vortices
generated from arbitrary initial distributions?

The first question of stability was answered in the past by LAEDEE and SPATSCHEK
[44, 46]: Monopolar vortices, in the case of strong temperature gradients, are linearly and
nonlinearly stable, The linear stability of Hasegawea-Mima dipolar vortices was proved
for u > v;. The stability of convective cells conld only be shown linearly; the nonlinear
regime is in progress.

At this stage it is helpful to explain the principal procedure for a nonlinear stability
proof. Let us choose Eq. (108) for demonstration. That equation has as constants of
motion the energy

[ (P®) d2r = const., (106)
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the generalized enstrophy
[ F(7*®) d* = const., (107)

where ' is an arbitrary but well-behaved and integrable function, as well as the z-com-
ponent of the angular momentum

[ P?®r%dr = const. (108)

Other invariants, especially CASIMIRS [46), are not known at the moment. One tries to
build out of the constants of motion a nonlinear functional I in such a way that the first
variation vanishes for the stationary solution @, under consideration, i.e.,

8L{p=g, = 0. (109)

If the functional itself vanishes at the stationary point @ = &,, then a stability condition
is

Llgg; > 0. | (110)

The last condition has to be supplemented by an estimate of the so called convexity
conditions. Of course, the sufficient criterion (110) for stability is generally not necessary
since there is some arbitraryness in the choice of L. Therefore more effort is generally
needed to find some sufficient criteria for instability.

As has been mentioned already, there exist complete nonlinear stability proofs only for
some cases in unbounded regions. The reason is that only a few cases allow an exact
estimate of the form (110) which otherwise is to complex. For linear stability, the eigen-
value equation can be investigated directly, However, it is by no means clear that linear
stability implies nonlinear stability. The actual state of knowledge is the following:

The linear stebility proofsfor monopolarand dipolar vortices are presumably of differ-
ent value in the nonlinear regime. It is expected that the linear stability of the dipolar
vortices survives in the nonlinear region. On the other hand it is quite evident that the
monopolar convective cells cannot be nonlinearly stable. The reason is that solutions
with the same vorticity tend to unite, which has been demonstrated numerically and
experimentally [47]. These results show that at the end of various interactions two big
vortices of opposite polarity survive.

Let us now turn to the second question of the generation of vortices. Different routes
are possible; the best understood is the following [48). It is similar in its physical picture
to the soliton generation in Langmuir turbulence and applies to the case of a strong
temperature gradient, Then the basic model is described by the Petviashvili equation
(98) and one-dimensional localized solutions are transversely unstable, The procedures of

NEwELL and WEITEHEAD [49] or ScHLUTER et a). [60] allow to calculate the nonlinear
evolution of the unstable modes close to the onset of the instability. It turns out that a
stabilization with subsequent (vortex-like) structures is possible in two space dimensions.
After this first bifurcation we expect localized 2d vortices to exist. The latter are non-
linearly stable. This scenario shows some similarity to the route to turbulence for
Langmuir waves, — with the basic difference that no collapse occurs.

In the case of strong density inhomogeneity the drift instability may be a generation
mechanisim for drift vortices of different polarity. However, a complete and satisfactory
theory for drift vortex excitation doesnot yet exist. Several proposals for convective cell
excitation can be found in the literature. In the scenario of Ltu et al, [51] drift waves are
the pump waves in a parametric excitation of convection cells, The strength of exci-
tation can be estimated in the following way, The “universal instability” has its maxi-
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mum growth for &y, ~ 1; the growth rate is
T
Vmax & VV-; ;E':' [o.L, ]2, (111)

where Ly is the characteristic inhomogeneity length. The parametric decay was in-
vestigated by SrURLA et al. [52], with the result for the decay growth rate

e®, (T2 3 — J2\12
Vaceay R Dponm [k X g + 2 "'1','3 (5,"?‘) (M) . (112)

Let us assume that the gain of driftwave energy due to the “universal instability™ is
balanced by the loss via the parametric decay instability, i.e.,

O ); B ann ~ 8 %‘ By .. (113)

Then, together with the assumption of saturation by turbulent diffusion, the saturation
spectrum of the convective cells follows.

Another possibility for generation of convective cells follows from a linear coupling
of driftwaves with convective cells [53]. If we investigate the linear tems of the model

equations (100)—(103), including spatial inhomogeneity (x := —8, In n,), we have
om — x0,® - 6,9 =0, (114)
2,7 + 09 = 0, (115)
3 — 8,(® —n) = 0. (116)

After Fourier transformation we obtain the linear dispersion relation

k2 ' k
wa—-ﬁ-i(l-{-kj)w-f—lcf%-—-o. ()

Its solution is depicted in Fig. 2. (The ion-acoustic mode is not present since we have
suppressed the ion motion along the magnetic field. If we include the latter, nothing is
changed in the following arguments.)

We recognize that for small wave numbers k, (parallel to the external magnetic field) a
linear coupling oceurs with a bifurcation point at %, For k, < k. instability sets in.
The phase velocities in the unstable region (as well asin most parts of the stable regimes)
are larger than the thermal velocity of the electrons, This and a separate kinetic de-
scription justifies the relation (117). We have performed a bifurcation analysis in the
vicinity of the onset of the instability. As a result we can obtain saturated, vortex-like
structures.

Summarizing the results we can conclude as follows: Vortices have been observed in
rea] experiments and numerical simulations. Theoretically, routes have been found for
the generation of vorticesin plasmas, Analytical investigations show that stable vortices
can exist in plasmas. Let us therefore discuss some consequences.

For a better understanding of the driftwave turbulence we discuss in the following a
statistical model. Such a choice is adequate since we have found that drift vortices do not
collapse and therefore (dipolar) drift vortices can be considered as long-living stable
structures, We shall see that a model based on non-interacting drift vortices is quali-
tatively different in its results compared with the outcomes of the weak turbulence
theory.
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Fig. 2. Solution of the dispersion relation (117), depending on k,, for the parameter values
ky el = 0.01 and &, = 0.1

Theweak turbulence theory makesa clear prediction for the autocorrelation coefficient
of the potential fluctuations. A simplified argumentation is as follows, We have two
constants of motion,

B = 2; (D, + &2 9,4, (118)
U =Y [1219,2 + & |®,)%], (119)
I

the energy and the enstrophy. Numerical computations show that we can use an argu-
ment known from Kolmogorov in fluid turbulence. Here a dual cascade process can be
assumed: energy B flows through a inertial region to small % (relative to the pump wave-
number £,) and enstrophy U flows through another inertial region to large k& values
(k> k). Let us investigate first the region k < k,. Since driftwave turbulence is three-
dimensional, we can conclude from Eq. (118)

B~ [ (@20 db = [ Wk, (120)
and therefore a constant flow in k-space yields

Wik 942 k%
T

T

~ |®[® k7 = const. (121)

Here we took

1 Ko,

from the Hasegawa-Mima equation [see also Eq. (97)]. From the right hand side of
Eq. (121) we get |@y|2 ~ k145 for driftwaves with & < k,. In the region % > k, we can
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use U, ~ k*|®,[* and arguments similar to (121) and (122) yield |@,[2 ~ &-5. This agrees
with the results of some experiments [54].
For convective cells the arguments are changed insofar as

E =) i? o) (123)
3
and
U=) 1|0 (124)
)
In addition, convective cells are two-dimensional, i.e.,
E ~f dickl? | D2, U Nf dkkkt |@,2, (125)
and
—:- ~ k| Dy, (126)
[compare with the 2d Navier-Stokes equation (91)). Then, it follows
@_ ~ BB |y kP |Dy| ~ |3 kS = const, for k <k, (127)
and
Uk
— k® | @y |? kk? |Dy| ~ |By|® k® = const. for k> k.. (128)

Characteristic for the weak turbulence results are (for fixed %) that (i) the maximum of
the excitation is at the linear drift frequency and (ii) the spectrs have asmall width.
The last phenomenon is quite understandable since weak means that only a weak coupling
of the linear modes occurs. Qualitatively, the Fourier transform of the autocorrelation
function S(%, w) is shown in Fig, 8. The function S(k, w) is defined through

D+, t + 1) D=, b)) = @—7%3- f dk f dawS(k, w) eths-iur, (129)
3

0 Wyin @) et

Fig. 8. Qualitative behavior of the dynamic form factor S(%, w), for fixed &, vs w. The
solid line depicts the result of the weak turbulence theory whereas the broken line indi-
cates the functional dependence as a result of a statistical vortex model
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In Fig. 3 we have also indicated that experimental results show & maximum at higher
values (up to a factor 10); in addition, the width is very often quite large (of the order
of magnitude of the characteristic frequency). These two phenomena can be understood
as strong indications that & statistical vortex model might be appropriate. In the latter,
Wwe assume a system of non-interacting, closely packed vortices. Very important for the
following arguments will be that the velocites of the nonlinear structures are comple-
mentary in magnitudes to the linear phase velocites of the linear waves.

Following Mzzss and HorTox [55) we choose the simplest situation of one-dimensional
structures in the case of strong temperature inhomogeneities, Then the solutions of the
equation

[1—02V,% 8,8 + v,8,P — 400,80 =0 (130)
are explicitly known,
) = —3 (% — 1) seonz [ -1 (1 2}, _
Di(y, t;u) 3 (”d 1) sech [293 (1 u) (y — ut)|. (131)
Let us ignore all non-soliton contributions. Then we can write
N
?= Z,;@a(?/m by Un). (132)
n=

Furthermore, the solitons should be uniformly distributed in space. Their positions are
denoted by y,. Then the dynamical form factor is

1 u nko 2
— 57 { | 12nkg, (22) esch (et | (0 — ku,)),

S(k, ©) = L“‘<[ ”Qs(vd)cse (]/1—vd/u)] (@ u’) (133)
0 for 0 <o < kyy

The averaging (.-} is performed with a Gibbs distribution

-1
P(B,) = % (%-EJ-{) ¢~ 5, (134)

Here, the derivative of the soliton energy E, with respect to the action. variable J can
be estimated by

oF, )

e~ —, 1
57 0 ~2x T (135)
Note that the energy of a soliton is
12 (U\? v, \3/2 vy

i.e., we can calculate analytically the distribution function (134) as a function of the new
variable u. The final result for S(k, w) is

[ w¥fy(wfk), for kvl + (wke,)?] < w,
w¥(wfk), for <0,
Sk, w) ~ 9 0, for 0 < o<y,

’ﬂ’l)d 1/2
exp [—27:1093 {m} ], for kvy < w < kvl + (wko,)?],

(137)
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where
fs(w) = N, P(u).

The distribution depends on two parameters, N, and 8; the latter follow from the total
energy and the additional assumption for a close soliton packing. The main result of
the whole theory is that for small # the dynamical form factor (at prescribed ) does not:
peak at the linear frequency wg. It becomes largest at considerably higher w-values.
Furthermore, the width is proportional to the square root of the small (relative to the
thermal energy) total energy and not to the total energy density itself as it is true for the
weak turbulence theory, Both results are supported by experimental results.

Of course, such a one-dimensional statistical soliton model cannot be considered as a
final, closed theory. Especially, the effects in higher space dimensions have to be taken
into account, Nevertheless, many phenomena let us expect that a statistical vortex

model tends into the physically correct direction and conclusions for the anomalous
transport can be expected in the future,

4, Concluding Remarks

Solitons (and solitary waves) are solutions of nonlinear model equations in different areas
in plasma physies, The behavior of solitonsin onespacedimensionisquitewell understood.
In two and three space dimensions, quite surprising and important phenomena can
occur which lead to qualitatively new results. The best example which shows all these
phenomena is the Langmuir soliton. As we have seen, for certain initial distributions s
three-dimensional cavity collapses and the collapse is an effective nonlinear dissipation
mechanism in plasmas. Insystems with an external magnetic field new low-frequency
modes ocour. In two space dimensions their nonlinear versions are vortices,

Since vortices can be stable, convective transport and vortex dynamics becomes im-
portant, In conclusion, nonlinear structures of different types exist in plasmas and they
can influence the plasma properties considerably.
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