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A new type of modulations of an ensemble of random waves near the upper-hybrid resonance frequency is investi-
gated, For the linearly unstable cases, the growth rates are obtained and exact nonlinear stationary distributions are
presented.

It is well-known [1] that a system of random phased high-frequency waves can be unstable with respect to low-
frequency perturbations. Recently [2], the linear dynamics of an ensemble of upper-hybrid waves has been studied
using lower-hybrid as well as ion cyclotron modes as low-frequency perturbations. As expected, the growth rates
are larger for smaller modulation frequencies, Obviously, the fastest modulation process will dominate in the sys-
tem. It is therefore worthwhile to consider perturbations with even lower real frequencies. Therefore, in this letter
we consider adiabatic modulations. Besides the corresponding linear growth rates the possible final nonlinear sta-
tionary distributions of the upper-hybrid turbulence are presented.

For the reason of simplicity, we use a one-dimensional model for the upper-hybrid modes propagating perpendic-
ular (x-direction) to the external magnetic field B, = B, z. The dynamics of upper-hybrid turbulence is described
by the wave-kinetic equation for the plasmon distribution Ny, = (B 2)dney, ie.,
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Here, e is the electron plasma freguency, g = (wge + c.;%,e)lf2 is the ugper-hybrid resonance frequency, wp,
is the electron gyrofrequency, & = vAcolwofy, with A = 362 (w2, — 3w2,), and v, is the thermal speed of tho
-electrons. The turbulence is modulated tﬁiough perturbations &n, fn th electron density (n, =n, +5n,) which
are assumed to vary on a largs scale compared to the phase variation of 2 upper-hybrid mode. We note that ¢ >0
for wy > 2wp, corresponding to positive group dispersion; negative group dispersion is obtained for wy <2wp,

The density changes 8, are caused by the ponderomotive force. The latter acts on the electrons and ions and
can be written in the form [3]
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Here, (|£[2) is the mean square turbulent electric field determined by the strength of the turbulence. It is related
to N through the conservation of norm, i.e.,
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where L is the length of the system.
- Taking into account the adiabatic response of the plasma, we obtain from 93]
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Assuming quasineutrality and using the cold dispersion relation for upper-hybrid waves, we can eliminate the
ambipolar potential g to obtain
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Inserting (5) into (1) and using (3) we get

aNk aNk i) aNk

—St_+ak$—+5(_a;f1vkdk) a—-o, 6)

with = Lo /16mn, (T, + T).
Eq. (6) governs the dynamics of upper-hybrid turbulence in a nonlinear dispersive medium. Nonlinear equations

of that type have been analysed by many authors, [e.g. 4.] . We briefly summarize the main results.
A linear analysis, using

Ny = Nff + N} exp(iKx — i), 0]

yields the dispersion relation
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For positive dispersive upper-hybrid modes unstable long-wavelength perturbations exist. The corresponding growth
rate y is
7=V3 Kugol, [NER)32mm,(T, + T feogy (102, ~ 3l JI12. )
Negative dispersive upper-hybrid modes can be unstable with respect to short-wavelength perturbations. The corre-
sponding growth rate is
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where a Gaussian of width A has been assumed for the zeroth order plasmon distribution.

Possible nonlinear final states of these instabilities can be represented by trapped BGK solutions. One obtains
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for positive dispersion and kz)\g <( - 3w%e/wge) {E |2)/487mo(7;a +T3). The space dependence of the electric
field energy density is still arbitrary and can be chosen to be of the form of an evelope soliton.
For negative dispersion one obtains
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Now, {|£12) can be chasen to have a space dependence like an envelope hole.
In conclusion, we have investigated modulations of upper-hybrid turbulence treating the plasma response as
adiabatic. It turns out that the growth rates of the corresponding instabilities can be larger than those obtained
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previously. Stationary nonlinear solutions in the linear unstable region are trapped BGK solutions.

This work has been done within the activities of the Sonderforschungsbereich 162 “Plasmaphysik Bochum/
Jilich™.
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