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Abstract: In this contribution some simple models are reviewed in order to point at anomalous
transport effects, both analytically and numerically. The first part is on particle transport;
it is inspired by the great success of (neutral) fluid theory to understand, e.g., the nonlinear
development of the Bénard instability. When treating nonlinear drift waves, either in the fully
ionized or in the weakly ionized cases, nonlinear convective transport can become important. It is
shown that nonlinear spatially coherent modes do play an important role in the particle transport
beyond a critical magnetic field. In the second part we investigate the role of strongly nonlinear
entities, like cavitons, in the particle heating process due to waves. The collapse and nonlinear
mode conversion are identified as basic processes for the source terms in transport equations.
Finally, the nonlinear wave propagation itself is considered, and some recent results on transport
of excitations are presented. It is shown that nonlinear wave propagation can overcorfle, besides
dispersive broadening, other inhibition mechanisms of transmission encountered in linear wave

propagation theory. The conclusion is that for such important processes as particle and wave

energy transport, as well as particle heating, new nonlinear mechanisms exist which have to be

investigated in the future in more detail.

I. REMARKS CONCERNING LINEAR TRANSPORT THEORY

The linear transport theory is very well developed, although due to _geomettrical COIIilp.lica,-
d. But even in some relatively simple collisional

tions quite sophisticated theories are neede . ;
plasmas, many transport results are anomalous, and during the last decades very many
ena. Here we do not want to 1m-

works were devoted to the understanding of such phenom dy existing algeb
prove existing linear transport theories by incorporating into the already existing algebra

(in a more or less rigorous manner) nonlinear contributions, €8 ‘in an iterative proce.dure.
Our aim is another one: We want to demonstrate that new entities like vortices, cavitons,
and solitons can take part in the nonlinear dynamics with severe (.:onsgquences for transport
beyond the linear limit. Let us exerplify this view by several historical remarks.

particle and momentum balances of species + (ions) or -

In a collisional plasma, the :
(electrons) can (very often) be a.pprox1mafced by
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where m is the mass, n the particle number density, @ the velocity, £ the (external) electric
field, T the temperature, and 7 the mean collision time (e.g. with neutrals 77! & ngo, v,
where ng is the neutral density, vy, the thermal velocity, and o, the cross section, typically
~5 x 10 ¢m® and weakly dependent on temperature). If the nonlinear convective term
(i - Vi) as well as the inertia term (3,Z) are neglected, one can simply determine the
velocities iy from Eq. (2) by setting the Lh.s. equal to zero,

iy R :i:,uiE ~DyVinng , (3)

where iy = (erx/my) and Dy = pzkpTs/e. Note that from here we can obtain already
one transport coefficient: D., the species diffusion coefficient. Two remarks are appropriate
at this stage. First, during the diffusion process, a polarization field will appear as a
result of charge separation. When the dimension of the system is much larger than the
Debye length of the plasma, electrons and ions do not diffuse independently. The diffusion
becomes ambipolar due the appearance of the polarization field, ie. - =n_i_ = (IRTANES
I'. We can easily calculate this by considering in Eq. (8) no external fields and interpreting
E only as the internal polarization field. Eliminating & from Eq. (3) we obtain

Fra-DVn , D =2tb-tDp b ps (4)
H- + pt pi-

(for T, > Ty and n ~ n_ ~ ny). Secondly, another transport coeflicient, the electric
conductivity, also follows immediafcely.# When_‘introducing the electric current density ; =
enyiy ~enti. & —en_ii_ we find j ~ oF with ¢ ~ ei-n—. The conductivity of a
weakly ionized gas is mostly determined by the degree of ionization n_ /ng. If ionization is
stronger, 771 & nguyoy + nyvogy consists of both, collisions with neutrals and Coulomb
collisions with other charged particles. The scale of the Coulomb cross section Trd, is
roughly determined through e?/r¢y ~ 2k8T. Due to the long range nature of the Coulomb
forces, mrg, has to be multiplied by the so-called Coulomb logarithm InA. The Coulomb
collisions become dominant at higher degrees of ionization. Then 7= ~ nt and the
conductivity is only very weakly dependent on charged particles density (through InA),

7~ 9(kpT-)* [4me*m_vy_ln A. Spitzer and his co-workers! have refined this formula by
a numerical factor.

When considering the energy equation in the simple form
3 . -
0 (-2-n:|:kBTi) +V-Fy=tnief -1y - gnikBT:hﬂ:I: — g1, (5)

we have introduced 7y = 7! = § [T+ as the effective frequency of energy losses. Fur-
thermore, g4I (consisting of the ionization potential I and the resultant creation rate
qjc) describes the energy spent to create new electrons during iomization. The flux
Fy is composed of the hydrodynamic flux of enthalpy and the heat conduction flux;
Fi = 3nypkpTyily — AL VTy. The coefficients At = 2kpny Dy are called thermal con-
ductivities; they are the other transport coefficients being of main interest.

Herg we should stop now the quite heuristic argumentation. Non-equilibrium thermody-
namics telhls us some more general relations the transport processes have to obey. Ther-
modynamics forces (pressure and temperature gradients, electric fields, and so on) cause
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thermodynamic fluxes (particle, electric, or heat currents, and so on). Their linear interre-
lations are governed by the Onsager relations. When calculating the transport coeflicients
we have to specify the system and use some sophisticated transport theory. For plasmas,
excellent presentations of the latter are given, e.g., by Braginskii? or Balescu®. In general,
the procedure is the following. Starting from a (microscopic) kinetic description (Fokker-
Planck, Landau, or Balescu-Lenard forms), macroscopic equations follow from averaging;
moments appear which are, e.g., the particle number density, the mean velocity, the pres-
sure tensor, the heat flux, and so on. The moment equations are not closed ab initio;
we face a hierarchy problem. To calculate some higher moments, one looks for some ap-
proximate solution of the kinetic equation, e.g. in form of a finite Hermitean polynomial
expansion. A quite elaborate analysis is necessary in order to calculate up to a certain order
the transport coefficients, and still the convergence of the procedure has to be checked by
numerical evaluations. The reader is referred to, e.g., the excellent monographs of Bal.escu
for further details. However, it is well-known that some of the linear transport coeflicients
calculated in this manner do not reveal the experimental results. Most prominent' examples
are the electron heat conductivity and the perpendicular (to an external magnetic field B)

particle diffusion coefficient.

In the transport equations source terms
discuss in more detail in this contribution
ticle interaction. The latter obviously is

Another remark is appropriate at this stage.
appear. As one example ~ which we we shall
~ we mention particle heating due to wave-par
another candidate for nonlinear considerations.

1. WHY TO INTRODUCE NONLINEARITIES?

We start this section by a remark on diffusion in mag_?etizeg pla,smas.. If we 1nt¥od1u<;e_> on
the r.h.s. of Eq. (2) the Lorentz force density eny@x X B, some SITE y mmfn(}: uuae;;r:
lead to the factor [1+ (742 )?] " in front of the rhis. of Eq: (3). Here, d.ggy‘rro r if‘ﬁcient
{l¢ = +eB/my have been introduced. Clearly the factor will lead 30 ; : 17?%;2 famous
D ~ 1/B? for strong magnetic fields. But already Bohm suggeste tql ¢ understood!]
Bohm diffusion coeficient D = kpT/16¢B is in its quantitative ft?rm still no - an;i
in order to explain the unexpected weak confinement. Meanwhile many Sugg

scalings are reported which still await a rigorous analytical theory.
i hanced fluc-

Experimental observations show that most plasmas are not qzlescerfa::(;itznma;rllude fu
tuations appear. Within plasma physics very early tl}e necessIty ai};)s ad hoc manner. One
linearities; effective collision frequencies were defined in 2 n;orle ore o o our presnt
of the most successful attempts was the so-calle_d weak turbu 1<;:nc .
context we need only a few conclusions from this development.

i i ticle-wave
It is quite accepted that drift wave fluctuations a,re.canfi ldztes f?rele:fzigzg: Ifei;;ndicula,r
collisions, and thus we may estimate the nonlinear diffusive Hux ©

to an external magnetic field by

n_ngT_ 6)
1 L!}/z o -k *5n—k.________ + e (
[_ ~ (dn_vp) = I _Lylgén_vgdy Ek iyl 2B,

; ‘ density fluctuation, we
Here, the density gradient is in the 2-direction, on— 18 the electron density ,
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average over the y-direction, and 7y is the E X B velocity in the fluctuating electrostatic
field [before Fourier transformation 5z = E x B/B?, and in the last expression on the r.h.s.
of Eq. (6) we have normalized the lengths by p, = vy, /||, the density perturbations by
n-o, and the potential ¢ by T_ /e]. The next step is to determine the relation between dn_;
and ;. If we have a pure Boltzmann distribution dn_j ~ @, the total flux disappears
[note the complex conjugate c.c. in Eq. (6)]; thus a phase shift between én_t and @
is essential. Hydrodynamical or gyrokinetic models determine such phase shifts, e.g. in

the (non-dimensional) form &n_j, ~ @} +§ (ki / kﬁ) dypy, [see Sec. IT1]. For drift waves we
approximate d; —+ —iw % ikyk, /(1 + k), with &, = dlnn_o/ds; ky being an effective
parallel (to B) wavelength. Thus the expression (6) leads to

kBT_ ki k.L 2dn_o
B OLH TR T 0

I~ -

At the first glance this looks like a great break-through: The coefficient in front of the
thermodynamic force dn_, /dx should be identified with the electron diffusion coefficient
D_. Unfortunately, this coefficient depends on the spectrum |x|* for which we generally
do not know neither the total energy content nor the spectral distribution over E—space.
Very often, by assumption, an ansatz for x| is made and scalings are discussed, but from
a rigorous theoretical point of view such a procedure is not very convincing,

In a more systematic procedure we have to calculate lok|* self-consistently. The well-
developed methods are “weak turbulence theory” (WTT) or the “direct interaction appro-

ximation” (DIA). [Note that a rigorous strong turbulence description is still missing!] The
result is

Belerl - 2Im(wp)lps? = n / Phidhad (F~Fy - ) 8 (Relug — wp, —w3,))

- 2 - A
E 12 [2 k k 2 EAk
x{(Aza,::z) enlleal” + AL o AD dlonPloal +AL 5 A% o Plogl} . (9

Here A’E} are coupling coeficients which follow from the exact modelling of the drift waves.

When solving Eq. (8) for an unstable drift wave situation, the dual cascade process is also
revealed in the weak turbulence description. We get a condensation at small k, and in
general a more detailed description, taking into account higher nonlinearities becomes ne-
cessary. But the appearance of large spatially coherent structures hints at another process

which might be dominant in the nonlinear state: convective transport caused by nonlinear
structures like vortices.

This actually is not an idea invented by plasma physicists since we have a very prominent
praradigm in form of the Rayleigh-Bénard-problem. There one considers a fluid heated
from below. Two plates are separated by a distance H, the temperature of the lower
one is Ty + AT. When the fluid is not moving (i = 0) the stationary (index s) state is
To(2) = To+ AT~ (/ H)AT, p,(s) = po1 - o[Ty(2)~ i), Vi(z) = —pa(z)g, where p
is the equilibrium density of the fluid, p, is the pressure in local equilibrium, and g is the
gravitational acceleration. The equations determining @ and temperature T' are similar to
those presented in forms of Eg. (2) and (5), together with the incompressibility condition
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V4 =0; o is the thermal expansion coefficient. When looking for the stability of the
stationary state, one introduces the deviation 0(z,y,z,t) := T(z,y,2,t) — Ts(2). Within
the Boussinesq approximation the equations for @ and 4 are

Bl +il-Vi = aﬁgé—pr5p+VV2'EZ, 9)
0

BO+T-VO = AV —u,AT/H. (10)

Il

The equation of state is determined by the incompressibility V - % = 0. The famous result
of the Rayleigh-Bénard instability considerations is that besides the usual heat conduction
state (with thermal conductivity A) nonlinearities can trigger a convective transport which
clearly overcomes the predictions from linear transport theory. The critical parameter is
the dimensionless Rayleigh number R,. If the latter overcomes a critical value R.,

R = agH3AT
v

roles appear which are able to transport heat through convection. The value of R, depends
on the boundary conditions for the perturbations. The various cases are called rigid-rigid,
rigid-free, free-rigid or free-free according to whether the upper and lower boundaries re-
spectively are rigid or free. For R, > R, instability arises at a certain critical horizontal
wavenumber. When R, > R. the wavenumber of the fastest-growing mode can be deter-
mined, and according to linear theory this mode should be the dominant one. For more
details to determine the horizontal pattern see the summary in the excellent book of Dra-
zin and Reid®. Especially hexagonal cells are of great interest, and in Fig. 1 we show
the streamlines for such a hexagonal cell. Beyond the onset of instability the problem

> R, (11)

Fig. 1. Streamlines of the hezagonal cell in Rayleigh-Bénard convection®.

becomes fully nonlinear, and several scenarios of nonlinear dynamics have lgeen introduce.d
to mimic the more complicated behavior. The simplest is due to Lorenz®, who approxi-
mated the temperature field 6 and the streamfunction P [ug = —28¢ [0z, u; = Q¢ /0] for
free-free boundary conditions [9(0) = 8(H) = $(0) = ¥(H) =V 1(0) = VA(H) = 0] by

the modes
VAL @A L o (TO8Y o (T2 (12)
MR SRR Al ¢ § — 8|~} ,
" X( )sm( i ) ( )

¢($az’ t) = H
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ATR, Tax\ . (T2 . [ 2mz
0(z,2,t) = Rr [\/EY(t) cos (T) sin (ﬁ) — Z(t)sin (?)] . (13)
The so-called Lorenz model follows by introducing this ansatz into the original dynamical
equations and truncating at the three-modes level:

X dy iz
oV - v, % _xy -z, 4
7 =0 =X), T = -XZ4rX Y, 5 =XY -z (14)

Here T':=tn*(1 4+ a®)A/H? , 0= y/), r = R,/R., and b= 4/(1 + a?).

The model (14) shows such interesting features as period-doubling transition to chaos and
intermittency. However, one should emphasize that the quantitative agreements with the
full theory and/or experiments are not good. But the qualitatively correct suggestion of
nonlinear dynamics with spatially coherent structures is fascinating and will be taken up
in the following plasma physics models.

Besides particle, momentum, and energy transport (coefficients) the source terms of the
transport equations have also to be investigated in a modern manner based on recent deve-
lopments in nonlinear wave theory. Two of the most successful areas stimulated by plasma
physics are soliton physics and chaos. And hoth have important implications on wave

propagation and wave absorption. Thus, source terms in transport equations have to be
reconsidered in this situation.

III. NONLINEAR PARTICLE TRANSPORT DUE TO DRIFT VORTICES

In this section we review some of the latest results from plasma physics showing that
indeed also in plasmas a nonlinear particle convective transport can appear. V. Naulin’
has investigated a model for the dynamics of drift vortices in fully-ionized plasmas; here
Wwe concentrate on a similar nonlinear model for nonlinear drift waves in weakly ionized
plasmas, being investigated mainly by Th. Eickermann®, The starting equations are again
Eqgs. (1) and (2), enlarged by the Lorentz term in the presence of an external magnetic field
B. Note that (even for constant temperature) these are eight scalar equations which we
have to simplify for analytical considerations. Let us assume cold (T; = 0) and magnetized
fons, [':= Qu7. > 1, and weakly space-dependent magnetic fields E, such that we can use
the drift approximation. Some lengthy analysis leads to the following coupled equations
for p:=In(n_/n.o) [note quasi-neutrality], ep/kgT- ~ ¢, and u = U/ s

Op = Kyp+ 6Vile—0) 467V o~p) 4 10,0~ p) + {0,p} =0,  (15)

(14+8)Vip+ 39 (- p) - Vju+6VE (o - p) - nop + {o,Vie}=0. (16)
(14 O u + {p,u} = -V”(p . (17)

In these equations time is normalized by 7., and the perpendicular (L) space coordinates
¢ and y are measured in p, while the parallel (][) space coordinate is measured in ¢,7..
The parameters § = M-ty [myT. , & = dlnng/dz n = 2/R characterize the ratio of
lon fo electron mobility, the density gradient, and the curvature of the magnetic field,
respectively; {a, b} = (3,a) (8,b) - (0:0) (8,a) is the Poisson bracket.
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Some remarks are appropriate at this stage. First, the three-fields model (15) - (17) leads
for perturbations to a cubic dispersion relation. From this dispersion relation we can
determine the critical parameters for instability. [The existence of drift-like instabilities
was already discussed by Simon and collaborators.] For example, we can determine 2
critical magnetic field strength B, above which the system becomes unstable. Secondly, if
we neglect (a) §VZ (¢ — p) with respect to 5‘1V|2|(tp —p), (b) 7= 0, and (c) the parallel
ion velocity u, we arrive at

Oip — kdyp + 67 Vi (p —p) + {p,p} =0, (18)

(1+8)Vie+d8Vi(e—p)+{p Vip} =0, (19)

which agree in form with the Hasegawa-Wakatani equations for fully-ionized plasmas [ex-
cept for a different hyper-ion-viscosity there].

Note that from the second equation of this coupled set we obtain for § —+ 0 [and negligible
damping] pr & @), + 0 (ki / kﬁ) dipy, i.e. the deviation from the Boltzmann distribution

mentioned already before. If we subtract (18) from (19) and iterate for & —+ 0, we obtain
to lowest order the Hasegawa-Mima equation

0 (1~ V%) o — 60y — {0, Vi } = Vip = 0. (20)

Thirdly, in the opposite limit (a) 6V (¢ — p) 3> 87 Vi (¢ — p) and (b) u = 0 the system
(15) - ( 17) reduces to

Bip — Ky + 8V2 (0 = p) + 10y (0 =1} +{psp} = 0, (21)
(148) V2 + 692 (p—p) —ndyp + {, Vig} = 0. (22)

I B/Bc 14

determined from Egs. (81) and (28) for
; as a function of B. The dots mark
NWYV is the analytical result based on the Newell-

Fig. 2. (a) Contour plots of ¢ and p at time & a8
B = 18B,. (b) Effective diffusion coefficient D¢y
results from numerical esperiments,
Whitehead procedure®.
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Now the interesting physical conclusions. Within the weakly unstable region, one mode do-
minates the nonlinear behavior and its saturation can be calculated via a Newell-Whitehead
procedure. As usual, the corresponding mode amplitude is determined by a generalized
Ginzburg-Landau equation, or coupled Ginzburg-Landau equations. The latter can be
analyzed by meanwhile standard methods. The phase shift between py and @) causes an
anomalous transport which in the unstable region (B > B,) leads to an effective diffusion
coefficient D,s; ~ B~1, while for B < B, the ambipolar diffusion is D, ~ B~%. These
analytical predictions have been confirmed by Th. Eickermann in his PhD-thesis. Fig. 2.a
shows a typical contour plot of ¢ and p for B = 1.8B,; these results have been obtained
from a numerical simulation. In Fig. 2.b the B-dependence of the diffusion coefficient is
shown. A cross-over from the B~2-dependence to the B~'-dependence is obvious. In addi-
tion, it was found that via quasi-periodicity the system can go to a time-chaotic state. We
recognize here a behaviour similar to that mentioned during thermal convection. By ana-
Iytical methods, simple models could be constructed to mimic that dynamical evolution.
The signature of chaos is a back-change to D,sp ~ B2, It appears in Fig. 2.b for larger
values of B/B,. More details can be found in a forthcoming publication?,

IV. ANOMALOUS ABSORPTION AND WAVE COLLAPSE
We now turn to another important process in plasmas which may become anomalous due
to nonlinear effects: wave propagation and wave absorption. A classical problem in plasma

physics is wave propagation in inhomogeneous plasmas up to a classical turning point. Let
us consider the geometry for p-polarization as shown in Fig. 3.a. When the electric field
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Fig. 3. (a) Sketch of the geometry for p-polarized wave incidence onto an inhomogeneous

plasma. (b) Resonantly excited electrostatic electric field (magnitude of amplitude) at the
critical density!?,

—_

vect?r lies in the plane built by the wave vector &, and the density gradient |dno/dz|2, the
burning point , depends on the angle of incidence,

Wye(2r) = wp cos(fp) , (23)

where w; is the frequency of the wave and wpe is the density- and thereby space-dependent
electron plasma frequency. However, at the critical density, defined by wy,, = wy which
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gives the critical layer at @ with w(z,) ~ wy, an electrostatic component can be driven
resonantly; see Fig. 3.b. The driving amplitude is a tunneling B-component of the elec-
tromagnetic wave. Several authors have investigated the linear problem, and recently also
the nonlinear situation could be solved.

It has been shown that the normalized amplitude g of the electrostatic field £ ~
gexp(iwyet)E obeys the equation

10q + 2 + plgPg —zg =1 (24)

within the quasi-static approximation. Here the electric field is in units of sin 6By /§, § := |

(\/g)\pe / L)l/s, and p = (sin 6B, /5)2. Note that because of this normalization the driver
(due to By) has the value one. Equation (24) is a driven and (convectively) damped
cubic nonlinear Schrodinger equation in the one-dimensional geometry. The coefficient p
determines the degree of nonlinearity responsible for “anomalous” effects. For small p the
situation is as expected from linear theory. A standing (electrostatic) wave pattern appears,
which for p = 0.3 is shown in Fig. 3.b. Of course it is not exactly of the Airy—functlfm—
form, but only slightly modified due to nonlinearities. Collisional and/or Landau dampu.lg
effects will cause a net transfer of wave energy to particles which has been calculated in
standard literature. Now the new effect: when p is larger than a critical value p, I 0.55,
the situation changes drastically. The big electrostatic hu'rnp at t.he cr.itical dens1ty. (see
Fig. 3.b) moves away from the critical layer, down the density gradient, in for{n of sohtz_mry
waves. The latter are continuously generated at the critical layer, but convect%vely moving
away from the resonance region. The motion is accelerated down the density gradient.
The numerical results and an analytical theory have been published r'ecently whe.re more
details can be found®. The problem turns out to be of fundamental importance in basic
research since it is one of the first examples of a systematic nonlinear dynamlf:s W}th
solitary waves. Here we want to mention only the i.mplic'fmtions for wave absorg')tlon, Le.
the source term in the (particle) energy balance equation. Since tl}e wave pat'tern is moving
away from the linearly expected absorption region, we shall find in the non}lrlllcaar re%}me a
less peaked absorption profile. However, there is another compgtmg, essgntxa y non n'leari
effect which we have to take into account. The model equation (24) is one-dimensiona
in space. However there is no doubt that transverse effects are present. That meins t?}a:t
in Eq. (24) we have to replace 62 —+ V2. Now another (nonlinear) time-scale enters the
picture. Let us exemplify it for the undriven and homogeneous case

i+ Viq+lale=0, (25)

Le. the standard cubic nonlinear Schrodinger equation. (Note that nov;l the pﬁramef::irtﬁ
becomes irrelevant since we can rescale the variable qz) We co;npatr]: tt E n:-%ilriﬁ:sional
the dispersive terms. Since Eq. (25) conserves ! lq] dfsdydil (voer 2_2 IeThus for such
case) we can estimate for a balanced solution |g|* ~ L™ an it d r'ninates and the
perturbations which will shrink the solution (I -+ 0) the nonhneamg ° it can lead fo
solution becomes unstable. This phenomenon is known as COHaPZe h i cticles is taken
a very effective dissipation mechanism. When ‘?h'e interaction ijtt Se ilz:a s simple (and
info account, resonances with the particle velocities can occur. te. 1: ifteraction becomes
oversimplified) picture for such a process. We know that wave part lznsfer via the collapse
significant when k\p ~ O(1). Bstimating k ~ L™, we can ir
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wave energy from small k to large k ~ A;' where the strong dissipation sets in; Fig. 4
reviews schematically the observed phenomena. When monitoring in a particle simulation
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Fig. 4. Summary'® of the basic collapse processes: (a) Increase of the mazimum wave
amplitude during the collapse phase, and subsequent burn-out due to wave-particle interac-

tion. (b) change of electron, ion, and wave energy density due to heating by a collapsing
caviton.

“experiment” the wave energy density one can recognize the effectiveness of such a nonlinear
(anomalous) process; see Fig. 4.h.

In concluding this section we remind the reader that heating of plasmas by waves occurs
besides in laboratory plasmas also in astrophysical plasmas, where many of the phenomena
are still not yet very well understood. The nonlinear process mentioned above could con-
tribute to a better understanding of the observed anomalous behavior.

V. NONLINEAR WAVE PROPAGATION IN RANDOM SYSTEMS

For wave propagation, nonlinearities have the tendency to balance the dispersive broa-
dening. In some situations this could be an overbalance with resulting collapse as we
discussed above. However, in general, nonlinearities help to avoid strong linear dispersive
broadening. The fascinating aspect of this well-known effect is that the balance does not
only occur for a stationary solution, but also survives strong perturbations and even inter-

actions in many cases. The prominent representative of these highly nonlinear phenomena
is the soliton,

For example, one-dimensional plasma oscillations can be described by the cubic nonlinear
Schrédinger equation (25) with V2 = 0;. That equation is completely integrable and can
be considered as a paradigm for solitons. The soliton theory has been confirmed by several
experiments; and nonlinear effects in pulse propagation are well accepted.

Here we would like to introduce another effect of nonlinearity on wave energy transport
which is not so well known but to our opinion equally important. The assumption of
a quiescent medium (plasma) for wave propagation reflects a strong idealization which
will not be true in reality. Therefore the wave propagation in random media has to be
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considered in detail. Let us come back to our paradigm (25) which we now write (in one
space dimension) with a random potential U in the form

z:at(,oﬂn +D ((Pn+1 - 2(;071 + Son—l) + ISDnI2‘Pn + Un‘P’n =0. ‘ (26)

Here, we have discretized the cubic nonlinear Schrodinger equation (index n replaces the
continuous variable # in the previous cases). The reason is that at discrete positions n =
1,2,...,N we place irregularities being caused by external or internal sources. Of course,
this model is for plasma physics applications still at its infancy, but let us nevertheless
anticipate it for the moment since some very interesting ideas can be made plausible from
here.

In a famous paper, Anderson'® showed that randomness causes localization in the linear
Schrédinger equation with a random potential U,. For our application this means that the
transmission coefficient ¢y at n = N falls off exponentially with length Na of the system,

tN ~ €Xp (—Na/Lzoc) N (27)

where Ly, is the localization length. For ¢y = jn/Jo, where j, := /D (e2on-1 — (pngo;ﬂ),
we calculate the ratio of the at n = 0 incoming to the at n = N transmitted current densities
J. An incident wave is scattered back from irregularities and ﬁuctuations?, and that. resu}ts
in the diminishing of the transmission. In long and random systems this process is qu.1te
effective; however, because of space limitations we cannot work out here the quantitative
predictions with plasma physics applications.
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Fig. 5. Two typical solutions™* of Eq. (26). A wave is incident on a ?“agdo? g;ti?dﬁz?
left. (a) Result when the nonlinear term is neglected; the zfransmzsszon. z;t rz;shzctrazjz ’ ortin.
(b) With nonlinearity most of the wave energy s transmitted to.the. Tig d. 3d t tl{)e verg
modes are solitons. Note that in both cases the waves are artificially damped a Y

right end because of numerical reasons.

further increase the “backscatterin_g” due to stimu-
nonlinear wave packets can easier oyercome the
fuctuations. Let us demonstrate this by the re-
for plasma waves. We compare the

Coherent background fluctuations can
lated “parametric” processes. However,
“negative” effects from irregularities and
sults of a numerical simulation™, which may apply
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predictions from linear theory with those of the full nonlinear model (26). Typical runs
are shown in Fig. 5. When the linear system is investigated for various lengths, formula
(27) is confirmed to a good degree of accuracy. The full nonlinear system does not show
Anderson localization. Nonlinear pulses can overcome the disturbances, and they travel
to the right approximately without changes in shape. We can interpret these fundamental
results by a simple picture which is borrowed from transport in nonphysical systems: If
we follow the motion of a single waggon under the influence of fluctuating restoring forces,
one event might be strong enough to stop the forward motion. But if we couple several
waggons to a train, the latter may easier propagate in a random environment because of
its big inertia. The waggon corresponds to a single linear Fourier mode, and the train has
its counterpart in the soliton which is a nonlinear composition of several Fourier modes.
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