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Sequence space representations for zero-solutions
of convolution equations on uliradifferentiable
functions of Roumieu type )

by
REINHOLD MEISE (Disseldorf)

Abstract. Let ,,(R) denote the space of all w-ultradifferentiable functions of Roumieu
type on R and let T, be a convolution operator on &, {K) which admits a fundamental solution
in o (R). We prove that the space ker T, of all zero-solutions of 7, has an absolute basis of
exponential solutions, hence it is isomorphic to 2 Ktthe sequence space A(P () if it is infinite-
dimensional. The K&the matrix P(z) is computed explicitly in terms of @ and the zeros of the
Fourier—Laplace transform of . This result is a consequence of a sequence space representation

for quotients of certain weighted (LF)-algebras of entire functions modulo slowly decreasing
localized ideals.

Classes of non-quasianalytic functions, like the Gevrey classes, were used
by Roumieu [20] to extend the notion of a distribution. Then Chou [7]
studied convolution equations in these classes, using ideas of Ehrenpreis [9]
and Fourier analysis. Recently Braun, Meise and Taylor [5] combined the
approaches of Roumien [20] and Beurling-Bjtrek [2], [4] to intréduce
classes &, (R®) of non-quasianalytic functions which are particularly adapted
to the application of Fourier analysis.

In the present paper we show that for each pEd ) (R) which admits a
fundamental solution ker T,, the space of zero-solutions of the convolution
operator )

Tt BB = BBy Tlf): x = Lys S (=30,

has an absolute Schauder basis consisting of exponential solutions. More-
over, we show that for dimcker T, = co we have a linear topological isomor-
phism between ker T, and the sequence space A(x, B) which is defined in the
following way:

2o B = {xeC |y (1= 3, ol yye™ < o0 : ‘

. for each keN and each yeAds},
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with
Agi={y eRY | lim y;exp(—B;/m) = 0 for each meN),

J—o
where o = ([lma)jn, § = (w(a))jen for an enumeration (@);en Of the zeros
of the Fourier~Laplace transform # of y, counted with multiplicities. Note
that this representation applies in particular to the Gevrey classes Flag(R)
= R, s> 1.

This result is in fact a special case of a theorem on sequence space
representations of guotients of weighted nuclear (LF)-algebras A, of entire
functions modulo closed ideals generated by finitely many slowly decreasing
functions. Its proof is based on ideas and results of Berenstein and Taylor
‘[1}, Meise [14], Meise and Taylor [16], and Taylor [23]. To get the
representation of ker 7, stated above, we use a result of Braun, Meise and
Vogt [€] to show that ped\,,(R) admits a fundamental solution in 7w (R
if and only if g is slowly decreasing in Altma], o+

. The sequence space representation for ker T, derived in the present
paper is used in Braun, Meise and Vogt [6] to characterize the surjectivity of
convolution operators . T,: A¥I(R) — £%¥YR) on the Gevrey classes
FPNR), s > 1. .

The author thanks C. Montes for stimulating conversations on the
subject of the present paper and for drawing his attention to Example 1.9(2).
He also thanks R, Braun for some helpful comments.

1. Weight functions, weighted algebras and some wﬁ...m:nn spaces. In this
preliminary section we introduce the basic notation and we state some
elementary results which will be needed in the sequel.

L1. DemnrTion. A function p: C —[0, oof is called a weight function if
it has the following properties: :

(1) p is continuous and subharmonic,
(2 log(1+]2) =o(p(2)) as lz] tends to co.
(3) There exists d > 0 such that for all zeC
sup p(z+w) < d(1+-inf p(z-+w)).
Iwj€1 . twlg1t o
>.€nmw.rn_ ?.:amon p is called radial if p(z) = p(jz]) for all zeC. .

For a nonempty open set <= C we denote by A(£2) the algebra of all
holomorphic functions on 0,

1.2, DervrioN. Let r be a radial weight function and let g: R ~+[0, oo
be a convex even function which strictly increases on [0, %[ and satisfies

T limr(@/g(®) =0, lmsupg{t+1)/g(t) < co.

t~oo ts
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Then we define

Ay, = {f €A(C)|there exists keN such that for each meN

17T 2= supLF @) exp(—kg(Imz)~r(z)fm) < ool

Obviously we have

Ay, =indprojd(k, m), where Alk, m):= {f€A(O]lfllim <o}

k-t +m

We endow A, with this natural (LF)-space topology.

Using standard arguments, on¢ can show the following:

1.3. ProvosiTion. For r and q as in 1.2, the following holds:
(8) A4, is a nuclear (LF)-algebra with_continious multiplication.
(b) A,.=ind,_.proj., Wk, m), where

Wi 1= {f €A(O|If i := .M [If @ exp(—kq(Imz) . .
’ —r@)/m ) di(z) <0}
and where A denotes the Lebesgue measure on C = R2.

Next we introduce some sequence spaces which we shall use in the
subsequent sections. . :

14. DermuTioN. Let o = (@)in and f = (8));.n be sequences of nonnega-
tive real numbers and let E = (Ej, [[ Il be a sequence of Banach spaces.
For keN and meN we put .

Afle, m, E):= ”x.u Axbg.mzm.mhu_

Wl = 3, Il oxp e+ B/m) < oo,
Kk, m, B):= {x = (X})jen mmmg._ .
il = Supllxsllyexp (- koty— fyfm) < co |,

and we define . o 3
Mo, B, E):=projind Ak, m, E), K, B, E) ;= ind proj K (&, m, E).

-k me-r k— pi
If E=(C, } |)jen» then we just omit the E in n.ro notation introduced above.
1.5. ProrosiTioN. Let «, § and E be as in 1.4, assume dim E; < oo jor all

jeN and put ) . .
T Agi=ly eRY [supy,e ™ < o for each 'meN}.
JeN ;
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Then we have

:spsuvmz@_g.;%u NM_“ __xg_cs%hs
JeN -

Jor all keN, yed,}
and {m.y|keN, yeA,} is a fundamental system of seminorms for i, B, E).
Proof. We define E':= (B}, || |I));y and we fix keN. Then we put

Fpi={ze]] m:wa lzljexp (— ko B)/m) = O for each meN}
JaN e
and endow F, with the Fréchet space topology induced by the norm-system
A__ :a.vimz. where
2l 2 = sup iz ll5exp (—koey— By/m).
Then it follows easily as in Bierstedt, Meise and Summers [3], Thm. 3.4, that

Fy, is a quasi-normable Fréchet space. This implies that (F,), is bornological.
Identifying Ej with E;, thizs gives '

(F; = ind Ak, m, B)
nd

with the canonical bilinear form (x, z) =Y o, (o5 2.
On the other hand, we find as in Bierstedt, Meise and Summers {31,
Thm. 2.7, that with the same bilinear form we have

F = (xe]] By|m,(x) < co for cach yed,}.
. JeN .

Hence the result follows from well-known, properties of projective limits.

1.6. ProrosiTioN. For o, 8 and E as in 14 assume limy ..., B; = 0 and
dimE; < oo for all j&N. Then: ’

() A, B, E) is a complete Schwartz space,

(2 i, B, E), can be identified with K, B, E) under the canonical
bilinear form (x, y>:=Yj0: {x,, Yidi where E' = (B}, || |I))jen-

3y A subset M of K(x, B, E) is equicontinuous with respect to the
identification in (2) iff there exists keN such that for each meN’

supsu texp(—koty—~B,/m) < oo.
ﬁm:m__&__g p(—koy— B;/m)

Proof. (1) It is easy to check that the present hypotheses imply.that for
cach keN the space ind,.A(k, m, E) is a (DFS)-space. This implies that
ind,, . A(k, m, E) is a complete Schwartz space. Hence A(x, 8, E) has this
property, too. B
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(2 Fix keN and let M be an arbitrary bounded subset of
proj ., K{k,.m, E'). Then we have for each meN

supsup iyl exp(—ka;—f;/m) < co. -
yeM JjeN
This implies that
2 1= (sup ||y;lf; exp(~ kot ))sen
yeM
is in Ag. Hence we get for each yeM and each xei(x, 8, B)

IS oo v < 3 el vl

J=t =1

-
= Z. ksl yslye™™ <m0 (9.
By Proposition 1.5, this implies that for eagch yeK (o, 8, E)’ the functional
D) x =3 ey $xp ¥y i in A, B, EY. Moreover, it follows that &:
K(x, B, E) = A(x, B, E), is continuous.
To show that & is also surjective, let Tel(x, B, E)Y be given. By
Proposition 1.5 there exist k€N, zed; and C > 0 such that

4) . IT(%)| < Cmy,(x) for all xel(e, 8, E).

Now note that E; can be identificd canonically with a lincar subspace of
A, B, E). If y; denotes the restriction of T to this subspace, then (4) implies
(5) llyjll < Cz;€9  for each jeN.

From this estimate it is immediate that y := (¥~ is in K (x, 8, E). More-
over, it follows easily that #(y) = T. Hence & is a continuous linear bijection.
Now observe that K({(x, 8, E'} is an (LF)space and that A(a, 8, E)| is
ultrabornological by (1) and Schwartz [22], p. 43. Hence & is a lincar
topological isomorphism by the open mapping theorem. '

(3) If M <A, B, EY is equicontinuous, then the estimate (4) holds for
all TeM, where k, z and C only depend on M. Then (5) implies (3).

1.7. LemMA. Let o, B and E be as in 14 apd assume 1 < ny:=dimE;
< oo for all jeE. Then the estimate

(*#}  There is leN such that for each meN:

mﬁﬁéaxvﬁl?glm\éAoo
jeN .

implies that . . .
Aler, B, E) =A(y, 8), K, B, Ejex HA@.» _mf
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where the sequence 'y (resp. ) is obtained from o (resp. p) by repeating o .y (resp.
B ny times.

Proof. Obviously we can identify A(y, §) with

=1y

w 7
wm = AAM.N...V» M<M:uv.\mz_.~M M _mk.c_.t\wrnw < oo for all & mz' .vm.\::.(.

Next we choose for each j €N an Auerbach basis le;, |1 <v < 7y} of E; with
coefficient functionals {f;,]1 < v < ;) (see e.g. Jarchow [10], p. 291). Using
the identification mentioned above, we define

"
A: A, 0) A, B, B) by  A©) =(D &veslen-

v=

For each k€N, each yed, and each £el(y, §) we have

o M " o M ra
LY uellmeis ¥y 3 ([R5 VT
J=1 =1 J=1 =1
which proves that 4 is a continuous linear map.

. To show that 4 is a topological isomorphism, fix xel(x, 8, E) and look
at the sequence ((<f],,, xhvb_miev\mz. From (x) we see that z :=(n, mxf.v:z
Is in A,. Now let keN and yed, be given. Then.it is easy to check that
(z;Yen is in Ay, too. Hence the estimate

0

o M. .
ket [
\M_ eM“_. [Sjwr X DA€Y < gMH wllxdl; vy e &

8
IF 8
l \:.I%
MM— lxsly g ey el 759% gM_ lxsli; 25 p5 &4 +592

shows that the map

B; 20, B, B) ~+ 4(y, 8), B(x):=((<f,, % M <venens

is linear and continuous. 1t is casy to check that Bod =il and AoB

HE:asb.mgnwso__E\m Eoéaﬁg.?5nx?3.w<m5&5 arguments
one can show K (x, 8, E) ~ K (y, ). '

18. Remark, Let « and & be sequences of. =o.==ammz<¢ real numbers,
They are called eguivalent if there exists A =1 with

oy < A(1-+-&)) and & < A(l+w) for all jeN. '

If o and & and also § and .§ are equivalent then it follows. easily ﬁ.rﬁ for each
sequence E =(E;, || ||,) of Banach-spaces we have

NAR. B, By= hﬁm.. N\u E), K(e, §, By= K&, .w‘. E).
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_.o.m.x.»Zwrmm.Em_owaw:auwmguhwmmcga :Buleﬂ\m....ﬂo.ﬁrmuw
is easily checked that .

A, f) = {xeC|there exists meN: Y |xjexp(8/m) < ool
=1

K(x, p)= {peC¥|for all meN: sup|y]exp(~f,/m) < col.
JeN
Hence A(a, f) is a (DF)-space, while K(z, f) is a Fréchet space.
(2) For « and B as in 1.4 assume liminf; ,cay/B; > 0. Then it is easily
checked that

A, B) = {xeCV|for each keN: ¥ %] exp(ket) < oo},

f=1
K (a, B) = {yeCN|there exists. keN: mc% [l exp (—kot) < o0} .
. Jei
Hence A(x, ff) is a Fréchet space, while X (¢, 8) is a (DF)-space.

L10. Remark. In general, A(x, B) is neither a (DF)- nor an (F)-space. In
fact, there are examples of nuclear spaces A(x, 8) which are neither barrelled
nor bornological and for which A{x, A), = K(«, B) is not sequentially com-~
plete. Such examples can be obtained as follows: Choose increasing se-
quences y and & of positive numbers with lim;..(logj)/y; =0 and
sup;.n(logj)/6; < oo, and put

o

A = [xeC¥|lIxlle:= T, [x/lexp(—7y,/k) < oo for each keN},

=1
Aw(d) 1= {xeCV||Ixll,:= ¥ |xjexp(kd) < co for each keN}.
J=1

Then Ay (y) and A, (5) are nuclear Fréchet spaces. It is easy to check that
Ly (41 (9), A(0) 2 Ay (M), B Aw(d) = A(a, f) for suitable sequences ¢ and B,
Hence it follows from Krone and Vogt [13], 2.1, by Vogt [24], 4.2, that
Ao, f) and K(a, ) have the properties mentioned above.

For a detailed discussion of the question when A(x, ) is barrelled, we
refer to Vogt {25] and [26]. .

2. Sequence space representations of certain quotients of 4,,. In this
section we fix ¢ and r as in 1.2 and we derive a sequence space representa-
tion of 4,, modulo certain closed ideals which are mosnnmﬁnn.c% slowly
decreasing functions in 4,,. . .

21. DermntioN. F = (Fy, ..., Fy) in {4,)" is called slowly decreasing if

there exist a weight function s with s = o(r) and positive numbers L, M, ¢, C
and D such that with p: z+sq{Imz)+s(z) the following holds:
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(1) sup,.c|F,(2) exp(—~Lp@) < M for 1<j< N.
() For each component S of the set

N
5,(F, . C)i= z&C||F (2] := (Y |F)(2)}3)""* < ee~ i}

J=1
we have : '
mm%u@ < D(1+infp(z)), mum%l& < bﬁ+ww.m1§.

zef

Remark. Definition 2.1 can be regarded as an extension of the slowly
decreasing definition of Berenstein and Taylor [1], p. 130, and of the one
which was used implicitly in Meise and Taylor {16]. It looks somewhat
artificial and as if it were invented just to make the proofs of this section
work. However, in Proposition 3.5 we show that for convolution operators
on certain spaces. of uliradifferentiable functions, this condition has an
interesting characterization.

2.2. DermaTion. Let F=(Fy, ..., Fy) €(4,,)" be given.

(2) By I(F) we denote the ideal in 4,, which is algebraically mmbogﬁoa
.—v% N.Juu ey &qz.
_(b) By I (F) we denote the mmn

Loo(F) := {f €A, |[f)s €1, (F) for each aeC},

where [f], denotes the germ of f at a and where I,(F) denotes the ideal
generated by [F],, ..., [FyJs in the algebra ¢, of all holomorphic germs
at a.

It is easy to check that 1, (F) is a closed ideal in 4, , with I(F) = I,,(F).

2.3. Prorosmmion. If Fed,, is slowly &ms.mnm.:m then I(F) =1, (F).
Hence I{F) is closed..

Proof. By the preceding remark it suffices to show I, (F) cI(F). If
gel,.(F) is given, then g/F is in A(C). To show that g/F is even in Agrs
choose s, &, [ and D ‘according to Definition 2.1. mEon g is in 4,, we have

(1} There exists keN such that for nuor §m2 there exists C. 2:.&
__b:w.i < 05.

Since 5= 03 we get for mmnw mé&N and each z¢S, Qu g, C)

g(@
SN

< G exp Awn (Imz) +N r @v "~ eXp (Cq QB.& + Cs(z))

MQ:.Q@A@.TQQQQNY_”.MZEV. o .. .
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By 2.1 and the maximum principle it follows m.oB (2) that for each
component S of .m.uﬁq g, C) we have

13 N.Mw C,.exp AQ?TQWWW p{?) +lwqmwlnvv
- < Chexp ?«+Qb? +wﬁ$+|~m:?+luvvv

< Ciexp Aeﬁ + QEQQE&.TMWW lnvv.

Now (3) and (2) imply g/F €4,,. Hence g =(g/F)F belongs to I(F).
24. LEMMA. For keN ler I?{P,) denote the space

Py := {f e L (O]If3:= .h_”_\E_ exp(—kq(Imz)

" —r(zym]]* di(z) < co for all meN)

which is a Fréchet space if we endow it with the lc. topology induced by the
norms (| Dmew. Then for -each bounded subset B of I*(P,) there mx_ua a
bounded set C in I?(P,) such that for each ueB there exists veC with to =u
in the distributional sense.

Proof. Fix keN and define
Yoi= {f el (PY| &f eL* (P}
endowed with the system (| [|,)men Of norms, where

(PAINEEIPNE ST (IR o)

Then it is easy to check that ¥, is a Fréchet space and that & ¥ —I*(Py) is
continuous and finear. Moreover, Taylor [23], Thm. 5, implies that the proof
of Meise and Taylor [16], 2.1, also applies in the present-situation. Hence
@ Y, = I*(P) is surjective, so that we have the exact sequence of Fréchet
spaces

0—kerddhy ...._vh.uﬁ.b -0, =~

where j denotes the inclusion. The definition of the norms || |ju, meN,
implies zgﬁ the topologies of ¥; and IR coincide on ker & Therefore it
follows from Wioka _“mdu 1, §4,2., that ker is a Fréchet-Schwartz space.
This implies that ker & is quasiinormable. Hence the result follows from
Merzon [19], Thm. 2 (se¢ also De Wilde [8]) and the fact that the topology
of ¥ is stronger z_ma the one which is Em:oma _u% I2(P).
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25. LemMaA. Let F = (Fy, ..., Fyye(A, )Y be slowly decreasing and
choose s, L, M, ¢, C and D according to 2.1. Let Q < A(S,(F, e, C)) be given
a:a%muzim that for some keN and some sequence (D,),on 0f positive numbers
we have

(1) For each feQ, each meN and all zg8,(F, & C)

I @) < Dyexp(kq(lmz)+r(z)/m).

Then there exist positive numbers &y, Cy with 0 <g, <& and Cy >C as well
as leN and a sequence (E,)mw of positive mimbers such thar Jor each feQ
there exist f€A(C) and o€ A(S,(F, &1, Cy)), 1 Sj <N, satisfying (2) and (3):

N
@ S@=F@+ 3 a@FE  for all 2e8,F, u, Cy.
(3) For each meN and all zeC

If @) < E,exp(lg(Im2)+r(z)/m).

H.v_.oon Since p: z+q(lmz)+s(z) is 2 weight function, the arguments
En@ in the proof of Berenstein and Taylor [1], p. 120, imply the existence of
positive numbers &;, C,, 4 and B and of a function xeC*(C) with the
following properties: ’

0<y<l, Supp() <5,(F.s C), g|S,(F,&,C)=1,
&
Tw@

Now fix feQ and’ note that (9/EY(f) = foy/az  vanishes o
Sp(F, ¢, C;), Hence the functions o "

@

< Aexp(Bp(z)) for all zeC,

o -~ FIre 2, 1<,

are in C*(C) and satisly Supp(v) = S, (F, &, O)\S,(F, &,, C,). Because of (1
() and 2.1, the following stimates fold tor 157 < N oty e ot
zeC: .
(5) (@) < MAD,,a™2exp((L +2C+B) p(2)+kq(Im 2)+r(z)/m)
< Dy exp (g (Imz)+2r (z)/m),

‘where 3 ;= k4 L+2C+ B and where Dj, depends on &, M, 4, m, D,,, s and r,
_u_..\w not on 2_0. .mw_.:o:_wn Vi &0. Since r satisfies 1.1(2) there exists a sequence
Ab.suz@z of positive numbers depending on D., r and %, but not on Ji with

© oy @) exp( ~ng (ma) —rym)] A < By -
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for each m eN. Hence the ellipticity of the d-equation and Lemma 2.4 imply
the existence of a sequence (Dj),.y Of positive numbers sach that for
1<j< N there exist u;eC(C) with /7 =v; and

) h [, ()] exp (—xq(im 2)—r GY/m)]* dA(z) < DL
for each melN.
If we define
N
(8) x“n§+&w,._ u Fy

then it follows easily that §7é% =0, ie. feA(C). Next put

. oyi=1|5,(F. e, C;) for I<j<N

and note that :
8o, _ .
m.. = EH_Mtﬁ.m.u 8y, O—V = O- 1.e, Q.&mhAwﬁAmu Ey, QHVV.

Hence (2) follows from (8). To see that (3) holds, note that because of % 2 k it

follows from (1) and (7) that there exists a bounded set B in proj.,, W(x, m) _

with feB for each feQ, which implies (3) by standard arguments.

2.6. TheoreM. Let F =({F,,..., Fy)e{d,)¥ be slowly decreasing and
assume that V(F):=zeC|Fyz) =0 jor 1 <j< N} is an infinite set. Then
Ag i/ Lo (F) is linear ropologically isomorphic to K (3, 8), where the sequences y
and 3 are obtained in the following way: If (@);. is an enumeration of the
points in V(F), each point counted with the multiplicity of the common zero of
(Fys vous Fy)y then

?=(@Uma)en. 6 =(r@))en-

Proof. Choose s, L, M, g C and D according to 2.1 and define the
weight function p by p(z) = g{(Imz)+s(z). Then label the components S of
S,(F, 5, C) with S "V (F) # @ in such a way that the sequence

B 1= {supr(a))en
waly
is increasing and define

o 1= (sup ¢ (Im z) e .
el

Note that 1.1(2) implies lim;.o8; = .’ : .
Next fix jeN and denote by- A4’ (S;) the Banach space of all bounded
holomorphic functions on S; endowed with the supremum norm. Put

.m.h"“ : Qn\HHQﬂV

ass) Dvsﬁdu

.2 ~ Siudin Maghomuties
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and note that the map

@g“ k.ooﬁh\v Iv.m.? b&@v = A_.u.Qu:..TNa A&Jvhm.hhbﬁggu

is a surjective linear map which has a closed kernel, Therefore we can define
[l l; on E; as the quotient norm induced by g L.

(1) el 2= inf il s | 0 A8, @500) = i}

Now let E denote the sequence (Ej, || [|)jen of finite-dimensional normed
spaces. To show that for each f €4, the sequence (g;(f1S));en belongs to
K(x, B, E), we fix fed,,. Then

(2) There exists ke/N such that for each meN there exists C, with
b < Cre

Hence the definition of ¢ and § and (1) imply by (2)

(3} There exists keN such that for each melN there exists C, > 0 such
that for each jeN we have

les (SISl < WISl sy < Conxp ity =+ ).
This shows that the linear map

AA.V o \An... lmmo"u uu sv QA.\,V V= Abu A.\._rm..‘v?ozu
is, continuous, .

To prove that g is surjective, let x = (x,);.y €K {a, 8, E) be given. Then
there exists £ €N such that for each meN there exists D,, >0 with

Nl = m.sw__xh_raxil?lm\é < Dy,
Je

By (1) there is for each jeN an f;eA*(S) with g;(f}) = x; and
Amw ) —_.\..\__189«% < N__XL._?.
Next we define & S,(F, e, C) - C by
.W-ﬁNv . *.\..‘ANV if z mm..?

0 if za8,(F,s, O\ U S;.
JaN

..;ou .w.mmmu k@lﬁ.m.gvmsawoﬁ@m:amhinmn:.oaamor Em?o»ow_
JeN and each zeS; ' .

© 17N = 156N < 204y < 211l m €5 Chery+ B/ mi)
< 2D, exp(kD (1 + p(z))+D (1 +r (@))/m)
< 2D, Lexp {kDg(Im z) +2Dr (z)/m), .
where L depends only on K, D, s and r.
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This shows that f satisfies an estimate: of type 2.5(1).- Therefore, 2.5
implies the existence of f €4, satisfying 2.5(2), (3). Obviously, 2.5(2) implies
o{f) = (%));en- Hence we have shown that the continuous linear map o: 4.,
—+ K (x, B, E} is surjective. By the open mapping theorem for (LF)-spaces, ¢ is
an open map. Since kerg = I, (F), this proves

] Ayl (F) = K (2, B, E).

To obtain the desired sequence space representation from this, note that
by 21, F =(Fy, ..., Fy) is slowly decreasing in A, in the sense of [14], 3.1,
for P = (kp)en- Hence Remark (b) of Cor. 3.8 of [14] implies
{8) ‘There exists l&N with sup(dim E)exp(—/sup p(z)) < co.

. . JeN zeSj

Next note that s = o(r) implies that for each m &N there exists D, > 0 such -
that for all jeN

sup p(z) < supg(Imz)+supsz) < R.M._.P.\E+ba.
=ely ey ze8y

Because of (8) this implies
{9y There exists /eN such that for each meN

sup(dim Ep) exp {—l;— f;/m) < oo,
JeN

By Lemma 1.7, () implies K{x, 8, E) = K (7, 8), where ¥ (resp. ) is obtained
from o (resp. f) by repeating ¢; (vésp. §;) dim E; times. Next note that 2,1(2)
implies that (for a suitable enumeration) § and 3 (resp. § and &) are
equivalent in the sense of 1.8, which implies K (5, §) = K (y, 6). Hence the
result follows from (7).

2.7. Remark. In Theorem 2.6 we can identify X (y, ) with 1(y, 8); by
Proposition 1.6(2). If we do this, then a subset G of A(y, &), is equicontinuous
if and only if there exist keN and a bounded set M in A(k):=
PrOjwrm Ak, m) < A, with G'=g(M). .

‘To see this, note that each set G of this form is certainly equicontinuous
in A(p, o), by L.&(3). To show the converse, let G = A(y, 8), be equicontinuous
and identify K (y, 8 with K (o, 8, E) as in the proof of 2.6. Then an easy
inspection of the proof of 2.6 shows that the functions Jz€4,, with o(f) = x
for xeG are in fact contained in a set M of the requited form. .

3. Kexnels of convolution operaters. In this section we use the resuits of
the preceding one to derive sequence space representations for the kernels of
convolution operators on uliradifferentiable functions of Roumien type.
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3.1. DermviTioN. Let @ be a radial weight function on C with
o)f{zeC]|z| <1} =0 which also satisfies:
() There exists. K > 1 such that for all zeC
@(2) < K (1+o ().
T o)
B n...a i dt <,

Note that by the remark following 1.3 in Meise, Taylor and Vogt [17], we
have lim, ., @ (t)/t = 0.

3.2 .295:.03. For w as in 3.1, the function ¢: [0, co[ —[0, cwol, o(t)
= w(eY, is convex and satisfies lim, ., 1/¢ () = O, Therefore we can define its
Young conjugate ¢*: [0, oo[ —[0, o[ by

@*(y):=sup {xy—(x)|x = 0}.
From Braun, Meise and Taylor [5] we recall:
3.3. Dermvurion. For @ as in 3.1 define ¢ and o* as in 3.2
(@) For an open interval 7 in R we define
AlD = M\mmss_mop. each K < J aoavmon. there exists me N with

L/ llgm : = sUp sup | £ (x)| exp (- * (mj)fm) < oo}
xekK jeNgp

EE. we nam_o,.z () with the Le. topology which is given by taking the
projective limit over K €7 of the inductive lmit over meN,
(b) For a compact interval [a, b] in R we put

D4, b] i= {f& 4y (R)|Supp (f) = [a, BT}
and endow ..&5_?. b] sz.n the induced topology. Then we define
P4y (R) 1= ind Py [ ~n, n].
ne+ .

3.4. Convolution operators an &y (R). In Braun, Meise and Taylor [s], it
was shown that for each ped,, (R) the map 7.: A (R) = &, (R), T,(f)

‘= u=*f, where .

. #s S () = Gy F (x= 1),

Mm ooamnzocm mm.a linear. These. thaps are called convolution operators. It was
o shown in [5] that for ped, (R) and v €@, (R ’, LY /

doficd ._uVs . F:A Aﬁvﬁ v tiem‘.\v?:ﬂxu can be

. @ANTYi= G, B Sy fEPuy(R),

where (i, f> = <u, J'> and fi xif(—x). .
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Then (d)(R), *) is a lo. algebra with continuous multiplication. If
q: R—=[0, cof is defined by g(2):=[t|, then the Fourier-Laplace transform
F: {8 (R}, #) — 4, defined by :

F =i 2 {uy, Nlrﬂv . .
is a topological algebra isomorphism by Braun, Meise and Taylor [5].
Moreover, we have

AHV ° ﬁ".ﬁlﬂoghnv)ﬁw

where My A, 4, denotes the multiplication operator induced by % (ji).

By Braun, Meise and Taylor [5], &,,,(R)} is a complete nuclear space.
Hence ker T, has this property, too. By Schwartz [22], p. 43, this implies that
(ker T.); is ultrabornological. Since the restriction map R: &, (R}, —(ker 7,),
is continuous, linear and surjective by the Hahn-Banach theorem and since
F1o) (R, = A, is an (LF)space by 1.3, the open mapping theorem implies

2 - (ker T = A, (RY/ker R = &, (R)/(ker T)*

Since &, (R) is semireflexive, (ker 7;)* equals the &y (R)~closure of im 7%
Hence (1) and (2) imply .

3 ) ker ), = A,/ 1{F (D),

ﬁraqnﬂrowmoaomdamgmmmbacnondwnrouuwu%“Hwo.wwl.Zonogmn;o
Hahn-Banach theorem implies .

(4) A subset G of (ker 7,) is equicontinuous if and only if there exist kev
and a bounded set M in proj.. 4k, m) = 4,, with G = &$(M).
3.5. ProposiTION. For w as in 3.1 and p &8y, (RY the following conditions
are equivalent: .

(1) £ is slowly decreasing in A, ., where q(t) = |i|.

(2) u admits a fundamental solution Ee% ., ,(RY, ie. u»E = 4.

Proof. By Braun, Meise and Vogt [6], 2.4, 1 admits .a fundamental
solution Eev,,(R) if and only if there exist a radial weight function s
satisfying 3.1(e)~«(B) and neN with s = o(w) and

supf(z)| exp(—n[Imz/—ns(z) < oo,
z&l
such that fi is slowly decreasing in the algebra hu. for p(2) = [Imz{+5(2),
where 4, is defined as . :

A, 1= {feA(C)|there is keN with zww_xﬁ_nxilwﬁﬂu <o}

Because of this characterization it is obvious that (1) implies (2). To show
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that (2) implies (1), one uses property 3.1(z) for w and the diameter estimates
for the components § of S,(F, ¢, C) which have been derived in the proof of
Meise, Taylor and Vogt [17], 2.3. .

m.ontm«ﬂs.ﬁa.m:ﬁ_amninwmS@HomonoM\.ASSmaomsmb"k
~» C by f(x) := xf ¥4, 0 < j < m. By Braun, Meise and Taylor [5], we bave
J; €81 (R). Moreover, it follows easily from the definition of T, that fj eker M
for 0 <j <m. Linear combinations of such zero-solutions of T, are called

exponential solutions of T,,.

3.6, THEOREM. For @ as in 3.1 and He 8, (RY assume that p admits a
Jundamential solution in @, (RY and dimker T, = oo, Then ker T, has an
absolute basis consisting of exponential solutions and ker T, is topologically
isomorphic to (e, B) for o = ({Imay),ey and f = (w(a))an, Where (@) is an
enumeration of the zeros of [i, counted with multiplicities.

Proof. By Proposition 3.5, /i is slowly decreasing in Ay, for g() =.
Obviously, this also holds for . (j): z+sf[i{—z), This implies I1(F ()
= I{(# (i) = L. (# () by 2.3. Therefore, Theorem 2.6 and 3.4(3) show

(ker T}, = A of I{F (1) = K (@, ) = A(a, B

If we identify (ker T,); with 1(x, ), by this isomorphism, then it follows from
3.4(4) and 2.7 that both spaces have the same equicontinuous sets. Since
they are both semireflexive (because of lim; o B; = o), this implies ker T,
= Ao, ). As in Meise, Schwerdtfeger and Taylor [15], we can write out this
isomorphism more explicitly. Then it follows that the images of the canonical
basis vectors in A{a, f}) are in fact expomential solutions.

3.7. Remark. Under the hypotheses of Theorem u..a we also have

Ker T, ~ Alx, B,
whete o = ([Imay))n, Bi={w(Rea))en and (a)ey is as in 3.6.
To see this, note that there exists C > 0 with w(f) < jt|+C for all ¢eR.
This implies for each zeC .
o(z) < w(Rez|+{Imz]) < w(2max(|Rez|, [Imz]))
<K(1 +394Nv+eﬁgmvv < KoRez)+ K Im z|+ K (14 C).
Since w(Re2) < w(z) for all z&C, this implics A(w, ) = A(x, f). .

3.8. CororLary. For e as in 3.1 and 1 E &y, (RY assume that the convolu-
tion operator T,: &, (R) = &) (R) is surjective, that T, admits a continuous
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linear right inverse and that dimker T, = co. Then ker T, is isomorphic to
Ay (B),, where

Ay (B) = {x e CV|||xllm 1= Y. IxJexp(—Bim) < co for all meN}
J=1

and B:=(w(@))en Jor (apen as in 3.6.

Proof. Note that Theorem 44 of Meise and Vogt [18] extends to the
present class &y,,(R). Hence T, admits a fundamenta] solution in @,,(R)". By
Theorem 3.6, this implies ker T, ~ A(z, 8). Now observe that by Meise and
Vogt [18], 4.7 (which also extends to the present class) we have lim;., . «;/f;
= 0. Since 4 (e, f) is nuclear, this and 1.9(1) imply ker T, = A(a, f) =~ 4, (B);.

Remark. Define ne&(R) by p:=8,—5_, and fix @ as in 3.1. Then u
is in &y,)(R)' and ker T, is the space of all 2x-periodic functions in &, (R). It
is easy to show that 7, admits fundamental solutions E, and E.' in
2(R) =« 2,,,(RY with SuppE, —[a, o[ and SuppE. c]—oc0,¥] for
suitable a, b eR. Hence the proof of Meise and Vogt [18], 44, (7)=(1),
shows that T, is surjective on &, (R) and that T, admits a continuous linear
right inverse. By Corollary 3.8, this implies

ker T, 2 Ay (@ (Dye 2l = A1 ({0 Dlyen)s-
This shows that Corollary 3.8 extends the results of Petzsche [21], Sect. 3, to
the-present class &y, (R). )
The observation that the results of Petzsche [21], Sect. 3, ooEm.co
obtained from Komatsu [12], 1.1, by a modification of the arguments of

Berenstein and Taylor [17, Sect. 3, and Meise [14], 3.7, was in fact ithe
starting point for the investigations of the present paper. &

3.9. ExampLE. It is easy to check that the following functions w: C
-10, co[ satisfy all the conditions of 3.1 after a sunitable change on a
compact disk with center zero:

() o@=| O0<a<l,
@ o@=Igt+EPY, ©<x<l, 0<f<ox,
@ 0@ =[l{log+?)’, B>1,
4 o@=(gl+:P), B>1,
() o) =exp(log(t+[A?)), O<a<l. ,

3.10. ExampLe. Let (Mj).n, be a sequence in ({1, oD™® which satisfies:
(M1) M} <M;.; M., foralljeN, .
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(M2) . there exist A, H > 1 with M, < AH" min M;M,_; for all neN,

o<j&n
o0
HEWV~ .\Mu gk.lu\gu < 00,
(M4)  there exists keN with liminf(M W/ MM > 1,
J=reo
and define wy,: € ~[0, co[ by
|z}

. .u: log——M, f
Onele) 1= Ssang o0y 0 o >,

0 for |2/ < 1.

Hwob it follows from Komatsu [113], Sect. 3, and [14], 2.6(2), that e, satisfies
all the conditions in 3.1. Using the notation of Komatsu [11], 2.5, we have

E oy ®) = E*I(R),

From this it follows that for s > 1 and w,: z+|z|'%%, the space Bl (R)
coincides with the Gevzey class S¥°I(R). :

. 3.11. ExampLe. Let co: R —[0, cof be a continuous sven function which
satisfies: :

© O=w()<o@E+)<<o@E+ w(t) for all 5, teR,
+ o eﬁ&.. .

@ ;mo 152 &<
0)  log(l+t) =o(w@) for Jtf —co,

(4) @t »w(e)is convex on R. .

Then it follows from Bjorek [4], 1.2.8, that after a suitable change on a

compact &.mw with center zero, the function ¢&5: z 10 (J2)) satisfies all the
conditions in 3.1. By Braun, Meise and Taylor [5] we have

Ym® = {f € (R)|there exists & > 0: +..,s 17 ) exp (e (2)dt < oo L
S (R) = “.\.ma_AaE.\.mQEAE for each g e 5 (R)}. , *

m&s?.S%?&Em.us.ioaaa?a.x in Mei
Vom L@ def E;. v nm used in Meise and
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