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ABSTRACT

After motivating analytic geometry in infinite dimensional spaces
we give a survey on the local theory of SF-analytic sets and holo-
morphic semi-Fredholm maps. Moreover the notion of minimal embedding
codimension is introduced. It allows to derive gquantitative results

although the dimension may be infinite.

1. MOTIVATION

Analytic geometry in ¢ deals with the geometrical properties
of the sets of solutions of analytic equations defined in an open
subset of ¢". since many interesting equations in analysis like dif-
ferential and integral equations are defined in infinite dimensional
spaces and are analytic or even polynomial it seems reasonable to
develop a concept of analytic gedmetry in infinite dimensional topo-
logical vector spaces. Although in applications mostly real solutions
are considered one hopes that as in finite dimensions the complex
analytic case yields a simpler and more complete theory. But without
further restrictions this is not true: every compact metric space
occurs as the set of solutions of a complex quadratic polynomial equa-
tion in a suitable Banach space [2]. Hence in order to obtain sets
of solutions withnice geometric properties additional conditions have

to be imposed on the regularity of the equation.

We compile some sufficient conditions in the case of Banach

spaces.

Let % and F be complex Banach spaces and £ a domain in E. We
call a map f : R > F holomorphic if it is complex Frechet differen-
tiable or equivalently if it is complex analytic. Df(x) denotes the
differential at . We say that a linear operator 7 : E = F is

splitting if its kernel and its image are complemented subspaces of
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E and P respectively; T will be called a semi-Fredholm operator 1if
it is splitting and continuous and if its kernel or its cokernel (or
both) are finite dimensional. Obviously every Fredholm operator is

semi-Fredholm. The Zndex of T is ¢ndT := dim Ker T - codim ImT.

Let X be a subset of Q. Then we define:

1.1. ¥ is analytie in Q iff X is closed and satisfies the follow-

ing property:

(n) For each =z € X there exists a neighbourhood U, a com-
plex Banach space #, and a holomorphic map ho: U > A
such that x nu = » 2rg).

1.2. X is a complex submanifold of @ iff it is analytic and more-
over the maps % in (A) can be chosen to have surjective and splitting

differentials.

Because of the implicit function theorem we obtain the usual
notion of a complex submanifold as a closed subset which is locally
in appropriate biholomorphic coordinates an open piece of a comple-

mented linear subspace.

1.3. ¥ is finitely defined iff it is analytic and moreover the

Banach spaces # in (A) can be chosen finite dimensional.

The finitely defined sets have been investigated intensively by
Ramis [ 6] and later on by Mazet in locally convex spaces [5]. Be-
cause these sets have finite codimension induction on the codimen-
sion can be used to show that they have nice local geometric proper-
ties (see the next section). Anexample for a finitely defined set is

the set of non-surjective linear Fredholm operators in L(E,F).

1.4. X is finite dimensional analytic iff it is analytic and more-
over the maps % 1in (A) can be chosen to have splitting differentials

with finite dimensional kernels.

Again by the implicit function theorem it is easy to see that an
analytic set X is finite dimensional iff it is locally contained in
a finite dimensional complex submanifold of some open set in £ (No-

tice that in general a finite dimensional analytic set ¥ is not even
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locally contained in a linear subspace). Therefore all local results
about analytic subsets of ¢ hold also for finite dimensional ana-

lytic sets in Banach spaces.

Because an analytic subset in a finite dimensional manifold is

always finitely defined we can state that

1.5. ¥ is finite dimensional analytic <ff it is analytic and more-
over the maps h in (4) can be chosen such that their differentials

are Fredholm operators.

If we call a holomorphic map a Fredholm map or F-map (semi-Fredholm
map or SF-map) iff all differentials are Fredholm (semi-Fredholm)
operators then the finite dimensional analytic sets are precisely the
sets which are locally the fiber of a holomorphic Fredholm map. The
importance of nonlinear Fredholm maps is well known, e.g. elliptic
differential operators with Dirichlet boundary conditions or maps of
the form identity-compact map are Fredholm, and in many cases they

are polynomial hence analytic.

Very often an eguation @y(x) = 0 depends on a parameter y and
one would like to know how the set of solutions changes when the pa-
rameter varies. For example the parameter can be the right side of a
differential equation f(xz) = y; hence it is natural that y varies
in an infinite dimensional space. Consider y as an additional vari-
able and put o{(z,y) := @y(x). Then the shape of ®_Z(0) determines

Y
lomorphic Fredholm map and depends holomorphically on y then & is

J
how the sets Zy r= e 2, (x) = 0} depend on y. If & is a ho-

a holomorphic semi-Fredholm map. Thus the local bifurcation theory of
holomorphic F-maps is related to the local theory of the so-called

SF-analytic sets.

1.6. ¥ is SF-analytic iff it is analytic and moreover the maps % in

(A) can be chosen such that their differentials are SF~operators.

With the aid of the implicit function theorem it can be shown
that an analytic set is SF-analytic iff it is locally contained in a
complex submanifold where it is finitely defined {1]|. Therefore the
SF-analytic sets have essentially the same nice local properties as
the finitely defined sets. Some of them will be presented in the next
section.

The above definitions are also meaningful when £ is a complex

manifold because all occurring notions are local and invariant under
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biholomorphic maps.

2. LOCAL PROPERTIES OF SF-ANALYTIC SETS

At first we recall some fundamental properties of arbitrary ana-

lytic sets [6].

Let X be an analytic set of a domain € in the Banach space F.

The codimension of X in « € X with respect to @ is defined as

$ = codim X := sup {n € W U {0,2}: there exists an affine
complex subspace ¥ of E with dimension # such that zx

is isolated in XN g},

Ramis showed that this definition is invariant under biholomor-
phic maps [6, p. 70, 741, hence it generalizes via charts to complex

Banach manifolds Q.

If no confusion can arise we write simply codimxX. Suppose x €
X, H 1is an affine subspace of £, dim# < codimxX, and x is iso-
lated in X N #. Then for every n € W with dimd < n < codimxX
there exists an affine subspace ¢ such that & C G, dimG = n, and zx
is isolated in X n ¢ [6, II. 3.1.1]. The set of these §'

in the Grassmannian [6, p. 89], therefore

s is open

codimxX 0 Y = min{codim X, codime}

>

for ¥ and Y analytic and z € ¥ N Y. The function T codimx}{ is

upper semicontinuous {6, II. 3.3.17.

A point « € X 1is regulor iff X is near =z a complex submani-
fold, otherwise =z is called singular. The set x* of regular points
is not always dense in X, but every point « where codimxX < @ ig
a cluster point of X* and for every cluster point z the follow-

ing equation holds

codimxX = 1im inf codim X.
yo Y
y € x*

Because a finitely defined analytic set X has everywhere finite co-
dimension X* is dense in X. The closures of the components of X*

are again analytic and form a locally finite decomposition of ¥ into
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irreducible components. Also the germ of a finitely defined analytic
set can be decomposed into finitely many irreducible germs of finitely
defined sets with the usual uniqueness |6, p. 60]. A fundamental re-

sult in [ 6] is

2.1. The local parametrization of finitely defined analytic sets. [et
¥ be a finittely defined analytic subset of a domain § in E. Sup-—

pose 0 € X and X is Zrreducible in 0. Let E = £, x By be a to-
pological decomposition such that 0 <s <isolated im X N ({0} x 9/

and dim B, = codimOX < . Theneach neighbourhood of 0 contains the

product of two balls BZ c Ez and 32 C EZ centered at 0 such that

the canonical projgection T : X N (BJ X BZ) - B

5]

7 78 an analytically

ramified covering map with finitely many sheets in the following sense:

(a) mo Zs finite t.e. W~Z(K) 18 compact and nonempty for evewy
compact nonempty K C B and m := sup {card n? (x) : x € Ez} 718
finite.

(b) The bifurcation set S := {x € B, s card T(_J () < m}l Zg a
finitely defined nowhere dense analytic subset of B, . Xﬂ((BZ-S)XBg)
ts complex submanifold of (52 - 5) x B, and 18 dense in Xﬂ(BZ XB,).
mlx N ((Bz - 8) x Bg) > B, =5 is a locally biholomorphic unramified

covering map with m sheete. [6, 11.2.3.7, II1.2.2.4, II1.2.2.12].

Since SF-analytic sets are locally finitely defined subsets of
submanifolds they enjoy the above mentioned properties. In particular

we obtain the following consequences.

2.2. COROLLARY. Let X be an SF-analytic subset of a Banack mani-
Ffold Q.

(a) X is locally connected by complex arcs i.e. for each x €
X there are arbitrarily small neighbourhoods U of « such that for
each y € U there exists a holomorphic map Y from the open unit disk
D itnto Q with «x,y € y(D) C Xx.

(b) If X is irrveducible then avery non constant holomorphic

funetion on X 18 open.

(c) If X <s irreducible then the maximum principle holds i.e.
a holomorphic function on X is constant if its modulus attains a Lo—
cal maximum.

(d) If X is compact and § is holomorphically separable then
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X Zs finite.

PROOF. (a) Choose for each irreducible component of X at x a local
parametrization as in 2.1. Moreover choose a complex line [ through
m(x) and w(y). Then W_J(L) is a onedimensional analytic set. The

uniformisation of its normalization is isomorpic to D.

(b) By (a) there is through every « € X a complex curve Y

such that foy is not constant and hence open.

(c) follows from (b) and (d) from (c).

The next proposition will serve to define the minimal embedding
codimension of an SF-analytic set in a point. This notion will allow
to prove and to use in the following sections codimension formulas
which correspond to the dimension formulas in finite dimensional com-
plex analysis. Let X be analytic in a domain € of £E. For x € X
let X, be the germ and I, the ideal of germs of holomorphic func-

tions vanishing on Hypo T X 25 TX, := {u € E : u € Ker Du(x) for every

h Ix} is called the tangent space of X in «=.

2.3. LEMMA. If X s finitely defined then F - codimT X < Q - codim X

for every x € X. In particular X 18 complemented.

PROOF. Put p := codimxX and x = 0. Then dim# N X > 0 for every
(p + 1)-dimensional linear subspace # of E and therefore {10} 7
T (EN X)CHNT ¥ Hence codimT X < p.

X X X =

2.4. PROPOSITION. Let X, be the germ of an SF-analytic set at =z €
Q. Denote S(Xx) the set of all germs of complex submanifolds at «x
in which X, is contained and finitely defined. S(x,) is nonempty

and partially ordered by the inclusion. Moreover
(a) Each germ in S(x,) contains a minimal germ.
(b) 5, € 8(x ) dis minimal iff TS, = TX,

(c) Given two minimal germs M, and v, in  S(X,) there exists
a bitholomorphic mapping germ ¢, M > ¥, which induces the iden-

tity on Xx

PROOF. Obviously S(Xx) is nonempty. To prove (a) and (b) let ¥ be
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a complex submanifold of a neighbourhood of x in E which contains
a finitely defined representative X of X_. Then TmX C TacM and

7T M - codim T X < M - codim X .

Suppose T X # T M. Then there exists u € T M, u #Z 0, and fm

€I, with Dfm(;c)u Z 0. We may assume that fx has a representative
f with nonvanishing derivative on M. Then 5 := f_Z (0) 1is a sub-

manifold of ¥ which contains X, and T_g§-codim rx = (T M —codimTrX) - 1.

After finitely many steps we arrive at TwX = ’Z"mS. This S must

be minimal since rxC r. M for every submanifold ¥ with §,CH .

To prove (c) choose a topological decomposition F = TX & H and
representatives ¥ and #& of M, and V.. Locally they are the graphs
of mappings TXx > H. Let 1 be the canonical projection E > TX .

1

Then & := (w|N) " o (w|M) is biholomorphic at z and ¢_ | X, = id.

x
Let M(Xm) be the set of minimal germs in S(X_J. Because of 2.4.
M(Xx) = {M:C : M, 1s the germ of a complex submanifold at « with X

Cc M and TXx = TM } and
x x x
emcodim X : = emcodim X = M - codimX
x x x x

is independent of M. € M(Xoc) and will be called the mintmal embedding

codimension of X in =x.

This notion should not be confused with the embedding codimen-—
sion tc cadimxX in [11]. In general they do not coincide. The above
considerations show that an SF-analytic set X is near a point =z € X
always the zero set of a holomorphic SF-map f with Ker Df(z) = r.x
and codim ImDf(x) < .

2.5. (Local parametrization of SF-analytic sets). Let X be SF-ana-
lytic in a domain N <n E. Suppose 0 € X and X is irreducible in
0. Choose a topological decomposition E = TOX x H and let p:E—*TOX
be the canonical projection. Then p(XO) is a finitely defimned ana-

lytic germ in T, X and codimp(XO) = emcodim X -

Let T X =F; X G be a topological decomposition such that dimG

= emcodim XO and 0 is isolated in p(XO) n ({0} x ¢). Put E2::H>< G.

Then every neighbourhood of x contains the product of two open

balls B, CE, and BZ C E2 centered at 0 such that the canonical
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projection T : X N (BJ x BZ) > B, 18 an analytically ramified cover-

ing map with finitely many sheets in the sense of 2.1.

PROOF. Choose M€ M{(x_ ). Then p induces a biholomorphic mapping

germ p, ¢ ¥ > T X = M . Therefore p(XO) is finitely defined in

T X and codimp(X_ ) = emcodim #,+ Now apply 2.1 to a representative

of p(XO) and the decompostion T X = B, x G.
From 2.5 the local bifurcation theorem in [1] can be derived.

We close this section with some remarks on the intersection of
SF-analytic sets. A closed subset X of a Banach manifold is SF-ana-
lytic iff it is locally the intersection of a complex submanifold ¥
and an analytic set Y where ¥ is finite dimensional or ¥ is fi-

nitely defined.

In general the intersection of two SF-analytic sets X and Y is
not SF-analytic, simply because the intersection of complemented linear

subspace is not always complemented.

2.6. LEMMA. Let X and Y be SF-analytic subsets of a Banach mani-
fold Q.

(a) If Y s finite dimensional or finitely defined then XNY

i85 SF-analytic.

(b) If Y 7<s finitely defined and X 0 Y <fe finite dimensional

then X <Zs finite dimensional.

PROOF. (a) 1is obvious. To prove (b) let z € ¥ N ¥ and M, € M(Xx).
Then (X N Y)x is finitely defined in M,, hence its codimension is
finite. By 2.3

dim TM_ = dim T(X O Y) + codim T(X N Y
x x x

A

dim T(X N Y)  + codim(X N Y) < co.
x x

Therefore X must be finite dimensional in =z.

3. HOLOMORPHIC SF-MAPS
Let @ be a domain in the complex Banach space E. Suppose 0 €

and assume that f : @ > # is a holomorphic map into another Banach
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space F with splitting differential Df(0) i.e. there are topologi-
cal decompositions E = KerDf(0) & M and F = ImDf(0) ® J.Then one
can find a zero neighbourhood U in FE such that

S(x) = ( (x))

Trmpgco) © TF s Txenprio)
maps U biholomorphically onto a zero neighbourhood V in ImDf(0) %
Ker Df(0). Putting % : V = J, hiy,z) := f o ¢—1(y,z) -y one obtains

f o é_i(y,z) =y + hi(y,z) for every (y,2) € V.

Setting Y := (idV,h) o ¢ we can reformulate the local representa-
tion of f in the following way: There are neighbourhoods U' in £
and W' in F x Ker Df(0) such that ¢ : U’ - W' 1is a holomorphic

embedding, Y(0) is an isolated point of (V) N J, and f(x) = 7w, o n(x)

F
for every x € U'. (cf. [9] ).

This local representation holds in particular for holomorphic
SF-maps. If the differential in a point x is (semi~)Fredholm then
automatically all differentials in a neighbourhood are (semi-) Fredholm

as well. This follows from 3.1.

3.1. LEMMA. The set SF(E,F) of semi-Fredholm operators is open in
L(E,F).

PROOF. Let T € SF(E,F) and E = KerT & L, F = ImT &J be topological

decompositions. I := ImT. Since 7. o T|L is isomorphic there is a

I

neighbourhood U of T in L (F,F) such that T, oo S\L is isomorphic

for every S € U. We want to show U C SF(E,F).

Let $ & U. Then wm, : §(L) - I 1is isomorphic, hence S(IL) is

closed.

FIRST CASE: codim I < «, Then ImS has finite codimension and is
therefore complemented. Choose a linear subspace ¥ 2 [ such that
E = M ® Ker $ is an algebraic decomposition. Then S|¥ » Im§ is bi-
jective and induces an isomorphism between M /L and the space
Im S/ S(L) which is finite dimensional because codim S(L) = codim T <,

Consequently ¥ is closed and KXKer S is complemented.

SECOND CASE: dimKer T < =, Then Ker S is also finite dimensional
and has a topological complement ¥ such that M =1 & ¥ with dim¥ <o,



10 AURICH

Because S(L) is complemented and S(¥) is finite dimensional ImS
= 8(M) = S(L) @ S(N) is also complemented.

. =1
3.2. LEMMA. [Let¢t f : 8 > F be a holomorphic SF-map. If X := f (0)
is8 finite dimensional then Ker Df(x) is finite dimensional for every
ze o).

PROOF. Assume dimKer Df (x) = ®. Then codimDf(x) < ©. Choosing near
x biholomorphic coordinates ¢ as above one can consider X near «
as a finitely defined analytic subset of Ker Df(xz), hence X has fi-
nite codimension in Xer Df(xz). This contradicts the finite dimen-

sionality of X.

3.3. DEFINITION AND PROPOSITION. Let X and Y be SF-analytic sub-

ol

cets of domains in Banach spaces E and F. 4 mapping f : X > Y <Zs

called holomorphic in x € X <f for M€ M(Xac) and v, € My, ) with

y = flxz) the germ fp, has a holomorphic extension f‘z poMo >N If

it 28 holomorphic im « then the differential
Df(x) := Df‘x(x) ProX > Ty_Y

is a well-defined continuous linear map. f is called (semi-)Fredhoim

in x (8F or F for short) if Df(x) Zs a (semi-)Fredholm operator.

PROOF. Because of 2.4.(c) the existence of a holomorphic extension

f.r is independent of the particular choice of M, and Ny. In order

to show that Df(x) does not depend on the choice of the extension

Fp let  pocowu, > v, be another one, M, € M(¥ ), 7. € M(Yy)-

Extend F, and f‘a to holomorphic germs éfm and g.. in E and

-
put o, o= Gy = gy - For every u € F’ the germ W o i, vanishes
on X, and therefore D(po ;Z:u) (x) = Yo Dh,(X) vanishes on T.X. Hence
Dh_(x) vanishes on T X and D7 (x) = Df (xz) on T X.

x x x & x

3.4. LEMMA. Let f:X~> Y bea holomorphic map between SF-analytic sets.
If f is (semi~)Fredholm in x € X then f <s (semi-)Fredholm in a

netghbourhood of =x.

Notice that the assertion does not follow immediately from 3.1

because the tangent spaces can change with the base point.
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PROOF. Let y := f(x). Choose representatives ¥ of ¥, € M(x,) and N of
n, = M(Yy) which contain X and Y locally as finitely defined sub-
sets. Let f : M = N Dbe a holomorphic extension of f. Then Df(x)
is (semi-)Fredholm and because of 3.1 Df(z) is (semi-)Fredholm for

every 2 near .
Observe that Df(z) = poDf(z) oj where 4 : r,Xx > T M is the

. : . M N T s . + 3 N : 4

inclusion and p : lf(z)l > ij(z)Y is a projection. Since j and p

are Fredholm operators 0f(z) is (semi-)Fredholm.

3.5. COROLLARY. Suppose X is SF-analytic and Zirreducible in x € X.
Then there exist a neighbourhood U of x in X, a domain V <In «a

Banach space and a [inite surjective holomorphic Fredholm map & : U=V

such that Do(x) is surjective and dimKer D &(x) = emcodimwX.

PROOF. Choose in 2.5 U := x N (B] X BZ), Vo= By, and ¢ = om.
Then D¢(z) is the canonical projection T_X = E; X G > E;, hence it
is surjective and dimKer D ®(x) = dim G = emcodim.rX. By 3.4 U and V

can be made smaller such that all differentials of ¢ are Fredholm.

The permanence properties of holomorphic SF-maps are not very
good. For example the composite of two SF-maps is not always SF (if,
however, one factor is even Fredholm then the composite map is SF).
Moreover the restriction of a holomorphic SF-map f : & = Y to an
SP-analytic subset X of the domain & in E 1is not always SF either.

Counter-examples are easily constructed with linear maps.

3.6. PROPOSITION. Let f : X > Y be a holomorphic SF-map between

SF-analytic subsets of domains Q and = <in Banach spaces. Then the
ibers of [ ore again

~

SF-analytic in §.

PROOF. Let 4 := # '(y) and = € 4. Choose M_ & M(X ) and a holo-
morphic SF-extension g, of fi +to Mz. The fiber g;z(y) is SF-
analytic in M,. Since X, is finitely defined in ¥, Lemma 2.6(a)

implies that A, = ¥, 0 ¢gz'(y) is SF-analytic in M, and hence in @_.

Let us call a closed subset 4 of an SF-analytic subset X of a
Banach manifold & SF-analytic Zn X 1if for every a € A there exists
a neighbourhood U of a 1in X and a holomorphic SF-map f U F
into a Banach space # such that 4 n U = 7 1(0).

Since the restriction of a linear SF-operator to a subspace of
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finite codimension is again SF it is easy to see that a closed set
A C X is SF-analytic in X if and only if for every « € 4 there is
a neighbourhood U in @ and a submanifold M of U such that X N U
is finitely defined in M and 4 N U is SF-analytic in M.

Obviously 3.6 implies the following transitivity result.

3.7. COROLLARY. LlLet X be an SF-analytic subset of a Banach manifold
@ and A C X be SF-analytic in X. Then A is also SF~analytic in Q.

A holomorphic map f : X = Y between SF-analytic sets will be
called an embedding if fF(X) is SF-analytic in Y and 7f|x - £(X) is
a biholomorphic SF-map. f is called an <mmersion in z € X if Dflx)
is an injective SF-operator. As in finite dimensions an immersion is

a local embedding.

3.8. LEMMA. 4 holomorphic map f "X > Y between SF-analytic sets
ig an immersion in x € X tff there are neighbourkoods U of x and

Voof flx) such that flU >V is an embedding.

PROOF. Suppose f is an immersion in . Set y := f{x). Choose L
€ M(Xx), Ny S M(Yy) and a holomorphic extension g, of f,.. Then
ge 15 an immersion in =z and the analogous result for manifolds im-
plies that for appropriate representatives g ¢ M~> N 1is an embed-
ding. Since X N ¥ is finitely defined in u, g(X N M) is finitely
defined in the submanifold g{M) of ¥, hence SF-analytic in ¥. It
follows that f(x N Y) is SF-analytic in ¥ N ».

4. MAPPING THEOREMS

An important theorem in finite dimensional complex analysis is
Remmert's proper mapping which states that a proper holomorphic map-

ping maps analytic sets onto analytic sets.

Recall that a map is called proper if it is continuous and the
preimages of compact sets are compact, and it is called finite if it
is proper and has finite fibers. Two infinite dimensional versions of

the mapping theorem are known. The first one is proved in [6,9]:

Let @ and E be Banack manifolds and f:Q>E a holomorphic
Fredholm map. If X C Q s a finitely defined analytic set and flx

is proper then Ff(X) i{s a Finitely defined analytic subset of E.



LOCAL ANALYTIC GEOMETRY 13

The second one is found in [9, 10, 4, 5] (in different generaliza-

tions):

Let X be loecally finite dimensional complex space, E g Banach
manifold and f : X > E a proper holomorphic map. Then f(X) & a

finite dimenstional analytic subset of Z.

We shall derive a mapping theorem for finite SF-maps. At first

a local version.

4.1. THEOREM. Let X be an SF-analytic subset of a domain & in the
Banach space E, and f : X > F a holomorphic map into a Banach space
F. Suppose « € X +is isolated in the fiber f_z(f(x)) and Df(x) Zs

semi-Fredholm.

Then there ave arbitrarily small open neighbourhoods U of x and
v of f(x) such that f(U) CV and

(a) Flv - v is fpinite.

(b) F(U) is analytic in V. If indDf(x) > — @ then f(U) ts

finitely defined and

codimf(x)f(U) = emcodimxX - ind Df(x).

(c) FlU » F(U) <s open in x <Z.e. f maps neighbourhoods of x

onto neighbourhoods of flx).

PROOF. We may assume that ¥ lies in £ with minimal codimension and

that ¢ is a holomorphic SF-extension of f to . Because of 2.6(b)
g_z(f(x)) is finite dimensional and 3.2 implies dim Ker Dg(x) < o,
Assume « = 0 and g(x) = 0. Choose a local representation of g in
terms of ¢, U’, and W' as in the beginning of section 3. Since 0
is isolated in f 1(0) N ¥ there is a ball B in KerDg(0) with
center 0 such that $(X) and {0} x 3B C F x Ker Dg(0) do not meet.
y(x) is closed in #¥' and {0} x 8B is compact because Ker Dg(0) is
finitedimensional. Therefore there exists a zero neighbourhood V in
F and positive reals r < s such that (X)) and V x (B(0,s8) = B(0,7))
V(X) 0 (V x B(O,s)) —~ V  is
7

are disjoint. Hence the projection ﬂFl

finite. Putting U = U' N g—Z(V) N ¥ and observing T o Yiu = f

we obtain that F|U = V 1is finite. This prove (a).

(b) and (c) follow from a theorem on the projection of analytic
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sets applied to TTF‘V x B(0,s8) > V (see prop. II. 3.7 and III. 2.2.1
in[61]).

This result corresponds to a well-known theorem of finite dimen-
sional complex analysis (see e.g. [3, Th. 3.2(b), p. 1337). The

usual dimension formula
dsz(x)j(U) = dim X

can be transformed into the codimension formula in 4.1. If E and F
are finite dimensional and X is embedded into EF with minimal codi-

mension in x then

tnd Df(x) = dimE - dimF

and

codimf(x)f(U) = dimF —dimf(x)f(ll)

= dimE& - indDf(x) - dim o)

Flx)

= codimxX -~ ind Df(x).

4.2. THEOREM. Let f : ¥ > Y be a finite holomorphic SF-map between
SF-analytic sets in Banach manifolds. Then F£(X) ie analytie. If

ind f > - ® then f(X) i finitely defined and

Y - codimyf(X) = min {emcodvlmxX - emc-odimyl/ - ndDf(z) : x € f—z ()} .

PROOF. f(X) 1is closed since f is proper. Let y € f(X) and f_z(y)

= {xz,...,xn}. Because [ 1s proper there are neighbourhoods V of y
and U; of w; such that the U; are pairwise disjoint and f (V)
= u {UJ- 2§ = 1,...,n}. Moreover we may assume that V lies in a do-
main = of a Banach space with minimal codimension in Y. According
to 4.1 we can make Z and U;j smaller such that each f(Uj) is
analytic in =, and if <nd Df(xj) > — oo then

I

= codim f(U.) = emcodim_ X -~ ind Df (x,).
Y J -xJ J

Hence f(X) N ¥V 1is analytic and the above formula holds.
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Tn finite dimensions
emecodim X - emcodim Y - ind Df (x) = dim ¥ - dim X
x y y x
and therefore the above formula is transformed to

din,f(1) = max {dim X : = € et

5. LOCAL FACTORIZATION

In this section it is shown that a holomorphic SF-map can be
locally factored into a finite map and a projection as it is the case
in finite dimensions (see e.g. [3] ). As a consequence the fiber di-

mension is semi-continuous.

§.1. PROPOSITION. Let f : X > Y be a holomorphic SF-map between
SF-analytic sets and x € X. Then there are arbitrarily small open
neighbourhoods U of =z, V of f(x), a domain W in a Banach spoce G,
and a finite holomorphic SF-map X : U > V X ¥ such that the follow-

ing diagram commutes:

x(U) is analytic in V X W and X : U = X(U) is open in Z. If k:=

AN

dim £ L(f(x)) < « and ind Df(z) > - » then x(U) s finit
fined and

21y de-

0

ind DX (x) = ind Df (x) - k,

codim X(U) = emcodim X - emcodim Y - Znd Df(x) + k.

X{(x) flx)

Let us remark that in finite dimensions the above formula cor-

responds to the well-known dimensions formula

dim X(U) = dim X - k
x

X(x)

because
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emcodimx}( ~ emcodim Y - ZindDf(x) = dim, Y - dimxX.

flx) Flx)

PROOF. According to 3.5 there exist a neighbourhood V. of =z in
Fi(r(z)), a domain ¥ in a Banach space (¢ and a finite holomorphic
SF-map ¢ : V > ¥ with dimKer Do(x) < » and ImDO(x) = G. ® can
be extended to a holomorphic map ¢ : U = ¥ 1in a neighbourhood U of
z in X. Define X := (f|U,y) : U > ¥ X W. Then the above diagram

commutes and
Ker Dx(x) = Rer Df(x) N Ker D(x) = Ker DO (x)
hence

dimKer DX (x) = dim Ker DO(x) < oo,

To see that ImDX(xz) is complemented apply Lemma 5.2 below to

T, :=Dflz), Ty := Dy(x), and G, = {0}. Thus Dx(z) is semi-Fredholm.

If k= dim TN (f(2)) <« then dimKerDf(z) < = by 3.2 and
dim Ker DX (x) = dim Ker DO(z) = dim Ker Dflx) = dim ImD®(x),
codim Im DX (x) = codim ImDf(z) + codim Im De(x) = codim ImDf(x).
Because of dimImDo(x) = dim¢ = % (¢ is finite) one obtains
indDx(x) = ind D flx) - k.

Since x is isolated in the fiber X_Z(X (x)) Theorem 4.1 can be ap-
plied to obtain the other assertion (for possibly smaller U, 7V, and
W) .

5.2. LEMMA. Let E,F, and G he Banach spaces, T, + E - F and
T, : E > G be continuous linear maps. Suppose ImT :Im(TZIKerT]) and

2
F = Im 7, ® F, and G = Im 7, ® Go are topological decompositions.

Define T := (T],TZ) D E > F X G. Then ImT = ImT, x ImT and

1 2

FXG:ImTG)(FOXGo)

s a topological decomposition.
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PROOF. Let £ = E] X Ker TZ' Then

Im7 = T(E;) + T(Ker T,) = T(E,) + ({0} x T (Ker T))) = In Ty x Im Tp.
It is easy to see that the stated decomposition is algebraically cor-
rect. Since all factors are closed the decomposition 1s a topo-

logical one.

5.3. COROLLARY (Semi-continuity of the fiber dimension). Let f : X
> Y be g holomorphic SF-map between SF-analytic sets. Then for every

x € X there is a neighbourhood U such that
dim?f_z(f(z)) < dimxf_z(f(x)) for every z €U
i.e. the function =z H'dimmf_z(f(x)) 18 upper semi-continuous.

PROOF. Suppose k := dim f—z(f(x)) < » (otherwise the inequality is
trivial). Choose the local situation as in 5.1. Then X|?z(f(m))f\v
-~ {f(z)} x W 1is finite for every =z € U and the inequality follows

from 4.1(b) or from the corresponding finite dimensional result.

The rank theorem in {12] has a counterpart for SF-maps with con-

stant fiber dimension.

5.4. FACTORIZATION LEMMA. Let f : X > Y be a holomorphic SF-map
between SF-analytic sets. Suppose that for every z in a netghbour-
hood of « € X the dimension of the fiber f—z(f(z)) in 2 18 the
same finite number k. Then there are arbitrarily small open mneigh-
bourhoods U of x and V of flz), a domain W in Wk, an analytic
subset V' of V and a finite surjective holomorphic map X':U~> VIXW

such that the following diagram commutes

u —— V! x W

flu J Ty
¥
V +— y!

If indDf(x) > - o then V' is finitely defined and

codim )f(U) = emcodimxX - emcodim Y -"4nd D f(z) + k.

flz flz)
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If X and Y are manifolds then the above formula can be written in

a symmetrical form

codim ImDf(z) - codimf(y)f(U) = dim Kevr Df(x) - dimzf_z(f(z)).

Again notice that for finite dimensional X and Y this codimen-

sion formula is equivalent to

;. ;. 5 . -1 .

damf(z)f(U) = dim X - dim f T (f(z)).
PROQF. Choose the local situation as in 5.1. Put X(xz) = (f(x),0).
Then A4 := X(U) 0 (v x {0} is analytic in Vv x {0} and V' := m (4)

is analytic in V.

For each y € f(U) the map x|f '(y) 0 v~ {y} x ¥ is finite
and surjective since W 1is a domain with the dimension of f_z(y).
Hence X(U) = V' x W. Define x' :=Xx|U > V' x W,

If <ndDf(x) > - < then X(UJ) is finitely defined in Vox W
and hence V' is so in V. The codimension formula follows from 5.1

and from

- ¢ [ 7 - ;. 1ox = : i
4 codamf(z)V (V x W) coaimx(z)V W codimx(z)x(b).

If X and Y are manifolds then the embedding codimensions vanish

and the stated formula follows from

indDf(z) = dim Ker Df(z) - codim ImDf(z).

6. A CRITERION FOR OPENESS

Immediately from 5.1 there follows a criterion for openess of

holomorphic F-maps.

6.1. PROPOSITION. Zet f : X > Y be a holomorphic F-map between
SF-analytic sets. If

emcodimf(w)Y - emcodimxX = dimxf_z(f(x)) - ind Df(x)

then f 1is open in .

For manifolds the converse implication holds also.
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6.2. THEOREM. [Let f : X > Y be a holomorphic F-map between mani-
Ffolds. Then f <Zs open if and only If

din f 1(f(z)) = ind Df(z)  for every € K.

(Notice that ind Df(xz) is constant if X is connected).

PROOF. Suppose that f is open and that « € X. We may assume that
X and Y are domains in Banach spaces £ and F. Define K:=KerDf(x)
and I := ImDf(xz). Choose local coordinates such that E =TI x K,
F=1IxJd, and f(y,z) = (y,h(y,z)) for (y,z) € U C I x K where
W o: U > I and z = (0,0). We show that #&(y, *) is open for each
y. Let 7V be open in X and ¥ be an open neighbourhood of y. Then

Ff(W x V) 1is open, hence
(lyt x 7)) n F(W x V) = ({yl x g) n f£{y} x v)
= f({y}r x v) = {y} x wi{y} = V)

is open in {yl} x J.

In particular ¢ := h(0, *) : X 0N Ker Df(x) - J 1s open. The
criterion for openess in finite dimensions (see e.g. [3, p. 145]) im-
plies dim KerDf(x) = dimdJ + dim Og_z(g(())). Since g_z(g(O)) =
f_z(f'(ac)) N U and <ndDf(x) = dimKerDf(x) - dimd we obtain

dimxf"z(f(m)) = indDf(x).

7. THE SINGULAR SET OF A HOLOMORPHIC FREDHOLM MAP

The singular set S(f) of a holomorphic map f : ¥ = Y between
Banach maniforlds & and Y 1is the set of all points x € X in which
the differentials ©Df(xz) are not surjective. For Fredholm maps f this
set is finitely defined analytic and its codimension can be esti~

mated as in finite dimensions (see e.g. [3, p. 971).

7.1. LEMMA. TLet A and B be analytic subsets of a Banach manifold

2. Suppose B is near « € 4 N B a submanifold. Then

Q - codirnx/l > B - codimx/l n B.

PROOF. We may assume that 2 is a domain in a Banach space £ and B
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is near z a complemented linear subspace of F. Then there 1is a
linear subspace ¢ of B with dimC = B - codim A N B such that =

X
is isolated in 4 N B N ¢. Therefore - codimxA > dim C.

7.2. LEMMA. Let f : X > Y be a holomorphic map between Banach mani-
folds and Z be an analytic subset of Y. Then

codim z > codimrf_z(z) for every x € f " (Z).

flx)
PROOF. Define Q := X X Y, B := graph f, 4 := ¥ x Z and apply 7.1.

7.3. PROPOSITION. Let E and F be Banach spaces. The set Fo of
nonsurjective linear Fredholm operators is a finitely defined analytic
subset of the set F(E,F) of all ilinear Fredholm operators. Moreover

;

codv,'mTFO < tndT + 1 for every T € FO with indT > 0.

PROOF. In [1] it is proved that FO is a finitely defined analytic
subset of F(E,F). More precisely it is shown that in a neighbourhood
U of T & F_ there exists a holomorphic map V¥ : U = L(X,J) such
that K = Ker T, J 1is a complement of /m T and FO is the preimage
LP—Z(L’O) of the set L’O of nonsurjective operators in £ (k,J). Notice
that £(X,J) is a finite dimensional vector space. Now suppose indT
> 0. Then dimXk > dimdJ and the nonsurjective linear operators from
K to J are exactly those linear operators the rank of which 1is
strictly smaller than dimJ. According to [3, p.98] they form an
irreducible analytic subset of £(X,J) with the codimensicn dimK -

dimd + 1 = ZndT + 1. With 7.2 one obtains

. — - L T4 1 7 . _ - -
codimyF = codimy “(L_ ) < codim £O =<ndT + 1.

7.4. THEOREM. [Let f : X > Y be a holomorphic Fredholm map between
Banach manifolds with <ndDf(x) > 0 for every « € X, Then S(f) is

a finitely dejined analytic subset of X and codimws(f'/' < Ind Dff(x) + 1
»

L

for every x € S(f).

PROOF. We may assume that X and Y are domains in Banach spaces E
and F. Then Df : X > F(¥,F) is holomorphic and S(f) = (Df)—l(FO).
Now apply 7.2 and 7.3.
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7.5. COROLLARY. Let X and Y be connected Banach manifolds and f :
¥ = Y a finite holomorphic Fredholm map with nonnegative index. Then
S(f), € := f(8(f)), and f_z(c) are analytic subsets with codimension

¥ -7 ic) > v -¢C s a covering map.

one and f

PROOF. <<nd Df(x) 1is constant and because of 4.1 it vanishes, and
f£{x) is open. Therefore f is surjective. According to the theorem
of Sard-Smale [12] the set of critical values (¢ 1is meager in v,
hence ¢ # Y, f—Z(C) £ X, and S(f) # X. By 7.4 codimS(f) =1 and
by 4.2 ¢ = f(S(f)) is analytic and onecodimensional. f |X - f—Z(C)
is locally biholomorphic because the differentials are 1isomorphic
since their index is zero. The map is also finite, hence it 1is a

covering map.

8. GRAPH THEOREMS

Graph theorems characterize the regularity of a map by geometri-
cal properties of its graph, for example continuity by closedness.

Recall the following characterizations of differentiability.

l. Amap f : X = Y between complex (or real CP—) Banach manifolds
is holomorphic {(or real ¢"- differentiable) if and only 1if its
graph TI' is a complex (or real c¥ -) submanifold of X X Y and if

for every (x,y) € I' the tangent space of I' in (x,y) 1is a topo-

logical complement of {0} x TyY in T X x TyY.

2. If X and Y are (locally finite dimensional) reduced complex spaces
and X is normal then Remmert proved that a map f ¢ X > Y 1is holo-
morphic if and only if its graph I 1is analytic in X x ¥ and if

dim(x’y)F = dlmxX for every (xz,Y) €T [8].

In [1] it is shown that in infinite dimensions the analyticity
of the graph is too weak to guarantee that the map 1s holomorphic.
There exists a map from the open unit disk into a Banach space which
is a homeomorphism onto its image and has an analytic graph but is
not hoiomorphic. Holomorphy can, however, be characterized by the

SF-analyticity of the graph.

8.3. THEOREM. Let f : Q = F be a map from the domain jSna“&mmq@E'

space E into the Banach space F and let T be its graph, Théw the

following properties are equivaient:
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(i) f Zs holomorphic.

(1i) T 45 an SF-analytic subset of Q X F and moreover HEU;F)

= E; and emeodimpF = dim(TpF N ({0} x F)} for every p € T.

(1ii1) For every p € Q X F  theve are a neighbourhood U and a

holomorphic map © : U > H 4in a Banach space H such that rnuy =

®_z(0) and D,8(p) is a Fredholm operator with index 0.

PROOF. The equivalence of (i) and (iii) is proved in [1]. (i) im-
plies (ii) because of 8.1. Thus it remains to show that (ii) implies
(i) .

Let p = (x,y) € T. Then there are a neighbourhood U of p, a
complex submanifold ¥ of U and a topological decomposition Fo=

Fz ® F2 such that 'ty < p, dimﬁﬁ = emcodimDF = M<—ccdimpr, T M o=

g xF,, and p is isolated in I'n ({g} x Fj)i Making U smaller we
can achieve that the projection E % F = g x 7, induces a biholomor-
phic map % : ¥ > V onto a domain V in F x F;. The set A := a(l)

is a finitely defined analytic subset of V. Making again V smaller
we may assume that 4 is the finite union of finitely defined analytic
sets which are irreducible in p. Because of 2.1 we can find one of
them, say Aj , such that the projection E x FZ - F induces an ana-
lytically ramified covering map from A; onto a neighhourhood of =z.
Since I' is the graph of a map this covering has only one sheet and
furthermore A
cause 4 1is a submanifold outside of the bifurcation set it is the

must be the only irreducible component of A4, Be-

graph of a locally bounded map g W~ Fy from a neighbourhood W
of x in E into F; which is holomorphic outside of proper analytic
subset of W. The Riemann removable singularity theorem [6, p. 24]
implies that g is holomorphic everywhere. Hence f|¥ = h~1 o g is

holomorphic.
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