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Summary
In the thesis at hand we investigate the dynamics of open quantum systems. Within
the present studies the environment of the systems of interest is both bosonic or
fermionic in nature. The aim of this work is to account for non-Markovian effects
within the real-time dynamics and to demonstrate their relevance for a thorough
understanding of the underlying dynamical processes.

After an introductory chapter which motivates the studies presented in the thesis
we first give an introduction on the dynamics of open quantum systems in chapter 2.
Here, the underlying formalism essential for the thesis is presented and we elucidate
further the similarities of the specific chapters of this work.

In chapter 3 we investigate the real-time dynamics of a donor based charge qubit.
Here, the charge qubit is coupled to a bosonic environment of phonons which consti-
tutes a specific spectral density. We improve the numerically exact QUAPI method
introduced in detail here at one important step. This well established method allows
for including all non-Markovian effects and is also the method we use in chapter 4
and 5. Our results indicate that phonons are not the main source for dissipation
and decoherence within the donor based charge qubit, but represent an upper limit
for decoherence.

Chapter 4 is concerned with an externally driven two-level system coupled to an
Ohmic environment. This is a realistic model for light-harvesting biomolecules and
we concentrate on the influence of the cut-off frequency of the environment. For
these biomolecular systems this frequency is of the order of characteristic system
energies which renders the dissipative dynamics highly non-Markovian. We identify
a resonant behavior of the amplitude of the forced oscillations in the long-time
limit. It turns out that a non-Markovian environment plays a constructive role in
protecting the coherent quantum dynamics over a certain period of time.

In chapter 5 we extend the model on two Förster coupled biomolecules coupled
to a common Ohmic environment. Since this constitutes a bipartite system we
investigate the underlying dissipative dynamics of entanglement. We show that an
initially entangled state of the two biomolecules is more robust when subjected to a
slow environment. Moreover it turns out that a non-Markovian environment plays a
constructive role in generating entanglement in these biomolecular structures, which
holds up to temperatures well beyond the excitonic gap.

Within chapter 6 we have analyzed the nonequilibrium transport properties of an
Anderson quantum dot attached to metallic, i.e., fermionic, leads. Here, we present
the newly developed ISPI scheme, a novel numerical scheme in order to compute
the underlying real-time fermionic path integral in an ab-initio deterministic way.
Similar to the QUAPI method the ISPI scheme is rooted upon the fact that time
non-local correlation functions can be truncated after a certain memory time and
thus non-Markovian features are fully taken into account. To check the validity of
our novel scheme we compare our results with known results in different parameter
regimes and find good agreement with the outcome of approximative approaches.





Zusammenfassung
In der vorliegenden Arbeit beschäftigen wir uns mit der dissipativen Dynamik offener
Quantensysteme. Hierbei ist die Umgebung der im Rahmen dieser Arbeit untersuchten
Systeme bosonischer oder fermionischer Natur. Das Hauptziel der vorliegenden Unter-
suchungen besteht darin nicht-Markovsche Effekte innerhalb der Realzeitdynamik voll zu
berücksichtigen und deren Relevanz für ein tieferes Verständnis der zugrundeliegenden
dynamischen Prozesse zu verdeutlichen.

Nach einem einleitenden Kapitel, welches die einzelnen Untersuchungen der Arbeit
motiviert, geben wir in Kapitel 2 zunächst eine Einführung in die Dynamik offener Quan-
tensysteme, wobei dort der für diese Arbeit essentielle Formalismus sowie die Gemein-
samkeiten der einzelnen Kapitel verdeutlicht werden.

In Kapitel 3 untersuchen wir die Realzeitdynamik eines Donor basierten Ladungsquan-
tenbits, welches in eine aus Phononen bestehende bosonische Umgebung eingebettet ist, die
eine spezifische Spektraldichte aufweist. Um nicht-Markovsche Effekte zu berücksichtigen,
führen wir die etablierte QUAPI Methode ein, die in einem entscheidenden Schritt op-
timiert worden ist und auch in den Kapiteln 4 und 5 genutzt wird. Unsere Ergeb-
nisse zeigen, daß Phononen nicht als Hauptursache für Dekohärenz eines Donor basierten
Ladungsquantenbits angesehen werden können; gleichwohl repräsentieren sie ein oberes
Limit für Dekohärenz, welches nicht überschritten werden kann.

Kapitel 4 thematisiert ein getriebenes zwei-Niveau System, welches an ein Ohmsches
Bad koppelt. Dieses Modell ist realistisch für lichteinfangende Biomoleküle und wir
konzentrieren uns auf den Einfluß der Grenzfrequenz der Umgebung. Innerhalb solcher
biomolekularer Strukturen ist die Grenzfrequenz in der gleichen Größenordnung wie rele-
vante Systemenergien, was zu einer hochgradig nicht-Markovschen dissipativen Dynamik
führt. Wir identifizieren ein resonantes Verhalten der Amplitude der getriebenen Oszilla-
tionen im Langzeitlimit und es stellt sich heraus, daß eine nicht-Markovsche Umgebung
eine konstruktive Rolle im Erhalt quantenkohärenter Dynamik spielt.

In Kapitel 5 wird dieses Modell auf zwei Förster-gekoppelte Biomoleküle erweitert, die
an ein gemeinsames Ohmsches Bad koppeln. Dies ist ein zweiteiliges System und wir un-
tersuchen die zugrundeliegende dissipative Verschränkungsdynamik. Es wird gezeigt, daß
ein anfangs verschränkter Zustand der beiden Biomoleküle stabiler ist, wenn er unter dem
Einfluß einer langsamen Umgebung ist. Darüberhinaus stellt sich heraus, daß eine nicht-
Markovsche Umgebung einen konstruktiven Einfluß auf die Erzeugung von Verschränkung
innerhalb biomolekularer Strukturen hat, bis hin zu Temperaturen weit oberhalb der exzi-
tonischen Lücke.

Innerhalb des Kapitel 6 untersuchen wir den Nichtgleichgewichtstransport durch einen
Anderson Quantenpunkt, der an metallische, d.h. fermionische, Zuleitungen koppelt.
Wir führen den neu entwickelten ISPI Algorithmus ein, welcher dazu dient das zugrun-
deliegende fermionische Realzeit Pfadintegral in ab-initio deterministischer Weise zu berech-
nen. In ähnlicher Weise wie die QUAPI Methode baut ISPI darauf auf, daß zeitlich nicht-
lokale Korrelationen nach einer charakteristischen Gedächtniszeit trunkiert werden können
und so nicht-Markovsche Effekte voll berücksichtigt werden können. Um die Verläßlichkeit
des neuen Algorithmus zu verifiziern vergleichen wir unsere Resultate mit bekannten
Ergebnissen in verschiedenen Parameterbereichen und finden gute Übereinstimmung mit
approximativen Methoden.
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Chapter 1

Introduction

Over the past three decades, systems intermediate between macroscopic and micro-
scopic scales, where quantum coherence becomes relevant, have developed into the
main focus of research in condensed-matter physics. To characterize this field the
notion mesoscopic physics has been assigned to term this field.

When one is interested in the dynamical processes in complex many-body sys-
tems, one usually applies an external force to the system of interest. This force drives
the system out of equilibrium and one then measures the time-dependent response of
the system on that force. Well established experimental setups are quasielastic and
inelastic scattering of photons, electrons or neutrons off a sample. Information on
the system dynamics is then obtained from the line shape of the measured spectra.
Other experimental methods are, e.g. spin relaxation experiments or the measure-
ment of transport characteristics. All these experiments yield information about the
behavior of the dynamical fluctuations due to the external force. The theoretical
description of these phenomena is based on correlation functions. In that sense time
correlation functions are within the center of interest of theoretical studies of the
relaxation and transport properties of non-equilibrium systems.

A central idea for any real dissipative system is the separation of a global quan-
tum system into a subsystem of interest and the environment which is supposed to
be in thermal equilibrium. Since the system of interest is coupled to a quantum-
statistical environment this results in a fluctuating force. This force acts on the
system of interest and though reflects the properties of the environment. It is one
central feature of the fluctuating force to cause decoherence and dissipation.

Decoherence is known as the phenomenon that the superposition of macroscopi-
cally pronounced states decays on a short time scale. Since information about quan-
tum interferences is carried away in any physical form into the surrounding (even
by means of a microscopic object or in an uncontrollable, that is thermal form, from
which the phase information cannot be retrieved in a practical way), decoherence is
present for any realistic system showing quantum interference effects.

From the point of view of the measurement process, which is a central point in
the interpretation of quantum theory, the environment plays the role of a constant
macroscopic measurement apparatus, leading to a persistent destruction of phase
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1. INTRODUCTION

correlations. A consistent theoretical description of dissipation and decoherence
phenomena in open quantum systems has to take into account all time non-local
correlations, since, as will become clear from chapter 2, the autocorrelation function
of the environment has a certain width. These time non-local correlations are termed
non-Markovian or memory effects. If these memory effects are not taken into account
one has to validate carefully for which physical situation they can safely be neglected.

Besides these conceptual and fundamental issues, quantum physics nowadays
plays a fundamental role in many technological areas. One of the most fascinat-
ing areas that has made great effort during the past decades is quantum informa-
tion technology. On the one hand nowadays nanofabricated semiconductor based
quantum dots allow for controllable single electron transport and the detailed under-
standing of the transport properties is challenging. On the other hand entanglement
as a fundamental consequence of the quantum-mechanical superposition principle
is nowadays expected to be one of the main resources for quantum information
processing. Clearly all these systems and concepts suffer from decoherence and dis-
sipation and thus a comprehensive qualitative and quantitative understanding of the
underlying processes is desirable.

In the remainder of this chapter we give motivation and introductory paragraphs
to the chapters 3-6 where the results of the thesis at hand are presented. Chapter
2 gives a short introduction on the concepts of open quantum systems and on the
formalism relevant for this work.

Phonon-induced decoherence and dissipation in donor-based
charge qubits

As a first system on which we examine the influence of time non-local correla-
tions on the dynamics of the system we choose in chapter 3 a solid-state based
charge qubit embedded in a dissipative phonon environment. The choice of such a
system is motivated by the fact that during the last decade it turned out that solid-
state based nano structures are promising candidates for the realization of quantum
information processing devices [1]. The building blocks are quantum mechanical
two-state systems (qubits) and some of the proposed designs have been realized in
groundbreaking experiments, see ref. [1] for a recent review on this field. Thereby,
various approaches have been undertaken, ranging from superconducting flux and
charge qubit devices to devices using the spin or the charge degrees of freedom of
individual electrons in confined geometries. Aiming at an extreme miniaturization
of solid-state devices down to the nm-scale, it has been proposed to implant indi-
vidual dopant atoms in a semiconductor crystal and to use nuclear spin states of
buried phosphorus dopants to realize a spin-qubit (Kane’s proposal [2]). Comple-
mentary to the Kane architecture, the charge degree of freedom of a single electron
shared by two donor atoms in a host crystal can be used for the coding of the logical
information, as proposed in ref. [3, 4]. Thereby, the logical states |0⟩ and |1⟩ are
realized by the charge states of the double-donor-system with the excess electron
either located on the left or on the right donor. The transition between these states
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occurs via tunneling of the electron between the two dopants. The charge qubits
can in principle be controlled efficiently by external electric fields, e.g., by an ap-
plied gate voltage. This property renders the proposed architecture attractive for
realizing control schemes with available fabrication and read-out technologies [4].
Experimental progress for this kind of ion-implanted Si:P nanostructures has been
reported recently [5].

On the other hand, all these solid-state qubits suffer from the large number of
degrees of freedom due to their embedding in a complex many-particle environ-
ment. The environmental decoherence and dissipation lead to a deterioration of the
performance of quantum logic operations and also strongly influence entanglement
between qubits [6] necessary for quantum gate operations. Various sources of deco-
herence include nuclear spins, phonons, and electromagnetic fluctuations in the host
crystal. To gain a detailed understanding of the various decoherence mechanisms,
realistic model calculations have to be performed which then allow to sort out the
different contributions. In chapter 3 we concentrate on the influence of a phonon
bath on the shared electron. To be definite, we consider a charge qubit formed by
two group-V donors as proposed in ref. [7]. One donor is formed by a phosphorus
atom while the second donor will be one of the class {Bi, As, P, Sb}. The donor
pair is assumed to be implanted in a silicon crystal host and share a common elec-
tron. We consider linear acoustic phonons coupled to the electron and determine
the dynamics of the charge oscillations between the two donors. Due to the par-
ticular geometry, a tailored phonon environment is formed for the electron which
depends non-monotonously on the phonon frequencies. In order to provide accurate
quantitative results on the decoherence and dissipation rates, we apply the numeri-
cally exact iterative quasi-adiabatic propagator path integral (QUAPI) scheme [9,8]
and introduce it in some detail here, since we will also make use of this method in
the chapters 4 and 5. In particular, we have improved the widely used method by
providing a recipe to completely eliminate the Trotter discretization error. This al-
lows to obtain fully convergent exact results by extrapolation to a vanishing Trotter
increment [10].

An appealing alternative to extensive numerical studies are approximate cal-
culations which, for instance, rely on the weak coupling between the qubit and
the environment. The most familiar Born-Markov or weak-coupling approxima-
tion (WCA) [11], which basic assumptions will be outlined in chapter 2, yields to
simple closed expression for the decoherence and relaxation rates. However, they
apply for typical situations when the bath has a smooth frequency distribution [11].
In our case, the environment is particularly shaped by the geometry leading to a
non-monotonous bath spectral density. Hence, it is not a priori clear whether the
widely used WCA is appropriate and a careful check is desirable. By comparing
the exact numerical QUAPI results with the approximate WCA results below, we
will show that for realistic parameters, the WCA typically yields the correct order
of magnitude for the decoherence and relaxation rates. However, differences are
noticeable when a quantitative comparison is made. We furthermore note that the
calculated phonon decoherence and relaxation rates comprise a fundamental upper
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1. INTRODUCTION

limit for the coherence properties of this architecture which can hardly be overcome.

Coherent control of an effective two-level system in a non-
Markovian biomolecular environment

It is a natural question if and to what extend the time scale on which quantum
coherent dynamics is relevant as, e.g. studied in chapter 3, can be enlarged by an
external driving force applied to the system of interest. This is the main purpose
of chapter 4 and indeed, the theoretical description of driven quantum systems has
discerned novel effects related to the control of quantum tunneling (see, e.g., [12]
for a comprehensive review). Classical examples of the achieved degree of quan-
tum control are the manipulation of trapped atoms in quantum optics [13] and the
control of chemical reactions by external laser fields [12]. In quantum optics, it
has been experimentally demonstrated that the time evolution of a two-level atom
can be significantly modified by means of a frequency modulated excitation of the
atom by use of a microwave field [14]. Moreover, it has been shown that tunneling
of an initially localized state in a double well potential can be almost completely
suppressed by a properly tailored external driving force [15]. In addition, the exper-
imental demonstration of a quantum coherent dynamics in a superconducting flux
qubit coupled to a superconducting quantum interference device (SQUID) has been
reported [16].

To gain a deeper understanding of the quantum dissipative dynamics, a quanti-
tative model including the effects of time-dependent driving, decoherence and dis-
sipation is required. One generic model to investigate these effects is the time-
dependent spin-boson model [12, 11] (described in detail in chapter 2), where the
tunnel-splitting of the coherent two-level system (TLS) is usually denoted by ∆.
The environment is commonly described via the spectral density J(ω) [11]. In many
cases, an Ohmic spectral density, where J(ω) ∝ ω, occurs, as in the case of an
unstructured electromagnetic environment, where all transitions within the system
are damped equally [11].

To take into account the fact that the environmental frequencies are in principle
limited, a high-frequency cut-off ωc has to be introduced. This frequency scale is re-
lated to the time scale on which the environmental degrees of freedom evolve [11]. In
many cases, ωc is chosen to be the largest frequency scale in the problem (ωc ≫ ∆),
which corresponds to the fact that the environmental fluctuations evolve on the
shortest possible time scale, and hence the bath is ‘fast’. This describes, e.g., elec-
tromagnetic fluctuations in a crystal host [11,17] or in a superconductor [11]. Under
this condition, a Markov assumption can be made yielding an effective time-local
dissipative dynamics. This is also the regime in which Bloch-Redfield type mas-
ter equations (see chapter 2) are commonly used [18], typically in connection with
the additional assumption of weak system-bath coupling. The opposite case, when
ωc ≪ ∆ describes an effective adiabatic bath which can be treated in a rather simpli-
fied manner [11]. There are, however, relevant situations when the bath fluctuations
occur on a similar time scale on which the system evolves, i.e., ωc ≃ ∆. This, for

4



instance, typically occurs in the quantum coherent dynamics at the initial stage of
photosynthesis in complex biomolecular structures [18, 21, 20, 19, 22]. It has only
recently been experimentally hinted that the efficiency of the energy transfer from
the light harvesting antenna complex to the chemical reaction center is promoted by
the appearance of a quantum coherent dynamics [23,24]. This hypothesis is further
underpinned in [23, 24], where it has been evidenced that the collective long-range
electrostatic response of the biomolecular protein environment to the electronic ex-
citations should be responsible for the measured long-lived quantum coherences. In
the experiment reported in [23], a quantum coherent excitonic dynamics in the en-
ergy transfer among bacteriochlorophyll (BChl) complexes over a time of around
660 fs has been measured at a temperature of 77 K. Such a dynamics is highly non-
Markovian and more elaborate techniques have to be applied in order to provide an
appropriate theoretical description.

In chapter 4, we consider an externally driven TLS subjected to an Ohmic en-
vironment with an exponential cut-off. Here, the focus is on the non-Markovian
influence of a finite ωc on the quantum coherent dynamics. The appropriate nu-
merically exact tool to investigate non-Markovian dynamics is again the QUAPI
method. We are able to investigate the entire parameter regime of weak as well as
strong system-bath coupling situation beyond the often used scaling limit ∆ ≪ ωc.
We compare the weak coupling approximation based on a Born-Markov approach
against the QUAPI method and show that the inclusion of non-Markovian effects is
indeed necessary to obtain the correct result in the regime ωc ≃ ∆.

The investigation of the parameter regime ωc ≃ ∆ is motivated by the fact that
a slow environment is indeed of physical relevance to light-harvesting biomolecu-
lar complexes which are embedded in a polar solvent [22]. Here, we consider a
model for an effective TLS constructed from two interacting chromophores coupled
to a protein-polar solvent reservoir. Furthermore, we drive the effective biomolecu-
lar TLS with an external laser and show that the Hamiltonian for the full system
can be described in terms of the driven spin-boson model. The driven dissipative
dynamics is investigated with the objective of understanding basic quantum inter-
ference phenomena which could be realized as proof-of-principle quantum coherent
control experiments in light harvesting (LH) photosynthetic complexes such as LH
II [18] or in artificially designed TLS nanostructures with specific bath properties.
Indeed, there are promising proposals for experiments leading in this specific direc-
tion [25, 26]. Moreover we recall the detailed derivation of the spectral density for
biomolecular complexes which indeed shows that the choice of an Ohmic spectral
density is based on microscopic details of the environment.

We apply an external time-dependent driving field at frequency ωl to the TLS
and show in section 4.2.3 for moderate and strong driving that the amplitude of the
forced oscillations in the stationary limit strongly depends on ωl and, moreover, on
ωc. Most interestingly, it turns out that a slow environment together with a slow
drive ωl optimizes the forced oscillations in the stationary limit. Finally, in section
4.2.4, the effect of a slow dissipative environment on the coherent destruction of
tunneling in the TLS is investigated. We find that the bath influence is indeed
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1. INTRODUCTION

strongest in the scenario ωc ≃ ∆.

Enhanced quantum entanglement in the non-Markovian dy-
namics of biomolecular excitons

Since the results in chapter 4 provide evidence for the fact that a slow environ-
ment being non-Markovian in nature plays a constructive role for quantum effects
we extend the previous model in chapter 5. Here, we investigate the quantum
dynamics of two coupled TLS subjected to a common Ohmic environment. The
observable of interested is the entanglement between the two TLS. Nowadays, en-
tanglement is known to provide an important resource within quantum information
technologies to perform certain tasks faster and in a more secure way [29, 28, 27].
Entanglement of a bipartite system can be successfully determined by means of the
Peres-Horodecki criterion [30, 31] in a mathematically rigorous way. As mentioned
above quantum coherent dynamics at the initial stages of photosynthesis in complex
biomolecular structures seems to promote the efficiency of energy transfer from the
light-harvesting antenna complexes to the chemical reaction centers [23, 24, 19, 20].
In that sense the two coupled TLS under investigation in chapter 5 are meant to be
two pairs of Förster coupled excitons. Furthermore, the obtained time scales [24] for
the short-time dynamics of the nuclear modes coupled to the excitonic states of two
chromophores are almost identical. This points to the special and constructive role of
the quantum environment for the photo-excitations. The often assumed coupling of
the chromophores to fast and independent quantum baths does not hold in this case.
In fact, the two chromophores are embedded in the same protein-solvent environ-
ment. These results corroborate experimental studies [19] which show that energy
transport sensitively depends on the spatial properties of the delocalized excited-
state wave functions of the whole pigment-protein complex. In addition, there are
reports of coherently controlled wave packet quantum dynamics artificially generated
by laser pulses in the light-harvesting antenna of the bacteria Rhodopseudomonas
acidophila [20].

In performing a deterministic evaluation of real-time path integrals by means of
the QUAPI method [8, 9], described in detail in chapter 3, we provide numerically
exact results for the quantum coherent dynamics of photo-excitations in coupled
chromophores in chapter 5. Similar to the driven TLS in chapter 4, the time evolu-
tion of the protein-solvent bath happens on time scales comparable to the exciton
dynamics. We show that the non-Markovian effects help to sustain quantum coher-
ence over rather long times. Furthermore, quantum entanglement [32] of two chro-
mophore pairs is shown to be more stable under the influence of a non-Markovian
bath. Even at high temperatures, a slow bath can generate a considerable degree
of entanglement, a feature absent in the Markovian case. In passing, we mention
that recently, quantum entanglement of two optical two-level systems coupled to
a common localized environmental mode has been studied beyond the Markov ap-
proximation at zero temperature [33].
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Iterative real-time path integral approach to nonequilibrium
quantum transport

The systems under consideration in chapter 3-5 are coupled to an environment being
bosonic in nature. If one is interested in the transport properties of quantum systems
one is in many cases concerned with systems which are coupled to an environment
which is fermionic in nature. Although there are conceptual similarities, like for
instance the evidence of time non-local, i.e., non-Markovian correlations, the de-
scription of the real-time dynamics is of fundamental difference, which is addressed
in chapter 6.

Quantum transport has attracted theoretical and experimental research since it
offers the possibility to investigate quantum many-body properties at as well as out
of thermodynamic equilibrium [34]. The ongoing improvement in miniaturization
down to the nanometer scale allows to study electron transport in ultra-small de-
vices, e.g., in single molecules or artificially designed quantum dots [35,36,37,38,39,
40]. There is a broad variety of interesting physical effects, due to interactions or the
nonequilibrium conditions arising when a bias voltage is applied to the source and
drain electrodes [41,42,43]. These range from Coulomb blockade via coherent (e.g.,
resonant tunneling) transport to the Kondo effect, to name but a few. While on
the experimental side, progress stems from an increased control of fabrication pro-
cesses, many theoretical works deal with refined approximation schemes applicable
in different parameter regimes. However, exact theoretical results — either analyti-
cal or numerical — for nonequilibrium quantum transport systems are rare, mainly
because of the lack of adequate methods allowing to tackle such questions. There
clearly is a considerable need for numerically exact methods to describe nonequi-
librium quantum transport, both to check analytical (and usually approximate)
approaches and to connect theory to experiment. Here, we mean by nonequilibrium
transport specifically those phenomena which go beyond the standard approach of
linear response to the applied bias voltage.

In chapter 6, we propose a novel numerical scheme denoted as iterative sum-
mation of real-time path integrals (ISPI), in order to address quantum transport
problems out of equilibrium. Many-body systems driven out of equilibrium are
known [44,45,46] to acquire a steady state that may be quite different in character
from their ground-state properties. Details of the steady state may depend on the
nature of the correlations, as well as on the way in which the system is driven out
of equilibrium. While there are a variety of nonperturbative techniques in place to
study equilibrium systems, many of these methods cannot be extended to nonequi-
librium systems in a straightforward way.

Different approximations have been pursued previously in order to tackle nonequi-
librium situations. For instance, transport through an Anderson dot in the Kondo
regime has been described theoretically along several different lines, e.g., for the
asymptotic low-energy regime by Fermi liquid theory [47], via interpolative schemes
[48], using integrability concepts [49], or by the perturbative renormalization group
[45,50]. Transport features of the Anderson model have also been discussed by per-
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1. INTRODUCTION

turbation theory in the interaction strength [51,52]. Sophisticated nonperturbative
methods have been developed in order to extract exact results out of equilibrium
for special models, where integrability is available. For instance, the interacting
resonant level model presently enjoys much interest [53, 54, 55, 56, 57, 58, 59]. Uni-
versal aspects of nonequilibrium currents in a quantum dot have been discussed in
ref. [54]. In various perturbative regimes, this model has been addressed by field
theory methods [56,57,58,59]. However, the underlying theoretical concepts are still
under much debate, and partially conflicting results were reported in the literature,
cf. refs. [56, 57,58].

The above discussion shows that precise numerical simulation tools are in great
demand in this field. Let us briefly review the existing numerical methods available
for nonequilibrium transport. Much effort has been directed to the application of
renormalization group (RG) techniques to this problem. For instance, a perturba-
tive real-time RG analysis of nonequilibrium transport has been performed [60], and
steps towards the appropriate generalization of the density matrix renormalization
group technique have appeared [61, 62]. In addition, the functional RG approach
has been generalized to nonequilibrium recently [63]. It forms a systematic and
fast perturbative expansion scheme, yielding reliable results for small interaction
strengths, where the infinite hierarchy of equations for the self-energy can be cut
after the first few steps. Moreover, a possible extension of Wilson’s numerical RG
approach to nonequilibrium has been discussed [64,65]. Another line of attack con-
sidered numerically exact real-time quantum Monte Carlo (QMC) simulations (for
the corresponding equilibrium case, see refs. [66,67]). Due to the sign problem, how-
ever, these calculations become increasingly difficult at low temperatures. Refined
multi-level blocking techniques [68,69] allow to achieve further progress, but numer-
ical simulations remain hard within this approach. (For recent progress, however,
see ref. [70, 71, 72, 73].) Let us also mention the flow equation method, which has
been applied to study the nonequilibrium Kondo effect [74]. Finally, a very recent
development considers non-standard ensembles to describe steady state transport,
but involves a numerically troublesome analytic continuation [75].

Our ISPI approach, described in detail in chapter 6, provides a novel alternative,
and in principle numerically exact, method to tackle out-of-equilibrium transport
through correlated quantum dots. The method is deterministic and, hence, there is
no sign problem. It is based on the evaluation of the full nonequilibrium Keldysh
generating function, including suitable source terms to generate the observables of
interest. It builds on the fact that the fermionic leads induce self-energies that are
non-local in time, but which decay exponentially in the long-time limit at any finite
temperature. Thus, a memory time exists such that within this time span, the cor-
relations are exactly taken into account, while for larger times, the correlations can
be dropped. This allows to construct an iterative scheme to evaluate the generating
function. An appropriate extrapolation procedure allows then to eliminate both the
Trotter time discretization error (the Hubbard-Stratonovich (HS) transformation
below requires to discretize time), and the finite memory-time error, yielding finally
the desired numerically exact value for the observables of interest. The extrapola-
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tion procedure is convergent for not too low temperatures, since then memory effects
are exponentially small for long times. If the extrapolation converges, we thereby
obtain numerically exact results for nonequilibrium quantum transport properties
of interacting systems.

The ISPI scheme is implemented here for the example of the well-known single-
level Anderson impurity model [76,77,78,79,80], but appropriately modified, it can
be applied to other quantum dot models as well. The nonequilibrium current is
calculated from a generating function, represented as a real-time path integral in
the Keldysh formalism. After a Hubbard-Stratonovich transformation employing an
auxiliary Ising spin field, all fermionic degrees of freedom (of the dot and the leads)
can be integrated out exactly, however, at the price of introducing time-nonlocal
self-energies for the leads and a path summation over all Ising spin configurations.
For this, an iterative summation scheme is constructed, exploiting that the time-
nonlocal correlations in the lead self-energy effectively decay exponentially at finite
temperature T or bias voltage V , thereby setting the characteristic memory time.
For larger times, the correlations are exponentially small and will be neglected.
The full time-discretized Keldysh Green’s function (GF) of the dot then assumes a
band matrix structure, where the determinant can be calculated iteratively using its
Schur form. The scheme is constructed such that within the range set by the mem-
ory time, the path integral is evaluated exactly. The remaining systematic errors are
the Trotter time discretization and the finite-memory error. Both, however, can be
eliminated in a systematic way based on a Hirsch-Fye type extrapolation procedure.
Based on the above construction principle, our approach cannot be applied at very
low energies (T, V → 0), where, fortunately, other methods are available. For finite
temperatures, the requirement of not too long memory times can be met, and the
spin path summation remains tractable.

The common features to all the parts of the present thesis are time non-local, i.e.,
non-Markovian correlations and their relevance for the real-time dynamics of open
quantum systems. Since it is challenging and for certain system parameters even
impossible to take into account these features for bosonic as well as for fermionic
systems analytically we make use of extensive numerical methods. For the bosonic
systems under investigation in the chapters 3-5 we use the well established QUAPI
scheme and develop a new scheme, the ISPI scheme, to tackle open quantum system
being fermionic in nature in chapter 6. Both methods are related in the sense that
they fully take into account the non-Markovian features, i.e., memory-effects of the
environment which decay for bosonic as well as for fermionic environments exponen-
tially in time for finite temperatures. By comparison with approximate analytical
results we provide evidence for the fact that certain properties, as e.g. the entan-
glement generation of two biomolecular TLS coupled to a common environment in
chapter 5, are rooted on purely non-Markovian features of the environment which
though cannot be neglected.
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Chapter 2

Open Quantum Systems

In condensed phases we are often concerned with rather complex physical situations
that can adequately be described by a global model system consisting only of one or
a few dynamical variables. This model system is contact with a huge environment
of which the number of degrees of freedom is large or even infinity. When one
is interested in the physical properties of the small system only this system has
to be handled as an open quantum system [11]. In this chapter we give a brief
introduction to the theory of open quantum system which is the underlying concept
for the present thesis as a whole. Hereby we follow the presentation of [11,81,82].

2.1 Classical Langevin equation

Conveniently the dynamics of a classical open system is described in terms of a
Langevin equation in which all the effects of the environment are encapsulated in
a friction force and a fluctuating force. For an open system with a single degree
of freedom q(t) and linear, i.e., state-independent dissipation, the frictional force
is a linear functional of the history of the velocity q̇(t). The stochastic force ξ(t)
succeeds Gaussian statistics and is consequently fully characterized by the ensemble
averages [11]

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ ≡ χ(t− t′) . (2.1)

In contrast to a white noise source where the stochastic force is δ-correlated, for
many situations of practical interest, the heat reservoir is a source of noise with a
finite memory time. For colored noise, the dynamics is described in terms of the
generalized Langevin equation (including a mass term)

Mq̈(t) +M

t
−∞

dt′ γ(t− t′) + V ′(q) = ξ(t) . (2.2)

Eq. (2.2) describes e.g. a particle with mass M moving in an environment that
obeys colored noise, driven by a systematic force −V ′(q), where V (q) is an externally
applied potential. The mean effect of the environment on the particle is contained
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2. OPEN QUANTUM SYSTEMS

in the memory friction force which is expressed in terms of the causal damping
kernel γ(t) = 0 for t < 0. Thus, on average the fluctuating force ξ(t) vanishes
and the stochastic nature of ξ(t) is again described by its autocorrelation function
⟨ξ(t)ξ(t′)⟩.

2.2 System-bath model

Within the traditional system-reservoir model we consider a system with one or a
few degrees of freedom coupled to a huge reservoir of harmonic excitations above a
stable ground state. The central system of interest can be imagined to be a quantum
system, e.g. a damped quantum mechanical harmonic oscillator. For a geometrically
macroscopic environment the coupling to an individual bath mode (i.e. the harmonic
excitations) is weak, since the interaction of the system with each individual degree
of freedom of the reservoir is inversely proportional to its volume. Therefore it is
physically reasonable to assume that the coupling between system and environment
is linear in the reservoir coordinates. As it will turn out in the sequel this is a nice
property since it allows for eliminating the bath exactly. Note that nevertheless the
coupling of the individual bath mode to the system is weak, the dissipative influence
of the reservoir can be strong since the number of bath modes can even go to infinity.

The most general Hamiltonian with these properties is

H = HS +HB +HSB . (2.3)

Here,

HS =
P 2

2M
+ V (q) (2.4)

is the Hamiltonian of the system, e.g. a particle with mass M moving in a potential
V (q), where P is the momentum conjugate to the position q of the particle.

HB =
N

α=1

p2
α

2mα

+
1

2
mαω

2
αx

2
α (2.5)

describes the environment consisting of N harmonic oscillators with frequency ωα, a
mass mα and the coordinate xα. The interaction between system and environment
reads

HSB = −
N

α=1

Fα(q)xα + ∆V (q) . (2.6)

∆V (q) is a counter-term which depends on the parameters ωα,mα and on Fα(q),
but not on the dynamical variables xα of the reservoir. This term serves to cancel a
renormalization of the potential and if it is omitted, e.g. a free particle would turn
into harmonically bound one, due to a renormalization of the potential [82]. For the
case that we require strictly linear dissipation Fα(q) is constraint by Fα(q) = cαq
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and the total Hamiltonian reads

H =
P 2

2M
+ V (q) +

1

2

N
α=1

p2
α

mα

+mαω
2
α


xα −

cα
mαω2

α

q

2

(2.7)

which is often referred to as the Caldeira-Leggett model [83].

2.3 Quantum Langevin equation

In order to prove that the Hamiltonian (2.7) describes dissipation if one is interested
in the system degrees of freedom solely we start with the Heisenberg equation of
motion which will be solved for the reservoir degrees of freedom. This will lead to
an effective operator valued equation of motion which then can be compared with
its analogous counterpart from section 2.1. The Heisenberg equation

Ȧ =
i

~
[H,A] , (2.8)

with A denoting the momentum operator of the system P = Mq̇ and the reservoir
pα = mαẋ respectively, gives the equations of motion

Mq̈ +
dV

dq
+ q

N
α=1

c2α
mαω2

α

=
N

α=1

cαxα (2.9)

for the system and
mαẍα + ω2

αxα = cαq (2.10)

for the bath degrees of freedom, where xα is the position operator of the individual
bath oscillator. Considering the position operator of the system q(t) as given the
inhomogeneous second order differential eq. (2.10) is formally solved by [11,82]

xα(t) = xα(t0) cos ωα(t− t0)+
pα(t0)

mαωα

sin ωα(t− t0)+

t
t0

ds
cα

mαωα

sin [ωα(t−s)]q(s) ,

(2.11)
with pα(t0), xα(t0) denoting the initial condition of the reservoir oscillators. The
bath degrees of freedom are now eliminated by inserting this solution into the in-
homogeneity of eq. (2.9). By partial integration one then obtains the quantum
Langevin equation

Mq̈ +M

t
t0

ds γ(t− s) q̇(s) +
dV

dq
= ζ(t) . (2.12)

For clarity we have dropped a transient initial slip term steming from the potential
renormalization in eq. (2.6), for details, see e.g. [11]. γ(t) represents the damping
kernel

γ(t) =
1

M

N
α=1

c 2
α

mαω 2
α

cos ωαt (2.13)
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and

ζ(t) =
N

α=1

cα


xα(t0)−

cα
mαω 2

α


cos ωα(t− t0) +

pα(t0)

mαωα

sin ωα(t− t0)


(2.14)

is a time dependent operator valued fluctuating force that depends on the initial
conditions of both the system and the reservoir which at finite temperature are
stochastically distributed. The mean value of ζ(t) satisfies

⟨ζ(t)⟩B = 0 , (2.15)

where ⟨·⟩B = tr(ρ0
B·) is the canonical distribution for the reservoir Hamiltonian (2.5)

at temperature T = (kBβ)−1 (kB Boltzmann constant). To elucidate further that
the quantum Langevin equation is depending on a memory-friction force one can
derive the autocorrelation function of ζ(t) by taking the equilibrium expectation
values for the correlations of the single harmonic oscillators of the reservoir. For
t > s the autocorrelation function then reads

⟨ζ(t)ζ(s)⟩B = ⟨ζ(t− s+ t0)ζ(t0)⟩B (2.16)

= ~
N

α=1

c 2
α

2mαωα


coth

~ωαβ

2
cos ωα(t− s)− i sin ωα(t− s)


.

Usually the reservoir is fully described via its spectral density

J(ω) =
π

2

N
α=1

c 2
α

mαωα

δ(ω − ωα) , (2.17)

which includes all the relevant information about the reservoir oscillators and their
coupling to the system of interest. Choosing a normal mode representation one
can show that the system will reach its initial state after a characteristic time, the
Poincaré recurrence time [84]. This characteristic time stems from the Poincaré
recurrence theorem which applies for any energy conserving (Hamiltonian) system.
The theorem is based on the two facts that the trajectories in phase space do not
intersect and that the volume of the phase space space is conserved under dynamics.
Note that nothing prevents the system from returning to its starting point before
all the phase volume is exhausted. A trivial example of this is the harmonic oscil-
lator. Systems that do cover all available phase volume are called ergodic. For a
correct description of dissipation it is required that the Poincaré recurrence time is
much longer than any time scale within the system. This is clearly the case for a
continuous distribution of bath modes, i.e. N → ∞. Indeed, for typical condensed
phase application we are interested in in the following, J(ω) effectively becomes a
continuous function in ω, i.e. N →∞ is fulfilled.

The autocorrelation function is then rewritten as ⟨ζ(t)ζ(s)⟩B = ~L(t− s) with

L(t) = LR(t) + LI(t)

=
1

π

∞
0

dω J(ω)


coth

~ωβ
2

cos ωt− i sin ωt


. (2.18)
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2.3. Quantum Langevin equation

Here, the expression in the square brackets is the autocorrelation function of a single
bath oscillator weighted by the spectral density of the environment to obtain the
full bath autocorrelation function. In the continuous limit the quantum Langevin
equation is of the form (2.12) and the damping kernel is now related to the spectral
density via

γ(t) =
1

M

2

π

∞
0

dω
J(ω)

ω
cos ωt . (2.19)

The inversion of the the Fourier integral (2.19) reads

γ(ω) =

∞
0

dt γ(t) cos ωt = J(ω)/Mω . (2.20)

Note that the quantum mechanical quantity J(ω) is fully determined by quanti-
ties that already appear in the classical phenomenological equation of motion [11],
which remains valid in the case of linear, i.e., state-independent dissipation. In the
classical limit ~ω ≪ kBT the autocorrelation function of the stochastic force is of
the form ⟨ζ(t)ζ(s)⟩B = MkBTγ(t−s) and the quantum Langevin equation becomes
equivalent to the classical Langevin equation (2.2).

2.3.1 Special case: Ohmic damping

For the case of strict Ohmic damping, the damping kernel (2.20) is frequency inde-
pendent, i.e. γ(ω) = γ and the spectral density is of the form

J(ω) = ηω = Mγω (2.21)

for all frequencies ω. This specific form of the spectral density implies memory-less
friction (Markovian limit) γ(t) = 2γδ(t), i.e. the bath autocorrelation function is
replaced by a δ-function. For a realistic system any spectral density falls off in the
limit ω →∞, otherwise certain physical quantities, e.g. the momentum dispersion,
would diverge (for a detailed discussion in the context of quantum Brownian motion
see ref. [11]). There is always a microscopic memory time setting the time scale for
inertia effects in the environment. To account for this property, a frequency cut-off
is introduced with a cut-off frequency ωc. It suppresses the bath modes with ω & ωc

and in this work has a smooth exponential form with which the spectral density
reads

J(ω) = ηsω
1−s
ph ωs e−ω/ωc . (2.22)

Here, we have introduced for s ̸= 1 a reference frequency ωph so that the coupling
constant ηs has the dimension viscosity for all s. The case s > 1 is called the super-
Ohmic case and is, e.g. relevant for donor based charge qubit examined in detail in
chapter 3.

The cut-off frequency ωc sets the time scale ω−1
c below which the friction kernel

has a certain width and the system has a finite memory. In the often used scaling
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limit, where ωc is the largest frequency of the system, the memory time is short and a
Markovian approximation provides at least a qualitatively reliable description of the
system dynamics. However, the situation turns out to be completely different when
ωc is of the same order as relevant system energies which is, e.g. the case for the
biomolecular system considered in chapter 4 and 5. Since the the time scale ω−1

c on
which the damping kernel is widened is large, the dynamics is highly non-Markovian
in nature. Our results provide evidence for a constructive role of the non-Markovian
environment in creating entanglement in biomolecular complexes, see chapter 5.

2.4 The spin-boson model

A generalized coordinate with which an effective potential with two separate minima
at nearly the same energy is associated with provides a useful description for a wide
variety of physical and chemical systems. When the thermal energies are small
compared with the level spacing of the low-lying states only the ground states of the
two energy minima are involved. Consequently the essential dynamics is restricted to
a two dimensional Hilbert space. The TLS is the simplest model showing quantum
interference effects, e.g. for a high barrier where the two spatially well separated
states are localized in the left or right well, respectively, coupled via tunnel matrix
element ~∆, see fig. 2.1. Consequently, this implies oscillation of the occupation of
both wells. For condensed phase situation we are interested in here, the TLS is in
contact with an environment which is often bosonic in nature. Since the TLS can be
described within the pseudo-spin notation the model is known as spin-boson model.

A well-known example for an effective TLS is the ammonia molecule NH3 [12]:
Since the nitrogen atom is much heavier than its partners, it is motionless. The
hydrogen atoms form a rigid equilateral triangle whose axis passes through the
nitrogen atom. Consequently, the potential energy is a function of the distance q
between the nitrogen atom and the plane defined by the hydrogen atoms. Thus the
potential energy has two equivalent configurations of a stable equilibrium, which are
symmetric with respect to the q = 0 plane. Quantum mechanically the hydrogens
can tunnel back and forth between the two potential minima [85].

The Hamiltonian of the TLS reads

HTLS = −~
2

(∆σx + ϵσz) , (2.23)

where ϵ is a bias leading to detunig of the TLS and σi being the Pauli pseudo-spin
matrices. In general ϵ can be time dependent, e.g. an externally applied laser field
driving the TLS with periodic driving frequency. This will be of interest in chapter 4.

The basis of the TLS is formed by the localized states of the right |R⟩ and
the left |L⟩ well which are eigenstates of σz with ±1, respectively. The position
operator is q = 1

2
q0σz and its eigenvalues ±1

2
q0 are the positions of the localized

states. The environment is modeled as a bosonic bath of harmonic oscillators with
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Figure 2.1: Symmetric double well potential (left) of the TSS with barrier
height Vb and spacing ~ω0 between the first excited state and the ground state.
The tunnel matrix element is ~∆. On the right the biased double well with a
bias ~ϵ is presented.

the Hamiltonian (2.5) already given above. Assuming linear interaction between the
TLS and its environment with the Hamiltonian

HI = −σz
q0
2

N
α=1

cαxα(t) , (2.24)

the full spin-boson Hamiltonian is in its generic form

H = HTSS −
1

2
σz

N
α=1

~λα


bα + b†α


+

N
α=1

~ωαb
†
αbα , (2.25)

where the irrelevant zero-point energy has been neglected.

Here the interaction Hamiltonian and the Hamiltonian of the reservoir are ex-
pressed in terms of bosonic annihilation and creation operators bα and b†α with
xα =


~/(2mαωα) [bα + b†α] and pα = i


(~mαωα)/2 [b†α − bα]. Again all environ-

mental effects are included in the spectral density

G(ω) =


α

λ2
αδ(ω − ωα) , (2.26)

where the coupling constant λα is related to cα via [11]

λ2
α =

q2
0c

2
α

2~mαωα

. (2.27)
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The spin-boson spectral density eq. (2.26) finally is related to the spectral density
of the continuous model defined in eq. (2.17) via

G(ω) =
q2
0

π~
J(ω) . (2.28)

2.5 Real-time dynamics

In this section we give a brief introduction on the description of the dynamics of
open quantum systems in terms of real time path integrals. This formalism has
been successfully used in the past decades for many problems in quantum dissipa-
tive systems. Moreover the formulation of the problem in terms of Feynman path
integrals is useful since the quantum Langevin equation introduced in section 2.3
is not solvable in general. This is due to the Heisenberg-operator character of the
stochastic noise ζ(t) for practical physical purpose. Such operators lead to huge
stochastic matrices which make the problem even numerically unsolvable. In what
follows, the dynamics is formulated in terms of the functional integral description, a
technique introduced by Feynman and Vernon in 1963 [86]. They derive the general
result that the effect of the bosonic environment is included in functionals of the
system coordinates only.

Due to the linear coupling between system and environment it is possible to
derive a closed expression for the influence functional. In what follows the underlying
global system is governed by the Hamiltonian (2.7) and the quantity of interest is
the reduced density matrix (for a detailed derivation see, e.g. [11]) which reads in
coordinate representation

ρ(qf , q
′
f , t) ≡


dxf


qf ,xf |W (t)| q′f ,x′f


=


dqi dq

′
i dxi dx

′
i dxf K(qf ,xf , t; qi,xi, t0)

×⟨qi,xi |W (t0)| q′i,x′i⟩K∗(q′f ,x
′
f , t; q

′
i,x

′
i, t0) . (2.29)

The reduced density matrix describes the system’s dynamics under the reservoir’s
influence. Here the time evolution operator

K(qf ,xf , t; qi,xi, 0) = ⟨qf ,xf |exp(−iHt/~)| qi,xi⟩ (2.30)

describes the evolution of the global system from a state |qi,xi⟩ at time t0 = 0 to a
state ⟨qf ,xf | at time t (the expression for K∗ is analogous). It may be represented
in the usual form of a path integral 1

K(qf ,xf , t; qi,xi, 0) =


DqDx exp


i

~
S[q,x]


. (2.31)

1for a thorough introduction on the formalism of path integrals we refer to the book of
Negele/Orland [87].
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Here, the functional integration extends over paths with endpoints

q(0) = qi; q(t) = qf ; q′(0) = q′i; q′(t) = q′f (2.32)

and accordingly for the x which is the N -component vector {xα}, α = 1, · · · , N for
the bath oscillator coordinates and q denotes the system coordinates.

2.5.1 Feynman-Vernon influence functional

In all what follows in this work we assume the density operator at initial time t = 0 to
be in product form which is achieved by assuming that the system and the reservoir
are initially decoupled and the unperturbed reservoir itself is in equilibrium. We
then have

W (t0) = ρs(t0) ⊗ ρ0
B = ρs(t0) ⊗ Z−1

B exp(−βH0
B) , (2.33)

where ρs(t0) is the density operator of the system at t0, and ZB = exp(−βHB) and
HB is the Hamiltonian (2.5) of the bath decoupled from the system. This initial
state is completely uncorrelated pertaining to the system-reservoir coupling. Now
we assume that the coupling is suddenly switched on at t = 0+ and consider the
dynamics for t ≥ 0. Substitution of (2.29) into the initial state (2.33) and use of the
propagator (2.31) yields [11]

ρ(qf , q
′
f , t) =


dqi dq

′
i JFV(qf , q

′
f , t; qi, q

′
i, 0)ρ(qi, q

′
i, 0) , (2.34)

where JFV is a propagating function describing the time evolution of the reduced
density matrix. It reads in path integral form

JFV(qf , q
′
f , t; qi, q

′
i, t0) =


Dq

Dq′ exp


i

~
(SS[q]− SS[q′])


FFV [q, q′] , (2.35)

with SS being the corresponding action to the system Hamiltonian (2.4). The re-
maining dynamics is included in the Feynman-Vernon influence functional [11, 86]

FFV [q, q′] = exp


−1

~
φFV [q, q′]


(2.36)

containing the entire influence of the bath on the system, with the influence phase 2

φFV [q, q′] =

t
t0

dt′
t′

t′0

dt′′ {q(t′)− q′(t′)} {L(t′ − t′′)q(t′′)− L∗(t′ − t′′)q′(t′′)}

+i
µ

2

t
t0

dt′

q 2(t′)− q′2(t′)


(2.37)

=

t
t0

dt′
t′

t′0

dt′′ {q(t′)− q′(t′)} {η(t′ − t′′)q(t′′)− η∗(t′ − t′′)q′(t′′)} .

2for details of the derivation we refer to [86,88] and do not reiterate it again here.
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The quantity µ =


α
c2α

mαω2
α

is related to the spectral density (2.17) via

µ =
2

π


J(ω)

ω
(2.38)

and the kernel L reads like in the continuous model in section 2.3

L(t) ≡ L′(t) + iL′′(t) =
1

π

∞
0

dω J(ω)


coth

~ωβ
2

cos ωt− i sin ωt


. (2.39)

Note that the imaginary part L′′(t) is related to the damping kernel (2.13) via

L′′(t) =
M

2

dγ(t)

dt
. (2.40)

To elucidate further the role of the diagrams contributing to the influence phase
φFV [q, q′] it is convenient to simplify its imaginary part by substituting eq. (2.40)
into eq. (2.37) and extract a local boundary condition (for details, see [11]). More-
over it is then useful to define symmetric and antisymmetric coordinates according
to

r(t) =
1

2
(q(t) + q′(t)) ; y(t) = q(t)− q′(t) . (2.41)

Together with this the influence phase is written in its usual form

φFV [q, q′] = φ(N)[y] + iφ(F )[r, y],

φ(N)[y] =

t
t0

dt′
t′

t′0

dt′′ y(t′)LR(t′ − t′′)y(t′′), (2.42)

φ(F )[r, y] = M

t
t0

dt′
t′

t′0

dt′′ y(t′)γ(t′ − t′′)ṙ(t′′) +Mr(t0)

t
t0

dt′ γ(t′)y(t′) .

The path r(t) measures propagation along the diagonal of the density matrix, there-
fore termed quasiclassical path. The quantum fluctuations of the system are de-
scribed within the path y(t), since it is book-keeping the system’s off-diagonal ex-
cursions while propagating [11]. The graphs representing φ(N)[y] and φ(F )[r, y] are
depicted in figure 2.2. By exponentiation one obtains graphs containing any number
of exchange lines represented by the two fundamental types.

2.5.2 Decoherence and friction

Following [11] we now comment on the physical meaning of the manifestation of the
system-reservoir coupling and the effects caused by the influence functional. On the
one hand a friction term

 t

0
dt′γ(t− t′)ṙ(t′) is introduced into the equation of motion

of the quasiclassical path r(t), thus the action φ(F )[r, y] introduces damping into the
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Figure 2.2: Graphical representation of the two contributions of φFV[q, q′]. The
left is the self-interaction of the off-diagonal path y(t) and stands for φ(N)[y], where
the exchanged line is the interaction )LR(t′ − t′′). The right shows the correlations
between y(t) and ṙ(t) in φ(F)[r, y], where the exchanged line represents the friction
kernel γ(t′ − t′′).

system and is depicted by the right diagram of figure 2.2. On the other hand the
term φ(N)[y] is the noise action that may pump energy back in a random way while
the system is off-diagonal. This is directly related to the phenomenon of quantum
coherence, which means that two different paths contributing to the propagation of a
system may accumulate a phase difference ϕ. Then the probability interference term
is multiplied by a phase factor e−iϕ. In the presence of system-reservoir coupling
this leads to fluctuations of ϕ and the relevant quantity is now the statistical average
⟨e−iϕ⟩, the decoherence factor (for more details we refer to [89,90]). The noise action
φ(N)[y] determines the extinction of quantum interferences between the paths q(t)
and q′(t) with the decoherence factor

⟨e−iϕ⟩ = e−φ(N)[y] , (2.43)

being independent of the quasiclassical path r(t). In that sense the noise functional
acts as a Gaussian filter which quenches the off-diagonal quantum fluctuations.
Physically the reservoir continuously, in the time sense, measures the position of
the system. Therefore it suppresses quantum interferences between the eigenstates
of the system and thus drives the system into a more classical state, i.e. the off-
diagonal excursions within the density matrix die out. Diagrammatically φ(N)[y] is
represented by the left diagram in fig. 2.2. The important role of the noise action
is further illustrated in [11] by considering the Ohmic case J(ω) = ηω in the white
noise limit, i.e. at high temperatures. In this limit, one has L′(t) = (2η/~β)δ(t)
following from eq. (2.18). Thus for the decoherence factor of two localized states
with spatial separation q0 one finds

eiϕ


= e−γdecoht, where γdecoh = η
q 2
0 kBT

~ 2
, (2.44)

and the rate γdecoh is the inverse time scale for the decoherence of these two states.
The effect of the friction is included in the damping rate

γdamp =
η

M
(2.45)
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and the ratio of the two rates

γdecoh

γdamp

=
q 2
0MkBT

~ 2
=

q 2
0

λ 2
th

, (2.46)

relates the thermal de Broglie wavelength λth = ~/
√
MkBT to the range of coher-

ence. Given a typical macroscopic situation [11], M = 1 g, T = 300 K, q0 = 1 mm,
the ratio γdecoh/γdamp results in 1038. As expected, for nearly all macroscopic objects
friction is negligible on time scales where quantum coherences die out, which stays
valid if the temperature is large and consequently γdecoh/γdamp ≫ 1. However, for
most realistic quantum systems this is not the case and one can calculate, e.g. the
ratio for a quantum particle of mass M moving in a bistable potential with the os-
cillation frequency ω0 at the well minima. With the characteristic energy ES = ~ω0

of the system, the ratio is then γdecoh/γdamp = (βES)−1. Such a rough estimate is
feasible for typical experimental situations, such as SQUIDs, quantum dots or nano
magnets. For the light harvesting biomolecular complexes under investigation in
chapter 4 and 5 the typical energy scale is Es = 8meV and T = 77K, leading to
a ratio γdecoh/γdamp = 8.7 × 10−1. Thus for all these systems, quantum dissipation
plays a fundamental role in understanding the underlying dynamical processes.

2.6 The Born-Markov approximation

Here, we give a brief introduction on the Born-Markov master equation formalism
since this is frequently used in the description of quantum dissipative systems. We
follow the statements of [91]. Moreover, in proceeding like this we aim for point-
ing out the nature of a non-Markovian environment which will be investigated by
means of the QUAPI method in the sequel. The Born-Markov master equation al-
low one to treat many decoherence problems in a mathematically simple, and often
closed, form. Comparison between models based on this equations and experimental
data provide evidence that the Born-Markov assumptions yields reasonable results
in many cases. However, for low-temperature solid-state systems and for the ex-
citonic dynamics in biomolecular complexes, the dynamics is often non-Markovian
in nature and/or we are concerned with a strong coupling situation and the Born-
Markov approximation yields quantitative and even qualitative incorrect results. As
an example, a non-Markovian environment plays a constructive role in the entan-
glement generation between two light-harvesting biomolecules, see chapter 5. This
phenomenon is by no means covered within the Born-Markov approximation and
more advanced techniques, as for instance the QUAPI scheme, are in demand.

The Born-Markov approximation consists of two parts:

1. The Born-approximation
The system environment coupling is sufficiently weak and the environment is
large compared to the system of interest so that changes of the environment’s
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density operator are negligible. This constitutes that the density matrix re-
mains approximately in a product state at all times, i.e.

ρ(t) ≈ ρs(t)⊗ ρB (2.47)

where ρB is constant in time.

2. The Markov-approximation
Memory effects of the environment are negligible, in the sense that any envi-
ronmental self-correlations created via the system-bath coupling decay rapidly
compared to the relevant time-scale on which the system of interest changes
significantly its state.

The physical intuition behind the Born-approximation is that the interaction be-
tween system and environment is sufficiently weak (weak-coupling limit), and that
the environment is large in comparison with the size of the system. It turns out
that the Born-approximation is reasonable in many physical situations of interest.
In many cases the system is coupled to a macroscopic large environment which,
viewed as a whole, undergoes only negligible small changes in the course of the
system-bath interaction compared to the change of the state of the system. In
this case the back-action of the system on the environment can be ignored. Note
that (2.47) allows for arbitrarily large changes of the density matrix of the system
and environmental excitations induced by the interaction with the system are not
excluded.

The Markov-approximation is motivated by the fact that it turns out that in
many physical situations of interest, it is well-founded to assume that the environ-
ment tends to quickly “forget” any internal self-correlations that have been estab-
lished by interaction with the system, described by the autocorrelation function
(2.18). This assumption becomes valid if, e.g. for an Ohmic environment with an
exponential cut-off frequency ωc, eq. (2.22), the time-scale of the environment de-
termined by ωc is much faster than the relevant times-scale of the system. If the
time-scales of the system and its environment coincide as for instance in the systems
we investigate in chapter 4 and 5 this assumption fails even quantitatively.
In other words, within the Markov-approximation, the environment does not “keep
track of its history”. As a consequence any dynamically established quantum cor-
relation between parts of the environment are destroyed on a timescale τmem much
shorter than the timescale on which the density operator of the system changes no-
ticeably. This assumption constitutes the Markov-approximation and it is appropri-
ate, if the environment is only weakly coupled to the system, and if the environment
is at a sufficiently high temperature. Markovian processes are also known from clas-
sical probability theory. Here, a stochastic process is Markovian if the probability
of a particular event is independent of the previous events, the system retains no
memory of its past and the steps are completely uncorrelated. For the real-time
dynamics described in the previous section the Markov-approximation implies that
the autocorrelation function of the environment (2.18) is effectively replaced by a
δ-function.
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2.7 Connection to a fermionic environment

Since we will deal with a fermionic environment in chapter 6 we shortly introduce the
relation of the dissipative TLS with an Ohmic environment to the Kondo problem
[92]. In what follows we only want to shed light on the qualitative analogies and
do not go into the details of the derivation. For a thorough discussion we refer
to [83,11].

In its simplest form the Kondo problem is concerned with a single magnetic
impurity of spin 1/2 exchanging via an exchange scattering potential with a band
of free electrons. This can be described in terms of the Kondo Hamiltonian

HK =

k⃗,σ

ϵ(k⃗)c†
k⃗,σ
ck⃗,σ + JS⃗ · s⃗(0) . (2.48)

The operators c†
k⃗,σ

create conduction electrons with wave vector k⃗ and spin index

σ = ±1. The impurity spin is denoted by S⃗, whereas s⃗(0) denotes the effective spin
stemming from the conduction electrons at the impurity site r⃗ = 0. Here, J is the
exchange constant. The main difference to the dissipative TLS, namely the spin-
boson model, introduced before is that in the Kondo problem a spin 1/2 interacts
with a fermionic bath which introduces dissipation. The basic idea behind the
relation is that the low-lying excitations of the electron gas in the Kondo Hamiltonian
may be approximately described by bosons [83]. Consequently, it will turn out that
the oscillators of the Ohmic environment within the dissipative TLS correspond to
the spin-density excitations in HK .

For pointlike interaction the problem is effectively reduced to a one-dimensional
problem. Moreover for the low-temperature and long-time behavior the dominant
excitations are the ones in the vicinity of the Fermi surface. The dispersion relation
ϵ(k⃗) may then be linearized around the Fermi energy ϵF in the form

ϵ(k⃗) = ϵF + ~vF (|⃗k| − kF ) . (2.49)

Measuring momentum from its reference value kF , the free Fermion Hamiltonian
reads

HF
0 = ~vF


pσ

pc†pσcpσ , (2.50)

where c†pσ creates an electron with spin σ and momentum |⃗k| = p+ kF . Since p can
never be smaller than −kF this Hamiltonian has to be supplemented with a high
energy cutoff of the order of the bandwith. Generalizing furthermore the isotropic
coupling in the original model to a different exchange constant J|| for Szsz and J⊥
for Sxsx + Sysy one ends up with anisotropic Kondo Hamiltonian

HK = ~vF


pσ

pc†pσcpσ +
J||
4
σz


σ

σc†σcσ +
J⊥
2

(σ+c
†
↓c↑ + σ−c

†
↑c↓) (2.51)
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with σ± = 1
2
(σx ± iσy). Here, localized Wannier operators c†σ = L−1/2


p c
†
pσ for

an electron with spin σ at the origin have been introduced (L is the length of a
normalization box such that the wave vectors p⃗ have integer values). Note that
the constants J|| and J⊥ have the dimension energy times length. Therefore the
relevant dimensionless coupling parameters are ρJ|| and ρJ⊥ with ρ = (2π~vF )−1

being the single spin density of states at the Fermi surface. The anisotropic Kondo-
Hamiltonian (2.51) only makes sense if there is a high-energy cutoff that sets the
scale. The Kondo problem usually is considered as the large Coulomb interaction
limit of the more general Anderson model, introduced in eq. (6.1). Indeed, the
Anderson Hamiltonian (6.1) can be transformed via the Schrieffer-Wolff transfor-
mation into the Kondo Hamiltonian (2.48), for details see e.g. [77]. More generally
speaking, the Coulomb interaction in the localized level may be viewed as an effec-
tive bandwith, which is often assumed to be of the order of the Fermi energy ϵF . A
cutoff in frequency space around ωc cuts off the momenta k around kc with

k−1
c = a =

vF

ωc

. (2.52)

a is an atomic length and ω−1
c should be imagined to be the time an electron takes

to pass the local spin. As low-energy limit of the Anderson model, the anisotropic
Kondo Hamiltonian makes sense only for J|| = J⊥ and small coupling ρJ ≪ 1.

To finally derive the equivalence between the Kondo Hamiltonian and the spin-
boson model, a bosonized version of (2.51) is in need. Here, only the important
steps of the derivation are sketched, for details, see [83]. To proceed, charge- and
spin-density operators for the Fermions are introduced

ρ(k) =

pσ

c†p+k,σcσ σ(k) =

pσ

σc†p+k,σcσ (2.53)

with ρ(−k) = ρ†(k); σ(−k) = σ†(k) and k > 0. For a semi-infinite band with all
states p < 0 the operators

bk =


π

kL
ρ(−k) and ak =


π

kL
σ(−k) (2.54)

obey Bose commutation rules [ak, ak′ ] = [bk, bk′ ] = δkk′ , if acting on the ground state
of a filled Fermi sea below p = 0. The dynamics of these excitations follows from the
commutation rules of the Hamiltonian (2.50) with ρ(k) and σ(k) and a bosonized
form

HB
0 = ~vF


k>0

k(a†kak + b†kbk) (2.55)

for the free Hamiltonian yields the same dynamics as (2.50). Thus, the non-
interacting electron gas has been replaced by its Bose-like charge- and spin-density
excitations around the Fermi surface. Moreover the coupling term J||σz and the

mixed products c†↓c↑ and c†↑c↓ that occur in the spin-flip scattering term of the
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anisotropic Hamiltonian (2.51) are related to appropriately chosen bosonic opera-
tors, see [83] for details. Then the anisotropic Kondo Hamiltonian (2.51) becomes
equivalent to a bosonic Hamiltonian

HB
K = ~vF


k>0

ka†kak +
J||
4
σz


k>0

e−ak/2


k

πL
(ak + a†k) +

J⊥
4πa

(σ+e
ξ + σ−e

−ξ) , (2.56)

with

ξ =

k>0

e−ak/2


4π

kL
(ak − a†k) . (2.57)

The essential argument why the behavior of the spin degree of freedom in the Kondo
Hamiltonian (2.51) and its bosonized form are the same at low temperatures in
the long-time limit t ≫ ω−1

c is based on the following [83, 93]: The dynamics of
the Bose operators that multiply the spin variables in eq. (2.56) generated by
HB

0 = ~vF


k>0 ka

†
kak is the same as that of the Fermi operators generated by

the Hamiltonian (2.50), provided everything is computed in their respective non-
interacting groundstates and the long-time limit t≫ ω−1

c of the bath autocorrelation
functions is used. Consequently the equivalence holds at T = 0 and in the so-called
Fermi-liquid regime of the Kondo problem, where only the low lying excitations
above the groundstate are relevant.

The Hamiltonian (2.56) may now be mapped exactly on the Hamiltonian of an
Ohmic TLS. The canonical transformation S−1HB

KS with S = exp(1
2
σzξ) yields

S−1HB
KS =

J⊥
4πa

σx +


J||
4
− ~vF


σz


k>0

e−ak/2


k

πL
(ak + a†k) + ~vF


k>0

ka†kak .

(2.58)
Identifying

−1

2
~∆ =

J⊥
4πa

and −
√
α =

J||
4π~vF

− 1 (2.59)

the Hamiltonian (2.58) is identical to the spin-boson Hamiltonian (2.25), with

J(ω) =
2π~α
q2
0

ωe−ω/ωc for


α

→

k>0

. (2.60)

Moreover, ωk = vFk and for the coupling constants and oscillator masses one has
the particular choice [83]

cα√
mα

= −
√
α

2

q0


2π~vF

L
ωαe

−ω/2ωc . (2.61)

Since the sign of J⊥ is irrelevant the equivalence between the Hamiltonians may be
expressed in dimensionless quantities by

∆

ωc

= ρJ⊥ and α = (1− 1

2
ρJ||)

2 . (2.62)
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Thus, one has arrived at an equivalence between the Kondo problem and the Ohmic
TLS, where the oscillators of the spin-boson model play the role of the spin exci-
tations within the Kondo problem. The dimensionless tunneling amplitude ∆/ωc

corresponds directly to the spin-flip exchange constant ρJ⊥, which is assumed to be
small compared to one in both models. However, the coupling constant α related
to ρJ|| may take arbitrary values, whereas in a proper isotropic Kondo model ρJ⊥
and ρJ|| have to be equal and small which implies α near one.
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Chapter 3

Phonon-induced decoherence and
dissipation in donor-based charge
qubits

3.1 Introduction

We investigate the phonon-induced decoherence and dissipation in a donor-based
charge quantum bit realized by the orbital states of an electron shared by two
dopant ions which are implanted in a silicon host crystal. The dopant ions are
taken from the group-V elements Bi, As, P, Sb. The excess electron is coupled
to deformation potential acoustic phonons which dominate in the Si host. The
particular geometry tailors a non-monotonous frequency distribution of the phonon
modes. We determine the exact qubit dynamics under the influence of the phonons
by employing the numerically exact quasi-adiabatic propagator path integral scheme
thereby taking into account all bath-induced correlations. In particular, we have
improved the scheme by completely eliminating the Trotter discretization error by
a Hirsch-Fye extrapolation. By comparing the exact results to those of a Born-
Markov approximation we find that the latter yields appropriate estimates for the
decoherence and relaxation rates. However, noticeable quantitative corrections due
to non-Markovian contributions appear.

The presented set-up is related to a double-quantum dot charge qubit realized in a
GaAs semiconductor [17], where the geometrical constraints induce charge qubit os-
cillations with noticeable non-Markovian corrections due to the particularly shaped
phonon environment. While piezoelectric phonons dominate in GaAs, we have to
consider here the dominating deformation potential electron-phonon coupling since
the Si crystal displays inversion symmetry. This chapter is also part of the PhD
thesis [94], however, the author of the thesis at hand gave the main contributions.

29
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3.2 The model

To study the influence of the phonons on decoherence and dissipation, we assume
that the charge qubit is isolated from any leads. It is formed by a pair of donor
atoms embedded in a silicon substrate, which share a single excess electron [3,4]. To
be specific, we consider the situation of one donor being a phosphorus atom while
the second one is an individual donor atom X chosen from the group X ∈ {Bi, As,
P, Sb} [7]. Then, the two logic states |0⟩, |1⟩ of the charge qubit are defined by the
electron residing either at donor 1 or 2, respectively. The total Hamiltonian is given
in terms of the standard spin-boson model [11, 83] (see section 2.4 for details)

H = HS +HB +HSB , (3.1)

where HS is the two-state Hamiltonian for the charge qubit, HB models the phonon
bath and HSB includes the electron-phonon coupling.

3.2.1 Model for the charge qubit

We represent the Hamiltonian of the charge qubit in the basis of the two localized
electronic states denoted as |L⟩ ≡ |0⟩ and |R⟩ ≡ |1⟩, each being the 1s orbital of the
left/right donor atom, the latter being placed at the origin and at the position dey,
see fig. 3.1 for a sketch of the geometry. The localized orbital belonging to the right
(left) donor is fully described by the position vector of the electron, i.e., rL = r and
rR = r + dey, respectively. In addition, we allow for an external constant energy
bias ϵ which for instance could be due to a nearby capacitive gate. In terms of the
Pauli spin matrices σi, the two-state Hamiltonian then reads

HS = ~∆σx + ~ϵσz . (3.2)

The two lowest lying energy eigenstates |E±⟩ at ϵ = 0 are given as an (anti-
)symmetric superposition of the localized states |L⟩ and |R⟩ such that |E±⟩ =
(|L⟩ ± |R⟩)/

√
2 with energies E± = ∓∆/2. The tunneling amplitude then follows

as ∆ = E+ − E− and is a function of the donor distance d.
In order to determine the tunneling amplitude ∆, we have to calculate approx-

imate eigenvalues of the lowest symmetric and antisymmetric energy-eigenstate.
In principle, rather highly elaborated methods are available for their calculation,
including the anisotropic conduction band dispersion of silicon, the valley orbit in-
teraction and valley interference effects [7, 95]. The latter leads to an oscillatory
behavior of the tunneling amplitude ∆ for increasing the donor distance d. Notice-
ably, the oscillations are weak if the two donors are placed in the [100]-plane of the
Si host [7]. However, we aim for a detailed and quantitative understanding of the
electron-phonon decoherence mechanism and thus resort to the simplest straightfor-
ward procedure to determine the tunneling amplitude which is the well established
linear combination of atomic orbitals (LCAO) [3, 96]. This tight-binding method
is very successful for determining the molecular orbitals for the H+

2 -molecule but
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Figure 3.1: Sketch of the geometry of a donor-based charge qubit formed two
donor atoms at a distance d and the various angles of the phonon propagation.

can easily be generalized to our model by introducing an effective Bohr radius [97].
When we neglect the conduction-band anisotropy, we can assume that the localized
states |ξ⟩ (ξ = L,R) are represented by the 1s orbital of each donor. They read

⟨r⃗|ξ⟩ =


1

πa3
ξ

e−rξ/aξ (3.3)

where aξ is the effective Bohr-radius of the donor ξ [97] and rξ = |rξ|. In the
following, the left donor is assumed to be the phosphorus atom, whereas the right
donor is taken from the group-V donors {Bi, As, P, Sb}. Hence, we introduce the
ratio p such that aR = paL.

To calculate the energy levels an ansatz for the wave function for the (anti-)sym-
metric (∓) part is made and the overlap between the two wave functions is calcu-
lated, yielding the energies for the (anti-)symmetric state. If energies are scaled in
atomic units, they read [96]

E± = E
(±)
1 (d) + E

(±)
2 (d) . (3.4)

Here, E
(±)
1 (d) is the kinetic energy and E

(±)
2 (d) is the potential energy, both being

functions of the (dimensionless) donor distance d. They read

E
(±)
1 (d) =

1± e−d(1 + d− d2/3)

1± e−d(1 + d+ d2/3)

E
(±)
2 (d) = −2

1± 2 e−d(1 + d) + (1/d)− (1/d+ 1) e−2d

1± e−d(1 + d+ d2/3)
.

(3.5)
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Due to the fixed positions of the donors, there is no need to minimize the energy
with respect to the donor distance, in contrast to analogous calculations for the
H+

2 -molecule. According to the LCAO calculations typical tunneling amplitudes for
a distance of d = 7.06 nm (which corresponds to a separation of the two dopants
by n = 13 lattice sites) follow as ∆ ≈ 16 meV. This is qualitatively consistent with
the results obtained from a more refined approach taking into account interference
effects in the Si band structure [7].

3.2.2 Coupling to linear acoustic phonons

The phonon bath is due to the silicon host crystal and is modeled as usual in terms
of the bosonic operators bq as

HB = ~

q

ωqb
†
qbq , (3.6)

with the phonon dispersion relation ωq. The electron-phonon interaction reads [98,
99]

HSB = ~

q

(αL
qNL + αR

qNR)(b†q + b−q) . (3.7)

Here, Nξ = 0, 1 is the number of the excess electrons on the donor ξ, respectively,
and αξ

q = λqe
−iq·rξFξ(q). The coupling constant λq depending on the wave vector

q is specified below. Note that the phonons can propagate in all three dimensions,
and the electron-phonon coupling is not isotropic in general [100]. To take care of
the charge distribution in each donor we define a form factor according to

Fξ(q) =


d3r nξ(r)e

−iq·r , (3.8)

where nξ(r) is the charge density of the donor ξ. The coupling Hamiltonian is
rewritten in the form [99]

HSB =
~
2
σz


q

gq(b
†
q + b−q) , (3.9)

with gq = [λq(FL(q)− FR(q))]. The charge density distribution then follows directly
from eq. (3.3) as nξ(r) = |⟨r|ξ⟩|2, which leads to the form factors FL(q) = fL(q)
and FR(q) = fR(q)e−iq·dey with fξ(q) = 16/[4 + (qaξ)

2]2.
In this work we focus on linear acoustic phonons with linear dispersion relation

ωq = s|q|, s being the sound velocity for silicon (s ≈ 9 × 103 m/s) [101]. Since
the silicon crystal has an inversion center there is no piezoelectric coupling between
electrons and phonons, wherefore the dominating coupling is due to the deformation
potential. Thus, the coupling constant reads

λq =
D

~
q


~

2ρmV ωq

, (3.10)
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where D is the deformation constant for silicon (D ≈ 8.6 eV, see Ref. [102]), ρm is
the mass density of silicon (ρm ≈ 2.33 × 103 kg m−3, see Ref. [101]) and V is the
volume of the unit cell.

All the properties of the phonon bath can be captured in the spectral density
defined as

G(ω) =

q

|gq|2δ(ω − ωq) . (3.11)

Using eq. (3.10) and the definition of the form factors and taking into account the
geometry, the sum over q can be transformed into a continuous integral which can
readily be carried out. One then obtains the spectral density

G(ω) =
64D2

π2ρm~s5
ω3


4 +

ω
s
aL

2
−4

+


4 +

ω
s
paL

2
−4

−2


4 +

ω
s
aL

2
−2

4 +
ω
s
paL

2
−2

j0

ω
s
d


. (3.12)

where j0 is the spherical Bessel function. The spectral density is sketched in the inset
of fig. 3.2. The low-frequency behavior is superohmic according to G(ω → 0) ∝ ω3,
while in the high-frequency limit, it decays algebraically as G(ω →∞) ∝ ω−5. The
crossover between these two limits occurs on a frequency scale ωc = s/aP ≡ τ−1

c ,
where aP is the radius of the phosphorus donor (aP = 1.22 nm, see [97]), yielding
ωc = 2.46 THz, which corresponds to an energy of 10.17 meV. As we will see below,
typical tunneling amplitudes ∆ are comparable to this energy scale. Thus, the
frequency distribution of the bath is no longer monotonous in the range of the
relevant system energies. As common approximate analytical treatments [3, 11] of
phonon-induced decoherence typically involve a smooth frequency distribution, it is
not a priori clear whether their results are applicable to this situation. Moreover,
the used Born-Markovian approximation which neglects bath-induced correlations
might not describe properly the dynamics. This can be seen from the autocorrelation
function [11] of the bath, eq. (2.18) which is shown in fig. 3.2. The typical width of
the correlation function is comparable to the time scale ∆−1 ≈ ω−1

c of the system
dynamics.

The Born-Markov approximation corresponds to replacing the strongly peaked
real part LR(t) by a δ-function with the corresponding weight while the imagi-
nary part LI(t) is often neglected. However, since the geometry tailors a specific
structured phonon environment for the charge qubit, it is not clear from the very
beginning that the Markovian assumption is valid. It is the main purpose of the
present chapter to investigate this issue and compare exact real-time path integral
simulations with approximate weak-coupling (Born-Markov) results.
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Figure 3.2: The bath autocorrelation function (response function) L(t) =
LR(t)+ iLI(t) for the spectral density G(ω) (inset) of the phonon bath for the
case of two P donors in a Si host (p = 1, deformation potential phonons), with
s = 9 × 103 m/s, an effective Bohr radius of aP = 1.22 nm, and inter-donor
distance d = 10.32 nm. The temperature is T = 50 mK.

3.3 The QUAPI scheme

In order to investigate the dynamics of the system, we use the quasi-adiabatic
propagator path integral (QUAPI) scheme [8] being a numerically exact iteration
scheme which has been successfully adopted to many problems of open quantum
systems [9, 17]. Since we will also make use of this method in the chapters 4 and 5
we introduce it here in quite some detail.

The dynamics of the system of interest is described in terms of the time evolution
of the reduced density matrix ρ(t), introduced in eq. (2.29), which is obtained after
tracing out the bath degrees of freedom, hence

ρ(t) = trBK(t, 0)W (0)K−1(t, 0) ,

K(t, 0) = T exp

− i

~

t
0

dt′H

 . (3.13)

K(t, 0) denotes the propagator of the full system plus bath, T is the time ordering
operator and H is the Hamiltonian, eq. (3.1). The full density operator W (0) at
initial time t = 0 is as usual assumed factorizing, see section 2.5.1. The staring point
for developing the algorithm is to discretize the path integral in eq. (3.13) into N
steps of length ∆t. Next, the full propagator over a single time step is broken into
a part belonging to the system and a part depending on the environmental degrees
of freedom and the coupling between system and environment. Here, one makes use
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3.3. The QUAPI scheme

of the symmetric Trotter formula [103] which leads to

K(tk+1, tk) ≈ exp(−iHSB∆t/2~)KS(tk+1, tk) exp(−iHSB∆t/2~)

KS(tk+1, tk) = T exp

− i

~

tk+1
tk

dt′HS(t′)

 , (3.14)

where T denotes the chronological operator. Since both parts of the Hamiltonian
do not commute, as HSB ∼ q and HS ∼ p, the splitting in eq. (3.14) induces an
error proportional to [HSB, [HS, HSB]] ∆t3 [10]. The short time propagator of the
bare system KS(tk+1, tk) is calculated by means of the Schrödinger equation which is
solved numerically within a fourth-order Runge-Kutta scheme with adaptive stepsize
control. We may express the short time propagator in coordinate representation as

⟨qΠαxα|K(tk+1, tk)|q′Παx
′
α⟩ ≈ (3.15)

⟨q|KS(tk+1, tk)|q′⟩
N

α=1

⟨xα| exp(−iHα(q)∆t/2~) exp(−iHα(q′)∆t/2~)|x′α⟩ ,

where Hα is the Hamiltonian of the single bath oscillator, eq. (3.6). Eq. (3.15)
constitutes the quasi-adiabatic propagator, since the position operator q of the bath
part of the Trotter splitting in eq. (3.14) is treated as a parameter which yields
the factorizing total short time propagator (3.15). The equilibrium positions of
the bath oscillators are adiabatically displaced along the system coordinate q and
the potential along this adiabatic path xα = cα

mαω2
α
q is comprised in the system

Hamiltonian (3.2). Along this path the full system has minimal potential energy
for a fixed coordinate q and the single bath oscillators are centered at the point of
minimal potential energy. Including this assumption we again recover the reduced
density matrix (2.29) with a discretized version of the Feynman-Vernon influence
functional

ρ(qf , q
′
f ; t) =


dq0 . . . dqN


dq′0 . . . dq

′
Nδ(q

′
f − q′N)δ(qf − qN)

×⟨qf |KS(t, t−∆t)|qN−1⟩ . . . ⟨q1|KS(t0 + ∆t, t0)|q0⟩ ⟨q0|ρS(t0)|q′0⟩
× ⟨q′0|KS(t0 + ∆t, t0)|q′1⟩ · · ·


q′N−1|KS(t, t−∆t)|q′N


×F (N)

FV (q0, q
′
0, . . . , qN , q

′
N) . (3.16)

Here the paths q(t′) and q′(t′) are composed of equidistant segments qk and q′k
respectively within each time interval tk− ∆t

2
< tk < tk + ∆t

2
. These composed paths

allow for rewriting the influence functional as

F (N)
FV (q0, q

′
0, · · · , qf , q′f ) = exp


−1

~

N
k=0

k
k′=0

[qk − q′k] [ηkk′qk′ − η∗kk′q
′
k′ ]


. (3.17)

and the coefficients ηkk′ ≡ η(tk− t′k) are related to their continuous counterpart and
are calculated exactly [104]. Eq. (3.16) has been successfully adopted to describe
the short time dynamics of relevant systems [8].
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To describe the long time dynamics we are interested in, too many quadrature
points would be needed to evaluate the underlying path integral directly. A way
out is to compute the reduced density matrix in an iterative way. Therefore, the
discretized influence kernel F (N)

FV (q0, q
′
0, · · · , qf , q′f ) is broken into smaller pieces on

each time slice

F(q0, q
′
0, · · · , qf , q′f ) =

N
k=0

F0(q
±
k ) . . .

N−1
k=0

F1(q
±
k , q

±
k+1) . . .

N−∆k
k=0

F∆k(q
±
k , q

±
k+∆k)

. . . ×
N−K
k=0

FK(q±k , q
±
k+K) , q = q+, q′ = q− (3.18)

where we have introduced q+ and q− for notational convenience and for later purpose.
The parts contributing to the influence functional in eq. (3.18) are depicted in fig.
3.3. The self-interaction reads

F0(q
±
k ) = exp


−1

~

q+
k − q−k

 
ηkkq

+
k − η∗kkq

−
k


(3.19)

and the interaction between different path segments is of the form

F∆k(q
±
k , q

±
k+∆k) = exp


−1

~

q+
k+∆k − q−k+∆k

 
ηk,k+∆kq

+
k − η∗k,k+∆kq

−
k


. (3.20)

The F∆k are the memory slices that are taken into account within the method, since
the bath-induced correlations being non-local in time are included in the numerical
scheme over a finite memory time τmem = K∆t. This corresponds roughly to the
time range over which the bath autocorrelation function L(t) given in eq. (2.18)
is significantly different from zero. For any finite temperature L(t) decays expo-
nentially at long times [11] justifying this approach. Note that this is completely
analogous to what is done within the newly developed ISPI approach for a system
within a fermionic environment, see chapter 6. For the influence functional this
implies that the memory function η(t) is truncated after after K time steps, thus
ηkk′ is neglected if k′ > k+K. Then the influence functional is rewritten in compact
form as

F (N)
FV (q0, q

′
0, · · · , qf , q′f ) =

N
k=0

min{N,K}
k′=0

exp


−1

~

q+
k − q−k

 
ηkk′q

+
k′ − η∗kk′q

−
k′


.

(3.21)
Eq. (3.21) illustrates nicely that the path in q is equivalent to the Keldysh contour
used in chapter 6 to describe non-equilibrium transport to an Anderson impurity.
For details of the Keldysh technique, see section 6.1.1. The q+ and q− reside on the
upper and lower contour, respectively, see fig. 3.4. This demonstrates the strong
connection between the QUAPI scheme and the ISPI method, although there are
conceptual differences, discussed in detail in chapter 6.
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Figure 3.3: Illustration of the parts contributing to the broken influence
functional on a single time slice. F0 is the self-interaction, and the F∆k con-
stitute the interaction between different path segments.

Inserting the truncated influence functional into the reduced density matrix
(3.16) yields

ρ(qf , q
′
f ; t) = AN(qf , q

′
f , q̂, . . . , q̂) exp


−1

~

q+
f − q−f

 
ηNNq

+
f − η∗NNq

−
f


(3.22)

and since the bath oscillators are adiabatically displaced along q, q is arbitrary
but fixed. Ak is the reduced density tensor that depends on the 2K arguments
q+
k , q

−
k , · · · , q

+
k+K−1, q

−
k+K−1 and follows from the recursion relation

Ak+1(q
±
k+1, . . . , q

±
k+K) =


dq+

k dq
−
k Λk(q

±
k , . . . , q

±
k+K)Ak(q

±
k , . . . , q

±
k+K−1) . (3.23)

Here,

Λk(q
±
k , . . . , q

±
k+K) =


q+
k+1|KS(tk+1, tk)|q+

k

 
q−k
K−1

S (tk+1, tk)
 q−k+1


(3.24)

×
K

k′=0

exp


−1

~

q+
k − q−k

 
ηkk′q

+
k′ − η∗kk′q

−
k′


is the propagator tensor with the initial condition

A0(q
±
0 , . . . , q

±
K−1) =


q+
0 |ρS(t0)|q−0


. (3.25)

Eq. (3.23) together with eq. (3.25) constitutes the name iterative tensor multipli-
cation scheme for the method and the notion tensor is used here to emphasize that
one is concerned with multi-dimensional arrays, but does not refer to the algebraic
properties of a tensor in the mathematical sense.

Up to now the reduced density matrix (3.17) was treated in a spatial continu-
ous way which makes the evaluation of the recursion relation (3.23) intractable for
relevant systems. To evade this problem a transformation into the energy eigen-
states of the bare system Hamiltonian is performed. For a thermal bath the occu-
pation of higher energy states is negligible for low temperatures (see also section
2.4). The dynamics is then projected to a Hilbert subspace spanned by the eigen-
states |m⟩,m = 1, · · ·M which corresponds to an approximate decomposition of
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Figure 3.4: Same as fig. 3.3 but now q+ and q− are explicitly shown on
the upper and lower part of the contour. This depicts the connection to the
Keldysh approach, see sec. 6.1.1.

the identity operator 1 ≈
M

m=1 |m⟩⟨m|. To obtain the final recursion relation the
position operator is unitarily transformed such that it becomes diagonal in the M -
dimensional Hilbert subspace. This is the so-called discrete variable representation
(DVR) which follows from

|um⟩ =
M

m′=1

Rm,m′ |m′⟩ , ⟨um|q|um′⟩ = qDV R
m δmm′ , m,m′ = 1, . . . ,M . (3.26)

The states |um⟩ are localized in position space at the eigenvalues qDV R
m of the posi-

tion operator and Rm,n′ denotes the diagonalization of the position operator. The
truncated reduced density matrix (3.22) and the eqs. (3.23-3.23) are then modified
according to the DVR transformation and since the integrals within the reduced
density tensor (3.23) are changed into finite sums the iterative summation of the
path histories is now numerically tractable.

However, we have improved the method at one important step and we will de-
scribe this in greater detail next. As mentioned above the QUAPI algorithm is based
on a symmetric Trotter splitting of the short-time propagator K(tk+1, tk) of the full
system into a part depending on HS and HB +HSB describing the time evolution on
a time slice ∆t. This is exact in the limit ∆t→ 0 but introduces a finite Trotter er-
ror to the propagation which has to be eliminated by choosing ∆t small enough that
convergence has been achieved. On the other side, the bath-induced correlations
being non-local in time are included in the numerical scheme over a finite memory
time τmem = K∆t which roughly corresponds to the time range over which the bath
autocorrelation function L(t) given in eq. (2.18) is significantly different from zero.
Note that for any finite temperature L(t) decays exponentially at long times [11]
justifying this approach.
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To obtain convergence with respect to the memory time, K has to be increased
until converged results have been found. However, the numerical effort grows ex-
ponentially with the memory length K and for the present two-level system, the
memory length is restricted to typical values of K = 12 on a standard processor
with 2 GB RAM for practical reasons.

Thus, the two strategies to achieve convergence are countercurrent. To solve
this, the principle of least dependence has been invoked [9] to find an optimal time
increment in between the two limits. We will make use of this in the chapters 4
and 5. However, here we show that the algorithm can be improved by applying a
different strategy.

We first choose some small enough time increment ∆t. Then, one has to increase
the memory time τmem by increasing K until convergence has been achieved. Typ-
ical results of this memory convergence check are shown in fig. 3.5. Shown is the
decoherence rate γ for increasing memory time for different donor distances (p = 1)
for the symmetric qubit ϵ = 0. Note that the decay rate has been obtained by
fitting the results for the population difference P (t) = ⟨σz⟩t to an exponentially
decaying cosine. The remaining error is the Trotter error. However, following [10],
for any Hermitian observable, this symmetric Trotter error vanishes quadratically in
the limit ∆t → 0. This opens the possibility to extrapolate the results to ∆t → 0,
thereby completely eliminating the Trotter error. This is done by decreasing ∆t
from the initial value and then by finding the extrapolated exact result (of course,
convergence has to be verified again for the smaller values of ∆t). Typical results
of this extrapolation procedure are shown in fig. 3.6, indicating that the numerical
values follow a line for decreasing step sizes. Note that we consider P (tfix) at an
arbitrary time tfix = 34.1/ωc in this example. Indeed, we find the predicted behav-
ior for the Trotter error to vanish and perform a linear regression to ∆t → 0, also
shown in fig. 3.6. The y-axis intersection gives the numerical exact value for the
observable of interest, in this case afflicted with a tiny error bar coming from the
linear regression. In general, the convergence properties of an observable strongly
depend on the involved parameters, similar to path-integral quantum Monte-Carlo
simulations [105]. Different observables show different behaviors with decreasing
Trotter step size ∆t, as for instance the particle density in contrast to the energy of
the system in [105].

3.4 The dynamics of the charge qubit

Equipped with the numerically exact improved QUAPI scheme, we can now study
the dynamics of the charge qubit in detail. To extract the decoherence rate γ,
the relaxation rate γr, the equilibrium population difference P∞ and the oscilla-
tion frequency Ω, we fit a combination of exponentially decaying cosine and sine
functions [11] to the numerically exact data, from which the Trotter error has been
eliminated. We can then investigate the dependence of the above quantities on the
experimentally relevant parameters. We emphasize again that realistic assumptions
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Figure 3.5: Check of convergence with respect to the memory time τmem =
K∆t for the decoherence rate γ (symmetric qubit ϵ = 0) and for the donor
distances d = 4.34 nm, d = 7.06 nm and d = 10.32 nm and the corresponding
tunnel matrix elements obtained from the LCAO. The Trotter time increment
is fixed to ∆t = 0.55ωc.

on the geometry of the system enter the spectral density eq. (3.12) and thus allow
to calculate quantitative realistic results.

One of the major goals of this work is to verify the Born-Markov (weak-coupling)
approximation, since the later results in very simple and compact formulas for pa-
rameters governing the dynamics. For details of the Born-Markov approximation,
see section 2.6. Hence, we compare the exact QUAPI results with results obtained
within a WCA which are known as [11]

γ =
γr

2
+

2πϵ2

∆2
b

S(0) , (3.27)

γr =
π∆2

eff

2∆2
b

S(∆b) , (3.28)

Ω2 = 4∆2
eff [1− 2 Reu(2i∆b)] + 4ϵ2 , (3.29)

P∞ = − ϵ

∆b

tanh


~∆bβ

2


. (3.30)

The spectral function S(ω), related to the phonon spectral density, eq. (3.12),
via S(ω) = G(ω) coth(~ω/(2kBT )), represents emission and absorption of a sin-
gle phonon and ∆b = 2


∆2

eff + ϵ2 is twice the effective qubit frequency. ∆eff is the
effective tunnel matrix element at T = 0 [11], which includes the renormalization
by a Franck-Condon factor stemming from the high-frequency modes of the reser-
voir [11]. In the present case, one easily finds that ∆eff ≈ ∆ with a deviation of less
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Figure 3.6: Example of the Trotter convergence for the the population differ-
ence of the qubit, P (tfix), from which the quantities of interest are extracted.
In the lower sketch the tunnel amplitude was chosen as ∆/ωc = 2.24 and
tfix = 34.1/ωc, and in the upper sketch ∆/ωc = 3.24 and tfix = 18.2/ωc. The
memory-time is fixed to τmem = 3.85/ωc and three values of K = 10, 11, 12
have been chosen. At τ 2

mem/K
2 → 0 the value P (tfix) is shown as a result of

the extrapolation ∆t → 0, with the error of the linear regression (horizontal
bars).

than 1%. The function u(z) is defined in terms of the frequency integral

u(z) =
1

2

∞
0

dω
G(ω)

ω2 + z2


coth


~ω

2kBT


− 1


. (3.31)

3.4.1 Coherent charge oscillations for the symmetric qubit
ϵ = 0

For the symmetric qubit with zero bias (i.e., only decoherence, no dissipation),
we have calculated the time evolution of P (t) and have observed coherent charge
oscillations. In order to quantify them, we define the quality factor Q = Ω/(πγ)
where the frequency Ω and the decoherence rate γ have been been obtained from the
fit as described above. We have performed extensive simulations for three different
donor distances d for various combinations of donor atom species and show the
results as a function of the tunneling amplitude ∆ in figs. 3.7, 3.8, and 3.9, each
for a fixed donor distance d. A variation of ∆ for a fixed donor distance can, for
instance, be achieved by a small additional gate voltage which slightly distorts the
1s orbitals leading to an increased overlap of the wave functions.
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Figure 3.7: Quality factor as a function of the tunneling amplitude ∆ for
different donor combinations and a small donor distance d = 4.34 nm. The
symbols depict the exact QUAPI results while the solid lines mark the results
of the WCA. Temperature is fixed at T = 50 mK.

Figure 3.8: Same as fig. 3.7, but for an intermediate donor distance d = 7.06
nm.
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Figure 3.9: Same as fig. 3.7, but for a large donor distance d = 10.32 nm.

For the smallest donor distance d = 4.34 nm, we observe in fig. 3.7 that Q in-
creases monotonously for increasing ∆. Thereby, the results for Q vary over two
orders of magnitude for the different donor species at large ∆. Moreover, the com-
bination of two P donors or of one P and one (very similar) Sb donor displays the
best decoherence properties. The dashed lines in fig. 3.7 display the results of the
WCA given in eqs. (3.27) and (3.29). A reasonable agreement is found in this case.

For intermediate donor distance d = 7.06 nm, see fig. 3.8, Q first decreases but
then increases again with increasing ∆. This can be understood by the fact that
d determines the shape of the spectral density and, in particular, the location of
the frequency of the cross-over, relative to the qubit frequency ∆. For the overall
performance, the similar observation as for the smaller distance (see above) apply.
Also in this case, the WCA seems to be appropriate although small deviations for
all ∆ can be observed which can be attributed to small non-Markovian corrections
stemming from the specifically tailored phonon environment.

In the case of large donor distance d = 10.32 nm, see fig. 3.9 the differences
between the various donor species almost vanish and are only noticeable at small ∆.
Also the WCA agrees well at large ∆ and also yields the correct order of magnitude
for small ∆ although differences become noticeable in this regime. Note that in this
case, Q decreases for increasing ∆, in contrast to the case of small and intermediate
distances.

Noticeably, we find that the Q-factor is independent of temperature for all rele-
vant parameter combinations (not shown here). This is due to the fact that realistic
temperatures correspond to frequencies of T = 6.5 × 109 Hz and hence all system
frequencies are much larger. This behavior is in contrast to what we have recently
reported in GaAs DQD systems [17].

Note that the oscillatory behavior of ∆ for increasing d [7] is not included in this
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simple LCAO approximation. However, when considering the Q−factor in figs. 3.7,
3.8, and 3.9, the oscillatory behavior of ∆ for growing donor distances d does not
affect Q substantially. This can be rationalized by considering the weak-coupling
results eqs. (3.27)-(3.29) for ϵ = 0. Then, it becomes clear that the only part where
∆(d) appears is in the high-frequency part of G(ω) (assuming low temperature such
the the coth approaches one and being interested in ∆ ≈ ωc). The prefactors, which
in principle contain ∆(d), drop out when the ratio is calculated.

3.4.2 Dynamics of the biased charge qubit ϵ ̸= 0

When a finite bias ϵ ̸= 0 is present, in addition to decoherence also relaxation
occurs to a non-zero asymptotic value P∞ ̸= 0. The corresponding decoherence
and relaxation rates are also influenced by the presence of a bias in the sense that
the effective qubit frequency ∆b grows with increasing ϵ. Then, the behavior of
the environmental frequency distribution is essential: if it grows with increasing
frequency, decoherence and dissipation will become more effective and if it decreases
the environmental effects will diminish. This is what we observe from the results
shown in fig. 3.10. For comparison, we also show the corresponding WCA results,
which yield the qualitatively correct behavior while differences in the quantitative
results occur.

3.5 Conclusion

To summarize, we have investigated the phonon-induced decoherence and dissipa-
tion in donor-based charge qubits formed by a pair of donor atoms placed in a Si
crystal host. The donor pair is formed by one P donor and one donor of the group
Bi, As, P, Sb. We have employed the numerically exact quasi-adiabatic path-integral
propagator in its iterative version. The major achievements of our work is twofold:
(i) We have first improved the QUAPI scheme in the sense that the Trotter dis-
cretization error can now be completely eliminated by extrapolating the results to
vanishing Trotter increment, as it is known that the error vanishes quadratically.
(ii) Beyond these methodical aspects, we have obtained numerically exact results
for the real-time dynamics of charge qubits under the influence of acoustic deforma-
tion potential phonons. Realistic assumptions on the tunneling amplitude enters via
LCAO calculations of the wave functions and the qubit energies in our model. More-
over, we have included the particular phonon environment tailored by the particular
geometry of the set-up via geometrical form factors and materials characteristics.
No fitting parameters of any sort were utilized.

In the absence of a static bias we have investigated the Q-factor of the charge
oscillations as a function of the donor distance and as well as a function of the
tunneling amplitude. We have compared our results with those obtained from a
WCA within an analytical approach in terms of real-time path-integrals and found
that only small non-Markovian corrections appear. This can be attributed to the
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Figure 3.10: Upper panel: Relaxation (γr) and decoherence (γ) rate for
increasing bias ϵ. Symbols are the exact QUAPI results while the solid lines
are the corresponding WCA results. Lower panel: Oscillation frequency Ω
and asymptotic value P∞. The remaining parameters are d = 7.06 nm, ∆ =
0.57ωc, and T = 50 mK.

dominating super-Ohmic properties of the phonon environment at small frequencies.
Furthermore we have investigated the dynamics in the case of a static bias and have
found that the qualitative behavior of the decoherence and damping rates follows
the form of the environmental frequency distribution. Non-Markovian corrections
are also found in this case.

At present, no experimental realizations of this setup is yet reported. Neverthe-
less, we emphasize that our results on the decoherence and dissipation induced by
the electron-phonon coupling represent a fundamental upper limit to the coherence
of such donor based charge qubits which can hardly be negotiated due to its intrin-
sic nature. This has to be seen in view of the DiVincenzo criteria [106] and also
for the future realization of quantum information processes. However, the dominat-
ing source of decoherence in this kind of qubit realization has to be investigated in
realistic devices.
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Chapter 4

Coherent control of an effective
two-level system in a
non-Markovian biomolecular
environment

Within the present chapter we address the question if and to what extent the time
period over which quantum coherent dynamics occurs, studied in the preceding chap-
ter, can be extended by an externally applied driving field. In contrast to chapter
3 the model of interest is more general since we focus on an Ohmic environment
which is a proper choice for a variety of nanoscale systems. To be specific, we
investigate the quantum coherent dynamics of an externally driven effective two-
level system subjected to a slow Ohmic environment characteristic of biomolecular
protein-solvent reservoirs in photosynthetic light harvesting complexes. By means
of the QUAPI method we show the dependence of the quantum coherence on the
characteristic bath cut-off frequency ωc as well as on the driving frequency ωl and
the field amplitude A. Our calculations extend from the weak coupling regime
to the incoherent strong coupling regime. In the latter case, we find evidence for
a resonant behavior, beyond the expected behavior, when the reorganization en-
ergy Er coincides with the driving frequency. Moreover, we investigate how the
coherent destruction of tunneling within the two-level system is influenced by the
non-Markovian environment.

We compare our results for the undriven TLS with the outcome of real-time
Monte Carlo simulations [69] and show that the QUAPI approach gives reliable
results in the non-Markovian strong coupling case (section 4.2.2). In addition, we
include an external time-dependent drive at frequency ωl and show in section 4.2.3,
for moderate and strong driving, that the amplitude of the forced oscillations in the
stationary limit strongly depends on ωl and, moreover, on ωc. Most interestingly,
it turns out that a slow environment together with a slow drive ωl optimizes the
forced oscillations in the stationary limit. Finally, in section 4.2.4, the effect of a
slow dissipative environment on the coherent destruction of tunneling in the TLS

47



4. COHERENT CONTROL OF AN EFFECTIVE TWO-LEVEL SYSTEM IN A
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is investigated. We find that the bath influence is indeed strongest in the scenario
ωc ≃ ∆.

4.1 Model and method

4.1.1 Model for the dissipative TLS

The driven two-level system (TLS) bilinearly coupled to a bosonic heat bath is
described by the generic spin-boson Hamiltonian (3.1), see section 2.4 for details.
In contrast to the previous chapter, the system Hamiltonian HS(t) is now time-
dependent. It is chosen to be in the basis of the two states |0⟩ and |1⟩, each being,
for example, the localized charge state of a charge qubit, or the ground state and
the excited state of a two-level atom. The TLS, with the tunnel splitting ∆, is
driven by a time-dependent external driving field of the form ε(t) = A cos (ωlt) with
amplitude A and driving-frequency ωl yielding

HS(t) =
~
2

(∆σx + ε(t)σz) , (4.1)

with σi=x,z being the Pauli pseudo-spin matrices. The environment to which the
TLS is bilinearly coupled is modeled as a bath of harmonic oscillators with bosonic
creation and annihilation operators b†, b and oscillator frequency ωα, hence HB =

α ~ωαb
†
αbα. The coupling between the TLS and the environment is taken into

account by the interaction Hamiltonian

HSB =
~
2
σz


α

gα


b†α + bα


, (4.2)

with gα being the coupling constants.

4.1.2 Model for the dissipative photosynthetic light-harvesting
effective TLS

Complex photosynthetic biomolecular structures have recently been shown to exhibit
quantum interference properties [23, 24]. In particular, energy transfer among the
excitons within chlorophyll complexes of the sulfur [23] and the purple [24] bacteria
have provided evidence for long-lived (picosecond time scale) quantum coherent
excitonic dynamics, a fact that has only recently become associated to the efficiency
of the energy transfer from the LH antenna complexes to the chemical reaction
centers in such large biomolecules [23,24].

In this work, we are interested in the dissipative dynamics of the minimal, basic
unit of a photosynthetic LH complex which would allow us to model and control
quantum interference mechanisms taking place in such nanostructures. This is done
by modeling the specific case of an interacting pair of chromophores in a LH II
ring [18]. The effective single TLS is built up from two chromophores which are
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coupled by the Förster resonant energy transfer ∆, as sketched in fig. 4.1(a), where
~ωj is the transition energy for chromophore j. Since the fluorescence lifetime of
the single chromophore is much larger than the other time scales of the system [22],
no radiative decay of the excitations is taken into account, and we can write the
Hamiltonian for the two-chromophore system in the basis B2 ≡ {|g1⟩ ⊗ |g2⟩ , |g1⟩ ⊗
|e2⟩ , |e1⟩⊗|g2⟩ , |e1⟩⊗|e2⟩}, where gj (ej) corresponds to the ground (excited) state of
chromophore j. The ∆–Förster coupling between the two chromophores (fig. 4.1(a))
comprises a dipole-dipole interaction which produces a non-radiative transfer of an
excitation between the chromophores. Such an interaction can be written as [107]
Hint = ~∆

2
(σ1

xσ
2
x + σ1

yσ
2
y), and the Hamiltonian of the bare system becomes

HS = H1 ⊗ σ2
0 + σ1

0 ⊗H2 +Hint , (4.3)

where σi
0 is the identity matrix in the space of chromophore i.

The correlations due to the bath enter through the coupling to a surrounding
protein environment and to a polar solvent, which, in general, exhibits a frequency
dependent dielectric constant [108]. For the details of such a mechanism and their
possible geometric configurations, we refer to [108]. Formally, this process can be
modeled by means of a quantized reaction field operator Ri ≡


αD

i
α(bi,α + b†i,α),

where Di
α couples the chromophores i to the surrounding environment. This, in

turn, is modeled as a bath of harmonic oscillators which comprise the energy stored
in the polar solvent. Such modes are represented via the bosonic operators bα, and,
as in the previous section, the bath Hamiltonian reads HB =


α ~ωαb

†
αbα. If δµi

denotes the change in the dipole moment of molecule i during the transition1, the
two chromophores are coupled to their environment via the interaction Hamiltonian

HSB =
~
2


δµ1σ

1
z


α

D1
α(bα + b†α)


⊗ σ2

0 + σ1
0 ⊗


δµ2σ

2
z


α

D2
α(bα + b†α)


The total Hamiltonian for the two-chromophores is then written in the basis B2 as

H = HS +HB +HSB = (4.4)

=


α

~ωαb
†
αbα +

~
2


− (Ω+ + V+) 0 0 0

0 − (Ω− + V−) 2∆ 0

0 2∆ Ω− + V− 0

0 0 0 Ω+ + V+


where Ω± ≡ ω1 ± ω2, and V± ≡ δµ1R

1 ± δµ2R
2. Given the biophysical nanostruc-

ture composition of the LH II rings [18], we assume that the states of the single
chromophores couple to the same surrounding protein bath. Consequently we set
D ≡ D1 = D2, and drop any subscripts that may differentiate the bath modes
associated to chromophores 1 and 2 in HB

2.

1µi = ⟨e|µ̂|g⟩i is the transition dipole moment of chromophore i.
2A coupling of the two chromophores to two uncorrelated baths can easily be included within

the QUAPI method, but is not within the aim of the present work.
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Figure 4.1: Sketch of the effective light harvesting biomolecular TLS formed
from a pair of ∆−Förster interacting chromophores.

If only singly excited states are taken into account, from the Hamiltonian eq.
(4.4) we identify the active environment coupled 2D-subspace {|e1⟩⊗|g2⟩, |g1⟩⊗|e2⟩}.
In this central subspace of eq. (4.4), the effective interacting biomolecular TLS
Hamiltonian reads

H =


~Ω

2
σz + ~∆σx


+

~
2
σz


α

gα


bα + b†α


+


α

~ωαb
†
αbα , (4.5)

with gα ≡ Dα(δµ1 − δµ2) being the bath coupling constants, and Ω ≡ Ω−. Now
the defined effective biomolecular TLS has tunneling splitting ∆; if, as before, such
a TLS is driven by a time-dependent external driving field ε(t) = A cos (ωlt), and
we consider that both chromophores have equal transition energies (ω1 = ω2), the
Hamiltonian eq. (4.5) becomes equal to the total Hamiltonian H(t) eq. (3.1),
and hence we have effectively mapped the interacting, environment correlated chro-
mophore system Hamiltonian to that of a generic effective spin-boson Hamiltonian.
This is schematically illustrated in fig. 4.1(b), where ∆ is the associated “tunneling
energy”, between the new basis states |0⟩ and |1⟩ for the effective biomolecular TLS
(formerly the B2–basis states |ge⟩ and |eg⟩, respectively).

To gain information on the full dynamics of the system, the initial conditions at
t = 0 have to be specified. Again we make use of the factorizing initial conditions,
specified in eq. (2.33).

The environment is fully characterized by the spectral density J(ω) =


α g
2
αδ(ω−

ωα), being a quasi-continuous function for typical condensed phase applications. It
determines all bath-correlations that are relevant for the system via the bath auto-
correlation function [11,83], eq. (2.18)

For what is reported in the following, we use an Ohmic spectral density with an
exponential cut-off, i.e.,

J(ω) = 2παω exp(−ω/ωc), (4.6)

where the dimensionless parameter α describes the damping strength and ωc is the
cut-off frequency. An Ohmic spectral density is a proper choice for, e.g. electron
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transfer dynamics [69, 109] or biomolecular complexes [18, 22], as well as in the
case of Josephson junction qubits [110]. In the case of charge qubits subjected
to a phonon bath, a different spectral density, with a super-Ohmic low-frequency
behavior, results better suited [17] and e.g. chapter 3.

To complete the model we have to specify the environmental coupling, i.e. it
will be shown that the spectral density associated to the bacteriochlorophylls in the
LH II complexes considered in this chapter being Ohmic in nature is based on a
microscopic derivation [111, 108]. The biomolecule modeled as a TLS is coupled to
a solvent bath and has a permanent dipole moment µ. In the simplest picture the
solvation process can be described in terms of the Onsager model [112,113] which is
a continuous model that has been widely used in studies of solvation processes, e.g.
in refs. [114, 115]. Here, the solute is treated as a point dipole which is surrounded
by a spherical cage of polar solvent molecules with Onsager radius a, which typically
exhibits the size of the solute molecule [111,112,113], for a sketch see fig. 4.2.

The central cavity has a dielectric constant εr = 1 since it is assumed to be
in vacuum. The central dipole now polarizes the cage, which in turn produces an
electric field inside the cavity, named the reaction field R(t). In case of a uniform
spherical cavity the reaction field is constant everywhere inside [116]. The field then

acts back on the dipole with interaction energy E = −µ⃗(t) ·R⃗(t) and typically lowers
the total energy and hence forms a stable structure. To quantize R(t), it is expressed
in the Heisenberg picture within its Fourier modes as [111]

R(t) =


α

eα


aαe

−iωαt + a†αe
iωαt

. (4.7)

The coefficients are quantized such that aα and a†α obey bosonic commutation rela-
tions. Therefore the environment is modeled as a bath of harmonic oscillators.
Next, the spectral density is specified following [111]. Noting that with no solute-
solvent interaction ⟨R(t)⟩ = 0, the reaction field correlation function

S(t) = i⟨R(t)R(0)⟩Θ(t) ≡ i⟨0|eiHtRe−iHtR|0⟩Θ(t) (4.8)

is examined. Here, |0⟩ is the ground state of the harmonic oscillators of the environ-
ment and H is the Hamiltonian of the environment, e.g. eq. (2.5). It turns out that
the imaginary part of the Fourier transform of S(t), denoted as E(ω) is relevant. It
can be written as a sum over energy eigenstates [111,117]

ImE(ω) =


n

δ(ω − En)|⟨0|R|n⟩|2 . (4.9)

Expanding R(t) again in its normal modes, one finds that all terms ⟨0|R|n⟩ vanish
except for when a single bath oscillator is singly occupied [111]. These states have
energy En = ωα and ⟨0|R|n⟩ = eα. With this eq. (4.9) turns into

ImE(ω) =


n

e2αδ(ω − ωα) (4.10)
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Figure 4.2: Onsager model of solvation. The chromophore is treated as a
point dipole µ inside an empty cavity of radius a, which is surrounded by
a polar solvent. The dipole polarizes the solvent which in turn creates an
electric field which acts back on the dipole, stabilizing the solvated system.
Figure taken from [111].

and together with the definition of the spectral density (2.26) one ends up with

J(ω) = (∆µ)2ImE(ω) . (4.11)

For calculating the reaction field fluctuations one has to note that in the Onsager
model [112] R(t) and the central dipole µ(t) are related via a response function
χ(t − t′) [118], such that in Fourier space R(ω) = χ(ω)µ(ω). In the static limit,
where the solvent cage adjusts instantaneously, one has R(t) = χsµ(t) [112, 116].
For realistic systems, the solvent cage will lag behind changes of the dipole due to
the electric friction and χ(ω) is then given by [119]

χ(ω) =
1

4πε0a3

2(ε(ω)− 1)

2ε(ω) + 1
(4.12)

where ε(ω) is the frequency dependent dielectric constant of the solvent which reads
according to the Debye formula [120]

ε(ω) = ε∞ +
εs − ε∞
1− iωτD

. (4.13)

Here, ε∞ and εs are the high and low frequency limits, respectively. τD is the Debye
relaxation time, which is the bulk reorientational relaxation time of the solvent
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dipole [111]. Applying now the fluctuation-dissipation theorem yields with use of
eqs. (4.11) and (4.13)

J(ω) =
(∆µ)2

2πε0a3

6(εs − ε∞)

(2εs + 1)(2ε∞ + 1)

ωτE
ω2τ 2

E + 1
(4.14)

for the spectral density [111], with τE = 2ε∞+1
2εS+1

τD. This specific form of J(ω) is an
interesting result since it is based on a specific microscopic basis, similar to the spirit
of the spectral density for donor based charge qubits in chapter 3. Note that J(ω)
has an implicit high frequency cut-off at ωc = 1

τE
related to the finite relaxation time

of the solvent dipole. Below the cut-off, J(ω) = ηω, where

η =
(∆µ)2

4πε0a3

6(εs − ε∞)

(2εs + 1)2
τD (4.15)

corresponding to the classical friction coefficient η, introduced in chapter 2.
In addition, different forms of a Debye dielectric solvent have been considered

[111, 108]. In general, they lead to the Ohmic type of spectral density given by eq.
4.6. The dimensionless damping constant α of the protein-solvent is directly related
to the parameters of the dielectric model [108], and has been estimated to be in the
range α ∼ 0.01− 1 [22,108].

The exponential decay of the high-frequency cut-off ωc sets the bath character-
istic time-scale. If ∆ ≪ ωc, the bath is very fast compared to the effective TLS
and loses its memory quickly. Here, a Markovian approximation is appropriate and
the standard Bloch-Redfield description [18] applies. However, for the considered
biomolecular environment, ~ωc is typically of the order of ∼ 2 − 8 meV, while the
Förster coupling strengths ~∆ ∼ 0.2− 100 meV [22,108]. Hence, the bath responds
slower than the dynamics of the excitons evolve and non-Markovian effects become
dominant, a regime which is accessible only by rather advanced techniques.

Below, we report results in the scaling limit ∆, T ≪ ωc and vary ωc such that
the system reaches the crossover to the adiabatic limit, i.e., ωc ∼ ∆. Both regimes,
and the associated crossover, have been studied by real-time Quantum Monte Carlo
simulations for electron transfer dynamics within the undriven TLS for selected
parameter combinations [69]. In this chapter, we go beyond this by including an
external laser driving and, furthermore, by covering the entire parameter space.
Concerning the coupling between the TLS and its environment, we study the whole
parameter window from the weak coupling limit α≪ ∆ to the strong coupling limit
α ∼ ∆.

4.2 Dynamics of the driven TLS

The dynamics of the TLS introduced in the previous section is described in terms of
the time evolution of the reduced density matrix ρ(t) which is obtained by tracing
over the bath degrees of freedom. The TLS dynamics always evolves from the initial
state ρS(0) = |1⟩ ⟨1|.
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In order to investigate the dynamics of the system, we use the QUAPI scheme
[21], introduced in detail in sec. 3.3. As the environmental fluctuations live on a
time scale ∼ 1/ωc, it is particularly important to include the full memory when
ωc ≃ ∆. Note that for any finite temperature, L(t), eq. (2.18) decays exponentially
at long times [11], thus justifying this approach. Moreover, K has to be increased,
until convergence with respect to the memory time has been found. Typical values,
for which convergence can be achieved for our spin-boson system, are K ≤ 12 and
δt ∼ (0.1− 0.2)/∆.

With the time evolution of the reduced density matrix ρ(t) at hand we can
now study the dynamics of the driven TLS in terms of the population difference
P (t) = ⟨ρ(t)σz⟩ of the two states, with the initial condition P (0) = 1.

4.2.1 Markovian vs non-Markovian dynamics

Before addressing the effect of driving, we convince ourselves that the dynamics is
indeed non-Markovian when ωc ≃ ∆. For this, we compare the numerical exact
QUAPI with a Bloch-Redfield approach. To be specific, we compare the QUAPI
data with the outcome of the weak coupling approximation, see (21.171) and (21.172)
in [11], which results from a first order approximation in α. In [121], it has been
shown that the outcome of the weak coupling approach is equivalent to a Bloch-
Redfield treatment.

In fig. 4.3 (a) the result for α = 0.001 and ωc = 100∆ is shown. As expected, the
agreement between both results is perfect since the system is deep in the Markovian
(weak coupling) regime. For fig. 4.3 (b) the coupling is increased to α = 0.01
and since the bath is still in the scaling limit there is acceptable agreement. In
contrast, for a cut-off frequency ωc = ∆, see fig. 4.3 (c), strong deviations between
the Bloch-Redfield approach and the QUAPI approach arise, indicating that the
environment is non-Markovian in nature here. When the damping is furthermore
increased to α = 0.1 the disagreement between the numerical exact QUAPI and the
weak coupling approximation is enhanced, see figs. 4.4 (a) and (b). This indicates
that the choice of ωc away from the scaling limit induces a non-Markovian behavior of
the dissipative TLS dynamics which is further underpinned by fig. 4.4 (c), where the
relaxation rate γr is shown. We obtain this from a fit of a decaying cosine function
with a single exponential to P (t). In the scaling limit ∆ ≪ ωc both approaches yield
the same γr, whereas strong deviations occur for smaller ωc. Note that ωc enters
(21.171) in [11] via the renormalized tunneling amplitude ∆eff which is included here
in the weak-coupling approximation.

4.2.2 Undriven case: comparison with Quantum Monte Carlo
results

Next, in order to validate our results in the highly non-Markovian crossover regime
ωc ∼ ∆, we compare our results with the outcome of real-time Quantum Monte Carlo
(QMC) simulations [109]. In fig. 4.5 (main), the results for the high temperature
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Figure 4.3: Population difference P (t) (solid line: weak coupling approach,
symbols: QUAPI). (a) α = 0.001 and ωc = 100∆ (Markovian regime), (b)
α = 0.01 and ωc = 100∆ and (c) α = 0.01 and ωc = ∆. The temperature is
always T = 10∆.

Figure 4.4: Same as 4.3, but for a strong coupling α = 0.1. (c) shows the
relaxation rate γr as a function of ωc.

regime are shown, where the parameters are T = 4ωc and α = 2 (strong coupling). In
perfect (also quantitative) agreement with [109], P (t) decreases faster for ∆/ωc = 2.4
than for ∆/ωc = 1.6. The cut-off frequency is also related to the reorganization

energy of the environment [11], which has the form Er =
∞

0
dω J(ω)

πω
= 2α~ωc for an

Ohmic environment. Hence, our results are consistent with the physical expectation,
since the dynamics of the environment is slower for the smaller ratio ∆/ωc for the
same α. For the low temperature regime T = 0.4ωc, shown in the inset of fig. 4.5,
we also observe agreement of the QUAPI results with the outcome of [109]. To
show the full dependence of the population difference on the cut-off frequency ωc,
we show in fig. 4.6 results for α = 0.1. P (t) decays with time in an oscillatory way.
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Figure 4.5: Population difference P (t) for the TLS for different cut-off fre-
quencies ωc and a damping parameter α = 2. The temperature is T = 4ωc

(main) and T = 0.4ωc (inset).

Figure 4.6: Population difference P (t) for a single chromophore pair and
full cross-over from a Markovian to a non-Markovian responding bath. The
time scale and the bath cut-off frequencies ωc are in units of the pair Förster
coupling ∆. The dynamics is calculated for kBT = 0.1~∆, and α = 0.1.

The decay occurs faster for large ωc while for small ωc, the sluggish bath sustains
more coherent oscillations which persist even on the ps time scale in dimensionful
units. In general, for smaller ωc the spectral weight of the bath modes around the
system frequency ∆ is suppressed and the decohering influence is reduced, yielding
prolonged coherence. This can be understood again in terms of the reorganization
energy.
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Figure 4.7: Population difference P (t) for the undriven TLS system in de-
pendence on the cut-off frequency ωc. The temperature is T = 0.1∆ and the
damping parameter is α = 0.6.

Furthermore, we address the case of strong coupling between the TLS and its
environment. For the scaling limit ∆ ≪ ωc it is known that there is a transition
at α = 0.5 from a coherent decay of P (t) for α < 0.5 to an incoherent decay
for α > 0.5 [11, 122]. To be specific, we choose α = 0.6 at a low temperature
T = 0.1∆, as shown in fig. 4.7. Again, this behavior can be understood in terms
of the reorganization energy Er, since decreasing ωc here has a similar effect as
lowering the damping parameter α. By means of our numerical exact method, fig.
4.7 quantifies how the transition between coherent and incoherent behavior depends
on ωc for a given α.

We next put our results in the context of the modeled effective biomolecular TLS.
For excitations in the LH-II ring of the bacteria chlorophyll molecule (BChls in LH-
II complexes), the Förster coupling strength ~∆ ∼ 46− 100 meV, and ~ωc ∼ 2− 8
meV [22, 108], and hence the ratio ωc

∆
∼ 0.1. For these complexes, α is of the order

of 0.1 − 1 [108], evidencing a strong coupling between the chromophores and the
solvent dielectric. If we make α = 0.1, ~∆ = 100 meV, and plot a graph such as
the one of fig. 4.7 for T = 0.1∆ (∼ 116 K), long-lived coherent oscillations are
sustained for a time of around 530 fs (t∆ ∼ 80). Such oscillations can be visualized
at fixed ωc = 0.1∆. This rough estimation is in agreement with the time scale of
the coherent oscillations recently measured in [23] for the antenna complex from a
green sulfur bacteria that has seven BChls per protein subunit. If, on the other
hand, we set α = 0.6, ωc = 0.1∆ (as shown in fig. 4.7), coherent oscillations are also
found but, due to the stronger coupling to the bath, they decay quicker than for
the case α = 0.1. We thus observe that for the rather simple effective biomolecular
TLS model introduced here, which is aimed as a guide to the possible realization
of further proof-of-principle experiments, we are able to demonstrate that the non-
Markovian features of the protein-solvent environment help to sustain the quantum
coherence mechanisms exhibited by the coupled chromophores in a LH-II ring. Since
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our results are of a general character, in principle derived from a generic TLS, we
also expect them to be valid in artificially designed nanostructures with the specific
bath properties described here.

4.2.3 Driven case A ̸= 0

We now address the influence of a finite periodic external driving field. The results
for A = ∆ and ωl = 0.05∆ are shown in fig. 4.8. Similarly to the undriven case,
the overall decay of P (t) is faster for larger ωc: compare, for example, fig. 4.8 (a)
for ωc = 1.5∆ and fig. 4.8 (b) for ωc = 30∆, both in the weak-coupling situation
α = 0.01. In turn, for the case ωc ∼ ∆, the superimposed oscillations due to coherent
tunneling survive longer than in the scaling-limit ∆ ≪ ωc (fig. 4.8(b)), before the
system reaches its stationary state. There, only the stationary oscillations due to
the external driving field survive. For a stronger system-bath coupling α the decay
of P (t) is faster, as expected, and the stationary state is reached faster. As in the
undriven case, the described behavior is qualitatively understandable in terms of
the reorganization energy Er.

For increasing driving strength to A = 10∆, the dependence of the TLS dynamics
on ωc and α is similar. However, the form of the stationary oscillations turns out
to be qualitatively different from the case of a small drive amplitude A. Here,
stable stationary plateaus emerge, as shown in fig. 4.9. In [14], this has been
observed experimentally for frequency-modulated excitations of a two-level atom,
using a microwave field to drive transitions between two Rydberg-Stark states of
potassium. In the presence of a slow frequency modulation, square wave oscillations
of the population difference have been detected. They can be understood to mean
that the large driving amplitude leads to an extreme biasing of the TLS dynamics.
The center of the observed plateaus correspond to the extrema of the applied cosine
driving field. At the position of these maxima, the TLS is maximally biased and
since the time-scale of the driving field is much smaller than the time-scale of the
(unbiased) TLS dynamics due to ∆, the situation of an extreme quasistatic bias
results, forming an intermediate self-trapping around the maxima of the cosine-like
driving field. Indeed, this intermediate self-trapping becomes shorter lived, and
increasingly washed out, when the ωl ∼ ∆ (not shown here).

In a next step, it is interesting to consider the amplitude A∞ of the forced
oscillations in the stationary limit. In fig. 4.10, we show the results for the nonlinear
response for the case α = 0.1 and a driving field amplitude A = ∆. We observe
a rather weak dependence when ωl . ∆, but the response becomes rather weak in
the regime of strong detuning. We are able to identify an optimal driving frequency
ωl ∼ ∆/2, where the amplitude of the forced oscillations has a maximum. Note that
this rather weak resonance is due to the sizeable damping α = 0.1. The behavior
depicted in fig. 4.10 is, essentially, not influenced by the cut-off frequency ωc and is
thus independent of the time scale of the environment.

A natural question is whether to expect an enhancement of the response when
all frequencies are comparable, i.e., ωl ∼ ωc ∼ ∆. This situation is addressed in

58



4.2. Dynamics of the driven TLS

Figure 4.8: Population difference P (t) for the driven TLS. The amplitude
of the driving-field is A = ∆ and the driving-frequency is ωl = 0.05∆. The
temperature is T = 0.1∆ and the damping parameter is α = 0.01. The cut-off
frequency is (a) ωc = 1.5∆ and (b) ωc = 30∆

Figure 4.9: Population difference P (t) for the driven single qubit system.
The amplitude of the driving-field is A = 10∆, the driving-frequency is ωl =
0.05∆, the cut-off frequency is ωc = 0.5∆ and temperature is T = 0.1∆. The
damping parameter is (a) α = 0.1 and (b) α = 0.6.

fig. 4.11, where we have chosen ωl = 0.5∆. We find that for weak to intermediate
driving, no pronounced resonance appears, as shown in fig. 4.11 (a) for the case
A = ∆. In contrast, strong driving can induce a resonant nonlinear response which,
however, requires non-Markovian dynamics, i.e., ωc ∼ ∆. This is illustrated in fig.
4.11 (b) for A = 10∆. A slow non-Markovian bath with ωc . ∆ is thus much more
efficient in maximizing forced oscillations in the stationary limit. This feature occurs
for the weak coupling (α = 0.01) as well as for the strong coupling case α = 0.6.
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Figure 4.10: Amplitude of the forced oscillations in the stationary limit A∞
as a function of the driving frequency ωl for A = ∆ with α = 0.1 and different
cut-off frequencies ωc.

Figure 4.11: Amplitude of the stationary limit A∞ as a function of the
cut-off frequency ωc for α = 0.6, A = ∆ and a temperature T = 0.1∆.

This constitutes another example where a non-Markovian bath helps in protecting
coherence in a quantum system over a finite time interval, see also chapter 5.

In contrast, a Markovian environment in the scaling limit, ∆ ≪ ωc, largely
suppresses forced oscillations via its destructive influence on coherence. This finding
is most pronounced in the incoherent strong coupling case, α = 0.6. The dependence
of A∞ on ωc is again qualitatively understandable via the reorganization energy Er

in the case of weak driving. It explains the reduction of the response for weaker
damping (α = 0.1 and α = 0.01), compared to the strong damping case α = 0.6
(fig. 4.11 (a)). However, for stronger driving, A = 10∆, the resonance effect is more
pronounced for a strong coupling situation, α = 0.6 which cannot be explained in
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terms of a growing reorganization energy Er.

4.2.4 Coherent destruction of tunneling

When an isolated symmetric quantum TLS is driven with large frequencies ωl ≫ ∆,
the bare tunneling matrix element effectively becomes renormalized by the zero-th
Bessel function J0(x) as ∆ → J0(A/ωl)∆ ≡ ∆eff [12, 123]. The population of the
state |1⟩ with an initial preparation P1 = 1 follows as

P1(t) = cos2 (J0(a/ωl)∆t/2) . (4.16)

This implies that for particular choices of the driving parameters, the Bessel function
term can be fixed to zero. The first zero then corresponds to A/ωl = 2.40482...,
and then, PL(t) equals unity, since the effective tunnel splitting vanishes. This
phenomenon is known as coherent destruction of tunneling (CDT); see [12] and
references therein for further details.

Naturally, the phenomenon of CDT is influenced when the TLS is coupled to an
Ohmic environment. A complete standstill of the dynamics will not occur any longer,
due to the relaxation processes induced by the bath. For an Ohmic environment
in the scaling limit under the assumption of weak damping, this question has been
addressed in [124]. Here, we extend these studies to the case of finite ωc and choose
a driving frequency ωl = 20∆.

For weak coupling, α = 0.01, the CDT is only weakly influenced by the environ-
ment, as expected, and it turns out that the dependence on the cut-off frequency of
the bath ωc is also weak, as shown in fig. 4.12 (left). Nevertheless, we find that the
unavoidable decay of P (t) occurs the slowest when ωc ∼ ∆. For stronger coupling
α = 0.1, as shown in fig. 4.12 (right), CDT is more strongly influenced. We observe,
again, that a slow bath helps to preserve coherence and the decay of P (t) is slow.

In the regime of strong damping, the situation is different. In fact, we find an
opposite qualitative behavior which goes beyond the above given explanation in
terms of Er. In fig. 4.13, the corresponding results for α = 0.6 are shown. As
one can see, the decay of P (t) is in fact the fastest when ωc ≃ ∆. This stems
from the fact that for the case ωc ∼ ∆, non-Markovian effects are not negligible,
since the time-scales of system and environment are of the same order, which is
reflected in the fact that the spectral density J(ω) has a maximum around ∆. In
this resonant situation, the bath modes around the characteristic time scale 1/∆ of
the TLS are most important and consequently the decay under the CDT conditions
is most pronounced. In turn, in the scaling limit, the decay under CDT conditions
is slow. Interestingly, in both cases of strong coupling (α = 0.1; 0.6) the population
difference is almost maintained without decay by the slow bath ωc ∼ 0.1∆, and the
decay of P (t) is the slowest.
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Figure 4.12: Population difference P (t) for the driven TLS in the regime of
coherent destruction of tunneling (ωl = 20∆). The temperature is T = 0.1∆
and the damping parameter is (left) α = 0.01 and (right) α = 0.1. .

Figure 4.13: Same as 4.12, but for a strong coupling situation, α = 0.6.

4.3 Conclusion

We have investigated the dynamics of the driven spin-boson system in the presence of
an Ohmic bath. The focus is put on the role of the cut-off frequency ωc. Based on the
numerical exact QUAPI approach, non-Markovian effects are shown to be relevant
when ωc ∼ ∆. This effect is more pronounced for strong damping, as expected, and
as can be seen from the relaxation rate γr shown in fig. 4.4. The validity of the
QUAPI method in the regime ωc ∼ ∆ is confirmed by the perfect agreement with
published results of real time Quantum Monte Carlo simulations [69].

For the unbiased case and for strong coupling, we show that damped coherent
oscillations exist in the population difference P (t) if the bath has a cut-off frequency
away from the scaling limit, where the decay is known to be incoherent in nature,
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as shown in fig. 4.7. By comparison with relevant experimental data, we were able
to show that our results are directly applicable to biomolecular systems, namely to
the light harvesting complex LH-II of the bacteria chlorophyll molecule. We have
shown that a sub-unit of such a biomolecular system can effectively be described
by means of the spin-boson model and have demonstrated that the non-Markovian
features of the protein-solvent environment help to sustain the quantum coherence
mechanisms exhibited within the LH-II complex. Moreover, since our results are
based on a model of general character, we expect them to apply also for a variety of
artificially designed nanostructures with the specific bath properties reported here.

Regarding the coherent control of the effective TLS, we found that a strong
external driving amplitude in combination with a slow driving laser frequency pro-
duce a population difference with square wave oscillations in the stationary limit,
in agreement with the experimental results reported in [14]. These square-wave
like oscillations stem from the fact that the TLS experiences a large quasistatic
bias. Moreover, it was shown that the amplitude A∞ of the forced oscillation in
the stationary limit depends strongly on the frequency of the driving field. A slow
driving field with ωl . ∆ protects the forced oscillations against the influence of
the dissipative environment, whereas in the case of a faster driving, these oscilla-
tions are strongly suppressed. This is valid for the weak-coupling as well as for the
strong coupling case. For larger driving frequencies, the forced stationary oscillations
are considerably reduced. The stationary amplitude of the forced oscillations also
strongly depends on the time-scale of the environment determined by ωc. For strong
driving, we find that the stationary amplitude shows resonant features, illustrating
that the non-Markovian environment plays a constructive role.

Finally, we investigated the phenomenon of coherent destruction of tunneling
under the bath influence. Away from the scaling limit, the influence of the envi-
ronment is weaker and the CDT survives on a significantly longer time scale. For
very strong coupling, i.e., deep in the incoherent regime, the situation is completely
different. Here, the CDT is most quickly destroyed when the time scales of the
TLS and the environment are in resonance. In such a strong coupling scenario, the
preservation of coherence survives longer in the scaling limit; moreover, the CDT is
actually helped by the effect of a slow bath (e.g., ωc ∼ 0.1∆), where the decay of
P (t) is the slowest.
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Chapter 5

Enhanced quantum entanglement
in the non-Markovian dynamics of
biomolecular excitons

In the previous chapter we have investigated the quantum dynamics of a driven TLS
subjected to an Ohmic environment being non-Markovian in nature. In this chapter
we extend the model in the sense that we now investigate the entanglement dynam-
ics of two coupled TLS subjected to a common bath. In what follows we show that
quantum coherence of biomolecular excitons can be sustained over exceedingly long
times due to the constructive role of their non-Markovian protein-solvent environ-
ment, in contrast to a Markovian environment. We consider the full crossover from
a fast to a slow non-Markovian bath and from weak to strong system-bath coupling
and show that a slow bath can even generate robust entanglement. This entangle-
ment persists to surprisingly high temperatures, even higher than the excitonic gap.
Such a fully quantum mechanical feature is not found for a Markovian bath.

5.1 Model for the chromophore

A single chromophore can be modeled as a quantum two level system and since the
system’s total number of excitations is a constant of motion, the two-chromophore
system can be effectively reduced to a single spin-boson model of one chromophore,
see chapter 4 for details. The protein-solvent environment is formalized as a bath of
harmonic oscillators with a bilinear system-bath coupling yielding the standard spin-
boson Hamiltonian for each chromophore [22]. The effective basis for a chromophore
pair is given by {| ↑⟩ = |e1g2⟩, | ↓⟩ = |g1e2⟩}.

The spectral density of the environment [11] follows from a microscopic deriva-
tion [108], see chapter 4 for further details. Different forms of a Debye dielectric can
be assumed, but in any case, lead to an Ohmic spectral density G(ω) = 2παωe−ω/ωc .
The dimensionless damping constant α of the protein-solvent can be related to the
parameters of the dielectric model [108]. One finds for the order of magnitude of
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α ∼ 0.01− 0.1 [22,108]. We use an exponential form of the cut-off at frequency ωc.
This sets the time-scale on which the dynamics of the bath evolves and is related to
the reorganization energy Er ∼ 2α~ωc. If ∆ ≪ ωc, the bath evolves fast compared
to the system and loses its memory quickly, rendering a Markovian approximation
and the standard Bloch-Redfield description [18] suitable. However, for the con-
sidered biomolecular environment, the energy scales of system and environment are
the same, and non-Markovian effects become dominant. Coherent oscillations in a
strongly damped two-state system with α > 1 and ∆ & ωc have been found using
numerically exact quantum Monte Carlo simulations [109, 69] and by applying the
numerical renormalization group [125].

5.2 Excurs on entanglement

Since the main focus in this chapter is on the entanglement of excitons in biomolec-
ular systems, we give a brief introduction on entanglement here, following [28]. For
bipartite systems, like the chromophore pair we are concerned with here, entan-
glement is well understood and described in quantum information theory. Rather
considering entanglement as a mystery like in the early days of quantum mechanics,
it is nowadays viewed as an important resource in quantum information processing
and quantum cryptography to perform certain tasks faster and in a more secure
way [28]. The Shor algorithm constitutes a prominent example for that [29].

For pure states the definition of entanglement is simple: a pure state |ψ⟩ is called
separable if it can be written as |ψ⟩ = |a⟩⊗|b⟩, otherwise it is entangled. An example
for a pure separable state is |ψ⟩ = |00⟩ and examples for pure entangled states are
the Bell states

|Φ±⟩ =
1√
2
(|00⟩ ± |11⟩) and |Ψ±⟩ =

1√
2
(|01⟩ ± |10⟩) . (5.1)

A density matrix ρ for a mixed state can contain classical correlations and it is called
separable if it can be written as [126]

ρ =


i

pi|ai⟩⟨ai| ⊗ |bi⟩⟨bi| , (5.2)

otherwise it is entangled. Here, the coefficients pi are probabilities, i.e. 0 ≤ pi ≤ 1
and


i pi = 1. Finding such a decomposition for a given density matrix is a non-

trivial task and has only been solved for a few cases.

Therefore other criteria are in demand and one important criterion is the Peres-
Horodecki criterion [30, 31]. For this it is required that the density matrix can be
written as a direct product of the density matrices of the two subsystems a and b
as

ρ =


a

waρa ⊗ ρb , (5.3)
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where the positive weights wa satisfy


awa = 1. Rewriting eq. (5.3) as

ρmµ,nν =


a

wa(ρa)mn(ρb)µν (5.4)

the Peres-Horodecki criterion can be given. It states that a density matrix describes
a separable state if its partial transpose has only non-negative eigenvalues which
is a necessary condition. The partial transpose of the composed density matrix is
defined as the transpose with respect to one of the subsystem, e.g.

ρTa
mµ,nν = ρnµ,mν (5.5)

where the density matrix has been transposed with respect to subsystem a (the latin
indices). Based on this criterion various entanglement measures can be defined, as
for instance the concurrence or the negativity [30,31,127]. To quantify the two-pair
quantum correlations, we study in what follows the entanglement is measured along
the negativity N(t) = max{0,−2ζmin(t)} [30,31], where ζmin(t) denotes the smallest
eigenvalue of the partially transposed reduced density operator. A separable state
has N = 0, while for a maximally entangled state, N = 1.

5.3 Results

Here, we use the QUAPI method, introduced in detail in chapter 3 [21,9] to calculate
the time-dependent reduced density matrix of the system. To be specific, we address
entanglement between two chromophore pairs under the influence of a slow bath.
We consider two equal pairs described by σx/z,i, coupled by an interpair Förster
interaction J and coupled to a harmonic bath. The total Hamiltonian reads

H2 =

i=1,2

~∆

2
σx,i + ~J(σx,1σx,2 + σy,1σy,2) (5.6)

+
~
2
(σz,1 + σz,2)


κ

c̃κ(b
†
κ + bκ) +


κ

~ωκb
†
κbκ,

whose basis refers to the states {| ↑1⟩ = |e1g2⟩, | ↓1⟩ = |g1e2⟩, | ↑2⟩ = |e3g4⟩, | ↓2⟩ =
|g3e4⟩}. As before, the bath spectral density follows from a Debye dielectric model,
again yielding the Ohmic form. The time-dependent reduced density matrix ρ(t)
is computed using an adapted QUAPI scheme. Fig. 5.1 shows the time-evolution
of the populations p↑↑(t) = p↓↓(t) and p↑↓(t) = p↓↑(t) of the four basis states for
different values of ωc for the initial preparation |ψ0⟩ = (| ↑1↓2⟩+ | ↓1↑2⟩)/

√
2. After

a transient oscillatory behavior, the stationary equilibrium values are reached. The
corresponding decay occurs on shorter times for large ωc, i.e., fast baths, compared
to the rather slow decay for small ωc.

Fig. 5.2(a) shows the time evolution of N(t) for two different values ωc = ∆, and
ωc = 50∆, for the maximally entangled initial state |ψ0⟩. Starting from N(0) = 1
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Figure 5.1: Time evolution of the populations pµ(t) for two coupled chro-
mophore pairs. This illustrates the action of a slow (ωc = ∆) and a fast
(ωc = 10∆) bath, for kBT = 0.1~∆, α = 0.1, and for interpair Förster cou-
pling J = 0.1∆.

we observe a decay to zero with small oscillations superimposed. For the Marko-
vian bath ωc = 50∆, the decay occurs faster than for the non-Markovian bath
ωc = ∆ indicating that entanglement survives on a longer time scale for the slow
bath as compared to the fast bath. For a larger interpair coupling J = ∆, the
superimposed oscillations are more pronounced (fig. 5.2(a) inset) which is due to
constructive interference of the involved transitions within the chromophore system.
For a quantitative picture, we fit an exponential N(t) = N0 exp(−Γt) + N1 with a
decay constant Γ which contains the influence of the bath. Fig. 5.2(b) shows the
dependence of Γ on ωc. Clearly, Γ strongly decreases for small ωc, while for large
ωc, the rate constant saturates. The dependence of Γ on ωc is more pronounced for
larger values of α. This nicely illustrates that entanglement is much more robust in
biomolecular systems compared to other macroscopic condensed-matter devices [110]
which display quantum coherent behavior.

To study the cross-over between fast and slow baths, we show N(t) for varying
ωc in fig. 5.3 for the initial state |ψ1⟩ = | ↑1↑2⟩. Fig. 5.3(a) shows the result for
J = 0.1∆. The entanglement is rather quickly destroyed in the regime ωc ≫ ∆.
On the other hand, we find a regular oscillatory decay for 0.1∆ . ωc . ∆. In this
regime, complete entanglement disappearance and revivals alternate. The time scale
of the entanglement oscillations is given by 2π/J . The constructive role of a sluggish
bath is further illustrated in the inset of fig. 5.3(a), where N(t) is shown for J = 0.
In fact, in the regime ωc < ∆, we find that entanglement between the two pairs
is generated by their common interaction with a sluggish bath. Most interestingly,
for ωc = 0.1∆, N(t) steadily grows even over rather long times up to t∆ = 500.
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Figure 5.2: (a) Time evolution of the negativity N(t) for the cut-off fre-
quencies ωc = ∆ (black) and ωc = 50∆ (red) for the interpair Förster coupling
J = 0.1∆ (main) and J = ∆ (inset). Moreover, kBT = 0.1~∆. (b) Decay
constant Γ as a function of the cut-off frequency ωc for different values of α
for kBT = 0.1~∆, J = 0.1∆.

In view of the single-pair results described above, this seems counterintuitive since
for small ωc, a reduced influence of the bath modes would be expected. However,
in this regime, the bath is rather efficient in generating entanglement. This feature
survives even for larger values of α, see fig. 5.3(b). The oscillatory behavior of the
entanglement generation still occurs for J = 0.1∆, where N(t) assumes all values
between zero and one. The bath-induced destruction happens here earlier due to
the large α. Entanglement is also produced when J = 0, see inset of fig. 5.3(b), for
0.1∆ . ωc . ∆. Also here, N(t) can even reach the maximal value at intermediate
times.
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Figure 5.3: (a) Negativity N(t) as a function of ωc for J = 0.1∆ (main)
and J = 0 (inset), for α = 0.01 and kBT = 0.1~∆. (b) Same as in (a), but for
the strong coupling case α = 0.1.

So far, we have studied not so high temperatures, similar to the experimental
conditions in refs. [23, 24]. However, in fig. 5.4(a) (main) we plot N(t) for vary-
ing ωc, for kBT = ~∆, for the initial state |ψ1⟩. We still find large entanglement
oscillations at short to intermediate times, for 0.1∆ . ωc . ∆ despite the rather
large temperature: this is an outstanding hardware feature that could provide a use-
ful resource for the artificial design of controlled, robust, and efficient biomolecular
nanostructures for quantum information processing [128,129,32,6].

Furthermore, we have varied the initial preparation to the state |ψ2⟩ = a| ↑1↓2⟩+
b| ↓1↑2⟩ with a2 + b2 = 1. The inset of fig. 5.4(a) shows N(t) for varying a2 and J =
0.1∆. |ψ2⟩ is maximally entangled for a2 = 1/2, for which N(t) decays monotonously
with time, while away from this region the negativity again shows collapses and
revivals. For the borders a2 → 0, 1, |ψ2⟩ is a separable state, but entanglement is
rather quickly generated with time before it finally dies out. Robust entanglement
thus depends on the initial preparation and is favored by the choice of initially
separable (or weakly entangled) states.

Finally, we analyze the dependence on the interpair coupling J . The negativity
N(t) is shown in fig. 5.4(b) for varying J for the respective ground state as the initial
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Figure 5.4: Excitonic entanglement robustness: (a) Negativity N(t) for
varying ωc; J = 0.1∆, α = 0.01 and kBT = ~∆ (Main). Inset: N(t) for
different weights in the initial preparation |ψ2⟩ = a| ↑1↓2⟩ + b| ↓1↑2⟩, for J =
0.1∆, α = 0.01, kBT = 0.1~∆, and ωc = ∆. (b) N(t) for varying J ; α =
0.01, kBT = 0.1~∆, ωc = 0.1∆. The horizontal line marks the critical value
Jc = 1/

√
2 above which the initially prepared ground state belongs to a DFS.

preparation. From eq. (5.6) it follows that a critical value Jc = 1/
√

2 exists such
that for J ≥ Jc, the state |ψg⟩ = (| ↑1↓2⟩ − | ↓1↑2⟩)/

√
2 is the two-pair groundstate,

which, however, belongs to a decoherence-free subspace (DFS) of H2 [27]. Hence,
N(t) remains constantly maximal. For J < Jc, the ground state has some weight
outside of the DFS and hence suffers from decoherence.

The general nature of our results demonstrate that pure quantum mechanical
effects provide the conditions for efficient light harvesting and therefore that the
evolutionary process has led to a robust, ultrafast yet efficient quantum rule for pho-
tosynthetic processing. The results reported here are of direct relevance to quantum
dot and molecular architectures [130,131]. They could prove crucial in the design of
artificial efficient light harvesters for robust multipartite biomolecular entanglement,
with enhanced energy transfer rates [132] for the control and conditional dynam-
ics [32, 6] of quantum bits.

71



5. ENHANCED QUANTUM ENTANGLEMENT IN THE NON-MARKOVIAN
DYNAMICS OF BIOMOLECULAR EXCITONS

72



Chapter 6

Iterative real-time path integral
approach to nonequilibrium
quantum transport

With the previous chapter we end with the investigations of the real-time dynamics
of quantum system subjected to a bosonic environment. In the remainder of the
thesis we aim for addressing the real-time dynamics of a quantum system subjected
to a fermionic environment. In the preceding chapters the QUAPI scheme has
turned out to be a most successful method for including non-Markovian features
within the bosonic real-time dynamics of open quantum systems up to a certain
memory time. This feature was the motivation to develop a new scheme for the
real-time dynamics of fermionic quantum systems, which is rooted upon the fact
that for finite temperatures the time non-local correlations decay exponentially in
time, which is a common feature for bosonic and fermionic quantum systems. Since
we are now concerned with a fermionic environment there are clearly conceptual
differences which are the reason for the main difference between the QUAPI scheme
and our newly developed scheme. These differences will be discussed in detail in the
sequel.

We have developed a numerical approach to compute real-time path integral
expressions for quantum transport problems out of equilibrium. The scheme is
based on a deterministic iterative summation of the path integral (ISPI) for the
generating function of the nonequilibrium current. Self-energies due to the leads,
being non-local in time, are fully taken into account within a finite memory time,
thereby including non-Markovian effects, and numerical results are extrapolated
both to vanishing (Trotter) time discretization and to infinite memory time. This
extrapolation scheme converges except at very low temperatures, and the results are
then numerically exact. The method is applied to nonequilibrium transport through
an Anderson dot. Throughout this chapter, we set ~ = kB = 1.
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NONEQUILIBRIUM QUANTUM TRANSPORT

6.1 Model

We consider the Anderson model [76] given by the Hamiltonian

H = Hdot +Hleads +HT

=


σ

E0σn̂σ + Un̂↑n̂↓ +

kpσ

(ϵkp − µp)c
†
kpσckpσ

−

kpσ


tpc

†
kpσdσ + h.c.


. (6.1)

Here, E0σ = E0 + σB with σ =↑, ↓= ± is the energy of a single electron with spin σ
on the isolated dot, which can be varied by tuning a back gate voltage or a Zeeman
magnetic field term ∝ B. The latter is assumed not to affect the electron dispersion
in the leads. The corresponding dot electron annihilation/creation operator is dσ/d

†
σ,

with n̂σ ≡ d†σdσ with eigenvalues nσ = 0, 1, and U denotes the on-dot interaction.
For later purpose, it is convenient to use the operator identity n̂↑n̂↓ = 1

2
(n̂↑ + n̂↓)−

1
2
(n̂↑− n̂↓)2, thereby introducing the shifted single-particle energies ϵ0σ ≡ E0σ +U/2,

which yields the equivalent dot Hamiltonian

Hdot = Hdot,0 +HU =


σ

ϵ0σn̂σ −
U

2
(n̂↑ − n̂↓)

2. (6.2)

In eq. (6.1), ϵkp denotes the energies of the noninteracting electrons (operators ckpσ)
in lead p = L/R = ±, with chemical potential µp = peV/2. Dot and leads are
connected by the tunnel couplings tp. The observable of interest is the (symmetrized)
tunneling current I = (IL − IR)/2,

I(t) = −ie
2


kpσ


ptp⟨c†kpσdσ⟩t − pt∗p⟨d†σckpσ⟩t


, (6.3)

where Ip(t) = −eṄp(t) with Np(t) = ⟨


kσ c
†
kpσckpσ⟩t. The stationary steady-state

dc current follows as the asymptotic long-time limit, I = limt→∞ I(t). We have
explicitly confirmed that current conservation, IL + IR = 0, is numerically fulfilled
for the ISPI scheme.

6.1.1 Keldysh technique

In the presence of a finite bias voltage, V ̸= 0, the Keldysh technique [133,134,135,
136] which will be outlined shortly in the sequel, provides a way to study nonequi-
librium transport. In nonequilibrium one is concerned with the fact that starting
from an arbitrary nonequilibrium state and then switching on and off interactions
the system will evolve to some unpredictable state. In general, the latter depends
on the peculiarities of the switching procedure. Thus it is desired to build up a
formalism that avoids references to the state at t = ∞. The main idea of the
Keldysh/Schwinger technique is to take the final state to be exactly the same as
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Figure 6.1: Keldysh contour: every physical time has two contour repre-
sentatives on the branches ±. The measurement time tm only has a single
representative on the upper branch.

the initial state. The crucial point is to let the quantum system evolve from some
initial state at t = −∞ and switch on the interaction. Then the system evolves in
the forward time direction and evolves back in the opposite direction. To realize
this idea, the time axis is extended to a contour with α = ± branches, see fig. 6.1.
Consequently, the evolution operator Ut,t′ ≡ exp[−iH(t − t′)] along such a closed
contour is always unity

UC ≡ 1 . (6.4)

This is directly related to what has been mentioned within the introduction to
the QUAPI method in section 3.3. There, the q± correspond to fields residing on
the upper and lower part of the Keldysh contour respectively, see fig. 3.4. Note
that there is no switching of interactions in the future. Both switching procedures
take place in the past: switching on of the interactions at the forward branch and
switching off the interactions at the backward branch of the contour respectively.
In that sense, interactions are treated adiabatically along this time evolution. At
every moment of time one has to specify a field residing on both time branches of
the contour which goes along with an effective doubling of fields. The Keldysh GF
is

Gαβ
ij (tα, t

′
β) = −i⟨TC [ψi(tα)ψ†j(t

′
β)]⟩ , (6.5)

where TC denotes the contour ordering of times along the Keldysh contour, and
i, j = L,R, 0 correspond to the fields of the problem of interest. In the case of
the Anderson model studied in the following, they represent lead or dot fermions,
respectively. We omit the spin indices here, remembering that for the remainder of
this chapter each entry still is a diagonal 2 × 2 matrix in spin space. The explicit
form of the four Keldysh components is given by [137]:

1. t = t+ and t′ = t+

G++
i,j (t, t′) = −i⟨TC [ψi(t)ψ

†
j(t

′)]⟩ = −i⟨T [ψi(t)ψ
†
j(t

′)]⟩ , (6.6)

where T is the time ordering operator on the physical time axis. Both time
arguments reside on the upper branch of the Keldysh contour, and G++ is just
the conventional causal Green’s function along the physical time axis.
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2. t = t+ and t′ = t−

G+−
i,j (t, t′) = i⟨[ψ†j(t′)ψi(t)]⟩ . (6.7)

Here, one has to take into account that a time in the lower branch has to
be considered as intrinsically in the future towards one in the upper branch.
This Green’s function plays a central role in non-equilibrium theory because
at equal time arguments it is related to the electronic distribution function
out of equilibrium.

3. t = t− and t′ = t+

G−+
i,j (t, t′) = −i⟨[ψi(t)ψ

†
j(t

′)]⟩ . (6.8)

This function is clearly closely related to the function G+−.

4. t = t− and t′ = t−

G−−i,j (t, t′) = −i⟨T [ψi(t)ψ
†
j(t

′)]⟩ . (6.9)

In this last case both times are in the lower branch, but since the contour
ordering operator TC orders the times in the opposite sense one finds the
standard Greenś function but with the time arguments ordered in reverse
order (anti-causal ordering).

Usually the four Keldysh components are expressed in matrix form

G =


G++ G+−

G−+ G−−


(6.10)

and in general, the four components are linearly dependent, such that G++ +G−− =
G+−+G−+. However, the commonly used Keldysh rotation [136,135] seems to offer
no advantages here, and is not employed in what follows.

6.1.2 Fermionic coherent state path integral

The ISPI scheme is build on an evaluation of a fermionic coherent state path integral
which we will introduce in the sequel, following [87].

For a general many-particle Hamiltonian in second quantized normal ordered
form the functional integral representation for the many-body evolution operator
may be obtained using a coherent state representation rather than the position and
momentum eigenstates for the Feynman path integral [87]. Since the eigenvalue of
Fermions anticommute one has to introduce anticommuting variables called Grass-
mann variables. A Grassmann algebra G is defined by associating a generator ξα
with each annihilation operator aα and a generator ξ∗α with each creation operator
a†α. These generators anticommute

ξαξβ + ξβξα = 0 (6.11)
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and consequently ξ2
α = 0 (α and β are any quantum numbers). For details of the

differentiation and integration rules of Grassmann variables, see [87]. Note that
the fermionic coherent states belong to a generalized Fock space, but any physical
Fermion state of an ordinary Fock space can be expanded in terms of these coherent
states. In order to deal with expressions containing combinations of Grassmann
variables and creation and destruction operators, it is necessary to augment the
definition of Grassmann variables to specify the commutation relations between the
ξ and the a and the adjoints of mixed expressions. Therefore it is required that [87]

[ξ̃, ã]+ = 0 and (ξ̃ã)† = ã†ξ∗ , (6.12)

where ξ̃ denotes any Grassmann variable in {ξα, ξ∗α} and ã is any operator in {a†α, aα}.
A Fermion coherent state |ξ⟩ is defined according to

|ξ⟩ = e−
P

α ξαa†α|0⟩ =

α

(1− ξαa
†
α)|0⟩ (6.13)

and since the combination ξαa
†
α commutes with ξβa

†
β each non-vanishing term of the

exponential is reproduced.
To derive the coherent state path integral the time interval of propagation from

the initial time ti to the final time tf is broken into M steps of size ϵ =
tf−ti

M
and

the closure relation  
α

dξ∗α,kdξα,ke
−

P
α ξ∗α,kξα,k |ξα,k⟩⟨ξα,k| = 1 (6.14)

is inserted at the kth time step, where the end points are denoted as ξα,0 ≡ ξα,i and
ξα,M ≡ ξα,f . Assuming that the Hamiltonian is written in normal ordered form and
with use of

⟨ξ|A(a†α, aα)|ξ′⟩ = e
P

α ξ∗αξ′αA(ξ∗α, ξ
′
α) (6.15)

for the matrix element of a normal ordered operator between two coherent states,
the matrix elements of the time evolution operator may be written as [87]

U(ξ∗α,f tf ; ξα,iti) = lim
M→∞

⟨ξf |e−
i
~ H(tf−ti)|ξi⟩

= lim
M→∞

 M−1
k=1


α

dξ∗α,kdξα,ke
−

P
α

PM−1
k=1 ξ∗α,kξα,k

×e
PM

k=1(
P

α ξ∗α,k,ξα,k−1− iϵ
~ H(ξ∗α,k,ξα,k−1)) . (6.16)

For reason of comparison with the Feynman path integral from section 2.5 we explic-
itly include ~ here. In the case of a Fermions all the integrals are bound since there
is no metric in the Grassmann algebra. It is convenient to introduce the so-called
trajectory notation

ξ∗α,k

ξα,k − ξα,k−1

ϵ
≡ ξ∗α(t)

∂

∂t
ξα(t) (6.17)

77



6. ITERATIVE REAL-TIME PATH INTEGRAL APPROACH TO
NONEQUILIBRIUM QUANTUM TRANSPORT

and
H(ξ∗α,k, ξα,k−1) ≡ H(ξ∗α(t), ξα(t)) , (6.18)

where the trajectory ξα(t) represents the set {ξα,1, ξα,2, · · · , ξα,M}. Hence, the time
evolution operator is rewritten as

U(ξ∗α,f tf ; ξα,iti) =

 ξ∗α(tf )=ξ∗α,f

ξα(ti)=ξα,i

D[ξ∗α(t)ξα(t)]e
P

α ξ∗α(tf )ξα(tf )

×e
i
~

R tf
ti

dt[
P

α i~ξ∗α(t)
∂ξα(t)

∂t
−H(ξ∗α(t),ξα(t))] , (6.19)

with  ξ∗α(tf )

ξα(ti)

D[ξ∗α(t)ξα(t)] = lim
M→∞

 M−1
k=1


α

dξ∗α,kdξα,k . (6.20)

Note that one significant difference between the coherent state functional integral
(6.19) and the Feynman path integral introduced in eq. (2.31) is the dependence
upon ~. In the Feynman case, eq. (2.31), 1

~ appears as a constant multiplying
the entire exponent, so that the stationary phase expansion immediately yields the
classical limit, see section 2.5. In the present case, the action contains ~ within the
Lagrangian (the second exponent in eq. (6.19)) as well as a multiplicative factor,
so that the stationary phase method yields a result quite distinct from the classical
limit [87].

Using the expression for the trace of an operator A

trA =

 
α

dξ∗αdξαe
−

P
α ξ∗αξα⟨−ξ|A|ξ⟩ (6.21)

and units such that again ~ = 1 the grand-canonical partition function maybe
written as

Z = tr e−β(H−µN) =

 
α

dξ∗αdξαe
−

P
α ξ∗αξα⟨−ξ|e−β(H−µN)|ξ⟩ (6.22)

which yields with antiperiodic boundary conditions [87]

Z =


D[ξ∗(t); ξ(t)]eiS(ξ∗,ξ) (6.23)

with S being the action corresponding to the Hamiltonian H.
To elucidate further the connection of the Keldysh technique described in the

previous subsection and the fermionic coherent state path integral the ISPI scheme
is based on, we give the example of the free Fermion Keldysh action, following
ref. [136]. Therefore, consider a single quantum state with energy ϵ0, populated by
spinless Fermions. The Hamiltonian of such a system is the Hamiltonian (6.1) with
U = 0 and tp = 0, thus

H = ϵ0d
†d . (6.24)

78



6.2. Generating function

The partition function is defined as

Z =
tr ρUC

tr ρ
(6.25)

with the time evolution operator (6.4) along the Keldysh contour C. The trace of
the equilibrium density matrix is tr ρ = 1+ρ(ϵ0), where the two terms stand for the
empty and the singly occupied state. Now, one divides the Keldysh contour into
2N − 2 time steps of length δt and introduced the closure relation (6.14) in the 2N
points along the contour yields

Z =
1

tr ρ

  2N
j=1

[dξ∗j ; dξj]e
i

P2N
j,j′ ξ

∗
j G−1

j,j′ξj′ . (6.26)

The 2N × 2N matrix G−1
j,j′ is given by

i G−1
jj′ ≡


−1 −ρ(ϵ0)

1−h −1
1−h −1

1 −1
1+h −1

1+h −1

 , (6.27)

and h ≡ iϵ0δt. Note that the upper right element of the matrix is crucial to maintain
the correct normalization Z = 1. Using the fact that the fermionic Gaussian integral
is given by its determinant of the correlation matrix one finds

Z =
det (i G−1)

tr(ρ)
= 1 (6.28)

as expected. Taking now the continuous limit N → ∞ and using the trajectory
notation one arrives at

Z =


D[ξ∗(t); ξ(t)]ei

R
C dt ξ∗(t)G−1ξ(t) =


D[ξ∗(t); ξ(t)]eiS(ξ∗(t),ξ(t)) (6.29)

which is equivalent to eq. (6.23) including in addition the full Keldysh structure.

6.2 Generating function

Let us then discuss the generating function, which contains all relevant information
about the physics of the system. First, we want to integrate out the lead fermion
fields, and, in addition, perform a discrete Hubbard-Stratonovich transformation.
This allows to integrate out the dot fields as well, and we are then left with a
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discrete path summation. We start with the fermionic path-integral representation
of the generating function,

Z[η] =


D


σ

d̄σ, dσ, c̄kpσ, ckpσ


eiS[d̄σ ,dσ ,c̄kpσ ,ckpσ ], (6.30)

with Grassmann fields (d̄, d, c̄, c) (Note that we use the same symbols for fermion
operators and Grassmann fields throughout the paper for better readability). We
introduce an external source term Sη (defined below in eq. (6.32)), which allows to
compute the current at measurement time tm,

I(tm) = i
∂

∂η
lnZ[η]


η=0

. (6.31)

We note in passing that it is also possible to evaluate other observables, e.g., the
zero-frequency noise, by introducing appropriate source terms and performing the
corresponding derivatives. The action is S = Sdot + Sleads + ST + Sη, where

Sdot = Sdot,0 + SU

=


C

dt


σ

d̄σ (i∂t − ϵ0σ) dσ +
U

2
(n↑ − n↓)

2


,

Sleads =


C

dt

kpσ

c̄kpσ(i∂t − ϵkp + µp)ckpσ,

ST =


C

dt

kpσ

tpc̄kpσdσ + h.c.,

Sη =
ieη

2


kpσ

p(tpc̄kpσdσ − t∗pd̄σckpσ)(tm). (6.32)

The interaction term SU in eq. (6.32) does not allow to directly perform the func-
tional integration. Apart from this, all other terms are quadratic in the Grassmann
fields and thus define the ‘noninteracting’ (quadratic) part. Note that the level shift
+U/2 is here included in the noninteracting sector.

6.2.1 Noninteracting part

Before turning to the interacting problem, we briefly discuss the Keldysh GF of
the noninteracting problem. Let us first integrate out the lead degrees of freedom.
We remain with an effective action for the dot, which is non-local in time due to
the presence of the leads. In particular, after Gaussian integration, the generating
function reads

Zni[η] =


D


σ

d̄σ, dσ


ei(Sdot,0+Senv) (6.33)
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with

Senv =


C

dt


C

dt′


σ

d̄σ(t)


γL(t, t′) + γR(t, t′)

+
ieη

2
[γL(t, t′)− γR(t, t′)]

× [δ(t− tm) + δ(t′ − tm)]


dσ(t′). (6.34)

For the source term, the physical measurement time tm can be taken at one branch
of the contour, see fig. 6.1. As we fix tm on the upper (+) branch, the (−−) Keldysh
element of the source term self-energy vanishes, see the time-discretized version
below. The γp in eq. (6.34) represent the leads, and their Fourier transforms are
explicitly given as 2× 2 Keldysh matrices,

γp(ω) = iΓp


2f(ω − µp)− 1 −2f(ω − µp)
2− 2f(ω − µp) 2f(ω − µp)− 1


. (6.35)

Here, we have used the fact that the leads are in thermal equilibrium, f(ω) =
1/(eω/T + 1). Moreover, we take the standard wide-band limit, with a constant
density of states per spin channel around the Fermi energy, ρ(ϵF ), yielding the
hybridization Γp = πρ(ϵF )|tp|2 of the dot level with lead p. For the sake of clarity,
we assume from now on symmetric contacts, ΓL = ΓR ≡ Γ/2. The generalization
to asymmetric contacts is straightforward. In the next step, still for U = 0, we
may also integrate over the dot degrees of freedom. We obtain the noninteracting
generating function

Zni[η] =

σ

det

−iG−1

0σ (t, t′) + ηΣJ(t, t′)

, (6.36)

where G−1
0σ (t, t′) follows from

G0σ(ω) = [(ω − ϵ0σ)τz − γL(ω)− γR(ω)]−1

=
1

Γ2 + (ω − ϵ0σ)2

×

ω − ϵ0σ + iΓ(F − 1) iΓF

iΓ(F − 2) −ω + ϵ0σ + iΓ(F − 1)


(6.37)

where τz is the standard Pauli matrix in Keldysh space, and F = f(ω + eV/2) +
f(ω − eV/2). Moreover, the self-energy for the source term is obtained as

ΣJ(t, t′) =
e

2
[γL(t, t′)− γR(t, t′)]

× [δ(t− tm) + δ(t′ − tm)] . (6.38)

Up to this point, we have discussed the noninteracting case. In order to treat
interactions, we now perform a Hubbard-Stratonovich transformation.
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6.2.2 Hubbard-Stratonovich transformation

Let us therefore turn back to the real-time action Sdot of the dot in the presence of
interactions, U ̸= 0, see eq. (6.32). For later numerical purpose, it is beneficial to
proceed with the discussion in the time-discretized representation of the path integral
[87]. In order to decouple the quartic term, we discretize the full time interval, t =
Nδt, with the time increment δt. On each time slice, we perform a Trotter breakup
of the dot propagator according to eiδt(H0+HT ) = eiδtHT /2eiδtH0eiδtHT /2 +O(δ2

t ), where
H0 = Hdot + Hleads. By this, we introduce a Trotter error [138, 139, 10] which,
however, will be eliminated in the same spirit as within the QUAPI method, see
section 3.3, from the results in a systematic way [103], see below. Next, we use a
discrete Hubbard-Stratonovich (HS) transformation [139,140,141] for the interacting
part, which introduces Ising-like discrete spin fields s±n = (s+

n , s
−
n ) on the α = ±

branches of the Keldysh contour (with sα
n = ±1) on the n-th Trotter slice. For a

given Trotter slice, we now use

e±iδtU(n̂↑−n̂↓)
2/2 =

1

2


s±=±

e−δtλ±s±(n̂↑−n̂↓). (6.39)

For U > 0, noting that n↑ − n↓ = 0,±1, the sum can be carried out and gives the
condition

cosh(δtλ±) = cos(δtU/2)± i sin(δtU/2).

The solution is λ± = λ′ ± iλ′′ with

δtλ
′ = sinh−1


sin(δtU/2), δtλ

′′ = sin−1


sin (δtU/2). (6.40)

Note that the overall sign of λ± is chosen arbitrarily, but does not influence the
physical result. Uniqueness of this HS transformation requires Uδt < π. To ensure
sufficiently small time discretizations, in all calculations one should then obey the
condition max(U, e|V |, |ϵ0|, T ) . 1/δt.

6.2.3 Total GF and generating function

After the HS transformation, the remaining fermionic Grassmann variables (d̄σ, dσ)
can be integrated out at the cost of the path summation over the HS Ising spins
{s},

Z[η] =

{s}


σ

detG−1
σ [{s}, η], (6.41)

with the total Keldysh GF written in time-discretized (1 ≤ k, l ≤ N) form as
G−1

σ

αβ

kl
[{s}, η] =


G−1

0σ

αβ

kl
+ iηΣJ,αβ

kl − iδtδklλαs
α
kδαβ, (6.42)

where α, β = ± labels the Keldysh branches, and the noninteracting GF is

G0σ,kl =

 ∞

−∞

dω

2π
eiδt(k−l)ωG0σ(ω). (6.43)
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Note that G0σ(t, t′) depends only on time differences due to time-translational in-
variance of the noninteracting part. Moreover, the self-energy kernel stemming from
the external source term follows as

ΣJ,αβ
kl =

e

2


γαβ

L,kl − γαβ
R,kl


[δmkδα,+ + δmlδβ,+] , (6.44)

where γp,kl = γp(tk − tl) and the measurement time is tm = mδt.
Moreover we want to point out that the interacting part in the total Green’s

function (6.42) is diagonal in the time domain. Following [138] after the HS trans-
formation the resulting fields first reside in the off-diagonal of the corresponding
inverse Green’s function (similar to the example of a free fermion, see eq. (6.27))

G−1
σ [{s}] =



1 0 0 · · · e−δtKeV σ
N

−e−δtKeV σ
1 1 0 · · · 0

0 −e−δtKeV σ
2 1 0

...

...
. . . . . .


. (6.45)

Here, K includes the non-interacting parts of the Hamiltonian (6.1) and

V σ
n = λσs±n . (6.46)

Given now two arbitrary Ising configurations giving rise to V σ and V ′σ the Green’s
function obeys the Dyson equation [138]

G′σ = Gσ + ( Gσ − 1)(eV σ−V ′σ − 1) G′σ (6.47)

and its transpose

G′σ = Gσ + ( G′σ − 1)(1− e−V ′σ+V σ

) Gσ . (6.48)

Eqs. (6.47) and (6.48) are most easily established by first solving the Dyson equation
for [138]

Gσ = eV σ Gσ , (6.49)

i.e.

Gσ[{s}] =


e−V1 0

−e−δtK e−V2 0

. . . . . .


−1

, (6.50)

which is of the form we use in eq. (6.42) with the interaction part residing now
on the diagonal. Note that the product of the determinants in eq. (6.41) remains

invariant under this transformation, since det(Gσ) = det(eV ) det( Gσ) and V changes
sign for spin up and down and thus det(eV ) det(e−V ) = 1.
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Figure 6.2: Real part of the Keldysh GF component G−−0↑ (t − t′) for (a)
ϵ0 = 0, B = 0, T = Γ, (b) ϵ0 = 0, B = 0, T = 0.1Γ, (c) ϵ0 = 0, T = 0.1Γ, eV =
Γ, B = 0 and B = 3Γ, (d) B = 0, T = 0.1Γ, eV = Γ, ϵ0 = Γ and ϵ0 = 5Γ.
The inset in (a) shows the absolute values of the same data in log-linear
representation, highlighting the exponential decrease.

6.3 The iterative path-integral scheme

Let us now exploit the property (see, e.g., ref. [11]) that each Keldysh component
of G0σ,kl decays exponentially at long time differences (|k− l| → ∞) for finite T , see
eq. (6.43). We denote the corresponding time scale (correlation or memory time)
by τc. In fig. 6.2 we show typical examples of ReG−−0↑,kl for different bias voltages V .
The exponential decrease with time is illustrated in the inset of fig. 6.2(a) where the
absolute value |ReG−−0↑,kl| is again plotted for the same parameters, but in a log-linear
representation. For large bias voltages and low enough temperatures, e.g., at V & Γ
and T ≤ 0.2Γ, the decay is superposed by an oscillatory behavior, see fig. 6.2. Since
the lead-induced correlation function decays as ∼ cos[eV (t− t′)/2]/ sinh[πT (t− t′)],
the respective correlations decay on a time scale given by τ−1

c ∼ max(kBT, eV ).
(The correlation function also has an additional ϵ0-dependence of the decay charac-
teristics.) Thus, the exponential decay suggests to neglect lead-induced correlations
beyond the correlation time τc. This motivates an iterative scheme which exactly
takes into account the correlations within τc, but neglects them outside. The expo-
nential decay has to be contrasted to the case T = V = 0, where correlations die
out only algebraically, and our approach is not applicable.

Let us then face the remaining path sum in eq. (6.41). In the discrete time
representation, we denote with t0 = 0 < tN = Nδt the initial and final time, and
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tk = kδt, see fig. 6.1. The discretized GF and self-energy kernels for given spin σ
are then represented as matrices of dimension 2N × 2N . For explicit calculations,
we arrange the matrix elements related to Keldysh space (characterized by the
Pauli matrices τ) and to physical times (tk, tl) as τ ⊗ (k, l). In particular, the
ordering of the matrix elements from left to right (and from top to bottom) represent
increasing times. The lead-induced correlations thus decrease exponentially with
growing distance from the diagonal of the matrix. For numerical convenience, we
evaluate the generating function in the equivalent form

Z[η] = N

{s}


σ

detDσ[{s}, η], (6.51)

with Dσ = G−1
σ G0σ. Explicitly, this reads

Dαβ
σ,kl[{s}, η] = δαβδkl + iδtλαG

αβ
0σ,kls

α
k − iη


j,α′

Gαα′

0σ,kjΣ
J,α′β
jl (6.52)

The normalization prefactor N does not affect physical observables, and is put to
unity. The time local nature of the on-dot interaction is now present only in disguise,
since the matrix product lets Ising spins appear line-wise. By construction, we
have to sum over 2N auxiliary Ising spins, and the total number of possible spin
configurations is 22N .

Next, we exploit the above-mentioned truncation of the GF by setting Dkl ≡ 0
for |k − l|δt > τc, where

τc ≡ Kδt (6.53)

is the memory time, with K the respective number of Trotter time slices. The GF
matrices then have a K-band structure. Note that in the continuum limit, where
K = N, δt → 0 and N →∞, the approach is exact.

To prepare the basis for the iterative scheme, we now transform the GF matrix
to Schur’s form, which then allows to calculate the determinant in a straightforward
way. In general, a quadratic block matrix D given as

D =


a b
c d


, (6.54)

with a being invertible, can be represented in its Schur form, i.e., after one step of
Gaussian elimination. Hence, by multiplying from the left with a lower triangular
matrix,

D̃ = LD =


In 0
ca−1 Im


a b
c d


=


a b
0 d− ca−1b


, (6.55)

where In(m) represent unit matrices of dimension n = dim a (m = dim d), and b, c
do not have to be quadratic themselves. Clearly, the determinant is invariant under
this transformation. The (2, 2) element in this block notation is often referred to as
the Schur complement of the matrix D. This representation thus allows to write the
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determinant as det(D) = det(a) det(d − ca−1b). We can now establish the iterative
scheme as follows. We start from the full GF in the matrix representation as defined
in eq. (6.52). After the memory truncation, the N × N−matrix (in time space)
assumes a band structure represented as

D ≡ D(1,NK) =



D11 D12 0 0 . . . 0

D21 D22 D23 0 . . .
...

0 D32 D33 D34 . . .
...

0 0 D43 D44 . . . 0
...

...
...

...
. . . DNK−1NK

0 . . . . . . 0 DNKNK−1 DNKNK


(6.56)

where the single blocks are K ×K−block matrices defined as (l, l′ = 1, . . . , NK)

Dll′ =

 D(l−1)K+1,(l′−1)K+1 . . . D(l−1)K+1,l′K
...

. . .
...

DlK,(l′−1)K+1 . . . DlK,l′K

 . (6.57)

The number N of Trotter slices is always chosen such that NK ≡ N/K is integer.
The elements Dkl are given in eq. (6.52), with their dependence on the Ising spins
s±k kept implicit. Each Dkl still has a 2 × 2−Keldysh structure, and a 2 × 2 spin
structure. Then, we rewrite the generating function (6.51) as

Z[η] =


s±1 ,...,s±N

det

D11[s±1 , . . . , s

±
K ]


det

D(2,NK)[s

±
K+1, . . . , s

±
N ]

− D21[s±K+1, . . . , s
±
2K ]

D11[s±1 , . . . , s

±
K ]
−1

D12[s±1 , . . . , s
±
K ]

, (6.58)

where the NK − 1×NK − 1−matrix D(2,NK) is obtained from D(1,NK) by removing
the first line and the first column.

In order to set up an iterative scheme, we use the following observation: to be
consistent with the truncation of the correlations after a memory time Kδt, we have
to neglect terms that directly couple Ising spins at time differences larger than the
memory time. This is achieved by setting

Dl+2,l+1

Dl+1,l+1

−1
Dl+1,l


Dl,l
−1

Dl,l+1

Dl+1,l+1

−1
Dl+1,l+2 → 0 (6.59)

within the Schur complement in each further iteration step. Note that we do not
neglect the full Schur complement but only those parts which are generated in the
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second-next iteration step. With this, we rewrite the generating function as

Z[η] =


s±1 ,...,s±N

det

D11[s±1 , . . . , s

±
K ]
NK−1

l=1

det

Dl+1,l+1[s±lK+1, . . . , s

±
(l+1)K ] (6.60)

−Dl+1,l[s±lK+1, . . . , s
±
(l+1)K ]


Dl,l[s±(l−1)K+1, . . . , s

±
lK ]
−1

Dl,l+1[s±(l−1)K+1, . . . , s
±
lK ]

.

Then, one can exchange the sum and the product, and by reordering the sum over
all Ising spins, one obtains

Z[η] =


s±N−K+1,...,s±N

ZNK
[s±N−K+1, . . . , s

±
N ] , (6.61)

where ZNK
is the last element obtained from the iterative procedure defined by

(l = 1, . . . , NK − 1)

Zl+1[s
±
lK+1, . . . , s

±
(l+1)K ] =


s±
(l−1)K+1

,...,s±lK

Λl[s
±
(l−1)K+1, . . . , s

±
lK , s

±
lK+1, . . . , s

±
(l+1)K ]

× Zl[s
±
(l−1)K+1, . . . , s

±
lK ] . (6.62)

The propagating tensor Λl can be read off from eq. (6.60) as

Λl = det

Dl+1,l+1[s±lK+1, . . . , s

±
(l+1)K ] (6.63)

−Dl+1,l[s±lK+1, . . . , s
±
(l+1)K ]


Dl,l[s±(l−1)K+1, . . . , s

±
lK ]
−1

Dl,l+1[s±(l−1)K+1, . . . , s
±
lK ]

.

Note that we use here the notion of tensor in the sense of a multi-dimensional
array and not in the strict mathematical sense defined by the transformation prop-
erties of this object, see also ref. [8]. The iteration starts with Z1[s

±
1 , . . . , s

±
K ] =

det

D11[s±1 , . . . , s

±
K ]

.

The current is numerically obtained by evaluating eq. (6.31) for a small but
fixed value of η; we have taken η = 0.001 for all results shown below. By this, we
obtain the full time-dependent current I(tm) as a function of the measurement time
tm (0 ≤ tm ≤ Nδt). At short times, this shows a transient oscillatory or relaxation
behavior, which then reaches a plateau value from which we read off the steady-state
current I.

At this point we would like to note that this chapter was also part of the PhD
thesis [94]. We have implemented an independent version of the ISPI scheme and
have carefully validated that both implementations yield the same results. Besides
some syntactical differences our implementation differs mainly in:

1. The matrix elements in the blocks Dl,l+1 and Dl+1,l beyond the characteris-
tic memory time τc are set to zero, resulting in real lower/upper triangular
matrices, respectively.
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2. Within each iteration step, the summation over Ising-spins s± is divided into
an inner an an outer loop. To be specific for each fixed spin configuration
of the spins s±lK+1, . . . , s(l+1)K (within the outer loop) we compute the sum of
all spin configurations depending on s±(l−1)K+1, . . . , s

±
lK within an inner loop.

A the end this yields the propagating tensor Λl needed for the next iteration
step, stored in an array of dimension 22K . Within the next iteration step the
values of the adequate spin configuration of Λl are called within the inner loop
of the spin summation.

However, the main ideas on which the ISPI scheme is bulid on, as e.g. the structure
and ordering of the iteration blocks D, the summation over s± and the computation
of the Fourier-transformation of the Green’s function are the results of fruitful dis-
cussions and collaborations with the author of [94]. The ISPI results shown in the
figs. 6.2-6.4, 6.6-6.10 and 6.16 were obtained within our version of the code.

6.4 Convergence and extrapolation procedure

In order to render the scheme exact, we have to eliminate the two systematic errors
which are still present up to this point, namely, (i) the Trotter error due to finite
time discretization δt = t/N , and (ii) the memory error due to a finite memory
time τc = Kδt. The scheme becomes exact by construction in the limit K → ∞
and δt → 0. To perform this limit in a straightforward way is not possible due to
the exponential dependence of the array sizes on K. However, unless temperature
is very low, we can eliminate both errors from the numerical data in the following
systematic way: (i) We choose a fixed time discretization δt and a memory time τc.
A reasonable estimate for τc is the minimum of 1/|eV | and 1/T (see above). With
that, we calculate the current I(δt, τc), and, if desired, the differential conductance
dI(δt, τc)/dV (the derivative is performed numerically for a small ∆V = 0.01Γ). The
calculation is then repeated for different choices of δt and τc.

(ii) Next, the Trotter error can be eliminated by exploiting the fact that it
vanishes quadratically for δt → 0 [138,139,10]. For a fixed memory time τc, we can
thus extrapolate and obtain dI(τc)/dV = dI(δt → 0, τc)/dV , which still depends on
the finite memory time τc. The quadratic dependence on δt is illustrated in fig. 6.3
for different values of U . Note that each line corresponds to the same fixed memory
time τc = 0.5/Γ. (iii) In a last step, we eliminate the memory error by extrapolating
for 1/τc → 0, and obtain the final numerically exact value dI/dV = dI(τc →∞)/dV .
For the dependence on 1/τc, we empirically find a regular and systematic behavior
as shown in fig. 6.4. The τc → ∞ value is approached with corrections of the
order of 1/τc, see fig. 6.4. However, it should be stressed that temperature and
voltage affect the convergence properties in different ways, as is already clear from
fig. 6.2. Importantly enough, when T and V are such that the extrapolation scheme
described above converges, numerical exactness is warranted. We have implemented
the iterative scheme together with the convergence procedure on standard Xeon
2GHz machines. Computations are then only possible for K ≤ 7 due to the limited
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Figure 6.3: Quadratic dependence of the Trotter error as obtained in the
convergence procedure for δt → 0 for a fixed memory time τc = 0.5/Γ. Pa-
rameters are ϵ0 = 0, B = 0, T = 0.1Γ. The extrapolated values are given in
the figure.

Figure 6.4: Dependence of the differential conductance dI(τc)/dV on the
inverse memory time 1/τc for different values of U after the Trotter error has
been eliminated. Parameters are ϵ0 = B = 0, T = 0.1Γ. Solid lines correspond
to a linear fit. The extrapolated values for dI/dV = dI(1/τc → 0)/dV are
given in the figure.
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memory (RAM) resources available. Typical running times for the shown simulation
data are approximately 15 hours for K = 5. With a second, parallelized version of
the code, we have been able to take into account up to 214 summands in eq. (6.62),
corresponding to K = 7, within passable running times of a few days.

The empirically found behavior on 1/τc when τc →∞ is under active discussions.
For large U this approach seems to fail and other possibilities to achieve convergence
are in demand. From fig. 6.4 one can already notice that for U = 2Γ the extrap-
olation becomes less accurate, but here the accuracy is still sufficient. A way to
overcome these problems is for instance the principle of least dependence which has
successfully been used within the QUAPI method, see chapter 3 and further work
will be assigned to that topic. Moreover there are promising concepts to optimize
the implementations of the ISPI scheme such that K = 10 seems to be achievable
within passable runtimes.

6.5 Results

Next, we discuss the results obtained by the application of the iterative procedure
to the Anderson model. As pointed out before, see sec. 6.2.1, we consider the
symmetric case, ΓR = ΓL = Γ/2, with µL/R = ±eV/2. In what follows, we measure
energies in units of Γ. Unless noted otherwise, all error bars for the shown data
points, which are due to the Trotter and memory extrapolation scheme, are of the
order of the symbol sizes in the figures. Our scheme yields the full time-dependent
current I(t), including transients as well as the asymptotic steady-state value. Fig.
6.5 shows typical results for the current I(t), for two parameter sets, namely (1)
U = 4Γ, eV = 2Γ, T = 0.1Γ (black circles), and (2) U = 0.5Γ, eV = 0.6Γ, T = Γ
(red squares). The first set is of interest in the context of the nonequilibrium Kondo
effect, where the Kondo temperature (for ϵ0 = 0) is TK =


ΓU/2 exp(−πU/8Γ);

for parameter set (1), this yields TK = 0.29Γ. For eV ≫ TK , analytical results for
the steady-state current are available [45, 142], shown as solid line in fig. 6.5. This
indicates that the ISPI method is capable of approaching the nonequilibrium Kondo
problem. For both parameter sets, and for many others not shown here, we observe
that after a transient relaxation behavior, I(t) settles at a plateau value, which then
defines the stationary current discussed in the following.

6.5.1 Validation of the algorithm: comparison with exact
and perturbative results

As a simple warm-up check, let us briefly compare our numerical results to the
exact result for U = 0. Fig. 6.6(a) shows the stationary current (obtained already at
tm = 10/Γ) as a function of ϵ0 for T = 10Γ and eV = 0.1Γ. The I-V characteristics is
shown in fig. 6.6(b) for T = 10Γ and ϵ0 = 0. Both cases illustrate that the numerical
result coincides with the exact one. Other parameter sets have been checked as well,
and agree with the well-known U = 0 analytical solution.

90



6.5. Results

Figure 6.5: Time-dependent current I(t) for two representative parameter
sets: (1) U = 4Γ, eV = 2Γ, T = 0.1Γ (black circles) and (2) U = 0.5Γ, eV =
0.6Γ, T = Γ (red squares). Solid line: analytical result for stationary I from
nonequilibrium Kondo theory applied to parameter set (1) [45,142]. Symbols
are ISPI results, dashed lines are guides to the eye only, and ϵ0 = B = 0.

Figure 6.6: Stationary current as a function of ϵ0 (a) and of the bias voltage
eV (b) for the noninteracting case U = 0. Shown are the numerical (circles)
and the exact analytical (dashed curve) results for (a) T = 10Γ, eV = 0.1Γ,
and (b) ϵ0 = 0, T = 10Γ. In both cases, B = 0.
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Figure 6.7: Interaction corrections δI(V ) = I(U) − I(U = 0) from the
numerical ISPI approach (red symbols) and from a second-order perturbative
calculation (black solid lines), for U = 0.1Γ (squares) and U = 0.3Γ (circles).
Parameters are ϵ0 = B = 0, T = 0.1Γ, and dotted lines are guides to the eye
only.

Second, in order to validate the reliability of our code for finite U , we com-
pare the numerical results to a perturbative calculation, where the interaction self-
energy is computed up to second order in U [143]. In order to respect current
conservation, this calculation is possible only at the electron-hole symmetric point,
ϵ0 = B = 0 [51]. First-order terms give then no contribution, and the self-energy
corresponds to just one diagram [143]. For a detailed comparison, we plot mostly
the interaction corrections, δA ≡ A(U)−A(U = 0), with A being the current I, the
linear conductance G, or the nonlinear conductance dI/dV , respectively. Fig. 6.7
shows the results for δI as a function of the bias voltage for U = 0.1Γ and U = 0.3Γ.
For U = 0.1Γ, we perfectly recover the perturbative results, which confirms the relia-
bility of our code even in the regime of nonlinear transport. Clearly, the corrections
are small and negative, which can be rationalized in terms of Coulomb blockade
physics, as transport is suppressed by a finite interaction on the dot.

For U = 0.3Γ, the current decreases even more, and the deviations between the
ISPI and perturbative results are also larger. The relative deviation for U = 0.3Γ
is already ≈ 30 − 35%, illustrating that perturbation theory is already of limited
accuracy in this regime. Although it well reproduces the overall tendency, there
is significant quantitative disagreement. The differences are even more pronounced
for U = Γ, as shown in fig. 6.8 for δI (main) and for δ(dI/dV ) (inset). Here,
second-order perturbation theory does not even reproduce qualitative features.
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Figure 6.8: Interaction correction δI for the nonlinear current for U = Γ,
comparing ISPI (red symbols) and U2 perturbation theory (black solid curve).
The inset shows the corresponding interaction corrections δ(dI/dV ) to the
differential conductance. Other parameters are as in fig. 6.7. Dashed lines are
guides to the eye only.

6.5.2 Comparison with master equation approach

Next, we compare our numerical approach with the outcome of a standard master
equation calculation [77]. The master equation is expected to yield reliable results in
the incoherent (sequential) tunneling regime, T ≫ Γ, where a description in terms
of occupation probabilities for the isolated many-body dot states is appropriate.
The transport dynamics is then described by a rate equation for the populations,
where the time-dependent rates are obtained from lowest-order perturbation theory
in Γ [77]. The results are shown for U = Γ in fig. 6.9, both for the nonlinear and the
linear differential conductance interaction corrections. As temperature is lowered,
interaction effects become more important, as seen from the exact ISPI results. This
corresponds to the emergence of coherence effects for T < Γ, which are clearly not
captured by the master equation in the sequential tunneling approximation. How-
ever, for T & 4Γ, interaction corrections are washed out, and the master equation
becomes essentially exact, cf. fig. 6.9. Similarly, from our ISPI results, we observe
that interaction corrections are suppressed by an increasing bias voltage as well. To
give numbers, for T = 1.25Γ, we find in the linear regime δG = −0.073e2/h, whereas
δ(dI/dV ) = −0.062e2/h for eV = 3Γ.

6.5.3 Small bias: eV ≪ Γ

For sufficiently small bias voltage, the current is linear in V , and we can focus on
the linear conductance and its interaction correction δG. Fig. 6.10 shows δG as
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Figure 6.9: Comparison of the ISPI method (red symbols) and the master
equation approach (solid lines) for U = Γ. Main: Corrections δ(dI/dV ) of the
nonlinear conductance as a function of temperature for eV = 3Γ. Inset: Same
for the linear conductance δG. For the remaining parameters, see fig. 6.7.

Figure 6.10: Interaction correction δG as a function of ϵ0, for U = Γ,
different B, and T = 0.1Γ. Inset: Dependence of δG on U for B = 0, on
resonance (ϵ0 = 0, red circles) and away from resonance (ϵ0 = −Γ, black
diamonds).
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Figure 6.11: Linear conductance G as a function of ϵ0, corresponding to
Fig. 6.10 together with the exact U = 0 results (LB).

a function of ϵ0 for different magnetic fields B, taking U = Γ and T = 0.1 (to be
specific, we have chosen eV = 0.05Γ). For B = 0, two spin-degenerate transport
channels contribute, and a single resonant-tunneling peak at ϵ0 = 0 results which is
lowered by U . Moreover, peaks at ±U/2 evolve, where U lifts the spin degeneracy
leading to positive interaction corrections δG. These peaks are superimposed by
the central peak at ϵ0 = 0 since the level splitting is not large enough at U = Γ.
For B ̸= 0, the spin-dependent channels are split by ∆ϵ = 2B + u. The spin-
resolved levels are now positioned at ±(B + U/2) due to the Zeeman splitting and
the splitting according to U , as can be seen from fig. 6.11. Note that the peaks
are slightly shifted away from ±(B + U/2) due the superposition with the small
but finite central peak. We have also calculated this behavior within the Master
equation approach, see fig. 6.12, yielding the correct peak positions. For B = 0 we
find evidence for an interaction-induced broadening of the resonant-tunneling peak
compared to the noninteracting case. The width of the Lorentzian peak profile for
B = 0 is determined by Γ at sufficiently low T , and broadens as T increases.

In order to illustrate the role of the interaction U , we show the dependence of
δG on U at ϵ0 = 0 in the inset of fig. 6.10. For U = 0, both levels contribute
e2/h to the conductance at low temperatures, while for finite U these contributions
are reduced since the resonant peak is lowered by U . The reduction increases with
growing U , qualitatively consistent with previous results. Away from resonance, ϵ =
−Γ, see inset of fig. 6.10, we find positive interaction corrections steming from the
broadening of the central peak due to the development of peaks at ±U/2. Clearly,
these interaction corrections grow with increasing U . Note that the interaction
corrections are more pronounced away from resonance.

Next, we address the temperature dependence of the linear conductance (numer-
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Figure 6.12: Differential and linear conductance as a function of gate voltage
obtained from a master equation approach. The temperature is T = 5Γ and
eV = 20Γ for the differential conductance.

ically evaluated for eV = 0.05Γ). In fig. 6.13, we show G(T ) for different values of
U (up to U = 4Γ) at ϵ = B = 0. For U = 1.2Γ, the deviation from the U = 0-
result is small in the considered temperature range. For larger U , deviations become
more pronounced at low temperatures where interaction becomes increasingly rel-
evant. Up to present, we have obtained converged results in the regime of small
bias voltages for interaction strengths U ≤ 4Γ for temperatures above or close to
the Kondo temperature, T & TK . The corresponding Kondo temperatures are (see
above) TK = 0.38Γ for U = 3Γ and TK = 0.293Γ for U = 4Γ. In the regime
TK . T . 10TK , we can compare our results to the result of Hamann [144,145],

G(T ) =
e2

h


1− ln(T/TKH)

[ln2(T/TKH) + 3π2/4]1/2


, (6.64)

for the linear conductance, where TKH = TK/1.2, see fig. 6.13 (solid lines).
In ref. [144], it has been shown that the results of the numerical RG coincide with

those of eq. (6.64) in this regime. Fig. 6.13 illustrates that the agreement between
the two approaches is satisfactory and shows that the ISPI provides reliable results in
the linear regime above or close to the Kondo temperature. As already mentioned,
convergence is problematic in the linear regime for temperatures lower than the
Kondo temperature for larger values of U . This implies that the equilibrium Kondo
regime is difficult to explore using the ISPI approach. However, the situation is
more favorable for large bias voltages, where short to intermediate memory times
are sufficient, and we have achieved convergence up to U = 4Γ, see fig. 6.5 and the
next subsection.
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Figure 6.13: Linear conductance G vs temperature T , for U = 0 (dashed
line) and U = 1.2, 3, 4Γ (ϵ0 = B = 0). Symbols denote the ISPI results while
the solid lines are those of eq. (6.64).

6.5.4 Large bias: eV ≥ Γ

Let us then turn to nonequilibrium transport at voltages eV & Γ. Here, the trans-
port window is ∼ eV , and a double-peak structure for dI/dV emerges even for
B = 0, with distance eV between the peaks for the non-interacting case, see fig.
6.14. A finite magnetic field splits the main peak to positions ±B where the voltage
induced splitting with distance eV remains for each peak, see fig. 6.15. The effect of
turning on the on dot interaction U can be seen from the master equation approach
in fig. 6.12. The peaks are lowered and shifted to positions ±(B + U/2). Moreover
there is still the voltage induced splitting with distance eV leading to an overall
four-peak structure. For a finite magnetic field this effect is not fully developed for
the choice of parameters within our simulations since the peaks are superimposed,
see fig. 6.14. For e.g. B = Γ and the shown values of U , the two innermost peaks
(closest to ϵ0 = 0) overlap so strongly that they effectively form a single peak at
ϵ0 = 0 again.

As interaction corrections to the nonlinear conductance are largest when a dot
level is in resonance with one of the chemical potentials of the leads, the double-peak
structure is again transferred to δ(dI/dV ). This can be observed in fig. 6.16, for the
case B = 0, where we show results for eV = 3Γ but otherwise the same parameters
as in fig. 6.10. Since the applied magnetic field is too small to obtain well separated
Zeeman-peaks this effect is washed out for a finite B, due to the superposition of
the four-peak structure.

Increasing the on-dot interaction U leads to a reduction of the differential con-
ductance peaks compared to the noninteracting case, i.e., the interaction corrections
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Figure 6.14: Same as fig. 6.11 but for the nonlinear conductance, taken at
eV = 3Γ.

Figure 6.15: Nonlinear conductance for the non-interacting case taken at
eV = 3Γ.

are again largest when the level energy matches the chemical potential in the leads.
This is observed in the inset of fig. 6.16, for B = 0 and ϵ0 = −Γ, which is close to
the peak maximum. Away from resonance, the interaction corrections are reduced.

In the regime eV ≫ TK , we can compare our results to the perturbative RG
result [45, 142]

I(V ) =
3π2e2V

8h
ln−2(eV/T̃K) ,
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Figure 6.16: Same as fig. 6.10 but for the nonlinear conductance, taken at
eV = 3Γ.

with T̃K = 2TK/
√
π. Fig. 6.5 shows the result for the stationary current for

U = 4Γ (where TK = 0.29Γ) for eV = 2Γ. The perturbative current amounts
to I∞ = 2.28eΓ/h, while the ISPI value is IISPI = 2.25eΓ/h. The quite satisfactory
agreement suggests that ISPI is indeed a reliable new method that holds promise for
reaching the nonequilibrium Kondo regime. A detailed study of the nonequilibrium
Kondo effect using ISPI will be given elsewhere.

Finally, we address the temperature dependence of the nonlinear conductance
dI/dV . ISPI results for eV = 2Γ, ϵ0 = B = 0 are shown in fig. 6.17. Again, as in
the linear regime, the conductance increases with lower temperatures, and finally
saturates, e.g., at dI/dV = e2/h for U = 0 and eV = 2Γ. Clearly the conductance
decreases when the bias voltage is raised. Increasing U renders this suppression yet
more pronounced, see also inset of fig. 6.17 for the corresponding corrections. At
high temperatures, thermal fluctuations wash out the interaction effects, and the
interaction corrections die out.

6.6 Discussion and conclusions

In summary, we have introduced a scheme for the iterative summation of real-time
path integrals (ISPI), and applied it to a prototypical problem of quantum trans-
port through an interacting quantum dot coupled to metallic leads held at different
chemical potentials. After integrating out the leads, a time-nonlocal Keldysh self-
energy arises. Exploiting the exponential decay of the time correlations at finite
temperature allows to introduce a memory time τc beyond which the correlations
can be truncated. Within τc, correlations are fully taken into account in the corre-
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Figure 6.17: Nonlinear differential conductance dI/dV vs temperature T ,
for eV = 2Γ, ϵ0 = B = 0, and U = 0, 1.2, 3Γ. Inset: corresponding interaction
corrections δ(dI/dV ). (The Kondo temperature for U = 3Γ is TK = 0.38Γ.)

sponding path integral for the current generating function. Then, through a discrete
Hubbard-Stratonovich transformation, interactions can be transferred to an auxil-
iary quasi-spin field, and an iterative summation scheme has been constructed to
calculate the transport current. The remaining systematic errors due to the finite
time discretization and the finite memory time τc are then eliminated by a refined
Hirsch-Fye-type extrapolation scheme, rendering the ISPI numerically exact. From
this construction, it is clear that the calculation is reliable for temperatures above
a certain interaction-dependent temperature scale. The latter depends also on the
computational power available, and vanishes in the absence of interactions.

The general scheme has been applied to the canonical example of an Anderson dot
with interaction U , for which many features of the transport characteristics are well
understood. This allows to carefully and systematically check the algorithm. In the
regime of linear transport, we have recovered results from second-order perturbation
theory in U in the limit of very small interaction strength, but found significant
deviations already for small-to-intermediate values of U . In the incoherent sequential
regime, we recover results from a master equation approach. Taking U/Γ = 4,
we have furthermore reproduced the behavior of the linear conductance above the
Kondo temperature and found satisfactory agreement with numerical RG results. In
addition, we have investigated the regime of correlated nonlinear transport, where,
in our opinion, the presented method is most valuable. We have checked that for
large voltage, known results on the nonequilibrium Kondo effect are reproduced as
well.

Up to now, we have achieved converged results for small-to-intermediate U even
at rather low temperatures and small bias voltages. However, the strong-coupling
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regime of the Kondo effect has not yet been fully captured, as the required memory
times become quite large, and, at the same time, small δt are necessary because of
the large U . This combined requirement makes it difficult to reach convergence.
Nevertheless, the nonequilibrium Kondo regime, representing an intermediate-to-
weak coupling situation, seems tractable by the ISPI scheme. The applicability and
accuracy of ISPI has been demonstrated for bias voltages larger than the Kondo
temperature. We will present a detailed study of this interesting regime elsewhere.

Our approach is, in fact, similar in spirit to the well-established concept of the
QUAPI scheme, introduced in detail in chapter 3 and originally introduced by Makri
and Makarov [8] in its iterative version. This method has been developed to de-
scribe the dynamics of a quantum system coupled to a bath of harmonic oscillators
held at equilibrium, in order to obtain exact results for quantum decoherence and
dissipation, see also ref. [9] and the previous chapters 3-5, where we have made
use of the QUAPI method. For a dipole-type system-bath coupling, as it occurs,
e.g., in the spin-boson model [11], the bath-induced correlations are encoded in the
Feynman-Vernon influence functional [86], which is solely a functional of a single
system operator, say x̂, which couples the system to the bath, see chapter 2 for a
detailed introduction. The very existence of this functional allows to perform a basis
rotation to the eigenbasis of x̂ (called the discrete variable representation, DVR).
Then, the influence functional can be evaluated at the eigenvalues of x̂ during the
numerical calculation of the real-time path integral over x̂(t). Moreover, within
the QUAPI scheme, the influence functional also generates correlations which are
non-local in time, but which also decay exponentially. This allows to truncate them
beyond a memory-time τmem, which coincides conceptually with our correlation time
τc. Then, in practice, numerical convergence has to be achieved with respect to the
memory time and afterwards, the only remaining Trotter error can be completely
eliminated by extrapolation, see chapter 3 . In the present case of nonequilibrium
transport, several fundamental differences occur, and, in fact, only the strategy of
memory truncation can be taken over. The major difference is that there exists no
simple Feynman-Vernon influence functional. While the lead fermions can be inte-
grated out, see eq. (6.34), the corresponding Grassmann variables for the dot cannot
be transferred to a practical computational scheme along the lines of the QUAPI
method. Instead, here we integrate out all fermions, at the expense of introducing
auxiliary Ising spins via the HS transformation. Then, ISPI performs a summation
over these Ising spins. Another difference is the form of the tunnel coupling in the
Hamiltonian. As two non-commuting system operators dσ and d†σ occur, no analogue
of DVR can be established here.

Finally, we note that we have chosen the Anderson model as a simple but non-
trivial toy model for quantum transport in order to establish and test the numerical
algorithm. We believe that this approach, or modifications thereof, will be of impor-
tance in numerical calculations of quantum transport properties. Compared to other
approaches, it has several advantages (e.g., numerical exactness, direct nonequilib-
rium formulation, no sign problem), but is, on the other hand, also computationally
more costly than most other techniques, especially for strong correlations and/or low
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energy scales (temperature, voltage). In any case, it goes without saying that other
interesting models for quantum transport exist, and future work will be devoted to
apply ISPI to those.
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Chapter 7

Summary

To summarize, in the present thesis we have presented studies concerning non-
Markovian, time non-local correlations in open quantum systems.

In chapter 3 we have investigated the real-time dynamics of a donor based charge
qubit. Here, the charge qubit is coupled to a bosonic environment of phonons which
tailors a superohmic spectral density. The numerically exact QUAPI method, which
we have improved at one important step, allows for including all non-Markovian
effects. By comparison with a Born-Markov approximation it was possible to show
that non-Markovian effects lead to small but quantitative important correction for
observables of interest, as for instance the quality factor. Our results indicate that
phonons are not the main source for dissipation and decoherence within the donor
based charge qubit, but represent an upper limit for decoherence which is hard to
overcome.

Chapter 4 dealt with an externally driven two-level system coupled to an Ohmic
environment. Since this is a realistic model for light-harvesting biomolecules we
have concentrated on the influence of the cut-off frequency of the environment. For
the biomolecular structures we were interested in, this frequency is of the order of
characteristic system energies which renders the dissipative dynamics highly non-
Markovian and again the QUAPI method was the ideal method of our choice. Our
results have provided evidence for the fact that a driving field which is slow com-
pared to relevant system energies in combination with a non-Markovian environment
plays a constructive role in preserving forced oscillations of the population differ-
ence of the TLS in the long-time limit. In addition we have identified a resonant
behavior of the amplitude of the forced oscillations in the long-time limit, when
the characteristic time scale of the TLS and the Ohmic environment coincide. Due
to this coincidence the resonant behavior is clearly a highly non-Markovian effect.
Moreover we have investigated the regime of coherent destruction of tunneling in the
coherent and incoherent regime and identified rich and new features for the decay of
the population difference of the TLS in dependence of the characteristic time-scale
of the environment.

In chapter 5 we have extended the model used in chapter 4 in the sense that we
have investigated the dynamics of two Förster coupled TLS coupled to a common
Ohmic environment. Since these two coupled TLS form a bipartite system we have
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7. SUMMARY

investigated the dissipative entanglement dynamics of such a system, closely related
to biomolecular systems. Indeed, it has been shown within our investigations that
an initially entangled state of the two coupled TLS is more robust when subjected
to a slow environment. Moreover it turned out that a non-Markovian environment
is most successfully and even plays a constructive role in generating entanglement
in such biomolecular structures. This hold up to temperatures well beyond the
excitonic gap.

Within chapter 6 we have analyzed the non-equilibrium transport properties of
an Anderson quantum dot attached to metallic leads. Here, we have developed
a novel numerical scheme in order to compute the underlying real-time fermionic
path integral in an ab-initio deterministic way. By means of the Keldysh generating
functional we are able to compute observables of interest. In the same spirit as
the QUAPI method the ISPI scheme is rooted upon the fact that the time non-
local correlation functions decay exponentially in time for a finite temperature and
can be truncated after a certain memory time. Thus we are again able to account
for non-Markovian features. The ISPI scheme has been constructed such that it
is numerically exact, since we eliminate the two errors made within the scheme
systematically. To be specific we Trotter-extrapolate to a vanishing time increment
and are able to extrapolate to an infinite memory time. To check the validity of
our novel scheme we have compared our results with known results in different
parameter regimes. For the sequential tunneling regime as well as for small on-dot
interaction we find good agreement with the outcome of approximate approaches
being reliable for the parameters we have chosen. For the nonequilibrium case we
reproduce the correct positions of the resonances within the magnetoconductance
and find agreement with perturbative results for small on-dot interaction. Since the
ISPI scheme is numerically costly it remains a challenge to optimize the scheme to
make it accessible for different physical systems, like e.g. the non-equilibrium Kondo
regime with a sizeable on-dot interaction or a quantum dot attached to metallic leads
which is in addition coupled to a phonon. Future work will address these topics.

To conclude, the results of this thesis as a whole show that time non-local,
i.e., non-Markovian correlations are most relevant for the real-time dynamics of
open quantum systems. By means of the well established QUAPI scheme we have
pointed out this relevance for biomolecular systems and have found features as, e.g.,
the protection of quantum coherent dynamics over a finite time interval in chapter
4 and the entanglement generation of two biomolecular TLS coupled to a common
environment in chapter 5. Both phenomena are rooted upon the very non-Markovian
nature of the environment and in that sense an environment where time non-local
correlations are present and not negligible may play a constructive role in protecting
or even generating pure quantum phenomena. In the same spirit one can understand
the results we have obtained within the newly developed ISPI scheme in chapter 6.
Although we have been concerned with a fermionic environment here, as in the
bosonic case non-Markovian features are most evident for the real-time transport
properties of the Anderson dot, as we could show by comparison with approximate
methods.
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[80] B. Horváth, B. Lazarovits, O. Sauret and G. Zaránd, Failure of the mean-field
approach in the out-of-equilibrium Anderson model, Phys. Rev. B 77, 113108
(2008).

[81] D. Giulini et al. (ed.), Decoherence and the Appearance of a Classical World in
Quantum Theory, (Springer, Berlin, 1996).

[82] T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön and W. Zwerger,
Quantum Transport and Dissipation, (Wiley-VCH, Weinheim, 1998).

[83] A. J. Leggett, S. Chakravarty, A . T. Dorsey, M. P. A. Fisher, A. Garg and W.
Zwerger, Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59, 1
(1987).

[84] L. E. Reichl, The transition of Chaos: In Conservative Classical Systems:
Quantum Manifestation, Institute for Nonlinear Science, vol. 2, Springer (New
York, 1992)

[85] F. Hund, Zur Deutung der Molekelspektren, Z. Physik 43, 805 (1927).

[86] R. Feynman and F.L. Vernon, The theory of a general quantum system inter-
acting with a linear dissipative system, Ann. Phys. (N.Y.) 24, 118 (1963).

[87] J.W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley,
Redwood City, 1988).

111



BIBLIOGRAPHY

[88] H. Grabert, P. Schramm and G.-L. Ingold, Quantum Brownian motion: The
functional integral approach, Phys. Rep. 168, 115 (1988); P. Schramm and
H. Grabert, Low-temperature and long-time anomalies of a damped quantum
particle, J. Stat. Phys. 49, 767 (1987).

[89] A. Stern, Y. Aharonov and Y. Imry, Phase uncertainty and loss of interference:
A general picture, Phys. Rev. A 41, 3436 (1990).

[90] D. Loss and K. Mullen, Dephasing by a dynamic asymmetric environment,
Phys. Rev. B 43, 13252 (1991).

[91] M. Schlosshauer, Decoherence and the quantum-to-classical transition,
(Springer, Berlin, 2007).

[92] J. Kondo, Resistance Minimum in Dilute Magnetic Alloys, Prog. Theor. Phys.
32, 37 (1964).

[93] K. P. Schotte, Tomonaga’s model and the Kondo problem, Z. Phys. A 230, 99
(1970).

[94] S. Weiß, Nonequilibrium quantum transport and confinement effects in in-
teracting nanoscale conductors (Shaker Verlag, Aachen, 2008); Universität
Düsseldorf, Dissertation (2008).

[95] C. J. Wellard and L. C. L. Hollenberg, Donor electron wave functions for phos-
phorus in silicon: Beyond effective-mass theory, Phys. Rev. B 72, 085202 (2005)

[96] J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 1 (McGraw-Hill,
New York, 1963).

[97] T. H. Ning and C. T. Sah, Multivalley Effective-Mass Approximation for Donor
States in Silicon. I. Shallow-Level Group-V Impurities, Phys. Rev. B 4, 3468
(1971).

[98] G. D. Mahan, Many-particle physics, (Plenum Press, New York, 1981).

[99] T. Brandes and B. Kramer, Spontaneous Emission of Phonons by Coupled
Quantum Dots , Phys. Rev. Lett. 83, 3021 (1999); T. Brandes and T. Vor-
rath, Adiabatic transfer of electrons in coupled quantum dots , Phys. Rev. B
66, 075341 (2002).

[100] S. Vorojtsov, E. R. Mucciolo and H. U. Baranger, Phonon decoherence of a
double quantum dot charge qubit, Phys. Rev. B 71, 205322 (2005)

[101] MSM archive at http://www.ioffe.rssi.ru/SVA/NSM/

[102] M. Friedel, M. S. Hybertsen and M. Schlüter, Local empirical pseudopotential
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