CHART PARSING AND THE EARLEY ALGORITHM

James Kilbury

Chart parsing and the algorithm of Earley are topics of
considerable current interest, but they seldom are discussed
explicitly in relation to each other. The aim of this paper is
to present the Earley algorithm as a particular kind of chart
parser and then to compare it with a modified algorithm that is
closely related but apparently has not been presented elsewhere
in the literature on parsing. In the course of this discussion
special attention will be directed at a series of fundamental
distinctions that constitute the basis for a new parser
conception.

For workers in the area of computational linguistics the
distinction between 8 grammar and a parser may well seen
obvious, but we nevertheless can observe widespread confusion
regarding thesge notions. The grovwing importance of natural
language computer Systems has brought people into contact with
parsing who have little understanding of computational
linguistics. Typical of the misunderstandings that arise is the
question of the representative of a major computer company who
wanted @& new parser and wondered whether Generalized Phrase
Structure Grammar or Lexical Functional Grammar would be faster.
Such confusfon is not surprising in the light of earlier ad hoc
systems that tndiscriminately mix linguistic data with
algorithms.

Other misunderstandings are more subtle. One often hears
people speak of "writing a
aside from trivial

Definite Clause Grammar parser,” but

Syntactic conveniences, the PROLOG system

itself 1s the parser, and what has been written is a grammar in

2 special formalism for PROLOG. In ATN parsers and the WASP
parser of Marcus the distinction of
maintained but blurred 1ip

grammar and parser 18

8 curious way: categories of the

Parser itself are carried over into the grammar, so that the

grammatical formalisn regsembles

an assembler language in {ts
orientation to the processor.

77

A clear conceptual distinction between grammar and parser can
be achieved if the parser is *driven” by the grammar as its
knowledge base. Obviously, this permits different grammars to be
used with the same parser. Linguistic descriptions can be
utilized better in developing a natural language system, and in
particular, a practical division of labor 1is made possible,
since 1linguists can write the grammar with no knowledge of
programming and, in principle, little or no knowledge of the
parser that is to use the grammar.

Such a conceptual modularization has not only the practical
advantages mentioned above but also theoretical advantages. The
grammar is independent of the parser in the sense that it can
fully utilize categories of theoretical linguistics rather than
categories dictated by the processor. Onm the other hand, if the
mathematical properties of the grammatical formalism are
sufficiently clear, then it is possible to see the
interdependence of the grammar and parser 1in terms of the
Chomsky hierarchy according to which each type of Chomsky
grammar has a corresponding automaton which 18 Jjust powerful
enough to recognize or parse the corresponding language.

The viewpoint adopted here regards the parser as a processor

which interprets the grammar as its program:

grammar |

(program) parser .
out put

{nput " (processor)

In practice, of course, vwe implement a virtual processor

rather than constructing a specialized hardware parser:

parser

L

t a
interpreter outpu >

grammar
input

78
The grammar and parser remain clearly distinct, however.

Given this viewpoint, the grammatical formalism is of central
importance. 1Its role 1is described in an unpublished work by
Gazdar et al.:

A grammatical framework can and should be construed as a

kfnd: The Syafax ‘ena ’eciiling, grammers of 'a particular

EL‘Z&:,fﬁi“%heo%i‘L’%“iﬁﬁod§23°i%g‘éﬁi framesorg once of the
Stated fn computational terms, a grammatical formalism amounts
to a (higher) programming language 1in which programs (i.e.
grammars) are written. It may show an arbitrary degree of
abstraction from the processor and may be either interpreted or
=~ with the expected gains in run-time efficiency -~ compiled.

To serve as the definition of a programming language the
syntax and semantics of the grammatical formalism must be
entirely explicit, ag 1is proposed by Gazdar et al. This 1is an
obvious prerequisite for implementation but also brings
additional advantages: ad hoc interpretations of the theory can
be avoided in the implementation, and - above all ~- the relation
of the parser to a particular 1linguistic theory 1is made
explicit.

The Earley algorithm is of interest here - because it
exemplifies a strict conceptual distinction between grammar and
parser. Before we turn to the algorithm itself we should briefly
consider what a parser does (cf VARILE 1983). A parser performs
4n lncremental analysis of a Sentence or text and produces a
syntactic analysis as its output. At many points in the analysis
the parser wust deal with alternatives - efther in the parts
already analyzed or in those to follow, and a general mechanism
to deal with the alternatives 1s required. One possibility is

backtracking, in which the iadividual alternatives are explored

sequentially. The main disadvantage of backtracking is that

earlier results may be lost, so that a considerable amount of

work may be repeated 1n exploring the successive alternatives.
Another possibility 1sg ¢o keep a record of all alternatives as
they appear in order to avoid repeating previous work. To keep

during the computational process a suitable data
structure {g required.

such a record

79
Essentially the same data structure was proposed for this
purpose by different researchers around 1970. Within
computational linguistics, Kay and Kaplan jntroduced the notion
of a chart (cf WINOGRAD 1983, VARILE 1983, and THOMPSON 1981 for
jiterature and an explanation of charts), while Earley (cf
EARLEY 1970 and AHO/ULLMAN 1972) developed ideas current in the
syntactic analysis of formal languages to formulate his notion
of an item.

The chart (or well-formed gubstring table) 1is designed

precisely to store intermediate results of the parsing process.
It is a graph consisting of nodes (or vertices) connected by a
set of arcs (or edges) . The vertices are numbered and
correspond to the positions before or after words of the input
string; as ends of an edge they ijndicate the extent of a
grammatical constituent. Edges are labelled and bear information
about the constituent. The following figure may serve as 2

simple example:

the g 3 Peter

In the approach of Earley an edge corresponds to an item and
a chart to a set of {items. Unfortunately, the notations used by
EARLEY (1970) and AHO/ULLMAN (1972: 320£f) somewhat obscure the
relation of edges to items. The notation of SHIEBER (1984) 1s
clearer but also does not indicate the extent of an edge in the
notation for the corresponding jtem. In the present paper an
item is defined as a pentuple 1, 3, A, & f] where
i and j are the numbers of the vertices that begin and end

the edge, respectively,
- A is the LHS of a production with uﬂ as corresponding RHS,
- & is the string of daughters of A that have been
recognized, and
ﬂ is the string of daughters of A that remain to be

recognized.

8C
The same item s represented as [A -=> a.ﬂ, i] e Ij by
Aho/Ullman and as [A, «, B, i] € I; by Shieber.

In the general case the item [1, 3, A, o, P] corresponds to
an active edge. When 1 = j and & = E (the empty string) no
daughter of A has as yet been recognized. When ﬁ = € all the
daughters of A have been recognized, and the item corresponds to
an inactive edge.

Strictly speaking, the items described here are for
recognition rather than parsing. For the latter the items can
be augmented with syntax trees or derivational information,
semantic representations, etc.

Although the item or chart as data structure shapes the
parser in a fundamental way, the data structure must be clearly
distinguished from the parsing algorithm just as the parser 1is
distinguished from the grammar. Some confusion may arise here
because of the customary terminology, which allows parsers to be
designated in various ways: the expressions "top-down parser"”
and "left-corner parser” refer to algorithmic strategies, while
“chart parser” refers to the data structure. This must be
Stressed because distinct or even radically different algorithms
€an use the same chart or item as data structure, as the
remainder of this paper will illustrate. Two algorithms will be
Presented that operate by constructing sets of items, and the
first of these is the Earley algorithm itself.

The algorithm of Earley embodies a combination of top-down
and bottom~up strategies with the chart-type data structure in
an entirely novel way. It is considered to be the most efficient
practical algorithm known for parsing context-free languages,
although the efficiency calculation largely rests on the worst-
case analysis that has been criticized by SLOCUM (198l) as
misleading for natural-language parsing. The comparison of
parsing algorithms with respect to their efficiency remains a
largely open question, as we shall see below.

Earley’s algorithm has recently received renewed attention in

computational linguistics because of the present {interest in

restricted syntax formalisms with more or less context-free

power (cf PULMAN 1983 ang SAMPSON 1983). SHIEBER (1984) has

adapted the Earley algorithm to the immediate dominance/linear

precedence formalism of Generalized Phrase Structure Grammar.

81

The algorithm 1s driven by a context-free grammar
G =<N, T, P, S>, where N, T, and P are finite, nonempty sets of
nonterminal symbols, terminal symbols, and productions,
respectively, and S 1is a start symbol in N. A production 1is a
pair <A, &> (normally writtem A --> &) where A 18 a nonterminal
symbol and X is a string of terminals and nonterminals.

The algorithm may be sketched informally. The item set is
initialized with an item 4indicating that the start symbol is
sought but that nothing has yet been identified; items for all
the possible constituents that can immediately follow (1.e. all
the "left corners” of S) are generated by the predictor using
information from the grammar. The input string 1is then processed
sequentially from left to right. In each step the next terminal
symbol is read. Whenever a constituent - be it a terminal or
nonterminal symbol - is identified the completer extends active
edges (i.e. items) requiring the identified constituent, while
the predictor creates new active edges for all the possible
constituents that can immediately follow. An input of length n
i8 recognized (or with a slight extenslion of the algorithm,
parsed) if there i1s at least one inactive S-edge extending from
0 ton, i.e. 1f the item set contains an item of the form
[0, n, S, &, £] after the input has been processed.

Various formal statements of the algorithm exist. The version
of EARLEY (1970: 97) 4is not generally gquoted, while the
widespread formulation of AHO/ULLMAN (1972: 321) 1s remarkably
inelegant because of 1its lack of generality. The following
formulation captures a generalization of Earley’ s scauner
(completion with terminal symbols) and his completer (completion
vith nonterminal symbols). Note that £ is the empty string and
that Ax and «A are catenations of the string & with the terminal

or nonterminal symbol A.

program PARSE 8q...853
begin

CLOSURE for [O, O, S, E, S];

for { = 1 to n do CLOSURE for [(i-1), 1, &, a, £}

end;

82
Procedure CLOSURE for [i, j, B, v, 8]:
begin
1£ [1, 3, B, ¥, 8] @ I then
begin
add [1, 3, B, ¥, 8] to I;
1f § = € then COMPLETE with [i, j, B, %, E]
else PREDICT with (i, j, B, ¥, 8]
end

end;

procedure COMPLETE with [i, k, B, ¥, E]:
begin

for each (i, j, A, &, BP] € I do CLOSURE for (i, k, A, «B, Bl
end;

procedure PREDICT with [1, j, A, «, Bp]:
begin

for each <B, ¥> € P do CLOSURE for (3, 3, B, €, ¥)
end.

The operation of the algorithm can be illustrated with the
gramaar G = <N, T, P, S> with N = {s, NP, VP}, T =
{det, n, adv, v}, and the following productions in P:

S -=> NP vpP

NP =--> det n

NP -=> n

VP ==> VP adv

VP --> v NP

VP --> v

For the 1input string w = det™n™v™adv the algorithm generates the

Numbers following some items indicate the items
with which they arise through completion.

1 lon 0: s’ €, S]

following items.

2 [0, 0, 5, g, NP VR
3 {o, o, NP, g, det"n]
4 [0, o, NP, €, n]

3 10, 1, det, det, g)
6 [0, 1

7 2

» NP, det, n] 3 &5
’

[1, n, n, §)

83

8 [0, 2, NP, det"n, €] 6 &7

9 [0, 2, S, NP, VP] 2 &8
10 (2, 2, VP, £, VP adv])

11 (2, 2, VP, £, v KNP]

12 {2, 2, VP, €, v]

13 [2, 3, v, v, E]

14 [2, 3, VP, v, NP] 11 & 13
15 (3, 3, NP, £, det"n]

16 [3, 3, NP, £, n]

17 {2, 3, VP, v, E] 12 & 13
18 [0, 3, S, NP"VP, €] ~ 9 & 17
19 (0, 3, S, S, E] 1 & 18
20 {2, 3, VP, VP, adv] 10 & 17
21 (3, 4, adv, adv, €]

22 (2, 4, VP, VPTadv, £] 20 & 21
23 [0, 4, s, NETVP, €] 9 & 22
24 [0, 4, S, S, E] 1 & 23

Itens of the form [+, 3, S, S, &) result from the
initialization with [0, O, S, &, S]. Items 18 and 19 show that
an S is recognized before the entire input has been processed.
Note that the left recursion of the fourth production, which
would be a problem for some algorithms, 1is neatly dealt with.

The test run also reveals difficulties. With items 4, 11, 14,
15, and 16 the predictor introduces active edges which are not
extended in the rest of the analysis. For a natural language
such as English or German this effect would lead to unacceptably
large item sets. Before a single input word had been processed
the predictor would have to introduce items for all possible
constituents that could begin a sentence, and excessive numbers
of predictions would also be made throughout the analysis. For
practical chart parsing with grammars of natural languages an
algorithm with weaker predictive power is necessary.

The next algorithn introduced here is intended to overcome
precisely this defect. It employs a more strongly bottom-up
strategy and essentially constitutes a left-corner chart parser
(cf ROSS 1982 for left-cormer parsing). Detailed discussions of
the algorithm and its adaptation to the ID/LP formalism of GPSG
are given in KILBURY (1984) and KILBURY (forthcoming)-.

84

This algorithm differs from Earley” s primarily in the
operation of 1its predictor. The 1input string 1is processed
sequentially from left to right, but the item set is empty
before the first terminal input symbol 1is read. As in the
Earley algorithm, the completer extends active edges when a
symbol is identified, but the new predictor enters an active
edge for each phrase that can have the identified symbol as its
left-most constituent. Earley” s predictor works top~down and
finds all the 1lower-level constituents that can immediately
follow in a phrase, while this predictor works bottom-up and
finds all the next higher-level phrases which a gilven
constituent can begin.

A formal statement of the algorithm follows. Note that the
algorithm does not permit grammars with identical recursion
(1.e. derivations of A -%-> B and B -%-> A) or deletion (i.e.
productions of the form A --> €). This formally restricts the
class of context-free grammars that can drive the algorithm but

does 80 in a way that 1{is linguistically interesting (cf KILBURY
1984: 34).

program PARSE” a_...a :
1 n

begin
for {f = 1 to n do CLOSURE” for [(1-1), i, a_, a,, €]
end; * .

procedure CLOSURE” for {1, j, B, ¥, §]:
begin
add (1, j, B, ¥, §] to 1;
1£ 8§ ¢ then
begin
COMPLETE” with {1, j, B, ¥, €];
PREDICT” with (i, 3, B, ¥, £]
end

end;

procedure COMPLETE” with (3, «, B, ¥, E):
begin

for each [1, 3, A, &, BB] € I do CLOSURE" for (1, k, A, «B, B

end;

85
procedure PREDICT” with [i, J, B, ¥, €):
begin
for each <A, Bf> € P do CLOSURE” for [1, j, A, B, B}

end.

As in the Earley algorithm above, the procedures COMPLETE~
and PREDICT”~ are stated separately for the sake of clarity; they
could be incorporated directly in CLOSURE” without procedure
calls.

PREDICT” requires searches through the entire grammar for
productions of the form A --> Bf. In the case of large grammars
for natural languages, such searches can be relatively costly
and thus slow down the parsing process. This problem can easily
be solved by numbering the productions and then constructing a

first-relation that specifies which productions can introduce a

given symbol as their left-most daughter. The relation is
defined as F = {<B, n>}, where B is a terminal or nonterminal
symbol, n is the number of a production, and <n, A, BA> &€ P°.
For the test grammar given above the first-relation would be F =
{<NP, 1>, <det, 2>, <n, 3>, VP, 4>, <v, 5>, <v, 6>}. If the
first-relation is used, then PREDICT” is mgdified in the third
line:
for each <B, n> & F where <n, A, BA> ¢ P~ do ...

Whether or not the first-relation 18 used, the algorithm
generates the following items for the test grammar and input
string given above:

1 [0, 1, det, det, £1]

{0, 1, NP, det, u]
{1, 2, n, n, E}
(o, 2, NP, det"n, £] 2 &3

(o, 2, s, NP, VP]

[L, 2, NP, n, €]

{1, 2, s, NP, VP]

[2, 3, v, v, €]

9 (2, 3, vp, v, NP]
3
3
3
3

@ ~N O W N

10 (2, 3, VP, v, El

11 [0, 3, s, NP"VP, £] 5 & 10
12 (1, 3, s, NE"VP, €] 7 & 10
13 [2, 3, VP, VP, adv]

86

14 [3, 4, adv, adv, §]

15 [2, 4, VP, VP adv, E] 13 & 14
16 [0, 4, S, NP"VP, €] 5 & 15

17 [1, 4, 5, NP"VP, €] 7 & 15

18 [2, 4, VP, VP, adv]

Both algorithms generate superfluous items (i.e. active edges
that are not extended 1later in the analysis), but the new
algorithm produces fewer. This fact 1is a consequence of the
different depths of the predictions made during analysis.
Earley’s algorithm predicts top-down until a terminal symbol is
reached, e.g. from S to NP to det; this algorithm predicts
bottom-up to the next nonterminal symbol, e.g. from det to NP
without continuing to S wuntil the entire NP is recognized.
Earley’s predictor generates superfluous items when a
nontersinal can be expanded with more than one production, while
the new predictor is less efficient when a given symbol 1s the
left-most daughter in more than one production. A consequence of
this difference {s that the new algorithm produces fewer items
than Earley’s for languages with relatively free word order,
1.e. for grammars with sets of productions like A --> a b and
A ==> b a. 1»*

The new predictor encounters difficulties with sets of
productions like A --> a b and A --> b, as items 6, 7, 12, and
17 of the second test run above demonstrate. Once det has been
identified as the begianning of an NP, there is no sense in
predicting a new NP beginning with the following n. It is hard
to solve this problem in a way that allows for recursive rules
like A --> a A, which most linguists postulate for natural
languages. PULMAN (1983) discusses this question in detail, but
his proposed solution unfortunately amounts to a radical
restriction of the class of grammars that can drive the parser,

which is not the point of this discussion. Note that the Earley

1* The oproblem of parsin
g with the ID/LP formali £ GPSG
Yhigslés directl; relevant for free word orde:f 1:'d:a1t with
'rf: dBER (1984), KILBURY (1984), and KILBURY (forthcomin 1).
e _adaptation of the new algorithm here to the 199 4

gggzg%iﬁzu:e:gi;:. 1n a further reduction in the number of

87
algorithm avoids this difficulty. 2%

The factors mentioned here 1involve properties of languages
and their corresponding grammars. Clearly, different algorithms
may be more or less advantageous relative to such particular
properties. This fact shows the futility of comparing parsing
algorithms without reference to special properties of the
grammars that drive them. The theory of parsing badly needs a
comparison of parsing algorithms, but the method for such a
comparison and the factors to be taken into account are largely
unclear despite the pioneering work of GRIFFITHS/PETRICK (1965).

Another difference between the algorithms discussed here lies
in their robustness. For example, a parser based on the new
algorithm would produce no analysis for an input sentence with a
word not contained in the lexicon, while the predictor of an
Earley-based parser could form hypotheses about the new word
based on syntactic (and semantic) expectations, produce an
analysis, and even simulate the learning of new lexemes from
context. For normal analysis Earley s predictor is too powerful
and too expensive, but this extra power is desirable when
unfamiliar vocabulary is encountered.

Here a distinction must be made between the parser components
of software systems and parsing algorithms of the sort discussed
in this paper. The latter are mathematical crystallizations of
particular analysis strategiles, while the former are practical
programs dealing with a wide range of special problems. In view
of all the distinctions presented above we might imagine a
parser component with a repertoire of different parsing
algorithms, 1.e. a Multi-Algorithm Parser (MAP), operating with
a common data structure and driven by a single grammar. A
control component within the parser would call different
algorithms depending on which was most advantageous at a given
point in the analysis. Obviously, the design of such a coatrol
component raises major questions. It is unclear not only what

factors make a particular algorithm advantageous but also how

2% Pulman must deal with this problem because his redictor,
which is presented as that of Earley but in fact differs both
from {1t and the new predictor here, uses a bottom-up

strategy.

88

the control component should recognize that a particular factor
arises at a given point. Furthermore, the relevant factors
involve not only properties of the grammars but also other,
nongrammatical linguistic knowledge.

The <classical parsing algorithms are 1inefficient and
psychologically implausible because they follow rigid strategies
and make no use of knowledge about the communication situation.
Developers of practical natural language systems are often
criticized by computer linguists for mixing linguistic data with
algorithms, but it is impossible to separate the two entirely at
present. It must be seen as a challenge for 1linguists to
establish what nongrammatical linguistic knowledge 1s relevant
for parsing, how this knowledge is used in parsing, and how it
can be formally represented. It then would be possible to drive
a Multi-Algorithm Parser with a knowledge base containing
different kinds of formally represented linguistic knowledge:

text
(input)
lexicon \\ algorithm 1
\ control < algorithm 2
component
other // :
linguistic |/
knowledge algorithm n
linguistic knowledge parser
(program) ﬁ (processor)
analysis
(output)

The diagram brings us back to the first figure of this paper

and to the distinction of program and processor; a formal

linguistic theory =~ now no longer restricted to grammar - is8

89
again regarded as the definition of a programming language for a

specialized processor (i.e. the parser). The ideas introduced
here obviously require extensive elaboration before they can be
realized in an actual system, but they may serve to suggest how
such a system based on the distinctions stressed 1in this paper

might appear.

References
AHO Alfred V. ULLMAN, Jeffete{ D. (1972): The Theory of
ﬁarsing, Translation and Compiling. I: Parsing. Englewood

cliffs. N.J.: Prentice-Hall.

EARLEY, Jay_ (1970): "An efficient context-free parsing
algorithm.” Communications of the Association for Computing

Machinery 13: 94-102.

GRIFFITHS, T. V. [/ _PETRICK, S. R. (1965): "On the relative
efficienciles of context—-free grammar recognizers.
gosnunications of the Association for Computing Machinery 8:

KILBURY, James (1984}: Earley-basierte Algorithmen fur direktes
Parsen it ID/LP-Grammatiken. KIT- eport 16. Berlin:

Technische Universitat Berlin.

KILBURY, James (forthconinﬁ): “A modification__aof the Earley~
Shieber algorithm for irect parsing of ID/LP grammars.
GWAI-854 Proceedings. Heidelberg: Springer.

KING, Margaret (ed.) (1983): Parsing Natural Language. London et
al.: gcadem c Press.

PULMAN $. G. (1983): “Generalised {hrase structure grammar,

Earley"s algorithm, and the minimisation of recursion.

SPARCK JONES, Karenm / WILKS Yorick (eds.) (19832: Automatic
Natural Language Parsing. thichester: Harwood:-117-131.

ROSS Kenneth M. 1982): “"An, improved left-corner parsing
algorithm.” Procgedin%s of the COLING 1982: 333-338.

SAMPSON, G. R. (1983): "Context free parsing_and the adequacy of
contéxt-free(gramnats."»KING (ed.): 151-%70.

SHIEBER, Stuart M. (1984): "Direct pals
Lingﬁistics and Philosophy 7: 135-154

SLO 1981): "A ractical comparison of parsing
gggiteggggfbanPgogeegin%s ofp the 19th Annuag Meeting of the

Association for Computa fonal Lingulstics, 1981: 1-6.

THOMPSON, Henry (1981): “Chart Parsing and_ rule schemata in
" £ the 19th Annual Meetin of the
hos Proceeclesaput Linguistics, 1981: 16§—172.

ing of ID/LP grammars.”

Association for Computational

VARILE, G. B (1983): T"Charts: a data structure for parsing.”
KING (ed.): 73-87.

" WINOGRAD, Terr (1983): Lan uaie as a Cognitive Process. I:
Syntax. Reagings, Mass.: Add son-Wesley.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14

