THE SPECTR AS ENVELOQPE OF HOLOMORPHY QOF A DOMAIN
QOVER AN ARBITRARY PRODUCT OF COMPLEX LINES

Volker Aurich

§0. Introduction.
For a domain X over C" the following conditions are equivalent {[2], p.283):

(1) X is a domain of holomorphy i.e. X coincides with its envelope of holomorphy.

(2) Xis holomorphically convex i.e. for any compact subset K of X, the holomorphically coavex hull
J?(K,X) is compact.

(3) Xis Stein.

(4) X is the domain of existence of a holomorphic function.

(5) Xis convex with respect to the plurisubharmonic functions.

(6) -log dy is plurisubharmonic.

(7) For any sequence (xp)henN in X with dy(x,) >0, there exists a holomorphic function f on X such
that f(x,,) > .

(8) X coincides with Spec #((X), the space of all nonzero complex algebra homomorphisms on the

algebra J((X) of all holomorphic functions on X.

The equivalence of (1} — (7) holds for a domain X over the product ¢ of card(A) copies of C if the
boundary distance dy is defined in a suitable manner generalizing the usual boundary distance in finite
dimensions ([1] ). Besides other equivalent conditions which are analogous to conditions in the finite
dimensional case there exists one which is very useful to reduce infinite dimensional problems to finite

dimensions:

(9) There exists a finite subset ¢ of A and a Stein domain X¢ over C? such that X is isomorphic (as

domain over CA) to X¢ x cA-¢.

The proof of the equivalences is based on [3] and [5}. In [3] HIRSCHOWITZ showed the equivalence of
(1), (2), {4) and (9) for a domain X in cN. n [5] MATOS generalized these results for domains over CN; he

replaced, however, (2) and (9) by more complicated technical conditions.

Up to now it is not known whether (8) is equivalent to the other conditions in case A is infinite. In what fol-
lows we shall prove a modification: X is a domain of holomorphy if and only if X coincides with the space of
all nonzero £ -continuous algebra homomorphisms J(X) - C where 1~ denotes the bornological topology
associated with the compact-open topology on 3 (X). As we shall show in section 1 4 has some further
nice properties. Moreover the envelope of holomorphy &(X) is homeomorphic to Spec(#(X),2) endowed
with the weak topology, and this involves that & is a functor in the category of domains and holomorphic

maps.
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§1. The Space of the Holomorphic Functions on a Domain over cA.

We show that the space #{X) of the holomorphic functions on a domain X over €A is the union of

subspaces JC¢(X), ¢ C A finite, and each ?:C¢(X) is isomorphic to the snace }(¢(X)

of the holomorphic functions on a finite dimensional domain O% over C?. 9X is obtained as solution of a
universal problem. X + PX defines a functor f¢, and there is a natural equivalence between the functors 3¢
and (o f¢. 1f JC¢(X) and JC(¢X) are endowed with the compact-open topology c, they are homeomorphic
and JCCo)"¢ and J(‘? are equivalent. The locally convex inductive topology & on J({X) with respect to the
subspaces JC?(X) is the bornological topology associated with the compact-open iopology on H(X}). 4 is

Montel and every extension pair is normal with respect to .

Notations: Throughout all sections A is a fixed nonempty set. A, A’, Aq, Ay will always be subsets of
Ag: ¢ will denote the set of all mappings A = C endowed with the topology of pointwise convergence.
iIfo CA, cf will be considered as subspace of CA, and né\ or mg will denote the projection of cA onto
ch. FIAe = {¢ CA: ¢ isfinite}; & € F(A). (Where: = indicates a defining relation).

(1.1) Definition: p: X~ cA is called a domain (over CA) iff X is a connected nonempty Hausdorff space

and p is locally a homeomorphism.

. . A . Ay .
Let Ay CAy. A morphism from a domain pq: X1 > C 1 to a domain pp: X9 > C 2 s a continuous

mapping w: Xq = X5 such that the following diagram commutes:

P I

The domains over C? with § C A and the morphisms between them form a category (ﬁ(Ao).

{1.2) Lemma: Every morphism is locally a projection, hence open. If A is finite and w is surjective, then
w is semiproper i.e. for every compact set K5 C X, there exists a compact set Ky € X with w(K;) =K.

The proof is found in [1].

A domain p: X — CA will always be considered as an analytic manifold with the complex structure induced

by p. Then every morphism is a holomorphic map. The C-algebra of the holomorphic functions on X will be

denoted - “‘par abus de langage’” - by #(X).

Let p: X = ¢ be a domain.
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Definition: Let U C X and f and g be mappings defined on U. We say that f depends on g iff fis constant on
the connected components of the fibers of g. 1f hq and h, are germs in x € X, we say that h depends on hy

iff h1 has a representative which depends on a representative of ho.

Lemma: Let f, be the germ of a holomorphic function at x € X. There exists ¢ € F(A) such that f, depends
on (1r¢op)x. Moreover, there exists a smallest set ¢ with this property. It will be denoted by dep(f,). (cf.
(11,141, (7D)

Proof: x has a neighbourhood U such that p|U - BX CA'¢, with B € ¢% open, is topological and f, has a
bounded representative g: U = C. By Liouville’s theorem, go(plU)_‘I depends on 1r¢|p(U). Obviously, the

intersection of all ¢ such that fx depends on (1r¢op)x has this property, too. g.e.d.

It is easy to verify the following lemma (cf. (1], [3], [4]).
Lemma: Let f € J((X). Then the mapping X > F(A), x + dep(fx) is constant.

I1ts value will be denoted by dep(f).

{1.3) Definition of 70 Let p: X~ CA be adomain. Forevery§ C Ag JCB(X):= § € IH(X): depl(f) CH}.
#0(x)isa C-algebra.

A morphism w from the domain p: X — ¢ to the domain qY-> CA‘ induces a homomorphism

w*: JC()(Y) —>JC0(X),f + fow forevery @ C Ag.

Hence the 3% are contravariant functors from (_g {Ag) to the category of C-algebras.

Since (X} = U{HP(X): ¢ € F(A)}, J((X) can be identified with lim ind #P(x).

$EF(A)
(1.4) Definition of 9X and foz Letp: X~ CA be a domain. Let§ C Ag Consider the following
equivalence relation on X:
Two points x and y are identified iff f(x) = fly) forall f&€ J(G(X).
Let IX be the quotient space {endowed with the quotient topology) and Oap: X - 9X the canonical
projection.

04

p factors through to a map 0p: 0% > cONA it can be shown ([1]) that Bp: Ox > cO0NA isa

P
domain which has the following universal property:

For any holomorphically separable domain q: Y > cA with A C 8N A and any morphism w: X = Y, there
exists a unique morphism &: 09X - Y such that w = :po Oy (cf. the universal property of a complex base in
[9].) This universal property involves that X ~ 6% defines a reflector je in UJ(AO) {for a morphism ¢

fromp to g jo(sp) 1= (00q°¢))-

Notation: Letp: X~ CA be a domain and 6 C A. 1f we consider JCO(X) as topological vectorspace endowed

with a topology 7 we shall write JC?(X). ¢ will denote the compact-open topology. Obviously '}Cg isa
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contravariant functor from (_g {Ag) to the category of locally convex spaces.

(1.5) Proposition: Letp: X > ¢ be a domain and ¢ €EF(A). Then <bai‘;: JC(¢X) - JC¢(X) is a topological
isomorphism.

The family (¢a("i: q domain in Lg (Ag)) is a natural equivalence of JC? and ¥ o _)’¢.

Proof: ¢05 is injective since ¢ap is surjective. The surjectivity of %B follows from the construction of X

and ¢’ap. Clearly %5 is continuous, and its inverse is continuous because ¢°p is semiproper by (1.2) q.e.d.

{1.6) Corollary: JC?(X) is a Fréchet-Montel space.

Letp: X > €A be a domain. We denote by b the locally convex inductive topology on H(X) with respect

to the subspaces J(?(X) with ¢ € F(A). Obviously J%(X) is the strict inductive limit of the JC?(X).

The adjoint map of a morphism of domains w: X = Y induces a continuous linear map HO(Y) - HP(X) for
every ¢ € F(A), hence w™: JC%(Y) - J(b(x) is continuous, too. Thus Jfl is a contravariant functor
from ()J (AO) to the category of locally convex spaces.

Obviously, ‘E.« is finer than c. {t can be shown that they are equal if and only if A is finite.

By virture of (1.6), § is bornological and barrelled. Hence 4 is finer than the bornological topology ¢

associated with c. In order to show that they are equal we need the following lemma.

(1.7) Lemma: Letp: X > C? be adomain. If B isa pointwise bounded subset of 3((X), there is a
# €F(A) such that & ¢ 39(X).

Proof: Suppose the assertion is not true. Then there exists a sequence {f.)) =N in ® such that no finite
subset of A contains all dep(f,)). We shall construct a subsequence which is not bounded in a point of X.

nq:=1. if ny is defined, there is m 1 € N'so that n; <np4q foralli€ {1, ..k} and dep(fnk+1) c

K
i% dep(fni). b = dep(fnk) forall k EN.

Let a € X. There exist a neighbourhood U of a and a O—neighbourhood V = B(O,r)¢' X €A=" in cA so that

p|U - p(a) + V is a homeomorphism.

Forallk €N g, := fnko(p

U1 € Jtplar+v).
k

o
Thereiskn €N that f Hk>k - U o)Ng =0 .= .
ere is kg so that for a o o e LAY o 7r¢,u¢ko(p(a))
Suppose Ei is defined for j€ {0,...2-1}.
kat2—1

4 LT = . o
Since g+ ‘ i%o 5] +C is an entire function which cannot be constant because

k+2-1
&F i1 — igo ¢ C dep(fnk0+Q),
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k0+Q—1
. ¢k0+9_ i=0 % 2 bt
thereis £, €C with |gk 4+ 2 2-)' > 1. Consequently lgk 4ol Z E-)|—>°°ifq->°°,
P ota’ .=, I
0 =0 =0
o0
whence a contradiction. {Clearly Z Ei is well defined.) g.ed.
j=0

(1.8} Proposition: 81 is the bornological topology associated with the compact-open topology.

Proof: We need only show that J is coarser than co-

First we show that
id: H(X) > Jfﬂr(X) is sequentially continuous. Let (f) o be a convergent sequence in 3(.(X). By (1.7)
thereisa $ € F(A) sothat (f ),y convergesin JC?(X). Since JC??(X)C* ¥y(X) is continuous,
{(fadlnen converges in 3y (X).
Since id: JCCO(X) - 3 (X) is continuous, JCCO(X) > HAX) > Mﬁ(x) is sequentially continuous, hence

continuous {because <0 is bornological}. This means that ,ﬁy is coarser than co- q.e.d.

{1.9) Proposition: JCBV(X) is a Montel space.

Proof: Since M}(X) is barrelled it suffices to show that JC!}(X) is semi-Montel.

Let (8 be a bounded and closed set in JC)/(X). Then 8 is pointwise bounded and, by (1.7}, there exists a
6 € F(A) such that @ € 7?(X). @ is bounded and closed in Jf‘cb(X) since - induces on H?(X) the

compact-open topology. By virture of (1.6), & is compact. g.e.d.

It follows in the same way that 3((X) is semi-Montel.

(1.10) Proposition: Letp: X — cA and q: Y~ ¢ be domains and let w: X~ Y be a morphism. Then
w®: H(Y) »> H(X) is analgebraic isomorphism if and only if w*: H}‘Y) - ny/(X) is a topological

isomorphism.

Proof: Suppose w™: H(Y)—> K(X) is an algebraic isomorphism. Then, for each ¢ € F(A), w™: Ho(y) -
HP(X) is an isomorphism. w*: JC?(Y) - JC?(X) is continuous and J("g(Y) and JC?(X) are Fréchet spaces,
hence, by the open mapping theorem, w™: K?(Y) d JC?(X) is a homeomorphism. Consequently,

w*: JC)’(Y) - JC}(X) is a topological isomorphism. The converse implication is trivial. q.ed.

§2. A Special Construction of the Envelope of Holomorphy.
We need the following generalization of the intersection of domains (cf. [7] 2.3, (8] p.85).

(2.1) Proposition: Letp: X~ €N be a domain and let (p¢: X¢ - c¢)¢€F(A) be a family of domains.
Suppose given a family (‘p¢)¢€F(A) of morphisms Py X - X¢. Then there exists a domain q: Y > CA, a

morphism y: X~ Y and morphisms ‘l/¢5 Y > X¢ such that:
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(a) ey = w‘bo Y for all ¢ € F(A)
(b) ¢ is maximal in the following sense:

Ifq: Y~ ¢\ is a domain and ' X =Y’ is a morphism such that each ®s factors through ', then there
is a unique morphism v: Y’ =Y with ) = yoy’ and \% = \1/¢o~/ for all ¢ € F(A).

Definition: (q,y) or simply q or Y is called the intersection of (‘p¢)¢€F(A) or of (p¢)¢EF(A) if no confusion

can arise. q: Y ~> chis unigue up to isomorphisms.

Sketch of the proof:

LetZC 11 X, betheset of all (x,: ¢ € F(A)) with the following properties:
geF(A) ¢

(1) 78ng0my(xg) = 1o gopg(xg) forall ¢, 6" € FIN

(2) there is an open polydisc U with center O in CA and there are neighbourhoods U¢ of X4 in X¢ such
that p¢|U¢ - p¢(x¢) + 1r¢(U) is topological for al! ¢ € F(A).

We define a topology on Z in the following way: W C Z is called a neighbourhood of (x¢: dEF(A) €2 iff

there are U and U¢ satisfying {2) such that ZN 11 U¢ C W. This topology on Z is finer than the trace
¢EF(A)
of the product topology. y: X > Z, x + (sp¢(x): ¢ € F(A)) is continuous. Let Y be the connected

component which contains {(X). The mappingqg: Y = CA, (x¢: P EF(A)) +» (p{j}(xm): i € A) is well-
defined according to (1) and locally a homeomorphism. Hence q: Y = ¢ is adomain and Y: XY isa
morphism which satisfies {a) if we define w¢: Y -~ X¢, (x¢,: ¢’ € F(A)) ~ Xgr Condition (b) is easily
verified like in [8], [9].

We shall use the following terminology:

(2.2) Definition: Letp: X~ ch and q Y- cA be domainsand w: X > Y a morphism.

(g,w) is called a H(X)—extension of p iff w*: H(Y) > H(X) is bijective. {Notice that w* is always injective
because of the identity theorem.}

The ¥C(X)—extension {g,w) {or simply Y) is called the envelope of holomorphy of p iff, for any #(X)—
extension {q": Y' > CA, w’), there is a morphism v: Y’ = Y such that w = yow’. On these conditions,

q Y~ chis unique up to isomorphisms of domains.

(2.3} Construction of the envelope of holomorphy of a domain p: X — ¢ For every ¢ € F(A), the envelope
of holomorphy of p: X - ¢ exists (see e.g. [2], [6], [9]). We denote it by {Pe: 2(%x) > C¢, be) or
briefly by &(®x).

Set ¢B: = ¢e°¢ap forall ¢ € F(A).

Let {e: &(X) > CA,e) be the intersection of (¢B cpEFA).
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Then the following diagram commutes:

¢
¢ap ‘\
¢
f & (*X)

>

- /
&(x) *

Hence the following one commutes too:

¢

o*

‘ \
¢ﬁ*
v X = xS
¢'EF(A)
e* Do+

H(& (X))

Obviously e* is surjective, hence (e, €) is a }{X)—extension of p.

H(&(PX)

Let (q: Y > CA, 8) be another F({X)—extension. Then §*: 3PY) - JC¢(X) is an isomorphism for every

¢ € F(A). Hence fpp, j’¢(5)) isa J(("’X)—extension for every ¢ € F(A). Therefore there are morphisms

O : ?y - &£(®X) such that the following diagram commutes:

ox

F%(5)

oy

Because of the intersection property, there exists a morphism y: Y = & (X) such that € = yo$d.

q.ed.
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A more detailed consideration yields that the association [p: X - CA] » [&(p):=e: &(X)~> CA] is
functorial and defines a reflector & in (g(Ao).

§3. The Spectrum as Envelope of Holomorphy.

If A is a C-algebra, Spec A denotes the set of all nonzero algebra homomorphisms A = C. Let 7 be a topology
on A. Then Spec(A,7} will be the set of all 7-continuous nonzero algebra homomorphisms A - C. The
Gelfand map is denoted by “: A~ CSPEC(AT) ¢, F (Fis defined by f(h) = hif) for all h € Spec(A,7)). If
Spec({A,7) is considered as a topological space then it will always be looked upon as being endowed with the

weak topology i.e. the coarsest topology such that all ’f‘are continuous.

For a domain q: Y = C", &(Y), Spec H(Y) and Spec({}( (Y}, c} are homeomorphic (see e.g. [2]). By virtue
of (1.5) this implies that, for a domainp: X — CA, & (¢X), SpecJC(¢X), Spec JC¢(X), Spec(J((¢X),c) and
Spec(JCd’(X),c) are homeomorphic for every ¢ € F(A). This suggests the following proposition.

{3.1) Proposition: Letp: X~ C be a domain. There exists an injective mapping S: &(X) = Spec(}(X),})
which assigns to (h¢: ¢ € F(A)) € &(X) the homomorphism h € Spec H(X) satisfying

*) h(f) = hy((%o,) 1D for fe39(X).

Proof: It suffices to show that () defines a mappingS: &(X) - Specd({X). Forall x € X,

{ace (x): ¢ € F(A)) € elX) and Pace (x) = P¢ °¢op(x), hence $ace (x) is the evaluation of (?X) in the
point ¢op(x) and can be identified (by means of ¢UB‘) with the evaluation of 3®(X) in x. Therefore

Fooe (x) | 78 (X) = ®ave (x) (x+) forall ¢/, 6" € F(A) with ¢" C ¢'. Since, for all f € 3¢ (*"X),

/f\: & (¢"X) - C, h¢u - h¢u(f) is holomorphic ({2] , p.49), ot —,f\°¢“oc is a holomorphic function on & (X).
By virtue of ()} and the identity theorem,/f\od"a —,f\0¢"a =0. Consequently h¢:|JC¢”(X) = h¢n for all

(h¢: ¢ EFIA)E &(X) and all ¢',¢"" € F(A) with ¢ C ¢". Thus, (*) definesamap S: &(X) » SpecH{X)

which is obviously injective. g.e.d.

(3.2) Lemma: Letp: X — cAand Py X - €% be domains. Suppose that ¢ € F(A) and that p: X > X¢
is a morphism such that p X (1rA_¢op): X - X¢ X CA-® isan isomorphism of p and Py XidgA-¢ :
Xy X CA-@ > CA. Let f€3((X) and ¢ : = dep(f) - ¢.
Then there are holomorphic functions fl-t € JC(X¢), ue N¢’. such that forally € X
- Hj
fy)= 2 fep(y) I @mpply)).
y€N¢' j€¢’

(For ¢’ =0, set 11 (1r-op(y))“j :=1land N® : = {01.)
IS

The series converges locally absolutely and uniformly.
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Proof: Setq:= p, X idcA-9, Yi= XgX CA-%andg:=folp X (11'/\_4,09))_1 EH(Y). LetxeY
and U be a neighbourhood of x such that q|U - q(U) is topological. Foru € N{AY we define

DHg(x) : = D“go(qlu)_1 {gx). Clearly, DHg: y > DHgly) is a well-defined holomorphic function on Y.
Since dep(g) is finite, every point z € Y has a neighbourhood where g can be expanded into a power series

gly)= = DHgly) 11 (1rj(qy—qZ))“j
peNdep(a) jEdeplg)

and where this series converges uniformly and absolutely. Hence for all {y,z) € X¢ x cA-¢

i
glyz) = T Dlgly0) I (m2)]
p€N¢' jE¢'
and evidently this series converges locally uniformly and absolutely, too. Setting fu(x) = DHg(x,0) for x €X¢

and p € N¢’, we obtain the desired formula. g.ed.

Definition: Let p: X > CA be a domain. p is called a domain of holomorphy iff the canonical morphism e
from p to &{p) (see {2.3)) is an isomorphism of domains (it is equivalent to say that ¢ is bijective).

E: X - Spec(&(X),)) denotes the map which assigns to x the evaluation homomorphism E: H(X)—>C,
f+ f(x).

(3.3) Theorem: Letp: X — ¢ be a domain. p is a domain of holomorphy if and only if E:X - Spec(3H(X),1)
is bijective.

Proof: = : By virtue of condition9 in 80 we can suppose that there isa ¢ € F(A), a Stein domain
Py X¢ >C%anda morphism p: X - X¢ such that p X (1rA_¢op) is an isomorphism from p to

Py X idgA-¢.

For h € Spec{¥((X),}} define h € Spec JC(X¢) by h{f) := h{fop). Since Py is Stein, there exists a € X so
that, for all f € H(X ), hif) = fopla) ([2]).

b:=lp X mp_gop)” " fa thimopdicp_g).

We show thath =E,,. Letf€ JC({X). Using (3.2), we obtain

m
hify= Z h(fp) I (h(njop))l

LENY i€’
= = f0a) 0 (himepn] = fb).
uend i€’
- < 26 (X)

Spec(H{X),})
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The above diagram commutes. Hence S and € = s 1oE are bijective. g.ed.

Corollary: Ifp: X CNis a domain of holomorphy, E: X = Spec(¥((X),c) is bijective, hence Spec(H(X).c) =
Spec(H(X),%).

Proof: Follows from the proof of {3.3).

(3.4) Lemma: Letp: X~ CA be a domain. There exists 89 EF(N) such that, for any ¢; € F(A) with
¢ o C ¢ every (x¢: ¢ €EF(A)) € &(X) is determined by the components Xg with ¢ € {¢; U F(A—6).

Proof: Since &(X) is a domain of holomorphy, we know by virtue of (3.2) and condition 9 in section O that

there exists ¢g € F(A) such that every f € J(X) can be written

fx)= T fept) T (mepGah*l forall x € &(X).
#ENdep(f)—¢o j€dep(f)—¢g

dep(f)—
Let 91 € F(A), ¢ C ¢y. Forallx € &X)and » € N ep(f) ¢1.

Fla = = fepbd T (mop(x*.
#ENdep(f)—cbo 1€01—¢9

u|dep(f)— 1-v

Clearly, F, € JC¢1(&(X)) = JC¢1(X) and, for all x € &(X),

fix)= X Flx) I (ﬂjop(x))vk .
v€Ndep(ﬂ_¢1 kEdep(f)—¢

Ifx= (x¢: ¢ € F(A)) € &(X) then, writing S, instead of S(x),

S, =2 Sy(F,) = S0 I E)
VeNdep(f)—¢1 k&dep(f)—9,4
> x5, (F)) * Xgon(f)_g. | TI wop) €)
b1\ v " Xdep(fl—¢ i°P
Lendepii=oq 1 1 kedep(fi—¢

with identifying & (¢X), Spec HOX) and SpecJC‘i’(&(X)). Since S is injective, the assertion follows. g.e.d.
(3.5) Lemma: Letp: X~ CA be a domain. The topology on &(X) coincides with the trace of the product

topology on Il & (¢X).
¢€F(A)



119

Proof: Obviously, the topology of &(X) is finer than the product topology. We show that it is coarser, too.
Let x = (x¢: ¢ € F(A)) € &(X) and U and U¢ like in (2.1){2). Thereis ¢' € F(A) such that 1rA_¢r(U) =
cA-9". Choose ¢g like in (3.4). ¢q:= ¢q U¢'. Forall ¢ € F{A—¢q), p¢|U - p¢(x¢) +C% is topological,
hence {{2], p.44) U¢ =& (¢X). Therefore {3.4) involves that

[ 11 Upl N&iX) = [Ug X T 2¥x) N &x). q.ed.
GEF(A) T seF(A)
o ¥94

(3.6) Theorem: Letp: X~ CA be a domain. Then S: &(X) > Spec(H(X), §} is a homeomorphism.

Proof: The following diagram commutes:

X < —>&(X)
Ex S Ea(x)
Spec(#(X),B) ——€" 3 Spec(3(&(X)),§)

The double adjoint ¢** of € is bijective by virture of (1.10}, hence topological. Eg (x) is bijective by (3.3).
Consequently S is bijective.
Forfe JC¢(X), ¢ € F(A), the extensions of f to &(?X) and &(X) will be denoted by f, too. The following

diagram commutes:

n &®x— 5 &(9x)
$'EF(A)
&(X) T c

\\

> Spec(#(X).3)
Eg(x

Spec(I( &(X)) .4}

Since, for all f € H(X), ’f\OS = f is continuous, S is continuous. By (3.5), the topology of &(X} is the
projective topology with respect to (%o ¢ € F(A)). Because the E&(d’X) are endowed with the projective
topology with respect to F(PX) = 3P(X) and because, for all ¢ € F(A) and all € JC¢(X), foPaos1 = fis

continuous, s is continuous. g.e.d.
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(3.7) Corollary: Let p: X - C/ be a domain.
p is a domain of holomorphy if and only if E: X > Spec(}((X).},) is a homeomorphism.

Proof: Clear, because E = Sce .

A .
(3.8) Theorem: Let p: X > CAl andq: Y—>C 2 be domains and let : X - Y be a holomorphic map.
There exists a unique holomorphic map & (p): & (X) — &(Y) such that the folowing diagram commutes:

€x €y

&(X) ———————> &Y
(X) el &(Y)

Proof: Forj€ Aj set ¢]~ = dep(njoqo¢). It is clear that, for ¢” € F(A5) and ¢' = LGJ ”‘7’] , the adjoint map
¢* maps continuously JC¢"(Y) in JCd"(X). Consequently ¢**: Spec ¥ (X) = Spec H(Y), h = hop* maps
Spec (3(X),§J in Spec(¥(Y),)). Because /f\o‘p“ =@ for all f € J((Y), p**:Specl(I(X),$) = Spec(FH(Y).}) is
continuous. Since by (3.6) Sy: &(X) > Spec(3((X),}) and Sy:&(Y) ~» Specl¥C(Y),}) are topological,
&lp) := sq1o¢**osx is continuous. Moreover & (p) makes the above diagram commutative. Thus, all we

need to show is that eye&{y} is holomorphic or, equivalently, that e ey&ly) is holomorphic for all j € Ap.

Forevery j € Ay, ¢** induces a map

\"“j : Spec JC¢j(X) ————————3Spec K {j}(Y)

I

Spec Jf(¢jX) Spec I({ {j}Y)
Il i
&(%ix) g(fity)

We show that {iteyop**, (considered as map &(%1x) > ) is holomorphic. Leth € &(*Ix). A basis of
neighbourhoods of h is given by the sets of the form {hZ =2 1—' ZYehoDV: z € B(O,r)¢j} wherer >0
{cf. [2], p.50) veN'l

; A A
{i }eymp**j(hz) =" %th M, Zog)= 1 heD? (1, Zogoyp) 2
o vl J
VGNOI

is obviously a holomorphic function of z. Hence {i}eyow**i is holomorphic.

The following diagram commutes:
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Spec(3C(X), }) > Specmq),la
Sx Sy
&(x) &ly) —3 &(Y)
¢jax ey
1)
&(ix) _ 5 a(lily)
(A

moeyollp) = “}eyo{j}ayo&(w) = {i}erujo{j }"‘X

is holomorphic for all j € A,.

Corollary: p+ &(p), ¢ = &(p) is a reflector in the category of domains and holomorphic maps.

q.e.d.

Corollary: The analytic structure of &(X) depends only on the analytic structure of X (and not on the

choice of p).
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