Plasmamembran-assoziiertes Adaptorprotein Ste50 moduliert G-Protein und MAP Kinasen Signaling in der Hefe Saccharomyces cerevisiae

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät
der Heinrich-Heine-Universität Düsseldorf

vorgelegt von
Nicolas Arnold Bernsmeier
aus Düsseldorf

Düsseldorf, März 2009
aus dem Institut für Mikrobiologie
der Heinrich-Heine Universität Düsseldorf

Gedruckt mit Genehmigung
der Mathematisch-Naturwissenschaftlichen Fakultät
der Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Massoud Ramezani Rad
Korreferent: Prof. Dr. Karl-Erich Jaeger

Tag der mündlichen Prüfung: 26.05.2009

Diese Arbeit wurde durch die Promotionsförderung der Konrad-Adenauer-Stiftung unterstützt.
Fragen ist die Frömmigkeit des Denkens
Martin Heidegger

Omnis mundi creatura
quasi liber et pictura
nubis est et speculum
Alanus ab Insulis
1 EINLEITUNG ... 1

1.1 MAPK Signalwege in Saccharomyces cerevisiae 1

1.1.1 Der Pheromon-Antwortweg ... 3
1.1.2 Der filamentöse-Wachstumsweg 5
1.1.3 Der Hochosmolare Antwortweg 8

1.2 Das regulatorische Adaptorprotein Ste50 10

1.2.1 Struktur und Funktion des Proteins Ste50 10
1.2.2 Die Struktur und Funktion der SAM-Domäne von Ste50 ..., 12
1.2.3 Die Serin/Threonin reiche Region von Ste50 14
1.2.4 Die Struktur und Funktion der RA-Domäne von Ste50 ... 15

1.3 Zielsetzung ... 17

2 MATERIAL & METHODEN .. 19

2.1 Material .. 19

2.1.1 Hefestämme und Medien ... 19
2.1.1.1 Hefestämme ... 19
2.1.1.2 Medien für Hefe .. 21
2.1.2 Escherichia coli Stämme und Medien 21
2.1.2.1 E. coli Stämme .. 21
2.1.2.2 Medien zur Kultivierung von E. coli 21
2.1.3 Plasmide und Oligonukleotide 22
2.1.3.1 Plasmide .. 22
2.1.3.2 Oligonukleotide (Primer) 25
2.1.4 Chemikalien und Antikörper 26
2.1.4.1 Antikörper .. 26
2.1.4.2 Chemikalien ... 27

2.2 Methoden .. 28

2.2.1 Amplifikation von DNA mittels PCR (Polymerase Chain Reaktion) .. 28
2.2.1.1 Amplifikation von Plasmid-DNA 28
2.2.1.2 PCR von Zellen ... 29
2.2.2 Gen Deletion in Saccharomyces cerevisiae 30
2.2.3 Transformation ... 30
2.2.3.1 Transformationen in Saccharomyces cerevisiae 30
2.2.3.2 Transformationen in E. coli 31
2.2.4 Präparation von Nukleinsäuren 32
2.2.4.1 Präparation von Plasmid-DNA aus E. coli 32
2.2.4.2 Präparation von Plasmid-DNA aus Saccharomyces cerevisiae .. 33
2.2.4.3 Elektrophoretische Auftrennung von DNA 33
2.2.4.6 DNA-Restriktion .. 34
2.2.4.7 Dephosphorylierung von DNA-Fragmenten 34
2.2.4.8 Ligation von DNA-Fragmenten 34
2.2.5 Proteinbiochemische Methoden 34
2.2.5.1 Herstellung von Proteinrohextrakten aus S. cerevisiae 34
2.2.5.2 Proteinbestimmung nach Bradford 35
2.2.5.3 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE) ... 35
2.2.5.4 Immunologischer Nachweis von Proteinen (Immunoblot) 35
2.2.5.5 Detektion durch Alkalische Phosphatase 36
2.2.5.6 Quantitative Bestimmung der β-Galaktosidase-aktivität mit ONPG 36
2.2.6 Weitere Methoden ..37
 2.2.6.1 Two-Hybrid-Interaktionsnachweis ..37
 2.2.6.2 Induktion des Paarungspheromon-Antwortweges mit α-Faktor ..38
 2.2.6.3 Sensitivitätstest gegenüber Paarungspheromon38
 2.2.6.4 Sensitivitätstest gegenüber Hyperosmolarität38
 2.2.6.5 Induktion des pseudohyphalen Antwortweges38
 2.2.6.6 Induktion des Signalweges für Invasives Wachstum in Flüssigmedium ...38
 2.2.6.7 Induktion des Signalweges für Invasives Wachstum in Festmedium ...39
 2.2.6.8 Fluoreszenzmiroskopie ...39
 2.2.6.9 Bioinformatik ..39

3 ERGEBNISSE ...40

3.1 Untersuchungen zur Funktionalität von Ste50-RA Mutanten
in den MAPK Signalwegen ...40
 3.1.1 Auswirkung der RA- Mutanten auf den Hochosmolaren Antwortweg42
 3.1.2 Auswirkung der RA-Mutanten auf den Pheromon-Antwortweg43
 3.1.2.1 Untersuchungen zu morphologischen Veränderungen der Zelle
 und dem G1-Zellzyklus-Arrest nach Behandlung mit α-Faktor44
 3.1.1.1 Untersuchung zum Einfluss der Ste50 Mutanten auf die
 Expression des Reportergens FUS1-lacZ46
 3.1.2 Auswirkung der RA-Mutanten auf den Crosstalk zwischen HOG-
 Signalweg und dem Pheromon-Antwortweg48
 3.1.3 Auswirkung der RA-Mutanten auf den filamentösen Wachstumsweg ..49
 3.1.3.1 Invasives Wachstum auf festem Medium49
 3.1.3.2 Expression von FLO11-lacZ ..51

3.2 Analyse der RA-Domänen abhängigen Interaktionen von
 Ste50 ..53
 3.2.1 Two-Hybrid Analyse der RA-Mutanten mit Ras253
 3.2.2 Two-Hybrid Analyse der RA-Mutanten mit Ras156
 3.2.3 Two-Hybrid Analyse der RA-Mutanten mit Cdc4257
 3.2.4 Two-Hybrid Analyse der RA-Mutanten mit Opy258

3.3 Plasmamembranrekrutierung von Ste50-ΔRAD59
 3.3.1 Erstellung von Plasmamembran assoziiertem Ste50-ΔRA60
 3.3.2 Untersuchungen zur Funktion von plasmamembranrekrutiertem Ste50-
 ΔRAD im Hochosmolaren Antwortweg ..61
 3.3.2.1 nSte50FAR kann den Wachstumsdefekt einer STE50 Deletion
 und einer OPY2 Deletion im HOG-Signalweg komplementieren ..62
 3.3.2.2 nSte50FAR kann den Wachstumsdefekt einer SHO1 Deletion im
 HOG-Signalweg nicht komplementieren64
 3.3.2.3 nste50FAR zeigt eine eine Abschwächung der Aktivierung von
 CRE-lacZ nach Salzstress ...66
 3.3.2.4 Reduzierter Crosstalk zwischen HOG-Signalweg und
 Pheromonantwort durch plasmamembranrekrutiertes nSte5069
 3.3.3 Untersuchungen zur Funktion von Plasma-membranrekrutiertem
 Ste50-ΔRAD in der Pheromonantwort ..70
 3.3.3.1 Haloassay zur Analyse der Adaption an Pheromon70
 3.3.3.2 Expression von FUS1-lacZ ..72
 3.3.3.3 Untersuchungen zu morphologischen Veränderungen und dem
 G1-Zellzyklus-Arrest nach Induktion mit α-Faktor76
3.3.4 Untersuchungen zur Funktion von plasmamembran-rekrutiertem Ste50-∆RAD im filamentösen Wachstumsweg ... 78
 3.3.4.1 Induktion von pseudohyphalem Wachstum in diploiden Zellen...78
 3.3.4.2 Auswirkung von membranrekrutiertem nste50FAR auf die Transkription des Reportergens FG(TyA)-lacZ.............................80
 3.3.4.4 Eigenschaften von nste50FAR in der Adhäsion haploiden Zellen..82
 3.3.4.5 nste50FAR führt zu einer verstärkten Expression des Reportergens FLO11-lacZ in stationären Zellen..........................83
 3.3.4.6 Adhäsion von haploiden Zellen bei Übereinstimmung von Hyperaktivem Ras2val19 ..85
 3.3.4.7 Expression des Reportergens FLO11-lacZ in haploiden Zellen bei Übereinstimmung von Hyperaktivem Ras2val1987
 3.3.4.8 Adhäsion von haploiden Zellen bei Übereinstimmung der PKA Untereinheit Tpk1 ...88
 3.3.4.9 Expression des Reportergens FLO11-lacZ in haploiden Zellen bei Übereinstimmung der katalytischen PKA Untereinheit Tpk190
 3.3.4.10 Der Ste50-MAPK-Signalweg, kann Adhäsion unabhängig von Flo8 vermitteln...91
3.3.5 Lokalisierung von nSte50FAR während der Signaltransduktion93
 3.3.5.1 Lokalisierung von GFP-nSte50FAR..93
 3.3.5.2 Verteilungsmuster von GFP-nSte50FAR bei osmotischem Stress an der Plasmamembran...95

4 DISKUSSION... 97
 4.1 Die RA-Domäne von Ste50 ist essentiell für die Funktion von Ste50 in mehreren MAPK-vermittelten Signalwegen ..97
 4.2 Modulation von MAPK Signalwegen durch das Adaptorprotein Ste50...100
 4.2.1 Plasmamembrantargeting von Ste50-∆RA stellt die Funktion als regulatorischer Adaptor im Hochosmolaren Antwortweg wieder her 101
 4.2.2 In der Antwort auf Paarrungspheromon schwächt eine Plasmamembranrekrutierung von Ste50-∆RA die Wirkung als positiver Modulator ab...105
 4.2.3 Plasmamembranrekrutierung von Ste50 führt zu einer verstärkten Induktion des invasiven Wachstums.................................107
 4.3 Verteilungsmuster von nSte50FAR an der Plasmamembran während der Signaltransduktion ...110
 4.4 Ste50 als regulatorischer Adaptor im invasiven Wachstumsweg – Ein Modell ...112

5 ZUSAMMENFASSUNG ... 114

6 REFERENZEN... 116

7 ANHANG .. 126
1 EINLEITUNG

1.1 MAPK Signalwege in *Saccharomyces cerevisiae*

Eine fundamentale Eigenschaft von lebenden Zellen ist, Veränderungen in Ihrer Umwelt wahrzunehmen und adäquat zu reagieren. Dies trifft sowohl bei höheren Organismen als auch bei einzelligen Organismen zu. Obwohl es eine Vielzahl von verschiedenen Signalen gibt, die sich in ihrer Art und Dauer sehr stark unterscheiden, ist die Signalweiterleitung in ihren Grundlagen stark konserviert. Auf der Zelloberfläche (Zellmembran) gibt es spezielle Rezeptoren, die das Signal spezifisch erkennen und ins Zellinnere vermitteln. Es folgt die Signalweiterleitung in der Zelle, an deren Ende durch die Signalantwort meist Transkriptionsfaktoren aktiviert werden, die auch die Expression der Zielgene zur Antwort auf das Signal kontrollieren.

Die Hefe *Saccharomyces cerevisiae* dient als Modelorganismus für die Erforschung von MAPK Signalwegen. In *Saccharomyces cerevisiae* gibt es fünf funktionell unterschiedliche MAP-Kinase Signaltransduktionswege: den Paarungspheromon-Antwortweg, den
Einleitung

Abbildung 1.1 Schematische Darstellung der drei MAPK-Signalwege der Hefe *Saccharomyces cerevisiae*

des Paarungspheromon-Antwortwegs, des filamentösen Wachstumswegs und des HOG-Signaltransduktionswegs. Für weitere einzelheiten siehe Text.

voneinander zu aktivieren, aber auch unabhängig voneinander die Signalweiterleitung zu trennen. Deswegen ist es wichtig, die drei Signalwege - den Pheromon-Antwortweg, den filamentösen-Wachstumsweg und den HOG-Signaltransduktionsweg - nicht nur getrennt, sondern auch im Zusammenspiel, genau zu untersuchen.

1.1.1 Der Pheromon-Antwortweg

S. cerevisiae existiert in zwei haploiden Paarungstypen - *MATa* und *MATα*. Wie die Gameten höherer Organismen können sich die *MATa* und *MATα* Zellen paaren, wobei durch eine zelluläre und eine nukleäre Fusion eine diploide Zelle (*MATa/MATα*) entsteht. Die Paarung ist das Ergebnis einer Reihe von komplexen Veränderungen in der Physiologie der Zelle, welche durch die Bindung von kleinen Peptiden, den Paarungspheromonen, ausgelöst werden. *MATa* Zellen produzieren den α-Faktor - ein C-terminal farnesyliertes, 12 Aminosäuren großes Peptid, das *MATα* Zellen aktiviert. *MATα* Zellen produzieren den γ-Faktor, der 13 Aminosäuren groß und unmodifiziert ist. Zellen reagieren auf den jeweiligen Faktor, indem sie in der G1-Phase des Zellzyklus arretieren und sich einer Formveränderung unterziehen (Shmoobildung). Durch diese Veränderungen nähern sich die Zellen einander an und bereiten sich auf die eigentliche Fusion vor. Die Partner sind in der Lage über Agglutinine zu aggregieren und bilden nach Zellfusion (Plasmogamie) und Kernfusion (Karyogamie) eine Zygote. Die hieraus entstehenden Zellen sind diploid (2n) und können weiter vegetativ wachsen.

Der Pheromon-Antwortweg vom Pheromonrezeptor an der Zelloberfläche über ein trimeres G-Protein zu einer Mitogen-aktivierten-Protein-Kinase (MAPK) –Kaskade ist der am besten verstandene Signalweg der Eukaryonten.

Einleitung

GEF von Cdc42 (Nern et al., 1999; Wiget et al., 2004). Ste20 ist eine (PAK)_p21-activated-kinase (Fanger et al., 1997). Die Bindung beider Proteine wird durch die CRIB (Cdc42/Rac Interactive Binding Motif) Domäne vermittelt (Lamson et al., 2002). Cdc42 befindet sich zum größten Teil an der Plasmamembran, da es C-terminal aufgrund einer CAAX-Box mit einer Geranylgeranylgruppe posttranslationally modifiziert wird (Maltese & Sheridan, 1990; Finegold et al., 1991; Yamane et al., 1991). Ste5 stellt ein Gerüstprotein dar, welches die MAPKK Ste11, die MAPKK Ste7 und die MAPK Fus3 in einem hochmolekularem Komplex zusammenhält (Choi et al., 1994; Inoye et al., 1997; Marcus et al., 1994; Printen et al., 1994). Da sowohl Cdc42 als auch G_{p21} an der Plasmamembran lokalisiert sind, und die Bindung von G_{p21} an drei Effektoren Far1, Ste5 und Ste20, welche an die unteren Komponenten der Kaskade binden, kommt es zu einer Annährung und lokalen Konzentration aller Komponenten (Hirschmann et al., 1994 Manahan et al., 2000). Ste20 phosphoryliert, durch die Bindung an Cdc42 angeregt, Ste11. Dieser Schritt wird nicht von G_{p21} selbst reguliert (Lamson et al., 2002). Dies löst die eigentliche MAPK-Kaskade aus und die Kinasen Ste7 (MAPKK) und Fus3 (MAPK) werden aktiviert (Wu et al., 1995; Drogen et al., 2000; Drees et al., 2000; Lamson et al., 2002). Die Phosphorylierung von Ste11 erfolgt innerhalb einer aminoterminalen Region und ist deshalb essentiell für die Funktion von Ste11 (Drogen et al., 2000). Durch die Phosphorylierung wird die Interaktion der inhibitorischen, aminoterminalen und regulatorischen Domäne mit der distalen, katalytischen Domäne von Ste11 aufgehoben und somit gleichfalls deren Autoinhibition (Drogen et al., 2000). Hier kommt das Protein Ste50 zum Tragen, welches stark mit Ste11 interagiert und als Regulator von Ste11 fungiert, und eine wichtige Rolle in der Aufrechterhaltung der pheromoninduzierten Signaltransduktion spielt (Xu et al., 1996, Jansen et al., 2001). Die aktivierten MAPKKK Ste11 phosphoryliert die MAPKK Ste7, welche wiederum die MAPKs Fus3 und Kss1 durch Phosphorylierung aktiviert (Cairns et al., 1992; Ma et al., 1995; Gagiano et al., 2002). Die Aktivierung von Kss1 ist zwar abhängig von Ste11 und Ste7, benötigt aber nicht das Scaffold Protein Ste5 (Flatauer et al., 2005; Maleri et al., 2004; Andersson et al., 2004). Kss1 und Fus3 sind nah verwandt und Orthologe der Säuger MAP-Kinase Erk1 und Erk2. Zellen ohne Fus3 und Kss1 sind steril; eine Einzeldeletion von KSS1 zeigt keine Veränderung in der Paarung, während eine Δkus3 Mutante nur 10% der Paarungsaktivität des Wildtypes zeigt (Ma et al., 1995; Elion et al., 1991, Sabbagh et al., 2001, Breitkreuz et al., 2003). Kss1 spielt in der Aktivierung des Filamentös-Wachstumswegs eine hervorgehobene Rolle, wohingegen Fus3 als negativer Regulator des Filamentös-Wachstumswegs dient, da es Tec1 phosphoryliert und damit dessen Degradation auslöst (Bao et al., 2004; Chou et al., 2004; Bruckner et al., 2004). Das Scaffold Protein Ste5 unterdrückt einen aktivierenden Crosstalk vom Pheromon-Antwortweg zum Filamentös-Wachstumsweg, da Punktionen von Ste5 zu einer erhöhten Aktivierung von Kss1 und geringeren Fus3 abhängigen
Einleitung

Für die Zellen ist aber nicht allein die Signalweiterleitung wichtig, sondern auch die Anpassung an sich verändernde Bedingungen, die sogenannte Adaption. Im Falle der Pheromonantwort von Saccharomyces cerevisiae findet eine Desensibilisierung gegenüber dem Pheromonsignal statt. Zu den Adoptionsmechanismen gehört die Hydrolyse des Nukleotids von GTP-G_{i}, welche durch das GTPase-aktivierenden-Protein (GAP) Sst2 beschleunigt wird, sowie die Dephosphorylierung von Fus3 durch Msg5 (Dohlmann & Thorner, 2001; Blackwell et al., 2007). Ein zusätzlicher Mechanismus ist die Feedbackregulation, die zur Phosphorylierung und anschließender Internalisierung und Degradation der Oberflächenrezeptoren (Ste2 und Ste3) führt (Hicke & Riezmann, 1996; Hicke et al., 1998; Roth et al., 1998; Wang & Dohlmann, 2002; Wang & Elion 2003; Esch & Errede 2002).

1.1.2 Der filamentöse-Wachstumsweg

In einer Umgebung, die ausreichend Nährstoffe enthält, wachsen Saccharomyces cerevisiae Zellen durch Knospung. Die Knospen entstehen bei haploiden Zellen (1n) immer am selben Zellpol, wo auch die eigene Knospennarbe liegt. Die Knospen liegen nicht aufeinander sondern eng beieinander (axiale Knospung). In diploiden Zellen (2n) entstehen die Knospen entweder am gleichen, oder am gegenüberliegenden Ende der Zellen (bipolares Knospen). Nimmt nun der Nährstoffgehalt des Mediums ab und wird limitierend für das Wachstum, gibt es in der Zelle morphologische Veränderungen. Die diploide Zelle elongiert und es bilden sich nur noch Knospen am gegenüberliegenden
Einleitung

Der pseudohyphale Dimorphismus diploider Zellen und das verwandte invasive Wachstum haploider Zellen werden durch ein komplexes regulatorisches Signalnetzwerk gesteuert. (Madhani & Fink, 1997; Rupp et al., 1999; Gagiano et al., 2002; Vyas et al., 2003; Schwartz & Madhani, 2006). Die Zentren dieses Netzwerks bilden zwei Signalwege - der filamentöse-MAPK-Signalweg und der Ras/cAMP Signalweg.

Es konnten Transmembranproteine identifiziert werden, die in haploiden, diploiden oder auch beiden Zelltypen für filamentöses Wachstum benötigt werden: Sho1, Msb2, Mep2 und Gpr1 (Cullen et al., 2004; Lorenz & Heitman, 1998; Van Nuland et al., 2006; Tamaki et al., 2000; Lorenz et al., 2000). Sho1 kann heterooligomere Komplexe mit Msb2 bilden; bei Verlust eines dieser Proteine kann der MAPK-Signalweg nicht mehr aktiviert werden. Msb2 besitzt eine große, hoch glykolisierte extrazelluläre Domäne. Deletionen innerhalb dieser Domäne führen zu einer konstitutiven Aktivierung des filamentösen Wachstumswegs in haploiden Zellen (Cullen et al., 2004).

Mep2 ist eine hochaffine Ammoniumpermease. die als Stickstoffsensor dient und in diploiden Zellen für filamentöses Wachstum benötigt wird. (Lorenz & Heitman 1998; Gagiano et al., 1999; Lemaire et al., 2004). Die niederaffinen Permeasen Mep1 und Mep3 haben keinen Einfluss auf das pseudohyphale Wachstum (Lorenz & Heitman, 1998). Hyperaktive Ras2 Mutanten, so die Ras2Val19 Mutante, können eine MEP2 Deletion in diploiden Zellen komplementieren. Aufgrund dessen wird Mep2 oberhalb von Ras2 in der Aktivierung des MAPK und des Proteinkinase A (PKA, cAMP abhängige Proteinkinase) Signalwegs angesiedelt (Van Nuland et al., 2006).

Die Ziel MAP-Kinase Kss1, welche auch in der Pheromonantwort eine Rolle spielt, wird durch eine Phosphorylierungskaskade von der PAK Ste20 über die MAPKKK Ste11 und
die MAPKK Ste7 aktiviert (Liu et al., 1993; Tatebayashi et al., 2006; Flatauer et al., 2005). Der Ste11 Regulator Ste50 spielt auch eine Rolle im filamentösen Wachstumsweg. Ste20 wird durch Cdc42-GTP aktiviert. Cdc42 wiederum scheint abhängig von Ras2 aktiviert zu werden (Mösch et al., 1996; Mösch et al., 1999). Cdc42 aktiviert dann in seiner aktivierten Form Effektorien wie Ste20 (Leberer et al., 1997; Peter et al., 1996). Wie jeweils Ras2 und Cdc42 aktiviert werden, und welche Rolle ihre GEFs Cdc25 und Cdc24 im Detail spielen muss noch genauer untersucht werden.

Phosphoryliertes Kss1 aktiviert den Transkriptionsfaktor Ste12, der an der Bildung von Pseudohyphen beteiligt ist. Ste12 bindet jedoch die DNA nicht allein, sondern als Heterodimer zusammen mit dem Transkriptionsfaktor Tec1 (Gavrias et al., 1996; Madhani & Fink, 1997). Tec1 kann allerdings auch alleine als Transkriptionsfaktor fungieren (Kohler et al., 2002). Der Ste12 – Tec1 Komplex bindet an DNA Sequenzen, die aus einer PRE (pheromone response element) für Ste12 und einer TCS (Tec1 binding site) bestehen, sie werden als filamentation response element (FRE) bezeichnet (Zeitlinger et al., 2003; Madhani et al., 1997). Mittels der FREs wird die Regulation von Zielgenen wie TEC1, dem Retrotransposon Ty1 oder dem Flocculin FLO11 geleitet (Cook et al., 1997; Bardwell et al., 1998; Lo & Dranginis, 1998). Die Regulation von FLO11 wurde ausführlich untersucht, da FLO11 einen der längsten Promotoren im Hefegenom hat (Lo et al., 1997). Es spielen viele Faktoren neben Ste12-Tec1 eine Rolle, so Flo8 (vom PKA Weg induziert), Msn1, Sfl1 und Mss11 (Rupp et al., 1999; Gagiano et al., 1999; Fichtner et al., 2007).

Der Regulator Flo8 wird unabhängig vom MAPK Signalweg reguliert. Die Aktivierung läuft über den Ras/cAMP Signalweg. Dieser wird von GPCR Gpr1 oder Ras2 aktiviert, welcher als Kohlenstoffsensor agiert und mit der Gαγ Untereinheit Gpa2 (Gα) interagiert (Lemaire et al., 2004; Xue et al., 1998; Lorenz et al., 2000). Gpr1 zeigt eine hohe Affinität zu Sukrose und Glukose (Kraakman et al., 1999; Lemaire et al., 2004). Interessanterweise wird das Gen GPR1 unter Stickstoffmangel verstärkt transkribiert. Gpr1 und Gpa2 sind oberhalb vom PKA Weg angesiedelt und spielen eine wichtige Rolle in dessen Steuerung. Es wird postuliert, dass Gpa2 Ras2 aktiviert, welches als Aktivator der Adenylatzyklase Cyr1 bekannt ist. Es könnte jedoch auch sein, dass Gpa2 die PKA unabhängig von Ras2 oder der Adenylatzyklase aktivieren kann (Xue et al., 1998). Die Adenylatzyklase bindet Ras2 mittels einer Ras-Associating (RA-) Domäne. Aktivierte Cyr1 verwandelt ATP in cAMP. Das erhöhte cAMP Level führt zu einer Aktivierung der PKA. Die PKA besteht unter anderem aus drei katalytischen Untereinheiten - Tpk1-3 und der regulatorischen Untereinheit Bcy1, welche nach Binden von cAMP von den anderen Untereinheiten dissoziiert und dadurch die katalytischen Untereinheiten aktiviert. Der Transkriptionsfaktor Flo8 wird durch die Tpk Proteine phosphoryliert und somit aktiviert.
Am Ende des cAMP-Signalwegs und der MAPK-Signalkaskade stehen also eine Reihe von Transkriptionsfaktoren, die die Expression von Zielgenen steuern, welche zum Wechsel von Hefe- zur Pseudohyphenform benötigt werden.

1.1.3 Der Hochosmolare Antwortweg

Der zweite Weg über den Hog1 aktiviert werden kann, läuft über die MAPKKK Ste11, welche auch in der Pheromonantwort und dem filamentösen Wachstumsweg eine Rolle spielt. Ste11 interagiert in diesem Weg mit der MAPKK Pbs2. Oberhalb von Ste11
Einleitung

befindet sich das Cdc42-Ste20 Modul, welches die Aktivierung von Ste11 mittels einer Phosphorylierung auslöst. (Raitt et al., 2000). Oberhalb von Cdc42 sind derzeit drei Elemente identifiziert worden. Das mucinähnliche Protein Msb2, das Transmembranprotein Sho1 und ein weiteres mucinähnliches Protein Hkr1 (O’Rourke & Herskowitz, 2002; Tatebayashi et al., 2007). Bisher wurde Sho1 als Osmosensor bezeichnet, doch neuere Ergebnisse zeigen, dass dies nicht der Fall ist (Tatebayashi et al., 2007). Es ist wahrscheinlicher, dass Hkr1 und Msb2 zusammen als Osmosensor dienen. Sho1 wird unterhalb von beiden angesiedelt und hat eine wichtige Rolle bei der Rekrutierung der Signalkomponenten. Der C-terminale, cytosolische Schwanz von Sho1 bindet Ste11 und zusätzlich, über eine SH3 Domäne, Pbs2 (Pawson & Gish, 1992; Maeda et al., 1995; Zarrinpar et al., 2004). Ste11 bindet fest an das Adaptorprotein Ste50, welches mit dem Transmembranprotein Opj2 und möglicherweise mit Sho1 interagiert (Posas & Saito, 1997; Posas et al., 1998; Jansen et al., 2001; Tatebayashi et al., 2006; Wu et al., 2006). So funktionieren Sho1 und Pbs2 zusammen als Gerüstproteine für den HOG-Signalweg (Zarrinpar et al., 2004). Pbs2 bindet die MAPK Hog1 durch ein spezielles Bindefmotif, welches distal zu den aktiven Domänen liegt (Posas & Saito 1997; Chang et al., 2002; Bhattacharyya et al., 2006).

Nachdem die Zelle die Antwort auf hyperosmolaren Stress eingeleitet und sich an die Umgebung adaptiert hat, wird die Signalweiterleitung abgeschaltet. Ein Mechanismus der Adaption läuft ebenfalls über Hog1. So phosphoryliert Hog1 in einem
Einleitung

Feedbackmechanismus das Transmembranprotein Sho1 (Hao et al., 2007). Wird Sho1 auf diese Weise phosphoryliert, so zerfallen die Sho1 Homooligomere, was zu einer Abschwächung der Aktivierung von Hog1 führt (Hao et al., 2007). Hog1 wird von der Phosphatase Ptp2 im Zellkern dephosphoryliert und aus dem Zellkern transportiert (Ferrigno et al., 1998). Auch im Zytoisol sind weitere Phosphatasen (Ptp3, Ptc1-3) aktiv, die zu einer Inaktivierung von Hog1 führen (Warmka et al., 2001; Wurgler-Murphy et al., 1997; Jacobi et al., 1997)

1.2 Das regulatorische Adaptorprotein Ste50

1.2.1 Struktur und Funktion des Proteins Ste50

Einleitung

Einleitung

Die Ste50 Funktion steht im Crosstalk mit dem Ras/cAMP Signalweg. So zeigt STE50 eine genetische Interaktion mit PDE2 unter Osmostress und in der Langlebigkeit der Zellen (Poplinski et al., 2007). Dies deutet darauf hin, dass Ste50 als Verknüpfungspunkt zwischen der MAPK-Signalkaskade und dem Ras/cAMP Signalweg dienen könnte.

Ste50 wird auch signalspezifisch phophoryliert (Spode, 2003; Wu et al., 2003; Hopp, 2005; Hao et al., 2008). Ste50 ist konserviert innerhalb der Pilze. Das Ortholog in Magnaporthe grisea Mst50 ist ein Regulator des Ste11 Orthologs Mst11. Es konnte gezeigt werden, dass mst50 mit Ras1, Ras2 und Cdc42 interagiert (Park et al., 2006).

1.2.2 Die Struktur und Funktion der SAM-Domäne von Ste50

Die SAM Domäne von Ste50 erstreckt sich über die Aminsäuren 27-108. Die SAM-Domäne von Ste11 ist im Bereich des N-Terminus von Aminosäure 1-96. Durch ausführliche genetische und biochemische Analysen konnte gezeigt werden, dass es diese beiden SAM Domänen sind, die die Interaktion der beiden Proteine vermitteln. Die Struktur der jeweiligen SAM-Domäne sowie die Struktur des Oligomers aus beiden Domänen wurde aufgeklärt (Grimshaw et al., 2004; Kwan et al., 2004; Battecharjya et

Abbildung 1.2 SAM-Domänen von Ste50 und Ste11
Dargestellt ist die Kristallsstruktur der SAM-Domäne von Ste50 (A, nach Grimshaw et al., 2004) sowie Ste11 (B, nach Kwan et al., 2004).
Einleitung

1.2.3 Die Serin/Threonin reiche Region von Ste50

den HOG-Signalweg spontan, ohne hochosmolaren Stress, einleiten. Dies wird vermutlich durch die verstärkte Interaktion mit Sho1 ausgelöst (Tatebayashi et al., 2006).

1.2.4 Die Struktur und Funktion der RA-Domäne von Ste50

Abbildung 1.3 Schematische Darstellung der Ste50 RA-Domäne Interaktionen.
Das Protein Ste50 interagiert mit den Ras Proteinen Ras1 und Ras2, dem Rho-ähnlichen Protein Cdc42 und dem Transmembranprotein Opy2. Für weitere Einzelheiten siehe Text.
Einleitung

Bindung beteiligt (Geyer et al., 1996; Huang et al., 1997; Esser et al., 1998; Vetter et al., 1999; Pacold et al., 2000). RA Domänen sind um die einhundert Aminosäuren groß, was auch für die RA Domäne von Ste50 zutrifft (AS 235-327). In der Hefe Saccharomyces cerevisiae gibt es ein weiteres Protein mit einer RA-Domäne, die Adenylatzyklase Cyr1. Die Adenylatzyklase ist mit 2026 Aminosäuren deutlich größer als Ste50. Die RA-Domäne liegt bei Cyr1 mitten im Protein des als LRR (leucin rich region) bezeichneten Bereichs (AS 676-765). Für die RA-Domäne von Cyr1 wurde eine Interaktion mit Ras2 gezeigt (Kuroda et al., 1993; Kido et al., 2002). Die Adenylatzyklase zeigt zwei unterschiedliche Interaktionen mit Ras2, die beiden für eine Aktivierung des Proteins durch das kleine G-Protein benötigt werden. Es gibt die starke GTP-abhängige Interaktion zwischen dem Ras-Protein und der RA-Domäne von Cyr1 und eine weitere schwache Interaktion, die unabhängig von der RA-Domäne erfolgt (Crechet et al., 2000; Crechet et al., 2003).

Die RA-Domäne von Ste50 liegt im carboxyterminalen Bereich des Proteins. Sie scheint nicht nur die Interaktion mit Ras zu vermitteln, sondern auch mit anderen kleinen G-Proteinen wie Cdc42 (Spode, 2003; Hopp, 2005; Tatebayashi et al., 2006). Eine Interaktion von Ste50 mit Ras Proteinen konnte in vivo und in vitro gezeigt werden (Hopp, 2005). Der C-terminale Bereich von Ste50 ist essentiell für dessen Funktion während der Antwort auf das Paarungshormon, der Induktion vom invasiven Wachstum und der hochosmolaren Stressantwort (Ramezani-Rad et al., 1992; Xu et al., 1996). Mutanten mit einer carboxyterminalen Deletion, können nur noch mit einer 0,1-0,2% Effizienz paaren und weisen eine deutlich niedrigere Sensitivität gegenüber Pheromon auf (Ramezani-Rad et al., 1992; Xu et al., 1996). Schon ein Verlust von vierundzwanzig Aminosäuren am C-Terminus führt zu einem Funktionsverlust (Wu et al., 1999). Auch im hochosmolaren Antwortweg, zeigt die Deletion des C-Terminus einen Verlust der Funktion (Wu et al., 1999). Es gibt auch Punktmutationen (ste50^{L267A,L268A}, ste50^{K254A}) in der RA-Domäne, die das invasive Wachstum in Haploiden abschwächen und die Osmosensitivität erhöhen (Truckses et al., 2006). Diese Mutanten sind gegenüber wildtyp STE50 dominant. Wird Ste50 unter Überexpression zur Plasmamembran rekrutiert, so wird die Notwendigkeit der RA-Domäne im HOG-Signalweg und im Filamentösen-Wachstumsweg aufgehoben (Wu et al., 2006; Truckses et al., 2006; Tatebayashi et al., 2006). Ob dies auch für den Pheromonantwortweg zutrifft und ob sich diese Phänotypen unter Eigenpromotorbedingungen zeigen, ist bisher nicht untersucht worden. Wird die RA-Domäne von Ste50 hingegen alleine exprimiert, so zeigen die Zellen nicht nur einen leichten Wachstumsdefekt, sondern sie unterdrückt auch die Bildung von Pseudohyphen, die durch die Expression des hyperaktiven Ras2 ausgelöst wird (Truckses et al., 2006).

Es gibt Ste50 Homologe in anderen Pilzen. Diese weisen immer eine SAM Domäne und eine RA Domäne auf, können aber auch weitere Domänen beinhalten, wie z.B. das
Einleitung

Ustilago maydis Homolog Ubc2 mit einer SH3 Domäne. Wird die RA Domäne von Ubc2 deletiert, können die Zellen nicht mehr filamentös wachsen (Klosterman *et al.*, 2008). In dem Pflanzenpathogen *Magnaporthe grisea* konnte nicht nur gezeigt werden, dass die RA Domäne von Mst50 für die Virulenz benötigt wird, sondern auch, dass Mst50 mit den kleinen G-Proteinen Ras1, Ras2 und Cdc42 interagiert (Park *et al.*, 2006).

1.3 Zielsetzung

Wie sich eine Plasmamembranrekrutierung von Ste50 aus dessen Funktion als regulatorischer Adaptor von Ste11 auswirkt wird ebenfalls dargestellt. Da die Interaktionspartner der RA-Domäne alle an der Plasmamembran lokalisiert sind, könnte es für die Funktion von Ste50 wichtig sein, dorthin rekrutiert zu werden. Es soll daher ein Ste50-ΔRA Protein an die Plasmamembran gebunden und dann die Zellen auf Veränderungen in der Signalweiterleitung im Vergleich zum Wildtyp Ste50 untersucht werden. Dies wird zeigen, ob eine Modulation der Signalstärke und Signalüberdauer der Pheromon-Antwort, der Induktion des filamentösen Wachstums und der Antwort auf hyperosmolaren Stress sich zeigt. Es soll auch überprüft werden, ob plasmamembranrekrutiertes Ste50 Deletionen von in den Signalwegen oberhalb
angesiedelten Gene komplementieren kann. So kann man Rückschlüsse auf die Funktion und die Aktivierungsmechanismen von Ste50 erhalten.

Desweiteren soll festgehalten werden, wie sich plasmamembranrekrutiertes Ste50-ΔRA in der Zelle lokalisiert. Auch wird geklärt, ob sich die Verteilung nach Induktion der Signalwege verändert, wie es bereits für wildtypisches Ste50 gezeigt wurde.
2 MATERIAL & METHODEN

2.1 Material

2.1.1 Hefestämme und Medien

2.1.1.1 Hefestämme

<table>
<thead>
<tr>
<th>Stammname</th>
<th>Genotyp</th>
<th>Referenz/Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>W303-1A</td>
<td>MATa W303-1A leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100</td>
<td>Labor Rothstein Columbia University, New York (HGX10)</td>
</tr>
<tr>
<td>WAM4</td>
<td>MATa W303-1A ste50::ura3 nach 5FOA-Selektion</td>
<td>Xu et al., 1996 (HFB93)</td>
</tr>
<tr>
<td>HCH164</td>
<td>MATa W303-1A ssk1::KAN ste20::TRP1</td>
<td>Laborsammlung</td>
</tr>
<tr>
<td>HCH253</td>
<td>MATa W303-1A ssk1::kanMX sho1::KAN</td>
<td>Laborsammlung</td>
</tr>
<tr>
<td>HCH497</td>
<td>MATa W303-1A fus3::loxP-KAN MX-loxP</td>
<td>Hopp, 2005</td>
</tr>
<tr>
<td>HCH100</td>
<td>MATa W303-1A ste50::ura3 nach 5FOA-Selektion; ssk1::loxP-KAN MX-loxP</td>
<td>Hopp, 2005</td>
</tr>
<tr>
<td>HCH129</td>
<td>MATa W303-1A ste50::ura3 nach 5FOA-Selektion; ssk1::loxP-kanMX (Cre-Rekombinase)</td>
<td>Hopp, 2005</td>
</tr>
<tr>
<td>MR12</td>
<td>MATα/α leu2 ::hisG/leu2 ::hisG ; ura3-52/ura3-52 ; leu2 ::FLO11lacZ-LEU2 ::leu2</td>
<td>S.Rupp, Fraunhofer-Institut, Stuttgart (HF739)</td>
</tr>
<tr>
<td>HFB750</td>
<td>MAT a MR12-A leu2::hisG; ura3-52; leu2::FLO11lacZ-LEU2::leu2</td>
<td>Laborsammlung</td>
</tr>
<tr>
<td>FY753</td>
<td>MATa MR12-A leu2::hisG; ura3-52; leu2::FLO11lacZ-LEU2::leu2 ste50 ::ura3 nach 5FOA-Selektion</td>
<td>Jansen et al., 2001 (HHG848)</td>
</tr>
<tr>
<td>HSK267</td>
<td>MATa MR12-A leu2::hisG; ura3-52; leu2::FLO11lacZ-LEU2::leu2 ras2 ::kanMX</td>
<td>Laborsammlung</td>
</tr>
<tr>
<td>HSK256</td>
<td>MATa MR12-A leu2::hisG; ura3-52; leu2::FLO11lacZ-LEU2::leu2 ste50 ::ura3 nach 5FOA-Selektion ras2 ::kanMX</td>
<td>Laborsammlung</td>
</tr>
<tr>
<td>GY132</td>
<td>MATα/α ste50::hisG ura3 /ste50:: hisG ura3</td>
<td>Ramezani Rad et al., 1998 (HLS265)</td>
</tr>
<tr>
<td>HCH285</td>
<td>MATa W303-1A leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 ste11::ADE2 hog1::TRP1</td>
<td>Laborsammlung</td>
</tr>
<tr>
<td>HCH286</td>
<td>MATa W303-1A leu2-3,112 ura3-1</td>
<td>Laborsammlung</td>
</tr>
<tr>
<td>Stammmname</td>
<td>Genotyp</td>
<td>Referenz</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>HNB165</td>
<td>MATa W303-1A ste50::ura3::Myc-nste50FAR-loxp-Kan MX-loxp</td>
<td>diese Arbeit (siehe 3.3.1 und Anhang 9)</td>
</tr>
<tr>
<td>HNB166</td>
<td>MATa W303-1A ste50::ura3::Myc-nste50FAR-loxp-Kan MX-loxp</td>
<td>diese Arbeit (siehe 3.3.1 und Anhang 9)</td>
</tr>
<tr>
<td>HNB167</td>
<td>MATa W303-1A ste50::ura3::Myc-nste50FAR-loxp-Kan MX-loxp ssk1::kan</td>
<td>diese Arbeit (siehe 3.3.1 und Anhang 9)</td>
</tr>
<tr>
<td>HNB168</td>
<td>MATa W303-1A ste50::ura3::Myc-nste50FAR-loxp-Kan MX-loxp ssk1::kan</td>
<td>diese Arbeit (siehe 3.3.1 und Anhang 9)</td>
</tr>
<tr>
<td>HNB204</td>
<td>MATa W303-1A leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 hog1::TRP1 opy2::HIS3</td>
<td>diese Arbeit (Anhang 7)</td>
</tr>
<tr>
<td>HNB210</td>
<td>MATa W303-1A leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 opy2::HIS3</td>
<td>diese Arbeit (Anhang 1)</td>
</tr>
<tr>
<td>HNB212</td>
<td>MATa W303-1A ste50::ura3 opy2::HIS3</td>
<td>diese Arbeit (Anhang 2)</td>
</tr>
<tr>
<td>HNB213</td>
<td>MATa W303-1A ste50::ura3 ssk1::kan opy2::HIS3</td>
<td>diese Arbeit (Anhang 3)</td>
</tr>
<tr>
<td>HNB215</td>
<td>MATa W303-1A ssk1::KAN opy2::HIS3</td>
<td>diese Arbeit (Anhang 4)</td>
</tr>
<tr>
<td>HNB216</td>
<td>MATa W303-1A ste50::ura3::Myc-nste50FAR-loxp-Kan MX-loxp opy2::HIS3</td>
<td>diese Arbeit (Anhang 5)</td>
</tr>
<tr>
<td>HNB218</td>
<td>MATa W303-1A ste50::ura3::Myc-nste50FAR-loxp-Kan MX-loxp ssk1::kan</td>
<td>diese Arbeit (Anhang 6)</td>
</tr>
</tbody>
</table>

Tabelle 2-2 Liste der im Rahmen dieser Arbeit erstellten Stämme von *Saccharomyces cerevisiae*

<table>
<thead>
<tr>
<th>Stammmname</th>
<th>Genotyp</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCH288</td>
<td>MATa W303-1A leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 hog1::TRP1</td>
<td>Laborsammlung</td>
</tr>
<tr>
<td>HCH92</td>
<td>MATa W303-1A leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 ssk1::kan</td>
<td>Laborsammlung</td>
</tr>
<tr>
<td>PJ187</td>
<td>Twohybrid-Reporterstamm, MATa/α, GAL1(UAS)LacZ3, GAL1(UAS)ADE2, GAL1(UAS)HIS3, (Laborsammlung, Kreuzung aus Y187 + PJ69 4A) leu2 trp1</td>
<td>Jansen et al., 2001</td>
</tr>
<tr>
<td>Y187</td>
<td>MATa gal4 gal80 leu2-3,112 ura3-1 trp1 his3-11 ade2 URA3::GAL1-lacZ</td>
<td>Clontech</td>
</tr>
<tr>
<td>PJ69 4A</td>
<td>MATa LYS2::GAL1-His3 GAL2-ADE2 met2::GAL7-lacZ</td>
<td>James et al., 1996</td>
</tr>
</tbody>
</table>
2.1.1.2 Medien für Hefe

Tabelle 2-3 Für Saccharomyces cerevisiae verwendete Medien

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>YPD</td>
<td>1% Hefeextrakt, 2% Bacto - Pepton, 2% Glukose</td>
</tr>
<tr>
<td>YPD + G418</td>
<td>1% Hefeextrakt, 2% Bacto - Pepton, 2% Glukose, 200 µg Geneticin zur Selektion von resistenten Kolonien</td>
</tr>
<tr>
<td>SLAD</td>
<td>0,15% Yeast Nitrogen Base ohne Aminosäuren und Ammoniumsulphat, 4% Glukose</td>
</tr>
<tr>
<td>SD</td>
<td>0,67% Yeast Nitrogen Base ohne Aminosäuren, 2% Glukose, 100 ml / L Aminosäuren- Drop-out-Mix x + Aminosäuren für die die zu kultivierenden Zellen auxotroph sind.</td>
</tr>
<tr>
<td>SRG</td>
<td>0,67% Yeast Nitrogen Base ohne Aminosäuren, 3% Raffinose, 1% Galaktose, 100 ml / L Aminosäuren- Drop-out-Mix + Aminosäuren für die die zu kultivierenden Zellen auxotroph sind.</td>
</tr>
<tr>
<td>Aminosäuren-</td>
<td>0,8 g/L folgender Chemikalien: Adenin, Alanin, Arginin, Asparagin, Drop-out-Mix</td>
</tr>
<tr>
<td>-</td>
<td>Asparaginsäure, Cystein, Glutamin, Glutaminsäure, Glycin, Inositol, Isoleucin, Lysin, Phenylalanin, Prolin, Serin, Threonin, Tyrosin, Valin</td>
</tr>
<tr>
<td></td>
<td>0,08 g/L p-Aminobenzoësäure</td>
</tr>
</tbody>
</table>

Für feste Medien wurde 2% Agar zugegeben.

2.1.2 Escherichia coli Stämme und Medien

2.1.2.1 E. coli Stämme

Tabelle 2-4 Verwendete E. coli Stämme

| XL1 Blue | F´ proAB lacZΔM15Tn10 (Tetr) recA endA1 gyrA96 thi-1 hsdR17 supE44 relA1lac (Stratagene, La Jolla, U S A) |

2.1.2.2 Medien zur Kultivierung von E. coli
2.1.3 Plasmide und Oligonukleotide

2.1.3.1 Plasmide

Tabelle 2-6 Zur Verfügung gestellte Plasmide

<table>
<thead>
<tr>
<th>Name</th>
<th>Genotyp und Merkmale</th>
<th>Quelle/Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUG27</td>
<td>TEF2-Promotor, TEF2-Terminator, loxP-HIS3-loxP-Disruptionskassette</td>
<td>Gueldener et al., 1996 (EAP11)</td>
</tr>
<tr>
<td>pMG10</td>
<td>YEP13 FUS1-Promotor, Reporterplasmid</td>
<td>Laborsammlung (EFB13)</td>
</tr>
<tr>
<td>pMP253</td>
<td>(CYC1-(2xCRE)-lacZ Reporterplasmid</td>
<td>Proft et al., 2001</td>
</tr>
<tr>
<td>pFG(TyA)-lacZ-URA3</td>
<td>pFG(TyA)-lacZ-URA3, Reporterplasmid</td>
<td>Mösch et al., 1996 (EFB309)</td>
</tr>
<tr>
<td>pFG(TyA)-lacZ-LEU2</td>
<td>pFG(TyA)-lacZ-LEU2, Reporterplasmid</td>
<td>Mösch et al., 1996 (EFB311)</td>
</tr>
<tr>
<td>p413STE50</td>
<td>pAB p413 STE50-Promotor,</td>
<td>Laborsammlung (ELS383)</td>
</tr>
<tr>
<td>pGREG526</td>
<td>pRS416-Derivat GAL1-Promotor,Myc, CYC1-Terminator</td>
<td>Jansen et al., 2005 (EWK75)</td>
</tr>
<tr>
<td>pRS416-GALp-Myc-STE50</td>
<td>pRS416 GAL-Promotor Myc, STE50, CYC1-Terminator</td>
<td>Laborsammlung (ELS164)</td>
</tr>
<tr>
<td>p416-STE50p-Myc-STE50</td>
<td>pRS416 50-Promotor Myc, STE50, CYC1-Terminator</td>
<td>Laborsammlung (EFB268)</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>pGREG546</td>
<td>pRS416-Derivat GAL1-Promotor, GST, CYC1-Terminator</td>
<td>URA3</td>
</tr>
<tr>
<td>pGREG576</td>
<td>pRS416-Derivat GAL1-Promotor, GFP, CYC1-Terminator</td>
<td>URA3</td>
</tr>
<tr>
<td>pMBD</td>
<td>Twohybrid GAL4-DNA-Bindedomäne</td>
<td>TRP1</td>
</tr>
<tr>
<td>pAD2</td>
<td>Twohybrid GAL4-Aktivierungsdomäne</td>
<td>LEU2</td>
</tr>
<tr>
<td>pAD2-<sup>H</sup>IS3</td>
<td>Twohybrid GAL4-Aktivierungsdomäne, <sup>H</sup>IS3</td>
<td>LEU2</td>
</tr>
<tr>
<td>pMBD-STE50R296GN301S</td>
<td>MET-Promotor BD-STE50R296GN301S</td>
<td>TRP1</td>
</tr>
<tr>
<td>pMBD-STE50</td>
<td>MET-Promotor -BD-STE50</td>
<td>TRP1</td>
</tr>
<tr>
<td>pAD-STE11</td>
<td>ADH- Promotor -AD-STE11</td>
<td>LEU2</td>
</tr>
<tr>
<td>ECH163</td>
<td>pAD-RAS1F (ohne C-terminale CAAX-Box)</td>
<td>LEU2</td>
</tr>
<tr>
<td>ECH167</td>
<td>pAD-RAS2F (ohne C-terminale CAAX-Box)</td>
<td>LEU2</td>
</tr>
<tr>
<td>ECH157</td>
<td>pAD-RAS2<sup>Val15F</sup> (ohne C-terminale CAAX-Box)</td>
<td>LEU2</td>
</tr>
<tr>
<td>ECH191</td>
<td>pMBD-STE50P318L</td>
<td>TRP1</td>
</tr>
<tr>
<td>ECH192</td>
<td>pMBD-STE50L322S</td>
<td>TRP1</td>
</tr>
<tr>
<td>EFB67</td>
<td>pAD-Cdc42</td>
<td>LEU2</td>
</tr>
<tr>
<td>YCPRAS2<sup>Val19</sup></td>
<td>YCPRAS2<sup>Val19</sup></td>
<td>URA3</td>
</tr>
</tbody>
</table>
Tabelle 2-7 Im Rahmen dieser Arbeit erstellte Plasmide

<table>
<thead>
<tr>
<th>Name</th>
<th>Genotyp und Merkmale</th>
<th>Konstruktion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beschreibung</td>
<td>Marker</td>
</tr>
<tr>
<td>ENB13</td>
<td>pGREG526 STE50V286A</td>
<td>URA3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENB15</td>
<td>pGREG526 STE50P318L</td>
<td>URA3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENB17</td>
<td>pGREG526 STE50N301S</td>
<td>URA3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENB19</td>
<td>pGREG526 STE50R283T</td>
<td>URA3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENB21</td>
<td>pGREG526 STE50L322S</td>
<td>URA3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENB71</td>
<td>pGREG526 nSTE50(AS1-234)FAR(Ras2 AS312-322)</td>
<td>URA3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENB85</td>
<td>p526p50, Myc, URA3 CEN</td>
<td>Ligation von STE50-Promotor Fragment (SacI/SpeI) aus ELS383 in pGREG526 nach Restriktion mit SacI/SpeI</td>
</tr>
<tr>
<td>ENB111</td>
<td>p526p50, Myc nste50FAR URA3 CEN</td>
<td>Ligation von nste50FAR Fragment (EcoRI/XhoI) aus ENB 71 in ENB 85 nach Restriktion EcoRI/XhoI</td>
</tr>
<tr>
<td>ENB187</td>
<td>p526p50, Myc nste50FAR, STE50 Term URA3 CEN</td>
<td>In vivo rekombination von Ste50 Terminator (419bp) per PCR mit A231 und A232 in Plasmid ENB111 nach Restriktion mit PacI</td>
</tr>
<tr>
<td>ENB130</td>
<td>pGREG576-nSTE50FAR URA3 CEN</td>
<td>hom. Rekombination von pGREG576 Doppel-PCR (p416GALpGSTSTE50 + A72REC1-STE50, A191R2FARN550; A72REC1-STE50,A89rec2-ras2)</td>
</tr>
<tr>
<td>ENB131</td>
<td>p526p50 nSTE50(aa 1-252) URA3 CEN</td>
<td>ligation von nste50 Fragment (SalI) aus EGX393 mit ENB 85 nach Restriktion SalI</td>
</tr>
<tr>
<td>ENB166</td>
<td>pAD-OPY2-C1 (AS 116-361) LEU CEN</td>
<td>hom. Rekombination von pAD2-His3 (ELS552) mit Assembly-PCR Produkt A322REC1OPY2 + A332REC2OPY2-C1</td>
</tr>
</tbody>
</table>

2.1.3.2 Oligonukleotide (Primer)

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz (5’-3’)</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A72REC1-ste50</td>
<td>gaa ttc gat atc aag ctt atc gat acc gtc gac aat gga gga cgg taa aca ggc ca</td>
<td>Homologe Rekombination Ste50</td>
</tr>
<tr>
<td>A73REC2-ste50</td>
<td>gcg tga cat aac taa tta cat gac tcg agg tcg act tag agt ctt cca ccc ggg gt</td>
<td>Homologe Rekombination Ste50</td>
</tr>
<tr>
<td>A89rec2-ras2</td>
<td>gcg tga cat aac taa tta cat gac tcg agg tcg act taa ctt ata ata cag cgg cc</td>
<td>Homologe Rekombination Ras2</td>
</tr>
<tr>
<td>A191R2FARN550</td>
<td>tta act tat aat aca aca gcc acc cga tcc gct ctt gga ggc aga ttt gtt tgt aga</td>
<td>Überlappendes PCR Zur Assemblierung von nSTE50FAR</td>
</tr>
<tr>
<td>A129RA870for</td>
<td>tat ggg gat cca gag agg ctc tta g</td>
<td>Überlappendes PCR zur Trennung von STE50 Mutanten</td>
</tr>
<tr>
<td>A130RA870rev</td>
<td>cta aca gcc tct ctt gat ccc cat a</td>
<td>Überlappendes PCR zur Trennung von STE50 Mutanten</td>
</tr>
<tr>
<td>A260kan-B</td>
<td>gga tgc atg gcc taa atg</td>
<td>Nachweis Disruption</td>
</tr>
<tr>
<td>A261kan-C</td>
<td>cct cga cat cat ctc ccc</td>
<td>Nachweis Disruption</td>
</tr>
<tr>
<td>A231Ste50TF</td>
<td>aca tta tac gaa gtt ata tta agg gtt gtc tta att gtt cag tgg tca tgc ac</td>
<td>Amplifizieren des STE50 Terminator</td>
</tr>
</tbody>
</table>
Material & Methoden

A232Ste50TR	ggg agc ccc cga ttt aga gct tga cgg gga aag ccc aat tcc ata aga aag aa	Amplifizieren des STE50 Terminator
A320opy2T300	ctg ctg cgg aac tta tcc	Nachweis Disruption Opy2
A321OPY2P439	ccc agc tcc cga acc agg tga tca gc	Nachweis Disruption Opy2
A323REC1OPY2-C1	gaa ttc gat atc aag ctt atc gat acc gtc gac a	Homologe Rekombination Opy2-C1
A323REC2OPY2	gcg tga cat aac taa tta cat gac tcg agg tcg act tat cgt tca tcg tgt att tgc	Homologe Rekombination Opy2
A324opy2-5D	cat tta tca aac tgg tta cgt tcg ttt tct gaa aat caa aca aaa aca gct gaa gct tgg tgc tac gc	Disruption Opy2
A325opy2-3D	tat aat att ttc ccc ggg att gca gaa tac tgac acg cct ttt atg cat agg cca cta gtc gat c	Disruption Opy2

2.1.4 Chemikalien und Antikörper

2.1.4.1 Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Beschreibung</th>
<th>Quelle/Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>αMyc</td>
<td>Monoklonal aus Maus, gegen Myc-9E10 Verdünnung 1:1000</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>αMaus</td>
<td>Polyklonal aus Ziege gegen Maus IgG, gekoppelt an alk. Phosphatase 1:5000</td>
<td>Dianova</td>
</tr>
</tbody>
</table>
2.1.4.2 Chemikalien

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acros Organics</td>
<td>Galaktose, Lysin</td>
</tr>
<tr>
<td>Bio-Rad</td>
<td>Bio-Rad Protein Assay</td>
</tr>
<tr>
<td>Braun-Melsungen</td>
<td>Glasperlen 0,45 mm ⌀</td>
</tr>
<tr>
<td>Caesar & Loretz</td>
<td>Glukose</td>
</tr>
<tr>
<td>Difco</td>
<td>Bacto Agar, Hefe-Extrakt, Pepton, Trypton, Yeast nitrogen Base</td>
</tr>
<tr>
<td>Fermentas</td>
<td>PAGE-RulerTM Prestained Protein Ladder</td>
</tr>
<tr>
<td>Fluka</td>
<td>Histidin</td>
</tr>
<tr>
<td>GibcoBRL</td>
<td>Agarose, Restriktionsendonucleasen</td>
</tr>
<tr>
<td>Janssen Chimica</td>
<td>DMF, DMSO</td>
</tr>
<tr>
<td>J.T. Baker</td>
<td>KAc, MgCl₂, NaCl, NaOH, , RbCl₂</td>
</tr>
<tr>
<td>Merck</td>
<td>APS, Adenin, EDTA, Leucin, Na₂HPO₄, NaH₂PO₄, MgSO₄, TEMED</td>
</tr>
<tr>
<td>MWG Biotech</td>
<td>Synthetische Oligonukleotide</td>
</tr>
<tr>
<td>New England</td>
<td>Restriktionsendonucleasen, BSA</td>
</tr>
<tr>
<td>Biologs</td>
<td></td>
</tr>
<tr>
<td>Pharmacia</td>
<td>dNTP-Mix, Glutathion-Sepharose, ProteinA-Sepharose</td>
</tr>
<tr>
<td>Qiagen</td>
<td>Plasmid Mini Kit, Plasmid Midi Kit, Qiaex II Gel Extraction Kit</td>
</tr>
<tr>
<td>Riedel-deHaën</td>
<td>Essigsäure, Ethanol, NaN₃, Methanol</td>
</tr>
<tr>
<td>Roche</td>
<td>BCIP, Expand High Fidelity PCR System, Lumi-Light Western-Blotting-Substrat, Protease-Inhibitor: Antipain, Leupeptin, Pepstatin, Aprotinin, Restriktionsendonucleasen</td>
</tr>
<tr>
<td>Roth</td>
<td>DTT, Gel30 Acrylamid, Glycin, Isopropanol, KCl, PEG4000 und 3350, Tryptophan</td>
</tr>
<tr>
<td>Schleicher & Schuell</td>
<td>Nitrocellulose-Membran</td>
</tr>
<tr>
<td>Serva</td>
<td>BSA, Glycerin, Raffinose, SDS, Tween20</td>
</tr>
<tr>
<td>Sigma</td>
<td>Ampicillin, Etidium Bromid, Litium Acetat, NBT, ONPG, PMSF, Tris, α-Faktor, Uracil</td>
</tr>
<tr>
<td>Whatman</td>
<td>3 MM Papier</td>
</tr>
</tbody>
</table>
2.2 Methoden

2.2.1 Amplifikation von DNA mittels PCR (Polymerase Chain Reaktion)

2.2.1.1 Amplifikation von Plasmid-DNA

Die Polymerasekettenreaktion (PCR) wurde unter Verwendung der High-Expand-Polymerase der Firma Roche durchgeführt. Jeder Ansatz von 100 μl Endvolumen enthielt 10 μl 10× Puffer, 0,1 ng der zu amplifizierenden Plasmid-DNA, je 0,1 nmol der entsprechenden Oligonukleotidprimer und 200 μM dNTP-Mix. Die Reaktion erfolgte in einem programmierbaren Thermo-Cycler (Techne). Zur Amplifikation wurde folgendes Temperaturzyklusprogramm verwendet:

Tabelle: PCR-Programm zur Amplifikation von Plasmid-DNA

<table>
<thead>
<tr>
<th>Anzahl der Zyklen</th>
<th>Temperatur</th>
<th>Dauer</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1x</td>
<td>95°C</td>
<td>10 min</td>
</tr>
<tr>
<td>2.</td>
<td>20x</td>
<td>95°C</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45-55°C</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abhängig von Primern</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>68°C</td>
<td>1 min pro kb des zu amplifizierenden Fragmentes</td>
</tr>
<tr>
<td>3.</td>
<td>1x</td>
<td>68°C</td>
<td>10 min</td>
</tr>
</tbody>
</table>

Nach abgeschlossener Reaktion wurde 1/10 der amplifizierten DNA durch Agarose-Gelelektrophorese analysiert.
2.2.1.2 PCR von Zellen

Die (PCR) für den Nachweis der korrekten Disruption wurde unter Verwendung der Taq-Polymerase durchgeführt. Frisch ausgestrichene Zellen wurden in 50 µl 0,02 M NaOH resuspendiert und für 120 Sekunden in der Mikrowelle erhitzt. Die Zellsuspension wurde bei -20°C für mindestens eine Stunde eingefroren. Von diesem Ansatz wurden 5 µl für die PCR eingesetzt. Der PCR-Ansatz mit einem gesamt Volumen von 50 µl enthielt weiterhin einen Puffer, H₂O, DMSO, 0,1 nmol der entsprechenden Oligonukleotidprimer und 200 µM dNTP-Mix. Die Reaktion erfolgte in einem programmierbaren Thermo-Cycler (Techne). Zur Amplifikation der DNA wurde folgender Reaktionszyklus verwendet:

Tabelle: PCR-Programm zur Amplifizierung von genomischer DNA

<table>
<thead>
<tr>
<th>Anzahl der Zyklen</th>
<th>Temperatur</th>
<th>Dauer</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1x</td>
<td>95°C</td>
<td>10 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Denaturierung der DNA</td>
</tr>
<tr>
<td>2.</td>
<td>35x</td>
<td>95°C</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45-55°C</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abhängig von Primern</td>
<td>Bindung der Primer an die DNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68°C</td>
<td>1 min pro kb des zu amplifizierenden Fragmentes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DNA-Synthese</td>
</tr>
<tr>
<td>3.</td>
<td>1x</td>
<td>68°C</td>
<td>10 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>abschließende DNA-Synthese</td>
</tr>
</tbody>
</table>

Nach abgeschlossener Reaktion wurden 30 µl des gesamten PCR-Ansatzes durch Agarose-gelelektrophorese analysiert.
2.2.2 Gen Deletion in *Saccharomyces cerevisiae*

2.2.3 Transformation

2.2.3.1 Transformationen in *Saccharomyces cerevisiae*

Schnelltransformation in Mikrotiterplatten
Es wurden frische Hefezellen in 200 µl Lsg 3 resuspendiert. Anschließend wurde ca. 1 µg Plasmid-DNA, 10 µl denaturierter Heringssperma-DNA (10 mg/ml) und 10 µl 1 M DTT hinzugegeben. Danach wurde der Ansatz für 6-8 Stunden bei 30°C bzw. über Nacht bei Raumtemperatur inkubiert. Es erfolgte ein Hitzeschock für 15 Minuten bei 42°C. Die Zellen wurden auf den jeweiligen Selektivplatten ausplattiert und für 2-3 Tage bei 30°C inkubiert.

Lösungen
Lsg 3: 40% PEG4000 in 0,1 M Lithiumacetat; 10 mM Tris/HCl pH 8,0; 1 mM EDTA
High efficiency Transformation von Hefe nach der Lithiumacetatmethode

Die Transformation von Hefe wurde nach der Lithiumacetat-Methode durchgeführt. 100 ml einer Kultur der OD₆₀₀ 0,4 bis 0,6 wurden abzentrifugiert (3000 rpm Beckmann GPKR-Zentrifuge), die Zellen einmal in 0,1 M LiAc gewaschen, in 1 ml 0,1 M LiOAc resuspendiert und in 100 µl Aliquots aufgeteilt. Zu den Ansätzen wurde 1 µg Plasmid-DNA, 10 µl Carrier-DNA und 700 µl Lsg 3 hinzugegeben. Die Ansätze wurden anschließend für 30 min bei 30°C inkubiert. Es folgte ein Hitzeschock über 15 min bei 42°C. Die Zellen wurden abzentrifugiert (7000 rpm , 2 min Eppendorf, 5417R), in 200 µl Wasser aufgenommen und auf Selektivmedium ausplattiert. Danach erfolgte die Inkubation der Platten für 2-3 Tage bei 30°C.

Lösungen

Lsg 3: 40% PEG4000 in 0,1 M Lithiumacetat;10 mM Tris/HCl pH 8,0; 1 mM EDTA

2.2.3.2 Transformationen in E. coli

Elektroporation

400 ml LB-Medium wurden 1:100 mit einer Übernachtkultur angeimpft und bei 37°C inkubiert. Die logarithmisch wachsenden Zellen (OD₆₀₀ 0,6 bis 1) wurden für 15-30 min auf Eis inkubiert. Die Kultur wurde daraufhin 15 min bei 3000 rpm (Beckmann GPKR-Zentrifuge) und 4°C abzentrifugiert. Die Zellen wurden einmal mit einem Volumen H₂O, einmal mit zwei Volumen H₂O und einmal mit 1/50 Volumen 10% Glycerin gewaschen. Das Pellet wurde in 2 ml 10% Glycerin aufgenommen und auf 40 µl Aliquots verteilt, die bei -70°C gelagert wurden.

40 µl der kompetenten Zellen wurden auf Eis aufgetaut, mit 50 µl verdünnter DNA (~1 ng) versetzt und in eine Elektroporationsküvette (Spaltbreite 1 mm) gegeben. Die Elektroporation erfolgte mit dem Gene-Pulser™/Pulse Controller (Biorad, München) [1,6 kV; 25 µF; 200 Ohm]. Zellen wurden in 1 ml LB-Medium aufgenommen und für 1 h bei 37°C inkubiert. Anschließend wurden sie 2 min bei 7000 rpm (Eppendorf, 5417R) abzentrifugiert, das Zellpellet wurde im restlichen Überstand resuspendiert und auf LB_{amp}-Platten ausplattiert. Die Platten wurden über Nacht bei 37°C inkubiert.

High-Efficiency Transformation nach Hanahan

Um kompetente E. coli-Zellen herzustellen, ließ man Zellen über Nacht in 5 ml SOB-Medium mit 20 mM MgSO₄ wachsen (Hanahan 1991). Anschließend wurden 100 ml SOB mit 20 mM MgSO₄ mit der Übernachtkultur auf eine OD_{600nm} von 0,2 angeimpft. Diese Kultur wuchs bei 37°C bis zu einer OD_{600nm} von 0,4-0,6, dann wurde sie 10 min auf Eis inkubiert. Nach einer Zentrifugation bei 4100 rpm (Beckmann J2-21 Zentrifuge) und 4°C
für 10 min wurde der Überstand verworfen, das Pellet in 20 ml kaltem FSB-Puffer (Frozen storage buffer) resuspendiert (Beckmann J2-21 Zentrifuge) und erneut für 10 min auf Eis inkubiert. Es erfolgte eine weitere Zentrifugation bei 4100 rpm (Beckmann J2-21 Zentrifuge) und 4°C für 10 min, der Überstand wurde verworfen. Das Pellet wurde in 4 ml kaltem FSB-Puffer resuspendiert, 140 µl DMSO hinzugegeben und gevortex (IKA-Vibrax Janke und Kunkel). Die Suspension wurde für 15 min auf Eis inkubiert, anschließend abermals 140 µl DMSO zugegeben und gevortex. Die Suspension wurde in 50 µl-Aliquots aufgeteilt, in flüssigem Stickstoff schockgefroren und bei -70°C gelagert. Kompetente *E. coli*-Zellen wurden auf Eis aufgetaut, anschließend wurden 1-5 ng DNA auf ca. 50 µl Zellen gegeben, es wurde 30 min auf Eis inkubiert. Anschließend erfolgte ein Hitzeschock im Wasserbad (Julabo R5) bei 42°C für 90 sec. Danach wurden die Zellen auf Eis überführt, kurz auf 37°C angewärmt und nach Zugabe von flüssigem LB-Medium für 45 min im 37°C-Raum auf den Schüttler (B. Braun Biotech) gestellt. Anschließend wurden 200-300 µl des nicht abzentrifugierten Gesamtansatzes auf LB_{amp}-Platten ausgestrichen und über Nacht bei 37°C inkubiert.

Lösungen

SOB-Medium: 950 ml ddH₂O, 20g Bacto-Trypton, 5g Bacto Yeast-Extract, 0,5g NaCl, 10 ml 250 mM KCl, pH mit 5 N NaOH auf 7,0 einstellen.
FSB-Puffer: 10 mM KAc, 45 mM MnCl₂, 10 mM CaCl₂, 100 mM KCl, 3 mM Hexamminkobalt Chlorid, 10% Glycerol

2.2.4 Präparation von Nukleinsäuren

2.2.4.1 Präparation von Plasmid-DNA aus *E. coli*

Lösungen

P1: 150 mM Tris/HCl pH 8,0; 10 mM EDTA
P2: 0,2 M NaOH; 1% SDS
P3: 3 M KOAc; pH 5,5
2.2.4.2 Präparation von Plasmid-DNA aus Saccharomyces cerevisiae

Hefezyellen einer 5 ml Übernachtkultur wurden geerntet und mit de-ionisiertem Wasser gewaschen. Das Pellet wurde anschließend in 1 ml P1 mit RNase resuspendiert und nach Zugabe von 1 ml P2 gemischt. Der Zellaufschluss erfolgte durch die Zugabe von 2/3 Volumen Glasperlen auf einem IKA-Vibrax VXR (Janke und Kunkel) unter Schütteln bei 4°C, 15 Minuten. Der Überstand wurde in ein neues Reaktionsgefäß überführt, mit 0,5 ml P3 versetzt, 15 min auf Eis inkubiert und 15 min lang bei 13.000 rpm zentrifugiert (Eppendorf, 5417R). Aus dem Überstand wurde die Plasmid-DNA mit Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das getrocknete Pellet wurde in 20 µl deionisiertem Wasser aufgenommen und die DNA wurde im Anschluss für die Transformation in *E. coli* eingesetzt.

2.2.4.3 Elektrophoretische Auftrennung von DNA

Die Analyse der DNA erfolgte über die Auftrennung in neutralen Agarosegelen (Agarose in 1 × TAE mit Ethidium bromid in einer Endkonzentration von 0,5 µg/ml zur Anfärbung der Nukleinsäuren). Als Laufpuffer wurde TAE-Puffer verwendet. Die DNA-Proben wurden vor dem Auftragen mit 1/10 Volumen Blaumarker versetzt. Die Auftrennung erfolgte bei analytischen Gelen bei maximal 120 V, bei präparativen Gelen bis 80 V. Als Längen- und Konzentrationsstandard diente 1 µg *EcoRI/HindIII* geschnittene Lambda-DNA.

Lösungen

- TAE-Puffer: 40 mM Tris/HCl pH 7,8; 20 mM Natriumacetat; 2 mM EDTA
- Blaumarker: 0,2% Bromphenolblau; 25% Glycerol

2.2.4.4 Konzentrationsbestimmung von Nukleinsäuren

Die Konzentration hochmolekularer DNA wurde durch Vergleich mit einem DNA-Mengenstandard (*EcoRI/HindIII* geschnittene Lambda-DNA) in einem Agarosegel abgeschätzt.

2.2.4.5 Isolierung von DNA-Fragmenten aus Agarosegelen

Die unter UV-Licht mit Ethidium bromid auf einem Agarosegel sichtbar gemachte DNA wurde ausgeschnitten und nach dem Qiaquick Gel Extraction Kit Protocol (Qiagen) eluiert.
2.2.4.6 DNA-Restriktion
Die Verwendung der Restriktionsendonukleasen erfolgte nach Angaben der Hersteller (Biolabs, Roche). Die Restrikionsansätze wurden je nach Enzym und Bedingung 3 bis 16 h bei den entsprechenden Temperaturen inkubiert. Pro µg DNA wurde 1 Unit (U) Enzym eingesetzt.

2.2.4.7 Dephosphorylierung von DNA-Fragmenten
Für die Entfernung von endständigen 5´-Phosphatgruppen aus linearen doppelsträngigen DNA-Molekülen wurde alkalische Phosphatase (CIP: calf intestinal phosphatase) verwendet. Hierzu wurde nach erfolgter Restriktion 1 U CIP direkt in den Restriktionsansatz gegeben und 30 min bei 37°C inkubiert. Anschließend wurde die DNA mittels einer Agarose-Gelelektrophorese aufgereinigt.

2.2.4.8 Ligation von DNA-Fragmenten
Die Ligation von DNA-Fragmenten erfolgte mit 100 ng dephosphorylierter Vektor-DNA und der dreifachen molaren Menge Insert-DNA in einem Gesamtvolumen von 20 µl. Die Ligation erfolgte bei Verwendung des Ligasepuffers der Firma Gibco BRL in Gegenwart von 1 U T4-Ligase (Gibco BRL) über Nacht bei 16°C. Für die nachfolgende Transformation in E. coli wurde der gesamte Ligationsansatz verwendet.

2.2.5 Proteinbiochemische Methoden

2.2.5.1 Herstellung von Proteinrohextrakten aus S. cerevisiae
Logarithmisch wachsende Kulturen OD600 0,4-0,6 wurden abzentrifugiert (5 min 3000 rpm Beckmann GPKR-Zentrifuge) und mit dH₂O sowie E-Puffer gewaschen. Das Zellpellet wurde in 150 µl E+-Puffer resuspendiert und mit 100 µl Glasperlen (Jansen Ø 0,45 cm) versetzt. Der Zellaufschluß erfolgte für 10 Minuten auf einem IKA-Vibrax VXR (Janke und Kunkel) bei 4°C und maximaler Intensität. Nach Aufschluss der Zellen wurden wiederum 150 µl E+-Puffer zugegeben und die Flüssigkeit abgenommen. Nach einem Zentrifugationsschritt (10 min bei 13.000 rpm, Eppendorf 5417R) wurde der Proteinrohextrakt in ein frisches Reaktionsgefäß überführt und verwendet oder bei -70°C gelagert.

Lösungen
E-Puffer: 25 mM Tris/HCl pH 7,4; 5 mM EDTA; 0,1% TritonX-100; 10% Glyzerin; 150 mM NaCl
E'-Puffer: E-Puffer + 1 mM DTT, 0,1 mM Pi-Mix (Pepstatin, Aprotinin, je 1 mg/ml, Leupeptin, Antipain, je 5 mg/ml), 0,1 mg/ml Trypsin Inhibitori, 1 mM PMSF

2.2.5.2 Proteinbestimmung nach Bradford

2.2.5.3 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)
Die gelektrophoretische Auftrennung von Proteinen nach ihrem Molekulargewicht in SDS-Polyacrylamidgelen erfolgte nach der Methode von Laemmli, 1970. Zur Auftrennung der Proteine wurden ein 3%iges Sammelgel und ein 10%iges Trenngel verwendet (Maniatis, 1982). Die Proteinproben wurden mit einem Volumenanteil 2 x Probenpuffer für 5 Minuten bei 95° C gekocht und anschließend 30 Minuten bei 50°C solubilisiert, bevor sie aufgetragen wurden. Die Auftrennung der Proteine und des Molekulargewichtsstandards (Fermentas, Prestained Protein Ladder: 170 kDa; 130 kDa; 100 kDa; 72 kDa; 55 kDa; 40 kDa; 33 kDa; 24 kDa; 17 kDa; 11 kDa) erfolgte in Laufpuffer bei 50 V über Nacht oder für 3-4 h bei 30 mA bei Tag.

Lösungen
Sammelgel: 7 ml H₂O, 1,25 ml Tris (0,4% SDS, 0,5 M Tris HCl pH 6,8) 1,7 ml 30% Acrylamid/0,8% Bisacrylamid, 25 µl 10% APS, 20 µl TEMED
Trenngel: 10 ml H₂O, 5 ml Tris (0,4% SDS, 1,5 M Tris/ HCl, pH 8,8), 5 ml 30% Acrylamid/0,8% Bisacrylamid, 50 µl 10% APS, 40 µl TEMED
2x Probenpuffer: 4% SDS, 50 mM Tris/ HCl pH 6,8, 20% Glycerin, Bromphenolblau, 20 mM DTT
Laufpuffer: 25 mM Tris, 0,192 M Glyzin und 0,1% SDS

2.2.5.4 Immunologischer Nachweis von Proteinen (Immunoblot)
Nach erfolgter Protein-Auftrennung (SDS-PAGE) wurden die Proteine auf eine Nitrocellulose-Membran transferiert. Die Übertragung erfolgte in Blot-Puffer für 6 Stunden bei 30 V (250 mA) im Kühlraum. Zum Blockieren unspezifischer Bindungsstellen wurde der Filter 2 Stunden in PBST inkubiert. Die Reaktion mit dem Primärantikörper (1:1000 in PBSTB) erfolgte für 1,5 Stunden bei RT. Nach dreimaligem Waschen für
jeweils 10 Minuten mit PBST (PBSTB ohne BSA) erfolgte die Inkubation mit sekundärem Antikörper (1:5.000 (Phosphatase) oder 1:50.000 (Peroxidase)) für 4 Stunden oder über Nacht. Auf die folgenden 3 Waschschritte mit PBST folgte die Detektion des Sekundären Antikörpers.

2.2.5.5 Detektion durch Alkalische Phosphatase

Für den Nachweis von mit alkalischer Phosphatase gekoppeltem sekundären Antikörper wurde die Membran zunächst zweimalig für 5 Minuten in Substratpuffer aquilibriert. Anschließend erfolgte die Farbreaktion nach Zugabe von 25 ml Substratpuffer mit 0,1 mg/ml BCIP und 1 mg/ml NBT.

Lösungen

Substratpuffer: 0,1 M Tris/HCl pH 8,8; 0,1 M NaCl; 2 mM MgCl₂

2.2.5.6 Quantitative Bestimmung der β-Galaktosidase-Aktivität mit ONPG

Für ONPG-Messungen (2-Nitrophenyl-β-D-Galaktopyranosid) nach Miller (1972) wurden 4 OD Zellen geerntet, mit 1 ml LacZ-Puffer gewaschen, anschließend in 300 μl LacZ-Puffer resuspendiert und mit Glasperlen (Volumen 100 μl, Ø 0,45mm) durch fünfzehnminütige Inkubation in einem Vibrax-Schüttler (Firma Janke & Kunkel) aufgeschlossen. Der Überstand wurde 5 Minuten bei 13.000 rpm zentrifugiert (Eppendorf, 5417R) und das Pellet wurde verworfen. Der Rohextrakt wurde direkt für Aktivitätsmessungen und Proteinbestimmungen eingesetzt. Die gesamte Bearbeitung erfolgte bei 4°C.

950 μl ONPG-Lösung (1 mg/ml Z-Puffer) wurde mit 50 μl Rohextrakt versetzt. Über einen Zeitraum von bis zu 2 h wurden die Proben bei 30°C inkubiert und nach schwacher Gelbfärbung mit 0,5 ml 1 M Na₂CO₃-Lösung abgestoppt. Es wurde photometrisch die Extinktion bei 420 nm bestimmt und die Zeit des Abstoppens notiert. Die Berechnung der spezifischen Aktivitäten erfolgte mit folgender Formel:

\[
\text{Volumenaktivität} = \frac{V}{d \cdot v \cdot \Delta t} \cdot \frac{\Delta E}{[\mu \text{mol/min} \cdot \text{ml} = \text{U/ml}]}
\]
Material & Methoden

\(V = \text{Küvettenvolumen (µl)}; \ v = \text{Probenvolumen (µl)}; \ d = \text{Schichtdicke des} \)
\(\text{Küvetteninhalts}; \ \varepsilon = \text{molarer Extinktionskoeffizient bei 420 nm (}\varepsilon_{420} = 4,5 \ \text{ml/µmol·cm)} \)

Die endgültige Angabe der Enzymaktivität erfolgte bezogen auf mg Gesamtprotein.

Lösungen

Z-Puffer: 0,1 M Natrium-Phosphat, pH 7,0; 20 mM KCl; 1 mM MgSO₄

2.2.6 Weitere Methoden

2.2.6.1 Two-Hybrid-Interaktionsnachweis

Das Two-Hybrid-System ist ein genetisches System zur Detektion von Protein-Protein-
in den Kern und bindet mit Hilfe der DNA-Bindedomäne an spezifische Bindestellen der
Promotoren der Gene, welche durch den Faktor reguliert werden. Die
Aktivierungsdomäne bindet mit anderen für die Transkriptions-Initiation benötigten
Faktoren an den Promotor und aktiviert die Transkription des stromabwärts liegenden
Gens (Johnston, 1987). Man fusioniert einen der Interaktionspartner an eine DNA-
Bindedomäne und den anderen an eine Aktivierungsdomäne. Durch Expression dieser
Fusionsproteine in einem Stamm mit GAL-Promotorsequenzen vor Reportergenen kann
die Wechselwirkung dieser beiden Proteine zur Transkriptionsaktivierung eines gut
messbaren Reportergens (z.B. lacZ) führen. Die Menge des gebildeten
Reportergenprodukts kann als direktes Maß für die Stärke der Interaktion verwendet
werden. Es wurden die Domänen des Transkriptionsaktivators Gal4 verwendet. Als
Hefestamm wurde der Stamm PJ187, eine Kreuzung aus PJ-69-4A (James et al., 1996)
und Y187 (Durfee et al., 1993) des Genotyps MATa/a, GAL(UAS) LacZ3, GAL(UAS) ADE2,
GAL(UAS) HIS3 verwendet. Weiterhin sind die relevanten GAL-Gene deletiert. In diesem
Stamm kann neben der β-Galaktosidase-Aktivität auch das Wachstum auf
Minimalmedium ohne Histidin oder Adenin als Maß für die Interaktionsstärke dienen.
Wachstum auf Histidin Mangelmedium ist sehr sensitiv, zeigt allerdings einen relativ
hohen Hintergrund, es werden viele falsch-positive Interaktionen durch Wachstum
angezeigt, dafür werden auch schwache Interaktionen wahrgenommen. Das
Hintergrundwachstum auf SD leu- trp- his- -Platten kann durch Zugabe von 6 mM
3′-Aminotriazol minimiert werden. Die Adenin-Mutation hat stärkere Auswirkungen, hier
können nur die Zellen wachsen, die eine sehr starke Interaktion der Fusionsproteine
aufweisen.
2.2.6.2 Induktion des Paarungspherom-Antwortweges mit α-Faktor
Zellen wurden bei OD_{600} 0,6-0,8 mit 1 µM oder 5 µM α-Faktor (Endkonzentration) induziert. Die Zellen wurden anschließend mikroskopisch inspiziert oder für eine β-Galaktosidaseaktivitätsbestimmung geerntet.

2.2.6.3 Sensitivitätstest gegenüber Paarungspheromon
Zur Untersuchung der Sensitivität gegen Paarungspheromon wurden 1x10^5 Zellen einer logarithmisch wachsenden Kultur in 5 ml Topagar (0,6%) vermischt und gleichmäßig auf eine Platte gegossen. Es wurden sterile Filterplättchen (⌀ 5 mm) aufgelegt und α-Faktor in den Mengen 5 µg, 2 µg, 1 µg und 0,5 µg aufgetropft. Die Platten werden anschließend bei 30°C inkubiert.

2.2.6.4 Sensitivitätstest gegenüber Hyperosmolarität
Der Nachweis der Omostressantwort erfolgte nach Posas und Saito (1997). Logarithmisch wachsende Zellen werden auf Minimalmedium mit und ohne Natriumchlorid oder eines anderen Osmolyts verschiedener Konzentrationen getropft (Verdünnungsreihe 3,5 µl OD_{600nm} 0,4 um je einen Verdünnungsfaktor von 10 von links nach rechts abnehmend). Das Wachstum nach 3-5 Tagen Inkubation bei 30°C wurde protokolliert.

2.2.6.5 Induktion des pseudohyphalen Antwortweges

2.2.6.6 Induktion des Signalweges für Invasives Wachstum in Flüssigmedium
Zur Induktion des Signalweges wurden Zellen einer stationären Übernachtkultur in frisches Medium gegeben OD_{600} 0,1-0,2. Die Zellen wurden anschließend für mehrere Tage bei 30°C auf einem Schüttler (110 rpm) inkubiert. Proben von mindestens 4 OD_{600} wurden an den gewünschten Zeitpunkten entnommen.
2.2.6.7 **Induktion des Signalweges für Invasives Wachstum in Festmedium**

2.2.6.8 **Fluoreszenzmikroskopie**

Aus einer Übernachtultur in SRG-Medium wurde eine SRG-Hauptkultur angesetzt, diese wurde bei 30°C inkubiert, bis die log-Phase erreicht war. 500 µl dieser Kultur wurden 1 min. bei 5.000 rpm (Haereus, Biofuge) abzentrifugiert und in 150 µl PBS-Puffer gewaschen und in 25 µl PBS-Puffer aufgenommen und am Fluoreszenzmikroskop (Zeiss Axioskop; Zeiss, Oberkochen, Deutschland) untersucht.

Um Zellkulturen zu arretieren, oder um die Effekte einer Pheromonbehandlung zu untersuchen, wurden 5 µM α-Faktor zu logarithmischen Zellen gegeben und bei 30°C inkubiert. Anschließend wurden die Zellen wie beschrieben für die Fluoreszenzmikroskopie vorbereitet.

Lösungen

1x PBS: 8g NaCl, 2g KCl, 14,4g Na₂HPO₄, 2,4g KH₂PO₄ ad 1L pH 7,4

2.2.6.9 **Bioinformatik**

Die Bearbeitung von Plasmidkarten/-Sequenzen und die Möglichkeit zur Konstruktion von Plasmiden erfolgte mit Hilfe von Clone Manager (Version 7.0).
3 ERGEBNISSE

3.1 Untersuchungen zur Funktionalität von Ste50-RA Mutanten in den MAPK Signalwegen

Die MAPK Signalwege sind für eine Vielzahl von Vorgängen in der Saccharomyces cerevisiae Zelle unerläßlich. Es besteht eine essentielle Beteiligung an der Induktion der Paarung, dem Filamentösen-Wachstumsweg und dem Hochosmolaren Antwortweg. An diesen drei Signalwegen ist das regulatorische Adaptorprotein Ste50 beteiligt.

Für das Protein Ste50 wurden bisher zwei getrennte Interaktionsdomänen (die RA Domäne und die SAM Domäne) anhand von Sequenzhomologien definiert und beschrieben. Die SAM Domäne befindet sich am N-Terminus von Ste50 und ist notwendig um die Interaktion mit der MAPKKK Ste11 zu vermitteln. Die Ras-Associated (RA) Domain wird als essentiell beschrieben, jedoch konnten bisher weder die Struktur noch alle Interaktionspartner vollständig geklärt werden. Es konnte gezeigt werden, dass die RA Domäne die Interaktion mit den kleinen G-Proteinen Ras1, Ras2 und Cdc42 vermittelt (Spode, 2003; Hopp, 2005, Tatebayashi et al., 2006). Ein weiterer Interaktionspartner von Ste50 ist das kleine Membranprotein Opy2 (Wu et al., 2006). Auch hierbei könnte die RA-Domäne für die Vermittlung der Interaktion eine Rolle spielen.

Um die RA Domäne von Ste50 genauer zu untersuchen, sollten mittels PCR-Mutagenese essentielle Aminosäuren für die Funktion und die Interaktion mit anderen Proteinen identifiziert und beschrieben werden. Neben der Untersuchung zur Interaktion wurde zuerst eine phänotypische Analyse der Ste50 Mutanten in den drei Signalwegen, der Pheromonantwort, dem HOG-Signalweg und dem filamentösen Wachstum, an denen Ste50 beteiligt ist, durchgeführt.

Durch Random-PCR-Mutagenese in dem RA-Domänen Bereich von Ste50 wurden Mutanten erzeugt. Einige dieser Mutanten zeigten einen Wachstumsdefekt auf hochosmolarem Medium (ste50-RA2; ste50-RA20; ste50-RA64) (Spode, 2003). Eine Sequenzierung der DNA-Sequenz hatte ergeben, dass es sich bei diesen Mutanten um open reading frames (ORF) mit der vollen Länge handelt, die jedoch eine zweifache Punktmutation in der DNA Sequenz enthalten. Es war daher nötig, diese doppelten Mutationen zu vereinzeln, um die Rolle der jeweils ausgetauschten Aminosäure zu untersuchen. Hierfür wurde mittels PCR die mutierte Sequenz mit der wildtypischen STE50 Sequenz ersetzt und so fünf Einzelmутanten erzeugt. Die Mutante ste50-RA2 wurde so in die Mutanten ste50^{V286A} und ste50^{P318L} getrennt. Ebenso konnten die Mutanten ste50^{R283T} und ste50^{L322S} aus ste50-RA64 isoliert werden. Die Mutante ste50-

Abbildung 3.1 Expressionsnachweis der Ste50 Mutanten
Ein Δste50 Δssk1 Stamm wurde mit den angegebenen Plasmiden transformiert. Die Transformanden wurden in induzierendem SRG Medium angezogen. Die Zellen wurden geerntet und aufgeschlossen. Die Rohextrakte wurden mittels SDS-PAGE aufgetrennt und eine Western-Blot-Analyse mit anti-Myc Antikörper wurde durchgeführt. Stamm: W303-1A Δste50 Δssk1 (HCH100) Plasmide: Ste50 pGREG526STE50 (EN156); Ste50^{K283T} pGREG526STE50^{R283T} (EN19); Ste50^{V286A} pGREG526STE50^{V286A} (EN13); Ste50^{N301S} pGREG526STE50^{N301S} (EN17); Ste50^{P318L} pGREG526STE50^{P318L} (EN15); Ste50^{L322S} pGREG526 STE50^{L322S} (EN21)
3.1.1 Auswirkung der RA-Mutanten auf den Hochosmolaren Antwortweg

Der Hochosmolare Antwortweg bietet die Möglichkeit die Funktionalität der RA-Mutanten mittels eines Wachstumstests zu überprüfen. Um den HOG-Signalweg auszuschalten, muss sowohl der Sho1 Weg als auch der parallel verlaufende Snl1 Weg unterbrochen sein. Zellen in denen beide Wege unterbrochen sind, können nicht auf hochosmolarem Medium wachsen. Wird einer der beiden Wege wieder hergestellt, ist ein Wachstum der Zellen unter hochosmolaren Bedingungen möglich. In dem Δste50 Δssk1 Stamm sind beide Signalwege unterbrochen. In diesen Stamm wurden die ermittelten Mutanten transformiert und auf das Wachstum unter Salzstress getestet. Die ursprünglichen Doppelmutanten zeigen alle ein Wachstumsdefizit unter Salzstress (Spode, 2003). Die Mutanten ste50^{p318L} und ste50^{l322S} zeigen einen Wachstumsdefizit unter hochosmolaren Bedingungen bei einer NaCl Konzentration von 0,7 M und 1,0 M (Tabelle 3.1 und Abbildung 3.2). Die Mutanten ste50^{r283t}, ste50^{v286a} und ste50^{n301s} zeigen eine volle Komplementierung des Wachstumsdefizits einer Δste50 Δssk1 Deletionsmutante (Tabelle 3.1).

Tabelle 3-1 Übersicht über die Auswirkungen von RA-Mutationen auf die Funktion von STE50 im HOG-Signalweg

<table>
<thead>
<tr>
<th>Name</th>
<th>Mutation</th>
<th>Test auf Osmostress</th>
</tr>
</thead>
<tbody>
<tr>
<td>STE50</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>ste50-RA2</td>
<td>857, 953 V286A; P318L</td>
<td>-</td>
</tr>
<tr>
<td>ste50-RA20</td>
<td>886, 902 R296G; N301S</td>
<td>-</td>
</tr>
<tr>
<td>ste50-RA64</td>
<td>848, 965 R283T; L322S</td>
<td>-</td>
</tr>
<tr>
<td>ste50^{r283t}</td>
<td>848 R283T</td>
<td>+</td>
</tr>
<tr>
<td>ste50^{v286a}</td>
<td>857 V286A</td>
<td>+</td>
</tr>
<tr>
<td>ste50^{r296g}</td>
<td>886 R296G</td>
<td>-(*)</td>
</tr>
<tr>
<td>ste50^{n301s}</td>
<td>902 N301S</td>
<td>+</td>
</tr>
<tr>
<td>ste50^{p318l}</td>
<td>953 P318L</td>
<td>-</td>
</tr>
<tr>
<td>ste50^{l322s}</td>
<td>965 L322S</td>
<td>-</td>
</tr>
</tbody>
</table>

* Die Mutante ste50^{r296g} wurde nicht isoliert
Abbildung 3.2 Osmosensitivität der ste50-RA Mutanten gegenüber NaCl unter Überexpressionsbedingungen

Gezeigt ist das Wachstum des Doppeldeletionsstammes W303-1A Δste50 Δssk1 nach 3-5 Tagen. Der Stamm wurde mit den angegebenen Plasmiden transformiert. Für die Dokumentation des Wachstums auf hochosmolarem Medium wurden die Transformanten in SRG Medium logarithmisch angezogen und 0,4 OD₆₀₀⁻Einheiten geerntet. Die Zellen wurden in 500 µl H₂O aufgenommen und serielle 10-fach Verdünnungen hergestellt. Es wurden jeweils 3,5 µl jeder Verdünnung, absteigend von links nach rechts verlaufend, aufgetropt.

Das Wachstum wurde nach 3 d (SRG) und 5 d (0,7 M; 1,0 M) festgehalten.

Stamm: W303-1A Δste50 Δssk1 (HCH100) Plasmide: Ste50 pGREG526STE50 (ENB15); Ste50P³⁰₁⁸₁₁ pGREG526STE50P³⁰₁⁸₁₁ (ENB15); Ste50R²⁹₆G,N₃⁰₁⁵ pRS416-GALp-GST-STE50R²⁹₆G,N₃⁰₁⁵ (ELS465); Ste50L₃²₂₅ pGREG526STE50L₃²₂₅ (ENB 21); Vektor pGREG526 (EWK75)

Da die Mutante Ste50N³⁰₁⁵S keinen Phänotypen unter hochosmolaren Bedingungen zeigt, wurde für alle weiteren Versuche wieder die Doppelmutante ste50-RA20 verwendet, in der Annahme, dass die Mutation R296G für den beobachteten Funktionsverlust im HOG Weg verantwortlich ist. Als Negativkontrolle wurde der Stamm Δste50 Δssk1 mit einem pGREG Leervektor transformiert. Auch hier ist kein Wachstum unter Salzstress zu beobachten (Abbildung 3.2).

Zusammenfassend lässt sich sagen, dass es drei Punktmutationen innerhalb der RA-Domäne gibt, die zu einem vollständigen Funktionsverlust im hochosmolaren Antwortweg führen.

3.1.2 Auswirkung der RA-Mutanten auf den Pheromon-Antwortweg

Im vorherigen Experiment konnte gezeigt werden, dass eine Punktmutation in der RA-Domäne von Ste50 in einem kompletten Funktionsverlust im HOG Weg resultiert. Daher soll untersucht werden, welchen Einfluss Punktmutationen in der RA-Domäne von Ste50 auf die Signalweiterleitung im Pheromon-Antwortweg haben. Die Deletion der RA-
3.1.2.1 Untersuchungen zu morphologischen Veränderungen der Zelle und dem G1-Zellzyklus-Arrest nach Behandlung mit α-Faktor

In Abbildung 3.3 ist das Ergebnis der Auswertung zu sehen. Bei logarithmisch wachsenden Zellen liegen knapp 2/3 dieser als knospende Zellen vor. Dies ist sowohl bei dem Wildtyp als auch bei den Ste50 Mutanten zu beobachten. Nach Zugabe des Paarungsspheromons sinkt die Anzahl der knospenden Zellen bei Ste50 Zellen innerhalb von 90 Minuten auf 0 herab und bleibt auf diesem Niveau bis zum Ende der Messung. Das wachsen von
Abbildung 3.3 Auswirkung der Ste50-RA Mutanten auf morphologische Veränderungen und G1-Arrest nach Zugabe von Paarungspheromon
Der Stamm W303-1A Δste50 wurde mit den angegebenen Plasmiden transformiert. Die Transformanden wurden in flüssiges Minimalmedium mit Galaktose angezogen, um die Expression zu induzieren. Die Transformanden wurden aus einer Übernacht Kultur in frischen Medium angeimpft und zu einer logarithmischen Wachstumsphase angezogen. Dann wurde α-Faktor zu einer Endkonzentration von 5 μM zugegeben. Es wurden Proben entnommen und die Zellen fixiert. Die Anzahl der knospenden Zellen (Budding-Index) (A) und Shmoo bildende Zellen (Shmoo-Index) (B) wurden mikroskopisch bestimmt. Die Werte werden in % der gesamten Zellzahl angegeben. Stamm: WAM4 (HFB93); Plasmide: Ste50 pRS416-STE50 (ELS164); Vektor pGREG546 (EWK83); Ste50^{318L} pGREG526STE50^{318L} (ENB15); pRS416-GALp-GST-STE50^{G296G,N310S} (ELS465), Ste50^{L322S} pGREG526STE50^{L322S} (ENB21)
150 Minuten auf 40 bis 50% herab. Damit liegen sie auf dem gleichen Niveau wie der Δste50 Stamm, der als Negativkontrolle verwendet wurde. Ein Einfluss der Mutanten auf das vegetative Wachstum kann nicht festgestellt werden. So ist die Anzahl der knosspenden Zellen am Zeitpunkt 0 Min gegenüber den Kontrollen nicht verändert.

Nachdem die Zellen in G1 Arrest sind, bilden sie Paarungsfortsätze aus. Bei Zellen mit wildtypischen Ste50 haben nach 90 Minuten 52% der Zellen einen oder mehrere Shmoo ausgebildet. Die Anzahl von Shmoo bildenden Zellen steigt nach 150 Minuten auf bis 60% an und beginnt ab diesem Zeitpunkt wieder zu sinken. Sowohl bei den drei Mutanten, als auch bei dem Δste50 Stamm bildet nur 3-8 % der Zellen Paarungsfortsätze aus. Nach 150 Minuten nimmt auch bei diesen Stämmen die Zahl der shmoobildenden Zellen wieder ab. Die Zellen haben sich an die Präsenz des α-Faktors adaptiert und beginnen wieder mit dem vegetativen Wachstum.

Die drei untersuchten STE50 Mutanten zeigen eine geringe Pheromonsensitivität - wie sie auch bei einer STE50 Deletion zu beobachten ist. Die Mutanten sind daher in der Pheromonantwort defekt.

3.1.1.1 Untersuchung zum Einfluss der Ste50 Mutanten auf die Expression des Reportergens FUS1-lacZ

Im vorherigen Experiment wurde gezeigt, dass Ste50 eine wichtige Rolle in dem Pheromon-Antwortweg spielt. Die Mutanten der RA-Domäne von Ste50 verhalten sich während der Untersuchungen zur Pheromonsensitivität wie eine Δste50 Mutante.

Um diesen beobachteten Phänotypen zu überprüfen und weiter auszuarbeiten, soll nun die Expression eines lacZ Reporterkonstruktcs mit dem FUS1 Promotor untersucht werden. FUS1 ist ein wichtiges Zielgen der pheromonvermittelten MAPK-Kaskade, welches für die Fusion der Zellen während der Paarung benötigt wird (Truehard & Fink, 1989)

Zellen ohne α-Faktor Behandlung zeigen nur eine sehr geringe Eigenaktivität von 2-5 mUnits (basales Level) des FUS1-lacZ Reportergens. Weder die Deletion von STE50 noch die Expression der RA Mutanten beeinflusst das basale Level der FUS1-lacZ Expression.
Abbildung 3.4 Auswirkung der Ste50-RA Mutanten auf die FUS1-lacZ Expression nach Zugabe von Paarungspheromon

Die angegebenen Stämme wurden in flüssigen Minimalmedium angezogen. Die Zellen wurden aus einer Übernachtkultur in frischen Medium angeimpft und zu einer logarithmischen Wachstumsphase angezogen. Dann wurde α-Faktor zu einer Endkonzentration von 5 μM zugegeben. Es wurden Proben entnommen und Rohextrakte hergestellt. Die Rohextrakte wurden zur Bestimmung der β-Galaktosidase Aktivität benutzt. Die spezifische Aktivität wurde mittels der gesamten Proteinmenge bestimmt. Die angegebenen Werte sind Mittelwerte zweier unabhängiger Versuche (Abweichung innerhalb von +/- 10%) Stamm: WAM4 (HFB93); Plasmide: Ste50 pRS416-STE50 (ELS164); Vektor pGREGS46 (EWK83); Ste50^{P31L}, pGREGS26STE50^{P31L} (ENB15); Ste50^{D296G}, pRS416-GALp-GST-STE50^{D296G,N310S} (ELS465); Ste50^{L322S}, pGREGS26-STE50^{L322S} (ENB21); FUS1-lacZ pMG10 (EFB13)

Wildtyp STE50 (ELS164) wurde als Positivkontrolle verwendet. Es wird gezeigt, dass dies zu einer starken lacZ Expression von 92 mUnits nach α-Faktor Behandlung führt (Abbildung 3.4). Die getesteten Mutanten zeigen eine um den Faktor 10 niedrigerere lacZ Aktivität nach Induktion durch α-Faktor. Die Aktivität befindet sich auf dem Level, das auch eine mit α-Faktor behandelte STE50 Deletion zeigt. STE50 Deletionsstämme weisen eine deutlich verringerte Aktivierung von FUS1-lacZ Expression auf (Ramezani Rad, 1992; Xu et al., 1996).

3.1.2 Auswirkung der RA-Mutanten auf den Crosstalk zwischen HOG-Signalweg und dem Pheromon-Antwortweg

Hierfür wurden die Plasmide pRS416-GALp-Ste50, pGREG526-STE50^{P318L}, pGREG526-STE50^{L322S}, pRS416-GALp-GST-STE50^{R296G,N310S} und das Reportergen *FUS1-lacZ* in den
Stamm W303-1A Δste50 Δssk1 Δhog1 transformiert. Die Transformanden wurden in Galaktose-Medium logarithmisch angezogen und dann für 8 Stunden mit 0,4 M NaCl behandelt, um die Expression von *FUS1-lacZ* zu induzieren. Die Zellen wurden anschließend geerntet und aufgeschlossen. Die Rohextrakte wurden dazu verwendet die β-Galaktosidase Aktivität analytisch zu bestimmen.

3.1.3 Auswirkung der RA-Mutanten auf den filamentösen Wachstums weg

3.1.3.1 Invasives Wachstum auf festem Medium

Haploide Hefestämme können auf festem Medium adhäsiv und invasiv wachsen. Das heißt, sie können an den Agar binden und sogar eindringen (Roberts & Fink 1994). Hierfür ist ein vollständiger MAPK Signalweg nötig, an dem auch das Protein Ste50 beteiligt ist. In vorhergegangen Experimenten wurde nachgewiesen, dass die RA-Mutanten ihre Funktion im HOG Signalweg und in der Antwort auf Paarungspheromon verloren haben. Es gilt nun festzustellen, ob dieser Funktionsverlust auch für den invasiven Wachstums weg zutrifft.

Um dies zu überprüfen wurden die Plasmide pGREG526, pRS416-GALp-Ste50, pGREG526-STE50P318L, pGREG526-STE50L322S, pRS416-GALp-GST-STE50R296G,N310S in

Abbildung 3.6 Auswirkung der Ste50-RA Mutanten auf das invasive Wachstum von haploiden Zellen
Der Stamm Δste50 wurde mit den angegebenen Plasmiden transformiert. Die Transformanden wurden in galaktosehaltigem Medium angezogen und von einer Übernachtungskultur auf eine SRG Platte ausgestrichen. Die Platte wurde für sechs Tage inkubiert und das Gesamtwachstum festgehalten. Dann wurden nicht invasiv wachsende Zellen sorgfältig abgewaschen und das Wachstum wiederrum dokumentiert. Stämme: WT (MATa MR12-A; HFB750); Δste50 (FY753); Plasmide: Ste50 pRS416-STE50 (ELS164); Vektor pREG546 (EWK83); Ste50P318L pREG526-STE50P318L (ENB15); Ste50P318L pRS416-GALpGST-STE50P318L296G,N310S (ELS465); Ste50L322S pREG526-STE50L322S (ENB21)

Zusammenfassend lässt sich sagen, dass die RA-Mutanten im invasiven Wachstum keine Aktivität zeigen, während die Überexpression von Ste50 den invasiven Wachstumsdefekt einer STE50 Deletion komplementieren kann.
3.1.3.2 Expression von FLO11-lacZ

![Diagramm]

Abbildung 3.7 Auswirkung der Ste50-RA Mutanten auf die FLO11-LacZ Expression
Der Stamm MR12 Δste50 wurde mit den angegebenen Plasmiden transformiert. Die Transformanden wurden in flüssigen Minimalmedium mit Galaktose angezogen, um die Expression zu induzieren. Die Transformanden wurden bei 30°C unter ständigem Schütteln inkubiert und Proben für eine lacZ Aktivitätsbestimmung an den angegeben Zeitpunkten entnommen. Die Zellen wurden geerntet und die β-Galaktosidase Aktivität in den Rohextrakten wurde bestimmt. Es wurde mittels der Gesamtmenge Protein die spezifischen Aktivität berechnet. Die angegebenen Werte sind Mittelwerte aus zwei unabhängigen Messungen. (Abweichung innerhalb von +/- 10%) Stämme:WT (MATa MR12-A, HFB750), Δste50 (HHG 848); Plasmide: Ste50 pRS416-STE50 (ELS164); Vektor pGREG546 (EWW83); Ste50^{P318L} pGREG526-STE50^{P318L} (ENB15); Ste50^{R296G} pRS416-GALp-GST-STE50^{R296G,N310S} (ELS465), Ste50^{L322S} pGREG526-STE50^{L322S} (ENB21)
Rohextrakte wurden auf ihre β-Galaktosidase Aktivität untersucht. Das Ergebnis ist in Abbildung 3.7 dargestellt.

3.2 Analyse der RA-Domänen abhängigen Interaktionen von Ste50

3.2.1 Two-Hybrid Analyse der RA-Mutanten mit Ras2

Die im vorherigen Versuchsteil charakterisierten RA-Mutanten sollen nun auf ihre Interaktion mit den kleinen G-Proteinen untersucht werden. Die RA-Mutanten zeigten einen Wachstumsdefizit auf Salz in der Pheromonantwort und im invasiven Wachstum. Das Protein Ras2 spielt eine wichtige Rolle im invasiven Wachstum. Da bereits gezeigt wurde, dass Ste50 mit Ras2 interagiert (Hopp, 2005), soll nun mittels Two-Hybrid Analyse untersucht werden, ob die drei Mutanten Ste50^{F318L}, Ste50^{R296G,N301S} und Ste50^{1322S} mit Ras2 interagieren. Die Two-Hybrid Methode wird als in vivo System zum Nachweis von Protein-Protein Wechselwirkungen genutzt (Fields & Song, 1989). Hierbei wird ein Protein an die Aktivierungsdomäne von Gal4 fusioniert, während das andere Protein an die Bindedomäne fusioniert wird. Beide Fusionsproteine werden in einem speziellen
Abbildung 3.8 Untersuchung der Interaktion von Ste50-RA-Mutanten mit Ras2 mittels Two-Hybrid Analyse

Der Hefestamm PJ187 wurde mit den angegebenen Plasmiden transformiert. Für den Wachstumstest auf leu- trp- his- Medium wurden die Transformanden logarithmisch angezogen. Es wurden 0,4 OD$_{600}$ geerntet und in 100 µl (A) bzw. 1000 µl (B) H$_2$O resuspendiert. Es wurden 3,5 µl aufgetropft. Nach Inkubation der Platten für 2 Tage bei 30°C wurde das Wachstum auf SD leu- trp- his- Platten dokumentiert. Als Negativkontrolle dienten die Transformationen mit den Plasmiden pAD2 bzw. pMBD.

Stamm: PJ187; Plasmide: AD (pAD2, EWK66); ADRAS2C318S (pAD-RAS2F, ECH167); ADRAS2R19C318S (pAD-RAS2val19F, ECH157); ADSTE11 (pAD-STE11, ELS243); BD (pMBD, EWK67); BDSTE50 (pMBD-STE50, ECH199); BD-STE50P318L (pMBD-STE50P318L, ECH191); BD-STE50R296G,L322S (pMBD-STE50R296G,L322S, ELS563); BD-STE50L322S (pMBD-STE50L322S, ECH192)

leu·trp·
leu·trp·his·
Ergebnisse

Der Two-Hybrid-Stamm PJ187 wurde mit den verwendeten Plasmiden transformiert (Abbildung 3.8). Die Transformanden wurden auf leu-trp- Medium getropft – als Wachstumskontrolle – und als Test für die Interaktion diente Wachstum auf his-Medium. Leervektoren der Aktivierungsdomaine (AD) und der Bindedomäne (BD) wurden als Negativkontrolle verwendet. Die Interaktion von Ste50 mit Ste11, welche bereits mehrfach nachgewiesen wurde, diente als Positivkontrolle (Jansen et al., 2001). Es zeigt sich, dass Ste50 mit Ras2 sowie mit Ras2^{val₁₉} interagiert. Tropft man die Zellen in hoher Konzentration auf Histidin- Platten, lässt sich kein Unterschied zwischen den beiden Formen von Ras2 erkennen. Tropft man hingegen weniger Zellen, so kann weiterhin ein Wachstum der Zellen beobachtet werden, wenn die Proteine Ste50 und Ras2^{val₁₉} co-exprimiert sind. Hingegen liegt kein Wachstum bei den Fusionsproteinen Ste50 und Ras2 vor (Abbildung 3.8 B). Die drei getesteten Mutanten (STE50^{P318L}, STE50^{R296G,N301S} und STE50^{L322S}) zeigen eine Interaktion mit Ste11, die von der SAM Domäne vermittelt wird. Bei keiner der drei Mutanten zeigt sich eine Interaktion mit Ras2 oder Ras2^{val₁₉}, weder bei hoher Zellzahl, noch bei niedriger Zellzahl. Bei den Negativkontrollen ist kein Wachstum zu sehen (Abbildung 3.8).

Zusammenfassend lässt sich sagen, dass Ste50 stärker mit der hyperaktiven Mutante Ras2^{val₁₉} interagiert als mit Wildtyp Ras2. Die drei untersuchten RA-Mutanten zeigen keine Interaktion - weder mit Ras2 noch mit hyperaktivem Ras2^{val₁₉}.
3.2.2 Two-Hybrid Analyse der RA-Mutanten mit Ras1

Das Protein Ras1 hat eine hohe Homologie zu Ras2. Ras1 spielt keine Rolle im invasiven Wachstum (Mösch et al., 1999). Eine RAS1 Deletion zeigt jedoch Einfluss auf die Paarung von Hefezellen (Bühring, Ramezani-Rad, unveröffentlichte Daten). Hinzu kommt auch, dass Δras1 und Δras2 Stämme Unterschiede in chronologischen Alterungsprozessen zeigen (Poplinski et al., 2007). Es ist daher möglich, dass Ste50 unter bestimmten Umständen mit Ras1 interagiert. Es gilt nun zu überprüfen, ob die Ste50 Mutanten, die keine Aktivität im Paarungsweg zeigen, eine Interaktion mit Ras1 aufweisen. Ras1 wird wie Ras2 posttranslational durch eine Farnesylierung und eine Palmitoylierung modifiziert. Um eine Lokalisierung in den Zellkern zu ermöglichen, wurde die CAAX-Box mittels eines Austausches des Cystein an Position 306 zu Serin modifiziert. Neben der Interaktion Ste50-Ste11 als Positivkontrolle wurde die Interaktion

Abbildung 3.9 Untersuchung der Interaktion von Ste50-RA-Mutanten mit Ras1 und Ras2 mittels Two-Hybrid Analyse

Der Hefestamm PJ187 wurde mit den angegebenen Plasmiden transformiert. Für den Wachstumstest auf leu- trp- his- Medium wurden die Transformanden logarithmisch angezogen. Es wurden 0,4 OD600 geerntet und in 100 μl H2O resuspendiert. Es wurden 3,5μl aufgetropft. Nach Inkubation der Platten für 2 Tage bei 30°C wurde das Wachstum auf SD leu- trp- his- Platten dokumentiert. Als Negativkontrolle dienten die Transformationen mit den Plasmiden pAD2 bzw. pMBD.

Stamm: PJ187; Plasmide: AD (pAD2, EWK66); ADRAS1C3065 (ADRAS1F, ECH163); ADRAS219C3185 (pAD-RAS2val19F, ECH157); ADSTE11 (pAD-STE11, ELS243); BD (pMBD, EWK67); BDSTE50 (pMBD-STE50, ECH199); BDSTE50P318L (pMBD-STE50P318L, HCH191); BDSTE50R9296GN3015 (pMBD-STE50R9296GN3015, ELS563); BDSTE50L322S(pMBD-STE50L322S, ECH192)
von Ste50 mit Ras²^{val19,C319S} als Kontrolle für eine schwache Interaktion verwendet.

Es ist zu sehen, dass Ste50 mit Ras1 interagiert, da es Wachstum auf his- Medium gibt. Die Mutanten zeigen keine Interaktion mit Ras1 (Abbildung 3.9). Die Negativkontrollen mit BD und AD Leervektoren zeigen kein Wachstum.

3.2.3 Two-Hybrid Analyse der RA-Mutanten mit Cdc42

Cdc42 ist wie Ste50 in dem Pheromon-Antwortweg, dem Filamentös-Wachstumsweg und dem HOG-Signalweg involviert. Es wurde gezeigt, dass Cdc42 mit Ste50 interagiert.

Abbildung 3.10 Untersuchung der Interaktion von Ste50-RA-Mutanten mit Cdc42 und Ras2 mittels Two-Hybrid Analyse

Der Hefestamm PJ187 wurde mit den angegebenen Plasmiden transformiert. Für den Wachstumstest auf leu- trp- his- Medium wurden die Transformanden logarithmisch angezogen. Es wurden 0,4 OD₆₀₀ mm geerntet und in 100 µl H₂O resuspendiert. Es wurden 3,5 µl aufgetropft. Nach Inkubation der Platten für 2 Tage bei 30°C wurde das Wachstum auf SD leu- trp- his- Platten dokumentiert. Als Negativkontrolle dienten die Transformationen mit den Plasmiden pAD2 bzw. pMBD.

Stamm: PJ187; Plasmide: AD (pAD2, EKW66); ADCDC42 (pAD-CDC42, EF667); ADRA2²^{C19318S} (pAD-RAS2val19F, ECH157); ADSTE11 (pAD-STE11, ELS243); BD (pMBD, EKW67); BDSTE50 (pMBD-STE50, ECH199); BDSTE50^{P318L} (pMBD-STE50^{P318L}, HCH191); BDSTE50^{R296G,N301S} (pMBD-STE50^{R296G,N301S}, ELS563); BDSTE50^{L322S} (pMBD-STE50^{L322S}, ECH192)

3.2.4 Two-Hybrid Analyse der RA-Mutanten mit Opy2

Ste50 interagiert nicht nur mit den kleinen G-Proteinen sondern auch mit dem Transmembranprotein Opy2 (Wu et al., 2006). Opy2 spielt eine Rolle in der Signalweiterleitung im HOG-Signalweg und interagiert mit Ste50 unabhängig von der

Abbildung 3.11 Untersuchung der Interaktion von Ste50-RA-Mutanten mit Opy2 mittels Two-Hybrid Analyse

Der Hefestamm PJ187 wurde mit den angegebenen Plasmiden transformiert. Für den Wachstumstest auf leu- trp- his- Medium wurden die Transformanden logarithmisch angezogen. Es wurden 0,4 OD$_{600}$ geerntet und in 500 µl H$_2$O resuspendiert. Es wurden 3,5 µl aufgetropft. Nach Inkubation der Platten für 2 Tage bei 30°C wurde das Wachstum auf SD leu- trp- his- Platten dokumentiert. Als Negativkontrolle dienten die Transformationen mit den Plasmiden pAD2 bzw. pMBD.

3.3 Plasmamembranrekrutierung von Ste50-ΔRA

Ein wichtiges Merkmal der G-Proteine ist, dass sie an der Plasmamembran lokalisiert sind. Diese Lokalisation ist wichtig für die Aufgabe der G-Proteine in der Zelle (Bhattacharjya et al., 1995). Ste50 ist indessen ein cytosolisches Protein. Es konnte gezeigt werden, dass Ste50 unter Überexpression von Ras2 vermehrt an die Zelloberfläche lokalisiert (Hopp, 2005). Auch konnte gezeigt werden, dass eine Assoziation zur Plasmamembran von Ste50-ΔRA zumindest im HOG-Signalweg und im filamentösen Wachstums weg die Funktion des Proteins zumindest teilweise wieder herstellt (Wu et al., 2006; Truckses et al., 2006; Tatebayashi et al., 2006). Welche genau die Unterschiede zu wildtypischem Ste50 im MAPK-Signaling sind wurde nicht untersucht. In Säugerzellen ist für den Ras Effektor RapGDS, welcher auch eine RA-Domäne besitzt, gezeigt worden, dass die künstliche Rekrutierung zur Membran ausreicht, um ein funktionelles Protein zu bilden (Matsubara et al., 1999). Hierbei konnte die Ras-Binde-Domäne deletiert werden, ohne dass die Funktion des Proteins beeinflusst wurde. Überträgt man dieses Wissen auf Ste50, ist anzunehmen, dass die RA-Domäne für die korrekte Lokalisierung des Proteins während der Signalweiterleitung notwendig ist (Matsubara et al., 1999).
3.3.1 Erstellung von Plasmamembran assoziiertem Ste50-ΔRA

Um einen detaillierten Vergleich zwischen Wildtyp Ste50 und membranrekrutiertem nSte50 (Ste50-ΔRAD, AS 1-235) zu erhalten, sollte das Gen *nste50FAR* anstelle von *STE50* in das Hefegenom integriert werden. Um dies zu erreichen wurden zuerst Plasmide erstellt, welches nSte50FAR unter der Kontrolle des GAL Promoters haben. Hierfür wurden die DNA-Sequenz der 13 C-terminalen Aminosäuren von Ras2 an den nSte50 ORF mittels PCR angehängt. Dieser Bereich von Ras2 enthält die CAAX-Box. Diese ermöglicht eine posttranslationale Modifizierung mittels Farnesylierung und Palmitoylierung, welche zu einer Lokalisierung an die Plasmamembran führt. Um dies zu erreichen, wurde eine PCR mit den Primern A72 A191 durchgeführt.

In einem zweiten PCR Schritt wurde mit den Primern A72 und A89 das Insert rec1-*nste50FAR*-rec2 - für eine in vivo Rekombination in die Plasmide pGREG526 und pGREG576 - hergestellt. Bei den so hergestellten Plasmide ENB71 und ENB130 wird *nste50FAR* von dem GAL-Promotor kontrolliert. In einem anderen Schritt wurde der GAL-Promotor von pGREG526 durch Ligation nach Verdau mit SacI/SpeI mit dem *STE50* Promotor ausgetauscht, in diesem Schritt wurde das Plasmid p52650p (ENB85) hergestellt. Um nun *nste50FAR* unter die Kontrolle des *STE50* Promoters zu stellen wurde aus dem Plasmid ENB71 nste50FAR-Fragment durch Restriktion (*EcoRI/XhoI*) ausgeschnitten und in den mit *EcoRI/XhoI* linearisierten Vektor ENB85 mittels in vivo Rekombination eingefügt. Das so konstruierte Plasmid ENB111 enthält den *STE50* Promotor vor dem Gen 13Myc-*nste50FAR*. Um eine Integration in das Hefegenom zu ermöglichen, wurde der *STE50* Terminator (419bp) mittels der Primer A231 und A232 durch eine PCR amplifiziert und in das Plasmid hinter die loxP-kanMX-loxP Kassette eingefügt. Das so entstandene Plasmid ENB187 wurde mit SacI/XmnI linearisiert und das *nste50FAR* Konstrukt in die Stämme W303-1A Δste50 (WAM4) und W303-1A Δste50

[Abbildung 3.12 Schematische Darstellung der Integration von nste50FAR ins Hefegenom.]
Δssk1 (HCH129) integriert (siehe Abbildung 3.12). Für eine erfolgreiche Integration wurde auf Geneticinresistenz (G418) selektiert, und positive Stämme wurden auf Expression den 13 Myc-nste50FAR Genprodukts mittels Westernblotanalyse untersucht (Abbildung 3.13). Als weitere Kontrolle wurde das Wachstum der Stämme unter hochosmolarem Stress überprüft.

Abbildung 3.13 Expressionsanalyse von integriertem Myc-nste50FAR
Klone die auf Selektionsmedium wachsen können wurden in YPD angezogen. Die Zellen wurden aufgeschlossen und die Rohextrakte mittels SDS-PAGE aufgetrennt. Anschließend wurde eine Westernblot-Analyse durchgeführt. Es wurde ein Anti-Myc Antikörper verwendet. Stämme: W303 MYC-nste50FAR (HNB165, HNB166); W303 Myc-nste50FAR Δssk1 (HNB167, HNB168)

3.3.2 Untersuchungen zur Funktion von plasmamembranrekrutiertem Ste50-∆RAD im Hochosmolaren Antwortweg

In diesem Teil der Arbeit soll die Funktion der Ste50-RA Domäne im HOG-Signalweg untersucht werden. Um dies zu erreichen wird die Funktion von nSte50FAR mit wildtypischen Ste50 verglichen werden. Es wurde bereits gezeigt das eine Plasmamembranrekrutierung von Ste50-∆RA bei Überexpression eine STE50 Deletion und eine OPY2 Deletion im Hochosmolaren Antwortweg komplementieren kann (Wu et al., 2006). Ob dies auch für nSte50FAR zutrifft - wenn es unter Kontrolle des STE50 Promotors ist - soll hier untersucht werden. Auch soll überprüft werden, ob nste50FAR
Ergebnisse

auch eine \textit{SHO1} Deletion komplementieren kann. Sho1 ist im HOG-Signalweg oberhalb von Ste50 eingeordnet und interagiert mit diesem. Es gilt zu klären, ob die Funktion der RA-Domäne nur eine Lokalisierung an die Plasmamembran von Ste50 ist, und so auch Ste11 an die Membran rekrutiert (Wu et al., 2006). Hat die RA-Domäne noch eine weitergehende Rolle, sollten sich Unterschiede bei den Test zu wildtyp Ste50 zeigen. So ließen sich Rückschlüsse auf die Funktion der RA-Domäne im HOG-Signalweg ziehen. Hierfür werden verschiedene Tests durchgeführt. So soll das Wachstum auf hoch osmolarem Medium untersucht werden und eine epistatische Analyse mit \textit{nste50FAR} Durchgeführt werden. Ebenso soll der Crosstalk mit dem Ras/cAMP Signalweg mittels eines \textit{CRE-lacZ} Reporters untersucht werden wobei auch analysiert wird, wie \textit{nste50FAR} den Crosstalk zwischen dem HOG-Signalweg und dem Pheromonantwortweg beeinflusst.

\subsection*{3.3.2.1 \textit{nSte50FAR} kann den Wachstumsdefekt einer \textit{STE50} Deletion und einer \textit{OPY2} Deletion im HOG-Signalweg komplementieren}

Hierfür wurden die Stämme W303-1A, W303-1A \textit{Δste50 Δssk1} und W303-1A \textit{nste50FAR Δssk1} in Vollmedium mit 0,4 M NaCl auf eine \textit{OD}_{600} von 0,1 angeimpft. Das Wachstum der Stämme wurde durch Messung der \textit{OD}_{600} über einen Zeitraum von 7 Stunden gemessen.

Es ist zu sehen, dass der Wildtyp Stamm unter hochosmolaren Bedingungen wachsen kann (Abbildung 3.14). Der Stamm W303-1A \textit{Δste50 Δssk1} weist nur ein minimales Wachstum in flüssig Medium mit 0,4 M NaCl auf. Der W303-1A Stamm mit integriertem \textit{nste50FAR} am \textit{STE50} Lokus zeigt Wachstum unter hochosmolaren Bedingungen, etwas geringer jedoch als das des Wildtyp Stamm (Abbildung 3.14). Neben dem Wachstum in flüssigem Medium, wurde das Wachstum auch auf festem Medium überprüft. Die zu untersuchenden Stämme wurden in flüssigem Medium bis zur logarithmische Phase angezogen. Dann wurden 0,4 \textit{OD}_{600} geerntet und seriell verdünnt. Die Verdünnungen wurden dann auf Platten ohne und mit erhöhter Salzkonzentration getropft. Diese wurden bei 30°C inkubiert und das Wachstum nach drei bis fünf Tagen dokumentiert (Abbildung 3.15). Die Expression von \textit{nSte50FAR} anstatt von Wildtyp Ste50 kann, wie auch in flüssigem Medium, Wachstum unter hochosmotischen Bedingungen vermitteln. Dies zeigt sich durch wildtypisches Wachstum auf 0,7 M und 1,0 M NaCl (Abbildung 3.15).

Es wurden noch weitere Stämme, unter anderem solche mit einer \textit{OPY2} Deletion untersucht. Opý2 wurde als Bestandteil des Sho1 Arms im HOG-Signalweg impliziert und als Interaktionspartner von Ste50 beschrieben (Wu \textit{et al.}, 2006). Die \textit{Δopy2 Δssk1}
Doppeldeletion zeigt noch Wachstum unter 0,4 M Salzstress, aber kein Wachstum unter höheren Salzkonzentrationen. Dies bedeutet, dass eine Δste50 Mutante einen stärkeren Wachstumsdefektphenotypen als eine Δopy2 Mutante im HOG-Signalweg zeigt. Es galt nun zu überprüfen, ob nste50FAR eine Deletion von OPY2 im HOG-Signalweg komplementieren kann.

Somit lässt sich zusammenfassen, dass die Deletion von *OPY2* einen Verlust der Osmotoleranz in einem Δ*ssk1* Stamm hervorruft, der aber nicht so stark wie der einer

![Image](image_url)

Abbildung 3.15 nSte50FAR komplementiert die Osmosensitivität von *STE50* und *OPY2* Deletionen im HOG-Signalweg

Dargestellt ist eine Wachstumsanalyse verschiedener Hefestämme auf verschiedenen Medien. Logarithmisch wachsende Zellen verschiedener Stammhintergründe wurden geerntet. Es wurden 1:10 Verdünnungen hergestellt. Die Verdünnungen (unverdünnt, 1:10, 1:100, 1:1000) wurden auf YPD Platten mit 0 M, 0,4 M, 0,7 M und 1,0 M NaCl getropft. Die Platten wurden für 3 Tage bei 30°C inkubiert und das Wachstum der Zellen dokumentiert. Stämme: Δste50 (W303-1A Δste50, HFB93), Δste50 Δopy2 (W303-1A Δste50 Δopy2, HNB212); Δste50 Δssk1 (W303-1A Δste50 Δssk1, HCH100); Δste50 Δssk1 Δopy2 (W303-1A Δste50 Δssk1 Δopy2, HNB213); nste50FAR Δssk1 (W303-1A Myc-nste50FAR Δssk1, HNB167); nste50FAR Δssk1 Δopy2 (W303-1A Myc-nste50FAR Δssk1 Δopy2, HNB218); Δssk1 (W303-1A Δssk1, HCH92); Δssk1 Δopy2 (W303-1A Δssk1 Δopy2, HNB215)

STE50 SSK1 Doppeldeletion ist. Die Expression von *nste50FAR* kann sowohl eine *STE50* Deletion als auch eine *OPY2* Deletion in der Osmotoleranz komplementieren.

3.3.2.2 nSte50FAR kann den Wachstumsdefekt einer *SHO1* Deletion im HOG-Signalweg nicht komplementieren

Ein wichtiges Protein im HOG-Signalweg ist das Protein Sho1. Es besteht aus 4 Transmembrandomänen und einem cytoplasmatischen Ende (Maeda et al., 1995). Die postulierte Funktion von Sho1 läßt vermuten, dass Sho1 möglicherweise eine Rolle bei der Rekrutierung des Ste11-Ste50 Komplexes und Pbs2 zu einem Signalkomplex spielt und diesen als Adaptor mit den Osmosensoren Hkr1 und Msb2 verbindet (Maeda et al., 1995; Tatebayashi et al., 2006, Tatebayashi et al., 2007). Sho1 ist als ein möglicher Interaktionspartner von Ste50 beschrieben worden (Tatebayashi et al., 2006). Es galt daher zu testen, ob plasmamembranrekrutiertes nSte50FAR den Osmosensitivitätsphänotypen einer *SHO1* Deletion komplementieren kann. In vorherigen
Experimenten konnte gezeigt werden, dass eine Komplimentierung für eine OPY2 Deletion möglich ist.

Um dies zu testen, wurde der Stamm W303-1A Δsho1 Δssk1 mit einer Vektorkontrolle und dem Plasmid pS26-STE50p-nSTE50FAR transformiert. Die Expression von nste50FAR auf diesem Plasmid steht unter Kontrolle des STE50 Eigenpromotors. Die

Abbildung 3.16 Osmosensitivitätstest gegenüber NaCl
Dargestellt ist eine Wachstumsanalyse verschiedener Hefestämme auf unterschiedlichen Medien. Logarithmisch wachsende Zellen verschiedener Stammmhintergründe wurden geerntet. Es wurden serielle 1:10 Verdünnungen (unverdünnt, 1:10, 1:100, 1:1000) auf SD Platten mit 0 M, 0,4 M und 0,7 M NaCl getropft. Die Platten wurden für 3 Tage bei 30°C inkubiert und das Wachstum der Zellen dokumentiert.
Stämme: WT (W303-1A, HGX10), Δste50 Δssk1 (W303-1A Δste50 Δssk1, HCH100), Δsho1 Δssk1 (W303-1A Δsho1 Δssk1, HCH253); Plasmide: LV (pREG526, EWK75); nste50FAR (pS26-STE50p-nste50FAR, ENB111)

Transformanden wurden logarithmisch angezogen und dann seriell 1:10 verdünnt und auf Minimalmedium ohne und mit Salz aufgetropft.

Als Positivkontrolle wurde ein W303-1A Wildtypstamm verwendet. Alle überprüften Stämme können auf Minimalmedium ohne Salz gut wachsen (Abbildung 3.16). Einzig der Wildtypstamm kann auf Medium mit 0,4 M und 0,7 M NaCl wachsen. Der als Osmosensitivitätskontrolle verwendete Stamm Δste50 Δssk1 zeigt kein Wachstum unter hochosmolaren Bedingungen. Ein Δsho1 Δssk1 Stamm zeigt Osmosensitivität, kann aber noch unverdünnt auf einer niedrigen Salzkonzentration von 0,4 M wachsen (Abbildung 3.16). Die Expression von nSte50FAR zeigt keine vermittelte Osmotoleranz. Die Zellen zeigen nur bei 0,4 M NaCl Wachstum bei unverdünnten Zellen und kein Wachstum bei der höheren Salzkonzentration von 0,7 M NaCl.
3.3.2.3 nste50FAR zeigt eine Abschwächung der Aktivierung von CRE-lacZ nach Salzstress

Abbildung 3.17 Messung der CRE-lacZ Expression unter Osmostress

Stämme: WT (W303-1A, HX10); Δste50 Δopy2 (W303-1A Δste50 Δopy2, HNB212); Δste50 Δssk1 (W303-1A Δste50 Δssk1, HCH100); Δste50 Δssk1 Δopy2 (W303-1A Δste50 Δssk1 Δopy2, HNB213); nste50FAR Δssk1 (W303-1A Myc-nste50FAR Δssk1, HNB167); nste50FAR Δssk1 Δopy2 (W303-1A Myc-nste50FAR Δssk1 Δopy2, HNB218); Δssk1 (W303-1A Δssk1, HCH92); Δssk1 Δopy2 (W303-1A Δssk1 Δopy2, HNB215); Δopy2 (W303-1A Δopy2, HNB210)

Plasmid: CRE-lacZ (pMP253)

Die Zugabe von Salz führt im Wildtypstamm nach 45 Minuten zu einer starken Expression des Reportergens CRE-lacZ auf 1600 mUnits. Eine Doppeldeletion von STE50 und SSK1 führt zu einem fast kompletten Verlust der Expression von CRE-lacZ. Bei dieser Doppelmutante ist sowohl der Sho1- als auch der Sln1-Weg unterbrochen. Betrachtet man die Δssk1 Stämme, die nste50FAR anstatt von wildtypischen Ste50 exprimieren, so zeigt sich eine Expression von Cre-lacZ nach Zugabe von Salz, bei einem Δssk1 nste50FAR Stamm bzw. Δssk1 Δopy2 nste50FAR Stamm bei 20% gegenüber dem Wildtypstamm liegt (Abbildung 3.17). Eine OPY2 Deletion führt zu keiner Veränderung der CRE-lacZ Expression in Stämmen mit nste50FAR. Wird hingegen ein Δssk1 Stamm verwendet, so wird die Aktivierung durch Salz um 63% reduziert. Der deutlichere Effekt einer Δssk1 Mutante lässt sich vielleicht mit dem Kälteschock der Zellen erklären, da diese vor dem Aufschluss auf 4°C abgekühlt werden. Ssk1 spielt eine Rolle in der Hog1 Aktivierung durch Kältestress (Hayashi & Maeda, 2006). Dies erklärt auch die verminderte Basisaktivität bei 0 min (17 mUnits bei Δssk1 zu 77 mUnits bei WT). Der
Einfluss einer OPY2 Deletion ist deutlicher als bei einer STE50 Deletion, aber schwächer als bei einer SSK1 Deletion. Hier ist wie bei Δste50 gegenüber dem WT auch die Basisaktivität nicht verändert. Bei der Doppelmutante Δssk1 Δopy2 erreicht das Reporter Expressionslevel 20% des Wildtyp Levels. Eine Dreifachmutante Δssk1 Δste50 Δopy2 zeigt das gleiche Aktivitätslevel wie die Δste50Δssk1 Doppelmutante. Wird STE50 deletiert, so wird die Aktivierung des Reporters auf 950 mUnits abgeschwächt (Abbildung 3.17). Es zeigt sich somit, dass die Expression von CRE-lacZ ein anderes Bild zeigt als das Wachstum unter Salzstress. Während bei dem Wachstum nur minimale Unterschiede zwischen Wildtypstamm und Stämmen mit nste50FAR festgestellt werden konnten sind diese bei CRE-lacZ Messungen sehr deutlich. Die Glycerinsynthese, das wichtigste Mittel für Wachstum unter hochosmolaren Bedingungen, wird nicht durch Sko1 reguliert. Wie es zu der Abschwächung der CRE-lacZ Expression kommt, lässt sich vielleicht auf das Fehlen der RA Domäne bei nste50FAR Stämmen zurückführen. Da die RA Domäne fehlt, kann Ste50 nicht mehr mit Ras2 interagieren, was andererseits zu einer vermehrten Aktivierung von Cyr1 und damit der PKA führt. Dies hätte dann einen negativen Einfluss auf die Aktivität von Sko1, was zu der gemessenen geringeren CRE-lacZ Expression führt (s. Diskussion 4.2.1).
3.3.2.4 Reduzierter Crosstalk zwischen HOG-Signalweg und Pheromonantwort durch plasmamembranrekrutiertes nSte50

Die MAPK Signalwege leiten das Signal sehr spezifisch weiter, um für den jeweiligen Stress die richtige Antwort zu generieren. Wird jedoch die osmotische Aktivierung von Hog1 verhindert, zum Beispiel durch eine Δpbs2 oder Δhog1 Mutation, aktiviert der Stress unter anderem den Pheromonantwortweg was mittels eines Pheromonspezifischen Reporters *FUS1-lacZ* nachgewiesen werden kann (Hall et al., 1996; O´Rourke and Herskovitz, 1998). Dieser physiologisch unerwünschte Crosstalk ist abhängig vom Sho1 Arm des Hog Weges und unabhängig von den Pheromonantwort-spezifischen Proteinen Ste4 und Ste5 (Cullen et al., 2004; O´Rourke and Herskovitz, 2002). Eine Deletion von *STE50* unterbricht den Crosstalk. Es gilt nun zu klären, ob nSte50FAR auch den Crosstalk aktivieren kann, und ob Op2 in diesem Zusammenhang auch benötigt wird.

![Balkendiagramm](image_url)

Abbildung 3.18 Einfluss von plasmamembranrekrutiertem nSte50 auf den Crosstalk zwischen HOG-Weg und Pheromonantwort

Die angegebenen Stämme wurden mit einem *FUS1-lacZ* Reporterplasmid und entweder mit Vektor als Kontrolle oder mit p526-50p-nSTE50FAR transformiert. Die Transformanten wurden in einer logarithmischen Kultur zu einer OD$_{600nm}$ von 0,4-06 angezogen, dann wurde NaCl zu einer Endkonzentration von 0,4 M zugegeben. Die Zellen wurden nach 8h gerüttelt. Die Rohextrakte wurden zur Bestimmung der β-Galaktosidase Aktivität benutzt. Die spezifische Aktivität wurde mittels der Gesamtproteinmenge bestimmt. Die angegebenen Werte sind Mittelwerte aus drei unabhängigen Messungen. Stämme: WT (W303-1A HGX10) Δste50 Δhog1 (W303 Δste50 Δhog1, HCH286); Δhog1 (W303 Δhog1, HCH288); Δhog1 Δop2 (W303 Δhog1 Δop2, HNB204), Plasmide: *FUS1-lacZ* (pMG10, EFB13), LV (pGREG526, EWK75), nste50FAR (p526-50p-nste50FAR, ENB111)

Eine Deletion von \textit{HOG1} führt zu einer starken Aktivierung der Expression des Reporterkonstruktes \textit{FUS1-lacZ} (Abbildung 3.18). Es kommt zum Crosstalk. Wird nun der Sho1 Arm unterbrochen, so zeigt sich keine Transkriptionsaktivierung von \textit{FUS1-lacZ}. Dies trifft sowohl auf die Deletion von \textit{OPY2} als auch auf die Deletion von \textit{STE50} zu. Exprimieren die Stämme hingegen plasmamembranrekrutiertes nSte50FAR so wird der Crosstalk wieder eingeleitet. Die Stärke der Aktivierung von \textit{FUS1-lacZ} liegt bei einem Drittel im Vergleich zum Wildtyp. Dies trifft sowohl auf \(\Delta\text{ste50} \Delta\text{hog1}\) als auch auf \(\Delta\text{opy2} \Delta\text{hog1}\) zu (Abbildung 3.18).

Zusammenfassend lässt sich sagen, dass membranassoziierten \textit{nste50FAR} sowohl eine \textit{STE50} als auch eine \textit{OPY2} Deletion komplementieren kann. Das Level des Crosstalk ist gegenüber wildtypischen \textit{STE50} reduziert, entspricht allerdings dem Level der \textit{FUS1-lacZ} Aktivierung im Pheromonantwortweg (siehe 3.3.3.2).

3.3.3 Untersuchungen zur Funktion von Plasma­membranrekrutiertem Ste50-\(\Delta\text{RAD}\) in der Pheromonantwort

3.3.3.1 Haloassay zur Analyse der Adaption an Pheromon

Haploide Hefezellen reagieren auf die Präsenz von Paarungspheromon mit morphologischen Veränderungen, indem sie zuerst in den G1-Zellzyklus-Arrest gehen. Bei anhaltendem Reiz können sich die Zellen an das Signal adaptieren, was ein vegetatives Wachstum ermöglicht. Diese Adaption kann in einem Haloassay gemessen werden. Die Zellen werden hierfür in Topagar ausgebracht, und es wird Pheromon (\(\alpha\)-
Abbildung 3.19 Haloassay zur Analyse der Pheromonsensitivität
Die angegebenen Stämme wurden logarithmisch angezogen. Es wurden 3×10^5 Zellen in Topagar ausgebracht. Anschließend wurde α-Faktor in den Mengen 5 μg, 2 μg, 1 μg, und 0,5 μg aufgetropft. Die Platten wurden für 24 Stunden inkubiert und anschließend das Wachstum festgehalten. Stämme: WT (W303-1A, HGX10); Δste50 (W303-1A Δste50, HFB93); Δopy2 (W303-1A Δopy2, HNB210); Δste50 Δopy2 (W303-1A Δste50 Δopy2, HNB212); nste50FAR (W303-1A Myc-nste50FAR, HNB165); nste50FAR Δopy2 (W303-1A Myc-nste50FAR Δopy2, HNB216)

3.3.3.2 Expression von FUS1-lacZ

Im vorherigen Experiment zeigt sich, dass eine OPY2 Deletion keinen detektierbaren Unterschied zum Wildtyp bei dem pheromoninduzierten Zellzyklusarrest aufzeigt. Es wird ebenfalls deutlich, dass membranrekrutiertes nSte50FAR eine Δste50 Mutation komplementieren kann. Um neben der phänotypischen Analyse weitere Daten und so ein genaueres Bild der Funktion von nste50FAR und der RA-Domäne in der Pheromonantwort zu gewinnen, sollte die Aktivierung des Paarungspheromonspezifischen Reporter FUS1-lacZ untersucht werden. FUS1 ist ein wichtiges Zielgen der Pheromon vermittelten MAPK-Kaskade (Truehard & Fink, 1989).

Hierfür wurden die Stämme W303-1A, W303-1A Δopy2, W303-1A Δste50, W303-1A Myc-nste50FAR, W303-1A Myc-nste50FAR Δopy2 und W303-1A Δste50 Δopy2 mit dem Reportergeren FUS1-lacZ transformiert. Die Transformanden wurden logarithmisch angezogen, und dann für 90 Minuten mit 1 μM α-Faktor induziert. Die Zellen wurden anschließend gerannt und die erzeugten Rohextrakte auf ihre Aktivität der β-Galaktosidase hin untersucht.

Da die Pheromon-Antwort einen zeitlichen Verlauf hat, sollte nicht nur ein einzelner Zeitpunkt untersucht werden, sondern auch die Auswirkung von nSte50FAR im Vergleich zu Ste50 über einen längeren Zeitraum. Hierfür wurden die Zellen mit entweder 1 μM oder 5 μM α-Faktor induziert, und 300 Minuten lang Proben genommen. Die Zellen wurden aufgeschlossen und die β-Galaktosidase Aktivität bestimmt.

Es zeigt sich, dass die Expression von FUS1-lacZ im Wildtypstamm durch die höhere α-Faktor Konzentration von 5 μM um den Faktor 3,5 stärker aktiviert wird als durch 1 μM α-Faktor (Abbildung 3.21). Die stärkste Aktivierung zeigt sich nach 120 Minuten, wobei die FUS1-lacZ Aktivierung bei der niedrigen Pheromonkonzentration nach 300 Minuten auf ein Viertel des maximalen Wertes fällt. Bei 5 μM α-Faktor sinkt das Expressionslevel
Abbildung 3.20 Auswirkung von nSte50FAR auf die FUS1-lacZ Expression nach Zugabe von Paarungspheromon

A. Integriertes nste50FAR. Die angegebenen Stämme wurden in flüssigen Minimalmedium angezogen. Die Zellen wurden aus einer Übernachtkultur in frischem Medium angeimpft und zu einer logarithmischen Wachstumsphase angezogen. Dann wurde α-Faktor zu einer Endkonzentration von 1 μM zugegeben. Es wurden Proben nach 90 min entnommen und Rohextrakte hergestellt. Die Rohextrakte wurden zur Bestimmung der β-Galaktosidase Aktivität benutzt. Die spezifische Aktivität wurde mittels der Gesamtproteinkonzentration bestimmt. Die angegebenen Werte sind Mittelwerte zweier unabhängiger Messungen. Stämme: WT (W303-1A, HGX10); Δopy2 (W303-1A Δopy2, HNB210); Δste50 (W303-1A Δste50; WAM4); nste50FAR (W303-1A Myc-nste50FAR, HNB165); nste50FAR Δopy2 (W303-1A Myc-nste50FAR Δopy2, HNB216); Δste50 Δopy2 (W303-1A Δste50 Δopy2; HNB212); Plasmid: FUS1-lacZ (pMG10, EFB13)

B. Überexpression von nste50FAR. Stämme wurden in Minimalmedium angezogen. In der mid-log Phase wurde 5 μM α-Faktor hinzugegeben. Nach 90 min wurden die Zellen entnommen und die FUS1-lacZ Aktivität bestimmt. Stämme: WT (W303-1A, HGX10); Δste50 (W303-1A Δste50, WAM4) Plasmide: LV (pGREG526, ELS74); STE50 (pRS416-GALp-Myc-STE50, ELS164); nste50FAR (pGREG526nste50FAR, ENB71); FUS1-lacZ (pMG10, EFB13)

Zusammenfassend lässt sich sagen, dass die Membranrekrutierung von nSte50 einen gravierenden Einfluss auf die Aktivierung von FUS1-lacZ hat. Die Aktivität gegenüber wildtypischen Ste50 ist deutlich verringert. Opy2 scheint für die optimale Aktivierung von FUS1-lacZ durch die Pheromoninduktion benötigt zu werden.
Abbildung 3.21 Auswirkung von integriertem *nste50FAR* auf die *FUS1-lacZ* Expression nach Zugabe von Paarungspheromon

Die angegebenen Stämme wurden in flüssigem Minimalmedium angezogen. Die Zellen wurden aus einer Übernachtkultur in frischem Medium angeimpft und zu einer logarithmischen Wachstumsphase angezogen. Dann wurde α-Faktor zu einer Endkonzentration von 1 μM (A) oder 5 μM (B) zugegeben. Es wurden Proben entnommen und Rohextrakte hergestellt. Die Rohextrakte wurden zur Bestimmung der β-Galaktosidase Aktivität benutzt. Die spezifische Aktivität wurde mittels der Gesamtproteinmenge bestimmt. Stämme (Abweichung innerhalb +/- 10%): WT (W303-1A, HGX10); nste50FAR (W303-1A Myc-nste50FAR, HNB165); Plasmid: *FUS1-lacZ* (pMG10, EFB13)
3.3.3.3 Untersuchungen zu morphologischen Veränderungen und dem G1-Zellzyklus-Arrest nach Induktion mit α-Faktor

Im vorherigen Experiment wurde gezeigt, dass *nste50FAR* zu einer schwächeren Aktivierung von *FUS1-lacZ* führt. Es soll nun untersucht werden, ob sich dies auch in der Bildung von Shmoo widerspiegelt. Dafür wurden Zellen der Stämme W303-1A, *W303-1A Myc-nste50FAR* und W303-1A Δste50 in Flüssigkultur logarithmisch angezogen und mit 1μM α-Faktor induziert. In regulären Zeitabständen wurden Proben entnommen und auf die Bildung von Shmoos (Paarungsfortsätze) sowie nach nicht knospenden Zellen anhand des prozentualen Anteils von knospenden zu nicht knospenden Zellen (Buddingindex), was das Ausmaß des induzierten G1-Arrest durch die Pheromonbehandlung reflektiert - untersucht.

Der Shmoo-Index zeigt deutlichere Unterschiede als der Buddingindex (Abbildung 3.22 B). Im *STE50* Deletionsstamm sind weniger als 10% der Zellen in der Lage Shmoo zu bilden. Im Wildtyp hingegen zeigen nach 90 Minuten 40% der Zellen einen oder mehrere Shmoo. Die Mutante *nste50FAR* weist sogar eine um die Hälfte verringerte Anzahl an Shmoo auf, die sich nach 120 Minuten fast vollständig wieder zurückbilden (Abbildung 3.22 B).

Zusammenfassend lässt sich sagen, dass der Einfluss von *nste50FAR* auf den Peromonantwortweg sich im Buddingindex nicht so deutlich zeigt, wie im Shmooindex. Die Adoptionsrate an das Paarungspheromon ist durch die Expression von nSte50FAR anstelle von Ste50 nicht beeinflusst.
Abbildung 3.22 Auswirkung von integriertem nste50FAR auf morphologische Veränderungen und G1-Arrest nach Zugabe von Paarungspheromon

Die angegebenen Stämme wurden in flüssigem Minimalmedium angezogen. Die Zellen wurden aus einer übernacht Kultur in frischem Medium angeimpft und zu einer logarithmischen Wachstumsphase angezogen. Dann wurde α-Faktor zu einer Endkonzentration von 1 µM zu gegeben. Es wurden Proben entnommen und die Zellen fixiert. Die Anzahl an Zellen im G1-Arrest (A Buddingindex) und Shmoo bildende Zellen (B Shmoo-index) wurden mikroskopisch bestimmt. Die Werte werden in % der gesamten Zellzahl angegeben. Es wurden für jeden Zeitpunkt mindestens 200 Zellen gezählt. Stämme: Δste50 (W303-1A Δste50, HFB93); WT (W303-1A, HGX10); nste50FAR (W303-1A Myc-nste50FAR, HNB165)
3.3.4 Untersuchungen zur Funktion von plasmamembran-
rekrutiertem Ste50-ΔRAD im filamentösen Wachstumsweg

3.3.4.1 Induktion von pseudohyphalem Wachstum in diploiden Zellen

Es lässt sich daher schließen, dass membranrekrutiertes nSte50 die Bildung von Pseudohyphen verstärkt einleitet.
3.3.4.2 Auswirkung von membranrekrutiertem nste50FAR auf die Transkription des Reportergens FG(TyA)-lacZ

Verschiedene Stammhintergründe wurden mit dem Reportergen FG(TyA)-lacZ transformiert. Die Transformanden wurden logarithmisch in Minimalmedium angezogen und dann zur Induktion des Signalwegs für 8 h in SLAD (Stickstoffmangel) inkubiert. Aus

Abbildung 3.24 Messung der FG(TyA)-lacZ Aktivität unter Stickstoffmangel
Reporterenaanalyse der Expression von FG(TyA)-lacZ. Verschiedene Stammhintergründe wurden mit dem Reportergen transformiert. Logarithmisch wachsende Zellen wurden in SLAD Medium für 8 Stunden bei 30°C inkubiert. Die Zellen wurden geerntet und Rohextrakte hergestellt. Die Aktivität der β-Galaktosidase wurde mit Hilfe eines Enzymsystems ermittelt. Die angegebenen Werte sind die Mittelwerte von zwei unabhängigen Versuchen. Stämme: WT (W303-1A, HGX10); Δste50 (W303-1A Δste50, HFB93); Δopy2 (W303-1A Δopy2, HNB210); Δste50 Δopy2 (W303-1A Δste50 Δopy2, HNB212); nste50FAR (W303-1A Myc-nste50FAR, HNB165); nste50FAR Δopy2 (W303-1A Myc-nste50FAR Δopy2, HNB216); Plasmid: FG(TyA)-lacZ (pFG(TyA)-lacZ, EFB309)
den geernteten Zellen wurden Rohextrakte hergestellt und die \(FG(TyA)\)-\(lacZ \) Aktivität mittels eines ONPG Enzymtests ermittelt.

Es zeigt sich, dass die Expression des Reportergens \(FG(TyA)\)-\(lacZ \) durch Expression von nSte50FAR gesteigert werden kann (Abbildung 3.24). Alleine der Wildtypstamm zeigt eine Aktivierung der Expression des Reportergens (28 mUnits). Werden die Zellen in Vollmedium angezogen, so kommt es zu einer minimalen Expression des \(FG(TyA)\)-\(lacZ \) Reportergens (3 mUnits, Daten nicht gezeigt). Wird \(STE50 \) deletiert, so sinkt die Aktivierung um den Faktor 3. Da in vorherigen Experimenten eine Auswirkung von \(OPY2 \) auf die Pheromonantwort festgestellt werden konnte, wurde dieser \(\Delta opy2 \) Stamm auf die Expression von \(FG(TyA)\)-\(lacZ \) unter Stickstoffmangel untersucht. Es zeigt sich hierbei ein Rückgang der Expression von \(FG(TyA)\)-\(lacZ \) um 35%. Die Doppeldeletion \(\Delta ste50 \Delta opy2 \) verhält sich wie eine \(STE50 \) Einzeldeletion. Im diploiden Stamm wurde durch nSte50FAR verstärktes Pseudohyphales Wachstum induziert. Einen ähnlichen Effekt erhält man auch bei der Expression von \(FG(TyA)\)-\(lacZ \) in einem haploiden Stammhintergrund. Die Expression ist um den Faktor 1,7 verstärkt. Eine zusätzlich Deletion von \(OPY2 \) bewirkt keine Veränderung in der \(FG(TyA)\)-\(lacZ \) Expression (Abbildung 3.24).

Zusammenfassend lässt sich sagen, dass die \(nste50FAR \) Mutante einen positiven Einfluss auf die \(FG(TyA)\)-\(lacZ \) Expression hat.

3.3.4.3 Eine \(OPY2 \) Deletion hat keinen Einfluss auf die Adhäsion von haploiden Zellen

Abbildung 3.25 Auswirkung einer OPY2 Deletion auf die Adhäsion von haploiden Zellen

Die angegebenen Stämme wurden in minimal Medium angezogen und von einer Übernachtkultur auf ein YPD Platten ausgestrichen. Die Platten wurden für 3 Tage inkubiert und das gesamte Wachstum festgehalten. Dann wurden nicht adhäsive Zellen abgewaschen und die Adhäsion wiederum festgehalten. Stämme: WT (MR12 MAT a, HF750); Δste50 (HGH848); Δopy2 (HNB287)

Es ist zu sehen, dass die Deletion von OPY2 keinen Einfluss auf die Adhäsion hat. Der Stamm zeigt das gleiche Verhalten wie der Wildtypstamm. Eine Δste50 Mutante wurde als Negativkontrolle verwendet und zeigt keine Adhäsion.

3.3.4.4 Eigenschaften von nste50FAR in der Adhäsion haploider Zellen

Abbildung 3.26 Auswirkung plasmamembranrekrutiertem nSte50 auf die Adhäson von haploiden Zellen
Die angegebenen Stämme wurden mit p526-50p-nSTE50FAR oder pGREG526 transformiert. Die Transformanden wurden in minimal Medium angezogen und von einer Übernachtkultur auf SD Platten ausgestrichen. Die Platten wurden für 2 Tage inkubiert und das Gesamtwachstum fotografisch dokumentiert. Anschließend wurden nicht adhäsive Zellen abgewaschen und die Adhäson wiederum festgehalten. Stämme: WT (HF750); Δste50 (HGH848); Δras2 (HSK267), Δras2 Δste50 (HSK256); Plasmide: nste50FAR (p526-50p-nste50FAR, ENB111); Vektor (pGREG526, EWK75)

3.3.4.5 nste50FAR führt zu einer verstärkten Expression des Reportergens FLO11-lacZ in stationären Zellen
Ergebnisse

Um die Aktivierung von *FLO11-lacZ* zu messen, wurden die Stämme in flüssigem

![Diagramm](image)

Abbildung 3.27 Auswirkung von plasmamembranrekrutiertem nSte50FAR auf die *FLO11-LacZ* Expression

Stämme: WT (HF 750); Δste50 (HGH848); Δras2 (HSK267); Plasmide: nste50FAR (p526-50p-nste50FAR, ENB111); LV (pGREG526, EWK75)

Es zeigt sich, dass logarithmisch wachsende Zellen eines Wildtypstammes eine sehr geringe basale *FLO11-lacZ* Expression zeigen (Abbildung 3.27). Nach 24 Stunden erreicht die Expression des Reportergens das höchste Niveau und sinkt in den nächsten 48 Stunden wieder um die Hälfte. Wird jedoch der MAPK-Signalweg unterbrochen, entweder durch die Deletion von *STE50* oder die Deletion des kleinen G-Proteins *RAS2*, so steigt die Aktivität der β-Galaktosidase nicht über das basale Niveau, welches der Wildtypstamm im logarithmischen Wachstum zeigt (Abbildung 3.27). Jedoch ist das basale Level bei einer *RAS2* Deletion deutlich erhöht (17 mUnits). Im vorherigen
Experiment wurde gezeigt, dass die Expression von nSte50FAR die Adhäsion von Δste50 und Δste50 Δras2 Mutanten wieder herstellen kann. Die Stämme wurden mit dem Plasmid p526-50p-nste50FAR transformiert und die FLO11-lacZ Expression untersucht. Das basale Level in logarithmisch wachsenden Zellen ist gegenüber dem Wildtyp von 9 mUnits auf 22 mUnits gestiegen. Es ist zu sehen, dass die Expression des Reportergens gegenüber dem Wildtyp nach 24h um den Faktor 1,4 auf 85 mUnits erhöht ist. Auch bleibt das Level der Expression nach 72h um den Faktor 2,1 erhöht gegenüber dem Wildtyp (Abbildung 3.27). In einem Δras2 Stamm ist die Aktivierung von FLO11-lacZ um den Faktor 2,5 gegenüber dem Wildtyp erhöht. Auch hier sinkt die Expression nach 72 Stunden deutlich geringer. Da dieser Effekt auch in einem Δste50 Stamm zu beobachten ist, scheint nste50FAR gegenüber Ste50 dominant zu sein. Es ist auch zu sehen, dass in logarithmisch wachsenden Zellen das basale Expressionsniveau leicht erhöht ist wenn nste50FAR und Ste50 vorhanden ist.

Zusammenfassend lässt sich sagen, das nste50FAR einen verstärkenden Einfluss auf die Expression von FLO11-lacZ hat. Dieser zeigt sich in logarithmisch wachsenden Zellen, die nicht den Signalweg induzieren, und noch stärker in Zellen der stationären Phase.

3.3.4.6 Adhäsion von haploiden Zellen bei Überexpression von Hyperaktivem Ras2val19

Abbildung 3.28 Auswirkung einer Ras2\(^{val19}\) Überexpression auf die Adhäsion von haploiden Zellen

Die angegebenen Stämme wurden mit YCPRAS2val oder pGREG526 transformiert. Die Transformanden wurden in minimal Medium angezogen und von einer Übernachtkultur auf ein SD Platten ausgestrichen. Die Platten wurden für 2 Tage inkubiert und das Gesamtwachstum dokumentiert. Dann wurden nicht adhäsive Zellen abgewaschen und das Wachstum wiederum festgehalten. Stämme: WT (HFB750); Δste50 (HGH848); Δras2 (HSK267); Δras2 Δste50 (HSK256); Plasmide: Ras2\(^{val19}\) (YCPRAS2val, EGX156); Vektor (pGREG526, EHWK75)

Hierbei zeigt sich, dass die Überexpression von Ras2\(^{val19}\) durch das Plasmid YCPRASVal den Adhäsionsverlust einer RAS2 Deletion komplementiert (Abbildung 3.28). Wird hingegen STE50 deletiert, so kann auch die Überexpression von Ras2\(^{val19}\) keine Adhäsion vermitteln. Auch in einer Δste50 Δras2 Doppelmutante wird der invasive Wachstumsweg durch das hyperaktive Ras2\(^{val19}\) nicht wieder hergestellt. Zudem ist zu sehen, dass die Stämme die das Plasmid YCPRAS2val tragen, nicht so gut vegetativ wachsen - was durch das Gesamtwachstum dokumentiert ist. Diese Beobachtung wurde auch in Flüssigmedium nach Ras2\(^{val19}\) Überexpression gemacht (Swiegers et al., 2006).
3.3.4.7 Expression des Reportergens FLO11-lacZ in haploiden Zellen bei Überexpression von Hyperaktivem Ras2val19

Es zeigt sich, dass die Überexpression des hyperaktiven Ras2val19 zu einer Verstärkung der Expression um den Faktor 6 auf über 300 mUnits nach 24h zum Wildtyp Stamm führt. Aber auch bei logarithmisch wachsenden Zellen zeigt sich eine Erhöhung der

Abbildung 3.29 Auswirkung einer Ras2val19 Überexpression auf die FLO11-lacZ Expression
Die angegebenen haploiden Stämme wurden mit YCPRAS2val oder pGREG526 transformiert. Die Transformanden wurden in flüssigen Minimalmedium mit Galaktose angezogen, um die Expression zu induzieren. Die Transformanden wurden bei 30°C für 24h unter ständigem schütteln inkubiert und Proben für eine lacZ Aktivitätsbestimmung an den angegebenen Zeitpunkten entnommen. Die Zellen wurden gerumpt und die β-Galaktosidase Aktivität in den Rohextrakten wurde bestimmt. Mittels der Gesamtproteinmenge wurde die spezifische Aktivität berechnet. Stämme: WT (HF750); Δste50 (HG848); Δras2 (HSDK267); Δras2 Δste50 (HSDK256); Plasmide: Ras2val19 (YCPRAS2val, EGX156); LV (pGREG526, EWF75)

Zusammenfassend lässt sich sagen, dass der positive Einfluss von hyperaktivem Ras2\[^{val19}\] auf die *FLO11-lacZ* Expression über Ste50 vermittelt wird. Das Protein Ste50 spielt eine wichtige Rolle in der Signalüberleitung im invasiven Wachstumsweg. Würde hyperaktives Ras2 die PKA über den cAMP-PKA Weg direkt aktivieren, so würde es zu einer Expression von *FLO11-lacZ* kommen. Eine Aktivierung der PKA durch Deletion von *BCY1* oder Übersexpression von *TPK1-3* erhöht die Expression von *FLO11* über Flo8 - unabhängig von Tec1 oder Ste12, welche vom MAPK Signalweg reguliert werden (Pan & Heitman, 1999; Rupp et al., 1999).

3.3.4.8 Adhäsion von haploiden Zellen bei Übersexpression der PKA Untereinheit Tpk1

Der Ras/cAMP Signalweg ist wichtig für die Induktion des invasiven Wachstumswegs. Die PKA nimmt eine zentrale Rolle in diesem Signalweg ein. Es konnte gezeigt werden, dass Übersexpression von Tpk Untereinheiten, also den katalytischen Untereinheiten der PKA, ein *RAS2* Deletion komplementieren kann, aber nicht die Deletion der Transkriptionsfaktoren *STE12* oder *TEC1* (Mösch et al., 1999). Es wurde daher postuliert, dass es einen Crosstalk zwischen dem Ras/cAMP Signalweg und dem MAPK Signalweg gibt, und dieser Crosstalk auf Ebene der Transkriptionsfaktoren stattfindet. Ob Tpk1 Ste50 für die Aktivierung benötigt, sollte mittels eines Adhäsionsassays überprüft werden.

Abbildung 3.30 Auswirkung einer Tpk1 Überexpression auf das adhäsive Wachstum von haploiden Zellen

Die angegebenen haploiden Stämme wurden mit pcdc25/SUP2 (TPK1) oder pGREG526 transformiert. Die Transformanden wurden in minimal Medium angezogen und von einer Übernachtkultur auf ein SD Platten ausgestrichen. Die Platten wurden für 2 Tage inkubiert und das Gesamt- wachstum festgehalten. Dann wurden nicht adhäsiv wachsende Zellen abgewaschen und das Wachstum wiederum festgehalten. Stämme: WT (HF750); Δste50 (HGH848); Δras2 (HSK267); Δras2 Δste50 (HSK 256); Plasmide: TPK1 (pcdc25/SUP2, EHG99); Vektor (pGREG526, EWK75)

Zusammenfassend lässt sich sagen, dass die Überexpression von TPK1 die Adhäsion unabhängig von Ste50 aktiviert.
3.3.4.9 Expression des Reportergens *FLO11-lacZ* in haploiden Zellen bei Überexpression der katalytischen PKA Untereinheit Tpk1

Um die Expression des Reportergens zu messen, wurden die Stämme aus dem vorherigen Experiment in flüssigem Minimalmedium angezogen. Proben wurden nach 24 h für Zellen in der stationären Phase genommen. Die Zellen wurden aufgeschlossen und die Rohextrakte für eine Enzymaktivitätsmessung mit ONPG verwendet. Die Enzymaktivität wurde auf die Proteinkonzentration umgerechnet.

Es ist zu sehen, dass der Wildtyp nach 24 h eine β-Galaktosidase Aktivität von 55 mUnits zeigt (Abbildung 3.31). Die Deletionen von STE50 oder RAS2 führen zu einem Verlust der *FLO11-lacZ* Expression um den Faktor 2. Eine Doppelleletion beider Gene Ste50 und RAS2 hat keine zusätzliche Auswirkung. Eine Überexpression der katalytischen PKA Untereinheit Tpk1 führt zu einer erhöhten Aktivierung der *FLO11-lacZ* Reporterexpression nach 24 h im Wildtyp um den Faktor 1,4. In logarithmisich wachsenden Zellen scheint eine Tpk1 Überexpression keinen Einfluss auf die *FLO11-lacZ* Expression zu haben, weder im WT noch in den Deletionsmutanten. In den Deletionsmutanten Δste50, Δras2 und Δste50 Δras2 erhöht sich die *FLO11-lacZ* Expression nach 24 h im Vergleich zum Wildtyp auf etwa 115 mUnits. Hier ist das Expressionslevel um den Faktor 2,1 erhöht. Dieser Anstieg ist für alle drei Deletionsstämme zu beobachten. Dies deutet darauf hin, dass der Wildtypstamm die Aktivierung der *FLO11-lacZ* Expression durch TPK1 entgegenwirken kann. Ein solcher Mechanismus scheint bei den Deletionsstämmen nicht mehr aktiv zu sein.
Abbildung 3.31 Auswirkung einer Tpk1 Überexpression auf die FLO11-lacZ Expression

Die angegebenen Stämme wurden mit pcdc25/SUP/2 oder pGREG526 transformiert. Die Transformanden wurden in flüssigen Minimalmedium mit Galaktose angezogen, um die Expression zu induzieren. Die Transformanden wurden bei 30°C unter ständigem Schütteln inkubiert und Proben für eine LacZ Aktivitätsbestimmung nach 24 Stunden entnommen. Die Zellen wurden gereinigt und die β-Galaktosidase Aktivität in den Rohextrakten wurde bestimmt. Es wurde mittels der Gesamtmenge Protein die spezifischen Aktivität berechnet. Die dargestellten Daten wurden aus zwei unabhängigen Messungen gemittelt. Stämme: WT (HFB750); Δste50 (HGH848); Δras2 (HSK267); Δras2 Δste50 (HSK 256); Plasmide: TPK1 (pcdc25/SUP/2, EHG99); Vektor (pGREG526, EWK75)

3.3.4.10 Der Ste50-MAPK-Signalweg, kann Adhäision unabhängig von Flo8 vermitteln

Die Expression von FLO11 wird durch eine Vielzahl von Faktoren bestimmt. Der wichtigste unter ihnen ist der Transkriptionsfaktor FLO8. Stämme, die kein Flo8 exprimieren, können nicht invasiv wachsen und zeigen keine Adhäision (Liu et al., 1996). FLO11 besitzt einen der größten Promotorbereiche aller Gene in Hefe. Wichtige Transkriptionsfaktoren, die auf die Expression von FLO11 Einfluss nehmen, sind Flo8 und der Ste12-Tec1 Komplex. Die Aktivität von Flo8 wird hauptsächlich vom PKA Signalweg gesteuert. Der MAPK Signalweg reguliert über das Protein Kss1 als spezifische Kinase die Transkriptionsfaktoren Ste12 und Tec1. Der entscheidende Transkriptionsfaktor Tec1 wird kontinuierlich in Abhängigkeit von Fus3 degradiert. Wird FUS3 deletiert, so steigt die Tec1 Aktivität deutlich an. Um zu testen ob Adhäision unabhängig von Flo8 möglich
ist, wurde *FUS3* im W303 Stammhintergrund deletiert. Die Stämme wurden dann auf Vollmedium ausplattiert und für 6 Tage bei 30°C inkubiert. Da *nste50FAR* den invasiven Wachstumsweg verstärkt einleitet, wurde zusätzlich das Plasmid p526-50p-*nSTE50FAR* transformiert.

![Abbildung 3.32 Auswirkung einer FUS3 Deletion auf das adhäsive Wachstum in einem *flo8* Stamm](image)

Die angegebenen Stämme wurden in minimal Medium angezogen und von einer Übernachtkultur auf ein SD Platten ausgestrichen. Die Platten wurden für 6 Tage inkubiert und das Gesamtwachstum dokumentiert. Dann wurden nicht adhäsive Zellen schonend abgewaschen und photographisch festgehalten. Stämme: WT (W303-1A, HGX10); Δ*fus3* (W303-1A Δ*fus3* HCH497); Plasmide: Vektor (pGREG526 EWK75); *nste50FAR* (p526-50p-*nste50FAR*, ENB111)

3.3.5 Lokalisierung von nSte50FAR während der Signaltransduktion

3.3.5.1 Lokalisierung von GFP-nSte50FAR

Um die Verteilungsmuster von nste50FAR während der Signaltransduktion zu untersuchen, sollte die Lokalisierung des Proteins in lebenden Zellen bestimmt werden. Für solche Untersuchungen eignen sich Fusionsproteine, bei denen das untersuchte Protein an das grün fluoreszierende Protein GFP fusioniert ist (Chalfie et al., 1994). GFP wird durch die Bestrahlung mit Licht angeregt (Wellenlänge 395 nm), und gibt diese mit einer Eigenfluoreszenz im grünwelligen Bereich wieder ab. Diese kann mittels Filter mikroskopisch detektiert werden. Auf diese Weise können lebende Zellen untersucht werden.

Eine Fluoreszenzmikroskopie von Zellen, die GFP-nSte50FAR unter Kontrolle des STE50 Eigenpromotor exprimieren, war nicht möglich, da keine Fluoreszenzsignale detektierbar waren. Die Zellen konnten jedoch unter Osmostress wachsen - was für ein funktionelles Fusionsprotein spricht. Für diesen Versuch wurden verschiedene Stämme mit dem Plasmid pGREG576-nSTE50FAR transformiert. Hier wird das GFP Fusionsprotein vom GAL1 Promotor reguliert. Dies führt zur Überexpression des Proteins nSte50FAR, die jedoch keinen Einfluss auf das vegetative Wachstum der Zellen hat. Stämme wurden in SRG Medium logarithmisch angezogen und dann unterschiedlichen Stressen ausgesetzt. Für die Osmotoleranz wurden die Zellen für 5 Minuten mit 0,4 M NaCl inkubiert. Die Induktion der Paarung wurde mit 5 μM α-Faktor für 90 Minuten erreicht. Das pseudohyphale Wachstum wiederum wurde durch 8-stündige Inkubation in SLAG-Medium ausgelöst.

In Abbildung 3.33 ist zu sehen, dass sich GFP-nSte50FAR hauptsächlich an der Zelloberfläche lokalisiert. Wie bei Ras2, dass durch eine Farnesylierung und Palmitoylierung zur inneren Seite der Plasmamembran rekrutiert wird (Dong et al., 2003), zeigt nSte50FAR durch die 13 C-terminalen Aminosäuren von Ras2 eine Plasmamembran-Lokalisation. Bei logarithmisch wachsenden Zellen zeigt sich eine

Die beobachteten Ergebnisse bestätigen, dass das GFP-Protein an der Zelloberfläche

<table>
<thead>
<tr>
<th>DIC</th>
<th>GFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRG</td>
<td> </td>
</tr>
<tr>
<td>+ NaCl</td>
<td> </td>
</tr>
<tr>
<td>+ α-Faktor</td>
<td> </td>
</tr>
<tr>
<td>SLAG</td>
<td> </td>
</tr>
</tbody>
</table>

Abbildung 3.33 Verteilung von GFP-nSte50FAR nach Signalinduktion

Verschiedene Stämme wurden mit dem Plasmid pGREG576-nste50FAR transformiert. Die Transformanden wurden logarithmisch angezogen und nach Einleitung des jeweiligen Signalwegs beobachtet. Die Zellen wurden entweder für 5 Min mit 0,4 M NaCl, für 90 Min mit 5μM α-Faktor oder für 8 h in SLAG Medium inkubiert. Die Lokalisation des GFP-Proteins wurde mittels Fluoreszenz und DIC analysiert.

Stämme: SRG, α-Faktor (WAM4, HFB93); NaCl (W303-1A Δste50 Δssk1, HCH100); SLAG (Cg31 Mat a/α Δste50/Δste50 HLS256) Plasmid: GFP-nste50FAR (pGREG576-nste50FAR, ENB130)
gleichmäßig lokalisiert ist und nur unter osmotischem Stress eine Veränderung in der Verteilung durch das Bilden von fleckenartigen Strukturen zeigt.

3.3.5.2 Verteilungsmuster von GFP-nSte50FAR bei osmotischem Stress an der Plasmamembran

Im vorherigen Experiment wurde gezeigt, dass sich das Verteilungsmuster von nSte50FAR unter osmotischem Druck ändert. Eine solche Veränderung wurde auch schon für andere Proteine, die am hochosmolaren MAPK-Signalweg beteiligt sind,

<table>
<thead>
<tr>
<th></th>
<th>-NaCl</th>
<th>+NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δopy2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δste20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δsho1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 3.34 Verteilung von GFP-nSte50FAR nach Signalinduktion

Stämme: WT (W303-1A Δste50 Δssk1 HCH100); Δste20 (W303-1A Δste20 Δssk1, HCH164); Δsho1 (W303-1A Δsho1 Δssk1, HCH253), Δopy2 (W303-1A Δopy2 Δssk1, HNB210) Plasmid: GFP-nste50FAR (pREG576-nste50FAR, ENB130)

Es ist zu sehen, dass unter normalen Bedingungen das Fusionsprotein gleichmäßig an der Zelloberfläche lokalisiert (Abbildung 3.34). Dies lässt sich für alle drei Deletionsstämme W303-1A Δste20 Δssk1, W303-1A Δsho1 Δssk1 und W303-1A Δopy2 Δssk1 aussagen und die WT Kontrolle sagen. Wird jedoch NaCl zu den Zellen gegeben, so bilden sich bei allen drei untersuchten Stämmen fleckenartige Strukturen an der Zelloberfläche wenn auch mit unterschiedlichem Muster. Bei einer Deletion von OPY2 zeigen sich fleckenartige Strukturen an der Zelloberfläche. Diese ähneln stark denen, die bereits im vorherigen Abschnitt für den Δste50 Δssk1 Stamm (HCH100) beschrieben wurden. Eine Deletion von STE20 führt zu einer Veränderung der fleckenartigen Strukturen. So sind diese vergrößert sondern bilden fast ringartige Strukturen. Die Flecken sind zudem nicht so kompakt in Ihrer Struktur sondern etwas ungleichmäßig gefärbt. In einem Stamm mit einer SHO1 Deletion sind die fleckenartigen Strukturen nach Zugabe von NaCl im Vergleich zum Wildtyp nicht verändert.

4 DISKUSSION

4.1 Die RA-Domäne von Ste50 ist essentiell für die Funktion von Ste50 in mehreren MAPK-vermittelten Signalwegen

Ste50 hat eine dreiteilige Struktur, bestehend aus der N-terminalen SAM-Domäne (steril alpha motif), einer Serin/Threonin reichen Region in der Mitte des Proteins und am C-terminalen Ende eine RA-Domäne (Ras associate). Die SAM-Domäne vermittelt die Interaktion mit der SAM-Domäne der MAPKKK Ste11. Die so vermittelte Interaktion ist stabil und Ste50 reguliert so die wichtige MAPKKK Ste11. Die Struktur und Funktion der SAM Domänen konnte in den vergangenen Jahren aufgeklärt werden (Jansen et al., 2001; Grimshaw et al., 2004; Kwan et al., 2004; Bhattacharjya et al., 2004). Mittels Two-Hybrid-Analysen und biochemischen Analysen konnte gezeigt werden, dass es allein die SAM Domänen der beiden Proteine sind, die die Interaktion vermitteln (Jansen et al., 2001). Es konnte weiterhin gezeigt werden, dass Mutationen in der SAM Domäne die
Interaktion zwischen Ste50 und Ste11 beeinflussen und dadurch die Signalweiterleitung in der Pheromonantwort, dem invasiven Wachstum und der Osmotoleranz stören (Jansen et al., 2001).

Die carboxyterminale Region von Ste50, welche die RA-Domäne beinhaltet, ist für die Funktion des Proteins Ste50 in der Signalweiterleitung im Pheromonweg und im invasiven Wachstumsweg ebenso entscheidend wie in der hochosmolaren Antwort (Ramezani-Rad et al., 1992; Xu et al., 1996; Posas et al., 1998). Die RA Domäne von Ste50 wurde mittels einer Sequenzhomologie mit dem Ras Effektor RAL/GDS identifiziert (Ponting & Benjamin 1996). Die RA Domäne von Ste50 vermittelt die Interaktion mit den kleinen G-Proteinen Ras1, Ras2 und Cdc42 (Spode, 2003; Hopp, 2005; Tatebayashi et al., 2006).

auf hochosmolarer Stress. Offensichtlich dient Op2 im HOG-Signalweg der Rekrutierung von Ste50 an die Plasmamembran.

Die Struktur der RA-Domäne scheint essentiell für deren Funktion zu sein. Da es eine konservierte Sekundärstruktur innerhalb der RA-Domänen und RB-Domänen gibt, so ist es wahrscheinlich, dass die Mutationen die Struktur beeinflussen, und damit die Interaktion zwischen Ste50 und den G-Proteinen nicht möglich ist. Die Mutation ste50^{C296G} liegt in einem konservierten Bereich, der eine β-Faltblattstruktur aufweist. Diese ist durch die Mutation gestört. ste50^{S322S} und ste50^{S318L} liegen in bzw. direkt vor dem letzten β-Faltblatt der RA-Domäne wiederum in einem sehr stark konservierten Bereich. Auch hier wird die vorhergesagte Struktur durch die Mutationen gestört (PHD, Rost, 1996). Es wurde bereits gezeigt, dass dieser Teil von Ste50 wichtig für dessen Funktion ist, da eine Deletion dieses Bereiches von STE50 ebenfalls zu einem Funktionsverlust führt (Rad et al., 1992; Wu et al., 1996). Wieso diese Mutationen einen so deutlichen Effekt haben, kann erst geklärt werden, wenn die Interaktionspartner der RA Domäne eindeutig charakterisiert wurden, und auch die Kristallstruktur dieser Domäne bekannt ist. Die Vorhersagen zur Struktur durch verschiedene Programme unterscheiden sich zum Teil gravierend, die zum Teil deutlich von der bekannten βαβαββα-Struktur der übrigen bekannten RA-Domänen anderer Proteine abweichen. Von RA-Domänen ist bisher bekannt, dass obwohl insbesondere das erste und zweite β-Faltblatt die Interaktion mit Ras vermitteln, sie durch die Mutationen nicht betroffen sind. Vielleicht ist die Gesamtstruktur durch die Mutationen so gestört, dass keine Interaktion stattfinden kann.

4.2 Modulation von MAPK Signalwegen durch das Adaptorprotein Ste50

der gleichen Ebene wie Sho1 im Ste50-MAPK-Signalweg einzuordnen, es ist jedoch nicht an der eigentlichen MAPK-Signalkaskade beteiligt (Wu et al., 2006; Tatebayashi et al., 2007).

Alle bisher beschriebenen Interaktionspartner der Ste50-RA Domäne haben trotz ihrer unterschiedlichen Struktur und Funktion doch eine Gemeinsamkeit. So sind sie alle in oder an der Plasmamembran assoziiert. Opy2 und Sho1 besitzen eine, bzw. vier Transmembrandomänen (Reiser et al., 2000; Raitt et al., 2000; Wu et al., 2006). Die kleinen G-Proteine besitzen keine Transmembrandomäne, sind jedoch durch posttranslationale Modifikationen fest an der Plasmamembran verankert. Ein Verlust dieser Modifikationen durch Mutationen in der CAAX-Box führen zu einem Verlust der Funktion der kleinen G-Proteine (Crechet et al., 2000; Dong et al., 2003).

Es sollte nun untersucht werden, wie sich plasmamembranrekrutiertes Ste50 in den Signalwegen zur Induktion der Paarung, des filamentösen Wachstums und der Antwort auf Osmostress verhält. Hierbei ging es nicht nur um die Fragestellung, ob dieses Konstrukt überhaupt funktionstüchtig ist, sondern besonders darum, wie es sich vom wildtypischen Ste50 unterscheidet und ob die RA-Domäne noch weitere Rollen in der Funktion von Ste50 hat.

4.2.1 Plasmamembrantargeting von Ste50-ΔRA stellt die Funktion als regulatorischer Adaptor im Hochosmolaren Antwortweg wieder her

Um zu untersuchen, wie sich eine Plasmamembranrekrutierung auf die Funktion von Ste50 auswirkt, wurde ein Ste50 Konstrukt verwendet, bei dem die RA-Domäne (335-346) deletiert war. Stattdessen wurden die 13 C-terminalen Aminosäuren von Ras2 an den N-terminalen Teil von Ste50 Ste50ΔRA (AS 1-234) fusioniert. Der C-Terminus von Ras2 enthält die CAAX-Box und führt so zu einer Plasmamembranrekrutierung von nSte50FAR. Die CAAX-Box führt zu einer Farnesylierung und einer anschließenden Palmitoylierung des Proteins. Mittels einer GFP (Green Fluorescent Protein) Fusion an den N-terminalen Teil von nSte50FAR wurde die Lokalisierung des Proteins an die Zelloberfläche nachgewiesen. Als erster Funktionalitätstest wurde nste50FAR sowohl

Es bleibt auch die Signalspezifität erhalten. Wäre dies nicht der Fall, so würden die Zellen unter Osmostress in dem G1-Zellzyklus-Arrest enden. Doch dies ist für nSte50FAR nicht zu beobachten. Wird jedoch Ste11 an die Plasmamembran in einem Δste11 Δste50 Δssk2 Δssk22 Stamm rekrutiert, so kommt es durch Aktivierung des HOG Signalwegs zur Induktion der Pheromonantwort (Wu et al., 2006). Dies hebt die Funktion von Ste50 für die Signalspezifität hervor.

Neben Opy2 ist auch Sho1 im HOG-Signalweg oberhalb von Ste50 eingeordnet. Es wurde untersucht, ob nste50FAR auch eine SHO1 Deletion ähnlich wie eine OPY2 Deletion komplementieren kann. Es zeigte sich hierbei, dass Δsho1 Δssk1 Stämme die zusätzlich nSte50FAR exprimieren keine Suppression der Osmosensitivität aufweisen (Abbildung 3.16). Sho1 interagiert mit Ste50, Ste11 und Pbs2. Es ist daher wichtig für das Zusammenbringen der einzelnen Komponenten des HOG-Signalwegs. Dies kann durch nSte50FAR nicht ersetzt werden, da es ja nur Ste11 bindet. Zusätzlich dient Sho1
als Verbindung zwischen den Sensoren Msb2 und Hkr1 mit der MAPK Signalkaskade. Diese Funktion kann nicht durch Ste50 ersetzt werden, da es modulierend auf Ste11 wirkt. Sho1 zeigt keine Auswirkung auf die Verteilung von nste50FAR. Wie Hkr1 und Msb2 bildet auch Sho1 unter Salzstress fleckenartige Strukturen in seiner Verteilung (Tatebayashi et al., 2007). Diese ähneln im Aussehen solchen, die von nste50FAR unter Osmostress gebildet werden. Für die drei Transmembranproteine konnte gezeigt werden, dass sie diese Strukturen unabhängig von einander bilden, was auch für nste50FAR zu trifft (Tatebayashi et al., 2007; Abbildung 3.34). Wieso und wie sich diese Flecken bilden ist nicht geklärt, auch ob vielleicht lipid-rafs eine Rolle spielen ist nicht geklärt.

Der Crosstalk ist abhängig vom Sho1 und Msb2 und benötigt Ste50 (Tatebayashi et al., 2007). Hier konnte gezeigt werden, dass auch Op2 für Crosstalk benötigt wird, aber dies durch die Expression von nSte50FAR supprimiert wird (Abbildung 3.18). Der Crosstalk bei nste50FAR ist um den Faktor drei reduziert. Hierbei zeigt eine zusätzliche Deletion von OPY2 keinen Unterschied in der Aktivierung des Reportergens.

Abbildung 4.1 Schematische Modell der unterschiedlichen Regulation der CRE-lacZ Aktivität durch Ste50 und nSte50FAR

Die geringere Aktivierung des CRE-lacZ Reporters kann jedoch auch am Fehlen der RA-Domäne liegen. Die RA-Domäne vermittelt die Interaktion mit Ras2. Wenn nun Ste50-ΔRA exprimiert wird, kann es nicht mehr mit Ras2 interagieren. Ras2 kann dann vermehrt mit der Adenylatzyklase interagieren, was in einem erhöhten Level von cAMP resultiert. Ein erhöhtes Level von cAMP bzw. eine erhöhte Aktivität von Ras2 supprimiert die zelluläre Stressantwort (Stanhill et al., 1999). Dass die RA-Domäne von Ste50 sich negativ auf die Aktivität von Ras auswirkt wurde bereits gezeigt. So unterdrückt eine Überexpression der RA-Domäne die Induktion des filamentösen Wachstumsweg durch die hyperaktive Ras Δval19 Mutante (Truckses et al., 2006). Ras2 Δval19 interagiert verstärkt mit Ste50, wie in dieser Arbeit gezeigt werden konnte (Abbildung 3.8). Ein Zusammenhang von Ste50 und dem Ras/cAMP Weg in der Stressantwort und Langlebigkeit der Zelle wurde bereits gezeigt (Poplinski et al., 2007). So führt eine Δste50 Δpde2 Mutante zu einer erhöhten Osmosensitivität, während es bei einer Δste11 Δpde2 diesen Effekt nicht gibt. Es wurde zudem gezeigt, dass der Ras/cAMP Signalweg
sich direkt hemmend auf den

CRE-Sequenz bindenden Transkriptionsfaktor Sko1 auswirkt (Pascual-Ahuir et al., 2001). Dieser negative Einfluss könnte die verminderte Aktivierung von CRE-lacZ durch nSte50FAR erklären. Die Plasmamembranrekrutierung von nSte50FAR würde zwar Ste11 für den HOG-Signalweg rekrutieren. Die fehlende Interaktion mit Ras2 führt zu einer verstärkten Aktivierung des Ras/cAMP Signalwegs, was sich hemmend auf die Expression des Reporters auswirkt (Abbildung 4.1).

4.2.2 In der Antwort auf Paarungspheromon schwächt eine Plasmamembranrekrutierung von Ste50-ΔRA die Wirkung als positiver Modulator ab

Abbildung 4.2 Schematische Modell der unterschiedlichen Regulation der Pheromon-Antwort durch Ste50 und nSte50FAR

A Durch die Aktivierung des Signalwegs wird Ste50 an den Signalkomplex rekrutiert. Da Ste11 fest an Ste50 gebunden ist, führt sie zu einer Verstärkung der Aktivierung des Signalwegs. Ste50 moduliert den Signalweg positiv. **B** nste50FAR ist an die Plasmamembran gebunden und kann nicht über die RA Domäne an die Signalmoleküle gebunden werden. Die zelluläre Antwort wird abgeschwächt.
Verfügung, wodurch das eingehende Signal nicht mehr richtig verstärkt werden kann, resultierend in einem schwächeren Signal. Dies ist genau der gegenteilige Effekt dessen, was Bashor et al. durch eine feste Bindung von Ste50 an das Scaffoldprotein Ste5 erreicht haben.

Die Antwort auf Paarungspheromon wird nicht nur durch die Stärke der Antwort beschrieben, sondern auch durch die Dauer der Antwort, also den Zeitraum bis sich die Zellen an die Präsenz den Pheromons angepaßt haben. Die Zeit, die Zellen benötigen, um sich an die Präsenz von Paarungspheromon zu adaptieren wird durch die plasmamembranassozierte von nste50FAR nicht beeinflusst. Besonders am Budding-Index ist zu sehen, dass Zellen mit nste50FAR zwar zu einem geringeren Teil in der G1-Phase arretieren, jedoch ist sowohl bei Wildtyp als auch bei nste50FAR nach 150 Minuten der Anteil an nicht knospenden Zellen wieder auf Ausgangsniveau gefallen (Abbildung 3.22 A). Das bedeutet, dass trotz schwächerer Induktion der Signalantwort die Adaption nicht beeinflusst wird. Der Adaptionssmechanisimus der Zelle an Pheromon ist somit unabhängig von der Ste50-RA Domäne. Es zeigt sich also, dass nste50FAR hauptsächlich auf die Stärke der Signalantwort und nicht auf die Dauer wirkt.

4.2.3 Plasmamembranrekrutierung von Ste50 führt zu einer verstärkten Induktion des invasiven Wachstums

den Ras/cAMP-Signalweg gesteuert. Stämme, denen *FLO8* fehlt – so der W303 Stammhintergrund - zeigen kein invasives Wachstum. Die Transkriptionsfaktoren Tec1 und Ste12 werden durch die MAPK Signalwege reguliert. Tec1 wird durch Fus3 phosphoryliert und anschließend degradiert. Es stellte sich die Frage, ob der Einfluss der MAPK Signalwege auf das invasive Wachstum durch die Fus3 vermittelte Degradierung von Tec1 abgeschwächt wird. Es stellte sich heraus, das Δfus3 Stämme Adhäsion zeigen können (Abbildung 3.32).

Ste50 ist Teil des MAPK-Signalwegs, der sowohl invasives Wachstum in Haploidien als auch Pseudohyphenbildung in Diploidien induziert. Wie würde sich eine Plasmamembranrekrutierung von Ste50-ΔRAD auf die Signalweiterleitung in diesem Zusammenhang auswirken? In diploiden Zellen zeigte die Expression eine verstärkte Bildung von Pseudohyen, auch sind die Zellen stark elongiert. Diesen Phänotyp wird

![Abbildung 4.3 Schematische Modell der unterschiedlichen Regulation des invasiven Wachstumswegs durch Ste50 und nSte50FAR](image)

sonst bei einer Expression von hyperaktivem Ras2\(^{val19}\) gezeigt (Gimeno *et al.*, 1992).

In haploiden Zellen zeigt die Expression von Ras2\(^{val19}\) gleichfalls Auswirkungen auf den invasiven Wachstumsweg. Um zu klären ob dies über den MAPK-Signalweg läuft und ob hierfür Ste50 benötigt wird, wurden sowohl ein Adhäsionsassay, als auch Reporterassay mit *FLO11-lacZ* durchgeführt. Hierbei zeigte sich, dass eine *STE50* Deletion sowohl das adhäsive Wachstum bei einer Ras2\(^{val19}\) Expression als auch die Aktivierung der Expression von *FLO11-lacZ* unterbindet (Abbildung 3.28 und 3.29). Das bedeutet, dass die Wirkung von Ras2 auf den invasiven Wachstumsweg in *Saccharomyces cerevisiae* hauptsächlich über Ste50 und den MAPK Signalweg stattfindet. Das Ras2 im invasiven

Diskussion

Opy2 hat auch in invasiven Wachstumsweg einen Einfluss auf die Aktivität des MAPK-Signalwegs. Eine Deletion von OPY2 in haploiden Zellen senkt die Expression FG(TyA)-lacZ um 24%, führt aber nicht zu einem Verlust der Adhäsion. Diese Senkung der Aktivität ist gegenüber einer STE50 Deletion mit einer Senkung um 60% gegenüber Wildtyp schwächer, was darauf deutet, das Opy2 für den invasiven Wachstumsweg nicht essentiell ist.

4.3 Verteilungsmuster von nSte50FAR an der Plasmamembran während der Signaltransduktion

4.4 Ste50 als regulatorischer Adaptor im invasiven Wachstumsweg – Ein Modell

Abbildung 4.4 Modell für die durch Ste50 vermittelte Aktivierung von Ste11 unter Glukosemangel

an Ste5, so würde der Pheromon-Antwortweg eingeleitet werden. Es ist also so, dass Ste50 an dieser Stelle die Adaptorfunktion als eine Art Gerüstprotein übernimmt. Sho1 mit Msb2 vervollständigen den Signalkomplex (Abbildung 4.4).

Es lässt sich also zusammenfassen, dass Ste50 ein regulierendes Adaptorprotein darstellt. Es verbindet die G-Proteine mit dem MAPK-Signalkomplex. Die subzelluläre Verteilung des Ste50-Signalkomplexes scheint eine wichtige Rolle bei der optimalen und effizienten Signaltransduktion zu spielen. Ste50 allein führt aber nicht zur Aktivierung der Signalwege, was bedeutet, dass andere Komponenten wie Ste20 eine aktivierende Rolle bei der subzellulären Verteilung spielen.
5 ZUSAMMENFASSUNG

Summary

How cells interpret external signals and react adequately to the stimulus is one of the central questions of Biology. Eukaryotic cells use conserved signalling pathways for signal transmission. One of these pathways is the mitogen activated protein kinase (MAPK) pathway. The MAPK pathways are closely connected to receptor associated G-Proteins. In this study, we have investigated the protein Ste50, which is an essential component of three MAPK signalling pathways in yeast: the pheromone response pathway, the filamentous growth pathway and the High Osmolarity glycerol (HOG) pathway. Ste50 is a regulatory adaptor protein. On the one hand it binds to membrane associated G-protein effectors to connect with ligand-receptor complexes at the plasma membrane and on the other hand it binds to the MAPKKK Ste11 in order to modulate the activation of the MAPK signalling complexes. Ste50 consists of three distinct regions – the sterile alpha motif (SAM) domain, a serine/threonine rich region and a Ras associated (RA) domain. In this study, the effect of mutations within the RA-domain of Ste50 was addressed. It has been found that single amino acids exchanges in RA domain resulted in a complete loss of function within all three tested signalling pathways. In this context we analyzed whether these mutations influence the Interaction between Ste50 and the small G-proteins Ras1, Ras2, Cdc42 and the transmembrane protein Opy2. None of them showed an interaction with Ras1, Ras2 or Opy2, but only one of the three mutants could not interact with Cdc42. It could further be shown that interaction between Ste50 and Ras2^{val19}, a dominant activated form of Ras2, was stronger than between that and Ras2.

Investigation of the effects of artificial recruitment of Ste50 to plasma membrane (nste50FAR) yielded differentiated responses through the three MAPK-mediated pathways. The osmostolerance was not altered by nste50FAR, while it resulted in a reduced signal transduction by the pheromone response pathway. In contrast, nste50FAR resulted in strengthened and more sustained activation of the filamentous growth signalling, which could complement the filamentous growth defect of RAS2 deletion mutant. A localisation study of nste50FAR showed that the distribution pattern of GFP-nSte50FAR is altered by induction of the HOG-pathway and these changes are influenced by PAK-like kinase Ste20. This study shows that the function of Ste50 and its RA-domain exceeds simple recruitment of pathway components to a complex and influences the strength and duration of the signal transduction.
6 REFERENCES

Differential input by Ste5 scaffold and Msg5 phosphatase route a MAPK cascade to multiple outcomes. EMBO J. 23: 2564–2576.

Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev. 12: 2887-2898.

Ras membrane targeting is essential for glucose signaling but not for viability in yeast. Proc Natl Acad Sci U S A. 92: 2984-2988.

Bhattacharyya RP, Remenyi A, Yeh BJ and Lim WA (2006)

The pheromone-induced nuclear accumulation of the Fus3 MAPK in yeast depends on its phosphorylation state and on Dig1 and Dig2. Cell Biol 8: 44.

Blomberg A and Adler L. (1992)

Bradford MM. (1976)

The role of Far1 linking the heterotrimeric G-protein polarity establishment proteins during mating. Science 282: 1511-1516.

Cairns BR, Ramer SW and Kornberg RD. (1992)

Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell. 9: 1241–1249.

Chant J. (1999)

Chen H and Fink GR. (2006)

Choi KY, Satterberg B, Lyon, DM and Elion EA (1994)

Cook JG, Bardwell L, and Thorner J. (1997)

Characterization of Saccharomyces cerevisiae Ras1p and chimeraic constructs of Ras proteins reveals the hypervariable region and farnesylation as critical elements in the adenylyl cyclase signaling pathway. Biochemistry 42: 14903-149012.

Rtn1p is involved in structuring the cortical endoplasmic reticulum. Mol Biol Cell. 17: 3009-3020

de Nadal E, Alepuz PM and Posas F. (2002)

Dickinson JR. (1996)
Dohman HG. and Thorner JW. (2001)

Drogen F, O’Rourke SM, Stucke VM, Jaquenoud M, Neiman AM and Peter M. (2000)
Phosphorylation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signaling in vivo. Curr Biol. 10: 630-639

The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7: 555-569.

Human CPR (cell cycle progression restoration) genes impart a Far- phenotype on yeast cells. Genetics 147: 1063–1076.

Elion EA, Brill JA and Fink GR. (1991)
FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc Natl Acad Sci U S A. 88: 9392-9396.

Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin β homologs NMD5 and XPO1. EMBO J. 17: 5606-5614.

Fichtner L, Schulze F and Braus GH. (2007)

Protein geranylgeranyltransferase of Saccharomyces cerevisiae is specific for Cys-Xaa-Xaa-Leu motif proteins and requires the CDC43 gene product, but not the DPR1 gene product. Proc Natl Acad Sci U S A. 88: 4448-4452.

Feng Y, Song LY, Kincaid E, Mahanty SK and Elion EA. (1998)
Functional binding between Gbeta and the LIM domain of Ste5 is required to activate the MEKK Ste11. Curr Biol. 8: 267-278.

Flatauer L, Zadeh SF and Bardwell L. (2005)
Msn1p/Mss110p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol. 31: 103–116.

Gagiano M, Bauer FF, Pretorius IS. (2002)
The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res. 2: 433–470.

Gimeno CJ, Ljungdahl PO, Styles CA and Fink GR. (1992)
Unipolar cell divisions in the yeast Saccharomyces cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 68: 1077-1090.

Giniger E, Varum SM and Ptashne M. (1985)
Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell. 40: 767-774.

Structure of the sterile alpha motif (SAM) domain of the Saccharomyces cerevisiae mitogen-activated protein kinase pathway-modulating protein STE50 and analysis of its interaction with the STE11 SAM. J Biol Chem. 279: 2192-2201

Plc1p is required for SAGA recruitment and derepression of Sko1p-regulated genes. Mol Biol Cell 18: 2419-2428.

The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: isolation of a FUS3 mutant that is insensitive to the repression mechanism. Mol Cell Biol. 16: 6715-6723.

Hanahan, D. 1985

Hao N, Behar M, Elston TC and Dohlman HG. (2007)

Hao N, Zeng Y, Elston TC and Dohlman HG. (2008)

Herrmann C. (2003)
MAP kinase pathways in yeast: for mating and more. Cell. 80: 187-197

Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell. 1: 22-32.

Hirschman JE and Jenness DD. (1999)

Hopp C. (2005)
Wechselwirkungen und Phosphorylierung des Adaptorproteins Ste50 während der MAPK-vermittelten Signaltransduktion in der Hefe Saccharomyces cerevisiae. Dissertation, Heinrich-Heine-Universität Düsseldorf

Huang L, Weng X, Hofer F, Martin GS and Kim SH. (1997)
Three-dimensional structure of the Ras-interacting domain of RapGDS. Nat Struct Biol. 4: 609-615

Inouye C, Dhillon N, and Thorner J. (1997)

Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 144: 1425-1436.

Jenness DD and Spatrick P. (1986)

Johnson LN, Noble ME and Owen DJ. (1996)

Johnson DI. (1999)
Johnston M. (1987)

Dual role of the *Saccharomyces cerevisiae* TEA/ATTs family transcription factor Tec1p in regulation of gene expression and cellular development. Eukaryot Cell. 1: 673-686.

Kron SJ, Styles CA and Fink GR. (1994)
Symmetric cell division in pseudohyphae of the yeast *Saccharomyces cerevisiae*. Mol Biol Cell. 5: 1003-1022.

A yeast operator overlaps an upstream activation site Cell. 50: 369–377.

The effect of posttranslational modifications on the interaction of Ras2 with adenylyl cyclase. Science. 259: 683-686

The solution structure of the S. cerevisiae Ste11 MAPKKK SAM domain and its partnership with Ste50. J Mol Biol. 342: 681-693

Kyba M and Brock HW. (1998)
The SAM domain of polyhomeotic, RAE28, and scr mediates specific interactions through conserved residues. Dev Genet. 22: 74-84.

Laemmli UK. (1970)

Laloux I, Jacobs E and Dubois E. (1994)
Involvement of SRE element of Ty1 transposon in *TEC1* dependent transcriptional activation. Nucleic Acids Res. 22: 999-1005.

Cloning of *Saccharomyces cerevisiae STE5* as a suppressor of a *STE20* protein kinase mutant: structural and functional similarity of *STE5* with *FAR1*. Mol Gen Genet. 241: 241-254.
Referenzen

Activation of yeast PBS2 MAPKK by MAPKKs or by binding of an SH3-containing osmosensor. Science. 269: 554-558.

Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol.9: 1319-1326

Persistent activation by constitutive Ste7 promotes Kss1-mediated invasive growth but fails to support Fus3-dependent mating in yeast. Mol Cell Biol. 24: 9221–9238.

Maltese WA. and Sheridan KM. (1990)

Dual lipid modification motifs in G(alpha) and G(gamma) subunits are required for full activity of the pheromone response pathway in Saccharomyces cerevisiae. Mol Biol Cell. 11: 957–968.

Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene. 18: 1303-1312

Miller J. (1972)
Experiments in Molecular Genetics, Cold Spring Harbor Labatory, Cold Spring Harbor, NY

Mösch HU, Roberts RL and Fink GR. (1996)

Mösch HU, Kubler E, Krappmann S, Fink GR and Braus GH. (1999)

Nucleotide sequences of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J. 4: 2643-2648.

Nern A and Arkowitz RA. (1999)

O’Rourke SM. and Herskowitz I. (1998)
The Hog1p MAPK prevents crosstalk between the HOG and pheromone response pathways in Saccharomyces cerevisiae. Genes Dev. 12: 2874-2886.
O’Rourke SM and Herskowitz I. (2002)
A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. Mol Cell Biol. 22: 4739-4749.

Ota IM and Varshavsky A. (1993)
A yeast protein similar to bacterial two-component regulators. Science. 262:566-569.

Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell. 103: 931-943.

Pan X and Heitman J. (1999)

Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell. 10: 2822-2835.

Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J. 15: 7046-7059.

Ponting CP. (1995)

Ponting CP and Benjamin DR. (1996)

Yeast HOG1 MAP kinase cascade is regulated by a multistep phosho-relay mechanism in the SLN1-YPD1-SSK1 two-component “osmosensor. Cell. 86: 865-875.

Posas F and Saito H. (1997)
Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science. 276: 1702-1705

Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 17: 1385-1394.

Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the
SLN1-YPD1-SSK1 "two-component" osmosensor. Cell. 86: 865-875

Printen JA and Sprague GF Jr. (1994)
Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all
members of the MAP kinase cascade. Genetics. 138: 609-619.

Prof M, Pascual-Ahuir A, de Nadal E, Arino J, Serrano R and Posas F. (2001)
Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic

Prof M and Serrano R. (1999)
Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in
Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol

Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA
and SWI/SNF in response to osmotic stress. Mol Cell. 9: 1307–1317

MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional

Pryciak PM and Huntress FA. (1998)
Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbeta gamma complex

Qi M and Elion EA. (2005)
Formin-induced actin cables are required for polarized recruitment of the Ste5 scaffold and high

Raitt DC, Posas F and Saito H. (2000)
Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1

Ramachander R and Bowie JU. (2004)
SAM domains can utilize similar surfaces for the formation of polymers and closed oligomers. J Mol

Ramer SW and Davis RW. (1993)
A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase

Ramezani-Rad M, Xu G and Hollenberg CP. (1992)
STE50, a novel gene required for activation of conjugation at an early Step in mating in

Ste50p is involved in regulating filamentous growth in the yeast Saccharomyces cerevisiae and

Polarized localization of yeast Pbs2 depends on osmestress, the membrane protein Sho1 and

Richman TJ, Sawyer MM and Johnson DI. (2002)
Saccharomyces cerevisiae Cdc42p Localizes to Cellular Membranes and Clusters at Sites of

Roberts RL and Fink GR. (1994)
Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental
programs in the same cell type: mating and invasive growth. Genes Dev. 8: 2974-2985.
Rost B. (1996)

Roth AF, Sullivan DM and Davis NG. (1998)

MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promotor of the yeast FLO11 gene. EMBO J. 18: 1257-1269.

Sabbagh W Jr., Flatauer LJ, Bardwell AJ and Bardwell L. (2001)
Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Mol Cell. 8: 683–691.

Schwartz MA and Madhani HD. (2006)

Sengupta N, Vinod PK and Venkatesh KV. (2007)
Crosstalk between CAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression. Biophys Chem. 125: 59-71

Untersuchungen zur Modifizierung von Ste50p in der Bierhefe Saccharomyces cerevisiae.
Dissertation, Heinrich-Heine-Universität Düsseldorf

Swiegers JH, Pretorius IS and Bauer FF. (2006)
Regulation of respiratory growth by Ras1: the glyoxylate cycle mutant, cit2Delta, is suppressed by RAS2. Curr Genet. 50: 161-171.

Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. EMBO J. 26: 3521-3533.
The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane
26: 912–928.

Trueheart J. and Fink GR. (1989)
The yeast cell fusion protein Fus1 is O-glycosylated and spans the plasma membrane. Proc Natl
Acad Sci U S A. 86: 9916–9920.

Van Nuland A, Vandormael P, Donaton M, Alenquer M, Lourenceo A, Quintino E, Versele M
and Thevelein JM. (2006)
Ammonium permease-based sensing mechanism for rapid ammonium activation of the protein

Vetter IR, Linnemann T, Wohlgemuth S, Geyer M, Kalbitzer HR, Herrmann C and
Wittinghofer A. (1999)
Structural and biochemical analysis of Ras-effector signaling via RaIGDS. FEBS Lett. 451: 175-
180.

Vinod PK and Venkatesh KV. (2007)
Specificity of MAPK signaling towards FLO11 expression is established by crosstalk from cAMP

Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive

Wang Y and Dohlman HG. (2002)
Pheromone-dependent ubiquitination of the mitogen-activated protein kinase kinase Ste7. J Biol
Chem. 277: 15766-15772.

Nuclear export and plasma membrane recruitment of the Ste5 scaffold are coordinated with
oligomerization and association with signal transduction components. Mol Biol Cell. 14: 2543-
2558.

Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the

Westfall PJ and Thorner J. (2006)
Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic

Whiteway MS and Thomas DY. (1994)
Site-directed mutations altering the CAAX box of Ste18, the yeast pheromone-response pathway

Widmann C, Gibson S, Jarpe MB and Johnson GL. (1999)
Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human.
Physiol Rev. 79: 143-180.

Site-specific regulation of the GEF Cdc24p by the scaffold protein Far1p during yeast mating.

Wittinghofer A and Nassar N. (1996)

Recognizing and defining true Ras binding domains I: biochemical analysis. J Mol Biol. 348: 741-
758.
Molecular characterization of Ste20p, a potential mitogen-activated protein or extracellular signal-regulated kinase kinase (MEK) kinase kinase from *Saccharomyces cerevisiae*. J Biol Chem. 270: 15984-15992.

Yuan YL and Fields S. (1991)
Properties of the DNA-binding domain of the *Saccharomyces cerevisiae* STE12 protein. Mol Cell Biol. 11: 5910-5918.

Sho1 and Pbs2 Act as Coscaffolds Linking Components in the Yeast High Osmolarity MAP Kinase Pathway. Mol Cell. 14: 825-832.

Zeitlinger J, Simon I, Harbison CT, Hannett NM, Volkert TL, Fink GR and Young RA. (2003)
7 ANHANG

DATA DOCUMENTATION SHEET 1

A. Identification of gene replacement strategy
B. Verification of gene replacement

Origin

A. Identification of gene
1) Label: HGX10
2) Strain background: W303-1A
3) Genotype: MATa leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100

Created one

1) Label: HNB210
2) Strain background: W303-1A
3) Genotype: MATa leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 opy2::loxP-HIS3-loxP
4) Systematic name of ORF: YPR075C OPY2 on chromosome XVI ..
Chromosomal coordinates: 696816 to 695734 size of ORF: 1083 (bp)

A. Replacement Strategy:
(x) SFH-PCR () LFH-PCR () cloned replacement cassette
Replacement marker: loxP-HIS3 loxP Position and number of bp replaced from
ORF (A of ATG = 1). From 1 to 1083 replaced: 1083 (bp)
Number of remaining original ORF nucleotides. 5': 0... 3' 0 (inclusive of stop codon)

B. Verification:
(x) Analytical PCR (provide copy of gel and indicate size marker)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence</th>
<th>Size of PCR-Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 A260 kanB</td>
<td>ggtgatggctaatag</td>
<td></td>
</tr>
<tr>
<td>A2 A261 kanC</td>
<td>cctgacatcctgcc</td>
<td></td>
</tr>
<tr>
<td>K1 A320opy2T300</td>
<td>CTGCTGCGGAACCTATCC</td>
<td>A2-K1 (531bp)</td>
</tr>
<tr>
<td>K2 A321OPY2P439</td>
<td>cccgagtcCCGAACCAGGATGC</td>
<td>A1-K2 (578bp)</td>
</tr>
</tbody>
</table>

PROVIDE PICTURE OF GEL

0.9 kb
0.8 kb
0.6 kb
n-Term (578bp) (531bp) c-Term
A. Identification of gene replacement strategy
B. Verification of gene replacement

A. Identification of gene
1) Label: HFB 95
2) Strain background: W303-1A
3) Genotype: \textit{MATa} leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 hog1::TRP1

B. Verification:

\textbf{(x) Analytical PCR} (provide copy of gel and indicate size marker)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence</th>
<th>Size of PCR-Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 A260 kanB</td>
<td>ggtgtgatggctaatg</td>
<td></td>
</tr>
<tr>
<td>A2 A261 kanC</td>
<td>cctcgcacatcatctcgcc</td>
<td></td>
</tr>
<tr>
<td>K1 A320opy2T300</td>
<td>CTGCTGCAGAATTATCC</td>
<td>A2-K1 (531bp)</td>
</tr>
<tr>
<td>K2 A321OPY2P439</td>
<td>cggagctccCGAACCAGGTATCAGC</td>
<td>A1-K2 (578bp)</td>
</tr>
</tbody>
</table>

PROVIDE PICTURE OF GEL

\begin{center}
\includegraphics[width=0.5\textwidth]{gel.png}
\end{center}

Chromosomal coordinates: 696816 to 695734 size of ORF: 1083 (bp)

A. Replacement Strategy:
(x) SFH-PCR () LFH-PCR () cloned replacement cassette

Replacement marker: loxP-HIS3 loxP Position and number of bp replaced from ORF: (A of ATG = 1). From 1 to 1083 replaced: 1083 (bp)

Number of remaining original ORF nucleotides. 5': 0... 3' 0 (inclusive of stop codon)
A. Identification of gene replacement strategy
B. Verification of gene replacement

A. Identification of gene
1) Label: HCH129
2) Strain background: W303-1A
3) Genotype: \(\text{MATa leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 ste50::ura3 ssk1::kan} \)

Created one

1) Label: HNB213
2) Strain background: W303-1A
3) Genotype: \(\text{MATa leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 ste50::ura3 ssk1::kan opy2::loxP-HIS3-loxP} \)
4) Systematic name of ORF: YPR075C OPY2 on chromosome XVI
Chromosomal coordinates: 696816 to 695734 size of ORF: 1083 (bp)

A. Replacement Strategy:
(x) SFH-PCR () LFH-PCR () cloned replacement cassette
Replacement marker: loxP-HIS3 loxP Position and number of bp replaced from
ORF (A of ATG = 1). From 1 to 1083 replaced: 1083 (bp)
Number of remaining original ORF nucleotides. 5': 0... 3' 0 (inclusive of stop codon)

B. Verification:
(x) Analytical PCR (provide copy of gel and indicate size marker)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequenze</th>
<th>Size of PCR-Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 A260 kanB</td>
<td>ggtatgattggctaattg</td>
<td></td>
</tr>
<tr>
<td>A2 A261 kanC</td>
<td>cctcgacatcatctgcc</td>
<td></td>
</tr>
<tr>
<td>K1 A320opy2T300</td>
<td>CTGCTGCGGAACCTATCC</td>
<td>A2-K1 (531bp)</td>
</tr>
<tr>
<td>K2 A321OPY2P439</td>
<td>ccgagctcCGAACCAGGTGATCAGC</td>
<td>A1-K2 (578bp)</td>
</tr>
</tbody>
</table>

Provide picture of gel

0.9 kb
0.8 kb
0.6 kb

C-Term
531bp
n-Term
578bp
A. Identification of gene replacement strategy
B. Verification of gene replacement

[Origin]

A. Identification of gene
1) Label: HCH92
2) Strain background: W303-1A
3) Genotype: MATα leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 ssk1::kan

[Created one]

1) Label: HNB213
2) Strain background: W303-1A
3) Genotype: MATα leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 ssk1::kan
 opy2::loxP-HIS3-loxP
4) Systematic name of ORF: YPR075C OPY2 on chromosome XVI

Chromosomal coordinates: 696816 to 695734 size of ORF: 1083

A. Replacement Strategy:
(x) SFH-PCR () LFH-PCR () cloned replacement cassette
Replacement marker: loxP-HIS3 loxP Position and number of bp replaced from
ORF (A of ATG = 1). From 1 to 1083 replaced: 1083 (bp)
Number of remaining original ORF nucleotides. 5′: 0... 3′ 0 (inclusive of stop codon)

B. Verification:
(x) Analytical PCR (provide copy of gel and indicate size marker)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence</th>
<th>Size of PCR-Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 A260 kanB</td>
<td>ggtagtagggctaatg</td>
<td></td>
</tr>
<tr>
<td>A2 A261 kanC</td>
<td>cctcgacatcatctgccc</td>
<td></td>
</tr>
<tr>
<td>K1 A320opy2T300</td>
<td>CTGCTGCAGGAACCTATCC</td>
<td>A2-K1 (531bp)</td>
</tr>
<tr>
<td>K2 A321OPY2P439</td>
<td>cggagcctcCGAACCAGTGATCGC</td>
<td>A1-K2 (578bp)</td>
</tr>
</tbody>
</table>

Provide Picture of Gel

0.6 kb 0.8 kb 0.9 kb

c-Term n-Term
(531bp) (578bp)
A. Identification of gene replacement strategy

B. Verification of gene replacement

Origin

A. Identification of gene

1) Label: HNB165

2) Strain background: W303-1A

3) Genotype: MATa leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 ste50::ura3::Mycnste50FAR::KAN

Created one

1) Label: HNB216

2) Strain background: W303-1A

3) Genotype: MATa leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 ste50::ura3::Mycnste50FAR::KAN opy2::loxP-HIS3-loxP

4) Systematic name of ORF: YPR075C OPY2 on chromosome XVI

Chromosomal coordinates: 696816 to 695734 size of ORF: 1083

A. Replacement Strategy:

(x) SFH-PCR () LFH-PCR () cloned replacement cassette

Replacement marker: loxP-HIS3 loxP Position and number of bp replaced from ORF (A of ATG = 1). From 1 to 1083 replaced: 1083 (bp)

Number of remaining original ORF nucleotides. 5’: 0... 3’ 0 (inclusive of stop codon)

B. Verification:

(x) Analytical PCR (provide copy of gel and indicate size marker)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence</th>
<th>Size of PCR-Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 A260 kanB</td>
<td>ggatgtatggctaaat</td>
<td></td>
</tr>
<tr>
<td>A2 A261 kanC</td>
<td>cctgacatcatctgccc</td>
<td></td>
</tr>
<tr>
<td>K1 A320opy2T300</td>
<td>CTGCTGCGGAACCTATCC</td>
<td>A2-K1 (531bp)</td>
</tr>
<tr>
<td>K2 A321OPY2P439</td>
<td>ccgagctccCGAACCTAGGATCAGC</td>
<td>A1-K2 (578bp)</td>
</tr>
</tbody>
</table>

PROVIDE PICTURE OF GEL
A. Identification of gene replacement strategy

B. Verification of gene replacement

Origin

A. Identification of gene

1) **Label:** HNB167

2) **Strain background:** W303-1A

3) **Genotype:** MATα leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 ste50::ura3::Myc- nste50FAR::KAN ssk1::kan

Created one

1) **Label:** HNB218

2) **Strain background:** W303-1A

3) **Genotype:** MATα leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 ste50::ura3:: Myc- nste50FAR::KAN ssk1::kan opy2::loxP-HIS3-loxP

4) **Systematic name of ORF:** YPR075C OPY2 on chromosome XVI

Chromosomal coordinates: 696816 to 695734 size of ORF: 1083 (bp)

A. Replacement Strategy:

(x) SFH-PCR () LFH-PCR () cloned replacement cassette

Replacement marker: loxP-HIS3 loxP Position and number of bp replaced from ORF (A of ATG = 1). From 1 to 1083 replaced: 1083 (bp)

Number of remaining original ORF nucleotides. 5’: 0... 3’ 0 (inclusive of stop codon)

B. Verification:

(x) **Analytical PCR** (provide copy of gel and indicate size marker)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence</th>
<th>Size of PCR-Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 A260 kanB</td>
<td>gatgtatggctaaaat</td>
<td></td>
</tr>
<tr>
<td>A2 A261 kanC</td>
<td>cctgacatcatgc</td>
<td></td>
</tr>
<tr>
<td>K1 A320opy2T300</td>
<td>CTGCTGCGGAACCTTATCC</td>
<td>A2-K1 (531bp)</td>
</tr>
<tr>
<td>K2 A321OPY2P439</td>
<td>ccgagctcCGGAACCAGGTACG</td>
<td>A1-K2 (578bp)</td>
</tr>
</tbody>
</table>

PROVIDE PICTURE OF GEL

- 0.9 kb
- 0.8 kb
- 0.6 kb

n-Term (578bp)

- c-Term (531bp)
DATA DOCUMENTATION SHEET 7

A. Identification of gene replacement strategy

B. Verification of gene replacement

A. Identification of gene

1) Label: HF894
2) Strain background: W303-1A
3) Genotype: MATa leu2-3,112 ura3-1 trp1 his3-11 ade2 can1-100 hog1::TRP1

B. Verification:

(x) Analytical PCR (provide copy of gel and indicate size marker)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence</th>
<th>Size of PCR-Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 A260 kanB</td>
<td>ggtatgggctaatag</td>
<td></td>
</tr>
<tr>
<td>A2 A261 kanC</td>
<td>cctgacatcataaggcc</td>
<td></td>
</tr>
<tr>
<td>K1 A320opy2T300</td>
<td>CTGCTGCGGAACCTATCC</td>
<td>A2-K1 (531bp)</td>
</tr>
<tr>
<td>K2 A321OPY2P439</td>
<td>cccacgccAGGATGCAGC</td>
<td>A1-K2 (578bp)</td>
</tr>
</tbody>
</table>

Provide picture of gel
A. Identification of gene replacement strategy

B. Verification of gene replacement

A. Identification of gene

1) Label: HF750
2) Strain background: MR12
3) Genotype: MATa leu2::hisG; ura3-52; leu2::FLO11lacZ-LEU2::leu2

Created one

1) Label: HNB287
2) Strain background: MR12
3) Genotype: MATa leu2::hisG; ura3-52; leu2::FLO11lacZ-LEU2::leu2 TRP1
 opy2::loxp-HIS3-loxP
4) Systematic name of ORF: YPR075C OPY2 on chromosome XVI ..
 Chromosomal coordinates: 696816 to 695734 size of ORF: 1083 (bp)

A. Replacement Strategy:
(x) SFH-PCR () LFH-PCR () cloned replacement cassette
Replacement marker: loxP-HIS3 loxP Position and number of bp replaced from
ORF (A of ATG = 1). From 1 to 1083 replaced: 1083 (bp)
Number of remaining original ORF nucleotides. 5': 0... 3' 0 (inclusive of stop codon)

B. Verification:

(x) Analytical PCR (provide copy of gel and indicate size marker)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence</th>
<th>Size of PCR-Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 A260 kanB</td>
<td>ggtgatggctaatg</td>
<td></td>
</tr>
<tr>
<td>A2 A261 kanC</td>
<td>cctcgacatcatctgccc</td>
<td></td>
</tr>
<tr>
<td>K1 A320opy2T300</td>
<td>CTGCTGCAGGAATTATTCC</td>
<td>A2-K1 (531bp)</td>
</tr>
<tr>
<td>K2 A321OPY2P439</td>
<td>cggagctcCGAACCAGGTCAGC</td>
<td>A1-K2 (578bp)</td>
</tr>
</tbody>
</table>

PROVIDE PICTURE OF GEL
Plasmidkarten der nste50FAR Plasmide

Plasmidkarte von ENB71. Der ORF von nste50FAR wurde mittels in vivo Rekombination an den rec1 und rec2 Regionen eingefügt.

Plasmidkarte von ENB111. Der GAL-Promotor von pGREG526 (EWK75) wurde durch den STE50 Promotor (ELS383) aus durch Restriktion mit SacI/SpeI und anschliessender Ligation ersetzt.
ABKÜRZUNGEN

AD Aktivierungsdomäne
ADE Adenin
Amp Ampicillin
APS Ammoniumpersulfat
3-AT 3-Amino-1H-1,2,4-triazole
BCIP Brom-Chlor-Indolylphosphat
bP Basenpaare
BSA Rinderserumalbumin
CEN Centromer
CIP Calf Intestine alkaline Phosphatase
cAMP zyklisches Adenin- Monophosphat
DMF Dimethylformamid
DMSO Dimethylsulfoxid
DNA Desoxyribonukleinsäure
dNTP Desoxynukleosidtriphosphat
DTT Dithiothreitol
EDTA Ethylenediamintetraessigsäure
EtBr Ethidiumbromid
GRE Filamentous response element
GAP GTPase activating protein
GEF Guanine nucleotide exchange factor
GST Glutation-S-Transferase
h Stunde
HIS Histidin
HMW High-Molecular-Weight
HOG High osmolarity glycerol
kb Kilobasen
KCl Kaliumchlorid
kDa Kilodalton
LB Luria-Bertani-Medium für E. coli
LEU Leucin
M, mM, μM Molar, Millimolar, Mikromolar
MAPK Mitogen-activated protein kinase
MgCl₂ Magnesiumchlorid
MgSO₄ Magnesiumsulfat
min Minute
ml, l, μl Milliliter, Liter, Mikroliter
NaCl Natriumchlorid
Na₂HPO₄ Dinatriumhydrogenphosphat
NaH₂PO₄ Natriumdihydrogenphosphat
NaOH Natriumhydroxid
NBT Nitro-Blue-Tetrazoliumchlorid
OD Optische Dichte
ONPG 2-Nitrophenyl-β-D-Galaktopyranosid
ORF Open reading frame
PBS Phosphate-Buffered Saline
PCR Polymerase Kettenreaktion
PEG Polyethylenglykol
PMSF Phenylmethylsulfonylfluorid
pH potentiaw Hydrogenii (Säurestärke)
PRE pheromone response element
RAD Ras associated domain
RbCl₂ Rubidiumchlorid
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpm</td>
<td>rounds per minute (Umdrehungen pro Minute)</td>
</tr>
<tr>
<td>SC</td>
<td>Synthetic Complete</td>
</tr>
<tr>
<td>SD</td>
<td>Synthetisches Medium</td>
</tr>
<tr>
<td>SDS</td>
<td>Natrium-Dodecylsulfat</td>
</tr>
<tr>
<td>STRE</td>
<td>stress response element</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N', N'', Tetramethylethyldiamin</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>TRP</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>URA</td>
<td>Uracil</td>
</tr>
<tr>
<td>Wt</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-Brom-4-chlor-3-indolyl-ß-D-Galaktopyranosid</td>
</tr>
<tr>
<td>YEPD</td>
<td>Hefe-Vollmedium</td>
</tr>
<tr>
<td>YNB</td>
<td>Yeast nitrogen base</td>
</tr>
</tbody>
</table>
Danksagung

Ich danke Herrn Professor Dr. Massoud Ramezani-Rad für die Bereitstellung des Themas und die Unterstützung während der Arbeit, die anregenden Diskussionen und seinen besonderen Einsatz während der Betreuung und Korrektur meiner Arbeit.

Ich danke Herrn Professor Dr. Jaeger für die freundliche Übernahme des Korreferates.

Frau Anna Nagy danke ich dafür, dass immer alles in perfekter Ordnung war, Kolben und Reagenzgläser immer vorhanden waren und sie heimlich immer wieder aufgeräumt hat.

Ich danke dem Institut für Mikrobiologie für alle Hilfe und Tips die man über die Jahre annimmt, und das über das kollegiale hinaus gehende Arbeitsklima. Ihnen möchte ich im Sinne der Mittagspause mitgeben: „Manuca, iam coctum est“

Mein besonderer Dank gilt meiner Familie – Pia, weil sie mich trägt und antreibt - meinen Eltern, weil sie mich in meinem Leben immer unterstützt haben - Julia und Denis, die mir schon so viele Jahre Hilfe und Anprechpartner sind.
Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorgelegte Doktorarbeit selbstständig und mit keinen anderen als den hier angegebenen Quellen und Hilfsmitteln angefertigt habe.

Düsseldorf, März 2009